MET

KERNFORSCHUNGSANLAGE JÜLIGH GmbH Institut fur Kemphysik

Jül-Spez 255
April 1984
ISSN 0170-8937

Als Manuskript gedruckt

Spezielle Berichte der Kernforschungsaniage Jülich - Nr. 255
institui für Kernphysik Jul-Spez-255
Zu beziehen durch : ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH
Postfach 1913 D-5170 Jülich (Bundesrepublik Deutschland)
Telefon (02461) 610 Telex 833556 kía d

EDITORIAL BOARD:
PD Dr. G. Baur
Prof. Dr. C. Mayer-Böricke
Prof. Dr. O. Schult
Dr. H. Seyfarth
Prof. Dr. J. Speth
Dr. P. Turek

Front cover: Inclusive triton spectra in $172.5 \mathrm{MeV} \alpha$-particle induced reactions on ${ }^{120} \mathrm{Sn}$ at very forward angles as measured at JULIC. The theoretical calculations show the contribution of the inclusive break-up mechanism (continuous line) where the elastic and all inelastic interactions of the unobserved proton with the target nucleus are included (dashed and dotted line, respectively). The breakup reactions reveal information about ground state momentum distributions and single particle motion in the continuum.

This annual report of the Institut für Kernphysik (IKP) at the Kernforschungsanlage (KFA) Julich covers the period from January to December 1983. Here we report on research activities and on technical developments performed by members of our institute and by guest groups using our cyclotron JULIC.

The Institut fur Kernphysik consists of two experimental institutes, a theoretical institute, a newly created unit "Betrieb und Entwicklung kernphysikalischer Großgeräte", and several common support groups. The solar energy group is included in one of the experimental institutes.

The majority of the experimental research has been performed at the Juilich Isochronous Cyclotron (JULIC), and for about 50% of the experiments the magnet spectrograph BIG KARL has been used as detector system. The cyclotron accelerates protons, deuterons, ${ }^{3} \mathrm{He}$ and α-particles from $22-45 \mathrm{MeV} /$ nucleon, which have been used in basic research as well as for the radio-isotope production for bio medical application. About 20% of the available beam time of the cyclotron has been used by guest scientists and users from other institutes of the KFA. In addition some of the experiments have been Garried out at the KFA reactors: Neutron rich nuclei were studied with the on-iine separator for fission fragments (JOSEF), and the Aachen-IKP collaboration searched for γ events in connection with the question about the existence of axions.

Also in the past year there was an intense scientific and technical exchange due to guest groups at the cyclotron and many visiting scientists in the various units. There existsan especially strong collaboration with Prof. Hagedoorn and his groups of the Technische Hogeschool Eindhoven. Prof. Hagedoorn is temporarily here in a position as consultant.

The investigations of giant resonances were concentrated on the charge exchange reaction (${ }^{3} \mathrm{He}, \mathrm{t}$) around zero degree to study isovector giant resonances in heavy nuclei.

Investigations in nuclear spectroscopy showed the low lying rotational bands in the Os-isotopes combined with low frequencies in the region of bandcrossing. Other nuclear spectroscopy studies have revealed excited nuctear states which result from the coupling of two nucleons with one- and two phonon octupole vibrations. In the $A=100$ region rotational bands have now been observed systematically and Nilsson assignments have been made.

The theoretical work has concentrated on the role of the $\Delta(3 / 23 / 2)$-isobar resonance in nuclear structure and in charge exchange reactions, investigations of heavy-ion reactions with microscopic models, and the Coulomb-dissociation processes at relativistic energies.

The work on the external heavy ion source ISIS has been carried according to the time schedule. The test source (5 GHz) has been improved considerably to yield currents of $200 \mu \mathrm{~A} \mathrm{He}{ }^{2+}$ and $1 \mu \mathrm{AN} \mathrm{N}^{6+}$-ions.

In connection with the proposed neutron spallation source (SNQ) at the KFA, the IKP and interested scientists started to study various possibilities of isotope separation facilities in order to investigate exotic nuclei. For this reason a workshop was organized by our institute.

The proposal for the γ-ray detector system 'OSIRIS' was finished and presented to an international audience during a workshop on 'high-spin states' at the IKP.

After intense discussions, the study group ' $\operatorname{CoS} Y^{\prime}$ under the leadership of Prof. T. Mayer-Kuckuk (University of Bonn) was created, which involves scientists from the universities of Bochum, Bonn, Köln, and Minster and the IKP of the KFA. The aim of the study group is to prepare a proposal for a cooler synchrotron, which can use the linac of the SNQ as well as our cyclotron as injector. In this connection the Institute also organized a workshop in the 'Physik Zentrum' at Bad Honnef.

The senior of the directors at the IKP, Prof. Dr. CLAUS MAYER-BÖRICKE, fell seriously $i l l$ in the beginning of the year 1982. He retired on October 1, 1983 after having led the Institute of Experimental Nuclear Physics I (IEKP I) as its director for a period of 16 years.

It was Claus Mayer-Böricke, who laid the plans for the large isoschronous cyclotron JULIC to be the main research instrument of the Nuclear Physics Instcute (IKP) at the Kernforschungsaniage (KFA) Juilich. He planned and brought to realization the acceleration and extraction of protons, deuterons, ${ }^{3} \mathrm{He}$ and α beams for nuclear physics experiments, the double monochromator for studies at higher resolution, and he initiated work on the large magnetic spectrometer Big Karl. In order to increase the potential of JULIC, he planned and started the installation of an ECR-source (project ISIS) for external injection of fight ions.

Claus Mayer-Böricke was the director responsible for JULIC until the year of his retirement. Due to his constant and intense care; this facility could be used with high efficiency by the research groups of the IKP, by other groups of the KFA and by numerous guest groups.

As planned by Claus Mayer-Böricke, the IKP includes three institutes (IEKP I, IEKP II and Theory), and it is operated now as a department.

In spite of the large burden of his duties as director of the IEKP I and responsible director for JULIC and ISIS, Claus Mayer-Böricke remained an active scientist, and he ensured a high level research program at his institute. Only two of its most successful accomplishments will be mentioned here: (1) the backbending effect itself and its explanation by crossing of tho rotational bands in deformed nuclei; (2) the discovery of the isoscalar giant quadrupole resonance in light mullet. Both of these results received international recognition, indicating the high standard of the scientific program of his institate.

April 1984

INSTITUTE FOR NUCLEAR PHYSIGS

Managing director:
Experimental Nuclear Physics 1, director: Exparimental Nuciear Physics ii, cirecior: Theoretical Physics, director:

Prof. Dr. J. Speth
Prof. Dr. C. Mayer-Böricke
Prof. Di. O. Schuth
Prof. Dr. J. Speth

Kerniorschungsaniage Jülich GmbH
Postrach 1913,5170 Julich, Wat-Gemmany

CONTENTS

I, EXPERIMENTAL NUCEEAR PHYSICS

1. WICLEAR REACTIONS AND SCATTERING PRDCESSES
1.1. Irvestigation of high lying M1 states in ${ }^{40} \mathrm{Ca}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ at $\mathrm{E}_{\mathrm{p}}=45 \mathrm{MeV}$
B. Beintmbllex, G.E.A. Berg, G. Hlowatach,
A. Magiena, J. MetBbunger, D. Pout,
J. Fömer, G. Sondermam, J.L. Tain

1
1.2. Excitation of 1^{+}States in ${ }^{58} \mathrm{Ni}$ by Inelastic Proton Scattering at 45 MeV
G.E.A. Berg, G. Gaut, J. Meibbwar,
D. Pout, J.G. W. Romex, G. Sondemann and I.E. Tain 2
1.3. Iderification in the second $13 / 2^{+}$state of the octupole multiplet in ${ }^{143} \mathrm{Nd}$
E. Troohe, J. Wresineky, C. Wessetborg,
A. Clouberg, R. Reinhawit, P. von Brent twno, K.O. Zett, oh. Momis, G.P.A.Berg, B. Brinkmöttex, G. HLawatsch, J. Neisburger, D. Poth, J.G.M. Rönen, A. I. Tatin 3
1.4. States at $E_{X}=16-22 \mathrm{MeV}$ in 8 Be excited in the ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right)^{8} \mathrm{Be}$ and ${ }^{11_{S}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right)^{8} \mathrm{Be}}$ reactions
I. Jarogyk, A. Stradikoweki, B. Stycesen,
G.P.A. Berg, B, Emintmolter, G. HLowatsoh,
A. Hagiara, \therefore. Hetbueger, i/, cetert,
D. Prowhh, P. won Rossen, J.G.M. Roner
and J.E. Tain
1.5. Reaction Mechanism of the ${ }^{22} \mathrm{Ne}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right)^{18} 0$ Reaction
ir. Oetert कnả G. Pull α
1.6. Excitation of $K^{\pi}=2^{-}$Band States in $20,22_{\text {Ne via }}$ the $\left(d,{ }^{6}\right.$ Li) Reaction
G. Fatto ond w. ondert
1.7. Proton-Hole States in Co-Isotopes Observed via the ($\mathrm{d},{ }^{3} \mathrm{He}$) Reaction
A. Warinov, G.P.A. Berg, d. Bojowata,
S. Gopai, G. Wlowatesh, S.A. Haptin,
C. Nayew-Ebricke, J. Weiborger, W. Deterit,
D. Doub, J.G.M. Romen, M. Rogge, J.L. Thin,
B. Turef, L. Zembo, R.B.N. Woov, P.i.h.

Gloudemans, S. Brani, F. Ecurr, M. Vouk, 7. Lopac8
1.8. Inelastic twoustep processes in singlenucleon transfer reactions
G. Palta, i. Qezert, A. Djaloezis, P. Turak, ond E. Zemzo 10

1.9. Observation of the 1.6 Mel level in g_{B}

A. Djaloezs, J, Bojowati, G. Paite, ond
B. Antolkovie
1.10. Relative contribution of a-particle and ${ }_{H}$ like fragment transfers in $1_{B}+{ }^{3}$ He systems L. Jarozy, A. Straclkoweki, B. Styoren, G.P.A. Beng, B. Brinkmoltter, G. Htavotech, A. Magiera, 7 . Mersoburger, w. Celert, D. Praswh, P. von Fossen, J.G.K. Röner and J.L. Tain
1.11. High Eying $T=3 / 2$ Analog States in ${ }^{13} \mathrm{C}$ via the ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{e}\right)^{13} \mathrm{C}$ Reaction J.C.L. Römer, G.F.A. Berg, B. Bxinkmaller, F. Hintanberger, G. Hlowatech, A. Nagiara, J. Meissbugger, W. Delert, D. Paut, D. Prob swh, P. von Rosaen, d. L. Tain
1.12. Measurements of electron capture and stripping cross sections for $A 7$, Ni, Ag and $A u$ targets at 68,99 and $130 \mathrm{MeV}^{3} \mathrm{He}$ beams
T. Katayata, G.F.A. Eerg, G, Gait, B. Hasai,
7. Huthmam, S.A. Nowtin, J. MeiBbiogex,
W. Celert, W, fogge, A. Retz, t. G. M. Römer, A. L. Tain and L. Zemto 14
1.13. The ${ }^{90} \operatorname{Zr}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{90} \mathrm{Ni}$ reaction and the GamowTeller strength
A. A . Tain, G.P.A. Berg, B, Bminkëther, G. Hlawatsoh, A, Hagiera, J. NsiBburgex, W. Oelert, d,G.M. Föner and G. Sondermann 15
1.14. Study of giant resonances in small angle a scattering experiments
H.P. Morsen, P. Deowski, M. Rogge, E. Twek, D. Zento, G.P.A. Berg, d. Meibburger and J.G.M. Römer 17
1.15. Study of the (${ }^{3}$ He,t) charge exchange reaction at $E_{3 \mathrm{He}}=135 \mathrm{MeV}$
H.F. Norech, P. Decowski, G.P.A. Berg, d.L. Toin, M. Fogge, F Turek, I. Zemio, U. Neibbugen ana J.G.l. Romar 17
1.16. Study of momentum transfer, mass distributions and total kinetic energies in the reaction $238_{U\left(\alpha, \alpha^{\prime} f_{1} f_{2}\right)}$

P. Turek, G. HLawatson
1.17. Three-body versus four-body contributions in a break-up on ${ }^{58} \mathrm{~N}_{\mathrm{Ni}}$
R. Sieberit, H.P. Worsch, P. Deoowski, M. Rogge,

P: Turek.
1.18. Investigation of light nuclei at high excitation energies with three-body break-up reactions
\therefore.... A. Franke, Fi. Vacher, B. Steinheuar, K. Wingenden and W. von Witsoh
1．19．Light Particle Correlations
H．Wachnew 23
1．20．Search for nuclear structure effects in continuous spectra
G．Sentwongse，H ．Nachner，P．Jah， 14．Wolte， 1 ．Rogge and P．Turek 24
1．21．Study of the fragment－mass－distribution of ${ }^{4}$ He－induced fission A．Buctkewitz，$B . H$ ．Duhm，H ．Wahner ond 万．Straus 25
1．22．Fast Wucleon Emission from heavy Ion induced Reactions
R．Wohen 27
1．23．How does the optical potential depend on nuclear excitations？
H．Machter 28
1．24．Mean angular momenta involved in the pre－ equilibrium charged particle emission B．Bochev，T．Kuisarova，R．M．Lieder， J．－P．Didelez and T．Movek 29
1．25．Simulation Experiments for Planetary Spec－ troscopy：Neutron－Induced Gamma－Rays from Thin Targets
P．Erglert， A ，Bröoknew，H．Wärke and R．C．Reedy 30
1．26．Measurement and Hybrid Model Analysis of Integral Excitation Functions for Light Particle Induced Reactions
R．Wichet，H ，Calce，F ．Pfeiffer，R．Stiok 31
2．NUCLEAR SPECTROSCOPY
2．1．Study of ${ }^{75}$ Se by Neutron Capture and SU（3）－ SU（5）Transition in Quadrupole－Phonon Re－ presentation
Y．Tokunaga，H．Segfowth，O．W．B．Senatit，
S．Brant，V．Paax，D．Vretenar，H．G．Bomper，
G．Barrean，H ．Faust，Ch．Hofmegri， K．Sehreckenbach and R．A．Meyer 33
2．2．The ${ }^{75} \mathrm{Se}(\mathrm{n}, \gamma)^{76}$ Se Reaction and the Low－ Lying Level Structure of ${ }^{76}$ Se Y，Tokwaga，․，Seyfarth，O．W．B．Sohutt， त．G．Bumer，Ch．Hosmeyrs，G．Bopseau，R． Brissot，U．Kaw ond Ch．Monkemeyer 34
2．3．Low－lying levels of ${ }^{77}$ Se studied through themal neutron capture and evidence for a new term in the E2 operator of TQM（IBM） Y．Fokwaga，H ，Seyfarth，R．A．Meyer， O．W．B．Sohut亡，B．G．Bömer，G．Barpean， H．Faust，K．Sohreckenbaoh，S．Brant， V．Paar，M．Vouk and D．Vretenar 35
2．4．Rotation－Like $5 / 2^{+}$Bands in Odd－Mass A 100Nuclei as Coherent－State Structures of Qua－drupole Phonons in PTOM
R．A．Meyex，V．Paar，S．Brant 36
2．5．New Excited 0^{+}State in ${ }^{100} \mathrm{Zr}$K．Sistemich，R．F．Petru，J．C．Hill，F．K．Whth，R．L．Gilt，h，bach，A．Piotrowkit372，6．Angular correlation measurements on ${ }^{100}$ MoG．Henzen，H．Gietz，G，Lhersomeav，E．Koht，H．Lawin，T．Seo，K．Siatemich，w．Kaffrelt ．． 382．7．Nanosecond－Halfilives of Huclear Levels near$\mathrm{A}=100$
G. Lhersomeou, T. Seo, H. Lowin, G. Meneen,
$K=$ Sistemioh39
2．8．The Deformation of $\frac{703}{42} 9061$
T．Seo，G．Lhensomean，H．Laxith，E．A．Heyer，G．Menzen，K，Sistemion40
2．9．Band Structures in ${ }_{41}^{101} \mathrm{No}_{60}$
A．M．Schmitt，T．Seo，F．Ahente，J．P．Boequet，N．Kraffect，H．Lowin．G．Lhew－someav，R．A．Hayex，K．Bhisuma，K．Sratemich．G．Tittel，IV．Troztmamn41
2．10．Rotational Bands in ${ }_{41}^{103} \mathrm{Nb}_{62}$
T．Sec，A．－M．Sohmiti，R．Ahmens，J．P．Booquat，Wh．Kaffrell，B ．Lewin，G ．Thergomeon，R．A．Meyer，K．Shisuma，K．Sistemioh，S．Tritet，7．Trozimann42
2．11．The level scheme of ${ }^{134} \mathrm{Cs}$ H．Bogdanovic，A ．Seyfarth 43
2．12．In－beam study of the odd－odd nuclei in134 La and ${ }^{136}$ LaT．Wonek，H．Bewscher，B．Boehev，T．Rutsa－nova，R．M．Lisder，M．MLTen－Veggionond A．Neskakis45
2．13．Interaction between Neutron Particle－Holeand Octupole Core Coupled States in $\mathrm{N}=83$NucleiR．A．Meyer，K ．Heyde，P ．Von Ieaoker，M．Warcquisr，J．Vorean，and J．I．Wood47
2．14．The 10^{+}States of $w_{11 / 2}$ and $\pi h_{11 / 2}$ characterin the $N=80$ Nucleus ${ }^{142}$ SmN．Lach，U．Styesen，H．Beusoher，P．Klein－heina，d．Btomquist482．15．High－Lying Yrast States in ${ }^{145}$ Eu and itsMiass
B. Rubio, R. Juin, A. Exom, E. Kleinheins,
f.L. Tain, G.P.A. Berg, G. Hlawatech,
t. Maibburger, D. Paul, J.G. Römer and
才. Blomquist50
2．16．Study of Particle－Hole Multipletts in${ }^{145}{ }_{\mathrm{Gd}}$ through（ $\alpha, 2 n$ ）in－bean MeasurementS．W．Yates，P．KLeinheins，R．Julin，w．Stofft，E．Henmy，L．Nant，D．Deman，\therefore Blomquist52
2．17．Single－and Double Octupole Excitations in ${ }^{148_{G d}}$s．Lunardi，＇P．Kteinheina，W．Priparinen，M．Ogcaia，J．Btomquist54
2.18. Search for Rotational Band Members in ${ }^{152} \mathrm{Eu}$
P.T. Prokofjev, L. I. Simonova, H. MatheB,
E. Sormai-Stanoo, J. Styozen, A. Eroon,
P. Neinheina56
2.19. Study of the band structure in the odd-odd nuc leus ${ }^{180}{ }_{\text {Re }}$

Ts. Vankov, B. Bochev, W. Cast, T. Kutsa
rova, R.M. Liedex, T. Morek ard G. Sletiten 57
2.20. Investigation of b
crossings in $181_{0 s}$
and $J \cdot D$. Garrett 58
2.21. Search for the two photon decay of light penetrating bosons with the use of a rotatable detector arrangement
H. Beohteler, H. Emer, H. Fotismer, H.R. Koch, O.W.B. Sohwtt, $\overline{\text { B. S }}$ Seyfarth, ㄱ. Yogestuar 60
2.22. The Spectrum of γ Radiation Emitted in the FRJ-1 (Merlin) Reactor Core and Moderator Region

 7. EechteLen, H. Faissnor, H. Seyfarth,
 r. Yogeshwar 62
II. THEORETICAL NUCLEAR PHYSICS
3. NUCLEAR STRUCTURE
3.1. Quasiparticle RPA Calculations for ${ }^{146}$ Gd 82 with Effective Forces Including Meson Exchange Potentials
C. Coner, V. Klemt, d. Speth 64
3.2. Spectrocopic Study of Low-Energy States of the $\mathrm{N}=82$ Isotones ${ }^{142} \mathrm{Nk},{ }_{60}{ }^{144} \mathrm{Sm},{ }_{66}^{148} \mathrm{Dy}$ and ${ }_{68} \mathrm{Er}$ in the Framework of the QRPA-Theory c. Conei, F. KLemb, J. Speth 65
3.3. On the Nature of the 1^{+}State at 3.48 MeV in $8_{S r}$
C. Consi, J. Speth 66
3.4. A Model to Include $2 p 2 h$ as well as 1 alh States for the Magnetic Response of Heavy Nuclei
. Cha 68
3.5. Isobar-Hole and $2 p 2 h$ Effects on the MI-Strength in ${ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{~Pb}$D. Cha, B. Schussinger, i. Speth and\therefore. Wombaeh69
3.6. Isobar-Hole and 2p2h Effects on the M2- strength in ${ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{~Pb}$D. Aha, B. Sohwesinger, J. Speth andJ. Wombach70
3.7. Isobar-Hole and 2p2h Effects on the Spin-Dipole Strength in ${ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{~Pb}$
D. Cha, B. Sohmesincer, J. Speth andJ. Wombach72
3.8. Isobar-Hole and 2 p 2 h Effects on the Gamow-
Teller Strength in ${ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{~Pb}$
b. Cha, 2 . Schesinger, \bar{t}. Speth and J. Wombach 73
3.9. Meson Exchange Current Effects in Heavy Nuclei
J.S. Dehesa, S. Frewald, A. Lallena and T. W. Domelty 75
3.10. Description of Odd-Even Nuclei in the $A=130$ Region
E. Homoren, $K . \%$. Sohmd ond F. Gummen 76
3.11. Description of Even-Even Nuclei in the $A=130$ Region
X. W. Schmid, E. Hownaren and E. Cmämen 77
3.12. The Spin Dependence of the HFB-Mean Field F. Grummer and K.W. Sohmid 78
3.13. On Averaging in Interative Hartree-Fock Solving Procedures
v. Klemt 79
3.14. On a Relativistic Hartree-Fock Description of Magic Muclei
V. KLamt 80
3.15. A Microscopic Look at the Nuclear Twist B. Sohwesinger 81
3.16. Effective Quasi-Particle G-Matrix Interaction K. Wakayom, S. Krewald, d. Speth and W.G. Love 82
3.17. The Effect of Nuclear Polarization on the Isotope Shift in Electronic Atoms
B. Hoffmonn, G. Baur, and σ. Speth 83
3.18. Fission Barrier Calculation for Rotating Nuclei J. Weneth, d.U. Irvine, J. Okolowica 83
3.19. High Energy Proton Induced Fission of Rare Earth Nuclei
J. Nemeth, J.h. Trutne 84
3.20. Effective Mass in Nuclei and the Level Density Parameter
M. Prokosh, Z.Y. Ma ond J. Wambach 84
3.21. Fragmeritation of Nuclear Strength Distrim butions by Two-Particle Two-Hole Excita- tions
J. Wonbeh and B. Sehwesinger 85
4. MEDTIM ENERGY PHYSICS
4.1. Δ-Isobar Effects on M 2 -Strength in ${ }^{208} \mathrm{~Pb}$ D. Cha and J. Speth 87
4.2, Medium Polarization Effects: A Crucial In- gredient in the $\Delta(1232)$-Nucleon Inter- action
K, Nakayoma, S. Krewald, J. Speth, G.E, Brown 88
4.3. A Deformable Chiral BagJ. Wombach and Z.Y. Va89
4.4. Quantum Variational Approach to the Chira! Bag
J. A. Unbano, X. Coeke 91
4.5. Effect of the Quantum Fluctuations of the Pion Field on the Chiral Bag Energy J. T. Wrbono ond K. Goeke 91
4.6. On the Hedgehoog Solution
d. IJ. Urbano, R. Goeke 92
4.7. Equiliorium between Anisotropic Nomal and Pion Condensed Nuclear Matter
I. Lovas, d. Németh, K. Ectitar 93
5. NUCLEAR RACTIONS
5.1. Theoretical Analysis of the Proton Decay of Electroexcited Carbon
G. Co', S. Gewalé 94
5.2. Theoretical Description of Electron Scattering Coincidence Experiments C. Co^{\prime}, S. Krewatd 95
5.3. Microscopic Calculation of the Imaginare Optical Potential for ${ }^{208} \mathrm{~Pb}(p, p)$ at 14 MeV H. Demaudit, \bar{F}. Ostersetd, V.A. Hadeen 96
5.4. Calculation of the Background below Ganow- Teller Resonances
F. Oeterfeli, A. Sohulte 98
5.5. Calculation of the Backgorund below the Giant Dipole ($\Delta L=1$)-Resonance F. Oeterfela, A. Schultwe 99
5.6. The Tensor Force in $\left\{^{3} \mathrm{He}, \mathrm{t}\right)$-Scattering with Exact Treatment of Knockout Exchange T. Ujagona, F. Osteryeld 100
5.7. Calculation of Proton-Neutron Coincidence Cross Sections in 56 MeV Deuteron-Induced Breakup Reactions by Post Form Distorted- Wave Eorn Approximation
man 100
5.8. Coulomb Dissociation at Nonrelativistic and Relativistic Energies
B. Hoffomm ond G. Bom 100
5.9. On the Dynamics of the ${ }^{16_{0+}}{ }^{16} 0_{0 \rightarrow}^{32}$ S Fusion Process
t. MMedmiah, K. Gocke, D.T.E. Gross, F. Grimmer and P.-G. Reinhara 101
5.10. ATDHF Calculation on the ${ }^{4} \mathrm{He}-{ }^{16} 0$ System D. Provoost, F. Gmmer, K. Goeke 102
5.11. ATDHF Calculations with Skyme Interaction R. Gisster, K. Goeke, and F. Gmmer 103
5.12. Extended Time-Dependent Mean-Field Theories from the Maximum Entropy Principle H. Reinhardt, R. Batian and Y. Alhassid 104
6. ATOMIC COLLISIONS
6.1. Inner Shell Ionization Processes in Asymmetric Collision Systems G. Baur, F. Rose it, and D. Troytmant 105
6.2. Excitation of Inner Shells in Collisions of Charged Particles with Atoms
5. Hoffnam onde G. Bour 105
7. ASTROPHYSICS
7.1. ETectron Capture in Stellar Collapse
J. Cooperaterin and at Wombeot 107
III, solar emergy
8.1. Solar Heating Plant at Mount Zugspitze H. ot. Stein, M, Kohnen 109
8.2. Methodical Developments in Solar Collec-tor TestingJ.-D. Witt, ㅍ. Schmidat, H. . Stein111
8.3. Bilateral Cooperation in the Field of ColTector Testing B. Sack, F. H. Stein 113
8.4. Testing of a Solar Air Heating Collector ?. Zekorn 115
8.5. Results of IEA-Task III Outdoor and IndoorPyranometer ComparisonP. Ambrosetti, II.E.B. Andereson,G. Pablitich, H.D. Matang?116
IV. TECHNICAL DEVELOPMENT9. ISOCHRONOUS CYCLOTRON
9.1. Cyclotron Operation and ImprovementA.G. EOge, 7. Broutigon, H. Eorsch, R.Brange, R. Fiedler, H.L. Zagedoom,A. Hadomek, I. Jamakos, E. Lowin, V. Revoh,A, Ratz, if. Potart, G. Sohtienkom, H.Sohwor, F. Huchemed119
9.2. Measurement of Transfer Coefficient and Im-provements in the Beam Handling SystemM. Rogge, J. Rotch, i. Zemto, J, G.M. Fömer,A. Berg, F. Hageaoom, G. Hichajeol, H. Lamwin, J. Hetiburger, W. Getert, G. Fiepe,P. von Foesen, D. Protis, W.D. Tripedi,P. Turek120
9.3. Progress of ISIS
H, Beuscher, H.G, Böge, H, Borsch, W. Bröuti-gom, F. Briell, R. Bringe, R. Fiedten, ir.Krauss-Fogt, K.P. Kruck, i. G. Nathews, A, Mit-Ler, H. Pobich, A. Retz, J. Reich, J. Pird-fleisoh, N. ROtert, G. Schlienkomp, P. Wi-cherens, M, Agena, K. EuLer, D. Rosendaht ... 122
9.4. Pre-ISIS 2 *- two stage ECR source for highly stripped light heavy ions H. -G. Aathews, H. Eusoner, R. Fiedlar, 7. Krouse-Togt 125
9.5. Computer Calculation on the ECR Ion Source extraction
W. houss-Vogt, B. Beuscher, H. - . Wathews 128
9.6. Check of the ISIS-center-region
F. Wuherse, H.L. Hagedoom, U. Rindfietsoh 129
9.7. First Experimental Results of an Operation in the g_{w}-Mode
P. Wheherer 131
10. COOLER RING COSY
10.1. The Cooler Storage Ring CoSyG. Berg, G. Gaut, ㄹ. Hagedoom, t.A. vandew Heide, F. Finterbergen, S. Nartin,T. Wagan-Kucuk, F. Osterfeld, F. Pategen. Schieck, D. Praewh, in. Bogge, P.von Rossen, P, met133
10.2. Lattice studies for the Cooler Storage Ring cosy
G. Berg, A. Wagera, S. Wartin, D. Prosum 135
11. y^{2} SPECTROMETER OSIRIS
11.1. Compton Suppression array for High Resolu- tion In-Beam Spectroscopy
header, G. Gast, H. Jagar, J. Sohaeftlex Kyŭh, X. H. Waisr, F. von Erentono, T. Eberth, K. Sohiffer, H. Uabet, R.P. Btime and
c. Wohet 136
12. BIG KARL
12.1. The Magnet Spectrometer SIG KARIG.F.A, Beng, B. Brenkmolier, G. Hicuatbeh,A. Nogiera, J. NeiBurgen, D. Pat, D. Pra-suh, J.G.t. Pomer, E. yon Rossen, O. Sonult,J.L. Tain .. 139
12.2. Spectrometer Control
B. Bminkoetter, $K, ~ K$ mok, J. Heisebuegen .. 139
12.3. Data Acquisition and AnalysisB. Brinhonoller, F. Konthues, J. Merss-burger, D. Faut140
12.4. MOrris chamber CAEibration utility MOCAL
J. Hetesbugen, D. Pauz 140
12.5. Detectors at the BIG KARL Spectrometer
G. Btavatseh, D. Puul, G.P.A. Berg, P. von
Brentano, B. Brinkmolter, J. Nethbuger, C.F. Wone, C.L. Normis, J.G.M, pomer, M. Roges, S.J. Seestrom-1omis, G. Sondemann, J. T. Main, L. Zamto 141

13. DETEGTORS, TARGETS, SPECTROMETERS

13.1. Semiconductor Detectors

A. Homacher, T. Kmoter, E. Lount A. Hetz,
K. Wicolt, D, Protid, G. Riepe 143
13.2. Target Eaboratory
J. Pfeiffex, G. Fiepe 144
13.3. Light particle detection by BGO-scintilla- tors with phatodiode readout A. Glacou, K.R. Kamper, H. Lomer and G. Gaut 144
13.4. Position Sensitive Parallel Plate Avalanche Detectors for Fission Fragments
L. Zembo, G. Hicaratsch, P. Decowski, F.F. Morsah 145
13.5. Small size plastic scintillation counters for measurement of protons up to 100 MeV
R. Siebert, P. Deoowki, K.P. Monsoh, A. Fogge and E. Thek 145
13.6. High Resolution Spectrographs
A. Ikegmi: 146
14. GOMPUTER DEVELOFMENT
14.1. Computer Configurations K, -IA. Watalowik, h. Kamadi, R. Notten 148
14.2. Dff-Line Data Eveluation
 148
14.3. On-Line Processing and Data Acquisition
K. - . Watalowik, A, Nethen, H. Diesbueg 149
14.4. Software Development
B. Hofmam 150
14.5. Data Analysis Developments at JoSEF
G. Lhersomeau, d. Kamadi, w, Fenten and IT. Seo 151
15. Electronic Division
H. Labus, d. Bojowate 152
16. Radiation Protection
16.1. Composition of the radioactive contaminations at Julic and sensitivity of the contanination measuring devices
I. Whoy, R.J. Probst 153
16.2. Routine DutiesH.J. Probst, I. What, R.E. Hintam,K, Krofft154
16.3. Gamma-Neutron Radiation Field in the Cyclo- tron Vault
I. Uray, H. ${ }^{\prime}$. Ppobst 155
16.4. Skin Dose of the Contamirictions at JULIC
H.J. Frobst, I. Ujay 156
17. Engineering Office and MechanicalWorkshop
W. Bristl, D. Grose, II. Hadomek, A. Rets,
U. Rindfleiseh, R. Sehwan 157
V, SCIENTIFIC ADVISORY COUNCIL OF THE INSTITUTE OF NUCLEAR PHYSICS 158
VI, EXTERNAL COMMITTEE FOR GUEST
EXPERIMENTS 158
VII, PERSONNEL 158
VIII, PUBLICATIONS 161
IX, CONFERENCE CONTRIBUTIONS, TALKS 165
X, INTERNAL REPORTS 175
XI, INTERNAL TALKS 175
XII, INDEX TO AUTHORS 176
1.1. Investigation of high lying $M 1$ states in ${ }^{40} \mathrm{Ca}\left(\rho, \rho^{\prime}\right)$ at $E_{p}=45 \mathrm{MeV}$
B. Brinkmoztere ${ }^{+}$, G.P.A. Berg, G. Hbawatsch,
A. Wagiera, J. Meiburgen, D. Pout ${ }^{+}$, J. Romer,
G. Sondermornit, i.L. Tain

In high resolution proton scattering experiments ${ }^{1,2}$) at relatively low incident energies ($E_{p}=45$, 65 MeV) several 1^{+}states have been identified. A particular strong $\mathrm{M1}$ excitation has been found ${ }^{1)}$ at $E_{x}=10.21 \mathrm{MeV}$ in ${ }^{48}$ Ca with a spin unseturated closed $\mathrm{f}_{7 / 2}$ neutron shelt. In the simple independent particle shell model no 0 hw M1 excitation is expected in ${ }^{40} \mathrm{Ca}$. The observed I^{+} states $3,4,5$) in ${ }^{40}$ Ca indicate ground state correlations in the neutron and proton shells. A strong 1^{+}state has been observed in ${ }^{40} \mathrm{Ca}$ at $\mathrm{E}_{\mathrm{x}}=10.31 \mathrm{MeV}$. Another 1^{+} state was seen at $E_{x}=9.87 \mathrm{Mfev}^{5)}$, The anguTar distribution of a peak at this energy is reported to be consistent with an unresolved doublet of 2^{+}and 1^{+}states in a backward angle electron scattering experiment ${ }^{3)}$ and a 200 MeV proton scattering experiment ${ }^{4}$ \}. In addition a state with an $1=0$ angular distribution was observed ${ }^{4)}$ at $E_{x}=12.03$ Mev with unknown parity.
To get more infomation about these states we measured 40 Ca(p, p^{\prime}) at 44.8 MeV proton energy using the high resolution magnetic spectrograph BIG KARL. States from 8.5 to 12.3 MeV excitation energy have been measured with a resolution of 14 keV at forward and 23 keV at backward angles due to incomplete kinematic matching. A sample spectrum of $\theta_{1 a b}=13.2^{\circ}$ of the complete range of measured excitation energies is shown in fig. 1. The excitation energies are taken fron ref. 6. This was one of the first experiments with the new multi-wire drift time chamber ${ }^{7}$, which allowed to measure 75 cm of the focal plane of the spectrometer. Special care was taken in the off-line analysis to find and correct for effects of differential efficiency variations in the new detector. In order to show details of the states around $E_{X}=10 \mathrm{MeV}$, fig. 2 displays the enlarged range from $E_{X}=9.8 \mathrm{MeV}$ to $E_{X}=10.5 \mathrm{MeV}$ at three different scatitering angles. At $E_{x}=10.33$ Mev where two possible
states have been reported ${ }^{6)}$ we resolve only one state in our measurements.

The angular distributions will be compared with DUBA calculations in order to determine the transfered angular monentum of the measured states and to identify possible 1^{+}states.

Fig. 2: Enlarged part of ${ }^{40}$ Ca (p,p') spectra at 44.8 MeV incident energy for the scattering angles $0_{1 a b}=7.9^{\circ}$, $13.2^{\circ}, 26.5^{\circ}$ showing the states around $E_{x} \approx 10 \mathrm{MeV}$.

References

1) G.P.A. Berg et al., Phys. Rev. C25
2) M. Fujiwara et al., Nucl. Phys. A410 (1983) 137
3) W. Steffen et al., Phys. Lett. 95B (1980) 23
4) N. Anantaraman et al., Phys. Rev. Lett. 46 (1981) 1318
5) D.M. Pringle et al., Phys. Lett. 115B (1982) 291
6) H. Ejiri et al., Phys. Rev. C24 (1981) 2001
7) G.F.A. Berg et a1., Annual Report 1982, IKP-KFA, Jul-Spez 202 (1983) il6

+ Institut fir Kernphysik, Universitüt minster

Figure 1:
Sample spectrum of ${ }^{40} \mathrm{Ca}\left(p, p^{\prime}\right)$ at 44.8 MeV incident energy from 8.7 to 10.3 MeV excitation energies at $\theta_{\mathrm{Jab}}=13.2^{\circ}$.
1.2. Excitation of 1^{+}States in ${ }^{58}$ Ni by Inelastic Proton Scattering at 45 MeV
G.F.A. Berg, G. Gait , J. Meibburger, D. Paul, J.G.U. Romer, G. Sondermann ${ }^{\dagger}$ and J. L. Tain

In our previously reported ${ }^{I}$) $58_{\mathrm{Ni}}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ measurements at 45 MeV incident proton energy using the high resolution magnet spectrometer BIG KARL the I^{+}state at 2.903 MeV and the I^{+}state at 10.66 Mey are strongly excited. Spectra of these measurements have already been shown in ref. 1). The excitation of the 10.66 MeV state was aiso reported at $201 \mathrm{Mev}^{2}$) and $65 \mathrm{MeV}^{3}$ incident energy, Fig. 1 shows the comparison of the angular distributions of this state at the different incident energies plotted as function of the transfered momentum q. For $q, ~ m o 0$ mev/c the cross sections are very similar for the three different energies. For $\mathrm{q}<100 \mathrm{MeV} / \mathrm{c}$, however the observed shapes of the angular distributions are very different. The higher the incident energies the larger is the cross section at very forward ang tes.

Fig. 1: Experimental angular distributions for the 1^{+} state at 10.66 MeV in ${ }^{58} \mathrm{Ni}$ measured at various bombarding energies in (p, p^{\prime}) scattering.

This behaviour has been reproduced in prel iminary microscopic DNBA calculations ${ }^{4)}$ and reflects the enhancement of the $2=0$ relative to the $2=2$ contribution with increasing energy.

We concluce that for energies $45 \mathrm{MeV} \approx E_{p} \& 65 \mathrm{MeV}$ the cross section maxima for Mt transitions occurs at $q \sim 100 \mathrm{MeV} / \mathrm{c}$ while for higher energies the cross section increases with decreasing q, suggesting experiments for MI investigations at $E_{p}>65 \mathrm{MeV}$ in the energy window $150-400 \mathrm{MeV}$ of spin flip excitations and extremely foward angles.

Low energy investigations of M1 transitions are limited to states with concentrated $M 1$ strength like the 1^{+}state ${ }^{5}$) at $E_{X}=10.21 \mathrm{MeV}$ in ${ }^{48} \mathrm{Ca}_{\mathrm{c}}$ and the reported 1^{+}state at $E_{X}=10.66 \mathrm{MeV}$ in ${ }^{58}{ }_{\mathrm{Ni}}$. Consequently we do not observe individual levels of the broad $M 1(T=1)$ resonance reported around $E_{x} \sim 8.8 \mathrm{MeV}$ in 58_{Ni} at $E_{p}=201 \mathrm{MeV}$. Among the expected 1^{+}states there exists some confuston about the excitation of the state at 3.594 MeV for which one assumes a pure $\left(p_{3 / 2} p_{1 / 2}\right) I^{+}$configuration ${ }^{6}$). While
the excitation of this state was not observed with an upper limit of $5 \mathrm{\mu b} / \mathrm{sr}$ in inelastic proton scattering at $65 \mathrm{MeV}^{3)}$ it was excited with a cross section of 15-20 $\mathrm{pb} / \mathrm{sr}$ in our (p, p^{\prime}) measurement at $\mathrm{E}_{\mathrm{p}}=45 \mathrm{Hev}$. Fig. 2 shows spectra including this 3.594 MeV state at ${ }^{\text {lab }}$ $15^{\circ}, 20^{\circ}$ and 25°. The spin-parity assignments of the 3.531 and 3.594 MeV states were taken from Ref. 6 while excitation energies, spins and parities ot the cther levels were taken from Ref. 7.

Fig. 2: Spectra including the 3.594 MeV state measured in ${ }^{58} \mathrm{Nj}\left(p, p^{\prime}\right)$ at $0_{1 a b}=15^{\circ}, 20^{\circ}$ and 25°.

References

1) G.P.A. Berg, G. Gaul, D. Grzonka, W. Hirlimann, J. Mébburger, D. Paul, J.G.M. Romer, G. Sondermann and J.L. Tain, KFA Institut für Kernphysik, Annual Report 1981, Jiul-Spez 202 (1983) 1
2) C. Djalali, N. Marty, M. Morlet, A. Willis, J.C. Jourdain, N. Amataraman, G.M. Crawley, A, Galonsky and P. Kitching, Nuc1. Phys. A388 (1982) 1
3) M. Fujiwara, Y. Fujita, I. Katayama, S. Morinobu, T. Yamazaki, H. Ikegami, S.I. Hayakawa and K. Katori, Nucl. Phys. A410 (1983) 137
4) F. Osterfeld, private commication
5) G.P.A. Berg, W. Hirliman, 1. Katayama, S.A. Martin, 1. Heissburger, 0 . Römer, B. Styczen, F. Osterfeld, G. Gaul; R. Santo and G. Sondermann, Phys. Rev. C25 (1982) 2100
6) H.P. ETok: J.J. Kraushat, P.A. Batay-Csorba and F.E. Cecil, Nucl. Phys. A386 (1982) 61
7) Table of Isotopes ed. by G.M. Lederer and V.S. Shirley, John Wiley \& Sons, Inc. 1978

[^0]1.3. Identification of the second $13 / 2^{+}$state of the octupole multiplet in ${ }^{143}$ Nd
L. Trache ${ }^{\dagger}$, J. Wazesinsky ${ }^{++}$, C. Weaselborg ${ }^{+\dagger+}$, A. Clouberg ${ }^{+++}$, R. Reinhordt ${ }^{+\dagger+}$, P. von Brentarso ${ }^{\text {tit }}$, K.O. Rel2 ${ }^{+\frac{+}{+}}$, Ch. Mormis ${ }^{\dagger}$, G.P.A. Berg, E. Brinkouller, G. Blawatach, d. Neibburger, D. Faut, ė.G.M. Römer, J. I. Tain

It has been reported recently ${ }^{1}$) that the complete particleoctupole miltiplet in the $N=83$ nucleus ${ }^{143}$ Nd has been identified by high-resolution inelastic proton scattering at $E_{p}=25 \mathrm{MeV}$ using the BIG KARL spertrometer.
Earlier (d,p) experiments ${ }^{2}$) presented evidence for a splitting of the $13 / 2^{+}$state into two levels at 1230 and 2807 kev due to configuration mixing with the $i_{13 / 2}$ single particle state in the major neutron shell with $\mathrm{N}=83-125^{1,3)}$.

Fig. 1: Comparison of splitting of the octupole-multiplets arising from particle-core coupling in ${ }^{209} 3 ;,{ }^{143} \mathrm{Nd}$ and 147 Gd. The energies have been normalized to the energies of the corresponding core states.

In Fig. 1 the measured splitting in ${ }^{143}$ Nd is compared with the splitting of the octupole multiplet in ${ }^{209_{B i}}{ }^{4}$) with a doubly magic core, and in ${ }^{147} \mathrm{Gd}^{5}$) with a core of magic neutron and semi-magic protom numbers. Both levels have been seen in our previous experiment ${ }^{1)}$. In the present experiment we measured the 2804 keV state with

Fig. 2: ${ }^{143} \mathrm{Nd}\left(p, p^{\prime}\right)$ spectrut in the energy range from about 2 to 3 MeV.
better statistics covering the energy range up to E_{x} a 3.4 Mev. Fig. 2 shows a part of a sample spectrum taken with the new 90 ca long position sensitive detector ${ }^{6}$) in the focal plane of the magnet spectrometer BIG KARI. In this part of the spectrur the resclution was about 6 keV . For higher and lower excitation energies the resolution was worse by a factor of 3-4 because we did not yet work out an optimized set of H_{t} parameters for the correction of higher order aberrations. The measured angular distributions of both $13 / 2$ states and the 3^{-}state in the ${ }^{142_{N G}}$ core nucleus are shown in Fig. 3 .

Fig. 3 : Angutar distribution of the two $13 / 2^{+}$states compared to the octupole core state.

References

1) L. Trache et al., Ann. Rep. KFA-3ilich (1982) 2
L. Trache et al., Phys. Lett. B131 (1983) 285
2) W. Booth et al. Nucl. Phys. A238 (1975) 301
3) A.A.C. Kaasse, V. Paar, Nucl. Phys. A297 (1978) 45
4) J. Ugrin et al., Mat. Fys. Medd. Uan. Ved. Seisk. 38 (1971) no. 8
5) 6. Piiparinen et al., Z, f. Physik A309 (1982) 87
1) G.P.A. Berg et a1., Ann. Rep. KFA-Jilich (1982)

[^1]1.4. States at $\varepsilon_{x}=16-22 \mathrm{MeV}$ in ${ }^{8}$ Be excited in the

I. darozyk', A. Stradikowski ${ }^{+}$, B. Styozen ${ }^{+}$,
G.P.A. Berg, B. Brinkmbllex, G. Higoctsen,
A. Nagierat ${ }^{+}$, ग. Metiburger, W. Detert, D. Frasum,
E. von Rossen, d.G.N. Romer and J.L. Tain

The problem of the structure and especially of the isotopic spin assignment of the ${ }^{8}$ Be states with excitation in the region 16 to 19 MeV is a long standing and still brocdly discussed problemi). The investignation of exitation of this states in different cluster transfer reactions starting from the various entrance channels can shed light on this problem.

Two such reactions were measured using 78 MeV deuteron and $71.8 \mathrm{MeV}^{3} \mathrm{He}$ beams fron cyclotron JULIC namely ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right){ }^{8} \mathrm{Be}$ and ${ }^{11_{\mathrm{B}}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right)}{ }^{8} \mathrm{Be}$. In both cases different clusters (a-particle or triton) with different isospin are transfened.
The ${ }^{6} L i$ ions from ${ }^{12} C\left(d,{ }^{6}{ }_{L i}\right)$ were measured at few scattering angles $\theta_{1 a b}=10^{\circ}-30^{\circ}$ using two $\Delta E-E$ semiconductor counter telescopes for particle identification. A typical example of the measured spectrum is shown in fig. 1 . In the high excitation region the $16.63 / 16.92 \mathrm{MeV}$ doublet is observed. The 18.15 MeV state is weakly populated. A broad group of states around 19 MeV is excited with a consicerable cross section. No sign of excitation of the state at 17.64 MeV is visibie in the spectra.

Fig. 1: Sample spectrum of the ${ }^{12} C\left(d,{ }^{6}(i){ }^{8}\right.$ Be reaction

The spectra of ${ }^{6}$ Li of the ${ }^{11} B\left({ }^{3} H e,{ }^{6}\right.$ Li) reaction were measured by means of the magnet spectroneter BIG KARL for scattering angles $\theta_{\text {lab }}=8^{\circ}-42^{\circ}$. The ΔE gas $-E$ plastic counter telescope placed behind the position sensitive MWC detector in the focal plane allowed the particle identification. In fig. 2 the spectrun between 16 and 20 Mev excitation energies measured in two runs is shown for an angle $\theta_{1 a b}=10^{\circ}$. The different relative transition strengths to varicus ${ }^{8}$ be levels in both reac-
tions under investigation is evident. In order to get more infomation on the excitation mode calculations of the angular distributions in the CNBA framework are in progress.

Fig. 2: Sample spectrum of the ${ }^{1} 1_{B}\left({ }^{3} H_{e},{ }_{L i}\right)^{8}$ Be reaction

Reference

1) E.C. Barker, Nucl. Phys. 83 (1966) 48 V. Yamaya et al., Phys. Lett. 906 (1980) 219

* Institute of Physics, Jagellonian University, Cracow, Poland
${ }^{++}$on leave from the Institute of Physics, Jagelionian University, Cracow, Poland
1.5. Reaction Mechanism of the ${ }^{22_{\mathrm{Me}}(d, 6}, \mathrm{Li}^{18}{ }^{18}$ Reaction 7. Deten $a m$ G. Pozta

As part of a systematic study of the alphe transfer among nuclei of the sd shell the ($d,{ }^{6} L i$) reaction has been measured at a bombarding energy of 80 MeV on ${ }^{22}$ Ne. Angular distributions were obtained in an angular range of g° to 35° lab. In the framework of fifite-range Distortedwave Eorn Approximation (FR-DWBA) calculations alpha-spectroscopic factors were extracted. Experimental data and FR- BNEA analysis leading to spectroscopic information were presented in an earlier report ${ }^{1}$ and will be published ${ }^{2}$. Due to structure reasons and experimental limits qualitative comparison to sd-shell model calculations ${ }^{3)}$ can be made only for the low lying states with excitation energies iess than 4 MeV . Fig. 1 displays these results for the low lying states and shows that these rew

Excitation Energy (MeV)

Figure 1: Relative spectroscopic factors for the menbers of the ground state band in ${ }^{18} 0$. The full points (solid Tines) denote experimental (theoretical) spectroscopic factors relative to the ground state transition, the open point (dashed line) relative to the $20 \mathrm{Ne}-160 \mathrm{~g} .5$. transition.
lative spectroscopic factors for the 2_{I}^{+}and 4_{I}^{+}final states agree to shell model calculations within a factor of two relative to the ground state transition (full data points, solid tines for theory) and that the ground state transtion relative to the ${ }^{20} \mathrm{Ne}\left(\mathrm{d}, \mathrm{L}_{\mathrm{Li}}\right)^{16} 0_{9.5}$. transition is a factor of two smaller than predicted by the shell model calculations. Since the absolute cross sections are believed to be accurate within 20% the factor of two discrepancy seems to be significant at least for the comparison of relative experimental and theoretical results for the investigated system.

The strong collectivity of the low lying states suggests the neccessity of employing the coupled reaction channels formalism (CRC). Indeed an analysis in the framework of CC-DHEA resulted in rather good agreement between theore-

Figure 2: Influence of inclusion of difrerent reaction pathes to the one-step transition for the final 2^{+}state in 180 .
tical and experimental angular distributions in view of both the shape and the magnitude. Fig. 2 demonstrates the influence of two step pathes on the final 2^{+}state in ${ }^{18} 0$. Whereas the direct one step process (dashed line) leads to very low cross sections an increase of a factor of 20 is observed due to the contribution of the reaction path via the ground state transition followed by the inelastic excitation (dashedudotted line). Inclusion of the two step path wia the transfer to the 4^{+} state in ${ }^{18} 0$ (solid line) leads to a destructive interference and gets the cross section down, close to the experimental vaTues which are indicated by the dashed line underneath the solid line. Results of the CC-DWBA calculations are given in Ref. 4. In extension of the CC-DWBA calculation we tried to describe all three menbers of the ground state band in the CRC framework i, e, to describe the $0^{+}, 2^{+}$and 4^{+}states in 180 by the solution of the Schrodinger-equation systen of the coupled channel problem (including only two step contributions explicitly). Since the parameters entering into this type of calculations are mutually interdependent, effects of possible uncertainties are eventually qualitatively and quantitatively more sensitive and of stronger significance than in usual DABA calculations. Here we only can list such uncertainties, a more detailed discussion will be given elsewhere ${ }^{2)}$:
a) phases entering into the calculations have to be consistent among the different transfer spectroscopic amplitudes themselves as well as with the phases of the inelastic transition ones and, furthemore, with conventions used in the computer code for calculating the angular distributions,
b) absolute values of spectroscopic factors were calculated by a she 11 model code ${ }^{3)}$, however, the degree of reliability of these values is unknow,
c) optical model and bound state parameters are subject to considerable uncertainties for the simple DWBA as Well as (because of mutual interdependence even stronger) for the case of CRC calculations.

For the present CRC calculations spectroscopic amplitudes and phases were obtained using the shell model code of Chung et al, ${ }^{3)}$; the deformation parameters were selected from experimental results from the 1 iterature ${ }^{5-8)}$; the coupled channel code CHUCK ${ }^{9}$) was used; employing the coupJing scheme as shown in Fig. 3; and optical model and bound state parameters were employed as in the FR-DNBA calculations ${ }^{1,2) \text {, changing the radius parameter of the bound state }}$ from $1.56 \mathrm{~A}^{1 / 3} \mathrm{fm}$ to $1.65 \mathrm{~A}^{1 / 3}$ fm. The radius parameter of the deuteron optical potential was lowered to 1.15 fm according to the results of the analysis of scattering experiments ${ }^{10}$).

Figure 4 shows the results of the calculations and demonstrates that the experimental angular distributions for the $0^{+}, 2^{+}$and 4^{+}state in ${ }^{18} 0$ are well described in amplitude as well as in shape using the CRC formalism. However, two changes of parameters entering into the calculations were made: i) the phases of the spectroscopic amplitudes leading from the 2^{+}state in ${ }^{22}$ Ne to final states in 18_{0} were multiplied by -1 and ii) the potential depth of the real volume part of the $\sigma_{L i}$ optical potential for ${ }^{6}$ i $-{ }^{18} \mathrm{C}_{\mathrm{G}}$ g.s. was Jowered by 12% (not for the other states of $18{ }^{9} \mathrm{j}$). Both changes might have some physical justifiaction, which has to be investigated by further studies on the same and on different systems. In spite of these questions we nay conclude: Employing the rather complex CRC analysis good agreement between experimental results and theoretical predictions is observed. The spectroscopic factors predicted by shell model calculations prove to be very reliable in the sense that any significant change of one of the individuat transition strength did worsen and not inprove the simul-
toneous description of the data for the three menbers of the ground state band in the final nucleus 18_{0}.

Figure 3: Coupling scheme used for the CRC calculations.

References

1) A.G. Betigeri et al., Annual Report 1980, KFA-IKP, Jul-Spez-99, p. 26
2) W. Delert et al., to be published
3) W. Chung, Ph.o. thesis, Michigan State University, 1976, spectroscopic factor shell model calculations, using the computer code of w. Chung
4) W. Oelert and G. Palla, International Symposium; Osaka 1983, pp 420
5) H. Rebel et ai., Nuci. Phys. A182 (1982) 145
6) J.L. Escudjè et al., Phys. Rev. C10 (1974) 1645 and C11 (1975) 639
7) B.G. Harvey et al., Phys. Rev. 146 (1966) 712
8) R. Vandenbosch et al., Nucl. Phys. R230 (1974) 59
9) P.D. Kunz, Univ. of Colorado, code CHuCK, modiried by J.R. Comfort
10) 3.D. Childs et al., Phys. Rev. C10 (1974) 217, W.W. Daehnick et a?., Phys. Rev. C21 (1980) 2253

Figure 4: Experimental anguiar distributions of the (0,6 i) reaction leading to final states in iso compared to CRC calculations.
1.6. Excitation of $K^{\top}=2^{-}$Band States in ${ }^{20,22_{N e ~ v i a ~}^{n}}$ the ($d,,_{\text {Li }}$) Reaction
G. Pdita and w. Oetert

Recent analyses (preceding contribution and ref. 1)) have shown, that the strong collectivity of the low lying states illakes necessary to erploy coupled channels (CC) formatism in the intempetation of a-transfer reactions on sd-shell nuclet. In general both, one- and two-step processes feed a state contributing coherently to the reaction cross section and their interference effects, the magnitude and the shape of the angular distributions. The ${ }^{24,25} \mathrm{Mg}\left(\mathrm{d},{ }^{6}(i){ }^{20, ? 2}\right.$ Ne reactions leading to the low Tying rembers of the $\mathrm{K}_{2} 2^{-}$rotational band were analyzed by using a coupled charnel (CC) DWBA method (code CHUCK ${ }^{2}$). Experimentally the $J^{\top}=3^{-}$states $\left(5.61 \mathrm{MeV}\right.$ in ${ }^{20}$ Ne and 5.91 MeV in ${ }^{22}$ Ne) were strongly populated, the transitions to the unnatura] parity $\mathrm{J}^{\pi}=2^{-}$(4.968 MeV) and $J^{\pi}=4^{-}(7.004 \mathrm{MeV})$ states have been found to have medium yields in ${ }^{20} \mathrm{Ne}$ (in ${ }^{22}$ Ne they were not resolved) ${ }^{3)}$, even though the excitation of these latter transitions are forbidden via direct α-transfer in a zero-range approximation. Since the $\mathrm{B}(\mathrm{E} 2)$ transition strengths between the $3^{-}-2^{-}$and $3^{-}-4^{-}$states are large the excitation of these states were assumed to proceed primarily through multi step pathes.

The coupling schemes used in CC calculation are shown in the Fig's. Existing no strong inelastic coupling between the members of the ground state and $K=2^{-}$bands, in this calculation the $K=-2$ band is included explicitly only, the a-transfer transitions to the g.s. band members have been taken into account through the imaginary potential and have been investigated separatiy in a CC-analysis ${ }^{1)}$. For the α-cluster $2 N+L=7$ was used for the transitions to $\pi=-s t a t e s$ with $(s d)^{3}(0 p)^{-1}$ configurations. The transfer form factors were calculated in a zero-range approximation applying finite range correction and proper zero range nomalization. Potential paraneters used are the same as in ref. ${ }^{4)}$. The deformation parameters for the g.s. band were taken from inelastic scattering analysis and scaled according to BR. For the $K^{\pi}=2^{-}$band 25% larger s_{2} values were used ${ }^{5)}$. The angular distribution results are presented in fig. 1 and fig. 2 , the spectroscopic factors in table 1 including a corresponding SU(3) prediction ${ }^{6)}$. The experimental spectroscopic factors

Transition	${ }^{\text {m }}$ tr	s/s g.s.		
		$50(3)^{6)}$	CCBA	DWBA ${ }^{2}$
${ }^{24} \mathrm{Mg}{ }^{20} \mathrm{Ne}$				
$0^{+}+3^{-}$	3	2.65	3.06	3.81
$2^{+}+2^{-}$	3		0.35	
$2^{+}+4^{-}$	3		-1.1	
$2^{+} \times 4^{-}$	5		0.26	
${ }^{25} \mathrm{Mig}^{2}$ 2 ${ }_{\mathrm{Ne}}$				
$0^{+}+3$	3	0.50	0.5	2.44
$0^{+} \rightarrow 5^{-}$	5	0.99	-0.99	<0.2
$2^{+}+3^{-}$	3		-0.17	

Table 1: a-spectroscopic factors.

Figure 1: CC calculated and experimenta angular distributions for negative parity states in ${ }^{20} \mathrm{Ne}$.

Figure 2: Predictions of a coupled channel calculation compared to the experimental angular distribution for the 3^{-}states in ${ }^{22} \mathrm{Ne}$.
deduced by CC calculation are related to that of the ground state arising from $C C$ analysis regarding the g.s. band ${ }^{1) \text {. The results prove the justification of the assump- }}$ tion of a multi step reaction mechanism.

References

1) G, Pâlla, W. Dejert, Proc. of the Int, Conf. on Nuclear Physics, Florence, 1983, Vol. 1, pp 243
2) P.D. Kunz, Univ, of Colorado
3) W. Oelert et al., Phys. Rev. C22 (1980) 408
4) W. Oelert et al., Phys. Rev. C23 (1983) 73
5) D.K. 01sen et ai., Phys. Rev. Leti. 29 (1972) 1178
6) U.C. Vermeuten et al., Nucl. Phys. A361 (1981) 189
1.7. Proton-Hole States in Co-Isotopes Observed via the ($\mathrm{d},{ }^{3} \mathrm{He}$) Reaction
A. Maminov*, G.f.A. Berg, J. Bojowald, S. Gopat ${ }^{* *}$,
c. Hiowatson, S.A. Wortin, C. Wayen-Bmioke,
J. Heibourger, fi. Oelert, D. Faul, J.G.A. Röner,
U. Rogee, J.L. Main, P, Tupek, L, Zemto, R.B.M. Woy ${ }^{\dagger}$, P.W.M. GLoudemans ${ }^{+}$, S. Erant ${ }^{+\dagger}$, V. Padr${ }^{+\dagger}$, A, Vouk ${ }^{++}, V$, Lopco $^{++}$

The structure of the cobalt nuclei is interesting from a theoretical point of view, since, on the basis of the simple shell model; they are characterized by one proton hole structure in the $1 f_{7 / 2}$ shell. Therefore, we investigated the ($d,{ }^{3} \mathrm{He}$) reaction on Ni-isotopes leading to final states in Co. Experimental results of the ${ }^{\left.62_{\mathrm{Ni}(\mathrm{d},}{ }^{3} \mathrm{He}\right)}{ }^{61}$ Co reaction were presented earlier ${ }^{\mathrm{I}, 2)}$. Here we compare these data to theoretical predictions. The analys is of the ${ }^{58} \mathrm{Ni}_{\mathrm{N}}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{57} \mathrm{Co}$ reaction is in progress. Preliminary results are avaliable in the sense that the high resolution data taken with the magnetic spectrometer BIG KARL in the anguTar range of 3° to 25° are analyzed. The measurements of the same reaction in the scattering chamber are planned for the near future. The $\triangle E-E$ counter telescope technique is complementary necessary to obtain energy spectra over a wide excitation energy range and to ensure the absolute normalisation for the cross section measurement.
In the present anajysts of the ${ }^{62} \mathrm{Mi}\left(\mathrm{d}^{3} \mathrm{He}\right)^{61}$ Co reaction at $E_{d}=78 \mathrm{MeV}$ we in particular consider the importance of the finite range effects on the validity of the DHBA calculations at high energjes. At first, zero range calculations with the finite range effects taken into account by means of a local energy approximation have been perfomed using the code BWhCK 4^{3}) with a value of 0.77 fm for the finite range correction factor and deuteron optical potentials as extracted from the global set of Daehnick et al. . ${ }^{4}$. ${ }^{3}$ He potentials ($\mathrm{H} 1, \mathrm{H} 2$ and H 3) were cerived from Hyakutuke et ai. ${ }^{5}$) (which are all shallow potentials with $V_{2} \sim-108 \mathrm{MeV}$) and (H 4) from Shepard
 bound state parameter sets (PI and P2) were tested with these ${ }^{3}$ He potentials. Details on the individual parameters are given in Ref. 2. Figure 1 shows some examples of DWBA calculations employing the various potential combinations. It seems that the zero range approximation, with fitite range effects taken into account by the local energy approximation, canot reproduce all the tested angular distributions. Exact finite range calculations have therefore been performed using the code DWUCK ${ }^{3}$). Results of these calculations for four states are shown in Fig. 2, using a shallow potential (HI) as well as a deep potential (H4) for the $3_{\text {He particles. It is demonstrated that, }}$ by using the deep potential for the ${ }^{3}$ He particles, it is now possible to reproduce all of the four selected experimental angular distributions for the final levels in ${ }^{61}$ Co quite nicely. Full finite range DWBA calculations have therefore been performed for the excited states analyzed in cur work, using the DWLCK5 program and the deep potential for the ${ }^{3} \mathrm{He}$ particles.

Figure I: Results of zero range DrBA calculations together with a selection of experimental angular distributions.

Figure 2: Results of full finite range BlBA calculations together with a selection of experimental angular distributions. HI and 44 are Shallow and deep "he optical potentials, respectively.

Shell-model calculations for the systein ${ }^{62}$ Mi- 61 Co were performed in the model space:

$$
62_{1 N i}: f_{7}^{16} r^{6}+f_{7}^{15} r^{7} \quad 61_{\mathrm{Co}}: f_{7}^{15} r^{5}+4_{7}^{14} r^{7}
$$

where f_{7} denotes the $1 f_{7 / 2}$ orbit and r stands for any of the orbits $2 p_{3 / 2},{ }^{\prime} f_{5 / 2}$ and $2 p_{1 / 2}$. Both terms of the wave function of ${ }^{61}$ Co contribute to $\mathrm{f}_{7 / 2}$ pick-up, whereas the first term only contributes to pick-up of an r particle. The interaction has been obtained empirically from a fit to experimental excitation energies of $A=52-60$ nuclei ${ }^{7}$) Excitation of one $f_{/ / 2}$ particle into the upper fp-shell orbits is assumed in the model space. Figure 3 compares the experimentally observed level schene to the shell mo-

Figure 3: Calculated (shell model), experimental, and Calculated (PTQM) energy spectrm of ${ }^{61}$ Co for $7 / 2^{-}, 5 / 2^{-}$ and $3 / 2^{-}, 1 / 2^{-}$final states. Levels denoted by + have a very small spectroscopic strength. The experimental states are tentatively assigned to the theoretical levels.
del predictions together with further theoretical predictions of the particle-quadrupole phonon coupling. The association of the theoretical predicted levels to the experinentally observed ones is not unique and has been made on the basis of: excitation energy, known and/or detemined spin and parity assignment and predicted versus observed spectroscopic strengths.
The calculations for the energy spectrum of ${ }^{61}$ Co were perFormed by coupling a proton quasiparticle to the anhamonic quadrupole vibrational core, employing a Hamiltonian characterized by the $S U(6)$ syntinetry: the core nucleus 62_{Ni} is described in the $S U(6)$ quadrupole phonon mode 3 TOM, which is equivalent to the well known $\left[B M\right.$, and ${ }^{61} \mathrm{Co}$ is described in the Su(5) particle-quadrupole phonon coupling model PTQM, which is equivalent to IBFM. An explicite description of the evaluation of the energy spectrum of $61_{\text {Co }}$ is given in Ref. 2) and in references cited therein. The negative and positive parity spectra of ${ }^{61}$ Co obtained by diagonalization of the PTOM Hamiltonian are presented in Fig. 3 and in Fig. 4, respectively.

Figure 4: Experimental and calculated (P TQM) energy spectrum of ${ }^{61}$ Co for $1 / 2^{+}$and $5 / 2^{+}, 3 / 2^{\frac{1}{4}}$ and $11 / 2^{-}, 9 / 2^{-}$final states. Levels denoted by + have a very small spectroscopic strength. The experimental states are tentatively assigned to the theoretical levels.

Using PTOM wave functions of the low-lying states in ${ }^{51}$ Co and the TOM wave function of the ground state of ${ }^{62} \mathrm{Ni}$ we calculated the spectroscopic factors for the reaction ${ }^{62} \mathrm{Ni}\left(d,{ }^{3} \mathrm{He}\right)^{61} \mathrm{Co}$. The sums of the spectroscopic factors as functions of excitation energies are presented in Fig. 5. The spectroscopic information has been collected

Figure 5: Experimente] (solid lines) sum of spectroscopic strength versus excitation energy plotted for $\&=3,1,0$ and 2 transfers, compared to the predictions of she 11-7iodel calculations (dashed lines) and of the PTQM calculation (dotted lines).
for the individual 2 -transfers only, since experimentally a j-dependence is not detectable. For $z=3$ the she 11 model predictions are too small relative to the experimental values whereas the PTOM calculations show a very good agrement. Quantitatively the same is true for the $2=1$ results, where the shell model calculation fails to predict the observed occupation of the $p_{3 / 2}$ orbit.
For $x=0$ and $2=2$ transfers the shell model calculations are not suitable to predict strength because of the truncated model space. The agreenent between experimental data and PTOM calculations is also very reasonable, but obviously some additional states outside the configuration space of the present calculation appear for the $\ell=2$ transfer strength in the energy range considered.

For $\ell=5$ the PTQM calculations predict very small spectroscopic factors for the first excited theoretical states $11 / 2^{-}$and $9 / 2^{-}$which lie at about 1.5 MeV. The corresponding experimental states have not been detected most likely because of very low cross sections; however, preliminary results of the ${ }^{58} \mathrm{Ni}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{57}$ Co reaction revea $]$ in this energy region two relatively weakly populated states excited by $i=5$ transfer. Especially interesting theoretical challenge is posed by the fact that the experimental spectroscopic factor of the first $3 / 2^{-}$state at 1.028 MeV excitation energy is sizeably (spectroscopic factor $s=0.17$) larger than those of higher-lying $3 / 2^{-}$ states $\left(3 / 2^{-}\right.$state at $1.953 \mathrm{MeV}: \mathrm{s}=0.014 ; 3 / 2^{-}$state at $2.313 \mathrm{MeV}: s=0.017$). The adrixture of the high lying $p_{3 / 2}$ quasiparticle state into the first $3 / 2^{-}$wave function is naturally small; in our PTQM wave function the $[j, n i ; J\rangle=1 p_{3 / 2}, 00 ; 3 / 2 ;$ component (the quasiparticle j and the n-phonon state of angular momentum I are coupled to the total angular momentum J) amounts to less than 2%. Taking into account low
occupation probability of the $p_{3 / 2}$ state $(n 0.1)$ the spectroscopic factor due to this component would result in a spectroscopic factor $S_{\rho_{3 / 2}} \approx 0.002$; which is two orders of magnitude below the experimental value. However, due to further terms in the PTOM transfer operator, we get a sizable contribution to $S_{p_{3 / 2}}$ from the dominant component $\mid f_{7 / 2}, 12 ; 3 / 2>$, this one phonon multiplet component amounts to 90% of the nomm of the wave function.

On the other hand, due to more scattered components in the wave functions of higher-lying $3 / 2^{-}$states (as in the neighbouring nuclei) the total contribution to $S_{p_{3 / 2}}$ is smaller.

Thus, PTQM in a physically transparent way accounts for interesting pattern of the spectroscopic factors of $3 / 2^{-}$ states, which at the first sight contradicts to the par-ticle-core concept.

References

1) A. Marinov et al., Annual Report 1982, KFA-Ikp, JiilSpez 202, p. 8
2) A. Marinov et al., to be published in Nuct. Phys. A
3) P.D. Kunz, computer codes DWUCK, Univ. of Colorado, Boulder, unpublished
4) W.W. Daehnick et al., Phys. Rev. C21 (1980) 2253
5) M. Hyakutake et al., Nucl. Phys. A333 (1980) 1
6) J.R. Shepard et al., Phys. Lett. 56B (1975) 135
7) R.B.M. Mooy and P.W.A. Glaudemans, Z. Phys. A3I2 (1983) 59

* The Hebrew University of Jerusalem, Israel
** University of Mysore, India
+ Rijkstiniversitejt, Utrecht, The Netherlands
t+ University of Zagreb, Yugoslavia
1.8. Inelastic two-step processes in singie-nucleon transfer reactions
G. Palta, in. Celent, A. Djaloets, E. Tunek, ond L. Zemio

The role of two-step processes in single-nucleon transfer of different type, namely, neutron and proton transfer in both of pick-up and stripping reactions on $28_{5 i}$ target is revealed. A complete measurement is in progress undertaken concerning the reactions ${ }^{28} \mathrm{Sj}(\mathrm{d}, \mathrm{x})$,
$x=d, d^{\prime}, \tau, t ;{ }^{2 \delta_{S i}(\tau, y), y=\tau, \tau^{\prime}, d, a}$ and ${ }^{2} S_{S i}(a, z)$, $z=\alpha, \alpha^{\prime}, \tau, t$, which should offer an excellent possibility to show the importance of the higher-order transfer processes involving inelastic transitions of quadrupole nature preceded or followed by a transfer step. The data are analysed in the framework of the coupled channels reaction theory, the spectroscopic amplitudes needed in analysis are calculated, using the code CHUCK ${ }^{1)}$ and the SM-code from Chung et al. ${ }^{2)}$, respectively.

References

1) P.B. Kunz, University of Colorado
2) W. Chung et al., Phys. Lett. 798 (1978) 381
1.9. Observation of the 1.6 MeV level in ${ }^{9} \mathrm{~B}$
A. Dialoese, j. Bojowata, G. Paić*, and B. Antolkovis*
In spite of mumous experimental endeavours ${ }^{1-5}$) to measure the parameters of the ${ }^{9} 8$ state analog to the first excited $1 / 2^{+} E_{X}=1.68 \mathrm{MeV}$ leve? in ${ }^{9} \mathrm{Be}$, its existence has so far not been clearly demonstrated ${ }^{6)}$. Although anomalous structures have been observed in the right region of ${ }^{9} B$ excitation, it was always possible to explain the features in an alternative manmer, and not as a state ${ }^{3,4)}$. This is mainly due to the fact that the searches are generally based on the analysis of inclusive spectra where the continuum yields due to three- and four-body breakups may add to the discrete spectrum and could in principle obscure the state in question.

Details of the experiment and some preliminary results have been presented previously". Figure 1 shows a "clean"

Figure 1: "Clean" triton spectrutio (i.e. after subtraction of a linear background front the ${ }^{9}$ Be ($\left.3 \mathrm{He}, \mathrm{t}\right)^{9} \mathrm{~B}$ reaction at 90 MeV . The dashed, dotted-dashac and dotted curves represent, respectively, the $1.6,2.36$ and 2.79 MeV peaks as obtained by the fitting routine.
spectrum (after subtraction of a linear background) at. $\theta_{\text {Lab }}=7^{\circ}$. The existence of two peaks, ane on each flank of the 2.36 MeV level is clearly cemonstrated. The clean spectrum was subjected to an automatic fitting program. In this procedure, the respective centroid positions E_{C} of the states at $E_{x}=2.36$ and 2.79 MeV were fixed from the known energy calibration. The observed width Γ_{0} of the 2.36 Mev state was assumed to be given by the experimental resolution $\Gamma_{\text {exp }}$, taken to be equal to the observed width of the ground-state peak. The other three quantities (i.e. E_{c} and Γ_{0} of the 1.6 MeV and T_{0} of the 2.79 MeV state) were treated as free parameters and determined from the optimum fit by the fitting routine.
From the analysis of spectra taken at $7^{\circ}, 8.5^{\circ}$ and 10° the extracted centroid position and natural width Γ (where $\Gamma^{2}=r_{0}^{2}-\Gamma_{e x p}^{2}$) of the 1.6 Hey state are $1.65 \pm 0.03 \mathrm{MeV}$ and $1.0 \pm 0.2 \mathrm{MeV}$, respectively, while the width of the
2.79 MeV level is found to be $0.66 \pm 0.06 \mathrm{MeV}$. It should be noted that the quoted errors are considerably larger than the estintated uncertainties introduced by assuming different background shapes in the analysis of the $\theta_{\text {Lab }}=7^{\circ}$ spectrum.
The centroid positions of the peaks are corrected for the shift introduced by the fact that the Breit-Wigner shape of the resonance is affected (according to the Fermi's Golden Rule) by the phase space of the paricular multiparticle final state to which the structure of the state helongs. The analytical expression for the shift (for a resonant state measured via a reaction channel involving a threebody final state) has been given by Delbar ${ }^{8)}$. Assuming a $p^{8}{ }^{8} \mathrm{Ba}(\mathrm{a}+\mathrm{a})$ structure of the ${ }^{9}$ B I. 6 MeV level, the shift (calculated in accortance with the theory for the analog ${ }^{9}$ Be state ${ }^{9}$) is found to be -36 keV , bringing the resonance energy of the first excited level of ${ }^{9} \mathrm{E}$ to $E_{x}=1.61 \pm 0.03 \mathrm{HeV}$. The width of the level remains $\Gamma=1.0 \pm 0.2 \mathrm{MeV}$ since this is not significantiy affected by the correction. The position of the state, as extracted from the present experiment, is very close to those detemined in earlier attempts ${ }^{1-5}$) judged inconciusive so far. The width for the 2.79 MeV level is in excellent agreement with that quoted in Ref. 5.

References

1) G.D. Symons and P.B. Treacy, Phys. Lett. 2 (1962) 175
2) E. Terranishi and B. Furubayaki, Phys. Eett. 9 (1964) 157
3) E.F. Farrow and H.J. Hay, Phys. Lett. 11 (1964) 50
4) J.J. Kroepfl and C.P. Browne, Nucl. Phys. A108 (1968) 289
5) G.C. Ball and J. Cemy, Phys. Rev. 177 (1969) 1466
6) F. Ajzenberg-Selove, Nuci. Phys. A320 (1979) I
7) A. Ojaloeis, J. Bojowald, G. Paic and B. Antolkovic Annual Report 1982, IKP-KFA Jülich, Jü-Spez-202 (1983) 22
8) Th. Delbar, Thesis, Université de Louvain, Louvain-laNeuve, Belgitum, 1981 (unpublished) and Th. Delbar, Gh, Gragoire, B. Antolkovic and G. Paic, to be published
9) W. Zahn, Nucl. Phys, A269 (1976) 138

[^2]1.10. Relative contribution of a-particle and ${ }^{4} \mathrm{H}-$ like fragment transfers in ${ }^{11} \mathrm{~B} \div{ }^{3} \mathrm{He}$ systems

G.P.A. Berg, E. Brenkmoter, G. HIcoatiseh,
A. Magiera ${ }^{+\dagger}$, J. Heisoburger, W. Detert,
D. Prabunn, P. v. Rossen, J.G.4. Romar and
J.L. Taine

Observation of ${ }^{7} \mathrm{Be}$ and ${ }^{7} \mathrm{Li}$ reaction products from the transfer reaction in the ${ }^{1 I_{B}}+{ }^{3}$ He system allows to study the relative contribution of different clustering models: the $\alpha-$ or ${ }^{4} \mathrm{H}$-cluster transfer as shown in fig. 1.

Fig. I: Possible reaction channets in ${ }^{11} B+{ }^{3}$ He: a- or er-cluster transfer: left side, respectively right side

The experiment was perforined at the cyclotron Julic using the ${ }^{3}$ He beam at $E_{7 a b}=71.8 \mathrm{MeV}$. Detection of the emitted ${ }^{7} \mathrm{Li}$ and ${ }^{7}$ Be nuclei by means of the BIG KARL magnet spectromater allowed the separation of the ground state transition from that leading to the first excited states of ${ }^{7} \mathrm{Li}$ or ${ }^{7} \mathrm{Be}$. Identification of ${ }^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Be}$ particles in the focal plane of the spectrometer was performed using a $A E$ (gas) - E(plastic) telescope placed behind the MUPC position sensttive detector. For some angles the transition with the simultaneous excitation of both muclei was also observed although with much lower cross section. An example of the measured spectra is shown in fig.?

Fig. 2: ${ }^{7} \mathrm{Li}$ spectrum of the ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{7}(i)\right)^{7} \mathrm{Be}$

The preliminary results for the measured angular distributions in a wide angular region (up to $\approx 80^{\circ}$ for ${ }^{7} \mathrm{Li}$ and 60° for ${ }^{7} \mathrm{Be}$) are presented in fig. 3 for the ground and the first excited state. The absolute cross sections were detemined using the ${ }^{11} B+3^{3}$ elastic scattering data for the nomalisation.
t. Institute of Physics, Jagellonian University, Cracow, Poland
++ on leave from the Inst. of Phys. Jagellonian University, Cracow, Foland

As expected it was found that the cross sections for the a transfer are by about an onder of magnitude larger than for the transfer of the ${ }^{4} H$ fragment. The results will be analyzed in the couphed reaction channels (CRC) formalism as single step transfer or sequential and simultaneous two subcluster transfer.

Fig. 3: Measured angular distribution in the $\left.{ }^{11} 81^{3} \mathrm{He},{ }^{7} \mathrm{Li}\right)^{7} \mathrm{Be}$ and $1_{B}\left({ }^{3} \text { He, }{ }^{7} \mathrm{Be}\right)^{7}$ in reactions

Besides being interesting on its own the investigated reaction is one step of the possible two step transfer processes into which the ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{7} \mathrm{Be}\right)^{7} \mathrm{Li}$ reaction ${ }^{1)}$ could be split as seen from fig. 4.

Fig. 4: Possible two. step transfer in ${ }^{12}$ ((a, $^{7}{ }^{7}$ Be $)^{7}$ Li
The spectroscopic information on this amalysis will be used in the CRC calculation to normatize this contribution to the two step processes of the 5 nucleon transfer in ${ }^{12} \mathrm{C}\left(4,{ }^{7} \mathrm{Be}\right){ }^{7} \mathrm{Li}$. The ${ }^{3} \mathrm{He}$ energy of $\mathrm{E}_{\text {lab }}=71.84 \mathrm{Mev}$ was chosen to match the deuteron energy $E_{\text {lab }}=78 \mathrm{McV}$ in the ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{7} \mathrm{Be}\right){ }^{7} \mathrm{Li}$ experiment in order to obtain the same center of mass energy in the exit channel of the $H_{B}+{ }^{3}$ he systen.

Reference

1) L. Jarczyk, B. Kamys, A. Strzalkowski, B. Styczen, G.F. A. Berg, G, Hlawatsch, H. Hïrlimann, I. Katayama, J.L.

Tain, J. Meibburger, W, Delert, J.G.M. Römer, A. Magiera and J. Krug, Annual Report 1982 , IKP'KFA Utilich, vil-Spez 202 (1983) 14
1.11. High $£$ ying $\mathrm{T}=3 / 2$ Analog States in ${ }^{13} \mathrm{C}$ via the ${ }^{14} \mathrm{C}\left({ }^{3}{ }^{3} \mathrm{He}, \mathrm{a}\right)^{13} \mathrm{C}$ Reaction
J.G.IS. Römer, G.P.A. Berg, B. Brintomlter, F. Einterberger ${ }^{\dagger}$, A. Hlountsoh, A. Wagiert, i. Heissburger, W. OeZeri, D. Fout, D. Prasuhn, P. von Foseen, i. $\overline{\text { E }}$. Tain
In order to explore the rather unknown region ${ }^{1)}$ of excitation energies above the first $T=3 / 2$ analog state at $E_{x}=15.10 \mathrm{Mey}$ in ${ }^{13} \mathrm{C}$, we started an investigation of the spectrum of $\mathrm{T}=1 / 2$ states in the region of this lowest $T=3 / 2$ state in ${ }^{13} \mathrm{C}$ and other $\mathrm{T}=3 / 2$ states. Due to the relatively long lifetime, the widths of the $\mathrm{T}=3 / 2$ states are very narrow compared to the $T=1 / 2$ states.

The experiment was performed using the high resolution magnet spectrometer BIG KARL ${ }^{2)}$ with the variable dispersion set to $14.8 \mathrm{~cm} / \%$. The dispersion of the beam line operated in dispersive mode was matched to the spectrograph's dispersion. This allowed to open the beam line sfits and to obtain the relatively high bean current of 40-50 nA, which corresponds to about 5% transmission through the monochromator without loosing resolution. The solid angle was ds $=1.6 \mathrm{~ms}$. limited by a strong $\mathrm{R}_{345}{ }^{-}$ tern of the spectrograph. The possible correction of this temm, which would have allowed an opening angle of 2.5 msr, was not carried out since this would have taken one day of beam-time. For position detection, angle measurements and particie identification, independent detectors were used:

1. In the focat plane a 0.8 cm thjck milti-wire drift chamber (MiwEC) ${ }^{3)}$ with an active area of $90 \mathrm{~cm} \times 8 \mathrm{~cm}$ was used for position measurements horizontally and vertically.
2. A 3.5 cm thick $\Delta E_{\text {gas }}$-counter for energy-loss signals.
3. At a distance of 18 cm behind the first counter, a second MUDC for horizontal position measurements allowed to define the angle of the particle track in the focal plane.
4. A 0.5 cm thick ΔE-plastic scintillation counter ${ }^{\text {4 }}$) provided light outplit signals.
5. An E-plastic scintillation counter was used as an anticoincidence counter to suppress the high background from ${ }^{3}$ He break-reactions.
Single charged ${ }^{3}$ ke ${ }^{1+t}$ particles were suppressed by a stripper foil inserted between both dipoles of the spectrograph.
With this arrangement we measured an angular distribution from ${ }_{7 a b}=13^{\circ}$ to 46° in the excitation energy range $E_{x}=14.5-20 \mathrm{MeV}$ at an incident energy of 68 MeV . A typical spectrum is shown in fig. 1. Special care was taken to correct for nonlinearities of the MWDC and its drifttime calibration. Energy calibration was done using ${ }^{12} \mathrm{C}$ and ${ }^{28}$ Si targets. The data analysis is in progress, we acknoledge the fabrication of the ${ }^{14} \mathrm{C}$ target. by H.J. Maier from the University of Munich.

Figure 1: Sample spectrum of the ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{13} \mathrm{C}$ reaction.

References

1) Ajzenberg-Selove, Nucl. Phys. A360 (1981) 1
2) S.A. Martin, A. Hardt, J. Meissburger, G.P.A. Berg, U. Hacker, H. Hürl imam, U.G.M. Röner, T. Sagefka, A. Retz, O.K.B. Schult, K.L. Brown, K. Halbach, Nuch. Instr. \& ileth. 214 (1983) 281
3) G.P.A. Berg, P. von Brentano, B. Brinkmöller, G, Hlawatsch, J. Meissburger, G.F. Moore, D. Paul, J.G.M. Römer, M. Rogge, S.J. Seestrom-Norris, J.L. Tain, L . Zemio, IKP Annual Report 1982, Jui-Spez 202, p. 116 and D. Paul, Diplomarbeit (1983), University Münster
4) G. Muller, G.P.A. Berg, A. Hardt, H.J. Kelleter, S.A. Martin, J. Meissburger, A. Retz, Jul-Spez 84 (1980)
${ }^{+}$Institut fuir Strahlen- und Kernphysik, University Bonn, F.R. Gemany
1.12. Measurements of electron capture and stripping cross sections for $\mathrm{Al}, \mathrm{Ni}, \mathrm{Ag}$ and Au targets at 68,99 and $130 \mathrm{MeV}{ }^{3}$ lie beams
I. Katayana ${ }^{+}$, G.P.A. Berg, G. Gaut ${ }^{++}$, A. Basai ${ }^{+++}$,
IV. Hzelimann*, S.A. Mortin, J. Hetrovicger,
7. Detant, M. Rogge, A. Reta, J. G.M. Romer, J. I. Tain and L. Zemzo ${ }^{\text {Bi }}$

In our previous work ${ }^{1,2 \text {) we have shown: }}$

1) electron striping cross sections ${ }_{s}$. for ${ }^{3} \mathrm{He}^{1+}$ of 68 , 99 and 130 MeV in C, N and he are well exlained by Giliespie's Born approximation calculation,
2) the projectile velocity dependence of σ for Ar, however, shows the systematic deviation ${ }^{2)}$ from the calculation and
3) electron capture cross sections ${ }^{5}$ for ${ }^{3} \mathrm{He}^{2+}$ of the same energies in C, N, he and Ar are close to the calculations by the present electron capture theories, but the velocity dependence in the region of $v_{1}=30-40 v_{0}$ ($v_{i}: 3^{3}$ He projectile velocity and v_{0} : velocity in atomic units) cannot be explained by any theorie . We measured $\sigma_{s}\left({ }^{3} \mathrm{He}^{1+} \rightarrow \mathrm{He}^{2+}\right)$ and ${ }_{c}\left({ }^{3} \mathrm{He}^{1+} \rightarrow{ }^{3} \mathrm{He}^{2+}\right)$ on Al , Ni, Ag and Au targets of different thicknesses at 68, 99 and $130 \mathrm{MeV}{ }^{3}$ He energies using the beam of the cyclotron UULIC focussed on a target in the scattering chamber of the magnetic spectrograph BIG KMRL ${ }^{3)}$. Details of the beam transport and geometry of the experiment have been described in ref. 1). The 40 targets were mounted on a multiple target drive ${ }^{4}$ and remotely controlled to change the position one by one. A^{242} Th a source and a Si surface barrier detector were mounted just above the beam position so that we could measure the energy loss of 6 MeV a particles in the target foils without breaking the vacuum. The thickness of the carbon backings on which most of the targets were evaporated was determined by measuring the elastic scattering yield of the $68 \mathrm{MeV}{ }^{3} \mathrm{He}$ particles at $\theta_{\text {lab }}=8^{\circ}$. where the carbon elastic line is clearty separated from $\mathrm{Al}, \mathrm{Ni}, \mathrm{Ag}$ and Au lines. Using energy loss caiculations the thickness of the 40 targets was detemined. The results show a good agreenent within $10:$ with those from target weighting method. The ${ }^{3}$ he ${ }^{1+}$ yield from the targets was analyzed by the magnetic spectrograph BIG KARL at $\theta_{\text {lab }}=0^{\circ}$. The beam current was monitored using another Si surface barrier counter.

As a typical result of present experiment the thickness dependence of the ${ }^{3} \mathrm{He}^{1+}$ yield from A_{g} is shown in fig. 1. The curves are fitted by a least square fit to $y=y_{0}\left(t_{0}\right) x$ $e^{-\sigma_{s} t_{+}} N\left(\sigma_{c} / \sigma_{s}\right)\left(1-e^{-\sigma_{s} t}\right)$, with $y_{0}\left(t_{0}\right)$ the ${ }^{3} \mathrm{He}{ }^{1+}$ yield from the carbon backing and estimated from previous results ${ }^{I)}$, t_{0} the thickness of the carbon backing, N the beam intensity and t target thickness. The results for σ_{s} at $E_{3}{ }_{3}=130 \mathrm{MeV}$ as function of the target atomic number Z_{t} are shown in fig. 2. The present results are quite well explained by the Gillespie's calculation for C, N, Ne, Al and Ar. We observe deviations for Mi, Ag and $A u$ which are accorcing to Gillespie ${ }^{5}$) due to inaccuracies of the wave functions.

Fig. 1: ${ }^{3} \mathrm{He}{ }^{\mathrm{i}+}$ yield in units of manoseconds (nC) as function of the thickness of the Ag target

Fig. 2: Stripping cross section os as function of the target atomic number Z_{t} at 130 MeV 3e

Preliminary experimental results for the electron capture ${ }^{0} c$ are show in fig. 3. The projectile velocities of $30-40 v_{0}$ are not sufficiently high to expect K shell capture in ${ }^{3}$ He atoms from N, Ag and Au atoms. These data will be compared to current theoretical models.

Fir. 3: Preliminary results of the measured and calculated electron capture cross sections oc for various targets with atomic number $Z t$. For the calculations see ref. 2.

References

1) I. Katayama, G.P.A. Berg, N. Hurlimanm, S.A. Martin, J. Meissburger, W. Delert, M. Rogge, J.G.M. Romer, 1. Fain, B. Styczen and G, Gaul, Fhys. Lett. 92A (1982) 385
2) I. Katayama, G.P A. Berg, W. Hirlimann, S.A. Martin, J. Meissburger, W. Delert, M. Rogge, J.G.M. Römer, J.L. Tain, L. Zemio and G. Gaul, J. Phys. B: At, Mol. Phys. 17 (1983) 123
3) S.A. Martin, A. Hardt, J. Meissburger, G.P.A. Berg, U. Hacker, W, Hürlimann, J.G.M. Römer, T. Sagefka, A. Retz, 0. H. B. Schult, K.L. Brown and K. Halbach, Fikuci. Instr. Meth. 214 (1983) 281
4) W. Briell, D. Gros, A. Retz, U. Rindfleisch, H. Schwan, Annual Report 1982, IKP-KFA, Juil-Spez 202 (1983) i31
5) Gillesple (1983), private commication

+ RCNF, University of Osaka, Japan
t+ Institut fur Kernpnysik, Universität Münster
t++ Faculty of Engineering, University of Hiroshima, Japan
* Present address: Motor Columbus, Baden, Switzerland
1.13. The ${ }^{90} \mathrm{Zr}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{90} \mathrm{Nb}$ reaction and the Gamon-Teller strength
> I.L. Foin, G.P.A. Berg, B. Bminknoller, G.

> Alauateoh, A. Hagiema, J. Meikburger, W. Oeteri, $J \cdot G, M$. Romen and G. Sondermorn ${ }^{+}$

There existsa considerable amount of experimental information on the localization of the Gamow-Teller (GT) strength in medium and heavy nuclei mainly from the (p, n) charge exchange reaction. In 90 Zr a discrepancy exists between the (p, n) reaction ${ }^{1)}$ and the (${ }^{3} \mathrm{He}, t$) reaction ${ }^{2}$) where the structure of the bump above the isobaric analog state (IAS) is seen to be composed of two parts. The lower part is identified as GT from the shape of the angular distribution and has an excitation energy considerably smaller than reported in ref. 1.
To clarify this discrepancy we measured the ${ }^{90} \mathrm{Zr}$ (${ }^{3}$ He,t) ${ }^{90} \mathrm{Nb}$ reaction using the highest incident beam energy $E_{3 \mathrm{He}}=135 \mathrm{MeV}$ from the cyclotron JULIC. In order to measure at small scattering angles with good energy resolution we used the magnetic spectrograph BIG KARI. The position spectra of the momentum anatyzed particles were measured with the 30 cm multi-wire proportional chamber (MPC). A dispersion of $D=-4 \mathrm{~cm} / \%$ was used to obtain the large energy range of $\Delta E_{X}=12 \mathrm{MeV}$. The resolution of 180 keV was mainly limited by the target thickness of $4.2 \mathrm{mg} / \mathrm{cm}^{2}$. A sarple spectrun is shown in fig. 1.

Fig. 1: Triton spectrum of the ${ }^{90} Z r\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ reaction at 7°. Spin-parity and excitation energies of some identified peaks are indicated. The dashed line represents the extracted linear background under the GT bump.

The broad bump above the strong IAS and some of the Iow lying $\left(\pi g_{g / 2} \quad v g_{g / 2}^{-1}\right)$ states are clearly seen. AThough there is some structure in the bump it is not clear, that there are two pares with different angular distributions in the measured range from $\theta_{1 a b}=3^{\circ}$ to $\theta_{1 a b}=9^{\circ}$. The centroid of the broad structure is ~ 8.3 Mel and the width is $\because 4.5 \mathrm{Mey}$ in agrement with the result of ref. 1.

