
Computational Linguistics:
Language Learning

Edward P. Stabler
Lx212 notes, draft 2012-12-06 19:11

ii

c© 2014 Edward P. Stabler. Typeset with the LaTeX macro system of the American Mathematical Society.

Contents

0 Introduction 1

0.0 Method . 1

0.1 Kinds of recursive systems . 2

0.2 Context sensitive grammars and languages . 6

0.3 Summary . 13

1 Learning a language from examples: Gold paradigm 23

1.0 Basics . 23

1.1 First results . 23

1.2 Single value languages . 25

1.3 Languages defined by constraints . 26

1.4 Exercises . 26

1.5 Locking sequences . 27

1.6 Exercise . 28

1.7 Languages defined by constraints, part 2 . 28

1.8 Angluin’s subset theorem . 29

2 Probabilistic criteria for distribution-free learning: PAC 31

2.0 PAC learning . 31

2.1 Learning finite sets of finite sets . 32

2.2 Learning rays . 33

2.3 Learning rectangles . 35

2.4 VC dimension . 37

2.5 Appendix: exp and log review . 39

2.6 Appendix: probability review . 40

3 k-reversible languages 45

3.0 Finite state (i.e. regular) languages . 45

3.1 Gold learners for k-reversible languages . 54

3.2 VC dimension of L
k−reversible . 56

3.3 Exercises . 57

4 Learning subsets of the PDFAs 59

4.1 Distances between languages (or parts of a language) . 59

4.2 Relative entropy . 62

4.3 Weighted finite state automata . 63

4.4 Computing exact relative entropy of two automata . 66

4.5 ‘Smoothing’ probabilities . 70

4.6 Example: comparing 4 earlier learners . 72

4.7 Clark&Thollard’04: φPDFA,|Q|,Es,µ . 75

4.8 Castro&Galvadà’08 φPDFA,|Q|,Es . 77

4.9 Observations, questions . 78

iii

iv CONTENTS

5 Learning subsets of LCF 83

5.1 Learning LS CF from examples . 89

5.2 Learning LS CFk,l
from examples . 93

5.3 Learning LFCP(k) from a membership oracle . 94

5.4 Evidence of constituency . 100

5.5 Type inference for CFGs . 104

5.6 Weights for CFGs . 116

5.7 Appendix: First implementation of IIL . 121

Chapter 0 Introduction

(0) Some traditional questions.

• Is language acquisition more like learning from evidence or more like growth or triggering?

• Are specific properties of human syntax innately given at the outset, in every human learner?

And linguists are particularly interested in the questions,

• How do properties of the language learning shape the languages we speak?

• How can linguistic ability be acquired as rapidly and reliably as it is, from readily available data?

Questions like these generate heated disputes, but they are typically posed in these vague terms that obscure the real

issues. We will introduce some ways of thinking about learning that will allow much clearer and more interesting

questions to be formulated and (some of them) answered.

(1) In the past 10 years or so, a remarkable consensus emerged about appropriate measures of learning complexity,

measures related to how much evidence might be required to distinguish one hypothesis from alternatives. ”VC

dimension” and a number of other, independently proposed measures turn out to be equivalent, showing that a number

of independent traditions have homed in on essentially the same idea about learning. Having a criterion like this is

important because it allows us to to define the kind of learning process we should be searching for. (Blumer et al.,

1989; Mukherjee et al., 2004)

(2) With this measure, it is easy to establish the learnability of finitely parameterized grammars, OT grammars and har-

monic grammars that assume a given, finite list of constraints. But these results are unsatisfying if you doubt that the

number of parameters needed to define human languages (with their lexicons included) is small enough to be treated as

a finite, given list. And in certain cases it can be difficult or impossible to apply these methods directly to unanalyzed

data of the sort plausibly available to the human learner. (Chomsky, 1981; Pinker, 1982; Heinz, Kobele, and Riggle,

2009; Bane, Riggle, and Sonderegger, 2010)

(3) Recent results establish the learnability of certain aspects of linguistic structure from data more likely to be percep-

tually available, without assuming a given, finite parameterization (Angluin, 1982; Clark and Thollard, 2004). In

phonology, it appears that at least some of the patterns may be in ”sub-regular” classes that allow efficient learning

(Frank and Satta, 1998; Jäger, 2002; Heinz, 2010), and

(4) some of these ideas for learning regular languages have been extended to the more complex patterns in syntax. In

particular, we now have learners for significant classes of context-free (Clark and Eyraud, 2007) and non-context-free

languages definable by simple, formal ’minimalist grammars’ (Yoshinaka and Clark, 2010; Yoshinaka, 2010).

0.0 Method

(5) Chomsky’65 Aspects of the Theory of Syntax (Chomsky, 1965)

• Identify factors underlying linguistic behavior. . .

(p5) The study actual linguistic performance, we must consider the interaction of a variety of factors, of which the underlying

competence of the speaker is only one. In this respect, study of language is no different from empirical investigation of

other complex phenomena.

• universal regularities hide in irregular details

(p6) [Although] traditional and structuralist grammars. . . may contain full and explicit lists of exceptions and irregularities, they

provide only examples and hints concerning the regular and productive syntactic processes . . . [It] is to be supplemented

by a universal grammar that . . . expresses the deep-seated regularities which, being universal, are omitted from the

grammar itself.

1

2 CHAPTER 0. INTRODUCTION

(p6) . . . The problem for the linguist, as well as for the child learning the language, is to determine from the data of perfor-

mance the underlying system of rules that has been mastered by the speaker-hearer and that he puts to use in actual

performance.

(1981,p10) In the general case of theory construction, the primitive basis can be selected in any number of ways,. . . But

in the case of UG . . . we want the primitives to be concepts that can plausibly be assumed to provide a preliminary,

prelinguistic analysis of a reasonable selection of presented data, that is, to provide the data that are mapped by the

language faculty to a grammar. . . [Restricting] the class of grammars mad accessible in principle by UG. . . to account for

the fact that knowledge of language is acquired on the basis of the evidence available.

• Linguistic structure not a mirror of thought

(p6) [A] reason for the failure of traditional grammars, particular or universal, to attempt a precise statement of regular

processes of sentence formation and sentence interpretation lay in the widely held belief that there is a “natural order of

thoughts” that is mirrored by the order of words. Hence, the rules of sentence formation do not really belong to grammar

but to some other subject in which the “order of thoughts is studied.”

• Grammar as some kind of recursive system

(p6) But the fundamental reason for this inadequacy of traditional grammars is a more technical one. . . the technical devices

for expressing a system of recursive processes were simply not available until much more recently.

• ‘Implementation’ in performance model may be nontrivial

(p9) [A] generative grammar is not a model for a speaker or a hearer. It attempts to characterize in the most neutral possible

terms the knowledge of the language that provides the basis for actual use of language by a speaker-hearer. . . [It] does

not, in itself, prescribe the character or functioning of a perceptual model or a model of speech production.

• Identify factors underlying behavior

• Universal regularities hide in irregular details

(universals restricting the possible languages)

• Linguistic structure not a mirror of thought

• Grammar as some kind of recursive system

• ‘Implementation’ of grammar may be nontrivial

• Causal factors in language structure restricted

• The kind of recursive system is a language universal

• We want learners for that kind of recursive system

0.1 Kinds of recursive systems

0.1.1 The Chomsky hierarchy

(6) The classical presentation:

Reg CF CS RE non−REFin

grammar rules

Fin: S → a0 . . . an

Reg:A→ aB,A→ ǫ

CF: A→ X

CS: X → Y with |X| < |Y |

RE: X → Y

(7) Fin: S → a0 . . . an, a list

0.1. KINDS OF RECURSIVE SYSTEMS 3

Example: S→ aarvarks ate

S→ aarvarks ate apples

S→ zebras zoom

Each such grammar G corresponds to a ‘list automaton’

S

0 . 1
aardvarks

1 . 1
aardvarks

n . 1

zeb ra s

0 . 2
a t e

1 . 2
a t e

n . 2
zoom

1 . 3
apples

This is a simple kind of ‘finite state automaton’, FSA.

(8) Fin: A→ aB, A→ ǫ without cycles

• FSA state A is cyclic if, from A, A can be reached in ≥ 1 steps

• Category A is recursive iff, from A, . . . A. . . derivable in ≥ 1 steps. (cf Aho&Ullman’72,p153)

Example: S→ aardvarks A S→ zebras D

A→ ate B D→ zoom E

B→ apples C E→ ǫ
B→ ǫ
C→ ǫ

S

Aaardvarks

D

zebras

B
a t e

E
zoom

C
apples

(9) L(list fsa) = L(acyclic fsa) = Fin (‘weakly’ equivalent)

But the machines/grammars are different!

|sentence| acyclic fsa size la size

1
0 1

a

b

2 3

2
0 1

a

b
2

a

b

3 9

3
0 1

a

b
2

a

b
3

a

b

4 25

n n+1 n2n + 1

Diffs in size of minimal, weak equivalents can be exponential.

(10) Why English < Fin

• English has infinitely many sentences, since for any s ∈English, I can create a longer one.

Worry: This arg only works for precise concepts like prime number, not for concepts with indefinite boundaries like heap or

bald person

• ‘[T]he assumption that language is infinite is made for the purpose of simplifying the description’ (Chomsky,

1956).

Of course, any model of human cognition will make simplifications, and thus be inadequate in certain ways. . . (Fitch and Frederici

2012)

Worry: Apparently contradicts first idea, raises questions about what ‘simplifications’ are allowed.

4 CHAPTER 0. INTRODUCTION

(11) Why English < Fin: second try

(Chomsky’65,p3) Linguistic theory is concerned primarily with an ideal speaker-hearer . . . unaffected by such grammatically

irrelevant conditions as memory limitations. . .

A two-factor account:

• English language recognizers have recursive, cyclic categories, so the language is infinite.

• English language recognizers have finite lifetimes, attention, but the factors influencing this are irrelevant to the

factors determining linguistic structure.

Yes, our account of English is incomplete and incorrect in various ways, but these claims are not approximate, but true, and

commonplace. Cf. claims about a pendulum, or a car engine, or a bodily organ.

0.1.2 Regular grammars and languages: recognizable with finite memory

(12) Reg: A→ aB, A→ ǫ (mem finite, but recursion allowed!)

0

1

john

m a r y

a n d

2

praised

criticized

a n d 3

john

m a r y

a n d

a n d
a n d

size(A)=4 but |L(A)|=∞

0→ john 1

0→ mary 1

1→ and 0

1→ praised 1

1→ criticized 1

2→ and 1

2→ john 3

2→ mary 3

3→ ǫ
3→ and 2

3→ and 1

3→ and 0

(13) Eng < Reg: the ‘supra-regular’ hypothesis

(Fitch, Frederici, and Hagoort, 2012) Among linguists, psycholinguists and computer scientists today, the supra-regular hy-

pothesis is nearly universally accepted. . . It has become a truism that natural language requires supra-regular resources,

which are thus presumed to be present in some form in the human mind and implemented by human brains: this is not

an issue debated in the recent literature. It is thus a peculiar historical fact that, until very recently, neither neuroscientists

nor experimental and animal psychologists have shown any interest in this issue. (p1927)

Supra-regular distinctiveness hypothesis: . . . humans are unusual (or perhaps unique) in possessing supra-regular process-

ing power. (p1929)

(14) Why English < Reg

(Jäger and Rogers, 2012) The crucial insight here is that English has center embedding constructions. . .

As far as the grammar of English goes, there is no fixed upper bound on the number of levels of embedding.

Consequently, English grammar allows for a potentially unlimited number of nested dependencies of unlimited

size.

Isn’t this shaky evidence? Why not assume a fuzzy boundary around 2 embeddings, with 3 marginal, but 10 out? – that would be

representable with a regular grammar

0.1. KINDS OF RECURSIVE SYSTEMS 5

(15) Why AGL language < Reg: again

By testing the learner on examples of an artificial language (AnBn) with 2 embeddings, can we tell if the learner has

acquired a grammar allowing more than 2?

(Jäger&Rogers’12) To get evidence that the learner has done this, one needs to include strings [allowing more than 2

embeddings]. . . [Tests of between 1 and 3 embeddings] seems very near the boundary of practicality for most experiments

involving living organisms.

This situation seems quite serious! Is the only evidence that the grammar accepts more than n embeddings only obtainable by

checking whether the learner can handle sentences with that many embeddings? If that were true, then it’s absolutely clear that we

would have no evidence for unbounded embedding of this sort in human languages, as we worried when we looked at neither. . . nor

above!

(16) When does a physical computer use a language < Reg?

The answer is not in your formal language theory text that I have ever seen!

(Hopcroft and Ullman, 1979, p14) The computer itself can be viewed as a finite state system, although doing so turns

out to be not as useful as one would like.

(Gurevich, 1988, p412) . . . the classical theory of finite-state machines is not adequate to deal with real computers. . . there

are too many states.

. . . assume infinite when it’s useful? When is that?

(17) Why English < Reg: second try

(Fitch and Frederici, 2012, p1940) Let us assume that human language use could be modeled by a FSA, augmented with

transition probabilities. . . such a Markov grammar would require an enormous number of parameters.

• not necessarily enormous unless each is independent of others

• why assume probabilistic grammars with infinitely many require fewer parameters?

(18) Why English < Reg: third try

(Chomsky, 1965, p3) Linguistic theory is concerned primarily with an ideal speaker-hearer . . . unaffected by such grammati-

cally irrelevant conditions as memory limitations. . .

• that is, influences on analysis , influences on memory limitations, so outside the domain of the grammar. A factored

account.

(Miller, 1967) constituent structure languages are more natural, easier to cope with, than regular languages. . . The hier-

archical structure of strings generated by constituent-structure grammars is characteristic of much other behavior that

is sequentially organized; it seems plausible that it would be easier for people than would the left-to-right organization

characteristic of strings generated by regular grammars

• that is, a wide variety of evidence supports the idea that we are computing structures (for short, intelligible sentences) not

definable by regular grammars. Tis the main point! This is why the supra-regular hypothesis about human language is

uncontroversial.

So we should ask first: what kind of grammar G is being used? Then, we could consider the parasitic question: what is

L(G)? So (1) humans use non-regular grammars, and then (2), because of (1), the best theories assume we implement

parsers for grammars G such that neither. . . nor embeddings are not bounded.

(19) Consider the regular and context free derivations:

this derivation not regular! why preferred?

• same DPs in diff positions

• new name⇒ both positions

• boundary effects (e.g. click)

• semantic compositionality,. . .

6 CHAPTER 0. INTRODUCTION

0.1.3 Context free grammars and languages

(20) CF: A→ X (context free grammar)

TP→ DP VP

VP→ V DP

V→ criticized

DP→ DP D’

D’→ and DP

DP→ john

DP→ mary

This grammar G not regular, but L(G) is.

• Not simpler than (12) in the ‘false but useful approximation’ sense, but in a way that makes it more believable.

(21) We have these hypotheses:

(H1) G(English) < Reg ⇐ clear!

(H2) L(English) < Reg

The strong evidence for H2 is not our judgments about (our ‘mastery’ of) neither-nor and other center-embeddings,

but H1.

Argument sketch: Notice that the structure of the embedded clause, given something like (H1) looks very similar to

the simple sentence:

the claim that [the claim is funny] is funny

the claim is funny

If we say it is the same, then L(English) < Reg.

(22) • 3 factors: G(HL) + memory limits + lifespan

• G(HL) non-Reg, supporting, for example, L(English) non-Reg

These claims are not approximate, but true, and commonplace. Cf. a computer parses arithmetic expressions.

0.2 Context sensitive grammars and languages

(23) CS: X → Y with |X| ≤ |Y |

S→ aSX S→ bSY S→ LQ S→ MR

QX→ XQ RX→ XR QY→ YQ RY→ YR

LX→ LQ MX→ MQ LY→ LR MY→ MR

L→ a M→ b Q→ a R→ b

This defines the non-CF language {xx| x ∈ {a, b}+} (Mateescu and Salomaa, 1997, Ex.2.2)

0.2. CONTEXT SENSITIVE GRAMMARS AND LANGUAGES 7

Deriving aabaab:

These grammars can define difficult

languages, and they are difficult to

reason about.

(24) Refining the Chomsky hierarchy

phrase structure (selection)?
lexicon?

human syntax?

Reg
CF

TAG

RE
CS

CMG
MG

(MCS): HLs are weakly and strongly ‘mildly context sensitive’ (Joshi, 1985)

Strong MCS = HLs are weakly and strongly TAG languages

Weak MCS = HLs are weakly and strongly MG languages

(The smaller loops indicate some classes that we have learners for – we will get to them soon.)

(25) Michaelis and Harkema showed that MGs and multiple context free grammars (MCFGs) define exactly the same

languages, (Michaelis, 1998, 2001b; Harkema, 2001), and it was already known Seki et al. (1991) that MCFGs define

the same languages as ‘set-local’ TAGs and certain other formalisms.

(26) Jäger&Rogers’12 suggest that “Most experts. . . assume at this time that all natural languages are MG languages”

(Jäger and Rogers, 2012, p.1961), but there are arguments that human grammars have copying and that the string lan-

guages of human languages sometimes show this power, putting them in the class that we call copying MG languages

(CMG).

(27) MG,CMG grammars are naturally regarded as defining languages in 2 steps (Mönnich, 1998; Michaelis, Mönnich, and Morawietz,

2000; Morawietz, 2003; Kobele, Retoré, and Salvati, 2007).

8 CHAPTER 0. INTRODUCTION

0.2.1 Minimalist grammars (MG)

(28) ‘bare phrase structure’ (Stabler, 1997, 2010; Michaelis, 2001a)

NOT:
DP

D′

D

the

NP

N′

N

idea

NOT:
the

the idea

But:
<

the:D idea

The < “points toward” the head of the phrase.

The largest subtree with a given head is a maximal projection.

(29) lexical items: Vocabulary paired with feature sequences

every,some,student,... (vocabulary)

C, T, D, N, V, P,... (categories)

=C, =T, =D, =N, =V, =P,... (selectors)

+wh, +case, +focus,... (licensors)

-wh, -case, -focus,... (licensees)

Examples: Marie::D

who::D -wh

praises::=D =D V

ǫ::=I +wh C

(30) External merge (•) complements on right, additional selected elements on left

praises::=D =D V + Pierre::D ⇒ <

praises:=D V Pierre

<

praises:=D V Pierre

+ Marie::D ⇒ >

Marie <

praises:V Pierre

(2 features deleted, and :: in lexical items changes to : in derived structures)

(31) Internal merge (◦) in a tree whose head has first feature +f, move maximal -f subtree specifier position:

<

ǫ:+wh C >

Marie <

praises <

which:-wh student

⇒
>

<

which student

<

ǫ:C >

Marie <

praises

(SMC) ◦ applies only when exactly 1 head has -f first feature

0.2. CONTEXT SENSITIVE GRAMMARS AND LANGUAGES 9

(32) example grammar:

0 Pierre::D who::D -wh 4

1 Marie::D ǫ::=V +wh C 5

2 praises::=D =D V know::=C =D V 6

3 ǫ::=V C

steps 1,2,3

•(2,4)= 7

<

praises:=D V who:-wh

•(7,1)= 8

>

Marie <

praises:V who:-wh

•(5,8)= 9

<

ǫ:+wh C >

Marie <

praises who:-wh

step 4 all 4 steps

>

who <

ǫ:C >

Marie <

praises

◦

•

ǫ::=V +wh C •

•

praises::=D =D V who::D -wh

Marie::=D

◦(9)=derived tree derivation tree

(completed derivation with 1 feature left; 8 features checked in total)

The mapping from the derivation tree on the right to the derived tree on the left is easy to calculate! (Kobele, Retoré, and Salvati,

2007)

step 4 all 4 steps

CP

DP0

D’

D

who

C’

C VP

DP

D’

D

Marie

V’

V

praises

DP

t0

◦

•

ǫ::=V +wh C •

•

praises::=D =D V who::D -wh

Marie::=D

derived tree derivation tree

The mapping from the derivation tree on the right to the derived tree on the left is easy to calculate!

10 CHAPTER 0. INTRODUCTION

(33) A grammar for the non-CF language {xx| x ∈ {a, b}∗}

ǫ::T -r -l ǫ::=T +r +l T

a::=T +r A -r b::=T +r B -r

a::=A +l T -l b::=B +l T -l

(34) MG in 2 finite state steps: this account is detailed in Kobele, Retoré, and Salvati (2007)

0. form derivation (trivial!)

1. check derivation (at interfaces?) (FS dbutt)

2. map to PF/LF (FS dmbutt)

nb: There are many ways to do 0,1,2, and of course these steps could be interleaved or folded together in an implementation.

Standard grammars have these steps all folded together.

FS d(m)butt = finite state deterministic (multiple) bottom-up tree transducer

0.2. CONTEXT SENSITIVE GRAMMARS AND LANGUAGES 11

0. form derivation: merge

Form derivation by combining any two lexical items or derivations:

or by ‘combining’ with something already in the derivation:

good derivation bad derivation

1. check derivation: ‘deterministic bottom-up tree transducer’

• At the leaves, let the ‘state’ be the features of the lexical items.

• Compute ‘state’ of internal nodes by feature checking.

• Derivation is good iff the state of the root is C (or whatever counts as an acceptable phrasal category)

Checking the good derivation:

good derivation leaves⇒states

now up the tree. . .

DP features V’ features VP features C’ features CP feature

Success!

12 CHAPTER 0. INTRODUCTION

(35) 2. (Ck tree in course of) mapping to PF/LF

good derivation leaves⇒states

now up the tree. . .

DP features V’ features

continuing. . .

VP features C’ features CP features

success!

0.3. SUMMARY 13

0.3 Summary

• The Chomsky hierarchy is like a map of all possible languages, with regions defined by the kinds of rules you can use to

define the languages there (rules that determine analyses of the expressions in those languages).

We will explore various regions of this map, in some detail, in this class!

• When a learner is born/created in a community using a language somewhere on this map, some language in the Chomsky

hierarchy, is there a way for the learner to determine, from listening to the language, where the language is on this map?

We will see that, in general, there is no way to do this, without ‘universal’ assumptions about what is to be learned. This

is the puzzle we will be struggling with.

• One big division in the Chomsky hierarchy is between the languages that can be recognized by finite devices (with a

finite amount of memory) – these are the regular languages, the finite state languages – vs. languages that cannot be

recognized with finite memory.

• The language of arithmetic is non-regular. It includes expressions like

5 + ((2 × 3)/4)

but not expressions like

))5 + ×2/3 − (+4(.

One very basic way to show this is to observe that the open and close parentheses must match in arithmetic. An expression

can begin with n open parentheses, for any n, but it is only well-formed if each open parenthesis has a matching close

parenthesis. Obviously, you can’t do this with finite memory, because when n gets high enough, the finite memory will

not be able to count that high!

Similarly for the slightly simpler language anbn. In this language, for every a, there must be a corresponding b. Obviously,

a finite device cannot enforce that restriction for all n.

(The Myhill-Nerode theorem formalizes this reasoning - coming later!)

A ‘standard’ story: (to be rejected below!)

s1. Although finite devices cannot recognize non-regular languages, it is simpler and more useful to regard certain human

(and laptop computer) languages as non-regular. (This is now a consensus position.)

s2. The main evidence for the non-regularity of English is the existence of anbn patterns, such as we see in sentences of

the form

s3. Chomsky (1956) argued that context free grammars were not appropriate for human languages, but the existence

languages with non-context-free string sets was not uncontroversially established until 1985 with the publication of a

paper showing a crossing dependency pattern in Bambara compounding Culy (1985), and another showing a crossing

dependency pattern Shieber (1985) in Swiss-German:

(I think even these ‘uncontroversial’ results are misunderstood, as will be discussed later. But this is the conventional

picture.)

Both of the pictures above are from Jäger and Rogers (2012). Compare, e.g. Peters (1987), which seems to offer a version of this same

story but then comes close to the grammar-based alternative we recommend below.

14 CHAPTER 0. INTRODUCTION

Problems for the previous perspective:

p1. When is it correct to say that a device is using a non-regular language?

(This question is directly relevant, because we also want to know: how could a learner detect whether the language in

use is a regular language?)

The standard answers are not satisfying! Assume the language is non-regular whenever. . .

a1. a regular grammar would need lots of states.

a2. a non-regular grammar would be significantly simpler.

a3. the language users shows mastery of embeddings anbn for sufficiently high n.

a4. the language users can potentially handle anbn for any n.

p2. Humans can handle nested neithern . . .norn . . . only to about n = 2 or 3. This seems very poor evidence of ‘mastery’

of the non-regular pattern.

Furthermore, this is evidence about English only. Many other languages have similar patterns, but do all human

languages have them? Standard discussions provide no argument for this.

p3. Swiss-German speakers can handle crossing dependencies O1O2 . . .OnV1V2 . . .Vn only to about n = 2 or 3. This

seems very poor evidence of ‘mastery’ of the non-CF pattern.

Furthermore, this is evidence about Swiss-German only. Do many other languages have similar patterns? Standard

discussions provide no argument for this.

The following different perspective reinterprets the standard claims so that they make more sense.

An alternative perspective, differing in the way the basic terms are used, and in the way evidence bears on claims

about language users, can be given in something like the following way:

es1. Laptop computers and all other artifacts, like humans and all other organisms, are finite state machines.

es2. X uses L =d f X uses some G such that L=L(G).

X uses G =d f at least sometimes, in appropriate conditions for fluent language use, the analyses that X computes

for utterances are those defined by G. X implements G.

Human languages have property P =d f normal, fluent humans use grammars G such that each such G – or the

associated string language L(G) – has property P.

es3. We can now claim, without contradicting es1, that human languages are non-regular, and we can explain persuasively

why this is a consensus without appealing to ‘mastery’ of anbn patterns for high n. See (19)

· A parser that uses a stack to process anbn in a standard way, but only up to some fixed depth n (e.g. 2 or 3), is finite state, a

‘recognizer’ for only a regular language, but it uses a non-regular language in our sense.

· Your laptop computer uses the non-regular language of arithmetic, in this sense.

· The claim that human languages are non-regular is an empirical claim about the analyses computed (with consequences, as we

will see, for the memory that must be available in the course of that computation).

· If all other aspects of grammar and processing failed to support the idea that we use a non-regular grammar, then the fact that

we can handle neithern . . . norn . . . to n = 2 or 3 would not support it either!

(simplicity,usefulness) If human languages have property P, and one kind of grammar ensures that by having lots of rules for many

instances of P, where the another kind of grammar can define P simply, the latter is usually going to be more believable. E.g.

if each instance is covered by a separate rule, we would expect grammars convering some instances but not others.

(potential,idealization) With an abstract mathematical definition of a machine, the assumption of infinite memory makes perfect

sense. This is what we use when we say that for some grammar G for a human or computer language, L(G)<Reg. There is no

implication that humans or laptops are infinite. There is no implication of any real potential for adding more memory to any

human or laptop.

es4. We will also claim, without contradicting es1, that human languages are non-CF, and we can explain persuasively

why this is a consensus without appealing to ‘mastery’ of a1 . . . anb1 . . . bn patterns for high n.

Stabler (2013) formalizes Chomsky’s 1956 argument for this – coming later. (Contrast s3.)

Puzzle to be solved in this class: how can a language learner tell L < Fin? L < Reg? L < CF?

0.3. SUMMARY 15

Appendix A: the Chomsky hierarchy more carefully

(36) In studying human language, we idealize, abstracting away from less relevant factors. So for a simple start, let’s think

of a language as a (non-empty) set of expressions built from some (finite, non-empty) vocabulary Σ. But, of course,

what we are actually interested in is how linguistic structure is assigned to anything – this will show in, inter alia, our

lack of interest in the elements of Σ.

In learnability theory, we extend this standard idealization, thinking of what can be learned as a set of languages. But

what we are actually interested in is how we come to recognized linguistic structure in anything, and particularly in

how we generalize from our limited experience.

The sets of expressions are a useful idealization in the study of the computational mechanisms for coming to recognize

structure.

(37) Chomsky noticed in the 1950’s that we can distinguish sets of languages according to the complexity of the patterns

that can occur in those languages. This idea is one of the fundamental ones in the theory of computation.

(38) A rewrite grammar G = 〈Cat,Σ, S ,R〉 where

a. Cat (categories) is a finite nonempty set;

b. Σ (vocabulary) is a finite nonempty set such that Cat ∩ Σ = ∅;

c. S ∈ Cat (the “start” or “sentence” category);

d. R ⊆ (

(Σ ∪Cat)∗ × Cat × (Σ ∪ Cat)∗
) × (Σ ∪ Cat)∗ a finite set (the rewrite rules)

(39) Let ǫ be the empty sequence. For any set S , let S ǫ = S ∪ {ǫ}

(40) We often write x → y to indicate that 〈x, y〉 ∈ R;

(41) For any w, z ∈ (Σ ∪ Cat)∗, we say w⇒ z iff there are x, y, u, v ∈ (Σ ∪ Cat)∗ such that

a. w = uxv,

b. z = uyv, and

c. x → y.

(42) The relation⇒+ is the transitive closure of⇒.

The relation⇒∗ is the reflexive, transitive closure of⇒.

(43) Given a rewrite grammar G, L(G) = {s ∈ Σ∗| S ⇒∗ s}.

(44) A rewrite grammar G is

a. a list grammar iff R ⊆ ({S } × Σ∗);

b. a regular (right branching, right linear) grammar iff R ⊆ (

(Cat × (Σ ×Cat)) ∪ (Cat × {ǫ}));

c. a context free grammar iff R ⊆ Cat × (Σ ∪ Cat)∗;

d. a context sensitive grammar iff R ⊆ {〈x, y〉| x, y ∈ (Σ ∪ Cat)∗, |x| ≤ |y|}, allowing S → ǫ iff S does not occur on

the right side of any rule.

(45) a. The set of languages generated by list grammars is the set L f in of finite languages;

b. The set of languages generated by regular (right branching) grammars is the set L f s of regular, or finite state

languages;

c. The set of languages generated by context free grammars is the set Lc f of context free languages;

d. The set of languages generated by context sensitive grammars is the set Lcs of context sensitive languages;

e. The set of languages generated by all the grammars is the set Lre of recursively enumerable languages.

16 CHAPTER 0. INTRODUCTION

(46) The Chomsky hierarchy specifies proper inclusion relations among collections of languages as follows:

Lre , recursively enumerable languages

⊂
Lrec , recursive languages

⊂
Lcs , context sensitive languages

⊂
Lc f , context free languages

⊂
L f s , finite state languages

⊂
L f in , finite languages

Reg CF CS RE non−REFin

Many more details and proofs of all of these results can be found in, for example, (Salomaa, 1973; Harrison, 1978; Hopcroft and Ullman,

1979). The early Chomsky papers (Chomsky, 1963; Miller and Chomsky, 1963) are dated, but still interesting.

0.3. SUMMARY 17

Appendix B: enumerations

(47) An enumeration is a sequence, a list, a function whose domain is the positive integers or N.

A finite sequence is a function whose domain is {0, 1, . . . , n} for some positive integer n.

(48) An enumerable set is one whose members can be enumerated.1 . . . By courtesy, we regard as enumerable the empty

set, ∅, which has no members.

Sometimes an enumerable set is called “denumerable.”

(49) For any vocabulary Σ (i.e. for any finite, nonempty set), Σ∗ is enumerable.

There are many enumerations of Σ∗. Let’s define one.

Let Σ0 = {ǫ}.
Let Σ1 = {〈x〉| x ∈ Σ}.
For k ≥ 1, let Σk+1 = {〈x1, . . . , xk, xk+1〉| 〈x1, . . . xk〉 ∈ Σk and xk+1 ∈ Σ}.
Notice that each of the sets Σ0,Σ1, . . . is finite.

Define a total order < on Σ (e.g. “alphabetical” or “numeric” order).

Then extend the order to Σ∗ as follows: x < y iff either

a. |x| < |y| or

b. |x| = |y| and there is some i such that for all 0 ≤ j < i, the j’th element of x is the same as the j’th element of y

and the i′th element of x < the i′th element of y.

To enumerate Σ∗ in order, list all elements of each of Σ0,Σ1, . . ., in order.

Every element of Σ∗ appears in this sequence at some finite point.

(50) The set of positive rational numbers is enumerable.

There are many other ways to get an enumeration, but here is one. The following matrix has all of the positive rational

numbers in it:

1
1

2
1

3
1

4
1

5
1

. . .
1
2

2
2

3
2

4
2

5
2

. . .
1
3

2
3

3
3

4
3

5
3

. . .
1
4

2
4

3
4

4
4

5
4

. . .
1
5

2
5

3
5

4
5

5
5

. . .

. . .

And listing elements of the previous matrix in the the following order, we will get to each entry at some finite point:

1 2 6 7 15
. . .

3 5 8 14
. . .

4 9 13
. . .

10 12
. . .

11
. . .

. . .

The fact that this enumeration lists each rational number infinitely often does not matter; the thing we require for this

to count as an enumeration of the rationals is just that every rational number appear (at some finite position).

(51) Using the same method, we see that for any vocabularies Σ1,Σ2, the set Σ∗
1
× Σ∗

2
is enumerable.

(52) The set of all grammars is enumerable.

Once again, there are many ways to do this, but let’s define one enumeration in a little bit of detail. Assume that the

elements of Σ are alphabetic, and order them alphabetically.

The set Cat for each grammar is, by definition of grammar, finite and disjoint from Σ. We can think of each such set

as a finite subset of N, totally ordered by ≤. We can extend this order to N ∪ Σ by and ordering all of Σ before N.

We can then order ((Σ∪Cat)∗ ×Cat × (Σ∪Cat)∗
)

in just the way we ordered Σ in (49) – these are the left sides of the

rules of rewrite grammars.

1This is the first sentence of Boolos and Jeffrey (1980). The first chapters of this book are a good place to go for more background on enumerability.

Other good places (though more advanced) are the first chapter of Kleene (1952) or part I of Smullyan (1993).

18 CHAPTER 0. INTRODUCTION

We similarly order (Σ ∪ Cat)∗ – the right sides of the rewrite rules.

Since rewrite rules are nothing more than left-side/right-side pairs, we can use the construction in (50) to enumerate

them all. Assuming that the categories Cat, vocabulary Σ and start symbol S are given, we can then enumerate

grammars with 0 symbols, grammars with 1 symbol, grammars with 2 symbols, and so on, to get all grammars.2

(53) The set ℘(N) of all sets of natural numbers is not enumerable. (Cantor)

Proof: Suppose for contradiction that E = 〈s1, s2, s3, . . .〉 is an enumeration of ℘(N).

Define the set nondiag(E) = {n ∈ N| n < sn}.
(For example, if s3 happens to be the even numbers, then 3 ∈ nondiag(E).)

Since E is a list of all sets of integers, for some i, nondiag(E) = si.

By the definition of nondiag(E), i ∈ nondiag(E) iff i < si.

But then since nondiag(E) = si, i ∈ nondiag(E) iff i < nondiag(E). �

(54) (Corollary) The set of all languages is not enumerable.

2We could let Cat and Σ be infinite enumerable sets too, and still enumerate all grammars, again using a variant of the strategy in (50).

0.3. SUMMARY 19

Appendix C: coding the enumerations

(55) Writing a program can be a useful test to make sure you understand what we are describing. Programmers usually

care about whether a program terminates, and we will too, even though we are setting that worry aside for now.

(56) It is easy to write a program that enumerates (i.e. lists) the natural numbers

N = {0, 1, 2, }̇

In ‘pseudocode’ we could say:

i = 0

while i ≥ 0 :

print i

i = s(i)

(57) Most programming languages will do the decimal notation for you, so you can simply say something like:

for i = 0 to∞ :

print i

Most languages do not have the symbol∞, but in Python you can write that program this way:

from itertools import * # for count

for i in count(start=0,step=1):

print i

To allow us to interupt gracefully at any point, it is nicer to add a check, like this:

from itertools import * # for count

for i in count(start=0,step=1):

print i

ck = raw_input(’more? ’)

if len(ck)>0 and ck[0] == ’n’:

break

(58) Clearly we can also enumerate the non-positive integers:

Neg = {0,−1,−2, . . .}

from itertools import * # for count

for i in count(start=0,step=-1):

print i

ck = raw_input(’more? ’)

if len(ck)>0 and ck[0] == ’n’:

break

(59) To enumerate N ∪ Neg, though, we cannot simply concatenate the two previous programs! The obvious simple idea,

prominent in Cantor’s famous proofs, is to, in effect, do the two enumerations at once. So for example, we could

say:

from itertools import * # for count

for i in count(start=0,step=-1):

20 CHAPTER 0. INTRODUCTION

print i

print (-1 * i)

ck = raw_input(’more? ’)

if len(ck)>0 and ck[0] == ’n’:

break

(60) Now let’s consider how to enumerate all possible grammars. The trick is that we want to enumerate grammars of size

0,1,2,. . . as the number of categories is also increasing 0,1,2,. . . So we cannot use a program of this form:

from itertools import * # for count

for size in count(start=0,step=-1):

for no_of_cats in count(start=0,step=-1):

list all grammars of size, number_of_cats

The problem is that for size=0, we already would have infinitely many cycles through the inner loop! So we use some

version of Cantor’s trick. The following code written by Jos Tellings elegantly enumerates all possible grammars:

Jos Tellings

file: Tellings-enumerateG.py

Oct 7, 2012

from itertools import *

alph = [’a’,’b’] # fix alphabet

flag = False

from itertools docs:

def powerset(iterable):

"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"

s = list(iterable)

return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

we are diagonalizing on the size of NT and the max size of the rules

(if a --> b is a rule, the size of that rule is defined as |a| + |b|)

for k in count(start=1, step=1):

for m in range(1,k):

size = k-m # size of NT

length = m # max length of rules

symb = map(str,range(size)) # convert numbers to strings

symb[0:0] = alph # set of NT + alphabet

lijst = [] #initialize

for mu in range(length+1): # all lengths up to max length

rules = product(symb,repeat=mu)

for z in rules:

word = ’’.join(z) #create a string

for w in range(1,mu+1):

lijst.append([word[0:w],word[w:mu]]) # split in all possible ways

(left side is non-empty)

print ’size NT =’, size, ’, max length =’, m, ’, no of such grammars =’, 2**len(lijst)

everything = powerset(lijst) #all possible combinations of rules

for u in everything:

grammar = [alph,range(size),list(u)]

print grammar

stop = raw_input("Enter = continue, q+Enter = stop, \

c+Enter= go to next set of grammars ") #flow control

if stop=="q":

REFERENCES 21

flag = True #break out of all loops

break

elif stop=="c": break #break only one loop

if flag: break

if flag: break

References

References

Aho, Alfred V. and Jeffrey D. Ullman. 1972. The Theory of Parsing, Translation, and Compiling. Volume 1: Parsing. Prentice-Hall,

Englewood Cliffs, New Jersey.

Angluin, Dana. 1982. Inference of reversible languages. Journal of the Association for Computing Machinery, 29:741–765.

Bane, Max, Jason Riggle, and Morgan Sonderegger. 2010. The VC dimension of constraint-based grammars. Lingua, 120(5):1194 – 1208.

Blumer, Anselm, Andrzei Ehrenfeucht, David Haussler, and Manfred K. Warmuth. 1989. Learnability and the Vapnik-Chervonenkis

dimension. Journal of the Association for Computing Machinery, 36:929–965.

Boolos, George S. and Richard C. Jeffrey. 1980. Computability and Logic, 2nd Edition. Cambridge University Press, NY.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on Information Theory, IT-2:113–124.

Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert R. Bush, and Eugene Galanter, editors, Handbook of

Mathematical Psychology, Volume II. Wiley, NY, pages 323–418.

Chomsky, Noam. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, Massachusetts.

Chomsky, Noam. 1981. Lectures on Government and Binding. Foris, Dordrecht.

Clark, Alexander and Rémi Eyraud. 2007. Polynomial identification in the limit of substitutable context-free languages. Journal of Machine

Learning Research, 8:1725–1745.

Clark, Alexander and Franck Thollard. 2004. PAC-learnability of probabilistic deterministic finite state automata. Journal of Machine

Learning Research, 5:473–497.

Culy, Christopher. 1985. The complexity of the vocabulary of Bambara. Linguistics and Philosophy, 8(3):345–352.

Fitch, W. Tecumseh and Angela D. Frederici. 2012. Artificial grammar learning meets formal language theory: An overview. Philosophical

Transactions of the Royal Society B, 367:1933–1955.

Fitch, W. Tecumseh, Angela D. Frederici, and Peter Hagoort. 2012. Pattern perception and computational complexity: Introduction.

Philosophical Transactions of the Royal Society B, 367:1925–1932.

Frank, Robert and Giorgio Satta. 1998. Optimality theory and the generative complexity of constraint violability. Computational Linguistics,

24:307–315. http://aclweb.org/anthology/J/J98/J98-2006.pdf.

Gurevich, Yuri. 1988. Algorithms in the world of bounded resources. In Rolf Herkin, editor, The Universal Turing Machine: A Half-Century

Survey. Oxford University Press, Oxford, pages 407–416.

Harkema, Henk. 2001. A characterization of minimalist languages. In Logical Aspects of Computational Linguistics, LNCS 2099, pages

193–211, Springer, NY.

Harrison, Michael A. 1978. Introduction to Formal Language Theory. Addison-Wesley, Reading, Massachusetts.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623–661.

Heinz, Jeffrey, Gregory M. Kobele, and Jason Riggle. 2009. Evaluating the complexity of optimality theory. Linguistic Inquiry, 40(2):277–

288.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading,

Massachusetts.

