Skip to main content
Log in

Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chunwen Sun, Rob Hui, Justin Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010)

    Article  Google Scholar 

  2. D. Radhika, A.S. Nesaraj, Materials and components for low temperature solid oxide fuel cells—an overview. J. Renew. Energy Dev. 2, 87–95 (2013)

    Google Scholar 

  3. J.W. Fergus, Materials challenges for solid-oxide fuel cells—an Overview. J. Hydrogen Economy 12, 56–62 (2007)

    Google Scholar 

  4. Ch. Chang, Ch. Hsu, J. Huang, B. Hwang, Preparation and characterization of SOFC cathodes made of SSC nanofibers. J. Alloy. Compd. 620, 233–239 (2015)

    Article  Google Scholar 

  5. F. Heydari, A. Maghsoudipoura, Z. Hamnabardb, S. Farhangdoust, Mechanical properties and microstructure characterization of zirconia nanoparticles glass composites for SOFC sealant. J. Mater. Sci. Eng. A 552, 119–124 (2012)

    Article  Google Scholar 

  6. S. Carter, A. Selcuk, R. Chater, J. Kajda, J. Kilner, Oxygen-transport in selected nonstoichiometric perovskite structure oxides. J. Solid State Ion. 53–6, 597–605 (1992)

    Article  Google Scholar 

  7. S. Jiang, A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. J. Solid State Ion. 146, 1–22 (2002)

    Article  Google Scholar 

  8. E. Murray, T. Sai, S. Barnett, Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. J. Solid State Ion. 110, 235–243 (1998)

    Article  Google Scholar 

  9. E. Murray, S. Barnett, (La, Sr) MnO3-(Ce, Gd)O2-x composite cathodes for solid oxide fuel cells. J. Solid State Ion. 143, 265–273 (2001)

    Article  Google Scholar 

  10. A. Esquirol, N. Brandon, J. Kilner, M. Mogensen, Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs. J. Electrochem. Soc. 151, A1847–A1855 (2004)

    Article  Google Scholar 

  11. C. Ding, T. Hashida, “High performance anode-supported solid oxide fuel cell based on thin-film electrolyte and nanostructured cathode. J. Energy Environ. Sci. 3, 1729–1731 (2010)

    Article  Google Scholar 

  12. T. Usui, Y. Ito, K. Kikuta, Fabrication and characterization of LSCF-GDC/GDC/NiO-GDC microtubular SOFCs prepared by multi-dip coating. J. Ceram. Soc. Jpn. 118, 564–567 (2010)

    Article  Google Scholar 

  13. H. Hwang, M. Ji-Woong, L. Seunghun, E. Lee, Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. J. Power Sources 145, 243–248 (2005)

    Article  ADS  Google Scholar 

  14. Y. Park, H. Kim, High-performance composite cathodes for solid oxide fuel cells. J. Hydrog. Energy 36, 9169–9179 (2011)

    Article  Google Scholar 

  15. C. Laberty, F. Zhao, K. Swider-Lyons, A. Virkar, High-performance solid oxide fuel cell cathodes with lanthanum-nickelate-based composites. J. Electrochem. Solid State Lett. 10, B170–B174 (2007)

    Article  Google Scholar 

  16. S. Jiang, J. Love, L. Apateanu, Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. J. Solid State Ion. 160, 15–26 (2003)

    Article  Google Scholar 

  17. A. Yan, M. Yang, Z. Hou, Y. Dong, M. Cheng, Investigation of Ba1-xSrxCo0.8Fe0.2O3-δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2. J. Power Sources 185, 76–84 (2008)

    Article  Google Scholar 

  18. D. Bastidas, S. Tao, J. Irvine, A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater Chem. 16, 1603–1605 (2006)

    Article  Google Scholar 

  19. R. Chiba, F. Yoshimura, Y. Sakurai, An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. J. Solid State Ion. 124, 281–288 (1999)

    Article  Google Scholar 

  20. S. Simner, J. Bonnett, N. Canfield, K. Meinhardt, V. Sprenkle, J. Stevenson, Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs. J. Electrochem. Solid State Lett. 5, A173–A175 (2002)

    Article  Google Scholar 

  21. S. Simner, J. Bonnett, N. Canfield, K. Meinhardt, J. Shelton, V. Sprenkle et al., Development of lanthanum ferrite SOFC cathodes. J. Power Sources 113, 1–10 (2003)

    Article  ADS  Google Scholar 

  22. S. Jiang, A comparative study of fabrication and performance of Ni/3 mol % Y2O3-ZrO2 and Ni/8 mol% Y2O3-ZrO2 cermet electrodes. J. Electrochem. Soc. 150, E548–E559 (2003)

    Article  ADS  Google Scholar 

  23. S. Zha, Z. Cheng, M. Liu, Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells. J. Electrochem. Soc. 154, B201–B206 (2007)

    Article  Google Scholar 

  24. Z.K. Huang, K.W. Chau, A new image thresholding method based on Gaussian mixture model. Appl. Math. Comput. 205(2), 899–907 (2008)

    Article  MathSciNet  Google Scholar 

  25. R. Taormina, K.W. Chau, Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinf. 17(1), 99–113 (2015)

    Article  Google Scholar 

  26. C.L. Wu, K.W. Chau, Y.S. Li, Methods to improve neural network performance in daily flows prediction. J. Hydrol. 372(1–4), 80–93 (2009)

