FILED
December 4, 2020
INDIANA UTILITY
REGULATORY COMMISSION

Petitioner's Exhibit 9

NORTHWEST JASPER REGIONAL WATER DISTRICT Drinking Water System Improvements DeMotte, IN

Preliminary Engineering Report
IFA: State Revolving Fund Loan Program

NORWEJ Board of Directors:

Andrew Andree - NORWEJ President
Kent Bierma - Vice President
Peggy Michelin - Secretary
Don Goetz - Treasurer
Mark Boer - Member
Jeff Cambe - Member
John Price - Member

June 2019
Rev. 1: November 2019

Rev. 2: March 2020

Prepared By:

Abonmarche Consultants, Inc.
17 N. Washington Street
Valparaiso, IN 46383
Preliminary Engineering Report - 1
O: \Projects $\backslash 2019$ \19-0001 NORWEJ\5_DWSRF Loan Program\Preliminary Engineering Repor \backslash Working Documents \backslash Working_PER.docx

Table of Contents

Appendices 2
List of Tables4
List of Figures 4
Chapter 1 - Project Location 5
Chapter 2 - Current Needs
Chapter 3 - Future Needs 13
Chapter 4 - Evaluation of Alternatives 16
Chapter 5 - Evaluation of Environmental Impacts. 18
Chapter 6-Proposed Project 21
Chapter 7 - Legal, Financial, and Managerial Capabilities. 26
Chapter 8 - Public Participation 26
Appendices
A - Exhibits
Exhibit A-1 - USGS DeMotte Quadrangle Map
Exhibit A-1 - USGS Wheatfield Quadrangle Map
Exhibit A-1 - USGS Shelby Quadrangle Map
Exhibit A-2 - Existing Process Schematic
Exhibit A-3 - Existing Distribution System
Exhibit A-4 - Existing NOWEJ District Limits
Exhibit A-5 - Proposed Improvements Overall Layou \dagger
Exhibit A-6 - Historic Buildings, Bridges, and Cemeteries Map
Exhibit A-7 - Wetlands Map
Exhibit A-8 - Surface Waters Map
Exhibit A-9 - FEMA Maps
Exhibit A-10 - Photographs
Exhibit A-11-Water Treatment Options
Exhibit A-12-49 CFR Part 24 Letter
B-Future Connections
Exhibit B-1 - DeMotte Population Estimate
Exhibit B-2 - Jasper County Population Estimate

```
    Exhibit B-3 - Potential DeMotte Connections
    Exhibit B-4 -KVHS Connection
    Exhibit B-5 - KVHS School Board Minutes
    Exhibit B-6 - NORWEJ Board Minutes
C-Flow Calculations
    Exhibit C-1 - Existing Water Use
    Exhibit C-2 - Projected Water Use
    Exhibit C-3-2011 Design Flows
D - Production Well Data
    Exhibit D-1 - Existing Well Logs
    Exhibit D-2 - Pumping Tests
    Exhibit D-3 - Raw Water Analyses
    Exhibit D-4 - Kersey Well Logs
E - Selected Alternative Layout and Opinion of Cost
    Exhibit E-1 - Selected Alternative Layout
    Exhibit E-2 - Phase I Opinion of Cost
    Exhibit E-3 - Phase II Opinion of Cost
    Exhibit E-4 - Phase III Opinion of Cost
F - NRCS Coordination
    Exhibit F-1 - Sent to the NRCS
    Exhibit F-2 - Received from the NRCS
G - Public Meeting Documents
    Exhibit G-1 - Notice of Public Hearing
    Exhibit G-2 - NORWEJ Board Minutes
    Exhibit G-3 - Proof of Publication
    Exhibit G-4 - Classifieds Page
    Exhibit G-5 - Public Meeting Sign in and Public Comments
H - Attachments
    Attachment 1 - PER Acceptance Resolution
    Attachment 2-Signatory Authorization Resolution
    Attachment 3-Financial Information Form
    Attachment 4 - Preliminary Design Summary
    Attachment 5-Green Project Reserve Incentive Sustainability Checklist
```

Attachment 6 - Asset Management Program Certification Form
Attachment 7 - Indiana Archaeological Short Report
I - Environmental Coordination
Exhibit I-1 - SRF Environmental Coordination
Exhibit l-2 - SHPO Coordination
Exhibit 1-3-USFWS Coordination
Exhibit 1-4 - IDNR Coordination
List of Tables
Table 1: Project Location 5
Table 2: Ammonia Levels 8
Table 3: Water Pumped vs. Water Sold 10
Table 4: Estimated Public Water Use 10
Table 5: Percent Water Loss 10
Table 6: Consumption by User Type 11
Table 7: Design Flows for Existing System 11
Table 8: NORWEJ Signific ant Users 12
Table 9: 20-yr Design Flows 14
Table 10: Distribution System Needs 15
Table 11: Supply Needs 15
Table 12: Alternate Selection 18
Table 13: Tests above MDL 22
Table 14: Water Treatment Options 23
Table 15: Construction Costs 24
Table 16: Total Project Costs 25
Table 17: Phase I - State Road 10 Water Main Extension Project 25
Table 18: Phase II - Kersey Well Field and Treatment Plant Project 25
Table 19: Phase III - Kankakee Valley High School Water Main Extension Project. 26
List of Figures
Figure 1: North Well Field 7

Chapter 1 - Project Location

The project is located within the United States Geological Survey (USGS) DeMotte and Wheatfield Quadrangles. Future $20-y r$ expansion is also located within the USGS Shelby Quadrangle. USGS Topographic Maps showing the proposed project area, the existing service area, and the future 20-year service area are provided in Appendix A.

The Quadrangle Map, Section, Township, and Range for each project element is provided in Table 1:

Table 1: Project Location

Project Element	Quadrangle Map	Section	Township	Range	Civil Township
Kersey Well Field and Treatment Plant	DeMotte Quad	30	32 N	6 W	Wheatfield
SR 10 Water Main Extension	DeMotte Quad	30	32 N	6 W	Wheatfield
SR 10 Water Main Extension	DeMotte Quad	31	32 N	6 W	Keener
SR 10 Water Main Extension	DeMotte Quad	25	32 N	7 W	Keener
SR 10 Water Main Extension	DeMotte Quad	36	32 N	7 W	Keener
SR 10 Water Main Extension	DeMotte Quad	35	32 N	7 W	Keener
SR 10 Water Main Extension	DeMotte Quad	26	32 N	7 W	Keener
KVHS Water Main Extension	DeMotte Quad	30	32 N	6 W	Wheatfield
KVHS Water Main Extension	DeMotte Quad	29	32 N	6 W	Wheatfield
KVHS Water Main Extension	Wheatfield Quad	29	32	6 W	Wheatfield
KVHS Water Main Extension	Wheatfield Quad	28	32 N	6 W	Wheatfield
KVHS Water Main Extension	Wheatfield Quad	33	32 N	6 W	Wheatfield

The Phase I: State Road 10 Water Main Extension project will be located within easements parallel with SR 10. Easements are being negotiated with the Indiana Department of Transportation (INDOT) and property owners. Within the DeMotte Industrial Park, the proposed water main will be located within the existing right-of-way.

The Northwest Jasper Regional Water District (NORWEJ) has purchased the property that will be used for second phase of the project, Phase II: Kersey well field and treatment plant. The properly was purchased from a willing seller. A letter from the Town of DeMotte's attorney will be provided from the town's attorney stating that the acquisition complies with 49 CFR Part 24 is provided in Appendix A.

Phase III of the project, the Kankakee Valley High School Water Main Extension project, will be located within easements parallel with SR 10. Easements will be negotiated with property owners and INDOT. Within the DeMotte Industrial Park, proposed water main will be located within the existing right-of-way. Water main will also be located within easements parallel with CR N. 575 W.

Chapter 2 - Current Needs

Existing System

Distribution System

The existing distribution system, constructed in 2012, contains 23 miles of PVC C900 and PVC SDR 21 water main. Pipe diameters range from 6 -inches to 10 -inches. The anticipated useful life of the water main is 80 -years. No part of the distribution system has yet reached the end of its useful life.

The system has been routed and sized to provide 1000 -gpm at 50 -psi to $60-\mathrm{psi}$. No operational problems have been reported. According to the Indiana Department of Environmental Management's (IDEM) Monthly Reports of Operations (MROs), daily flows range from 100,000gpd ($69-\mathrm{gpm}$) to $452,000-$ gpd ($314-\mathrm{gpm}$).

Dead ends were intended to be limited during design of the system. The proposed SR 10 Water Main Extension project will attach to an existing dead end located about 500 -feet west of the intersection of Orchid Street SE (CR N. 700 W.) and SR 10. The proposed Kankakee Valley High School Water Main Extension Project will connect to the SR 10 Water Main Extension Project at the intersection of Work Street and CR N. 575 W . and extend east, parallel with SR 10. While the proposed extension will enable the DeMotte Industrial Park, a 121 -acre light industrial park, and several businesses and residences within the SR 10 to connect to the water system, no agreements are as of yet in place.

A map showing the existing water main locations and sizes is available in Appendix A. MRO data, from which the existing flow information was derived, is available in Appendix C.

Supply

The system was originally constructed with three wells, located within the NORWEJ system's North well field: Well 1 , Well 2 , and Well 3 . Well 1 was never put into service because of bacterial issues. Well 3, which supplies 250 -gpm, was taken offline in October 2018 because of high ammonia levels, but is still able to be used if necessary. Well 2 is currently in use and supplies 400 -gpm. Well logs from the Indiana Department of Natural Resources (IDNR) are provided in Appendix C.

The North well field is locate southeast of the intersection of CR N. 700 W . and CR W. 1450 N .

Figure 1 illustrates the wells' locations, current status, and corresponding well logs.

Figure 1: North Well Field
The anticipated life of the wells was expected to be 80-years. While no supply facilities are near the end of their useful life, elevated ammonia levels within the wells have limited the long term viability of the North well field and the usefulness of improving the existing treatment system. Data provided by the water system operator indicating the rise in ammonia levels is provided in Table 2:

Table 2: Ammonia Levels
March 2014 - August 2019

Date	Well \#2* (ppm)	Well \#3** $^{\text {(ppm) }}$
$3 / 21 / 2014$	0.070	0.047
$8 / 17 / 2015$	0.105	0.816
$5 / 6 / 2016$	0.067	0.924
$6 / 16 / 2016$	0.079	1.11
$2 / 6 / 2017$	0.054	0.751
$6 / 9 / 2017$	0.111	1.20
$7 / 10 / 2018$	0.114	1.21
$9 / 28 / 2018$	0.117	1.33
$4 / 8 / 2019$	0.227	1.96
$6 / 1 / 2019$	0.339	-
$8 / 25 / 2019$	0.455	-

*Note: Well \#1 was never put into service
 **Note: Well \#3 was taken offline in October 2018 due to elevated ammonia levels

The design capacity of the system is $650-\mathrm{gpm}$. The average water usage is approximately 98 gpm, but the peak maximum water use is recorded as $314-\mathrm{gpm}$. Well 2, capable of providing $400-\mathrm{gpm}$, is capable of meeting current peak demands. However, since Well 3 was taken offline, there is no pumping redundancy within the system. While Well 3 could be put back online in an emergency situation, maintaining adequate chlorine residuals would become a significant challenge. With Well 3 offline, NORWEJ is able to maintain a sufficient chlorine residual.

Installing a new well field and treatment plant will allow NORWEJ to reliably meet system demands, remove the water quality issues and difficulties in maintaining adequate chlorine residuals associated with the elevated ammonia levels, and add water supply redundancy to the water system. Since its formation, NORWEJ has planned to have a second water source, in addition to the North well field.

See Appendix A for exhibits that illustrate the existing system.

Storage

Water is stored within the DeMotte water tower, an elevated storage tank located adjacent to Spencer Park. The elevated storage tank holds 500,000 -gallons and has a high water elevation of 160 -feet above ground.

The elevated storage tank has an anticipated useful life of 80 -years, with painting required every 15 -years. No part of the storage facility is at the end of its useful life.

The storage facility is currently adequate for the system's needs. There are no known operational issues with the elevated storage tank.

See Appendix A for an exhibit showing the DeMotte water tower's location.

Treatment

Water treatment occurs within a split face block building approximately $43^{\prime} \times 32^{\prime}$ in size.
As raw water enters the building, it passes through an aerator and is stored in a detention tank. The detention tank has two 6,500-gallon departments and a 7,750-gallon pump chamber, for a total of 20,750 -gallons of storage. The raw water is pumped by two high service pumps from the detention tanks through four (4) pressure filters together capable of treating up to 650-gpm at a rate of $3.2-\mathrm{gpm} / \mathrm{sft}$ for iron and manganese. The filtered water is then treated with chlorine and orthophosphates and enters the distribution system.

The pressure filters are backwashed periodically. Backwash water is stored in a tank that is the same size as the detention tank and then combined with well water and recycled through the treatment system. Recycled backwash water comprises less than 10-percent of the total flow.

Below is a list of the useful life cycle for different components of the treatment plant:

- Chemical Feed Pumps
- Backwash Reclaim Pumps
- Submersible Well Pumps
- Aerator
- Service Pumps
- Roof on treatment building
- Pressure Filters
- Backwash Holding Tanks

5 years
7 years
10 years
50 years
25 years
20 years
40 years
40 years

The chemical feed pumps and backwash reclaim pumps are nearing the end of their useful life cycle; however, they are not planned to be replaced as part of this project. The system is currently adequately sized and there are no known operational problems with the treatment facility.

See Exhibit A-2 for a process schematic.

Documents:

There have not been any documented agency mandated corrective actions.

Area Population

According to the US Census Bureau 2010 Demographic Profile, the population of the Town of DeMotte is 3,814 . The system was originally designed for an estimated population of 5,000 people in 20 -years.

Existing Consumption

The following tables describe the existing water usage as obtained from the NORWEJ water operator and billing department.

Table 3: Water Pumped vs. Water Sold January 2018 - January 2019

Source: Water Operator

Month, Year	Water Pumped (gallons)	Water Sold (gallons)
January, 2018	$4,289,000$	$3,954,465$
February, 2018	$3,737,000$	$4,004,080$
March, 2018	$4,080,000$	$3,902,458$
April, 2018	$4,682,000$	$4,053,471$
May, 2018	$4,981,000$	$4,459,572$
June, 2018	$4,726,000$	$4,930,006$
July, 2018	$5,221,000$	$4,528,197$
August, 2018	$5,023,000$	$5,062,327$
September, 2018	$4,624,000$	$4,335,521$
October, 2018	$4,699,000$	$4,009,923$
November, 2018	$3,962,000$	$3,957,295$
December, 2018	$4,210,000$	$3,950,109$

Table 4: Estimated Public Water Use
January 2018 - January 2019
Source: Water Operator

User Type	Consumption (gallons)
Government	$18,067,000$
Public Fire	$1,335,000$
Total	$\mathbf{1 9 , 4 0 2 , 0 0 0}$

Table 5: Percent Water Loss January 2018 - January 2019 Source: Water Operator

Usage	Consumption (gallons)
Pumped - Sold	$54,234,000-51,147,424$
	$=3,086,576$
Public Fire	$-1,335,000$
Total Not Billed or Accounted for	$\mathbf{1 , 7 5 1 , 5 7 6}$
Water Loss Percent	$\mathbf{3 . 2 2 \%}$

Table 6: Consumption by User Type
January 2018 - January 2019
Source: Billing Department

User Type	Consumption (gallons)	Percentage of Use
Domestic	$37,581,662$	73%
Institutional/Commercial	$11,303,789$	22%
Industrial	0	0%
Public	$2,261,973$	5%
Total	$\mathbf{5 1 , 1 4 7 , 4 2 4}$	$\mathbf{1 0 0 \%}$

Table 7: Design Flows for Existing System
See Exhibit A-2: Process Schematic

Type	Flow	Notes
Average Design Flow	$370,080 \mathrm{gpd}$	Exhibit A-2
Max Peak Design Flow	650 gpm	Exhibit A-2
Max Peak Daily Flow	$936,000 \mathrm{gpd}$	$650-\mathrm{gpm} * 1440 \mathrm{~min} /$ day
Max One-Hour Peak Flow	$39,000 \mathrm{gph}$	$650-\mathrm{gpm} * 60 \mathrm{~min} / \mathrm{hr}$

WTP and Backwash Flows

s
Plant backwash water is recycled and reused. Recycled water comprises less than 10% of the total flow. See Exhibit A-2 for a plant process schematic.

Significant Water Users

Water use is predominately domestic. The existing system services 450 single family homes, two apartment buildings, one mobile home park containing 81 units, two elementary schools totaling 943 students and staff, one high school of 130 students and staff, and 91 general commercial businesses including retail stores, restaurants, gas stations, and churches. These figures encompass approximately 40% of DeMotte's population and create a total average daily demand of 141 , 146-gpd, or 98-gpm, according to the system's MROs.

An expected water usage study was conducted in 2011 . Table 8 lists prominent significant users according to this study. For purposes of this table a "significant user" was defined as a user above $500-\mathrm{gpd}$.

Table 8: NORWEJ Significant Users

Name	Address	Anticipated Flow (gpd)
Porter Hospital, LLC	$40410^{\text {th }}$ St. SW	755
Stamac Management, LLC	$41015^{\text {th }}$ St. SE	4,800
DeMotte American Legion Post	$101115^{\text {th }}$ St. SE	900
Roman Catholic Diocese / St. Cecelia Catholic Church	332 15 ${ }^{\text {th }}$ St. SW	1,000
DeMotte Christian School	$61115^{\text {th }}$ St. SW	3,250
First Christian Reformed Church of DeMotte	$70315^{\text {th }}$ St. SW	1000
Faith Lutheran Church, Corp.	1700 S. Halleck St.	600
Kingma, Roy E $1 / 2$ \& (MD)	$5208^{\text {th }}$ Ave. NW	1,020
Beverly J Nannenga	$8108^{\text {th }} \mathrm{Pl}$. SW	800
Vanvuren, Jacob J \& Donna M	1660 Almond St. SW	800
Gouwens, Roy \& Deborah R	200 Begonia St. NE	2,000
DeMotte Christian School, INC	12223 Begonia St. SE	4,800
Myers Construction Co	1202 \& 1210 Begonia St. SE	1,600
Maple Lake Development, LLC	303 Carnation St. NE	800
Pines Apartments of DeMotte	621 Carnation St. SE	4,800
Indiana Property Management, INC	685 Carnation St. SE	800
Country Place Apartments XLI	157 Division St. E	4,800
Oak Grove Christian Retirement	221 Division St. W	8,000
Walgreens	226 Halleck St. N	1,060
DeMotte Methodist Church	227 Halleck St. N	1,500
Hamstra Builders, INC	$\begin{gathered} 227,305,500,313,334 \\ \text { Halleck St. N } \end{gathered}$	13,560
McDonald's Corporation	338 Halleck St. N	1,750
Half Dozen, INC (Dairy Queen)	341 Halleck St. N	1,400
Hamstra Group (Pizza Hut)	421 Halleck St. N	2,625
Grube, R. Arlene Revocable (Subway)	437 Halleck St. N	2,160
Vanbaren, Garry W \& Walita A	507 Halleck St. N	915
Schultz, Helen	539 Halleck St. N	1,270
M\&T Investments LLC	603 Halleck St. N	1,160
Community Bible Church	814 Halleck St. N	1,000
DeMotte State Bank	210, 228, 305 Halleck St. S	800
Bethel Christian Church	521 Halleck St. S	1,000
Kallorda Group LLC	516 Halleck St. S	600
Veronica A. O'Neal	900 Halleck St. S	600
Kooy, Wilmer R \&	901 Halleck St. S	600
American Reformed Church	1021 Halleck St. S	1,900
Kankakee Valley School Corporation (DeMotte Elementary School)	1000 Halleck St. S	9,345
First Christian Church	1633 Halleck St. S	800

A summary of the NORWEJ's MROs and flows from the 2011 expected water usage study are included in Appendix C.

See Appendix A for exhibits showing the existing system.

Chapter 3 - Future Needs

20-year Population Projection

According to the U.S. Census information from the Indiana Business Research Center, the population of DeMotte was 3,814 people in the 2010 census and was projected to increase to 4,082 people in 2018 , showing a growth rate of 6.5% and placing DeMotte as the $64^{\text {th }}$ fastest growing city or town in the state for this period.

The project will extend the NORWEJ system beyond the Town of DeMotte's borders; consequently, Jasper County projections were also researched for this report. According to the Indiana Business Research Center, the population of Jasper County is projected to be 33,879 people in 2020 and 37,906 people in 2040. According to these projections, the population of Jasper County is projected to grow by approximately 11.9% within the next 20 -years.

Population projections are documented in Appendix B.
Beyond population projections, it is important to note that a majority of the Town of DeMotte is not currently connected to the NORWEJ system. Based on an analysis of the number of properties within 800 -feet of a fire hydrant, there are 1023 potential connections. These connections consist of both businesses and residences. As their private wells fail, these residences and businesses are expected to connect to the NORWEJ system. Documentation from the Town Manager is provided in Appendix B.

Kankakee Valley High School (KVHS), Kankakee Valley Middle School, and Kankakee Valley Intermediate School are all located east of DeMotte along SR 10. Kankakee Valley School Corporation has been presented with the option to connect to the water system and has expressed interest in connecting. Additionally, KVHS is expanding and one of their proposed buildings will overlap with their current wells sanitary radius. Based on this situation, IDEM has expressed a desire for the KVHS to connect to the water system. This situation has been documented in Appendix B.

School board minutes documenting the presentation of the water system to KVHS and NORWEJ Board Minutes stating that agreements are in progress are provided in Appendix B.

A commercial development, an industrial park, several residential developments, churches, and undeveloped land are also present along this corridor. Although no formal agreements are in progress yet, the proposed expansion will enable service to these facilities. These facilities already exist and no other future developments are currently platted.

Because the NORWEJ system is the closest water provider to the Exit 230 interchange at $1-65$ and SR 10, Phase IV of NORWEJ's expansion plan proposes to extend service to the future development, existing businesses, and INDOT's rest stop within this area. Discussion is ongoing, but no written agreements are available yet. These agreements are in progress and the fact that they are in progress is document in NORWEJ Board Minutes available in Appendix B. This expansion is not going to be funded with the Drinking Water State Revolving Fund (DWSRF) loan
obtained following this PER, but since the expansion is planned, flow values were included in calculating the 20 -year Design Flow.

20-year Design Flow
The existing system services approximately 40% of DeMotte's population and satisfies a total average daily demand of 141,146-gallons per day. 20-year design flow calculations were based on known information about expansion to the areas outlined above and were calculated according to 327 IAC 8-3.3-2. The following 20-year flows are anticipated:

Table 9: 20-yr Design Flows

Additional 20 Yr Design Treatment Plant Flows	Flow (gpd)	Notes
Domestic (D)	183,100	
Commercial/Institutional (C)	100,240	While the SR 10 Extension will pass through the DeMotte Industrial Park, no agreements for industrial connections are in place.
Industrial (I)	0	Avg. Additional Flow
Total D,C,I	283,340	Avg. Additional Flow + Current Avg. Flow
Average Design Flow	424,486	Peak Additional Flow
Peak D,C,I	$1,083,860$	
Peaking Factor	3.19	Peak Additional Flow + Current Max Flow
Peak Design Flow	$1,255,860$	

Calculations for the 20-yr Design Flows are provided in Appendix C.
20-Year System Needs
System expansion is planned in four phases:
Phase I: State Road 10 Water Main Extension Projec \dagger
Phase II: Kersey Well Field and Treatment Plant Project
Phase III: Kankakee Valley High School Water Main Extension Project
Phase IV: I-65 Extension Project
Phases I-III are planned to be funded through the DWSRF loan program and are included in this PER. Phase IV will be funded through another source and consequently is not discussed within this PER.

Distribution System

In Phase I and Phase III of NORWEJ's planned expansion, distribution main will need to be constructed in the following areas:

Table 10: Distribution System Needs

Phase	Project Name	$\begin{array}{c}\text { Description of Water Main } \\ \text { Construction }\end{array}$	$\begin{array}{c}\text { Approximate } \\ \text { Length of Water } \\ \text { Main Construction }\end{array}$				
Phase I	$\begin{array}{l}\text { State Road 10 Water } \\ \text { Main Extension Project }\end{array}$	$\begin{array}{l}\text { Connect to existing system } \\ \text { about 500 feet west of the } \\ \text { intersection of Orchid Street } \\ \text { and SR 10. Continue east and } \\ \text { north, parallel with SR 10, } \\ \text { Industry Drive, Work Street, CR } \\ 575 \text { W, and Commercial Drive } \\ \text { to the Kersey Well Field }\end{array}$	9,150 -Ift	$]$	Phase III	Kankakee Valley High School Water Main Extension Project	Connect to SR 10 Ext. Project at the intersection of Work Street and CR 575 W. Continue south and west, parallel with CR 575 W and SR 10 to KVHS.
:---:	:---	:---					

Supply

In Phase II of NORWEJ's planned expansion, a new treatment plant and well field will be constructed. This field will be called the Kersey Well Field and will be located southeast of DeMotte. Three production wells (PW-1, PW-2, and PW-3) have been constructed in the Kersey well field. Table 11 summarizes the supply needs:

Table 11: Supply Needs

Phase	Project Name	Description of Supply Project
Phase II	Kersey Well Field and	Construct well-houses and relevant site design and install pumping equipment for Treatment Plant Reduction wells within the Project
		Kersey well field

Based on production tests, the Kersey well field has a firm capacity of 450-gpm.
Production well pump tests and water analyses are available in Appendix D.

Storage

Additional elevated tanks will likely be required for pressure regulation and for supplying fire protection as the system expands. However, no designs or estimates regarding elevated tanks have been completed at this time. Consequently, additional storage is not being funded through the DWSRF loan program with this PER.

Treatment

According to projected water use calculations, after expansion, in 20 -years, the system will have an average use of $316-\mathrm{gpm}$, and a peak use of $872-\mathrm{gpm}$. The proposed capacity of the Kersey treatment plant is $450-\mathrm{gpm}$. On the occasional occurrences where demand exceeds the plant capacity, additional flow will come from treated water stored within the DeMotte water tower. The 500,000 gallon water tower is capable of providing 556 -gpm, the difference between projected peak and average flow values, for up to 12 -hours. Additional flow may also come from the Well 2 at the existing North well field, which can produce 400-gpm.

Chapter 4 - Evaluation of Alternatives

Several alternatives were considered in addressing the system's issues of high ammonia levels and lack of water supply redundancy. Alternatives concentrating on addressing water supply include: 1) No Action; 2) Optimum Operation of Existing Facility: New Wells near Existing Plant; 3) Optimum Operation of Existing Facility: Rehabilitate the Existing System with Reverse Osmosis; 4) Expand/Upgrade: Purchase Kankakee Valley Intermediate School's System; 5) Expand/Upgrade: Partner with Kankakee Valley Intermediate School; 6) Expand/Upgrade: New Well Field and Treatment Plant near Kankakee Valley Middlle School.

1. No Action

The No Action alternative does not address the project needs for an improved water supply due to elevated ammonia levels in water from the North well field. Additionally, it does not fit within NORWEJ's plan for expanded service to Kankakee Valley High School, nor allow any future connections within the SR 10 corridor, nor does it provide water supply redundancy for the NORWEJ system.

2. Optımum Operation of Existing Facility: New Wells near Existing Plant

This alternative proposes to drill new wells near the existing plant at the North well field and pipe the raw water to be treated at the existing plant. The existing wells in the North well field would then be abandoned. Depending on the type of wells that would be constructed, this option is expected to cos $\$ 1,150,000-\$ 1,568,780$, including contingency and engineering.

Since the new wells would be drawing from the same aquifer as the existing wells, they are likely to have the same ammonia issues as the existing wells. Furthermore, this option does not add water supply redundancy. Therefore, this option was not chosen.

3. Optımum Operation of Existing Facility: Rehabilitate the Existing System with Reverse Osmosis System

This alternative proposes to add additional treatment measures to the existing system in order to treat water from the North well field for ammonia through reverse osmosis. Because of the distance between the North well field and the existing sanitary sewer system, the costs to connect the existing plant to the sanitary system are prohibitive. Additionally, this option incurs the costs of an RO system and additional sanitary sewer without the additional benefit of water supply redundancy that would come with investing these funds into a new well field and treatment plant.

4. Expand/Upgrade: Purchase Kankakee Valley Intermediate School's System

This alternative proposes to purchase an existing well and treatment system owned by Kankakee Valley Intermediate School. This option was estimated to cost $\$ 2,375,540$, including contingency and engineering. This option would add redundancy and increase the system's capacity from $650-\mathrm{gpm}$ to $950-\mathrm{gpm}$. However, Kankakee Valley Intermediate School currently uses their well system for both the school's needs and for irrigation. Consequently, the school was unwilling to sell their land and wells.

5. Expand/Upgrade: Partner with the Kankakee Valley Intermedıate School

This alternative proposes to partner with the Kankakee Valley School System by constructing a new well field, but using the school's existing treatment plant. The new well field would be located to the north of the school, and the school would be able to keep their well for irrigation. The approximate cost for this option was $\$ 3,598,320$, including contingency and engineering. However, the school was unwilling to agree to this option; consequently, this option was not chosen.
6. Expand/Upgrade: New Well Field and Treatment Plant near Kankakee Valley Intermediate School

This alternative proposes to construct three new wells within the Kersey well field, located between Work Street and Commercial Drive and west of CR N. 575 W . This property is located south east of the Town of DeMotte and just west of Kankakee Valley intermediate School.

A new treatment plant will be constructed on site to treat the raw water. Potable water will be piped from the Kersey well field and connected into the existing system.

Selection of the Alternate

The selected alternative comprises Phase II of NORWEJ's planned expansion: Kersey Well Field and Treatment Plant Project. Installing the well field and treatment plant in the DeMotte Industrial Park east of the Town limits was selected because this option fits within hydraulic and geographic constraints, will be constructed on property obtained from a willing seller, provides the NORWEJ system with water supply redundancy, and removes the ammonia issues present with the current well field. The well field will also allow water to be produced closer to users, which may reduce long-term overall pumping costs and improve the fire protection of the system.

This alternative is complemented by Phase I: State Road 10 Water Main Extension Project, which will connect the new well field to the existing system and Phase III: Kankakee Valley High School Water Main Extension Project. Phase III will enable Kankakee Valley High School to connect to the system, allowing the school to expand their facilities without encroaching on their current wells' sanitary setback radii.

After the construction of these phases is complete, other businesses and residences in the area will also be able to connect to the system, although no other agreements are as of yet in place.

Table 12 lists the alternates and reasons why they were not selected:
Preliminary Engineering Report - 17
O: \Projects $\ 2019$ \19-0001 NORWEJ\S_DWSRF Loan Program\Preliminary Engineering Report\Working Documents \Working_PER.docx

Table 12: Alternate Selection

Alternate No.	Description	Reason for Rejection
1	No Action Facility: New Wells near Existing Plant	Does not address elevated ammonia levels or provide water supply redundancy.
2	Potential for the continued presence of elevated ammonia levels because water will be drawn from the same aquifer. Does not provide water supply redundancy.	
3	Optimum Operation of Existing Facility: Rehabilitate Existing System with RO Treatment	Does not provide water supply redundancy.
4	Expand/Upgrade: Purchase Kankakee Valley Middle School's System	KV Intermediate School did not agree
5	Expand/Upgrade: Partner with Kankakee Valley Middle School	KV Intermediate School did not agree
6	Expand/Upgrade: New Well Field and Treatment Plant near Kankakee Valley Middle School	Selected

Chapter 5 - Evaluation of Environmental Impacts

Environmental Coordination with the SRF, the USFWS, the IDNR, and the SHPO is recorded in Appendix I.

Disturbed and Undisturbed Land

This site for the proposed well field and treatment plant is farmland. This land is considered undisturbed land for this report and may be subject to archaeological investigation. Borrow soil will also come from this area of farmland.

In Phase I: State Road 10 Water Main Extension Project, the proposed water main will be parallel with SR 10, Work Street, CR N. 575 W., and Commercial Drive within the platted right-of-way, or located outside of the right-of-way within easements. In Phase III: Kankakee Valley High School Water Main Extension Project, the proposed water main will be parallel with CR N. 575 W . and SR 10, within the right-of-way or within easements located outside of the right-of-way. These proposed routes traverse agricultural fields which would be considered undisturbed land and may be subject to archaeological investigation. The proposed water main route also travels through an industrial park. This land has recently been excavated for construction within the industrial park and therefore would be considered disturbed land.

See Appendix E for an exhibit showing the proposed improvements with an aerial photograph.

According to the Jasper County Interim report, this project is not located on or near any Historic Districts or historic or architecturally significant sites.

NORWEJ has contracted with Ball State University to conduct a Phase la Archaeological Reconnaissance report for the properties on which Phase II: Kersey Well Field and Treatment Plant will be constructed. The fieldwork was completed on October 26th, 2019. The report is included in Appendix H .

See Appendix A for maps showing the project location the Indiana Department of Natural Resources (IDNR) Buildings, Bridges, and Cemeteries Maps.

Wetlands

In Phase I: State Road 10 Water Main Extension Project, the proposed water main extension will be directionally drilled under Bradbury Ditch, a Canal/Ditch Classified Flowline. In Phase III: Kankakee Valley High School Water Main Extension Project, the proposed water main will be directionally drilled under Hobbs Ditch, Wesner Ditch, an unnamed ditch, and Schatzley Ditch. Mitigation measures to lessen and compensate for wetland impacts cited in comment letters about the project from the Indiana Department of Natural Resources and the U.S. Fish and Wildlife Service will be implemented.

There are no Wetland Inventory Points, Wetland Inventory Lines, or Managed Lands located within or near the project area. There is one freshwater pond located adjacent to the project area; the pond serves as detention for a nearby asphalt plant. Measures will be taken to reduce potential impacts to this pond.

See Appendix A for a map showing wetland locations.

Hydrology

Surface Waters

The proposed route will require crossing the following perennial streams: Bradbury Ditch, Hobbs Ditch, Wesner Ditch, an unnamed ditch, and Schatzley Ditch. These ditches are perennial streams and will be crossed by directional drilling.

Groundwater

Installing new wells has the potential to affect ground water levels. As part of the design of the system, an aquifer draw down test is will be completed to determine the impact of pumping on aquifer levels. Pumping rates and well field capacity will be adjusted based on the results of the testing.

