Skip to main content
Log in

Grain boundary segregation in Al–Mn electrodeposits prepared from ionic liquid

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Among the various preparation methods for nanocrystalline alloys, ionic liquid electrodeposition at low temperature is of interest for its scalability and efficiency. To achieve nanostructures with stabilized structures, it is desirable to directly deposit alloys in which the grain boundaries are decorated with a segregated alloying element. Here a combination of atom-probe tomography and aberration-corrected scanning transmission electron microscopy are used to confirm that in Al–Mn nanocrystalline alloys deposited from an ionic liquid, Mn is slightly segregated at grain boundaries in the as-deposited condition. The apparent heat of grain boundary segregation is calculated to lie between 1100 and 1500 J mol−1, which aligns reasonably well with a value calculated using a Miedema-based segregation model, and which is also in line with a more refined CALPHAD-type estimation if it is assumed that the Al–Mn deposits are not fully equilibrated at the deposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qu N, Zhu D, Chan K, Lei W (2003) Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density. Surf Coat Technol 168:123–128. doi:10.1016/S0257-8972(03)00014-8

    Article  Google Scholar 

  2. Natter H, Hempelmann R (2008) Nanocrystalline metals prepared by electrodeposition. Zeitschrift für Phys Chemie 222:319–354. doi:10.1524/zpch.2008.222.2-3.319

    Article  Google Scholar 

  3. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408

    Google Scholar 

  4. Ruan S, Schuh CA (2009) Electrodeposited Al–Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater 57:3810–3822. doi:10.1016/j.actamat.2009.04.030

    Article  Google Scholar 

  5. Stafford GR (1989) The electrodeposition of an aluminum-manganese metallic glass from molten salts. J Electrochem Soc 136:635. doi:10.1149/1.2096701

    Article  Google Scholar 

  6. Nakanishi T, Ozaki M, Nam H-S et al (2001) Pulsed electrodeposition of nanocrystalline CoNiFe soft magnetic thin films. J Electrochem Soc 148:C627. doi:10.1149/1.1388886

    Article  Google Scholar 

  7. Tsuda T, Hussey CL, Stafford GR (2005) Electrodeposition of Al-Mo-Mn ternary alloys from the Lewis acidic AlCl3-EtMeImCl molten salt. J Electrochem Soc 152:C620. doi:10.1149/1.1995696

    Article  Google Scholar 

  8. Mishra AC, Thakur AK, Srinivas V (2009) Effect of deposition parameters on microstructure of electrodeposited nickel thin films. J Mater Sci 44:3520–3527. doi:10.1007/s10853-009-3475-y

    Article  Google Scholar 

  9. Nieh TG, Wadsworth J (1991) Hall-Petch relation in nanocrystalline solids. Scr Metall Mater 25:955–958

    Article  Google Scholar 

  10. Yahalom J, Zadok O (1987) Formation of composition-modulated alloys by electrodeposition. J Mater Sci 22:499–503. doi:10.1007/BF01160760

    Article  Google Scholar 

  11. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci 43:7264–7272. doi:10.1007/s10853-008-2870-0

    Article  Google Scholar 

  12. Weissmiiller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272

    Article  Google Scholar 

  13. Liu F, Kirchheim R (2004) Grain boundary saturation and grain growth. Scr Mater 51:521–525. doi:10.1016/j.scriptamat.2004.05.042

    Article  Google Scholar 

  14. Choi P, Dasilva M, Klement U et al (2005) Thermal stability of electrodeposited nanocrystalline Co-1.1 at.% P. Acta Mater 53:4473–4481. doi:10.1016/j.actamat.2005.06.006

    Article  Google Scholar 

  15. Chen X, Mao J (2010) Thermal stability and tensile properties of electrodeposited Cu-Bi alloy. J Mater Eng Perform 20:481–486. doi:10.1007/s11665-010-9700-7

    Article  Google Scholar 

  16. Detor AJ, Miller MK, Schuh CA (2006) Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos Mag 86:4459–4475. doi:10.1080/14786430600726749

    Article  Google Scholar 

  17. Hentschel T, Isheim D, Kirchheim R (2000) Nanocrystalline Ni–3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater 48:933–941

    Article  Google Scholar 

  18. Weston DP, Gill SPA, Fay M et al (2013) Nano-structure of Co-W alloy electrodeposited from gluconate bath. Surf Coat Technol 236:75–83. doi:10.1016/j.surfcoat.2013.09.031

    Article  Google Scholar 

  19. McFadden SX, Mukherjee AK (2005) Sulfur and superplasticity in electrodeposited ultrafine-grained Ni. Mater Sci Eng A 395:265–268. doi:10.1016/j.msea.2004.12.025

