Skip to main content

Advertisement

Log in

Mechanisms Driving the Distribution and Activity of Mineralization and Nitrification in the Reservoir Riparian Zone

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The riparian zone ecosystems have greater energy flow and elemental cycling than adjacent terrestrial and aquatic ecosystems. Mineralization and nitrification are important initiating processes in the nitrogen cycle, but their distribution and activity under different environmental conditions in the riparian zone and the driving mechanisms are still not clear. We investigated the effects of environmental and microbial factors on mineralization and nitrification activities by analyzing the community of alkaline (apr) and neutral (npr) metallopeptidase, ammonia-oxidizing archaea (AOA), and bacteria (AOB) in soils and sediments under different land-use types in the riparian zone of Miyun Reservoir, as well as measuring potential nitrogen mineralization and ammonia oxidation rates (AOR). The results showed that the mineralization and nitrification activities of soils were greater than those of sediments. AOA and AOB dominate the ammonia oxidation activity of soil and sediment, respectively. NH4+ content was a key factor influencing the ecological niche differentiation between AOA and AOB. The high carbon and nitrogen content of the woodland significantly increased mineralization and nitrification activity. Microbial communities were significantly clustered in the woodland. The land-use type, not the flooding condition, determined the distribution of microbial community structure. The diversity of npr was significantly correlated with potential N mineralization rates, while the transcript abundance of AOA was significantly correlated with ammonia oxidation rates. Our study suggests that environmental changes regulate the distribution and activity of mineralization and nitrification processes in the reservoir riparian zone by affecting the transcript abundance, diversity and community structure of the microbial functional genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw sequence data reported in this study have been deposited in NCBI Sequence Read Archive (SRA) and the BioProject number was PRJNA 888,823, which is available at https://www.ncbi.nlm.nih.gov/.

References

  1. Li S, Gang D, Zhao S, Qi W, Liu H (2021) Response of ammonia oxidation activities to water-level fluctuations in riparian zones in a column experiment. Chemosphere 269:128702. https://doi.org/10.1016/j.chemosphere.2020.128702

    Article  CAS  PubMed  Google Scholar 

  2. Bai J, Gao H, Xiao R, Wang J, Huang C (2012) A Review of soil nitrogen mineralization as affected by water and salt in coastal wetlands: issues and methods. Clean (Weinh) 40(10):1099–1105. https://doi.org/10.1002/clen.201200055

    Article  CAS  Google Scholar 

  3. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75(2):139–157. https://doi.org/10.1890/04-0988

    Article  Google Scholar 

  4. Hu H, Macdonald CA, Trivedi P, Anderson IC, Zheng Y, Holmes B, Bodrossy L, Wang J, He J, Singh BK (2016) Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biol Biochem 92:1–15. https://doi.org/10.1016/j.soilbio.2015.09.008

    Article  CAS  Google Scholar 

  5. Zhou N, Zhao S, Shen X (2014) Nitrogen cycle in the hyporheic zone of natural wetlands. Chin Sci Bull 59(24):2945–2956. https://doi.org/10.1007/s11434-014-0224-7

    Article  CAS  Google Scholar 

  6. Chen WB, Peng SL (2020) Land-use legacy effects shape microbial contribution to N2O production in three tropical forests. Geoderma 358:113979. https://doi.org/10.1016/j.geoderma.2019.113979

    Article  CAS  Google Scholar 

  7. Wang S, Wang W, Zhao S, Wang X, Hefting MM, Schwark L, Zhu G (2019) Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones. Water Res 162:139–150. https://doi.org/10.1016/j.watres.2019.06.052

    Article  CAS  PubMed  Google Scholar 

  8. Pinay G, Bernal S, Abbott BW, Lupon A, Marti E, Sabater F, Krause S (2018) Riparian corridors: a new conceptual framework for assessing nitrogen buffering across biomes. Front Environ Sci 6:47. https://doi.org/10.3389/fenvs.2018.00047

