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Persistent actin depolarization caused by ethanol induces the
formation of multiple small cortical septin rings in yeast

Sena Homoto and Shingo Izawa*

ABSTRACT

Short-term exposure to severe ethanol stress has adverse effects on
yeast cells. However, limited information is available on the effects of
long-term exposure to severe ethanol stress. In this study, we
examined the effects of a long-term treatment with a high ethanol
concentration [10% (v/v)] on yeast morphology. We found that long-
term severe ethanol stress induced the continuous depolarization of
the actin cytoskeleton and hypertrophy in yeast cells, accompanied
by the aberrant localization of septins, which formed multiple small
cortical rings (MSCRs). The formation of MSCRs was also induced
by the continuous depolarization of the actin cytoskeleton caused
by a treatment with latrunculin-A, an effective inhibitor of actin
polymerization. Unlike the formation of conventional septin rings, the
formation of MSCRs did not require Cdc42 and its effectors, Gic1,
Gic2 and Cla4. These results provide novel insights into the effects of
persistent actin depolarization caused by long-term exposure to
severe ethanol stress on yeast cytomorphology.

KEY WORDS: Septin, Actin, Cdc42, Ethanol stress, Yeast, Multiple
small cortical rings of septin

INTRODUCTION

Saccharomyces cerevisiae produces ethanol through alcoholic
fermentation and has a higher tolerance to ethanol than other
microorganisms. However, high ethanol concentrations are toxic,
even for yeast cells, causing various adverse effects on yeast growth
and metabolism. Severe ethanol stress inhibits the activity of amino
acid permeases and the glucose transport system (Leao and van
Uden, 1982; Alexandre et al., 1998) and increases the fluidity of the
plasma membrane and unsaturated fatty acid levels (Daum et al.,
1998; You et al., 2003). We also reported that severe ethanol stress
[>10% (v/v)] causes the nuclear accumulation of bulk poly(A)*
mRNA and pronounced translation repression, which are
accompanied by the formation of processing bodies and stress
granules (Takemura et al., 2004; Izawa et al., 2004, 2007; Kato
et al.,, 2011; Yamauchi and Izawa, 2016). These studies mainly
reported the effects of short-term ethanol stress on yeast cells.

In contrast, limited information is currently available on the
effects of a long-term exposure to severe ethanol stress on yeast
cells. During the typical fermentation process of wine, Japanese
sake and high-alcohol beers, such as barley wine and strong ales,
ethanol concentrations increase to higher than 10% and yeast cells
are subjected to high ethanol concentration stress for a relatively
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long period. Sake brewers have long recognized that yeast cells
often exhibit malformation after the completion of sake brewing.
Morphological changes in budding yeast are controlled by polarized
growth, budding, cytokinesis and septum formation, each of which
involves cytoskeletal proteins, such as actin and septins (Bi and
Park, 2012; Martin and Arkowitz, 2014; Mishra et al., 2014). The
polarity of S. cerevisiae is established by the polarized actin
cytoskeleton, which is controlled by the small Rho-like GTPase
Cdc42, the master regulator of the establishment and maintenance
of cell polarity (Park and Bi, 2007; Bi and Park, 2012; Martin and
Arkowitz, 2014; Woods et al., 2015; Juanes and Piatti, 2016). The
transient depolarization of the actin cytoskeleton is induced in
response to various types of stresses, including ethanol (Chowdhury
et al., 1992; Lillie and Brown, 1994; Kubota et al., 2004; Uesono
et al., 2004).

Cdc42 also controls septin organization through the cell cycle
(Caviston et al., 2003; Kozubowski et al., 2005; Gladfelter et al.,
2005; Park and Bi, 2007; Okada et al., 2013). Septins are a family of
cytoskeletal GTP-binding proteins that are present in all eukaryotes,
except higher plants (Pan et al., 2007), and they are required for
proper cytokinesis and bud site selection (Hartwell, 1971; Carroll
et al., 1998; Douglas et al., 2005; Park and Bi, 2007; McMurray
et al., 2011). Therefore, various mutations in septin genes lead to
aberrant morphologies in S. cerevisiae and Neurospora crassa
(Gladfelter et al., 2005; Berepiki and Read, 2013).

