Skip to main content
Log in

Direct Conversion of Methane to Methanol by CuN3 Supported on Graphene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Reaction mechanisms of direct conversion of methane to methanol (DCMM) catalyzed by single vacancy graphene supported single Cu atoms (Cu/C3-Gr and Cu/N3-Gr) were investigated using first principles calculations, taking N2O as the oxidant. The catalytic performance was tuned drastically by replacing three coordinated carbon atoms of active center Cu (Cu/C3-Gr) with three nitrogen atoms (Cu/N3-Gr). For Cu/N3-Gr catalyzing DCMM, a crossing between potential energy profiles of the triplet state and the singlet state occurs after transition state of C–H activation. It makes the reaction energy profile downhill and the free energy barrier of C–H activation is only 0.4 eV. The calculation results indicate that Cu/N3-Gr is likely to be an excellent catalyst for DCMM at room temperature, more superior to Cu/C3-Gr.

Graphical Abstract

By modulating micro-coordination environment of single atom Cu, both reactivity and selectivity of DCMM were improved remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lustemberg PG, Palomino RM, Gutiérrez RA, Grinter DC, Vorokhta M, Liu Z, Ramírez PJ, Matolín V, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2018) J Am Chem Soc 140(24):7681

    Article  CAS  PubMed  Google Scholar 

  2. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280(5363):560

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Jones C, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA III (2004) Angew Chem Int Ed 43(35):4626

    Article  CAS  Google Scholar 

  4. Fujisaki H, Ishizuka T, Kotani H, Shiota Y, Yoshizawa K, Kojima T (2023) Nature 616:476

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Pappas DK, Borfecchia E, Dyballa M, Pankin IA, Lomachenko KA, Martini A, Signorile M, Teketel S, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Lillerud KP, Svelle S, Beato P (2017) M J Am Chem Soc 139(42):14961

    Article  CAS  Google Scholar 

  6. Pappas DK, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko KA, Baran R, Glatzel P, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Svelle S, Beato P, Borfecchia E (2018) J Am Chem Soc 140(45):15270

    Article  CAS  PubMed  Google Scholar 

  7. Vogiatzis KD, Li G, Hensen EJM, Gagliardi L, Pidko EA (2017) J Phys Chem C 121(40):22295

    Article  CAS  Google Scholar 

  8. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci 106(45):18908

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Snyder BER, Böttger LH, Bols ML, Yan JJ, Rhoda HM, Jacobs AB, Hu MY, Zhao J, Alp EE, Hedman B, Hodgson KO, Schoonheydt RA, Sels EIS, BF (2018) Proc Natl Acad Sci 115:4565

  10. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Science 356(6337):523

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Alayon EMC, Nachtegaal M, Bodi A, van Bokhoven JA (2014) ACS Catal 4(1):16

    Article  CAS  Google Scholar 

  12. Zhao Z-J, Kulkarni A, Vilella L, Nørskov JK, Studt F (2016) ACS Catal 6(6):3760

    Article  CAS  Google Scholar 

  13. Mahyuddin MH, Staykov A, Shiota Y, Yoshizawa K (2016) ACS Catal 6(12):8321

    Article  CAS  Google Scholar 

  14. Mahyuddin MH, Tanaka T, Shiota Y, Staykov A, Yoshizawa K (2018) ACS Catal 8(2):1500

    Article  CAS  Google Scholar 

  15. Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F-S (2020) Science 367(6474):193

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI (2016) Nature 536:317

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F (2009) Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew Chem Int Ed 48(37):6909

    Article  CAS  Google Scholar 

  18. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127(5):1394

    Article  CAS  PubMed  Google Scholar 

  19. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546

    Article  ADS  PubMed  Google Scholar 

  20. Bozbag SE, Sot P, Nachtegaal M, Ranocchiari M, van Bokhoven JA, Mesters C (2018) ACS Catal 8(7):5721

    Article  CAS  Google Scholar 

  21. Kulkarni AR, Zhao Z-J, Siahrostami S, Nørskov JK, Studt F (2016) ACS Catal 6(10):6531

    Article  CAS  Google Scholar 

  22. Vanelderen P, Snyder BER, Tsai M-L, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI (2015) J Am Chem Soc 137(19):6383

