

Preliminary

MY9931

3 Channels Constant Current LED Driver With

Cascade DMX512 Protocol and Differential Interface

General Description

The MY9931, 3 channels constant current LED driver with 14bits grayscale APDM (Adaptive Pulse Density Modulation) control, supports standard DMX512 protocol and fully differential interface suited for long distance cascade applications. The distinctive DMX512 decoding approach could decode precisely a standard DMX512 signal. The differential interface provides wide common-mode range to support long distance transmission without common-ground power systems.

The device operates over 7V to 40V input voltage range and provides 3 open-drain constant current sinking outputs that are rated to 40V and delivers up to 60mA of high accuracy current to each string of LED. The current at each output is programmable by means of three external current setting resistors. The MY9931 provides the gamma correction, gamma value is 2.2, to transform 8bits DMX data to 14bits APDM data in order to enhance brightness contract. The 14bits adaptive pulse density modulation makes sure that the frame refresh rate is higher than 2KHz. And an accurate oscillator is built in for free running APDM grayscale control and DMX512 decoder.

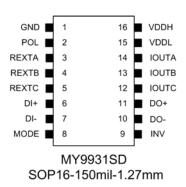
The POL function makes MY9931 as a PWM generator to support driving high power LEDs. MY9931 is available in SOP16 packages and specified over the -40°C to +85°C ambient temperature range.

Applications

- ☐ Standard DMX512 protocol system
- ☐ Full Color Mesh Display
- □ Architectural and Decorative Lighting

Features

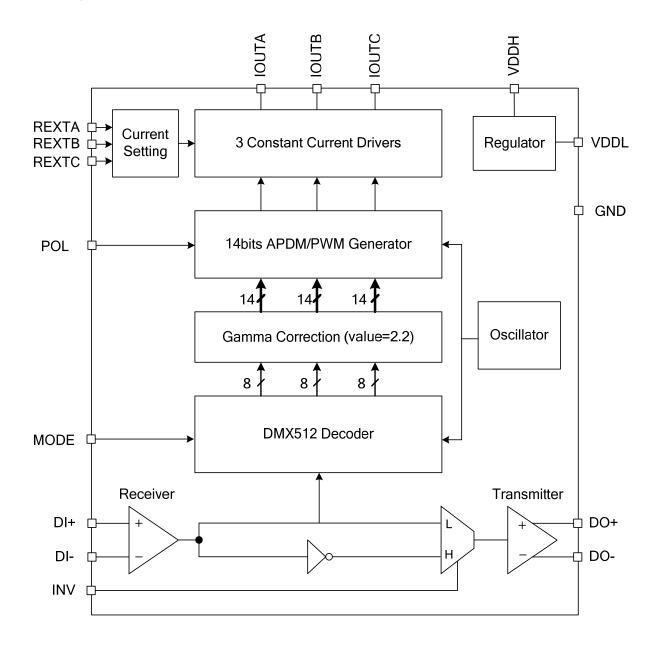
- **♦** R.G.B applications
- ♦ 7V to 40V Operating supply voltage
- **♦** 60mA Maximum constant current output (Per channel)
- ♦ Current setting by 3 external resistors
- ◆ 40V Rated output channels for long LED strings
- ♦ ±1.5% (typ.) LED Current accuracy between channels
- → ±3% (typ.) LED Current accuracy between chips
- **♦** Auto-addressing cascade architecture
- ◆ Standard DMX512 protocol decoder (USITT DMX512-A)
- Distinctive differential output corresponding with DMX512 format for long distance cascade
- ♦ Wide common-mode range for differential input signals
- ◆ Non-polarity connection for differential data input
- ◆ 14bits grayscale resolution with Adaptive Pulse Density Modulation
- ♦ Gamma, 2.2, to transform 8bits DMX to 14bits APDM data
- ◆ Frame refresh rate > 2000Hz as a LED driver Frame refresh rate > 120Hz as a PWM generator
- ◆ Traditional non-scramble constant current waveform for high power LED applications (PWM generator only)
- Built-in oscillator for grayscale control and DMX512 decoder
- → -40°C to +85°C Ambient temperature range