Jäger, Gerhard. 2002. Gradient constraints in finite state OT: The unidirectional and the bidirectional case. In Joseph Greenberg, editor,

More than Words: A Festschrift for Dieter Wunderlich. Akademie Verlag, Berlin, pages 299–325.

http://aclweb.org/anthology/J/J98/J98-2006.pdf

22 CHAPTER 0. INTRODUCTION

Jäger, Gerhard and James Rogers. 2012. Formal language theory: Refining the Chomsky hierarchy. Philosophical Transactions of the Royal

Society B, 367:1956–1970.

Joshi, Aravind K. 1985. How much context-sensitivity is necessary for characterizing structural descriptions. In D. Dowty, L. Karttunen, and

A. Zwicky, editors, Natural Language Processing: Theoretical, Computational and Psychological Perspectives. Cambridge University

Press, NY, pages 206–250.

Kleene, Stephen Cole. 1952. Introduction to Metamathematics. North Holland, NY.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In Model Theoretic

Syntax at 10. ESSLLI’07 Workshop Proceedings.

Mateescu, Alexandru and Arto Salomaa. 1997. Aspects of classical language theory. In G. Rozenberg and A. Salomaa, editors, Handbook

of Formal Languages, Volume 1: Word, Language, Grammar. Springer, NY, pages 175–251.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. In Proceedings, Logical Aspects of Computational Linguistics,

LACL’98, pages 179–198, Springer, NY.

Michaelis, Jens. 2001a. On Formal Properties of Minimalist Grammars. Ph.D. thesis, Universität Potsdam. Linguistics in Potsdam 13,

Universitätsbibliothek, Potsdam, Germany.

Michaelis, Jens. 2001b. Transforming linear context free rewriting systems into minimalist grammars. In Logical Aspects of Computational

Linguistics, LNCS 2099, pages 228–244, Springer, NY.

Michaelis, Jens, Uwe Mönnich, and Frank Morawietz. 2000. Derivational minimalism in two regular and logical steps. In Proceedings of

the 5th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+5), pages 163–170.

Miller, George A. 1967. Project grammarama. In Psychology of Communication. Basic Books, NY.

Miller, George A. and Noam Chomsky. 1963. Finitary models of language users. In R. Duncan Luce, Robert R. Bush, and Eugene Galanter,

editors, Handbook of Mathematical Psychology, Volume II. Wiley, NY, pages 419–492.

Mönnich, Uwe. 1998. TAGs M-constructed. In TAG+Workshop, Institute for Research in Cognitive Science, University of Pennsylvania.

Morawietz, Frank. 2003. Two Step Approaches to Natural Language Formalisms. de Gruyter, Berlin.

Mukherjee, Sayan, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. 2004. Learning theory: stability is sufficient for generalization and

necessary and sufficient for consistency of Empirical Risk Minimization. Advances in Computational Mathematics, 25(1-3):161–193.

Peters, P. Stanley. 1987. What is mathematical linguistics? In Walter J. Savitch, Emmon Bach, William Marsh, and Gila Safran-Naveh,

editors, The Formal Complexity of Natural Language. Reidel, Dordrecht.

Pinker, Steven. 1982. A theory of the acquisition of lexical interpretive grammars. In Joan Bresnan, editor, The mental representation of

grammatical relations. MIT Press, Cambridge, Massachusetts.

Salomaa, Arto. 1973. Formal Languages. Academic, NY.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On multiple context-free grammars. Theoretical Computer

Science, 88:191–229.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8(3):333–344.

Smullyan, Raymond M. 1993. Recursion Theory for Metamathematics. Oxford University Press, Oxford.

Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré, editor, Logical Aspects of Computational Linguistics, Lecture Notes

in Computer Science 1328. Springer-Verlag, NY, pages 68–95.

Stabler, Edward P. 2010. Computational perspectives on minimalism. In Cedric Boeckx, editor, Oxford Handbook of Minimalism. Oxford

University Press, Oxford, pages 617–641.

Stabler, Edward P. 2013. Two models of minimalist, incremental syntactic analysis. Topics in Cognitive Science, 5(3):611–633.

Yoshinaka, Ryo. 2010. Polynomial-time identification of multiple context-free languages from positive data and membership queries. In

Proceedings of the 10th International Colloquium on Grammatical Inference, LNCS 6339, Springer-Verlag, Berlin.

Yoshinaka, Ryo and Alexander Clark. 2010. Polynomial time learning of some multiple context-free languages with a minimally adequate

teacher. In Proceedings of the 15th Conference on Formal Grammar.

Chapter 1 Learning a language from examples: Gold paradigm

1.0 Basics

(0) Gold (1967) and Blum and Blum (1975) established one perspective from which language can be studied. This per-

spective is developed in various ways in our texts (Jain et al., 1999; Kanazawa, 1998; Laird, 1988).

We will consider this perspective first, for two reasons:

• It provides a simple and completely clear perspective on some aspects of learning.

• It allows us to focus our attention on the critical step: generalization.

(As noted earlier, by “generalization,” I will mean conjecturing that the environment contains more than has been seen

– this may not be the standard usage, but it’s what I will mean.)

(1) We will think of languages as sets of expressions together with a non-expression #, where an expression is an element

of Σ∗ for some (finite,non-empty) vocabulary Σ.

(2) A (positive) text T is an infinite sequence whose elements are expressions and #.

Since we regard an infinite sequence as a function with domain N = {0, 1, . . .}, we let T (n) be the n′th member of T

counting up from 0.

Let T [n] be the length n initial sequence of T . So T [n] = 〈T (0), T (1), . . .T (n − 1)〉.
(3) Let the content of text T , content(T) be the set of expressions that appear in T . We say that text T is for language L

iff content(T) = L. Note that # is never part of the content.

Then, for every text T , and for every x ∈ content(T), there is some finite i such that x = T (i).

(4) A learner is a (possibly partial) function φ from finite sequences of expressions and # to grammars, where each

grammar G defines a language L(G).

We now define a certain kind of learning, which is sometimes called identification from positive text, as follows.

(5) If x ∈ Dom(φ) we say φ is defined on x, or φ(x)↓.
(6) φ converges on T , φ(T)↓, iff for some i, φ(T [j]) = φ(T [i]) for all j ≥ i.

In this case, we define φ(T) to be φ(T [i]).

(7) φ identifies T iff φ(T)↓ and content(T) = L(φ(T)).

(8) φ identifies L iff φ identifies all texts for L.

(9) φ identifies a class of languages L iff for all L ∈ L , φ identifies L.1

(10) A class of languages L is identifiable iff some learner identifies L .

Sometimes, when the context makes our intention clear, we will call such a class learnable.

1.1 First results

Theorem 1 The classes L = ∅ and L = {L} for any r.e. language L are identifiable.

(11) The previous theorem needs the qualification “r.e” (recursively enumerable) since we are assuming that languages are

represented by grammars (or machines) that recursively enumerate them.

1I will use the term ’class’ for sets of languages, just to avoid confusions with languages themselves which are sets of sequences over an alphabet Σ. And

I’ll try to use L rather than L to denote such classes.

23

24 CHAPTER 1. LEARNING A LANGUAGE FROM EXAMPLES: GOLD PARADIGM

Theorem 2 The class L f in of finite languages is identifiable. (Gold, 1967)

Proof: Suppose that we have an enumeration of grammars for all the r.e. languages. Then define a learner φe as follows: for

any text T , φe(T [i]) is the first grammar G in the enumeration such that L(G) = content(T [i]).

Consider any L ∈ L f in and any text T for L. Then there is some i such that content(T [i]) = L. In this case, by our definition

of φe, φe(T [j]) = φe(T [i]) for all j ≥ i, so φe converges on t. And again by our definition of φe, L(φe(T [i])) = content(T). �

(12) Notice that we did not define the enumeration of grammars precisely; but it can be done without too much trouble.

(13) Notice also that nothing in the definition of learnability implies that learners are necessarily computable functions,

and so we did not need to explain how the function φe could be computed. In this case, the decision about whether

L(φe(T [i])) = content(T) is obviously not computable in general.

So if we are interested in a computable learner, we could, for example, define an effective enumeration of grammars

for just the finite languages, and choose the first of these that matches the sample. Or we could let φe(T [i]) be the

grammar {S → x| x ∈ content(T [i])}.
(14) Gold (1967) calls the learner φe defined in the proof above an identification-by-enumeration learner. Notice that

nothing in φe’s values signals when it has converged on the right hypothesis.

(15) It is interesting to contrast learning functions which announce their convergence (“Aha!” or, for short “∅”), in the

following way:

a. on any text T there is a unique i such that L(φ(T [i])) = ∅, and

b. on any text T if L(φ(T [i])) = ∅ then for all j > i, φ(T [i + 1]) = φ(T [j]).

Osherson, Weinstein, and Stob (1986) call such learners self-monitoring.

Theorem 3 No self-monitoring learner identifies the class L f in − ∅ of non-empty finite languages. (Freivald and Wiehagen,

1979)

Proof: For contradiction, assume that φ is a self-monitoring learner that identifies L f in − ∅. Consider any finite language

L ∈ L f in − ∅ and any text T where content(T) = L. Let i be the unique point at which L(φ(T [i])) = ∅. Then by assumption,

L(φ(T [i + 1])) = L(φ(T [m])) for all m > i. Since L ∈ L f in − ∅, there are infinitely many strings x < L. Take one such

string x, and consider the text T ′ = T [i + 1]xxx That is, T ′ is the sequence T [i + 1] followed by an infinite sequence

of the sentence x. Then content(T ′) ∈ L f in. By definition of the self-monitoring φ, L(φ(T ′[i])) = ∅, and so for all j > i,

L(φ(T [i + 1])) = L(φ(T ′[i + 1])) = L(φ(T [j])) = L(φ(T ′[j])) = L. So L(φ(T ′)) , content(T ′), and so φ does not identify T ′ –

a contradiction! � �

Exercise 1 It is a triviality that no self-monitoring learner identifies any class L that contains ∅, since this learner

would have to have a unique “aha” point where it takes the value ∅, and it would also need to take that value at all later

points in the text – a contradiction.

So suppose we modify the definition so that a learner φ is “self-monitoring” iff

1. on any text T there is a unique i such that φ(T [i]) is undefined, and

2. on any text T if φ(T [i]) is undefined, then for all j > i, φ(T [i + 1]) = φ(T [j]).

With this definition, show that there is no self-monitoring learner identifies any class L that contains ∅ and another

language. #

Exercise 2 If (total) learner φ converges on text T . . .

a. then {φ(T [n])|n ∈ N} is finite. Prove this. Show that the converse is false.

b. then if φ identifies T , then L(φ(T [n]) = content(T) for all but finitely many n ∈ N. Prove this.

Show that the converse is false.

That is, it is not the case that (if φ identifies T , then L(φ(T [n]) = content(T) for all but finitely many n ∈ N)

implies that φ converges on text T .

#

The previous exercise establishes

Corollary 1 No self-monitoring learner identifies the class L f in of finite languages.

1.2. SINGLE VALUE LANGUAGES 25

(16) So although the learner φe cannot tell when it has converged on a text for L ∈ L f in, no learner that identifies L f in

could do that. The learner φe is as good as possible in another respect as well: no learner can learn finite languages

faster than φe does.

Definition 1 Suppose φ identifies L and let T be a text such that content(T) = L. Let the convergence point for φ in T ,

cp(φ, T) be the least i such that for all j ≥ i, φ(T [j]) = φ(T [i]).

Given learners φ, φ′ that identify some class L , let’s say that φ′ is uniformly faster than φ on L iff

1. for all texts T such that content(T) ∈ L , cp(φ′, T) ≤ cp(φ, T), and

2. for some text T such that content(T) ∈ L , cp(φ′, T) < cp(φ, T).

#

Theorem 4 No learner φ that identifies L f in is uniformly faster than φe on L f in. (Gold, 1967)

Proof: Suppose for contradiction that there is a learner φ which identifies L f in uniformly faster than φe. Then there is some

text T such that content(T) ∈ L f in and cp(φ, T) < cp(φe, T). So at the point i = cp(φ, T) where φ correctly identifies

content(T), φe has not yet converged. In fact, by the definition of φe, content(T [i]) = L(φe(T [i])) , L(φe(T)) = L, since φe

never conjectures two different grammars for the same language. On the other hand, φ has converged, that is, φ(T (i)) = φ(T)

and L(φ(T)) = L. Now consider another text T ′ such that T ′[i] = T [i] and content(T ′) = content(T ′[i]). Then content(T ′) ∈
L f in and cp(φe, T

′) = i. Since T ′[i] = T [i], we know that φ(T ′[i]) = φ(T [i]) and so L(φ(T ′[i])) , L. It follows that

cp(φ, T ′) > i, and so φ is not uniformly faster than φe. � �

1.2 Single value languages

(17) In learnability theory, we often think of languages as sets of strings, and texts as sequences of strings, but the previous

section shows that many other learning problems will have a structure which is similar in the relevant respects.

(18) Consider the “language” which is a set of pairs of strings:

〈x, y〉.

For example, if Σ had symbols to represent phonetic structures (PF) and logical forms (LF), we could have a “lan-

guage” which was a set of PF-LF pairs.

Definition 2 Lsv is the collection of r.e. languages L such that L is a function. That is, a set L of pairs is in Lsv if and only if

each first element of a pair is paired with a unique second element. These languages are “single valued.”

Lsvt is the collection of “single valued” r.e. languages which are “total” in the sense that every string occurs as a first

element of a pair. #

(19) Assuming that the languages in Lsvt are r.e. means that each of these languages has a grammar, a grammar in which

the expressions derived code pairs of expressions. This coding of pairs can be done in many ways: one way is just to

designate a special symbol ∗ (in a vocabulary of size > 2) that separates the left expression s from the right expression

t in derived sentences s ∗ t.

Furthermore, the grammars generating expressions of this form are enumerable. For example, take our earlier enu-

meration of all grammars and remove all the grammars that do not conform. (Of course, this is not a computable

procedure.)

(20) Notice that the languages in Lsvt have the following nice property: if two languages L, L′ ∈ Lsvt differ, then there is

at least one first element s such that s ∗ t ∈ L (for some t) but s ∗ t′ ∈ L′ where t , t′. Given this fact about Lsvt, it is

easy to establish the following result:

Theorem 5 Lsvt is identifiable.

Proof: Let φ(T [i]) = G where G is the first grammar in the enumeration such that content(T [i]) ⊆ L(G).

Since each language L in Lsvt is represented by a machine that appears at some point in the enumeration, and this function

will differ from all others at some point, we are guaranteed that in any text T there is a finite point i at which φ(T [i]) will be

the correct guess, and the guess will never change after that. �

This is another kind of “induction-by-enumeration.”2

2It turns out that the collection of all “single valued” languages, Lsv, is not identifiable (Osherson, Weinstein, and Stob, 1986, Cor.2.5A). Totality guar-

antees that the texts will contain, at some finite point, values that distinguish any two functions that differ; in Lsv we have no such guarantee, because the

relevant values might be undefined.

26 CHAPTER 1. LEARNING A LANGUAGE FROM EXAMPLES: GOLD PARADIGM

1.3 Languages defined by constraints

The learner φe just keeps a record of what has been seen so far. Since many linguistic theories make use of constraints of

various kinds, it is an interesting to consider learners that pay attention to what has not been seen so far. Let’s define some

simple language classes based on ruling out some of the possible structures, letting |L| represent the number of elements in L:

Definition 3 Let Lco−1 be the class of languages {Σ∗ − {x}| x ∈ Σ∗}.
For any number k ≥ 0, let Lco−k be the class of languages {Σ∗ − L| |L| = k}.
Let Lco− f in be the class of languages {Σ∗ − L| L ∈ L f in}. #

Notice that, like L f in, all of these classes are infinite (except for Lco−0 which is a singleton set, {Σ∗}). But, unlike L f in,

every member of every one of these classes is an infinite language.

A grammar for a language in Lco−1 could be regarded as a “filter” represented by a rule of the form

∗x

where x is any string. A grammar for any language in one of the classes Lco−k cold be given by exactly k filters of this kind.

And a grammar in Lco− f in would have any number of filters of this kind. That is, Lco− f in =
⋃

k≥0 Lco−k.

Theorem 6 Lco−1 is identifiable.

Proof: Consider any enumeration of Σ∗, and let φ be defined as follows. For any sequence of strings T [i],

φ(T [i]) = ∗x

where x is the first string in the enumeration that does not occur in T [i].

Now we just need to show that, given any text T for any language L ∈ Lco−1, φ identifies T . Since L ∈ Lco−1, L is defined

by some filter ∗x. Since there are just finitely many elements that occur before x, there will be some finite point i such that

T [i] contains all of those elements. At that point, by the definition of φ, φ[T (i)] = ∗x. Furthermore, it is easy to see that at all

later points j > i, φ(T [j]) = ∗x because x will never occur in the text. �

The previous result generalizes immediately:

Theorem 7 For any k, Lco−k is identifiable.

One learner for this class is the function that, at each point, conjectures that the first k elements of Σ∗ not seen so far are the

ones excluded.

The previous results do not generalize to Lco− f in, though. In fact, we can show:

Conjecture 1 The class Lco−1 ∪Lco−2 is not identifiable. #

This claim is intuitive: at each point in a text, the learner has no way of knowing whether one or two elements are excluded.

In particular, suppose a learner guessed correctly in some case that the language was defined by ∗x. The problem is that if

from there on the text were really one for the co-2 language ∗x, ∗y, the learner would not see the error. To prove this, though,

requires that we show that the learner would never notice the mistake, and that is slightly tricky. To show this, the result in the

following section will be extremely useful.

1.4 Exercises

The first 3 of the following exercises are from Osherson, Weinstein, and Stob (1986).

1. Suppose that some particular r.e. language L is given. Show that the class of languages {L ∪ D| D ∈ L f in} is learnable.

2. Let L = {L, L′} be a set of r.e. languages such that L ⊂ L′. Prove that no self-monitoring learner identifies L .

3. We saw that Lco−1 is identifiable. Show that no self-monitoring learner identifies Lco−1.

4. Following Jäger and Rogers (2012), consider any alphabet Σ with 2 or more symbols in it and 2 special “boundary”

symbols Y and X not in Σ to denote the beginning and end of a string respectively. And for any string s, let the k-factors

(or n-grams) of s by all substrings of length k in YsX. So for example,

2-factors(aba) = {Ya, ab, ba, aX}.

1.5. LOCKING SEQUENCES 27

Now let a k-factor grammar G be a set of k factors, that is, G ⊆ (Σ ∪ {Y,X})k, with

L(G) = {x ∈ Σ∗| k-factors(x) ⊆ G}.

A k-factor grammar is called k-strictly-local, SLk.

For example, for the 2-gram grammar G1 = {Ya, ab, bb, bc, cX}, it is easy to see that L(G1) = ab+c, so this is an SL2

language. For any n, let the class of SLk languages LS Lk
be the set of languages that are generated by SLk grammars.

a. Show that the class LS L2
of SL2 languages includes some finite languages and some infinite ones.

b. Show that the class LS L2
is finite.

c. Show that the class LS L2
is learnable.

d. Consider this learner

φSL2(T [i]) = {xy| xy is a 2-factor in T [i]}.
Show that this learner identifies any SL2 language in the limit from positive data.

5. Heinz (2010) proposes that long distance phonotactics are patterns definable by what are sometimes called strictly 2-

piecewise languages; cf. (Rogers et al., 2009). Let’s say that the xy ∈ Σ2 is a 2-piece of a string s ∈ Σ∗ iff an occurrence of

x strictly precedes an occurrence of y in s. So for example,

2-pieces(aba) = {ab, aa, ba}.

Let’s say that a precedence grammar G ⊆ Σ2 and

L(G) = {x ∈ Σ∗| 2-pieces(x) ⊆ G}.

So then every precedence language contains ǫ and the one symbol strings Σ. For example, L(∅) = {ǫ} ∪ Σ and L({aa}) =
Σ ∪ a∗. Now consider the learner

φprec(T [i]) = {xy| xy is a 2-piece in T [i]}.
Show that this learner identifies any precedence language in the limit from positive data.

1.5 Locking sequences

Here we introduce a notion that is very useful for reasoning about how learners behave on texts: the notion of a locking

sequence for a learner φ on a language L. This is a finite sequence such that no extension of that sequence with elements of L

can make φ change its mind. That is, it is not merely that none of the following elements in a given text make φ change, but

no elements of L can make φ change. Surprisingly, whenever φ identifies L, there is a locking sequence of this kind. We make

this idea precise as follows:

Definition 4 Given a learner φ that identifies a language L, a sequence t is said to be a locking sequence for φ and L iff

1. t is a finite sequence of expressions and #,

2. content(t) ⊆ L,

3. L(φ(t)) = L, and

4. for every finite sequence s such that content(ts) ⊆ L, φ(ts) = φ(t).

#

Theorem 8 If L is any (recursively enumerable) language and φ identifies L, then there is a locking sequence t for φ and L.

(Blum and Blum, 1975)

Proof: Let L be any (recursively enumerable) language that φ identifies. For contradiction, assume that for every finite t such

that content(t) ⊆ L and L(φ(t)) = L, there is a finite sequence s such that content(ts) ⊆ L but φ(ts) , φ(t).

We will deduce a contradiction by constructing a text R for L on which φ does not converge.

Let U = x0x1 . . . be any text such that content(U) = L. Since φ identifies U, there is some finite U[k] such that L(φ(U[k])) = L.

We now define a set of sequences R = {r0, r1, . . .}, where each ri+1 extends ri:

r0 = U[k]

ri+1

= rixi if L(φ(ri)) , L

= risxi otherwise, where s is finite, content(s) ⊆ L, and φ(ris) , φ(ri)

28 CHAPTER 1. LEARNING A LANGUAGE FROM EXAMPLES: GOLD PARADIGM

We know that, at each step, the s mentioned in this definition exists by our assumption. Notice that for all i < j, ri is a prefix

of r j. Also notice that every ri is at least i elements long. So we can define a text R = y1y2 . . . as follows: for all i > 0, yi

is the i’th element of ri. Notice that content(R) = L, since R contains every element of U and all of the sequences s are such

that content(s) ⊆ L. However, φ does not converge on R, because for every i ≥ 0, either L(φ(R[i])) , L or for some j > i,

φ(R[i]) , φ(R[j]). � �

1.6 Exercise

Thanks to Karen Campbell for suggesting this one:

1. Given a learner φ that identifies a language L, let’s say that a sequence t is a reverse locking sequence for φ and L iff

a. t is a finite sequence of expressions and #,

b. content(t) ⊆ L,

c. L(φ(t)) = L, and

d. for every finite sequence s such that content(st) ⊆ L, φ(st) = φ(t).

OK, here are the questions – prove that your answers are right:

i. Is every locking sequence for φ and L a reverse locking sequence?

ii. Let’s call t a s
¯
uper locking sequence for φ and L iff it is both a locking and a reverse locking sequence for φ and L. Is

it the case that for every φ and L there is at least one super locking sequence?

1.7 Languages defined by constraints, part 2

Locking sequences provide exactly what we need to get an easy proof of our earlier Conjecture 1:

Theorem 9 The class Lco−1 ∪Lco−2 is not identifiable.

Proof: Suppose for contradiction that this class is identifiable. Then there is some learner φ that identifies the class. Consider

any L ∈ Lco−1. By Theorem 8 there is a locking sequence t for L and φ. Since L is infinite and content(t) is finite, there is

an x ∈ L − content(t). Consider any text T ′ for the language L′ = (L − {x}) ∈ Lco−2. Since content(T ′) ⊆ L, and since t is a

locking sequence for φ and L, φ(tT ′) converges on a grammar for L, but this is incorrect since L , content(tT ′) = (L − {x}).
So φ does not identify this text, so it does not identify (L − {x}).� �

We can immediately draw some more general conclusions, using the general and obvious fact:

Theorem 10 If L is not identifiable, no superset of L is identifiable.

Proof: If L ′ is identifiable, then there is some φ which identifies every language in L ′. Hence it identifies every language in

L . � �

With this result, we have,

Corollary 2 Lco− f in is not identifiable.

We can now make a number of connections to traditional formal language theory, because of the following simple fact:

Theorem 11 Lco− f in ⊂ L f s

Proof: This follows immediately from the following: (i) that every finite language is finite state, (ii) Σ∗ is finite state, and (iii)

if L1, L2 ∈ L f s then L1 − L2 ∈ L f s.
3

�

Corollary 3 (Gold, 1967)

The class of finite state languages L f s is not identifiable.

The class of context free languages Lc f is not identifiable.

The class of context sensitive languages Lcs is not identifiable.

The set of recursive languages Lrec is not identifiable.

The set of recursively enumerable languages Lre is not identifiable.

We also have the general result:

Theorem 12 It can happen that the union of two identifiable classes fails to be identifiable.

3These results are presented in any introductory text on formal language theory, such as Hopcroft and Ullman (1979) or Harrison (1978). We will come

back to look at finite state languages and some of the other classes more carefully later.

1.8. ANGLUIN’S SUBSET THEOREM 29

1.8 Angluin’s subset theorem

Various theorems about special cases appeared before Angluin homed in on the following very general “subset theorem.”4

Theorem 13 Let L be a collection of (recursively enumerable) languages. Then L is identifiable iff for all L ∈ L there is a

finite distinguished subset DL ⊆ L such that for all L′ ∈ L , if DL ⊆ L′ then L′ 1 L. (Angluin, 1980)

Angluin’s theorem tells us that a collection of languages is identifiable just in case, for every language L in the collection,

you can find a finite subset DL such that no language L′ that includes DL is properly included in L:

DL

L

no such intermediate language L′!

Proof: (⇒) Suppose L is identified by φ. Then by Theorem 8, for any L ∈ L , there is a locking sequence t for φ and L.

Since locking sequences are finite, so is content(t). This finite subset of L will distinguish it: that is, we show that for all

L′ ∈ L , if content(t) ⊆ L′, then L′ 1 L.

Assume for contradiction that this is not so, that there is some L′ ∈ L such that content(t) ⊆ L′ and L′ ⊂ L. Then there is some

text ts extending t such that content(ts) = L′, but since t is a locking sequence for φ and L, and since content(ts′) ⊆ L′ ⊂ L,

φ(ts′) = φ(t) for any s′ = si, i ≥ 0. Thus φ fails to identify ts and hence fails to identify L′. �

(⇐) Assume that for every L ∈ L , there is a finite DL ⊆ L such that for all L′ ∈ L , DL ⊆ L′ implies L′ 1 L. Suppose that we

have an enumeration of all possible grammars. For each L ∈ L , we fix a particular finite DL ⊆ L such that for all L′ ∈ L , if

DL ⊆ L′ then L′ 1 L.

Then for every text T , define φ(T [i]) to be the first grammar G in the enumeration such that DL(G) ⊆ content(T [i]) ⊆ L(G), if

there is one. Otherwise, let φ(T [i]) be the first grammar in the enumeration.

Now we show that this φ identifies L . Consider any L(G) ∈ L where G is the first grammar in the enumeration that generates

L(G), and consider any text T such that content(T) = L(G). Since T is a text for L(G), the assumption tells us that there is a

finite i such that:

a. DL(G) ⊆ content(T [i]), and

b. if G′ < G, L(G′) ∈ L , and L 1 L(G′), then content(T [i]) 1 L(G′).
We know that there is such an i because, first, DL(G) is finite. And second, the number of G′ < G such that L(G′) ∈ L and

L 1 L(G′) is finite. Since for each such G′ there is some string s′ such that s′ < L(G′) and s′ ∈ L, we can let i be high enough

that T [i] contains such a string for each such G′.
It is now easy to see that φ will converge on the correct grammar at such a point i. By a and the definition of φ, for all j ≥ i,

φ(T [j]) = G unless there is a G′ < G such that L(G′) ∈ L , and DL(G′) ⊆ content(T [j]) ⊆ L(G′).
But clearly, by the choice of i, DL(G) ⊆ content(T [j]) ⊆ L(G), and by b, there is no earlier grammar G′ < G with these

properties, so φ(T [j]) = G. �

This main theorem can be used to establish both positive and negative results of special interest. The following theorem from

Gold (1967) was given earlier as an exercise (maybe a rather challenging one), but now it can be proven as an easy corollary

to Angluin’s theorem.

Corollary 4 Any finite class of languages is identifiable.

Proof: Consider any finite collection of languages L1, L2, . . . , Ln, and assume that they are here listed in such a way that if

j < i, then Li * L j.

Now, consider each Li in turn. For each earlier language, L j, j < i, let let xi, j be some element that is in Li but not in L j. We

define DLi
= {xi, j| j < i}.

4We follow Osherson, Weinstein, and Stob (1986) in presenting a simple version of Angluin’s result which does not establish the existence of a computable

learner, but only of a learner. de Jongh and Kanazawa (1996) call this a “watered down” version of Angluin’s result, because it characterizes learnability rather

than effective learnability. See Angluin (1980) for the original, stronger result, and some extensions in Lange and Zeugmann (1993); de Jongh and Kanazawa

(1996).

30 CHAPTER 1. LEARNING A LANGUAGE FROM EXAMPLES: GOLD PARADIGM

Obviously, for each of the finitely many languages Li, the corresponding subset will only have i elements in it – that is, finitely

many!

Now suppose that there is some language Lk in our collection such that DLi
⊆ Lk. Clearly in this case, Lk is not one of the

languages that appear earlier than Li in the enumeration, and so it follows by our definition of the enumeration that Lk 1 Li.

So for each Li we have a subset DLi
as specified in Angluin’s Theorem 13, and so the collection of languages is identifiable. �

Another way to see that any finite collection L1, L2, . . . , Ln is identifiable is to specify an adequate learner directly. Assume

again that if j < i, then Li * L j, and assume that these languages are defined by grammars G1,G2, . . . ,Gn, respectively. Define

φ so that for any ti, φ(T [i]) is just the first grammar G such that content(T [i]) ⊆ L(G). This learner identifies the class.

The proof of Corollary 4 actually gives us a more general result:

Corollary 5 Consider any class L that can be enumerated L0, L1, . . . in such a way that if j < i, then Li * L j. L is

identifiable.

We also derive some interesting negative results:

Corollary 6 Let L be a collection of (recursively enumerable) languages such that

i. L contains an infinite language L∞, and

ii. for every L0 ⊂ L∞ there is some L ∈ L such that L0 ⊆ L ⊂ L∞.

Then L is not identifiable.

Proof: Assume L satisfies (i) and (ii). By (ii), every finite subset L0 of L∞ is such that for some L ∈ L , L0 ⊆ L ⊂ L∞, and

so Theorem 13 applies immediately. �

Corollary 7 No strict superset of L f in is identifiable. (Gold, 1967)

References

References

Angluin, Dana. 1980. Inductive inference of formal languages from positive data. Information and Control, 45:117–135.

Blum, L. and M. Blum. 1975. Toward a mathematical theory of inductive inference. Information and Control, 28:125–155.

Freivald, R. and R. Wiehagen. 1979. Inductive inference with additional information. Elektronische Informationsverarbeitung und Kyber-

netik, 15:179–185.

Gold, E. Mark. 1967. Language identification in the limit. Information and Control, 10:447–474.

Harrison, Michael A. 1978. Introduction to Formal Language Theory. Addison-Wesley, Reading, Massachusetts.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623–661.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading,

Massachusetts.

Jäger, Gerhard and James Rogers. 2012. Formal language theory: Refining the Chomsky hierarchy. Philosophical Transactions of the Royal

Society B, 367:1956–1970.

Jain, Sanjay, Daniel Osherson, James S. Royer, and Arun Sharma. 1999. Systems that Learn: An Introduction to Learning Theory (second

edition). MIT Press, Cambridge, Massachusetts.

de Jongh, Dick and Makoto Kanazawa. 1996. Angluin’s theorem for indexed families of r.e. sets and applications. In Proceedings of the

Ninth Annual Conference on Computational Learning Theory.

Kanazawa, Makoto. 1998. Learnable Classes of Categorial Grammmars. CSLI Publications, Stanford, California.

Laird, Philip D. 1988. Learning from Good and Bad Data. Kluwer, Boston.

Lange, Steffen and Thomas Zeugmann. 1993. Language learning in dependence on the space of hypotheses. In Proceedings of the sixth

annual conference on Computational learning theory, COLT’93, pages 127–136, ACM, NY.

Osherson, Daniel, Scott Weinstein, and Michael Stob. 1986. Systems that Learn. MIT Press, Cambridge, Massachusetts.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome, and Sean Wibel. 2009. On languages piecewise

testable in the strict sense. In Proceedings of the 11th Meeting of the Assocation for Mathematics of Language.

Chapter 2 Probabilistic criteria for distribution-free learning: PAC

(0) Suppose I have a fair coin that either has heads and tails as usual, or else has 2 heads. You can sample the

results of flips of the coin. How many flips will ensure that you can be 99% sure whether the coin has 2 heads?

A single tails will definitively answer the question, so all we need to worry about is a sequence of heads that happens

even when tails is a possible outcome. We calculate:

(1
2
)n ≤ 1

100

(1
2n) ≤ 1

100

2n ≥ 100

n ≥ log2 100

n ≥ 6.6439

so, ⌈6.6439⌉ = 7 flips is enough

2.0 PAC learning

(1) The PAC (probably approximately correct) learning framework proposed by Valiant (1984) and developed especially

simple perspective on probabilistic learning, with a very natural success criterion that applies for any distribution over the target space

Here we use the definitions from chapter 3 of Anthony and Biggs (1992), which make it clear how the distribution

over examples determines both the error ǫ and confidence levels δ.1

(2) Definition: Consider any distribution µ on X and any target class L ⊆ ℘ X. Then for any target L ∈ L and any

hypothesis h ⊆ X, the error of the hypothesis is the measure of the symmetric difference between the hypothesis and

the target:

error
µ

(L, h) = µ((L\h) ∪ (h\L)).

(3) A distribution µ on X induces a distribution µm on Xm obtained by regarding each element of each sequence in Xm as

drawn randomly and independently from X according to distribution µ.

For any target L ⊆ X, we can define the characteristic function FL : X → {0, 1}

FL(x) =

1 if x ∈ L

0 otherwise.

Let S (m, L) be the set of sequences x1, . . . , xm ∈ Xm labeled according to whether each element is in L:

((x1, FL(x1)), . . . , (xm, FL(xm))).

We consider learners φ that are given a data sequence s ∈ S (m, L), and which output a hypothesis φ(s) ⊆ X, or

equivalently φ(s) : X → {0, 1}.
(4) (Some of our learners, given labeled, probabilistic texts, will only adjust their hypotheses in response to positive data.)

(5) Definition: L is PAC-learnable iff there is a learner φ such that, for any real numbers 0 < ǫ, δ < 1, there is a positive

integer m0 = m0(δ, ǫ) such that for any target L ∈ L and any probability distribution µ on X, whenever m ≥ m0,

µm{s ∈ S (m, L)| error
µ

(L, φ(s)) ≤ ǫ} ≥ 1 − δ.

1Cf. also Blumer et al. (1989); Anthony and Biggs (1992); Kearns and Vazirani (1994); Pestov (2011).

31

32 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

So a PAC learner converges on the target by getting arbitrarily close, with enough data. Such a learner is ‘efficient’

iff the time required to compute φ(s) is bounded by some polynomial function of (1
ǫ
, 1
δ
) Sometimes, an additional

parameter is introduced, a natural measure of the size or dimensionality of the target space, in order to get bounds that

are polynomial in (1
ǫ
, 1
δ
, size(L)).

(6) NB: Sometimes the learner is given not only samples but also δ, ǫ, in other cases this is not necessary.

2.1 Learning finite sets of finite sets

Let’s start with the simplest kind of case – learning a finite set from a collection of finite sets. Recall that ℘(S) is the powerset

of S , that is, the set of all subsets of S . (The following result and proof is very slightly simpler than Kearns and Vazirani

(1994, Thm1.2), and uses the same style of proof which comes also from Valiant (1984).)

(7) We will use the “union bound”, which says that for any events A, B and any distribution µ, the probability that one or

the other will happen is less than or equal to the sum of the probability of A and the probability of B.

µ(A ∪ B) ≤ µ(A) + µ(B).

This is an equality when A and B are disjoint, but the inequality holds in all cases.

(8) Thm. Given any finite set S , the class ℘(S) is PAC-learnable.

hypothesis h

target c

error c−h

set S

Showing positive samples • labeled 1 and negative samples ◦ labeled 0

Proof. Define a learner φ as follows. Given any target concept c ∈ ℘(S) and any labeled sample s of length k,

the learner’s hypothesis φ(s) = {x ∈ S | (x, 1) ∈ s}. This learner simply remembers all positive instances, never

generalizing.

So by this definition of φ, the learner’s hypothesis h is always a subset of c. Consequently, errorµ(c, h) = µ(c − h) =
∑

x∈c−h

µ(x).

Since |c| ≤ |S | and so obviously |c − h| ≤ |S |. If for all x ∈ (c − h), µ(x) ≤ ǫ
|S | , then µ(c − h) ≤ ǫ.

Let’s say that a set x is “important” if µ(x) > ǫ
|S | . Then if no x ∈ (c − h) is important, µ(c − h) ≤ ǫ.

For any fixed important element x, the probability of a sample of length m in which x does not occur is ≤ (1 − ǫ
|S |)

m.

Since there are at most |S | important elements, by the union bound, the probability that a sample of length m lacks all

the important elements is ≤ |S |(1 − ǫ
|S |)

m.

Recalling the fact mentioned at the bottom of page 40 that for positive x, (1 − x)m0 ≤ e−xm0 , and of course elog k = k,

notice that if we let m0 =
|S |
ǫ

log
|S |
δ

then

|S |(1 − ǫ
|S |)

m0 ≤ |S |e−m0
ǫ
|S | = |S |e−(|S |

ǫ
log |S |

δ
) ǫ|S |

= |S |e− log
|S |
δ

= |S | δ|S |
= δ

2.2. LEARNING RAYS 33

So for m ≥ m0, we have |S |(1 − ǫ
|S |)

m ≤ δ, so that µ(error(h) ≥ ǫ) ≤ δ.

(9) Since any binary relation on a finite set is also a finite set, it immediately follows that when the instance space is the

set of pairs X = C × C, the class ℘(C ×C) is PAC learnable.

(10) Exercise. Generalize Thm (8) to show that any finite set of hypotheses is PAC learnable, whether the hypotheses

themselves are finite or not. (If you’re stuck or lazy, you can google to find this proof, e.g. Shai Ben-David’s proof

here https://cs.uwaterloo.ca/˜shai/Chapters 4 CS886.pdf)

2.2 Learning rays

Anthony and Biggs (1992, §3.3) begin with this simple example.

(11) A ray is a set of real numbers greater than some arbitrary point θ. So we can think of a ray as a set

rθ = {x ∈ R| θ ≤ x}

or as a function (the ‘characteristic function’ of this set) rθ : R→ {0, 1}:

rθ(x) =

1 if θ ≤ x

0 otherwise

(12) Let’s add an “empty ray” r∞,

r∞(x) = 0 for all x ∈ R.

(13) The whole set of rays L = {rθ | θ ∈ R ∪ {∞}}.
(14) Consider any µ on X = R and the target class of rays L .

Obviously, this target class is bigger than any we have considered before!

(15) NB: We cannot learn a ray by memorizing the positive instances seen so far. That strategy “overfits” terribly! We

need a much more expressive class of hypotheses with some kind of bias towards rays. (Cf. Gold learners for L f in vs

Lco−1.)

(16) Define the learning function which for any sample T [m] of length m has this value

φray((x1, rθ(x1)), . . . , (xm, rθ(xm))) =

= rh for h = min{xi| rθ(xi) = 1} if this set is nonempty

= r∞ otherwise.

(17) Thm 3.3.1. The set of rays L is PAC learnable.

Proof: Suppose δ, ǫ, rθ, µ are given, and suppose we have a sample s ∈ S (m, rθ).

a. Let β0 = sup{β| µ[θ, β) < ǫ}. Remember sup=lub, so consider all the β’s that make [θ, β) < ǫ, then among the

values larger than all of these, let β0 be the least. In other words, we set β0 to the maximum value such that we

still have

µ[θ, β0) ≤ ǫ.
And obviously then

µ[θ, β0] ≥ ǫ.

34 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

b. By this definition, if h ≤ β0,

error
µ

(rh) = µ[θ, h) ≤ µ[θ, β0) ≤ ǫ.

c. Since µ[θ, β0] ≥ ǫ, the probability of a data point not in this interval is ≤ 1 − ǫ.
d. So the probability of selecting m data points not in this interval is ≤ (1 − ǫ)m.

e. By the definition of φ, h is the least value seen in the data, so the probability that h ≤ β0 will be ≥ 1 − (1 − ǫ)m

f. Since h ≤ β0 implies errorµ(rh) ≤ ǫ,

µm{s ∈ S (m, rθ)| error
µ

(rh) ≤ ǫ} ≥ 1 − (1 − ǫ)m.

Since we want to find the conditions under which being within this ǫ error has probability greater than 1− δ, what

we want is conditions under which (1 − ǫ)m ≤ δ.
g. So if we let m = ⌈ 1

ǫ
log 1

δ
⌉ then (using the two facts mentioned at the bottom of page 40)

(1 − ǫ)m < e−ǫm < elog δ = δ.