The measured angular distribution is shown in fig. 2 togethen with the angular distribution of the low lying $1^{t}, 2^{+}, 3^{t}$ states and the IAS. The smilarity between the angular distribution of the broad structure and the low lying 1^{+}state confirms that it contains mainly GT strength.

The reaction mechanism of the (${ }^{3} \mathrm{He}, \mathrm{t}$) reaction is not fully understood. Knock-on exchange ${ }^{3 \text {) }}$ and two-step contributions ${ }^{4}$) are assumed to be important. A better understanding is essential if one wants to use the (${ }^{3}$ He, t) reaction as an effective spectroscopic tool. Therefore we were also interested in studying the reaction mechanism at the present inctitent energy of 135 MeV . The ${ }^{90} \mathrm{Zr}$ target is well sulted for such studies since the structure of the strongly populated states is simple. Here we assumed the confipuration ($\pi \operatorname{ig}_{g / 2}$ vig $g_{g / 2}^{-1}$) while
 OWBA description with a 3 He-rucleon folded type interaction. Caiculations were carried out with the code DWBA83 ${ }^{5}$) Optical model potentials were taken from Djaloeis et a1. ${ }^{6}$). The shapes of the calculated angular distributions were sensitive to the choice of the optical potential. The best fitswere obtained with the shallow potential family with volume absorption of ref. 6 , The effective ${ }^{3}$ He-nucleon interaction was taken from ref: 4 , The results are show as solid curves in fig. 2 and are nomalized to the data. The nomalization factors $N(N=$ ${ }^{\text {exp }} / \sigma_{\text {calc. }}$. needed are: $N_{\text {iAS }}=4, N_{2}+=2.5, N_{1}+=N_{3}+=$ $0.6, \mathrm{~N}_{\mathrm{GT}}=1.4$.

Fig. 2: Experimental and calculated angular distributions for the GT bump and some of the measured states. Theoretical curves are nomalized to the experimental points. For the meaning of the different curves see the text.

For the naturai parity states another more realistic effective central interaction was also used. It was obtained by folding the Paris effective nucleon-nucleon interaction ${ }^{7}$) with a Gaussian 3 -rucleon wave function. The folding was done analytically by converting the Yukaw type Paris interaction into an equivalent Gaussian interaction. The calculations are shown as dashed curves in fig. 2. The renomalization factors are $\mathbb{N}_{\text {IAS }}=3.7$, $N_{2}{ }^{+}=2$, similar to those with the simpler interaction.
The effects of the approximate inclusion of knock-on exchange are under investigation.

References

1) D.E. Bainum et ā., Phys. Rev. Lett. 44, 1751 (1980)
2) D. Ovazza et a7., Phys. Rev. 18C, 2438 (1978)
3) R. Schaeffer, Nucl. Phys. A158, 321 (1970)
4) C. Gàarde et al, Nucl. Phys = A334; 248 (1980)
5) J. Raynal, DWEA Computer Code (unpublished), modified version by H.U. von Geramb and L. Pikus
6) A. Djaloeis et ai., Nuci. Phys. A306, 221 (1978)
7) N. Anantaraman et ā., Nucl. Phys. A398, 269 (1983)

[^3]1.14. Study of giant resonances in small angle a scattering experiments
H. ․ Woneh, P. Decowski, A. Rogge, P. Turek, L. Zento, G.E.A. Berg, d. Meiburgen ard d.G. it. RCME1*
We have completed our study ${ }^{1}$) of giant resonances in ${ }^{208} \mathrm{pb}$ in small angle a scattering in the angular range $1.5-8^{\circ}$ using the magnetic spectrometer BIG KARL. The spectra reveal a rather complicated structure of giant resonances with excitations of quite different multipolarities. The resulting multipole strength distributions for even multipolarities are given in fig. I, details are discussed in ref. 2.

Figure I: Multipole strengin distributions for even multipolarities in 208 Pb obtained from our andysis in comparison with a $7^{0}\left(a, a^{\prime}\right)$ spectrum. The odd multipole strength is located mainly between $E_{x}=15$ and 25 MeV .

Further, we have investigated the experimental conditions for 0° measurements in BIG KARL. Since for giant resonance experiments ${ }^{2}$) a smat dispersion is used (2-3 cmp/100\% 40) it is not possible to let the primary beam completely through the spectrometer system because the last quadrupole is strongly defocussing in Y direction. we have tested whether it is possible to catch the beam on a carbon block between the two dipole magnets. We found experimental conditions under which the last cross over is rather close to the place where we stop the beam, Measurements on ${ }^{12} \mathrm{C}$ and ${ }^{208} \mathrm{~Pb}$ targets have shown that we can cut the inelastic spectrum at excitation energies ≤ 4 MeV without much disturbing the higher energy spectum. We expect that the remaining background can be cut by retracing the particle trajectories.

References

1) H. P. Morsch, P. Decowski, M. Rogge, P. Turek, L. Zem?o, G.P.A, Berg, J. Meibburger, J.G.M. Römer and J.L. Tain, Annuat Report 1982, IKP, KFA Julich, dull-Spez-202 (1983) 15
2) H.P. Morsch, P. Decowski, R. Rogge, P. Turek, L. Zemło, S.A. Martin, G.P.A. Eerg, W. Hülimann, J. Mei Bburger and J.G.M. Röner, Phys. Rev. C28 (1983) 1947
1.15. Study of the (${ }^{3}$ He,t) charge exchange reaction at $E_{3 \mathrm{He}}=135 \mathrm{MeV}$
H.F. Morsch, F. Decouski, G.P.A. Berg, J. \bar{L}. Tain, M. Rogge, ?. Twek, L. Zemio, j. Neibbuger anà J.G.l. Romer

We continued our efforts ${ }^{1}$) to study the (He, t) reaction on heavy nuclei. The main aspects of this investigation are a) excitation of the isobaric analog state (IAS), b) study of the Gamow-Teller (GT) resonances and c) isovector giant resonances at higher excitation energies. Experiments were performed at triton angles $0^{\circ}-5^{\circ}$ using the magnetic spectrometer $\overline{B I G} K A R E$. At 0^{0} the primary beam was stopped on an aluminum plate inside the first dipole magnet of the spectrometer. (${ }^{3} \mathrm{He}, \mathrm{t}$) spectra for ${ }^{120}$ Sn and 208_{Pb} taken at 0° are shown in fig. 1 . The excitation of the IAS and the underlying GT-resonance is clearly seen on top of a continuous background.

Figure 2: 0^{0} spectra of the (F e, t) reaction on ${ }^{120} \mathrm{Sm}$ and 2TePb. Background and GT resonance fits are indicated.
a) Excitation of the IAS

This is related to the study of nuclear denstifes, in particular of the neutron excess density in heavy nuclei. Information on neutron densities has been recently extracted fron 0.8 and 1 GeV proton scattering ${ }^{2-5}$) and also from a scattering. More details on protonneutron density differences may be obtained in a reaction in which only the neutron excess contributes. Further this reaction should have a different sensitivity to nuclear tnterior and surface parts. Both of these requirements are fulfilled in the (${ }^{3} \mathrm{He}, \mathrm{t}$) charge ex-

Figure 2: Differential cross sections from the (${ }^{3} \mathrm{He}, \mathrm{t}$) reaction exciting the IAS in comparison with DWBA calculations. Solid lines: best fit description, for ${ }^{208 p b}$ this is identical to the use of the neutron density of ref. 3; dot-dashed lines: $\rho_{n}(r)=\rho p(r)$ and dashed Iines: older Los Alamos neutron densities from ref. 2.
change reaction exciting the IAS. Angular distributions for ${ }^{120}$ sn and ${ }^{208} \mathrm{pb}$ are given in fig. 2 , they show the strong cross section rise at 0° typical of $\mathrm{L}=0$ excitation. The data have been analysed within a DNBA approach using folding type form factors. For the effective isospin interaction a Gaussian form with a range of 1.68 fm was used. The strength is obtained from the (β, n) reaction at the same energy per nucleon of $45 \mathrm{Mev}{ }^{6)}$. The data could be well described by use of microscopic and macroscopic transition densities. In the michoscopic approach the absolute cross sections were found to be strongly dependent on the radius paraneter r_{0} of the bound state potential. Good fits are obtained using $r_{o}=1.22$ fm for ${ }^{208} \mathrm{~Pb}$ and 1.23 fm for ${ }^{120} \mathrm{Sm}$, the other bound state parameters were $v_{s o}=6 \mathrm{MeV}, \mathrm{a}=0.65$ fit and v_{0} fitted to reproduce the experimental binding energies. In the macroscopic approach the transition density p $\mathrm{TR}^{(}(r)$ may be related to the neutron excess density $\left[p_{n}(r)-o_{p}(r)\right]$ by $\rho_{T R}(r)=\frac{G(r)}{\sqrt{2-Z}}\left[n_{n}(r)-\rho_{p}(r)\right]$. The correction function $G(r)$ takes into account the fact that the IAS transition requires a neutron-proton transition density rather thon a neutron excess uensity. it inciudes Coulomb effects as well as effects from the different binding of protons and neutrons. In à consistent description of microscopic and macroscopic densities the data are well described (solid lines in fig. 2). For 2^{208} pb these results are very similar to the cross sections obtained using the neutron density of ref. 3 derived from the Los Alamos 800 MeV proton scattering data. The older los Alamos results ${ }^{2}$) yield in both cases (${ }^{3} \mathrm{He}, \mathrm{t}$) cross sections larger by about 50% (dashed lines in fig, 2). To demonstrate the strong sensitivity of the (${ }^{3} \mathrm{He}, \mathrm{t}$) cross sections to the neutron excess density in fig. 2 cross sections are also given for $p_{n}(r)=p_{p}(r)$ which are smaller by a factor
of three. In the case of ${ }^{208} \mathrm{~Pb}$ discrepancies in the extraction of $\Delta r_{n p}=\left\langle r^{2}\right\rangle_{n}^{1 / 2}-\left\langle r^{2}\right\rangle_{p}^{1 / 2}$ exist between the 800 Mev Los Alamos ($\Delta r_{m p}=0.1 .4-0.16$ fmi $)$ and
1 GeV Gatchina and Saclay results 5) ($\Delta \mathrm{r} \sim 0.05$ fin $)$. 1 GeV Gatchina and Saclay results ${ }^{4,5)}$ ($\Delta r_{n p} \approx 0.05$ fn7). Our results support the Los Alamos results yielding $\Delta r_{\text {rp }} w 0.13-0.20$ fm in agreement with theoretical studies.
b) 1^{+}GT resonance

This excitation which has been studied systematically in the (p, n) charge-exchange reaction at proton energies up to $200 \mathrm{MeV}{ }^{7}$) can be used to determine the spinisospin part of the effective nucleon-nucleon interaction. Using a transition density for ${ }^{208_{p}}$ from the dominant $\left(\pi i_{11 / 2}\right)^{1}\left(\nu i_{13 / 2}\right)^{-1}$ and $\left(\text { Th }_{9 / 2}\right)^{1}\left(\nu h_{1} 1 / 2\right)^{-1}$ components and adjusting the $L=0$ strength to reproduce the GT peak in the high energy (p, n) data ${ }^{7}$) $(35-40 \%$ of the GT sum rule $3(N-Z)$) the cross sections in fig. 3 are well described by $V_{0 T} a .5$ Mev which corresponds to a ratio $V_{o \tau} N_{0}$ of about 0.5 in good agreement with the study of 1^{\top} states in $\left.45 \mathrm{MeV}(p, n)^{8}\right)$. In fig. 3 contributions due to the nuclear tensor force are added characterized by $L=2$ angutar distributions. These are adjusted to the cross section minimum at $3-4^{\circ}$.

Figure 3: Differential cross section for the (${ }^{3} \mathrm{He}, \mathrm{t}$) reaction exciting the GT resonance. The dashed and dotdashed lines represent microscopic DwBA calculations for central spin-isospin and tensor interaction, respectively.
c) Excitation of isovector giant resonances After a detailed investigation of isoscalar giant resonances in a scattering ${ }^{1)}$ the primary motivation for the study of the (He,t) reaction was the possibility to investigate pure isovector giant resonances in this channel. As the spectrometer BIG KARL has a iimited momentun bite of about 10%, to investigate the continuum features in the (${ }^{3} \mathrm{He}, \mathrm{t}$) reaction one has to run with different field settings. This requires a carefut correction of efficiency changes in the spectrometer and the detection system. Efficiency corrected spectra are given in fig. 4 for iriton angles of 0° and 3°. Apart from the IAS peak the spectra indicate giant

Figure 4: Efficiency corrected spectra for the reaction 2.8PG(Sie, t) ${ }^{20 s_{B i}}$ taken at triton angles of 0° and 3°.
resonance structures which are significantly broader than in the inelastic channel. This can be explained by the fact that in the charge exchange channel mainly ($T-1$) components are excited which have large spreading widths. The IAS and GT excitations show the strong forward peaking whereas at higher energies a pronounced structure is observed which has the largest yield at 3°. This indicates $L=1$ excitations containing the antianalog excitation of the giant dipole resonance and a dipole spin-flip resonance ${ }^{7 \text {). . At higher excitation energies the }}$ angular dependence suggests $\mathrm{t}=2$ excitation.

References

1) H.P. Morsch, P. Decowski, M. Rogge, P. Turek, L. Zemto, G.P.A. Berg, J. Meißburger, J.G.M. Röner and J.L. Tain, Annual Report 1982, IKP, KFA Jiilich, Ju1-Spez-202 (1983) 15
2) L. Ray, Phys. Rev. C19 (1979) 1855
3) G.W. Hof fman, L. Ray, M. Barlett, J.McGill, G.S. Adans, G.J. Igo, F. Irom, A.T.M. Wang, C.A. Whitten, R.L. Boudrie, J.F. Amann, C. Glashausser, N.M. Hintz, G.S. Kyle and G.S. Blanpied, Phys. Rev. C21 (1980) 1488
4) G.D. Alkhazow, S.L. Belostotsky, O.A. Bomehenkov, Y.u V. Dotsenko, N.P. Kuropatkin, V.N. Mikulin, M.A. Shuvaev and A.A. Vorobyov, Nucl. Phys. A381 (1982) 430
5) A. Chauneaux, V. Laly, and R. Schaeffer, Ann. Phys. 116 (1978) 247
6) R.R. Doering, D.M. Patterson and A, Galonsky, Phys. Rev. C12 (1975) 378
7) C. Garde, Nucl. Phys. A396 (1983) 127 C and refs, therein
8) W.A. Sterrenburg, S.M. Austin, U.E.P. Berg and R. de Vito, Phys. Lett. 913 (1980) 337
1.16. Study of momentum transfer, mass distributions and total kinetic energies in the reaction $\left.{ }^{238} U_{\left(\alpha, \alpha^{\prime}\right.} f_{1} f_{2}\right)$
P. Decouski, H. A. WCrseh, I. Zemto, H. Rogge, P. Tumek, G. Hlowatseh

In 238 U($\left.\alpha, \mathrm{a}^{\mathrm{t}} \mathrm{f}_{1}^{f_{2}}\right)$ cotncidence experiments the parallel monentum transfer deduced from fission angle measurements was found to be significantly smaller than obtained from two-body kinematics ${ }^{1)}$. In order to obtain more complete information on the momentum transfer and afso on the properties of the fission decay in a scattering we measured angle and velocities of the fission products using parallel plate detectors discussed in sect. 13.4. . From these data monentum transfers parallel (p^{\prime}) and perpendicutar (p^{-}) to the beam direction were deduced as well as mass distributions and total kinetic energies of the fission fragments. Average monenta $p_{i n}$ and $p \frac{1}{m}$ relative to twobody kinematics (missing monentume transfer) as a function of a energies are shown in fig. 1. The results for $p_{\mathrm{m}}{ }^{l}$

Figure 1: Average missing momentum transfer parallel ($p_{\text {m }}^{l}$) and perpendicular ($p_{\text {L }}$) to the beam axis as a function of a enargy. The solid lines indicate calculations assuming fast enission of uncorrelated particles.
are consistent with those in ref. 1 , they indicate a sizable missing of momentum transfer to the fissioning nucleus for lower a energies. For ali α^{\prime} energies the average value of $p \frac{1}{n}$ is consistent with zero. Fig. 2 shows the distribution of p f for different bins of α ' energies.

The experimental observations can be well understood by assuming emission of a fast prefission nucleon. Calcutations have been performed for uncorrelated emission of fast particles. Such a process describes the damped component seen in the ($\alpha, \alpha^{\prime} p$) correlation experiment ${ }^{1}$. In such a case the yield is peaked in beam direction and is described by the angular distribution of emitted nucleons taken from the singles (α, p) data ${ }^{2}$). The calculations reproduce the distributions of p^{11} in fig. 2 and the centroids of $\mathrm{p} l \mid$ and $\mathrm{p} \frac{\mathrm{m}}{\mathrm{m}}$ fig. 1 rather well.

Figure 2: Distrbutions of monentum transfer parallel to the bean direction (pl) for different bins of α energies. The arrows indicate $p^{\text {f }}$ in two-body kinematics.

Mass distributions are given in fig. 3 for excitation energies around the fission barrier and for large negative Q-values of about - 80 MeV. Even for the lowest a^{\prime} energies measured in our experinent the mass distribution shows a sizable asymmetry with a ratio of asymmetrix to symmetric fission yield of about two. This may indicate that in the fission induced by inelastic a scattering the excitation energy of the fissioning nucleus is not exceeding about 40 MeV even at large energy transfers of a 80 MeV . The average total kinetic energies changes in the whole a^{2} energy region measured by about 20 MeV .

References

1) P. Decowski, H.P. Morsch, L. Zembo, M. Rogge, P. Turek, ..W. Schumacher, G. Gaul, R. Glasow, E. Ludewigt and R. Santo, Annial Report, IKP, KFA Julich, Jul-Spez-202 (1983) 20
2) B. Ludewigt, R, G7asow, H, Lohner and R. Santo, Nuct. Phys. A408 (1983) 359

Figure 3: Fission fragment mass distributions for two bins of a energies.
1.17. Three-body versus four-body contributions in α break-up on 58_{Mi}
R. Stebert, R.P. Whach, P. Deaowsk, M. Rogge, E. Tumek

Direct break up of the projectile gives an important contribution to the reaction cross section of fast a partices scattered on medium and heavy nuclei 1,2). In the interpretation of this process in general a three-body mechanism is assumed. This concept may not be always realistic since in a hard collision it should be as easy to knok cut a particle from the turget. In order to study details of the break up of α into $3_{\text {He }}$ and nestron and to investigate nucleon knock out from the target we measured the reactions ${ }^{58} \mathrm{Ni}\left(w,{ }^{3}\right.$ He p) and $\left.{ }^{3} \delta_{\mathrm{Ni}(\alpha, a}{ }^{\prime} p\right)$. For the detection of the protons we used plastic detectors described in detail elswhere (sect. 13.5.). In the ($a, 3_{\text {He }}$) singles spectrum (fig. 1) the a break up

Figure 1: Comparison of nomalized ${ }^{3} \mathrm{He}$ spectra from the singles (α, He) and the ($a,{ }^{3}$ He p) reaction.
peak is quite pronounced. Also is shown a ${ }^{3}$ He spectrum coincident with emitted protons nomalized to the singles ($\alpha,{ }^{3} \mathrm{He}$) spectrum. As the three-body break up $a \rightarrow{ }^{3} \mathrm{He}+\mathrm{n}$ does not involve the emission of protons the detection of coincident protons indicates four-body contributions in which in addition to a break up a nucleon (proton) on the target is knocked out. This contributes to about 35% of the total ${ }^{3}$ He rate, which gives the probability to knock out a nucleon in the $a \rightarrow{ }^{3}$ He + n break up reaction. In comparing ${ }^{3}$ He-proton and a-proton coinci-

Figure 2: Proton spectra coincident with outgoing a' and उHe particies.
dence yields one can get infomation on the a break up probability in the proton knock-out reaction. Proton spectra coincident withe' and ${ }^{3}$ he particles are given in fig. 2. They have rather similar distributions indicating a similar origin in both cases; this is confimed by the same ${ }^{3}$ He and a velocity distributions in the knock out chamel. The relative yields are $4: 1$ indicating a break up probability of 20%. The fact that the probability of three to four body break up is similar to the projectile break up probability in the knock-out channel indicates that apart fron structure effects there is no distinction in the mechanism of break up and knockout processes.

References

1) J.R. Wu, C.C. Chang, and H.D. Holmgren, Phys. Rev. Lett. 40 (1978) 1013
2) A. Budzanowski, G. Baur, C. Alderliesten, J. Bojowald, C. Mayer-Böricke, W. Oelert, P. Turek, F. Rosel and D. Trautmann, Phys. Rev. Lett. 41 (1978) 635
1.18. Investigation of light nuclet at high excitation energies with three-body break-up reactions
R. Eranke*, H. Wacherx, B. Steinheuer*, K. Wingender ${ }^{*}$ and I. von Mitsch ${ }^{*}$

Various three-body break-up reactions resulting from the bombardment of ${ }^{7}$ i with $120 \mathrm{MeV}{ }^{3}$ He have been measured sinultaneously in a kinemetically complete experiment. Reaction products were detected and identified by means of four $\triangle E-E$ telescopes and coinciden events recorded on magnetic tape.

The main aim of the experiment was the search for highly excited states in light nuclei. In particular, the hope was that a comparison of the reactions ${ }^{7} \mathrm{H}\left({ }^{3} \mathrm{He} ;{ }^{3} \mathrm{He}, \mathrm{t}\right)^{4} \mathrm{He}{ }^{*}$ and ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He} ; d, a\right)^{4} \mathrm{He}^{*}$ might reveal the existence of a state with $T=2$ in the since its formation would be isospin allowed in the ${ }^{\text {Hett channel but forbidden in the }}$ dix channel. The excitation energy of the lowest $T=$? state in ${ }^{4}$ He has been estimated to be $38 \pm 2 \mathrm{Mev}^{1\}}$. No clear evidence for such a state has been found (fig. 1) although there is some evidence for a relatively narrow peak near 47 Mey.

Figure 1: Missing-mass difference spectrum 7 Li(3)e; $\left.{ }^{3} \mathrm{He}, \mathrm{t}\right)^{4} \mathrm{He}$ minus ${ }^{7} \mathrm{I} \mathrm{i}\left({ }^{3} \mathrm{He} ; \mathrm{ds}\right)^{4} \mathrm{He}$.

In ${ }^{4} \mathrm{H}$, a strong transition to the graland state was observed in the ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He} ;{ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)^{4} \mathrm{H}$ reaction which is well described by the P-wave phase shift $\delta_{1,}, 2$ alone (fig. 2), using for the yield y_{1} the expression ${ }^{2}$, $y_{1}=\sin ^{2} \beta_{1} / P_{7}$, where B_{1} is the rescnamt phase shift calculated from the total phase shift ${ }^{3)} \delta=B+\rho, P_{\mathcal{l}}$ is the Breit-wigner penetrability (for $)=1$), and φ the hard sphere phase shift. No evidence for a $T=2$ state is seen here which would be expected to lie about 12 MeV above the ground state of ${ }^{4} \mathrm{H}$. In comparison, the ground state of ${ }^{4} \mathrm{Li}$ is populated much more weakly in the analog $7_{L i}\left({ }^{3} \text { He; } t, t\right)^{4}$ if reaction.

In the reaction ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He} ; \mathrm{d},{ }^{3} \mathrm{He}\right)^{5} \mathrm{He}$ the well established narrow state at 16.8 MeV as well as a broader one at 20 MeV (fig. 3) are strongly excited in ${ }^{5}$ He while the same states are not seen in the analog ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He} ; \mathrm{d}, \mathrm{t}\right)^{5} \mathrm{Li}$ reactions. This can be understood if $3_{\text {he }}$ is viewed as

Figure 2: Missing mass spectrum of the ${ }^{7}$ if $\left.{ }^{3} \mathrm{He} ;{ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)^{4} \mathrm{H}$ reaction. The fit is explained in the text. P.S. is the contribution from simultaneous four-body break-up.

Figure 3: Hissing mass spectrum for 5 He. The curve is a sum of the phase space distributions for simultaneous break-up into $n+d+{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}$ and $\mathrm{d}+\mathrm{d}+\mathrm{t}+{ }^{3} \mathrm{He}$; break-up into more than four particles has not been taken into account.
($d+p$), with the proton picking up two nucleons from the
${ }_{4} P_{3 / 2}$ target; the 2 neutron transfer leading to the ${ }^{4} S_{3 / 2}$ state in ${ }^{5} \mathrm{Li}$ (16.7 MeV) would then be 5 -forbidden ${ }^{4}$. The same is true for the D-wave interaction around 20 Mel excitation energy. In both reactions, there is evidence for a peak (width approximately 4 MeV) at 36 MeV and 34.5 MeV, respectively.

In ${ }^{6} \mathrm{He}$, investigated through the reaction ${ }^{7} \mathrm{if}\left({ }^{3} \mathrm{He} ; \mathrm{p},{ }^{3} \mathrm{He}\right)^{6} \mathrm{He}$, a broad peak was observed at 16 MeV excitation energy Which might consists of two or three narrower states (fig. 4). It is expleined as being due to the knock-out of a 1 s proton from ${ }^{7}$ Li . Corresponding structure was found in the ${ }^{7} \mathrm{Li}(\mathrm{n}, \mathrm{d})^{6}$ He and ${ }^{7} \mathrm{Li}(\mathrm{p}, 2 \mathrm{p})^{6}$ he reactions (ref. 5 and refs. therein).

Figure 4: Same as fig. 3 but for the residual nucleus EHe. The phase space distribution is for $p+t+t+3$ he only.

References

1) L.A. Arnold, Technical report OSU-TR 79-402, Ohio State University, 1979
2) H.T. King et al., Nuct. Phys. A178 (1972) 337
3) T.P. Tombrello, Phys. Rev. 143 (1966) 772
4) J. Cerny et al., Phys. Rev. 152 (1966) 950
5) F.P. Brady et al., Phys. Rev. C16 (1977) 31
*Institut fuir Strahien- und Kernphysik der Universitat Bonn.

This work was supported by the Bundesministerium fir Forschung und Technologie.
1.19. Light Particle Correlations
H. Vaoher

To study the nuclear continum up till now mainly excitation functions of spallation products and inclusive energy spectra of secondaries have been measured. It is only recently that more exclusive data have been produced ${ }^{1)}$. To explain these data the generalized exciton model has been extended ${ }^{2)}$. During the equilibration cascade more than one fast particle may be emitted. The dynamics of the process is governed a set of master equations for the occupation probabilities $P(n, \infty, t)$ and $Q(m, 0, t)$ of the composite system and the residual system after one particle emission, respectively. The starting condition is
$P(n, \Omega, t)=\delta\left(n, n_{0}\right) A\left(n_{0}, \Omega\right) \sigma_{0}$
for the primary process with n_{0} being the number of inim tially excited excitons, $A\left(n_{0}, \Omega\right)$ the direction of the scattered fast rucleon and σ_{0} the absorption cross section. The transition rates between exciton states are those of ref. 4. Then the cross section fon a particle consisting of n_{i} excitons is
$\frac{d^{2} \sigma\left(s_{i}\right)}{d s d \Omega}=\sum_{\substack{n=n_{0} \\ n n=2}}^{\vec{n}} f(n, i) \omega_{i}\left(n, s_{i}, E\right) \int_{0}^{t_{e q}} P\left(n_{,} \Omega_{i}, t\right) d t$
$\Delta n=2$

$$
\begin{equation*}
=\sum_{\substack{n=n_{0} \\ \Delta n=2}}^{\bar{n}} E_{i}\left(n, E_{i}, E_{i}, \mathcal{V}_{i}\right) \tag{2}
\end{equation*}
$$

with \bar{n} the exciton numer characterizing statistical equilibrium. W_{i} is the emission rate and $f(n, i)$ an isospin mixing factor.

Because in the generalized exciton model there is no way to distinct between the strack and the scattered nucleon in a resicual interaction, one has after one collision two "fast" particles. We therefore assume that hadron number conservation is sufficient ${ }^{3)}$ to give the initial condition for the secondary process:
$Q\left(m, \mathcal{F}_{i}, t=0\right)=\delta\left(m, m_{0}=n-n_{i}\right) B_{i}\left(n, \varepsilon_{i}, E, \hat{E}_{i}\right)$.
The cross section is thus independent from the linear momentum already carried away by the first particle. The second chance cross section into the direction Ω_{j} is then

$$
\begin{align*}
& x f(m, j) W_{j}\left(m, \varepsilon_{j}, U\right) A\left(\pi+n_{i}, \Omega_{j}\right) . \tag{4}
\end{align*}
$$

We can then calculate the coincident cross section according to

$$
\begin{align*}
\frac{d^{4} \sigma\left(\vartheta_{i}, \vartheta_{j}\right)}{d \varepsilon_{i} d \Omega, d \varepsilon_{j} d \Omega_{j}} & =\frac{d^{2} \sigma\left(\vartheta_{i}\right)}{d \varepsilon_{j} d \Omega_{j}} \frac{d^{2} \sigma\left(\psi_{i}, \vartheta_{i}\right)}{\sigma_{0} d \varepsilon_{j} d \Omega_{j}} \\
& +\frac{d^{2} \sigma\left(\vartheta_{i}\right)}{d \varepsilon_{j} d \Omega_{j} d_{0}\left(\wp_{j}, \vartheta_{i}\right)} \frac{\sigma_{i} d \varepsilon_{i}}{} \tag{5}
\end{align*}
$$

Figure 1: Coincident proton cross sections from the inGicated reaction are compared with model predictions for $\varepsilon_{\alpha}:=103 \pm 9.5 \mathrm{MeV}$.
In the figure data ${ }^{1)}$ are compared with calculations. The free model parameter for complex particle emission - the coalescence radius F_{o} (ref. 5) - has been adjusted to the inclusive data. There is no further adjustment.
The calculations presented in this contribution predict coincident cross sections peaked in beam direction. This is in contradiction to two body kinematics. However, the data support this prediction.

References

1) U. Bechstedt et al., Phys. Rev. C25 (1982) 3221
2) C. Ciangaru et al., to be published
3) H. Machner, accepted by the Physical Rev. C, and references therein
4) H. Machner, Z. Physik A302 (1981) I25
5) H, Machner, Phys. Lett, 868 (1979) 129
1.20. Search for nuclear structure effects in continuous spectra
G. Senswonges, \bar{H}. Nacher, P. doh, A. Wotte,
M. Fogge and P. Thel

A7though the models for pre-equilibrium decay ${ }^{1}$) are more or less phase space models they reproduce a weal th of data extremely wel1 ${ }^{2}$. However, it is of great interest to now at what extend nuclear structure contributes to pre-equilibrium decay.
To study this question we have started a series of experiments in which angle dependent energy spectra of fast charged particles from nuclear reactions with target nuctei and 100 MeV a-particles will be measured. The target nuclei chasen are $24,25,26 \mathrm{Mg},{ }^{27} \mathrm{Al}$ and ${ }^{28}$ Si. We can therefore study the effects of changing neutron number and proton number as well.

Figure 1: Angle integrated cross sections for the $24,25,2 \operatorname{Mg}(\alpha, p) \times$ reactions at $\Sigma_{\alpha}=100 \mathrm{MeV}$.

In the figure preliminary data of angle integrated cross sections for the $24,25,26$ Mg (,$~$, p) X reactions are shown. A doninant odd-even effect shows up which is also to be seen in the other particle channels. The investigation will be continued.

Roforences

1) M. Blann, Annu. Rev. Nuci. Sci., 25 (1974) 123
2) H. Machner, Proc. Int. Conf. on Highly Excited States and Nucfear Structure, to appear in Edition Physique
1.21. Study of the fragment-mass-distribution of "Heinduced ftssion
 7. Strous*

In continuation of a study of ${ }^{3}$ He-induced fission on ${ }^{169} \mathrm{Tm}\left(E_{\mathrm{aHe}}=42 \mathrm{MeV}\right)$ we measured c -induced fission at $E_{c}=140 \mathrm{MeV}$ on Gold, Holmi unt and Silver. Two silicon detectors of 30 mm dianeter were used to determine the fragment energies. Figure 1 shows the two-dimensional energy spectra of fission products from Au, Ho in a symmetric left-right counter position relative to the incident beam and two spectra of silver in a symmetric ($75.5^{\circ} / 75.5^{\circ}$) and an asymitietric position $\left(62^{\circ} / 90^{\circ}\right)$. Unfortunatley the Silver spectra show considerable back. ground from pile up. Preliminary mass spectra are shown in fig. 2. The mass spectrum of silver is of particular interest since the fissility parameter $x=z^{2} /(50.13 \cdot A)$ is rather close to the critical Businaro Gallone point 1,2) $x=0.4$, where asymmetric mass fragmentation may occur. The obtained mass spectrum for the Silver target shows only symetric fragmentation. It should be considered, however: as a very preliminary result because of background problems already mentioned and energy and angle cutoffs. We intend to continue the experiment using a position sensitive ionization chamber. Figure 3 shows the measured cross-sections together with a data compilation given by Moretto ${ }^{3)}$.

Figure 2: Mass spectra of the fission products.

Figure 1 :
Two-dimensional energy spectra of fission products from the target nuclei studied. The detection angleshas been symmetric to the beam axis. One asymetric case for silver is also shown (down right).

Figure 3: Fission cross section for the three target nuclei studied in comparison to lower energy dataz. Also show is the cross section for the induced fission at lower energy fron a previous experiment.

References

1) Y.L. Businaro and S. Gallone, Nuovo Cim. 1 (1955) 1102
2) S. Cohen and W.J. Swiatecki, Ann. Phys. 19 (1962) 67
3) L.G. Moretto, Physics and Chemistry of Fission

Proc. Symp. Rochester 1973, Vol. I, p. 329
*I. Institut für Experimentalphysik, Universität Hamburg
1.22. Fast Nucieon Emission from Heavy Ion Induced Reactions

R. Machoner

It has becone very popular to parametrize spectra of fast light isotopes emerging from heavy ion bombardement of nuclei in terns of moving equilibrated sources. However, it is hard to believe that projectile energies of a few tens of MeV/nucleon can lead to a clear cut fireball geometry. Another possibility is to invoke models which have been extremely successful in reproducing light ion induced reactions like the extiton model ${ }^{1 \text {) }}$.

After a first target-projectile interaction the system equilibrates via nucleonnucleon collisions. This process is described by a system of master equations ${ }^{2)}$:
$\frac{d P(n, \Omega, t)}{d t}=\lambda_{f}\left(n-2, \Omega^{\prime}, E\right) P\left(n-2, \Omega^{\prime}, t\right)$
$+\lambda_{-}\left(n+2, n^{\prime}, E\right) P\left(n+2, a^{\prime}, t\right)$

$$
\begin{equation*}
-\left[\lambda_{t}(n, a, E)+\lambda_{-}(n, a, E)+\lambda_{c}(n, E)\right] P(n, \Omega, t) \tag{1}
\end{equation*}
$$

with P being the occupation probability of a state with n excitons ($n=$ particles + holes) with respect to the Femi surface and $\Omega=(\overrightarrow{3}, 7)$ the direction. The transition rates for exciton-exciton interactions λ_{+}and for emission into the continumm λ_{c} are those from refs. 3 and 4 . Since heavy ions are large objects compared to light ions some modifications in the model are expected to occur. In light ion induced reactions data analysis suggests an initia! ip + lh excitation in the target nucleus leading to
$n_{0}=A_{p}+2$.
Here, in a first phase nucleus-nucleus interaction may lead to a xp+xh excitation depending on the overlap the
two nuclei have. From such a picture two conjectures emerge:

- x will be an increasing number with increasing bombarding energy,
- x will not be a function of the target mass as long as $A_{p} \ll A_{T}$.
To test these conjectures we have analyzed data ${ }^{5,6)}$ with $n_{0}=A_{p}+2 x$.
By varying x it turns out that x is a well defined quantity because spectral shape as well as absolute height are strongly depending on x.

The data analysis is in agreement. with the conjectures stated above. As an example for the quality of agreement between model calculations and data we compare both in figure 1. In addition to the high energy part an evaporation calculation using the code JUEIAN is also shown.

References

1) M. Blann, Annu. Rev. Nucl. Sci. 25 (1974) 123
2) G. Mantzouranis et al., Z. Physik A276 (1976) 145
3) H. Machner, Z. Physik A302 (1981) 125
4) H. Machner, Phys. Lett. 863 (1979) 129
5) E, Holub et al., Phys. Rev. C28 (1983) 252
6) H. Machner, Phys. Rev. C28 (1983) 2173

Figure 1: Neutron multiplicities measured at the indicated angle in coincidence with evaporation residues (ER) are compared with compound nucleus (low energy part) and exciton model calculations (high energy part).
1.23. How dees the optical potential depend on nuclear excitations?

A. Wohner

With the appearance of medium energy heavy ion reactions the question how nuclear properties depend upon temperature has been becoming an important one. In this contribution only the temperature dependence of optical model parameters and the corresponding absorption cross sections will be discussed.

The mean free path A of a nucleon in nuclear matter is
$A=\frac{v}{2 W}$
With v being the asymptotic nucleon velocity and >0 the imaginary part of the optical potential. The classical relation is
$n=(\bar{\sigma})^{-1}$
With p the medium density and $\vec{\sigma}$ the cross section. For infinite nuclear matter $\bar{\sigma}$ should be replaced by $\langle\sigma\rangle$, the cross section including effects of the Pauli-prin. ciple. To derive at such a quantity we make the ansatz ${ }^{1}$) $\langle\alpha\rangle=\bar{\sigma}\left[1-f(\rho) e^{-\lambda T}\right]$.
The function $f(p)$ is the Pauli blocking function which can be derived under the assumption ${ }^{2} 3$) that in momentum space only states with momenta k_{f} larger than the Fermi momentum k_{F} are allowed as final states. The exponential weakens the influence of the Pauli-blocking at high tentperatures T, because in a highly excited nucleus a large fraction of states below k_{F} are not occupied. The resuits of Collins and Griffin ${ }^{4}$) are reproduced for a value $\lambda=0.02$.

For a real potential depth $y=50 \mathrm{Mev}$ and assuming an effective mass $m^{*} \approx 0.5 \mathrm{~m}$ the imaginary part of the optical potential derived by Bohr and Mottelson ${ }^{5}$) for only volume absorption is approximately reproduced ${ }^{1)}$. In fig. 1

Figure 1: Imaginary parts of the optical potential as function of the incident neutron energy and for different nuclear temperatures T.
the temperature dependence of W is shown. obviously, only for small energies there is a strong temperature dependence. From these inaginary potentials together with real parts and geometry from ref. 5 we can calculate absorption cross sectins. While at zero temperature there is a substantia? interference between the incident and trans-
mitted waves (nuclear Ransauer effect) these corresponding fluctuations the cross sections are washed out at high temperatures. This is shown in figure 2. It is ob-

Figure 2: Absorption cross sections for low energy neutrons and an $A=100$ nucleus are shown for the indicated temperatures.
vious fron this figure that for high temperatures the common practice to approximate the cross section for time reversed reactions by ground state absorption cross sections to calculate the compound nucleus decay is not justified.

References

1) H. Machner, accepted by Z. Physik
2) E. Clementel and C. Villi, Nowo Cim. 2 (1055) 176
3) K. Kikuchi and M. Kawas, Nuclear Matter and Nuclear Reactions, North Holland Publ., Amsterdam 1968
4) M.T. Collins and U.J. Griffin, Nucl. Phys. A348 (1980) 63
5) A. Bohr and B.R. Mottelson, Muclear Structure Vol. I, W.A. Benjamin, Inc., New York 1969

1．24．Mean angular momenta involved in the preequili－ brium charged particle emission

B．Bochev，T．Kuisarova，R．M．Lieder，J．－P．Dide－ Zez ard T．Worek

The central collision models such as promptly emitted par－ ticles ${ }^{1)}$ ，exciton ${ }^{2)}$ and coalescence ${ }^{3)}$ models were used to interprete the enission of protons ${ }^{4,5}$ ），deuterons and tritons ${ }^{6 \text { ）}}$ in alphà induced reactions at $E_{c}=45,75$ and 110 MeV studied in this iaboratory．Furthermore it has been shown ${ }^{7}$ that peripheral collisions，e．g．break－up fusion may contribute to the cross sections at least for deuteron and trition reaction channels．An important in－ formation about the reaction mechanisn and hence about the applicability of a given model can be obtained from the angular momentum balance．In the following we shall present some estimation of the angular momenta involved in the reactions ${ }^{159} \mathrm{~Tb}$（ α ，charged particle $x n y$ ）at $E_{\alpha}=45,75$ and 110 MeV ．
The input angular momentumi is defined as
$I_{\text {in }}=\frac{b}{\hbar} \sqrt{2 v\left(E^{C M}-3\right)}$ ，
where $;$ is the reduced mass，$E^{C M}$ the beam energy in the OM system，B the Coulomb barrier between the target and

Channe 1	（ $\alpha, p_{\text {r }}$ ）	（ $\mathrm{a}, \mathrm{pn} \times$ ）	（ $\alpha, p 2 n y$ ）	（ $0,0, \gamma_{\gamma}$ ）	（ $\alpha, \mathrm{dn} \gamma)$	（ $a, t y$ ）	（ $\alpha, \mathrm{tn} \%$ ）
${ }_{7}$	$8 \div 1$	9̇1	10 ± 1	8 ± 1	10 ± 2	6 ± 1	9 ± 1
$\stackrel{1}{1}_{\gamma}$	10 ± 2	12 ± 2	14 ± 2	10 ± 2	14 ± 2	6 ± 1	10 ± 1
I^{Y}	$7.5 \div 2.5$	－	8.0 ± 0.5	－	7.2 ± 0.6	5.720 .5	－
$I^{7}+T^{\text {S }}$	12.0 ± 2.7	－	12.5 ± 1.0	－	11.7 ± 1.0	$10.2+1.0$	－

Table 1：Comparision of the angular momenta released by the whole gama ray cascade t_{y} for the $15 \mathrm{~Tb}\left(\alpha\right.$, ch．part． $\mathrm{xn} \mathrm{\gamma}$ ）reaction at $E_{\mathrm{c}}=45 \mathrm{Mey}$ and particle detection angle of 45° with $I^{Y}+I^{S}$ ．The yrast spins IY are deduced from the particle－gama coincidence data and the side feeding spin ${ }^{5}=4.5 \div 0.9$ is taken from an experiment using the $160 \mathrm{Gd}(\alpha, 4 n \mathrm{y})$ reaction at $E_{\alpha}=45 \mathrm{MeV}$ （ref．12）．$M_{\text {F }}$ is the measured matiplicity．

E（Mevi）	45			75				110			
Channe：	（ Ee	$\begin{gathered} 60 / d 2 \\ (i v / s r) \\ \hline(0) \end{gathered}$	（in ${ }^{\text {a }}$	（ Eev	$\begin{aligned} & \mathrm{do} / \mathrm{da} \\ & (\mathrm{~b} / \mathrm{sr}) \end{aligned}$	$\begin{aligned} & I^{4} \\ & \left(\frac{t}{n}\right) \end{aligned}$	$F_{i n}$	（晹V	$\begin{array}{r} d_{\sigma} / d n \\ (\omega / s) \end{array}$	（ ${ }^{\frac{1}{3}}$	（ti）
（a，Pr $)$	$32.4+0.5$	200こ20	18．1＋3．6	59.2 ± 0.5	17．123．0	5．5＊2．0	23.3 ± 4.0	92，2－1．0	2.5 ± 1.1	\sim	230
（ $\mathrm{a}, \mathrm{p} \mathrm{f} \mathrm{y}$ ）	21.6 ± 0.5	$2040+87$	18．8．3．0								
（ $0, \mathrm{p}$ 2ny ）	14．400．5	2250：60	16．3＋2．5	41.6 ± 0.5	1930 ± 73	7.7 ± 1.3	23．3 2.28	23.0 ± 1.0	219 ± 15	9.7 ± 3.0	28.5 ± 5.7
$(a, p+7 y)$				20.5 ± 0.5	7288 ± 67	8．440．6	20.5 ± 1.7	51.5 ± 1.0	4264 ± 83	10，5＋1．1	$27.9+2.5$
$(a, p \in n y)$								27.5 ± 1.0	8737：73	9．2＊0．7	23．122．0
（a，p8ny）								0.30 .5	1988＊100	8.8 ± 1.4	~ 19
（a，dy）	24．0．1．0	279＋43	$21.3+4.3$								
（ x, eny ${ }^{\text {a }}$ ）	18．541．0	2320：30	17．953．4	45.6 ± 1.0	433：32	7．5－2．3	32．2＋5．2	77 ± 2	275：25	¢．5土 3.0	38．9土8．5
（ $\mathrm{a}, \mathrm{d} 3 \mathrm{mr}$ ）				26．3土1．0	2020：35	8．320．7	25.4 ± 2.2	$56 \quad \pm 2.5$	1613＊60	10．1＋2．0	35．7土5
（0，8i5ny				13．0：1．0	－85	7．5̇1．3	28．352．7	$35 \quad 22.5$	3274120	8．5．0．5	27.542 .6
$(x, d 7 \pi y)$								15 ± 2.5	1121：45	7．9＋1．7	20．7＊2．7
$(a, t y)$	28.5 ± 1.0	930＋22	23．1 1 ± 4.1	57．0 1.0	162＋30	5.6 ± 1.7	－30	84． 2	220 ± 30	6.3 ± 1.5	341
（ a, ，try）	16， 3 21．0	550：50	19.543 .7								
（ α, t2ny $)$				35．6＋1．0	866＋72	$7.5+0.9$	35，444，0	67．5＊2．0	1070：50	8.5 ± 1.3	51 ± 6
（a，tiny）				16．0土1，0	518330	7.5 ± 1.2	21．652．4	45 ± 2.5	$1580+50$	$7.9+0.9$	35．2土3．4
（ x, tenty）								21 ± 2.5	980 30	7．9 $\times 1.0$	24．2＋2．4
		15.8				．			24		
		21.4				． 3				8． 9	
		23.6				． 2			37		
$8_{7 \text { in }}$		20.5							$\cdots 31$	． 5	
$\mathrm{R}_{\mathrm{p}} \quad \therefore \quad \therefore$		0.82			0.				0	． 76	
$\mathrm{P}_{\mathrm{d}} \ldots$		1.04			1.					92	
R_{t}		1.11			1.					17	

Table 2：Input angular menerts I in as calculated from eq．（2）for the 159 Tb （a，ch．part．xny）reaction channels at is $=45$ ， 75 and 10 Nev ，mean angular monkenta I P and the ratios R ．

is lower than for all other channels and it is close to I_{γ} suggesting a smaller value of the side feeding spin I^{5} than anticipated. Because of the lack of better data we shall use the side feeding spir $I^{\text {S }}$ deduced for the reaction $\left.{ }^{160} \operatorname{Gd}\left(\alpha, 6 n_{\gamma}\right)^{158} D_{D} 12\right)$ to estimate the angular womenta I_{γ} removed by the y-ray cascade for all reaction channels at $E_{\alpha}=75$ and 110 MeV except for the (α, t_{Y}) channels. The calculated input angular momenta $I_{\text {in }}$ are shown in table 2. The mean angular momenta $<I>$ weighted by the cross sections $d \sigma / d a$ have been calculated and compared with the limiting angular momentum lim for complete fusion ${ }^{14)}$ at a given beam energy. The ratios $R=\frac{\langle I(a, c h, p, x n y)\rangle}{\left.{ }^{2}\right] \text { im }}$ are inctuded in table 2. Several interesting features can be observed:

1) The input angular momentum $I_{\text {in }}$ is a decreasing function of the number of emitted neutrons. This is due to the increasing ejectile energy which overbalances the effect of angular momentum release by the neutrons.
2) The ratios R for a given ejectile are independent on the bean energy. From the value of $R_{p} \sim 0.8$ it seems that the proton emission occurs predonitnantly at medium impact parameters. Such a result supports the applicability of the central collision models for the description of nonequilibrium protons. On the other hand the angular momentum ratios $R_{d} \approx 1$ and $R_{t} \approx 1.15$ indicate more peripheral character of the interactions followed by emission of deuterons and tritons.

References

1) X.P. Bondorf, R. De, G. Fái, A.O.T. Karvinen, B, Jakobsson and U. Randrup, Nuct, Phys. A333 (1980) 285
2) M. Blann, Amm.Rev. Hucl.Sci. 25 (1975) 123
3) H. Machner, Phys. Lett. 868 (1979) 129
4) R.M. Lieder, B. Bochev, T. Kutsarova, H. Beuscher, D.R. Haenni, T. Morek, M. Miller-Veggian, A. Neskakis, C. Mayer-Böricke and J.-P. Didelez, Physica Scripta 24 (1981) 123
5) B. Bochev, R.M. Lieder, T. Kutsarova, T. Morek, A. Neskakis and J.-P. Didelez, Proc. of the 6th Int. Schoot on Nuclear and Neutron Physics and Nuclear Energy, Sept. 1983, Varna
6) Unpublished results from IKP, KFA Jilich 1981
7) I. Kutsarova, B. Bochev, I.-P. Didelez, R,M. Lieder, T. Morek, M. Muller-Veggian and C. Mayer-Qöricke, Annual Report 1980, IKP, KFA Jiilich, Juil-Spez-99 (1981)
8) W.W. Morison, S.K. Samaddar, D. Sperber and M, ZielińskaPfabe, Phys. Lett. 93B (1980) 379
9) T.D. Thomas, Nucl. Phys. 53 (1964) 577
10) J., P. Didelez, B. Bochev, R.M. Lieder, T, Kutsarova, T. Morek, A. Neskakis, M. Muller-Veggian and C. MayerEbricke, Annual Report 1981, IKP, KFA Jiilich, Jili-Spez-146 (1982) p. 36
11) Claudine Gerschel, Conference internationale sur quelques aspects des reactions entre ions lourds, Saclay (Mai 1982)
12) M.J.A. de Voigt, W.J. Ockels, Z, Sujkowski, A, Zglinski and J. Hootbroek, Nucl. Phys. A323 (1979) 317
13) T. Udagawa, Lecture given at Int. RCNP-Kikuchi Summer School on Nuc!. Physics held at Kyoto, Japan, May 23-27, 1983:
1.25. Simuation Experiments for Planetary Spectroscopy: Neutronminduced Gama-Rays from Thin Targets P. Enelert ${ }^{+}$, \bar{H}. moknen ${ }^{*}$, R. Wanke ${ }^{*}$ and R.G. needy ${ }^{++}$

One of the important goals in planetology is the determiu nation of the chemical composition of planetary surfaces, which can provide important clues on their origin and evolution. Such information can be obtained from gammarays emitted from the extraterrestrial bodies by means of orbital remote sensing gama-ray spectroscopy ${ }^{1}$.

Cascade particles produced by the interaction of the galactic cosmic radiation with extraterrestrial mater, and here especially neutrons, are important for the production of gammarays. Nonelastic scattering and neutron capture reactions produce many characteristic gama-ray lines of discrete energy, which can be used to determine the abundances of the elements from which they are emitted. Proposed missions to Mars, Moon, comets and asterolds suggest simulation experiments which should lead to a better understanding of the production of ganma-rays by energetic neutrons, both in the planetary object observed itself and in the observing spacecraft. This will be useful for planning as well as for interpreting spectra obtained from such missions.

To investigate the gamma-rays induced by neutrons, experiments were carried out with 14 MeV neutrons. A characteristic spectrum of these irradiations is presented in figure 1 , which shows 0.1-4.1 MeV gamma-rays from an Al-tar-

get irradiated with generator-produced neutrons ${ }^{2}$). Neutron energy spectra and neutron fluxes at the target location were roughly calculated from threshold montor reactions ${ }^{3)}$. A considerable flux of neutrons between 5 and 14 Mev was found, however, the majority had thermai and epithermal energies. From the inear generator-target-detector arrangement, the closeness of concrete walls and shielding with paraffin, an extrente degree of thermalization was expected at the target location. Therefore it is not surprising that neutron capture reactions produced most of the gama-ray lines ${ }^{2}$). The ratios of the fluxes of the strongest neutron capture lines from $\mathrm{Fe}, \mathrm{A} 1$, . Ag and 5 i-targets agreed well with the ratios of measured yields for the capture of thermal neutrons. Background corrections were made for all lines and the flux of each line from a target was corrected for absorption in the detector shielding.

As expected, a broad 4.439 Mel gamma-ray peak made by inelastic scattering reactions with ${ }^{12} \mathrm{C}$ and a flat-topped peak at 0.478 MeV caused by the ${ }^{10} \mathrm{Be}(\mathrm{n}, a y)^{7} \mathrm{Li}$ reactions in shielding components were observed in all spectra. However, 5 wide asymmetric peaks between 0.5 and 1.1 MeV were unexpected. These peaks were generated in the detector and have a rapid drop at the lower energy side, but a very slow drop at the higher energy side. The energies at the lower edges correspond to various Ge-isotopes: 563 keV in $76 \mathrm{Ge}, 596 \mathrm{keV}$ in ${ }^{74} \mathrm{Ge}, 691$ and 834 keV in ${ }^{72} \mathrm{Ge}$, and 1040 kev in ${ }^{70} \mathrm{Ge}$. These broad peaks were made by prompt processes, which occur when an energetic neutron excites a Ge nucleus in the detector to a level that rapidly deexcites. The energy from this deexcitation is often increased in the detector by the addition of energy from the recoil of the excited nucleus ${ }^{4}$). Fortunately, these background peaks occur in energy regions where there are not expected to be many gama-ray lines of interest from a planetary surface. The 844 and 874 keV inelastic scattering ganlab-rays from AF and Fe could be affected by serious interference with the tail of the relatively weak Ge-peak at 834 kev.

A more realistic simulation of the conditions in planetary surfaces was expected from irradiations with neutrons of higher energy procuced via the $B e(d, n)$-reaction, a better neutron source-target-detector arrangement and less detector shielding. By positioning the targets and the detector closer and at angles of 45° and 90° with respect to the neutron source the necessary paraffin shielding could be reduced considerably, This led to a reduction of the neutron capture background, but did not affect the occurrence of C, Pb and Ge inelastic scattering gamma-ray lines. Another advantage is that the total neutron flux can be estimated fron Faraday cup measurenents. Preliminary results from a developmental run with a current of 0.5 nA of 78 MeV deuterons on be for a Fe-target are presented in table 1 and compared with the 14 MeV results ${ }^{2}$).

Energy keV	Reaction	normatized at max. ne 39 MeV (6)	eak areas ron energy $14 \mathrm{MeV}(2)$
846.7	${ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{ny})$	1196	8.1
931.2	${ }^{56} \mathrm{Fe}\left(\mathrm{n}, 2 \mathrm{n}_{\gamma}\right)$	126	0.31
1238.3	${ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{ny})$	225	2.3
1316.4	${ }^{56} \mathrm{Fe}(\mathrm{n}, 2 \mathrm{n} \mathrm{\gamma})$	85	0.22
1407.7	${ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{ny})$	106	0.32
1810.9	${ }^{56} \mathrm{Fe}(n, n y)$	61	0.04
2112.9	${ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{n} \mathrm{\gamma})$	27	0.11
6609.1	${ }^{56} \mathrm{Fe}(\mathrm{n}, \gamma) \mathrm{d}$	1.2	1.4
7120.1	${ }^{56} \mathrm{Fe}(\mathrm{n}, \gamma) \mathrm{s}$	2.3	1.7
7631.1	${ }^{56} \mathrm{Fe}(\mathrm{n}, \gamma)$	1.5	1.1
6623.5	$56_{\text {Fe }}(n, \gamma) d$	1.7	1.8
7134.5	${ }^{56} \mathrm{Fe}(\mathrm{n}, \gamma) \mathrm{s}$	1.4	1.4
7645.5	$56_{\mathrm{Fe}}(\mathrm{n}, \gamma)$	1.0	1.0
s - single escape peak d - double escape peak			

Table 1: Comparison of in-bean ganma ray-spectra from iron target.

Background, absorption and neutron flux corrections were applied. The peak areas for the inelastic scattering, ($n, 2 n$) and neutron capture gamma-ray lines are normàlized to the $7645.5 \mathrm{MeV}{ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{y})$ Tine. As expected, scattering and ($n, 2 n$) gama-rays dominate the spectra taken during the 39 MeV maximum n-energy irradiation of Fe. The measured fluxes exceed those of the neutron capture gammrays by 2 to 3 orders of magnitude. A direct comparison with results from the 14 MeV maximum n -energy irradiation ${ }^{2)}$ makes the effect of the higher energy neutrons apparent.

As medium and high energy-neutrons contribute considerably to the seconclary particle fluxes in the moderatorfree planetary surfaces down to $150 \mathrm{~g} / \mathrm{cm}^{2}{ }^{5}$), the experiments with neutrons between 22.5 and 45 MeV maximum energy will improve knowledge of gama-ray production in planetary surfaces and so help to develop tools for the interpretation of gama-ray spectra obtained from such bodies.
References

1) R.C. Reedy (1978) Proc. Luaar Planet. Sci. Conf. 9th, 2961-2984
2) J. Britkner (1983) Ph. D. Thesis, Univ. Mainz
3) E. Rantanen, 3.7. Routti and B. Bars (1975) Atonkernenergie 26, 103-106
4) R.L. Bunting and J.J. Kraushaar (1974) Nucl. Instr. and Meth. 118, 565-572
5) T.W. Armstrong and R.G. Alsmiller (1971) Proc. Second Lunar Sci. Conf., 1729-1745
6) This Work

+ Institut fur kernchenie, Universität koln, F.R. Germany
* Max-Planck-Institut fü Chemie, Mainz, F.R. Germany
${ }^{++}$Los Alamos National Laboratory, USA
1.26. Measurement and Hybrid Mode Anailysis of Integra? Excitation Functions for Light Particle Induced Reactions
R. Mieher ${ }^{+}$, M. Gatas ${ }^{+}$, F. Perffer ${ }^{+}$, R. Stück ${ }^{+}$ In order to extend our earlier studies of p - and α-induced reactions on medium weight elements (e.g. 1-3) to other projectiles we measured integral excitation functions for the production of radionuclides ($44 \leqq A \leqq 61$) by ${ }^{3}$ He- and ${ }^{2} \mathrm{H}$-induced reactions on cobalt for energies up to 45 MeV per nucleon. The experimental data were compared with calculations using the computer code "OVERLAD AEICE ${ }^{4}$ (combining the statistical theory of Weisskopf and Ewing with the hybrid nodel of preequilibrium reactions. For ${ }^{3}$ he-induced reactions an unambiguous choice of the initial exciton configuration was possible using the reaction ${ }^{59} \mathrm{Co}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{61} \mathrm{Cu}$ (fig. 1). While an initial exciton

Figure 1: Experimental cross sections and theoretical predictions of the excitation function for the reaction ${ }^{59} \mathrm{Co}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{61} \mathrm{Cu}$.
configuration of $n_{0}=4(1,3,0)$ exclusively described the experimental data for this reaction, for other reactions partially extreme discrepancies between theory and experiment were observed. Exemplarily this is shown in fig. 2

Figure 2: Experimental cross sections and theoretical predictions for the reaction ${ }^{59} \mathrm{Co}(3 \mathrm{He}, 3 \mathrm{p})^{59} \mathrm{Fe}$.
for the reaction ${ }^{59} \mathrm{Co}\left({ }^{3} \mathrm{He}, 3 \mathrm{p}\right){ }^{59} \mathrm{Fe}$. For energies above 40 MeV the calculations underestimate the experimental data up to a factor of 5 . For nearly all reactions of the type $\left.\left\{{ }^{3} \mathrm{He}, \mathrm{xpyn}\right), x=1,2\right\}$ the experimental cross sections are considerabiy higher than the theoretical ones in their high energy parts by up to one order of magnitude. For the expianation of the observed discrepancies break-up of the incoming ${ }^{3}$ He-particle as well as double stripping may be assumed. Moreover, contributions of preequilibrium a-emission were to be seen giving rise to discrepancies between theory and experiment in the low energy part of the excitation functions. All the results ${ }^{5}$) indicate that the initial states of ${ }^{3}$ He-induced reactions are more complicated than assumed by the present foms of preequilibrium theories, as it was also stated earlier for α-induced reactions ${ }^{2,3)}$.

In contrast, the theoretical predictions of integral excitation functions for ${ }^{2}$ H-induced reactions on cobalt ${ }^{6}$) were in much better agreement with our new experimental data than for ${ }^{3}$ He- and ${ }^{4}$ He-induced reactions ${ }^{2}, 3,5$). An example is given in fig. 3 for the reaction ${ }^{59} \mathrm{Co}(\mathrm{d}, \mathrm{p} 2 \mathrm{n})^{58 \mathrm{~m}+g_{\mathrm{g}}} \mathrm{Co}$.

Figure 3: Experimental cross sections and theoretical predictions for the reaction $\left.{ }^{59} \operatorname{Co}^{2} \mathrm{~K}, \mathrm{p} 2 \mathrm{n}\right)^{58 \mathrm{~m}+\mathrm{g}} \mathrm{Co}$. For the work of other authors see references in 0)

In general, the $\{(d, x p y n) x=0-7, y=0-8\}$-reactions are well described by the calculations and the agreement between theory and experiment is similarly good as observed for p-induced reactions earfier ${ }^{1)}$. Only very particular reaction types, e.g. $\left({ }^{2} H, p\right)$ and $\left({ }^{2} H, 2 p\right)$ are affected by direct reactions, resulting in discrepancies between theory and experiment.

Furthermore, we started to measure integral excitation functions for the production of radionuclides from lutetiun by p-induced reactions between 15 and 45 NeV . Lu is of particular interest, since it is supposed to be useful as a flux monitor in medium energy experiments for the evaluation of primary and secondary nucleon fluxes. Up to now, integral excitation functions for $\{(p, p x y), x=1-4\}$ and $\{(p, x n), x=1,3-5\}$ were mearsured. Also these $e x-$ perimental cross sections were compared with calculated ones based, however, on the new version of the comptiter code for the hybrid model "ALICE LIVERMORE 82"7). The particular advantage of this new code is the inclusion of multiple preequilibrium emission and the use of experimental mass data, in spite of those from mass fommlas over wide mass ranges. Although these investigations are not yet finished, a preliminary data analysis showed that for lu the theoretical cross sections are not as good as for the light elements ${ }^{l}$. In most cases, the predicted values were too small by a factor of 2 . A detalled aralysis of the experimental data will be necessary, however, before final conclusions can be crawn.

References

1) R. Michel, G. Brinkmann, H. Weigel, W. Herr, Nuct. Phys. A322 (1979) 40
2) R. Michel, G. Brinkmann, Nuc]. Phys. A338 (1980) 167
3) R. Wichel, G. Brinkmann, R. Stuck, Radiochimica Acta 32 (1983) 173
4) M. Blann, C00-3494-10 (1973), C00-3494-29 (1976)
5) R. Miche1, M. Galas, Nucl. Phys. A404 (1983) 77
6) R. Michel, M. Galas, Int. J. Appl. Rad. Isot. 34 (1983) 1325
7) M. Blann, LLML-Report (1982) UCID-19614

[^4]2. NUCLEAR SPECTROSCOPY
2.1. Study of ${ }^{75}$ Se by Neutron Capture and $S \cup(3)$ - SU(5) Transition in Quadrupole-Phonon Representation
Y. Tokuraga, H. Seyfarih, O.K.B. Sehult, S. Brant ${ }^{+}$, V. Paar ${ }^{+}$, D. Wrevenare , ${ }^{\text {H.G. Bomer }}{ }^{++}$, G. Bomeau ${ }^{++}$, B. Paust ${ }^{\dagger+}$, Ch. Bosmeyr ${ }^{*}$, K. Sohreokenbach ${ }^{+1}$ and R.A. Meyer ${ }^{\text {at }}$

The γ - and e^{-}spectra following thermal neutron capture in ${ }^{74}$ Se were studied with curved-crystal, B, and pair spectrometers. Precise energies have been obtained for the transitions and levels at low energies ${ }^{1,2)}$. Two primary E2 transitions were found. The neutron separation energy for ${ }^{75}$ Se was determined as 8027.6 kev. Precise γ energies following the electron capture decay of ${ }^{75}$ se were also measured, resulting in precise level energies in ${ }^{75}$ As.
The calculation of the energy levels in ${ }^{75}$ Se has been performed in the Si(6) particle-vibration model (PTQM) and 27 theoretical states have been tentatively assigned to the experimental fevels. The spectrum of the core nucleus ${ }^{74}$ Se has been calculated in the SU(6) quadrupole phonon model (TQM). The structure of theoretical states, the relation to $\mathrm{SU}(3)$ and $\mathrm{SU}(5) 1$ imits and potential energy surface are discussed ${ }^{3)}$. Also, an overview is presented to theoretical explanations of the $I=j, j-1, j-2$ anomalous triplet emphasizing the rule with shell-model classification corrected for quadrupole phonons.
The levet scheme of ${ }^{75}$ Se and the information on the observed states and their mode of decay derived directly from the obtained (n, y)-data have been given in a contribution in the last Annual Report ${ }^{4)}$. In the present contribution the emphasis will be on the theoretical calculation and the comparison with the observed level energies.
Theoretically the levels in ${ }^{75}$ se are described by coupling a quasi-neutron to the anharmonic quadmupole vibrational core ${ }^{74} \mathrm{Se}$, which is calculated in the truncated guadrupole phonon mode] ${ }^{5,6)}$. The TOM Hamitionian

$$
\begin{aligned}
& \left.\mathrm{H}_{\mathrm{TQM}}=\mathrm{h}_{1} \hat{\mathrm{~N}}+\mathrm{h}_{2}\left\{\left(\mathrm{~b}^{+} \mathrm{b}^{+}\right)_{0}(\mathrm{~N}-\hat{\mathrm{N}})(\mathrm{N}-\hat{\mathrm{N}}-1)\right)^{1 / 2}+\mathrm{H} . \mathrm{C} .\right\} \\
& +h_{3}\left\{\left(b^{+} b^{+} \tilde{b}\right)_{0}(N-\hat{N})^{1 / 2}+\text { H.C. }\right\} \div \\
& +\sum_{L=0,2,4} h_{4 L}\left\{\left(b^{+} b^{+}\right)_{L}(\tilde{\mathrm{Bb}})_{\mathrm{L}}\right\} \quad{ }_{0}
\end{aligned}
$$

is diagonalized ${ }^{3)}$ in the basis In V I), where n is the number of quadrupole phonons. With $\mathrm{N}=8$ the anharmonicity parameters $h_{1}, h_{2}, h_{3}, h_{4 L}$ have been obtained from a fit to the levels of ${ }^{74}$ Se. These parameters can now be compared with what is expected in the $S U(5)$ limit (h_{1} should be large and $h_{2}=h_{3}=0$) or in the $S U(3) 14 m i t$, where four tinearly independent relations between the parameters yield only two to be chosen as free parameters. It turns out that the fitted h_{1} is large ${ }^{3)}$ and h_{2} and h_{3} are quite small, indicative of $\mathrm{Su}(5)$ character of ${ }^{2} 74 \mathrm{Se}$. On the other hand, taking the fitted h_{3} and h_{41} as input values
 which agree in sign with those obtained in the fit. This suggests a SU(3) - SU(5) transition.

The calculation of the potential energy surface yields for ${ }^{74}$ Se a prolate but not very pronounced minimum and γ-softness.
The levels of ${ }^{75}$ Se are calculated in $\mathrm{SU}(6)$ particle-quadrupole phonon model PTOM $^{6)}$ with

$$
\mathrm{H}_{\mathrm{PTQM}}=\mathrm{H}_{\mathrm{P}}+\mathrm{H}_{\mathrm{TQH}}+\mathrm{H}_{\mathrm{PVI}},
$$

where the last temn is the su(6) particle-vibration interaction ${ }^{3,6)}$. Only the strength parameters Γ_{0}, A_{0} and A_{0} and the occupation probability $\psi^{2} \tilde{g}_{9 / 2}$ were fitted to the exper imental levels ${ }^{3}$. The calculated PTQM wave functions ${ }^{3)}$ show complete breaking of the weak-coupling classification. The largest quasiparticle-phonon component of $\left\{9 / 2_{1}^{+}\right\rangle$is $0.64\left\{\tilde{g}_{g / 2}, 46 ; 9 / 2\right\rangle$ which contains 4 phonons coupled to $I=6$. For the wave functions of the low-lying states a systematic shift of the largest components is seen towards the middle ($n \mathrm{n} M / 2=4$) of the phonon space. This is characteristic of the SU(6) quadrupole phonon wave functions in the Su(3) 1 imit ${ }^{6}$). However, the wave functions for ${ }^{75}$ Se exhibit pronounced leading components which implies that the SU(5) character is still present.

References

1) Y. Tokunaga, Thesis, University of Könn, Jiil-Spez 158 (1982)
2) Y. Tokunage and H.G. Börner, Jiil-Spez 145 (1982)
3) Y. Takunaga, H. Seyfarth, 0.W.B. Schult, S. Brant, V. Paar, D. Vretenar, H.G. Börner, G. Barreau, H. Faust, Ch. Hofmeyr, K. Schreckenbach and R.A. Meyer, submitted for publication to Nucl. Phys.
4) Y. Tokunaga, H.G. Börner, G. Barreau, H. Faust, Ch. Hofmeyr, K. Schreckenbach, H. Seyfarth and 0.W.B. Schult, EKF-Annua? Report (1982), Biil-Spez 202
5) D. Janssen, R.V. Jolos and F. Dönau, Nuct. Phys. A224 (1974) 93
6) V. Paar, S. Brant, L.F. Canto, G. Leander and M. Vouk, Nucl. Phys. A378 (1982) 41

Fig. 1: Calculated and experimental levels in ${ }^{75}$ Se. The assignments of the calculated ? evels are tentative.

+ Prirodoslovno-matematicki fakultet, University of Zagreb, Marulicev trg 19, Zagreb, Yugoslavia
${ }^{++}$Institut Laue-Langevin, F- 38045 Grenoble, France
* NuCOR, Private bag X256, Pretoria 0001 , Republic of South Africa
* permanent address: Muclear Chemistry Division, Lawrence Livermore Laboratory, Livermore, Ca. 94550 , USA
2.2. The ${ }^{75} \mathrm{Se}(\mathrm{n}, \gamma)^{76}$ Se Reaction and the Low-lying Level Structure of ${ }^{75}$ Se
Y. Tokunaga, H, Seyforth, O.W.B. Soralt, R.G. Bömer ${ }^{\dagger}$, Ch. Hofmeyr $^{+\dagger}$, G. Bamean ${ }^{\dagger}$, R. Bmiseot ${ }^{+}$, U. Kate ${ }^{\text {++ }}$ and Ch. MönRemeyer ${ }^{\text {tit+ }}$

The ${ }^{75}$ Se $(n, y)^{76}$ Se reaction was studied through consecutive neutron capture with the use of pair and curved crystal spectrometers ${ }^{11}$. The high-resolution data have allowed construction of a yery well established level scheme incfuding many new levels above 2.8 Hev excitation energy ${ }^{2}, 3$. The resulting neutron binding energy, $11154.0 \pm 0.3 \mathrm{keV}$, is lower than the value given in the mass tab7e ${ }^{4}$. The ${ }^{75} \mathrm{Se}(\mathrm{n}, \gamma)$ cross section was determined to be $330 \pm 100 \mathrm{~b}$. The level scheme and branching ratios were compared with results from IBM calculations.
These calculations were carried out both in IBM-15) and in the framework of $1 B M-2^{6}$, which treats protons and neutrons separately. In this model, which has sone connection to the shell model, we have tried to keep as close as possible to microscopic formulas for the parameters of the hamiltonian which have been derived by Otsuka, Arima and lachel10 ${ }^{7}$) under the simplifying assriuption of a degenerate major shell. The calculations have been performend systematically for ${ }^{72-80}$ se and ${ }^{74-82} \mathrm{Kr}$, trying to give a description with few constants only. By using the microscopic formulas only two parameters had to be fitited to each nucleus, while three more parameters could be determined without fitting. However, it turned out ${ }^{8)}$ that this progran can be carried out only if one does not attempt to describe the 0_{2}^{+}excitation in any of these nuclei. Hence we assumed that this state is an intruder. Of course, in this way we cannot prove that it is not possible to reproduce these states the IBM. This is rather a consequence of the requirement that the model parameters should vary smoothly and regularly. Had we used more free parameters in the calculations, we could have obtained agreement at least for the level energies. We have to show, therefore, that in this case we obtain poor wave functions for the excited 0^{i} states. This has been done by means of an IBM-1 calculation with all 6 parameters of the model hamiltonian varied freely. If the mixing of the noncollective degrees of freedon of the 0_{2}^{+}state with the collective space is strong, IBM-1 could even work better than IBM-2. Both attempts rely on rather crude assumptions, and it is not clear a priori that any of the standard collective models is suited for the description of the selenium isotopes. The branching ratios measured in the (n, γ) experiments and $B(2)$ values and quadrupole monents from other measurements served for testing the model wave functions.

Further details about the calculations are given elsewhere ${ }^{3)}$. The models reproduce the level energies quite well (see Fig. 1). IBM-1, with more parameters fits better only the 0^{+}states. The other levels agree better with IBM- 2 ; which fails to explain the 0^{+}Tevels. This suggests that the structure of the excited 0^{+}states contains a significant fraction of noncollective degrees
of freedon. This is obvious aiso from the fact that the models cannot explain satisfactorily the masured branching ratios ${ }^{3 \text {). }}$

Fig. 1: Comparison of the experimental level energies with energies calculated in the framework of Fem-1 and IBM-2.

References

1) Y. Tokunaga, H.G. Börner, Ch. Hofmeyr, G. Barreau, R. Brissot, H. Seyfarth and 0.1 . B. Schult, Armual Report 1982, dul-Spez 202 (1983) 38
2) Y. Tokunaga, thes is liniversity of Koln , JWl-Spez 158 (1982) and Y. Tokunaga and H.G. Börner, Will-Spez 145 (1982)
3) Y. Tokunaga, H. Seyfarth, O.A.B. Schult, H.G. Eöner, Ch. Hofmeyr, G. Barreas, R. Brissot, U. Kaup and Ch. Monkemeyer, Nucl. Phys. A411 (1983) 209
4) A.H. Wapstra and K. Bos, Atomic Data and Nuclear Bata Tables 19 (1977) 231
5) A. Arima and F, Iachello, Am. Phys. 99 (1976) 253, 111 (1978; 201, 123 (1979) 468
6) T. Otsuka, A. Arima, F. Iachelio and 1. Talmi, Phys. Lett. 76B (1978) 139
7) T, Otsuka, A, Arima and F. Iachello, Nucl. Fhys. A309 (1978) 1
8) M. Matoba, M. Hyakutake, N. Katori and Y. Irie, Nucl. phys. A325 (1979) 389

+ Institut Laue-Langevin, F-38045 Grenoble, France
${ }^{++}$NUCOR, Private bag X256, Pretoria 0001, Republic of South Africa
++ Institut fü Kernphysik, Universitäi zu kôn, D-5000 koln 1, West Germany
2.3. Low-lying levels of ${ }^{77}$ Se studied through themal neutron capture and evidence for a new term in the E2 operator of TOM(IBM)
Y. Tokmaga, A. Seyfarth, R.A. Meyer ${ }^{+}$, O, W.B. Schult, H. G. Bomer ${ }^{+\dagger}$, G. Bameau ${ }^{i+}$, H. Foust ${ }^{+\dagger}$, K. Sekreokenbach ${ }^{++}$, S. Bnant ${ }^{+++}$, V. Pcor ${ }^{+++}$, M. Vouk ${ }^{+\dagger+}$ and D. Fretenax ${ }^{++4}$

A high resolution study of the ${ }^{76}$ Se (n, r) reaction was carried out with curved crystal spectrometers at the HL, Grenoble, and with a pair spectroneter at Juilich. A7so conversion electrons were measured at the ILL following slow-neutron capture. The resulting datal ${ }^{1}$ yield very precise level energies and allow a detailed study of the decay scheme ${ }^{2)}$. Spin and parity assigments were obtained for most of the levels, and their decay modes could be clarified. The neutron separation energy of ${ }^{77} \mathrm{Se}$ was measured as 7418.85 kev. The calculation of the energy levels in ${ }^{77}$ Se has been performed in the SU(6) particle-vibration model (PIQM), by using ${ }^{76}$ Se as a SU(5) vibrational core and the same particle-vibration interaction strengths as in the PTOM calculation for ${ }^{75} \mathrm{Se}$. In this frame there is evidence for a $\Delta n=2$ term in the E2 operator. This term has not been included so far in TQM and IBM calculations.

A short report on the experimental results has been given elsewhere ${ }^{3)}$; also the obtained level scheme has been presented in this report. In the present report the emphasis is on the comparison of the experimental data with the PTQM ${ }^{4}$. The TOM calculation of the ${ }^{76}$ Se core was performed in the SU(5) limit. In the PTQP calculation for ${ }^{77}$ Se we have used BCS quasiparticle energies and occupation probabilities obtained by solving the BCS gap equations. These vaiues were assumed to be the same as in the previous calculation for ${ }^{75}$ Se. Also the same particle-vibration strengths have been taken as for ${ }^{75} \mathrm{Se}: A_{0}=0.1 \mathrm{MeV}, \Gamma_{0}=0.4 \mathrm{MeV}, A_{0}=24.35 \mathrm{MeV}$ and $x=-\sqrt{7 / 2}$. In this way no parameters were fitted, the oniy difference being in the cores, ${ }^{76}$ Se being close to $S U(5)$ and ${ }^{74}$ Se being between $S U(3)$ and $S U(5)$.

Thus the phonon distributions in the wave functions of the $5 / 2_{1}^{+}, 7 / 2_{1}^{+}$and $9 / 2_{1}^{+}$states of ${ }^{77}$ Se are rather narrow 5^{+}but more spread out in the non-SU(5) nucleus ${ }^{75} \mathrm{Se}$.

Wave functions with a marrow phonon distribution pose an intriguing problem in describing transitions. Namely, if the singularly large components in the initial and final states differ by two phonons, there emerges the posstbility to have coherent and sizeable contributions to the matrix elements of $\Delta n=2$ operators; and these have not been included so for in IBM-IBFM and TQM-PTQM calculations.

The E2 operator of PTQM reads
$M_{H}^{P T O M}(E 2)=M_{H}^{S P}(E 2)+M_{3}^{T Q M}(E 2)$.

Here, $M_{\mu}^{S P}(E 2)$ is the standard single-particle (quasiparticle) E operator and $\mathrm{M}_{\mu}^{\mathrm{TQM}}(\mathrm{E} 2)$ is the quadrupole phonon E2 operator of TQM:
$M_{\mu}^{T C M}(E 2)=e_{V}\left[b_{\mu}^{+} \sqrt{M-\hat{H}}+\sqrt{N-N} \hat{b}_{\mu}+x\left(b^{+\dot{b}}\right)_{2_{v}}\right]$,
with conveniently defined effective charge $e_{V}=$
$\frac{3}{4 \pi} e^{V I B}\left(e R_{0}\right)^{2}$.
However, using RPA for quacrupole phonons of TOM and including diagrams up to the second order there arises the following corrected form of $E 2$ operator ${ }^{(5)}$:
$M_{u}^{\operatorname{CTOM}}(E 2)=M_{\mu}^{\operatorname{TOM}_{u}}(E 2)+M_{u}^{\operatorname{TOM}, \Delta n=2}(E 2)$.
Here, $M_{y}^{T C M}(E 2)$ is the standard E2 operator of TQM and the additional term of $\Delta n=2$ type reads

$$
\begin{aligned}
M_{\mu}^{T O H}, \Delta n=2_{(E 2)}= & e_{v} x^{\prime}\left[\left(b^{+} b^{+}\right)_{2 \mu} \sqrt{(N-\hat{i})(N-\hat{N}-1)}+\right. \\
& \sqrt{\left.(N-N)(N-N-1)(B D)_{2 \mu}\right]}
\end{aligned}
$$

In the microscopic derivation the new, $\Delta n=2$ term arises in the same diagrammatic order as the standard $\Delta n=0$ temm $f\left(b^{+} B\right)_{2_{\mu}}$, giving a hint that this additional term has to be included in the E2 operator of TQM/IBM. In this light, it will be interesting to reinvestigate the calculations for E2 properties in IBM and TQM performed so far.
The new term gives sizeable contributions to the E2 transitions with large $\Delta n=2$ overlaps between the wave functions of the initial and final state. Such a case is the $5 / 2_{1}^{f} \rightarrow 9 / 2_{1}^{+}$E2 transition in our PTOM calculation for ${ }^{77} \mathrm{Se}$; the $\Delta n=2$ contribution amounts to more than 99% of the overlap between the wave functions of $5 / 2_{1}^{+}$ and $9 / 2_{1}^{t}$ states. Therefore, $B\left(E 2,5 / 2_{1}^{+} \rightarrow 9 / 2_{1}^{+}\right)$is very small $\left(10^{-5}\right)$ if one employs the standard $E 2$ operator of prom, which is contrary to experiment (0.09). On the other hand, including new $\Delta n=2$ term in the E2 operator we get sizeable coherent contributions (0.11).

References

1) Y, Tokunaga and H.G. Bömer, Jit-Spez. 145 (1982)
2) Y. Tokunaga, Thesis, University of Koln, Jil-Spez 158 (1982)
3) Y. Tokunaga, H.G. Börner, H. Seyfarth, G. Barreak, H. Faust, K. Schreckenbach and O.W.B. Schult, Annual Report IKP, KFA Jiilich, Jill-Spez 202 (1983)
4) V. Paar, S. Brant, Z.F. Canto, G. Leander and M. Vouk, Nuct. Phys, A378 (1982) 41
5) Y. Tokunaga, H. Seyfarth, R.A. Meyer, 0.W.B. Schult, H. G, Börner, G. Barreau, H. Faust, K. Schreckenbach, S. Brant, V'. Paar, M. Vouk, D. Vretenar, to be published
6) V. Paar: and S. Brant, to be published
t Permanent address: Nuclear Chemistry Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
t+ Institute Lave-Langevin, F- 38045 Grenobie, France
iff Prirodoslowno-matematicki fakultet, University of Zagreb, Marulicer trg 19, Zagreb, Yugoslavia
2.4. Rotation-Like $5 / 2^{+}$Bands in Odd-Mass A a 100 Nuclei as Coherent-State Structures of Quadrupole Phonons in PTOM

$$
\text { R.A. Weyer }{ }^{+} \text {, V. Parr }{ }^{++} \text {, S. Bront }{ }^{++}
$$

Recent investigations of nuclei far from stability have pointed to the possibility of odd-mass symmetric-rotational nuciei in the medtum mass region of the nuclear chart ($70 \leq A \leq i 20$). Among the odd-proton nuciej, a $5 / 2^{+}$ground state (g.s.) band with members to $19 / 2^{\frac{i}{t}}$ has been found ${ }^{1)}$ for ${ }^{99} \mathrm{Y}_{60}$ and similar bands (with a smalier number of identified members) have been observed ${ }^{2-4}$) in ${ }^{101} \mathrm{Y},{ }^{101} 1_{\mathrm{Nb}}$ and ${ }^{103_{\mathrm{Nb}}}$. These bands have been discussed within the context of a $|4225 / 2|$ Nilsson band ${ }^{1,2-5)}$. Here we investigate them within the pTOM ${ }^{6}$.

This quadrupole phonon model employes a spherical representation (particle-phonon coupling). The PTOM Hamiltonian which is a particular (Su(6)-type) anharmonic quadrupole phonon model and particle-vibration interaction is diagonalized in a standars particle-vibration basis. The calculations have been performed for ${ }^{99} Y$ which is taken as typical for this region. The TQM vibrational core has been determined in order to reproduce the low lying leveis in ${ }^{98}$ Sr. The maximum nuaber of quadrupole phonons is $\mathrm{N}=7$, the particle-vibration interaction strengths were fitted to ${ }^{99} \mathrm{Y}$ and are with $\mathrm{A}_{\mathrm{c}}=0, \Gamma_{0}=0.477$ and $\mathrm{A}_{0}=4.77$ close to the values used 7) for ${ }^{0}{ }_{42} \mathrm{Mo}_{59}$.
The low lying spectrum is presented in fig. 1 together with part of the experinental level scheme ${ }^{1,8)}$ of 99 . The ground state band is well reproduced and several side bands are predicted. Gandidates for members of these bands are available ${ }^{8)}$. It should be pointed out that k has not the conventional geometrical meaning in PTQM but is defined quantum-mechanically ${ }^{9}$.

In the quadrupole-phonon representation, a deformed rotational state appears as a quantunmechanical coherent state with the number of quadrupole phonons $N * \infty$. The coherent state has a Gaussian-type distribution of quadrupole phonons centered ${ }^{6}$) around $\bar{n} \approx \frac{2}{3} N$. The phonon distri. bution is the same for all states of the g.s. rotational band.
In the odd-mass nucleus the PTQM analogs of Nilsson bands exhibit a similar type of phonon composition which can be interpreted as a supersymnetric pattern ${ }^{10}$.
The phonon composition of the states of the " K " $=5 / 2$ band are shown in fig. 2. There is indeed an apparent similarity to the quantum-mechanical conerent state with the maximum: at $\bar{n} \sim \frac{2}{3} \cdot 7 \sim 5$. The concept of a true static deformation which would correspond to $N \rightarrow \infty$ is far from being realized.
It is interesting to note the difference in the phonon compositions for ${ }^{99} \mathrm{Y}$ and for ${ }^{75} \mathrm{Se}_{41}$, which is a 750 show in fig. 2. For the latter the \bar{n} shifts to lower N and is more strongly peaked although ${ }^{75}$ se is a unique parity $g_{g / 2}$ nucleus with a $5 / 2^{+}$ground state. It apparently does not belong to the SU(3) class of nuclei.

$\frac{\text { Fig. 1: Comparison of calculated and measured levels in }}{99 y}$

Fig. 2: Quadrupole phonon composition of the PTQM wave functions of the states of "K" $=5 / 2$ band. PToM wave function of the state $\mid \mathcal{U}_{K}>$ in the standard particlevibration basis reads:

There, in the basis state $[J$, nuI; $J>$ the single-particle state of j and the n-phonon state of angular momentum I are coupled to the total angular momentum J; the quantity $\xi_{j n u I}^{J}$ denotes the amplitude of the basis state $\mid j$, nvis. in the wave function $\mid J_{K}{ }^{3}$. a) In the ${ }^{99} \mathrm{Y}$ calcutation there is $j=g_{9 / 2}, n \leq N=7$. For each we present the phonon composition given by

$$
\because A(n)=\sum_{v I}\left(\xi_{9 / 2}^{J_{1}} n u I\right)^{2}
$$

b) Similar plot for lowest $5 / 2_{1}, 7 / 2,9 / 2, \ldots$ in ${ }^{75}$ Se.

References

1) E. Monnand et al., Z. Physik A306, 183 (1982)
2) F.K. Wohn et al., Phys. Rev, Lett. 51, 873 (1983)
3) A.M. Schmitt et a7., Contribution to this Annual Report, p. 41
4) T. Seo, et al., to be published in Z. Physik and contribution to this Annual Report
5) R.A. Meyer et al., submitted to Nuc. Phys.
6) Y. Paar et al., Nucl. Phys. R378, 41 (1982)
7) 5. Brant et at. , to be published
1) B. Pfeiffer, IL Grenoble, private commication
g) D. Sunko et al., to be published
2) G. Winter et al., 2. Physik A309, 243 (1983)

+ 1982/83 on leave of absence from Lawrence Livermore National Laboratory, Livermore, Ca. 94550, USA
++ Visitors from University of Zagreb, Zagreb, Yugoslavia
2.5. New Excited 0^{+}State in ${ }^{100} \mathrm{Zr}$
K. Sistemich, R.E. Petry ${ }^{+}$, S.C. Hill $^{++}$, E.K. Whn ${ }^{++}$, R.L. GiLt ${ }^{+++}$, H. Waeh ${ }^{+++}$, A. PRotrowskit ${ }^{+++}$ The nucleus 100 Zr 60 has very remarkable features. It is the first heavy Zr isotope which shows rotational properties ${ }^{1)}$ while its inmediate even-even neighbour ${ }_{40}{ }^{28} \mathrm{Zr}_{58}$ has shell-model character $\left.{ }^{2}\right)\left(E_{2}{ }_{1}=1223 \mathrm{keV}\right)$. The first excited 0^{+}state of ${ }^{100} 7_{\mathrm{Z}} \mathrm{n}$ has been observed at 331 keV which indicates an asymmetric nuclear shape ${ }^{3\}}$. This level cannot be the head of a β band.
In order to get more information on the level scheme and thus on the structure the nucleus ${ }^{100} \mathrm{Zr}$ has been reinvestigated through the β decay of ${ }^{100} \mathrm{Y}$ at the fission product separator TRISTAN ${ }^{4}{ }^{i}$ at the High Flux Beam Reactor of the Brookhaven National Laboratory. Many new γ transttions in ${ }^{100} \mathrm{Zr}$ have been observed and the construction of an extended level scheme is in progress.
A first result is the evidence for the existence of a second excited 0^{+}level at 830 kel. A $\gamma-\gamma$ angular correlation measurement has been performed using a four-Ge detector setup ${ }^{5}$. The result is shown in fig. 1 . The correlation pattern of the $617-213 \mathrm{keV}$ cascade is the same as the one for the well known $0^{+}-2^{+}-0^{+}$cascade of $119-213 \mathrm{keV}$. The depopulation of the 830 kev level only by the transition of 617 keV into the 2_{1}^{+}state is consistent with the assignment of 0^{+}for the spin and parity of this level. (It should be pointed out that the existence of the 617 kev transition had been observed already in recent investigations at the separators OST15 ${ }^{6}$) and JOSEF.)

As far as its energy is concerned the new 0^{+}level is a good candidate for being the head of a β band. The further analysis of the results from the experiments at TRISTAN will show whether ocher members of this band are present. Shell model calculations ${ }^{7 \text {) }}$ on the shape transition in the heavy even Zr and Mo isotopes could reproduce the drop of the 0_{2}^{+}levels between $98_{Z r}$ and $1007 r$ as well as the existence of three excited 0^{+}levels in ${ }^{98} \mathrm{Zr}$ below 2 Mey . It would be of interest to see whether this type of calculations could also explain the existence of the new 0_{3}^{+} level in 100 Zr .

References

1) E. Gheifetz et âl., Phys. Rev. Lett, 25, 38 (1971)
2) K. Sistemich et aT., Z. Physik A281, 169 (i977)
3) T.A. Khan et al., Z. Physik A284, 313 (1978)
4) D.S. Brenner et al., in Proc. Int. Symp. on Future Directions in Studies of Nuclei far from Stability, Nashville, Temessee, 1979, ed. J.H. Hamilton et al., (North Holiand, Ansterdam, 1980) p. 389
5) A. Wolf et al., Nucl, Instr. Meth. 206, 397 (1983)
6) B. Pfefffer, ILL Grenoble, private commanication
7) P. Federman and S. Pitte1, Phys. Rev. C20, 820 (1979)

Fig. 1: Prel inninary result of the ryangular correlation measurements. The inset shows a partial levei schete of ${ }^{100} \mathrm{Zr}$.
" University of Oklahome, Norman, OK 73069, USA
++ Armes Laboratory DOE and Iowa State University, Ames, Ia 50011, USA
${ }^{+t+}$ Brookhaven National Laboratory, Upton, NY 11973, USA
2.6. Angular correlation measurements on ${ }^{100}$ Mo
G. Nenzen, H. Gistz ${ }^{+}$, G. Lhersonnem, P. Koht,
7. Lawin, T. Seo ${ }^{\text {th }}$, K. Sistemioh, IT. Kaffrelt ${ }^{\text {T}}$

The determination of the angular momenta of the excited states is of importance for the understanding of the onset of deformation at the neutron rich nuclei with A \sim 100. In particular, the identification of 0^{+}-levels provides crucial probes for theoretical description of the shape transition in this nuclear region. Fig: 1 shows a partia] level scheme of the nucleus ${ }^{100}$ Mo.

To study the spins of excited states of ${ }^{100} \mathrm{Mo}$,,γ-angular correlation measurements have been performed at the fission product separator JoSEF ${ }^{1 \text {) }}$. An arrangement of three Ge(Li) detectors, one being movable, on a conto-meter-table was used, which is similar to the one described in ref. 2. The analysis of the data has been carried out and the first results show an $I=0$ assignment to the state of 2035 keV . The data were nomalized with the well know angular correlation of the $0-2-0$ transition of the 159-535 kev cascade, measured simultaneously. Fig. 2 shows the 0-2-0 angular distrinution for the latter (left) and for the 1500-535 transition (right hand side). The dotted curve gives a fit to the experimenta values and the solid curve the theoretical pattern for a 0-2-0 cascade (solid angle corrections of the detectors have been taken into account).

The measurements indicate also $I=0$ for the state at 2085 kev. Recent TOM calculations of Faar et al ${ }^{3)}$ on 100 Ho give a 0^{+}-state at 1720 kev and another one at 2250 keV. Probably the experimental $\mathrm{I}=0$ states can be assigned to these predicted $0^{+}-l e v e l s$. To get more information about the ${ }^{100}$ ro-structure, it is of interest to proof the parity of the $I=0$ states and to look for bands bullt on them.

References

1) H. Lawin, , Eidens, J.N. Borgs, R. Fabbri, J.W. Grilter, G. Joswig, T.A. Khan, W.D. Lappe, G. Sàdler, H.A. Selic, M. Shaanan, K. Sistemich, F. Armbruster, Nucl. Instr. Meth. 137 (1976) 103
2) H.R. Selic, G. Sadler, T.A. Khan, W.D. Lauppe, H. Lawin, K. Sistemich, Z. Physik A289 (1979) 197
3) V. Paer, S. Brant, University of Zagreb/Vugoslavia, private commuication
i Institut fü Kernchenie, University of Mainz, F.R, Germany
${ }^{++}$On leave from kyoto university, Japan

Fig. 1: Partial level schene of ${ }^{100}$ Mo

Fig. 2: Angular distribution for the 535-159 kev cascade (left) and for the $1500-535 \mathrm{kel}$ cascade (right).
2.7. Nanosecond-Half-Eives of Nuclear Levels near $A=100$
G. Lhewsonneak, T. Seo ${ }^{\dagger}$, H. Larin, G. Menzen K, Sistemich
The study of the properties of deformed oddmass nuclei around $A=100$ which is currently performed at $30 S E F$, makes the knowledge of the half-lives of the lowest levels of these nuclei desirable. Therefore a systematic search for delayed $\gamma-\gamma$ coincidences was undertaken using two intrinsic-Ge detectors with surfaces of $19 \mathrm{~cm}^{2}$ and a Ge(Li) diode with a volume of $61 \mathrm{~cm}^{3}$.

