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Introduction

Impurity models have been a fascinating field of research inside the condensed mat-
ter physics community for a long time. A good account on this is the increasing
number of experimental realizations for the study of such one dimensional systems,
involving quantum wires and dots [1, 2, 3, 4]. The study of transport in such systems
constitutes one of the most actives lines of research in condensed matter physics at
present.

In the mid thirties of the past century, it was discovered [5] that some transition
metals develop a minimum in their resistivity when cooled down. A first attempt to
fit the experimental data by using known phonon-scattering formulas failed in plat-
inum [6]. This change in the properties of a material due to interactions is one of the
main examples of collective behaviour, where correlations between constituents give
rise to new phenomena otherwise hidden. It was recognized later that the underlying
mechanism of this minimum in the resistivity had to come from something else than
phonon scattering, which is rapidly supressed at low temperatures. The attention
turned to magnetic impurities and their survival inside a metallic environment.

It took almost thirty years to understand these experimental results from a fun-
damental point of view. The first approach was pioneered by Anderson [7] in 1961,
and has to do with the concept of virtual bound states and the effect of Coulomb
interactions between electrons. His proposed model is equivalent to the Fano mod-
el [8], but it includes a local Coulomb interaction between electrons occupying the
impurity site. The appeareance of this interacting term is based on physical ar-
guments. Most of magnetic moments belong to d or f orbitals of elements from
the periodic table. In these orbitals, the wavefunction is very localized within the
nucleous. Therefore, when two electrons are occupying the same orbital, there must
be an associated cost in energy. The inclusion of this interacting term in the hamil-
tonian gives rise to new interesting phenomena. Anderson was unable to explain the
appeareance of the resistivity minimum, but gave a lot of insight to the physics of
impurity models, concretely about how a local magnetic moment develops inside the
material. This formation of a local moment manifests in the appeareance of a Curie
term in the susceptibility, which is absent in the Fano model. He later deduced that
the coupling between the spin density of conduction electrons and the magnetic mo-
ment should be antiferromagnetic. Based on this idea, Jun Kondo [9] approached
the problem in 1964, working with the antiferromagnetic coupling between the local
moment and the surrounding spin density. The model he used is now known as the
s-d exchange model (called the Kondo model after him). Although the hamiltonian
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of such a model is different from the Anderson model, both prove to be equivalent in
the appropiate parameter regime. Kondo developed a perturbative calculation till
third order, showing the apeareance of a temperature dependent logarithm, and ex-
plaining the minimum in the resistivity, thus solving the long outstanding problem.
The formal equivalence between the Anderson and Kondo models was shown soon
after by Schrieffer and Wolff [10]. This proved that both Anderson’s and the s-d
exchange model describe the same low energy physics in some region of parameter
space. Moreover, the Kondo model arises as a limiting case of the Anderson model.

However, from Kondo’s calculation, there was still one big remaining question.
The interaction between the electrons and the localized moment introduces a new
energy scale in the problem, the so called Kondo temperature Tx. For T > T,
the impurity survives in the surrounding environment, explaining the minimum ob-
served in the resistivity. However, for T' < Tk, perturbation theory breaks down
and Kondo’s calculation loses its validity due to the divergence in the logarithm as
T — 0. This motivated theorists to find new methods in order to understand the
model in the low temperature sector. One first attempt to adress this question was
given by Anderson [11] in what is now called the “poor man’s scaling” approach,
and where the concepts of Renormalization Group and scaling started to emerge
applied to impurity problems. This approach showed that under perturbative RG,
a change in the cut-off of the theory involves a growth in the coupling constant be-
tween the impurity and the rest of electrons, but failed to explain what happened at
T << Tk, in the so called strong coupling regime. However, the general belief was
that this coupling continued growing as the energy scale is lowered down, something
that would result in an infinite coupling between the localised moment and the envi-
ronment, forming a singlet state between the magnetic moment and the conduction
electrons (since the interaction parameter in the Kondo model is antiferromagnetic
J < 0, see [10]). Therefore, it was expected that the local moment wouldn’t survive
at very strong interactions, or in other words, it is screened by the conduction elec-
trons due to the strong coupling. In parallel, these renormalization group ideas were
being applied to critical phenomena [12] of a range of different models in statistical
physics [13].

Different approaches were taken by trying to find similarities between the Kondo
problem and some other related models. A model to look at was the so called “X-ray
edge problem”, studied mainly by Mahan [14] and in a series of papers [15, 16, 17]
by Noziéres, Roulet, Gavoret and De Dominicis. This model describes the spon-
taneus change of potential scattering appearing in a metal when a hole is created
by an X-ray. The electron is hit by the X-ray and promoted to the upper band,
leaving a hole in the valence band. The effect of the generated hole is a realocation
of electrons in the Fermi sea, and introduces an interaction between the sea and the
hole. Such a process is purely dynamical (time-dependent potential) and involves
time correlations. Mahan was the first one to predict singularities in the correlation
function, something that was also reproduced later by Noziéres and Schotte and
Schotte [18] employing different techniques. Noziéres approach to solve the problem
used the so called parquet equations [15], a set of complicated (coupled) integral
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equations for the correlation functions. But the greatest achievement was to realise
that the problem could be solved in an exact way as a single-particle problem [17].
This is because once the hole is created, it remains there, acting as a scatterer for
conduction electrons, and therefore no record of all processes happening at the im-
purity is necessary. All one needs to study is the response of conduction electrons
experiencing the potential change. In parallel, Schotte and Schotte introduced the
method of bosonization applied to the X-ray [19]. Bosonization was known to pro-
vide exact results for the Tomonaga-Luttinger model [20, 21], and both approaches
(Schotte, Noziéres) are ezact, they reproduce the exponents of correlation functions
in an exact way, and confirm Mahan’s singularity at threshold in the absorption
rate. The similarity of the X-ray edge problem and the Kondo model was captured
in a series of papers by Anderson and Yuval [22, 23, 24]. Following Noziéres method,
Anderson and Yuval approached the Kondo problem by considering the flip of the
localised magnet as a single X-ray process. Thus, every time an electron interacts
with the impurity, a flip on the spin occurs, and this can be extended to infinite time
by suming up all spin flips. In this sense, the approach is equivalent to a Feynman
path integral for the conduction electrons reaching the impurity site, seeing an alter-
nating potential scatterer. Anderson and Yuval approach is thus, a time asymptotic
(large times) correlators method to study the Kondo problem. It provides exact
results in the time domain, considering the Kondo problem as a sequence of X-ray
edge problems.

With all these previous works, there was some basic knowledge to tackle the
problem. The very big achievement of the application of such ideas to the Kondo
problem was carried out by Wilson [25] in 1975, by developing a non-perturbative
numerical method called the Numerical Renormalization Group (NRG). This work
was worth the Nobel prize in 1982 “for his theory for critical phenomena in connec-
tion with phase transitions”. Wilson applied his method to solve the Kondo problem
in the region T' << Tk, demonstrating the finiteness of the solution at zero tem-
perature. The so called “Wilson ratio”, relating the susceptibility and specific heat,
proved to be for the impurity twice the result for a system of non-interacting elec-
trons. This proved the fact that at very low temperatures, the magnet is screened by
the surrounding electrons, forming a singlet and therefore, eliminating the impurity
in an effective way. With this, the long-standing Kondo problem was solved by use
of a non-perturbative technique, at least numerically.

The formidable work of Wilson served as a starting point for the theorists com-
muninity to develop non-perturbative approaches to well known models, and the
search of exactly solvable theories started to gain fame as opposed to previous per-
turbative methods. In particular, there was a strong interest in finding exact solu-
tions for the Kondo problem in an analytic way. Wilson’s NRG provided accurate
numerical results, but analytic approaches were also desirable. In an effort to do so,
an old method to provide exact results began to be applied to impurity models. The
method was first created in 1931 by Hans Bethe [26], to solve the antiferromagnetic
spin 1/2 chain. The method is now known as the Bethe ansatz, and provides exact
solutions of the many-body wavefunctions of certain interacting one dimensional
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models. By the time, the Bethe ansatz had been applied to field theories that were
known to be integrable, like the Massive Thirring model [27, 28, 29, 30] (MTM)
and the Sine Gordon model [31] (SG). It was shown by Coleman [32] that both the
MTM and the SG models are equivalent by a direct relation between the parameters
of the theory, deduced from a perturbative treatment of the correlation functions.
Thus, the relativistic fermions of the MTM are equivalent to the solitons of the SG
model, another manifestation of the fermion-boson equivalence in (1+1) dimensions.
Variations of these field theories include boundary value problems, which are inti-
mately related to impurity models. One case is the boundary Sine-Gordon model,
whose S matrix was firstly derived by Goshal and Zamolodchikov [33]. These results
have been exploited later to study the boundary sine Gordon model (BSG) in depth
[34], as well as finding application into out of equilibrium problems in nanowires [35].

Before an exact solution was developed for the Kondo model, Wiegmann and
Finkelshtein [36] introduced the “Interacting Resonant Level Model” (IRLM), as a
simpler model to study analytic properties of the s-d exchange model. By proper
transformation of the fields, a direct relation of parameters between the IRLM and
the anisotropic version of the Kondo model (AKM) is stablished, therefore both
models are equivalent. In the IRLM, an impurity site or dot interacts with spinless
fermions of the conduction channel, while at the same time conduction fermions can
jump in and out of the impurity site. It is the interaction between the impurity
and conduction electrons what makes the problem a strongly correlated system. The
model will be described in more detail later. It is the aim of this thesis to develop
a deep understanding and study of the IRLM, for reasons we will expose in the
following. In [36], thermodynamic properties of the IRLM were calculated, like the
impurity susceptibility and specific heat, and compared with the AKM. Although
results prove Wilson’s ratio relation, some of the thermodynamic properties are not
described in a complete way. As we shall see later, expressions in the model can
be given in an ezact way for the susceptibility, or what is the same, the associat-
ed energy scale in the problem. Another approach to the model was developed by
Schlottman [37]. By directly bosonizing the AKM and fermionizing back all oper-
ators, one recovers the IRLM hamiltonian. His treatment of the model consists on
perturbative Renormalization Group (RG) methods, in order to obtain dynamical
quantities like the impurity Green’s function. Schlottman’s approach, being pertur-
bative, is only valid for small values of interaction, and therefore has a short range
of validity.

Several contributions have been done in order to gain a full understanding of
the model, even with slightly variations like the attachment of more than one chan-
nel to the impurity site [38, 39, 40], in what is known as the multichannel TRLM
(MIRLM). Other variations include the attachment of the resonant level coupled a
Luttinger liquid [41, 42, 43]. There are many interesting questions to adress in the
model, both in equilibrium and out of equilibrium, and that is why we believe in a
revision of the theory, where deriving previous results becomes a necessary step for
understanding the model in depth, while at the same time we provide new results
that, to our knowledge, were not known previously. In this thesis, we will only focus
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on equilibrium aspects of the model, since, as we will see, has a lot to offer by it-
self. We can divide our study into three main categories: some questions concerning
the thermodynamics of the model, some concerning the dynamics and finally its
integrability and exact solution. We want however to motivate the non-equilibrium
problem briefly. The last two of the three above mentioned categories are intimate-
ly related to adress one big question: the succesful application of non-perturbative
methods to out of equilibrium strongly correlated systems, something that has al-
ready been tried in the IRLM [44]. It has also been reported that this method fails
to agree with numerical simulations by DMRG [45]. Other approaches to the model
out of equilibrium have been proposed, by employing different techniques like Con-
formal Field Theory [46], study of the shot noise [47], and full-counting statistics
[48]. Concretely in [46, 48], the model is solved out of equilibrium only at a single
value of the interaction parameter, the so called self-dual point. A complete theory
for any value of interaction in the non-equilibrium situation has not been developed
yet, and therefore, it stands as an outstanding problem. One approach would be to
attack directly the non-equilibrium problem, by assuming all results from previous
works in the model. This has proved to lead to disagreement between theory and
numerics, being [44] one example. The second approach would consist on a careful
checking of these previous solutions and the construction of a full theory of the e-
quilibrium IRLM, by fixing possible inconsistencies found in our way. Is this second
approach the one we believe to offer insight into the model. Once a full theory of the
equilibrium IRLM has been stablished, these results could well serve to understand
the situation far from equilibrium (in the two channel version of the model). This is
then the main motivation of the work presented here. Even for the simplest case, the
single channel IRLM, the construction of such theory proves to be a challenging task.

We begin by the description of thermodynamics, where previous studies [38,
49, 50] reproduce the susceptibility exponent for the new energy scale I' by use of
bosonization, perturbative RG (only to first order in the coupling constant) and
Anderson-Yuval methods [39]. However, the value of such exponent differs with the
one found in other publications [51]. With regards to the energy scale T, the situ-
ation is somewhat more worrying. Analytic results start to differ from numerics as
soon as interaction is slightly increased [38, 50]. Moreover, in the two channel ver-
sion of the model, lattice treatment has been reported to offer different results from
the field theory approach [51] at very strong values of interaction. In particular,
it is argued [51] that those results depend on the regularization of the continuum
version of the model. This constitutes one of the central points of discussion of
this thesis, which will in turn try to prove that the theory cannot be dependent on
any regularizations when taken to the continuum limit. In other words, both the
lattice and the field treatment have to offer the same low-energy description of the
model, showing results independent on regularization schemes employed. The main
questions to adress are as follows: 1. What is the true value of the thermodynamic
exponent o ?, I1. Is there any way to find a exact expression for the thermodynamic
energy scale I'?, I11. Can one obtain such exact expressions when there is more than
one channel attached to the impurity site?, IV. Are lattice results in the model in
accordance with those of a continuous (field) description?
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Respect to dynamics, the most interesting quantity to compute is the impurity
density of states or spectral function. This is intimately related with dynamical
processes where particles jump in and out of the impurity site. Previous works
[38, 39] assume the scale of the density of states to be the same that the one ob-
tained for thermodynamics by perturbative RG. In other words, it is believed that
I' dominates both thermodynamic and dynamic quantities. For this same I, it is
also predicted a decrease in the density of states width as interaction is increased.
However, it has been shown [52] that for the two channel IRLM, the width in the
spectral function (the dynamic energy scale) grows monotonically as interaction is
increased, contradicting the cited results. More than that, reference [53] shows a
different behaviour of the dynamic energy scale as opposed to the thermodynamic
one. For the two channel case, the thermodynamic width decreases to a zero value
at infinite interaction. On the other hand, the dynamic energy scale shows a mono-
tonic increase with interaction even at very big values of interaction. Such a strong
coupling in the dynamic quantities needs to be better understood. The analytic for-
mula at zero hybridization for the impurity correlation function has been given by
Giamarchi et.al [54]( which corresponds exactly to the critical point, the non-Fermi
liquid point). As interaction is switched on, the model is expected to behave as
a non-Fermi liquid, developing a singularity in the zeroth energy sector. We will
observe later that this is not the case when NRG simulations are carried out. In
a different approach to study the dynamics, recent works [55] show the application
of Continuous Time Quantum Monte Carlo methods in order to calculate the im-
purity spectral function. All of these motivate the following questions concerning
dynamics of the model: 1. Are there two different energy scales in the problem, one
for thermodynamics and another for dynamics? 11. If both scales are different, what
are the physical processes separated by the dynamic energy scale? 111. What is the
exact dynamical exponent of the theory, and how to calculate it? IV. What is the
exact form of the spectral function on the dot as interaction is increased?.

To conclude, we look at the integrability of the IRLM, and its solution by the
Bethe Ansatz method. It was shown by Filyov and Wiegmann [56] that the IRLM is
integrable, and therefore, an exact expression of its many-body wavefunction can be
given. Since the IRLM is obtained directly from the s-d exchange model, the main
point of Filyov and Wiegmann’s paper is to illustrate the integrability of the Kon-
do model, something that was done afterwards by Wiegmann [57, 58] and Andrei
[59], and in later collaboration with Tsvelick [60], where several impurity models are
solved by the Bethe ansatz technique, including the IRLM (see supplement of [60]).
There is however a big problem on this solution. When the thermodynamic expo-
nent for the susceptibility is calculated by bosonization, a second order term in the
coupling constant g appears (that is, the exponent contains a term ¢?). This turns
out to be very important since, when one goes to the multichannel description of
the model, this second order term ¢? transforms to Ng?, being N the total number
of leads attached to the impurity. Surprisingly, when the Bethe ansatz method is
applied, Filyov and Wiegmann’s solution doesn’t reproduce the ¢ term, and only
does to first order in g. Since both bosonization and Bethe ansatz are exact meth-
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ods, the same answer must be given by both. The fact that the term that cannot be
reproduced is the one that distinguishes between different versions of the model is
very worrying. For instance, that would imply no change between the two-channel
version of the model and the single channel when using the exact solution. This mo-
tivates a revision of the method step by step, to discover the origin of such second
order contributions. The main questions to adress in this line are: 1. Why doesn’t the
Bethe ansatz method reproduce bosonization results? 11. What is the origin of the
second order terms, and the physical processes relevant to its description? 11I. Can
one reproduce the exact prefactor for the thermodynamic energy scale by the Bethe
ansatz method?

The thesis is structured as follows. Chapter 1 presents an introduction to the
main impurity models in the area of strongly correlated electronic systems, present-
ing the Interacting Resonant Level Model (IRLM) as one of them. Chapter II is
devoted to the presentation of fundamental techniques in Quantum Field Theory
(QFT) in impurity models that will be employed in the thesis, leaving specific treat-
ment for further reading in the literature. In Chapter III we build in an unified way
the main thermodynamics at zero temperature of the one channel IRLM. Different
limits of the theory are explored and original results are presented. Chapter IV deals
with general aspects of the multichannel version of the IRLM. Concretely, the two
channel version of the model is contrasted respect to the one channel one, and main
differences between both models are pointed out. This section also includes open
questions to adress in the N channel IRLM. Chapter V describes the dynamical
properties of the single channel IRLM, with special attention to the local density of
states on the impurity site. Original results are presented and discussed. Finally,
Chapter VI presents the application of the Bethe ansatz technique to the IRLM,
reproducing some known results and identifications between different field theories
and the model are presented. At the moment, we are still working on the main
questions in this area.
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Notation and conventions

During most of this thesis, there are several conventions adopted in order to simplify
things. Here are some tips to follow:

e Throughout all the thesis, Planck’s constant is set h = 1, as well as the Fermi
velocity v = 1, in accordance with natural units convention. The lattice
spacing a = 1 unless specified.

e We will be working with a one dimensional model, therefore all expressions
(integrals, Fourier transforms, coordinates etc...) are taken to be one dimen-
sional.

e Unless specified, we will be working at 7" = 0 most of the time, since we are
interested in the ground-state properties of the model. This sets the Fermi
distribution as ng(T = 0) = 6(¢), with 6 representing a step function:

|1 ife<ep
e(gF)_{O if € >ep (1)

where ¢ is the Fermi energy.

o We will use the greek letter A in field theory to describe the cut-off, that is, the
biggest energy scale present in the problem. This shouldn’t be confused with
the parameter A used later in NRG calculations. The reason for leaving both
quantities with the same notation is purely conventional from bibliography,
since the parameter A is an important number when performing NRG calcu-
lations. In adittion, the use of A for the cut-off is the conventional approach
when working with field-theories.

e Most operators will be written without the caret O = O to simplify notation.
Operators involving time are Heisenberg operators, i.e: O(t) = e'1'Oe~*".
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Chapter 1

Impurity models

“What makes the desert
beautiful - said the little prince -
1s that somewhere it hides a
well”

The little prince, Antoine de
Saint-Exupéry

The beauty about impurity models is that from apparently simple hamiltonians,
very rich physics can be extracted from them. Many-body effects manifest through
interactions between constituents of a system, but when an impurity or defect is in-
serted, some new interesting phenomena arise due to the interaction of the impurity
with the surrounding environment. In this chapter we will briefly present some of
the most important impurity models, with emphasis on their physics. In particular,
we will also present the main model this thesis deals with, the Interacting Reso-
nant Level Model (IRLM). For further reading, I recommend to follow [61], and the
introductory part of [60], as well as chapter 16 of [62]. Also, Giamarchi [63] is an
excellent reference to study such systems.

1.1 The Fano and Anderson models

One of the simplest impurity models was first introduced by Fano [8] in 1961. In
this model, an impurity site is inserted in the material, and electrons from the sur-
rounding bath can jump in and out the impurity site, since there is a non-zero
probability amplitude for this tunneling effect to happen. It can occur that the sys-
tem minimizes its energy by allowing a hybridization of the impurity electrons with
the rest of the system, that is, the impurity doesn’t survive as an isolated defect;
instead, it becomes part of the surrounding environment. Therefore one of the main
questions is: under which conditions can we observe a survival of the impurity site?
This has to do with the concept of emergent energy scale. Due to the hybridization
process described above, the system develops a relevant energy scale that separates
two different behaviours; one where the local impurity survives apart from the en-
vironment, the other being the one with the impurity hybridized.
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On its lattice version, the hamiltonian for the Fano model describing the process
above is written in second quantised notation:

Hp = Z ekc,t,ackﬂ + &g Z did, + Z Vid! e s +h.c) (1.1)

k.o o k.o

where df represents an orbital or impurity creation (fermionic) operator with spin
0. The parameter gq is the local chemical potential associated to the impurity site.
When ¢y < 0 it favours occupation of the impurity, whereas ¢y > 0 makes the op-
posite. The parameter V) is known as hybridization because it allows a hopping
between the impurity and the surrounding bath, and usually is taken to be inde-
pendent of k£, which can be done within a good level of approximation. This is the
same as considering a spherically symmetric potential, where only s waves interact
with the potential. The problem is then reduced to a one dimensional problem, the
dimension being determined by the distance to the impurity. Due to this hybridiza-
tion with the surrounding sea, a new energy scale appears in the problem, which we
will call T'y. For V, = V independent of k, this scale is Ty ~ V2. The appeareance
of a new energy scale due to this hybridization term is called resonance, and it is
a signature of virtual bound state, with timelife of order 7 ~ 'y’ (virtual states
are not eigenstates of the hamiltonian, therefore they have finite lifetime). This
means that because of the allowed hopping between the impurity and the rest of the
environment, the local density of states on the impurity site is spreaded, so more
excitations with energies in a range of width Aw ~ I'y are allowed.

Notice that the hamiltonian is independent of spin, in the sense that each spin
configuration can be treated separately from the other. The two main interesting
quantities to calculate for this model are the occupation number of the impurity site
and the density of states associated, which we will present here for T' = 0. Both
have well known formulas:

1 Iy

1 1 €0
s = — — —arct — A ==
fid, g g et (F()) a(w) 7 (w—¢g0)2+ 173

(1.2)

It is worth noting that each of these quantities, although related between them, are
different due to the time dependence. To be clear, the occupation number ngy is a
thermodynamic quantity, since its computation doesn’t require for the impurity op-
erators to change with time. However, the impurity density of states is a dynamical
quantity, since in order to calculate it, operators act on the state at different times.
It is also of relevance since spectral functions can always be measured by ARPES
technique. However, from the theoretical point of view, calculation of dynamical
quantities proves to be a more challenging task.

For the Fano model, the impurity density of states has a Lorentzian shape, char-
acteristic of resonant processes. Physically, it represents the probability of finding
an excitation with energy w. When the hybridization term is absent (V' = 0), the
spectral function on the impurity is a Dirac delta centered at w = €. As hybridiza-
tion is switched on, the delta function is spreaded, being the width equal to the new
energy scale 'y, However, the hamiltonian (1.1) doesn’t develop a Curie term in
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the susceptibility, and therefore, no local moment forms in the metallic environmen-
t. In order to account for this effect, the hamiltonian above needs some modification.

It was P.W.Anderson [7] the first one to propose a variant of the model as a
possible explanation of the local moment survival. In his model, a Hubbard-like
repulsive interaction is included between electrons occupying the impurity site:

Hy = Z 61430;2700;47(, + &g Z dldy + Z Vild! ey +h.c) + Unyn, (1.3)

k,o o k,o

Note the new added term, where the operators ny | represent the number operator
for spin up/down on the impurity site respectively. This interacting term U is the
one that allows for the local moment to survive, being the explanation simple: a
double occupancy of the dot site costs energy U > 0, therefore single occupation is
favoured. The reason for adding this new term to the hamiltonian is that for f or
d orbitals magnetic impurities are usually associated with transition metals, where
the d and f levels are partially occupied, therefore these materials are more likely to
develop local moments, the wavefunctions being very localized within the nucleous
region. Therefore, a double occupation on the impurity might have a large Coulomb
repulsion between electrons.

There are two basic limits to study the Anderson model. One has been described
already, and corresponds to the case when the Coulomb interaction U = 0 (see
above). The other limit is the one that accounts for very strong repulsive interactions
between the impurity electrons, but when there is no hybridization V' = 0. In this
limit, also called the atomic limit, there is a zero probability for an electron to jump
from the impurity to the surrounding bath. The electron bath and the impurity site
can then be treated as independent quantum systems. Therefore, the d or f orbital
on the impurity has four possible states, all of them eigenstates of the hamiltonian:

Hatomic =& Z dj,da + Unﬁni (14)
o=t{

There is then the question about the formation of a local moment. In order for this
to happen, the double and empty states of the orbital must correspond to excited
states, so that the amount of energy needed to pass from one state to another is:

T )= 1) AFE=g+U>0
[T({)—=10)  AE=->0 (1.5)

where | 1 (})) represents and either up or down quantum spin state. It is clear that
when gy < 0 and U is sufficiently large, the low-energy part of the hamiltonian (1.4)
is given by the single spin states. This limit is called the Kondo limit, and it is the
limit one has to work with in order to observe Kondo physics.

Here there has been a rough approximation to show the similarity between the
Anderson and Kondo models, since V' has been taken to be zero in the atomic limit.
However, the connection between the Anderson and Kondo hamiltonians is even
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more general (V' # 0), as it can be shown by low energy arguments. From Anderson’s
model, it is deduced that at strong values of interaction U, an antiferromagnetic
coupling between the conduction electrons and the localised magnet occurs. This
is the essence of the work developed by Schrieffer and Wolff [10], which will be
discussed in the next chapter. When one takes into account the situation U # 0 and
V # 0, Mean Field Theory can still provide good information about the model. Tt
can be shown that the energy scale associated with the resonance (I'y) divides now
two regions, depending on the values of interaction: when U < 7'y, the impurity
site is likely to be doubly occupied or empty, whereas as soon as U > 7l'y, a local
moment forms. When the impurity site is hybridized with the rest of the system
(region U < #[y), this manifests in a resonance centered around &, as in the Fano
model. However, as U > n[y, this central resonance splits, giving rise to two other
resonances now at energies ¢y and ey + U, which are called Hubbard bands (see [62]
for details on this). They correspond to the high-energy part of the spectrum. There
is more to say on the spectral function, since Langreth [64] theorem states that the
local density of states of the impurity site must be pinned at w = 0:

Aw=0)= — v (1.6)
7TPO
and independent of interaction. This forces that, even when the splitting occurs,
there has to be a very narrow resonance of height ~ I'y'. The width of such a narrow
resonance is given by the Kondo temperature, that we will define later. This very
narrow resonance is the Kondo resonance, or sometimes also called the Abrikosov-
Suhl resonance.

There are many good reviews on the Anderson model, and I recommend [65,
62, 61] in the literature. Here we will limit ourselves to this short introduction
to the model, but it already serves to illustrate the point that, from apparently
simple-looking hamiltonians, many physical effects can be extracted. In fact, An-
derson’s model has been a cornerstone to understand most effects associated with
the formation of local moments in metals.

1.2 The X ray edge problem

The X-ray edge problem was very actively studied in the late sixties and beginning of
seventies, mostly by Noziéres and others [15, 16, 17, 18, 19]. The theory of the X-ray
edge problem was started by Mahan [14], as a way to understand X-ray interband
transitions between electrons. Its popularity was also linked to a bigger problem:
the Kondo problem and its developed singularities in the low energy sector. It was
thought by the time that a deep understanding of such X-ray processes would shed
some light into Kondo physics, as we will shortly see.

When a metal is kicked by an X-ray photon, an electron is promoted to the
conduction band leaving a deep hole behind, in what is called the absorption pro-
cess. Naturally, the emission process describes the opposite, where the electron
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recombines with the system. After promotion of the electron, the Fermi sea reallo-
cates and interacts with the remaining hole. This process is described in figure (1.1).

t=0 >0
€ €
‘®- 00

Figure 1.1: Absorption process in the X-ray edge problem. An X-ray hits the Fermi sea
exactly at t = 0, leaving a hole behind which acts as a scattering point for subsequent
times. The surrounding Fermsi sea reallocates, and one studies the response of the system
due to the abrupt change in the scattering potential.

In metals, these absorption and emission processes develop a treshold in their
spectrum, due to the sharpness of the Fermi distribution. Mahan’s [14] main re-
sult was to show, by perturbation theory, that the transition rate of the absorption
process displays a divergent power-law behaviour in the low-energy sector near the
threshold wy. He conjectured for these divergences to sum up to a power law be-
haviour, so that the absorption rate has the form:

&\
S(w) ~ <w = wc) O(w — we) (1.7)
where & needs to be inserted as a cut-off in order to prevent the logarithms to
diverge. The merit of Nozieres et.al was to develop an alternative theory apart from
perturbative expansions, in order to explain such singular behaviour. Moreover,
they showed that the problem can be solved in an exact way by considering a sin-
gle particle scattering off a time dependent potential [17]. The fact that the X-ray
problem can be treated in the single particle picture comes from the non-dynamics
of the hole. That is, the hole can either be created or destroyed, but nothing else, it
cannot fluctuate between different states, as a quantum spin will do. Therefore, it is
not necessary to keep track of the different stories of the impurity, in contrary to the
Kondo problem, where one has to account for all possible spin configurations in time.

The total hamiltonian of an X-ray process is:

H = H,+ Z ekc,ick +eodld +V Z chk/ddT
k Kk

o, = Zchzde’i“t%—h.c (1.8)
k

The term H, describes the coupling to the X-ray field. Note that the scattering
term with V' is absent when the deep hole is filled. In fact, this term is only present
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suddenly after the X-ray has been absorbed (absorption process). In an emission
process, this term is suddenly cancelled after emission, since the deep level gets filled
again. Electrons in the metal experience a transient behaviour in such process.

Let us describe the absorption process, following Nozieres [17]. The main quan-
tity to compute is the transition rate between the ground state with no hole and
that with the formed one after absorption. The transition rate is proportional to
the imaginary part of the Fourier transform of the following response function [66]

Sk (t = 1) = (O|T{Ho (t) Hy (') }]0) (1.9)

where the curly brackets should not be confused with the anticommutation of op-
erators. They just indicate the action of the time ordering operator T. The state
|0) represents the initial state, before the creation/destruction of the hole takes place.

In the absorption process, the conduction electrons don’t see a single impurity
potential, therefore the Green’s function takes the non-interacting form:

Gkk’ (t) = <0|T{Ck(t)0kl (O)HO) = —6k,k/€_i€kt0(—t) e < 0 (110)

The two important correlators to be found are the deep hole propagator, which in
the absorption case is:

GU(t) = (0|T{d(t)d" (1) }|0) = —e~™"0(~1) (1.11)

and the correlator given by (1.9), so that knowing it we can extract the transition
rate easily. Note that all correlators, as written, should carry a factor of — in the
front, which can be reinserted later. When one passes from the many-body problem
to the single particle time dependent problem, all diagrams for the deep hole are
composed by loops at some times. This is the so called linked-cluster expansion
[17, 66]. The contribution of these loops to Sy is the aim of study in the paper
by Nozieres and De Dominicis. Making use of the linked cluster theorem, the two
correlators are expressed as:

Spw = Ly (t)ef®
Git) = 0 (1.12)

Where the function Ly (t) is related with the bulk conduction electrons propagator:
Ly (t) = = (1 1) (1.13)

where this last correlator satisfies Dyson’s equation, and is defined as:
o (¢',1) = (T{ex(D)ep ()}) (1.14)

This is the total conduction electrons correlator, where the average is now respect
to the ground state of the whole interacting system (That is, after the hole has
been created in absorption, therefore the scattering potential in (1.8) is present).
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All quantities above are then integrated for all possible modes &, k', so that we are

interested in calculating:
a dkdk'
S :/Wsde (115)

The total conduction electron Green’s function obeys Dyson’s equation (in the
absorption case):

t/
oM, Tty =Gt —1t') + iV/ dr"G(r — ") (7", 7 ¢, 1) (1.16)
¢

where the initial propagator reduces to the non-interacting one (1.10), but taking
into account all &£ modes:

—iet— Yo
Gat:/da/eem'g'&’:, -
®) (€) it + (1/&)sign(t)
and where we have taken the wide-band limit, so that 1y = const. The asymptotic
form of G can then be used when all time intervals are long compared to &, '. The
final result of all processes carried out in the paper [17] later gives the expression
for the correlators:

(1.17)

: (# =)= )\"" G*(w)
e (t,t) =GOt € = 1.1
kak( ) ) G ()((t’—T)(T’—t) G (w) 1_Z-VGa(w) ( 8)
where the parameter ¢ comes from the following relations (see [17]):
tan() = —9_ tanp= - / m deP(1/¢)e2lel/% (1.19)
1 — g tan(6) T ) o '

Now it is clear that the transient behaviour of conduction electrons is given by the
term in brackets in (1.18). When one takes the limit ¢ — —oo and ¢ — +o0, the
correlator for the absorption case is that of the emission one, that is, when the s-
cattering potential was present.

The exact result! for the Sk correlator is also given in terms of this parameter
J. By taking (1.18) and the limiting cases 7 = ¢’ and 7/ = ¢, a divergence occurs.
The time cut-off &, ' needs to be introduced in order to make the expression finite:

L(t) = (in/t)(i&t)*/"6(~t) (1.20)

Let us stop here to interpret this result. The correlation function still preserves
its power law behaviour for long times. However, due to the appeareance of the
scattering potential, the exponent of the decay is different. This power law decay of
correlation functions is intimately related with Anderson’s orthogonality catastrophe
effect [67]. The total correlator is then:

S(t) = (ivg /1) (i&ot)?/ ™ O/ giwotg(—¢) (1.21)

'Here the term ezact is meant within logarithmic accuracy, since the assymptotic form of
correlators has been used. For details on this see [17].
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In the case 6 > 0, that is, repulsive interaction with the scattering point, the decay
is slower. Now lets look at the deep hole’s correlator, which for the absorption case
has the form [17]

GUt) = —(i&t)~ /™ emi=otg(—p) (1.22)

If we compare this expression with the non-interacting case (1.11), we see that the
long time (low-energy) behaviour of the deep hole develops a power law. Such a
power law decay is related with the total life-time of the hole, before electrons of
the surrounding sea recombine.

The detailed analysis of this problem, carried out by Nozieres and De Dominicis
is quite broad to show in detail here, so we have mentioned only the main physical
results of their paper. The reader is referred to [15, 16] for a perturbative treatment
of the X-ray problem, whereas [17], which is the method we just described, solves
the problem in an ezact way as a one body problem. We also cite [63, 65, 66] for
reviews.

1.3 The Kondo (s-d exchange) model

The study of local moments inside metallic environments brought up the idea that
the coupling between the magnet and the rest of electrons should be antiferromag-
netic. One then needs a hamiltonian describing such a process, which on its simpler
version, implies an exchange term in the energy between the alignment of the iso-
lated spin and the spin of the surrounding electrons. Such a model is known as the
s-d exchange model, or sometimes called the Kondo model. On its isotropic form, it
is written in second quantized notation:

H,_,= Zekﬂclygckﬂ +J Z C]tygck’ggg,gf . g J >0 (1.23)

/ /
k,o k.k' 0,0

The model is sometimes conveniently written in terms of the upper/lower spin op-
erators. In this general case, there is also the possibility that the parallel coupling
(the one in the z direction) is different from the perpendicular one (the one flipping
the impurity and conduction electron spin). If this happens, this is the anisotropic
Kondo model, whose hamiltonian is written as:

Haxkym = Ho+ Jy Z (CL7TCJC',¢J_S+ + chck/ﬁa*S—)

kK

J
+% S e a0tS? (1.24)
P —

where the first term Hj is the non-interacting part in (1.23). In the anisotropic ver-
sion of the model, one of the terms results in an energy cost when the spin flips both
in the impurity and the electron of the band. The energy cost associated with this
process is J| . The existence of this term is what makes the Kondo problem difficult
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to treat. In the case J, = 0, the problem is trivial, as the hamiltonian can be divid-
ed into the up and down spin sectors, each of them containing a scattering potential
given by the sign of 5*. This is the process described by the term proportional to .Jj.

It took time to understand the real physics described by hamiltonian (1.23).
One of the main reasons has been discussed previously: When perturbation theory
is applied, a divergent logarithm in temperature is found in the resistivity, as shown
by Kondo [9] in 1964. The nature of this logarithmic divergences must be found in
a low energy description of the model, and of course, as T' — 0 the solution must be
finite. The method to study such a scaling behaviour was developed by Anderson
[11] in the so called poor man’s scaling in 1970. Anderson’s scaling treatment of the
Kondo problem is supported by the concept of renormalization : Under variations
of the cut-off energy of the system, coupling parameters change. In other words,
the coupling constants .Jj; and J, depend on the cut-off energy A in some way.
The variation of these parameters with A is what defines trajectories in parameter
space, allowing for a good understanding of the system’s behaviour. The main
result in Anderson’s paper [11] is that it proves the existence of only one relevant
energy scale, separating two regions, one where the local moment exists apart from
the surrounding environment, and one where the spin is totally screened by the
surrounding electrons (strong coupling limit). The energy scale separating both
limits has a well defined dependence on the coupling parameter J > 0:

Tx ~e Y7 (1.25)

where v is the electron density of states of the metal. This energy scale is called
the Kondo temperature. For temperatures higher than this value, the local moment
survives in the surrounding environment, and therefore, a Curie like term appears
in the susceptibility. This is called the weak coupling limit of the model. On the
other hand, as temperature is lowered, the strong coupling regime is reached, and a
perturbative treatment of the model is not possible. This is because the equations
defining the running of the coupling constants present, above the isotropic line,
escaping trajectories for every value Jv << 1. Therefore, in the antiferromagnetic
Kondo model, interaction strength increases at lower energies (larger distances).
This is an example of asymptotic freedom, where low-energy properties of a system
are described by strong couplings.

T>Tk .---. >0 T<Tk J>0

.

@4—

Figure 1.2: Schematic view of the antiferromagnetic Kondo model. At temperatures higher
than the Kondo temperature Tk, the impurity site is free. Interactiong with surrounding
electrons results in spin flips. When temperatures are below Tk, the local moment is
screened by the surrounding electrons by formation of a singlet at the impurity site, there-
fore no local moment exists in this regime.
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Therefore, Anderson’s paper was unable to calculate exactly what happens at
T < Tk in the antiferromagnetic case, but gave an insight of the underlying mech-
anism. It is now known that due to this strong antiferromagnetic coupling, the
impurity spin hybridizes with the conduction electrons at temperatures below 7.
In this regime, the impurity doesn’t exists on its own anymore, and a singlet state
is formed [68, 69|, therefore no Curie term is found on the impurity susceptibility.
Due to this, the system behaves as a Fermi liquid, with renormalized quasiparti-
cle masses. This renormalization of the parameters is found in the thermodynamic
properties of the model at T'= 0. In his famous paper in 1975, Wilson [25] proved
numerically the following relationship:

. Cy(T) 14722
lim = -
0Tx(T) 2 3

0
_OY(T)
T—0 TXO (T)

1
= - 1.26

. (1.26)
Thus, in the T" — 0 limit, the ratio between the specific heat and the susceptibility
(called the Wilson ratio) is half that of a system of non-interacting electrons. This
proved both the singlet formation and the Fermi liquid nature of the Kondo model
in the strong coupling regime.

There is a vast and varied study of the Kondo problem in the literature, which
almost every book on many-body physics contains [62, 65, 63, 70]. We summarize
here the most important features of the Kondo model:

e There is only one relevant energy scale in the problem, called the Kondo
temperature and given by Tx ~ e~'/*7.

e This energy scales separates two regimes, the weak and strong coupling sectors.
In the weak coupling sector, the impurity survives as a local moment inside
the metal, whereas in the strong coupling, the local moment forms a singlet
with conduction electrons, and gets screened.

e Perturbative methods fail to describe the low-energy physics of the Kondo
model in the antiferromagnetic strong coupling regime. A quantitative treat-
ment must involve non-perturbative calculations, either numerical (Wilson’s
NRG), or analytical (Anderson-Yuval, Bethe ansatz, see [22, 23, 24, 57, 60)).

The Kondo model is, once again, the great example about top down approach
models. From its apparently simple looking, very fundamental physics can be ex-
tracted, and Kondo physics have found applications in different branches of physics,
for example, in quark confinement theories.

1.4 The Interacting Resonant Level Model

We introduce now the model we will deal with throughout thesis, known as the In-
teracting Resonant Level Model (IRLM), or sometimes called Resonant Level Model
(RLM) in the literature. Here we will use the RLM to refer to the IRLM in the
absence of interaction, so that the RLM is the spinless version of the Fano model

10
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(1.1) described before. The IRLM was first proposed by Wiegmann and Finkelshtein
[36] in 1978, as a toy model to search for an exact solution of the Kondo model.
The model can be directly extracted from the anisotropic Kondo model by an exact
relation between parameters [36, 37], and both partition functions are shown to be
equivalent. Much of the previous work done in the model has mostly been present-
ed in the introduction, so we will cite each work individually when convenient to
compare results.