    Article  Google Scholar 

  9. Nguyen LTT, Osanai Y, Anderson IC, Bange MP, Braunack M, Tissue DT, Singh BK (2018) Impacts of waterlogging on soil nitrification and ammonia-oxidizing communities in farming system. Plant Soil 426:299–311. https://doi.org/10.1007/s11104-018-3584-y

    Article  CAS  Google Scholar 

  10. Weintraub MN, Schimel JP (2005) Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol Biochem 37(8):1469–1475. https://doi.org/10.1016/j.soilbio.2005.01.005

    Article  CAS  Google Scholar 

  11. Jan MT, Roberts P, Tonheim SK, Jones DL (2009) Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol Biochem 41(11):2272–2282. https://doi.org/10.1016/j.soilbio.2009.08.013

    Article  CAS  Google Scholar 

  12. Lori M, Symanczik S, Mäder P, Efosa N, Jaenicke S, Buegger F, Tresch S, Goesmann A, Gattinger A (2018) Distinct nitrogen provisioning from organic amendments in soil as influenced by farming system and water regime. Front Environ Sci 6:40. https://doi.org/10.3389/fenvs.2018.00040

    Article  Google Scholar 

  13. Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP (2008) Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4:184. https://doi.org/10.1038/msb.2008.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Tian D, Wang B, Wang J, Wang S, Chen HYH, Xu X, Wang C, He N, Niu S (2019) Microbes drive global soil nitrogen mineralization and availability. Glob Chang Biol 25:1078–1088. https://doi.org/10.1111/gcb.14557

    Article  PubMed  Google Scholar 

  15. Hu Y, Zhang Z, Yang G, Ding C, Lü X (2021) Increases in substrate availability and decreases in soil pH drive the positive effects of nitrogen addition on soil net nitrogen mineralization in a temperate meadow steppe. Pedobiologia 89:150756. https://doi.org/10.1016/j.pedobi.2021.150756

    Article  Google Scholar 

  16. You J, Das A, Dolan EM, Hu Z (2009) Ammonia-oxidizing archaea involved in nitrogen removal. Water Res 43(7):1801–1809. https://doi.org/10.1016/j.watres.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  17. Bernhard AE, Landry ZC, Blevins A, de la Torre JR, Giblin AE, Stahl DA (2010) Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl Environ Microbiol 76(4):1285–1289. https://doi.org/10.1128/AEM.02018-09

    Article  CAS  PubMed  Google Scholar 

  18. Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E, Ingalls AE, Stahl DA (2017) Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environ Microbiol Rep 9(3):250–256. https://doi.org/10.1111/1758-2229.12525

    Article  CAS  PubMed  Google Scholar 

  19. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10(5):1357–1364. https://doi.org/10.1111/j.1462-2920.2007.01563.x

    Article  CAS  PubMed  Google Scholar 

  20. Gaidos E, Rusch A, Ilardo M (2011) Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: community spatial structure, rare members and nitrogen-cycling guilds. Environ Microbiol 13(5):1138–1152. https://doi.org/10.1111/j.1462-2920.2010.02392.x

    Article  PubMed  Google Scholar 

  21. Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E (2009) Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3(8):916–923. https://doi.org/10.1038/ismej.2009.39

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Wang N, Zhu J, Liu Y, Xu X, Niu S, Yu G, Han X, He N, Luo Y (2018) Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Funct Ecol 32(1):83–94. https://doi.org/10.1111/1365-2435.13024

    Article  CAS  Google Scholar 

  23. von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soils 46(1):1–15. https://doi.org/10.1007/s00374-009-0413-8

    Article  Google Scholar 

  24. Clark DR, McKew BA, Dong LF, Leung G, Dumbrell AJ, Stott A, Grant H, Nedwell DB, Trimmer M, Whitby C (2020) Mineralization and nitrification: archaea dominate ammonia-oxidising communities in grassland soils. Soil Biol Biochem 143. https://doi.org/10.1016/j.soilbio.2020.107725

  25. Li X, Yang H, Shi W, Li Y, Guo Q (2018) Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, Northern China. Catena 169:11–20. https://doi.org/10.1016/j.catena.2018.05.026

