Maytenus emarginata: A Desert plant

This book Maytenus emarginata: A Desert Plant gives a detail study on the importance of this plant in sense of various scientific, economic, social and ethical aspects. There is a systematic analysis of the in vivo and in vitro comparative studies of tissue culture, primary and secondary metabolites, antimicrobial and antioxidant activities by using different plant parts like: fruit, leaf, root, stem and callus also.

In this book the fundamental concepts of tissue culture and biochemical compounds have been introduced and analyzed in a simple manner. The contents of the book will be of interest to all research scholars, industries, pharmacy etc.

Key features of the book include a simple approach with illustrations, tables , pictures and graphs. The basic terminologies have been defined in the text while introducing the topics and some useful terms mentioned in the text have been explained in the glossary for an easy grasp by students and research scholars.

Dr. Savita Sangwan graduated, post-graduated and received her Ph.D from University of Rajasthan, Jaipur, India. Presently she is working in JECRC University as a Assistant professor, having 7 years experience in teaching as well as in research.

Savita Sangwan

Maytenus emarginata: A Desert plant

Scholars'

Press

Savita Sangwan

Maytenus emarginata: A Desert plant

FORAUTHORUSEONIX

FORAUTHORUSEONIX

Savita Sangwan

Maytenus emarginata: A Desert plant

FORAUTHORUSEONIT

Scholars' Press

Imprint

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this work is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Cover image: www.ingimage.com

Publisher: Scholars' Press is a trademark of International Book Market Service Ltd., member of OmniScriptum Publishing Group 17 Meldrum Street, Beau Bassin 71504, Mauritius

Printed at: see last page ISBN: 978-613-8-92113-4

Copyright © Savita Sangwan Copyright © 2020 International Book Market Service Ltd., OmniScriptum Publishing Group

Maytenus emarginata: A Desert plant

Written by: Dr. Savita Sangwan Assistant Professor Jaipur Engineering College and Research Centre University, Jaipur India

Dedication

This work dedicated to my lovely daughters Aagmya Maan (kishmish) L Aaradhya Maan (Veer) who deserves real credit as she suffered a lot due to the absence of my company throughout the tenure of this work. He is my inspiration in everything I do L every choice I make.

CONTENTS

≻INTRODUCTION

>THE PLANT: Pongamia pinnata (L.) Pierre

► ESTABLISHMENT OF UNORGANIZED CALLUS CULTURE

► BIOCHEMICAL ANALYSIS

Primary metabolite

- Carbohydrates
- Protein
- Lipid
- Phenol
- Amino acid
- Ascorbic acid

Secondary metabolites

- Flavonoids
- Steroids

≻GC-MS analysis

RAUTHORUSEONIT ► ANTIOXIDANT ACTIVITY ► ANTIMICROBIAL ACTIVITY

INTRODUCTION

In India, there are many traditional system of medicine are developed in which **Ayurveda** and **Sidha** are well known and now commonly called **Indian System of Medicine**. Treatments based upon medicinal herbs and herbo mineral combinations are essence of Ayurveda and Sidha. Modecinal plants coming under ayurveda listed as Ayurvedic Medicinal Plants. According to **WHO** (World Health Organization), due to low expense 80 % of Asian and African population uses herbal medicine, near about 7,000 medical compounds and 120 active compounds currently isolated from herbs and approximate 25% of drugs using in USA derived from medicinal plants.

India's traditional medical system are part of a time honored and time tested culture that still intrigues people today. They successfully recommend the use of nature to treat primary and complex ailments for over 3,000 years and obviously have a contemporary relevance. In an age when toxic drugs are increasingly unwelcome and when thinking people are using viable alternatives, India's medical heritage is incredible. There has been resurgence in the consumption and demand for plants. Plants are finding use as pharmaceuticals, neutraceuticals, cosmetics and food supplements.

Considering all these beneficial aspects and medicinal value of plants, present investigation involves one economically and medicinally important plant *Maytenus emarginata*. This plant was identified from the Herbarium of Botany Department, university of Rajasthan, Jaipur. The RUBL number of *Maytenus emarginata* is 20908. According to verification and identification the following details are available as follows:-

The genus *Maytenus* was established in 1782 by Molina. It consists of about 300 species distributed mainly in tropical and subtropical areas, with some found in warm temperate zones.

S.no	Maytenus Species	Medicinal uses
1.	M. acuminata (Lf.)	Stomach ailments
2.	M. arbutifolia	Malaria
3.	M. aquifolium Mart.	Ulcers
4.	M. buchananii	Stomach upsets
5.	M. heterophylla	Diarrhoea, Coughs, Colds,
		Haemorrhoids,
		Measles, Venereal diseases,
		Antihelmintic, Hernia, Syphilis,
		Tonic, Dysmenorrhoea
		1
6.	M. ilicifolia Mart.	Ulcers
7.	M. putterlickiodes	Hookworm
8.	M. senegalensis	Chest pains, Rheumatism, Snake bite,
		Eye infections, Aphrodisiac,
		Pneumonia, Tuberculosis, Venereal
		diseases, Epilepsy, Pain,
		Constipation, Infertility, Sore throat,
		Earache, Tumours, Dysentery,
	4	Snakebites,
9.	M. undata	Malaria, Tonic, Syphilis, Urethra
		infections

Table 1.1 Traditional medicinal uses of Maytenus species.

Maytenus emarginata: The Desert Plant

BOTANICAL NAME: Maytenus emarginata (Willd.) Ding Hou

SYNONYMS

Celastrus emarginatus Willd.

Gymnosporia emarginata (Willd.) Thw.

Gymnosporia Montana (Roth) Benth.

BOTANICAL CLASSIFICATION

Kingdom	:	Plantae
Phylum	:	Magnoliophyta
Class	:	Magnoliopsida
Order	:	Celastrales
Family	:	Celastraceae
Genus	:	Maytenus
AMON NAME	ES	RUSEON
Hindi	•	Vinger, Kankero, Baikal

COMMON NAMES

Hindi	:	Vinger, Kankero, Baikal, Malkangni
English	:	Thorny staff tree
Sanskrit	: <	Vikankata, Sudhavridsha
Bengali	:	Bakundri, Vaichigacha
Kannada	:	Tandrasi, Tandraja, Haalu manike, Malega,
		Malkaamguni
Malayalam	:	Katou-patsjotti, Kanguni
Marathi	:	Baefal, Baekar, Bhaaroolee, Bharatti, Bharuli,
		Harmocha, Vekal, Vekar, Yekkadi
Tamil	:	Kattangi, Nandunarani, Valulu-Vai
Telugu	:	Chinni, Danthi, Sinni, Danti, Chinni tuppa,
		Chinni chettu, Goddali-cippa [6]

Gujarati : Vickado

DISTRIBUTION

The species is globally distributed in Paleotropics. Within India, it is common in dry scrub forests throughout, particularly on poor soils in Central and Western peninsular India. The genus *Maytenus* distributed in drier parts of Central, South-Western and North-Western India. It is found throught in India (Madhya Pradesh, Uttar Pradesh, Punjab, Maharashtra, Gujarat, Delhi, Bihar, Tamilnadu, and Rajasthan.

Figure-1: Distribution map of Maytenus emarginata plant in India.

In Rajasthan its found in Ajmer: Ajmer-Udaipur road, kota: Shahabad, Pali: Gurupratap singh village, Sirohi: Vadakhoda, Tonk: Rajmahal, Doogor Beed (Nagaur), Fahelpur Beed (Sikar), Siker Beed (Siker), Nokha (Bikaner), Karni Mata Oran, Deshnoke (Bikaner), Shri Balaji (Nagaur), Chohta (Barmer), Shri Mukam-Nokha (Bikaner), Khejarali (Jodhpur), Nursery of Rajasthan University, World Forestry Arboretum,Jhalana Dungri (Jaipur).

ECOLOGY

Growing at elevations from near sea level and locally abundant on the coast on sand at the edge of mangrove forest or secondary forest, at forest margins, in thickets on branches and hillsides and on sea cliffs, often on limestone. Long, hot summers are needed for production of flowers and fruits.