100-Year Floodplains and Floodways

No part of the project is located within the 100-year floodplain. The project was mapped on Federal Emergency Management Agency (FEMA) Panels 18073C0083C, 18073C0085C, 18073C0105C, 18073C0115C, and 18073C0095C.

FEMA maps showing the proposed project area are included in Appendix A.

Plants and Animals

The project will be implemented to minimize impact to non-endangered species and their habitat. Mitigation measures cited in comment letters from the Indiana Department of Natural Resources (IDNR) and the U.S. Fish and Wildlife Service (USFWS) will be implemented. No negative effects to plants and animals or wooded or scrub/shrub habitats are anticipated to result from this project.

Prime Farmland and Geology

The National Resource Conservation Service (NRCS) in Jasper County has been sent a copy of Form AD-1006, a soils map, and an exhibit showing the proposed improvements.

The State Conservationist has determined that this project will not cause a conversion of prime farmland.

A copy of the form, the NRCS's response, and a soil map are all provided in Appendix F.

```
Air Quality
```

Jasper County is currently in compliance with National Ambient Air Quality (NAAQ) standards. No part of this project is expected to contribute regulated pollutants to the environment; consequently, this project is not expected to affect the compliance of Jasper County. Construction vehicles will be required to adhere to state emission regulations. While dust will be present during construction, it will be temporary and cease when construction is complete. Dust inhibitors and watering will be used during construction.

During construction, construction vehicles and machinery will create some noise pollution, and residents may be adversely affected by the noise. Special provisions for reducing construction noise, such as restricting work hours and maintaining equipment mufflers, will be implemented to reduce noise.

Open Space and Recreational Opportunities

The proposed project's construction and operation will neither create nor destroy open space and recreational opportunities.

Lake Michigan Coastal Program
The proposed project will not affect the Lake Michigan Coastal Zone.
National Natural Landmarks
The construction and operation of the proposed project will not affect National Natural Landmarks.

Secondary Impacts

The Town of DeMotte, through the authority of the Town Council appointed NORWEJ Board, will ensure that future development, as well as future supply, storage, distribution, or treatment works projects connecting to SRF-funded facilities will not adversely affect wetlands, wooded areas, steep slopes, archaeological/historical/structural resources or other sensitive environmental resources. The Town will require new development and treatment works projects to be constructed within the guidelines of the U.S. Fish and Wildlife Service, IDNR, IDEM, and other environmental review authorities.

Mitigation Measures

Since more than 1-acre of land will be disturbed, a Stormwater Pollution Prevention Plan (SWPPP/SWP3) will be made and Indiana Rule 5 will be adhered to. Best Management Practices (BMPS) will be installed to reduce surface runoff.

Chapter 6 - Proposed Project

Project Components

The system improvements project to be funded with the Drinking Water State Revolving Fund (DWSRF) loan consists of the following three phases:

Phase I: State Road 10 Water Main Extension Project
Phase II: Kersey Well Field and Treatment Plant Project
Phase III: Kankakee Valley High School Water Main Extension Project

Phase I: State Road 10 Water Main Extension Project

The State Road 10 Water Main Extension Project will consist of approximately 9,150 lineal feet of C900 PVC water main and all appropriate fittings. This project will connect the Kersey well field and treatment plant to the existing system.

The proposed extension will connect to the existing system about 500 -feet west of the intersection of Orchid Street and SR 10. Then, the water main will continue east and north, parallel with SR 10, Industry Drive, Work Street, CR 575 W, and Commercial Drive to the Kersey well field.

This project will allow the needs of the project to be met by connecting the new water source to the system, thereby removing the current issues regarding high ammonia levels and adding water supply redundancy to the system.

An exhibit showing the proposed improvements and a cost estimate are provided in Appendix E.

Phase II: Kersey Well Field and Treatment Plant Project

The Kersey production wells, PW-1, PW-2, and PW-3 have been drilled in a well field that is comprised of the following addresses:
1.5931 Commercial Drive, DeMotte, IN 46310
2. 5853 Commercial Drive, DeMotte, IN 46310
3. 5781 Commercial Drive, DeMotte, IN 46310

The production well raw water analyses indicate levels above the Method Detection Limit (MDL) levels for the following tests:

Table 13: Tests above MDL

Well	Tests above MDL
PW-1	Heterotrophic Plate Count, Iron, Potassium, Magnesium, Turbidity, Chloride, Calcium, Carbon Dioxide, DO, Odor, Conductivity, Silica, Sulfate, Calcium Hardness, Dissolved Solids, Alkalinity, Alkalinity bicarbonate, Barium, Sodium, Fluoride
PW-2	Total Coliform, Heterotrophic Plate Count, Barium, Nickel, Sodium, Fluoride, Potassium, Magnesium, Turbidity, Chloride, Nitrogen/Ammonia, Calcium, Carbon Dioxide, DO, Odor, Conductivity, Silica, Sulfide, Sulfate, Calcium Hardness, Dissolved Solids, Alkalinity
PW-3	Heterotrophic Plate Count, Barium, Nickel, Sodium, Fluoride, Iron, Potassium, Magnesium, Turbidity, Chloride, Nitrogen, ammonia, Calcium, Carbon Dioxide, DO, Odor, Conductivity, Silica, Sulfate, Calcium Hardness, Dissolved Solids, Alkalinity, Alkalinity Bicarbonate

Raw water analyses are included in Appendix D.
Field tests will be conducted to confirm levels of hydrogen sulfide and determine whether or not treatment is necessary.

The type of treatment has not yet been chosen.

The following options are being considered:

Table 14: Water Treatment Options

Option	Manufacturer	Treatment Type	Total Cost	Notes		
Treatment Option \#1	AOP	Reverse Osmosis	$\$ 1,975,000+$ Opt. $\$ 175,000$	Option is for Concentrate Recycling System Filters 50\% of 450-gpm flow		
Treatment Option \#2	AOP	Ion Exchange/Softening	$\$ 1,700,000$	Filters 50\% of 450-gpm flow		
Treatment Option \#3	AOP	Filter King (Single Unit Combined Softening and Aeration System)	$\$ 1,550,000$	Filters 100\% of 450-gpm flow		Note: Another option being considered is to use ion exchange resin that specifically filters ammonia, instead of iron and manganese. No cost estimates or manufacturer quotes have yet been obtained for this option.
:---						

Treatment design will be finalized after the field tests for hydrogen sulfide have been completed. Final design will be contingent on whether or not treatment for hydrogen sulfide is required. If the raw water must be treated for hydrogen sulfide, Option \#3 will be chosen and the hydrogen sulfide will be removed with aeration. If hydrogen sulfide does not need to be removed, Option \# 1 will be chosen, because it requires less maintenance than Option \#2: Ion Exchange and also treats for ammonia. For the purposes of the cost estimates provided later in this report, Option \#1 was chosen.

The Kersey well field and treatment project will also include the site design for the wellfield and treatment plant. This portion of the project includes well houses, access roads, and parking and storm water management at the treatment facility. Sanitary sewer required to connect the new plant to the existing sanitary sewer system is also proposed to be funded with this project.

Cost estimates for treatment options are included in Appendix A.
The Kersey well field and treatment project will enable the NORWEJ system to remove the current issues with water quality and provide water supply redundancy.

A Wastewater Treatment Plant Capacity certification letter will be provided after treatment design is finalized.

An exhibit showing the proposed improvements and a cost estimate are provided in Appendix E.

Phase III: Kankakee Valley High School Water Main Extension Project

The Kankakee Valley High School Water Main Extension Project will consis \dagger of approximately 11,400 lineal feet of C900 PVC water main and all appropriate fittings. This project will extend water main from the Kersey well field to Kankakee Valley High School.

The proposed extension will connect to the system at the intersection of CR 575 W and Work Street. Then, the water main will continue south and east, parallel with CR 575 W and SR 10 to Kankakee Valley High School.

This project will allow NORWEJ to service Kankakee Valley Schools, a future user with a documented interest in purchasing water.

Hydraulic Model

A hydraulic model of the existing system has been created using Bentley OpenFlows WaterGEMS. The model was used in sizing the water main for Phase I: State Road 10 Water Main Extension project and will be used in the future design for sizing Phase III: Kankakee Valley High School Water Main Extension Project.

Preliminary Design Summary

The Preliminary Design Summary, Attachment 4, is provided in Appendix H.

Project Layout

A layout of the proposed project is provided in Appendix D.

Project Component Costs

The following tables outline the costs of each component of the proposed project.

Table 15: Construction Costs

Type	Construction Project Cost	Contingencies	Total Costs
Phase I: SR 10 / US 231 Water Main Extension	$\$ 1,121,710.00$	$\$ 112,171.00$	$\$ 1,233,881.00$
Phase II: Kersey Well Field and Treatment Plant	$\$ 2,531,040.00$	$\$ 253,104.00$	$\$ 2,784,144.00$
Phase III: Kankakee Valley High School Water Main Extension	$\$ 1,411,850.00$	$\$ 141,185.00$	$\$ 1,553,035.00$
TOTAL CONSTRUCTION	$\$ 5,064,600.00$	$\$ 506,460.00$	$\$ 5,571,060.00$

Table 16: Total Project Costs

Type	Project Cost
Administrative and Legal	$\$ 250,000.00$
Land and Right of Way Acquisition	$\$ 151,500.00$
Relocation	$\$ 0.00$
Engineering Fees	$\$ 506,460.00$
Construction	$\$ 5,571,060.00$
Project Inspection	$\$ 506,460.00$
Total Project Cost	$\$ 6,985,480.00$

Itemized preliminary construction cost opinions are included in Appendix E.

Project Schedule

The system improvements have been divided into four phases. Phases I-III are to be funded with the DWSRF loan and are discussed within this PER.

Anticipated schedules for the projects are below:
Table 17: Phase I - State Road 10 Water Main Extension Project

Milestone	Completion Date
Plans and Specifications	May 29, 2020
Land and Easement Acquisition	June 30, 2020
Bid Advertisement	July 2, 2020
Loan Closing	July 1, 2021
Contract Award	July 27, 2020
Initiation of Construction	August 17, 2020
Substantial Completion of	December 7, 2020
Construction	
Initiation of Operation	January 7, 2021

Table 18: Phase II - Kersey Well Field and Treatment Plant Project

Milestone	Completion Date
Plans and Specifications	June 26, 2020
Land and Easement Acquisition	June 30, 2020
Bid Advertisement	July 2, 2020
Loan Closing	July 1, 2021
Contract Award	July 27, 2020
Initiation of Construction	August 24, 2020
Substantial Completion of Construction	February 22, 2021
Initiation of Operation	March 22,2021

Table 19: Phase III - Kankakee Valley High School Water Main Extension Project

Milestone	Completion Date
Plans and Specifications	July 30, 2020
Land and Easement Acquisition	July 31, 2020
Bid Advertisement	August 6, 2020
Loan Closing	July 1, 2021
Contract Award	August 24, 2020
Initiation of Construction	September 14, 2020
Substantial Completion of Construction	January 4, 2021
Initiation of Operation	February 4, 2021

Phasing:
The portion of NORWEJ's expansion to be funded through the DWSRF loan will be constructed in three phases: Phase I - State Road 10 Water Main Extension Project, Phase II - Kersey Wellfield and Treatment Plant, and Phase III - Kankakee Valley High School Water Main Extension Project. Each phase will be constructed according to the schedules above. Phases are expected to be constructed concurrently.

Green Project Reserve (GPR) Sustainability Incentive:
The Green Project Reserve (GPR) Sustainability Incentive will not be pursued for this project.

Chapter 7 - Legal, Financial, and Managerial Capabilities

SRF Forms

See Appendix H for the Signatory Authorization and PER Acceptance Resolution.
See Appendix H for the SRF Financial Information Form.
Asset Management Program
The Town will develop an Asset Management Program that meets the requirements defined by the State Revolving Fund's Asset Management Program Guidelines pursuant to Indiana Code 5-1.2-10-16. An AMP Certification Form is provided in Appendix H.

Prior to SRF Loan Closing, NORWEJ will submit proof that all needed land and easements have been secured and signed agreements with significant users.

Chapter 8 - Public Participation

A public hearing has been held regarding this project. The notice was published in the Rensselaer Republican 10-days prior to the hearing and include the notice in Appendix G. The project was discussed. The PER was available for public review at the DeMotte Town Hall 10 days prior to the public hearing. Written comments were accepted at the hearing and for eight days

Preliminary Engineering Report - 26
after the hearing; written comments were sent to the DeMotte Town Hall, 112 Carnation Street SE, DeMotte, IN 46310.

A copy of the Public Hearing notice is available in Appendix G.
A sign in sheet, copy of the minutes, written comments, and self-sticking mailing labels to attendees, interested parties, and local media outlets will be provided after the hearing is held.

Appendix A Exhibits

EXHIBIT A-1
\#USGS

ZUSGS Us. ofparawer of fientraion u.s. GEOLOGICAL SURVEY

Historic Buildings, Bridges, and Cemeteries Map

Historic Buildings, Bridges, and Cemeteries Map

S ${ }^{\circ} \mathrm{I} \cdot \mathrm{N}$

sdew \forall Wヨコ
6－\forall IIIIHXヨ

łueld łuәułeә』」 pue
 рəə！」 ॥әМ Кәsıәу pəsodoıd

(ul pəmooz) Js800うعL08T:Wyા
sdew $\forall W \exists \exists$ 6-V IIIIHXヨ

(ul pəmooz) כs0t0วદLO8I :Wy|y
sdew $\forall W \exists \exists$
6- \forall IIIIHXヨ

Phone 419.737.2352
Fax 419.737.2364
P.O. Box 247

Pioneer, OH 43554

To: Abonmarche
Quote No. NW-110819-BP2

Subject: NORWEJ Water Treatment Plant Date: November 11, 2019 Reverse Osmosis Option

BUDGET PROPOSAL

Artesian proposes to supply the following turn key 450 GPM Water Plant for NORWEJ. (Demotte, IN)
(1) 1536 Sq. Foot Split face Block Building
-Split Faced Block

- Metal Roof
- (2) Man Doors
- Automatic Overhead Door
- Lab/Office
- Unit Heaters
- Dehumidification

(LS) Building Electrical Package

- Natural Gas Auxiliary Generator
- Automatic Transfer Switch
- Motor Control Center
- VFDs for HS Pumps
- Building Lighting, Branch and Distribution
(2) 225 GPM Reverse Osmosis Skids
- Each Unit is rated for 700 GPM Permeate
- Powder Coated Steel Frame Skid
- 75\% Projected Recovery
- Adjustable Recycle Stream w/ Flow Meter
- High Pressure Booster Pumps
- Shelco Cartridge Filters
- FRP Pressure Vessels
- Dow Filmtec Membranes
- Interconnecting PVC Face Pipe and Fittings for the Plant
- Complete with Pressure Gauges, Valves and Appurtenances
(1) PLC Control Panel
- 15.6" HMI Touch Screen
- Programmable Logic Controller w/ Software
- Telemetry and Remote SCADA for Existing Water Tower
- Air Compressor and Solenoid Panels
- Independent Magnetic Flow Meters for each Softener
- Pneumatic Diaphragm Valves for Full Automation
- Plant Effluent Magnetic Flow Meter
- (2) Well Magnetic Flow Meters
- Hach CL17 Online-Chlorine Analyzer
- Tank Level Transducer

(1) Anti-Scalant Feed System

- (2) Peristaltic Chemical Feed Pumps
- Chemical Containment Skids
- Tubing and Fittings
(1) Chlorination Feed System
- (2) Peristaltic Chemical Feed Pumps
- (1) 50-gallon Day Tanks
- (1) 300-Gallon Bulk Tank
- Chemical Containment Skids
- Tubing and Fittings
(1) Caustic Soda Feed System
- (2) Peristaltic Chemical Feed Pumps
- Chemical Containment Skids
- Tubing and Fittings
(1) Orthophosphate Feed System
- (2) Peristaltic Chemical Feed Pumps
- Chemical Containment Skids
- Tubing and Fittings
(1) 50,000 Gallon Concrete Detention Tank
- Two chambers with baffle walls
(2) Vertical Turbine High Service Pumps
- Pumps rated for 450 gpm
- Variable Frequency Drives

5 Year Equipment Warranty
Turn Key Installation by AOP Personnel
Start-up \& training of city personnel by AOP

EXHIBIT A-11
 Water Treatment Options

OPTIONAL CONCENTRATE RECYLCING SYSTEM: \$ 175,000

- Reduces Reject from 20\% of flow down to 5\% or less
- Wastewater savings of 22 Million Gallons Per Year (at maximum flow rate)
- Reject Recycle Pump and EQ Tank
- Annual Operating Costs of $\$ 15,000$

Specifically Included:

- 5 Year Warranty on ALL Equipment
- Submittal Drawings
- Start up and Training
- Operation and Maintenance Manuals

Specifically, NOT Included:

- Anything not specifically mentioned above
- Well Pumps or Well Work
- Site Utilities- Electrical/ Underground Piping outside building walls
- Waste Facilities to Dispose of Brine Waste Discharge

Notes to Consider:

- AOP can provide complete drawings and specifications, upon your request.
- Above system professionally installed by AOP factory personnel.
- System is designed to soften $\mathbf{5 0 \%}$ of the 450 GPM Plant Flow with $\mathbf{1 0 0 \%}$ Redundancy.
- Feed Water Required: 506 GPM
- Above equipment \& pricing is for a totally automated water treatment plant.

Thank you for the opportunity. We look forward to answering any questions or discussing this project further.

Best Regards,

[^0]
BUDGET PROPOSAL

Artesian proposes to supply the following turn key 450 GPM Water Plant for NORWEJ. (Demotte, IN)

(1) 1536 Sq. Foot Split face Block Building

-Split Faced Block

- Metal Roof
- (2) Man Doors
- Automatic Overhead Door
- Lab/Office
- Unit Heaters
- Dehumidification
(LS) Building Electrical Package
- Natural Gas Auxiliary Generator
- Automatic Transfer Switch
- Motor Control Center
- VFDs for HS Pumps
- Building Lighting, Branch and Distribution

(3) AOP Softeners

- Each softener is 5' in Diameter
- ASME Code Pressure Vessel
- Manhole Access including above and below Baffle Plate
- NSF Tnemec lining inside and out including below baffle plate
- 1" Thick Baffle Plate
- AOP Municipal Distributors
- 16" of Support Gravel per Softener
- High Capacity Ion Exchange Resin- 48" Depth
- Influent \& Effluent Manual Butterfly Valves for Isolation
- Flow Controls for Backwashing and Slow Rinse
- Interconnecting PVC Face Pipe and Fittings between Softeners
(1) PLC Control Panel
- 15.6" HMI Touch Screen
- Programmable Logic Controller w/ Software
- Telemetry and Remote SCADA for Existing Water Tower
- Air Compressor and Solenoid Panels
- Independent Magnetic Flow Meters for each Softener
- Pneumatic Diaphragm Valves for Full Automation
- Plant Effluent Magnetic Flow Meter
- (2) Well Magnetic Flow Meters
- Hach CL17 Online-Chlorine Analyzer
- Tank Level Transducer
(1) 30 Ton Fiberglass Salt Briner (For Pneumatic Delivery)
- Brine Well with Submersible Pump
- Transducer for Salt Briner
- Independent Brine Distribution
(1) 50,000 Gallon Concrete Detention Tank
- Two chambers with baffle walls
(1) Chlorination Feed System
- (2) Peristaltic Chemical Feed Pumps
- (1) 50-gallon Day Tanks
- (1) 300-Gallon Bulk Tank
- Chemical Containment Skids
- Tubing and Fittings
(1) Orthophosphate Feed System
- (2) Peristaltic Chemical Feed Pumps
- Chemical Containment Skids
- Tubing and Fittings
(2) Vertical Turbine High Service Pumps
- Pumps rated for 450 gpm
- Variable Frequency Drives

5 Year Equipment Warranty
Turn Key Installation by AOP Personnel
Start-up \& training of city personnel by AOP

TOTAL EQUIPMENT PACKAGE: $\mathbf{\$ 1 , 7 0 0 , 0 0 0}$

EXHIBIT A-11
 Water Treatment Options

Specifically Included:

- 5 Year Warranty on ALL Equipment
- Submittal Drawings
- Start up and Training
- Operation and Maintenance Manuals

Specifically NOT Included:

- Anything not specifically mentioned above
- Well Pumps or Well Work
- Site Utilities- Electrical/ Underground Piping outside building walls
- Waste Facilities to Dispose of Brine Waste Discharge

Notes to Consider:

- AOP can provide complete drawings and specifications, upon your request.
- Above system professionally installed by AOP factory personnel.
- System is designed to soften $\mathbf{5 0 \%}$ of the $\mathbf{4 5 0}$ GPM Plant Flow.
- Above equipment \& pricing is for a totally automated water treatment plant.

Thank you for the opportunity. We look forward to answering any questions or discussing this project further.

Best Regards,

Ryan Burt

To: Abonmarche Chip Thompson

Subject: NORWEJ Water Treatment Plant FilterKing Option

Quote No. NW-121319-BP

Date: December 13, 2019

BUDGET PROPOSAL

Artesian proposes to supply the following turn key 450 GPM Water Plant for NORWEJ. (Demotte, IN)
(1) 1536 Sq. Foot Split face Block Building
-Split Faced Block

- Metal Roof
- (2) Man Doors
- Automatic Overhead Door
- Lab/Office
- Unit Heaters
- Dehumidification

(LS) Building Electrical Package

- Natural Gas Auxiliary Generator
- Automatic Transfer Switch
- Motor Control Center
- VFDs for HS Pumps
- Building Lighting, Branch and Distribution

(1) AOP FilterKing

- Filter Section 12' x 12' Sqaure
- Minimum 13,500 Gallon Detention Tank
-450 GPM Induced Draft Aerator
- NSF Tnemec lining inside and out including below baffle plate
- $1^{\prime \prime}$ Thick Baffle Plate
- AOP Municipal Distributors
- $16^{\prime \prime}$ of Support Gravel per Filter Cell
- Award Winning MARIS Media
- Influent \& Effluent Manual Butterfly Valves for Isolation
- Automatic Flow Controls for Backwashing
- Steel Face Pipe and Fittings

(1) PLC Control Panel

- 15.6" HMI Touch Screen
- Programmable Logic Controller w/ Software
- Telemetry and Remote SCADA for Existing Water Tower
- Air Compressor and Solenoid Panels
- Independent Magnetic Flow Meters for each Softener
- Plant Effluent Magnetic Flow Meter
- (2) Well Magnetic Flow Meters
- Hach CL17 Online-Chlorine Analyzer
- Tank Level Transducer
(1) 50,000 Gallon Concrete Detention Tank
- Two chambers with baffle walls
(1) Chlorination Feed System
- (2) Peristaltic Chemical Feed Pumps
- (1) 50-gallon Day Tanks
- (1) 300-Gallon Bulk Tank
- Chemical Containment Skids
- Tubing and Fittings
(1) Orthophosphate Feed System
- (2) Peristaltic Chemical Feed Pumps
- Chemical Containment Skids
- Tubing and Fittings
(2) Vertical Turbine High Service Pumps
- Pumps rated for 450 gpm
- Variable Frequency Drives

5 Year Equipment Warranty
Turn Key Installation by AOP Personnel
Start-up \& training of city personnel by AOP
TOTAL EQUIPMENT PACKAGE: $\mathbf{\$ 1 , 5 5 0 , 0 0 0}$

Specifically Included:

- 5 Year Warranty on ALL Equipment
- Submittal Drawings
- Start up and Training
- Operation and Maintenance Manuals

EXHIBIT A-11
 Water Treatment Options

Specifically NOT Included:

- Anything not specifically mentioned above
- Well Pumps or Well Work
- Site Utilities- Electrical/ Underground Piping outside building walls
- Waste Facilities to Dispose of Backwash water

Notes to Consider:

- AOP can provide complete drawings and specifications, upon your request.
- Above system professionally installed by AOP factory personnel.
- System is designed to filter $\mathbf{1 0 0 \%}$ of the 450 GPM Plant Flow.
- Above equipment \& pricing is for a totally automated water treatment plant.

Thank you for the opportunity. We look forward to answering any questions or discussing this project further.

Best Regards,

Ryan Burt

Waddle \& Vallejo

Attorneys at Law

524 S. Halleck * P.O. Box 548
DeMotte, Indiana 46310
(219) 987-6200 and (219) 987-5200
(219) 987-6331 facsimile

Emily S. Waddle

 AttorneyGlenn D. Burkhart
(1958-2005)

Luis E. Vallejo
Attorney

Heather Tokarz
Town Manager
Town of DeMote
112 North Carnation
DeMotte, Indiana 46310
Dear Ms. Tokarz
Please be advised that the property that is being purchased from Kersey Development, Inc. for NORWEJ'S new well field site complies with 49 CFR Part 24 . We anticipate that the closing for the completion of this sale will take place the end of February 2020.

If you require anything further, please do not hesitate to contact my office.

Hablamos Espańol

Appendix B Future Connections

Population Estimates for Indiana's Incorporated Places, 2010-2018

View analysis of these estimates from the IBRC."
Interactive Graphics: Explore Indiana City/Town Population Change | Map: 20 Fastest-Growing Cities and Towns
© Download these data with FIPS codes

Geographic Area	Population Estimates (as of July 1)									April 1, 2010		$\begin{gathered} \text { Change July 1, } \\ 2010 \text { to July 1, } \\ 2018 \end{gathered}$		Rank: Pop Change July 1, 2010 to July 1, 2018	
										imates					
	2018	2017	2016	2015	2014	2013	2012	2011	2010	Base	Census	Number	Percent	Number	Percent
Advance town	514	512	506	508	509	514	514	513	481	477	477	33	6.9\%	122	49
Akron town	1,110	1,107	1,112	1,125	1,136	1,132	1,145	1,148	1,155	1,157	1,167	-45	-3.9\%	441	450
Alamo town	66	65	65	65	65	65	65	65	65	65	66	1	1.5\%	198	150
Albany town	2,151	2,166	2,178	2,191	2,204	2,221	2,231	2,249	2,252	2,252	2,165	-101	-4.5\%	493	485
Albion town	2,338	2,318	2,318	2,324	2,304	2,306	2,328	2,290	2,350	2,351	2,349	-12	-0.5\%	311	235
Alexandria city	4,997	5,010	5,017	5,027	5,055	5,070	5,068	5,103	5,135	5,137	5,145	-138	-2.7\%	512	371
Alfordsville town	105	105	105	104	104	103	102	102	101	101	101	4	4.0\%	175	109
Alton town	54	54	54	54	55	54	55	55	55	55	55	-1	-1.8\%	214	312
Altona town	197	195	195	195	194	194	195	195	195	195	197	2	1.0\%	190	170
Ambia town	222	219	220	221	222	225	227	227	228	227	239	-6	-2.6%	270	366
Amboy town	369	372	375	374	374	375	378	382	383	384	384	-14	-3.7\%	329	430
Amo town	420	422	418	414	414	412	409	409	401	401	401	19	4.7\%	144	91
Anderson city	55,037	55,033	55,082	55,121	55,358	55,561	55,532	55,883	56,151	56,169	56,129	-1,114	-2.0\%	557	326
Andrews town	1,128	1,127	1,128	1,136	1,136	1,144	1,148	1,155	1,155	1,155	1,149	-27	-2.3\%	385	346
Angola city	8,702	8,642	8,604	8,634	8,645	8,626	8,589	8,586	8,599	8,607	8,612	103	1.2\%	84	160
Arcadia town	1,664	1,663	1,660	1,671	1,692	1,714	1,698	1,689	1,670	1,666	1,666	-6	-0.4\%	271	227
Argos town	1,625	1,636	1,641	1,648	1,654	1,664	1,669	1,678	1,687	1,690	1,691.	-62	-3.7\%	466	433
Ashley town	980	977	976	975	976	976	971	973	973	973	983	7	0.7\%	165	182
Atlanta town	745	747	742	739	746	755	743	733	727	725	725	18	2.5\%	145	134
Attica city	3,183	3,127	3,075	3,092	3,126	3,164	3,211	3,221	3,247	3,242	3,245	-64	-2.0\%	469	325
Auburn city	13,391	13,161	13,012	12,937	12,897	12,858	12,844	12,892	12,820	12,794	12,731	571	4.5\%	41	99
Aurora city	3,687	3,693	3,682	3,689	3,686	3,712	3,713	3,735	3,746	3,743	3,750	-59	-1.6\%	460	298
Austin city	4,114	4,130	4,112	4,123	4,128	4,163	4,169	4,214	4,276	4,281	4,295	-162	-3.8\%	523	444
Avilla town	2,451	2,419	2,396	2,404	2,401	2,392	2,389	2,390	2,395	2,398	2,401	56	2.3\%	109	137
Avon town	18,343	17,567	17,134	16,599	16,137	14,999	14,627	14,268	13,855	13,749	12,446	4,488	32.4\%	11	7
Bainbridge town	748	744	735	733	737	735	742	743	745	746	746	3	0.4\%	182	196

Delphi city	2,891	2,882	2,870	2,858	2,868	2,891	2,891	2,882	2,903	2,897	2,893	-12	-0.4\%	313	231
De Motte town	4,082	4,054	4,020	4,005	3,979	3,942	3,904	3,862	3,833	3,818	3,814	249	6.5\%	64	52
Denver town	465	468	473	472	473	475	479	EXHIBIT B-1DeMotte Population Estimate							
Dillsboro town	1,401	1,399	1,396	1,398	1,396	1,405	1,404								
Dublin town	747	753	760	767	775	781	786								
Dugger town	884	889	888	895	900	905	911								
Dune Acres town	182	181	182	184	185	184	183						. 0	LOJ	0
Dunkirk city	2,289	2,309	2,326	2,339	2,342	2,358	2,368	2,369	2,353	2,362	2,362	-64	-2.7\%	470	375
Dunreith town	171	171	171	172	173	173	174	176	177	177	177	-6	-3.4\%	273	409
Dupont town	325	324	326	324	325	327	325	324	326	327	339	-1	-0.3\%	218	223
Dyer town	15,987	15,918	15,933	16,016	16,155	16,235	16,330	16,375	16,378	16,369	16,390	-391	-2.4%	543	351
Earl Park town	337	336	336	340	340	341	345	349	349	348	348	-12	-3.4\%	314	413
East Chicago city	27,930	28,168	28,429	28,690	29,019	29,225	29,451	29,522	29,694	29,698	29,698	-1,764	-5.9\%	563	543
East	350	352	356	358	361	363	365	367	372	372	410	-22	-5.9\%	363	540

Germantown
town

Eaton town	1,734	1,739	1,752	1,756	1,770	1,783	1,791	1,803	1,807	1,807	1,805	. 73	-4.0\%	482	454
Economy town	175	176	178	179	181	181	182	183	185	185	187	-10	-5.4\%	303	523
Edgewood town	1,857	1,858	1,863	1,865	1,876	1,885	1,885	1,897	1,910	1,910	1,913	-53	-2.8\%	455	378
Edinburgh town	4,577	4,585	4,569	4,533	4,523	4,527	4,502	4,483	4,477	4,476	4,480	100	2.2\%	86	139
Edwardsport town	297	298	298	300	301	301	301	304	304	304	303	-7	-2.3\%	279	344
Elberfeld town	652	649	641	637	629	627	621	620	614	613	625	38	6.2\%	118	57
Elizabeth town	207	204	204	202	201	201	202	201	203	203	162	4	2.0\%	176	144
Elizabethtown	527	528	531	528	525	522	521	516	512	512	504	15	2.9\%	150	125

town

Elkhart city	52,367	52,415	52,487	52,532	52,315	52,182	52,004	51,929	51,865	51,932	50,949	502	1.0\%	44	175
Ellettsville town	6,676	6,667	6,616	6,539	6,498	6,430	6,400	6,335	6,251	6,221	6,378	425	6.8\%	47	50
Elnora town	661	661	659	657	653	645	644	643	639	638	640	22	3.4\%	137	118
Elwood city	8,403	8,424	8,422	8,432	8,472	8,507	8,509	8,547	8,596	8,601	8,614	-193	-2.2%	527	340
English town	627	627	631	629	637	637	640	637	645	645	645	-18.	-2.8\%	350	380
Etna Green town	591	590	587	589	589	586	585	583	585	586	586	6	1.0\%	170	171
Evansville city	117,963	118,288	118,915	119,442	120,154	120,296	120,263	120,207	120,095	120,075	117,429	$-2,132$	-1.8\%	565	309
Fairland town	579	579	578	581	582	582	582	583	584	585	315	-5	-0.9\%	258	252
Fairmount town	2,775	2,788	2,805	2,841	2,877	2,897	2,910	2,929	2,947	2,954	2,954	-172	-5.8\%	526	538
Fairview Park town	1,309	1,310	1,318	1,318	1,324	1,352	1,358	1,371	1,372	1,380	1,386	-63	-4.6\%	467	488
Farmersburg town	1,079	1,083	1,086	1,095	1,099	1,108	1,112	1,112	1,120	1,123	1,118	-41	-3.7\%	433	431
Farmland town	1,257	1,263	1,271	1,272	1,283	1,297	1,309	1,318	1,328	1,327	1,333	-71	-5.3\%	478	521

Indiana Population Projections

Select General Area	Select Year	Projections		Help Custom Region\square Group Counties
Indiana Counties	2020 V	Total, Functio	Groups	
Select Geography		\square Show \%	Total	
Jasper V		Get Data	Print	

Indiana Population Projections Jasper County, Total: 2020

Total	Preschool $\mathbf{0 - 4}$	School Age $\mathbf{5 - 1 9}$	College Age $\mathbf{2 0 - 2 4}$	Young Adult $\mathbf{2 5 - 4 4}$	Older Adult $\mathbf{4 5 - 6 4}$	Seniors $\mathbf{6 5 +}$
33,879	1,998	6,778	2,193	7,834	8,913	6,163

Notes: 2010 data are census counts from the U.S. Census Bureau. 2015 data are U.S. Census Bureau population estimates (Vintage 2016).
Metro areas that show (pt) include only projections for the Indiana counties in that area.
Source: STATS Indiana, using data from the Indiana Business Research Center, IU Kelley School of Business Produced on 1/8/2020 8:11:13 AM

Home \mid About STATS \mid Report a problem with this page \mid Privacy Notice
statsindana Imdiama Pomulation Projechons

Select General Area	Select Year	Projections		Help Custom Region \square Group Counties
Indiana Counties	2040 V	Total, Function	Groups	
Select Geography		(] Show \% of	Total	
Jasper v		Get Data	Print	

Indiana Population Projections Jasper County, Total: 2040

Total	Preschool $\mathbf{0 - 4}$	School Age $\mathbf{5 - 1 9}$	College Age $\mathbf{2 0 - 2 4}$	Young Adult $\mathbf{2 5 - 4 4}$	Older Adult $\mathbf{4 5 - 6 4}$	Seniors $\mathbf{6 5 +}$
37,906	2,287	7,915	2,019	8,101	8,573	9,011

Notes: 2010 data are census counts from the U.S. Census Bureau. 2015 data are U.S. Census Bureau population estimates (Vintage 2016).
Metro areas that show (pt) include only projections for the Indiana counties in that area.