The halt-itives in the ns region have been deduced from the measurenents with the centroid shift method. The detemination of the centroids for prompt coinctidences as a function of the γ-ray energy was obtained from simultaneously measured $\gamma-\gamma$ cascades of fission products with known level-1ifetimes. Especially the y radiation of 97 Zr , Ref. 1), and of 99 Nb , Ref. 2\}, with energies between 50 and 200 keV was used. Between these experimental points the centroid vs energy curve was interpolated with a simple smooth function.

For each y-y cascade which was used for the determination of an unknown level-half-life, two time distributions were obtained by starting the time-to-amplitude converter with each r ray. After subtracting the inm fluence of the y-ray energy the difference of the centroid positions of these two distributions is equal to twice the mear-lifetime of the level which is fed and depopulated by then. An example for two such distributions is shown in Fig. 1.
The results for the ho isotopes are given in Table 1 as examples. They are in part average walues out of the data for more than one $\gamma-\gamma$ cascade. The uncertainties include statistical as well as estimated systematic errors. The $t_{1 / 2}$ values for ${ }^{100}$ Mo and ${ }^{104} \psi_{1}$ agree well with those of other authors ${ }^{3)}$ wich shows the reliability of the applied procedure. The value for the 103 keV level of ${ }^{103}$ Wo is considerably smaller than the result of Ref. 4) which points to a considerable deformation of this nucleus, see separate contribution to this Annual Report. Also the present half-7fe for the 95 keV level of ${ }^{105}$ Mo is smalter than the one from an earlier measurement ${ }^{5}$). Since the uncertainties almost overlap, the discrepancy is not as pronounced as in ${ }^{103}$ Mo, but also here the new value indicates a stronger defortation ($\varepsilon=0.29(6)$) than the one which corresponds ${ }^{6}$) to $\mathrm{t}_{1 / 2}=1.1 \mathrm{~ns}$ $(\varepsilon=0.21)$.

References

1) H.A. Selic, Thesis, Universitat zu Koln (1977), Report Jiil 1431 of KFA Jitich. F.R. Germany
2) G. Battistuzzi, K. Kawade, H. Lawin, K. Shizuma, K. Sistenich, Z. Physik A - Atoms and Nuclei 306, 113 (1982)
3) C.M. Lederer, V.S. Shir]ey, Table of Isotopes, Seventh Edition, New York: A. Wiley Sons Inc. 19
4) H.A. Selit, E. Cheifetz, J. 3. Hheiny.: Jili-Snez-99, 69 (1981), Annual Report 1980 of IKP, Kernforschungsanlage Julich, Gemany
5) R.L. Watson, J.B. WiThelmy, R.C. vared, C. Rugge, H.R. Bowman, S.G. Thompon, J.0. Rasmussen: Nuc? Phys. A141, 449 (1970)
6) K. Shizuma, H. Ahrens; J.P. Bocquet, N. Kaffrell, B.D. Kern, H. Lawin, R.A. Meyer, K. Sistemich, G. Jittel and N. Trautmann, Z. Physik A - Atoms and Nuctei, 315,65 (1984)

Table 1: Measured half-life values

Isotope	Level (keV)	$\mathrm{t}_{1 / 2(\mathrm{~ns})}^{\text {present work }}$	previous work	
$103_{\text {Mo }}$	103	$0.45(16)$	$1.7(3)$	(4)
$105_{\text {Mo }}$	95	$0.54(25)$	$1.1(2)$	(5)
$100_{\text {Mo }}$	695	$1.81(23)$	$1.7(2)$	(3)
$104_{\text {Mo }}$	192	$1.05(15)$	$0.91(3)$	(9)

Fig. 1: Measured time distributions for $\gamma-\gamma$ cascades in ${ }^{103} \mathrm{Mo}$

[^5]2.8. The Deformation of ${ }_{42}{ }^{103} \mathrm{MO}_{61}$
T. Seo ${ }^{+}$, G. Whersomean, H. Lowin, R.A. Meyer ${ }^{++}$,
G. Menzen, K. Sistemich

In a recent publication ${ }^{1)}$ it was shown that the lowest levels of ${ }^{103_{M o}}$ (and of ${ }^{105}$ Mo) fit into a rotational band which shows fingerprints of a $u\left[\begin{array}{ll}411 & 3 / 2\end{array}\right]$ Nilsson configuration, see Fig. 1. The half-life of (1.7 ± 0.3) ns of selice et al. ${ }^{2)}$ was used to deduce the reduced transition probability $\mathrm{B}(\mathrm{E} 2)$ of 44 spu for the 102.6 keV ground-state transition and the intrinsic quadrupole moment of $1 Q_{0}=1.92$ barn as well as the deformation. parameter of $|\varepsilon| \approx 0.17$. It was pointed out that these values are small compared to the corresponding quantities for the neighbouring even-even nuclei and that the value for $t_{1 / 2}(102.6 \mathrm{keV})$ of Ref. 2 has to be considered as an upper limit.

In order to ciear up this apparent discrepancy between the rotational pattern of the levels and the low values of the above-mentioned cuantities, the half-life of the 102.5 keV level has been re-measured at JOSEF. The experiment is described in the preceding contribution to this Annual Report. The result of $t_{1 / 2}=(0.45 \pm 0.16) \mathrm{Ms}$ deviates indeed, considerably from the old value. The latter one had been determined through measuring the time behaviour of the emission of the 102.6 kev transition with respect to the fission events of ${ }^{25 ?}$ Cf and it might have been contaminated ${ }^{1)}$ by γ radiation which feeds into the 102.6 kev level.

The new result leads to values of
$\mathrm{B}(\mathrm{E} 2: 103 \mathrm{keV})=(176 \pm 63) \mathrm{spu}$
$Q_{0} \quad=3.9(0.7)$ barn
E $\quad=0.3(0.05)$
which are consistent with a strong deformation of ${ }^{103} \mathrm{Mo}$.

References

1) K. Shizuma, H. Ahrens, J.P. Bocquet, N. Kaffrell, B.D. Kern, H. Lawin, R.A. Meyer, K. Sistemich, G. Tittel and N. Trautman, Z. Physik A - Atoms and Nuclei 314 ,
2) H.A. Selit, E. Cheifetz, J.B, Wilhe?my, Annual Report of the IKP, KFA Jilich 1980, Report JUT-Spez-99, ISSNO170-8937, p. 69

Fig. 1: The proposed ${ }^{1)}$ ground state band of ${ }^{103}$ Mo

```
* on leave of absence from kyoto University, Japan
```

* on leave of absence from kyoto University, Japan
++ on leave of absence (1982/83) from Lawrence Livermore
++ on leave of absence (1982/83) from Lawrence Livermore
National Laboratory, USA

```
    National Laboratory, USA
```

2.9. Band Structures in ${ }_{4}^{101} \mathrm{Nb}_{60}$
 Bocquet ${ }^{*}$, N. Kaffrett ${ }^{+}$, H. Lowin, G. Thensomeau,
 G. Tittal ${ }^{+}$, h. Trautmoni ${ }^{+}$

It has been observed recently that the level schemes of neutron-rich nuclei with odd masses in the region of A ~ 100 contain well developed rotational patterns. An cutstanding example is ${ }^{99} \mathrm{Y}$, it th a ground state band of eight members ${ }^{1}$). Evidence for band structures (or deformations) has also been reported for ${ }_{37} \mathrm{Rb}_{60},{ }_{38} \mathrm{Sr}_{61}$,
 tions could be assigned to the individual band heads in accordance with the standard Nilsson-model calculations. Here and in the following contribution to this Annual Report it is show that also the odd-mass Nb isotopes with 60 or more neutrons can be interpreted in this frame.
The level scheme of ${ }^{101} 1_{\mathrm{ib}}$ has been studied through the B decay of ${ }^{101}{ }^{2}$ w with the fission product separators LOHENGREN at the high flux reactor of the Institut LaueLangevin in Grenoble and JOSEF at the reactor DIDO of the KernforschungsanTage diilich. The experiments have been described in ref. 2) and a level scheme has been proposed in ref. 3). The low lying levels up to 593 keV can all be grouped into three bands as is shown in fig. 1. Tentative Nilsson assignments are proposed for the band heads in agreement with the orbitals which are available near the Fermi surface at $\varepsilon \approx 0.3$, see fig. 1 of the contiribution on ${ }^{103} \mathrm{Nb}$ ta this Annual Report.

The attribution of the indivicual levels to the bands is based on the fact that the energies show a $I(I+1)$ dependence mith the proposed values of K and on the fact that all the expected intraband transtions have been observed.

References

1) E. Monnand, J. A. Pinston, F. Schussler, B. Pfeiffer, H. Lawir, G. Battistuzzi, K. Shizuma, K. Sistemich,
Z. Physik A - Atoms and Nuclei 306, I83 (1982)
2) K. Shizuna, H. Ahrens, J.P. Bocquet, H. Kaffrell, B.D. Kern, H. Lawin, R.A. Meyer, K. Sistemich, G. Tittel and N. Trautmann, Z. Physik A - Atonis and Wuclei 315: 65 (1984)
3) AMSchmitt, N. Kaffrell, N. Trautmanm, Jahresbericht 1979 of Institut für Kernchemie, Universität Mainz

(772) 532
326$]$

$\frac{\left(52^{-}\right) 346}{1140} \quad \frac{\left(72^{-}\right) 374}{1660}$
$\frac{(3 / 2) 206}{[3013 / 2]} \quad \frac{(5,2) 208}{\left[3035_{2}\right]}$
(9i*) 255
(72) 119
$\frac{\left.(9)^{\circ}\right) \quad 0}{14225_{2} \mid}$
${ }_{61}^{101} \mathrm{Nb}_{60}$

Fig. 1: Band structures in ${ }^{101} \mathrm{Nb}$. Level energies and Nilsson-orbit assignments are'given. Numbers below the levels indicate energies relative to the band heads.

Fig. 2: Excitation energies of the band members vs. $\mathrm{I}(\mathrm{I}+1)$.

+ Universitat Mainz, F.R, Germany
\div on leave fror Kyoto University, Japan
${ }^{+4}$ GSI Darmstadt, F.R. Germany
* Universtite de Grenoble, France
** on leave from Lawrence Livermore Mationai Laboratory, USA
\therefore :* on leave (1980-1982) from Hirosinima University, Japan
2.10. Rotational Bands in ${ }_{41}{ }^{103} \mathrm{Nb}_{62}$
T. Seo ${ }^{+}$, A. M. Schmitit ${ }^{+1}$, T. Ahasens ${ }^{+\dagger+}$,
J.F. Bocquet*, N. Kajpretl ${ }^{++}$, H. Lowin, $*$,
G. Lhersonneau, R.A. Meyer ${ }^{*+\pi}$, K. Shisume ${ }^{* \%}$,
K. Sistemich, G. Tittel ${ }^{++}$, IT, Troutmann ${ }^{+\dagger}$

As has been stated in the preceding contribution to this Annual Report, the observation of deformed structures in heavy isotopes of $\mathrm{Rb}, \mathrm{Sr}, \mathrm{Y}, \mathrm{Zr}$ and Mo has initiated the search for rotational patterns in the neutron-rich Nb isotopes. An extended level scheme of ${ }^{103}$ pb has been obtaifed and the properties of the levers have been inspected with regard to their possible affiliation to bands.
The studies of ${ }^{103} \mathrm{Nb}$ were performed at the fission product separators JOSEF and LOHENGRIN through the B^{-}decay of ${ }^{103} \mathrm{Zr}$. Gamma-ray singles and $\gamma-y$ as well as X ray- γ coincidence spectra were determined in experiments described in Ref. 1. At JOSEF the half-lives of individual levels have been measured with delayed $\gamma-\gamma$ coincidences ${ }^{2)}$. (A first level scheme from the results of LOHENGRIN has been given in Ref. 3.) Almost all of the levels below 750 keV can be placed in three rotational bands, see Fig. 1.
The energies of the band members show a linear $I(I+1)$ dependence if the values of $K=5 / 2,5 / 2$ and $3 / 2$ are assumed for the band heads at 0,164 and 248 keV , respectively. All expected transitions inside the bands have been observed.
The Nilsson orbjtals which are available ${ }^{4)}$ at the Fermi surface are depicted in the inset of Fig. 1. Since deformations around $\varepsilon=0.3$ have been observed for the neighbouring ever-even nuclei the probable proton configurations for the band heads in ${ }^{103}$ Nb are [422 5/2], [3035/2] and [301 3/2], respectively. The ratios $\left|\left(\epsilon_{K}-g_{R}\right) / Q_{0}\right|$ which can be deduced ${ }^{1}$) from the relative intensities of the meraband transitions at ow a sensim tive test for the proposed configurations: Assuming $Q_{0}=3.6$ barn (for $\varepsilon \approx 0.3$) and $g_{R} \sim Z / A$ the vaiues of ξ_{K} have been determined for the different bands. As can be seen from the boxes in Fig. l, they agree well with the theoretical estimates for the proposed Nitsson configurations.

Further support of the proposed interpretation of the lowlying levels in ${ }^{10} 3_{\mathrm{Nb}}$ is the fact that the measured ${ }^{2}$) halfwlives of the band heads at. 164 and 248 kev agree well with the Milsson-model estimates ${ }^{4}$ (including pairing), see Table 1.

Fig. 1: Band structures in ${ }^{103}$, Level energies and Nilsson-orbital assignments are given. Numbers below the levels indicate energies relative to the band heads. The boxes contain the experimental (E) and calculated (T) values of $\left|\left(g_{K}-g_{R}\right) / Q_{0}\right|$.

References

1) K. Shizuma et a 1. : Z. Physik A314, (1983)
2) G. Lhersonneau et al.: Contribution to this Ammal Report, p. 39
3) A. Schmitt et al.: Jahresbericht 1979 des Inst. fur Kernchemie, Universität Mainz, p. 34
4) I. Ragnarsson: Leysin Conference (1970), Report CERN 70-30, Vol. II, P. 847

+ on leave of absence from Kyoto University, Japan
++ Institut für Kernchemie, Universität Mainz, F.R.G.
${ }^{+++}$GSI Darmstadt, F.R.G.
* Universite de Grenoble. France
** on leave of absence from Lawrence Livermore National Laboratory, USA
that on leave of absence (1980-g2) from Hiroshima University, Japan

Table 1: Measured and calculated half-1ives of levels in ${ }^{103} \mathrm{Nb}$

$t_{1 / 2}(W), t_{1 / 2}(N)$ and $t_{1 / 2}^{?}$ (1) are the Weißkopf, Nilsson and Nilsson-with-pairing estimates, respectively.
$F_{\mathrm{N}}=\mathrm{t}_{1 / 2}(\exp) / \mathrm{t}_{1 / 2}(\mathrm{~W}), \mathrm{F}_{\mathrm{N}}=\mathrm{t}_{1 / 2}(\exp) / \mathrm{t}_{1 / 2}(\mathrm{~N}), \mathrm{F}_{\mathrm{N}}^{\mathrm{P}}=\mathrm{t}_{1 / 2}(\exp) / \mathrm{t}_{1 / 2}^{\mathrm{P}}(\mathrm{N})$
2.11. The level scheme of ${ }^{134} \mathrm{C}$ s

M. Bogatonovia ${ }^{+}$, B. Seyfarin

The odd-odd ${ }^{134} \mathrm{Cs}$ with 55 protons and 79 neutrons is situated near to the closed shells $Z=50$ and $N=82$. Its knowledge therefore offers the possibility to study the interaction of protons and neutrons in the field of the spherical (or only weakly deformed) vibrating core. The low-lying states of ${ }^{134}$ Cs have been previousiy studied by means of the ${ }^{133} \mathrm{Cs}(\mathrm{n}, \mathrm{y})$ reaction using thermal and resonance neutrons ${ }^{1)}$. In addition ${ }^{133} \mathrm{Cs}(\mathrm{d}, \mathrm{p}){ }^{134} \mathrm{Cs}$ and ${ }^{135} \mathrm{Ba}(\mathrm{t}, \cdots)^{134} \mathrm{C}$ reactions have recently been studied ${ }^{2)}$. The present measurements on the ${ }^{133} \operatorname{cs}(n, y){ }^{134} \mathrm{Cs}$ reaction have been made at the High-F7ux Reactor of the ILL in Grenoble with the bent crystal spectroneters GAMSI and GAMS2/3, the magnetic beta spectrometer BILL and the pair-spectrometer. The additional experiment with the $\gamma-\gamma$ coincidence spectrometer has been performed at the WWR-M reactor of LNPI in Gatchina. At the Brookhaven National Laboratory 5.9 eV and 22.6 eV resonance neutroncapture has been investigated. The ${ }^{133} \operatorname{cs}(d, p){ }^{134} \mathrm{Cs}$ reaction has been studied with the Q30 spectrograph at the tanden accelerator of the University and Tecfinical University at Muincher.

A careful analysis of all available experimental data has led to the levels with spin and parity assignments collected in table 1.

Table 1: Energies, spins and parities of the ${ }^{134} \mathrm{Cs}$ Tevels

Level energy (keV)	$\mathrm{I}^{\text {T }}$	Level energy (keV)	$I^{\text {T }}$
0	4^{+}		
11.2445 (18)	$5^{\text { }}$	434.1737(31)	$6^{-}, 7^{-}$
60.0296(13)	$3^{+}{ }^{4} 4^{+}$	$450.2371(22)$	5 -
138.7437 (29)	$8{ }^{-}$	$451.4241(17)$	$3^{+}, 4^{\text {t }}, 5^{\text {t }}$
173.7938(15)	$2^{+}, 3^{+}, 4^{+}$	454.0870 (22)	$2^{-}, 3^{-}, 4^{-}$
176.4047(16)	$3^{-}, 4^{-}$	$483.6571(29)$	$2^{-}, 3^{-}, 4^{-}$
176.6409(29)	$1^{+}, 2^{+}, 3^{+}$	$502.8410(29)$	$3^{\text {t }}, 4^{\text {t }}, 5^{\text {t }}$
$190.2625(28)$	$3^{4}, 4^{+}, 5^{t}$	$519.3151(48)$	$3^{+}, 4^{+}$
193.6156(20)	4^{-}	539.8731 (56)	$4^{-}, 5^{-}$
197.7812(16)	$2^{+}, 3^{+}, 4^{+}$	570.8259(27)	4 -
209.5450(17)	4 *	579.1314 (37)	$2^{+}, 3^{\text {t }}, 4^{+}$
234.3332(18)	$3^{+}, 4^{+}$	$584.1795(26)$	$2^{+}, 3^{+}, 4^{+}$
257.1074(23)	6	$613.0199(54)$	$3^{-}, 4^{-}, 5^{-}$
267.6610(25)	$4^{-}, 5^{-}$	624.0069(31)	$5-$
271.3482(15)	$2^{+}, 3^{+}, 4^{+}$	643.9636 (28)	$4^{-}, 5^{-}$
290.9670(20)	$2^{+}, 3^{+}, 4^{+}$	$684.5039(49)$	$2^{-} \ldots .5^{-}$
$344.3593(25)$	$7{ }^{-}$	$688.6202(44)$	$2^{+}, 3^{+}, 4^{+}$
$377.1020(20)$	$3^{+}, 4^{+}$	693.8371(52)	$2^{\frac{1}{2}}, 3^{+}, 4^{+}$
$382.9832(24)$	6^{-}	701.9983(27)	$3^{-}, 4^{-}$

Level energy (keV)	$\mathrm{T}^{\text {T }}$	Level energy (keV)	I^{π}
$715.8220(37)$	$2^{-}, 3^{-}, 4^{-}$	$948.1386(46)$	$3^{-}, 4^{-}$
$720.7100(51)$	$2^{+}, 3^{+}, 4^{+}$	$976.3094(37)$	$3^{-}, 4^{-}$
$741.2755(33)$	$3^{+}, 4^{+}$	$991.8764(57)$	$4^{-}, 5^{-}$
$752.7016(30)$	4^{-}	$1014.345(13)$	
$801.2353(79)$	$2^{-} \ldots .5^{-}$	$1043.5253(77)$	$2^{+} \ldots .5^{+}$
$821.6104(78)$	$2^{+}, 3^{+}, 4^{+}$	$1088.4214(46)$	$2^{-}, 3^{-}, 4^{-}$
$831.6822(40)$	$4^{-}, 5^{-}$	$1094.5535(44)$	$2^{-} \ldots .5^{-}$
$835.7113(45)$	$2^{(+)}, \ldots 5^{(+)}$	$1100.3376(87)$	$3^{-}, 4^{-}$
$839.8136(35)$	$2^{-}, 3^{+}, 4^{-}$	$1142.8627(49)$	$3^{-}, 4^{-}$
$880.3468(38)$	$3^{+}, 4^{+}, 5^{+}$	$1162.481(11)$	$3,4,5$
$912.5989(68)$	$3^{+}, 4^{+}$	$1239.467(12)$	$3,4,5$
$916.1778(76)$	$3^{-}, 4^{-}$	$1254.2028(54)$	$2^{-}, 3^{-}, 4^{-}$
$937.6296(48)$	$4^{-}, 5^{-}, 6^{-}$	$1265.1542(75)$	$3^{-}, 4^{-}$
$942.025(21)$	$2,3,4$		

The spin assignments given in table 1 allow more ambiguity than those given in ref. 1 and our preliminary assignments ${ }^{33}$ which were by part based on those of ref. 1. The spin assignments to the 60.0 and 176.6 keV state are of crucial importance for spin assignments to other states on the basis of transition characters. In spite of 3^{+}and 1^{+}, respectively, being strongly favoured for these two states, no direct experimental evidence exciudes the alternative spin assignments to these states which are given in table 1, too, and then allow a wider ambiguity in spin values of other states.

For the interpretation of the present level scheme beyond an earlier atteript ${ }^{4}$) a node 1 is used ${ }^{5}$) which couples quasiproton and quasineutron to a vibrating core via exchange of one quadrupole and one magnetic dipole phonon. In this lowest-order approximation the multiplet energy splitting is equivalent to that resulting from long range singlet and triplet two-body residual interaction ${ }^{4}$. It can be written ${ }^{6,7)}$ as
$\frac{2}{s_{2}^{2}} \cdot \Delta E\left(j_{p}, j_{n}, J_{p n}\right)=\overline{+} P_{2}(x)-\frac{\bar{a}}{c} \cdot x$
(1),
where $x=\frac{j_{p n}\left(J_{p n}+1\right)-j_{p}\left(j_{p}+1\right)-j_{n}\left(j_{n}+1\right)}{2 \cdot\left(j_{p}\left(j_{p}+1\right) \cdot j_{n}\left(j_{n}+1\right)\right)^{1 / 2}}$
The parameters b_{2}^{2} and a / c are determined ${ }^{7)}$ by the quadrupole and magnetic dipole interaction. The sign of the Legendre polynomial refers to quasiproton and quasineutron being of the same (-) or opposite (+) particle-hole character.

In figs. 1 and 2 the calculated energy splittings of the lowest multiplets with negative and positive parity are shown together with the splittings of the experimental excitation energies of those states which are interpreted as members of the muitiplets. These assignments are based on the energetic positions and in addition on the branching ratios of $E 2$ and $M 1$ transitions and spectroscopic factors which have been calculated within the model ${ }^{8)}$, too. Besides an overall agreement fig. 1 shows an oddeeven
staggering pattern. This pattern cannot be reproduced by including higher order terms in the particle-vibration coupling, one has presumably to use a short range resicual interaction which contributes higher multipoles ${ }^{8}$), The coupling constants which are fixed by the multiplet splittings of figs. 1 and 2 can be used to predict those of the $\pi g_{7 / 2} h_{11 / 2}, \pi d_{5 / 2} \quad v d_{3 / 2}, \pi g_{7 / 2} v s_{1 / 2}$ and $\pi d_{3 / 2}{ }^{v s_{1 / 2}}$ miltiplets. The energetic positions and decay patterns of the experimental states 7) indicate considerable mixing not included in the present simple model.

Fig. 1: Least-square fit of a second-order polynomial (eq, 1) to the experimental energies of the $\pi d_{5 / 2}^{-1} \operatorname{ch}_{11 / 2}^{2}$ multiplet states. The fit yields $b_{2}^{2}=267$ kev and $a / c=0.14$.

Fig. 2: Least-square fit of a second-order polynomical (eq. 1) to the experimental energies of the $\pi g_{7 / 2}^{n} v \mathrm{~d}_{3 / 2}^{-1}$ multiplet states. The fit yields $b_{2}^{2}=223 \mathrm{kev}$ and $a / c=0.66$.

References

1) Nuc1. Data Sheets 15 (1975) 203; 34(1981) 475
2) A.G. Lee and R.G. Sumners-Gill, HcMaster Accelerator Laboratory, Annual Report $1980, \mathrm{p} .37$ and 1982, $p .10$
3) M. Bogdanovic et al., KFA Jilich, Institut für Kernphysik, Annual Report 1982, $3 i \mathrm{~T}-\mathrm{Spez} 202$ (1983) p. 45
4) V.L. Alexeev et al., Huct. Phys. A297 (1978) 373
5) V. Paar, Nuct. Phys. A331 (1979) 16
6) U.P. Schiffer, Am, Physics 66 (1971) 798
7) M. Eogdanović, R. Brissot, G. Barreau, K. Schreckenbach, 5. Kerr, H. Borner, I.A. Kondurov, Yu.E. Loginov, V.V. Martymow, P.A. Sushkov, H. Seyfarth, O.W.B. Schuit, T. von Egidy, P. Hungerford, H.H. Schmidt, H.J. Scheerer A. Chalupika, W. Kane, to be pubtished
8) G. Alage, to be published

* Boris Kidrič Institute for Nuclear Scjences, Belgrade, Yugoslavia
2.12. In-beam study of the odd-odd nuclet in ${ }^{134}$ La and 136 La
T. Worek, B. Bevachew, B. Bochep, T. Khtearova, R.A. Lieder, M, When-Teggian and A. Heskakis

The level schemes of the nuclei 134,136 La have been studies by means of in-beam r-ray spectroscopic methods following the $(\gamma, 3 n)$ and $(p, 3 n)$ reactions. The beams were delivered by the Jiilich isochronous cyclotron Julic. Since little was known about the level schemes of 134,136 La extensive excitation function measurements and cross botibardments have been carrien out. To establish the level schemes and to determine spins and half lives of the levels $\gamma-\gamma$ coincidences, γ-ray angular distributions and time spectra in the ns- and ms-regimes have been measured. The resulting partiat level schemes for $134,136_{\mathrm{La}}$ are shown in figs. la, 1b and 2a, 2b. The low-spin parts

Figure La: Partial scheme of low-spin levels in ${ }^{134}$ La.
of the level schemes are shown in figs. ia and 2a. Long living isomers with half lives of 29 ys and 115 ms exist in 134,136 La, respectively. A spin of 7 or 8 was tentatiyely assigned to the 115 ms isomer in ${ }^{135}$ La. The level sequences shown in figs. Ib and $2 b$ are considered to consist of high-spin states since they are much more strongly populated in the o- rather than the p-induced reactions. It has been assumed that they are to be placed on the 29 is and 115 ms isomers in 134,136 La, respectiveTy. In ${ }^{136}$ La furthemore an isomer with a half life of it ns was established and a spin of 3 was tentatively assigned to it.

Low-lying levels of odd-odd nuclei are usually treated in tems of proton-neutron configurations deriving from the lowest single-particle orbitals. It is known from the neighbouring nuclei that the lowest-lying proton orbitals

Figure 1b: Parital scheme of levels probably based on the 29 is isomer in ${ }^{134} \mathrm{La}$.

Figure 2a: Partial schene of low-spin levels in ${ }^{136}$ La.
of ${ }^{134} \mathrm{La}$ and ${ }^{136}$ La have $2 \mathrm{~d}_{5 / 2}$ and $19_{7 / 2}$ shell model configurations. The lowest-lying neutron orbitals have $2 \mathrm{~d}_{3 / 2}, 3 \mathrm{~s}_{1 / 2}$ and $1 h_{1 / 2}$ shell model configurations. The following configurations may arise from the coupling of

Figure 2b: Partial scheme of levels probably based on the 115 ms isomer in ${ }^{135} \mathrm{La}$.
one proton and neutron:
$\pi d_{5 / 2} v d_{3 / 2}, \pi d_{5 / 2} \nu s_{1 / 2}^{-1}, \pi g_{7 / 2} v d_{3 / 2}, \pi g_{7 / 2}^{-1} v s_{1 / 2}, \quad \operatorname{rd}_{5 / 2} \nu h_{1 / 2}^{-1}$.
The levels arising from each of these configurations are degenerate if indepencent particle motion is considered but they spilit due to the residual interaction between the proton and the neutron. To interprete the experimentally observed states of 134,136 La simple calculations were performed for the above configurations in which the matrix elements of the proton-meutron interaction was assumed to be a δ force using the formalism of Sasaki ${ }^{1 \text {) }}$. Sasaki ${ }^{1)}$ applied the formalism only to odd-odd nuclei with one particle or hole outside the closed neutron and proton shells, respectively. Since the nuclei ${ }^{134,136}$ La have several particles outside the closed shell, calculations using his formalism are not expected to reproduce the level energies but a correct level order may result. As result the relative excitation energies of the multiplets resulting from the proton-neutron configurations mentoned above are plotted in fig. 3 as a function of the mixture parameter a which characterizes the residual proton-neutron interaction.
The lowest-lying levels in 134,136 La result from the $\left(\pi d_{5 / 2} \cup d_{3 / 2}\right)$ and $\left(\pi d_{5 / 2} \sin _{1 / 2}^{-1}\right)$ configurations. In both nuclef the ground state has a spin and parity of 1^{+}. In the calculations only one level with a 1^{+}configuration was found being the lowest-lying member of the ($\mathrm{Td}_{5 / 2} v \mathrm{~d}_{3 / 2}$) multiplet. The $\left(\pi d_{5 / 2} v d_{3 / 2}\right)_{2^{+}}$and $\left({ }_{T d_{5 / 2}} v \mathrm{~s}_{1 / 2}^{-1}\right)^{+}+$configurations may be assigned to the 21.8 and 44.3 kel levels, respectively and the $\left(\operatorname{rd}_{5 / 2} v d_{3 / 2}\right)_{3^{+}}$configuration to the 172.0 keV state. The 140.0 keV level can be interpreted as having a $\left(\pi \dot{a}_{5 / 2} \mathrm{vd}_{3 / 2}\right)_{4^{+}}$configuration.

Figure 3: Theoretical calculations of excitation energies of proton-neutron multiplets wsing the fomalism of Sasakil). The excitation energy is plotted vs. the mixture parameter which characterizes the rasidual protonneutron interaction.

The two isoners in ${ }^{136}$ La may be as well interpreted in the framework of the calculations discussed above. Both isomers result probably from the same multiplet and a high-spin configuration has to be involved, viz. the $\psi_{11 / 2}$ configuration. Therefore the $\pi d_{5 / 2^{\frac{1}{n}} 11 / 2}^{11 / 2}$ configuration is taken into consideration. However, since the nucleus ${ }^{136}$ La lies 7 protons above the closed shell the $\pi d_{5 / 2}^{-1}$ vh $h_{1 / 2}^{-1}$ two-hale configuration may be regarded as well. The calculations for these configurations are included in fig. 3. The $\left(\pi c_{5 / 2} \operatorname{ch}_{1!}^{-1} 2\right)$ configurations of $\overline{1}^{\top}=7^{-}$and 4^{-}or the $\left(\pi d_{5}^{+1} / 2^{\text {hh }} 1 \frac{2}{1 / 2}\right)$ configurations of $1^{\pi}=8^{-}$and 3^{-}may be assigned to the 115 nis and 17 as isomers, respectively. Both assignments may allow to understand the decay pattern of the 17 ns isomer. The $21,8,140.0$ and 172.0 keV levels, which are populated by the isomeric decay, result all from the $\left(\pi d_{5 / 2} v d_{3 / 2}\right)$ milutiplet. Therefore, the orbital angular monentum changes by $\Delta \mathrm{E}=3$ for the isoneric transtions which causes the retardetion. However the decay to the 44.3 kel level of $\left(\pi d_{5 / 2} \vee 5_{1 / 2}^{-\frac{1}{2}}\right)$ configuration is prohibited since $4 x=5$. It is resonable to assume that also the 29 ps isoner in ${ }^{134}$ La is a high-spin member of the $\left(-d_{5 / 2} h^{-1} 11 / 2\right)$ multiplet.

Reference

1) K. Sasaki, Nucl. Phys. 71 (1965) 95

2.13. Interaction between Neutron Particle-Hole

 and Octupole Core Coupled States in $\mathrm{N}=83$ NucleiR.A. Meyer ${ }^{+}$, X. Heyde $^{++}$, P. Van Isacker ${ }^{++}$, 1. Waroquier ${ }^{++}$, J. Moredu ${ }^{i+}$, wh d.L. Wood ${ }^{*}$

For the $N=83$ odd neutron nuclei, the natural parity states have negative parity and the lowniying levels can be described as resulting from the neutron single-particle excitations, i.e. $2 \mathrm{f}_{7 / 2}, 3 \mathrm{p}_{3 / 2}, \ldots$ and their coupling to the low-lying $J^{\pi}=2^{+}$quadrupole state of the even-even $1=82$ core nuclei. Recently, there has been a growing body of experimental evidence for a number of positive-parity states below $E_{x}=3 \mathrm{MeV}$ in the $\mathrm{N}=83$ nuclei. Two distinct mechanisms can give rise to such states: (i) particle octupole core-coupled configurations ($\mid 2{ }^{-} 7 / 2$ 这 $3^{-} ; 1 / 2^{+} \ldots, 13 / 2^{+}>$), (ii) $2 p-1 h$ intruder states, described by a neutron excited from the filled neutron orbitals below the $N=82$ closed shell into the unfilled orbitals above $\geqslant 82$. Because the octupole state steadily decreases in energy as ${ }^{146}$ Gd is approached, the two types of configurations will occur at approximately the same unperturbed energy in the $Z \geq 60$ nuclei. Thus, We can investigate the extent of their interaction provided we have detalled experimental data for ${ }^{145} \mathrm{Sm}$ and ${ }^{147}$ Gd. The energy spectra of ${ }^{145}$ gave been known only to a limited extent even though eamly studies revealed a number of levels below $E_{x} \approx 3 \mathrm{MeV}$. The properties (such as J^{π}, etc.) of these levels has not been known even though a number of low-energy conversion electrons, originaily measured by Avotina ${ }^{1)}$, could be associated with intralevel transitions. Unfortunately, these transitions have been discarded in data compilations because their counterparts in γ-ray studies have not been found ${ }^{2)}$. In our studies we have produced mass-separated sources of ${ }^{145}$ Eu and measured high-statistics Ge(Li) singles and Ge(HP) Compton suppression spectra.

Analysis of these data, particulariy the Compton suppression data, have revealed over a cozen previously unobserved γ-rays of 70 energy ($\mathrm{E}_{\gamma} \leqslant 0.9 \mathrm{MeV}$) which in conjunction with the conversion electron data of Avotina et al. 1) provides multipolarities. These transitions can be placed among levels up to $\mathrm{E}_{\mathrm{x}} \sim 3$ Met, and as showh in fig. 1 , provide a J^{π} determination for levels below E_{x} a 2 MeV. In the present study, the particle-(hole)-core coupting calculations are carried out in each subspace separately. The coupling between the $N=$ ($82+$ particle) and the $N=(84+$ hole) configurations is obtained by using the simplifying assumption that the core states in the $N=84$ nuclei specified by the collective quantum number (R^{2}), are connected with the corresponding core states in the $\mathbb{N}=82$ nuclei, specified by the collective quanturn number (R), via the two-particle shell-model wavefunction. That is, the $J^{\top \cdots}=$ $0^{+} N=84$ and $N=82$ ground states, are related by:

$$
\left.\mid N=84\left(R^{\prime}\right)>=\sum_{j_{p}} d\left(j_{P}^{2}\right) ; 0^{+}\right) \mid N=82(R)>\delta_{R R^{\prime}}
$$

Here, the summation j_{p} runs over all available single... particle states in the $N=82-126$ valence space.

Fig. 1: Comparison of the results of the particle(bole)core coupiing caiculations with the experimental data for positive parity states in ${ }^{145} \mathrm{Sm}$ and ${ }^{147} \mathrm{Gd}$.

In fig. I We compare the experimental results with the calculations for ${ }^{145}$ Sm and ${ }^{147}$ Gd. The experimental data for ${ }^{147}$ Gd are from the recent results of refs. 3, 4. For ${ }^{145}$ Sm we calculate a large mixing between the $2 p-1 \mathrm{~h}$ and the $\mid 2 f_{7 / 2} \otimes 3^{-} ; J^{\top}>$ core-coupled states for the $J^{\top}=1 / 2^{+}$, $3 / 2^{+}$and $13 / 2^{+}$levels. The influence of such mixing for the $J^{\pi}=13 / 2^{+}$levels has already been discussed in detail before. In this same figure octupole-core coupled states are observed to follow rather well the centroid value \hat{n}_{3} as obtained from the $J_{1}^{\pi}=3_{1}^{-}$excitation energy in the adjacent even-even nuclei. The single-hole states, on the other hand, cannot easily be connected to a single J^{π} level, but show a large fragmentation. The interaction between $1 / 2^{+}$states need to be, on the average, a factor of 23 stronger than the $3 / 2^{+}$configuration mixing matrix elements in order to reproduce the experimental data. In comparing the relevant reduced matrix elements $\left\langle 3 s_{1 / 2}\right|\left|Y_{3}\right|\left\{f_{7 / 2}\right\rangle$ and $\left.2 \mathrm{C}_{3 / 2}| | Y_{3}| | 2 f_{7 / 2}\right\rangle$ the former is a nonspin-flip matrix element thus accounting for the difference in a simple way.
† Here R and R^{\prime} represent all collective quantum numbers $\left(N_{q} R_{q}, N_{0} R_{0}\right) R$ defined in the $N=82$ and $N=84$ nuclei, respectively. The indices q and 0 denote quadrupole and octupole phonons, N the number and R the angular momentum.

References

1) M.P. Avotina, E.P. Gregorev, Zh. T. Thelev, A, V. Zolotaven and V.O. Sergeev, Preprint OLRE 2272, Dubria (1965)
2) J. Tuit, NucT. Data Sheets 29 (1980) 533
3) E. Newman, K.S. Toth, D.C. Hensley and W.D. Schmitt-0tt, Phys. Rev, C9 (1974) 674
4) M. Piparinen, T. Komppa, R, Komu, A. Pakkanen and J. Blomqvist, Z. Phys. A309 (1982) 87 and ref. thergin
${ }^{\mathbf{+}}{ }^{+} \mathbf{1 9 8 3}$ visiting scientist, permanent address: Muclear Chemistry Division, Lawrence Livermore National Laboratory, Livermore, Ca. 94550, USA
${ }^{++}$Lab. voor Kernfysica, Proeftuinstraat 42, B-9000 Gent, Belgium

* School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
2.14. The 10^{+}States of $v h_{11 / 2}^{-2}$ and $\pi h_{11 / 2}^{2}$ character in the $N=80$ Nuc leus ${ }^{142} 5 m$
M. Hach, i. Styczen', E. Beuscher, P. KLeinheina, J. Blomquist ${ }^{* *}$

In the $N=80$ isotones ${ }_{58}^{138} \mathrm{Ce}$ and ${ }_{50}{ }^{140} \mathrm{Nd}$, isomers of $\left(\operatorname{vin}_{11 / 2}^{-2}\right) 10^{+}$character have been firmly identified ${ }^{1-3)}$ at $\simeq 3.5 \mathrm{MeV}$ excitation from in-beam y-ray- and g-factor measurements. In the isotones above $z=64, \frac{146}{66}$ y and 148 Er , the 10^{\dagger} isomers $1 \mathrm{e}^{4,5)}$ at much lower energy, $=2.9 \mathrm{MeV}$, and they are naturally interpreted as $n^{2} 1 / 2$ two-proton excitations. The lowest 10^{+}state in 144 Gd , a 145 ns isomer at $3.433 \mathrm{Mev}^{6)}$, has been shown ${ }^{7}$) to be a $\pi h_{1 / 2}^{2}$ excitation, and we have recently ${ }^{8}$) identified the $144_{\mathrm{Gd}}\left(\mathrm{wh}^{-2} / \mathrm{H}^{2}\right) 10^{+}$state 264 keV above, at 3.697 MeV . In the ${ }^{142} \mathrm{Sm}_{80}$ nucleus the situation was so far not clear. Earlier studies ${ }^{9,10 \text {) }}$ and more recent experiments ${ }^{2}$) with ${ }^{24} \mathrm{mg}$ and ${ }^{19} \mathrm{~F}$ beams could observe a long-Tived isomer at 3. 662 HeV , but its half life and spin parity could not be firmly established fron these data. Also an attempt ${ }^{2}$) to measure the g-factor rematned unsuccessful since the main yrast γ-ray cascade bypasses the state. We have now investigated ${ }^{142}$ Sm through the $(\alpha, 4 n)$ and (${ }^{3} \mathrm{He}, 3 n$) reactions. These reactions often provide more detailed level scheme information due to their lower angular momentum transfer to the compound nucleus. As a

Fig. 1: High spin states in ${ }^{142}$ Sm as observed in the present ($\alpha, 4 n$) study. The two transitions labelled with italics were only seen in the (${ }^{3} \mathrm{He}, 3 n$) spectra.

Fig. 2: Half life measurement for the $7^{-1}(2.372 \mathrm{MeV})$ and $10^{f}(3.662 \mathrm{MeV})$ isomers in ${ }^{142}$ Sm.
result the main side-feeding intensity populates the energy levels in the $I=9$ to 16 region which therefore can be investigated more completely. In the experinent we used $>60 \mathrm{MeV}$-particles and 32 to $50 \mathrm{MeV}{ }^{3} \mathrm{He}$ beams. For both reactions the r-ray excitation functions and angular distributions were measured, and detailed fourparameter $\gamma \gamma$-coincidence measurements with 140 ns separated beam bursts were carried out.
These data establish the ${ }^{142}$ Sm level scheme up to 6 Mev and $I=16$ (fig. 1). Firm spin-parities could be assigned for most of the levels below 4.8 MeV excitation. Our data confirm the eariier tentative ${ }^{9}, 10$) assignment for the 3.662 MeV isomer and we identify a second 10^{\dagger} state 164 keV higher in energy, ait 3.825 MeV . The previous 7 y unknown isomeric half 3 ife was detemined from the tyy data (fig. 2) as

$$
T_{1 / 2}\left(10^{\dagger}, 3.662 \mathrm{MeV}\right)=480 \pm 60 \mathrm{~ns}
$$

the sane data give for the lower-lying 7^{-}isoner

$$
T_{1 / 2}\left(7^{-}, 2.372 \mathrm{MeV}\right)=175 \pm 5 \mathrm{~ns}
$$

in close agrement with the earlier ${ }^{11,10)}$ result. We also confirn the short-1ived isomer ${ }^{9}, 10$) at $4,547 \mathrm{MeV}$. A tyy centroid shift analysis involving exclusively events with full-energy absorption in both detectors gives

$$
T_{1 / 2}\left(13^{-}, 4.547 \mathrm{MeV}\right)=2.6 \pm 0.5 \mathrm{~ns} .
$$

The two 10^{+}level energies are in good agreement with the systematics of the $N=80$ isotones, but since they occur close in energy additional evidence is needed to deter. mine their configurations. The present results clearly characterise the lower (isomeric) 10^{+}state as the $\mathrm{uh}_{11 / 2}^{-2}$ excitation. The strengths of its three isomeric transitions are listed in table 1 and compared to isomeric transition strengths in other close-lying muclei.

Table 1: Selected Isomeric Transition Strengths in ${ }^{142}$ Sm and in Neighouring Nuclei

Nuc leas	E (keV)	Multipolarity	B_{W}	E_{x}^{i}	Initial and final state configurations	ref.
${ }_{62}^{142} \operatorname{Sin}_{80}$	1290.3	E3	0.18 (2)	3662	$\left(\mathrm{vh}_{11 / 2}^{-2}\right)_{10^{+}} \rightarrow\left(\text { vh }_{1 / 2}^{-1} \mathrm{~d}_{3 / 2}^{-1}\right)_{7}{ }^{\text {m }}$	this work
	336.0	E2	$1.3(2) \cdot 10^{-3}$	3662	$\left(\mathrm{vh}_{11 / 2}^{-2}\right)_{10^{+}}+\left(\mathrm{rd}_{5 / 2}^{-1} 9_{7 / 2}^{-1}\right)^{+}\left(v_{j}^{-2}\right)_{2}+$	this work
	275.1	E1	$7.0(1.0) \cdot 10^{-9}$	3662	$\left(v h_{11 / 2}^{-2}\right)_{10^{+}}{ }^{-}\left(\pi h_{11 / 2} g_{7 / 2}^{-1}\right)_{9^{-}}$	this work
${ }^{-45} 6^{98} y_{80}$	127.0	E. 3	$0.32(4)$	2936	$\left(\pi h_{11 / 2}^{2}\right)_{10}+\rightarrow\left(\pi h_{11 / 2} d_{3 / 2}\right)^{-}$	4
${ }_{66}{ }^{149} \mathrm{Dy}_{83}$	110.4	E3	$0.32(2)$	2661	$\left(\pi h_{11 / 2}^{2} \nu f_{7 / 2}\right)_{27 / 2}{ }^{-}\left(\pi h_{11 / 2} \mathrm{a}_{3 / 2} \nu \mathrm{f}_{7 / 2}\right)_{21 / 2}{ }^{+}$	12
${ }_{58}^{138} \mathrm{Ce}_{80}$	430.0	E2	$1.08(6) \cdot 10^{-2}$	3538	$\left(\mathrm{wh}_{11 / 2}^{-2}\right)_{10^{+}}+\left(\mathrm{rd}_{5 / 2}^{-1} \mathrm{~g}_{7 / 2}^{-1}\right)_{6}{ }^{+}\left(v_{j}^{-2}\right)_{2^{+}}$	1

In our interpretation the 1290 keV E3 transition connects the $\left(v h_{11 / 2}^{-2}\right)_{10^{+}}$and $\left(h_{11 / 2}^{-1} d_{3 / 2}^{-1}\right)_{7}$ - neutron hole configurations. This transition has not been observed in other nuclei in this region, but the amalogous E3 for proton porticles, $\left(\pi h_{11 / 2}^{2}\right)_{10^{+}}$to $\left(\pi h_{11 / 2} d_{3 / 2}\right)_{7}^{-}$, is known 4,12$)$ in the Dy isotopes with 80 and 83 neutrons and found to have comparable strength. A much higher E3 retardation for the 1290 kel transition would be expected for the alternative ($\pi h_{11 / 2}^{2}$) 10^{+}isomeric state assigmment.
Additional evidence for the proposed 10^{+}configurations comes from the feeding transitions. In ${ }^{144} \mathrm{Gd}$ it was found ${ }^{8)}$ that two higher-7ying 11^{\dagger} and 12^{+}levels exclusively decay to the $\left(\pi h_{11 / 2}^{2}\right) 10^{t}$ state through transitions of 711 and 1018 kev . We interpret these levels as the yrast members of the $\left(r^{2} 1_{1 / 2}^{2} 10^{+} \times\left(v^{-2}\right) 2^{+}\right.$imultiplett which is expected in that energy region. In ${ }^{14} 2_{\mathrm{Sm}}$, analogous y rays, with 716 and 920 keV , connect 11^{+}and 12^{+}levels to the higher-lying 10^{+}state which therefore must be the $\pi h_{11 / 2}^{2}$ excitation since analogous 11^{+}and $12^{\text {i }}$ levels cannot occur with the two valence neutron holes in $\left(v h_{11 / 2}^{-2}\right) 10^{\frac{1}{2}}$.
A surprising result is the extreme retardation of a factor 10^{3} for the $336 \mathrm{kev} 10^{+4} \div 8^{+}$isomeric E2 transition. Such a large hindrance reguires high configuration-forbiddemess, which suggests a $\left(\pi d_{5 / 2}^{-1} 9_{7 / 2}^{-1}\right)_{6}^{+} \times\left(v_{j}^{-2}\right)_{2}+$, $v=4$ assignment for the $3.326 \mathrm{MeV}^{+1}$ state. In agreement with expectations a corresponding 8^{+}state was not found in ${ }^{144}$ Gd in this energy region. Further support for this $\dot{v}=48^{+}$assignment comes from a study ${ }^{1}$) of the $N=80^{138}$ Ce nucleus, where the $3.538 \mathrm{MeV}\left(v \mathrm{~h}_{11 / 2}^{-2}\right) 10^{+}$ isomer decays through an analogous $10^{+} \rightarrow 8$ transition, but due to the unexpected large retardation (cf. table) the authors hesitated to adopt $E 2$ multipolarity and positive parity for the $3.108 \mathrm{MeV} \mathrm{I}=8$ level in ${ }^{138} \mathrm{Ce}$. In sumary the present study has completed the systematics for 10^{+}excitations in the $N=80$ isotones from ${ }_{58}^{138} \mathrm{Ce}$ to ${ }^{148} \mathrm{Er}$. As one would expect the $\left(v h_{11 / 2}^{-2}\right) 10^{+}$
excitation, now known from ce to Gd, lies at rather constant energy, whereas the $\left(\pi h_{11 / 2}^{2}\right) 10^{+}$state drops conspicuously when crossing $Z=64$ and stays constant for the nuclei above.

[^6]
References

i) M. Müller-Veggian, Y. Gono, R.M. Lieder, A. Neskakis, C. Mayer-Böricke, Nuct. Phys. A304 (1978) 1
2) J.C. Merdinger, Physica Scripta 24 (1981) 249
3) J.C. Merdinger, F.A. Beck, E. Bozek, T. Byrski, C. Gehringer, Y. Schutz, U.P. Vivien, NucT. Phys. A346 (1980) 281
4) $\underset{297}{ }$, Z. Gui, G. Colombo, E. Nolte, Z. Physik A305 (1982)
5) E. Nolte, G. Colombo, S.Z. Gui, G. Korschinek, W. Schollmeier, P. Kubik, S. Gustavsson, R. Geier, H. Morinaga, Z. Physik A306 (1982) 211
6) M.A.J. Mariscotti, H. Beuscher, W.F. Davidson, Y. Gono, H.M. Jäger, R.M. Lieder, M. Miller-Veggian, A. Neskaskis, D.R. Haenní, D.R. Zolnowski, Nucl. Phys. A311 (1978) 395
7) 0. Häusser, P. Taras, K. Trautmann, D. Ward, T.K. Alexander, H.R. Andrews, B. Haas, D.Horm, Phys. Rev. Lett. 42 (1979) 1451
8) M. Lach, 3. Styczen, R. Julin, M. Piparinen, P. Kleimheinz, Proc. Inst. Conf. on High Angular Momentum Properties of Nuclei, Oak Ridge, November 2 - 4, 1982, vol. 1, p. 74
M. Lach, J. Styczen, R. Julin, M. Piparinen, P. Kleinheinz, Annual Report 198z, IKP-KFA, Jilich, p. 47
9) F. A. Beck, T. Byrski, C. Gehringer, A, Z. Hrynkiewicz, J.C. Merdinger, Y. Schutz, J.P. Vivien, Proc. Int. Conf. on the Structure of Medium-Heavy Nuclei, Rhodos, May 1-4, 1979, p. 289
10) H. Beuscher, D.R. Hámit, B. Bochev, R.M. Lieder, T. Morek, M. Mīller-Veggian, A. Neskakis, C. MayerBoricke, Froc. Int, Conf. on the Structure of MediumHeavy Nuclei, Rhodos, May 1-4, 1979, p. 290
11) G.G. Kennedy, S.C. Gujrathi, S.K. Mark, Phys. Rev. C静 (1975) 553
12) A.M. Stefanini, P. Kleinheinz, M.R, Mäier; Phys. Lett. 62B (1976) 405
2.15. High-Lying Yrast States in ${ }^{145}$ Eu and its Mass
B. Fubio, R. Julin, A. Eroan, P, Kleinheinz, J.L. Tain, G.P.A. Berg, G. Hlcwatseh,
J. Hesibunger, D. Pout, J.G. Romer and
d. Blomquist ${ }^{+}$

The nuclear shell model relates the energies of multiparticle states to the pertinent one and two-particle excitations observed it neighbown nutlei, and to the ground state masses. Such analyses are particularly applicable for maximum aligned mutiparticle yrast states which are well separated in energy from other levels with the same spin and parity and therefore expected to be little affected by configuration mixing. These states might therefore be used to deduce spectric ground state masses if the interactions are known from experiment ${ }^{1}$. In the $\mathrm{N}=82$ nucleus ${ }^{145} \mathrm{E}_{\mathrm{i}}$ one expects a $27 / 2^{+}$yrast state $a t=4 \mathrm{MeV}$ of the configuration $\pi_{11 / 2}^{2} 9 \frac{9}{7} / 2$ which is well suited for such an analysis. Previous ${ }^{145} \mathrm{Eu}$ in-bean studies ${ }^{2-4)}$ gave firm results only up to a $19 / 2^{-}$level at 2.836 MeV , but for the level scheme above this energy the transition orderings and the level parities remained unclear due to severe spectral complexities. We have therefore carried out additional measurements using the ${ }^{144} \mathrm{Sm}(\alpha, p 2 n)$ reaction with $\sim 50 \mathrm{MeV}$-particle beams. The excitation function results of fig. I clearly specify the ordering of the four yrast transitions above the 2.836 MeV $19 / 2^{-}$state as shown. The large negative A_{2} values (Table 1) and intensity balance suggest MI-character for the three low-energy γ rays and E1 multipolarity for the 794 keV line has been fimmy established from converstion electron measurements ${ }^{4)}$. The new data for the transtion multipolarities give firm spin-parity assignments for the associated yrast levels. In particular the 4123 keV level has $I^{\pi}=27 / 2^{+}$and we interpret it as the $\left(\pi^{2} 11 / 29_{7 / 2}^{-1}\right) 27 / 2^{+}$ state mentioned above. The $25 / 2$ member of this configuration is calculated to lie . 1 MeV lower in energy, and the 3977 kev level is identified as this state. It might however admix with the $\left(\pi h^{2} 11 / 2 d_{5 / 2}^{-1}\right) 25 / 2^{+}$state expected . 3 Mev above the $27 / 2^{+}$leve?, and we therefore will not consider it in the anaiysis below. The $3183 \mathrm{keV} 23 / 2^{-7}$ state is the fully aligned menber of the $\pi h_{11 / 2} d_{5 / 2}^{-1} 9_{7 / 2}^{-1}$ configuration.

Table 1: Properties of four high-lying yrast transitions in ${ }^{145}$ Eu measured in the $(\alpha, p 2 n)$ reaction at 45 MeV .

E_{Y}	I_{Y}^{2}	A_{2}	A_{4}	Multipolarity
$75.2(2)$	$12(1)$	$-0.23(3)$	0	M
$146.5(1)$	$15(1)$	$-0.30(8)$	$+0.03(10)$	M1 + E2)
$271.9(1)$	$59(3)$	$-0.50(4)$	$+0.09(6)$	M1+E2
$793.7(2)$	$42(2)$	$-0.42(5)$	$+0.03(7)$	$E 1)_{(+M 2)}$

[^7]

Fig. I: Gamma-ray excitation functions of four high-iying yrast transitions relative to the $387 \mathrm{keV} 11 / 2^{-} \rightarrow 7 / 2^{+}$ transition in ${ }^{145}$ Eu, and the resulting ${ }^{145}$ Eu level scheme. Above 55 MeV , the 272 keV 19ne is confused by a ${ }^{143} \mathrm{Eu}$ transition.

A shell model reduction of the $27 / 2^{+}$state involves the $\left(\operatorname{mh}_{11 / 2}^{2}\right) 10^{+}$leve in ${ }^{146_{\mathrm{Gd}}}$, the $\left(\operatorname{mh}_{11 / 2} 9_{7 / 2}^{-1}\right) 8^{-}$and 9^{-} states in ${ }^{144} \mathrm{Sm}$, and the $\left(\mathrm{h}_{11 / 2}\right) 11 / 2^{-1 / 2}$ and $\left(\mathrm{g}_{7 / 2}\right) 7 / 2^{+}$ single proton states in $145_{\mathrm{Eu}}^{11 / 2}$ and ${ }^{143} \mathrm{Pm}$. With the experimental energies for these levels the analysis gives for the combination of the four ground state masses

$$
\begin{array}{r}
S_{2 / / 2}^{\mathrm{Calc}}=M\left({ }^{146} \mathrm{Gd}\right)-3 \mathrm{~m}\left({ }^{145} \mathrm{Eu}\right)+3 \mathrm{~m}\left({ }^{144} \mathrm{Sm}\right)-M\left({ }^{143} \mathrm{Pm}\right)= \\
-4924(50) \mathrm{keV} .
\end{array}
$$

Another decomposition, for the $\overline{17^{-}}$yrast state ${ }^{5)}$ of ${ }^{146}$ Gd at 7165 keV gives

$$
S_{17}^{\operatorname{calc}}=2 S_{27 / 2}^{\mathrm{calc}}=-9822(100) \mathrm{xev}
$$

in good agreement with the above result.
The ground state masses of ${ }^{144} \mathrm{Sm}$ and ${ }^{143}$ Pm are primary mass values in Wapstra's tables ${ }^{6}$; the ${ }^{146}$ Gd mass was recently measured in three independent two-nucteon transfer experiments ${ }^{7-9)}$. Using these mass data and the above S-value we obtain

$$
\mathrm{M}^{\mathrm{calc}}\left({ }^{245} \mathrm{Eu}\right)=-78034(14) \mathrm{kev}
$$

which differs by more than four standard deviations from the tabulated ${ }^{6)}$ value.

In order to clear up this discrepancy we carried out a direct mass detemination with the ${ }^{144} \mathrm{Sm}\left({ }^{3} \mathrm{He}, 0 \text {) }\right)^{145}$ Eu single proton transfer reaction using the magnet spectrograph Big Karl, Calibration reactions were performed with ${ }^{208} \mathrm{~Pb}$ and 58 Ni targets. The sequence of spectra taken for the ${ }^{145}$ Eu mass determination included several measurements with the Sn target runs always sandwitched between runs with the two calibration targets. Independent determinations were carried out at two laboratory angles, 15.5°, and 21.3. For all runs the magnet settings were kept unaltered.
A particular problem was the accurate determination of the reaction angie. It was extracted from cross-over measurements of the ${ }^{13}$ N ground state and the 3.118 MeV ${ }^{209} \mathrm{Bi}$ state populated in the (${ }^{3}$ He, d) reactions on ${ }^{12} \mathrm{C}$ and ${ }^{208} \mathrm{~Pb}$.

Examples of deuteron spectra are shown in fig. 2. The excitation energies calculated from these spectra for the ${ }^{145}$ Eu lines with the Wapstra ${ }^{6)}$ masses and the calibration function are 59(4) kev lower than the known real values, which requires a corresponding $59(4)$ keV correc-

Fig. 2: Examples of deuteron spectra for determination of the ${ }^{145}$ Eu mass with the (${ }^{3}$ He, d) reaction. Peaks with excitation energies given in parentheses were not used in the analysis.

Fig. 3: Proton spectra for determination of the ${ }^{146} \mathrm{Eu}$ mass with the (${ }^{3}$ He,p) reaction (cf. caption to fig. 2).
tion to the ground state Q-value. Combining our result with the tabulated ${ }^{144}$ Sm mass the new value for the ${ }^{145} 5_{\text {Eu }}$ ground state mass defect becomes

$$
\left.\mathrm{M}^{145} \mathrm{Eu}\right)=-77995(7) \mathrm{kev}
$$

which differs by $-59(17)$ kev from the Wapstra value but 7 ies somewhat closer to the result derived from the shell model andyses discussed above, from which it differs by $39(16) \mathrm{keV}$.
Since the ${ }^{146}$ Eu mass was not yet measured by transfer reactions we used the same ${ }^{3}$ He beam for a ${ }^{144}{ }^{4}$ m(${ }^{3} \mathrm{He}, \mathrm{p}$) experiment at $\sigma=12.3^{\circ}$. The (${ }^{3} \mathrm{He}, \mathrm{p}$) reactions on ${ }^{207} \mathrm{~Pb}$ and ${ }^{209} \mathrm{Bi}$ targets provice suitable calibration Q-values. Examples of spectra are given in fig. 3. The energy resolution of the proton peaks is $n 30 \mathrm{kel}$ fwhm. Of crucial importance for identification of the ${ }^{145}$ Eu peaks was the knowledge of the excitation energies for the low-lying ${ }^{146}$ Eu energy levels which only recently were determined 10) through in-beam y-ray studies. Although the cross sections are much smaller for these twonucleon transfer reactions it was possible to extract the 0 -value as $Q\left({ }^{146} \mathrm{Eu}\right)=Q$ $\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{\text {exp }}-\mathrm{Q}\left(^{3} \mathrm{He}, \mathrm{p}\right)^{\text {湭apstra }}=+8(12) \mathrm{keV}$, giving the ${ }^{146}$ Eu mass defect as

$$
M\left(^{146} \mathrm{Eu}\right)=-77119(13) \mathrm{keV}
$$

apparentily in near agreement with the Wapstra value - $77111(11) \mathrm{keV}$.

[^8]
References

1) J. Blomquist, P. Kleinheinz, P.J. Daly, Z. Phys. A Atoms and Nuclei 312, 27 (1983)
2) D.R. Haerni, H. Beuscher, R.M. Lieder, M. MullerVeggian, A. Neskakis, G. Mayer-Böricke, Nuct. Phys. A331, 141 (1979)
3) D. Bazzacco, A.M.i. Haque, K.0. Ze11, P. von Brentano, C. Protop, Phys. Rev. C21, 222 (1980)
4) D.A. Rakel, R. Kaczarawski, E.G. Funk, J.W. Mhelich, Phys. Rev. C21, 595 (1980)
5).R. Broda, P. Kleinheina, S. Lunandi, J. Rlomquist, Proc. ASHPMN, Argonme, 1979, ANL/PHY-79-4, p. 389
5) A.H. Wapstra, K. Bos, At. Data Nuc1. Data Tables 19, 177 (1977)
6) N.P. Alford, R.E. Andersen, P.A, Batay-Csorba, R.A. Emigh, D.A. Lind, P.A. Smith, C.D. Zafiratos, NucT. Phys. A 321,45 (1979)
7) R.C. Pardo, S. Gales, R.M. Ronningen, L.H. Harwood, Phys, Lett. 91B, 41 (1980)
8) E.R. Fiynn, J. van der Plicht, J.B. Wilhelmy, L.G. - Mann, G.L.Struble, R.G. Lanter, Phys. Rev. C28, 97 (1983)
9) A. Ercan et a. ., Proc. Int Conf. Nucl. Phys, Florence, Aug. 1983, Vol. Is D. 154
2.16. Study of Particle-Hole Multipletts in ${ }^{146}$ Ga through ($\alpha, 2 n$) in-beam Measuremenes
S. W. Yates, P. Kleinheinz, R. sutin, w. Stofft ${ }^{+}$, E. Henry ${ }^{\dagger}$, L. Wann $^{+}$, D. Deaman ${ }^{\dagger}$, T. Elomaris ${ }^{+\dagger}$

Energy levels in the ${ }^{146}$ gd closed core nucleus so far were investigated through $(a, 5 n)$ in-beam measurements ${ }^{1,2}$) and in decay ${ }^{3}$) of ${ }^{146}$ Tb. The ($a, 5 n$) studies specified the yrast levels up to * 9 MeV excitation; the B-decays selectively procesd to specific particle-hole excitations via allowed GT transitions. From these studies one knows that the proton particle-hole multipletts lie in the 2.6 to 3.8 MeV region, whereas the neutron particlehole states occur at somwhat higher energies (3.4 .4 HeV). These energy levels provide basic input information for shell model analyses in this region, but so far only for one configuration, $\pi h_{11 / 2} \mathrm{~d}_{5 / 2}^{-1}$, the complete muttiplett is identified. The yrast experiments, in addition, located the $\pi n^{2} j_{0}^{-2} 10^{+}$state and the 9^{-}and 8^{-}members of the Th $11 / 29_{7 / 2}^{-1}$ configuration, and in B decay three neutron particle-hole states are populated,

To identify additional multiplett members we used the ($a, 2 n$) reaction at low beam energy which is suitable to populate levels above the yrast line. Detailed excitation function measurements, carried out at the mpI Heidelberg Tanden acce?erator, suggested a number of new ${ }^{146} \mathrm{Gd}$ nonyrast transitions, as well as their approximate location in the level scheme which could be deduced from the excitation function thresholds (fig. 1). These data suggested 25.8 MeV as an optimum bonbarding energy for an ($\alpha, 2 n$) study to locate non-yrast levels in ${ }^{146}$ Gd. At this energy the $(\alpha, 2 n)$ and (α, n) reactions have comparable cross sections, whereas other exit channels are quite weak. In collaboration with the LLAL Nuclear Structure Group extensive inmean experiments were carried out with α w particle beans from the LANL Tandem Accelerator. From extensive 3-parameter y-coincidence data (10^{8} events) many new ${ }^{146}$ ged transitions could be identified and placed

Fig. 1: Selected (c,2n) excitation functions for yrast and above-yrast transtions in ${ }^{146}$ Gd. The 997 kev ${ }^{147}$ Gd ground state transition is inciuded.
in the level scheme, and firm data were obtained for transitions as wak as 0.3% of the $(\alpha, 2 n)$ exit channet. Transition multipolarities have been deduced from anguiar distribution data, also taken at 25.8 MeV , and from conversion electron measurements where many of the new transitions are observed. These electron spectre were measured with a superconducting solenoid operated in swept-current lens mode.

The level scheme resulting from these data is given in fig. 2 , with the yrast decay known from the earlier studies shown to the left. The new ${ }^{146}$ Gd yrays are quite weak, in general \& 5% of the $(a, 2 n)$ channel, but due to the high quality of the coincidence data most of the levels could be firmly located. In many cases the level spins and parities could be chamacterised from the transition

Fig. 2: Level scheme of ${ }^{145}$ go observed in the $(x, 2 n)$ reaction at 25.8 Mev. The previously known yrast-decay is shown to the left; the inter stties in the right part of the figure are drawn five tines thicker than the yrast γ rays to the left.

Fig. 3: Two-proton miltipletts in ${ }^{146}$ Gd. Non-observed muitiplett nembers are drawn at their estimated energies. Known neutron excitations, and selected $v=4$ levels are also included.
properties; feeding intensity arguments have also been considered. Many levels however are specified through only one γ-transition and a number of $I^{\bar{"}}$ assignments for such monopode levels remain tentative.

The proposed configuration assignments are given in fig. 3 where all known ${ }^{146}$ Gd levels below 4.8 MeV excitation are included. These assignments are primarily based on energy considerations. The figure includes all $v=2+\frac{\pi}{\pi}, \frac{2}{\pi} j_{0}^{-2}$ and $5^{-2} j_{0}^{+2}$ multipletts provided by the five proton orbitals between 50 and 82 . Yet unobserved multiplett members are drawn at estimated energies. It is apparent that the $(a, 2 n)$ experiment located levels up to =1 PeV above the yrast line; knowledge of higher-lying low-spin states remains still limited. Neutron particle hole rultipletts are expected above 3.4 MeV excitation. Included in the figure are oniy the 3 known $v^{+1} v^{-1}$ states, and the neutron pairing vibration observed in a recent ${ }^{4}$) (p, t) experiment. A few $v=4$ states expected below 4.8 MeV which involve the 3^{-}octupole phonon are also shown. Of these, the $\left(3^{-} \times 7^{-}\right) 10^{+}$and $\left(3^{-} \times 5^{-}\right) 8^{+}$assignments are reasonably firm, whereas the $\left(3^{-} \times 3^{\prime \prime}\right) 6^{+}$identification is still highly tentative.

+ LLNL Ljvermore, Ca., USA
++ AFI Stockholm, Sweden

References

1) P. Kleinheinz, R. Broda, P.J. Daly, S. Lunardi, M. Ogawa, 3, Blongvist, Z. Phys. A290 (1979) 279
2) R. Broda, P. Kleinheinz, S. Lunardi, J. Blomquist, ASHPIN, Argonne, 1979, ANL/PHY-79-4, page 389
3) J. Styczen, P. Kleinheimz, M. Pifarinen, J. Blomquist, HECFOS, Helsingör 1981, CERN 81-09, 20. July 1981, page 548
4) E.R, Flym, J. van der Plicht, J.B. Wilhelny, E.G. Mann, G.L. Struble, R.G. Lanier, Phys. Rev. C28 (1983) 97
2.17. Single- and Double Octupole Excitations in ${ }^{148}$ Gd
S. Eunardi, P. Keimheinz, M. Eitparinen, M. Ogowa, J. Blomavist ${ }^{+}$

The study of particle-phonon coupling phenomena in nuclei provides the basic understanding for the vibrational anhamonicities, which in turn are of crucial importance for the properties of two-phonon excitations. A number of recent in-beam studies have provided first results on particle-octupole coupling for the neighbours of ${ }^{146} \mathrm{Gd}$ which has a 3 first excited state at 1.6 Mel. of the vf $7 / 2 \times 3^{-}$septuplett in ${ }^{147}$ Gd one knew 1) so far the $13 / 2^{+}$member which occurs as low as 1.0 MeV due to the interaction with the close-lying vi $13 / 2$ single-particle state. In a recent ${ }^{2)}$ experiment five of the rematningsix multiplett members were observed, all within \& 180 keV of the 1.58 MeV core phonon energy. These results evince that here the $\mathrm{ff}_{7 / 2} \times 3^{-}$coupling is weak, comparable to ${ }^{209} \mathrm{Bi}$, where the splitting of the $\pi h_{g / 2} \times 3^{-}$septuplett ${ }^{3)}$ is $<250 \mathrm{keV}$.

We have now studied the coupling of two $f / 2$ valence particies to the 3^{-}phomon. In the nucleus ${ }^{140}$ gd such excitations should occur not far from the yrast line and we could show that they are populated in ($a, x n$) reactions. In these experiments we have also observed two further two-phonon octupole states, which involve the stretched coupling of valence particles and core phonons, amalogous as in the known ${ }^{4)} 19 / 2^{-}$two-phonon octupole state in ${ }^{147} \mathrm{Gd}$. We had earlier ${ }^{5}$) investigated ${ }^{148}$ gd with the $(a, 4 \pi)$ reaction, but due to severe spectral complexities only incomplete information was obtained on the level properties. We have now performed additional $\left({ }^{3} \mathrm{He}, 3 \mathrm{n}\right) \mathrm{y}$ and e^{-}experiments

Fig. 1: The energy levels of ${ }^{148}$ Gd arranged according to their structural configurations as shown above. Transition multipolarities derived from conversion electron data are given.
which completely specify the ${ }^{148}$ Gd high spin states up to 18^{+}and 6 MeV excitation. In fig. 1 the ${ }^{248}$ gd levels are arranged in four groups of different configurational character as labetled on top of the figure. The two groups to the right are highrspin sheil model excitations involving the two valence neutrons coupled either to proton particle hole core excitations or to the $\left(\min _{11 / 2}^{2} \mathrm{j}^{-2}\right) 10^{t}$ core excited state. Here we consider only the levels shom to the left, $v z$ the pure two valence neutron states $\left(u f_{7 / 2}^{2}\right.$, $J=0,2,4,5^{+}$, and of $/ / 2 h^{h} 9 / 2, ~ J=8^{t}$, and the coupling of these states to the ${ }^{4} b_{\text {Gd }}$ octupole phonon.

Ten octupole states were observed and are given in the second group in fig. 1 , including the $T_{1 / 2}=17.5 \mathrm{~ns} \mathrm{~g}^{-}$ isomer at 2.694 Mel which decays to the $5^{\frac{1}{+}}$ state through an E3 transition with 55 (6) B_{W}. The octupole nature of the 8^{*}, 11^{-}, and 12^{+}levels is deduced from decay branching ratios which strongly suggest that these levels cannot be of multiparticie character as the levels shown to the right. The highly selective decay of the two highlying $14^{\frac{1}{4}}$ and 15 states also suggests octupole nature, but the upper one has no parity assigned yet and is therefore not considered in the discussion below.
For calculating the $f_{7 / 2}^{2} \times 3^{-}$energies in ${ }^{148}$ Gd we first consider the one-particle x phonon spectrum observed in ${ }^{147}$ Gd which also specifies the coupling of two $f_{7 / 2}$ neutrons to the 3^{-}phonon (fig. 2). In the calculations we diagonalise the strong interaction of the $\left(\nu f_{7 / 2} \times 3^{-}\right) 13 / 2^{+}$ septupleti menber with the $v i=13 / 2$ single particle state using the matrix element < ${ }_{13 / 2} \operatorname{h}_{\text {coupl }} \mid \tilde{i}_{7 / 2} \times 3^{-}, 13 / 2$. .8 MeV and the ${ }^{1} 3 / 2$ single particle energy of 2.1 MeV . In contrast to the onemparticle case of ${ }^{147} \mathrm{Gd}$, where the $i_{13 / 2}$ excitation affects only one multiplett member, the analogous fixing in the two-neutron case of ${ }^{148}$ Gd involves the $3^{-} \leqslant I \leqslant 9^{-}$members of the $v f_{7 / 2} \quad \frac{1}{13 / 2}$ two-neutron multiplett which lie high above the ${ }^{148}$ Gd yrast. 1 ine and have not been observed. For the calculation we assume

Fig. 2: Observed $v f_{7 / 2}^{2} \times 3^{-}$octupole excitations in ${ }^{148_{\text {Gd }}}$ compared with calculated results. Empirical input data used for the calculation are shown to the left.
that the $4^{-} \leqslant I \leqslant 9^{-} v_{f} i$ states lie 2.1 MeV above the $\left(\nu f_{7 / 2}^{2}\right) 6^{+}$level, and that the ufi 3^{-}state is 600 keV lower. These assumptions fully specify the diagonal energies for calculation of the $\mathrm{f} \times 3$, vi interactions in the $\mathrm{vf}^{2} \times 3^{-}$multiplett; the much smalter anharmonicities of the $v{ }^{7} 7 / 2 \times 3^{-}$couplings with $1 / 2<j<11 / 2$ are included as a perturbation. We diagonalise the interaction matrix within the basis states $\left|\left(f^{2}\right)_{J=0,2,4,6} \times 3^{-1}\right|_{I}$ and (fi) , where in each case the appropriate geometrical factor is taken into account for the off-diagonal $i_{13 / 2}$ coupling matrix element as well as for the perturbation contributions to each diagona? element. The fig. 3 shows the complete results of the diagonalisation. Numerical results are given in fig. 2. So far only high spin members of each $f_{j}^{2} \times 3^{-}$group were observed, but we note that their energies are well reproduced, and also that the calculated relative energy shifts within each Jgroup agree excellent with experiment in the two cases where more than one group member is known.
To the $9^{-}-6^{+}$E3 strength two components contribute, $v z$ the core octupole $E 3$ and the $v i_{13 / 2} \rightarrow v f_{7 / 2}$ single particie E3 transition. The latter can be extracted as $8.5(4.5) \mathrm{S}_{\mathrm{W}}$ from the observed $44(6) \mathrm{B}_{\mathrm{W}}$ of the 997 keV transition in ${ }^{147}$ Gd and the known core strength of $37(2)$ B_{W}. With this result, and the 9^{-}wave function obtained above, the $9^{-} \rightarrow 6^{+}$BE3 value becones $49(8) \mathrm{B}_{\mathrm{W}}$ in good agreement with the observed $55(6) \mathrm{B}_{\mathrm{W}}$.
The 11° level at 3.701 Mel is assigned as a stretched one-phonon octupole excitation built on the (uf ${ }_{7 / 2} h_{9 / 2}$) 8^{+} state. The coupling of the vhg/2 $\left.\times 3^{-}\right) 13 / 2^{+}$level to the $1_{13 / 2}$ single neutron state will be very weak since the $v i_{13 / 2}^{*}$ vhig/2 E3 transition involves a spin-filip. The 11^{-}octupole state energy should therefore be completely analogous to the $v^{5} 7 / 2 \times 3^{-}$excitation in ${ }^{147}$ Gd.

Fig. 3: The complete $v f^{2} / 2 \times 3^{-}$energy spectrum calculated for $148_{\text {Gd. Also show }}$. Are the two-neutron states from the $v f_{7 / 2} i_{13 / 2}$ configuration. Observed octupole states are included.

Fig. 4: Single- and double-octupole excitations in Gdnuclei with 82 to 84 neutrons compared with calculated results.

The observed $1008 \mathrm{keV} 8^{+}$to 11^{-}energy separation in ${ }^{148} \mathrm{Gd}$ is indeed in close agreement with the 997 keV $13 / 2^{+}$energy in ${ }^{147}$ Gd (fig. 4).
We assign the 12^{+}and 14^{+}levels at 3.980 and 5.167 MeV as the stretched two-phonon octupole excitations built on the aligned $\left(v f_{7 / 2}^{2}\right) f^{i}$ and $\left(v f_{7 / 2} h_{9 / 2}\right) 8^{+}$two-neutron states. Their energies can be predicted fron the experimental information ${ }^{4}$) on the ($f 7 / 2 \times 3^{-} \times 3^{-}$) 19/2- twophonon octupole level in ${ }^{147}$ Gd. The fig. 4 gives a syropsis of the three observed double octupole states. The unharmontities for the ${ }^{147}$ Gd $19 / 2^{-}$excitation have been discussed ${ }^{4}$) in a recent article, where it was shown that a 0.41 MeV upwards shift for the 6^{+}two-phonon state arises from Pauli-blocking of the dominant ${ }^{-h} 11 / 2$ ${ }^{-1} 5 / 2$ amplitude of the 3^{-1} phonon. This shift, as well as the associated Pauli-reduction of the BE3 value, are taken into account in the calculated results of fig. 4 . In the calculation of the $14^{\frac{+}{4}}$ two-phonon state of ${ }^{148} G d$ we again ignore the presence of the $h_{9 / 2}$ spectator neutron. The 14^{+}energy is thus evaluated analogous as for the $19 / 2^{-}$two-phonon state ${ }^{4)}$ in 147 Gd, giving $E_{X}=5.184$ Mev for this $v f_{7 / 2} h_{9 / 2} \times 3^{*} \times 3^{*}$ double octupole state. In the $\left(v f_{7 / 2}^{2} \times 3^{-} \times 3^{-}\right) 12^{+}$state, the presence of two $f_{7 / 2}$ neutrons causes non-stretched contributions. The configurations present in that 12^{+}level are $\nu f^{2} \times 3 \times 3$, vfi ${ }_{10} \times 3, v^{\prime} i_{9} \times 3$, and i^{2}. We diagonatise the interaction with the fi-states within this 4×4 matrix and again include the Pauli blocking shitt as well as the pertinent contributions due to the anhermontcities from the $(f \times 3)_{j<11 / 2}$ couplings by perturbation. Both calculated two-phonon level energies are in nice agreement with experiment (fig. 4).

References

1) P. Kleinheinz, R. Broda, P. J. Daly, S. Lunardt, M. Ogawa, "J. Blomqvist, Z. Phys. A290 (1979) 279
2) M. Pitparinen, T. Komppa, R. Komt, A. Pakkanen, J. Blomcyist, Z. Phys. A309 (1982) 87
3) U. Ungrin, R.A. Diamond, P.0. Tjom, B. Elbek, Mat. Fys. Medd. Dan. Vid. Selsk. 38, no. 8, 1971
4) P. Kleinheinz, J. Styczen, M. Piiparînen, J. Blomquist, M. Kortelahti, Phys. Rev. Lett. 48 (1982) 1457
5) S. Lunardi, M. Ogawa, M.R. Maier, P. Kleinheinz, ASHPIN, ANL/PHY-79-4, P. 393
2.18. Search for Rotational Band Members in ${ }^{152}$ Eu
P.N. Erokofjeu ${ }^{+}$, L.I. Simonova ${ }^{+}$, H. Nattheß, ${ }^{2}$. Soromel-Stamo, i. Stzesen, A. Erown, P. Klethheinz

Originally it was thought that both deformed as well as spherical shapes occur among the low-iying levels of the doubly odd ${ }_{62}^{152} \mathrm{Eu}_{89}$ nucleus, but the results of very detatled (n, r) studies supplemented by single-nucleon transfer reactions suggest ${ }^{1)}$ rotational bands with $A \simeq 11$ kev and thus a stably deformed nuclear shape. Since however the ${ }^{152}$ Eu capture state has ${ }^{\text {l) }}$ the rather Tow spin of 3^{+}it was not possible to observe more than two rotational excitations for each band, except for the ground band where a chird rotational state with $I^{\bar{T}}=(6)^{-}$was tentatively assigned.
The ${ }^{152}$ Eu energy levels can also be populated in the ${ }^{154} \operatorname{Sm}(p, 3 n)$ raction where $\simeq 10 n$ are transferred to the compound nucleus. At this moderate angular momentum input the r-decay is not yet sharply concentrated along the yrast line and it might be possible to extend the known near-yrast bancis towards higher spin. Our results show hovever that this is very difficulie in a nucleus with very high level density like ${ }^{152}$ Eu. The ($p, 3 n$) theasurements were carried out with proton beams from the IKP cyclotron and a $4.9 \mathrm{mg} / \mathrm{cm}^{2}$ thick self-supporting 98.7% enriched ${ }^{154}$ Sm target. Gamma-ray excitation functions were measured from 26 to 35 MeV proton energy, the angular distributions were determined from measurements at six optimally spaced angles ranging from 90° to 165°, and four-parameter two-detector $\gamma \gamma$-coincidence measurements were performed with 120 ns beam burst separation. Planar ge detectors of $20 \mathrm{~cm}^{3}$ and $30 \mathrm{~cm}^{3}$ with $<750 \mathrm{eV}$ twht at 122 keV were used in all measurements. The optimal bean energy was found to be 29 MeV , where $=55 \%$ of the compound nuclei lead to formation of ${ }^{152}$ Eu. The ($p, 4 n$) exit channel at this energy is about twice as strong as the ($0,2 n$) channel, but due to the higher γ-ray multiplicity in the deformed ${ }^{153}$ Eu nucleus the transitions from the two odd-A Eu nuclei were equally strong in the coincidence projections. Of the known ${ }^{152}$ Eu transitions the unresolved 89.4 and 89.6 keV ground state transition doublett strongly dominated the spectra; the second strongest ${ }^{152}$ Eu line was >10 times weaker. This quite Unusual observation in an in-beam γ-ray experiment is ciearly reiated to the high ${ }^{152}$ Eu level density and reemphasizes the difficulties to study this nucleus through the ($p, 3 n$) reaction.
The figure one shows a fraction of the ${ }^{152}$ Eu level scheme which could be extracted from the coincidence data. Clearcut results were obtained for the $K=3$ ground band, although it is extremely weakly populated in the ($p, 3 n$) reaction. In the tyy time distribution measured with the 89.6 kev doublett no prompt contribution due to the 89.6 keV ground state transition is apparent, and one can conclude that its contribution to the coincidences is $<.7 \%$. However, three ground band transitions, $110.0,131.8$, and 156.3 kev, clearly occur in the coincidence spectra when
appropriately sharp prompt and in-bean gate settings were set for the $t_{Y Y}$ and $t_{Y R F}$ time parameters. A $193 \mathrm{keV} y$-ray could possibly be the next higher ground band transition, but this could not be ascertained since in the neighbouritg ${ }^{153}$ Eu nucleus an intense 193.1 keV line is also in coincidence with transitions of $111.6,131.6$, and 156.1 keV (!). The properties of the ${ }^{152}$ Eu ground band transitions extracted from the singles spectra are listed in Table 1 . The measured negative A_{2} values are cons istent with Ml cascade transition character. Our $131.8(1) \mathrm{keV} 6^{-} \rightarrow 5^{-}$-ray energy is clearly higher than the 131.16 keV line tentatively asstgned in the (n, y) study.
The coincidence spectra give tentative evidence for two further bands, built on a known ${ }^{1)} 3^{+}$state at 221.2 kev, and on the $384 \mathrm{~ns} 4^{+}$isomer at 89.8 keV . The proposed $\pi\left|532+|\mathrm{V}| 505+1 \mathrm{~K}=3^{+}\right.$configuration assignment is in accord with the regular rotational spacings and the Aparameter of $\simeq 8.2 \mathrm{kev}$. We have here however reinterpreted the $I=4$ state as a rotational state, whereas in the (n, y) work it was assigned as a $K^{\top}=4^{-}$bandhead. The proposed new band built on the $\pi|5134| v|402 v| K=4^{+} 384$ ns isomer has strongiy staggering rotational spacings, indicative of a significant $v \mid 651+i$ admixture. Bands with this $i_{13 / 2}$ neutron orbital in ${ }^{154}$ Eu show similar energy spacings. Since however yray angular distribution and intensity data are not yet avallable, these two band assignments must remain tentative.
Table 1: Ground band transitions of ${ }^{152_{\text {Eu }}}$ observed in the ($p, 3 n$) reaction at $E_{p}=29 \mathrm{MeV}$

E (keV)	I_{γ}	A_{2} / A_{0}	$\mathrm{A}_{4} / \mathrm{A}_{0}$	E_{x}^{i}	$I_{1}^{\pi} \rightarrow I_{i}^{\pi}$
$89.85(6)^{\text {a }}$	$1000^{\text {a }}$	$\pm .00(1)^{\text {a }}$	$-.03(2)^{\text {a }}$	$89.61(0)^{\text {b }}$	$4^{-}+3^{-}$
111.0 (1)	10.6(7)	-. 13 (6)	-. 09 (6)	$200.75(0)^{\text {b }}$	$5^{-}+4^{-}$
131.8 (1)	$7.8(6)$	$-.14(4)$	-.00(5)	$332.55(10)$	$5^{-}+5^{-}$
156.5 (3)	$3.2(5)$	$-.17(18)$	-.02(20)	489.05(14)	$7^{-} \rightarrow 5^{-}$

Fig. 1: Selected rotational bands in ${ }^{152}$ Eu observed in the ($0,3 n$) reaction. Energies labelled with o are taken from the (n, y) work ${ }^{1}$).

Reference

1) T, von Egidy et al, Z. Phys. A286(1978) 341
tatvian SSR Academy of Sciances, Institute of Physics, Riga

2.19. Study of the band structure in the odd-odd nucleus

 180 ReTs. Verkow, B. Boolso, in. Gast, T, Kutsarova, R.M. Lieder, T. Norek ard G. Stetten*

The investigation of crossings bands in ${ }^{180} 0$ showed ${ }^{1}$) that the second crossing has a different characteristic frequency for negative- and positive-parity bands. It has been demonstrated ${ }^{2)}$ that this frequency shift is caused by a contiguration-dependend residual interaction between guasineutrons and quasiprotons. In order to learn more about the residual interaction the study of the odd odd nucleus ${ }^{180}$ Re has been started. In this way the features of bands containing one quasiproton and one quasineutron can be studied, the simplest system to investigate residual proton-neutron interactions. The oddodd nucleus ${ }^{180} 75{ }^{105}$ has been produced by means of the ${ }^{181} \mathrm{Ta}(\alpha, 5 n)^{180}$ Re reaction using a 62 MeV a-beam from the isochronous cyclotron JuLIC. Measurements of the $\gamma-\gamma$ coincidences were carried out using four large ge detectors and a multiplicity filter consisting of four $3^{\prime \prime} \times 3^{\prime \prime}$ bismuth gemaniate detectors. A large member of discrete $\gamma-$ lines have been observed giving rise to a complex y-ray spectrum.

A careful analysis of the $\gamma-\gamma$ coincidence spectra was necessary to establish the leve? scheme. Seven rotational bands have been identified. In order to establish their deexcitation to the $1^{-}-5 / 2^{+}[402] \uparrow-v 7 / 2^{-}[514]$ ground state of ${ }^{180} \mathrm{Re}^{3)}$, which involves low energy γ-iransitions foumparameter y-y coincidence measurements have been carried out using a large ($60 \mathrm{~cm}^{3}$) and a planar (20 cm^{3}) detector. The parameters were the two y ray energies, the time $t_{Y y}$ between the emission of two γ -

Figure 1: Partial level scheme of ${ }^{180} \mathrm{Re}$.
2.20. Investigation of band structures and crossings in
$181_{0 s}$
R.M. Lieder, A, feskakis, G. Stetten ${ }^{*}$ and J.D. Goppatt *
In the investigation of high-spin states in ${ }^{180} 0$ g nine bands have been observed. Detailed information about six of them has been published previous $7 y^{\frac{1}{2}}$. They have the following features:

1) Two crossings exist in the bands which are caused by the rotation alignment of a pair of $i_{13 / 2}$ quasineutrons and $h_{g / 2}$ quasiprotons, respectively.
2) The second crossing has a characteristic frequency which is 60 keV smaller for the negative parity bands than for the positive-parity bands, probably due to residual interactions depending either on the configuration or on the number of quasiparticies.
3) The bands $(-, 0)_{2}$ and $(-, 1)_{3}$ (the labelling $(\pi, a)_{17}$ indicates the parity π and signature α of each band and the number n is used to distinguish various bands), which have the same configuration, show a significant signature splitting not being expected in the framework of the axially symmetric cranked shell model.
4) The $(+, 0)_{0}$ band forming the yrast sequence at low spins is crossed by the $(-, 1)_{3}$ band at a spin of $I=19$.
In order to obtain additional information on these features the neighbouring nucleus ${ }^{181} 0$ s has been investigated. It was produced by bombarding a ${ }^{167}$ Er target with $81.5 \mathrm{MeV}{ }^{18} 0$ ions delivered by the FM Tanden accelerator of the Niels Bonr Institute, Copenhagen. A $y-\gamma$ coincidence experiment has been carried out with 5 anti-Compton spectroneters. The angular distributions have been measured with an anti-Compton spectroneter consisting of a large Ge detector and a cylindrical suppression shield made of bismuth gemmate. A partial level scheme resulting from this investigation is shown in fig. I. In total

13 bands have been observed. The previously known ${ }^{2}$
$(+, \pm)_{1},(-, \pm)_{2}$ and $(-,+)_{3}$ bands (for odd-mass nuclei the signature is $\alpha= \pm \frac{1}{2}$; here the abbreviation $a= \pm$ is used) have been extended up to a spin of $61 / 2^{+}$. At least one side band has been found for each of these bands consisting of a few members only, of special interest is the side band feeding into the $(-,+)_{3}$ band. It represents most likely the missing $(-,-)_{3}$ band which is shifted considerably upwards in energy because of their $1 / 2^{-} 521 \mathrm{i}$ configuration.
For the most prominent bands the aligned angular momentum is plotted in fig. 2 as function of the rotationai frequency. A11 bands show two crossings. They are caused, as in ${ }^{180} 0 s$, by the rotation alignment of a pair of $\mathrm{i}_{13 / 2}$ quasineutrons and $\mathrm{h}_{9 / 2}$ quasiprotons, respectively. Of special interest is to compare the characteristic

Figure 2: Plot of aligned angular momentum vs. rotational. frequency for bands in ${ }^{18} 0 \mathrm{Os}$. A diabatic reference has been used. The parameters of the Harris expansion were obtained by fitting the g band in ${ }^{184} 0$ s.

Figure 1: Partial level scheme of ${ }^{101} 0$ s.
frequencies of the second crossings in ${ }^{181}$ os and ${ }^{180} 0$. They are $\hbar_{\omega_{c}}=0.32 \mathrm{MeV}$ and ${ }^{\hbar} \omega_{c}=0.38 \mathrm{MeV}$, respectively, for the negative- and positive-parity bands in ${ }^{180} 0$ s (ref. 1) and $\hbar_{\omega_{c}}=0.32 \mathrm{MeV}$ and $\hbar_{\omega_{c}}=0.37 \mathrm{MeV}$, respectively, for the $(-, \pm)_{2}$ and $(t, \pm)_{1}$ bands in ${ }^{181}$ Os. Not only the absolute values but also the frequency shifts are almost the same in both cases. This result allows to rule out that the frequency shift depends on the mumber of quasi-particles involved in the configurations of the bands since in ${ }^{181}{ }_{0}$ s all the second backbendings result from the crossing of three- and five-quasiparticle bands. It may be concluded, therefore, that the residual interaction, causing the shift, is configuration dependend. Since the configurations of the $(-,+)_{2}$ and $(+, \pm)_{1}$ bands in ${ }^{181} 0 s$ differ by a $7 / 2^{*}|514|$ quasineutron it may be assumed that the residual interaction between this configuration and the $1 / 2^{-}|541|$ quasiproton configuration produces the frequency shift.