    Article  Google Scholar 

  20. Liu Y, Liu L, Shen B, Hu W (2011) A study of thermal stability in electrodeposited nanocrystalline Fe–Ni invar alloy. Mater Sci Eng A 528:5701–5705. doi:10.1016/j.msea.2011.04.052

    Article  Google Scholar 

  21. Boylan K, Ostrander D, Erb U et al (1991) An in situ TEM study of the thermal stability of nanocrystalline Ni-P. Scr Metall Mater 25:2711–2716

    Article  Google Scholar 

  22. Färber B, Cadel E, Menand A et al (2000) Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater 48:789–796

    Article  Google Scholar 

  23. Detor AJ, Miller MK, Schuh CA (2007) Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. Philos Mag Lett 87:581–587. doi:10.1080/09500830701400125

    Article  Google Scholar 

  24. Detor AJ, Schuh C (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater 55:4221–4232. doi:10.1016/j.actamat.2007.03.024

    Article  Google Scholar 

  25. Detor AJ, Schuh CA (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22:3233–3248. doi:10.1557/JMR.2007.0403

    Article  Google Scholar 

  26. Talin AA, Marquis EA, Goods SH et al (2006) Thermal stability of Ni–Mn electrodeposits. Acta Mater 54:1935–1947. doi:10.1016/j.actamat.2005.12.027

    Article  Google Scholar 

  27. Pellicer E, Varea A, Sivaraman KM et al (2011) Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl Mater Interfaces 3:2265–2274. doi:10.1021/am2004587

    Article  Google Scholar 

  28. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. doi:10.1038/nmat2448

    Article  Google Scholar 

  29. El Abedin SZ, Polleth M, Meiss SA et al (2007) Ionic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chem 9:549. doi:10.1039/b614520e

    Article  Google Scholar 

  30. Tsuda T, Hussey CL (2007) Electrochemical applications of room-temperature ionic liquids. Electrochem Soc Interface. doi:10.1002/elps.200800561

    Google Scholar 

  31. Jiang T, Chollier Brym MJ, Dubé G et al (2006) Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol 201:1–9. doi:10.1016/j.surfcoat.2005.10.046

    Article  Google Scholar 

  32. Jiang T, Chollier Brym MJ, Dubé G et al (2006) Electrodeposition of aluminium from ionic liquids: Part II - studies on the electrodeposition of aluminum from aluminum chloride (AICl3)—trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf Coat Technol 201:10–18. doi:10.1016/j.surfcoat.2005.12.024

    Article  Google Scholar 

  33. NuLi Y, Yang J, Wang J et al (2005) Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid. Electrochem Solid-State Lett 8:C166. doi:10.1149/1.2052048

    Article  Google Scholar 

  34. Tsuda T, Hussey CL, Stafford GR, Bonevich JE (2003) Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the Lewis acidic aluminum chloride–1-ethyl-3-methylimidazolium chloride melt. J Electrochem Soc 150:C234. doi:10.1149/1.1554915

    Article  Google Scholar 

  35. Kong BO, Suk JI, Nam SW (1996) Identification of Mn-dispersoid in Al-Zn-Mg-Mn alloy. J Mater Sci Lett 15:763–766. doi:10.1007/BF00274597

    Article  Google Scholar 

  36. Abbott AP, Frisch G, Ryder KS (2013) Electroplating using ionic liquids. Annu Rev Mater Res 43:335–358. doi:10.1146/annurev-matsci-071312-121640

    Article  Google Scholar 

  37. Clark D, Wood D, Erb U (1997) Industrial applications of electrodeposited nanocrystals. Nanostruct Mater 9:755–758

    Article  Google Scholar 

  38. Wei Y (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52:2587–2616. doi:10.1016/j.jmps.2004.04.006

    Article  Google Scholar 

  39. Ruan S, Schuh CA (2012) Towards electroformed nanostructured aluminum alloys with high strength and ductility. J Mater Res 27:1638–1651. doi:10.1557/jmr.2012.105

    Article  Google Scholar 

  40. Zein El Abedin S, Endres F (2013) Challenges in the electrochemical coating of high-strength steel screws by aluminum in an acidic ionic liquid composed of 1-Ethyl-3-methylimidazolium chloride and AlCl3. J Solid State Electrochem 17:1127–1132. doi:10.1007/s10008-012-1973-3

    Article  Google Scholar 

  41. Du Y, Wang J, Zhao J et al (2007) Reassessment of the Al-Mn system and a thermodynamic description of the Al-Mg-Mn system. J Mater Res 98:855–871. doi:10.3193/146.101547