Source: STATS Indiana, using data from the Indiana Business Research Center, IU Kelley School of Business
Produced on 1/8/2020 8:11:43 AM

Home | About STATS | Report a problem with this page | Privacy Notice

Wlilinformation

From:	Daryl Knip
Sent:	Tuesday, October 1, 2019 8:09 AM
To:	Charles Thompson; Allison Atkinson
Subject:	FW: NORWEJ Potential accounts

Chip \& Allison,
The information below is from Heather for the future flow connections. This is based on a GIS map of all homes within 800^{\prime} of a hydrant currently. Some of this extends outs past the Town limits, but I think that is ok.

Daryl Knip, P.E.
Vice President

Abonmarche

D 574.314.1020
C 574.220 .4512
O 574.232.8700
www.abonmarche.com

From: Heather Tokarz htokarz@gmail.com
Sent: Monday, September 30, 2019 1:29 PM
To: Daryl Knip dknip@abonmarche.com; Donna Shear dshear3831@gmail.com
Subject: NORWEJ Potential accounts

Daryl,
We have a total of 2059 properties that are 800 feet from a hydrant. 961 of them are connected to the public water supply. 75 more are signed up and are not connected. So the potential water connections are 1023. You can use that number as you see fit. I would be conservative since we are talking 800 feet from the hydrant.

Does that make sense?

Heather Tokarz

Town Manager
Town of DeMotte
112 Carnation St SE
DeMotte, IN 46310
Email: htokarz@gmail.com
Phone: 219-987-3831
Fax: 219-987-3836

Allison Atkinson

From:	Allison Atkinson
Sent:	Monday, December 2, 2019 8:56 AM
To:	LMELVIN@idem.IN.gov
Cc:	Iternied@idem.IN.gov
Subject:	RE: Question regarding Well \& New Building Proximity
Attachments:	$12-2-2019$ KVHS Floor and Site Plan.pdf

Good morning Liz,
Thank you to you and Lucio for your responses and for working with us on this.

I've attached a site plan and an interior plumbing plan which provides more detail regarding the situation. The project is a new halftime building for Kankakee Valley High School, located in DeMotte, IN.

The building area that will overlap into the sanitary radius contains one toilet and two floor drains within the overlap, all of which will be routed south, away from the well. Proposed sanitary lines are shown on both sheets. We have transferred your information about testing below to the school and they are amenable to completing more frequent and additional testing.

It should also be noted that this situation is temporary - the school's plan is to replace the well at a later date. Currently, KVHS is in conversation with the Town of DeMotte about connecting to municipal water.

Please let me know if you have any other questions or if I can further clarify the situation. My number is 317-682-7977 if you would like to speak about this.

Thank you,
Allison

Allison Atkinson
Staff Civil Engineer, El
C 317.682 .7977
O 219.850.4624
W www.abonmarche.com

From: MELVIN, LIZ LMELVIN@idem.IN.gov
Sent: Wednesday, November 13, 2019 6:36 PM
To: Allison Atkinson aatkinson@abonmarche.com

EXHIBIT B-4

Cc: TERNIEDEN, LUCIO LTERNIED@idem.IN.gov

You have spoken with Lucio already, but I might add more. If that well was drilled as a public water system well they would have had to control at least a 100 foot setback from all sources of contamination. If the building is that close they will be in violation of rule by encroaching into the setback area. If it was not a public water system well, it would be better to abandon it and drill a new well that meets the current standards. The well to current standards would have to have a minimum 5 inch diameter casing and have casing installed to at least 50 feet. This shallow well is in danger of being ground water under the direct influence of surface water. if it is found to be under the influence of surface water, a great deal of treatment would have to be installed to render it suitable for drinking water purposes.

As Lucio noted, we need to see more of the site. Drawings with all utilities, pipes, storm water lines, and any other sources of contamination within the 100 foot radius of the well. You may consider pulling some samples before you move on much more. At the very least you should check for bacteria and nitrate.

We would be happy to speak with you about this

LizMelvin, Section Chief
IDEM
Drinking Water Branch
Capacity, Certification, \& Permits Section
100 N Senate Ave MC66-34
Indianapolis, IN 46204
317.234 .7418

1OEM Yatues your leedbuk
Toge her tha mimutes and complete the briet surv.

From: Allison Atkinson [mailto:aatkinson@abonmarche.com]
Sent: Wednesday, November 06, 2019 3:11 PM
To: DWBMGR DWBMGR@idem.IN.gov
Subject: Question regarding Well \& New Building Proximity
**** This is an EXTERNAL email. Exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email.

Good afternoon,

I am a Civil Engineering consultant working with an institutional client that is planning on constructing a new building approximately 85 feet from an existing well. The well is shallow, about $30+/$ - feet deep.

The client is generally asking "is the building proximity okay", but more specifically, would there be any additional or more frequent testing requirements?

Thank you,
Allison

Allison Atkinson

Staff Civil Engineer, El
C 317.682 .7977

W www.abonmarche.com

CONFIDENTIALITY NOTICE: This e-mail and any attachments are for the exclusive and confidential use of the intended recipient. If you are not the intended recipient, please do not read, distribute or take action in reliance upon this message. If you have received this e-mail in error, please notify us immediately and promptly delete this message and its attachments from your computer system. We do not waive any work product privilege by the transmission of this message.

EXHIBIT B-4 KVHS Connection

Allison Atkinson

From:	Allison Atkinson
Sent:	Tuesday, December 3, 2019 11:19 AM
To:	Randell S. Peterson
Cc:	LMELVIN@idem.IN.gov; Iternied@idem.IN.gov
Subject:	$18-1331$ KVHS Wells - IDEM Follow Up

Randy,
I spoke with Liz Melvin with IDEM (cc'd on this email) this morning on the phone. She stated that the encroachment is fine, but the sanitary lines must be water grade within the area of the encroachment.

This decision was made because the encroachment is small and the lines are going away from the building. She also stated that IDEM would like to see the school connect to NORWEJ soon as this would definitively solve the problem.

Thanks,
Allison
Allison Atkinson
Staff Civil Engineer, El
C 317.682.7977
O 219.850.4624
W www. abonmarche.com

EXHIBIT B-5
 KVHS School Board Minutes

KANKAKEE VALLEY SCHOOL CORPORATION BOARD MINUTES OCTOBER 14, 2019

Board President, Mrs. Jill Duttlinger, called the meeting to order at 7:00 PM with all members present.

Ms. Lana Olson read the Kankakee Valley School Corporation (KVSC) Mission Statement.
Mr. Tim Helton presented the following Students of the Month for October:

Business/Family and Consumer Science	Brayden Pigg
Fine Arts	Emily Koontz
Foreign Language	Savannah Hansen
Health/Physical Education	Skyla Swigon
Language Aits	Madisyn DeKock
Mathematics	Mika Goin
Science	Aiden Sneed
Social Studies	Kaylee Miller
Technology/Career and Technical Education	Ty ler Martin

Public Participation at Board Meetings

- Patrons must be recognized by the presiding officer and will be requested to preface their comments by an announcement of their name.
- Each statement will be limited to three (3) minutes in duration.
- All statements shall be directed to the presiding officer; no person may address or question Board members individually or speak about specific personnel.

Patrons

KVSC student, Ryan Armstrong, apologized to the School Board. He had mislead his step-father regarding classroom incidents. This resulted in his step-father speaking at the previous School Board meeting to (unknowingly) register false concerns about a Kankakee Valley High School (KVHS) teacher. A meeting was held at the school and Ryan was assured that help is available if he needs it.

Approved the minutes of the regular meeting of September 23, 2019.
Motion: Mr. Jeff DeYoung
Second: Ms. Lana Olson
Vote: 7-0
Approved the Corporation Claims in the amount of $\$ 1,787,196.00$ and the Cafeteria Claims in the amount of \$82,031.72.
Motion: Mr. Jeff Groen
Second: Dr. Edward Habrowski
Vote: 7-0
DeMotte Town Manager, Heather Tokarz, spoke to the Board regarding expanding the water system. The town is running water to the industrial park and installing three (3) new wells. She requested the Board to consider if KVSC would like to join the water extension.

EXHIBIT B-5 KVHS School Board Minutes

BOARD MINUTES - SECOND PAGE

OCTOBER 14, 2019
Approved to accept the following resignations:

1. Kankakee Valley Middle School (KVMS) Art Club Sponsor, Kelly Jurkowski, effective September 12, 2019.
2. KVHS Dance Team Coach, Wendy Dunham, effective October 7, 2019.

Motion: Mr. Jeff DeYoung
Second: Mrs. Kristy Stowers
Vote: 7-0
Approved the following certified recommendation:

1. Judith McKean as a long-term substitute for the position of DeMotte Elementary School (DES) Third Grade Teacher, effective November 5, 2019 through February 18, 2020. Ms. McKean is currently a substitute teacher and will be filling a vacancy the result of a maternity leave.
Motion: Ms. Lana Olson
Second: Mr. Jeff Groen
Vote: 7-0

Approved the following classified recommendation:

1. Olga Ortiz as DES Instructional Aide, effective for the 2019-2020 school year, pending receipt of additional paperwork. Ms. Ortiz will be filling a vacancy the result of a transfer.
Motion: Ms. Lana Olson Second: Dr. Edward Habrowski Vote: 7-0
Approved the following extracurricular recommendations:
2. Coaches for the 2019-2020 school year:

Brian Lilley	Volunteer Fourth Grade Boys' Intramural Basketball Coach Fifth Grade Boys' Intramural Basketball Coach
	Fourth Grade Boys' Intramural Basketball Coach
Ba	Volunteer Fifth Grade Boys' Intramural Basketball Coach
Brian Flynn	Volunteer Fourth Grade Girls' Intramural Basketball Coach Fitth Grade Girls' Intramural Basketball Coach
	Fourth Grade Girls' Intramural Basketball Coach
She	Volunteer Fifth Grade Girls' Intramural Basketball Coach
Jeremy Rozhon	Winter Weight Room Supervisor

2. Aaron Webster as Volunteer Eighth Grade Boys' Basketball Coach for the 2019-2020 school year.
3. Sarah Kennedy-Ketchem, as KVMS Art Club Sponsor for the 2019-2020 school year.

Motion: Mr. Jeff DeYoung Second: Mrs. Kristy Stowers Vote: 7-0
Approved the following leaves:

1. A one (1) day reduction in contract for Wheatfield Elementary School (WES) Social Worker, Kaye Workman, effective October 8, 2019.
2. An extended medical leave for Kankakee Valley Intermediate School (KVIS) Fourth Grade Teacher, Tanya Bessler-Roach, effective October 7-25, 2019.
3. A five (5) day reduction in contract for KVMS Seventh Grade Social Studies Teacher, Will Oates, effective November 11-15, 2019.
Motion: Mr. Jeff Groen
Second: Mr. Tim Helton
Vote: 7-0

EXHIBIT B-5

KVHS School Board Minutes

BOARD MINUTES - THIRD PAGE

OCTOBER 14, 2019
Approved the amendments to the Student Resource Officer (SRO) Agreement, as per the attachment.
Motion: Dr. Edward Habrowski Second: Mrs. Kristy Stowers Vote: 7-0
Approved Resolution 2019-10, allowing the Superintendent and/or the Chief Financial Officer to authorize the appropriate adjustments in order to achieve a balanced budget for 2020.
Motion: Dr. Edward Habrowski Second: Mr. Jeff Groen Vote: 7-0
Approved Resolution 2019-11, allowing the Board of Trustees to adopt the "2020 Capital Project Plan."
Motion: Ms. Lana Olson
Second: Dr. Edward Habrowski
Vote: 7-0
Approved Resolution 2019-12, allowing the Board of Trustees to adopt the "Bus Replacement Plan."
Motion: Mr. Jeff DeYoung Second: Dr. Edward Habrowski Vote: 7-0
Approved Resolution 2019-14, Resolution for Appropriations, Tax Levy, and Tax Rates.
Motion: Ms. Lana Olson Second: Mr. Tim Helton Vote: 7-0
Approved a delay of the E-Building remodel, which had previously been approved to begin in Fall 2019.

Motion: Mr. Jeff DeYoung Second: Mr. Jeff Groen Vote: 7-0
Approved the proceeding redistribution for the KVHS cafeteria remodel during the summer following the 2019-2020 school year: the cost is not to exceed $\$ 1,800,000.00$ (one million, eight hundred thousand dollars) and will be funded through the Operations Fund and Rainy Day Fund. Motion: Dr. Edward Habrowski

Second: Mr. Jeff DeYoung
Vote: 7-0
Approved to award the Contract for Progressive Design-Build Services for the 2019-2020 Building Improvements Design-Build Building Project to Larson-Danielson Construction CO, INC, as the Design-Builder and Best Value Proposal, and to grant them authorization to begin Phase 1Progressive Design-Build services.
Motion: Mr. Jeff Groen
Second: Mr. Jeff DeYoung
Vote: 7-0

Approved the following Field Trips:

1. KVHS Future Farmers of America (FFA) - State Soil Judging Contest Adams Central High School - Monroe, IN
October 17-19, 2019
Garrett Bitterling, sponsor.
2. KVHS FFA - National FFA Convention and Expo

Lebanon and Indianapolis, IN
October 31-November 1, 2019
Garrett Bitterling, sponsor.

EXHIBIT B-5
 KVHS School Board Minutes

BOARD MINUTES - FOURTH PAGE

OCTOBER 14, 2019
Approved the following Field Trips (CONT):
3. KVHS Student Council - Annual State Convention Gibson Southern High School - Fort Branch, IN
November 1-3, 2019
Jennifer Gilger, sponsor.
Motion: Ms. Lana Olson
Second: Mr. Jeff Groen
Vote: 7-0
Approved the following Use of School Facilities:

1. Wheatfield Lions Club - Annual Halloween Parade/Costume Contest

WES - PA system
6:30-8:30 PM; Thursday; October 31, 2019
Thomas Strain, sponsor.
Motion: Ms. Lana Olson
Second: Mrs. Kristy Stowers
Vote: 7-0

Approved the following Professional Leaves:

1. Ellyn Hindle and Mitchell Aubuchon

Indiana Foreign Language Teachers' Association Conference
Indianapolis, IN
November 1-2, 2019.
2. Staci Beckrich, Matt Bristol, Robin Dietrich, Chelsey Dunleavy, Shannon Scheurich, and Jodi Tobias
Hoosier Educational Computer Coordinators (HECC) Conference
Indianapolis, IN
November 5-8, 2019.
3. Sheryl Sako and Wanda Dougherty

Art Education Association of Indiana Annual Conference
Vincennes, IN
November 8-9, 2019.
4. Amy Chapleau

Indiana School Safety Specialist Academy Basic Training
Indianapolis, \mathbb{N}
November 11-12, 2019.
5. Kaitlyn Faust

Indiana Learning Evaluation Assessment Readiness Network (ILEARN) Alignment
Study Meeting for High School Biology
Indianapolis, IN
November 11-12, 2019.
6. Kelly Jurkowski and Helena Jancosek

Response to Intervention (RTI) at Work
Grand Rapids, MI
November 13-14, 2019.

EXHIBIT B-5
 KVHS School Board Minutes

BOARD MINUTES - FIFTH PAGE

OCTOBER 14, 2019
Approved the following Professional Leaves (CONT):
7. Danielle DeFries, Meghan Moriarty, Erica Plotner, and Christina Gulbrandsen

National Science Teaching Association (NSTA) Regional Conference
Cincinnati, OH
November 14-16, 2019.
8. Bill Mueller

National Athletic Directors Conference
Washington, DC
December 13-16, 2019.
Motion: Dr. Edward Habrowski Second: Mrs. Kristy Showers Vote: 7-0
Communications
JCPL Community Connection - October 2019
Adjournment: 7:36 PM
Motion: Dr. Edward Habrowski Second: Mrs. Kristy Showers Vote: 7-0

Dr. Edward Habrowski
Secretary

EXHIBIT B-6 NORWEJ Board Minutes

Northwest Jasper Regional District (NORWEJ) November 25, 2019
Minutes of Meeting: Board of Trustees
The Board of Trustees of Northwest Jasper Regional District met in DeMotte Town Hall, 112
Carnation ST SE, DeMotte, IN on November 25, 2019 at 6:00 PM in regular meeting pursuant to call in accordance with the rules of the board.

Present

Andy Andree	Don Goetz
Peggy Michelin	Jeff Cambe
John Price	Mark Boer

Kent Bierma
Andy Andree, who presided, called the meeting to order.

Minutes

Don Goetz motioned to approve the October 28, 2019 minutes. Peggy Michelin seconded and motion carried.

Financial Report:

Don Goetz reported on the financial report. All accounts have been reconciled and approved. Operating account balances as of October 31, 2019 were $\$ 277,876.54$ and the Bond and Interest Account is $\$ 594,861.33$. A fund report was given to the board members to show the current balances. Kent Bierma motioned to accept the financial report. Mark Boer seconded. Motion carried.

New Business:

There was no new business to report

Old Business:

Water Department Report

Bob Barton asked for approval to purchase one piece of test equipment. The water plant currently has this piece of test equipment, but he would like the new one for a spare and so that they will have one for the new water plant. The cost of the test equipment is $\$ 1,200$. Don Goetz made a motion to approve the purchase of the new piece of test equipment in the amount of $\$ 1,200$. Kent Bierma seconded the motion. Motion carried.

Bob Barton stated that he would like to have permission to get bids for a valve exerciser. This would make opening valves easier and take less time. The board asked Bob to get at least two bids and come back next month. They also asked Bob to research what other water companies do to open valves.

Bob Barton asked the board on how to proceed with the resident at 1101 Begonia St SE who will not claim her Warning Letter advising that the b-box is buried and needs to be uncovered. The board recommended having the police deliver the letter to the homeowner.

Engineer Report

Daryl Knip was unable to attend the meeting. Allison Atkinson from Abonmarche attended in his place.

Allison Atkinson gave an update on the SRF loan. Allison said the paperwork has been submitted and is currently under review.

EXHIBIT B-6
 NORWEJ Board Minutes

Allison Atkinson stated that the archeology review is completed and that there were no findings. Everything is all good there.

Allison Atkinson said that she will review the well fields in December and January. Daryl will send over information regarding the I-65 agreements to Emily Waddle's office for review.

Office Report

Heather Tokarz reported that an agreement is needed with KV School Corporation in regards to connecting to the water. Heather would like permission to proceed with getting more people involved with setting the terms for the agreement. Heather said she will check with BakerTilly and have them review Daryl Knip's numbers. The board asked Heather to proceed with working on setting the terms of the agreement with KV School Corporation.

Heather Tokarz informed the board in regards to the water account for the DeMotte Little League. They have a two inch meter for their water service, which has two radio read identification numbers for reading the meter. One is for the high usage and the other is for the lower volume of usage. When this information was entered into the billing system, the numbers were reversed causing their usage to show higher than what was actually used. This was found when the Little League questioned their most recent bill. After a thorough review of the account, it was discovered that they are owed a refund of approximately $\$ 3,200$.

Heather Tokarz stated that Donna Shear had processed and filed water liens on thirteen accounts. These are accounts that were signed up for water but never connected, and are being billed monthly per the water agreement they signed. Letters will go out to these property owners tomorrow advising them of the lien.

Heather Tokarz stated that Donna Shear submitted the 2020 Budget paperwork that is required by Rural Development. The deadline is December $1^{\text {st }}$ and the paperwork was sent to them today.

Motion to adjourn by Kent Bierma and seconded by Peggy Michelin. Motion carried.

EXHIBIT B-7
Notes from a Call with INDOT and Love's for I-65
$4800-10^{\prime \prime}$ Pipe $=13.5$ feet of drop + Manholes

loves	$10,000 \mathrm{gpel}$	$\$, 00,000$
TiA		254000
InpUT	20,000 gid	$\$, 000,000$

UNDO - $\$ 800.900 k$ tent. agreement - Salt cone on sewer too.

Utility schedule - live by spring...

Appendix C Flow Calculations

*Note: 961 is the number of service connections indicated in Appendix B describing homes within 800 - ft of a hydrant.

MRO Data

Manth	Year	Avg. Gal. Treated	Max Gal. Treated
October	2013	100,000	259,000
July	2014	110,000	203,000
fanuary	2015	140,000	199,000
February	2015	116,000	155,000
May	2015	128,000	314,000
June	2015	130,000	294,000
August	2015	138,000	278,000
September	2015	172,000	260,000
October	2015	127,000	171,000
November	2015	148,000	429,000
December	2015	118,000	194,000
January	2016	125,000	256,000
February	2016	123,000	197,000
May	2016	138,000	220,000
March	2016	121,000	129,000
April	2016	160,000	394,000
June	2016	155,000	253,000
August	2016	141,000	245,000
October	2016	134,000	210,000
July	2016	154,000	238,000
September	2016	144,000	223,000
November	2016	153,000	452,000
December	2016	128,000	233,000
May	2017	140,000	238,000
July	2017	148,000	298,000
September	2017	147,000	225,000
August	2017	147,000	185,000
October	2017	153,000	382,000
November	2017	125,000	182,000
December	2017	135,000	202,000
February	2018	133,000	154,000
March	2018	132,000	138,000
April	2018	156,000	396,000
June	2018	158,000	196,000
August	2018	168,000	373,000
September	2018	154,000	238,000
October	2018	151,000	429,000
December	2018	136,000	192,000
January	2019	134,000	188,000
February	2019	150,000	278,000
March	2019	144,000	199,000
May	2019	136,000	237.000
June	2019	156,000	312,000
April	2019	149,000	430,000
July	2019	156,000	243,000
August	2019	158,000	245,000
October	2019	146,000	356,000
September	2019	160,000	417,000
	Average =	141,146	261,229
	Max =	172,000	452,000
	Min $=$	100,000	129,000

[^1]EXHIBIT C-2

*PF Peak Factor is taken from the Existing System Daily Demand Peak Factor
** Note: FF calculated as 1500 -gpm for two hours for one day. ($1500-\mathrm{gpm} * 60-\mathrm{m} / \mathrm{h} * 2-\mathrm{h}=180,000-\mathrm{gal}$)

Projected 20-yr Water Use

$Q_{2030}=A D C D 10+A d d t^{\prime} 1 A D C D$

ADCD10 (gpd)		Addt' ${ }^{\text {a }}$ ADCD ($\mathrm{g} p \mathrm{~d}$)	Q $\mathrm{Rosa}_{\text {(gpd) }}$
	172,000	283,340	455,340
			316

$P Q_{2038}=A D C D 10+A d d t^{\prime} l P D C D$

$1,083,860 \frac{1,255,860}{872} \mathrm{gmm}$
$\mathrm{Q}_{2038}=$ Water Usage, Year 20 (2038)
ADCD10 $=$ The highest average daily demand as reported on the MROs over the previous ten (10) year period Addt' $A D C D=$ Added average daily consumer demand in gallons per service connection per day

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

									nticlpeted F				
Tax Ownar mama	!	Housa Number	Proparty Address	Usar	Mep ${ }^{\text {\# }}$	Meter	Single Family Realdanca $\stackrel{\square}{3}$	$\begin{gathered} 2 \text { Bedroom } \\ \text { Unit } \end{gathered}$	$\left\lvert\, \begin{gathered} 1 \text { Bedroom } \\ \text { Unit } \end{gathered}\right.$	Commarelei	Schoois	Total	Comments
WLLIAMS, MICHAEL DA		713	157 TSTSE		135								
WAY, ROY ALLEN \& LSA JEAN		801	15TH STSE		138								
		802	15 THSTSE		137								
		809	15THSTSE		138					400			20 employees © $\mathrm{m}^{20 \mathrm{gpo}}$ eech
KAPER S BUILDING MATERILIS INC		817	$\frac{15 T H S T S E}{15 T H S T S E}$	1	140	1				200			10 employeas es 20gpd each
WALSTRA, JOHNA	İ $\frac{1}{}$	${ }_{832} 631 / 2$	15THSTSE		141								
KAMMINGA, HARVEY LE EORMAJ		$8381 / 2$	$15 T H$ ST SE		1412								
WALSTRA, PETER JINC DEMOTTE AMERICAN IEGION POST		1011	15 THSTSE	1	143	1				900			300 seats ¢ 3 3pd each
DEMOITEAMEREANEL BERNARD -		1318	15 TH ST SE		144								
PEREGRINE BARBARA $1 / 2: / 8$		1612	15 TH ST SE		145								
		1832	$15 T M$ ST SE		146								
SOLONEY, MICHAEL S \& BECKYA		1832	15TH STSE		148								
TOPPEN, MELVINJ\&RTTAJ		217,223	15 TH ST SE		155								
VANKORP CORPORATON:			15 TH ST SE		151								
			15 TH ST SE		152								
			1 15TH ST SE		154								
JonkMAN, MARILYN			15 THSTSE		155								
			15THSTSE		156								
RUSARD, MARY A			15 TH STSE		157								
SCHULTZ ROBERT LG MAUREENJ			15 TH STSE		158								
SOLOMEY, MICHAEL \&MMARY			15 TH STSE		159								
STATE OF INDIANA HWY 231			$15 T H$ ST SE		161								
STATE OFINDIANA HWY 231			15 THSTSE		162								
ZELDENRUST, MARY			$15 T H S T S E$		163								
STATE OF INDANA HWY 239			15 THSTSE		164								
STATE OF INDIANA HWY 231			15 HM ST SE	1	165	1				200			
SCHULTZ ROBERTL\& MAUREENJ		1008	15 THSTSE		167								
		322	$15 T H$ STSW	1	168	1	500						
ROMAN CATHOLIC DICCESE OF		334	15THST SW	1	169	1				1000			250 seals w/ weming kichan
CUNNINGHAM, RICHARD I I JOANN		408	15 THST SW	1	171	1	500						
MALI, DAVE A \& DORQTHYA		409	$1.5 T H$ ST SW		171								
DEMOTIE CHRISTAA SCHOOL		500	15 15H ST SW		172	1					3250		130 Students \& Staff
		641 812	1 15THSTSW		174								
VANDERMOLEN, T MARVIN: BROUWER JASPER ARIE \&		812	1 15THST SW		175								
BROUWER JASPER ARIE \& BIGBIE JOHN F\& BEITY L.		701	15 THST SW		178								
CHURCH, FIRST CHRISTAN REFORMED OF DEM		703	15THSTSW	1	177	1				1000			250 seeis $\mathrm{W} /$ Warming kichan
KAPER, MARILYN WERS		$\frac{721}{}$	15 TH ST SW		178	1				450			450 players \& splecs (0. 1 gpd each
TOWN OF DEMOTTE		FOD-SOCCER	15TH ST SW	1	180	1				500			500 pleyers \& specs (0) 1 gpd each
TOWN OF DEMOTTE,		OD-UITLELEAGU	15 TH ST SW		181								
VANDERMOLEN, TMARVIN.			15 TH ST SW		162								
VANDERMOLEN, TMARVIN			15 TH ST SW		183								
CHURCH, THE CHRISTAN INC		${ }_{121.125}$	$\begin{aligned} & 15 T H \text { ST SW } \\ & \hline 15 T H S T S W \\ & \hline \end{aligned}$		184								
SCHULTZ, TMOTTYM \& R REBECCAA		$\frac{121,125}{121}$	$\begin{aligned} & 15 T H \text { ST SW } \\ & \hline 16 T H P L S W \\ & \hline \end{aligned}$	1	186	1				800			150 seets W/ wamang kitchsn
CHURCH, FAITH LUTMERAN CORP		$125 \mathrm{~A}, \mathrm{~B}$	16 THPLSW		187								
DEKOCK JOHNA A RUTHA			1 19TH PLS SW		188								
HENNIM, ROBERT D \& EARBARAL		113	18 TH ST SE		189								
		125		1	191	1	500						
LUEDTKE JOSHUA J A SHERIL		125	$\begin{aligned} & \text { 16TH ST SE } \\ & \hline 18 T H \text { ST SE } \end{aligned}$		192		500						
NANNENGA, GILBERT H\& BETTYJ		205	$16 T H$ ST SE	1	183	1	500						
TOPPEN, MELVIN J R RTAJ		206	18 THSTSE	1	194	1	500						
SHELBOURNE, RONALDGE		408	16 TH ST SE		195								
VANKORP CORPORA	Ion	412	18 TH ST SE		196								
VANKORP CORPORATION		418	1 18TH ST SE		198								
TOPPEN, MEEVINJ\& RITAJ		104	16 TH ST SE	1	199	1	500						
		414	17 TH ST SE		200								
VANKORP CORPORATION GRANDINNOVATIONS INCIALEXANDER KELIYM		501	17THSTSE	1	201	1	500						

EXHIBIT C-3 2011 Design Flows

EXHIBIT C－3 2011 Design Flows

 $80^{8} 8$
88 $0 \begin{gathered}8 \\ 8 \\ 0\end{gathered}$
为荅药
$\stackrel{0}{6}$
药
（

EXHIBIT C-3 2011 Design Flows

							Antleipatad Flowr						
Tax Ouner	,	House Number	Propert Adames	User	Man*	Metar	Single Family Ranldance	$\begin{array}{\|c} 2 \text { Badroom } \\ \text { Unlit } \end{array}$	$1 \text { Bedroon } \begin{gathered} \text { Unlt } \end{gathered}$	Commerctal	Schools	Total	Commenta
PRARIELANOING		1028	ITHAVENW		338								
TRPESKK, ZORAN \& KA	RIE		STH AVENW		${ }^{337}$								
FARREL L EDWAROW		404	gTt AVE NW		${ }^{338}$								
RUSSELI, JUSTINL	NDREEA	124	ath St NW		339								
KRUEGER SCOTTE		${ }_{405}^{404}$	$\frac{\text { GTHST NW }}{\text { gTHSTSE }}$	1	340	1	500						
KAMMINGA, PAULH \&	KARENK	124 208	${ }_{\text {gTTHSTSE }}$		${ }_{34} 34$								
FRITIS, STEPHEN CAR	LĖSHARON	229	STH ST SE	1	343	1	500						
FIGG. MLIAM J\& LAU	REITA	371	${ }^{\text {BTHTST ST }}$										
WOOOS. RACHAEL M8	Josephr	711	-6THST SW	1	${ }_{346}$	1				330			2500 st + 4 empioybes
HOLLANOALL INVESTM	I	$\frac{117}{117}$	TTH STSE	1	${ }_{34}$	1							
EPLEY, PAULJ 2 CAR	LA !	119	TTHSTSE		348								
ZYLSTRA, RUDOUPHN	TRACYL	121	${ }_{\text {THTSTSW }}$		350								
HENNING, JILLO		124	TTHSTSW		351								
ZELDENRUST, MARY	Jor	${ }_{710}^{303}$	$\frac{\text { THSTSW }}{\text { THS STSW }}$	$\frac{2}{2}$	$\frac{352}{353}$	$\frac{2}{1}$			400				
VS, ARLENJ J VIRGGIN		716	7 THSTSW	2	${ }^{354}$	2			400				
AKITLI DAVIT W ESU	SAN:		THHSTSW		355 356				400				
ARNOD, ERENDAJ	DIANEJ	${ }^{311}$	TH STSW	$\frac{2}{2}$	357	1			400				
WOODS, MARGARET		$\frac{327}{325}$	THSST SW	$\frac{2}{2}$	${ }_{359} 3$	1			400 400				
ARNOLD, 日RENDAJ	CORRINE	335	$\frac{\text { THTST SW }}{\text { THAVE NE }}$	2	${ }_{360}$								
CASHDOLLAR, SUZAN		200	gTHAVE NE		361 362								120 Rs 8 nursas +6 staff
KNGMA ROY E 128	\& SUSANM	${ }_{820}^{529}$	$\frac{\text { gTHAVE NE }}{\text { gTHAVE }}$	4	362 363	4				1020			-
CADER, FRANKJ S CA	HERTINEM	705	gthavene		364								
MEERS, JEFFERY S EA	NNETA	201	GTTH AVE NW		365 368								
EANKOF NEW YORK	EERESAK	215	ETHAVENW		387								
ALLEN, MICHAELD\&	NDAAS	223	BTHAVENW	1	${ }^{386}$	1	500						
FAGENBAMM, DAVIDL	EWANDAD	$\frac{302}{316}$	StHAVENW		369 370								
Jabluc		${ }^{335}$	gThave w		371								
THOMAS, RANDALI F	R	${ }_{4}^{338}$	ETHAVE NW		372 373								
DAFI, DAYD HII SORDON E MEL	ISSAA	428	ETHAVENW		374								
MUFFETT, PATRICLAA	3 DENNS M		$\frac{\operatorname{BTH} \text { AVE NW }}{\text { BTH AVE }}$		${ }^{375}$								
SCHULZ, TINOTHYM	A REBECCAA	$\frac{518}{805}$	BTHAVENW		${ }^{377}$								
OKELEY, JMMES M ${ }^{\text {a }}$ S	ACYL	613	BTHAVE NW	1	${ }^{378}$	1	500						
MCEAN, CHARLES ES	JPYCE	7704	$\frac{\text { gTHAVENW }}{\text { gTHANE NW }}$		3380								
DEWES, ANSE VAN KIL		720	git Ave nw		381								
SELLC		${ }_{3238}^{3238}$	BTHAVENW		${ }_{383}^{382}$								
SCHROEDER, JACKE	ERESAK	323 D	BTHAVENW		384								
ALIEN, MICHAELD 8.	NDAS		STHAVENW		385 388								
SCHULTZ ROBERTL8 NANNENGA, BEVERLY	MAUREENJ	$\frac{327}{810}$	$\frac{\text { PTH PL SE }}{\text { ETHPLSW }}$	$\frac{2}{4}$	${ }^{3887}$	$\frac{2}{4}$			800				
CRANE, JODIJ		820	${ }^{\text {BTHPLSWW }}$	1	388 389	1	500						
ENGE MART, LEO MIII		${ }_{838}^{838}$	${ }_{\text {BTHPLSW }}^{\text {STHPLSW }}$		339								
		${ }^{833}$	8THPLSW	2	339	1			400				
\| HICKORY COURTLC		717.721	${ }_{\text {PTHPLSW }}^{\text {ETHPLSW }}$		${ }^{393}$								
KOPANOA, JOSEPHEJ	REJOANT	824 C	ETHPLSW		394.								
ROBINSON, CAROLLAIR		${ }_{828 \mathrm{C}}$	9THPLSW		395								
SIBICLC, JERRY J C CY	NTHIAI	${ }_{8}^{832} \mathrm{~A}$ A	$\frac{\text { BTHPLSW }}{\text { BTHPLSW }}$		389 397								
HOLAND PROPERTIES	HC3/48		ETHPLSW		398 398								
HOLIANDALE INVESTM	NTS INC		- ${ }_{\text {OTH PLSW }}$		399 400				200				
ZELINC VANKEPPE, GERRIT		822 -	Sth ST	1	407	1							
MOOLENAAR, Lorrain	ESUE		8THST		402								