BOTANICAL DISCRIPTION

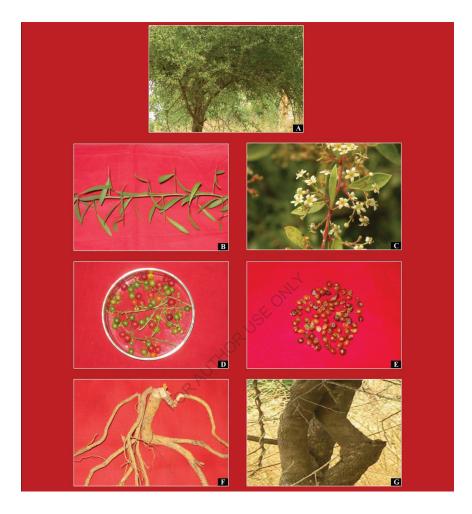
The members of Celastraceae family generally are trees and shrubs comprising about 55 genera and 850 species that are sometimes climbing or vining (Gonzalez *et al.*, 2000). *Maytenus emarginata* is a small, compact tree, 3-5 meter high; young branches purple, often spiny, with leaves and flowers on the spines. All the botanical descriptive characters of this plant are listed in Table 1.2 and Figure- 2.

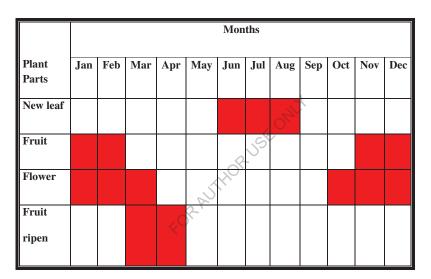
Figure- 2: line diagram of different plant parts of Maytenus emarginata (Willd.)

(A) Flowering twig (B) and (C) Flower (D) Stamens (E) L.S of flower (F) T.S of ovary

Table-1.2: Botanical Description of Maytenus emarginata (Willd.)

Dlan	t type	Evergreen, Dioecious tree, Very hardy plant.(Fig. 3 A)
rian	ii iype	Evergicen, Diotelous lice, very hardy plant.(Fig. 5 A)
		Habit:- Scandent shrub or small tree
		Name code:- 202785
	wing	Light requirement: - Full sun with midday shade
requ	irements	Soil tolerances: - Sandy soil, limestone
		Best season:- Monsoon
		Drought tolerance:- Various types of stresses of the desert
(a)	Leaf	Thick, coriaceous and usually longer than 40mm, apex
		rounded, alternate on young branchlets, fasciculate on
		older ones. (Fig. 3B)
(b)	Flower	Bisexual or sometimes functionally unisexual,
		actinomorphic, white or cream colored 5-7mm in
		diameter. Male flower:- Stamens slightly shorter than
		petals, stigmas absent, disc green, 5-lobed
		Female flower: Staminodes shorter than stamens of
		male flower, ovary 3-locular, green, style as long as
		ovary. (Fig.3 C)
(c)	Fruits	Capsule, berry, 6-12mm long, green becoming red.
		(Fig. 3D)
	<i>a r</i>	
(d)	Seeds	Seeds are 1-4, with basal aril or the aril partially to
		completely covering the individual (Fig. 3E)
(e)	Root	Tap root, Cream yellow in color. (Fig.3 F)
(f)	Bark	Pale brown, smooth, cracked. (Fig. 3G)
Pest	and	Trouble free
disea	ases	




Figure-3: Different plant parts of Maytenus emarginata (Willd.) Ding. Hou

(A) Healthy Maytenus emarginata plant. (B) leaf (C) Flowers (D) Fruits (E) Seeds (F) Root

(G) Bark

GROWTH PATTERNS

Maytenus emarginata (Willd.) grow in moderately fertile, moist but welldrained soil in full sun with midday shade. Fruit appear in November to February and flowers appears in October to June. Develops new leaves from June to august and fruit ripens from March to April as shown in Table-1.3. The best season for collecting of this plant for medicinal uses is monsoon.

Table -1.3: General growth pattern of Maytenus emarginata (Willd.)

CHEMICAL CONSTITUENTS

Over the last 30 years or so, a large number of secondary metabolites exhibiting a wide range of bioactivity have been extracted from the Celastraceae. The bioactive metabolites of the genus Maytenus in plants belongs to family Celastraceae, which are widely used as folk medicines in South America (Takimoto and Calvo, 2008).

	Plant Parts	Compounds
--	-------------	-----------

Root	Quratea proanth	ocyanidin A, I	Emarginatine	А,
Stem	B-sitosterol, β- Emarginatinine, D, Emarginatine	Tingenin A,	Tingenin B,	Emarginatine
Leaf	Kaempferol te	riglycoside,	Luteolin, Kampferol Quercetin	Trifolioside, diglycoside, triglycoside,
Fruit	Kaempferol, Lu	teolin, Querce	tin	

MEDICINAL VALUE

Traditionally species of *Maytenus* has been used for fever, asthama, rheumatism and gastrointestinal disorders worldwide. Recently some biomolecules from *Maytenus* species has been reported to be active against HIV-Protease (Hussein *et al.*, 1999) Carcinoma and leukemia (Tin-wa *et al.*, 1971) Ulcers (Vilegas *et al.*, 1999) and MDR (Multi Drug Resistance) (Spivey *et al.*, 2002). Various parts of this plant contain immense medicinal properties which are mentioned under:

Plant Parts	Medicinal value
Root	Used in gastrointestinal troubles, especially dysentery
	(Kothari and Londhe ,2000).
Stem	Tender shoots of the plant help for mouth ulcer. The bark
	is ground to a paste and applied with mustard oil to kill
	lice in the hair.
Leaf	Pulverized leaves of Maytenus emarginata are given in
	milk to children as a vermifuge (Pullaiah ,2006). A
	decoction of the leafy twigs is used as a mouthwash to
	relieve toothache. Ash of leaves used to heal up sores and
	wound gives cooling effect. The leaves are burnt and
	mixed with ghee to form an ointment used to heal sores
	(Agrawal and Nag. 2009). The tender leaves are chewed
	raw in the treatment of jaundice.

Fruit

BIOLOGICAL ACTIVITIES REPORTED FOR GENUS *MAYTENUS*

(i) Antiparasitic activity

Hot water extract of leaf and/or root bark of *M.cuminata*, *M. heterophylla* and *M. senegalensis* showed moderate (33%-49%) activity against chloroquineresistant *Plasmodium berghei* NK65 *in vivo*. Leaf extract of *M. heterophylla* and root bark extract of *M. senegalensis* showed synergistic effect with chloroquine and improved parasitaemia suppression in the range of 38%- 66% (Muregi *et al.*, 2007). Methanol extracts of *M. acuminata* leaf and root barks possessed statistically significant parasitaemia suppressions of 31.7- 59.3%. In combination with chloroquine methanolic extracts of *M.senegalensis* leaf and root bark gave statistically significant and improved suppressions ranged from 45.5 to 85.1%(Muregi *et al.*, 2006).

(ii) Antibacterial and antifungal activities

Ethanol extract of root bark of *M. macrocarpa* possessed broad spectrum antibacterial activity against *Bacillus cereus* (MIC= 125µg\ml), *Bacillus subtilis* (MIC= 125µg\ml), *Bacteroides fragilis* (MIC= 250µg\ml), *Enterococcus faecalis* (MIC= 250µg\ml), *Escherichia coli* (MIC=125µg\ml), *Pseudomonas aeruginosa* (MIC= 250µg\ml), *Staphyllococcus aureus* (MIC= 250µg\ml), *Staphyllococcus epidermidis* (MIC= 125µg\ml), *Streptococcus pyogenes* (MIC= 125µg\ml) and *Candida albicans* (MIC= 250µg\ml) (Kloucek *et al.*, 2006). This was confirmed by the isolation of different compounds showing antibacterial activities from this plant. Scutione was isolated from this plant and possessed antibacterial activity against gram positive bacteria. Aqueous, hexane and methanol extracts of *M. senegalensis* showed potent antibacterial activity against Gram-positive bacteria as well as some anti-inflammatory activity (Matu and Staden, 2003).

(iii) Antioxidant activity

Ethanolic extract of *M. ilicifolia* root bark possessed a potential antioxidant activity against the monocation 2,2'- azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and HOCl radical (Bruni *et al.*, 2006; Vellosa *et al.*, 2006). The flavanonols 4'-*O*-methyl-(-)-*epi*gallocatechin and (-)- *epi*catechin , the flavonol glycosides; quercetin glycosides; and the proanthocyanidine; Oureata proanthocyanidin A showed significant activity (Corsino *et al.*, 2003).

