Skip to main content
Log in

Fuzzy-twin proximal SVM kernel-based deep learning neural network model for hyperspectral image classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Hyperspectral imaging is highly important with respect to the detection, identification and classification of various natural resources—minerals, earth’s natural eruptions, vegetation and related man-made materials and other existing backgrounds. In this study, a novel deep learning-based fuzzy-twin proximal support vector machine (DL-FTPSVM) kernel neural network model is proposed to perform an effective hyperspectral image (HSI) classification. The modelled new DL-FTPSVM is designed to handle the irregularities and existing training complexities of the present hyperspectral image classifier models. A mapreduce framework is introduced for analysing the large volumes of hyperspectral images by partitioning these images into few portions based on mapper and reducer functions. The fuzzy-twin proximal support vector machine neural model is designed with the fuzzy twin hyperplanes comprising of Gaussian kernel, Bessel kernel, ANOVA radial basis function (RBF) kernel and linear spline kernel and a simple triangular fuzzy function is employed to construct the twin hyperplanes for HSI classification. Deep learning (DL) framework supports the new fuzzy-twin proximal SVM kernels to learn more effectively with the auto-encoder and decoder mechanism. For testing and validating the proposed DL-FTPSVM neural network model, the test beds are the Kennedy Space Centre datasets, University of Pavia datasets, Salinas datasets and Indian Pine datasets and performance metrics are evaluated. Results evaluated prove the superiority of the DL-FTPSVM model incurring better classification accuracy compared to techniques from previous works. The randomness of the proposed classifier is handled with the statistical analysis for the HSI classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. He N, Fang L, Li S, Ghamisi P, Benediktsson JA (2017) Hyperspectral images classification by fusing extinction profiles feature. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS), IEEE, pp 2267–2270

  2. Rojas-Moraleda R, Valous NA, Gowen A, Esquerre C, Härtel S, Salinas L, O’donnell C (2017) A frame-based ANN for classification of hyperspectral images: assessment of mechanical damage in mushrooms. Neural Comput Appl 28(1):969–981

    Article  Google Scholar 

  3. Shi C, Pun CM (2017) 3D multi-resolution wavelet convolutional neural networks for hyperspectral image classification. Info Sci 420:49–65

    Article  Google Scholar 

  4. Chen Y, Zhu L, Ghamisi P, Jia X, Li G, Tang L (2017) Hyperspectral images classification with Gabor filtering and convolutional neural network. IEEE Geosci Remote Sens Lett 14(12):2355–2359

    Article  Google Scholar 

  5. Cao F, Yang Z, Ren J, Ling WK, Zhao H, Marshall S (2017) Extreme sparse multinomial logistic regression: a fast and robust framework for hyperspectral image classification. Remote Sens 9(12):1255

    Article  Google Scholar 

  6. Tu B, Zhang X, Wang J, Zhang G, Ou X (2018) Spectral–spatial hyperspectral image classification via non-local means filtering feature extraction. Sens Imaging 19(1):1–25

    Article  Google Scholar 

  7. Chunhui Z, Bing G, Lejun Z, Xiaoqing W (2018) Classification of hyperspectral imagery based on spectral gradient, SVM and spatial random forest. Infrared Phys Technol 95:61–69

    Article  Google Scholar 

  8. Yang C, Bruzzone L, Zhao H, Tan Y, Guan R (2018) Superpixel-based unsupervised band selection for classification of hyperspectral images. IEEE Trans Geosci Remote Sens 56(12):7230–7245

    Article  Google Scholar 

  9. Li J, Xi B, Du Q, Song R, Li Y, Ren G (2018) Deep kernel extreme-learning machine for the spectral–spatial classification of hyperspectral imagery. Remote Sens 10(12):2036

    Article  Google Scholar 

  10. Liu B, Yu X, Yu A, Zhang P, Wan G (2018) Spectral-spatial classification of hyperspectral imagery based on recurrent neural networks. Remote Sens Lett 9(12):1118–1127

    Article  Google Scholar 

  11. Chen YN (2019) Multiple kernel feature line embedding for hyperspectral image classification. Remote Sens 11(24):2892

