A NEW ALGEBRA FOR SCHOOLS

By C. V. DURELL, M.A.

Parts I and II are issued, bound together, in two styles:-
(a) Without Appendix. With answers, 3s. 6d.; without answers, 3s. 3d.
(b) With Appendix. With answers, 4s. 6d.; with. out answers, 4 s . 3 d .
They are also available separately, without Appendir and without Answers:-PART 1, 25.; YART II, 23.
Part II is also availabie with the whole of the Appendix to Parts I-II, without answers. 2s. gd.

Part III is issued in two styles:-
(a) Without Appendix. With answers, 33.; without answers, 2 s . 9d.
(b) With Appendix. With answers, 3 s. 6d.; without answers, 3s. 3d.
Parts II and III are also issued witn the whole of the Appendix to Parts I, 11 and III. Without answers. 5 s .

ADVANCED ALGEBRA

Vofume I (Higher Certificate Work). By C. V. - Durell; M.A. 4s. 6d.

Volumes II and.III. By C. V. Durell \& A. Robson, M.A. Together 12s. 6d. Separately, Volume II, 6s.; Volume III, 7s. 6d.

LONDON: G. BELL \& SONS, LTD
York House, Portugal St., W.C. 2

A NE.W ALGEBRA FOR SCHOOLS

PART III

BY

CLEMENT V. DURELL, M.A.
SENJOR MATHEMATICAL MASTER. WINCHESTER COLLEGE

LONDON
G. BELL. AND SONS, LTD

1938

First published March 1931.
Reprinted 1981, 1938, 1933, 1994.
New Edition, with Supplement, 1935.
Reprinted 1936, 1837, 1938.

PREFACE

This book represents an attempt to gather up and make full use of the numerous detailed suggestions on methods of teaching Algebra, on the choice of subject-matter, on the selection of illustrations, on the construction of exercises and test-papers, etc., which have come under the author's notice since he first began (fifteen years ago) to write on the subject. It is divided into thrse parts. Part I deals with notation, formulae, simple equations and problems ; Part II includes factors, fractions, simultaneous and quadratic equations; Part III completes the course for "additional mathematics" in School Certificate. Higher Certificate and Scholarship work is dealt with in Advanced Algebra (Durell and Robson).

The book, both as regards text and exercises, is written to meet the requirements of ordinary pupils. If a book includes enough (and sufficiertly difficult) examples to occupy and train pupils of special ability, it must contain much that is neither required by nor is suitable for many of the others. For this reason, an appendix has been compiled, consisting of revision exercises, harder supplementary exercises and harder tost-papers ; and references to it have been inserted at appropriate places. This appendix will also be of use to those teachers who like to have a large range of examples from which to make their own selection for class work, and it supplies in a systematic form the material for a revision course. Both Parts I-II (bound together) and Part III may be obtained with or without the relevant portions of the appendix. Another feature to which the author attaches importance is the provision of groups of "Extra Practice" exercises at the end of Part I and of Part II for pupils who need additional "drill"; similar exercises are included in the appendix to Part III.

The initial difficulties in Algebra are mainly due to the novelty of the notation. These are best overcome by training the pupil to think in numbers when using letters and by demonstrating the practical utility of the notation by applications to formulae. These two principles have determined the selection of the subjectmatter of the early chapters. Throughout the book illustrations
have been drawn from practical geometry, physics and mechanics to increase the interest in the theory and to secure variety in its problems, and this object is furthered by a free use of diagrams.
There are a few exercises in Part III (Ex. VIII. a, c, IX. a, b) which merely elaborate types of examples included is ¿art II. The requirements of certain examinations make it necessary to insert them, but the continuity of the course will not be broken if they are passed over.
The author acknowledges gratefully the valuable help he has received from Miss E. M. Read, Mr. G. Ayres, and Mr. A. Buckley, who have read the proofs and have made many useful suggestions. He is also indebted to Mr. R. M. Wright for some of the testpapers and for assistance with the proofs.
C. V. D.

NOTE

The new edition contains a supplement covering the further requirements of certain examining bodies for "additional mafhematics " in School Certificate and Matriculation examinations.

CONTENTS

PART III
Tables - - - X•xiii
pagr
Chapter
I. Indices and Logarithms 1(Positive Integral Indices, p. 1; Fractional andNegative Indices, p. 2; Powers of 10, p. 6;Logarithms, Positive Indices, p. 8 ; Logarithms,Negative Indices, p. 15.)
II. Variation 21
(Direct Variation, p. 21 ; Inverso Variation, p. 27 ; Functions of Several Variables, p. 34.)
III. Surds 41(Irrational Numbers, p. 41; Operations withSurds, p. 41 ; Reduction, Equations, p. 43.)
Test Papers. C. 1-10 48
IV. Theory of Logarithms and Harder Indices 53
(General Logarithms, p. 53 ; Compound Interest, p. 56; Harder Indices, p. 58.)
V. Series 61
(Laws of Formation, p. 61 ; Series in A.P., p. 63; Formulae for A.P., p. 67 ; Series in H.P., p. 68 ; Series in G.P., p. 69 ; Formulae for G.P., p. 72 ; Annuities, p. 75 ; Limited Sums of Series, p. 77.)
Test Papers. C. 11-20 82
VI. Ratio and Proportion 87(Ratios, p. 87 ; Proportionals, p. 90.)
viii CONTENTS
chapter PAGR
VII. Graphical Forms - 95(Graphs of Related Functions, p. 95 ; Graphswith Missing Points, p. 97 ; Empirical Formulae,p. 102.)
VIII. Further Processes 106
(Detached Coefficients, p. 106; Remainder Theorom, p. 109 ; Factors and Fractions, p. 113 ; Undetermined Coefficients, p. 117; Binomial Theorem, p. 120.)
IX. Literal Equations and Quadratic Funotions - 125
(Simple Equations, p. 125 ; Simultaneous Equa- tions, p. 126 ; Properties of Roots of Quadratic Equations, p. 129 ; Quadratic Functions, p. 133.)
Test Papers. C. 21-35 136
SUPPLEMENT
At end of book
I. Permotations and Combinations 1A
II. Binomial Theorem 20 A
APPENDIX (PART III)*
Revision Exfrcises, W. 1-4 - 145
Further Practice Exercises, F.P. 1-10 154
Supplementary Exercises, T. 1-8 166
Supplementary Test Papers
Y. 1 -10 (Parts I-II) 180
Z. 1-10 (Part III, Ch. I-III) 184
Z. 11-20 (Part III, Ch. I.V) 188
Z. 21-30 (Part III, Ch. I-IX) 193

[^0] noted in the Preface, is available either with or without Appendix. Both editions are issued with Answers or without Answers.

TABLES

	0	1	2	3	4	5	6	7	8	9	12		4	
	.000	0043	0086		170	0212	023	0294	0334	0374				
			O4, 084	031	0934	10969			1072	1106				
12	-139	1173	1206	1239	1271	1303	1335	1367	1399	1430			13	232629
	. 1461	1492	1523	1533	ISk	1614	1644	1673	1703					
	$\left[\begin{array}{r} 176 \\ { }_{204} \end{array}\right.$	1790	1818	1842	1875	2175	${ }_{2231}^{1931}$	1959	1923					
		2230	2355	2380	240	2430	2455	2480	2504	2529				
	. 2738	2577	2601	2625	2648	2672	2695	2718	274	2265				
			3054	3075	3996	3118		2945		2290				
		324	326	3284	330	332	334	336	3385	3404				
	-324	344	3464	3483		3522	3541	3560	3579	598				
25					4048	405								
		3997	4014	4031	4		4082	4099	416					
	-4150	$\left.\begin{array}{\|l\|l\|} 41650 \\ 4330 \end{array} \right\rvert\,$	${ }_{4346}^{4183}$	$\left.\left\lvert\, \begin{array}{l} 42000 \\ 43322 \end{array}\right.\right]$	$\begin{aligned} & 4216 \\ & 4378 \end{aligned}$	${ }_{4323}^{423}$	${ }_{4409}^{4249}$	4425	${ }_{4}^{4281}$	44298				
28		4487	4502	4518	4533	4548	4564							
$\left\lvert\, \begin{aligned} & 29 \\ & \hline \end{aligned}\right.$	-4624	4639	4654	4659	4683	4698	4713	4728	4742	4757	3		6	
	4771	4785	480	4814	4829	483	4857	4871	4886	490				
$\left\|\begin{array}{l} 31 \\ 32 \end{array}\right\|$		505	5029	5092	5105	41989	4937	5014	5024	5172			5	
33	. 5155	5198	521	5224	5237	5250	526	5276	5289				5	910
	5315	532	53	5353	5366	5378	539	5403	5416					
				5478		523	325	564	555				5	
$\left\|\begin{array}{l} 36 \\ \hline 6 \end{array}\right\|$	5682	5694	5725	5777	5729	5740	5752	5763	575	5786			567	
		0	5821	5832	3	5855	5867		5	5899				
		$\begin{array}{\|c\|c\|c\|c\|c\|} \hline 5031 \\ 6031 \end{array}$		59	506	5960	603							
41	. 6123	6138	6149	6160	6170	6130	6191	620	6212	622			4	
${ }_{12}^{42}$			6235	-2	6274	6234	6294		6314					
		6444			6474	${ }_{6}^{6384}$		6403						
$\left\lvert\, \begin{aligned} & 45 \\ & 45 \end{aligned}\right.$		6542	6551	6561	657	6580	659	5599	600	6618	2		4	789
46					6605					6712				
			,	6749	6258	6767	67	6785	6794					
da					684									
49		6911	692	6928		6946	695	6964	6972					
$\left.\begin{aligned} & 50 \\ & 50 \end{aligned} \right\rvert\,$. 6990		7007	7016	7024	733	704	7	714	2062				
52														
53	. 7243	7251	259	7267	7275	7284	7292	7300	7308	73	2	3	3	667
54	7324	7332	T340	7348	7358			7380	7388	7396	22		34	