Order information

PART	PIN PACKAGE				
MY9931SD	SOP16-150mil-1.27mm	2500 pcs/Reel			

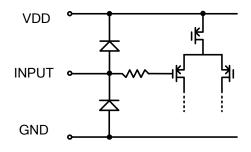
Typical Operating Circuits

Chip 1 GNB VDDH POL VDDL REXTA IOUTA REXTA

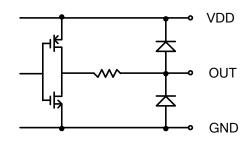

Pin Configuration

Apr. 2012 Ver. 0.3 MY-Semi Inc. 0

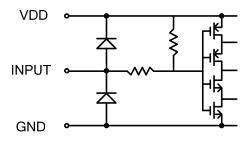
Block Diagram


Pin Assignment

PIN No. SOP14	PIN NAME	FUNCTION
1	GND	Ground terminal.
2	POL	Output current polarity selection: "L": work as a PWM generator (traditional non-scrambled waveform) "H(floating)": work as a LED driver (APDM waveform)
3 4 5	REXTA REXTB REXTC	External resistors connected between REXT and GND for IOUTA, IOUTB and IOUTC output current value setting.
6	DI+	Positive input terminal of differential DMX signal.
7	DI-	Negative input terminal of differential DMX signal.
8	MODE	Slot data selection: MODE=L: one slot mode MODE=H(floating): three slots mode
9	INV	Differential DMX output polarity selection: "L": DMXOUT is negative to increase the amount of cascade chips "H(floating)": DMXOUT is positive
10	DO-	Negative output terminal of differential DMX signal.
11	DO+	Positive output terminal of differential DMX signal.
12 13 14	IOUTC IOUTB IOUTA	Output terminals for constant current output
15	VDDL	Voltage regulator output. Connecting a capacitor, 10uF, between VDDL pin and GND pin to stabilize the output voltage, 5V.
16	VDDH	Supply voltage terminal.



Equivalent Circuit of Inputs and Output


1. DI+, DI- terminals

2. DO+, DO- terminals

3. POL, MODE, INV terminals

Maximum Ratings (Ta=25°C, Tj(max) = 150°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VDDH	44	V
Regulator Voltage	VDDL	7	V
Input Voltage	VIN	-0.3 ~ VDDL+0.3	V
Output Current	IOUT	80	mA
Output Voltage	VOUT	-0.3 ~ 40	V
Thermal Resistance (On 4-layer PCB)	Rth(j-a)	75 (SD:SOP16-150mil-0.65mm)	°C/W
Operating Ambient Temperature	Тор	-40 ~ 85	°C
Storage Temperature	Tstg	-55 ~ 150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

⁽²⁾ All voltage values are with respect to ground terminal.

Electrical Characteristics (VDDL = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Differential Output voltage (Unloaded)	VOD1	lo=0mA, figure 1		_	5		
Differential Output voltage (loaded)	VOD2	R=27Ω, figure 1	0.7	_	1.5		
Differential Common-mode Output Voltage	VOC	R=27Ω, figure 1	_	_	3	V	
Differential Input Threshold Voltage	VTH	-7V ≤VCM ≤ 12V	-0.2		0.2		
Differential Input Hysteresis	ΔVTH	VCM=0V		70		mV	
Differential Input Resistance	RIN		192			kΩ	
Differential Output Short-Circuit Current, Vout=High	IOS1	Vout=-7V			TBD	mA	
Differential Output Short-Circuit Current, Vout=Low	IOS2	Vout=10V	TBD			mA	
		VIN=12V		50			
Input Current of Differential Input	IDI	VIN=-7V		-30		- uA	
Regulator Output Voltage	VDDL	VDDH=7~40V		5		V	
Current Setting Feedback Voltage	Vrext	VDDH=40V Rrext=20Ω and Vo=1V		0.4		V	
IOUT Leakage Current	ILK	Vo=40V			0.1	uA	
Output Current Skew (Channel-to-Channel)*1	dIOUT1	VOUT = 1.0 V	_	±1.5	±3	%	
Output Current Skew (Chip-to-Chip)*2	dIOUT2	Rrext =20 Ω	_	±3	±6	%	
Output Voltage Regulation*3	% / VOUT	Rrext = 16 Ω VOUT = 7 V ~ 40 V	_	_	±.0.1	0/ / \	
Supply Voltage Regulation*4	% / VDDH	Rrext = 16Ω VDDH = 7 V ~ 40 V	_	±0.6	±1	% / V	