(iv) Gastro-intestinal protection actions

A tea (infusion) of *M. ilicifolia* containing a polysaccharide consisting of arabinose, galactose, galacturonic acid, 4-O-methylglucuronic acid, rhamnose, and glucose in a 42:41:6:5:4:2 molar ratio as a major component inhibited ethanolinduced gastric lesions in rats with an ED50 of 9.3 mg/kg (Cipriani *et al.*, 2006). The dried extract of *M. ilicifolia* in doses of 140, 280 and 420 mg/kg i.p. produced a significant reduction in the ulceration index, as well as a significant increase in the volume and in the pH of the gastric secretion in male wistar rats (Tabach *et al.*, 2003). Compared with cimetidine, the lyophilized aqueous extract of *M. ilicifolia* leaves (7-28 mg %) reduced acid secretion in the isolated frog gastric mucosa by antagonizing histamine H2-receptors (Ferreira *et al.*, 2004). Spray dried extract of *M. aquifolium* was found to elicit significant antiulcers (Bersani-Amado *et al.*, 2000). Many compounds were tested as potential antiulcers. Triterpenes isolated from many *Maytenus* species produced significant antiulcer activity. Friedelin and 3β- Friedelanol possessed antiulcer activities (Mossi *et al.*, 2004).

(v) Effects on the CNS

The chloroform extract of *M. obtusifolia* caused a decrease in spontaneous activity and induced catalepsy in mice up to 240 min. The extract significantly protected the mice against amphetamine-induced toxicity and decreased the conditioned response in rats, in a dose-related manner (Neuroleptic-like effects)

(De Sousa and De Almeida, 2005).

(vi) Anti-inflammatory and analgesic activities

Variety of compounds isolated from this genus also showed antiinflammatory activity supporting the above mentioned activities of these plants. The friedelin triterpenes; polpunic acid (Buffa Filho *et al.*, 1981) and 20-Epikoetjapic acid (Martin, 1973) possessed anti- inflammatory activity. Quinone methide triterpenes; tingenone (Dymowski and Furmanowa, 1990) 22 β -hydroxytingenone , the flavononols; 4'- *O*-methyl-(-)-*epi*gallocatechin (Corsino *et al.*, 1998) and ouratea proanthocyanidin A (Gonzalez et al., 1982) were found to have anti-inflammatory activity.

(vii) Cytotoxic and antitumor activity

The triterpene; canophyllol and the dihydro- β -agarofuran pyridine alkaloids mayteine (Nakagawa *et al.*, 2004) produce their antitumor effect through induction of cytokines whereas eumaitenin was found to produce its antitumor activity through chromosome aberration (Garcia *et al.*, 1993). On the other hand, the triterpene; maytenfoliol (Nozaki *et al.*, 1986) and maytenfolic acid (Nozaki *et al.*, 1982) and the ansa macrolides; maytanbutine (Kupchan, 1977) and normaytansine (Sneden and Beemsterboer, 1980) were also found to possess antileukemic activity. Several compounds isolated from different *Maytenus* species produced cytotoxic and antitumor effects like: the triterpenes glochidonol (Nunez *et al.*, 2005), nepeticin (Gonzalez, 1982), celastrol, macrocarpin A (Chavez *et al.*, 2000), macrocarpin A acetyl derivative maytenin, 20 α -hydroxy-6-oxoiguesterol, 22 β hydroxy-6- oxoiguesterol ((Buffa Filho *et al.*, 1981; Shirota *et al.*, 1994), pristimerin, the dihydro- β -agarofurans; the dihydro- β -agarofurans pyridine alkaloids; emarginatine A (Sugira *et al.*, 1973), emarginatine E , emarginatine B and emarginatine F (Kuo *et al.*, 1994).

(viii) Contraceptive effects

The lyophilized hydroalcoholic extract of the leaves of *Maytenus ilicifolia* caused a pre-implantation embryonic loss; an abortifacient effect which may be

due to interfering with the uterine receptivity to the embryo. Neither morphological alterations of the reproductive system nor an embryotoxic effect were found (Montanari and Bevilacqua, 2002).

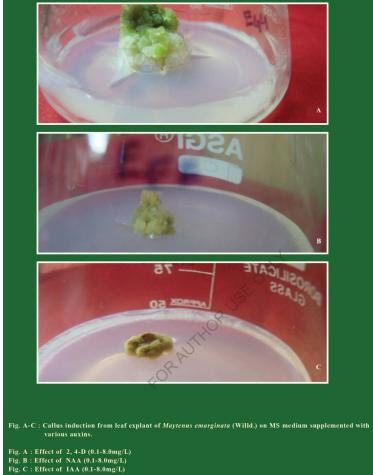
(ix) Insecticidal and insect antifeedant activities

Dihydro-\beta-agarofuran sesquiterpenes are the most important group of compounds as insecticides. They were found to produce antifeedant and growth inhibitory activities. Dihydro- β -agarofuran sesquiterpene polyesters eumaitenin (Gonzalez et al., 1982), isoalatol (Gonzalez et al., 1996) and its derivatives were assayed for their antifeedant activity on larvae of the Egyptian cotton leaf worm Spodoptera littoralis (Bisduval), using the leaf disk method. The dihydro-βagarofuran sesquiterpene pyridine alkaloids; wilfordine, alatusinine and euonine exhibited strong antifeedant activity against Spodoptera littoralis.

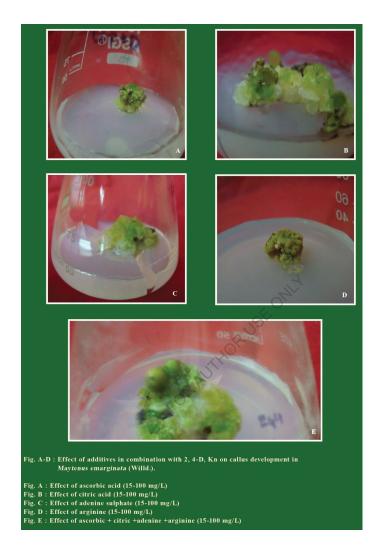
(x) Antidiabetic activity

SEONI Lambertic acid is a diterpene isolated frombark of M. laevis. It has antidiabetic effect through inhibition of aldose reductase (Matsuda et al., 1999).

Therefore, in view of the significant medicinal potential of the Maytenus emarginata (Willd.) was selected in the investigation for the systematic evaluations. viz. -


- To assess an attempt to develop an efficient protocol for callus induction from the *M. emarginata* in order to derive more economic and conservative ways to obtain phytochemicals.
- To assess the biosynthetic potentialities undertaking the quantification of various primary and secondary metabolites.
- To assess the antimicrobial and antioxidant activity, so as to certain the pharmacological potential of the selected plants.

Accordingly, the work has been classified as follows-


(I) CALLUS INDUCTION

In the present investigation, unorganized callus cultures of *M. emarginata* were established on MS medium supplemented with plant growth hormones. In *M. emarginata*, it was the combination of 2, 4-D (3.0 mg/L) and Kn (0.1 mg/L) which induces dark green compact callus but in also, the stock callus was maintained at the addition of additives *viz;* (50 mg/L) ascorbic acid, (25 mg/L) citric acid, (25 mg/L) adenine sulphate and (25 mg/L) arginine. For biochemical investigation, the unorganized callus tissue was harvested at maximum GI (Growth index) and analyzed for primary and as well as secondary metabolites estimation.

FORAUTHORUSEONIX

- Fig. A Inoculate leaf explant on MS medium supplemented with (2, 4-D+Kn+citric acid+ascorbic acid+ adenine sulphate+arginine) Fig. B Callus initiation Fig. C After 2- Week Fig. D After 4- Week Fig. E After 6- Week Fig. F After 8- Week

(II) BIOCHEMICAL ANALYSIS

(i) Primary metabolites

In the present study, various plant parts (root, stem, leaves, fruits and callus) *M. emarginata* were investigated for primary metabolites even if all the metabolite were present in appropriate and in trace concentration in all plant parts *in vivo* and *in vitro*. During present research work, estimation of different kind of metabolites like carbohydrate, protein, lipid, total phenol, amino acid and ascorbic acid have been estimated in this plant.

Carbohydrate

In *M. emarginata* Quantitative estimation of sugar shows that content of sugar is more in fruit i.e. 45.80 mg/gdw and minimum in stem i.e. 18.40 mg/gdw. The maximum amount of starch was found in root (82.80 mg/gdw) and minimum amount was observed in fruit (26.17 mg/gdw).

Protein

In *M. emarginata* maximum amount of protein was observed in fruit (30.88 mg/gdw) and minimum amount was observed in stem (14.20 mg/gdw).

XORU

Lipids

The maximum amount of lipids was found in fruit (95.40 mg/gdw) and minimum in callus (40.24 mg/gdw) of *M. emarginata*.

Phenol

In *M. emarginata* total levels of phenols were found to be higher in root (9.26 mg/gdw) and minimum in stem (5.16 mg/gdw).