S. cerevisiae has five mitotic septin proteins (Cdc3, Cdcl0,
Cdcl1, Cdc12 and Shsl) that form hetero-octamers, called rods, in
the order of Cdcl1-Cdc12-Cdc3—Cdc10-Cdc10-Cdc3—Cdcl2—
Cdcll, in which Shsl sometimes replaces Cdcl1 (Bertin et al.,
2008; Garcia et al., 2011; Bertin and Nogales, 2012). Previous
studies have reported that these rods form filaments via self-
association and they are maintained throughout many cycles of
higher-order polymerization and depolymerization (Frazier et al.,
1998; Douglas et al., 2005; Bertin et al., 2010; Garcia et al., 2011;
Johnson et al., 2015). During vegetative growth, yeast septin
filaments accumulate at the incipient site of bud emergence and then
assemble in a ring-like structure at the bud neck, termed the septin
ring (Kozubowski et al., 2005; Okada et al., 2013). Concomitant
with bud growth, the septin ring expands into a collar or hourglass-
shaped tube at the bud neck and then splits into two rings at the onset
of cytokinesis (Byers and Goetsch, 1976; Dobbelaere et al., 2003;
Dobbelaere and Barral, 2004; McMurray et al., 2011). Septin-based
structures act as a scaffold to anchor the regulatory proteins that
participate in cell morphogenesis, and also serve as diffusion
barriers through their close association with membranes to control
molecular trafficking between daughter and mother cells
(Kozubowski et al., 2005; Caudron and Barral, 2009; Orlando
et al., 2011; McMurray et al., 2011; Wloka and Bi, 2012; Bridges
and Gladfelter, 2015; Glomb and Gronemeyer, 2016).

In the present study, we examined the effects of long-term severe
ethanol stress [10% (v/v)] on yeast morphology. We found that
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long-term severe ethanol stress induced the continuous
depolarization of the actin cytoskeleton and hypertrophy of yeast
cells, accompanied by the aberrant localization of septins, which
formed multiple small cortical rings (MSCRs). The formation of
MSCRs did not require Cdc42 and its effectors, Gicl, Gic2 and
Cla4. The formation of MSCRs was also induced by the continuous
depolarization of the actin cytoskeleton caused by a treatment with
latrunculin-A (LatA), an effective inhibitor of actin polymerization.
These results provide novel insights into the effects of long-term
high ethanol concentration stress on yeast cytomorphology.

RESULTS AND DISCUSSION

Effects of severe ethanol stress on cell growth and
morphology

Kubota et al. (2004) reported that 6% ethanol caused an
enlargement in cell sizes by delaying interphase in the cell cycle;
therefore, we initially examined changes in cell morphology and
size under long-term severe ethanol stress [10% (v/v)]. As shown in
Fig. 1A, most non-budding cells were enlarged after the treatment
with 10% ethanol stress for 24 h. The average sizes of non-budding
cells treated with 10% ethanol for 24 h were 6.46+0.57 and 6.06+
0.66 um (mean#s.d.; long-axis and short axis, respectively) and
were larger than those of non-budding cells under non-stressed
conditions (5.13+0.34 and 4.44+0.26 um, respectively). A more
prolonged treatment with severe ethanol stress resulted in the
appearance of extremely large and elongated cells (Fig. 1A). The
ethanol concentration in the medium remained unchanged and was
maintained throughout 72 h of cultivation [9.694+0.06% (v/v)].
These results confirmed that, similar to what was seen with 6%
ethanol, the long-term treatment with 10% ethanol caused the
enlargement of yeast cells.

