Skip to main content

Advertisement

Log in

Dual-photoelectrode photoelectrochemical cell exploiting a photoanode based on cadmium sulfide and anatase TiO2 photocatalysts for tannic acid detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Photoelectrochemical systems based on half-photoelectrochemical cells have been widely exploited in the development of analytical methods. However, the development of self-powered systems based on dual-photoelectrode photoelectrochemical cells for the determination of many species is still a challenger. In this work, a two-compartment photoelectrochemical cell has been developed to determine tannic acid exploiting the effects of the analyte on the photoelectrochemical response of a CdS/TiO2/FTO photoanode. The photoactivity of the photoanode was characterised by electrochemical impedance spectroscopy (EIS) and measurements of the photocurrent. The spectroscopic characteristics of the photoanode were evaluated by Raman and Fourier-transform infrared spectroscopy (FT-IR) measurements, the structural characteristics were evaluated by powder X-ray diffraction (PXRD) measurements, the morphology of the surface was evaluated by scanning electron microscopy, and the composition analysis was evaluated by energy-dispersive X-ray spectroscopy. Electrochemical impedance measurements were performed under the incidence and absence of light to investigate the effects of photons on the charge transfer resistance of the photoanode. The nature of the semiconductor and the flat band potential of the photoanode were evaluated by Mott-Schottky analysis. The influence of the TA on the photoelectrochemical response of the CdS/TiO2/FTO electrode was evaluated by measuring the photocurrent of the system. The PEC platform presented a linear response range for TA from 10 to 500 μmol L−1. The PEC was successfully applied to the determination of the TA in orange juice samples with a mean recovery percentage of about 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cai J, Jiang L, Wei H, Wang C, Yu L, Zhang L (2019) Preparation of carbon/cobalt composite from phenolic resin and ZIF-67 for efficient tannic acid adsorption, Micropor. Mesopor Mat 287:9–17

    Article  CAS  Google Scholar 

  2. Yang H, He L, Pan S, Liu H, Hu X (2019) Nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of tannic acid. Spectrochim Acta A 210:111–119

    Article  CAS  Google Scholar 

  3. Yilmaz UT, Çalik E, Uzun D, Karipcin F, Yilmaz H (2016) Selective and sensitive determination of tannic acid using a 1-benzoyl-3-(pyrrolidine) thiourea film modified glassy carbon electrode. J Electroanal Chem 776:1–8

    Article  CAS  Google Scholar 

  4. Yang P, Zhu Z, Chen M, Zhou X, Chen W (2019) Microwave-assisted synthesis of polyamine-functionalised carbon dots from xylan and their use for the detection of tannic acid. Spectrochim Acta A 213:301–308

    Article  CAS  Google Scholar 

  5. Silva FGS, Santos GKC, Yotsumoto-Neto S, Luz RCS, Damos FS (2018) Self-powered sensor for tannic acid exploiting visible LED light as excitation source. Electrochim Acta 274:67–73

    Article  CAS  Google Scholar 

  6. Corominas BGT, Mateo JVG, Zamora LL, Calatayud JM (2002) Determination of tannic acid by direct chemiluminescence in a FIA assembly. Talanta 58:1243–1251

    Article  Google Scholar 

  7. Liu X, Zhang W, Yang C, Yao Y, Huang L, Li S, Wang J, Ji Y (2019) Rapid and selective fluorometric determination of tannic acid using MoO3-x quantum dots. Microchim Acta 186:247

    Article  CAS  Google Scholar 

  8. Hung Y-T, Chen P-C, Chen RLC, Cheng T-J (2010) Sequential determination of tannin and total amino acid contents in tea for taste assessment by a fluorescent flow-injection analytical system. Food Chem 118:876–881

    Article  CAS  Google Scholar 

  9. Dewi MA, Ratnawati J, Purwasih RW (2014) Determination of total tannin of white and red rind pomegranate (Punica Granatum L.) by colorimetry method using reagent 1, 10 Phenantroline. Procedia Chem 13:214–217

    Article  CAS  Google Scholar 

  10. Zhu J, Ng J, Filippich LJ (1992) Determination of tannic acid and its phenolic metabolites in biological fluids by high-performance liquid chromatography. Chromatogr B Biomed Appl 577:77–85

    Article  CAS  Google Scholar 

  11. Makkar HPS, Dawra RK, Singh B (1987) Protein precipitation assay for quantitation of tannins: determination of protein in tannin-protein complex. Anal Biochem 166:435–439

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Wang H, Xi J, Zhao F, Zeng B (2020) Novel Bi2+xWO6 p−n homojunction nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical immunosensor. ACS Sens 5:2876–2884

    Article  CAS  PubMed  Google Scholar 

  13. Fan G-C, Shi X-M, Zhang J-R, Zhu J-J (2016) Cathode photoelectrochemical immunosensing platform integrating photocathode with photoanode. Anal Chem 88:10352–10356

    Article  CAS  PubMed  Google Scholar 

  14. Tian J, Huang M, Yang Y, Wang D, Lu J (2019) Photoelectrochemically driven bioconversion and determination of nifedipine based on a double photoelectrode system. Biosens Bioelectron 135:160–165