Amino acid

In M. emarginata the maximum amount of amino acid was found in leaf

(13.12 mg/gdw) and minimum in callus (6.73 mg/gdw).

Ascorbic acid

In *M. emarginata* the maximum amount of ascorbic acid was found in leaf (13.38 mg/gdw) and minimum in callus (4.53 mg/gdw).

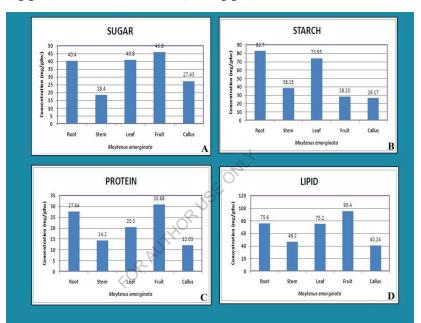
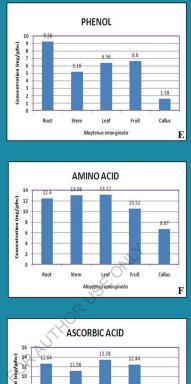



Figure A-D: Estimation of Primary Metabolities in Maytenus emarginata (Willd.)

Fig. A : Sugar Fig. B : Starch Fig. C : Protein Fig. D : Lipid

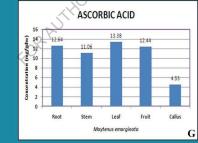


Fig. E : Phenol Fig. F : Amino acid Fig. G : Ascorbic acid

(ii) Secondary metabolites

Flavonoids

The all plant parts (root, stem, leaves, fruits and callus) of *M. emarginata* were studied for flavonoid contents. Each plant sample was extracted with 80% methanol (Subramanian and Nagarajan, 1969).

Presence of two flavonoids kaempferol (Rf 0.86), quercetin (Rf 0.79), have been identified and confirmed in all plant parts and unorganized cultures of M. emarginata, whereas kaempferol-7-O-glucoside (Rf 0.83), have been identified and confirmed in only leaves, fruit and callus of M. emarginata. Occurrence of luteolin (Rf 0.77), and catechin (Rf 0.36), have been identified and confirmed in all plant parts and unorganized cultures of *M. emarginata*. Identification of the all isolated compound was carried out through thin layer chromatography, Rf value,

Estimation of flavonoids- In vive ORUSEON Among all the plant parts of (root, stem, leaves, fruit) of *M. emarginata* stem showed minimum amount of total flavonoids (1.07 mg/gdw) and maximum was found in fruit (1.36 mg/gdw). Increasing amount of total flavonoid content was observed in order as stem (1.07 mg/gdw) < root (1.10 mg/gdw) < leaves (1.13 mg/gdw) < fruit (1.36 mg/gdw).

Estimation of flavonoids- In vitro

Eight weeks old callus (maximum GI) was analyzed for identification and estimation of flavonoids in M. emarginata.

Occurrence of five flavonoids Kaempferol, Quercetin, Kaempferol-7-Oglucoside, Luteolin and Catechin in M. emarginata was also confirmed in their unorganized callus culture. The amount of individual flavonoid as well as total flavonoid content in callus was higher than in vivo samples (root, stem, leaves, fruits). In callus Kaempferol (0.49 mg/gdw) was found in maximum amount and kaempferol-7-O-glucoside (0.19 mg/gdw) in minimum amount.

The result shows the higher levels of flavonoids in the *in vitro* callus of *M*. *emarginata*. As we know that flavonoid exhibit a number of pharmacological activities, therefore the both plant species are medicinally important and may be used as the source of indigenous medicine.

ĸ	к	к	к	к
Q	Q	Kg	Kg	Kg
LU	LU	LU	LU	LU
c	с	С	С	c
AR	MS	ML		NE

Fig: TLC Chromatogram of isolated flavonoids from *M. emarginata* Abbreviation:

MR- Maytenus Root, MS- Maytenus Stem, ML- Maytenus leaf, MF- Maytenus Fruit, MC-Maytenus Callus,

K- Kaempferol, Q- Quercetin, Kg- Kaempferol-7-O-glucoside, L-Luteolin, C- Catechin

 Table : Chromatographic data and colour reaction of the Flavonoids isolated from Maytenus emarginata (Willd.).

Flavo noids	Stand	lards	Recor ded Rf values	Colo	rs in	Colo		chromatog orays	enic	UV max (nm)(MeOH)	m.p (°C)
	Rf val ue	Col or	durin g experi ment	UV amm onia	I2 vapo urs	FeC	13	AICI	3		
						Visi ble	UV	Visibl e	UV		
Kamp ferol	0.86	YG	0.87, 0.86, 0.88, 0.85	BT- YW	YW- BN	BN	BK	YW	YW -GN	253sh, 266sh,294sh,3 22sh,368sh	312 - 313
Querc etin	0.79	YG	0.78, 0.79, 0.80	YW	YW- BN	BT- GY	BK	DL- YW	YW -GN	255sh, 269sh,301sh, 374sh	309 - 311

Luteol in	0.77	YG	0.76, 0.75, 0.77	YW	YW- BN	BN	BK	DL- YW	YW -GN	242sh, 253sh, 267sh, 291sh, 349sh	280 - 320
Kamp ferol- 7-O- glucos ide	0.83	Y	0.83, 0.82, 0.80, 0.81	BN	BN	BN	BN	YW	YW	235sh 240sh, 259sh, 374sh, 424sh	317 - 329
Catec hin	0.36	Р	0.33, 0.36, 0.35	OR	YW- BN	GY	GY- BK	DL- PK	Р	256sh,282sh, 296sh, 320sh	294 - 308

Abbreviations: BK = Black , DL = Dull, P= Pink, BN = Brown, GN= Green, OR= Orange, BT = Bright , YW = Yellow

Table: In vivo and In vitro flavonoid content Maytenus emarginata (Willd.)

Flavonoids	Maytenus emarginata (Willd.) (mg/gdw)								
	Root	Stem	Leaves	Fruits	Callus	Total			
Kaempferol	0.38	0.24	0.29	0.27	0.49	1.67			
Quercetin	0.28	0.33	0.26	0.32	0.37	1.56			
Luteolin	0.24	0.31	0.22	0.39	0.41	1.57			
Kaempferol-7-O- glucoside	FORP	-	0.08	0.14	0.19	0.41			
Catechin	0.2	0.19	0.28	0.24	0.32	1.23			
Total	1.1	1.07	1.13	1.36	1.78	4.27			

Phytosterols

Each of the dried and powdered test samples was defatted in a soxhlet apparatus in petroleum ether (60-80°C) for 24 hrs on a water bath. The residual defatted tissues were dried and then refluxed with 15% (v/v) HCl in 70% ethanol for 4 hrs (Tomita *et al.*, 1970).

Presence of three steroids, lanosterol (Rf 0.92), β -sitosterol (Rf 0.98), and campesterol (Rf 0.290, have been identified and confirmed in all plant parts and unorganized cultures of *M. emarginata*, whereas β -amyrin (Rf 0.98), have been identified and confirmed in only leaves and callus of *M. emarginata*. Occurrence of stigmasterol (Rf 0.88), have been identified and confirmed in all plant parts and unorganized cultures of *M. emarginata*.

Estimation of phytosterols- In vivo

Among all the plant parts (root, stem, leaves, and fruit) of *M. emarginata* root showed minimum amount of total steroids (1.99 mg/gdw) and maximum was found in leaves (5.10 mg/gdw). Increasing amount of total steroids content was observed in order as root (1.99 mg/gdw) < fruit (3.99 mg/gdw) < stem (4.53 mg/gdw) < leaves (5.10 mg/gdw).

Estimation of phytosterols- *In vitro*

Eight weeks old callus (maximum GD was analyzed for identification and estimation of phytosterols in plant *M. emarginata*.

Occurrence of five steroids β -amyrin , β -sitosterol, lanosterol , campesterol and stigmasterol in *M. emarginata* was also confirmed in their unorganized callus culture. The amount of individual steroid as well as total steroid content in callus was higher than *in vivo* samples (root, stem, leaves, and fruits). In callus β -sitosterol (4.98 mg/gdw) was found in maximum amount and β -amyrin (0.15 mg/gdw) in minimum amount.

