
NASSLLI 2003: Foundations of Constraint Satisfaction

1

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

What is the course about?What is the course about?

Constraint satisfaction problems
Algorithms for solving constraint satisfaction problems

l Local search
– HC, MC, RW, Tabu Search

l Search algorithms
– GT, BT, BJ, BM, DB, LDS

l Consistency techniques
– NC, AC, DAC, PC, DPC, RPC, SC

l Search and constraint propagation
– FC, PLA, LA

l Optimisation problems
– B&B

l Over-constrained problems
– PCSP, constraint hierarchies

Foundations of constraint satisfaction, Roman Barták

What is a constraint?What is a constraint?

Constraint is an arbitrary relation over the set of variables.
– every variable has a set of possible values - a domain

• this course covers discrete finite domains only

– the constraint restricts the possible combinations of values

Some examples:
– the circle C is inside a square S
– the length of the word W is 10 characters
– X is less than Y
– a sum of angles in the triangle is 180°
– the temperature in the warehouse must be in the range 0-5°C
– John can attend the lecture on Wednesday after 14:00

Constraint can be described:
– intentionally (as a mathematical/logical formula)
– extensionally (as a table describing compatible tuples)

Foundations of constraint satisfaction, Roman Barták

Constraint Satisfaction ProblemConstraint Satisfaction Problem

CSP (Constraint Satisfaction Problem) consists of:
– a finite set of variables
– domains - a finite set of values for each variable
– a finite set of constraints

A solution to CSP is a complete assignment of variables
satisfying all the constraints.

CSP is often represented as a (hyper)graph.
Example:

variables x1,…,x6
domain {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

c2

x1 x2 x3 x4 x6x5

c1

c3

c4

Foundations of constraint satisfaction, Roman Barták

Some toy problemsSome toy problems

SEND + MORE = MONEY
assign different numerals to different letters

S and M are not zero
A constraint model (with a carry bit):

E,N,D,O,R,Y in 0..9, S,M in 1..9, P1,P2,P3::0..1
all_different(S,E,N,D,M,O,R,Y)

D+E = 10*P1+Y
P1+N+R = 10*P2+E
P2+E+O = 10*P3+N
P3+S+M = 10*M +O

N-queens problem
allocate N queens to the chessboard

the queens do not attack each other
A constraint model:

queens in columns ∀i r(i) in 1..N
no conflict

∀i≠j r(i)≠r(j) & |i-j|≠|r(i)-r(j)|
Foundations of constraint satisfaction, Roman Barták

A bit of historyA bit of history

Artificial Intelligence
Scene labelling (Waltz 1975)

Interactive graphics
Sketchpad (Sutherland 1963)
ThingLab (Borning 1981)

Logic programming
unification → constraint solving (Gallaire 1985,

Jaffar, Lassez 1987)

Operations research and discrete mathematics
NP-hard combinatorial problems

NASSLLI 2003: Foundations of Constraint Satisfaction

2

Foundations of constraint satisfaction, Roman Barták

Constraints in scene labelling (WaltzConstraints in scene labelling (Waltz 19751975))

Looking for feasible interpretation of 3D lines in 2D drawing
First usage of constraint propagation techniques

+
-

-
+

+ +

-

+

-

+

+
+ +

+

+

Foundations of constraint satisfaction, Roman Barták

Constraints in interactive graphicsConstraints in interactive graphics

How to manipulate a graphical object described by
constraints?

http://kti.mff.cuni.cz/~bartak/diploma/downloads.html

http://www.cs.washington.edu/research/constraints/

Foundations of constraint satisfaction, Roman Barták

Constraints in A.I. planning and schedulingConstraints in A.I. planning and scheduling

Scheduling problem =
a set of activities has to be
processed by a limited number
of resources in a limited
amount of time.

Combinatorial optimisation

Planning problem =
find a set of activities to
achieve a given goal

Deep Space One
– autonomous planning of

spacecraft activities

Foundations of constraint satisfaction, Roman Barták

Constraints in bioinformaticsConstraints in bioinformatics

Design of a 3D protein structure from the sequence of
amino-acids (3D structure determines features of
proteins)

Analysing a sequence of DNA, estimating a distance
between DNAs, comparing DNAs

http://www.soi.city.ac.uk/~drg/bioinformatics/

Foundations of constraint satisfaction, Roman Barták

Solving constraints by enumerationSolving constraints by enumeration

Constraints are used only as a test
assign values to variables ...

… and see what happens

systematic search
explores the space of all assignments systematically
GT, BT, BJ, BM, DB, LDS

non-systematic search
some assignments may be skipped during search
Credit Search, Bounded Backtrack

local search
explore the search space by small steps
HC, MC, RW, Tabu, GSAT, Genet, simulated annealing

Foundations of constraint satisfaction, Roman Barták

Systematic searchSystematic search

Explore systematically the space of all assignments
systematic = every valuation will be explored sometime

Features:
+ complete (if there is a solution, the method finds it)
- it could take a lot of time to find the solution

Basic classification:

Explore complete assignments
generate and test
such search space is used by local search (non-systematic)

Extending partial assignments
tree search

NASSLLI 2003: Foundations of Constraint Satisfaction

3

Foundations of constraint satisfaction, Roman Barták

Generate and test (GT)Generate and test (GT)

The most general problem solving method
1) generate a candidate for solution
2) test if the candidate is really a solution

How to apply GT to CSP?
1) assign values to all variables
2) test whether all the constraints are satisfied

GT explores complete but inconsistent assignments until a (complete)
consistent assignment is found.

procedure GT(X:variables, C:constraints)
V ← construct a first complete assignment of X
while V does not satisfy all the constraints C do

V ← construct systematically a complete assignment next to V
end while
return V

Foundations of constraint satisfaction, Roman Barták

Weaknesses and improvements of GTWeaknesses and improvements of GT

The greatest weakness of GT is exploring too many
“visibly” wrong assignments.

Example:
X,Y,Z::{1,2} X = Y, X ≠ Z, Y > Z

How to improve generate and test?
smart generator

smart (perhaps non-systematic) generator that uses result of test
Ä local search techniques

earlier detection of clash
constraints are tested as soon as the involved variables are

instantiated → backtracking-based search

X
Y
Z

1
1
1

1
1
2

1
2
1

1
2
2

2
1
1

2
1
2

2
2
1

Foundations of constraint satisfaction, Roman Barták

Local searchLocal search

Generate and test explores complete but inconsistent
assignments until a complete consistent assignment is
found.

Weakness of GT - the generator does not use result of test
The next assignment can be constructed in such a way
that constraint violation is smaller.
– only “small” changes of the assignment are allowed
– next assignment should be “better” than previous

better = more constraints are satisfied

– assignments are not necessarily generated
systematically

we lost completeness but we (hopefully) get better efficiency

Local search is a technique of searching solution by small
changes (local steps) to the solution candidate.

Foundations of constraint satisfaction, Roman Barták

Local search Local search -- TerminologyTerminology

state - a complete assignment of values to variables
evaluation - a value of the objective function (# violated constraints)
neighbourhood - a set of states locally different from the current state

(the states differ from the current state in the value of one variable)
local optimum - a state that is not optimal and there is no state with

better evaluation in its neighbourhood
strict local optimum - a state that is not optimal and there are only

states with worse evaluation in its neighbourhood
non-strict local optimum - local optimum that is not strict
global optimum - the state with the best evaluation
plateau - a set of neighbouring states with the same evaluation

plateau
local
minimum

local minimum

global
minimum

evalu
atio

n

non-strict local
minimum

Foundations of constraint satisfaction, Roman Barták

Hill ClimbingHill Climbing
Hill climbing is perhaps the most known technique of local search.

start at randomly generated state
look for the best state in the neighbourhood of the current state

neighbourhood = differs in the value of any variable
neighbourhood size = Σi=1..n(Di-1) (= n*(d-1))

“escape” from the local optimum via restart

Algorithm Hill Climbing
procedure hill-climbing(Max_Flips)

restart: s ← random assignment of variables;
for j:=1 to Max_Flips do % restricted number of steps

if eval(s)=0 then return s
if s is a strict local minimum then

go to restart
else

s ← neighbourhood with the smallest evaluation value
end if

end for
go to restart

end hill-climbing

Foundations of constraint satisfaction, Roman Barták

MinMin--ConflictsConflicts (Minton, Johnston, Laird (Minton, Johnston, Laird 19971997))
Observation:

– the hill climbing neighbourhood is pretty large (n*(d-1))
– only change of a conflicting variable may improve the valuation

Min-conflicts method
select randomly a varible in conflict and try to improve it

neighbourhood = different values for the selected variable i
neighbourhood size = (Di-1) (= (d-1))

Algorithm Min-Conflicts
procedure MC(Max_Moves)

s ← random assignment of variables
nb_moves ← 0
while eval(s)>0 & nb_moves<Max_Moves do

choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V
if v' ≠ current value of V then

assign v' to V
nb_moves ← nb_moves+1

end if
end while
return s

end MC

It cannot leave
a local optimum

NASSLLI 2003: Foundations of Constraint Satisfaction

4

Foundations of constraint satisfaction, Roman Barták

Random walkRandom walk

How to leave the local optimum without a restart
(i.e. via a local step)?

By adding some “noise” to the algorithm!

