ATTACHMENT A

Albert P. Barker, ISB \#2867
Shelley M. Davis, ISB \#6788
BARKER ROSHOLT \& SIMPSON LLP
1010 W. Jefferson St., Ste: 102
P.O. Box 2139

Boise, ID 83701-2139
Telephone: (208) 336-0700
Facsimile: (208) 344-6034
Attorneys for Boise Project Board of Control

IN THE DISTRICT COURT OF THE FIFTH JUDICIAL DISTRICT
OF THE STATE OF IDAHO, IN AND FOR THE COUNTY OF TWIN FALLS

In Re SRBA
Case No. 39576
\square
subcase no. 63-33737), 63-33733
(Consolidated subcase no. 63-33738), and 63-33734

AFFIDAVIT OF EDWARD SQUIRES, R.P.G.

STATE OF IDAHO)) ss.
 County of Ada :)

EDWARD SQUIRES, R.P.G., being first duly sworn upon oath, deposes and states as follows:

1. I have personal knowledge of the testimony set forth herein and am competent to testify to all matters addressed herein.
2. I was employed with United Water Idaho, Inc. from 1993 to 1999 as the Manager of the Geosciences Department and Senior Project Hydrogeologist. Since 1995 I have also served as part of the adjunct graduate faculty at Boise State University in the University's Department of Geosciences. In 1999 I founded Hydro Logic, Inc., a geoscientific consulting firm
specializing in hydrology, hydrogeology, and geophysics where I remain to this day as the President and Managing Hydrogeologist.
3. I am also a Certified Water Rights Examiner (Certification No. 125) in the State of Idaho and regularly conduct beneficial use examinations for individual water rights and provide Beneficial Use Field Reports to the Idaho Department of Water Resources for use in making determinations about the licensing of water rights.
4. In 2002 I was contracted by United Water Idaho, Inc. to conduct the beneficial use field exam for its surface water right permit no. 63-12055, one of many water rights appurtenant to the diversion works commonly known as the Marden Water Treatment Plant, a very complicated water facility owned and operated by United Water Idaho, Inc. On June 28, 2002, I conducted an investigation and field-licensing examination of that facility and subsequently produced a Beneficial Use Field Report. I performed a number of analyses concerning the capacity of the plant and its instrumentation and ultimately determined that the plant was capable of producing the total of its existing appurtenant surface and ground water rights plus the added diversion rate of the newer Permit no. 63-12055. My recommendation to Department was that the Permit be licensed at its authorized diversion rate "for use anytime surplus water is available on the Boise River (Lucky Peak spilling)." See Exhibit 1, attached hereto which is a correct and accurate copy of the Beneficial Use Field Report that I submitted to IDWR for water right permit no. 63-12055, absent the Figures and Appendices submitted therewith.
5. The reason that I recommended that the exercise of water right no. 63-12055 be limited to times when Lucky Peak Reservoir is spilling is that it is my understanding that the IDWR has considered the Boise River to have been fully appropriated prior to the filing of

Permit no. 63-12055 and that only those waters that are passed through the Boise River reservoir system for flood control are available for appropriation.

DATED THIS 18 day of June, 2015.

SUBSCRIBED AND SWORN to before me this 18 day of June, 2015.

NOTARY PUBLIC FORIDAHO

Residence:
solal My Commission Expires: $12-17-16$

EXHIBIT 1

A. GENERAL INFORMATHON

1. Owner._Untted Water kdaho, Inc. \qquad Phone No. (208) $369-7358$

Current Address:

2. Accompanied by.__ Bob Adams and Scott Cetri__

EXAM DATE: June 28, 2002
Address:
Seme as above. \qquad Phona No._(208) 392.7358

Relationship to Permit Holder: Leed Oparators - United Water kdaho, Inc.
 \qquad tributary to \qquad NA