LOGARITHMS
xi

	0	1	2	3	4	5	6	7	8	9	2	5	8
$\left\|\begin{array}{l} 65 \\ 56 \\ 57 \\ 58 \\ 58 \\ 59 \\ 60 \\ 61 \end{array}\right\|$	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	122	345	567
	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	12	34	$\begin{array}{llll}5 & 6 \\ 5 & 7\end{array}$
	. 7559	756	7574	7582	7589	7597	7604	7612	7619	7627	1	34	56
	. 7634	7642	7649	7657	7664	7672	7679	7686	7694	7701			
		7716	7723	7731	7738	7745	7752	7760	7767	7774	$1 \begin{array}{lll}1 & 1 & 2 \\ 1 & 1\end{array}$	4	6
	.7785	7860	7796 7868	78875	7881	7818	7825	7832	7839	7846		4	6
		7860	7868	7875	7882	7889	7896	7903	7910	7917	$\begin{array}{lll}1 & 1 & 2\end{array}$	$\begin{array}{llll}3 & 4\end{array}$	
$\begin{array}{\|l\|} 62 \\ 63 \\ 64 \\ 65 \end{array}$. 7924	7931	7938	7945	52	7959	7966	7973	7980	7987	11	33	5
	993		8007	8814	8021	8028	8035		8048	8055	1	3	5
	. 8129	8136	8142	8149	8156	${ }_{8162}^{8096}$	8169	818	8116	81	$\begin{array}{lll}1 & 1 & 2\end{array}$	33	5
$\left\|\begin{array}{l} 66 \\ 67 \\ 88 \\ 69 \end{array}\right\|$													556
		$\left.\begin{array}{\|l} 8202 \\ 8267 \end{array} \right\rvert\,$	$\left\{\begin{array}{l} 8209 \\ 8274 \end{array}\right.$	$\left\|\begin{array}{l} 8215 \\ 8280 \end{array}\right\|$	${ }_{8287}^{822}$	${ }_{8293}^{828}$	${ }_{8295}^{823}$	82341	8248 8312	54	$1 \begin{array}{lll}1 & 1 & 2\end{array}$	3	5
	-8325	23	8338	8344	8351	2357	${ }_{8} 8239$	88370	${ }_{8376}^{8312}$	8832	$\begin{array}{llll}1 & 1 & 2 \\ 1 & 1 & 2\end{array}$		5
	. 8388	83	8401	8407	8414	8420	8426	8432	8439	3445	1	2	4
$\begin{aligned} & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 73 \end{aligned}$	-8451	8457	8463	8470	8476	8482	8488	8494	8500	8506			
	-8513	8519	8525	8531	${ }^{8597}$	8543	8549		8561	856	$1 \begin{array}{lll}1 & 1 & 2\end{array}$	2	4
	. 86	86	8845	865	8597	8603	8609	815	${ }_{8}^{8621}$	8627	$\begin{array}{lll}1 & 1 & 2 \\ 1 & \end{array}$		4
	. 86		8845	605		63	8669	86	868	8886		234	455
$\left\|\begin{array}{l} 74 \\ 75 \\ 76 \\ 77 \end{array}\right\|$. 86751	9	8704	8770	8716	8722	8787	8733	8739	8745	$1 \begin{array}{lll}1 & 1 & 2 \\ 1\end{array}$	2	455
		8814	8820	${ }_{8825}^{82}$	8831	8837	-8842	8848	8884			2103	$\begin{array}{ll}4 & 5 \\ 4 & 5 \\ 4 & 5 \\ 4 & 5\end{array}$
	. 8865	88	8876	8882	8887	8893	8899	8904	8910	8915	112	23	445
$\begin{aligned} & 78 \\ & 79 \\ & 80 \\ & 81 \end{aligned}$. 8921	8927	8932	8938	8943	8949	8954	8960	8965	8971			
	-8976		8 ± 87	8993		\%	900	9015	9020	9025	112	2	445
	\%	903	9042	90	9	9058	9063	9069	O128	9079		$2{ }_{2} 3$	445
				910	9106	911		912	9128	9133		233	445
$\left.\begin{aligned} & 82 \\ & 83 \\ & 84 \\ & 85 \end{aligned} \right\rvert\,$		9143	9149	9154	9159	9165	9170	9175	9180	9186	$\begin{array}{lll}1 & 1 & 2\end{array}$	2	445
	.92		9253	9206	9212	9217 9269	9222	9227	${ }_{9283} 923$	${ }_{9289} 93$	$1 \begin{array}{lll}1 & 1 & 2 \\ 1 & & \end{array}$	2	$\begin{array}{llll}4 & 4 & 5 \\ 4 & 4 & 5\end{array}$
	. 9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	$1 \begin{array}{ll}1 \\ 1 & 1 \\ 1\end{array}$	23	$\begin{array}{llll}4 & 4 & 5 \\ 4 & 4\end{array}$
$\left\|\begin{array}{l} 86 \\ .87 \\ 88 \\ 89 \end{array}\right\|$. 9345	9350	9355	9360	9365	9370	9375	9380	93	9390			445
		94	9405	9410	9415	9420	9425	9430	94	9440	0	223	$\begin{array}{llll}3 & 4 & 4\end{array}$
		945	9455	9460	9465	9469	9474	9479	9484	9439	-	223	3 4
	94	949	9504	950	9513	9518	9523	9528	9533	9538	0	2	$\begin{array}{lll}3 & 4 & 4\end{array}$
$\begin{aligned} & 90 \\ & 91 \\ & 92 \\ & 93 \end{aligned}$. 9542	954	9552	9557	9562	9566	957	9576	9581	95	0		$\begin{array}{llll}3 & 4 & 4\end{array}$
			960	9605	9609	9614	9619	9624	9628	9633		223	344
	. 96885	9643	964	9652	9657	9661	9766	9671	9675	9680	011	223	$\begin{array}{llll}3 & 4 & 4\end{array}$
		9689	969	9699	9703	9708	9713	9717	9722	9727	0	22	3
$\left\|\begin{array}{l} 94 \\ 95 \\ 98 \\ 97 \end{array}\right\|$	-9731	336	9741	9745	9750	9754	9759	9763	9768	9773	0	2	$\begin{array}{llll}3 & 4 & 4\end{array}$
		98	97886	97	${ }^{9795}$	9800	9805	9809	9814	98	0	$\begin{array}{llll}2 & 2 & 3 \\ \\ 2 & 2 & \\ \end{array}$	$\begin{array}{llll}3 & 4 & 4 \\ 3 & 4\end{array}$
	. 9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	-	22	$\begin{array}{llll}3 & 4 & 4 \\ 3 & 4 & 4 \\ \end{array}$
$\begin{aligned} & 98 \\ & 99 \end{aligned}$. 9912	,	9921	9926	9930	9934	9939	994	9948	9952	0	223	$\begin{array}{llll}3 & 4 & 4\end{array}$
	. 9956	9\%1	9965	9969	9974	9978	9983	9987	9991	99\%	0	22	3

	0	1	2	3	4	5	6	7	8	0	123	45	78
	1000	1002	1005	1007	1009	9 1012	14	0	,	215			
$\begin{array}{\|c\|} \hline-01 \\ -020 \\ -023 \end{array}$	102	11050	1058	11034	los	(103 11059		1040	1042	1005			$\begin{array}{llll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2\end{array}$
.63	1072	1074	1076	1079	1081	1084	1086	1089	1091	194			
	1096	109	1102	1104	1107	711109	112	1114	117				
$\left\|\begin{array}{c} -05 \\ -060 \end{array}\right\|$	$\begin{aligned} & 112202 \\ & 1148 \\ & 148 \end{aligned}$	1125	$\begin{aligned} & 1127 \\ & 1153 \\ & 1503 \end{aligned}$	Tilizid	1159			1140	143	${ }^{1146}$			
$\begin{aligned} & -06 \\ & -07 \end{aligned}$	1175	1178	1180	183	1186	66 1189	1191	1194	197				222
-09	1202	1205	${ }_{128}^{128}$	1211	1213	${ }^{3} 1216$	1219	122	1225	127			
1090	1259	${ }_{1232}^{123}$	1225	${ }_{1238}^{1239}$		${ }^{2} 121274$	${ }_{1276}^{1247}$	1250	1233	1256			
	128	1291	1294	1297	1300	1303	1306	1309	1312	1315			
12	1318	1321	1324	1327	1330	1334	1337	340	1343	1346			
	1349	${ }_{138}^{1352}$	${ }_{1387}^{135}$	${ }_{139}^{1358}$	${ }_{1393}^{1361}$		${ }^{1368}$						
15	3	1416	1419	1422	1426	1429	1432	1435	143	1442			
	14	1449	1452	1455	1459	1452	1456	1469	142	1476			
			1486	1489	14938		1535						
-19	1549	155	1556	1560	1563	1567	1570	1574	1578	1581		2	2 3
20				159	1600	0.1603	1607	1611	1614				
$\left[\left.\begin{array}{l} -212 \\ -22 \end{array} \right\rvert\,\right.$	16	$\left.\right\|_{166} ^{162}$	1667	1633	1637	$7{ }^{1} 1671$	${ }^{1644} 1$	1688		1696			
.23	1698	170	1706	1710	171	1718	1722	1726	730	1734		22	
			746	1750	1754	1758	1762	1760	70	774			
			786	179	1783	(1841 17	1803	1807	1811	181			
${ }^{286}$	1882	186	1871	1825	1879	11884	1888	1892	1897	1901		2 2 2 3	
	1905		1914	1919		1928	1932		1941	1945			
${ }_{-29}^{.29}$			204	${ }^{1963}$	${ }_{2014}^{1988}$	72	${ }_{2023}^{197}$	1982		1291			
${ }_{-31}^{30}$	2042	204	2051	2056	2061	2065	2030	2075	2080	2084		22	${ }^{4}$
	20	2094	2099	2104		210	21	212	2128	2133			
		2143	2198	2203	2208	21	${ }_{2218}^{2188}$	217	228				
$.35$	223	244	2249	225	225	225	2770	2275	228	2386		2	${ }_{4} 45$
		229	2301	2307	232	22317	23	2338	2333	2339			
				24									
39	2455	246	2466	2472	247	2483	2489	245	250	2506		2	455
			2532	2529				2553					
			2642	264		2361		2612	2618				
43	2692	269	2704	271	2716	2723	272	273	2742	${ }^{2748}$		3	456
		276	2767	273		278	2793	2799	2805	2312			
$.45$	$\begin{array}{\|l\|} 2818 \\ 2884 \end{array}$	239		2904	29	29	222		283				
47	2951	2958	2965	2972		20	2992					${ }^{\circ}$	5
. 48	33200	302	3035	3041									
49		309	3105	3112	3119	3126	3133	3141	3148	3155		3	

	0	1	2	3	4	5	6	7	8	9	12	45	78
. 5	3102	, 12	3177	3184	3192	319	3206	3214	3221	3228	112	3	567
. 51	3236	3243	3251	3258	3256	3273	3281	3289	3296	3304	1	3	567
. 52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	122	3	567
- 63		3396	3404	33412	3420	3428	3436	3443	3451	3459	1	,	5
. 55	3548	3556	${ }_{3} \mathbf{5 4} 5$	3573	3581	${ }_{3589}$	${ }_{3597}^{316}$	3506	${ }_{3614}^{352}$	3540	1	3	6
		36	3648	365	3664	3673	3681	3690	3698				
. 57	3715	3724	37	37	3750	3758	37	3776	3784	3793	$\begin{array}{llll}1 & 2 & 3 \\ 1 & 2\end{array}$	$\begin{array}{llll}3 & 4 & 5 \\ 3 & 4 & 5\end{array}$	$\begin{array}{llll}6 & 7 \\ 6 & 7 & 8 \\ 6\end{array}$
						3846	2855	3864	3873	3982	123	4	678
- 59	3890	38	3908	3917	3926	3936	3945	3954	3963	39	123	455	678
-80	39	39	3999	4009	4018	4027	4036	4046	4055	4064			6
. 61	4074	4083	4093	4102	4111	4121	4130	4140	4150		123	4	7
-63	4266	4178	4285	4	4205	4217	4227	4236	4246	4256	$\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & \end{array}$	4	7
								23	435	4	123	4	
		43	43	43	4406	4416	4426	4436	4446	4457	123	456	78
66	4571	4	4592	4	4508 4613	4	44529	4645	4550	4560		$4 \begin{array}{lll}4 & 5 \\ 4 & 5\end{array}$	
. 67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	$1 \begin{aligned} & 12 \\ & 1 \\ & 1\end{aligned}$	4	
	4786	4797	4808	4819	4831	4842	4853	4864	4875				
-69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	$1 \begin{aligned} & 123 \\ & 12\end{aligned}$	4	8
				51		5070	5082	5	51	5117	124	567	8911
-72	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	124	5	810 li
	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358			
$\cdot 73$	5370		55	5408	5420	5433	5445		5470		13	5	91011
.74 .75	5623	55	552	5534		55	5572	5715	5598	5610	${ }^{\text {a }}$	5	91012
						5689	5702	5715	5728	5741	134	5	91012
76	58	$\|5768\|$	[5781	5794	5808 5943	5821 595	5834	5848	5861	56	1	5	91112
-78	602	60	6053	6067	6081	6095	6109	6124	6138	6012	1 1 1 1	5	10 10 10 10 112
-79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	13	6	10 I1 13
$\left.\begin{array}{\|c} -80 \\ \cdot 81 \end{array} \right\rvert\,$	6310	6324	6339	6353	${ }^{6368}$	${ }^{6393}$	6397	6412	6427	6442	$1 \begin{array}{lll}1 & 3\end{array}$		101213
-82	64507	64	6436	65	6668	6531	65	6561	6737	6592	2 3 5 2	6 6 6 8 8 9	
-83	6761	6776	6792	6908	6823	6839	6855	6871	6887	6902	2	6 6 8 8	111314
	6918	6934	6950	6966	6982	6998	7015	7031	7047	706			
$\left.\right\|_{-88} ^{-85}$	$\left\lvert\, \begin{aligned} & 702 \\ & 72 \end{aligned}\right.$	70	7112	71	71	7161	7178	7194	7211	722	23	7810	
${ }^{-87}$	7413	7430	74	7464	7482	7429	73	73362	73	756		7810	121315
				7404		749	75	753	755	7568	2	7910	121416
		7603	7621	7638	7656	7674	7691	7709	7727	7745	2	7911	121416
. 98	79	779	79		78	78	7805	7889	79	7925	245	7	
. 91	8123	8147	8166	8185	8204	8222	8241	8260	8279	8299	${ }_{2}^{2} 4$	${ }_{8}^{7} 9911$	$\begin{array}{llll}13 & 15 & 17 \\ 13 & 15 \\ 17\end{array}$
	83	833	8356	8375	839	8414	8433			8492	246		
$[.93$	85	85	8551	8570	85	8610	8630	8650	8670	8690	246	81012	141618
. 9	8913	8	8850	8770	8790	8810	8831	8851	8872	8892	246	81012	141618
	8913	8933	89	8974	8995	9016	'2036	9057	9078	909	24	81012	151719
	9120		9162 9376	9183	92	9226	9247	9268	9290	9311			
197			959			9441	9462		9506	95		$9{ }^{9} 1113$	151720
. 98	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2 2	9 9 9 1114	161820

PART III

CHAPTER I

INDICES AND LOGARITHMS

Positive Integral Indices

If n is any positive integer,
a^{n} is a short way of writing $a \times a \times a \times \ldots$ to n factors.
Example 1. Simplify the following :
(i) $a^{3} \times a^{4}$; (ii) $a^{8} \div a^{2}$; (iii) $\left(a^{2}\right)^{3}$.
(i) $a^{3} \times a^{4}=(a \times a \times a) \times(a \times a \times a \times a)$
$=a \times a \times a \times a \times a \times a \times a=a^{7}$.
(ii) $a^{6} \div a^{2}=\frac{a \times a \times a \times a \times a \times a}{a \times a}$
$=a \times a \times a \times a=a^{4}$.
(逪) $\left(a^{2}\right)^{3}=a^{2} \times a^{2} \times a^{2}$
$=(a \times a) \times(a \times a) \times(a \times a)$
$=a \times a \times a \times a \times a \times a=a^{b}$.