Random walk
a state from the neighbourhood is selected randomly

(e.g., the value is chosen randomly)
such technique can hardly find a solution
so it needs some guide

Random walk can be combined with the heuristic guiding
the search via probability distribution:

p - probability of using the random walk
(1-p) - probability of using the heuristic guide

Foundations of constraint satisfaction, Roman Barták

MinMin--Conflicts Random WalkConflicts Random Walk

MC guides the search (i.e. satisfaction of all the constraints) and RW
allows us to leave the local optima.

Algorithm Min-Conflicts-Random-Walk
procedure MCRW(Max_Moves,p)

s ← random assignment of variables
nb_moves ← 0
while eval(s)>0 & nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V

end if
if v' ≠ current value of V then

assign v' to V
nb_moves ← nb_moves+1

end if
end while
return s

end MCRW

0.02 ≤ p ≤ 0.1

Foundations of constraint satisfaction, Roman Barták

Steepest Descent Random WalkSteepest Descent Random Walk

Random walk can be combined with the hill climbing heuristic too.
Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

procedure SDRW(Max_Moves,p)
s ← random assignment of variables
nb_moves ← 0
while eval(s)>0 & nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose a move <V,v'> with the best performance

end if
if v' ≠ current value of V then

assign v' to V
nb_moves ← nb_moves+1

end if
end while
return s

end SDRW

Foundations of constraint satisfaction, Roman Barták

TabuTabu listlist
Observation:

Being trapped in local optimum is a special case of cycling.
How to avoid cycles in general?

Remember already visited states and do not visit them again.
• memory consuming (too many states)

It is possible to remember just few last states.
• prevents „short“ cycles

Tabu list = a list of forbidden states
the state can be represented by a selected attribute

〈variable, value〉 - describes the change of the state (a previous value)

tabu list has a fix length k (tabu tenure)
„old“ states are removed from the list when a new state is added

state included in the tabu list is forbidden (it is tabu)
Aspiration criterion = enabling states that are tabu

i.e., it is possible to visit the state even if the state is tabu
example: the state is better than any state visited so far

Foundations of constraint satisfaction, Roman Barták

TabuTabu search (search (GalinierGalinier, , HaoHao 19971997))

The tabu list prevents short cycles.
It allows only the moves out of the tabu list or the moves satisfying

the aspiration criterion.

Algorithm Tabu Search
procedure tabu-search(Max_Iter)

s ← random assignment of variables
nb_iter ← 0
initialise randomly the tabu list
while eval(s)>0 & nb_iter<Max_Iter do

choose a move <V,v'> with the best performance among the non-tabu
moves and the moves satisfying the aspiration criteria

introduce <V,v> in the tabu list, where v is the current value of V
remove the oldest move from the tabu list
assign v' to V
nb_iter ← nb_iter+1

end while
return s

end tabu-search

Foundations of constraint satisfaction, Roman Barták

Localizer (Michel, Van Localizer (Michel, Van HentenryckHentenryck 19971997))

The local search algorithms have a similar structure that can be
encoded in the common skeleton. This skeleton is filled by
procedures implementing a particular technique.

Local Search Skeleton

procedure local-search(Max_Tries,Max_Moves)
s ← random assignment of variables
for i:=1 to Max_Tries while Gcondition do

for j:=1 to Max_Moves while Lcondition do
if eval(s)=0 then

return s
end if
select n in neighbourhood(s)
if acceptable(n) then

s ← n
end if

end for
s ← restartState(s)

end for
return best s

end local-search

NASSLLI 2003: Foundations of Constraint Satisfaction

5

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

Binary constraintsBinary constraints

World is not binary …
but it could be transformed to a binary one!

Each CSP can be transformed to an equivalent binary CSP
– many CSP algorithms designed for binary problems
– still open efficiency issues

Projection technique (Montanary 1974):

x1

x2

x3

• straightforward but
• does not give an equivalent problem
• bound consistency

• better efficiency
• weaker pruning

Foundations of constraint satisfaction, Roman Barták

DualDual encodingencoding

Swapping variables and constraints.

k- ary constraint c is converted to
a dual variable vc with the domain consisting of compatible tuples

for each pair of constraints c a c‘ sharing some variables there is
a binary constraint between vc a vc’ restricting the dual variables
to tuples in which the original shared variables take the same value

Example:
variables x1,…,x6

with domain {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

R21 & R33

R11 R22 & R33

R31

R33

Foundations of constraint satisfaction, Roman Barták

Hidden variable encodingHidden variable encoding

New dual variables for (non-binary) constraints.

k- ary constraint c is translated to
a dual variable vc with the domain consisting of compatible tuples

for each variable x in the constraint c there is a constraint between
x a vc restricting tuples of dual variable to be compatible with x

Example:
variables x1,…,x6

with domains {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2 r3 r1
r2

r3

r3r2
x1 x2 x3

x4 x6x5

Foundations of constraint satisfaction, Roman Barták

Other encodingsOther encodings

Hybrid encoding
transformation between dual and

hidden variable encoding
contains parts of both encodings

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

0, 1 0, 1 0, 1

r3 r1
r2

r3

r3r2
x4 x6

x5

R11

R21 & R33

r3

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2 r3 r1 r2 r3

r3r2
x1 x2 x3 x4 x6x5

R21 & R33

R33

R31

R22 & R33R11

Double encoding
hidden and original variables

are included
constraints from both

encodings are used
improved propagation

Foundations of constraint satisfaction, Roman Barták

BacktrackingBacktracking

Probably the most widely used systematic search algorithm
basically it is depth-first search

Using backtracking to solve CSP
1) assign values gradually to variables
2) after each assignment test the constraints over the assigned

variables (and backtrack upon failure)

Extends a partial consistent assignment until a complete consistent
assignment is found.

Open questions:
what is the order of variables?

• variables with a smaller domain first
• variables participating in more constraints first
• “key” variables first

what is the order of values?
• problem dependent

NASSLLI 2003: Foundations of Constraint Satisfaction

6

Foundations of constraint satisfaction, Roman Barták

Algorithm chronological backtrackingAlgorithm chronological backtracking

A recursive definition

Backtracking is always better than generate and test!

procedure BT(X:variables, V:assignment, C:constraints)
if X={} thenreturn V
x ← select a not-yet assigned variable from X
for each value h from the domain of x do

if constraints C are consistent with V+{x/h} then
R ← BT(X-x, V+{x/h}, C)
if R≠fail then return R

end for
return fail

call BT(X, {}, C)

Foundations of constraint satisfaction, Roman Barták

Weaknesses of backtrackingWeaknesses of backtracking

thrashing
throws away the reason of the conflict
Example: A,B,C,D,E:: 1..10, A>E

BT tries all the assignments for B,C,D before finding that A≠1

Solution: backjumping (jump to the source of the failure)

redundant work
unnecessary constraint checks are repeated
Example: A,B,C,D,E:: 1..10, B+8<D, C=5*E

when labelling C,E the values 1,..,9 are repeatedly checked for D

Solution: backmarking, backchecking (remember (no-)good assignments)

late detection of the conflict
constraint violation is discovered only when the values are known
Example: A,B,C,D,E::1..10, A=3*E

the fact that A>2 is discovered when labelling E

Solution: forward checking (forward check of constraints)

Foundations of constraint satisfaction, Roman Barták

BackjumpingBackjumping ((GaschnigGaschnig 19791979))

Backjumping is used to remove thrashing.
How?

1) identify the source of the conflict (impossible to assign a value)
2) jump to the past variable in conflict

The same run like in backtracking, only the back-jump can be longer,
i.e. irrelevant assignments are skipped!

How to find a jump position? What is the source of the
conflict?
select the constraints containing just the currently assigned

variable and the past variables
select the closest variable participating in the selected constraints

Graph-directed backjumping

Enhancement: use only the violated constraints

x
1 2 3 4 5

Foundations of constraint satisfaction, Roman Barták

ConflictConflict--directed directed backjumpingbackjumping in practicein practice

N-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
Queens in rows are allocated
to columns.

1. Write a number of conflicting
queens to each position.

1 3,4 2,5 4,5 3,5 1 2 3 2. Select the farthest conflicting
queen for each position.

3. Select the closest conflicting
queen among positions.

Note:
Graph-directed backjumping has no effect here (due to complete graph)!

6th queen cannot be allocated!

Foundations of constraint satisfaction, Roman Barták

Identification of the conflicting variableIdentification of the conflicting variable

How to find out the conflicting variable?
Situation:

assume that the variable no. 7 is being assigned (values are 0, 1)
the symbol • marks the variables participating the violated

constraints (two constraints for each value)

Neither 0 nor 1 can be assigned to
the seventh variable!

conflict
with value 0

conflict
with value 1

•
•

•

•

•

•

•

•

•

•

•

•

1
2
3
4
5
6
7

O
rd

er
 o

f a
ss

ig
n

m
en

t

1. Find the closest variable in each
violated constraint (o).

2. Select the farthest variable from
the above chosen variables for each

value (O).

