Skip to main content
Log in

A Review on Flaming Ignition of Solid Combustibles: Pyrolysis Kinetics, Experimental Methods and Modelling

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Thermal induced pyrolysis and the following flaming ignition of solid combustible play crucial roles in determining the occurrence of fire and the subsequent flame spread. This contribution reviews recent advances in global investigation on these two topics. Solid fuels involved in this study covering from natural materials, such as wood and biomass-based products, to artificially synthetized substances, encompassing neat polymers and functional composites, are in dense continuous form rather than piled combustibles. Most frequently utilized experimental methodologies, from microscale (TGA, DSC, STA) to bench-scale (cone calorimeter, FPA, etc.), and the corresponding analytical or numerical methods employed to extract kinetics and thermodynamics from experimental data are introduced. Meanwhile, the controlling mechanisms of piloted and auto ignitions, various types of ignition criteria, influential factors of ignition, and the modelling techniques are elaborated. Smoldering combustion, glowing ignition, and utilization of flame retardant to suppress pyrolysis or delay ignition time are mentioned in some sections, but not discussed in detail as they are beyond the focused scope. Finally, the challenging issues encountered in current stage which deserve further endeavors are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AMALGAM:

Multialogrithm genetically adaptive multiobjective method

CAPA:

Controlled atmosphere pyrolysis apparatus

CACC:

Controlled atmosphere cone calorimeter

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimetry

DTG:

Derivative thermogravimetry

DTA:

Differential thermal analysis

EGA:

Evolved gas analysis

FDS:

Fire dynamics simulator

FFB:

Flat-flame burner

FIST:

Forced-flow ignition and flame spread test

FIIR:

Fourier transform infrared

FPA:

Fire propagation apparatus

FR:

Flame-retardant

FTIR:

Fourier transform infrared

GA:

Genetic algorithm

GASA:

Genetic algorithm with simulated annealing

GCMS:

Gas chromatography mass spectrometry

HC:

Hill climbing

HF:

Heat flux

HRR:

Heat release rate

IAFSS:

International association for fire safety science

ICTAC:

International confederation for thermal analysis and calorimetry

IR:

Infrared

KDA:

Kinetic deconvolution analysis

LFL:

Lower flammability limit

LIFT:

Lateral ignition and flame-spread test

LH:

Left hand side of equation

MaCFP:

Measurement and computation of fire phenomena

MC:

Moisture content

MCC:

Microscale combustion calorimetry

MDA:

Mathematical deconvolution analysis

MLR:

Mass loss rate

NSGA:

Non-dominated sorting genetic algorithm

NASA:

National Aeronautics and Space Administration

OFW:

Ozawa, Flynn and Wal

OSU:

Ohio State University

OSB:

Oriented strand board

PA:

Polyamide

PC:

Polycarbonate

PE:

Polyethylene

PET:

Polyether ether ketone

PID:

Proportional integral derivative

PLA:

Polylactic acid

PMMA:

Polymethylmethacrylate

POM:

Polyoxymethylene

PP:

Polypropylene

PPSU:

Polyphenylene sulfone resins

PS:

Polystyrene

PSO:

Particle swarm optimization

SCE:

Shuffled complex evolution

SKLFS:

State Key Laboratory of Fire Science

STA:

Simultaneous thermal analysis

TGA:

Thermogravimetric analysis

TMA:

Thermomechanical analysis

TPS:

Transient plane source

TVA:

Thermal volatilization analysis

USTC:

University of Science and Technology of China

WUI:

Wildland-Urban Interface

\(a\) :

Thermal diffusivity (m2/s)

\(A\) :

Pre-exponential factor (s1)

\(Bi\) :

Biot number (–)

\(c\) :

Relative amount of species (–)

\(C_{P}\) :

Specific heat (J/g K)

\(Const\) :

Constant value (–)

\(D_{a}\) :

Damkohler number (–)

\(erfc\) :

Complementary error function (–)

\(E_{a}\) :

Activation energy (J/mol)

\(f(\alpha )\) :

Differential form of reaction model (–)

\(g(\alpha )\) :

Integral form of reaction model (–)

\(h\) :

Heat transfer coefficient (W/m2 K)

\(h_{c}\) :

Convection coefficient (W/m2 K)

\(h_{r}\) :

Heat of reaction (kJ/kg)

\(I\) :

Radiation intensity (kW/m2)

\(k\) :

Thermal conductivity (W/m K)

\(k(T)\) :

Rate constant (s1)

\(L\) :

Thickness (m)

\(\dot{m}^{\prime\prime}\) :

Mass flux (g/m2s)

\(n\) :

Reaction order (–)

\(\dot{q}^{\prime\prime}\) :

Heat flux (kW/m2)

\(Q\) :

Absorbed energy (MJ/m2)

\(r\) :

Reflectivity of surface (–)

\(R\) :

Universal gas constant (J/mol K)

\(t\) :

Time (s)

\(T\) :

Temperature (K)

\(v\) :

Airflow velocity (m/s)

\(x\) :

Path length (m)

\(\infty\) :

Infinite (–)

\(\alpha\) :

Extent of conversion (–)

\(\beta\) :

Heating rate (K/min)

\(\delta\) :

Thermal penetration depth (m)

\(\Delta\) :

Difference (–)

\(\varepsilon\) :

Surface emissivity (–)

\(\theta\) :

Relative temperature (K)

\(\kappa\) :

In-depth absorption coefficient (m1)

\(\lambda\) :

Fraction of surface absorption (–)

\(\xi\) :

Nondimensional parameter (–)

\(\rho\) :

Density (g/m3)

\(\sigma\) :

Stefan-Boltzmann constant (W/m2 K4)

\(\tau\) :

Variable of integration (–)

0:

Initial condition

\(auto\) :

Autoignition

\(A\) :

Species A

\(B\) :

Species B

\(c\) :

Convection

\(cri\) :

Critical value

\(dry\) :

Dry wood

\(e\) :

External

\(\exp\) :

Experimental

\(g\) :

Glass transition

\(i\) :

i-Th component

\(ig\) :

Ignition

\(in\) :

Incident

\(j\) :

j-Th reaction

\(l\) :

l-Th reaction

\(min\) :

Minimum

\(net\) :

Net

\(N\) :

Total number of data point in optimization

\(p\) :

Product

\(peak\) :

Peak value

\(R\) :

Radiative

\(s\) :

Surface

\(thick\) :

Thermally thick

\(thin\) :

Thermally thin

\(T\) :

Thermal

References

  1. Babrauskas V (2003) Ignition of common solids. In: Ignition handbook. Fire Science Publishers. Issaquah, pp 234–249

  2. Ahrens M, Evarts B (2021) Fire loss in the United States During 2020. National Fire Protection Association (NFPA)

  3. Luo Y, Li Q, Jiang L, Zhou Y (2021) Analysis of Chinese fire statistics during the period 1997–2017. Fire Saf J 125:103400. https://doi.org/10.1016/j.firesaf.2021.103400

    Article  Google Scholar 

  4. Gaudet B, Simeoni A, Gwynne S, Kuligowski E, Benichou N (2020) A review of post-incident studies for wildland-urban interface fires. J Saf Sci Resil. https://doi.org/10.1016/j.jnlssr.2020.06.010

    Article  Google Scholar 

  5. Jennings CR (2013) Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: a review of the literature. Fire Saf J 62:13–19. https://doi.org/10.1016/j.firesaf.2013.07.002

    Article  Google Scholar 

  6. Boehmer HR, Klassen MS, Olenick SM (2021) Fire hazard analysis of modern vehicles in parking facilities. Fire Technol 57:2097–2127. https://doi.org/10.1007/s10694-021-01113-1

    Article  Google Scholar 

  7. Ying Z (2019) Study of fire and explosion hazards of alternative fuel vehicles in tunnels. Fire Saf J 110:102871. https://doi.org/10.1016/j.firesaf.2019.102871

    Article  Google Scholar 

  8. Junjunan SF, Chetehouna K, Cablé A, Oger A, Gascoin N, Bura RO (2021) A review on fire protection systems in military and civilian vehicles. Fire Technol. https://doi.org/10.1007/s10694-021-01187-x

    Article  Google Scholar 

  9. Rein G, Huang X (2021) Smouldering wildfires in peatlands, forests and the arctic: challenges and perspectives. Curr Opin Environ Sci Health 24:100296. https://doi.org/10.1016/j.coesh.2021.100296

    Article  Google Scholar 

  10. Zhong M, Fan W, Liu T, Li P (2003) Statistical analysis on current status of China forest fire safety. Fire Saf J 38:257–269. https://doi.org/10.1016/S0379-7112(02)00079-6

    Article  Google Scholar 

  11. Li X, Jin H, Wang H, Marchenko SS, Shan W, Luo DL, Jia N (2021) Influences of forest fires on the permafrost environment: a review. Adv Clim Chang Res 12:48–65. https://doi.org/10.1016/j.accre.2021.01.001

    Article  Google Scholar 

  12. He Q, Liu N, Xie X, Zhang L, Zhang Y, Yan W (2021) Experimental study on fire spread over discrete fuel bed-Part I: Effects of packing ratio. Fire Saf J 126:103470. https://doi.org/10.1016/j.firesaf.2021.103470

    Article  Google Scholar 

  13. Yuan X, Liu N, Xie X, Viegas DX (2020) Physical model of wildland fire spread: parametric uncertainty analysis. Combust Flame 217:285–293. https://doi.org/10.1016/j.combustflame.2020.03.034

    Article  Google Scholar 

  14. Stubbs DC, Humphreys LH, Goldman A, Childtree AM, Kush JS, Scarborough DE (2021) An experimental investigation into the wildland fire burning characteristics of loblolly pine needles. Fire Saf J 126:103471. https://doi.org/10.1016/j.firesaf.2021.103471

    Article  Google Scholar 

  15. Xie X, Liu N, Raposo JR, Viegas DX, Yuan X, Tu R (2020) An experimental and analytical investigation of canyon fire spread. Combust Flame 212:367–376. https://doi.org/10.1016/j.combustflame.2019.11.004

    Article  Google Scholar 

  16. Torero J (2016) Flaming ignition of solid fuels. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661

    Chapter  Google Scholar 

  17. Burhenne L, Messmer J, Aicher T, Laborie MP (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis 101:177–184. https://doi.org/10.1016/j.jaap.2013.01.012

    Article  Google Scholar 

  18. Mettler MS, Vlachos DG, Dauenhauer PJ (2012) Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci 5:7797–7809. https://doi.org/10.1039/C2EE21679E

    Article  Google Scholar 

  19. Dai L, Wang Y, Liu Y, He C, Ruan R, Yu Z, Wu Q (2020) A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Sci Total Environ 749:142386. https://doi.org/10.1016/j.scitotenv.2020.142386

    Article  Google Scholar 

  20. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  Google Scholar 

  21. Cui Y, Wang W, Chang J (2019) Study on the product characteristics of pyrolysis lignin with calcium salt additives. Materials 12:1609. https://doi.org/10.3390/ma12101609

    Article  Google Scholar 

  22. Yaashikaa PR, Kumar PS, Varjani SJ, Saravanan A (2019) Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour Technol 292:122030. https://doi.org/10.1016/j.biortech.2019.122030

    Article  Google Scholar 

  23. Yogalakshmi KN, Sivashanmugam P, Kavitha S, Kannah Y, Varjani S, AdishKumar S, Kumar G (2022) Lignocellulosic biomass-based pyrolysis: a comprehensive review. Chemosphere 286:131824. https://doi.org/10.1016/j.chemosphere.2021.131824

    Article  Google Scholar 

  24. Zhang Y, Cui Y, Liu S, Fan L, Zhou N, Peng P, Ruan R (2020) Fast microwave-assisted pyrolysis of wastes for biofuels production-A review. Bioresour Technol 297:122480. https://doi.org/10.1016/j.biortech.2019.122480

    Article  Google Scholar 

  25. Du Y, Ju T, Meng Y, Lan T, Han S, Jiang J (2021) A review on municipal solid waste pyrolysis of different composition for gas production. Fuel Process Technol 224:107026. https://doi.org/10.1016/j.fuproc.2021.107026

    Article  Google Scholar 

  26. Saitova A, Strokin S, Ancheyta J (2021) Evaluation and comparison of thermodynamic and kinetic parameters for oxidation and pyrolysis of Yarega heavy crude oil asphaltenes. Fuel 297:120703. https://doi.org/10.1016/j.fuel.2021.120703

    Article  Google Scholar 

  27. Worzakowska M, Sztanke M, Sztanke K (2021) Pyrolysis and oxidative decomposition mechanism of trifluoromethylated fused triazinones. J Anal Appl Pyrolysis 157:105226. https://doi.org/10.1016/j.jaap.2021.105226

    Article  Google Scholar 

  28. Gao X, Tan M, Jiang S, Huang Z, Li C, Lei T, Li H (2021) Pyrolysis of torrefied rice straw from gas-pressurized and oxidative torrefaction: pyrolysis kinetic analysis and the properties of biochars. J Anal Appl Pyrolysis 157:105238. https://doi.org/10.1016/j.jaap.2021.105238