The simplicity of the IRLM lays on its non-spin dependence. The meaning of
having spinless fermions corresponds to the situation where a magnetic field is ap-
plied to the system, so that spin is polarized. Nevertheless, these spinless fermions
arise naturally from the transformation of the AKM. The model describes an isolat-
ed spinless impurity hybridizing with a bath of spinless fermions. Although it might
look fairly similar to the X-ray edge problem (see equation (1.8)), this is a different
model. First because it is directly extracted from the anisotropic Kondo model, by
exact manipulations between operators. Secondly, the X-ray edge problem describes
a dynamic situation where the dot is created in the metallic environment, and one
studies how the system reallocates due to this sudden potential change. In other
words, the X-ray problem describes a transient behaviour of conduction electrons
due to a sudden creation/annihilation of a hole. In contrast, the impurity is dynamic
in the IRLM, and therefore, allows fluctuations on the dot’s occupancy within time.

The main difference between this model and the Fano (or non-interacting An-
derson) model, is that apart from the hybridization, there is an interacting term
between the impurity site and the last site of the surrounding bath. The schematic
view of such a model is shown in figure (1.3).

On its lattice version, the single channel IRLM is represented by the following
hamiltonian:

N
H=—tY clc+he—epdid+t(deo+he)+U(dd—1/2)(cheo — p) (1.27)

1=1

Here p represents the vacuum expectation value of conduction electrons at the origin.
Since we will be working in the particle-hole symmetric case, this is usually taken
to be p =1/2. There are four different contributions to this hamiltonian. The first
part of the r.h.s corresponds to a simple non-interacting tight binding chain, which
is diagonal in momentum space:

N
Hy=—t Z cZTHci 4+ h.c = Z skclck e = —2t cos(k) (1.28)
i=1 k

Thus, the non-interacting part of the system corresponds to a cosine band where
different k levels are filled according to Pauli’s exclusion principle. Since our fermions
are spinless, that means each k state can be occupied only by one single fermion.
It is also worth mentioning the limit we will be dealing with throughout this thesis.
Being interested in low-energy excitations, the so called wide-band limit consists

11
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Figure 1.3: Schematic representation of the IRLM on its lattice version (a) for N = 1
channel and (b) for N = 3 channels. The impurity site in red, interacts with the nearest
neighbours of the chain by Coulom like interaction U. The hybridization parameter t' is
essential in describing physical processes.

on considering a constant density of states associated with the dispersion relation
(1.28). This corresponds to study the system considering only excitations close to
the Fermi surface, which in this case is located at kp = +7/2. This is equivalent to
a linearization of the spectrum. Then, in this limit, the bulk density of states is a
constant independent of energies:

v(e) = cont. (1.29)

We consider now the hybridization part, proportional to ¢'. This describes the
tunneling process between electrons in the metal and the impurity site, with prob-
ability amplitude ¢'. Throughout the study of the model, this value of ¢’ remains
small as compared to the bandwidth, that is ¢/t << 1. In this limit, is then as-
sumed that electrons move inside the material hopping from one place to another
(tight-binding) with the same probability, whereas hopping from the metal to the
impurity site carries a smaller probability amplitude for the process to occur. This
is also the case in the Anderson model (1.3), where a similar hybridization term
is present in the system. In fact, we will see later that this hybridization defines
an energy scale [' separating two different regions: for 7' < I', the impurity site is
hybridized with the system, whereas at T" > I" the impurity is decoupled and isolated
from the rest of the environment.

The part including the parameter ¢ represents the local chemical potential of the
impurity. When the impurity is filled (d*d = 1), this term contributes with an ener-
gy €o. The limit where ¢g — 0 represents the particle-hole symmetry in the model,
which is the main limit we will be dealing with. In this limit, the system is said
to be at resonance. Finally, the interacting term is written in the normal ordered
version of operators, where the subtracted quantities are the vacuum expectation
values of the impurity and chain site. Note that this term involves an interaction
between the impurity and the last site of the chain, as opposed to Anderson’s model
where the interaction occurs between two fermions occupying the impurity (see 1.3).

The continuum limit is the field theory version of the model. In this version, the

12
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hamiltonian for the IRLM is:

n=— i [ @ (vh@0vato) — vheninie))

—0

0
+ eodid+1 ) / dad (x)d ;(x)

i=L,RY ™

+ hetU Y / ded(z)(dfd — 1/2) (W] (2)vs(x) — p)  (1.30)

i=R,L

Notice that the = coordinate represents a half line, since it indicates the distance to
the central scatterer point. It is then convenient to unfold the fields in order to map
the problem onto the whole line (—oo, +00). In this unfolding, left movers in the
negative semiaxis can be interpreted as right movers in the positive semiaxis due to
the shared boundary conditions, that is:

With this, the above hamiltonian takes the form:
“+00

H=—i / +OO dop (2) 0,0 () + sod'd + ¢/ / dzé(z)(d"(z) + h.c)

oo — 00

+00
+U [ daba)(dtd - 120 @0 ~ ) (132
—0

where now all fermionic fields are right-movers on the entire line. The problem is
then reduce to a single species of fermions (right-movers) in the whole dimension. We
will refer to these lines as channels or leads attached to the impurity site. Variants
of the model are introduced, for example, if one attaches more than one channel to
the impurity. The multichannel version of the model includes M total channels:

M N M
HMIRLM = —1 Z Z CL7Z~+1CQ77; +h.c — 6()de + tl Z(Cﬁca,o + hC)

a=1 1=1 a=1

M
+UD (did—1/2)(chgcan—p)  (1.33)
a=1
In order to get the continuum version of the multichannel case, one proceeds in a
similar way as in the single channel version [40]. Of particular interest is the two-
channel version of the model, since it is the one where transport properties can be
studied.

Throughout this thesis, an intense study of the IRLM will be done. Although
one would wish to have a complete theory of such a model, regardless of the total
number of channels attached, we will suddenly discover that this represents by itself
a great task. In particular, one needs first to understand the importance of the single
channel case, since most of the fundamental physics of the model can be extracted
from there. One of the main goals of this thesis is to illustrate all the rich physics
that can be extracted from the IRLM.

13
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Quantum Field Theory methods

“I learned very early the
difference between knowing the
name of something and knowing
something”

Richard P.Feynman

In this chapter, some fundamental techniques for the study of quantum many-
body problems are discussed, in application to impurity models. Without going into
technical details, an introduction to these methods is aimed to provide the reader a
good starting point to follow future calculations. Further reading is always indicated
when convenient.

2.1 Perturbation theory and correlators

The easiest way to treat an interacting problem is by assuming that interactions
between constituents are weak in comparison with the individual energies of each
particle. This approximation, although it might seem a bit rough in principle, pro-
vides a good understanding for many macroscopic properties of materials. In fact,
Landau’s theory of metals, what is called the Fermi liquid theory, rests on the idea of
treating interactions as perturbations. When treating an interacting system, some-
times going to first or second order of perturbation accounts for a good description
of the fundamental physics. However, this is rarely the case in strongly correlated
systems, where perturbation theory can be considered a poor approach to treat the
problem. Nonetheless, the method has been applied to the IRLM previously [37, 38],
and it is worth to reproduce some of its results by a slightly different approach apart
from perturbative RG. Some results from [49] are reproduced in this fashion.

14
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2.1.1 IRLM: Perturbation theory U =0
The desired quantity to calculate is the time-ordered Green’s function:
Gz, o' t,t) = —i(TY(x, )T (', 1)) Gw, k) = /dxdtei(“Hm)G(x,t) (2.1)

where T is the time ordering operator. This quantity is of interest, since one of
its components, the retarded one, is related to the spectral density, which can be
measured experimentally. To calculate the retarded Green function from the time
ordered one, one chooses that part of the function which is analytic in the upper
half plane of w. The retarded Green function and the spectral function are related
to each other:

1 )
AW =~ S G, k) Gale, k) = / drdte NG 1) (2.2)
k

The spectral density is of relevance since it can be measured experimentally by
ARPES techniques. One of the main questions in this area is how to provide a good
approximation for the spectral function on the impurity site, since perturbation the-
ory offers a poor description. The development of methods for the calculation of such
quantities is then very desirable. Chapter 5 of this thesis is concerned with the calcu-
lation of such quantities, therefore understanding the fundamentals here is essential.

The total change on the Green function by interactions is encoded in Dyson’s
equation:

G(w, k) = Go(w, k) + Go(w, k) E(w, k)G (w, k) (2.3)

The quantity ¥(w, k) is the self-energy, and it includes all compact and different
interacting diagrams. The calculation of the self-energy is the main problem to deal
with, since in some cases, diagrams depend on the excitation energies w. Dyson’s
equation states that by knowing the self-energy, one can compute the total Green’s
function of the interacting system in the simple way written above. The compu-
tation of ¥ in an exact way is in most cases impossible, therefore the problem is
only worth to be solved by this method if perturbation theory accounts for a good
description of the system. Strongly correlated systems are not, in general, well de-
scribed by this perturbative approaches.

Let us apply perturbation theory methods to the IRLM. We can divide the
hamiltonian in two parts:

H = H0+HU

Hy, = —t Z c;rciﬂ +h.c + god'd + t'(d'¢q + h.c)
z N e’
Hy
Hy = U(d'd—1/2)(cleco —1/2) (2.4)
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Let us forget first about Hy and Hy. Then the system consists on an isolated
impurity with local chemical potential ¢y and a non-interacting bath of electrons.
The corresponding Green functions are easily calculated:

1
W — &y + 40+

1

d _ _
Golw) = T W ptid

Gy (w) (2.5)
The second term in (2.5) is the Green function corresponding to a non-degenerate
electron gas. We are interested in this propagator but happening exactly at the

impurity site x = 0. Thus, a summation over all momenta is carried out:

G§(w) = %Q()L(k,w) = /deu(e)goL(e,w) = /deu(e) !

w — € + idsign(e)
This term will have both real and imaginary parts; however, if we consider a flat
(constant) density of states v, the real part can be neglected since it is a principal
value integral and the result gives 0. So we have to deal with the imaginary part at
the end:

(2.6)

GE(w) = i/dez/ lim —sign(c) = —imvsign(w) (2.7)

§-0 (w — €)2 + 42

The first perturbative treatment is done in the parameter ¢’ of the IRLM, which can
be done till infinite order of perturbation, due to the form of the diagrams. Therefore
we first take the case U = 0. The diagrams involved are, indeed, non-interacting in
this case. We can write the Green functions in matrix form:

cot) = (N it )

Here, off-diagonal terms represent the anomalous correlators G = G%. Every
time there is a scattering process in the system, is between the wire (c¢) and the dot
(d), that means that we can consider the scattering matrix as a non-diagonal 2 x 2
matrix, with the same scattering amplitude going from the dot to the channel than
the one going from the channel to the dot. This is a consecuence of Wick’s theorem
for the system at U = 0, therefore:

0 #
==(v0)

is the self-energy matrix. The total Green function of the system is given by Dyson’s
equation in matrix form:

G(w) = Go(w) + Go(w)XG(w) (2.8)

This is exactly equivalent as developing each of the Green’s functions individually
using the diagrammatic expansion. In fact, this is done when the diagrammatic
expansion is taken to infinite order, and we complete the Dyson series. Inverting
Dyson’s equation we get the total Green function for U = 0:

1 Jsign(w)vy,
G(w) _ w—eg+ilosign(w) —Tosign{w)+i(w—eo) (2 9)
Jsign(w)vg sign{w)vr (w—ep)

—Tosign(w)+i(w—ep) —Tosign{w)+i(w—eo)
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Here the quantity Iy = 7t appears for the first time. This defines the hybridiza-
tion energy scale of the system in the absence of interaction. This is natural since,
having summed all diagrams to infinite order, the problem is trivial and corresponds
to the Fano model we discussed earlier in chapter 1. Thus, in the limit U = 0, all
physics of the IRLM are exactly equivalent to the Anderson model at U = 0. In
particular, the impurity density of states is given by a Lorentzian of width ['y:

1 FO

AW = T (2.10)

which is easily seen by taking the retarded form of the Green function (2.9).

2.1.2 TIRLM: Perturbation theory U # 0

Having calculated the correlators in the U = 0 case, one can start building up a
perturbative solution when U # 0. Thing is, now there are crossed propagators like
G (the non-diagonal terms in (2.9) ), whose physical significance is also not clear.
This manifests in more possible terms when working out Wick contractions, therefore
going to second order of perturbation adds enough complexity in the diagrammatic
expansion. One can however, start by the simplest treatment considering only first
order contributions. We then consider the first order diagrams contributing to the
self-energy, those called Fock diagrams. The total interacting Green function is now
called G(w). In a similar way as in the U # 0 case, Dyson’s series is solved in matrix
form:

G(w) = Go(w) + Go(w)EG{(w) (2.11)

where ¥ is the self-energy matrix, and Gy is given by (2.9). The form for the

self-energy matrix X:
Ed Edc

with X9 = ¥ The appeareance of off-diagonal terms has to do with the fact
that G% £ 0, therefore contractions between impurity and lattice operators can
be performed now in the U # 0 case. The total Green function can be calculated
by just inverting Dyson’s equation. Of particular interest is the impurity Green’s
function G, which has the following form:

G(w) = 1 ; S @1
(w — g9 — B4) + dsign(w)To (1 + (S/t))" (1 + ivEe)

Here, all self-energies have real and imaginary part, and they can depend on w.
Note that if the self-energies depend on w, the imaginary part of the retarded Green
function doesn’t remain as a Lorentzian anymore, thus changing the local density
of states at the impurity.
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P

Figure 2.1: The self-consisting approzimation, where all Fock diagrams are included to
wnfinite order by replacing the non-interacting propagator ch by the dressed propagator
G (double line). This is equivalent to summing all first order diagrams to infinite order.

One of the easiest assumptions is to let ¢ = X¢ = 0. After all, £¢ can be
absorbed in a renormalization of €y, whereas the X¢ renormalizes the density of states
of conduction electrons. In this approximation, the lead and dot-lead propagators
are:

G (w) = —i(2% + J)usign(w)G%(w)  G(w) = —iv(w — ¢)sign(w)G%(w)

In first order of perturbation, only Fock diagrams contribute to the crossed terms
¥, By use of Feynman’s rules [65], this contribution is given by the following
integral:

A
de .
zﬁzzu{/Aéiaw*G#@) (2.14)

where a cut-off A needs to be inserted in order to prevent divergences. The self-
consistent calculation then consists on replacing G¢¢ (the non-diagonal terms in
(2.9)) by the total interacting Green function G, which is given from (2.11). The
self-consistency equation determines the self-energy when all first order diagrams
are taken into account:

e Uu(l—l—x)l
v 2w o8

A2
! 21 F?) ['=To(1+2)" (2.15)

0

Thus, the first order correction to the hybridization is given by (g9 = 0):

r
I = 0 (2.16)

(1 . Uulog(A/F)>2

This result agrees with [37, 38, 39, 49] calculations, and is only valid when Uy << 1.
Due to interaction with the surrounding sea, the hybridization parameter ' scales
with a new exponent:

T~ ()5  g=Uv (2.17)

Within this approximation, the spectral function preserves the Lorentzian shape like
in (2.10), but with a renormalized width I':

1 r

Asc(w) = - (w—¢€9)?+T?

(2.18)
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where SC stands for self-consistent. This is a first order result, and as such, it
shouldn’t be taken too seriously to describe the actual renormalization of ¢', nor the
exact form of the spectral function on the impurity site. The key point to illustrate
here is twofold: First, that all first order diagrams don’t alter the functional form
of A(w). This is because first order diagrams don’t depend on excitation energies
w. The second has to do with complex nature of ¥, which accounts for different
contributions to the impurity spectral function. Different diagrams can depend
on w in a non-trivial way. Furthermore, these diagrams can develop logarithmic
divergences in higher order of perturbation. For instance, if that will happen in 3¢
(which we neglected in our treatment here), this will indicate the appeareance of
a non-Fermi liquid exponent in w (i.e. the spectral function might depend on w7,
with v # 2). The preservation of a exponent v = 2 in the low w sector of a impurity
spectral function is a signature of Fermi liquid behaviour (see [71]).

2.2 Bosonization: A field theory technique in (141)
dimensions

In one dimension, there is an analogy between fermions and bosons. This analogy
makes the solution of some one dimensional models much simpler, since an ini-
tially complicated fermionic problem can be reduced to a non-interacting bosonic
hamiltonian, whose solution is well known. The method is non-perturbative, since
it provides exact operator relationships between bosonic and fermionic fields, and
accounts for the exact calculation of exponents in correlation functions. However,
this technique is quite extense, and we wont expose it here in detail, so we refer the
reader to the literature for study. Recommended references for this are those by
(63, 66, 72, 73, 74].

2.2.1 Bosonization basics

In one dimension, and close to the Fermi level, density fluctuations have a well
defined energy-dispersion:

pe=D chin  £la) = vg (2.19)
k

where v is the Fermi velocity, and p, represents a particle-hole excitation, being ¢
the transferred momentum. This means that they can be considered as the actual
excitations of the system. Moreover, the commutation relations satisfy:

[Pg) p:;'] ~ Ogq = Pg ~ by (2.20)

The term pj, represents a particle-hole excitation, and by is a boson destruction oper-
ator. Thus, a particle-hole excitation behaves like a boson due to these commutation
rules. If one chooses this basis to represent the new operators of the problem, the
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(initially fermionic) hamiltonian can be rewritten as:
H o~ g,blb, (2.21)
q

that is, a hamiltonian of non-interacting bosons, representing the density waves of
the system. The hamiltonian (2.21) is diagonal in the k basis, therefore its properties
can be computed in an easy way. If everything can be expressed as a set of free
bosons, the free boson model (also called gaussian model) is of relevance:

5= / dxah( ) (8m90)2> (2.22)

where (z,t) represents a Bose field, and 7 = it. Note that the action is Euclidean
in (141) dimensions, and we have set v = 1. In a one dimensional theory, the Bose
field can be decomposed into right and left moving bosons:

p(2,2) = ¢(2) + 6(2) (2.23)

It can be proved that the correlation function of bosonic exponents is equal to that
of fermionic fields if the following relationships hold [72]

N — 4 2 n 1 VAT BP(Z
P(z) = —me VIPNE)  (z) = —L_VATIR) (2.24)
2ma 2ra

where + represents right and left movers, respectively, and the complex coordinates
2z =v7 —1x and Z = v7 4+ 1x. The factors n are Klein factors, whose only function
is to ensure that anticommutation relations hold in these fermionic operators. We
will now work with these relations in an application example: a (141) relativistic
fermionic theory.

2.2.2 Bosonization of the massive Thirring model (MTM)

To apply the bosonization approach described above, let us use an example of a
specific fermionic field theory. The massive Thirring model (MTM) represents the
interaction between two relativistic fermionic fields in (1+1) dimensions [27]. The
model has been extensively studied, due to its integrability, by Bethe ansatz methods
[28, 29, 30], and it is a cornerstone in understanding exactly solvable one dimension-
al systems.

The fact that the fermions are relativistic is because they obbey a Dirac-like
hamiltonian. The total hamiltonian is:

H= / dyc{i\I’ToZaI\I’ + meUTe® W + QwT(x)zzT(x)zz(a:)w(az)} (2.25)

where the spinor ¢ is defined as:

zg; ) (2.26)
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Y(2)(1p(x)) representing right (left) moving spinless fermions, and o are the Pauli ma-
trices. We will use the bosonization for spinless fermionic fields, following Senechal
[72]. The right and left movers have the bosonization representation:

1 —1 wo(x I 1 3 Th(x
() = ——=e~ VIO (g) = ——VITIE) (2.27)

V2 V2

where the Klein factors are not dynamical objects, so their representation can be
chosen freely as in this case. The massive Thirring model can be written in terms
of the fermionic components:

H= /dz{i(gﬁ(x)amd)(x) — W(:)&)(‘?ﬂ/}(:p)) + my (W(z)pﬁ(:ﬂ) + h.c)
L@@ @29
We will now express the hamiltonian above in this representation. Also, for the
vertex operators, we bear in mind that:
eAeB — pATBlABI2 _y jiad() iBd(x)) _ iad(x)+iBe(z) ;—aB(¢(@)¢(z")) (2.29)

We will go through all the bosonization procedure explicitly. The non-interacting
part of the hamiltonian is representing a single free boson:

Hy = / dx% ((@@2 + (393@)2) (2.30)

with units of v = 1. To evaluate expressions of the form (x)d,1(z), we follow
Senechal [72] and we take the limit:

U (0)0,0(x) = —ilim (wz +£)2.0(2) — (Wi (= + e>az¢<z>>) (231)

This process is known as normal ordering, and it is essential to avoid divergences.
The relation above is taken by substitution of 9, = —i(d, — 0;), and € = 2’ — z. The
relation between z and x coordinates was previously defined in (2.24). The following
identities are always useful (see [72]):

W) = = —— ($(2)()) = ——log(z — ') + const. (2.32)

T 47

After normal ordering, and taking care of the product of exponential operators, the
fermionic currents have the form:

1 1 - 1 1

with ¢ = ¢(2) + #(2). All time ordered products must then be taken into account
in this way, when treating interacting terms specially.

(2.33)
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The mass term can be easily written, since the fields ¢(x), ¢(2) commute, and it
is:

\Q/T;L_:r cos (V8mp(z,t)) (2.34)

We are then left with bosonizing the interacting term. We see that it is composed
by an interaction over densities in normal order, that is:

onDpnlo) =l (41 + P+ 0 - ) (239

(2m)2e2

After expansion of the products, there is only one remaining term, characteristic
from forward scattering:

L pr(2)pL(2) = L o.p0.0 (2.36)

z
T

Thus, the bosonized version of the MTM reads:

1 2 2 2mg
Hyrn = /d$§ (((%go) + (0s0) ) + \/%COS (Varp(z,1))
2§

+—=0,905p (2.37)
m

In terms of the real coordinates (z,t), the hamiltonian is bosonized and given by:

Hirrs = [ de} (000 + 020 + 2% cos (Vimptz0)

£ (wr-r) 2

Now if we take a look at the expression, we see that the non-interacting part can
be written in a similar way as for a free boson field:

*

v

Ho= " [[an(K@eP + /K)00) (2.39)

with new renormalized Fermi velocity and K defined as:
1—(&/m)
vt =/1—(§/m)?> K=, |—>—-—= 2.40
VI= (/) o (2.40)
From here, we can rescale the fields as:
II— (1/VEII ¢ —= VK (2.41)

After this scaling, we are left with the Sine-Gordon hamiltonian:

H = %*/dx<(8tg0')2 + (3Ig0')2)> + ?/T;L_;COS(VZLWI{@') (2.42)
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Then one obtains the scaling dimension 5 of the operator:

fovinE - 2 = 2T e (2.43)

47 1+ (&/n)

This stablishes an important relationship between the MTM and the Sine-Gordon
model (SG): the one dimensional fermions can be mapped directly to a Bose field
obeying a SG model. The relationship (2.43) between parameters of both models is
ezact in £/m << 1. This was first derived by Coleman [32], and can be extracted as
well from Korepin’s work [28, 30] on the MTM.

2.3 Wilson’s Numerical Renormalization Group
(NRG)

The Numerical Renormalization Group (NRG) was developed by Wilson [25] in
1975, as a method to understand the ground state (i.e zero temperature) proper-
ties of the antiferromagnetic Kondo model. Although being mostly used for 7' = 0
cases, it can also be used for any finite temperature 7' # 0. The approach is based
on a logarithmic discretization of the band, by which a continuum model can be
mapped to a discrete one (Zight-binding), to succesfully describe all low-energy (in-
frarred) properties of the system, therefore it can be applied to any kind of impurity
models. Since it does not involve any perturbative calculations, the method is non-
perturbative, and therefore, very robust for the study of such systems. We must
remember that most condensed matter systems deal with big system sizes, where the
thermodynamic limit is taken (the system size is taken to infinity when compared to
the shortest length scale). As the system size increases, the low-energy description
of the model becomes the appropiate one. Although there are possibly many good
reviews on the NRG method, we will mostly follow the one from Bulla et.al [75] in
this thesis.

In such a discrete model, the tight-binding parameters undergo some renormal-
1zation. This renormalization makes the hopping parameters to decrease in value
with distance to the impurity site, a consequence of the logarithmic discretization
of the band. The result is the addition of weaker hoppings amplitudes with each
iteration, ensuring convergence of the method. The addition of more sites, with
smaller hopping amplitudes as we get away from the impurity, constitutes the so
called Wilson chain. The mathematical details of discretization are out of scope in
this thesis, an we refer to Wilson’s original paper [25] for further reading on this.
However, one should not be too worried about these discretization steps, since after
all, one is interested in a direct application of the method for the specific model
under consideration. Therefore, understanding its basic concepts as opposed to its
mathematical technicality is more beneficial.
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2.3.1 NRG basics

We consider a one dimensional tight binding model, with hopping amplitudes ¢,
and a single impurity site at the end of the chain. This picture is schematically
represented in figure (2.2).

Figure 2.2: Schematic view of the NRG method. The initial hamiltonian is composed by
the impurity site (red) and the last site of the chain. When this part is diagonalized, a new
site is added to the system with a tunneling probability t,, then the system is diagonalized
again and the process is repeated. The addition of more and more sites eventually leads
to the construction of a chain that resembles the initial hamiltonian of the model at low
energies.

If we have already managed to logarithmically discretize the band, the different
hopping amplitudes will depend on a discretization parameter A in a way that
tar1(A) < t,(A), that is, the hopping amplitudes decrease with further distance to
the impurity site. The discretization parameter A > 1 is chosen conveniently, usually
in ranges A ~ 1.5—2.5, but it really depends on the model under consideration. The
limit A — 1 recovers the continuum nature of the model, where no discretization
has taken place. The general form of a transformed hamiltonian by discretization
of the band is:

+o0 +00
H= Z tn(chensr +hoc) + Z nCh 4 Himp (2.44)
n=1 n=1

Spin has been ignored. Otherwise, an spin index ¢ must follow each of the operators.
Here Hiy,p represents the part of the hamiltonian containing all impurity-related op-
erators, so it will include the interacting terms as well as possible hybridization
terms. The other parts of the hamiltonian form the resulting tight-binding model
for the band. The NRG method provides a way to calculate both thermodynam-
ic quantities (such as charge susceptibility on the impurity site, entropy, specific
heat...) and dynamic quantities (spectral functions, self-energies [76]). We move
now to describe briefly the NRG algorithm, and later we give important tips for the
calculation of dynamical quantities within the NRG method, which will be relevant
for the understanding of results in chapter 5.

2.3.2 NRG algorithm: iterative diagonalization

For now, consider only the hamiltonian given by Hinp in (2.44) as the zeroth order
step NRG. This can be the n = 0 box in figure (2.2). That is, initially our system
will consist only on the impurity site plus the last site of the tight binding chain
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(n=0).

Suppose now that after logarithmic discretization, we find our hopping ampli-
tudes to have the following dependence with A: ¢, ~ A~™2. Mathematically, the
exact identity states that the total hamiltonian of the system is defined as the lim-
iting case when the number of steps (iterations) N tends to infinity:

—(N-1)
H= lim A~ Hy (2.45)

N—00

where, in order to keep things unchanged, from (2.44) we have to include a prefactor
[75]

N N
Hy = AOV-D/2 < Z tn (chnH + h.c) + Z EnCLCn + Himp> (2.46)

n=1 n=1

The prefactor has been chosen to cancel the N dependence of the ¢y hopping param-
eters. This is because we assumed that ty ~ A~/2, but this is not always the case!.
The reason to choose a prefactor that cancels the nth dependence is that, at each
iteration, the eigenvalues are of O(1), and the identification of fixed points becomes
easier. Now two consecutive hamiltonians are related by the following recursion
[75, 61]:

Hyi1 = VAHy + AV 2eyclen + AN/Qth;,HcN +h.c (2.47)
At iteration step N, the hamiltonian is diagonalized:
H|r)ny = Ey|r) (2.48)

therefore all eigenstates and eigenvalues are computed. When going to the next step
N + 1, the hamiltonian needs to be expressed in the new basis {|r) ® |s)}, where
the states {|s)} add the new degree of freedom to the system (added site, see figure
(2.2)). Then the hamiltonian is expressed in this new basis and diagonalized again,
and the procedure is repeated.

The problem with the above method is that, after some iterations, the hamilto-
nian becomes of unmanageable size. When a sufficiently large hamiltonian has been
created, truncation is imposed. This means that, out of all possible eigenstates of
the diagonalized hamiltonian, only those with the lowest energy eigenvalues (say Sk
of them) are taken. These now constitute the new truncated basis |7), from where
the hamiltonian at step N +1 can be built. Usually, the total number of kept states
varies depending on the model, and more importantly, on the parameter A. For
typical values of A ~ 1.5 — 2.5, it is sufficient to keep Sk = 500 — 1000 states after
truncation. However, as A — 1, and therefore the continuous limit is approached,
a bigger number of kept states is usually needed. Nonetheless, system specification

'For each model, the dependence on n can be different for the hopping parameters. In such a
case, the prefactor has to be chosen accordingly. Luckily, all models we will be considering have
this n dependence on the hopping parameters, so we can work with this specific contruction of H.
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plays an important role, and systems with low enough dimensionality allow for a
small value of A while the number of kept states is still Sx = 500 — 1000.

We want to make a remark in this last part of the algorithm. The NRG method
can be improved in order to account for those discarded states [77] that were neglect-
ed after truncation. That means that, when truncation is done, the discarded states
for the next step can still have some usage to calculate some physical quantities at
step IN. Methods like these are out of scope here, as they offer poor qualitative be-
haviour differences in the computation of physical quantities, since they are mostly
used for numerical accuracy.

2.3.3 Dynamical quantities computation within NRG

The computation of dynamical quantities is much more difficult than that of ther-
modynamic ones. The main reason has to do with the energy scaling within each
NRG step: at different NRG steps, we are working at different energy scales. This is
a consequence of the logarithmic discretization we presented before. Since dynam-
ical quantities depend explicitly on excitation energies w, one needs to take care to
work in the appropiate range of energies.

The method we are about to describe can be found in detail in [75, 78] for its basic
understanding. For improvement of numerical accuracy or alternative discretization
methods, we refer to [77, 79, 80], as these methods are not considered here. We are
interested in calculating the impurity density of states:

Ao(w) =Y IGS|folr)Po(w — (B, — Eas)) (2.49)

This is the discrete representation of the impurity spectral function in terms of
energy eigenvalues, where each excitation energy w)y = E, — Egg is weighed by the
matrix element of the impurity operator between the many-body ground state |GS)
and excited states. The problem is that we have no clue about the true many-
body states of the system, since after some NRG steps, truncation must be applied,
keeping only the lowest eigenstates from the whole hamiltonian. Therefore, we can
only think about getting an approximate solution for the above quantity. It can be
argued that at step IV, the spectral function can be approximated by all the N kept
states as [75]

Ao(w) = A7 (w) = Z [(Folfo )0 (w — wi) (2.50)

where |7) are the approximate eigenstates of the many-body system. Another prob-
lem has to do with the delta functions involved. To obtain a valid numerical result,
these peaks must be broadened [75]. The broadening of delta functions by other func-
tions is varied, but offers non significant differences on the qualitative behaviour of
the model. Concretely, we will be working with the gaussian representation of delta
functions:

]_ 7(0.}—«)?\7)2

e 202 2.51
oV 2T ( )

S(w—uwhy) =
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where 0 = bwy, with b ~ 0.2 — 0.8 (see [75] for details).

After N steps, the hamiltonian of the model Hy has a characteristic energy scale
that depends on the parameter A as:

wy = %(1 + ATHA-VD/2 (2.52)

Notice that this includes a v/A factor as compared with the hopping amplitudes. It
is customary to include this factor proportional to the whole hamiltonian Hy with
each iteration, therefore supressing the dependence of £, on n. In this way, each
NRG step corresponds to a different energy scale, but its eigenvalues are always
of O(1). Due to the truncation of the spectrum, the range of excitations is in the
window 0 < w < Mwy, with M being a constant depending on the value of A. For
typical values, this sets M = 2, and therefore only excitation energies w < 2wy
contribute. One usually chooses to evaluate the spectral function at the concrete
point £2wy. Therefore, an NRG implementation with N total steps will have 2N
points in total, if we take into account negative excitations (w < 0) as well. There
are plenty of publications about NRG methods applied to calculate these quantities,
the most relevant selected to be followed here [78, 81, 82]

A final remark must be made here. We have talked about obtaining NRG points
for the spectral function at each NRG step. However, we have to make a distinction
between a chain with even number of sites and another with odd. Concretely, all
points collected to describe the spectral function need to belong to the same type
of chain. If all points where represented (that is, a point for each NRG step),
then oscillations are observed between neighbouring points in the spectral function.
This is due to a finite size effect. What one usually does is to discard those points
calculated for an odd number of sites chain, keeping only those points calculated
when the total number of added sites is even.

2.3.4 Application example: The Anderson model

Consider the single impurity Anderson model defined earlier in Chapter 1. The
logarithmic discretization of the band gives the following hamiltonian [75]

+oo
Hy = Z tn(cLJrlcn +h.c) +enchen + Hipp + 1 Z(f;co + h.c) (2.53)

n=1
For practical purposes, and due to the form of ¢,, we can take £, = 0 for all
values n, and the hopping parameters satisfy:

t, = %(1 + AHAT2 (2.54)

The algorithm is implemented to calculate the impurity spectral function or den-
sity of states, as well as the energy flow of the lowest many-body eigenvalues. In
figure (2.3), the energy flow is represented for the Anderson model. We observe that,
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80 100
NRG steps

Figure 2.3: NRG flow for the many-body eigenvalues of the Anderson model with 800
kept states and A = 1.5, ¢g = —0.05, V = 0.1, U = 0.1, and a total of N = 112 sites.
After some iterations, the flows converge to steady values representing the approzimate
low energy eigenstates.

after some steps, different eigenvalues converge to a steady value of the energy. After
the NRG process is repeated, the lowest eigenvalues don’t change. This makes sense
since, adding a site with large n only introduces a very weak coupling of the chain
with the added site. In particular, these steady values of the energy flow represent
fizxed points of the hamiltonian. This means that, no matter how many times we
apply a renormalization step to the system, the value of its parameters will remain
constant.
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Figure 2.4: NRG simulation for the Anderson model, with hybridization V = 0.1, for
U=0andey=0 (left) and U = 0.1 and g9 = —0.05 (right). We observe the appeareance
of the Kondo resonance when g9 < 0 and the local interaction on the impurity site is
strongly repulsive (Kondo limit). Dashed lines are included as a guide to the eye.

The spectral function for the single impurity Anderson model is represented in
figure (2.4). Here both sectors of the hamiltonian, with spin up and down, have
been taken into account to contribute. That is, what is actually represented in fig-
ure (2.4) is the sum of both the spin up and down density of states. The left side
corresponds to the trivial case of the Fano model, that is, when U = 0. The right
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figure represents the Anderson model in the Kondo limit. Notice how two shoulders
appear at both sides of w = 0. The spectral function is pinned at w = 0, as it should
be according to Langreth theorem [64].

We have also selected ¢, for the following reason: the parameter € acts as a local
chemical potential on the impurity site. This can also be regarded as a magnetic
field applied in the z direction on the impurity site. One knows that, when g # 0,
the spectral function in the Anderson model is a Lorentzian centered at 9. However,
since the NRG method works on different energy scales with each iteration, when-
ever the value of the characteristic energy scale w, ~ ¢y, accuracy is lost. In other
words, and following [75, 83], we cannot resolve a very narrow width when values of
go are big enough above the characteristic energy scale w.. We refer to [83] for details.

2.4 The Anderson-Yuval method

We turn our look now to analytical approaches in the computation of time corre-
lations. In a series of papers [22, 23, 24|, Anderson and Yuval proposed a method
to calculate exact results in the Kondo problem. The idea is based on Feynman’s
path integral for a time history of the impurity magnet (see [70] for details), and
in the X-ray edge problem analysis carried out by Nozieres and De Dominicis [17].
The fact that the X-ray problem can be treated as a single particle problem with
a transient potential, allows for a similar calculation in the Kondo problem. We
describe briefly the essence of the method here, and refer the reader to Anderson’s
papers [22, 23, 24, 70] for details.

Counsider the Kondo hamiltonian:

H == H() + H[
Hy = Z 6/@700;2’061@70 + J5* Z azc,tyo_ck,gr
k,o

k.k! o0
H = J E S+a;’0,czﬁckzyaf+S_0;U,c,t’g,ck/,g (2.55)

k.k'o,0!

For the non-interacting part Hy, we have two types of eigenstates, those with the
spin on the impurity up (|¢+)), and those where the impurity spin is down (|¢})).
Consider the state of this set with the lowest eigenvalue |)+), and where the im-
purity spin is up. Then the Anderson-Yuval (AY) method applies the following: at
t = 0, the interacting term H7 is switched on, evolving the state to a later time .
In the mean process, a complete (even) set of up and down switches occurs on the
impurity site due to the action of H;. At time ¢, the state comes back to its original
form |¢g+). One is then interested in the response of the system (the conduction
electrons) due to these spin-flip processes. The amplitude of the process described
above is given by:

F(t) = (tor|e™|tbor) = (thor|eoet fo 4 HIE) g (2.56)
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which can be inmediatly identified as a partition function.

Rt el |

Figure 2.5: Kondo problem as a sucession of X-ray problems, where the impurity spin is
flipped at subsequent times. The conduction electrons see an alternating potential, which
corresponds to a set of absorption/emission Noziéres processes for each spin.

The interaction representation has been used in formula (2.56). One can then
expand the exponential in its series form, realising that every time H; acts, it flips
the spin. Therefore, in a normal term of order n of the expansion, there are 2n
spin flips. Here is where the connection between the X-ray problem and the Kondo
problem manifests, since each of these spin flips can be regarded as a single X-ray
process in the finite time (t;.1,%;), and therefore, Nozieres-De Dominicis formulas
can be used. To be clear, a typical second order term is of the type:

t t1
F(2) (t) ~ J2/ dtl/ dtQSTN(tl - tQ)SiN(tl - tg) (257)
0 0

where the Nozieres correlation function S(¢) has been defined previously in chapter 1.
However, it has to be taken into account that every time there is a flip, the scattering
phase shift changes from ¢ — —J. For the Kondo problem, these correlators take
the form (see [22]):

_9 2 J
Sy(t) = (it&y) ™  Ert20m) 04 = £ = arctan (%) (2.58)

Then all possible allowed paths for conduction electrons in [0, ] must be taken into
account. The AY method generalises Nozieres-De Dominicis method by adding three
contributions to the propagator. Basically, the total amplitude (2.56) is calculated
as:

Fyu(t) = G, (6, 1) (2.59)

The first term corresponds to all possible diagrams for the non-interacting conduc-
tion electrons. This has the form of a Cauchy determinant when all time orderings
are taken into account, and each of the product terms represents the transient be-
haviour in conduction electrons found by Nozieres-De Dominicis. The solution has a
determinant form because alternating sign appears whenever the order of fermionic
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operators is interchanged. The other two terms correspond to single-particle scat-
tering corrections. The first one ¢(6,t) is calculated from Dyson’s equation for the
conduction propagators, and has a similar form of the first term, but with a differ-
ent exponent. The second term corresponds to all closed loops contributions to the
different paths. Such a term was also computed by Nozieres and De Dominicis for
a single X-ray problem.

With this, Anderson and Yuval found an interesting similarity between formula
(2.56) and that of the classical partition function of a one dimensional Coulomb gas
with charges distributed in the imaginary time axis. The final form of the partition
function [22] is:

F(iB) = fﬁn /[i d52n.../062 d61<(2 —20) 3 (= 1) log (@)) (2.60)

n=0 0 n>n'

where € ~ Jv and 7 is a time cut-off related to v. The most important thing to note
about this expression is that the result, being exact, relies on an infinite perturbation
expansion on the parameter J. The AY method extracts information about the
response in the system due to the spin flips of the local impurity. More important
is that its proves, in some sense, the analogy between the Kondo model and the
X-ray edge problem. The Kondo problem can be seen as an infinite sequence of
X-ray processes, where conduction electrons in the metal experience spin flips at the
impurity site. We also want to remark the importance of the method for calculating
dynamical quantities in time domain. However, we note that the method allows the
calculation of the response of conduction electrons, but does not provide an exact
expression for the transverse correlator:

(TS~ (t)S7(0)) (2.61)

As we will see later, it is this second correlator the one we would be interested in
when calculating dynamical quantities in the IRLM.

2.5 The Schrieffer- Wolff transformation

When studying strongly correlated systems, one has to deal with the fact that inter-
actions don’t allow to solve the hamiltonian in an exact way. However, sometimes
we are not interested in diagonalizing the whole interacting hamiltonian, because
this includes all possible energy ranges, and therefore, all fluctuations are taken
into account. In practice, only dealing with a low energy description of the hamil-
tonian gives enough information about the system’s behaviour when interactions
are present. Loosely speaking, we are looking for a description that encodes all
important features of the initial hamiltonian when interactions are strong enough,
but when high energy states are not considered. In practice, this is equivalent to a
renormalization of our original hamiltonian into another where high-energy degrees
of freedom have been integrated out. This is the essence of the Schrieffer and Wolff
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(SW) transformation.

The Kondo problem is the best example of a very strongly correlated system.
Anderson’s impurity model, described in chapter 1, has very similar characteristics
than the Kondo model when one works in the appropiate parameters regime, and
both models are related to each other. This relationship was already known at
the time when Anderson first proposed his model [7], although the formal proof
was given later by Schrieffer and Wolf [10]. In their paper, it was shown that a
low-energy description of Anderson’s model in the strong coupling regime (large
U) leads to an equivalent hamiltonian with antiferromagnetic coupling developed
between an impurity magnet and the local conduction electrons. The most relevant
references to follow such calculations are [10, 62, 84].