3. Choose the closest variable from
the conflicting variables selected for
each value and jump to it.

O
O

Foundations of constraint satisfaction, Roman Barták

Consistency check for Consistency check for backjumpingbackjumping
In addition to the test of satisfaction of the constraints, the closest

conflicting level is computed

procedure consistent(Labelled, Constraints, Level)
J ← Level % the level to which we will jump
NoConflict ← true % indicator of a conflict
for each C in Constraints do

if all variables from C are Labelled then
if C is not satisfied by Labelled then

NoConflict ← false
J ← min {J, max{L | X in C & X/V/L in Labelled & L<Level}}

end if
end if

end for
if NoConflict then return true

else return fail(J)
end consistent

NASSLLI 2003: Foundations of Constraint Satisfaction

7

Foundations of constraint satisfaction, Roman Barták

Algorithm Algorithm backjumpingbackjumping
procedure BJ(Unlabelled, Labelled, Constraints, PreviousLevel)

if Unlabelled = {} then return Labelled
pick first X from Unlabelled
Level ← PreviousLevel+1
Jump ← 0
for each value V from DX do

C ← consistent({X/V/Level} ∪ Labelled, Constraints, Level)
if C = fail(J) then

Jump ← max {Jump, J}
else

Jump ← PreviousLevel
R ← BJ(Unlabelled-{X},{X/V/Level} ∪ Labelled,Constraints, Level)
if R ≠ fail(Level) then return R % success or backjump

end if
end for
return fail(Jump) % jump to the conflicting variable

end BJ

call BJ(Variables,{},Constraints,0)

Foundations of constraint satisfaction, Roman Barták

Weakness of Weakness of backjumpingbackjumping

When jumping back the in-between assignment is lost!

Example:
colour the graph in such a way that the connected vertices have different

colours

1
2
1 2
1 2 3
1 2 3

A

C

B
D

E

node vertex
A
B
C
D
E

back
jump

1
21
1 2
1 2
1 2 3

During the second attempt to label C superfluous work is done
- it is enough to leave there the original value 2, the change of B
does not influence C.

Foundations of constraint satisfaction, Roman Barták

Dynamic backtracking Dynamic backtracking -- exampleexample

The same graph (A,B,C,D,E), the same colours (1,2,3) but a
different approach.

AC B

D

E

node 1 2 3
A •
B A •
C A •
D A B •
E A B D

node 1 2 3
A •
B A •
C A •
D A B AB
E A B

node 1 2 3
A •
C A •
B • A
D A •
E A B •

jump back
+ carry the conflict source

jump back
+ carry the conflict source
+ change the order of B, C

Backjumping
+ remember the source of the conflict
+ carry the source of the conflict
+ change the order of variables

= DYNAMIC BACKTRACKING

The vertex C (and the possible sub-graph connected to C) is
not re-coloured.

• selected colour

AB a source of the conflict

Foundations of constraint satisfaction, Roman Barták

Algorithm dynamic backtracking (Ginsberg Algorithm dynamic backtracking (Ginsberg 19931993))
procedure DB(Variables, Constraints)

Labelled ← {}; Unlabelled ← Variables
while Unlabelled ≠ {} do

select X in Unlabelled
ValuesX ← DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then

let E be an explanation of the conflict (set of conflicting variables)
if E = {} then failure
else

let Y be the most recent variable in E
unassign Y (from Labelled) with eliminating explanation E-{Y}
remove all the explanations involving Y

end if
else

select V in ValuesX
Unlabelled ← Unlabelled - {X}
Labelled ← Labelled ∪ {X/V}

end if
end while
return Labelled

end DB

Foundations of constraint satisfaction, Roman Barták

Redundant work in backtrackingRedundant work in backtracking

What is redundant work?
repeated computation whose result has already been obtained

Example:
A,B,C,D :: 1..10, A+8<C, B=5*D

B

B=1 B=2 B=3 B=4 B=5

A
A=1

C
C=1 C=10 C=10 C=10 C=10

D
D=1 D=10 D=10 D=10 D=10

C=1

C

D=1

D

C=1

C

D=1

D

C=1

C

D=1

D

C=1

C

D=1
D

... C=10... ... … ...

Redundant computations:
it is not necessary to repeat them
because the change of B
does not influence C.

Foundations of constraint satisfaction, Roman Barták

BackmarkingBackmarking ((HaralickHaralick, Elliot , Elliot 19801980))

Removes redundant constraint checks by memorising
negative and positive tests:
– Mark(X,V) is the farthest (instantiated) variable in conflict with

the assignment X=V
– BackTo(X) is the farthest variable to which we backtracked since

the last attempt to instantiate X
Now, some constraint checks can be omitted:

Mark<BackTo Mark≥BackTo

Y

X=a

Y=b

X

Y=b

Y/b is inconsistent
with X/a (and
consistent with all
variables above X)

Y/b is still in conflict with
X/a, we do not need to
check it

Mark(Y,b)

BackTo(Y)

Y/b is inconsistent with
X/a (and consistent with
all variables above X)

Mark(Y,b)

BackTo(Y)

Y=b

X=?

Y/b is OK
here

Y/b must be
checked with
these variables

X=a

Y=b

X

Y

NASSLLI 2003: Foundations of Constraint Satisfaction

8

Foundations of constraint satisfaction, Roman Barták

BackmarkingBackmarking in practicein practice

N-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
1. Queens in rows are allocated to
columns.

3. Farthest conflict queen at each
position (MarkTo). At beginning 1s.

1 3 2 4 3 1 2 3

2. Latest choice level is written next to
chessboard (BackTo). At beginning 1s.

5. Backtrack to 5, change BackTo.

Note:
backmarking can be combined with backjumping (for free)

4. 6th queen cannot be allocated!

1 1

1 2 1 2

1

1 4 2

1

1

1

1

1

1

1

1
6. When allocating 6th queen, all the
positions are still wrong
(MarkTo<BackTo).

1 2 3

5

Foundations of constraint satisfaction, Roman Barták

procedure consistent(X/V, Labelled, Constraints, Level)
for each Y/VY/LY in Labelled such that LY≥BackTo(X) do

% only possible changed variables Y are explored
% in the increasing order of LY (first the oldest one)

if X/V is not compatible with Y/VY using Constraints then
Mark(X,V) ← LY
return fail

end if
end for
Mark(X,V) ← Level-1
return true

end consistent

Consistency check for Consistency check for backmarkingbackmarking

Only the constraints where any value is changed are re-checked,
and the farthest conflicting level is computed.

It is not necessary
to test it again
(it is satisfied)

It is not necessary
to test it again
(it is satisfied)

BackToBackTo 11

22

11 22 33 44 55 66

Foundations of constraint satisfaction, Roman Barták

Algorithm Algorithm backmarkingbackmarking

procedure BM(Unlabelled, Labelled, Constraints, Level)
if Unlabelled = {} then return Labelled
pick first X from Unlabelled % fix order of variables
for each value V from DX do

if Mark(X,V) ≥ BackTo(X) then % re-check the value
if consistent(X/V, Labelled, Constraints, Level) then

R ← BM(Unlabelled-{X}, Labelled ∪{X/V/Level}, Constraints, Level+1)
if R ≠ fail then return R % solution found

end if
end if

end for
BackTo(X) ← Level-1 % jump will be to the previous variable
for each Y in Unlabelled do % tell everyone about the jump

BackTo(Y) ← min {Level-1, BackTo(Y)}
end for
return fail % return to the previous variable

end BM

Foundations of constraint satisfaction, Roman Barták

Tree search and heuristicsTree search and heuristics
Observation 1:

The search space for real-life problems is so huge that it cannot be
fully explored.

Heuristics - a guide of search
– they recommend a value for assignment
– quite often leads to solution

What to do upon a failure of the heuristics?
BT cares about the end of search (a bottom part of the search tree)
– so it rather repairs later assignments than the earliest ones
– it assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search (as
search proceeds, more information for better decision is available).

Observation 3:
The number of heuristic violations is usually small.

Foundations of constraint satisfaction, Roman Barták

Limited Discrepancy SearchLimited Discrepancy Search
Discrepancy = heuristic is not followed

(a value different from the heuristic is chosen)
Idea of Limited Discrepancy Search (LDS):

– first, follow the heuristic
– when a failure occurs then explore the paths when the heuristic

is not followed maximally once (start with earlier violations)
– after next failure occurs then explore the paths when the

heuristic is not followed maximally twice...

Example:
the heuristic proposes to use the left branches

Foundations of constraint satisfaction, Roman Barták

Algorithm LDS (Harvey, Ginsberg Algorithm LDS (Harvey, Ginsberg 19951995))

procedure LDS-PROBE(Unlabelled,Labelled,Constraints,D)
if Unlabelled = {} then return Labelled
select X in Unlabelled
ValuesX ← DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then return fail
else select HV in ValuesX using heuristic

if D=0 then return LDS-PROBE(Unlabelled-{X}, Labelled∪{X/HV}, Constraints, 0)
for each value V from ValuesX -{HV} do

R ← LDS-PROBE(Unlabelled-{X}, Labelled∪{X/V}, Constraints, D-1)
if R≠ fail then return R

end for
return LDS-PROBE(Unlabelled-{X}, Labelled∪{X/HV}, Constraints, D)

end if
end LDS-PROBE

procedure LDS(Variables,Constraints)
for D=0 to |Variables| do % D is a number of allowed discrepancies

R ← LDS-PROBE(Variables,{},Constraints,D)
if R≠ fail then return R

end for
return fail

end LDS

NASSLLI 2003: Foundations of Constraint Satisfaction

9

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

Introduction to consistency techniquesIntroduction to consistency techniques

So far we used constraints in a passive way (as a test) …
…in the best case we analysed the reason of the conflict.

Cannot we use the constraints in a more active way?