		(Bearing	-	p-am
Lan	Lan	Lan	Lan	Lan
Stig	Stig	Stig	Stig	Stig
p-at	ß-st	ß-st	p-st	ß-st
Camp	Camp	Camp	Camp	Camp
MR	MS	ML	ME	MC

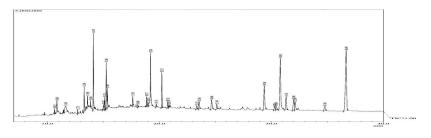
Fig: TLC Chromatogram of isolated Phytosterols from *M. emarginata* Abbreviation:

MR- Maytenus Root, MS- Maytenus Stem, ML- Maytenus leaf, MF- Maytenus Fruit, MC-Maytenus Callus,

 $\beta\text{-am-}\beta\text{-amyrin},\,\beta\text{-st-}\,\beta\text{-sitosterol},\,Lan\text{- lanosterol}$, Camp- campesterol, Stg-stigmasterol

Table:- Chromatographic data and color reaction of isolated phytosterols from *Maytenus emarginata* (Willd.) Ding Hou.

Phytosterol s		dards	Recorde Color after heating 50% d Rf sulphuric acid in day light values by TLC					Anisaldehy de reagent	m.p (in °C)	UV max (nm) MeOH
	Rf valu e	Colo r		Min •	Initia I	Fina l	In UV			
β-Sitosterol	0.84	DL- RD	0.86, 0.84, 0.83	1.25	GY- PK	PU- BN	DL - RD	PU	135 - 137	206sh, 268sh, 356sh, 540sh
β-amryin	0.98	BN	0.98, 0.96	1.25	BN	GY	DL - RD	BN	198	240sh, 258sh, 289sh,340s h
Stigmaster ol	0.88	GY- BU	0.88, 0.87, 0.86	0.5	PK	GY	BK - BU	PU	143 - 144	235sh, 270sh, 345sh, 540sh
Lanosterol	0.92	DK- BN	0.94, 0.95, 0.92, 0.93	1.25	РК	PK- BN	DK - BN	РК	131 - 133	228sh, 245sh, 322sh, 540sh
Campester ol	0.29	DL- BN	0.33, 0.30, 0.28, 0.29	1.25	РК	GY	DL - BN	BU	137 - 138	210sh, 267sh, 316sh, 540sh


Table:- In vivo and In vitro sterols content in Maytenus emarginata (Willd.) Ding Hou.

Sterols	Maytenus emarginata (mg/gdw)							
	Root Stem		Leaves	Fruits	Callus	Total		
β-Sitosterol	1.69	4.19	4.52	3.76	4.98	19.14		
β-amryin	-	-	0.08	-	0.15	0.23		

Stigmasterol	0.1	0.13	0.14	0.04	0.18	0.59
Lanosterol	0.05	0.1	0.18	0.04	0.21	0.58
Campesterol	0.15	0.13	0.18	0.15	0.27	0.88
Total	1.99	4.55	5.1	3.99	5.79	21.42

(iii) GC-MS analysis

Gas Chromatography and Mass spectroscopy analysis of compounds were carried out in methanolic extract of (leaves, roots, stems and fruits extract) *M. emarginata.* In the present search it was observed that a variety of compounds have been detected in this plant species including Pentadecanoic acid (Saturated fatty acid), Cholesterol, Stigmasterol, β -sitosterol (Phytosterols), Tridecane, Dodecane (Alkane hydrocabon), Glycerin (alcohol), Myo-inositol (aromatic compound), Evonine (alkaloid), Hexadecen-1ol (terpene alcohol), Hexadecanoic acid (palmitic acid), Phytol (diterpene), Octadecadienoic acid (linoleic acid), Tocopherol (Vitamin-E) and Squalene, Lupeol, Betulin (tri-terpene), Valerenol, alpha-Caryophyllene, Sclareolide (Sesquiterpenes).

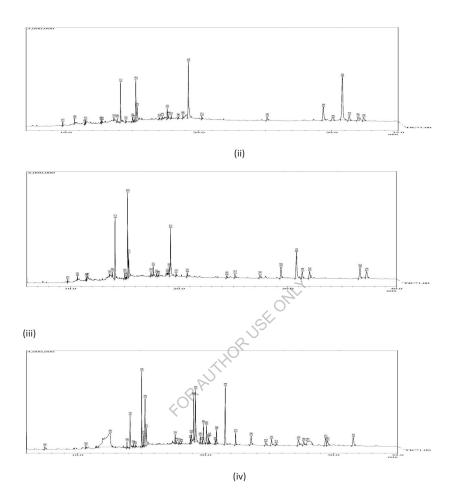


Fig: GC/MS spectrogram for the methanolic extract of (i)leaf(ii) root(iii) stem (iv) fruit of *Maytenus emarginata*.

Table-: Activity of phytocomponents identified in the methanolic leaf extract of *Maytenus* emarginata.

S.No	R.T	Name of the Compound	Peak Area	M.F	M.Wt	Compound Nature
		•	%			

1.	10.653	Pentadecane	0.38	C15 H32	212	Fragrance agents
2.	10.861	Levoglucosan	2.41	$C_6H_{10}O_5$	162.14	Organic
						compound
3.	11.636	1,4-Anhydro-d-	2.73	$C_6H_{12}O_5$	164.14	Sugar alcohol
		galactitol				
4.	12.721	Tetradecanoic acid	0.34	C ₁₄ H ₂₈ O ₂	228.37	Saturated fatty
	12.721		0.51	014112602	220.37	acid
		(Myristic acid)				
5.	13.294		2.26	C ₂₀ H ₃₈	278.51	
		Neophytadiene				
6.	13.598	Linoleic acid	1.38	$C_{18}H_{32}O_2$	280.45	unsaturated fatty
				1		acid (carboxylic
				- AL		<u>acid</u>)
7.	13.866	Pentadecanoic	0.43	C17H34O2	270	fatty acid
		acid, 14-methyl-,		St		
		methyl ester		R		
8.	14.119	n-Hexadecanoic	7.16	C ₁₆ H ₃₂ O ₂	256	fatty acid
		acid	P).			
		(Palmitic acid)	Z`			
9.	15.017	Palmitoleic acid	0.72	C ₁₇ H ₃₂ O ₂	268.43	unsaturated fatty
		methyl ester				acid
10.	15.120	3,7,11,15-	1.26	C ₂₀ H ₄₀ O	296.53	Diterpene alcohol
		Tetramethyl-2-				
		hexadecen-1-ol				
		(Phytol)				
11.	15.266	9-Octadecenoic	6.08	C18H34O2	282	unsaturated fatty
		acid				<u>acid</u>
		(Oleic Acid)				
10	15.260		2.19	C II O	284	Saturated fatt
12.	15.369	Octadecanoic acid (Stearic acid)	2.18	$C_{18}H_{36}O_2$	284	Saturated <u>fatty</u> acid
		(Stearie acid)				aciti

13.	17.635	Palmitic acid .beta monoglyceride	0.80	C19H38O4	330	Fatty acid derivative
14.	18.086	n-Hexadecane sulfonyl chloride	0.34	C ₁₆ H ₃₃ ClO ₂ S	324	
15.	18.877	N-Hexacosane	0.83	C ₂₆ H ₅₄	366.71	Fragrance agent
16.	18.993	Octadecanedioic acid	0.70	C ₁₈ H ₃₄ O ₄	314	Fatty acid
17.	19.224	Alpha Monostearin	8.17	C ₂₁ H ₄₂ O ₄	358	Saturated <u>fatty</u> acid
18.	19.733	1- Hentetracontanol	0.45	C41H84O	592	Terpenoid
19.	20.235	Squalene	3.52	C30H50	410.72	Triterpene
20.	20.763	Nonacosane	0.82	C ₂₉ H ₆₀	408	Hydrocarbon
21.	20.877	9-Tricosene, (Z)	0.40	C23H46	322	
22.	23.353	gamma Tocopherol	0.69	C ₂₈ H ₄₈ O ₂	416.68	<u>vitamin E</u>
23.	23.566	1-Triacontanol	1.29	C ₃₀ H ₆₂ O	438.81	Fatty alcohol
24.	24.684	dlalpha Tocopherol	2.19	C ₂₉ H ₅₀ O ₂	430	<u>vitamin E</u>
25.	25.149	Cholesterol	0.94	C ₂₇ H ₄₆ O	386.65	Phytosterol
26.	29.389	β-Sitosterol	5.95	C29H50O	414	Phytosterol
27.	30.283	Lupenyl acetate	0.93	C ₃₂ H ₅₂ O ₂	468	Tri- terpenes
28.	30.447	Ursodeoxycholic acid (Ursodiol)	0.89	$C_{24}H_{40}O_4$	392	Secondary <u>bile</u> <u>acids</u>
29.	30.818	Methyl commate A	14.21	C ₃₂ H ₅₂ O ₄	500	Triterpenes glycoside

30.	31.341	Lupeol	3.12	C ₃₀ H ₅₀ O	426.73	Triterpenoid
31.	32.008	Betulin	2.93	$C_{30}H_{50}O_2$	442.72	Triterpene
32.	32.139	alphaAmyrin acetate	2.32	C ₃₂ H ₅₂ O ₂	468	Phytosterol
33.	34.788	Sclareolide	1.28	$C_{16}H_{26}O_2$	250.38	Sesquiterpene
34.	36.699	Friedelin	19.91	C ₃₀ H ₅₀ O	426.73	Pentacyclic triterpene

Abbreviations: RT = Retention time, MF = Molecular formula, MWt = Molecular weight

 Table-: Activity of phytocomponents identified in the methanolic root extract of Maytenus emarginata.

