Skip to main content
Log in

Capacitive and Resistive Properties of Molten Salt Synthesized Lead-Free K1/2Na1/2NbO3 Ceramic

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Lead-free K1/2Na1/2NbO3 (KNN) powder was synthesized using the molten-salt process in the eutectic mixture of KCl–NaCl at a low temperature of 700 ℃ for 2 h, which is less than that of the widely used conventional technique solid-state synthesis. X-ray diffraction (XRD) was used to investigate the purity and phase formation. To characterize the surface morphology of sintered ceramics, scanning electron microscopy (SEM) is used. The studies of dielectric permittivity and impedance spectroscopy were performed ranging from 1 Hz to 1 MHz on KNN at temperatures ranging from room temperature (RT) to 580 ℃. The piezoelectric coefficient constant d33 of KNN was obtained, and it is 90 × 10−12 pC/N. Nyquist plots of complex impedance were used to deduce the mechanism of relaxation. These plots depict non-Debye relaxation behavior. The conductivity contributions of grain and grain boundary were estimated using Cole–Cole plots. In addition, antibacterial activity for the KNN was tested using a four-plate approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Qi, A. Xie, R. Zuo, Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a rev. Energy Storage Mater. 45, 541–567 (2022). https://doi.org/10.1016/j.ensm.2021.11.043

    Article  Google Scholar 

  2. M. Waqar, H. Wu, J. Chen, K. Yao, J. Wang, Adv. Mater. 34, 2106845 (2021). https://doi.org/10.1002/adma.202106845

    Article  CAS  Google Scholar 

  3. O. Tokay, M. Yazıcı, Mater. Today Commun. 31, 103358 (2022). https://doi.org/10.1016/j.mtcomm.2022.103358

    Article  CAS  Google Scholar 

  4. Y. Xie, J. Xing, Z. Tan, L. Xie, Y. Cheng, X. Wu, R. Han, Q. Chen, J. Zhu, Ceram. Int. 48, 6565–6573 (2022). https://doi.org/10.1016/j.ceramint.2021.11.204

    Article  CAS  Google Scholar 

  5. H. Tao, J. Yin, Q. Zong, L. Zhao, D. Ergu, J. Ma, B. Wu, B. Ma, J. Alloys Compd. 935, 168142 (2023). https://doi.org/10.1016/j.jallcom.2022.168142

    Article  CAS  Google Scholar 

  6. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190–1196 (2005). https://doi.org/10.1111/j.1551-2916.2005.00229.x

    Article  CAS  Google Scholar 

  7. H. Li, L. Xie, Z. Tan, J. Xing, X. Li, H. Chen, F. Wang, Y. Cheng, M. Tang, J. Zhu, Inorg. Chem. 61, 18660–18669 (2022). https://doi.org/10.1021/acs.inorgchem.2c03160

    Article  CAS  PubMed  Google Scholar 

  8. M.M. Gomes, R. Vilarinho, R. Pinho, A. Almeida, J.G. Noudem, M.E.V. Costa, P.M. Vilarinho, J.A. Moreira, Ceram. Int. 47, 8308–8314 (2021). https://doi.org/10.1016/j.ceramint.2020.11.192

    Article  CAS  Google Scholar 

  9. E. Ringgaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701–2706 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.126

    Article  CAS  Google Scholar 

  10. E. Irle, R. Blachnik, B. Gather, Thermochim. Acta 179, 157–169 (1991). https://doi.org/10.1016/0040-6031(91)80344-i

    Article  CAS  Google Scholar 

  11. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb12971.x

    Article  CAS  Google Scholar 

  12. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209–213 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11127.x

    Article  CAS  Google Scholar 

  13. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4123 (2004). https://doi.org/10.1063/1.1813636

    Article  CAS  Google Scholar 

  14. C. Wang, Y. Hou, H. Ge, M. Zhu, H. Wang, H. Yan, J. Cryst. Growth 310, 4635–4639 (2008). https://doi.org/10.1016/j.jcrysgro.2008.08.042