2.5.1 Kondo model derived from the Anderson model

We have seen previously Anderson’s impurity model:

H = Z 5kc£700k70 + &g Z dlda + Z Vk(dfyck,g +h.c) + Unyny (2.62)

k.o o k.o

In the specific case of V' = 0 (no hybridization), then the impurity site and the
electrons bath are totally decoupled from each other. If we consider U > 0 and
g9 < 0, the ground state of the impurity site is degenerate, since now | 1) and | |)
have the same eigenvalue 4. It is then obvious that in this situation, the ground
state of the whole system includes a localised magnet.
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Figure 2.6: Virtual processes in the Anderson model when the hybridization parameter
V #0, and eg < 0 and U >> |eg|. The left process flips the impurity spin by passing
through the high-energy state |0), therefore the electron on the impurity makes a virtual
jump to the surrounding bath. On the right hand side, an electron from the surrounding
bath jumps virtually to the impurity site, so that the state | 1\) is visited. In both processes,
there is some energy exchange in order to allow for the spin flip.

However, when the hybridization parameter V' is switched on, electrons from the
surrounding bath start to jump in and out from the impurity site. These are called
virtual processes, where electrons migrate from/to the lead for a short period, involv-
ing an energy shift associated with spin-exchange processes. This is schematically
shown in figure (2.6). Therefore the high energy manifold is visited shortly during
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these virtual processes. At this stage, the local moment is likely to be supressed
under some conditions. In order to get an idea of when this might happen, one
could treat the parameter V perturbatively, however this results in divergences in
high orders of V. The alternative method proposed by SW is to isolate the relevant
degrees of freedom dominating the dynamics by applying a canonical transformation
to the hamiltonian:

H=¢e"He™” (2.63)

where the condition is to clear out all dependence on V' in first order. The fact that
S needs to be antihermitian is clear since we have:

Ul =T — 568 = 57531851 = | (2.64)

therefore St = —S. The hamiltonian (2.62) can be divided into an exactly diagonal
part and a non-diagonal one:

H=Hy+V V=) Vil do+he (2.65)

ok

The way to supress the first order dependence on V' is by use of the Baker-Campbell-
Hausdorff (BCH) formula. The appropiate choice of S is then given by:

[Hy,S) =V (2.66)

Therefore, to second order in V' (first in ) we have in (2.63):
~ 1
H = Hy+ 5[S, V] + 0(S? (2.67)

The H, part of the hamiltonian is diagonal, and we can divide it into a low energy
subspace and a high energy one (see [62]):

HL 0 0 —sf
w- (0) s (35 268

S can be obtained easily from (2.66):

f
SZL —St = v

P T (2.69)

As a result, one ends up with a renormalized hamiltonian H* under such canonical
transformation. The interesting part of this new hamiltonian is the one projected
onto the low-energy subspace:

1
Hi =P,H*P, H'=H,— 5(VTS +57V) (2.70)

The important point to illustrate is that, from a canonical transformation of our
original hamiltonian, a new, renormalized version has been derived. In this new
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version, new interacting terms appear. At the end, the most relevant one is the so
called s-d exchange term [10]

Hy q= Z Jk,k'CLa&aﬁCkgﬁg (2.71)
o k!

where S is the impurity spin operator, and o represent the Pauli matrices. The most
relevant result of the SW transformation is the confirmation of an antiferromagnetic
exchange interaction:

1 1
T = ViVi — 0 2.72
kb k k<U+50+_60)> (2.72)

This result, which was predicted by Anderson in his paper [7], proves to be very im-
portant at very low temperatures, since an antiferromagnetic interaction between the
impurity and the surrounding sea is the cause for the local moment to be screened.
The screening of the local moment occurs when the impurity spin and a surrounding
electron form a singlet state. To all practical effects, this is equivalent to a metallic
system in an absence of impurity. The fact that the impurity doesn’t survive as a
local moment at very low temperatures was later proved by Wilson [25], as it has
been discussed previously.

After application of the SW transformation to the Anderson model, one ends up
with the following hamiltonian:

Hz = Z 6k0£7ack,g + Z Jk7k/c£7a5a50k/,5§ (273)

k.o kK

This result proves that both the Anderson and Kondo hamiltonians are related.
More concretely, the Kondo hamiltonian provides a good low-energy description of
the Anderson model in some region of parameter space. Although the SW transfor-
mation was originally used in the Anderson model, the method can be extrapolated
to more general hamiltonians.

2.6 The Bethe ansatz method

We will introduce now a very powerful method to solve one dimensional problems,
known as the Bethe ansatz. The method was introduced in 1929 by Hans Bethe
[26], in order to study the one dimensional Heisenberg antiferromagnet. Although
initially created to solve isotropic systems, it was later applied to impurity models
[36, 60], concretely to give an exact analytical solution of the anisotropic Kondo
model [57, 58]. We will just give the conceptual introduction to the method, leaving
detailed description to be found in the literature [30, 85, 86].

The Bethe ansatz is applied to those systems that are said to be integrable, that
is, they contain an infinite number of conservation laws in a field theory. In a lattice
version model, the number of conservation laws is discrete, but both approaches
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must give the same low energy description in the thermodynamic limit. In essence,
the method allows to calculate in an ezact way all possible eigenvalues of an inter-
acting one dimensional system.

2.6.1 Bethe ansatz basics

The most important concept to introduce is that of scattering matriz, usually rep-
resented by S. A scattering matrix represents the amplitude of a scattering process
between an in and out state of /N particles when interactions are taken into account:

S(plmpn) ~out <p11-~-p;1|p1~-~pn>in (274)

As a result, the general N body wavefunction experiences a phase-shift. In general:
S — eiq)(al...EN) (275)

In a one dimensional system, particles are very likely to meet at some point in space-
time. When this happens, they are said to scatter from each other. Due to an infinite
number of conservation laws, in some (1 4+ 1) dimensional theories, the scattering
matrix factorises into products of scattering pairs, therefore the complexity of the
problem is reduced (since now, instead of an N-interacting bodies problem, we have
a set of 2 body-problems). This symmetry property is reflected in the Yang-Baxter’s
equations:

Sl2(01 - 02)313(01 - 03)523(02 - 93) = 523(92 - 03)313(91 - 03)312(01 - 02) (276)

which states that the order of scattering between three particles is irrelevant, and
each order is equivalent [86]. This has been represented schematically in figure (2.7).
By induction, if this is true for any three particles, it can be proved to be true for V.

In general, there are two approaches to calculate the S matrix of a (1 + 1) di-
mensional model. One of them [87] is based on a more axiomatic approach, taking
into account the unitarity and crossing symmetries that the S matrix must satisfy.
The other method relies on a regularisation of the theory, by direct computation
of the S matrix solving the Schrodinger equation for a two-particle problem. It is
this latter approach the one we will follow here. The computation of the S matrix
by the second method seems at first sight more laborious, however it proves to be
convenient when the regularization scheme employed is fundamental in the theory
we are about to study. This justifies our use of the later method instead of the more
conventional axiomatic approach.

Here 0 represents the physical rapidities of the model, which we will discuss soon.
An integrable system must satisfy the Yang-Baxter’s equations.

We will now describe the essence of the Bethe ansatz method, referring to [30, 85]
for a detailed description. A hamiltonian can be given in the continuum (field
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a' b' c' a' b' ¢ a' b c'

a b C a b C a b C

Figure 2.7: A pictorial representation of the Yang-Bazter’s equation. The order on which
three particles (a,b,c) scatter from each other is irrelevant, and all processes have the same
amplitude given by the factorised S matriz.

theory) or its lattice version. When given on its field theory version, we must find
the operators constituting the equivalent (quantum-mechanical) N body problem.
A possible form of the N body state is written in terms of the field operators:

[T ) :N/Hdmiqz(xl...xN)w(xN)...z/ﬁ(xl)\0) Y(x)0) =0  (2.77)

where A is a normalization constant. This does not represent the most general
N body state that can be written, since it depends on the system, but introduces
two important concepts in the method, the wavefunction ¥ and the state |0). The
wavefunction W({z;}) represents the wavefunction that satisfies the equivalent N-
body interacting hamiltonian, therefore:

HyY¥(zy..xny) = EV(x...2N) (2.78)

The state |0) belongs to the Fock space and it is called the pseudovacuum, which
must be distinguished from the vacuum of the theory, since the former one includes
interactions. The state |0) only represents a vacuum in the non-interacting system.
It is the state annihilated by any destruction operator.

We describe now the coordinate Bethe ansatz. The aim is the calculation of all
possible eigenvalues of the interacting system. First one solves the Schrodinger equa-
tion for the single particle problem, calculating the form of the single particle states
¢1(e1,x1). After this, one calculates the two body problem from the Schrodinger
equation:

HWy o) = (21 + £2) [Ty ) (2.79)

that is, taking into account states with only two particles, and ¢;,, being the single
particle eigenvalues. It is important to mention that, in one dimensional Lorentz in-
variant theories, we don’t distinguish between energy and momentum, since € = +p.

When considering two particles, scattering between the two must be taken into
account in the wavefunction. This changes the total wavefunction only by a phase
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factor, called the scattering phase shift. Due to this, and in the case of a fermionic
system, the Slater determinant incorporates this phase factor:

U (21, 32) = ¢(21,61) (72, 82)™ ™) — G211, £2)P(22,£1)e 720 (2.80)

The wavefunction W has to preserve the statistics of the particles in the model under
consideration. For a fermionic system, this implies ¥ to be antisymmetric under ex-
change of two particles. The single particle states ¢(z) depend on the system under
consideration, therefore they can be free states ¢ ~ €% or states derived from a
potential felt by the particle. The two-particle scattering phase shift ®(g; — e9) is
only a function in the difference of energies, due to energy conservation.

Everything explained to this point has nothing to do with the Bethe ansatz
method, since so far we have only solved a two-particle problem. However, one must
know the two scattering phase shift beforehand in order to introduce the ansatz for
the general N body wavefunction. The so called Bethe ansatz arrives when a
solution of the following form is proposed (again, for a fermionic system):

U(zray) =N Y (=1)7¢(x1,61)..0(zy, en) [ [ eE el (2.81)
{Pi;} 12

where P;; denotes all possible permutations of the single particle indices 7, j, and
N is a normalization constant. With this ansatz for the N body wavefunction,
one introduces it into Schrodinger equation, and checks that is is verified. In the
expression above, there is a product of exponentials, each carrying a different phase
shift. This is a consequence of the S matrix factorisation we discussed before.

In order to compute different properties, we place our system on a ring of length
L, imposing periodic boundary conditions. The wavefunction must then be periodic
on each of the coordinates, so that:

U(xy..xxy) = U(2y..w; + L, xy) Vi (2.82)

This periodicity condition is actually very important, since it leads to the Bethe
equations, a set of N coupled non-linear equations. In general, they have the form:

27TTLZ‘ = EiL + Z CI)(SZ — Sj) (283)
i#]

These equations determine uniquely the eigenvalues of the interacting system. The
{n;} is a set of integer quantum numbers for each i index. The values of these
integers depends on the state we are considering. For example, for the case where
interaction is switched off, all scattering phase-shifts on the r.h.s are cancelled.
Then, we can build up the ground state of the system by ordering the eigenvalues
ny < Ny < ... < n; < njrqp... < ny in the Bethe equations. When interactions
are switched on, usually one has to check that this ordering of the integers indeed
reproduces the ground state.
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2.6.2 Understanding the Bethe equations: Rapidities rep-
resentation

At this stage, it is useful to introduce the physical rapidities of the system, related
to the energy eigenvalues and momentum:

e(p) = mocosh(B)  p(B) = mgsinh(p) (2.84)

where mg represents some mass associated to the field. The reason to do this is that
most two particle scattering phase-shifts depend only on the rapidities difference
under this mapping:

D(er,e2) = R(f1 — Pa) (2.85)

For reasons we will discover later, this representation becomes much more trans-
parent for subsequent calculations. In order to specify the state, the set {3;} is
calculated from equations (2.83). Usually, such a set is big, and it is more conve-
nient for later purposes to introduce the rapidities distribution, which is defined for
the long L (thermodynamic) limit as:

p(B) = %m >0 (2.86)

|
m(B) im(B)=r Im(B) Im(B)=rt

Re(B) Re(B)

Figure 2.8: Rapidities plane representing two different states on the system. On the left
side, the state with all negative energies occupied (Im(B) = 0) is represented. When one
particle is added with positive energy (Im(B) = ©), the configuration on the plane changes,
and one has to take that into account to construct the true physical vacuum of the theory.

This distribution is dense in such a limit, and represents how all different ra-
pidities (eigenvalues/momentum) are distributed for the state under consideration.
Therefore, if one calculates this function, one knows exactly what are the values of
all the energies in the interacting system. Usually, the rapidities distribution for the
interacting system is calculated by solving an integral equation of second kind:

p(8) = (8) + / dap(0) K (6 — o) (2.87)

Here K (5 — «) represents the kernel of the integral equation, which is related to the
two particle scattering phase shift ®(8 — «). The relation will be explored later.
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The fundamental equations we have written are essential to derive all physical
properties in the thermodynamic limit, that is, when the size of the system L — oc.
It allows one to compute the spectrum of the hamiltonian in an ezact way. The best
way to clarify how the method works is by introducing an specific example.

2.6.3 Bethe ansatz for the Massive Thirring Model

The Massive Thirring Model (MTM) was introduced previously when describing the
bosonization technique (section 2 of this chapter). The model has been solved by
Bethe ansatz [28, 29|, and its exact solution is well known. We will give here the
steps in the calculation of the physical vacuum of the theory, following [28].

Consider the following hamiltonian:

H = /dx (i\IlTozax\Il(x) + meWio, U (x) + 2§wT(a:)zET(x)zE(a:)w(a:)>

v o= (gg;) (2.88)

representing spinless fermions interacting in (141) dimensions. There are two
species, one associated with right movers, the others being left movers. The hamil-
tonian preserves the total number of particles, and the discrete operators for the
total energy and momentum are:

N N
Hy =) i0l0, +mooh + 26> 6(w;— ;) Py=—i)» 0,  (2.89)
i=1 G i=1

One then looks for common eigenfunctions of these operators. The appropiate single-
particle wavefunctions are given by [28, 30]:

. —B/2
_ pirmosinh(B) €
b(alB) = e ( o ) (2.90)
The total N particle wavefunction is given by:
U(r)..oN) = Z(—l)PCb(%P’51?)---¢($N7>\5N7>)6iZK’“q)(ﬁrﬁk) (2.91)
P

Here P represents all possible permutations, and the two particle scattering phase
shift is known before hand.

In the MTM, one has to distinguish between different scattering processes, de-
pending on the sign of the energy. For two negative energy pseudoparticles, the
scattering phase shift is [28, 29, 30]:

(8) = ilog (ZEEEZ N gg;) — 2arctan <cot(w) tanh(6/2)> (2.92)

where w = ”ng Here [ is a simplification to represent the rapidities difference, so
that 8 = 8;— ;. It is important to mention that given different pseudoparticles, this
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Figure 2.9: The MTM ground state fills all negative energies below the mass mg. When the
limit mo — 0 is taken, two different branches appear, each of them describing either right
(red) or left (blue) movers. Such a description is important when the fields are unfolded.

scattering phase shift is different (for example, when considering a pseudoparticle
with negative energy scattering from one with positive energy). All these expressions
can be found in detail in [28]. From now on, J is to be understood as a real number
only. Since in the ground state all pseudoparticles have negative energies, the Bethe
equations have the form:

moLsinh(B;) = 2mn; + > ®(Bi— B;)  nip1 —ni =1 (2.93)
i

The total energy of this state is £ = —myg ) _; cosh(5;). If one takes the i+1 equation
in (2.93) and subtracts the ith one, and using the definition (6.55), the following
integral equation specifies the ground state distribution of rapidities:

+A

my cosh(5) = 2mp(f) +/ dap(a)0s® (5 — ) (2.94)

—A

Importantly, a rapidity cut-off A has been inserted here. This cut-off is necessary
in order to keep the ground state energy bounded. Here we observe the relation
between the kernel and the scattering phase shift:

1 sin(2w)

1
K(f =)= _%aﬂq)(ﬁ —a)= 21 cos(2w) — cosh(f — o) (2.95)

which will become important later. The solution of (2.94) can be found by solving
the equation by standard techniques [88]. However, this would not represent the
actual value of the distribution of rapidities in the physical vacuum.

Consider, for instance, the case were all excitations over that vacuum preserve
the total number of rapidities (particles). This corresponds to the zero-charge sector
of the model. In this case, removing a particle from the vacuum and adding it with a
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positive energy above destabilizes the pseudoparticles sea by pushing some of them
apart from the cut-off. In other words, due to the addition of such excitation, a
renormalization of the mass parameter occurs, therefore one is interested in obtain-
ing mo(A). This is illustrated in figure (2.8). Detailed description of this process is
written in the appendix. The final form of m and the rapidities distribution is [28]

EA

mo =ae =&  p(B) ~ cosh (W j_ gﬁ) (2.96)

Therefore, as compared to a purely free system, the true physical vacuum of the
system has renormalized the rapidities. The so called physical rapidities are then
defined as:

™

0 —
T+ &

B (2.97)

The procedure of obtaining such a vacuum might appear confusing at first, but once
it has been constructed, different excited states of the system can be computed.
The procedure of renormalizing quantities like rapidities or scattering phase shifts is
known as dressing. Dressed functions are the ones that provide the actual physical
results of the theory, therefore understanding how to compute them is fundamental
in the method.
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The single channel IRLM:
Thermodynamics

“Nothing is boring if you look at
carefully”

Freeman John Dyson

This chapter is devoted to condense the theory of thermodynamic properties of
the single channel IRLM. The single channel IRLM was the first variant of the model
as proposed originally by Wiegmann and Finkelshtein [36], something that makes it
fundamental to study in detail. It is also important due to its direct relation to the
anisotropic Kondo model (AKM).

In order to study cases for arbitrary values of U, we use the bosonization [66, 72]
technique. This being a field theory technique, still has to reproduce the same low
energy description of the lattice model hamiltonian (3.1). The technique has been
applied previously to the IRLM [39], in order to compute the exact expression for
the thermodynamic exponent «. Although the final form of the exponent given in
[39] is correct, it does not include a correct interpretation of the scattering phase
shift associated to U. Our approach here will prove to differ from previous studies
[38, 39, 50, 55] as we will see shortly. All results presented here for the single chan-
nel IRLM are exact, and moreover, an important connection to an integrable field
theory will be stablished.

3.1 The single channel IRLM

Since we are dealing with thermodynamic quantities, we focus exclusively on prop-
erties where the operators are evaluated at equal times. We recall here the form of
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the IRLM oun its lattice version:

H=cod'd—t Z leiys +(chd+ he) +
6

U <c$c0 - %) (d*d - %) (3.1)

where N specifies the total number of channels attached to the lead, and the ¢;
represent fermionic operators in the lattice. The operator d represents the impurity
annihilation operator.

Since we are interested in the behaviour of the system at the impurity site, the
most important quantity to compute is the hybridization T'. This defines a new
energy scale in the system separating two different regions, one where the dot is
decoupled from the surrounding bath, the other describing the dot hybridized. It is
important to say that, in our wide band limit, this energy scale satisfies I' << 2t,
thus much smaller than the bandwidth. As we have seen previously, for the non-
interacting case U = 0, the hybridization is given by Ty = 7v(¢')? for N = 1
channels. As one switches on interactions, we found in chapter 2 by perturbation
theory that the hybridization parameter ¢’ scales with interaction as:

Toert. ~ (£)7%  g=Uv (3.2)

This chapter is devoted to find an exact (non-perturbative) solution for the hy-
bridization scale. Perturbative calculations fail to describe the model away from the
weak coupling regime [38], that is, for large values of U, when compared to numer-
ics. We explore here this issue. The problem we deal with is to find the (exact)
expression for I' in the form:

I'= fla)(t)" (3:3)

where « will be called from now on the thermodynamic exponent. We will calculate
this exponent in an exact way for an arbitrary number of channels, and compare
with numerical results. The exponent « represents the scaling of ¢ with interaction
U. The quantity f(«) represents a prefactor that depends non-trivially on «. This
dependence on « turns out to be very important, since it is what determines the
change in the energy scale as interaction is increased. One can clearly see that
the inclusion of such prefactor is necessary in the theory in order to account for a
full match with numerics. It will be seen later that for the case N = 2 case, such
prefactor reveals even more surprising properties over the calculation of physical
quantities. Once this exact expression is given, different limits of the theory are
explored and shown to match with the exact result.
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3.1.1 Bosonization of the IRLM

In the bosonization picture, the parameter ¢’ is treated as a perturbation. For N = 1,
the hamiltonian (3.1) has the following version in the field description:

: 0
H= Y HF%F /_ _ dz (Y (2)0ba()) + eodld + ¥ (Ao a(r) + hoc)

b U 0)0): (- ) (3.9)

where « described right (R) or left (L) moving one dimensional fermions, and vy is
the Fermi velocity. Most of the results collected here will correspond to the particle-
hole symmetric case, therefore we will set ¢¢ = 0 from now on. The operators
between :: symbols are normal ordered, so that : A := A — (A). We recall that
the IRLM is a spinless fermionic model. It is useful to introduce the unfolded
representation of the fields, so that:

Yr(z < 0) = Yr(z > 0) (3.5)
and express the hamiltonian (3.4) in terms of right-moving fields only:

+oo
H = —ivp / da (Vh(2)0,0r(x)) + eodtd + ¢ (d'pR(0) + h.c)

1
+ U :hL(0)1g(0) : (d*d— 5) (3.6)
We use the usual definition for fermionic fields in terms of bosons [72]

W(z) = %Q_Weiwﬂ (3.7)

Here 7 are Klein factors, which are not important in the following calculations, s-
ince they are not dynamical variables, therefore its representation is free to choose
so long as they preserve the anticommutation relations of the operators ¢ (z).

The impurity operators are identified with spin operators:
1
S* =d'd - 3 df =nSt d=nS" (3.8)

Note that the non-interacting part of (3.4) is a Dirac hamiltonian when we linearize
the spectrum (in the vicinity of the Fermi surface), characteristic of one dimensional
fermionic systems.

With the above considerations into account, the bosonized version of the IRLM
reads (vp = 1):
1

+o0 !
H= 3 /OO dz(0,9(x))? + \;_2_71' <S+eim¢(x) + h.c) +
SZ

Uﬁalfﬁ(o) (3.9)

44



Chapter 3

Here one takes into account the limit of # = 0. In this limit, the model is exactly
solvable, since both the impurity and the lead are decoupled from each other. The
situation is equivalent to a right-moving boson scattering off a point-like potential
at x = 0O

V(z) =Ud(x) (3.10)

Therefore, the N body problem is reduced in this limit to a single particle scattering
problem. The scattering phase shift experienced by the scattered particles is given
by:

m

§ = arctan (U;w> g=2 11 (3.11)

where v represents the density of states on the lead. Equation (3.11) will prove to
be one of the most important identities in this thesis. It is convenient to define
the parameter g as the actual interacting parameter in the theory. Since « in (3.3)
will depend only on the interaction, the relevant thermodynamic energy scale [ is a
function of this parameter only. The mapping Ur — 26 makes a direct identification
between the actual parameter of the model U and the phase shift experienced by a
free boson arriving at the impurity.

The hamiltonian (3.9) is now rotated under a unitary transformation of the form:
H=Uu'Hu U= V50 (3.12)

The parameter p is to be determined, so that the rotation changes the scaling di-
mension of the vertex operators 8 — (' (see appendix for details). The unitary
transformation allows to absorb the boundary term of 29, so that we have:

_ t A 20
H=H,+ StevAn(1=p)¢(0) 4 1 = = 3.13
0 m( ) p - (3.13)

Under such rotation of the fields, the new scaling dimension of the exponential
operator depends on the interaction parameter g:
62

2d = i (1—g)? (3.14)

We summarize the key points of the transformation above:

e The term proportional to U in the original hamiltonian can be substituted by
the scattering phase shift 26 experienced by a free boson in the ¢ — 0 limit.

e The scaling dimension of the new vertex operators is changed and depends on
the interacting parameter g.
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3.1.2 Scaling dimensions of operators and thermodynamic
exponent «

Here we explore the change on the scaling dimension of the operators, as well as
we show explicit calculation of the thermodynamic exponent « for the single chan-
nel case. We have seen previously how, under a certain unitary transformation,
the scaling dimension of operators changes, that is, it becomes dependent on the in-
teraction. For the single channel case we obtained equation (3.14) as the main result.

After explicit calculation of the scaling dimension, we need to see how the pa-
rameter ' behaves under renormalization. In other words, how does the parameter
t' scale in the IRLM as interaction ¢ is changed. Ultimately, we are interested in
getting the expression of «, which is in relation with the correlation length:

§~ ()" (3.15)

The exponent « will be called the thermodynamic exponent from now on.

In order to get such exponent, we will make use of the Renormalization Group
(RG) procedure. One then expects the theory to be similar to another renormal-
izable theory of moving bosons with an added boundary condition. A well known
renormalizable theory is the Sine Gordon Model, which we discussed previously on
the introduction. The Sine Gordon Model (SGM) is given by the action (in (1+1)
dimensions):

Ssan = [ ({00 — (0.7 + geos()) (3.16)

The cosine term accounts for the non-linearity of the corresponding equation. The
parameter [ is directly related with the scaling dimension of operators by:

62
" ar
A variant of the SGM is the Boundary Sine Gordon Model (BSGM) [34], which
includes a boundary term in addition. The BSGM is described by the action [89]:

1

5= [ 420,07 + Goos(50) + geos (010)) (3.18)

2d (3.17)

Note the factor 1/2 in the boundary term, which is important for integrability of
the model. The SGM has a well known spectrum. When a perturbation is included,
it develops a mass gap with scaling dimension:

1 8 1
=G A=——-1=--1 3.19
= -l=3 (3.19)
For the IRLM in (3.13) we will choose a generalised version of the sine-Gordon
model, where the Euclidean (imaginary time) action is:

a+x)
m r~ G 2X

S =25+ z/ dng cos(fB'd(x))d(x) (3.20)
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where a is introduced to preserve the dimensions and its taken as the inverse of
lattice spacing (A ~ 1/a). Notice that the parameters ' and f§ refer to different
scaling dimensions. It is important to clarify this: § will always correspond to the
bulk parameter in the SGM, whereas ' corresponds to a boundary version of it.
The paramater z is the one whose flow we want to study under renormalization.
More concretely, z ~ t’ for the IRLM, since ¢’ represents a small perturbation. The
method we are about to develop thus works for small values of ¢, but for any value
of interaction U on the IRLM.

We move now to map our IRLM to a generalised SGM in the massless limit, that
is, where only the boundary term is considered. For that, we follow a Renormaliza-
tion Group procedure, which is detailed in the appendix. By changing the cut-off
of the theory A — A’ and integrating out the high-energy degrees of freedom, one
ends up with an equivalent action where the parameter z has been renormalized.
To understand how this works, it is important to understand the renormalization of
the SGM. This is well known and following [66], one finds that the relevant energy
scale appearing is that related to the correlation length by:

6/2

El e Az 2 =
4T

(3.21)

We should not confuse this d' with the one on (3.14). This is the scaling dimension
associated to a general SGM in (3.20), and it is easy to obtain the relation between

S and ' from here:

B = 7 (3.22)

Therefore, for the IRLM the thermodynamic energy scale is estimated as:

T " 1/1-2d’' 1
T~ (K) 2d' = 71 =29+ 9°) (3.23)

where A here represents the cut-off of the theory. Thus, we have an exact formula
of the thermodynamic exponent « in terms of the interaction parameter g:

2

= 3.24
“ 1429 — g2 (3:24)

Note that for the non-interacting case g = 0, the thermodynamic exponent is a =
2, as one would expect. We also identify in this case a quantum critical point,
happening where the thermodynamic exponent o« — oo. This happens for:

ge =1 — V2~ —0.4142 (3.25)

Notice that the other solution has been discarded because it lies outside the interval
[—1,1] where g belongs. We identify a quantum phase transition with this point
in the attractive (U < 0) regime. At this point, the correlation length becomes
infinite. We will discuss later the significance of these quantum phase transitions
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for an arbitrary number of leads N.

We also recognise here the first order correction from perturbation theory ex-
posed in chapter 2. When U ~ 0 we get:

2

2 Unv
1+2U0v

g = —arctan T) ~Uv+0U? = «
m

(3.26)

The result (3.24) agrees with previous studies [39, 38, 50], however some com-
ments need to be added. In references [38, 39|, it is not clear that this exponent
relates to the thermodynamic exponent, since explicit mention to the local density
of states (a dynamical quantity) is done. The exponent « is clearly associated to
the correlation length. Also in [50], this result is recovered for N = 1, but without
mentioning that this is an exact result. Both points need to be clarified here, and
understand that expression (3.24) is the actual thermodynamic exponent in the the-
ory, and that it is not related to dynamical quantities of the model.

Another comment to make on expression (3.23) is that the expression is approx-
imate, but not eract'. Therefore one raising question is what is the exact form of
the prefactor appearing on the thermodynamic scale. To further explore this, the
connection with the BSGM we have already seen here is exploited.

3.1.3 The thermodynamic energy scale I

Although the thermodynamic exponent « has been calculated in an exact way, there
is a missing proportionality factor in the expression of I', which describes the energy
scale of the system. We will give now an ezact formula for [" in the form:

%: f@(%)a (3.27)

Here f(«) is called the prefactor. When equation (3.23) was derived, a direct map-
ping of the IRLM into a generalised (boundary) SGM was done. It is then worth
considering if ezact results on the theory of the BSGM can be equally applied to the
IRLM.

It is important to make a clear definition of I' in the IRLM. Such an energy scale
relates to observables of the theory. In the non-interacting case (g = 0), the energy
scale I'y is related to the impurity occupation number:

11 €0 _ ong
na=5 - arctan (F_0> Iyt = —71'(8—80>

'To avoid confussion here, note that what is exact is the exponent «, however the expression
for the thermodynamic energy scale I' misses a prefactor that might depend on g in a non-trivial
way. The RG method doesn’t allow to calculate the exact form of this prefactor.

(3.28)

e0=0
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When interactions are switched on, one can still adopt this definition for the ther-
modynamic energy scale, so that the value of I' is determined for any interacting
value ¢ by just changing 'y — T in equation (3.28). Thus, the thermodynamic
energy scale is directly related with the microscopic parameters of the theory, more
concretely, with small variations of g around the point g9 = 0.

Now we will match both definitions of I eqns (3.23),(3.28). The following result
is recovered from the exact expression given in [35] for the boundary temperature on
the BSGM. The boundary temperature Tz represents the relevant energy scale in
the Boundary Sine Gordon Model, as I' does for the IRLM. The exact expression is
given in [35] by:

2V

MATY = EF(V)VI_”T};”R()\)I_” v
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= o (3.29)

where I'(x) represents the gamma function, A represents an energy cut-off, and R(\)
is defined as:

2y/m(1+ N (5 + 55) \ = 1 1 (3.30)

F(5)) v

The § in the expression above corresponds to the bulk term in the SGM. For the
IRLM, we make the following identification of parameters:

R(A) =

)\1 = t, TB =l (331)

The parameter v, which represents the scaling dimension in the BSGM, is then
related to the scaling dimension of operators in the IRLM, so that:

1
v=2d = 5(1 —9)? (3.32)

By some manipulations of equation (3.29), we identify f(a) in equation (3.27) as:
= ZE(E)
@) = a—1\1¢ a

[T(=HT(E)

In order to recover the non-interacting limit, the cut-off of the theory A must be

chosen in a consistent way, moreover, it depends on the bandwidth of the lead
fermions (density of states of the bulk). Equation (3.27) has the limit:

(3.33)

Dimase = Lo = 7uv(t')? (3.34)
We should not confuse this » with the one used in (3.32). Here v represents the

bulk density of states in the IRLM. To recover the correct non-interacting limit, the
appropiate value of A is chosen as:

A=— v=— (3.35)
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We arrive then at the final form of the thermodynamic energy scale:

22—0471_204—5/21'\ (a_fl) ol

2 et (3.36)

RESIRE

I =

The above expression is eract, and represents the thermodynamic energy scale on
the single channel TRLM as a function of the thermodynamic exponent «, the hy-
bridization parameter ' and the bulk density of states v. Such expression works in
the limit ¢'/t << 1 considered here.

The same expression can be written in a more convenient way. One is usually
interested in comparing how the hybridized T" scales in ratio with I'y of the non-
interacting case, in which case equation (3.36) is written as:

— = Q) )2 = =) e (337)

The identification of the IRLM with the boundary Sine Gordon Model has not
been justified yet. The reader might think that we have only managed to identify two
different models by making direct substitution of their parameters into one known
formula, since equation (3.29) has been derived exclusively in [35] for the Boundary
Sine Gordon Model. As we will show in the next section, we prove numerically
equation (3.36) to be correct one for the IRLM.

3.1.4 NRG for the N =1 IRLM

In this section we will prove numerically the analysis carried out previously. The
method we use is the Numerical Renormalization Group (NRG), which was described
before on chapter 2. The code used to run simulations was written in Matlab®.

There are two thermodynamic properties we will focus on: the impurity occupa-
tion number and the associated thermodynamic scale I'.

The thermodynamic scale is defined as in (3.28) by just substituting T'y — T.
Numerical simulations are performed for the IRLM, by choosing carefully the pa-
rameters. A standard value of the discretization parameter A = 1.5 in NRG?. A
total system size of N = 82 sites has been chosen, meaning that a total of 80 lattice
sites are added to the initial hamiltonian (that contains only the impurity and the
last site of the chain). Since system’s size grows with each added site, truncation

2Again, we make a bit abuse of notation here. A represents the discretization parameter in
the NRG method, it is not to be confused with the field theory cut-off we discussed earlier. The
reason to keep both quantities with the same letter is purely conventional and standard from the
literature.
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needs to be done, keeping only the lowest eigenstates of the hamiltonian. We take
this truncation of the hamiltonian for a total of 500 states when the system size
is N = 11 sites, meaning the hamiltonian is a 2048 x 2048 matrix. Thus, at each
iteration step after truncation the hamiltonian matrix is of size 1000 x 1000.

To calculate all data points, several values of ¢y are chosen in the region gy €
[—a,a], with a ~ 1075 — 10~%. When the occupation number has been recorded for
these values, we proceed to a standard fitting to calculate the slope near ¢4 = 0,
which gives a direct value for I' according to the definition in (3.28). This procedure
is then repeated for several values of the interaction parameter g (that is, of U in the
IRLM hamiltonian). Note that different values of the interaction parameter have
been chosen for different ¢'.

100 3 T T T T T
101 :
A
B i
~ 102 ]
& ]
o Analytic t' = 0.01
ie) Analytic t' = 0.025 ||
103 o i
Analytic t' = 0.05
Analytict'= 0.1
O NRGt=0.01
107 A NRGt=0025 |3
X NRGt =0.05
¢ NRGt=0.1
10-5 1 1 T
0 0.2 0.4 0.6 0.8 1

g

Figure 3.1: NRG simulations for the calculation of the relevant energy scale I, for different
values of the hybridization parameter t'. The vertical axis is in log scale. The discretization
parameter A = 1.5 and the system size is of a total of N = 82 lattice sites. Analytical
curves correspond to equation (3.36).

Figure (3.1) represents all NRG data simulated for the IRLM. The continuous
lines are given by formula (3.36). The value of the bulk density of states v was
calculated from the U = 0 case, and inserted into the analytical formula (3.36). An
excellent agreement between numerics and the analytic formula is shown. The most
surprising feature is that the TRLM, being a model with microscopic parameters
described in a lattice, can equally well be described by a bosonic field theory with
a boundary term. This equivalence has not been stablished previously in the litera-
ture, although previous studies have explored the relationship between both models
by their integrability [46]. Here we prove this equivalence supported by numerical
simulations, which leads us to the conclusion that equation (3.36) is an exact ex-
pression for the one channel IRLM. More over, the IRLM and the SGM are related
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models, whose relation between parameters is then given by:

62

o=y (3.39)

where again 8 makes reference to the bulk sine Gordon Model. This relation be-
tween the parameters of both models will be useful later in chapter 6, but it is worth
to mention now.

. —Q(9)
15+ O NRGt=001 |
A NRGt =0.025
X NRGt =0.05
$ NRGt=01
3 1
c
05+
0 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
g

Figure 3.2: NRG simulations for the prefactor of equation (3.37)(continous curve). All
data points collapse on the same curve for different values of the hybridization parameter
.

On figure (3.2) is represented the prefactor Q(g) of equation (3.37). We see how
all data points collapse onto the same curve, providing evidence once again for e-
quation (3.37) for the IRLM. The attractive region g < 0 contains few points since,
as soon as one starts getting closer to the quantum critical point, accuracy in the
method is lost.

The thermodynamic exponent « is also obtained from NRG simulations.

For this, we have used a value of A = 1.5 as the discretization parameter. Values
of the interaction parameter g € [0, 1] in steps of 0.1. Three different values of the
hybridization parameter ¢’ = 0.01, 0.025,0.05 were used. For each value of ¢ and ¢/,
values of g9 € [—1le — 5, +1e — 5] where taken (11 values in total). The total size
of the chain was N = 82 and a total of 500 lowest energy states where kept after
truncation of the hamiltonian. The analytic formula represented by the continuous
red line is that of equation (3.24). We observe a very good agreement between nu-
merics and the analytical results. It is worth mentioning that this exponent hasn’t
been calculted numerically in the literature, although the correct analytic formula
can be found in [39, 50, 55]. It was believed that NRG should only provide good
numerical results for the model in the weak coupling limait, this being due to the lack
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2
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Figure 3.8: NRG simulations for the thermodynamic exponent and the occupation number
of the dot. (a) NRG data points for the thermodynamic exponent « as a function of
the interaction parameter g. A very good agreement between numerics and the analytical
formula equation (8.24) is shown. (b) NRG simulations for the occupation of the dot (d'd)
as a function of the local chemical potential 9. As interaction is increased, the width in
the eg ~ 0 grows.

of an exact expression. In this sense, a confirmation of (3.24) has been made for any
value of interaction U.

We also consider to give a graph of the occupation number as a function of ¢ for
different values of interaction. For positive (repulsive) interaction, the occupation
number undergoes a broadening of the width as one would expect. The following
points were calculated by NRG for a value of A = 1.5 and a system size of N = 82
total sites, by keeping a total of 500 lowest energy states after truncation of the
hamiltonian.
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3.1.5 The Toulouse point

We want to close this section with the important analogy between the IRLM and
the Anisotropic Kondo Model (AKM). For a single value of the parameter J# in
the AKM, the model is exactly solvable, since it maps directly to the U = 0 limit
of the IRLM. This is known as the Toulouse point [66]. This was important at
the time of the Kondo problem, since it allows one to map the model exactly to
a non-interacting one (at least for a single value of the parameter .J). The AKM
hamiltonian is:
JL

H = Hy+ 7(3+J_(0) +h.c) + Js*S* (3.39)

with fermionic currents:

(W@ () = Y@y (@) 0 (3.40)

N | —

JE =gl () =

Kondo-IRLM mapping

UirLm

1 2 3 4 5 anv2(v2-1) 9 10

Jz1Jo
UIRLM' DMRG X a(Jz) DMRG. o
Ujrim, analyt. al);) analyt.

Figure 8.4: Calculation of the Toulouse point in the IRLM/AKM by DMRG simulations.
The Toulouse point happens when both curves intersect each other. For that specific value
of the coupling J*, the AKM maps to the Resonant Level Model (RLM), the non-interacting
version of the IRLM. (Graph courtesy of Peter Schmitteckert)

If one bosonizes the above hamiltonian, one spin degrees of freedom contribute,
so that the hamltonian (3.39) only includes the field:

o) = %(%(w) —6,(x)) (3.41)

The AKM has the bosonized form:

J .
ﬁn(sﬁelm‘b(o) + h.c) +

V2J
VT

H[g] = Ho[¢] + s°0,¢(0) (3.42)
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One proceeds now in the same way as before (3.12) by applying a unitary trans-
formation U. In this case, the parameter p in (3.12) is chosen so that the scaling
dimension of the vertex operators is d = 1/2, that is, they are fermionic. Similar-
ly, the coupling constant J can be substituted by the scattering phase-shift on the
J. = 0 limit. In this case, because there are two channels (one for spin up and
another for spin down), the scattering phase shift contains an extra 1/2 factor as
compared with the IRLM case:

20
Jx = arctan <—JZU> gr = oK (3.43)
T

The Toulouse point is obtained for a value of:

1 4
gr=1- 5~ 029 J = tan (%) (3.44)

We report here this result to be incorrect in [66], however it is obtained correctly
in [90]. Notice that although the numerical value of gy is known, the value of the
corresponding coupling still depends on one microscopic parameter, the bulk density
of states v.

3.2 Lattice treatment of the IRLM

We have considered so far the IRLM as described by a field theory of fermionic
operators, which ended being bosonized. It is also well known that the low-energy
sector of any given model is to be described either by a field or by its lattice version.
Both methods provide the same answers, and here we will explore these analogies by
applying different techniques to study the single channel IRLM on its lattice version.
Moreover, we will be interested in computing expressions useful to study the strong
coupling limit of the theory, when the interaction parameter U is pushed far away
from the original cut-off of the theory (the bandwidth describing the bulk electrons).