A 10% EtOH

24 h

48 h

w/o stress

W303-1A

10% EtOH
24 h

48 h

w/o stress 1h

Actin

46.1 +2.86

156.3+2.13

913x1.7 84.4 +6.73

Fig. 1. Effects of severe ethanol stress on cell growth and morphology.
(A) Morphological changes in W303-1A under long-term severe ethanol stress
(10% ethanol). Pictures of representative cell shapes are indicated. (B) Cells
treated with 10% ethanol were stained for F-actin using Rhodamine—phalloidin.
The numbers under the panels indicate the percentages of non-polarized cells.

Effects of severe ethanol stress on the actin cytoskeleton

Cytoskeletal organization is crucial for the proper progression of the
cell cycle and polarized growth in yeast (Lew, 2000; Michelot and
Drubin, 2011). Additionally, 6% ethanol stress was shown to cause
transient depolarization of the actin cytoskeleton (for ~1 h) and a
G2 phase delay (Kubota et al., 2004). Therefore, we examined the
effects of severe ethanol stress on the actin cytoskeleton. F-actin
staining with Rhodamine—phalloidin showed that actin cables
disappeared, and actin patches became diffuse in yeast cells
cultivated with 10% ethanol stress for 1 h (Fig. 1B). Additionally,
this distribution of actin patches was still observed in more than 80%
of cells after 24 h of cultivation with 10% ethanol. These results
clearly indicate that a long-term exposure to 10% ethanol stress
caused a continuous (not transient) depolarization of the actin
cytoskeleton. After 48 h of cultivation under 10% ethanol stress,
almost half of the cells still showed a depolarized actin cytoskeleton.

Long-term severe ethanol stress induced the formation of
MSCRs

Septins are also involved in the proper progression of the cell cycle
and polarized growth of yeast cells (Versele and Thorner, 2005; Bi
and Park, 2012). Additionally, Cdc42 regulates the organization
of septin rings and the actin cytoskeleton. However, the effects of
severe ethanol stress on septins were unknown. Because the
polarized actin cytoskeleton was severely disturbed by the long-
term exposure to 10% ethanol, we examined the organization of
septins under severe ethanol stress. After 3 h of cultivation with
10% ethanol, the filamentous structures of Cdc12—GFP (blue
arrowheads) were induced and distributed in the cell cortex
(misorganized septins) in non-budding cells, whereas septin rings
and septin collars around the bud necks were retained in budding
cells (Fig. 2A). After 24 h of cultivation, in addition to the diffusion
of filamentous structures, aberrantly shaped (white arrowheads) and
the disappearance (yellow arrowheads) of septin rings/collars were
observed in budding cells. The formation of multiple small rings of
Cdc12—-GFP (red arrowheads) was concurrently observed in ~30%
of all cells. These small rings formed in the cortical region of yeast
cells (Fig. 2B). The formation of multiple small rings was also
observed in other strains (YPH250, BY4743 and UT-1) after the
treatment with 10% ethanol for 24 h (Fig. 2C).

We then investigated the intracellular localization of other septin
components (Cdc3, Cdcl0, Cdcll and Shsl). The GFP-tagged
versions of these components also formed multiple small rings and
colocalized with Cdcl12-mCherry in cells cultivated with 10%
ethanol stress for 24 h (Fig. 2D). We additionally observed the
formation of multiple small rings via indirect immunofluorescence
of Cdcl1 (Fig. 2E). These results suggested that the multiple small
rings comprise all mitotic septin proteins. Herein, we call them
MSCRs. The MSCRs were ~0.7 um in diameter.

Although Cdc3, Cdcl1 and Cdcl12 are essential for cell survival,
the Cdc10- and Shsl-deficient mutants (cdcl/0A and shsIA) are
viable in standard SD medium (Iwase et al., 2007). Therefore, we
investigated whether MSCRs were formed in these mutants under
ethanol stress. Since a deficiency of CdclO or Shsl can be
compensated for by other septin components in the formation of
septin rings/collars (McMurray et al., 2011), these mutants formed
septin rings/collars under non-stressed conditions (Fig. 2F).
However, no MSCRs were observed in cdcI0OA or shsIA cells
after 24 h of cultivation under 10% ethanol, clearly indicating that
MSCRs require Shs1 and Cdc10 for their formation. MSCRs appear
to be smaller than conventional septin rings/collars, and Shsl is
essential for forming the small ring structures of septin by