    Article  CAS  Google Scholar 

  15. Y. Cao, K. Zhu, H. Zheng, J. Qiu, H. Gu, Particuology 10, 777–782 (2012). https://doi.org/10.1016/j.partic.2012.03.007

    Article  CAS  Google Scholar 

  16. T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel, T. Morita, Mater. Lett. 64, 125–128 (2010). https://doi.org/10.1016/j.matlet.2009.10.012

    Article  CAS  Google Scholar 

  17. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706–709 (2006). https://doi.org/10.1111/j.1551-2916.2005.00743.x

    Article  CAS  Google Scholar 

  18. B.P. Zhang, J.F. Li, K. Wang, H. Zhang, Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 1605–1609 (2006). https://doi.org/10.1111/j.1551-2916.2006.00960.x

    Article  CAS  Google Scholar 

  19. K. Katayama, Y. Azuma, Y. Takahashi, J. Mater. Sci. 34, 301–305 (1999). https://doi.org/10.1023/a:1004405605913

    Article  CAS  Google Scholar 

  20. J. Li, Q. Sun, Solid State Commun. 149, 581–584 (2009). https://doi.org/10.1016/j.ssc.2009.02.003

    Article  CAS  Google Scholar 

  21. L. Jianhua, J. Mater. Sci. 46, 6364–6370 (2011). https://doi.org/10.1007/s10853-011-5583-8

    Article  CAS  Google Scholar 

  22. M. Dubernet, M.J. Pitcher, M. Zaghrioui, M. Bah, J. Bustillo, F. Giovannelli, I. Monot-Laffez, J. Eur. Ceram. Soc. 42, 2188–2194 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.030

    Article  CAS  Google Scholar 

  23. A. Iacomini, S. Garroni, M. Mureddu, L. Malfatti, S. Thakkar, R. Orrù, S. Barbarossa, E. Pakhomova, G. Cao, J.A. Tamayo-Ramos, S. de la Parra, C. Rumbo, Á. Garcìa, J.F. Bartolomé, L. Pardo, J. Solid State Chem. 316, 123589 (2022). https://doi.org/10.1016/j.jssc.2022.123589

    Article  CAS  Google Scholar 

  24. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385–392 (2004). https://doi.org/10.1007/s10832-004-5130-y

    Article  CAS  Google Scholar 

  25. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005). https://doi.org/10.1063/1.2123387

    Article  CAS  Google Scholar 

  26. R. Zuo, X. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007). https://doi.org/10.1063/1.2710768

    Article  CAS  Google Scholar 

  27. R.H. Arendt, J.H. Rosolowski, J.W. Szymaszek, Mater. Res. Bull. 14, 703–709 (1979). https://doi.org/10.1016/0025-5408(79)90055-2

    Article  CAS  Google Scholar 

  28. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004). https://doi.org/10.1038/nature03028

    Article  CAS  PubMed  Google Scholar 

  29. Y. Zupei, Z. Shaorong, Q. Shaobo, C. Bin, T. Changsheng, Ferroelectrics 265, 225–232 (2002). https://doi.org/10.1080/00150190208260622

    Article  Google Scholar 

  30. S. Zhao, Q. Li, L. Wang, Y. Zhang, Mater. Lett. 60, 425–430 (2006). https://doi.org/10.1016/j.matlet.2005.09.005

    Article  CAS  Google Scholar 

  31. M. Lun, X. Zhou, S. Hu, Y. Hong, B. Wang, A. Yao, W. Li, B. Chu, Q. He, J. Cheng, Y. Wang, Ceram. Int. 47, 28797–28805 (2021). https://doi.org/10.1016/j.ceramint.2021.07.040

    Article  CAS  Google Scholar 

  32. Y. Zhu, W. Hao, X. Wang, J. Ouyang, X. Deng, H. Yu, Y. Wang, Med. Res. Rev. 42, 1377–1422 (2022). https://doi.org/10.1002/med.21879

