Skip to main content

Advertisement

Log in

The genetic consequence of differing ecological demands of a generalist and a specialist butterfly species

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Many studies aim at testing the impact of recent fragmentation on the genetic diversity and connectivity of populations, while some species do exist naturally in fragmented landscapes because of their habitat requirements. Therefore, it is important to look at the genetic signatures of species occurring in naturally fragmented landscapes in order to disentangle the effect of fragmentation from the effect of habitat requirements. We selected two Nymphalid butterflies for this purpose. While Melanargia galathea is a common butterfly in flower-rich meadows, Melitaea aurelia is closely connected to calcareous grasslands, thus being historically fragmented due to its ecological demands. For the analysis of the genetic response on these opposed patterns, we analysed 18 allozyme loci for 789 individuals (399 individuals of M. galathea and 390 individuals of M. aurelia) in a western German study region with adjacent areas in Luxemburg and northeastern France. Both species showed similarly low genetic differentiations among local populations (M. galathea: F ST 3.3%; M. aurelia: F ST 3.6%), both combined with a moderate level of inbreeding. Isolation-by-distance analysis revealed a significant correlation for both species with similar amounts of explained variances (M. galathea: r 2 = 27.8%; M. aurelia: r 2 = 28.5%). Most parameters of genetic diversity were higher in M. galathea than in M. aurelia, but the latter species had a considerably higher amount of rare or locally restricted genes; the differing ecological demands are thus reflected in these differences. Both species thus seem to be genetically well suited to their respective ecological requirements. In the light of conservation genetics, we deduce that highly fragmented populations are not necessarily prone to extinction. The extinction risk might be linked to the life history of an organism and its population genetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108. doi:10.1046/j.1365-2664.2000.00478.x

    Article  Google Scholar 

  • Bereczki J, Pecsenye K, Peregovits L, Varga Z (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. J Zool Syst Evol Res 43:157–165. doi:10.1111/j.1439-0469.2005.00305.x

    Article  Google Scholar 

  • Bermingham E, Avise JC (1986) Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics 113:939–965

    PubMed  CAS  Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt & Co Uitgevers en Importeurs, Netherlands

    Google Scholar 

  • Brookes MI, Graneau YA, King P, Rose OC, Thomas CD, Mallet JLB (1997) Genetic analysis of founder bottlenecks in the rare british butterfly Plebejus argus. Conserv Biol 11:648–661. doi:10.1046/j.1523-1739.1997.96163.x

    Article  Google Scholar 

  • Cunningham M, Moritz C (1998) Genetic effects of forest fragmentation on a rainforest restricted lizard (Scincidae: Gnypetoscincus queenslandiae). Biol Conserv 83:19–30. doi:10.1016/S0006-3207(97)00046-3

    Article  Google Scholar 

  • Den Boer P-J (1981) On the survival of populations in a heterogenous and variable environment. Oecologia 50:39–53. doi:10.1007/BF00378792

    Article  Google Scholar 

  • Ebert G, Rennwald E (eds) (1991a) Die Schmetterlinge Baden-Württembergs 1. Eugen Ulmer Verlag, Germany

    Google Scholar 

  • Ebert G, Rennwald E (eds) (1991b) Die Schmetterlinge Baden-Württembergs 2. Verlag Eugen Ulmer, Germany

    Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327. doi:10.1146/annurev.ge.29.120195.001513

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, United Kingdom

    Google Scholar 

  • Gadeberg RME, Boomsma J (1997) Genetic population structure of the large blue butterfly Maculinea alcon in Denmark. J Insect Conserv 1:99–111. doi:10.1023/A:1018439211244

    Article  Google Scholar 

  • Geiger H, Shapiro AM (1992) Genetics, systematics and evolution of holarctic Pieris napi species group populations (Lepidoptera, Pieridae). Zeitschrift für Zoologie. Systematik Evolutionsforschung 30:100–122

    Google Scholar 

  • Hanski I (1991) Single species metapopulation dynamics: concepts, models, and observations. Biol J Linn Soc Lond 42:17–38. doi:10.1111/j.1095-8312.1991.tb00549.x

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, UK

    Google Scholar 

  • Hanski I, Simberloff D (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, United Kingdom

    Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474. doi:10.1046/j.1365-294X.2002.01644.x

