Skip to main content
Log in

A Zn-Based Fluorescent Coordination Polymer as Bifunctional Sensor: Sensitive and Selective Aqueous-Phase Detection of Picric Acid and Heavy Metal Ion

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In contrast to the traditionally exploited cages, organic chromophores and metal organic frameworks (MOFs) as a sensing model, the chemistry of 1D coordination polymers as promising sensors is still under explored and needs special attention. Herein, a zinc 1D coordination polymer, {[Zn(HPydc)2]·2H2O}n (1) has been synthesized using 2,3-Pyridinedicarboxylic acid (H2Pydc) and characterized employing FT-IR, single crystal X-ray, PXRD, TG, CV, spectral studies, time resolved fluorescence and Hirshfeld surface analysis. The 1 displayed intermolecular O⋯H, Cl⋯H and others interactions, which create a supramolecular network. These interactions have been substantiated by Hirshfeld surface analyses. 1 exhibit promising dual functional sensing behaviour for recognition of picric acid (PA) and Pd2+ ions over other nitroaromatic compounds (NACs) and metal ions via fluorescence quenching with high selectivity and sensitivity in the aqueous phase. The unique properties of 1 as a potential bi-functional chemosensor for the detection of both PA and Pd2+ in the aqueous medium has been estabilished as confirmed by its high quenching efficiency, selectivity and superior detection limit. The sensing mechanism is explored by spectral titrations, time decay and also by the DFT (B3LYP/def2-SVP) studies. The present investigation adds to the advancement of MOF or CP materials research, particularly in their application as biological and environmental fluorescent chemosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Liu, Y. Bao, F. Du, H. Wang, J. Tian, R. Bai, Chem. Commun. 47, 1731–1733 (2011)

    Article  CAS  Google Scholar 

  2. J. Kielhorna, C. Melberb, D. Kellerb, I. Mangelsdorfa, Int. J. Hyg. Environ. Health 205, 417–432 (2002)

    Article  Google Scholar 

  3. H. Li, J. Fan, M. Hu, G. Cheng, D. Zhou, T. Wu, F. Song, S. Sun, C. Duan, X. Peng, Chem. Eur. J. 18, 12242 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. H. Li, J. Fan, J. Du, K. Guo, S. Sun, X. Liu, X. Peng, Chem. Commun. 46, 1079 (2010)

    Article  CAS  Google Scholar 

  5. Y. Salina, R.M. Manez, M.D. Marcos, F. Sancenon, A.M. Castero, M. Parra, S. Gill, Chem. Soc. Rev. 41, 1261 (2012)

    Article  Google Scholar 

  6. M.E. Germain, M.J. Knapp, Chem. Soc. Rev. 38, 2543–2555 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. G. He, H. Peng, T. Liu, M. Yang, Y. Zhang, Y. Fang, J. Mater. Chem. 19, 7347–7353 (2009)

    Article  CAS  Google Scholar 

  8. S.S. Nagarkar, B. Joarder, A.K. Chaudhari, S. Mukherjee, S.K. Ghosh, Angew. Chem. Int. Ed. 52, 2881 (2013)

    Article  CAS  Google Scholar 

  9. S. Shakya, I.M. Khan, M. Ahmad, J. Photochem. Photobiol. A 392, 112402 (2020)

    Article  CAS  Google Scholar 

  10. I.M. Khan, S. Shakya, ACS Omega 4, 9983 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D.M. Gonzalez, F.J. Lara, N. Jurgovska, L.G. Gracia, A.M.G. Campana, Anal. Chim. Acta 891, 321 (2015)

    Article  CAS  Google Scholar 

  12. M. Tabrizchi, V. Ilbeigi, J. Hazard. Mater. 176, 692 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. M.S. Khan, M. Khalid, M.S. Ahmad, M. Shahid, M. Ahmad, Dalton Trans. 48, 12918 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. Mantasha I., M. Shahid, H.A.M. Saleh, K.M.A. Qasem, M. Ahmad, CrystEngComm (2020). https://doi.org/10.1039/D0CE00356E

  15. Y. Xin, Q. Wang, T. Liu, L. Wang, J. Li, Y. Fang, Lab Chip 12, 4821 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. D. Li, J. Liu, R.T.K. Kwok, Z. Liang, B.Z. Tang, J. Yu, Chem. Commun. 48, 7167 (2012)

    Article  CAS  Google Scholar 

  17. S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, S.-L. Li, W.-W. He, Y.-Q. Lan, P. Shen, Z.-M. Su, Chem. Eur. J. 20, 3589 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. H. Furukawa, K.E. Cordova, M. Okeeffe, O.M. Yaghi, Science 341, 1230444 (2013)

    Article  PubMed  CAS  Google Scholar 

  19. Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815–5840 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P.V. Duyne, J.T. Hupp, Chem. Rev. 112, 1105–1125 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012)

    Article  CAS  Google Scholar 

  22. F. Neese, Orca. An ab Initio, Density Functional and Semiempirical Program Package version, 2009.

  23. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  PubMed  CAS  Google Scholar 