    Article  CAS  PubMed  Google Scholar 

  33. C. Demir, N. Ceren Süer, M.A. Yapaöz, N. Kébir, S.Ö. Okullu, T. Kocagöz, T. Eren, Prog. Org. Coat. 135, 299–305 (2019). https://doi.org/10.1016/j.porgcoat.2019.06.008

    Article  CAS  Google Scholar 

  34. M. Romani, T. Warscheid, L. Nicole, L. Marcon, P. Di Martino, M.T. Suzuki, P. Lebaron, R. Lami, Sci. Total Environ. 802, 149846 (2022). https://doi.org/10.1016/j.scitotenv.2021.149846

    Article  CAS  PubMed  Google Scholar 

  35. R.A. McIntyre, Sci. Prog. 95, 1–22 (2012). https://doi.org/10.3184/003685012x13294715456431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Godoy-Gallardo, U. Eckhard, L.M. Delgado, Y.J.D. de Roo Puente, M. Hoyos-Nogués, F.J. Gil, R.A. Perez, Bioact. Mater. 6, 4470–4490 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D. Sergeev, E. Yazhenskikh, D. Kobertz, M. Müller, Calphad 65, 42–49 (2019). https://doi.org/10.1016/j.calphad.2019.02.004

    Article  CAS  Google Scholar 

  38. D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Appl. Phys. 101, 074111 (2007). https://doi.org/10.1063/1.2715486

    Article  CAS  Google Scholar 

  39. D.Q. Zhang, Z.C. Qin, X.Y. Yang, H.B. Zhu, M.S. Cao, J. Sol-Gel Sci. Technol. 57, 31–35 (2010). https://doi.org/10.1007/s10971-010-2320-8

    Article  CAS  Google Scholar 

  40. W. Chen, Z. Yu, J. Pang, P. Yu, G. Tan, C. Ning, Materials 10, 345 (2017). https://doi.org/10.3390/ma10040345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J.H. Belding, M.G. McLaren, Am. Ceram. Soc. Bull. 49(12), 1025 (1970). https://archive.org/details/sim_american-ceramic-society-bulletin_1970-12_49_12/page/n3/mode/2up.

  42. S. Hajra, M. Sahu, V. Purohit, R. Panigrahi, R.N. Choudhary, Mater. Res. Express 6(9), 096319 (2019). https://doi.org/10.1088/2053-1591/ab34d5/meta

    Article  CAS  Google Scholar 

  43. S. Hajra, M. Sahu, V. Purohit, K. Mohanta, B.K. Panigrahi, P.L. Deepti, Mater. Res. Express 6(12), 12632 (2020). https://doi.org/10.1088/2053-1591/ab648f/meta

    Article  Google Scholar 

  44. C.G. Koops, Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/physrev.83.121

    Article  CAS  Google Scholar 

  45. G. Shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96, 581–588 (1954). https://doi.org/10.1103/physrev.96.581

    Article  CAS  Google Scholar 

  46. D. Lin, K.W. Kwok, K.H. Lam, H.L. Chan, Structure, piezoelectric and ferroelectric. J. Phys. D: Appl. Phys. 40(11), 3500 (2007). https://doi.org/10.1088/0022-3727/40/11/036/meta

    Article  CAS  Google Scholar 

  47. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Appl. Phys. 104, 034104 (2008). https://doi.org/10.1063/1.2964100

    Article  CAS  Google Scholar 

  48. C.M. Cheng, M.C. Kuan, K.H. Chen, C.C. Shih, J.S. Jiang, Sintering temperature effect on ferroelectric and piezoelectric properties of lead-free piezoelectric (K0.5Na0.5)NbO3 ceramics. AMR 239–242, 994–997 (2011). https://doi.org/10.4028/www.scientific.net/amr.239-242.994

    Article  Google Scholar 

  49. S. Kumar, S. Kundu, D.A. Ochoa, J.E. Garcia, K.B.R. Varma, Raman scattering. Mater. Chem. Phys. 136, 680–687 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.042

