1. Jacobians and Linear Approximation

Recall that for a scalar-valued function f(Z,7) : R™® x R¥ — R with vector-valued arguments, we can
linearize the function at (7, 7/,)
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(a) When the function f{i’ i) : R™ x REF — R™ takes in vectors and outputs a vector (rather than a
scalar), we can view each dimension in f independently as a separate function f;, and linearize each

of them:
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We can rewrite this in a clean way with the Jacobian:
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Then, the linearization becomes
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Let 1 =

2 )

and fq(a‘:’) = ﬂ:? "‘"’3 . Find D= f, applying the definition above.
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(b) Evaluate the approximation of f using 7, =

-,
Recall the definition that f(7 3:1:1:2

@{i’iiﬂ-—@

a3

:1:11:2 )

S8 (arsP(3+5)
l;((ﬁ’“ 5#) Clasrsy

ot 5] s 1]
357 2§ 12 Hééjﬂ TQ.\GEW
g;\ a.g}_}h—é#— 1% f&\ﬂgjﬂ 8 d |
(atles +15+8 | [1ateo Ol)
. 1TFa\ST 8§f+§_J # _l%a-alD‘SDL




(c) Let 2 and y be vectors with 2 rows, and let w be another vector with 2 rows. Let f (1: i) = Ty .
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(d) Continuing the above part, find the linear approximation of f near 1

and with w =




2. Linearizing a Two-state System

We have a two state nonlinear system defined by the following differential equation:
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where 7(t] = ['J{-I"] and g(-) is a nonlinear function with the following graph:
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The g(-) is the only nonlinearity in this system. We want to linearize this entire system around a operating
point/eguilibrium. Any point x, 15 an operating point lf FL(t) = (. L

(a) If we have fixed u, () = —1, what values of  and § will ensure ﬁf(t} —(0?



(b) Now thal you have the three operating points, linearize the system about the operating point {:_E’Eiu,] __'_,b —
Ahatbhas thedwepestaalue fos=s Specilically, what we want is as [ollows, Let 8 (1) = £(1) — Iy for 2

1= 1,2 3 and dult) = ul(t) — u,. We can in principle write the linearized svstem for each operating ) \}/ - C) B(+) + EC-‘-

pomt 1n the following form: C
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where i; (1) 1s a disturbance thal also includes the approximation error due (o linearization.
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(¢) Which of the operating points are stable? Which are unstable?



WHEN\YOURSYSTEM IS NON;LINEAR
BUT\YOU LINEARIZE [T/ANYWAY|

Reality can be whatever | want.



Feedback:
https://tinyurl.com/manav16b