EXERCISE I. a

1. Obtain from first principles the simplest forms for the following :
(i) $a^{2} \times a^{3}$;
(ii) $b^{5} \div b^{2}$;
(iii) $\left(c^{3}\right)^{2}$;
(iv) $d^{9} \div d^{3}$.
2. Write down the simplest forms for the following :
(i) $a^{4} \times a^{2}$;
(ii) $b^{6} \div b^{3}$;
(iii) $x \times x^{4}$;
(iv) $y^{5} \div y$;
(v) $\left(c^{4}\right)^{2}$;
(vi) $d^{2} \div d^{6}$;
(vii) $z^{5} \times z^{3}$
(viii) $\left(w^{5}\right)^{3}$;
(ix) $a \div a^{4}$;
(x) $\left(b^{2}\right)^{4}$;
(xi) $c^{8} \div c^{2}$;
(xii) $d^{5} \times d^{5}$.
3. What general formulae include the following special cases ?
(i) $a^{9} \times a^{4}=a^{7} ; a^{9} \times a^{6}=a^{8} ; a^{8} \times a^{3}=a^{11}$.
(ii) $a^{6} \div a^{2}=a^{4} ; a^{8} \div a^{3}=a^{5} ; a^{9} \div a^{5}=a^{4}$.
(iii) $\left(a^{2}\right)^{3}=a^{6} ;\left(a^{5}\right)^{2}=a^{10} ;\left(a^{3}\right)^{4}=a^{19}$.
4. What is the square of x^{6} ?
5. By what must y^{4} be multiplied to give y^{12} ?
6. By what must z^{10} be divided to give z^{5} ?
7. Simplify (i) $a^{4} \times a^{6} \div a^{2}$; (ii) $\left(b^{2}\right)^{4} \div b^{2}$.
D.s.a.

A
8. What is (i) the cube of $3 c^{3}$? (ii) the square of $4 d^{4}$?
9. Simplify (i) $\left(x^{4}\right)^{5}$; (ii) $\left(y^{5}\right)^{4}$.
10. What values of x satisfy the following equations?

$$
\text { (i) } x \times a^{8}=a^{6} \text {; (ii) } b^{8} \div x=b^{2} \text {; (iii) } b^{6} \times x=b^{2}: o
$$

Fractional and Negative Indices

The examples in Ex. I. a illustrate the following facts: If m, n are positive integers,
(i) $\mathbf{a}^{m} \times a^{n}=a^{m+n}$.
(ii) $a^{m} \div a^{n}=a^{m-n}$, if $m>n$.
(iii) $\left(a^{m}\right)^{n}=a^{m n}$.

These results are proved by the methods used in Example 1, p. l.
If m is not a positive integer, e.g. if $m=\frac{3}{4}$ or -5 or 0 or $-1 \frac{1}{2}$, the symbol a^{m} has not yet been defined. We shall now find out what meaning must be given to it if the law

$$
a^{m} \times a^{n}=a^{m+n}
$$

remains true for all values of m and n.
Example 2. What is the meaning of $9^{\frac{1}{2}}$?

$$
9^{\frac{1}{2}} \times 9^{\frac{1}{3}}=9^{\frac{1}{2}+\frac{1}{2}}=9^{1}=9
$$

Since the result of multiplying $9^{\frac{1}{2}}$ by itself is 9 , it follows that

$$
9^{\frac{1}{2}}=\sqrt{ } 9
$$

Example 3. What is the meaning of $a^{\frac{1}{2}}$?

$$
\begin{aligned}
a^{\frac{1}{3}} \times a^{\frac{1}{2}} \times a^{\frac{1}{3}} & =a^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=a^{1}=a ; ~ \\
\therefore\left(a^{\frac{1}{2}}\right)^{\frac{2}{2}} & =a .
\end{aligned}
$$

Take the cube root of each side,

$$
\therefore a^{\frac{1}{3}}=1 / a
$$

Example 4. What is the meaning of $a^{\frac{3}{4}}$?

$$
\begin{aligned}
a^{\frac{3}{4}} \times a^{\frac{3}{4}} \times a^{\frac{3}{4}} \times a^{\frac{3}{4}} & =a^{\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{3}{4}} \\
& =a^{\frac{3}{2}} \times 4=a^{3} ; \\
\therefore\left(a^{\frac{3}{4}}\right)^{4} & =a^{2} .
\end{aligned}
$$

Take the fourth root of each side,

$$
\therefore a^{\frac{1}{2}}=\frac{4}{\sqrt{2}}\left(a^{8}\right) .
$$

We may also argue as follows :

$$
a^{\frac{1}{2}}=a^{\frac{1}{2}} \times a^{\frac{1}{2}} \times a^{\frac{1}{2}}=\left(a^{\frac{1}{2}}\right)^{3} ;
$$

but, as in Example 3, we can show that $a^{\frac{1}{2}}=\sqrt{ } a$.

$$
\begin{aligned}
\therefore a^{\mathfrak{7}} & =\left(\sqrt[1]{ }(a)^{3} ;\right. \\
\therefore a^{4}=\mathfrak{V}^{1}\left(a^{3}\right) & =\left(\mathfrak{V}^{4}(a)^{3} .\right.
\end{aligned}
$$

For example, $16^{\frac{3}{4}}=4\left(16^{3}\right)=(4 / 16)^{3}$; but it is quicker to evaluate $(\sqrt[4]{ } 16)^{3}$ than $\sqrt[4]{ }\left(16^{3}\right)$, because the numbers are smaller.
Thus $\sqrt[4]{ } 16=2 ; \quad \therefore 16^{\frac{7}{q}}=(2)^{3}=8$.
Example 5. What is the meaning of a^{-3} ?

$$
a^{5} \times a^{-3}=a^{5-3}=a^{2} ;
$$

Divide each side by $a^{5}, \quad \therefore a^{-3}=\frac{a^{2}}{a^{5}}$

$$
=\frac{1}{a^{3}} .
$$

Note. We have assumed that $a \neq 0$; we cannot divide each side by a^{b} if $a=0$.
We shall not give any meaning to the symbol 0^{m} when m is negative or zero.
trample 6. What is the meaning of a^{0} ?

$$
a^{3} \times a^{0}=a^{2+0}=a^{3} ;
$$

Divide each side by $a^{3}, \quad \therefore a^{0}=\frac{a^{3}}{a^{3}}$;

$$
\therefore a^{0}=1
$$

Note. As in Example 5, we must suppose that $a \neq 0$.
Alternative methods may be used for Examples 5, 6 :
Assume that $a^{m} \div a^{n}$ equals $a^{m \sim n}$ when $n>m, a \neq 0$.
Then

$$
\frac{a^{2}}{a^{5}}=a^{2-5}=a^{-3} ; \text { but } \frac{a^{2}}{a^{5}}=\frac{1}{a^{2}} ; \therefore a^{-3}=\frac{1}{a^{3}} .
$$

Also

$$
\frac{a^{3}}{a^{3}}=a^{3-9}=a^{0} ; \text { but } \frac{a^{3}}{a^{3}}=1 ; \quad \therefore a^{0}=1 .
$$

EXERCISE I. b

1. (i) What are the squares of x^{4}, x^{5}, x^{6} ?
(ii) What are the square roots of x^{3}, x^{10}, x^{9} ?

2. Find x^{n} if

(i) $x^{n} \times x^{n}=x^{6}$;
(ii) $x^{n} \times x^{n}=x^{5}$;
(iii) $x^{n} \times x^{n}=x^{4}$;
(iv) $x^{n} \times x^{n}=x^{3}$;
(v) $x^{n} \times x^{n}=x^{2}$;
(vi) $x^{n} \times x^{n}=x$.
3. Find x^{n} if

$$
\begin{aligned}
& \text { (i) } x^{n} \times x^{n} \times x^{n}=x^{6} ; \quad \text { (ii) } x^{n} \times x^{n} \times x^{n}=x^{2} \text {; } \\
& \text { (iii) } x^{n} \times x^{n} \times x^{n}=x
\end{aligned}
$$

4. What is the cube root of (i) a^{12}; (ii) a^{4}; (iii) a^{5} i
5. Simplify (i) $b^{\frac{q_{3}^{2}}{3}} \times b^{\frac{2}{3}} \times b^{\frac{2}{3}}$; (ii) $\left(b^{\frac{4}{3}}\right)^{3}$.

What is the meaning of $x^{\frac{2}{3}}$ and $y^{\frac{4}{3}}$?
6. Show how to find the meaning of the following :
(i) $a^{\frac{1}{2}}$;
(ii) $b^{\frac{q}{8}}$; (iii) $c^{\frac{8}{2}}$;
(iv) $d^{2 \frac{7}{3}}$.
7. What are the squares of $a^{1 \frac{1}{2}}, b^{2 \frac{1}{2}}, c^{4 \frac{1}{2}}$?
8. What are the cubes of $a^{1 \frac{1}{3}}, b^{1 \frac{2}{3}}, c^{3 \frac{1}{3}}$?
9. Express as powers of x :
(i) $\sqrt{x^{7}}$;
(ii) $\sqrt[8]{8} x^{7}$;
(iii) ${ }^{4} / x^{7}$;
(iv) $\sqrt{4}^{6}$.
10. Simplify :
(i) $16^{\frac{1}{2}}$;
(ii) $8^{\frac{1}{3}}$;
(iii) $8^{\frac{2}{3}}$;
(iv) $9^{\frac{1}{2}}$; (v) $81^{\frac{1}{4}}$;
(vi) $27^{\frac{2}{2}}$;
(vii) $16^{1 \frac{1}{k}}$;
(viii) $81^{\frac{3}{4}}$;
(ix) $32^{\frac{3}{6}}$; (x) $16^{1 \cdot 5}$.
11. Find x^{n} if
(i) $x^{5} \times x^{n}=x^{8}$;
(ii) $x^{5} \times x^{n}=x^{7}$; (iii) $x^{5} \times \gamma^{n}=x^{4}$;
(iv) $x^{5} \times x^{n}=x^{5}$;
(v) $x^{5} \times x^{n}=x^{4}$;
(vi) $x^{5} \times x^{n}=x^{3}$.