    Article  Google Scholar 

  12. Zhong S, Chang CI, Li J, Shang X, Chen S, Song M, Zhang Y (2019) Class feature weighted hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 12(12):4728–4745

    Article  Google Scholar 

  13. Li N, Wang R, Zhao H, Wang M, Deng K, Wei W (2019) Improved classification method based on the diverse density and sparse representation model for a hyperspectral image. Sensors 19(24):5559

    Article  Google Scholar 

  14. Wang G, Ren P (2020) Hyperspectral image classification with feature-oriented adversarial active learning. Remote Sens 12(23):3879

    Article  Google Scholar 

  15. Subba Reddy G, Harikiran JJH (2020) Hyperspectral image classification using support vector machines. IAES Int J Artif Intell 9(4):684

    Google Scholar 

  16. Acción Á, Argüello F, Heras DB (2020) Dual-window superpixel data augmentation for hyperspectral image classification. Appl Sci 10(24):8833

    Article  Google Scholar 

  17. Vaddi R, Manoharan P (2020) Hyperspectral remote sensing image classification using combinatorial optimisation based un-supervised band selection and CNN. IET Image Process 14(15):3909–3919

    Article  Google Scholar 

  18. Zhao G, Wang X, Cheng Y (2020) Hyperspectral image classification based on local binary pattern and broad learning system. Int J Remote Sens 41(24):9393–9417

    Article  Google Scholar 

  19. Paoletti ME, Tao X, Haut JM, Moreno-Álvarez S, Plaza A (2021) Deep mixed precision for hyperspectral image classification. J Supercomput 77:1–12

    Article  Google Scholar 

  20. Iyer P, Sriram A, Lal S (2021) Deep learning ensemble method for classification of satellite hyperspectral images. Remote Sens Appl Soc Environ 23:100580

    Google Scholar 

  21. Zheng S, Liu W, Shan R, Zhao J, Jiang G, Zhang Z (2021) Multi-scale dilated convolutional neural network for hyperspectral image classification. J Harbin Inst Technol (New Series) 28(4):25–32

    Google Scholar 

  22. Jia S, Jiang S, Lin Z, Li N, Xu M, Yu S (2021) A survey: deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448:179–204

    Article  Google Scholar 

  23. Zhao F, Zhang J, Meng Z, Liu H (2021) Densely connected pyramidal dilated convolutional network for hyperspectral image classification. Remote Sens 13(17):3396

    Article  Google Scholar 

  24. He X, Chen Y (2021) Modifications of the multi-layer perceptron for hyperspectral image classification. Remote Sens 13(17):3547

    Article  Google Scholar 

  25. Paoletti ME, Haut JM (2021) Adaptable convolutional network for hyperspectral image classification. Remote Sens 13(18):3637

    Article  Google Scholar 

  26. Bahraini T, Azimpour P, Yazdi HS (2021) Modified-mean-shift-based noisy label detection for hyperspectral image classification. Comput Geosci 155:104843

    Article  Google Scholar 

  27. Zhang F, Bai J, Zhang J, Xiao Z, Pei C (2020) An optimized training method for GAN-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 18:1791

    Article  Google Scholar 

  28. Yao W, Lian C, Bruzzone L (2020) Clustercnn: clustering-based feature learning for hyperspectral image classification. IEEE Geosci Remote Sens Lett 18:1991

    Article  Google Scholar 

  29. Wang M, Liu W, Chen M, Huang X, Han W (2021) A band selection approach based on a modified gray wolf optimizer and weight updating of bands for hyperspectral image. Appl Soft Comput 112:107805

    Article  Google Scholar 

  30. Mookambiga A, Gomathi V (2021) Kernel eigenmaps based multiscale sparse model for hyperspectral image classification. Signal Process Image Commun 99:116416

    Article  Google Scholar 

  31. Tamilarasi R, Prabu S (2021) Automated building and road classifications from hyperspectral imagery through a fully convolutional network and support vector machine. J Supercomput 77(11):13243–13261

    Article  Google Scholar 

  32. Zhang T, Shi C, Liao D, Wang L (2021) Deep spectral spatial inverted residual network for hyperspectral image classification. Remote Sens 13(21):4472