3.2.1 Strong coupling limit

We will study now the strong coupling limit of the theory, where the system becomes
strongly correlated. In such a limit Uy >> 1 for the IRLM. In fact, we will be now
interested in studying the limit of the model when the parameter g ~ 1. Because
we are dealing with strong values of interaction, one can first consider the atomic
part of the hamiltonian to be isolated from the rest of the environment. That is,
given the IRLM hamiltonian (3.1), we consider the part:

1 1
H,iomic + U/4 = 6()de + t (dTC() + hC) + U(CI)CO — 5) (de — 5) + U/4 (345)
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The reason to lift the origin of energies by +U/4 is that this makes the low-energy
subspace to be independent on the interaction parameter U. In the many-particle
basis, the situation is equivalent to a two level system, with four possible binary
states on it: {|00),|01),]10), |11)}. In such a basis, the hamiltonian (3.45) is given
by:

U/2 0 0 0
. 0 o t’ 0
Hatomlc - 0 t, 0 0 (346)

0 0 0 g+U/2

We note that the low-energy subspace is that formed by the states |10), |01), states
with a total number of particles equal to 1, where the impurity is filled or empty,
respectively. We are working here in the limit U >> ¢y, and also in the strong
coupling limit g — 1. We just need to diagonalize the middle 2 x 2 matrix (which
is the low energy sector) to get the new ground state as:

o — f 2t
GS) = 10 — |01
|GS) N 10) + le )
o +€ 2t
ES) = 10 — |01 3.47
5S) = S 10) + 5-101) (3.47)
with corresponding eigenvalues:
= ;g PR ;5 (3.48)

and where we have defined for convenience:

£ = Jeg +(2t)?
Nio= V(2) + (20— €)?
Ny = V) + (e +) (3.49)

The occupation number of the impurity site is now calculated in the atomic limit
to be:

(GS|dd|GS) = (50]\; 5>2 (3.50)

or using the above definitions:

(20 — Ve + (215’)2)2

(d'd) = (3.51)
(2t)2 4 (g0 — /€& + (2t7)2)?
The occupation number is given by the following expression:
1

14 (z — V14 22)? 2t!
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Note that the density of states of the bulk v does not appear here, since both
last sites of the chain are decoupled from the rest of the bath. By expanding the
expression around z ~ 0, we get:

1z 9

and by use of equation (3.28) (the definition of I'), we have that:

4

I'g=1 3.54
(9=1)=" (354)
The strong coupling limit ¢ — 1 corresponds to a value of the thermodynamic
exponent o = 1. If we now take a look at the expression (3.36), and take the limit

a — 1, we see that:

22—a 2a—5/21’\ a—1 4t
w ( 2 )yafl(tl)a _ (355)

v T "

With that, we have proved that both limits agree in the strong coupling case, for
an expression directly taken from the field theory (actually, from the Boundary Sine
Gordon Model), and another expression taken from the microscopic parameters in
the lattice. Once again, this proves the validity of the mapping between both the
BSGM and the IRLM, and more important, that both the lattice and field theory
descriptions of the model reproduce the same low-energy properties. We remind the
reader that equation (3.36) was taken directly from [35], where no explicit mention to
the IRLM is done. This strong coupling limit also agrees with the NRG simulations
in figures (3.1) and (3.2).

limI' = lim
a—1 a—1

3.2.2 Coupling to a bath of fermions:1/U corrections

In previous calculations, we have treated just the two level system of an impurity
and the last site of the wire. This was justified by the strong value of interaction
U = 400 present in the system, when both last sites of the chain can be isolated.
However, the true situation is that these two sites, for any other value of U # oo
but strong, are still coupled to a surrounding environment. Therefore the term of
the hamiltonian:

t(cleo + hec) (3.56)

is the term that allows for first order corrections in the 1/U ~ 0 parameter. We can
express the new operators in terms of the old basis ones:

€0 —g 2t —N1 Ng
a N, + Nlcg 2% a+ 2%
. €0 +€ 2t . (60 + f)Nl (é_ — 50)N2
b= N, d+ N200 co = 10 a+ T b (3.57)
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And therefore, the low-energy hamiltonian is expressed:
H{T = HE +tPr(cleg + h.o)F f f
5 o L(cico+h.o)Pp+ A_a'a+ A b (3.58)

We have to calculate the operator of the coupling projected to the low energy sub-
space. However, we see that clearly this operator takes us to the high-energy mani-
fold because the number of particles is changed when we apply it. More formally:

PrcleyPr, = c{(|a>(a| + [b){b])[0){b| = 0 (3.59)
Thus the low energy effective hamiltonian here is:
H = HE + )\ _ata+ 2\ b'h (3.60)

which is a totally decoupled hamiltonian. The way to calculate the effect of the
surrounding bath into the impurity+site system is by allowing virtual fluctuations
between the low energy subspace and the high-energy one. It is here where the
Schrieffer-Wolff transformation [10] is applied.

The case of interest appear when we allow virtual exchange hopping between
the high-energy manifold and the low energy one. The idea is recovered from the
Schrieffer-Wolff transformation that we described earlier in chapter 2. The first
order correction to the low energy hamiltonian is given by:

1. ~
H* = S Pi[S, VP, (3.61)

where V' is the exchange term ¢(c! ¢ + h.c), and S is antihermitian and arises from a
canonical transformation. These corrections are of order 1/U, so that is why in the
limit of U — oo they are not considered. When these terms are taken into account,
the low energy hamiltonian (with first order corrections) can be expressed as:

2t
HIT ~ HE + Nata + MbTo + Fc{c1 (J2ata + JZbTo + Ji Joa'b + hee) + C

where the couplings are defined as:

Jijpg = Niyp—7F—

JP+J2 =1

1 = e Tre) O

The definitions of Ny, Ny, £ are given by (3.49). We should note that the constant C'
is essential to come back to the original basis of operators expression. An analysis
using perturbation theory can be carried out in the 1/U parameter.
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We have seen that in this limit, the IRLM transforms into a two level system.
The new basis the operators can be identified with spin operators [65], so that:

S™/ST = bla/a’b
Tq — bih
gt _ a'a
2
a'a+b'b = 1 (3.63)
where the last condition arrives since we cant have both levels occupied at the same

time. We may want to transform the non-interacting part in an analogy with a spin
in a magnetic field:

Hy=h,S*+B (3.64)
where B is a constant. For that, we have:

Aoata + Nb'b = c(Ma — M) (ala — ') + D (a'a + b'D) (3.65)
1

Therefore:

Ao —N)+D =),
C(/\b - )\a) + D= /\b (366)

The solutions are easily found for the constants ¢ and D:

1 1
D= 5(/\,1 + )\b) Cc = 5 (368)

Neglecting the constant term, we can now express the non-interacting part of the
hamiltonian as:

Hy = HYM 4 h,5* (3.69)

with h, = —£ < 0, so the impurity is inmersed in a magnetic field (thats why there
are two possible energy levels, the ground state being the spin aligned parallel to
the magnetic field). The interacting part is expressed in terms of the spin operators
as:

21 1
Hipy = _70101<(2J12 - 1)SZ+J1J2(S++57) —|—§) (3.70)
Recalling that:
ST+S =287 (3.71)

Then we can express the interacting part of the low-energy effective hamiltonian as:
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where we define:

212
2.0, Jo
A = o2
(2J7 - 1)
_ 1
7= \err -1
h, = —¢ (3.73)

The important parameter here is K;, which englobes the dependence with the in-
teraction. The parameter ¢ represents the hopping amplitude for the tight binding
chain, and it is related to the bulk density of states by v = (7t)"!. Thus, a low

energy hamiltonian has been constructed in the spin-operator language:
H = H* + h,5* + K cle, <Sz + AST + g> (3.74)

This hamiltonian represents the IRLM in the sector where g ~ 1. Although we
managed to express the hamiltonian in the diagonal basis of states |a), |b), we see that
a transverse field appears in the interacting term. This makes the above hamiltonian
difficult to treat. If we come back to our original basis, our hamiltonian in the low
energy sector is described by:

2% -
Hopp = Hf +9S* + 25" + FPL(cICO + h.¢)(cleo + h.e) Py (3.75)

Notice the factor of 2 in the above expression, which accounts for the fact that the
high-energy manifold is expanded by two states. Therefore, there are a total of 2
possible virtual fluctuations between the low and the high-energy manifold. This
specific form of the SW transformation is allowed when the energy difference be-
tween the low and high energy states is big compared to the bulk’s characteristic
energy scale .

If we expand the interacting part of this expression, we are left with:

2t2
Nid (cicw%cl + cgclc{co) (3.76)

Since these are the only operators that are non-zero acting over a state. Taking into
account that:

C(JSC() =1- 0008

did — ¢
gr = L0~ %% (3.77)
2
Applying anticommutation rules, the hamiltonian can be written as:
I B o A 1\ .,
Heff = HO +EQS + 2t S + 7 CiC1 — 5 S (378)
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This hamiltonian is known as the resonant tunneling model, studied previously by
Caldeira and Leggett [63]. It gives the strong coupling corrections for the IRLM in
the low-energy sector.

3.2.3 Bosonization of the strong coupling hamiltonian

The hamiltonian given by equation (3.78) represents the low energy physics of the
IRLM in the strong coupling limit, where the microscopic parameter U >> t. Being
a lattice hamiltonian, one can go to the continuum limit by making the lattice
spacing a — 0. In this limit, the lattice operator for the channel becomes:

1

ey — 5 Y () () : (3.79)

When written in a field theory version, the hamiltonian (3.78) can be bosonized
by the same procedure we described before. By making the same identifications
between fermionic/bosonic operators, its bosonized form reads (g9 = 0):

Hop =5 [ @00 +1(57+57) + Sl K="5 (s0)

Applying a canonical transformation of the form similar to (3.12), the model maps
onto a bosonized version similar to (3.9):

1 .
Ut = 5 [ do@0()? +(57e 700 110
K 4t

The scaling dimension of vertex operators is:
8% (V4rT)? 5 4t 1\
Am av ’ mU ( )

Now we take a look at our exact expression for the scaling dimension in the general
U field theory, which was derived in (3.14). A 1/U expansion gives:

g %arctan (%) 1 f—é +o(UY) (3.83)

Therefore, the scaling dimension of vertex operators in the field theory (3.9) in the
large U limit is given by:

2d = (1—g)* ~ (%)2 (3.84)

which matches with equation (3.82). Thus, we have proved the general field theory
for the IRLM in the large U sector to match the field theory derived from a strong
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coupling expansion in 1/U in the lattice. This proves one very important result:
No matter how big the value of U is, we can always derive our field theory results
from the lattice construction of the model, and viceversa. This was proved already
with numerical simulations in figure (3.1), where an equivalence between the model
on its lattice version (depending on the microscopic parameters) and the equivalent
field theory (Boundary Sine Gordon Model) is shown. A conclusion of this is that
all low-energy properties of the model can be extracted either by its lattice version
or its field description.

3.2.4 Mean Field Theory in the strong coupling limit

Usually, a Mean Field Theory treatment of a physical model can offer rich infor-
mation about the qualitative behaviour of the model in some region of parameter
space. This proves to be the case in the Anderson model. For the IRLM, we consid-
er equation (3.78). A MFT treatment simplifies the problem by substituting some
operator in the interacting part of a hamiltonian by an averaged value, which is
to be calculated in a self-consistent way. We will see that with this method we do
not reproduce the correct 1/U correction one would expect from an expansion of
equation (3.23). Nevertheless, the method is quite general to be considered here and
to serve as a point of reference for further work.

Consider the interacting term in (3.78), which is substituted by:
1 1 t
(e =n = 5 - arctan <%> (3.85)

which resembles the occupation number of the non-interacting Resonant Level Mod-
el. If we consider the relation:

5% =g — % L (57 = (ng) — % (3.86)

thus the local chemical potential j equals:

2t? 1
0= ((m) - 5) (3.87)
Therefore, the occupation number on the first site of the tight-binding chain is:

e (2012 559

1
<0101> = 2

Defining the following parameters:

1 (ng) —1/2
(ley) —1/2 = - arctan (T/Q) =A
b = 2—5 (3.89)
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the hamiltonian in terms of d, ¢y operators is:

A A
Hyp = (%0 + fﬁE) did - (%0 thig ) cheo + ' (chd + d'eo) (3.90)
We diagonalize this to get the eigenvalues:
1 kA
de = F5 VP @ RAP = VI 2 o= D00 (30)

The eigenvector associated with the lowest eigenvalue (i.e, the ground state) is:

GS) = N%(- 1,x+¢1+7) (3.92)

where the normalization constant is:
N, = \/5\/1+x2+:1:\/1+:1:2 (3.93)

Since the ground-state |GS) is:

|GS) = «|10) + 3]01) (3.94)
Then we have an expression for the occupation of the dot:

5 1
(na) = o” = 2(1 + 2?2 + xm) (3.95)

where we must keep in mind that 7 depends on (n,) through A. This is then a self
consistent equation for the occupation number on the impurity site. For z = 0, we
find (ng) = 1/2 as expected. We now define the quantity:

1 ki¢

ki
¢ = (ng) — 5 kA = - arctan (1/_262) (3.96)

Since we are interested in the large U limit of this expression, we perform an expan-
sion in the parameter k. Expanding to first order we have:

AU 1
e +g(/), . y==2 (3.97)
2v/1+ 2 16mut’ (1 + y?)3/ 2t
In terms of the cut-off of the theory, A = 4t, then:
1 2
¢~ Byl +y7) 3= 1610t (3.98)

2((A/U)? = B(1+y2)%72)

It is at this stage when we make use of the formula for the definition of the ther-
modynamic energy scale used in (3.28). The value of the charge susceptibility is
calculated by taking the derivative respect to y:

X = i% — ﬁ((A/U)Q(l +392) — B(1 + y2)3/2)
2t 0y 4t ((A/U)2 — B(1 +y2)3/2)2

(3.99)
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which provides directly the value of the width, for small values of y:

AP #((A/U) = Br) k= (141 (3.100)

"o(mrea e - o)

The minus sign comes from the definition of I' equation (3.28). We see that the
limit of U — +00 is recovered here. In this concrete limit:

4t' 213/2
For the value y = 0, that is, when the local chemical potential £g = 0, this expression

1S:

At
ImT = — (3.102)
m

g—1

which matches with the limit of (3.36) for ¢ — 1. The MFT allows to calculate the
first order correction in 1/U for the susceptibility, so that for k = 1:

4t/ 1 (AN
Pyp o~ — — (—) (3.103)

T A2y \ U

Notice that this correction doesn’t depend on the parameter ', which is surprising
at first sight. Thus, we believe the MFT approach exposed here to be incomplete;
although it does not reproduce the expected corrections, the method is quite general
and can serve as a starting point for further work on the model.

3.3 Brief summary of results

In this chapter, we have built up a theory for ezact thermodynamics in the single
channel version of the IRLM. Analytical results have been compared with NRG
numerics, resulting in very good agreement between both. We summarize here the
most important results found:

e By use of bosonization, the IRLM in the one channel case is mapped to a
Boundary Sine Gordon Model (BSGM), where the parameters of both models
are related by:

1
— =_(1-g)? (3.104)
whre [ is the bulk parameter in the standard Sine Gordon theory, and g is

related to the phase-shift experienced by the single boson arising from the
bosonized version of the IRLM.
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From this mapping, an standard RG procedure allows to calculate the corre-
lation length, which will determine the relevant energy scale I' ~ (¢#')®. This
allows to calculate in an exact way the thermodynamic exponent . The an-
alytical result is then confirmed by NRG simulations.

To further prove correspondence between both models, an ezact relation be-
tween the boundary temperature Tg in the BSGM and the thermodynamic
energy scale of the IRLM T is given. The relation between microscopic pa-
rameters of the model and the field theoretic description (Uv — 26) is proved
carrying out NRG simulations. These simulations match analytical results
with a very good agreement.

Correct identification of the so called Toulouse point, where the Anisotropic
Kondo Model (AKM) maps to the U = 0 IRLM.

Strong coupling treatment of the model in the lattice proves to give the same
answers as its field theory version. Within this description, we give an effective
low-energy hamiltonian, with coupling in 1/U order. The bosonized version of
the strong coupling hamiltonian (worked out from the lattice) is in agreement
with the field theory carried out for all values of U.

We study 1/U corrections in the large U limit by Mean Field Theory. We
recover the exact result at U = 400, but the method fails to provide the
correct next order corrections away from this point.
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N channel IRLM: General features

“All human wisdom is contained
in these two words - Wait and
Hope”

Alexandre Dumas, The Count
of Monte Cristo

Whereas a complete thermodynamic theory of the single channel TRLM has
been discussed in the previous chapter, further generalization of the model to its
multichannel version presents interesting questions to address. Even being the same
model, attaching one extra channel to the impurity site changes drastically the
physics, as we will shortly see. A complete theory of the model for an arbitrary
number of leads constitutes a major challenge to be completed in the equilibrium
IRLM. However, some general features of the model can still be computed following
a similar analysis as for the one channel case. In this chapter, we will describe these
general features, pointing out in our way all open questions arising in the model,
which can serve as a starting point for further investigation.

4.1 Two channel (N =2) IRLM

We pass now to describe some general thermodynamic features of the two chan-
nel IRLM. Although we wont treat non-equilibrium properties of the IRLM in this
thesis, we want to motivate its introduction briefly. The two channel version of
the IRLM is of great importance from the point of view of its transport (non-
equilibrium) properties. It has been studied out of equilibrium under several meth-
ods [44, 46, 47, 48, 49, 51]. Of particular interest is the extension of the Bethe
ansatz method [44] applied to the model, the so called open Bethe ansatz. The
method claims to be quite general to solve for the non-equilibrium steady state of
strongly correlated systems, allowing an exact solution for every value of the interac-
tion parameter. However, performed numerics [45] disagree with the claimed exact
solution, and thus the method, despite of being a pioneering one, still undergoes re-
vision. The two channel IRLM has only been solved in an exact way at the self-dual
point [48], when U = 2t, where it has proved to agree with performed numerics. One
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of the main quantities to be computed is the noise related to the current. This has
also been studied at the self-dual point (SDP) of the model, where very good agree-
ment between numerics and analytics has been found [91]. In this line of research,
extension of analytical approaches to solve the model for an arbitrary interaction
value are desirable.

Instead, we will focus on some of its equilibrium properties, in a similar fashion
as we made with the single channel case. Despite its apparent simplicity as com-
pared to its non-equilibrium counterpart, we find the two lead IRLM in equilibrium
to offer rich physics, which may serve as a good starting point when treating the
problem out of equilibrium.

4.1.1 Bosonization and thermodynamic exponent: Duality

Following our last treatment for the one channel IRLM, we will bosonize the two
channel case in the same way. The unfolding of the fields can be done in the similar

way as in (3.5). Thus the two channel IRLM is equivalent to two single channel
IRLM in the whole line:

H=—i 2; / Z:o dz ()] (2)0,05(x)) + od'd + 1 2(&%(0) + h.c)

1
U ] (0);(0) = (did — 5) (4.1)
i=+
where & represent the right and left leads respectively, and each lead carries only
right-moving fermions. The bosonization expressions now work for every field, so we

have two bosonic fields ¢4 representing each channel. The hamiltonian transforms
to (g9 = 0):

Z/df’f Duts (i +\/——(n PN N >+h,c>
+% zi: 8,1 (0) (4.2)

where again, we have substituted the microscopic parameter Ur — 2§ as in (3.11).
Now one needs to perform a proper rotation of the fields in order to eliminate the
part proportional to 20 . For that, we choose:

[ = VIS 0 (04 (0)+0-(0) (4.3)

where p is to be determined. Applying the unitary transformation over the above
hamiltonian, we obtain:

H =

' + iV 47 17/) \/5 (i) 0 7.\/47p \/5(5:’:
E niS €Z ( / ) i( )6 ! / + II.C
V 27(

m
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In analogy with the treatment for the one channel case, now we can take a look
at the scaling dimension of the vertex operators. In this case, since each field is
independent, the scaling dimension is just the sum of both. Thus:

2 2
B
4T 4w

Notice the analogy with the one lead channel (3.14), but a factor of 2 (the number
of leads) now follows for the ¢ term. It is worth understanding the importance of
this g2 term, since in fact, its where all difference between the IRLM with different
number of channels lies.

2d =1-2g+2¢ (4.5)

By generalizing to a boundary Sine Gordon Model, and carrying out the same
analysis as before, one finds that the relevant energy scale for the two channel IRLM
has to be of the form:

2

P~ f@)#)  a= 142927

(4.6)
This result has also been obtained in [39, 50|, although no explicit mention to the
prefactor f(«) is done, which turns out to be essential as we will shortly see. We
want to make an important analysis of the result found for a.

The model develops a duality, in the sense that a change in the phase shift:
5 — g — 6 (4.7)

keeps the scaling dimension unchanged. In the two dimensional case, this duality
happens exactly at the infinite interaction point ¢ = 1 so that:

s 1

Therefore, exactly at this point, the vertex operators correspond to fermions again.
This duality represents a relation between the small U values of the model and
strong values of U, so that U <> 1/U are equivalent for the exponent . This has
been pointed out in [51], and can be seen if one represents « against g. The point
g = 0.5, which corresponds to U = 2t, is called the self-dual point. We have thus
found the first peculiarity between the one channel case and the IRLM when an
extra channel is attached to the impurity site: the thermodynamic exponent « in
the two channel version of the model presents a duality between the weak coupling
limit and the strong coupling limit of the theory.

It is curious to see that at this concrete value of infinite interaction, the model
maps itself onto another non-interacting fermionic problem. When we refermionize
at ¢ = 1, we get a hamiltonian similar to:

Hy—oo = Hy + god'd + J'(d9F (0) + d' (0) + h.c) (4.9)

Notice that this hamiltonian doesn’t contain an interaction between the leads and
the dot, nor represents an hybridization between the impurity and the channels,
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therefore its physical interpretation is unclear. It is a remarkable fact that for infi-
nite interaction between the leads and the impurity, the system behaves as that of
free fermionic fields.

4.1.2 The prefactor f(«): Broken duality

We have seen previously that the two channel IRLM develops a duality, in the sense
that there is a correspondence U < 1/U in the thermodynamic exponent. More-
over, we have shown that at infinite interaction U = 400, the model maps again to
a non-interacting model of fermions.

One would expect this duality to hold in the relevant thermodynamic scale T,
that is, not only the exponent, but the value of [' itself, to be subjected to the
correspondence U «» 1/U. If at U = 0 the thermodynamic scale is I’y = 27mv(t')?,
one would expect that, exactly at U = 400, this same value of I' is recovered due
to the duality. As we will see shortly, this proves not to be the case, reflecting once
again another surprising feature of the model.

15

ogn o

o t'=001 ¢;=0.0005 1511 o t=0.01 ¢;=0.0002
/T =H(a)(t)" 2

——TIT=f()(t)*?

101

T,

2 o 02 04 06 08 1 0. 02 04 06 08 1

g g
Figure 4.1: Numerical data for the thermodynamic energy scale in the 2 channel IRLM.
The data was directly extracted from [53]. The red curve shows the proposed form for
T given in equation (4.11), where a good agreement with numerics is found. Note the
numerical oscillations developed close to the self-dual point.

Numerical data on the occupation number for the two lead IRLM was obtained
from [53] and the thermodynamic width I' was extracted in the similar way as for
the one channel IRLM. The values of ¢y = 2e — 4, 5e — 4, so that the width can be
extracted from the occupation number n, as:

2
[' = ggtan(mng(g)) ¢g= — arctan <U;r1/> (4.10)

In order to fit the numerical data, a proposed form for the prefactor is taken, with
two fitting parameters, a,b. It is only the ratio I'/T\y what can be compared with
the analytic result, since we are using different values of £q. The proposed form for
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the analytical formula for I' is:

r 1 . bAg e
n = n/ @0 = () 1

The reason to choose this function is that it recovers nicely the weak and strong
coupling limits of the theory. The parameters a = 8 and b = 0.5 prove to be the
convenient values for the function to fit the numerical data. The numerical data is
plotted against this proposed analytical form in figure (4.1). We notice that, as op-
posed to the exponent «, the duality is broken when the prefactor for the expression
is taken into account. In other words, as interaction is increased and we approach
the ¢ — 1 limit, ' — 0 and not to [';. At the moment, we are still working on
possible explanations of this effect. This is shown in figure (4.1). It can be seen
how as ¢ — 1, the thermodynamic energy scale I vanishes. If T' = 0 at infinite
interaction, this means that now the correlation length in the system becomes infi-
nite, that is, fluctuations work now at all length scales. At this specific point, the
model experiences something similar! to a quantum phase transition (QPT). Notice
that the hamiltonian described exactly at g = 1 does not conserve particle number,
which at first sight is surprising, and might hint why such broken duality occurs. In
order to gain some clarity on this effect, we turn now to discuss the model onto its
lattice version.

4.1.3 Field vs lattice descriptions

We want now to discuss one of the main points of the above results, which is in
relationship with what was shown before in chapter 3 for the single channel version
of the model. It has been argued [51] that different behaviours can be expected in
the strong coupling limit of the N = 2 IRLM, depending on whether the continuous
(field) or discrete (lattice) versions are considered. One of the conclusions in [51] is
that the apparent broken duality for the thermodynamic scale I' we have just shown,
is a purely lattice effect.

In a lattice version of the model, the energy cut-off of the theory is related to
the bandwidth of the model, since the natural distance cut-off is given by the lattice
spacing. In a field theory description, a cut-off A might depend on the regularization
scheme employed. When working on the lattice version of the N = 2 TRLM, one
always observes a decreasing value of I', the thermodynamic width, as we approach
the infinite interaction limit ¢ — 1. This can be shown by a strong coupling treat-
ment we are about to develop. On the other hand, in the continuous version (field
theory), the cut-off is subjected to regularization schemes, and therefore, one can
recover I' = T’y at U = 400, preserving the duality both in « (the thermodynamic
exponent) and I', the relevant low-energy scale. Therefore, one of the main conclu-
sions of [51] is that, for the N = 2 version of the IRLM in the strong coupling limit,

'We want to be a bit careful here when talking about QPT in the model. As we will see in
the next section, these are determined by the relevancy or irrelevancy of operators describing the
low-energy physics in the model in some region of parameter space.
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the duality U <> 1/U can be preserved when going to a continuous description of
the model, but not in the lattice version. In this sense, one just needs to select the
appropiate cut-off dependence on interaction, and regularize the theory accordingly.

At this point, we need to show our discrepancy on that, supported by our pre-
viously shown results in chapter 3. It is hard to imagine that both, the lattice and
the field versions of a model, can still provide different answers when going to the
low-energy description of a model. Moreover, the fact that this differences have ori-
gin in the regularization schemes employed (for the field theory version), introduces
some arbitrariness when computing exact expressions of relevant physical quantities.

We look now at expression (3.36) in chapter 3. As it is shown in figures (3.1) and
(3.2), the exact expression for the thermodynamic energy scale I' can be very well
reproduced by the discrete version of the model. What is shown here is that, even
when expression (3.23) is computed from the field theory, no regularization scheme
or similars are needed to describe the low-energy physics of the lattice version of the
IRLM. In other words, what was shown for the single channel IRLM is that both
treatments (field/lattice) provide identical answers, as one would expect working at
large length scales.

We therefore believe that the computation of exact results has to be independent
of the regularization scheme employed by the field theory. Thus, the cut-off A is
always kept fixed, described by the bandwidth of the model. In this fashion, we
believe the broken duality shown in figure (4.11) to be a real effect that can be
recovered from both the lattice and the field description. Moreover, we believe that
the prefactor f(«) can be computed in an exact way from the field theory, in a
similar way as it is done for the N = 1 version of the model (by direct mapping to
a Boundary Sine Gordon theory). The correct way to identify again such analogies
is at the moment unclear to us.

4.1.4 Strong coupling limit in the lattice

We will study the strong coupling limit of the two channel case in the lattice, in a
similar fashion as we did before for the single lead. For the two channel IRLM, the
non-interacting width (what we have been calling ') is:

[y = 27wt (4.12)
where v is the bulk density of states for one of the leads.

For a strong coupling between the leads and the impurity, the initial hamiltonian
matrix consists on 8 X8 elements in the many-body basis (see appendix D for details).
In the low energy sector, two energy states appear:

IGS) = a]100) + b]001) + ¢|010)
|ES) = n[110) + p|011) 4+ m|101) (4.13)
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where the letters are parameters depending on ', U. Notice that these states corre-
spond to the subspace of N =1 total particles in the system and N = 2, but they
expand the low-energy subspace of the initial hamiltonian. Defining the following
parameters:

E= 812+ (50— U/2)2  x = /82 + (g0 +U/2)?
a=¢ego—U/2 [B=¢e+U/2
C= 1612 +2(a+ &2 v=+/2(8— x)+ 16t
(= 1612 4+ 2(a— €)%~ =/2(3+ x)? + 1612 (4.14)

One finds the coefficients to satisfy the following relations:

_a+& _B-x _
a= =) n="-_2 -

P
¢ o
44! 44!

c:_?.yn:_ (4.15)
Y

When we work out the projector, we can apply this to the coupling between the last
site of the chain and that of the leads as we did before, then:

Py (t Z (clycip + h.@)ﬁL P, = |GS)(GS| + |ES)(ES| (4.16)
i=L/R

becomes the operator describing the low-energy sector of the model in the strong-
coupling regime, where L/R represent the left or right channel, respectively. The
new coupling constant can be worked out in the limit of U >> g and U >> ¢/,
resulting to be:

4t 4
J=tnc+am)=t—(-U+E+ x) ~ 4t— (4.17)

¢y U
in agreement with what is found in [51]. We refer to appendix D for details on
the calculation. Therefore, in the strong coupling case, the width decreases to 0 as
observed from the collected numerical data in figure (4.1). Therefore, in this limit:

1
[(g~1)~ 02 (4.18)
This reflects the fact that as U — 400, the thermodynamic width I' — 0 in the two
channel version of the model. At this point, fluctuations work at all length scales,

since I' ~ €71, the correlation length in the system.

Compare this behaviour with the one found in the single channel case, equation
(3.102). Whereas in the single channel version the thermodynamic energy scale goes
to a finite value proportional to the hybridization parameter ', the two channel case
is totally different: the value of I' at infinite interaction vanishes, regardless of the
value of the hybridization parameter ¢'.
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4.2 General thermodynamics in the IRLM

In this section, the multichannel IRLM is treated in the field theory by bosoniza-
tion. We will compute the value of the thermodynamic exponent « for any number
of leads N attached to the impurity site. We present DMRG results on this, in
agreement with the general formula for the N channel case. After this, we will
give an explanation of all possible quantum phase transitions we encounter in the
model, which represent separation between two regions where operators behave in
a different way under renormalization.

4.2.1 Multichannel (N > 1) IRLM

We consider now the IRLM when more than one channel is attached to the impurity
site. Such a hamiltonian is written as:

N +00 N
H=—i z; / ) dx (Y} (2)00r; (@) + cod'd + ¢ z; (d"pr,;(0) + h.c)
Jj= Jj=

+U D+ 0k (0)ms(0) : (d'd — %) (4.19)

where the sum is running for all different leads (fields). Again, we will work on
the particle-hole symmetric limit €5 = 0 unless specified. The identification of
each fermionic operator with a bosonic one in the form (3.7) leads to a bosonized
hamiltonian of N independent Bose fields:

H= H0+Z\/_ (ST 4 he) + Zsz Bp;(x (4.20)

where again we have substituted Urv — 24. The procedure is the same as in the
N =1 case, except that now all bosonic fields must be taken into account in the
rotation. We choose the unitary transformation:

U — ei\/ﬂpSzﬁ Z;V:1 #;(0) (421)

to perform the rotation of the fields. With that, the transformed hamiltonian H =
UTHU is:

e . . 26v/N
Vo Z (S—ezﬁj%(O)e—z,ﬁz(Iﬁz(O) + h.C) p= 7\1-/_ — g\/ﬁ (4.22)
J

and the non-interacting part being:

Hy=Y" % / " i (0,05(2)? (4.23)
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Note that the value of p has been chosen in a way that the term proportional to 26
in (4.20) disappears. In expression (4.20) we have defined for notation convenience:

B = Vir—L_g,(0) = > Virgg(0) (4.24)

Therefore, a full bosonized version of the IRLM has been developed for an arbitrary
number of channels V.

4.2.2 Scaling dimensions of operators and thermodynamic
exponent o

Here we explore the change on the scaling dimensions of the operators, as well
as we show explicit calculation of the thermodynamic exponent . We have seen
previously how, under a certain unitary transformation, the scaling dimension of
operators changes, that is, it becomes dependent on the interaction. For the single
channel case we obtained equation (3.14) as the main result.

U

0.0 0.5 1.0 2.0 3.0 10.0 00
3 T T T T ] I

0.4 0.5
9/2 .
DMRG, N=1 X Analytic o, N=2 —
DMRG, N=2 o Analytic o, N=3
DMRG, N=3 Analytic o, N=4
Analytic a, N=1 DMRG, N=4

Figure 4.2: DMRG calculation for the thermodynamic exponent a as a function of the
interaction parameter g, for N = 1 (red) to N = 4 (purple) channels. For the N = 4
channel case, higher values of g are avoided, since one gets closer to the quantum phase
transition. Graph courtesy of Peter Schmitteckert.

For the N channel IRLM, the total scaling dimension of the operator in equation
(4.22) is just the sum of all the scaling dimensions of vertex operators:

2 2
L 4 (N - )% (4.25)

2d =
4

CA4r;
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For the field j, this was previously calculated to have scaling dimension of the form
(see (3.14)):

% _

=

(1-g) (4.26)

By taking this into consideration, the scaling dimension for the N channel TRLM is:

2d=1-29+ Ng*| ¢ge€[-1,1] (4.27)

It is important to note the appeareance of N in the ¢ term. This means that
significant results between different number of leads on the IRLM start to appear
in second order. This term will be extremely important when the exact solution by
Bethe ansatz is developed in chapter 6. We also see that the scaling dimension of
the operators is unchanged under the following shift:

™

§— N J (4.28)

therefore, a duality is found for any N > 2. Coming back to the RG procedure
in analogy with a generalised (boundary-type) Sine Gordon Model (BSGM), the
thermodynamic exponent is found for the N channel case by making the following
identifications:

62
8

1 2
1—d 1+29— Ng?

1
= 5(1 —2g+Ng°) a= (4.29)
The values of the thermodynamic exponent o have been represented in figure (4.2).

In general, the thermodynamic energy scale (related to the Boundary Temperature
in the BSGM) will be of the form:

Iy = fn(a)(t)" (4.30)

As we have seen previously, the calculation of the prefactor fy(«) still remains an
open question whenever N > 1. For the one lead case, we found this prefactor to
match that of the boundary temperature of the BSGM found in [35], but generalisa-
tion of such result to more leads is outstanding. We have also seen the importance of
this prefactor, which might depend on « in a non-trivial way, being the responsible
to drive the thermodynamic energy scale into a zero value in the N = 2 channel
case. Thus we see that, for different values of N in the model, we expect to have
different prefactors in the exact form of T.

4.2.3 Discussion of quantum phase transitions

Further analysis can be done in the multichannel IRLM for thermodynamics. If we
take a look at expression (4.29), we can identify the quantum critical points (QCP)
of the theory, where the correlation length & — oo. These have been identified in
[50], but no physical interpretation is shown for them. We will show here the nature
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U<o U>0 Uu<o : U>0 ij
U<o0 g j U>0 :
Figure 4.3: Low-energy subspace states in the strong coupling regime of the IRLM for

N =1 channels (left) and N = 3 channels (right). The geometry of the model is responsible
of all phase transitions encountered.

of these QCP, and their relation with the geometry of the model.

QCP appear when, for a finite value of ¢, the scaling of the parameter goes to
oo. In this case, we have:

D~ () (4.31)

where £ is the correlation length of the system. Whenever £ — oo, we have a
signature of a Quantum Phase Transition (QPT) in our system. In the TRLM, we
are always considering values of ¢’ very small compared to the bandwidth, therefore
t'/t << 1. Thus, when o — oo a phase transition occurs. By taking a look at the
equation of a, we identify these QCP to be at:

1+V1+N
gecr =~ (4.32)

We recall that g € [—1, +1], therefore some of the solutions above lie beyond the
physically acceptable range. Concretely, for the N = 1,2 channels case, we only
discover QPT at a points where U < 0, that is, in the attractive regime, but not
when U > 0. In fact, a QPT is always encountered in the region U < 0, no matter
how many leads we attach to the impurity.

The situation changes when we have N > 3. Apart from the QCP encountered
in the attractive region U < 0, we also find QCP in the repulsive region (U > 0).
For instance, in the case N = 3, a QPT appears exactly at infinite interaction
gocp = 1, and for N > 3 all QCP in the repulsive region belong to the interval
[0,1]. To understand the nature of these phase transitions, we have to look at the
strong coupling regime. Moreover, we will show how these phase transitions occur
due to the geometry of the model.

To begin with, consider the single channel IRLM in the region U < 0. In the
strong coupling limit, the hamiltonian matrix can be represented as a 4 X 4 matrix.
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The low energy subspace is then formed by two energy states, which are depicted
to the left in figure (4.3). We call these states |00) and |11). On the other hand,
the high energy subspace needs to be diagonalised, resulting in the following two
eigenstates:

1 1

V2 V2

The Schrieffer Wolff (SW) transformation allows to pass from one state of the low-
energy subspace to the other by virtually visiting the high-energy states. Exactly
at the phase transition point, there has to be a change in the ground state of the
system, which is precisely driven by the effective operator calculated by the SW
transformation. We know how this happens in the one lead case, since for the
electrons to pass from the state |00) — |11), both electrons need to jump onto the
wire. Therefore, the resulting operator describing such low energy process will look
similar to:

+) (110) +101))  |=) (101) = [10)) (4.33)

Pij=-Dl(j=-1)5" (4.34)

where j = —1 refers to the last site of the chain attached to the impurity. Bosonizing
the operator by the usual transformations, one gets the following scaling dimension:

2
a= A", (4.3
8

For a field theory in (1+1) dimensions with a boundary, all operators satisfying d > 1
are said to be irrelevant, whereas for d < 1 they are relevant. This has to do with
how the couplings run under a Renormalization Group (RG) step. If the operator
is irrelevant, applying an RG step to the system drives the coupling to the critical
point, therefore no growth or change is observed on its correlation functions.

We have thus seen why the phase transition occurs in the U < 0 sector for the
N = 1 IRLM: The low-energy effective hamiltonian that drives the ground state
into a new one in the phase transition contains irrelevant operators. In other words,
when crossing the QCP, we pass form the relevant phase g > gocp to the irrelevant
phase, where g < gocp-

The reason why this doesn’t happen in the U > 0 sector is presented now. Look-
ing at figure (4.3), we see that the low-energy subspace in the strong coupling sector
is formed by the states |10) and |01). Now, in order to pass from one state to the
other, it is clear that there is no need to visit the high-energy manifold (now formed
by the states |00) and |11)). This is why no phase transition is observed in the sector
g > 0 for N =1 channels.

The same analysis can be done when an arbitrary number of leads NV are attached
to the impurity site. We first focus on the attractive regime U < 0 for the NV channel
case. In such a case, the low-energy sector is always described by either all sites
close to the impurity (and the impurity itself) filled or empty. We have represented
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this situation in figure(4.3) for N = 3 channels. In such a low-energy description,
a change in the ground state only occurs when two electrons jump onto the same
channel. Thus, the operator describing this low-energy process is given by:

Yol (o = =10 Ga = 1) [[ w0, = -1)S~ (4.36)

rFo

whose scaling dimension is calculated:

(262) 2 N -1
2d="L (N-1)2L 5d=2+"—"—— 4.
d o +( )47T d=2+ 5 (4.37)

We see now that for N > 1, the scaling dimension of this operator makes it irrele-
vant, being always d > 1. Thus, when the quantum critical point is reached in the
U < 0, the operator describing a change in the ground state is always irrelevant:
the phase transition happens from the relevant sector to the irrelevant one. Here we
see the importance of the geometry involved in the multichannel case.

Things are different when we look at the U > 0 sector. In this case, the low-
energy subspace is formed by states alternating an impurity filled (empty) with
empty (filled) nearest neighbours. In such a case, passing from one ground state
to another only requires N — 1 operators acting directly on channels, since the
impurity site is flipped by the St or S~ operator. This change in the ground state
happens by allowing virtual fluctuations between the low and high energy manifolds
(a Schrieffer-Wolff process). Thus, the required operator for that will be of the form:

N-1
I %o =-1) (4.38)
whose scaling dimension is:

d=—— (4.39)

It is clearly seen now why no phase transition occurs in the U > 0 sector when
N < 3. For the one and two channel models, this scaling dimension is always repre-
senting relevant operators being d < 1. Thus, for these two models, no critical point
is reached in the U > 0 sector, and this sector always corresponds to a relevant phase.

Things are different for the N = 3 channel case, where we notice a quantum
critical point happening exactly at U = 400 (g = 1). For the N = 3 channel case,
the scaling dimension of the operator describing low-energy processes to change the
ground state is d = 1, that is, the marginal case. In this case, we cannot tell if a
theory is renormalizable in the vicinity of a critical point, since its parameters un-
dergo logarithmic variations, thus a sum of all orders of perturbed terms is necessary.

For N > 3, the situation is somewhat similar to that of the U < 0 sector, where
the operator changing the ground state drives the system in a irrelevant phase. Thus
we always identify two quantum phase transitions for NV > 3, that bring the system
from the relevant phase to the irrelevant phase. The QCP where this happens are
given by equation (4.32).
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4.3 Brief summary

4.3.1 Results

Here we have treated some fundamental properties of the IRLM when the number
of channels attached to the impurity site is N > 1. We also worked out results for
the two channel case, which is the most interesting one to study its transport (out of
equilibrium) properties [44, 46, 48, 47, 91] The key results of this chapter summarize
as follows:

e For the N = 2 channel IRLM, an ezact expression is given for the thermody-
namic exponent «. In contrast with the N = 1 channel case, the thermody-
namic energy scale I' proves to decrease after the self-dual point (U = 2) is
reached.

e The most important feature of the N = 2 channel is its duality in the thermo-
dynamic exponent «, for which a mapping U <> 1/U develops. This has been
explored already in [51], where a distinction between the strong coupling in
the lattice and different regularizations in the field theory is made.

e The prefactor f(«) breaks the duality for the thermodynamic width T" in the
two channel IRLM. Contrary to the thermodynamic exponent «, which recov-
ers the value a = 2 in both the U = 0 and the U = +o0 points, at U = +00
the value of I' = 0, instead of being 'y = 27v/(t')?, which corresponds to the
non-interacting point U = 0. This effect is a real effect, and shouldn’t depend
on any regularizations carried out in the continuum. In this sense, the cut-off
of the theory is fixed and does not vary with U. It is the exact form of the
prefactor f(«) what makes the energy scale I' to vanish at infinite interaction.

e For a different number of channels N, we have shown the thermodynamic
exponent to differ in order g?. This term Ng? is one of the main reasons that
makes different channel models to have different physics.

e All quantum phase transitions happening in the model have been identified,
with the corresponding low-energy explanation in the strong coupling picture.