B. OVERLAP REVIEW

C. DIVEREION AND DELNERY SYSTEM

1. Point (c) of Diversion:

Ident No.	$\begin{aligned} & \text { Govt } \\ & \text { Lot } \end{aligned}$	1/4	1/4	1/4	Sec	Twp.	Rge.	County	Method of Datermination/Remarks
Collector Well ${ }^{4}$	7		SE	NE	14	3 N	2 E	Ada	stite visilt and Uses $71 / 2-$ minuth Topographle Sertes mape
Collactor Woll ${ }^{2}$?	7		SE	NE	14	3 N	$2{ }^{2}$	Ada	She vilit and USCS 7 Ya - minute Topographic Serles maps
Collector Well	7		SE	NE	14.	3N	2 E	Ada	site visit and UsCs $71 / 2-$ minute Topographle Serles mape
Botse River Intake	7		$3 E$	NE	14	3 N	2 E	Ada	site visit and USG8 $71 / 2$-minnte Topographic Serles maps

2. Place(s) of Use:UWID's Certifented Sarvice Area Indicate Method of Dotermination On-ille records atIDWXR and TPUC.

TWFI	Rल]	SEC	NE				NW				sw				SE				Touals
			NE	NW	SW	SE	NE	NW	Sw	SB	NB	NW	SW	SE	NB	NW	SW	SE	

3. Delifery Syatem Dlagram: Indicate all. major components and distances between components. Indicate weir stze / ditch stze / pipe I.D. as applicable.

See attheched sheotes, appandisees, and firures:

XX_ Copy of USGS Quadrangle Atteched showing location(8) of point(s) of diversion and place(s) of use (Figure 1).
XX. Photos of Diversion and System Attached (Figures 2-7)
49. Raw Watar Pumping Station (lnto ptant)

Pump Identification No.*	Motor Make	Hp	Motor Sarial No.	Pump Maka	Pump Sorial No, or Dlacharge Size
RWPS \#1	U.S. Motors	15	G69502W08W0490347F	Layne \& Bowler	*115467 (8) discharge)
RWPS \#2	U.S. Motors	30	G69505W09W04990369F	Layne \& Bowtar	\#115468 (14 discharge)
RWPS \#3	U.S. Motors	30	G69505W08W0490369F	Layne \& Bowler	\#115469 (14' discharge)
RWPS * 4	G.E. Motors	25	5K284DBBG001A	Prine Pump	\# PPD9903002 (14] disch)
RWPS *5	U.S. Motors	50	D1201061904-004R-02	Coulds	*439495 (14" discharge)

"Cocto to connospond witi No. on map and coutar phato
4b. Finished Wueter Pumping Station (into systam)

Pump bdentification No. ${ }^{*}$	Motor Make	Hp	motor Serital No.	Pump Make	Pump Sertiol No. or Discharge 8 ate
FWPS ${ }^{\text {\# }}$	U.S. Motars	. 150	W08-W2100808-GT	Layne \& Bowler	\# 115472 (12' discharge)
FWPS \#2	U.S. Motors	150	W08-W2100606-GT 02	Layne \& Bowler	*115473 (12" discharge)
FWPS \#3	U.S. Motors	250	W00-WO490420R-1	Leyne \& Bowler	\#115474 (14" discharge)
FWPS \#4	U.S. Motors	250	B05797121212-GT 01	FloWay 16DKH	\#33374-1 (14" discharge)
FWPS荆	U.S. Motors	300	C05 980 58514-001R-01	Layne \& Bowler	\# ${ }^{\text {P }}$ (144^{4} discharge)

"Code to comespond wift No. on map and actal photo
D. FLOW MEASUREMENTS

1. Finished Wator Pumplan Station (flow-meter Into diuditbution gyatem)

Measurement Equipment	Type	Make	Model No.	Serfal No.	Size	Callibration Date
Sparling	mamnatic flow-meter	"Thger Mlag"	F.1 857	H80362898	24 MGD	$\begin{aligned} & \text { 2M2/2002 } \\ & \text { JDR and GR } \end{aligned}$

2. Moasuraments: Discharge measuremants for this examination were made using the megnetic flow-mater listed above

The minimum poping instalation recommendations of the manufacturer appear to be met (Appendix A).