    Article  Google Scholar 

  29. Ma C, Sánchez-Rodríguez D, Kamo T (2021) A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: product characteristics and kinetics. J Hazard Mater 412:125329. https://doi.org/10.1016/j.jhazmat.2021.125329

    Article  Google Scholar 

  30. Li H, Wang Y, Zhou N, Dai L, Deng W, Liu C, Ruan R (2021) Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification-a review. J Clean Prod 291:125826. https://doi.org/10.1016/j.jclepro.2021.125826

    Article  Google Scholar 

  31. Ferreir R, Meireles C, Assuncao R, Barrozo M, Soares R (2020) Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass Bioenergy 134:105456. https://doi.org/10.1016/j.biombioe.2019.105456

    Article  Google Scholar 

  32. Miranda NT, Motta IL, Maciel FR, Maciel MR (2021) Sugarcane bagasse pyrolysis: a review of operating conditions and products properties. Renew Sustain Energy Rev 149:111394. https://doi.org/10.1016/j.rser.2021.111394

    Article  Google Scholar 

  33. Kumar G, Eswari AP, Kavitha S, Kumar MD, Kannah RY, How LC, Banu JR (2020) Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01127-9

    Article  Google Scholar 

  34. Ansari KB, Hassan SZ, Bhoi R, Ahmad E (2021) Co-pyrolysis of biomass and plastic wastes: a review on reactants synergy, catalyst impact, process parameter, hydrocarbon fuel potential, COVID-19. J Environ Chem Eng 9:106436. https://doi.org/10.1016/j.jece.2021.106436

    Article  Google Scholar 

  35. Haberle I, Skreiberg Ø, Łazar J, Haugen NE (2017) Numerical models for thermochemical degradation of thermally thick woody biomass, and their application in domestic wood heating appliances and grate furnaces. Prog Energy Combust Sci 63:204–252. https://doi.org/10.1016/j.pecs.2017.07.004

    Article  Google Scholar 

  36. Richter F, Rein G (2019) Heterogeneous kinetics of timber charring at the microscale. J Anal Appl Pyrolysis 138:1–9. https://doi.org/10.1016/j.jaap.2018.11.019

    Article  Google Scholar 

  37. Lin S, Chow TH, Huang X (2021) Smoldering propagation and blow-off on consolidated fuel under external airflow. Combust Flame 234:111685. https://doi.org/10.1016/j.combustflame.2021.111685

    Article  Google Scholar 

  38. Huang X, Rein G (2016) Thermochemical conversion of biomass in smouldering combustion across scales: the roles of heterogeneous kinetics, oxygen and transport phenomena. Bioresour Technol 207:409–421. https://doi.org/10.1016/j.biortech.2016.01.027

    Article  Google Scholar 

  39. Lin S, Huang X (2021) Quenching of smoldering: effect of wall cooling on extinction. Proc Combust Inst 38:5015–5022. https://doi.org/10.1016/j.proci.2020.05.017

    Article  Google Scholar 

  40. Huang X, Rein G (2019) Upward-and-downward spread of smoldering peat fire. Proc Combust Inst 37:4025–4033. https://doi.org/10.1016/j.proci.2018.05.125

    Article  Google Scholar 

  41. Gao J, Qi X, Zhang D, Matsuoka T, Nakamura Y (2021) Propagation of glowing combustion front in a packed bed of activated carbon particles and the role of CO oxidation. Proc Combust Inst 38:5023–5032. https://doi.org/10.1016/j.proci.2020.05.041

    Article  Google Scholar 

  42. Boonmee N, Quintiere JG (2005) Glowing ignition of wood: the onset of surface combustion. Proc Combust Inst 30:2303–2310. https://doi.org/10.1016/j.proci.2004.07.022

    Article  Google Scholar 

  43. Boonmee N, Quintiere JG (2002) Glowing and flaming autoignition of wood. Proc Combust Inst 29:289–296. https://doi.org/10.1016/S1540-7489(02)80039-6

    Article  Google Scholar 

  44. Urban JL, Song J, Santamaria S, Fernandez-Pello C (2019) Ignition of a spot smolder in a moist fuel bed by a firebrand. Fire Saf J 108:102833. https://doi.org/10.1016/j.firesaf.2019.102833

    Article  Google Scholar 

  45. Hirata T, Kashiwagi T, Brown JE (1985) Thermal and oxidative degradation of poly (methyl methacrylate): weight loss. Macromolecules 18:1410–1418

    Article  Google Scholar 

  46. Di BC (1993) Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci 19:71–104. https://doi.org/10.1016/0360-1285(93)90022-7

    Article  Google Scholar 

  47. Kashiwagi T, Nambu H (1992) Global kinetic constants for thermal oxidative degradation of a cellulosic paper. Combust Flame 88:345–368. https://doi.org/10.1016/0010-2180(92)90039-R

    Article  Google Scholar 

  48. Cullis CF, Hirschler MM (1981) The combustion of organic polymers. In: international series of monographs in chemistry. Oxford Science Publications, Clarendon Press, Oxford

  49. Drysdale D (1999) An introduction to fire dynamics. Wiley, New York

    Google Scholar 

  50. Torero JL (2013) Scaling-up fire. Proc Combust Inst 34:99–124. https://doi.org/10.1016/j.proci.2012.09.007

    Article  Google Scholar 

  51. Fernandez-Pello AC (1995) The solid phase. In: Cox G (ed) Combustion fundamentals of fire. Academic Press, New York, pp 31–100

    Google Scholar 

  52. Fernandez-Pello AC (2011) On fire ignition. Fire Saf Sci 10:25–42

    Article  Google Scholar 

  53. Niioka T, Takahashi M, Izumikawa M (1981) Gas-phase ignition of a solid fuel in a hot stagnation point flow. In: 18th Symposium on Combustion. Pittsburgh, pp 741–747

  54. Lawson D, Simms D (1952) The ignition of wood by radiation. Br J Appl Phys 3:288–292

    Article  Google Scholar 

  55. Whiting P, Dowden JM, Kapadia PD, Davis MP (1992) A one-dimensional mathematical model of laser induced thermal ablation of biological tissue. Lasers Med Sci 7:357–368. https://doi.org/10.1007/BF02594073

    Article  Google Scholar 

  56. Billings MJ, Warren L, Wilkings R (1971) Thermal erosion of electrical insulating materials. IEEE Trans Electr Insul 2:82–90. https://doi.org/10.1109/TEI.1971.299158

    Article  Google Scholar 

  57. Delichatsios MA, Chen Y (1993) Asymptotic, approximate, and numerical solutions for the heatup and pyrolysis of materials including reradiation losses. Combust Flame 92:292–307. https://doi.org/10.1016/0010-2180(93)90041-Z

    Article  Google Scholar 

  58. Quintiere J, Iqbal N (1994) An approximate integral model for the burning rate of a thermoplastic-like material. Fire Mater 18:89–98. https://doi.org/10.1002/fam.810180205

    Article  Google Scholar 

  59. Staggs JE (1997) A discussion of modeling idealized ablative materials with particular reference to fire testing. Fire Saf J 28:47–66. https://doi.org/10.1016/S0379-7112(96)00062-8

    Article  Google Scholar 

  60. Tewarson A, Pion RF (1976) Flammability of plastics-I Burning intensity. Combust Flame 26:85–103. https://doi.org/10.1016/0010-2180(76)90059-6

    Article  Google Scholar 

  61. Lautenberger C, Fernandez-Pello AC (2005) Approximate analytical solutions for the transient mass loss rate and piloted ignition time of a radiatively heated solid in the high heat flux limit. Fire Saf Sci 8:445–456. https://doi.org/10.3801/IAFSS.FSS.8-445

    Article  Google Scholar 

  62. Cordova JL, Walther DC, Torero JL, Fernandez-Pello AC (2001) Oxidizer flow effects on the flammability of solid combustibles. Combust Sci Technol 164:253–278. https://doi.org/10.1080/00102200108952172

    Article  Google Scholar 

  63. Wang Y, Yang L, Zhou X, Dai J, Zhou Y, Deng Z (2010) Experiment study of the altitude effects on spontaneous ignition characteristics of wood. Fuel 89:1029–1034. https://doi.org/10.1016/j.fuel.2009.11.010

    Article  Google Scholar 

  64. Antonov DV, Valiullin TR, Iegorov RI, Strizhak PA (2017) Effect of macroscopic porosity onto the ignition of the waste-derived fuel droplets. Energy 119:1152–1158. https://doi.org/10.1016/j.energy.2016.11.074

    Article  Google Scholar 

  65. Li J, Gong J, Stoliarov SI (2015) Development of pyrolysis models for charring polymers. Polym Degrad Stabil 115:138–152. https://doi.org/10.1016/j.polymdegradstab.2015.03.003

    Article  Google Scholar 

  66. Peng F, Zhou X, Zhao K, Wu Z, Yang L (2015) Experimental and numerical study on effect of sample orientation on auto-ignition and piloted ignition of poly (methyl methacrylate). Materials 8:4004–4021. https://doi.org/10.3390/ma8074004

    Article  Google Scholar 

  67. Delichatsios MA (2000) Ignition times for thermally thick and intermediate conditions in flat and cylindrical geometries. Fire Saf Sci 6:233–244. https://doi.org/10.3801/IAFSS.FSS.6-233

    Article  Google Scholar 

  68. Lamorlette A, Candelier F (2015) Thermal behavior of solid particles at ignition: theoretical limit between thermally thick and thin solids. Int J Heat Mass Transf 82:117–122. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.037

    Article  Google Scholar 

  69. Jiakun D, Delichatsios MA, Yang L (2013) Piloted ignition of solid fuels at low ambient pressure and varying igniter location. Proc Combust Inst 34:2497–2503. https://doi.org/10.1016/j.proci.2012.05.072

    Article  Google Scholar 

  70. Spearpoint MJ, Quintiere JG (2001) Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux. Fire Saf J 36:391–415. https://doi.org/10.1016/S0379-7112(00)00055-2

    Article  Google Scholar 

  71. McAllister S (2013) Critical mass flux for flaming ignition of wet wood. Fire Saf J 61:200–206. https://doi.org/10.1016/j.firesaf.2013.09.002

    Article  Google Scholar 

  72. Mcallister S, Fernandez-Pello C, Urban D (2010) The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible. Combust Flame 157:1753–1759. https://doi.org/10.1016/j.combustflame.2010.02.022

    Article  Google Scholar 

  73. Fereres S, Lautenberger C, Fernandez-Pello C (2011) Mass flux at ignition in reduced pressure environments. Combust Flame 158:1301–1306. https://doi.org/10.1016/j.combustflame.2010.11.013

    Article  Google Scholar 

  74. Rich D, Lautenberger C, Torero JL, Quintiere JG, Fernandez-Pello C (2007) Mass flux of combustible solids at piloted ignition. Proc Combust Inst 31:2653–2660. https://doi.org/10.1016/j.proci.2006.08.055

    Article  Google Scholar 

  75. McAllister S, Fernandez-Pello C, Urban D, Ruff G (2009) Piloted ignition delay of PMMA in space exploration atmospheres. Proc Combust Inst 32:2553–2659. https://doi.org/10.1016/j.proci.2008.05.076

    Article  Google Scholar 

  76. Nils R, Guillermo R (2019) Convective ignition of polymers: new apparatus and application to a thermoplastic polymer. Proc Combust Inst 37:4193–4200. https://doi.org/10.1016/j.proci.2018.05.180

    Article  Google Scholar 

  77. McAllister S, Finney M (2014) Convection ignition of live forest fuels. Fire Saf Sci 11:1312–1325. https://doi.org/10.3801/IAFSS.FSS.11-1312

    Article  Google Scholar 

  78. Jiang Y, Zhai C, Shi L, Liu X, Gong J (2020) Assessment of melting and dripping effect on ignition of vertically discrete polypropylene and polyethylene slabs. J Therm Anal Calorim 144:751–762. https://doi.org/10.1007/s10973-020-09575-1

    Article  Google Scholar 

  79. Bal N, Rein G (2011) Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes. Combust Flame 158:1109–1116. https://doi.org/10.1016/j.combustflame.2010.10.014

    Article  Google Scholar 

  80. Boulet P, Parent G, Acem Z, Collin A, Försth M, Bal N, Torero J (2014) Radiation emission from a heating coil or a halogen lamp on a semitransparent sample. Int J Therm Sci 77:223–232. https://doi.org/10.1016/j.ijthermalsci.2013.11.006

    Article  Google Scholar 

  81. Boulet P, Gérardin J, Acem Z, Parent G, Collin A, Pizzo Y, Porterie B (2014) Optical and radiative properties of clear PMMA samples exposed to a radiant heat flux. Int J Therm Sci 82:1–8. https://doi.org/10.1016/j.ijthermalsci.2014.03.013

    Article  Google Scholar 

  82. Bal N, Raynard J, Rein G, Torero JL, Försth M, Boulet P, Linteris G (2013) Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources. Int J Heat Mass Tran 61:742–748. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.017

    Article  Google Scholar 

  83. Girods P, Bal N, Biteau H, Rein G, Torero JL (2011) Comparison of pyrolysis behaviour results between the cone calorimeter and the fire propagation apparatus heat sources. Fire Saf Sci 10:889–901. https://doi.org/10.3801/IAFSS.FSS.10-889