Since for any ǫ, δ, this m will suffice, φ is a PAC learner. �

(18) We can calculate exactly how many samples are needed for us to be 99% sure that at most 1% of our samples will be

misclassified by our hypothesis:

> e

ans = 2.7183

> log(e)

ans = 1

> ceil(1.2)

ans = 2

> epsilon=0.99

epsilon = 0.99000

> delta=0.99

delta = 0.99000

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 461

>

We can get a quick overall picture from a plot of the required number of samples against 1 − ǫ and 1 − δ:

0.0

0.2

0.4

x

0.0

0.2

0.4

y

0

200

400

600

800

But, for example, when we fix ǫ and just watch how the number of required samples increases as we halve δ (or vice

versa), we see that the increase is not ‘too rapid’ –

> epsilon=0.99

epsilon = 0.99000

2.3. LEARNING RECTANGLES 35

> delta=0.92

delta = 0.92000

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 253

> delta=0.96

delta = 0.96000

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 322

> delta=0.98

delta = 0.98000

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 392

> delta=0.99

delta = 0.99000

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 461

> delta=0.995

delta = 0.99500

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 530

> delta=0.9975

delta = 0.99750

> ceil ((1/(1-epsilon)) * log (1/(1-delta)))

ans = 600

2.3 Learning rectangles

(19) Following Kearns and Vazirani (1994, §1.1) and Blumer et al. (1989), consider the problem of learning rectangles that

are aligned with the X and Y axes on the Cartesian plane R × R.

That is, recalling the definition of closed intervals, the concepts are the products of closed intervals, so

C = {[x1, x2] × [y1, y2]| x1, x2, y1, y2 ∈ R} ⊆ R2.

(nb: this C is not closed under unions or complements, but it is closed under intersections)

(20) Theorem: The rectangles C are efficiently PAC learnable.

Proof: Let µ be an arbitrary probability measure on R2, and let c ∈ C be an arbitrary rectangle.

For any sequence of i labeled samples T [i] = 〈(v1, b1), (v2, b2), . . . , (vi, bi)〉 from R2 × 2. Note that in this case each vi

is a vector in R2, a pair of real numbers, and that some elements of the sample might be positive, examples vi where

bi = 1. So consider the corresponding set of positive examples, P[i] = {vi|〈vi, 1〉 ∈ T [i]}. Now define

φ(T [i])

= ∅ if P[i] = ∅ (no positive examples yet)

= [x1, x2] × [y1, y2] otherwise, where x1 = min{xk | 〈xk, yk〉 ∈ P[i]},
x2 = max{xk | 〈xk, yk〉 ∈ P[i]},
y1 = min{yk | 〈xk, yk〉 ∈ P[i]}, and

y2 = max{yk | 〈xk, yk〉 ∈ P[i]}

For c ∈ C, we said the “error” of a given hypothesis h is errorµ(c, h) = µ((c − h) ∪ (h − c)).

However, this learner never “overgeneralizes”, so at every point i, h ⊆ c, and so errorµ(c, h) = µ(c − h).

36 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

+

+
+

+

+

−

−

h

c

l,b r,b

x1,y1 x2,y1

x2,y2x1,y2

l,t r,t−

When c = [l, r] × [t, b] and h = [x1, x2] × [y1, y2], the set c − h is the union of the following 4 sets (which overlap at

the corners, just to make the math easier):

top = [l, r] × [y2, t]

bottom = [l, r] × [b, y1]

le f t = [l, x1] × [b, t]

right = [x2, r] × [b, t]

Now if we can guarantee that the probability of a sample from any one of these four areas is at most ǫ/4, then the

probability of a point from the union of the four areas is at most ǫ.

And in this case, the probability that m independent draws miss each rectangle is at most (1 − ǫ/4)m, and so the

probability that m draws miss all 4 rectangles is 4(1 − ǫ/4)m.

So how large does m need to be to guarantee that 4(1 − ǫ/4)m ≤ δ?
Using the fact (mentioned in the review on page 39) that

1 − x ≤ e−x,

we see that

1 − ǫ
4
≤ e−

ǫ
4 ,

and so

(1 − ǫ
4

)m ≤ e−m ǫ
4 ,

and so m is large enough if

4(e−m ǫ
4) ≤ δ.

Now, dividing by 4

e−m ǫ
4 ≤ δ

4
,

and taking the loge of both sides

−m
ǫ

4
≤ log(

δ

4
).

Multiplying by −1

m
ǫ

4
≥ log(

4

δ
),

and then by 4
ǫ
,

m ≥ 4

ǫ
log(

4

δ
).

So if we have at least 4
ǫ

log(4
δ
) samples, then with probability 1 − δ, the probability that the next sample will be an

error is no more than ǫ.

These sample requirements are “efficient” in the sense that the number of samples needed is polynomial w.r.t. 1
ǫ

and
1
δ
.

(21) Remarkably, the previous results says that if we want to be at least 99% sure (δ = 0.01) that our hypothesis has at least

a 99% chance of being right on the next sample, it suffices to look at

⌈(4/0.01) ∗ log(4/0.01) = 2396.6⌉ = 2397 samples.

2.4. VC DIMENSION 37

(22) Looking more carefully at how many examples would be required to be 99% sure that our hypothesis is X% right,

confidence ⌊samples⌋
50% 831

60% 921

70% 1036

80% 1198

90% 1475

95% 1752

97.5% 2030

98.75% 2307

99.375% 2584

99.687% 2861

(23) Exercise.

a. Define a similar learner for axis-aligned rectangular solids in R3 and assess whether it is PAC.

b. Is the similar learner for axis-aligned hyper-rectangles in Rn PAC?

2.4 VC dimension

(24) Given S ⊆ X, if

{L ∩ S | L ∈ L } = ℘(S),

then S is shattered by L .

That is, every subset of S is an element of the pointwise restriction of some L to S .

(25) The Vapnik-Chervonenkis dimension of L ,

VC(L) = max{|S | : S is shattered by L }.

That is, the VC dimension of L is the size of the largest set that L shatters.

If arbitrarily large sets can be shattered by L , then VC(L) = ∞.

(26) It is fairly easy to see these facts – try to sketch the proofs:

VC(Lray) = 1

VC(Lrect) = 4 see the proof sketch Kearns and Vazirani (1994, p.53)

VC(Llin 1
2
Rn) = n + 1 (see if you can do the case n = 2)

VC(Lconvex hulls in R2) = ∞ (consider shattering circles)

VC(L℘(R×R)) = ∞
VC(L f in) = ∞
VC(Lreg) = ∞
VC(Lrev) = ∞

(27) Exercise. Note that in R1, the linear half spaces correspond to the union of Lray with the ‘negative rays’ Lnray, where

negative ray nr is determined by a maximum element θ:

nrθ = {x ∈ R| x ≤ θ}.

Sketch a proof of the claim that VC(Lray ∪Lnray) = 2.

(28) Exercise. Show that for any concept class such that |L | = n (for finite n), VC(L) ≤ log2 n

(29) It is not an accident that all the classes L for which we provided PAC learners are also ones with finite VC dimension.

It is possible to show:

Thm. L is PAC learnable iff it has finite VC dimension (Blumer et al., 1989; Pestov, 2011).

This PAC result is based on the more general idea described by Vapnik (1998, §4.9.3). Many approaches to learning

have success criteria characterized by VC-dimension (Poggio et al., 2004).

38 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

(30) Developing observations in Blumer et al. (1989), Takács (2007) shows that the VC dimension of convex n-gons in the

plane is finite, extending the result to similar finite bounds for convex polytopes in higher dimensions (Takács and Pataki,

2007). But it is easy to see that the dimension of the whole collection of convex subsets of the plane is infinite. Con-

sider for example n distinct points on a circle: the convex hull enclosing any subset of those points will exclude the

others. See the nice discussion of this result in the text Alon, Spencer, and Erdös (1992, §14.4).

(31) The VC dimension of OT with k constraints, fixed in advance, is k − 1 (Riggle, 2009; Heinz, Kobele, and Riggle,

2009). Similarly for the VC dimension of harmonic grammars with finitely many constraints fixed in advance

(Bane, Riggle, and Sonderegger, 2010).

(32) While the set of regular languages has infinite VC dimension, if we consider canonical acceptors with at most n states

with a fixed alphabet Σ, since this class is finite, the class of languages accepted by these machines is also finite.

For example, if |Σ| = 2, then the number of different machines ≤ n2n · 2n2

, and so the VC dimension of this class of

languages is O(n log n) (de la Higuera, 2010, §6.1.2).

(33) Angluin (1987) shows that an arbitrary regular language can be learned from membership and equivalence queries,

but she notes that in many real applications a learner cannot expect answers to equivalence queries. But she shows that

if, instead of equivalence queries, the learner samples sentences from Σ∗ according to some unknown distribution µ,

then the probability of being within ǫ of the target language is at least 1− δ after O(n+ (1ǫ)(n log(1/δ)+ n2)) samples.

2.5. APPENDIX: EXP AND LOG REVIEW 39

2.5 Appendix: exp and log review

km · kn = km+n

k0 = 1

k−n = 1
kn

am

an = am−n

logk x = y iff ky = x

logk(kx) = x since: kx = kx

and so: logk k = 1

and: logk 1 = 0

logk(M
N

) = logk M − logk N

logk(MN) = logk M + logk N

so, in general: logk(Mp) = p · logk M

and we will use: logk
1
x
= logk x−1 = −1 · logk x = − logk x

E.g. 512 = 29 and so log2 512 = 9. And log10 3000 = 3.48 = 103 · 100.48. And 5−2 = 1
25

, so log5
1

25
= −2

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

log(x)
exp(x)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-log(t)

surprisal as a function of p(A): − log p(A)

The function log2 is often used to caculate“bits” of information, units of “surprise,” but another common choice is loge. I

usually write log for loge, but some people write ln. The precise value of e is defined in various ways which will not really

matter to us here

e = lim
x→0

(1 + x)
1
x =

∞
∑

n=0

1

n!
≈ 2.7182818284590452

More commonly, e is defined as the x such that a unit area is found under the curve 1
u

from u = 1 to u = x, that is,

it is the positive root x of
∫ x

1

1
u
du = 1. In general: ex =

∑∞
k=0

xk

k!
. Euler also discovered eπ

√
−1 + 1 = 0 Maor (1994);

Graham, Knuth, and Patashnik (1989).

-3 -2 -1 1 2 3

-2

-1

1

2

3

4
1-x and ã-x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x and log x

We will use the fact that 1 − x ≤ e−x, as displayed in the graph above left, and more generally (1 − x)m ≤ e−xm. We will also

use x > log x, as displayed in the graph above right. Cf. e.g. Graham, Knuth, and Patashnik (1989); Knuth (1973).

40 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

2.6 Appendix: probability review

The basics of probability can be found in many texts. For gentle introductions, begining with the axioms as I do here, see for

example Jacod and Protter (2000) or Resnick (1999). More serious introductory presentations are given in Rosenthal (2006)

and Durrett (1996), for example. These are texts I have used, but there are many excellent texts.

(34) A set I ⊂ R is an interval iff x ≤ y ≤ z and x, z ∈ I implies y ∈ I.

If I has an upper bound then I ⊆ (−∞, b] where b =
∨

I and (−∞, b] = {x ∈ R| x ≤ b}
If I also has a lower bound then I ⊆ [a, b] where a =

∧

I and [a, b] is the closed interval {x ∈ R| a ≤ x ≤ b}.
(a, b) is the open interval {x ∈ R| a < x < b}

(35) A measure space (Ω,F , p), where

1. F is a collection of subsets of Ω containing Ω, closed under countable unions and complementation (and hence

also under intersections).

Such an F is a σ-field.

When (Ω,F) is a σ-field which is also a topology, it is called a Borel field.

2a. p : F → [0,∞]

2b. (countable additivity) for any disjoint sets A0, A1, . . . ∈ F ,

p(

∞
⋃

i=0

Ai) =

∞
∑

i=0

p(Ai)

(36) A sample space Ω is a set of outcomes.

Then an event A is an element of F , that is A ⊆ Ω.

(37) Given events A, B, the usual notions A ∩ B, A ∪ B apply.

For the complement of A let’s write A = Ω − A.

Sometimes set subtraction A− B = A∩ B is written A\B, but since we are not using the dash for complements, we can

use it for subtraction without excessive ambiguity.

(38) When A ∩ B = ∅, A and B are disjoint.

A0, A1, . . . , An is a sequence of disjoint events iff

for all 0 ≤ i, j ≤ n where i , j, the pair Ai and A j are disjoint.

(39) A probability space is a measure space (Ω,F , p), where P satisfies the 3 Kolmogorov axioms:

a. p : F → [0, 1]

b. p(Ω) = 1

c. (countable additivity) for any disjoint sets A0, A1, . . . ∈ F ,

p(

∞
⋃

i=0

Ai) =

∞
∑

i=0

p(Ai)

p : F → [0, 1] is then called a probability measure or distribution.

(40) Typically the relevant domain F over Ω is assumed to be ℘(Ω).

Since this is the case, when Ω is no bigger than N, it is common to identify p({x}) with p(x) and just think of P as a

function p : Ω→ [0, 1] where with the probabilities of subsets of Ω determined by the axioms.

We will sometimes do this below.

(41) Theorem: p(A) = 1 − p(A)

Proof: Obviously A and A are disjoint, so by axiom c, p(A ∪ A) = p(A) + p(A)

Since A ∪ A = Ω, axiom b tells us that p(A) + p(A) = 1 �

(42) Theorem: p(∅) = 0

2.6. APPENDIX: PROBABILITY REVIEW 41

(43) Theorem: p(A ∪ B) = p(A) + p(B) − p(A ∩ B)

Proof: Since A is the union of disjoint events (A ∩ B) and (B ∩ A), p(A) = p(A ∩ B) + (B ∩ A).

Since B is the union of disjoint events (A ∩ B) and (A ∩ B), p(B) = p(A ∩ B) + (A ∩ B).

And finally, since (A ∪ B) is the union of disjoint events (B ∩ A), (A ∩ B) and (A ∩ B), p(A ∪ B) = p(B ∩ A) + p(A ∩
B) + p(A ∩ B).

Now we can calculate p(A)+ p(B) = p(A∩B)+ (B∩A)+ p(A∩B)+ (A∩B), and so p(A∪B) = p(A)+ p(B)− p(A∩B).

�

(44) Theorem (Boole’s inequality): p(
⋃∞

0 Ai) ≤
∑∞

0 p(Ai)

(45) Exercises

a. Prove that if A ⊆ B then p(A) ≤ p(B)

b. In (43), we see what p(A ∪ B) is. What is p(A ∪ B ∪ C)?

c. Prove Boole’s inequality.

(46) The conditional probability of A given B, p(A|B) =d f
p(A∩B)

p(B)

(47) Bayes’ theorem: p(A|B) =
p(A)p(B|A)

p(B)

Proof: From the definition of conditional probability just stated in (46), (i) p(A ∩ B) = p(B)p(A|B). The definition of

conditional probability (46) also tells us p(B|A) =
p(A∩B)

p(A)
, and so (ii) p(A ∩ B) = p(A)p(B|A). Given (i) and (ii), we

know p(A)p(B|A) = p(B)p(A|B), from which the theorem follows immediately. �

(48) A and B are independent iff p(A ∩ B) = p(A)p(B).

(49) A random (or stochastic) variable (or process) on Ω is a function X : Ω→ R.

(50) The range of X is sometimes called the sample space of the stochastic variable X, ΩX .

(51) The expectation E(X) of a discrete random variable X

E(X) =

∞
∑

x=−∞
xp(X = x).

2.6.1 Borel-Cantelli lemma

This theorem is often called a lemma because it sets the stage for a number of important results. It is covered in all four of the

texts mentioned at the beginning of this appendix, and is mentioned in some of the learnability literature. We may go over this

if we rely on it later.

(52) For any sequence of independent events 〈A0, A1, . . .〉

let the limit supremum be lim sup
n→∞

An =

∞
⋂

n=1

∞
⋃

m=n

Am.

This event is the collection of the set of points that are members of infinitely many of the An, and so so it is sometimes

written (An i.o.) where “i.o.” stands for “infinitely often.” Kallenberg (1997)

The limit infimum of the sequence is lim inf
n→∞

An =

∞
⋃

n=1

∞
⋂

m=n

Am

Intuitively, the limit infimum of a sequence of sets is the event containing the points that happen in all but finitely

many Ai. That is, at some finite point in the sequence, all later events in the sequence have the points in the limit

infimum, so it is sometimes written (An ult.) where “ult.” stands for “ultimately.”

(53) For example, let’s find the limit supremum of sequence of events

A1 = {0}, A2 = {0, 1}, A3 = {0, 1, 2}, . . .

When n = 1, we have
⋂

∞
⋃

1

Am, which is A1 = {0}.

When n = 2, clearly
⋂

∞
⋃

2

Am = A2, and the limit of this sequence is

∞
⋃

n=1

An = N.

42 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

Calculating the limit infimum, when n = 1,

∞
⋃

∞
⋂

m=1

Am = A1.

When n = 2, clearly
⋃

∞
⋂

2

Am = A2, and the limit of this sequence is

∞
⋃

n=1

An = N.

The limit supremum and infimum coincide like this whenever the sequence is monotonic.

(54) Theorem If 〈A0, A1, . . .〉 is increasing, then lim sup
n→∞

An = lim inf
n→∞

An =

∞
⋃

n=1

An.

In this case we say the sequence converges to lim
n→∞

An.

If 〈A0, A1, . . .〉 is decreasing, then lim sup
n→∞

An = lim inf
n→∞

An =

∞
⋂

n=1

An = lim
n→∞

An.

(55) (Borel lemma) For any sequence of events 〈E0, E1, . . .〉 ∈ F ,

∞
∑

n=1

p(En) < ∞ implies p(

∞
⋂

m=1

(

∞
⋃

n=m

En)) = 0.

Proof: Since for each m, A ⊆
∞
⋃

n=m

An, it follows from the monotonicity and additivity of probability measures:

p(A) ≤ P
(

∞
⋃

n=m

) ≤
∞
∑

n=m

p(An).

Since
∑

n

p(An) ≤ ∞, the right side approaches 0 as m→ ∞, so p(A) = 0. �

(56) (Borel-Cantelli lemma) For any sequence of independent events 〈E0, E1, . . .〉 ∈ F ,

∞
∑

n=1

p(En) < ∞ iff p(

∞
⋂

m=1

(

∞
⋃

n=m

En)) = 0.

I think we have now done enough to understand what this lemma says. The proof of the lemma is not trivial though,

and so I will omit it. It is provided in (Port, 1994, Prop47.6), (Kallenberg, 1997, Thm2.18), (Brémaud, 1999, Lemma

8.1), and is carefully introduced but then left as an exercise in (Fristedt and Gray, 1997, §6.2).

(57) A sequence {Zi| i ≥ 1} converges p-almost surely (p-a.s.) to random variable Z iff p(limn↑∞ Zn = Z) = 1.

(58) Kolmogorov’s Strong Law of Large Numbers (SLLN): Let {Xi| i ≥ 1} be an i.i.d. (independent and identically

distributed) sequence of random variables such that E(|Xi|) < ∞. Then, p-a.s.

lim
n↑∞

X1 + . . . + Xn

n
= E(Xi).

REFERENCES 43

References

References

Alon, Noga, Joel H. Spencer, and Paul Erdös. 1992. The Probabilistic Method. Wiley, NY.

Angluin, Dana. 1987. Learning regular sets from queries and counterexamples. Information and Computation, 75:87–106.

Anthony, Martin and Norman Biggs. 1992. Computational Learning Theory. Cambridge University Press, NY.

Bane, Max, Jason Riggle, and Morgan Sonderegger. 2010. The VC dimension of constraint-based grammars. Lingua, 120(5):1194 – 1208.

Blumer, Anselm, Andrzei Ehrenfeucht, David Haussler, and Manfred K. Warmuth. 1989. Learnability and the Vapnik-Chervonenkis

dimension. Journal of the Association for Computing Machinery, 36:929–965.

Brémaud, Pierre. 1999. Markov Chains: Gibbs Fields, Monte Carlo Simulations, and Queues. Springer, NY.

de la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, NY.

Durrett, Rick. 1996. Probability: Theory and Examples. Duxbury, Boston.

Fristedt, Bert and Lawrence Gray. 1997. A Modern Approach to Probability Theory. Birkhäuser, Boston.

Graham, Ronald L., Donald E. Knuth, and Oren Patashnik. 1989. Concrete Mathematics. Addison-Wesley, Menlo Park, California.

Heinz, Jeffrey, Gregory M. Kobele, and Jason Riggle. 2009. Evaluating the complexity of optimality theory. Linguistic Inquiry, 40(2):277–

288.

Jacod, Jean and Philip Protter. 2000. Probability Essentials. Springer, NY.

Kallenberg, Olav. 1997. Foundations of Modern Probability. Probability and its Applications. Springer, NY.

Kearns, Michael J. and Umesh V. Vazirani. 1994. An Introduction to Computational Learning Theory. MIT Press, Cambridge, Mas-

sachusetts.

Knuth, Donald E. 1973. The Art of Computer Programming: Volume 1, Fundamental Algorithms. Addison-Wesley, Menlo Park, California.

Maor, Eli. 1994. e: The Story of a Number. Princeton University Press, Princeton.

Pestov, Vladimir. 2011. PAC learnability versus VC dimension: a footnote to a basic result of statistical learning. ArXiv.

http://arxiv.org/abs/1104.2097.

Poggio, Tomaso, Ryan Rifkin, Partha Niyogi, and Sayan Mukherjee. 2004. General conditions for predictivity in learning theory. Nature,

428:419–422.

Port, Sidney C. 1994. Theoretical Probability for Applications. John Wiley and Sons, NY.

Resnick, Sidney. 1999. A Probability Path. Birkhäuser, Boston.

Riggle, Jason. 2009. The complexity of ranking hypotheses in optimality theory. Computational Linguistics, 35(1).

Rosenthal, Jeffrey S. 2006. A First Look at Rigorous Probability Theory. World Scientific, Hackensack, New Jersey.

Takács, Gábor. 2007. The Vapnik-Chervonenkis dimension of convex n-gon classifiers. Hungarian Electronic Journal of Sciences.

Takács, Gábor. 2010. Convex polyhedron learning and its applications. Ph.D. thesis, Budapest University of Technology and Economics,

Faculty of Electrical Engineering and Informatics, Budapest, Hungary.

Takács, Gábor and Béla Pataki. 2007. Lower bounds on the vapnik-chervonenkis dimension of convex polytope classifiers. In Proceedings

of the 11th International Conference on Intelligent Engineering Systems, INES 2007.

Taylor, J. C. 1997. An Introduction to Measure and Probability Theory. Springer, NY.

Valiant, Leslie G. 1984. A theory of the learnable. Communications of the Association for Computing Machinery, 27(11):1134–1142.

Vapnik, Vladimir N. 1998. Statistical Learning Theory. Wiley, NY.

http://arxiv.org/abs/1104.2097

44 CHAPTER 2. PROBABILISTIC CRITERIA FOR DISTRIBUTION-FREE LEARNING: PAC

Chapter 3 k-reversible languages

For Gold, while it is impossible to learn an arbitrary regular language from examples (where by “learn” we mean “identify from

positive text”), there are infinite subsets of the regular languages which are learnable. We already saw that one such subset

is L f in, but all those languages are finite – not very interesting. For PAC-learners, even the class L f in is not identifiable.

Angluin (1982) found a much more interesting collection of subsets, subsets in which some of the languages can have a really

interesting structure, containing both finite and infinite languages: for every k ≥ 0, the k-reversible languages are learnable.

She presents a Gold learner which, given evidence like abc, adc, conclude that b and c have similar syntactic roles. And

given ab, abc, the learner will conclude that c can be iterated any number of times. After presenting Angluin’s learner, we

will consider this problem from a PAC perspective.

3.0 Finite state (i.e. regular) languages

Finite systems, systems that can only have finitely many (computationally relevant) states, can recognize infinite languages,

but only if, in recognizing any string, only a finite amount of information needs to be remembered at each point. They play an

important role in recent computational phonology.

A language can be recognized with finite memory iff it can be defined with a rewrite grammar in which all the rules have

one of the following forms:

C → ǫ (where C is any category and ǫ is the empty sequence)

C → a D (where C,D are any categories and a is any (terminal) vocabulary element)

For example, the following grammar which defines {a, b}∗ has this form:

S → ǫ S → aS

S → bS

And the following grammar defines (ab)∗:
S → ǫ S → aB

B→ bS

These grammars branch only to the right. (It turns out that languages defined by these grammars can also be defined with

grammars that branch only to the left.)

3.0.1 A simple representation of finite machines

Grammars of the form shown above can be regarded as specifications of finite machines that can recognize (or generate) the

language defined by the grammar. We just think of the categories as states, the non-empty productions as rules for going from

one state to another, and the empty productions specify the final states. The machine corresponding to the grammar above can

be represented by the following graph, where the initial states are indicated by a bold circle and the final states are indicated

by the double circles:

S B
a

b

This kind of machine is usually formalized with the following 5 parts. (Here we follow the fairly standard presentation of

Perrin (1990) fairly closely.)

45

46 CHAPTER 3. K-REVERSIBLE LANGUAGES

Definition 5 A finite automaton A = 〈Q,Σ, δ, I, F〉 where

Q is a finite set of states (, ∅);
Σ is a finite set of symbols (, ∅);
δ ⊆ Q × Σ × Q,

I ⊆ Q, the initial states;

F ⊆ Q, the final states.

#

Definition 6 A path is a sequence c = (qi, ai, qi+1)1≤i≤n of transitions in δ. In any such path, q1 is its origin, qn+1 its end, the

sequence a1a2 . . . an is its label, and n is its length.

We add the case of a length 0 path from each state to itself, labeled by the empty string 1.

To indicate that there is a a path from q1 to qn+1 labeled with a sequence a1a2 . . . an we will sometimes write (q1, a1a2 . . . an, qn+1) ∈
δ. #

NB: We have defined finite automata in such a way that every transition is labeled with an alphabet symbol. Since there is a

0-step path labeled ǫ going from every state to itself, to define a language that contains ǫ, we simply let F ∩ I , ∅.
We could allow ǫ to label paths that change state, with only a slight change in our definitions. For any set S , let S ǫ = S ∪{ǫ}.

Then we revise our definition of finite automata just by letting δ ⊆ Q×Σǫ ×Q. Given such an automaton, the ǫ transitions can

be eliminated without changing the language accepted just by equating all states that are related by ǫ transitions.

Definition 7 A path is successful if its origin is in I and its end is in F.

The language L(A) accepted by the automaton A is the set of labels of successful paths. #

3.0.2 Some basic results about finite machines

Definition 8 A language L ⊆ Σ∗ is regular (finite state, recognizable) iff for some finite automaton A, L = L(A). #

Clearly, every finite language is regular. Given a set like {abc, abd, acd}we can construct a trivial finite automaton like this:

0

1.1

a

1.4
a

2.2

a

1.2b

1.5
b

2.3
c

1.3
c

2.1
d

2.4
d

For any finite language L we can define an acceptor like this. This language L is obviously not “minimal” – that is, it has more

states than necessary. One simple step for reducing states involves sharing common prefixes.

Definition 9 We define the prefixes of L, Pr(L) = {u| for some v, uv ∈ L} #

Definition 10 For finite L, the prefix tree acceptor for L, PT (L) = 〈Q,Σ, δ, I, F〉 where

Q = Pr(L);

Σ is a finite set of symbols (, ∅);
(w, a,wa) ∈ δ iff w,wa ∈ Q,

I = {ǫ};
F = L.

#

3.0. FINITE STATE (I.E. REGULAR) LANGUAGES 47

Example 1 PT ({abc, abd, acd}) is smaller than the acceptor shown above, but accepts exactly the same language:

e a
a

abb

ac

c

abc

c

abd
d

acd
d

#

3.0.3 Deterministic finite machines

Definition 11 A finite automaton is complete iff for every q ∈ Q, a ∈ Σ there is at least one q′ ∈ Q such that (q, a, q′) ∈ δ. #

For any automaton there is a complete automaton that accepts the same language. We simply add arcs that go to a “dead”

state – a state from which there is no path to a final state.

For example, PT ({abc, abd, acd}) is not complete, but the following automaton is, and accepts the same language:

e

a

a

xx

b

c

d

a

d

ab
b

ac

c

a

b

c

d

a

b

abc

c

abd

d

a

b

c

acd

d

a

b

c

d

a

b

c

d

a

b

c

d

Definition 12 A deterministic finite automaton (DFA) is a finite automaton where where δ is a function δ : (Q × Σ) → Q and

I has at most one element.

When a deterministic automaton has a path from p1 to pn labeled by a1a2 . . . an we will sometimes write δ(p1, a1a2 . . . an) = pn.

#

(A DFA can be represented by a Q × Σ matrix.)

Theorem 14 (Myhill) A language is accepted by a DFA iff it is accepted by a finite automaton.

48 CHAPTER 3. K-REVERSIBLE LANGUAGES

We use ℘(S) to indicate the powerset of S , that is, the set of all subsets of S . The powerset of a set S is sometimes also

represented by 2S , but we will use ℘(S). (Note, for example, that 2n in the theorem just below refers to a number, not to a set

of sets.)

Proof: Given NFA A=〈Q,Σ, δ, I, F〉 define

DFA=〈℘(Q),Σ, δ′, {I}, {s ∈ ℘(Q)| s ∩ F , ∅}〉 where

(q′i , a, q
′
j) ∈ δ′ iff q′j = {q j| (qi, a, q j) ∈ δ and qi ∈ q′i}

The proof that this DFA is equivalent is an easy induction: see for example Hopcroft and Ullman (1979, Thm 2.1) or

Lewis and Papadimitriou (1981, Thm 2.3.1) �

Example 2 The automata shown above are all deterministic. The following automaton is not:

0

1
x

2

x

x

3

a

x
b

We can use the “subset construction” of the previous theorem to make this machine deterministic:

e

a

a

xx

b

c

d

a

d

ab
b

ac

c

a

b

c

d

a

b

abc

c

abd

d

a

b

c

acd

d

a

b

c

d

a

b

c

d

a

b

c

d

This machine is larger than the original. In fact, for some nondeterministic machines, the smallest deterministic equivalent

machines can be much larger. Perrin (1990, p30) considers as an example {a, b}∗a{a, b}n. When n = 2 this language is accepted

by the following 4 state nondeterministic automaton:

0

a

b

1
a

2
a

b
3

a

b

The corresponding deterministic automaton is this one:

3.0. FINITE STATE (I.E. REGULAR) LANGUAGES 49

0

b 1
a

2
a 3

b

4a

5

b

6
a

7

b

a

b
a

b

a
b

b

a

Adding one state to the nondeterministic automaton, we find that its minimal deterministic equivalent doubles in size:

0

a

b

1
a

2
a

b
3

a

b
4

a

b

0

b
1

a

2

a
3

b

4

a

5

b
6

a

7

b

8a

9b

10
a

11

b

12

a
13b

14

a

15

b

a
b

a

b

a

b

a

b

a

b

a

ba
b

b

a

#

Theorem 15 There are n-state automata A such that the smallest DFA accepting L(A) has at least 2n states.

Since DFAs have nice computational properties, there are studies of how to compute them without unnecessary blowup in

size (Leslie, 1995).

3.0.4 The Myhill-Nerode theorem and the canonical acceptor A≡L

For finite languages L, PT(L) is not generally the minimal deterministic automaton accepting L. That is, it is not the DFA

accepting L with the smallest number of states. However, it is fairly easy to construct a minimal DFA for any regular language

using the equivalence classes of the Nerode equivalence relation (sometimes called the right congruence relation induced by

L). These equivalence relations also give us a characterization of the finite state languages.

Definition 13 The Nerode equivalence relation for L, x ≡L y iff for all z ∈ Σ∗, xz ∈ L iff yz ∈ L. #

Theorem 16 If w ∈ L and w ≡L w′ then w′ ∈ L.

Proof: By definition, letting z = ǫ. �

Lemma 1 If a ∈ Σ and w ≡L w′ then wa ≡L w′a.

Proof: Assume a ∈ Σ, w ∈ Σ∗ and w ≡L w′. By definition, for any x ∈ Σ∗,

wx ∈ L iff w′x ∈ L So let x = az:

w(az) ∈ L iff w′(az) ∈ L But then

(wa)z ∈ L iff (w′a)z ∈ L and so wa ≡L w′a.

�

50 CHAPTER 3. K-REVERSIBLE LANGUAGES

Definition 14 Given any equivalence relation ≡, the equivalence class of w is [w]≡ = {x| w ≡ x}.
(Often we use just the brackets, leaving off the subscript when no confusion will result.)

The index of equivalence relation ≡, I(≡) is the number of different equivalence classes it induces, I(≡) = |{[x]|x ∈ Σ∗}|. #

Theorem 17 (Myhill-Nerode Theorem) For any language L, ≡L has finite index iff L is regular.1

Proof: (⇐) Since every regular language is accepted by some DFA A = 〈Q,Σ, δ, {q0}, F〉, assume L = L(A). For any x, y ∈ Σ∗,
let x ≡A y just in case δ(q0, x), δ(q0, y) are defined and δ(q0, x) = δ(q0, y). Obviously, ≡A is an equivalence relation, and its

index cannot be larger than |Q|. But if x ≡A y then for all z, xz ≡A yz, and so xz ∈ L iff yz ∈ L. Since ≡A need only be defined

for prefixes of L, while ≡L is defined for all of Σ∗, let ≡′
L

be the restriction of ≡L to the domain of ≡A; in ≡L the non-prefixes

of L are all in 1 block, with the empty set of “good finals.” By the definition of the Nerode equivalence relation, if x ≡A y then

x ≡′
L

y. It follows that the index I(≡′
L
) ≤ I(≡A), and hence even if ≡L has one more block than ≡′

L
(the non-prefixes, if any),

both I(≡′
L
) and I(≡L) + 1 are finite.

(⇒) Assume ≡L has finite index. We define the canonical acceptor for L, A≡L
. We let equivalence classes themselves be the

states of the automaton, Q = {[w]| w ∈ Pr(L)}. So, by assumption, Q is finite. Let

δ([w], a) = {[wa]} whenever w,wa ∈ Pr(L),

F = {[w]| w ∈ L}, and

I = {[ǫ]}.
Now it is clear that A≡L

= 〈Q,Σ, δ, I, F〉 is a deterministic automaton which accepts L, since by definition w ∈ L(A≡L
) iff

[w] ∈ F iff w ∈ L. �

Example 3 The canonical acceptor for {abc, abd, acd} is smaller than PT ({abc, abd, acd}). In fact, it is this:

0 1
a

2b

3

c

4

c

d

d

#

Corollary 8 L = {anbn| n ∈ N} is not regular.

Proof: Obviously, for each choice of n, [an] , [an+1], and so ≡L does not have finite index. �

Corollary 9 For any regular language L, the canonical acceptor A≡L
has I(≡L) − 1 states if there is any string w < Pr(L), and

otherwise has I(≡L) states.

Proof: Every equivalence class of ≡L is a state of A≡L
except for the class of strings that are not prefixes of any sentences of

L, if there are any. �

Corollary 10 No DFA accepting L has fewer states than A≡L
.

Proof: This is already implicit in the proof of the Myhill-Nerode theorem. Compare the machine A≡L
with states Q to any

arbitrary deterministic A′ = 〈Q′,Σ, δ′, {q′
0
}, F′〉, where L = L(A′). We show that there must be at least as many states in Q′ as

in Q.

Define: x ≡A′ y iff δ′(q′
0
, x) = δ′(q′

0
, y). Since A′ is deterministic and the values of δ′ are in Q′,

|Q′| ≥ I(≡A′) − 1 – that is, ≡A′ only distinguish as many classes as there are states of Q′, plus one other class if some

strings are not in Pr(L).

But notice that we also have, as in the Myhill-Nerode proof, x ≡A′ y implies x ≡L y.

(This is the key point! No machine accepting L can equate strings x, y that are not equated by ≡L!)

That is, I(≡A′) ≥ I(≡L). It follows then that |Q′| ≥ |Q|. �

Corollary 11 Any minimal DFA A = 〈Q′,Σ, δ′, {q′
0
}, F′〉 accepting L is isomorphic to A≡L

, that is, there is a bijection g : Q →
Q′ such that g(δ(q, a)) = δ′(g(q), a).

1The Myhill-Nerode theorem is treated in Hopcroft and Ullman (1979, §3.4) at the end of their second chapter on finite automata. It is treated in

Moll, Arbib, and Kfoury (1988, §8.2). In Lewis and Papadimitriou (1981), the Myhill-Nerode theorem is an exercise.

3.0. FINITE STATE (I.E. REGULAR) LANGUAGES 51

Note: There is an efficient algorithm for converting any deterministic machine accepting L into a minimal deterministic

machine accepting L.2

Also notice that the previous theorem and its proof rely on the determinism of the automaton that is being compared to A≡L
.

In fact, we can get much smaller machines if we allow nondeterminism.

3.0.5 Grammatical representations of regular languages

Definition 15 A rewrite grammar G = 〈V,Σ, P, S 〉where

V is a finite set of symbols (, ∅)
Σ ⊆ V , the terminal symbols;

P ⊆ V∗(V − Σ)V∗ × V∗;

S ∈ (V − Σ).

#

An element 〈u, v〉 ∈ P is often written u→ v.

Definition 16 For u,w, x, y ∈ V∗, uxw⇒ uyw iff x → y is in P.

⇒∗ is the reflexive, transitive closure of⇒. #

Definition 17 The language generated by grammar G, L(G) = {w ∈ Σ∗| S ⇒∗ w} #

Definition 18 Given a grammar G, the sequence w0,w1, . . . ,wn is a derivation of wn from w1 iff wi ⇒ wi+1 for all 0 ≤ i < n.

If w0 = S , this is a derivation of w from G. #

We generalize the grammar form of the introduction just slightly, to allow single terminals as well as the empty string on

the right sides of productions:

Definition 19 G is right linear iff every production in P has one of the following forms, where a ∈ (Σ ∪ {ǫ}), A, B ∈ (V − Σ):

A→ aB

A→ a

#

Lemma 2 If a language L ⊆ Σ∗ is accepted by automaton A, then it is generated by a right linear grammar.

Proof: Let L = L(A), where A = 〈Q,Σ, δ, I, F〉. We assume that Q ∩ Σ = ∅ without loss of generality, since this can always be

achieved by renaming the states. We want to associate all of the states in I with the start symbol of the grammar, so let

h(q) =

S if q ∈ I

q otherwise

Now we define a right linear grammar G = 〈V,Σ, P, S 〉 as follows:

(i) V = Σ ∪ (Q − I) ∪ {S }.
(ii) Define P as the smallest set such that

(a) if δ(qi, a) contains q j then (h(qi)→ ah(q j)) ∈ P;

(b) if δ(qi, a) contains q j and q j ∈ F then (h(qi)→ a) ∈ P.

(c) if I ∩ F , ∅ then (S → ǫ) ∈ P.

2Cf. Algorithm 4.5 of Aho, Hopcroft, and Ullman (1974, pp158,162); Watson (1993).

52 CHAPTER 3. K-REVERSIBLE LANGUAGES

Call this grammar the right linear equivalent of the A. Now we must show that w ∈ L(A) iff w ∈ L(G).

(⇒) By definition, for each w ∈ L(A) there is at least one path (q0, a1, q1), (q1, a2, q1) . . . , (qn−1, an, qn) such that w = a1 . . . an.

If the path has length 0 and w = ǫ, then S → ǫ is in P by (c), allowing the corresponding derivation from G. In any other case,

we show that the following is a derivation of w from G:

〈h(q0), a1h(q1), a1a2h(q2), . . . , a1a2 . . . an−1h(qn−1), a1a2 . . . an−1an〉.

Consider the beginning and end of the sequence first. By the definitions of h and of accepting state sequences, h(q0) = S . By

the same definitions qn is a final state and so we have the production h(qn−1) → an in the grammar defined above. As for the

middle of the derivation, the definition of accepting state sequence guarantees that for 0 ≤ i < n, qi+1 ∈ δ(qi, ai+1), and so our

grammar has productions h(qi)→ ai+1h(qi+1).

(⇐) We must show that each w ∈ L(G) is accepted by A. The correspondence between derivations and accepting sequences

can be used again to show this. �

Lemma 3 If L is generated by a right linear grammar, then L is accepted by a A.

Proof: (⇒) Suppose L is generated by the right linear grammar G = 〈V,Σ, P, S 〉. Define A as follows:

Q = (V − Σ) ∪ {q f },
I = S ,

F = {q f },

δ(A, a) =

{B|(A→ aB) ∈ P} if P has no rule of the form A→ a

{q f } ∪ {B|(A→ aB) ∈ P} otherwise.

Call this automaton A the equivalent of right linear G. It is now easy to show a correspondence between derivations and

accepting state sequences as was done in the previous proof. �

Theorem 18 L is accepted by a finite automaton A iff L is generated by a right linear grammar.

Proof: Immediate from the previous 2 lemmas. �

3.0.6 The pumping lemma for regular languages

Theorem 19 If x ∈ L(A) and |x| ≥ |Q| then for some u, v,w ∈ Σ∗, x = uvw, |v| > 0 and for all n ≥ 0, uvnw ∈ L(A).

Proof: Assume x ∈ L(A), |x| ≥ |Q|. Then there is a successful path

(q0, a1, q1), (q1, a2, q1) . . . , (qn−1, an, qn)

where x = a1 . . .an. In particular, q0 ∈ I, qn ∈ F, a1 . . . an = x and n ≥ |x|. Since |x| ≥ |Q|, n ≥ |Q|, and so there are some

qi, q j, 0 ≤ i < j ≤ n such that qi = q j and |ai+1 . . . a j| > 0. Let

u = a1 . . . ai,

v = ai+1 . . . a j,

w = a j+1 . . . an

We noted already that |v| > 0. The string uvw ∈ L(A) by assumption, but we now show that for all n ≥ 0, uvnw ∈ L(A).