E. NARRATIVEREMARKSICOMMENTS

Leonductad the field Heensing exemination for this wetter dotht on dune 23,2002. Bob Adsms and Scopt Coili of United Water idaho were kind enough to spend the befter part of a dgy walking mo through the tregtment pant process from the Rolse River intake to the dischangeinto the 24 -inch diamater water mainleaving the facity. The

 that fow reversals can ocour within large dipalines and thereare multions sources including a saries of infiltration gallenias or collector walis that area mix of surface watersand ground weter sourcos. Even thouph I was somewhet famllar with the ocineral plant dealgn end coarations. ftom predous axperionce at the freatment facility) Irank appreciatad Bob and Seott's time in helping me to unteratand the entire process to be able to setisfy mesair that could eccount for sll of the watar moving through the plant.

Inits simpleat terms, the diversion wotks ogn be describedin the following way: A caged intake structure on the

 underguound concreteresenolrhenesth the southwest comer of the facithy (Figure 3). The concrate roof of the reservir is also the floor of the rew wrater pumping station (Figure 4). In this nopm are five pimps which lit the

 through a gandes of treatment trains, filtration beds, and dacant operations, to an undergeound "ciear walli

 theplant (Fipure 6)
 cen draw weter fiom five separate sources. These are:

1) The Eolse River
2) The Bolse City Chal
3) Thaee collectocyells (inflitration gallories) along the river bank.

The "Collectors" source wells ara unusual and complicated beosusa they hava bean goportioned as 70\% groundwater and 30% surface vetar by IDWR, bacause the weater fom these wofla can ontor the pfant in seyeral whys, and because the water riphtsassociated with these weil soipras sharea point of chermion down rivar from
 that when the river starals hioh, sifonificantiv mon water can be produced bu the plant. Because Permit No, 68 -
 yhen the right was bainumed.

Athouph the general operation of the plent and its water treatment processes are retatively stoniohtfoncuard, the shapr number of pumpe and for options anallabla tend to maka a comprehensherevalualion vevcompiax Whergas UWMD has begn willina to explain tha entre procesa and even though they apparable to monitor all
 on foup main aepacts of fhe weter piants desfon and on the ptant's abiliv to produag Water Right No. 68-12055
 diametar intakeling off of the Boisa, River, 2) the mw watar pumping station which preasurizes the wefer through

 Pemik No. 63-12065 pould be produced solely throuph the Rherintake and rew wetrar pumping station. For this analuels two factors need to be coneldered; 11 the ability of the s8-inch rew wrep intake plpe to transmit the
 Those catculations, whlch areincuded under the "Calculations" seotion of the examination fom, shou that tha permithed fow rates are more than posesble using only the Riverintike popiton cfthe piant. This is not guroriting

 gertormance curves of the discharge pumas and direct observalion of the manetic flowamefer at
the discharge point show that the factlity can produce at shonificanty higher instantaneous fiow rates than are permitted under Permit $83-12056$ alone. Iobserved discharge metel ranging to 28.2 c (s (12.658 gam) leaving the

Bolar Rher inteks:

Acgad intake structure on the Bolse River (Floure2) is connectad to the rave water pumping station vias 38 -inch dameter pipe. The intake plopilis total of 380 feat in length and drops one foot in elevation betwean the River and the treatment plant. The nive interconnedts to a $450,000 \mathrm{a}$ a hon concrete clstem underdina the raw water pumpling station (Fiqure 3) which has the same water level es the River under non-pumping conditions, The elevation of the kowest point of the center of the plog is 2701 teet. The elovations of the minimum and meximum Rhiver staces are 2704 and 2712 . respactivety. Tharsfore, the gradlent or head avalibblat to dive weter through the bipe to the plant ranges from 3 feet to O feet (Flqure 9), Using the Hazen Willims and Manning equations (eee calculations) the range of flow, under these gravity heads, that could move through the 38 -inch piep begins at 28 ofernder the most consenvative calculations

Raw wefor pummina ctetion:

 (Elgure 4). Thesa pumps ere classifited by United Water personnel as: one, 2 millon callon per dav (MGD) pumpe. three 4 MGD pumps, and ona 8 MGD pump, Allbut the 60 HP, 6 MGD pump are constant speed pumps with the larce pump werking of of a vardable frequency motor difive, All five pumpe pogether should produce about 20 MGD or 13.889 gallons per minute. or 30.85 cubbo feet per segond which is 6.15 ofs more than the instantanoous diversion rete of Pemit No, 63-12055. Thls pumplag canacivy is maddition to the three colloctor weil pumpe which pump to the syctem "donnsiream" (leter in the hapetment traln) of the raw weter pumpho station According to the oriainal tragtment plant dasian (Fiqure 5) and as beat as can be floldoverified on site, the total maximum pumping ifit from the rew wher pumping station reseavoit to the elevation necessarx to push the raw water to the maximum lovel wifthin the treatment slant is 31 feet. Reference to the pump-perfomance cuves for the five rave water pumps (Appendix B) suggeste thet the five pumps should be capable of 14.415 gpm (32 ofs) under maximumifit conditions. This conesponds closelv with the maximum stated production capecity of the plant at 20.7 MCD (Figure 8). Therefore, the pumsing cavecity of that raw water pumping station anpears more than adequata to produca water right No. $63-12055$. This would appoar to be true even if anv one of the raw water
 considered redundant (back-up) capecity.

Using standard horsepower equations, all of the raw water pumps are driven bv adequately sized electric. motores that are morethan capable to saflsfiy the water and brake horsepower reaulzements taking into account the motor and oump afficiencies.

Finlehed water numpinasitation
A toftal of five turbine ermps are used to pressurize the treated water into the diotribution system. Discharge is
 performance curvas for all five pumpa are included as Appendix C. These pumps are olassified by United Weter nersonnel as: 1) fwo, oonelankspeed 4 -millon gallon per day (MGD) pumpe, 2) two, constantspeed 6-MGD pumps, and 3lone 6 MGD pumpewhich ls equipped with a variable hequency motor dive for vaning fow ratas by ceoulatho the speed of the motor dudiging from the pump-performancecurves ertimated meximum pumping wrater levels, and measured ciage preasures, this pumphn station woulct anmear to be theorefloallucapable of

 piant coparitors. The finished water (treated water exiting the planti) fow rate was meapared by the Sparifing marnetic flow-meter mentioned above and deasibed in the Fiow Ahas urements ecection of the examination form.

 flow-meter manufacturger appear to beemet

Using standard horsapopyar equations, all of the finlsher water oumps are driven by adeauatak skzed electric motors that are more than capable to sottofy the water and brake hormapower requirements taking into account the motor and pump effiletenctes.

Otherobservations
 fow rata orlaingted as well. Oring to the low tumbidity (reduced treatment demands) and superior water cualify of
 peak season summer monthe. During my fold examination. I requested a computer print out from the plant's gutomated monitoring system for the previous 48 hours (the extent of the shorterm recoverable datal. Thls graph (Figure 9) shows the finished water flow rata (treated watyr being pumped Into the distrbutton systom)

RECOMNEMDATIONS:

Ohservation of the three main, separate and distinct "water moving" portions of the water treatmant plant (Boise River Intake Stucture. Rawi Weter Pumping. Ptant, and Finshed Watar Pumping Station) indicate that the three compenents are well matched at the degian capacity of the plant to ba able to malinain a continuous sugtained fiow of 20 MGD (~ 31 cfo). Therefors, the planf's capacity far exceseds the diversion rate allowable under water right 6312055. During periods of high river stage, uwiD should have no difficulicy in producing this wator rightin is endicety from the Boise River diversion. I recommend Beensing at the permitted rate for use anvitme surolus water.is aveilable on the Bolse River (Lucky Peak solillingl.

Have conditions of permit approval been met? $X_{\text {yes ___no }}$

Abstract

F. FLOW CALCILATHONS

XX_Additional Computation Sheet Altached Measurement Method: Instanlaneous. flow amounts are, hased upon actual on-site observances of syatem capacity and andyvia of the instalied pump performance cynves with respect to the gravily head condilions and distribution systam pressures. The calculfted and opserved.fow rates appear to be well supported by computer pint-outh of treatment plant process mormation from the previous 48 hour period from UWID's elechonic. monitoring system using a hlah-qualliv, magnetic flow-meter installed according to manufecureers recommendations.

