Skip to main content
Log in

Recent progress in electrochemical application of Magnéli phase Ti4O7-based materials: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnéli phases TinO2n − 1 are a series of sub-stoichiometric titanium oxides with a unique crystal structure, and Ti4O7 possesses the highest electronic conductivity while being able to maintain excellent chemical inertness in various corrosive environments, which is a required property for electrode materials in electrochemical systems. Therefore, Ti4O7 has become one of the major substitutes for carbon materials such as graphite and shows superior catalytic activity for electrode reactions and electrochemical stability in diverse batteries and electrochemical degradation systems, following the trend of carbon-free electrodes and costing less than the advanced electrodes such as boron-doped diamond. It has been demonstrated that Ti4O7 has great potential in the electrochemistry fields, especially as an electrode carrier. In this paper, we review the research progress of Ti4O7 as an electrode material in fuel cells, lithium-oxygen batteries, lithium-sulfur batteries, lithium-ion batteries, wastewater treatment, etc., including advanced fabrication technology, theoretical research, and application performance. Meanwhile, the current problems and future research directions of Ti4O7 are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

Data availability

The authors confirm that the data of this study are available within the article.

References

  1. Liborio L, Harrison N (2008) Thermodynamics of oxygen defective Magnéli phases in rutile: a first-principles study. Phys Rev B. https://doi.org/10.1103/PhysRevB.77.104104

    Article  Google Scholar 

  2. Wood GJ, Bursill LA (1981) The formation energy of crystallographic shear planes in TinO2n-1. Proc Royal Soc London Ser Math Phys Eng Sci 375:105–125. https://doi.org/10.1098/rspa.1981.0042

    Article  CAS  Google Scholar 

  3. Harada S, Tanaka K, Inui H (2010) Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnéli phases. J Appl Phys. https://doi.org/10.1063/1.3498801

    Article  Google Scholar 

  4. Gusev AA, Avvakumov EG (2007) Conducting materials based on nanodispersed titanium monoxide. Sci Sinter 39:295–299. https://doi.org/10.2298/sos0703295g

    Article  CAS  Google Scholar 

  5. Bartholomew RF, Frankl DR (1969) Electrical properties of some titanium oxides. Phys Rev 187:828. https://doi.org/10.1103/PhysRev.187.828

    Article  CAS  Google Scholar 

  6. Lakkis S, Schlenker C, Chakraverty BK, Buder R, Marezio M (1976) Metal-insulator transitions in Ti4O7 single-crystals - crystal characterization, specific-heat and electron-paramagnetic resonance. Phys Rev B 14:1429–1440. https://doi.org/10.1103/PhysRevB.14.1429

    Article  CAS  Google Scholar 

  7. Smith JR, Walsh FC, Clarke RL (1998) Reviews in applied electrochemistry. number 50 - electrodes based on Magneli phase titanium oxides: the properties and applications of ebonex (R) materials. J Appl Electrochem 28:1021–1033. https://doi.org/10.1023/a:1003469427858

    Article  CAS  Google Scholar 

  8. Chisaka M, Nagano W, Delgertsetseg B, Takeguchi T (2021) Inexpensive gram scale synthesis of porous Ti4O7 for high performance polymer electrolyte fuel cell electrodes. Chem Commun 57:12772–12775. https://doi.org/10.1039/d1cc05144j

    Article  CAS  Google Scholar 

  9. Xu F, Zou Q, Xiong G, Zhang H, Wang F, Wang Y (2022) Activated single-phase Ti4O7 nanosheets with efficient use of precious metal for inspired oxygen reduction reaction. Chem Eur J. https://doi.org/10.1002/chem.202202580

    Article  Google Scholar 

  10. Zhu RJ, Liu Y, Ye JW, Zhang XY (2013)Magnéli phase Ti4O7 powder from carbothermal reduction method: formation, conductivity and optical properties. J Mater Sci Mater Electron 24:4853–4856. https://doi.org/10.1007/s10854-013-1487-5

    Article  CAS  Google Scholar 

  11. Zhang XY, Lin YH, Zhong XX, Wang LJ, Liu WY, Singh A, Zhao Q (2016) Fabrication and characterization of Magnéli phase Ti4O7 submicron rods. J Mater Sci Mater Electron 27:4861–4865. https://doi.org/10.1007/s10854-016-4368-x

    Article  CAS  Google Scholar 

  12. Huang SS, Lin YH, Chuang W, Shao PS, Chuang CH, Lee JF, Lu ML, Weng YT et al (2018) Synthesis of high-performance titanium sub-oxides for electrochemical applications using combination of sol–gel and vacuum-carbothermic processes. acs Sustain Chem Eng 6:3162–3168. https://doi.org/10.1021/acssuschemeng.7b03189

    Article  CAS  Google Scholar 

  13. Liu MH, Zhao D, Zhai WR, Yang J, Yang B, Sohn HY, Xu BQ (2020) Rapid preparation and properties investigation on TinO2n-1@C core-shell nanoparticles. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.152516

    Article  Google Scholar 

  14. Liu HJ, Luo MQ, Yang LX, Zeng CL, Fu C (2022) A high strength and conductivity bulk Magnéli phase Ti4O7 with superior electrochemical performance. Ceram Int 48:25538–25546. https://doi.org/10.1016/j.ceramint.2022.05.233

    Article  CAS  Google Scholar 

  15. Wang G, Liu Y, Ye J, Qiu W (2017) Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders. J Alloy Compd 704:18–25. https://doi.org/10.1016/j.jallcom.2017.02.022

    Article  CAS  Google Scholar 

  16. Wang G, Liu Y, Ye J, Qiu W, Ma S, An X (2017) Fabrication of rod-like Ti4O7 with high conductivity by molten salt synthesis. Mater Lett 186:361–363. https://doi.org/10.1016/j.matlet.2016.10.025

    Article  CAS  Google Scholar 

  17. Ye J, Wang G, Li X, Liu Y, Zhu R (2015) Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering. J Mater Sci Mater Electron 26:4683–4690. https://doi.org/10.1007/s10854-015-2838-1

    Article  CAS  Google Scholar 

  18. Zhang X, Liu Y, Ye J, Zhu R (2014) Fabrication of Ti4O7 electrodes by spark plasma sintering. Mater Lett 114:34–36. https://doi.org/10.1016/j.matlet.2013.09.101