    Article  CAS  Google Scholar 

  26. Gleeson DB, Müller C, Banerjee S, Ma W, Siciliano SD, Murphy DV (2010) Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol Biochem 42(10):1888–1891. https://doi.org/10.1016/j.soilbio.2010.06.020

    Article  CAS  Google Scholar 

  27. Moon JB, Wardrop DH, Bruns MAV, Miller RM, Naithani KJ (2016) Land-use and land-cover effects on soil microbial community abundance and composition in headwater riparian wetlands. Soil Biol Biochem 97:215–233. https://doi.org/10.1016/j.soilbio.2016.02.021

    Article  CAS  Google Scholar 

  28. Ma S, De Frenne P, Vanhellemont M, Wasof S, Boeckx P, Brunet J, Cousins SAO, Decocq G, Kolb A, Lemke I, Liira J, Naaf T, Orczewska A, Plue J, Wulf M, Verheyen K (2019) Local soil characteristics determine the microbial communities under forest understorey plants along a latitudinal gradient. Basic Appl Ecol 36:34–44. https://doi.org/10.1016/j.baae.2019.03.001

    Article  Google Scholar 

  29. Zhang L, Lv J (2021) Land-use change from cropland to plantations affects the abundance of nitrogen cycle-related microorganisms and genes in the Loess Plateau of China. Appl Soil Ecol 161. https://doi.org/10.1016/j.apsoil.2020.103873

  30. Paula FS, Rodrigues JL, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJ, Nusslein K, Deng Y, Tiedje JM, Pellizari VH (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 23(12):2988–2999. https://doi.org/10.1111/mec.12786

    Article  PubMed  Google Scholar 

  31. Isobe K, Koba K, Otsuka S, Senoo K (2017) Nitrification and nitrifying microbial communities in forest soils. J For Res 16(5):351–362. https://doi.org/10.1007/s10310-011-0266-5

    Article  CAS  Google Scholar 

  32. Ying JY, Zhang LM, He JZ (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2(2):304–312. https://doi.org/10.1111/j.1758-2229.2009.00130.x

    Article  CAS  PubMed  Google Scholar 

  33. Mafa-Attoye TG, Baskerville MA, Ofosu E, Oelbermann M, Thevathasan NV, Dunfield KE (2020) Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem. Sci Total Environ 724:138148. https://doi.org/10.1016/j.scitotenv.2020.138148

    Article  CAS  PubMed  Google Scholar 

  34. Edwards KR, Picek T, Čížková H, MáchalováZemanová K, Stará A (2014) Nutrient Addition effects on carbon fluxes in wet grasslands with either organic or mineral soil. Wetlands 35(1):55–68. https://doi.org/10.1007/s13157-014-0592-4

    Article  Google Scholar 

  35. Drenovsky RE, Steenwerth KL, Jackson LE, Scow KM (2010) Land use and climatic factors structure regional patterns in soil microbial communities. Glob Ecol Biogeogr 19(1):27–39. https://doi.org/10.1111/j.1466-8238.2009.00486.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murty D, Kirschbaum M, McMurtrie R, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature. Glob Chang Biol 8:105–123. https://doi.org/10.1046/j.1354-1013.2001.00459.x

    Article  Google Scholar 

  37. Guo X, Chen HYH, Meng M, Biswas SR, Ye L, Zhang J (2016) Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. For Ecol Manage 373:93–99. https://doi.org/10.1016/j.foreco.2016.03.048

    Article  Google Scholar 

  38. Xiong Z, Li S, Yao L, Liu G, Zhang Q, Liu W (2015) Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands. Ecol Eng 83:437–443. https://doi.org/10.1016/j.ecoleng.2015.04.094

    Article  Google Scholar 

  39. Zeng Q, Qin L, Bao L, Li Y, Li X (2016) Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. Environ Sci Pollut Res Int 23(20):21008–21019. https://doi.org/10.1007/s11356-016-7321-x

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Wang X, Wang X, Chen Y, Yang Z, Xie S, Li T, Song S (2022) Distribution characteristics of ammonia-oxidizing microorganisms and their responses to external nitrogen and carbon in sediments of a freshwater reservoir, China. Aquat Ecol https://doi.org/10.1007/s10452-022-09943-z