Example:
A in 3..7, B in 1..5 the variables’ domains
A<B the constraint

many inconsistent values can be removed
we get A in 3..4, B in 4..5
Note: it does not mean that all the remaining combinations of the

values are consistent (for example A=4, B=4 is not consistent)

How to remove the inconsistent values from the variables’
domains in the constraint network?

Foundations of constraint satisfaction, Roman Barták

Node consistency (NC)Node consistency (NC)

Unary constraints are converted into variables’ domains.

Definition:
– The vertex representing the variable X is node consistent iff

every value in the variable’s domain Dx satisfies all the unary
constraints imposed on the variable X.

– CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure NC(G)
for each variable X in nodes(G)

for each value V in the domain DX
if unary constraint on X is inconsistent with V then

delete V from DX
end for

end for
end NC

Foundations of constraint satisfaction, Roman Barták

Arc consistency (AC)Arc consistency (AC)
Since now we will assume binary CSP only

i.e. a constraint corresponds to an arc (edge) in the
constraint network.

Definition:
– The arc (Vi,Vj) is arc consistent iff for each value x from the

domain Di there exists a value y in the domain Dj such that
the valuation Vi =x a Vj = y satisfies all the binary constraints
on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc
consistency of (Vi,Vj) does not guarantee consistency of (Vj,Vi).

– CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in
both directions).

Example:

3..7 1..5
A<B

no arc is consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent

A B

Foundations of constraint satisfaction, Roman Barták

Algorithm for arc revisionsAlgorithm for arc revisions

How to make (Vi,Vj) arc consistent?
Delete all the values x from the domain Di that are

inconsistent with all the values in Dj (there is no value y
in Dj such that the valuation Vi = x, Vj = y satisfies all
the binary constrains on Vi a Vj).

Algorithm of arc revision
procedure REVISE((i,j))

DELETED ← false
for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on Vi, Vj then

delete X from Di

DELETED ← true
end if

end for
return DELETED

end REVISE

The procedure also
reports the deletion
of some value.

The procedure also
reports the deletion
of some value.

Foundations of constraint satisfaction, Roman Barták

Algorithm ACAlgorithm AC--1 (1 (MackworthMackworth 19771977))

How to establish arc consistency among the constraints?

Doing revision of every arc is not enough!
Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

Make all the constraints consistent until any domain is changed.

Algorithm AC-1
procedure AC-1(G)

repeat
CHANGED ← false
for each arc (i,j) in G do

CHANGED ← REVISE((i,j)) or CHANGED
end for

until not(CHANGED)
end AC-1

NASSLLI 2003: Foundations of Constraint Satisfaction

10

Foundations of constraint satisfaction, Roman Barták

What is wrong with ACWhat is wrong with AC--1?1?

If a single domain is pruned then revisions of all the arcs
are repeated even if the pruned domain does not
influence most of these arcs.

What arcs should be reconsidered for revisions?

The arcs whose consistency is affected by the domain
pruning
i.e., the arcs pointing to the changed variable.

Omit the arc running out of
the variable whose domain
has been changed
(this arc is not affected by
the domain change).

Variable with
pruned domain

The arc whose
revision caused

the domain reduction

×

We can omit one more arc!

Foundations of constraint satisfaction, Roman Barták

Algorithm ACAlgorithm AC--2 (2 (MackworthMackworth 19771977))
A generalised version of the Waltz’s labelling algorithm.
In every step, the arcs going back from a given vertex are

processed (i.e. a sub-graph of visited nodes is AC)

Algorithm AC-2
procedure AC-2(G)

for i ← 1 to n do % n is a number of variables
Q ← {(i,j) | (i,j)∈arcs(G), j<i} % arcs for the base revision
Q’ ← {(j,i) | (i,j)∈arcs(G), j<i} % arcs for re-revision
while Q non empty do

while Q non empty do
select and delete (k,m) from Q
if REVISE((k,m)) then

Q’ ← Q’ ∪ {(p,k) | (p,k)∈arcs(G), p≤i, p≠m }
end while
Q ← Q’
Q’ ← empty

end while
end for

end AC-2

Foundations of constraint satisfaction, Roman Barták

Algorithm ACAlgorithm AC--3 (3 (MackworthMackworth 19771977))

Re-revisions can be done more elegant than in AC-2.
1) one queue of arcs for (re-)revisions is enough
2) only the arcs affected by domain reduction are added

to the queue (like AC-2)

Algorithm AC-3

procedure AC-3(G)
Q ← {(i,j) | (i,j)∈arcs(G), i≠j} % queue of arcs for revision
while Q non empty do

select and delete (k,m) from Q
if REVISE((k,m)) then

Q ← Q ∪ {(i,k) | (i,k)∈arcs(G), i≠k, i≠m}
end if

end while
end AC-3

AC-3 is the most widely used consistency algorithm
but it is still not optimal.

Foundations of constraint satisfaction, Roman Barták

Looking for (and remembering of) the supportLooking for (and remembering of) the support
Observation (AC-3):

Many pairs of values are tested for consistency in every
arc revision.

These tests are repeated every time the arc is revised.

a
b
c
d

a
b
c
d

a
b
c
d
V1 V2 V3

1. When the arc V2,V1 is revised, the
value a is removed from domain of V2.

2. Now the domain of V3, should be
explored to find out if any value
a,b,c,d loses the support in V2.

Observation:
The values a,b,c need not be checked again because
they still have a support in V2 different from a.

The support set for a∈Di is the set {<j,b> | b∈Dj , (a,b)∈Ci,j}

Cannot we compute the support sets once and then use
them during re-revisions?

×1

×2

Foundations of constraint satisfaction, Roman Barták

Computing support setsComputing support sets
A set of values supported by a given value (if the value disappears then

these values lost one support), and a number of own supporters are
kept.

procedure INITIALIZE(G)
Q ← {} , S ← {} % emptying the data structures
for each arc (Vi,Vj) in arcs(G) do

for each a in Di do
total ← 0
for each b in Dj do

if (a,b) is consistent according to the constraint Ci,j then
total ← total + 1
Sj,b ← Sj,b ∪ {<i,a>}

end if
end for
counter[(i,j),a] ← total
if counter[(i,j),a] = 0 then

delete a from Di
Q ← Q ∪ {<i,a>}

end if
end for

end for
return Q

end INITIALIZE

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

Computing and counting supporters

Foundations of constraint satisfaction, Roman Barták

Computing supports and how to use themComputing supports and how to use them
Situation:

we have just processed the arc (i,j) in INITIALIAZE

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3

Using the support sets:
1. Let b3 is deleted from the domain of j (for some reason).
2. Look at Sj,b3 to find out the values that were supported by b3
(i.e. <i,a2>,<i,a3>).
3. Decrease the counter for these values (i.e. tell them that they lost
one support).
4. If any counter is zero (a3) then delete the value and repeat the
procedure with the respective value (i.e., go to 1).

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3×1×2

1
00

NASSLLI 2003: Foundations of Constraint Satisfaction

11

Foundations of constraint satisfaction, Roman Barták

Algorithm ACAlgorithm AC--4 (Mohr, Henderson 4 (Mohr, Henderson 19861986))

The algorithm AC-4 has the optimal worst case!

Algorithm AC-4

procedure AC-4(G)
Q ← INITIALIZE(G)
while Q non empty do

select and delete any pair <j,b> from Q
for each <i,a> from Sj,b do

counter[(i,j),a] ← counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in Di then

delete "a" from Di

Q ← Q ∪ {<i,a>}
end if

end for
end while

end AC-4

Unfortunately the average efficiency is not so good
… plus there is a big memory consumption!

Foundations of constraint satisfaction, Roman Barták

Other arc consistency algorithmsOther arc consistency algorithms
AC-5 (Hentenryck, Deville, Teng 1992)

– a generic arc-consistency algorithm
– can be reduced both to AC-3 and AC-4
– exploits semantic of the constraint

functional, anti-functional, and monotonic constraints

AC-6 (Bessiere 1994)
– improves memory complexity and average time

complexity of AC-4
– keeps one support only, the next support is looked

for when the current support is lost

AC-7 (Bessiere, Freuder, Regin 1999)
– based on computing supports (like AC-4 and AC-6)
– exploits symmetry of the constraint

Foundations of constraint satisfaction, Roman Barták

Directional arc consistency (DAC)Directional arc consistency (DAC)

Observation 1: AC has a directional character but CSP is
not directional.

Observation 2: AC has to repeat arc revisions; the total
number of revisions depends on the number of arcs but
also on the size of domains (while cycle).

Is it possible to weaken AC in such a way that every arc is
revised just once?

Definition: CSP is directional arc consistent using a given
order of variables iff every arc (i,j) such that i<j is arc
consistent.

Again, every arc has to be revised, but revision in one
direction is enough now.

Foundations of constraint satisfaction, Roman Barták

Algorithm DACAlgorithm DAC--11

1) Consistency of the arc is required just in one direction.
2) Variables are ordered

Ä there is no directed cycle in the graph!

procedure DAC-1(G)
for j = |nodes(G)| to 1 by -1 do

for each arc (i,j) in G such that i<j do
REVISE((i,j))

end for
end for

end DAC-1

Algorithm DAC-1

If the arc are explored in a „good“ order, no revision has to be repeated!

1 2 3 4 5

1

2

6

5

4

3

Foundations of constraint satisfaction, Roman Barták

How to use DACHow to use DAC

AC visibly covers DAC (if CSP is AC then it is DAC as well)
So, is DAC useful?