Then express as powers of x, i.e. in the form x^{n},
(a) $\frac{x^{3}}{x^{5}} ;$
(b) $\frac{x^{4}}{x^{7}}$;
(c) $\frac{x^{2}}{x^{7}}$;
(d) $\frac{x^{5}}{x^{5}}$;
and simplify each of these fractions in the ordinary way.
12. Simplify $a^{7} \times a^{-4}$; what meaning does this give for a^{-4} ?
13. Simplify $b^{8} \times b^{-6}$. What is the meaning of b^{-6} ?
14. Simplify $c^{3} \times c^{-1}$. What is the meaning of c^{-1} ?
15. Simplify $x^{4} \times x^{0}$. What is the meaning of x^{0} ?
16. Simplify $y^{0} \times y^{6}$. What is the meaning of y^{0} ?
17. Simplify;
(i) $x^{5} \times x^{9}$;
(ii) $x^{5} \times 1$;
(iii) $x^{0} \times 1$;
(iv) $x^{0} \times 0$.
(v) $x^{5} \times 0$;
(vi) $x^{5} \times x$;
(vii) $x^{6} \times x^{0}$;
(viii) $x^{0} \times x$.
18. Simplify in two ways each of the following :
(i) $\frac{a^{-5} \times a^{5}}{a^{5}}$;
(ii) $\frac{a^{-\frac{1}{2}} \times a^{\frac{1}{2}}}{a^{\frac{1}{2}}}$;
(iii) $\frac{a^{-\frac{1}{2}} \times a^{\frac{3}{4}}}{a^{\frac{3}{4}}}$.
19. Siroplify :
(i) 3^{-2};
(ii) 4^{-1};
(iii) 5^{6};
(iv) 2^{-3};
(v) $16^{-\frac{1}{2}}$;
(vi) $\left(\frac{2}{3}\right)^{-6}$; (vii) $8^{-\frac{1}{3}}$;
(viii) $\binom{3}{3}^{-1}$;
(ix) $\mathbf{1}^{-1}$;
(x) 27^{6}.
20. Express with positive indices:
(i) a^{-4};
(ii) $b^{-\frac{1}{2}}$;
(iii) $c^{-1 \frac{1}{2}}$;
(iv) $\frac{1}{d^{-3}}$;
(v) $\left(a^{3}\right)^{-2}$;
(vi) $\left(\frac{1}{b^{2}}\right)^{-4}$;
(vii) $\left(\frac{1}{e}\right)^{-1}$;
(viii) $d^{-8} \times d^{-3}$.
21. Express with root signs the following :
(i) $10^{2 t}$;
(ii) 10^{5};
(iii) 10^{-75};
(iv) $10^{1.25}$;
(v) $2^{\frac{3}{2}}$;
(vi) $3^{1.5}$;
(vii) $5^{-\frac{1}{1}}$;
(viii) $9^{-\frac{9}{2}}$.
22. If $a=16, b=9$, find the values of :
(i) $a^{\frac{1}{2}}+b^{\frac{1}{2}}$;
(ii) $(a+b)^{\frac{1}{2}}$;
(iii) $a^{-\frac{1}{2}}+b^{-\frac{1}{2}}$;
(iv) $(a+b)^{-\frac{1}{2}}$.
23. Simplify :
(i) $9^{1 / 5}$;
(ii) $\mathbf{1 6}^{-0.5}$;
(iii) $16^{1 \cdot 76}$;
(iv) $4^{-1.5}$;
(v) $32^{0.4}$;
(vi) $(0 \cdot 1)^{-1}$;
(vii) ($\left(\frac{1}{b}\right)^{0.5}$;
(viii) $3^{-0.8}$.
24. Express as a power of 9 :
(i) 81 ;
(ii) 3 ;
(iii) 27 ;
(iv) 243 ;
(v) $\frac{1}{8}$;
(vi) 梠;
(vii) $\frac{1}{3}$;
(viii) $\sqrt{ } 3$.
[For further practice, see Appendix, Ex. F.P. 1, p. 154.]
The examples in Ex. I. b show what meanings must be given to a^{m} when $n{ }^{\star}$ is fractional, negative, or zero, if the law,

$$
a^{m} \times a^{n}=a^{m+n},
$$

holds for all values of m and n.
The results are as follows :
(i) If p, q are any positive integers,

$$
a^{\frac{p}{q}}=q /\left(a^{p}\right)=(\sqrt[g]{a})^{p} .
$$

(ii) If n is any number, integral or fractional, and $a \neq 0$,
(iii) If $a \neq 0$,

In particular, we have

$$
\begin{aligned}
a^{-n} & =\frac{1}{a^{n}} \\
a^{0} & =1 . \\
a^{\frac{1}{a}} & =\sqrt{2} / a^{2} .
\end{aligned}
$$

The following special cases, which occur frequently, should be noted carefully :

$$
a^{-1}=\frac{1}{a} ; \quad a^{\frac{1}{2}}=\sqrt{ } a ; \quad a^{-\frac{1}{2}}=\frac{1}{\sqrt{ } a} .
$$

If a^{m} is defined as the function of a which obeys the law,

$$
a^{m} \times a^{n}=a^{m+n},
$$

for all values of m and $n, a \neq 0$, the results (i)-(iii) above may be proved by the methods used in Examples 4-6, p. 3.

Powers of 10

Since $10^{\frac{1}{2}}=\sqrt{ } 10$, we can find its value to as many places of decimals as we like by using the process for calculating square roots or by using square root tables.

By multiplication or using square root tables, as above, it is easy to add to this list the values of $10^{\frac{3}{2}}, 10^{\frac{5}{4}}, 10^{\frac{1}{8}}$.
Also we have seen that $10^{\circ}=1$.
We cay therefore construct a table of values for the function $y=10^{x}$ as under :

x	\cdot	0	.125	.25	.375	.5	.625	.75	.875	1
$y=10^{x}$	\cdot	1	1.33	1.78	2.37	3.16	4.22	5.62	7.50	10

The graph obtained by using this table is shown in Fig. 1; the reader should draw this graph for himself, on as large a scale as the size of the paper permits, and use it for Exercise I. c.

EXERCISE I.c

Use the graph of $y=10^{x}$ to answer the following questions :

1. What are the values of :
(i) $10^{0.2}$;
(ii) $10^{0.7}$;
(iii) $10^{0.42}$;
(iv) $10^{0.84}$?
2. Express as powers of 10 :
(i) 2 ;
(ii) 3 ;
(iii) 6 ;
(iv) $7 \cdot 8$;
(v) $1 \cdot 5$.
3. Find the values of $a, b, c, \mathrm{~N}$, in the following argument :

$$
\begin{aligned}
2 \cdot 8 & =10^{a} ; 3 \cdot 2=10^{b} ; \\
\therefore 2.8 \times 3 \cdot 2 & =10^{a} \times 10^{b}=10^{a+b}=10^{c}=\mathrm{N} .
\end{aligned}
$$

Check by multiplication.
4. Use the method of No. 3 to find approximately the value of 4.6×1.6.
5. Use the method of No. 3 to find approximately the square of 2.7 .
6. Find the values of $a, b, c, \mathrm{~N}$ in the following argument:

$$
\begin{aligned}
8 \cdot 5 & =10^{a} ; 3 \cdot 8=10^{b} ; \\
\therefore 8 \cdot 5 \div 3 \cdot 8 & =10^{a} \div 10^{b}=10^{a-b}=10^{c}=\mathrm{N} .
\end{aligned}
$$

Check by division.
7. Use the method of No. 6 to find approximately the value of $7.4 \div 2 \cdot 9$.
8. Find the values of a, b, N in the following arguments :
(i) $8=10^{a} ; \quad \therefore \sqrt{ } 8=10^{b}=\mathrm{N}$;
(ii) $6=10^{a}$; $\therefore \sqrt{ } 6=10^{b}=\mathrm{N}$;
(iii) $9=10^{a} ; \quad \therefore \quad 3 / 9=10^{b}=\mathrm{N}$.

Logarithms

If any number y is expressed as a power of 10 , that is, if $y=10^{x}$, then x is called the logarithm of y, to base 10 ; thus, since $2 \bumpeq 10^{0.30}$, the logarithm of 2 is 0.30 , approximately ; this may be written, $\log ^{2} 2 \bumpeq 0.30$.

In Ex. I. c, the logarithms of various numbers were obtained from a graph, but it was not practicable to work with more than 2 significant figures. To obtain a higher degree of accuracy, it is simpler and quicker to use tables.

Numbers between 1 and 10. The graph on p. 6 gives logarithms of numbers between 1 and 10 only; these logarithms lie between 0 and 1 . In the same way, tables contain logarithms of numbers between 1 and 10 only; but, to save space, decimal points are usually omitted. The following portion of a logarithm table should be compared with the corresponding part printed in the book of Tables.

	0	1	2	\ldots	9	1	2	3	\ldots	7	8

The figures in the outer left column represent numbers between 1 and 10 , those in the inner wide columns represent their logarithms. In books of Tables, the numbers $2 \cdot 9,3 \cdot 0,3 \cdot 1$, etc., are usually printed $29,30,31$, etc., and their logarithms as 4624 , 4771, 4914, etc., instead of $\cdot 4624,-4771, \cdot 4914$.

The method of finding logarithms from the tables is best explained by taking examples. Thus, from the top row of the extract,

$$
2.80=10^{0.4624} ; \quad 2.91=10^{0.4639} ; \quad 2.92=10^{0.4654} ; \text { etc. }
$$

Similarly,

$$
3.00=10^{0.4771} ; \quad 3.01=10^{0.4788} ; \quad 3.02=10^{0.4800} ; \text { etc. }
$$

In this way, we can read off the logarithm of any number between 1 and 10, expressed to three significant figures. For numbers expressed to four significant figures, we could use interpolation. Thus to find the logarithm of 2.918 , we have $\log 2.910=0.4639$ and $\log 2.920=0.4654, \therefore$ the increase in the logarithm is 0.0015 .
\therefore for $\log 2.918$, the increase $=\frac{8}{10}$ of $\cdot 0015=\cdot 0012$;

$$
\therefore \log 2.918 \bumpeq 0.4639+0.0012=0.4651 .
$$

To save time, the corresponding increases are shown in the narrow columns on the right, called difference columns. Thus, in the 2.9 row, in the narrow column headed 8, we find 12. This means that, if 12 is added to 4639 , giving $4651,2.918=10^{0.4651}$, the same result os wes obtained above by interpolation.

Numbers of any Magnitude. In order to multiply a number by a power of 10 , it is merely necessary to move the digits an appropriate number of places to the left.

$$
\begin{aligned}
& 2.913 \times 10^{4}=29130 ; \quad \therefore 29130 \quad=10^{0.4643} \times 10^{4}=10^{4+0.4643} . \\
& 2.913 \times 10^{3}=2913 ; \quad \therefore 2913=10^{0.4643} \times 10^{3}=10^{3+0.4643} . \\
& 2.913 \times 10^{2}=291 \cdot 3 ; \quad \therefore \quad 291.3=10^{0.4643} \times 10^{2}=10^{2+0.4643} . \\
& 2.913 \times 10^{1}=29.13 ; \quad \therefore \quad 29.13=10^{0.4643} \times 10^{1}=10^{1+0.4643} .
\end{aligned}
$$

In general, if a number is multiplied by 10^{n}, where n is any positive integer, we move the digits n places to the left. This rule may be regarded as holding also when n is a negative integer. To multiply by 10^{-2}, we move the digits (-2) places to the left, that is, 2 places to the right, since $10^{-2}=\frac{1}{10^{2}}$.

Thus $2.913 \times 10^{-2}=0.02913 ; 2.913 \times 10^{-3}=0.002913$, etc.
We may therefore extend the column given above, as follows :
$2.913 \times 10^{-1}=0.2913$;

$$
\therefore 0.2913=10^{0.4643} \times 10^{-1}=10^{-1+0.4643} .
$$

$2.913 \times 10^{-2}=0.02913$;

$$
\therefore 0.02913=10^{0.4648} \times 10^{-2}=10^{-2+0.4643}
$$

$2.913 \times 10^{-3}=0.002913 ;$

$$
\therefore 0.002913=10^{0.4643} \times 10^{-3}=10^{-3+0.4043} ;
$$

and so on.
In this way, we can obtain the logarithms of numbers of any magnitude, large or small, although the tables contain only logarithms of numbers between 1 and 10 .

The logarithm of a number less than 1 is negative, but it is always written so that the decimal portion is positive; thus $0.02913=10^{-2+0.4643}$; we do not replace $-2+0.4643$ by -1.5357 .

The positive decimal portion of the logarithm is called its mantisea, and the corresponding (positive or negative) integral portion is called its characteristic; thus the mantissa of the logarithm of 0.02913 is 0.4643 , and the characteristic is (-2).

We obtain the mantissa from the tables; the characteristic is found by the method of the following example.

Example 7. Express as a power of 10 , (i) $753 \cdot 6$; (ii) 0.007536 .
(i) $753.6=7.536 \times 10^{2}=10^{0.8771} \times 10^{2}=10^{2.8771}$.
(ii) $0.007536=7.536 \times 10^{-3}=10^{0.8771} \times 10^{-3}=10^{-3+0.8771}$.

The same tables can be used for the converse proeess.
Example 8. Find the value of
(i) $10^{0.4855}$; (ii) $10^{0.4958}$; (iii) $10^{1.4958}$; (iv) $10^{-3+0.4958 .}$
(i) We have, direct from the tables, $10^{0 \cdot 4955}=3 \cdot 13$.
(ii) The difference 3 occurs in the column headed 2,
$\therefore 10^{0.4958}=3.132$.
(iii) $10^{1 \cdot 4958}=10^{0.4958} \times 10^{1}=3 \cdot 132 \times 10=31.32$.
(iv) $10^{-2+0.4958}=10^{0.4958} \times 10^{-3}=3.132 \times 10^{-3}=0.003132$.

Example 9. Find the value of $10^{2 \cdot 1561}$.
From the tables, $10^{0.1553}=1 \cdot 43$. We now have to allow for a difference of 8 . Since 8 itself does not appear in the difference column, we take the nearest number which does so, in this case 9 , which is in the column headed 3.

$$
\therefore 10^{0.1561}=1.433 ; \quad \therefore 10^{2.1561}=1.433 \times 10^{2} \stackrel{6}{=} 143 \cdot 3 .
$$

Example 10. Find the value of $10^{1.8367}$.
From the tables, $10^{0.8363}=6.86$. We now have to allow for a difference of 4 ; since 4 appears in the difference column both under 6 and under 7, we may take either 6 or 7. [Either 5 -figure tables must be used or further calculations must be made to discover which gives the closer approximation ; and it is not worth while doing this because if 4 -figure tables are being used, the fourth figure in the answer is not necessarily correct.]