    Article  PubMed  Google Scholar 

  • Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. University Amsterdam, Netherlands

    Google Scholar 

  • Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Evol Ecol 11:180–183. doi:10.1016/0169-5347(96)20008-4

    Article  Google Scholar 

  • Hebert PDN, Beaton MJ (1993) Methodologies for allozyme analysis using cellulose acetat electrophoresis. Helena Laboratories, USA

    Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735. doi:10.2307/5671

    Article  Google Scholar 

  • Holzhauer SIJ, Ekschmitt K, Sanders A-C, Dauber J, Wolters V (2005) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 34:23–35

    Google Scholar 

  • http://www.xlstat.com/de/home/, July 2006

  • Joyce DA, Pullin AS (2001) Phylogeography of the marsh fritillary Euphydryas aurinia (Lepidoptera: Nymphalidae) in the UK. Biol J Linn Soc Lond 72:129–141. doi:10.1111/j.1095-8312.2001.tb01305.x

    Article  Google Scholar 

  • Kelley ST, Farrell BD, Mitton JB (2000) Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity 84:218–227. doi:10.1046/j.1365-2540.2000.00662.x

    Article  PubMed  Google Scholar 

  • Knutsen H, Rukke BA, Jorde PE, Ims RA (2000) Genetic differentiation among populations of the beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae) in a fragmented and a continuous landscape. Heredity 84:667–676. doi:10.1046/j.1365-2540.2000.00691.x

    Article  PubMed  CAS  Google Scholar 

  • Kraus W (1993) Verzeichnis der Großschmetterlinge Insecta Lepidoptera der Pfalz. Pollichia, Germany

    Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection and population subdivision. Conserv Biol 1:143–158. doi:10.1111/j.1523-1739.1987.tb00023.x

    Article  Google Scholar 

  • Levins R (1970) Extinction, some mathematical questions in biology, lectures on mathematics in life science 2. In: Gerstenhaber M (ed) American Mathematical Society, Rhode Island, pp 77–107

  • Lewis OT, Thomas CD, Hill JK, Brookes MI, Crane TPR, Graneau YA, Mallet JLB, Rose OC (1997) Three ways of assessing metapopulation structure in the butterfly Plebejus argus. Ecol Entomol 22:283–293. doi:10.1046/j.1365-2311.1997.00074.x

    Article  Google Scholar 

  • Louis EJ, Dempster ER (1987) An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43:805–811. doi:10.2307/2531534

    Article  PubMed  CAS  Google Scholar 

  • Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: isolation, restricted gene flow and panmixis. Conserv Genet 8:671–681. doi:10.1007/s10592-006-9213-y

    Article  Google Scholar 

  • MacArthur R-H, Wilson E-O (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35. doi:10.1038/46941

    Article  CAS  Google Scholar 

  • McCarthy MA, Lindenmayer DB (1999) Incorporating metapopulation dynamics of greater gliders into reserve design in disturbed landscape. Ecology 80:651–667

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nève G, Barascud B, Descimon H, Baguette M (2000) Genetic structure of Proclossiana eunomia populations at the regional scale (Lepidoptera, Nymphalidae). Heredity 84:657–666. doi:10.1046/j.1365-2540.2000.00699.x

    Article  PubMed  CAS  Google Scholar 

  • Oostermeijer JGB, Brugman ML, De Boer ER, Den Nijs HCM (1996) Temporal and spatial variation in the demography of Gentiana pneumonanthe, a rare perennial herb. J Ecol 84:166–174. doi:10.2307/2261351

    Google Scholar 

  • Peacock MM, Smith AT (1997) The effect of habitat fragmentation on dispersal patterns, mating behavior and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia 112:524–533. doi:10.1007/s004420050341

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Richardson BJ, Baverstock PR, Adams M (1986) Allozyme electrophoresis, a handbook for animal systematics and population studies. Academic Press, USA

    Google Scholar 

  • Schmidt-Koehl W (1977) Die Groß-Schmetterlinge des Saarlandes (Insecta, Lepidoptera): Tagfalter, Spinner und Schwärmer. Abhandlungen der Arbeitsgemeinschaft für tier- und pflanzengeografische Heimatforschung im Saarland 7:1–231