    Article  CAS  Google Scholar 

  19. Wang G, Liu Y, Duan Y, Ye J, Lin Z (2023) Effects of porosity on the electrochemical oxidation performance of Ti4O7 electrode materials. Ceram Int 49:15357–15364. https://doi.org/10.1016/j.ceramint.2023.01.120

    Article  CAS  Google Scholar 

  20. Fan Y, Feng X, Zhou W, Murakami S, Kikuchi K, Nomura N, Wang L, Jiang W et al (2018) Preparation of monophasic titanium sub-oxides of Magnéli phase with enhanced thermoelectric performance. J Eur Ceram Soc 38:507–513. https://doi.org/10.1016/j.jeurceramsoc.2017.09.040

    Article  CAS  Google Scholar 

  21. Kao WH, Patel P, Haberichter SL (1997) Formation enhancement of a lead/acid battery positive plate by barium metaplumbate and Ebonex(R). J Electrochem Soc 144:1907–1911. https://doi.org/10.1149/1.1837719

    Article  CAS  Google Scholar 

  22. Li XX, Zhu AL, Qu W, Wang HJ, Hui R, Zhang L, Zhang JJ (2010) Magnéli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim Acta 55:5891–5898. https://doi.org/10.1016/j.electacta.2010.05.041

    Article  CAS  Google Scholar 

  23. Geng P, Su J, Miles C, Comninellis C, Chen G (2015) Highly-ordered Magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochim Acta 153:316–324. https://doi.org/10.1016/j.electacta.2014.11.178

    Article  CAS  Google Scholar 

  24. Pollock RJ, Houlihan JF, Bain AN, Coryea BS (1984) Electrochemical properties of a new electrode material, Ti4O7. Mater Res Bull 19:17–24. https://doi.org/10.1016/0025-5408(84)90005-9

    Article  CAS  Google Scholar 

  25. Qi G, Wang X, Zhao J, Song C, Zhang Y, Ren F, Zhang N (2022) Fabrication and characterization of the porous Ti4O7 reactive electrochemical membrane. Front Chem. https://doi.org/10.3389/fchem.2021.833024

    Article  Google Scholar 

  26. He W, Liu Y, Ye J, Wang G (2018) Electrochemical degradation of azo dye methyl orange by anodic oxidation on Ti4O7 electrodes. J Mater Sci-Mater Electron 29:14065–14072. https://doi.org/10.1007/s10854-018-9538-6

    Article  CAS  Google Scholar 

  27. Chen GY, Bare SR, Mallouk TE (2002) Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J Electrochem Soc 149:A1092–A1099. https://doi.org/10.1149/1.1491237

    Article  CAS  Google Scholar 

  28. Graves JE, Pletcher D, Clarke RL, Walsh FC (1992) The electrochemistry of magneli phase titanium-oxide ceramic electrodes.2. ozone generation at ebonex and ebonex lead dioxide anodes. J Appl Electrochem 22:200–203. https://doi.org/10.1007/bf01030178

    Article  CAS  Google Scholar 

  29. Ibrahim KB, Su WN, Tsai MC, Kahsay AW, Chala SA, Birhanu MK, Lee JF, Hwang BJ (2022) Heterostructured composite of NiFe-LDH nanosheets with Ti4O7 for oxygen evolution reaction. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2022.100824

    Article  Google Scholar 

  30. Bai S, Mou Y, Wan J, Wang Y, Li W, Zhang H, Luo P, Wang Y (2022) Unique amorphous/crystalline heterophase coupling for an efficient oxygen evolution reaction. Nanoscale 14:18123–18132. https://doi.org/10.1039/d2nr05167b

    Article  CAS  Google Scholar 

  31. Kolbrecka K, Przyluski J (1994) Sub-stoichiometric titanium-oxides as ceramic electrodes for oxygen evolution - structural aspects of the voltammetric behavior of TinO2n-1. Electrochim Acta 39:1591–1595. https://doi.org/10.1016/0013-4686(94)85140-9

    Article  CAS  Google Scholar 

  32. Walsh FC, Wills RGA (2010) The continuing development of Magnéli phase titanium sub-oxides and Ebonex (R) electrodes. Electrochim Acta 55:6342–6351. https://doi.org/10.1016/j.electacta.2010.05.011

    Article  CAS  Google Scholar 

  33. Zhang X, Zhong X, Xu W, Li X, Liu W, Lin Y (2018) Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries. Ionics 24:379–384. https://doi.org/10.1007/s11581-017-2207-6

    Article  CAS  Google Scholar 

  34. Zhang X, Liu Y, Ye J, Zhu R (2013) Fabrication and characterisation of Magnéli phase Ti4O7 nanoparticles. Micro Nano Letters 8:251–253. https://doi.org/10.1049/mnl.2012.0963

    Article  CAS  Google Scholar 

  35. Liu Y, Wang Y, Zhang Y, You Z, Lv X (2020) Mechanism on reduction and nitridation of micrometer-sized titania with ammonia gas. J Am Ceram Soc 103:3905–3916. https://doi.org/10.1111/jace.17067

    Article  CAS  Google Scholar 

  36. Tang C, Zhou D, Zhang Q (2012) Synthesis and characterization of Magnéli phases: reduction of TiO2 in a decomposed NH3 atmosphere. Mater Lett 79:42–44. https://doi.org/10.1016/j.matlet.2012.03.095

    Article  CAS  Google Scholar 

  37. Wang G, Liu Y, Ye J, Yang X, Lin Z (2020) Formation mechanism of Ti4O7 phase prepared by carbothermal reduction reaction. J Am Ceram Soc 103:3871–3879. https://doi.org/10.1111/jace.17045

    Article  CAS  Google Scholar 

  38. Toyoda M, Yano T, Tryba B, Mozia S, Tsumura T, Inagaki M (2009) Preparation of carbon-coated Magnéli phases TinO2n-1 and their photocatalytic activity under visible light. Appl Catal B Environ 88:160–164. https://doi.org/10.1016/j.apcatb.2008.09.009