2

()
Y
C
ey
()
(V]
ko]
O
Y=
(®)
‘©
c
—
>
(®)
-




SHORT REPORT

Journal of Cell Science (2018) 131, jcs217091. doi:10.1242/jcs.217091

A w/o stress 10% EtOH 3 h 10% EtOH 24 h

D 10% EtOH

Cdc12-GFP Cdc12-GFP Cdc12-GFP

Rings/collars

64.3 + 3.01

Misorganized

18.0 + 1.22

Cdc3-GFP Cdc10-GFP Cdc11-GFP Shs1-GFP

o
L
0]

Cdc12-mCherry

E w/o stress 10% EtOH 24h

Cdc11

BF

Cdc12-GFP 3

BF

YPH250 BY4743

Cdc12-GFP

-n

cdc10A
10% EtOH 24h

w/o stress

Cdc12-GFP

shs1A
10% EtOH 24h

Cdc12-GFP

Fig. 2. Formation of MSCRs under severe ethanol stress. The intracellular localization of septin proteins was examined in W303-1A cells under long-term
severe ethanol stress. (A) Time-course analysis of Cdc12—GFP under 10% ethanol stress. Arrowheads: blue, filamentous structures; white, aberrantly
shaped septin ring; yellow, disappearance of the septin ring; red, multiple small rings. Numbers in the panels indicate the meanzts.d. percentages of each
phenotype. (B) Z-stack analysis of a cell forming MSCRs. Z-stack images were obtained at an interval of 0.7 um. (C) YPH250, BY4743 and UT-1 cells carrying
Cdc12—-GFP were treated with 10% ethanol for 24 h. (D) The colocalization of septin proteins was examined using Cdc12—mCherry and other GFP-tagged septin
proteins. (E) Indirect immunofluorescence image obtained after staining with anti-Cdc11 antibody. (F) The formation of MSCRs was examined in cdc70A and

shs1A cells. MSCRs were not detected in these mutants.

promoting the self-assembly of septin filaments (Garcia et al.,
2011). In contrast, cdcl0A cells often exhibit wider bud necks with
larger septin rings than those in wild-type cells (Frazier et al., 1998;
McMurray et al., 2011), and the septin complexes isolated from
cdcl0A cells cannot assemble into filaments (Frazier et al., 1998).
Therefore, it seems reasonable that shs/A and cdcl0A cells were
unable to induce the formation of MSCRs under severe ethanol
stress. Shs1 and Cdc10 are presumably required for the formation of
small ring structures such as MSCRs.

MSCRs were quickly disassembled upon the elimination of
ethanol

We examined the effects of the elimination of ethanol on MSCRs.
After the induction of MSCR formation by cultivation for 24 h with
10% ethanol, cells were transferred into fresh SD medium without
ethanol (Fig. 3A). MSCRs completely disappeared within 30—
60 min of the elimination of ethanol, and the formation of septin
rings was observed around bud necks. A time-lapse analysis

demonstrated that the disassembly of MSCRs and formation of
septin rings/collars were successively induced after the elimination
of ethanol (Fig. 3B). These results indicated that the disassembly of
MSCRs and resumption of the formation of septin rings were
rapidly induced when ethanol was removed.

Formation of MSCRs caused by severe ethanol stress was
independent of Cdc42

The small GTPase Cdc42 and its effectors, such as Gicl and Gic2
(Gicl/2) and Cla4, are involved in the proper formation of septin
rings/collars (Gladfelter et al., 2002; Caviston et al., 2003; Kadota
et al., 2004; Versele and Thorner, 2004; Park and Bi, 2007; Iwase
etal., 2006; Sadian et al., 2013). Therefore, we investigated whether
the formation of MSCRs is induced in a manner that is dependent on
Cdc42 and its effectors. giclAgic2A cells and cla4A cells induced
the formation of MSCRs similarly to wild-type cells after 24 h of
cultivation in SD medium containing 10% ethanol (Fig. 4A). In
the case of the cdc42-1 mutant, we performed experiments at a
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Fig. 3. Elimination of ethanol stress caused the rapid
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disassembly of MSCRs. After cultivation with 10% ethanol
for 24 h, cells were collected and resuspended in fresh SD
medium without ethanol. (A) The localization of Cdc12—-GFP
and the actin cytoskeleton was monitored over time.