– DAC-1 is surely much faster than any AC-x
– there exist problems where DAC is enough

Example: If the constraint graph forms a tree then DAC is
enough to solve the problem without backtracks.

How to order the vertices for DAC?
How to order the vertices for search?

1. Apply DAC in the order from
the root to the leaf nodes.

2. Label vertices starting from
the root.

DAC guarantees that there is a
value for the child node
compatible with all the parents.

Foundations of constraint satisfaction, Roman Barták

Relation between DAC and ACRelation between DAC and AC

Observation: CSP is arc consistent iff for some order of the
variables, the problem is directional arc consistent in
both directions.

Is it possible to achieve AC by applying DAC in both primal
and reverse direction?

In general NO, but …

Example:
X in {1,2}, Y in {1}, Z in {1,2}, X≠Z,Y<Z

using the order X,Y,Z
there is no domain
change

using the order Z,Y,X, the
domain of Z is changed but
the graph is not AC

However if the order Z,Y,X is used then we get AC!

{1,2}
X Y

Z
{1,2}

{1}

X≠Z Y<Z

{1,2}
X Y

Z
{2}

{1}

X≠Z Y<Z

NASSLLI 2003: Foundations of Constraint Satisfaction

12

Foundations of constraint satisfaction, Roman Barták

From DAC to AC for treeFrom DAC to AC for tree--structured CSPstructured CSP

If we apply DAC to tree-structured CSP first using the
order from the root to the leaf nodes and second in the
reverse direction then we get (full) arc consistency.

Proof:

together: every value has some support in the child nodes (the first run)
as well as in the parent node (the second run), i.e., we have AC

if any value is deleted during
the second run of DAC (in the
reverse direction) then this
value does not support any
value in the parent node (the
values in the parent node does
not lose any support)

the first run of DAC ensures that
any value in the parent node has
a support (a compatible value) in
all the child nodes

×

× ×
×

a b

p q r u v

a b c
5 4

3 2

1

a b

p q r u v

a b c
1 2

3 4

5

Foundations of constraint satisfaction, Roman Barták

Is arc consistency enough?Is arc consistency enough?

By using AC we can remove many incompatible values
– Do we get a solution?
– Do we know that there exists a solution?

Unfortunately, the answer to both above questions is NO!
Example:

X

Y
Z

X≠Z
X≠Y

Y≠Z

{1,2}

{1,2} {1,2}

CSP is arc consistent
but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC

• any domain is empty → no solution exists
• all the domains are singleton → we have a solution

In general, AC prunes the search space.

Foundations of constraint satisfaction, Roman Barták

Consistency techniques in practiceConsistency techniques in practice
N-ary constraints are processed directly!

The constraint CY is arc consistent iff for every variable i
constrained by CY and for every value v∈Di there is an
assignment of the remaining variables in CY such that
the constraint is satisfied.

Example: A+B=C, A in 1..3, B in 2..4, C in 3..7 is AC

Constraint semantics is used!
Interval consistency

working with intervals rather than with individual values
interval arithmetic
Example: after change of A we compute A+B → C, C-A → B

bounded consistency
only lower and upper bound of the domain are propagated

Such techniques do not provide full arc consistency!

It is possible to use different levels of consistency for
different constraints!

Foundations of constraint satisfaction, Roman Barták

Base propagation algorithmBase propagation algorithm

Based on generalisation of AC-3.
Repeat constraint revisions until any domain is changed.

procedure AC-3(C)
Q ← C % a list of constraints for revision
while Q non empty do

select and delete c from Q
REVISE(c,Q)

end while
end AC-3

The REVISE procedure is customised for each constraint.
we get algorithms with various consistency levels

Constraint planning
How to choose the order of constraints for revisions (a queue Q)?
Event driven programming

event = domain change
REVISE generates new events that evoke further filtering

Foundations of constraint satisfaction, Roman Barták

Design of consistency algorithmsDesign of consistency algorithms
The user can often define the code of REVISE procedure.
How to do it?

1) Decide about the event to evoke the filtering
when the domain of involved variable is changed

• whenever the domain changes
• when minimum/maximum bound is changed
• when the variable becomes singleton

different suspensions for different variables
Example: A<B filtering evoked after change of min(A) or max(B)
• directional consistency

2) Design the filtering algorithm for the constraint
the result of filtering is the change of domains
more filtering procedures for a single constraint are allowed
Example: A<B

min(A): B in min(A)+1..sup, max(B): A in inf..max(B)-1

Foundations of constraint satisfaction, Roman Barták

Definition of a constraint (Definition of a constraint (SICStusSICStus PrologProlog))
How to describe propagation through A<B?

bound consistency is enough for full consistency!

less_then(A,B):-
fd_global(a2b(A,B),no_state,[min(A)]),
fd_global(b2a(A,B),no_state,[max(B)]).

dispatch_global(a2b(A,B),S,S,Actions):-
fd_min(A,MinA), fd_max(A,MaxA), fd_min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
; LowerBoundB is MinA+1,

Actions = [B in LowerBoundB..sup]).

dispatch_global(b2a(A,B),S,S,Actions):-
fd_max(A,MaxA), fd_min(B,MinB), fd_max(B,MaxB),
(MaxA<MinB ->

Actions = [exit]
; UpperBoundA is MaxB-1,

Actions = [A in inf..UpperBoundA]).

NASSLLI 2003: Foundations of Constraint Satisfaction

13

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

Path consistency (PC)Path consistency (PC)

How to strengthen the consistency level?
More constraints are assumed together!

Definition:
– The path (V0,V1,…, Vm) is path consistent iff for every pair of

values x∈D0 a y∈Dm satisfying all the binary constraints on V0,Vm
there exists an assignment of variables V1,…,Vm-1 such that all
the binary constraints between the neighbouring variables
Vi,Vi+1 are satisfied.

– CSP is path consistent iff every path is consistent.

Attention!
Path consistency does not guarantee that all the
constraints among the variables on the path are
satisfied; only the constraints between the neighbouring
variables must be satisfied.

V0 V1

V2
V3

V4

???

Foundations of constraint satisfaction, Roman Barták

PC and paths of length 2 (PC and paths of length 2 (MontanariMontanari))

It is not very practical to ensure consistency of all paths
fortunately, only the paths of length 2 can be explored!

Theorem: CSP is PC iff every path of length 2 is PC.
Proof:

1) PC ⇒ paths of length 2 are PC
2) (paths of length 2 are PC ⇒ ∀N paths of length N are PC) ⇒ PC
induction using the path length

a) N=2 visibly satisfied
b) N+1 (proposition already holds for N)

i) take arbitrary N+1 vertices V0,V1,…, Vn

ii) take arbitrary pair of compatible values x0∈D0 a xn∈Dn

iii) from a) we can find xn-1∈Dn-1 s.t. constraints C0,n-1 a Cn-1,n hold
iv) from the induction we can find the values for V0,V1,…, Vn-1

0

nn-1

1

Foundations of constraint satisfaction, Roman Barták

Relation between PC and ACRelation between PC and AC

Does PC subsume AC (i.e. if CSP is PC, is it AC as well)?
– the arc (i, j) is consistent (AC) if the path (i,j,i) is

consistent (PC)
– thus PC implies AC

Is PC stronger than AC (is there any CSP that is AC but not
PC)?
Example: X in {1,2}, Y in {1,2}, Z in {1,2}, X≠Z, X≠Y, Y≠Z

it is AC, but not PC (X=1, Z=2 cannot be extended to X,Y,Z)

AC removes incompatible values from the domains,
what will be done in PC?

– PC removes pairs of values
– PC makes constraints explicit (A<B,B<C ⇒ A+1<C)
– a unary constraint = a variable’s domain

Foundations of constraint satisfaction, Roman Barták

A matrix representation of constraintsA matrix representation of constraints

In PC we need to exclude the pairs of values
Ä the constraints must be represented in explicit form

Binary constraint = {0,1}-matrix
0 - the values are incompatible
1 - the values are compatible

Example:
5-queens problem
the constraint between queens i, j: r(i)≠r(j) & |i-j| ≠ |r(i)-r(j)|

1
2
3

4

5

A B C D Ea matrix for
queens A(1), B(2)

a matrix for
queens A(1), C(3)

×
×××

×0 0 1 1 1
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0

0 1 0 1 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
1 1 0 1 0

Foundations of constraint satisfaction, Roman Barták

Operations over the constraintsOperations over the constraints

Intersection Rij & R‘ij
bitwise AND

A<B & A≥B-1 → B-1≤A<B
011 110 010
001 & 111 = 001
000 111 000

Composition Rik * Rkj → Rik

binary matrix multiplication
A<B * B<C → A<C-1
011 011 001
001 * 001 = 000
000 000 000

The induced constraint is joined with the original constraint
Rij & (Rik * Rkj) → Rij

R25 & (R21 * R15) → R25
01101 00111 01110 01101
10110 00011 10111 10110
11011 & 10001 * 11011 = 01010
01101 11000 11101 01101
10110 11100 01110 10110

1
2

3
4

5

A B C D E

×
×

×

×××××
Notes:

Rij = RT
ji, Rii is a diagonal matrix representing the domain

REVISE((i,j)) from AC is equivalent to Rii ← Rii & (Rij * Rjj * Rji)

NASSLLI 2003: Foundations of Constraint Satisfaction

14

Foundations of constraint satisfaction, Roman Barták

Composing the constraints on the pathComposing the constraints on the path

A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2

A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

Foundations of constraint satisfaction, Roman Barták

Algorithm PCAlgorithm PC--1 (1 (MackworthMackworth 19771977))

How to make the path (i,k,j) consistent?
Rij ← Rij & (Rik * Rkk * Rkj)

How to make a CSP consistent?
Repeated revisions of all paths (of length 2) while any domain

changes.
Algorithm PC-1

procedure PC-1(Vars,Constraints)
n ← |Vars|, Yn ← Constraints
repeat

Y0 ← Yn

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
Yk

ij ← Yk-1
ij & (Yk-1

ik * Yk-1
kk * Yk-1

kj)
until Yn=Y0

Constraints ← Y0

end PC-1

If we use
Yk

ii ← Yk-1
ii & (Yk-1

ik * Yk-1
kk * Yk-1

ki)
then we get AC-1

Foundations of constraint satisfaction, Roman Barták

How to improve PCHow to improve PC--1?1?