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

										Anticipented	Howz			
		Houen Number	Propaty Addrese		Uner	Map*	Metar	Singin Fumily Residence	$2 \text { Bedraom }$	$\begin{gathered} 1 \text { Bedroom } \\ \text { Unit } \end{gathered}$	Commarclal	Schoole	Total	Commants
俍		607	ALMONDSTSW											
		1508	ALMONDSTSW		2	608	2			400				
		1507	ALMONDSTSW			607								
		1517	ALMONDSTSW		2	606	1			400				
HUBERS, DAVID \& KIMBERLY SUE		$\frac{1530}{1817}$	ALMONDSTSW		2	609 610								
		1621	ALMONDSTSW			611								
SOUTH POINT TERRACE GARDEN		1821	ALMONDSTSW		1	${ }_{812}^{813}$,			200				
ZELDENRUST, MARY		1822 1825	ALMONDSTSW		1	613 614				200				
		1629	ALMONDSTSW		1	65	1			200				
DAVIS, BEVERLYL		1633	ALMONDSTSW		1	${ }^{618}$	1			200				
EERTIG, FAMILYLVING TRUST		${ }_{1035}^{1654}$	ALMONDSTSW		$\frac{1}{2}$	$\stackrel{817}{818}$	$\frac{1}{2}$			400				
WALSTRA, WLCILEVANTUREN JACOB J\&DONNAM		1654 1880	ALMOND ST SW		$\stackrel{4}{4}$	619	4			600				
VANUUREN MACOB J8 DONNAM		1701	ALMONDSTSW		1	620	1			200				
PEO,LINDAS		1705 1709	ALMONDSTSW		1	$\frac{621}{622}$	1			$\frac{200}{200}$				
MARKO, JERRY YA LUNDA BULT, BESS		1713	ALMONOSTSW		1	623	1			200				
KUNTARICH, ROEERTL L R RADMIA		1717	ALMONDSTSW		1	${ }_{624}^{625}$	1			200 200				
NiEHOF CORNELUS $\&$ ELAINE HUBERS, SYLVAN \& BERNICEA		$\frac{17521}{151518}$	$\frac{\text { AlMOND STSW }}{\text { ALMONO ST SW }}$		1	${ }^{625}$	1			200				
ZORNIGER FAMLY TRUST.		1520, 1524	ALMONDSTSW			627								
		613	AZALEAST SE		1	626	1	500						
HOLLEMAN, GERRIT \& ELAINE WINEINGER, DEBORAH		614 619	AZALEA ST SE			$\underline{630}$								
ORR, SANDRAV		621	AZALEASTSE			${ }^{631}$								
POSTMA, LARRYARTERESA		622	AZAIEA ST SE			632								
A ${ }^{\text {AXTELL } \text { DAMD W\& SUSANL }}$		$\frac{629}{801}$	AZALEAST SE			${ }_{633} 6$								
DEEVRIES, GERRIT H \& DIANNES		${ }^{804}$	AZALEASTSE		$\frac{1}{1}$	635 636	1	$\frac{500}{500}$						
		${ }_{605}^{809}$	AZALEA ST SE		1	636 637	1							
DEVRIES, JEFFERY K KATHPY L		817	AZALEAST SE		1	${ }_{638}^{638}$	1	500						
ENGLAND, WALTER REKAYL		822	AZALEAST SE		1	640 6	1	500						
JUNG, PAULIII A AMEER		829	AZALEAST SE			641								
WLIAMSON, BRUCED		${ }^{830}$	AZALEASTSE		1	${ }_{642}^{643}$	1	500			300			100 gaots w/o kitchen
SCHULTZ, ROBERT LEMMUREENJ		${ }^{8368}$	AZALEASTSE		1	644 645	1	500						
NEES. DONALDIREVLT		916	AZALEA ST SE			645 648								
		918	AZALEAST SE		1	${ }_{648}^{648}$	1	500						
SCHULTZ. MAUREENJ		$\stackrel{922}{1013}$	AZZALEASTSE		1	646	1	500						
WILSON. RITCHARO K EMELVIN		1021	AZALEASTSE		1	649	1	500						
		1106	AZALEASTSE			${ }_{651} 6$								
		1204	AZALEAST SE		1	652	1	500						
MYERSCONSTRUCTIONCO		1201	AZALEASTSE		4	653 654	4			${ }_{6000}^{800}$				
MYERS CONSTRUCTION CO		${ }_{1210}^{1209}$	AZALIEASTSE		4	6.55	4			800				
ORSBURN MAPKK D DENSE		628, 630	AZALEAST SE			${ }^{565}$.								
ENGLAND, WALTER R \& KAYL			AZALEAST SE			${ }_{858}^{65}$								
ENGLAND, WALTER R K KAYL			AZALEASTSE			${ }_{659} 6$								
			${ }_{\text {AZALEAST SE }}$ AZAIEA ST SE			$\frac{660}{661}$								
SCHULTS ROBERİ	Malreen -		AZALEA ST SE			862								
MULTITSTATE CAR WASH LM PARTN			AZALEAST SE			${ }_{664}^{663}$								
ZYISTRA, RUDOLPHNIR		601	AZALEASTSW			665								
ADCOCK, JASON A M MEISSAK		606	AZALEAST SW			${ }_{667}^{668}$	10			2000				
GOUWENS, ROY Y DEEORAHR		$\stackrel{200}{211.219}$	PEGONASTN		0	686								
FRITS TOM		122	BEGONA STSE			669								
BULT, CORA GROWN SHIRLEY \&		5	EEGONIA STSE		1	671	1			200				

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

									nicipmador					
Tax Owner namo		Houso Number	Proporty Addrans	Usor	Мар ${ }^{\text {a }}$	Meter	Single Family Residence	$\begin{gathered} 2 \text { Bedroom } \\ \text { Unit } \end{gathered}$	$\begin{aligned} & 1 \text { Bedroomt } \\ & \text { Unit } \end{aligned}$	Commercial	Schoois	Total	Comments	
BOER, MARK W \& KAREN C			BEGONA ST SE		739									
SCHUULTZ ROBERT LEON -			BEGONA ST SE		740									
JASPER COUNTY PUBLIC LIARARY			BIRCH ST		741									
			BIRCHST		742									
FIELOHOUSE, DAVID L A CONN:			BIRCH ST		743									
RAWLIS, ROBERT L 8		305	BIRCH ST NW		744									
EENIGENTURG, DALE A \& MARIE G		312	BIRCHST NW		745									
CANTWEU, ROBERT KII \& RANSFORD, CHARLES L \&		324	BIRCH ST NW		748									
		329	BIRCHSTNW	1	747	1	500							
MCCOM, RUSSEL KENNETH \&		344	BIRCH ST NW		748									
		345	BIRCH ST NW	1	749	1	500							
CROFFORO, TONY \& \& KARENM		413	Birch ST NW		752									
SHERMAN, ROBERT E \& BARBARA J		414	BIRCHSTNW		753									
SHERMAN, ROBERT E\& BAREARAJ		414	BIRCH STNW		754									
DANIELS, VINCENT \&		425	BIRCHST NW		755									
NANNENGA, JASON \& . ESSSICA VANKEPPEL JOHN \& NORMAJ		438	BIRCH ST NW		757									
		437	BIRCH ST NW		757									
STEFFEL, LAWRENCE JT A A		500	Birch st NW	1	759	1	500							
BARR, THOMAS A\& PAMELAL		$\frac{507}{517}$	BIRCH ST NW	1	7780									
STEPANEK, JOHNM	L	520	BIRCHST NW		761									
TTIOMPSON, SIDNEY \& ANITA		527	BiRCH ST NW		788									
LSSBY, THOMASA A L LNOAL		532	BIRCHST NW		763									
FEIT, OAVIDA\& JENNIFIERA		804	BIRCH ST NW		789		500							
KUIKEN, DALE M 8 LAURA J:		805	BIRCHST NW	1	785	1								
SPANGLE, DAVID E		618	BIRCH ST NW		767									
		628	BIRCH ST NW		768									
LABASH, GEORGEA\& VINCENTA		629	BiRCH ST NW		769									
TAP SFAMILY LIMITED -		638	BIRCH ST NW		70									
LEWANOOWSKI, ROBERT J \&		708	BIRCH STNW		771									
RANSFORD, CHARLES L\& CYNTHIA		709	BIRCHSTNW	1	773	1	500							
			BIRCH ST NW		774									
GRANTER, WIUIAM H EDANAL		504	BIRCH STSW		775									
TURNER, LOUISEA		505	BIRCH STSW		778									
		$\frac{513}{514}$	GIRCH ST SW		7778									
BOON, CHRISTOPHER R \&		514	BIRCH ST SW		779									
SHERIDAN, AUBRAR \& LAVERNE E		521	BiRCHSTSW	1	780	1	500							
SWANSON, LARRY WAYNE REVOC LVTR		529	BIRCHSTSW	,	781	1	500							
NANNENGA, ROBERT E\& MILDRED		533	BIRCHSTSW		788									
TORRENGA, DAVID A \&IRUTTH		5388	BIRCH STSW		784									
SCHULTZ, TERRANCE GENE		604	$\begin{aligned} & \text { BIRCH ST SW } \\ & \text { BIRCH ST SW } \\ & \hline \end{aligned}$	1	785	1	500							
		605	BIRCH STSW		786									
GRANDCHAMP, KETH \& DIANEL	EENIGENBURG, RICHARD Jia	613	BIRCHSTSW	1	787	1	500							
KiSTLER, STEPHEN M 9 JULEEA		621	BIRCH ST SW	1	788	1	500							
SANNENGA, RANDY		622	BiRCH ST SW		789									
		837	BIRCH STSW	1	791	1	500							
HOEKSTRA, THEODORE H 8OONNAJ		8305	Birch St SW		792									
PSK FAMILY LIMITED PARTNERSHIP		734	BIRCHSTSW	2	793	2			400					
JASPER COUNTY PUBLC LIERARY		901	BiRCHSTSW	1	794	1				800				
BARKER, VIRGIL \& HELEN		924	BiRCH ST SW	1	795	1	500							
JASPER COUNTY PUBLIC LIERARY			Birch ST SW		796									
SPURGEON, JEFFREYA		600			798									
PEREZ, ARIE \& MELANIE JCZAPLA		1004	BIRCH ST SW		799									
COFFER, EVEIYN		1020	BIRCH ST SW		800									
YANKAUSKAS, RACHELR		1305	BIRCHST SW		801									
FIELDHOUSE, DONALD $\%$		1317	BIRCH ST SW	1	802	1	500							
		1301	BIRCH STSW		804		500							
FIELHOUSE, DAVIDL 8 CONNIESJASPER COUNTY PUBUC LIBRARY			BIRCH STSW		805									

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3. 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

∞

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

EXHIBIT C-3 2011 Design Flows

Appendix D Production Well Data

Record of Water Well

Indiana Department of Natural Resources

Date Completed
10/30/2003

Reference Number 380565	Driving Directio
Owner-	
Contractor	
Owner	Name
Driller	TOWN OF DEM
	PEERLESS MID
Operator	AL MARTINDAL
	OC
Construction Details	
Well	Use: Test
	Depth: 48.0
	Length: 45.0 Length: 5.0 Casing
	Slot Size: .010

Drilling Method: HOLLOW STEM
Pump Setting Depth: Not available
Material: PVC
Material: PVC

Test Rate: Not available
Static Water Level: 6.6 ft .

Depth: From 0.0 To 40.0
Number of Bags Used: 1.5
Depth: From (not available) To (not available)
Number of Bags Used: Not available

County: JASPER
Range: 7W
Topo Map: DEMOTTE
Field Located By: DRILLER
Courthouse Location By: Not available
Location Accepted w/o Verification By: Not available
Subdivision Name: Not available
Ft W of EL: Not available
Ft E of WL: 1,250.0
Ground Elevation: 650.0
Bedrock Elevation: Not available UTM Easting: 485308

Township: 32N
Section: NE of the NW of the SW of Section 13
Grant: Not available
Field Located On: 7/14/2004
Courthouse Location On: Not available
Location Accepted w/o Verification On: Not available
Lot Number: Not available
Ft N of SL: Not available
Ft S of NL: 3,100.0
Depth of Bedrock: Not available
Aquifer Elevation: 599.0
UTM Northing: 4563270

Well Log

Top	Bottom	Formation
0.0	1.0	TOPSOIL
1.0	5.0	FN TO MED BR SAND WISILT
5.0	26.0	FN MED GRAY SAND SOME VERY FN
26.0	34.0	MED FN GRAY SAND
34.0	39.0	MED CS SAND \& FN GRAVEL SM FN
39.0	48.0	MED CS SAND W/FN SAND
48.0	51.0	GRAY CLAY

Comments

MC 602

Reference Number	Driving Direction to Well			Date Completed
380570	$750{ }^{\prime}$ E OF $700 W$ \& 750' S OF 1450N; TW 03B			10/31/2003
OwnerContractor Owner	Name	Address		Telephone
	TOWN OF DEMOTTE	13390 N 900 W DEMOTTE IN 55860 RUSSELL INDUSTRIAL PKWY		Not available
Driller	PEERLESS MIDWEST INC			(574)254-9050
Operator	AL MARTINDALE COOK DRILLING CO	License: 976		
Construction Details				
Well	Use: Test	STEM Pump Setting Depth: Not	: HOLLOW Pump	Pump Type: Not available
	Depth: 43.0	Pump Setting Depth: Not available		ality: Not available
Casing	Length: 40.0	Material	Diam	: 4.0
Screen	Length: 5.0	Material: PVC Diam		: 4.0
	Slot Size: . 010			
Well Capacity Test	Type of Test: Pumping	Test Rate: 13.0 gpm for 8.0 hrs. Bail Test Rate: Not available		
	Drawdown: 1.4 ft .	Static Water Level: 6.9 ft . Baile		rawdown: Not available
Grouting Information	Material: BENTONITE	Depth: From 0.0 To 32.0		
	Installation Method: TREMIE	Number of Bags Used: 1.0		
Well Abandonment	Sealing Material: Not available	Depth: From (not available) To (not available)		
	Installation Method: Not available	Number of Bags Used: Not available		
Administrative	County: JASPER			
	Range: 7W			
	Topo Map: DEMOTTE		Section: NE of the NW of the SW of Section 13 Grant: Not available	
	Field Located By: DRILLER		Field Located On: 7/14/2004	
	Courthouse Location By: Not avail	able	Courthouse Location On: Not available	
	Location Accepted w/o Verification available	By : Not	Location Accepted w/o Verification On: Not available	
	Subdivision Name: Not available		Lot Number: Not available	
	Ft W of EL: Not available		Ft N of SL: Not available	
	Ft E of WL: 1,925.0		Ft S of NL: 750.0	
	Ground Elevation: 650.0		Depth of Bedrock: Not available	
	Bedrock Elevation: Not available		Aquifer Elevation: 605.0	
	UTM Easting: 485169		UTM Northing: 4563250	

Well Log

Top	Bottom	Formation
0.0	1.5	TOPSOIL
1.5	3.0	BR SANDY CLAY
3.0	5.0	BR SITLY SAND
5.0	28.0	GRAY FN SAND W/FIVERY FN SAND
28.0	31.0	MED SAND W/FN \& CS SAND
31.0	35.0	MED SAND W/VERY FN FN \& CS SAN
35.0	37.0	FN SAND \& MED SAND
37.0	40.0	MED CS SAND W/FN S\&G
40.0	42.5	FN SAND TRACE SILT

42.5 |45.0 4 GRAY SILTY CLAY

Comments

MC 607

Record of Water Well Indiana Department of Natural Resources

Well Log

Top	Bottom	Formation
0.0	1.0	TOPSOIL
1.0	26.0	MED TO FN SAND
26.0	35.0	MED SAND
35.0	46.0	CRS SAND SOME GRAVEL
46.0	48.0	CRS GRAVEL AND SAND
48.0		CLAY

Comments SEE MAP; FC
ONLY; CASING
LENGTH 1.5' ABOVE

EXHIBIT D-2
 Pumping Test

October 28, 2019
Report IV \# DO19014

Robert Barton
Town of DeMotte
13390 N 900 W
DeMotte, IN 46310
Ph: 219-987-5350
Em: rbarton@netnitco.net
Re: Long-Term Pump Tests for (3) Production Wells near Kersey

Ortman Drilling and Water Services would like to thank you for the opportunity to work together on the long-term pump tests performed on the (3) $10^{\prime \prime}$ production wells drilled near Kersey.

Due to the wells being under an artesian effect, the technicians allowed for the water level to return to the top of the casing of each well before turning on the 24 -hour pump tests for each of the production wells. Please see the map and well logs for the (3) production wells at the end of this document. Additionally, down-hole probes were installed in the production well being tested, the other (2) production wells, and (2) test wells to better understand the interaction between the (3) production wells. Each production well was tested at different rates in an attempt to prevent the pumping water level from dropping below the casing of the well.

The first 24 -hour pump test was performed on PW2. At this point, we were unsure how quickly the pumping water level would drop overnight. From the initial long-term pump test performed on the test well near by PW2, it was anticipated the pumping water level would drop a few feet over night. At a rate of 328 gpm , the water level in the well dropped a few feet. At the beginning of the test, the water level was near 36^{\prime} and dropped to $38^{\prime}-39^{\prime}$ at the end of the 24 -hour period. Approximately 10^{\prime} of drawdown was still available. The pumping rate set for PW2 did have an effect on the other two production wells (PW1 $=8^{\prime}$ below grade and PW3 $=12.5^{\prime}$ below grade). It is difficult to determine the full effect as we are still unsure of the true static water level above grade. Please see pump test data at the end of this document.

PW3 was the second production well to be tested. After it was determined that the well could produce 174 gpm near 45^{\prime} below grade, the 24 -hour pump test was set for this rate. From the data retrieved by down-hole probe and the manual readings by the pump technician, the pumping water level began to rise over the 24 -hour period. By the end of the test, the pumping water level was nearing 41^{\prime}. During the test, the pumping rate had a limited amount of influence on the other (4) wells. Please see pump test data at the end of this document.

EXHIBIT D-2 Pumping Test

PW1 was the last production well to be tested. Since we did not over-stress the first two wells (PW2 and PW3) during the 24 -hour pump tests, it was decided to be slightly more aggressive with the pumping rate on PW1. For this well, a pumping rate of 596 gpm was set. Initially, the pumping water level was near 41^{\prime} in depth but dropped just below 50^{\prime} by the end of the 24 -hour period. This pumping rate placed on PW1 did have a consistent effect on the other (4) wells with down-hole probes. The effect was similar with both PW2 and PW3, which was approximately 17' to 18^{\prime} for each. Please see the pump test data at the end of the document.

At the end of each 24 -hour pump test and before the temporary pump was shut down, an extensive amount of water samples was obtained and delivered to a state certified lab for testing. Please see results for water testing at the end of the document.

Based off of the 24 -hour pump tests performed on the (3) production wells, if the Town of DeMotte is still planning on pumping (2) wells at a rate of 300 gpm and (1) well at a rate of 150 gpm , the (3) new production wells could sustain these rates on a long-term basis.

Note: The long-term pump test did not take into account seasonal stresses on the aquifer, such as irrigation wells during the summer months, and the impact these seasonal stresses may have on the available water production and drawdown.

We hope that you find the enclosed information in order and complete. We would like to thank you for giving us the opportunity to be of service to you. If you have any questions or concerns, please do not hesitate to contact me immediately at 765-412-0697.

Respectfully,

Deanna Ortman
Ortman Drilling \& Water Services
765-412-0697
dortman@ortmandrilling.com
RTMAN

EXHIBIT D-2

Pumping Test, PW-1

Drilling \& Water Services
Research - Design - Construction - Maintenance
241 N. 300 W . o Kokomo, IN 46901• 765-459-4125 FAX 765-459-8750

Demotte, Indiana - Kersey Well Field Well PW1 (SW)
 Pumping Test

Test Start Date: 08/27/19
PW1 (SW) Pretest WL: 4.25 ft Above Grade PW1 (SW) End of Test SC: $11.91 \mathrm{gpm} / \mathrm{ft}$

PW1 (SW) •
PW2 (Mid)
PW3 (NE) •

TW1 (Mid) • TW2 (SW) +

EXHIBIT D-2

Pumping Test, PW-2

Demotte, Indiana - Kersey Well Field Well PW2 (Mid) Pumping Test

Test Start Date: 08/21/19
PW2 (Mid) Pretest WL: 3.58 ft Above Grade
PW2 (Mid) End of Test SC: $8.41 \mathrm{gpm} / \mathrm{ft}$

PW2 (Mid) •	TW1 (Mid)
PW1 (SW)	
PW3 (NE)	TW2 (SW)

Research - Design - Construction - Maintenance 241 N. 300 W. . Kokomo, IN 46901-765-459-4125 FAX 765-459-8750

Demotte, Indiana - Kersey Well Field
 Well PW3 (NE)
 Pumping Test

Test Start Date: 08/26/19
PW3 (NE) Pretest WL: 3.33 ft Above Grade
PW3 (NE) End of Test SC: $4.22 \mathrm{gpm} / \mathrm{ft}$

Multiple Analysis Report

Sample: 380652
October 1, 2019

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
241 N. CR 300 W.
Kokomo, IN 46901
RE: PWS ID\#: Unavailable
PW1
Sample Tap
Unavailable
Unavailable
Dear Mr. Berquist:
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 9:27 AM, 08/29/2019, and collected at 10:30 AM, 08/28/2019:

TEST - METHOD

Heterotrophic Plate Count-SM9215

RESULT
3 cfu/mL
$\frac{M D L *}{1 \mathrm{cfu} / \mathrm{mL}}$ 1 cfu/mL

Date Complete 08/31/2019
*Minimum Detection Level
This testing was completed by T.K. Please feel free to contact us if we can be of further service to you.
Sincerely,

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

Multiple Analysis Report

Sample: 380653

October 1, 2019

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
241 N. CR 300 W.
Kokomo, IN 46901
RE: PWS ID\#: Unavailable
PW1
Sample Tap
Unavailable
Unavailable
Dear Mr. Berquist:
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 9:27 AM, 08/29/2019, and collected at 10:30 AM, 08/28/2019:

TEST - METHOD

Alachlor-525.2
Atrazine-525.2
Benzo(a)pyrene-525.2
Carbofuran-531.1
Chlordane-525.2
2,4-D-515.4
Dalapon-515.4
DBCP (1,2-Dibromo-3-chloropropane)-504.1
Diquat (HPLC)-549.2
Dinoseb-515.4
Di(2-ethylhexyl)adipate-525.2
Di(2-ethylhexyl)phthalate-525.2
Ethylene Dibromide-504.1
Endothall-548.1
Endrin-525.2
Glyphosate-547
Heptachlor-525.2
Heptachlor epoxide-525.2
Hexachlorobenzene-525.2
Hexachlorocyclopentadiene-525.2
Lindane-525.2
Methoxychlor-525.2

RESULT	MDL^{*}	Date Complete
$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.5 \mathrm{ug} / \mathrm{L}$	$0.5 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.9 \mathrm{ug} / \mathrm{L}$	$0.9 \mathrm{ug} / \mathrm{L}$	$09 / 11 / 2019$
$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<1 \mathrm{ug} / \mathrm{L}$	$1 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
$<5 \mathrm{ug} / \mathrm{L}$	$5 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
$<0.02 \mathrm{ug} / \mathrm{L}$	$0.02 \mathrm{ug} / \mathrm{L}$	$09 / 12 / 2019$
$<2 \mathrm{ug} / \mathrm{L}$	$2 \mathrm{ug} / \mathrm{L}$	$09 / 13 / 2019$
$<1 \mathrm{ug} / \mathrm{L}$	$1 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
$<0.6 \mathrm{ug} / \mathrm{L}$	$0.6 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.6 \mathrm{ug} / \mathrm{L}$	$0.6 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.01 \mathrm{ug} / \mathrm{L}$	$0.01 \mathrm{ug} / \mathrm{L}$	$09 / 12 / 2019$
$<9 \mathrm{ug} / \mathrm{L}$	$9 \mathrm{ug} / \mathrm{L}$	$09 / 06 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<30 \mathrm{ug} / \mathrm{L}$	$30 \mathrm{ug} / \mathrm{L}$	$09 / 20 / 2019$
$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.5 \mathrm{ug} / \mathrm{L}$	$0.5 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$

Ortman Drilling, Inc.

TEST - METHOD

Oxamyl-531.1
Pentachlorophenol-515.4
Picloram-515.4
Simazine-525.2
2,4,5-TP (Silvex)-515.4
Toxaphene-505
Carbon Tetrachloride-524.2
Chlorobenzene-524.2
1,1,2-Trichloroethane-524.2
1,1,1-Trichloroethane-524.2
Cis-1,2-Dichloroethylene-524.2
Trans-1,2 dichloroethylene-524.2
Ethylbenzene-524.2
1,2,4-Trichlorobenzene-524.2
Dichloromethane (methylene chloride)-524.2
Tetrachloroethylene-524.2
Styrene-524.2
Toluene-524.2
Benzene-524.2
1,2-Dichloroethane-524.2
1,4-Dichlorobenzene-524.2
Trichloroethylene-524.2
Vinyl Chloride (chloroethylene)-524.2
Xylene (total)-524.2
1,2 Dichloropropane-524.2
1,1-Dichloroethylene-524.2
1,2-Dichlorobenzene-524.2
Bromobenzene-524.2
Bromodichloromethane-524.2
Bromoform-524.2
Chloroethane-524.2
Chloroform-524.2
Chloromethane (methyl chloride)-524.2
2-Chlorotoluene-524.2
4-Chlorotoluene-524.2
Dibromochloromethane - Chlorodibromomethane-524.2
Dibromomethane-524.2
1,3-Dichlorobenzene-524.2
1,1-Dichloroethane-524.2
1,3-Dichloropropane-524.2
2,2-Dichloropropane-524.2
1,1-Dichloropropene-524.2
cis-1,3-Dichloropropene-524.2
trans-1,3-Dichloropropene-524.2
1,1,1,2-Tetrachloroethane-524.2
1,1,2,2-Tetrachloroethane-524.2
1,2,3-Trichloropropane-524.2

Sample 380653 Sample Tap

RESULT

$<2 \mathrm{ug} / \mathrm{L}$
$<0.4 \mathrm{ug} / \mathrm{L}$
$<1 \mathrm{ug} / \mathrm{L}$
$<0.35 \mathrm{ug} / \mathrm{L}$
<1 ug/L
<1 ug/L
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$.
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$.
$<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$ $<0.0005 \mathrm{mg} / \mathrm{L}$

EXHIBIT D-3
Raw Water Analysis, PW-1

MDL*
$2 \mathrm{ug} / \mathrm{L}$
$0.4 \mathrm{ug} / \mathrm{L}$
$1 \mathrm{ug} / \mathrm{L}$
$0.35 \mathrm{ug} / \mathrm{L}$
1 ug/L
$1 \mathrm{ug} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$

Date Complete
09/11/2019
09/24/2019
09/24/2019
09/27/2019
09/24/2019
09/11/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019

TEST - METHOD

Bromomethane (methyl bromide)-524.2
PCB-608
Iron-200.7
Manganese-200.7
Potassium-200.7
Lead-200.9
Copper-200.7
Phosphate-200.7
Aluminum-200.7
Silver-200.7
Magnesium-200.7
Turbidity-EPA180.1
Zinc-200.7
Nitrogen, Nitrite-SM 4500 NO2-B
Chloride-SM $4500 \mathrm{Cl}-\mathrm{B}$
Nitrogen, ammonia-350.1
Calcium-200.7
Carbon Dioxide-SM4500 co2 C
Color-EPA110.3
Dissolved Oxygen-EPA360.1
Surfactants-SM5540C
Odor-SM2150
Conductivity-SM2510B
Silica-SM4500Si-D
Sulfide-SM4500S2-D
Sulfate-SM4500SO4(2-)E
Temperature-170.1
Langelier Index-Calculation
Calcium Hardness-SM 2340C
Solids, dissolved-SM 2540 C
Alkalinity-SM 2320 B
Solids, suspended-SM 2540D
Alkalinity phenophalein-SM 2320 B
Alkalinity carbonate-SM 2320 B
Alkalinity bicarbonate-SM 2320 B
Cadmium-200.7
Barium-200.7
Antimony-200.9
Arsenic-200.9
Chromium-200.7
Mercury-245.1
Nickel-200.7
Selenium-200.9
Sodium-200.7
Beryllium-200.7
Thallium-200.9
Cyanide, Total-SM 4500 CN-E

Sample 380653 Sample Tap

RESULT

$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$0.02 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$1.6 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{ug} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.15 \mathrm{mg} / \mathrm{L}$
$<0.05 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$.
$17.3 \mathrm{mg} / \mathrm{L}$
0.10 NTU
$<0.01 \mathrm{mg} / \mathrm{L}$.
$<0.01 \mathrm{mg} / \mathrm{L}$
$12 \mathrm{mg} / \mathrm{L}$
$<0.10 \mathrm{mg} / \mathrm{L}$
$53.3 \mathrm{mg} / \mathrm{L}$
$58.8 \mathrm{mg} / \mathrm{L}$
<7.0 PtCo units
$7.97 \mathrm{mg} / \mathrm{L}$
$<0.1 \mathrm{mg} / \mathrm{L}$
Threshold No. 1.4
$408 \mathrm{uS} / \mathrm{cm}$
$14.6 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$3.7 \mathrm{mg} / \mathrm{L}$
54 F
0.13
$184 \mathrm{mg} / \mathrm{L}$
274 mg/L
$226 \mathrm{mg} / \mathrm{L}$
$<5.0 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
$226 \mathrm{mg} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
$0.04 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.005 \mathrm{mg} / \mathrm{L}$
$<0.0002 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$8.5 \mathrm{mg} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$

EXHIBIT D-3
Raw Water Analysis, PW-1

MDL*
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$0.6 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{ug} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$0.15 \mathrm{mg} / \mathrm{L}$
$0.05 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
0.02 NTU
$0.01 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
$0.10 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
7.0 PtCo units
$0.01 \mathrm{mg} / \mathrm{L}$
$0.1 \mathrm{mg} / \mathrm{L}$
Threshold
$0.01 \mathrm{uS} / \mathrm{cm}$
$1.0 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$1.1 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$5.0 \mathrm{mg} / \mathrm{L} \quad 09 / 05 / 2019$
$1.0 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$1.0 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$1.0 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$0.001 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$0.01 \mathrm{mg} / \mathrm{L} \quad 09 / 17 / 2019$
$0.0010 \mathrm{mg} / \mathrm{L} \quad 09 / 13 / 2019$
$0.0010 \mathrm{mg} / \mathrm{L} \quad 09 / 09 / 2019$
$0.005 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$0.0002 \mathrm{mg} / \mathrm{L} \quad 09 / 04 / 2019$
$0.01 \mathrm{mg} / \mathrm{L} \quad 09 / 20 / 2019$
$0.0010 \mathrm{mg} / \mathrm{L} \quad 09 / 16 / 2019$
$1.0 \mathrm{mg} / \mathrm{L} \quad 09 / 1012019$
$\begin{array}{ll}0.001 \mathrm{mg} / \mathrm{L} & 09 / 20 / 2019 \\ 0.0010 \mathrm{mglL} & 091172019\end{array}$
$\begin{array}{ll}0.0010 \mathrm{mg} / \mathrm{L} & 09 / 17 / 2019 \\ 0.01 \mathrm{mgl} & 09 / 03 / 2019\end{array}$

Ortman Drilling, Inc.
TEST - METHOD
Fluoride-HACH 10225
Nitrogen, nitrate-HACH 10206
pH (lab)-150.1

Sample 380653 Sample Tap
RESULT
$0.52 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
7.43
*Minimum Detection Level

MDL**
$0.1 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$

Date Complete 09/23/2019 09/20/2019 08/30/2019

This testing was completed by M.E. and K.L. and C.U. Please feel free to contact us if we can be of further service to you.