Another interesting feature is the signature splitting between the $(+,+)_{1}$ and $(+,-)_{1}$ bands in ${ }^{18)^{1}} 0$. It is very similar to that of the $(-, 0)_{2}$ and $(-, 1)_{3}$ bands in ${ }^{180} 0$ s which are considered to have the configurations $\mid(+,-)_{1}(x)(-,+)_{2}$ and $\left|(+,+)_{1}(x)(-,+)_{2}\right|$, respectively. It is, the refore, reasonable to assume that the signature splitting is due to the (,$+ \pm)_{1}$ configuration. In order to find an explanation for the signature splitting calculations have been carried out in the franework of the axially asymmetric cranked shell model ${ }^{3}$). In fig. 3

Figure 3: Flot of the cuasparticle energy vs. deformation parameter γ for $i_{13 / 2}$ quasineutron configurations as calculated in the framework of the axially asymmetric cranked shell model.
the quasiparticle energy is plotied vs. the deformation parameter y. In the "Lund convention" (reî. 4) used here for the definition of the deformation γ an angle between 0° and -60° mearas a change from a prolate to an oblate shape, for which the nucleus rotates around an axis perpendicular to the symmetry axis. The calculations have been carried out for a rotational frequency of $\hbar_{\omega}=0.218 \mathrm{MeV}$
at which the experimental yalue of the signature splitting is $\Delta e^{\prime}=0.15 \mathrm{MeV}$. It can be seen that the calculated signature splitting depends strongly on the γ deformation. Already a small γ value of $\gamma=-8^{\circ}$ is sufficient to explain the experimentally observed signature splitting. A deformation of this order of magnitude is expected for the 0 s nuclei since they lie at the border of the deformed region.

References

1) A. Neskakis, R.M. Lieder, G. Sletten and U.E. Garrett, Phys. Lett. 118B (1982) 49
2) A. Neskakis, R.M. Lieder, M. Miller-Veggian, H. Beuscher, W.F. Davidson and C. Mayer-Böricke, Nuct. Phys. A261 (1976) 189
3) S. Frauendorf and F.R. May, Phys. Lett. 1258 (1983) 245
4) G. Andersen, Nucl. Phys. A268 (1976) 295
*Niels Bohr Institute, Copemhagen
2.21. Search for the two photon decay of light penetrating bosons with the use of a rotatable detector arrangement
H. Bechteler ${ }^{\dagger}$, W. Emomer, H. Paisoner ${ }^{+}$, H.R. Koch, O.W. B. Sohutt, H. Sewforth, R. Yogeshanan ${ }^{++}$

The question of the existence of light penetrating bosons (LPB) and their emission by excited nuclei is of fundarmental interest. A search for their twophotori decay at the FRJ-1 reactor (Merlin) was performed with a improved rotatable set-up shown in fig.l.

Fig. 1: Rotatable unit installed at the 10 MW lightwater reactor FRJ-1 and located within a conventional tight shield. The NaI(Tl) detectors A and B ($5^{\prime \prime}$ dia $\times 4^{11}$) serve for the observation of the two y quanta whith are expected from the decays occuring in the 352 mm long decay region. The whole rotation unit is covered by the veto counter C. The monitor counter S ($2^{" 1}$ dia $x 2^{\prime \prime}$) serves to detect any anisotropy of the background within the stationary shield.

Compared to our preceding experiment ${ }^{1,2)}$ the two Nai(Tl) detectors A and B now are intined with respect to foch other. By this and the reduction of the minimum-distance between both detectors the detection efficiency for the two photon decay of a light particle (assumed rest mass $250 \mathrm{keV} / \mathrm{c}^{2}$) was improved by a factor of 2.9 , with respect to the eartier set-up. The energy spectrum of the nuclear transitions, which served as input for the Monte-Carlo calculations, was assumed to be directly proportional to the reactor y-ray spectrum ${ }^{3}$. In the earlier experiment ${ }^{1,2}$ the veto-counter C had been positioned between the top cover of the rotating inner 100 mm lead shielding and the stationary 50 mm lead top cover. The installa-
tion of the veto-counter C below the total top cover of 150 mm lead results in an increase of the veto-efficiency against cosmic-ray induced coincidences by a factor of 2 (the ratio $A B \bar{C} / A B$ decreases from 0.29 to 0.14) Measurements were perfomed in 4 different positions: $\varphi=0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$. Onty in the 0° position the simultaneous detection of the two decay photons is possible. In the other 3 positions, conservation of transverse momentum would not allow the two photons to hit directly the two detectors and to be registered as a decay event. Moasurements in the effect position (0°) and in the 3 non-effect positions $\left(90^{\circ}, 180^{\circ}, 270^{\circ}\right)$ were perfomed at both reactor on and OfF conditions permitting an empirical background subtraction.

Systematic changes of the coincidence rate show a corretation with the atmospheric pressure in agreement with our previous experiment,2). The measured rates were corrected with respect to atmospheric pressure variations.

Eig. 2: Effect of atmospheric pressure on the measured cobncidence rates and their correction $50 \mathrm{keV} \leqslant \mathrm{E}_{A}, E_{B} \leqslant$ 3 MeV , explanation see text).

As an example, Figure 2 demonstrates the effect of this cormaction for ${ }^{\circ}=O^{\circ}$ and reactor ON: In fig. 2a the time dependence of the original counting rates $N_{0}(p)$ is plotted. It is correlated to the atmospheric pressure p (Fig. 2 b). The systematic changes in $N_{0}(\mathrm{P})$ are reduced after:correction (Fig. 2c). The corrected counting rates: are normalized to 760 mm Hg .

In Fig. 3 all mean coincidence rates for the different angular positionswithout and with pressure correction are collected together with the reactor ON-OFF differences.

Fig. 3: Mean coincidence rates for the different angular positions at reactor ON and OFF conditions and their differences ($50 \mathrm{keV} \leqslant \mathrm{E}_{\mathrm{A}}, \mathrm{E}_{\mathrm{B}} \leqslant 3 \mathrm{MeV}$). An example for the atmospheric pressure correction is given in fig. 2.

To minimize time dependent systematic effects, e.g. changes in the coincidence rates due to atmospheric pressure variations, the angular positions were changed after a preset time by an automatic driving system. Table 1 shows the mean differences deduced from the coincidence rates which have been measured at subsequent effect $\left(0^{\circ}\right)$ and non-effect (180°) positions. Mean differences are given which result without and with correction for variations in atmospheric pressure. Table 1 also contains mean differences which are determined using mean coincidence rates measured at subsequent non-effect positions 90°, 180° and 270°.

Table 1: Mean differences between effect and non-effect coincidence rates ($50 \mathrm{keV} \leqslant \mathrm{F}_{\mathrm{A}}, \mathrm{E}_{\mathrm{B}} \leqslant 3 \mathrm{MeV}$, all rates in events per minute).

R. 0 N

Difference Rate without p-corr. Rate with ρ-corr.

$0^{*}-180^{\circ}$	$0.072+/-0.015$	$0.082+/-0.015$
$0^{\circ}-(90,180,270)$	$0.030+/-0.011$	$0.030+/-0.011$
$0^{\circ}-180^{\circ}$	$0.020+/-0.020$	$0.040+/-0.021$
$0^{\circ}-(90,180,270)$	$-0.009+/-0.014$	$0.014+/-0.015$
	$\frac{R .0 N-R .0 F F}{}$	
$0^{\circ}-180^{\circ}$	$0.052+/-0.025$	$0.042+/-0.026$
$0^{\circ}-(90,180,270)$	$0.039+/-0.018$	$0.016+/-0.019$

The coincidence rate difference of $(0.016 \pm 0.019) / \mathrm{min}$ yieids an upper limit of $0.054 / \mathrm{min}(95 \%$ confidence level) for the coincidence rate due to two-photon decay of LPE.

This upper itmit can be interpreted in the framework of standard axion theory ${ }^{4)}$. An overall 15% contribution of M1 transitions to the total spectrum of nuclear transitions in the reactor ${ }^{3}$) is assumed superposed by a 2.4% Ml contribution from the (n, p)-capture 7 ine at 2.23 MeV . From the measured coincidence rate Ryy $\leqslant 5.4 \cdot 10^{-2} / \mathrm{min}$ and assuming 250 keV axtion rest mass we deduce $r_{a} / \Gamma_{Y} \leqslant 3 \cdot 10^{-8}$ for the ratio of axion to γ-ray emission widths.

A new experiment is being set up at the nuclear power station Biblis. This experiment has a superior detection efficiency.

One of $u s$ (H.B.) is grateful to the Minister fuir Wissenschaft und Forschung, Dusseldorf, for support.

References

1) H. Bechtefer, W. Emmer, H.R. Koch, O.W.B. Schult, H. Seyfarth, R. Yogesfiar, Annual Report 1982. IKP/KFA, dul-Spez 202 (1983), p. 62
2) H.R. Koch, O. W.B. Schult, H. Seyfarth, H. Bechteler, R. Yogeshwar, Z. Phys. A313 (1983) 239
3) H. Bechteler, H. Fâissner, H. Seyfarth, R. Yogeshwar, contribution to this report, p. 62
4) T.W. Donnelly, S.J. Freedman, R.S. Lytel, R.D. Peccei, M. Schwartz, Phys. Rev. D18 (1978) 1607

+ IIT. Physikalisches Institut, Technische Hochschule, Aachen, F.R. Germany
${ }^{++}$III. Physikalisches Institut, Technische Hachschule, Aachen and IKP/KFA Jiilich, F.R. Germany
2.22. The Spectrum of γ Radiation Emitted in the FRJ-1 (Merlin) Reactor Core and Moderator Region
H. Bechteler ${ }^{+}$, H. Eaissner ${ }^{+}$, H, Seuforth, R. Yogeshwar ${ }^{\text {+ }}$

Nuclear reactors might be strong sources of light, penetrating bosons ${ }^{1)}$ which have been suggested by some theories ${ }^{1,2)}$ unifying strong and electroweak interactions. A crucial issue in the interpretation of experiments, which search for the decay of such particles at a nuclear reactor ${ }^{3}$, is the energy distribution of the nuclear transitions, which could lead to the emission of these particles instead of γ radiation. In earlier papers (e.g. ref. 4) the total y-ray spectrum emitted in the reactor has been approximated by the spectrum of prompt fission γ rays ${ }^{5}$). The γ rays from B decay of fission products, radiative neutron capture and inelastic neutron scattering had been neglected. However, they contribute about 50% to the total reactor $\gamma-r a y$ spectrum as is shown in the present note.

In a horizontal cut fig. 1 shows the set-up of the core region of the $10 \mathrm{M}_{\mathrm{H}}$, research reactor $\mathrm{FRJ}-1$ (Merlin) of the KFA Julich within the $\mathrm{H}_{2} \mathrm{O}$ tank and the biological shield. The reactor core consists of 28 standard fuel elements (F), each containing $264 \mathrm{~g}{ }^{235} \mathrm{~J}$ enriched to 80%, and 4 absorber/fuel elements (A). Each of then contains 1928 of ${ }^{235} U$, and admits for the forkshaped absorbers, which are alloys of 80% silver, i5\% indium and 5% cadmium, During a standard 30 day reactor period their mean position is 70% outcore. Three positions (P) are reserved for incore irradiations. Three sides of the core surface are covered for the most part by steel irradiation bars (St). Neutron-flux bridges made of alumintum (A) prevent the decrease of the neutron flux towards the thermal colums which are situated within the biological shield in $-x$ and $+x$ direction. The experimental set-up, used to search for the twophoton decay of Tight, penetrating bosons, is situated outside the closed biological shietd in $+X$ direction at a distance of : 5 m from the reactor core.

Fig. 1: FRJ-1 reactor core and moderator region (explanations see text).

The total energy release per thermal-neutron induced fission of ${ }^{236}[J$ except ant ineutrino energy amounts to 192 MeV/fission ${ }^{6}$) (kinetic energy of fission products and neutrons, 3 and γ radiation of fission products). To maintain a themal reactor power of $10 \mathrm{~mm}, 3.25 \times 10^{17}$ fissions/sec are necessary. The average number of neutrons emitted after themali-neutron induced fission of ${ }^{236} 1_{11}\left(v=2.47^{6)}\right)$ yields the total neutron source strength of $8.03 \times 10^{17} / \mathrm{sec}$. Of these $3.87 \times 10^{17} /$ sec are absorbed by ${ }^{235} U$ in (n, f) and ($\left.n, y\right)$ processes. The total r-ray spectrun per neutron absorbed in ${ }^{235} \mathrm{U}$ (including Y rays following B decay of the fission products) has been measured ${ }^{7}$) and yields in total (13.6 ± 0.3) y quanta/ neutron.

The distribution of the neutron flux density in the setup of fig. 1 has been calculated with the Monte Carlo program KENO ${ }^{8}$) which follows the life history of neutrons through 53 neutron energy intervals (14.9 Mev $10^{-5} \mathrm{eV}$). and 186 geonetrical regions, into which the reactor core zone and its surrounding has been divided according to the distribution of materials. The themal and epithermal neutron flux densities, together with the neutron capture cross sections ${ }^{9}$, and the spectra of γ radiation emited after neutron capture (low and high energy lines plus intermediate quasi-continuun, e.g. ref. 10) yield the local contributions of the different materials to the r-ray spectrum, As an example fig. 2 shows the distribution of the (n, p) capture rate (i. e. the source strength of the 2.2 Nev r rays) along the Z axis (fig. i).

Fig. 2: Distribution of 2.23 MeV γ-ray source strengith from $n+p$ capture along Z axis ($\Delta Z=1 \mathrm{~cm}$)

Table 1 gives the neutron capture rates in the different materials, and their contributions to the total r-ray source strength, at 10 Mk reactor power.
Besides the materials already mentioned the fission products ${ }^{135}$ Xe and ${ }^{149} \mathrm{Sm}$ with extremely high neutron capture cross section yield small contributions. The sum of 6.95×10^{17} neutron absorptions per second only covers 87% of the full emission rate $\left(8.03 \times 10^{17} / \mathrm{sec}\right)$. This may be explaned with neutron leakage from the regarded volune.

Table 1: Contributions to the total neutron-absorption and γ-emission rates at 10 MW themal reactor power (FRJ-1)

	neutron absorotion ($10^{17} \mathrm{n} / \mathrm{sec}$)	r-ray emission (1017 photons/sec)
$235 \mathrm{U}(\mathrm{n}, \mathrm{f})$	3.25	52.63
${ }^{235} \cup(n, r)$	0.62	52.63
2380_{0}	0.05	0.25
$\mathrm{H}_{2} \mathrm{O}$	1.42	1.42
A1	0.47	1.37
Fe	0.57	0.90
${ }^{135} \mathrm{Xe}$	0.28	1.21
${ }^{149}{ }_{\text {Sm }}$	0.06	0.24
Ag	0.10	0.51
In	0.04	0.22
Cd	0.09	0.33
Totā	6.95	59.08

In fig. 3 the r-ray spectra from neutron absorption in 235 U and from neutron absorption in the other materials (table 1) are show together with the total spectrum. The first spectrum drops above the neutron binding energy of ${ }^{236} U\left(B_{n}=6.55 \mathrm{MeV}{ }^{10}\right)$. The second one shows prominent peaks fron 3 decay of ${ }^{28} \mathrm{Al}(1.78 \mathrm{MeV})$ and from neutroncapture in ${ }^{1} \mathrm{H}(2.23 \mathrm{MeV}),{ }^{27} \mathrm{AB}(6.10,7.27 \mathrm{MeV})$, and ${ }^{56} \mathrm{Fe}(7.28,7.63,7.55 \mathrm{MeV})$.
The total spectrull $n\left(E_{\gamma}\right)=5.60 \times 10^{18} \asymp e^{-0.956 E_{\gamma}}$ photons/(sec I Mev 10 Miv), for Ey in Hev, lies higher than that which results from the prompt fission -ray spectrum ${ }^{5}$) as $3.0 \times 10^{18} \times e^{-1.14 E \gamma}$ photons/ (sec 1 NeV 10 MW).

To predict the energy spectrum of the emitted bosons, analysis of the total transition spectrum into its multipole components has to be performed. A rough preliminary estimate using experimental data on prompt fission γ-rays ${ }^{11}$ and those from β decay of fission products ${ }^{12 \text {) }}$ yields an overall (20 ± 5) \% M1 contribution in the γ ray spectrum. This estimate lies appreciably higher than an earlier one (1%) which only had been based on general considerations on transition probabilities ${ }^{4}$.

Fig. 3: The total γ-ray spectrum emitted in the FRJ-1 reactor core and moderator region (dark upper histogram) is approximated by $\mathbb{N}\left(E_{\gamma}\right)=5.60 \cdot 10^{18} \exp \left(-0.956 E_{\gamma}\right)$. The lower full-1ine histogram shows the contribution from n capture in ${ }^{235} \cup$ (fission, radiative capture and B decay of fission products) and is approximated by $N\left(E_{\gamma}\right)=5.81 \cdot 10^{18} \exp (-1.1 \cdot$ Ey). The dotted histogram represents the contribution from n capture in other materiats except hydrogen. The dashed bar gives the intensity of the 2.23 Mel 1 ine from (n, r) capture, which amounts to 2.4% of the total spectrum.

References

1) S. Weinberg, Phys. Rev. Aett. 40 (1978) 223
2) F. Wilczek, Phys. Rev. Lett. 40 (1978) 279
3) H. Bechteler et al., contribution to this report, p. 60
4) T.W. Donnefiy et al., Phys. Rev. D18 (1978) 1607
5) V.V. Verbinski et al., Phys. Rev, 67 (1973) 1173
6) J. Fassbender, Einfilhrung in die Reaktortechntk (Thiemig Verlag, Munchen, 1967)
7) P.J. Bendt and E.T. Jurney, in: Neutron Capture Gamma-Ray Spectroscopy, Edts. R.F. Chrien and W.R. Kane (Plenum Press, New York, 1979), p. 558
8) K.-J. Kalker, private communication
9) S.F. Mughabghab and D. I. Garber, BNL $325,3^{\text {rd }}$ Ed. vol. 1 (1973)
10) Nucl. Data $\bar{A} 3$ (1967) and $A 5$ (1968)
11) R.K. Peelle and F.C. Maienschein, Phys. Rev. C3. (1971) 373
12) Table of Isotopes, Edts. C.M. Lederer and V.S. Shirley (1978)
[^9]
II. THEORETICAL NUCLEAR PHYSICS

3. Nuclear structure
3.1. Quasiparticle RPA Calculations for ${ }^{146} 6{ }^{6} 82$ with Effective Forces Including Meson Exchange Potentials
C. Conct, V. Kłemt, J. Speth

The first application of our computer code ${ }^{1)}$, which allows the microscopic description of spherical superfluid nuclei, was meant for the nacleus ${ }^{146} \mathrm{Gd}$ and its neighbouring nuclej.

The theory we have used for this study is the quasiparticle random-phase approximation (QRPA), which gives the possibility to treat collective and non-collective states of closed subshell nuclei within the same framework.

Our choice has been suggested by the fact that, even though there are some similarities between ${ }^{146} 6 \mathrm{Gd}_{82}$ and the doubly-magic nucleus $288 \mathrm{~Pb}_{126}$, there exists however a qualitative difference between them: while the $Z=82$ and $N=\$ 26$ energy gaps are large enough to make negligible the nuclear pairing effect, the $Z=64$ gap is significantly smaller and consequently a relatively strong effect of proton pairing is present in the nucleus ${ }^{146}$ Gd.

The ground state of a closed subshell nucleus, for which the pairing effect plays a significant role, corresponds to the Bardeen-Cooper-Schrieffer (BCS) ground state ${ }^{3 \text {). }}$ We have calculated the BCS wave function from a WoodsSaxon potential using a large singie-particle basis and assuming pairing correlations between protons oniy.

The BCS-equations have baen solved using a realistic pairing force like a density-dependent δ-force. The same force has been used as residual particle-particle interaction in the solution of the QRPA-equations.

As for the residual particle-bole interaction we have considered, in addition to a density-dependent zerorange force of Migdal type, also explicitly the finiterange contribution due to the one-pion and one-rho axchange potentials ${ }^{4}$.

In this way we have studied the spectroscopic properties, viz. the excitation energies and the electric and magnetic transition probabilities of the doubly even nucleus ${ }^{146}$ Gd, for which in recem years there have been extensive investigations ${ }^{5 \text { ? }}$. The proton and the neutron levels for ${ }^{146}$ gd near the Fermi surface we used in the present calculations are drawn in Fig. 1.

The energy gap for protons is 3.4 MeV and for neutrons 3.7 Mev. Since the $\pi h_{11 / 2}$ level lies closer above the $Z=64$ gap than the neutron high-j levels above the $N=82$ gap, one expects that proton particle-hole excitations will form the yrast states of ${ }^{146}$ Gd.

The measured ${ }^{146}$ Gd yrast states are in full accordance With these expectations and so are the calculations which we present in Table 1 and in Fig. 2.

The comparison between experiment ${ }^{5)}$ and theory is done for the excitation energies and, in three cases, viz. $3-2^{+}$and 0_{2}^{+}also for the transition probabilities, In all cases the agreement between theory and experiment is good.

Fig. 1: Proton and neutron levels for ${ }^{146}$ gd. The dashed The Findicates the Fermi surface, which for protans is smeared out due to the pairing correlations. The full and empty circles represent a particle-hole-like and the two half-full circles a quasiparticle-like excitation.

Table 1: Excitation energies and transition probabilities of the lownying states in ${ }^{146}$ Gd. (The B(EJ)-values are given in upits of e fm^{2} and the B(M)-valtes in $(n m)^{2} f_{m}^{2(3-1)} 10^{2 J}$. B(EO) is dimensionless.)
The schemes of fig. 2 indicate that the calculated level sequence agrees with the experimental one up to 9^{-}, but
the levels from 5^{-}up to 9^{-}lie $300-400$ kev higher than the experimental ones, be argue that these energy shifts are due to the fact that in the present calculations the residual Coulont interaction has not been included.

Fig. 2: Experimental and theoretical level schemes of the nucleus ${ }^{146} \mathrm{Gd}$ up to abort 4 MeV . The second ievel scheme is calculated in the framework of the QRPA-theory with the inciusion of the π - and p-exchange potential. Considering recent RPA-calculations performed for ${ }^{208} \mathrm{~Pb}$ taking into account the contribution of the Coulomb force ${ }^{6)}$, we estimate that this effect leads to an attractive particle-hole and to a repulsive particie-particle interaction, whose order of magnitude in ${ }^{146} \mathrm{Gd}$ is around $250-350$ kel. Applying these conclusions to the second level scheme of Fig. 2, we see that the agreement with the experimental one improves significantly.

References

i) C. Conci, Y. Klemt, Anmal Report 1982, Jui-Spez 202 (1983) 76
2) B.L. Birbrair, K.I. Erokhina, I.kh. Lemberg, Nucl. Phys. A145 (fG70) 129;
D. Zawischa, J. Spech, D. Pat, Nuct. Phys. A3ll (1978) 445.
3) J. Bardeen, L.N. Cooper, J.R. Schrieffer: Phys. Rev. 108 (1957) 1175.
4) U. Speth, Y. Klemt, J. Wambach, G.E. Brown. Nuct. Phys. A343 (1980) 382.
 Ogawa, J. Blonquist, Z. Phs. A290 (1979) 279 J. Styczen, P. Kleinheinz, M. Piparinen, J. Blomquist, Proc. 4th Int. Conf, on Nuclei far from Stability, Helsingor (1981), ed. by P.G. Hansen and G.B. Niatsen (CERN, Geneva, 1981) p. 548;
E:R. Flynn, J. Van der Plicht, J.B. Wilhelmi, L.G. Mann, G.L. Struble, R.G. Lanier, Phys. Rev. C28 (1983) 97;
R. Julin, J. Kantele, f. Luontama, A. Passoja, P. Kleinheinz, 3 , Blomquist, Phys. Lett. 94B (1980) 123.
6) G. Co , V. Heisenberg, S. Krewâld, J. Speth, preprint.
3.2. Spectroscopic Study of Low-Energy States of the $\mathrm{N}=82$ Isotones $146 \mathrm{Nd}, \frac{144}{62} \mathrm{sm}, \frac{148}{66} \mathrm{Dy}$ and 150 E er in the Framework of the QRPA-Theory
C. Conci, V. Kleat, J. Speth

Within the formalism exposed in Ref. 1 and in the previous contribution to the present Amual Report it is possible to calculate also the spectroscopic properties of the even-even $N=82$ isotones around ${ }^{146} \mathrm{Gd}$, changing only the proton number.

We have only to add or to take away two or four protons and to solve again the BCS- and the QRPA-equations ${ }^{1)}$ for the corresponding particte number.

Fig. I: Quasiparticle energies E and occupation probabilities v^{2}, obtained solving the BCS-equations using a realistic pairing force, for the $N=82$ isotones with 60<z 68 .

Fig. 2: Comparison between the experimental and the calculated excitation energies for the even-even nuclei $142_{\mathrm{Hd},}{ }^{144}{ }_{\mathrm{Sm}},{ }^{146} \mathrm{Gd},{ }^{148} \mathrm{Dy}$ and ${ }^{150} \mathrm{Er}$. 4 F 1 the measured levels up to about 4 Mel are represented.

In Fig. 1 it is shodn hon the occupation probabilities v^{2} and the quasiparticle energies E change by increasing the proton number from $Z=60$ in 142 Nd to $Z=68$ in 150 Er for fixed neutron number $N=82$. Here we did not change the single-particle energies. The quasiparticle level sequence, which in ${ }^{142_{N d}}$ is $d_{5 / 2^{-9}} 9_{7 / 2}-h_{11 / 2^{-5}}^{1 / 2}-d_{3 / 2}$ is reversed in ${ }^{150} \mathrm{Er}$ to $\mathrm{s}_{1 / 2}{ }^{-\mathrm{h}_{1}} 1 / 2^{-\mathrm{d}_{3} / 2^{-d_{5}} / 2^{-9}} 7 / 2$. This can
be interpreted as a support for the good closure of the $Z=64$ subshell. Fig. 2 gives a complete overvien of the results concerning the five $N=82$ isotones $\frac{142}{60} \mathrm{Nd}, \frac{144}{62} \mathrm{sm}$, ${ }_{64}{ }_{6}^{46}$, ${ }_{66}^{148} \mathrm{Dy}$ and ${ }^{150} \mathrm{Er}$.
The nuciei ${ }^{142} \mathrm{Nd}$ and ${ }^{144}$ Sm have four and two protons less in the $2 d_{5 / 2}-1 g_{7 / 2}$ subshell with respect to the doubly ciosed nacleus ${ }^{14} \sigma_{G d}$. The main configurations which will contribute to the yrast levels are the proton two-hole configuration $\left(\pi 2 d_{5 / 2}\right)^{-2},\left(\pi i g_{7 / 2}\right)^{-2}$ and $\left(\pi 2 d_{5 / 2}-\frac{1}{g_{7 / 2}}\right)^{-2}$, In both nuclei they give rise io the seguence of positive parity states: $2^{\dagger} ; 4^{\dagger} ; 6^{\dagger}$. For these states the agreement with the experimental values ${ }^{2,3)}$ is less than 300 keV . In the ${ }^{142}$ Nd the only negative parity states which has been measured experimentaly is the 3^{-}at 2084 keV with a $\mathrm{B}(E 3)$-value of $\left.6.3 \times 10^{4} e^{2} \mathrm{fm}^{6} 2\right)$. For this state we calculate an energy of 2501 kev and a $B(E 3)$-value of $2.0 \times 10^{4} e^{2} f^{6}$.

The sequence of negative parity states with spin 3 to 9 in ${ }^{144} \mathrm{Sm}$, which has been investigated a few years ago ${ }^{3}$. is analogous to that of ${ }^{146}$ Gd and is quite well reproduced in our calculations. In both nuclei the proton monopole pairing vibration state $0_{(2)}^{(2)}$ is reproduced, particularly well in ${ }^{144}$ Sm.

In contrast to early calculations ${ }^{4}$), we have now also calcalated the negative parity states up to $\mathrm{J}^{\mathrm{T}}=9^{-}$and find good agreement with experiment for those. A few years ago the two proton nucleus ${ }^{148} 8_{6} \mathrm{Dy}_{82}$ was investigated ${ }^{5)}$ and its level scheme up to 4 MeV was established. Since the $1 h_{11 / 2}, 3 s_{1 / 2}$ and $2 d_{3 / 2}$ proton orbitals lie close together and are the only orbitals between the $Z=54$ and the $Z=82$ energy gaps, one expects that excitations involving the $\pi 1 h_{11 / 2}$ level would form the complete sequence of the yrast states in ${ }^{148}$ Dy. Our results reproduce the fact that the $\left(\pi 1 h_{11 / 2}\right)^{2}$ two-particle configuration contributes to all the positive parity states $2^{+}, 4^{+}, 6^{+}, 8^{+}, 10^{+}$and that the 10^{+}is the fully aligned $\left(\pi \mathrm{m}_{11 / 2}\right)^{2}$ state.
Very recently two different groups ${ }^{6)}$ have determined the yrast states of the nucleus $150 \mathrm{Er}_{82}$ up to 3 MeV . The positive parity spectrum of 150 Er up to $\mathrm{J}^{\pi}=10^{+}$is described in our calculations as the sequence of the $\left(\pi 1 h_{11 /)^{2}}\right)^{4}$ seniority two configurations. The 10^{+}to 8^{+} and 8^{+}to 6^{+}spacings agree well with experiment, which is in accordance with the experience that the fully and nearly fuily alignec members of a j^{2} mitiplet are well reproduced by a f-force, which we use for the particleparticte interaction. On the other hand, we calculate the 10^{+}to 2^{+}and 10^{+}to 0^{+}spacings about $300-400 \mathrm{keV}$ larger than experiment, which corresponds to an overestimaed collectivity for these levels. In ${ }^{148}$ Dy the 3^{-} lies higher than in. ${ }^{146}$ Gd, because the Fermi surface is shifted upwards by adding twe protons. This tendency continues in the four valence-proton nucleus ${ }^{150} \mathrm{Er}$, where the octupote vibration has still a dominant $\left(\pi \ln _{11 / 2^{-2 d_{5 / 2}^{-1}}}\right)$ component.

From Fig. 2 we can observe that apart from ${ }^{14 \sigma_{G}}$, where the agreement between the experimental and the theoretical values is very good (see previous contribation to this Anmual Report), one immediately observes that the calculated energy levels for all other nuclei lie systematically between 100 and 600 kev too high. We ascribe this effect to the simplicity of our choice for the par-ticle-particle interaction, which is a density-dependent δ-force. This choice doesn't fmpair the resulis for ${ }^{146}$ Gd, because here nost of the states are dominantly of particle-hole stracture. However, in the neighbouring nuclei, because of the added valence particles (or holes), the energy levels are more strongly dominated by particle-particle (or hole-hole) configurations and therefore their description demands a more realistic particle-particle interaction. The introduction of fiw nite-range terms also in the particle-particle force will be one of the first tasks we intend to face in the future.

References

1) C. Conci, V. Klemt, Annual Report 1982, Jü-Spez 202 (1983) 76.
2) J.K. Tuili, Nuci. Data Sheets 25 (1978) 53.
3) C.M. Lederer, V.S. Shirley, Table of Isctopes, 7th Edition (J. Wiley, New York, 1978);
R. Pengo, S. Lunardi, R. Tischler, Y, Nagai, R. Broda, P. Kleinheinz, Proc. Symp. on Higk-Spin Phenomena in Nuclei, Argonne Nat. Lab., Argonne, Illinois (1979) p. 385.
4) M. Warocuier, K. Heyde, Nuc 7, Phys. A164 (1971) 113.
5) P.V. Daly, P. Kleinheinz, R. Broda, S. Lunardi, H. Backe, U. Blonqvist, Z. Phys. A298 (1980) 173.
6) H. Helppi, Y.H. Chung, P.J. Daly, S.R. Faber, A. Pakkanen, I. Ahmad, P. Chowchury, Z.K. Grabouski, T.L. Khoo, R.D. Lawson, U. Blomqvist, Phys. Lett. 115B (1982) 11;
E. Nolte, G. Colombo, S.Z. Gui, G. Korschinek, K. Schollmeier, P. Kubik, S. Gustaysson, R. Geier, H. Morinaga, Z. Phys. A306 (1982) 211.
3.3. On the Nature of the 1^{+}State at 3.48 MeV in ${ }^{88} \mathrm{Sr}$
C. Conci, J. Speth

In the nucleus $\frac{88}{88} \mathrm{Sr}_{50}$ the partially occupied shell between $Z=38$ and $Z=50$ is made up by three negative parity states, $1 f_{5 / 2}, 2 \mathrm{p}_{3 / 2}$ and $2 p_{1 / 2}$ and by the positive parity state $19_{9 / 2}$. Because of the characteristic of semimagicity of ${ }^{6} \mathrm{Sr}$, which has a closed subshell for protons at $\mathrm{Z}=38$ and a closed shell for neutrons at $\mathrm{N}=50$, is order to study the spectroscopic properties of this nucleus we have made use of the quasiparticle random-phase approximation ${ }^{1)}$.

Starting from a Noods-Saxon single-particle basis we solve the BCS-equations only for protons (see Fig. 1). We show in Table 1 the BCS-solutions, i.e. the pnergy "gaps " Δ and the occupation probabilities v^{2}, for the full configuration space we use in our calculations. The energy gaps are different for each level because our pairing force is a density-dependent offorce which has, unlike the schematic pairing force, matrix elements that

Fig. 1: To the left are repfesented the proton singleparticle energies obtained from a Woods-Saxon potential; in the middle the corresponding quasiparticle energies obtained after the solution of the BCS-equations and to the right the experimental energies from Ref. 4.

orbit a		${ }^{\text {(qp) }}$ d ${ }^{\text {(\%eV }}$)		8_{8}^{2}
${ }^{15} 1 / 2$	-35.90	-35.93	1.84	0.9993
${ }^{19} 9_{G / 2}$	-29.93	-29.98	1.55	0.9988
${ }^{1} p_{1 / 2}$	-28.35	-28.41	1.52	0.9885
${ }^{10} 5 / 2$	-23.05	-23.15	1.65	0.9965
$10^{3 / 2}$	-19.60	-19.72	1.62	0.9944
${ }^{2} \mathrm{~s}_{1 / 2}$	-19.01	-15.14	3.63	0.9537
${ }^{15_{7 / 2}}$	-15.95	-15. 88	1.75	0.9833
${ }^{14} 5 / 2$	-10.25	-11.07	1.70	0.8121
${ }^{2} \mathrm{p}_{3 / 2}$	-9.66	-10.54	1.57	0.7188
$2_{1 / 2}$	-8.22	-7.15	1.59	0.3039
$199 / 2$	-7.25	-5.49	1.76	0.1600
$\hat{26}_{5 / 2}$	-1.63	-1. 51	1.33	0.0082
$3^{3 / 2}$	0.57	0.64	1.5	0.0035
$i^{9} 97 / 2$	1.08	1.24	1.7	0.0072
$\mathrm{l}^{\text {n/1/2 }}$	1.42	1.56	1.71	0.0067
$2 \mathrm{~d}_{3 / 2}$	1.59	1.77	1.31	0.0038
${ }^{27} 7 / 2$	6.38	6.41	0.97	0.0010
${ }^{3 p_{3 / 2}}$	7.25	7.26	0.64	0.0004
${ }^{3} \mathrm{P}_{1 / 2}$	8.16	8.17	0.55	0.0003
${ }^{2 f_{5 / 2}}$	9.98	9.89	0.71	0.0004
$44_{51 / 2}$	10.41	10.42	0.30	0.0001
${ }^{11} 13 / 2$	10.45	10.52	1.55	0.0015

Table 1: BCS-solution for proton states in ${ }^{88}$ Sr: quasiparticle energies e(gp), energy gaps Δ and occupation probabilities v^{2}.
are not constant ${ }^{1)}$. The quasiparticle energies are calculated as $E_{a}=\sqrt{\left(E_{\bar{a}}-\lambda\right)^{2}+\Delta_{a}^{2}}$, where \hat{a} is the chemical potential. From these we obtain the quantities e (qp)a tabulated in Table 1 in the following way: $\varepsilon_{(q p) a}=+E_{a}+\lambda$, where the positive sign is taken if the corresponding single-particle state a is a particle state and the negative sign for a nole state.

Using the same parametrization that we have used for ${ }^{146} \mathrm{Ge}_{\text {(see }}$ (srevious contribution to this Annual Repart) for the particle-hole and for the particle-particle force, which we need to solve the QRPA-equations, we can describe quite well the low-lying energy levels of the nucleus ${ }^{88}$ Sr. Because of the big interest "awaked recently for the nuclear magnetic transitions and the corresponding observed quenching 2 , we have adoressed our special interest to the results concerning the 3486 keV 1^{+}state. from our calculations it turns out that the 1^{+}
is almost completely ($\sim 90 \%$ the proton spin-flip configuration ($\left(2 p_{1 / 2}-2 p_{3}^{-1}\right)$ with a sall admixture ($\sim 9 \%$) of the $\left(\pi l \hat{f}_{5 / 2}-2 p_{3 / 2}\right)^{-2}$ two-nole configuration. In addition we obtain an excitation energy of 3361 keV and a $\mathrm{B}\left(\mathrm{M1} ; 0^{+} \rightarrow 1^{+}\right)=0.32 \mathrm{H}_{\mathrm{N}}^{2}$. This value is smaller than half the experimental value, which is equal to $0.92 \div 0.15$ $\mu_{i}^{2} 3$). We interpret the reduction of the theoretical $B(M 1)$-value with respect to the experimental one as mainly due to the effect of the pairing coefficients $\gamma=\left(u_{a} v_{b}-v_{a} u_{b}\right)$, which enter the matrix elements of the magnetic mutipole operator:

$$
\begin{align*}
& \langle u M \| 0\rangle=-\sum_{a>b}\left\{\left(Z_{a b}^{+}+z_{a b}^{-}\right)^{*}\right. \tag{1}\\
& \left.+(-)^{j}\left(z_{a b}^{+}-z_{a b}^{-}\right)^{*}\right\}(M)_{a b}\left(u_{a} v_{b}-v_{a} u_{b}\right)
\end{align*}
$$

The value of this coefficient for the main configuration $\left(\pi 2 p_{1 / 2}-2 p_{3 / 2}^{-1}\right)$ can be easily calculated fron the occupation probabilities given in Table 1 , obtaining a value of 0.41 . It means that the transition matrix element of this configuration is reduced. by a factor of 0.41 and that the corresponding reduction of the $B(M 1)$-value, given from:

$$
\begin{equation*}
B(M J ; J \div 0)=\frac{1}{2 J+1}\langle 0\|\Delta\| 0\rangle^{2} \tag{2}
\end{equation*}
$$

is of the order of $0.41^{2}=0.17$.
We check this assumption calculating the $B(M 1)$-walue by taking into account only the particle-hole configuration $\left(\pi 2 p_{1 / 2}-2 p_{3 / 2}^{-1}\right)$ for two different values of $\gamma: 0.41$ (with) and 1 (without pairing correlations). The obtained $B(M I)$-values were respectively equal to $0.61 \mu_{i}^{2}$ and $3.56 \mu^{2}$, giving a reduction factor of exactly 0.17 . This is only a rough estimate of the reduction effect due to the pairing coefficients, but the situation is much more complicated when we use the full configuration space.
Recently, L.T. van der Bijl et al. 2), discussing the electron scattering form factor of the 1^{+}in 38 gr, have reported that calculations performed in the two broken pair schene give a $B(M 1)$-value equal to $1.91 \mu^{2}$, which is twice the experimental value. They argue that non-nucleonic degrees of freedom like Δ-hole polarization are needed to explain the reduction of the Ml-strength at low q. Unfortanately, we did not have the possibility to compare in detail our caiculations with those quoted in Ref. 2.

Qur next task will be the calculation of the electron scattering cross section with our QRPA-wave functions, to verify whether our reduction factor is enough to explain the experimental quenching or whether it is necessary to introduce subnucleonic degrees of freedom.

References

1) C. Conct, V. Klemt, Annual Report 1982, Jul-Spez 202 (1983) 76, and previous contribtions to the present Annual Report, ps. 64, 65
2) LeT. van der Bijl, H. P. Blok, R. Frey, D. Meuer, A. Richter, P.K.A. de hitt Huberts, Z. Phys A305 (1982) 231.
3) R.F. Metzger, fucl. Phys. A173 (1971) 141.
4) V.I. Isakov, S.A. Artamonov, i.A. Sliv, Sov. $:$. Nucl. Phys. 35 (1982) 173.
3.4. A Model to Incluce 2 p 2 h as well as $1 \Delta 1 \mathrm{~h}$ States for the Magnetic Response of Heavy Nuclei
D. Cha, B. Schwesinger ${ }^{+}$, J. Spech and J. Wambach ${ }^{+7}$
It is now established experimentally ${ }^{1)}$ that at low mon mentum transfer spin flip transition strength is strongly suppressed. Theoretically two mechanisms have been proposed for this quenching: one is the Δ-hole effect and the other a conventional nucleonic $2 p$ h effect. Since both may be of the same order of magnitude, it is desirable to include them simultaneously in a model of magnetic strength functions. We extend the $2 p 2 h$ for. malism for the nuclear electric response by Schwesinger and Wambach ${ }^{2}$ to allow for the fact that magnetic isovector excitations can also couple to Δ-hole excitations.
Foliowing the notation of Schwesinger and Wambach ${ }^{2}$, we write the response $S_{Q}(w)$ of a nucleus to a weak external field

$$
\begin{equation*}
Q(\omega)=\frac{1}{2}\left(Q^{+} e^{i \omega t}+Q e^{-i \omega t}\right) \tag{1}
\end{equation*}
$$

as
$\left.\left.S_{Q}(\omega)=-\frac{1}{\pi} \operatorname{Im}\left\langle\langle | Q^{+}\left(\omega-H+\varepsilon_{0}+i n\right)^{-1} Q \mid\right\rangle-(\omega+i n)^{-1}|\langle | Q|\right\rangle\left.\right|^{2}\right\}$.
H is the hamitonian governing the dynamics of the system and E_{0} the eneroy of the exact ground state 1\rangle. Now we introduce the $1 p l n$ vectors $Q_{\mathbb{N}}$ and Q_{A} the component of which is given by
$Q_{N, \alpha}=\langle 1 p 1 h, \alpha| 0|0\rangle$

$$
\begin{equation*}
-\sum_{B}\langle 1 p 1 h, \alpha| Q|2 p 2 h, \beta\rangle\langle 2 p 2 h, \beta| h_{N}^{-i} V_{N N}|0\rangle \tag{3}
\end{equation*}
$$

$-\sum_{\gamma}\langle 1 p 1 h, \alpha| Q|1 \Delta 1 p 2 h, \gamma\rangle\left\langle 1 \Delta 1 p 2 h, \gamma \mid\left(M_{\Delta}-M_{N}\right)^{-1} V_{\Delta N} 10\right\rangle$
$Q_{\Delta, \gamma}=\langle 1 \Delta 1 h, y 10 \mid 0\rangle$
Here H has been splft into a one-body part t plus a twobody potential V acting among nucleons and isobars

$$
\begin{equation*}
\mathrm{H}=\mathrm{t}_{\mathrm{N}}+V_{\mathrm{NN}}+\mathrm{t}_{\mathrm{A}}+V_{\Delta \mathrm{A}}+V_{\mathrm{NS}}+V_{\Delta N} \tag{5}
\end{equation*}
$$

and 10\rangle is the Hartree-Fock ground state. h_{N} denotes the Hf mean field to $t_{H}+V_{N N}-E_{0}$ and M_{Δ}, M_{N} are the masses of an isobar and a nucleon respectively. Note that we have inciuded some effects of ground state correlations in the definition of Q_{N}. The diagramatic representation of eq. (3) is given by the first three graphs of Fig. Ic. The approximation implied by neglecting higher order terms in eqs. (3) and (4). leads to a projectad response function $S_{Q}(\omega)$ onto the 1 plh - and $1 \Delta \mathrm{Ih}$-subspace.
$S_{Q}(\omega)=-\frac{1}{\pi} \operatorname{Im}\left(\left(Q_{N}^{+}, Q_{\Delta}^{+}\right)\left(\begin{array}{cc}\omega-C_{N N}+i \eta & -C_{N \Delta} \\ -C_{\Delta N} & \omega-C_{\Delta \Delta}^{+i n}\end{array}\right)\binom{Q_{N}}{Q_{\Delta}}!\right.$

(a)

(b)

(c)

Fig. 1: Diagrams iterated in the effective $1 p$ in operator ($\mu-C_{\mu}+i n$) and the effective nucleanic transition operator Q_{N}. Group (a) summarizes the conventional nucleonic interactions, (b) polarization effects in the effective hamiltonian from isobars and (c) renormalize. tion of the nucleonic transition matrix elements.

The submatrices $C_{A B}(\omega)$ stand for the one baryon-one hote matrix elements of the operators $\hat{C}_{A B}(w)$ defined by
$\hat{C}_{N N}=t_{N}+V_{N N}+V_{N N} P\left(\omega-t_{N}-V_{N N}+E_{0}+i_{T_{1}}\right)^{-1} P V_{N N}-E_{0}$
$\hat{C}_{W \Delta}=V_{N \Delta}+V_{N A} P\left(\omega-\tau_{N}-V_{N N}+E_{0}+i n\right)^{-P_{P V}}{ }_{N \Delta}$
$\hat{C}_{\Delta \Delta}=t_{\Delta}+V_{\Delta \Delta}+V_{\Delta N} P\left(\omega-t_{N}-V_{N N}+E_{0}+i n\right)^{-1} P V_{N A}-E_{0}$
where p is a projector on to nphh-states with $n>1$:

$$
\begin{equation*}
P=\sum_{n\rangle 1} p(n)=\sum_{n\rangle 1} \sum_{B}|n p m, B\rangle\langle n p n n, s| . \tag{10}
\end{equation*}
$$

Since the laln diagonal eiements of $t_{\Delta}-E_{0}$ are mainiy given by the isobar-nucleon mass difference (300 MeV), we can neglect terms of higher order in the isobar nucleon propagator $\left(\omega-C_{\Delta \Delta}+i_{n}\right)$ inverting the matrix in eq. (6). This gives
$S_{0}(\omega)=-\frac{1}{\pi} I m\left[\tilde{Q}_{N}^{+}\left(\omega-\widetilde{C}_{N N}+i n\right)^{-1} \tilde{Q}_{N}+Q_{\Delta}^{i}\left(\omega-C_{\Delta \Delta}+i n\right)^{-1} Q_{A}\right\}$
with the effective operators

$$
\begin{align*}
& \widetilde{Q}_{\mathrm{N}}=\mathrm{Q}_{N}+C_{N \Delta}\left(\omega-C_{\Delta \Delta}+i n\right)^{-1} Q_{\Delta} \tag{12}\\
& \overparen{C}_{N N}=C_{N N}+C_{N A}\left(\omega-C_{\Delta \Delta}+i n\right)^{-1} C_{\Delta N} \tag{13}
\end{align*}
$$

We continue with following approximations. As the lalh diagonal elements of $t_{4}-E_{0}$ are of the order of 300 MeV, we may neglect all other terms in $c_{\Delta \Delta}$ of eq. (9) which are of the order of one MeV. For the same reason, the frequency dependence of the $1 \Delta 1 \mathrm{~h}$ operator in eqs. (11)(13) may be ignored for low energy excitations. Further-
more, we believe that it is a fairly good approximation to egs. (7)-(9) to put

$$
\begin{equation*}
P\left(\omega-t_{N}-V_{N N}+E_{0}+i n\right)^{-1} P \rightarrow p^{(2)}\left(\omega-h_{N}+i \delta\right)^{-1} p(2) \tag{14}
\end{equation*}
$$

where the finite δ replaces the residual interaction among $2 p 2 h-s t a t e s$ and their coupling to even higher configurations.

To sumarize, we propose to calculate the magnetic response function $S_{0}(\omega)$ for $\omega \ll 300 \mathrm{MeV}$ by a matrix inversion of an effective hamiltonian C_{NN} in the nucleonic subspace as

$$
\begin{equation*}
S_{Q}(\omega)=-\frac{1}{\pi} \operatorname{Im}\left\{\tilde{Q}_{N}^{+}\left(\omega-\tilde{C}_{N N}+i n\right)^{-1} Q_{N}\right\} \tag{15}
\end{equation*}
$$

where \mathbb{Q} and \mathbb{C} are given by

$$
\begin{align*}
& q_{N}=a_{N}-\frac{1}{M_{\Delta}+H_{N}} c_{N \Delta \Delta} a_{\Delta} \tag{16}\\
& c_{N N}=c_{N H}-\frac{1+b}{M_{\Delta}-H_{N D}} c_{N \Delta} c_{\Delta N} \tag{17}
\end{align*}
$$

In the zero frequency limit for the lalh propagator, $b=1$ if backward going graphs are included. Truncating at $2 p 2 h, \hat{C}_{N N}$ and $\hat{C}_{\Delta \Delta}$ are approximated by the one baryon-one hole matrix elements of the operators

$$
\begin{align*}
& \hat{C}_{\mathrm{NN}}=\tau_{\mathrm{N}}+W_{\mathrm{NN}}+V_{\mathrm{NN}}{ }^{(2)}\left(\omega-h_{N}+i 6\right)^{-1} \mathrm{P}^{(2)}{V_{N M}}-E_{0} \tag{18}\\
& \hat{C}_{N \Delta}=V_{N \Delta}+V_{N N} p(2)\left(\omega-h_{N}+10\right)^{-1}(2)_{V_{N \Delta}} \tag{19}
\end{align*}
$$

The diagrams iterated by this model are shown for illustration in Fig. 1.

References

1) J. Rapaport, contribution to the 1982 IUCF Workshop "The interaction between medium energy nucleons in naclé";
A. Richter, invited talk presented at the Int. Conf. on Sucł. Phys., Florence (Italy), 1983.
2) B. Schwesinger, J. Wambach, Phys. Lett. in press; B. Schwesinger, J. Wambach, submitted to Nucl. Phys. A.

+ SUNY at Stony Brook, Stony Brook, NY, USA
$+{ }^{+}$Univ. of Illinois, Urbana, IL, USA
3.5. Isobar-Hole and $2 p 2 h$ Effects on the M1-Strength in ${ }^{90}$ Zr and ${ }^{208} 8 \mathrm{~Pb}$
D. Cha, B. Schwesinger ${ }^{+}$, J. Speth and i. Wambach ${ }^{+}$

Since both ${ }^{90} \mathrm{Zr}_{\mathrm{I}}$ and ${ }^{208} \mathrm{pb}$ are non spin-saturated, we expect a large amount of M1-strength. In ${ }^{90} \mathrm{Zr}$ the independent particle model (IPM) predicts a neutron $98 / 2^{* 97 / 2}$ transition with a strength of $15.4 \mu_{1}^{2}$ and in 208_{Pb} two transitions: proton $h_{1 / 2 \rightarrow h^{\prime} / 2}$ and neutron $i_{13 / 2} \rightarrow i_{11 / 2}$ with $B(M 1)+$ values of $25.6 \mu_{i 1}^{2}$ and $22.1 \mu_{N}^{2}$ respectively. Experimentally, there has been some strength reported in ${ }^{208} \mathrm{~Pb}$ 1) and about 40 g of IPM strength in ${ }^{90} \mathrm{Zr}$ has been identified recently by high energy proton scattering ${ }^{2}$). As can be seen from Fable 1 , most of the transition strength is purely spinfijp. Convection current contributions are absent in $90^{2 r}$ and very small in 208 Pb . Therefore, we expect that effects of isobar-hole mixing are large, giving rise to a strong reduction of the transttion strangth.

Whe have performed RPA calculations by the matrix inversion techrique which includes both the $2 p$ hh and Δ-hole effects ${ }^{3)}$. In contrast to the GT transition where RPA correlations are largely blocked, those have to be included in the other isospin branches. The inclusion of other correlations is summarized in Table 2. E_{c} denotes the centroid energy of the main peak and the percentages are obtained with respect to the IPM. In $902 r$ the results can be compared directly with experiment ${ }^{4)}$. The amount of theoretical integrated strength in the wicinity of the peak varies between 38% and 22% depending on the additional zero-range coupling δg_{0}^{*}. Our theoretical resuit has to be compared with the experimental one of $40 \pm 5 \%$. It favours sonewhat the choice $\delta 9_{0}^{{ }^{*}}=0$ but in view of the cheoretical as well as experimental uncertainties it does not preclude the Jarger lalh mixing. In ${ }^{208}$ Pb experiment is much less decisive. Definitely $8.5 \mu_{N}^{2}$, i.e. 17.4% of the IPM strength have been located fragmented between 7 and 8 MeV 4). Another tentative $8.5 \mu_{\mathrm{N}}^{2}$ are located between 8 and 9.5 MeV increasing the percentage to 35%. Our calculation yields centroid energies between 7.5 and 7.2 Mev cepending on the lalh coupling strength with integrated transition strengths of 42% and 26% in the vicintty of the peak respective$1 y$. Like the GT strength, also the Hl strength functions

	configuration	spin μ^{2}	convection μ^{2}	$\mathrm{B}\left(\mathrm{ml}\right.$) $\mathrm{A} \mu^{2}$
${ }^{90} 7 \mathrm{Zr}$	$\begin{aligned} & v_{g_{g / 2}} *_{g_{7 / 2}} \\ & \text { others } \end{aligned}$	15.4 0.7	$\begin{aligned} & 0 \\ & 0.02 \end{aligned}$	$\begin{array}{r} 15.2 \\ 0.5 \end{array}$
:				15.7
${ }^{208} \mathrm{Fb}$	$\pi h_{11 / 2} * \pi h_{9 / 2}$	40.0	1.6	25.6
		22.4	0	22.1
	others	1.6	0.05	$\cdots 1.1$
				48.8

Table 1: Independent particle model MI transition strength in ${ }^{90} 7 \mathrm{rr}$ and ${ }^{208} \mathrm{pb}$.

	${ }^{90} \mathrm{Zr}$			${ }^{208} \mathrm{pb}$		
	$\mathrm{E}_{\mathrm{c}} \mathrm{MeV}$	$\begin{aligned} & E<12 \mathrm{HeV} \\ & B(M)+\mathrm{MeV} \end{aligned}$	fraction	$\mathrm{E}_{\mathrm{C}} \mathrm{HeV}$	$\begin{aligned} & E \subset 11 \text { MeV } \\ & B(M 1)+\mu_{i n}^{2} \end{aligned}$	fraction
				5.57	25.6	52.5\%
$\mathrm{PFH}^{\text {P }}$	6.02	15.7	100%	5.85	22.1	45.3%
Iplh (RPA)	6.73	12.9	83.7\%	6.7	42.1	86.3%
$\begin{aligned} & 1 p 1 h+2 p 2 h \\ & (T D A) \end{aligned}$	8.0	10.17	66.0%	7.6	37.79	77.4%
$\begin{aligned} & 1 p 1 h+2 p 2 h \\ & (R P A) \end{aligned}$	8.1	7.99	51.8%	7.6	27.91	57.2\%
$\begin{aligned} & 1 p 1 h+2 p 2 h \\ & +1 \Delta 1 h(R P A) \\ & \delta g_{0}^{4}=0 \end{aligned}$	7.9	5.84	37.9%	7.5	20.39	41.8%
$\begin{aligned} & 1 p 1 h+2 p 2 h \\ & +1 \Delta 1 h(R P A) \\ & \delta g_{0}^{\prime *}=0.5 \end{aligned}$	7.7	3.44	22.3\%	7.2	12.43	25.5\%
Exp.	8.9+0.2		$40 \pm 5 \%$	~ 7.5	-	~ 17.4

Table 2: M1 strength in ${ }^{90}$ Zr below 12 MeV excitation energy and in ${ }^{208}$ ps below 11 mev excitation enargy.

Fig. 1: M1 strength distribution in 90_{Zr} and 208_{Pb}. The full line denotes $1 p i h+2 p 2 h$ TDA results, while dashed and cotted lines include RPA and $1 \Delta 1$ correlations for $\delta g_{0}^{1 *}=0$ and 0.5 respectively.
exhibit long tails extending up to more than 50 mev excitation energy (see Fig. 1), This naturally leads to an increase of the total energy weighted sum rule. In 90 Zr we have integrated the theoretical distribution tip to 45 HeV and find 64% more than the IPM value of $110.6 \mu^{2}$ MeV neglecting RPA correlations while including them gives 42% enhancement. In these numbers isobar-hole admixtures are not included. Including those yields quenching of the EMSR. Relative to the $2 p 2 h$ (RPA) value of 157.5 p MeV , we get 19% reduction while $\delta \mathrm{g}_{\mathrm{o}}^{\mathrm{a}^{*}}=0$ and 6% reduction for $\delta g_{0}^{\prime *}=0.5$ respectively.

References

1) G.E. Brown, S. Raman, Comments Nacl, Part. Phys. 9 (1980) 79.
2) C. Djalali et al., Nucl. Phys. A388 (1982) 1.
3) 0. Cha et al., preceding contributions to this report.
1) N. Anantaraman et al., Phys. Rev. Lett. 46 (1981) 1318.

+ SUNY at Stony Brook, Stony Brook, NY, USA
${ }^{\text {++ }}$ Univ. of Illinois, Urbana, II, USA
3.6. Isobar-Hole and $2 p 2 n$ Effects on the Mot-Strength in 90_{Zr} and 208_{PD}
D. Cha, 3. Schwesinger ${ }^{\dagger}$, J. Speth and J. Wam bach ${ }^{++}$
Experimental evidence for $M 2$ resonances in 90 Zr and ${ }^{208} \mathrm{~Pb}$ comes fron $\left(e, e^{2}\right)$ experiments ${ }^{1}$). In contrast to the ME case, where contributions from the orbital operator are negligible, the orbital part of the M2 operator gives $1 / 5$ of the total $M 2$ strength ${ }^{2}$). Theoretically this orbital operator is of special interest because it excites a twisting osciliation of the nuclear density called the "twist mode"3).

We have performed RPA calculations by the matrix inversion technique ${ }^{4}$). The new feature of our calculation as compared to previous ones ${ }^{5}$) is the combination of $2 p 2 h$ and lain effects. As expected the addition of $1 \Delta 1 n$ states to the lplh+2pen calculation in ${ }^{20 g_{p b}}$ reduces only the spin strength. Therefore the relative importance of the twist peak at 7.9 MeV is enhanced with increased coupling to lalh states. This is displayed in Fig. 1 where the botton graph gives the response of $90_{Z r}$ and 208^{208} to the spin part of the M2 operator, the middle section to the arbital part and the upper to the total M2 operator.

Table 1 gives the amount of M2 strength present in ${ }^{208} \mathrm{pb}$ below 15.6 Mev as compared to the total sum rule.

Fig. 1: Distribution of $M 2$ strength in 90 Zr and ${ }^{208} \mathrm{pb}$. The upper part gives electromagnetic, the middle part twist and the lower part spin strength distributions. The full line denotes $1 \mathrm{p} 3 \mathrm{~h}+2 \mathrm{p} 2 \mathrm{~h}$ TDA results, while the dashed and dotted lines inciude RPA and iAlh correlations for $89_{0}^{\prime *}=0$ and 0.5 respecituely.

	elm $u^{2} \mathrm{fm}^{2}$	twist $\mu_{N}^{2} f^{2}$	spin $\mu^{2} \mathrm{fm}^{2}$
$1 p 1 n+2 p 2 h$ (TDA)	2.9×10^{4}	0.7×10^{4}	1.9×10^{4}
$\begin{aligned} & 1 p l h+2 p 2 h \\ & +1 \Delta h(R P A) \\ & \delta g_{0}^{t h}=0 \end{aligned}$	2.4×10^{4}	0.7×10^{4}	1.4×10^{4}
$\begin{aligned} & \operatorname{lp} 1 \mathrm{~h}+2 \mathrm{p} 2 \mathrm{~h} \\ & 11 \ln (\mathrm{RPA}) \\ & \mathrm{S}_{0}^{1 *}=0.5 \end{aligned}$	2.1×10^{4}	0.7×10^{4}	1.1×10^{4}
total strength	3.9×10^{4}	0.8×10^{4}	3.1×10^{4}

Table 1: M2 strength in ${ }^{208} \mathrm{pb}$ within the energy interval from 0 to 15.6 MeV .

Three cases, alectronagnetic, twist and spin operators are considered. As may be seen the coupling to 2p2n states has already pushed larger amounts of spin strength up to higher excitation energies, whereas almost all twist strength is kept. On the other hand, the spin strength is strongly affected by the lalh admixtures. Beiow 10 Mev in 209 pb there is only $.7 \times 10^{-4} H^{2} \mathrm{fen}^{2}$ of the spin strengeh left, if 1 Alh is included with $\delta g_{0}^{1^{*}}=0$. Non arbital strength accounts for 50% of the total MZ strength below 10 Wev. The peaks to the twist and the spin response below 10 MeV are fatrly well
separated, the low-iying. one between 7.5 and 8.5 MeV being due to the twist. These statements are in quantitative agreement to earlier findings ${ }^{5}$.

References

1) R. Froy et al., Phys. Lett. 748 (1978) 45; M. Knupfer et al., Phys. Lett. 77B (1978) 367.
2) B. Schmesinger et al., Mucl. Phys. A341 (1980) 1.
3) 4. Yukawa, G. Holzwarth, Nucl. Phys. A364 (1981) 29.
1) D. Cha et al., preceding contributions to this re. port.
2) B. Schwesinger, submitted to. Phys. Rev. C; D. Cha, J. Speth, sumitted to Phys. Rev. C.
${ }^{+}$SUNY at Stony Brook, 5tony Brook, NY, USA + Univ. of Illinois, Urdana, IL, USA
3.7. Isobar-Hole and $2 p 2 h$ Effects on the Spin-Dipole Strength in ${ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{~Pb}$
D. Cha, B. Schwesinger ${ }^{*}$, J. Speth and J. Wambach^{+4}

In connection with the first forbidden B_{+}decay, the distribution of isovector "spin-dipole" transition strength

$$
\begin{equation*}
\mathrm{Q}=r\left[c \mathrm{Y}_{1}\right]_{\tau_{+}, 0,-}^{0^{-}, 1^{-}, 2^{-}} \tag{1}
\end{equation*}
$$

is of importance. The a - branch has been investigated experimentally via medium energy (p, n) reactions ${ }^{1)}$. The τ_{0}-branch has not been identified 50 far, but there are indications from $319 \mathrm{HeV}\left(p, \rho^{\prime}\right)$ data in ${ }^{90} \mathrm{Zr}$ for substantial spin-flip strength at higher energy ${ }^{2)}$. The ${ }^{+}+$-branch is accessible via (n, p) reactions but littie is known up to now.

Here we have investigated the spin-dipole strength distribution in the parent nucleus (τ_{0}-part) using the matrix inversion technique of Ref. 3 which includes both 2ph and lalh effects. Fig. 1 sumarizes the results in ${ }^{90} \mathrm{Zr}$ (left part) and ${ }^{208} \mathrm{pb}$ (right part). With increasing J the centroid moves to lower energy partly because the decrease in the average 1 pin energy but also the average interaction matrix elements are reduced because of the momentum dependence of the spin-isospin force. The effect of ith mixing is depicted by the dashed $\left\{\delta g_{0}^{\prime *}=0\right.$) and dotted $\left(\delta g_{0}^{1}{ }^{*}=0.5\right)$ lines in Fig. 1. While the 1^{-} and 2^{-}strength distribution is quenched for all cases, we find little effect on the 0^{-}for $\delta g_{0}^{\mathrm{r}^{*}}=0$. Iii ${ }^{90} \mathrm{Zr}$ the strength is even slightiy enhanced. This can be understood by remembering that spin-isospin response can be separated into a longitudial and transverse part excited by the operators

Fig. 1: Isovector spin-dipole strength distributions in 90 Zr (left part) and ${ }^{208} \mathrm{Pbp}^{\mathrm{Pb}}$ (right part). The full line denotes $1 p 1 h+2 p 2 n$ TDA results, while the dashed and dotted lines include RPA and $1 \Delta i n$ correlations for $\delta g_{0}^{5} *=0$ and 0.5 respectively.

Fig. 2: Momentum and energy dependence of the 0^{-}longitudinal response functions in ${ }^{90} 0_{Z r}$ (ieft part) and ${ }^{208_{\mathrm{pb}}}$ (right part) normalized to the total strength at each momentum transfer. The full lines denote tha $1 \mathrm{pin}+2 \mathrm{p} 2 \mathrm{n}$ results without $i \Delta 1 /$ admixtures while they are included in the dashed lines $\left(\delta g_{0}^{\prime *}=0\right)$.

$$
\begin{align*}
& Q^{l g}=\sum_{i=1}^{A} \sigma(i) \cdot \hat{Q} e^{i q \cdot r(i)} \tau(i) \tag{2}\\
& Q^{t r}=\sum_{i=1}^{A} \sigma(i) \times \hat{q} e^{i q \cdot r(i)} \tau(i) \tag{3}
\end{align*}
$$

respectively. Due to the tensor piece in the π and ρ exchange potentials both rodes propagate quite different$1 y$. The longitudical piece is driven by

$$
\begin{equation*}
V_{\pi \dot{\prime} \rho}^{\ell g}=v_{\pi+\rho}^{\text {central }}+2 v_{\pi+\rho}^{\text {tensor }} \tag{4}
\end{equation*}
$$

which is strongly momentum dependent while the transverse part propagates according to

$$
V_{\pi+\rho}^{\mathrm{tr}}=v_{\tau+\rho}^{\text {central }}-v_{\pi+\rho}^{\text {tensor }}
$$

for which the momentum dependence is much weaker. For 0^{-} which is not excited electromagnetically, the motion is purely longitudinal or "pion like" and a strong momentum dependence of the response function is expected. Fig. 2 shows the energy distribution of the 0^{-}longitudinal response functions for varlous q. With increasing q transfer, $V_{\pi+p}$ becomes strongily attractive shifting strength to lower energies. The $1 \Delta \mathrm{~h}$ mixing indicaed by the dashed lines in Fig. 2 also exhibits a q dependence becoming more important at higher q.

References

1) C. Gāarde et al., Nucl. Phys. A369 (1981) 258.
2) S.K. Nândà et al., Phys. Rev. Lett. 51 (1983) 1526.
3) D. Cha et alt, preceding contributions to this report.

+ Suny at Stony Brook, Stony Brook, NY, USA
*+ Univ. of Illinois, Urbana, IL, USA
3.8. Isobar-Hole and $2 p 2 \mathrm{~h}$ "Effects on the GamowTeller Strength in 90 Zr and 208_{Pb}
D. Cha, B. Schwesingert ${ }^{t}$, J. Speth and J. H'ambach^{++}

Only recently, (p, n) experiments at intermediate energies have mapped out the spin-isospit resonse of nuclei. Particularly, the forward angle spectra are dominated by GT transitions as concluded from the $\Delta L=0$ shape of the angular distribution characteristic for pure spin flip. A reasure of the total observed transition strength is provided by the model independent Ikeda sum rule $S_{\beta_{-}}-S_{\beta_{*}}$ $=3(N-Z)$ 1). In large neutron excess nuclei, $S_{\beta_{\ldots}}$ are largely Paulit biocked and small. Experimentally oniy a fraction of the sum rule (on the average 65%) is observed up to excitation energy of $40 \mathrm{Mev}{ }^{2}$).
We have studied the GT strength distribution in ${ }^{90} \mathrm{Zr}$ and 208 pb emplaying the matrix inversion technique of Ref. 3 which includes both the $2 p 2 h$ and A-hole effects. For the two-body interaction, we take a combined one-pion and one-rho exchange potential. $V_{\pi+0}$ where the short range part has been cut out by a two-body correlation function. For numerical reasons, we approximated the coupling interaction to $2 p 2 h$ states by a zero-range equivalent force taking both the direct and exchange terms. But an antisymmetrized zero-range nucleon-isobar transition interaction vanishes identically. This feature is not present in the finite range potential. He investigate the importance of these couplings by taking direct. part of the additional zero-range force for the transition interaction. Our results will distinguish the two cases $\delta g_{0}^{\prime+}=0$ and 0.5 .
In the independent particle model, the gT response in $90_{\text {Zr }}$ is garticularly simple with only two peaks of the transition from the $19_{9 / 2}$-neutron holes to $19_{9 / 2}$ - and $197 / 2$-proton particles. The energy separation is determined by the spin-orbit potential (upper left part of

Fig. 1: Left part: Non interacting GT response (dashed lines) in ${ }^{90} \mathrm{Zr}$ and ${ }^{208}{ }_{\mathrm{pb}}$ as comapred to inclusion of $\mathrm{V}_{\mathrm{\pi tp}}$ on the liph level (full ines). The arrows indicate the experimental resonance energies. Right part: GT response functions in ${ }^{90} \mathrm{Zr}$ and ${ }^{208} 8_{\mathrm{pb}}$ including 2 p 2 h - (ful) line) and in addition $1 \Delta \mathrm{hm}$-mixing (dashed line: $\delta g_{0}^{*}=0$, dotted line: $\delta g_{0}^{\prime *}=0.5$). The arrows indicate the experimental resonance energies.

	${ }^{90} \mathrm{ZF}$	${ }^{208} \mathrm{~Pb}$	9^{90}	$208{ }_{p b}$	$9^{7}{ }_{7}$
2p 2 h (TDA)	63\%	68%	77 \%	84%	4.5
$2 p 2 n+1 \Delta 1 h\left(6 g_{0}^{\prime *}=0\right)$	53%	54 \%	63%	66%	4.2
$2 \mathrm{p} 2 \mathrm{~h}+1 \Delta \mathrm{~h}\left(\mathrm{gg}_{0}^{1 *}=-5\right)$	38%	39%	47%	49%	3.4
energy window	0-25 Mev		$0-40 \mathrm{MeV}$		

Table 1: Anount of non energy weighted sum rule strength $3(N-Z)$. The last colurn gives the ratios of integrated strength of the two peaks in 90 zr .

Fig. 1). Because of the larger neutron excess, more single particle transitions are possible in $208_{\text {pb }}$ with the largest carrying only about 20% of the total sirength. As the interaction $V_{\pi+p}$ is turned on, strength is pushed up to higher energies producing collective states in tuth $90_{2 \mathrm{t}}$ and $208_{\text {put }}$ Compared to experiment (indicated by the arrows in Fig. 1) the theoretical energies are too 10 . In order to reproduce the emplrical centroid energies, sizable repulsive contributions have to come from second order (see right side of Fig. 1). Almost the entire contribution in second order comes from the ph linked diagram with a pi pair exchanged (bubble), the perturbative equivalent to the "induced interaction"4). The strong second order term provides an explanation for the ad hoc parameter $\delta g_{0}{ }^{*}$. used in Ref. 6 to describe Mi transtitions in ${ }^{48}$ Ca in a lplh space only. The inclusion of $2 p 2 \pi-e f f e c t s$ reproduces the empirical energies very wall. Also the cross features of the measured (p, n)
cross sections are reproduced. In 90 Zr the integrated strength ratio of the two peaks is 4.4 experimentally. A pure lpla catculation gives 4.2 , thereas the inclusion of $2 p$ ha increases the theoretical result slightly to 4.5 without $1 \Delta 1 h$ admixtures (Tabie 1). Including isobars we get 4.2 and 3.4 for $\delta g_{0}^{1^{*}}=0$ and 0.5 respectively. Both the GT strength functions in ${ }^{90} Z r$ and in ${ }^{200} \mathrm{~Pb}$ (right part of Fig. 1) exhibit long tails due to the $2 p 2 h$ mixing. Isobar-hole excitations, indicated by the dashed $\left(\delta \mathrm{g}_{0}^{1^{*}}=0\right)$ and the dotted $\left(\delta \mathrm{g}_{0}^{1^{*}}=0.5\right)$ lines, quench the nucleonic transition strength (full line) aimost uniformly over the whole energy range. The amount of GT sum rule strength which resides between $0-25 \mathrm{key}$ and $0-40$ MeV is tisted in Table 1 . Experimentally the sum rule fraction between 0 and 40 MeV has been determined by kapaport ${ }^{2)}$. On the average, he obtains $60+10 \%$. Our calculation indicates that $2 \rho 2 \mathrm{~h}$ alone are not able to account. for this value and lalh-mixing is needed. However, it seems difficult to pin down $\delta \mathrm{g}_{0}{ }^{*}$. The two extremes ofg ${ }_{0}^{*}$
$=0$ and 0.5 give values comparable to the experimental uncertainties.

References

1) K.1. Kkeda et al., Phys, Lett. 3 (1963) 271 .
2) J. Rapaport, contribution to the 1982 IUCF Workshop "The interaction between medium energy nucleons in nuclei".
3) D. Cha et al., preceding contribution to this report.
$4)$ S. Babu, G.E. Brown, Ann. Phys. 78 (1973) 1.
4) C. Gaarde et al., invited talk presented at the Int. Conf. on "Spin Excitation in Nuclei", Telluride (USA), 1982.
${ }^{\dagger}$ SUNY at Stony Brook, Stony Brook, NY, USA
t+ Univ. of Intinois, Urbana, IL, USA
3.9. Meson Exchange Current Effects in Heavy Naclei U.S. Dehesa ${ }^{+}$, S. Krewald, A. Lallena ${ }^{\dagger}$ and T.K. Donnelly ${ }^{+4}$

In iight nuclei, very clear evidence for meson exchange current (MEC) effects is available. In heavy nuclei (i.e. A 4), however, our knowledge of naclear structure suffers from uncertainties which are in general too large to allow unambiguous conctusion concerning MEC ef. fects to be drawf. Nevertheless, one may argue in a qualitative way that at large momentum transfers; the MEC will become impertant even in heavy nuclei, because as two-body operators, the meson-exchange currents are able to accept iarger monentun transfers than the electromagnetic one-body operators. The present lower limit of experimentally detectable cross sections in complex nuclei of $10^{-37}-10^{-38} \mathrm{~cm}^{2} / \mathrm{sr}$ does permit an exploration of this interesting high monentum transfer region.

One of the major obstacies in evaluating MEC effects in beavy muclei is contained in the treotment of the mean field. At the monentum transfers of interest for mesonexchange effects, the cross sections are very sensitive to small deviations in the mean fiald. So far, hovever, the mean field had to be approximated by a harmonic oscillator potential. In Ref. I, a new method is suggested which permits to deal with selfconsistent mean fields.

Fig. 1: Electroexcitation cross section for the 12^{-} state at 7.05 YeV in ${ }^{208} \mathrm{~Pb}$; pure one-body operator (dashed lithe) and pure one-body operator plus meson-exchange currents (solid line).

As an application, we present the effect of meson-exchange currents on the efectroexcitation of the 12^{-} state at 7.06 MeV in $208_{\text {Pb (Fig. 1). The MED are found }}$ to produce a smooth enhancenent of the one-body cross section of the order of 10% in the vicinity of the first maximum. At momentum transfers at $3.1 \mathrm{fm}^{-1}$ (second maximum), the cross section due to one-body currents is expected to be enhanced by a factor of 1.8 due to MEC .

Reference

1) J.S. Dehesa et al., to be pubiished.

+ Uniy. de Granada, Spain
+ MIT, Cambricge, MA, USA
3.10. Description of Odd-Even Muclei in the $A=130$ Region
E. Hammaren ${ }^{*}$, K.W. Schmid ${ }^{\dagger}$ and $\mathrm{F}_{\mathrm{*}}$ Grummer

After it has been show that the MONSER is a nuclear structure model which provides wave functions that are a good approximation to the exact shell model results ${ }^{1 \text {) }}$, we planned to use the full power of the MONSTER com-puter-code for the description of many nuclet in one mass region. We chose the $A=130$ region out of the following reasons. First of all many interesting experimentat data have been ohtained here recently Secondly this mass region contains nuclei, which are known to be well deformed rotors but also soft nuclei requiring a strons γ-deformation in a phenomenological description. Thus the ability of the MONSEER to describe all those muclei can be tested. Finally the single particle basis which has to be used in these nuclef is not as large as for example in the rare earth region. Consequently the computer times to be used in the $A=130$ region will be not too iarge for a systematic study.

The single particle basis we use consists out of the $0_{7 / 2}, 1 d_{5 / 2}, 1 d_{3 / 2}, 2 s_{1 / 2}, 0 h_{11 / 2}$, Ong/2 and the $\mathrm{if}_{7 / 2}$ states for both protons and neutrons. This means we assume an inert core consisting of 50 protons and 50 netitrons. For this single particle basis we have to define effective single particie energies and effective two bocy matrix elements. For the latter we use an effective G-matrix which will pe explatned in more detail in the next report dealing with the even-even nuclei. The knowledge of the correct effective single particle energies is known to be very essential for the description of effects like the backbending in rotational bands which occurs in many of the nuclei under consideration. Since we cannot afford to fit the s.p. energies to the experimental data known in the mass region we have to try to fix them in such a way that some sensitive data are satisfactorily reproduced. This can for example be the lowlying states of the odd-even nuclei.

In the framework of the MONSTER odd-even nuclei are described by diagonalizing the effective hemiltonian in the space of spin- and number-projected one quasipar. ticie states with respect to the HFB-field of a neighbouring even-even nucleus.

$$
\left\{H ; I M N_{0} Z_{0}\right\rangle=\hat{P}_{\hat{H}}^{I} \hat{Q}_{N_{0}} \hat{Q}_{Z_{0}}{ }_{a}^{+}|H F B\rangle
$$

This mode definite? ${ }^{\text {? }}$ excludes the proper description of backbending and other band crossings in odd nuclet, but it should be sufficient for the description of band heads and low-lying states.

A good overall agreement of all spectra of the odd nuclei in the $A=130$ region is obtained with the single. particle energies listed in Table 1. Fig. 1 shows some bands for ${ }^{12 S_{B a}}$ comparing the MONSTER results to the experimental data ${ }^{2}$). One realizes that the band heads and their relative positions are rather well reproduced.

Keeping in mind that the description of the odd nciei does not include 3 q .0 . states also the moments of inertio and the generai structure of the different bands are in reasonable agrement with the experimental data. That the agreenent of the energies is not an artifact of the nodel but reflects the correct structure of the states, can be seen in Fig. 2, whera the spectroscopic amplitudes for the one particle transter reaction ${ }^{130} \mathrm{Ba}(\mathrm{d}, \mathrm{t})^{129_{\mathrm{Ba}}}$ are shown as a function of the excitation energy of ${ }^{129} \mathrm{Ba}^{3}$).

One can reproduce the strength distribution for all lowTying states rather well (note that the $7 / 2$-ievel requires an $i=4$ transfer, which is strongly suppressed in the (d, t)-feaction and can hence not be disentangled from the strong $l=0$-transfer to the $1 / 2-g r o u n d ~ s t a t e) . ~$ Unfortuately above 300 ke : experimental spin assignments have not been possible up to now and above about 1.8 Mev no data at all are avaitable.

Summarizing one can say that low-lying states in odd nuclet may be rather well described with the MONSTER formalism and that the study of the spectra of the odd nuclei turns out to be very useful in order to fix the effective single particle energies.

References

1) K.W. Schmid, F. Grimmer, A. Faessler, Phys. Rev. © in press.
2) J. Gizon et ai., Nuct. Phys. A277 (1977) 464.
3) R.D. Griffin and R.K. Sheline, Phys. Rev. C10 (1974) 624.

+ Inst. f. Theor. Physik, Uniy. Tubingen,
3.11. Description of Even-Even Nuclei in the $A=130$ Region
K.N. Schmi d^{+}, E. Hammaren ${ }^{+}$and F. Grimner

During the last decade a large amount of experimental data has been obtained concerning the high spin states of deformed nuclei in various mass regions. Not only the yrast bands have been established up to very high angular momenta, but also various excited bands have been measured. In addition recently also data about the moments and transitions within these bands have been obtained.

Theoretically the data may be partially understood in terms of phenomenological models like the cranking model, the interacting boson model or particle rotor coupling models. The major problem of these models is the fact that they are all limited to a certain class of phenomena and that they do not have a sound microscopic justification. A model, which goes beyond those limitations is the MONSTER-model. It is a fully microscopic model, which may be used in any mass region provided an appropriate effective hamiltonian is known. The effective hamiltonian is diagonałized in the space of the spin- and number-projected HFB-mean-field

$$
\left.|A\rangle:=10 ; 1 M_{0} Z_{0}\right\rangle=\hat{P}_{1} \hat{Q}_{N_{0}} \hat{Q}_{Z_{0}}|H F B\rangle
$$

and the projected two quasiparticle excitations with respect to this field.

$$
|A\rangle:=\left|\mu v ; \operatorname{INN}_{0} Z_{0}\right\rangle=\hat{\hat{\rho}}_{M}^{I} \hat{Q}_{N_{0}} \hat{Q}_{Z_{0}} a_{\hat{p}}^{+} a_{v}^{+}|H F B\rangle
$$

This leacs to the matrix equation

$$
\sum_{B}\left\{\langle A| \hat{H}|B\rangle-E_{R_{0} Z_{0}}^{I N_{i}}\langle A \mid B\rangle \mid f_{B}^{I N ; N_{0} Z_{0}}=0\right.
$$

which yfelds the energies EMM_{0} and the wave functions characterized by the $\mathrm{f}_{\mathrm{B}} \mathrm{IM}_{\mathrm{i}} \mathrm{N}_{0} \mathrm{Z}_{0}$.

The single particle basis we used for the study of the $A=130$ region is described in the previous report about the odd-even nuclei, where also the procedure to obtain the single particle energies is discussed. The effective
interaction se empioyed in our calculations is a Brueckner G-matrix $(G=V+\widetilde{G})$ which has been derived for nuclear matter starting with the Bonn potential ${ }^{3)}$ as the bare nucleon-nucteon interaction V, and using a parantetrization in terms of Yukawa-functions of the Brueckner short-range term $G^{4)}$. Since this force has been calculated for nuclear matter it has definitely to be renormalized in order to be used in finite nuclei and a finite single particle basis space. It was seen inmediately in HFB-calculations performed with the original G=matrix that it does not provide enough pairing correlations. Thus we added an attractive short range force of Gaussian shape with a range of $\mu=0.5 \mathrm{fm}$, which contributes only to the proton-proton and neutron-ineutron matrix elements. This part of the force influences strongly the alignment behaviour and thus the band crossing phenomena. It turned out thet a good choice for the strengths of the two Gaussians is $V_{p p}=80 \mathrm{MeV}$ and $V_{n n}=50$ MeV。

Figure 1

Figure 2
Fig. 1 and Fig. 2 show the results obtained with this force for the nuclei ${ }^{128} \mathrm{Ba}$ and ${ }^{130}$ Ce. In both figures the energies of the lowest states for each spin are
plotted as a function of $I(I+1)$. The experimental data are represented by open circles and dashed lines ${ }^{2}$, while the fuil dots are the theoretical results. In case of $128_{\text {Ba }}$ one ootains a very good agreement with the experimental data. The moment of inertia for the low spin states is reproduced very well and the backbending is theoretically explained by the crossing of a band with two aligned $\mathrm{h}_{11 / 2}$-feutrons. The second nearly degenerate band above $\mathrm{I}=12$ cannot be qtantitatively reproduced by the theory, the only candidate for this band being another $h_{11 / 2}$-neutron quasiparticle band, since the proton bands turn out to be too high in energy. In case of ${ }^{130}$ Ce (Fig. 2) the backbending is clearly caused by the crossing of a $h_{11 / 2}$-proton quasiparticle band, which occurs a itttle too early in the theory. The moment of inertia of the lou spin states is again very well described. Some finetuning of the force parameters and the calculation of the other even-even nuclei in this region is still in progress. We hope that the results will help us in understanding the various experimental data available for excitation energies, g-factors and BE2-transitions.

References

1) K.N. Schmid, F. Grummer, A. Faessler, Phys. Rev. C in press.
2) P.J. Nolan et al., Physica Scripta T5 (1983) 153;
K. Schiffer et al., Z. Phys. A313 (1983) 245.
3) K. Holinde, K. Efkelenz, R. Alzetta, Nucl. Phys. Al94 (1972) 161 .
4) W.H. Dicknoff, Huct. Phys. A399 (1983) 287.

+ Inst. f. Theor. Physik, Univ, Tibingen,

3.12. The Spin Dependence of the HFB -Wean Field

 F. Grimmer and K.W. Schmid ${ }^{\dagger}$In the last years the MONSTER, a powerful code for the microscopic description of nuclear structure in large model spaces has been developed 1). The idea of the underlying model is the use of a HFB mean field as a reference state with respect to which the additional correfations in the nuclear states may be described by two quasiparticle admixtures. In order to avoid spurious efm fects it is important to project the $H F B$ wave function as well as the 2 ap states onto good angular monentum and particie number before one diagonalizes the many body hamiltonian in this basis. It was shown that this approach is a very good approximation to the exact shell model configuration mixing (SCM) method. Alsa effects Jike the backbending in heavy deformed nuclei, which is known to be a single particle effect, which may be described essentially by intrinsic two quasiparticle excitations with respect to the ground state, are rather well reproduced with the MONSTER in its present version ${ }^{1)}$.

The two major approximations used in the present version of the MONSTER are the assumption of a fixed mean field
for all states to be described and the truacation of the configuration space to 2-q.p. Configurations. This will cause problems if one wants to describe nuclear states, which are known to be essentially projected 4-q.p. excitations with respect to the ground state. Also all cases where the collective properties of the nucleus change rapidly and strongly within a band will cause difficulties.

A way to overcone those diffictilties would be the use of a spin dependent meen field. Fhen the yrast state and the excited states for a given spin will always be described with raspect to the optimal HFB-field for this spin. Since this HFB-state may be any many-quasiparticle excitation with respect to the intrinsic mean field wave function such a description will also include $4-q . p$. states like they are for example necessary for the description of the second backbending in yrast bands of heavy nuclei.

The problem of calculating af optimal urg-wave function for given angular monentum and particle number can be solved by a technique known as projection before the variation, which has been discussed already long ago but has been practically performed only in simple cases or with major approximations. We have developed a method, which performs a variation of the HFB-transformation after the projection onto good agnalar momentum and particle numbers, the only approximation being the restriction to axiai symmetric siater determinants.

According to the generalized Thouless theorem any HFBwave function may be expressed with respect to another one as

$$
|\widetilde{H F B}\rangle=0 \cdot \exp \left\langle 1 / 2 \sum_{\mu v} d_{\mu v} a_{H}^{+} a_{v}^{+} \mid H F B\right\rangle
$$

where d is an antisymetric natrix. We assume here that |HFB \rangle is an axial symmetric state and that the matrix d doesn't mix k-vailues, so that the matrices d span the space of all axial symetric MFB-wave functions. The problem of projection before the variation now reduces to the problem of minimizing the spin- and number-projected energy
as a function of d. In order to perform this minimization efficiently we use the derivatives of $\mathrm{E}_{\mathrm{N}_{\mathrm{O}} \mathrm{Z}_{\mathrm{O}}}^{\mathrm{IM}}$ (d) with respect to the matrix elements $d_{\mu v}$

Here g denotes the local gradient represented by the projected H_{20}-matrix

and Q is a matrix which orthonomalizes the HFB-transformation of $|H F B\rangle$ for a given d. It turns out that a simple steepest descent method is able to find the minimurn of $E_{N_{0} Z_{0}}^{Z_{0}}(d)$, bat the process is very slow since one has to use very small stepsizes. This is due to the fact that the projected energy depends more or less sensitively on different parameters of the HFB-wave function. A significant improvement is obtained by the use of a variable metric quasi feriton-method for the minimization.

Figure 1
For the purpose of testing the program we applied it to the ground state band of $22_{\text {Ne, With the }} \mathrm{s}-\mathrm{d}$ shell as single particle basis and a modified surface delta interaction ${ }^{2)}$ as effective hamiltonian the results obtained with different models can be compared to the exact shell-model result. In Fig. 1 one sees the exact ground state band in the middle. Yo the left are the results of models using only one slater determinant for each state. The band denoted by $F F B$ results from the projection of spin and particle number from the intrinsic HFB-wave function. The energies differ by typically 1 Hev from the exact values. The band denoted by HFBP shows the result obtained with the new model, that means for each spin the optimal HFB-wave function has been calculated with the method described above. One finds a significant improvement of all the energies compared with the $H F B$ result. To the right of the exact spectium the results of two different MONSTER calculations are shown, one based on the intrinsic HFB-field while the other calculation uses different mean fields for each angulaf momentum. One sees that both spectra agree quite well with the exact one and with each other. It should be noted here that for the 0^{t}-ground state the HFBPmethod yields a better energy than the MONSTER based on the intrinsic field. For the other states the MONSTER is still superior because of the mixing of different k-valwes, thus going beyond axial symetry.

As a result one should stress that the HFBP-method to find an optimal HFB mean field gives a clear improvement of the usually used method of projection after the variation. In the case of ${ }^{22^{N}}$ e the use of the optimal wave functions for each spin in a MONSTER-calculation doesn't
improve the results of a MONSTER-calculation based on a fixed mean field very much. However, we know that in heavier nuclei and for different nuclear states this improvement should be an essential one.

References

1) K.W. Schmid, F. Grimmer, A. Faessler, Phys, Rev, C in press.
2) A. Plastino, R. Arvieu, S.A. Moszkonski, Phys. Rev. 145 (1966) 837.

+ Inst. f. Theor. Physik, Univ. Tubingen,
3.13. On Averaging in Iterative Hartree-Fock Solving Procedures

Vilmar Klemt
It is well known that iterative methods for the solution of Hartree-Fock (HF) equations do not always converge. It may turn out that the density $\rho^{(v+1)}(r)$ calculated in the iteration step number $v+1$ may be farer away from the true HF density than the density $\rho^{(v)}(r)$ of the v-th step. In many cases, however, using, instead of $p^{v+\frac{1}{2}}(r)$, the average of the $v-t h$ and the $(v+1)$-th density for the calculation of the respective $(v+1)$-th mean field leads to quick convergence.

In some cases this method does not seem to be directly applicable however. If we represent the HF single-particle orbits in form of an expansion into harmonic oscillators ($v=$ iteration number),

$$
\begin{equation*}
\zeta_{n \ell j}^{(v)}(r)=\sum_{n^{\prime}=1}^{M} C_{n i}^{(v)}(n \& j) R_{n ' \&}^{0 s c}(r), \tag{1}
\end{equation*}
$$

the $H F$-equations reduce to those for the expansion coefficients $C_{n}^{(y)}(n \ell j)$:

$$
\begin{align*}
& \sum_{n_{2}}\left[\left\langlen_{1} \ell_{0}{ }_{0}^{j}{ }^{\left[t\left|n_{2} l_{0}^{j}{ }_{0}\right\rangle\right.}\right.\right. \\
& \div \sum_{n 2 j} \sqrt{\frac{2 j+1}{2 j_{0}+1}} \sum_{n_{3} n_{4}} c_{n_{3}}^{(v)}(n \ell j) C_{n_{4}}^{(v)^{*}}(n \ell j) \tag{2}\\
& \times\left\langle n_{1} l_{0} j_{0}\left(n_{2} l_{0} j_{0}\right)^{-1}, 0\right| V\left|n_{3^{2 j}}^{n j}\left(n_{4} l_{1}\right)^{-1}, 0\right\rangle \\
& \left.-\varepsilon_{n_{0} \ell_{0} j_{0}}^{(\nu+1)} \delta_{n_{1} n_{2}}\right) c_{n_{2}}^{(v+1)}\left(n_{0} \ell_{0} j_{0}\right)=0 .
\end{align*}
$$

Here t is the operator of the kinetic energy, V is the effective nucleon-nucleon interaction, whose particlehole matrix elements, coupled to 0^{+}, appear in the equation. The sum ${ }_{n}$ runs over anl the occupied HF orbits. The advantage of this method, which also has its drawbacks ${ }^{1}$), is that one can calculate a set of 0^{\dagger} par-ticle-hole oscillator matrix elements in principle once and for all (typically a 300×300 to 400×400 matrix for heavy nuclei), store them on a permanent data set and use them for arbitrarily many different $H F$-program runs. In this way realistic finite range forces (central and tensorial) can be used, whose matrix elements consume more computing time than the more schematic forces applied usually. On the other hand the nucleon density
never appears directly in eq. (2) (except in density dependent forces which have to be recalculated in each iteration step), but only indirectly in form of the expansion coefficients $\left.c_{n}^{(} \mathbf{v}\right)(n e j)$. Therefore the question arises how an averaging procedure between two successive iteration steps can be carried out for the expansion coefficients. Now a transition from one basis fiteration number v) in a space spanned by oscillator wave functions to another one (iteration number $y+1$) is always described by a unitary transformation U, which can be regarded as a generalization of a rotation. Therefore it suggests itself to assume that the procedure of averaging between the $v-t h$ and $(\nu+1)$-th iteration should be related to a reduction of the "rotation angies" of that unitary transformation. it is well known that a unitary matrix can be transformed to diagonal form by a unitary transformation, what is equivalent to saying that the left-side and right-side eigenvectors of a unitary matrix are identical, and that the eigenvalues are of the form $\exp \left(\mathrm{D}_{\mathrm{k}}\right)$, where the D_{k} 's are real numbers. The resulting equation reads

$$
\begin{equation*}
\sum_{n}\left(u_{\operatorname{man}}-e^{i 0_{k^{\pi n}}}\right)\langle n \mid \varphi(k)\rangle=0 \tag{3}
\end{equation*}
$$

where the $\left\langle n \mid p^{(k)}\right\rangle$ are the eigenvectors of the unitary matrix U specified in an arbitrary (in our case oscillator) basis $|n\rangle$. Let the iteration step (number v, say) change the momentary $H F$ basis $\left.l u_{i}\right\rangle(i=1,2, \ldots M$ according to eq. (1)) into the new basis $\left|v_{i}\right\rangle$, then the respective unitary matrix 3 that effects this is

$$
\begin{equation*}
v=\sum_{i}\left|v_{i}\right\rangle\left\langle u_{i}\right|, \tag{4}
\end{equation*}
$$

or in our oscillator basis:

$$
\begin{equation*}
u_{\operatorname{mn}}=\sum_{i}\left\langle m \mid v_{i}\right\rangle\left\langle u_{i} \mid n\right\rangle \tag{5}
\end{equation*}
$$

Averaging between two iteration steps is achieved by multiplying the 0_{k} 's by factor r with $0 r^{1}$. Instead of U we get then the unitary transformatton $U^{(r)}$ with

$$
\begin{equation*}
u_{m n}^{(r)}=\sum_{k}\left\langle m \mid \varphi^{(k)}\right\rangle e^{i r 0_{k}\langle\varphi(k)}\langle n\rangle \tag{6}
\end{equation*}
$$

$U_{0}(r)$ leads from a basis $\left|u_{i}\right\rangle$ to a basis $\left|v_{i}(r)\right\rangle$ wth

$$
\begin{equation*}
\left.\left|v_{i}^{(r)}\right\rangle=\left.u^{(r)}\right|_{u_{i}}\right\rangle \tag{7}
\end{equation*}
$$

The respective expansion coefficients are then
$C_{m}^{(v+1, r)}=\left\langle m \mid v_{i}^{(r)}\right\rangle=\sum_{n} u_{m n}^{(r)}\left\langle n \mid u_{i}\right\rangle=\sum_{n} u_{m n}^{(r)} C_{n}^{(v, r)}$
Practical experience shows that this procedure is numerically fast (due to the small dimension of the matrices U, which is 8 for heavy nuclei) but not accurate enough numerically since the errors of the successive tteration steps accumulate. This problem can be easily cured houever by reorthonormatizing the basis after each iteration step.

