Skip to main content
Log in

A flexible aluminum thin film electrode with enhanced electrical property and stability via a facial method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The demand for flexible electronics in electronic devices has increased significantly due to the advantages of flexible electronics in lightweight mechanical flexibility and durability. In this work, a pure aluminum (Al) electrode thin film (158–179 nm) with outstanding electrical properties, which can naturally generate a protective layer is presented, was successfully prepared on flexible substrates (polyimide, PI) using a vacuum evaporation method. The best electrical property of Al thin film (3.32 × 10–8 Ω m) is close to the resistivity of bulk Al materials due to the dense and continuous structure. In addition, aluminum oxide (Al2O3) thin film generated naturally on the surface of Al thin film plays a protective role, making the electrical performance of Al thin film electrode more stable at high temperature. Hence, the resistivity of Al films performs good stability with an increase by 0.03% after annealing at 100 °C in the air. After being placed for half a year, the resistivity of the film on PI substrate only increased by 0.027%. The electrode film was flexible enough to withstand 5 × 103 bending cycles with a 6-mm bending diameter. This surface oxidation multi-layer film with enhanced electrical performance and stability provides an experiment basis for the application and industrialization of Al thin film electrodes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

References

  1. H.Y. Cheng, J.K. Meng, G. Wu, S. Chen, Angew. Chem. Int. Ed. Engl. 58(48), 17465–17473 (2019)

    Article  CAS  Google Scholar 

  2. J.S. Xu, Y.F. He, S. Bi, M. Wang, P. Yang, D.Q. Wu, J.J. Wang, F. Zhang, Angew. Chem. Int. Ed. Engl. 58(35), 12065 (2019)

    Article  CAS  Google Scholar 

  3. Y.X. Zhu, W.H. Xu, D. Ravichandran, S. Jambhulkar, K.N. Song, J. Mater. Chem. A 9(13), 8514 (2021)

    Article  CAS  Google Scholar 

  4. C.C. Zhang, J.X. Wu, Y.W. Sun, C.W. Tan, T.R. Li, T. Tu, Y.C. Zhang, Y. Liang, X.H. Zhou, P. Gao, H.L. Peng, J. Am. Chem. Soc. 142(6), 2726 (2020)

    Article  CAS  Google Scholar 

  5. Y.J. Li, M.Y. Wu, Y.T. Sun, S.H. Yu, J. Mater. Sci. 30, 13271 (2019)

    CAS  Google Scholar 

  6. J. Zhong, Z. Zhou, J. Zhang, J. Tang, P. Wu, Y. Wang, J. Mater. Sci. 31, 15038 (2020)

    CAS  Google Scholar 

  7. L. L. Shi, J. C. Song, Y. Zhang, G. H. Li, W. Y. Wang, Y. Y. Hao, Y. C. Wu, Y. X. Cui, Nanotechnology 31(31), 314001 (2020)