(B) Pictures of a time-lapse analysis are shown.
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permissive temperature (28°C) and restrictive temperature (37°C).
cdc42-1 cells at 28°C had MSCRs under severe ethanol stress
(Fig. 4A). cdc42-1 cells also had MSCRs, accompanied by
depolarized actin, after an incubation at 37°C for 5 h, whereas
wild-type cells did not (Fig. 4B). These results suggested that,
unlike septin rings/collars, the formation of MSCRs under severe
ethanol stress does not require the functions of Cdc42, Gicl/2 and
Cla4.

Long-term treatment with LatA induced the formation of
MSCRs
Since the formation of MSCRs was observed and accompanied by
depolarized actin, we speculated that the continuous depolarization
of the actin cytoskeleton may be a trigger to induce the formation of
MSCRs in yeast cells. Ayscough et al. (1997) reported that the
assembly of septin rings was not affected by a treatment with
200 pM LatA, an effective inhibitor of actin polymerization, for a
maximum of 4 h. Therefore, we examined the effects of longer
treatment times with 200 uM LatA on the formation of MSCRs
(Fig. 4C). MSCRs were scarcely observed in cells treated with LatA
for 1 h. However, wild-type cells (but not shsIA or cdcl0A cells)
had MSCRs after the treatment with LatA for more than 3 h, and
~30% of cells had MSCRs after a 5 h treatment with LatA. The
LatA-induced formation of MSCRs was verified in other strains
using all septin subunits and an anti-Cdcl1 antibody (data not
shown). These results suggest that the continuous depolarization of
the actin cytoskeleton is essential for the formation of MSCRs.
Since Cdc42 is involved in the regulation of cell polarity and size, it
appears feasible that severe ethanol exerts a continuous inhibitory
effect on Cdc42 function that then induces the formation of MSCRs
and enlargement of cell sizes (Fig. 1).

Mammalian septin filaments self-assemble and form uniformly
curved coils and rings with diameters of 0.6—0.8 um, which are
almost the same size as MSCRs, in an actin-independent manner

(Kinoshita et al., 2002). This formation of curved coils and rings
was induced not only in vitro, but also in vivo, in cells in which actin
polymerization was blocked by cytochalasin D (Kinoshita et al.,
2002). Additionally, the propensity of septin filaments to curl and
form rings spontaneously is considered to be well-conserved from
yeast to mammals (Kinoshita et al., 2002; Rodal et al., 2005; Garcia
et al.,, 2011). Based on these findings, together with the present
results, we propose that MSCRs form via the self-assembly of
septin filaments in an actin-independent manner. The spontaneous
formation of small rings and coils with mammalian septin filaments
takes a relatively long time (Kinoshita et al., 2002); therefore, it
seems plausible that the formation of MSCRs took 5-24 h in yeast
cells.