    Google Scholar 

  42. Shechtman D, Blech I (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1954

    Article  Google Scholar 

  43. Cai W, Schuh CA (2012) Tuning nanoscale grain size distribution in multilayered Al–Mn alloys. Scr Mater 66:194–197. doi:10.1016/j.scriptamat.2011.10.040

    Article  Google Scholar 

  44. Ruan S, Torres KL, Thompson GB, Schuh CA (2011) Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ultramicroscopy 111:1062–1072. doi:10.1016/j.ultramic.2011.01.026

    Article  Google Scholar 

  45. Felfer P (2012) Atom probe sample preparation using FIB: ref-guide/case studies

  46. Felfer PJ, Alam T, Ringer SP, Cairney JM (2012) A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech 75:484–491. doi:10.1002/jemt.21081

    Article  Google Scholar 

  47. Rachbauer R, Massl S, Stergar E et al (2010) Atom probe specimen preparation and 3D interfacial study of Ti–Al–N thin films. Surf Coat Technol 204:1811–1816. doi:10.1016/j.surfcoat.2009.11.020

    Article  Google Scholar 

  48. Miller MK, Russell KF (2007) Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107:761–766. doi:10.1016/j.ultramic.2007.02.023

    Article  Google Scholar 

  49. Miller MK, Russell KF, Thompson K et al (2007) Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13:428–436. doi:10.1017/S1431927607070845

    Article  Google Scholar 

  50. Cowan G (1998) Statistical data analysis. Oxford University Press, Oxford

    Google Scholar 

  51. Alber U, Müllejans H, Rühle M (1997) Improved quantification of grain boundary segregation by EDS in a dedicated STEM. Ultramicroscopy 69:105–116

    Article  Google Scholar 

  52. Gault B, Moddy MP, Cairney JM, Ringer SP (2012) Atom Probe Microscopy, Springer Science & Business Media, Berlin, doi:10.1007/978/-1-4614-3436-8

  53. Mottura A, Miller MK, Reed RC (2008) Atom probe tomography analysis of possible rhenium clustering in nickel-based superalloys. Superalloys 2008:891–900. doi:10.7449/2008/Superalloys_2008_891_900

    Article  Google Scholar 

  54. Herbig M, Raabe D, Li YJ et al (2014) Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112:126103. doi:10.1103/PhysRevLett.112.126103

    Article  Google Scholar 

  55. Murdoch HA, Schuh CA (2013) Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater 61:2121–2132. doi:10.1016/j.actamat.2012.12.033

    Article  Google Scholar 

  56. Trelewicz J, Schuh C (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:1–13. doi:10.1103/PhysRevB.79.094112

    Article  Google Scholar 

  57. Eshelby JD (1954) Distortion of a crystal by point imperfections. J Appl Phys 25:255. doi:10.1063/1.1721615

    Article  Google Scholar 

  58. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, London

    Google Scholar 

  59. Bakker H (1998) Enthalpies in alloys- Miedema’s semi-empirical model. Trans Tech Publications Ltd, Dürnten

    Google Scholar 

  60. De Boer FR, Boom R, Mattens WCM et al (1988) Cohesion in metals: transition metal alloys. North Holland, Amsterdam

    Google Scholar 

  61. James AM, Loard MP (1992) Macmillan’s chemical and physical data. Macmillan, London

    Google Scholar 

  62. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954. doi:10.1126/science.1224737

    Article  Google Scholar 

  63. Grushko B, Stafford GR (1989) Structural study of electrodeposited aluminum-manganese alloys. Metall Trans A 20:1351–1359

    Article  Google Scholar 

  64. Stafford GR, Grushko B, McMichael RD (1993) The electrodeposition of Al-Mn ferromagnetic phase from molten salt electrolyte. J Alloys Compd 200:107–113. doi:10.1016/0925-8388(93)90479-7

    Article  Google Scholar 

  65. Grushko B, Stafford GR (1989) A structural study of a metastable phase in Al-Mn alloys electrodeposited from molten salts. Scr Metall Mater Metall Mater 23:557–562

    Google Scholar 

  66. Grushko B, Stafford GR (1990) Phase formation in electrodeposited and thermally annealed Al-Mn alloys. Metall Trans A 21:2869–2879

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported (in part) by the U.S. Army Research Office under contract W911NF-13-D-0001 through the Institute of Soldier Nanotechnologies at MIT. The APT work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. CNS is part of Harvard University. The aberration corrected STEM work was supported with ONR-MURI program, Grant Number N00014-11-0678.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TY., Marvel, C.J., Cantwell, P.R. et al. Grain boundary segregation in Al–Mn electrodeposits prepared from ionic liquid. J Mater Sci 51, 438–448 (2016). https://doi.org/10.1007/s10853-015-9316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9316-2

Keywords

Navigation