Reference

I) P.-G. Reinhard, R.Y. Cusson, Nuci. Phys. A378 (1982) 418
3.14. On a Relativistic Hartree-Fock Description of Magic Nuclei

Vilmàr kiemt

In recent years the interest in relativistic HartreeFock (HF) theory for nuclei has grown since there is good evidence now that relativistic effects can no longer be considered smallil). A relativistic $H F-t r e a t m e n t ~ o f ~$ nuclei ancounters many more problems with respect to its significance and justification 1,2) as well as concerning its numerical feasibility. while in nonrelatiyistic hf calculations rather schematic forces as those of the Skyrme type are frequently used, in a relativistic calculation one certalinly has to cope with more realistic potentials that can be derived from meson exchange processes. Potentials of the latter kind however, especially their exchange (Fock) parts are much more difficult to handle analytically as well as numerically.

A nonrelativistic HF -code developed by the author (see another contribution of the author in this report) has made use of the oscillator expansion method, which allows to computa the relevant oscillator-space matrix elements only once, store them a permanent data set and use them arbitrarily many times in subsequent $H F$ runs.

It is tempting to examine how this method can be extended to relativistic $H F$ calculation. The first difference is that the orbits of a relativistic $H F$ Slater determinant consist of Dirac spinors of the form

$$
v_{n \ell j n}(\vec{r})=\left(\begin{array}{l}
i g_{n \ell j}(r) \tag{1}\\
\varphi_{L, j m}(\Omega) \\
f_{n \ell j}(r) \\
\vec{\sigma} \cdot \hat{F}_{\varphi_{\ell, j m}}(\Omega)
\end{array}\right)
$$

where the $\psi_{l l i m}$ are Pasli spinors and $g_{n \ell j}$ and $f_{n x j}$ are the radial wave functions of the large and small components, respectively. The operator $\vec{\sigma}+\hat{r}(w i t h \hat{r}=\vec{r} / r$) has the property of changing the quantum number of the orbital anguiar monentum:

$$
\begin{equation*}
\stackrel{\vec{\sigma} \cdot \hat{r}}{Y_{j \pm 1 / 2}, j m}(a)=Y_{j \mp 1 / 2}, j m(a) \tag{2}
\end{equation*}
$$

By considering the radial Dirac equation for a one-body Dirac Hamiltonian

$$
H=\left(\begin{array}{ll}
m-U(r) & \vec{\sigma} \cdot \vec{p} \tag{3}\\
\vec{\sigma} \cdot \vec{p} & m F U(r)
\end{array}\right)
$$

for small arguments r one finds that the appropriate expansion of the radial Dirac functions into harmonic oscillators is
$g_{n, j \pm 1 / 2, j}(r)=\prod_{\bar{a}}^{M=1} a_{n}(n, j \pm 1 / 2, j) R_{n, j \pm 1 / 2}^{0 s c}(r)$
and
$f_{n, j \pm 1 / 2, j}(r)=\sum_{m=1}^{m_{m}}(n, j \pm 1 / 2, j) R_{n, j \neq 1 / 2}^{o s c}(r)$
i．e．the small components $\hat{F}_{n 2, j}$ correspond to a differ－ ent 2 than the large gnej．
The two－particle interaction，which in general consists of many different parts（scalar，vector，pseudoscalar， pseudovector etc．）now not only combines large with large and smail with small components to a resulting mean field of 0^{+}type（see another contribution of the author in this report）but also large with small ano small with large components leading to a mean field of 0^{-}type：
$\left\langle\left. n_{1}{ }_{0} j_{0}\right|^{-1} n_{2} i_{0}+j_{0}\right\rangle$
$=\frac{1}{\sqrt{2} j_{0}+1}\left\langle n_{1} \ell_{0} j_{0}\left(n_{2} \hat{k}_{0}+1 j_{0}\right)^{-1}, 0^{-1}\left(\left(_{V_{p s}^{\sigma 00} V_{v}}^{V_{i}}\right)\right.\right.$

where the sum nif runs over occupied Dirac orbits and the \mp in front of the n 解，refers to the respective parts of the force $\left(V_{v}\right.$ for vector and $V_{p s}$ for pseudo－ scalar）．The extension to a relatiyistic $H F$ thus leads to an approximate doubling of the dimension of the ma－ trices to be diagonalized，which should not be prohibi－ tive numerically，even for heaw muclei．

References

1）M．R．Anastasio，L．S．Celenza，H．S．Pong，C．M．Shakin， Phys．Rep． 100 （1983） 327.
2）0．Schutte，Nucl．Phys．A411（1983）369．

3．15．A Microscopic Look at the Muclear Twist

B．Schwesinger ${ }^{+}$

A microscopic description of nuclear excitations is used to confirm semiclassical predictions ${ }^{1)}$ on a collective twist motion．To this end specific properties of the en－ citation have been derived from Landau thaory and are shown to persist on a microscopic level．

The microscopic calculation applied is a procedure which is equivalent to a diagonalization space of $10-1 \mathrm{~h}$ and $2 p-2 h$ states 2 ）．
The main result is that ${ }^{208} \mathrm{~Pb}$ shows two very sharp reso－ nances in response to the twist operator which are $10-$ cated at 7.2 抱解 at 7.9 MeV ．The position of these states is entirely fixed by experimentally measured sin－ gle particie energies because the residual interaction does not affect the position of transverse zero sound modes．
According to the microscopic calculation 90 zr is not heavy enough to exhibit a twisting motion．

The possibility of detecting the twist experimentally through electron scattering is also investigated．De－ spite this overwhelming contribution to the M 2 sum，the competing spin flip ${ }^{3}$ mode is so heavily fragmented that it cannot obscure the resonance peaks of the twist in （e，e^{1} ）scattering experiments．

References
i）G．Holzwarth，G．Eckart，Z．Piys．A283（1977） 219.
2）B．Schwesinger，J．Wambàh，Phys．Lett．B in press； Phys．Rev．C in press．
3）B．Schwesinger，K．Pingel，G．Holzwarth，macl．Pays． A341（1980）i．
＊Supported by a fellowship from the Scientific Comittee of the NATO via the German Academic Exchange Service（DAAD）
Present address：SuNy at Stony Brook，Stony Brook， NY，USA
3.15. Effective Quasi-Particle G-Matrix Interaction
K. Nakayama, S. Krewald, J. Speth, and W.G. Love ${ }^{+}$

In the last decade considerable effort has been devoted to deriving an effective particle-hole interaction from a microscopic point of view. The main ingredient of such an interaction is the particle-hole irreducible kernel ${ }^{\text {l }}$) which is usually approximated by the Brueckner G-matrix. This seens to be a reasonable approximation since $\sim 85 \%$ of the experimental binding energy is already explained by the Erueckner Guatrix. In addition to its traditional role in calculating ground state properties of nuclei, a Brueckner G-matrix (pion- and rho-exchange potential folded with a short-range correlation function) has recently been successfully applied to the description of magnetic states in nuclei ${ }^{2}$. In fact, a simple analysis of the Landau parameters derived from the Brueckner G-matrix shows qualitatively how the different components of an effective interaction influence the properties of the low-lying excited states. However, a more complete analysis of the Brueckner Gumatrix and its momentum and density dependence are essential for understanding more quantitatively the properties of nuclei.
Jsing the method of deriving the operator structure ${ }^{3 \text {) }}$ of the Brueckner G-matrix, an effective interaction (operator), based on a G-matrix in nuclear matter, derived from a one boson exchange potential, has been extracted. Once the operator structure of the Brueckner G-matrix as obtained, its analysis is substantially simplified compared with the methods used so far. Effects of the short-range correlations have been analyzed, showing that they are largely restricted to ${ }^{1} \mathrm{~S}_{0}$ and ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ states and affect predominantly the central components of the Gmintrix interaction. The tensor forces are not affected by correlations due to the fact that the correlation functions in ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1} \quad(\mathrm{~L}=\mathrm{L}=0)$ and ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ ($L=0, L$ ' $=2$) states have opposite signs and therefore their contributions cancel each other almost exactly. The spif-orbit components are also weakly influenced by correlations ($\sim 10 \%$, since $\mathrm{L}=0$ states cannot contribute to these channels. The non-locality of the G-matrix interaction has been explicitly verified. Although
the short-range correlations introduce a very small amount of non-locality, the scalar-isoscalar channel is strongly nonlocal due to the w- and o-ineson exchange potentials which have already such \bar{a} behaviour. The density dependence of the G-matrix interaction has been mapped out using the local density approximation. A fairly simple density dependence is found. Based on these analyses a simplified momentum transfer and density dependent G-matrix interaction has been constructed. For further convenience, this interaction has been parametrized in terms of Yukawa type expressions

$$
\begin{equation*}
\frac{A}{c^{2}+n^{2}} \tag{1}
\end{equation*}
$$

Which reproduce the exact values within 0.2% in the range of $0-2 \mathrm{fm}^{-1}$ of the momentum transfer. Also a simple functional form for the density dependence has been suggested based on the analysis of an analytical G-ma trix, which gives an excellent quality of the fit (witioin 1 g) in the range of the density of $0.35 \rho_{0}{ }^{66} \rho_{0}$. The results of these parametrizations are shown in Table 1. There, $S 0(S E)$ and $T O(T E)$ denote singlet-odd (even) and triplet-odd (even) channels of the G-matrix interactfon, respectively. TNO(E) denotes the tenser-odd (even) component and LSO(E) the spin-orbit-odd (even) force. in is the mass of the effective mesons exchanged and A its coupling strength. The density dependence is fitted with an expression of the form

$$
\begin{equation*}
\frac{1}{1+\alpha\left(k_{F}-k_{F}^{0}\right)+\beta\left(k_{F}-k_{F}^{0}\right)^{2}} \tag{2}
\end{equation*}
$$

where k_{F} is the Fermi momentum and $k_{F}^{g}=1.35$ fim $^{-1}$. A is the cutoff parameter of the form factor given by $\left(\frac{A^{2}-m^{2}}{A^{2}+Q^{2}}\right)$ for the tensor forces only.
We hope the momentum transfer and density dependent G matrix interaction as constructed above may be used as a main ingredient of the full particle-hole interaction to describe the low-lying excited states of nuclei.

References

1) S. Babu, G.E. Brown, Ann. Phys. 78 (1973) 1.
2) J. Speth, V. Klemt, J. Wambach, G.E. Brown, whe . Phys. A343 (1980) 382.
3) K. Makayama, S. Krewald, J. Speth, W.G. Eove, Ann. Rep. 1982, dul-Spez 202 (1982) 72.

+ Univ. of Georgia, Athens, USA

channal	$\pi \mathrm{m}_{\mathrm{I}}=4.0 \mathrm{fm}^{-1}$			$\pi{ }_{2}=2.5 \mathrm{~m}^{-1}$			${ }_{3}=0.71 \mathrm{fm}^{-1}$	
\$L	A	ε	B	A	\cdots	3	A*	A (Hev)
50	3489.8578	-	-	-1072.6901	0.40738	-	1295.3360	-
SE	1332.2011	-0.21537	-0.6)972	-1809.5155	-0.15600	-0.65536	-398.4453	-
70	2253.1275	0.35296	*	-914.8167	0.453098	-	132.8151	
TE	2005. 59.00	0.82058	0.13303	-2627.831:	0.82708	0.05749	-398. 4453	*
TNO	355.0412	*	-	79,9680	-	-	-132.8151	960
TME	35.9312	-	-	-475.3378	-	-	398.4453	960
150	181.4617	-	*	135.5124	-	-	-	-
LSE	-852.9500	-	-	265.0745	-		-	

[^10]Table 1: Fitted parameters. Couping strengins A are in hev $\mathrm{fm}^{3} ; \alpha$ in fin and β in fm^{2}.
3.17. The Effect of Nuclear Polarization on the Isotope Shift in Electronic Atons
B. Hoffmann, G. Baur, and \mathbf{u}. Speth

The isotope shift in electronic atoms is calculated in second order perturbation theory ${ }^{1)}$. We consider multipole orders $\lambda=0,1$ and 2 for $z=20-82$ nuclei. The influence of the shape of the nuclear transition density on the polarization shift is investigated and found to be small. This can be seen in Fig. 1. In this figure, the contribution of different transition densities $\rho_{t r} \propto r^{n} \quad(n=0,2,4,5)\left(r<R_{0}\right)$ to the quadrupole polarization energy is shown. To a good approximation, the polarization contribution is directly proportional to the electronic density at the nucleus. We study whether the polarization effect modifies the extraction of $\delta\left\langle r^{2}\right\rangle$ values from isotope shift measurements and find it to be smafl. It may not always be negligible, especially in the cases where very accurate optical measurements exist. We estimite the effect for the example of the Sm= isotopes, where a strong change of deformation occurs in the series of isotopes, which

Fig. I: Influence of the form of the transition density Ptr on the quadrupole polarization as a function of the intermediate electron energy.
causes changes in the quadrupole polarizability. In a recent paper by Bernabēt and Ericson ${ }^{2}$) the effect of the dipole polarizability in electronic atoms was considered in the unretarded dipole approximation.

References

1) B. Hoffmann, G. Baur, J. Speth, Z. Phys. A in press. 2) J. Bemabeu, T. E.0. Éricson, Z. Phys. A309 (1983) 213.

3,18. Fission Barrier Calculation for Rotating Nuclei J. Hemeth ${ }^{+}$, J.M. Irvine ${ }^{+\dagger}$, J. Okolowicz ${ }^{++*}$

Recent experiments concerning the fission of light rare earth nuclei" and the discovery of the "fast fission" phenomenon 2,3) made it important to reexamine the fission barrier dependence on the rotational angular momenm tum of the nuclei. We calculated the fission barrier of a rotating ${ }^{144}$ 彷 nucleus in constrained Hartree-Fock calculations, constraining the argular momentum and the quadrupole momentun values, and compared the results with the drop model calculation of Cohen et al.4). The results can be seen in Fig. $1{ }^{5}$). The fission barrier decreases with increasing angular monentum more rapidly than predicted by Ref. A, in good agreement with experimental observations ${ }^{1)}$. On the other hand, the maximum angular monentum for which the nucleus is still stable

Fig. I: The H.F. fission barrier as a function of the quadrupole constraint for $L_{X}=0,30,50$ and 60 h .
against fission is about $50-80 \%$ smaller than expected. This fact emphasizes even more the importance of the fast fission phenomenon, and makes it necessary to calculate the fission barrier for asymetric rotating nucleí as well.

References

1) G. Andersson at al., Z. Phys. A293 (1979) 241.
2) C. Gregoire et af. Nuct. Phys. A387 (1982) 37c.
3) W.J. Swiatecki, Physica Scripta 24 (1981) 113.
4) J. Nemeth, J.f. Irvine, J. Okolowicz, to be published in Phys. Lett.
5) S. Cohen, F. Plasil, H.J. Swiatecki, Ann. Phys. 82 (1974) 557.

+ Eötvos University, Budapest, Hungary
+ ${ }^{+\dagger}$ Univ. of Manchester, Manchester, England
* Nuclear Physics Institute, Cracow, Poland
3.19. High Energy Proton Induced Fission of Rare Earth Nuclei

$$
\text { J. Nēmeth }{ }^{+} \text {, J.h. lrvine }{ }^{+t}
$$

High energy (500-600 Nev) protons can induce fission of rare earth nuclei, while in the case of 200 hev gnergy protons the fission probability of the sabe nuclei is practically negligible ${ }^{1,2)}$. Since the fission barrier even for nuclei of mass number 150 is only about 50 Mey ${ }^{3)}$, this fact cannot be explained by energy considerations only, To examine the phenomenon in detail, it is useful to perform modifien time dependent llartreeFock calculations. To solve the Tohf equations one has to start from an excited wave function, the excitatton can be vibrational, rotational or thermal. However the usua TDHF equations cannot lead to fission, because there is no mechanism to change the filling order in a mean field approxination. To avold this difficulty one has to introduce either unnaturally big pairing forces ${ }^{4}$), or modified TDHF equations can be applied ${ }^{5}$) to change the occupation probability of the levels and thus simulate the two-body dissipatien. In case of ${ }^{144}$ Nb giving the nucleus 400 MeV excitation either as vibrational or as thermal energy we got no fission within $10^{-20} \mathrm{sec}$. Giving the same amount of entrgy, but a part of it as rotation, the nucleus is fissioning in less than 10^{-21} sec. The reason for this is that high $\left(L_{x} \sim 30 h\right)$ angulār momentur deformes the nucleus. Since this deformed shape is already close to the saddle point deformation, the nucleus can fission easily. Proten induced fission of light nuclei occurs in peripheral collisions with big impact parameters, and in our opinion the high energy of the protons is needed only to transfer high angular momentum to the nuclei. In fact there is experimental evidence that high angular momentum states can be exm cited with some probability in such collisions ${ }^{2}$.

References

1) G. Andersson et al., Z. Phys. A293 (1979) 241.
2) S.B. Katifman, E.P. Steinberg, Phys. Rev. C22 (1980) 167.
3) J. Memeth, J.M. Irvine, J. Okolowicz, to be published in Phys. Lett.
4) J. Negele et al., Phys. Rev. 017 (1978) 1098.
5) U. Nemeth, J. Mo Irvine, to be pubitsted in Acta Pays. Hung。: and sêel Refs. there.

+ Eotvös University, Budapest, Hungary
t+ Univ. of Manchester, Manchester, England
3.20. Effective Mass in Muclei and the Level Density Parameter
M. Prakasn ${ }^{+}$, Z.Y. M ${ }^{+\dagger}$ and J. Wambach

In generalizing the Thomas-Fermi approximation to finite temperatures, Barronco and Treiner ${ }^{1)}$ have given an expression for the level density parameter a involuing local ground state quantities like the particle density $p_{0}(\vec{r})$, the local Fermi momentum $k_{F}(\vec{r})$ and the local effective mass m*($\stackrel{(}{4}$). In terms of these funoanenta? quantities a is given by

$$
\begin{equation*}
a=\pi^{2} / 4 \sum_{i} ; 2 \rho_{0}^{i}(\vec{r}) m^{* i}(\vec{r}) /\left(\kappa^{2} k_{F}^{i}(\vec{r})\right) d \vec{r} \tag{1}
\end{equation*}
$$

The summation index distinguishes protons and neutrons. In the Targe A limit in which the $\overrightarrow{\text { r }}$-dependences disappear we get the familiar expression from remi liquid theory

$$
\begin{equation*}
a=\pi^{2} 2 \pi \pi^{*}+1 /\left(n^{2} k_{F}^{2}\right) \tag{2}
\end{equation*}
$$

Using $m^{*}=m$ and the equilibrium nuclear matter value $k_{p}=1.36 \mathrm{fm}^{-1} \overline{\bar{u}}=\mathrm{A} / 15$ much smeller than experiments in finite nuctei indicate for which on the average a \sim A/7. The deviation is solely due to the presence of the surface which acts as a static boundary as well as a dynamical variable adding extra degrees of freedon to the system.

To study the influence of these new degrees of freedom we have attempted to detemine the volume, surface and curvature coefficients of the levei density parameter a, expressed as

$$
\begin{equation*}
a=a_{v} A+a_{p} A^{2 / 3}+a_{c} a^{1 / 3} \tag{3}
\end{equation*}
$$

from empirical knowledge of the nacłear mean field \ddot{L} which in general is nonlocal and frequency dependent. In finite nuclei ft furthermore depends on the c.m. coordinate $\overrightarrow{\hat{r}}$ of two interacting particles. To arrive at the local quantities needed in (A) we expand \sum around the Fermi surface determined by the Fermi energy ε_{F} and the local Fermi momentum $k_{r}(\vec{f})$. First order is sufficient to detemine the guasiparticie properties near the fermi surface and therefore to specify the entropy. To this order the selfenergy L^{\prime} is given by

$$
\begin{align*}
\sum(\vec{r}, \vec{k}, \omega)= & \sum_{0}\left(\vec{r}, k_{F}(\vec{r}), \varepsilon_{F}\right)+\left.\left(\omega-\varepsilon_{F}\right)(\partial \bar{L} / \partial \omega)\right|_{\omega=\varepsilon_{F}} \tag{4}\\
& \dot{r}\left(k^{2}-k_{F}^{2}(\vec{r})\right)\left(\partial \bar{L} / \partial k^{2}\right)_{k^{2}=k_{F}^{2}}
\end{align*}
$$

The zeroth order term determines the local Femi momentum $\mathrm{K}_{\mathrm{F}}(\overrightarrow{\mathrm{r}})$

$$
\begin{equation*}
k_{F}^{2}(\vec{r}) / 2 m+\sum_{0}\left(\vec{r}, k_{F}(\vec{F}), \varepsilon_{F}\right)=\varepsilon_{F} \tag{5}
\end{equation*}
$$

and the effective mass is given by the derivatives with respect to \vec{k} and was

$$
\begin{align*}
n^{*} / m(\vec{r})= & {\left[1+2 m \frac{\partial \ddot{\sum}\left(\vec{r}, \vec{k}, \varepsilon_{F}\right)}{\partial k^{2}}\right]_{k^{2}=k_{F}^{2}}^{-1} } \\
& \cdot\left[1-\frac{\partial \sum\left(\vec{r}, k_{F}(\vec{r}), \omega\right)}{\partial \omega}\right]_{\omega=\varepsilon_{F}} \tag{6}
\end{align*}
$$

Rather than deriving the mean field from an underlying two-body interaction we choose to parametrize Σ_{0} by a Hoods-Saxon potential. The first derivative of $[$ with respect to k^{2} is proportional to the non-locality length α of the optical potential which has been determined empirically. The u-derivative of \sum is less known wut can be obteined in principle from the w-dependence of the absorptive part of the optical potential or equtvalently from the spacing of single particle leveis near ε_{F}. To finally obtain the level density parameter the one-body density ρ_{0} is determined from the solutions of an equivalent Schrodinger equation which includes the selfenergy up to first order.

$$
\begin{align*}
& \left.-\vec{b}^{2} / 2 \mathrm{~m}^{*}(\vec{r}) \vec{\eta} \div U(\vec{r})\right) \phi_{v}(\vec{r})=\varepsilon_{v} \phi_{v}(\vec{r}) \tag{7a}\\
& U(\vec{r}) \sim \mathrm{m} / \pi^{*}(\vec{r}) \sum_{0}\left(\vec{r}, k_{F}(\vec{r}), \varepsilon_{F}\right) \tag{7b}
\end{align*}
$$

In terms of these solutions one has

$$
\begin{align*}
& \rho_{0}(\overrightarrow{\vec{r}})=\sum_{v} n_{v} \dot{\vec{b}}_{v}^{\dot{\rightharpoonup}}(\overrightarrow{\vec{r}}) \rho_{v}(\vec{r}) \tag{8a}\\
& n_{v}=\left\{\begin{array}{cc}
1 & \varepsilon_{v}\left\langle\varepsilon_{F}\right. \\
0 & \left.\varepsilon_{v}\right\rangle \varepsilon_{F}
\end{array}\right. \tag{8b}
\end{align*}
$$

Fig. 1: A-dependence of the level denstty parameter. The crosses indicate results using expression (1) in ${ }^{40} \mathrm{Ca}$, 90 Zr and 208 pb . The straight line utilizes expression (9).

We have calculated the level density parameter for the three closed shell nuclei ${ }^{40} \mathrm{Ca},{ }^{90} \mathrm{Zr}$ and ${ }^{208} \mathrm{po}$ (indicated by the crosses in Fig. 1). To obtain the general A-dependence (3) we extracted from (1) the surface-, volume- and curvature coefficients deriving a general expression for a in terms of $\varepsilon_{\mathrm{F}}, p_{\mathrm{o}}(0)$, a and a parameter β characterizing the ω-derivative of 2 . The result can be expanded as

$$
\begin{align*}
a= & \pi^{2} /\left(4 \varepsilon_{F}\right) A\left[(1-\alpha)+3\left(\alpha_{0} / r_{0}\right) \nu_{0} A^{-1 / 3}\right. \tag{9}\\
& \left.+8\left(\alpha_{0} / r_{0}\right)^{2}\left\{\nu_{1}-\left(1-\alpha_{i}\right) \pi^{2} / 6\right\} A^{-2 / 3}+\ldots\right]
\end{align*}
$$

Here α_{0} denotes the diffuseness of the Woods-Saxon potential and $r_{0}=1.2$ fm. The coefficients v_{0} and v_{1} emerge from the analytical integration of (I) and are linear combinations of Fermi integrals. The A-dependence depicted as the solid line in Fig. 1 is close to experimental findings indicating that both frequency dependence in the man field and curvature tems in a, usua?ly neglected, are important.

References

1) M. Barranco, J. Treiner, Nucl. Phys. A351 (1981) 261.

+ SUNY at Stony Brook, Stony Brook, NY, USA
${ }^{+1}$ Institute of atomic Energy, Beijing, China
3.21. Fragmentation of Nuclear Strength Distributions by Two-Particle Two-Hole Excitations
J. Hambach and B. Schwesinger ${ }^{\text {t }}$

The microscopic understanding of damping of nuclear collective motion has attracted theoretical interest in the past few years. For small amplitude vibrations two damping processes can be identified:
(1) pure mean field damping which gives rise to a spreading of lplh-transition strength due to shell structure ("fragnentation width") and a broadening above the continuum threshoid dee to prompt particle emission ("escape wioth") and is not cescribed by mean field theories.
(2) damping from residual two-body collisions, which couple the lplin-doorway states to nuclear compound states ("spreading wioth").

Since bath are of comparable importance especially as the frequency of the oscillation gets large, a proper many body theory of wibrational motion has to go beyond the mean field, i, e. the RPA-treatment. Based on linear response theory we have proposed an extension ${ }^{1)}$ which treats the 1 plh- and $2 p 2 h-s u b s p a c e s$ explicitly and higher compound states on the average. Within the restricted model space all diagrams to order V^{2} are iterated, where y denotes the residual interaction $\left(H=H_{0}+V\right)$.
Implying that a one-body external field

$$
\begin{equation*}
q(t)=1 / 2\left(C e^{-i \omega t}+Q^{+} e^{i \omega t}\right) \tag{1}
\end{equation*}
$$

couples only weakiy to the $2 p 2 h-s p a c e$, the response to the perturbation Q, which in general is given by the ground state expectation value
$\left.s_{Q}(\omega)=-\lim _{n \rightarrow 0} \frac{I G}{\pi}\left|\langle | Q^{+}(\omega-H+i n)^{-1} Q\right|\right\rangle \left.-\frac{1\langle Q \mid\rangle \mid 2}{\omega+i n} \right\rvert\,(2)$
can be approximated as

$$
\begin{align*}
S_{Q}(\omega)= & -1 \operatorname{li} \frac{I m}{\pi}\left\langleQ Q ^ { \dagger } P \left[\omega-H_{0}-V+E_{0}+i n\right.\right. \tag{3}\\
& \left.+V(1-P)\left(\omega-H_{0}-V+E_{0}+i n\right)^{-1}(1-P) V\right)^{-1} P Q| \rangle
\end{align*}
$$

Here P denotes a projection operator onto the lplh-space

$$
\begin{equation*}
p=\sum_{i p i h}|1 p \ln \rangle\langle\operatorname{pin}| \tag{4}
\end{equation*}
$$

The operator 1-P projects of course onto the complementary space containing nent-states. Since V is a two-body interaction it couples the p-space only to $2 p 2 n-s t a t e s$ which therefore act as the entrance channels for the compound decay. They are treated explicitly and all higher configurations are included on the average by making mintite in the $2 p 2 \mathrm{~h}$-propagator. Furthemore V is negleated in this propagator.

We have applied the above model to 90 Zr and ${ }^{208} \mathrm{Po}$ by prescribing the mean field H_{0} phenomenologically

$$
\begin{equation*}
H_{0}=-n^{2} / 2 m{ }^{*}{\underset{z}{ }}^{2}+U(r) \tag{5}
\end{equation*}
$$

Here U is a toods-Saxon potential and the effective mass m^{\star} an adjustable parameter. The residual interaction was approximated by zero-range density-dependent antisymmetrized tems

$V_{\sigma \tau}(\rho)=v_{\sigma \tau}^{i n} \rho(R)+v_{\sigma \tau}^{e x}(i-\rho(R))$
$\rho(R)=\left(1+\exp \left(R-R_{0}\right) / a\right)^{-1} ;\left(R=\left(r^{+}+R^{1}\right) / 2\right)$

Fig. 1: Quadrupole response in 90 zr (left part) and 200p (right part). The dashed line give the lplhresponse function alone while the full lines include coupling to $2 \mathrm{p} 2 \mathrm{~h}-\mathrm{states}$.
and the parameters adjusted to a fet known resonances. As a typical example isoscalar and isovector transition strength distributions are displayed in Fig. 1. Here the dashed lines indicate a pure mean fiald (i.e. lplhwrestilt) while the full line incorporates twonody collisions resulting in $2 \rho 2 h-c o u p l i n g$. In general we find that isovector resonances are highly fragmented. Isow scalar modes suffer much less dispersion since large cancellations between the attenuation of the single particle motion (selfenergy insertions) and ph-inked processes (bubble diagrams) occur.

References

1) B. Schwesinger, J. dambach, phys. Lett. in press; B. Schwesinger, J. Wambach, to be published in Nucl. Phys.

+ Suny at Stony Brook, Stony Brook, ny, USA

4. MEOIUM ENERGY PHYSICS
4.1. A-I sobar Effects on M2-Strength in ${ }^{208} \mathrm{pb}$
D. Cha and J. Speth

We have studied the M2-strength distribution in ${ }^{208} \mathrm{~Pb}$ within the framework of the RPA including Δ-hole states. we want to clarify the influence of the Δ-resonances on the M2-strength. This is of special interest because the M2-strength in 208_{pb} has a considerable contribution from the nuclear convection current in contrast to the M1-strength where the nuclear spin current dominates ${ }^{1}$. For the residual ph-interaction, we take a realistic one which includes the one-pion and one-rho meson exchange potential in the or-channel explicitly with a two-body correlation function to account for the effects of the other mesons. In addition, we take phenomenological spin-dependent and spin-isospin-dependent zero-range terms, δg_{0} and δg_{0}^{\prime} suggested by Suzuki et a7. ${ }^{2)}$.
The M2-strength distribution between $E_{x}=6-8 \mathrm{MeV}$ in 208 pb has been measured by Frey et al. ${ }^{3}$). Eight prominent states were found sharing the total strength of $\Sigma B(m 2) t=8500 \pm 750 \mu_{1} \mathrm{fm}^{2}$. Our theory gives good agreement with the experiment as can be seen from Fig. I. The

Fig. 1: M2-states between $E_{x}=6.2 \sim 8.2 \mathrm{MeV}$ in $20 \mathrm{P}_{\mathrm{pb}}$. Theoretical states are obtained by the RPA including the Δ-hole states and experimental states are quoted from Ref. 3.
predtcted totai $\begin{aligned} \\ \text { m-strength with the measured ex- }\end{aligned}$ citation energy range is $\Sigma 8(\mathrm{~m} 2)+=10808 \mathrm{~N}^{\mathrm{fm}}{ }^{2}$ when we include the Δ-hole states and $\Sigma 8(m 2)+=11273 \mu_{N} \mathrm{fm}^{2}$ when they are mot included. Thencofore, we obtain in this energy range a quenching due to Δ-hole admixture of only 4%. If we use the bare g_{ℓ} factors, the theoretical strength including the Δ-hole effects is reduced to $\Sigma \mathrm{B}(\mathrm{m} 2) \div=8975 \mu_{\mathrm{N}} \mathrm{fm}^{2}$.)
To study this in more detail, we constructed histograms of the M2-strength by $\Delta \Sigma_{X}=1$ Mev bins in Fig. 2. The full columns illustrate the strength fram the nuclear spin current only. The strong concentration of the unperturbed strength (Fig. 2a) which is dominated by the nuclear convection current in the $E_{X}=7 \sim 8$ mel bin is due to the proton $i_{13 / 2^{h} 11 / 2 \text { single particle excitation, }}^{\text {dition }}$, which has more than 40% of the total umperturbed

Fig. 2: Histograms of the M2-strength in 208 pb by $\overline{\Delta E_{X}}=1$ MeV bins.
strength. This state may be interpreted as the "twist mode" of Ref. 4. The strong repulstue interaction in the spin-isospin channei introduces two major effects: one is a reduction of about 20% of the total strength which cones from ground state correiations and the other is a theft of the strength to higher energies. However, one can see that only the spin strength is removed from the lower excitation energy (below 8 MeV) into the higher energy region, while almost all the strength remained at low energies is from the nuclear convection current. That is because the ph-interaction is dominated by the repulsive spin-dependent component. We can also observe from Figs. $2 b-2 c$ that the strength below 9 MeV, which is mostiy from the convection current, has been hardly affected by the Δ-hole admixtures (only 5 \% quenching) while the spin dominated strength above 9 MeV has been significantly quenched (31 \%). From our results we conclude that the renormalization of the nuclear spin current is not responsible for the quenching of the observed. M 2 -strength below 9 MeV in ${ }^{208} \mathrm{~Pb}^{5}$).

References

1) B. Castel, I. Hamamoto, Phys. Lett. 658 (1976) 27.
2) T. Suzuki et aí., Phys. Lett. 107 B (1981) 9.
3) R. Frey et al., Phys. Lett. $74 B$ (1978) 45.
4) G. Holzwarth, G. Eckart, Z. Phys. A283 (1977) 219.
5) W. Knüpfer et al.; Phys. Lett. 95B (1980) 349.

4.2. Medium Polarization Effects: A Crucial Ingredient in the $\Delta(1232)$-Nucleon Interaction

K. Nakayama, S. Krewãld, J. Speth, G.E. Brown ${ }^{+}$

The $\Delta(1232)$ isobar has been suggested to play an important role in the reduction of spin-isospin strength in nuclei, especially after the experimental discovery of the Gamow-Teller giant resonance. The magnitude of the recuction of magnetic strength due to isobar-hole adnixtures in the nuclear wave function depends strongly on the isobar-hole coupling strength. Here we present a microscopic derivation of the isobar-hole interaction for vanishing momentum trensfer.
Due to the fact that nucieons carry spin and isospin $1 / 2$, while the isobar has both spin and isospin $3 / 2$, the two interacting nucleons mast have total fospin $T=1$ and, in the spin-isospin channel, total spin $S=1$ in order to end up with isobar-nucleon in the final state. This implies that all even relative angular momenta of the interacting nucleons are suppressed in the spin-isospin channel, while in the isovector tensor channel all even or ode relative momenta are suppressed according to spin S being odd or even, respectively. This fact has an immediate consequence that the direct term of the iso-bar-hole interaction is largely cancelled by the ex. change term if one approximates the full particle-hole interaction by a G-matrix. Therefore, Arima et al. ${ }^{1)}$ concluded that the isobar probably plays only a minor hole in explaining the reduction of magnetic strength in nuclei.

Now we would like to point out that the G-matrix is oniy a part of the full quasi-particle quasi-hole interaction. It is well known that employing the G-matrix as a residual particle-hole interaction leads to an instability in nuclear matter. Therefore one has to go beyond a simple Brueckner approach. It has been shown by Sjöberg ${ }^{2}$) that the inclusion of screening effects in the so-called "crossed channel" reduces strongly the attraction of the Gumatrix, e.g. the contributions are strongly repulsive. Therefore one expects also an additional repulsion in the spin-isospin channel. A general feature in many-body systems, and one which we shall show here, is that when an interaction is strongly repulsive (here that in the $\underset{\sim}{q} \cdot{\underset{\sim}{*}}^{*} \tau \cdot \sim^{\prime}$ channel), then the exchange term in the particle-hole interaction is strongly screened, whereas the direct tem is unaffected.
The full ph-interaction can be written as ${ }^{3}$):

$$
\begin{equation*}
F^{p h}=K^{p h}+F_{\text {induced }}\left(F^{p h}\right) \tag{1}
\end{equation*}
$$

The so-called direct interaction $K^{p h}$ may be approximated by an antisymmetrized G-matrix. The induced interaction Finduced ${ }^{\left(P^{p}\right)}$) sumis all ph-bubbles in the crossed channel. and thus makes the equation nonlinear.
The major affect of eq. (1) can be studied in the Landau limit, where the ph-interaction has the form

$$
\begin{equation*}
F^{p h}=C_{0}\left(f_{0}+4_{0}^{1} \tau^{*} \tau^{\prime}+g_{0} \sigma^{\left.+\sigma^{\prime}+g_{0} \alpha^{*} \sigma^{\prime} \tau \cdot I^{\prime}\right)}\right. \tag{2}
\end{equation*}
$$

with the constant $c_{0}=\frac{\pi^{2} \pi^{2}}{n k_{F}}=302 \mathrm{MeV} \mathrm{fm}^{3}$. In the isobar sector one has

$$
\begin{equation*}
\left(F^{\mathrm{ph}}\right)_{\Delta N}=C_{0}\left(g_{0}^{s}\right)_{\Delta N^{\prime}} 5 \cdot g^{\prime} T \cdot I^{\prime} \tag{3}
\end{equation*}
$$

	f_{0}	f_{0}^{\prime}	g_{0}	g_{0}^{\prime}	$\left(g_{0}^{1}\right)_{\Delta N}$
G	-1.14	0.30	0.20	0.63	0.91
$\mathrm{~F}^{\mathrm{ph}}(N+\Delta)$	-0.26	0.04	-0.06	0.75	1.45

 sector based on HEA potential. The experimental value $(f * / f)=2$ was used. The row G denotes the G-matrix results, while $\mathrm{Fph}^{(N+\Delta)}$ includes a selfconsistent coupling between isobars and nucleans.
The results of the generalized version ${ }^{4}$) of eq. (1), which couples isobars and nucleons, are displayed in Table 1 . The major effect of the induced interaction in the nucleon sector is to stabilize the parameter f_{0}, since all induced contributions (renormalizations coming from the other channels due to the exchange term) add coherently to compensate the attractive G-matrix contribution. In all other chamels, however, the incuced pieces cancel to a large extent. It introduces e.g. in the spin-isospin strength g_{0}^{\prime} a correction of about 20%. In the isobar sector, however, the situation is dfferent for two reasons:
i) The isobar has to be excited via the spin-isospin channel. Therefore the cancellation of the induced pieces, which occur in the nucieon sector, does no longer exist.
ii) Since the induced interaction contributes only to the exchange term, the factor $1 / 4$ (due to the exchange term), which reduces the induced pieces in the nucleon sector, does not occur, since $\underset{\sim}{S} \cdot \sigma^{\prime} P_{\sigma}=S_{\sim} \cdot \sigma$ '. Therefore the induced interaction causes a dramatic enhancement $(\sim 60 \%)$ of the isobar-hole coupling strength $\left(g_{0}^{\prime}\right)$, wh screening out the exchange term in the interaction.

References:

1) A. Arima et a!., Phys. 1ett. 1223 (1983) 126.
2) 0. Sjobbert, Ann. Phys. 78 (1973) 39.
1) S. Babu, G.E. Brown, Ann. Phys. 78 (1973) l.
2) K. Nakayama, S. Krewaid, J. Speth, to be published.
${ }^{+}$SUNY at Stony Brook, Stony Brook, NY, USA
4.3. A Deformable Chtral Bag
J. Wambach and Z.Y. Ma ${ }^{+}$

In connection with the difficulties of the nonrelativistic quark model to obtain the nucleon axial vector coupling constant g_{A} Glashow has speculated ${ }^{1}$, upon intrinstc defomation of the nucleon ground state. Subsequently, it has been noted ${ }^{2}$) that the Chiral Bag Model (CBM) of hadrons provides a mechanisn for such deformetions. The pseudo-scalar coupling between quarks and pions at the bag boundary adds a pressure term to the MIT bag model which is inhonogeneous across the surface. Motivated by these ideas we have developed a method to systematically stuay the question of hadran deformations in the CBM-framework.

The dynamics for arbitrary bag shapes is specified by the following Lagrange density (gluon fielis are neglected)

$$
\begin{align*}
& \mathcal{Z}^{\prime}(x)=\mathscr{f}_{\mathrm{q}}(x)+\mathscr{f}_{\pi}(x)+\mathscr{f}_{\mathrm{I}}(x) \tag{1a}\\
& \mathcal{Z}_{q}(x)=\left[1 / 2 \psi \delta *-\beta \theta(R-r)=1 / 2 \psi n^{\mu_{n}} \quad \delta(r-R)\right. \tag{1b}\\
& Z_{\pi}(x)=1 / 2(\partial \mu i)^{2} \theta(r-R) \tag{1c}
\end{align*}
$$

where \mathcal{Z}_{C} and \mathcal{X}_{π} correspond to the free field quark and pion Lagrangians and Z_{I} to the coupling term. The pion field has been linearized. Requiring the action

$$
\begin{equation*}
S=\int d^{4} x \dot{Z}(x) \tag{2}
\end{equation*}
$$

to be stationary ($\delta S=0$) with respect to arbitrary variations of the fields and the boundary leads to the equations of motion

$$
\begin{array}{ll}
\partial y=0 & r<\beta(\eta, \psi) \\
a^{2} \frac{\pi}{\theta}=0 & r>R(\vartheta, \psi) \tag{30}
\end{array}
$$

and to the boundary conditions

Here time independence of the bag shapes has been intplied. Note that the surface normal is angular dependent. To arrive at dynamical deformations we use the propagator methods of Chin ${ }^{3}$, which starts with the free Field solutions for which quarks and pions decouple (i.e. $f_{r}+\infty$). The free fields obey the bundary conditions

$$
\begin{align*}
& n \chi \psi=\psi \tag{4a}\\
& g \nabla \pi=0 \tag{4b}
\end{align*}
$$

The solutions to (4a) and (4b) are used in a perturbative expansion of the full propagators. We are interested in the minima of the energy surface with respect to the deformation parameters and therefore have to compute corrections to the unperturbed ground state energy E_{0} which always has a spherical minimum. To second order in \mathcal{L}_{1} one has
$\Delta E_{0}^{(2)}=1 /\left(8 f_{\pi}^{2}\right) \int_{-\infty}^{\infty} d t \quad d r_{1} d \mathcal{C}_{2} \Delta\left(\mathcal{C}_{1} s \tilde{\sim}_{2}, t\right)$

which is defomation dependent due to the γ_{5}-coupling. 4 denotes the pion propagator which can be expanded in terms of the stationary solutions of (4b) as

The solutions of the Dirac- and Kieith-Gordon-equations (3a) and (3b) subject to the boundary conditions (4a) and (4b) are very difficult to obtain in general. Fof ellipsoidal cavities (characterized by two shape parameters R and $D)$, however, they can be expanded in the analytically known MIT quark field solutions and the hard sphere wave functions for the pion field with the expansion coefficients easily obtained from matrix diagonalization. The deformation dependence of the lowest quark eigenenergies end mixing coefticients are displayed in Fig. l. With the afd of the free soltitions we can project onto the two component pauli space to obtain

$$
\begin{equation*}
\left.\Delta E_{0}^{(2)}(R, D)=\langle\square\rangle\left|\sum_{i j} V_{i j}(\omega)\right| \square\right\rangle \tag{7}
\end{equation*}
$$

herelmis denotes symmetric combinations of Pauli spinors in ordinary and isospin space and $V_{i=1}$ is a Frequency dependent two body interaction

$$
\begin{align*}
& V_{i j}(\omega)=1 /\left(2 f_{\pi}^{2} R^{3}\right) \quad \sum_{L, L^{4}, M} \tilde{S}_{L, L}, M^{(\theta, \omega)} \tag{8}
\end{align*}
$$

which is also deformation dependent. The calculated deformation dependence of $\Delta E_{\delta}^{(2)}$ for the nucleon (depicted in Fig. 2) indicates that indeed the ground state is intrinsically deformed.

References

1) S.L. Glashow, Physike 96A (1979) 27.
2) U. Vento, G. Baym, A.D. Jackson, Phys. Lett. 102B (1981) $97+$
3) S.A. Chin, Necl. Phys. A382 (1982) 355.

+ Institute of Atomic Energy, Beifing, China

Fig. 1: Positive energy quark levels for $\mu=1 / 2$ and $\pi= \pm 1$ (left part) and mixing amplitudes of spherical states in the lowest deformed state as a function of the deformation parameter D (the bar denotes negative energy spherical states).

Fig. 2: ΔE_{0} for the nucleon (in units $1 /\left(f^{2} R^{3}\right)$ as a function of D after configuration mixing. The dashed curve represents the result with all qwarks in the lowest orbit.
4.4. Quantum Variational Approach to the Chiral Bag J.N. Urbano ${ }^{+}$, K. Goeke

A quantum variational approach ${ }^{1)}$ to the chiral bag is formulated, in which the pion field is described by a quantum mechanical coherent state

$$
|\pi(\epsilon)\rangle=\frac{1}{N} \exp \left(\sum_{j} \int d^{3} k \xi_{j}(k) a_{j}^{+}(k)\right)|0\rangle
$$

The wave function of the bag of the nucleon is obtained by eliminating the quark degrees of freedom in favour of the colourless baryonic states assumed as a mixture of a proton and delta with z-components equal $1 / 2$

$$
\left.|B N(\alpha)\rangle=\cos a\left|N_{1 / 2}^{+}+\sin \alpha\right| \Delta^{+} 1 / 2\right\rangle
$$

The total Hamiltonian of the system is given by

$$
H=H_{M I T}+H_{\pi}+H_{\text {coupl }}
$$

where the $H_{\text {coupl }}$ is taken fron the linearized version of the cloudy bag model ${ }^{2)}$. The stability of the nucleon is achieved by taking into account the finite extension of the $q \bar{q}$-component of the pions in the cloud. This leacs to an effective coupling constant depending on the radius $\eta_{\pi}=0.17$ fm of the pion and on the radius R of the bag:

$$
g_{\pi N N} \rightarrow g_{e f f}(R)=g_{\pi N N}\left[1+1.2\left(\frac{n}{R}\right)^{2} \underline{l}^{-3 / 2}\right.
$$

The variation of the total energy

$$
E(\xi, \alpha)=\langle\operatorname{BN}(\alpha)|\langle\pi(\xi)| H|\pi(\xi)\rangle|B N(\alpha)\rangle
$$

with respect to the pion field amplitude yields for the variational solution

$$
\bar{\xi}_{j}(k)=j \frac{\rho(k)}{\gamma 2(2 \pi \omega(k))^{3}} g_{e f f}(R) G(\alpha) k_{z} \delta_{j z}
$$

where $p(k)$ is the pion source and $g(\alpha)$ is given by

$$
G^{2}(\alpha)=\cos ^{2} \alpha+\frac{8}{5} \sqrt{2} \sin \alpha \cos \alpha+\frac{1}{5} \sin ^{2} \alpha
$$

The states $|B N(\alpha), \pi\{\xi\rangle\rangle$ do not possess the proper spin and isospin quantum numbers. However, they can be projected on them by Peierls-Yoccoz techmiques involving rotations around the angles β and $\widetilde{\beta}$ in spin and isospin space around the y-axis. This yields for the pion field

$$
\pi\left(\overline{\xi_{0}}, \theta \hat{\beta}\right)=\exp \left[\hat{j}_{j} \rho d^{3} k \vec{\varepsilon}_{j}(\underline{k}, \beta \hat{B}) a_{j}^{+}(k)| | 0\right\rangle
$$

with

$$
\bar{\xi}_{j}(\underline{k}, \hat{B})=\sum_{j}\left(R_{2}(\tilde{\beta})\right)_{j j}, \bar{\xi}_{j},\left(R_{y}^{-1}(\beta) \underline{k}\right)
$$

The actual calculations show that the average number of pions and the selfenergy, the bag acquires due to its coupling to the pion cloud, are strongly dependent on
the mixing angle a and, of course, on the bag radius R. The projection itself increases the number of pions in the cloud up to a factor of four in case of the nucleon quantum numbers. Thus both, a proper intrinsic wave function and quantum effects due to projection, are necessary ingredients for a stable nucleon solution ${ }^{3}$) of small radiif 0.5 fa since there the pion field is strongest.

Ref̂erences

1) J.iN. Urbano, K, Goeke, to be published.
2) S. Théberge, A.W. Thomas, G.A. filler, Phys. Rev. 022 (1980) 2838.
3) G.E. Brown, M. Rho, Phys. Lett. 828 (1979) 177.

+ Univ. de Cofmbra, Portugal
4.5. Effect of the Quantum Fluctuations of the Pion Field on the Chiral Bag Energy
J.N. Girbano ${ }^{+}$anc K. Goeke

As is well known, notwithstanding their remarkable success in predicting hadron properties, present day approaches to chiral bag models are still confronted with some difficulties. Indeed, elther they use semiclassical methods to deal with the pion field or, if properly cuantized, they are based on perturbative expansions, the validity of which relies on the assumption that the bag radius is fairly large ($R \geqslant 0.8$ fm). In any case, ft seems that some funcamental ingredient is missing from the very foundation of the models; since the bag of quarks collapses under the effect of the pion pressure.

Recently, a proposal was made to stabilize the Chiral Bag by taking into account the quark substructure of the pions themselves ${ }^{1)}$. As a consequence, the upper limit to the MIf-bag-model parameter B could be raised, and minima for the bag energy could be found for bag radii $\mathrm{R}<0.5$ fm. Unfortunately, this interesting work is not free the above indicated difficulties, a fact that is particularly annoying in a context when one is dealing with very small radii. In this contribution we cover the same ground as the authors of Ref. 1 , but we use a fully quantized variational approach.
Our starting point is a field theoreticai Hamiltonian describing: quarks confined in an MIT-bag, free pions, and an interaction between quarks and pions. In this investigation we have considered, for the sake of simplicity, the linearized version of the Clowdy Bag Model Hamiltonian ${ }^{2}$). The second ingredient of our approach is a trial wave function consisting of a linear combination of properly chosen three-quark MIT-bag colourless configurations, multiplied by a coherent state of pions. For each set of values of the bag radius and of the linear combination coefficients, the trial wave function is separately projected onto states with definite angular momentum and isospin, using the Peierls-Yoccoz technique ${ }^{3)}$. The total energy is then evaluated with the
projected states, and is finally minimized with respect to the pion field amplitudes ${ }^{3}$) and to the remaining parameters, bag radius included. In this work we have performed the variation with respect to the pion amplitudes before the projection was carried out.

Since we are interested in the lowest baryon state, only nucleon- and delta-bag configurations were considered. In this framevork, we find that the best advantage is taken of the interaction's spin-isospin structure with spectal linear conbinations of the nucleon- and deltabag configurations ${ }^{4}$. With these, one has to perform three-dimensional projections in both spin and isospin states, but in this work we have simpliffed the calculations considerting only bare bag configurations with spin up and charge +1 . This provides the trial wave function with axial symmetry in both spaces.

The figure shows the effect of projection on the bag energy for the following set of bag model parameters: $B^{1 / 4}=148 \mathrm{MeV}, Z=0.244$. The bare $\pi N N-$, $\pi N \Delta-$ and $7 \Delta 4-$ vertex coupling constants were related using the usuat quark model predictions = The mNK-vertex coupling constant was then properly renomalized by ensuring that one gets the experimental value at the minimum energy. we may conclude that it is quite necessary to consider the quantum fluctuation of the pion field when dealing with small bag radii; and that the possibility of having a small bag solution is favoured by the projection.

References

1) J. de Kam, H. J. Pirner, Nucl. Pnys. A389 (1982) 640. 2) S. Thëberge, G.A. Miller, A. lf. Thomas, Can. U. Phys, 60 (1982) 59.
2) J. da Pruvidencia, 3. Urbano, phys. Rev. C18 (1978) 4208.
3) See, e.g., sect. 4-2s, Vol. 2, A. Bohr, B.R. Motteison, Nuclear Structure (Benjamin, New York), We are thankful to Prof. G.E. Brown to have called our attention to this point.
\div Univ. de Coimbra, Coimbra, Portugel
4.6. On the Hedgenoog solution

J. N. Urbano ${ }^{+}$, K. Goeke

In recent years there has beef frequently discussed a special ansatz for the intrinsic bare nucleon configuration coupled to a pion fiald, the so-called "hedgehoog" solption ${ }^{1)}$. This is given, in an obvious notation, by

$$
\begin{equation*}
\left.|B N\rangle=\frac{1}{\sqrt{2}}\left(|P+\rangle-\frac{b}{\mid n t}\right\rangle\right) \tag{1}
\end{equation*}
$$

Actually such an intrinsic nucleon state is considered to be compatible with a pion field, which in cartesian coordinates can be written as

$$
\begin{equation*}
\hat{\phi}(\underline{r})=\hat{F} G(r) \tag{2}
\end{equation*}
$$

i.e. which has a very special space-isospace structure facilitating very much the solution of the field equations.
In a recently formulated quanturi variational model ${ }^{2}$) of the chiral bag this concept can be checked in a variational way: We assume for the intrinsic solution of the bag a structure of

$$
\begin{equation*}
\left.|B N\rangle=\frac{1}{N} \sum_{s t}\left|a_{s t}\right| \frac{1}{2} s\right\rangle\left|\frac{1}{2} t\right\rangle \tag{3}
\end{equation*}
$$

anc the pion field is described by a conerent state

$$
\begin{equation*}
|\pi(\underline{g})\rangle=\frac{1}{\mathbb{R}^{T}} \exp \left\{\sum_{s=1}^{5} ; d^{3} k \xi_{j}(\underline{k}) a_{j}^{+}(\underline{k})\right\}|0\rangle \tag{4}
\end{equation*}
$$

the total Hamilonian of the system is assumed to be the one of the linearized clowdy bag model of Theberge et al. ${ }^{3 j}$ with a coupling part of the form
$H_{\text {Coup }}=; \int d^{3} k f(\underline{k}) \sum_{j}\left\{\hat{X}_{j}(\underline{k}) a_{j}(\underline{k})-\hat{X}_{k}^{+}(k) a_{j}^{+}(\underline{k})\right\}$
with

$$
\begin{equation*}
\hat{X}_{j}(k)=g_{r} N N{ }_{s t}(\underline{\sigma} \cdot \underline{k})_{s s} \cdot\left(\tau_{j}\right)_{t t} \cdot \hat{v}_{s t}^{+} \hat{v}_{s} t^{\prime} \tag{6}
\end{equation*}
$$

where $\hat{\hat{V}}_{\text {st }}^{t}$ creates a nucleon in spin state $11 / 25$) and isospin state $|1 / 2 t\rangle$. The variation of the total energy of the system with respect to $\xi_{j}(k)$ and to ast yielos the following qualitative result: There is a continuous set of degenerate solutions which minimize the energy. The hedgehoog (1) is one of then. The selfenergy of these minimal solutions is 3 times larger than for a pure nucleon configuration (e.g. with $s=1 / 2$ and $t=1 / 2$), a result which corresponds to the findings of Bohr and Mottel$s^{4}{ }^{4}$. The field corresponding to the hedgehoog solution can be evaluated by
$\dot{\varphi}_{j}(r)=\left\langle\pi\left(\epsilon_{,}, \alpha\right) / \sum_{j} \int d^{3} k w(k) a_{j}^{\dagger}(k) a_{j}(\underline{k}) / \pi(\xi, \alpha)\right\rangle$
and it has indeed the structure given by eq. (2). The other solutions, being degenerate with the hedgehoog, show fields whose space-isospace structure is more complicated. They are presently under investigation.

References

1) V. Vento, M. Rho, E.M. Nyman, J.H. Jun, G. E. Brown, Nucl. Phys. A345 (1980) 413.
2) J.N. Urbano, K. Goeke, to be published.
3) S. Thëberge, A. W. Thomas, G.A. Miller, Phys. Rev. 022 (1980) 2838.
4) A. Bonr, B. Hottelson, Voi. Il, p. 20f.

+ Univ. de Coimbra, Portugal
4.7. Equilibrium betmeen Anisotropic Normal and Pion Condensed Nuclear Matter
I. Lovas ${ }^{+}$, J. Nëmeth ${ }^{+\dagger}$, K. Sailer ${ }^{+++}$

We investigated the properties of the pion condensed phase of nuclear matter at finite temperatures in the framework of a relativistic fiald theory. The solution of the field equations and the expectation value of the energy-momentum tensor were calculated in the mean field approximation. It was observed that the selfconsistent set of equations for the amplitudes of the mesonic fields obtained directly from the field equations are identical with the conditions of thermodynamical equilibrium. The pressure of the pion condensed phase was found to be isotropic in thermodynamical equilibrium. In Fig. 1 the binding energy of the nucleons e(p-m) Mel in pion condensed nuclear matter is given as function of the relative density p / ρ_{0} and temperature. The density of nuclear matter in its ground state is $\rho_{0}=0.145$ $f m^{3}$). The values of the wave number are: $k=2.0(a)$,

Fig. 1: The binding energy of the nucleons $\mathrm{E}(\rho-\mathrm{m})$ MeV as function of the relative density.
$k=2.5(b), k=3.0(c)$. The binding energy of the nucleons in normal isotropic nuclear matter is also shown by dashed lines. The equilibrium between anisotropic normal and pion condensed nuclear matter is indicated by asterisks.

We studied the possibility of phase equilibrium between pion condensed and antsotropic nomal nuclear matter. The nuclear mattar produced in heavy ion collision is anisotropic and it is far away from thermodynamical equilibrium. During the collision process the anisotropy is decreasing and the system is approaching the thermo= dynamical equifibrium, it was shomin that nun-equili brated pion condensed nuclear matter may have the same anisotropy as the normal one and they may be in phase equilibrium during the whole collision process. This circumstance allows us to draw the following conclusion: if there is a chance at all for the phase transition from normal to pion condensed phase then the anisotropy produced inevitabely in heavy ion collision does not prevent this transition.

+ Central Research Institute for Physics, Budapest,
+ Hungary
t+ Inst. for Theor, Physics, Eatvös University, Budapest, Hungary
tht Inst. for Exp. Physics, KLTE Debrecen, Hungary

5. NuCLEAR REACTIONS

5.1. Theoretical Analysis of the Proton Decay of Electroexcited Carbon

G. Co', S. Krewald

The reaction ${ }^{12} C\left(e, e^{\prime} p\right)^{11} B$ was investigated in the giant resonance region within a theoretical model including final state interactions and all four interference terms between the charge and current operators. For detaits see Ref. 1.

All the positive and negative matipole excitations up to 4^{+}and 4^{-}were inciuded. We checked that in the giant resonance region mittipoles higher than 4 were giying a negligible contribution.

Fig. 1: The experimental double differential cross sections for the reaction ${ }^{12} \mathrm{C}\left(e, e^{\prime} p\right)^{11_{B}}$ as measured by Calarco et al. 2) are shown as a function of the angle ϑ_{p} between the monentum \vec{p} of the emitted proton and the axis defined by the momentum transfer \vec{g}. The angle between \vec{p} and che scattering plane is $\varphi_{0}=135^{\circ}$. The cross sections for $\psi_{p}=-45^{\circ}$ are represented within the interval between $\hat{\nu}_{p}=180^{\circ}$ and $\nu_{0}^{2}=360^{\circ}$. The symetry of the cross section around $v_{p}=180^{\circ}$ is broken by the chargecurrent interference. Wote that a direct knock-out reaction would have maximal cross section at $\forall_{0}=180^{\circ}$. The solid line shows the theoretical cross section including all mutipole modes up to $J^{\pi}=4^{+}$and 4^{-}. The dashed Iine represents the resuits obtained without monopole strength. The magnituds of all theoretical cross sections are scaled by a factor $\lambda=0.4$.

Fig: 2: The photoabsorption cross section of ${ }^{12} \mathrm{C}$ by ahrens et ai. ${ }^{31}$ is compared with a continuum random-phase calculation described in the text.

In Fig. 1 the result of our computations (full line) is compared with the experimental points of Calarco et a1. ${ }^{2)}$. All the theoretical energies are shifted up by
1.5 Hey in order to compensate for the discrepancy between the experimentai ${ }^{3)}$ and theoretical peak of the photonuclear cross section (see Fig. 2).

Since the theoretical angular distributions overshoot the experimental data and we were interested in the shape of the angular distribution of the emitted particle, we detemmined a scaling factor of $\lambda=0.4$ in order to facilitate the comparison between the theoretical and experimental angular distributions at the peak energy of 22.47 MeV of the dipole resonance. At all the other excitation energies the comparison was made using the same scaling factor which is effectively taking finto account effects of $2 p-2 h$ degrees of freedom and branching to decay modes other than proton or neutron emission, phenomena which are not considered in the present version of our mode?.

The first result is that our model is able to reproduce the relative magnitudes of the coincidence cross section at all the experimentally investigated excitation energies. The theoretical angular distributions are reproducing rather well the experimentai ones, only at the energies of 21.65 fey and 22.98 MeV the agreement is poor. We explain this with the fact that our model, for the already mentioned lack of $2 p-2 n$ configurations, does not give the correct energy width of the dipole which results to be too concentrated around the peak energy of 22.47 MeV .

The strons fomward $\left.\theta_{p}^{\psi}=180^{\circ}\right)$-backward $\left(\hat{\vartheta}_{p}^{*}=0^{\circ}\right)$ asymmetry at the three lower energies is a signature of the presence of positive parity states interfering with the giant dipole. Calarco suggested that in addition to the 2^{+}a so the 0^{+}might be present.

In order to demonstrate the effects of 0^{t} strength we repeated the calculation without monopole strength (dashed line).

Without 0^{+}a series of bumps in formard and backward direction is found at the three lower energies while only the presence of the 0^{+}is able to reproduce the large forward-backward asymmetry.
The large effect of the 0^{+}does not imply that the monopole is a concentrated resonance.

Fig. 3: The exhaustion of the energy-weighted sum rule as a function of the excitation energy for monopole (solid), dipole (dashed) and quadrupole (dotted) strength.

In Fig. 3 the energy weignted sum rule exhaustion for $0^{+}, 1^{-}, 2^{+}$is shown. One can see that the 0^{+}needs an energy interval of approximately 20 MeV to exhaust its sum rule while for the dipole only 10 MeV are necessary.

Even though the monopole excitation is not a concentrated resonance the interference terms between monopole and dipole are large enough to be seen in a coincidence experiment.

References

1) G. Co', S. Krewald, J. Speth, Annual Report 1982, Jii)-Spez 202 (1983) 71.
2) Calarco et al., Proce Symp. oni Highly Excited States in Nacl. Reactions, ed. by H. Ikegami and M. Muraoka, Osaka (1980) 543, and private cominnication.
3) U. Ahrens et al.. Nucl. Phys. A251 (1975) 479, and private communication.
5.2. Theoretical Description of Electron Scattering Coincidence Experiments
G. Co', S. Krewald

With the advent of the new generation of electron accelerators (high-energy, high duty factor) it will become very common to perform experiments in which the scattered electron is detected in coincidence with a nucleon knocked-out from the target nucleus.

One of the problems concerning this kind of experiments is up to winich extent one can control the nuclear reaction mechanfsm in order to g̣t information about the nuclear excitation modes.

We developed a computer code to avaluate (e, e'p) cross sections based on a microscopic theoretical model we presented in the previous issue of this Annual Report. Input of our cade is the solution of the continuan RPA equations we solved in the Fourier-Bessel formalismi) using as residual interaction the zero range Landau-Migdal force in the parametrization of Rinker and Speti ${ }^{2}$).

Fig. 1: Angular distribution of the emitted proton against excitation energy of the nucleus for the reaction ${ }^{16_{0}}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{0}\right)^{15} \mathrm{~N}$ obtained keeping fixed the inconing energy of the electron ε_{i} and the scattering angle i_{e}. The proton is emitted in the scattering plane and $\hat{\nu}_{p}$ is measured with respect to the axis defined by the momentum transfer direction which is, in our conventions, at $\%_{0}=180^{\circ}$. In the computation ait the excitation miltipoles up to 4^{+}and 4^{-}are included.
We studied the reaction ${ }^{16} 0\left(e, e^{\prime} p_{0}\right)^{15} \mathrm{~N}$ and Fig. I shows the angular distribution of the emitted particle versus the nuclear excitation energy: the incoming energy of the electron is fixed at 100 keV , the scattering angle has the value of 90° and the emitted proton, leaving the 15 N in its ground state, is detected on the scattering plane.

From the continuum threshold up to 21 mel the figure shows narrow resonances typical of discrete excited states lying in the continuum, from 21 up to 29 MaV there is the large bump of the giant resonance. Then, after 29 HeV , the angular distribution of the entitted particle is concentrated around the direction of the transferred momentum ($\vartheta_{p}=180^{\circ}$ in our conventions).
We interpreted the behaviour in the region beyond the giant resonance as quasifree scattering: The virtual
photon exchanged between electron and nucleus interacts only with the emitted particle, and there is no collective excitation of the nucleus; in the extreme situation the particle is emitted mainly along the transfer momentum direction. To test this hypothesis we performed a computation switching off the residual interaction.

We chose two different excitation energies: 25 Mev, in the peak of the giant resonance and 40 MeV where the guasifree scattering, in our hypothesis, should take place.

Fig. 2: Angular distribution of the emitted proton for the reaction ${ }^{16} 0\left(e, e^{\prime} p\right)^{15} \mathrm{~N}$ at two different excitation energies. The dashed line shows the result obtained switching off the residual interaction (see text).

In Fig. 2 the results obtained with and without residual interaction are compared.

While at 25 MeV the shape of the two angular distributions is rather different, then the residual interaction plays an important role, i.e. there is a collective excitation of the nucleus, at 40 MeV the shape of the two angular distributions is rather similar, which makes it difficult to distinguish a collective excitation from quasi-free scattering in a model-independent way, Note, however, that the role of the residual interaction in this energy region is by no means negligible, since it modifies the absolute magnitude of the coincidence cross section by a factor of two.

Fron this analysis it turns out that (e, \hat{A} 'p) is a good tool to investigate the nuclear excitation modes in the giant resonance region (the following report will show a practical application) but for energies above the giant resonance the reaction mechanism really dominates the process and no information about nuclear excitations can be extracted fron the anguiar distribution of the emitted particle.

References

1) R. de Haro, S. Krewald, J. Speth, NucT. Phys. A388 (1982) 265
2) G.A. Rinker, J. Speth, NucT. Phys. A306 (1978) 360.

5.3. Microscopic Calculation of the Imaginary Opticat

 Potential for ${ }^{208} \mathrm{PD}(p, p)$ at 14 MevH. Dernawan, F. Osterfeld, V.A. Madsen ${ }^{+}$

In the nuclear structure approach ${ }^{1}$) the calcalation of the imaginary optical potential is made in second order in an effective twonucleon interaction, taking into account finite nuclear effects such as shell structure and collectivity of excited states. In earlier calculations ${ }^{2}, 3,4$, which used the density independent, finiterange Eikemeier-Hackenbroich t operator ${ }^{5}$) as an effective interaction and RPA transition densities ${ }^{6}$) to describe the intermediate state of ${ }^{40}$ Ca, the local equivalents ${ }^{7}$) $\tilde{W}(R)$ of the resulting imaginary optical potentials were surface peaked like phenomenological potentials but at a radius too small by about .6 fin.

We report here a similar calculation undertaken for $208_{\mathrm{pb}}(\mathrm{p}, \mathrm{p})$, for which the $\mathrm{B}(E \lambda)$ values and transition densities have been well tested ${ }^{8)}$ by corparison with electron scattering ${ }^{9}$. For propagation of the internedi. ate projectile we used a real folding potential. The exchange part was calculated in a zero-range pseudopotential approximation, the strength of which was determined to agree with exchange scattering amplitudes in an exact calculation ${ }^{10)}$. Other aspects of the calculation were the same as has been carried out and reported in our earilier work ${ }^{2-3}$) on ${ }^{40} \mathrm{Ca}(\mathrm{n}, \mathrm{n})$ and ${ }^{40} \mathrm{Ca}(\mathrm{p}, \mathrm{p})$.

λ^{T}	W(7.6,7.6) Mev $\left.\mathrm{f}_{\mathrm{m}}{ }^{-3}\right\rfloor$
0^{+}	-0.0043
1^{-}	-0.0034
2^{+}	-0.0436
3^{-}	-0.082
4^{+}	-0.0358
5^{-}	-0.0367
6^{+}	-0.0108
3^{-*}	-0.0735

Table 1: Contribution of various mutipoles to the diag onal nonlocal imaginary potential h(r, r) at the peak radius $r=7.6 \mathrm{fm} . *=10 \mathrm{w}$-lying 3^{7} collective state only.

Table 1 shows the contribution of the different multipolarities of natural parity states to the diagonal nonlocal potential at $r=7.6$ fin. The iow-iying 3^{-}collective state is a very important contributor to the absorption, but, as is seen in the table, there are several other essential contributions. Although less important and not shown in the table, unnetural parity states were also included in the final determination of the absorptive potential.

In Fig. 1 the equivalent local potential $\vec{W}(R)$ is compared to the phenomenological potential ${ }^{11 \text {). The calcu- }}$ lated potential is surface peaked and, in contrast to ${ }^{40} \mathrm{Ca}(p, p)$ and $\left.{ }^{40} \mathrm{Ca}_{a}(n, n)^{2-4}\right)$, the surface peak position $r=7.6 \mathrm{fm}$ is in good agreement with $r=7.8$, that of the phenomenolgical potential. The shift in the peak postition by about 0.2 fin can easily be accounted for by a density dependent effective projectile-target nucleon interaction ${ }^{2}$. This result shows that good structure

Fig. 1: Comparison of the microscopic local equivalent imaginary potential with the phenomenological potential of Ref.
wave functions are needed for the description of the intermediate excited states in order to obtain the right form of the microscopic absorptive potential. The volume integral per nucleon J_{W} of the microscopic potential amounts to $33 \mathrm{MeV} \mathrm{fm}^{3}$ and that of the phencmenological potential to $73 \mathrm{NeV} \mathrm{fm}^{3}$. A deficiency of a factor of 2 was also found in ouf former studies of the microscopic imaginary potentials for ${ }^{40} \mathrm{Ca}(p, p)$ and ${ }^{40} \mathrm{Ca}(n, n)$ scat. tering ${ }^{2-4)}$.
Similar calculations of $\mathbb{T}(\mathrm{R})$ for ${ }^{208} \mathrm{~Pb}(\mathrm{p}, \mathrm{P})$ have been performed by Bernard and Van Giai ${ }^{12 \text {). They used the }}$ Skyrme interaction to generate the Hartree-Fock mean field, the RPA-excited states and the projectile-target nucleon coupling. In their calculations they included only inelastic natural parity states with spin-parities $0^{T^{T}} \leqslant 5^{-}$. The resulting imaginary potential of Ref. 12 is also too weak both in the nuclear interior and at the nuclear surface. The volume incegral of their calculated potential is about 4 times smaller than the empirical value, which, considering the smaller space of intermediate states used in Ref. 12, is quite consistent with our result.

Fig. 2: Comparison of calculated ${ }^{208} \mathrm{pb}(p, p)$ differentiai cross sections at 14 Mev to the experimental data of Ref. 11. The full line is the exact nonlocal calculation. The dashed line is the calculation with the equivalent local imaginary potential.

To further test our microscopic imaginary optical potential, we used ft directiy to calculate the differential scattering cross section for $14 \mathrm{MeV}{ }^{20} \mathrm{P}_{\mathrm{pb}}(\mathrm{p}, \mathrm{p})$ scattering using a newly developed ${ }^{4}, 13$) progran for solving the Lippmann-Schwinger equation in momentum space. Angular distributions due to a local real potential plus the calculated nonlocal potential $W\left(r, r^{+}\right)$or its local equivalent $\tilde{W}(R)$ are compared to experimental data ${ }^{11)}$ in Fig. 2. Both calculated angular distributions agrea well with the data up to 80°, but at larger angles the calculated cross sections are too high, indicating too fittle absorpiion.

References

1) H. Winh Hau, A. Bouyssy, Nucl. Phys. A257 (1975) 189.
2) F. Osterfeld, J. Nambach, V.A. Madsen, Phys. Rev. 623 (1981) 179.
3) F. Osterfeio, V.A. Macsen, Phys. Rev. C24 (1981) 2468.
4) H. Dermawan, F. Osterfeld, V.A. Madsen, Phys. Rev. C27 (1983) 1474.
5) K.A. Amos, H.V. Geramb, R. Sprickman, J. Arvieux, M. Buenerd, G. Perriri, Phys. Lett. 52B (1974) 138.
6) S. Krewald, J. Speth, Phys. Lett. $52 B$ (1974) 295.
7) F.G. Perey, D.S. Saxon, Phys. Lett. 10 (1964) 107.
8) J. Speth, A. van der Woude, Rep. Prog. Phys. 44 (1981) 719, and references cfted therein.
9) 3. Heisenberg, Nucl. Phys, A396 (1983) 171, and ref. erences cited therein.
1) J. Atkinson, V.A. Madsen, Phys. Rev. Cl (1970) 1377.
2) J.S. Eck, W.J. Thompson, Nucl. Pays. A237 (1975) 83.
3) V. Bernard, N. Van Giai, Nucl. Phys. A327 (1979) 397.
4) H. Dermawan, Ph.D. Thesis, University of Bonn (1982).

+ Oregon State Univ., Corvallis, OR, USA

5.4. Calculation of the Background below Gamow-Teller Resonances

F. Osterfeld, A. Schulte

Recent (p, n)-experiments at intermediate energies at the Indiana University Cyclotron have shown that the total Gamow-Teller (GT) strength in nuclei is quenched by roughly 40% with respect to the model independent Ikeda sum ruie. The accurate determination of the quenching of the total GI-strength, howaver, is severely limited by the subtraction of the backgraund below the GT-resonances.

We have calculated ${ }^{1)}$ this background in a microscopic particle-hole doorway model assuming that the background is a superposition of all cross sections of inelastic excitations to bound, quasibound and continuum states.

The particle-hole doorway model includes the nuclear continuum exactly but treats nuclear collectivity explicitly only for certain selected states like the GTR or IAS. We argue that for our purpose such a limited inclusion of nuclear collectivity is sufficient. Our argument is based on the fact that for $\Delta S=1 n, \Delta T=1$ transitions collectivity plays only a role for low multipolarities, i.e. for $0^{-}, 1^{+}, 1^{-}(\Delta S=1)$ and, maybe, 2^{-} states ${ }^{2}$). This is simply an effect of the finite range residual particle-hole (ph)-interaction in the $\Delta S=1-, \Delta T=1$-chamel ${ }^{2)}$ which is strongly repulsive for low spin states and weak for high spin states ($3^{\pi} \geqslant 2^{-}$). Therefore states with large $J^{\text {II }}$ are nearly unaffected by the residual ph-interaction.

Fig. 1: Zero degree spectrum for the reaction $90_{Z r(p, n)}$. The data (thick full lime) are taken from Ref. 3. The discrete lines are calculated crass sections due to bound and quasibound states. The theoretical cross sections dide to GTR and IAS are not plotted. The optical parameters for the cross section calculations have been taken from $\operatorname{Ref}^{f} .6$.

In Fig. 1 we show the 0^{0}-spectrum of the reaction $9_{Z r}(p, n)$. The experimentai data (full curve) have been taken from Ref. 3. The dashed curve represents the calculated continuous background. As in the case for ${ }^{48}$ Ca (p, n) we sum all cross sections with multipolarities $\Delta L=0$ through $\Delta L=3\left(J^{\pi}=0^{-}, 1^{-}, 1^{+}, 2^{-}, 2^{+}, 3^{-}, 3^{+}, 4^{*}\right)$ and in-
 calculations. The calculated spectrum shows resonance
type structures around Q-values $Q=-25$ and $Q=-31$ HeV. Both bumps are essentially due to ($a \pm=2$) $J^{\top}=1^{\dagger}, 2^{+}, 3^{\ddagger}$ excitations and form the building "blocks" for the $\Delta L=2$ resonance. It should be mentioned that the bumps would ie appreciably smeared out if we would also include a spreading widt in the calculations.

There is one important difference between the results for the continuous spectra in ${ }^{43^{C a}(p, n)}$ and the present one for ${ }^{90}{ }_{2 r}(\rho, n)$. While the backeround calculations reproduce the experimental data at high negat tue Q-values for ${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})$ they fall to do so for $90 \mathrm{Zr}(\mathrm{r}, \mathrm{n})$ and underestimate here the data by a factor of about 2 . The "missing" cross section in the calculated spectrum around $Q=-28$ Mey is not really missing since most of the cross section due to $0^{-}, 1^{-}$, and 2^{-}states which appear in our model at lower excitation energies (the discrete lines in Fig. 1) would be shifted to this anergy region if we would include nuclear collectivity in our calcutations.

The sum of $0^{-}, 1^{-}$, and 2^{*} cross sections in Fig. 1 amounts roughly to -14 mb , from which 6.6 mb are due to $0^{-}, 1.4 \mathrm{mb}$ due to 1^{-}, and $\sim 6 \mathrm{mb}$ due to 2^{-}transitions (see Table 1). Using the results of Bertsch et al. 4) for the strength distribution of $0^{-}, 1^{-}, 2^{-}$in 90 Zr we find a maximum of about $7.4 \mathrm{mb} \Delta \mathrm{L}=1$ cross section diractly below the GT-resonance. This means that also in $90 \mathrm{Zr}(\mathrm{p}, \mathrm{n})$ we have practicaliy no background below the GT-resonance, i.e., all the cross section in the Q-value range $-12 \geqslant 0 \%-20$ is GF-strength. A real problem, however, is that the calculated continuous spectrum underestimates the experimental data in the Q-value range $-32>Q>-50$. One could argut that this "missing" cross section might be produced by $\Delta=4$ excitations not inm cluded in our calculations. We have checked this point and have found that these states make a negligible contribution to the cross section at fonward angles. Furthermore, if the missing cross section would be due to $\Delta \mathrm{L}=4$ transitions the discrepancy between experimental and calculated cross section should increase with angle since cross sections of $\Delta L=4$ shape give the biggest contribution at larger scattering angles. This behaviour, however, is not seen in the spectra. There is actuatly just the opposite tendency in that the different between measured and calculated cross section becones smaller with increasing scattering angie. we therefore conclude that this "missing" cross section at lárge Q-values and forward anglas can only be produced by another mechanism. An explanation consistent with the suggestions of Bertsch and Hamamoto ${ }^{5}$) is that this cross section not described by the background calculations is actually GTstrength which was shifted to this nigh excitàtion energy region due to the mixing of the "low-lying" ip-1h kTstate with high-iying $2 p-2 n$ configurations. Corresponeing to our calculations the amount of GT-strength located in. the energy range $-20<0 \leqslant-50$ could be as large as 25 mb . One might ask why the $2 p-2 n$ polarization effect seems to be more important for $90_{2 r}$ than for ${ }^{48}$ Ca. This

e		$\sum_{i} \sigma^{i}\left(1^{-}\right)$	$\underset{i}{\sigma^{i}\left(2^{-}\right)} \underset{[m b]}{ }$	$\sum_{i} 0^{i}\left(0^{-}, 1^{-}, 2^{-}\right)[\mathrm{mb} / \mathrm{sr}]$	$\begin{aligned} & { }^{\exp ^{-\sigma} \mathrm{calc}(\mathrm{mb} / \mathrm{sr})} \\ & -20 \mathrm{Q}(p, n) \geqslant-50 \mathrm{meV} \end{aligned}$
0°	8.8	1.4	6	16.2	40
$4.5{ }^{\circ}$	12	23	28	63	52
$9.5{ }^{\circ}$	10	17	21	48	38
$12.8{ }^{\circ}$	2.7	6.3	12	21	20

Table 1: Sum of cross sections of all thu $\Delta L=1$ transitions with spin-parities $J^{\pi}=0^{-}, 1^{-}$, and 2^{-}obtaned for different scattering angles 6 . Column 4 shows the sum of $0^{-}, 1^{-}$, and 2^{-}cross sections while column 5 shows the cross section obtained by subtracting the calculated continuous cross section from the experimental one in the Qyel lee range $-20>0 \geqslant 50 \mathrm{Mev}$.
is probably due to a simple shell structure effect. The damping mechanism of the GT-state due to $2 p-2 h$ states is much more efficient in heavy than in light nuclei due to the larger density of $2 \rho-2 h$ states in heavy nuclei.

References

1) F. Osterfeld, Phys. Rev. 626 (1982) 762.
2) J. Speth, V. Klemt, J. Wembach, G. E. Brown, Nuci. Phys. A343 (1980) 282.
3) C. Garde, J. Rapaport, T.N. Taddeucci, G.D. Goodman, C.C. Forster, D.E. Bainum, C.A. Goulding, M.B. Greenfieid, D.J. Horen, E. Sugarbaker, NucT. Phys. A369 (1981) 258.
4) G. Bertsch, D. Cha, H. Toki, Phys. Rev. C24 (1981) 533.
5) G. Bertsch, I. Hamamoto, Phys. Rev. C26 (1982) 167.
6) A. Nadasen et al., Phys. Rev. C23 (1981) 1023.
5.5. Calculation of the Background below the Giant Dipole ($\Delta L-1$)-Resonance
F. Osterfeld, A. Schulte

Within the microscopic particle hole doorway modell) we have calculated the ${ }^{90} Z r(p, n)$-spectra for angles of 4.5° and 9.5°, respectively. They are shown in Figs. 1 and 2. The data (full line) have been taken from Ref. 2 and the dotited lines represent the calculated continuous spectrum. The peaks at Q-values of $Q=-24$ and $Q=-32 \mathrm{meV}$ are again due to the $(\Delta L=2) 3^{\pi}=1^{+}, 2^{t}, 3^{+}$resonance. As is seen from the figures the $(\Delta L=1) J^{\pi}=0^{-}, 1^{-}, 2^{-}$resonance gives a large contribution to the cross section (discrete lines in the figures). The sumed cross section of all Ho $0^{-}, 1^{-}$, and 2^{-}excitations amounts to 63 mb at the scattering angle of 4.5° and to 48 mb at 9.5° (see also Table 1 in the previous contribution). Most of the Al=1 strength will be shifted into the energy region around $\mathrm{Q}=-26 \mathrm{MeV}$ when the residual ph-interaction is switched on. As one can see from Figs. 1 and 2 we have now, however, a big problem since we have much more ($\Delta L=1$) cross section to distribute than the experimental data permit. This is especially striking for the 9.5° spectrun. If we subtract in the q-value range from 20 to 50 Hev the calculated continuous cross section from the experimentat one we obtain roughly $\sim 31 \mathrm{mb}$. The calculated $\Delta L=1$ cross section, on the other hand, amounts to 48 mb which is by a factor of ~ 1.5 larger than the estimated cross section above. This happens although he have implicitly assumed already that the $\Delta L=1$ strength is

Fig. 1: Same as Fig. 1 in previous contribution but for ${ }^{\theta} \mathrm{CM}=4.5^{\circ}$.

Fig. 2: Same as Fig. i in previous contribution but for ${ }^{\theta_{\mathrm{Cm}}}=9.5^{\circ}$.
distributed over the whole Q-value range trom -20 to -50 Mev. The latter amounts to the assumption that high-lying $2 p-2 h^{\text {configurations }}{ }^{3)}$ couple to the $\Delta t=1$ resonance in a similar way as to the GT-resonance and spread out the $\Delta t=1$ strength over a wide energy range. In spite of this assumption we still need a quenching of about 50 \% in order to reconcile the theoretical and experimental cross sections. Part of this quenching is certainly due to ground state correlations not included in our calculations. Ground state correlations will reduce both the $\Delta L=1$ cross section and also the calculated continuous cross section being therefore an effective agent to diminish the surplus cross section mentioned above. If we assume a reduction of $\sim 25 \%$ for both the background and
the $\Delta L=1$ cross sections then the experimental and calcufated cross sections would just agree. It may, however, also well be that this is an overestimate and that an additional guenching due to admixtures of $\Delta(1232)$ iso-bar-nucleon hote conifigurations into the $\Delta L=1$ resonance is needed to describe the data as has been repeatedly pointed out in the analysis of 2^{-}states measured in inelastic electron scattering experiments ${ }^{4}$.

References

1) F. Osterfeld, Phys. Rev. C26 (1982) 762
2) C. Gaarde, J. Rapaport, T.N. Taddeucci, G.D. Goodman, C.C. Forster, D.E. Bainum, C.A. Goulding, M.B. Greenfieid, D.J. Horen, E. Sugarbaker, NucT. Phys. A369 (1981) 258.
3) G. Bertsch, D. Cha, H. Toki, Phys. Rev. C24 (1981) 533.
4) N. Anantaraman et aì., Phys. Rev. Lett. 46 (1981) 1318;
C.M. Crawtey et al., Phys. Rev. C26 (1982) 87;
C. Djalali et al., Nucl. Phys. A388 (1982) 1.

5.6. The Tensor Force in ($\left.{ }^{3} \mathrm{He}, \mathrm{t}\right)$-Scattering with

 Exact Treatment of Knockout Exchange
T. Udagawa ${ }^{\dagger}$, F. Osterfeld

The (${ }^{3} \mathrm{He}, \mathrm{t}$)-reaction at intermediate energies seems to be a very promising tool to study ot-excitations in nuclei ${ }^{1) \text {. It shows the same selectivity in exciting the }}$ low-lying nuclear excitation spectrum as the (p, n)-reaction at similar energies. Moreover, high energy (${ }^{3} \mathrm{He}, \mathrm{t}$)scattering at 2 GeV incident energy very strongly excites the Δ-resonance in nuctei ${ }^{1}$). For the analysis of these data it is very important to have a computer program which can handle a large number of partial waves and which can treat knockout exchange processes exactly. Knockout exchange describes the process where the incoming projectile nucleon hits a target nucleon which is ejected from the nucleus whtle the originally incoming nucleon gets stuck in the nucleus. Because of numerical complications this process has never been calculated exactly for composite particle scattering. We have deveioped a method and a program which permit to calculate knockout exchange amplitudes also for composite particle scattering exactly ${ }^{2}$. Until recently only central forces could be handled, but now we have extended the program so that we can treat also tensor forces. Tensor forces are very important for the study of ot- and Δ-excitations in nuclei. First results show that the tensor force is dominant in exciting the Δ. This is an effect of the large momentum transfer invalved in exciting states of high excitation energy of $E_{x} \sim 300 \mathrm{MeV}$.

[^11]5.7. Calculation of Proton-Neutron Coincidence Cross Sections in 56 MeV Deuteron-Induced Breakup Reactions by Post Form Distorted-Wave Born Approximation
G. Baur, F. Rósel ${ }^{+}$, R. Shyan ${ }^{++}$, and O. Treutmann ${ }^{\text { }}$

Recently measured neutron-proton angular correlations in the deuteron-induced breakup reactions at 56 HeV incident energy have been analyzed ${ }^{1)}$ in terms of the post form distorted-wave Bom approximation theory of breakup reactions ${ }^{21}$. Comparison of the present results is made with those of the prior form distorted-wave Bora approx. imation calculations 3). It is found that the results of the post form distorted-wave Born approximation calculations are in better agreement with the expertmental data than the prior form distorted-wave Born approximation results.

References

i) G. Baur, R. Shyam, F. Rösel, D. Trautmann, Phys. Rev. C 28 (1983) 946.
2) G. Baur, F. Rabel, D. Jrautmann, R. Snyam, Phys. Rep. to be published;
G. Baur, R. Shyam, F. Rösel, D. Trabtmann, Helv. Phys. Acta 53 (1980) 505.
3) M. Matsuoka, K. Hatuanaka, T. Saito, T. Itahashi, K. Hosono, A. Shimizu, M. Kondo, F. Ohtani, O. Cynshi, Nucl. Phys. A39i (1982) 357.

+ Inst. f. Theor. Phys., liniv. Basel
+t gSi Darmstadt
5.8. Coulomb Dissociation at Monrelativistic and Relativistic Energies ${ }^{1)}$
B. Hoffmann and G. Baur

We discuss various chafacteristics of Coulomb dissociation at low and high bombarding energies by means of model calculations. The sub-Coulomb breakup of the deuteron is generally quite well understood in the DhBA framework ${ }^{2)}$, however, for very low energies of the emerging protons, the experimental deta of the Bonn group ${ }^{3}$) cannot be reproduced by our theoretical models. The experimentaily observed deviation of (d,p) breakup yields for intermediate ($E_{0}=55 \mathrm{MeV}$) energy deuterons from the $A^{1 / 3}$ dependence is tentatively explained in terms of the Coulomb dissociation mechanism, In view of the current experiments at the BEVAEAC ${ }^{4}$) and forthconing accelerators with relativistic projectiles, we illustrate by means of typical examples the various effets arising in relativistic electromagnetic excitation ${ }^{5}$.

References

1) B. Hoffmann, G. Baur, to be published.
2) J. Kleinfeller, J. Bisplinghoff, J. Ernst, T. MayerKuckuk, G. Baur, B. Hoffmann, R. Shyam, F. Rosel., D. Trautinann, Nucl. Phys. A370 (1981) 205.
3) B. Selignam, j. Ernst, fi. Gemmeke, K. Keller, J. Kleinfeller, L. Lassen, W. Lücking, R. Schreck, Annual Report.1981-2 Institut fuir Strahlen- und Kernphysik der Iniversitat Bonn, p. 25.
4) $\mathbf{4}$. Hill, private commuication.
5) A. Winther, K. Alder, NucI. Phys. A319 (1979) 518
5.9. On tha Dymamics of the ${ }^{160+160 * 32 S ~ F u s i o n ~}$ Process
J. Friedrich ${ }^{+}$, K. Goeke, D. H, E. Gross ${ }^{++}$, F. Grimmer and P.-G. Reinhard ${ }^{\text {tit }}$

For a reproduction of fusion data by means of microscopic theories there are two important properties of the interaction which have to be well described. First the binding energies of the fragments and of the cortpound systen must be correct, and second the surface thickness must be accurate. Both properties, to be tested in static calculations, detemine the position and the hefght of the barrier and the depth af the collective potential. The presently often used Bonche-koo-nin-Negele interaction (BKN) does not fultil these re-

quirements well. This can be seen at Fig. I where the relative deviations of the $H F-r e s u l t s ~ f r o m ~ t h e ~ e x p e r i-~$ mental data are given. One notices the faprovement of the so-called "new force". This one has the general structure of the $B K W$ rorce, however, the power a of the density dependent term is not fixed to $a=1.0$. The parameters of the force, including a, have been fitted ${ }^{2}$) by reproducing the binding energies and the electron scattering form factors of ${ }^{16} 0+16_{0}$-system. The mass parameter and the heavy ion interaction potential calculated by quantized ATDHF ${ }^{3}$) are given in Fig. 2. One realizes a lower saddle at larger separation distances and a deeper bound state. This has a drastic effect on the fusion cross section as one can see at Fig. 3. The subbarrier fusion cross section, expressed by the astrophysical sfactor is in very much better agreement with experiment that before, where the BKN force was used. By means of

Figure 2

trajectory calculations aiso the fusion cross section above the barrier can be calculated. The results are given in Fig. 4. There the solid line gives the theory with the new force and the dash-dotted with the BKN interaction. Again only the curve with the new rorce is in good agreement with the data. It seems to be that the dynamics of the ${ }^{16} 0+160,32 S$ fusion process is understood and that, maybe, one can believe the theory also at energies, which are not accessible to experiments, e.g. at themonuclear burning temperatures.

References

1) P. Bonche, S. Koonin, J. Negele, Phys. Rev. Cl3 (1976) 1226.
2) P.-G. Reinhard, J. Friedrich, K. Goeke, F. Grimmer, D.H.E. Gross, to be published.
3) K. Goeke, F. Grumner, P. -G. Reinhard, Ann. Phys. 150 (983) 504.

+ Inst. f, Kemphysik, Univ. Mainz
+ HMI Berlin
$t+$ Inst. F. theor. Physik, Univ. Eriangen
5.10. ATDHF Calculation on the ${ }^{4} \mathrm{He}-{ }^{16} 0$ System
D. Provoost, F. Grummer, K. Goeke

The ADDh code ${ }^{l}$) has been extended to allow for asymmetric configurations. The ${ }^{4} \mathrm{He}-{ }^{16} 0$ system has been intensely studied with use of the $B K N$ force and a modiftcation of t^{2}).

The collective path in the quantized ATDHF theory is determined by the following differential equation 1):

$$
\begin{equation*}
\frac{d}{q q}\left|\phi_{q}\right\rangle=c(q)\left[H, H_{p h}\right]_{p h}\left|\phi_{q}\right\rangle \tag{1}
\end{equation*}
$$

The labelling q of the slater deteminants along the path turned out to be an interesting point.

Fig. 1: Collective mass if and potential v for $\alpha-160^{20} 0 \mathrm{Ne}$ as a function of the quadrupole distance using the BKN interaction.

Fig. 2: Collective mass M and potential V for $\alpha^{16} 0 \mu^{20}$ 位e as a function of the octupole distance using the BKN interaction.
In Fig. 1 the classical potential V and mass parameter M are shown as a function of a coordinate called quadrupole distance which is derived from the quadrupole moment in the following way:

$$
\begin{equation*}
R_{2}=\sqrt{\left\langle Q_{2}\right\rangle / 2 \mu^{2}} \tag{2}
\end{equation*}
$$

which ensures that R_{2} is equal to the cluster distance in the asymptotic region for separate clusters.