    Article  CAS  Google Scholar 

  50. A.K. Yadav, A. Anita, S. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, RSC Adv. 7, 39434–39442 (2017). https://doi.org/10.1039/c7ra07130b

    Article  CAS  Google Scholar 

  51. Q. Jia, Q. Zhang, H. Sun, X. Hao, High transmittance and optical storage behaviors in Tb3+ doped K0.5Na0.5NbO3-based ferroelectric materials. J. Eur. Ceram. Soc. 41, 1211–1220 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.035

    Article  CAS  Google Scholar 

  52. N. Klein, E. Hollenstein, D. Damjanovic, H.J. Trodahl, N. Setter, M. Kuball, J. Appl. Phys. 102, 014112 (2007). https://doi.org/10.1063/1.2752799

    Article  CAS  Google Scholar 

  53. K.I. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44(9S), 7064 (2005). https://doi.org/10.1143/JJAP.44.7064/meta

    Article  CAS  Google Scholar 

  54. K. Thakur, S. Kumar, S. Kumar, N. Thakur, J. Alloys Compd. 857, 158251 (2021). https://doi.org/10.1016/j.jallcom.2020.158251

    Article  CAS  Google Scholar 

  55. Q. Jia, Q. Zhang, H. Sun, X. Hao, J. Eur. Ceram. Soc. 41, 1211–1220 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.035

    Article  CAS  Google Scholar 

  56. J.J. Zhou, J.F. Li, X.W. Zhang, J. Eur. Ceram. Soc. 32, 267–270 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.09.001

    Article  CAS  Google Scholar 

  57. X. Sun, J. Chen, R. Yu, C. Sun, G. Liu, X. Xing, L. Qiao, J. Am. Ceram. Soc. 92, 130–132 (2009). https://doi.org/10.1111/j.1551-2916.2008.02863.x

    Article  CAS  Google Scholar 

  58. X. Cheng, Q. Gou, J. Wu, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Ceram. Int. 40, 5771–5779 (2014). https://doi.org/10.1016/j.ceramint.2013.11.016

    Article  CAS  Google Scholar 

  59. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys. Stat. Sol. (RRL) 3, 142–144 (2009). https://doi.org/10.1002/pssr.200903090

    Article  CAS  Google Scholar 

  60. M. Połomska, B. Hilczer, M. Kosec, B. Malič, Ferroelectrics 369, 149–156 (2008). https://doi.org/10.1080/00150190802374873

    Article  CAS  Google Scholar 

  61. H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Appl. Phys. Lett. 93, 262901 (2008). https://doi.org/10.1063/1.3056658

    Article  CAS  Google Scholar 

  62. J. Macdonald, W.B. Johnson, Impedance Spectroscopy, vol. 150 (Wiley, New York, 1987), p. 70. https://jrossmacdonald.com/jrm/wp-content/uploads/187ImpSpectroscopy.pdf, Impedance spectroscopy (jrossmacdonald.com).

  63. B. Behera, P. Nayak, R.N. Choudhary, J. Mater. Sci.: Mater. Electron. 19(10), 1005–11 (2008). https://doi.org/10.1007/s10854-007-9441-z

    Article  CAS  Google Scholar 

  64. A. Dutta, T.P. Sinha, S. Shannigrahi, Phys. Rev. B 76(15), 155113 (2007). https://doi.org/10.1103/PhysRevB.76.155113

    Article  CAS  Google Scholar 

  65. F. Salman, R. Khalil, H. Hazaa, Dielectric studies and Cole-Cole plot analysis of silver-ion conducting glasses. Adv. J. Phys. Sci. 3(1), 1–9 (2014). https://fsc.stafpu.bu.edu.eg/Physics/4381/publications/Reda%20Mahsoub%20Alnaby%20Mohamed%20Baioumy%20Khalil_Salman%20et%20al.pdf.