  41. Chen Y, Liu Y, Wang X (2017) Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl Microbiol Biotechnol 101(8):3379–3391. https://doi.org/10.1007/s00253-016-8019-1

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Wang C, Bao L, Xie S (2014) Impact of carbon source amendment on ammonia-oxidizing microorganisms in reservoir riparian soil. Ann Microbiol 65(3):1411–1418. https://doi.org/10.1007/s13213-014-0979-8

    Article  CAS  Google Scholar 

  43. Wang X, Wang C, Bao L, Xie S (2014) Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils. Appl Microbiol Biotechnol 98(4):1883–1892. https://doi.org/10.1007/s00253-013-5174-5

    Article  CAS  PubMed  Google Scholar 

  44. Li T, Wang X, Huang J, Wang Y, Song S (2022) Distribution of ammonia oxidizers and their role in N2O emissions in the reservoir riparian zone. J Basic Microbiol 62:1179–1192. https://doi.org/10.1002/jobm.202200190

    Article  CAS  PubMed  Google Scholar 

  45. Song S, Wang X, Wang Y, Li T, Huang J (2022) NO3(-) is an important driver of nitrite-dependent anaerobic methane oxidation bacteria and CH4 fluxes in the reservoir riparian zone. Environ Sci Pollut Res Int 29(11):16138–16151. https://doi.org/10.1007/s11356-021-16914-8

    Article  CAS  PubMed  Google Scholar 

  46. Su Y, Wang W, Wu D, Huang W, Wang M, Zhu G (2018) Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW). Sci Total Environ 624:87–95. https://doi.org/10.1016/j.scitotenv.2017.12.084

    Article  CAS  PubMed  Google Scholar 

  47. Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6(5):1032–1045. https://doi.org/10.1038/ismej.2011.168

    Article  CAS  PubMed  Google Scholar 

  48. Souza MPd, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere Bacteria enhance selenium accumulation and volatilization by indian mustard. Plant Physiol 119(2):565–573. https://doi.org/10.1104/pp.119.2.565

    Article  PubMed Central  Google Scholar 

  49. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of highthroughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  51. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242-245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Phillips LA, Schefe CR, Fridman M, O’Halloran N, Armstrong RD, Mele PM (2015) Organic nitrogen cycling microbial communities are abundant in a dry Australian agricultural soil. Soil Biol Biochem 86:201–211. https://doi.org/10.1016/j.soilbio.2015.04.004

    Article  CAS  Google Scholar 

  54. Merbt SN, Proia L, Prosser JI, Marti E, Casamayor EO, von Schiller D (2016) Stream drying drives microbial ammonia oxidation and first-flush nitrate export. Ecol 97(9):2192–2198. https://doi.org/10.1002/ecy.1486

    Article  Google Scholar 

  55. Zhang LM, Duff AM, Smith CJ (2018) Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal Bay ecosystems. Environ Microbiol 20(8):2834–2853. https://doi.org/10.1111/1462-2920.14238

    Article  CAS  PubMed  Google Scholar 

  56. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266):976–979. https://doi.org/10.1038/nature08465

    Article  CAS  PubMed  Google Scholar 

  57. Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ, Myrold DD, Sayavedra-Soto L, Bottomley PJ (2013) Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria. Appl Environ Microbiol 79(21):6544–6551. https://doi.org/10.1128/AEM.01928-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li SNS (1997) Biodiversity enhances ecosystem reliability. Nature 390(4):507–509. https://doi.org/10.1038/37348

    Article  CAS  Google Scholar 

  59. Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526(7574):574–577. https://doi.org/10.1038/nature15374

    Article  CAS  PubMed  Google Scholar 

  60. Wagg C, Bender SF, Widmer F, van der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111(14): 5266-5270. https://doi.org/10.1073/pnas.1320054111

  61. Vranova V, Rejsek K, Formanek P (2013) Proteolytic activity in soil: a review. Appl Soil Ecol 70:23–32. https://doi.org/10.1016/j.apsoil.2013.04.003