So there is a successful path

(q0, a1, q1), . . . , (qi−1, ai, qi), . . . , (q j, a j, q j+1), . . . , (qn−1, an, qn),

such that qi = q j. So instead of going from qi−1 to qi we can go from qi−1 to q j. It follows that

(q0, a1, q1), . . . , (qi−1, ai, q j), (q j, a j, q j+1), . . . , (qn−1, an, qn)

is a successful path. Consequently, uv0w ∈ L(A). (For any string v, v0 = ǫ.)

Furthermore, instead of going from q j−1 to q j, we can just as well go back into qi to repeat the sequences 〈qi, . . . , q j−1〉 and

〈ai+1, . . . , a j〉 any number of times. Consequently, uvnw ∈ L(A) for all n ≥ 0. �

3.0. FINITE STATE (I.E. REGULAR) LANGUAGES 53

3.0.7 Regular languages are closed under union

Given two finite state machines, we can easily construct a finite state machine that accepts the union of the two languages.

Given A1 = 〈Q1,Σ1, δ1, I1, F1〉 and A2 = 〈Q2,Σ2, δ2, I2, F2〉, we can assume without loss of generality that Q1 ∩ Q2 = ∅.
Then define

A = 〈Q1 ∪ Q2,Σ1 ∪ Σ2, δ1 ∪ δ2, I1 ∪ I2, F1 ∪ F2〉.

It is easy to show that this automaton accepts exactly the language L(A1) ∪ L(A2).

3.0.8 Regular languages are closed under intersection

Given two finite state machines, we can easily construct a finite state machine that accepts the intersection of the two languages.

Given A1 = 〈Q1,Σ, δ1, I1, F1〉 and A2 = 〈Q2,Σ, δ2, I2, F2〉, define A = 〈Q1 × Q2,Σ, δ, I1 × I2, F1 × F2〉, where for all

a ∈ Σ, q1, r1 ∈ Q1, q2, r2 ∈ Q2,

([q1, q2], a, [r1, r2]) ∈ δ iff (q1, a, r1) ∈ δ1 and (q2, a, r2) ∈ δ2.

It is easy to show that this automaton accepts exactly the language L(A1) ∩ L(A2).

3.0.9 Regular languages are closed under concatenation

Given two finite state machines, we can easily construct a finite state machine that accepts the concatenation of the two

languages.

Given A1 = 〈Q1,Σ, δ1, I1, F1〉 and A2 = 〈Q2,Σ, δ2, I2, F2〉, intuitively, we merge all the elements of F1 with all the elements

of I2, so that δ maps an input a1 and an element q1 of F1 to everything that δ maps it to, together with each q2 that δ2 maps an

initial state to.

3.0.10 Regular languages are closed under complements

Given a finite state machine A that accepts L(A) ⊆ Σ∗, we can easily construct a finite state machine that accepts Σ∗ − L(A).

Intuitively, we determinize A and then enrich it so that every element of Σ can be accepted from every state, if only to map

the state to a “dead” state from which no final state can be reached. Then, we construct a new machine which is like the first

except that it has as final states all the states that are non-final in the previous machine.

3.0.11 Regular languages are closed under reversal

For any string s = a1a2 . . . an, the reversal sr = an . . .a2a1. As expected, ǫr = ǫ.

For any language L ⊆ Σ∗, the reversal Lr = {sr | s ∈ L}.

Given a finite state machine A = 〈Q,Σ, δ, I, F〉 and that accepts L(A) ⊆ Σ∗, we can easily construct a finite state machine

that accepts L(A)r:

Ar = 〈Q,Σ, δr, F, I〉 where (q0, a, q) ∈ δr iff (q, a, q0) ∈ δ.

Notice that the initial states I of A are the final states of Ar and the final states F of A are the initial states of Ar.

3.0.12 Exercises

1. Draw the minimal deterministic automaton that accepts

{CV,CVC,VC,V}(.{CV,CVC,VC,V})∗

2. Draw the minimal deterministic transducer which maps a sequence w ∈ {C,V, .}∗ to xn iff w contains n occurrences of .C
3. Intersect the domain of the previous transducer with the language defined in the first exercise, and draw the result.

4. Use Nerode’s theorem to show that {xx| x ∈ {a, b}∗} is not regular.

54 CHAPTER 3. K-REVERSIBLE LANGUAGES

3.1 Gold learners for k-reversible languages

A deterministic finite automaton is one in which, from any state, given any next input symbol, at most one transition can be

taken. That is, the transition relation is a function of its first two arguments, δ : (Q × Σ)→ Q, and the set of initial states I has

at most one element.

In a deterministic automaton, if s ∈ Σ∗ labels any path from a given state, it labels exactly one path from that state. We

generalize this notion to consider machines that are deterministic with more than just one symbol of “lookahead.”

Definition 20 For any k ≥ 0, a string s ∈ Σ∗ of length k = |s| is a k-follower of state q iff δ(q, s) , ∅.
An automaton A is deterministic with lookahead k iff for any distinct pair of states q1, q2 ∈ I or q1, q2 ∈ δ(q, a) for some

q ∈ Q, a ∈ Σ, no string is a k-follower of both q1 and q2.

An automaton A is k-reversible iff A is deterministic and Ar is deterministic with lookahead k.

A language L is k-reversible iff it is the language accepted by some k-reversible automaton.

Lk−rev is the set of all k-reversible languages. #

In other words, in a machine that is deterministic with lookahead k, initial states and states that can be reached from any

given state by accepting a given symbol, have no k-followers in common.

Example 4 Consider this acceptor A:

0

1
a

4

a

2b

3d

c

In this machine, ǫ is a 0-follower of every state, and a is a 1-follower of state 0.

In this machine, there are 2 distinct states, 1 and 4, in δ(0, a), that both have the same 0-followers. So the machine is not

deterministic with lookahead 0.

Ar, on the other hand, is deterministic with lookahead 0.

Acceptor A has no 2 distinct states q1, q2 ∈ I or q1, q2 ∈ δ(q, a) for some q ∈ Q, a ∈ Σ, such that both q1 and q2 have the

same 1-followers, so the machine is deterministic with lookahead 1. And Ar is also deterministic with lookahead 1, so the

machine is 1-reversible. (And hence k-reversible for all k ≥ 1.) #

Proposition 1

a. Every state has exactly one 0-follower, namely the empty string ǫ.

b. A is 0-reversible iff A and Ar are both deterministic.

c. If A is 0-reversible, then the result of removing states that are not reached in accepting any string of L(A) is the canonical

acceptor for L(A).

d. If A = 〈Q,Σ, δ, {q0}, {q f }〉 is 0-reversible and uv ∈ L(A), then δ(q0, u) = δr(q f , v
r).

So if u1v, u2v ∈ L(A), then δ(q0, u1) = δ(q0, u2).

e. For all k ≥ 0, a deterministic automaton is deterministic with lookahead k.

f. If A is k-reversible and u1vw, u2vw ∈ L(A), where |v| = k,

then there is a unique state q such that q = δ(q0, u1v) = δ(q0, u2v).

g. In fact, let L be any regular language. Then L is k-reversible iff whenever u1vw, u2vw ∈ L and |v| = k, u1v ≡L u2v.

3.1. GOLD LEARNERS FOR K-REVERSIBLE LANGUAGES 55

Theorem 20 For every language L ∈ Lrev, there is a finite distinguished subset DL ⊆ L such that for all L′ ∈ Lrev, if DL ⊆ L′

then L′ 1 L.

Proof: If L = ∅, DL = ∅ is a distinguished subset for L.

So now suppose L , ∅, and let A = 〈Q,Σ, δ, {q0}, {q f }〉 be the canonical acceptor for L. For each q ∈ Q, let u(q) and v(q) be

strings of minimum length such that δ(q0, u(q)) = q and δ(q, v(q)) = q f . Let

DL = {u(q)v(q)| q ∈ Q} ∪ {u(q)bv(q′)| q ∈ Q, b ∈ Σ, δ(q, b) = q′}.

We show that this set DL is a distinguished subset for L.

Suppose L′ ∈ Lrev and DL ⊆ L′. We show that L ⊆ L′.
We first we show by induction on the length of w that for all w ∈ Pr(L), (i) w ≡L′ u(q) where q = δ(q0,w) (and where u(q), δ, q0

are as in the definition of DL just above).

Suppose |w| = 0, that is w = ǫ. Since δ(q0, ǫ) = q0 the minimum length string u(q0) can only be ǫ.

Suppose (IH) the result holds for |w| ≤ n, and consider any b ∈ Σ such that wb ∈ Pr(L). By IH, w ≡L′ u(q). But then by the

definition of ≡L′ we have (ii) wb ≡L′ u(q)b.

Letting q′ = δ(q, b) = δ(q0,wb), it follows by the definition of DL that u(q′)v(q′), u(q)bv(q′) ∈ DL.

Since L′ is reversible, by Proposition 1d, δ(q0, u(q′)) = δ(q0, u(q)b) and so u(q′) ≡L′ u(q)b. By (ii) then, wb ≡L′ u(q′),
completing the inductive proof of (i).

It follows from (i) that for every w ∈ L, w ≡L′ u(q f), and since u(q f) ∈ DL and DL ⊆ L′, it follows that w ∈ L′. This completes

the proof. �

Corollary 12 Lrev is learnable.

learning algorithm ZR, for Lrev: (informally!) Given any finite sequence of strings T [i],

1. Construct PT (content(T [i])).

2. Merge final states so that there is a single final state q f ; then merge any distinct states that can lead to q f on transitions

labeled a for any a ∈ Σ. Continue in this way to previous states until the resulting machine A is such that Ar is deterministic.

3. Output ZR(T [i]) = A. This accepts the smallest reversible language that includes content(T [i]).

Full details, proof of correctness, and complexity analysis are given in Angluin’s paper.

56 CHAPTER 3. K-REVERSIBLE LANGUAGES

3.2 VC dimension of L
k−reversible

It is easy to show that for every k ∈ N, the set of k-reversible languages has infinite VC-dimension (Stabler, 2009, pp217-8).

That is, there is no finite bound on the size of the sets that are shattered by Lk−rev.

We can establish the infinite VC dimension of L0−rev as follows. For any finite k ≥ 0, let the language

Lk = {biabi| 0 ≤ i ≤ k}.

It is clear that every such Lk is reversible:

a

......

b

a

b

b

a

b

b

a

b

i

i−1

0

1

Furthermore, it’s clear that every subset of this language is reversible, since it will be defined by the result of deleting any

number of the a-arcs (and then we can remove any states and arcs that are not on a path from the start state to the final state to

obtain the canonical automaton). Clearly the size of Lk grows with k, and every such set can be shattered by Lrev since every

subset of Lk is also reversible.

From this we have immediately the infinite VC dimension for all the k-reversible classes, k ≥ 0, since they all include

L0−rev.

3.3. EXERCISES 57

3.3 Exercises

1. Consider this sequence of 8 strings:

T [8] = 〈 John sings,

John will sing,

John will have sung,

John will have been singing,

John has sung,

John has been singing,

John is singing,

John sings happily 〉

a. Draw the prefix tree automaton for content(T [8]).

b. Draw the automaton ZR(T [8]).

c. Is L(ZR(T [8])) finite? If not, which of its elements surprise you the most (or rather, which might surprise someone

who did not know how the ZR learner works)?

2. State in the simplest, most intuitive terms possible, the rational basis for the step that generalizes the machine to accept

an infinite language in the previous problem. That is, explain why, given the input and innate knowledge about the target

class, this generalization step was justified. (Make sure that my mother, a non-linguist, could understand your explanation.)

3. Now, abstracting a little bit, consider this set of strings:

Aux = {Iwhbv, Iwhv, Iwv, Iv, Ihbv, Ihv, Iwbv, Ibv}

Let’s count the size of any subset of Aux by counting the symbols in each string. So then size(Aux) = 31. Using this size

measure, what is the smallest subset S ⊆ Aux such that:

if content(T[i]) = S then L(ZR(T[i])) is infinite.

4. Consider the two zero reversible languages defined by these machines:

0 1
a

b

2
c

0 1
d

e

2
f

The difference between them is uninteresting: one is just a “relettering” of the other.

Suppose we abstract away from “lexical differences” like this, so that these two languages count as the same example

(mere reletterings of each other). With this abstraction, do we obtain a finite class of “core” zero-reversible acceptors?

Explain why I say: no.

References

References

Aho, A.V., J.E. Hopcroft, and J.D. Ullman. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mas-

sachusetts.

Angluin, Dana. 1982. Inference of reversible languages. Journal of the Association for Computing Machinery, 29:741–765.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading,

Massachusetts.

Leslie, Ted. 1995. Efficient Approaches to Subset Construction. Ph.D. thesis, University of Waterloo, Ontario.

Lewis, H. R. and C. H. Papadimitriou. 1981. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, New Jersey.

Moll, R.N., M.A. Arbib, and A.J. Kfoury. 1988. An Introduction to Formal Language Theory. Springer-Verlag, NY.

58 CHAPTER 3. K-REVERSIBLE LANGUAGES

Perrin, Dominique. 1990. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Elsevier, NY, pages

1–57.

Stabler, Edward P. 2009. Computational models of language universals: Expressiveness, learnability and consequences. In Morten H.

Christiansen, Chris Collins, and Shimon Edelman, editors, Language Universals. Oxford University Press, NY, pages 200–223.

Watson, Bruce W. 1993. A taxonomy of deterministic finite automata minimization algorithms. Computing science report 93/44, Eindhoven

University of Technology.

Chapter 4 Learning subsets of the PDFAs

Extending the basic strategy in Angluin (1982), this section considers methods for learning not just subsets of deterministic

finite automata (DFAs), but probabilistic DFAs (PDFAs), which define probability distributions over regular languages.

4.1 Distances between languages . 59

4.1.1 Languages as sets of strings . 60

4.1.2 Languages probabilistically sampled . 60

4.1.3 Languages as probability distributions . 61

4.2 Relative entropy .62

4.3 Weighted finite state automata . 63

4.4 Computing exact relative entropy of weighted automata 66

4.4.1 Carrasco’97 . 66

4.4.2 Semirings . 67

4.4.3 Entropy semiring . 68

4.4.4 Cortes&al’08 .69

4.5 Smoothing probabilities . 70

4.6 Example: comparing 4 earlier learners . 72

4.6.1 φe + smoothing . 74

4.6.2 φS L2 + smoothing . 74

4.6.3 φprec + smoothing . 74

4.6.4 φ0−rev + smoothing .74

4.7 Clark&Thollard’04 φPDFA,|Q|,Es,µ . 75

4.8 Castro&Galvadà’08 φPDFA,|Q|,Es . 77

4.1 Distances between languages (or parts of a language)

(0) A language learner could begin by assuming each utterance, and each part of each utterance is different from any

other. But then the learner should notice that the environments in which one part occurs are relevantly similar to

environments in which the other occurs – maybe the grammar should treat them as equivalent, as the same category.

This description is intentionally vague – different grammars can differ about what counts as a part, what counts as a

relevant environment for a part, etc.

In a context free rewrite grammar and certain other kinds of grammars, there is a natural definition of the ‘yield’ of

each category: what pronounced sequences can be derived from that category.1 Then each category can be regarded

as defining a language: its yield. Then a learner could ask of any two categories: “Are their yields similar enough that

I should regard them as the same category?”

So here is the problem. Suppose we have two grammars G,G′ (or two automata, or two categories). What is an

appropriate measure of the distance dp(G,G′) from one to the other? (Some of our measures will not be symmetric,

and will fail the triangle inequality d(x1, x2) < d(x1, x3] + d[x3, x2).)

1This is not generally well-defined for certain context sensitive grammars, where what gets rewritten may be more than one symbol, or may vary with

context.

59

60 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

4.1.1 Distances between sets of strings

(1) When L, L′ ⊆ Σ∗, we can compare them by checking whether L = L′, L ⊂ L′, L ∩ L′.

When the languages are finite, we can compare the sizes |L| and |L ∩ L′|.

4.1.2 Distances between probabilistically sampled languages

(2) p(false positives)+p(false negatives). If the grammars G,G′ define subsets L, L′ of Σ∗, and we have a probability

distribution p over Σ∗, then we could define the distance as the

dp(G,G′) = p(L′ − L) + p(L − L′).

This idea is common in some of the early work on PAC learning, e.g. Kearns and Vazirani (1994).

(3) Another common measure is to look at word frequencies in the samples. Sampling L and L′, we could compute

the frequencies of each word in the respective samples x : Σ → N, y : Σ → N. Then, regarding these counts as

Σ-dimensional vectors, it is common to measure their distance with the cosine of the angle θ between them

dcos(L, L
′)] = cos θ

x
y

angle

It is easy to calculate θ given any two points using the ‘cosines law’:

x · y = ||x|| ||y|| cosθ,

where the norm or ‘length’ of a vector

||x|| =

√

√

n
∑

i=1

x2
i
.

and where θ is the angle between x, y ∈ Rn. Rearranging, and recalling that (for −1 ≤ θ ≤ 1) arccos θ = α iff cosα = θ,

θ = arccos

(

x · y
||x|| ||y||

)

,

where the dot product of the vectors

x · y =
n

∑

i=1

xiyi.

This measure has the advantage that the absolute counts do not matter – only their ratios matter. The points of interest

will only be in the upper right, positive quadrant, of course, but the the cosine approaches 0 as the two points become

more nearly orthogonal.

This measure has the disadvantage that word order is neglected! We could count trigrams (or even larger n-grams)

instead of words, to introduce some order information, but that seems like a crude strategy, not well-motivated.

4.1. DISTANCES BETWEEN LANGUAGES (OR PARTS OF A LANGUAGE) 61

4.1.3 Distances between probability distributions on Σ∗

If the grammars G,G′ define probablities p, q over Σ∗, then there are various ways to compare them:

(4) maximum difference (L∞).

d∞(p, q) = max
x∈Σ∗
|p(x) − q(x)|

(5) variation distance (L1).

dL1[p, q] =
∑

x∈Σ∗
|p(x) − q(x)|

This idea appears in some recent work (Palmer and Goldberg, 2007) and is discussed below.

This has the problem that every string x has equal weight.

(6) mean square distance, Euclidean distance (L2).

dL2(p, q) =

√

∑

x∈Σ∗
(p(x) − q(x))2

Again, this has the problem that every string x has equal weight.

(7) cross-entropy. Charniak (1993, pp26,33) says “. . . , there are reasons for wanting a good probabilistic model. . . there

is a good figure of merit that can be used to compare such models. . . In dealing with real English, we do not know the

correct model. . . So we can ask, how much good does our approximate model do? One measure of this is given by the

cross entropy.”

dCE (p, q) = −
∑

x∈Σ∗
p(x) log q(x).

What does dCE signify, intuitively? Well, comparing this to the entropy of p,

H(p) = −
∑

x∈Σ∗
p(x) log p(x)

(discussed below) we see that dCE will be greater when p, q differ.

This measure has the advantage that it is scaled by the probability of each event x.

(8) relative entropy (KL divergence). When what we care about is the divergence between grammars and not the actual

entropy of either one, it is natural to subtract the entropy from the cross entropy. This is, in effect, what relative entropy

is.

dKL(p, q) = dCE(p, q) − H(p)

= −∑

x∈Σ∗ p(x) log q(x) +
∑

x∈Σ∗ p(x) log p(x)

Equivalently, as pointed out by Nederhof and Satta (2004, (37)), Cortes et al. (2008, (7))

dKL(p, q) =
∑

x∈Σ∗
p(x) log

p(x)

q(x)
= Ep[log

p(x)

q(x)
].

D(p||q) is a common notation for dKL(p, q)

Notice that both this measure and the previous one are scaled by taking logs, so (Cover and Thomas, 1991, p9) say

“relative entropy arises as the exponent in the probability of error in a hypothesis test between distributions p and q.”

(9) For any p, q, dKL is larger than any of the other values (Reid and Williamson, 2009)

L∞ ≤ L2 ≤ L1 ≤ KL

Cf. also Hellinger distance, Jensen-Shannon distance, χ2-distance, Triangle distance,. . . (Topsøe, 2000; Csiszar and Korner,

1997; Reid and Williamson, 2009).

We begin with (8) relative entropy.

62 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

4.2 Relative entropy

(10) The surprisal of an event A in a space with probability p

i(A) = log
1

p(A)
= − log p(A),

normally using log2, for units in “bits”.

p vs log p p vs log 1
p

as p increases, surprisal decreases

Example. So if we have 10 possible outcomes A0, . . . , A9 with equal probabilities, so p(A0) = 0.1, then

i(A0) = log
1

0.1
= − log 0.1 ≈ 3.32 bits

If the outcomes B0, . . . , B9 are independent, then p(A0, B0) = 0.01, and i(A0, B0) ≈ 6.64. “Surprisals add where

probabilities multiply,” as the saying goes.

(11) Intuitively, the entropy is average surprisal of events from some source X. The entropy of probability mass function p

over discrete set X

H(p) = −
∑

x∈X
p(x) log p(x)

(12) If there are just 2 possible events (e.g. flipping a coin that never lands on an edge), we can plot of the entropy of these

events as a function of the probability of one of them. The entropy averages over all the events, so sometimes we say

that this is the entropy of the ‘source’ of the events (e.g. of the coing flipping, as a function of the fairness of the coin):

That’s a nice shape. It has a unique maximum value at 0.5, and from any other point, if you can figure out your slope,

moving uphill always takes you toward that unique maximum.

That is, entropy is a concave function of p.2

(13) A set C ⊆ Rn is convex iff for any points in C, the line segment connecting them is entirely in C too. That is, for all

x, y ∈ C, and all 0 ≤ c ≤ 1,

cx + (1 − c)y ∈ C.

• Given any set S ⊆ Rn, the convex hull of S

Co S = {c1x1 + . . . + cnxn| xi ∈ S , 0 ≤ ci ≤ 1, c1 + . . . + cn = 1}.

This is the smallest convex set containing the elements of S .

2Cf. general proofs in Boyd and Vandenberghe (2004, p67), Cover and Thomas (1991, p23).

4.3. WEIGHTED FINITE STATE AUTOMATA 63

The convex hull Co S of a set S ⊂ R2

• A function defined on a convex set is convex iff the graph of f lies (on or) below the line segment between (x, f (x))

and (y, f (y)) So a function f on points in an interval (a, b) is convex iff ∀x, y ∈ (a, b) and ∀0 ≤ c ≤ 1

f (cx + (1 − c)y) ≤ c(f (x)) + (1 − c) f (y).

A function f is concave iff − f is convex.

(14) The relative entropy (Kullback-Leibler divergence) between distributions p, q

D(p||q) =
∑

x∈X
log

p(x)

q(x)
= Ep[log

p(x)

q(x)
],

with conventions (Cover and Thomas, 1991, p19)

0 log
0

q
= 0 p log

p

0
= ∞. 0 log

0

0
= 0

(15) The relative entropy D(p||q) is a convex function of p, q. That is, for any pairs p1, q1 and p2, q2 of probability functions,

D(cp1 + (1 − c)p2||cq1 + (1 − c)q2) ≤ c(D(p1||q1)) + (1 − c)D(p2||q2).

∀0 ≤ c ≤ 1 (Cover and Thomas, 1991, p30)

4.3 Weighted finite state automata

Now following Cortes et al. (2008), to set the stage for a more efficient computation of relative entropy in §4.4.4, we introduce

this slight variation on standard notation:

(16) Automaton A = (Σ,Q, I, F, E, λ, ρ) over K where

• Σ finite nonempty set, the alphabet

• Q is a finite set, the states

• initial states I ⊆ Q, final states F ⊆ Q

• E ⊆ Q × (Σ ∪ {ǫ}) × K × Q the edges or transitions

• λ : I → K defines initial weights,

• ρ : F → K defines the final weights

(17) We could consider various kinds of weights K. For example, we could let the weights be non-negative real numbers

R+ = {n ∈ R| n ≥ 0} which are summed and multiplied in the usual way.

(18) Example. Let’s call this automaton (18):

64 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

This automaton is has the following parts

Σ = {a, b}
Q = {S,B}
I = {S} (indicated by bold circle)

F = {S} (indicated by double circle)

E = { (S, a, 0.5,B), (B, b, 1.0, S) }
λ = {(S, 1), (B, 0)}
ρ = {(S, 0.5), (B, 0)}

(19) Functions on edges. Given any edge e = (q0, a, p, q1) ∈ E,

i[e] = a input label

p[e] = q0 ‘previous’ state

n[e] = q1 ‘next’ state

w[e] = p weight

(20) Paths. A path π is a sequence of adjacent edges

π = ((q0, a0, p0, q1), (q1, a1, p1, q2), . . . , (qn − 1, an, pn, qn)).

• Such a π is a member of P(q0, qn), the set of paths from state q0 to state qn

• Such a π is a member of P(q0, a0 . . . an, qn), the set of paths from state q0 to state qn labeled a0 . . . an

• Let S P(q0, qn) be the set of ’simple paths’ from state q0 to state qn, paths in which no two edges have the same

previous state. That is, no cycles properly between the first and last state. NB

• The previous functions on edges are extended to paths in the obvious way:

i[π] = a0 . . .an input label

p[π] = q0 ‘previous’ state

n[π] = qn ‘next’ state

w[π] = ⊗ei∈πw[ei] weight

• A cycle is a path π with the same initial and final states, that is, p[π] = n[π].

• A path π is accepting iff p[π] ∈ I and n[π] ∈ F. That is, we can say, π ∈ P(I, F).

• L(A) = {i[π]| π ∈ P(I, F)}.
• Following Cortes et al. (2008, p.6), and identically Cortes et al. (2006, p.326), define

s[A] =
∑

π∈P(I,F)

w[π],

when it is defined and in K. This is the weight of all the paths. It may be undefined if a cycle, which can be taken

any number of times, has weight greater than 1.

(21) For any such A and any input x ∈ Σ∗ define

[[A]](x) = ⊕π∈P(I,x,F)λ[p[π]] ⊗ w[π] ⊗ ρ[n[π]]

That is, [[A]] maps each string x to the sum of the weights of its derivations.

(22) Note that if there is a unique start state q0 and λ(q0) = 1, and a unique final state q f , ρ(q f) = 1, and if the automaton

is unambiguous, then for any x ∈ L(A), there is a unique path in P(I, x, F) = {π} and [[A]](x) = ⊗e∈πw[e].

(23) Example. Considering automaton (18) again,

[[(18)]](ǫ) = 0.5

[[(18)]](a) = 0.0

[[(18)]](b) = 0.0

[[(18)]](aa) = 0.0

[[(18)]](ab) = 0.25

. . .

Claim: ⊕x∈Σ∗ [[(18)]](x) = ⊕x∈(ab)∗ [[(18)]](x) = 1.

4.3. WEIGHTED FINITE STATE AUTOMATA 65

(24) A is unambiguous iff for all x ∈ Σ∗ at most one path accepts x

(25) Example. (18) is unambiguous.

(26) A is deterministic iff (i) it has a unique initial state and (ii) no 2 distinct edges e, e′ have the same source p[e] = p[e′]
and input label i[e] = i[e′]

(27) Example. (18) is deterministic.

(28) As noted by Cortes et al. (2008, p.6), this definition of determinism allows ǫ transitions, since the algorithm for

unambiguous automata presented below can handle them. But also, ǫ transitions can be removed from unambiguous

weighted automata (Mohri, 2002a).

(29) A is complete iff for all a ∈ Σ∗, and all states q ∈ Q, there is some edge (q, a,w, q′) ∈ E.

(30) Example. (18) is not complete, but we can define a complete automaton (30) such that [[(18)]] = [[(30)]]:

(31) Let the distance from state p ∈ Q to q ∈ Q

d[p, q] = ⊕π∈P(p,q)w[π]

where P(p, q) is the set of paths π from p to q

(32) A is trim iff every state can be reached from an initial state, and from every state a final state can be reached.

(33) Example. (18) is trim, but (30) is not.

(34) Cortes et al. (2008, Def 3, p.6) say automaton A with weights in R+ is probabilistic iff

• for all q ∈ Q, ⊕π∈P(q,q)w[π] is defined and in R+, and

• ∑

x∈Σ∗ [[A]](x) = 1.

Probabilistic automaton A is stochastic if, at every state, the final weight of that state plus the sum of the weights of

outgoing transitions is 1.

(35) Example.

• In automaton (18), since I = F = {S}, P(S, S) is the set of accepting paths, an infinite set. So 0 < ⊕π∈P(S,S)w[π] is

defined and an element of R+, but this should be proven.3

• In automaton (18), P(B,B) is an infinite set, and 0 < ⊕π∈P(B,B)w[π] is defined and an element of R+, but this should

be proven.3

• In automaton (30), P(Dead,Dead) is an infinite set, and ⊕π∈P(Dead,Dead)w[π] = 0 is defined and an element of R+.

• (18) and (30) are both probabilistic, but a proof should be provided.3

(36) Given 2 automata A1, A1 define

A1 ∩ A1 = (Σ,Q1 × Q2, I1 × I2, F1 × F2, E, (λ1, λ2), (ρ1, ρ2))

where E is the smallest set such that

(q1, a,w1, q1) ∈ E1 and (q′1, a,w
′
1, q
′
2) ∈ E2 ⇒ ((q1, q

′
1), a, (w1 ⊗ w′1), (q2, q

′
2)) ∈ E

It follows that:

• The machine A1 ∩ A2 can be computed from A1, A2 in time O(|A1||A2|)
• [[A1 ∩ A2]](x) = [[A1]](x) ⊗ [[A2]](x)

(37) Example: Consider the following automaton, which we will call (37):

3Cf. the key lemma, Cortes et al. (2008, Lemma7, p.11) discussed in (51) below.

66 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

This automaton accepts every sequence of with an even number (possibly zero) of a’s.

(38) Example: When we compute (18)∩(37), we expect the resulting machine to accept strings whose lengths are multiples

of 4. Let’s call this automaton (38):

Claim: (38) = (18) ∩ (37)

Claim: For x ∈ Σ∗, [[(38)]](x) = [[(18)]](x) ⊗ [[(37)]](x)

4.4 Computing exact relative entropy of two automata

The calculation of relative entropy is similar to the calculation of the probability of a string in fundamental respects, if instead

of real numbers we use pairs of numbers, and modify the product and sum operations. The more general perspective that this

invites has been useful for many things.

4.4.1 Carrasco’97

(39) Carrasco (1997, p7) shows that for deterministic machines A, A′

D([[A]]||[[A′]]) =
∑

qi∈Q

∑

q′
j
∈Q′

∑

a∈Σ
ci j[[A]](qi, a) log

[[A]](qi, a)

[[A′]](q′
j
, a)
.

where [[A]](qi, a) = p iff (qi, a,w, q j) ∈ E for some (unique) q j ∈ Q, and similarly for [[A′]], and where

ci j =
∑

x∈Li j

[[A]](xΣ∗|L),

Li j = {x ∈ Σ∗| δ(qi, x) = qi ∧ δ′(q′i , x) = q j}

A method for evaluating these coefficients is provided (Carrasco, 1997, §4).

(40) Carrasco (1997, p7) also shows compares values of D([[A]]||[[A′]]) estimated from samples with the actual value,

showing that convergence can be slow.

4.4. COMPUTING EXACT RELATIVE ENTROPY OF TWO AUTOMATA 67

Carrasco’s method for computing relative entropy of two automata is less efficient than the one in Cortes&al and in Mohri’09,

so we return to this alternative approach.

4.4.2 Semirings

(41) A semiring is a set K with some basic elements and operations. (K,⊕,⊗, 0, 1) is a semiring iff

(K,⊕, 0) is a commutative monoid, that is, for all x, y, z ∈ K

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) (⊕ is associative)

(x ⊕ y) = (y ⊕ x) (⊕ is commutative)

(x ⊕ 0) = (0 ⊕ x) = x (0 is an identity for ⊕)

(K,⊗, 1) is a monoid, that is, for all x, y, z ∈ K

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z) (⊗ is associative)

(x ⊗ 1) = (1 ⊗ x) = x (1 is an identity for ⊗)

⊗ distributes over ⊕ that is, for all x, y, z ∈ K

(x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (x ⊗ y)

x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

0 is an annihilator for ⊗,⊕, that is, for all x ∈ K (x ⊗ 0) = (x ⊕ 0) = 0.

(42) A semiring is commutative iff ⊗ is (i.e. a ⊗ b = b ⊗ a),

(43) A semiring is idempotent iff ⊕ is (i.e. a ⊕ a = a).

(44) A star semiring is a semiring in which, for any a ∈ K the infinite sum

a∗ = a ⊕ a ⊕ · · · = ⊕∞0 an

is defined and in K. In this case it is common to treat * as one of the basic operations: (K,⊕,⊗, ∗, 0, 1). (And of course,

the semiring axioms hold for the infinite sums, as for all elements of K.)

(45) A semiring is complete iff for any countable sequence a0, a1, . . . , ⊕0<iai is defined and in K.

(46) Define R∞ = R ∪ {+∞,−∞} and let K = R∞ × R∞ where

(x1, y1) ⊕ (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1) ⊗ (x2, y2) = (x1x2, x1y2 + x2y1)

(x, y)∗ =

(1
1−x
,

y

(1−x)2) if 0 ≤ x < 1

(∞, ??) if 1 ≤ x

(47) What to do with the infinite cases in this definition? For x, y ∈ K where at least one of x, y < R, let:

x + y =

+∞ if either x or y is +∞
−∞ otherwise

xy =

0 if either x = 0 or y = 0

+∞ if both x, y > 0 or both x, y < 0

−∞ otherwise

68 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

(48) Lemma: With these definitions, (K,⊕,⊗, ∗, (0, 0), (1, 0)) is a complete star semiring.

It is easy to check that the proof sketch offered by Cortes et al. (2008, Lemma 4) goes through for the infinite cases as

it should:

• The infinite sums a∗ are present in R∞. In fact, when 0 ≤ a < 1, the corresponding a∗ ∈ R is finite.

• (K,⊕, (0, 0)) is a commutative monoid with (0, 0) as the identity for ⊕
• (K,⊕, (1, 0)) is a monoid with (1, 0) as the identity for ⊗ and (0, 0) as the annihilator for ⊗
• ⊗ distributes over ⊕.

(49) Eisner (2001) calls this the expectation semiring but Cortes et al. (2006, 2008) call it the entropy semiring. Nothing

said so far in these notes motivates either name! . . . but see §4.4.3 immediately below.

4.4.3 The entropy semiring

(50) Given automaton A = (Σ,Q, I, F, E, λ, ρ) with weights over R+

let Φ1(A) = (Σ,Q, I, F, E′, λ′, ρ′) with weights over K = R∞ × R∞ be defined as follows:

• (q, a, p, q′) ∈ E iff (q, a, (p, 0), q′) ∈ E′

• λ(q) = p iff λ′(q) = (p, 0)

• ρ(q) = p iff ρ′(q) = (p, 0)

let Φ2(A) = (Σ,Q, I, F, E′, λ′, ρ′) with weights over K = R∞ × R∞ be defined as follows:

• (q, a, p, q′) ∈ E iff (q, a, (1, p), q′) ∈ E′

• λ(q) = p iff λ′(q) = (1, p)

• ρ(q) = p iff ρ′(q) = (1, p) NB: Φ2 applied when p is a log weight

let log A = (Σ,Q, I, F, E′, λ′, ρ′) with weights over R∞ be defined as follows:

• (q, a, p, q′) ∈ E iff (q, a, log p, q′) ∈ E′

• λ(q) = p iff λ′(q) = log p

• ρ(q) = p iff ρ′(q) = log p NB: If A is stochastic, log A has log weights, which are neg

(51) Key Lemma. Given automata A, B over R+ where all edges in A have weight 0 ≤ p < 1. Then letting

m1(A) = Φ1(A) ∩ Φ2(log A)

m2(A, B) = Φ1(A) ∩ Φ2(log B)

the following are defined and in K = R∞ × R∞:

s[m1(A)]

s[m2(A, B)].

(52) An immediate corollary: If automata A, B are stochastic in the sense of (34), then s[m1(A)], s[m2(A, B)] are defined

and in K = R∞ × R∞. See Cortes et al. (2006, p.330), Cortes et al. (2008, p.12).

(53) If A, B are stochastic, complete, unambiguous, with unique start and final states, then

s[m1(A)] = (1,−H(A))

s[m1(A)] = s[m2(A, A)]

s[m2(A, B)] = (1, x) for some x ≤ −H(A)

So s[m1(A)] − s[m2(A, B)] = (0, x) for some x ≥ 0.

(54) Thm (Cortes et al., 2006, p.328), (Cortes et al., 2008, p.10):

s[m1(A)] − s[m2(A, B)] = s[Φ1(A) ∩Φ2(log A)] − s[Φ1(A) ∩ Φ2(log B)]

= (0,D(A||B))

The proof uses the equivalences mentioned in (8).

4.4. COMPUTING EXACT RELATIVE ENTROPY OF TWO AUTOMATA 69

4.4.4 Cortes&al’08

Cortes et al. (2006, 2008) notice that the computation of relative entropy of two automata uses the structure of the automata

in a way analogous to the computation of probabilities of strings. Both are instances of shortest distance problems which can

be solved with a generalized all-pairs shortest-distance Floyd-Warshall algorithm (Mohri, 2002b).4

(55) Conventions used for (51) and (54) repeated here: Cortes et al. (2008, p.9), Cortes et al. (2006, p.328)

• Automata A, B are unambiguous, complete stochastic automata, with weights 0 ≤ w < 1

• In both A, B, λ and ρ assign 1 to a unique state and 0 to all other states – see (22)

Then to compute the relative entropy of automata A, B we construct the entropy-semiring automataΦ1(A)∩Φ2(log A)

and Φ1(A) ∩ Φ2(log B). With these, we can use the algorithm in (56), twice, to compute the values

(pA, eA) = s[Φ1(A) ∩ Φ2(log A)]

(pB, ceAB) = s[Φ1(A) ∩ Φ2(log B)]

With these, we have the relative entropy ceAB − eA.

(56) The Floyd-Warshall algorithm given by Mohri (2009, Figure 2):5

for i← 0 to |Q| (initialize)

for j← 1 to |Q|
d[i, j]← ⊕e∈E∩P(i, j)w[e]

for k ← 0 to |Q|
for i← 1 to |Q|, i , k (main loop)

for j← 1 to |Q|, j , k

d[i, j]← d[i, j] ⊕ (d[i, k] ⊗ d[k, k]∗ ⊗ d[k, j])

for i← 1 to |Q|, i , k (final loop)

d[k, i]← d[k, k]∗ ⊕ d[k, i]

d[i, k]← d[i, k] ⊕ d[k, k]∗

d[k, k]← d[k, k]∗ (diagonal fix)

4The generalization is the recognition from Lehmann (1977) that the algorithm applies when we have a complete star semiring, even when ⊕ is not

idempotent.
5This version corrects the one in Cortes et al. (2008, p.12), identically Cortes et al. (2006, p.331).

70 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

4.5 ‘Smoothing’ probabilities

(57) Conventions:

• We will consider only DFA with unique final states. If necessary, we can add a new symbol zeta ζ to mark the end

of a string, as done in Clark and Thollard (2004).

• We will let I = {0} and F = {max(Q)}, with ρ(0) = λ(max(Q)) = 1

• We will only consider DFA in which

∀q ∈ Q, (ρ(q) +
∑

e∈E,p[e]=q

w[e]) = 1

With this convention, if we write weights on the arcs, we don’t need to also provide ρ.

(58) (Sample probabilities) Given any such DFA A over alphabet Σ, and any s ∈ Σ∗, define

cntq,a(s) = the number of edge occurrences e in P(q0, s, q f) such that p[e] = q, i[e] = a

cntq(s) = the number of edge occurrences e in P(q0, s, q f) such that p[e] = q

We extend these functions to sequences of strings S ⊂ (Σ∗)∗:

cntq,a(S) =
∑

s∈S
cntq,a(s)

cntq(S) =
∑

s∈S
cntq(s)

Now, for any finite sample T [i] we define the sample-determined weights for any state q and symbol σ,

γT [i](q, σ) =
cntq,a(T [i])

cntq(T [i])
.

Cortes&al write E for the set of edges or transitions (q, a,w, q′), so that means, in the Cortes&al notation, that for each

(q, a,w, q′) ∈ E we set w = γT [i](q, a).

(59) Example. Suppose we have the sample

T [5] = 〈ac, bd, bc, ac, ac〉 (calculated in (69), below).

Appending z’s to each string, a learner might hypothesize that this sample is generated by this DFA:

0

a

b

c

d

1
z

To get the best fit with the data, we calculate γT [5] with the following steps. First, we calculate:

cntq0
(T [5]) = 15

cntq0,a(T [5]) = 3, since q0 precedes every symbol that occurs in T [5]

cntq0,b(T [5]) = 2

cntq0,c(T [5]) = 4

cntq0,d(T [5]) = 1

cntq0,z(T [5]) = 5

Then, following (58), we calculate weights that fit the data most tightly, as follows:

γT [i](q0, a) = 3
15
, γT [i](q0, b) = 2

15
, γT [i](q0, c) = 4

15
, γT [i](q0, d) = 1

15
, γT [i](q0, z) = 5

15
.

4.5. ‘SMOOTHING’ PROBABILITIES 71

How well does this weighting fit the data? We can calculate

[[A]](T [i]) = [[A]](acz) ∗ [[A]](bdz) ∗ [[A]](bcz) ∗ [[A]](acz) ∗ [[A]](acz)

= (3
15

4
15

5
15

)3 ∗ 2
15

1
15

5
15
∗ 2

15
4

15
5

15

= (0.017778)3 ∗ 0.0029630 ∗ 0.011852

= 1.9731 × 10−10

No setting of the probabilities on the automaton in (59) can make the data set T [5] more likely than this.