    Article  CAS  Google Scholar 

  39. Xiong F, Ye J, Liu Y, Yuan T, Wei W (2022) High-performance electrochemical degradation of methylene blue by a Ti4O7 anode prepared via industrial tailing titanium powder. J Electron Mater 51:3560–3568. https://doi.org/10.1007/s11664-022-09596-6

    Article  CAS  Google Scholar 

  40. Mei S, Jafta CJ, Lauermann I, Ran Q, Kaergell M, Ballauff M, Lu Y (2017) Porous Ti4O7 particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithium-sulfur batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.201701176

    Article  Google Scholar 

  41. Luo Y, Wang Y, Qin X, Wang Y, Wu K, Zhang H, Zhang L, Huang H et al (2022) Bidirectional modulation interaction between monatomic Pt and Tin+ sites on Ti4O7 for high-efficiency and durable oxygen reduction. J Catal 411:149–157. https://doi.org/10.1016/j.jcat.2022.05.008

    Article  CAS  Google Scholar 

  42. Guo Y, Li J, Pitcheri R, Zhu J, Wen P, Qiu Y (2019) Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability. Chem Eng J 355:390–398. https://doi.org/10.1016/j.cej.2018.08.143

    Article  CAS  Google Scholar 

  43. Tang H, Yao S, Xue S, Liu M, Chen L, Jing M, Shen X, Li T et al (2018) In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multifunctional interlayer for excellent lithium-sulfur battery. Electrochim Acta 263:158–167. https://doi.org/10.1016/j.electacta.2018.01.066

    Article  CAS  Google Scholar 

  44. Won J-E, Kwak D-H, Han S-B, Park H-S, Park J-Y, Ma K-B, Kim D-H, Park K-W (2018) PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions. J Catal 358:287–294. https://doi.org/10.1016/j.jcat.2017.12.013

    Article  CAS  Google Scholar 

  45. Lee H-Y, Yu TH, Shin C-H, Fortunelli A, Ji SG, Kim Y, Kang T-H, Lee B-J et al (2023) Low temperature synthesis of new highly graphitized N-doped carbon for Pt fuel cell supports, satisfying DOE 2025 durability standards for both catalyst and support. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2022.122179

    Article  Google Scholar 

  46. Du L, Prabhakaran V, Xie X, Park S, Wang Y, Shao Y (2021) Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions. Adv Mater. https://doi.org/10.1002/adma.201908232

    Article  Google Scholar 

  47. Ferreira PJ, La OGJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—a mechanistic investigation. J Electrochem Soc 152:A2256–A2271. https://doi.org/10.1149/1.2050347

    Article  Google Scholar 

  48. Sasaki K, Naohara H, Choi Y, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun. https://doi.org/10.1038/ncomms2124

    Article  Google Scholar 

  49. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51. https://doi.org/10.1038/nature11115

    Article  CAS  Google Scholar 

  50. Chang Y, Chen Y, Wu Y, Yang Z, Wang J, Wang X, Li H (2023) One-step synthesis of PtNi anchored on TiO2 nanotube arrays for methanol oxidation. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2023.169179

    Article  Google Scholar 

  51. Pei DN, Gong L, Zhang AY, Zhang X, Chen JJ, Mu Y, Yu HQ (2015) Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat Commun. https://doi.org/10.1038/ncomms9696

    Article  Google Scholar 

  52. Dogan DC, Choi J, Seo MH, Lee E, Jung N, Yim S-D, Yang T-H, Park G-G (2021) Enhancement of catalytic activity and durability of pt nanoparticle through strong chemical interaction with electrically conductive support of Magnéli phase titanium oxide. Nanomaterials. https://doi.org/10.3390/nano11040829

    Article  Google Scholar 

  53. Takeuchi T, Fukushima J, Hayashi Y, Takizawa H (2017) Synthesis of Ti4O7 nanoparticles by carbothermal reduction using microwave rapid heating. Catalysts. https://doi.org/10.3390/catal7020065

    Article  Google Scholar 

  54. Jimenez-Morales I, Haidar F, Cavaliere S, Jones D, Roziere J (2020) Strong interaction between platinum nanoparticles and tantalum-doped tin oxide nanofibers and its activation and stabilization effects for oxygen reduction reaction. ACS Catal 10:10399–10411. https://doi.org/10.1021/acscatal.0c02220

    Article  CAS  Google Scholar 

  55. He H, Wang HH, Liu J, Liu X, Li W, Wang Y (2021) Research progress and application of single-atom catalysts: a review. Molecules. https://doi.org/10.3390/molecules26216501

    Article  Google Scholar 

  56. Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X (2018) Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv Energy Mater. https://doi.org/10.1002/aenm.201801909

    Article  Google Scholar 

  57. Yang S, Kim J, Tak YJ, Soon A, Lee H (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angewandte Chem Int Ed 55:2058–2062. https://doi.org/10.1002/anie.201509241

    Article  CAS  Google Scholar 

  58. Gao R, Wang J, Huang Z-F, Zhang R, Wang W, Pan L, Zhang J, Zhu W et al (2021) Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat Energy 6:614–623. https://doi.org/10.1038/s41560-021-00826-5

    Article  CAS  Google Scholar 

  59. Li H, Wen P, Itanze DS, Hood ZD, Adhikari S, Lu C, Ma X, Dun C et al (2020) Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat Commun. https://doi.org/10.1038/s41467-020-17584-9

    Article  Google Scholar 

  60. Luo Y, Wang Y, Wang Y, Huang H, Zhang L, Zhang H, Wang Y (2022) Illumination enabling monoatomic Fe and Pt-based catalysts on NC/TiOx for efficient and stable oxygen reduction. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2022.121797

    Article  Google Scholar 

  61. Chen H, Yang Z, Wang X, Polo-Garzon F, Halstenberg PW, Wang T, Suo X, Yang S-Z et al (2021) Photoinduced strong metal-support interaction for enhanced catalysis. J Am Chem Soc 143:8521–8526. https://doi.org/10.1021/jacs.0c12817

    Article  CAS  Google Scholar 

  62. Tian X, Lu XF, Xia BY, Lou XW (2020) Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4:45–68. https://doi.org/10.1016/j.joule.2019.12.014