Thus $10^{0.8367} \bumpeq 6.866, \quad \therefore 10^{1.8367} \bumpeq 68.66$.

EXERCISE I. d

[Four-figure tables should be used in this and the following exercises.]
Express as powers of 10 the following numbers:

1. (i) $7 \cdot 4$; (ii) 7.5 ; (iii) $7 \cdot 47$; (iv) $7 \cdot 48$; (v) 7.476 .
2. (i) 5 ; (ii) 5.04 ; (iii) 5.05 ; (iv) $5 \cdot 045$; (v) 5.049 .
3. (i) 2.68 ; (ii) 8.04 ; (iii) $5 \cdot 69$; (iv) 9.01 .
4. (i) $7 \cdot 683$; (ii) $4 \cdot 015$; (iii) $8 \cdot 70 B$; (iv) $5 \cdot 008$.
5. (i) 60 ; (ii) 70 ; (iii) 400 ; (iv) 9000 ; (v) 0.08 .
6. (i) 53 ; (ii) 49 ; (iii) 7200 ; (iv) 0.0064 ; (v) 0.26 .
7. (i) 427 ; (ii) 8340 ; (iii) 0.0672 ; (iv) 0.518 .
8. (i) 59.3 ; (ii) 90.7 ; (iii) 0.00105 ; (iv) 0.702 .
9. (i) 5134 ; (ii) $125 \cdot 4$; (iii) 0.07142 ; (iv) 0.0003182 .
10. (i) 10.07 ; (ii) 3002 ; (iii) 0.8053 ; (iv) 0.004007 .

What are the numbers whose logarithms are as follows:
11. (i) 0.9031 ; (ii) 0.5563 ; (iii) 0.0792 ; (iv) 0.2041 .
12. (i) 0.6767 ; (ii) 0.7825 ; (iii) $0 \cdot 1004$; (iv) 0.943 .
13. (i) 0.5408 ; (ii) 0.7607 ; (iii) 0.3173 ; (iv) 0.6029 .
14. (i) 1.8633 ; (ii) $3 \cdot 6628$; (iii) $-2+0.3802$;
(iv) $-1+0.9395$.
15. (i) 2.8235 ; (ii) $4 \cdot 3766$; (iii) $-1+0.8669$;
(iv) $-3+0.0864$.
16. (i) 1.8451 ; (ii) 3.0043 ; (iii) $-2+0.3075$;
(iv) $-4 \div 0.847$.
17. (i) 2.6603 ; (ii) 5.9762 ; (iii) $-3+0.6007$;

- (iv) $-1+0 \cdot 1473$.

18. (i) $5 \cdot 6027$; (ii) $2 \cdot 4765$; (iii) $-2+0.0033$;
(iv) $-5+0.9035$.

Positive Indices

Example 11. Find the value of 46.87×3.056.

46.87×3.056	$=10^{1.8709} \times 10^{0.4852}$		$\frac{1.8709}{0.4852}$
	$=10^{1.6709+0.4852}$		$\underline{2.1561}$
	$=10^{2.1561}$		
	$=1.433 \times 10^{2}=143.3$.		

Rough estimate : $50 \times 3=150$.
Example 12. Find the value of $\frac{5728}{83 \cdot 42}$.

$$
\begin{aligned}
5728 \div 83 \cdot 42 & =10^{3.7880} \div 10^{1 \cdot 9113} \\
& =10^{3.7580-1.9218} \\
& =10^{1.8889} \\
& =6.866 \times 10^{1}=68.66 .
\end{aligned}
$$

3.7580
$1 \cdot 9213$
1.8867

Rough estimate : $\frac{6080}{80}=75$.

Example 13. Find the value of $\frac{49080 \times 24 \cdot 2}{270 \cdot 4 \times 3 \cdot 135}$.

Rough estimate: $\frac{50000 \times 20}{300 \times 3}=\frac{10^{6}}{900} \bumpeq 1000$.
Example 14. Find the value of $(19 \cdot 07)^{4}$.

$$
\begin{aligned}
(19.07)^{4} & =\left(10^{1 \cdot 2804}\right)^{4}=10^{1.2884 \times 4} \\
& =10^{5 \cdot 1216} \\
& =1.323 \times 10^{5}=132300 .
\end{aligned}
$$

Rough estimate : $20^{4}=160000$.
Example 15. Find the value of $\sqrt[3]{ }(873 \cdot 5)$.

$$
\begin{aligned}
& \sqrt[3]{(873 \cdot 5)}=\left(10^{2.9618}\right)^{\frac{1}{3}} \\
& { }^{3 \mid 2-9412} \\
& =10^{9 \cdot 9418} \times 1=10^{-9604} \quad-\quad \underline{9804}
\end{aligned}
$$

Rough check : $10^{3}=1000,9^{3}=729$.
Until the argument is thoroughly understood, the method of writing each number as a power of 10 , which has been used in the above examples, should be followed, any necessary subsidiary calculations (addition, subtraction, ete.) being carried out neatly in side columns as shown. If the expressions are complicated, as in Example 13, it is clearer to use two side columns, one for logarithms of the numerator, the other for logarithms of the denominator.
We shall now repeat two of these examples to show how the work should be arranged, after the principles have been grasped.
Example 11.* Find the value of 46.87×3.056.

Number	Logarithm
46.87	1.6709
3.056	0.4852
Product	2.1561

\therefore Product $=1.433 \times 10^{2}=143.3$.

Example 13.* Find the value of $\frac{49080 \times 24 \cdot 2}{270 \cdot 4 \times 3 \cdot 135}$.

Number	Logarithm		Number
	Logarithm		
49080	4.6909		270.4
24.2	1.3838	3.135	0.4962
Numerator	6.0747		Denominator
Denominator	2.9282	2.9282	
Expression	3.1465		
expression $=1.401 \times 10^{3}=1401$			

EXERCISE I.e

Find the values of the following :

1. 2.284×17.93.
2. 5862×11.07.
3. $64.72 \times 1 \cdot 083$.
4. $85 \cdot 32 \div 6.907$.
5. $173 \div 86 \cdot 49$.
6. $7859 \div 9.073$.
7. 13300×7.59.
8. $(20 \cdot 68)^{2}$.
9. $70400 \div 86.04$.
10. $(409 \cdot 3)^{3}$
11. $100 \div 3.726$.
12. $(5.08)^{5}$.
13. $1000 \div 89.07$.
14. $(10.02)^{4}$.
15. $11000 \div 8080$.
16. $8.637 \times 18.07 \times 108.7 . \quad 17.13 .54 \times 66.08 \div 95.39$,
17. $\frac{14 \cdot 67 \times 112}{883 \cdot 6}$.
18. $\frac{8709}{3 \cdot 142 \times 75 \cdot 62}$.
19. $48.5 \times(73.2)^{2} \times 1200$.
20. $(6.734)^{2} \times 8.45 \div 27.39$.
21. $\frac{8.624 \times 729}{30.72 \times 9.134}$.
22. $\frac{(15.09)^{2}}{8.086 \times 12.07}$.
23. $(7700)^{3} \div(909)^{2}$.
24. $16 \cdot 14 \times(70 \cdot 33)^{3} \div 19000$.
25. $\frac{7.314 \times 20000}{(50.08)^{2}}$.
26. $\frac{107.7 \div 8.35}{2 \cdot 47 \times 3.064}$.
27. $\frac{6}{3} \times 3.142 \times(2.105)^{3}$.
28. $24 \times 191 \div\left(1 \frac{3}{3} \times 11 \cdot 3\right)$.
29. $100 \div(2.007)^{4}$.
30. $(3.162 \times 6.928 \div 4.899)^{2}$.
31. (i). $\sqrt{ }(3 \cdot 724)$; (ii) $\sqrt{ }(37 \cdot 24)$; (iii) $\sqrt{ }(372 \cdot 4)$; (iv) $\sqrt{ }(3724)$.
32. (i) $\sqrt[3]{ }(7 \cdot 428)$; (ii) $\sqrt[3]{(74 \cdot 28)}$; (iii) $\sqrt[3]{(742 \cdot 8)}$; (iv) $\sqrt[3]{(7428) .}$
33. $\sqrt{ } 10$.
34. $\sqrt[3]{ } 9$.
35. $\sqrt{ } 20$. 37. $\sqrt{ } / 50$.
36. $12.07 \times \sqrt{ }(18.14 \times 29)$.
37. $\sqrt{ }(3 \cdot 724)^{3} \div \sqrt[3]{ } 100$.
38. $\sqrt{ }\left(\frac{86 \cdot 47}{9 \cdot 173}\right) \div 2.75$.
39. $\frac{37 \times \sqrt{ }(117)}{(4 \cdot 312)^{2}}$.
40. $\sqrt{ }\left(\frac{1700 \times 36.52}{41 \times 10.07}\right)$.
41. $\left.\sqrt[3]{\left(\frac{8.826 \times 110}{10 \cdot 1 \times 30.03}\right.}\right)$.
42. $2 \sqrt[3]{ }(100) \div \sqrt{ } 10$.
43. $\sqrt{ }\left(31+77.8 \times 13_{18}^{i}\right)$.
[For further practice, see Appendix, Ex. F.P. 2, p. 155.]

EXERCISE I.f

[Throughout this Exercise, take $\pi=3 \cdot 1416=10^{-4871}$.]

1. The area of a circle of radius r in. is A sq. in. where $A=\pi r^{2}$ and $r=\sqrt{ }\left(\frac{A}{\pi}\right)$.
(i) Find A if $r=3.07$; (ii) find r if $A=10.5$.
2. Neglecting air-resistance; a stone falls s feet in t seconds where $s=\frac{1}{2} g t^{2}$ and $\left.t=\sqrt{\left(\frac{2}{g}\right)}\right) ; g=32 \cdot 2$.
(i) Find s if $t=1 \cdot 35$; (ii) find t if $s=19.8$.
3. The area of the surface of a sphere of radius r in. is A sq. in. where $A=4 \pi r^{2}$.
(i) Find A if $r=2.073$; (ii) find r if $A=1000$.
4. The volume of a sphere of radius r in. is $V_{c} c u$, in. where $\mathrm{V}=\frac{4}{3} \pi r^{3}$ and $r=\sqrt[3]{\left(\frac{3 \mathrm{~V}}{4 \pi}\right)}$.
(i) Find V when $r=13 \cdot 26$; (ii) find r when $\mathrm{V}=138$.
5. The time of a complete oscillation of a pendulum of length l feet is t sec. where $t=2 \pi \sqrt{\left(\frac{l}{g}\right)}$ and $l=\frac{g t^{2}}{4 \pi^{2}} ; g=32 \cdot 2$.
(i) Find t if $l=100$;
(ii) find l if $t=21$.
6. The volume of a circular cone, base diameter d in.; height h in., is V cu. in. where $V=\frac{\pi d^{2} h}{12}$.
(i) Find \vee if $d=3 ł, h=4 \frac{4}{4}$; (ii) find d if $V=100, h=7.33$.
7. Find s from the formula, $s=\frac{\mathrm{F} g t^{2}}{2 \mathrm{~W}}$, if $\mathrm{F}=425, g=32 \cdot 2, t=17$, $\mathrm{W}=740$.
8. At a height of h feet, the distance of the horizon is d miles where $d=1.42 \sqrt{ } h$.
(i) Find d when $h=360$; (ii) find h when $d=10$.
9. The weight of a brass cylinder, height $h \mathrm{~cm}$., base diameter $d \mathrm{~cm}$., is $w \mathrm{gm}$. where $w=2.09 \pi d^{2} h$.
(i) Find w if $h=6.35, d=5.84$; (ii) find h if $w=217, d=3 \cdot 26$; (iii) find d if $w=1000, h=74$.
10. The current which will fuse a certain wire of diameter $d \mathrm{~mm}$. is C amperes, where $\mathrm{C}=\sqrt{ }\left(160 d^{3}\right)$; find C if $d=2.30$.
11. Find k from the formula, $k=\frac{W}{(D+d)} \overline{(D-d)}$, if $W=23.4$
when $D=4$ and $d=0 \cdot 1$.
12. Find correct to one significant figure, (i) 5^{21}; (ii) 3^{30}.
13. The speed of a paddle steamer, of cross-section S sq. ft., when the engines work at P horse-power, is v knots, where $v=\sqrt[8]{\left(\frac{620 \mathrm{P}}{\mathrm{S}}\right) .}$

Find v if $\mathrm{P}=1560$ and $\mathrm{S}=648$.
14. The volume of a metal tube, $l \mathrm{in}$. long, outer radius r in., thickness t in., is $V \mathrm{cu}$. in. where $\mathrm{V}=\pi l t(2 r-t)$.
(i) Find \vee if $l=7 \cdot 05, r=8, t=1 \cdot 3$;
(ii) find l if $V=120, r=5 \cdot 4, t=1 \cdot 15$.
15. The amount of $£ \mathrm{EP}$ at r per cent. per annum compound interest is $£ A$, where $A=P\left(1+\frac{r}{100}\right)^{n}$.