(60) As we see in this example, probabilities of sentences can be very small. In practical applications, with larger grammars

and longer strings, the numbers get really tiny, so it is common to use scaled weights instead. Commonly, instead of

p, the negative log of p is used, or something similar. In this case, for example, − log2(1.9731×10−10) = 6.1248×104.

(61) (Fuzzy completion with smooth probabilities.) Suppose we hypothesize the following DFA with Σ = {a, b} for

sample text 〈ab〉:

0

a

1
b

2
z

We complete the machine fuzzily by (a) adding a ground (,dead!) state, (b) adding all possible arcs labeled with Σ

going to the ground state (except none from final state), and then (c) adding final transitions labeled z from each state

to the final state:

0

a

2

z

1

b
z

3

a

b

z

a

b

This is like standard completion up to step (c). Now there are |Σ| + 1 arcs leaving every state except the final state.

Given any sample, like 〈abz〉, Given smoothing constant 0 < γmin <
1
|Σ|+1

, finite sample T [i], and a ‘fuzzily complete’

DFA A over Σ (as defined in the example below), define

γsmooth(q, σ) =

γ
T [i]
ν + γmin, where ν = (1 − (|Σ| + 1)γmin) if q , ground

1
|Σ|+1

if q = ground

The idea is: some probability is removed from non-zero weights γT [i] for distribution over unattested transitions.

Note that all outgoing arcs from the ground state are equally likely (each is traversed 0 times), so we divide the unit

uniformly among them. In our example, setting γmin = 0.001, we calculate:

ν = (1 − (|Σ| + 1)γmin) = (1 − 2+1
1000

) = 997
1000

γ〈abz〉(0, a) = 1
2

γsmooth(0, a) = ν
2
+ γmin =

997
2000
+ 2

2000
= 999

2000

γ〈abz〉(0, b) = 1
2

γsmooth(0, b) = ν
2
+ γmin =

997
2000
+ 2

2000
= 999

2000

γ〈abz〉(0, z) = 0 γsmooth(0, z) = 0ν + γmin =
1

1000

γ〈abz〉(1, a) = 0 γsmooth(1, a) = 0ν + γmin =
1

1000

γ〈abz〉(1, b) = 0 γsmooth(1, b) = 0ν + γmin =
1

1000

γ〈abz〉(1, z) = 1 γsmooth(1, z) = ν + γmin =
998

1000

γ〈abz〉(3, a) = 1
3

γsmooth(3, a) = ν
3
+ γmin =

997
3000
+ 3

3000
= 1

3

γ〈abz〉(3, b) = 1
3

γsmooth(3, a) = ν
3
+ γmin =

997
3000
+ 3

3000
= 1

3

γ〈abz〉(3, z) = 1
3

γsmooth(3, a) = ν
3
+ γmin =

997
3000
+ 3

3000
= 1

3

We see that the outgoing arcs of every state except the final state now sum to 1, every arc has positive weight, and Σ∗

is accepted. For example, while

p(aabz) =
999

2000
· 999

2000
· 999

2000
· 998

1000
≈ 0.12438,

we have

p(bbbz) =
999

2000
· 1

1000
· 1

3
· 1

3
≈ 5.5500 × 10−5.

72 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

(62) This is a simple ‘backoff’ smoothing method: we back off from the actual relative frequencies of attested events so that

we can distribute some probability over unattested events. See for example Chen and Goodman (1998) for a tutorial

survey of various smoothing methods.

(63) From this perspective the learner makes two fundamental choices: (i) over what space is the probability defined (i.e.

‘what is the model?’), and (ii) how is probability distributed over the space defined by the language model? Sometimes

this latter question is broken again into two sub-questions: (ii.a) how does the evidence (e.g. relative frequencies)

indicate probability to be distributed, and (ii.b) how much probability mass should be reserved, at each point, for

things that are unevidenced, and how should that probability mass be allocated? Answers to (ii) (or sometimes just

ii.b) are often called ‘smoothing strategies’.6

4.6 Example: comparing 4 earlier learners

(64) Consider this example automaton A:

0 1
a:.45

b:.45
32

c:.05

d:.05

z:1

(65) Obviously, L(A) = {acz, bcz, adz, bdz}.
(66) Note that this language is in 4 learnable classes we have already studied, plus the one more from Clark&Thollard that

is presented in §4.7 below:

L(A) ∈ L f in L(A) ∈ LS L2 L(A) ∈ Lprec L(A) ∈ L0−rev L(A) ∈ L|Q|=3,Es=2,µ=0.45

where the parameters for this last class are set for a particular example (64), where |Q| is an upper bound on the

number of states of the target, Es = 2 is a bound on the expected length of tail from any state, and µ = 0.45 is a

distinguishability threshold, defined in (74) below.

(67) The distribution p : Σ∗ → [0, 1] defined by the DFA in (64), for any s ∈ Σ∗,

p(s) =

0.45 if s ∈ {acz, bcz}
0.05 if s ∈ {adz, bdz}
0 otherwise.

(68) The entropy

H(p) = −
∑

x∈Σ∗
p(x) log p(x)

= −2(0.45 ∗ log 0.45 + 0.05 ∗ log 0.05)

= 1.469 bits

6Remember that the smoothing aims to provide an estimate of how likely utterances are, how frequent. We must be realistic about what can be achieved

here in real settings.

• We cannot expect to find the right way to smooth actual linguistic hypotheses, because there can be no correct model of the actual frequencies of

utterances. Many factors, and especially many non-linguistic factors obviously influence what will be said on any occasion. It is unreasonable to expect

any scientific account of that. But we can find approximations that work more or less in certain normal circumstances, where we do not expect to ever be

able to define ‘more or less’ or ‘normal’. (compare weather forecasting)

These general considerations are not mentioned in the tutorial Chen and Goodman (1998), where various smoothing methods are compared for how well

they do on n-gram probabilities for various corpora. The worry is that those corpora are not really representative, and more seriously, that there is not

really any fixed, real thing for them to be representative of. (For engineering tasks like data retrieval, this does not really matter – as long as many relevant

things are returned in many cases, it can be useful.)

• ES thinks (as argued by Fodor, Chomsky, et al) the prospects for finding the human, individual, (possibly incorrect) way of estimating probabilities of

utterances do not look good either: the factors taken into consideration are unbounded. We have no good models of unbounded reasoning over ‘what

to say/how to interpret’ (compare Fodor (2008)). Note that Bayesian models provide a criterion for comparison based on priors and evidence, but

no conception of unbounded comparisons, of comparisons over unbounded spaces involving unknown concepts (compare Gelman and Shalizi (2010);

Earman (1992)).

Learner’s judgements about syntactic surprisal are clearly influenced by frequencies, even though there are many other factors. And ES has the optimistic

belief that the human choice of model – question (i) – may be within our reach in a more substantial way than (ii) is. Although (i) too depends on percieved

frequencies of utterances, the sensitivity to frequencies may be a rather small factor, as evidenced by the relative insensitivity of acquisition to details of the

communicative environment. Clearly learners do notice details, but the details can vary quite widely and still support a normal course of language acquisition.

4.6. EXAMPLE: COMPARING 4 EARLIER LEARNERS 73

Compare rolling fair tetrahedral dice

H(tetra-dice) = −4(0.25 ∗ log 0.25)

= −4(0.25 ∗ −2)

= 4(0.5)

= 2 bits

(69) Data. We use a random number generator to generate data from this machine. Let’s use the first sequence of length 5,

but I generate some others to see what they look like. (Code in appendix on page 79.)

randSeq 5 [("ac",0.45);("bc",0.45);("ad",0.05);("bd",0.05);];;

<ac, bd, bc, ac, ac>

- : unit = ()

randSeq 5 [("ac",0.45);("bc",0.45);("ad",0.05);("bd",0.05);];;

<ac, bc, ac, bc, ac>

- : unit = ()

randSeq 5 [("ac",0.45);("bc",0.45);("ad",0.05);("bd",0.05);];;

<ac, ad, ac, ac, ac>

- : unit = ()

(70) Practice. To get a first impression of what the cross entropy and relative entropy are like, let’s compare p from (67)

to the distribution q defined by the automaton in (59). For any s ∈ Σ∗,

target distribution p hypothesis q

p(s) =

9
20

if s ∈ {acz, bcz}
1

20
if s ∈ {adz, bdz}

0 otherwise.

q(s) =
∏

x∈Σ,x∈s

γT [5](q0, x)

where γT [5](q0, x) =

3
15

if x = a
2

15
if x = b

4
15

if x = c
1

15
if x = d

5
15

if x = z

Note that while p is 0 on all but 4 strings, so these calculations by hand are easy (cf conventions in (14)):

CE. Recalling the definition of dCE from (7) on page 61, we consider first the strings that p assigns positive proba-

bility – acz,bcz,adz,bdz – and then the rest:

dCE(p, q) = −∑

x∈Σ∗ p(x) log q(x)

= −(9
20
∗ log(3

15
4

15
5

15
) + 9

20
∗ log(2

15
4

15
5

15
) + 1

20
∗ log(3

15
1
15

5
15

) + 1
20
∗ log(2

15
1
15

5
15

) + 0 ∗ . . .)

= −(−2.6162+ −2.8794 + −0.39069+ −0.41994+ 0)

= 6.3062 bits

Compare H(p) which was calculated in (68) just above.

KL. Now recalling the definition of dKL from the second equation in (8) on page 61, consider the strings that p

assigns positive probability first – acz,bcz,adz,bdz, in that order – and then the rest:

dKL(p, q) =
∑

x∈Σ∗ p(x) log
p(x)

q(x)

=
(9

20
∗ log 9

20
/(3

15
4

15
1
15

) + 9
20
∗ log 9

20
/(2

15
4

15
1

15
) + 1

20
∗ log 1

20
/(3

15
1
15

1
15

) + 1
20
∗ log 1

20
/(2

15
1
15

1
15

) + 0 ∗ . . .)

= (2.0978+ 2.3610 + 0.17459 + 0.20384+ 0)

= 4.8372 bits

Since just above we calculated dCE and H(p), we have another way to calculate this same value, using the first

equation in (8), which says:

dKL(p, q) = dCE (p, q) − H(p)

= 6.3062 − 1.469

= 4.8372 bits

74 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

4.6.1 φe using prefix tree automata, with γsmooth.

(71) Recall that φe learns L f in by, in effect, remembering what has been heard. One grammar/automaton that encodes what

has been heard is the prefix tree automaton. Let’s consider the sample already used in (59):

T [5] = 〈ac, bd, bc, ac, ac〉 (calculated in (69), above).

The prefix automaton is:

0

1a

3

b

2

4

5

c

d

c

Completing the automaton by adding ground state 6, and then adding z’s so that everything is accepted, we get:

0

7

z

1

a

3

b

6

c

d

z

a

b

d

2

c

z

a

b

4

d

5

c

z

a

b

c

d

z

a

b

c

d

z

a

b

c

d

z

a

b

c

d

With 5 arcs leaving every non-final state, there are 35 arcs in this machine. What should the smoothing constant be?

For the moment, this choice seems arbitrary, so let γmin = 0.001.

⇒ more coming! ⇐

4.6.2 LS L2 bigram learner, with γsmooth

4.6.3 Lprec learner, with γsmooth

4.6.4 L0−rev learner ZR with γsmooth

4.7. CLARK&THOLLARD’04: φPDFA,|Q|,ES ,µ 75

4.7 Clark&Thollard’04: φPDFA,|Q|,Es,µ

Notation:

• I write Es for the max expected length of tail from any state. (C&T use L.)

• For any DFA and sample T [i], for any state q ∈ Q any σ ∈ Σ, define the ‘suffix distributions’

S q = the list of xz such that for some uxz ∈ T [i], δ(q0, u) = q and δ(q, xz) = q f .

S q,σ = the list of elements xz such that σxz ∈ S q

• For any s ∈ Σ, S q(s) = the number of occurrences of s in S q. Similarly for S q,σ(s).

• S u,σ, S v are similar, not µ-distinct iff ∀s ∈ S u,σ ∪ S v, | S u,σ(s)

|S u,σ | −
S v(s)

|S v | | ≤
µ

2
cf L∞ def in (4), p.61

Algorithm φPDFA,|Q|,Es,µ(T, ǫ, δ) where T is the sample source:

1. Initialize.

• Calculate m0,N and get sample T [N] where N is defined as follows, with parameter |Q| = n:

γmin =
ǫ

4(Es + 1)(|Σ| + 1)
(4.1)

δ′ =
δ

2(n|Σ| + 2)
(4.2)

ǫ1 =
ǫ2

16(|Σ| + 1)(Es + 1)2
(4.3)

m0 = max

8

µ2
log

(

96n|Σ|
δ′µ

)

,
1

2ǫ2
1

log

(

12n|Σ||Σ + 1|
δ′

)

(4.4)

ǫ3 =
ǫ

2(n + 1) log(4(Es + 1)(|Σ| + 1))/ǫ
(4.5)

N =
4n|Σ|Es2(Es + 1)3

ǫ2
3

max

(

2n|Σ|m0, 4 log
1

δ′

)

(4.6)

• Begin a graph with just one node q0, and let S q0
= T [N], the suffix distribution of q0.

2. While for any q ∈ Q, σ ∈ Σ, |S q,σ| > m0:

if S q,σ is similar to any S q′ in the graph,

then add arc δ(q, σ) = q′;

else add new node q′′ to graph and add arc δ(q, σ) = q′′.

3. Fuzzy complete and smooth. Fuzzily complete the graph and smooth, as defined in (61) on page 71 above.

4.7.1 Analysis: PAC wrt dKL

(72) (Thm 5, p480) For every DFA A with |Q| states, with distinguishability µ > 0 such that the expected length of the

string generated from every state is ≤ Es, for every 1 > δ > 0 and 1 > ǫ > 0, with probability greater than 1 − δ

dKL(A, φPDFA,|Q|,Es,µ(T [N])) < ǫ.

(73) NB: we see in the proof of this result that, with high probability, the machine built by step 2 is a subgraph of the target.

76 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

4.7.2 Example run

(74) Recall that a PDFA is µ-distinguishable iff every pair of states is. States q1, q2 ∈ Q are µ distinguishable iff

∃s ∈ Σ∗, |γ(q1, sζ) − γ(q2, sζ)| ≥ µ.

In the example started in (64) above, we have

γ(0, acζ) = 0.45 but 0 from every other state

γ(1, cζ) = 0.9 but 0 from every other state

γ(2, ζ) = 1 but 0 from every other state

so we can choose µ = 0.45. Choosing µ smaller than this could lead us to merge states which should really be distinct.

With µ = 0.45, with suffix sets of N strings (where constant N is defined in the algorithm) we are likely to find a string

different enough to distinguish all pairs of distinct states.

(75) Run φPDFA,|Q|,Es,µ(T, ǫ, δ) with |Q| = n = 4, Es = 3, µ = 0.45, ǫ = δ = 0.01,Σ = {a, b, c, d}:
1. • We calculate:

γmin = ǫ
4(Es+1)(|Σ|+1)

= 0.01
4∗4∗5 = 1.2500e − 04

δ′ = δ
2(n|Σ|+2)

= 0.01
2(4∗4+2)

= 2.7778e − 04

ǫ1 = ǫ2

16(|Σ|+1)(Es+1)2 =
0.012

16∗5∗16
= 7.8125e − 08

m0 = max

(

8
µ2 log

(

96n|Σ|
δ′µ

)

, 1

2ǫ2
1

log
(

12n|Σ||Σ+1|
δ′

)

)

= max
(

8
0.012 log

(

96∗4∗2
2.7778e−04∗0.01

)

, 1
2∗(7.8125e−08)2 log

(

12∗4∗4∗5
2.7778e−04

))

= max (2.2434e + 06, 3.5587e+ 15)

= 3.5587e+ 15

ǫ3 = ǫ
2(n+1) log(4(Es+1)(|Σ|+1))/ǫ

= 0.01
2(4+1) log(4(3+1)(4+1))/0.01

= 7.7126e− 05

N =
4n|Σ|Es2(Es+1)3

ǫ2
3

max
(

2n|Σ|m0, 4 log 1
δ′

)

= 4∗4∗4∗32∗43

7.7126e−052 max
(

2 ∗ 4 ∗ 4 ∗ 3.5587e+ 15, 4 log 1
2.7778e−04

)

= 2.9285e+ 14

• We let G = {q0}. Since T [N] = T [2.9285e + 14] is too big to collect, let’s just assume that we have a sample

S q0
in which each string has a relative frequency equal to its probability in the target.

2. Loop (abbreviating)

a. S q0
= 〈acz, bcz, adz, bdz〉

S (q0,a) = 〈cz, dz〉
candidate S (q0,a) is not similar to S q,0, so we let q1 = (q0, a), q0 → aq1

S (q0,b) = 〈cz, dz〉 is similar to S q1
so we merge them: q0 → bq1

b. S (q1,a) = S (q1 ,b) = ∅
S (q1,c) = S (q1,d) = 〈z〉
so q1 → cq2, q1 → dq2

c. S (q2,) = ∅

3. Fuzzy complete and smooth

4.8. CASTRO&GALVADÀ’08 φPDFA,|Q|,ES 77

4.8 Castro&Galvadà’08 φPDFA,|Q|,Es

The C-T algorithm receives a number of parameters of the target as input, computes the worst-case numbr of

examples required for those parameters, and asks for the full sample up front. Rather, we place ourselves in

the more common situation where we have a given, fixed sample and we have to extract as much information

as possible from it. Our main theorem then says that the algorithm PAC-learns provided the sample is large

enough with respect to the targets parameters (some of which, such as µ, are unknown. . .) . . . In contrast

with the C-T algorithm, it does not need as input parameter the distinguishability µ of the target. (pp.4,5)

Notation:

• prefL∞(p, q) = max
x∈Σ∗

(p(xΣ∗) − q(xΣ∗))

• PDFA state qi defines a distribution pqi
(x) = γ(qi, xζ)

• PDFA states qi, q j are µ-distinguishable iff

µ ≤ max{L∞(pqi
, pq j

), prefL∞(pqi
, pq j

)}.

Note: prefL∞(pqi
, pq j

) > µ iff there is some x ∈ Σ∗ |γ(qi, x) − γ(q j, x)| ≥ µ
• Candidate node (q, σ) is important iff |S q,σ| > ǫ0 N

2

• Candidate node (q, σ) and node q′ are similar iff d > tq,σ,q′ where

mq,σ = |S q,σ|
sq,σ = |prefixes(S q,σ)|
mq′ = |S q′ |
sq′ = |prefixes(S q′)|

tq,σ,q′ =

(

2
min(mq,σ,mq′)

ln
4m2

q,σ(sq,σ+sq′)π
2

3δ0

)
1
2

d = max
(

L∞(S q,σ, S q′), prefL∞(S q,σ, S q′)
)

Algorithm φPDFA,|Q|,Es(T, ǫ, δ) where T is the sample source: (NB: no µ parameter, except for N0 guarantees)

1. Initialize.

• Calculate these constants (and for PAC ǫ, δ guarantees, get sample T [N] where N > N0):

ǫ1 =
ǫ2

16(|Σ| + 1)(Es + 1)2
(4.7)

ǫ2 =
ǫ

4n(n + 1)Es(Es + 1) log(4(Es + 1)(|Σ| + 1)/ǫ)
(4.8)

ǫ5 =
ǫ

4|Σ|(n + 1)Es(Es + 1) log(4(Es + 1)(|Σ| + 1)/ǫ)
(4.9)

ǫ0 =
ǫ2ǫ5

n|Σ|(Es + 1)
(4.10)

δ0 =
δ

n2|Σ| + 3n|Σ| + n
(4.11)

N0 = max

16

ǫ0µ2
(3e ln

48

ǫ0µ2
+ ln

16Esπ2

3δ2
0

),
8

ǫ0ǫ
2
1

ln
2(|Σ| + 1)

δ0

(4.12)

• Begin a graph with just one ‘safe’ node q0 and let S q0
= T [N], the suffix distribution of q0.

2. While for any q ∈ Q, σ ∈ Σ, |S q,σ| > ǫ0 N
2

: For each of these ‘important candidate nodes’ (q, σ)

if (q, σ) is similar to any node q′ in the graph,

then add arc δ(q, σ) = q′;

else add new node q′′ to graph and add arc δ(q, σ) = q′′.

3. Merge remaining. If any important candidate nodes (qi, σ) have not been promoted to safe nodes in the graph by the

previous step, for each, add an edge from (qi, σ) to v where v is the safe node with the most similar suffix distribution.

78 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

4.9 Observations, questions

• State-merging perspective is useful – What criteria for category similarity?

• Both Clark&Thollard and Castro&Galvadà use variants of L∞ to distinguish categories. With bounds on how improb-

able distinguishing strings are (given by µ, Es, |Q|), PAC results are available, but maybe L∞ is not the best choice? cf

Balle, Castro, and Gavaldà (2012)

• Now we are in a position to assess this quote from Clark and Lappin (2011):

The . . . approach to the inference of reversible automata has yielded positive results for the entire class of regular lan-

guages. The basic idea is to replace. . . the test for equality of residual languages, with a more refined test. . . Extending

the work of Ron, Singer, and Tishby (1995), Clark and Thollard (2004) established that the class of Probabilistic De-

terministic Finite State Automata can be PAC learned, and this result has been extended in a number of directions

(Palmer and Goldberg, 2007; Castro and Galvadà, 2008). Clark and Thollard (2004) prove that if the class of distri-

butions is restricted to those produced by PDFSAs which generate the same language then the class of languages

that these PDFSAs generate can be PAC learned from positive data only. In this sequence of results the class of

learnable languages has been expanded from a small nonsuprafinite set that can be identified in the Gold paradigm,

to a nonarbitrary infinite class of infinite languages that can be efficiently learned when the set of possible distributions

is plausibly constrained to those that facilitate acquisition. (p156)

I think we can formulate what they want to say in a clearer, more accurate way. Consider first: what claims along these lines

really seem justified?

◦ The class of distributions LPDFA,|Q|,Es,µ, for particular settings of |Q|, Es, µ, plausibly includes all human phonotactics, and

can perhaps be feasibly learned.

Might this idea lead us to notice universal properties of human languages (cf. e.g. Heinz), or generalization strategies that are

evidenced in human language acquisition? Maybe. . . note:

◦ The learner φPDFA,|Q|,Es,µ is insensitive to order, and typically rather insensitive to the particular contents of each S q – only

the µ distinctness matters.

Furthermore, note that

◦ With enough data, and liberal enough settings for |Q|, Es, µ, perhaps linguists (and scientists in other domains) could use

these methods to discover the patterns (finite or otherwise) in domains that we do not understand.

Is that plausible? Yes, I think so – remember (73). What this kind of learner will not do, of course, is to

×1 explain substantial universals of the sort linguists are expecting, like the lack of intervention effects in long distance

assimilation (Heinz, 2010),7 Greenberg’s universal 20 and other constituent order preferences (Cinque, 2005), patterns of

intervention in syntax (Friedmann, Belletti, and Rizzi, 2009; Grillo, 2008), etc.

×2 find nice simple automata F1, . . . , Fn such that the possibly much more complex
⋂

Fi is the target automaton.

Gavaldà et al. (2006, p150) say:

The standard approach for learning Markov Models with Hidden State uses the Expectation-Maximization

framework. While this approach had a significant impact on several practical applications (e.g. speech

recognition, biological sequence alignment) it has two major limitations: it requires a known model topology,

and learning is only locally optimal. We propose a new PAC framework for learning both the topology and

the parameters in partially observable Markov models. Our algorithm learns a Probabilistic Deterministic

Finite Automata (PDFA) which approximates a Hidden Markov Model (HMM) up to some desired degree of

accuracy.

In this perspective, interesting versions of the innateness question concern are the criteria of linguistic similarity, the ones that

provide the best model of human acquisition, specific to language.

Q When (if) we find human-like settings of |Q|, Es, µ, will they be language-specific? Does something like φ|Q|,Es,µ provide

a good model for human generalization in regular domains?

Since they are not impressed by worries ×1,×2, I think Clark&Lappin mean to answer these questions with ‘No reason to

think so’, and ‘Possibly’, respectively. – This is a reasonable position. But many open questions here!

7Meaghan Fowlie points out that φprec learns dissimilation effects that are not subject to intervention, so maybe that learner does not capture the right

generalization. Cf. the discussion of this issue in Heinz (2010, §4.6).

4.9. OBSERVATIONS, QUESTIONS 79

Appendix: Generating random sequences in OCaml

Most programming languages provide a random number generator library which makes it easy to generate random sequences

according to a defined probability distribution.

To generate my test sequences from finite sets of outcomes, I used randSeq. To generate using a (possibly cyclic) DFA, I

use the function selectByRange to make the choice among arcs at each step.

(* initialize, choosing seed in system-dependent way *)

Random.self_init ();;

(* examples: generate random numbers in [0,1]

Random.float 1. ;;

Random.float 1. ;;

*)

let rec selectByRange choice outcomes = match outcomes with

(outcome,_)::[] -> outcome

| (outcome,probability)::more ->

if choice < probability

then outcome

else selectByRange (choice -. probability) more

| [] -> failwith "selectByRange error";;

let choose outcomes =

let choice = Random.float 1. in selectByRange choice outcomes;;

(* example:

choose [("heads",0.3);("tails",0.6);("edge",0.1)];;

*)

let randSeq n outcomes =

Printf.fprintf stdout "<";

for k=1 to n

do

print_string (choose outcomes);

if k=n

then Printf.fprintf stdout ">\n"

else Printf.fprintf stdout ", ";

done;;

(* example

randSeq 5 [("ac",0.45);("bc",0.45);("ad",0.05);("bd",0.05);];;

*)

80 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

References

References

Angluin, Dana. 1982. Inference of reversible languages. Journal of the Association for Computing Machinery, 29:741–765.

Balle, Borja, Jorge Castro, and Ricard Gavaldà. 2012. Learning probabilistic automata: A study in state distinguishability. Theoretical

Computer Science, forthcoming.

Boyd, Stephen and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press, NY.

Carrasco, R.C. 1997. Accurate computation of the relative entropy between stochastic regular grammars. Theoretical Informatics and

Applications (RAIRO), 31(5):437–444.

Castro, Jorge and Ricard Galvadà. 2008. Towards feasible PAC-learning of probabilistic deterministic finite automata. In Proceedings of

the 9th international colloquium on Grammatical Inference, ICGI’08, pages 163–174, Springer-Verlag, Berlin.

Charniak, Eugene. 1993. Statistical Language Learning. MIT Press, Cambridge, Massachusetts.

Chen, Stanley and Joshua Goodman. 1998. An empirical study of smoothing techniques for language modeling. Technical Report TR-10-98,

Harvard University, Cambridge, Massachusetts.

Cinque, Guglielmo. 2005. Deriving Greenberg’s Universal 20 and its exceptions. Linguistic Inquiry, 36(3):315–332.

Clark, Alexander and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the Stimulus. Wiley-Blackwell, NY.

Clark, Alexander and Franck Thollard. 2004. PAC-learnability of probabilistic deterministic finite state automata. Journal of Machine

Learning Research, 5:473–497.

Cortes, Corinna, Mehryar Mohri, Ashish Rastogi, and Michael Riley. 2006. On the computation of the relative entropy of probabilistic

automata. In Latin American Theoretical Informatics, LATIN2006, pages 323–336.

Cortes, Corinna, Mehryar Mohri, Ashish Rastogi, and Michael Riley. 2008. On the computation of the relative entropy of probabilistic

automata. International Journal of Foundations of Computer Science, 19:219–241.

Cover, Thomas M. and Joy A. Thomas. 1991. Elements of Information Theory. Wiley, NY.

Csiszar, Imre and Janos Korner. 1997. Information Theory: Coding Theorems for Discrete Memoryless Systems. Akadémiai Kiadó,

Budapest.

Earman, John. 1992. Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory. MIT Press, Cambridge, Massachusetts.

Eisner, Jason. 2001. Expectation semirings: Flexible EM for finite-state transducers. In Proceedings of the ESSLLI Workshop on Finite-State

Methods in Natural Language Processing (FSMNLP).

Fodor, Jerry A. 2008. LOT2: The Language of Thought Revisited. Clarendon Press, NY.

Friedmann, Naama, Adriana Belletti, and Luigi Rizzi. 2009. Relativized relatives: Types of intervention in the acquisition of A-bar depen-

dencies. Lingua, 119:67–88.

Gavaldà, Ricard, Philipp W. Keller, Joelle Pineau, and Doina Precup. 2006. PAC-learning of Markov models with hidden state. In Pro-

ceedings, 11th European Conference on Machine Learning, ECML-2006, Lecture Notes in Artificial Intelligence 4212, pages 150–161,

Springer.

Gelman, Andrew and Cosma Rohilla Shalizi. 2010. Philosophy and the practice of Bayesian statistics. ArXiv. http://arxiv.org/abs/1006.3868.

Grillo, Antonino. 2008. Generalized Minimality: Syntactic Underspecification in Broca’s Aphasia. Ph.D. thesis, Universiteit Utrecht, The

Netherlands.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623–661.

Kearns, Michael J. and Umesh V. Vazirani. 1994. An Introduction to Computational Learning Theory. MIT Press, Cambridge, Mas-

sachusetts.

Lehmann, Daniel J. 1977. Algebraic structures for transitive closures. Theoretical Computer Science, 4:59–76.

Mohri, Mehryar. 2002a. Generic epsilon-removal and input epsilon-normalization algorithms for weighted transducers. International

Journal of Foundations of Computer Science, 13(1):129–143.

http://arxiv.org/abs/1006.3868

REFERENCES 81

Mohri, Mehryar. 2002b. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Com-

binatorics, 7(3):321–350.

Mohri, Mehryar. 2009. Weighted automata algorithms. In Manfred Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted

Automata, Monographs in Theoretical Computer Science. Springer, pages 213–254.

Nederhof, Mark-Jan and Giorgio Satta. 2004. Kullback-Leibler distance between probabilistic context-free grammars and probabilistic

finite automata. In Proceedings of the 20th International Conference on Computational Linguistics, COLING’04.

Palmer, Nick and Paul W. Goldberg. 2007. PAC-learnability of probabilistic deterministic finite state automata in terms of variation distance.

Theoretical Computer Science, 387(1):18 – 31.

Reid, Mark D. and Robert C. Williamson. 2009. Generalised Pinsker inequalities. ArXiv. http://arxiv.org/abs/0906.1244.

Ron, Dana, Yoram Singer, and Naftali Tishby. 1995. On the learnability and usage of acyclic probabilistic automata. In Proceedings of the

8th Annual Conference on Computational Learning Theory, COLT’95, pages 31–40.

Topsøe, Flemming. 2000. Some inequalities for information divergence and related measures of discrimination. IEEE Transactions on

Information Theory, 46:1602–1609.

http://arxiv.org/abs/0906.1244

82 CHAPTER 4. LEARNING SUBSETS OF THE PDFAS

Chapter 5 Learning subsets of LCF

What is learnability? 85

The nature of ‘primary linguistic data’ 85

Substitution tests 86

CFGs 87

PCFGs 88

5.1 Learning LSCF from examples 89

A learner φSCF 90

More compact hypotheses 91

Assessment 92

5.2 Learning LSCFk,l
from examples 93

A learner 93

5.3 Learning LFCP(k) from a membership oracle 94

Binary feature grammars 94

A learner φFCP(k)(T [i]) 97

Assessment: The larger picture 98

5.4 Evidence of constituency 100

Syntactic cues 100

Statistical cues 102

Prosodic cues 103

Semantic cues 104

5.5 Type inference for CFGs 104

Categories 104

Substitutions and unification in logic 105

Substitutions and unification in CG 107

Elasticity 108

Rigid CGs have finite elasticity 110

A learner for Grigid 111

An incremental learner for Grigid 115

Learning Lrigid from strings 115

Reflections and extensions 115

5.6 Weights for CFGs 116

In this section we will consider methods for learning certain subsets of context free languages. Is English context free?

Recalling our earlier introductory discussion in §0, we want to distinguish the questions:

Q1 Is English (as mentally represented, with some variation, by each typical speaker) defined by a CFG?

Q2 Is the grammar G of a typical English speaker such that L(G)∈LCF?

We noticed these obvious methodological points:

M1 The answer to the second question depends on assumptions about the first, even though some linguists seem, at least

implicitly, to think they can make generalizations about the infinite extent of languages without any assumptions about

the grammar.

M2 The evidence bearing on Q1 goes beyond the finite set of sequences of gestures that we see. First, only some of those

sequences of gestures ought to be regarded as relevant, and we make some empirical assumptions there. Second,

we use considerations about semantic compositionality, perceptual effects of boundaries, and other general scientific

strategies (theoretical simplicity, parsimony) in assessing the plausibility of claims about grammar.

One class of constructions which would evidence non-CF grammars are productive copying constructions. Manaster-Ramer

(1986) observes that English has a number of these (but perhaps not as many as most other languages). He points out the

following examples – fixed, idiomatic expressions but with productive copying:

83

84 CHAPTER 5. LEARNING SUBSETS OF LCF

(X-shmX) Linguistics shminguistics.

(X-is-a-X-is-a-X) A dog is a dog is a dog.

(X-or-no-X) Linguistics or no linguistics, I am going home.

(X-while-X-is-good) Philosophize while the philosophizing is good!

(X-is-as-X-does) Moral is as moral does.

(X or X?) Is she beautiful or is she beautiful?

(focus reduplication) I’ll make the tuna salad, and you make the SALAD-salad. (Ghomeshi et al., 2004)

Oh, we’re not LIVING-TOGETHER-living-together.

Constructions like X-or-X and X-or-no-X, and possibly contrastive reduplication, are apparently not subject to any fixed bound

on the size of the copied elements. Consider the set of X,Y such that the following is acceptable:

X or no Y, I am going home

If this set were one in which X=Y (or something similar), where X,Y are not subject to any fixed, linguistic bound on size,

then the set of English sentences < LCF . Arguments about this question are (appropriately) influenced by assumptions you

might have about human grammars.1 The question is somewhat controversial, and (Pullum and Rawlins, 2007, p.285) say “no

reason remains for regarding a non-CFness argument based on X or no X as persuasive. Hence those computational linguists

who essentially always take the problem of parsing English to be a problem in CF parsing (which is to say, virtually all of

them) do so with considerable justification”

1For discussion of these questions, see for example Manaster-Ramer (1986), Stabler (2004), Pullum and Rawlins (2007), Kobele (2007).

85

Clark links the online video presentation of the Clark, Eyraud, and Habrard (2008) conference paper and he begins with a

number of methodological and historical claims – very useful for understanding what his goals and hunches are. Let’s begin

by briefly considering some of those.

5.0.1 What is learnability?

(0) In the video (Clark, Eyraud, and Habrard, 2008, 3:25):

In first language acquisition, we don’t know what the representations are, but we do know that they’re learnable.

So linguists sometimes talk as they know what the representations are, but they don’t. But we do know that they’re

leanable because the infant child can learn.

• Is it true that languages are learnable? One problem is that we don’t know what that question means. What is a

‘language’? And what does ‘learnable’ mean?

• You might think: Yes, we want to define those terms in a way that will let us really understand as true the claim that

languages are learnable.

But ES doesn’t think that is right. And certainly, it’s not obviously right. If by ‘languages’ we mean all possible

human languages Lh, all languages which are structurally similar to attested human languages in relevant senses, and

if by ‘learnable’ we mean acquirable by the kinds of methods children use, it could well be that languages are not

learnable. One way this could happen is that there could be factors X which are relevant for learning but which do

not enter into the determination of structure, and hence do not constrain the definition of Lh. In such a situation, it

could happen that Lh is not learnable, but Lh ∩ X is. ES actually thinks this is what happens (as hinted several times

already, and as will become crystal clear as we proceed towards more reasonable learning theories for human syntax).

(1) Is it true that linguists don’t know what our representations of language are? That is, do we know anything about those

representations? (ES thinks we do know quite a few substantial things. We want a learner that fits with them!)

5.0.2 The nature of ‘primary linguistic data’

(2) Clark and Lappin (2011, p.163):

. . . shallow representations with easily observable representational primitives are better candidates for efficient

learning. . . [We should] seek representations whose structural properties are transparently recoverable from the

PLD.

Obviously, by ‘shallowness’ they cannot mean depth of derivation tree or anything like that (any cyclic canonical

DFSA provides derivation trees of arbitrary depth, for example), but ‘depth’ of learner inference, in some sense.

(3) In the video (Clark, Eyraud, and Habrard, 2008, 3:25), Clark is even clearer:

We need to use representations without hidden structure. The representational primitives must be observable.

In fact, we must be able to define any repesentational primitive of our representation – any symbol, nonterminal

state – has to be definable in purely language theoretic terms.

(4) Is that right? Compare Chomsky (1981, p.11):

. . . in the case of UG . . . we want the primitives to be concepts that can plausibly be assumed to provide a pre-

liminary, prelinguistic analysis of a reasonable selection of presented data, that is, to provide the data that are

mapped by the language faculty to a grammar. . . It would, for example, be reasonable to suppose that such con-

cepts as ‘precedes’ or ‘is voiced’ enter into the primitive basis. . . But it would be unreasonable to incorporate, for

example, such notions as ‘subject of a sentence’ notions”

(5) Picking up on (1) again, ES thinks that among the things we know for sure are

• Two expressions with the same pronunciation can have different categories.

• Our representations of language have hidden structure, in the standard sense of ‘hidden’. E.g., to take the standard

example, because DFAs and HMMs have hidden structure (namely, their states), first order Markov chains of

observable events are unable to define hidden syllable structure the way a DFA or HMM or CFG can.

86 CHAPTER 5. LEARNING SUBSETS OF LCF

5.0.3 Substitution tests

(6) Harris (1946, pp.163-5) wrote,

The procedure to be indicated below consists essentially of repeated substitution: e.g. child for young boy in Where

did the – go?. To generalize this, we take a form A in an environment C – D and then substitute another form B

in the place of A. If, after such substitution, we still have an expression which occurs in the language concerned,

i.e. if not only CAD but also CBD occurs, we say that A and B are members of the same substitution-class, or that

both A and B fill the position C – D, or the like.

The first step in our procedure is to form substitution classes of single morphemes. We list, for the language

concerned, all single morphemes which replace each other in the substitution test, i.e. which occur in the same

environments (have the same selection).

We now ask not only if A and B each occur in the environment C – D but also if AE together, or FGH, also occur

in that environment. If they do, then A, B, AE, FGH are all substitutable for each other. We may say that they are

all members of one substitution class, which is now not merely a class of morphemes but a class of morpheme

sequences.

However, there may be sequences of morphemes which occur in environments where single morphemes do not

occur, i.e. where they cannot be replaced by any single morpheme. . . We may consider this sequence to constitute

an element in the utterance structure. . .

(7) In contemporary linguistics texts too, we get warnings against using semantic tests for grammatical category, with

advice about using substitution tests instead:

That is, there is no known method of defining morpho-syntactic categories in semantic terms. At present, the

best that can be done is to define morpho-syntactic categories in the terms that Zellig Harris gave us: substitution

classes. (Johnson, 2004, §2.1).

Some other texts are much more cautious, emphasizing semantic contraints on substitution tests, and regarding obser-

vations of phrases in context and judgments of grammaticality as experimental results:

As in any other experiment, there is a danger that the experimental result is sensitive to several different vari-

ables. In general we want to minimize as much as possible interference by factors not relevant for establishing

constituency . . . It is important to remember that the way we interpret the results of such psychological experi-

ments is itself part of the theory, a hypothesis to be verified or corroborated (Koopman, Sportiche, and Stabler,

2012, §3.3).

Is this caution necessary? That is, are there really cases where two expressions of exactly the same category cannot

occur in the same environments? Yes.

(8) (Keenan and Stabler, 2003, 135ff) mention these examples (these bear directly on φSCF as noted in (62), below)

substrings contexts

(a) Sue laughed 〈ǫ, ǫ〉, 〈the boy who kissed,ǫ)

(b) it rains in Spain 〈ǫ, ǫ〉, *〈the boy who kissed,ǫ〉
(c) and 〈I saw John,Bill), 〈I saw both John,Bill〉
(d) or 〈I saw John,Bill), *〈I saw both John,Bill〉

In (a) and (b), we have two sentences, presumably the same category, but they do not occur in the same environments.

Intuitively, this substitution fails because we have failed to respect constituency. The latter pair of cases (c,d) adds

another possible issue, with coordinators failing to respect the dependency between both and and. We have other

evidence from agreement, etc., that both and and must really be different categories, but examples (c,d) raise the

possibility that there could be dependencies that substitution will fail to respect. Let’s watch to see whether and how

these problems are avoided by the learning methods in this chapter and the next.

(9) Exercise. (i) Think of some more examples of the first type (a,b), but using categories other than the start category (S

or CP or whatever). (ii) Think of some examples of the latter type (c,d), more persuasive than the one given here.

(10) When Chomsky discusses assumptions of earlier structural linguistics that he wants to discard, he mentions his doubts

about general discovery procedures which could take us from corpora to grammars, and he mentions distinctions

which structural methods might not reveal: at least not easily, like these:

They are easy to please They are flying planes *I know [the meni want to see themi]

They are eager to please The chicken is ready to eat I know who [the meni want to see themi]

It is not obvious how these things bear on the adequacy of a grammar based on substitution evidence, but let’s keep an

eye on them as we consider proposals in this and following weeks.