S.No	R.T	Name of the Compound	Peak Area	M.F	M.Wt	Compound Nature
			%			
1.	9.770	Tridecane	0.68	C ₁₃ H ₂₈	184.35	<u>Alkane</u> hydrocarbon
2.	10.654	Pentadecane	0.92	C15 H32	212	Fragrance agents
3.	11.425	1-hexadecanol	0.18	C ₁₆ H ₃₄ O	242	Fatty alcohol
4.	11.475	Trichloroacetic acid, dodecyl ester	0.56	C ₁₄ H ₂₅ C ₁₃ O ₂	330	Fatty acid
5.	12.653	1,2-Dimethyl-3,5- divinylcyclohexane	0.52	C ₁₂ H ₂₀	164	
6.	12.725	Tetradecanoic acid (Myristic acid)	0.46	C ₁₄ H ₂₈ O ₂	228.37	Saturated <u>fatty</u> <u>acid</u>

7.	13.613	Diisobutyl Phthalate	0.74	C16H22O4	278.35	Plastisicizer
8.	13.866	Pentadecanoic acid, 14-methyl-, methyl ester	0.67	C ₁₇ H ₃₄ O ₂	270	Fatty acid
9.	14.113	n-Hexadecanoic acid (Palmitic acid)	8.16	C ₁₆ H ₃₂ O ₂	256	Fatty acid
10.	14.518	Eicosanoic acid, methyl ester	0.39	C ₂₁ H ₄₂ O ₂	326	Fatty acid
11.	15.016	9-Hexadecenoic acid, methyl ester, (Z)-	1.12	C ₁₇ H ₃₂ O ₂	268	Fatty acid
12.	15.139	Octadecanoic acid, methyl ester	0.55	C19H38O2	298	Fatty acid
13.	15.265	9-Octadecenoic acid (Z)- (Oleic Acid)	11.93	C18H34O2	282	Unsaturated <u>fatty acid</u>
14.	15.367	Octadecanoic acid (Stearic acid)	4.32	C ₁₈ H ₃₆ O ₂	284	Saturated <u>fatty</u> <u>acid</u>
15.	17.025	Hexadecanal	0.35	C ₁₆ H ₃₂ O	240	Aldehyde
16.	17.250	2-Ethyl-9,10- anthracenediol	0.78	C ₁₆ H ₁₄ O ₂	238	Unsaturated fatty acid
17.	17.635	Palmitic acid .beta monoglyceride	2.52	C ₁₉ H ₃₈ O ₄	330	Fatty acid derivative
18.	17.700	n-Octadecanal	0.51	C ₁₈ H ₃₆ O	268	Aldehyde
19.	17.927	Diisooctyl phthalate	0.62	C24H38O4	390.56	plastisicizer
20.	18.808	Cyclocarbosilane	0.80	$C_3H_{12}Si_3$	132	

21.	19.224	alphaMonostearin	17.63	C ₂₁ H ₄₂ O ₄	358	
22.	20.232	Squalene	0.70	C ₃₀ H ₅₀	410.72	Triterpene
23.	25.148	Cholesterol	1.50	C ₃₀ H ₅₀	410.72	Phytosterol
24.	29.381	B-Sitosterol	7.11	C ₂₉ H ₅₀ O	414.71	Phytosterol
25.	30.109	Methyl commate C	1.84	C ₃₁ H ₅₀ O ₄	486	Triterpenes glycoside
26.	30.814	Methyl commate A	26.56	C ₃₂ H ₅₂ O ₄	500	Triterpenes glycoside
27.	31.332	Lupeol	3.18	C ₃₀ H ₅₀ O	426.73	Triterpenoid
28.	31.995	Farnesyl bromide	2.42	C ₁₅ H ₂₅ Br	284	
29.	32.418	Longifolenaldehyde	1.91	C ₁₅ H ₂₄ O	220.35	

Abbreviations: RT = Retention time, MF = Molecular formula, M Wt = Molecular weight

 Table-: Activity of phytocomponents identified in the methanolic stem extract of Maytenus emarginata.

S.No	R.T	Name of the Compound	Peak Area %	M.F	M.Wt	Compound Nature
1.	9.770	Tridecane	0.37	$C_{13}H_{28}$	184.35	<u>Alkane</u> hydrocarbon
2.	10.654	Pentadecane	0.56	C ₁₅ H ₃₂	212	Fragrance agents
3.	11.475	Trichloroacetic acid, dodecyl ester	0.48	C ₁₄ H ₂₅ C ₁₃ O ₂	330	Fatty acid
4.	11.596	Sorbitol	1.18	C6H14O6	182.17	Sugar alcohol

5.	13.613	Diisobutyl Phthalate	0.37	C ₁₆ H ₂₂ O ₄	278.35	
6.	13.867	Pentadecanoic acid, 14-methyl-, methyl ester	0.72	C ₁₇ H ₃₄ O ₂	270	Fatty acid
7.	14.123	n-Hexadecanoic acid (Palmitic acid)	10.48	C ₁₆ H ₃₂ O ₂	256	Saturated fatty acid
8.	15.018	9-Octadecenoic acid (Oleic acid)	1.07	C ₁₈ H ₃₄ O ₂	282.46	Unsaturated fatty acid
9.	15.141	Octadecanoic acid, methyl ester	0.43	C ₁₉ H ₃₈ O ₂	298	Unsaturated fatty acid
10.	15.282	9-Octadecenoic acid (Z)- (Oleic acid)	19.86	C18H34O2	282	Unsaturated fatty acid
11.	15.378	Octadecanoic acid (Stearic acid)	5.87	C18H36O2	284	Saturated fatty acid
12.	17.425	1-Heneicosyl formate	0.93	C ₂₂ H ₄₄ O ₂	340	Volatile and semivolatile organic compound
13.	17.637	Palmitic acid .beta monoglyceride	1.65	C ₁₉ H ₃₈ O ₄	330	Unsaturated fatty acid
14.	17.931	1,2- Benzenedicarboxylic acid, dioctyl ester	0.46	C24H38O4	390	Unsaturated fatty acid
15.	18.106	Pentadecane, 8- hexyl-	0.34	C ₂₁ H ₄₄	296	Fatty acid
16.	18.933	1-Eicosanol	0.35	C ₂₀ H ₄₂ O	298	Fatty acid alcohol
17.	19.105	2-[5-(2-Methyl- benzooxazol-7-yl)- 1H-pyrazol-3-yl]-	1.80	C ₁₇ H ₁₃ N ₃ O ₂	291	Steroid

		phenol				
18.	19.227	alphaMonostearin	13.47	$C_{21}H_{42}O_4$	358	
19.	19.736	1-Hentetracontanol	0.71	C ₄₁ H ₈₄ O	592	Triterpene
20.	20.767	n-Tetratetracontane	0.94	C44H90	619.19	Triterpenoid
21.	24.399	4,6-Cholestadien- 3.betaol	0.65	C ₂₇ H ₄₄ O	384.64	Steroid
22.	25.152	Cholesterol	1.18	C30H50	410.72	Phytosterol
23.	27.451	n-Tetracosano (Lignoceric alcohol)	1.25	C ₂₄ H ₅₀ O	354	Fatty acid
24.	29.387	BetaSitosterol	4.98	C ₂₉ H ₅₀ O	414	Phytosterol
25.	30.814	Methyl commate A	12.95	C ₃₂ H ₅₂ O ₄	500	Triterpenes glycoside
26.	31.349	Lupeol	2.94	C30H50O	426.73	Triterpenoid
27.	32.012	Betulin	3.72	C ₃₀ H ₅₀ O ₂	442.72	Triterpene
28.	36.652	Friedelin	6.15	C ₃₀ H ₅₀ O	426	Triterpene
29.	37.261	AlphaBisabolol	4.15	C ₁₅ H ₂₆ O	222	Unsaturated sesquiterpene alcohol

Abbreviations: RT = Retention time, MF = Molecular formula, MWt = Molecular weight

Table: Activity of phytocomponents identified in the methanolic fruit extract of *Maytenus* emarginata.