^{*1} Channel-to-channel skew is defined by the formula below:

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + ... + Iout_{15})} - 1 \right] * 100\%$$

$$\Delta(\%) = \left[\begin{array}{c} \frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{16} - (Ideal \ Output \ Current) \\ \hline (Ideal \ Output \ Current) \end{array} \right] *100\%$$

*3 Output voltage regulation is defined by the formula below:
$$\Delta(\%/V) = \left[\begin{array}{c} Iout_n(@Vout_n = 3V) - Iout_n(@Vout_n = 1V) \\ Iout_n(@Vout_n = 3V) \end{array} \right] * \frac{100\%}{3V - 1V}$$

$$\Delta(\%/V) = \left[\frac{Iout_n(@V_{DDH} = 40V) - Iout_n(@V_{DDH} = 7V)}{Iout_n(@V_{DD} = 7V)} \right] * \frac{100\%}{40V - 7V}$$

^{*2} Chip-to-Chip skew is defined by the formula below:

^{*4} Supply voltage regulation is defined by the formula below:

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	I _{DD1(off)}	all pins are open unless VDD and GND	_	1.7	2.5	
Supply Current	I _{DD2(off)}	input signal is static Rrext = 16 Ω all outputs turn off		2.3	3.1	mA
	I _{DD1(on)}	input signal is static Rrext = 16 Ω all outputs turn on		2.4	3.2	

Switching Characteristics (VDDL = 5.0V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay From DI to DO ("L" to "H")	tpLH	\/DDH=40\/		40		
Propagation Delay From DI to DO ("H" to "L")	tpHL	VDDH=40V R _{DIFF} =54Ω		40		
Propagation Delay Skew	tskew	R_{LOAD} =196 $k\Omega$		5		
DO rise time	tr _(DO)	C _L =100pF DI(diff)=1.5V		20		ns
DO fall time	tf _(DO)	DI(dill)=1.5V		20		
Output Current Rise Time	tor		100			
Output Current Fall Time	tof		100			
Internal Grayscale Clock Frequency	FGCK			2		MHz