87

5.0.4 CFGs

(11) A context free grammar G has 4 parts, G = 〈Σ,Cat, (), S〉, where

Σ is a finite nonempty vocabulary, the “pronounced” or “terminal” elements

N is a set of categories (disjoint from Σ), the “nonterminals”,

and let the whole vocabulary of the grammar V = (Cat ∪ Σ).

 is a rewrite relation that is a subset of Cat × V∗. So each pair (or “rule” or “production”) in this relation has the

form (C, α), often written Cα, where C ∈ Cat is a category and α is a (possibly empty) sequence of vocabulary

elements and categories,

S ∈ Cat is the category chosen as the start symbol.

(12) To define derivations, we first define⇒G as follows, for any x, y, z ∈ V∗ and any A ∈ N,

xAy⇒G xzy iff Az.

Then we let⇒∗
G

be the reflexive, transitive closure of⇒G. Often we drop the subscripts when no confusion will result.

Finally, a derivation of s ∈ Σ∗ from A ∈ N is a finite sequence of steps:

A⇒ · · · ⇒ s.

If there is such a derivation, then of course A⇒∗
G

s. Such a derivation is leftmost(rightmost) if every step rewrites the

leftmost(rightmost) category. We sometimes write x ⇒lm y to indicate a leftmost rewrite step, and similarly x ⇒rm y

for rightmost.

(13) The language defined by the grammar LG = {s ∈ Σ∗| S ⇒∗G s}. And in general, we can consider the “language” or

“yield” of any category A: yieldG(A) = {s ∈ Σ∗| A⇒∗
G

s}, so LG = yieldG(S).

(14) Example grammar G with start symbol TP:

TP DP T1 T1 T0 VP T0 will

DP D1 D1 D0 NP D0 the

NP N1 N1 N0 CP N0 idea

N1 N0

VP V1 V1 V0 V0 suffice

CP C1 C1 C0 TP C0 that

Nerode’s theorem easily shows that the language defined by this grammar is not regular:

L(G)={(the idea that)n the idea will suffice (will suffice)n| n ≥ 0}.

TP

DP

D1

D0

the

NP

N1

N0

idea

T1

T0

will

VP

V1

V0

suffice

TP

DP

D1

D0

the

NP

N1

N0

idea

CP

C1

C0

that

TP

DP

D1

D0

the

NP

N1

N0

idea

T1

T0

will

VP

V1

V0

suffice

T1

T0

will

VP

V1

V0

suffice

88 CHAPTER 5. LEARNING SUBSETS OF LCF

5.0.5 PCFGs

Basic properties of PCFGs are surveyed in Chi (1999).

(15) Given a context free grammar G = 〈Σ,N, (), S, P〉, a probabilistic context free (PCF) grammar G = 〈Σ,N, (), S, P〉,
where the function P : ()→ [0, 1] maps productions to real numbers in the closed interval between 0 and 1 in such

a way that
∑

〈c,β〉∈()

P(cβ) = 1

We will often write the probabilities assigned to each production on the arrow: c
p
−→ β

(16) The probability of a derivation is the product of the probabilities of the productions in the derivation. And the

probability of a string is the sum of the probabilities of its derivations.

(17) A PCFG is said to be consistent iff p(L(G)) = 1.

That is, where G defines the whole space of linguistic events, given that a linguistic event is going to occur, the

probability that some linguistic event occurs should be 1. Not more, not less!

(18) Thm: Regular grammar consistency. A regular grammar is consistent iff from every state there is a non-zero

probability of reaching some terminal string.

(19) Example inconsistent probabilistic regular grammar with start category 0, with the corresponding inconsistent prob-

abilistic finite state automaton diagram:

0
0.5−−→ a 2

0
0.5−−→ b 1

1
1−→ a 1

1
0−→ c 2

2
1−→ ǫ

0 2/1

a/0.5

1

b/0.5 c/0a/1

Note that, in the finite state diagram, the probability p of the empty production from some state q (= stopping) is

commonly written q/p.

(20) The following grammar is not regular, though the language it defines is:

S
0.4−−→ a

S
0.6−−→ S S

This grammar is inconsistent. If we sum the probabilities in decreasing order, the series does not sum to 1 (Chi, 1999,

p.132):

0.4 + 0.6 ∗ 0.6 ∗ 0.4 + . . .

(21) Thm: PCFG consistency. (Grenander, 1967; Booth and Thompson, 1973) Consider the matrix T (G) with rows

indexed by N and columns indexed by (), where for any A ∈ N, r ∈ (),

T (A, r) =

0 if R , Aγ (for some γ)

p(r) otherwise.

This is sometimes called the first-moment matrix for G. Let ρ be the largest eigenvalue of the first-moment matrix for

PCFG G. Then G is consistent if |ρ| < 1 and inconsistent if |ρ| > 1. When |ρ| = 1, G is consistent iff there is no ‘final

class’ of nonterminals, where a final class is a set of nonterminals which, when rewritten, always produce at least one

other member of the class.2 See Wetherell (1980); Harris (1963, for example), for algorithms to check for |ρ| < 1.

(22) Thm. A PCFG is consistent if the probabilities of its rules are the relative frequencies of those rules in a finite sample

of derivations. (Chi and Geman, 1998)

2This result is sometimes attributed to the unpublished technical report Grenander (1967), but it is independently presented in Booth and Thompson

(1973). It is also covered in the text Gonzalez and Thomason (1978).

5.1. LEARNING LS CF FROM EXAMPLES 89

5.1 Learning LS CF from examples

Let’s study the learner in Clark and Eyraud (2005) and Clark and Eyraud (2007).

(23) Def. In regular, right-branching grammars, categories define suffixes of strings. But in context free grammars, cat-

egories define substrings that could be on the right, the left, or in the middle. So instead of using Nerode’s right

congruence, let’s say, for any L ⊆ Σ∗ and any x, y ∈ Σ∗

x ≡L y iff
(∀l, r ∈ Σ∗, lxr ∈ L iff lyr ∈ L

)

(24) Thm. ≡L is an equivalence, and immediately from this definition we see that it is a congruence with respect to

concatenation:
if x ≡L y, then ∀a ∈ Σ, xa ≡L ya.

In fact: if x ≡L y, then ∀l, r ∈ Σ∗, lxr ≡L lyr

This is, in effect, a substitution principle.

As usual, let [u]≡L
= {v| v ≡L u}, leaving off subscripts when they are clear from context.

(25) Bkgd considerations relevant to congruences and categories. Consider zero-reversible DFA, or the DFA hypothe-

ses of Clark&Thollard. In these grammars, are the sets of good finals

{{u ∈ Σ∗| A⇒∗ u}| A a state/category of G}}

partitions of Σ∗ (or of the set of strings that have some category)? No. Similarly for the actual grammars of human

languages Gh.

But as noted by Keenan and Stabler (2003), categorizing strings 〈u,C〉 trivially induces a partition by category. That

is, for any categorized expression e

{{e| e has category C}| C a state/category of G}}

is obviously a partition of the set of all categorized strings. So we can write e ≡Cat e′ iff e, e′ have the same category.

Furthermore, in the zero-reversible DFA, or the DFA hypotheses of Clark&Thollard, the equivalence ≡Cat is a con-

gruence wrt the rules of the grammar. That is, for every rule f of the grammar/automaton and any u ∈ Dom(f), if

u ≡Cat v then v ∈ Dom(f) and f (u) ≡Cat f (v).

(In the terminology of K&S: in such grammars, a permutation of strings of the same category is a symmetry, an

‘automorphism’, in the sense that it leaves the rules of the grammar unchanged. K&S do not claim that the grammars

of Gh have this property, but this is argued by Stabler (2012).)

(26) Def. In any L and u ∈ Σ+, let the contexts of u, CL(u) = {〈l, r〉| lur ∈ L}
(27) Def. Let’s say u, v ∈ Σ+ are weakly substitutable in L,

u �L v iff ∃l, r ∈ Σ∗, lur ∈ L and lvr ∈ L.

(28) Thm. Weak substitutability, �, is not necessarily transitive.

Proof: For example, when S = {ab, bb, bc}we have

• a �S b since both share 〈ǫ, b〉
• b �S c since both share 〈b, ǫ〉
• a 6�S c since they share no context in S

(29) Def. A language L is substitutable iff ∀u, v ∈ Σ∗, u � v implies u ≡L v. We write LS for the substitutable

languages.

(30) Clark and Eyraud (2005, p294): “Thus reversibility is the exact analogue of substitutability for regular languages.”

(31) Def. L is a substitutable context free language (SCFL) iff it is context free and subsitutable. LS CF for the substitutable

CF languages.

(32) Thm. If L is substitutable, then �L is transitive.

Proof: Assume L is substitutable, and for some u, v,w ∈ Σ∗, u � v, and v � w. By the def of ‘substitutable’, then,

u ≡ v, and v ≡ w, and so u ≡ w. That means that for all l, r ∈ Σ∗, lur ∈ L iff lwr ∈ L. By our assumptions we know

that there is some context in which u occurs (one that it shares with v), and so now we know that w shares that context

too. That is, u � w.

90 CHAPTER 5. LEARNING SUBSETS OF LCF

(33) Thm. If L is substitutable, then �L is an equivalence relation.

(34) Thm. If L is substitutable and S ⊆ L, it is possible that S is not substitutable.

Proof: Consider the set S = {ab, bb, bc}mentioned in (28). We showed there that this set is not substitutable. (Notice

also that S < L0−rev.) But S ⊆ Σ∗, and obviously Σ∗ is substitutable. For every u, v ∈ Σ∗, u �Σ∗ v and u ≡Σ∗ v.

(35) Thm. {a, aa} < LS CF . (Clark and Eyraud, 2005, p293)

Proof.

• a �S aa since both share 〈ǫ, ǫ〉
• a .S aa since a but not aa has the context 〈a, ǫ〉

(36) Thm. If L is substitutable and S ⊆ L, for any u, v ∈ Σ∗, u �S v implies u �L v, and so u �S v implies u ≡L v.

(37) Def. For any S ⊆ L let � be the transitive closure of �S . (Clark and Eyraud, 2005, p287)

Since �S is obviously an equivalence, let [u]�S
= {v| v �S u}, leaving off subscripts when they are clear from context.

(38) Thm. If L is substitutable and S ⊆ L, u �S v implies u ≡L v,

(39) Thm. L f in * LS CF .

Proof: We saw this in (28) and in (35).

(40) Thm. |L f in ∩LS CF | = ∞
Proof. For example, as mentioned by Clark and Eyraud (2005, p293), it is easy to see that every singleton language

L = {x} ∈ LS CF , since no two distinct substrings of x can share any context.

(41) Thm. (LCF −Lreg) ∩LS CF , ∅.
Proof. For example, as mentioned by C&E, {ancbn} ∈ LS CF .

(42) Thm. LCF * LS CF .

Proof. For example, as mentioned by C&E, {anbn} < LS CF , as we see by the fact that a � aab since they share the

context 〈ǫ, b〉, but obviously, a � aab.

(43) Exercise. Is |(Lreg −L f in) ∩LS CF | = ∞? Establish your answer with a proof.

(44) Exercise. Is |(LCF −Lreg) ∩LS CF | = ∞? Establish your answer with a proof.

5.1.1 A learner φS CF

(45) Def. For any s ∈ Σ∗, let

nesubstring(s) = {u ∈ Σ+| ∃l, r, lur = s}.
For any S ⊆ Σ∗, let

nesubstring(S) = {u ∈ Σ+| ∃l, r, lur ∈ S }.

(46) Def. We define a function that maps each finite T [i] ⊂ Σ∗ to a substitution graph SG which pairs substrings with

their contexts in the sample:

SG(T [i]) = (V, E) where: V = nesubstring(T [i])

E = {(u, v) ∈ V × V | u �T [i] v}

(47) Def. For any graph G = (V, E), a component is a connected subgraph that is not a proper part of any other connected

subgraph of G.

(48) Example. From (28) consider again T [3] = {ab, bb, bc}. Then SG(T [3]) = (V, E) where

V = {a, b, c, ab, bb, bc}
E = the reflexive,symmetric closure of {〈a, b〉, 〈b, c〉, 〈ab, bb〉, 〈ab, bc〉, 〈bb, bc〉}

This graph has 2 components.

(49) Def. Given any substitution graph SG(T [i]), let SG(T [i])/ �S be the partition of nesubstring(T [i]) induced by �S .

Each block of this partition is the set of elements in a single component of SG(T [i]).

(50) Def. We define a function that maps any substitution graph SG(T [i]) = (V, E) for any sample from L ⊆ Σ∗ to a CFG

〈Σ,Cat,, S 〉, as follows.3

3Clark and Eyraud (2007, p.1730) write ⌈u⌉S for the component of SG/ �S that contains u, but here I refer to this component with the standard notation

[u]�S
. Clearly, for some finite samples S , it can happen that [u]�S

, [u≡L
].

5.1. LEARNING LS CF FROM EXAMPLES 91

Cat = SG(T [i])/ �S

 is given by the following set of rules

[a]a for every a ∈ Σ
[vw][v] [w] for all v,w, vw ∈ V

S = T [i]

(51) Continuing example (48). Considering the graph SG(T [3]) = (V, E) we see that

[ab] = [bb] = [bc] for this block, the start symbol, we will use the symbol [aa]

[a] = [b] = [c] for this block we will use the symbol [a]

The rules of the grammar G determined by the graph are the following:

[aa][a][a] [a]a

[a]b

[a]c

Clearly, L(G) = T [i] ∪ {aa, ba, cb, cc} = Σ2. It is not hard to see that this language, unlike T [3], is an SCFL.

(52) In our notation, for any distinct nonterminal a, b ∈ Σ, if a � b, then [a] = [b], and so, for nonterminal a, the following

set of rules

{ [a]a, [b]a }
has only 1 element – we’ve written the same rule twice. So I cannot understand Clark&Eyraud’s remark. Of course,

we will have both of the following rules:

{ [a]a, [a]b }.
That set contains two elements, since a , b.

5.1.2 More compact hypotheses: Reduction systems with less redundancy

(53) Clark and Eyraud (2005, p291) say “the algorithm is not practical, since the number of nonterminals will often become

very large”

(54) Exercise. Is that true? C&E do not quantify this claim. The claim might be puzzling at first, given the demonstration

that the algorithm is polynomial. But remember that it is polynomial with respect to the size of T [i]. Obviously, as i

increases, we would like our grammar to ultimately be much smaller than T [i].

(55) Clark&Eyraud’05 say

Clearly one can recursively remove all nonterminals that have only one production by replacing the nonterminal

on the left hand side of the production with the right had side, wherever it occurs. Secondly, one can remove

nonterminals, one by one, and test whether the grammar continues to accept all of the sample, and thus arrive at

a minimal CFG. (Clark and Eyraud, 2005, p291)

(56) Exercise. Is that a right? That is, applying the second idea, checking against the finite sample, will we end up with a

minimal CFG that is weakly equivalent to the one defined in (50)?

(57) (Clark and Eyraud, 2005, p291) say

In some cases, [a reduction system] is a more natural way of defining the structure of a language than systems

from the traditional Chomsky hierarchy.

(58) Exercise. Is that true? Couldn’t we map the reduction system into a similarly natural grammar that uses nonterminals

in the standard way for nonterminal classes? C&E do not mention any results establishing that this kind of reduction

system can be significantly (e.g. exponentially?) more succinct than a grammar – are there any such results?

(59) Def. A reduction system T ⊆ Σ∗ × Σ∗. (u, v) ∈ T is often written u ⊢T v.

We extend ⊢T so that

lur ⊢T lvr if u ⊢T v.

And we let ⊢∗
T

be the reflexive, transitive closure, as usual.

⇒ more coming!⇐

92 CHAPTER 5. LEARNING SUBSETS OF LCF

5.1.3 Assessment

(60) (Clark and Eyraud, 2005, p294): ***

Importantly, our algorithm does not rely on identifying constituents: that is to say on identifying which substrings

have been generated by the non terminals of the target grammar. This has up to now been considered the central

problem in context-free grammatical inference, though it is in some sense an ill-posed problem since there may

be many different grammars with different constituent structures that are nonetheless weakly equivalent, that is to

say, define the same languages.

(61) (Clark and Eyraud, 2005, p294): ***

Ron uses a measure of similarity of residual languages rather than of contexts as we use here. Considered in this

way, our measure is very crude, and brittle – contexts are equal if they have non empty intersection. Nevertheless

the techniques of Ron et al., suggest a way that this technique could be extended to a PAC-learning result, using

a bound on a statistical property of the distribution.

(62) As we saw in (8), English<LSCF.

(63) (Clark and Eyraud, 2007, p.1738) say “The most important subclass of context-free languages that is polynomially

identifiable is that of very simple grammars (Yokomori, 2003)”, but they do not explain why they think that.

(64) Exercise. (Clark and Eyraud, 2007, §7) presents an experiment in support of the view that there is no reason to think

that learning English auxiliaries requires any nativist assumptions. Is the argument here persuasive? (In a page or less:

Give me your assessment of this argument as persuasively as you can. Don’t miss their main points! If any of their

claims about formal properties of the situation are not obvious, try to prove them. And if you are unsure about the

veracity of any of their claims about previous literature, check some of those too.)

5.2. LEARNING LS CFK,L
FROM EXAMPLES 93

5.2 Learning LS CFk,l
from examples

Yoshinaka (2008) describes a straightforward generalization of the previous idea, analogous to Angluin’s generalization of

zero-reversible to k-reversible.

(65) Def. Recall that L ∈ LS iff

x1y1z1, x1y2z1, x2y1z2 ∈ L implies x2y2z2 ∈ L.

Now lets say L ∈ LS k,l
iff

x1vy1uyz1, x1vy2uz1, x2vy1uz2 ∈ L implies x2vy2uz2 ∈ L,

where |v| = k, |u| = l, and vy1u, vy2u , ǫ. (Yoshinaka, 2008, p269)

(66) Def. LS CFk,l
= LS k,l

∩LCF

(67) Thm. LS = LS 0,0
.

(68) Thm. For all k < k′, l < l′ (Yoshinaka, 2008, p269)

LS k,l
(LS k′ ,l

LS k,l
(LS k,l′

(69) Thm. LS k,l
is not closed wrt any of: union, intersection with regular sets, concatenation, Kleene closure, ǫ-free

homomorphism, inverse homomorphism. (Yoshinaka, 2008, p270)

(70) Thm. LS k,l
is closed wrt intersection, ǫ-free inverse homomorphism. (Yoshinaka, 2008, p270)

(71) Thm. {anbn} ∈ LS CF1,1
. Recall from (42) that {anbn} < LS . (Yoshinaka, 2008, p271)

(72) Thm. Although LS k,l
is closed wrt intersection, LS CFk,l

is not. (Yoshinaka, 2008, p271)

All the other properties of LS k,l
mentioned in (69) and (70) extend to LS CFk,l

.

5.2.1 A learner

(73) Def. For any finite T [i], define

GT [i] = 〈Σ,Cat,, S 〉, where

Cat = {[y]| xyz ∈ T [i], y , ǫ} ∪ {S }
 = {[vyu][vy′u]| xvyuz, zvy′uz ∈ T [i], |v| = k, |u| = l, vyu, vy′u , ǫ}

∪{S[w]| w ∈ T [i]}
∪{[xy][x][y]| [xy], [x], [y] ∈ Cat}
∪{[a]a| a ∈ Σ}

(74) Def. φS CFk,l
(T [i]) = GT [i]

(75) Thm. φS CFk,l
identifies LS CFk,l

in the limit from examples.

(76) Thm. Every L ∈ LS CFk,l
has a characteristic set, a locking sequence for φS CFk,l

with size polynomial wrt target

grammar G.

94 CHAPTER 5. LEARNING SUBSETS OF LCF

5.3 Learning LFCP(k) from a membership oracle

A different kind of CFL learner is considered in Clark, Eyraud, and Habrard (2008), which can learn CFLs that have the finite

context property and the finite kernel property.

5.3.1 Binary feature grammars

(77) Thm. Given any language L, ∀u, v, u′, v′

CL(u) ⊆ CL(u′) ∧ CL(v) ⊆ CL(v′)⇒ CL(uv) ⊆ CL(u′v′) (5.1)

This has the corollary, for any K ⊆ Σ∗ (Clark, Eyraud, and Habrard, 2008, p3)

⋃

u′v′=w

⋃

u∈K,C(u)⊆C(u′)

⋃

v∈K,C(v)⊆C(v′)

C(uv) ⊆ C(w) (5.2)

“This is the basis of our representation: a word w is characterized by its contexts.”

(78) Def. A binary feature grammar (BFG) = 〈F, fs, P, PL,Σ〉 where (Clark, Eyraud, and Habrard, 2008, p3)

Σ a finite nonempty alphabet

F is a set of features, where C = 2F the set of all sets of features

fs ∈ F is the sentence feature

P ⊆ C ×C ×C is a finite set of productions xyz

PL ⊆ C × Σ written xa

Given any BFG G define the features fG associated with any string by the grammar:

fG(ǫ) = ∅ (5.3)

fG(w) =
⋃

(cw)∈PL

c iff |w| = 1 (5.4)

fG(w) =
⋃

u,v:uv=w

⋃

xyz∈P∋y⊆ fG(u)∧z⊆ fg(v)

x iff |w| > 1 (5.5)

(Clark, Eyraud, and Habrard, 2008, p4) say we should note the relation between (5.5) and (5.2).

Equally important, though, is the fact that nothing like (5.1) is enforced in BFGs.

Now define

L(G) = {u| fs ∈ fG(u)}.

(79) A Contextual BFG (CBFG) is a BFG in which features F is a finite set of contexts,

F ⊆ Σ∗ × Σ∗.

(80) Def. Recalling the definition of CL in (26) on page 89, given a finite set of contexts F ⊆ Σ∗×Σ∗, (Clark, Eyraud, and Habrard,

2008, p5)

FL(u) = CL ∩ F.

(81) Def. CBFG G is exact iff ∀u ∈ Σ∗ (Clark, Eyraud, and Habrard, 2008, p6)

fG(u) = FL(G)(u).

That is, a CBFG grammar G is exact iff the features the grammar associates with each string u are exactly the set of

contexts the string has in the language when restricted to the set F.

(82) CEH conjecture that LCBF (LBF . (Clark, Eyraud, and Habrard, 2008, p6)

5.3. LEARNING LFCP(K) FROM A MEMBERSHIP ORACLE 95

(83) Example. Let CBFG G = 〈Σ, F, (ǫ, ǫ), P, PL〉 where

F = { (ǫ, ǫ)

(a, ǫ),

(aab, ǫ),

(ǫ, b),

(ǫ, abb) }
PL = { {(ǫ, b), (ǫ, abb)}a

= {(a, ǫ), (aab, ǫ)}b }
P = { {(ǫ, ǫ)}{(ǫ, b)} {(aab, ǫ)}

{(ǫ, ǫ)}{(ǫ, abb)} {(a, ǫ)}
{(ǫ, b)}{(ǫ, abb)} {(ǫ, ǫ)}
{(a, ǫ)}{(ǫ, ǫ)} {(aab, ǫ)} }

G is an exact CBFG for L(G) = {anbn| n > 0}.

We can show that aabb ∈ L(G) with either of the following derivations:

(ǫ,ǫ)

(ǫ,b)

(ǫ,b),(ǫ,abb)

a

(ǫ,ǫ)

(ǫ,b),(ǫ,abb)

a

(a,ǫ),(aab,ǫ)

b

(a,ǫ),(aab,ǫ)

b

(ǫ,ǫ)

(a,ǫ),(ǫ,abb)

a

(a,ǫ)

(ǫ,ǫ)

(ǫ,b),(ǫ,abb)

a

(a,ǫ),(aab,ǫ)

b

(a,ǫ),(aab,ǫ)

b

(84) Every BFG has a weakly equivalent non-erasing positive range concatenation grammar (RCG) of arity 1 in 2-var form

(Boullier, 1999). (Clark, Eyraud, and Habrard, 2008, p4) For every rule xyz ∈ P and f ∈ x, where

y = {g1, . . . , gi}, z = {h1, . . . , h j} we have the RCG equivalent rules:

f (UV)g1(U), . . . , gi(U), h1(V), . . . , h j(V).

And for every rule { f1, . . . , fk}a ∈ PL we have the RCG equivalent rules (for 1 ≤ i ≤ k):

fi(a)ǫ.

(85) Clark, Eyraud, and Habrard (2009) define a mapping from an arbitrary conjunctive grammar (ConG) (Okhotin, 2003)

defining language L to a CBFL that generates LX.

If their claim about this mapping is correct, then CBFLs include the language L(G) = {a4n

X| n ≥ 0} since a4n

is defined

by the following ConG from Jeż (2007) with start symbol A1:

A1A1A3&A2A2 A1a

A2A1A1&A2A6 A2aa

A3A1A2&A6A6 A3aaa

A6A1A2&A3A3

(86) One cannot help noticing, as Clark does in the video, that the class of CBFLs is approximately what we seem to need

for human language. See (91) and footnote 5 on page 98, below.

96 CHAPTER 5. LEARNING SUBSETS OF LCF

(a*b) u {a^nb^m| n<m} (CEH’08, CEH’09)

CBFG

a^n b^n (CEH’08) a^nb^nc^nd (CEH’08) a^4^n (Jez’07, with transformation from CEH’09)

Reg CF TAG MG PMCFGG CSG

5.3. LEARNING LFCP(K) FROM A MEMBERSHIP ORACLE 97

5.3.2 A learner φFCP(k)(T [i])

from Clark (2010b), extending the simpler proposal in Clark, Eyraud, and Habrard (2008)

98 CHAPTER 5. LEARNING SUBSETS OF LCF

(87) Def. The simple algorithm IIL(T [i]): (implementation in Appendix)

1. Let T = Con(T [i]) ⊙ S ub(T [i]) – combine contexts and substrings in all possible ways to get a test set

2. Beginning with empty sets of substrings K and contexts F, for every w ∈ T

a. If w ∈ L but not in current hypothesis, add strings to K and add contexts to F

b. If w < L but is in current hypothesis, add contexts to F

(88) Def. u ∈ L has the finite context property iff there is a finite set of contexts Fu ⊆ C(u) such that for any v, if

Fu ⊆ C(v) ⊆ C(v), so we will not overgeneralize

(89) Def. K ⊆ Σ∗ is a kernel for L iff there is a set of feature L(B(K, F, L)) ⊇ L, so we will not undergeneralize.4

(90) LFCP(k) includes all regular languages, all substitutable languages, but not all context free languages.

(91) Clark&al conjecture that human languages are (weakly) included in the class of CBFLs with the FB,FK properties.5

5.3.3 Assessment: The larger picture

To understand the learner of §5.3.2, it is useful to adopt a broader perspective, hinted in Clark, Eyraud, and Habrard (2008),

and developed further in Clark (2009, 2010b).

(92) For every language L ⊆ Σ∗ we can define a latticeB(L) of syntactic concepts, defined as follows. For any set of strings

S ⊆ Σ∗ and any set of contexts C ⊆ Σ∗ × Σ∗

S ′ = {(l, r)| ∀w ∈ S , lwr ∈ L} ‘substrings’ of L

C′ = {w| ∀w ∈ S , lwr ∈ L} ‘contexts’ of L

〈S ,C〉 where C′ = S , S ′ = C ‘concepts’ of L

〈S 1,C1〉 ≤ 〈S 2,C2〉 iff S 1 ⊆ S 2

〈S x,Cx〉 ◦ 〈S y,Cy〉 = 〈(S xS y)′′, (S xS y)′〉
ABC iff A ≥ B ◦ C

(93) This lattice is finite iff L is regular, so we restrict ourselves to a finite set of contexts F ⊆ Σ∗ × Σ∗ and consider the

finite lattice B(L, F) restricted to 2F .

4(Clark, Eyraud, and Habrard, 2008, Def 11, p8) say “for any”, where I say “there is a.” I think my wording expresses their intention more clearly.
5This is suggested in Clark, Eyraud, and Habrard (2008, video 26:50). And Clark, Eyraud, and Habrard (2009, p.39) says of the languages definable by

CBFGs ”we conjecture that the class of natural language stringsets lies in this class.”

5.3. LEARNING LFCP(K) FROM A MEMBERSHIP ORACLE 99

(94) For any such lattice B(L, F) and finite set of features F, we can define a mapping φ : Σ∗ → B(L, F) from strings to

their contexts in F. (This can be computed with standard parsing methods.) Then obviously

L(B(L, F)) = {w| φ(w) ≤ C((ǫ, ǫ))}

(95) The learner gets a finite set of strings K, so consider the lattice B(K, L, F) of pairs 〈S ,C〉 such that S ⊆ K,C ⊆ F

where S ′ ∩ F = C and C′ ∩ K = S .

(96) Thm. As F increases, L(B(K, L, F)) increases. As K increases, L(B(K, L, F)) decreases. (Clark, Eyraud, and Habrard,

2008, Lemmas 6,7)

(97) These results motivate the strategy of the learner φFCP(k)(T [i]) sketched in (87). For example, with

L = {anbn}
F = {(ǫ, ǫ), (ǫ, b), (a, ǫ), (ǫ, abb), (aab, ǫ)}
K = {ǫ, a, b, ab, aab, abb}

the lattice L(B(K, L, F)) is isomorphic to L(B(L)) as shown on the right side of Figure 2 above.

(98) Internal/distributional, primal/dual

a. Notice that the categorization of the learner φFCP(k)(T [i]) is calculated from distribution only: any ‘internal’ simi-

larities among the phrases with a given distribution are ignored.

b. Harris (1941) writes:6

[I]t is pointless to mix phonetic and distributional contrasts. If phonemes which are phonetically similar are also

similar in their distribution, that is a result which must be independently proved. For the crux of the matter is

that phonetic and distributional contrasts are methodologically different, and that only distributional contrasts

are relevant while phonetic contrasts are irrelevant.

6These ideas from Harris are discussed in Nevin (1993).

100 CHAPTER 5. LEARNING SUBSETS OF LCF

This becomes clear as soon as we consider what is the scientific operation of working out the phonemic pattern.

For phonemes are in the first instance determined on the basis of distribution. Two positional variants may be

considered one phoneme if they are in complementary distribution; never otherwise. In identical environment

(distribution) two sounds are assigned to two phonemes if their difference distinguishes one morpheme from

another; in complementary distribution this test cannot be applied. . . [T]he distributional analysis is simply the

unfolding of the criterion used for the original classification. If it yields a patterned arrangement of phonemes,

that is an interesting result for linguistic structure.

c. A slightly different perspective is introduced by Clark (2009, 2010a). He calls reasoning about congruences of

strings primal, and reasoning about contexts dual. While most of learners have been primal, the Clark,Eyraud&Habrard

learner φFCP(k)(T [i]) is instead based on a lattice of contexts, and takes the contexts as fundamental.

(99) Ideas that I think deserve more exploration

• Hypotheses about human grammars should have consequences for the question of how much context (i.e. how

rich a set of features) is needed to define a natural language.

• Ignoring internal structure in inference seems inappropriate: the phrases that are DPs, for example, tend to have

Ds in them, etc. Such regularities are ignored by φFCP(k)(T [i]).

A similar point has been made about using only transition probabilities in word segmentation Frank et al. (2010).

• If Clark&Eyraud are mistaken to dismiss constituency, we should be able to integrate the ideas in this section with

categorizations with additional structure.

5.4 Evidence of constituency

5.4.1 Syntactic cues

(100) As we see in examples (185a-185b) just above, different constituencies do not entail any difference in the strings

derived. Consider for example the basic subject-predicate analysis of English (100a, and contrast it with (100b):

a. Ivan [bought the newspaper]

b. [Ivan bought] the newspaper

(101) The constituency (100b) seems to conflict with various other clues.

a. Chomsky suggests that a wide range of syntactic evidence supports (100a) over (100b), including (i) it fits with

binding facts; and (ii) it fits with the fact that object incorporation is often possible while subject incorporation

is not, which is, like causative formation, incorporation of the head of the complement. But he suggests that

these arguments are only convincing because it is supported by similar evidence from various different languages,

but the child is designed so that the [Subject [Verb Object]] constituency is adopted as “a matter of biological

necessity” (Chomsky, 1988, pp.53-60).

b. Errors in recall at various points indicate a greater degree at major boundaries (fig from Fodor, Bever, and Garrett

(1974, p.250), cf Mehler and Carey (1967)):

5.4. EVIDENCE OF CONSTITUENCY 101

c. Clicks heard while listening to sentences are displaced towards major constituent boundaries (Ladefoged and Broadbent,

1960; Fodor and Bever, 1965).

d. When asked to judge relatedness, verb judged more closely related to the object than to the subject (Levelt, 1970).

102 CHAPTER 5. LEARNING SUBSETS OF LCF

(102) Both constituencies (100a-100b) are allowed in a categorial grammar that has ‘type lifting’ rules (Steedman, 2000,

§3.5):7

<:S

NP

Ivan

>:NP\S

(NP\S)/NP

bought

NP

the newspaper

>:S

>B:S/NP

>T:S/(NP\S)

NP

Ivan

(NP\S)/NP

bought

NP

the newspaper

The main reason for allowing both of these derivations comes from right node raising:

>:S

<Φ>:S/NP

>B:S/NP

>T:S/(NP\S)

NP

Ivan

(NP\S)/NP

bought

((S/NP)\(S/NP))/(S/NP)

and

>B:S/NP

>T:S/(NP\S)

NP

Ivy

(NP\S)/NP

read

NP

the newspaper

(103) In Chomskian syntax, RNR structures are usually accounted for with either ellipsis or multidominance:

CP

CP

Ivan vP

bought DP

the newspaper

C’

and CP

Ivy vP

read DP

the newspaper

CP

CP

Ivan vP

bought

C’

and CP

Ivy vP

read DP

the newspaper

These analyses have the advantage that they do not predict the constituency (100b), but they both face other problems

(Larson, 2012).

The type inference in §5.5 requires constituency and headedness to be marked in the data. Does the ‘primary linguistic data’

(PLD) available to the child include such evidence? That is, besides the ‘internal’ and ‘distributional’ evidence mentioned in

(98) on page 99, is there ‘external’ evidence that is not explicit in the sample of strings as usually presented?

5.4.2 Statistical cues

(104) The results mentioned in (101b) and (101d) could signal that constituents have a semantic coherence, but they could

also indicate some kind word-cluster coherence, something that might be indicated by word transition probabilities.

(Magerman and Marcus, 1990; Cavar, 2010)

(105) Recent artificial grammar learning studies provide some confirmation that people do, in fact, notice this kind of

‘statistical coherence’ (Takahashi, 2009).

(106) A related idea was used by van Zaanen (2001)

⇒ more coming! ⇐

7These derivations are adapted from Steedman (2000, §3.5), but I draw them with trees and with the backslash interpreted in the Lambek style. I use

Steedman’s labels for forward application >, backward application <, subject type raising >T, forward composition >B and coordination <Φ>.

5.4. EVIDENCE OF CONSTITUENCY 103

5.4.3 Prosodic cues

There is some evidence that speakers tend to provide prosodic clues to constituency when utterances would otherwise be

ambiguous. For example, in reading arithmetic expressions, a series of studies by Keating and collaborators shows that

prosodic cues are provided similarly across languages (Fougeron and Keating, 1997; Cho and Keating, 2001; Keating et al.,

2003). (Wagner, 2005, p29) mentions some similar results in reading logical formulas. However, it remains unclear how

available and how reliable this kind of evidence is. Consider this recent work on prosodic cues for alternative PP attachments:

(107) Snedeker and Trueswell (2003) considered examples like this in which the PP can be an NP or VP modifier:

a. Tap the frog [with the flower].

i. ‘Tap the frog that has a flower’ (NP modifier reading)

ii. ‘Tap the frog by using the flower’ (VP modifier reading)

They found that speaker use disambiguating prosody only when the context is compatible with both interpretations,

and perhaps even then, only when they are aware of the ambiguity.

(108) Kraljic and Brennan (2005) considered examples like this:

a. Put the dog [in the basket] on the star.

i. ‘Put the dog that is in the basket onto the star’ (NP modifier reading)

ii. ‘Put the dog into the basket that is on the star’ (VP modifier reading)

In contrast to the Snedeker&Trueswell results, Kraljic&Brennan found that speaker use disambiguating prosody reli-

ably. They propose 3 ideas about why their results differ

a. Unlike the Snedeker&Trueswell study, this one involved interacting with another participant, so interactive dis-

ambiguation would be possible if necessary.

b. Producing a single, repetitive structure may have led participants in the Snedeker&Trueswell to ignore prosody.

c. The stimuli in Kraljic&Brennan were longer, possibly prompting the use of prosodic boundaries.

(109) Considering the puzzling differences between the studies just mentioned, Hirsch and Wagner (2012) consider the

possiblity that the relevant difference was in the syntax of the stimuli: In (108a) the [in the basket] has the option of

forming a constituent with [on the star] to its right. To test whether this is really a factor, Hirsch&Wagner use more

complex stimuli like this one, presented in a context supporting one of the 3 possible readings:

a. Tap the frog [with the flower] on the hat.

i. ‘Tap the frog that has a flower and tap it on its hat’ (‘left’, NP attach)

ii. ‘Tap the frog by using the flower and tap it on its hat’ (‘list’, VP attach)

iii. ‘Tap the frog by using the flower that is on the hat’ (‘right’, [PP PP])

Their predictions were

Preliminary results support these predictions, with awareness (Exp. 1) triggering the clearest disambiguation.

104 CHAPTER 5. LEARNING SUBSETS OF LCF

(110) The results mentioned above suggest that matters are complex and indicate even more clearly that they are not yet well

understood, but there is, nevertheless, evidence of various kinds that prosody can be useful in phrase identification

(Pate and Goldwater, 2011, for example)

⇒ more coming! ⇐

5.4.4 Semantic cues

It is conceivable that semantic cues could also be used to identify constituency. A variety of ‘semantic bootstrapping’ proposals

can be found in the literature.

(111) The studies mentioned in (101b) suggest that some sort of ‘semantic coherence’ measure, some kind of ‘chunking’,

could provide more evidence than we see in arbitrary strings over the lexicon.

(112) ‘Cross situational learning’ aims to find elements of situations that correlate with the presence of utterance constituents

(Pinker, 1989; Siskind, 1996; Kobele et al., 2003).

⇒ more coming! ⇐

5.5 Type inference for CFGs

While the learner for reversible languages will conclude from data like john eats and john eats apples, that apples

can be iterated any number of times, the learner introduced in this section will not draw that conclusion because apples in

that sentence does not have the syntactic role of an adjoined modifier. But if, for example, we know that slowly is an adjoined

modifier in john eats slowly, then learner will conclude that any number of elements with the same category as slowly

can be adjoined at the end of the sentence. That is, the learner reasons about the categorial structures. This learner, introduced

by Kanazawa (1996, 1998), uses structured positive data to identify the target language.

5.5.1 Categories

In categorial grammars, the categories have a regular structure that indicates their combinatorial options.

(113) Let the “basic types” be some finite set BaseCat, and then we let the categories be all the “types” that can be formed

from these with forward and backward slashes, CL(BaseCat, {/, \, ·}).
(114) Following Lambek (1958), Moortgat (1988) and others, we can think of each type as denoting a set of strings (or

other structures). Given any set of vocabulary elements V , we let each “basic type” denote a subset of V∗. Then, the

denotations for any c1, c2 ∈ ℘(V∗), can be defined as follows:

[[c1 · c2]] = {s1s2 ∈ V∗| s1 ∈ [[c1]], s2 ∈ [[c2]]}
[[c1/c2]] = {s1 ∈ V∗| ∀s2 ∈ [[c2]], s1s2 ∈ [[c1]]}
[[c2\c1]] = {s1 ∈ V∗| ∀s2 ∈ [[c2]], s2s1 ∈ [[c1]]}
Cat = CL(BaseCat, {·, /, \})

5.5. TYPE INFERENCE FOR CFGS 105

(115) With these definitions we can establish that right function application (<) and left function application (>) are not just

arbitrary categorial rules, on a par with S → NP VP. Rather, we can show that they are sound, in the sense that show

that, in the case of <, if an expression is in [[(c1/c2) · c2]] then it is also in [[c1]], and similarly for >.

(116) Thm. For all c1, c2 ∈ Cat, [[(c1/c2) · c2]] ⊆ [[c1]].

Proof: Suppose s ∈ [[(c1/c2) · c2]]. By the definition of ·, there are strings s1 ∈ [[(c1/c2)]], and s2 ∈ [[c2]] such that

s = s1s2. By then by the definition of /, since s2 ∈ [[c2]], s1s2 ∈ [[c1]]. �

(117) Thm. For all c1, c2 ∈ Cat, [[c2 · (c2\c1)]] ⊆ [[c1]].

Proof: Suppose s ∈ [[c2 · (c2\c1)]]. By the definition of ·, there are strings s1 ∈ [[c2]] and s2 ∈ [[(c2\c1)]] such that

s = s1s2. By then by the definition of \, since s1 ∈ [[c2]], s1s2 ∈ [[c1]]. �

(118) Obviously, it is not in general the case that everything in a set c is a concatenation of strings from other categories, so

these results would not hold if ⊆ were replaced by ⊇.

(119) Taking some particular strings and categories for example, if we know

the ∈ [[(s/p)/n]]

the ∈ [[(r\p)/n]]
shines ∈ [[p]] warms ∈ [[r]]

golden ∈ [[n/n]] cool ∈ [[n/n]]

sun ∈ [[n]] cat ∈ [[n]]

then it follows that [[s]] includes infinitely many strings:

the sun shines the golden golden sun shines

the golden sun shines the sun warms the cool cool cat

. . .