    Google Scholar 

  • Schmitt T, Seitz A (2002) Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation. Biol Conserv 107:291–297. doi:10.1016/S0006-3207(02)00066-6

    Article  Google Scholar 

  • Schmitt T, Seitz A (2004) Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera). J Biogeogr 31:137–144. doi:10.1111/j.1365-2699.2004.01079.x

    Article  Google Scholar 

  • Schmitt T, Gießl A, Seitz A (2003) Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe?—evidence from population genetics. Biol J Linn Soc Lond 80:529–538. doi:10.1046/j.1095-8312.2003.00261.x

    Article  Google Scholar 

  • Schmitt T, Röber S, Seitz A (2005) Is the last glaciation the only relevant event for the present genetic population structure of the Meadow Brown butterfly Maniola jurtina (Lepidoptera: Nymphalidae)? Biol J Linn Soc Lond 85:419–431. doi:10.1111/j.1095-8312.2005.00504.x

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000—a software for population genetics data analysis. University of Genève, Switzerland

    Google Scholar 

  • Siegismund HR (1993) G-Stat, ver. 3, genetical statistical programs for the analysis of population data. Denmark, Royal Veterinary and Agricultural University, The Arboretum

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573. doi:10.2307/3544927

    Article  Google Scholar 

  • Thomas JA, Elmes GW (2001) Food-plant niche selection rather than the presence of ant nest explains ovipostion patterns in the myrmecophilous butterfly genus Maculinea. Proc R Soc Lond B Biol Sci 268:471–477. doi:10.1098/rspb.2000.1398

    Article  CAS  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B Biol Sci 268:1791–1796. doi:10.1098/rspb.2001.1693

    Article  CAS  Google Scholar 

  • Vandewoestijne S, Nève G, Baguette M (1999) Spatial and temporal population genetic structure of the butterfly Aglais urticae L. (Lepidoptera, Nymphalidae). Mol Ecol 8:1539–1543. doi:10.1046/j.1365-294x.1999.00725.x

    Article  PubMed  Google Scholar 

  • Vandewoestijne S, Martin T, Liégeois S, Baguette M (2004) Dispersal, landscape occupancy and popualtion structure in the butterfly Melanargia galathea. Basic Appl Ecol 5:581–591. doi:10.1016/j.baae.2004.07.004

    Article  Google Scholar 

  • Weir BS (1991) Genetic data analysis. Sinauer, Netherlands

    Google Scholar 

  • Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128:542–552. doi:10.1016/j.biocon.2005.10.022

    Article  Google Scholar 

  • Wilcox BA, Murphy DD (1985) Conservation strategy: the effects of fragmentation on extinction. Am Nat 125:879–887. doi:10.1086/284386

    Article  Google Scholar 

  • Wilson RJ, Ellis S, Baker JS, Lineham ME, Whitehead RW, Thomas CD (2002) Large-scale patterns of distribution and persistence at the range margins of a butterfly. Ecology 83:3357–3368

    Google Scholar 

  • Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers Conserv 11:11451–11468. doi:10.1023/A:1016223907962

    Article  Google Scholar 

  • Wynhoff I (2001) At home on foreign meadows, the reintroduction of two Maculinea butterfly species. Agricultural University, Netherlands, Wageningen

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Evol Ecol 11:413–419. doi:10.1016/0169-5347(96)10045-8

Download references

Acknowledgement

We acknowledge a grant from the German Science Foundation DFG (grant number SCHM 1659/3-1 and 3-2) and the scholarship “Arten- und Biotopschutz” of the Ministry of Rhineland-Palatinate, enabling the collecting trips and the allozyme electrophoresis. We are grateful to the governments of the Rhineland-Palatinate, the Saarland and Luxembourg for the sampling permits and to France not demanding such a permission. We thank Desmond Kime for critical comments on a draft version of this article and for the correction of our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Christian Habel.

Appendix

Appendix

See Table 6.

Table 6 Allele frequencies of all polymorphic loci of all populations analysed of (a) Melanargia galathea and (b) Melitaea aurelia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habel, J.C., Meyer, M. & Schmitt, T. The genetic consequence of differing ecological demands of a generalist and a specialist butterfly species. Biodivers Conserv 18, 1895–1908 (2009). https://doi.org/10.1007/s10531-008-9563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9563-5

Keywords

Navigation