Test Circuits

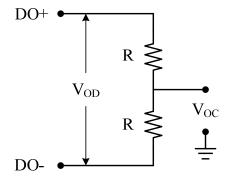


Figure 1. Differential Output DC Test Circuit

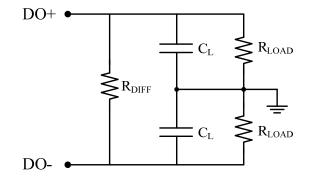


Figure 2. Differential Output Timing Test Circuit

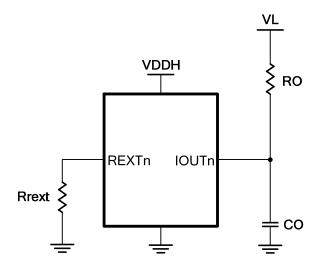
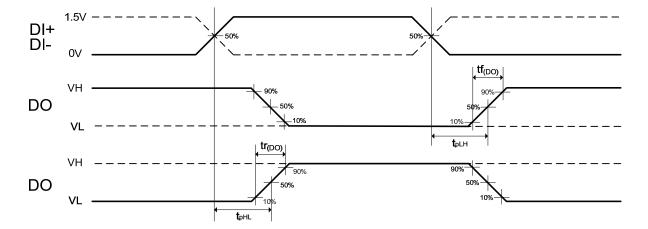
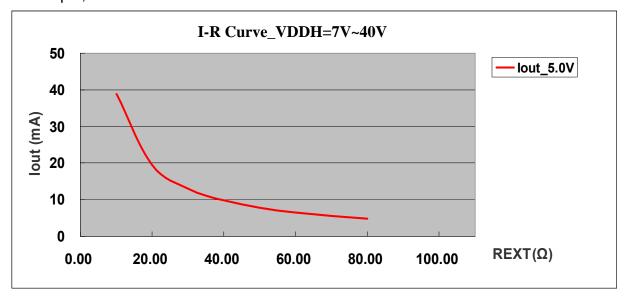



Figure 3. IOUT Switching Characteristics Test Circuit

Timing Diagram

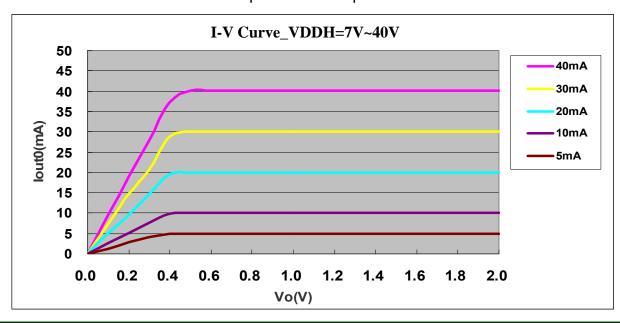
1. DI to DO

2. IOUT



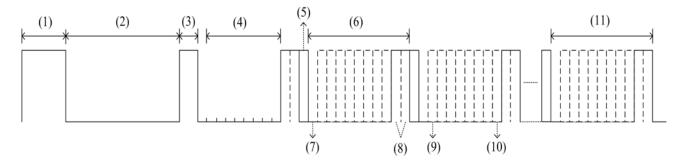
Reference Resistor

The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:


$$lout(mA) = Vrext(V) / Rext(k\Omega) = 0.4V / Rext(k\Omega)$$

Where Rrext is a resistor placed between REXT and GND For example, lout is 20mA when Rrext=20 Ω and lout is 50mA when Rrext=8 Ω

Constant-Current Output


The current characteristics could maintain invariable in the influence of loading voltage. Therefore, the MY9931 could minimize the interference of different LED forward voltages and produce the constant current. The following figures illustrate the suitable output voltage should be determined in order to keep an excellent performance.

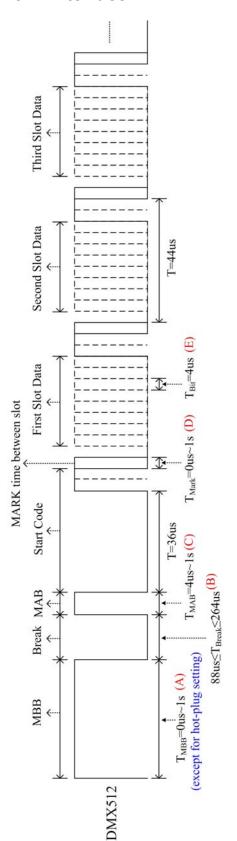
Standard DMX512 Protocol

DMX512 is a standard that describes a method of digital data transmission between controllers and lighting equipment and accessories. MY9931 supports DMX512 protocol in accordance with USITT DMX512-A standard except for the Break time and the MBB time in hot-plug setting.