Is there any inefficiency in PC-1?
just a few „bits“
– it is not necessary to keep all copies of Yk

one copy and a bit indicating the change is enough
– some operations produce no modification (Yk

kk = Yk-1
kk)

– half of the operations can be removed (Yji = YT
ij)

the grand problem
– after domain change all the paths are re-revised

it is enough to revise just the influenced paths
Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z ← Yij & (Yik * Ykk * Ykj)
if Z=Yij then return false
Yij ← Z
return true

end REVISE_PATH

If the domain is pruned
then the influenced

paths will be revised.

Foundations of constraint satisfaction, Roman Barták

Which paths are influenced by the revision?Which paths are influenced by the revision?

Because Yji = Yt
ij it is enough to revise only the paths (i,k,j) where i≤j.

Let the domain of the constraint (i,j) is changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
the paths (i,j,j), (i,i,j) are not revised again (no change)
Sa = {(i,j,m) | i ≤ m ≤ n & m≠j}

∪ {(m,i,j) | 1 ≤ m ≤ j & m≠i}
∪ {(j,i,m) | j < m ≤ n}
∪ {(m,j,i) | 1 ≤ m < i}

| Sa | = 2n-2

i j

Situation b: i=j
all the paths containing i in the middle of the path are re-revised
the paths (i,i,i) and (k,i,k) are not revised again
Sb = {(p,i,m) | 1 ≤ m ≤ n & 1 ≤ p ≤ m} - {(i,i,i),(k,i,k)}
| Sb | = n*(n-1)/2 - 2

Foundations of constraint satisfaction, Roman Barták

Algorithm PCAlgorithm PC--2 (2 (MackworthMackworth 19771977))

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

Algorithm PC-2

procedure PC-2(G)
n ← |nodes(G)|
Q ← {(i,k,j) | 1 ≤ i ≤ j ≤ n & i≠k & j≠k}
while Q non empty do

select and delete (i,k,j) from Q
if REVISE_PATH((i,k,j)) then

Q ← Q ∪ RELATED_PATHS((i,k,j))
end while

end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return Sa else return Sb

end RELATED_PATHS

Foundations of constraint satisfaction, Roman Barták

Other path consistency algorithmsOther path consistency algorithms

PC-3 (Mohr, Henderson 1986)
– based on computing supports for a value (like AC-4)
– this algorithm is not sound!

If the pair (a,b) at the arc (i,j) is not supported by another
variable, then a is removed from Di and b is removed from Dj.

PC-4 (Han, Lee 1988)
– correction of the PC-3 algorithm
– based on computing supports of pairs (b,c) at arc (i,j)

PC-5 (Singh 1995)
– uses the ideas behind AC-6
– only one support is kept and a new support is looked

for when the current support is lost

NASSLLI 2003: Foundations of Constraint Satisfaction

15

Foundations of constraint satisfaction, Roman Barták

Drawbacks of path consistencyDrawbacks of path consistency

Memory consumption
– because PC eliminates pairs of values, we need to keep all the

compatible pairs extensionally, e.g. using {0,1}-matrix

Bad ratio strength/efficiency
– PC removes more (or same) inconsistencies than AC, but the

strength/efficiency ratio is much worse than for AC

Modifies the constraint network
– PC adds redundant arcs (constraints) and thus it changes

connectivity of the constraint network
– this complicates using heuristics derived from the structure of

the constraint network (like tightness, graph width etc.)

PC is still not a complete technique
– A,B,C,D in {1,2,3}

A≠B, A≠C, A≠D, B≠C, B≠D, C≠D
is PC but has not solution

1,2,3 1,2,3

1,2,3 1,2,3

≠

≠

≠

≠
≠ ≠

Foundations of constraint satisfaction, Roman Barták

Half way between AC and PCHalf way between AC and PC

Can we make an algorithm:
– stronger than AC,
– without drawbacks of PC (memory consumption, changing the

constraint network)?

Restricted path consistency (Berlandier 1995)
based on AC-4 (uses the support sets)
as soon as a value has only one support in another

variable, PC is evoked for this pair of values

e f

a
b c

d

e f

a
b c

d

×
×

×

Foundations of constraint satisfaction, Roman Barták

kk--consistencyconsistency

Is there a common formalism for AC and PC?
AC: a value is extended to another variable
PC: a pair of values is extended to another variable
… we can continue

Definition: CSP is k-consistent iff any consistent
valuation of (k-1) different variables can be extended to
a consistent valuation of one additional variable.

1,2,3 1,2,3 1,2,3 4

≠

≠

≠ ≠ ≠

4-consistent graph

Foundations of constraint satisfaction, Roman Barták

Strong kStrong k--consistencyconsistency

Definition: CSP is strongly k-consistent iff it is
j-consistent for every j≤k.

Visibly: strong k-consistency ⇒ k-consistency
Moreover: strong k-consistency ⇒ j-consistency ∀j≤k
In general: ¬ k-consistency ⇒ strong k-consistency

NC = strong 1-consistency = 1-consistency
AC = (strong) 2-consistency
PC = (strong) 3-consistency

sometimes we call NC+AC+PC together strong path consistency

1,2 1,2 1,2,3= =

=

3-consistent graph

but not 2-consistent graph!

Foundations of constraint satisfaction, Roman Barták

What What kk--consistencyconsistency is enough?is enough?

Assume that the number of vertices is n. What level of
consistency do we need to find out the solution?

Strong n-consistency for graphs with n vertices!
n-consistency is not enough - see the previous example
strong k-consistency where k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

≠

≠

≠
≠

≠

≠ ≠

≠

…

…

graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

(D)AC is enough!
Because this a tree..

Foundations of constraint satisfaction, Roman Barták

BacktrackBacktrack--free searchfree search

Definition: CSP is solved using backtrack-free search if for some
order of variables we can find a value for each variable compatible
with the values of already assigned variables.

1, 2 1, 2=

<

<

1, 2, 31, 2, 3
1 2 3 4

How to find out a sufficient consistency level for a given graph?

Some observations:
• variable must be compatible with all the “former” variables

i.e., across the „backward“ edges
• for k „backward“ edges we need (k+1)-consistency
• let m be the maximum of backward edges for all the vertices,

then strong (m+1)-consistency is enough
• the number of backward edges is different for different variable order
• of course, the order minimising m is looked for

NASSLLI 2003: Foundations of Constraint Satisfaction

16

Foundations of constraint satisfaction, Roman Barták

Graph widthGraph width

Ordered graph is a graph with a given total order of vertices.
Vertex width in the ordered graph is the number of edges going back

from this vertex.
Width of the ordered graph is maximum among the width of vertices.
Graph width is the maximum among the widths of its ordered graphs.

a

cb

a

c

b

a

b

c

b

c

a

b

a

c

c

b

a

c

a

b

1 1 1 2 1 2
Graph width is 1.

procedure MinWidthOrdering((V,E))
Q ← {}
while V not empty do

N ← select and delete node with the smallest #edges from (V,E)
enqueue N to Q

return Q
end MinWidthOrdering

Foundations of constraint satisfaction, Roman Barták

Graph width and consistency levelGraph width and consistency level

Theorem: Let w be the width of the constraint graph. If the constraint
graph is strongly k-consistent for any k>w then there exists an order
of variables giving backtrack-free solution.

Proof:
w is a graph width, i.e., there is some ordered graph of this width
thus the max. number of backward edges for each vertex is w
let us assign the variables in the order given by this ordered graph
now, if the variable is being labelled:

• we must find a value compatible with the labelled variables
connected with the current variable

• let there is m such variables, then m ≤ w
• the graph is (m+1)-consistent, thus a compatible value must exist

1 … i j l… … …

at most w

Foundations of constraint satisfaction, Roman Barták

(i,j)(i,j)--consistencyconsistency

k-consistency extends instantiation of (k-1) variables to a new variable,
we remove (k-1)- tuples that cannot be extended to another variable.

Definition: CSP is (i,j)-consistent iff every consistent instantiation
of i variables can be extended to a consistent instantiation
of any j additional variables.

CSP is strongly (i,j)-consistent, iff it is (k,j)-consistent for every k≤i.

k-consistency = (k-1,1) consistency
AC = (1,1) consistency
PC = (2,1) consistency

We can do even more!