4.3.2 Open questions

In order to construct a full thermodynamic theory of the IRLM for an arbitrary
number of channels N, we need to know the exact form of the prefactor f(«) in
all cases. We have proved this prefactor to be of essential importance to describe
the main features of the model. For the N = 2 channel, the formula presented in
(4.11) is a guess which proves to fit numerical data with some considerable accuracy.
However, alternative ways to calculate such prefactor are needed. For instance, one
could ask if the mapping to the BSGM done in the N = 1 channel case can be
extrapolated here as well. Therefore , the two main questions to ask here are:
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e In the two channel case, does that correspond to a two-bosonic field theory
subject to boundaries?

e Is there a way to generalize the form of the prefactor f(«) when N channels are
attached to the impurity site? In other words, can all relevant thermodynamic
energy scales I' be calculated in an ezact way as for the N = 1 channel case?

e Does cut-off regularization really present a problem to compute exact thermo-
dynamic quantities?

These questions reflect the fact that, even in the equilibrium situation, the IRLM
posseses interesting features.

We want to emphasize that, although no satisfactory field theory description of
the N = 2 has been carried out in the strong-coupling regime, we believe the answer
to the last question to be negative. We support this argument with our previous
results of chapter 3. As we have shown for the N = 1 channel IRLM, there is
no dependence on cut-off regularization in order to compute exact thermodynamic
quantities like the prefactor f(«). Correct answers are derived by considering an
equivalent field theory where these quantities are computed, and proved to be e-
quivalent to the microscopic lattice version of the model. Thus, we have reasons to
think that this is also the case when more channels are attached to the model. The
fact that the prefactor f(a) drives the thermodynamic width to zero (i.e breaks the
duality) in the two channel case, has been argued [51] to happen due to cut-off reg-
ularization. Instead, we believe this to happen due to missed fundamental physics,
which require further investigation.
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The IRLM: Dynamics

“I wish it need not have
happened in my time,” said
Frodo. 7So do 1,7 said Gandalf,
”and so do all who live to see
such times. But that is not for
them to decide. All we have to
decide is what to do with the
time that is given us.”

J.R.R.Tolkien, The Lord of the
Rings

In this chapter, we explore the dynamics of the single channel IRLM. When we
talk about dynamics, we refer to quantities involving operators that vary over time.
There are various reasons to look at such quantities in the equilibrium situation.
Firstly, these are harder to compute as compared to its thermodynamics counter-
parts, since now time evolution of the operators is involved. The fact that finite
order perturbation theory breaks down for one dimensional strongly correlated sys-
tems [63] motivates the search of new robust analytical methods. Some of these have
been proposed in other impurity models like the Anderson model [71] and the mixed
valence problem [92], but their generalisation to different models is far from obvious.

Secondly, equilibrium dynamical quantities are important, since they can help
to understand the steady state of the non-equilibrium problem. In particular, this
non-equilibrium situation happens in the two channel version of the model, where
current flows from one lead to another. The study of non-equilibrium transport
in strongly correlated systems constitutes and active field of research at present
[35, 44, 45, 46, 47, 48]. Although we cannot perform transport in the N = 1 version
of the model, studying its dynamical properties will help to understand the physics
involved in the two channel version. It is worth mentioning that even in the equilib-
rium case, there is not a complete understanding of the dynamics. The computation
of analytical forms of the impurity spectral function proves to be extremely difficult,
and one usually has to approach the problem by perturbation theory. As we will see
shortly, this approach offers a poor understanding of the physical effects developing
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in the system as interaction is increased.

This chapter studies in depth the impurity spectral function in the IRLM:
1
A(w) = —Im(G%(w)) (5.1)
78

Original results will be presented and discussed. The chapter is mainly devoted to
numerical data obtained by simulations carried out by NRG in the model, although
an analytical approach to the problem is also described, but no satisfactory results
on this approach have been found yet. First, we want to motivate the reader by a
brief introduction to some interesting features of the dynamics in the model found
in the literature.

5.1 Interesting behaviour of dynamical quantities

The main reason to study the dynamics of the IRLM is twofold. We recall the
model at U ~ 0, which has been discussed in chapter 2. The impurity local density
of states is, according to first order of perturbation, given by:

1 Iy

2
. Ty~ (t)THm (5.2)
Tw?+ 172

A(w) =

where, at small values of interaction U we have:
g~ Uv (5.3)

Here I'y is the renormalized hybridization. If we look at energies higher than this,
the impurity is decoupled from the surrounding bath. However, when energies are
below I'y, the impurity site hybridizes with the surrounding environment, and thus
a virtual bound state (resonance) is observed.

Exactly at zero interaction U = 0 (g = 0), we have I'y = 'y = mv(t')?, therefore:
Fy(g=0)=Ty=T(g=0) (5.4)

where I" was given in (3.36). The result (5.2) matches with what was found in pre-
vious publications [37, 38]. It also reveals the Fermi liquid nature of the model in
the weak coupling limit, where one always expects to find a Lorentzian shape for the
impurity density of states as shown in (5.2).

One of the main results of [37, 38] is the calculation of this hybridization I'q. In
[38], it is argued that this quantity is an increasing function for Uv ~ 0, but de-
creases to a zero value as interaction is increased, therefore a maximum is observed
in the graph T'4(U). Moreover, this is said to happen for the general multichannel
case, no matter how many channels are attached to the impurity site. The values
of ['y(U) in [38] are shown in (5.1).
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Figure 5.1: Calculation of the renormalized hybridization Ty by perturbative RG (left,
after [38]), and numerically by DMRG (right, after [52]). The perturbative RG procedure
s known to fail to give accurate analytical predictions when compared with NRG numerics
in [38]. Note how for the N = 2 channel case, V. = I'y is shown to decrease as the
interaction U is increased, whereas the same quantity is shown to increase in [52] when
performing DMRG numerics.

A different result has been reported by A.Braun and P.Schmitteckert [52] for the
two channel version of the IRLM. In [52], the local (impurity) density of states is
shown to spread as U is increased. This is shown in figure (5.1). The graph of the
hybridization I'y;(U) is shown to be a monotonic increasing function, where no max-
imum is reached. This reveals in principle a surprising feature of the two channel
IRLM, but also poses the question about if something similar happens in the single
channel version of the model. More interesting is the fact that this result differs
from the one we already described for the thermodynamic energy scale I' shown in
figure (4.1) for the two channel IRLM. As we have already discussed before, for the
two channel version of the model, the thermodynamic energy scale I' starts to re-
duce its value after reaching the self-dual point at U = 2¢. This different behaviour
motivates a careful check of the theory when discussing dynamical quantities, and
moreover, the definition of such energy scales in the problem.

It is known that the IRLM appears as a direct mapping from the Anisotropic
Kondo Model (AKM) [36]. In the Kondo model, a single energy scale appears, the
so called Kondo temperature Tk . This energy divides two regions with well differen-
tiated physics: at temperatures T < T (strong coupling), the impurity is screened
by the surrounding electrons, and therefore a Fermi liquid forms [25]. For higher
energies, the impurity survives in the surrounding environment as a quantum spin,
independent of the environment. The energy scale Tk manifests in the impurity
spectral function as a very narrow resonance around the w = 0 sector. This is
called the Abrikosov-Suhl resonance, which is a signature that, in the strong cou-
pling regime, the Kondo model behaves like a Fermi liquid [62, 63, 66, 90]. Despite
the narrow resonance whose width is Tk, the spectral function is pinned at w = 0
in the Kondo model, due to Langreth theorem [64]. Thus, no matter how big the
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coupling, the spectral function at w = 0 maintains its value.

For the two channel version, the situation is different. The two channel isotrop-
1c Kondo model can be solved by a proper transformation to the Resonant Level
Model, as was done by Emery and Kivelson [93]. Due to the isotropy of the chan-
nels, the impurity site is overscreened in the strong coupling regime, and therefore a
non-Fermi liquid behaviour manifests. This differs considerably from the anisotropic
case. The anisotropy of the channel couplings moves the system away from the non-
trivial fixed point [66, 90], and the Fermi liquid nature of the model is recovered,
since now the impurity hybridizes with the channel having the strongest coupling
value. Thus, due to the relation of the IRLM to the AKM, we would expect an
equivalence between both low-energy descriptions of the models.

All these considerations lead us to think that the IRLM presents some new
fascinating physics when we look at dynamic properties. Moreover, we believe this
to be a fundamental way to understand dynamical properties of the AKM.

5.2 Analytical aproach to the problem

In this section, we describe briefly the analytical approach carried out for the com-
putation of the impurity spectral function in the IRLM. The range of applicability
of such methods in the model is still under investigation, and we have not managed
to make it work for the whole interacting problem. The generalization of the AY
method to the TRLM has been proposed in [90], however it deals with the calcu-
lation of the partition function in the system, which is related to the response of
conduction electrons due to a change of sign in the scatterer point.

5.2.1 The IRLM as a sequence of X-ray processes: U = 0
solution

Here we will attempt to solve the IRLM in a non-perturbative way, by using the
Anderson-Yuval approach [22, 23, 24, 39, 90]. applied to the IRLM. Although the
exact partition function of the model has been calculated [90] in analogy with the
AKM, this only leads to the calculation of bulk properties. Instead, we are interested
in computing an exact expression for the time-history of the dot as a sequence of
X-ray edge problems. That is we seek an exact expression of the correlator:

Ga(t) = —i(Td(t)d' (0)) (5.5)

when the perturbation ¢ is introduced in the model. Let us first start by the non-
interacting case U = 0. In this case, the IRLM hamiltonian is (g = 0):

Hy—o = Hy + (#)(0}(0)d + h.c) (5.6)

The expression of G4(w) is well known to us in this limit (see chapter 2). Now we
want to do a time treatment of the dot dynamics. The ¢ = 0 and U = 0 propagators
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of the dot and the bulk elecrons are:
—iVO

Gi(t) = —isign(t)  G§(t) = Tt sen()r

(5.7)

where a time(energy) cut off 7 = &' has been inserted to regularize the theory. Such
expressions are then valid when ¢/7 >> 1, that is, when 7 — 07. In time domain,
it is important to set a direction of time propagation. In this case, we will choose
t > 0, and results can be derived in a similar way for ¢ < 0. Thus sign(¢) = +1 in
the above expressions. The correlator of conduction electrons can then be written
as:

lim G§(t) = —imvo(t) — — (5.8)
T—0t+ t
Note that t = 0 is a singular point in the theory, and one needs to be careful in
order to treat such divergences. For the moment, let us forget about the real part
of this expression, and prove that the method gives the appropiate spectral function
for the impurity density.

For t' # 0, we use perturbation theory. The first order term corresponds to a
term with (#)?, since the first order in ¢’ term does not allow to construct non-zero
Wick contractions. Also, note that the Green functions carry a minus sign under
time reversal, that is:

Gy(t) = —Go(=1)  Go(t) = —Gi(-1) (5.9)

However, both processes have the same probability amplitude. Thus, we can choose
only one time direction (say ¢ > 0), and multiply our result by a factor of two
in order to account for negative time propagations. The first order term of the
expansion is:

t to
Gl (1) ~ 2(1')? / dts / Gt — 1) GE (b — 11)CA(1) (5.10)
0 0

with a possible overall normalization factor. The process is composed by three
probability amplitudes, describing a single hybridization process, where the impurity
electron jumps to the wire for a short time, and comes back again at a later time.
The time ordering is t > t5 > t; > 0. We need to emphasize here that our approach
differs from the one employed in [22, 90], since we are not interested in the response
of conduction electrons due to a impurity flip. Here we are trying to calculate the
impurity Green’s function, which is the sum of all probability amplitudes taking
place during a hybridization process. Substituting (5.7) into (5.10), we get:

t to
G‘(il) (t) ~ i27TV0(tl)2/ dtz/ dtlé(tQ - tl) (51]_)
0 0

We now make use of the following property:

/b dwd(z —b) = % (5.12)
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Thus, the first order correction reads:

G{)y(t) = —i(=Tot) Lo =mw(t')? (5.13)
Let us calculate the second order contribution. In this case:
d ne [ t4 d (Dot)?
Gy (t) ~ 27y (t') i dty i dtsd(ty — tg)G(l)(tg) = (—1) o (5.14)
We then extrapolate the result and realise that the nth term has the form:
d ! fon d d
i =2 /0 s, /0 Aty GOt — 1) GE(t — 1) Gl (f21)
Lot)"
= —i(—l)"( of) (5.15)

n!

Therefore, the total impurity Green’s function is calculated by summing to all orders
of perturbation:

(Tolt])
zz °| | —je Lol (5.16)

where we have taken |¢] since both processes ¢t < 0 and t > 0 have been taken into
account as described above. Up to a normalization constant, this expression is the
Fourier transform of a Lorentzian centered at w = 0 whose width is T'y:

/ dteToll Lo (5.17)

w2+ 172

Thus, the non-interacting impurity density of states has been recovered with the
method above. We want to emphasize three main points of discussion here: First, the
real part of conduction electrons Re(G§(t)) presents divergences when the method
is applied. One needs to re-insert a cut-off @ — 0" in the integral limits in order to
make things finite. Whether these contributions cancel out to all orders of pertur-
bation or not is something we still have under investigation.

Secondly, the AY method, as it stands, allows for an exact calculation in the
time propagation of conduction electrons, that is, it calculates the exact result for
the single-particle Green function of conduction electrons at the origin (where the
impurity is). The calculation of such Green’s function has been done in several
papers [19, 22, 90]. It gives the exact expression of the partition function, from
where different thermodynamic properties can be extracted (see [24]). However, the
method does not explicitly allow calculation of the impurity propagator, which in
principle, requires a different treatment.

Finally, we have tried to generalise the method for the U # 0 case, by substituting
the bare correlators by those from the X-ray edge problem, so that the problem
can be treated as a sequence of X-ray problems, where the impurity fluctuates
between a filled and empty state. This is equivalent to the Anderson-Yuval approach
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[22, 23, 24] to the Kondo problem. To much of our regret, the method has not
provided satisfactory results yet due to divergences encountered in the g — 0 limit
of the expressions, and thus, we consider not to include such solutions here. However,
we have included results on this in the appendix, for the interested reader, which
might also serve as an starting point towards a refinement of the approach.

5.3 NRG dynamics in the IRLM

This section constitutes the main results of this chapter. NRG simulations are car-
ried out, and computation of dynamical quantities is performed as it was described
in chapter 2. All different values of parameters employed are described when nec-
essary. Due to peak resolving restrictions, all results presented are for £y = 0. For
a better understanding of the effect of a local magnetic field in the computation of
dynamical quantities, we refer the reader to the literature [75, 79, 81, 82]

5.3.1 Dynamics at ¢ =0

In this part, we prove the NRG code to represent the analytical results expected for
the spectral function on the impurity site, as in (5.17). Although this result is well
known, it provides evidence of the reliability of numerics. All NRG computations
for the spectral function were carried out as described previously in chapter 2.

It is worth mentioning that parameters need to be chosen in a careful way. For
instance, the hybridization parameter of the IRLM shouldn’t be too large when
compared to the bandwidth parameter, which is taken to be ¢ = 1. Therefore, we
restrict ourselves to a range of values of ¢’ ~ ¢/100. Thus, in this limit, ¢’ is regarded
as a small perturbation in the system. For notational convenience, we have changed
t' = J in all graphs.

As one would expect, as the value of w is increased, the NRG method loses ac-
curacy. We remember that, due to the logarithmic discretization, the NRG method
works well to reproduce low-energy properties of the system, however computation
of features in the high-energy region proves to be more challenging (see [75] for
detailed discussion). Note that as energy is decreased, more data points are calcu-
lated. All data points in figure (5.2) have been represented in comparison with their
associated Lorentzian functions:

1 Ty

A =TT

(5.18)
If one calculates the associated widths I'y from the fitting, then we find the value
not to differ considerably when compared with the theoretical value. For a bulk
density of states of ¥ = 1/m (that is t = 1 in the tight-binding chain), results for I'y
are represented in figure (5.3).

87



Chapter 5

A =12 g=0 N=152 sites S, =1000

3000 | ‘ ‘ ‘ ]
——AW)
X NRG J=0.01

2000 | ]
3
I

1000 | 1

O 1
-2 1 0 1 2
w %1072

(a)
A =12 g=0 N=152 sites S =1000

§ ol ¢ NRG —— J=0.01 |
>4 10 x  NRG J=0.03
S A NRG J=0.05 X
o © NRG —— J=0.07 R
=~ =0. <><><>
o NRG 3=0.09 <><><><><> 5
a5
107 102 10°
loa(lwl)
(b)

Figure 5.2: NRG results for the non-interacting case g = 0 (a) NRG data points for a
value of J = 0.01 in the IRLM. The continuous curve represents the Lorentzian function
that fits the data. (b) NRG data points for several values of J, with the corresponding
fitting Lorentzian functions. Note the log scale in both axis. In both figures, A represents
the logarithmic discretization parameter of the band, whereas Sy is the total number of
states kept after truncation of the hamiltonian.

We could ask why choosing a value of A = 1.2 should give such accurate results.
Usually, NRG simulations have been performed with values of A € 1.5 — 2.5 when
1000 states are retained [75] after truncation. The reason is that, as A is lowered,
one gets closer to the continuum limit of the model (A — 1), and we need to keep
more states as this happens. The IRLM presents a nice low-dimensionality (spinless
model) that allows one to get close enough to the continuum limit, without the
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Figure 5.3: Values for the hybridization parameter I'g as a function of J. Data points cor-
respond to the fitting performed over NRG data, where the function to fit was a Lorentzian
of width T'y.

necessity of keeping more states than the ones needed for other models, even when
we get closer to this limit. Therefore, a smaller value of A provides more numerical
data in the whole spectrum.

One more thing to add here is that of the definition of an energy scale in the
problem. Since A(w) has units of w™!, the associated energy scale in this problem
is precisely 'y as one would expect. This matches with the result found in chapter
3, where the relevant (thermodynamic) energy scale is T'y at ¢ = 0. Therefore, we
can conclude that at g = 0, both the dynamic and thermodynamic properties of the
model are dominated by ['g.

In the next section, we will explore the evolution of the spectral function as the
interaction parameter g(U) is changed. Tt should be pointed out that, in the con-
struction of the initial hamiltonian for the NRG treatment, it is the bare parameter
U what is inserted as an input. Nevertheless, a relation between g and U has been
established previously, and therefore, we will consider switching to the g parameter,
which can only take values g € [0, 1] for repulsive U.

5.3.2 Dynamics at g #0

The most interesting situation happens when we switch on the interaction between
the impurity and the rest of the system. We remember that this interaction involves
a term:

1

U = 4pT(0)2(0) : (d*d — 5) (5.19)
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in the hamiltonian, where : O : stands for normal ordering of the operator. In the
NRG case, the vacuum expectation value of fermionic operators at x = 0 corresponds
to:

(W1(0)p(0)) = 5 (5.20)

in the particle-hole symmetric case, which is the one we focus on. When the term
(5.19) is considered, the system becomes strongly correlated, and therefore, any at-
tempt to solve it by perturbation theory fails giving accurate results.

In what follows, we shall distinguish two well differentiated regimes: one we call
the weak coupling, where values of Urv << 1, and this limit has been studied in the
literature by the same NRG methods [38] or even time-dependent Monte Carlo [55];
the other limit is the strong coupling, and we can consider this limit to start when
Uv ~ 1. In the weak coupling limit, that is, for very small values of U, one still
expects to recover a Lorentzian shape in the density of states. This was already
anticipated in chapter 2 by perturbation theory arguments, where to first order in
U, the hybridization parameter .J is renormalized as:

T~ ()55 g=Uv (5.21)

Thus, in the weak coupling limit, the spectral function of the impurity can be well
approximated as:

1 T
w2+ 172

Aye(w) = (5.22)
We must however give a warning here, which has to do with the exact form of T". Tt
has previously mentioned how important is to determine the prefactor appearing in
I, thus, the above expression should be taken with a bit of care, and T" should not

be confused with the one we showed in chapter 3.

To restore analogies with the Kondo problem, we remember that in the Kondo
and Anderson models, no matter how big the interaction is, the spectral function of
the impurity remains pinned at w = 0, therefore satisfying Langreth’s theorem [64].
One of the fundamental questions to answer is then what is the effect of increasing
interaction over dynamical quantities in the IRLM. Analytically, this is a difficult
problem to solve, however, the advantage of NRG is that, because all bare parame-
ters enter in the initial hamiltonian, one can in fact go beyond the bandwidth, and
still recover the essential low-energy properties of the model. In fact, this is what
happens in the Anderson model, when one takes the value of U sufficiently large
above the bandwidth, approaching the Kondo limit [10, 61, 76].

We start by showing results for the spectral function in the weak coupling limit.
In this case, we observe the NRG data to be well represented by the usual Lorentzian
shape, as first order perturbation theory predicts. This has been represented in fig-
ure (5.4). Note that the peak is well resolved (very small energies), whereas at
higher energy values, data points deviate respect to the analytical formulas. As the
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Figure 5.4: NRG data for the weak-coupling limit of the IRLM. (a) Data points have been
presented here for different values of interaction g. Lines are inserted between points as a
guide to the eye. Notice how as g is increased in value, the width of the resonance increases.
(b) Logarithmic plot of NRG points and the corresponding fitting functions (5.22).

value of ¢ is increased, one would expect the spectral function to broaden, therefore
the resonance being suppressed. We will shortly see that, this being true, something
more interesting starts to happen at stronger values of interaction.

The spectral function has been represented in figure (5.5) for several values of
interaction g. We have not use data markers in this case in order to make the figure
more visible. Instead, all data points have been joined by lines. As interaction
is increased, we observe a split of the central peak in the spectral function, which

91



Chapter 5

is a hint of non-Fermi liquid behaviour. Notice that, as interaction is increased,
the spectral function gets broadened, therefore the width gets infinitely broad when
we reach the limit g ~ 1; however, its height is reduced as subsequent values of
interaction. Since the spectral function must satisfy the sum rule:

+o0
/ Alw)dew = 1 (5.23)
—0

that means part of the spectral weight has been displaced into higher energy region-
s. Such high energy peaks are the so called Hubbard bands, and they also appear
in the Anderson and Kondo models in the strong coupling limit. Here, due to the
limitation imposed by NRG to study low-energy properties of the model, they prove
to be quite difficult to observe.

It is clear from figures (5.4) and (5.5) that the model does not satisfy Langreth
theorem [64]. This has to do with the fact that interaction, as opposed to the An-
derson and the Kondo models (which we know are equivalent in a certain limit), is
not purely local. In the Anderson model, electrons interact with energy U only by
sitting into the same d impurity state, therefore they are forced to have opposite
spin due to Pauli exclusion principle. On the other hand, the IRLM includes an
interaction in the hamiltonian between electrons in the d level with bulk electrons
at the origin. In both the Kondo and Anderson models, the w = 0 is pinned, no
matter how big the interaction is. The IRLM is directly related to the anisotropic
version of the Kondo model (AKM) [36, 66, 90], therefore we expect similar physics
to happen in the AKM. This has already been reported for the s = 3/2 AKM [94] in
the presence of an external magnetic field, and such a splitting of the central peak
can be also found in [95].

From all results presented above, it is clear that the Lorentzian shape of the
density of states is lost as ¢ starts to increase. Moreover, the central peak in the
spectral function is not pinned at w = 0 as one would expect in a Fermi liquid.
These are, we believe, signatures that the system is not a Fermi liquid anymore, but
we want to be cautious about such claims. As it has been reported by Giamarchi et
al. [54], the J = 0 point in the model presents a non-trivial fixed point, where the
dot correlator is given by:

Gty ~t T (5.24)

manifesting the non-Fermi liquid behaviour concretely at this point. We also see
this result to match with that of the X-ray edge singularity problem as worked out
by Nozieres-De Dominicis [17]. As J # 0, one moves away from this fixed point,
and, being the perturbation relevant, one expects the parameter J to renormalize
in the same way as it was presented in chapter 3 at low energies. The result we are
about to present studies such renormalization of .J with the interaction parameter g.

Finally, we want to mention that, due to the form of the impurity correlator
(5.24), the Fourier transform has an w dependence with an exponent different from
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Figure 5.5: NRG data for different values of interaction g. (a) Representation of the
spectral function on the impurity site at different values of interaction. Data points have
been joined by lines in order to make the graph more visible. Note how at values of
g > 0.4, a splitting in the central region starts to emerge (b) Spectral functions in the
region of g € [0.4,0.5] where the splitting starts to appear.

2, that is, we believe that at J # 0:
Alw) ! ~ w9 (5.25)

so that such exponent has a non-trivial dependence on g. The computation of such
exponent proves to be a challenging task with our performed numerics, and further
refined and more accurate approaches could serve in order to study this. The fact
that w has a different exponent of 2 is also a signature of non-Fermi liquid behaviour
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in the system [71]. This change in the exponent of w would manifest in logarithmic
singularities in the impurity self-energy:

S () ~ g*wlog (%) (5.26)

The fact that this is a second order effect in the dynamical quantity G%(w) is quite
clear, since all first order diagrams are independent of excitation energies w. Unfor-
tunately, the computation of such terms from perturbation theory presents added
difficulties, regarding the analytic properties of all propagators in the problem and
all possible Wick contractions that can be formed, involving too many different
diagrams contributing.

5.3.3 The dynamical exponent

As it has been already mentioned, the point J = 0 in the model corresponds to
a non-Fermi liquid [54]. This is because when interactions g are present, the im-
purity correlator decays with a non-universal exponent. The overlap between the
two ground states, one without a scatterer and the other one with a scatterer point,
proves to be zero [67] only in the thermodynamic limit N — oo. Hence the non-
universal decay of the correlation function on the impurity site.

The situation as J # 0 is different. Now, due to the hybridization between the
lead and the impurity site, the occupation on the dot is highly fluctuating in time.
From the RG treatment, we observed how the hybridization parameter scales with
interaction, being the behaviour:

2

JY o= -—-——
1+2g—¢?

(5.27)
where we called o the thermodynamic exponent. Here, when computing dynamical
properties of the model, we considered the low energy sector to be described by:

r
w? + 12
only at small values of interaction Urv ~ 0. We have already seen from previous
numerics that as interaction is increased, this picture is no longer valid. One way

to study how the parameter .J renormalizes in the low energy sector is by defining
the energy quantity:

A(w) T~ (J)TFre (5.28)

Ty=Alw=0)" (5.29)

Due to the dimensions of A(w), I'y has dimensions of energy. Such definition of
energy makes an analogy with the conserved quantity in Langreth’s theorem [64],
which states that A(w = 0) = 1/(#[) for any value of interaction. Let us now take
NRG data points for different values of .JJ. Then, at a single value of interaction g,
we can compute the scaling of the J parameter with g by the following relation:

log(A(w = wy)™") = a + ylog(J) (5.30)
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Figure 5.6: NRG calculation of the dynamical exponent. (a) Scaling of J with inter-
action parameter g. All data points correspond to NRG simulations, where values of
J =0.01,0.03,0.05,0.07,0.09 where used for the fitting. Note the deviation from the ther-
modynamic exponent «, which means J scales with o different exponent in the spectral
function. (b) Different data points collected for small values of g, showing the deviation
of numerical data from the analytical expression of a.

where wy is the lowest energy scale reached in Wilson’s chain. Our aim is then
the calculation of v from our NRG numerics. In principle, one would expect this
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exponent to be equivalent to the thermodynamic exponent we have previously cal-
culated. We will prove now this not to be the case, and highlight the fact that,
in the IRLM, two different exponents coexist, and one of them (what we shall call
the dynamical exponent ) dominates the scaling of the spectral function height,
whereas our known « (thermodynamic exponent) relates to excitation energies w.
Therefore, it is essential to understand that the computation of dynamical quantities
wn the model requires two exponents in order to describe them correctly, as opposed
to thermodynamic quantities which are entirely dominated by «a.

The values of v computed from the fitting equation (5.30) have been represented
in figure (5.6). The thermodynamic exponent « has also been represented for com-
parison. As we can see, all data points deviate from « as interaction is increased.
Moreover, they start to differ at second order in g, since at very small values of g,
both exponents match. At large values of interaction, the exponent v — 0 as g — 1.
This suggests that data follows an equation of the type:

2(1 -9 2
all 5.31

In figure (5.6), numerics prove to agree well with the above equation. To much of
our regret, the origin of such expression is at the moment unknown to us. Therefore,
equation (5.31) is not a derived result, but rather phenomenological. The deriva-
tion of such scaling from analytics is the next step in order to understand such an
unexpected scaling for the parameter J. This poses the question on whether dy-
namical quantities involve two different energy scales as opposed to thermodynamic
ones, which only involve I'. The apparent appeareance of two different behaviours,
one for thermodynamic quantities and another for dynamics, has been reported in
the literature [42, 43]. In fact, in these works it is claimed that the IRLM poss-
eses universal thermodynamics even when coupled to a Luttinger liquid [42]. That
is, regardless of the interaction between electrons in the bulk, the form of ther-
modynamic properties remains the same. We do not adventure ourselves here to
extrapolate this result onto dynamical quantities, and we believe further research
in this arena is necessary in order to account for a satisfactory theory. Dynamical
quantities prove to be much more complicated to compute, and the lack of analytic
approaches as compared to thermodynamic quantities make these properties much
less tractable.

We have then shown, at least numerically, that such scaling of the parameter .J
differs from the one found in the thermodynamic energy scale:

Ty~J T () (5.32)

In chapter 3, the relevant (boundary) energy scale was defined as ', and an exact
expression was found for it. The energy I'y, though not representing an energy
scale, represents the behaviour of the spectral function in the w = 0 sector. An
outstanding problem is then the computation of the prefactor, which we know has
to be dependent on g only:

Fa=F(g9)(J") limF(g) = o0 (5.33)

g—1
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Figure 5.7: NRG data for the prefactor F(U) as a function of the bare interaction param-
eter U, showing that as U 1is increased, data points grow, leading to a divergence at big
interactions.

Such a prefactor is also given by equation (5.30). The fact that the prefactor presents
a divergence as U is increased, is what makes the spectral density to vanish in the
w = 0 sector for very big interactions. This has been represented in figure (5.7),
where a clear increase of the prefactor with the bare interaction parameter U is
observed.

The parameter .J, which is known to be a relevant perturbation from RG (see
chapter 3) scales differently for thermodynamic and dynamic properties, which is
at first, very surprising. To our knowledge, these results have not been reported
elsewhere in the IRLM. The next section is devoted to understand the role of each
of these different scalings when applied to the spectral density for several values of
interaction g.

5.3.4 Universal scaling at fixed g

In order to get a clearer view of the behaviour of A(w), it is useful to scale our
numerical data. In what follows, we will represent the following scaled data:

y=rAWw)(J)" z=w/T (5.34)

where the definition of v was given in (5.31) and I" is the exact expression for the
thermodynamic energy scale we encountered in chapter 3, that we rewrite here for
reference:

2270471.2&75/2]:* (a_—l) ool

2 Lol ) (5.35)

RESI R

=
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being v the bulk density of states. Notice how the parameter J scales with a different
exponent in both expressions.
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Figure 5.8: NRG calculation of the impurity spectral functions. (a) Spectral functions
calculated by NRG and scaled by w(J7) as a function of the dimensionless @ = w/T'. NRG
data points have been omitted in order to make the graph more visible. (b) Scaled spectral
functions for different values of J, at interactions g = 0 (black), g = 0.3 (blue), g = 0.5
(red) and g = 0.7 (green). Note how, regardless of the value of J, all data points collapse
onto the same curve, showing universality at fired value of g.

We now represent y against z on a graph. Having done these scalings, we relate
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each exponent to a different quantity: v is associated with the spectral function,
that is, the actual probability density of an excitation of energy w, whereas the
thermodynamic exponent « is related to all possible energy excitations. The scaled
spectral function is represented for J = 0.01 in figure (5.8). Values of g € [0,0.9] in
increments of 0.1. In the scaled picture, the split of the central peak is much more
visible than before. We have avoided using markers for data points, joining them
by lines instead, in order to make the graph clearer.

The most surprising feature comes when one represents curves like (5.8a) for dif-
ferent values of the hybridization parameter .J. If we put all of them together, we see
that all data points, regardless of the value of J used, collapse onto the same curve
for a fized value of g. This shows that, when scaled properly, the spectral function
is a function of only two quantities: x and g. Such behaviour shows a universal
shape for the density of states on the impurity site for a fixed value of interaction
g. In other words, under proper scaling of the quantities, one obtains a curve in-
dependent of J. This evidences that, when computing these dynamical quantities,
two exponents must be taken into account. The thermodynamic exponent « proves
to be the relevant one to scale all excitation energies, and thus, controls the width
of the spectral function. On the other hand, the dynamical exponent () controls
the scaling of the height, which is related to the probability of having an excitation
of energy w.

This universal scaling forms have been represented in figure (5.8b). In order to
differenciate data points, different colors have been used for each different value of
g. These numerical data strongly suggests the dependence of dynamical quantities
on two different exponents. Even when both exponents v and « are related to each
other (see equation (5.31), the way such relation is established is at the moment
unknown to us.

Finally, let us conclude the section by mentioning the equivalence of the Anisotrop-
ic Kondo Model (AKM) with the IRLM. Since both models are related by their cou-
pling constants [36], one would expect a similar behaviour to occur in the transverse
spin correlation function of the AKM, that is, if we compute:

S(t) = —i(TS~(£)S*(0)) (5.36)

and we Fourier transform, by taking the imaginary part of S(w) a similar behaviour
should be expected. The analytical calculation of such quantity is an outstanding
point in the theory, since usually what is calculated in the Kondo model is the
correlator for the z spin component:

(TS*(£)S*(0)) (5.37)

the so called spin-relazation function. Universal scaling of thermodynamic prop-
erties of the AKM, as well as for the spin-relaxation function, has been reported
previously [95]. We believe these results to be in relation with the observed phe-
nomena exposed here.
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5.4 Summary of main results

To conclude, we want to summarize the main results obtained so far in this chapter:

e The spectral function of the local impurity site in the IRLM changes in the
low w sector as interaction is increased. A split of the central peak is observed
at sufficiently strong interactions, which hints a possible non-Fermi liquid be-
haviour of the model.

e When looked in the w ~ 0 sector, the hybridization parameter .J shows a
different scaling as the one showed by RG. Numerical data on this dynamical
exponent shows a relation with the thermodynamic exponent «, and how such
relation is stablished is still outstanding.

e The spectral function at the impurity site shows universal scaling curves for a
fixed value of interaction g.

e Strong evidence that dynamical quantities, as opposed to thermodynamic ones,
require the determination of two different exponents, one of them () resulting
from a purely dynamical effect in the system. Under these scalings, dynami-
cal quantities develop universal curves independent of .J for a fixed value of
interaction.
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The IRLM: Bethe ansatz solution

”You have your way. I have my
way. As for the right way, the
correct way, and the only way, it
does not exist”

Friedrich Nietzsche

In this chapter, integrability of the TIRLM will be discussed based on the coordi-
nate Bethe Ansatz technique. First, a detailed treatment of the solution developed
by Filyov and Wiegmann (FW) [56] is followed. The main problem with the FW
solution of the IRLM is that the g2 term appearing in the thermodynamic exponent
« is not present in the Bethe ansatz method, whereas the term arises naturally by
bosonization, as we have already seen in chapter 3 equation (3.24). The result for
the charge susceptibility in the model is given in [56] by:

2

X~ ()T (6.1)

Since x is directly related with T', the thermodynamic energy scale we studied in
chapter 3, we see that the FW solution does not reproduce the correct exponent a.
We have proved this exponent to be correct numerically by the Numerical Renor-
malization Group, a non-perturbative technique in the lattice version of the model,
as well as by DMRG. It was also remarkable that such a lattice description describes
very accurately results from the field theory, without any regularization taken into
account. Being both methods ezact (bosonization and Bethe ansatz), an agreement
must hold between different ways to calculate the same quantity, in this case, the
thermodynamic exponent a.

As we will shortly see, one has to face more difficulties when trying to calculate
such term by the Bethe ansatz method. The search of this ¢ term is not only a
pure (and tedious) mathematical exercise by itself. As we have seen previously, the
¢? term is of extreme importance, since it is proportional to the total number of
leads N attached to the dot. It is therefore the term relevant to give rise to different
physics in the IRLM when different number of leads are considered.
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More worrying is the fact that this g2 term hasn’t been reproduced in the gen-
eralised multichannel version of the model [40], treated as well by the coordinate
Bethe ansatz approach. A recent publication [96] has dealt with solving the single
lead problem of the dot attached to a Luttinger liquid (where interactions between
electrons in the bulk are considered) by the same Bethe ansatz technique, however
we have noticed this term to be absent here too. Moreover, previous studies [42, 43]
of the IRLM attached to a Luttinger liquid have shown universality of thermody-
namic properties, even when interactions between fermions in the bulk are present
(Luttinger liquid), therefore no changes should be observed here.

Before proceeding, we warn the reader about the high level of detail required
here, mostly regarding analytical expressions. This heavy mathematical treatment
of the problem can sometimes push ourselves in the direction where physics are
missed. A good account to this is that, till today, we have not managed to solve the
problem yet. Nevertheless, the Bethe ansatz problem in the IRLM, although being
mostly a mathematically focused one, will provide a better insight into the physics
of these systems once solved.

6.1 The Filyov-Wiegmann solution

As we have discussed earlier, the solution by Bethe ansatz of the IRLM in [56] does
not contain the ¢? on the thermodynamic exponent «. Initially, the Bethe ansatz
solution of the IRLM was done to prove the equivalence between the IRLM and the
Anisotropic Kondo Model (AKM) by direct relation of their susceptibilities. The
charge susceptibility, which is directly related to I' in the IRLM, is the quantity
calculated in [56].

It is important to develop the solution step by step here. We will proceed now
to calculate the two-particle scattering matrix for the IRLM. The IRLM for a single
channel has the following hamiltonian:

H = H;,+H +Hy+ Hy
Hd = —Sode
H = i / da (2)0, ()

Hy = ¢ / d26(z) (& (2)d + hc)
Hy = U/d$5($)(¢T(fE)¢($)— (WM ()p())) (d'd — (did)) (6.2)

Note that everything is written in units vy = 1 and thus, all microscopic parameters
are divided by a factor vp = 2¢. The Dirac delta functions express the locality of the
hybridisation /interaction. All position integrals belong to the interval (—oo, +00),
since only one species of fermions is considered (say, right movers) after unfold-
ing of the fields. The above hamiltonian conserves particle number, and therefore
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[N, H] = 0, where the total particle number operator is N = [ datp(2)¢(z) + did.

Since particle number is conserved, the many-body wavefunction can be written
in general terms in the form:

N N-1
= </qz5(:r1,:r2,...,:L"N)HI/JT(xi)dxi+/C(zr1,...,xN_1)dT 1T I/JT(xi)dxi>|0)
i=1 i=1
(6.3)
Notice that these states represent different situations, one where the impurity is
empty and another where the impurity is filled. The aim of the Bethe ansatz method
is to determine the functions ¢(z;),((z;). If we consider first the non-interacting

limit U = 0, then the wavefunction factorizes, and each mode of the hamiltonian is
calculated independently.