Reference	Description	Duration
(1)	Mark Time Before Break (MBB)	0us~1s (except for hot-Plug setting described below)
(2)	Break	88us≦ TBreak ≦264us
(3)	Mark Time After Break (MAB)	4us~1s
(4)	Start Code (Slot 0 data)	32us ± 2% (Start Code must be null)
(5)	Mark Time Between Slot	0s~1s
(6)	Slot Time	44us ± 2%
(7)	Start Bit	4us ± 2%
(8)	Stop Bits	4us ± 2%
(9)	Least Significant Data Bit	4us ± 2%
(10)	Most Significant Data Bit	4us ± 2%
(11)	The Number of Slots	Not Limited

* Power-On Procedure:

Users have to keep the input signal in high level over 440us after power-on and then transmit a DMX signal.

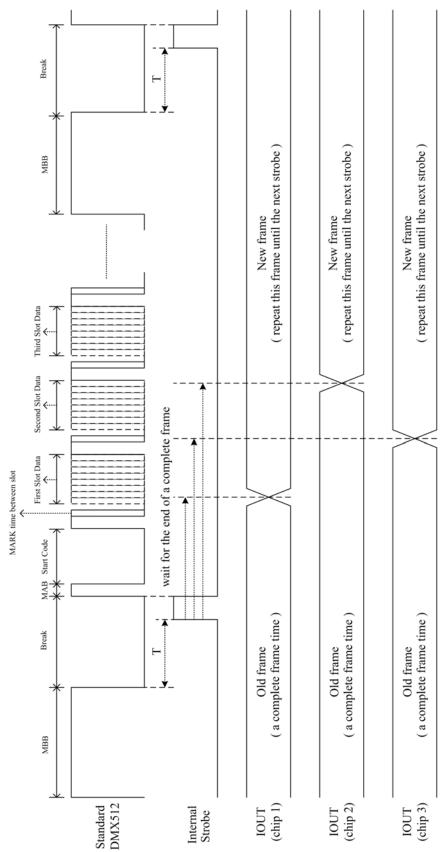

* Hot-Plug Setting:

The MBB time (or the MAB time or the Mark Time Between Slot) has to be set over 440us in order to avoid that Hot-Plug operations disrupt the decoding process.

* Power-On procdure and Hot-Plug setting could be neglected when INV=H(floating).

Standard DMX512 Interface

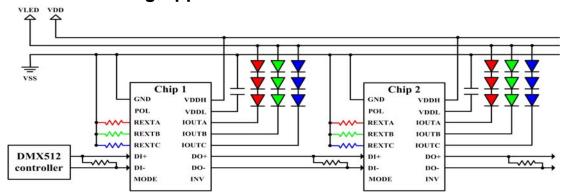
Users have to keep the input signal in high level over 440us and then transmit a DMX signal.


<< Hot-plug setting >>

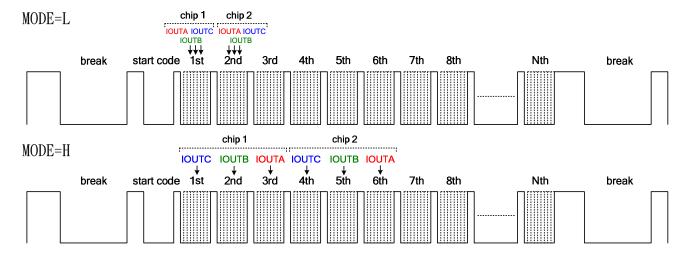
<< Power-On procedure >>

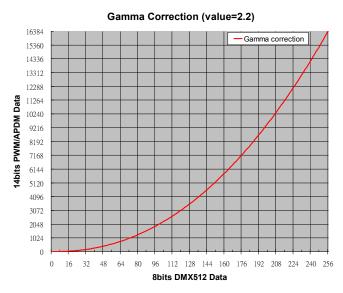
Users have to keep T_{MBB} (or T_{MAB} or the Mark time between slot) in high level over 440us when transmiting a DMX512 signal.