    Article  Google Scholar 

  33. Ortac G, Ozcan G (2021) Comparative study of hyperspectral image classification by multidimensional convolutional neural network approaches to improve accuracy. Expert Syst Appl 182:115280

    Article  Google Scholar 

  34. He F, Nie F, Wang R, Jia W, Zhang F, Li X (2020) Semisupervised band selection with graph optimization for hyperspectral image classification. IEEE Trans Geosci Remote Sens 59:10298

    Article  Google Scholar 

  35. Jiang Y, Li Y, Zou S, Zhang H, Bai Y (2021) Hyperspectral image classification with spatial consistence using fully convolutional spatial propagation network. IEEE Trans Geosci Remote Sens 59:10429

    Article  Google Scholar 

  36. Mu C, Zeng Q, Liu Y, Qu Y (2020) A two-branch network combined with robust principal component analysis for hyperspectral image classification. IEEE Geosci Remote Sens Lett 18:2147

    Article  Google Scholar 

  37. Cheng S, Wang L, Du A (2021) Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification. Sci Rep 11(1):1–17

    Article  Google Scholar 

  38. Yu Z, Fang H, Zhangjin Q, Mi C, Feng X, He Y (2021) Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification. Biosyst Eng 212:46–61

    Article  Google Scholar 

  39. Wang Z, Li J, Zhang T (2021) Discriminative graph convolution networks for hyperspectral image classification. Displays 70:102114

    Article  Google Scholar 

  40. Manoharan P, Boggavarapu PKL (2021) Improved whale optimization based band selection for hyperspectral remote sensing image classification. Infrared Phys Technol 119:103948

    Article  Google Scholar 

  41. Liu Q, Wu Z, Jia X, Xu Y, Wei Z (2021) From local to global: class feature fused fully convolutional network for hyperspectral image classification. Remote Sens 13(24):5043

    Article  Google Scholar 

  42. Huang L, Chen Y, He X (2021) Weakly supervised classification of hyperspectral image based on complementary learning. Remote Sens 13(24):5009

    Article  Google Scholar 

  43. Wambugu N, Chen Y, Xiao Z, Tan K, Wei M, Liu X, Li J (2021) Hyperspectral image classification on insufficient-sample and feature learning using deep neural networks: a review. Int J Appl Earth Observ Geoinf 105:102603

    Google Scholar 

  44. Feng J, Li D, Gu J, Cao X, Shang R, Zhang X, Jiao L (2022) Deep reinforcement learning for semisupervised hyperspectral band selection. IEEE Trans Geosci Remote Sens 60:1–19

    Google Scholar 

  45. Yu C, Han R, Song M, Liu C, Chang CI (2022) Feedback attention-based dense CNN for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–16

    Google Scholar 

  46. Cui B, Dong XM, Zhan Q, Peng J, Sun W (2022) LiteDepthwiseNet: a lightweight network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–15

    Google Scholar 

  47. Mou L, Saha S, Hua Y, Bovolo F, Bruzzone L, Zhu XX (2022) Deep reinforcement learning for band selection in hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–14

    Google Scholar 

  48. Bai J, Ding B, Xiao Z, Jiao L, Chen H, Regan AC (2022) Hyperspectral image classification based on deep attention graph convolutional network. IEEE Trans Geosci Remote Sens 60:1–16

    Google Scholar 

  49. Zhang Z, Liu D, Gao D, Shi G (2022) S3Net: spectral-spatial-semantic network for hyperspectral image classification with the multiway attention mechanism. IEEE Trans Geosci Remote Sens 60:1–15

    Google Scholar 

  50. Wang C, Zhang L, Wei W, Zhang Y (2022) Toward effective hyperspectral image classification using dual-level deep spatial manifold representation. IEEE Trans Geosci Remote Sens 60:1–14

    Article  Google Scholar 

  51. Jia S, Liu X, Xu M, Yan Q, Zhou J, Jia X, Li Q (2022) Gradient feature-oriented 3-D domain adaptation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–17

    Google Scholar 

  52. Sellami A, Tabbone S (2022) Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recognit 121:108224

    Article  Google Scholar 

  53. Tan X, Xue Z, Yu X, Sun Y, Gao K (2022) Hyperspectral image classification with deep 3D capsule network and Markov random field. IET Image Process 16(1):79–91