    Article  Google Scholar 

  84. Försth M, Roos A (2011) Absorptivity and its dependence on heat source temperature and degree of thermal breakdown. Fire Mater 35:285–301. https://doi.org/10.1002/fam.1053

    Article  Google Scholar 

  85. Boulet P, Parent G, Acem Z, Rogaume T, Fateh T, Zaida J, Richard F (2012) Characterization of the radiative exchanges when using a cone calorimeter for the study of the plywood pyrolysis. Fire Saf J 51:53–60. https://doi.org/10.1016/j.firesaf.2012.03.003

    Article  Google Scholar 

  86. Marcos C (2014) Spectral aspects of bench-scale flammability testing: application to hardwood pyrolysis. Fire Saf Sci 11:165–178. https://doi.org/10.3801/IAFSS.FSS.11-165

    Article  Google Scholar 

  87. Jiang F, De Ris JL, Khan MM (2009) Absorption of thermal energy in PMMA by in-depth radiation. Fire Saf J 44:106–112. https://doi.org/10.1016/j.firesaf.2008.04.004

    Article  Google Scholar 

  88. Delichatsios MA, Zhang J (2012) An alternative way for the ignition times for solids with radiation absorption in-depth by simple asymptotic solutions. Fire Mater 36:41–47. https://doi.org/10.1002/fam.1084

    Article  Google Scholar 

  89. Chen Y, Gong J, Wang X, Zhu S, Zhou Y, Jiang J, Wang Z (2019) Effect of radiation absorption modes on ignition time of translucent polymers subjected to time-dependent heat flux. J Therm Anal Calorim 135:2183–2195. https://doi.org/10.1007/s10973-018-7328-2

    Article  Google Scholar 

  90. Boulet P, Brissinger D, Collin A, Acem Z, Parent G (2015) On the influence of the sample absorptivity when studying the thermal degradation of materials. Materials 8:5398–5413. https://doi.org/10.3390/ma8085251

    Article  Google Scholar 

  91. Pizzo Y, Lallemand C, Kacem A, Ahc K, Gerardin J, Acem Z, Boulet P, Porterie B (2015) Steady and transient pyrolysis of thick clear PMMA slabs. Combust Flame 162:226–236. https://doi.org/10.1016/j.combustflame.2014.07.004

    Article  Google Scholar 

  92. Sonnier R, Ferry L, Gallard B, Boudenne A, Lavaud F (2015) Controlled emissivity coatings to delay ignition of polyethylene. Materials 8:6935–6949. https://doi.org/10.3390/ma8105349

    Article  Google Scholar 

  93. Gong J, Yang L, Wang J, Li J, Chen Y, Jiang J, Wang Z (2017) Approximate analytical solutions for temperature based transient mass flux and ignition time of a translucent solid at high radiant heat flux considering in-depth absorption. Combust Flame 186:166–177. https://doi.org/10.1016/j.combustflame.2017.08.004

    Article  Google Scholar 

  94. Gong J, Chen Y, Jiang J, Yang L, Li J (2016) A numerical study of thermal degradation of polymers: surface and in-depth absorption. Appl Therm Eng 106:1366–1379. https://doi.org/10.1016/j.applthermaleng.2016.06.114

    Article  Google Scholar 

  95. Gong J, Chen Y, Li J, Jiang J, Wang Z, Wang J (2016) Effects of combined surface and in-depth absorption on ignition of PMMA. Materials 9:820. https://doi.org/10.3390/ma9100820

    Article  Google Scholar 

  96. Zhou Y, Yang L, Dai J, Wang Y, Deng Z (2010) Radiation attenuation characteristics of pyrolysis volatiles of solid fuels and their effect for radiant ignition model. Combust Flame 157:167–175. https://doi.org/10.1016/j.combustflame.2009.06.020

    Article  Google Scholar 

  97. Staggs J (2014) The effects of gas-phase and in-depth radiation absorption on ignition and steady burning rate of PMMA. Combust Flame 161:3229–3236. https://doi.org/10.1016/j.combustflame.2014.06.007

    Article  Google Scholar 

  98. Reszka P, Borowiec P, Steinhaus T, Torero JL (2012) A methodology for the estimation of ignition delay times in forest fire modelling. Combust Flame 159:3652–3657. https://doi.org/10.1016/j.combustflame.2012.08.004

    Article  Google Scholar 

  99. Didomizio MJ, Mulherin P, Weckman EJ (2016) Ignition of wood under time-varying radiant exposures. Fire Saf J 82:131–144. https://doi.org/10.1016/J.FIRESAF.2016.02.002

    Article  Google Scholar 

  100. Leventon IT, Li J, Stoliarov SI (2015) A flame spread simulation based on a comprehensive solid pyrolysis model coupled with a detailed empirical flame structure representation. Combust Flame 162:3884–3895. https://doi.org/10.1016/J.COMBUSTFLAME.2015.07.025

    Article  Google Scholar 

  101. Vermesi I, Roenner N, Pironi P, Hadden RM, Rein G (2016) Pyrolysis and ignition of a polymer by transient irradiation. Combust Flame 163:31–41. https://doi.org/10.1016/j.combustflame.2015.08.006

    Article  Google Scholar 

  102. Vermesi I, Didomizio MJ, Richter F, Weckman EJ, Rein G (2017) Pyrolysis and spontaneous ignition of wood under transient irradiation: experiments and a-priori predictions. Fire Saf J 91:218–225. https://doi.org/10.1016/j.firesaf.2017.03.081

    Article  Google Scholar 

  103. Yang L, Guo Z, Zhou Y, Fan W (2007) The influence of different external heating ways on pyrolysis and spontaneous ignition of some woods. J Anal Appl Pyrol 78:40–45. https://doi.org/10.1016/J.JAAP.2006.04.001

    Article  Google Scholar 

  104. Ji J, Cheng Y, Yang L, Guo Z, Fan W (2006) An integral model for wood auto-ignition under variable heat flux. J Fire Sci 24:413–425. https://doi.org/10.1177/0734904106062138

    Article  Google Scholar 

  105. Zhai C, Gong J, Zhou X, Peng F, Yang L (2017) Pyrolysis and spontaneous ignition of wood under time-dependent heat flux. J Anal Appl Pyrolysis 125:100–108. https://doi.org/10.1016/J.JAAP.2017.04.013

    Article  Google Scholar 

  106. Lamorlette A (2014) Analytical modeling of solid material ignition under a radiant heat flux coming from a spreading fire front. J Therm Sci Eng Appl 6:044501. https://doi.org/10.1115/1.4028204

    Article  Google Scholar 

  107. Gong J, Li Y, Chen Y, Li J, Wang X, Jiang J, Wang Z, Wang J (2018) Approximate analytical solutions for transient mass flux and ignition time of solid combustibles exposed to time-varying heat flux. Fuel 211:676–687. https://doi.org/10.1016/j.fuel.2017.09.107

    Article  Google Scholar 

  108. Gong J, Zhang M, Zhai C, Yang L, Zhou Y, Wang Z (2020) Experimental, analytical and numerical investigation on auto-ignition of thermally intermediate PMMA imposed to linear time-increasing heat flux. Appl Therm Eng 172:115137. https://doi.org/10.1016/j.applthermaleng.2020.115137

    Article  Google Scholar 

  109. Fang J, Meng Y, Wang J, Zhao L, He X, Ji J, Zhang Y (2018) Experimental, numerical and theoretical analyses of the ignition of thermally thick PMMA by periodic irradiation. Combust Flame 197:41–48. https://doi.org/10.1016/j.combustflame.2018.07.009

    Article  Google Scholar 

  110. Gong J, Zhai C, Yang L, Wang Z (2020) Theoretical solutions for ignition time of translucent polymers exposed to exponential thermal radiation considering both surface and in-depth absorptions. Int J Therm Sci 151:106242

    Article  Google Scholar 

  111. Bilbao R, Mastral JF, Lana JA, Ceamanos J, Aldea ME, Betran M (2002) A model for the prediction of the thermal degradation and ignition of wood under constant and variable heat flux. J Anal Appl Pyrolysis 62:63–82. https://doi.org/10.1016/S0165-2370(00)00214-X

    Article  Google Scholar 

  112. Gong J, Zhai C, Cao J, Li J, Yang L, Zhou Y, Wang Z (2020) Auto-ignition of thermally thick PMMA exposed to linearly decreasing thermal radiation. Combust Flame 216:232–244. https://doi.org/10.1016/j.combustflame.2020.03.005

    Article  Google Scholar 

  113. Gong J, Zhang M, Zhai C (2022) Pyrolysis and autoignition behaviors of oriented strand board under power-law radiation. Renew Energy 182:946–957. https://doi.org/10.1016/j.renene.2021.11.032

    Article  Google Scholar 

  114. Gong J, Zhai C, Yang L, Wang Z (2020) Ignition of polymers under exponential heat flux considering both surface and in-depth absorptions. Int J Therm Sci 151:106242. https://doi.org/10.1016/j.ijthermalsci.2019.106242

    Article  Google Scholar 

  115. Gong J, Zhang M, Zhai C (2021) Composite auto-ignition criterion for PMMA (Poly methyl methacrylate) exposed to linearly declining thermal radiation. Appl Therm Eng 195:117156. https://doi.org/10.1016/j.applthermaleng.2021.117156

    Article  Google Scholar 

  116. Gong J, Cao J, Li J, Wang S, Zhou Y, Wang Z (2020) Effect of moisture content on thermal decomposition and autoignition of wood under power-law thermal radiation. Appl Therm Eng 179:115651. https://doi.org/10.1016/j.applthermaleng.2020.115651

    Article  Google Scholar 

  117. Gong J, Li J, Shi L, Wang X, Wang S, Wang Z (2018) Analytical prediction of heat transfer and ignition time of solids exposed to time-dependent thermal radiation. Int J Therm Sci 130:227–239. https://doi.org/10.1016/j.ijthermalsci.2018.04.015

    Article  Google Scholar 

  118. Roslon M, Olenick S, Zhou Y (2001) Microgravity ignition delay of solid fuels in low-velocity flows. AIAA J 39:2336–2342. https://doi.org/10.2514/2.1239

    Article  Google Scholar 

  119. Kobayashi Y, Konno Y, Huang X, Nakaya S, Tsue M, Hashimoto N, Fujita O, Fernandez-Pello C (2019) Laser piloted ignition of electrical wire in microgravity. Proc Combust Inst 37:4211–4217. https://doi.org/10.1016/j.proci.2018.06.089

    Article  Google Scholar 

  120. Fujita O, Kyono T, Kido Y, Ito H, Nakamura Y (2011) Ignition of electrical wire insulation with short-term excess electric current in microgravity. Proc Combust Inst 33:2617–2623. https://doi.org/10.1016/j.proci.2010.06.123

    Article  Google Scholar 

  121. Shimizu K, Kikuchi M, Hashimoto N, Fujita O (2017) A numerical and experimental study of the ignition of insulated electric wire with long-term excess current supply under microgravity. Proc Combust Inst 36:3063–3071. https://doi.org/10.1016/j.proci.2016.06.134

    Article  Google Scholar 

  122. Takano Y, Fujita O, Shigeta N, Nakamura Y, Ito H (2013) Ignition limits of short-term overloaded electric wires in microgravity. Proc Combust Inst 34:2665–2637. https://doi.org/10.1016/j.proci.2012.06.064

    Article  Google Scholar 

  123. Takahashi J, Fujita O, Ito K (2005) The effect of irradiation angle on laser ignition of cellulose sheet in microgravity. Proc Combust Inst 30:2311–2317. https://doi.org/10.1016/j.proci.2004.08.097

    Article  Google Scholar 

  124. Olson SL (2011) Piloted ignition delay times of opposed and concurrent flame spread over a thermally-thin fuel in a forced convective microgravity environment. Proc Combust Inst 33:2633–2639. https://doi.org/10.1016/j.proci.2010.06.020

    Article  Google Scholar 

  125. Nakamura Y, Kashiwagi T, Olson SL, Nishizawa K, Fujita O, Ito K (2005) Two-sided ignition of a thin PMMA sheet in microgravity. Proc Combust Inst 30:2319–2325. https://doi.org/10.1016/j.proci.2004.07.037

    Article  Google Scholar 

  126. Richter F, Rein G (2017) Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale. Fire Saf J 91:191–199. https://doi.org/10.1016/j.firesaf.2017.03.082

    Article  Google Scholar 

  127. Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61:36–44. https://doi.org/10.1016/j.firesaf.2013.08.015

    Article  Google Scholar 

  128. Bal N, Rein G (2015) On the effect of inverse modeling and compensation effects in computational pyrolysis for fire scenarios. Fire Saf J 72:68–76. https://doi.org/10.1016/j.firesaf.2015.02.012

    Article  Google Scholar 

  129. Yan D, McKinnon MB, Stoliarov SI, Gaëlle F, Serge B (2016) Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: application to poly(lactic acid) blended with melamine and ammonium polyphosphate. Polym Degrad Stabil 129:347–362. https://doi.org/10.1016/j.polymdegradstab.2016.05.014