Only limited information is currently available on the
physiological significance of MSCRs in yeast cells. Although the
formation of multiple cortical septin disks, which have a similar size
and shape to MSCRs, has been reported in mammalian cells, their
physiological functions are also unclear (Sellin et al., 2011, 2014).
MSCRs may simply be a meaningless self-assembly structure of
septin filaments caused by the disruption of the actin cytoskeleton.
However, Thara et al. (2005) reported that the small cortical septin
ring (~0.6 ym in diameter) in mammalian sperm flagella
contributes to the maintenance of the mechanical integrity of
spermatozoa. Cortical septins are also known to provide rigidity to
the plasma membrane and play a role in the regulation of cell shapes
or functions (Tooley et al., 2009; Kim et al., 2010). Based on these
findings, the formation of MSCRs may contribute to the integrity of
the yeast cell structure under severe ethanol stress. The survival rates
of shsIA and cdc10A cells, which did not form MSCRs, were lower
than those of wild-type cells after cultivation with 10% ethanol for
72 h or 200 uM LatA for 5 h (Fig. 4D). These results might indicate
the importance of MSCRs under severe ethanol stress. However,
cdcl0A and shsIA mutants show a decreased rate of vegetative
growth at 37°C (Iwase et al., 2007; Sinha et al., 2008; Auesukaree
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Fig. 4. MSCR formation was induced by the continuous depolarization of the actin cytoskeleton, but independently of Cdc42. (A) Mutant cells were
cultured in SD medium with 10% ethanol at 28°C for 24 h. (B) cdc42-1 cells were incubated in SD medium without ethanol at 37°C (restrictive temperature)
for 5 h. (C) Cells were treated with 200 uM LatA for the indicated period. The localization of Cdc12—GFP and the actin cytoskeleton were analyzed. Numbers
in the panels indicate the meanzs.d. percentage of cells forming MSCRs. (D) Meanzs.d. survival rates after the treatment with long-term 10% ethanol and LatA

were assessed. *P<0.05.

etal., 2009), which did not induce the formation of MSCRs in wild-
type cells (data not shown). Therefore, we cannot exclude the
possibility that the absence of MSCRs in these mutants is not related
to their hypersensitivity to ethanol and LatA. We are planning
further careful and detailed studies to clarify the physiological
functions of MSCRs.

MATERIALS AND METHODS

Strains and medium

Saccharomyces cerevisiae strain W303-1A (MATa his3-11, 15 leu2-3, 112
trpl-1 ade2-1 ura3-1 canl-100) and its isogenic mutants, cla4A::CgHIS3,
cdcl0A::LEU2, shslA::HIS3, cdc42-1 and giclAgic2A, were used in the

present study. The mutants cla4A::CgHIS3, cdcd42-1, cdc10A::LEU2 and
shsIA::HIS3 (Iwase and Toh-e, 2004; Iwase et al., 2006, 2007) were
provided by the National BioResource Project [NBRP; Yeast Genetic
Resource Center (YGRC)], Japan. To construct gic/Agic2A cells, a DNA
fragment (2.5 kb) encoding the gicIA::kanMX region was amplified using
genomic DNA from the gic/A mutant (Open Biosystems Inc., Huntsville,
AL) as a template, and the primers 5'-TATGCAGCTGTGTGTCTAGAG-
GAGTAAAAC-3" and 5-CAACAGTGGAAGAAAAAAACTCGAGGG-
TAG-3’. Another DNA fragment (2.5 kb) encoding the gic2A::HIS3 region
was amplified using the genomic DNA of the gic2A mutant (Iwase et al.,
2006), and the primers 5'-GAAACTTAAAGGATCCCCATTGTCTCAA-
A-3" and 5'-CATCTGAGGTACCTTTACGGTCAATCGTTC-3'. These
amplicons were introduced into W303-1A to construct gic/Agic2A (MATa