    Article  Google Scholar 

  54. Wang Y, Song T, Xie Y, Roy SK (2022) A probabilistic neighbourhood pooling-based attention network for hyperspectral image classification. Remote Sens Lett 13(1):65–75

    Article  Google Scholar 

  55. Minhazur Rahman AFM, Ahmed B (2022) Hyperspectral image classification using factor analysis and convolutional neural networks. In: Proceedings of the international conference on Big Data, IoT, and machine learning, Springer, Singapore , pp 129–139

  56. Fu H, Sun G, Ren J, Zhang A, Jia X (2022) Fusion of PCA and segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial feature extraction and data classification in hyperspectral imagery. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2020.3034656

    Article  Google Scholar 

  57. Tu B, He W, He W, Ou X, Plaza AJ (2022) Hyperspectral classification via global-local hierarchical weighting fusion network. IEEE J Sel Top Appl Earth Observ Remote Sens 15:184

    Article  Google Scholar 

  58. Hitendra Sarma T, Kakarla S (2022) A new CNN for pixel classification in hyperspectral images. In: Proceedings of international conference on data science and applications, Springer, Singapore , pp 773–782

  59. Hong D, Gao L, Hang R, Zhang B, Chanussot J (2022) Deep encoder-decoder networks for classification of hyperspectral and LiDAR data. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2020.3017414

    Article  Google Scholar 

  60. Wang Q, Chen M, Zhang J, Kang S, Wang Y (2022) Improved active deep learning for semi-supervised classification of hyperspectral image. Remote Sens 14(1):171

    Article  Google Scholar 

  61. Shi C, Fang L, Lv Z, Zhao M (2022) Explainable scale distillation for hyperspectral image classification. Pattern Recognit 122:108316

    Article  Google Scholar 

  62. Nachimuthu DS, Baladhandapani A (2014) Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Dig Imaging 27(4):496–506

    Article  Google Scholar 

  63. Ranganayaki V, Deepa SN (2019) Linear and non-linear proximal support vector machine classifiers for wind speed prediction. Cluster Comput 22(1):379–390

    Article  Google Scholar 

  64. Natarajan YJ, Nachimuthu DS (2019) New SVM kernel soft computing models for wind speed prediction in renewable energy applications. Soft Comput 24:1–18

    Google Scholar 

  65. Ranganayaki V, Deepa SN (2017) SVM based neuro fuzzy model for short term wind power forecasting. Natl Acad Sci Lett 40(2):131–134

    Article  Google Scholar 

  66. Revathi M, Jeya IJS, Deepa SN (2020) Deep learning-based soft computing model for image classification application. Soft Comput 24:18411–18430

    Article  Google Scholar 

  67. Selvakumari Jeya I, Deepa SN (2016) Lung cancer classification employing proposed real coded genetic algorithm based radial basis function neural network classifier. Comput Math Methods Med 2016:1

    Article  MATH  Google Scholar 

  68. Selvakumari J, Jeyaraj S (2018) Using visible and invisible watermarking algorithms for indexing medical images. Int Arab J Inf Technol 15(4):748–755

    Google Scholar 

  69. Orr GB, Müller KR (eds) (2003) Neural networks: tricks of the trade. Springer, Berlin

    Google Scholar 

  70. Zhang YD, Wang W, Zhang X, Wang SH (2022) Secondary pulmonary tuberculosis recognition by 4-direction varying-distance GLCM and fuzzy SVM. Mobile Netw Appl. https://doi.org/10.1007/s11036-021-01901-7

    Article  Google Scholar 

  71. Laxmi S, Gupta SK, Kumar S (2022) Intuitionistic fuzzy least square twin support vector machines for pattern classification. Ann Oper Res. https://doi.org/10.1007/s10479-022-04626-2

    Article  Google Scholar 

  72. Ganaie MA, Tanveer M, Lin CT (2022) Large scale fuzzy least squares twin SVMs for class imbalance learning. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3161729

    Article  Google Scholar 

  73. Zhao Y, Liang J, Chen L, Wang Y, Gong J (2022) Evaluation and prediction of free driving behavior type based on fuzzy comprehensive support vector machine. J Intell Fuzzy Syst 42(4):2863–2879