…

… …

Foundations of constraint satisfaction, Roman Barták

Inverse consistenciesInverse consistencies

Worst case time and space complexity of (i,j)-consistency is
exponential in i, moreover we need to record forbidden i-tuples
extensionally (see PC).

What about keeping i=1 and increasing j?
We already have such an example:

RPC is (1,1)-consistency and sometimes (1,2)-consistency

Definition: (1,k-1)-consistency is called k-inverse consistency.

We remove values from the domain that cannot be consistently
extended to additional (k-1) variables.

Inverse path consistency (PIC) = (1,2)-consistency

Neighbourhood inverse consistency (NIC) (Freuder , Elfe 1996)

We remove values of v that cannot be consistently extended to the
set of variables directly linked to v.

Foundations of constraint satisfaction, Roman Barták

Singleton consistenciesSingleton consistencies

Can we strengthen any consistency technique?
YES! Let’s assign a value and make the rest of the problem consistent.

Definition: CSP P is singleton A-consistent for some notion of
A-consistency iff for every value h of any variable X the problem
P|X=h| is A-consistent.

Features:

+ we remove only values from variable’s domain - like NIC and RPC

+ easy implementation (meta-programming)

- not so good time complexity (be careful when using SC)

1) singleton A-consistency ≥ A-consistency

2) A-consistency ≥ B-consistency ⇒
singleton A-consistency ≥ singleton B-consistency

3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)

4) strong (i+1,j)-consistency > singleton (i,j)-consistency (PC>SAC)

Foundations of constraint satisfaction, Roman Barták

Consistency techniques at glanceConsistency techniques at glance

##

NC = 1- consistency
AC = 2- consistency = (1,1)- consistency
PC = 3- consistency = (2,1)- consistency
PIC = (1,2)- consistency

a stronger techniquea stronger technique

incomparable techniquesincomparable techniques

NICNIC

####

SRPCSRPC

##

strong PCstrong PC

SACSAC PICPIC RPCRPC ACAC

NASSLLI 2003: Foundations of Constraint Satisfaction

17

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

How to solve the constraint problems?How to solve the constraint problems?
In addition to local search we have two other methods:

depth-first search
• complete (finds a solution or proves its non-existence)
• too slow (exponential)

explores “visibly” wrong valuations

consistency techniques
• usually incomplete (inconsistent values stay in domains)
• pretty fast (polynomial)

Share advantages of both approaches - combine them!
– label the variables step by step (backtracking)
– maintain consistency after assigning a value

Do not forget about traditional solving techniques!
Linear equality solvers, simplex …
such techniques can be integrated to global constraints!

Foundations of constraint satisfaction, Roman Barták

Core search procedure Core search procedure -- depthdepth--first searchfirst search

The basic constraint satisfaction technology:
– label the variables step by step

the variables are marked by numbers and labelled in a given order

– ensure consistency after variable assignment

A skeleton of search procedure
procedure Labelling(G)

return LBL(G,1)
end Labelling

procedure LBL(G,cv)
if cv>|nodes(G)| then return nodes(G)
for each value V from Dcv do

if consistent(G,cv) then
R ← LBL(G,cv+1)
if R ≠ fail then return R

end if
end for
return fail

end LBL

A „hook“ for consistency
procedure

Foundations of constraint satisfaction, Roman Barták

Look back techniquesLook back techniques

“Maintain” consistency among the already labelled variables.
„look back“ = look to already labelled variables

What’s result of consistency maintenance among labelled variables?
a conflict (and/or its source - a violated constraint)

Backtracking is the basic look back method.

Backward consistency checks
procedure AC-BT(G,cv)

Q ← {(Vi,Vcv) in arcs(G),i<cv} % arcs to labelled variables.
consistent ← true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
consistent ← not REVISE(Vk,Vm)

end while
return consistent

end AC-BT

Backjumping & comp. uses information about the violated constraints.

When a value is deleted,
the domain is empty

When a value is deleted,
the domain is empty

Foundations of constraint satisfaction, Roman Barták

Forward checkingForward checking

It is better to prevent failures than to detect them only!
Consistency techniques can remove incompatible values for future

(=not yet labelled) variables.
Forward checking ensures consistency between the currently

labelled variables and the variables connected to it via constraints.

Forward consistency checks

procedure AC-FC(G,cv)
Q ← {(Vi,Vcv) in arcs(G),i>cv} % arcs to future variables
consistent ← true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

consistent ← not empty Dk
end if

end while
return consistent

end AC-FC

Empty domain implies
inconsistency

Empty domain implies
inconsistency

Foundations of constraint satisfaction, Roman Barták

Partial look aheadPartial look ahead

We can extend the consistency checks to more future variables!
The value assigned to the current variable can be propagated to all

future variables.
Partial lookahead consistency checks

Notes:
In fact DAC is maintained (in the order reverse to the labelling order).

Partial Look Ahead or DAC - Look Ahead
It is not necessary to check consistency of arcs between the future

variables and the past variables (different from the current variable)!

procedure DAC-LA(G,cv)
for i=cv+1 to n do

for each arc (Vi,Vj) in arcs(G) such that i>j & j≥cv do
if REVISE(Vi,Vj) then

if empty Di then return fail
end for

end for
return true

end DAC-LA

NASSLLI 2003: Foundations of Constraint Satisfaction

18

Foundations of constraint satisfaction, Roman Barták

Full look aheadFull look ahead
Knowing more about far future is an advantage!
Instead of DAC we can use a full AC (e.g. AC-3).

Full look ahead consistency checks

procedure AC3-LA(G,cv)
Q ← {(Vi,Vcv) in arcs(G),i>cv} % start with arcs going to cv
consistent ← true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

Q ← Q ∪ {(Vi,Vk) | (Vi,Vk) in arcs(G),i≠k,i≠m,i>cv}
consistent ← not empty Dk

end if
end while
return consistent

end AC3-LA

Notes:
– The arcs going to the current variable are checked exactly once.
– The arcs to past variables are not checked at all.
– It is possible to use other than AC-3 algorithms (e.g. AC-4)

Foundations of constraint satisfaction, Roman Barták

Comparison of solving methods (4 queens)Comparison of solving methods (4 queens)

Backtracking is not very good
19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts

Foundations of constraint satisfaction, Roman Barták

Constraint propagation at glanceConstraint propagation at glance

l Propagating through more constraints remove more inconsistencies
(BT < FC < PLA < LA), of course it increases complexity of the step.

l Forward Checking does no increase complexity of backtracking, the
constraint is just checked earlier in FC (BT tests it later).

l When using AC-4 in LA, the initialisation is done just once.
l Consistency can be ensured before starting search

Algorithm MAC (Maintaining Arc Consistency)
AC is checked before search and after each assignment

l It is possible to use stronger consistency techniques (e.g. use them
once before starting search).

1 2 3 4 5 6 7 8

Past (already labelled) variables Future (free) variablescv

backtracking forward checking look ahead

Foundations of constraint satisfaction, Roman Barták

Variable orderingVariable ordering

Variable ordering in labelling influence significantly efficiency of solvers
(e.g. in tree-structured CSP).

What variable ordering should be chosen in general?
FIRST-FAIL principle

„select the variable whose instantiation will lead to failure“
it is better to tackle failures earlier, they can be become even harder
– prefer the variables with smaller domain (dynamic order)

a smaller number of choices ~ lower probability of success
the dynamic order is appropriate only when new information appears

during solving (e.g., in look ahead algorithms)

„solve the hard cases first, they may become even harder later“
– prefer the most constrained variables

it is more complicated to label such variables (it is possible to assume
complexity of satisfaction of the constraints)

this heuristic is used when there is an equal size of the domains

– prefer the variables with more constraints to past variables
a static heuristic that is useful for look-back techniques

Foundations of constraint satisfaction, Roman Barták

Value orderingValue ordering

Order of values in labelling influence significantly efficiency (if we
choose the right value each time, no backtrack is necessary).

What value ordering for the variable should be chosen in general?
SUCCEED FIRST principle

„prefer the values belonging to the solution“
if no value is part of the solution then we have to check all values
if there is a value from the solution then it is better to find it soon
SUCCEED FIRST does not go against FIRST-FAIL !
– prefer the values with more supporters

this information can be found in AC-4

– prefer the value leading to less domain reduction
this information can be computed using singleton consistency

– prefer the value simplifying the problem
solve approximation of the problem (e.g. a tree)

Generic heuristics are usually too complex for computation.
It is better to use problem-driven heuristics that propose the value!

Foundations of constraint satisfaction, Roman Barták

Constraint optimisationConstraint optimisation

So far we have looked for feasible assignments only.

In many cases the users require optimal assignments
where optimality is defined by an objective function.

Definition: Constraint Satisfaction Optimisation Problem
(CSOP) consists of the standard CSP P and an
objective function f mapping feasible solutions of P to
numbers.

Solution to CSOP is a solution of P minimising /
maximising the value of the objective function f.

To find a solution of CSOP we need in general to explore
all the feasible valuations. Thus, the techniques
capable to provide all the solutions of CSP are used.

NASSLLI 2003: Foundations of Constraint Satisfaction

19

Foundations of constraint satisfaction, Roman Barták

Branch and boundBranch and bound
Branch and bound is perhaps the most widely used

optimisation technique based on cutting sub-trees where
there is no optimal (better) solution.