5

()
Y
C
ey
()
(V]
ko]
O
Y=
(©)
‘©
c
—
>
(®)
-




SHORT REPORT

Journal of Cell Science (2018) 131, jcs217091. doi:10.1242/jcs.217091

his3-11, 15 leu2-3, 112 trpl-1 ade2-1 ura3-1 canl-100 giclA::kanMX
gic2A::HIS3). YPH250 (MATa trpl-1 his3-200 lys2-801 leu2-1 ade2-101
ura3-52) (Yeast Genetic Stock Center, University of California at Berkeley,
CA), BY4743 (MATalo. his3A1/his3AI leu2A0/leu2A0 metl SAO/METIS
LYS2/lys2A0 ura3A0/ura3A0) (Open Biosystems Inc.), and the sake yeast
UT-1 (MATa/o. ura3/ura3 trpl/trpl) (Kitamoto et al., 1990) were used to
verify the formation of MSCRs. Cells were cultured in 50 ml of SD medium
(2% glucose, 0.67% yeast nitrogen base without amino acids, pH 5.3) with
appropriate supplements of amino acids and bases at 28°C with reciprocal
shaking (120 rpm) in Erlenmeyer flasks (200 ml). Exponentially growing
cells were harvested at an optical density at 600 nm (ODg)=1.0, transferred
into fresh SD medium containing 10% ethanol (v/v), and cultured further.
The initial optical density was adjusted to ODgyp=0.3. To prevent the
evaporation of ethanol, flasks were sealed with aluminium foil and Parafilm.
Ethanol concentrations in the medium were measured by performing gas
chromatography (AL-2; Riken Keiki Co., Tokyo, Japan).

Plasmids
pRS313-CDC12-mCherry was constructed by cloning CDCI2, containing
its promoter and coding region and the mCherry gene into the Sa/l/BamHI
and BamHI/Xbal sites of pRS313 (Sikorski and Hieter, 1989), respectively.
CDC12 was amplified using the primers 5'-TAGCTTGAACGGCATTG-
TCGACTTTGAACC-3" and 5-CAAAGAGGAAGACATTAATTAATG-
GATCCTTTAAATGGG-3', using genomic DNA from W303-1A as the
template. The mCherry gene was amplified using the primers 5'-AAGCT-
TGCATGCCTGCAGGTCGACTCTAGA-3" and 5'-TAATGGTAGCGA-
CCGGCGCTCAGTTGGAAT-3’, and pmCherry (Clontech, Mountain
View, CA) as the template.

pGF316-CDC3-GFP, pGF316-CDC10-GFP, pGF316-CDC11-GFP,
pGF316-CDC12-GFP and pGF316-SHS1-GFP (Iwase and Toh-e, 2001)
were provided by the NBRP (YGRC), Japan.

Microscopy analysis

A fluorescent microscopic analysis was performed using a Leica AF6500
fluorescence microscopic system (Leica Microsystems Vertrieb GmbH,
Wetzlar, Germany). The percentages of cells with misorganized septins or
MSCRs were calculated by monitoring 200 cells under each condition, and
experiments were repeated three times (a total of 600 cells were examined).
Actin patches and cables were stained using the method of Nomura and Inoue
(2015). The percentages of non-polarized cells were calculated by monitoring
100 cells under each condition, and experiments were repeated three times
(300 cells in total were examined). In the indirect immunofluorescence of
Cdcl1, cells were fixed with 4% paraformaldehyde, converted to spheroplasts
with Zymolyase 20T (Seikagaku Biobusiness, Tokyo, Japan), permeabilized
with 0.5% NP-40, and attached to poly L-lysine-coated coverslips as
described by Niu et al. (2011). Samples were incubated with an anti-Cdcl 1
antibody (sc-166271, lot F2012, Santa Cruz Biotechnology, Santa Cruz, CA)
as the primary antibody at a 1:100 dilution and anti-mouse IgGk-BP-CFL
488 as the secondary antibody (SC-516176, Lot C1618, Santa Cruz
Biotechnology) at a 1:100 dilution.

Measurement of survival rates and cell sizes

To assess the survival rate, dead cells were stained with 0.02% Methylene
Blue solution in 50 mM potassium phosphate buffer, pH 6.8 (Nagai, 1963).
The average sizes of non-budding cells were measured using Imagel
software (http:/imagej.nih.gov/ij/). A total of 100 cells in each condition
were examined, and the experiments were repeated three times (a total of 300
cells were examined).

Chemicals
LatA was purchased from Wako Pure Chemicals (125-04363, Osaka, Japan).
All other chemical reagents were also purchased from Wako Pure Chemicals.

Statistical analysis

Data are presented as means+s.d. The significance of differences was
assessed using the paired r-test. Compared results were considered to be
significantly different when the P<0.05.
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