6.1.1 Single particle states: U =0

In a non-interacting system, the many-body wavefunction is just the product of each
of the individual modes of the system. Consider then the associated wavefunction
for a single particle (a single mode in k space):

|0 = (c,TC + ¢dN))0) = </dzqﬁk(x)z/)T(x) + deT> |0} (6.4)

The general solution in this U = 0 case comes from the product of the individual
solutions for each mode,

mznmeIWH@m) (6.5)

Here we have defined |1) = df|0) and |k) = ¢}|0). The single particle Schrédinger
equation is satisfied:

HW)p = e[ W)y (6.6)
At this stage the following relations are useful:
— [@s@pt s @) = [ /2o
o= [ dep@p@is o) = [(@h/2m)0uw)e

therefore defining:

/%mmﬁﬂﬁﬂﬂm (6.8)
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With that transformation and the above definition of the state, we have:

MV = —i [ dedhys, (00,0000 )

HylW), = —eoCell)

HlWy = V [ dss@a@ln) +V [ dedhad(@)or, ()Gl (69
which has to equal e|k) + €,(;|1) from equation (6.6). Equating the corresponding

terms on both sides and using the closure relation [ |z)(z| = 1, we have the two
equations:

(g0 +ex)Ck = t'Pr(z = 0)
which combined reduce to the single equation:

ool =0)
Ep T+ €k

In order to obtain a solution, one has to be careful treating the delta function. The
function admits a solution of the form:

¢k($) — eiapsign(x)eiekz (612)

where there is a phase-shift experienced by electrons when reaching the boundary.
Here we have dealt with the §(x) by imposing the condition:

lim ¢gp(z) =€e%  lim ¢p(z) =™ (6.13)
z— 0t z— 0~
By integrating equation (6.11) above we find:
—i(€” — e ) + (g /2) (e + e ) =0 (6.14)

where we have used that:
1 . .
/dxé(x)gbk(x) =3 (ew + e_w> (6.15)

From here we obtain the phase shift as in [56] to be:

tlQ
A(eg) = arctan | —— 6.16

(%) (2(6k+60)> (6.16)
so that the function representing single particle scattering states is:

Or(x) = g = 0)elrTHAELIEN) (6.17)

Since this constitutes the individual solutions of the non-interacting case, we will
call these solutions

¢2($) — Ceiska?JriA(sk)sign(:r) (618)

to differentiate from the interacting case. Here C' is an arbitrary constant, usually
chosen by normalization.
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6.1.2 Single particle states: U # 0

We now look at the solution for single particle states when U # 0. This comes from
applying the interacting part of the hamiltonian to the state:

U/dw5($)(p(x) = p)(na = 1/2)(|k) + G[1)) (6.19)

We omit the constant part of the hamiltonian coming from p/2. The contributions
of both the dot and wire are:

UGl —(U)2) / d8(2) () ) (6.20)

The interacting part has zero contribution, since there are not two particles in this
case. The two equations we obtained before are slightly changed now:

(€0 + €x + Up)CGr = t'du(z = 0)
— 10,0 () + t'0(2)C — (U/2)0(2) (2 = 0) = exdp(x) (6.21)

As before, we end up with an equation for ¢x(z), which now accounts for the inter-
action parameter U:

2

— 10,0k (x) + ( — (U/2)>5(m)¢k(x =0) = exdr(x) (6.22)

er +eo+Up

The solution is inmmediatly found from the previous result:

¢k(1,) — CeiakariAU(sk)sign(a?) (623)

where the phase shift is changed as:

2 U
A = arct - = 6.24
v(ex) = arctan (2(60+6k+Up) 4) (6-24)

where the number p is:

p = (¥'(0)1(0)) (6.25)
The single particle states when the impurity is filled, (; are easily found as:
4
G = PSR cos (Ap(ex)) (6.26)

6.1.3 Two particle states: Scattering phase-shift

In the previous section, we solved the one-body problem, since the system being
non-interacting can be solved by only knowing information of one single particle’s
behaviour. We now turn our look to the two-body description of the problem. Here,
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two particles scatter from each other in the one dimensional world. When this hap-
pens, a scattering phase shift ® occurs in the two-body wavefunction. This is the
main quantity we will calculate here.

A general eigenstate of the total (two particle) hamiltonian is written as:

s = ([ oot ) donde + [ anclondviien )0 (@20

The state with the two-body wavefunction ¢(xq,x9) belongs to a bulk state, where
particles are located inside the channel. The state proportional to ((z) is the state
where the impurity site is filled, the other particle belonging to the wire. This is
written more conveniently in position basis as:

W = [ doadoi g, o)) + [ donG(oolL o) (6.29)
Now we want to calculate:
H[W)y = E[U), (6.29)

in order to get the corresponding equations for ¢(z1,zs) and ((z1). Here E =
€1 + €5 is the sum of energies of particles. Since the model only accounts for two
body interactions, calculation of the associated phase shift for this case constitutes
something enough to build up Bethe’s hypothesis later. The action of hamiltonian
(6.2) over the state |¥), has several contributions:

H|W)y = (Hy + H., + Hy + Hy)|0), (6.30)

Detailed calculation of these terms can be found in the appendix. Equation (6.29)
then reduces to the following two equations to determine ¢(zq,x2) and ((x):

S0+ ol m) + 5 (Be)le) - el
— %(6(:1:1) + 6(@)) ¢(x1,79) = Ed(x1, 72)

—i0:C(x) + 2U'¢(x,0) + %5(:5)@(35) = (E+e0+Up)((x) (6.31)

Here, the total energy is the sum F = &, 4+ ¢5,. We now look for solutions in the
form:

2!¢8($17x2) = ¢51($1)¢52($2)f($1 _$2) - ¢51($2)¢52($1)f(1'2 —1‘1)
C(l‘) = C61¢52 (l‘)f(—l‘) - C52¢61 (l‘)f(l‘) (632)
which resembles the definition of a Slater determinant, but including an antisym-

metric function f(x;—x3) in each term. Here we recall the form of the single particle
wavefunctions as defined in the previous section:

¢5 (ZL’) _ Oez’sx—l—iAU (e)sign(x)

2 U
A = arct - = 6.33
v(e) = arctan (2(60—|—S—I—Up) 4) (6.33)
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The target is to determine this f function, depending only on the relative posi-
tions of the two interacting particles. When we insert these guesses for the functions,
we have to keep in mind that the single-particle problem holds, which makes the
first equation to be an identity by no additional condition. Thus, the function f(x)
is only determined by the second equation in (6.31).

By a set of manipulations, and taking into account the single particle equations
(6.21), the second equation in (6.31) can be written as:

o1 (x) do(x)
G Opf(z)+i 2

where we have defined:

Ouf(—2) = Exd(x)f(—=z) — E16(z) f(z) (6.34)

—1

U i+ U
E = (6°+;+ D (6.35)

Since this equation represents the form of f(z = 0), some regularization of the delta
function must follow. It is clear then that f(z) suffers a discontinuity at = 0, so
that we can define as in the one particle case:

flo=0) = %(e@ +ei9) (6.36)

Then, equation (6.34) is integrated in an interval [—¢, +¢€|. By doing this, we get the
form satisfied by the scattering phase shift ®(eq,¢5), which is:

U 9 — &1
B(c9,¢,) = arctan | — 6.37
(€9,€1) = arc an<261+52+2(50+Up)) (6.37)

and therefore, the final form of the function f(x) is:
f(xl . ZL’Q) — f(0)ei<1>(82,51)sign(m1—:t2) (638)

Equation (6.37) is the most important formula of this section. It agrees with the
one calculated by Mehta and Andrei [44]. It represents the exact scattering phase-
shift between two particles scattering in the 1D world. Note that it depends on
the microscopic parameters of the model U, g, p. In practical terms, and in simu-
lations carried out by NRG in chapter 3, we took the parameter p = 1/2, whereas
the condition ¢y = 0 represents the model in resonance, which is also the limit we
are interested into. Also, by taking into account that U/2¢t = tan(d), we find the
coefficient inside the argument to correspond to 6/2.

In [56, 60], the coefficient inside the scattering phase shift is different:

B(ea,e1) = arctan <T €2 — €1 )> = tan (%) (6.39)

g1+¢e2+2(e0+Up

although no explicit calculation of the regularization used for the delta function is
given. Nevertheless, it is clear that both expressions (6.37) and (6.39) match at
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small values of U. It is frequently mentioned [30, 44, 96] that the factor U/2 inside
the scattering phase shift is a bare quantity, and that therefore its form strongly
depends on the regularization scheme employed. We believe this not to be case for
the IRLM, based on our previous exact results of chapter 3, where we showed the
analogy of results obtained from both a lattice /field version of the model, without
any regularization employed. Moreover, we showed the field description of the IRLM
to correspond to the Boundary Sine Gordon Model, where a exact relation between
parameters of the theory was given:

2 2 U
% =(1-g)? g= — arctan ( ;w) (6.40)

We therefore believe results like (6.39) cannot depend on how the delta functions
are regularized in the theory. In fact, we will show in a later approach that result
(6.68) can be derived without taking into account such regularizations.

We will see later that the factor inside ® in equation (6.39) does not map in
a correct way between other field theories. As we have already mentioned, it does
not reproduce the ¢? term encontered in the thermodynamic exponent «, which is
a term has been verified both analytically and numerically in chapters 3 and 4.

We will later propose a different factor 7 for the IRLM, proving this to be the one
making the correct mapping between two well known integrable field theories, being
one of them the Boundary Sine Gordon Model, which was proved to be equivalent
in chapter 3.

6.1.4 The Bethe ansatz: N particle wavefunction and ra-
pidities representation

Having calculated the two-particle interaction processes, the so called Bethe ansatz
consists on expressing the general N body wavefunction by taking into account only
two-particle processes, due to integrability of the model.

The ansatz for the N particle wavefunction is then:

N'@(z1..an) = Y (1) dpi(a1).pn (wn) [ [ P Eroeroentimm) - (6.41)

P i>7

where the index P makes reference to all possible permutations. One can verify that
such solution satisfies indeed Schrodinger equation in the IRLM for N particles.
The way to obtain information about the eigenvalues of the problem is by imposing
periodic boundary conditions on a ring of size 2L, so that N coupled equations are
obtained:

¢($1, Iy = —L, ...,I'N) = QZS(ZL’l, Ly = —|—L7 ...,ZL’N) (642)
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Therefore, the Bethe equations are given by:

2L€i == 2’/TTLZ‘ - 22 (I>(<€i75k) - QAU(EZ) (643)
k

The equations determine the eigenvalues spectrum in an unique way. Notice that
different set of integers n; give different states in the system. However, since we are
looking at low-temperature properties of the model, it is enough for us to determine
the appropiate form of the ground state. The total energy is then the sum of these
equations, resulting in:

E = (r/L) Zn —(1/L) ZAU(@) (6.44)

where we have used the fact that:
D(ei e5) = —0(ej, &) (6.45)

The second term in the equation above E' = Ey+ §F is a term due to the impurity,
and represents a deviation respect to the Fermi-sea energy, where all levels in [—A, 0]
are occupied. This term needs to be determined in a self consistent way. One way
to calculate its first order contribution is to neglect it in the single-particle equation,
as it is done in [56].

The ground state corresponding to a non-interacting Fermi gas has associated
quantum numbers:

N1 =Ny — 1 (646)

with n; = 0. In this way, the next energy level is shifted by an integer and the Fermi
sea is filled. We define now the density of states as:

1

Note that in our units, this quantity has no dimensions, since [¢] = [L]~!. Important
enough, this quantity is, by definition, dense in the thermodynamic limit L — oc.
Then, using equations for ¢; and ¢, 1, and neglecting the term with Ay for individual
particles, we have:

2L(c; — £ip1) = 27 (i — nigr) =2 > B(ei,e8) — B(eip1,2%) (6.48)
1' k

and using the definition of the density of states, we can take the continuum limit.
In such a limit, the spectrum of eigenvalues becomes dense, and the calculation of
its distribution function p(e) is given by solving the following integral equation:

ple) = % + %/A dwp(w)% (6.49)
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There is a comment to do here. In [56], all eigenvalues are shifted by an amoun-
t —NU/2L, in order to get rid of the awkward term inside the phase shift Up.
However, this is done because of the term tan U/2 inside expression (6.39), where-
as we have proved this to be U/2 instead, being U the actual microscopic parameter.

We turn now to the rapidities representation, which proves to be more convenient
for such systems [30, 28, 56, 60]. The scattering phase ®(g;, ;) can be expressed as
a function that only depends on the rapidities difference g = 3; — ;. Notice how
the term ¢ + Up in the denominator in expression (6.37) makes this difficult. One
way to get rid of it is to shift all eigenvalues of the problem by a quantity —ey — Up.
Then we make the replacement:

Ei—> &€, — &g — Up (650)

so that the two-particle scattering phase is:

Ue; — ey
®(c;,64) = arctan | = 6.51
(€;,€x) = arctan (2 - +€k> (6.51)

The unfolding of fields use in (6.2) deals only with one kind of fermions, in this case,
right-movers. The following mapping is standard in these systems:

ep = —Ae Pk (6.52)

Note that all negative energy particles must have Im(/5) = 0. The mapping (6.52) is
common to use in massless field theories. Thus the scattering phase shift depends
solely on f3:

U
®(5) = — arctan (5 tanh (g)) B =05 — B (6.53)
which can also be expressed more conveniently as:
? 1 —i(U/2) tanh(5/2)
O(p)=—=1 6.54
(0) = =5 log (1 +i(U/2) tanh(8/2) (6.54)
The integral equation (6.49) can then be written in the rapidities representation:
A too
o) = gee+ [ dapl@)K (5 - o) (6.55)
0

where the kernel is the most important quantity to solve the integral equation:

102 1 sin(2w) U
21 98 2mcos(2w) — cosh(f — a) cot(w) = 2 (6:56)

K (B~ a) =

Note the symmetry of the kernel, which allows for standard methods in the cal-
culation of the above integral equation [88]. By solving equation (6.55), the exact
spectrum of eigenvalues can be computed and therefore the problem is solved in an
exact way.
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6.1.5 Calculation of rapidities distribution

We solve now equation (6.55), this being not explicitly done in [56], but a similar
calculation for the multichannel case can be found in [40].

The integral equation (6.55) can be solved by a standard Wiener-Hopf method.
The equation is Fourier transformed to give [60, 88]:

p (p)+ (1 —K({@)p*p) =p’p) (6.57)

where we adopt the following definition of Fourier transforms:

0 ‘/\ e ipa, —a ZA
— 2 gaerreegla) = —
pp) = 5o | daetetlo) = o
Hoo , sinh(7pg)
K(p) = K(a)ere = Z0TP9)
W = [ daraen S
+oo
prp) = + /0 dap®(a)e'? (6.58)

Here a = Re(). The parameter g is the interaction parameter of the IRLM we have
already defined in previous sections. By use of the Wiener Hopf method [60, 35, 88],
the next step is to factorise the 1 — K(p) factor into two analytic functions in the
half complex plane p. This gives:

m(1 - g) [.T(A +ip)
L+ip(l—g)/2)L(1/2+ip(1 + g)/2)

1-=K(p)=~"(p)v (p) = LT (6.59)

Here v (p) (v~ (p)) is analytic in the upper (lower) half plane of p. Curiously enough,
we can establish a relation between this kernel and the one found in [35], where the
S matrix of solitons in the sine Gordon theory eq.(6.88) is considered. The relation
comes from a proper renormalization of the inverse rapidities:

w ~

= (1=2(p)" =(1-K(p) (6.60)

Here, s is a parameter we will shortly define, for now we just need to understand
that This fact, which is at first a surprising relation between the S matrix for the
IRLM pseudoparticles and the S matrix of solitons in the Sine Gordon theory, needs
to be explored further. We now refer to the appendix for details on the calculation.
Solving equation (6.57) by the Wiener Hopf technique (appendix), we find for p™(p)
the following solution:

1 iN T+ a)T'(1/2+0)T(1 —ipa)T'(1/2 —ipb) ;A

ph(p) = 2T rO ) e (6.61)

where we have defined for convenience ¢ = (1 — ¢g)/2 and b = (1 + g)/2. If one
Fourier transforms back this expression, we obtain p*(«) expressed as an infinite
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series, since now the expression has multiple poles due to the gamma functions. This
series is formed by two contributions:

na _ 2n—1)a

+oo
p(ﬁ) = ZAHQ_T + B,e 25
n=1

A (=1)"T(1/2 — na/b)
ot nl [(2—n/a)
A (=1)"T(1 = (2n — 1)(a/2b))

Bo = T TR 2o 1)/20) (6.62)

We are only interested in the most important contributions of such poles, that is,
those that allow for a slower decay of the exponential function. Thus, an expression
for the eigenvalues distribution can be obtained, giving:

p(e) ~ e 04D p(e) = —Lp(a) (6.63)

Note that at ¢ = 0, that is, in the non-interacting system, the distribution of
eigenvalues is uniform as one would expect. We do not worry too much about
prefactors from now on, since we would be interested in computing the scaling of
the parameter ¢’ with g.

6.1.6 Thermodynamic exponent by Bethe ansatz in FW so-
lution

Once the function p(e) is known, one can calculate the impurity’s contribution to
the total energy. From equation (6.44) this is, following [56]

0F = /_ " dep(e) arctan <ﬁ> (6.64)

A 2(e + 20)

Note that the factor —U/4 inside the argument of the arctan is absent in [56].
Defining the occupation on the dot as [40]:

_ OSE ong

Ng

g0=0

then the charge susceptibility can be calculated. The calculation can be followed
in detail in the appendix. The impurity contribution to the ground state energy
of the system eq.(6.64) can be turned into another integral by standard change of
variables. Defining I'y = (#'/v/2)?, we find:

~ 0% (Fo/2) — -g/(1+9) ., 2
* /_52(1+(r0/5)2))2< /M) Ty (6.66)

Therefore, we find:

)T (6.67)
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Note that the exponent doesn’t correspond with the previous calculated thermody-
namic exponent « ( although it does for ¢ = 0), neither matches with the result
derived in [56]:

2

-1 no
~ (H)XFW - _ -
X (') arw 1+ U/x

(6.68)
According to this, and by inspection of the thermodynamic exponent « for the IRLM
in equation (3.24), we can identify:

2

U
. SN Y .
=5 (6.69)

In FW’s solution. Note that in this fashion, the U employed in [56] does not corre-
spond to the microscopic parameter of the theory U, but to some related phase-shift.
In this case, and because the expression of « is known from (6.69) to be correct, we
made this identification. The exponent we have just calculated is also not recovered
in [40] when the model is generalised to the N lead case. The fact that one does not
recover the exact thermodynamic exponent from the Bethe ansatz method, which
is in nature non-perturbative, makes a sufficient argument to check the theory in
further look for a solution that incorporates such term.

We make now connection with our previous results in chapter 3. It has been
shown how the lattice version of the IRLM can well reproduce results from the field
theory without any regularizations taken into account. The NRG numerics in the
IRLM proved to work quite well when the field theory expression for the Boundary
temperature in the Boundary Sine Gordon model is taken as the relevant energy
scale. Thus, we incline ourselves to believe this to be the same when the Bethe
ansatz (BA) is applied to the model. Whereas the thermodynamic exponent « is re-
produced without difficulties by use of bosonization, here we see how the BA proves
to be a much more complicated way to obtain such quantities. Regardless of which
technique we decide to employ, the same physical answers need to be recovered.

Thus the big problem in the Bethe ansatz solution of the model has been present-
ed, and we have attempted to derive the thermodynamic exponent «. The fact that
we haven’t been successful on this, we believe, has to do with the appropiate choice
of the two-particle S matrix. We should note that equation (6.37) does not contain
a ¢g° term on it. However, we can analyse the appropiate value for the exponent in
p(g) in order to reproduce the known result. Therefore we require:

1

~ e h 1 = 6.70
P~ TR (6.70)
The appropiate exponent satisfying this is then:
—(29 — ¢? o S
H:(—l:—(Qg—f)—:— (6.71)
142g—g 2 1+s

where « is the thermodynamic exponent in (3.24) and we have defined s = 2g — g°.
We see later that this parameter is of importance to preserve the mapping to the
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other (1+1) dimensional field theories.

Finally, to conclude this section, note that the change:

p(e) = ple)™ (6.72)

does indeed recover the solution from F'W for the thermodynamic exponent. In this
case:

g

ple) ~ e (6.73)
then by substituting in equation (6.66) we find:
X~ ()5 = T~ (1)1 (6.74)
If we remember that ¢ is defined as:

2
g:1——w—>w:g(1—2g+g2) (6.75)
T

would give the correct exponent. The fact that this is the appropiate value of g
is not a simple coincidence, as we will explore in the next section. Thus we can
conclude from here that, in order to get the appropiate thermodynamic exponent,
one must work with a renormalized set of rapidities, instead of the bare one. We
will explore these connections in the next section.

6.2 Relation of the IRLM to (1+41) integrable field
theories

In this section we explore the connection between the IRLM and other integrable
field theories in (1+1) dimensions. Concretely, we explore these connections for the
massless limit of the Massive Thirring Model (MTM) we described in chapter 2, and
the soliton solutions of the Sine Gordon Model (SGM). The relation between the
MTM and the SGM was discovered by Sidney Coleman [32], and has been studied
later by several authors in the field [28, 29, 30, 87].

6.2.1 Relation to the Massive Thirring model

The MTM was introduced in chapter 2. It can be solved in an exact way when a
mass term my is considered for the bulk fermions. Once the exact solution has been
computed, one then takes the massless limit my — 0 of the theory. In this limit,
the energy and momentum distributions are changed:

ex = —mgcosh(B) — g, = —ae*’ (6.76)

These two new branches correspond now to massless pseudoparticles, representing
right and left movers. Since the field theory of the IRLM is defined only for right
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movers (after unfolding of the fields), then one identifies this mapping with the one
used in (6.52). Massless fermions of the MTM behave as fermions of the IRLM. For
a proper definition of the MTM and its parameters, we refer back to section (2.6.3)
of this thesis.

The S matrix for two negative energy pseudoparticles in the MTM can be found
in [28, 29]. We write it down here again:

Byrar = ilog (ZEEEZ‘: . gg;) — —2arctan (cot(w) tanh(ﬂ/?)) (6.77)

and w = (7 — &£)/2. Tt is then immediate to see the connection of this (bulk) field
theory with the IRLM. We note that the following relation between scattering phase
shifts holds for both models:

2(I>IRLM — (DMTM (678)

By inspection of equation (6.54), one could argue that the relation between micro-
scopic parameters of the model is given by:

cot(w) = % — & = 2arctan <%) =26 (6.79)

In fact, from FW solution equation (6.68), this is not entirely true, since then we
obtain:

cot(w) = tan(28) — & = 2(20) (6.80)

This factor of 2 proves to be of extreme importance when we relate different mi-
croscopic parameters between these models. For now, we will mention that relation
(6.80) is the first order of what the actual relation between parameters should be.
Nevertheless, it is worth noting that both kernels, that of the MTM and the one
corresponding to the IRLM are identical. However, the integral equation to solve
for both models is different. Whereas an integral equation of the form (6.55) can
be calculated in a symmetric interval of rapidities § € [—A, +A] for the MTM (see
[28, 30]), for the IRLM we have to solve the integral equation in the half line. The
method to solve such equations is usually more complicated than simple Fourier
transformation.

6.2.2 Relation to Boundary Sine Gordon theory

At this stage, it should be of no surprise to us that the BSGM plays a role, as we
have already discovered in chapter 3. The sine-Gordon model has a well known
scaling dimension of the mass gap developed in the solutions, which are composed
by a soliton and an antisoliton. It is convenient to define a parameter A\ directly
related with the scaling dimension of the field:

8t 1 52

A=——-1=--1 2d = — 81
7 5 — gy (6.81)
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where [ is the bulk parameter in the sine Gordon lagrangian. The lagrangian
describing the BSGM is given by [34, 89]:

Lse = / d2(8,8)° + G cos(v26) + g5(x) cos((5/v2)6) (6.82)

This is the well known boundary sine Gordon model. Note the factor v/2 inserted
in both terms. This is because the bulk and boundary terms are related by a factor
of two inside their scaling dimensions. The lagrangian 6.82 can be found in [35] in
that concrete form. The estimated correlation length for the BSGM is:

m ~ G(1+)\)/2)\ ~ Gl/?—?d (683)

which can be found in the literature [66, 86, 89], and we already came across this in
chapter 3.

The important point to understand here is how does this model relate to the
IRLM as seen in chapter 3. The massless limit G — 0 must be taken in order
to reproduce known results. That is, the BSGM maps onto the IRLM when only
the boundary term (proportional to g above) is taken into account. As we show in
chapter 3, for the IRLM we identify:

t' cos((8/v2)$(0)) = ' cos(5'¢(0)) (6.84)
and this provides the correct exponent for ¢', since now:
12 2
1
2d' = o —(1—-g)? (6.85)

S dm o 2(4wm) 2
Here S represents the ordinary bulk term in the standard Sine Gordon Theory. Both
the SGM and the MTM proved to be equivalent by Coleman [32] by the following
relation of their parameters:

g1

N

~1—¢&/m+0(6%) (6.86)

The above expression is ezact [66]. We will prove now that, by comparing the S
matrix of solitons in [35, 33] with that of [28], the above relation between parameters
is recovered.

6.2.3 S matrix of solitons

Here we compare the two S matrices of solitons in the sine Gordon theory, given by
[28] and [35], and we stablish a relation between all different parameters employed.
The S matrix of solitons for the boundary sine-Gordon model is defined as [35]:

Sesa(0) = eXp{i/joo Y Gin (2”3/) sinh((A = 1)y) } (6.87)

o 2y 7 ) sinh(y) cosh(\y)
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whereas from Korepin’s work it follows:

o0 g sinh <<% — %)x) sinh (’%ff‘)
Sic(6) = exp{ _ / du } (6.89)
0 . sinh (%) cosh <4fyr—f”>

The integrand here is symmetric, so the limits can be extended to (—oo, +00) di-
viding by 2. Then using that sinh(iz) = isin(z) and inserting the minus inside the
first sinh we obtain:

oo 2T sinh (%) cosh (“—,"”)
v

Now by the change of variable x = 2y, we obtain:

Sk(0) = exp{i/_+oo d—ysmh <<1 _ 87_> y> ™ <2<%€> y> } (6.90)

B (ST

2
o 7Y sinh(y) cosh (?—,y
where ' is defined as:
8y
g 6.91
V= (6.91)
and v is taken from the sine-Gordon lagrangian:
1 w2
L=—(0,0) - (1 —cos(¢ 6.92
5 7( ) 5 ( (9)) (6.92)

It is important to note the different normalizations used in the two papers. Here
the rapidities # in (6.88) are understood as the renormalized rapidities, relating to
the bare ones as:

H = —2(7 — ) (6.93)

where we have called the bare rapidities « in order to avoid confusion later on. If
we now identify:

8 1 Y 4 Y

= — =
A A 81T —v l—v 8m—v

y — v =8nv (6.94)
A relation between the parameter § of the Sine Gordon Model and w in the MTM
can be established. Thus the relation between the Sine Gordon model and the MTM
parameters is given by:

8 8 2
fr_ 8w ¢ (6.95)

N T—w AT T
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which agrees with Coleman’s result to first order in £, where the relation of parame-
ters between both theories is valid and written in (6.86). It is also clear that one of
the definitions in the papers lacks a minus sign, for them to be exactly equivalent.
The correct exact formulas for the soliton-soliton S matrix in the sine-Gordon theory
are given by:

o0 gy sinh ((% — %) x) sinh (’Efy0,$>
Sk(0) = exp{/ s }
0 sinh (g) cosh <‘:r—,m>

Sesa(f) = exp{—é/_+00d—ysin (2”9) sinh((A = 1)) } (6.96)

o 2y 7w ) sinh(y) cosh(\y)

Whereas these results have been reported in the literature [28, 35], it is worth com-
paring all expressions encountered and the relationship between different parameters
employed, as notation differs from one publication to another as we have already
seen.

6.2.4 Connection to the IRLM

It was shown in chapter 3 that the IRLM is mapped to a generalised boundary
sine-GGordon theory by the following relation between parameters:

62

2d
47

=(1-g)’ (6.97)
The most surprising feature of such relation is that, whereas § represents a purely
bulk term in a field theory, the parameter g for the IRLM is directly related to
the microscopic parameter U of the model, which also accounts for a description
in the lattice. Nevertheless, we have shown to be the scattering phase shift ¢ the
relevant parameter to use. This was proved in chapter 3 by NRG, where the exact
expression of the boundary temperature [35] for the BSGM was identified with the
relevant thermodynamic scale of the IRLM. In [35], the scaling dimension of the
model is represented by A as:

1 1 14+(2¢9—¢*) 1+s

A:——l: = =
d a—1 1-(2¢—¢?)) 1-s5

d= %(1 —9)%  (6.98)

where ¢ is defined in (6.40), and note that s has been defined in equation (6.71).
As we know from chapter 3, this value of ¢ is then restricted to lie in [—1, 1] interval.

In the Bethe ansatz treatment of the model, the scattering phase shift presents
a term 7 inside:

®(a — f) ~ arctan (T fla— 5)) (6.99)
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We calculated this value to be 7 = U/2, in agreement with [44], whereas in [56] this
is substituted by tan U/2, accounting for a different regularization of the Dirac delta
in the field theoretic treatment.

It is worth to notice how both the IRLM and the MTM reproduce the same kernel
K (o — ) in equation (6.56) by just a direct substitution of their parameters. We
should also remember that the scattering phase shift between two negative energy
pseudoparticles in the MTM is not equivalent to the S matrix of solitons. According
to Korepin [28, 30|, the S matrix of physical particles (fermions in the MTM)
is equivalent to the S matrix of solitons in the Sine Gordon theory. The direct
mapping of the IRLM to the MTM comes from the replacement 7 = cot(w), and
the parameter w relates to the MTM parameter & as [28]

m—¢
2

defining a new parameter s = 1 — (2w/7), the relation between the IRLM and the
boundary sine Gordon model [89, 34] reads:

(6.100)

w =

1+s
A= 6.101
s (6.101)
from where we have:
2
s=2g—¢°=1— (2w/7) = = arctan(r) (6.102)
i

Therefore we argue that the correct relations between parameters of these models
are given by:

T = cot(w) = tan(20(1 — §/7)) = tan(ws/2) &/m = %arctan(T) =29 — ¢

2
Cel-gm=1-(2-g)=1-s w:ﬂf
The last equation relates both the microscopic (bulk) parameters of the MTM and
the Sine Gordon theory, with the interaction parameter g of the IRLM. Notice the
dependence of 7 with a g2 term. This term ¢ is of special interest, and could explain
why it is absent in FW solution when calculating the thermodynamic exponent of
the impurity susceptibility. After all, we have seen that the exponent for the dis-
tribution of eigenvalues in equation (6.71) depends solely on s. The FW solution
only reproduces a value of 7 = tan(20) = tan(mg), that is, only the first order term.
We conjecture that, in order to satisfy all known relations between parameters of
the different theories, the term (1 — §/7) should be recovered at some point in the
calculation. We will come back to this later in section 3 of this chapter.

(6.103)

For now, we have to content ourselves with a conjecture. According to the above
mentioned relations, we claim the actual form of the scattering phase shift between
two negative energy pseudoparticles in the TRLM to be:

® = — arctan (tan(ﬂg(l —(9/2)) tanh(ﬁ/?)) (6.104)
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It is clearly seen that the field theoretic approach we developed for equation (6.37)
does not reproduce the correct parameter, despite the fact that this form of the
scattering phase shift has been used in the literature [44]. As we will see later, a
description in the lattice is necessary, at least to get the first order term in ¢ in the
correct form.

The S matrix of solitons from the IRLM

We have seen that the kernels in equation (6.60) are related. We can then stablish a
relation between the S matrix of solitons in the Sine Gordon theory and the IRLM.
From equation (6.87), it can easily been obtained the form of the kernel in the
integral equation, satisfying [35]

Kw)=FT [%agsw)] =- / - dee“ﬂ%a,, log(iS(6)) (6.105)

o0

Working this out directly from equation (6.96), we find:

sinh <—<A—;A>W>
K(w) =

2 cosh (%) sinh <%>

where we have \ in equation (6.101). At this stage, the following relations prove to
be useful:

2 cosh ™ sinh M = sinh v — sinh s
2 2(1+s) 1+s 1+s

(6.106)

Taking into account equation (6.60), we get:
(~Rlw) = g = (CR() = Kl 4 (-R@)K@) (6108

providing that the following relations hold between the bare rapidities 8 and the
physical (renormalized) rapidities 6:

p

_ — 6.109
s p(L+s) ( )

As we can see, this leaves invariant the inner product p.f = w.f, and all Fourier
transforms are constructed accordingly. Thus, we substitute in (6.58) the values
p — w/(1 4+ s). The above equation (6.108) can be identified with the Fourier
transform of an integral equation:

Dp®(0) = 9y®(0) + 2i / - d0' 9y ® (8 — 6")0p O (¢') (6.110)

n 0
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The equation can now be integrated in €, so that we get the dressing equation:

+00

d(h) = () + %/ d6'9y®(0 — 0D (0') (6.111)

— 00

Equation (6.111) is the dressing equation for the two particle scattering phase shift
[30, 28]. It basically relates how excitations over the physical vacuum (which now
are the physical particles, carrying phase shift @) relate to the original pseudopar-
ticle picture. Being the pseudovacuum not bounded from below, i.e, containing an
infinite number of states, it is necessary to construct a proper physical vacuum for
the theory. For details on this, see appendix A as well as [28, 30] on the Massive
Thirring Model.

6.3 Lattice solution

In this section, we try a different approach to the two body problem in the IRLM
developed by Filyov and Wiegmann [56]. In particular, we describe the solution
of the model wn the lattice, in order to see is we can get a different value for 7 in
6.103 that includes the ¢g* term. The solution of the model in the lattice introduces
a natural regularization, where now there is a minimum distance (lattice spacing)
between sites, as opposed to the field theoretic description we have discussed ear-
lier. In this section, we recover Filyov and Wiegmann’s solution for the two-body
scattering phase-shift with the correct parameter to first order in g.

6.3.1 One particle states
We consider the IRLM hamiltonian defined in the lattice:

N—2 N—2
H=—t Z et Z ey —eod'd +t'(chd +h.c) +
i=0 i=0
Ulcheo —1/2)(dTd — 1/2) (6.112)

We wont go into details of the calculation of such states here, since they can be
found in the appendix. The single particle states are given by:

H|W), = EyW);  [¥)) = c}|0) + Cad'|0) (6.113)
We find for the single particle states in the lattice:

t'\/2

= —Y"  cos(Ay/2)er/?
G Ei+e+Up (Au/2)
b = cos(kn + Ay /2)e'v/?
Iy Urv Eymv
Ay = 2arctan| — + + 6.114
v ( 2E, +e0+Up) 4 4 ) ( )
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where we have defined I’y = 7v(t')? and v = 2(ntsin(k))~'. Notice the difference
between the term we previously calculated in (6.24). As a consequence of the lattice,
the eigenvalue E; enters the argument of the single-particle phase-shift.

6.3.2 Two particle states

Having calculated the single particle states, we now look at the two-body problem.
One needs to be careful here. By direct action of the hamiltonian over the two
particle state:

H|U)y = (B, + E,)|¥), (6.115)
we find the following equations (see appendix for details):
(B + eo+Up—(U[2)8;0)¢H = —t(CHH + ¢H71650) + 2t'8,09™
(B + Udpo)g™ = (t'/2) <5k,05j,oCd’j - 51,05k,0Cd’k> — (¢ 4+ ¢F Gy )
(T 4+ M)
where &; ; + &;; = 1. We look for solutions of ¢ and ¢ in the form:

Cd’j: = ¢ale1)d;(e2) f(—7) — ¢j(e1)ale2) f(4)
2057 = Gple1)dj(e2) f(k — J) — drlea)di(e1) f (5 — k) (6.116)

The function f(k— j) is a phase factor due to the scattering of the two particles, so:
fk —j) = e'*sen=d) (6.117)

By taking into account that the single-particle states must also satisfy the single
particle equations (see appendix). If one performs the calculation, one arrives at the

equation:
N2 N2
e’ <E2 — (tU) ) = <E1 — (t[} ) (6.118)

which clearly requires Fy = E5, which is not allowed due to Pauli’s exclusion princi-
ple. We have then to propose a different ansatz for the two particle states, in other
words, modify the solutions of the form (6.116) in order to get the correspondent
phase-shift between two scattering particles. This requires to take a bit of care about
the right or left moving nature of our particles in the lattice. We should remember
that such a lattice description does not transform left movers in x < 0 to be right
movers in x > 0. We take a look at this in the next subsection.

122



Chapter 6

6.3.3 The unfolded picture in the lattice

At this point, it is useful to consider all single-particle results obtained in the lattice
version of the IRLM:

V2t
Eq

Urv ey
ba = - )

r
cos(Ay(F1)/2) Ay(FE;) = —2arctan <2E01 — 7 T4

1 . . .
bp = —= (Ae”m + Be_”m> A=¢tv/2 = gt (6.119)

V2

as well as the single particle equations (6.114) and the two particle equations (6.116)
(see appendix for these equations). In order to develop a valid solution of the two
body problem in the lattice, scattering between right and left movers needs to be
considered. Thus a new ansatz for the two-body wavefunctions is needed. The
function carrying the scattering phase shift between particles will be of the form:

f(k —m) = '*siente—m) (6.120)

If we now imagine two right movers scattering from each other, then the two body
wavefunction is:

Ay AgetFrmetkem £ m) — A Ayethimeikem gi®sign(n—m) (6.121)
On the other hand, a left mover scattering from a right mover contains:

A BieFmemkem f(n — (—m)) — A BjeFimethemei® (6.122)
where we have necessarily sign(n +m) > 0, since all coordinates on the lattice are

to the right of the dot, therefore n,m > 0 always. Thus, the single particle states
are now decomposed into right and left movers:

(k) = 6 (k) + by, (k) (6.123)

The two-body ansatz for both the impurity filled or empty are then:
i = o (Heohen) - en)olen)
O GO ISR TAe)
N CO A P ESPHE
+ o (Skeolie) — ook
s (ool - oblealobh)
S CTOVCTESEH B PIERY (6.124)
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The important quantity to calculate here is, as always, the two particle scattering
phase shift ®. We refer the reader to the appendix for a detailed calculation. By
applying the above ansatz into the two body equations (6.116), we obtain:

€2 — &1

tan(®P) = tan 6.125
(%) (Wg)82+61+2(60+Up) ( )

which in the rapidities representation (and making ¢; — ¢; + g9 + Up) is
® = —2arctan (tan(wg) tanh(6/2)> (6.126)

Now, by looking at equation (6.104), we see that the above method fails to reproduce
the g% term, but reproduces the first order value of the 7 parameter, the one related
to both the Sine Gordon theory (f) and the Massive Thirring Model (£). Our
attempt to recover the correct S matrix has failed once again, we believe, due to
missing physics when calculating the scattering process. At the moment, this is
work in progress.

6.4 Multichannel IRLM

To conclude, we look briefly at the single particle description of the multichannel
IRLM. Previously, we have attempted to solve the problem of the IRLM in the
single channel version by Bethe ansatz. The generalization of such a solution to an
N channel IRLM has been developed by Ponomarenko [40]. However, his solution
by Bethe ansatz also lacks the factor proportional to ¢? in the charge susceptibility.
This is in fact a very important factor, since now the thermodynamic exponent «
depends on the total number of channels N attached to the impurity:

2

= e v (6.127)

To see the origin of such a term in the two-body equations, one starts to solve the
generalized N channel problem.

The TRLM is written on its multichannel form in the fields components:

:—ZZ/ daapl (2)0p0)0 () — godid + 1/ Z/dwé (2)¢8 (x)d + h.c
Uy / ds(z)(dd — 1/2) (6} () ba(z) — p)

Here o represents each channel attached to the impurity site. A rotation of the
fields allows one to write the hamiltonian in terms of new fermionic operators:

G@)(i#1)  x(@) =) tal®) (6.128)
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Then there is only one ”channel” hybridizing with the impurity site:

- ZZ / dzc! (2)0yci(x) — i/dxXT(x)amx(x) —eod'd +1' / dzdé(z)x" (z)d + h.c

+ Uy / ded(2)(d'd — 1/2)(c} (2)es(x) — p)
+ U/dxé(x)(de —1/2)(x"(2)x(z) — p) (6.129)

We are here assuming the average values of the boundary operators to be all equal
to p. The problem is then reduced to a single lead IRLM and N —1 non-hybridizing
leads interacting with the channel. We will rather choose to work with the unrotated
version of the model, as opposed to Ponomarenko. The single particle state is a linear
combination of all possibilities for the particle to be either in one of the leads or the
dot:

\mzjbm4mm+gm (6.130)

The hamiltonian acting over the state has several contributions. First, the non-
interacting and dot parts:

(Hy+ Hy)| W) = —eoCal1) =13 / A0, ()|, ) (6.131)

The hybridization part reads:

Hl Oy =" / dxd(x)Cala, ) + > / dzd () o (2)]1) (6.132)
Finally the interacting part of the hamiltonian is:
U
Hy ) = -5 %:/dm(w)qﬁa(a:)yw, a) — za: UpCal1) (6.133)
Therefore there are N + 1 single particle equations, reading:

0, 6u(r) + £5(2)Ca — S 0(x)b(x) = 2160 (2)
Caer + &0+ NUp) =t'6(x Zqﬁa (6.134)

It is easy to see that these equations can be reduced to a set of two coupled equations
in the rotated field x(z), determining the scattering phase shift in this case. The
problem is then equivalent to a single channel hybridizing with the impurity and
N — 1 "free” channels. In other words, we use the hamiltonian above and whose
states are:

¢a(x) — Oeislm+i6asign(m) Q(ZE) — Ceielx—l—iAsign(m) (6135)
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where the phase shifts are:

Ntl?
d, = arctan <%> A = arctan (% T > (6.136)
where the equation determining A is:
Nt”? U
—10,Q(x) + ( I 5)5(3:)9(35) = e,:Q(x) (6.137)
1

Note the inclusion of the N factor with #'. This equation is then similar in ap-
peareance to the one obtained for the single channel version equation (6.22). In this
sense, and because we work in the limit ¢ — 0, we observe no difference between
this N channel version of the model and the single channel one. The extension of the
method to the two particle equations is something we are working on at the moment.

6.5 Summary of main results

In this chapter, we have presented the problems one faces with when applying the
Bethe ansatz to the IRLM. Our main problem is to find the thermodynamic ex-
ponent to be equivalent to the one obtained by Bosonization and RG. It has been
shown that both calculations in [56, 40] do not reproduce this exponent correctly.

One of the main points we have illustrated here is the connection of the IRLM (a
quantum impurity model) with other integrable field theories: the Massive Thirring
Model (MTM) and the Sine Gordon Model (SGM). In particular, relationships be-
tween parameters of the models have been stablished, leading us to conjecture the
exact form for the two-particle scattering processes in the IRLM. We have shown
the S matrix of solitons in the SGM (fermions in the MTM) to be in relation with
the one in the TRLM, by means of a dressing equation of the two-particle phase
shifts. It is quite remarkable that such bulk field theories like the MTM and the
SGM find similarities with a quantum impurity model by direct relations between
their microscopic parameters.