    Article  Google Scholar 

  62. Liu S, Hu BL, He ZF, Zhang B, Tian GM, Zheng P, Fang F (2015) Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 99(20):8587–8596. https://doi.org/10.1007/s00253-015-6750-7

    Article  CAS  PubMed  Google Scholar 

  63. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PS, Chan PP, Gollabgir A, Hemp J, Hugler M, Karr EA, Konneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A 107(19): 8818-8823. https://doi.org/10.1073/pnas.0913533107

  64. Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A 108(20): 8420-8425. https://doi.org/10.1073/pnas.1013488108

  65. Ravindran A, Yang SS (2015) Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. J Microbiol Immunol Infect 48(4):362–369. https://doi.org/10.1016/j.jmii.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  66. Song M, Li Z, Liu M, Liu M, JIang C (2014) Effects of mixture of forest litter on nutrient contents and functional diversity of microbial community in soil. Chin J Ecol 33(9):2454–2461. https://doi.org/10.13292/j.1000-4890.2014.0162

    Article  Google Scholar 

  67. Pellegrini AA, Hobbie SE, Reich PB, Jumpponen A, Brookshire ENJ, Caprio AC, Coetsee C, Jackson RB (2020) Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol Monogr 0:e01409. https://doi.org/10.1002/ecm.1409

    Article  Google Scholar 

  68. Li M, Zhu L-C, Zhang Q-F, Cheng X-L (2013) Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China. Chin J Plant Ecol 36(6):530–538. https://doi.org/10.3724/sp.J.1258.2012.00530

    Article  Google Scholar 

  69. Kong W, Yao Y, Zhao Z, Qin X, Zhu H, Wei X, Shao M, Wang Z, Bao K, Su M (2019) Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau. Catena 172:753–763. https://doi.org/10.1016/j.catena.2018.09.037

    Article  CAS  Google Scholar 

  70. Wang F, Liang X, Ma S, Liu L, Wang J (2021) Ammonia-oxidizing archaea are dominant over comammox in soil nitrification under long-term nitrogen fertilization. J Soils Sediments 21(4):1800–1814. https://doi.org/10.1007/s11368-021-02897-z

    Article  CAS  Google Scholar 

  71. Ding L, Zhou J, Li Q, Tang J, Chen X (2022) Effects of land-use type and flooding on the soil microbial community and functional genes in reservoir riparian zones. Microb Ecol 83(2):393–407. https://doi.org/10.1007/s00248-021-01746-3

    Article  CAS  PubMed  Google Scholar 

  72. Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen J, Heidelberg JF, Alley MRK, Ohta N, Maddocki JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadkei ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzber SL, Venter JC, Shapiro L, Fraser CM (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98(7): 4136–4141. 10.1073ypnas.061029298

  73. Ding X, Jing R, Huang Y, Chen B, Ma F (2017) Bacterial Structure and Diversity of Rhizosphere and Bulk Soil of Robinia pseudoacacia Forests in Yellow River Delta. Acta Pedologica Sinica 54(5):1293–1302. https://doi.org/10.11766/trxb201703230510

    Article  Google Scholar 

  74. Zorz JK, Kozlowski JA, Stein LY, Strous M, Kleiner M (2018) Comparative proteomics of three species of ammonia-oxidizing bacteria. Front Microbiol 9:938. https://doi.org/10.3389/fmicb.2018.00938

    Article  PubMed  PubMed Central  Google Scholar 

  75. Eberspächer J (2015) Phenylobacterium. Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, New York, pp 1–12.

  76. Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7(1):15. https://doi.org/10.1186/s40168-019-0630-9

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang WD, Liu WY, Wu D, Wang XX, Zhu GB (2018) Differentiation of nitrogen and microbial community in the littoral and limnetic sediments of a large shallow eutrophic lake (Chaohu Lake, China). J Soils Sediments 19(2):1005–1016. https://doi.org/10.1007/s11368-018-2090-4

    Article  CAS  Google Scholar 

  78. Liang D, Ouyang Y, Tiemann L, Robertson GP (2020) Niche differentiation of bacterial versus archaeal soil nitrifiers induced by ammonium inhibition along a management gradient. Front Microbiol 11:568588. https://doi.org/10.3389/fmicb.2020.568588