(120) In the the lattice of §5.3.3, we can define a similar ‘residuation’. Recalling (92), if X = 〈S x,Cx〉 and Y = 〈S y,Cy〉,
then let (Clark, Eyraud, and Habrard, 2008, Def3)

X/Y = C(Cx ⊙ (ǫ, S y))

Y\X = C(Cx ⊙ (S y, ǫ))

where for contexts (l, r) ⊙ (l′, r′) = (ll′, rr′) Then we have: (Clark, Eyraud, and Habrard, 2008, Def3,Lemma1)

Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y.

(121) If we trade in the symbols of BaseCat in for any others, so long as we do it one for one, the grammar is not changed

in any substantial respect. The new grammar is sometimes called an alphabetic variant of the original. To be precise,

we can define a notion of substitution, as in van Benthem (1989); Buszkowski and Penn (1990); van Benthem (1991,

etc). Thinking of a grammar as a pairing of vocabulary elements with categories, we can apply substitutions pointwise

to whole grammars

G1 = { 〈the, (s/p)/n〉,
〈the, (r\p)/n〉,
〈shines, p〉, 〈warms, r〉,
〈golden, n/n〉, 〈cool, n/n〉,
〈sun, n〉, 〈cat, n〉 }.

5.5.2 Substitutions and unification in logic

(122) In logic, two expressions unify with each other just in case there is a substitution of terms for variables that makes

them identical. To unify human(montague) and human(X) we substitute the term montague for the variable X. We

will represent this substitution by the expression {X 7→montague}. Letting θ = {X 7→montague}, we have

human(X)θ =human(montague)θ =human(montague).

Notice that the substitution θ has no effect on the term human(montague) since this term has no occurrences of the

variable X.

106 CHAPTER 5. LEARNING SUBSETS OF LCF

(123) We can replace more than one variable at once. For example, we can replace X by s(Y) and replace Y by Z. Letting

θ = {X 7→s(Y),Y 7→Z}, we have:

sum(X,Y,Y)θ =sum(s(Y),Z,Z).

Notice that the Y in the first term has not been replaced by Z. This is because all the elements of the substitution are

always applied simultaneously, not one after another.

(124) After a little practice, it is not hard to get the knack of finding substitutions that make two expressions identical, if

there is one. These substitutions are called (most general) unifiers, and the step of finding and applying them is

called unification.8 The value of unification in (automated) logical inference was first noticed by Robinson (1965),

developing the basic idea from the doctoral thesis of Herbrand (1930) that proofs can be sought in a syntactic domain

defined by the language of the theory.

(125) To describe unification we need two preliminaries. First, we need to be able to recognize subexpressions. E.g. in:

whats it(s(Y, r(Z, g(Var))), f unc(g(Argument), X),W),

the subexpression beginning with whats it is the whole expression;

the subexpression beginning with s is s(Y, r(Z, g(Var)));

the subexpression beginning with Argument is Argument;

no subexpression begins with a parenthesis or comma.

Second, we need to be able to compose substitutions – we need to be able to build up substitutions by, in effect,

applying one to another. Remember that substitutions are specified by expressions of the form

{V1 7→t1,...,Vn 7→tn}

where the Vi are distinct variables and the ti are terms (ti,Vi) which are substituted for those variables.

(126) Def. The composition of substitutions η, θ is defined as follows: Suppose

η = {X1 7→t1,. . .,Xn 7→tn}

θ = {Y1 7→s1,. . .,Ym 7→sm}.
The composition of η and θ, ηθ, is

ηθ = {X1 7→ (t1θ), . . . , Xn 7→ (tnθ), Y1 7→ s1, . . . , Ym 7→ sm}−
({Yi 7→ si | Yi ∈ {X1, . . . , Xn}} ∪ {Xi 7→ tiθ | Xi = tiθ}).

(127) That is, to compute ηθ, first apply θ to the terms of η and then add θ itself, and finally remove any of the θ variables that

are also η variables and remove any substitutions of variables for themselves. Clearly, with this definition, every com-

position of substitutions will itself satisfy the conditions for being a substitution. Furthermore, since the composition

ηθ just applies θ to η, A(ηθ) = (Aη)θ for any expression A.

(128) Example. Let

η = {X1 7→Y1,X2 7→Y2}
θ = {Y1 7→a1,Y2 7→a2}.

Then

ηθ = {X1 7→a1,X2 7→a2,Y1 7→a1,Y2 7→a2}.
And, on the other hand,

θη = {Y1 7→a1,Y2 7→a2,X1 7→Y1,X2 7→Y2}
Since ηθ , θη, we see that composition is thus not commutative, although it is associative.

(129) Example. Let

η = {X1 7→Y1}
θ = {Y1 7→X1}.

Then although neither η nor θ is empty, ηθ = θ and θη = η.

8In the computational linguistics literature (not to mention politics or physics), the term ‘unification’ is used in lots of ways. It will not always have the

sense defined here. So-called “unification grammars” involve a related, but more elaborate notion of unification.

5.5. TYPE INFERENCE FOR CFGS 107

(130) Example. Let

η = {}

θ = {Y1 7→X1}.

Then ηθ = θη = θ.

This empty substitution η = {} is called an “identity element” for the composition operation.9

(131) Now we are ready to present a procedure for unifying two expressions E and F to produce a unifier mgu(E, F).

Unification algorithm:

1. Put k = 0 and σ0 = {}.
2. If Eσk = Fσk, stop. σk is a mgu of S . Otherwise, compare Eσk and Fσk from left to right to find the first symbol at

which they differ. Select the subexpression E′ of E that begins with that symbol, and the subexpression F′ of F that

begins with that symbol.

3. If one of E′, F′ is a variable V and one is a term t, and if V does not occur as a (strict) subconstituent of t, put

σk+1 = σk{V 7→ t}, increment k to k + 1, and return to step 2. Otherwise stop, S is not unifiable.

(132) This algorithm produces a most general unifier (mgu) which is unique up to a renaming of variables, otherwise it

terminates and returns the judgment that the expressions are not unifiable.10

(133) This unification algorithm, if implemented literally, is not efficient. The number of steps it requires increases as an

exponential function of the sizes of the terms to be unified. This can be seen by considering this example from Bibel

(1982, p.92). Suppose we want to compute the most general unifier of these two terms, which contain the variables

X0, X1, . . . , Xn:

mgu(p(X1, X2, . . . , Xn), p(f (X0, X0), f (X1, X1), . . . , f (Xn−1, Xn−1))) = . . .

Beginning from the left, we see that we need X1 7→ f (X0, X0), and applying this first step, the problem is now

mgu(p(f (X0, X0), X2, . . . , Xn), p(f (X0, X0), f (f (X0, X0), f (X0, X0)), f (X2, X2), . . . , f (Xn−1, Xn−1))) = . . .

Proceeding then to the next argument of p, we need to add (by composing with the first step) the substitution X2 7→
f (f (X0, X0), f (X0, X0)). Proceeding in this way, it is clear that the terms are growing quickly! The last argument has

2n − 1 occurrences of f ! Fortunately, there are more efficient unification algorithms (Martelli and Montanari, 1982;

Knight, 1989). So this is a case where the most intuitive approach is inefficient, but there are efficient ways to handle

the problem. We will soon see problems (e.g. in §5.5.8 below!) that have inefficient intuitive algorithms, and where

we have good mathematical reasons to believe that there is no efficient algorithm.

5.5.3 Substitutions and unification in categorial grammar

(134) For the purpose of comparing various CGs with substitutions, the designated start category and terminal symbols are

constants; / and \ are function symbols, and the elements of BaseCat (other than the start category) are variables.

Then, the standard treatment of substitutions and unification can be adapted to categories. Then we have, for example,

mgu(c1\c2, c3) = {c3 7→ (c1\c2)},

where none of these categories are the designated start category. The categories c1\c2 and c3/c4, on the other hand,

cannot be unified.

From this perspective, the distinctive thing about a CG is not Cat, but the relations among the categories assigned to

lexical items. As noted earlier, we can apply any substitution to this entire set of pairs to obtain another grammar, a

substitution instance of the first grammar.

(135) Thm. IfG1θ ⊆ G2 for any substitution θ and any grammarsG1,G2 with designated start symbol s, then [[s]]G1
⊆ [[s]]G2

.

Proof: Consider any derivation tree of G1 with root s. Applying any substitution to the categories in this tree, the

result is clearly a derivation tree in G2 with root s and with the same yield. �

9In algebra, when we have a binary associative operation on a set with an identity element, we say we have a monoid. So the set of substitutions, the

operation of composition, and the empty substitution form a monoid. Another monoid we will discuss below is given by the set of sequences of words, the

operation of appending these sequences, and the empty sequence.
10Our presentation of the unification algorithm is based on Lloyd (1987), where this result about the algorithm is established as Thm 4.3. The result also

appears in the classic source, Robinson (1965).

108 CHAPTER 5. LEARNING SUBSETS OF LCF

(136) Intuitively, a substitution can “enrich” a category, replacing some basic categories by complex ones, but it cannot

“impoverish” the categories. Let’s say that two grammars G1 and G2 are alphabetic variants iff there is a 1-1

substitution of basic categories for basic categories θ such that G1θ = G2. Then one perspective on the intuition

about substitutions enriching categories is provided by the following result:

(137) Thm. If G1θ1 = G2 and G2θ2 = G1 then G1 and G2 are alphabetic variants.

Proof: Suppose G1θ1 = G2 and G2θ2 = G1. Let θ be the result of deleting from θ1 all the substitutions for categories

that do not occur in G1. Clearly, θ and θ1 will have the same effect on G1: G1θ = G1θ1 = G2. We establish the theorem

by showing that θ is a 1-1 substitution of basic categories for basic categories.

Assume for contradiction that θ is not a 1-1 substitution of basic categories for basic categories. That is, either (i) θ

maps some basic category of G1 to a complex category, or (ii) θ maps basic categories to basic categories but is not

1-1. Each case leads to a contradiction.

(i) Suppose θ maps some basic category c of G1 to a complex category. But then there cannot be any θ2 such that

G2θ2 = G1 because no substitution can replace a complex category by a simpler one.�

(ii) Suppose θ maps basic categories c1 and c2 of G1 both to some category c. Then again there cannot be any θ2
such that G2θ2 = G1 because no substitution can replace c by both c1 and c2.� �

(138) CGs related by substitutions will be of considerable interest in §5.5.6.

5.5.4 Elasticity

(139) Consider the following sets:

N = {0, 1, 2, . . .} the set of natural numbers

Even = the set of finite subsets of even numbers, {0, 2, 4 . . . , }
Odd = the set of finite subsets of odd numbers, {1, 3, 5 . . . , }

Clearly L1 = Odd ∪ Even ∪ {N} is identifiable. All the sets in Odd ∪ Even are finite, learnable with the simple

conservative induction by enumeration φe, mentioned in the discussion of Gold’s basic results. We extend this learner

just so that if it gets any text with both an even number and an odd number, it guesses N.

The set {L1 ∪ L2| L1, L2 ∈ L1}, on the other hand, contains all finite subsets of N together with N itself – a class of

languages that we know is not identifiable. In this case, seeing an even number and an odd number does not generally

indicate that the learner should generalize, and so learning is impossible.

This is worrying. In our account of human language learning, we want to allow not only for the possibility of learning

English and Chinese, but for the possibility of learning both at once. A simple model of the multilingual environment is

provided by taking unions of the various languages, and we see that this can make the learnability problem significantly

harder, or impossible. We address this problem by studying some learnable classes with the properties that the class of

unions of their elements is also identifiable. Of course, the problem we have set here is highly idealized, abstracting

away from very many important aspects of multilingual language acquisition. The justification for the idealization is

that it leads us to some insights about learning might work. In particular, it suggests some interesting ideas about how

a learner could go about classifying lexical items and generalizing to structures that have not been seen.

Following Kanazawa (1996, 1998), we begin with another corollary of Angluin’s basic theorem, one that draws

attention to an idea that will be of some interest.

(140) Def A class of languages L has a limit point L iff there are languages L0, L1, L2, . . . ∈ L such that

L0 ⊂ L1 ⊂ L2 ⊂ . . .

and L ∈ L is such that

L =
⋃

n∈N
Ln

(141) Consider the classes of languages mentioned just above:

L1 = Odd ∪ Even ∪ {N}
L2 = {L1 ∪ L2| L1, L2 ∈ L1}

The class L2 obviously has a limit point:

{0} ⊂ {0, 1} ⊂ {0, 1, 2}, . . .

5.5. TYPE INFERENCE FOR CFGS 109

with the limit N. Alternatively,

{0, 1, 2} ⊂ {0, 1, 2, 3, 4, 5} ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8}, . . .

with the limit N – there are infinitely many different infinite sequences of languages from L2 with this limit point.

The class L1, on the other hand, has no such limit point.

(142) Corollary. If L has a limit point, then it is not identifiable. (Kanazawa, 1998)

Proof: Suppose for contradiction that φ learns L , where L has limit point L. Then by the Blum & Blum theorem

on locking sequences, there is a locking sequence t for φ and L. Since t is finite and L =
⋃

n∈N Ln, there must be a

language Li ⊂ L such that L(t) ⊆ Li. But then on any text for Li that begins with t, φ will converge on L and fail to

learn Li.� �

(143) What is perhaps more interesting is a related property that will guarantee learnability. Finite elasticity is one. . .

(144) Def. A class of languages L has infinite elasticity if and only if there is a sequence of sentences s0, s1, . . . and a

sequence of languages L0, L1, . . . in L such that for all n ≥ 0,

sn < Ln, and

{s0, . . . , sn} ⊆ Ln+1

A class of languages has finite elasticity if and only if it does not have infinite elasticity.

(145) Consider again the classes of languages mentioned just above:

L1 = Odd ∪ Even ∪ {N}
L2 = {L1 ∪ L2| L1, L2 ∈ L1}

Notice that L1 has infinite elasticity, as witnessed for example by the sequences

0, 2, 4, 6, . . .

∅ {0}, {0, 2}, {0, 2, 4} . . .

The class L2 also has infinite elasticity, as witnessed by the same sequences. Infinite elasticity does not tell us whether

the class is learnable or not. Finite elasticity, on the other hand, guarantees learnability as we will see now.

Wright (1989) uses the notion of elasticity to establish the following additional corollary of Angluin’s Subset Theorem.

(146) Thm. If L has finite elasticity, then it is learnable.

Proof: Assume L is a class as defined in the theorem, a class with finite elasticity. Assume that the elements of

Σ∗ are ordered alphabetically. We show that each language L ∈ L has a distinguished subset D with the properties

specified in Angluin’s Subset Theorem. Consider an arbitrary L ∈ L . Define D to be the set

{x| for some Li ∈ L , x is the least sentence in L − Li}

Notice that there may be languages L j ⊇ L, in which case L − L j = ∅, so intuitively, supersets of L do not contribute

any members to D. We now show that D has the properties required for application of Angluin’s Theorem. Suppose

there is some language Li ∈ L such that D ⊆ Li. Then Li must be a language such that L − Li = ∅; that is Li ⊇ L.

Hence Li 1 L. If we can show that D is finite, then by Angluin’s Subset Theorem, L is identifiable.

Suppose for contradiction that the set D is infinite. By the definition of D, for every s0 ∈ D, there is a language

L0 ∈ L such that s0 is the least sentence in L − L0. Since D is infinite, for any s0 there is a longer sentence s1 in D,

and so then again by the definition of D, there is another language L1 ∈ L such that s1 is the minimum element of

L − L1. Note also that it must be that s0 ∈ L1, since otherwise s0 would be the minimum element of L − L1, since

shorter strings come before longer ones in the standard alphabetical order. So in general, for every si ∈ D, there is a

language Li+1 ∈ L such that L − Li+1 , ∅ and si ∈ Li+1. But then, there is an infinite sequence of sentences s0, s1, . . .

and an infinite sequence of languages L0, L1, . . . in L such that

sn < Ln, and

{s0, . . . , sn} ⊆ Ln+1.

That is, L has infinite elasticity.� �

(147) Thm. (Wright, 1989; Motoki, Shinohara, and Wright, 1989; Kanazawa, 1998) If L1 and L2 have finite elasticity,

then so does {L1 ∪ L2| L1 ∈ L1, L2 ∈ L2}.
(See the cited sources for proofs.)

110 CHAPTER 5. LEARNING SUBSETS OF LCF

5.5.5 Rigid CGs have finite elasticity

We now turn to a simple class of languages which has finite elasticity. This presentation of results in this section is distilled

primarily from Kanazawa (1998).11

(148) We can define CGs with the following succinct format, as a set of assignments of categories to vocabulary elements:

Grammar 5: Let this grammar contain just these 3 pairs,

〈a, s/x〉
〈a, (s/x)/s〉
〈b, x〉

Given any such grammarG, V is the set of strings on the left sides of the 7→, Cat = CL(BaseCat, {/, \}) where BaseCat

is just the simple categories in the grammar. In Grammar 5, BaseCat = {s, x}. The lexicon Lex = V and the structure

building functions are F = {Fc| c ∈ Cat} ∪ {<, >}, where the functions Fc with non-empty domains are exactly the

ones given in the succinct grammar. That is,

Dom(Fs/x) = {a} Fs/x(a) = s/x

Dom(F(s/x)/s) = {a} F(s/x)/s(a) = (s/x)/s

Dom(Fx) = {b} Fx(b) = x

As usual, we can let L(G) = CL(Lex,F), but what we are interested in is the derivations themselves. For this grammar,

there are infinitely many different derivations that establish s ∈ CL(Lex,F), and each of the corresponding derivation

trees has a different yield. For any c ∈ Cat, let [[c]] be the set of yields of derivation trees of G with root c. So in the

case of Grammar 5, [[s]] = {anbn| n > 0} and [[x]] = {b}.
(149) Def. A CG is rigid iff the set of pairs in the grammar is a function. That is, each lexical item in Lex = V is in the

domain of at most one function in {Fc| c ∈ Cat}. Each lexical item has at most one category.

(150) Grammar 5 is not rigid, because it assigns two types to a.

(151) The first learning algorithm we will consider accepts as data not strings, but what Buszkowski (1988) calls f -structures,

function-argument structures. These are derivation trees in which name of the generating function applied replaces the

category at the internal node labels, except nodes that would then be labeled with lexical functions Fc are eliminated.

For example, consider the derivation tree,

s

s/p

(s/p)/n

the

n

n/n

golden

n

sun

p

r

warms

r\p

(r\p)/n

the

n

cat

The corresponding f -structure is

<

<

the <

golden sun

>

warms <

the cat

The types are gone, but we know that under any node formed by < we will find two constituents which are naturally

regarded as the function and argument, respectively. Similarly, under any > node we will find the argument and

function respectively.

Obviously, any CG G defines a set FL (G) of f -structures of this sort. If the CG has a designated start category s, we

will let FL (G) be just the f -structures corresponding to derivations of s.

11See also Kanazawa (1996); de Jongh and Kanazawa (1995).

5.5. TYPE INFERENCE FOR CFGS 111

(152) Def. Grigid is the class of rigid grammars over some particular vocabulary V . When indicated, we can suppose that

each grammar comes with a specification of some particular category s as the “start symbol.”

FL rigid is the class of sets of f -structures defined by rigid grammars over V .

Lrigid is the class of sets of strings [[s]] where s is the start symbol for the rigid grammars over V .

(153) Thm. FL rigid with designated start category s has finite elasticity. (Kanazawa, 1998)

(154) Kanazawa points out that it follows immediately from (153) and (146) that FL rigid is identifiable.

5.5.6 A learner for Grigid

The following learner from Kanazawa (1998, 1996) accepts a finite text T [i] of f -structures (and possibly also occurrences of

the non-linguistic element #). The learner outputs a rigid CG, RG(ti), in which s is the designated start category.

(155) Learner φrigid

Input: f -structures content(T [i]) = {F1, . . . , F j}
1. i. assign s to the root of each of F1, . . . , F j

ii. assign unique base categories to each of the argument nodes of F1, . . . , F j

iii. calculate the categories of the function nodes in F1, . . . , F j

2. Collect the lexical categories from F1, . . . , F j to get a CG GF(T [i]).

3. Unify the categories assigned to each vocabulary element to get a rigid CG, RG(T [i]).

(This will always be possible if T is a text for the language of f -structures of a rigid CG.)

(156) Consider how this learner deals with a text defined by a grammar like the following:

〈the, (s/p)/n〉
〈sun, n〉
〈moon, n〉
〈shines, p〉
〈brightly, p\p〉

(157) With this grammar we can derive:

s

s/p

(s/p)/n

the

n

moon

p

shines

s

s/p

(s/p)/n

the

n

sun

p

p

shines

p\p

brightly

(158) Let’s consider how our learner responds to a sequence T [2] containing the two corresponding f -structures:

<

<

the moon

shines

<

<

the sun

>

shines brightly

Assigning s to the root, and unique categories to each argument node, we obtain:

112 CHAPTER 5. LEARNING SUBSETS OF LCF

s

<

the c1

moon

c2

shines

s

<

the c3

sun

c4

c5

shines

brightly

Then, we calculate the categories of the functions in these structures:

s

s/c2

(s/c2)/c1

the

c1

moon

c2

shines

s

s/c4

(s/c4)/c3

the

c3

sun

c4

c5

shines

c5\c4

brightly

Now, letting the categories of the lexical items define a grammar we obtain RG(T [2]):

Grammar GF(T [2]):

〈the, (s/c2)/c1, (s/c4)/c3〉
〈moon, c1〉
〈sun, c3〉
〈shines, c2, c5〉
〈brightly, c5\c4〉

The next step is to unify the categories of each lexical item to get a rigid grammar, RG(T [2]). Let’s do this one lexical

item at a time. We can unify the categories of the with the substitution {c4 7→ (c2), c3 7→ (c1)}. (Remember, this

substitution says, replace c4 by c2 and replace c3 by c4.) Applying this substitution to the grammar we have:

〈the, (s/c2)/c1〉
〈sun, c1〉
〈moon, c1〉
〈shines, c2, c5〉
〈brightly, c5\c2〉

Notice that this first step has already assigned both sun and moon to the same category. Now we can unify the

categories of shines with the substitution {c5 7→ (c2)}. Applying this substitution to the grammar we obtain our

output

Grammar RG(t2):

〈the, (s/c2)/c1〉
〈sun, c1〉
〈moon, c1〉
〈shines, c2〉
〈brightly, c2\c2〉

This is RG(T [2]), the output of the learner. Notice that RG(T [2]) is an alphabetic variant of the target grammar. On

the basis of 2 f -structures, the learner gets to the grammar which generates an infinite set.

(159) Notice that this learner correctly identifies the recursion through the adverbs on the basis of the f -structures of ex-

pressions with no more than 1 level of recursion. Lightfoot (1989) calls 1 level of embedding ‘degree-1’ data. The

second tree in the text we just considered comes from a tree that has p-embedding of degree-1. When the class of

languages is as simple as this one, allowing languages in which some but not all categories recursive, degree-1 data

is required to identify recursion. (Is there a learner who identifies recursion in any infinite class of languages on the

basis of degree-0 data?)

5.5. TYPE INFERENCE FOR CFGS 113

(160) Returning to the matters at hand, to get a good understanding of the learner in Algorithm φrigid, let’s go through a

series of results which lead up to the conclusion that algorithm does, in fact, identify arbitrary rigid CGs in the limit

from texts of f -structures. We begin with a simple result, analogous to the earlier (135) presented in §5.5.3.

(161) Thm. If G1θ ⊆ G2 then FL (G1) ⊆ FL (G2). (Buszkowski and Penn, 1990)

Proof: As in the proof of (135), consider any derivation tree G1 with root c. Applying any substitution to the

categories in this tree, the result is clearly a derivation tree in G2 with root c and with the same yield. Furthermore,

these two trees have the same f -structures. �

(162) The grammar GF does not generalize at all; it defines just the structures provided in the text. By the definition of

GF(T [i]), for each f -structure in T [i], every argument is assigned a unique basic category, and then the categories of

the function nodes are calculated. Consequently, each category can combine only with the node it has as a sister in

this step from the f -structure. No category of GF(T [i]) occurs more than once in any derivation of s, and no category

other than s occurs in more than one derivation of s.

(163) Thm. Where T [i] is a finite sequence of f -structures, FL (GF(T [i])) = content(T [i]). (Buszkowski and Penn, 1990)

Proof: (⊇) It is clear from the definition of GF that for every f -structure in T [i], GF(T [i]) is a grammar with a

derivation tree that will have that same f -structure.

(⊆) We use an induction on the depth d of the subtrees in f -structures in FL (GF(T [i])) to show that all the subtrees in

FL (GF(T [i])) are subtrees in content(T [i]), from which it follows that FL (GF(T [i])) ⊆ content(T [i]) since every

tree is a subtree of itself.

(d = 0) Consider any depth 0 subtree in any f -structure in FL (GF(T [i])), consisting of just a root node labeled

with the terminal symbol w. This subtree occurs in an f -structure when there is a pair 〈w, c〉 ∈ GF(T [i]). By the

definition of GF, such a rule will occur only when there is a depth 0 subtree in some f -structure in T [i], labeled with

w.

(IH) Assume that the result holds up to depth d = k.

(d = k+ 1) Consider any depth k+ 1 subtree in any f -structure in FL (GF(ti)). This subtree will either be labeled

> or <.

(>) If it is labeled >, then it dominates two subtrees t1 and t2 (in that order) of depth ≤ k, so by (IH) they

are both subtrees in content(T [i]). Furthermore, by the definition of GF we know that t1 corresponds to a derivation

of some category c1 and t2 corresponds to a derivation of a corresponding category c1\c2, where these are unique

categories introduced in producing a GF(T [i]) derivation tree from an element of ti. This only happens when some

tree in T [i] contains subtree in which a node > dominates trees t1 and t2. Hence this subtree with > dominating t1 and

t2 occurs in T [i].

(<) The argument for this case is just like the case (>), except that the argument subtree t1 and the function

subtree t2 occur in the order: t2 t1. �

(164) The previous theorem shows that any T [i] determines a GF that generates exactly the f -structures in the text T [i]. It

is slightly more interesting that the rules of GF all have instances in the target grammar. . .

(165) Thm. content(T [i]) ⊆ FL (G) iff there is some substitution θ such that GF(T [i])θ ⊆ G. (Buszkowski and Penn, 1990)

Proof: (⇐) The ⊆ part of (163) tells us that if G = GF(T [i]), then content(T [i]) ⊆ FL (G). Here we make the

slightly stronger claim that if there is any substitution θ such that GF(T [i])θ ⊆ G, then content(T [i]) ⊆ FL (G). It is

easy to see that this follows. If G is not GF(T [i]), but contains instances of every rule in GF(T [i]), G ⊇ GF(T [i])θ

for some θ, then (as we saw in the proofs of (135) and (161)), the derivation trees of GF(T [i]) correspond, under the

substitution θ, to derivation trees of G.

(⇒) Assume content(T [i]) ⊆ FL (G), where content(T [i]) = {T0, T1, . . . , T j}. For any 0 ≤ k ≤ j, let Pk be the

(unique) derivation tree of GF(T [i]) corresponding to Tk, and let Qk be the corresponding (unique) derivation tree of

G. Let θ be a substitution which maps each basic category in GF(T [i]) that labels a node in a Pk to the corresponding

category in Qk. A simple induction shows that this substitution in fact maps all labels in trees Pk to corresponding

labels in trees Qk. It follows that if 〈(w, c)〉 ∈ GF(T [i]), then 〈(w, cθ)〉 ∈ G. Hence, GF(T [i])θ ⊆ G. �

(166) The unification step which takes us from the general form grammar GF(T [i]) to the rigid grammar RG(T [i]) may

generalize; that is, the grammar RG(ti) may define structures that do not appear in the text. Nevertheless, we can be

sure that it is still the case that the target grammar contains instances of every rule in RG(T [i]):

(167) Thm. content(T [i]) ⊆ FL (G) iff there is some substitution η such that RG(T [i])η ⊆ G. (Buszkowski and Penn, 1990)

114 CHAPTER 5. LEARNING SUBSETS OF LCF

Proof: (⇐) This follows immediately from the (165) and the fact that RG(T [i]) is an instance of GF(T [i]).

(⇒) Assume content(T [i]) ⊆ FL (G). By (165), there is a substitution θ such that GF(T [i])θ ⊆ G. Since G is rigid,

so is GF(T [i])θ. Since RG(T [i]) is GF(T [i])ν, where ν is the most general unifier of the categories assigned to each

lexical item in GF(T [i]), we know that GF(T [i])θ is an instance of GF(T [i])ν. That is, there is some substitution η

such that θ = ν ◦ η. Then RG(T [i])η ⊆ G. �

(168) We can now identify a distinguished subset DGi
of the f -structures defined by any grammar Gi.

(169) Def. Category c is useless in grammar G with designated start category s iff no derivation tree with root s contains c.

(170) From here on, we restrict our attention now to rigid grammars with no useless categories: grammars with only

categories that occur in successful derivations.

(171) Thm. Since a CG assigns categories to only finitely many lexical items (and all useless categories are eliminated), the

CG will have only finitely many categories altogether: the lexical categories and the categories derivable from those

by left and right application.

(172) Def. For any category c in a grammar G, let root(c) denote a smallest derivation tree with root c.

For any category c in a grammar G, let lea f (c) denote a smallest derivation tree with root s that is complete except

for having a leaf c.

(173) In these terms, if we take root(c) and attach it to the leaf labeled c in lea f (c), we obtain a complete derivation tree.

(174) Def. For any rigid grammar G with no useless categories, define the characteristic subset DG ⊆ FL (G) of f -

structures as follows. It is the smallest set containing all of the following elements:

a. for all categories c that appear in derivations from G, the f -structure of the derivation tree that results from

attaching root(c) to the leaf labeled c in lea f (c);

b. for all categories c and terminal elements w such that 〈(w, c)〉 ∈ G, the f -structure corresponding to the derivation

tree that results from attaching w to the leaf labeled c in lea f (c);

c. for all categories c0/c1, the f -structure of the derivation tree that results from attaching root(c0/c1) and root(c1)

respectively to the leaf labeled c0 in lea f (c0);

d. for all categories c1\c0, the f -structure of the derivation tree that results from attaching root(c1) and root(c1\c0)

respectively to the leaf labeled c0 in lea f (c0);

(175) Notice that the trees introduced into DG introduced by one condition in this definition may also be introduced by

another condition. Roughly, we have just defined DG so that it has at least one tree with each category, at least one tree

with each vocabulary element that can occur in any sentence, at least one application of < involving each category of

the form c0/c1, and at least one application of > involving c1\c0.

Some basic properties of any such DG are obvious. . .

(176) Thm. For any rigid grammar G with no useless categories, DG is finite.

(177) Thm. For any rigid grammar G with no useless categories, DG ⊆ FL (G).

(178) By now, it is no surprise that any grammar that has DGi
among its f -structures is one that contains instances of rules

of Gi:

(179) Thm. DGi
⊆ FL (G j) iff there is some substitution θ such that Giθ ⊆ G j. (Kanazawa, 1998)

Proof: (⇐) The definition of DGi
guarantees that DGi

⊆ FL (Gi). Assuming there is some substitution θ such that

Giθ ⊆ G j, it then follows from (161) that DGi
⊆ FL (G j).

(⇒) Assume DGi
⊆ FL (G j). Then G j has a unique derivation tree for each f -structure in DGi

.

By the definition of DGi
, we know that for each basic category c ∈ Gi, the f -structure of root(c) appears as a substruc-

ture in some f -structure in DGi
, and G j has a unique derivation tree T corresponding to that substructure. Let θ be the

substitution which maps every basic category c of Gi to the category at the root of the corresponding G j derivation

tree T . We can prove by induction that this substitution is the one we need for the theorem: it maps every element of

Gi to a corresponding element of G j. �

(180) With the following last preliminary result, the stage is set for the main result of this section, that Algorithm (155)

identifies rigid grammars from positive texts of structures.

(181) Thm. if DG ⊆ content(T [i]) ⊆ FL (G) then RG(T [i]) = G. (Kanazawa, 1998)

5.5. TYPE INFERENCE FOR CFGS 115

Proof: Assume DG ⊆ content(T [i]) ⊆ FL (G). By (167), RG(T [i]) exists and is such that RG(T [i])θ ⊆ G for some

θ. We know by (163) that content(T [i]) ⊆ FL (GF(T [i])), and since RG(T [i]) is an instance of GF(T [i]), we know

by (161) that content(T [i]) ⊆ FL (RG(T [i])). By our assumption then, DG ⊆ FL (RG(T [i])), and so it follows by

(179) that there is a substitution η such that Gη ⊆ RG(T [i]). Therefore, G and RG(T [i]) are the same up to alphabetic

variance. �

(182) Thm.Algorithm (155) identifies Grigid from structures, and hence also FL rigid and Lrigid. (Kanazawa, 1998)

Proof: Any text of f -structures for G contains every element of FL (G). Since DG ⊆ FL (G) is finite, there will be

some finite j such that DG ⊆ L(T [j]). By (181), for all i ≥ j, DG ⊆ content(T [i]) ⊆ FL (G) and so RG(T [i]) = G. �

(183) Inspecting the line of reasoning that leads to the previous result, we see that none of it relies on the fact that all the

grammars in Grigid use the same (finite nonempty) vocabulary V . With only finitely many categorial possibilities for

this finite vocabulary, the class has finite elasticity.

5.5.7 An incremental learner for Grigid

We can define a learner which computes the same guesses about the language as Algorithm (155), but does so “incrementally,”

on the basis of the previous guess and the next f -structure. At each step, this incremental learner revises its previous guess

on the basis of just one f -structure, beginning with the empty grammar G. At every step, given a rigid grammar and an

f -structure with designated start category s, this learner outputs another (possibly unchanged) rigid CG, RG(G, F).

(184) Learner φrigid,inc

Input: A rigid CG G and an f -structure F

1. i. Assign s to the root of F

ii. Assign unique base categories to each of the argument nodes of F

iii. Calculate the categories of the function nodes in F

2. Collect the lexical categories from F and add them to the types of G to get a CG GF(G, F).

3. Unify the categories assigned to each vocabulary element to get a rigid CG, RG(G, F).

5.5.8 Learning Lrigid from strings

(185) It is clear that identification of particular grammars from strings is impossible – different grammars will have the same

string sets. For example, consider the grammars (185a-185b) which define the same string language:

a. polaris 7→ s/p, shines 7→ p
b. polaris 7→ n, shines 7→ n\s
Obviously, the string sets [[s]] do not identify the grammars they are defined by.

(186) Any string is the yield of only finitely many binary branching trees, and so there are only finitely many possible

f -structures for any string altogether, and so also for any finite set of strings. Kanazawa (1998) shows how to go

from this observation to learning rigid languages from strings. However, this method is not practical – not only is this

particular learning strategy inefficient, but the problem is ‘NP-hard’ (Costa Florêncio, 2001), which strongly suggests

that no algorithm can compute this learning function efficiently.

5.5.9 Reflections and extensions

Suppose we have some vocabulary that is known, and we get a function structure that contains a subtree with some unknown

elements. For example, in the following trees, suppose that we know all the categories in trees t1 and t2, and then we get a

function structure that has t3 in the place of t2, where t3 has some words the learner has never seen.

t1

t2

t1

t3

116 CHAPTER 5. LEARNING SUBSETS OF LCF

In categorial grammars, it is not always the case that the category of the root of t3 is the same as the category at the root of

t2,12 but nevertheless we have a way to determine all the categories in the limit. Furthermore, if only one word is unknown in

t3, then the category of the missing element will be unambiguously determined.13 It does not quite assume that two subtrees

in the same context must have the same category, nor does it assume that every type of phrase has an element that is a single

word (like pronouns for DPs, intransitive verbs for VPs,. . .).

5.6 Weights for CFGs

We have not used weights for CF inference in this chapter, but we noted in (61) on page 92 that various ways to do this are

already clear from earlier work on regular inference. As in the case of regular automata/grammars, setting weights to fit a

sample is trivial when the grammars are unambiguous, and non-trivial otherwise. There is a very substantial literature devoted

to setting these weights in such a way that the most probable parse is the one a human would intend in most situations – a goal

of obvious engineering interest but of little scientific value if, as seems clear, the determinants of what will be said are largely

nonlinguistic.

(187) Sample weights. For an unambiguous CFG, we parse the sample, and assign each rule AX the probability

cnt(AX)/
∑

Y∈(Σ∪Cat)∗ cnt(AY).

But CFGs can be ambiguous, even infinitely ambiguous, so if we parse a sample exhaustively, there can be infinitely

many parses. (This is also true for non-deterministic FSAs with ǫ transitions.)

(188) If we have a treebank, we can calculate the value cnt(AX)/
∑

Y∈(Σ∪Cat)∗ cnt(AY) using the preferred parses for

each string – that is, the ones in the treebank.

(189) In general, we want to calculate

argmaxγ P(Data|γ).

When the grammar is ambiguous, how can this be calculated? The ‘inside-outside’ algorithm is standardly used to

estimate it – a ‘hill climbing’ expectation-maximization (EM) method liable to local maxima (Lari and Young, 1990;

Lafferty, 2000). Many implementations are available – e.g. from Mark Johnson’s page http://www.cog.brown.edu/ mj/Software.htm

(190) Smoothed weights. Short summary from Eisner (2002):

To smooth the distribution p(RHS|LHS), one can define it in terms of a set of parameters and then estimate

those parameters. Most researchers have used an n-gram model (Eisner, 1996; Charniak, 2000) or more general

Markov model (Alshawi, 1996) to model the sequence of nonterminals in the RHS. The sequence Vput NP PP in

our example is then assumed to be emitted by some Markov model of VPput rules (again with backoff from put).

Collins (1997, model 2) uses a more sophisticated model in which all arguments in this sequence are generated

jointly, as in a Treebank grammar, and then a Markov process is used to insert adjuncts among the arguments.

Many other ideas are in the literature, cf. e.g. Andrews and Eisner (2011).

12One tree could be a ‘lifted’ verson of the other category, for example.
13This kind of reasoning is also similar to the ‘type inference’ that is done in compiling many programming languages. In fact, the idea of using unification

to determine categories (‘types’) originated there in the work of Hindley (1969) and Milner (1978). This is covered in introductory computer science texts

like Pierce (2002, §22).

REFERENCES 117

References

References

Alshawi, Hiyan. 1996. Head automata for speech translation. In Proceedings of the International Conference on Spoken Language (ICSLP).

Andrews, Nicholas and Jason Eisner. 2011. Transformation process priors. In NIPS Workshop on Bayesian Nonparametrics: Hope or

Hype?, Sierra Nevada, Spain. Extended abstract (3 pages).

van Benthem, Johan. 1989. Categorial grammar meets unification. In Proceedings Titisee Workshop on Unification Formalisms, Institut für

Maschinelle Sprachverarbeitung, Universität Stuttgart.

van Benthem, Johan. 1991. Language in Action. North-Holland, Amsterdam.

Bibel, Wolfgang. 1982. Automated Theorem Proving. Vieweg & Sohn, Braunschweig.

Booth, Taylor L. and Richard A. Thompson. 1973. Applying probability measures to abstract languages. IEEE Transactions on Computers,

C-22:442–450.

Boullier, Pierre. 1999. A cubic time extension of context free grammars. Technical Report 3611, Projet Atoll, INRIA, Rocquencourt.

Buszkowski, Wojciech. 1988. Generative power of categorial grammars. In Richard T. Oehrle, Emmon Bach, and D. Wheeler, editors,

Categorial Grammars and Natural Language Structures. Reidel, Amsterdam.

Buszkowski, Wojciech and Gerald Penn. 1990. Categorial grammars determined from linguistic data by unification. Studia Logica, 49:431–

454.

Cavar, Damir. 2010. On statistical metrics for selection and phrasality. In T. Hanneforth and G. Fanselow, editors, Language and Logos.

Akademie Verlag, Berlin.

Charniak, Eugene. 2000. A maximum-entropy inspired parser. In Proceedings, North American chapter of the Association for Computa-

tional Linguistics, NAACL.

Chi, Zhiyi. 1999. Statistical properties of probabilistic context free grammars. Computational Linguistics, 25:130–160.

Chi, Zhiyi and Stuart Geman. 1998. Estimation of probabilistic context free grammars. Computational Linguistics, 24:299–306.

Cho, T. and P. Keating. 2001. Articulatory strengthening at the onset of prosodic domains in Korean. Journal of Phonetics, 28:155–190.

Chomsky, Noam. 1981. Lectures on Government and Binding. Foris, Dordrecht.

Chomsky, Noam. 1988. Language and Problems of Knowledge: The Managua Lectures. MIT Press, Cambridge, Massachusetts.

Clark, Alexander. 2009. A learnable representation for syntax using residuated lattices. In Proceedings of the 14th Conference on Formal

Grammar.

Clark, Alexander. 2010a. Disibutional learning of some context-free languages with a minimally adequate teacher. In Proceedings of the

International Conference on Grammatical Inference, ICGI’10.

Clark, Alexander. 2010b. Learning context free grammars with the syntactic concept lattice. In José Sempere and Pedro Garcia, editors,

Grammatical Inference: Theoretical Results and Applications. Proceedings of the International Colloquium on Grammatical Inference.

Springer, pages 38–51.

Clark, Alexander and Remi Eyraud. 2005. Identification in the limit of substitutable context free languages. In Proceedings of The 16th

International Conference on Algorithmic Learning Theory, pages 283–296, Springer-Verlag.

Clark, Alexander and Rémi Eyraud. 2007. Polynomial identification in the limit of substitutable context-free languages. Journal of Machine

Learning Research, 8:1725–1745.

Clark, Alexander, Rémi Eyraud, and Amaury Habrard. 2008. A polynomial algorithm for the inference of context free languages. In

Proceedings of the International Conference on Grammatical Inference, ICGI 2008.