    Article  CAS  Google Scholar 

  63. Ibrahim KB, Su W-N, Tsai M-C, Chala SA, Kahsay AW, Yeh M-H, Chen H-M, Duma AD et al (2018) Robust and conductive Magnéli phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst. Nano Energy 47:309–315. https://doi.org/10.1016/j.nanoen.2018.03.017

    Article  CAS  Google Scholar 

  64. Yamaguchi K, Koike T, Kim JW, Ogasawara Y, Mizuno N (2008) Highly dispersed ruthenium hydroxide supported on titanium oxide effective for liquid-phase hydrogen-transfer reactions. Chem Eur J 14:11480–11487. https://doi.org/10.1002/chem.200801655

    Article  CAS  Google Scholar 

  65. Wu S, Chen L, Yin B, Li Y (2015) “Click” post-functionalization of a metal-organic framework for engineering active single-site heterogeneous Ru(III) catalysts. Chem Commun 51:9884–9887. https://doi.org/10.1039/c5cc02741a

    Article  CAS  Google Scholar 

  66. Wang G, Xiao L, Huang B, Ren Z, Tang X, Zhuang L, Lu J (2012) AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry. J Mater Chem 22:15769–15774. https://doi.org/10.1039/c2jm32264a

    Article  CAS  Google Scholar 

  67. Taniguchi A, Akita T, Yasuda K, Miyazaki Y (2004) Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J Power Sourc 130:42–49. https://doi.org/10.1016/j.jpowsour.2003.12.035

    Article  CAS  Google Scholar 

  68. Liang D, Shen Q, Hou M, Shao Z, Yi B (2009) Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation. J Power Sourc 194:847–853. https://doi.org/10.1016/j.jpowsour.2009.06.059

    Article  CAS  Google Scholar 

  69. Ambrosio EP, Francia C, Manzoli M, Penazzi N, Spinelli P (2008) Platinum catalyst supported on mesoporous carbon for PEMFC. Int J Hydrogen Energy 33:3142–3145. https://doi.org/10.1016/j.ijhydene.2008.03.045

    Article  CAS  Google Scholar 

  70. Ioroi T, Siroma Z, Yamazaki S-I, Yasuda K (2019) Electrocatalysts for PEM fuel cells. Adv Energy Mater. https://doi.org/10.1002/aenm.201801284

    Article  Google Scholar 

  71. Zheng Z, Geng W, Wang Y, Huang Y, Qi T (2017) NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction. Int J Hydrogen Energy 42:119–124. https://doi.org/10.1016/j.ijhydene.2016.11.187

    Article  CAS  Google Scholar 

  72. Yao C, Li F, Li X, Xia D (2012) Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis. J Mater Chem 22:16560–16565. https://doi.org/10.1039/c2jm32866f

    Article  CAS  Google Scholar 

  73. Ioroi T, Yasuda K (2020) Highly reversa-tolerant anodes using Ti4O7-supported platinum with a very small amount of water-splitting catalyst. J Power Sourc. https://doi.org/10.1016/j.jpowsour.2019.227656

    Article  Google Scholar 

  74. Li Y, Song W, Jiang G, Yang Y, Yu H, Shao Z, Duan F, Yang Y (2022) Ti4O7 supported IrOx for anode reversal tolerance in proton exchange membrane fuel cell. Front Energy 16:852–861. https://doi.org/10.1007/s11708-021-0811-7

    Article  Google Scholar 

  75. Alcaide F, Alvarez G, Cabot PL, Grande H-J, Miguel O, Querejeta A (2011) Testing of carbon supported Pd-Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Int J Hydrogen Energy 36:4432–4439. https://doi.org/10.1016/j.ijhydene.2011.01.015

    Article  CAS  Google Scholar 

  76. Lee Y-W, Han S-B, Park K-W (2009) Electrochemical properties of Pd nanostructures in alkaline solution. Electrochem Commun 11:1968–1971. https://doi.org/10.1016/j.elecom.2009.08.030

    Article  CAS  Google Scholar 

  77. Gong Y, He Y, Li A, Wang Y, Liu J, Qi T (2018) Palladium-ytterbium bimetallic electrocatalysts supported on carbon black, titanium suboxide, or poly(diallyldimethylammonium chloride)-functionalized titanium suboxide towards methanol oxidation in alkaline media. Ionics 24:3085–3094. https://doi.org/10.1007/s11581-018-2506-6

    Article  CAS  Google Scholar 

  78. Wang Y, Wang X, Li CM (2010) Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media. Appl Catal B-Environ 99:229–234. https://doi.org/10.1016/j.apcatb.2010.06.024

    Article  CAS  Google Scholar 

  79. Cui Z, Li CM, Jiang SP (2011) PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys Chem Chem Phys 13:16349–16357. https://doi.org/10.1039/c1cp21271k

    Article  CAS  Google Scholar 

  80. Wang Y, Zhao H, Tang Q, Zhang H, Li CM, Qi T (2016) Electrocatalysis of titanium suboxide-supported Pt-Tb towards formic acid electrooxidation. Int J Hydrogen Energy 41:1568–1573. https://doi.org/10.1016/j.ijhydene.2015.11.056

    Article  CAS  Google Scholar 

  81. Zhao H, Wang Y, Tang Q, Wang L, Zhang H, Quan C, Qi T (2014) Pt catalyst supported on titanium suboxide for formic acid electrooxidation reaction. Int J Hydrogen Energy 39:9621–9627. https://doi.org/10.1016/j.ijhydene.2014.04.088

    Article  CAS  Google Scholar 

  82. Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  Google Scholar 

  83. Schroeder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629. https://doi.org/10.1039/b703627m

    Article  CAS  Google Scholar 

  84. Reguera G, Mccarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. https://doi.org/10.1038/nature03661

    Article  CAS  Google Scholar 

  85. Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by shewanella oneidensis. MBio. https://doi.org/10.1128/mBio.00553-12

    Article  Google Scholar 

  86. Winfield J, Gajda I, Greenman J, Ieropoulos I (2016) A review into the use of ceramics in microbial fuel cells. Biores Technol 215:296–303. https://doi.org/10.1016/j.biortech.2016.03.135

    Article  CAS  Google Scholar 

  87. Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432. https://doi.org/10.1021/es051652w