    Article  Google Scholar 

  130. Fiola GJ, Chaudhari DM, Stoliarov SI (2021) Comparison of pyrolysis properties of extruded and cast poly (methyl methacrylate). Fire Saf J 120:103083. https://doi.org/10.1016/j.firesaf.2020.103083

    Article  Google Scholar 

  131. Sun Q, Ding Y, Stoliarov SI, Sun J, Fontaine G, Bourbigot S (2020) Development of a pyrolysis model for an intumescent flame retardant system: Poly(lactic acid) blended with melamine and ammonium polyphosphate. Compos B 194:10855. https://doi.org/10.1016/j.compositesb.2020.108055

    Article  Google Scholar 

  132. Swann JD, Stoliarov SI (2021) Determination of pyrolysis and combustion properties of poly(vinylidene fluoride) using comprehensive modeling: relating heat transfer to the intumescent char’s porous structure. Fire Saf J 120:103806. https://doi.org/10.1016/j.firesaf.2020.103086

    Article  Google Scholar 

  133. Ding Y, Fukumoto K, Ezekoye OA, Lu S, Wang C, Li C (2020) Experimental and numerical simulation of multi-component combustion of typical charring material. Combust Flame 211:417–429. https://doi.org/10.1016/j.combustflame.2019.10.016

    Article  Google Scholar 

  134. Sabi FZ, Terrah SM, Mosbah O, Dilem A, Hamamousse N, Sahila A, Harrouz O, Boutchiche H, Chaib F, Zekri N, Kaiss A, Clerc JP, Giroud F, Viegas DX (2021) Ignition/non-ignition phase transition: a new critical heat flux estimation method. Fire Saf J 119:103257. https://doi.org/10.1016/j.firesaf.2020.103257

    Article  Google Scholar 

  135. Shotorban B, Yashwanth BL, Mahalingam S (2018) An investigation of pyrolysis and ignition of moist leaf-like fuel subject to convective heating. Combust Flame 190:25–35. https://doi.org/10.1016/j.combustflame.2017.11.008

    Article  Google Scholar 

  136. Gong T, Xie Q, Huang X (2018) Fire behaviors of flame-retardant cables part I: decomposition, swelling and spontaneous ignition. Fire Saf J 95:113–121. https://doi.org/10.1016/j.firesaf.2017.10.005

    Article  Google Scholar 

  137. Nazare S, Isaac L, Rick D (2021) Ignitibility of structural wood products exposed to embers during wildland fires: A review of literature. NIST (National Institute of Standards and Technology) Technical Note 2153, US. https://doi.org/10.6028/NIST.TN.2153

  138. Fernandez-Pello AC (2017) Wildland fire spot ignition by sparks and firebrands. Fire Saf J 91:2–10. https://doi.org/10.1016/j.firesaf.2017.04.040

    Article  Google Scholar 

  139. Li C, Tien JS, Johnston MC, Olson SL, Ferkul PV (2022) Ignition of thermally-thick blunt body PMMA samples using a heated wire. Fire Saf J. https://doi.org/10.1016/j.firesaf.2022.103663

    Article  Google Scholar 

  140. Witkowski A, Stec AA, T. Hull TR, (2016) Thermal decomposition of polymeric materials. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 167–254

    Chapter  Google Scholar 

  141. McCoy CG, Tilles JL, Stoliarov SI (2019) Empirical model of flame heat feedback for simulation of cone calorimetry. Fire Saf J 103:38–48. https://doi.org/10.1016/j.firesaf.2018.11.006

    Article  Google Scholar 

  142. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  143. Chen R, Li Q, Xu X, Zhang D (2019) Pyrolysis kinetics and reaction mechanism of representative non-charring polymer waste with micron particle size. Energy Convers Manag 198:111923. https://doi.org/10.1016/j.enconman.2019.111923

    Article  Google Scholar 

  144. Chen R, Li Q, Xu X, Zhang D (2019) Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere. Fuel 246:212–221. https://doi.org/10.1016/j.fuel.2019.02.129

    Article  Google Scholar 

  145. Mamleev V, Bourbigot S, Bras ML, Duquesne S, Sestak J (2000) Modelling of nonisothermal kinetics in thermogravimetry. Phys Chem Chem Phys 2:4708–4716. https://doi.org/10.1039/b004355i

    Article  Google Scholar 

  146. FerreiroAI RM, Costa M (2016) A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues. Energy Convers Manag 125:290–300. https://doi.org/10.1016/j.enconman.2016.04.104

    Article  Google Scholar 

  147. Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B (2017) Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J Therm Anal Calorim 129:1201–1213. https://doi.org/10.1007/s10973-017-6212-9

    Article  Google Scholar 

  148. Ding Y, Zhang Y, Zhang J, Zhou R, Ren Z, Guo H (2019) Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis. Bioresour Technol 293:122079. https://doi.org/10.1016/j.biortech.2019.122079

    Article  Google Scholar 

  149. Ding Y, Wang C, Chaos M, Chen R, Lu S (2016) Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Bioresour Technol 200:658–665. https://doi.org/10.1016/j.biortech.2015.10.082

    Article  Google Scholar 

  150. Gong J, Zhu H, Zhou H, Stoliarov SI (2021) Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition. J Fire Sci 39:190–204. https://doi.org/10.1177/0734904120982887

    Article  Google Scholar 

  151. Li N, Gu Y, Gong J (2021) Development of a pyrolysis model for poly(vinylidene fluoride-co-hexafluoropropylene) and its application in predicting combustion behaviors. Polym Degrad Stabil 193:109739. https://doi.org/10.1016/j.polymdegradstab.2021.109739

    Article  Google Scholar 

  152. Gong J, Zhu H, Zhou H, McCoy CG, Stoliarov SI (2021) Development of a pyrolysis model for oriented strand board. Part II: thermal transport parameterization and bench-scale validation. J Fire Sci 39:477–494. https://doi.org/10.1177/07349041211036651

    Article  Google Scholar 

  153. Chen R, Xu X, Zhang Y, Lo S, Lu S (2018) Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic. Appl Therm Eng 36:484–491. https://doi.org/10.1016/j.applthermaleng.2018.03.045

    Article  Google Scholar 

  154. Liang B, Hu J, Yuan P, Li C, Li R, Liu Y, Zeng K, Yang G (2019) Kinetics of the pyrolysis process of phthalonitrile resin. Thermochim Acta 672:133–141. https://doi.org/10.1016/j.tca.2018.12.025

    Article  Google Scholar 

  155. Gong J, Gu Y, Zhai C, Wang Z (2020) A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm. Thermochim Acta 690:178708. https://doi.org/10.1016/j.tca.2020.178708

    Article  Google Scholar 

  156. Burns M, Leventon IT (2021) Automated fitting of thermogravimetric analysis data. Fire Mater 45(3):406–414. https://doi.org/10.1002/fam.2849

    Article  Google Scholar 

  157. McKinnon MB, Stoliarov SI, Witkowski A (2013) Development of a pyrolysis model for corrugated cardboard. Combust Flame 160:2595–2607. https://doi.org/10.1016/j.combustflame.2013.06.001

    Article  Google Scholar 

  158. Ding Y, Kwon K, Stoliarov SI, Kraemer RH (2019) Development of a semi-global reaction mechanism for thermal decomposition of a polymer containing reactive flame retardant. Proc Combust Inst 37:4247–4255. https://doi.org/10.1016/j.proci.2018.05.073

    Article  Google Scholar 

  159. Li J, Stoliarov SI (2014) Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym Degrad Stab 106:2–15. https://doi.org/10.1016/j.polymdegradstab.2013.09.022

    Article  Google Scholar 

  160. Li J, Stoliarov SSI (2013) Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combus Flame 160:1287–1297. https://doi.org/10.1016/j.combustflame.2013.02.012

    Article  Google Scholar 

  161. Ding Y, Huang B, Li K, Du W, Lu K, Zhang Y (2020) Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy 195:117010. https://doi.org/10.1016/j.energy.2020.117010

    Article  Google Scholar 

  162. Ding Y, Zhang J, He Q, Huang B, Mao S (2019) The application and validity of various reaction kinetic models on woody biomass pyrolysis. Energy 2019:784–791. https://doi.org/10.1016/j.energy.2019.05.021

    Article  Google Scholar 

  163. Laye PG, Differential thermal analysis and differential scanning calorimetry, In: Haines PG (eds), Principles of Thermal Analysis and Calorimetry. Royal Society of Chemistry, Cambridge

  164. ASTM D7309-21 (2011) Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry

  165. Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis 71:27–46. https://doi.org/10.1016/S0165-2370(03)00096-2

    Article  Google Scholar 

  166. Javier O, Farid C, Abdul G, Selvedin T, Andrés A, Mani S (2021) An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: kinetics and evolved gases using TGA-FTIR. J Environ Chem Eng 9:106144. https://doi.org/10.1016/j.jece.2021.106144

    Article  Google Scholar 

  167. Bensidhom G, Arabiourrutia M, Trabelsi A, Cortazar M, Ceylan S, Olazar M (2021) Fast pyrolysis of date palm biomass using Py-GCMS. J Energy Inst 99:229–239. https://doi.org/10.1016/j.joei.2021.09.012

    Article  Google Scholar 

  168. ISO 11358 (2002) Plastics - Thermogravimetry (TG) of polymers - Part 1: General Principles

  169. ISO 11357-1 to 6 (2016–2018) Plastics - Differential scanning calorimetry (DSC) - Parts 1–6

  170. McKinnon MB, Stoliarov SI (2015) Pyrolysis model development for a multilayer floor covering. Materials 8:6117–6153. https://doi.org/10.3390/ma8095295

    Article  Google Scholar 

  171. McKinnon MB, Ding Y, Stoliarov SI, Crowley S, Lyon RE (2017) Pyrolysis model for a carbon fiber/epoxy structural aerospace composite. J Fire Sci 35:36–61. https://doi.org/10.1177/0734904116679422

    Article  Google Scholar 

  172. Stoliarov SI, Li J (2016) Parameterization and validation of pyrolysis models for polymeric materials. Fire Technol 52:79–91. https://doi.org/10.1007/s10694-015-0490-1

    Article  Google Scholar 

  173. Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340–341:53–68. https://doi.org/10.1016/S0040-6031(99)00253-1

    Article  Google Scholar 

  174. Sharp JH, Wentworth SA (1969) Kinetic analysis of thermogravimetric data. Anal Chem 41:2060–2062. https://doi.org/10.1021/ac50159a046

    Article  Google Scholar 

  175. Freeman ES, Carroll B (1958) The application of thermoanalytical decomposition of calcium oxalate monohydrate. J Phys Chem 62:394–397. https://doi.org/10.1021/j150562a003

    Article  Google Scholar 

  176. Freeman ES, Carroll B (1969) Interpretation of the kinetics of thermogravimetric analysis. J Phys Chem 73:751–752. https://doi.org/10.1021/J100723A051

    Article  Google Scholar 

  177. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69. https://doi.org/10.1038/201068a0

    Article  Google Scholar 

  178. Coats AW, Redfern JP (1965) Kinetic parameters from thermogravimetric data. II. J Polym Sci Part B: Polym Lett 3:917–920. https://doi.org/10.1002/POL.1965.110031106

    Article  Google Scholar 

  179. Kissinger H (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221. https://doi.org/10.6028/jres.057.026

    Article  Google Scholar 

  180. Kissinger H (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/ac60131a045

    Article  Google Scholar 

  181. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. application to a phenolic plastic. J Polym Sci Part C 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  182. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  Google Scholar 

  183. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4:323–328. https://doi.org/10.1002/pol.1966.110040504

    Article  Google Scholar 

  184. Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31

    Google Scholar 

  185. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176. https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  Google Scholar 

  186. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43. https://doi.org/10.1016/S0040-6031(03)00310-1

    Article  Google Scholar 

  187. Vyazovkin S, Dollimore D (1996) Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comp Sci 36:42–45. https://doi.org/10.1021/ci950062m

    Article  Google Scholar 

  188. Vyazovkin S (1997) Evaluation of the activation energy of thermally stimulated solidstate reactions under an arbitrary variation of the temperature. J Comput Chem 18:393–402. https://doi.org/10.1002/(SICI)1096-987X(199702)18:3%3c393::AID-JCC9%3e3.0.CO;2-P

    Article  Google Scholar 

  189. Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183. https://doi.org/10.1002/1096-987X(20010130)22:2%3c178::AID-JCC5%3e3.0.CO;2-/23

    Article  Google Scholar 

  190. Vyazovkin S (2017) Isoconversional kinetics of polymers: the decade past. Macromol Rapid Commun 38:1600615. https://doi.org/10.1002/marc.201600615

    Article  Google Scholar 

  191. Jelić D, Liavitskaya T, Paulechka E, Vyazovkin S (2019) Accelerating effect of poly (vinylpyrrolidone) matrix on thermal decomposition of malonic acid. Ind Eng Chem Res 58:2891–2898. https://doi.org/10.1021/acs.iecr.8b06457

    Article  Google Scholar 

  192. Stanford VL, Liavitskaya T, Vyazovkin S (2019) Effect of inert gas pressure on reversible solid-state decomposition. J Phys Chem C 123:21059–21065. https://doi.org/10.1021/acs.jpcc.9b06272