Clark, Alexander, Rémi Eyraud, and Amaury Habrard. 2009. A note on contextual binary feature grammars. In Proceedings of the European

Association for Computational Linguistics, Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 33–40.

Clark, Alexander and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the Stimulus. Wiley-Blackwell, NY.

Collins, Michael. 1997. Three generative, lexicalized models for statistical parsing. In Proceedings of the 35th Annual Meeting, ACL’96.

118 CHAPTER 5. LEARNING SUBSETS OF LCF

Costa Florêncio, Christophe. 2001. Consistent identification in the limit of the class k-valued is NP-hard. In Logical Aspects of Com-

putational Linguistics, 4th International Conference, LACL 2001, Le Croisic, France, June 27-29, 2001, Proceedings, volume 2099 of

Lecture Notes in Computer Science, pages 125–138, Springer-Verlag.

Eisner, Jason. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings, International Conference on

Computational Linguistics, COLING’96, pages 340–345.

Eisner, Jason. 2002. Transformation priors over grammars. In Proceedings of the ACL Conference on Empirical Methods in Natural

Language Processing, EMNLP, pages 63–70.

Fodor, Jerry A. and Thomas G. Bever. 1965. The psychological reality of linguistic segments. Journal of Verbal Learning and Verbal

Behavior, 4:414–420.

Fodor, Jerry A., Thomas G. Bever, and Merrill F. Garrett. 1974. The Psychology of Language: An Introduction to Psycholinguistics and

Generative Grammar. McGraw-Hill, NY.

Fougeron, C. and P. A. Keating. 1997. Articulatory strengthening at edges of prosodic domains. Journal of the Acoustic Society of America,

101:3728–3740.

Frank, Michael C., Harry Tily, Inbal Arnon, and Sharon Goldwater. 2010. Beyond transitional probabilities: Human learners impose a

parsimony bias in statistical word segmentation. In Proceedings of the 32nd Annual Conference of the Cognitive Science Society.

Ghomeshi, Jila, Ray Jackendoff, Nicole Rosen, and Kevin Russell. 2004. Contrastive focus reduplication in English. Natural Language and

Linguistic Theory, 22(2):307–357.

Gonzalez, Rafael C. and Michael G. Thomason. 1978. Syntactic Pattern Recognition. Addison-Wesley, London.

Grenander, Ulf. 1967. Syntax-controlled probabilities. Technical report, Brown University, Providence, Rhode Island.

Harris, Theodore Edward. 1963. The theory of branching processes. Springer, Berlin.

Harris, Zellig S. 1941. Review of tubetzkoy’s grundzüge der phonologie. Language, 17(4):345–349.

Harris, Zellig S. 1946. From morpheme to utterance. Language, 22:161–183.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623–661.

Herbrand, Jacques. 1930. Recherches sur la théorie de la démonstration. Ph.D. thesis, University of Paris. Chapter 5 of this thesis is reprinted

in Jean van Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879 – 1931. Cambridge, Massachusetts:

Harvard University Press.

Hindley, Roger J. 1969. The principal type-scheme of an object in combinatory logic. Transactions of the American Mathematical Society,

146:29–60.

Hirsch, Aron and Michael Wagner. 2012. Syntactic differences in the reliability of prosodic disambiguation. Forthcoming. McGill Univer-

sity.

Jeż, Artur. 2007. Conjunctive grammars can generate non-regular unary languages. In Proceedings of the 11th international conference on

Developments in language theory, DLT’07, pages 242–253, Springer-Verlag, Berlin.

Jeż, Artur and Alexander Okhotin. 2009. One-nonterminal conjunctive grammars over a unary alphabet. In Anna Frid, Andrey Morozov,

Andrey Rybalchenko, and Klaus Wagner, editors, Computer Science – Theory and Applications, volume 5675 of Lecture Notes in

Computer Science. Springer, pages 191–202.

Johnson, Kyle. 2004. Introduction to transformational grammar. Technical report, University of Massachusetts, Amherst.

http://people.umass.edu/kbj/homepage/Content/601 lectures.pdf.

Johnson, N. F. 1965. The psychological reality of phrase structure rules. Journal of Verbal Learning and Verbal Behavior, 4:469–475.

de Jongh, Dick and Makoto Kanazawa. 1995. Learnability theory. Distributed at ESSLLI Summerschool, Barcelona.

Kanazawa, Makoto. 1996. Identification in the limit of categorial grammars. Journal of Logic, Language, and Information, 5:115–155.

Kanazawa, Makoto. 1998. Learnable Classes of Categorial Grammmars. CSLI Publications, Stanford, California.

Keating, Patricia, Taehong Cho, Cécile Fougeron, and Chai-Shune Hsu. 2003. Domain-initial articulatory strengthening in four languages.

In R. Temple J. Local, R. Ogden, editor, Phonetic Interpretation (Papers in Laboratory Phonology 6). Cambridge University Press, NY,

pages 143–161.

http://people.umass.edu/kbj/homepage/Content/601_lectures.pdf

REFERENCES 119

Keenan, Edward L. and Edward P. Stabler. 2003. Bare Grammar. CSLI Publications, Stanford, California.

Knight, Kevin. 1989. Unification: a multidisciplinary survey. ACM Computing Surveys, 21(1):93–124.

Kobele, Gregory M. 2007. Argument! a reply to Pullum and Rawlins. UCLA, Chicago manuscript,

http://home.uchicago.edu/˜gkobele/files/2008-Kobele08XOrNoX.pdf.

Kobele, Gregory M., Jason Riggle, Travis Collier, Yoosook Lee, Ying Lin, Yuan Yao, Charles Taylor, and Edward Stabler. 2003. Grounding

as learning. In Language Evolution and Computation Workshop, ESSLLI’03.

Koopman, Hilda, Dominique Sportiche, and Edward Stabler. 2012. An Introduction to Syntactic Analysis and Theory. UCLA Lecture Notes,

forthcoming.

Kraljic, Tanya and Susan E. Brennan. 2005. Prosodic disambiguation of syntactic structure: For the speaker or for the addressee? Cognitive

Psychology, 50(2):194–231.

Ladefoged, Peter and D.E. Broadbent. 1960. Perception of sequence in auditory events. Quarterly Journal of Experimental Psychology,

13:162–170.

Lafferty, John. 2000. A derivation of the inside-outside algorithm from the EM algorithm. Technical report RC21636 (97537), IBM.

Lambek, Joachim. 1958. The mathematics of sentence structure. American Mathematical Monthly, 65:154–170.

Lari, K. and S. J. Young. 1990. The estimation of stochastic context-free grammars using the inside-outside algorithm. Computer Speech

and Language, 4:35–56.

Larson, Bradley. 2012. Right node raising as a test for constituenthood. Linguistic Inquiry, 43(1):143–150.

Levelt, Willem J.M. 1970. A scaling approach to the study of syntactic relations. In G.B. Flores d’Arcais and W.J.M. Levelt, editors,

Advances in Psycholinguistics. Elsevier, NY.

Lightfoot, David. 1989. The child’s trigger experience: degree-0 learnability. Behavioral and Brain Sciences, 12:321–375.

Lloyd, John W. 1987. Foundations of Logic Programming. Springer, Berlin.

Magerman, David M. and Mitchell P. Marcus. 1990. Parsing a natural language using mutual information statistics. In Proceedings of the

8th National Conference on Artificial Intelligence.

Manaster-Ramer, Alexis. 1986. Copying in natural languages, context freeness, and queue grammars. In Proceedings of the 1986 Meeting

of the Association for Computational Linguistics.

Martelli, Alberto and Ugo Montanari. 1982. An efficient unification algorithm. ACM Transactions on Programming Languages and Systems,

4(2):258–282.

Mehler, J. and P. Carey. 1967. Role of surface and base structure in the perception of sentences. Journal of Verbal Learning and Verbal

Behavior, 6:335–338.

Milner, Robin. 1978. A theory of type polymorphism in programming. Journal of Computer and System Sciences, 17:348–375.

Moortgat, Michael. 1988. Categorial Investigations. Foris, Dordrecht.

Motoki, T., T. Shinohara, and K. Wright. 1989. The correct definition of finite elasticity; corrigendum to identification of finite unions. In

The Fourth Annual Workshop on Computational Learning Theory, page 375, Morgan Kaufmann, San Mateo, California.

Nevin, Bruce E. 1993. Harris the revolutionary: Phonemic theory. In History of Linguistics 1993: Papers from the Sixth International

Conference on the History of the Language Sciences, ICHoLS VI, Amsterdam Studies in the Theory and History of Linguistic Science,

Vol. 78, pages 349–358, John Benjamins, Philadelphia.

Okhotin, Alexander. 2003. An overview of conjunctive grammars. Bulletin of the European Association for Computer Science (EATCS),

79:145–163.

Pate, John and Sharon Goldwater. 2011. Unsupervised syntactic chunking with acoustic cues: Computational models for prosodic boot-

strapping. In Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (CMCL), 49th Annual Meeting of the

Association for Computational Linguistics.

Pierce, Benjamin C. 2002. Types and Programming Languages. MIT Press, Cambridge, Massachusetts.

Pinker, Steven. 1989. Learnability and Cognition: The acquisition of argument structure. MIT Press, Cambridge, Massachusetts.

http://home.uchicago.edu/~gkobele/files/2008-Kobele08XOrNoX.pdf

120 CHAPTER 5. LEARNING SUBSETS OF LCF

Pullum, Geoffrey K. and K. Rawlins. 2007. Argument or no argument? Linguistics and Philosophy, 30(2):277–287.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of the Association for Computing Machinery,

12:23–41.

Siskind, Jeffrey Mark. 1996. A computational study of cross-situational techniques for learning word-to-meaning mappings. Cognition,

61:39–91.

Snedeker, Jesse and John Trueswell. 2003. Using prosody to avoid ambiguity: Effects of speaker awareness and referential context. Journal

of Memory and Language, 48(1):103–130.

Stabler, Edward P. 2004. Varieties of crossing dependencies: Structure dependence and mild context sensitivity. Cognitive Science,

93(5):699–720.

Stabler, Edward P. 2012. Learnability and the autonomy of syntactic categories. In Forthcoming.

Steedman, Mark J. 2000. The Syntactic Process. MIT Press, Cambridge, Massachusetts.

Takahashi, Eri. 2009. Beyond Statistical Learning in the Acquisition of Phrase Structure. Ph.D. thesis, University of Maryland.

van Zaanen, Menno. 2001. Alignment-based learning. ArXiv. http://arxiv.org/abs/cs/0104006.

Wagner, Michael. 2005. Prosody and Recursion. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Wetherell, C.S. 1980. Probabilistic languages: A review and some open questions. Computing Surveys, 12(4):361–379.

Wright, K. 1989. Identification of unions of languages drawn from an identifiable class. In The Second Annual Workshop on Computational

Learning Theory, pages 328–333, Morgan Kaufmann, San Mateo, California.

Yokomori, Takashi. 2003. Polynomial-time identification of very simple grammars from positive data. Theoretical Computer Science,

298:179–206.

Yoshinaka, Ryo. 2008. Identification in the limit of k, l-substitutable context-free languages. In Proceedings of the 9th International

Colloquium on Grammatical Inference, ICGI-2008, Lecture Notes in Artificial Intelligence 5278, Springer-Verlag, Berlin.

http://arxiv.org/abs/cs/0104006

5.7. APPENDIX: FIRST IMPLEMENTATION OF IIL 121

5.7 Appendix: First implementation of IIL

"""

file: cky.py E. Stabler, 2012-11-25

Simple CKY parser for CFGs in Chomsky normal form.

We separate the lexical productions (PL) from the non-lexical ones (P),

and the non-lexical ones are always binary A->BC, represented as (A,B,C)

"""

#PL0 = [(’A’,0),(’B’,1)]

#P0 = [(’S’,’A’,’B’),(’S’,’A’,’R’),(’R’,’S’,’B’)]

#w0 = [0,1]

#w0 = [0,0,1,1]

#w0 = [0,1,1]

#w0 = [0,0,0,1,1,1]

def initializeChart(w,PL,chart): # insert lexical items w=w1 w2 ... wn

for (i,wi) in enumerate(w): # enumerate numbers the elements of w from 0

for (lhs,rhs) in PL:

if rhs == wi:

chart[i][i+1].append(lhs) # so if lhs -> w1, lhs in chart[0][1]

def closeChart(P,chart,n):

for width in range(2,n+1):

for start in range(n-width+1): # so then range stops with n-width

end = start + width

for mid in range(start+1,end): # so then range stops with end-1

for (lhs,y,z) in P:

if y in chart[start][mid] and z in chart[mid][end]:

chart[start][end].append(lhs)

def accepts((PL,P),w):

n = len(w)

chart = [[[] for i in range(n+1)] for j in range(n+1)]

initializeChart(w,PL,chart)

closeChart(P,chart,n)

print ’chart=’,chart

if ’S’ in chart[0][n]:

return True

else:

return False

#print accepts((PL0,P0),w0)

"""

file: ckyBFG.py E. Stabler, 2012-11-25

almost exactly like standard cky parsing, except that for each substring,

instead of collecting its categories,

the categories are sets and we take their union,

coming from all decompositions.

See Clark,Eyraud&Habrard’09 "A note on contextual binary feature grammars"

This differs from ckyCBFG.py only in the pretty printer

"""

122 CHAPTER 5. LEARNING SUBSETS OF LCF

def subset(c1,c2):

for x1 in c1:

if not(x1 in c2):

return False

return True

def initializeChart(w,PL,chart): # insert lexical items

for (i,wi) in enumerate(w): # enumerate numbers elements of w from 0

wiCat = []

for (lhs,rhs) in PL:

if rhs == wi:

chart[i][i+1].extend(lhs)

def closeChart(P,chart,n):

for width in range(2,n+1):

for start in range(n-width+1): # so then range stops with n-width

end = start + width

for mid in range(start+1,end): # so then range stops with end-1

for (lhs,y,z) in P:

if subset(y,chart[start][mid]) and subset(z,chart[mid][end]):

chart[start][end].extend(lhs)

def accepts((PL,P),w):

n = len(w)

chart = [[[] for i in range(n+1)] for j in range(n+1)]

initializeChart(w,PL,chart)

closeChart(P,chart,n)

if ([],[]) in chart[0][n]:

return True

else:

return False

example grammar for {aˆnbˆncˆnd| n>0}

PL0 = [

(["A","A’"] , ’a’), (["B"] , ’b’),

(["C","C’"] , ’c’), (["D"] , ’d’)

]

P0 = [

(["S"] , ["AB’","BC’"] , ["D"]),

(["AB’"] , ["AB"] , ["C’"]),

(["AB"] , ["AAB"] , ["B"]),

(["AB"] , ["A"] , ["B"]),

(["AAB"] , ["A"] , ["AB"]),

(["BC’"] , ["A’"] , ["BC"]),

(["BC"] , ["BBC"] , ["C"]),

(["BC"] , ["B"] , ["C"]),

(["BBC"] , ["B"] , ["BC"]),

(["A’"] , ["A’"] , ["A"]),

(["C’"] , ["C’"] , ["C"])

]

w0 = [’a’,’b’,’c’,’d’]

#w0 = [’a’,’a’,’b’,’b’,’c’,’c’,’d’]

#w0 = [’a’,’b’,’b’,’c’,’c’,’d’] # should be false

#w0 = [’a’,’a’,’a’,’b’,’b’,’b’,’c’,’c’,’c’,’d’]

5.7. APPENDIX: FIRST IMPLEMENTATION OF IIL 123

BEGIN pretty printer for chart

def prettyChart(c):

print

for (r,row) in enumerate(c):

for (c,col) in enumerate(row):

if len(col)>0:

print (r,c),"=",",".join(col)

END pretty printer for chart

def ckyChart((PL,P),w): # like accepts, but shows chart

n = len(w)

chart = [[[] for i in range(n+1)] for j in range(n+1)]

initializeChart(w,PL,chart)

closeChart(P,chart,n)

prettyChart(chart)

if ’S’ in chart[0][n]:

return True

else:

return False

print ckyChart((PL0,P0),w0)

"""

file: ckyCBFG.py E. Stabler, 2012-11-25

almost exactly like standard cky parsing, except that for each substring,

instead of collecting its categories,

the categories are sets and we take their union,

coming from all decompositions.

See Clark,Eyraud&Habrard’09 "A note on contextual binary feature grammars"

This differs from ckyBFG.py only in the pretty printer

"""

def subset(c1,c2):

for x1 in c1:

if not(x1 in c2):

return False

return True

def initializeChart(w,PL,chart): # insert lexical items

for (i,wi) in enumerate(w): # enumerate numbers elements of w from 0

wiCat = []

for (lhs,rhs) in PL:

if rhs == wi:

chart[i][i+1].extend(lhs)

def closeChart(P,chart,n):

for width in range(2,n+1):

for start in range(n-width+1): # so then range stops with n-width

end = start + width

for mid in range(start+1,end): # so then range stops with end-1

for (lhs,y,z) in P:

if subset(y,chart[start][mid]) and subset(z,chart[mid][end]):

chart[start][end].extend(lhs)

124 CHAPTER 5. LEARNING SUBSETS OF LCF

def accepts((PL,P),w):

n = len(w)

chart = [[[] for i in range(n+1)] for j in range(n+1)]

initializeChart(w,PL,chart)

closeChart(P,chart,n)

if ([],[]) in chart[0][n]:

return True

else:

return False

example grammar for {aˆnbˆn| n>0}

PL0 = [

([([],[’b’]), ([],[’a’,’b’,’b’])] , ’a’),

([([’a’],[]), ([’a’,’a’,’b’],[])] , ’b’)

]

P0 = [

([([],[])] , [([],[’b’])] , [([’a’,’a’,’b’],[])]),

([([],[])] , [([],[’a’,’b’,’b’])] , [([’a’],[])]),

([([],[’b’])] , [([],[’a’,’b’,’b’])] , [([],[])]),

([([’a’],[])] , [([],[])] , [([’a’,’a’,’b’],[])])

]

#w0 = [’a’,’b’]

#w0 = [’a’,’a’,’b’,’b’]

w0 = [’a’,’b’,’b’]

#w0 = [’a’,’a’,’a’,’b’,’b’,’b’]

BEGIN pretty printer for chart

def prettyContext((lc,rc)):

sep = " " # put space if some lex items have > 1 character

plc = sep.join(map(str,lc))

prc = sep.join(map(str,rc))

result = "(" + plc + "," + prc + ")"

return result

def prettyChart(c):

print

for (r,row) in enumerate(c):

for (c,col) in enumerate(row):

if len(col)>0:

print (r,c),"=",",".join(map(prettyContext,col))

END pretty printer for chart

BEGIN pretty printer for grammar

def prettyGrammar((PL,P)):

for (lhs,rhs) in PL:

print ’\t’,’,’.join(map(prettyContext,lhs)),’ -> ’,rhs

for (lhs,y,z) in P:

print ’\t’,’,’.join(map(prettyContext,lhs)),’ -> ’,’,’.join(map(prettyContext,y)),’ ’,’,’.join(map

END pretty printer for grammar

def ckyChart((PL,P),w): # like accepts, but shows chart

n = len(w)

chart = [[[] for i in range(n+1)] for j in range(n+1)]

initializeChart(w,PL,chart)

closeChart(P,chart,n)

5.7. APPENDIX: FIRST IMPLEMENTATION OF IIL 125

prettyChart(chart)

if ([],[]) in chart[0][n]:

return True

else:

return False

#prettyGrammar((PL0,P0))

#print ckyChart((PL0,P0),w0)

"""

file: IIL.py naive implementation of Clark,Eyraud&Habrard’08 algorithm

E. Stabler 2012-11-25

"""

""" if this directory is not in PYTHONPATH, add it with these:

from sys import path

path.append(’/path/to/this/directory’)

"""

import ckyCBFG

import cky

def add_nesubstrings(sofar,w): # non-empty substrings of w added to list sofar

max=len(w)

for i in range(max):

for j in range(max+1):

if i<j:

s=w[i:j]

if not(s in sofar):

sofar.append(s)

sofar.sort()

def add_all_nesubstrings(sofar,s): # non-empty substrings of strings in s added

for w in s:

add_nesubstrings(sofar,w)

sofar.sort()

"""

x = []

add_all_nesubstrings(x,[[’the’,’cat’,’smiles’],[0,1]])

print x

"""

def add_contexts(sofar,w): # contexts of substrings of w added to list sofar

max=len(w)

for i in range(max):

for j in range(max+1):

if i<j:

lc=w[0:i]

rc=w[j:max]

c=(lc,rc)

if not(c in sofar):

sofar.append(c)

sofar.sort()

def add_all_contexts(sofar,s): # contexts for every w in s

for w in s:

126 CHAPTER 5. LEARNING SUBSETS OF LCF

add_contexts(sofar,w)

sofar.sort()

"""

x = []

add_contexts(x,[’the’,’cat’,’smiles’])

print x

"""

def odot((lc,rc),string):

product=lc[:]

product.extend(string)

product.extend(rc)

return product

def odotCartesianProduct(C,S):

product=[]

for c in C:

for s in S:

new = odot(c,s)

product.append(new)

return product

def FL(F,w,target):

ok = []

for c in F:

cw = odot(c,w)

accepted = cky.accepts(target,cw)

print ’For FL, oracle says ’,accepted,’:’,cw

if accepted:

ok.append(c)

return ok

def g(K,F,target): # from CEH’08, Def.7 on p.6

PL=[]

P=[]

for w in K:

lhs = FL(F,w,target) # oracle called for this

if len(w)==1:

rhs = w

rule = (lhs,rhs)

if not(rule in PL):

PL.append(rule)

else:

lenw=len(w)

for i in range(lenw):

if 0<i and i<lenw:

fl1=FL(F,w[0:i],target) # oracle called for this

fl2=FL(F,w[i:lenw],target) # oracle called for this

rule = (lhs,fl1,fl2)

if not(rule in P):

P.append(rule)

return(PL,P)

def iil(S,target): # target grammar is for oracle computation

K = []

5.7. APPENDIX: FIRST IMPLEMENTATION OF IIL 127

D = []

F = [([],[])]

(PL,P) = g(K,F,target)

T = []

for w in S:

print ’adding input:’, w

D.append(w)

ConD = []

add_all_contexts(ConD,D)

SubD = []

add_all_nesubstrings(SubD,D)

T = odotCartesianProduct(ConD,SubD)

N = len(T)

print ’test set T now has ’,N,’ elements’

for s in T:

inLanguage = cky.accepts(target,s)

print ’In main, oracle says ’,inLanguage,’:’,s

byHypothesis = ckyCBFG.accepts((PL,P),s)

print ’In main, hypothesis says ’,byHypothesis,’:’,s

if inLanguage and not(byHypothesis):

print ’adding K,F for ’,s

K = SubD

F = ConD

elif byHypothesis and not(inLanguage):

print ’adding F for ’,s

F = ConD

else:

print ’nothing to be done for ’,s

(PL,P) = g(K,F,target)

print ’grammar=’,(PL,P)

ckyCBFG.prettyGrammar((PL,P))

return g(K,F,target)

""" for {0ˆn1ˆn| n>0}

sample0 = [[0,1],[0,0,1,1],[0,0,0,1,1,1]]

PL0 = [(’A’,0),(’B’,1)]

P0 = [(’S’,’A’,’B’),(’S’,’A’,’R’),(’R’,’S’,’B’)]

cky.accepts((PL0,P0),[0,1])

iil(sample0,(PL0,P0))

"""

""" from Koopman,Sportiche,Stabler ISAT chapter 3

"""

sample0 = [

[’she’,’will’,’put’,’it’,’there’,’then’],

[’she’,’will’,’put’,’this’,’one’,’there’,’then’],

[’she’,’will’,’put’,’it’,’on’,’this’,’one’,’then’],

[’this’,’one’,’will’,’put’,’it’,’there’,’then’],

[’this’,’girl’,’in’,’the’,’red’,’coat’,’will’,’put’,’a’,’picture’,’of’,’Bill’,’on’,’your’,’desk’,’befor

[’she’,’will’,’put’,’a’,’picture’,’of’,’Bill’,’on’,’your’,’desk’,’before’,’tomorrow’],

[’this’,’girl’,’in’,’the’,’red’,’coat’,’will’,’put’,’it’,’on’,’your’,’desk’,’before’,’tomorrow’],

[’this’,’girl’,’in’,’the’,’red’,’coat’,’will’,’put’,’a’,’picture’,’of’,’Bill’,’there’,’before’,’tomorro

[’this’,’one’,’will’,’put’,’a’,’picture’,’of’,’Bill’,’on’,’your’,’desk’,’before’,’tomorrow’],

[’this’,’girl’,’in’,’the’,’red’,’coat’,’will’,’put’,’a’,’picture’,’of’,’Bill’,’on’,’it’,’before’,’tomor

[’this’,’girl’,’in’,’the’,’red’,’one’,’will’,’put’,’a’,’picture’,’of’,’Bill’,’on’,’your’,’desk’,’before

]

128 CHAPTER 5. LEARNING SUBSETS OF LCF

PL0 = [(’DP’,’she’),

(’DP’,’it’),

(’DP’,’Bill’),

(’DP’,’tomorrow’),

(’D’,’this’),

(’D’,’the’),

(’D’,’a’),

(’D’,’your’),

(’A’,’red’),

(’NP’,’one’),

(’N’,’girl’),

(’N’,’picture’),

(’N’,’coat’),

(’N’,’desk’),

(’P’,’in’),

(’P’,’of’),

(’P’,’on’),

(’P’,’before’),

(’T’,’will’),

(’V’,’put’),

(’D’,’a’),

(’P’,’of’),

(’PP’,’there’),

(’PP’,’then’),

]

P0 = [(’S’,’DP’,’TP’),

(’DP’,’D’,’NP’),

(’DP’,’D’,’N’),

(’NP’,’N’,’PP’),

(’PP’,’P’,’DP’),

(’N’,’A’,’N’),

(’NP’,’A’,’NP’),

(’TP’,’T’,’VP’),

(’VP’,’VP’,’PP’),

(’VP’,’V’,’V2P’),

(’V2P’,’DP’,’PP’)

]

for w in sample0:

ok = cky.accepts((PL0,P0),w)

print ok,’:’,w

"""

iil(sample0,(PL0,P0))

"""

5.7. APPENDIX: FIRST IMPLEMENTATION OF IIL 129

Possible squib topics

If you have any doubts about whether your topic is close enough to class material to make me happy, check with me first! The

squib is due, by email, by midnight of the last day of finals week, Friday Dec 14. I will be around through finals week, so

feel free to come see me if you get stuck on something!

• One ideal kind of squib topic would be a learning problem you are interested in but that we did not get to. If the

problem is hard, one thing you could do would be to write a description of the problem and a proposal about how it

can effectively be attacked.

• Another ideal kind of squib topic would be to go back and fill in your background on some aspect of the material that

we covered too quickly. My suggestions below of exercises that were skipped cover some such things, but you could

choose any reasonable exercise on any aspect of material we covered (or something closely related).

• Another appropriate squib topic would be a brief report on a paper (or part of a paper) we did not get to. We did not

get to all of the papers on the website, but obviously the literature is enormous. If you choose this option, please check

with me first – I can help you assess how close your topic is to class material.

• Another appropriate squib topic would be an implementation and some test runs of one (or more) of the learners we

have discussed, with a brief report of what you do. If you choose this option, please send me the source code files so

I can run them too when I read your report.

Here are some particular suggestions coming out of the notes.

(191) Gold paradigm basics: Heinz’s φprec learner. We briefly discussed exercise 5 on page 27 of ho1 in class. (i) Do that

exercise, (ii) briefly summarize and assess Heinz’s claim about that learner, and consider the prospects for answering

Meaghan Fowlie’s worry that φprec learns dissimilation effects that are not subject to intervention, so maybe that

learner does not capture the right generalization. Heinz discusses this in Heinz (2010, §4.6).

(192) PAC learning. Do exercise (23) on page 37 of ho2.

(193) PAC learning. Do exercise (28) on page 37 of ho2.

(194) Angluin’82 k-reversible. In ho3, the zero reversible learner is presented, but not the k-reversible learner. (i) Define

the k-reversible, (ii) define a language L that is k-reversible but not 0-reversible, (iii) show the steps of the k-reversible

identifying your language L, as we did for the 0-reversible learner.

(195) Clark&Thollard’04 PDFA. Fill out my sketch of an example run in §4.7.2 in ho4. (Or sketch a run of that algorithm

on some other example, a small enough example for us to understand what is happening at each step.)

(196) Clark&Eyraud’04 Substitutable CF. The language anbn is not SCF, but ancbn is. Is there a way to augment English

(e.g. with boundary markers of some kind, like c in that simple example) so that this ‘augmented English’ would be

substitutable, with no counterexamples like the ones from Keenan&Stabler on p.86 of ho5? Does thinking about how

such boundaries could be identified suggest a more general learning strategy?

(197) Clark&Eyraud’04 Substitutable CF. Apply the SCF learner to an example slightly more interesting than the one in

(51) of ho5.

(198) Clark,Eyraud,Habrard’08 CF with finite kernel. Sketch an application of the learner (87) on page 98 of ho5, from

CEH’08, to a simple example, or run an experiment with the code in the appendix and report what you did.

Or implement the slightly more elaborate learner from Clark’10, on page 97.

Index

DL, distinguished subset, 29

DG, for rigid CG G, 114

S ǫ = S ∪ {ǫ}, 15

Grigid , 111

⇒,⇒∗, for CFGs, 87

⇒∗, derives, 15

⇒lm, leftmost derivation step, 87

ǫ, the empty sequence, 15

φe, the conservative learner, 24

content(T), content of T, 23

e, Euler’s number, 39

lea f (c), in a CG G, 114

root(c), in a CG G, 114

Aho and Ullman (1972), 21

Aho, Hopcroft, and Ullman (1974), 51, 57

Alon, Spencer, and Erdös (1992), 38, 43

Alshawi (1996), 116, 117

Andrews and Eisner (2011), 116, 117

Angluin (1980), 29, 30

Angluin (1982), 1, 21, 45, 57, 59, 80

Angluin (1987), 38, 43

Anthony and Biggs (1992), 31, 33, 43

Balle, Castro, and Gavaldà (2012), 78, 80

Bane, Riggle, and Sonderegger (2010), 1, 21, 38, 43

Bibel (1982), 107, 117

Blum and Blum (1975), 23, 27, 30

Blumer et al. (1989), 1, 21, 31, 35, 37, 38, 43

Boolos and Jeffrey (1980), 17, 21

Booth and Thompson (1973), 88, 117

Boullier (1999), 95, 117

Boyd and Vandenberghe (2004), 62, 80

Brémaud (1999), 42, 43

Buszkowski and Penn (1990), 105, 113, 117

Buszkowski (1988), 110, 117

Carrasco (1997), 66, 80

Castro and Galvadà (2008), 78, 80

Cavar (2010), 102, 117

Charniak (1993), 61, 80

Charniak (2000), 116, 117

Chen and Goodman (1998), 72, 80

Chi and Geman (1998), 88, 117

Chi (1999), 88, 117

Cho and Keating (2001), 103, 117

Chomsky (1956), 3, 13, 21

Chomsky (1963), 16, 21

Chomsky (1965), 1, 5, 21

Chomsky (1981), 1, 21, 85, 117

Chomsky (1988), 100, 117

Cinque (2005), 78, 80

Clark and Eyraud (2005), 89–92, 117

Clark and Eyraud (2007), 1, 21, 89, 90, 92, 117

Clark and Lappin (2011), 78, 80, 85, 117

Clark and Thollard (2004), 1, 21, 70, 78, 80

Clark, Eyraud, and Habrard (2008), 85, 94, 95, 97–99, 105,

117

Clark, Eyraud, and Habrard (2009), 95, 98, 117

Clark (2009), 98, 100, 117

Clark (2010a), 100, 117

Clark (2010b), 97, 98, 117

Collins (1997), 116, 117

Cortes et al. (2006), 64, 68, 69, 80

Cortes et al. (2008), 61, 63–65, 68, 69, 80

Costa Florêncio (2001), 115, 117

Cover and Thomas (1991), 61–63, 80

Csiszar and Korner (1997), 61, 80

Culy (1985), 13, 21

Durrett (1996), 40, 43

Earman (1992), 72, 80

Eisner (1996), 116, 118

Eisner (2001), 68, 80

Eisner (2002), 116, 118

Fitch and Frederici (2012), 3, 5, 21

Fitch, Frederici, and Hagoort (2012), 4, 21

Fodor and Bever (1965), 101, 118

Fodor, Bever, and Garrett (1974), 100, 118

Fodor (2008), 72, 80

Fougeron and Keating (1997), 103, 118

Frank and Satta (1998), 1, 21

Frank et al. (2010), 100, 118

Freivald and Wiehagen (1979), 24, 30

Friedmann, Belletti, and Rizzi (2009), 78, 80

Fristedt and Gray (1997), 42, 43

Gavaldà et al. (2006), 78, 80

Gelman and Shalizi (2010), 72, 80

Ghomeshi et al. (2004), 84, 118

Gold (1967), 23–25, 28–30

Gonzalez and Thomason (1978), 88, 118

Graham, Knuth, and Patashnik (1989), 39, 43

Grenander (1967), 88, 118

Grillo (2008), 78, 80

Gurevich (1988), 5, 21

Harkema (2001), 7, 21

Harrison (1978), 16, 21, 28, 30

Harris (1941), 99, 118

Harris (1946), 86, 118

Harris (1963), 88, 118

130

INDEX 131

Heinz, Kobele, and Riggle (2009), 1, 21, 38, 43

Heinz (2010), 1, 21, 27, 30, 78, 80, 118, 129

Herbrand (1930), 106, 118

Hindley (1969), 116, 118

Hirsch and Wagner (2012), 103, 118

Hopcroft and Ullman (1979), 5, 16, 21, 28, 30, 48, 50, 57

Jacod and Protter (2000), 40, 43

Jain et al. (1999), 23, 30

Jeż and Okhotin (2009), 118

Jeż (2007), 95, 118

Johnson (1965), 118

Johnson (2004), 86, 118

Joshi (1985), 7, 22

Jäger and Rogers (2012), 4, 7, 13, 21, 26, 30

Jäger (2002), 1, 21

Kallenberg (1997), 41–43

Kanazawa (1996), 104, 108, 110, 111, 118

Kanazawa (1998), 23, 30, 104, 108–111, 114, 115, 118

Kearns and Vazirani (1994), 31, 32, 35, 37, 43, 60, 80

Keating et al. (2003), 103, 118

Keenan and Stabler (2003), 86, 89, 118

Kleene (1952), 17, 22

Knight (1989), 107, 119

Knuth (1973), 39, 43

Kobele et al. (2003), 104, 119

Kobele, Retoré, and Salvati (2007), 7, 9, 10, 22

Kobele (2007), 84, 119

Koopman, Sportiche, and Stabler (2012), 86, 119

Kraljic and Brennan (2005), 103, 119

Ladefoged and Broadbent (1960), 101, 119

Lafferty (2000), 116, 119

Laird (1988), 23, 30

Lambek (1958), 104, 119

Lange and Zeugmann (1993), 29, 30

Lari and Young (1990), 116, 119

Larson (2012), 102, 119

Lehmann (1977), 69, 80

Leslie (1995), 49, 57

Levelt (1970), 101, 119

Lewis and Papadimitriou (1981), 48, 50, 57

Lightfoot (1989), 112, 119

Lloyd (1987), 107, 119

Magerman and Marcus (1990), 102, 119

Manaster-Ramer (1986), 83, 84, 119

Maor (1994), 39, 43

Martelli and Montanari (1982), 107, 119

Mateescu and Salomaa (1997), 6, 22

Mehler and Carey (1967), 100, 119

Michaelis, Mönnich, and Morawietz (2000), 7, 22

Michaelis (1998), 7, 22

Michaelis (2001a), 8, 22

Michaelis (2001b), 7, 22

Miller and Chomsky (1963), 16, 22

Miller (1967), 5, 22

Milner (1978), 116, 119

Mohri (2002a), 65, 80

Mohri (2002b), 69, 80

Mohri (2009), 69, 81

Moll, Arbib, and Kfoury (1988), 50, 57

Moortgat (1988), 104, 119

Morawietz (2003), 7, 22

Motoki, Shinohara, and Wright (1989), 109, 119

Mukherjee et al. (2004), 1, 22

Mönnich (1998), 7, 22

Nederhof and Satta (2004), 61, 81

Nevin (1993), 99, 119

Okhotin (2003), 95, 119

Osherson, Weinstein, and Stob (1986), 24–26, 29, 30

Palmer and Goldberg (2007), 61, 78, 81

Pate and Goldwater (2011), 104, 119

Perrin (1990), 45, 48, 57

Pestov (2011), 31, 37, 43

Peters (1987), 13, 22

Pierce (2002), 116, 119

Pinker (1982), 1, 22

Pinker (1989), 104, 119

Poggio et al. (2004), 37, 43

Port (1994), 42, 43

Pullum and Rawlins (2007), 84, 119

Reid and Williamson (2009), 61, 81

Resnick (1999), 40, 43

Riggle (2009), 38, 43

Robinson (1965), 106, 107, 120

Rogers et al. (2009), 27, 30

Ron, Singer, and Tishby (1995), 78, 81

Rosenthal (2006), 40, 43

Salomaa (1973), 16, 22

Seki et al. (1991), 7, 22

Shieber (1985), 13, 22

Siskind (1996), 104, 120

Smullyan (1993), 17, 22

Snedeker and Trueswell (2003), 103, 120

Stabler (1997), 8, 22

Stabler (2004), 84, 120

Stabler (2009), 56, 58

Stabler (2010), 8, 22

Stabler (2012), 89, 120

Stabler (2013), 14, 22

Steedman (2000), 102, 120

Takács and Pataki (2007), 38, 43

Takács (2007), 38, 43

Takács (2010), 43

Takahashi (2009), 102, 120

Taylor (1997), 43

Topsøe (2000), 61, 81

Valiant (1984), 31, 32, 43

Vapnik (1998), 37, 43

Wagner (2005), 103, 120

Watson (1993), 51, 58

Wetherell (1980), 88, 120

Wright (1989), 109, 120

Yokomori (2003), 92, 120

132 INDEX

Yoshinaka and Clark (2010), 1, 22

Yoshinaka (2008), 93, 120

Yoshinaka (2010), 1, 22

de la Higuera (2010), 38, 43

de Jongh and Kanazawa (1995), 110, 118

de Jongh and Kanazawa (1996), 29, 30

van Benthem (1989), 105, 117

van Benthem (1991), 105, 117

van Zaanen (2001), 102, 120

alphabetic variants, of CGs, 108

Angluin, Dana, 29, 30, 108, 109

artificial grammar learning, AGL, 5

Campbell, Karen, 28

Cantor, Georg, 18

Chomsky hierarchy, 16

co-1 language, 26

composition, of substitutions, 106

content, of a text, 23

context free grammar, CFG, 15

context sensitive grammar, CSG, 15

convergence point, 25

convergence, of Gold learner, 23

convergence, of PAC learner, 32

convex hull, 62

convex set, 62

copying, 83

deterministic finite automaton, DFA, 47

elasticity, of a class of languages, 109

enumeration, 17

f-structures, of CGs, 110

finite elasticity, 109

finite state automaton, FSA, 46

generalization, 23

grammar, rigid categorial, 110–115

identification in the limit, 23

infinite elasticity, 109

k-reversible languages, 54

VC dimension of, 56

Kanazawa, Makoto, 111

limit point, in a class of languages, 108

locking sequence, 27

mgu (most general unifier), 106

mgu, for categories, 107

mild context sensitivity, MCS, 7

minimalist grammars, MGs, 8

monoid, 107

Myhill-Nerode theorem, 13, 47, 49

n-gram language, 26

Nerode equivalence, 49

PAC learnable, 31

positive text, 23

regular grammar, 15

rewrite grammar, 15

right linear grammar, 15, 51

rigid categorial grammar, 110–115

self-monitoring learner, 24

subset construction, of minimal DFA, 49

subset theorem, Angluin’s, 29

substitution, applied to CGs, 107

Tellings, Jos, 20

text

for a language, 23

labeled, 31

positive, 23

two-step approaches to grammar, 7, 10

UG, 2

unification, of categories of CG, 107

unification, of terms of first order logic, 106

useless category, in a CG, 114

Vapnik-Chervonenkis (VC) dimension, 37

	Introduction
	Method
	Kinds of recursive systems
	Context sensitive grammars and languages
	Summary

	Learning a language from examples: Gold paradigm
	Basics
	First results
	Single value languages
	Languages defined by constraints
	Exercises
	Locking sequences
	Exercise
	Languages defined by constraints, part 2
	Angluin's subset theorem

	Probabilistic criteria for distribution-free learning: PAC
	PAC learning
	Learning finite sets of finite sets
	Learning rays
	Learning rectangles
	VC dimension
	Appendix: exp and log review
	Appendix: probability review

	k-reversible languages
	Finite state (i.e. regular) languages
	Gold learners for k-reversible languages
	VC dimension of Lk-reversible
	Exercises

	Learning subsets of the PDFAs
	Distances between languages (or parts of a language)
	Relative entropy
	Weighted finite state automata
	Computing exact relative entropy of two automata
	`Smoothing' probabilities
	Example: comparing 4 earlier learners
	Clark&Thollard'04: PDFA,|Q|,Es,
	Castro&Galvadà'08 PDFA,|Q|,Es
	Observations, questions

	Learning subsets of LCF
	Learning LSCF from examples
	Learning LSCFk,l from examples
	Learning LFCP(k) from a membership oracle
	Evidence of constituency
	Type inference for CFGs
	Weights for CFGs
	Appendix: First implementation of IIL