In Fig. 2 a transfomation is made to another coordinate derived from the octupole moment of the system:

$$
\begin{equation*}
R_{3}=\sqrt[3]{\frac{\left(A_{1}+A_{2}\right)}{2 \mu\left(A_{2}-A_{1}\right)}}\left\langle Q_{3}\right\rangle \tag{3}
\end{equation*}
$$

and is called actupole distance. This coordinate has the advantage to start from zero for the symmetric ${ }^{20}$ Re HF ground state and is asain equal to the cluster distance in the asymptatic region. Although the curves shown are rather different the physical content is identical. This is explicitly demonstrated if one transforms fron both coordinates to a third one in which the flass paraneter is constant and identical to the reduced mass. Both coordinates yield the same result.

The next step of the ATDHF method consists in the soluw tion of the collective Schrodinger equation ${ }^{1}$)
$\left[-\frac{\hbar 2}{2 \mu} \frac{d^{2}}{d q^{2}}+V(q)-Z(q)+\frac{h^{2}}{2 \theta} \ell(\ell+1)\right\} g_{\ell}(q)=E g_{\ell}(q)$
Z takes the quantum corrections into account and the centrifugal term has been added by hand since we do not make an explicit angular momentum projection. The ground state rotetional band obtained after solution of eq. (4) is shown in Fig. 3 and compared with experiment and with pure $H F+$ centrifugal term.

Fig. 3: Ground state rotational band of 20^{2} Ne. Experimental vatues, ATDHF calcuation with BKy interaction ($\alpha=1$) and with modified force $(\alpha=0.25)$ are compared. The results obtained with 20 Ne HF ground state plus centrifugal termi are also given.
The agreement for the $2^{+}-, 4^{+}$- and 6^{+}-state is reasonable. The 8^{+}nowever has no longer a rotational structure, so we cannot find agreement for this state with experiment.

The elastic differential scattering cross sections for α on 16_{0} are shown in fig. 4. The upper part shows the comparison experiment-BKN calculations, the midale part experiment-modified force calculations, and the lower

Fig. 4: Differential scattering cross sections for the elastic scattering of a on 16_{0} for a CM bombarding energy of 8.04 Mey . The experimental data are taken from fef. 3 and compared with the BKN and modified force calculations ($\alpha=1$ and $\alpha=0,25$ resp.) and with the WoodsSaxon fit to the experimental data once with and once without imaginary part.
part compares experiment with the Saxon-Woods fit to the experimental data ${ }^{3}$). One sees that the a-scattering data can be reproduced without adjusting any free parameters at least as good as the Saxon-woods fit (without intagi* nary part). Further investigations in particular focused on angular momentum properties and channel coupling are in progress.

References

1) K. Geeke, F. Grimmer, P. -G. Reinhard, Ann. Phys. 150 (1983) 504.
2) P. $-G$. Reinhard, J. Friedrich, K. Goeke, F. Grummer, D.H.E. Gross, to be published.
3) M.K. Hehta, H.E. Hunt, RoH. Davis, Phys. Rev, 160 (1967) 791.

5.11. ATOHF Calculations with Skyrme Interaction

> R. Gissler, K. Goeke, and F. Grummer
 given effective microscopic interaction, the collective pach $\left\{\left|\phi_{Q}\right\rangle\right\}$ associated to the lowest large amplitude collective mode. The collective path is determined by solving a differential equation in finite steps, thus obtaining a discrete series of states $\left.\|_{q_{n}}\right\rangle$ on the path, labelled by the collective coordinate q_{n}. In the numerical treatment we handle the slater determinants $\left|\phi_{q_{n}}\right\rangle$ by handling the correspondting set of occupied single particle states $\left\{\mid \psi_{\alpha,}, \Pi^{\prime}, \alpha=1, \ldots, A\right\}$. We obtain:

$$
\left|\psi_{\alpha q, n+1}\right\rangle=(1-\hat{\varepsilon} \hat{S})\left|\psi_{\mu q, n}\right\rangle
$$

with

$$
\left.\hat{S} \psi_{\alpha q, n}\right\rangle=(1-p)\left[W_{0}(1-2 p) \omega_{0}+N_{1}\right]\left|\psi_{\alpha q, n}\right\rangle
$$

W_{0} and W_{1} gepend on the effective microscopic interaction used. We use for our calculations the Skyrme inter-
action without ℓs-term and a direct Coulomb force. Differently from the commonly used interactions, as e.g. Bonche-Koonin-ivegele force, the W_{1} does not vanish, and W_{0} depends on an effective mass $m *(r)$ and the kinetic energy density $\tau_{0}(\vec{r})$. In detail we obtain ${ }^{2}$ the usual expression for the mean field Hemiltonian H_{0} and for the linear response operator W_{1} :
$W_{1}=\frac{1}{32}\left(3 t_{1}+5 t_{2}\right)(\vec{b} \cdot \vec{j}+3 \cdot \vec{v})$
 t_{1} and t_{2} are parameters of the Skyrme force. tph $_{0}$ is the $1 p-1 \mathrm{~h}$ and l h-lp part of H_{0} with respect to $\left|\phi_{\mathrm{q}}\right\rangle$.
The calculations have been performed for the $\alpha-16_{0}$ sys tern using the Skym: III force ${ }^{3}$).

Fig. 1 shoss the current distributions together with the fines of 10 骂 and 70% nuclear matter density plotied for three distances of the ions fif the approaching region.
The current ${ }^{3}$ allows the representation of the density novement along the collective path. The Figures 1 and 2 show the current distributions. The scales have been chosen such that the x-component is enlarged by a factor of 10 compared to the z-component, where the z-axis coincides witht the collision axis. The main and interest. ing feature is that in the approach phase first matter from the halo of the system flows into the centre, then at smaller separation distances the neck between the ions grows by flow in outward directions.

Fig. 2 gives similar resuits at configurations close to the $1 F$-point of the 20 Ne-system and in the asymptotic region with separate fragments.

References

1) K. Gooke, F. Grimmer, P.-G. Reinhard, Ann. Phys. 150 (1983) 504.
2) Y.M. Engel et al., Nuci. Phys. A249 (1975) 215.
3) M. Beiner et al., Nuch. Phys. A238 (1975) 29.
5.12. Extended Tine-Dependent Mean-Field Theories from the Maximun Entropy Principle
H. Reinhardt ${ }^{\dagger}$, R. Bailian ${ }^{++}$and Y. Alhassid ${ }^{+++}$

The time-dependent Hartree-Fock (TDHF) theory is supposed to give an adequate description of low energy nuclear dynamics where the two-bady collisions are essentially suppressed by the Pauli principle. In fact, numerical application of the TDHF theory reproduced satisfactorily well the mean-values of s.p. observables but failed (even at low energies) to reproduce the data on two-dody correlations. With increasing energies the Pau1i principle becomes more and more ineffective in preventing two-body collisions. In high energy heavy ion reactions ($E_{\text {las }} /$ A ~ 100 MeV) two-body collisions are so frequent that they may lead to an almost instantaneous thermalization of the system.

The present paper is devoted to the inclusion of the effect of two-body collisions in a mean-field description. The approach is guided by the naximum entropy principle, according to which the systea is described by a density matrix which maxiatizes the entropy under the constraint that the mean-value of the observables of the system which are considered as relavant are exactly reproduced. Conbining the maximum entropy principle with a recently developed form ${ }^{1}$) of the time-dependent projection mathod for statistical systems, we derive several collision extended time-cependent mean-field (ETDMF) equations which differ in the extent of how detailed the evolution is
described, i.e. how many observables of the system are considered as relevant for its evolution ${ }^{2}$).

If all single particle observables are considered as relevant one obtains an evolution equation for the s.o. density matrix with a collision term where also off-diagonal matrix elements of the s.p. density matrix (in the TOHF s.p. basis) enter. This equation is perhaps intractable for heavy ion collisions but its linearized form is expected to describe adequately the wioth of giant resonances. Furthermore thts equation also serves as a starting point to include two-body collisions into an adiabatic time-dependent mean field descriotion ${ }^{3}$).

A less detailed (and, hence, more practicable) description is obtajned by considering as relevant observables not all the s.p. observables of the time-depencent meanfield description, but only the occupation number operators of the time-dependent mean-field s.p, states. This yiolds a master equation for the occupation numbers.

A firther reduction of the description is achieved by considering only the energy and the particle number as relevant observables. The resulting set of evolution equations may be characterized as time-dependent temperature mean-field theory.

The present approach, which presents different extendad mean-field approximations from a unified viewpoint, exhibits a general recipe to construct adequate but practicable extensions of the time-dependent mean-fieid theory.

References

1) R. Ballan, Y. Alhassid, H. Reinhardt, to be published in Phys. Rep.
2) H. Reinhardt, R. Balian, Y. Alnassid, submitted to Nuc: Phys. A.
3) K. Goeke, P.-G. Reinhard, H. Reinhardt, to be published.

* ZfK Rossendorf, Dresder, GoR
$+{ }^{++}$Cen Saclay, France
${ }^{+++}$Yale Univ., New Haven, CT, USA

6. ATOMIC COLLISIONS

6.1. Inner Shell Ionization Processes in Asymmetric Collision Systems
G. Baur, F. ROSel^{+}, and D. Trautmann ${ }^{+}$

The ionization of inmer shells in heavy particle induced reactions is a basic process in atomic physics. This effect can be well described by semflassical methods using a Coulomb or a screened Coulomb trajectory for the incoming particlel). In some cases it becomes important to incTude the esfect of the projetile-electron interaction in the wave function of the target electrons ${ }^{2}$, 3). Especially for the explanation of $L_{\mathfrak{3}}$-subshell alionment data it will be important to include higher order effects in the projectile-target interaction. This is done in a coupled chanmels fomulation ${ }^{4}$.

The excitation of bound, high-lying states (Rydberg states; with large principal quantum number n was studled in Ref. 5 , where the scaling of the cross section with n^{-3} could indeed we verified.

A fully quantal theory of ionization induced by neutrons is given in Ref: 5 . The semiclassical limit treated by Migdal ${ }^{7 /}$ could be obtatned as a special case. The expression for the T-matrix for this process depends on the on-shell neutron-target scattering amplitudes at the energies $E_{i n c}$ and $E_{i n c}-\Delta$, where $\Delta=E_{e l}{ }^{+3} E_{\text {bind }}$ denotes the transferred energy. The observation and study of this neutron induced ionization process would thus yield interesting insight into the correlation width of the autocorrelation function of the nuclear scattering matrix. This may become possible with the advent of the nea high intensity neutron sources ${ }^{8}$). In contrast to the study of time delay effects in charged particle induced reactions ${ }^{9}$, where an overwhelming background of ionization processes is present in which no nuclear reaction occurs, such a problem will not exist in the neutron induced ionization process.

References

1) A. Jakob, F. Rösef, D. Trauthann, G. Baur, Z. Phs. A309 (1982) 13.
2) D. Trautmann, F. Rösel, G. Baur, Nucl. Instr. and Mechods 214 (1983) 21.
3) A. Jakob, D. Trautmann, F. Rösel, G. Baur, Nucl. instr. and Methods, to be published.
4) R. Lamprecht, Diplomarbeit 1983 Institut flur theoretische Physik, Basel (unpublished).
5) B. Leibundgut, Diplomerbeit i983 Institut fir theoretische Phasts, Dasel (bupublished).
6) G: Baur, F. Rösel, D. Trautmann, J. Phys. Bl6 (1983) L413-423.
7) A.B. Migdat, Qualitative Methods in Quantum Mechamics (Reading, Mass., Benjamin 1977) p. 108.
8) Realisierungstudie zur Spallations-Neutronenquelle dit-Spez-113 (1981).
9) \%. König, K.4. NcVoy, H.A. Weidenmuller, P. Kienle, Phys. 1.ett. 1233 (1983) 279.

+ Inst. f. Theor. Physik, Univ. Basel

6.2. Excitation of Iner Shells in Collisions of Charged Particles with Atoms

B. Hoffanan ane G. Baur

Ion-atom colitions play a significant role in plasma physics, laser physics, physics of intersteliar media and in many other fields. The general theoretical description of these coliisions is too conplex to be solved, therefore various approximations are applied. Collisions involving many-electron ions and atoms involve, due to the molecular effects, additional approxi-
 assumptions are well understood. A good testing ground for the primary approximations are collisions of charged particles with hydrogen or hydrogen-like atoms.

One of the approximations which are quite often used in fon-atom collisions is the semiclassical approximation, where the movement of the projectile is described by a classical trajectory, whereas the excitation process is treated quantum mechanicaliy. Fuli guantum menanicai caicuiations exist up to now only in the high energy regime in temms of Born approximation or Glauber theory.

In the present approach the ion-atom collision is treated fully quantum mechanically in terms of DHEA. The OWBA connects the regimes where the Bom approximation is good with the regime where the semiclassical theory works well and it may be used to test the limitations of the latter theories. Nevertheless this Du'BA approach is a first order theory and it does not consider molecular effects which piay an important role for very low energies.

The DABA \bar{T}-fiatrix element for excitation of an inner shell by a projectile with charge Z_{p} is given by:

$$
\begin{equation*}
T_{\text {if }}=\left\langle\psi_{f}^{(-)}\right| \frac{Z_{p} e^{2}}{\dot{k}-\vec{r}}\left|\psi_{i}^{(+)}\right\rangle \tag{1}
\end{equation*}
$$

where

$$
\psi_{j}^{(\pm)}=\phi_{j}(\vec{r}) X_{\hat{Q}_{j}}^{(\pm)_{(}}(\vec{k})
$$

$\phi_{j}(\vec{r}):=\phi_{n_{j} l_{j},}(\vec{r})$ denotes the bound electron wave function and

$$
\chi_{\bar{Q}_{j}}^{(\pm)}(\vec{R})
$$

denotes the Coulomb wave finction of the projectile with the appropriate boundary conditions.

Eq. (1) may be witten more explicitly as:
$T_{i f}=\sum_{\lambda \mu} \frac{Z_{p} e^{2}}{\frac{2 \lambda+1}{}} H_{\lambda \mu} \int d^{3} R X_{Q_{f}^{(-)}}^{(\vec{R}) G_{i f}^{\lambda}(R) Y_{\lambda \mu}^{*}(R) X_{Q_{i}}^{(+)}(R)}$
$\mathrm{G}_{\text {if }}^{\lambda}$ is the electronic fomi factor for the transition $n_{i} \ell_{1} m_{i}$ 费 $n_{f} \ell_{f} m_{f}$ and $W_{\lambda \mu}$ is a factor absorbing als the ... angular momentum coupling coefficients.
The electronic form factor $\mathrm{G}_{\mathrm{if}}^{\lambda}$ is a function of the type

$$
\begin{equation*}
G_{j f}^{\lambda}=\sum_{k} a_{k} R^{k} e^{-z_{k} R} \tag{3}
\end{equation*}
$$

where the a_{k} and z_{k} can be easily calculated using nonrelativistic hydrogenic electron wave functions.
In order to compute the matrix element of $G_{f f}^{\lambda}$ with the Coulonb waves, we expand the $x_{\overline{0}}$ in partial waves. Then one has to calculate the generalized Coulomb matrix elements, defined by:

$$
\begin{equation*}
M_{Q_{i}, Q_{f}}^{-\lambda-1, Q}:=\frac{1}{Q_{i} Q_{f}} \int d r F_{\lambda_{i}}\left(Q_{i} R\right) \frac{e^{-Q_{R} R}}{R^{\lambda+1}} F_{Q_{f}}\left(Q_{f} R\right) \tag{4}
\end{equation*}
$$

For small $\ell_{i}=_{f}$ it is possible to compute these integrals directly in terms of F_{2}-functions ${ }^{1)}$. But in atomic physics problems one needs typically many ten thousands partial waves, which can be calculated in finite time only by means of recursion relations.

Fig. 1: The measured differential cross section ${ }^{2}$) for the reaction $\mathrm{F}+\mathrm{H}(15) \mathrm{P}+\mathrm{H}(2 \mathrm{P}), \varepsilon_{p}=100 \mathrm{keV}$, is compared to Coulomb-DWBA (ful) line), Born approximation (dashed line), and semiclassical theory (dotted line).

In Fig. 1 we compare the results of this approach for the reaction $p+H(1 S) p+H(2 P)$ with experimentally measured differential cross sections ${ }^{2)}$, with Born approxi mation and semiclassical theory. It can be seen that the Born approximation drops much too fast wth increasing angle compared with experiment. The Couiong DWBA approach outlined above shows better agreement with experiment.

At angles not too near to zero the Coulomb DwBA and semiclassical theory agree reasonably well with each other, despite of the fact that the Coulomb parameter ri is quite smell ($n=0.5$) in this case. At angles near to zero the semiclassical theory fails. The reason for this phenomenon ies in the fact that in deriving the semiclassical approximation via stationary phase methods, an asymptotic expansion of the spherical hermonics $Y_{\text {enf }}(\psi, \psi)$ was used, which is valid only for f greater than some finite ε.

References

1) K. Alder, D. Trautmann, Ann. Phys. 56 (1971) 884.
2) J.T. Park, J.E. Aldag, J.L. Peacher, J.M. George, Phys. Rev. A21 (1980) 751.

7. ASTROPHYSICS

7.1. Electron Capture in Stellar Collapse

J. Cooperstein ${ }^{+}$and J. Wambach

The center of a large star becomes dynamically unstable when it exhausts its nuctear fusion fuels. The mass of the ashes of the most strongly bound Fe peak nuclei grows larger than that which electron degeneracy pressure is able to support. Triggered by endothermic photodisintegration, catastrophic implosion ensues on a timescale of williseconds, to be reversed only when the cen= ter surpasses nuclear matter density. The abtitity of the shock mave produced at the edge of the central core to succcessfully expeil the outer regions of the star is extremely sensitive to the core's profile during the final collapse stages. The two most important quantities are the number of leptons per nucleon γ_{e} and the entropy S as was first pointed out by Bethe et ai. ${ }^{1)}$. It has been demonstrated that a high lepton fraction and low entropy are essential if the shock is to succeed.

Both Y_{e} and S change during the collapse entirely due to electron capture and neutrino interactions because the weak interaction processes are not equilibrated on the collapse timescale. Neutrinos are emitted after capture of relativistically degenerate electrons from the few free protons present in the infalling matter

$$
\begin{equation*}
p+e^{-} \rightarrow n+v_{e} \tag{1a}
\end{equation*}
$$

or after neutronization of heavy nuclei via

$$
\begin{equation*}
(N, Z) \div e^{-} \div(N+1, Z-1) \div v_{e} \tag{ib}
\end{equation*}
$$

Therefore the complete capture rate $d V_{e} / d t \equiv Y_{e}$ will be given by two pieces

$$
\begin{equation*}
\hat{f}_{e}=\hat{f}_{e_{p}}+\hat{f}_{e_{H}} \tag{2}
\end{equation*}
$$

where the first arises from the protons dripped out of heavy nuclef and the second includes contributions from all of the heavy nuclei according to their abundances. The relatire abundances are themodymanically prescribed with the assumption of nuclear statistical equilibrium with a distribution function dertved from a liquid drop model equation of state ${ }^{2)}$ as

$$
\begin{align*}
& \left.\phi(A) / \phi_{0}=\exp \left[-1 / 2\left(\left(A-A_{0}\right) 1 / / \sigma_{A}\right)\right)^{2}\right] \tag{a}\\
& A_{0} \cong 1 / 2 \psi_{\text {surf }} / A^{\operatorname{Cou} 1}
\end{align*}
$$

and

$$
\begin{align*}
& \sigma_{A}=A_{0} \sqrt{3 T /\left(A_{\operatorname{surf}} A^{2 / 3}\right)} \tag{3c}\\
& W_{\text {surf }}=290(Z / A)^{2}[1-(Z / A)]^{2} \tag{3d}
\end{align*}
$$

Fig. 1: Mass number A, number of neutrons N and number of protons Z for the mean nucleus as a function of matter density. The full and dash-dotted lines correspond to two different assumptions about the capture rates.

Here A_{0} denotes the mean nucleus, $W_{\text {surf }}$ and Woul the surface and Coulomb energies, Z the nuclear charge and T the temperature. The evolition of A, N, Z with matter density p are depicted in Fig. 1. With $\phi(A)$ the total e^{-}, capture rate from heavy nuclei in the extremely relatiuistic limit is given by

$$
\begin{equation*}
Y_{e_{H}}=f \phi(A) /\left(\varphi_{0} \cdot A\right) \sum_{\rho}^{\infty} \oint_{i f} d \varepsilon_{e} G\left(\varepsilon_{e}, \varepsilon_{v} ; T\right) \sigma_{i f}\left(A, \varepsilon_{e} ; T\right) \tag{4}
\end{equation*}
$$

where G is the lepton-neutrino phase space factor and $\sigma_{\text {if }}$ the total e"-capture cross section from state i to state f for nucleus A. $Q_{i f}$ denotes the Q-value of the reaction.

Fig. 2: Density dependence of the entropy S and the electron fraction per baryon Y_{e}. The dashed line includes capture from free protons only, while the dashcotted and fuli lines include capture from heavy nuclei as well with wo different assumptions about the rates. The total cross section $\sigma_{i f}$ contains Gamow-Teller (GT) contribution arising from themal umblocking mechanisms in the nuclear ground state and proceeds energetically mainly beneath the $T=0$ threshold, as wall as parity form bidden contributions particularly the 2^{-}"unique forbidden" transitions. Those are generally of comparable strength to the unblocked allowed transitions. We have calculated ${ }^{3)} \sigma_{i f}$ for each A in a finite temperature nuclear single particle model and evaiuated ${ }^{2} e_{H}$ (eq. 4).

Fixing the initial conditions at the begiming of the collapse the evolution of the entropy S and Y_{e} have then been traced in a one zone hydrodynamical collapse model. The results are given in Fig. 2. They indicate that the electron fraction at neutrino trapping densities is not much reduced from its initial value. In contrast to previous work, the entropy is shown to decrease via neutrino cooling from below threshold GT-transitions as well as free protons. Heating fron "forbidden transitions" above threshold capture cannot compensate for this. The small amount of e^{-}-captare and entropy decrease are useful in producing successful supernova explosions.

References

1) H.A. Bethe et al., Nucl. Phys. A324 (1979) 487.
2) H.A. Bethe et a1., Nuct. Phys. A403 (1982) 625.
3) J. Cocperstein, J. Wambach, to be pubiished in Nucl. Phys. A

+ Nordita, Copenhagen, Denmark

8.1. Solar Heating Plant at Mount Zugspitze

H.J. Stein, M. Whan

The German Federal Post has installed a new radio transmission station at Mount Zugspitze/Garmisch. The service building of this station has been equipped with a solar heating plant. ${ }^{1)}$ We have overtaken the task of monitoring the solar systen, in order to get reliable data on system performance as a basis for an optimum operational strategy and possible technical improvements.
The construction housing the telecommunication systems consists of a weather protecting cover made of aluminiun under which the well-insulated windowless service building is located. Plastic windows are integrated into the aluminjum cover. Behind the plastic windows singlenglazed solar collector modules have been placed, Fig. 1. The entire solar heating system consists of an array of 48 collectors (fielo aperture area $53 \mathrm{~m}^{2}$), two storage vessels ($2,35 \mathrm{~m}^{3}$ each), and an electrically driven heat pump (3 to 4 kW driving power). The whole systera is

Fig. 1: Solar heating plant in service building of the Zugspitze radio transmission station.
filled with antifreeze 70% glycol $/ 30 \%$ water. The heating system of the building is based on air ventilation including regencrative heat exchanging with fresh air. Back up energy is delivered yia electric resistor heaters in the ventilation system. Electric resistor heating in the storage using low tariff electricity is also applied. The solar system has two operating modes, Fig. 2.
i) above $30^{\circ} \mathrm{C}$ storage temperature heat is directly fed into the air ventilation system,
ii) below $40{ }^{\circ} \mathrm{C}$ the heat pump is switched on, operating dowh to a storage temperature of $-5^{\circ} \mathrm{C}$.

Data taking for monitoring the solar system is performed in a twofold way,
i) All energy fluxes as solar radiation, heat from the collector field, the storage, and the heat pump, as well as the various electric energy inputs are measured by appropriate sensors and transmitted to numerical registers centrally piaced in a telltaie board showing the energy fluxes in the system. Readings
are automatically photographed every day before midnight.
ii) In parallel, these energy fiuxes are also recorded by a specially developed computer-based data acquisition systen which records also temiperatures and system status infomation. Data are integrated every 10. minutes or hourly, stored on flexibie disk, and retrieved weekly by mailing the flexible disk, and/or daily by telephone communication to a central computer at the KFA Julich.

The solar system together with the energy counters has been in full operation since beginning of April 1982. The computer system for data taking has been operating since end of June 1982. Yearly performance data were expected to be promising due to the fact that in an altitude of 2964 m there is a heating load also during the

Fig. 2: Scheme of the solar heating systen with basic instrumentation.
summer months and a high solar radiation input all over the year. Data based on the daily photographed energy flux measurements gave 40% savings in the period fron April to October 1982, Fig. 3. In the following winter time a dramatic reduction in system performance was observed. Analysing the high time resolution computer data the reason was found to be a malfunction of fluid dynamics and regulation related to the twin storage system. As a consequence the storage temperatures were always too high causing high losses of electrically generated heat and low collector efficiencies. Since the simple repair of these defects in February 1983 the system has been operating properly. From the available data, Fig. 3, it can be concluded that the plant has the potential of $35-$ 40% year-long savings.

References

1) BMFT, Annual Report 1980 on Hew Sources of Energy, Project No. ET 4315 Z/2, 4.1, p. 1616.

Fig. 3: Result of energy balance measurements of the solar heating plant Mount Zugspitze in the period from April 4 , 1982 to Jan. 5, 1984. The plot shows the mean daily heating load over approximatefy monthly periods. Substracted from the neat-
 energy हixariza, and collector heat output . The nubers below give the incident solar energy available within the weather protecting cover related to 53 m 3 collector aperture area. The white bars above zero define the savings relative to 100% electrical heating. Values below zero describe system losses, mainly due to thermal losses of the storage.
8.2. Methodicai Developments in Solar Collector Testing J.-D. With, P. Sohmedt, H.J. Stein

Due to heat capacity effects standard test procedures like DIN 4757/4 or ASHRAE 93-77 require steady state conditions for the solar irradiation E in order to determine the instantaneous efficiency \% of a solar collector. The time periods for outdoor tests are, therefore, restricted to clear sumy days which do not occur very of ten under middle European weather conditions.

Our attempt to overconie this restriction is to integrate the colfector heat output \dot{Q} and the solar irradiation E over time periods which are longer than the heat capacity time constant of the collector.
$\dot{Q}=\frac{\dot{m} c}{t_{2}-t_{1}} f_{t_{1}}^{t_{2}}\left(\hat{v}_{e}-\hat{v}_{i}\right) d t$
$E=\frac{1}{t_{2}-t_{1}} f_{t_{1}}^{t_{2}} \varepsilon d t$
$\eta=\overline{0} / E$
f = máss flow rate
$c \quad=$ specific heat capacity of the collector fluid
$\hat{v}_{z}=$ collector inlet temperature
\& ${ }^{\circ}$ e collector outiet temperature
$t_{1 / 2}=$ start/stop time of the integration period
Since $i n$ and V_{i}^{b} are hetd constant by the test loop only the outlet temperature δ_{e} fluctuates when the solar irradiation is a fluctuating function with time. Choosing appropriate time marks for start and stop of the integration, i.e. the measured temperature difference $\mathcal{V}_{e}-\tau_{i}^{y}$ has to be the same at the beginning and the end of the integration period, heat capacity effects can be minimized already within integration times of less than one hour.

This method was successfully applied with a bilaterally operated collector test loop at the University of Ljubljana/Yugoslavia. Based on an agreement between the KFA willich and the thiversity of Ljubljana, the Institute for Mechanical Engineering at Ljubljanal was equipped with a versatile test unit usable for absolute and comparative tests of two collectors, Fig. 1. The equipment for this test unit correspends to the standard IKP test stand consisting of a iocp for series connection of two collectors, a thermostat to stabilize and regulate collector inlet temperatures, electronics comprizing PT $100 \Delta \sqrt{ }$ ampiifiers, electronic integrators for $\Delta \nu^{\gamma}$ and E signals, and a multi-chanmel strip chart recorder. Two flat plate collectors were comparatively tested outdoors, i.e. the efficiency curves for both collectors were determined simultaneously under the same climatic conditions.

Collector 1: single glazed, black paint absorber, aluminium rollbond absorber, commercially available in Germany.

Collector 2: single glazed, special absorber structure similar to the construction of heat ex-

Fig. 1: Comparative collector test loop at University of -jubljana equipped with electronic integrators for the precise determination of the mean values of collector heat output and solar radiation input.
changers for air conditioning units, Yugoslavian prototype for comercial solar water heaters.

Measured data points and fitted efficiency curves are shown in Fig. 2. The measurements were done in only two days of bright sumshine by moving the test loop according to the location of the sun. Data scattering is much smaller as compared to earlier measurements under similar conditions. The advantage of electronically determined mean vatues of \dot{Q} and E is clearly demonstrated.

A second possibility to prove the technical quality and the methodical advantages of the KFA-IKP collector test unit has been the temporary use of our original test loop at the Nuclear Research Center Demokritos in Athens, Greece. Here, Greek authorities have started activities to build up a national solar energy test center. Our task is to give technical support to our colleagues at Demokritos ${ }^{2)}$. Two commercially available flat plate collectors have already been tested in late 1983, Fig. 3.

Fig. 2: Efficiency versus reduced temperature of two collectors comparatively tested following the rules of ASHRAE 93-77. Ljubljane, Sept. 26-27, 1983.

Fig. 3: The KFA-IKP collector test unit installed at the NRC Demokritos in Athens.

Collector 1 : double plastic cover, black aluminium absorber with integrated stainless stee? tubing.

Collector 2: single glazed, selective stainless steel absorber of the two sheet type.

Due to very bad weather at the time of the tests only a few efficiency points could be measured. Therefore, the method of additional heat loss measurements according to DIN $475 / / 4$ was applied in order to get the total efficiency curve. The heat loss measurements were perforined overnight under cloud covered sky. It is well-known that outdoor heat loss curves may be parallel shifted into the direction of higher losses caused by long wave atmospheric radiation effects. This was also observed here, Fig. 4. The correct heat loss curve is obtained by shifting the measured curve dowwards until it crosses the zero point. Fig. 5 shows the efficiency curves of both collectors constructed from the near η_{0} values and the heat loss data assuming solar irradiations of 600 and $1000 \mathrm{~W} / \mathrm{m}^{2}$. It is interesting to note that both collectors have the same effective heat loss coefficient. The efficiency of collector 2 is higher at all operating conditions due to a better conversion factor. Results of collector 1 do compare very well with earlier measurements at wilich.

Fig. 4: Collector heat loss versus mean fluid temperature measured outdoors overnight. Athens, Nov. 23, 1983. A paraliel shift of the measured heat loss curve is observed.

Fig. 5: Efficiency versus reduced temperature of two collectors comparatively tested following the rules of DIN 4757/4. Athens, Noy. 23-24, 1983.

References

I) The excellent cooperation with P. Novak and S. Medved, University of Ljubljana, is gratefully acknowledged.
2) We thank F. Andronikos and D. Haikalis, NRC Demokritos, for assistance and excellent cooperation.
8.3. Bilateral Cooperation in the Field of Collector Testing
B. Sack, H. J. Stein

A simple test loop for comparative testing ${ }^{1)}$ of thermal performance of solar collectors was developed at KFA Julich and conated to partner institutions in several countries of the Third World. The aim of this project funded by the German Minister for Research and Techno$\log ^{2}$) is to contribute to the development of the technical infrastructure of testing laboratories in these countries. Participating laboratories are today:

- Universidade Federal da Paraiba, UFPb, Joao Pessoa, Brasil,
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brasil,
- Egyptian Electricity Authority, EER, Cairo, Egypt,
- SEDUE - Coordinaçion Administrativa y de Apoyo, La Paz, Mexico
- Faculty of Electrical Engineering, University of Split Yugos?avia.

Based on practical experjences during the rumning time of the project, severai modifications and improvements of measuring techniques and methodical pracedures are underway. Since in a comparative test using a reference

Fig. 1: Test loop installation at the University of Porto Alegre/Brasil, Febr. 1983, and results of comparative collector testing

- reference collector, black paint, single glass cover, - test collector 1, black paint, double cover (acrylic)
collector the temperature difference of collector outlet and inlet temperatures is the remaining critical source of measuring errors, precise PT 100 temperature sensors (1/10 of DIN standards) and electronic temperature difference amplifiers have been introduced. Instaliations of the test loops at the partner institutes and comparative test results using the improved accuracy of $\Delta \theta$. measurements are shown in Figs. 1 through 4.

Using calibrated instruments for the solar radiation and the mass flow rate it is then also possible to determine collector thermal performance aiong the recommendations of internationally accepted standards. However, test runs are still restricted to days with excellent weather conditions. In the next step the thermal loop of the test stand will be replaced by a newly developed apparatus which guarantees very stable collector inlet temperatures also under fluctuating solar radiation condjtions ${ }^{3)}$. This will make possible the application of the "integration method" ${ }^{4}$) which will considerably enhance the avallability of testing time. Acditional equipment necessary for this purpose, like electronic integrators for temperature difference and pyranometer signals als well as a pyranometer for determining the diffuse fraction of the solar radiation is already in use in most of the participating laboratories.

Fig. 2: Test loop installation at the University of doac Pessoa/Brasil, Feb. 1983, and results of comparative collector testing

- reference collector, black paint, single glass cover, - test collector 1 , black paint, double glass cover.

Fig. 3: Installation of the test loop at the Solar Laboratory La Faz/Mexico, April 1983, and results of comparative collector testing

- reference collector, black paint, single glass cover,
- test collector 1, plastic collector (complete), singie cover (acrylic),
- test collector 2, Mexican collector, black paint, single glass cover.

References

1) B. Sack, H.J. Stein, Development of a Simple Test Unit for Comparative Testing of Solar Collectors, Annual Report 1981 of KFA-IKP, Jiil-Spez-146, p. 102.
2) BAFT Annuat Report 1980 on New Sources of Energy, Project No. ET 4172 B, p. 969.
3) 3. -D. Witt, P. Schmidt, to be published.
1) J.-D. Witt, P. Schmidt, H.J. Stein, Methodical Developments in Solar Collector Testing, of. this Annual Report 1983. 9.111

Fig. 4: Installation of the test loop at the High Voltage Laboratory/EEA, Cairo/Egypt, Nov. 1983, and results of comparative collector testing

- reference collector, black paint, single glass cover,
- test collectar 1 , selective, single glass cover,
- test collector ?, black paint, single glass cover.

8.4. Testing of a Solar Air Heating Collector

T. Zekom

A test loop for measuring the efficiency of an industrially manufactured solar air heater was constructed at the collector test field of the IKP. The loop has been operational since june 1983. The collector consists of hollowbodied plastic panels. The lower absorbing side is made of black, the upper side is made of transparent polycarbonate material, fig. 1. Simuttaneousily the collector can serve as roofing for buildings. This solar air heater has been designed for heat pump applications or preheating domestic hot water. In both applications the collector will be used in an open cycle. With the ambient air temperature always being the inlet temperature, the collector works at low temperature levels with smail themal losses.

Fig. 1: Cross sectional view of an element of the air heating collector consisting of hotlow bodied plastic panels. Dimensions in ma.

Fig. 2: Scheme of the test loop.
Therefore, the test loop, Fig. 2, has been designed as open loop in order to obtain test data under similar operating conditions as in practice. Calorimetric measurements of the useful energy output of a $10 \mathrm{~m}^{2}$ collector module were carried out simuitaneously with the recording of relevant meteorological data. Using the data acquisition systen MADAS the following data are registered:

Collector loop:

$\eta=$ inlet temperature
$\nu=$ outlet temperature
$\Delta \mathrm{D}=$ pressure loss at the orifice plate of the air flow meter
$\nu_{1}=$ temperature behind the orifice plate

Meteorology:

$\hat{v}_{a, d}=$ dry bulb air temperature
$\tau_{a, w}=$ wet bulb air temperature
$E \quad=$ global solar radiation in the plane of the collector
$E_{d}=$ diff̂use solar radiation
$w=$ wind speed
$P_{a}=$ anbient air pressure
Based on a sampling rate of $1 / 20 \mathrm{~s}, 10$ minutes mean values are directly computed by the data acquisition system. The useful heat output $\dot{\mathrm{Q}}_{\mathrm{u}}$ of the collector is calculated with the following equations:
$\dot{q}_{u}=\frac{\dot{m}}{1+x} c_{p, 1+x}\left(\dot{f}_{e}-\gamma \tilde{y}_{j}\right), \quad c_{p, 1+x}=c_{p, a}+x c_{p, v}$
$m=\alpha \varepsilon \frac{d^{2}}{4} \sqrt{2 \Delta p g_{1}}$
m = mass flow rate
$\alpha=$ flow rate number
$\varepsilon=f\left(\theta_{1}\right)$ expansion factor
$d \quad=$ diameter of the orifice plate
$S_{1}=$ air density at the location of the orifice plate
$x=$ absolute humidity
$c_{p, a}=$ specific heat of air
$c_{p, v}=$ specific heat of water vapour
The efficiency written in usual terms as
$\eta-\frac{2}{E A}=\eta_{0}-k_{2 f f} \frac{\nu_{m}^{2}-2}{E}$
was detempined with values of $E>750 \mathrm{~W} / \mathrm{m}^{2}$ and specific mass flow rates between 20 and $80 \mathrm{~kg} / \mathrm{hm}^{2}$. Since the specific heat capacity of air and the applied mass flow rates are relatively low, it is advisable to use the logarithmic mean temperature
$\eta_{\mathrm{m}}^{4}-\nu_{\mathrm{a}}^{q}=\left(v_{\mathrm{stag}}^{4}-\psi_{\bar{a}}^{4}\right)\left(1-\frac{1-e^{-x}}{x}\right)$
with $\hat{v}_{\text {stag }}-\hat{y}_{a}=\frac{\eta_{0}}{k_{\text {eff }}}$
and $x=\frac{A k_{\text {eff }}}{m c_{p}}$
The experimental data are best fitted with $\%_{0}=0.75$ and $k_{\text {eff }}=13.3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. For practical purposes it is useful to plot the efficiency as a function of the specific mass flow rate, Fig. 3.
$\eta=\#_{0} \frac{1-e^{-x}}{x}$
Z is independent of E as long as $k_{\text {eff }}$ can be assumed to be constant. Considering the small range of operating temperatures, $0<\left(\vartheta_{\mathrm{e}}-\eta_{\mathrm{a}}^{2}\right)<50^{\circ} \mathrm{C}$, this simplified characterisation of the collector will be sufficient for the intended applications.

Fig. 3: Efficiency of the open loop air heating collector as a function of the specific mass flow rate.
8.5. Results of IEA-Task III Outdoor and Indoor Pyranometer Comparison

Five groups of pyranometers were investigated both indoors and outdoors. Calibration constants, daylong variability, tilt and seasonal effects were studied. Full characterization in laboratory was also performed for all 27 instruments.

- The experiments were designed very much froti a consuner's point of view. The product in question was the pyranometer. Five groups of pyranometers were investigated, amounting to 27 pyranometers in total. With the exception of the $K \& z$ Chs instruments most of the other pyranometers were essentially new. (Serial numbers are indicative!)
- Manufacturers readily agreed to provide the instruments.
- The outdoor experiments were run at the world Radiation Center, Bavos, Switzeriand, providing the necessary World Radionetric Reference (WRR) on site.
- Indoor measurements to characterize the pyranometers were conducted at Statens Prowningsanstalt, Boras, Sweden, providing the necessary fully automatized test equipment to cope with the extensive measurements.

The study was performed as part of the IEA Solar Heating and Cooling Program, Task ill: Perfarmance Testing of Solar Collectors.

With respect to the outdoor tests in Davos, Switzerland, a special set-up was required because of the large number of instruments: two bars of 5 m length were constructed and mounted on supports that allowed the instruments to be tilted towards the south. Four individual mounts were designed for the moving shadow bar pyranometers. An absolute radioneter PM02 (used as the Horld Racionetric Reference) measured the direct radiation. 0ther meteorological parameters were also recorded. The entire systen was connected to a sophisticated data acguisition unit that recorded all data including the mean of ten 1 -second integrals read over a minute. The data analys is was perfomed on a CDC mainframe conputer. Data were collected for more than 130 hours over a wide range of weather condition during sumer and winter with the pyranometers in both horizontal and tilted positions.
For selected clear days, an absolute reference was available - that is the sum of the direct component measured with the pmo2 plus the diffuse component measured by the shaded pyranoneter. For days with less favourable sky conditions, the arithmetic mean value of four instruments (2 Eppley PSP and $2 \mathrm{~K} \& Z \mathrm{CM10}$) was used as a reference. The selection of these instrments was made on grounds of clear day performance.
Concerning the comparison of manufacturers and our calibration constants we first checked the calibration constants quoted by the manufacturers at standard calibration conditions, i.e, high irradiance, horizontal position , small incidence angle. (Table 1)

Pyranomete: Manufacturer	Type	:nstrument number	Caibration Constants		$\therefore \text { Deviatign }=\frac{\text { Manut Calbration }}{\text { WRC Calibration }}-1$
				\{mikhm ?	
EKO	STAR	81903	8.24	8.2	
EKO	STAR	81903	7.85	7.88	Comen
eko	Sther	81905	6.89	70.5	
EKO	Star	81907	7.25	7.40	
Ero	Stak	81908	9.51	9.62	
ExO	STAR	81909	7.42	7.45	
EPPLEY	PSP	148085	9.81	9.78	
EPPREY	PSP	T7750F3	9.15	9.27	
EPPLEY	PSP	$18{ }^{18515}$	876	898	
EPPLEY	PSP	$20823 F 3$	9.95	99	
EPGLEY	FSE		¢00	T005	
EPPLEY	PSP	20665 F 3	10.28	1024	
KJPP \& ZONEN	CM5	773656	11.94	1172	
KJPP \& ZONEN	CM5	773992	12.62	12.16	
KiPP \& ZONEN	Crs 5	774120	13.41	1260	
KIPP \& ZONEN	Ches	785017	10.59	10.35	
KIPP \% ZONEN	CM5	765047	1223	11.87	
KIPP 8 ZONEN	CM10.	750639	558	5.65	
KIPP \& ZONEN	CH 10.	810119	4.58	4.59	醖
KTPP 8 ZONEN	CMro	810120	4.54	4.52	
KIPF \& ZONEN	CM10	810:2:	4.66	4.62	510
KIPP \& ZONEA	cm10	810122	4.24	4.22	6
SCMENK	STAA	1525	14.26	14.49	
SCHENK	StAR	2186	14.98	159	
SCHENK	STAF	2209	15.36	15.29	
SCHENK	STAP	$22: 7$	14.16	14.97	
SCHENK	STAR	2221	15.24	14.97	

Table I: Comparison of calibration constants (miv/kmm ${ }^{-2}$) We found best agreement for the new CM10 and PSP. The systematic bias of the CM5s is now widely recognized.
Shori tem values and dav-long variability of pyranometers sensitivity are of prime interest for testing and monitoring purposes (Fig. 1 and Fig. 2)

Fiq. 1: Calibration constants, relative performance

Fig. 2: Calibration constants, relative performance

The standard methods of testing the therma performance of solar collectors require the same meteorological conditions as that for the pyranometer calibrations unless the collectors are tested in the tilted position. A possible sensitivity change of the pyranometer under inclined exposure is thus of major concern in collector testing applications. Tilt effects were, therefore, studied. The CM10, PSP and Swissteco did not show any appreciable change of sensitivity when the instruments were tilted, whereas the CM5, EKO and Schenk revealed a decrease of sensitivity.
The characterization of pyranometers took place in Boras, Sweden. Pyranoneters of the thermoelectric type are designed to respond to short wave radiation. This sensitivity is cross correlated with interfering sensitivities of a nuber of parameters which are assumed to have a small combined effect on the instrument's performance. Many of these interfering sensitivities can be investigated by laboratory experiments which are designed to isolate a particular feature. Anong those parameters which affect their sensitivity we find a number which are amenable to indoor measurements:

- the effect of tilt from the horizontal position (tilt effect)
- the effect of the intensity of solar radiation (deviation from the expected linear response, linearity)
- spectrai distribution of the light source and the response of the instmument (spectra? response)
- the temperature of the instrument body or the ambient air (temperature coefficient)
- the effece of transient irradiance and thermal shock (time constant)
- the effect of the angle of the incident solar radiation (azimuth and altitude, cosine error)
Results from the laboratory testing: the results of the temperature effects were encouraging. As found aiso by Dimmirn (1979): the temperature effect was typical for a type or a group of instmumen, the only exception being the EKO-star instruments where each instrument has its individual temperature coefficient.

The groups of K\&Z CM5, Schenk Star and Swissteco instruments showerd a "matural" temperature coefficient while the other groups of instruments (K\&Z CM10, Eppley PSP) aight be classified as slightly overcompensated.
The response of the instruments with respect to varying level of irradiance was linear to a very good degree ($\pm 1 \%$). For the group of Eppley FSP, no deviations from a linear response could be observed.
The effect of tilt is most relevant for the application of pyranometers to solar collector testing purposes. The tilt effect is obviously cross-correlated with the level of irradiance. Three groups of instruments did not show any tilt effect: K 82 CM10, Eppley PSP. Swissteco. The K\&Z CM5, the Schenk and EK0 star instruments showed a
tilt effect of comparable magnitude. It should be noted that these findings agree well with the outdoor investigations.

The directional response is rather unique to the instrument. However, all instruments showed a marked deviation from the ideal cosines response for angles of incidence greater than 60°.

The intercomparison of incioor and outdoor results showed a remarkable correspondence betweën indoor characterization and outdoor perfomance of the pyranometers. However; this was usually only qualitative. The deviations found for some instruments could not be quantitatively accounted for by correction derived from indoor data.
We would not recommend use of pyranometers which show a tilt dependence. However, an instrument which is known to be tilt sensitive should be calibrated in a tilted position on the test site.
From our resuits, we would recomend that the Eppley PSP and the K\&Z CM1O should be used for testing applications. The best instruments also demonstrated variability from sumer to winter in typical test situations (clear sky) by $\pm 1-2 \%$. To account for the uncertainties of the calibration procedure, we claim an overall accuracy of ± 2.5 to $\pm 3 \%$ for the measurment of global radiation under test condition for solar collectors.
Further investigators should strive to characterize the day-long performance of the pyranmeter under study during a typical calfbration day referenced to a direct and diffuse measurement).
In addition, the following variabies should be studied in the laboratory:

- temperature coefficient
- tilt effect (at different level of irradiance)
- the effect of irradiance level (linearity)

We do not recomend cosine measurements because of the present uncertainty associated with measurement technique.

ACKNOMLEDEMENT

The authors would like to express their sincere appreciation to the fellow researchers of the IEA Solar Heating and Cooling Project for their assistance and support. The work was supported by the following institutions:

- The Swiss National Energy Research Foundation under coordination of the Swiss Federal Office of Energy, - the Swedish Council for Building Research.

Participating laboratories:

[^12]
References

1) M.R. Riches (ed) (1982). Proceedings of the International Energy Agency Conference on Pyranometer Measurements, 16-20 March, 1981, Boulder, Colorado. SERI/TR-642-1156R.
2) C. Fröh iich (1980). Results of a Pyranometer Comparison, EEA-Task IIE Report, Davos, 5-6 March, 1980.
3) 4. Dirmirn et a1. (1979). Experience with Tests and calibrations of Pyranometers for a Mesoscale Solar Irradiance Network, Solar Energy, 22, 197-203.
1) K. Dehne (1980). Wichtige Spezitikationen von Pyranometern fuir Solarenergiebelange, Voi. 2, Proc. 2nd International Solar Forum, Hamburg.
2) R.U. Bahn, U.C. Nakes (1979). The Calibration of Solar Radiation Measuring Instruments, the University of New Mexico, Report BER 1 (79) DOE 184/.
3) J.R. Latimer (1971). Radiation Measurement, International Field Year for the Great Lakes, Technical Manual No. 2, Atmospheric Environment Service, Canada.
4) H.E.B. Andersson et al. (1981). Calibration and Testing of Pyranometers, National Testing Inst., Boras, Sweden.

IV. TECHNICAL DEVELOPMENT

g. ISOCHRONOUS CYCLOTRON

9.1. Cyclotron Operation and Improvement
F.G. BSge, W. Brëutigam, F. Bowsoh, R. Brings, P. Fiedlex, H. L. Hogedoom*, H. ITadanek, I. Janakoo, H. Lowin, J. Reich, A. Retz, A. Rotent, G. Sehtronkono, H. Sohow, P. Wucherer

In 1983 the cyclotron JULIC was in operation for 43 weeks. The scheduled annual shut down time in the summer of normally 6 weeks had to be extended to 8 weeks because of two reasons: As there was an increasing demand for high intensity analysed beams at the magnetic spectrograph BIG KRRL the cyclotron had to be operated over iong times with high internal bean power. Because of the related radiation problems the maintenance and repair activities at the cyclotron couid only be started after a delay of more than two weeks. Simutaneously a main transformer had to be exchanged against a bigger type to provide the power for the components of the ISIS-project. Therefore, essential equipment of the building was not available during this pericc. The bean time distribution for 1983 is given in table 1 .

Table 1: Cyclotron time distribution in 1983.
Besides the routine operation and maintenance some modifications and improvements have been realized.

Several water leaks mainly at the tuning plates of the RF system caused severe vacuum problems. Even if the inner surfaces of the water chamels in the aluminium plates of all dees have been coated with epoxy rersin some years ago, it could not be expected, that the corrosion was completely stopped by this measure. New elements consisting of copper plated aluminium sheet retal with soft soldered copper tubes were prefabricated as far as possible. The total variety of parts is available since spring 1983. So we could keep the losses in beam time short by exchanging the
corroded elements subsequently against new devices. Special care hed to be taken to operate old aluminium and new copper parts in one cooling circuit. To avoid possible corrosion probiems the copper tubes are coated with epoxy resin too, up to the date the accelerating systems consists entirely of plates with copper water tubes. - The complete exchange is planned for the annual shut down period 1984.

The modification of the beam line vacuum system is on the way. A first set of six new turbomolecular pumps is in operation since the 1983 shut down period. Pumps and the associated measuring and control equipment perform well. The subsequent exchange of another $10 . .12$ pumps has to be carried on.

A protection circuit for the septum was developed and installed. Even if a septum completely made of tungsten wires is used, which can stand approximately 3 kW internal beam power (instead of 1 kW with a septur of tungsten sheet metal) it is necessary to have a rapid beant switch off when working at the upper limits. Signals from the phase probes are used to stop the beam in the center region when the current becones excessive.

Some measurements at the cyclotron beam were done to study the correlations between instabilities of important cyclotron parameters and extemai beam quality. These investigations have to be continued in order to dafine the stability of the Dee voltage and the frequency needed for a good and reproducibie beam quality from the cyclotron.

First tests proved that the acceleration of fully stripped ions in gu-mode of operation of the cyclotron is possible. Deuteron beans of 8 MeV could be sucesssfully extracted from the cyclotron with intensities of up to 100 nA (see aTso chapter 9.6).

Besides these activities related to the operation of the cyclotron the major part of work was dedicated to the realisation of the project ISIS (see chapter 9.3).
*Eindhoven University of Technology, Netherlands
9.2. Measurement of Transfer Coefficients and Improvements in the Bean Handling System
H. Rogge, d. Reich, L, Zemio, J.G.L. ROmer,
G. Berg. A. Hagedoome ${ }^{\frac{4}{4}}$, G. Hawatach, H. Lewin,
J. MetBumger, W. Detent, G. Rtepe, P. v. Rossen,
D. Frotid, K. D. T®ivedi, P. Turek

The measurement of the beam line properties was continued with a two dimensional position-senstitive St-detector with improved spatial resolution. The center of gravity could be determined with an accuracy of abolit 0.05 mim. A thick Foil at the entrance sift DSt (rity, 1) of the monochinome tor was used to become independent of changing cyclotron beam properties. Essentially the dispersive plane (x-com ordinate) was investigated.

Figure 1: Double monochromator system with the arrangement of quadrupoles (AD), sextupoles ($S X$) and slits ($D S$, AS, IS).

The measurements allowed to improve the beantine mainly in two points:

1. The monochromator was adjusted to second order for focussing from DSI to DS2 in the horizontal plane as shown in fig. 2. The achieved accurary was $\Delta x\left(\theta_{i n}\right)=0.15 \mathrm{~mm}$. Here $\operatorname{tx}\left(\theta_{i n}\right)$ means the shift of the center of gravity of a pencil beam within the working range of $\theta_{i n}= \pm 6 \mathrm{mrad}$.
The measured second order abernation was smulated in the calculations by thin identical sextupole lenses at the entrance of the dipole AM1 and the exit of AM2. The upper part of fig, 2 shows the original situation. The measured points correspond to centers of gravity of a typicaly 0.5 mar wide beam spot. The background is calculated with the simulated sextupotes only. In the middle part second order effects are compensated by the sextupoles SX1 and 5×2 in calculation and measurement. The lower part shows the result of first and second order final adjustment for energies corresponding to Ep-values of $698,1590,1913 \mathrm{kG} \cdot \mathrm{Cm}$, respectively, (In the $E_{p}=23$ meV-curve the effect of a mali deadjustion of the Bo-values of the dipoles AM1/AN2 is demonstrated.) The strong deviations from the design values can thus be explained by inherent quadrupole and sextupole components, but their origin cannot be localized by the position of simulated lenses in furtte ${ }^{2}$. calculations.

There is still one free parameter in the sextupole and quadrupole-settings of the monochromator, corresponding to a not measured inage at IS. Concerning the second order focussing all sextupole fields which follow the relaw tion

$$
\mathrm{B}(S \times 1)+\mathrm{B}(S \times 2)=\mathrm{C} ; \mathrm{C}=-0.8 \cdot(\mathrm{Bp} / 2000)
$$

give the same quality of the focus at $D S 2$ for a $B(S X 1)$ variation from 0 to 100% of C in the measured $B p-r a n g e . A$ similar formula holds for first order focussing and all Bo-values up to the region of saturation. Both relations have been measured to be valid with the same precision $\Delta x\left(\theta_{i n}\right)=0.15 \mathrm{~mm}$.
For the formerly used settings of the sextupoles the constant 6 was practically zero. This explains that almost no change was seen before ${ }^{1)}$, if the field strength of 5×1 and 5×2 was varied simultaneolisly from 0 to 6008 of the calculated value.

Figure 2: Stepwise inmprovenent in adjustment of monochromator focussing in comparison with TURTLE2 ${ }^{2}$ calculations in the background, $\theta_{\text {in }}=$ entrance angle of the beam at DS1, $x_{\text {out }}=$ exit position of the beam at DS2.

Figure 3: Influence of a small turn of the second quadrupole lens before the target on the bean profite (TURTLE calculations). Angle of turn around the beam axis $\psi=0.4^{0}$. Left side; on the target, dark area represents the bealu size for $\psi=0$. Right side: 10 cm behind the target.
2. A "tilting" of the image on the tanget was eliminated After the correct first and second order focussing at DS2 it became evident, that the "tilt" or "blow-up" of the image of DS2 was a first order effect. It was traced back to the misalignment of (at least) one quadrupole in the beam line, which was rotated around the beam axis by only 0.4 4°. The extreme sensitivity to such rotation is demonstrated in fig. 3.

At the image point the main effect is a broadening of the image changing the dispersion of the beam, If the field strength in one of the quadrupoles (not necessarily the misaligned one) is changed by $\approx \mathrm{F} \%$ the shift of the focus point results in an apparent "tilt" of the image which easily can amount to 120°. The coupling between x and y-coordinates transfers changes in x to y and results in a characteristical additional "steering".

A correction of the misalignmant by a weak quadrupole which is turned by 45° around the beam axis is in principle possible. Here a mechanical correction was preferred.

After these two adjustments the focussing from DSI through the whole beam line to the target at the magnetic spectroneter $B K$ was measured to be $\Delta x\left(\theta_{i n}\right) \approx 0.15 \mathrm{~mm}$. This is to be compared with a. 0.5 mam (monoenergetic) image of a 1 mm aperture in DS1.

9.3. Progress of ISIS

The progress of the project ISIS ${ }^{1-4)}$ (Injektion schwerer Ionen nach EZR-Stripping: Injection of heavy ions after ECR-stripping) in 1983 is described for the different. stibsystems (see figure 1).

1. ECR-Source

ㅍ. Beusher, H. Brielt, R. Fiedter, W. Krauss-Vogt, $A .-$. Hathews, A. Rets, U. Rinditeisch
The superconducting magnet system of the ECR-source ${ }^{2)}$ has been delivered in July. A cold leak in the He-tank of the cryostate had already been detected at the factory at $L_{N_{2}}-$ temperature. The system has been set up in Jilich to test the magnetic properties of the superconducting coils and to determine the He losses to decide whether the He-tank had to be repaired or not. The solenoid coils have been energized to the fuil current without any quench supplying a magnetic field required for ECR (electron-cyclotronresonance) at 18 GHz microware frequency. The training of the hexapole has been interrupted at 60% of the full current. Since the He consumption was a factor of 5 to 6 higher than proposed a search was started to localize the cold leak first at the institute (IKP) and later at the $B B C$ factory. In the meantime the leak has been found and repaired. If another leak test at LNz-temperature is successfull the magnet system will be back at the institute in the begiming of 1984.

The main vacuum chamber, which was built by the company "Balzer Hochvakum GmbH", has been delivered in fall. A first plasma stage designed for an overdense plasma ${ }^{5}$) and a flexible extraction system are under construction.

A power supply including remote control and safety system for a 14 GHz 2 kW klystron (Thomson CSF) will be delivered by the "Laboratorium fur Mikrowellenanwendungen, br. Beerwald" in March 1984.

Computer calculations have been started to optimize the ion extraction from a plasma in a strong magnetic field. First results are presented in chapter 9.5.

The work on the Pre-ISIS test sources hes been continued. The results of the latest version Pre-ISIS $2^{\text {iz }}$ are reported in chapter 9.4.

2. Beam Handling and Axial Injection System

W.Broutigom, h.Brezth, R. Fiedten, A.Elets, J.Reioh, U.Rindflerech, P. Whenerer, MAgenc ${ }^{+}$, X, Euler ${ }^{\dagger}$; D, Rosenght ${ }^{+}$

The magnetic elements and power supp ies for the beam handling and axial injection system have been manufactured by the company "Bruker Analytische MePtechnik GmbH" (except the components LH_{0}, LM and H, see figure 1). Eniphasis has been given to watch anc accompany the various magnetic field measurenents of the elements done by the manufacturer by appropriate TRANSPORT ${ }^{\text {(}}$) and TURTLE ${ }^{7}$) ion optics calculations ${ }^{8}$). At the end of the year the magnetic field measurenents and their evaluation was completed and the main parts of the system, the 180°-bending system and the 90°-bending system with matching section in front, were under assembly and adjustment on separate bases partly with vacuun chambers.

Together with the manufacturer a cycling procedures has been tested successfully for a reproduction of the magnetic fields within $\pm 0.3 \mathrm{G}$.

After it has been confimed that the pre-ISIS 2^{*}-source (see also chapter 7.4) is also a powerfut extemal light ion source (LIS) the related beam handing and charge analysis components have been determined to be another solenoid (LHo) and a Wien-filter in an adjacent box (see figure 1).

All adjustment bases and supports for the beam line components including those for quick access to the ones in the 4 m thick wall have been designed and are now manufactured.

Figure 1: Layout of the project ISIS at JULIC: LIS-light ion source; QS, QM, QI-quadrupole magnets; MS, MI-dipole magnets; LH, LV-solenoid lenses; BR-beam rotation solenoid; Bubunching system; LM-magnetic lens; H-nyperbolaid inflector.

The design of the vacuum system has been revised ${ }^{9}$) and the logic of the process generating and surveying a vacuum of better than 10^{-7} mbar with cryo-pumps ${ }^{10}$) in the beam pipe has been worked out.

The complex axial hole insert which will house the solenoids LV1, 2 and $B R$, the bunching system B, the magnetic lense LM, the cyclotron pole insert and the hyperboloid inflector H has been designed and given for manufacturing by the end of the year.

The design of the strong magnetic lense LM (17 cm focal length) has been revised. The glaser-type lense has been built in the IKP.

A system consisting of two double gap bunchers built at and for the Bonn isochronous cyclotron has been investit gated. The bunchers related with appropriate amplitude and phase shift to the first and second harmonic of the cyclotron frequency gave a very satisfactory beam intensity enhancement of a factor 6 . The Bonn cyclotron crew witi built a similar device for the iSIS project.

The former ion source test magnet is being modified to serve as a test bench at a temporary position just after the 180°-bending system for debugging the axial hole insert prior to the installation in the cyclotron.

Prototypes of the beam diagnosis and steering elements to be used for beam tuning ${ }^{11)}$ are being tested.

3. Cyclotron

F. G. Bgge, म. Broutgam, W. Bmett, A. Rets, U. Rindfleisok, P. Whenerer

The original $h=3$ RF-center region design ${ }^{4}$) has been revised and corrected using Runge-Kutta orbit calculations following threedimensional relaxation to generate realistic electric fields (see also chapter 9.6.) : The mechenical center region design requires that the minimum distance in axial direction between RF-conducting and grounded parts is reduced considerably. Using a spacer between Dee and Dumy Dee the electric field has been increased from 18 to $30 \mathrm{kV} / \mathrm{cm}$. No reduction in the conditionned RF-voltages has been encountered during several months of cyclotron operation. The mechanical center region design aiso requires that the upper and lower magnetic pole insert are no longer mirror symmetric to the cyclotron midplane ${ }^{12 \text {). }}$ In a first step of an iterative procedure the magnetic field in the cyclotron center has been mapped for a first set of pole inserts. The evaluation of the data with respect to midplane distiortion is in progress.

The necessity for an improvement of the cyclotron vacuum system becomes evident from table 1 which gives the trans-

[^13] ion species and energies for two different tank pressures.
mission TR for some typical ions from the ISIS ECR-source at different cyclotron energies at two different tank pressures p. The table has been calculated from
$\operatorname{TR}=\operatorname{ExP}\left(-3.35 \cdot 10^{16} \cdot{ }_{0}^{L / \sigma(s) d s)=\exp \left(-K \cdot 10^{4} p\right)}\right.$
evaluating the above integral from available data for three energy regions during acceleration as $K 1, K 2, K 3$ for which the conditions $\sigma_{c} \gg \sigma_{p}$ (KI) and $\sigma_{c} \ll \sigma$ (K3) hold. σ_{c} denotes the cross section for an ion charge change by electron capture, σ_{1} the one by electron loss.
Calculations and associated measurements reveal that a figure of $<2 \cdot 10^{-6}$ mbar can be expected if the present pumping speed of $12 \ldots$... $13000 \mathrm{~T} / \mathrm{s}$ will be improved by the installation of three cryopumps with pumping speeds of $10000 \mathrm{I} / \mathrm{s}$ each. Two of these pumps heve already been installed at the cyclotron and worked well during first tests.

4. Instrumentation

H. Borsch, N. Bräutigam, R. Bringe, K.E. Kruct, A. Muther, 4. Roteri

The universal control module UFB ${ }^{13 \text {) }}$ which mainly will handle the manual and computer control of the ISIS power supplies has been tested successfully. A driver has been written for iss CAMAC interfacing and tested at the same time. A set of 30 modules for the ISIS project but also for the externel beam line is presently under fabrication.

In a factory acceptance test 5 power supplies different in type have been tested ${ }^{14)}$. The non sufficient Jong term stability of two types has been cured meanwhile.

Some of the existing hard- and software for the computer control of the external bean line has already been extended or modified to serve for ISIS purposes, especialiy the FLUKE-scaming system for data aquisition.

The newly developed module for beam current monitoring is now used very satisfactorily in the external bean line. A set of 10 modules is under fabrication.

The control iogic for the ECR-source vacuan system comprising 4 pumping sections equipped with 4 cryo- and 2 turbomolicular pumps has been worked out ${ }^{15}$). It is now being implemented using the SIEMATIC 55 system (Siemens programable logic control system).

The automated control of the ISIS beam line vacuum system ${ }^{16)}$ comprising 3 beam path sections equipped with 8 cryo- but also some turbomolecular pumps uses the Stemens SMP-microprocessor system. The related prototype hardware and the basic software written in PL/M-85 have been tested successfully at one vacuum test section. The fabrication of the complete hardware and the implementation of the final software is under way.
5. Installation and Building
A. Pobiot *, A. Ratz, G. Sohtienkomp

To provide the power for the ISIS components (400 kW connected power in total) one of the main transformers has been exchanged. The different power lines are now ready as well as the various cable racks. The existing watercooling system has been extended for the ISIS purposes. The floor plans for placing the ISIS electronic and auxiliary devices have been worked out and the 20 racks have been ondered.

The shielding against the expected Roentgen-radiation from the ECR-source has been delivered and partTy errected.

References

1) Erläuterungsbericht und Planungsunterlagen zum Projekt ISIS, März 1981
2) H. Beuscher, H.G. Mathews, C. Mayer-Böricke, 3. Reich, Proc. Gth Int. Conf. on Cyclotrons and their Applications (Caen, 1981), Hrsg. G. Gendreau (1982) p. 285
3) R.K. Bhandari, J. Reich, Proc. 9th Int. Conf. on Cyclotrons and their Applications (Caen, 1981), Hrsg. G. Gendreaw (1982) p. 261
4) L. Aldea, U. Reich, P. Wucherer, Proc. Ith Int. Conf. on Cyclotrons and their Applications (Caen, 1981), Hrsg. G. Gendreau (1982) p. 461
5) H.-G. Mathews, H. Beuscher, C. Mayer-Böricke, Physica Scripty, Vol. T3, p. 52, 1983
6) K.L. Brown, D.C. Cary, Ch. Iselin, F. Rothacker, Report CERN 80-04, March 1980
7) K.L. Brown, Ch. Iselin, Report CERN 74-02, February 1974
8) J. Reich, ISIS-note 1, April 83
9) P. Wucherer, ISIS-rote 5, April 83
10) P. Wucherer, ISIS-note 4, April 83
11) 4. Reich, ISIS-note 2, April 83
1) P. Wucherer, U. Rindfleisch, ISIS-note 7, May 83
2) W. Bräutigam, ISIS-note 8, Ocṫober 82
3) W. Bräutigam, ISIS-note 10 , June 83
4) R. Fiedler, A. Miller, ISIS-note 11, December 83
5) K.F. Kruck, N. Rotert, ISIS-note 9, May 83
'IUniversity of Bonn, F.R. Germany
*KFA. Julich
9.4. Pre-ISES 2*-a two stage ECR source for highly stripped Tight heavy ions
A.-G. Mathews, F. Eeweher, R. Fiedler, W. KroussVogt

Because of the delay for the delivery of the ISIS ECR source ${ }^{1,2)}$ superconducting magnet sys tem the development of the small ECR source pre-ISIS $2^{3,4 \text {) could be con- }}$ tinued in 1983.

Based on a proposal of the BerkeTey ECR source group the easy axis of the $\mathrm{Sr}_{\mathrm{CO}}^{5}$-hexapole bars inside the preISTS 2 source was tumed by 90 degrees to achieve an aztmital magnetization of the hexapole. In this way the heating up of the vacuum chamber was considerably reduced. Replacing the so far used 0-ring gaskets, which had sometimes been destroyed because of microwave absorption, by copper on indium seals the background vacumn pressure of the source was lowered to $5 \cdot 10^{-8}$ mbar resulting in a better output especially for the higher ion charge states.

A new support structure for the extraction system gave more pumping speed to the ion extraction area. The probTems associated with neon cryopuming have been solved by the installation of an adequate thermal buffer plate between the condensation surface and the head of the second refrigerator stage of the cryopump.
Jests with an overdense plasma stage at $2.45 \mathrm{GH}^{5}$) as an injector stage for the pre-ISIS 2 source had failed - probably because the plasma density injected into the second stage was above the cat-off density for 5 GHz . The energy of the ions fron the overdense stage was found to be well below 5 eV , therefore the decision was made to try the overdense plasma stage as injector for the higher frequency 14-GHz-ECR stage of the superconducting ISIS source ${ }^{1)}$. For pre-ISIS 2 a 5 GHz ECR-injector stage was set up, which worked very satisfactorily. Figure 1 shows a schematic drawing of the new two stage source, preISIS 2 w, together with the axial and the radial magnetic field distribution. The magnetic resonance field for the

Figure 1: Schematic drawing of the pre-ISIS 2 * ECR-source including the axial and the radial magnetic field distribution.
injector stage was achieved by adding another watercooled solenoid and an iron endplate to the original pre-ISIS 2 arrangement. The power consumption of the 3 main coils and the 2 additional coils, which detemine the mirror ratio of the second stage, is about 46 kH .

The microwave power for the injector plasma stage is delivered by the s'ame 5 GHz klystron as for the hot plasma stage. By means of an E-H-tuner and a circulator a defined part of the incident microwave power to the second plasma stage is reflected and guided through a quartz window into the first stage. The refiected power from this plasma stage is dumped in an isolator. The microwave power consumption for the production of carbon, nitrogen and oxigen jons was in the order of 300 W and for argon ions less than 600 W .

The ions produced inside the injector stage - mainly charge state 1 - enter the second plasma stage through an 8 mm bore. There is no additional pumping needed for the first stage.

Figure 2: Spectra of nitrogen ions from pre-ISIS 2* with and without plasma in the injector stage.

Figure 2 gives two nitrogen spectra from pre-ISIS 2 * showing the improvement by the injector plasma stage. A remarkable increase in higher nitrogen charge states is observed, when the first stage is turned on. In connection with this effect a drop of neutral gas pressure in the second stage is found. This indicates that mainly ions enter the second stage, which leads to a reduced probability for charge exchange with neutral atoms. At the same time the total ion intensity froil the source increases by about 40%. The numbers attached to the nitrogen peaks in figure 2 are measured currents obtained at 1.3 m from the source exit in a mode with strongly reduced resolving power of the analysing system and optimized transmission. Figs. 3 and 4 are typical spectra of carbon-13 and nitro-gen-15 enriched gas mixtures from pre-ISIS $2 *$, showing also the fully stripped carbon and nitrogen ions. The high contribution of helium ions in the spectra is due to the addition of helium gas to the working gas mitrogen, which leads to a more stable and effective operation of the source. Fig. 5 demonstrates the effect of mixing a lighter gas to the gas to be ionized in pre-ISIS 2 *. Adding nitrogen to argon strongly shifts the charge distribution for

Figure 3: Spectrum of carbon-13 ions from pre-ISIS 2 +.

Figure 4: Spectrum of nitrogen-15 ions from pre-ISIS 2 *.

Figure 5: Argon charge states from pre-ISIS 2 * for different gas compounds.
the argon ions to higher charge states, whereas the charge distribution for ntrogen gets worse compared with fig. 2 . This leads to the assumption, that the heavier ions may achieve a better confinment at the cost of the lighter, more mobile ones. It is aiso visible from figure 5 , that helium is less efficient than nitrogen as additional gas. As another result it can be stated, that the accepted microwave power rises with the effectiveness of the compound gas (Ar: $160 \mathrm{~W}, \mathrm{Ar}+\mathrm{He}: 250 \mathrm{~W}, \mathrm{Ar}+\mathrm{N}_{2}: 580 \mathrm{~W}$), probably leading to a higher average energy of the plasma electrons.

The energy spread of the extracted bean was investigated for ions from the injector plasma stage and from the second plasma stage with both stages in operation. Due to the low electron energies and the poor confinement the energy spread for ions from the injector plasma stage is about 2 eV . For ions leaving the hot plasma stage of the source the energy spread was determined to be about 5 eV . Because of the sheeth potential between the confined plasma and the wall of the second stage vacum chamber the energy of the extracted ions is about 20 to 30 ev per charge figher than given by the source potential power supply. The vafue for the sheeth potentiat strongly dem pends upon the microwave power applied to the source.

The radial emittance of the extracted nitrogen beam after momentum separation was measured to be $\varepsilon_{90 \%}=(294 \pm 45)$ mmmad for $\mathrm{N}^{1+}, \varepsilon_{90 \%}=(241 \pm 36)$ mas mrad for N^{2+} and $90 \%=(200 \pm 30)$ min mrad for N^{3+} with 6 kV source potential. The emittance of the total beam from the source at 6 kV lay within a phase space of $E_{90 \%}=(420+63) \mathrm{mm}$ rarad. This indicates, that almost the total beam out of pre-ISIS $2 *$ can be accepted by the dilich cyclotron, which has an acceptance of 500 mm mrad due to the hyperboloid inflector. Table 1 comprises the intensities per charge state for the different gases obtained from pre-ISIS 2* as a source for jight heavy ions.

For the light ions up to a-particies pre-ISIS 2 * works best as a single stage source with the first stage solenoid not energized. The ion intensities obtained in this way after momentum separation are represented in fig. 6.

Figure 6: Bean currents from pre-iSIS 2 working in the fight ion source mode.

With a total power consumption of about 60 k'd and a gas consumption of less than $5 \mathrm{~cm}^{3}$ per hour pre-ISIS $2 *$ is one of the less expensive sources for α-particles in the hundreds of 1 A range and highly stripped light heavy ions.

charge GAS state	1-3	4	5	6	7	8	9	10	11	12	13
C-13	$>30 \mu \mathrm{~A}$	17」A	1.57 A A	30 nA							
N-15	$>40 \mu \mathrm{~A}$	$36 . A$	18, A	1) A	16 nA						
0-16	$>40 \mu \mathrm{~A}$	37, A	36	111A	170 nA	()					
Ne-20	>40, A	$36 . \mathrm{A}$	12 A	$2.11{ }^{1}$	340 nA	15nA					
Ar-40	$>20 \mu \mathrm{~A}$	$8 \mu \mathrm{~A}$	61 A	$7 \mu \mathrm{~A}$	10, A	$15 \mu \mathrm{~A}$	7% A	$2.2 \mu \mathrm{~A}$	370nA	35 nA	3 nA

Table 1:

Intensities of light heavy ion species obtained from pre-ISIS $2 *$ at 6 kV after momentum separation.

References

1) H. Beuscher, H. wG. Mathews, C. Mayer-Böricke, J. Reich, Proc. 9th Int. Conf. on Cyclotrons and their Applications, Caen, 1981, Hrsg. G. Gendreau (1982) 285
2) H. Beuscher, H.-G. Mathews, U. Reich, IKP-Annual Repoert 1980, Jiil-Spez-99 (1981) 152
3) H.-G. Mathews, H. Beuscher, R. Fiedler, W, Krauss, IKP-Annual Report 1982, Jili-Spez-202 (1983) 109
4) H.-G. Mathews, H. Beuscher, h. Krauss-Vogt, Proc. Int. Ion Engineering Congress - ISIAT ' 83 \& IPAT ' 83 , Kyoto/Japan (1983) 209
5) H.-G. Mathews, H. Beuscher, C. Mayer-Böricke, Proc. Symp. on Production and Physics of Highly Charged Ions (Stockholm 1982), Physica Skripta, Vol. T3 (1983) 52
9.5. Computer Calculation on the ECR Ion Source extraction

$$
\text { W. Krouss-Vogt, } H \text {. Beuschex, } B .- \text { G. Wathews }
$$

A computer code has been installed to study the fon extraction and beam formation for the ISIS ECR-Source ${ }^{1)}$. The code detemines the ion trajectories in combined electrostatic and magnetic field configurations ${ }^{2}$).
of special interest is the influence of the strong axial magnetic field of the source. This field decreases in the case of 14 GHz microwave frequency for the ECR-plasma from 7.6 kG at the exit of the source to 0.14 kG at about I m downstream where the ions enter the 180° bending systern of the beam line to the cyclotron ${ }^{3}$. If the ions would follow the diverging field lines of the decreasing field the result would be a strongly diverging beara. Under such conditions an efficient beam transport to the cyclotron couid be difficult.
Therefore the first calculations have been carried out to understand this influence of the decreasing magnetic field on the extracted ions. The results are given in figure 1 . An accel-decel extraction geometry consisting of the plasma electrode, a phler and a decel electrode has been used. Figures la) and b) show the ion trajectories along the first 30 cm behind the source, part a) is the case with and b) without magnetic field.

These results indicate that the fringing field has no defocussing effect but acts like a magnetic iens producing a beam waist at a distance of about 17 cm from the exit of the source in this special case. In the case without field (Figure 1b) this waist does not appear but the fon trajectories are steadily diverging behind the acceleration gap.

For program technical reasons it was necessary to start a second run in order to follow the beam envelope over the full distance from the plasma electrode to the entrance of the bending system. Because of the focussing effect of the fringing field only one additional optical device, namely a solenoid lens at $z=98.5$ cm behind the plasma electrode has been inserted. Figure lc), which is the continuation of figure 1a), shows that the slightly diverging beam can be focussed before entering the bending systen, but further calculations are necessary to investigate the emitiance matching of the extracted beam to the adjacent injection Eine.
Another point to study is how the beam quality is determined by the geometry of the plasma etectrode.

References

1) H. Beuscher, H.-G. Mathews, C. Mayer-Bbricke, J. Reich, Proc. 9th Int. Conf. on Cyclotron and their Applications (Caen, 1981) p. 285
2) W.B. Hermannsfeld, SLAC-226 UC28 1979
3) R.K. Bhanderi and J. Reich, Proc. gth Int. Conf. on Cyclotrons and their Apptications (Caen, 1981) p. 261

Fig. I: Ion trajectories behind the ECR-source for $M / Q=2$
a) First 30 cm behind the plasma electrode with magnetic field
b) Same part without field
c) Continuation of part a) from 30 on behind the plasma electrade to the entrance point of the 180° bending system with an solenoid lens.

9.6. Check of the ISIS-center-region

The center region had to be redesigned for the project ISIS ${ }^{l}$. The principal physical design was already fixed in 1980^{2}), because the coordinates of the beam entrance hole in the pole plate had to be fixed early for technical reasons. The details of the centen region geometry, however, car be changed more easily: e.g. a puller change takes only a few hours to get the cyclotron operational agair. The design has themefore been performed in two steps: For the first step a self optimiting procedure ${ }^{2}$) (IONAN) was used having a fast analytical calculation of the orbits. This, however, requires a simplification for the fields: the magnetic field must be homogeneous and the electric field shape sharply cut off at the boundaries of the acceleration gaps. In the second step, reported here, the electric field distribution in the regions of the first and second gap is calculated by a 3 -dimensional relaxation code (RESEKT) and the orbits are integrated by the Runge-Kutta method. The output parameters from the IONAN-procedure were used as input parameters for the Runge-Kutta integration but with realistic electric fiefds.

The beam envelope of 27 particles representing a phase space area of $160 \cdot$ a momrad and $\pm 20^{\circ}$ RF-phase width at the start (exit of the inflector) are shown in fig. 1 (upper part, case A, hatched area). For comparison the envelope of the IONAN-calculation is displayed as well (blackened area).
As a result of a mechanical desien study ${ }^{3}$) it turned out that the cesigned pulier did not match with the necessary spatial shape of the hyperboloid inflector casing. This fact is not yet taken into account in the upper part of fig. l. The bean is off centered by $6-7 \mathrm{~mm}$. The energy gain is too small and the envelopes are much broader because of a higher degree of nonlinearity for the acceleration in the first gaps. This has been investigated more closely and confimed by looking at the energy gain, RFphase, etc. as a function of gap number, geometrical phase space, etc. Two examples of such figures are presented. In fig.2, the energy gain per turn for deuterons is diplayed vs. the number of the accelerating gaps. In the IOARN-calculations with sharp cut off electric fields the energy gain is close to the maximum of 41 kev except in the first gap (not show in fig. 2). Using realistic elegtric field shapes but the icentical input parameters the energy gain is much too less and oscillates within a period of six gaps i.e. one turn. This corresponds with the motion of the orbtt centers in the median plane shown in fig. 3. The motion inside a gap is represented by a straight line showing the energy gain (length) and gap angle (direction) but the orbits do not move in between two gaps. The center of gravity of the orbit centers of the last (six) gaps is a measure for the beam centering, The parameters of case A in fig. 3 are identical with those of fig. 2 (case A). The off centering of 7 mili clearly is caused by the low energy gain in the gaps number 3,4 and 5 but it originates already in the first two gaps from

Figure 1: Dee-structure of the ISIS-center-region and envelopes (hatched areas) of the bean for input parameters from the IoNAN-calculations (upper part, case A) and for a modified geometry of the first and second gap (lower part, case B). The blackened areas represent the results of the roNan-calculations. HC-hyperbolotd inflector casing.
the severe difference in the electric field shapes in comparison to the idealized sharp cut off assumption in the IONAN-calculations.

The necessary modification of the inflector and puller shape (fig. 1 , lower part, case B) mainly rotates a Tittle the direction of the electric field in the region close to the exit of the inflector. The consequence is that the energy gain in the gaps number 3-5 is improved essentially. The center of curvature of the orbit centers is shifted to a point for which mainly a rotation of the second gap can shift it towards the machine center (MC in fig. 3). A rotation of only the second gap is feasible because of a sufficient turn separation (compare fig. 1). The necessary angle for this was derived from

Figure 2: Energy gain ΔE per gap vs. the gap number for the cases A and B (see fig. 1) for RF-phases at start of -125° (full lines) and -85° (dotted lines). e VDEC $=41 \mathrm{keV}$ is the upper limit for the energy gain ΔE.

Figure 3: Orbit centers in the median plane as a function of the gap number for the cases A and B (see fig, 1). $\mathrm{MC}=$ machine center. C_{A} and $\mathrm{C}_{\mathrm{B}}=$ centers of gravity for the last six orbit centers. The lines represent the action of the gaps; the numbers are the corresponding gap numbers.
fig. 3. Additionally the width of the second gap is reduced from 10 to 8 min. The results of the modifications in the first and the second gap are shown in the figs.1-3 denoted as case B. The radii of the orbits now are sufficiently large to avoid the hitting of physical boundaries. The envelopes are smaller. The energy gain and the orbit centering are nearly as good as in the ronAN-calculations. A more detailed investigation of the optical properties of the center region would need a lot of systematical and elaborate calculations for the first two gaps.

References

1) H. Beuscher, H.-G. Mathews and J. Reich, Annual Report 1980. IKP, KFA duilich, Jul-Spez-99 (1981) 152; R.K. Bhandari, J. Reich, Annual Repori 1980, IKP, KFA Jilich, J11-Spez-99 (1981) 154;
L. Aldea, P. Wucherer, Annual Report 1980, IKP, KFA Julich, Jith-Spez-99 (1981) 156
2) L. Aldea, J. Reich, P. Wucherer, Proc. 9th Int, Conff. on Cyclotrons and their Applications, Caen, 1981, 461
3) W. Bräutigan, U. Rindfleisch, P. , iucherer, Annual Report 1982, IKP, KFA Jijich, Jiil-Spez-202 (1983) 109
*Eindhoven University of Technology, Netherlands
9.7. First Experimental Results of an Operation in the 9_{ω}-Mode
P. Whoherer
The cyciotron JULIC originally was designed for an operation in the $3 w$-mode from an internal ion source for energies between 22.5 and $45 \mathrm{MeV} / \mathrm{A}$.
The project ISIS ${ }^{1-5}$) now under progress delivers heavier ions to the cyclotron center region by means of an ECRsource ${ }^{1,2)}$ and a beam handing and axial injection systen ${ }^{3-5)}$. However, for many nuclear spectroscopy experiments as e.g. proposed in the project 0SIRIS ${ }^{\circ}$) energies as low as $4-5 \mathrm{MeV} / \mathrm{A}$ are favourable. This energy range would match with that of the cyclotron if operated in the 9_{ω}-mode.

Before the external injection system becomes operational first experiments with the internal ion source have already been perfomed and some basic properties and side constraints have been discussed ${ }^{7}$). Basic problems being involved with the 9 -mode operation are:

1) To extract ions with $A \geq 20 Q / A \approx 1 / 4$ at a beam current of $\$ 100 \mathrm{nA}$ from the source and to transport there to the cyclotron. The inflection into the median plane of a compact type cyclotron requires very low injection energies of $\approx 0.5 \mathrm{keV} / \mathrm{A}$ in this mode.
2) The modification of the center region for both the harmonic numbers $h=3$ and $\mathrm{h}=9$. The most practicable design would be not to change the Dee geonetry, However, a puller change may be necessary.
3) Beam dynamic problens i.e. the proper Dee angle, trim coil configuration (currents and setting and RF-stability).
4) Gas stripping of the necessarily not totally stripped ions during accelleration.

The first two problems are not yet investigated in detail for the external injection but it has been found out experimentally that the present center region with an internal source really works in the g_{w} mode. The meeded RFamplitudes are much higher than one would expect from the scaled orbit-philosophy in the $3 u-m o d e$. This, however, is very helpful for the last two problems as it reduces the total turn number and therefore the beam path length, too.

The very first experiments have been performed with deuterons to get rid of the stripping probiem. By iterative corrections of the cyclotron frecuency and the trim coil currents the beam is brought to extraction radius. For a possible future routine operation of the ga-mode the trim coll settings have to be calculated from field maps.

Since the shape of the averaged main magnetic field (i.e. the pole face geometry) had been adapted to a relativistio mass increase of 4.1% (i.e. 77 MeV deuterons) the trim coil currents are on a high negative level for the very low mass increase in the 9ω mode of $\approx 0.4 \%$. Practically, this means there is a lower limit for the charge state of the ions or an upper limit for the energy, resp. As so far it is clear that for $4-5 \mathrm{MeV} / \mathrm{A} Q / \mathrm{A}$ must be $>1 / 4$ for the present maximum trim coil currents of 20 A .

By the measurement of the 12 phase probe signals the normally used optimization procedure (matrix method) ${ }^{8}$) could be successfully applied. In figure 1 the turn patterns (upper part) and the corresponding phase deviations are shown (lower part). Only the first two phase deviations

Figure 1: The upper part of the figure shows the turn patterns for deuterons accelerated in the $9 w-m o d e$ for $f=26.3 \mathrm{MHz}$ $(3.7 \mathrm{MeV} / \mathrm{A})$ and the lower part the corresponding phase history vs. the radius of the valley probes (Vee $=22 \mathrm{kV}$).
are signficant and further investigations will show if they can be avoided. Since center region features turned out to be coupled with at least the first phase signal (e.g. necessary rf-anplitude) the problent is more complex as that for the larger radit. The coherent amplitude is in the normal range ($\$ 2$ mim) and extraction efficiency $\& 30 \%$ i.e. not too far from routine operation in the $3 w-m o d e$.

The bean loss on the first 4 orbits is about a factor of 10 and is strongly dependent on the RF-amplitude, ion soluce position and trim coil setting.
The gas stripping problem was investigated with ${ }^{4} \mathrm{He}^{1+}$. The ion sources used in routine a operation have broad extraction slits and the He-gas pressure in the cyclotron vacuum chamber therefore rises to $\% 6 \cdot 10^{-5}$ Torr. Atready at $1 / 3$ of the totat bean path length ($1.6 / 3 \mathrm{~km}$) the spill beam of ${ }^{4} \mathrm{He}^{2+}$ ions exeeds that of the properly accelerated ${ }^{4} \mathrm{He}^{1+}$ ions. The beam current drops according to
$I=I_{0} \cdot \exp (-\bar{a} \cdot p \cdot t)(I=$ bean current, $p=$ pressure in Torr, $t=$ acceleration time in s, a is a constant,

The constant is proportional to $\sigma_{\text {Toss }} / v$ ($\sigma_{\text {loss }}=$ stripping cross section, $v=$ particle velocity). This advantageous fall off of the cross section ${ }^{8-9}$) for this energy range is demonstrated in figure 2 in which $1 g I / I_{0}$ is displayed vs. R^{2} (since $R^{2} \approx t$), Curve I is taken at a pressure of $\approx 6 \cdot 10^{-5}$ torr and 85% He-gas content. The constant derived fron the slope of curve I and the roughiy estimated turn numbers from figure 1 is $a \geq 1.1 \cdot 10^{9}$ Torr $^{-1} s^{-1}$ whereas the previous figures are $5-40 \cdot 10^{9} 9-10$).

Figure 2: The beam current vs. $R^{2}(R=$ radius of the valley probes) is displayed on a log scale for different gas pressures and compositions:
Curve I 85% He-gas at p \& 6.10 ${ }^{-5}$ Torr
Curve II mixed composition at p \& $8 \cdot 10^{-6}$ Torr
Curve III $12 \% \mathrm{He}$-gas, $\left\{80 \% \mathrm{~N}_{2}\right.$-gas at $p \not \approx 2.9 \cdot 10^{-5}$ Torr ,$+ x$ and 0 e, resp., mark different measurements for the identical conditions ($f=23 \mathrm{MH}_{2}$, VDee $=27 \mathrm{kV}$)

By using an ion source with a small slit the pressure was reduced to $\% 8 \cdot 10^{-6}$ Torr. The trin coll set was scaled according to the magnetic field levels from that of the deuterons (Figure l). This is a good guess because of the low realivistic mass increase of both ions. By phase optimization the final phase history was similar to that in the lower part of figure 1 . Curve II in figure 2 shows the resulting decrease of $1 \mathrm{~g} I / 5_{0} \mathrm{vs}$. R^{2}. So far it is not clear why the slope is not a straight line; presumably the pressure p and the gas composition are not constant. By inlet of nitrogen gas to $p: 2.9 \cdot 10^{-5}$ Torr the strong decrease of curve III in figure 2 was measured and a value of a $\approx 3.5 \cdot 10^{9}$ Torm $^{-1} 5^{-1}$ is derived from the siope.
Up to $100 \mathrm{nA}^{4} \mathrm{He}^{1+}$ could be extracted from the cyciotron with an extraction efficiency of 44%.

The author wishes to thank for the support of H. Lawin, H.L. Hagedoom and the operators of the cyclotron Julic.

References

1) H. Beuscher, H.G. Mâthews, C. Mayer-Bbricke and J. Reich, Proc. gth Int. Conf. on Cyclotrons and their Applications (Caen 1981), Hrsg. G. Gendreau (1982)
2) H.G. Mathews, H. Beuscher, R. Fiedier, R. Krauss-Vcgt, this Amual Report, contribution 7.4
3) Erläuterungsbericht und Planungsunterlagen Zum Projekt ISTS, März 1981
4) R.K. Bhandari, J. Reich, Proc. gth Int. Conf. on Cyclotrons and their Applications (Caen, i981), Hrsg. G. Gendreau (1982) p. 261
5) L. Aldea, λ, Reich, P, Wucherer, Proc. Gth Int. Conf. on Cyclotrons and their Applications (Caen, 1981) Hrsg. G. Gendreau (1982) p. 461
6) R.M. Lieder, H.M. Jäger and C, Michel, IKP-Annlial Report 1982, Jil-Spez 202 (Apri1 1983)
7) H.L. Hagedoorn, P. Wucherer, ISIS-note 12, Dec. 1983
8) J. Linz, IKP Anmat Report 1977, Juil-Spez-15 (Jume 1978), p. 123
9) R.S. Lond et 2]. Proc. 5th Gyct. Conf. Oxford (1969) Hrsg. R.W. Mcillroy (1971) p. 453
10) W. van Genderen and H.L. Hagedcorn, Internal Report of the Technica? University Einchoven VDF/NK 83.34 (Sept. 1983)
10. COOLER RING COSY
10.1. The Cooler Storage Ring Cosy
G. Berg, C. Gal ${ }^{+}$, H. Hagedoom ${ }^{++}$, J.A. van der Herce ${ }^{++}$, F. Hinterbergex", S. Whatin ${ }^{* *}$, T. WagonKuokuk ${ }^{*}$, I. Osterfeld, H. Pazts gen. Sohteok ${ }^{* * *}$, D. Prasthn, A. Rogge, P. v. Rossen, P. Turek

The concept of a cooler storage ring (COSY = Cooler Synchrotron) has been worked out which includes recent accelerator and experimental developments for future muclear reactions research and winn will nake efficientiy use of the SNQ-LINAC. The presented storage ring allows a variety of novel experiments and covers a large field of interests of nuclear reaction physicists in Nordrhein-westfalen. The intention is to build CoSY at the IKP of the KFA with the support of the Institutes for nuclear physics of the Universities of Bochum, Bom, Eindhoven, Köln and Minster.

The three essential properties of the storage ring are:

1) Very efficient use of the beam by internal target technicues in the storage ring.
2) Energy variability by RF-acceleration.
3) Extremly high bean resolution by electron cooling.
cosy will satisfy the requirements of nuclear physicists for high resolution experiments also with polarized particles in the so called energy window of the nucleonnucleon interaction at $150-300 \mathrm{MeV}$. Other possible experimental techniques will be pointed out below.
With the existing cyclotron UULIC, the ISIS source for light ions which is under construction and the successfully working high resolution magnet spectrometer BIG KARL there are very favourable circumstances for a successful use of the proposed storage ring.
Two ways of injection are planned:
4) Fron the SMQ-LINAC energy variable protons with energies $E_{p} \geqslant 100$ Me' in particular for more than $\sim 10^{11}$ particles in the ring. High resolution spectroscopy with BIG KARL up to about 500 HeV is possible. This secondary SNQ-beam should be polarized.
5) From the cyclotron UULIC ($p, d,{ }^{3} \mathrm{He}, \alpha$ with $22.5-45 \mathrm{MeV} / \mathrm{M}$). Later ISIS-paticles (ECR source with extemal injection). The extemal injection under construction will also allow the installation of a polarized fon source.

Figure 1 shows the principal lay out of the storage ring. The lattice consists of 6 unit cells with 2 quadrupole and one dipole magnets and 2 straight sections which are designed for the installation of the electron cooler and the spectrometer target area. Details of the lattice are given in another contribution to this report. It should be mentioned that the electron cooling is a novel development in accelerator technology with so far unused potentialities allowing extrenty high momentum resolution of $40 / \mathrm{pu} 10^{-5}$ (refs.1-3). With cosy we want to make use of these developments for nuclear research experiments. For the proposed concept we assume that the frequency of the RF-structures can be varied within a factor of 2 . This allows for example the following energy variations:

Figure 1: Schematic view of the cosy storage ring with the essential elements of the ion optical system, the electron cooler, the injection and some of the experineental instruments.