S.No	R.T	Name of the	Peak	M.F	M.Wt	Compound
		Compound	Area			Nature

			%			
1.	7.450	4H-Pyran-4-one, 2,3- dihydro-3,5-dihydroxy- 6-methyl-	0.49	C ₆ H ₈ O ₄	144	
2.	10.652	Pentadecane	0.22	$C_{15}H_{32}$	212	Fragrance agent
3.	12.549	1,2,3,4,5- Cyclohexanepentol	23.17	C ₆ H ₁₂ O ₅	164	
4.	13.867	Pentadecanoic acid, 14- methyl-, methyl ester	0.51	C ₁₇ H ₃₄ O ₂	270	Fatty acid
5.	14.116	n-Hexadecanoic acid (Palmitic acid)	3.22	C ₁₆ H ₃₂ O ₂	256	Fatty acid
6.	14.367	6,6-Dimethylcycloocta- 2,4-dienone	0.28	C ₁₀ H ₁₄ O	150	
7.	14.519	Eicosanoic acid, methyl ester	0.19	C ₂₁ H ₄₂ O ₂	326	Fatty acid
8.	15.014	8-Octadecenoic acid, methyl ester	7.12	C19H36O2	296	Fatty acid
9.	15.141	Octadecanoic acid, methyl ester	0.99	C ₁₉ H ₃₈ O ₂	298	Fatty acid
10.	15.280	9-Octadecenoic acid (Oleic Acid)	7.75	C ₁₈ H ₃₄ O ₂	282	Unsaturated fatty acid
11.	15.375	Octadecanoic acid (Stearic acid)	2.72	C ₁₈ H ₃₆ O ₂	284	Saturated fatty acid
12.	17.637	Hexadecanoic acid, 2- hydroxy-1- (hydroxymethyl)ethyl ester	0.97	C ₁₉ H ₃₈ O ₄	330	Fatty acid
13.	17.708	n-Octadecanal	0.28	C ₁₈ H ₃₆ O	268	Unsaturated

						fatty acid
14.	17.931	1,2- Benzenedicarboxylic acid, dioctyl ester	0.28	C ₂₄ H ₃₈ O ₄	390	Fatty acid
15.	18.106	Pentadecane, 8-hexyl-	0.17	C ₂₁ H ₄₄	296	Fatty acid
16.	18.816	1H-Indole-3- ethanamine	0.62	C10H12N2	160	
17.	18.882	n-Heneicosane	1.10	C ₂₁ H ₄₄	296	
18.	19.082	Valerenol	5.51	C ₁₅ H ₂₄ O	220	Sesquiterpenoid
19.	19.230	AlphaMonostearin	7.80	C ₂₁ H ₄₂ O ₄	358	Fatty acid derivative
20.	19.590	1,4,4,7a-Tetramethyl- 2,4,5,6,7,7a-hexahydro- 1H-indene-1,7-diol	0.82	C ₁₃ H ₂₂ O ₂	210	Unsaturated fatty acid
21.	19.759	N-Nonadecane	0.48 10 11 11 11 11 11 11 11 11 11 11 11 11	О [~] С ₁₉ Н ₄₀	268	Saturated aliphatic hydrocarbon
22.	19.839	Germacrene A	2.89	C ₁₅ H ₂₄	204.3	Volatile organic <u>hydrocarbons</u> (<u>sesquiterpene</u>)
23.	20.076	Seychellene	2.42	C15H24	204.3	
24.	20.237	Squalene	0.70	C30H50	410.7	Triterpene
25.	20.314	3-Amino-6-methyl-6,7- dihydro-9H-5-oxa-9- azabenzocyclohepten-8- one	0.38	C ₁₀ H ₁₂ N ₂ O ₂	192.2	Steroid organic compound
26.	20.768	Nonacosane	0.40	C ₂₉ H ₆₀	408	<u>Hydrocarbon</u>
27.	20.862	Perillaldehyde	2.05	C ₁₀ H ₁₄ O	150.2	Monoterpenoid
28.	21.548	Isovellerdiol	8.56	$C_{15}H_{24}O_2$	236	Sesquiterpenes

29.	22.353	Andrographolide	1.84	C20H30O5	350.4	diterpenoid
30.	23.569	1-Triacontanol	1.77	C ₃₀ H ₆₂ O	438.8	Fatty alcohol
31.	24.702	A-Tocopherol	0.80	C ₂₉ H ₅₀ O ₂	430.7	Vitamin- E
32.	25.154	Cholesterol	1.40	C ₃₀ H ₅₀	410.7	Steroid
33.	25.527	1H-Benzocyclohepten- 7-ol, 2,3,4,4a,5,6,7,8- octahydro-1,1,4a,7- tetramethyl-, cis- (Widdrol)	0.35	C ₁₅ H ₂₆ O	222.3	Odorous compound
34.	27.261	alphaTocopherol	1.58	C ₂₉ H ₅₀ O ₂	430	Vitamin- E
35.	27.669	Trilostane	0.87	C ₂₀ H ₂₇ <u>NO</u>	329.4	<u>3β-</u> <u>hydroxysteroid</u> <u>dehydrogenase</u> inhibitor
36.	27.985	Evonine	3.36	C ₃₆ H ₄₃ NO ₁₇	761	Alkaloid
37.	29.379	B-Sitosterol	2.11	C29H50O	414.7	Phytosterol
38.	29.538	1,4,8- Cycloundecatriene, 2,6,6,9-tetramethyl-, (E,E,E)- (alpha- Caryophyllene)	1.36	C15H24	204.3 5	sesquiterpenes
39.	31.547	Cycloartenol	2.48	C ₃₀ H ₅₀ O	426.7 2	Phytostanol

Abbreviations: RT = Retention time, MF = Molecular formula, M Wt = Molecular weight

(III) BIOACTIVITIES

(i) Antimicrobial activity

In the present investigation, the inhibitory effect of crude methanolic extracts of different plant parts from *M. emarginata* were evaluated against both fungicidal and bacterial strains (gram positive and gram negative). *In vitro* and *in vivo* antimicrobial activity was determined using Agar well diffusion method and Micro dilution method.

In Maytenus emarginata the maximum antimicrobial activity of root extract was observed against *E. coli and F. oxisporum* while in leaf extract maximum antimicrobial activity was observed against *E. cloacae, P. aeruginosa, A. niger* and *A. flavus.* However, Callus extracts showed mild to moderate inhibitory effects against *S. aureus, B. cereus and A. solani.* Besides these, the maximum antimicrobial activity of *Maytenus* fruit extract was observed only against *R. stolonifer.* Thus, the result of the present study gives clue that the extracts of the both plant species can be regarded as a potential source for antimicrobial drugs.

-al

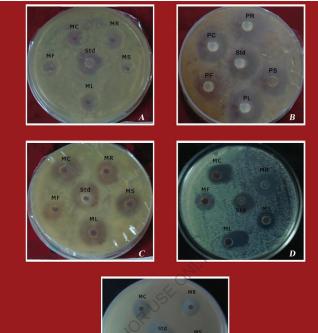


Fig. A-E : Antimicrobial activity of *Maytenus emarginata* (Willd.) against various bacteria.

Fig. A : Methanolic extract of different plant parts of *M. emarginata* against *E. coli*.
Fig. B : Methanolic extract of different plant parts of *M. emarginata* against *E. cloacae*.
Fig. C : Methanolic extract of different plant parts of *M. emarginata* against *S. aureus*.
Fig. D : Methanolic extract of different plant parts of *M. emarginata* against *B. cereus*.
Fig. E : Methanolic extract of different plant parts of *M. emarginata* against *B. cereus*.
Fig. E : Methanolic extract of different plant parts of *M. emarginata* against *B. cereus*.

ABBREVIATIONS

Std = Standard	ML = Maytenus Leaf
MR = Maytenus Root	MF = Maytenus Fruit
MSt = Maytenus Stem	MC = Maytenus Callus

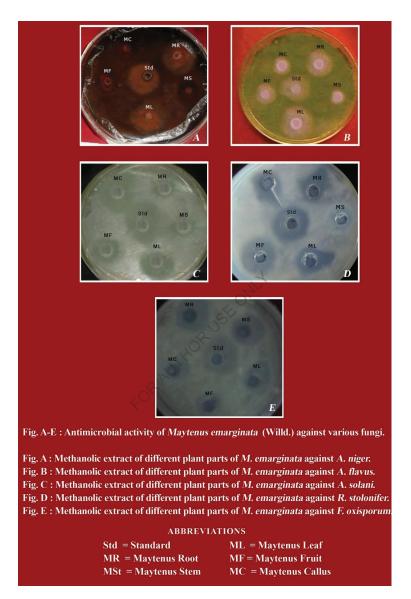


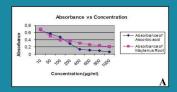
Table:- Inhibition zone diameters in methanolic extract of different plant parts of *Maytenus emarginata* were measured by agar well diffusion method (in mm).