    Article  Google Scholar 

  193. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda L, Sbirrazzuoli N (2020) ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597. https://doi.org/10.1016/j.tca.2020.178597

    Article  Google Scholar 

  194. Richter F, Rein G (2020) A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combust Flame 216:316–325. https://doi.org/10.1016/j.combustflame.2020.02.029

    Article  Google Scholar 

  195. Ding Y, Zhou R, Wang C, Lu K, Lu S (2018) Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness. Bioresour Technol 268:77–80. https://doi.org/10.1016/j.biortech.2018.07.134

    Article  Google Scholar 

  196. Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271. https://doi.org/10.1002/FAM.1003

    Article  Google Scholar 

  197. Stoliarov SI, Crowley S, Walters RN, Lyon RE (2010) Prediction of the burning rates of charring polymers. Combust Flame 157:2024–2034. https://doi.org/10.1016/j.combustflame.2008.11.010

    Article  Google Scholar 

  198. Linteris GT, Lyon RE, Stoliarov SI (2013) Prediction of the gasification rate of thermoplastic polymers in fire-like environments. Fire Saf J 60:14–24. https://doi.org/10.1016/J.COMBUSTFLAME.2008.11.010

    Article  Google Scholar 

  199. Kempel F, Schartel B, Linteris GT, Stoliarov SI, Lyon RE, Walters RN, Hofmann A (2012) Prediction of the mass loss rate of polymer materials: impact of residue formation. Combust Flame 159:2974–2984. https://doi.org/10.1016/j.combustflame.2012.03.012

    Article  Google Scholar 

  200. Linteris GT (2011) Numerical simulations of polymer pyrolysis rate: effect of property variations. Fire Mater 35:463–480. https://doi.org/10.1002/fam.1066

    Article  Google Scholar 

  201. Tomar MS, Khurana S (2020) Estimating pyrolysis kinetics parameters of wooden pallets commonly used in goods transport vehicles. Chem Data Collect 30:100539. https://doi.org/10.1016/j.cdc.2020.100539

    Article  Google Scholar 

  202. Tomar MS, Khurana S (2021) Kinetic properties estimation for common plastic pallets used in goods transportation. Chem Data Collect 31:100601. https://doi.org/10.1016/j.cdc.2020.100601

    Article  Google Scholar 

  203. Ding Y, Ezekoye OA, Zhang J, Wang C, Lu S (2018) The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel 232:147–153. https://doi.org/10.1016/j.fuel.2018.05.140

    Article  Google Scholar 

  204. Ira J, Hasalova L, Salek V, Jahoda M, Vystrcil V (2020) Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling. Fire Technol 56:1099–1132. https://doi.org/10.1007/s10694-019-00922-9

    Article  Google Scholar 

  205. Varhegyi G, Antal MJ Jr, Jakab E, Szabo P (1997) Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrolysis 42:73–87. https://doi.org/10.1016/S0165-2370(96)00971-0

    Article  Google Scholar 

  206. Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and liqnin kinetics. Combust Sci Technol 126:97–137. https://doi.org/10.1080/00102209708935670

    Article  Google Scholar 

  207. Lee S (2006) Material property estimation method using a thermoplastic pyrolysis model. Dissertation, University of Worcester

  208. Anca-Couce A, Zobela N, Bergerb A, Behrendt F (2012) Smouldering of pine wood: kinetics and reaction heats. Combust Flame 159(4):1708–1719. https://doi.org/10.1016/j.combustflame.2011.11.015

    Article  Google Scholar 

  209. Coimbra A, Sarazin J, Bourbigot S, Legros G, Consalvi J (2022) A semi-global reaction mechanism for the thermal decomposition of low-density polyethylene blended with ammonium polyphosphate and pentaerythritol. Fire Saf J. https://doi.org/10.1016/j.firesaf.2022.103649

    Article  Google Scholar 

  210. Lautenberger C, Fernandez-Pello C (2011) Optimization algorithms for material pyrolysis property estimation. In: Fire safety science-proceedings of the tenth international symposium, pp 751–764. https://doi.org/10.3801/IAFSS.FSS.10-751

  211. Richter F, Rein G (2020) Reduced chemical kinetics for microscale pyrolysis of softwood and hardwood. Bioresour Technol 301:122619. https://doi.org/10.1016/j.biortech.2019.122619

    Article  Google Scholar 

  212. Richter F, Atrey A, Kotsovinos P, Rein G (2019) The effect of chemical composition on the charring of wood across scales. Proc Combust Inst 37:4053–4061. https://doi.org/10.1016/j.proci.2018.06.080

    Article  Google Scholar 

  213. Burra KR, Gupta AK (2019) Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model. Fuel 237:1057–1067. https://doi.org/10.1016/j.fuel.2018.09.097

    Article  Google Scholar 

  214. Purnomo Dwi MJ, Richter F, Bonner M, Vaidyanathan R, Rein G (2020) Role of optimisation method on kinetic inverse modelling of biomass pyrolysis at the microscale. Fuel 262:116251. https://doi.org/10.1016/j.fuel.2019.116251

    Article  Google Scholar 

  215. Chen R, Xu X, Zhang Y, Lo S, Lu S (2018) Kinetic study on pyrolysis of waste PF fibre-reinforced plastic. Appl Therm Eng 136:484–491. https://doi.org/10.1016/j.applthermaleng.2018.03.045

    Article  Google Scholar 

  216. Li K, Huang X, Fleischmann C, Rein G, Ji J (2014) Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuels 28:6130–6139. https://doi.org/10.1021/ef501380c

    Article  Google Scholar 

  217. Hillier J, Bezzant T, Fletcher TH (2010) Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TA) data. Energy Fuels 24:2841–2847. https://doi.org/10.1021/ef1001265

    Article  Google Scholar 

  218. Ding Y, Zhang W, Yu L, Lu K (2019) The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis. Energy 176:582–588. https://doi.org/10.1016/j.energy.2019.04.030

    Article  Google Scholar 

  219. Sun J, Wu X, Palade V, Fang W, Lai C, Xu W (2012) Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inform Sci 19:381–103. https://doi.org/10.1016/j.ins.2012.01.005

    Article  MathSciNet  Google Scholar 

  220. Leventon IT, Batiot B, Bruns M, Hostikka S, Nakamura Y, Reszka P, Rogaume T, Stoliarov S (2021) The MaCFP condensed phase working group: a structured, global effort towards pyrolysis model development. ASTM Selected Technical Papers (STP), Atlanta, GA, US. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933681

  221. Chen W, Ding Y, Li B, Zhao M, Li C, Jiao Y (2022) Pyrolysis characteristics and stage division of red mud waste from the alumina refining process for cyclic utilization. Fuel 326:125063. https://doi.org/10.1016/j.fuel.2022.125063

    Article  Google Scholar 

  222. Zhang W, Zhang J, Ding Y, He Q, Lu K, Chen H (2022) Pyrolysis kinetics and reaction mechanism of expandable polystyrene by multiple kinetics methods. J Clean Prod 285:125042. https://doi.org/10.1016/j.jclepro.2020.125042

    Article  Google Scholar 

  223. Shi L, Gong J, Zhai C (2022) Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass. Fuel 323:124344. https://doi.org/10.1016/j.fuel.2022.124344

    Article  Google Scholar 

  224. Babrauskas V (2016) The cone calorimeter. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661

    Google Scholar 

  225. ISO 5660 (2002) Reaction to fire tests-heat release, smoke production and mass loss rate. ISO, Geneva

    Google Scholar 

  226. ASTM E1354 (2011) Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. ASTM International, West Conshohocken

    Google Scholar 

  227. Babrauskas V (1984) Development of the cone calorimeter: a bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater 8:81–95. https://doi.org/10.1002/fam.810080206

    Article  Google Scholar 

  228. Schartel B, Bartholmai M, Knoll U (2005) Some comments on the use of cone calorimeter data. Polym Degrad Stabil 88:540–547. https://doi.org/10.1016/j.polymdegradstab.2004.12.016

    Article  Google Scholar 

  229. ISO/TS 5660-3:2012 (2012) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 3: Guidance on measurement

  230. Tewarson A (1977) Heat release rates from burning plastics. J Fire Flammabil 8:115–130

    Google Scholar 

  231. ASTM E2058–13a (2013) Standard test methods for measurement of synthetic polymer material flammability using a fire propagation apparatus (FPA). ASTM International, West Conshohocken

    Google Scholar 

  232. ISO 12136:2011 (2011) Reaction to fire tests - measurement of material properties using a fire propagation apparatus. ISO, Geneva

    Google Scholar 

  233. Yang L, Zhou Y, Wang Y, Guo Z (2008) Predicting charring rate of woods exposed to time-increasing and constant heat fluxes. J Anal Appl Pyrolysis 81:1–6. https://doi.org/10.1016/j.jaap.2007.06.006

    Article  Google Scholar 

  234. Dai J, Yang L, Zhou X, Wang Y, Zhou Y, Deng Z (2010) Experimental and modeling study of atmospheric pressure effects on ignition of pine wood at different altitudes. Energy Fuels 24:609–615. https://doi.org/10.1021/ef900781m

    Article  Google Scholar 

  235. Zhai C, Peng F, Zhou X, Yang L (2018) Pyrolysis and ignition delay time of poly (methyl methacrylate) exposed to ramped heat flux. J Fire Sci 36:147–163. https://doi.org/10.1177/0734904118757742

    Article  Google Scholar 

  236. Lai D, Gong J, Zhou X, Ju X, Peng F (2021) Pyrolysis and piloted ignition of thermally thick PMMA exposed to constant thermal radiation in cross forced airflow. J Anal Appl Pyrolysis 155:105042. https://doi.org/10.1016/j.jaap.2021.105042

    Article  Google Scholar 

  237. Dai J, Delichatsios MA, Yang L, Zhang J (2013) Piloted ignition and extinction for solid fuels. Proc Combust Inst 34:2487–2495. https://doi.org/10.1016/j.proci.2012.07.021

    Article  Google Scholar 

  238. Qie J, Yang L, Wang Y, Dai J, Zhou X (2011) Experimental study of the influences of orientation and altitude on pyrolysis and ignition of wood. J Fire Sci 29:243–258. https://doi.org/10.1177/0734904110392961

    Article  Google Scholar 

  239. Wu W, Yang L, Gong J, Qie J, Wang Y, He C (2011) Experimental study of the effect of spark power on piloted ignition of wood at different altitudes. J Fire Sci 29:465–475. https://doi.org/10.1177/0734904111407027

    Article  Google Scholar 

  240. Wu W, Zhou X, Yang L, He C, Peng F, Ji J, Zhong C (2012) Experimental study on the effect of the igniter position on piloted ignition of polymethylmethacrylate. J Fire Sci 30:502–510. https://doi.org/10.1177/0734904112447598

    Article  Google Scholar 

  241. Yang L, Guo Z, Chen X, Fan W (2006) Predicting the temperature distribution of wood exposed to a variable heat flux. Combust Sci Technol 178:2165–2176. https://doi.org/10.1080/00102200600625985

    Article  Google Scholar 

  242. Yang L, Guo Z, Ji J, Fan W (2005) Experimental study on spontaneous ignition of wood exposed to variable heat flux. J Fire Sci 23:405–416. https://doi.org/10.1177/0734904105049484

    Article  Google Scholar 

  243. ASTM E906, E906M-14 (2014) Standard test method for heat and visible smoke release rates for materials and products. ASTM International, West Conshohocken

    Google Scholar 

  244. Yang L, Zhou Y, Wang Y, Dai J, Deng Z, Zhou X (2011) Autoignition of solid combustibles subjected to a uniform incident heat flux: the effect of distance from the radiation source. Combust Flame 158:1015–1017. https://doi.org/10.1016/j.combustflame.2011.01.008

    Article  Google Scholar 

  245. Zhou Y, Yang L, Dai J, Wang Y, Deng Z (2009) Attenuation of incident heat flux by pyrolysis volatiles when heated using resistance element radiant heater. J Fire Sci 27:447–464. https://doi.org/10.1177/0734904109104818

    Article  Google Scholar 

  246. Toison ML (1964) Infrared and its thermal applications. Philips Technical Library, Eindhoven

    Google Scholar 

  247. McAllister S, Grenfell I, Hadlow A, Jolly WM, Finney M, Cohen J (2012) Piloted ignition of live forest fuels. Fire Saf J 51:133–142. https://doi.org/10.1016/j.firesaf.2012.04.001

    Article  Google Scholar 

  248. Santamaria S, Hadden RM (2019) Experimental analysis of the pyrolysis of solids exposed to transient irradiation. Applications to ignition criteria. Proc Combust Inst 37:4221–4229. https://doi.org/10.1016/j.proci.2018.05.104

    Article  Google Scholar 

  249. Safdari MS, Amini E, Weise DR, Fletcher TH (2020) Comparison of pyrolysis of live wildland fuels heated by radiation vs. convection. Fuel 268:117342. https://doi.org/10.1016/j.fuel.2020.117342

    Article  Google Scholar 

  250. Smith SG (2005) Effects of moisture on combustion characteristics of live California chaparral and Utah foliage, Dissertation, University of Brigham Young