- protons: 10-200 Mev for injection of max. JULIC energy $\varepsilon_{p}=45 \mathrm{MeV}$
- protons: $100-500 \mathrm{MeV}$ for $\operatorname{SNQ}-\mathrm{injection}$ at assumed $E_{\mathrm{p}}=350 \mathrm{HF} \mathrm{V}$
- c-particles: 20-350 MeV for injection of min, futic energy $E_{\alpha}=90 \mathrm{MeV}$.

Further energy variations are possible by different harmonic modes of the cyclotron. The cooled emittance is expected to be as simall as 0.1 i mm mrad (for $\angle \theta$ a 1 mred this means a target spot of $4 x \approx 0.3 \mathrm{~mm}$). For 10^{9} particles in the ring the attainable momentum resolution will be ap/p a 10^{-5}. For a revolution periode of $0.4 \mu \mathrm{sec}$ $\left(E_{p} \approx 400 \mathrm{MeV}\right)$ the circulating current is 0.4 mA . For higher currents the momentumt resolution becones worse and will be $\Delta p / p \leqslant 10^{-4}$ for 100 mA . The straight section in the ring offers sufficient space for the installation of a $6 \cdot \mathrm{~m}$ long cooier device, e.g. 6 m long Fenmlab design ${ }^{4}$).

Target stations:

In the ring one target station is intended for high resoJution experiments (BIG KARL). It should be possible to measure reaction products at very forward scattering angles ($\theta_{\text {lab }}=0^{\circ}-20^{\circ}$). With a second spectrometer (re. coil spectrometer) indicated in Fig. I the experimental possibilities could be extended significantly, in particular because the extremely thin internal targets (e.g. gas jets ${ }^{5}$) allow the measurements of recoil nuclei. The use of gas jet or atomic beam targets is also possible in the short sections in the ring, also parallel with other experiments, in particular when extremaly high luninosi-
ties are required, i.e. parallel cooling and measuring on very thin targets ($\leqslant 0.1 \mu \mathrm{~g} / \mathrm{cm}^{2}$).

For conventional scattering chamber experiments the cooled bean can be extracted. This SLOW-EXTRACTION is already used at LEAR, CERN ${ }^{6}$). For 100 mA circulating current there will be available about 30 nA externally with a duty factor of $1: 3$, i.e. in the average about 10 nA . Higher currents are possible, but one has to bear in mind that this will deteriorate the good momentum resolution.

Beam properties:
The outlined coofer ring accelerator has the following main properties:

- Very high luminosity for experiments with extremely thin targets ($\Leftrightarrow 10^{17}$ atoms $/ \mathrm{cm}^{2}$).
- Variable duty factor up to 100 o (DC beam).
- Fine tuning of the primary energy ($1 \mathrm{MeV} / \mathrm{min}$) with the electron cooler.
- Very accurate absolute energy definition by measurement of electron energy.
- For stripping injection efficiency nearly 100%, i.e. measurement during injection.
- No beam stop in the recirculation mode (internal target), hence reduced background.
- As internal targets also polarized atomic beams including existing polarized heavy ion beams can be used.
- Target materials with high evaporation temperature might be usable as target by sputtering techniques.

Possible experiments:
With this accelerator concept many novel experiments might become possible:

- Fine energy tuning for sharp resonances and threshold energies.
- Measurement of heavy recoil nuclei and reaction products at large angles.
- Tagging of secondary beams by recoil measurement (e.g. tagged neutrons).
- Reaction measurements with extremely high resolution.
- High coincidence count rate with good energy resolution in three body reactions.
- Life time measurements (using the variable duty factor).
- Experiments with polarized atomic beams as target.
- Storage of exotic reaction products (e.g, tritons, ${ }^{6}$ He).
- Nuclear reactions and γ-spectroscopy with low background and very small cross sections.
- Spini excitations in the energy window of $150-300$ mey.
- Production of neutrons with good energy resolution by ${ }^{7}$ Li or ${ }^{12} C(p, n)$ reactions at 0° for (n, p) measurements.
- Low lying hole states at $E_{p}=400-500 \mathrm{MeV}$.
- Polarization transfer experiments, spin-spin interactions with high resolution.
- Pion production at Δ_{33}-resonance energy.
- Coherent pion production with Jight ions near the threshold energy.

Realization:

The construction and operation of the outlined storage ring cosy could be realized in the following steps:

1) Construction of the storage ring with RF-structures for the correction of the average energy loss in the target, matching and installation of the BIG KARL spectrometer at the ring, injection from cyclotron. Operation of the system in the recirculation mode ${ }^{7}$).
2) Instailation of $R F$-structures (frequency range $\pm 100 \%$). Operation in the extended energy range.
3) Installation and operation of the electron cooler ($E_{e} \leqslant 100 \mathrm{keV}$) for $E_{p} \approx 180 \mathrm{MeV}$. Use of gas jet and atomic beam targets. Test for cooling of light ions (d, ${ }^{3}$ He, α, ISIS-particies). Development of new target technicues.
4) Development and construction of an electron cooler for proton energies up to 500 MeV and injection from SNO-LINAC.

References

1) G. Budker, Y. Derbenev, N. Dikansky, I. Meshkov, V. Parkhomchuk, 0. Pestrikov, R. Salimov, A. Skrinsky, and B. Sukhina, CERN 77-08, PS Division, 13. April 1977
2) M. Bell, J. Chaney, H. Herr, F. Krienen, P. MollerPeterson, and G. Petrucci, Nucl. Instr. Meth. 190 (1981) 237
3) R. Forster, T. Hardek, D.E. Johnson, W. Kells, 4 . Kerner, H. Lau, A.J. Lennox, F. Mils, Y. Miyanara, L. Oleksiuk, R. Peters, T. Rhoades, and D. Young, IEEE/NS 28 No. 3 (1981) 2386
4) Fermilab Electron Cooling Experiment, Design Report, FERMIAAB, August 1978
5) H.W. Becker, L. Buchmann, J. Görres, K.U. Kettner, H. Kräwinkel, R, Rolfs, P. Schmalbrock, H.P. Trautvetter, and A. Vlieks, Nucl. Instr. Meth. 198 (1981) 277
6) D. Moh1, and K. Kilian, private commuication (1983)
7) S. Partin, W. Schott, and C. A. Wiedner, Workshop on Electron Cooling, Jill-Spez-159, Juli 1982, 7.1

+ IKP, Universität Minsiter
++ Universitat Eindhoven
* ISKP, Universität Bonn
** ABT-SNQ, KFA Julich
**** IKP, Universitat Koln
10.2. Lattice studies for the Cooler Storage Ring cosy G. Berg, A. Magiera, S. Mortin, D. Prasuhn

The layout of the COSY ring is shown tin figure 1 of the contribution "The Cocler Storage Ring Cosy". The ring consists of 6 identical unit cells and 2 straight sections. Each unit cell contains a set of two quadrupoles and one 60° bending dipole magnet ("combined function"). The straight sections are telescopes with magnification ± 1 in order to be invisible to the ring. At the target the straight section consists of a combination of 2 telescopes, providing an adjustable dispersion and beam spot at the target position without changing the other ring elements. The telescope in the electron-cooling section has to produce a wide and parallel beam in order to get a minimum cooling time.

Fig. 1 shows the amplitudes of the betatron oscillations (betatron functions) in horizontal (β_{H}) and vertical direction (β_{Y}) as well as the dispersion function $D=a r /$ (ap/p) as function of the position in one unit cell. Further data are given in the following table:

Fig. 1: The horizontal and vertical betatron functions (B_{x} and B_{y}) and the dispersion as function of the position in one unit-cell.

Parameters of the preliminary cosy lattice

Calculations are done using the design programs MAD ${ }^{1)}$, TRANSPORT ${ }^{2)}$, AGS ${ }^{3)}$, RAYTRACING ${ }^{4}$, HARMON ${ }^{5}$), Definitions and formulas use the notation from Bovel et al. ${ }^{6)}$.

References

1) F.Ch. Iselin, The MAD Program, Computing in Accelerator Design and Operation, Berlin, Sept. 1983
2) K.L. Brown, D.C. Carey, Ch. Iselin and F. Rothacker, TRANSPORE a computer program for designing charged particle beam transport systems, CERN-80-04 (Geneva 1980)
3) E. Keil, Y. Marti, B.K. Montague, and A. Sudboe, AGSThe ISR Computer Program for Synchrotron Deston, Orbtt Analysis and Insertion metching, CERN 75-13 (Geneva 1975)
4) H.A. Enge, S. Kowalski, private commetcation, 1982
5) M. Donald, Chromaticity Correction in Circular Accelerators and Storage Rings, PEP-Note - 311, Juli 1979
6) C. Bovet, R. Gouiran, I. Gumowskì, K.H. .Reich, CERN/ MPS-SI/Int. Di/70/4, Geneva 1970

11. \quad Y SPECTROMETER OSIRIS

11. .. Compton Suppression array for High Resolution In-Beam Spectroscopy
R.M. Lieaex, W. Gast, H, dager, J. SohaeflewKäh, K, H. Nater*, P. von Brentono **, J. Eberint *,
 C. Mohet ${ }^{+4}$

One of the principal methods of in-beam spectroscopy has always been the study of the electromagnetic. radiation, which is emitted from highly excited muclej. In a coded fom it contains the information about the structure of the nuclei. The more detailed the properties of the r-radiation can be determined, the more of the inciuded information can be uncoded. In the so called conventional spectroscopic studies this has been attempted by measuring the γ radiation with the maximum energy, angular and time resoTution possible.

Although the instruments used in such studies have been continuously improved; a limit seems now to be approached.
It turned out, that the conventional type of spectroscopy
is restricted to the investigation of the nuclear structure in the vicinity of the yrast line. This is because in (HI, xn) compound nuclear reactions, which may impart up to 270 h of angular momentum into the compound system before it is disrupted by the Coriolis and centrifugal forces, the final nucleus decays through several parallel cascades before the yrast states are reached. Thus in contrast to the low spin part of the decay path, where the total intensity of the decay concentrates on the yrast transitions, it spreads over a large number of parallel transitions in the high spin part. As a result we obtain in addition to the large number a very weak intensity of the individual high spin transitions, which instead form an apparent continuum in the conventional〒-ray spectrā.

Several new techniques have been developed to study at least the gross average properties of this continulum, e.g. large sum-energy crystels, multiplicity filters, or large NaI(Ti) detector systems in various coincidence arrangements ${ }^{1)}$. However, while these average properties are cuite interesting, they camot fully elucidate the physics behind the behaviour of fast rotating nuclej. As we have Tearned from our conventional spectroscopic work this elucidation can come only with the resolution of the spectrum.
One year ago therefore a $\gamma-\gamma$ coincidence spectroneter was cesigned which combines the positive feacures of these newly developed techniques with the acknowledged advantages of the conventional discrete spectroscopy. It has been named OSIRIS (COmpton Suppression array for high Resolution In-bean Spectroscopy). It will be built in a collaboration between the Universities of Cologne and Bonn, the Hann-Meitner Institute in Berlin, and the KFA Julich. Let us briefly recapitulate the salient features of the present design:

1. The optimun energy resolution of the spectrometer shall be obtained by the use of Ge detectors.
2. The rather small detection efficiency of these detectors shall be compensated by arranging at least 12 detectars
in two rings as close as passible around the target (Fig. 1).
3) A reduction of the two main components of the γ-ray background shall be achieved in the following way: The Compton background will be suppressed using an antiCompton shield made of bismuth-germanate (EGO). The quasicontinous background arising from the statistical decay shall be reduced by an additional sum-energy and r-ray multiplicity filter detector located in the center of the spectroneter. It consists of 38 EGO scintillators.
4) The neutron background will be reduced since the employed BGO detectors are mich smaller compared to e.g. NaI detectors of the same γ efficiency, while having about the same detection efficiency for neutrons.

Figure 1: Side view of the $\gamma-\gamma$ coincidence spectrometer consisting of a sum-energy and $\begin{gathered}\text { multipticity filter (} B G O\end{gathered}$ Filter) and an array of Ge detectors surrounded by antiCompton shieids (ACS) each.
Concerming the design of the physical and technical details of the different parts of the spectrometer we started with the anti-Compton shield (ACS) as the most important one.

With a given detection efficiency of the scintillator material used, the suppression power of an ACS plysically depends on its shape, dimension and the system configuration; the latter shall also take into account all collimiating, absoring and scattering passive material in the system. In order to optimize these parameters, Monte Carlo calculations using the EGS code have been carried out ${ }^{21}$. Their results favoured an asymmetric configuration of the shield, in which the γ-radiation enters the Ge detector from the side. In this configuration the front face of the ACS has a square shape reflecting the rectangular side view cross section of the Ge detector (c.f. Fig. 1).

The technical realization of such a BGO shield is connected with two main problems: up to now B60 single crystais are available only in relative small sizes and $B G 0$ has a ten times smaller light output compared to Nal as wetl as a very high refraction index of $n=2.15$. Hence the problems of fight collection, transfer to the photomultiplier and detection have to be treated very carefully, especially as the whole ACS has to be made up of several pieces of BGO while no optical coupling materials for such high refraction indices are available up to now. Regarding these problems the front part of our shield has been designed to consist of NaI. In this way the detection probability for the backscattered γ-rays which have the lowest energies may be enhanced.

In order to check the predicted physical properties and to study the above mentioned technical problems a prototype of the shield has been ordered. Various test experiments have been perfomed at the different collaborating institutes up to now:

1. Initial test of energy and time resolution: After a preliminary test of their specified energy and time resolution ($\leq 20 \%$ and $\leq 15 n s$ respectively) the individual BGO crystals and the NaI(TI) crystal have been gived together and canned at the factory. The ACS was then delivered as a complete unit including a 5 " RCA 583006 Emi photomultiptier tube. For this original set up the timing was measured against a plastic scintillator. A time resoTution of fwhm: 16 ns was obtaned for a ${ }^{60}$ co source disregarding the weak long-term: component of the BGO scintillation decay of 300 ns . An energy resolution could not be determined. The light collection or detection properties for the individual crystals appeared to be too different as to give an umiform pulse height at the anode of the photomultipiler tupe (PMi).
2. Test of lower threshold setting:

Although a good energy resolution is not required for an ACS, it will affect the lower threshold setting (LTS); lower threshold is defined here as lowest yray energy significantly detectable. Since the light output of BCO is very small the LTS is limited by the light collection and transfer properties and by the photomultiplier noise in our systen, It was measured by taking energy spectra of a ${ }^{241}$ Am source for various positions of the source. As the width and position of the 60 keV line in the spectra shifted as a function of the source position, a position dependent value of $30 \mathrm{kev}-50 \mathrm{kel}$ was obtained. These values are estimated from the depth of the minimum between the 60 kel line and the noise tail.
3. Investigation of the position dependent response of the shield to different γ-ray energies:
In order to study the obscrved pulse height variations in more detail, the position dependent response of the shield to various y-ray energies (${ }^{60} \mathrm{Co},{ }^{137} \mathrm{Cs},{ }^{241}$ Am) has been measured. The position of the source practically determines, in which of the individual crystals the γ-rays mainly are absorbed. A strong dependence was observed in so far, as the lowest output pulse heights wife obtañed for those crystals with the smallest area of optical contact to the PMT cathode. The effect is the stronger the lower the incident γ-ray energy is. Front this one may conclude that the light generated in one individual crystal stays more or less inside this crystal during its transfer to the photomultiplier; only a small amount of light can penetrote into the neighboum ring crystals although they are glued together with optical cement. This may be due to the large ratio of refraction indices of $B G O$ to optical cement (2.15/1.6). giving an angle of total reflection of less than 45°.

As a final test of the system in its original configuration the Compton-suppression for a reverse electrode $(Y-X)$ detector of 19% efficiency has been measured. The

ACS was shielded against the ${ }^{60}$ Co source by a tungsten (densimet) coltimator of 30 min thickness. The maximum suppression factor of 5.6 was obtained for the energy region of $350-400 \mathrm{keV}$. In the following experiments we tried to improve this result by changing the configuration of the system.
4. Test of different photonultipliers and photomutiplier-light-guide configurations:
From the previous measurements an imperfect light collection due to the incomilete area of optical contact to the photomultiplier cathode was observed for sonle of the outer crystals with respect to the others. Diffuse reflector material applied on those parts of the crystats not covered by the photocathode did not give a gain in iight collection. Hence several light-guides (lucite) has been fabricated in order to improve the adaption of the 133×133 min square shaped extrance window of the BGO to different configurations of PMF's with round shaped photocathodes: two light-guides of 30 mir and 50 nm length, respectively, for the adaption to one $5^{\prime \prime}$ PMT and four light-guides of 35 min length for the adaption to four $3^{\prime \prime}$ photomultiplier tubes. The test measurements of the various photomulitiplier-iight-guide configurations have been performed using the 30 mm tungsten collimator and a ${ }^{60}$ Co source with the lightguides covered by reflector powder. They are sumarized in table 1.

Photomultiplier	Background suppression for light guide:			
type	30 nm	50 mm	$4 \times 35 \mathrm{~mm}$	no
RCA 583006 EM1	6.9*)	7.2		5.6
RCA 8854	6.4*)			
Valvo XP 2041		5.8		5.2
Hamamatsu R 1307			6.2	
Valvo PM 2312			5.2	

Table 1: Photomultiplier-light guide configurations
tested for the BGO anti-Gompton shield. The suppression factors for the ${ }^{60}$ co Compton background at ≈ 350 kev are given.
*) Different collimator (see text)

The use of the jight-guides leads to a substantial improvement of the uniformity of light collection; nevertheless only a slight increase of suppression factor was obtained in general, The bad performance of the Xp2043 is ascribed to its bad noise characteristics. For the configurations with four photomitipliers the infiuance of different coincidence conditions between the photonultipliers on the lower threshold setting has been tested, too. A satisfying result is obtained only for the combination of the originai pmy with the 50 amm light guide. It reproduces the calculated suppression factor to nearly 90%. However, this is true only for the energy region above 500 kev . For the low energy region a value of 7.6 measured at 150 keV competes with a valua of 14.5 predicted for this energy. Since a relativ strong backscatter preak was observed in the exparimental spec-tra we ascribed this discrepancy to scattering problems. A γ-ray which is already scattered, e.g. at the collimator, before it enters the $G e$ detector produces true background which cannot be suppressed by the ACS. For the high theo-
retical suppression factors predicted for our shield even a smail amount of such true background reduces the measurable suppression factor drastically.

Figure 2: Experinentally measurable suppression factor Smea as a function of the contamination of the Compton background with true background B for a theoretical suppression factor of $\$=15$.

Figure 2 shows for a theoretical suppression factor of 15 the experimentally measurable factor as a function of the contamination of the Compton-background with true background.
5. Test of different colimators:

In order to study this effect experimentally background spectra and suppression factors for different collimators have been measured. A conical lead collimator of 150 mm thickness led to a significant improvement of the results. The experimental suppression factor of a configuration which consists of this collimator, the 50 mm light guide and the RCA 583006 EMi photomultiplier, is compared to the theoretical predictions for different dimensions of the shield (c.f. ref. 2) in Fig. 3a. The present prototype compares to $B=80$ nm. The backscattering was not accounted for in the theoretical calculations. In Fig. 3b the corresponding suppressed and unsuppressed spectra are shown.
6. In beam studies:

Several in-beam test have been performed at the accelerators of the different institutes. Suppression factors of 3-5 obtained for in-beam singles spectra are not a measure of the capabilities of the shield since an appreciable amount of true background occurs in inbeam experiments. The promising features of a spectrom meter consisting of such ACS's can be better read off from the comparison of an unshielded with a shielded detector for an in-beam coincidence measurement as given in Fig. 4. As the coincidence condition reduces the true background the observed suppression fmproves again with respect to singles spectra. Thus a lot of new Tines occur in the projection of the suppressed detector which are not observable at all in the unsuppressed spectruin.

References

1). B. Herskind, d. de Fhys., Colloque Clo, Supp 1. no. 12, p. 106
2) C. Michel et al., preprint, GSI Darmstadt 1982

[^14]

Figure 3a: Comparison of the theoretical suppression factors with the experimental results obtained with the prototype of the ACS.

Figure 3b: Comparison of the corresponding γ-ray spectra.

Figure 4: Coincidence projections of an in-beam coincidence measurement between a shielded and unshielded detector of the same γ-ray efficiency. The ratio of corresponding peak-to-background ratios (P/E) for different γ ray energies are given in the lower part.
12. 816 KARL

12.1. The Magnet Spectrometer BIG KARL

 J. MerBburger, D. Paul, D. Prasum, J.C. T. Pömer,
P. von Rosser, O. Sehult, J. t. Sain

Since the magnetic spectrograph BIG KARL has been put into operation in 1979 it has been the main user of the cyclotron bean and has proven to be very dependable.

Various nuclear physics experiments were performed which are presented in detail elsewhere in this report:

- Ganow-Teller resonances

$$
\left({ }^{3} \mathrm{He}, \mathrm{t}\right) \text { on } 90 \mathrm{zr}
$$

- Two nucleon transfer

$$
\left(d,{ }^{6} \mathrm{Li}\right) \text { on }{ }^{12_{C}} \text { and }\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right) \text { on }{ }^{11_{\mathrm{B}}}
$$

- high lying 1^{+}states ($\mathrm{P}, \mathrm{p}^{\prime}$) on ${ }^{40} \mathrm{Ca}$
- study of proton hole states
($\mathrm{d},{ }^{3} \mathrm{He}$) on ${ }^{62} \mathrm{Ni}$
- $T=\frac{1}{2}$ states close to the lowest $T=\frac{3}{2}$ states via $\left({ }^{3} \mathrm{He}, \alpha\right)$ on ${ }^{14} \mathrm{C}$
- study of collective excitations ($\left.{ }^{3} \mathrm{He}, \mathrm{t}\right)$ on ${ }^{120} \mathrm{Sm}$ and ${ }^{208} \mathrm{~Pb}$
- spin-flip reactions to unnatural parity states ($\mathrm{F}, \mathrm{p}^{\prime}$) and ($\mathrm{d}, \mathrm{d}^{1}$) on ${ }^{58} \mathrm{Ni}$
- $\left(p, p^{\prime}\right)$ on ${ }^{143} \mathrm{Nd}$

Spectrograph [evelopnent and Improvements:
Curing the yearty maintenance period the cryo-vacum
systen was overhauled after being used for five years.
In addition each of the cryopumps has been equipped with
a vacuum valve that seals the pump from the vacuun chanber during regeneration.

The centra? concrete shielding of the scattering chamber (IGLOO) was dismanteled to replace six of its sixteen air bearings. Before reassembling, a steel cover has been added to its lower part to prevent premature wear down of those air bearjngs.

To eliminate the effects of ground movement all elements of the spectrograph and the last four quadrupoles of the beam line were optically realigned.

Significant improvements were done on the detector system. Two large area ($8 \mathrm{~cm} \times 90 \mathrm{~cm}$) focal plane detectors allow position and angle discrimination giving an improved background reduction and larger energy range, Extensive software has been developed for fast on-line operation of the new delay-line readout drift-chambers and the off-ine
 same active area as the Morris-drift-charbers improves the identification between different reaction products.

Especially for the reduction of background under extreme forward angle the artiscattering slits have obtained scintillation detectors at their edges (active slits) to mark and suppress slit-scattered particles.

BIG KARL CONTROL AND DATA ACQUISITION

12.2. Spectrometer Control

B. Brinkroeller, K. Kruck, J. Meissbugger

A new 128 bit optocoupler box was installed and connected to various status and error lines of the vacuun and power supply systems. This will improve visual and automatic monitoring of the spectrometer status.

A program TTCYC was written to test overall power supply performance with high accuracy in order to detect malfunction of efther host conputer, canic $\overline{1 / 0}$ or internal power supply electronics.

Another progran QBCyC supports test measurements on the beamline optics. It allows correlated scaling of the four last beamline quadrupoles according to user-defined data and function tables. This will eventually be included in CYCLE as a new command to vary spectrometer dispersion and reaction angle in a way to preserves matching conditions.

In order to save money on PDP11 hardware and to speed up program developpent under RSX-11/M the complete PDP11/40 environment was transferred to the VAX-11/780 computer in a fully conpatible way. Camac $I / 0$ is simulated on the vax by a set of CAmac SIMblating Interface Routines CASIMIR which provide for all necessary IKP Camac library calls.
12.3. Data Acquisition and Analysis
B. Beintroeller, R. Korinues, J. Heissbirger,
D. Pant

The $V A X$ is now ruming VMS 3.3 supporting a new 470 MBytes Winchester disk. All terminals support screen editing, four of them provide national languages to print on a letter printer in DEN-A4 format.
A new 8 RHO plotting utility was written to produce multicolour plots of various combinations of variables in reaction kinematics for multilayer or impure targets including energy loss.

The BKARLO energy loss program now accepts symbolic and structured data input that makes preparation of a spectrometer description file a few minutes job.

Major efforts went into the development of all the software tools to hande the new Morris detector. The utility MOCAL provides for interactive data manipulation on calibration spectra as well as for the complex organization around on- and offline sorting utilities. This includes the online data acquisition program ACON with it's realtime subprocess ACQUYRERT, the user-parameter definttion utility ACPARAM, the hardware configuration utility MEMPHIS, the offline sorting program PLSORT and finally the documentation utiltties ACSTATUS and ACSAVE. A total of 36 different files are managed by the system in a user. transparent way. Complete and portable documantation of hard- and software status is guaranteed at all times for later offline reanalysis.
12.4. Morris chamber CALibration utility MOCAL
J. Meissburger, D. Paut

A one-coordinate particle position in the Morris multiwire drift chamber is constructed from three measured parameters: The "wire number" delay line signal determining which anode wire fired next to the particle track (8 ma spacing), the drift time signal providing the position in between the wire and a sign signal to resolve the left/ right ambiguity. The true particle position is constructed from these values on- or offline by a table lookup technique. The program Macal has been developed as a fast generation utility for these so-caled calibration tables. The calibrations are done within MOCAL by an autofit routine and by an integrating binning routine. MOCAL further offers interactive graphics for proving or manipulating the data and uses Big Karl standard command parsing with some tutorial support. A special initialisation routine MOTNI assembies all necessary data tables and corresponding software modules for the on- and offine sorting utilities ACON and PLSORT and for hardware configuration in MEMPHIS.
12.5. Detectors at the BIG KARL Spectroneter
G. Htawatsoh, D. Pat, G.P.A. Berg, P. won Brentano ${ }^{\dagger}$, B. Brinkmoller, d. Meisburger, C.F. hoone ${ }^{+\dagger}$, C.L. Morasis ${ }^{+t}$, J.G.M. Römer, M. Rogge, S.. Seestrom-Norris ${ }^{+++}$, G. Sondermanh ", J.L. Tain, L. Zemlo ${ }^{* *}$

Some effort has been spent to maintain and improve the detection possibilities at BIG KARL for a variety of experiments. The operation of the Morris detector ${ }^{1)}$ and the necessary calibration programs in particular for different reaction products $\left(n, d, 3^{3}, t, a\right)$ has been improved considerably. An additional large $\Delta E-g a s$ detector for particle identification purposes covering the active area of the Morris detector was built. A time of flight (TOF) start detector for the background reduction in exotic reactions e.g. (${ }^{3} \mathrm{He},{ }^{6} \mathrm{He}$) was installed and tested at the entrance of dipole D1. The existing $\Delta E-E$ plastic scintillator blocks had to be replaced due to surface aging effects. In order to reduce slit scattering into the spectrometer the entrance slits behind Q1 and Q2 have been equipped with plastic scintillation counters which will be tested in the next beam time. In the following some details of these detectors are given: Morris detector: For the flexibility of handling this cetector ${ }^{1}$, which operated at atmospheric pressure a new detector concept was initiated. A new detector front chamber was built and installed with an exit window of $100 \mathrm{~cm} \times 10 \mathrm{~cm}$ dimension consisting of $35-50$ ym Mylar supported by 0.5 mm Nylon wires. Several detectors can be mounted behind this window. For this purpose six optical bench slides adjustable in height have been mounted on the steel ground plate behind the window. Alt detectors have optical bench feet and can now be positioned in and behind the focal plane allowing quickly assembling an optimum set-up for a variety of experiments.

More experience has been gained with the Morris detector. Problems like high voltage sparks in the detector, unefficiencies, and operation instabilities have been solved. Corresponding investigations showed that mainly gas impurities and electronic drifts caused the malfunctions. A speciat start-ip procedure with fetector and gas system cleaning by vacuum pumping and a proper gas flow as well as new electronic modules, especially new matched preamplifiers have improved the stability. The development of calibration and operation software for the detector ${ }^{2)}$ has been completed. Details are described in another place in this report. Several combinations of one or two (for angle determination) of these detectors with ΔE-gas, $\Delta E-p l a s t i c$ and E-plastic detectors have been used in various experiments (see this report) for a variety of particles ($p, d,{ }^{3} \mathrm{He}, \mathrm{t}$).
AE-gas detector: For the identification of particles (e.g. ${ }^{4} \mathrm{He}$ in the ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{4} \mathrm{He}\right.$) experiment) a $\Delta \mathrm{E}$-gas detector was built. It consists of a frame with a volume of $100 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$ closed by 6 um aluminized Mylar foils at entrance and exit. Eight 20 um gold plated tungsten wires are stretched horizontally along
the middle plane of the wiridows with a spacing of I cm. The wires, electrically connected together, lead into an ORTEC 970 D charge sensitive preamplifier. The outgoing signals are processed with conventional spectroscopy electronics. As detector gas mixture plo (10 \% Methane, 90% Argon) was used at ca. 1700 V in the proportional region. Fig, I shows the $A E$ spectrum that allows clear separation of deuterons and ${ }^{4}$ He particles.

Fig. 1: Spectrum of the $\Delta E-g a s$ detector in a ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{a}\right)^{13} \mathrm{C}$ experiment at an angle of $\theta_{1 a b}=39^{\circ}$ showing clearly separated peaks of deuteron and a-particles of the same Bo-value raching the focal plane.

Rvalanche Counter: For background reduction in exotic reactions (e.g, the ${ }^{26} \mathrm{Mg}\left({ }^{3} \mathrm{He},{ }^{6}\right.$ He) experiment) the time start of a newly developed transmission farallel Plate Avalanche Counter (PPAC) situated at the entrance of dipole 01 was used to generate time of flight (TOF)

Fig. 2: Time of flight spectrum measured with a PPAC against the plastic scintillator. Particles with the same mass to effective charge ratio have the same flight time through the spectroneter.
spectra with the plastic scintiliator as stop detector. It consists of two thin stretched (ca. $40 \mu \mathrm{~g} / \mathrm{cm}^{2}$) poly. carbonate foils (area: $7 \mathrm{~cm} \times 10 \mathrm{~cm}$) with a $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ gold layer evaporated on one side. Their spacing is 6 mm . The detector was operated with pure isobutane at a pressure of 30 mbar and an voltage of 1550 V . In fig. 2 a time spectrum is displayed which shows sufficient time resolution for the separation of ${ }^{6}$ He from p, d, and a particles. Significant reduction of background could be obtained by gating the ${ }^{6}$ He spectra from the particle identification with the ΔE-gas detector with the corresponding ${ }^{6}$ He line in the TOF spectrum.
Active slits: Another device for background reduction, so called active slits have been installed and put into operation at the end of the current year. They consist of four plastic scintillators $(0.4 \mathrm{~cm} \times 5 \mathrm{~cm} \times 16,5 \mathrm{~cm}$ with light guides ca. $3,5 \mathrm{~cm}$ long) at the front surfaces of the entrance slits (copper bars: $5 \mathrm{~cm} \times 16 \mathrm{~cm} \times 16,5 \mathrm{~cm}$) behind Q1 and Q2. The signals from the attached Photo Multiplier Tubes (PMT) are used in anticoincidence to the EVENT signal eliminating hereby all particles that were scattered at the slit surface and reached the focal plane.

Plastic scintillators: The existing plastic ΔE and E counters were now five years in operation and showed cracked surfaces originating from material aging. The resulting deterioration of the energy signals made a replacement necessary. In order to maintain the modular detector concept, two $\Delta E(0.3 \mathrm{~cm}$ and 0.8 cm thick) and one E counter (10 cm thick) have been built, each in a separate housing. They are matched in size with the other focal plane detectors having an active area of $10 \mathrm{~cm} \times 100 \mathrm{~cm}$. As plastic material PLEXIGLAS scintillator (type 1921 and 1923, R'thm) was chosen. The PMT's are spectally selected for good energy resolution and sharp timing (XP2230, WALVO).

References

1) G.P.A, Berg, P. von Brentano, B, Brinkmbller,
G. Hlawatsch, J. Meissburger, C.F. Moore, C.L. Morris,
D. Paul, J.G.M. Romer, M. Rogge, S.J. Seestrom-Morris, J.L. Tain and L. Zemlo, Annual Report 1982, Jiil-Spez 202 (1983) 116
2) Diplomarbeit D. Paul, Univ. Münster, 1983, unpublished
\div Institut fir Kernphysik, Universitat zu Kolm
++ Unjversity of Austin, Texas, USA
$+i+$ Los Alamos Scientific Laboratory, New Mexico, USA

* Institut fur Kernphysik, Universitat Munster
** Institute of Nuclear Research, Warsaw, Poland

13. DETECTORS, TARGETS, SPECTROMETERS
13.1. Semiconductor Detectors
A. Homacher, T. Küster, E. Lawin, B, Metz,
K. Mioott, D. Protie, G. Riepe

To be used for charged particle spectroscopy and particle identification in nuclear reaction experiments (IKP and visiting groups) 5 large cryostats of different design (each with 2 detectors) for the 100 cm scattering chamber and 5 monitor cryostats were kept available. They were equipped with side-entry Ge(Li)-detectors made by the detector laboratory. Radiation damaged detectors were regenerated or replaced by new ones. A series of commercial Si ΔE-detectors, position-sensitive Si-detectors and Si(Li)-detectors were tested before and after use in the experiments.

Two cryostats designed to be mounted at the bottom of the 100 cm scattering chamber were completed. One of them was equipped with a digitally position-sensitive ΔE-detector and a side-entry E-detector (for particles of up to 30 mm range), both made from HPGe (Figure 1). The structure of

Figure 1: Detector arrangement inside the cryostat to be mounted at the botton of the 100 cm scattering chamber.
the ΔE-detector (with a thickness of 1.5 mm) consists of 9 elements (2.6 msr each) with an angular spacing of 2.5°, surrounded by a guard-ring (active collimator). The $\Delta E-$ information for all elements can be derived from the rear side of the detector.

The improved version of a multi-detector cryostat (Figure 2) was equipped with 6 HPGe detectors of a total thickness of 83 mm (corresponding to the range of 200 MeV protons).

For the fabrication of digitally position-sensitive detectors the technology of photolithography was introduced. This process combined with plasma etching $\left(\mathrm{SF}_{6}\right)$ in a planar geonetry (resulting in anisotropic etch rates) now enables much finer structures.

For the use in fon beam diagnostics at the cyclotron and at. the beam line Si strip detectors (about 4 nom thick) with two different patterns were fabricated. These patterns consisted of rows of 14 or 28 strips having a
length of 10 mm inside an area of 10 by $7.1 \mathrm{~mm}^{2}$, resulting in values for the pitch of 510 and 250 m .

Figure 2: The improved version of a multi-detector cryostat To investigate inhomogeneities of thick materials through gamma-ray (${ }^{60}$ Co) transmission, a one-dimensional strip detector (10 mm thick) was made from HPGe having a lithium contact on the rear side. The boron-implanted contact was divided into 60 strips of 300 pm width and 3 mm length with grooves of 50μ width in between, surround ed by a guard-ring (Figure 3). Each strip will be connected to an individual preamplifier to enable a fast and simultaneous read-out (high count rates).

Figure 3: The one-dimensional strip detector.
A detailed study of strip detectors with a-particles yielded several interesting results. An a-particle incident to the groove is not losi but recorded by the two adjacent strips. Suminin both signals one arrives at the nominal o-energy with a loss of only 3%. Processing the signals in appropriate electronics can be used to obtain position-information.

Various types of Ge or Si detector-systems - most of them commercial ones - were regenerated of repaired.

13.2. Target Laboratory

> T. Pfeiffer, G. Riepe

To be used in experiments (IKP and visiting groups) at the cyclotron, at the research reactor, at the crystal spectrometer, and at university laboratories about 170 targets (with and without backing) were prepared from 30 different elements, mostly by vacuum deposition or rolling (after reduction or melting). The thicknesses were in the range from $3 \mu \mathrm{~g} / \mathrm{cm}^{2}$ to $20 \mathrm{mg} / \mathrm{cm}^{2}$, and the areas were between 10 and $250 \mathrm{man}^{2}$.

Again, as in the last year, most of the targets, especially those of large areà and minor thickness, were prepared for experiments at the magnet spectrograph (BIG KARL) .
13.3: Light particle detection by BGO-scintillators with photodiode readout
R. Glason*, K.H. Kompert*, н. Lohner" ad of, caul*

The applicability of a BGO crystal coupled to a photodiode for detection of light charged particles from medium energy nucleon reactions in the particle energy range of some ten to some hundred MeV , was investigated in an experiment using the 172 MeV abeam.

Due to the high density ($0=7.13 \mathrm{~g} / \mathrm{cm}^{3}$) of $B G O$, the $1 \times 1 \times 1 \mathrm{~cm}^{3}$ crystals used are able to totally stop protons of about 70 MeV and α-particles of about $275 \mathrm{Mev}^{+}$). The particle identification was achieved by the usual AE-E-technique with a 1000 , milicon surface barrier detector.

The $\triangle E-E_{\text {rest }}$-scatterplot of such an arrangement demonstrates the particie resolution between $p, d, t, 3 \mathrm{He}$ - and a-particles (Fig. 1). A peculiarity of this device is

that the punch through particles which directly hit the depletion layer of the photodiode, give a very high $E_{\text {rest }}{ }^{-s i g n a l}$ wich therefore does not disturb the lower mass particle spectra but can potentially be used as an anticoincidence signal. To detemine the energy resolution of the $8 G 0$-detector, the kinematical coincidence between protons and the recoil o-particles was used.

Figure 2 shows the inclusive (upper part) and the coincident (Fower part) proton spectrum, which were neasured at $\theta_{\text {iab }}=45^{\circ}$ with a Mylar target. The derived energy resolution of this elastic proton peak at $E_{P}=52$ inev is about 1.5 MeV (fwhm) and therefore comparable to the values observed with $\mathrm{NaI}(T 1)$ scintillators coupled to photomultipliers.

The great advantages of this detector which make it attractive as a replacenent for classical scintillation counters, is the very compact construction due to the high stopping powers of 860 and the small size of the photodioce, the insensitivity

Figure 2: Inciusive (upper pert) and coincident (lower part) spectra of the reaction $p(\alpha, a) p$ for $E_{a}=1 / 2 \mathrm{MeV}$ and $\theta_{1 a b}=45^{\circ}$.
insensitivity to magnetic fields and the absence of a voltage divider and a high voltage supply.

Further investigations conceming the differential light output and the quenching factors of BGO are in progress.
+) In our experiment the BGO crystal (HARSHAW) was giued to a S1723-04 Silicon photodiode (HAMMAMATSU).

Figure 1: Δ E-Erest-scatterplot for the reaction
$\alpha(172 \mathrm{MeV}) \div 58 \mathrm{Ni}$ at $\theta_{\mathrm{Jab}}=35^{\circ}$.
13.4. Postiton Sensitive Parallel Plate Avalanche Detectors for Fission Fragments
L. Zemto, G. Etawatsoh, P. Decowski, H.P. Worech To proceed with eariber studies of the fission channel in nuclear reactions five position sensitive fission detectors were constructed. They are parallel plate gas counters ${ }^{1)}$ with entrance window openings $30 \times 60 \mathrm{~mm}^{2}$ (see fig. 1). The cathode consists of 31 strips 1.8 mm

Figure 1: Front view of the parallel plate detector.
broad separated by 0.2 mm connected with the delay line with a structure $3 \mathrm{~ns} / \mathrm{strip}$. The anode is made from goid coated 1.0 m Mylar foil placed at a distance of 2 ma from the cathode plate. A fast anode signal serves for triggering purposes. The counters are filled with isobutan gas at a pressure of 8 mbar. The operating voltage (a 500 V$)$ corresponds to the proportional region of the gas amplification which helps to discriminate fission events from those of light particles. The counters were successfully applied in the $\left.{ }^{238_{U(~}\left(\alpha, \alpha^{\prime}\right.} f_{1} f_{2}\right)$ experiment described in sect. 1.16. in which fission fragment velocities and folding angles were measured.
13.5. Small size plastic scintillation counters for measurement of protons up to 100 MeV
R. Siabert, P. Decowsti, K.P. Kongch, M. Rogge cota P. Turek

For coincidence experiments with the BIG KARL spectroneter small size detectors are needed which can stop rather high energy particles (protons up to 100 MeV) and have a good time resolution. For this purpose we heve made 4 scintillation counters (fig. I) from plastic material

Figure 1: View of the scintillation detector.
NE $102 \mathrm{~A}(2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 8 \mathrm{~cm})$ attached to plexiglass Fight guides and small size photomultipliers of the type RCA $45162 c$ (with integrated voltage divider), The parts are glued together and coated with $2.5 \mu \mathrm{~m}$ aluminum. Total dimensions are 8 cm long and 16 cm wide.

In test measurements the energy resolution was 5% for protons of energies of $30-90 \mathrm{MeV}$, the time resolution was 800 psec. The total efficiency from 90% at 30 ifev proton energy decreased to $70 . \%$ at 90 MeV . The detectors were successfuly applied in measurements of the reactions ${ }^{58} \mathrm{Ni}(\alpha, \alpha!p)$ and ${ }^{58} \mathrm{Ni}\left(\alpha,{ }^{3} \mathrm{He} p\right)$ discussed in sect. 1.17.

Reference

13.6. High Resolution Spectrographs

7. Ikegomit ${ }^{+}$

In measurements of reaction particle momenta, the ultimate resolution is limited by several factors rather than a well constructed spectrograph itself. Therefore one has so far been involved with preparation of uniform and/or thin targets, matching of the spectrograph with an associated beam line - and even accelerator - system and so on.

In general, the momenta of reaction particles emitted from the target vary with the reaction angle, which in turn results in the kinematical line broadening. It should be noted here that the so called dispersion matching between the spectrograph and the beam line is no longer useful when the kinematical effect is appreciable ${ }^{1)}$. This means that one has to achieve dynamic focussing control of the spectrograph as well as its associated beam line, that is, adjust magnetic multipole fields in the beant line and the spectrograph on line.

One may use, in such cases, several magnetic elements for individual nultipoles. The practical considerations on the actual layout, however, usually restrict the dimensions and shapes of the space in which multipole fields have to be generated. This limitation sometimes makes it even impracticable to use desired sets of multipoles or to use ordinary magnets with conventional pole configurations. The spectrographs RAIDEN ${ }^{2}$) (QDMDQ type at RCNP, Osaka), EMMA ${ }^{3)}$ (QMDMDM type at Japan Atomic Energy Research Institute) and BIG KARL'4) (QQ00Q type at IKP, KFA Juilich) have especially powerful multipolefield generating devices. Here, the abbreviations D, Q and A stand for dipole-, quadrupole and multipole-magnets, respectively

In fig 1 is shown the cross-sectional view of the multipole magnet M installed in the spectrograph RAIDEN. Four sets of cotls have been included to realize the current distributions, as detemined in the way described below, for the quadrupole (MQ), sextupole (MS), octupole (MO) and decapole (MD) fields. Each set of colis is connected to an independent power supply so that each field component can be generated independentiy. An example of the lines of force distribution calculated numerically for MQ is shown in fig. 2 together with the coil configuration assumed.

Fig. 1: Cross-sectional view of the muttipole magnet

Fig. 2: Lines of force distribution in the multipole magnet, calculated for the quadrupole (MQ) component.

In fig. 3 are the field distributions measured in the symmetry plane at the middle position in the magnetic axis that is the particle beanl direction. It seems to be clear from these figures that perfect distributions have been obtained in the entire aperture of the magnet.

The multipole magnets M have been designed following the concept of the "Current Sheet Magnet". This concept has an important advantage of allowing us not only to design any multtpoles in a given space butalso to obtain several multipoles integrated in a single magnet ${ }^{5}$). Magnets with three dimensional configurations are describable through any current sheet on the basis of the present theory; we shall be concerned here with the two dimensional cases in the x, y-plane, for simplicity.

Let us consider a cavity of which the contour is denoted by C, in a magnetic medium having infinitely large permeability, as seen in fig. 4. Suppose that the cavity has a thin layer of electric current (current sheet) on the surface and the magnetic field generated inside the cavity is described by magneto-static potential ϕ. In such cases the destred current j which flows normal to the

Fig. 3: Field distributions in the multipole magnet, measured along the x-axis at the middle of the magnet
x, y-plane has a density distribution along the contour C given by

$$
\begin{equation*}
j=\mathrm{d} \phi / \mathrm{cs}, \tag{1}
\end{equation*}
$$

where s denotes the arc length measured along the contour C .

For the $2 N$-pole field, the potential can be written as

$$
\begin{align*}
\Phi_{2 N} & =-k_{2 N} r^{N} \sin (N \theta) \\
r & =\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) \tag{2}
\end{align*}
$$

where $k_{2 \mu}$ is an appropriate coefficient representing the strength of the field.

By inserting ec. (2) into eq. (1) one finds

$$
\begin{equation*}
j=N k_{2 N} r^{N-1} \sin |\cos (N-1) \theta|, \tag{3}
\end{equation*}
$$

where a denotes the inclination angle of the tangent of the contour C with respect to the $\mathrm{x}-\mathrm{axis}$.

Fig. 4: Cross section of the cavity in the magnetic medium with infinitely large permeability. The current sheet is schematically presented by the shaded area along the contour.

So far we have confined ourselves to the cases where the current sheet is very thin and the permeability of the magnetic medium is infinitely large. The risk of oversimplification has been found to be small from the model calculation in which a finite size of the current sheet or a finite permeability have been taken into account in a somewhat simplified way. The results have shown that the fractional deviations of the order of $(c / 1)^{2}$ and $1 / 1$ in the field distribution might be caused by the finite thickness (c) and extension (1) of the current sheet and by the finite permeability (1), respectively.

Now, let us define the quantity F, as figure of merrit of magnets as,
$F=$ (Area of field space) \div (total current)
$=($ Area of space enclosed by $C) \div(\oint|j| d s)$

For the 2 N -pole field, eq. (4) can be rewritten

$$
\begin{equation*}
F=(\text { Area of space enclosed by } C) \div\left(\left.\Sigma\right|_{i}-\phi_{i+1} l\right) \tag{5}
\end{equation*}
$$

Here, ϕ_{j} and $\phi_{i+\frac{1}{}}$ denote the potential where $j=0$, that is where the current j changes its flow direction.

The figure of merrit defined above was calculated for several kinds of multipole magnets. It was found that except for the dipole case, the figure of merrit strongly depends on the shape of the contour \hat{C}, that is the configuration of the magnet especially for higher muftipole cases.

As an example, let us compare two quadrupole magnets which have the same quadratic magnet aperture. One is a special case of the well known Panofsky magnet. For the other one, the magnet yoke is set at 45° with respect to the x-axis. This magnet with skew quadratic aperture gains in figure of merrit even more than a factor of two compared to the Panofsky type magnet yielding remarkable savings in construction of the coils and the associate power supply system.

References

1) H. Ikegami, Nuc1. Instr. and Meth+ 175 (1980) 335 H. Ikegami, S. Morinobu, Y. Sugiyama and S.A. Martin, to be pablished in Nucl. Instr. and Methods
2) H. Ikegami, S. Morinobu, I. Katayama, M. Fujiwara and S. Yamabe, Nucl. Instr, and Methods 187 (1981) 13
3) Y. Sugiyama, N. Shikazono, H. Tkezoe and H. Ikegami, Nuc1. Instr, and Methods 187 (1981) 25
a) S.A. Martin et al., Nuct. Instr, and Methods 214 (1983) 281
4) H. Ikegami, Proc. 6th Int. Conf. on Magnet Technology (Bratislava, 1977), P. 904
${ }^{5}$ Vistiting Scientist, present address: Research Center for Nuclear Physics, Osaka University, Japan

14. COMPUTER DEVELOPMENT

14.1. Computer Configurations

K, -i, Watelaik, W. Kamadi, P. NelZen

Besides work on the VAX-11/780 off-1 ine computer serving the evaluation of experimental data and the development of programs for user application throughout the Insititute as well as on the PDPm11/34 minicomputer used for developing PDP-11 user software, the DP-gromp is engaged in the development of softwars systems and experimental interface nardware on the following on-line process computer systems:

- 4-parameter analyzer system, SCORPIO, using the process computer PDP-11/34,
- multiparameter analyzer system, Nuclear-Data ND6660,
- on-line process computer PDP-11/34 for the acquisition and evaluation of data from the isochronous cyclotron and data of the beam line system,
- analyzer system of the high-resolution crystal spectrometer using the process computer PDP-11/10,
- analyzer systen of the detector laboratory, Nuclear Data ND620, which is linked with the PDP-11/10 process computer for the control of experiments,
- 8-parameter analyzer system using the process computer PDP-11/24 and CAMAC for the discovery of new types of particles on reactors,
- analyzer system of the low-energy crystal spectrometer using the process computer PDP-11/10.

The off-1ine computers VAX-11/780 and PDP-11/34 as well as the analyzer systens SCORPIO and Nuclear-Data ND6660 have been spatially rearranged according to future requirements and received a new configuration with regard to hardware architecture.

After the evaluation software in operation on the PDP15/50 under the RSX operating system and on the PDP-15/35 under DOS V3. 3 has been implemented on the VAX-11/780 under the WMS V3.3 operating system, both PDP-15 off-1ine computers were put out of service as involving too much cost and technical support,

A user room was provided for interactive user operation on the VAX-11/780, acconmodating at present four raster graphic terminals, three alphanumeric display zerminals and two hard copy terminals.

A DATA SWITCH was conceived in cooperation with the site Planning Department and the Central Institute for Mathematics and commissioned to enable selective communication between temminais and connected computer systems at our Institute and the Central Institute for Mathematics.

14.2. Off-Line Data Evaluation

$$
\text { K. }-H \text {, Katalanit, K. Kamadi }
$$

The performance of the off-1ine computer VAX-11/780 has been increased for purposes like the off-line evaluation of experimental data and the development of software by hardware expansions such as

- installation of a Winchester disk RA81 (456 M byte capacity) with UDA 50 controller,
- expansion of the main menory to 4 M byte,
- installation of a terminal multiplexer CMF 32 with DMA capability and three additional display temminals (TAB 132/15).
A further increase in system performance was achieved by installing and optimizing the operating system VMS Release 3.3 and by implementing the FORTRAN Compiler V3.3 and the PASCAL Gompiler V2.0.

Software development has been further facilitated by the implementation of a Tektronix 4010/4012/4014 compatible graphic library GRAFIX ${ }^{1)}$ on the VAX-11/780. This software package makes it possible to generate high-level two- and three-dimensional graphs and software character sets in FORTRAN and PASCAL. Selective clearing and modification of image parts for the raster graphic terminal UESTHARD 1015 has been implemented as an additional option in the library.

Conversion routines were created and the existing MTIKP and SORT4PAR programs expanded to the individual data structure of external analyzer systems (such an GSI-Damistadt and ORSAY-Paris) for the evaluation of list mode data and spectra files of such analyzers.

A single spectra mode for list mode data of the CANBERA80 analyzer system was implemented in the universal Sort Program SORTAPAR.

The fit program SPTFIT for the evaluation of giant resonances which, in the past, has been capable of being run on the POP-15/35 under the DOS V3.3 operating system was rewritten for the operating system VAX-11/780 and largely implemented. For this purpose, the program systen was restructured and the areas of data handing, graphical representation on the screen and plotter as well as interactive conmunication were redeveloped. SPTFIT is a general FIT program of flexible design with regard to functional capability and application. Spectra can be evaluated in the interactive mode according to the following criteria;

- Background fitting,
the background is fixed by one or more polynomials of the degree 1 to 5 , which were calculated according to the least squares method using preset grid points (max. 50) within one spectrum. A background spectrum can be devided into several regions with different polynomials. Grid points were fixed by cursor positioning or numerical coordinate input on the terminal.
- Peak fitting

A maximum of 10 Gaussian peaks of random position can be fitted simultaneously within one spectrum. The peak position, peak width and peak center are preset in the interactive mode by cursor positioning or numerical input.

- Spectra modification comprises
the compessing of spectra (e.g. $4 k$ to $2 k$ or $4 k$ to 1 k) by the addition of consecutive channels and the division of spectra according to the algorithm (spec$\left.\operatorname{trum}_{j}+A_{j}\right) /\left(\right.$ spectrum $\left._{j}+A_{j}\right), A_{i}$ and A_{j} are preset factors.
- Data handing comprises
the storage of background spectra, modified spectra as well as peak fit parameters on disks and the plotting of spectra on the CALCOMP plotter.
The interactive dialog is effected via a graphic and an alphanumeric (hard copy) terminai. While the alphammeric terminal is used for the global dialog and log printout, spectra are represented and graphical operations performed on the graphic teminal.

The IEM program "AUTOFTT" was implemented on the VAX-11/ 780 for the evalutation of nuclear reaction spectra. This implementation comprises:

- transcoding of the software according to the requirements of the WM operating system as well as
- modification of the program from batch to interactive operation.
The interactive operation comprises control functions such as terninal dialog during progran flow, representation of fitted spectra or spectrum sections on the graphic temminal as well as piotting the spectra on the CALCOMP plotter.

Furthemore, the develoment of a program system for the evaluation of data from the emittance measuring equipment "EMA" was started, which will be used for beam diagnostics on the bean line syster of the isochronous cyclotron.
Current work covers

- the investigation of methods for direct emittance calculation from the measured data by approximation of an ellipse in the $\left(x, x^{\prime}\right)$ or $\left(y, y^{\prime}\right)$ coordinates as a function of the rel. beam current as weli as
- the development of models for approximating the beam profile by means of three-dimensional Gaussian functions from which the emttance and other relevant variables were calculated.
Both methods still exhibit unsatisfactory convergence properties in threshold regions.
14.3. On-Eine Processing and Data Acquisition K, -H. Fotelonik, R. Weiten, f. Diesburg

All the analyzer and computer systens with POP 11 computers (4 systems), except for the SCORPIO system, were provided with RL02 disks (10 M byte each) for the purpose of standardizing and expanding the storage capacity. This action included both the conversion of existing RLO1 disk drives and the replacement of some RK05 disks by RLO2 disk drives.

Obsolete operating systems on POP-11 systems were replaced by new operating systems optimized for certain units, i.e.: - the operating systen RTll Single-Job Vers. 4.0 was installed on the analyzer systems of the detector labora-
tory and the high- resolution crystal spectrometer and the user systems were implemented accordingly,

- the foreground background operating system RTll Vers. 4.0 was installed for program development on the PpP11/34 of the DP-group.
- the operating systems RSK-11M Vers. 4.0 with FORTRAN IV V2.5 or FORTRAN IV Plus 13.0 were installed on the PDP-11/34 of the isochronous cyclotron and the DP-group.
A CAMAC driver ${ }^{2}$) for the CAMAC controfler DEC CAIIA (branch controller) as well as single crate controlier BORER type 1533AD and DEC CAIIF was implemented and tested on the DP-PDP-11/34 under the operating system RSX-11M for the acquisition of data and control of experiments. This driver permits the programing of CAMAC systems in the high-level language fORTRAN.

A new operating and user system MIDAS+E was installed on the multiparameter analyzer system ND6660. A one-week miltiparameter data acquisition workshop was held for users and operators in cooperation with Nuclear Data. Lectures and practical exercises covered the operating system MIDAS of the analyzer ND6660, programming in FORTRAN and assembler as well as data acquisition in the MPA system.
The data accuisition software required for collecting experimental data on the magnetic spectrograph BIG KARL via 12-fold NIM counter, type 342, and CAMAC $1 / 0$ modules Borer 1031 was developed and implemented on the on-line VAX$11 / 780$ of the BIG KARL system.
The analyzer system MEMPHIS II ${ }^{3)}$ for the recuirenents of the muclear reaction and nuclear spectroscopy groups were further developed in cooperation with the Central Electronics Laboratory (ZEL). An 8-parameter system was completed, new computing function modules (e.g. the 20 window Unit) were defined and the overall system was conceived in conformity with extended requirements. A CAMAC driver ${ }^{4)}$ for the crate controller Borer, type 1533A, was implemented on the [P-VAX uncer the operating system WMS V3. 3 for connection to this overall system,

A CAMAC-oriented 8-parameter analyzer system was conceived for the acquisition of data and control of an experiment to discover new types of particles on reactors. The hardware configuration of this system comprises:

- the process computer PDP-11/24 with $256 k$ byte memory, two disks Rlo2 (10 m byte capacity each), à progranntable clock KWIIP,
- 2 teminals, the system console LA100 and a graphic terminal WESTUARD 1015 with the hard copy printer ANADEX OP-9500 A as well as
- a CAMAC crate with crate controlier Borer 1533Av and CAMAC modules for data acquisition and experiment control as interface hardware for the experiment.
The analyzer system works under the real-time operating system RSX-1IM V.4.0. A CAMAC driver ${ }^{2}$) has been implemented for CAMAC operations permitting the programming of CAMAC functions in FORTRAN IV. Data of a muiti-detector arrangement mounted on a rotating telescope are collected during the experiment as a function of the telescope position. Experiment control comprises telescope positioning
and measuring time presetting. The following is carried out for each measuring point defined by the measuring position and measuring time:
- acquisition of coincident multiparameter events as list mode data,
- generation of projection spectra for each detector as well as
- acquisition of summation count rates for detectors and experiment-accompanying pulse sources.
During the period under review, the computer and CAMAC hardware of the analyzer system was built up and component tests of the interface hardware, especially of CAMAC components, were carried out. The creation of the data acquisition and control system was comanced.
Furthemore, the development of an analyzer system for the new low-energy crystal spectrometer was started. The hardware configuration of this system comprises:
- the process computer POP-11/10 with 64k byte memory, a programnable clock KW11P, a terminal interface DL11E and an RLO2 disk,
- 2 terminals, a VT55 video terminal and an LA100 printer as well as
- CAMAC interface hardware for data acquisjtion and experiment control.

References

1) Graphisches System Grafix, HE Berlin D/M 130, Nov. 1982
2) E. Busse, K.-H. Degenhardt, U. Vidic, Mumpti a Multi-User-Multi-Task-Interpreter for process-control application with CAMAC, HML-8338, October 1980
3) K. -H. Hatzlawik, R. Nellen, on-line Processing and Data Acquisition, IKP-Annual Report 1982, JU1-Spez 202, April 1983, p. 127
4) H. Heer, H. Stoff, CAMAC-Driver unter VAX-11/780 VMS 2.1, Betriebssystem für PDP11 CAMAC Crate Controller Borer 1533AJ, Jil-Spez 116, Juni 1981

14.4. Software Development

B. Hoffmann

A graphics package for 2-dim representation of data was designed and implemented on a HP 9836 computer. The program was designed in such a way that it is easy to use even by novice users without giving up the flexibilty that an experienced user needs. This is achieved by using menu techniques and a lot of graphical feedback. Here is a short list of main features:

- up to 10 different datasets can be handled simultaneously
- each of them may contain up to 9 graphs (1 x-column, $9 y$-columns)
- picture may consist of 1 to 8 different viewports
- axes can be chosen to be linear or logarithmic
- Greek character fond
- data manipulation routines including: editor, sorter, calculator ...
Hardcopies can be produced on the HP 9872 (DIN A3, 4pen) plotter or on a HP 2631 graphics printer. Utility programs for data transfer from TSS, CMS and USPC are available.

A short introduction to this plot program is in preparation.
14.5. Data Analys is Developments at JOSEF

$$
\begin{aligned}
& \text { G. Lhersonnea, M. Kamadi, W. Tenten }{ }^{t} \text { ond } \\
& \text { T. Seo }
\end{aligned}
$$

Most of the experiments performed at JOSEF involve $\gamma-\gamma-t$ coincidences where the data are written in event mode on magnetic tapes. Therefore much effort was devoted in 1983 to improve the sorting procedure for these coincidence events as well as for the subsequent data processing.

New routines for on/Off-line sorting at the Mega Channeł Analysator MECCA at the reactor DIDO were impiemented, which allow more flexibility in the selection of gates. of particular interest for the life-time determination of nuclear levels is the facility of sorting up to 2048 time spectra from a gate matrix with 32×64 energy windows.

For Oft-line analysis at the VAX computer of the IKP a sort progran was developed starting from an existing standard routine. Owing to a new sort algorithm, the execution speed has been increased by a factor typically of 4 , when compared to the previous version.

In order to minimize manual input, which is always a source of errors, the data processing has been highly automatized. One of the crucjal steps in the analys is of coincidence data is the correction for the background caused in the projections by Compton and random events. For this purpose we have implemented an algorithm ${ }^{1}$) which estimates exactiy the correction, irrespective of the width and position of the gating windows. The basic assumptions are that background windows are chosen on both sides of the 'peak' window (see fig. 1) and that in this channel range the background has a linear behaviour according to the following formula:
$B(x, y, z)=B_{0}(z)+A_{x}(z)\left(x-x_{0}\right)+A_{y}(z)\left(y-y_{0}\right)$
Here x, y (resp. z) are chanel numbers on the gating (resp. projected) parameters of the $\gamma-\gamma-t$ event. The channels x_{0}, y_{0} are chosen close to the peak centroids. The coefficients B_{0}, A_{x}, A_{y} describe a projection gated by the channel pair x, y.
It is shown in ref. 1) that the background corrected projection $C(z)$ can be expressed as a linear combination of the various projections $P_{i}(z)$ obtained by combining the gating windows in all possible ways as shown on fig. 1. This yields an expression of the form:
$C(z)=\sum_{i=1}^{9} \alpha_{i} P_{i}(z)$
The index i is shown on fig. 1. The coefficients α_{i} are functions of the gating window limits only. If a window is missing the α_{i} 's in the corresponding row or column will be zero. (Note that the accuracy will be reduced since then a constant background is assumed.)

The standard error $\sigma(z)$ on $C(z)$ is no longer given by Poisson's statistics but instead by:
$\sigma(z)=\left|\sum_{i=1}^{9} a_{i}^{2} P_{i}(z)\right|^{1 / 2}$

In the case of unfavourable peak to background ratios the deduced errors might be substantially underestimated if one ignores eq. 3. Therefore, a separate $\sigma(z)$ spectrum is also generated and the peak analysis routine has been adapted in order to extract the errors from it.
To conclude, the present set of routines allows a faster and more accurate data analysis of $\gamma-\gamma-t$ coincidence events. An example is the background correction described above. The formalism is presented for 3-parameter events, but might be easily extended to more dimensions. Therefore, it can have a broader range of applications in other coincidence experiments.

Fig. 1: Gate matrix

Reference

1) G. Lhersonmeau, Nuc1. Instr. Mein. 157 (1978) 349

+ Zentrallabor für Elektronik, KFA Jiilich
${ }^{+4}$ on leave from Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka, Japan

15. Electronic Division

A. Labus, J. Bojowatė

1. Soft- and hardwaremodules were developed for the new low energy bent crystal spectrometer where three rotary motions must be controlled simultaneously. The actual values of the motions are the Bragg angle, which is measured by a $1^{\prime \prime}$ resolution HAIDENHAIN encoder, the angle position of the multiwire detector chamber, which is measured by a I' resolution encoder and the direction of the detector plane which is measured by a potentiometric resolver. To make possible the use of the control and data acquisition concept of the older high energy bent crystal spectrometer a special double EuROSMP input module was built to convert the encoder data. The software was written in PL/M-80 on our INTEL-0s246-software development system and partially tested. In the vincintty of the position balance point the set values of the analogue velocity control circuits are reduced monotonically to zero which gives excellent settling behavior even at large dead times. Prinued boards were developed and tested for the multiwire detector chamber to supply its forty hybrid preamplifiers and to shape their output signals. (H. Labus, G. Lurken, K. Winkler)
2. The set up to the BIBLIS multidetector AXION-Experiment was supported. A special photomultiplier base for the EMI-9808K tube was developed with very small volume and mechanisms to fasten the 16 units with constant pressure on large anti counters of PLEXIGLAS GS-2037. Six ORTEC model 276 bases were modified to fit for EmI-9813KB tubes. A MATME Serie MTRB servo-anmlifier was used to build a motor control to rotate the 40 tons shielding box to the measurenent positions by manual preset or by the PDP11/10-CAMAC data-acquisition systen.
(N. Dolfus, W. Ernst, G. Lirken, K, Winkler)
3. Investigations were made to expand our INTEL-DS246 sof tware development system to multiuser applications and to other languages than PL/M preferably PASCAL, and to i6-Bit-computers as INTEL-8086/8088. In this context other hard- and software products are being tested together with the central electronic lab ZEL. With the combination of SIEMENS-SMP-Hardware and DIGITAL-RESEARCH software PASCAL/MT $+85 / 86$ and SPP runnirg under CP/M or MP/M it seems to be able to configure low cost single or multiuser software development systems which would furthemore habe the advantage of using the same hardware as our application systems. (N. Dolfus, G. Lurken, H. Labus)
4. The old alectronic control of beam slit ASI within the JULIC beam guide system which could only change the width of two perpendicular, beara limiting windows was replaced by a new analogue control which allows to position each of the four jaws independently. Three switch selectable windows with preselectable width and conterposition can be choosen manually or by computer controlled DAC's.
(N. Dolfus, H. Labus, G. Lurken, K. Winkler)
5. About 75 repair, manitenance or modification jobs of NIM- and CAMAC modules, TV-cameras and monitors, power supplies of all categories, electronically controlled scattering chambers and beans slits and a great variety of special instruments from our own or external production were perfomed.
(N. Dolfus, W. Ernst, G. Lüken, K. Hinkier)

16. Radiation Protection

16.1. Composition of the radioactive contaminations at JULIC and senisitivity of the contantination measuring devices

$$
\text { I. Uway }{ }^{+} \text {, H.d. Erobst }
$$

The German Radiation Protection Ordinance prescribes contamination limits in radiation areas. If those limits are exceeded, certain measures (decontanination, sealing in foils etc.) have to be taken. In practice this implies that the amount of contamination have to be determined quickiy during routine operation. For cases where one handes only a few radioactive nuclides this quick determiration is possibte. Either a methane/propane/butane gas flow or a Xe-filled proportional counter is used.

The situation at a cyclotron is really complex. It was therefore considered necessary to investigate whether the value (count rate) obtained through an usual contamination measuring device could possibly be used to detemine the amount of the contamination the cyciotron area also. For that purpose wipe samples were taken from many places in the cyclotron area as well as from outside. The muclides present in those samples and their activities were determined by means of a Ge(Li)- or a Si(Li)-detector. Furthermore, the count rates produced by those different samples were registred using several contamination measuring devices. In all 19 wipe samples were amalysed. The investigation furnished following essential results:
a) The number of the nuclides identified was large (even after a cooling time of feu days at least 28 radioactive nuclides with half-lives between 2.7 days and 5 years were analysed).
b) The nuciidic composition differs strongly at least partly, from sample to sample. The highest contamination activities consisted of Re-, W - and Ta-nuclides (nuclides of the strongly activated tungsten wires of the deflector). However; partly ${ }^{7} \mathrm{Be},{ }^{65} \mathrm{Zn},{ }^{75} \mathrm{Se},{ }^{169} \mathrm{Yb}$ were also dominant nuclides.
c) The sensitivity of the contamination measuring devices varies by more than a factor of 10 for the different. wipe samples. The trends in the sensitivities of the different measurthy devices are the same for the different wipe samples.
d) The sensitivities are in some cases very low (only small fractions of the background count rate). The Xecounter has by a factor of 3 to 6 higher sensitivity.
e) Small covers over the samples and distances of a few centimeters between sample and counter reduce the sensitivity strong?y.
Details on points a) to e) are described in ref. 1), 2).
The results allow to make the following two important statements:
a) Because of the great differences in the sensitivity the value of the contamination activity cannot be deduced from the count rate of the usually used contami. nation measuring devices.
b) Because of the low sensitivity, in many cases the count rate of the contamination measuring devices corresponding to the contamination limits is so small that this
value camot be used for practical purposes.

References

1) I. Uray, H.J. Probst, Bericht der 17. Janrestagung des Fachverbandes für Strahlenschutz e.V. Wber Strahlenschutzaspekte bei radioaktiven Kontaminationen, June 8-10, 1983, Aachen, FS-83-32-1, pp 505-518, Redaktion H. Bonka, $\mathrm{H},-\mathrm{G}$. Horn
2) H. J. Probst, I. Uray, Proc. of the XI. Regional Congress of IRPA Austrian-Hungarian-Yugoslavian Radiation Frotection Meeting on Recent Development and New Trends in Radiation Protection, Sept. 20-24, 1983, Viema (in press)
+IAEA fellow, pemanent address: Institute of Nuclear Research of the Hung. Acad. Sci., P.0.B. 51, H-4001 Debrecen, Hungary

16.2. Routine Duties

H.J. Probst, I. Wray ${ }^{\dagger}$, H.J. Hintzen, K. Krofft

Since the personnel safety system operates well, in 1983 the major emphasis was placed on the dangers during handiing of partly strongly activated cyclotron components. It is especially critical during the annual maintenance. This is evident fron figure 1 which shows the distribution of the β - γ-dose rate in the cyclotron vault at the beginning of the maintenance.

It is saisfying that in spite of the high dose rates and the extremely inhomogencous distribution the resulting man-rem-dose amounts only to 0.11 Sv (11 rem), thereby showing a slow decrease in comparison to 1982. Only one person got a dose of $15 \mathrm{mi} \mathrm{SV}(1,5 \mathrm{rem})$. This is somewhat nigher than the annual dose of 10 m Sv which we internal$1 y$ try to observe. Moreover, regulary examinations of the persons handling unsealed radioactive materials were performed but no incorporations were detected. Also the extremity doses were negitgibiy low. Contaminations could be kept within imits so that no special measures were necessary.

Figure 1: Distribution of the $\beta-y$-dose rate in the cyclo~ tron vault at the start of the maintenance. The values are given in $\mathrm{m} ~ \mathrm{~Sv} / \mathrm{h}$ (1 $\mathrm{m} \mathrm{Sv} / \mathrm{h}=100$ mrem/h),

[^15]16.3. Gamma-Neutron Radiation Field in the Cycfotron Vault
$$
\text { I. Uroy }{ }^{+} \text {, H.J. Probst }
$$

The mixed gamma-neutron raciation field was investigated in the cyclotron vault of the JULIC isochronous cyclotron. Knowledge of this field at an accelerator operating long since provides us with imporiant information for the accidental cosimetry which, oftem based on an incomplete measured data set, can give an uncertain estimation of the dose only. The goal of these studies was to obtain a comprehensive picture over the in-operation status of the cyclotron ${ }^{1)}$ and, to search for a possible way of a simple but sufficient control of the accidental doses ${ }^{2}$.

The operating cyclotron is a very intense source of fast neutrons and, because of slowing down processes, intermediate and themalized neutrons are always present, as well. Different kinds of nuclear processes are producing also considerable gamma radiation. According to our gamma dose fieasurements the proportion of the gamma dose near the accelerator is negligible compared to the neutron dose equivaient, amounting to a few per cent of it only. This means, that the control of the gamia dose alone is insufficient for the accidental dosimetry inside the shielded area.

A possible accidental dosimetrical use of activation detectors and themoluminescent materials was investigated. Moreover to identify the produced neutron spectra the activation sets of $\mathrm{In}, \mathrm{Cu}, \mathrm{Al}$ and Fe materials were used. In first order the ratio of the themal, eplthermal and intermediate energy neutrons depends on the size of the room, while the type of the reaction investigated is only a modifying factor. In the measured thermal flux proportion morcover there is a significant difference when the measurements are carried out in air or on the surface of a moderating phantom or of the wall. However fast neutrons are giving the decisive part of the neutron dose because of their much higher biological harm. Consequently their cose contribution is responsibie nearly for the whole neutron dose equivalent.

Long-term dose equivalent rate measurements were carried out mploying a Studsvik 2002 B Neutron Radiation Meter, controling the radiation status and testing other measuring methods, respectively. Fig. I shows a characteristic fragment of these measurements. It has been found, that
1.) the neutron dose equivalent rate in the cyclotron vault can exceed the value of $1 \mathrm{mSv} / \mathrm{h}(100 \mathrm{nrem} / \mathrm{h})$ even at the entrance of the cyclotron valut, where the radiation level is relatively low. (Close to the cyclotron the dose equivalent rate is much higher.)
2.) the operating conditions of this cyclotron influence the dose equivalent rate, which is frequently and considerably changing even at the same place. At such circumstances the common use of activation accidental dosemeters is unadvisable.
3.) the Lif themoluminescent dosemeters offer a possible solution for the accidental dosimetry. Their gamma and
themal neutron responses can be selected on the basis of the differences of their glow curves. Furthemore it is possible from these data, having some knowledge about the neutron spectra, to give an acceptable estimation for the neutron dose equivalent, as well.

Figure 1: The hourly changes of the neutron dose equivalent rate \dot{H} at the entrance of the cyclotron vautt between 26.06 .83 and 01.07 .83 in mSv/h units ($1 \mathrm{mSv}=$ 100 rem). The particles accelerated, their energy and the highest internal currents are given.

References

1) I. Uray, P. Mangård, H.J. Probst, M. Heinzelmam, Characteristics of mixed neutron-gama radfation field around cyciotrons, XI. Regional Congress of IRPA, Vienna, Sept. 20-24, 1983 (to be published)
2) I. Uray, E. Gyamati, J. Felszerfaivi, H.J. Probst, M. Heinzelmann, Possible use of Lif dosemeters in mixed heutron-ganma fields, XI. Regional Congress of IRPA, Vienna, Sept, $20-24,1983$ (to be published)
${ }^{t}$ IAEA feilow, permanent adaress: Institute of Wuclear. Research of the Hung. Acod, Sci., P.0.B. 51, H-4001 Debrecen, Hungary
16.4. Skin Dose of the Contaminations at JULIC H. J. Probst, I. Uray ${ }^{\text {+ }}$

In the first part of the Radiation Protection contribution it has been shown that the value of a contamination existing in the cyclotron area cannot be deduced from the count rate of a contamination measuring device. Long experience has shown that contaminations at JULIC are important almost exciusively for causing radiation dose to the skin. Therefore, for radiation protection reasons, it is important to know if and which relationship exists between the count rate of a contamination measuring device and the radiation dose to the skin caused by this contamination.
To clarify this question 7 wipe samples were taken from different places in the cyclotron area as well as from outside. In order to be able to measure the skin dose caused by these contaminations with the help of 3 layers of TLD ${ }^{1,2)}$ which are often used in the KFA, and to achieve rather good homogenity, disks of 12 mm diameter were punched out of the wipe samples. The subsequent investigations were carried out using these samples: determination of the nuclidic composition, of the activity and of the count rate of contamination measuring devices. The resulting sensitivity of the measuring devices varies considerably for the different samples, as shown in figure la (the sensitivities for ${ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{Y}$ and ${ }^{204} \mathrm{~T}$ are given for comparison). The skin dose produced by these samples was measured by means of 3 layers of TLD as mentioned above. The exposure was carried out for periods between 1 and 7 days depending on the activity of the sample. Figure Ib shows the skin dose rate factor. It is the quotient between the measured cose per exposure time and the measured activity per area. The values of ${ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{Y}$ and ${ }^{204_{\mathrm{T}}}$ are also given for comparison. As can be seen, the values differ rather strongly. The arrow at wipe samle no. 7 in the figure la and Ib denotes that due to the non-detection of all the γ-lines of the sample no. 7 the activity is a little higher than the value taken for calculating the sensitivity and the skin dose rate factor, respectively. Therefore, the sensitivity and the skin dose rate factor are a little smaller.
Finally, the quotient of the skin dose rate factor and the sensitivity of the measuring device was determined. This value describes the skin dose rate produced by a contamination corresponding to i cps per cm^{2} of contanaination area. It is noticeable that all the wipe samples have about the same quotient. Since this value is less than the values for ${ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{y}$ and ${ }^{204} \mathrm{T1}$, it offers an advantageous pos. sibility to set count rate limits on the contamination measuring devices for contaminations of unknown composition: The count rate produced by a ${ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{Y}$ - or ${ }^{204} \mathrm{~T} 1$-calibration source having a known activity which is accepted or given-as ceciding vaiue may be used for unknown contaminations, too. of course, the activity of the unknown contamination is in general higher than the values given in the Radiation Protection Ordinance, as seen in figure la, but the skin dose produced by this contamination - and this should be the criterion - is less than the values of $90_{\mathrm{Sr} /}{ }^{90} \mathrm{Y}$ or $\left.{ }^{204} \mathrm{~T}\right]$ for instance, as seen in figure 1c).

Figure 1:
a) Sensitivity of the contamination measuring device H1370 (Fa. Herfurth, F.R. Germany) for 7 different wipe samples and the calibration sources $90 \mathrm{sr} /{ }^{\circ} \mathrm{y}$ and 20411 . For sample 4 see text.
b) Experimentally detemined skin dose rate factors for 7 different wipe samples. The values for $90 \mathrm{sr} / 90 y$ and 204 Tl are given for comparison. For details see text.
c) Quotient of the skin dose rate factor (figure 1b) and the sensitivity (figure la), It describes the skin dose rate per count rate (of a contamination measuring device) normalized to the unit area. For details see text.
References

1) M. Heinzelmann, H. Schuren, M. Keller, Radiation Protection Dosimetry, Vol. 2 No. 2 p. 115-118 (1982)
2) M. Kelfer, Int. Report 75T-Bericht 0330, KFA Juilich (1980)
${ }^{+}$IAEA fellow, permanent address: Institute of Nuclear Research of the Hung. Acad. Sci., P.0.B. 51, H-4001 Debrecen, Hungary
17. Engineering Office and Mechanical Workshop V. Briett, D. Goss, B. Hadarek, A. Rotz, U. Rindflecisch, H. Sohwon
In 1983 the work of the engineering office was concentrated on the realization of the ISIS project (see status report p. 122).
A great part of the mechanical workshop's capacity was dedicated to a complete service on the vacuum system of the magnet spectrometer BIG KARL and to a major repair of its air pads supporting the concrete shielding. A new vacuum chamber with a big ($100 \times 10 \mathrm{~cm}$) window in front of the focal plane detectors went into operation. Active slits behind the first and second quadrupole were built in.

Besides the service and the scheduled maintenance of the cyclotron, improvements on the vacuum system were achieved during the annuai shutdow period. For the installation of three $10.000 \mathrm{l} / \mathrm{s}$ cryo-pumps the cyclotron vacuum chamber was equipped with additional pump sockets (NW 500). Due to higher intemal beam currents the radiation damage of the extraction elements increased significantly. Three new septum blades had to be produced since the repair of the highly activated components was not possible in most cases.

A new crystal spectrometer for experiments with low energy X -rays was designed. The production is in progress (see figure 1). To satisfy the requested accuracy for

1) detector 2) detector rotation 3) encoder 4) detec. tor angular encoder 5) crystal 6) motor for crystal movement 7) motor for detector movement 8) wire ball bearing 9) (source)-crystal angular encoder 10+11) gear system for crystal and detector drive 12) source
positioning and rotation, high requirements in bearing, measuring and production have to be met. The two independent supporting aras of the crystal and the detector are centered by a double wire ball bearing system and are positioned by separate driving elements. The relative angle measurement is performed by two angular encoders with an accuracy of less than 5 seconds of arc from the source to the crystal and less than 1 second of arc from the crystal to the detector. The detector support is rotatable around its center. Driving is done by 12 Volt DC motors.

The mechanical components for two experiments searching for penetrating particles (axions) at nuclear reactors were designed and constructed. At the FRJ-1 reactor an experimental set-up was installed which changes the angular position of the radiation detectors and the shielding periodically. The construction of a similar improved device consisting essentially of a low radiation background rotatable chamber weighing 30 tons is in progress.
V. SCIENTIFIC ADVISORY COUNCIL OF THE INSTITUTE OF NUCLEAR PHYSICS

Prof. Dr. R. Bock
Prof. Dr. G.E. Brown
Prof. Dr. P.G. Hansen
Prof. Dr. T. Mayer-Kuckuk
Prof. Dr. R. Santo (Chairman)
Prof. Dr. R. Sizmann
Prof. Dr. H:U. Specht
Prof. Dr. H. Vonach
Prof. Dr. H.A. Weidenmillier
Prof. Dr. L.E. Feinendegen

GSI Darmstadti.
Dept. of Phys. SUNY at Stony Brook
University of Aarhus
University of Bonn
University of Münster
University of Munchen
University of Heidelberg
Österreichische Akademie der Wissenschaften, Wien
MPI fïr Kemphysik, Heidelberg
KFA Jitich
VI. EXTERNAL COMMITTEE FOR GUEST EXPERIMENTS

Frof. Dr. R. Santo	University of Munster
Prof. Dr. H.J. Specht	University of Heidelberg

VII. PERSONNEL

Institute for Nuclear Physics:

Dr. C. Mayer-Böricke
Director of the Institute for Nuclear Physics (Experiment I), till 30.9 .1983 Professor of Physics at University of Bonn

Dr. P. Turek Acting Director (Experiment I), since 1.10.1983

Dr. 0. Schult Director of the Institute for Nuclear Physics (Experiment II)
Professor of Physics at University of Kön

Dr. J. Speth
Director of the Institute for Nuclear Physics (Theory)
Managing director of the Institute for the year 1983
Professor of Physics at University of Bonn

DP G. de Angelis (E2) since Oct. 31, 1983
Dr. G. Baur (Th) (Privat Dozent at the thiv. of Basel) Dr. G. Berg (E2)
Dr. H. Beuscher (LI)
Dipl. W. Bodewig (E2)
unti) Dec. 31, 1983
OP J. Bojowald (Ec)
Dr. G. Borchert (E2)
DI W. Bràutigam (LI)
Dipl. B. Brinkmöller (E2)
Ur. D. Cha (Th)
since Feb. 9,1983
DP C. Conci (Th)
OI S. Dasgupta (LI)
until July 21, 1983
(BARC, Calcutta/India)
Dr. P. Decowski (El) (Warsaw University, Warsaw/Poland)

DP H. Dermawan (Th)
until Aug. 14, 1983
Dr. A. Djaloeis (E1)
Dr. S. Drozdz (Th)
since 0ct. 3, 1983
DP A. Ercan (E2)
until April 30, 1983
Dr. W. Gast (E1)
DP R. Gissler (Th)
Prof. K. Göke (Th)
(Prof, at the
Uniy. of Bonn)
Dr. F. Grimaer (Th)
Dipl. G. Hebbinghaus (E1)
Dr. G. Hlawatsch (E2)
DP B. Hoftman (Th)
Dr. P. Jahn (El)
Dipl. A. von Kempis (Th)
Dr. P. Kieinheinz (E2)
Dr. V. Kiemt (Th)
Dr. H.R. Koch (E2)
DP P. Kohl (E2)
Dipl. A. Krämer-Flecken (E1)
DP シ̈. Krauss (E1)
Dr. 5. Krewald (Th)
DP D. Kusnezov (E2)
until Aug. 31, 1983
Dr. H. Labus (Ec)
DP M. Lach (E2)
Dr. H. Lawin (Li)
Dr. G. Lhersonneat (E2)
Dr. R.M. Lieder (E1)
(Privat Dozent at the
Univ. of Bonn)
Dr. H. Machner (E1)
DP A. Magiera (E2)
mik. Maßmeyer (E2)
Dr. H.G. Mathews (LI)
DP T. Massey (EQ)
Prof. Dr. C. Mayer-Boricke (E1)
(Prof. at the Univ. of Bonn) until Sept. 30, 1983

DP G. Menzen (E2)
Dr, R.A. Meyer (E2)
until Aug. 31, 1983
(Lawrence Livermore Nat.Lab.)
Dr. H.P. Morsch (EI)
DP K. Nakayama (Th)
Dr. A. Neskakis (EI)
until Apr. 14, 1983
(Univ. of Crete,
Iraklion/Greece)
Dipi. M. Nolte (E1)
Dr. W. Delert (E1)
Dr. F. Osterfeld (Th)
Dr. G. Palla (E1)
(Hung. Academy of Sciences,
Central Res. Inst, for
Physics, Budapest)
Dipl. D. Paul (LI)
since Apr. 25, 1983
DI R. Posorski (E2)
until March 31, 1983
DF D. Frasuhin (LI)
since July 1, 1983
DP H.J. Probst (Rp)
DP D. Protic (Dt)
DP D. Provoost (Th)
since Aug. 1, 1983
DP J. Reich (LI)
Dr. G. Riepe (Dt)
DP J. Röner (LI)
Dr. M. Rogge (E1)
DP T. Rose (E2)
Dr. P. von Rossen (LI)
since Oct. 1,1983
DP B. Rubio (E2)
DI B. Sack (E2)
Dipl. J. Schäffler-Kräh (El)
Prof. Dr, 0. SchuTt (E2)
(Prof. at the Univ. of Cologne)
DP A. Schulte (Th)
since March 1, 1983
Dipl. G. Seniwongse (E1)
Dr. T. Seo (E2)
Dr. H. Seyfarth (E2)
Dipl. R. Siebert (E1)
Dr. K. Sistemich (E2)
(Privat Dozent at the Univ. of Cologne)
DP G. Sondermann (E2)
from vinie 1 to vuly 35,1963
Prof. Dr. J. Speth (Th)
(Prof. at the Univ. of Bonn)
Dr. H.J. Stein (E2)
DP J. Tain (E2)
Dr. H. Talarek (E2)
Dr. Y. Tokunaga (E2)
until May 6, 1983
Dr. P. Turek (E1)
DP T. Venkova (E1)
(Bulgarian Academy of Sciences, Sofia, Bulgarien)
Dr. R. Wagner (E2)
Dr. J. Wambach (Th)
since June 13, 1983

Dr. K. -H , Watzlawik (Da)
Dr. P. Wucherer (LI)
Djpl. R, Yogeshwar (E2)
DP T. Zekom (E2)
Or. L. Zerilo (E1)
until Sept. 14, 1983
(Institute of Nuclear
Research, Warsaw/Poland)
Dr. K. Zuber (E2)

Research visitors
(for one week to six months):
Prof. J. Blonquist (E2)
from June 26 to July 2, 1983 and
from Sept. 18 to Sept. 24, 1983
(Res. Inst, for Phys. Stockholm)
Dr. B. Bochev (E1)
from Apr. 18 to July 15, 1983
(Bulg. Acacemy of Sciences, Sofia, Bulg.)
Dr. T. Bocheva (EI)
from June 13 to Aug. 31, 1983
(Bulg. Academy of Sciences, Sofia, Bulg.)
Dr. M. Bogdanovic (E2)
from May 4 to Aug. 4, 1983
(Boris Kidric Inst., Zagreb)
Dr. S. Brant (E2)
from 0ct. 1 to Oct. 31, 1983
(Boris Kidric Inst., Zagreb)
Prof. P.J. Daly (E2)
from Sept. 5 to Sept. 13, 1983
Purdue Univ., W. Lafayeth, Indiana)
Dr. J.P. Didelez (E1)
from July 2 to July 14, 1983
(Inst. Phys. Mucl., Orsay, Françe)
Dr. C. Fioihais (Th)
from Aug. 1 to Aug. 31, 1983
(Univ. of Granada, Spain)
Dr. J. Hanzlik (Dt)
from June 1 to June 30, 1983
(Tschechoslowakische Akademie der Wissenschaften, Prag)

Prof. Dr. H. Ikegami (E2)
from Aug. 25 to Nov. 4, 1983
(Res. Center for Nucl. Phys., Osaka)
Prof. L. Jarczyk (E2)
from Nov. 15 to Dec. 16, 1983
(Jagellonian Univ. Cracow)
Or. R. JuTin (E2)
from Nov. 28 to Dec. 11, 1983
(Univ. of dyväskyla)
Dr. Bohumil Kral (E1)
from Nov. 25, 1982 to Febr. 24,
1983
(Techn. Hochschule Brno, Tschechos lowakei)
Dipl. A. Lallena (Th)
from May 9 to June 30,1983
(Univ. of Granada, Spain)
Prof. Dr. I. Lovas (E1)
from March 28 to May 27, and.
Sept. 2 to Oct. 8, 1983
(Hung, Acadeny of Sciences,
Budapest, Ungarn)
Prof. G. Love (Th)
from Sept. 1 to Sept. 30, 1983
(Univ. of Georgia, Athens, USA)

Dr. S. Lunardi (E2)
from Sept. 24 to 0ct. 14, 1983
(Istituto Nazionale de Física Nucl., Padova)
Dr, Z.Y. Ma (Th)
from March 7 to Apr. 8, 1983
(SUNY at Stony Brook, USA)
Prof. Dr. A. Marinov (E1)
fron July 1 to Sept. 30, 1983
(The Hebrew Jniv of derusalem, derusalem, Israel)
Dr. T. Morek (E1)
from May 15 to Aug. 15, 1983
(Warschau Univ.)
Dr. © . Morris (E2j
from Sept. 10 to Sept. 15, 1983
(LAALL Los Alamos)
Prof. J. Nemeth (Th)
from Jan. 21 to March 31, 1983
Eotvös Univ:, Budapest,
Hungary)
Prof. V. Paar (E2)
from oct. 1 to Oct. 31, 1983
(Boris Kidric Inst, Zagreb)
Prof. V.R. Pandharipande (Th)
from July 19 to Aug. 12, 1983
(Univ. of Illinois, Urbana, USA)
Prof. Dr. M. Pitparinen (E2)
from dan. 3 to Jan. 23, 1983
(Jniv. of Jyväskylä)
Prof. Dr. F.-G. Reinhard (Th) from March 7 to 10 from Apr. 20
to 22, from Sept. 19 to 30 and from Oct. 17 to 28 , 1983
(Univ. Erlangen)
Dr. H. Reinhardt (Th)
from Sept. 9 to 0ct. 31, 1983
(ZFK Rossendorf, Dresden, DOR)
Dr. B, Schwesinger (Th)
from Sept. I to Oct. 31, 1983
(SUNY at Stony Brook, USA)
Dr. G. Sletten (El)
fron July 3 to Juty 9, 1983
(Niels Bohr Inst., Copenhagen)
Dr. F. Soramel-Stanco (E2)
from Aor. 5 to 12, and 0ct. 5
to 9, 1983
(CSNSM, Orsay)
Prof. A. Strzalkowski (E2)
from Nov. 15 to Dec. 16,1983
(Jagellonian Univ. Cracow)
Dr. B. Styczen (52)
from Hov. 17 to Dec. 21, 1983
(Jagellonian Univ. Cracon)
Dr. J. Styczen (E2)
from Dec. 9 to Dec. 21, 1983
(Institute fo Nucl. Phys. Cracow, Poland)
Or. C. Suikösd (EI)
from Jan. 3 to Febr. 4, 1983
und from July 18 to Aug. 17,1983
(Dept. of Atomic Physics, Roland Eötvös Univ. Budapest)
M.D. Trivedi (LI)
from Sept. 15, 1983 to Sept. 14 , 1984
(Bhabba Atomic Research Centre, Calcutta, India)
Prof. T. Udagawa (Th)
from May 30 to June 30,1983
(Univ. of Texas, Austin, USA).
Dr. I. Uray (Rp)
from Jan. 1, 1983 to June 30, 1984
(Hungarian Acad. of Sciences, Debrecen)
Prof. J.N. Urbano (Th)
from June 1 to 0ct. 9, 1983
(Univ. of Coimbra, Portugal)

TechnicaF and administrative staff:
K. Barth (Ec)
H.G. Böge.(LI)
W. Borgs (E2)
H. Borsch (LI)
B. Brandes (Da)
since Sept, 1, 1983
W. Briell (Cd)
R. Brings (LI)
G. Britther (Ec)
E. Brokel (Th)
b. Burck (Ad)
J. But (ds)
H. Diesburg (Ec)
A. Dohmen (Ad)
N. Dolfus (Ec)
F. Drees (LI)
R. Enge (Ws)
R. Engelbrecht (Ws)
since May 2, 1983
P. Engels (LI)
W.R. Ermer (E2)
W. Emast (Ec)
R. Fiedler (LI)
G. Gad (LI)
G. Göbbels (Ws)
A. Golik (Ws)
E. Gollnick (E2)
E. Griesen (Ad)
D. Groß (Cd)
U. Hacker (LI)
until March 31, 1983
H. Hadamek (Ws)
M. Heese (Ad)
H. Heinrichs (LI)
K. Hieble (LI)
H. Hintzen (Rp)
W. Hoffmeister (LI)
K. Hitten (Ws)
H.M. Jäger (EI)
I. Jannakos (LI)
H.J. Jansen (Ws)
R. Janssen (Ad)
A. Jeglorz (E2)
M. Karnadi (Da)
M. Kohnen (E2)
R. Korthues (LI)
K. Krafft (Rp)
K.P. Kruck (LI)
T. Künster (Dt)
E. Lawin (Dt)
H.-G. Lemkamp - (E2)
G. Lurken (Ec)
H. Metz (Dt)
H. Meuser (Ws)
A. Muiller (LI)
R. Netien (Da)
K. Nicoll (Dt)
3. Pfeiffer (Dt)
H.W. PohT (EI)
A. Retz (Cd)
U. Rindfleisch (Cd)
N. Rotert (LI)
T. Sagefka (LI)
H. Sauer (Ad)
M. Scherer (Ad)
until Oct. 21, 1983
G. Schlienkarap (LI)
P. Schmidt (E2)

Jos. Schaitz (W's)
Jirg. Schmitz (LI)
F. Schul thei (Ws)
E. Schwaab (E2)
H. Schwan (Ws)
R. Seidemann (E2)
H. Sieling (Ad)
D. Weynen (LI)
since Sept. 1, 1983
K.P: Wieder (E2)
W. Wilms (LI)
K. Winkier (Ec)
M. Witteler (LI)
since Sept. 1, 1983
J. Wolanski (ws)
R.A. Wollny (Ec)
fron Jan. 20 to July 19, 1983
(E1) Institute for Experimental Nuclear Prysics I
(E2) Institute for Experimental Nuclear Prysics II
(Th) Institute for Theoretical Nuclear Physics
(LI) Large Nuc?ear Physics Instruments
(Ad) Adninistration
(Cd) Construction and Design
(Da) Data Acquisition Group
(Dt) Detector and Target Laboratory
(Ec) Electronics
(Rp) Radiation Protection
(Ws) Mechanical Workshop

VIII, publications

IKE-100183
Bauhoff, W.; von Geramb, H.V.; Palla, G. Study on nonlocal and local equivalent moroscopic optical potentials
Phys. Rev. C27 (1983) 2466-2481
20.06 .0

IKP-100283

Baur, G.; Shyam, R.; Rosel, F.; Trautmann, D. Calculation of proton-neutron coincidence cross sectionsin 56 MeV deuteron-induced breakup reactions by post foxm distorted-wave Born approximation
Phys. Rev. c28 (1983) 946-949
20.80 .0

IKP-100383

Baur, G.; Rösel, F.; Trautmann, D.
Ionisation induced by neutrons
J. Phys. B: At. Mol. Phys. 16 (1983) L419-423
20.80 .0

IKP-100483

Berg, G.P.A.; Hürimann, W.; Katayana, I.; Martin, S.A.; MeiBburger, J.; ROMex, J.G.M.; Styczen, B.; Tain, J.L.
Isoscalar character of the 1^{+}state at 5.844 MeV in ${ }^{268} \mathrm{~Pb}$
Proc. 1983 RCNP Int. Symp. on Light Ion Reac-
tion Mechanism, Osaka, Japan, 16.-20.5.83, ed.
by H. Ogata, T. Kammuri, I. Katayama, RCNP Osäka (1983) 214-222
20.06 .0

IKP-100583

Beuscher, H.; Mathews, H.-G.; Krauss-vogt, W. Status of the superconducting ECR-source of the Julich cyolotron
Proc. 5th E.C.R. Ion Sources Workshop, Louvain-La-Neuve, Belgien (1983) 83-91
20.03 .0

TKP-100683

Blomqvist, J.; Kleinheinz, P.; Daly, P.J.
Atomic masses above ${ }^{146} \mathrm{Gd}$ derived from a shell model analysis of high spin states
2. Phys. A - Atoms and Nuclei 312 (1983) 27-41 20.10.0

IKP-100783

Borchert, G.; Rose, T.; Schult, O.W.B.
Evidence for intensity shifts of $\mathrm{K} X$ ravs
Proc. Int. Conf. On X Ray and Atomic Inner-Shel.
Physics, Eugene, USA, 23.-27.8.82, ed. by B.
Crasemann (Anerican Inst. Of Physios, New York, 1982) S. 115-120
20.10 .0

IKP-100883

Borchert, G.I.; Schalt, O.W.B.; Speth, J.; Hansen, P.G.; Jonson, B.; Ravn, fi.i.; McGrory, J. B.; ISOLDE COLlaboration

Differences of the mean square oharge radii of the stable lead isotopes observed through electronic K X-ray shifts
Nuov. Cim. 73A (1983) 273-294
20.10.0; 20.80.0

IKP-100983

Brown, V.R.; K゙rewald, s.; Speth, J.
Crucial test for the $\Delta(1232)$-hole effect: (n, p) vs. (p, n)
Phys. Rev. Lett. 50 (1983) 658-661
20.80 .0

IKP-101083

Budzanowski, A.; Bechstedt, U.; Machner, H.; Jahn, P.: Mayer-Böricke, C.
Local excitation of the nucleus
Proc. 3rd Int. Conf. on Nucl. Reaction Nechanisms, Varema, Italien, $14 .-19.5 .82$, ed. by E. Gadioli, Ricerca Scientifica ed Educazione permanente, Suppl. 28 (1982) 310-321 20.06.0

IKP-101183
Cunsolo, A.; Foti, A.; Immè, G.; Pappalardo, G.; Raciti, G.; Rizzo, F.; Saunier, N.; Baur, G.; Shyam, R.; Rösel, F.; Trautmann, D.
Deuteron inclusive and exclusive spectra in ${ }^{6}$ Li + Light nucleus collisions
Proc. 3rd Int. Conf. on Nucl. Reaction Mechantsms, Varenna, Italien, 14.-19.6.82, ed. by E. Gadioli, Ricerca Scientifica ed Educazione Permanente, Suppl. 28 (1982) 352-367
20.80 .0

TKP-701283
Dehesa, J.S.; Guardiola, R.; Polls, A.; Ros, J. Monopole resonances and Jastrow correlations
Fhys. Lett. 118B (1982) 13-20
20.80 .0

IKP-101383
Dermawan, H.; Osterfeld, F.; Madsen, V.A.
Cross section calculations for nucleon- ${ }^{40} \mathrm{Ca}$ and o ${ }^{4}$ Ca elastic scattering from microscopic nonlocal optical potentials
Phys. Rev. C27 (1983) 1474-1482
20.80 .0

IKP-101483
Didelez, J.P.; Frascaria, N.; Gerlić, E.; Hourani, E.; Morlet, M.; Machner, H.; Protić, D.; Riepe, G. i Sukösd, 0 .
H and he ions production by 200 Mev protons Froc. 3rd Int. Conf. on Nucl. Reaction Mechanisms, Varenna, Italien, 14.-29.6.82, ed. by E. Gadioli, Ricerca Scientifica ed Educazione Permanente, Suppl. 28 (1982) 237-242
20.06.0; 20.20.0

IKP-101583
Djaloeis, A.; Alderliesten, G.; Bojowald, J.;
Mayer-Böricke, C.; Oelert, W.; Turek, P.
Role of the ${ }^{3}$ He optical model potential ambigum
ity in the distorted-wave Born approximation
description of the ${ }^{58} \mathrm{Ni}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{59} \mathrm{Cu}$ reaction at
130 Mev incident energy
Phys. Rev. C27 (1983) 1483-1488
20.06 .0

IKP-101683
Djaloels, A.; Bojowald, J.; Gopal, S.: Oelert, W.; Zuttaswamy, N.G.; Turek, P., Mayer-Böricke, c.