Frame Latch (Break)

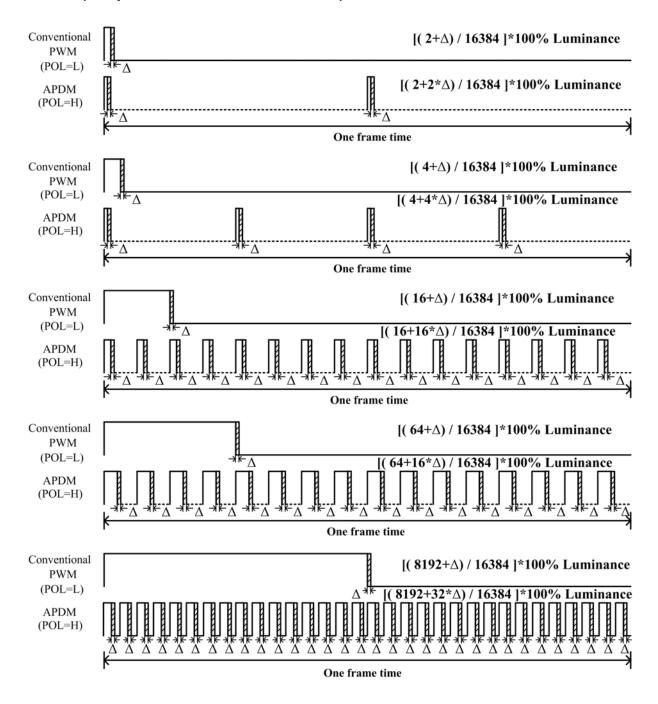


** Free-running frame latch: the next data are loaded into devices after the previous frame is accomplished in order to maintain the completeness of frame.

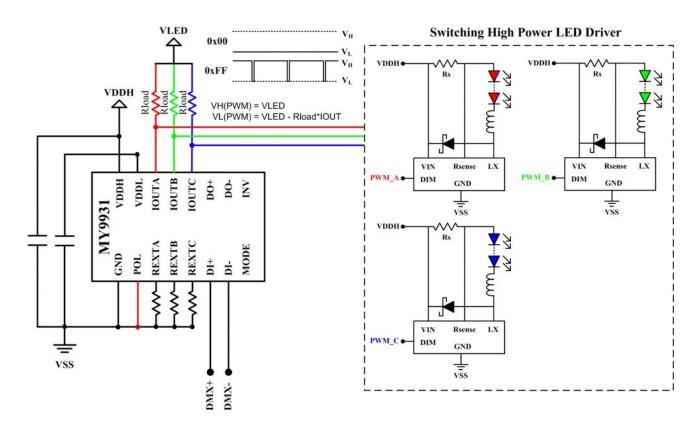

^{**} A complete frame time is determined by the internal oscillator's frequency of each chip

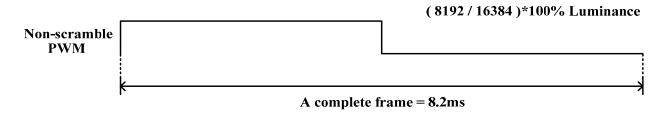

Auto-addressing Approach and Slot Data Selection

When a lot of MY9931 are connected in cascade, each device addresses automatically and loads grayscale data. The sequence of data loading is illustrated below.


Gamma Correction

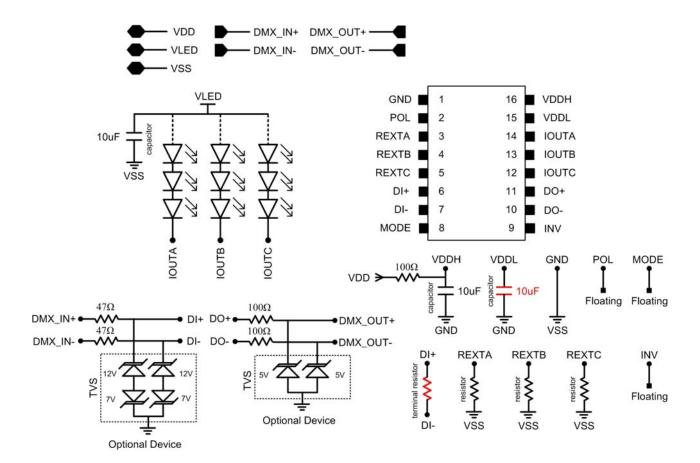
MY9931 supports Gamma Correction function, 2.2, to transform 8bits DMX512 data to 14bits PWM/APDM data in order to enhance brightness contract.