  251. Safdari MS, Rahmati M, Amini E, Howarth JE, Berryhill JP, Dietenberger M, Fletcher TH (2018) Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the Southern United States. Fuel 229:151–166. https://doi.org/10.1016/j.fuel.2018.04.166

    Article  Google Scholar 

  252. Pickett BM (2008) Effects of moisture on combustion of live wildland forest fuels. Dissertation, University of Brigham Young

  253. Pickett BM, Isackson C, Wunder R, Fletcher TH, Butler BW, Weise DR (2010) Experimental measurements during combustion of moist individual foliage samples. Int J Wildland Fire 19:153. https://doi.org/10.1071/WF07121

    Article  Google Scholar 

  254. Engstrom JD, Butler JK, Smith SG, Baxter LL, Fletcher TH, Weise DR (2004) Ignition behavior of live California chaparral leaves. Combust Sci Technol 176:1577–1591. https://doi.org/10.1080/00102200490474278

    Article  Google Scholar 

  255. Shen C, Fletcher TH (2015) Fuel element combustion properties for live wildland Utah shrubs. Combust Sci Technol 187:428–444. https://doi.org/10.1080/00102202.2014.950372

    Article  Google Scholar 

  256. Prince D, Shen C, Fletcher T (2017) Semi-empirical model for fire spread in shrubs with spatially-defined fuel elements and flames. Fire Technol 53:1439–1469. https://doi.org/10.1007/s10694-016-0644-9

    Article  Google Scholar 

  257. Prince DR, Fletcher TH (2014) Differences in burning behavior of live and dead leaves, part 1: measurements. Combust Sci Technol 186:1844–1857. https://doi.org/10.1080/00102202.2014.923412

    Article  Google Scholar 

  258. McAllister S, Finney M (2017) Autoignition of wood under combined convective and radiative heating. Proc Combust Inst 36:3073–3080. https://doi.org/10.1016/j.proci.2016.06.110

    Article  Google Scholar 

  259. Kashiwagi T (1979) Experimental observation of radiative ignition mechanisms. Combust Flame 34:231–244. https://doi.org/10.1016/0010-2180(79)90098-1

    Article  Google Scholar 

  260. Williams FA (2018) Combustion theory, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  261. Li Y, Drysdale D (1992) Measurement of the ignition temperature of wood. In: Fire science and technology-proceedings Asian international conference, Beijing, pp 380–385

  262. Atreya A, Abuzaid M (1991) Effect of environmental variables on piloted ignition. Fire Saf Sci 3:177–186. https://doi.org/10.3801/IAFSS.FSS.3-177

    Article  Google Scholar 

  263. Moghtaderi B, Novozhilov V, Fletcher D, Kent J (1997) A new correlation for bench-scale piloted ignition data of wood. Fire Saf J 29:41–59. https://doi.org/10.1016/S0379-7112(97)00004-0

    Article  Google Scholar 

  264. Bilbao R, Mastral JF, Aldea ME, Ceamanosa J, Betrána M, Lana JA (2001) Experimental and theoretical study of the ignition and smoldering of wood including convective effects. Combust Flame 126:1363–1372. https://doi.org/10.1016/S0010-2180(01)00251-6

    Article  Google Scholar 

  265. Janssens M (1991) Piloted ignition of wood: a review. Fire Mater 15:151–167. https://doi.org/10.1002/fam.810150402

    Article  Google Scholar 

  266. Linteris G, Zammarano M, Wilthan B, Hanssen L (2012) Absorption and reflection of infrared radiation by polymers in fire-like environments. Fire Mater 36:537–553. https://doi.org/10.1002/fam.1113

    Article  Google Scholar 

  267. Babrauskas V (2002) Ignition of wood: a review of the state of the art. J Fire Prot Eng 12:163–189. https://doi.org/10.1177/10423910260620482

    Article  Google Scholar 

  268. Thomson HE, Drysdale D (1987) Flammability of plastics I: ignition temperatures. Fire Mater 11:163–172. https://doi.org/10.1002/fam.810120309

    Article  Google Scholar 

  269. Thomson HE, Drysdale DD, Beyler CL (1988) An experimental evaluation of critical surface temperature as a criterion for piloted ignition of solid fuels. Fire Saf J 13:185–196. https://doi.org/10.1016/0379-7112(88)90014-8

    Article  Google Scholar 

  270. Liu Q, Shen D, Xiao R, Fang M (2013) Thermal behavior of wood slab under a truncated-cone electrical heater: experimental observation. Combust Sci Technol 185:848–862. https://doi.org/10.1080/00102202.2012.760548

    Article  Google Scholar 

  271. Gong J, Zhang M, Jiang Y, Zhai C, Wang Z (2020) Limiting condition for auto-ignition of finite thick PMMA in forced convective airflow. Int J Therm Sci 161:106741. https://doi.org/10.1016/j.ijthermalsci.2020.106741

    Article  Google Scholar 

  272. Shi L, Chew M (2013) Experimental study of woods under external heat flux by autoignition. J Therm Anal Calorim 111:1399–1407. https://doi.org/10.1007/s10973-012-2489-x

    Article  Google Scholar 

  273. Snegirev A, Kuznetsov E, Markus E (2017) Coupled analytical approach to predict piloted flaming ignition of non-charring polymers. Fire Saf J 93:74–83. https://doi.org/10.1016/j.firesaf.2017.08.006

    Article  Google Scholar 

  274. Staggs J (2001) Ignition of char-forming polymers at a critical mass flux. Polym Degrad Stabil 74:433–439. https://doi.org/10.1016/S0141-3910(01)00183-5

    Article  Google Scholar 

  275. Deepak D, Drysdale DD (1983) Flammability of solids: an apparatus to measure the critical mass flux at the firepoint. Fire Saf J 5:167–169. https://doi.org/10.1016/0379-7112(83)90009-7

    Article  Google Scholar 

  276. Drysdale DD, Thomson HE (1989) Flammability of plastics II: critical mass flux at the firepoint - sciencedirect. Fire Saf J 14:179–188. https://doi.org/10.1016/0379-7112(89)90071-4

    Article  Google Scholar 

  277. Tewarson A (1982) Experimental evaluation of flammability parameters of polymeric materials. In: Lewin M, Atlas SM, Pearce EM (eds) Flame retardant polymeric materials, vol 3. Plenum Press, New York, pp 97–153

    Chapter  Google Scholar 

  278. Magee RS, Reitz RD (1975) Extinguishment of radiation augmented plastic fires by water sprays. Sympos Combust 15:337–347. https://doi.org/10.1016/s0082-0784(75)80309-2

    Article  Google Scholar 

  279. Safronava N, Lyon RE, Crowley S, Stoliarov SI (2015) Effect of moisture on ignition time of polymers. Fire Technol 51:1093–1112. https://doi.org/10.1007/s10694-014-0434-1

    Article  Google Scholar 

  280. Bamford CH, Crank J, Malan DH (1946) On the combustion of wood. Proc Camb Philos Soc 42:166

    Article  Google Scholar 

  281. Koohyar AN, Welker JR, Sliepcevich CM (1968) The irradiation and ignition of wood by flame. Fire Technol 4:284–291. https://doi.org/10.1007/BF02588639

    Article  Google Scholar 

  282. Delichatsios MA (2005) Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Saf J 40:197–212. https://doi.org/10.1016/j.firesaf.2004.11.005

    Article  Google Scholar 

  283. Rasbash DJ, Drysdale DD, Deepak D (1986) Critical heat and mass transfer at pilot ignition and extinction of a material. Fire Saf J 10:110. https://doi.org/10.1016/0379-7112(86)90026-3

    Article  Google Scholar 

  284. Lyon RE, Quintiere JG (2007) Criteria for piloted ignition of combustible solids. Combust Flame 151:551–559. https://doi.org/10.1016/j.combustflame.2007.07.020

    Article  Google Scholar 

  285. Roberts AF, Quince BW (1973) A limiting condition for the burning of flammable liquids. Combust Flame 20:245–252. https://doi.org/10.1016/S0010-2180(73)80178-6

    Article  Google Scholar 

  286. Quintiere JG, Rangwala AS (2004) A theory for flame extinction based on flame temperature. Fire Mater 28:387–402. https://doi.org/10.1002/fam.835

    Article  Google Scholar 

  287. Alvares NJ, Blackshear PL, Kanury AM (1970) The influence of free convection of the ignition of vertical cellulosic panels by thermal radiation. Combust Sci Technol 1:407–413. https://doi.org/10.1080/00102206908952220

    Article  Google Scholar 

  288. Deverall LI, Lai W (1969) A criterion for thermal ignition of cellulosic materials. Combust Flame 13:8–12. https://doi.org/10.1016/0010-2180(69)90021-2

    Article  Google Scholar 

  289. Bradley HH (1970) Theory of ignition of a reactive solid by constant energy flux. Combust Sci Technol 2:1–20. https://doi.org/10.1080/00102207008952231

    Article  Google Scholar 

  290. Vilyunov VN, Zarko VE (1989) Ignition of solids. Elsevier, Amsterdam

    Book  Google Scholar 

  291. Kulkarni AK, Kumar M, Kuo KK (1982) Review of solid-propellant ignition studies. AIAA, New York, pp 80–1210

    Google Scholar 

  292. Stoliarov SI, Crowley S, Lyon RE (2009) Prediction of the burning rates of non-charring polymers. Combust Flame 156(5):1068–1083. https://doi.org/10.1016/j.combustflame.2008.11.010

    Article  Google Scholar 

  293. Li J, Gong J, Stoliarov SI (2014) Gasification experiments for pyrolysis model parameterization and validation. Int J Heat Mass Transfer 77:738–744. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.003

    Article  Google Scholar 

  294. Gong J, Zhai C, Wang Z (2021) Pyrolysis and autoignition behaviors of beech wood coated with an acrylic-based waterborne layer. Fuel 306:121724. https://doi.org/10.1016/j.fuel.2021.121724

    Article  Google Scholar 

  295. Swann JD, Ding Y, McKinnon MB, Stoliarov SI (2017) Controlled atmosphere pyrolysis apparatus II (CAPA II): a new tool for analysis of pyrolysis of charring and intumescent polymers. Fire Saf J 91:130–139. https://doi.org/10.1016/j.firesaf.2017.03.038

    Article  Google Scholar 

  296. Qie J, Yang L, Wang Y, Dai J, Zhou Y (2011) Experimental study of orientation and altitude influence on pyrolysis and ignition of wood. J Fire Sci 29:243–258. https://doi.org/10.1177/0734904110392961

    Article  Google Scholar 

  297. Lautenberger C, Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156:1503–1513. https://doi.org/10.1016/j.combustflame.2009.04.001

    Article  Google Scholar 

  298. Knez F, Ursic M, Knez N, Peeters K, Franko M, Zidar P (2022) Use of the modified controlled atmosphere cone calorimeter for the assessment of fire effluents generated by burning wood under different ventilation conditions. Fire Mater 46:943–950. https://doi.org/10.1002/fam.3042

    Article  Google Scholar 

  299. ISO/TS 5660–5:2020 (2020) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 5: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) under reduced oxygen atmospheres

  300. ISO 13927:2015 (2015) Plastics - Simple heat release test using a conical radiant heater and a thermopile detector

  301. ISO 17554:2014 (2014)Reaction to fire tests - Mass loss measurement

  302. Swann JD, Ding Y, Stoliarov SI (2020) Comparative analysis of pyrolysis and combustion of bisphenol A polycarbonate and poly (ether ether ketone) using two-dimensional modeling: a relation between thermal transport and the physical structure of the intumescent char. Combust Flame 212:469–485. https://doi.org/10.1016/j.combustflame.2019.11.017

    Article  Google Scholar 

  303. Swann JD, Ding Y, Stoliarov SI (2020) A quantitative comparison of the pyrolysis and combustion behavior of plasticized and rigid poly (vinyl chloride) using two-dimensional modeling. Fire Saf J 111:102910. https://doi.org/10.1016/j.firesaf.2019.102910

    Article  Google Scholar 

  304. Swann JD, Ding Y, Stoliarov SI (2019) Characterization of pyrolysis and combustion of rigid poly (vinyl chloride) using two-dimensional modeling. Int J Heat Mass Transf 132:347–361. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.011

    Article  Google Scholar 

  305. Ding Y, Stoliarov SI, Kraemer RH (2019) Pyrolysis model development for a polymeric material containing multiple flame retardants: relationship between heat release rate and material composition. Combust Flame 202:43–57. https://doi.org/10.1016/j.combustflame.2019.01.003

    Article  Google Scholar 

  306. Delichatsios MA, Panagiotou TH, Kiley F (1991) The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust Flame 84:323–332. https://doi.org/10.1016/0010-2180(91)90009-Z

    Article  Google Scholar 

  307. Cohen JD (2004) Relating flame radiation to home ignition using modeling and experimental crown fires. Can J For Res 34:1616–1626. https://doi.org/10.1139/X04-049

    Article  Google Scholar 

  308. Gong J, Stoliarov SI, Shi L, Li J, Zhu S, Zhou Y, Wang Z (2019) Analytical prediction of pyrolysis and ignition time of translucent fuel considering both time-dependent heat flux and in-depth absorption. Fuel 223:913–922. https://doi.org/10.1016/j.fuel.2018.08.042