Finally, when going to a lattice description of the model, we introduce a natural
regularization in the problem. By solving the two body problem in the lattice, we
have reproduced the first order term that matches both the MTM and the SGM to
the IRLM. The calculation of the g2 term in such relations still remains outstanding.
At the moment, we are working on these issues.
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Conclusions and outlook

“Real knowledge is to know the
extent of one’s ignorance”

Confucius

In this work, we have studied the TRLM in thermodynamic equilibrium from
a fundamental point of view, in order to get a full consistent theory of both its
thermodynamic and dynamic properties at low temperatures/energies. The IRLM,
being a strongly correlated impurity model, presents himself as a perfect theoretical
laboratory to understand such systems. Its apparent simplicity leads, however, to
an understimation of its range of applicability. In particular, its direct relation to
the Kondo model, which has been stablished in the last years as a well understood
model, can bring the idea that there are few things to say about it. This thesis has
precisely illustrated that this proves not to be the case in the IRLM. Although nu-
merous important works have been developed in the model (see the cited literature),
important flaws in the theory have been fixed.

To begin with, the fact that analytical approaches to the model by perturbative
RG don’t match with numerics [38] at strong values of interactions comes from a
wrong interpretation of the relevant energy scale in the problem, and the lack of a
prefactor that depends on interaction in a non-trivial way (the exact solution). Such
a prefactor is proved here to correspond to an integrable bosonic field theory with
a boundary term (the Boundary Sine Gordon Model). Secondly, in previous works
[37, 38], this energy scale I' (without the prefactor taken into account) has been
associated with the impurity density of states, which is a dynamical quantity. One
of the main points illustrated in this work is the sensitive distinction we must take
into account when computing dynamical quantities as opposed to thermodynamic
ones.

Regardless of which quantity we look at, it is the scattering phase shift 6 of the
associated central scattering problem the parameter dominating all the RG treat-
ment, and thus all low-energy properties of the model. The RG treatment can be
equally well performed by considering the IRLM as a continuous field theory with a
boundary (the Boundary Sine Gordon Model (BSGM)). By making this identifica-
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tion, we have proved the ezact expression of the relevant energy scale in the BSGM
to correspond to the relevant energy scale in the IRLM. Furthermore, NRG simula-
tions have supported this idea with a very good agreement. The fact that one can
reproduce field theoretic results from a lattice model with microscopic parameters is
one of the central results in this thesis. One immediate consequence of this is that,
at least in the single channel IRLM, both the lattice and the field theory versions of
the model are equivalent to describe its low-energy properties, without taking into
account any regularization scheme in the continuum. This result also connects with
the exact solution of the model by Bethe ansatz, which has been believed to be de-
pendent on different regularizations of the fields. We consider this analogy between
the lattice and the field description to be an important argument in favour of our
fixed cut-off theory, as opposed to regularization schemes that have been proposed
in the two channel version of the model in order to match different limits [51]. To
further support our arguments, a treatment in the strong coupling limit of the model
has been performed in the lattice. As it has been shown, the relevant energy scale
in this limit matches the analytical formula developed by integrability of the BSGM.

In general terms, thermodynamics of the multichannel IRLM have also been
considered. Generalization to the multichannel case has already been discussed pre-
viously [38] presenting similar mismatches between theory and performed numerics.
In analogy with the single channel version, our first approach is the calculation of
the so called thermodynamic exponent by bosonization. This result, despite being
reported in [38, 39, 50], it is not mentioned to be ezact. The important part about
this calculation shows that the Nth channel generalisation introduces the total num-
ber of channels in the model N coupled to the interaction constant in second order.
In other words, to observe differences between thermodynamics of the single channel
IRLM and the multichannel version, one needs to go to second order in g. With
regards to the mentioned mismatches between theory and the performed numerics
[38, 52|, our approach elucidates why such mismatches occur: In accordance with
results from the one channel IRLM, we believe these mismatches to correspond to
the lack of an exact expression for the prefactor in the relevant energy scale for-
mula. Such prefactor has a non-trivial dependence on the interaction parameter g.
This implies important changes in the computation of relevant physical properties.
For instance, in the two channel version of the model, a duality in the thermody-
namic exponent occurs. It has been said that such duality has to be preserved in
the relevant energy scale of the problem [51] by introducing the appropiate cut-off
regularization when going to the continuum. Performed numerics [53] have shown
this not to be the case in the IRLM, suggesting the duality is broken in the strong
coupling limit: Instead of recovering the non-interacting value I'y for the energy
scale, this one goes to a zero value, therefore implying infinite correlation length in
this limit. We believe this effect, which is recovered in the strong coupling limit in
the lattice, to be a real one, and not dependent on regularizations. In other words,
the cut-off of the theory is fixed and does not depend on ¢. In this thesis, we sup-
port this idea from our treatment of the single channel version of the model, and
its full capacity to reproduce results in the continuum from the lattice viewpoint.
We therefore conclude that the duality is broken in the two lead case when going to
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the strong coupling limit, and that such effect has to do with the (at the moment
unknown) ezact form of the prefactor in I' for more than one channel. Extrapola-
tion of exact results for the single channel IRLM to two or more leads has not been
performed and would be desirable.

The separation between thermodynamic properties of the model and its dynam-
ics (i.e. the impurity spectral function) is central in this thesis. Our results agree
with previous publications [37, 38, 39, 55] in the weak coupling limit of the theo-
ry. Results of [38] suggested that even for small values of interaction, analytical
expressions for the dynamic width T'y deviate from numerics. In this work, several
important results need to be mentioned. In the weak coupling limit, the impurity
spectral function is a Lorentzian, as perturbation theory shows. As soon as one
goes to order ¢?, this Lorentzian shape starts to dissappear. The central peak in
the spectral function broadens with interaction, but at sufficiently large values of
g, it develops a splitting in the central region. Such splitting has been reported for
the Anisotropic Kondo Model (AKM) [95], which we know is in direct relation with
the IRLM [36]. In order to define some sort of dynamical hybridization, one focuses
in the w = 0 sector of the spectral function. It turns out that the scaling of the
hybridization parameter ¢ with interaction ¢ is different than the one present in
the thermodynamic energy scale I'. Despite being both exponents different, NRG
simulations suggest a relation between both. The most important result on this is
that the spectral function shows an universal curve at fixed g when scaled with this
exponent. On the other hand, in such universal curves, the excitation energies of
the system w prove to scale with the thermodynamic width I'. The origin of these
two different low-energy scalings in the dynamical quantities of the model is at the
moment unknown to us, and further work on this is required on the analytical side.
In spite of this, we can conclude that dynamical quantities in the model behave in
a different way as thermodynamic ones. Whether this is due to the appeareance of
a second energy scale in the model or not, is some that requires further investigation.

Integrability of the IRLM and its exact solution by Bethe ansatz has also been
presented. In particular, it has been shown that results of [56] do not reproduce
the well known thermodynamic exponent « correctly. The fact that one cannot
reproduce the g% term in the exponent seems worrying, since it is precisely this ter-
m the one that differenciates the single channel IRLM from the multichannel case.
Without it, one cannot benefit from the extension of the method to more leads [40].
One of the arguments could be that in order to reproduce such term, one needs to
regularize the theory correctly. Once again, we have to disagree on this, support-
ed by our previous arguments on the equivalence between the field and the lattice
description at low-energies. We have precisely shown that, even when going to the
lattice version, solving the two-body problem does not reproduce such term. On the
other hand, a direct correspondence between the S matrix of solitons of the Sine
Gordon Model and that of the IRLM has been stablished, by following works of
[28, 35]. The search for such ¢? is of primarily importance in the model. The fact
that one does not reproduce the well known result has to do with the complexity
of the method as compared to the bosonization approach. Our view on this is that
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either some fundamental physics are missing in the description of the problem or
some technical steps have not been performed in the correct way. We will be working
on these issues in the near future.

To conclude, we want to remark the importance of the IRLM in the ground-
breaking study of non-equilibrium phenomena in such strongly correlated impurity
systems [44]. The approach developed in [44] relies on integrability of the model, in
order to extrapolate the Bethe ansatz method to the non-equilibrium case. However,
the solution of the two channel version of the model in non-equilibrium (that is, al-
lowing transport) has only been satisfactory compared to numerics at a single value
of interaction [45, 48], therefore the development of a whole theory for any other
value of interaction is desirable. As we have already seen in this thesis, application
of Bethe ansatz even in equilibrium presents a challenging task; we give full credit to
[40, 56] in this aspect, understanding that such solutions need modification in accor-
dance with our results exposed here. We believe the study of equilibrium properties
of the model to be relevant, concretely in the description of the long time (steady
state) limit of such non-equilibrium situation. In this sense, the full understanding
of such equilibrium properties of the model presents a problem as fundamental as
its non-equilibrium variant.
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Ground state of the Massive
Thirring Model by Bethe ansatz

In the MTM, the hamiltonian is not bounded below, and therefore accounts for an
infinite number of states. Such a picture is deceptive, and one then needs to fill the
vacuum of the theory in the correct way. This is the approach followed by Korepin
[28, 30] and we expose it here in detail.

The vacuum state of the massive Thirring model consists on filling all negative
energies levels. The total energy of this state is:

E=—mp»_ cosh(ay) (A1)

where |ag| < A. Here, all rapidities « then have zero imaginary part, but the
physical rapidities § lie along the line 7 in the complex plane. The distribution of
rapidities is given by the above integral equation. For the vacuum of the theory, this
equation is solved in the asymptotic limit A — oc. This procedure is also found in
Bernoff and Thacker.

Now, consider adding a pseudoparticle with positive energy, which implies we
add a, with Im(a,) = 0. Then a new term appears in the scattering, as a scattering
of one negative energyparticle with a positive energy one. The equation is then:

mpLsinh(o]) = 2mn; + Y ®(af — o) + (0] — ay, + i) (A.2)
ki
The associated wavefunction has energy:
Eyip=—my Z cosh(ay,) + mg cosh(ay,) (A.3)
k

The following functions are conveniently introduced:

*

Wylow) = Lias — af)  Fylon) = W(an)plos) = ——21 = f,(a — a,) (A4)

1
Qi1 —
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These are called the shift functions. Now, we subtract this Bethe equation from the
vacuum one, and take the thermodynamic limit. Then we have:

m0L<sinh(o¢2‘) - sinh(ozi)) M = Z Q(a; — ag) — P(af — )
o; — QO
L k
—®(af —ap, +im)  (AD)
Taking the L — oo limit this is:
mg cosh(a) = —(W(a)) '®(a — a, + i) (A.6)
where the second term of the right hand side has been neglected in this limit, being
of order 1/L. Then using the equation for the the vacuum:
+A
0=>(a—a,+im) + / dBF,(5)P' (oo — B) + 27 F, () (A7)
—A

As we can see, this is a dressing equation for the shift function F,(f). Its derivative
is of importance, since it allows to solve the equation by Fourier transformation:
+00
0= (a—ap+im) + / dBF,(B)® (o — B) + 27 [ () (A.8)

— 00

Introducing a positive energy particle in the system pushes some of the particles
further than +A. There is then a change in the number of particles beyond the
cut-off, given by the following formulas:

AN(A) =—F,(A) AN(=A)=F,(—A) (A.9)
Then, the "true” vacuum energy due to this is:
Ey — Ey — AN(A)(—mg cosh(A)) — AN(—A)(—my cosh(A)) (A.10)

The excitation energy (of the included pseudoparticle) can then be calculated as
a difference:

gp = Eyip — B, = mg ( Z — cosh(ay) + cosh(ay) + Cosh(ap)>
k

—mg cosh(A) (FP(A) . Fp(—A)> (A.11)

This describes an excitation in the zero charge sector, where one particle has been
removed from the vacuum and promoted above the highest energy level, leaving a
hole behind. We can express the hyperbolic sines terms in the following way:

cosh(ay) — cosh(ag)

P (o — o) = sinh (o) (g — o) (A.12)
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Then the equation is:

- mocosh(ap)+m0< /_ J:\Adasinh(a)Fp(a)—cosh(a)Fp(a) +:)
— g cosh(a,) — mo / AAdacosh(a)F;(a) (A13)

where the last step is the definition of integral by parts. Thing is, to know the func-
tion F(cr). This function can be calculated from eq. (4.15) by taking the derivative
of the expression. Then the integral can be solved by Fourier transformation. In
order for this to be finite, a renormalization of the bare mass my as a function of the
cut-off follows. Solved by Fourier method, the function F}, is calculated in Korepin’s
paper [28]:

-1 & T !
lim F/(a) — sin | —— }cosh | ——(a— A.14
Jim ) esin () o (g - ) A
which is the asymptotic behaviour of the function. As A — oo the integral on the

right of ¢, diverge. Then, the mass is changed with a cut-off dependence of the
form:

EA

my = ae "€ (A.15)

with a being a constant. Using that choice of mg, the equation for the rapidities
distribution p(«) is:

ae e cosh(a) = 27p(c)

" sin(g)
- /A )3 coshl(a = B+ ig)2) cosh((a — 5 —ig)/2) " (A.16)

Lets take a closer look at the kernel of the expression:

B sin(g)
K(2) = 5 iz T ig)/2) cosh((z = i)/ (4.17)
Using the relations between sums of hyperbolic cosines, we get:
1
K(2) = tan(g/2) (Sh(2)/ cos(g/2) (A.18)
so the equation to solve is:
qe” 7FE cosh(a) = 2mp(«)
" p(5)
~ 00/ | e a7 (419

The formal solution of this equation can be found in [30]. It admits a general form
for every kernel and momentum distribution. For this model, it is given as:

_ L (L (sinh((a = 8)/2)/ cos(g/2))* — (tan(g/2)/2m)\ "
iz / dﬁ( (14 (sinh((er — 8)/2)/ cos(g/2))?) )
xae” # cosh () (A.20)

pa) »
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The above equation is solved [30] with the following asymptotic behaviour:

a

pla) = ? ) cosh< m ) (A.21)

2(r+g¢ T+g

The expression for the massless Thirring model comes from taking the limit:

lim  ae® =b (A.22)

a—0,00—+00
being finite. Then the expression is:

_ gb 6_#‘90‘
Pl@m=0 = 4(m + g) sin(g) (4.23)

This is the distribution for the rapidities, where now the physical rapidities represent
the renormalized values after filling the vacuum:

«

- (A.24)

Thus, the inclusion of a particle-hole excitation carries an adjustment in the physical
vacuum of the theory. As a consequence, the rapidities are renormalized. Note that
such a renormalization in the Massive Thirring Model has been carried for the limit
of myg — 0, i.e, the massless limit, which we know is in relation with the Interacting
Resonant Level Model.
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Bosonization in the IRLM

Consider the non-interacting term H, of the IRLM. We know that, once we linearize
the spectrum, the hamiltonian for non-interacting fermions is a Dirac hamiltonian,
just changing ¢ by vg:

Hy = —ivp /0 dz (Y1 (2)0p1p () — 1 (2)0,0) (B.1)

o)

Reading the expression above, the non-interacting hamiltonian for conduction elec-
trons is divided into right and left movers. The integral just runs from —oo to 0
since the lead is semi-infinite.

In that particular model, there is a boundary condition for the conduction elec-
trons:

¥1(0) = ¥1(0) (B.2)

wich permit us to unfold the fields. Consider a right moving fermion along the
wire (negative x direction). When the fermion reaches the boundary, it scatters and
moves towards left. However, we can consider instead to extend the space to +o0,
where the fermion would keep going as a right moving one. We can then make the
following association:

Uiz < 0) =¥l (z > 0) (B.3)

Therefore, we can write our conduction fermions simply as right movers, thus one
single fermionic operator is needed.

Hy = —ivp /_+00 dap’ (2)0,0(x)x (B.4)

We know how to transform that into a bosonized form, by simply considering free
bosons (right moving):

Hy= 2 / " de(8,0(2))? (B.5)

o
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so that ¢(z) is a chiral bosonic field. We take a look at the hopping term of the
hamiltonian:

Hy = J'(d"y + h.c) (B.6)

We will transform the impurity operators into spin operators as we did before, and
the fields. However, we will use a more generic prefactor for the operators in order
to commute, which are not relevant since they are not dynamical. They are only
included to preserve the anticommutation relations.

d=nS~ d =nst

(dd-3)=5 )= S (B.7)

Taking that transformations into account, the IRLM hamiltonian transforms into
its bosonized form:

+o0 J ) U
H=- 2 + iv4r$(0) ) v Qz B.
2/_00 dz(0,0)” + m(nmS e +hc> + ﬁS 2:9(0)  (B.8)

Consider now the case where J' = 0. In that specific situation, the hamiltonian
H is reduced to a scattering problem for the field ¢ (a free boson propagating
freely, reaching a boundary at z = 0), therefore the scattering phase shift 6 can be
calculated, resulting to be:

20 = arctan (g) (B.9)

We should notice that the expression above is in units of vy = 1, otherwise is
senseless. In the low coupling, that is, for values of U sufficiently small, the scattering
phase shift can replace the interaction U, so we identify:

U =26 (B.10)

The common trick used in impurity problems (see Gogolin et al.!) is to make use of
a unitary transformation acting on the hamiltonian. Such a unitary transformation
is chosen arbitrarily, and dependent of a parameter « to be determined. In fact, this
transformation has to depend on the operators involved in H:

U = /Vimes79(0) (B.11)

As we can see, U depends only on S* and the fields ¢(z). It does not depend on
St and S~ explicitly, but we know both are related to S* by usual commutation
relations.

We will proceed now to see how this transformation acts on every single term of
H, we want:

Hpy =U'HU (B.12)

LGogolin, Tsvelik, Nersesyan. ”Bosonization and strongly correlated systems”
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We start by acting over the term with the scattering phase. Directly:

20
Ut ==5%0,¢(0 B.1
(Zzs7an000) ) (B.13)
We now make use of the Baker-Hausdorfl formula:
ING A NG A LA A (i/\)2 A TA A
e"0e"™" = 0 +iAG, 0] + T[G’ G, 0]] + ... (B.14)

We see clearly that the operator U commutes with S* following (1.26). However,
we must be careful about the commutator for bosonic operators. Since for different
sites, there exists a non-locality, the following commutation relation holds:

i
[026(2), ¢(y)] = —50(z —y) (B.15)
Therefore, we can easily compute the terms:

1 225°0.0(0) ) U = Z5°0.0(0) = No(0) [6(0). 06(0)] . (.10
We don’t need to go further than the first term. We have defined A including all
terms of the unitary transformation. We see that the second term on the r.h.s is
nothing but a constant (although is an infinite constant mathematically speaking!),
so we can get rid of it, whereas all higher order terms are 0, since the é(x) function
commutes always with the fields. Thus, the action of the unitary transformation
over the phase shift term just provides a constant, that we can forget in the following
treatment, since it doesn’t have any effect on the scaling of the operators.

We turn our attention now to the non-interacting part of the hamiltonian Hj.
Again, we can take out the S* operator, which will not have any effect over Hy, so
we can insert it into the constant A. Let’s look at the first term of the BH formula:

01 (5 [ st v = [ asouoa)? +
WirsS [ dslo(0), 0,0()) + O(c?) (B.17)
We can now use the relation:
(4, £(B)) = [A, B (B) (B.13)

and the commutation relation showing the non-locality of the fields:

0:6(2), 9(u)] = — 36z 1) (B.19)

Introducing that in (1.32), we find:

UTHU = Hy — %\/Eszam(o) (B.20)
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We see that the action of the unitary transformation over the non-interacting hamil-
tonian adds a shift in the derivative, that is, in the scattering phase. That is im-
portant since now, we can fix the value of « if we want to get rid of the scattering
phase shift:

( 20 av4am

NZ3 2

Indeed, that why we used the unitary transformation U, to get rid of this interacting
term. We see that this happens at the value for a:

)S5*0,¢(0) =0 (B.21)

%

= (B.22)

Q@
Finally, we have to treat the hopping term (the one with J'), to see how it is
transformed by U. We see clearly that U commutes with the field at the impurity
#(0), however, it doesn’t commute with the spin operators ST and S~, since it
depends on S*. Let’s see how it affects the operator S*. Again, using the BH
formula:

U'STU = ST — ivarap(0)[S®, ST] +

(—i\/i!o@(O))Q 157, [S7, S]] + ... (B.23)
We now use the known relations:
[S*, St =87  [55,5]|=-S (B.24)
Therefore, we obtain:
UtSTU = §te Vimae0)  fs— = §¢iVimae(0) (B.25)

We turn our look back to hamiltonian (1.23). The part with U has been cancelled
choosing the appropiate value of a@ = 2776' The H, part remains after the transfor-

mation, and the hopping term is expressed now in terms of new vertex operators:

1 +0o0 J/ )
UHU = = / dr(0,0)% + —( SteiVimd(o)(1—a) 4 h.c> B.26

We emphasize the word new for the operators since now we have:

' (r) = #em("”) (B.27)

with the new scaling:

ﬁ2

d —
&

= %(1 —a)’ (B.28)

We see that for o = 0, we recover the scaling for a free fermion operator. Since the
scaling is not %, those operators are not representing fermions anymore, but anyons
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instead (they don’t commute nor anticommute). To remember where the scaling
comes from, consider the averaged vertex operators for a field ¢(z):

iB(x) —iBO(2)\ (B —d) o log(le—yl) _
(e e ) (e )e

_BZ _
= Je—yl " =]z -y (B.29)

We have calculated the scaling for the new vertex operators in the one lead case.
We will move now to the general case when N leads are coupled to the impurity.

The IRLM with N leads

Consider again the IRLM hamiltonian, in expression (1.23). Since having N leads
just adds NV different bosonic fields to it, we can write the bosonized form of the N
leads IRLM just by summing up all terms:

J! ~ U
H= E e oSTeVAmee0) 4 py, ) + —=520,64(0
/ Oute)’ \/ﬁ<m] ‘ ARV a(0)

The treatment of the model is exactly the same as in the one lead case. The only
thing changing is the unitary transformation we will apply to the hamiltonian. Since
we want to affect all fields, we can choose the easiest? transformation as:

U — Z\/Easz (Z #a(0)) (B30)

and apply it to the whole hamiltonian as we did before. The advantage we have
earned with the one lead case is that now we know how such a transformation affects
every term of H. But we must be careful about it.

Acting over the U = 2§ term, we know that it just produces a constat (in this
case, N constants), and we can no longer consider them. We act over Hy, and we
know that, on the a lead:

Var

U'H, U = Hy, — D304 (0 B.31
0, 0, 2\/N ¢ ( ) ( )
Then to get rid of the scattering phase shift:
20 AT 29
(— )S 0x04(0) = (B.32)
VT 2JN"
so the condition is satisfied if:
20 N
a= VN (B.33)

T

2There are infinite possibilities to choose, but for convenience we choose that one (the scaling
is independent of which transformation we choose)
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We are just left with the action of the unitary transformation over the S™ and S~
part. We know from equations (1.40) how this is done. So, again for each lead, we
will have:

UtSHTU = gt VAT Jx L 0e0) (B.34)
So, for each of the terms multiplying S, the vertex operators change their scaling:

G VI (01— £5) — VAT B, 4, 64(0) (B.35)

Since there are different fields in the exponentials, when we work out the correlator
for the vertex operators all factorize, and the scaling is just the sum of the scalings
of each vertex operator:

N 2
EJIJ

<€iﬂl¢1(z)eiﬂ2¢2(z)“.elﬂN¢N('z)€*i5N¢N('z).“6*7;51(1’1( >

Bl (B.36)

In this case, for each term there are exactly N — 1 equal scaling operators, and
an operator with the (1 — —%) factor. Therefore, one of this operators (all the

exponentials multiplying St for a single 7n,) has scaling:

R, (N-15

B.
47 47 ( 37)

where we define:

B = Vir(1l - ﬁ) P = \/Eﬁ (B.38)

We can calculate the total scaling of this product of vertex operators:

a 2 (N — 1)@2
2d=(1—-—=) + ———— B.39
Now call:
B =vVNa (B.40)
We arrive at:
_ 28 B 1 2
2d=(1-F+5) =53 (N-1+01-8)) (B.41)
Substituting the value of 3, we arrive at the result:
1 20N
2d= —(N —1 1—— B.42
d= (N -1+0-22p) (B.42)

This is the scaling of the operators associated with the hopping term. We will now
proceed with a renormalization analysis to figure out the renormalized parameter
when we integrate over all high energy momentum (fast oscillating modes). Howev-
er, there is an important remark that has to be done here.
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It turns out that, for specific values of §, the IRLM shows a duality, more specif-
ically, the scaling doesnt change. We want to replace:

b=d0—a (B.43)

where a has to be determined. In that case, lets work out:

26 — a)N AN AN2§%. N 2N
AL SR
(1,@)2

™

The last part has to be identical to 0, so that the scaling doesnt change. Taking
that into account, the non-zero solution is:

T
=20 — — B.45
a=2- (B.45)
So the duality occurs at:
- T
b=0—a=—=—-9¢ B.46
=1 (B.16)

At N = 1, there is no duality. For the case of two leads, we find out that this
corresponds to an infinite interaction, and that the operators now becomes actual
fermionic operators:

1
=2 d=- (B.47)
2 2
The case of § = 7 corresponds to infinite interaction U — oo. Therefore, a new
fermionized version of the model is recovered when this happens:
H = Hy + epd'd + T (d'](0) + d'}(0) + h.c) (B.48)

However, we should notice that this hamiltonian, as it is expressed, doesn’t describe
a hybridization between the conduction electrons and the impurity (since now, both
the impurity and the conduction electron are annihilated or created at once), so
it has a more difficult physical interpretation. In the case of two leads, when the
interaction between the leads and the impurity is infinite, the hopping is supressed.
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RG treatment and the Sine
(Gordon model

Here we follow the treatment done in [66]. Consider a gaussian model that includes
a perturbative term in the action:

1
S=5+S5 = 5 /dxch(V@)z + %/dl‘dT cos(fP) (C.1)

Where a is a constant to fix the units of the expression. The Sy part is the Euclidean
action, and the perturbative part is governed by the unitless parameter g. @ is a
bosonic field.

With respect to the IRLM treated before, we can make use of this model to see
how it behaves under a renormalization of the parameters. All we have to do is
to consider our scaling of the operators defined by . This field lives in the first
Brillouin zone in k space, however, the model is limited in k£ by an ultraviolet cut-off
A. We can now move infinitesimally from this cut-off to a lower one, lets say A’
and see how the parameters renormalize under this change.

The initial field limited to the cut-off A is then decomposed into two fields:

1 ) 1 .
Ppr(x) = — et + — Pt
) = g 2 e 2

<I>A(ac) = q)A/(l‘)—l-h(])) (CQ)

We see that the field h(z) includes all fast oscillating modes, those with higher k.
Our purpose during the RG procedure is to integrate all these k, ending to a new
cut-off A’. To recover the original cut-off A, we need to renormalize the parameters.

Consider the generating functional for the fields:

7 — /DCDAIDheSO[¢°A/]SQ[h]Sl[¢A/+h} (Cg)
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The factorization of the fast and slow fields follows from the fact that they don’t
share any momentum. Let’s define:

Z = Zh/D@Ale_so[q)/"}<6_Sl[¢/\/+h}>h (C4)

with the notation:

<€—51[¢A'+h]>h = Zh—l / Dhe50lhle=51[®ar+h]
Z, = / Dhe50lh] (C.5)
To get an effective action, we exponentiate the expression in brackets:

Seff = So[q)/\l] — log ((Sl[q)/y + h]>h) (CG)

This effective action can be expanded in powers of g, the coupling parameter in the
action. We do it step by step. Clearly, the zeroth order term is Sy[®5/]. To calculate
the first order term:

<Sl[(I)A’ + hl) /DheSO (_ /dJCQ cos B(Pp + h)) >

6—51 [‘I’A/-I—h]

0ySet =

Evaluating this at ¢ = 0 and multiplying the expression by ¢ gives:
SG& = (S1[®a + h])n (C.7)

as the first order correction. When going to second order, the second derivative
respect to g gives:

2
02 Sesr = Dhe- %l / d Oy + h)e S
g et (51[c1>A,+h ( / ¢ 7 cos f( By + h)e

2
D 750 (I) , *Sl[éA’th}
<Sl[%+h ( / he /da: cos B3(Py +h))

When evaluating at ¢ = 0, notice that:

(Si[®a + h])y =1 (C.8)

by definition. Therefore, when multiplied by g?/2, the second order correction reads:
1
S = (45100 + A = (5700 + 100 ) (©9)
The total effective action is, up to order g*:

Surs = Sola] + <sl[<I>Af+h1>h+1(<sa[<1>~+h1> <s%[<1>Af+h1>h)
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We focus on the first term:
(S1[Par + h))p = /Dhe Solhl cos B(Pp 4 h) (C.10)
Express the cosine with its exponential form, and since ®,.doesn’t play a role, it
can be taken out of the integral:
Z 1
(Sula+ H)y = 22 S o / Dhe=Soltlgiaph (C.11)
o==x1

This leaves a gaussian integral in the field h, that, when passing to momentum
space, will only integrate fast modes with A’ < k£ < A. To see this, lets expand the
exponential:

: 1
e"Ph 1 4 ioBh — 55%2 + O(h?) (C.12)

Where the first momentum integral (h), = 0 due to the asymmetry in the integral.
The second momentum integral is just the propagator of the theory for Sy. In this
case, the propagator satisfies:

—(02 + 07)D(,2) = ¢*(r,x) (C.13)
which gives:
d2k eikﬂm“
D = —_— 14
(r,2) /A’<k<A (27)% k2 + ie (C.14)

Since we are integrating only fast modes, the exponential above can be expanded
by Taylor series. To first order of approximation, this gives:

d’k 1 1
D = (h3), = —_— = — 1
(r.2) = (W /A'<k<A (2m)? k? 27le (C19)

where dl = ((A — A’)/A") = dlog A Therefore, the action maps into a new action:
1 1 —ddl
S=5+5i=g / dadr(VOy)? + u / dzdr cos(BDy)  (C.16)

with ¢’ = ¢g(1 — ddl) The next step is to recover the original cut-off of the theory.
We have changed momentum, rescaling it by an amount A/A’, that is:

E=A/ANk~AQ+d)k o' =1 —d)x (C.17)
so that we maintain the scalar product in order dl. With that, the da"? gives a term:
dz”? = (1 — dl)*dxdr ~ (1 — 2dl)dxdr (C.18)

We want exactly the opposite, since the terms of x and 7 in the action above are the

old ones, so that we can express the new action in the new space-time coordinates.
Then:

A
T = NII ~ (1 +dl)a'dz* ~ (1 + 2dl)dx'dr’ (C.19)
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Taking that into account that Sy(the gaussian model) is scale invariant, we have:

!/

1
Seff = §/dx’d7’(V®A/)2 + %/dl‘ldTl COS(ﬁq)AI) (CQO)

with ¢ = g(1 + (2 — d)dl), a renormalized coupling constant. When the difference
in ¢’ — ¢ is small, we have the differential equation:

dg 2

S =2=dg d= - (C.21)
Here, | =log A, so that this equation describes the change of the coupling constant
under variations of the cut-off parameter. This provides a direct expression for the
associated mass gap of the model, or the relevant energy scale:

£~ Agoa (C.22)

This can now be applied to the IRLM. After bosonizing the hamiltonian, we can
map the model to a generalised boundary sine Gordon model. The boundary comes
from the fact that the fermionic fields of conduction electrons happen at x = 0.
Thus, the only change with respect to the sine Gordon case, is that the exponent is:

¢~ AT (C.23)

The exact exponent is then calculated for the IRLM in the multichannel case, giving:

6 ~ tla
2
o =
1429— Ng?
20 2 U
g = — = —arctan (mj ) (C.24)
T m 2
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Strong coupling in the N = 2
IRLM

In this limit the impurity and the last site of the wire can be treated separately from
the bath initially. However, now we have 8 states, so we work in the many-body
basis with a 8 x 8 matrix. However, since particle number is conserved in the IRLM,
this is a block matrix:

u/2 ¢ 0 0 0 0 0 0

t g 0 0 0 0 0

0 ¢ UJ/2 0 0 0 0 0

0 0 0 U/24¢ t 0 0 0

0o 0 0 t 0 t' 0 0 (D-1)
0o 0 0 0 t U/24+¢ 0 0

0o 0 O 0 0 0 U 0

0o 0 0 0 0 0 0 U+eo

We just need to diagonalize the blocks. The first block corresponds to N = 1 states,
just one particle in them. Note that U is a very large number, but we will take the
limit at the end. In the matrix above, the states are ordered as:

{]100),]010), |001), |110), |101), [011), [000), [111)} (D.2)

For the first block, we find the following eigenvalues and eigenvectors:

Ao = +U/2 |a) = 75(|001) — [100))
2) — :
A = (60+U2/ )= ¢ [b) = “F[100) + 2F51001) — *£[010)
U/2 ,
A= (20 + 2/ ) +¢ ) = 25£[100) + 2=£|001) — 4[010)

(D.3)
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where we have defined:

€= /817 + (e — UJ2)°

a=¢gy—UJ/2
¢ = /16t2 +2(a + £)?
¢' = /16172 + 2(a — £)? (D.4)
We can define a new dimensionless quantity representing a very small number:
260 2t
= —<<1 = — <1 D.5
z=7 y=7 (D.5)

and then:
Ao = (U/4) ((1 +2) —/8y2+ (1 — :1:)2> Ae = (U/4) ((1 +2)+/8y2+ (1 — 93)2>

And the coefficients defined above become:

a+& z—1+/8y2 + (z —1)2
¢ \/16y2+2(x—1+\/8y2+(x— 1)2)2
—4¢' —4y

(D.6)

¢ \/16y2+2(x—1+\/8y2+(x— 1)2)2
Those are the coefficients that are relevant when we project onto the low energy

subspace.

Similarly to the one particle states subspace, we find for the two particle sub-
space:

A =0+ U/2 |d) = \/L§(|011> — [110))
2 _ !
- (60+U2/ =X 1y = £x|110) + £2X|011) + 4 [101)
U/2 ’
= EEUBEX )~ i)+ Zsjous + 101

(D.7)
where we define
p=c¢co+U/2
X = V/8t2+ (0 + U/2)?
= V2B = 07 + 167
v = /2(B + x)? + 1612 (D.8)

Note now comparing the change of sign:

A = (U/4) ((1 +a) - \/8(%)2 (4 35)2)
Ar=(U/4) ((1 +2) + \/8(%)2 +(1+ x)2> (D.9)
(D.10)
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Again, the coeflicients we are interested in:

B—x _ r+1—y/(z+1)?+8y°
T 16y 21— DR 82
4t 4y

T V1652 420 + 11—/l + D2 + 849)?
(D.11)

In the large U limit, we have the following eigenvalues of the matrix:

)\000 - U )\111 — U
Ao = U/2 N =UJ2

Ay = (U/4) ((1 +x) — /82 + (1 - g;)z) Ae = (U/4) ((1 ) — 82+ (1 +a:)2>

A= (U/4) ((1 +2) + /82 + (1 — a:)2> Ap = (U/4) ((1 +2)+ /82 + (1+ x)2>
(D.12)

with:

260 N 2t

T= Y=g (D.13)

We can neglect all higher powers of z and y (x,y << 1). Taking only linear terms
we have:

Aooo = U Ain=U
N=U/2  M=UJ2
N~ 2o+ 0 Ao~ U0~k
A~ U2 Ap=UJ2(1+2)
(D.14)

The next order corrections involve terms of high powers of y, and thus can be ne-
glected. We see clearly that our ground state is A\, for negative values of ¢g, since
A remains finite but greater or equal to 0.

To summarize, there are two manifolds in the large U case: A low energy sub-
space, formed by two eigenvalues (A, and A.); and a high energy subspace, with
degenerate eigenvalue U (for very large values of U).

As we have seen previously, the low-energy subspace is formed by two states, |b)
and |e), when the value of U is high compared with the rest of parameters &g, t'.
The diagonal part of the hamiltonian in the low energy subspace can be expressed
as:

HI? = /\bbTb + /\eeTe + HOL + tPL (CJ{’LC(LL + CJLRC(LR + h.C)pL (D15)
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where b, e are in relation with the original fermionic operators. In fact, the ground
state of the system defines the form of b:

|GS) = bT|0) = [b) = (|100) + |001) + B3(010)) (D.16)
and therefore, we identify:

b= cr, +cg+ 6d
(D.17)

We are interested in getting the following operator:
tPy (CLLCO,L + CLRCQR + h.c) Py (D.18)

where ¢ is the new hopping parameter that links the impurity + site with the bath.
We are supposing that both baths, to the left and right, are equal, therefore the
density of states is the same for both. Py is the projector of the low energy subspace,
since we are only interested in how this operator acts on this manifold. The projector
is:

Pr, = |010)(010] + [101)(101| (D.19)
Or for simplicity, we use the notation introduced before:
Py = [b){0] + [e) (el (D.20)
where the states are defined as:

b) = ¢1]100) + ¢1]001) 4 ¢,]010)
le) = dy[110) + dy|011) + d5|101) (D.21)

where the ¢, d are coefficients of the change of basis. We will work out one of the
terms with the projectors to see how they look like:

Pre} peorPL =l  Pr <d1|010> + d2|001)> (e] =
= cl 1 (dica + docy)|b)(e| = (dics + dacy) el (D.22)

where we have defined p as the operator that changes from the state |e) to state |b).

The same treatment for all the other quantities gives us:
t(dycy + dacy) (CLLP + cLRp + h.c) (D.23)

The quantity #(dycs + dycy) defines the renormalized hopping parameter. According
to our previous definitions(the coefficients we worked out before), this is:
4t/ at' p —
d162 + dgCl = _CY +€ - —5—X (D24)
v < ¢ 7
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So we can simplify in terms of x and y:

4t
£ ) D23
where we have used that o — § = —U. Dividing everything by U/2 we have:
W (24 2yU) + E/0)) (D.26)
(2¢/U)(2n/U)

This expression is a complicated function of x and y, and we are interested in its be-
haviour at the point (0,0). If the answer is finite at this point, then the result from
bosonization is recovered. We can see directly what happens at both z = 0,y = 0.
At this point, we have 0/0, and we need to resolve the indetermination. The series
expansion for this turns out to be proportional to y and therefore, the limit is zero.

The quantity can be simplified for small values of both x and y, and it ends up
being:

4t/
dlcg + Cldg = 2y = F (D27)

With that, the new coupling parameter to the bath is:

4t
J =t— D.28
- (D.28)

So that the new width decreases as (1/U)?, as opposed to the one channel case.
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The IRLM as a sequence of X-ray
processes: U # 0

In this part, we attempt to generalize the method used for the U = 0 case, in order
to calculate the impurity correlator when U # 0. At this stage, it is important to
mention again that we are interested in the local impurity density of states, and not
into the response function of conduction electrons due to a change of sign of the
scatterer source.

At U # 0 but t' = 0, the correlators have been found in the literature [17, 54] for
both the impurity and conduction electrons. The process can be understood as an
X-ray edge one, where both the impurity and the conduction electrons recombine
when the hole has been created in the system (see chapter 1). In that sense, one
can take directly the correlators found by Nozieres and De-Dominicis [17], which we
write explicitly here following their notation:

—iVO

6*(0) = —isign(0(&a0) "' G0) = ( ge

1t + 7sign
where g = 20/7 in the IRLM, and we have included the factor with 7 — 0*. We
have also absorbed the imaginary unit in &, as in [17] & is said to be pure imaginary.
In our notation, then &, is real. Thus, the conduction electrons propagator has two
contributions:

G(t) = —imvpsign ()6 () (&ot)? — Eovo(&ot)? (E.2)

Now we proceed in the same way as before. All times are taken in increasing
order, so sign(t) > 0 always. The first order correction to the impurity progator
is given by an expression similar to (5.10), by substituting the propagators for the
U # 0 case:

Gl (1) ~ 2(t')? /0 by /0 P Gt — )Gty — 1)1 (F.3)

It is clear that now the imaginary part of G¢(t) gives a zero contribution to this
amplitude. Thus the only contribution comes from the real part. Then we find for
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the first order term:

, [t . [t .
G?l)(t) ~ 2(77)2’/()5(2)97292 / dta(t — t?)_gz / dty (ty — tl)Qg_ltfg2 (E.4)
0 0
The total result can be written in a neater way:

= o Tg[(1 = g’
8o 1 +7)

(&1)  y=1+29—2¢ (E.5)

where I'(z) represents the gamma functions, 'y = 7p(t')? as usual, and we have
defined the parameter v for convenience. Note that this expression presents a diver-
gence at the point ¢ = 0. The general nth term then follows the recursion relation:

t t2n
G?2n) (t) — 2(t1)2/ dtgn/ dtgnflGd(t - tgn)GC(tzn - tgnfl)ng_l(tznfl) (EG)
0 0

We define now the constant K:
20, T(29)[T(1 — ¢*)]?

K = E.7
7&o (1 +7) (E1)
For the second order contribution, we find:
2KTyT'(29)T(1 — ¢*)T(1 + ) >
d(t) = 0 )27t
Giy(t) -y T+ 27+ g) (&ot)
, 2L (29)0(1 = ) \* (Lot) ¢
Gh(t) = iT(1—g*) = E.8
(2)(1) i g)( & D(1+ 27+ ¢?) (E8)

Curiously, we find both expressions to differ by the imaginary unit and the change
v — 27 + ¢?>. One can then generalize this to the nth term by the appropiate
substitution. The nth term of such a series is of the form:

20T (29)T(1 — ¢%) ) 2n (fot)%wr(?n—l)gz
& (14 2ny+ (2n —1)¢?)