    Article  CAS  PubMed  Google Scholar 

  15. Santos GKC, Silva FGS, Yotsumoto-Neto S, Santos WTP, Luz RCS, Damos FS (2018) Self-powered photoelectrochemical sensor for gallic acid exploiting a CdSe/ZnS core-shell quantum dot sensitised TiO2 as photoanode. Electroanalysis 30:1750–1756

    Article  CAS  Google Scholar 

  16. Santos GKC, Silva FGS, Ferreira AR, Luz RCS, Damos FS (2019) Development of a self-powered photoelectrochemical system (SPPS) for the determination of propyl gallate. Microchem J 148:424–432

    Article  CAS  Google Scholar 

  17. Lima FMR, Freires AS, Pereira NM, Silva GG, Rocha CQ, Damos FS, Luz RCS (2018) Photoelectrochemical sensing of tannic acid based on the use of TiO2 sensitised with 5-methylphenazinium methosulfate and carboxy-functionalised CdTe quantum dots. Microchim Acta 185:157

    Article  CAS  Google Scholar 

  18. Sun X, Gao C, Zhang L, Yan M, Yu J, Ge S (2017) Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sensors Actuators B Chem 251:1–8

    Article  CAS  Google Scholar 

  19. Wang J, Long J, Liu Z, Wu W, Hu C (2017) Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens Bioelectron 91:53–59

    Article  CAS  PubMed  Google Scholar 

  20. Tu W, Wang Z, Dai Z (2018) Selective photoelectrochemical architectures for biosensing: design, mechanism and responsibility. TrAC Trends in Anal Chem 105:470–483

    Article  CAS  Google Scholar 

  21. Li L-P, Liu M, Zhang W-D (2018) Electrodeposition of CdS onto BiVO4 films with high photoelectrochemical performance. J Sol State Electrochem 22:2569–2577

    Article  CAS  Google Scholar 

  22. Shaikh AV, Mane RS, Joo O-S, Han S-H, Pathan H-M (2017) Electrochemical deposition of cadmium selenide films and their properties: a review. J Sol State Electrochem 21:2517–2530

    Article  CAS  Google Scholar 

  23. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386

    Article  CAS  PubMed  Google Scholar 

  24. Fawzi O, Khasawneh S, Palaniandy P (2021) Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: a review. Environ Technol Innov 21:101230

  25. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi J, Anpo M, Bahnemann BW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  26. Etacheri V, Di Valentinc C, Schneider J, Bahnemannd D, Pilla SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochemistry and Photobiology C: Photochemistry Reviews 25:1–29

    Article  CAS  Google Scholar 

  27. Zhang G, Kim G, Choi W (2014) Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy Environ Sci 7:954–966

    Article  CAS  Google Scholar 

  28. Meng A, Zhu B, Zhong Bo, Zhang L, Cheng B (2017) Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Surf Sci 422:518–527

    Article  CAS  Google Scholar 

  29. Keerthana BGT, Murugakoothan P (2019) Synthesis and characterization of CdS/TiO2 nanocomposite: methylene blue adsorption and enhanced photocatalytic activities. Vacuum 159:476–548

    Article  CAS  Google Scholar 

  30. Nasir JA, Rehman Z, Shah SNA, Khan A, Butler IS, Catlow CRA (2020) Recent developments and perspectives in CdS-based photocatalysts for water splitting. J Mater Chem A 8:20752

    Article  CAS  Google Scholar 

  31. Diby ND, Duan Y, Grah PA, Cai F, Yuan Z (2019) Enhanced photoelectrochemical water-splitting performance of TiO2 nanorods sensitised with CdS via hydrothermal approach. J Alloys Compounds 803:456–465

    Article  CAS  Google Scholar 

  32. Chaguetmi S, Mammeri F, Pasut M, Nowak S, Lecoq H, Decorse P, Costentin C, Achour S, Ammar S (2013) Synergetic effect of CdS quantum dots and TiO2 nanofibers for photoelectrochemical hydrogen generation. J Nanopart Res 15:2140

    Article  CAS  Google Scholar 

  33. Haider AJ, Mousa AM, Al-Jawad SMH (2008) Annealing Effect on Structural, Electrical and Optical Properties of CdS Films Prepared by CBD Method. JSTS: Journal of Semiconductor Technology and Science 8:326–332

  34. Lan Q, Li Q, Zhang X, Chen Z (2018) A novel electrochemiluminescence system of CuS film and K2S2O8 for determination of crystal violet. J Electroanal Chem 810:216–221

    Article  CAS  Google Scholar 

  35. Bruker AXS (2008), TOPAS V4: General profile and structure analysis software for powder diffraction data—user’s manual, Bruker AXS, Karlsruhe,Germany.