Test Organisms		Maytenus emarginata (Willd.)								
Bac	teria	IZ/AI	Root	Stem Leaf		Fruit	Callus			
		IZ	19.2 ± 0.32	10.8 ± 0.91	18.3 ± 0.71	12.09 ± 0.49	14.9 ± 0.55			
1	E.coli	AI	0.786	0.442	0.75	0.495	0.61			
		IZ	13.2 ± 0.32	9.68 ± 0.55	20.3 ± 0.92	9.8 ± 0.69	15.8 ± 0.45			
2	E.cloacae	AI	0.692	0.507	1.064	0.513	0.828			
				$10.09 \pm$						
		IZ	12.8 ± 0.75	0.49	14.2 ± 0.56	8.6 ± 0.59	17.5 ± 0.49			
3	S.aureus	AI	1.013	0.796	1.124	0.68	1.385			
			$16.01 \pm$	$15.02 \pm$						
		IZ	0.63	0.81	19.9 ± 0.59	15.4 ± 0.89	20.08 ± 0.29			
4	B. cereus	AI	0.743	0.697	0.924	0.715	0.933			
	<i>P</i> .	IZ	20.3 ± 0.92	17.8 ± 0.71	22.4 ± 0.86	18.9 ± 0.11	19.2 ± 0.42			
5	aeruginosa	AI	0.989	0.867	1.092	0.921	0.936			
Fun	gi	IZ/AI	Root	Stem	Leaf	Fruit	Callus			
		IZ	12.8 ± 0.79	9.2 ± 0.55	15.6 ± 0.53	10.3 ± 0.63	9.9 ± 0.35			
1	A. niger	AI	0.749	0.538	0.913	0.603	0.579			
		IZ	14.2 ± 0.52	8.9 ± 0.75	18.3 ± 0.29	11.9 ± 0.42	10.4 ± 0.71			
2	A. flavus	AI	0.805	0.504	1.038	0.674	0.589			
		IZ	10.3 ± 0.13	8.2 ± 0.41	14.3 ± 0.77	12.9 ± 0.64	16.8 ± 0.39			
3	A. solani	AI	1.17	0.931	1.625	1.465	1.909			
		IZ	9.5 ± 0.80	9.4 ± 0.72	12.5 ± 0.65	13.4 ± 0.51	8.6 ± 0.52			
4	R. stolonifer	AI	0.619	0.613	0.815	0.874	0.56			
	<i>F</i> .	IZ	20.1 ± 0.59	18.2 ± 0.65	14.8 ± 0.29	10.6 ± 0.71	13.8 ± 0.42			
5	oxisporum	AI	0.928	0.841	0.683	0.489	0.637			

Table:- MIC values obtained in methanolic extract of different plant parts of *Maytenus emarginata* were measured by micro dilution method (in μ g/ml).

Test Organisms		Maytenus emarginata (Willd.)								
Bacter	ia	MIC / MBC	Standard	Root	Stem	Leaf	Fruit	Callus		
1	E.coli	MIC MBC	20.1 40.3	30.2 62.8	61.3 109.6	41.9 79.6	58.9 106.3	45.8 90.1		
2	E.cloacae	MIC MBC	33.2 60.9	37.7 74.1	54.2 104.6	31.8 62.9	49.8 90.2	30.7 60.6		
3	S.aureus	MIC MBC	20.6 40.1	32.8 67.3	48.9 96.2	22.9 46.8	60.9 119.6	18.3 38.9		
4	B. cereus	MIC	23.5	34.3	48.3	26.9	39.2	22.4		

1	1							المعا
		MBC	64.9	66.8	98.7	56.3	78.1	46.3
		MIC	22.01	37.9	52.1	20.1	49.3	43.5
5	P. aeruginosa	MBC	45.3	72.01	103	41.2	97.8	86.4
Fungi		MIC / MFC	Standard	Root	Stem	Leaf	Fruit	Callus
		MIC	9.3	21.9	52.1	14.4	30.5	35.4
1	A. niger	MFC	20.4	41.8	100	38.6	62.8	70.9
		MIC	10	20.1	42.4	14.2	28.1	35.3
2	A. flavus	MFC	20.3	40.3	85.2	29.3	57.2	76.1
		MIC	36.3	51.2	54.8	42.5	48.6	30.2
3	A. solani	MFC	72.4	102	112.5	86.3	96.2	62.1
		MIC	11.7	21.7	32.5	18.8	10.9	39.9
4	R. stolonifer	MFC	23.9	44.8	65.6	38.1	22.4	81.2
		MIC	30.7	29.8	34.8	40.2	49.7	43.3
5	F. oxisporum	MFC	57.6	56.1	68.3	83.6	98.2	86.6


Abbreviations:- MIC = Minimum inhibition concentration,

MBC= Minimum bacterial concentration

JRAUTHORUSE MFC= minimum fungicidal concentration

(ii) Antioxidant activity

The antioxidant activity of methanolic extracts of different plant parts were investigated using DPPH. During the present research study, it was found that all plant extracts have shown remarkable antioxidant activities. However, IC₅₀ values of different plant parts have also been estimated to exhibit their antioxidant activities and compared with standard ascorbic acid. it is found that in Maytenus emarginata IC₅₀ 49.32µg/ml of root extract indicates the maximum antioxidant effect.

's Inhibition vs Concentration

Fig.A: DPPH scavenger assay of the root extract of *Maytenus emarginata* compared with standard ascorbic acid.

Fig.B: Evalution of IC_{s0} of the root extract of *Maytenus emarginata* and standard ascorbic acid.

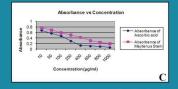


Fig.C: DPPH scavenger assay of the stem extract of *Maytenus emarginata* compared with standard ascorbic acid.

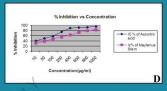


Fig.D: Evalution of IC₅₀ of the stem extract of *Maytenus emarginata* and standard ascorbic acid.

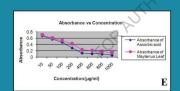


Fig.E: DPPH scavenger assay of the leaf extract of *Maytenus emarginata* compared with standard ascorbic acid.

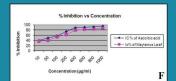
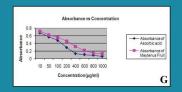



Fig.F: Evalution of IC_{50} of the leaf extract of *Maytenus emarginata* and standard ascorbic acid.

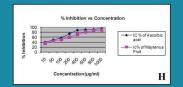


Fig.G: DPPH scavenger assay of the fruit extract of *Maytenus emarginata* with standard.

Fig.H: Evalution of IC_{50} of the fruit extract of *Maytenus emarginata* and standard ascorbic acid.

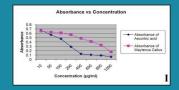


Fig.I: DPPH scavenger assay of the callus extract of *Maytenus emarginata* compared with standard ascorbic acid.

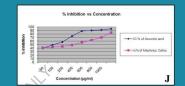
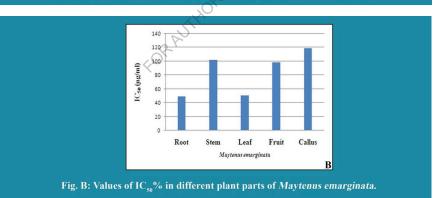



Fig.J: Evalution of IC_{50} of the callus extract of *Maytenus* emarginata and standard ascorbic acid.

I want morebooks!

Buy your books fast and straightforward online - at one of world's fastest growing online book stores! Environmentally sound due to Print-on-Demand technologies.

Buy your books online at www.morebooks.shop

Kaufen Sie Ihre Bücher schnell und unkompliziert online – auf einer der am schnellsten wachsenden Buchhandelsplattformen weltweit! Dank Print-On-Demand umwelt- und ressourcenschonend produzi ert.

Bücher schneller online kaufen www.morebooks.shop

KS OmniScriptum Publishing Brivibas gatve 197 LV-1039 Riga, Latvia Telefax: +371 686 204 55

info@omniscriptum.com www.omniscriptum.com OMNIScriptum