That such a term satisfies equation (E.6) can be easily proved by induction. The
total correlator then reads:

G (1) = T(1 g2><z‘>2“1( (E9)

+00 . 7 g2
. 210 (29)T(1 — ¢?) (&ot) /)=y
GU(t) = —il(1 — ¢? ( s E.10
where we have made use of the identity:
ny+ (n—1)¢* =2n/a — g° a:# (E.11)
1+2g— g2

thus referring to the thermodynamic exponent we described in previous chapters.
We know in fact that such exponent appears in the relevant energy scale of the
problem. Expression (E.10) can be Fourier transformed and summed over. One is
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only interested in the imaginary part of such F'T, so that the spectral function on
the impurity site reads:

Aw) = —hm(/joo dtemGd(t)> (E.12)

n 0

Remembering that equation (E.10) is defined for [t|, we can calculate the Fourier
transform of each of the contributions in the series:

e jwt —1- . Ty
/ dt|t|"e™" = =2|w|77T(1 + v) sin <7> (E.13)
— o0

In order to get a full expression for A(w), one needs to sum over all the contributions
of the series. Whether the total sum of expression (E.10) gives the actual impurity
density of states is something we are still working on. At this stage, a numerical
approach results more convenient, and this is described in the next sections, where
main results are presented.
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Bethe ansatz calculations

Two body calculations

The action of the hamiltonian over the two body state |¥), has several contributions.
We first consider the non-interacting part acting over the state. This gives the
following contribution:

Ho[ W)y = —i / do (2)0, () / A s (w1, 7) |, 71)
—é/dwa(:E)axi/J(x)/d:vlg(xl)\l,acl) (F.1)

It is clear from here that there are only two non-zero possibilities: either x = x; or
T — x9. Thus:

U(z)|xe, 1) = 6(x — 21)|72,0) + 6(x — 22)]0, 21) (F.2)

This gives the total contribution:

H()’\IJ>2 = —Z/dl'ldl'g(aml +812)¢(l'1,$2)‘$2,1'1> —Z/dilflamlg(l'l)‘l,l'l) (F3)

The part including the energy of the dot only couples to |1, z1):

Hy| W), = & /dxlg(x1)|1,x1) (F.4)

The hybridization term is:
Hy|U), = t'/da:é(x) (zﬂ(w)d%— h.c) (/dmldngb(xl,xg)\xg,xl)
—|—/dx1C(ac1)]1,x1>> (F.5)

Due to the minus sign arising from permuting fermionic operators, it is important
to maintain a consistent order when writing the expressions. The two contributions
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sum up to:
Hy W), = ¢ / drde dsd (@) d' (@) S, w2) 1, 7o)
+t'/dxdx1C(:E1)5(x)wT(x)d]1,x1> (F.6)
From the first contribution, there are two possibilities:

U(z)|xe, 1) = 6(x — x1)|22,0) + 6( — 22)]0, 21) (F.7)

Both terms give the same contribution in the form:

Hy|WU), :21?’/6537@(351;0)‘17%1)4‘5/d$1d$25($2)C($1)’$2,$1> (F.8)

In [56] we find the last term written as:

tl

5 <5(x2)g(x1) — 6(z1)¢ (w)) (F.9)

by using the antisymmetry property of the state |zy, z1) = —|x1, 23).

The interacting term of hamiltonian (6.2) is:

Hy=U / d8(2) (6 (2)(x) — p) (g — 1/2) = U / 08 ()0 (@) ()ng
—(U/)2) / 4w (2)0 ()0 () — Up / dad(x)ng +UpJ2 (F.10)

where the constant part at the end is neglected. The term proportional to ¥ (z)v(z)
gives the following contribution:

+%/dz15(x1)g(x1)|1,x1> _ %/dxldxgé(xl)gb(xl,xg)\azg,azl)
—%/dxldx26(x2)¢(x1,x2)|x2,x1) (F.11)

The + sign for the first term comes from the fact that counting the number of
electrons in x when the impurity is filled gives a permutation, by definition of the
state. The part proportional to ng gives:

—Up/dzlg(xl)\l,xl) (F.12)

And now, since there are two particles, the interacting term plays a role, giving a
contribution of:

U/dx1C(a:1)6(a:1)]1,yc1> (F.13)
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The total contribution of the interacting term is then:
U U
HU|\IJ>2 = +5 dI15($1)C(I1)|1,ZE1> - 5 d:lfleEQ(S(ZEl)QS(ZEl,ZL’Q)|ZL'27ZE1>
U
- 5/d$1d$25($2)¢(f£1,l’2)’$2,$1> — Up/d$1<(l'1)’1,$1>

Putting all contributions together, we arrive at the two equations determining &
and (.

The first equation with ®(z4,x5) is identically 0 by substituting the form of the
states. This checked carefully here by splitting all terms. Lets start by the first
equation. To simplify notation, we identify £y = 1 and g5 = 2.

The term of the derivatives can be expressed as:

i

5 (0161006200 1(0) + 01161 (01)652)(0) = By (22)n(01) (o)

~0.n(aa)ala) () ) (F15)
where we have defined f(o) = f(z; — x2) and used the fact that:

3 0,.f(0) =0 (F.16)

The part with ' is written as:

tl
9 <5($1)C1¢2($2)f(_x2) - 5($1)C2¢1($2)f($2)>
_% (5($2)C1¢2($1)f(_xl) - 5($2)C2¢1(x1)f($1)> (F.17)
The part including the —U/2:
U
(8001 a2) 0) = 301161 (a2)nlo )0
—% (5($2)¢1($1)¢2(5E2)f(0) - 5($2)¢1($2)¢2($1)f(—0)> (F.18)
Finally the right hand side of the equation is:
(81;——62) <¢1(I1)¢2(I2)f(0) - ¢1($2)¢2($1)f(_0)> (F.19)

We need to check if this first equation is identically zero for this choice of the func-
tions. They do, and to prove this, we need to separate terms with f(o) and f(—o).
Thus, for the selected form of the solutions, the first equation in (6.31).
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Obtaining the scattering phase-shift

We write the left-hand side first:
— 0, (G0 (-0) = D)) + ¢ (61 Oa(a) () — 01 (n(0) )
+ 5000 (Geuf () - on 011 0))

= (B et Up) Qo) (-0) - G (o)) (¥ 20)
Lets spread the terms involving f(x) first. We have:
iC20:(01(2) f(2)) — ' (2)$2(0) f (2) — %5(95)@@51(95”(95)
= —(E+eo+Up)Gpi(z)f(z) (F.21)

The trick now is to realize that the one particle equation involving ¢ must be satisfied,
so with all terms on the left side, we have:

—i(20:91(2) f(2) — iCe1(2) 0, f (x) — f(2)d1(2)e1(o + %&@@%(@f@) (F.22)

Now, we add and subtract the quantity (U/2)d(x)Ca¢1(z) f(x) and recall that:

i0ud(x) — extonl() — %5@)@@) = 15(2)G (F.23)
so the final terms are:

—iG¢1(2)0u f(z) — ' f(2)1G0(x) + UG (x) i (z) f () (F.24)

The rest of terms of the equation are calculated in the same way by just substituting
f(z) = f(—xz) and the index 1 — 2. Then the total equation to solve is:

—iCo¢1 (2)0, f () — ' f(2) (10 (x) + Ud(2) ot (2) f () +
iQ12(x) 0y f(—x) + ' f(—2) GG 0(x) — Ud(x)ida(x) f(—2) =0 (F.25)

where there is a term:

t'¢G0(x)(f (=) — f(x)) (F.26)

that is zero exactly at x = 0. We now recall that:
or(r = 0) = Gy (F.27)

where oy = w. Using this, the above equation can be simplified:

)y o 0l

o @iy

Ouf (=) = Exd(x) f(—=x) — E16(x) f(z) (F.28)
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where we have defined:

p, = Ul +;i +Up) (F.29)

The equation above is the equation for f(z) at x = 0. Since both f(—z) = f(x = 0),
then we define:

f(0) = %(e<I> +e ) =cos® (F.30)

and we integrate both sides between an infinitesimal interval [—¢, ¢]. The functions
¢ can well be aproximmated by their values at x = 0, therefore the equation looks
like:

i [ as((B /0010 - (EpIRLA)) = (B2 Ecosa -
(B0 = 1) ~ (B0 (-0 = ) = (B - Bx) cosa(F31)
Now making the substitions f(¢) — ¢® and f(—e¢) — ¢, we find:
—i(((E1 + Ey)/U) (e — e—“’)> = 2((Ey + Fy)/U)sin® = (FEy — F) cos ®(F.32)

So the final equation for the phase shift is:

€2 — €1

B(ey,2,) = arctan (9 ) (F.33)

2e14+e3+2(e0+Up)

and so the final form of f(x) is:

f(l'l . .l‘g) — f(o)e—i¢(51,62)sign(m1—x2) (F34>

Wiener-Hopf method in the IRLM

We want to apply the Wiener Hopf method in order to find the rapidities distribution
for the IRLM. The rapidities distribution equation is given in Filyov-Wiegmann’s
paper [56]:

o T 0D (a — B)
Ae= = 27 p(a) + /0 S p(spap (F.35)
where we have:
d(a — B) = —2arctan <%tanh <a;26>> (F.36)
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This can be written as:

1 [+ 9d(a — B)

o 0 Oa
+o00

pla) = o)+ i K(a—p)p(B)dp (F.37)

pla) = (A2m)e p(B)db

It is convenient to make it look similar to the kernel for the massive Thirring
model, since results derived by Korepin can be used. The massive Thirring model
has the following scattering phase shift:

sinh(iw — 5/2)
sinh (iw + £/2)

where w = (7 — £)/2, being £ the coupling in the Thirring model. For the IRLM,
we have 7 = U/2 and:

Purm(8) = tlog ( ) = —2arctan (Cot(w) tanh(ﬂ/2)> (F.38)

SR (S
defining a new parameter 7 = cot u, we can express it as:
Braua(B) = i log (:EEEEZ - gg;) (F.40)
It is clear that both kernels are equivalent if we identify:
T £
u:w:§—§—>§:2arctan(U/2)—>(2u/7r):1—g (F.41)

In order to apply the Wiener-Hopf method, we calculate the Fourier transforms
of each of the terms. For the r.h.s of the integral equation, a trick is to extend the
values of « also to be negative. In this case, we have:

+o0 ;
po (p) = / ;daeime—aﬁ(a) A !

oo 2T :%p—i—i

(F.42)

which has a pole at —i. This Fourier transform is only valid if the variable p satisfies
Im(p) > —1, otherwise, the integral diverges. The Fourier transform of the kernel is
the same for both the massive Thirring model and the IRLM. The kernel is:

B 1 sin(2p)
(1/2m)92/00 = —Klo=8) = 55 5 e = 5+ 20/2) sinb((0 — 7 — 20 /2)

1 sin(2u)

2w cos(2p) — cosh(a — B) (F.43)
This is the result of the following inverse Fourier transform:

" dp o (sinh(p(n — 20))
K(a) = /_OO 3¢ ( inh(p7) > = —(1/2m)0® /0« (F.44)
K(p)
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Then the Fourier transform of the kernel is:

_ sinh(p(r —2p))  sinh(7pg)
Kp) = sinh(pm) ~ sinh(pm) (E.45)
The Wiener Hopf equation above can be written as:
1 [T 00(a—
pla) = jzme = o [ IHE =D 50
+o0
pla) = pla) + K(oo = B)p(B)dp (I.46)

0

Our treatment follows Tsvelick and Wiegmann [60], and Hewson [61]. The first step
of the Wiener Hopf method is to separate the distribution p(a) = p* (@) + p~ () as
a sum of an analytic part in the upper/lower half planes of a. We have:

pH(a) = po(oz) + /O+OO dBK (o — B)p(B)*+ a>0
= [ K- BpB)t  a<0 (F.147)

Then we can take all Fourier transforms, and the equation is:

p~(p)+ (1= K(p)p™(p) = p’(p) (F.48)

Here, the Fourier transforms of p are defined as:

o=k [ dat@er o) = | Tdoe o) (Fag)

The next step is to factorize the kernel into a part analytic in the upper half
plane and another in the lower part. Then we find:

1—K(p)=~"(p)r" (p) (F.50)
The following identities for the gamma functions are useful here:

Ty
(1 4+ iy)T(1 — iy)
cosh(my) = /2T T2 —i) (F:51)

sinh(ry) =

Then we can rewrite:

sinh(—mpg)  sinh(z) + sinh(y)

1-K(p) =1 F.52
(») - sinh(7p) sinh(x) (F:52)

Now we make use of the identity:
sinh(z) + sinh(y) = 2sinh (:L"T—i—y> cosh <:L‘2;y> (F.53)
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So the function to factorize is:

2 sinh (—”p(;_g)> cosh (—”p(l;rg))
1-K(p) = (F.54)

sinh(7p)

Making use of the identities with the Gamma functions, we can rewrite this as:
_ r(1 - g) [L.T(L % ip)
[[. T +ip(1 —g)/2)T(1/2+ip(1 + 9)/2)

ipA

1-K(p) (F.55)

To get analytic results at 700, we include a phase e’ in each solution. Then we

identify now:

N m(1 - g)I'(1 — ip) o—ipA
T = R 92— i+ 9)))
— W(l—g)F(l—FZp) ipA
T = il — grae T i T 9" (F-56)
where the phase A is defined [35] as:
_1 (g1 (2
8= 5! g<1—g> Ttg' g<1—9>
1201 _ oY(1-9)/2(149)
~ log ((1 +9) (;/Hgg) ) (F.57)

which is always < 0. The following relation for the gamma functions is useful here:

(2
L(z+1/2) = 21—2%1/2% D(z+1) =20(z) (F.58)
z
The function p°(p)/y~(p) can be separated into a sum of an analytic part in
the upper half-plane and another analytic in the lower-half plane. For this, the
function is analytic within some strip of the complex p plane, that is, within a
region a < Im(p) < b.

P’(p)/v (p) =ut(p) —u (p) u™(p)= L/ EPRACILNO] (F.59)

2m1 J o z2—D

Note that the minus sign arises when we integrate in the complex plane in opposite
direction, that is, the lower half-plane. In this case, the region of analyticity of the
function is the strip —1 < Im(k) < 1/(1+g¢). Coming back to the Fourier transform
equation we have:

p~(p)/7~(p) +u”(p) = u™(p) =y (p)p™ (p) = F(p) (F.60)

being F'(p) an entire function whose value is necessarily 0 for all p. Therefore, we
have the solutions:

oL L TR ) ) [ ) )

2wyt (p) . k—p+1is

o k—p—1is 2me
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with s > 0. Now, by proper choice of the contour of integration, we can calculate
this distribution functions. The integrand has an isolated pole in the lower half-
plane at p = —i, and all other poles are in the upper half-plane. The solution for
pT(p) can be written as:

) — A D= )/ /2 + (1 40)/2) P ip(1 = 9)/2)P(1/2 = ip(1 +5),2)

1+ p 2m I'(1—ip)
Xe(l*ip)A
Then the distribution of positive rapidities can be calculated as:
+o0 d
+ — _p + —ipa
)= [ S
(1 —g)/2T(1/2+(1+49)/2)
pt(a) =A )2 e
f(s)
too - T(1—ap(1—¢g)/2)T(1/2 —ip(1 2) _.
X / dpe—zpa ( Zp( g)/ ) ( / Zp( + g)/ )e—sz (F61)
—00 F(2 - Zp)

Now, for the integral to converge, we have to close the contour in the lower-half
plane of p, where there is a whole set of poles. The poles are located at the points:

poy=—i2(n+1)/(1—g)  po=—i2(n+1/2)/(1+g) (F.62)
Also, for the gamma function the residues at the pole z = —n are:
1\
ResI'(z = —in) = z( ') (F.63)
n!

Letus calla = (1 —g)/2 and b = (1+¢)/2. Then the integral has two contributions:

(1) 27y %eawa) P(1F/( 22 - Z%a)) o An/a)

n=1

+o00 _1n—a - Qbr‘l_Qn—l a/2b —A((2n—1)/2b
) ZWZ%e (20-1)/20) (P(2_((2n_)1()//2b)))6 (Gn=1)/20) (p g4)

n=1

Now one can take the limit A — 0, and obtain the rapidities distribution, which is
related to the energy eigenvalues distribution as:

pH(a) = Ae %ple) (F.65)

Calculation of the susceptibility at zero field (¢y =

0)

Knowing the rapidities distribution, we can calculate the impurity energy by the

following integral:
0 tl2
FEr = de arctan | ——— € F.66
-/ (550 )7e (F66)
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Then the occupation on the dot can be obtained as:

OE;

—-— F.
e (F.67)

Ng =
The second derivative of the integrand is the one providing the susceptibility:

L ond (F.68)

The integrand is differenciated twice:

2 arotan (0} = To= 1 (Tof)
850 t ((5 + 50)) (Fg + 52)2 £2 (1 + (F0/8)2)2 (F69)

with 'y = (¢?/2). This is the solution at £y = 0. The true distribution function in
energies is then obtained by replacing the decaying exponentials (A = 0):

“+o0o

p(&) — An( 6//\) 1+(n/a) + B, ( 8//\) 14+(2n—1)/2b
4 - H@-g)/2ra/2+ (1 +9)/2) (-1)"[(1/2 ~ (n/a))
" 27 n! T'(2-(n/a))
_ MO =-g)/2Ara/2+ (1 +9)/2) (=1)"T(1 = ((2n —1)/2b))
Bn = 27 nl T(2—((2n —1)/2b)) (E.70)

Now the integrand consists on this function and the derivative of the arctan. Since
the integral is a sum of different contributions, we only focus on the dominant term
of the expansion. That is the one with the smallest exponent:

ple) ~ Ana(g)(—e/N) D = A4, (g)(—/A) /0 (F.71)

where T'(g) is the prefactor for n = 1. Then the first contribution to the integral
reads:

P11 (To/e)
~ A= de— ———2t2(—g/\)79/119 F.72
o~ doale) [ b (e (k.72)
Now we change variables as z = —I'g/e. Then we have:
d
dz = _5F0 (F.73)

and the integral is now:

+oo
~ A, ATl 2 (Ty/A)~9/ 19,9/ 14 F.74
X ~1(9) /FO/A 2 (1+z2)2( o/A) z ( )
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Lattice treatment

One particle states

We move now to the lattice version of the model, in order to understand the origin
of interactions in the scattering phase-shift. We look at a chain of N sites in total.
In this case, the hamiltonian is:

N-2 N-2
H=-t Z cgﬂci —1 Z cleiy — eodtd + ' (chd + h.c) +
Ulcheo — 1/2)(d'd — 1/2) (F.75)

The dot is occupying the site ¢ = 0 of the lattice. We will start with the single-
particle problem. In this case, the state is just a linear combination of all possible
one-particle states:

N—2
= 6icl 1) + ¢al 1) (F.76)
i=0
where the normalization condition reads:
N—2
> 16il” + g =1 (F.77)
i=0

and |Q) is the empty state. The hamiltonian has four terms acting over this state:
H = Hy+ H., + Hy + Hy (F.78)

The non interacting part acting on the state is:

Hol W) = =t > (¢ 1(1 = 650) + b)) (F.79)

>0
The dot site part is:
Hy|¥) = —eodpal 1) (F.80)
The interacting term is only counting the number of particles in the last two sites:
Hy|¥) = (=U/2)¢o|0) + (=Up)da| 1) (F.81)
The mixing part is:
Hy|T) = t'¢q|0) +t'do| 1) (F.82)
The eigenvalue equation leads to:

Erg; = —U(¢jr1+ ¢ 1(1—d50)) — (U/2)d0,¢; + 1'd0 j¢a
(Ei+eo+Up)pa = t00;0; (F.83)
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The states inside the wire can be regarded as a set of right and left moving plane
waves:

¢n = Ae*™ + Be~kn (F.84)
Then the equations transform to a single one:

(E1+60—|—Up)¢d :tl(A+B) (F85)
(B, +U/2)(A+ B) =t'¢yg — tAe™ —tBe * (F.86)
which is expressed in a single equation:

tl2
(Ey +e9+ Up)

(A+B) = (F, +U/2)(A+ B) +tAe™* 4 tBe * (F.87)

. The relation between A, B is given by a scattering phase shift:
A= Be'® = —¢?2B = "9 p (F.88)
The phase « is calculated from the complex number above:

tl2 l
= - — - - + 4t si F.
z (Br 1ot Up) 2 1 — tcos(k) + itsin(k) (F.89)

The term with the cosine dissapears close to the Fermi level, since then we have:
Ei +tcos(k) = Ey/2 (F.90)

And the term with the sine is just the Fermi velocity, related to the density of states:

1 2
Ey = -2t k) > v/2=——"— —tsin(lk) = — F.91
! cos(k) =+ v/ Agtsin(k) sin(k) TV ( )
Then the phase shift « is:
s Iy Urv Eymv
T et - - F.92
a = 5 —arctan (2(E1—|—60+Up) 1 1 ) (F.92)

Therefore, the single particle states for the dot site are:

tl

= B(l+é” F.93
% B T et Up (L+¢5) (£.93)
with €/® = ¢ +22, Then we identify:
Ty Urv Eymv
Ay = 2arct — F.94
v arcan( 2B +eo+Up) 4 3 ) (F.94)

Then the state on the dot, or quantum probability amplitude of occupation there,
is:

t'\/2

= Y% cos(Ay/2)ev/? F.95
E1+<€0—|-Up ( U/ )6 ( )

bd
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By the normalization condition, we have B =1/ V2. Therefore, a factor V2 multi-
plies the whole expression. We will compare the obtained expression with the one
obtained by the field theory, were we had:

t" U

P Fo_ _Z
cos(Ay) Ay = arctan (2(E1 R 4) (F.96)

tl

S0 = 7
E1+60+Up

We see that the field theory treatment includes a different phase, moreover, is a real
number, whereas the lattice version of this number is complex. The origin of these
differences between both versions can be related with the way how the Dirac delta
is regularized in the field theory treatment. Therefore, for the lattice version of the
model, we have the following single-particle states:

V2

= —— cos(Ay/2 6ZAU/2
QSd E1+€0—|-Up ( U/)

dn = V2cos(kn+ Ay/2)etv/? (F.97)

and Ay is defined above. We will see later the case of the two body problem in the
lattice. However, the phase factor appearing here has no effect on the system, and

can be removed by B — Be~**/2. Then the solutions in the lattice version can be
written as:
V2
= ————cos(Ay/2
& B, +eo+Up (Bu/2)

bn = V2cos(kn+ Ay/2) = (1/V2)(e*nTiBu/2 4 omikn=ifu/2y (F 9g)

If instead of taking the last site of the chain to be at n = 0 we would have taken it
to be at n = 1, then the scattering phase shift changes and it is given by:

t"?/(e1+eo+Up)—UJ/2 )

F.99
t?/(e1 +eo+Up)+t—U/2 ( )

a = arctan <tan(k)

Two body calculation

For the two body calculation, we seek for states in the form:
N-2 N-2
[W)o =Y ijelel|0) + ) Gadicl]0) (F.100)
i,j=0 i=0
We might find easier to use tensor notation for the indices, so that:
1), = ¢*Icfcl|0) + ¢*d'ch|0) (F.101)
We start with the non-interacting part of the hamiltonian:

Ho|U)y = —t™ |k +1,5) — t¢™ |k, 5 + 1) — t¢* |k, j — 1)
—tP |k —1,7) — (¢ 4,5 + 1) — ¢ 4,5 — 1) (F.102)
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The non-interacting part of the hamiltonian acting over the state is:

Ho| W)y = —t(¢" " + ¢" (1 — 0y 0) + ¢ 4 ¢ 71 (1 = 6;0)) |k, j)
—t(CMH 1 = b0) + ¢ 1, ) (F.103)

The part on the dot reads:

Hy|W)y = —2o¢™| 1, j) (F.104)
The hybridization part gives:
Hy|W), = 14910, 5) + £695.0] 1, ) + 650k, 1) (F.105)
We can now use the fact that ¢*7 = —@/* so that the total contribution is:
Hy W)y = /¢ 8,0(1 = d50) |k, 5) + 206" 8] 1, ) (F.106)
Finally, the interacting term:
Hy|W)s = Ulcheo — 1/2)(dhd — 1/2)]9). (F.107)

There are three terms coming out from the interacting part:

Hyy| W)y = =(Up)na|¥)2 = —(Up)C™[ 1, 5) |
Hyo|¥)o = —(U/2)¢*11,0) = (U/2)¢"80lk, ) — (U/2)¢" 80|k, j)
Hy = Ucheod'd| 1,5) = UC*| 1,0) = U604 1, 5) (F.108)
So the total interacting part is then:
Hyr|)y = —(Up)S™|1,4) + (U/2)5j,ofd’j‘ )
(U/2)(6k0 + ;000" |k, j) (F.109)

Due to the property ¢ = —¢7*_ the last term has a total contribution of —U. The
eigenvalue equation to solve is then:

H|W)y = (g1 4 &9)|¥)g = E|¥), (F.110)
The equations for the state | 1, j) and |k, j) are:
(B 4+ eo+Up—(U/2)6;0)CH = —t(CBIH 4 ¢BI7165,0) + 264 g%
(E + Ubgo)p™ = (¥/2) <5k,05j,()<d’j - 5j,05k,0Cd’k> — (" + PGy 0)
(T 4 M) (F.111)
where we have defined:
5 =1—0, (F.112)

to use short hand notation.
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The relevant states to cover the boundary effect are | 1,0),|0,7) = —|4,0). We
look for solutions in the form:

Cd’]: = ¢a(e1)d;(e2) f(—1) — ¢j(e1)ale2) f(5)
2057 = gpler)@j(e2) f(k — ) — drlea)di (1) fF(j — k) (F.113)

At the same time, the single-particle equations must be satisfied. Due to Pauli
exclusion principle, the values of k # j always. The form of the function is chosen
to be:

fk — j) = et®stentk=i) (F.114)
Then, the ansatz used for the two body wavefunctions is:

(M = ga(e1)gi(e2)e’® — dj(e1)Paler)e?
20M = di(e1)dj(22)e™ — dr(ca)dyer)e*? (F.115)

The single particle equations need to be satisfied at the same time:

(e1teo+U/2)¢a = 10,0,
(e1+ (U/2)b0)¢; = 00,0 — (i1 + 651050 (F.116)

With this form of the solutions, the second of the eigenvalue equations is automati-
cally satisfied. Therefore, it is the first equation the one defining ®. From the single
particle equations, we can derive the following identity:

—te" ¢ (e1) (¢ (£2) + ¢ (£2)) = €9 (e1) ((52 + (U/2)00,) (e2)
o)
te" 9 (e2) (¢ (e1) + ¢ (1)) = —e ¢ (en) <(51 +(U/2)d0,)¢" (1)

—t'¢d(51)507j>
(F.117)

The first equation is transformed taking this into consideration:
¢ (1) ¢ (e2)e"™® (51 +e0+U/2— U5j70> — ¢ (e2)d (e1)e " (52 +e0+U/2
—i2t' sin(®) ¢ (1) 9% (e2) + 'S0 <¢k(51)¢j (£9)e'® —

w(@)w(a)e-@)
(F.118)
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Notice that the 2¢' has changed to ¢, since ®* carries a factor 1/2! in front of the
expression. We now take into account that:

Srod*(21) = ¢>dqul) (e1+e0+U/2)  xi= 3;8 (F.119)

Therefore the equation transforms to:
Ux'e’® — Uy2e™® = 26/® _ (2% (F.120)

Let us now calculate the y functions from the single particle solutions. They are of
the form (at position n of the lattice):

it +U/2

xi(n) 7 cos(k;n) <1 — tan(Agy(&;)) tan(km)) (F.121)

For the above identity to hold, we just took n = 0, for otherwise the ¢’ term doesnt
exist. Then the total equation is:

) tlQ ) t,2
e'? <E2 — U) = <E1 — U) (F.122)

which implies E; = FE», therefore the treatment is not correct. A different ansatz
for the two particle solutions needs to be done.
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The unfolded picture in the lattice

We present here a detailed calculation of the two particle scattering phase shift in
the lattice version of the IRLM. For single particle states, we have the following
solutions:

\/it' r Gy e
¢a = 7, cos(Ay(E1)/2) Ay(E;) = —2arctan (251 - - 14 )
1 L 7 .
bp = ﬁ (Aellm + BGan> A= Au/2 — gl (F.123)

Also, it will be useful to have the single particle equations:

(e1+e0+Up)pa = t'00ndn
(e1 4+ (U/2)800)bn = t'00nba — (i1 + du_10n0) (F.124)

The two particle equations coming from the hamiltonian acting over the state |U),
are:

(E+eo+ (Up) — (U)2)6m0)Ch™ = —t(¢P™ 4+ (416, 0) + 286, 00™™
(E + U5n70)¢n7m = (tl/2) <5n,05m,ocd7m - 6m705n,0<d7n>
_t(¢n+1,m 4 ¢n71,m5n70) - t(¢n,m+1 4 ¢n,m715m70)

We will try a new ansatz for the two particle processes. We know that when two
particles scatter from each other, there is a phase shift ®. The function inserted
would be of the form:

f(k —m) = ¢'*siente=—m) (F.125)

Thus, imagine two particles, one right moving wave scattering with a right moving
one. Then the product is:

A1A2€ik1neiksz(n . m) N AlA2€ik1neik2mei¢sign(n—m) (F126)
However, if we have a right mover scattering off a left mover:
AlBleiklne—ikgmf(n . (_m)) N AIBIeiklne—ikgmeiésign(n—&-m)
= A, B efinethmei® (F.127)

since the sign(n + m) > 0 always, since all coordinates on the lattice are to the
right of the dot, therefore n,m > 0 always. In order to avoid confusion in the
notation, we will substitute k¥ — n and 7 — m. The two solutions need to satisfy
the antisymmetry:

Cd,m — _Cm,d ¢n,m — _(bm,n (F128)
To make identifications easier, the single particle solutions can be written as:

bn = by + oy (F.129)
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where R/L represent right and left moving waves. The following ansatz for the two
particle solutions will be tried for the occupied dot:

Cd’m — ¢d(51) <¢ﬁ(62)6i¢sign(d—m) 4 qbﬁl(@)e_i%ign(d_m))
_¢d(52) (qﬁﬁ (61)6i<1>sign(m—d) + QSan (61)6—i‘1>sign(m_d)>
= <¢d(€1)¢ﬁ<€2>6‘i¢ - czsd(eQ)qsﬁ(al)eﬂ’)

+(¢ ()65 ()™ — $H(en)oh (1) )
(F.130)

Here we have used the fact that sign(m — d) > 0 always, since the dot position is
always to the left of all lattice sites. For the states with two fermions on the wire,
the ansatz will have more terms. Let us define ¢ = sign(n — m). Then in terms of
right and left moving scatterers we have:

20" = gy (1) (2)e’ + oy (21) b (e2)e ™" + (1) b (e2) €™
+n (€1)dy (e2)e ™

(G e + IO + oo + ok el )™
260 = (4o (ex) — okt )
v (6h(e0ea) — oben)oh 1)) + (oo en)e™ — oenoliene ™)
+(oheohee ™~ okt

It is better to separate each of the terms by the phases involved, therefore the two
particle functions are:

o = (#(e0)oh ea) — o' oi(en) ) + ot (e0l ) — S ob(en)
27 = (et ex) — ok eofien) ) + e (0h(e00h(ea) — oflealob)
vt (o eolh(e) - ot ealoh (e ) + e h(en)oh ea) — oealolie)

Now it is convenient to express the single particle equations in terms of these right
and left moving waves:

(61 + o —+ Up)qbd = t’(SO,n(ngff + Qsﬁ)
(e1+ (U/2)000) (8F + 0) = 10000 — tdpy + OF 10n0) — tdh 1 + O 10n0)
(F.131)
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The second equation should be satisfied with this ansatz. For the first equation, we
need ¢*™, which is:

20 — (¢0<51>¢;<52> - ¢0<52>¢3;g<61>) - (¢°<sl>¢£i<ez) - ¢°<52>¢a<sl>)
Now we can substitute:

¢°(e1) = - 0"(en) (F.132)

from the single particle equations. Therefore the two particle function with n = 0
is:
oi®

200 = (Bt eoshien - Raoenolic) )

o i®
tl
E1¢d(€1)

g = BT (gt ) 4 v

o )

(Ereeofien - Eait(enohcn)

(F.133)
Substituting this into the equation, we get the following:

(B2 + B2 ) (6 eohiea) - o' Eofhie) + e e e0ohe
— $eohe)) =~ e0eh ) - eI o)
b)) - 0k (e)) — () )

— S ) S 2 - 6ok o))
b Euote) (M (e) + O ) )

- Baten) (e + o e ) (F.134)

with £ = &1 + 9, and Eyjp = €12 + €0 + U/2. We can write that in a neater way:

¢ pl(c) <<E2 -~ By g) Gh(€2) + H( By (22) + ¢fn—1<52))>

+e " pd( )((E2 ; 2 + g) O (e2) + LB 1 (82) + 1 (€2) >
= 6Z¢¢d(€2) <<E1 ;EZ + g) ¢§1(51) +t(¢m+1 81 + ¢m 1 <C:l >
rergt(e) (B2 + 5 Johie) + o) + ok (0)) (Fasd
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Now we use the definition of single particle states, where we have:

. 1 .. . ) 1 .
i® R _ i® _ikim iAy(e1)/2 _ i1
e g1) = —=e'¥e™Me = —e
. 1 : ) ) 1 .
e—z<I> L ) = €—Z<I>€—zk1m€—zAU(51)/2 — e~im F.136

Both sides of the identity are identically equal to 0. This happens when n = 0 # m.
We will see now how this changes when n = m = 0. In that case, the two particle
equation reduces to:

(Ey + By + E — U = —2t¢%! (F.137)

We also need to impose the condition that the single particle equations need to be
satisfied. Therefore, we can write:

0 — Z(M(EZ — Ey) cos(®) + % <¢d(52) cos(® — Ay)

—¢%(e1) cos(® + A2)>> (F.138)

The right and left movers for the m = 1 site are:

i ik [ F1 Lo
o1 (1) = Mgy = et (7¢d(81) -5 Al) (F.139)
The only difference with the m = 0 case is that now the ® is shifted by the single
particle momentums. Then we have:

bl =9 (w <E2 cos(® — ko) — By cos(® + /‘01)>

V2
Then the two particle equation is:

<E1 + Byt E— U) (W(@ — B)) cos(®)

+% <¢d(62) cos(® — Ay) — ¢(e1) cos(@ + A2)>> _

_2t<¢d(51)¢d(52)

i <E2 cos(® — ko) — Ey cos(P + k1)>

42 <¢d(52) cos(® — Ay + k1) — ¢(e1) cos(@ + Ap — "62)>> (F.140)

V2
Multiplying everything by #'/¢%(1)¢%(2) we get:
!

<E1 + B+ E— U) ((E2 — Ey) cos(®) + %

—(1/¢%(22)) cos(® + AQ))> - —2t<<E2 cos(® — ky) — B cos(® + /ﬁ)>

((1/¢d(51))cos(® - Ay)

t, d — — d 13 COS —
+ 5 ((1/¢ (1)) cos(® — Ay + k) — (1/6%(e2)) cos(® + Ay @))) (F.141)
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Taking into account that:

E,

cos(A)t'V2 (F-142)

(1/6(1)) =

We can write:

<E1 +E2+E—U> {(E2 — B)) cos(®) +%<E %

_EQ%H - _zt[<E2 cos(® — k)

1 cos(® — Ay + ky) cos(® + Ay — ko)
E1 COS((D + k1)> + 5 <E1 COS(Al) EQ COS(AQ) (F143)

The equation above is the one determining ®, the two particle scattering phase-shift.
Using the formula for the cosine of a sum we have:

<E1 +Ey+ E — U> [(Eg — E1) cos(P) + % <E1 cos(®) + £ tan(A) sin(P)
—E5 cos(®) + Es tan(As) sin(@))] = —2t<<E2 cos(® — ko) — Ey cos(P + k1)> +
% <E1 cos(® + k1) + Ey tan(Ay) sin(® + k)
—E5 cos(® — ko) + Es tan(Ay) sin(P — l@))
<E1 +Ey,+ E — U) ((Eg — Ey) cos(®) + <E1 tan(A,) + Ey tan(Ag)) sin(@))
= —2t<<E2 cos(® — k) — Ey cos(P + lﬁ)) + <E1 tan(Aq) sin(® + &)
+F5 tan(Ag) sin(P — k2)>
The right hand side is splitted in terms of sines and cosines:
—2t ( cos(P) <E2 cos(kqe) — E cos(k:l)) + sin(P) <E2 sin(ks) + E4 sm(/ﬁ)> +
sin(P) <E1 tan(A) cos(k1) + Fs tan(A,) cos(

)
+cos(@) <E1 tan(A;) sin(k1) — By tan(Ay) sin(ks) ))
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Separating terms we arrive at the following expression:

N
tand = ——
an D

N = (B\+E+E-U)(Ey—E))+2t <E2 (cos(kz) — sin(ko) tan(A2)>

- E <Cos(l<:1) — sin(ky) tan(Aﬂ))
D = (Ei1+ Ey+ E—U)(Eytan(Ay) + Ej tan(A))

+ 2t(E2<sin(k2) +Cos(k2)tan(A2)) +E1<sin(k1) +cos(k1)tan(A1)>>

When constructing the single particle states, the phase shift A was defined as:

tlQ U 81/2
: + : :
El/gt Sln(kl/g) 2t Sln(lfl/g) 2t Sln(kl/g)

Ay = arctan ( = ) (F.144)

Taking that into account, the part inside brackets with E5 reads:

2tl2
2t cos(kg) — 2t sin(ky) tan(Ag) = 7 U — 2¢9
o
2t cos(ky) — 2tsin(ky) tan(A;) = 7~ U —2¢ (F.145)
1

where we have used that ' = £1+¢5. In total, the numerator of the above expression
is simplified:

Now we go with the denominator, which includes the following:
E, (tan(AQ)(El +Ey+FE—U—¢e9)+2t sin(k2)>

+E1 <taH(A1)(E1 -+ EQ + E-U-— 81) + 2t Sin(k1)> (F147)

Let us identify 2¢sin(ky/2) = v1/2, which is the Fermi velocity by definition, and then
we have:

1 21"
tan(Al/Q) = —1 — +U + €1/2 (F148)
V1/2 E1/2

With this transformation, the denominator is:

E2<v2 +Ui2<— 2];: + (U+€2)>(Oé— (U+52))>

+E, (1;1 + v%(— ng + (U+51)>(a — (U+51))> =
(B + E») (F.149)
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with « = E| + Ey + E. Lets see the two terms separately. For £y we have:
Ey

Vg

(v§ + (— 2;;2 (a— (U + 52)> +aU +ey) —U? — &5 — 2U52>> (F.150)

Now we calculate:
vs 4+ (U +ey) —U? — &2 —2Uey = 4t* — &5 +2Us; + 2Uey + 2Usy +2U?p
T N Bf J
v @

+ 25% + 2e9e1 + 2€989 + 252Up—U2 — 53 — ey, =42 - U? + 2F (U + &)

WV
gqx

The same applies to the part of E;, so the denominator D reads:

E, 2t o oo
U_2 — E2 (Of-(U-FSz) —|—4t —U +2E1(U—|—€2)
E 2t2
+U—1<< e (U+51)> + 4t? — U? +2E2(U+51)>
1 1

Now lets work out the following limit, when t',&; — 0 but the renormalized eigen-
values of the problem FE; remain finite, that is:

lim
t/ £1/2—0 51/2

In this limit, wich is the field theory limit, the Fermi velocity is equal to vy, = 2t,

and we are left with:
Ey By 2 9 4U
<§ + E) <4t U” )+ gElEQ (F.152)

We will call now U = U/2t. We arrive at the equation describing the scattering
phase shift between particles in the lattice model:

(Ey — Ey)

tan(®) = 2U(E2 + E)(1—U?) + (4U/2t)E\E,

(F.153)

The second order term can be neglected respect to the other one being second order
in the eigenvalues in the limit we are working. We identify now U = tan(§) =
tan(mg/2). Therefore, we have:

E, — E;
tan(P) = ta —_ F.154
(@) = tan(r) (2 ) (F.151)
where ¢ is defined as usual for the IRLM:
2 Urv 2 U 1
_2 _2 v _ L F1
9= arctan ( 5 ) - arctan <2t> v=— (F.155)

Notice that, although we are working in the limit €, — 0, the difference
g9 — &1 # 0, since of course the eigenvalues need to be different. We have then
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recovered Filyov and Wiegmann’s result but in a slightly different way, starting
from the lattice version of the model.

Let us now see how this changes under the assumption that all Fermi velocities

are equal to 2¢, but without neglecting any other terms. The equation to look at is:
E E
s (1 — U4+ 2B, (U + 52)> + (1 —U? 4+ 2B,(U + 51)>

Vg U1

where all energies are expressed in units of 2¢. We know from bosonization and the
field theory correspondence, that the result of the parameter has to be:

T = cot <g(1 = g)2> (F.156)

It is curious to see that the expression:

% (F.157)
translates to that to first order in g = 26 /7. If we identify:
U=tan(d) 1/U = tan(p) (F.158)
Then we have:
1 3UU2 = I(tan(p) 1— tan(0))  L(1+ tan(s) tanl(ﬁ))(tan(/é’ —gy) ~ A=)
= cot((B+9) —20) (F.159)

and since S+ = 7/2, we have:

7 = cot <g(1 = 2g)> (F.160)

where g = 20 /7. Looking at the equation above, the assumption that both Fermi
velocities are equal implies to neglect terms of order £? /25 therefore only terms linear
in the eigenvalues are kept. The product 2F, FEs is then:

2E\Ey ~ 2Ea + 20* (F.161)
where we have called Up = o and E = €1 + 5. Then the denominator in total is:

E(1-U?) +2a(l —U?) +2E,E»(2U + E) =

E<1 —U*+4Ua + 2a2> + <4Ua2 + 2a(1 — U2)> (F.162)

With this, the two particle scattering phase shift is:
® = arctan <Tﬂ> (F.163)

Eoter+ 7y

where 7 and v are defined as:
2U AUa? + 2a(1 — U?)
T = ’)/:
1-0U?+4Ua + 2a? 1-U?+4Ua + 202

(F.164)
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