It is based on the heuristic function h that approximates
the objective function.
a sound heuristic for minimisation satisfies h(x)≤f(x)

[in case of maximisation f(x)≤h(x)]
a function closer to the objective function is better

During search, the sub-tree is cut if
– there is no feasible solution in the sub-tree
– there is no optimal solution in the sub-tree

bound ≤ h(x), where bound is max. value of feasible solution

How to get the bound?
It could be an objective value of the best solution so far.

Foundations of constraint satisfaction, Roman Barták

BB and constraint satisfactionBB and constraint satisfaction

Objective function can be modelled as a constraint
looking for the “optimal value” of v, s.t. v = f(x)

l first solution is found without any bound on v
l next solutions must be better then so far best (v<Bound)

l repeat until no more feasible solution exist

Algorithm Branch & Bound
procedure BB-Min(Variables, V, Constraints)

Bound ← sup
NewSolution ← fail
repeat

Solution ← NewSolution
NewSolution ← Solve(Variables,Constraints ∪ {V<Bound})
Bound ← value of V in NewSolution (if any)

until NewSolution = fail
return Solution

end BB-Min

Foundations of constraint satisfaction, Roman Barták

Some notes on branch and boundSome notes on branch and bound
Heuristic h is hidden in propagation through the constraint v = f(x).
Efficiency is dependent on:

– a good heuristic (good propagation of the objective function)
– a good first feasible solution (a good bound)

the initial bound can be given by the user to filter bad valuations

The optimal solution can be found fast
proof of optimality can be long (exploring of the rest part of tree)

The optimality is often not required, a good enough solution is OK.
– BB can stop when reach a given limit of the objective function

Speed-up of BB: both lower and upper bounds are used

repeat
TempBound ← (UBound+LBound) / 2
NewSolution ← Solve(Variables,Constraints ∪ {V≤TempBound})
if NewSolution=fail then

LBound ← TempBound+1
else

UBound ← TempBound
until LBound = UBound

Foundations of constraint satisfaction, Roman Barták

A motivation A motivation -- robot dressing problemrobot dressing problem
Dress a robot using minimal wardrobe and fashion rules.
Variables and domains:

shirt: {red, white}
footwear: {cordovans, sneakers}
trousers: {blue, denim, grey}

Constraints:
shirt x trousers: red-grey, white-blue, white-denim
footwear x trousers: sneakers-denim, cordovans-grey
shirt x footwear: white-cordovans

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

NO FEASIBLE SOLUTION
satisfying all the constraints

We call the problems where no feasible solution exists
over-constrained problems.

Foundations of constraint satisfaction, Roman Barták

First solution to the robot dressing problemFirst solution to the robot dressing problem

There is no feasible valuation but we need to dress robot!
1) buy new wardrobe

enlarge the domain of some variable
2) less elegant wardrobe

enlarge the domain of some constraint
3) no matching of shoes and shirt

remove some constraint
4) do not wear shoes

remove some variable

Enlarged constraint
domain

enlarge the domain of some constraint

Domain is defined by a
unary constraint

All combinations are
assumed feasible

Delete the constraint
bounding the variable

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

Foundations of constraint satisfaction, Roman Barták

Partial constraint satisfactionPartial constraint satisfaction

First let us define a problem space as a partially ordered set of CSPs
(PS,≤), where P1≤P2 iff the solution set of P2 is a subset of the
solution set of P1.

The problem space can be obtained by weakening the original problem.

Partial Constraint Satisfaction Problem (PCSP) is a quadruple
〈P,(PS,≤),M,(N,S)〉
– P is the original problem
– (PS,≤) is a problem space containing P
– M is a metric on the problem space defining the problem distance

M(P,P‘) could be a number of different solutions of P a P‘
or the number of different tuples in the constraint domains

– N is a maximal allowed distance of the problems
– S is a sufficient distance of the problems (S<N)

Solution to PCSP is a problem P‘ and its solution such that P‘∈PS and
M(P,P‘)≤ N. A sufficient solution is a solution s.t. M(P,P‘) ≤ S.
The optimal solution is a solution with the minimal distance to P.

NASSLLI 2003: Foundations of Constraint Satisfaction

20

Foundations of constraint satisfaction, Roman Barták

Second solution of the robot dressing problemSecond solution of the robot dressing problem

It is possible to assign a preference to each constraint to
describe priorities of satisfaction of the constraints.

The preference describes a strict priority.
a stronger constraint is preferred to arbitrary number of weaker

constraints

shirt x trousers @ required
footwear x trousers @ strong
shirt x footwear @ weak red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

Constraints marked by a preference make a hierarchy, thus
we are speaking about constraint hierarchies.

Foundations of constraint satisfaction, Roman Barták

Constraint hierarchiesConstraint hierarchies

Every constraint is labelled by a preference (the set of
preferences is totally ordered)
– there is a special preference required, marking constraints that

must be satisfied (hard constraints)
– the other constraints are preferential, their satisfaction is not

required (soft constraints)

Constraint hierarchy H is a finite (multi)set of labelled
constraints.
H0 is a set of the required constraints (the label is removed)
H1 is a set of the most preferred soft constraints
…

A solution to the hierarchy is an assignment satisfying all the
required constraints and satisfying best the preferential
constraints.
SH,0 = {σ | ∀c∈H0 , cσ holds}

SH = {σ | σ∈SH,0 & ∀ω∈SH,0 ¬ better(ω,σ,H) }

Foundations of constraint satisfaction, Roman Barták

Third solution of the robot dressing problemThird solution of the robot dressing problem

It is possible to assign a value to each constraint to
describe the weight of the constraint.

The task is to minimise the sum of weights of violated
constraints.

shirt x trousers @ +∞
footwear x trousers @ 5
shirt x footwear @ 4 red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

This Weighted CSP can be generalised into Valued CSP .

Foundations of constraint satisfaction, Roman Barták

Valued Constraint SatisfactionValued Constraint Satisfaction

Basic idea:
– some valuation is associated to each constraint
– valuations of violated constraints are aggregated
– the assignment with the best aggregated valuation is chosen

Valuation structure (E,⊗,>,⊥,T), where
– E is set of valuations totally ordered by >, with a minimum

element ⊥ and a maximum element T
– ⊗ is a commutative, associative binary operation on E with the

unit element ⊥ (⊥⊗a=a), the absorbing element T (T⊗a=T) and
preserving monotonicity (a≥b ⇒ a⊗c ≥ b⊗c)

Constraints C are mapped to E via function ϕ: C→E.

The assignment A with the smallest aggregated valuation
v(A) is the solution:

)()(

c A violates

cAv
Cc

ϕ⊗=
∈

Foundations of constraint satisfaction, Roman Barták

Fourth solution of the robot dressing problemFourth solution of the robot dressing problem

It is possible to assign a preference to each pair (tuple) in
the constraint.

The task is to maximise the product of preferences for the
assignment projections into all constraints.

shirt x trousers: red-grey (1), white-blue (1), white-denim (0.9)
footwear x trousers: sneakers-denim (1), cordovans-grey (1)
shirt x footwear: white-cordovans (0.8)
all other pairs have the value 0.1

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

This Probabilistic CSP can be generalised into Semiring-based CSP .
Foundations of constraint satisfaction, Roman Barták

SemiringSemiring--based Constraint Satisfactionbased Constraint Satisfaction
Basic idea:

– each tuple in the constraint is marked by a preference level
expressing how good the tuple satisfies the constraint

– preference levels of tuple projections are aggregated
– the assignment with the best aggregated valuation is chosen

C-semiring structure (A,+,×,0,1), where
– A is a set of preferences,
– + is a commutative, associative, idempotent (a+a=a) binary

operation on A with the unit element 0 (0+a=a) and the
absorbing element 1 (1+a=1)
this operation defines the ordering a≤b ⇔ a+b=b.

– × is a commutative, associative binary operation on A with the
unit element 1 (1×a=a) and the absorbing element 0 (0×a=0)
and × distributes over +.

The assignment V with the largest aggregated preference
p(V) is the solution: ())()(cvarsVVp c

Cc
↓δ×=

∈

NASSLLI 2003: Foundations of Constraint Satisfaction

21

Foundations of constraint satisfaction, Roman Barták

Why should we use CP?Why should we use CP?

Close to real-life (combinatorial) problems
– everyone uses constraints to specify problem properties
– real-life restriction can be naturally described using constraints

A declarative character
– concentrate on problem description rather than on solving

Co-operative problem solving
– unified framework for integration of various solving techniques
– simple (search) and sophisticated (propagation) techniques

Semantically pure
– clean and elegant programming languages
– roots in logic programming

Applications
– CP is not another academic framework, it is already used in many

applications

Foundations of constraint satisfaction, Roman Barták

Final notesFinal notes
Constraints

– arbitrary relations over the problem variables
– express partial local information in a declarative way

Solution technology
– search combined with constraint propagation
– local search

It is easy to state combinatorial problems in terms of CSP
… but it is more complicated to design solvable models.

We still did not reach the Holy Grail of computer
programming: the user states the problem, the computer
solves it.

Constraint Programming is one of the closest approaches
to the Holly Grail of programming!

““Constraint programming represents Constraint programming represents
one of the closest approaches one of the closest approaches
computer science has yet made to the computer science has yet made to the
Holy Grail of programming: the user Holy Grail of programming: the user
states the problem, the computer states the problem, the computer
solves it.”solves it.”

Eugene C. Eugene C. FreuderFreuder, Constraints, April 1997, Constraints, April 1997

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