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

HOOSIER MICROBIOLOGICAL LABORATORY
912 W. MCGALLIARD RD. MUNCIE, IN 47303
(765) 288-1124
Bacteriological Examination of Private Water
Certified by the Indiana State Board of Health
Certified Lab ID\# M-18-03

Date/Time Received: 08/29/2019 at 09:27 AM
Bottle Number: 380651
Name: Ortman Drilling, Inc.
Address: 241 N. CR 300 W .
City/St/Zip: Kokomo, IN 46901
Telephone: (765) 459-4125
Started: 08/29/2019 @ 03:15 PM by Teresa
Read: 08/30/2019@ 03:30 PM by Teresa

County: Jasper

Organization: PW1
Address: Unavailable
City/St/Zip: Demotte, IN
Collected By: T. Berquist
Place Collected: Sample Tap
Date Collected: 08/28/2019
Time Collected: 10:30 AM

REPORT OF SAMPLE

TEST - METHOD

Total Coliform-Colilert(quantitation)
[X] Total Coliform
[X] Fecal Coliform
[] Present
[]Present

RESULT

$<1 \mathrm{MPN} / 100 \mathrm{~mL}$

$$
\begin{aligned}
& {[X] \text { Absent }} \\
& \text { [X] Absent }
\end{aligned}
$$

[X] SATISFACTORY. At examination time this water was bacteriologically safe based on USEPA standards.
[] UNSATISFACTORY. At examination time this water was bacteriologically unsafe.
[] PLEASE SUBMIT ANOTHER SAMPLE; TEST NOT VALID BECAUSE:
[] TOO LONG A TIME BETWEEN COLLECTION AND RECEIPT OF SAMPLE.
[] INVALID OR NO COLLECTION DATE AND/OR TIME.
[] SAMPLE LEAKED OR BROKEN IN SHIPMENT, INSUFFICIENT VOLUME
[] RESIDUAL CHLORINE PRESENT.
[] HIGH BACKGROUND COUNT.
[] INCORRECT SAMPLE CONTAINER.
[] NONCONFORMANCE WITH TEMPERATURE REQUIREMENTS $>4^{\circ} \mathrm{C}$.
*MF - Membrane Filtration method

Signed:

EMSL Analytical, Inc.
200 Route 130 North Cinnaminson, NJ 08077 Phone/Fax: (800) 220-3675 / (856) 786-5974 http://mww.EMSL.com / cinnasblab@EMSL.com

EMSL Order ID:	041925599
Customer ID:	HOOS54
Customer PO:	
Project ID:	

Attn: Michelle Brant
Hoosier Microbiological Laboratory (HML)
912 West McGalliard
Muncie, IN 47303

Phone:

Fax:
Received:
Analyzed:
(765) 288-1124
(765) 288-8378

08/30/2019
09/12/2019

Test Report: Determination of Asbestos Structures $\geq 0.5 \mu \mathrm{~m} \&>10 \mu \mathrm{~m}$ in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

Sample ID Client/EMSL	Sample Fillration Date/Time		Effective Filter Area ($m m^{2}$)	Area Analyzed ($\mathrm{mm}^{\text {² }}$)	ASBESTOS					
		Original Sample Vol. Filtered (mi)				Asbestos Types	Fibers Detected	Analytical Sensitivity	Concentration (million fibers per	Confidence Limits er)
$\begin{aligned} & 380444 \\ & 041925599-0001 \end{aligned}$	$\begin{aligned} & 9 / 3 / 2019 \\ & 02: 30 \mathrm{PM} \end{aligned}$	100	1360	0.0774	$\begin{gathered} \geq 0.5 \\ \mu \mathrm{~m} \end{gathered}$	None Detected	ND	0.18	<0.18	0.00-0.65
					$\begin{gathered} >10 \\ \mu \mathrm{~m} \\ \text { only } \end{gathered}$	None Detected	ND	0.18	<0.18	$0.00-0.65$

Collection Date/Time:	08/26/2019									
Sample ozonated prior to analysis due to lab receipt time exceeding 48 hr method hold time.										
$\begin{aligned} & 380541 \\ & 041925599-0002 \end{aligned}$	$\begin{gathered} \text { 9/3/2019 } \\ \text { 02:30 PM } \end{gathered}$	50	1360	0.1419	$\underset{\substack{20.5 \\ \mu \mathrm{~m}}}{ }$	None Detected	ND	0.19	<0.19	0.00-0.71
					$\begin{aligned} & >10 \\ & \mu \mathrm{~m} \\ & \text { only } \end{aligned}$	None Detected	ND	0.19	<0.19	0.00-0.71
Collection Date/Time:	08/26/2019									
Sample ozonated prior to analysis due to lab receipt time exceeding 48hr method hald time.										
$\begin{aligned} & 380653 \\ & 041925599-0003 \end{aligned}$	$\begin{gathered} 9 / 3 / 2019 \\ 02: 30 \mathrm{PM} \end{gathered}$	100	1360	0.0774	$\begin{gathered} 20.5 \\ \mu \mathrm{~m} \end{gathered}$	None Detected	ND	0.18	<0.18	0.00-0.65
					$\begin{aligned} & >10 \\ & \mu \mathrm{~m} \\ & \text { onty } \end{aligned}$	None Detected	ND	0.18	<0.18	0.00-0.65

Collection Date/Time: $\quad 08 / 26 / 2019$

Sample ozonated prior to analysis due to lab receipt time exceeding 48hr
method hold time.

EXHIBIT D-3
 Raw Water Analysis, PW-1

PaceAnalyticalServices,LLC.
1700ElmStreet
Minneapolis,MN,55414
Drinking Water Analysis Results

Sample ID. \qquad 380653
Client.................. Hoosier Microbiological Lab
Lab Sample ID..... 10490762003

Date Collected.....08/28/2019
Date Received......09/06/2019
Date Extracted.....09/11/2019

	Sample 380653	Method Blank	Lab Spike	Lab Spike Dup
[2,3,7,8-TCDD]	ND	ND	--	--
LOQ	$5.0 \mathrm{pg} / \mathrm{L}$	$5.0 \mathrm{pg} / \mathrm{L}$	--	--
2,3,7,8-TCDD Recovery	--	--	89\%	84\%
Spike Recovery Limit	--	--	73-146\%	73-146\%
RPD			6.7\%	
IS Recovery	77\%	71\%	73\%	77\%
IS Recovery Limits	31-137\%	31-137\%	25-141\%	25-141\%
CS Recovery	83\%	79\%	78\%	85\%
CS Recovery Limits	42-164\%	42-164\%	37-158\%	37-158\%
Filename	E190912B_11	E190912B_05	E190912B_03	E190912B_04
Analysis Date	09/12/2019	09/12/2019	09/12/2019	09/12/2019
Analysis Time	17:30	14:48	13:55	14:22
Analyst	JRH	JRH	JRH	JRH
Volume	1.016L	1.007 L	1.002L	1.010L
Dilution	NA	NA	NA	NA
ICAL Date	12/15/2018	12/15/2018	12/15/2018	12/15/2018
CCAL Filename	E190912B_02	E190912B_02	E190912B_02	E190912B_02

$!$	Outside the Control Limits
ND	$=$ Not Detected
LOQ	$=$ Limit of Quantitation
Limits	$=$ Control Limits from Method $1613(10 / 94$ Revision $)$, Tables 6 A and 7 A
RPD	= Relative Percent Difference of Lab Spike Recoveries
IS	= Internal Standard $\left[2,3,7,8-\mathrm{TCDD}-{ }^{-13} \mathrm{C}_{12}\right]$
CS	$=$ Cleanup Standard $\left[2,3,7,8-\mathrm{TCDD}-{ }^{37} \mathrm{Cl}_{4}\right]$

Report No. \qquad 1049 049076
_161 613DW

Analyst:

\qquad 10490762

PWS ID: Not Supplied

Analyte ID \#	Analyte	Method	Reg Limit	MRL \dagger	Result	Units	$\begin{gathered} \hline \text { Preparation } \\ \text { Date } \\ \hline \hline \end{gathered}$	Analyzed Date	$\begin{aligned} & \text { EEA } \\ & \text { ID \# } \\ & \hline \hline \end{aligned}$
-	Total Organic Carbon (TOC) Φ	5310 C	-	0.500	2.48	mg / L	-	09/17/19 00:17	4405250

** Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95% confidence level.
$\$$ The state of origin does not offer certification for this parameter.
\dagger EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	\star	\wedge	$!$

EXHIBIT D-3

HOOSIER MICROBIOLOGICAL LABORATORY
912 W. MCGALLIARD RD. MUNCIE, IN 47303
(765) 288-1124

Bacteriological Examination of Private Water
Certified by the Indiana State Board of Health Certified Lab ID\# M-18-03

Date/Time Received: 08/27/2019 at 11:43 AM
Bottle Number: 380442
Name: Ortman Drilling, Inc.
Address: 241 N. CR 300 W.
City/St/Zip: Kokomo, IN 46901
Telephone: (765) 459-4125
Started: 08/27/2019 @ 04:55 PM by Betsy
Read: 08/28/2019 @ 03:55 PM by Betsy

County: Unavailable
Organization: PW2
Address: Unavailable
City/St/Zip: Unavailable
Collected By: Thomas Berquist
Place Collected: Sample Tap
Date Collected: 08/26/2019
Time Collected: 02:00 PM

REPORT OF SAMPLE

TEST - METHOD

Total Coliform-Colilert(quantitation)
[X] Total Coliform
[X] Fecal Coliform
[X]Present
[]Present

RESULT

3 MPN/100 mL
[] Absent
[X]Absent
[] SATISFACTORY. At examination time this water was bacteriologically safe based on USEPA standards.
[X] UNSATISFACTORY. At examination time this water was bacteriologically unsafe.
[] PLEASE SUBMIT ANOTHER SAMPLE; TEST NOT VALID BECAUSE:
[] TOO LONG A TIME BETWEEN COLLECTION AND RECEIPT OF SAMPLE.
[] INVALID OR NO COLLECTION DATE AND/OR TIME.
[] SAMPLE LEAKED OR BROKEN IN SHIPMENT, INSUFFICIENT VOLUME
[] RESIDUAL CHLORINE PRESENT.
[] HIGH BACKGROUND COUNT.
[] INCORRECT SAMPLE CONTAINER.
[] NONCONFORMANCE WITH TEMPERATURE REQUIREMENTS $>4^{\circ} \mathrm{C}$.
*MF - Membrane Filtration method

Signed:

Testing • Research • Consulting

Sample: 380443

October 1, 2019

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
241 N. CR 300 W.
Kokomo, IN 46901
RE: PWS ID\#: Unavailable
PW2
Sample Tap
Unavailable
Unavailable
Dear Mr. Berquist:
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 11:44 AM, 08/27/2019, and collected at 2:00 PM, 08/26/2019:

TEST - METHOD
Heterotrophic Plate Count-SM9215
*Minimum Detection Level

RESULT
8 cfu/mL

MDL*
$1 \mathrm{cfu} / \mathrm{mL}$

Date Complete
08/29/2019

This testing was completed by T.K. Please feel free to contact us if we can be of further service to you.
Sincerely,

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

Testing • Research • Consulting

Multiple Analysis Report

Sample: 380444

October 1, 2019

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
$241 \mathrm{~N} . \mathrm{CR} 300 \mathrm{~W}$.
Kokomo, IN 46901
RE: PWS ID\#: Unavailable
PW2
Sample Tap
Unavailable
Unavailable
Dear Mr. Berquist:
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 11:44 AM, 08/27/2019, and coilected at 2:00 PM, 08/26/2019:

TEST - METHOD

Alachlor-525.2
Atrazine-525.2
Benzo(a)pyrene-525.2
Carbofuran-531.1
Chlordane-525.2
2,4-D-515.4
Dalapon-515.4
DBCP (1,2-Dibromo-3-chloropropane)-504.1
Diquat (HPLC)-549.2
Dinoseb-515.4
Di(2-ethylhexyl)adipate-525.2
Di(2-ethylhexyl)phthalate-525.2
Ethylene Dibromide-504.1
Endothall-548.1
Endrin-525.2
Glyphosate-547
Heptachlor-525.2
Heptachlor epoxide-525.2
Hexachlorobenzene-525.2
Hexachlorocyclopentadiene-525.2
Lindane-525.2
Methoxychlor-525.2

RESULT	MDL^{*}	Date Complete
<0.2 ug/L	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.5 \mathrm{ug} / \mathrm{L}$	$0.5 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.9 \mathrm{ug} / \mathrm{L}$	$0.9 \mathrm{ug} / \mathrm{L}$	$09 / 11 / 2019$
$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<1 \mathrm{ug} / \mathrm{L}$	$1 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
$<5 \mathrm{ug} / \mathrm{L}$	$5 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
$<0.02 \mathrm{ug} / \mathrm{L}$	$0.02 \mathrm{ug} / \mathrm{L}$	$08 / 29 / 2019$
$<2 \mathrm{ug} / \mathrm{L}$	$2 \mathrm{ug} / \mathrm{L}$	$09 / 13 / 2019$
$<1 \mathrm{ug} / \mathrm{L}$	$1 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
$<0.6 \mathrm{ug} / \mathrm{L}$	$0.6 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.6 \mathrm{ug} / \mathrm{L}$	$0.6 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.01 \mathrm{ug} / \mathrm{L}$	$0.01 \mathrm{ug} / \mathrm{L}$	$08 / 29 / 2019$
$<9 \mathrm{ug} / \mathrm{L}$	$9 \mathrm{ug} / \mathrm{L}$	$09 / 06 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<30 \mathrm{ug} / \mathrm{L}$	$30 \mathrm{ug} / \mathrm{L}$	$09 / 20 / 2019$
$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.5 \mathrm{ug} / \mathrm{L}$	$0.5 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$

Ortman Drilling, Inc.

TEST - METHOD

Oxamyl-531.1
Pentachlorophenol-515.4
Picloram-515.4
Simazine-525.2
2,4,5-TP (Silvex)-515.4
Toxaphene-505
Cadmium-200.7
Barium-200.7
Antimony-200.9
Arsenic-200.9
Chromium-200.7
Mercury-245.1
Nickel-200.7
Selenium-200.9
Sodium-200.7
Beryllium-200.7
Thallium-200.9
Cyanide, Total-SM 4500 CN-E
Fluoride-HACH 10225
Nitrogen, nitrate-HACH 10206
Carbon Tetrachloride-524.2
Chlorobenzene-524.2
1,1,2-Trichloroethane-524.2
1,1,1-Trichloroethane-524.2
Cis-1,2-Dichloroethylene-524.2
Trans-1,2 dichloroethylene-524.2
Ethylbenzene-524.2
1,2,4-Trichlorobenzene-524.2
Dichloromethane (methylene chloride)-524.2
Tetrachloroethylene-524.2
Styrene-524.2
Toluene-524.2
Benzene-524.2
1,2-Dichloroethane-524.2
1,4-Dichlorobenzene-524.2
Trichloroethylene-524.2
Vinyl Chloride (chloroethylene)-524.2
Xylene (total)-524.2
1,2 Dichloropropane-524.2
1,1-Dichloroethylene-524.2
1,2-Dichlorobenzene-524.2
Bromobenzene-524.2
Bromodichloromethane-524.2
Bromoform-524.2
Chloroethane-524.2
Chloroform-524.2
Chloromethane (methyl chloride)-524.2

Sample 380444 Sample Tap
RESULT
$<2 \mathrm{ug} / \mathrm{L}$
$<0.4 \mathrm{ug} / \mathrm{L}$
<1 ug/L
$<0.35 \mathrm{ug} / \mathrm{L}$
$<1 \mathrm{ug} / \mathrm{L}$
$<1 \mathrm{ug} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
$0.04 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.005 \mathrm{mg} / \mathrm{L}$
$<0.0002 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$8.5 \mathrm{mg} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$0.59 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$.
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$

EXHIBIT D-3
Raw Water Analysis, PW-2

MDL*	Date Complete
$2 \mathrm{ug} / \mathrm{L}$	09/11/2019
0.4 ug/L	09/24/2019
$1 \mathrm{ug} / \mathrm{L}$	09/24/2019
$0.35 \mathrm{ug} / \mathrm{L}$	09/27/2019
$1 \mathrm{ug} / \mathrm{L}$	09/24/2019
$1 \mathrm{ug} / \mathrm{L}$	08/28/2019
$0.001 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/17/2019
$0.0010 \mathrm{mg} / \mathrm{L}$	09/13/2019
$0.0010 \mathrm{mg} / \mathrm{L}$	09/09/2019
$0.005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0002 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/20/2019
$0.0010 \mathrm{mg} / \mathrm{L}$	09/16/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/10/2019
$0.001 \mathrm{mg} / \mathrm{L}$	09/20/2019
$0.0010 \mathrm{mg} / \mathrm{L}$	09/17/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/03/2019
0.1 mg/L	09/23/2019
$1.0 \mathrm{mg} / \mathrm{L}$	08/30/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019

TEST - METHOD
2-Chlorotoluene-524.2
4-Chlorotoluene-524.2
Dibromochloromethane - Chlorodibromomethane-524.2
Dibromomethane-524.2
1,3-Dichlorobenzene-524.2
1,1-Dichloroethane-524.2
1,3-Dichloropropane-524.2
2,2-Dichloropropane-524.2
1,1-Dichloropropene-524.2
cis-1,3-Dichloropropene-524.2
trans-1,3-Dichloropropene-524.2
1,1,1,2-Tetrachloroethane-524.2
1,1,2,2-Tetrachloroethane-524.2
1,2,3-Trichloropropane-524.2
Bromomethane (methyl bromide)-524.2
PCB-608
Iron-200.7
Manganese-200.7
Potassium-200.7
Lead-200.9
Copper-200.7
Phosphate-200.7
Aluminum-200.7
Silver-200.7
Magnesium-200.7
Turbidity-EPA180.1
Zinc-200.7
Nitrogen, Nitrite-SM 4500 NO2-B
Chloride-SM $4500 \mathrm{Cl}-\mathrm{B}$
Nitrogen, ammonia-350.1
Calcium-200.7
Carbon Dioxide-SM4500 co2 C
Color-EPA110.3
Dissolved Oxygen-EPA360.1
Surfactants-SM5540C
Odor-SM2150
Conductivity-SM2510B
Silica-SM4500Si-D
Sulfide-SM4500S2-D
Sulfate-SM4500SO4(2-) E
Langelier Index-Calculation
Calcium Hardness-SM 2340C
Solids, dissolved-SM 2540 C
Alkalinity-SM 2320 B
Alkalinity phenolphthalein-SM 2320 B
Alkalinity Carbonate-SM 2320 B
Alkalinity Biocarbonate-SM 2320 B

RESULT
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$1.8 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{ug} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.15 \mathrm{mg} / \mathrm{L}$
$<0.05 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$17.5 \mathrm{mg} / \mathrm{L}$
0.36 NTU
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$20 \mathrm{mg} / \mathrm{L}$
$0.35 \mathrm{mg} / \mathrm{L}$
$53.0 \mathrm{mg} / \mathrm{L}$
$56.3 \mathrm{mg} / \mathrm{L}$
$<7.0 \mathrm{PtCo} \mathrm{units}$
$7.56 \mathrm{mg} / \mathrm{L}$
$<0.1 \mathrm{mg} / \mathrm{L}$
1.4 Threshold
$404 \mathrm{uS} / \mathrm{cm}$
$14.6 \mathrm{mg} / \mathrm{L}$
$0.02 \mathrm{mg} / \mathrm{L}$
$2.1 \mathrm{mg} / \mathrm{L}$
-0.2
$152 \mathrm{mg} / \mathrm{L}$
$270 \mathrm{mg} / \mathrm{L}$
$226 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
$226 \mathrm{mg} / \mathrm{L}$

EXHIBIT D-3

Raw Water Analysis, PW-2

MDL ${ }^{*}$	Date Complete
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/10/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/28/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/28/2019
0.6 mg/L	09/03/2019
$1.0 \mathrm{ug} / \mathrm{L}$	08/29/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/11/2019
$0.15 \mathrm{mg} / \mathrm{L}$	09/03/2019
$0.05 \mathrm{mg} / \mathrm{L}$	09/24/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/30/2019
1.0 mg/L	09/10/2019
0.02 NTU	08/28/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/11/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/28/2019
1.0 mg/L	09/04/2019
$0.10 \mathrm{mg} / \mathrm{L}$	08/29/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/10/2019
$1.0 \mathrm{mg} / \mathrm{L}$	08/27/2019
7.0 PtCo units	08/27/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/28/2019
0.1 mg/L	09/25/2019
Threshold	08/27/2019
0.01 uS/cm	08/27/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/23/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/03/2019
1.1 mg/L	08/27/2019
	09/04/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/03/2019
$1.0 \mathrm{mg} / \mathrm{L}$	08/27/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/04/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/04/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/04/2019
	09/04/2019

EXHIBIT D-3

Ortman Drilling, Inc.
TEST-METHOD
Solids, suspended-SM 2540D
Temperature-170.1
pH (lab)-150.1
*Minimum Detection Level

Sample 380444 Sample Tap
RESULT
$<5.0 \mathrm{mg} / \mathrm{L}$
53F
7.19

This testing was completed by M.E. and K.L. and C.U. Please feel free to contact us if we can be of further service to you.

Sincerely,

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

Sample: 388088

February 25, 2020

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
241 N. CR 300 W.
Kokomo, iN 46901
RE PWS ID\#: Unavailable
DW-KPW2(Mid)
Unavailable
Unavailable
Unavallable
Dear Mr. Berquist.
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 9:06 AM, 02/14/2020, and collected at 1:30 PM, 02/13/2020:

TEST - METHOD

Manganese-200.7
Nitrogen, ammonia-350.1
Nitrogen, nitrate-HACH 10206
Sulfate-SM4500SO4(2-)E
$\mathrm{pH}-\mathrm{SM} 4500 \mathrm{H}+\mathrm{B}$
Langelier Index-Calculation
Hardness-SM 2340 C
Hardness-Calcium-SM 2340 C
Magnesium-Hardness-Calculation
Solids, dissolved-SM 2540C
Alkalinity-SM 2320 B
Temperature-170.1
Fluoride-HACH 10225
Iron-200. 7

RESULT	$\frac{M D L *}{}$	Date Complete
$0.01 \mathrm{mg} / \mathrm{L}$	$0.01 \mathrm{mg} / \mathrm{L}$	$02 / 17 / 2020$
$0.44 \mathrm{mg} / \mathrm{L}$	$0.10 \mathrm{mg} / \mathrm{L}$	$02 / 20 / 2020$
$<1.0 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	$02 / 14 / 2020$
3.2 mgh	$1.9 \mathrm{mg} / \mathrm{L}$	$02 / 25 / 2020$
7.15		$02 / 14 / 2020$
-0.34		$02 / 17 / 2020$
$202 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	$02 / 17 / 2020$
$130 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	$02 / 17 / 2020$
$72 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	$02 / 17 / 2020$
$262 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	$02 / 14 / 2020$
$202 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	$02 / 17 / 2020$
50 F		$02 / 13 / 2020$
$0.39 \mathrm{mg} / \mathrm{L}$	$0.1 \mathrm{mg} / \mathrm{L}$	$02 / 19 / 2020$
$0.01 \mathrm{mg} / \mathrm{L}$	$0.01 \mathrm{mg} / \mathrm{L}$	$02 / 17 / 2020$

*Minimum Detection Level
This testing was completed by M.E. and K.L. Please feel free to contact us if we can be of further service to you.

Sincerely,
Honale a Aromimenom

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

Note: PW-2 underwent additional testing
because of high bacteria levels in the initial test.

hoosier microbiological laboratory Note: PW-2 underwent 912 W. MCGALLIARD RD. MUNCIE, IN 47303 (765) 288-1124 additional testing because of high
Bacteriological Examination of Private Water bacteria levels in the Certified by the Indiana State Board of Health initial test. Certified Lab ID\# M-18-03

Date/Time Received: 02/14/2020 at 09:07 AM
Bottle Number: 388089
Name: Ortman Drilling, Inc.
Address: 241 N. CR 300 W
City/St/Zip: Kokomo, IN 46901
Telephone: (765) 459-4125
Started: 02/44/2020@ 02:00 PM by Marie
Read: 02/15/2020 @ 02:30 PM by Marie
REPORT OF SAMPLE
TEST -METHOD
Total Coliform-Colilert(quantitation)
[X] Total Coliform
[X] Fecal Coliform
[] Present
[] Present

County: Unavailable
Organization: DW-KPW2(Mid)
Address: Unavailable
City/StZip: Unavailable
Collected By: Thomas Berquist
Place Collected: Unavailable
Date Collected: 02/13/2020
Time Collected: 01:30 PM
[X] SATISFACTORY. At examination time this water was bacteriologically safe based on USEPA standards.
[] UNSATISFACTORY. At examination time this water was bacteriologically unsafe.
[] PLEASE SUBMIT ANOTHER SAMPLE, TEST NOT VALID BECAUSE:
[] TOO LONG A TIME BETWEEN COLLECTION AND RECEIPT OF SAMPLE.
[] INVALID OR NO COLLECTION DATE ANDIOR TIME.
[] SAMPLE LEAKED OR BROKEN IN SHIPMENT, INSUFFICIENT VOLUME
[] RESIDUAL CHLORINE PRESENT.
[] HIGH BACKGROUND COUNT.
[] iNCORRECT SAMPLE CONTAINER.
[] NONCONFORMANCE WITH TEMPERATURE REQUIREMENTS $>4^{\circ} \mathrm{C}$.
*MF - Membrane Filtration method

Signed

EMSL Analytical, Inc.
200 Route 130 North Cinnaminson, NJ 08077 Phone/Fax: (800) 220-3675 / (856) 786-5974

EXHIBIT D-3
Raw Water
Analysis, PW-2
http://www.EMSL.com / cinnasblab@EMSL.com
$\left(\begin{array}{ll}\text { EMSL Order ID: } & 041925599 \\ \text { Customer ID: } & \text { HOOS54 } \\ \text { Customer PO: } & \\ \text { Project ID: } & \\ \hline\end{array}\right.$

Attn:	Michelle Brant
	Hoosier Microbiological Laboratory (HML)
	912 West McGalliard
	Muncie, IN 47303

Phone:
Fax:
Received:
Analyzed:
(765) 288-1124
(765) 288-8378

08/30/2019
09/12/2019

Test Report: Determination of Asbestos Structures $\geq 0.5 \mu \mathrm{~m} \&>10 \mu \mathrm{~m}$ in Drinking Water Performed by the $\mathbf{1 0 0 . 2}$ Method (EPA 600/R-94/134)

Sample ID Client/EMSL	Sample Filtration Date/time	Original Sample Vol. Filtered (mi)	Effective Filter Area (mm^{2})	Area Analyzed (mm^{2})	ASbestos					
						$\begin{gathered} \text { Asbestos } \\ \text { Types } \end{gathered}$	Fibers Detected	Analytical Sensitivity M	Concentration (million fibers pe	Confidence Limits er)
$\begin{aligned} & 380444 \\ & 041925599-0001 \end{aligned}$	$\begin{aligned} & \text { 9/3/2019 } \\ & \text { 02:30 PM } \end{aligned}$	100	1360	0.0774	$\begin{array}{r} \geq 0.5 \\ \mu \mathrm{~m} \end{array}$	None Detected	ND	0.18	<0.18	0.00-0.65
					$\begin{gathered} >10 \\ \mu \mathrm{~m} \\ \text { only } \end{gathered}$	None Detected	ND	0.18	<0.18	0.00-0.65

Collection Date/Time: $\quad 08 / 26 / 2019$
Sample ozonated prior to analysis due to lab receipt time exceeding 48hr method hold time.

$\begin{aligned} & 380541 \\ & 041925599-0002 \end{aligned}$	$\begin{gathered} \text { 9/3/2019 } \\ 02: 30 \mathrm{PM} \end{gathered}$	50	1360	0.1419	$\begin{array}{r} \geq 0.5 \\ \mu \mathrm{~m} \end{array}$	None Detected	ND	0.19	<0.19	0.00-0.71
					$\begin{aligned} & 10 \\ & \mu \mathrm{~m} \\ & \text { only } \end{aligned}$	None Detected	NO	0.19	<0.19	0.00-0.7i

Collection Date/Time: $\quad 08 / 26 / 2019$

Sample ozonated prior to analysis due to lab receipt time exceeding 48hr

$\begin{aligned} & 380653 \\ & 041925599-0003 \end{aligned}$	$\begin{gathered} 9 / 3 / 2019 \\ 02: 30 \mathrm{PM} \end{gathered}$	100	1360	0.0774	$\underset{\mu \mathrm{m}}{20.5}$	None Detected	ND	0.18	<0.18	0.00-0.65
					$\begin{gathered} 10 \\ \text { um } \\ \text { only } \end{gathered}$	None Detected	ND	0.18	<0.18	0.00-0.65

Collection Date/Time: 08/26/2019

Sample ozonated prior to analysis due to lab receipt time exceeding 48 hr
method hold time.

EXHIBIT D-3

Raw Water Analysis, PW-2

Drinking Water Analysis Results
 2,3,7,8-TCDD -- USEPA Method 1613B

PaceAnalyticalServices,LLC. 1700EhmStreet
Sample ID........... 380444
Client................. Hoosier Microbiological Lab
Lab Sample ID..... 10490762001

Date Collected.....08/26/2019
Date Received......09/06/2019
Date Extracted.....09/11/2019

	Sample 380444	Method Blank	Lab Spike	Lab Spike Dup
[2,3,7,8-TCDD]	ND	ND	--	--
LOQ	$5.0 \mathrm{pg} / \mathrm{L}$	$5.0 \mathrm{pg} / \mathrm{L}$	--	--
2,3,7,8-TCDD Recovery	--	--	89\%	84\%
Spike Recovery Limit	--	--	73-146\%	73-146\%
RPD			6.7\%	
IS Recovery	74\%	71\%	73\%	77\%
IS Recovery Limits	31-137\%	31-137\%	25-141\%	25-141\%
CS Recovery	86\%	79\%	78\%	85\%
CS Recovery Limits	42-164\%	42-164\%	37-158\%	37-158\%
Filename	E190912B_09	E190912B_05	E190912B_03	E190912B_04
Analysis Date	09/12/2019	09/12/2019	09/12/2019	09/12/2019
Analysis Time	16:36	14:48	13:55	14:22
Analyst	JRH	JRH	JRH	JRH
Volume	1.003L	1.007 L	1.002L	1.010L
Dilution	NA	NA	NA	NA
ICAL Date	12/15/2018	12/15/2018	12/15/2018	12/15/2018
CCAL Filename	E190912B_02	E190912B 02	E190912B_02	E190912B_02

!	= Outside the Control Limits	Hex- H	
ND	$=$ Not Detected	Analyst:	
LOQ	$=$ Limit of Quantitation		
Limits	$=$ Control Limits from Method 1613 (10/94 Revision), Tables 6A and 7A		
RPD	$=$ Relative Percent Difference of Lab Spike Recoveries		
IS	$=$ Internal Standard $\left[2,3,7,8\right.$-TCDD- $\left.{ }^{13} \mathrm{C}_{12}\right]$		
CS	$=$ Cleanup Standard [2,3,7,8-TCDD- $\left.{ }^{3} \mathrm{Cl}_{4}\right]$	Project	No............ 10490762
	rt No.....10490762_1613DW_DFR		Page 7 of 9

Michelle Brant
Hoosier Microbiological Lab
912 West McGalliard
Muncie IN 473031702

Report Prepared for:

EXHIBIT D-3 Raw Water Analysis, PW-2

Report Information:

Pace Project\#: 10490762
Sample Receipt Date: 09/06/2019
Client Project \#: Drinking Water Dioxin
Client Sub PO \#: N/A
State Cert \#: C-MN-01

Invoicing \& Reporting Options:

The report provided has been invoiced as a Level 2 Drinking Water Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

September 17, 2019
Scott Unze, Project Manager
(612) 607-6383
(612) 607-6444 (fax)
scott.unze@pacelabs.com

Report of Laboratory Analysis
Thisreportshouldnotbereproduced, exceptinfull, withouthewrittenconsento fPaceAnalyticalServices, Inc.

Theresultsrelateonlytothesamplesineludedinthisreport.

EXHIBIT D-3
Raw Water Analysis, PW-2

Minnesota Laboratory Certifications

Authority	Certificate \#	Authority	Certificate \#
A2LA	2926.01	Minnesota - Pet	1240
Alabama	40770	Mississippi	MN00064
Alaska - DW	M 000064	Missouri - DW	10100
Alaska - UST	17-009	Montana	CERT0092
Arizona	AZ0014	Nebraska	NE-OS-18-06
Arkansas - DW	MN00064	Nevada	MN00064
Arkansas - WW	88-0680	New Hampshire	2081
CNMI Saipan	MP0003	New Jersey (NE	MN002
California	2929	New York	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Carolina -	27700
EPA Region $8+$	via MN 027-053	North Carolina -	530
Florida (NELAP	E87605	North Dakota	R-036
Georgia	959	Ohio - DW	41244
Guam	17-001r	Ohio - VAP	CL101
Hawaii	MiN00064	Oklahoma	9507
Idaho	MN00064	Oregon - Primar	MN300001
Illinois	200011	Oregon - Secon	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky - DW	90062	South Dakota	NA
Kentucky-WW	90062	Tennessee	TN02818
Louisiana-DE	03086	Texas	T104704192
Louisiana - DW	MN00064	Utah (NELAP)	MN00064
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Massachusetts	M-MN064	West Virginia -	382
Michigan	9909	West Virginia -	9952C
Minnesota	027-053-137	Wisconsin	999407970
Minnesota - De	via MN 027-053	Wyoming- UST	2926.01

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc

Reporting Flags

$A=$ Reporting Limit based on signal to noise
$B=$ Less than $10 x$ higher than method blank level
$C=$ Result obtained from confirmation analysis
$D=$ Result obtained from analysis of diluted sample
$E=E x c e e d s$ calibration range
I = Interferencepresent
$J=$ Estimated value
$L=$ Suppressive interference, analyte may be biased low
$\mathrm{Nn}=$ Value obtained from additional analysis
$P=P C D E I n t e r f e r e n c e$
$\mathrm{R}=$ Recovery outside target range
S = Peak saturated
$\mathrm{U}=$ Analyte not detected
$V=$ Result verified by confirmation analysis
X = \%DExceeds limits
$Y=$ Calculated using average of daily RFs

* $=$ SeeDiscussion

REPORT OF LABORATORY ANALYSIS

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

EXHIBIT D-3

Raw Water Analysis, PW-2

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Missouri	880
Alaska	IN00035	Montana	CERT0026
Arizona	AZ0432	Nebraska	NE-OS-05-04
Arkansas	IN00035	Nevada	IN00035
California	2920	New Hampshire *	2124
Colorado	IN00035	New Jersey	IN598
Colorado Radiochemistry	IN00035	New Mexico	IN00035
Connecticut	PH-0132	New York*	11398
Delaware	IN035	North Carolina	18700
Florida*	E87775	North Dakota	R-035
Georgia	929	Ohio	87775
Hawaii	IN035	Oklahoma	D9508
Idaho	IN00035	Oregon (Primary AB)*	4074
Illinois*	200001	Pennsylvania*	$68-00466$
Illinois Microbiology	17767	Puerto Rico	IN00035
Ilinois Radiochemistry	IN00035	Rhode Island	LAO00343
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
Iowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas	T104704187-18-12
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA014	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia	460275
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	$018-999-338$	Wisconsin	999766900
Mississippi	INO35	Wyoming	IN035
EPA	IN00035		

*NELAP/TNI Recognized Accreditation Bodies

EXHIBIT D-3
 Raw Water Analysis, PW-2

eurofins

Eaton Analytical

110 South Hill Street
South Bend, IN 46617
Tel: (574) 233-4777
Fax: (574) 233-8207
1 8003324345

Laboratory Report

Client:	Hoosier Microbiological Laboratories	Report:	463770
Attn:	Michelle Brant	Priority:	Standard Written
	912 W. McGalliard Rd.	Status:	Final
	Muncie, IN 47303	PWS ID:	Not Supplied

Sample Information					
$\begin{aligned} & \hline \hline \text { EEA } \\ & \text { ID \# } \end{aligned}$	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time
4405242	380444 Sample Tap	$7500-\mathrm{Ra} \mathrm{B}$	08/26/19 14:00	Client	08/30/19 10:00
4405242	380444 Sample Tap	$7500-\mathrm{Ra} \mathrm{D}$	08/26/19 14:00	Client	08/30/19 10:00
4405243	380444 Sample Tap	7110 B	08/26/19 14:00	Client	08/30119 10:00
4405244	380444 Sample Tap	5310 C	08/26/19 14:00	Client	08/30/19 10:00
4405245	380541 Sample Tap	$7500-\mathrm{Ra} \mathrm{B}$	08/27119 10:20	Client	08/30/19 10:00
4405245	380541 Sample Tap	$7500-\mathrm{Ra} \mathrm{D}$	08/27/19 10:20	Client	08/30/19 10:00
4405246	380541 Sample Tap	7110 B	08/27/19 10:20	Client	08/30/19 10:00
4405247	380541 Sample Tap	5310 C	08/27/19 10:20	Client	08/30/19 10:00
4405248	380653 Sample Tap	$7500-\mathrm{Ra} \mathrm{B}$	08/28/19 10:30	Client	08/30/19 10:00
4405248	380653 Sample Tap	$7500-\mathrm{Ra} \mathrm{D}$	08/28/19 10:30	Client	08/30/19 10:00
4405249	380653 Sample Tap	7110 B	08/28/19 10:30	Client	08/30/19 10:00
4405250	380653 Sample Tap	5310 C	08/28/19 10:30	Client	08/30/19 10:00

Report Summary

Note: Sample containers were provided by the client.
Note: The samples submitted for analysis were received at a temperature of $9.2^{\circ} \mathrm{C}$.
Note: The samples submitted for Method 5310 C analysis were received at a pH of >2, which is outside of method requirements. The sample pH was adjusted by laboratory personnel prior to analysis.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.
We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Jim Vernon at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Authorized Signature	Title	
Client Name: \quad Hoosier Microbiological Laboratories		
Report \#:	463770	Page 1 of 4

EXHIBIT D-3
 Raw Water Analysis, PW-2

Client Name: Hoosier Microbiological Laboratories
Report \#: 463770

Sampling Point: 380444 Sample Tap
PWS ID: Not Supplied

General Chemistry										
Analyte ID \#	Analyte	Method		Reg Limit	MRL \dagger	Result	Units	$\begin{gathered} \text { Preparation } \\ \text { Date } \end{gathered}$	Analyzed Date	$\begin{aligned} & \text { EEA } \\ & \text { ID \# } \end{aligned}$
-	Total Organic Carbon (TOC) \$	5310 C	I	-	0.500	2.43	mgit	-	09/16/19 23:38	4405244

Radionuclides										
Analyte ID \#	Analyte	Method	Reg Limit	$\begin{aligned} & \text { MDA } \\ & 95^{* *} \end{aligned}$	MRL	Result	Units	Preparation Date	Analyzed	EEA ID \#
-	Gross Alpha	7110 B	$15 *$	1.4	3.0	4.9 ± 2.2	pCill	09/05/19 14:30	09/16/19 11:16	4405243
-	Gross Beta	7110 B	-	2.8	4.0	5.6 ± 3.1	pCi/L	09/05/19 14:30	09/16/19 11:16	4405243
13982-63-3	Radium-226	7500-Ra B	-	0.23	1.0	1.1 ± 0.4	pCill	09/06/19 13:00	09/12/19 12:33	4405242
15262-20-1	Radium-228	7500-Ra D	-	0.50	1.0	2.6 ± 0.6	$\mathrm{pCi} / \mathrm{L}$	09/06/19 13:00	09/16/19 18:47	4405242
-	Combined Radium	calc.	5 *	0.50	1.0	3.7 ± 0.7	$\mathrm{pCi} / \mathrm{L}$	09/06/19 13:00	09/16/19 18:47	4405242

** Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95% confidence level.
$\$$ The state of origin does not offer certification for this parameter.