  8. C.H. Xu, Z.J. Zheng, M.Z. Lin, Q. Shen, X.H. Wang, B.F. Lin, L.H. Fu, A.C.S. Appl, Mater. Int. 12(31), 35482 (2020)

    Article  CAS  Google Scholar 

  9. M. Kim, S.H. Kim, Y. Rho, E. Cho, J.H. Lee, S.J. Lee, A.C.S. Appl, Mater. Int. 13(8), 10301 (2021)

    Article  CAS  Google Scholar 

  10. S. Ravandi, A. Minenkov, C.C. Mardare, J.P. Kollender, A.I. Mardare, A.C.S. Appl, Mater. Int. 13(5), 6960 (2021)

    Article  CAS  Google Scholar 

  11. Z.J. Zhao, S.H. Hwang, H.J. Kang, S. Jeon, J.H. Jeong, A.C.S. Appl, Mater. Int. 12(1), 1737 (2020)

    Article  CAS  Google Scholar 

  12. M.E.H. Bhuiyan, A. Behroozfar, S. Daryadel, S. Moreno, S. Morsali, M. Minary-Jolandan, Sci. Rep. 9(1), 19032 (2019)

    Article  CAS  Google Scholar 

  13. H. Lin, A.J. Kou, J. Cheng, H. Dong, S. Xu, J.K. Zhang, S.Y. Lou, Sci Rep. 10(1), 9165 (2020)

    Article  CAS  Google Scholar 

  14. K. B. Sang, C. C. Dong, H. S. Kang, K. H. Yoo, T. W. Kim, Nano Energy 71, 104649 (2020)

  15. J.H. Kwon, E.G. Jeong, Y. Jeon, D.G. Kim, K.C. Choi, Mater. Inter. 11(3), 3251 (2019)

    Article  CAS  Google Scholar 

  16. J. Nieminen, I. Anugwom, M. Kallioinen, M. Mnttri, Waste Manag. 107, 20 (2020)

    Article  CAS  Google Scholar 

  17. L. Lewis, A.M. Christensen, J. Forensic Sci. 61(2), 439 (2016)

    Article  CAS  Google Scholar 

  18. H.H. Hamzah, N.H. Saleh, B.A. Patel, M.M. Mahat, S.H. Shafiee, T. Sönmez, Molecules 26(1), 21 (2020)

    Article  Google Scholar 

  19. S.L. Yin, W. Zhu, Y. Deng, Y.C. Peng, S.F. Shen, Y.B. Tu, Mater. Des. 116, 524 (2017)

    Article  CAS  Google Scholar 

  20. C. Dias, D. C. Leitao, C. Freire, H. L. Gomes, J. Ventura, Nanotechnology 31(13) , 135702 (2020)

  21. Y. Jiang, Q. He, J. Cai, D. Shen, D. Zhang, A.C.S. Appl, Mater. Int. 12(52), 58317 (2020)

    Article  CAS  Google Scholar 

  22. T. T. Ai, Y. Y. Fan, H. H. Wang, X. Y. Zou, W. W. Bao, Z. F. Deng, Z. G. Zhao, M. Li, L. J. Kou, X. M. Feng, M. Li, Front Chem. 9, 661127 (2021)

  23. E. Aslanidis, E. Skotadis, E. Moutoulas, D. Tsoukalas, Sensors 20(9), 2584 (2020)

    Article  CAS  Google Scholar 

  24. B. Sindhu, A. Kothuru, P. Sahatiya, S. Goel, S. Nandi, IEEE Trans. Electron Devices 68(7), 3189 (2021)

    Article  CAS  Google Scholar 

  25. M. R. R. Abdul-Aziz, S. A. Mohassieb, N. A. Eltresy, M. M. K. Yousef, B. Ansi, S. O. Abdellatif, A. S. G. Khalil, IEEE Trans. Nanotechnol. 19 (2020)

  26. J. Zhu, S.B. Liu, Z.Z. Hu, X.Z. Zhang, N. Yi, K.R. Tang, M.G. Dexheimer, X.J. Lian, Q. Wang, J. Yang, J. Gray, H.Y. Cheng, Biosensors Bioelectron. 193, 113606 (2021)

    Article  CAS  Google Scholar 

  27. I. Sandu, P. Moreau, D. Guyomard, T. Brousse, L. Roué, Solid State Ionics 178(21), 1297 (2007)

    Article  CAS  Google Scholar 

  28. M. Au, S. McWhorter, H. Ajo, T. Adams, Y.P. Zhao, J. Gibbs, J. Power Sources 195(10), 3333 (2010)

    Article  CAS  Google Scholar 

  29. H.K. Li, X.Y. Zhu, Z.H. Li, J.J. Yang, H.B. Lan, Nanomaterials (Basel) 10(1), 107 (2020)

    Article  CAS  Google Scholar 

  30. D.Z. Dimitrov, Z.F. Chen, V. Marinova, D. Petrova, C.Y. Ho, B. Napoleonov, B. Blagoev, V. Strijkova, K.Y. Hsu, S.H. Lin, J.Y. Juang, Nanomaterials (Basel) 11(4), 1011 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 61704006), Beijing Nova Programme Interdisciplinary Cooperation Project (Grant No. Z191100001119013), the Scientific Research Project of Beijing Educational Committee (Grant No. KM202111232015), and the Supplementary and Supportive Project for Teachers at Beijing Information Science and Technology University (2019–2021) (Grant No. 5029011103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Cao or Min Miao.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Cao, L. & Miao, M. A flexible aluminum thin film electrode with enhanced electrical property and stability via a facial method. J Mater Sci: Mater Electron 32, 28772–28780 (2021). https://doi.org/10.1007/s10854-021-07262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07262-x

Navigation