APDM (Adaptive Pulse Width Modulation)


- ▲ The waveform is divided into 16 sections when the luminance is below 8192/16384.
- ▲ The waveform is divided into 32 sections when the luminance is over 8192/16384.
- ▲ MY-semi issues this APDM approach, Adaptive Pulse Width Modulation, in order to abate the non-ideal IOUT distortion due to non-symmetrical transient response at low luminance and improve the refresh rate at high luminance.
- **▲** The Δ -width correction technique ($\Delta \neq 0$) is used to compensate the non-ideal output current transient response.

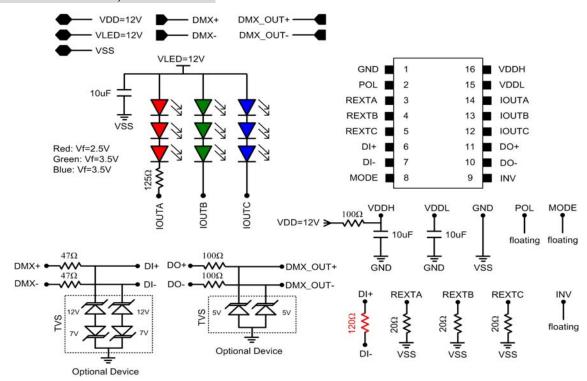
PWM generator (POL=L)

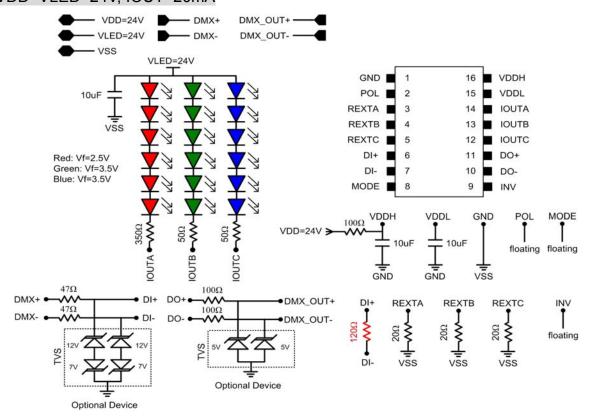
MY9931 could be set as a PWM generator to produce 14bits traditional non-scrambled PWM waveform for high power LED lighting applications. The POL pin is set to VSS and the IOUT pins are connected to VLED by Rload resistors in order to determine VH and VL level of PWM signal. The refresh rate of MY9931 is 120Hz as a PWM generator, POL=L.



Refresh rate = 120Hz (Grayscale clock=2MHz)

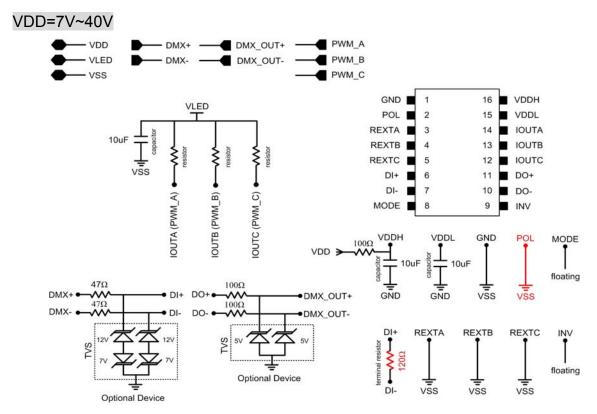
Application (LED Driver)