    Article  CAS  Google Scholar 

  88. Ma M, You S, Liu G, Qu J, Ren N (2016) Macroporous monolithic Magnéli-phase titanium suboxides as anode material for effective bioelectricity generation in microbial fuel cells. J Mater Chem A 4:18002–18007. https://doi.org/10.1039/c6ta07521e

    Article  CAS  Google Scholar 

  89. Massazza D, Busalmen JP, Parra R, Romeo HE (2018) Layer-to-layer distance determines the performance of 3D bio-electrochemical lamellar anodes in microbial energy transduction processes. J Mater Chem A 6:10019–10027. https://doi.org/10.1039/c8ta02793e

    Article  CAS  Google Scholar 

  90. Li Z, Yang S, Song YN, Xu H, Wang Z, Wang W, Dang Z, Zhao Y (2019) In-situ modified titanium suboxides with polyaniline/graphene as anode to enhance biovoltage production of microbial fuel cell. Int J Hydrogen Energy 44:6862–6870. https://doi.org/10.1016/j.ijhydene.2018.12.106

    Article  CAS  Google Scholar 

  91. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29. https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  92. Evers S, Nazar L (2012) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res. https://doi.org/10.1021/ar3001348

    Article  Google Scholar 

  93. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  Google Scholar 

  94. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787. https://doi.org/10.1021/cr500062v

    Article  CAS  Google Scholar 

  95. Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun. https://doi.org/10.1038/ncomms5759

    Article  Google Scholar 

  96. Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y et al (2014) Strong sulfur binding with conducting magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14:5288–5294. https://doi.org/10.1021/nl502331f

    Article  CAS  Google Scholar 

  97. Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA (2017) Chemical bonding and physical trapping of sulfur in mesoporous Magnéli Ti4O7 microspheres for high- performance Li-S battery. Adv Energy Mater. https://doi.org/10.1002/aenm.201601616

    Article  Google Scholar 

  98. Liu M, Jhulki S, Sun Z, Magasinski A, Hendrix C, Yushin G (2021) Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li-S batteries. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.105428

    Article  Google Scholar 

  99. Li G, Cai W, Liu B, Li Z (2015) A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries. J Power Sourc 294:187–192. https://doi.org/10.1016/j.jpowsour.2015.06.083

    Article  CAS  Google Scholar 

  100. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun. https://doi.org/10.1038/ncomms6682

    Article  Google Scholar 

  101. Shenouda AY, Liu HK (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J Electrochem Soc 157:A1183–A1187. https://doi.org/10.1149/1.3479425

    Article  CAS  Google Scholar 

  102. Demir-Cakan R, Morcrette M, Gangulibabu G, Guéguen A, Dedryvère R, Tarascon J-M (2013) Li-S batteries: simple approaches for superior performance. Energ Environ Sci 6:176–182. https://doi.org/10.1039/c2ee23411d

    Article  CAS  Google Scholar 

  103. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M et al (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5:606–626. https://doi.org/10.1007/s42114-022-00500-8

    Article  Google Scholar 

  104. Mu X, Xia C, Gao B, Guo S, Zhang X, He J, Wang Y, Dong H et al (2021) Two-dimensional Mo-based compounds for the Li-O2 batteries: Catalytic performance and electronic structure studies. Energy Storage Mater 41:650–655. https://doi.org/10.1016/j.ensm.2021.06.036

    Article  Google Scholar 

  105. Yoo E, Zhou H (2011) Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5:3020–3026. https://doi.org/10.1021/nn200084u

    Article  CAS  Google Scholar 

  106. Ma Z, Yuan X, Li L, Ma Z-F, Wilkinson DP, Zhang L, Zhang J (2015) A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci 8:2144–2198. https://doi.org/10.1039/c5ee00838g

    Article  CAS  Google Scholar 

  107. Lee G-H, Lee S, Kim J-C, Kim DW, Kang Y, Kim D-W (2017) MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201601741

    Article  Google Scholar 

  108. Park JE, Lee G-H, Shim H-W, Kim DW, Kang Y, Kim D-W (2015) Examination of graphene nanoplatelets as cathode materials for lithium-oxygen batteries by differential electrochemical mass spectrometry. Electrochem Commun 57:39–42. https://doi.org/10.1016/j.elecom.2015.05.004

    Article  CAS  Google Scholar 

  109. Mccloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) Limitations in rechargeability of Li-O2 batteries and possible origins. J Phys Chem Lett 3:3043–3047. https://doi.org/10.1021/jz301359t

    Article  CAS  Google Scholar 

  110. Mccloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshoj JS, Norskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li-O-2 batteries. J Phys Chem Lett 3:997–1001. https://doi.org/10.1021/jz300243r

    Article  CAS  Google Scholar 

  111. Kundu D, Black R, Berg EJ, Nazar LF (2015) A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries. Energy Environ Sci 8:1292–1298. https://doi.org/10.1039/c4ee02587c

    Article  CAS  Google Scholar 

  112. Shu C, Wu C, Long J, Guo H, Dou S-X, Wang J (2019) Highly reversible Li-O2 battery induced by modulating local electronic structure via synergistic interfacial interaction between ruthenium nanoparticles and hierarchically porous carbon. Nano Energy 57:166–175. https://doi.org/10.1016/j.nanoen.2018.12.047

    Article  CAS  Google Scholar 

  113. Liu M, Li J, Chi B, Zheng L, Zhang Y, Zhang Q, Tang T, Zheng L et al (2021) Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium-oxygen batteries. J Mater Chem A 9:10747–10757. https://doi.org/10.1039/d1ta00538c

    Article  CAS  Google Scholar 

  114. Hu X, Luo G, Zhao Q, Wu D, Yang T, Wen J, Wang R, Xu C et al (2020) Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J Am Chem Soc 142:16776–16786. https://doi.org/10.1021/jacs.0c07317

    Article  CAS  Google Scholar 

  115. Cao X, Wei C, Zheng X, Zeng K, Chen X, Rummeli MH, Strasser P, Yang R (2022) Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li-O-2 batteries. Energy Storage Mater 50:355–364. https://doi.org/10.1016/j.ensm.2022.05.028

    Article  Google Scholar 

  116. Cao X, Sun Z, Zheng X, Tian J, Jin C, Yang R, Li F, He P et al (2017) MnCo2O4 decorated Magneli phase titanium oxide as a carbon-free cathode for Li-O2 batteries. J Mater Chem A 5:19991–19996. https://doi.org/10.1039/c7ta06152h