Sampling Point: 380541 Sample Tap
PWS ID: Not Supplied

	General Chemistry								
Analyte ID \#	Analyte	Method	Reg	MRL \dagger	Result	Units	$\begin{gathered} \text { Preparation } \\ \text { Date } \\ \hline \end{gathered}$	Analyzed Date	$\begin{aligned} & \text { EEA } \\ & \text { ID \# } \end{aligned}$
-	Total Organic Carbon (TOC) \$	5310 C	-	0.500	2.31	mg / L	-	09/16/19 23:57	4405247

Analyte ID \#	Analyte	Method	$\begin{aligned} & \text { Reg } \\ & \text { Limit } \end{aligned}$	$\begin{aligned} & \text { MDA } \\ & 95^{* *} \end{aligned}$	MRL	Result	Units	$\begin{gathered} \hline \text { Preparation } \\ \text { Date } \\ \hline \end{gathered}$	Analyzed	$\begin{aligned} & \text { EEA } \\ & \text { ID \# } \end{aligned}$
-	Gross Alpha	7110 B	15*	1.7	3.0	1.8 ± 1.8	$\mathrm{pCi} / \mathrm{L}$	09/06/19 14:30	09/16/19 11:16	4405246
-	Gross Beta	7110 B	--	2.4	4.0	6.0 ± 2.7	pCil	09/06149 14:30	09/16/19 11:16	4405246
$13982-63-3$	Radium-226	7500 Ra B	-	0.21	1.0	0.93 ± 0.45	pCill	09/06/19 13:00	09/16/19 14:10	4405245
15262-20-1	Radium-228	$7500-\mathrm{Ra} \mathrm{D}$	-	0.45	1.0	2.4 ± 0.6	$\mathrm{pCi/L}$	09/06/19 13:00	09/16/19 18:47	4405245
-	Combined Radium	calc.	5 *	0.45	1.0	3.33 ± 0.73	$\mathrm{pCi/L}$	09/06/19 13:00	09/16/19 18:47	4405245

[^2]
Lab Definitions

Continuing Calibration Check Standard (CCC)/Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

EXHIBIT D-3

Raw Water Analysis, PW-2

HOOSIER MICROBIOLOGICAL LABORATORY
912 W. MCGALLIARD RD.
MUNCIE, IN 47303
(765) 288-1124

Bacteriological Examination of Private Water
Certified by the Indiana State Board of Health Certified Lab ID\# M-18-03

Date/Time Received: 08/28/2019 at 10:29 AM
Bottle Number: 380539
Name: Ortman Drilling, Inc.
Address: 241 N. CR 300 W.
City/St/Zip: Kokomo, IN 46901
Telephone: (765) 459-4125
Started: 08/28/2019@ 05:35 PM by Betsy
Read: 08/29/2019 @ 04:35 PM by Betsy

REPORT OF SAMPLE

TEST - METHOD

Total Coliform-Colilert(quantitation)
[X] Total Coliform
[X] Fecal Coliform
[]Present
[]Present

County: Unavailable
Organization: PW3
Address: Unavailable
City/St/Zip: Unavailable
Collected By: Thomas Berquist
Place Collected: Sample Tap
Date Collected: 08/27/2019
Time Collected: 10:20 AM
[X] SATISFACTORY. At examination time this water was bacteriologically safe based on USEPA standards.
[] UNSATISFACTORY. At examination time this water was bacteriologically unsafe.
[] PLEASE SUBMIT ANOTHER SAMPLE; TEST NOT VALID BECAUSE:
[] TOO LONG A TIME BETWEEN COLLECTION AND RECEIPT OF SAMPLE.
[] INVALID OR NO COLLECTION DATE AND/OR TIME.
[] SAMPLE LEAKED OR BROKEN IN SHIPMENT, INSUFFICIENT VOLUME
[] RESIDUAL CHLORINE PRESENT.
[] HIGH BACKGROUND COUNT.
[] INCORRECT SAMPLE CONTAINER.
[] NONCONFORMANCE WITH TEMPERATURE REQUIREMENTS $>4^{\circ} \mathrm{C}$.
*MF - Membrane Filtration method

Signed:

Testing • Research • Consulting
Multiple Analysis Report
Sample: 380540
October 1, 2019

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
241 N. CR 300 W.
Kokomo, IN 46901
RE: PWS ID\#: Unavailable
PW3
Sample tap
Unavailable
Unavailable
Dear Mr. Berquist:
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 10:29 AM, 08/28/2019, and collected at 10:20 AM, 08/27/2019:
$\frac{\text { TEST - METHOD }}{\text { Heterotrophic Plate Count-SM9215 }} \quad \frac{\text { RESULT }}{50 \mathrm{cfu} / \mathrm{mL}} \quad \frac{\mathrm{MDL}^{*}}{1 \mathrm{cfu} / \mathrm{mL}} \quad \frac{\text { Date Complete }}{08 / 30 / 2019}$
*Minimum Detection Level
This testing was completed by T.K. Please feel free to contact us if we can be of further service to you.

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

Testing • Research • Consulting

Multiple Analysis Report

Sample: 380541
October 1, 2019

Mr. Thomas S. Berquist
Ortman Drilling, Inc.
241 N. CR 300 W.
Kokomo, IN 46901
RE: PWS ID\#: Unavailable
PW3
Sample Tap
Unavailable
Unavailable
Dear Mr. Berquist:
The following are the result(s) of the test(s) performed on the sample(s) received at HML, Inc. at 10:29 AM, 08/28/2019, and collected at 10:20 AM, 08/27/2019:

TEST-METHOD	RESULTT	$\frac{\mathrm{MDL}}{}{ }^{*}$	Date Complete
Alachlor-525.2	$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Atrazine-525.2	$<0.5 \mathrm{ug} / \mathrm{L}$	$0.5 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Benzo(a)pyrene-525.2	$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Carbofuran-531.1	$<0.9 \mathrm{ug} / \mathrm{L}$	$0.9 \mathrm{ug} / \mathrm{L}$	$09 / 11 / 2019$
Chlordane-525.2	$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
2,4-D-515.4	$<1 \mathrm{ug} / \mathrm{L}$	$1 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
Dalapon-515.4	$<5 \mathrm{ug} / \mathrm{L}$	$5 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
DBCP (1,2-Dibromo-3-chloropropane)-504.1	$<0.02 \mathrm{ug} / \mathrm{L}$	$0.02 \mathrm{ug} / \mathrm{L}$	$08 / 29 / 2019$
Diquat (HPLCC)-549.2	$<2 \mathrm{ug} / \mathrm{L}$	$2 \mathrm{ug} / \mathrm{L}$	$09 / 13 / 2019$
Dinoseb-515.4	$<1 \mathrm{ug} / \mathrm{L}$	$1 \mathrm{ug} / \mathrm{L}$	$09 / 24 / 2019$
Di(2-ethylhexyl)adipate-525.2	$<0.6 \mathrm{ug} / \mathrm{L}$	$0.6 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Di(2-ethylhexyl)phthalate-525.2	$<0.6 \mathrm{ug} / \mathrm{L}$	$0.6 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Ethylene Dibromide-504.1	$<0.01 \mathrm{ug} / \mathrm{L}$	$0.01 \mathrm{ug} / \mathrm{L}$	$08 / 29 / 2019$
Endothall-548.1	$<9 \mathrm{ug} / \mathrm{L}$	$9 \mathrm{ug} / \mathrm{L}$	$09 / 06 / 2019$
Endrin-525.2	$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Glyphosate-547	$<30 \mathrm{ug} / \mathrm{L}$	$30 \mathrm{ug} / \mathrm{L}$	$09 / 20 / 2019$
Heptachlor-525.2	$<0.2 \mathrm{ug} / \mathrm{L}$	$0.2 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Heptachlor epoxide-525.2	$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Hexachlorobenzene-525.2	$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Hexachlorocyclopentadiene-525.2	$<0.5 \mathrm{ug} / \mathrm{L}$	$0.5 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Lindane-525.2	$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$
Methoxychlor-525.2	$<0.1 \mathrm{ug} / \mathrm{L}$	$0.1 \mathrm{ug} / \mathrm{L}$	$09 / 27 / 2019$

Sample 380541 Sample Tap

TEST - METHOD

Oxamyl-531.1
Pentachlorophenol-515.4
Picloram-515.4
Simazine-525.2
2,4,5-TP (Silvex)-515.4
Toxaphene-505
Cadmium-200.7
Barium-200.7
Antimony-200.9
Arsenic-200.9
Chromium-200.7
Mercury-245.1
Nickel-200.7
Selenium-200.9
Sodium-200.7
Beryllium-200.7
Thallium-200.9
Cyanide, Total-SM 4500 CN-E
Fluoride-HACH 10225
Nitrogen, nitrate-HACH 10206
Carbon Tetrachloride-524.2
Chlorobenzene-524.2
1,1,2-Trichloroethane-524.2
1,1,1-Trichloroethane-524.2
Cis-1,2-Dichloroethylene-524.2
Trans-1,2 dichloroethylene-524.2
Ethylbenzene-524.2
1,2,4-Trichlorobenzene-524.2
Dichloromethane (methylene chloride)-524.2
Tetrachloroethylene-524.2
Styrene-524.2
Toluene-524.2
Benzene-524.2
1,2-Dichloroethane-524.2
1,4-Dichlorobenzene-524.2
Trichloroethylene-524.2
Vinyl Chloride (chloroethylene)-524.2
Xylene (total)-524.2
1,2 Dichloropropane-524.2
1,1-Dichloroethylene-524.2
1,2-Dichlorobenzene-524.2
Bromobenzene-524.2
Bromodichloromethane-524.2
Bromoform-524.2
Chloroethane-524.2
Chloroform-524.2
Chloromethane (methyl chloride)-524.2
RESULT
$<2 \mathrm{ug} / \mathrm{L}$
$<0.4 \mathrm{ug} / \mathrm{L}$
$<1 \mathrm{ug} / \mathrm{L}$
$<0.35 \mathrm{ug} / \mathrm{L}$
$<1 \mathrm{ug} / \mathrm{L}$
$<1 \mathrm{ug} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
$0.04 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.005 \mathrm{mg} / \mathrm{L}$
$<0.0002 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$8.1 \mathrm{mg} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
$<0.0010 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$0.57 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$

EXHIBIT D-3

Raw Water Analysis, PW-3

MDL
$2 \mathrm{ug} / \mathrm{L}$
$0.4 \mathrm{ug} / \mathrm{L}$
1 ug/L
$0.35 \mathrm{ug} / \mathrm{L}$
1 ug/L
1 ug/L
$0.001 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$0.0010 \mathrm{mg} / \mathrm{L}$
$0.0010 \mathrm{mg} / \mathrm{L}$
$0.005 \mathrm{mg} / \mathrm{L}$
$0.0002 \mathrm{mg} / \mathrm{L}$
$0.01 \mathrm{mg} / \mathrm{L}$
$0.0010 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
$0.001 \mathrm{mg} / \mathrm{L}$
$0.0010 \mathrm{mg} / \mathrm{L}$
0.01 mg/L
$0.1 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$
$0.0005 \mathrm{mg} / \mathrm{L}$

Date Complete
09/11/2019
09/24/2019
09/24/2019
09/27/2019
09/24/2019
08/28/2019
09/04/2019
09/17/2019
09/13/2019
09/09/2019
09/04/2019
09/04/2019
09/20/2019
09/16/2019
09/10/2019
09/20/2019
09/17/2019
09/03/2019
09/23/2019
08/30/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019
09/04/2019

EXHIBIT D-3

Sample 380541 Sample Tap

TEST - METHOD
2-Chlorotoluene-524.2
4-Chlorotoluene-524.2
Dibromochloromethane - Chlorodibromomethane-524.2
Dibromomethane-524.2
1,3-Dichlorobenzene-524.2
1,1-Dichloroethane-524.2
1,3-Dichloropropane-524.2
2,2-Dichloropropane-524.2
1,1-Dichloropropene-524.2
cis-1,3-Dichloropropene-524.2
trans-1,3-Dichloropropene-524.2
1,1,1,2-Tetrachloroethane-524.2
1,1,2,2-Tetrachloroethane-524.2
1,2,3-Trichloropropane-524.2
Bromomethane (methyl bromide)-524.2
PCB-608
Iron-200.7
Manganese-200.7
Potassium-200.7
Lead-200.9
Copper-200.7
Phosphate-200.7
Aluminum-200.7
Silver-200.7
Magnesium-200.7
Turbidity-EPA180.1
Zinc-200.7
Nitrogen, Nitrite-SM 4500 NO2-B
Chloride-SM 4500 Cl -B
Nitrogen, ammonia-350.1
Calcium-200.7
Carbon Dioxide-SM4500 co2 C
Color-EPA110.3
Dissolved Oxygen-EPA360.1
Surfactants-SM5540C
Odor-SM2150
Conductivity-SM2510B
Silica-SM4500Si-D
Sulfide-SM4500S2-D
Sulfate-SM4500SO4(2-) E
Temperature-170.1
Langelier Index-Calculation
Calcium Hardness-SM 2340C
Solids, dissolved-SM 2540C
Alkalinity-SM 2320 B
Solids, suspended-SM 2540D
Alkalinity phenophalein-SM 2320 B
RESULT
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$<0.0005 \mathrm{mg} / \mathrm{L}$
$0.03 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$1.6 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{ug} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.15 \mathrm{mg} / \mathrm{L}$
$<0.05 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$17.7 \mathrm{mg} / \mathrm{L}$
0.12 NTU
$<0.01 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$15 \mathrm{mg} / \mathrm{L}$
$0.21 \mathrm{mg} / \mathrm{L}$
$54.4 \mathrm{mg} / \mathrm{L}$
$58.8 \mathrm{mg} / \mathrm{L}$
$<7.0 \mathrm{PtCounits}$
$8.16 \mathrm{mg} / \mathrm{L}$
$<0.1 \mathrm{mg} / \mathrm{L}$
$T h r e s h o l d ~ \mathrm{No}$.
$396 \mathrm{uS} / \mathrm{cm}$
$13.7 \mathrm{mg} / \mathrm{L}$
$<0.01 \mathrm{mg} / \mathrm{L}$
$2.2 \mathrm{mg} / \mathrm{L}$
54 F
0.11
$164 \mathrm{mg} / \mathrm{L}$
$265 \mathrm{mg} / \mathrm{L}$
$232 \mathrm{mg} / \mathrm{L}$
$<5.0 \mathrm{mg} / \mathrm{L}$
$<1.0 \mathrm{mg} / \mathrm{L}$

MDL*	Date Complete
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/04/2019
$0.0005 \mathrm{mg} / \mathrm{L}$	09/10/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/16/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/16/2019
$0.6 \mathrm{mg} / \mathrm{L}$	09/03/2019
$1.0 \mathrm{ug} / \mathrm{L}$	08/29/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/11/2019
$0.15 \mathrm{mg} / \mathrm{L}$	09/03/2019
$0.05 \mathrm{mg} / \mathrm{L}$	09/24/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/30/2019
1.0 mg/L	09/10/2019
0.02 NTU	08/29/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/11/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/28/2019
1.0 mg/L	09/03/2019
$0.10 \mathrm{mg} / \mathrm{L}$	08/29/2019
$1.0 \mathrm{mg} / \mathrm{L}$	09/10/2019
$1.0 \mathrm{mg} / \mathrm{L}$	08/28/2019
7.0 PtCo units	08/28/2019
$0.01 \mathrm{mg} / \mathrm{L}$	08/28/2019
0.1 mg/L	09/25/2019
Threshold	08/28/2019
$0.01 \mathrm{uS} / \mathrm{cm}$	08/28/2019
1.0 mg/L	09/23/2019
$0.01 \mathrm{mg} / \mathrm{L}$	09/03/2019
1.1 mg/L	08/30/2019
	08/27/2019
	09/04/2019
1.0 mg/L	09/03/2019
1.0 mg/L	08/28/2019
1.0 mg/L	09/04/2019
$5.0 \mathrm{mg} / \mathrm{L}$	08/29/2019
1.0 mg/L	09/04/2019

Ortman Drilling, Inc.

TEST - METHOD

Alkalinity carbonate-SM 2320 B
Alkalinity bicarbonate-SM 2320 B
pH (lab)-150.1

Sample 380541 Sample Tap
RESULT
$<1.0 \mathrm{mg} / \mathrm{L}$
$232 \mathrm{mg} / \mathrm{L}$
7.45

Raw Water Analysis, PW-3
MDL*
$1.0 \mathrm{mg} / \mathrm{L}$
$1.0 \mathrm{mg} / \mathrm{L}$

Date Complete 09/04/2019 09/04/2019 08/30/2019
*Minimum Detection Level
This testing was completed by M.E. and K.L. and C.U. Please feel free to contact us if we can be of further service to you.

Donald A. Hendrickson, Ph.D.
President - Microbiologist
Chemistry Lab \#C-18-01
Microbiological Lab \#M-18-03
DAH/skp

EMSL Analytical, Inc.
EXHIBIT D-3

Raw Water
200 Route 130 North Cinnaminson, NJ 08077 Analysis, PW-3 Phone/Fax: (800) 220-3675 / (856) 786-5974
http://muw.EMSL.com / cinnasblab@EMSL.com

EMSL Order ID:	041925599
Customer ID:	HOOS54
Customer PO:	
Project ID:	

Attn:	Michelle Brant	Phone:	(765) 288-1124
	Hoosier Microbiological Laboratory (HML)	Fax:	(765) 288-8378
912 West McGalliard	Received:	$08 / 30 / 2019$	
	Muncie, IN 47303	Analyzed:	$09 / 12 / 2019$
Proj:			

Test Report: Determination of Asbestos Structures $\geq 0.5 \mu \mathrm{~m} \&>10 \mu \mathrm{~m}$ in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

Sample ID Client/EMSL	Sample Filtration Date/Time	Original Sample Vol. Filtered (mi)	Effective Filter Area $\left(m m^{2}\right)$	Area Analyzed (mm^{2})		ASbestos				
						$\begin{gathered} \text { Asbestos } \\ \text { Types } \end{gathered}$	Fibers Detected	Analytical Sensitivily	Concentration (million fibers pe	Confidence Limits er)
$041925599-0001$	$\begin{aligned} & \text { 9/3/2019 } \\ & 02: 30 \mathrm{PM} \end{aligned}$	100	1360	0.0774	$\begin{array}{r} \geq 0.5 \\ \mu \mathrm{~m} \end{array}$	None Detected	NO	0.18	<0.18	0.00-0.65
					$\begin{aligned} & \hline 10 \\ & \mu \mathrm{~m} \\ & \text { only } \end{aligned}$	None Detected	ND	0.18	<0.18	0.00-0.65
Collection Date/Time:	08/26/2019									
Sample ozonated prior to analysis due to lab receipt time exceeding 48hr method hold time.										
$\begin{aligned} & 380541 \\ & 041925599-0002 \end{aligned}$	$\begin{gathered} 9 / 3 / 2019 \\ 02: 30 \mathrm{PM} \end{gathered}$	50	1360	0.1419	$\underset{\substack{20.5 \\ \mu \mathrm{~m}}}{ }$	None Detected	ND	0.19	<0.19	0.00-0.71
041925599-0002					$\begin{aligned} & \hline 10 \\ & \mu \mathrm{~m} \\ & \text { only } \end{aligned}$	None Detected	ND	0.19	<0.19	$0.00-0.71$
Collection Date/Time:	08/26/2019									
Sample ozonated prior to analysis due to lab receipt time exceeding 48 hr method hold time.										
380653 $041925599-0003$	$\begin{gathered} \text { 9/3/2019 } \\ \text { 02:30 PM } \end{gathered}$	100	1360	0.0774	$\begin{array}{r} 20.5 \\ \mu \mathrm{~m} \end{array}$	None Detected	ND	0.18	<0.18	0.00-0.65
041925599-0003					$\begin{aligned} & >10 \\ & \mu \mathrm{~m} \\ & \text { only } \end{aligned}$	None Detected	ND	0.18	<0.18	0.00-0.65

Collection Date/Time: 08/26/2019

Sample ozonated prior to analysis due to lab receipt time exceeding 48 hr method hold time.
$\frac{\text { Analyst(s) }}{\text { Patrick Carr }}$

Benjamin Ellis, Laboratory Manager or Other Approved Signatory
Any questions please contact Benjamin Ellis.
Initial report from: 09/12/2019 20:46:35
Sample collection and containers provided by the ctient, acceplable bottle blank level is defined as $\leq 0.01 \mathrm{MFL}>10 \mathrm{~mm}$. ND $=$ None Detected. This report may not be reproduced, except in fult without written permission by EMSI. Anatytical. Inc. EMSL bears no responsibility for sample collection aclivikies or analytical method limitations. Interpretation and use of test results are the responsibility of the client.
The test results contained within this report meet the requirements of NELAC unfess otherwise noted. This report relates only to the samples reported above. Samples recelved in good condition untess otherwise noted.

Samples analyzed by EMSL. Analylical, inc. Cinnaminson. NJ NELAC NYS ELAP 10872. NJ DEP 03036, FL DOH E87975, PAIO\# 68-00367

PaceAnalyticalServices,LLC. 1700ElmStreet Minneapolis,MN,55414

Drinking Water Analysis Results

Sample ID........... 380541
Client.................. Hoosier Microbiological Lab
Lab Sample ID..... 10490762002

Date Collected.....08/27/2019
Date Received......09/06/2019
Date Extracted.....09/11/2019

	Sample $\mathbf{3 8 0 5 4 1}$	Method Blank	Lab Spike	Lab Spike Dup
$[2,3,7,8-\mathrm{TCDD}]$	ND	ND	--	--
LOQ	$5.0 \mathrm{pg} / \mathrm{L}$	$5.0 \mathrm{pg} / \mathrm{L}$	--	--
$2,3,7,8-$ TCDD Recovery	--	--	89%	84%
Spike Recovery Limit	--	--	$73-146 \%$	$73-146 \%$
RPD			6.7%	

IS Recovery	$\mathbf{6 9 \%}$	71%	73%	77%
IS Recovery Limits	$31-137 \%$	$31-137 \%$	$25-141 \%$	$25-141 \%$
CS Recovery	$\mathbf{8 2 \%}$	79%	78%	85%
CS Recovery Limits	$42-164 \%$	$42-164 \%$	$37-158 \%$	$37-158 \%$

Filename	E190912B_10	E190912B_05	E190912B_03	E190912B_04
Analysis Date	$09 / 12 / 2019$	$09 / 12 / 2019$	$09 / 12 / 2019$	$09 / 12 / 2019$
Analysis Time	$17: 03$	$14: 48$	$13: 55$	$14: 22$
Analyst	JRH	JRH	JRH	JRH
Volume	1.010 L	1.007 L	1.002 L	1.010 L
Dilution	NA	NA	NA	NA
ICAL Date	$12 / 15 / 2018$	$12 / 15 / 2018$	$12 / 15 / 2018$	$12 / 15 / 2018$
CCAL Filename	E190912B_02	E190912B_02	E190912B_02	E190912B_02

$!$	= Outside the Control Limits	Analyst:	$\not \square$
ND	= Not Detected		
LOQ	$=$ Limit of Quantitation		
Limits	$=$ Control Limits from Method 1613 (10/94 Revision), Tables 6A and 7A		
RPD	$=$ Relative Percent Difference of Lab Spike Recoveries		
IS	$=$ Internal Standard [2,3,7,8-TCDD- ${ }^{13} \mathrm{C}_{12}$]		
CS	$=$ Cleanup Standard [2,3,7,8-TCDD- ${ }^{37} \mathrm{Cl}_{4}$]	Project	No............ 10490762
	No....10490762_1613DW_DFR		Page 8 of 9

EXHIBIT D-3
 Raw Water Analysis, PW-3

PWS ID: Not Supplied

Analyte ID \#	Analyte	Method	Reg Limit	MRL \dagger	Result	Units	$\begin{gathered} \text { Preparation } \\ \text { Date } \\ \hline \end{gathered}$	Analyzed Date	$\begin{aligned} & \text { EEA } \\ & \text { ID\# } \end{aligned}$
-	Total Organic Carbon (TOC) \$	5310 C	-	0.500	2.43	mg/L	-	09/16/19 23:38	4405244

Analyte ID \#	Analyte	Method	$\begin{gathered} \text { Reg } \\ \text { Limit } \end{gathered}$	$\begin{gathered} \hline \text { MDA } \\ 95^{* *} \end{gathered}$	MRL	Result	Units	$\begin{gathered} \hline \text { Preparation } \\ \text { Date } \\ \hline \end{gathered}$	Analyzed	$\begin{aligned} & \hline \text { EEA } \\ & \text { 10 \# } \end{aligned}$
-	Gross Alpha	7110 B	15^{*}	1.4	3.0	4.9 ± 2.2	pCi/l	09/06/19 14:30	09/16/19 11:16	4405243
-	Gross Beta	7110 B	-	2.8	4.0	5.6 ± 3.1	$\mathrm{pCi/L}$	09/06/19 14:30	09/16/19 11:16	4405243
13982-63-3	Radium-226	7500 -Ra B	-	0.23	1.0	1.1 ± 0.4	pCill	09/06/19 13:00	09/12/19 12:33	4405242
15262-20-1	Radium-228	$7500-\mathrm{RaD}$	-	0.50	1.0	2.6 ± 0.6	pCi/L	09/06/19 13:00	09/16/19 18:47	4405242
-	Combined Radium	calc.	5 *	0.50	1.0	3.7 ± 0.7	$\mathrm{pCi/L}$	09/06/19 13:00	09/16/19 18:47	4405242

** Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95% confidence level.
$\$$ The state of origin does not offer certification for this parameter.

Sampling Point: 380541 Sample Tap
PWS ID: Not Supplied

Analyte ID \#	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	$\begin{aligned} & \text { EEA } \\ & \text { ID \# } \end{aligned}$
-	Total Organic Carbon (TOC)s	5310 C	-	0.500	2.31	mg / L	-	09/16/19 23:57	4405247

Analyte ID \#	Analyte	Method	Reg Limit	$\begin{aligned} & \text { MDA } \\ & 95^{* *} \end{aligned}$	MRL	Result	Units	Preparation Date	Analyzed	EEA ID \#
-	Gross Alpha	7110 B	15*	1.7	3.0	1.8 ± 1.8	pCill	09/06/19 14:30	09/16/19 11:16	4405246
-	Gross Beta	7110 B	-	2.4	4.0	6.0 ± 2.7	pCil	09/06/19 14:30	09/16/19 11:16	4405246
13982-63-3	Radium-226	7500-Ra B	-	0.21	1.0	0.93 ± 0.45	pCifl	09/06/19 13:00	09/16/19 14:10	4405245
15262-20-1	Radium-228	7500-Ra D	-	0.45	1.0	2.4 ± 0.6	pCill	09/06/19 13:00	09/16/19 18:47	4405245
-	Combined Radium	calc.	$5 *$	0.45	1.0	3.33 ± 0.73	pCill	09/06/19 13:00	09/16/19 18:47	4405245

** Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95% confidence level.
$\$$ The state of origin does not offer certification for this parameter.

PW \# 1

RECORD OF WATER WELL
State Form 35680 (R5/9-04)

DNR Variance Number \square

WELL LOCATION

Appendix E Selected Alternative Layout and Opinion of Cost

System Expansion Project Cost Analysis

19-0001
Preliminary Opinion of Probable Cost PHASE I: STATE ROAD 10 WATER MAIN EXTENSION PROJECT

March 9, 2020

Description	Spec No	Quantity Unit	Unit Price	Cost
1. Construction Engineering		1 LS	1.0\%	\$11,110
2. Mobilization/Demobilization		1 LS	5.0\%	\$52,890
3. Maintenance of Traffic		1 LS	\$25,000.00	\$25,000
4. Erosion Control		1 LS	\$5,000.00	\$5,000
5. Clearing and Scrubbing		1 LS	\$50,000.00	\$50,000
6. Fire Hydrant Assembly		23 EA	\$5,000.00	\$115,000
7. Water Main Distribution Piping, 10 IN., PVC C-900		9,150 LFT	\$70.00	\$640,500
8. Water Main, Directionally Drilled, Fusible PVC, 10 IN .		180 LFT	\$150.00	\$27,000
9. Gate Valve, 101		20 EA	\$2,200.00	\$44,000
10. Gate Valve, $6^{\prime \prime}$		2 EA	\$1,500.00	\$3,000
11. Fittings		50 EA	\$600.00	\$30,000
12. Air Release Structures		5 EA	\$5,000.00	\$25,000
13. Water Service Set		4 EA	\$1,500.00	\$6,000
14. Water Service, HDPE, 1"		150 LFT	\$15.00	\$2,250
15. 12" HDPE Culvert Replacement (INDOT Type 3)		45 LFT	\$45.00	\$2,025
16.15" CMP Culvert Replacement (INDOT Type 3)		25 LFT	\$45.00	\$1,125
17.12" CMP Culvert Replacement (INDOT Type 3)		101 LFT	\$45.00	\$4,545
18.12" RCP Culvert Replacement (INDOT Type 3)		173 LFT	\$45.00	\$7,785
19.12" CMP End Section		6 EA	\$50.00	\$300
20. Compacted Aggregate, No. 53, Road Base		130 TON	\$40.00	\$5,183
21. Compacted Aggregate, No. 53, Drive		90 TON	\$45.00	\$4,050
22. Concrete Drive, 6"		330 SYS	\$65.00	\$21,450
23. HMA Pavement, Patching and Drives		90 TON	\$150.00	\$13,500
24. Surface Restoration		1 LS	\$25,000.00	\$25,000
				\$1,121,710
Contingency			15\%	\$168,260
Engineering \& Construction Administration			15\%	\$168, 260
				\$1,458,230

System Expansion Project Cost Analysis

19-0001
Preliminary Opinion of Probable Cost PHASE II: KERSEY WELL FIELD AND TREATMENT PLANT

March 23, 2020

NORWEJ WATER DISTRICT System Expansion Project Cost Analysis

19-0001

PHASE II: KERSEY WELL FIELD AND TREATMENT PLANT SANITARY SEWER EXTENSION 3/19/2020

EXHIBIT E-4

ABONMARCHE

NORWEJ WATER DISTRICT

Preliminary System Expansion Project Cost Analysis
 19-0001
 Preliminary Opinion of Probable Cost
 PHASE III: KANKAKEE VALLEY HIGH SCHOOL WATER MAIN EXTENSION PROJECT

March 9, 2020

Description	Spec No	Quantity Unit	Unit Price	Cost
1 Construction Engineering		1 LS	1.0\%	\$13,980
2 Mobilization/Demobilization		1 LS	5.0\%	\$66,570
3 Maintenance of Traffic		1 LS	\$25,000.00	\$25,000
4 Erosion Control		1 LS	\$5,000.00	\$5,000
5 Clearing and Scrubbing		1 LS	\$50,000.00	\$50,000
6 Fire Hydrant Assembly		28 EA	\$5,000.00	\$140,000
7 Water Main Distribution Piping, 10 IN., PVC C-900		10,360 LFT	\$65.00	\$673,400
8 Water Main, Directionally Drilled, Fusible PVC, 10 IN.		1,040 LFT	\$150.00	\$156,000
9 Steel Casing, 20 IN Directional Drilled/ Bore \& Jacked		80 LFT	\$550.00	\$44,000
10 Gate Valve, 10"		20 EA	\$2,200.00	\$44,000
11 Gate Valve, $6{ }^{\text {¹ }}$		3 EA	\$1,500.00	\$4,500
12 Fittings		50 EA	\$600.00	\$30,000
13 Water Service Set		4 EA	\$1,500.00	\$6,000
14 Water Service, HDPE, 1"		200 LFT	\$15.00	\$3,000
15 Air Release Structures		3 EA	\$5,000.00	\$15,000
16 Compacted Aggregate, No. 53, Road Base and Drive		680 TON	\$45.00	\$30,600
17 HMA Pavement, Binder		210 TON	\$80.00	\$16,800
18 HMA Pavement, Surface		130 TON	\$100.00	\$13,000
19 Surface Restoration		1 LS	\$75,000.00	\$75,000
	Subtotal:			\$1,411,850
Contingency			15\%	\$211,780
Engineering \& Construction Administration			15\%	\$211,780
	TOTAL:			\$1,835,410

Appendix F NRCS Coordination

EXHIBIT F-1 Sent to NRCS

Allison Atkinson

From:	Allison Atkinson
Sent:	Monday, June 10, 2019 2:03 PM
To:	kevin.shide@in.usda.gov
Subject:	NRCS Form AD-1006 for Drinking Water Project
Attachments:	NORWEJ_NRCS Form AD-1006.pdf

Good afternoon Kevin,

We are working on a Preliminary Engineering Report (PER) for a water main extension, new well field, and treatment plant project for the Northwest Jasper Regional Water District (NORWEJ) located within DeMotte, Indiana. For the PER report, we are required to coordinate with the NRCS to complete a form for the Farmland Conversion Impact Rating. After completion, the report will be submitted to the Indiana Finance Authority (IFA) to be used in support for a Drinking Water State Revolving Fund Loan Program.