    Article  Google Scholar 

  309. Gong J, Zhai C (2022) Estimating ignition time of solid exposed to increasing-steady thermal radiation. J Therm Anal Calorim 147:3763–3778. https://doi.org/10.1007/s10973-021-10733-2

    Article  Google Scholar 

  310. Zhai C, Zhang S, Yao S, Zhan Q, Yue S (2019) Analytical study on ignition time of PMMA exposed to time-decreasing thermal radiation using critical mass flux. Sci Rep 9:11958. https://doi.org/10.1038/s41598-019-48411-x

    Article  Google Scholar 

  311. Boulet P, Parent G, Collin A, Acem Z, Porterie B, Clerc JP, Consalvi JL, Kaiss A (2009) Spectral emission of flames from laboratory-scale vegetation fires. Int J Wildland Fire 18:875–884. https://doi.org/10.1071/WF08053

    Article  Google Scholar 

  312. Parent G, Acem Z, Lechêne S, Boulet P (2010) Measurement of infrared radiation emitted by the flame of a vegetation fire. Int J Therm Sci 49:555–562. https://doi.org/10.1016/j.ijthermalsci.2009.08.006

    Article  Google Scholar 

  313. Hallman J (1971) Ignition characteristics of plastics and rubber. Dissertation, University of Oklahoma

  314. Kashiwagi T (1988) Flammability of plastics 1. Ignition temperatures. Fire Mater 11:141–142. https://doi.org/10.1002/fam.810120309

    Article  Google Scholar 

  315. Monoda B, Collin A, Parent G, Boulet P (2009) Infrared radiative properties of vegetation involved in forest fires. Fire Saf J 44:88–95. https://doi.org/10.1016/j.firesaf.2008.03.009

    Article  Google Scholar 

  316. Acem Z, Parent G, Monod B, Jeandel G, Boulet P (2010) Experimental study in the infrared of the radiative properties of pine needles. Exp Therm Fluid Sci 34:893–899. https://doi.org/10.1016/j.expthermflusci.2010.02.003

    Article  Google Scholar 

  317. Beaulieu PA, Dembsey NA (2008) Flammability characteristics at applied heat flux levels up to 200 kW/m2. Fire Mater 32:61–86. https://doi.org/10.1002/fam.948

    Article  Google Scholar 

  318. Beaulieu PA (2005) Flammability characteristics at heat flux levels up to 200 kW/m2 and the effect of oxygen on flame heat flux. Dissertation, Worcester Polytechnic Institute

  319. Stoliarov SI, Leventon IT, Lyon RE (2014) Two-dimensional model of burning for pyrolyzable solids. Fire Mater 38:391–408. https://doi.org/10.1002/fam.2187

    Article  Google Scholar 

  320. McGrattan K, Hostikka S, Floyd J, Baum H, Rehm R, Mell W, McDermott R (2013) Fire dynamics simulator (version 6) technical reference guide, national institute of standards and technology special publication 1018–6,vol. 1: Mathematical Model

  321. Lautenberger C, Fernandez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44:819–839. https://doi.org/10.1016/j.firesaf.2009.03.011

    Article  Google Scholar 

  322. Linteris G, Zammarano M, Wilthan B, Hanssen L (2011) Absorption of thermal radiation by burning polymers. In: Fire and Materials 2011, 12th International Conference, San Francisco, pp 559–570

  323. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil 98:1495–1505. https://doi.org/10.1016/j.polymdegradstab.2013.04.009

    Article  Google Scholar 

  324. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916–926. https://doi.org/10.1002/pat.3165

    Article  Google Scholar 

  325. Schartel B, Beck U, Bahr H, Hertwig A, Knoll U, Weise M (2012) Sub-micrometre coatings as an infrared mirror: a new route to flame retardancy. Fire Mater 36:671–677. https://doi.org/10.1002/fam.1122

    Article  Google Scholar 

  326. Davesne A, Jimenez M, Samyn F, Bourbigot S (2021) Thin coatings for fire protection: an overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Prog Org Coat 154:106217. https://doi.org/10.1016/j.porgcoat.2021.106217

    Article  Google Scholar 

  327. Davesne A, Bensabath T, Sarazin J, Bellayer S, Parent F, Samyn F, Jimenez M, Sanchette F, Bourbigot S (2020) Low-Emissivity metal/dielectric coatings as radiative barriers for the fire protection of raw and formulated polymers. ACS Appl Polym Mater 2:2880–2889. https://doi.org/10.1021/acsapm.0c00399

    Article  Google Scholar 

  328. Casetta M, Michaux G, Ohl B, Duquesne S, Bourbigot S (2018) Key role of magnesium hydroxide surface treatment in the flame retardancy of glass fiber reinforced polyamide 6. Polym Degrad Stabil 148:95–103. https://doi.org/10.1016/j.polymdegradstab.2018.01.007

    Article  Google Scholar 

  329. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Ruch D (2015) Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics. Colloid Surf A 469:1–10. https://doi.org/10.1016/j.colsurfa.2014.12.021

    Article  Google Scholar 

  330. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken

    Google Scholar 

  331. Benkoussas B, Consalvi JL, Porterie B, Sardoy N, Loraud JC (2007) Modelling thermal degradation of woody fuel particles. Int J Therm Sci 46:319–327. https://doi.org/10.1016/j.ijthermalsci.2006.06.016

    Article  Google Scholar 

  332. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London

    Google Scholar 

  333. Roshenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer, 3rd edn. McGraw-Hill Professional, New York

    Google Scholar 

  334. Luikov AV (1968) Analytical heat diffusion theory, 2nd edn. Academic Press, New York

    Google Scholar 

  335. Delichatsios M (2005) Piloted ignition time, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Saf J 40:197–212. https://doi.org/10.1016/j.firesaf.2004.11.005

    Article  Google Scholar 

  336. Quintiere JG (2019) Approximate solutions for the ignition of a solid as a function of the Biot number. Fire Mater 43:57–63. https://doi.org/10.1002/fam.2668

    Article  Google Scholar 

  337. Quintiere J (2006) Fundamentals of fire phenomena. Wiley, New York

    Book  Google Scholar 

  338. Hernández N, Fuentes A, Reszka P, Fernández-Pello AC (2019) Piloted ignition delay times on optically thin PMMA cylinders. Proc Combust Inst 37:3993–4000. https://doi.org/10.1016/j.proci.2018.06.053

    Article  Google Scholar 

  339. Schartel B, Hull TR (2007) Development of fire-retarded materials-Interpretation of cone calorimeter data. Fire Mater 31:327–354. https://doi.org/10.1002/fam.949

    Article  Google Scholar 

  340. Hu C, Bourbigot S, Delaunay T, Collinet M, Marcille S, Fontaine G (2020) Poly(isosorbide carbonate): a ‘green’ char forming agent in polybutylene succinate intumescent formulation. Compos Part B Eng 184:107675. https://doi.org/10.1016/j.compositesb.2019.107675

    Article  Google Scholar 

  341. Bourbigot S, Sarazin J, Bensabath T, Samyn F, Jimenez M (2019) Intumescent polypropylene: reaction to fire and mechanistic aspects. Fire Saf J 105:261–269. https://doi.org/10.1016/j.firesaf.2019.03.007

    Article  Google Scholar 

  342. Bourbigot S, Sarazin J, Samyn F, Jimenez M (2019) Intumescent ethylene-vinyl acetate copolymer: reaction to fire and mechanistic aspects. Polym Degrad Stabil 161:235–244. https://doi.org/10.1016/j.polymdegradstab.2019.01.029

    Article  Google Scholar 

  343. Rimez B, Rahier H, Biesemans M, Bourbigot S, Mele BV (2015) Flame retardancy and degradation mechanism of poly(vinyl acetate) in combination with intumescent flame retardants: I. Ammonium poly(phosphate). Polym Degrad Stabil 121:321–330. https://doi.org/10.1016/j.polymdegradstab.2015.09.024

    Article  Google Scholar 

  344. Idumah CI, Hassan A, Bourbigot S (2017) Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrol 123:65–72. https://doi.org/10.1016/j.jaap.2017.01.006

    Article  Google Scholar 

  345. Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73. https://doi.org/10.1016/j.progpolymsci.2015.04.010

    Article  Google Scholar 

  346. Morys M, Hrüger D, Krüger S, Schartel B, Hothan S (2020) Beyond the standard time-temperature curve: assessment of intumescent coatings under standard and deviant temperature curves. Fire Saf J 112:102951. https://doi.org/10.1016/j.firesaf.2020.102951

    Article  Google Scholar 

  347. Xiao F, Fontaine G, Bourbigot S (2022) A highly efficient intumescent polybutylene succinate: flame retardancy and mechanistic aspects. Polym Degrad Stabil 196:109830. https://doi.org/10.1016/j.polymdegradstab.2022.109830

    Article  Google Scholar 

  348. Bourbigot S, Sarazin J, Bensabath T (2021) Intumescent polypropylene in extreme fire conditions. Fire Saf J 120:103082. https://doi.org/10.1016/j.firesaf.2020.103082

    Article  Google Scholar 

  349. Seraji SM, Song P, Varley RJ, Bourbigot S, Voice D, Wang H (2022) Fire-retardant unsaturated polyester thermosets: the state-of-the-art, challenges and opportunities. Chem Eng J 430:132785. https://doi.org/10.1016/j.cej.2021.132785

    Article  Google Scholar 

  350. Xiao F, Fontaine G, Bourbigot S (2021) Intumescent polybutylene succinate: ethylenediamine phosphate and synergists. Polym Degrad Stabil 192:109707. https://doi.org/10.1016/j.polymdegradstab.2021.109707

    Article  Google Scholar 

  351. Boonmee N (2004) Theoretical and experimental study of autoignition of wood. Dissertation, University of Maryland

  352. Fina A, Camino G (2011) Ignition mechanisms in polymers and polymer nanocomposites. Polym Adv Technol 22:1147–1155. https://doi.org/10.1002/pat.1971

    Article  Google Scholar 

  353. Fina A, Cuttica F, Camino G (2012) Ignition of polypropylene/montmorillonite nanocomposites. Polym Degrad Stabil 97:2619–2626. https://doi.org/10.1016/j.polymdegradstab.2012.07.017

    Article  Google Scholar 

  354. Simms DL, Law M (1967) The ignition of wet and dry wood by radiation. Combust Flame 11:377–388. https://doi.org/10.1016/0010-2180(67)90058-2

    Article  Google Scholar 

  355. Ferguson SC, Dahale AR, Shotorban B, Mahalingam S, Weise DR (2013) The role of moisture on combustion of pyrolysis gases in wildland fires. Combust Sci Technol 185:35–453. https://doi.org/10.1080/00102202.2012.726666

    Article  Google Scholar 

  356. Yashwanth BL, Shotorban B, Mahalingam S, Lautenberger CW, Weise DR (2016) A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combust Flame 163:301–316. https://doi.org/10.1016/j.combustflame.2015.10.006

    Article  Google Scholar 

  357. Abu-Zaid M (1988) Effect of water on ignition of cellulosic materials. Dissertation, Michigan State University

  358. Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. In: General Technical Report FPL-GTR-190, Chapter 4. United States Department of Agriculture Forest Service, Madison

  359. Humar M, Lesar B, Krzisnik D (2020) Moisture performance of façade elements made of thermally modified Norway spruce wood. Forests 11:348. https://doi.org/10.3390/f11030348

    Article  Google Scholar 

  360. Bartlett AI, Hadden RM, Bisby LA (2019) A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol 55:1–49. https://doi.org/10.1007/s10694-018-0787-y

    Article  Google Scholar 

  361. Blasi CD (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  362. Mikkola E (1991) Charring of wood based materials. Fire Saf Sci 3:547–556. https://doi.org/10.3801/IAFSS.FSS.3-547

    Article  Google Scholar 

  363. Shen D, Fang M, Luo Z, Cen K (2007) Modeling pyrolysis of wet wood under external heat flux. Fire Saf J 42:210–217. https://doi.org/10.1016/j.firesaf.2006.09.001

    Article  Google Scholar 

  364. Blasi CD, Hernandez EG, Santoro A (2000) Radiative pyrolysis of single moist wood particles. Ind Eng Chem Res 39:873–882. https://doi.org/10.1021/ie990720i

    Article  Google Scholar 

  365. White RH, Nordheim EV (1992) Charring rate of wood for ASTM E 119 exposure. Fire Technol 28:5–30. https://doi.org/10.1007/BF01858049

    Article  Google Scholar 

  366. Njankouo JM, Dotreppe JC, Franssen JM (2004) Experimental study of the charring rate of tropical hardwoods. Fire Mater 28:15–24. https://doi.org/10.1002/fam.831

    Article  Google Scholar 

  367. Babrauskas V (2005) Charring rate of wood as a tool for fire investigations. Fire Saf J 40:528–554. https://doi.org/10.1016/j.firesaf.2005.05.006