Bolse River Intake Stucture:
The attrached hendsleftered workshees contain the calculations used to vertiv the treatment planis. Bolse River Diversion works abillty to transport the maximum diversion rate of wator right $63-12055$ under quravity head to the plant"s raw water Dumplng statton. Both the Manning Equation and the Heren Willams Fomula are used to estimate the intake stucture's ilow-rate at minimum River Stege. The most conservative esttmation allows 28 of to be conducted to the plant: 3.2 cfs more than the wetar inht's instanteneous, tiverston rate and 3 cofs more than the sustaineble output of the water treatment plant according to UWID perconnel

Rew Water Pumolne Station;

Observed discharse prassures (gages on the Individual pump dischamal lines) abseived during the field examination ranged betreen 2 psi and 8 psid depending on which combination of pumpe were ruming. Each discharge is equipped with a check yatue controd yalve, and a pressure gege (Elqure4). There pressures seamin line with the pumping lits and of the cenaral design schemstice (Floura 5) which has very litteroom for vaiance, Pump parformancacurves ame shomin Apoendix B

Einlshed Water Pumping Station:
At the time of me feld examinston only four of the five pumps were nuning with obseved dlschame rates ranging between
 conesponding fow ratas fom pump performances cumes) ate tabutered as followe:

Pump\# See Figure 6	UWID pump No.	UWID capacity rating	Observed gage pressure	GPM from pump performance curve
1	P-710	2 MGD	76-79 psi	1880 gmp
2	P-720	4 MGD	Not operating	0 gpm
3	P-730	4 MCD	80 psi	3650 gpm
4	P-740	4 MGD	101 psi	2150 gpm
5	P-750	6 MGD	90 psi	4200 gmm

Pump:\#4 la coupled to a variable frequency dive which "rides" on system demand (pressure). Therefore the Lotel discharge cate fluctuated by a fow hundred gom during the sitio visit The caloulated (fom curves) combinged flow rato of 11.880 gpm comesponds almost exactivy with the observed fiow-meter readhas botween 11.866 and 12. 676 (Flgure 7). The toftal production capectity of the Finished Water Pumphng Station (Figure.6) appears to be significentive graster than the maximum instantaneous flow rate of Water Right N . 12055. This 定 not surpising since a gentain a moum of redundant capacily must he bulls into municipal water syetems (to provide hackeup in the event of pump fallure) and becauso (UMID has additional weter
 right No. 12055 and all of the ingtalled pumping plant specificetions zad monitoringequipment ana in close agreament
G. VOLUME CALCULATIONS Not appllcabba to a munieppal water right.

1. Volume Calculations for imigation:
$V_{\text {IR }}=($ Aores Irigated) $) \times($ Inrigation Requirement $)=$
$V_{D R}=$ [Diversion Rate (cfis)] x (Days in Irifgation Season) $\times 1.9835=$
$V=$ Smaller of $V_{\text {iR }}$ and $V_{D, R}=$
2. Volume Calcuations for Other Uses:

BOISE RIVER DIVERSION

HALEN WILLIANKS EQ.
fow gtabe
$Q=1.318 \cdot c(R)^{0.63} S^{0.54} A$ a* $1.31880(05)^{0.63} 0.0056^{0.54} \mathrm{~A}$ $Q=1.3188000 .83 \cdot 0.061 \quad 7.06 f^{2}$

HGA GTAGE $a^{2} 11318 \in(R)^{0.63} 5^{0.84} A$. $a=1.318 \cdot 80(0.4)^{0.43} 0.022^{0.54} \cdot \pi+6 f f^{2}$ 0×1.318 80 0.05 0.13 7.06 $a=80^{2}-2 F 3$
. 4880

$s=\frac{2}{360}=0.0056$
$A=7.06 \mathrm{ftz}$

C: 80
$R=1.5$
$s=\frac{9}{300}=0.022$
$A=7.06 \pi^{2}$
manning ez.
LOW STAGE $\quad a=(1.486 / \mathrm{n}) A r^{2 / 3} \mathrm{~s}^{1 / 2}$

$$
a^{2}(1.48 b / 0.08 \mathrm{~s}) 2.06 \cdot 0.75^{2 / 2} \cdot \ldots, 0056^{1 / 2}
$$