    Article  CAS  PubMed  Google Scholar 

  23. Tang X, Wang L, Yang B, Fei C, Yao T, Liu W, Lou Y, Dai Q, Cai Y, Cao X-M, Zhan W, Guo Y, Gong X-Q, Guo Y (2021) Appl Catal B 285:119827

    Article  CAS  Google Scholar 

  24. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew Chem Int Ed 51:5129

    Article  CAS  Google Scholar 

  25. Le HV, Parishan S, Sagaltchik A, Göbel C, Schlesiger C, Malzer W, Trunschke A, Schomäcker R, Thomas A (2017) ACS Catal 7(2):1403

    Article  CAS  Google Scholar 

  26. Zhang H, Lv J, Zhang Z, Du C, Wang S, Lin J, Wan S, Wang Y, Xiong H (2022) ChemCatChem 14(5):e202101609

    Article  CAS  Google Scholar 

  27. Ikuno T, Zheng J, Vjunov A, Sanchez-Sanchez M, Ortuño MA, Pahls DR, Fulton JL, Camaioni DM, Li Z, Ray D, Mehdi BL, Browning ND, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Lercher JA (2017) J Am Chem Soc 139(30):10294

    Article  CAS  PubMed  Google Scholar 

  28. Xi Y, Heyden A (2019) ACS Catal 9(7):6073

    Article  CAS  Google Scholar 

  29. Cui XJ, Li HB, Wang Y, Hu YL, Hua L, Li HY, Han XW, Liu QF, Yang F, He LM, Chen XQ, Li QY, Xiao JP, Deng DH, Bao XH (2018) Chem 4(8):1902

    Article  CAS  Google Scholar 

  30. Wu B, Yang R, Shi L, Lin T, Yu X, Huang M, Gong K, Sun F, Jiang Z, Li S, Zhong L, Sun Y (2020) Chem Commun 56(93):14677–14680

    Article  CAS  Google Scholar 

  31. Zhang L, Wang A, Wang W, Huang Y, Liu X, Miao S, Liu J, Zhang T (2015) ACS Catal 5(11):6563

    Article  CAS  Google Scholar 

  32. Delley B (1990) J Chem Phys 92:508

    Article  ADS  CAS  Google Scholar 

  33. Delley B (2000) J Chem Phys 113:7756–7764

    Article  ADS  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Yuan J, Zhang W, Li X, Yang J (2018) Chem Commun 54(18):2284–2287

    Article  CAS  Google Scholar 

  36. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) Comput Mater Sci 28:250

    Article  CAS  Google Scholar 

  37. Chen H, Kong X-Y, Zheng W, Yao J, Kandalam AK, Jena P (2013) ChemPhysChem 14:3303

    Article  CAS  PubMed  Google Scholar 

  38. Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/

  39. Lee H, Lee S-Y (2023) J Mater Chem A 11:15691

    Article  CAS  Google Scholar 

  40. Schröder D, Shaik S, Schwarz H (2000) Trans Acc Chem Res 33(3):139

    Article  Google Scholar 

  41. Dietl N, Schlangen M, Schwarz H (2012) Angew Chem Int Ed 51(23):5544

    Article  CAS  Google Scholar 

  42. Dietl N, van der Linde C, Schlangen M, Beyer MK, Schwarz H (2011) Angew Chem Int Ed 50(21):4966

    Article  CAS  Google Scholar 

  43. Shiota Y, Yoshizawa K (2000) J Am Chem Soc 122(49):12317

    Article  CAS  Google Scholar 

  44. Wulfers MJ, Teketel S, Ipek B, Lobo RF (2015) Chem Commun 51(21):4447

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Key Research and Development Program of China (Grants Nos. 2016YFA0200604, 2018YFA0208600), NSFC-Henan Joint Fund (No. U2004196), Anhui Initiative in Quantum Information Technologies (Grant No. AHY090400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyun Yuan, Wenhua Zhang or Jinlong Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1736 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Luo, Q., Zhang, Y. et al. Direct Conversion of Methane to Methanol by CuN3 Supported on Graphene. Catal Lett 154, 1351–1358 (2024). https://doi.org/10.1007/s10562-023-04447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04447-3

Keywords

Navigation