VDD=7V~40V

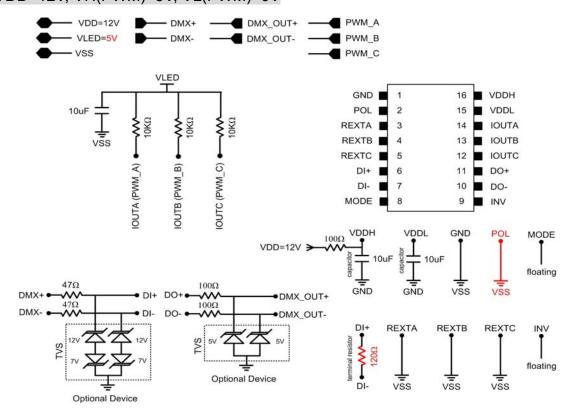


Application sample (LED Driver)

VDD=VLED=12V, IOUT=20mA



VDD=VLED=24V, IOUT=20mA



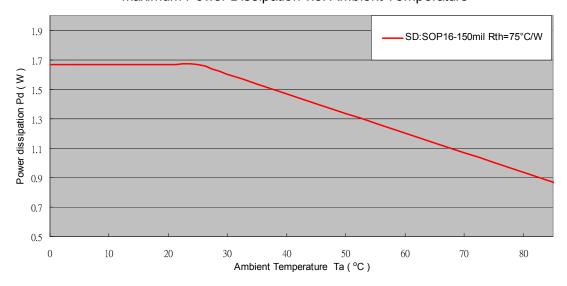
Application (PWM Generator)

Application Sample (PWM Generator)

VDD=12V, VH(PWM)=5V, VL(PWM)=0V

Power Dissipation

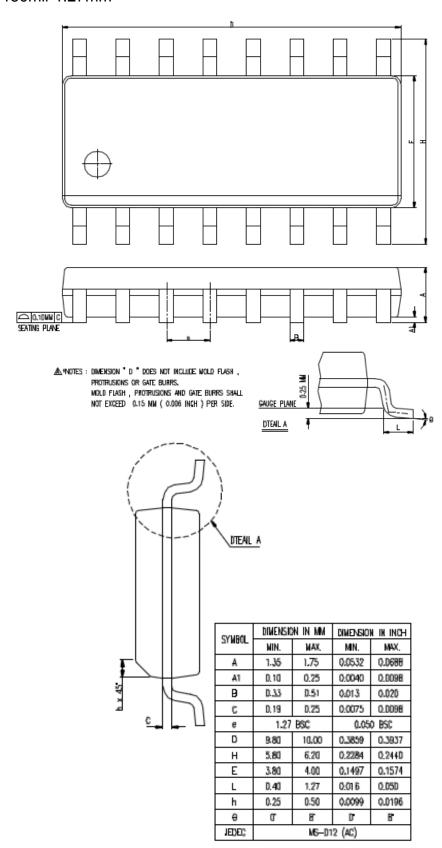
When all three output channels are turned on, the practical power dissipation is determined by the following equation:


 $PD (practical) = V_{DDH} \times I_{DDH} + V_{OutA} \times I_{OutA} \times DutyA + V_{OutB} \times I_{OutB} \times DutyB + V_{OutC} \times I_{OutC} \times DutyC$

In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation which is determined by the package type and ambient temperature. The formula for maximum power dissipation is described as follows:

$$PD (max) = \frac{Tj(max)(\mathcal{C}) - Ta(\mathcal{C})}{Rth(j-a)(\mathcal{C}/Watt)}$$

The PD(max) declines as the ambient temperature raises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in the SOP16 packages.


Maximum Power Dissipation v.s. Ambient Temperature

Package Outline Dimension

SOP16-150mil-1.27mm

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Wincker will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Wincker and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.