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yao H, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microbiol 15(9):2545–2556. https://doi.org/10.1111/1462-2920.12141

    Article  CAS  PubMed  Google Scholar 

  80. Fernandez-Guerra A, Casamayor EO (2012) Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers. PLoS One 7(10):e47330. https://doi.org/10.1371/journal.pone.0047330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779–790. https://doi.org/10.1038/nrmicro2439

    Article  CAS  PubMed  Google Scholar 

  82. Schimel J, Balser TC, Wallentein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecol 88(6):1386–1394. https://doi.org/10.1890/06-0219

    Article  Google Scholar 

  83. Xiang S, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40(9):2281–2289. https://doi.org/10.1016/j.soilbio.2008.05.004

    Article  CAS  Google Scholar 

  84. Lin J, Liu D, Zhang S, Yu Z, He L, Yu S (2017) Effect of coupling process of wetting-drying cycles and seasonal temperature increasing on sediment nitrogen minerization in the water level fluctuating zone. Environ Sci 38(2):555–562. https://doi.org/10.13227/j.hjkx.201607236

    Article  Google Scholar 

  85. Li M, He H, Mi T, Zhen Y (2022) Spatiotemporal dynamics of ammonia-oxidizing archaea and bacteria contributing to nitrification in sediments from Bohai Sea and South Yellow Sea, China. Sci Total Environ 825:153972. https://doi.org/10.1016/j.scitotenv.2022.153972

    Article  CAS  PubMed  Google Scholar 

  86. Luo J, Liu Y, Tao Q, Hou Q, Wu K, Song Y, Liu Y, Guo X, Li J, Hashmi M, Liang Y, Li T (2019) Successive phytoextraction alters ammonia oxidation and associated microbial communities in heavy metal contaminated agricultural soils. Sci Total Environ 664:616–625. https://doi.org/10.1016/j.scitotenv.2019.01.315

    Article  CAS  PubMed  Google Scholar 

  87. Li Z, Zeng Z, Tian D, Wang J, Fu Z, Zhang F, Zhang R, Chen W, Luo Y, Niu S (2020) Global patterns and controlling factors of soil nitrification rate. Glob Chang Biol 26(7):4147–4157. https://doi.org/10.1111/gcb.15119

    Article  PubMed  Google Scholar 

  88. Lehtovirta-Morley LE (2018) Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett 365(9):4931719. https://doi.org/10.1093/femsle/fny058

    Article  CAS  Google Scholar 

  89. Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xia F, Chang SX, Brookes PC, Dahlgren RA, Xu J (2020) Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob Chang Biol 26(9):5267–5276. https://doi.org/10.1111/gcb.15211

    Article  PubMed  Google Scholar 

  90. Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Glob Biogeochem Cycles 19(1):GB1007. https://doi.org/10.1029/2004gb002282

    Article  Google Scholar 

  91. Wu RN, Meng H, Wang YF, Lan W, Gu JD (2017) A more comprehensive community of ammonia-oxidizing archaea (AOA) revealed by genomic DNA and RNA analyses of amoa gene in subtropical acidic forest soils. Microb Ecol 74(4):910–922. https://doi.org/10.1007/s00248-017-1045-4

    Article  CAS  PubMed  Google Scholar 

  92. Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem 96:4–15. https://doi.org/10.1016/j.soilbio.2016.01.012

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Beijing Natural Science Fund (KZ201810028047) and the National Natural Science Foundation of China (41271495).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The experiments were conducted by Tingting Li and Xia Wang. Xiaoyan Wang was responsible for funding acquisition, project supervision and management, conceptualization, and writing-review. The data were analyzed by Tingting Li, Jingyu Huang, and Lei Shen. The first draft of the manuscript was written by Tingting Li and all authors commented on previous versions of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xiaoyan Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 499 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, X., Wang, X. et al. Mechanisms Driving the Distribution and Activity of Mineralization and Nitrification in the Reservoir Riparian Zone. Microb Ecol 86, 1829–1846 (2023). https://doi.org/10.1007/s00248-023-02180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02180-3

Keywords

Navigation