    Article  Google Scholar 

  74. Borah P, Gupta D (2022) Affinity and transformed class probability-based fuzzy least squares support vector machines. Fuzzy Sets Syst. https://doi.org/10.1016/j.fss.2022.03.009

    Article  MathSciNet  Google Scholar 

  75. Wang K, An J, Ma X, Ma C, Bao H (2022) Imbalance classification based on deep learning and fuzzy support vector machine. In: International conference on bio-inspired computing: theories and applications, vol 1566 CCIS, Springer, Singapore, pp 32–44

  76. Wang KF, An J, Wei Z, Cui C, Ma XH, Ma C, Bao HQ (2022) Deep learning-based imbalanced classification with fuzzy support vector machine. Front Bioeng Biotechnol 9:802712

    Article  Google Scholar 

  77. Memiş S, Enginoğlu S, Erkan U (2022) A classification method in machine learning based on soft decision-making via fuzzy parameterized fuzzy soft matrices. Soft Comput 26(3):1165–1180

    Article  Google Scholar 

  78. Moosavi N, Bagheri M, Nabi-Bidhendi M, Heidari R (2022) Fuzzy support vector regression for permeability estimation of petroleum reservoir using well logs. Acta Geophysica 70(1):161–172

    Article  Google Scholar 

  79. Sharabiani VR, Kaveh M, Taghinezhad E, Abbaszadeh R, Khalife E, Szymanek M, Dziwulska-Hunek A (2022) Application of artificial neural networks, support vector, adaptive neuro-fuzzy inference systems for the moisture ratio of parboiled hulls. Appl Sci 12(4):1771

    Article  Google Scholar 

  80. Khodakhah H, Aghelpour P, Hamedi Z (2022) Comparing linear and non-linear data-driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH. Environ Sci Pollut Res 29(15):21935–21954

    Article  Google Scholar 

  81. Li D, Xu X, Wang Z, Cao C, Wang M (2022) Boundary-based Fuzzy-SVDD for one-class classification. Int J Intell Syst 37(3):2266–2292

    Article  Google Scholar 

  82. Algehyne EA, Jibril ML, Algehainy NA, Alamri OA, Alzahrani AK (2022) Fuzzy neural network expert system with an improved Gini index random forest-based feature importance measure algorithm for early diagnosis of breast cancer in Saudi Arabia. Big Data Cognit Comput 6(1):13

    Article  Google Scholar 

  83. Hazarika BB, Gupta D (2022) Density weighted twin support vector machines for binary class imbalance learning. Neural Process Lett 54(2):1091–1130

    Article  Google Scholar 

  84. Laxmi S, Gupta SK (2022) Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition. Eng Appl Artif Intell 110:104687

    Article  Google Scholar 

  85. Hao PY, Chiang JH, Chen YD (2022) Possibilistic classification by support vector networks. Neural Netw 149:40–56

    Article  Google Scholar 

  86. Huang Y, Li F, Bao G, Xiao Q, Wang H (2022) Modeling the effects of biodiesel chemical composition on iodine value using novel machine learning algorithm. Fuel 316:123348

    Article  Google Scholar 

  87. Zhou J, Guo Y, Wang S, Cheng G (2022) Research on intelligent optimization separation technology of coal and gangue base on LS-FSVM by using a binary artificial sheep algorithm. Fuel 319:123837

    Article  Google Scholar 

  88. Malathi M, Sinthia P, Mary GAA, Nalini M, Wahed FF (2022) Segmentation of breast cancer using fuzzy C means and classification by SVM based on LBP features. In: AIP conference proceedings, vol 2405, no 1, AIP Publishing LLC, p 020002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jasmine Selvakumari Jeya.

Ethics declarations

Conflict of interest

The authors confirm there is no conflict of interest in publishing this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.L., Jeya, I.J.S. & Deepa, S.N. Fuzzy-twin proximal SVM kernel-based deep learning neural network model for hyperspectral image classification. Neural Comput & Applic 34, 19343–19376 (2022). https://doi.org/10.1007/s00521-022-07517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07517-6

Keywords

Navigation