Find A to the nearest integer, if $P=185, r=3 \frac{1}{2}, n=12$.
16. The volume of a segment of a sphere of radius r in., height h in. is V cu . in., where $\mathrm{V}=\pi h^{2}\left(r-\frac{1}{3} h\right)$. Find V if $r=5 \cdot 42, h=2.85$.
17. The surface $S \mathrm{sq}$. in. and the volume $V \mathrm{cu}$. in. of a sphere are connected by the relation, $\mathrm{S}^{3}=36 \pi \mathrm{~V}^{2}$.
(i) Find S when $V=37$; (ii) find V when $S=19$.
18. If the area of the total surface of a circular cone is S sq. in., its maximum volume, V cu . in., is given by the relation

$$
\mathrm{V}=\frac{1}{3} \sqrt{\left(\frac{8^{3}}{8 \pi}\right)}
$$

(i) Find V if $S=15$; (ii) find S if $V=3 \cdot 2$.
19. If $\frac{1}{3} \pi k r^{3}=100$ and if $k=7 \cdot 7$, find the value of $4 \pi r^{2}$.
20. The area of an equilateral triangle, side x in. long, is A sq. in., where $A=\frac{1}{2} x^{2} \sqrt{ } 3$.
(i) Find A when $x=2 \cdot 7$; (ii) find x when $A=10$.

Negative Indices. If a number between 0 and 1 is expressed, as a power of 10 , the index is negative, see p. 9, but is always written so that the decimal part is positive.

Thus $0.00874=8.74 \times 10^{-3}=10^{0.4415} \times 10^{-3}=10^{-3+0.9415}$,
For brevity, the index $-3+0.9415$ is written 3.9415 (pronouncod bar 3, point 9415), the " minus" being placed above the

3 to show that it refers only to the 3, and not to $\cdot 9415$. But, at first, the reader will find it easier to write out such numbers in full.
Example 16. Find the value of $\frac{378.4}{0.00624}$.

Number	Logarithm
$378 \cdot 4$	$2 \cdot 5780$
$0 \cdot 00624$	$\mathbf{3} \cdot 7952$
Expression	$4 \cdot 7828$
expression $=60640$	

$\begin{array}{r}2+.5780 \\ -3+.7952 \\ \hline 4+.7828 \\ \hline\end{array}$

Some practice is needed in subtraction with such numbers as occur here. For the decimal portion, use your ordinary method : it may be either of those given below.

If there is any difficulty with the integers, use the rule, change the sign of the lower line and add.

Equal Additions	
$2+1.5780$	Decomposition
$(-3+1)+0.7952$	$-3+1.5780$
$4+0.7828$	$-4+0.7952$

It is not of course necessary to set out the work in such detail as shown here; the object of these examples is to show what argument must be employed.

Example 17. Express with the decimal part positive,
(i) $\overline{2} \cdot 8+\overline{3} \cdot 7$;
(ii) $0-1 \cdot 32$;
(iii) $0-3 \cdot 41$;
(iv) 2.7×3;
(v) $6 \cdot 48 \div 3$;
(vi) $4 \cdot 82 \div 3$.
(i) $(-2+0.8)+(-3+0.7)=(-5+1 \cdot 5)=(-4+0.5)=\overline{4} \cdot 5$.
(ii) $0+0.00$
(iii) $0+0.00$
$\frac{1+0.32}{(-2)+0.68}=2.68$.
$\frac{(-3)+0.41}{2+0.59}=2.59$
(iv) $(-2+0 \cdot 7) \times 3=-6+2 \cdot 1=-4+0 \cdot 1=7 \cdot 1$.
(v) $(-6+0 \cdot 48) \div 3=-2+0 \cdot 16=\mathbf{2} \cdot 16$.
(vi) $(-4+0.82) \div 3=(-6+2.82) \div 3$

$$
=-2+0.94=2.94
$$

Example 18. Find the value of $(0.07681)^{3}$.

Number	Logarithm
$(0.07681)^{3}$	$2.8855 \times 3 \times 4 \cdot 6565$
\therefore expression $=4.534 \times 10^{-4}$	$=0.0004534$.

Example 19. Find the value of $\sqrt[4]{(}(0 \cdot 8635)$.

Number	Logarithm	$\begin{array}{r} -1+0.0363 \\ -4+3.9363 \\ \hline \end{array}$
$\sqrt[4]{ }(0 \cdot 8635)$	$\bar{I} .9363 \div 4 \mid 1.9841$	$\underline{-1+0.9841}$

\therefore expression $=9.640 \times 10^{-1}=0.9640$.
Example 20. Find the value of $\frac{(0.07241)^{4} \times \sqrt{ }(0.8273)}{4 \frac{5}{5} \times(0.0726)^{3} \times \sqrt[3]{ }(0.8324)}$.

Number	Logarithm	
$(0.07241)^{4}$	2.8598×4	$5 \cdot 4392$
$\sqrt{ }(0 \cdot 6273)$	$1.7975 \div 2$	I-8987
Numerator		$\overline{\text { ¢ }} 33379$
$4 \cdot 6$		-6628
$(0.0726)^{3}$	$\overline{2} \cdot 8609 \times 3$	4. 5827
$\sqrt[3]{(0 \cdot 8324)}$	$\underline{1} \cdot 9203 \div 3$	1.9734
Denominator		3.2189
Expression		2-1190

\therefore expression $=1.315 \times 10^{-2}=0.01315$.
Example 21. Find the value of $\frac{1}{\sqrt[3]{(0.0479)}}$.

Number	Logarithm	
1		0.0000
$\sqrt[2]{2}(0.0479)$	$\mathbf{2 . 6 8 0 3 \div 3}$	$\mathbf{1} \cdot 5601$
Expression	.	0.4399

$$
\therefore \text { expression }=2.754
$$

D.S.A.

Example 22. Find the value of $(0.0864)^{-1.4}$.

\therefore expression $=3.082 \times 10=30.82$.

EXERCISE I.g

Express the following so that the decimal part is positive:

1. $3 \cdot 4+5 \cdot 2$.
2. $4 \cdot 7+\overline{2} \cdot 5$.
3. $\overline{5} \cdot 6+2 \cdot 7$.
4. $2 \cdot 8+3 \cdot 5$.
5. $3+1 \cdot 2$.
6. $6.7-5 \cdot 4$.
7. $3 \cdot 8-1 \cdot 5$.
8. $4 \cdot 3-\bar{I} \cdot 5$.
9. $3.7-5 \cdot 2$.
10. 2.5-6.8.
11. $4 \cdot 7-1 \cdot 3$.
12. $\overline{4} \cdot 3-\frac{5}{2} .7$.
13. 0-2 4 .
14. $4 \cdot 3-2 \cdot 7$.
15. 2.8-4.8.
16. $0-\tilde{3} \cdot 6$.
17. 2.7×3.
18. $I \cdot 8 \times 4$.
19. $5.4 \times(-2)$.
20. $\overline{3} \cdot 8 \times(-3)$.
21. $2 \cdot 8 \times 2 \cdot 3$.
22. $6.8 \div 2$.
23. $3 \cdot 6 \div 2$.
24. $\overline{2} \cdot 8 \div 3$.
25. $6 \cdot 4 \div 4$.
26. $2 \div 5$.
27. $4.7 \div 3$.
28. $1 \cdot 4 \div(-2)$.
29. $2 \cdot 5 \div(-3)$.
30. $\mathbf{9} \cdot 6 \div(-7)$.

EXERCISE I.h

Find the values of the following:

1. 0.639×837.
2. 0.746×0.646.
3. 0.0805×0.707.
4. $0.815 \div 53 \cdot 6$.
5. $0.574 \div 0.0231$.
6. $0.048 \div 0.723$.
7. $347 \div 0.575$.
8. $1 \div 0.0274$.
9. $46 \div 0.0067$.
10. $(0 \cdot 4726)^{2}$.
11. $(0.0813)^{3}$.
12. $(0 \cdot 1071)^{4}$.
13. $\sqrt{ }(0.0834)$.
14. $\sqrt{ }(0.0076)$.
15. $\sqrt[3]{(0 \cdot 6438)}$.
16. $\sqrt[3]{ } /(0 \cdot 0405)$.
17. $\sqrt[5]{(0.0082)}$.
18. $\sqrt[3]{(0.0947)^{2} \text {. }}$
19. $\frac{1}{387 \cdot 2}$.
20. $\frac{1}{\sqrt{ }(0.828)}$.
21. $\frac{1}{(0.271)^{3}}$.
22. $\frac{1}{\sqrt[3]{10}}$.
23. $(84 \cdot 35)^{-\frac{1}{2}}$.
24. $(0.607)^{-\frac{1}{2}}$.
25. $\frac{7835}{6942 \times 3781}$.
26. $\frac{4 \cdot 762 \times \cdot 003791}{50.09 \times 110.7}$.
27. $\frac{0.8714 \times 0.00652}{1837 \times 0.0797}$.
28. $\frac{1}{1630 \times 0.073 \times 0.8654}$.
29. $\frac{4.876 \times(0.07304)^{2}}{(0.5162)^{8}}$.
30. $\frac{0.3916 \times \sqrt{ }(0.8654)}{(17.04)^{2} \times 0.108}$
31. $\left.\sqrt{\left(\frac{8.63 \times 0.00627}{0.1924 \times 3.416}\right.}\right)$.
32. $\sqrt{ }\left(\frac{0.4717 \times 0.0823}{29.44 \times 0.1}\right)$.
33. $\frac{\sqrt{ }(0.7624) \times \sqrt[3]{(0.3971)}}{(0.878)^{3} \times(1.01)^{2}}$.
34. $\frac{1}{(0.0263)^{3} \times \sqrt[3]{(0.0472)}}$.
35. $(6.73)^{-0.4}$.
36. $(0.815)^{-1.5}$.
37. $(651 \cdot 3)^{-2.4}$.
38. $(0.007)^{-\frac{9}{3}}$.
39. $(0.05)^{3 \cdot 3}$.
40. $(0 \cdot 1)^{0.1}$.
[For further practice, see Appendix, Ex. F.P. 3, p. 156.]

EXERCISE I. j

[Throughout this Exercise, take $\log \pi=0.4971$.]

1. The volume of metal in a tube h in. long, external radius R in., internal radius r in., is $\pi h(R+r)(R-r) c u$. in. ; find the volume if $h=7 \cdot 524, \mathrm{R}=6 \cdot 173, r=5 \cdot 948$.
2. Find the value of $\sqrt{ }\left\{(0 \cdot 867)^{2}-(0.659)^{2}\right\}$.
3. Find the value of $2 \pi \sqrt{\left(\frac{l}{g}\right)}$,

$$
\text { (i) if } l=2 \cdot 57, g=32 \cdot 2 \text {; (ii) if } l=78 \cdot 3, g=981 .
$$

4. Find r if $\pi r^{2}=1$. Interpret the result.
5. For wrought iron shafting, the diameter of the shaft d in., the horse-power transmitted H, and the number of revolutions per minute n are connected by the relation $d=4.028\left(\frac{\mathrm{H}}{n}\right)$; find
d if $H=63, n=175$.