    Article  CAS  Google Scholar 

  117. Sun B, Zhang J, Munroe P, Ahn H-J, Wang G (2013) Hierarchical NiCo2O4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous Li-O2 batteries. Electrochem Commun 31:88–91. https://doi.org/10.1016/j.elecom.2013.03.023

    Article  CAS  Google Scholar 

  118. Chen Y, Yang H, Sun Y, Li Y, Wei M (2022) High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.141037

    Article  Google Scholar 

  119. Yue J, Lu G, Zhang P, Wu Y, Cheng Z, Kang X (2019) Oxygen vacancies modulation in graphene/MnOx composite for high performance supercapacitors. Colloid Surf Physicochem Eng Asp 569:10–17. https://doi.org/10.1016/j.colsurfa.2019.02.053

    Article  CAS  Google Scholar 

  120. Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, Stevenson KJ, Goodenough JB (2011) CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J Electrochem Soc 158:A1379–A1382. https://doi.org/10.1149/2.068112jes

    Article  CAS  Google Scholar 

  121. Lee DU, Kim BJ, Chen Z (2013) One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J Mater Chem A 1:4754–4762. https://doi.org/10.1039/c3ta01402a

    Article  CAS  Google Scholar 

  122. Van Thi TH, Pan C-J, Rick J, Su W-N, Hwang B-J (2011) Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 133:11716–11724. https://doi.org/10.1021/ja2039562

    Article  CAS  Google Scholar 

  123. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786. https://doi.org/10.1038/nmat3087

    Article  CAS  Google Scholar 

  124. Lee S, Lee G-H, Kim J-C, Kim D-W (2018) Magnéli-phase Ti4O7 nanosphere electrocatalyst support for carbon-free oxygen electrodes in lithium-oxygen batteries. ACS Catal 8:2601–2610. https://doi.org/10.1021/acscatal.7b03741

    Article  CAS  Google Scholar 

  125. Bai F, Xu L, Wang D, An L, Hao Z, Li F (2021) Effect of the valence state of Mn in MnOx/Ti4O7 composites on the catalytic performance for oxygen reduction reaction and oxygen evolution reaction. RSC Adv 11:1524–1530. https://doi.org/10.1039/d0ra08575h

    Article  CAS  Google Scholar 

  126. Deng Y-P, Jiang Y, Liang R, Zhang S-J, Luo D, Hu Y, Wang X, Li J-T et al (2020) Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nat Commun. https://doi.org/10.1038/s41467-020-15853-1

    Article  Google Scholar 

  127. Fu J, Liang R, Liu G, Yu A, Bai Z, Yang L, Chen Z (2019) Recent progress in electrically rechargeable Zinc-Air batteries. Adv Mater. https://doi.org/10.1002/adma.201805230

    Article  Google Scholar 

  128. Li J, Wang Y, Yin Z, He R, Wang Y, Qiao J (2022) In-situ growth of CoNi bimetal anchored on carbon nanoparticle/nanotube hybrid for boosting rechargeable Zn-air battery. J Energy Chem 66:348–355. https://doi.org/10.1016/j.jechem.2021.08.007

    Article  CAS  Google Scholar 

  129. Liang Z, Fan X, Lei H, Qi J, Li Y, Gao J, Huo M, Yuan H et al (2018) Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angewandte Chemie Int Ed 57:13187–13191. https://doi.org/10.1002/anie.201807854

    Article  CAS  Google Scholar 

  130. Liu X, Wang Y, Chen L, Chen P, Jia S, Zhang Y, Zhou S, Zang J (2018) Co2B and Co nanoparticles immobilized on the N-B-doped carbon derived from nano-B4C for efficient catalysis of oxygen evolution, hydrogen evolution, and oxygen reduction reactions. ACS Appl Mater Interfaces 10:37067–37078. https://doi.org/10.1021/acsami.8b13359

    Article  CAS  Google Scholar 

  131. Huang H, Luo Y, Zhang L, Zhang H, Wang Y (2023) Cobalt-nickel alloys supported on Ti4O7 and embedded in N, S doped carbon nanofibers as an efficient and stable bifunctional catalyst for Zn-air batteries. J Colloid Interface Sci 630:763–771. https://doi.org/10.1016/j.jcis.2022.10.047

    Article  CAS  Google Scholar 

  132. Hu Z, Guo Z, Zhang Z, Dou M, Wang F (2018) Bimetal zeolitic imidazolite framework-derived iron-, cobalt- and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS Appl Mater Interfaces 10:12651–12658. https://doi.org/10.1021/acsami.8b00512

    Article  CAS  Google Scholar 

  133. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  134. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2016.13

    Article  Google Scholar 

  135. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sourc 257:421–443. https://doi.org/10.1016/j.jpowsour.2013.11.103

    Article  CAS  Google Scholar 

  136. Goodenough JB, Park K-S (2013) The Li-Ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  137. Kang MS, Park SK, Nakhanivej P, Shin KH, Yeon JS, Park HS (2021) Mesoporous VO2(B) nanorods deposited onto graphene architectures for enhanced rate capability and cycle life of Li ion battery cathodes. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.157361

    Article  Google Scholar 

  138. Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng R-Rep 33:109–134. https://doi.org/10.1016/s0927-796x(01)00030-4

    Article  Google Scholar 

  139. Noel M, Suryanarayanan V (2002) Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. J Power Sourc 111:193–209. https://doi.org/10.1016/s0378-7753(02)00308-7

    Article  CAS  Google Scholar 

  140. Shen L, Zhang X, Uchaker E, Yuan C, Cao G (2012) Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv Energy Mater 2:691–698. https://doi.org/10.1002/aenm.201100720

    Article  CAS  Google Scholar 

  141. Chen X, Xiao F, Lei Y, Lu H, Zhang J, Yan M, Xu J (2021) A novel approach for synthesis of expanded graphite and its enhanced lithium storage properties. J Energy Chem 59:292–298. https://doi.org/10.1016/j.jechem.2020.10.006

    Article  CAS  Google Scholar 

  142. Zhang H, Yang Y, Ren D, Wang L, He X (2021) Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater 36:147–170. https://doi.org/10.1016/j.ensm.2020.12.027