Please see the attached packet containing the following:

1. Form AD-1006 with only Part I and Part III completed, as indicated in the SRF's environmental guidance document
2. Soil Map with Hydrologic Soil Group from the NRCS Web Soil Survey
3. Exhibit showing the proposed improvements

Please let me know if you need more information in order to complete the form or have further questions about the project.

Thank you,
Allison

Allison Atkinson

Staff Civil Engineer, El
D 219.246.4245
C 317.682 .7977
O 219.850 .4624 ext. 317

W www.abonmarche.com

U.S. Department of Agriculfure

FARMLAND CONVERSION IMPACT RATING

STEPS IN THE PROCESSING THE FARMLAND AND CONVERSION IMPACT RATING

Step 1 - Federal agencies (or Federally funded projects) involved in proposed projects that may convert farmland, as defined in the Farmland Pr to nonagricultural uses, will initially complete Parts I and III of the form. For Corridor type projects, the Federal agency shall use form NRCS-CPA-106 in place of form AD-1006. The Land Evaluation and Site Assessment (LESA) process may also be accessed by visiting the FPPA website, htpp://fppanrcsuldagov/lesa/.

Step 2 - Originator (Federal Agency) will send one original copy of the form together with appropriate scaled maps indicating location(s) of project site(s), to the Natural Resources Conservation Service (NRCS) local Field Office or USDA Service Center and retain a copy for their files. (NRCS has offices in most counties in the U.S. The USDA Office Information Locator may be found at hitp://officesusdagov/scripls/hdISAPI.dl/oin public.USA map, or the offices can usually be found in the Phone Book under U.S. Government, Department of Agriculture. A list of field offices is available from the NRCS State Conservationist and State Office in each State.)

Step 3 - NRCS will, within 10 working days after receipt of the completed form, make a determination as to whether the site(s) of the proposed project contains prime, unique, statewide or local important farmland. (When a site visit or land evaluation system design is needed, NRCS will respond within 30 working days.

Step 4 - For sites where farmland covered by the FPPA will be converted by the proposed project, NRCS will complete Parts II, IV and V of the form.
Step 5 - NRCS will return the original copy of the form to the Federal agency involved in the project, and retain a file copy for NRCS records.
Step 6 - The Federal agency involved in the proposed project will complete Parts VI and VII of the form and return the form with the final selected site to the servicing NRCS office.

Step 7 - The Federal agency providing financial or technical assistance to the proposed project will make a determination as to whether the proposed conversion is consistent with the FPPA.

INSTRUCTIONS FOR COMPLETING THE FARMLAND CONVERSION IMPACT RATING FORM (For Federal Agency)

Part I: When completing the "County and State" questions, list all the local governments that are responsible for local land use controls where site(s) are to be evaluated.

Part III: When completing item B (Total Acres To Be Converted Indirectly), include the following:

1. Acres not being directly converted but that would no longer be capable of being farmed after the conversion, because the conversion would restrict access to them or other major change in the ability to use the land for agriculture.
2. Acres planned to receive services from an infrastructure project as indicated in the project justification (e.g. highways, utilities planned build out capacity) that will cause a direct conversion.

Part VI: Do not complete Part VI using the standard format if a State or Local site assessment is used. With local and NRCS assistance, use the local Land Evaluation and Site Assessment (LESA).

1. Assign the maximum points for each site assessment criterion as shown in $\S 658.5(\mathrm{~b})$ of CFR. In cases of corridor-type project such as transportation, power line and flood control, criteria \#5 and \#6 will not apply and will, be weighted zero, however, criterion \#8 will be weighed a maximum of 25 points and criterion \#11 a maximum of 25 points.
2. Federal agencies may assign relative weights among the 12 site assessment criteria other than those shown on the FPPA rule after submitting individual agency FPPA policy for review and comment to NRCS. In all cases where other weights are assigned, relative adjustments must be made to maintain the maximum total points at 160 . For project sites where the total points equal or exceed 160, consider alternative actions, as appropriate, that could reduce adverse impacts (e.g. Alternative Sites, Modifications or Mitigation).

Part VII: In computing the "Total Site Assessment Points" where a State or local site assessment is used and the total maximum number of points is other than 160, convert the site assessment points to a base of 160.
Example: if the Site Assessment maximum is 200 points, and the alternative Site " A " is rated 180 points:

$$
\frac{\text { Total points assigned Site } A}{\text { Maximum points possible }}=\frac{180}{200} \times 160=144 \text { points for Site } A
$$

For assistance in completing this form or FPPA process, contact the local NRCS Field Office or USDA Service Center.
NRCS employees, consult the FPPA Manual and/or policy for additional instructions to complete the AD-1006 form.
EXHIBIT F-1
Sent to NRCS

EXHIBIT F-1
Sent to NRCS

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{MAP LEGEND} \& MAP INFORMATION

\hline \begin{tabular}{l}
Area of interest (AOI)

Soils

Area of Interest (AOI)

Soil Rating Polygons

A

A/D

B

B/D

C

C/D

D

- A/D

- BID

- $\quad \mathrm{C}$

- C/D

Not rated or not avaliable

Soil Rating Lines

- A

$\rightarrow B$

- D

- . Not rated or not available

Soil Rating Points

A

图 A / D

B

B/D

 \&

c

C/D

D

Water Features

Transportation

$+\quad$ Rails

Background

Not rated or not available

Streams and Canals

Interstate Highways

US Routes

Major Roads

Local Roads

Aerial Photography

 \&

The soil surveys that comprise your AOI were mapped at 1:15,800.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG 3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Jasper County, Indiana

Survey Area Data: Version 19, Sep 7, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 3, 2009—Dec 26, 2016

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
\end{tabular}

\hline
\end{tabular}

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BeB	Brems loamy sand, 1 to 3 percent slopes	A	14.2	2.0\%
Mu	Morocco loamy sand, 0 to 2 percent slopes	A/D	64.8	9.1\%
OaB	Oakville fine sand, 2 to 6 percent slopes	A	67.9	9.5\%
W	Water		1.9	0.3\%
Wm	Watseka-Maumee loamy sands	A/D	565.3	79.2\%
Totals for Area of Interest			714.2	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

EXHIBIT F-2

Allison Atkinson

CHA Consulting, Inc.
Union Station
300 South Meridian Street
Indianapolis, Indiana 46225
Dear Ms. Atkinson:

The proposed project to make water treatment plant improvements to the NORWEJ system in Jasper County, Indiana as referred to in your letter received June 10, 2019, will not cause a conversion of prime farmland.

If you need additional information, please contact Daniel Phillips at 317-295-5871.
Sincerely,

JERRY RAYNOR
State Conservationist

EXHIBIT F-2

U.S. Department of Agriculture

FARMLAND CONVERSION IMPACT RA'.... -

Step 1 - Federal agencies (or Federally funded projects) involved in proposed projects that may convert farmland, as to nonagricultural uses, will initially complete Parts I and III of the form. For Cortidor type projects, the Federal agency shall use form NRCS-CPA -106 in place of form AD-1006. The Land Evaluation and Site Assessment (LESA) process may also be accessed by visiting the FPPA website, hitp://fopanres.usda.gov/lesa/.

Step 2 - Originator (Federal Agency) will send one original copy of the form together with appropriate scaled maps indicating location(s)of project site(s), to the Natural Resources Conservation Service (NRCS) local Field Office or USDA Scrvice Center and retain a copy for their files. (NRCS has offices in most counties in the U.S. The USDA Office Information Locator may be found at http:/offices.usda gov/scriphs/idISAPI dll/oin public USA map, or the offices can usually be found in the Phone Book under U.S. Government, Department of Agriculture. A list of field offices is available from the NRCS State Conservationist and State Office in each Statc.)

Step 3 - NRCS will, within 10 working days after receipt of the completed form, make a determination as to whether the site(s) of the proposed project contains prime, unique, statewide or local important farmland. (When a site visit or land evaluation system design is needed, NRCS will respond within 30 working days.

Step 4 - For sites where farmland covered by the FPPA will be converted by the proposed project, NRCS will complete Parts II, IV and V of the form.
Step 5 - NRCS will return the original copy of the form to the Federal agency involved in the project, and retain a file copy for NRCS records.
Step 6 - The Federal agency involved in the proposed project will complete Parts VI and VII of the form and return the form with the final selected site to the servicing NRCS office.

Step 7-The Federal agency providing financial or technical assistance to the proposed project will make a determination as to whether the proposed conversion is consistent with the FPPA.

INSTRUCTIONS FOR COMPLETING THE FARMLAND CONVERSION IMPACT RATING FORM
 (For Federal Agency)

Part I: When completing the "County and State" questions, list all the local governments that are responsible for local land use controls where site(s) are to be evaluated.

Part III: When completing item B (Total Acres To Be Converted Indirectly), include the following:

1. Acres not being directly converted but that would no longer be capable of being farmed after the conversion, because the conversion would restrict access to them or other major change in the ability to use the land for agriculture.
2. Acres planned to receive services from an infrastructure project as indicated in the project justification (e.g. highways, utilities planned build out capacity) that will cause a direct conversion.

Part VI: Do not complete Part VI using the standard format if a State or Local site assessment is used. With local and NRCS assistance, use the local Land Evaluation and Site Assessment (LESA).

1. Assign the maximum points for each site assessment criterion as shown in § $658.5(\mathrm{~b})$ of CFR. In cases of corridor-type project such as transportation, power line and flood control, criteria \#5 and \#6 will not apply and will, be weighted zero, however, criterion \#8 will be weighed a maximum of 25 points and criterion \#11 a maximum of 25 points.
2. Federal agencies may assign relative weights among the 12 site assessment criteria other than those shown on the FPPA rule after submitting individual agency FPPA policy for review and comment to NRCS. In all cases where other weights are assigned, relative adjustments must be made to maintain the maximum total points at 160 . For project sites where the total points equal or exceed 160, consider alternative actions, as appropriate, that could reduce adverse impacts (e.g. Alternative Sites, Modifications or Mitigation).

Part VII: In computing the "Total Site Assessment Points" where a State or local site assessment is used and the total maximum number of points is other than 160, convert the site assessment points to a base of 160 .
Example: if the Site Assessment maximum is 200 points, and the alternative Site " A " is rated 180 points:
$\frac{\text { Total points assigned Site A }}{\text { Maximum points possible }}=\frac{180}{200} \times 160=144$ points for Site A

For assistance in completing this form or FPPA process, contact the local NRCS Field Office or USDA Service Center.
NRCS employees, consult the FPPA Manual and/or policy for additional instructions to complete the AD-1006 form.

EXHIBIT F-2
Received from the NRCS

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BeB	Brems loamy sand, 1 to 3 percent slopes	A	14.2	2.0\%
Mu	Morocco loamy sand, 0 to 2 percent slopes	A/D	64.8	9.1\%
OaB	Oakville fine sand, 2 to 6 percent slopes	A	67.9	9.5\%
W	Water		1.9	0.3\%
Wm	Watseka-Maumee loamy sands	A/D	565.3	79.2\%
Totals for Area of Interest			714.2	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Appendix G Public Meeting Documents

EXHIBIT G-1
 Notice of Public Hearing

Notice of Public Hearing
Northwest Jasper Regional Water District (NORWEJ)
Preliminary Engineering Report (PER) to obtain assistance from The Drinking Water State Revolving Fund (DWSRF Loan Program)

The Northwest Jasper Regional Water District (NORWEJ) will hold a public hearing at 6:00 PM, local time, on Monday, August 26, 2019 at the DeMotte Town Hall, 112 Carnation St. SE, DeMotte, IN 46310. NORWEJ's engineering consultant, Abonmarche Consultants, Inc., will present the recommended upgrades to NORWEJ's drinking water infrastructure, which will include construction of a new well field and treatment plant and water main extension, as described in the PER. The project will be funded through a DWSRF loan.

At this hearing, there will be the opportunity for questions and comments from the public. Participation is welcomed and encouraged. If special assistance is required at the meeting, please contact Heather Tokarz, 219-987-3831. Copies of the PER are available for public viewing starting August 8, 2019 through September 2, 2019 at the DeMotte Town Hall, 112 Carnation St. SE, DeMotte, IN 46310 . Written comments regarding this project should be emailed to Daryl Knip, dknip@abonmarche.com, prior to September 2, 2019. Written comments may also be mailed to Daryl Knip, Abonmarche Consultants, Inc., 750 W. Lincoln Way East, South Bend, IN 46601.

The Board of Trustees of Northwest Jasper Regional District met in DeMotte Town Hall, 112 Carnation ST SE, DeMotte, IN on August 26, 2019 at 6:00 PM in regular meeting pursuant to call in accordance with the rules of the board.

Present

Absent
Andy Andree Don Goetz
Peggy Michelin Jeff Cambe
John Price Mark Boer
Kent Bierma
Andy Andree, who presided, called the meeting to order.

Minutes

Don Goetz motioned to approve the July 22, 2019 minutes. Kent Bierma seconded and motion carried.

Financial Report:

Don Goetz reported on the financial report. All accounts have been reconciled and approved. Operating account balances as of June 30, 2019 were $\$ 470,932.70$ and the Bond and Interest Account is $\$ 467,061.33$. A fund report was given to the board members to show the current balances. Kent Bierma motioned to accept the financial report. Peggy Michelin seconded. Motion carried.

New Business:

SRF Public Hearing - Andy Andree opened the floor for the SRF Public Hearing. There were no comments. Andy Andree closed the floor for the SRF Public Hearing.

Old Business:

Attorney Emily Waddle stated that the Purchase Agreement for the land has been completed and is ready for signature.

Engineer Daryl Knip reported that the original painter for the tank has been contacted.

Water Department Report

Bob Barton gave an update on the well fields. Bob stated that the pump testing has been completed on 2 of the wells. The third well testing should be completed soon.

Bob Barton reported that the divers did the cleaning of the water tower. They discovered that there is a coating failure on the inside of the tank, but it is very minimal.

Bob Barton stated that there will be a sanitary survey, which is also known as a state inspection, on Thursday. Test results from 2014 to present are what will be needed for this survey.

Engineer Report

Daryl Knip reported that the water expansion will be ready for bids within a month. Everything is moving along, and he is working on the easements. Daryl said that he has talked to SRF and will need to contact them when it is determined when funding will be needed. Daryl Knip stated that we are on the agenda with the Jasper County Drainage Board for next month.

Daryl Knip gave an update on the I-65 expansion. Daryl reported that progress has slowed down a bit. Daryl said he would like permission to work with Heather Tokarz and Emily Waddle to draft an agreement with Luvs for the sewer and water project. Don Goetz made a motion to
approve Daryl Knip to work with Heather Tokarz and Emily Waddle to draft an agreement with Luvs regarding the water and sewer project. Mark Boer seconded the motion. Motion carried.

Office Report

Heather Tokarz reported that she is working on possibly lowering the minimum gallons for the water rates. Donna Shear is currently working with Mitchell from Baker Tilly for the review of our current rates.

Heather stated that she will be meeting with Kim Grow from Jasper County next month to discuss possibly putting the fire protection fees on the property taxes.

Heather also reported that she is working with State Board of Accounts on how to apply liens on past due water balances. There is currently $\$ 36,688.34$ in outstanding water charges.

Motion to adjourn by Kent Bierma and seconded by Don Goetz. Motion carried.

PROOF OF PUBLICATION

STATE OF INDIANA) COUNTY OF NEWTON)

NOTICE OF PUBLIC HEARING

Legal \#19-045KV

ABONMARCHE
Publisher's Fee: $\$ 69.92$
(ATTACH COPY OF AD)

The undersigned, Marlene Taden, Legal Advertising Clerk of THE KV POST NEWS, a weekly newspaper of general circulation, printed in the English language and published in Kentland, Indiana in said county; does hereby certify that the advertisement attached hereto is a true copy, which was duly published in said paper for 1 week(s), successively, the first of which publication was on the 8TH Day of day of AUGUST 2019.

In addition, this Newspaper has a website and this public notice was posted on the same day as it was published in the newspaper.

Dated this $9^{\text {TH }}$ day of AUGUST 2019.

\qquad EXHIBIT G-5
Sheet No. \qquad Public Meeting Sign in and Public Comments Checked by \qquad
Scale

Appendix H Attachments

SRF Loan Program
 PER Acceptance Resolution

Whereas, the Northwest Jasper Regional Water District of Jasper County Indiana, has caused a Preliminary Engineering Report ("PER"), dated June 2019, to be prepared by the consulting firm of Abonmarche Consultants Inc.; and

Whereas, said PER has been presented to the public at a public hearing held on August 26, 2019, at The DeMote Town Hall for public comment; and

Whereas, the Northwest Jasper Regional Water District Board of Trustees finds that there was not sufficient evidence presented in objection to the recommended project in the PER.

Now, therefore be it resolved that:

1. The PER dated June 2019be approved and adopted by the August 26, 2019 Council / Board of Trustees; and
2. Said PER be submitted to the State Revolving Fund Loan Program for review and approval.

Adopted and Board of Trustees of the Utility of Jasper County, Indiana, this 26 day of August of 2019.
Council / Board of Trustees

Attest:

SRF Loan Program
 Signatory Authorization Resolution

Whereas, the Northwest Jasper County Regional Water District, DeMotte, Indiana, (the "Participant") has plans for a drinking water infrastructure improvement project to meet State and Federal regulations and the Participant intends to proceed with the construction of such project:

Now, therefore, be it resolved by the Board of Trustees, the governing body of the Participant, that:

1. Abonmarche Consultants Inc. be authorized to make application for a State Revolving Fund Loan ("SRF Loan") and provide the SRF Loan Program such information, data and documents pertaining to the loan process as may be required, and otherwise act as the authorized representative of the Participant; and
2. The Participant agrees to comply with State and Federal requirements as they pertain to the SRF Loan Program; and
3. Two certified copies of this Resolution be prepared and submitted as part of the Participant's Preliminary Engineering Report.

Adopted and Passed Board of Trustees of the Utility of Northwest Jasper Regional Water District, DeMote, Indiana, this $26^{\text {th }}$ day of August of 2019.

Board of Trustees

Attest:

Approved and signed by the Town Manager of DeMotte, Indiana this $26^{\text {th }}$ day of August of 2019 Heather J. Tokarz .

Attachment C: DWSRF Loan Program
 Financial Information Form

Proposed Project Costs:

Supply / wells cost
Transmission / distribution System cost
Treatment cost
Storage cost
Subtotal construction cost
Contingencies (should not exceed 10% of construction cost)
Non-construction costs
$\$ 0$
$\$ \quad 2,533,560$
$\$ \quad 2,531,040$
$\$ \quad 0.00$
\$ 5,064,600
e.g., engineering, legal and financial services related to the project, land costs, start-up costs, and construction inspection

Total Proposed Project Cost
The following are not SRF Loan Program eligible:
Previously funded SRF components that have not met useful life
Materials and work done on private property
Grant applications and income surveys done for other agencies
Expenses incurred as a part of forming a utility, Regional
Sewer / Water District, or Conservancy District
Total Ineligible Costs
List other grant / loan funding sources and amounts
Other grants
Other loans
Hook-on fees
Cash on hand
Total Other Funding Sources

Requested SRF Loan
Estimated post-project user rate for 4,000 gallons
Anticipated SRF interest rate
Financial Advisor:
Firm Contact john.seever@bakertilly.com
Name John Seever

Bond Counsel:
Firm Contact jjanak@boselaw.com
Name Chris Janok
\$ 6,985,480
$\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$
$\$ \quad 0$
\$ 6,985,480
$\$$ \qquad

July 2018

Attachment E: DWSRF Loan Program Preliminary Design Summary

INSTRUCTIONS: List existing and proposed design information.

1. General information
1.1. Project name: Northwest Jasper Regional Water District (NORWEJ) System Improvements
2. Design information
2.1. Current population: 3,814 people
2.2. Design year and population: Design Year: 2029 Population: 5,000
2.3. Average Design Flow:
2.3.1. Domestic ${ }^{370,080-g p d ~(O r i g i n a l ~ D e s i g n) ; ~ 102,964-g p d ~(A c t u a l), ~ 183,100-g p d ~(P r o p o s e d) ~}$
2.3.2. Commercial: $30,969-$ gpd (Existing), 100,240 -gpd (Proposed)
2.3.3. Industrial: 0 gpd
2.4. Peak design flow: 314 -gpm (Existing), 872 -gpd (Proposed)
3. Water supply
3.1. Surface water
3.1.1. Location: N/A
3.1.2. Type: N/A
3.1.3. Volume: N/A
3.2. Ground water:
3.2.1. Number of wells: 3
3.2.2. Location: 5931, 5851, 5781 Commercial Drive, DeMotte, IN 46310
3.2.3. Type and diameter Bedrock, 10 -inch casing
3.2.4. Capacity: 650 -gpm, currently only one well providing 400 -gpm is in use (Existing); 450 -gpm (Proposed)
3.2.5. Well house: Yes, planned to be constructed
3.2.6. Aquifer type: Bedrock
3.3. Emergency power: Backup generator
4. Flow meters Determined with Final Well Field Design
4.1. Type:
4.2. Location:
5. Treatment
5.1. Provide raw water analysis See Appendix D
5.2. Pumps Chosen with Full Design of Plant
5.2.1. Number:
5.2.2. Capacity:
5.3. Clarification See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.
5.3.1. Rapid mixing
5.3.1.1. Number:
5.3.1.2. Size:
5.3.1.3. Detention time:
5.3.2. Flocculation See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.

5.3.2.1. Number:

5.3.2.2. Size:

5.3.2.3. Detention time:
5.3.2.4. Flocculation speed:
5.3.2.5. Velocity:
5.3.3. Sedimentation See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.
5.3.3.1. Number:
5.3.3.2. Size:
5.3.3.3. Detention:
5.3.3.4. Baffle location:
5.3.3.5. Overflow rate:
5.3.3.6. Velocity:
5.3.3.7. Sludge removal:
5.4. Filtration

See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.
5.4.1. Type:
5.4.2. Number and size of units:
5.4.3. Peak flow rate:
5.4.4. Average flow rate:
5.4.5. Backwash rate:
5.4.6. Backwash pumps (number and capacity):
5.4.7. Backwash tank capacity:
5.4.8. Wastewater tank capacity:
5.4.9. Method of cleaning:
5.4.10. Disposal of backwash solids:
5.5. Aeration See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.
5.5.1. Type:
5.5.2. Loading rate:
5.6. Iron and Manganese Contro See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.
5.6.1. Type:
5.7. Softening See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.

5.7.1. Type:

5.7.2. Chemical feed location:
5.7.3. Sludge removal and disposal method:
5.7.4. Number and size of brine tank:
5.7.5. Brine waste disposal:
6. Disinfection See Artesian of Pioneer (AOP) Water Treatment Estimates in Appendix A.
6.1. Type of disinfectant used:
6.2. Type of chemical feed system:
6.3. Capacity:
6.4. Disinfectant dosage:
6.5. Contact time:
6.6. Point of application:
6.7. Automatic switchover:
6.8. Ventilation provided:
6.9. Safety equipment:
6.10. Testing equipment:
6.11. Housing:
7. Controls
7.1. Type:
8. Water storage
8.1. Type: Water Tower - Existing
8.2. Number: 1
8.3. Capacity: 500,000 -gallons
8.4. High and low water level: 160 -feet of storage
8.5. Elevation at bottom of tank:
8.6. Available pressure:
8.7. Booster pump:
9. Distribution system
9.1. Type of pipe material: C900 PVC
9.2. Diameter and lengths: $600-\mathrm{ft}$ of 6 -in, $20,930-\mathrm{ft}$ of $10-\mathrm{in}$
9.3. Number of hydrants: 57
9.4. Number and size of valves: 59 of 6 -in, 39 of 10 -in.
9.5. Separation distance from sanitary sewers: Min. 10-feet
9.6. Separation distance from other water mains: No other water mains present.
9.7. Fire protection: No other water mains present.
10. Miscellaneous
10.1. Laboratory equipment: Water Testing Materials
10.2. Safety equipment: Eyewash

ATTACHMENT 4

July 2018
10.3. Fence location and type: To be determined with design; likely chain link and surrounding well houses.
10.4. Emergency power: Backup Generator
10.5. Sampling facilities: To be determined; likely located within well house.
10.6. Utility building: To be determined; likely located within or adjacent to well houses.

\author{

State Revolving Fund Loan Program

 Green Project Reserve Sustainability Incentive
 CLEAN WATER CHECKLIST}

SRF Loan Program Participant Information

Participant Name: Northwest Jasper Regional Water District
Project Name/Location: Drinking Water System Improvements / DeMotte, IN
Date: June 2019
Revision No. 1

Instructions

This checklist shall be completed by the SRF Loan Program participant and be updated as the project changes from concept to design through construction completion. For instance, a checklist should be submitted with:

1. The SRF Loan Program Application,
2. The Preliminary Engineering Report, along with GPR project description and cost estimates,
3. The Post-Bid Documents, including GPR construction costs, and
4. Construction completion.

Please see the U.S. EPA Green Project Reserve Guidance available at www.srf.in.gov for a detailed review of eligibility, definition of the GPR categories: Green Infrastructure, Water Efficiency, Energy Efficiency and Environmentally innovative; examples of ineligible projects; categorical projects and those that require business cases. All GPR projects, components and activities must be eligible for SRF funding.

Check all that apply to the project:

I. GREEN INFRASTRUCTURE

1. Categorical Projects

Implementation of green streets (combinations of green infrastructure practices in transportation rights-of-way), for either new development, redevelopment or retrofits including:
\square Permeable pavement,
\square Bioretention,
\square Trees,
\square Green roofs, and
\square Other practices such as constructed wetlands that can be designed to mimic natural hydrology and reduce effective imperviousness at one or more scales, and
\square Vactor trucks and other capital equipment necessary to maintain green infrastructure projects.
\square Wet weather management systems for parking areas including:
\square Permeable pavement,

- Bioretention,
- Trees,
\square Green roofs, and
\square Other practices such as constructed wetlands that can be designed to mimic natural hydrology and reduce effective imperviousness at one or more scales.
\square Vactor trucks and other capital equipment necessary to maintain green infrastructure projects.
\square Implementation of comprehensive street tree or urban forestry programs, including expansion of tree boxes to manage additional stormwater and enhance tree health.
\square Stormwater harvesting and reuse projects, such as cisterns and the systems that allow for utilization of harvested stormwater, including pipes to distribute stormwater for reuse.
\square Downspout disconnection to remove stormwater from
\square Sanitary,
- Combined sewers, and
\square Separate storm sewers and manage runoff onsite.
\square Comprehensive retrofit programs designed to keep wet weather discharges out of all types of sewer systems using green infrastructure technologies and approaches such as:
\square Green roofs,
\square Green walls,
\square Trees and urban reforestation,
\square Permeable pavements
ㅁ Bioretention cells, and
\square Turf removal and replacement with native vegetation or trees that improve permeability.
\square Establishment or restoration of:
\square Permanent riparian buffers,
\square Floodplains,
\square Wetlands (federal rules prevent the SRF Loan Programs from providing financing assistance for a wetland required as a mitigation measure)
- Vegetated buffers or soft bioengineered stream banks
\square Stream day lighting that removes natural streams from artificial pipes and restores a natural stream morphology that is capable of accommodating a range of hydrologic conditions while also providing biological integrity.
\square Projects that involve the management of wetlands to improve water quality and/or support green infrastructure efforts (e.g., flood attenuation).
\square Includes constructed wetlands.
May include natural or restored wetlands if the wetland and its multiple functions are not degraded and all permit requirements are met.
- The water quality portion of projects that employ development and redevelopment practices that preserve or restore site hydrologic processes through sustainable landscaping and site design.
\square Fee simple purchase of land or easements on land that has a direct benefit to water quality, such as riparian and wetland protection or restoration.

2. Decision Criteria for Business Cases
\square Green infrastructure projects that are designed to mimic the natural hydrologic conditions of the site or watershed.
\square Projects that capture, treat, infiltrate, or evapotranspire water on the parcels where it falls and does not result in interbasin transfers of water.
\square GPR project is in lieu of or to supplement municipal hard/gray infrastructure.
\square Other - Please provide an attachment explaining the scope of the project and brief explanation of the approach for the business case.
3. Example of Project Requiring a Business Case
\square Fencing to keep livestock out of streams and stream buffers. Fencing must allow buffer vegetation to grow undisturbed and be placed a sufficient distance from the riparian edge for the buffer to function as a filter for sediment, nutrients and other pollutants.
4. Categorical Projects

- Installing or retrofitting water efficient devices, such as plumbing fixtures and appliances.
\square For example, shower heads, toilets, urinals and other plumbing devices.
\square Implementation of incentive programs to conserve water such as rebates.
\square Water sense labeled products.
\square Installing any type of water meter in previously unmetered areas, if rate structures are based on metered use

Can include backflow prevention devices if installed in conjunction with water meter
\square Replacing existing broken/malfunctioning water meters, or upgrading existing meters, with:
\square Automatic meter reading systems (AMR), for example:
\square Advanced metering infrastructure (AMI),
Smart meters,
\square Meters with built in leak detection,
\square Can include backflow prevention devices if installed in conjunction with water meter replacement.
\square Retrofitting/adding AMR capabilities or leak detection equipment to existing meters (not replacing the meter itself).
\square Water audit and water conservation plans, which are reasonably expected to result in a capital project.
\square Recycling and water reuse projects that replace potable sources with non-potable sources:
\square Gray water, condensate and wastewater effluent reuse systems (where local codes allow the practice),
\square Extra treatment costs and distribution pipes associated with water reuse.
\square Retrofit or replacement of existing landscape irrigation systems to more efficient landscape irrigation systems, including moisture and rain sensing controllers.
\square Retrofit or replacement of existing agricultural irrigation systems to more efficient agricultural irrigation systems.
2. Decision Criteria for Business Cases

ㅁ Water efficiency can be accomplished through water saving elements or reducing water consumption. This will reduce the amount of water taken out of rivers, lakes, streams, groundwater, or from other sources.
\square Water efficiency projects should deliver equal or better services with less net water use as compared to traditional or standard technologies and practices.
\square Efficient water use often has the added benefit of reducing the amount of energy required by a POTW, since less water would need to be collected and treated; therefore, there are also energy and financial savings.
\square Other - Please provide and attachment explaining the scope of the project and brief explanation of the approach for the business case.
3. Example Projects Requiring a Business Case
\square Water meter replacement with traditional water meters.

- Projects that result from a water audit or water conservation plan.
\square Storage tank replacement/rehabilitation to reduce loss of reclaimed water.
\square New water efficient landscape irrigation system.
\square New water efficient agricultural irrigation system.

III. ENERGY EFFICIENCY

1. Categorical Projects

- Renewable energy projects such as wind, solar, geothermal, micro-hydroelectric, and biogas combined heat and power systems that provide power to a POTW. Micro-hydroelectric projects involve capturing the energy from pipe flow.
\square POTW owned renewable energy projects can be located onsite or offsite.
\square Include the portion of a publicly owned renewable energy project that POTW's energy needs.
\square Must feed into grid system that the utility draws from and/or there is a direction connection.
\square POTW energy management planning, including energy assessments, energy audits, optimization studies, and sub-metering of individual processes to determine high energy use areas, which are reasonably expected to result in a capital project are eligible.
\square Projects that achieve a 20% reduction in energy consumption are categorically eligible for GPR. If a project achieves less than a 20% reduction in energy efficiency, then it may be justified using a business case.
\square Collection system Infiltration/Inflow detection equipment.