6. Find the value of $\sqrt{\left\{\frac{(s-b)(s-c)}{s(8-a)}\right\} \text { if } a=3 \cdot 15, b=4 \cdot 26, ~}$ $c=5 \cdot 63$ and $s=\frac{1}{2}(a+b+c)$.
7. Find r if $\frac{4}{3} \pi r^{3}=1$. Interpret the result.
8. If $x^{3}=y^{3}+z^{3}$, find x when $y=0.827, z=0.619$.
9. Find the value of $\frac{1}{55}\left(\frac{76 \cdot 2}{304 \cdot 3}+\frac{4 \cdot 5}{5 \cdot 68}\right)$.
10. The velocity of sound in air at temperature $t^{\circ} \mathrm{C}$., when the pressure of the air is $p \mathrm{lb}$. per sq. in. and the standard density is $d \mathrm{lb}$. per cu. ft., is v feet per second, where

$$
\left.v=\sqrt{\{45.08} \times \frac{144 p}{d} \times\left(1+\frac{t}{273}\right)\right\}
$$

Find v if $p=14 \cdot 7, d=0.0809, t=16$.
12. Find the value of $\frac{3300 t}{d}\left(5-\frac{l+12}{60 t}\right)$ if $t=\frac{1}{\frac{1}{2}}, d=4 \cdot 75, l=2 \cdot 8$.
13. Find the value of $5.25 k^{3} d^{-4}$ when $k=2.085, d=0.2173$.
14. The safe width of a dam at a depth of x feet below water level is $\left.\sqrt{\left\{\frac{0.05 x^{3}}{9+0.03 x}\right.}\right\}$ feet. How wide should it be at a depth of $1 \dot{3} \frac{1}{2}$ feet?
15. The expression $\frac{x}{\left(1+x^{2}\right)^{2.5}}$ is greatest when $x=0.5$; what is
its greatest value ?
16. The bore of a pipe through which a pump of horse-power H can deliver G gallons per second is d inches, where

$$
d=\mathrm{G}^{\frac{3}{4}} \times(0.41 \mathrm{H})^{-\frac{1}{2}} .
$$

Find d if $\mathrm{G}=250, \mathrm{H}=12 \cdot 5$.
17. If $p \cdot v^{1 \cdot 4}=13 \cdot 72$, find p when $v=0.8$.
18. Find the value of $\frac{0 \cdot 022 v^{2} l}{g d^{1 \cdot 2}}$ if $v=8 \cdot 55, l=54 \cdot 6, g=32 \cdot 2$,
$d=2.68$.
19. Find the value of $35.2 \times e^{\mu \pi}$, if $e=2.718, \mu=0.465$.
20. Find the value of $10^{4} \times 3.6 \times d^{0.7} \times t^{0.6}$ if $d=0.9, t=0.012$.
21. Find the value of x if $13 x=\frac{a}{b}-\frac{1}{9} \log c$, when $a=343$, $b=51 \cdot 2, c=0 \cdot 426$.
22. A sum of money invested at r per cent. per annum com. pound interest is doubled after n years, where

$$
n=\log 2 \div \log \left(1+\frac{r}{100}\right)
$$

Find n if $r=2 \frac{1}{2}$.
23. Find θ from the formula, $\mu \theta=2.303 \log \left(\frac{\mathrm{P}}{\mathrm{W}}\right)$, if $\mu=0.65$, $\mathrm{P}=27 \cdot 3, \mathrm{~W}=16$.
24. If $£ P$ is set aside at the end of each year and accumulates at r per cent. per annum compound interest, the amount after n years is EA where

$$
n=\log \left(\frac{\mathrm{A} r}{100 \mathrm{P}}+1\right) \div \log \left(1+\frac{r}{100}\right) .
$$

Find n to the nearest integer if $\mathrm{P}=150, \mathrm{~A}=1720, r=6$.
[For additional examples, see Appendix, Ex. T. 1, p. 166.]

CHAPTER II

VARIATION

Functions of One Variable

Direct Proportion. Suppose a train is running at a constant speed of 48 miles per hour.

In 5 minutes it travels 4 miles; in 10 minutes, 8 miles; in 15 minutes, 12 miles ; and so on.

If the time is doubled, the corresponding distance is also doubled; if the time is halved, the distance is halved; etc.

We therefore say that the distance is directly proportional to the time, or that the distance varies directly as the time.

Suppose that in x minutes the train travels y miles, then

$$
y=\frac{s}{s} x .
$$

The corresponding travel graph is represented by OA in Fig. 2; it is a straight line through the origin.

Fig. 2.
Fig. 2 contains also the travel graphs $O P, O Q, O R$ of three other trains and the travel graph OS of an aeroplane. The reader should interpret each of these graphs and state (i) what speed each represents, (ii) what relation connects x and y.

For each graph in turn, we see that
$\frac{y}{x}=c$ or $y=c x$,
where c has some definite numerical value which measures the slope of the graph.
Thus for $\mathrm{OA}, \mathrm{c}=\frac{1}{b}$; and for $\mathrm{OP}, c=\frac{1}{2}$; and for $\mathrm{OS}, c=2$; etc.
If, then, the result of plotting values of y against ${ }^{\text {avalues }}$ of x_{c}. gives a straight line through the origin, it follows that y varies directly as x; this is often written $y \propto x$, and we then know that x and y are connected by the relation, $\frac{y}{x}=c$ or $y=c x$, where c is constant.
Other Forms of Direct Variation. Open cubical tin boxes (i.e. having no lid) are made from tin sheeting in various sizes. Consider the relation between the area of tin sheeting used and the height of the manufactured box.
If the box is 3 in . high, the area of each face is 9 sq . in.; but there are 5 faces, \therefore the area of sheeting required is 45 sq . in.
If we repeat this argument for various heights, we obtain the following table :

height in inches h	-	2	3	4	5	6	7	8
area in sq. inches A	-	20	45	80	125	180	245	320

It is obvious that the effect of doubling h is not the doubling of A; if we plot values of A against values of h, we shall not obtain a straight line through the origin, because $\frac{A}{\hbar}$ is not constant. In other words, A does not vary directly as h.
Suppose, however, that we tabulate corresponding values of A and h^{2}.

A.	-	20	45	80	125	180	245	320
h^{2}	-	4	9	16	25	36	49	64

It is evident that $\frac{A}{h^{2}}$ is constant ; and we have

$$
\frac{A}{h^{2}}=5 \quad \text { or } \quad A=5 h^{2} .
$$

We then say that A varies directly as the square of h or, merely, A varies as the square of h; and we write it, $A \propto h^{2}$.
The reader should now plot the values of A against the values of h^{2}, and verify the fact that the graph is a atraight line through the origin.

If $A \propto h^{2}$, we see that if h is doubled or trebled, the corresponding value of A is found by multiplying by 4 or by θ, respectively; similarly if h is divided by 10 , the corresponding value of A is obtained by dividing by 100 .
Thus from $\mathrm{A}=245$ for $h=7$ we deduce $\mathrm{A}=2.45$ for $h=0.7$.
Example 1. The time of a complete oscillation of a simple pendulum varies as the square root of the length of the pendulum. It is found that a pendulum 9 feet long makes a complote oscillation in 3.3 seconds. What is the time of oscillation for a pendulum 4 feet long? Find also a general formula.
Suppose that the time of oscillation of a pendulum l feet long is t seconds.
Then we are given that $t \infty \sqrt{ } l$.
We can now use any one of the following methods:
(i) $t=c \cdot \sqrt{ } l$ where c is constant.

But $t=3 \cdot 3$ if $t=9, \therefore 3 \cdot 3=c \cdot \sqrt{ } 9=3 c$.

$$
\therefore c=1 \cdot 1 \text {; }
$$

$$
\therefore t=1 \cdot 1 \sqrt{ } l .
$$

This is the required general formula.

$$
\text { If } l=4, t=1^{4} 1 \sqrt{ } 4=1 \cdot 1 \times 2=2 \cdot 2 \text {; }
$$

\therefore for a pendulum 4 ft . long, the time of oscillation is $\mathbf{2 . 2} \mathbf{~ s e c}$.
(ii) Since t varies as $\sqrt{ } l$, the value of $\frac{t}{\sqrt{ } l}$ remains un-
changed when l and t vary.

But $\boldsymbol{t}=3.3$ when $l=9$;

$$
\therefore \frac{t}{\sqrt{ } l}=\frac{3 \cdot 3}{\sqrt{ } 9}=\frac{3 \cdot 3}{3}=1 \cdot 1
$$

Also when $l=4, \frac{t}{\sqrt{ } 4}=1 \cdot 1, \quad \therefore t=1 \cdot 1 \times 2=2.2$.
(iii) Since t is directly proportional to $\sqrt{ } l$, we may also write

$$
\frac{t}{3 \cdot 3}=\frac{\sqrt{ } l}{\sqrt{ } 9} .
$$

The three methods given in Example 1 show the different ways of expressing direct variation.
If y_{1}, y_{2}, y_{3}, etc., are values of y which correspond to the values x_{1}, x_{2}, x_{3}, etc., of x, and if $y \propto x$, then either
(i) $y_{1}=c x_{1}, y_{2}=c x_{2}, y_{2}=c x_{3}$, etc.
or
(ii) $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}=\frac{y_{3}}{x_{3}}=$ etc.
or
(iii) $\frac{y_{1}}{y_{2}}=\frac{x_{1}}{x_{2}}, \frac{y_{1}}{y_{3}}=\frac{x_{1}}{x_{3}}$, otc.

EXERCISE II. a

1. At a certain time of day, the lengths of the shadows of objects of different heights are measured :

Height of object in feet	\cdot	h	15	30	-60
Length of shadow in feet	-	l	18	36	72

(i) What kind of relation would you expect to find between h and l ?
(ii) Write down the height of an object if the length of its shadow is 180 ft . ; 6 ft .; $36 \times 7 \mathrm{ft} . ; 7 \cdot 2 \mathrm{ft}$.
(iii) What kind of graph is obtained by plotting values of h against values of l ? What relation connects h and l ?
2. The weights of various square pieces of tin cut from the same sheet are as follows :

Side of square in cm.	8	1	2	$2 \cdot 5$	4	10	
Weight of piece in gm.	-	w	0.4	$1 \cdot 6$	2.5	$6 \cdot 4$	40

(i) What kind of relation would you expect to find between w and s ?
(ii) Write down the weight of a square piece if the length of its edge is $20 \mathrm{~cm} . ; 25 \mathrm{~cm} . ; \frac{1}{2} \mathrm{~cm} . ; 3 \mathrm{~cm}$.
(iii) Plot values of w against values of s^{2}, and then obtain a general formula.
3. The capacities of some water cans of the same shape are as follows:

Breadth of can in inches	-	-	b	4	5	6	8
Capacity of can in pints	-	-	P	3.2	6.25	10.8	25.6

(i) What kind of relation would you expect to find between P and b ?
(ii) Write down the capacity of a can, 10 in . broad; 3 in . broad.
(iii) Obtain the formula connecting P and b.
4. If the area of a circle of radius r in. is A sq. in., then A varies as the square of r.

How is the value of A altered (i) by doubling r; (ii) by balving r; (iii) by increasing r by 10 per cent. ?
5. If the volume of a sphere of radius r in. is V cu. in., then \checkmark varies es the cube of r.
(i) How is tho value of V altered (a) by multiplying the radius by 10 ; (b) by dividing the radius by 4 ?
(ii) The volume of a sphere of radius 1 in . is $4.19{ }^{\circ} \mathrm{cu}$. in. approximately; what is the volume of a sphere of radius 2 in . ?
(iii) What is the increase per cent. in the volume, if the radius increases by 20 per cent.?
6. (i) Cloth of standard width is sold by the yard. If x yards of cloth cost y shillings, what kind of relation connects x and y ?
(ii) Carpets of the same shape and material are sold in various sizes by the sq. yard. If a carpet x yards long costs y shillings, what kind of relation connects x and y ?
(iii) A drug is sold in bottles of the same shape, but various sizes. If the value of the drug in a full bottle x inches high is y shillings, what kind of relation connects x and y ?
7. (i) Silver circular discs are made up, all of the same thicknegss, so as to weigh 1 oz., 2 oz., 3 oz., 4 oz., etc. If the dise which weighs w oz. is of radius y inches, what kind of relation expresses y in terms of w ?
(ii) Brass weights for a weighing machine are all of the same shape and are made up to weigh $\frac{1}{2}$ oz., 1 oz., $2 \mathrm{oz} ., 4 \mathrm{oz}$., etc. If the $w \mathrm{oz}$. weight is y inches high, what kind of relation expresses y in terms of w ?
8. Show that the values of x, y in the given table satisfy the law, $y \propto x x^{2}$.
What is y (i) if $x=40$; (ii) if $x=3$?
What is x if $y=9$?
9. Show that the values of x, y in the given table satisfy the law, $y \propto \sqrt{ } x$.
What is y (i) if $x=100$; (ii) if $x=36$?
What is x if $y=1 \cdot 4$?