    Article  Google Scholar 

  368. Khan MM, Ris JLD, Ogden SD (2009) Effect of moisture on ignition time of cellulosic materials. Fire Saf Sci 9:167–178. https://doi.org/10.3801/IAFSS.FSS.9-167

    Article  Google Scholar 

  369. Fletcher TH, Pickett BM, Smith SG, Spittle GS, Woodhouse MM, Haake E, Weise DR (2007) Effects of moisture on ignition behavior of moist California chaparral and Utah leaves. Combust Sci Technol 179:1183–1203. https://doi.org/10.1080/00102200601015574

    Article  Google Scholar 

  370. Shen D, Fang M, Luo M, Cen K, Chow W (2007) Thermal degradation and ignition of wood by thermal radiation. Fire Saf Sci 7:90–102

    Google Scholar 

  371. Mikkola E (1992) Ignitability of solid materials. In: Babrauskas V, Grayson SJ (eds) Heat release in fires. Elsevier Applied Science, London

    Google Scholar 

  372. Oztekin ES, Crowley SB, Lyon RE, Stoliarov SI, Patel P, Hull TR (2012) Sources of variability in fire test data: a case study on poly(aryl ether ether ketone)(PEEK). Combust Flame 159:1720–1731. https://doi.org/10.1016/j.combustflame.2011.11.009

    Article  Google Scholar 

  373. Liu B, Zhang Z, Zhang H (2014) An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2 concentrations. Fuel 116:77–83. https://doi.org/10.1016/j.fuel.2013.07.112

    Article  Google Scholar 

  374. Babrauskas V (2003) Characteristics of external ignition source. Ignition handbook. Fire Science Publishers, Issaquah, pp 497–590

    Google Scholar 

  375. Smith E (1972) Heat release rate of building materials. Ignition, heat release and noncombustibility of materials, ASTM STP 502. American society of testing and materials, Philadelphia, pp 119–134

    Chapter  Google Scholar 

  376. Tsai K (2009) Orientation effect on cone calorimeter test results to assess fire hazard of materials. J Hazard Mater 172:763–772. https://doi.org/10.1016/j.jhazmat.2009.07.061

    Article  Google Scholar 

  377. Gong J, Zhu Z, Zang M, Zhai C, Wang X (2022) Piloted ignition of vertical polymethyl methacrylate (PMMA) exposed to power-law increasing radiation. Appl Therm Eng 217:118996. https://doi.org/10.1016/j.applthermaleng.2022.118996

    Article  Google Scholar 

  378. Shields TJ, Silcock GW, Murray JJ (1993) The effects of geometry and ignition mode on ignition times obtained using a cone calorimeter and ISO ignitability apparatus. Fire Mater 17:25–32. https://doi.org/10.1002/fam.810170105

    Article  Google Scholar 

  379. Chen X, Zhou Z, Li P, Zhou D, Wang J (2014) Effects of sample orientation on pyrolysis and piloted ignition of wood. J Fire Sci 32:483–497. https://doi.org/10.1177/0734904114534612

    Article  Google Scholar 

  380. Dutta S, Kim NK, Das R, Bhattacharyya D (2019) Effects of sample orientation on the fire reaction properties of natural fibre composites. Compos B Eng 157:195–206. https://doi.org/10.1016/j.compositesb.2018.08.118

    Article  Google Scholar 

  381. Kashiwagi T (1982) Effects of sample orientation on radiative ignition. Combust Flame 44:223–245. https://doi.org/10.1016/0010-2180(82)90075-x

    Article  Google Scholar 

  382. Atreya A, Carpentier C, Harkleroad M (1986) Effect of sample orientation on piloted ignition and flame spread. Fire Saf Sci 1:97–109. https://doi.org/10.3801/IAFSS.FSS.1-97

    Article  Google Scholar 

  383. Gotoda H, Manzello SL, Saso Y, Kashiwagi T (2006) Effects of sample orientation on nonpiloted ignition of thin poly (methyl methacrylate) sheets by a laser: 2 Experimental results. Combust Flame 145:820–835. https://doi.org/10.1016/j.combustflame.2006.01.008

    Article  Google Scholar 

  384. Moulen AW, Grubits S (1997) Ignition and smoke properties of building materials (Technical Record TR44/153/435), Experimental Building Station, North Ryde, NSW, Australia

  385. Dutta S, Kim NK, Das R, Bhattacharyya D (2021) Evaluating orientation effects on the fire reaction properties of flax-polypropylene composites. Polymers 13:2586. https://doi.org/10.3390/polym13162586

    Article  Google Scholar 

  386. Nakamura Y, Kashiwagi T (2005) Effects of sample orientation on nonpiloted ignition of thin poly (methyl methacrylate) sheet by a laser: 1. Theoret Predict Combust Flame 141:149–169. https://doi.org/10.1016/j.combustflame.2004.12.014

    Article  Google Scholar 

  387. Thomson DD, Drysdale HE (1990) Effect of sample orientation on the piloted ignition of PMMA. In: 5th Interflam Conference, Canterbury, pp 35–42

  388. Morrisset D (2020) The effect of orientation on the ignition of solids. Dissertation, Faculty of California Polytechnic State University

  389. Cook GA, Meierer RE, Shields BM (1967)) First annual summary report on combustion safety in diving atmospheres. Contract No. N00014-66-co149, Office of Naval Research, Washington, DC, US Navy

  390. Warey A (2018) Influence of thermal contact on heat transfer from glowing firebrands. Case Stud Therm Eng 12:301–311. https://doi.org/10.1016/j.csite.2018.04.018

    Article  Google Scholar 

  391. Hakes RSP, Salehizadeh H, Weston-Dawkes MJ, Gollner MJ (2019) Thermal characterization of firebrand piles. Fire Saf J 104:34–42. https://doi.org/10.1016/j.firesaf.2018.10.002

    Article  Google Scholar 

  392. Salehizadeh H (2019) Critical ignition conditions of structural materials by cylindrical firebrands. (Masters Thesis), University of Maryland, College Park, USA

  393. Tao Z, Bathras B, Kwon B, Biallas B, Gollner M, Yang R (2021) Effect of firebrand size and geometry on heating from a smoldering pile under wind. Fire Saf J 120:103031. https://doi.org/10.1016/j.firesaf.2020.103031

    Article  Google Scholar 

  394. Janssens ML (1991) Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. (Ph.D. thesis), University of Gent, Belgium

  395. Buschman A (1961) Ignition of some woods exposed to low level thermal radiation. National Bureau of Standards, Project No. 1002-11-10427, Technical Report No. 1

  396. Atreya A (1983) Pyrolysis, ignition and fire spread on horizontal surfaces of wood. (Ph.D. thesis), Harvard University, Cambridge, UK

  397. Abu-Zaid M (1988) Effect of wateron ignition of cellulosic materials. (Ph.D. thesis), Michigan State University, East Lansing, USA

  398. Zarzecki M, Quintiere JG, Lyon RE, Rossmann T, Diez FJ (2013) The effect of pressure and oxygen concentration on the combustion of PMMA. Combust Flame 160:1519–1530. https://doi.org/10.1016/j.combustflame.2013.02.019

    Article  Google Scholar 

  399. Tewarson A, Ogden S (1992) Fire behavior of polymethylmethacrylate. Combust Flame 89:237–259. https://doi.org/10.1016/0010-2180(92)90013-F

    Article  Google Scholar 

  400. Hopkins D, Quintiere J (1996) Material fire properties and predictions for thermoplastics. Fire Saf J 26:241–268. https://doi.org/10.1016/S0379-7112(96)00033-1

    Article  Google Scholar 

  401. Delichatsios MA, Saito K (1991) Upward fire spread: key flammability properties, similarity solution and flammability indices. Fire Saf Sci 3:217–226

    Article  Google Scholar 

  402. Lautenberger CW (2014) Gpyro3D: a three dimensional generalized pyrolysis model. Fire Saf Sci 11:193–207

    Article  Google Scholar 

  403. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2016) Fire dynamics simulator technical reference guide, vol 1. Mathematical Model, NIST Spec. Publ. 1018–1

  404. Ding Y, Wang C, Lu S (2015) Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag 98:500–506. https://doi.org/10.1016/j.enconman.2015.03.106

    Article  Google Scholar 

  405. Huang X, Nakamura Y (2019) A review of fundamental combustion phenomena in wire fires. Fire Technol 56:315–360. https://doi.org/10.1007/s10694-019-00918-5

    Article  Google Scholar 

  406. Naser NZ (2021) Mechanistically informed machine learning and artificial intelligence in fire engineering and sciences. Fire Technol 57:2741–2784. https://doi.org/10.1007/s10694-020-01069-8

    Article  Google Scholar 

  407. Hodges JL, Lattimer BY, Luxbacher KD (2019) Compartment fire predictions using transpose convolutional neural networks. Fire Saf J 108:102854. https://doi.org/10.1016/j.firesaf.2019.102854

    Article  Google Scholar 

  408. Lo SM, Liu M, Yuen RKK, Zhang PH (2009) An artificial neural-network based predictive model for pre-evacuation human response in domestic building fire. Fire Technol 45:431–449. https://doi.org/10.1007/s10694-008-0064-6

    Article  Google Scholar 

  409. Hodges JL, Lattimer BY (2019) Wildland fire spread modeling using convolutional neural networks. Fire Technol 55:2115–2142. https://doi.org/10.1007/s10694-019-00846-4

    Article  Google Scholar 

  410. Zhai C, Zhang S, Cao Z, Wang X (2020) Learning-based prediction of wildfire spread with real-time rate of spread measurement. Combust Flame 215:333–341. https://doi.org/10.1016/j.combustflame.2020.02.007

    Article  Google Scholar 

  411. Sachdeva S, Bhatia T, Verma AK (2018) GIS-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mapping. Nat Hazards 92:1399–1418. https://doi.org/10.1007/s11069-018-3256-5

    Article  Google Scholar 

  412. Zhang G, Wang M, Liu K (2019) Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China. Int J Disaster Risk Sci 10:386–403. https://doi.org/10.1007/s13753-019-00233-1

    Article  Google Scholar 

  413. Bui QT (2019) Metaheuristic algorithms in optimizing neural network: a comparative study for forest fire susceptibility mapping in Dak Nong Vietnam. Geomat Nat Hazards Risk 10(1):136–150. https://doi.org/10.1080/19475705.2018.1509902

    Article  Google Scholar 

  414. Naser MZ (2020) Autonomous fire resistance evaluation. ASCE J Struct Eng. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002641

    Article  Google Scholar 

  415. Mao W, Wang W, Dou Z, Li Y (2018) Fire recognition based on multi-channel convolutional neural network. Fire Technol 54:531–554. https://doi.org/10.1007/s10694-017-0695-6

    Article  Google Scholar 

  416. Wang Y, Yu Y, Zhu X, Zhang Z (2020) Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel 270:117486. https://doi.org/10.1016/j.fuel.2020.117486

    Article  Google Scholar 

  417. Pundir AS, Raman B (2019) Dual deep learning model for image based smoke detection. Fire Technol 55:2419–2442. https://doi.org/10.1007/s10694-019-00872-2

    Article  Google Scholar 

  418. Lazarevska M, Cvetkovska M (2016) Neural-network-based approach for prediction of the fire resistance of centrically loaded composite columns. Teh Vjesn Tech Gaz 23(5):1475–1480. https://doi.org/10.17559/tv-20150223215657

    Article  Google Scholar 

  419. Naser MZ (2019) Fire resistance evaluation through artificial intelligence: a case for timber structures. Fire Saf J 105:1–18. https://doi.org/10.1016/j.firesaf.2019.02.002

    Article  Google Scholar 

  420. Naser MZ (2019) Properties and material models for modern construction materials at elevated temperatures. Comput Mater Sci 160:16–29. https://doi.org/10.1016/j.commatsci.2018.12.055

    Article  Google Scholar 

  421. Jafari Goldarag Y, Mohammadzadeh A, Ardakani AS (2016) Fire risk assessment using neural network and logistic regression. J Indian Soc Remote Sens 44:885–894. https://doi.org/10.1007/s12524-016-0557-6

    Article  Google Scholar 

  422. Musharraf M, Khan F, Veitch B (2019) Validating human behavior representation model of general personnel during offshore emergency situations. Fire Technol 55:643–665. https://doi.org/10.1007/s10694-018-0784-1

    Article  Google Scholar 

  423. McNeil JG, Lattimer BY (2016) Autonomous fire suppression system for use in high and low visibility environments by visual servoing. Fire Technol 52:1343–1368. https://doi.org/10.1007/s10694-016-0564-8

    Article  Google Scholar 

Download references

Acknowledgements

Junhui Gong thanks the support from National Natural Science Foundation of China (51974164), Natural Science Foundation of Jiangsu Province, China (BK20221311) and University Natural Science Research Project in Jiangsu Province (21KJA620002). Lizhong Yang thanks the support from National Natural Science Foundation of China (52076202) and Anhui Provincial Natural Science Foundation (2008085ME153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Yang, L. A Review on Flaming Ignition of Solid Combustibles: Pyrolysis Kinetics, Experimental Methods and Modelling. Fire Technol 60, 893–990 (2024). https://doi.org/10.1007/s10694-022-01339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-022-01339-7

Keywords

Navigation