Breakup of ${ }^{3}$ He projectiles at an incident energy of $43.3 \mathrm{MeV} / \mathrm{nucleon}$
Phys. Rev. c27 (1983) 2389-2392
20.06 .0

IKP-101783
Djaloeis, A.; Gopal, S.; Bojowald, J.; Oelert,
W.; Turek, P.; Mayer-Böricke, C.
${ }^{2} 5 \mathrm{Mg}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{2}{ }^{4} \mathrm{Mg}$ reaction at 130 MeV incident energy
Phys. Rev. c28 (1983) 67-72
20.06 .0

IKP-101883
Djaloeis, A.; Gopal, S.; Bojowald, J.; Oelert, W.; Turek, P.; Mayer-BÖricke, C.

High energy (${ }^{3} \mathrm{He}, \mathrm{d}$) proton stripping by ${ }^{27}$ AI and ${ }^{2}$ Si muclei ; rransitions to excited states Phys. Rev. C28 (1983) 561-573
20.06 .0

IKP-101983
Gill, R.L.; Shmid, M.; Chrien, R.E.; Chy, Y.Y.; Wolf, A.; Brenner, D.S.; Sistemich, K.; Wohn, F.K.; Yamamoto, F.; Chung, C.; Walters, W.B. Levels in ${ }^{1+8} \mathrm{Ce}$ from the decay of mass separated ${ }^{148} \mathrm{~L}$ à
Phys. Rev. C27 (1983) 1732-1744
20.65.0

IKP-102083
Goeke, K.; Grummer, F.; Reinhard, P.-G.
Three-dimensional quantized ArDHF calculations for heavy ion fusion
Proc. Topical Meeting on Nucl. Eluid Dynamics,
Triest, Etalien, $11 .-15.10 .82$, IAEA-SMR-108
(1983) 153-160
20.80 .0

IKP-102183
Goeke, K.; Speth, J.
Theory of giant resonances
Ann. Rev. Wucł. Part. Sci. 32 (1982) 65-115
20.80 .0

TKP-102283
Goeke, K.; Cusson, R.y.; Grümmer, F.; Reinhard, P.-G.; Reinhardt, H.

Time dependent Hartree-Fock and beyond
Prog. Theor. Phys., Suppl. 74+75 (1983) 33-65
20.80 .0

IKP-102383

Goeke, K.; Grummer, F.; Reinhard, P.-G.
Three-dimensional nuclear dynamics in the quantized ATDHE approach
Ann. Phys. 150 (1983) 504-551
20.80 .0

TKP-102483
Goeke, K.; Grimmer, F.; Reinhard, P.-G
Quantized ATDHF calculations for subbarrier
fusion of heavy ions
Phys. Lete. 124B (1983) 21-25
20.80 .0

IKP-102583
Jakob, A.; Rösel, F.; Trautmann, D.; Baur, G. Screened Coulomb trajectory effects on inner shell ionization
Z. Phys. A - Acoms and Nuclei 309 (1982) 13-18
20.80 .0

IKP-102683
Kalend, M.; Anderson, B.D.; Baldwin, A.R.;
Madey, R.; Watson, J.W.; Chang, C.C.; Holmgren,
H.D.; Koontz, R.W.; Wu, J.R.; Machner, H.

Energy and angular distributions of neutrons
from 90 MeV protons and 140 MeV alpha-particle bombardment of nuclei
Phys. Rev. C28 (1983) 105-119
20.06 .0

IKP-102783
Katayama, I.; Berg, G.P.A.; Hiirlimann, W.; Martin, S.A.; Meißburger, J.; Oelert, W.; Rogge, M. : Roner, J.G.M.; Tain, J.; Styczen, B.; Gaul, G.

Charge transfer reactions of ${ }^{3} \mathrm{He}$ in carbon at 68,99 and 130 MeV
Phys. Lett. 92A (1982) 385-388
20.06 .0

IKP-102883
Katayama, I.; Berg, G.F.A.; Hürlimann, W.; Martin, S.A.; MeiBburger, J.; Oelert, W.; Rogge, M.; Römer, J.G.M.; Tain, J.L.; Styczen, B.; Gaul, G.
Equilibrium charge states of ${ }^{3} \mathrm{He}$ ions emerging from solid targets at high incident energies Phys. Rev. A27 (1983) 2738-2740
20.06 .0

IKP-102983
Kicinska-Habior, M.: Decowski, P.; Dabrowska, M.; Grochulski, W.; Jaraczs P.; Matulewicz, T. Sikora, B.; Toke, J.; Somorjai, E.
 barrier energies in terms of the direct-semidirect model
2. Phys. A - Atoms and Nuclei 312 (1983) 89-93 20.06 .0

IKP-103083
Koch, H.R.; Schult, O.W.B.; Seyfarth, H.; Bechteler, F.: Yogeshwar, R.
Search for light penetrating bosons with the use of a rotatable detector arrangement at a nuclear reactor
Z. Fhys. A313 (1983) 239-240
20.10.0

IKP-103183
Krewald, S.; Dehesa, J.S
Meson-exchange current effects in heavy nuclei Proc. Sth Topical School "Quarks, Mesons and Isobars in Nuelei", Motril/Granada, Spanien, 6.-10.9.82, ed. by R. Guardiola, A. Folis (World Scient. Publ. Co. Pte. Ltd., Singapore 1983) S. 266-277
20.80 .0

IKP-103283
Krmpotic, A.: Nakayama, K.; Pio Galeao, A.
Giant first-forbidden resonances
Nucl. Phys. A399 (1983) 478-502
20.80 .0

IKP-103383
Lieder, R.M.
Band crossings in lolos and comparison with
features observed in ${ }^{185}$ Os
Proc. Workshop on Nucl. Structure at High Spin NBI Kopenhagen 1983, S. 49-51
20.10 .0

IKP-103483
Lieder, R.M.
A $\gamma-\gamma$ coincidence spectrometer with large eiFiciency and background suppression
Proc. Workshop on Development and Perspective of Tn-Bean Measurement of Particle-e- γ Spectroscopy and Particle-y Correlation, osaka, Japan, 1982, ed. by H. Ejiri, Y. Nagai, Osaka
University (1983) 85-88
20.10.0

IKP-103583
Ma, Z.Y.; Wambach, J.
A deformable Chiral bag
Phys. Lett. 132B (1983) i-6
20.80 .0

IKP-103683
Ma, Z.X.; Nambach, J.
Implications of a dynamical effective mass on
the nuclear shell-model
Nucl. Phys. A402 (1983) 285-317
20.80 .0

IKP-103783

Machner, H .
Continuous $\exists i g h t$ ion spectra from heavy ion induced reactions
proc. Int. Conf. on High Energy Nucl. Physics, Balatonfured, Ungarn, ed. by J. Erö (1983)
209-217
20.06 .0

IKP-103883

Machner, H .
Pre-equilibrium in heavy ion reactions
Phys. Rev. C28 (1983) 2173-2175
20.06.0

IKP-103983

Machner. H .
Study of particle emission following $\pi " a b-$ sorption at rest
Nucl. Phys. A395 (1983) 457-470
20.06 .0

IKE-104083
Machner, H .
Continuous spectra of light ions at incident energies above $15 \mathrm{MeV} / \mathrm{nucleon}$
Proc. 3rd Int. Conf. on Nucl. Reaction Mechanisms, Varenna, Italien, 14.-19.6.82, ed. by E. Gadioli, Ricerca Scientifica ed Educazione Permanente, Suppl. 28 (1982) 131-155
20.06 .0

IKP-104183
Machner, $H:$: Bechstedt, U.; Budzanowski, A.i Jahn, P.; Mayer-BOricke, C.
pre-equilibrium and-knock-out processes in
($\alpha, 2 a$) reactions
Nacl. Phys. A400 (1983) 584c
20.06.0.

IKP－104283
Machner，H．；Riepe，G．；Protic，D．；Bohlen， H．G．；Fuchs，G．
Light particle emission from $20 \mathrm{Ne}+{ }^{197} \mathrm{Au}$
Nuct．Phys．A400（1983）584c
20．06．0；20．20．0
IKP－104383
Madsen，V．A．；Suzuki，T．；Bernstein，A．M．； Brown，V．R．
Neutron and proton multipole matrix elements in
${ }^{48} \mathrm{Ca}$ and 208 pb
Phys．Lett．123B（1983）13－15
20.80 .0

IRF－104483
Mairle，G．；Schindler，K．；Grabneyr，P．；Wagner， G．J．；Schmict－Rohr，U．；Berg，G．E．A．；Hürlimann， W．；Martin，S．A．；Meißburger，J．；Römer，J．G．M．； Styczen，B．；Tain，J．L．
Spectroscopic results from a high－resolution study of proton particlenhole states in 206 Pb Rhys．£ett．1213（1983）307－312
20.06 .0

IKP－104583
Martin，S．A．；Hardt，A．；MeiBburger，J．；Berg， G．P．A．；Hacker，U．；Hurliman，W．；ROmer，J．G． M．；Sagefka，T．；Retz，A．；Schult，O．W．B．； Brown，K．L．；Halbach，K．
The QQDDQ magnet spectroneter＂Big Karl＂
Nacl．Instr．Metin． 214 （1983）281－303
20.06 .0

1KP－104683
Mathews，H．－G．；Beuscher，H．；Krauss－Vogt，W． ECR－ion－source development at the Jiilich cy－ clotron
Proc．Int．Ion Engineering Congress－IsIAn＇83 \＆IPAT＇83，Kyoto；Japan（1983）209－214 20.30 .0

IKP－104783
Mathews，H．－G．；Kruger，A．；Penselin，S．；Wei－ nig；A．
The new high intensity polarized proton and devteron source for the Bonn isochronous cy－ clotron
Nuck．Instr．Meth． 213 （1983）155－164
20.30 .0

IKP－104883

Mathews，f．－G．；Beuscher，H．；Fiedler，R．；
Krauss－Vogt，k ．
Results of á 5 GHz ECR test device－Pre－ISIS 2 Proc．5ih E．C．R．Ion Sources Workshop，Louvain－ La－Neuve，Belgien（1983）70－82
20.30 .0

IKP－104983
Mathews，H．－G．；Beuscher，H．；Mayer－Böricke，C． Status of ECR－source developnent for ISIS at丁詋さich
Physica scripta T3（1983）52－55
20．30．0

［KP－105083

Matulewicz，t．；Decowski，F．；Kicinska－Habior， M．；Sikora，B．；Toke，J．
Analysis of the ${ }^{28} S i(p, y){ }^{29} p$ reaction data in the region of the subbarrier single particle resonances
Acta Physica Poionica E14（1983）617－624 20.06 .0

IKP－105183
Meyer，R．A．；Kaffrell，N．；Lawin，H．；Lher－ sonneau．G．；Monnard， I_{L} ；Poor，V．；Pfeiffer， B．；Pinston，J．A．；Ragnarsson，J．；Schassler， F．；Schmitt，Z．：Seo，T．；Sistemich，K．；Traut－ mam， N ．
Symmetric deformation in $A \sim 100$ odd and odd－odd nuclei and its influence of fission product beta－decay rates
Proc．Experts Meeting on Eission Product Data， BNL，USA，Oktober 1983
20.65 .0

IKP－105283
Morsch，H．P．；Berg，G．Z．A．；Decowski，P．；Tain， J．L．；Rogge，M．；Turek，P．；Zemlo，L．；MeiBbur－ ger，J．；Römer，J．G．M．
Study of the（ ${ }^{3}$ He，t）reaction on heavy nuclei Proc． 1983 RCNP Int．Symp，on Iight Ion Reac－ tion Mechanism，Osaka，Japan，16．－20．5．83，ed． by H．Ogata，T．Kamuri，I．Katayama，Osake
（1983）294－298
20.06 .0

IKP－105383
Morsch，H．P．；Rogge，M．；Turek，P．；Decowski，
E．；Zemlo，L．；Mayer－Böricke，C．；Martin，S．A．；
Berg，G．P．A．；Katayame，J．；Meißburger，J．；
Römer，J．G．it．；Reich，J．；Wheherer，P．；Bräuti－ gam．W
The giant octupole resonance in defomed nuclei Phys．Lett．119B（1982）311－314
20．06．0：20．30．0
IKP－105483
Morsch，H．P．；Rogge，M．；Decowski，P．；Machner，
H．；Sükösa，C．；David，P．；Debrus，J．；Hart－
fiel，J．；Janszen，H．；Schulze，J．
Fission decay of isoscalar giant resonances ex－ cited in 172 MeV a scattering from ${ }^{238} \mathrm{U}$
Phys．Lett．1198（1982）335－319
20.06 .0

IKP－105583
Morsch，H．P．；Decowski，P．；Rogge，M．；Turek，
P．；Zemlo，L．；Martin，S．A．；Berg，G．P．A．；Hur－ limann，W．；Meibburger，J．：ROmer，J．G．M．
Isoscalar giant resonances in 208 Pb －in par－
ticular $2 \mathrm{~h} \omega \mathrm{i}=0,2,4$ and 6 excitations－studied
in small angle a scattering
Phys．Rev．C28（1983）1947－1958
20．06．0
IKP－105683
Morsch，H．P．
Investigation of giant resonances in hadron scattering experiments
Proc．XXI Int．Winter Meeting on Nucl．Physics， Bormio，Italien，24．－29．1．83，S．66－81
20.06 .0

IKP－105783
Neumann，B．；Rebel，H．；Gils，H．J．；Planeta，R．； Buschmann，J．；Klewe－Nebenius，H．；Zagromski， S．；Shyam，R．；Machner，H．
Inclusive break－up reactions of ${ }^{b} \mathrm{Li}$ at añ inci－ dent energy of $26 \mathrm{MeV} / \mathrm{mucleon}$
Nucl．Phys．A400（1983） 585 c
20.06 .0

IKP－105883
Oelert，W．：PaIIa，G．
Ground state transitions in（d，Li）reactions on sd－shell nuclei
Proc． 1983 RCNF Int．Symp．on Eight Ion Reac－ tioñ Mechanism，Osaka，japan，16．－20．5．83，ed． by H．Ogata，T．Kammuri，I．Katayama，Osaka
（1983）420－429
20.06 .0

IKP－105983
Oelert，W．；Berg，G．P．A．；Djaloeis，A．；Mayer－ Böricke，C．；Turek，P．
（d，${ }^{6}$ Li）alpha－transfer reaction on $32 S$ and ${ }^{34} \mathrm{~S}$ at．$E_{d}=80 \mathrm{MeV}$
Phys．Rev．C28（1983）73－81
20.06 .0

IKP－106083
Osterfeld，F ．
Quenching of Gamow－Telier resonances－a A－iso－ bar effect or a background problem？
Proc．Int．Workshop XI on Gross Properties of Nuclei and Nucl．Excitations，Hirschegg，
17．－22．1．83，ed．by H．Feldmeier，TH + GSI Darmstade（1983）169－172
20.80 .0

IKP-706783
Palla, G.; von Geramb, H.V.; Pegel, C. Elastic and inelastic scattering of 25.6 MeV
protons from even Sm isotopes
Nuct. Phys. A403 (1983) 134-155
20.06 .0

IKP-106283

Posorski, R.
Thermisches verhalten von Energieabsorbern als Wämequellenanlage in Wärmepumpen-Heizungsanlagen
Jtil-1864, August 1983, 121 Seiten
20.60. 1

IKP-106383
Posorski, R.
Energieabsorber-Wärmeubergänge und Systemverhalten
ISES Tagungsbericht Erfahrungen mit Kollektor-Energieabsorber- und Warmepumpenanlagen, Roln,
1.12.83, S. 137-153
20.60 .1

TKP-106483
Prakash, M.; Wambach, J.; Ma, Z.Y.
Effective mass in nuclei and the level density parameter
Phys. Lett. 128B (1983) 141-146
20.80 .0

IKP-106583
Puttaswamy, N.G.; Oelert, W.; Djaloeis, A.;
Mayer-Bठricke, C.; Turek, P.; Glaudemans, P.W.
M.; Metsch, B.C.; Heyde, K.; Waroquier, M.; von

Isacker, P.; Wenes, G.; Lopac, V.; Paar, V.
Structure of the energy levels of $33,55,57 \mathrm{Mn}$
from the ($\alpha,{ }^{3}$ He) reaction on iron isotopes at
80 MeV
Nucl. Phys. A401 (1983) 269-302
20.06 .0

IKP-106683
Puttaswamy, N.G.; Oelert, W.; Djaloeis, A.; dayer-Böricke, C.; Turek, P .
Energy Levels of the odd Mn nuolei from the
(d, ${ }^{3} \mathrm{He}$) reaction
IEEE Transactions on Nucl. Science NS-30 (1983)
1140-1142
20.06 .0

IKP-106783
Reinhard, P.-G.; Cusson, R.C.; Goeke, K.
Time evolution of coherent ground-state corre-
lations and the TDHF approach
Nucl. Phys. A398 (1983) 141-188
20.80 .0

IKP-106883
Shizuma, K.; Iawin, H.; Sistemich, K.
Level structure of 106 Mo
z. Phys. A - Atons and Nuclei 311 (1983) 71-78 20.65 .0

IKP-106983

Shizuma, K.; Hill, J.C.; Lawin, H.; Shaanan, M. Selic, H.A.; Sistemich, K
fevels in 102 zr populated in the decay of 102 Y Phys. Rev. C27 (1983) 2869-2878
20.65.0

IKP-107083

Shizuma, K.; Ahrens, H.; Bocquet, J.P.; Kaf-
frell, N.; Kern, B.D.; Lawin, H.; Meyer, R.A.; Sistemich, K.; Tittel, G.; Trautmann, N. odd neutron nuclei near $\mathrm{A}=100$: Rotational Bands in 103 Mo and ${ }^{105} \mathrm{Mo}$ populated in the β^{-}decays of 103 Nb and 105 Nb
Z. Phys. A - Atoms anc Nuclei 314 (1983)
20.65.0

IKP-107183
Shyam, R.
Exact finite range calculations of one nucleon pick-up reactions induced by polarized deuteron Proc, 3 rd Int. Conf. on Nucl. Reaction Mecha-
nism, Varenna, Italien, 14.-19.6.82, ed. by E.
Gadioli, Ricerca Scientifica ed Educazione Permanente, Suppl. 28 (1982) 715-729
20.80 .0

IKP-10728.
Shyam, R.; Baur, G.; Röse1, F.; Trautmann, D. Post-form DWBA description of coincidence spectra in light ion induced break-up reactions proc. 1983 RCNP Int. Symp. on Eight Ion Reection Mechanism, Osaka, Japan, 16.-20.5.83, ed. by F. Ogata. T. Kammuri, I. Katayama (1983)
541-557
20.80 .0

IKP-107383
Shyam, R.; Baur, G.; Budzanowski, A.; Bojowala, J.; Dabrowski, H.; Mayer-Böricke, C.; Deleri.
W.; Riepe, G.; Rogge, M.; Turek, P.; Rösel; E.; Trautmann, D.
Explanation of ${ }^{3}$ He and triton rates in the
alpha breakup inclusive cross sections
Phys. Rev. C27 (1983) 2393-2396
20.06.0; 20.80.0

IKP-107483
Soramel-Stanco, F.; Styczen, J.; Prokofjev, P.; Ercan, A.; Kleinheinz, P.
A $45 \mathrm{~ns} 8^{4}$ isomer in the doubly odd ${ }^{159}$ 玉u nucleus
Z. Phys. A317 (1983) 127
20.10 .0

IKP-107583
Speth, J.
$\Delta(1236)$-isobar degrees of freedom and the
strength of spin-isospin resonances
AIP Conf. Proc. No. 97 "The Interaction between Mediun Energy Nucleons in Nuclei - 1982", In-
diana Jniv. Cycl. Facility; ed. by H.o. Meyer
(American inst. of Physics, New York, 1983)
5. 398-403
20.80 .0

IKP-107683
Speth, J.
Electric and magnetic resonances in nuclei Proc. Sth Topical School "Ouarks, Hesons and Isobars in Nuclei", Motril/Granada, Sponien, 6.-11.9.32, ed. by R. Guardiola, A. Polls
(World Scient. Publ. Co. Ltd., Singapore 1983)
S. 102~145
20.80 .0

IKP -107783
Speth, J.
Giant resonances
Nucl. Phys. A396 (1983) 1530-1700
20.80 .0

IKP-107883
Schmid, K.W.; Grummer, F.; Faessler, A.
Nuclear structure theory in spin- and numberconserving quasiparticie configuration spaces

- Part I: General formalism

Phys. Rev.
20.80 .0

IKP-107983

Schmid, K.W.; Grimmer, F.; Faessler, A.
Nuclear structure theory in spin- and numberconserving quasiparticle configuration spaces

- Part II: The MONSTER-approach

Phys. Rev.
20.80 .0

TKP-108083
Schult, O.W.B.
Nuclear studies at a high current spallation source
Proc. 1983 RCNP Kikuchi Summer School, Kyoto, Japan, ed. by H. Ogata, M. Fujiwara, A. Shimizu, Osaka (1983) 171-192
20.10.0

TKP-108:83
Schwesinger, B.; Wambach, J.
The width of isovector monopole vibrations in charge exchange reactions
Phys. Rev. C28 (1983)
20.80 .0

IKP-108293
Steir. H.J.: Kohnen, M.
Solarheizungsanlage zum Beheizen, Funkübertragungsstelle Garmisch II auf der zugspitze MeBprogramm
BMFT Statusbericht Nutzung der Sonnenenergie in bundeseigenen Gebävden, Band I, Mai 1983, s. 76-84
20.60 .1

IKF-108383
Styczen, J.; Nagai, $\mathrm{y} . ;$ Piiparinen, $\mathrm{M} . ;$ Ercan, A.; Kleinheinz, P.

Deformed ground-band states in the $N=86$ aucleus 152 Dy
Phys. Rev. Lett. 50 (1983) 1752-1755
20.10 .0

IKP-108483
Styczen, J.; Piiparinen, M.; Nagai, Y.; Kleinheinz, P.; Bazzacco, D.; Eberth, J.; Blomqvist, J.

Senioricy-three yrast states in the $N=82$ nucleus ${ }^{14 / \mathrm{Tb}}$
Z. Phys. A - Atoms and Nuclei 312 (1983) 149-154
20.10 .0

IRP-108583
Trautmann, D.i Rösel, P.; Baur, G.
Accurate calculation of inner-shell ionization Nucl. Insir. and Meth. 214 (1983) 21-27
20.80 .0

TKP-108683
Trautman, D.; Baur, G.; Rösel, F.
Fast evaluation of the relativistic ionisation form factor: Momentum space representation J. Phys. B16 (1983) 3005-3013
20.80 .0

TKP-108783
Tokunaga, Y.; Seyfarth, H.; Schult, O.W.B.; Börner, Fi.G.; Hofmeyr, Ch.; Barreau, G.; Brissot, R.; Kaup, U.; Monkemeyer, Ch.
The ${ }^{75}$ se $(\mathrm{nry})^{76}$ Se reaction and the low-lying level structure af 76 Se
Nucl. Phys. A411 (1983) 209
20.10 .0

IKP-108883

Xiangiu, S.; Bazzacco, D.; Gast, W.; Gełberg, A.; Kaup, U.; Dewaid, A.: Zell, K.O.; von Brentano, P.
Band crossing in 130° Ba
20.10 .0

IKF-108983

Uray, I.; Frobst, H.J.
Empfindifchkeit von Kontaminationsmeßgeraten für praktisch vorkommende Rontaminationen am Jülicher Isochronzyklotron - Problematik der Grenzwertsestlegung fir Routinebetrieb
Tagungsoericht dex 17. Jahrestagung des Fach-
verbandes fir: Strahlenschutz e.V. Uber Strahlenschutzaspekte bei radioaktiven Kontaminationen, Aachen, 8.-10.6.83, Redaktion: H. Bonka, H.-G. Horn, FS-83-32-T, November 1983, S. 505-518 20.05 .0

iX, conference contributions, talks

IKP-200183
Ahrens, H.; Bocquet, J.p.; Kaffre11, N.; Kern, B.D.; Lawin, H.; Shizuma, K.; Sistemich, K.; TitteI, G.: Trautmann, Ni
Rotational structure in iolzr, $103 \mathrm{mo}, ~ 105 \mathrm{mof}$ Fruhjahrsgung der DPG, Sektion A: Kernphysik, Minster, 21.-25.3.83
20.65.0

EKP-200283

Ambrosetti, P.; Andersson, R.E.B.; Frönilich, C.; Talarek, H.D.
Results of IEA-Task III outdoor and indoor pyranometer comparison
Solar World Congress; Pexth Australien,
14.-19.8.83
20.60 .0

IKP-200383
Anhalt, J.
Die Kollektorteststation Atibaia/Brasilien

- Status und Perspektiven

Gesellschaft fur Technische Zusammenarbeit,
Eschborn, 8.6.83
20.60 .1

IKP-200483
Baur, G.
Polarizability of nuclei in Sub-Coulonb
scattering and in electronic atoms
MPI Heidelberg, 7.3.83
20.80 .0

IKP-200583
Baur, G.; Hofmann, B.; Speth, J.
Nuclear polarization and isotope shift j.n electronic atoms
Frihjahrstaguns der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.80 .0

IKP-200683

Baur, G.;
Fragmentation processes in nucleus-nucleus collisions
1983 RCNP Int. Symp. On Light Ion Reaction Mechanisms, Osaka, Japan, 16.-20.5.83
20.80 .0

IKP-200783
Baur, G.; Budzanowski, A.; Bojowald, J.; Dabrowski, H.; Djaloeis, A.; Mayer-BOricke, C; Oelert, W.; Riepe, G.; Rogge, M.; Turek, P.;
Shyam, R.; Roesel, F.; Trautmann, D.
Alpha break-up inclusive cross sections to ${ }^{3} \mathrm{He}$ and triton
Frithjahrstagung der DPG, Sektion A: Kernphysik, Minster, 21.-25.3.83
20.06.0; 20.20.0; 20.80.0

IKP-200883
Balr, G.: Bojowald, J.; Djalceis, A.; Mayerm
Böřicke, C.; Oelert, W.; Riepe, G.; Rogge, M.;
Turek, P.; Budzanowski, A.; Dabrowski, H.;
Shyam, R.; RÖsel, F.; Trautmann, D.
${ }^{3}$ He and triton rates in the alpha break-up inclusive cross sections
1983 RCNP Int. Symp. on Light Ion Reaction
Mechanisms, Osaka, Japan, 16-20.5.83
20.06.0; 20.20.0; 20.80.0

IKP-200983
Baur, G.
Mecharisms of breakup reactions
RCNP Osaka, Japan, 24.5.83
20.80 .0

IKP-201083
Baur, G.
Mechanismus von Aufbruchsreaktionen
DESY Hamburg, 14.6.83
20.80 .0

IKP-201183
Baur, G .
Einfiub der Kempolarisierbarkeit auf die Isotopieverschiebung in elektronischen Atomen
Univ. Mainz, i.12.83
20.80 .0

IKP-201283
Bechteler, H.; Faissner, H.; Koch, H.R.; Schult, O.W.B.; Seyfarth, H.; Yogeshwar, R.
Search for light penetrating bosons at a nuclear reactor with a set up of variable angular position
Frühjahrstagung der DPG, Sektion A: Kermphysik, Munster, 21.-25.3.83
20.10.0

IKP-201383

Bechteler, L. ; Faissner, in.; Yogeshwar, R.; Koch, H.R.; Schult, O.W.B.; Seyfarth, H .
Search for the two-photon decay of penetraging particles emitted from a nuclear reactor Frühjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.10.0

IKP-20148

Bechteler, H,; Faissner, H.; Yogeshwar, R.; Koch, H.R.; Schult, O.W.B.; Seyfarth, H.
Suche nach den zwei-Photonen zerfall leichter, durcharingender Teilchen am Forschungsreaktor MERLIN der KFA Julich
Frihjahrstagung der DPG: Sektion B: Teilchenphysik, Wuppertal, 28.-30.3.83
20. 10.0

IKP-201583

Bechteler, H.; Faissner, H.; Yogeshwar, R.;
Koch, H.R.; Schuit, O.W.B.; Seyfarth, H.
Spektrum leichter, durchdringender Teilchen aus Kernreaktioner
Frithjahrstagung der DPG, Sektion B: Teilchenphysik, Wupperial, 28.-30.3.83
20.10.0

IKP-201683

Berg, 6.
Isoscalar character of the 1^{+}state at 5.844 MeV in $2!3{ }^{\mathrm{P}} \mathrm{Pb}$
Int. Symp. on Light Ion Reaction Mechanisms, Osaka, Japan, 6.-20.5.83
20.06 .0

IKP-201783
Berg, G.
The high resolution spectrometer BIG KARL and its use in nuclear and atomic physics
RCNP Osaka, Japan, 1.6.83
20.06.0

IKP-201883
Berg, G.
BIG KARL a high resolution spectrometer and its use in nuclear and atomic physics
Tandem Accelerator Center, univ. of Tsukuba,
Japan, 3.6.83
20.06.0

IKP-201983
Berg, G.
High resolution spectrometer "BIG KARI" and its use in nuclear and atomic physios
Jagiellonian Univ., Krakau, Polen, 13.7.83
20.06.0

IKP-202083

Beuscher, H.; Mathews, i.-G.; Mayer-Böricke, C. ECR-source development at Jilich
Frihjahrstagung der DPG, Sektion A: Kemphysik, Minster, 2i.-25.3.83
20.30.0

IKP-202183
Beuscher, H.; Mathews, H.-G.; Krauss-Vogt, W. Status of the superconducting ECR-source for the Jilich cyclotron
5th E.C.R. Ion Sources Workshop, Louvain-taNeuve, Belgien, 21.-22.4.83
20.30 .0

IKP-202283
Beuscher, H.: Brautigam, W.; Mathews, H.-G.; Reichr J.; Wucherer, P.
The project ISIS at rubro
20th European Cyclotron Progress Meeting, Gronincen, Niederlande, 7.-8.9.83
20.30 .0

IRP-202383
Beuscher, H.; Mathews, H.-G.; Krauss-Vogt, W. Resuits with the Fre-ISIS 2 E.C.R. source 20th European Cyclotron Frogress Meeting, Groningen, Niederiande, 7.-8.9.83
20.30 .0

IKP-202483
Blonqvist, J.; von Dincklage, R.D.; Ewar, G.T.: Hoff, P.; Jonson, B.; Kerek, A.; Klepper, O.; Lövhöjden, G.; Mattson, S.; Nyman, G.; Ravn, H.L.; Schardt, D.; Sistemich, K.

The single neutron nucleus ${ }^{1} \mathrm{Sn}_{\mathrm{g}}$
Int. Cont. on Nucl. Physics, Florenz, ItaIien, 29.8.-3.9.83
20.65 .0

IKP-202583
Borgs, W.; Chatzipetros, J.; Lawin, H.; Lhersonneau, G.; Menzer, G.: Sistemich, K.; Wolf, A. Set up for g-factor determination at JOSEF Fruhjanrstagung der DPG. Sektion A: Kernphysik, Münster, 2才.-25.3.83
20.65 .0

IKF-202683
Brown, V.R.; Dermawan, $\mathrm{H} . ; \mathrm{Krewald}, \mathrm{S.;} \mathrm{Oster-}$ feld, F.; Speth, J.
A cructal test for the $A(1232)$ hole quenching mechanism: (n, p) vs. (p, n) in heavy mass nuclei Frühjahrstagung der DPG, Sektion A: Kernphysik, Munster, 21.-25.3.83
20.80 .0

IKP-202783
Brown, V.R.; Krewald, S.; Speth, J.
Crucial test for the $4(1232)$-hole effect
Int. Conf. on Nucl. Physics, Florenz, Italien,
29.8.-3.9.83
20.80 .0

IKP-202883
Butsch, R.; Heck, B.; Pochodzalla, J.; Rabe, H.J.; Rosner, G.; Hlawatsoh, G.

Fusion and incomplete fusion in reactions
leading to the compound nucleus $5^{9} \mathrm{Cu}$
Frihjahrstagung der DPG, Sektion A: Rermphysik, Minster, 21.-25.3.83
20.06 .0

IKP-202983
Co', G.; Krewald, S.; Speth, J.
A theoretical approach to the electron
scattering coincidence experiments for the
study of the giant multipole resonances Fruhjahrstagung der DPG, Sektion A: Kernphysik, Munster, 21,-25.3.83
20.80 .0

TKP-20308.3
Decowski, P.; Morsch, H.P.
Surface and volume vibrations in the giant monopole excitation of heavy nuclei
Frihjahrstagung der DPG, Sektion A: Kernphysik, 21.-25.3.83
20.06.0.

IKP-203183
Decowski, P.; Morsch, H.P.; Zemlor L.; Rogge, M.; Turek, P.; Schumacher, W.; Gaul, G.; Glasow, R.; Ludewigt, B.; Santo, R,
Contribution of quasifree scattering in 172 MeV a scattering from heavy nuclet
Frihjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.06 .0

TKP-203283
Decowski, P.; Morsch, $\mathrm{H}_{\mathrm{H}} \mathrm{P}$, ; Zemio, L.; Rogge, M.; Turek, P.; Gaul, G.; Glasow, R.; Ludewigt, B.: Santo, R.; Schumacher, W.

The role of fast nucleon emission in high energy a scattertng studied by the parallel momentum troosfer from fission anyular correlátions
Int, Conf. on Nucl. Physics, Florenz, Italien, 29.8.-3.9.83
20.06.0

IKP-203383
Decowski, P.
Giant collective excitations in nuclei
XV Masurian Summer School on Nucl. Physics, Mikolajki, Polen, 5.-17.9.83
20.06.0

IKP-203483
Dermawar, H.; Osterfeld, F.; Madsen, V.A.
Cross section calculations from microscopic nonlocal optical potentials
Frihjahrstagung der DPG, Sektion $A:$ Kermphysik, Münster, 21.-25.3.83
20.80 .0

IKP-203583
Djaloeis, A.; Gopal, S.; Bojowald, $\}$.; Oelert, W.; Turek, E.; Mayer-Böricke, C.

The $\left.{ }^{2 \mathrm{bMg}}{ }^{3} \mathrm{He}, \alpha\right)^{24} \mathrm{Mg}$ reaction at $\mathrm{E}_{i}=130 \mathrm{MeV}$ Frihjahrstagung der DPG, Sektion A: Kermphysik, Minster, 21.-25.3.83
20.06.0

IKP-203683

Ercan, A.; Broda, R.; Fiiparinen, M.; Kleinheinz, P.; Blomqvist, J.
Proton-neutron multipletts in the one-particle one-hole nucleus ${ }^{1}{ }_{5}^{6} \mathrm{Eu}_{3}$
Int. Conf. on Nuc1. Physics, Florenz, Italien,
29.8.-3.9.83
20.10 .0

IKP-203783

Goeke, K .
The quantized ATDHF approach: theory and application
Univ. Regensburg, 24.1.83
20.80 .0

IKP-203883

Goeke, K.
The time-dependent Hartree-Fock-theory
Univ. Erlangen, 25.1.83
20.80.0

IKP-203983

Goeke: K.
The quantized ATDHF theory
Univ. Erlangen, 26.1.83
20.80.0

IKP-204083

Goeke, K.
Subbarrier Eusion of $1^{6} 0+1^{6} 0$
Int. Conf. on Heavy-Ion physios and Nucl.
Physios, Catania, Italien, 21.-26.3.83
20.80 .0

IKP-204183
Goeke, K.
Microscopic approach to subbarrier fustion Univ. Tübingen, 28.6.83
20.80 .0

IKP-204283
Goeke, K .
Meanfield methods in nuclear large amplitude collective motion
Vorlesungsreihe, 6 th Granada workshop on Nucl.
Physios, Granada, Spanien, 3.-8. 10.83
20.80 .0

IKP-204383
Goeke, K.; Grummer, F.; Reinhard, P.-G.
Quantized ATDHF calculations for the $\left.{ }^{16} 0+{ }^{66} 0\right)^{3} 2 \mathrm{~s}$
fusion below and above the barrier
Vorlesungsreihe, VI Int. School on Nuel. and
Neutron Physics and Nuclear Energy, Varna, Bul-
garien, 12.-20.9.83
20.80 .0

IKP-204483

Grimmer, F.
Microscopic description of nuclear excitations in deformed heavy nuclei
Int. Symp. on Nucl. Physics at Large Tandem
Accelerators, Legnaro, Italien, 16.-18.3.33
20.80 .0

IKP-204583
Grümmer, F.; Goeke, K.; Renhard, P.-G.
Three-dimensional nuclear aynamios in the
quantized ATDHF approach
Fruihjahrstagung der DPG, sektion A: Keraphysik, Münster, 21.-25,3.83
20.80 .0

IKP-204683

de Haro, R.; Wambach, J.; Krewald, S.; Speth, J. Microscopic description of decay and spreading width of giant resonances
Frühjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.80.0

IKP-204783
Ikegami, H .
High resolution spectrographs
workshop on the Physios program at CELSIUS,
Uppsala, Schweden, 8.11.83
20.06 .0

IKP-204883
Jarczyk, L.; Kamys, B.: Magiera, A.; Strzaikowski, A.; Styczen, B.; Berg, G.P.A.; Hlawatsch, G.; Hürlimann, W.; Katayama, F.; Meißburger, J.; Oelert, W.; Romer, J.G.M.; Tain, J.L.; Krug, J. Five nucleon transfer in the ${ }^{12} C\left(\alpha_{,} \mathrm{L}\right)^{7}{ }^{7} \mathrm{Be}$ reaction at 78 MeV
Frühjahrstagung der DPG, Sektion A: Kernphysik, Munster, 21.-25.3.83
20.06 .0

IKP-204983
Julin, R.; Yates, S.W.; Lunardi, S.; Soramel-
Stanco, F.; Kleinheinz, P.; Gräf, H.; Cheval-
lier, A.; Chevalleer, J.; haas, B.; Khazrouni, S.; Schulz, N.; Blomqvist, J.

The yrast states in the dysprosium nuclei with 82 and 83 neutrons
Frithjahrstagung der DPG, Sektion $A:$ Kermphysik, Minster. 21.-25.3.83
20.10 .0

士KP-205083

Kleinheinz, p.
Proton neutron residual interactions from inbeam studies of ${ }^{146} \mathrm{Gd}$ and ${ }^{146} \mathrm{Eu}$ in Low spin compound reactions
Univ. of Jyväskyl芝, Finnland, 20.1.83
20.10 .0

IKP-205183

Kleinheinz, P.
Multiparticle and octupole excitations in the ${ }^{-}$ muclei around ${ }^{146} \mathrm{Gd}$
Univ. Hamburg, 21.2:83
20.10 .0

IKP-205283
Kleinheinz, P.
Teilchen-Phonon Austauschwechselwirkung bei Ein und Zweiphonon Oktupolzustanden in itb Gd Expertentreffen in Schleching, 5.3.83
20. 10.0

IKP-205383
Kleinheinz, P.
In-bearn studies of the shell model muclei around ${ }^{146} \mathrm{Gd}$
Int. Symp. On Nuclear Physios at Large Tandem Accelerators, Padua, Italien, 16.-18.3.83
20.10 .0

IKP-205483
Kleinheinz, P.
Deformed states in the spherical nucleus is 2 Dy Workshop on Nuclear Structure at High Spin, Kopenhagen, Dänemark, 24.-27.5.83
20.10 .0

IKP-205583
Kleinheinz, P.
GT zerfall des ${ }^{147}$ Dy
GSE Darmstadt, 17.8.83
20.10 .0

TKP-205683
Kleinheinz, P.
Alfgned multiparticle yrast configurations and particle-octupole coupling phenonena in the nuclei around ${ }^{146} \mathrm{Gd}$
Int. Symp. on Electromagnetic Properties of
Atomic Nuclei, Tokio, Japan, 9.-12.11.83
20.10 .0

IKF-205783
Kleinheinz, F .
octupole excitations in $G d$
Univ. Tokio, Japan, 14.11.83
20.10 .0

IKP-205883
Kleinheinz, P.
Low-iying octupole and quadrupole collective states in the $A=150$ region
Inst. of Physical and Chemical Research,
Saitama, Japan, 16.11.83
20.10.0

IKE-205983
Kleinheinz, P.
Nuclear structure in the ${ }^{146} \mathrm{Gd}$ region
Tokyo Inst. of Technology, Tokio, Japan,
17.11 .83
20.10 .0

IKP-206083
Kleinheinz, P.
Single and double octupole excitations observed in Gd muclet
Research Center for Nucl. Phys., Osaka, Japan, 21.11 .83
20.10 .0

IKP-206183
Kleinheing, p.
In-bean nuclear structure studies in the ${ }^{1 t}{ }^{6} \mathrm{Gd}$
region
Osaka Univ, Iab. Of Nucl. Studies, Osaka, Japan, 22.11 .83
20.10 .0

IRP-206283
Kleinheinz, P.
GT- B-decay and proton radioactivity in $14 / \mathrm{Tb}$
HMI Berin, 24.11.83
20.10 .0

IKP-206383
Krewala, S .
The role of the isobar degree of freedom in the nucleus
5 th Nordic Meeting on Intermediate and figh
Energy Nucl. Physics, Geilo, Norwegen, 10.-14.1.83
20.80 .0

IKP-206483
Krewald, s.
($\mathrm{a},{ }^{2} \mathrm{He}$) - a reaction for ICE?
5 th Nordic Meeting on Intermediate and High
Energy Nucl, Phys., Geilo, Norwegen, 10.-14.1.83
20.80 .0

IKP-206583
Krewald, s.
Die Rolle der ${ }^{3} 3$ Resonanz im Kern
MPI Heidelberg, 19.1.83
20.80 .0

IKP-206683
Krewald, s.
Zerfalls- und Spreizbreite von Riesenresonanzen
Expertentreffen fiir Kernphysik, Schieching,
2.-11.3.83
20.80 .0

IKP-206783
Krewald, s .
Medíum-Polarisationseffekte in der A_{3}-Loch
Wechselwirkung
univ, Bonn, 12.7.83
20.80 .0

IKP-206883
Lieder; R.M.; Jäger, H.M.; Neskakis, A.; Venkova, T.; Michel, C.; sletten, G.
Design study for a $\gamma-\gamma$ coincidence spectrometer with large efficiency and background suppression Frihjahrstagung der DGB, Sektion A: Kernphysik, Münster, 27.-25.3.83
20.10.0

IKP-206983
Lieder, R.M.
Band crossings in $1810 s$ and comparison with
features in iogos
Workshop on Nucl. Struct. at High Spir, Kopen-
hagen, Dänemark, 25.5.83
20.10.0

IKP-207083
Lieder, R.M.; Neskakis, A.; Sletten, G.;
Garrett, J.D.
Neutron and proton band crossings in 1810 os
Int. Conf. on Nucl. Phys.r Florenz, Italien,
29.8.-3.9.83
20.10 .0

IKP-207183
Lieder, R.M.; Jăger, H. ${ }^{\text {Hes }}$ Nekis, A.; Venkova, T.; Michel, C.

Design of a y-y coincidence spectroneter using BGO anti-compton spectrometers
Int. Conf. on Nucl. Phys., Fiorenz, Iralien, 29.8.-3.9.83
20.10 .0

IKP-207283
Lieder, R.M.
Design of BGO anti-compton spectrometers
Nordic Accelerator Workshop, Koperhagen, Danemark, 19.10.83
20.10 .0

TKP-207383
Löwenich, K.; Dewald, A.; Gast, W.; Hanewinkel, H.; Zell, K.O.; Geiberg, A.; von Brentano, P. High spin states and Iifetime measurements in $120 \mathrm{Xe}^{+}$
Fruhjanrstagung der $D P G$, Sektion A : Kernphysik, Minster, 21.-25.3.83
20.10 .0

IKP-207483

Löwenich, K.; Dewald, A.: Gast, W.: Hanewinkei, ii.; Zeil, K.0.; Von Brentano, P.

High spin states in ${ }^{120} \mathrm{Xe}$
Int. Conf. on Nucl. Phys., florenz, Italien,
$29.8,-3.9 .83$
20.10 .0

TKP-207583
Ma, Z.Y.; Kuo, T.T.S.
A model-space BHF theory of nuclear matter. Int. Conf. on Nucl. Phys., Florenz, Italien, 29.8.-3.9.83
20.80 .0

TKミ-207683
Machner, H.
Untersuchung des Reaktionsmechanismus mit Hilfe
der ${ }^{50} \mathrm{Ni}\left(\mathrm{a}, \mathrm{a}^{\prime} \mathrm{c}\right), \mathrm{C}=\mathrm{p}, \mathrm{a}$ Reaktion bei $\mathrm{E}_{\alpha}=140 \mathrm{MeV}$ Philipps Univ. Marburg, Februar 9983
20.06 .0

IRP-207783
Machner, H.; Bechstedt, U.; Budzanowski, A.; Jahn, P-: Mayer-Böricke, C.
Pre-equilibrium and knock-out processes in
(a, 2a) reactions
Fruihjanrstagung der DPG, Sektion A: Rernphysik, Münster, 21.-25.3.83
20.06 .0

IKP-207883
Machner, H.; Didelez, J.P.; Riepe, G.; Protić, D.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.
Production of fast partioles from nucleax reactions with high energy protons
Frthjahrstagung der DPG, Sektion A: Kernphysik, Minster, 21.-25.3.83
20.06.0

TKP-207983
Machner, H.; Riepe, G.; Protíc, D.; Bohlen, H.G.; Fuchs, G.
Light charged particle emission from $20 \mathrm{Ne}+197 \mathrm{Au}$ Frihjahrstagung der DPG, Sektion A : Kernphysik, Munster, 21.-25.3.83
20.06 .0

MKP-208083
Machner, H .
Uniersuchung kontinuierlicher Teilchenspektren bei mittleren Energien
TH Darmstadt, 31.5.83
20.06.0

TKP-208183
Machner, H .
Continuous light ion spectra from heavy ion induced reactions
Int. Conf. on figh Energy Nuci. Phys., Balatonfured, Ungarn, 5.-11.6.83
20.06 .0

IKF-208283

Machner, H .
Test of a spreading width formula over a large energy range
Int. Conf. on Nucl. Fhys., Florenz, Italien, 29.8.-3.9.83
20.05 .0

IKP-208383
Machner, H .
New developments in the study of continuum
spectra
Int. Conf. on Highly Excited States and Nucl. Struct., Orsay, Frankreich, 5.-8.9.83 20.06.0

IKP-208483
Mairle, G.; Grabmayr, P.; Schmidt-Rohr, U.; Wagner, G.J.; Berg, G.P.A.; Hürlimann, W.; Katayama, I.; Martin, S.A.; Mei Bburger, J.; Romer, J.G.H, ; Styczen, B.; Tain, J. I, Effective p-h interactions from the ${ }^{209} \mathrm{Bi}\left(\alpha_{j}{ }^{3} \mathrm{He}\right)$ ${ }^{206} \mathrm{~Pb}$ reaction
Fribjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.06 .0

IKP-208583
Marinov, A.; Berg, G.P.A.; Gopal, S.; Hürlimann. W.; Katayama, I.; Martin, S.A.; MayerBöricke, C.; Meibburger, J.; Oelert, w.; Romer, J.G.M.; Rogge, M.; Tain, J.L.; Turek, P+; Zem10, I.
Study of the ${ }^{62_{\mathrm{Ni}}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{6} \text {. Co reaction }}$
Frihjahrstagung der DPG, Sektion A : Kernphysik, Munster, 21.-25.3.83
20.06.0

IKP-208683
Mathews, H.-G.
ECR (Electron-Cyclotron-Resonance)-Ionenqueilenentwioklung in Jiilich
Univ. Bonn, 18.1.83
20.30 .0

TKP-208783
Mathews, H.-G.; Beuscher, H.; Fiedler, R.
Krauss-Vogt, W.
Results of a 5 GHz ECR test device - Pre-ISIS 2
5th E.C.R. Ion Sources Workshop, Louvain-La-
Neuve, Be1gien, 21.-22.4.83
20.30.0

IKP-208883
Mathews, H.-G.; Beuscher, H.; Krauss-Vogt, W. ECR-ion-source development at the Jialich cyclotron
7th Symp. On Ion Sources and Ion Assisted
Technology - ISIAT 183, Kyoto, Japan, 12.-16.9.83
20.30.0

TKP-208983

Mathews, $\mathrm{H} .-\mathrm{G}$.
ECR source development at the Jiilich cyclotron IPCR Workshop, Tokio, Japan, 20.9.83
20.30 .0

IKP-209083

Meyer, R.A.; Kaffrell, N.; Lawin, H.; Lher-
sonneau, G.; Monnand, E.; Paar, V.: Pfeiffer,
B.; Pinston, J.A.; Ragnarsson, I.; Schussler, F.; Schmitt, A.; Seo, T.; Sistemich, K.; Trautmann, \mathbb{N}.
Symetric deformation in $A \sim 100$ odd and odd-odd
nuclei and its influence of fission product beta-decay rates
Experts Meeting on Fission Product Data, BNL
Upton, New York, USA, Oktober 1983
20.65 .0

IKP-209183

Morsch, H.P.
Investigation of giant resonances in hadron scattering experiments
XXI Int. Winter Meeting on Nucl. Phys., Bormio, Italien, 24.-29.1.83
20.06 .0

TKP-209283
Morsch, H.P.; Decowski, P.; Rogge, M.; Turek, P.; Zemio, L.; Martin, S.A.; Berg, G.P.A.; Meißburger, J.; Römer, J.G.M.; Tain, J.L.
New results from the study of giant resonances in small angle scattering
Fruhjahrstagung der DPG, Sektion A: Kexnphysik, Munster, 21,-25. 3.83
20.06 .0

IKP-209383
Morsch, H.P.
Direct excitation of higher multipole resonances in heavy nuclei
Int. Conf. On Highly Excited States and Nucl. Struct., Orsay, Frankreich, 5.-8.9.83
20.06 .0

TKP-209483

Morsch, H.P.; Berg, G.P.A.; Decowski, P,; Tain, J.L.; Rogge, M.; Turek, P.; Zemlo, L.; Meißburger, J.; ROmer, J.G.M.
Investigation of isovector giant resonances in $\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ at $\mathrm{E}_{3 \mathrm{He}}=135 \mathrm{MeV}$
Int. Cons. on $\mathrm{H} i g h l y$ Excited States and Nucl.
Struct., Orsey, Frankreich, 5.-8.9.83
20.06 .0

TKP-209583
Morsch, H.P.
Surface and volume compression in the giant monowole resonances in heavy nuclei
Int. Conf. on Highly Excited States and Nucl.
Struct., Orsay, Frankreich, 5.-8.9.8.3
20.06 .0

IKP-209683
Horsch, H.P.
Neue kollektive Anregungsmoden in schweren Kernen
Univ. Gottingen, 4.11.83
20.06. 0

1KP-209683
 Exact operator structure of the Brueckner Gmatrix
Frühjahrstagung der DPG, Sektion A: Kernphysik, Munster, 21.-25.3.83
20.80.0

LKP-209783
Neskakis, A.; Lieder, R.M.; Sletten, G. Garrett, J. D.
Neutron and proton band crossings in l/9wlolos Frihjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.10.0

IKP-209883
Neskakis, A.; Beuscher, H.; Bochev, B.; Lieder, R.M.; Morek, T.; May, F.R.

Study of high-spin states in 188Au
Int. Conf. on Nucl. Phys., Fiorenz, Italien,
29.8.-3.9.83
20.10 .0

IKP-209983
Oelert, W.; Palla, G.; Mayer-Böricke, C.; Turek, P.

The ($\mathrm{d},{ }^{6} \mathrm{Li}$) alpha-transfer reaction on naclei of the sd-shell
Fruhjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.06.0

IKP-270083
Oelert, W.; Palla, G.
Ground state transitions in ($\mathrm{d},{ }^{6} \mathrm{Li}$) reactions on st-shell nuclei
1983 RCNF int. Symp. on Light Ion Reaction
Mechanism, Osaka, Japan, 16.-20.5.83
20.06 .0

EKF-210183
pelert, w.
Activities at the Nuclear Physios Laboratory in
JuIich
Univ. Fukuoka, Japan, 30.5.83
20.06 .0

IKP-210283
Oelert, W .
Four-nucleon transfer reactions on sd-shell
nuclei
Univ. Sendai, Japan, 3.6.83
20.06 .0

IKP-210383
Gelert, W.
Reaction mechantsm of four-nucleon transfer
reactions on sd-shell nuclei
Univ. Tokio, Japan, 7.6.83
20.06.0

TKP-210483
Oelert, W.
The importance of considering coupled-reactionchanel mechanism in alpha transfer at sd-shell nuclei
INS Tokio, Japan, 9.6.83
20.06 .0

IKP-210583
Oelert, W.; Palia, G.; Betigeri, M.G.; Fortune T.H.; Mayer-Boricke, C.; Rubio,B.; Turek, P. Importance of two-step contributions in alpha transfer reactions on ${ }^{22} \mathrm{Ne}$
Int. Conf. on Nucl. Phys., Florenz, Italien, 29.8.-3.9.83
20.06 .0

IKP-210683
Delert, W.; Palla, G.
Alphe transfer of ground state transitions in sd-shell nuclei
Int. Conf. on Nuct. Phys., Florenz, Italien, 29.8.-3.9.83
20.06 .0

IKP-210783
Osterfeld, F.
Quenching of Gamow-Teller resonances - a i-isobar effect or a background problem?
Int. Workshop XI on Gross Properties of Nuclei and Nucl. Excitations, Hirschegg, 17.-22.1.83 20.80 .0

IKP-210883
Osterfeld, F.
Hochenergetische Protonenstreumg
Kernphysik-SNQ-Workshopr Bad Honnef, 1./2.2.83
20.80 .0

IKP-210983
osterfeld, F.
Anaiyse von Ganow-Teiler Resonanzen
Expertentreffen fir Kernphysik, Schleching,
$2 .-11.3 .83$
20.80 .0

TKP-211083
Osterfeld, F.
Microscopic calculation of the background below Gamow-reller resonances
Frihjahrstagung der DPG, Sektion A: Kernphysik, Munster, 21.-25.3.83
20.80 .0

IKP-211183
Osterfeld, F.
Microscopic background calculations for Gamow-
Teller resonances
Symp. On DeltawNucleus Dynamics, Argonne, IL,
USA, 2.-4.5.83
20.80 .0

IKP-211283
Osterfeld, F.
Analysis of Gamow-Teller resonances
Kent State Univ., Kentr Ohio, USA, 6.5.83
20.80 .0

IKP-211383
Osterfeld, F .
Analyais ot Gamow-meliex resonances
Endiana Univ., Blomington, IN, USA, 9.5.83
20.80 .0

IKP-211483
osterfela, F.
Analysis of M1- and Ganow-Teller resonances
Michigan State Univ., East Eansing, Mr, USA,
11.5 .83
20.80 .0

IKP-211583

Osterfeld, F
Is there evidence for $\Delta(1232)$ isobar-nucleon hole states in nuclei?
Lawrence Livermore Nat. Lab., Livermore, CA ,
USA, 20.5.83
20.80 .0

LKP-211683

Osterfeld, F.
Calculation of the imaginary optical potential in the nuclear structure approach
Workshop on Microscopic Approaches to NucleonNucleus Scattering, Asilomar, CA, USA, 25.5.83 20.80 .0

IKP-211783
osterfeld, F.
Why do we need a high energy neutron facility? Workshop on Microscopic Approaches to NucleonNacleus Scattering, Asilonax, CA, USA, 27.5.83 20.80 .0

IKP-211883
Osterfeld, F .
Untersuchung von Ganow-Teller-Resonanzen mit Hilfe von Ladungsaustauschreaktionen
Univ. Bonn, 18.7.83
20.80.0

IKP-211983

Osterfeld, F., Schulte, A.
Microscopic calculations of the background below giant resonances
Int. Symp. on Highly Excited States and Nacl.
Struct., Orsay, Frankreich, 5.-8.9.83
20.80.0

IKP-212083
Osterfeld, F .
Physics with protons at intermediate energies Workshop on the Physics Program at CELSIUS, Uppsala, Schweden, 8.19.83
20.80 .0

IKP-212183
Osterfeld, F .
Quenching of Gamow-Telier and AL=1-resonances, a Δ-isobar-effect or a damping and background problem?
NBI Kopenhagen, Dänemark, 15.12.83
20.80 .0

IKP-212283
Palla, G.; Oelert, w.
Inelastic two-step processes in ($\left.\mathrm{d},{ }^{6} \mathrm{Li}\right)$ reaction on ${ }^{24} \mathrm{Mg}$ and 26 Mg at 80 MeV
1983 RCNP Int. Symp. on Light Ion Reaction Mechanisin, Osaka, Japan, 16.-20.5.83
20.06.0

IKP-212383
Palla, G.; Oelert, W.
Population of $k \pi=2^{*}$-band states in ${ }^{20} N e$ via the $\left(Q,{ }^{6}\right.$ Li) reaction
1983 RCNF Int. Symp. on Light Ion Reaction Mechanism, Osaka, Japan, 16.-20.5.83
20.06 .0

IKP-212483
Palla, G.; von Geramb, H.V.
A comparison of phenomenological and microm scopic optical model potentials
Int. Conf. on Nuci. Phys., Florenz, Italien, 29.8.-3.9.83
20.06 .0

IKP-212583
Palla, G.; Oelert, W.
Excitation of $\mathrm{K}^{\mathrm{T}}=2^{-}$-band states in $20,22 \mathrm{Ne}$ via the ($\mathrm{d},{ }^{6} \mathrm{Li}$) reaction
Int. Conf. on Nucl. Phys., Florenz, Italien, 29.8.-3.9.83
20.06 .0

IKP-212683
Palla, G.; Oelert, W.
Coupledrchannels effects in ($d,{ }^{6}$ i, i) reaction on ${ }^{24} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ at 80 MeV
Int. Conf. on Nucl. Fhys., Florenz, Italien, 29.8.-3.9.83
20.06 .0

TKP-212783
Posorski, R.
Energieabsorber - Warmeübergangseigenschaften und Systemverhalten
BSE/ESES-Tagung: Erfahrungen mit Kollektor-,
Energieabsorber- und Warmepumpenanlagen, Köln,
1.12 .83
20.60 .1

IKP-212883
Probst, H.J.; Uray, I.
Die radioaktive Kontamination an einem zykiotron XI. Regional Congress of IRPA, Austrian-Hungari-an-Yugoslavian Radiation Protection Meeting (Recent Developments and New Trends in Radiation Protection), Wien, 20.-24.9.83
20.05 .0

IKP-212983
Reich, J.; Robmer, J.; Rogge, M.; Zemio, L.
Update of the JUIIC beam handing system 20th European Cyclotron Progress Meeting, Groningen, Niederiande, 7.-8.9.83
20.30 .0

IKP-213083
Römer, J.G.M.; Berg, G.P.A.; Hürizmann, w.;
Katayama, I.; Martin, S.A.; MeiBburger, J.;
Oelert, W.; Tain, J.I.; Eversheim, P.D.; Hin-
terberger, $F . ;$ Trelle, P.; von Rossen, F.
Search for $T=5 / 2$ double analog states in ${ }^{27} \mathrm{Mg}$ via the ${ }^{26} \mathrm{Mg}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right)$ reaction
Fruhjahrstagung der DPG, Sektion A: Kemphysik, Minster, 21.-25.3.8.3
20.06 .0

IKP-213183
Römer, J.G.M.; Berg, G.P.A.; Hlawatsch, G.;
Magiera, A.; MeiBburger, J.; Tain, J. I.; Hin-
terberger, F, Brinkmëमier, B.; Sondermann, G. Search for $1^{+}-$states in ${ }^{88} \mathrm{gr}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ and ${ }^{2 U} \mathrm{Zr}$
(p, p) at $E_{p}=45 \mathrm{MeV}$
Fruhjahrstagung der DPG, Sektion A: Kermphysik, Münster, 21.-25.3.83
20.06 .0

IKP-213283
RÖsel, F.; Trautmann, D.; Baur, G.
Halbklassische Alignmentrechnungen bei Ion-Atom-Stoben
Fruhjahrstagung der DPG, Sektion B: Atomphysik, Regensburg, 21.-25.3.83
20.80 .0

IKP-213383
Rubio, B.; Julin, R.; Yates, S.w.; Kleinheinz,
P.; Ircan, A.; Stoffl, W.; Henry, E.; Manm, I.; Struble, G.; Lanier, R.; Biongvist, J.
An in-beam study of the one-hole nucleus 145 Eu
Fruhjahrstagung der DFG , Sektion A : Kernphysik, Münster, 21.-25.3.83
20.10 .0

TKP-213483
Seyfarth, H.
Grundlagen der Physik der Kernwaffenexplosion Vorlesungsreihe "Verantwortung für den Frieden", EWTH Aachen, 26.10 .83
20.10.0

IKP-213583
Sistemich, K.
Der Physiker in stadilichen Großiorschungseinrichtungen
Wochenendseminar des Regionalverbands Hessen, Mittelrhein, Saar der DPG, Konigstein, 4.-6.11.83 20.65.0

$1 \mathrm{KP}-213683$

Sondermann, G.; Gaul, G.; Bexg, G.P.A.; Hürli-
mann, W.; Katayama, I.; Martin, S.A.; MeiBburger, J.; Romer, J.G.M.; Tain, J.I.; Styczenr B. Search for 1^{+}states in ${ }^{58} \mathrm{Ni}^{\prime}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ at $\mathrm{E}_{\mathrm{p}}=45 \mathrm{MeV}$ Fruhjahrstagung der DPG, Sektion A: Kernphysik Minster, 21.-25.3.83
20.06 .0

IKP-213783
Speth, J.
Crucial test of the $\Delta(1232)$-hole effect: (n, p) vs. (p, n)
School on Mesons, Isobars, Quarks and Nucl. Excitations, Erice, Sizilien, 6.-18.4.83
20.80 .0

IKP-213883
Speth, J.
Δ-isobar effects in nuclei
CEN Orsay, Frankreich, 9.6.83
20.80 .0

TKP-21.3983
Speth, J.
Quenching von Spin-Isospin-Moden in Kernen
Univ. Regensburg, 15.7.83
20.80 .0

IRP-214083
Speth, J.
Nuclear giant resonances and nucleon-nucleon interaction
Vorlesungsreihe, Int. Sumer School on Nucleon-
Nucleon Interaction and Nuclear Manybody Problem, Chengchun, China, 25.7.-1.8.83
20.80.0

IKP-214183
Speth, J.
Delta-isobar nucleon interaction
Indiane Univ. Cycl. Facility; Bloonington; IN, USA, 10.10.83
20.80 .0

IKP-214283
Speth, J.
Mesonic and haryonic degrees of freedom in
nuclear structure physics
Indiana Univ. Cycl. Facility, Bloomington, In, USA, 1t. 10.83
20.80 .0

IKP-214383
Speth, J.
Mesonic and baryonic degrees of freedom in
nuclear structure physics
Texas AsM Univ., College Station, TX, USA,
14.10 .83
20.80 .0

IKP-214483
Speth, J.
What is the role of quarks in nuclear physics?
Indiana Univ. Nucl. Phys. Workshop, Bloomington,
IN, USA, 21.10.83
20.80 .0

IKP-214583
Speth, J.
Mesonic and baryonic degrees of freedom in
nuclear structure physics
Undv, of Pittsburgh, PA, USA, 27.10.83
20.80 .0

TKP-214683
Spethir J.
Die A-Isobar-Nukleon-Wechselwirkung in Kernen Univ. HeideIberg, 12.12 .83
20.80 .0

IKP-214783
Schmid, K.W.; Grumer, F.; Faessler, A.;
Fladt, B.; Ansari, A.
The first year with the MONSTER
Frihjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.80 .0

IKP-214883
Schult, 0.
ISOLDE-Fhysik: Gegenwart und Zukunft
Kernphysik-SNQ-Workshop, Bad Honnef, 1./2.2.83
20.10.0

TKP-214983
Schult, 0 .
Nuclear physios at ISOLDE (CERN) and the ILL
(Grenoble)
Tagung der Japanischen Physikalischen Gesertschaft, Osakar Japan, 29.3.83
20.10 .0

TKP-215083
Schult, 0.
Thoughts about nuclear physics at an intense
spallation source
Tokyo Thst. of Technology, Tokio, Japan, 31.3.83
20.10 .0

IKP-215183
Schult, 0 .
Nucleax physios at an intense spallation source
Inst. for Nucl. Studies, Tokio, Japan, 1.4.83
20.10.0

IKP-215283
Schult, 0 .
Thoughts about nuclear physics at an interse spallation source
Inst. of Physical and Chemical Research, Tokio, Japan, 2.4.83
20.10 .0
rKP-215383
Schult, 0 .
Thoughts about nuclear physics at an intense spallation source
Japan Atomic Energy Research Inst., Tokai, Japan. 4.4.83
20.10.0

IKP-215483
schult, 0 .
Thoughts about nuclear physics at an intense
spaliation source
Rİ-Cyclotron Centre, Tohoku Univ. , Sendai., Ja-
pan, 7.4.83
20.70.0

IKP-215583
Schult, 0 .
Thoughts about nuclear physics at an intense
spallation source
Univ. Hiroshima, Japan, 12,4.83
20.10 .0

IKP-215683
Schuit, 0 .
Thoughts about nuclear physics at an intense spallation source
Kyushu Univ., Fukuoka, Japan, 14.4.83
20.10 .0

IKP-215783
Schult, 0.
Isotope shifts
Osaka üniv., Japar, 4.5.63
20.10.0

IKP-215883
Schult, 0.
Plans for nuclear research at the spallation
facility GNQ
Research Center for Nucl. Phys., Suita, Osaka,
Japan, 11.5.83
20.10.0

IKP-215983
schult, 0 .
Contributions of nuclear physicists to applied science
Dept, of Nucl. Engineering, Nagoya, Japan,
12.5.8.3
20.10.0

CKP-216083
Schult, 0 .
Nuclear studies at a high current spallation source
Vorlesung, RCNP-Kikuchi Summer School, Kyoto Japan, 26.5.83
20.10.0

IKP-216183
Schult, 0.
Gamma and X -ray.measurements with crystal spectrometers
Europhysics Study Conf., Kreta, 27.6.-1.7.83 20.10 .0

1KP-216283
Schult, 0 .
Nuclear structure studies with slow neutrons Vorlesungsreihe, VI Int. School on Nucl. and Neutron Phys. and Nucl. Energy, Varna, Bulgarien, 12.-20.9.83
20.10 .0

IKP-m 216383
Stein, F゙.J.
Solarheizungsanlage zum Beheizen, Funkubertragungstelle Garmisch II auf der Zugspitze Meßprogramm
BMFT Statusseminar: Nutzung der Sonnenenergie in bundeseigenen Gebäuden, Dieburg, 8.6.83 20.60.1

IRP-216483

Stein, H.s.; Kohnen, M.
Solar heating plant at mount Zugspitze
Solar world Congress, Perth, Australien, 14.-19.8.83
20.60 .1

IKP-216583

Stein, H.J.
Solarenergienutzung in der Haustechnik - Ergebnisse und Perspektiven von KFA-Arbeiten
Insolar-Kolloquium, DFVLR-FZ-Zentrum, Stuttgart: 19.9.83
20.60.0

TKP-216683

Stein, H.J.
Solare Warmwasserbereitung und Wärmepumpen-Heizanlagen - Systemtechnische Aspekte
Philips Forschungslabor, Aachen, 19.10.83
20.60 .1

IKP-216783
Stein, H.J.
Die Sonnenheizungsanlage der Deutschen Bundespost am Zugspitzgipfel
univ. München, 25.11.83
20.60 .1

IKP-216883
Tain, T. T.; Berg, C.P.A.; Decowski, D.; Katayama, I.; Martin, S.A.; Meißburger, J.; Morsch, F.; Römer, J.G.M.; Rogge, M.; Styczen, B.; Turek, P.
Investigation of the 1^{+}state in 208 Pb at
5.84 Mev by inelastic hadron scattering Frühjahrstagung der DPG, Sektion A: Kernphysik, Münster, 27:-25.3.83
20.06 .0

IKP-216983

Tain, J.L.; Brinkmöller, B.; Berg, G.P.A.; Hlawatsch, G.; Magiera, A.; Meibburger, J.; Oelert, W.; Palia, G.; Römer, J.G.M.; Sondermann, G.
Gamow-Teller resonance in $\mathrm{S}_{\mathrm{Z}}^{\mathrm{zr}}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ at
$\mathrm{E}_{3 \mathrm{He}}=135 \mathrm{MeV}$
Int. Symp. on Highly Excited States and Nucl. Struct., Orsay, Frankreich, 5.-8.9.83 20.06 .0

IKP-217083
Talarek, H.D.: Pescatore, M.
Supplemental thermal performance tests
DCS Workshop des SSPS Projekts, Almeria, Spanien, 6.-8.12.83
20.60 .1

IKP-217183
Trache, L.; Wrzesinski, J.; Wesselborg, C.;
Zell, K.O.; Bazzacco, D.; Moore, F.; Von Bren-
tano, P.; Berg, G.P.A.; EUrlimann, W.; Meibburger, J.; Römer, J.G.M.; Tain, J.; Katayana, I. Particle-octupole coupling in the $N=83^{1+3} \mathrm{Nd}$ nucleus
Fruhjahrstagung der DPG, Sektion $A:$ Kernphysik, Münster, 21.-25.3.83
20.06.0

IKP-217283
Trautmann, D.; Rösel, F.; Baur, G.
Alignment bei der Ionisation innerer Schaien Fruhjahrstagung der DPG, Sektion E: Atomphysik, Regensburg, 14.-18.3.83
20.80 .0

TKP-217383
Uray, I.; Gyarmati, E.; Felszerfalvi, J.;
Probst, H.J.; Heinzelmann, M.
Possible use of Lif dosemeters in mixed neutrongamma fields
XI. Regional Congress of IRPA, Austrian-Hunga-rian-YugosIavian Radiation Protection Meeting
(Recent Developments and New Trends in Radia-
tion Protection), Wien, 20.-24.9.83
20.05.0

IKP-217483
Uray, I.; Manngard, P.; Probst. H.J.; Heinzelmann, M.
Characteristics of mixed neutron-ganma radiation fields around cyclotrons
XI. Regional Congress of IRPA, Austrian-Hunga-rian-Yugosiavian Radiation Protection Meeting (Recent Developments and New Trends in Radiation Protection), Wien; 20.-24.9.83
20.05.0

IKP-217583
Uray, I.; Probst, H.J.
Empfindlichkeit von KontaminationsmeBgeraten fiar praktisch vorkomende Kontaminationen am Jillicher IsochronzykIotron - Problematik der Grenzwertfestlegung fir Routinebetrieb
17. Jahrestagung des Fachverbandes für Strahlenschutz e.V. (Strahlenschutzaspekte bei Radioaktiven Kontaminationen), Aachen, 8.-10.6.83 20.05 .0

IKP-217683
Wambach, J.
Recent developments in Chiral bag models
Int. Symp. on Quarks and Nucl. Struet., Bad Honnef, $13 .-16.5 .83$
20.80 .0

IKP-217783
Wambach, J.; Schwesinger, B.
Damping of highly excited vibrations in heavy nuclei
Int. Symp. on Highly Excited States and Nucl. Struct., Orsay, Frankreich, 5.-8.9.83 20.80.0

IKP-217883
Wucherer, P.
The problems to realize an optimized RF central region for ISIS
20th European Cyclotron progress Meeting, Groningen, Niederlande, 7.-8.9.83
20.30 .0

LKP-217983
Xiangfu, S.; Bazzacco, D.; Gast, W.; Gelberg, A.; Kaup, U.; Dewaid, A.; Zell, K.O.; von Brentano, P.
Excited states in ${ }^{3}{ }^{0} \mathrm{Ba}^{+}$
Frühjahrstagung der DPG, Sektion A: Kernphysik, Münster, 21.-25.3.83
20.10.0

IKP-218083
Xiangfu, S.; Löwenich, K.; Dewald, A.; Gast, W.; Gelberg, A.; Hanewinkel, H.; Kaup, U.; Zell, K.o.; Von Brentano, P.; zemel, A.
$B(E w)$ anomaly in collective levels of Ba and Xe nuclei
Int. Conf. on Nucl. Phys.r Flogrenz, Itaiien, 29.8.-3.9.83
20.10 .0

IKP-218183
Yates, S.W.; Kleinheinz, P.; Julin, R.; Stöffl, W.; Henry, E.; Mann, L.; Decman, D.; Blomqvist, J.

Nucłeon-nucleon interactions from particle-hole multipletts in 146 Gd
Fruhjahrstagung der DPG, Sektion A: Kernphysik, Minster, 21.-25.3.83
20.10.0

IKP-218283
Yogeshwar, R.
Suche nach leichten, durchdringenden Teilchen
am Forschungsreaktor MERLIN der KFA Jiilich
RWTH Aachen, 29.4.83
20.10.0

IKP-218383
Yogeshwar, R.
Grundlagen der Physik der Kernwaffen
FH Aachen-Jiilich, 20.10.83
20.10 .0

INSTITUT EUER KGRNPHYSIX
X , internal reports
TKP-500183
Bodewig, W.
Bestimaung des Absorptionsvermögens von Energieabsorbern aus deren Leerlauftemperaturen
KFA-IKP-SO1 IB 1/83
20.60.1

IKP-500283
Talarek, H.D.
Annual progress report task III - Performance
testing of solar collectors
IEA Internal Report, Januar 1983
20.60 .1

XI , internal talks

IKP-600183
Anhalt, J.
Die Kollektorteststation Atibaia/Brasilien

- Status und Perspektiven
pIS-Seminar, IKP, 6.6.83
20.60 .1

IKP-600283
Berg, G.P.A.
i^{+}-Spektroskopie in schweren Kernen an BIG KARI 9. Sitzung des wiss. Beirats des IKP, 28.6.83
20.06.0

IKP-600383
Krewald, s.
Fochenergetische Neutronenstreuung als Test auf
die Δ_{33}-Resonanz im Kern
9. Sitzung des wiss. Beirats des IKP, 28.6.83
20.80 .0

IKP-600483
Lieder, R.M.
Untersuchung von Bandenkreuzen in $1 d 0$ inlos mit Anti-Compton-Spektrometern
9. Sitzung des wiss. Beirats des IKP, 28.6.83
20.10 .0

IKP-600583
Love, W.G.
Spin x current correlations in nuolej and their implications for (p, p^{\prime}) reactions
IKP, KFA Jülich, 21.9 .83
20.80 .0

IKP-600683
Ma, Z.Y.
Quark pion interactions in a deformed bag model IKP, KFA Jiilich, 31.3.83
20.80.0

IKP-600783
Mathews, H.-G.
Stand der ECR-Ionenquellenentwicklung fir das Projekt ISIS am Jilicher Zyklotron
9. Sitzung des wiss. Beirats des IKP, 28.6.83
20.03 .0

IKP-600883
Maßmeyer, K .
Variationen des Stromes fihlbarer Wärme in der atmosphärischen Grenzschicht
PLS-Seminar, IKP, 30.11.83
20.60. 1

IKP-600983
Nemeth, J.
Pion condensate in heavy ion collisions
IKP, KFA Jiilich, 17.3.83
20.80 .0

IKP-601083
Probst, H.J.
Personensicherheit am Jilicher Isochronzyklotron Fortbildungsseminar der KFA JUlich (Angewandter Strahlenschutz), Julich, 11.5.83
20.05 .0

IKP-601183
Reinhardt, H .
A geometric approach to dissipation in manybody systems
IKP, KFA Jiilich, 22.9.83
20.80.0

IKP-601283
Stein, H.J.
Die Sonenheizungsanlage der Deutschen Bundespost am zugspitzgipfel
PLS-Seminar, IKP, 28.10.83
20.60 .1

XII, INDEX TO AUTHORS

Agena, M.	122
Ahrens, H .	41, 42
Alhassid, Y.	104
Ambrosetti, P.	116
Andersson, H.E.B.	116
Antolkovic, 3 .	11
Baltan, R.	104
Barreau, G.	33, 34, 35
Baur, G.	$83,100,105$
Bechteler, H.	60, 62
Berg, G.P.A.	$\begin{aligned} & 1,2,3,4,8,12,13,14,15,17, \\ & 50,120,133,135,139,141 \end{aligned}$
Beuscher, H .	$45,48,122,125,128$
Blomqvist, J.	$48,50,52,54$
Blume, K.P.	136
Bochev, E.	29, 45, 57
Bocquet, J.P.	41, 42
Böge, H.G.	119, 122
Bobmer, H.G.	33, 34, 35
Bogdenovic, M.	43
Bojowald, J.	8, 11, 152
Borsch, H .	119, 122
Brautigam, W.	119, 122
Brant, S.	8, 33, 35, 36
Brentano, P. von	3, 136, 141
Brièll, 4 .	122, 147
Brings, R.	119, 122
Brinkmoller, B.	$1,3,4,12,13,15,139,140,141$
Brissot, R.	34
Brown, G.E.	88
Briuckner, J.	30
Buttkewitz, A.	25
Cha, D .	$68,69,70,72,73,87$
Clauberg, A.	
Co', G.	94, 95
Conci, C.	64, 65, 66
Cooperstein, J .	107
Decman, D .	52
Decowski, P.	17, 19, 21, 145
Dehesa, J.S.	75
Dermatain, H.	96
Didelez, J.-P.	29
Diesburg, H.	149
Djaloeis, A.	10, 11
Connelly, T.W.	75
Duhm, H.H.	25
Eberth, J.	136
Englert, P.	30
Ercan, A.	50, 56
Emer, W.	60
Euler, K.	122
Faissner, H:	60, 62
Faust, H.	33, 35
Fiedler, R.	119, 122, 125
Franke, R.	22
Friedrich, J.	101
Frohlich, C.	116
Gales, M.	31
Garrett, J. D.	58
Gast, ${ }_{\text {H. }}$	57, 136
Gaut; G .	2, 14, 133, 144
Gietz, H.	38
Gill, R.L.	37
Gissler, R.	103
Glasow, R.	144
Glaudemans, P.W.M.	8
Goeke, K.	91, 92, 101, 102, 103
Gopal, S.	8
Gross, D.H.E.	101
Gross, ${ }^{\text {d. }}$	157
Grimmer, F.	76, 77, 78, 101, 102, 103
Hagedoorn, H.L.	119, 120, 129, 133
Hadamek, H .	119, 157
Hamacher, A.	143
Hamaren, E.	76, 77
Hasai, H.	14
Heide, J.A. van der	133
Henry, E.	52
Heyde, K.	47

Hill, J.C.	37
Hinterberger, F.	13, 133
Hintzen, H.J.	154
Hlawatsch, G.	$\begin{aligned} & 1,3,4,8,12,13,15,19,50,120, \\ & 139,141,145 \end{aligned}$
Hoffmann, B .	83, 100, 105, 150
Hofmeyr, Ch.	33,34
Gubel, H .	136
Hurlimann, W.	14
Ikegami, H.	146
Irvine, J.M.	83, 84
Isacker, f. van	47
Jäger, H.	136
Jam, P.	24
Jannakos. 1.	119
Jarczyk, L.	4, 12
Julin, R.	50, 52
Kaffrell, N.	38, 41, 42
Kampert, K.H.	144
Karnadi, M.	148, 151
Katayama, I.	14
Kaup, U.	34
Kleinheinz, P.	48, 50, 52, 54, 56
Klemt, V.	$64,65,79,80$
Koch, H.R.	60
Köhnen, M .	109
Koni, F .	38
Korthues, R.	140
Kraffi, K.	154
Krauss-Vogt, W.	122, 125, 128
Krewald, S.	$75,82,88,94,95$
Kruck, K.P.	122, 139
Kiinster, T.	143
Kutsarova, T.	29, 45, 57
Laach, M.	48
Labus, H .	152
Lajlena, A.	75
Lawin, E.	143
Lawin, H .	38, 39, 40, 41, 42, 119, 120
Lhersonneau, G.	38, 39, 40, 41, 42, 151
Lieder, R.M.	$29,45,57,58,136$
Löhner, H .	144
Lopac, V.	8
Lovas, I.	93
Love, W.G.	82
Lunardi, S .	54
Ma, Z.Y.	84, 89
Hach, M.	37
Machner, H .	22, 23, 24, 25, 27, 28
Madsen, V.	96
Magiera, A.	1, 4, 12, 13, 15, 135, 139
Mater, K.H.	136
Mann, L.	52
Marinov, A.	8
Martin, S.A.	8, 14, 133, 135
Mathews, H.G.	122, 125,128
Matther, H .	56
Mayer-Baricke, C.	3
Mayer-Kuckuk, T.	133
Meibturger, 1.	$\begin{aligned} & 1,2,3,4,8,12,13,14,15,17, \\ & 50,120,139,140,141 \end{aligned}$
Menzen, G.	$38,39,40$
Meyer, R.A.	33, 35, 36, 40, 41, 42, 47
Metz, H ,	143
Michel, C .	136
Wiche?, R.	31
Monkemeyer, Ch.	34
Morear, J.	47
Morek, T.	29, 45, 57
Moore, C.F.	141
Mooy, R.E.M.	8
Morris, Ch.	3,2141
Morsch, H.P.	17, 19, 21, 145
Mid]er, A.	122
Wuller-veggian, M.	45
Nakayama, K.	82, 88
Nellen, R.	148, 149
Németh, J.	$83,84,93$
Neskakis, A.	45, 58
\#icoll, K.	143
Nolte, M.	24

Oelert, W .
Ogawa, M.
Okolowicz, J.
osterfeld, F.
Paar, V.
Pabich, H.
Paetz gen. Schieck, H.
Paic, G.
Palla, G.
Paul, D.
Petry, R.F.
Pfeiffer, F.
Pfeiffer, J.
Piparinen, M.
Piotrowski, A.
Prakash, m.
Prasuhn, D.
Probst, H.J.
Prokofjev, P.T.
Protic, D.
Provoost, 0.
Reedy, R.C
Reich, J.
Reinhard, P.-G.
Reinhardt, H.
Reinhardt, R .
Retz; A.
Riepe, G.
Rindfleisch, U.
Römer, J.G.M.
Röse1, F.
Rogge, M.
Rosendah1, D.
Rossen, P. von
Rotert, N.
Rubio, B.
Sack, B.
Saifer, K.
schäffler-Kräh, J
Schiffer, K.
Schlienkamp, G
Schmid, K.W.
schmidt, D.
Schnitt, A., -M.
Schreckenbach, K. Schult, D.N.B.
Schulte, A.
Schwar, H .
Schwesinger, B.
Seestron-Morris, S.U.
Seniwongse, G.
See, T.
Seyfarth, H
Shizuma, K.
Shyam, R.
sieberi, R.
Simonova, L.I.
Sisterich, K.
Sletten, G.
Sondermann, G.
Soramel-Stanko, F
Speth, J.
Stein, H.d.
Steinheuer, B.
Stöfill, W.
Strauß, W.
Strzalkowski, A.
Stuick, R.
Styczen, B.
Styczen, 3 .
Tain, J.L.
Talarek, H.D.
Tenten, k.
Tittel, G.
Tokunaga, Y.
Trache, L.
Trautmann, D.
Tratuman, N.
Trivedi, M.D.
Turek, P.
$4,5,7,8,10,12,13,14,15,120$
4.
54
8
$96,98,99,100,133$
$8,33,35,36$
122
133
5, 7, 10
$1,2,3,8,13,50,139,140,141$
37
144
144
54
37
$4,12,13,133,135,139$
153, 154, 155, 156
56
120, 143
102
30
$119,120,122$
101
104
3
$14 ; 119 ; 122 ; 157$
$120,143,144$
$122,129,157$
$1,2,3,4,8,12,13,14,15,17$, 50, 120, 139, 141
100,105
$8,14,17,19,21,24,120,133$,
141, 145
122
$4,12,13,120,133,139$
119, 122
50

113
93
136
136
119, 122
$76,77,78$
111
45:42
33, 35
$33,34,35,60,139$
98, 99
119, 157
$68,69,70,72,73,81,85$
14
$38,39,40,41,42,151$
$33,34,35,43,60,62$
41, 42
100
21, 145
56
$37,38,39,40,41,42$
57, 58
$1,2,15,141$
55
$64,65,66,68,69,70,72,73,82$,
$83,87,88$
$109,111,113$
22
52
52
25
4, 12
31
4, 12
48, 56
$1,2,3,4,8,12,13,14,15,17$, 50, 139, 141
116
151
41, 42
$33,34,35$
100,105
41, 42
120
$8,10,17,19,21,24,120,133,145$

Udagawa, T.
Tray. I
Urbano, J.N.
Venkova, Ts.
Vouk, M.
Vretenar, 0.
Wänke, H.
Wambach, J.
Warcquier, M.
Watzlawik, K.-H.
Wesselborg, C
Wingender, K.
Witsch, W, von
Wite, J.-D.
Wonn, F.K.
Wood, J.L.
Wrzesinsky, 1.
Wucherer, ?.
Yates, S.M.
Yogeshwar, R.
Zekorn, T.
Zell, K.O.
Zemło, L.

100
$153,154,155,156$
91, 92
57
8, 35
33, 35
$68,69,70,72,73,84,85,89,107$
47
148,149
3
22
22
111
37
47
119, 122, 129, 131

52
60, 62
115
3
$8,10,14,17,19,120,141,145$

[^0]: + Institut fur Kernphysik, Universitat Munster

[^1]: + Institute for Fhysics and Nuclear Engineering, Bucharest, Romania
 + Institute of Nuciear Physics, Cracow, Poland
 ${ }^{+++}$Institut für Kernphysik, Universität zu koln
 * Los Alamos Scientific Laboratory, New Mexico, USA

[^2]: * Institute Rudjer Boskovic, Zacreb, Yugosiavia

[^3]: + Institut fur Kernplysik, Universität Minster

[^4]: ${ }^{+}$Institut fiur Kemchemie der Universitat zu Koln, F.R. Gemany

[^5]: + " on leave of absence from Kyoto University, Japan

[^6]: * Institute of Nuclear Physics, Cracow, Poland
 th Research Institute of Physics, Stockholm, Sweden

[^7]: a) normalised to 100 units for the $386.7 \mathrm{keV} 1 \mathrm{i} / 2^{-} \rightarrow 7 / 2^{t}$ M2 transition
 b) from ak measurements of ref. 4

[^8]: + AFI, Stockholm, Sweden

[^9]: +....III. Physikatisches Institut, Fechnische Hochschule -........... Aachen, F.R. Gemany
 ++ III. Physikalisches Institut, Technische Hochschule Aachen and IKP/KFA Julich, F.R. Germany

[^10]: * OPEP, which has been added explicitly (not fitted).

[^11]: References

 1) C. Ellegaard et al, Phys. Rev. Lett. 50 (1983) 1745.
 2) T. Udagawa, F. Osterfeld, KFA Annual Report 1982 , Jül-Spez 202 (1982) 82.
 'Univ. of Texas, Austin, Texas, USA
[^12]: * Swiss Federal Institute for Reactor Research, Wurentingen, Switzerland
 \therefore National Testing Institute, Boras, Sweden
 sw World Radiation Center, Davos, Switzerland

[^13]: Table 1: Beam transmission through the cyclotron for some

[^14]: * HMI, Bertin
 **KP, Universität Koln
 + ISKP, Universität Bonn
 ${ }^{++}$GSI, Dermstadt

[^15]: +IAEA fellow, permenent address: Institute of Nuclear Research of the Hung. Acad. Sci., P.0.B. 51, H-4001 Debrecen, Hungary