  36. Mukoma P, Jooste BR, Vosloo HCM (2004) Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. J Power Sources 136:16–23

    Article  CAS  Google Scholar 

  37. Bahar T (2020) Development of reasonably stable chitosan based proton exchange membranes for a glucose oxidase based enzymatic biofuel cell. Electroanalysis 32:536–546

    Article  CAS  Google Scholar 

  38. Arguello CA (1969) First-order raman effect in wurtzite-type crystals. Phys Rev 181:1351–1363

    Article  CAS  Google Scholar 

  39. Kavil J, Alshahrie A, Periyat P (2018) CdS sensitised TiO2 nano heterostructures as sunlight driven photocatalyst. Nano-Struct Nano-Objects 16:24–30

    Article  CAS  Google Scholar 

  40. Pan A, Liu R, Yang Q, Zhu Y, Yang G, Zou B, Chen K (2005) Stimulated emissions in aligned CdS nanowires at room temperature. J Phys Chem B 109:24268–24272

    Article  CAS  PubMed  Google Scholar 

  41. Hong Z-C, Perevedentseva E, Treschev S, Wang J-B, Cheng C-L (2009) Surface enhanced Raman scattering of nano diamond using visible-light-activated TiO2 as a catalyst to photo-reduce nano-structured silver from AgNO3 as SERS-active substrate. J Raman Spectrosc 40:1016–1022

    Article  CAS  Google Scholar 

  42. Qutub N, Pirzada BM, Umar K, Sabir S (2016) Synthesis of CdS nanoparticles using different sulfide ion precursors: formation mechanism and photocatalytic degradation of Acid Blue-29. J Environ Chem Eng 4:808–817

    Article  CAS  Google Scholar 

  43. Moreno-Regino VD, Castañeda-de-la-Hoya FM, Torres-Castanedo CG, Márquez-Marín J, Castanedo-Pérez R, Torres-Delgado G, Zelaya-Ángel O (2019) Structural, optical, electrical and morphological properties of CdS films deposited by CBD varying the complexing agent concentration. Results Phys 13:102238

  44. Baldinozzi G, Malinowska B, Rakib M, Durand G (2001) Crystal structure and characterisation of cadmium cyanamide. J Mater Chem 12:268–272

    Article  CAS  Google Scholar 

  45. Ortega-Borges R, Lincot D (1993) Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system. J Electrochem Soc 140:3464

    Article  CAS  Google Scholar 

  46. Wang D, Zhang X, Wu K, Xu S (2006) Lattice vibration fundamentals of anatase nanocrystalline TiO2 thin films detected using unpolarized infrared spectroscopy. Chem Lett 35:884–885

    Article  CAS  Google Scholar 

  47. Cen J, Wu Q, Liu M, Orlov A (2017) Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress. Green Energy Environ 2:100–111

    Article  Google Scholar 

  48. Sahai S, Ikram A, Rai S, Shrivastav R, Dass S, Satsangi VR (2016) Augmented photoelectrochemical response of CdS/ZnS quantum dots sensitised hematite photoelectrode. Int J Energy Res 40:1811–1819

    Article  CAS  Google Scholar 

  49. Xiao X, Zhu W-W, Lei Y-B, Liu Q-Y, Li Q, Li W-W (2016) Zwitterionic buffer-induced visible light excitation of TiO2 for efficient pollutant photodegradation. RSC Adv 6:35449–35454

    Article  CAS  Google Scholar 

  50. Li S, Zhang K, Wang J, Yan B, Wang C, Xiong Z, Xu H, Du Y (2017) Enhanced TA determination on 3D flower-like ZnO-Pt nanocomposites under ultraviolet light illumination. Sensors Actuators B Chem 252:717–724

    Article  CAS  Google Scholar 

  51. Palisoc ST, Cansino EJF, Dy IMO, Razal CFA, Reyes KCN, Racines LR, Natividad MT (2020) Electrochemical determination of tannic acid using graphite electrodes sourced from waste zinc-carbon batteries. Sens Biosensing Res 28:100326

  52. Wan H, Zou Q, Yan R, Zhao F, Zeng B (2007) Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchim Acta 159:109–115

    Article  CAS  Google Scholar 

  53. Raj MA, Revin SB, John SA (2013) Synthesis, characterisation and modification of functionalised pyrimidine stabilised gold nanoparticles on ITO electrode for the determination of tannic acid. Bioelectrochemistry 89:1–10

    Article  CAS  PubMed  Google Scholar 

  54. Vu DL, Ertek B, Cervenka L, Dilgin Y (2013) Determination of tannic acid using silica gel modified carbon paste electrode. Int J Electrochem Sci 8:9278–9286

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Analytical Center of UFMA that provided the FTIR spectra. The authors gratefully acknowledge the Microscopy Centre/UFMG that provided the images.

Funding

The authors received financial support from FAPEMA (INFRA-03186/18; UNIVERSAL-01057/19; UNIVERSAL-01194/17), CNPq (303525/2016–9; 308204/2018–2) and Instituto Nacional de Ciência e Tecnologia em Bioanalítica (465389/2014–7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rita de Cássia Silva Luz or Flávio Santos Damos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.G.S., Ferreira, A.R., dos Santos, C.C. et al. Dual-photoelectrode photoelectrochemical cell exploiting a photoanode based on cadmium sulfide and anatase TiO2 photocatalysts for tannic acid detection. J Solid State Electrochem 25, 2213–2224 (2021). https://doi.org/10.1007/s10008-021-04987-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04987-x

Keywords

Navigation