Q $2(1.490 / 0.023) 706 \cdot 0.82 \cdot 0.074$ HF

HIGH STAGE $\quad Q(1.486 / \mathrm{m}) \mathrm{Ar} \mathrm{A}^{2 / 3} s^{1 / 2}$ $Q:(1.486 / 0.025) 7.06 \cdot 0,75^{2 / 3} 0.028^{1 / 2}$
$\theta=(1.486 / 0.013) 7.060 .820 .15$
($8: 56$ efs

An 0.023

```
n: 0.02 .3
\(A=7,06 \mathrm{ft}{ }^{2}\)
\(r=0.75 \times\) hydracilis radius a ares. \(5 \times\) 夋 \(0=0,005 \pi\)
```

. $A=7.06$
$r=0.75$
$5=\frac{\text { 維 }}{}=0.014$

H. RECOMMENDATIONS

1. Recommended Amounts

Benefictal Use	Permit No.	Perlod of Use From	To	Rate of Diversion Q(cfe)	$\begin{aligned} & \text { Annual Volume } \\ & \text { (afa) } \end{aligned}$
Municipal	63-12055	$\tan 1$.	Dec. 31	24.80f.	N/
		Totala:		24.8 cfs	N/A

It is recommended that Condition No . 10 of the Permit No . 63-12055 be amended to reflect accepted language develoned since lesuance of the Permit to describe UWID's semice area. The following lengugae is surgestad as a condition of the License:"10. Place of use is within the Certficated Servire Area of Unlted Whater Idaho as deftemined by the Idgho Public: Ufilties Commtasion."

His recommended that Condtions Nos, 11, 12, 13, and 14 be aliminated as condifions of the License as supported by intemal IDWR memo of teteconforenca between Cindy Zimmorman and Gary Speckman datas 12P2/日8 (Appendix D). Removel of the "domestic onf" conditions have been routine in the municipal licensing process for UWID and other municipal provklers beginning with a precadent set by licensing of UWID's. socelled "Tenmile Ridfoe" watterriohts.
2. Recommended Amendments

I. AUTHENTICATHON

Flekd Examiner's Name \qquad Date \qquad
Reviewer \qquad Date \qquad SEAL

ATTACHMENT B

BEFORE THE DEPARTMENT OF WATER RESOURCES OF THE STATE OF IDAHO

```
IN THE MATTER OF ACCOUNTING )
FOR DISTRIBUTION OF WATER TO )
THE FEDERAL ON-STREAM )
RESERVOIRS IN WATER )
DISTRICT 63 )
```

\qquad

```
DEPOSITION OF ELIZABETH CRESTO VOLUME II (Pages 215 - 317) TAKEN JULY 21, 2015
```

REPORTED BY:
ANDREA L. CHECK, CSR No. 748, RPR
Notary Public
you mean by "storage accounts"?
Q. So the amount that had accrued to storage under the water right accounting program?
A. Yes.
Q. Do you know why that happened?
A. I believe that was an error.
Q. An error?
A. Yes.
Q. How did the error occur?
A. I believe I probably did it. I think I -- I
think I should not have reset that water right in 2008,
but I do not believe the resulting allocations in that
year -- or the accrual to that year remained a full accrual to the water rights.
Q. Do you remember why you did it, that reset?
A. I believe I was just learning the accounting
program. And it takes a long time to learn this program, and there's new sets of facts every single year that you have to address in the accounting program. And I think that I reset that in error in 2008. And I think I should have left those reservoir counts -- the volume should have remained as full instead of being reset at the date it occurred.
Q. And you set it to the level of physical storage at that time?

Page 277

A. Yes. And I think that was incorrect.
Q. And you know that -- on a daily basis what the amount of storage is in all of the reservoirs in Boise?
A. From gauged measurements, correct.
Q. And you said that that reset in 2008 didn't
affect accrual?
A. Well --
Q. Wouldn't it have changed how much water was in the unallocated storage account?
A. I think the accrual that happened early in the season up to the satisfaction of that reservoir right is unchanged, because that -- in 2008 it was a large water year, and there was excess flow in the system. So that water right filled.