    Article  Google Scholar 

  143. Park K-S, Benayad A, Kang D-J, Doo S-G (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc 130:14930. https://doi.org/10.1021/ja806104n

    Article  CAS  Google Scholar 

  144. Sorensen EM, Barry SJ, Jung HK, Rondinelli JR, Vaughey JT, Poeppelmeier KR (2006) Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18:482–489. https://doi.org/10.1021/cm052203y

    Article  CAS  Google Scholar 

  145. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  146. Zhang X, Xu W, Li X, Zhong X, Liu W, Lin Y, Xia R (2018) Li4Ti5O12/Ti4O7/carbon nanotubes composite anode material for lithium-ion batteries. Micro Nano Lett 13:915–918. https://doi.org/10.1049/mnl.2017.0799

    Article  CAS  Google Scholar 

  147. Jhan YR, Duh JG (2012) Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction. J Power Sourc 198:294–297. https://doi.org/10.1016/j.jpowsour.2011.09.063

    Article  CAS  Google Scholar 

  148. Xue D-J, Xin S, Yan Y, Jiang K-C, Yin Y-X, Guo Y-G, Wan L-J (2012) Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J Am Chem Soc 134:2512–2515. https://doi.org/10.1021/ja211266m

    Article  CAS  Google Scholar 

  149. Cui G, Gu L, Zhi L, Kaskhedikar N, Van Aken PA, Muellen K, Maier J (2008) A germanium-carbon nanocomposite material for lithium batteries. Adv Mater 20:3079–3083. https://doi.org/10.1002/adma.200800586

    Article  CAS  Google Scholar 

  150. Liu J, Song K, Zhu C, Chen C-C, Van Aken PA, Maier J, Yu Y (2014) Ge/C nanowires as high-capacity and long-life anode materials for Li–ion batteries. ACS Nano 8:7051–7059. https://doi.org/10.1021/nn501945f

    Article  CAS  Google Scholar 

  151. Wu S, Han C, Iocozzia J, Lu M, Ge R, Xu R, Lin Z (2016) Germanium-based nanomaterials for rechargeable batteries. Angewandte Chemie Int Ed 55:7898–7922. https://doi.org/10.1002/anie.201509651

    Article  CAS  Google Scholar 

  152. Seo M-H, Park M, Lee KT, Kim K, Kim J, Cho J (2011) High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ Sci 4:425–428. https://doi.org/10.1039/c0ee00552e

    Article  CAS  Google Scholar 

  153. Chan CK, Zhang XF, Cui Y (2008) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8:307–309. https://doi.org/10.1021/nl0727157

    Article  CAS  Google Scholar 

  154. Choe H-S, Kim M-C, Moon S-H, Kim E-S, Kim S-J, Lee G-H, Won J-E, Park K-W (2018) In-situ synthesis of Ge/Ti4O7 composite with enhanced electrochemical properties. Ceram Int 44:663–668. https://doi.org/10.1016/j.ceramint.2017.09.226

    Article  CAS  Google Scholar 

  155. Naguib M, Come J, Dyatkin B, Presser V, Taberna P-L, Simon P, Barsoum MW, Gogotsi Y (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16:61–64. https://doi.org/10.1016/j.elecom.2012.01.002

    Article  CAS  Google Scholar 

  156. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2016.98

    Article  Google Scholar 

  157. Xu X, Zhang Y, Sun H, Zhou J, Yang F, Li H, Chen H, Chen Y et al (2021) Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv Electron Mater. https://doi.org/10.1002/aelm.202000967

    Article  Google Scholar 

  158. Harris KJ, Bugnet M, Naguib M, Barsoum MW, Goward GR (2015) Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. J Phys Chem C 119:13713–13720. https://doi.org/10.1021/acs.jpcc.5b03038

    Article  CAS  Google Scholar 

  159. Hu J, Xu B, Ouyang C, Yang SA, Yao Y (2014) Investigations on V2C and V2CX2 (X = F, OH) mono layer as a promising anode material for li ion batteries from first-principles calculations. J Phys Chem C 118:24274–24281. https://doi.org/10.1021/jp507336x

    Article  CAS  Google Scholar 

  160. Liu RJ, Yang LX, Wang Y, Liu HJ, Zhang X, Zeng CL (2021) Effects of carbon nanotubes, graphene and titanium suboxides on electrochemical properties of V2Al1-xCTz ceramic as an anode for lithium-ion batteries. Ceram Int 47:35081–35088. https://doi.org/10.1016/j.ceramint.2021.09.050

    Article  CAS  Google Scholar 

  161. Lyu Y, Wu X, Wang K, Feng Z, Cheng T, Liu Y, Wang M, Chen R et al (2021) An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.202000982

    Article  Google Scholar 

  162. Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223. https://doi.org/10.1021/acsenergylett.6b00594

    Article  CAS  Google Scholar 

  163. Xia Y, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452. https://doi.org/10.1016/j.nanoen.2018.04.062

    Article  CAS  Google Scholar 

  164. Ishihara A, Hamazaki M, Arao M, Matsumoto M, Imai H, Kohno Y, Matsuzawa K, Mitsushima S et al (2016) Titanium-niobium oxides mixed with Ti4O7 as precious-metaland carbon-free cathodes for polymer electrolyte fuel cells. J Electrochem Soc 163:F603–F609. https://doi.org/10.1149/2.0221607jes

    Article  CAS  Google Scholar 

  165. Wang Y, Zhao D, Zhang K, Li Y, Xu B, Liang F, Dai Y, Yao Y (2020) Enhancing the rate performance of high-capacity LiNi0.8Co0.15Al0.05O2 cathode materials by using Ti4O7 as a conductive additive. J Energy Storage. https://doi.org/10.1016/j.est.2019.101182

    Article  Google Scholar 

  166. Simond O, Schaller V, Comninellis C (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim Acta 42:2009–2012. https://doi.org/10.1016/S0013-4686(97)85475-8

    Article  CAS  Google Scholar 

  167. Ye J, Wang G, Li X, Liu Y, Zhu R (2015) Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering. J Mater Sci: Mater Electron 26:4683–4690. https://doi.org/10.1007/s10854-015-2838-1