    Article  ADS  Google Scholar 

  27. J. Zhang, K.W. Chau, Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. J. Univ. Comput. Sci. 15(4), 840–858 (2009)

    Google Scholar 

  28. C. Cheng, K.W. Chau, Y. Sun, J. Lin, Long-term prediction of discharges in manwan reservoir using artificial neural network models, advances in neural networks—ISNN 2005. Lect. Notes Comput. Sci. 3498, 1040–1045 (2005)

    Article  Google Scholar 

  29. K.W. Chau, C.L. Wu, A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinf. 12(4), 458–473 (2010)

    Article  Google Scholar 

  30. R. Taormina, K.W. Chau, R. Sethi, Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 25(8), 1670–1676 (2012)

    Article  Google Scholar 

  31. A. Mazahery, M.O. Shabani, Modification mechanism and microstructural characteristics of eutectic Si in casting Al-Si alloys: a review on experimental and numerical studies. JOM 66(5), 726–738 (2014)

    Article  ADS  Google Scholar 

  32. A.A. Tofigh, M.R. Rahimipour et al., Optimized processing power and trainability of neural network in numerical modeling of Al Matrix nano composites. J. Manuf. Process. 15(4), 518–523 (2013)

    Article  Google Scholar 

  33. A. Mazahery, M.O. Shabani, The accuracy of various training algorithms in tribological behavior modeling of A356-B 4C composites. Rus. Metall. (Metally) 7, 699–707 (2011)

    Article  ADS  Google Scholar 

  34. M.O. Shabani, A. Mazahery, Prediction performance of various numerical model training algorithms in solidification process of A356 matrix composites. Indian J. Eng. Mater. Sci. 19, 129–134 (2012)

    Google Scholar 

  35. A.A. Tofigh, M.O. Shabani, Efficient optimum solution for high strength Al alloys matrix composites. Ceram. Int. 39(7), 7483–7490 (2013)

    Article  Google Scholar 

  36. M.O. Shabani, M. Alizadeh, A. Mazahery, Modelling of mechanical properties of cast A356 alloy. Fatigue Fract. Eng. Mater. Struct. 34(12), 1035–1040 (2011)

    Article  Google Scholar 

  37. A. Mazahery, M.O. Shabani, Assistance of novel artificial intelligence in optimization of aluminum matrix nanocomposite by genetic algorithm. Metall. Mater. Trans. A 43, 5279–5285 (2012)

    Article  Google Scholar 

  38. M.R. Rahimipour, A.A. Tofigh et al., Strategic developments to improve the optimization performance with efficient optimum solution and produce high wear resistance aluminum–copper alloy matrix composites. Neural Comput. Appl. 24(7–8), 1531–1538 (2014)

    Article  Google Scholar 

  39. M.O. Shabani, A. Mazahery, Application of GA to optimize the process conditions of Al Matrix nano-composites. Compos. B 45, 185–191 (2013)

    Article  Google Scholar 

  40. A. Mazahery, M.O. Shabani, Development of the principle of simulated natural evolution in searching for a more superior solution: proper selection of processing parameters in AMCs. Powder Technol. 245, 146–155 (2013)

    Article  Google Scholar 

  41. H. Esen, M. Inalli, A. Sengur, M. Esen, Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energy Build. 40, 1074e1083 (2008)

    Article  Google Scholar 

  42. M.O. Shabani, M.R. Rahimipour, A.A. Tofigh, P. Davami, Refined microstructure of compo cast nanocomposites: the performance of combined neuro-computing, fuzzy logic and particle swarm techniques. Neural Comput. Appl. 26(4), 899–909 (2015)

    Article  Google Scholar 

  43. M. Buragohain, C. Mahanta, A novel approach for ANFIS modelling based on full factorial design. Appl. Soft Comput. 8, 609–625 (2008)

    Article  Google Scholar 

  44. A. A. Tofigh, M. R. Rahimipour, M. O. Shabani, P. Davami, Application of the combined neuro-computing, fuzzy logic and swarm intelligence for optimization of compocast nanocomposites, J. Compos. Mater. June 9, 2014, doi: 10.1177/0021998314538871

  45. M.K. Das, N. Kishor, Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water. Expert Syst. Appl. 36, 1142e1154 (2009)

    Google Scholar 

  46. M. Arkhipov, E. Krueger, D. Kurtener, Evaluation of ecological conditions using bioindicators: application of fuzzy modeling. Lect. Notes Comput. Sci. 5072, 491–500 (2008)

    Article  Google Scholar 

  47. A. Akbarzadeh, R.T. Mehrjardi, H. Rouhipour, M. Gorji, H.G. Rahimi, Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). J. Appl. Sci. Res. 5(5), 505–514 (2009)

    Google Scholar 

  48. E. Avci, Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system. Appl. Soft Comput. 8, 225–231 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by Iran Renewable Energy Organization (SUNA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, F., Maghsoudipour, A., Alizadeh, M. et al. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode. Appl. Phys. A 120, 1625–1633 (2015). https://doi.org/10.1007/s00339-015-9374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9374-y

Keywords

Navigation