  25. M.A. Spackman, D. Jayatilaka, CrystEngComm 11, 19 (2009)

    Article  CAS  Google Scholar 

  26. S.K. Seth, V.S. Lee, J. Yana, S.M. Zain, A.C. Cunha, V.F. Ferreira, A.K. Jordão, M.C.B.V. de Souza, S.M.S.V. Wardell, J.L. Wardellf, E.R.T. Tiekink, CrystEngComm 17, 2255–2266 (2015)

    Article  CAS  Google Scholar 

  27. M.A. Spackman, J.J. McKinnon, D. Jayatilaka, CrystEngComm 10, 377–388 (2008)

    CAS  Google Scholar 

  28. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer, Version 3.0 (University of Western Australia, Crawley, 2012)

    Google Scholar 

  29. J.A. Ibers, W.C. Hamilton, International Tables for X-ray Crystallography, vol. 4 (Kynoch Press, Birmingham, 1974)

    Google Scholar 

  30. SMART & SAINT, Software Reference Manuals, Version 6.45 (Bruker Analytical X-ray Systems, Inc., Madison, 2003)

    Google Scholar 

  31. G.M. Sheldrick, SADABS, Software for Empirical Absorption Correction, Ver. 2.05 (University of Göttingen, Göttingen, 2002)

    Google Scholar 

  32. Siemens Industrial Automation Inc., XPREP, Version 5.1 (Siemens Industrial Automation Inc., Madison, 1995)

    Google Scholar 

  33. G.M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 2008)

    Google Scholar 

  34. G.M. Sheldrick, Acta Cryst. C 71, 3–8 (2015)

    Article  CAS  Google Scholar 

  35. X.-L. Li, G.-Z. Liu, L.-Y. Xin, L.-Y. Wang, CrystEngComm 14, 1729 (2012)

    Article  CAS  Google Scholar 

  36. M. Li, J. Xiang, L. Yuan, S. Wu, S. Chen, J. Sun, Cryst Growth Des. 6, 9 (2006)

    Google Scholar 

  37. W. Chen, H.M. Yuan, J.Y. Wang, Z.Y. Liu, J.J. Xu, M. Yang, J.S. Chen, J. Am. Chem. Soc. 125, 9266 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. J.Y. Lu, J. Macias, J.G. Lu, J.E. Cmaidalka, Cryst. Growth Des. 2, 485 (2002)

    Article  CAS  Google Scholar 

  39. M.M. Najafpour, V. McKee, Catal. Commun. 11, 1032 (2010)

    Article  CAS  Google Scholar 

  40. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. (Wiley-Interscience, New York, 1986)

    Google Scholar 

  41. J.S. Kwag, M.H. Jeong, A.J. Lough, J.C.K. Bull, Korean Chem. Soc. 31, 2069 (2010)

    Article  CAS  Google Scholar 

  42. I.A. Ansari, F. Sama, M. Raizada, M. Shahid, M. Ahmad, Z.A. Siddiqi, New J. Chem. 40, 9840 (2016)

    Article  CAS  Google Scholar 

  43. S.K. Seth, D. Sarkar, A.D. Jana, T. Kar, Cryst. Growth Des. 11, 4837 (2011)

    Article  CAS  Google Scholar 

  44. I. Khan, P. Panini, S.U.-D. Khan, U.A. Rana, H. Andleeb, D. Chopra, S. Hameed, J. Simpson, Cryst. Growth Des. 16, 1371 (2016)

    Article  CAS  Google Scholar 

  45. F. Sama, A.K. Dhara, M.N. Akhtar, Y. Chen, M. Tong, I.A. Ansari, M. Raizada, M. Ahmad, M. Shahid, Z.A. Siddiqi, Dalton Trans. 46, 9801 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. H. Fu, C. Qin, Y. Lu, Z.-M. Zhang, Y.-G. Li, Z.-M. Su, W.-L. Li, E.-B. Wang, Angew. Chem. Int. Ed. 51, 7985–7989 (2012)

    Article  CAS  Google Scholar 

  47. W.-C. Chen, C. Qin, X.-L. Wang, Y.-G. Li, H.-Y. Zang, Y.-Q. Jiao, P. Huang, K.-Z. Shao, Z.-M. Su, E.-B. Wang, Chem. Commun. 50, 13265–13267 (2014)

    Article  CAS  Google Scholar 

  48. B. Gole, W. Song, M. Lackinger, P.S. Mukherjee, Chem. Eur. J. 20, 13662 (2014)

    Article  CAS  PubMed  Google Scholar 

  49. S. Pramanik, C. Zheng, X. Zhang, T.J. Emge, J. Li, J. Am. Chem. Soc. 133, 4153–4155 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara, Science 287, 1992 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Chairman, Department of Chemistry, AMU, Aligarh, for providing required research facilities. Mo Ashafaq thanks UGC, New Delhi, for Junior Research Fellowship. M. Khalid thanks UGC New Delhi for Start Up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Khalid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10146 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashafaq, M., Khalid, M., Raizada, M. et al. A Zn-Based Fluorescent Coordination Polymer as Bifunctional Sensor: Sensitive and Selective Aqueous-Phase Detection of Picric Acid and Heavy Metal Ion. J Inorg Organomet Polym 30, 4496–4509 (2020). https://doi.org/10.1007/s10904-020-01579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01579-6

Keywords

Navigation