    Article  CAS  Google Scholar 

  168. Bao X, Zhang Z, Yi S, Yang Q, Yu P, Zhou D (2020) Preparation and characterisation of carbon-coated Magnéli phase Ti4O7 by modified carbon-thermal reduction route. Micro Nano Lett 15:984–987. https://doi.org/10.1049/mnl.2019.0725

    Article  CAS  Google Scholar 

  169. Zhi D, Wang J, Zhou Y, Luo Z, Sun Y, Wan Z, Luo L, Tsang DCW et al (2020) Development of ozonation and reactive electrochemical membrane coupled process: enhanced tetracycline mineralization and toxicity reduction. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123149

    Article  Google Scholar 

  170. Wang B, Shi H, Habteselassie MY, Deng X, Teng Y, Wang Y, Huang Q (2021) Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127134

    Article  Google Scholar 

  171. Misal SN, Lin M-H, Mehraeen S, Chaplin BP (2020) Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes. J Hazard Mater 384:121420. https://doi.org/10.1016/j.jhazmat.2019.121420

    Article  CAS  Google Scholar 

  172. Teng J, Liu G, Liang J, You S (2020) Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode. Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.135441

    Article  Google Scholar 

  173. Guo H, Xu Z, Wang D, Chen S, Qiao D, Wan D, Xu H, Yan W et al (2022) Evaluation of diclofenac degradation effect in “active” and “non-active” anodes: a new consideration about mineralization inclination. Chemosphere 286:131580. https://doi.org/10.1016/j.chemosphere.2021.131580

    Article  CAS  Google Scholar 

  174. Wang H, Li Z, Zhang F, Wang Y, Zhang X, Wang J, He X (2021) Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater. Sep Purif Technol 266:118600. https://doi.org/10.1016/j.seppur.2021.118600

    Article  CAS  Google Scholar 

  175. Wang G, Liu Y, Ye J, Lin Z, Yang X (2020) Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode. Chemosphere 241:125084. https://doi.org/10.1016/j.chemosphere.2019.125084

    Article  CAS  Google Scholar 

  176. Shi H, Chiang S-Y, Wang Y, Wang Y, Liang S, Zhou J, Fontanez R, Gao S et al (2021) An electrocoagulation and electrooxidation treatment train to remove and degrade per- and polyfluoroalkyl substances in aqueous solution. Sci Total Environ 788:147723. https://doi.org/10.1016/j.scitotenv.2021.147723

    Article  CAS  Google Scholar 

  177. Lin M-H, Bulman DM, Remucal CK, Chaplin BP (2020) Chlorinated byproduct formation during the electrochemical advanced oxidation process at Magnéli phase Ti4O7 electrodes. Environ Sci Technol 54:12673–12683. https://doi.org/10.1021/acs.est.0c03916

    Article  CAS  Google Scholar 

  178. Oturan N, Bo J, Trellu C, Oturan MA (2021) Comparative performance of ten electrodes in electro-fenton process for removal of organic pollutants from water. ChemElectroChem 8:3294–3303. https://doi.org/10.1002/celc.202100588

    Article  CAS  Google Scholar 

  179. Xie J, Ma J, Zhang C, Kong X, Wang Z, Waite TD (2020) Effect of the presence of carbon in Ti4O7 electrodes on anodic oxidation of contaminants. Environ Sci Technol 54:5227–5236. https://doi.org/10.1021/acs.est.9b07398

    Article  CAS  Google Scholar 

  180. Lin H, Xiao R, Xie R, Yang L, Tang C, Wang R, Chen J, Lv S et al (2021) Defect engineering on a Ti4O7 electrode by Ce3+ doping for the efficient electrooxidation of perfluorooctanesulfonate. Environ Sci Technol 55:2597–2607. https://doi.org/10.1021/acs.est.0c06881

    Article  CAS  Google Scholar 

  181. You S, Liu B, Gao Y, Wang Y, Tang CY, Huang Y, Ren N (2016) Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochim Acta 214:326–335. https://doi.org/10.1016/j.electacta.2016.08.037

    Article  CAS  Google Scholar 

  182. Ramanavicius S, Ramanavicius A (2020) Insights in the application of stoichiometric and non-stoichiometric titanium oxides for the design of sensors for the determination of gases and VOCs (TiO2-x and TinO2n-1 vs. TiO2). Sensors. https://doi.org/10.3390/s20236833

    Article  Google Scholar 

  183. Ramanavicius S, Jagminas A, Ramanavicius A (2022) Gas sensors based on titanium oxides (review). Coatings. https://doi.org/10.3390/coatings12050699

    Article  Google Scholar 

  184. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176. https://doi.org/10.1021/cr400625j

    Article  CAS  Google Scholar 

  185. Ramanavicius S, Tereshchenko A, Karpicz R, Ratautaite V, Bubniene U, Maneikis A, Jagminas A, Ramanavicius A (2020) TiO2-x/TiO2-structure based “self-heated” sensor for the determination of some reducing gases. Sensors. https://doi.org/10.3390/s20010074

    Article  Google Scholar 

  186. Ramanavicius S, Ramanavicius A (2020) Insights in the application of stoichiometric and non-stoichiometric titanium oxides for the design of sensors for the determination of gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2). Sensors 20(23):6833

    Article  CAS  Google Scholar 

  187. Wang Y, Du G, Liu H, Liu D, Qin S, Wang N, Hu C, Tao X et al (2008) Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv Func Mater 18:1131–1137. https://doi.org/10.1002/adfm.200701120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review has been supported by the National Natural Science Foundation of China (No. 52174347).

Author information

Authors and Affiliations

Authors

Contributions

WW as contributor (One of the co-first authors, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing original draft); TY, as contributor (One of the co-first authors, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing original draft); JY as leader and advisor (Corresponding author, Conceptualization, Methodology, Validation, Writing – review & editing, Funding acquisition, Resources, Software).

Corresponding author

Correspondence to Jinwen Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors confirm that the nature of the work did not require prior ethical approval by an institutional review board or equivalent ethics committee.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Yuan, T. & Ye, J. Recent progress in electrochemical application of Magnéli phase Ti4O7-based materials: a review. J Mater Sci 58, 14911–14944 (2023). https://doi.org/10.1007/s10853-023-08929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08929-y

Navigation