  66. K. Auromun, S. Hajra, R.N.P. Choudhary, B. Behera, Solid State Sci. 101, 106139 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106139

    Article  CAS  Google Scholar 

  67. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906

    Article  CAS  Google Scholar 

  68. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657–2670 (1969). https://doi.org/10.1016/0022-3697(69)90039-0

    Article  CAS  Google Scholar 

  69. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970). https://doi.org/10.1039/tf9706600080

    Article  CAS  Google Scholar 

  70. K.L. Ngai, S.W. Martin, Phys. Rev. B. 40(15), 10550 (1989). https://doi.org/10.1103/PhysRevB.40.10550

    Article  CAS  Google Scholar 

  71. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639–648 (1974). https://doi.org/10.1021/j100599a016

    Article  CAS  Google Scholar 

  72. J. Reau, S. Rossignol, B. Tanguy, J. Rojo, P. Herrero, R. Rojas, J. Sanz, Solid State Ion. 74, 65–73 (1994). https://doi.org/10.1016/0167-2738(94)90438-3

    Article  CAS  Google Scholar 

  73. N. Zouari, M. Mnif, H. Khemakhem, T. Mhiri, A. Daoud, Solid State Ion. 110, 269–275 (1998). https://doi.org/10.1016/s0167-2738(98)00128-3

    Article  CAS  Google Scholar 

  74. Z. Lu, J. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57, 235–244 (1992). https://doi.org/10.1016/0167-2738(92)90153-g

    Article  CAS  Google Scholar 

  75. T. Yao, J. Chen, Z. Wang, J. Zhai, Y. Li, J. Xing, S. Hu, G. Tan, S. Qi, Y. Chang, P. Yu, C. Ning, Colloids Surf., B 175, 463–468 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.022

    Article  CAS  Google Scholar 

  76. J.H. Koo, Polymer Nanocomposites: Processing, Characterization, and Applications (McGraw-Hill Education, 2019). https://www.accessengineeringlibrary.com/content/book/9781260132311.

  77. V. de Sousa, C.G. Pupe, M. Villardi, C.R. Rodrigues, L.C. Maia, L.M. Cabral, H.V.A. Rocha, IJN (2011). https://doi.org/10.2147/ijn.s25667

    Article  PubMed  PubMed Central  Google Scholar 

  78. D. Khare, A. Singh, A.K. Dubey, Mater. Today Commun. 27, 102317 (2021). https://doi.org/10.1016/j.mtcomm.2021.102317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work on perovskite based lead-free ceramics was supported by the UGC-DAE Consortium for scientific research, University Campus, Khandwa Road, lndore- 452017 (CSR-IC/ /CRS-241/2017-18/1322). The authors would like to thank UGC- DAE CSR, Indore for sanction of research project and financial support. We also thank Dr. Vasanth sathe (Centre director), Dr. Alok Banerjee (Ex Centre director), Dr. Uday Deshpande and Dr. Mukul Gupta from UGC-DAE Consortium for Scientific Research, Indore center, extending the measurement facilities XRD, Raman and UV-Vis & FTIR respectively.

Funding

UGC-DAE-Consotium for Scientific Research, Indore Center, CSR-IC/ /CRS-241/2017-18/1322.

Author information

Authors and Affiliations

Authors

Contributions

First author DSC involved in the data collection curation, writing the original draft, Second Author VRR contributed conceptualization supervision, review and editing. Third author (SNK) has done analysis of microbiological activity and written the microbiological activity part with figures, i.e., Figures 15 and 16. and fourth author (corresponding author) Madhavaprasad Dasari contributed supervision, methodology and resourses, review and editing.

Corresponding author

Correspondence to Madhavaprasad Dasari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakram, D.S., Reddy, V.R., Kumar, S.N. et al. Capacitive and Resistive Properties of Molten Salt Synthesized Lead-Free K1/2Na1/2NbO3 Ceramic. J Inorg Organomet Polym 33, 2824–2834 (2023). https://doi.org/10.1007/s10904-023-02710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02710-z

Keywords

Navigation