And then I believe you're correct. By incorrectly resetting the storage right and allowing those to again fill in priority for a short -- and I don't know how long it was -- would have reduced your unallocated for storage. So the accruals that happened in error in that reset should have been
unaccounted-for -- or at least a portion of that -should have been unaccounted-for storage.
Q. So is there any reason why this manual reset couldn't happen tomorrow?

I mean, is there any reason in the program

Page 280	Page 282
1 conditions that specify a flow rate are much more easily	natural flow is accruing to the reservoir storage right.
2 coded in, because that's a mathematical equation. But	Q. Is that something th
even with, say, one that just blanketly identifies flood	A. Or other seniors, I should say
control release, that could be identified. But I don't	Q. Is that something that, in your opinion, the
believe that is a mathematical-equation type.	5 accounting program should be modified?
Q. So there are also conditions -- there are also	A. No, I don't think it should be modified.
rights in the Boise that are available only when water	Q. And you don't think a junior user that has
is being exchanged for flow augmentation water?	8 condition on their right that says they can take water
A. Correct.	when it's being released for flood control ought to be
10 Q. How are those accounted for in the accoun	10 able to take that water when it's being
program?	flood control, even if they don't have a natural flow
12. A. Those water rights -- when that exchange is	12 I mean, a storage right?
13 going, it shows up as a storage use. And it's actually,	13 A. Well, there's differences between what needs
14 probably, more appropriate to say it's done in the	14 to be programmed in and what could be corrected
15 storage program, because the actual water right	But I guess in that situation that is a natural flow
16 accounting just shows that exchange as a storage use.	16 there isn't any natural flow available in the river.
17 And to rectify that, we use the storage program, and	17 Q. Right. So one of the purposes of this
18 we -- I'm assuming you're talking about the United Water	18 proceeding is not just how it is but how it shou
19 exchange here. Is that what you're --	19 accomplished. And I'm asking the question of whether or
20 Q. Are there more exchanges than that?	20 not, in your opinion, those rights ought to be able to
21 A. No. That's the only one I'm aware of. So	21 take water that's being released for flood control
22 what happens there is it just -- there's actually not --	22 purposes if they don't have a storage righ
23 the water right, if it is in the accounting, it doesn't	23 A. If the flood control right is natural flow
24 have a diversion rate, so, therefore, it shows up always	24 that's available, then they can go ahead and take it;
25 as a storage use	25 but if the priority isn't --
Page 281	3
when flow augmentation is going on,	Q. So you don't think any changes are
and what we do is in the storage program, because it's	appropriate?
part of the exchange, we transfer water from the	A. No, because I believe some of that could be
Bureau's account. Because we're saying that that water	accomplished through storage -- the storage canceling
was intended to be released for flow augmentation, it	procedure.
was actually diverted by United Water, so we transfer	Q. How would that purpose be accomplished by the
7 that storage water to United Water, and there's zero-sum	storage cancellation procedure?
game, and that that is a charge for flow augmentation	A. Water that is diverted prior to a flood
out of the Bureau's flow augmentation account.	control release, regardless of whether it's in June and
10 Q. So that's something that's taken care of	shows up as a storage use, and then there are subsequent
11 manually in the storage accounting process?	11 flood control operations, typically, that storage use is
12 A. Correct. And then I guess it's implemented in	12 canceled under the assumption that had that diverter not
13 your acre-feet remaining in the daily -- it shows up in	taken storage water, it would have just been released
14 your daily water rights accounting program.	with flood control releases, because that flood control
15 Q. If water is being released for flood control	15 was subsequent to that use.
16 and there's no -- and paper fill hasn't been achieved,	16 Q. So help me understand the method by which the
17 is it the case that a natural flow -- a junior natural	storage cancellation process works in the accounting
18 flow user cannot take that water without accruing it to	program.
19 the water -- to its storage account?	19 Just, you know, take -- forget my example and
20 A. It depends on what the natural flow is on the	20 just explain to me --
21 river, of course.	A. How it's done?
22 Q. Sure.	22 Q. -- how does storage cancellation work in the
23 A. But say the priority date on the entire river	23 Boise, just in a general fashion?
24 is one off the reservoir water right and a junior takes	A. In a general sense -- so in some of these big
25 it, it will show up as a storage use, because all of the	25 water years, in April the water might not have -- the