2. Decision Criteria for Business Cases
\square Project must be cost effective. An evaluation must identify energy savings and payback on capital and operation and maintenance costs that does not exceed the useful life of the asset.
\square The business case must describe how the project maximizes energy saving opportunities for the POTW or unit process.
\square Using existing tools such as Energy Star's Portfolio Manager (http://www.energystar.gov/index.cfm?c=evaluate performance.bus portfoliomanager) or Check Up Program for Small Systems (CUPSS) (http://www.epa/cupss) to document current energy usage and track anticipated savings.
\square Other - Please provide and attachment explaining the scope of the project and brief explanation of the approach for the business case.
3. Examples of Projects Requiring a Business Case
\square POTW projects or unit process projects that achieve less than a 20% energy efficiency improvement may be justified using a business case.
\square Projects implementing recommendations from an energy audit that are not otherwise designated as categorical.
\square Projects that cost effectively eliminate pumps or pumping stations.
\square Infiltration/Inflow (I/I) correction projects that save energy from pumping and reduced treatment costs and are cost effective.
\square Projects that count toward GPR cannot build new structural capacity. These projects may, however, recover existing capacity by reducing flow from I/I.
$\square I / I$ correction projects where excessive groundwater infiltration is contaminating the influent requiring otherwise unnecessary treatment processes (i.e. arsenic laden groundwater) and I/I correction is cost effective.

- Replacing pre-Energy Policy Act of 1992 motors with National Electric Manufacturers Association (NEMA) premium energy efficiency motors.
\square NEMA is a standards setting association for the electrical manufacturing industry (http://www.nema.org/gov/energy/efficiency/premium/).
\square Upgrade of POTW lighting to energy efficient sources (such as metal halide pulse start technologies, compact fluorescent, light emitting diode (LED)).
\square SCADA systems can be justified based upon substantial energy savings.
\square Variable Frequency Drive can be justified based upon substantial energy savings.

IV. ENVIRONMENTALLY INNOVATIVE

1. Categorical Projects

- Total/integrated water resources management planning likely to result in a capital project.
\square Utility Sustainability Plan consistent with EPA's SRF sustainability policy.
\square Greenhouse gas (GHG) inventory or mitigation plan and submission of a GHG inventory to a registry (such as Climate Leaders or Climate Registry).
\square Planning activities by a POTW to prepare for adaptation to the long-term effects of climate change and/or extreme weather.
\square Construction of US Building Council LEED certified buildings or renovation of an existing building on POTW facilities.
\square Decentralized wastewater treatment solutions to existing deficient or failing onsite wastewater systems.

2. Decision Criteria for Business Cases
\square Technology or approach whose performance is expected to address water quality but the actual performance has not been demonstrated in the state;
ㅁ Technology or approach that is not widely used in the state, but does perform as well or better than conventional technology/approaches at lower cost; or
\square Conventional technology or approaches that are used in a new application in the state.
\square Other - Please provide and attachment explaining the scope of the project and brief explanation of the approach for the business case.
3. Examples of Projects Requiring a Business Case
\square Constructed wetlands projects used for municipal wastewater treatment, polishing, and/or effluent disposal.
\square Natural wetlands.
\square Project may not further degrade.
\square Projects or components of projects that result from total/integrated water resource management planning consistent with the decision criteria for environmentally innovative projects and that are Clean Water SRF eligible.
\square Projects that facilitate adaptation of POTWs to climate change identified by a carbon footprint assessment or climate adaptation study.
\square POTW upgrades or retrofits that remove phosphorus for beneficial use, such as biofuel production with algae.
\square Application of innovative treatment technologies or systems that improve environmental conditions and are consistent with the Decision Criteria for environmentally innovative projects such as:

- Projects that significantly reduce or eliminate the use of chemicals in wastewater treatment.
\square Treatment technologies or approaches that significantly reduce the volume of residuals, minimize the generation of residuals, or lower the amount of chemicals in the residuals.

Includes composting, Class A and other sustainable biosolids management approaches.
\square Educational activities and demonstration projects for water or energy efficiency.
\square Projects that achieve the goals/objectives of utility asset management plans.
\square Sub-surface land application of effluent and other means for ground water recharge, such as spray irrigation and overland flow.

- Spray irrigation and overland flow of effluent is not eligible for GPR where there is no other cost effective alternative.

V. CLIMATE AND EXTREME WEATHER RESILIENCY

1. Categorical Projects - none at this time.
2. Decision Criteria for Business Cases

- Utility functions and performance can be disrupted by climate change/extreme weather events.

Flooding
Drought
Tornado
Lightning strikes
Earthquake
\square Incorporate project elements that provide flexibility to adapt operations and functionality as external conditions change over time.
\square Project components designed to perform beyond the minimum Building Code or Design Standards. \square Utilize climate resiliency and adaptation strategies when siting or routing key project structures or components.
\square Ability to modify or expand proposed facilities based on future climate change issues.
\square Other - Please provide and attachment explaining the scope of the project and brief explanation of any aspects in the planning, construction or operation phase that support the approach for the business case.
3. Examples of Projects Requiring a Business Case
\square Utilizing natural, native and drought resistant planted elements that are economically replaced at project sites for storm water control or landscaping.
\square Siting new structures away from flash flood areas or poor structural soils in former waterway areas.
\square Consideration of finished floor elevation above the 100 year flood elevation or normal code requirements.
\square Increasing structural, roof (snow) or wind loadings beyond code requirements for new structures.
\square Incorporate passive cooling systems for instrumentation, control or power panel rooms subject to high heat conditions.

State Revolving Fund Loan Program Asset Management Program Certification Form Inclusive of Fiscal Sustainability Plan Certification

(To be submitted either at the time of loan closing or no later than the final disbursement of a Particlpant's loan proceeds)

| Particioant NameNorthwest Jasper Regional Water District (NORWEJ)
 Street Address 112 Carnation Street SE
 P. O. Box Number
 City DeMotte State $\mathbb{I N}$ | Zip Code 46310 |
| :--- | :--- | :--- |

Indiana Code 5-1.2-10-16 requires a Participant that receives a loan or other financial assistance from the State Revolving Fund Loan Program (SRF) to certify that the Participant has documentation demonstrating it has the financial, managerial, technical and legal capability to operate and maintain its water or wastewater collection and treatment system. A Participant must demonstrate that it has developed an asset management program as defined in the Indiana Finance Authority's (Authority) Asset Management Program Guidelines.

Section 603(d)(1)(E) of the Federal Water Pollution Control Act (FWPCA) requires a recipient of a loan for a project that involves the repair, replacement or expansion of a publically owned treatment works to develop and implement a Fiscal Sustainability Plan (FSP). The requirement pertains to those portions of the treatment works paid for with Clean Water SRF Loan Funds.

The Asset Management Program (AMP) shall be inclusive of the requirements of the FSP for Wastewater and Drinking Water projects and shall include at a minimum the following: (1) A system map (2) An inventory and assessment of system assets (3) development of an infrastructure inspection, repair, and maintenance plan, including a plan for funding such activities (4) an evaluation and implementation of water and energy conservation efforts (5) An analysis of the customer rates necessary to support the AMP (6) Audit performed at least every two years (7) Demonstration of the technical, managerial, legal and financial capability to operate and maintain the system, per the guidelines established by the Authority.

I hereby certify that | am an authorized representative for the above listed Participant and pursuant to IC 5-1.2-10-16 and Section 603(d)(1)(E), the Participant has developed and is implementing an AMP (inclusive of the requirements of an FSP) that meets the requirements established by the Authority. Upon the request of the Environmental Protection Agency (EPA) or the Indiana SRF, the Participant agrees to make the AMP (which includes the FSP requirements) available for inspection and/or review.

Qrelrew Quen Qre	
Signature of Authorized Representative	Date
Andrew Andree	$219-987-3831$
Printed Name	Phone Number/Email Address

ATTACHMENT 7

INDIANA ARCHAEOLOGICAL
INDIANA DEPARTMENI UF NAI UKAL KESUUKLES DIVISION OF HISTORIC PRESERVATION AND ARCHAEOLOGY SHORT REPORT

402 West Washington Street, Room W274
Indianapolis, Indiana 46204-2739
Telephone Number: (317) 232-1646

Where applicable, the use of this form is recommended but not required by the Division of Historic Preservation and Archaeology

PROJECT AREA DETAILS
Length meters: 253 feet: 830.0 Width meters: 135.0 feet: 443.0 hectares: 03.1 acres: 07.6
Natural Region: Kankakee Marsh Section
Topography: Outwash plains, glacial drainage ways, lake plains (Soil Survey Staff 2019).
Soil Association: Granby-Zadog-Maumee (Statsgo Soils).
Wm Watseka-Maumee soils, fine sand loam, black 10YR $2 / 1$, somewhat to very poorly drained soils Soils: formed in sandy eolian deposit, outwash sediments, in depressions on outwash plains, or lake plains, slope ranges from 0-2\% (Soil Survey Staff 2019).

Drainage: Maumee

Current Land Use: Agriculture
Comments:
RECORDS REVIEW (check all that apply) Date of Records Check (month, day, year): 10/31/2019

区 SHAARD database

\square Site Maps on file at DHPA
Previously Reported Sites within One Mile of the Project (include citations):

No sites have been recorded within one mile of the survey area.

Cultural Resource Management reports, other research reports, grant reports on file at DHPA or other institutions

Previous
Archaeological Studies within One Mile of the Project (include citations):

AR-37-00026 Martin, Andrew and Mitch Zoll. 2000. Archaeo Field Recon Project STP-188-1, Small Structure Replace US 231 Over Bradbury Ditch, 1 km West of East Junction Des. \#9704050.

List other institutions: \square
X Cemetery Records
Results: No cemeteries within one mile of project area.
\square McGregor Industrial Site records (in applicable counties)
\square Results:

【 County Interim Report
Clarence Holladay House (ID:073-161-05027) Contributing,
Results: $\begin{aligned} & \text { House (ID: 073-161-05028) Contributing, House (ID: 073-161-05029) Demolished, } \\ & \text { House (ID: 073-161-05030) Contributing, Farm (ID: 073-161-10015) Contributing. }\end{aligned}$
Х Historic Maps
Results: $\begin{aligned} & \text { No sites or structures within the survey area (Anonymous, 1876; Ogle, 1909; Highway Survey } \\ & \text { Commission, 1936; Anonymous, 1920) }\end{aligned}$

Known Cultural
 Manifestations and/or
 Additional Information:

Shaard has identified known cultural manifestation sites in Jasper county including: 212 Unidentified Prehistoric, 14 Paleoindian, 11 Early Archaic, 5 Middle Archaic, 12 Late Archaic, 1 Terminal Late Archaic, 3 Early Woodland, 6 Middle Woodland, 12 Late Woodland, 2 Protohistoric, 1 Contact, and 97 Historic period sites.

FIELD INVESTIGATION: (check all that apply) Field Investigation Dates (month, day, year): 10/19/19

Field Supervisor: Erin Powers
Field Crew: Catherine Holland
Surface Visibility: 40%
Factors Affecting Visibility: Corn husks left over from harvesting (Figures 1-4).
Visual Walkover \square Pedestrian Survey \boxtimes Shovel Test \square Screened \square Mesh Size
Interval $5 \mathrm{~m} \square 10 \mathrm{~m}$ 区 $15 \mathrm{~m} \square$ Other (describe below) $\quad \square$
Number of Shovel Test Units Excavated: None.
Describe Methods: $\begin{aligned} & \text { Pedestrian survey of the entire area at ten meter interval transects due to ground surface } \\ & \text { visibility over } 30 \% \text {. }\end{aligned}$
Attach photographs documenting disturbances below
Describe Disturbances: Gravel lined exposed buried well fields and utilities (Figures 5-9).
Comments:

Results

Archaeological records check has determined that the project area does not have the potential to contain archaeological resources.Archaeological records check has determined that the project area has the potential to contain archaeological resources.Phase Ia reconnaissance has located no archaeological resources in the project area.Phase Ia reconnaissance has identified landforms conducive to buried archaeological deposits.
Actual Area Surveyed hectares: 03.1 acres: 07.6
Total of sixteen transects at ten meter intervals were walked during pedestrian survey across the extent of the project area due to the ground surface visibility over 30%. Photographs were taken at

Comments: the Northwest corner of the project area looking onto the project area in cardinal directions (Figures $1-4)$. No artifacts or features were discovered in the project area. Disturbances were four gravel lined well fields and exposed buried utilities. The disturbances were photographed and surveyed (Figures 5-9). Figure 12 shows the extent of the well fields subterranean.

Recommendation

The archaeological records check has determined that the project area has the potential to contain archaeological resources and a Phase Ia archaeological reconnaissance is recommended.
The archaeological records check has determined that the project area does not have the potential to contain archaeological resources and no further work is recommended before the project is allowed to proceed.
${ }^{\top}$
The Phase la archaeological reconnaissance has located no archaeological sites within the project area and it is recommended that the project be allowed to proceed as planned.
The Phase Ia archaeological reconnaissance has determined that the project area includes landforms whichhave the potential to contain buried archaeological deposits. It is recommended that Phase Ic archaeological subsurface reconnaissance be conducted before the project is allowed to proceed.

The Phase Ia archaeological reconnaissance has determined that the project area is within 100 feet of a cemetery and a Cemetery Development Plan is required per IC-14-21-1-26.5.

Cemetery Name:
Other Recommendations/Commitments: \square
Pursuant to IC-14-21-1, if any archaeological artifacts or human remains are uncovered during construction, demolition, or earthmoving activities, state law (Indiana Code 14-21-1-27 and 29) requires that the discovery must be reported to the Department of Natural Resources within two (2) business days. In that event, please call (317) 232-1646.

Attachments

X Figure showing project location within Indiana.
Х USGS topographic map showing the project area ($1: 24,000$ scale).
X Aerial photograph showing the project area, land use and survey methods.
\boxtimes Photographs of the project area.Project plans (if available)
Other Attachments:
Cover Page

\qquadAnnonymous 1876 Illustrated Historical Atlas of the Indiana Counties. Anonymous 1920 Plat Books of Indiana Counties Vol. 3. Sidwell Studio, Lombard.State of Indiana. Baskin, Forster \& Co. Highway Survey Commission 1936 Map of Jasper County. Cultural. Highway Survey Ogle, George A. and Company 1909 Standard Atlas of Jasper County, Indiana; including a plat book of villages, cities, and townships of the county. George A. Ogle and Company, Chicago.Commission, Indianapolis. USDA/NRCS 2002 SOILS_STATSGO_IN: Soil Associations in Indiana (U.S. Dept. of Agriculture, 1:250,000, Polygon Shapefile). State Soil Geographic (STATSGO) data base for Indiana. USGS 1960 Fort Recovery Quadrangle Indiana-Ohio 7.5 Minute Series (Topographic). U. S. Geological Survey, Indiana Department of Conservation, Ohio Department of Natural Resources, Division of Geological Survey, Washington D.C.
References Cited
Comments:Curation Facility for Project Documentation: Applied Anthropology Laboratories, Ball State University.

Appendix I Environmental Coordination

State Revolving Fund Loan Program

an Indiana Finance Authority Environmental Program
100 North Senate Avenue, Room 1275 Indianapolis, Indiana 46204
www.sff.in.gov

Staci M. Orr Gardner

Environmental Review Coordinator
(317) 232-8623

SOr@@fa.in.gov
May 27, 2020
Mr. Andrew Andrea, President
Northwest Jasper Regional Water District
13390 N. 900 W.
Demote, IN 46310
Dear Mr. Andree:

Re: Environmental Review Responses
Northwest Jasper Regional Water District Drinking Water System Improvements SRF Project No. DW 19173701

The State Historic Preservation Officer, United States Fish and Wildlife Service, and the State of Indiana's Department of Natural Resources Division of Fish and Wildlife have commented on this project. To demonstrate compliance with federal and state environmental review procedures, please familiarize yourself with the enclosures and place them in your copy of the Preliminary Engineering Report (PER).

The SRF Loan Program will review plans and specifications for consistency with the approved PER. Significant changes in the project (such as changing line routes, structure sites, and the like) could require further environmental review and delay project implementation.

If you have any questions, please call or e-mail.
Sincerely,

Staci On Gardner

Staci Orr Gardner
SG
Enclosure:
Letters from SHPO, USFWS, and DNR and attachment from DNR
cc: Abonmarche Engineering (electronic)

Division of Historic Preservation \& Archaeology-402 W. Washington Street, W274 Indianapolis, IN 46204-2739
Phone 317-232-I646-Fax 317-232-0693 dhpa@dnr.IN.gov

May 18, 2020

Staci Orr Gardner
Environmental Review Coordinator
SRF Program, IGCN 1275
100 North Senate Avenue
Indianapolis, Indiana 46204

Re: Project information and archaeological short report (Powers, 11/1/2019) concerning water main extension, construction of a new well field and construction of a new water treatment plant using State Revolving Loan Funds from the Indiana Finance Authority (SRF Project: WW 19173701 ; DHPA \#25459)

Dear Ms. Gardner:
Pursuant to Indiana Code 5-1.2-10, Section 106 of the National Historic Preservation Act (54 U.S.C. § 306108), and 36 C.F.R. Part 800 , the Indiana State Historic Preservation Officer ("Indiana SHPO") is conducting an analysis of the materials dated and received by the Indiana SHPO on April 22, 2020 for the above indicated project in Wheatfield and Keener townships, Jasper County, Indiana.

Based on our analysis, it has been determined that no historic properties will be altered, demolished, or removed by the proposed project.

This identification is subject to the following condition:

- The project activities remain within areas disturbed by previous construction or cleared by archaeological reconnaissance.

If any prehistoric or historic archaeological artifacts or human remains are uncovered during construction, demolition, or earthmoving activities, state law (Indiana Code 14-21-1-27 and 29) requires that the discovery must be reported to the Department of Natural Resources within two (2) business days. In that event, please call (317) 232-1646. Be advised that adherence to Indiana Code 14-21-1-27 and 29 does not obviate the need to adhere to applicable federal statutes and regulations, including but not limited to 36 C.F.R. 800.

If you have any further questions regarding this determination, please contact the DHPA. Questions about archaeological issues should be directed to Rachel Sharkey at (317) 234-5254 or rsharkey@dnr.IN.gov. Questions about historic buildings or structures pertaining to this project should be directed to Danielle Kauffmann at (317) 232-0582 or dkauffmann@dnr.IN.gov. Additionally, in all future correspondence regarding the above indicated project, please refer to DHPA \#25459.

Beth K. McCord
Deputy State Historic Preservation Officer
Director, Division of Historic Preservation \& Archaeology

BKM:DMK:RAS:ras
emc: Staci Orr Gardner, Indiana Finance Authority

United States Department of the Interior Fish and Wildlife Service

Indiana Field Office (ES)

620 South Walker Street
Bloomington, IN 47403-2121
Phone: (812) 334-4261 Fax: (812) 334-4273
April 30, 2020

Ms. Staci Orr Gardner

State Revolving Fund Loan Program
100 North Senate Avenue, Room 1275
Indianapolis, Indiana 46204

Project No.: SRF DW 19173701
Project: Northwest Jasper Regional Water District Drinking Water System Improvements
Location: DeMotte and Vicinity, Jasper County
Dear Ms. Gardner:
This responds to your letter dated April 23, 2020, requesting our comments on the aforementioned project.
These comments have been prepared under the authority of the Fish and Wildlife Coordination Act (16 U.S.C. 661 et. seq.) and are consistent with the intent of the National Environmental Policy Act of 1969, the Endangered Species Act of 1973, and the U. S. Fish and Wildlife Service's Mitigation Policy.

The proposed project will have no effect on wetlands or other significant habitat types. Project impacts are expected to be minor in nature. Based on a review of the information you provided, the U.S. Fish and Wildlife Service has no objections to the project as currently proposed. This precludes the need for further consultation on this project as required under Section 7 of the Endangered Species Act of 1973, as amended. However, should new information arise pertaining to project plans or a revised list be published, it will be necessary for the Federal agency to reinitiate consultation.

We appreciate the opportunity to comment on this proposed project. If project plans change such that fish and wildlife habitat may be affected, please recoordinate with our office as soon as possible. For further discussion, please contact Elizabeth McCloskey at (219) 983-9753 or elizabeth_mccloskey@fws.gov.

Sincerely yours,

/s/ Eligabeth S. Me Closkey

for Scott E. Pruitt
Supervisor
Sent via email April 30, 2020; no hard copy to follow.

Requestor:	Indiana Finance Authority
	Staci Orr-Gardner
	100 North Senate Avenue
	Room 1275
	Indianapolis, IN 46204

Project:	Northwest Jasper Regional Water District (NORWEJ) drinking water system improvements: SR 10 water main extension (Phase I), new Kersey Well Field and Treatment Plant (Phase II), and Kankakee Valley High School water main extension (Phase III); SRF \#DW 19 173701
County/Site info:	Jasper
	The Indiana Department of Natural Resources has reviewed the above referenced project per your request. Our agency offers the following comments for your information and in accordance with the National Environmental Policy Act of 1969.
	If our agency has regulatory jurisdiction over the project, the recommendations contained in this letter may become requirements of any permit issued. If we do not have permitting authority, all recommendations are voluntary.
Regulatory Assessment:	
The utility crossing over Schatzley Ditch will require the formal approval for construction in a floodway under the Flood Control Act, IC 14-28-1, unless it qualifies for a general	
license under Administrative Rule 312 IAC 10-5 that applies to utility line crossings (see	
enclosure). Please include a copy of this letter with the permit application if the project	
does not meet the general license criteria.	

Natural Heritage Database: The Natural Heritage Program's data have been checked.
Tower mustard (Turritis glabra), a state watchlist species, and Plains Pocket Gopher (Geomys bursarius), a state species of special concern, have been documented within $1 / 2$ mile of the project area. The Division of Nature Preserves does not anticipate any impacts to this plant species as a result of this project.
Fish \& Wildlife Comments: Avoid and minimize impacts to fish, wildlife, and botanical resources to the greatest extent possible, and compensate for impacts. The following are recommendations that address potential impacts identified in the proposed project area:

1) Plains Pocket Gopher:

Areas with existing plains pocket gopher populations can be identified by the presence of large excavation mounds from their burrowing. Mounds can be up to a foot tall and 2 feet or more wide. Impacts to ground where any such mounds are present should be avoided to the extent possible to minimize impacts to this species. Also, any disturbed grassland should be returned to its original soil and drainage structure and reseeded with appropriate native grasses upon project completion.
2) Directional Boring:

We recommend that all creek or stream crossings be done using a trenchless method. The length of the bore should include any forested riparian areas along the creek to minimize impacts to forested habitat. Install erosion control measures such as silt fencing or other appropriate devices around directional drilling pits in order to prevent drilling mud from leaving the immediate area of the pit or entering the stream.

State of Indiana

DEPARTMENT OF NATURAL RESOURCES

Division of Fish and Wildlife

Early Coordination/Environmental Assessment
If the open-trench method is necessary and the only feasible option at any of the planned stream crossings due to the site conditions, then the following measures should be implemented:
a. Any open-trench stream crossing should be timed to coincide with the low-water time of year (typically mid- to late-summer).
b. Restore disturbed streambanks using bioengineering bank stabilization methods and revegetate disturbed banks with native trees, shrubs and herbaceous plants. Stream bank slopes after project completion should be restored to stable-slope steepness (not steeper than 2:1).
c. The cleared width through any forested area should be the minimum needed to install the line and no more than 20 feet wide through the forested area to allow the canopy to close over the line.
d. Use graded stone or riprap to protect the section of trench below the normal water level from scour or erosion (any stone or riprap fill in the streambed must not be placed above the existing streambed elevation to avoid creating a fish passage obstruction).

The additional measures listed below should be implemented to avoid, minimize, or compensate for impacts to fish, wildlife, and botanical resources:

1. Revegetate all bare and disturbed areas within the project area using a mixture of grasses (excluding all varieties of tall fescue), sedges, and wildflowers native to Northern Indiana and specifically for stream bank/floodway stabilization purposes as soon as possible upon completion.
2. Do not excavate in the waterways and minimize disturbance to bank vegetation and contain disturbance to within the project limits.
3. Do not cut any trees suitable for Indiana bat or Northern Long-eared bat roosting (greater than 5 inches dbh, living or dead, with loose hanging bark, or with cracks, crevices, or cavities) from April 1 through September 30.
4. Appropriately designed measures for controlling erosion and sediment must be implemented to prevent sediment from entering the stream or leaving the construction site; maintain these measures until construction is complete and all disturbed areas are stabilized.
5. Seed and protect all disturbed streambanks and slopes not protected by other methods that are 3:1 or steeper with erosion control blankets that are heavy-duty, biodegradable, and net free or that use loose-woven / Leno-woven netting to minimize the entrapment and snaring of small-bodied wildlife such as snakes and turtles (follow manufacturer's recommendations for selection and installation); seed and apply mulch on all other disturbed areas.
6. Plant five trees, at least 2 inches in diameter-at-breast height, for each tree which is removed that is ten inches or greater in diameter-at-breast height.
7. Do not excavate or place fill in any riparian wetland.

Contact Staff:

Christie L. Stanifer, Environ. Coordinator, Fish \& Wildlife
Our agency appreciates this opportunity to be of service. Please contact the above staff member at (317) 232-4080 if we can be of further assistance.

Date: May 22, 2020
Environ. Coordinator
Division of Fish and Wildlife

ARTICLE 10. FLOOD PLAIN MANAGEMENT

312 IAC 10-2-42 "Utility line crossing" defined

Authority: IC 14-28-1-5; IC 14-28-3-2
Affected: IC 14-27-7; IC 14-28-1; IC 14-28-3
Sec. 42. "Utility line crossing" means the utility crosses the waterway in a straight line at an angle of between forty-five (45) degrees and one hundred thirty-five (135) degrees from the streambank and does not parallel the waterway for more than fifty (50) feet in the floodway before crossing unless the parallel portion of the line is contained within existing road right-of-way. (Natural Resources Commission; 312 IAC 10-2-42; filed Jul 5, 2001, 9:12 a.m.: 24 IR 3389, eff Jan 1, 2002)

Rule 5. General Licenses and Specific Exemptions from Floodway Licensing

312 IAC 10-5-0.3 Determining project eligibility for a general license; general criteria
 Authority: IC 14-10-2-4; IC 14-28-1-5
 Affected: IC 14-28-1; IC 14-29-1

Sec. 0.3. (a) Except as provided in subsections (b) and (c), a project for a utility line crossing, the removal of logiams and obstructions, or the placement of outfall projects within a floodway is eligible for a general license if the project satisfies the requirements of this rule. For the removal of logjams and obstructions, these requirements include the procedures established by section 0.6 of this rule.
(b) Subsection (a) does not authorize a project in any of the following circumstances:
(1) Within a river or stream listed in the Indiana Register at 16 IR 1677 in the Outstanding Rivers List for Indiana unless prior written approval from the division of water's environmental unit has been obtained.
(2) Within a salmonid stream designated under 327 IAC 2-1.5-5(a)(3).
(3) Within a natural, scenic, or recreational river or stream designated under 312 IAC 7-2.
(4) For a utility line crossing, below the ordinary high watermark of a navigable waterway listed in the Indiana Register at 20 IR 2920 in the Roster of Indiana Waterways Declared Navigable or Nonnavigable unless the utility line is placed beneath the bed of the waterway under section $4(b)$ of this rule.
(5) Where the project requires an individual permit from the United States Army Corps of Engineers under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act.
(c) Subsection (a) does not authorize the removal of logjams or obstructions within one-half ($1 / 2$) mile of any of the following:
(1) A species listed in the Indiana Register at 15 IR 1312 in the Roster of Indiana Animals and Plants Which Are Extirpated, Endangered, Threatened, or Rare.
(2) A known mussel resource.
(3) An outstanding natural area, as contained on the registry of natural areas maintained in the natural heritage data center of the department.
(d) The limitations contained in subsection (b) and subsection (c) [subsections (b) and (c)] do not apply to section 7 of this rule. (Natural Resources Commission; 312 IAC 10-5-0.3; filed Aug 2, 2004, 3:18 p.m.: 27 IR 3875)

312 IAC 10-5-2 General licensing for utility line crossings

Authority: IC 14-10-2-4; IC 14-28-1-5
Affected: IC 14-27-7; IC 14-28-1; IC 14-29-1
Sec. 2. Except as provided in sections 3 and 4 of this rule, a license is required under IC 14-28-1, IC 14-29-1, and 312 IAC 10-4 to place a utility line in or on a floodway where:
(1) the drainage area of a river or stream is at least one (1) square mile at the downstream end of the line's floodway segment; or
(2) a dam or levee regulated under IC 14-27-7 is affected.
(Natural Resources Commission; 312 IAC 10-5-2; filed Jul 5, 2001, 9:12 a.m.: 24 IR 3394, eff'Jan 1, 2002)

312 IAC 10-5-3 Aerial electric, telephone, or cable television lines; general license

Authority: IC 14-10-2-4; IC 14-28-1-5
Affected: IC 14-28-1; IC 14-29-1; IC 14-29-6

Sec. 3. The placement of an aerial electric, telephone, or cable television line is authorized without a written license issued by the department under IC 14-28-1, IC 14-29-1, and 312 IAC 10-4 if:
(1) the activity does not disturb the bed of the waterway beneath the line;
(2) the activity conforms with the minimum clearance requirements of section $4(\mathrm{~b})(9)$ of this rule;
(3) the support mechanisms are located at least seventy-five (75) feet from the top of the bank; and
(4) the utility line crossing is not within the floodway of a natural river, scenic river, or recreational river designated under 312 IAC 7-2.
(Natural Resources Commission; 312 IAC 10-5-3; filed Jul 5, 2001, 9:12 a.m.: 24 IR 3394, eff Jan 1, 2002; filed Aug 2, 2004, 3:18 p.m.: 27 IR 3876)

312 IAC 10-5-4 Qualified utility line crossings; general license

Authority: IC 14-10-2-4
Affected: IC 13-11-2-260; IC 14-27-7; IC 14-28-1-29; IC 14-33; IC 36-9-27

Sec. 4. (a) This section establishes a general license for the placement of a qualified utility line crossing in a floodway.
(b) A person who wishes to implement a project for the placement of a qualified utility line crossing on a river or stream, other than on a river or stream identified in section $0.3(\mathrm{~b})$ or $0.3(\mathrm{c})$ of this rule, may do so without notice to the department if the project conforms to the following conditions:
(1) Tree removal and brush clearing shall be contained and minimized within the utility line crossing area. No more than one (1) acre of trees shall be removed within the floodway.
(2) Construction activities within the waterway from April 1 through June 30 shall not exceed a total of two (2) calendar days.
(3) Best management practices shall be used during and after construction to minimize erosion and sedimentation.
(4) Following the completion of construction, disturbed areas shall be reclaimed and revegetated. Disturbed areas shall be mulched with straw, wood fiber, biodegradable erosion blanket, or other suitable material. To prevent erosion until revegetated species are established, loose mulch shall be anchored by crimping, tackifiers, or netting. To the extent practicable, revegetation must restore species native to the site. If revegetation with native species is not practicable, revegetation shall be performed by the planting of a mixture of red clover, orchard grass, timothy, perennial rye grass, or another species that is approved by the department as being suitable to site and climate conditions. In no case shall tall fescue be used to revegetate disturbed areas.
(5) Disturbed areas with slopes of three to one (3:1) or steeper, or areas where run-off is conveyed through a channel or swale, shall be stabilized with erosion control blankets or suitable structural armament.
(6) No pesticide will be used on the banks.
(7) If a utility line transports a substance that may cause water pollution as defined in IC 13-11-2-260, the utility line will be equipped with an emergency closure system.
(8) If a utility line is placed beneath the bed of a river or stream, the following conditions are met:
(A) Cover of at least three (3) feet measured perpendicularly to the utility line is provided between the utility line and the banks.
(B) If the placement of a utility line is not subject to regulation under IC 14-28-1-29, IC 14-33, or IC 36-9-27, cover is provided as follows:
(i) At least three (3) feet, measured perpendicularly to the utility line, between the lowest point of the bed and the top of the utility line or its encasement, whichever is higher, if the bed is composed of unconsolidated materials.
(ii) At least one (1) foot, measured perpendicularly to the line, between the lowest point of the bed and the top of the utility line or its encasement, whichever is higher, if the bed is composed of consolidated materials.
(C) If the placement of the utility line is subject to regulation under IC 14-28-1-29, IC 14-33, or IC 36-9-27, cover is provided as follows:
(i) At least three (3) feet, measured perpendicularly to the utility line, between the design bed and the top of the line or its encasement, whichever is higher, if the bed is composed of unconsolidated materials.
(ii) At least one (1) foot, measured perpendicularly to the line, between the design bed and the top of the line or its encasement, whichever is higher, if the bed is composed of consolidated materials.
(D) Negative buoyancy compensation is provided where the utility line has a nominal diameter of at least eight (8) inches and transports a substance having a specific gravity of less than one (1).
(9) If a utility line is placed above the bed of a river or stream, the following conditions are met:
(A) Except as provided in clauses (B) and (C), minimum clearance is provided from the lowest point of the utility line (determined at the temperature, load, wind, length of span, and type of supports that produce the greatest sag) calculated as the higher of the following:
(i) Twelve and one-half ($12 \frac{1}{2}$) feet above the ordinary high watermark.
(ii) Three (3) feet above the regulatory flood elevation.
(B) If the river or stream is a navigable waterway that is subject to IC 14-28-1, the utility line that crosses over the waterway must be placed to provide the greater of the following:
(i) The minimum clearance required under clause (A).
(ii) The minimum clearance required for the largest watercraft that is capable of using the waterway. The utility must consult in advance with the department to determine the minimum clearance for watercraft at the crossing.
(C) If a utility line is attached to or contained in the embankment of an existing bridge or culvert, no portion of the utility line or its support mechanism may project below the low structure elevation or otherwise reduce the effective waterway area.
(10) A utility line placed in a dam or levee regulated under IC 14-27-7 does not qualify for a general license under this subsection.
(c) A person who elects to act under this section must comply with the general conditions under subsection (b). Failure to comply with these terms and conditions may result in the revocation of the general license, a civil penalty, a commission charge, and any other sanction provided by law for the violation of a license issued under IC 14-28-1 and, if the waterway is navigable, the violation of a license issued under IC 14-29-1. (Natural Resources Commission; 312 IAC 10-5-4; fled Jul 5, 2001, 9:12 a.m.: 24 IR 3394, eff Jan 1, 2002; filed Dec 26, 200I, 2:42 p.m.: 25 IR 1545; errata filed Mar 13, 2002, 11:51 a.m.: 25 IR 2521; filed Aug 2, 2004, 3:18 p.m.: 27 IR 3876)

[^0]: Ryan Burt

[^1]: Average System Demand $=$ Average from $M R O \div 1440 \mathrm{~min} /$ day
 Maximum Peak System Demand = Max Peak from MRO $\div 1440 \mathrm{~min} /$ day
 Minimum System Demand $=$ Min. Avg from MRO $\div 1440 \mathrm{~min} /$ day

[^2]: ** Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95% confidence level. $\$$ The state of origin does not offer certification for this parameter.