10. Copy and fill in the following table, where $y \propto x^{3}$.

x.	-	0.5	1	2	3	4	5
$y-$	-		0.4				50

11. If $y \propto x^{2}$ and if $y=2$ when $x=5$, write down (i) the value of y when $x=15$, (ii) the value of x when $y=200$.
12. If y varies as the cube of x, and if $y=3$ when $x=2$, write down (i) the value of y when $x=20$, (ii) the value of x when $y=\frac{3}{8}$.
13. If y varies as the square root of x, and if $y=5$ when $x=10$, write down (i) the value of y when $x=40$, (ii) the value of x when $y=15 .{ }^{\circ}$
14. Write down, without simplifying, the value of y missing from the given table,
(i) if y varies as x;
(ii) if y varies as x^{2};

x	5	7
y	3	

(iii) if y varies as $\sqrt{ } x$; (iv) if y varies as x^{3}.
15. It will be seen that the values of x in the following table have been chosen so that each exceeds the previous one by 50 per cent:

$x-$	-	80	120	180	270
$y-$	12				

Write down, without simplifying, the values of y missing from the table,
(i) if y varies as x;
(ii) if y varies as the fourth power of x;
(iii) if y varies as the cube root of x.
16. Two trays are the same shape. The cost of the gold for gilding the larger, which is 2 feet long, is $\mathbf{£ 2 \text { ; what is the cost for }}$ the smaller, 18 inches long? [The cọst varies as the area.]
17. Copy, complete and interpret the following:
(i) if $A \propto r^{2}$, then $r \propto$;
(ii) if $V \propto r^{3}$, then $r \propto$;
(iii) if $t x \sqrt{ } l$, then $l \propto$
18. If $S \propto r^{2}$ and $V \propto r^{3}$, what is the effect on S and V if r is doubled ? How does V alter if S becomes 100 times as large? What kind of relation expresses V in terms of S ?
19. Plaster-cast models are made of a statue. A model which is 15 cm . high weighs 50 gm . ; what will be the weight of a model 24 cm. high ?
20. The distance of the horizon varies as the square root of the height above sea level. At a height of 24 feet, the distance is 6 miles. What is the distance at a height of 54 feet ?
21. If a light beam is supported at each and and carries a fixed load at its mid-point, the sag at the middle varies as the cube of the length of the beam. For a beam. 5 ft . long the sag is $1 \frac{1}{\mathrm{in}}$. ; what is the sag if the beam is 6 ft . long ?
22. How must the radius of a sphere be altered in order to double (i) the surface, (ii) the volume of the sphere ?
23. The tension of a wire of given material varies as the square of its length, if the musical note produced remains unchanged. A wire 10 in . long is at a tension of 12 lb . ; to what tension should a similar wire 15 in . long be strained to give the same note?
24. If a planet whose mean distance from the Sun is d miles takes t years (i.e. Earth-years) for one revolution round the Sun, Kepler's third law states thet t varies as $d^{\frac{3}{2}}$. Taking the mean distances of the Earth and Jupiter from the Sun as 93 million miles and 480 million miles, find in terms of Earth-years the length of a year on Jupiter.
25. A year on Mars is approximately 1.9 Earth-years; use the data of No. 24 to find the mean distance of Mars from the Sun.
26. A solid sphere of radius 4 in . weighs 32 lb . Find the weight of a shell of the same material whose internal and external radii are 3 in . and 5 in .

Inverse Variation

A number of rectangular mats are made, of different shapes but all of the same area, 36 sq . in.; their dimensions may be tabulated as follows:

Breadth, inches	-	x	2	3	4	5	6	8	9	10
Length, inches -	-	y	18	12	9	$7 \cdot 2$	6	$4 \cdot 5$	4	$3 \cdot 6$

As x increases, y decreases; and in particular the effect of doubling x is to halve y, the effect of trebling x is to divide y by 3 , etc. The general formula connecting x and y is

$$
y=\frac{36}{x}=36 \times \frac{1}{x}
$$

and we say that y varies inversely as x, and we write $y \infty \frac{1}{x}$.
If we plot the values in the table, we obtain part of the graph of $y=\frac{36}{x}$ (see Fig. 3). This graph may be used to obtain scale. drawings of any number of mats belonging to the set, area 36 sq . in., as follows :

Take any point P on the graph; from it draw lines parallel to the akes $\mathrm{O} x, \mathrm{Oy}$ meeting $\mathrm{O} y, \mathrm{O} x$ in M, N. Since $\mathrm{PN}=\frac{36}{\mathrm{ON}}$, the area
of the rectangle ONPM is 36 units, and therefore ONPM represents on the selected scale one mat of the set. As P moves along the curve, the rectangle ONPM shows every possible form of mat of the set. Conversely, if you take any number of mats of the set

and arrange them so that two edges of each mat lie along $0 x$ and $0 y$, then the corners opposite 0 mark out the curve. This suggests that if 36 is replaced by some other constant, the general form of the graph will be unaltered. Fig. 3 shows also parts of the graphs of $y=\frac{12}{x}, y=\frac{48}{x}$ and $y=\frac{120}{x}$ to illustrate this fact.
Actually, these curves are similar, although at a first glance they may not appear to be ; this fact may be tested as follows : Draw any line OKPQR through O cutting the four curves at K, P, Q, R; draw any other line through O cutting the curves at k, p, q, r; then it will be found that the chords $K k, \mathrm{P} p, Q q, \mathrm{Rr}$ are all parallel ; actually in this figure, $\mathrm{OK}=\frac{1}{2} \mathrm{OQ}, \mathrm{O}=\frac{1}{2} \mathrm{O} q$.
If y varies inversely as x, then y varies directly as $\frac{1}{x}$; therefore if values of y are plotted against values of $\frac{1}{x}$, the graph will be a straight line through the origin. The following example is suggested for class use to illustrate the practical application of this fact.

Example 2. The pressure of a given mass of gas, kept at constant temperature, is measured for various volumes ($v \mathrm{cu} . \mathrm{cm}$.) by finding the height of a column of mercury ($p \mathrm{~cm}$.) which (as in a barometer) exerts the same pressure. The following observations are recorded :

$v-$	-	-	50	40	35	30
$p-$	-	-	77	102	111	135

Test whether these measurements obey Boyle's law, $p \infty \frac{1}{v}$, and, if they do so, find the relation between p and v, allowing for probable experimental errors.

First, tabulate corresponding values of $\frac{1}{v}$ and p.

$\frac{1}{v}$	\cdot	-	0.0200	0.0250	0.0286	0.0333
p	\cdot	-	77	102	111	135

Each member of the class should now plot values of p against values of $\frac{1}{v}$ on as large a scale as possible, but with each axis graduated from 0 so that the origin 0 appears on the paper.
If the observations were exact and did obey Boyle's law, the plotted points would lie exactly on a straight line through the origin. But some experimental errors are inevitable ; we do not therefore expect to find the points exactly on a straight line ; but we regard the test as satisfied if we can draw from the origin a straight line which passes very close to each of the plotted points, above some of them and below others. To find this "best-fit" line, take a piece of black thread, hold it so that it passes through 0 and swing it round 0 till it appears to pass evenly between the points. Note some point through which the thread passes and then, using a ruler, join this point to 0 .
Read off a pair of corresponding values of $\frac{1}{v}$ and p on the bestfit line, just drawn, and complete the equations,

$$
\frac{p}{\frac{1}{v}}=\ldots . . . ; \quad \therefore p=\frac{\ddot{v}}{v} .
$$

A NEW ALGEBRA

Other Forms of Inverse Variation

If y varies as $\frac{1}{x^{2}}$, we say that y varies inversely as the square of x.
If y varies as $\frac{1}{\sqrt{x}}$, we say that y varies inversely as the squarer root of x.

And so on.
To test whether $y \propto \frac{1}{x^{2}}$, we plot values of y against values of $\frac{1}{x^{2}}$, and see whether the plotted points lie on a straight line through the origin ; similarly for other forms of inverse variation.
If $y \propto \frac{1}{x^{2}}$, then $y \div \frac{1}{x^{2}}$ is constant; this may be written either as $y x^{2}=c$ or as $y=\frac{c}{x^{2}}$, where c is constant.
Similarly, if $y \propto \frac{1}{\sqrt{ } x}$, then $y \sqrt{ } x=c$ or $y=\frac{c}{\sqrt{ } x}$, where c is censtant.
Example 3. The number of beats per minute of a pendulum varies inversely as the square root of its lengthy a pendulum 9 feet long makes 36 beats per minute; how many beats per minute does a pendulum 4 feet long make ?
Suppose a pendulum l feet long makes n beats per minute.
Either of the following methods may be used :
(i) When $l=9, n=36$; but $n \propto \frac{1}{\sqrt{l}}$;

$$
\begin{gathered}
\therefore \frac{n}{36}=\frac{\frac{1}{\sqrt{ } l}}{\frac{1}{\sqrt{9}}}=\frac{3}{\sqrt{l}} . \\
\therefore \text { if } l=4, \frac{n}{36}=\frac{3}{2} ; \therefore n=\frac{3}{2} \times 36=54 .
\end{gathered}
$$

(ii) Since $n \propto \frac{1}{\sqrt{ } l}, n \sqrt{ } l$ is constant.

But $n=36$ when $l=9, \quad \therefore n \sqrt{ } l=36 \sqrt{ } 9=36 \times 3=108$;

$$
\begin{gathered}
\therefore \text { if } l=4, n \sqrt{4}=108 ; \quad \therefore 2 n=108 \text {; } \\
\therefore n=54 .
\end{gathered}
$$

\therefore a pendulum 4 feet long makes 54 beats a minute.

EXERCISE II. b

1. Copy and complete the following table, which shows the time taken to travel 24 miles at various speeds:

Speed in m.p.h.	-	0	$1 \frac{1}{2}$	2	3	4	5	6	8	12
Time in hours	-	t			8					-

(i) How is the value of t altered (a) if v is doubled, (b) if v is trebled, (c) if v is divided by 4.
(ii) How does t vary with v ?
(iii) What equation gives t in terms of v ?
(iv) Draw a rough figure (on plain paper) to show the shape of the graph obtained (a) if values of t are plotted against values of v, (b) if values of t are plotted against values of $\frac{1}{v}$.
(v) Draw a rough figure (on plain paper) to show the shape of the graph obtained by plotting values of t against values of v for a journey of 36 miles. Repeat, with the same axes, graphs for journeys of 48 miles, 60 miles, 120 miles.
2. Rectangular blocks of cast iron, of fixed weight 500 gm . and of equal density, are made up in various shapes; the base of each block is square. Copy and complete the following table:

Height of block in $\mathrm{cm} . ~-~$	h			8	$4 \cdot 5$		2	$0 \cdot 5$
Side of square base in cm. -	x	$1 \cdot 5$	2	3		5	6	

(i) How is the value of h altered (a) if x is doubled, (b) if x is trebled, (c) if x is divided by 6 ?
(ii) What equation gives h in terms of $x 9$ How does h vary with x ?
(iii) What equation gives x in terms of h ? How does x vary with h ?
3. If a pendulum l feet long makes n beats per minute, correeponding values of n and l are as follows:

l.	-	24	4	9	16	25
$n-$	\cdot	72	54	36	27	\cdots

A NEW ALGEBRA

(i) Test by numerical calculation that n varies inversely as the square root of l, and find a formula connecting n and l.
(ii) Complete the table. Find also the length of a second's pendulum, that is a pendulum which makes one beat per second.
(iii) If a pendulum clock is gaining, should the pendulum be shortened or lengthened ?
(iv) How is the number of beats per minute altered if the length of the pendulum (a) is multiplied by $9,(b)$ is halved?
4. A body (weight $w \mathrm{gm}$.) is attached to one end of a given piece of string, held at the other end, and is whirled round in a horizontal circle. If the string breaks when the body is making n revolutions per second, it can be proved that w varies inversely as the square of n, the length and strength of the string remaining fixed.
It is found that for a body of weight 200 gm ., the string breaks at 6 revs. per sec. Under what load will this string break at 12 revs. per sec., and what is the maximum rate for a body of weight 8 gm . ?
Find also a general formula for w in terms of n, and state how n varies with w.
5. What kind of relation connects the number of days, y, that the food in a besieged city will last, with the number of people, x, in the city ?
6. Cylindrical jam jars of various shapes hold equal amounts of jam. What kind of relation connects the height, h in., of the jar with its base radius, r in. ?
7. What kind of relation connects the density, w gm. per $\mathrm{cu} . \mathrm{cm}$., of the air inside a given soap bubble with the radius $r \mathrm{~cm}$. of the bubble, if it expands or contracts ?

What kind of relation expresses r in terms of w ?
8. If $y \propto \frac{1}{x}$, and if $y=12$ when $x=6$, find the value (i) of y when $x=8$, (ii) of x when $y=\frac{1}{2}$.
9. If $y \propto \frac{1}{x^{2}}$, and if $y=9$ when $x=10$, find the value (i) of y when $x=6$, (ii) of x when $y=4$.
10. If y varies inversely as $\sqrt{ } x$ and if $y=5$ when $x=16$, find the value (i) of y when $x=100$, (ii) of x when $y=60$.

Try to discover simple laws of variation, expressing y in terms of x, to fit the following, Nos. 11-14:
11.

x	-	-	2	3	4	6
y	-	-	30	20	15	10

12.

x	-	\cdot	2	3	4	6
$y^{\prime} \cdot$	-	36	16	9	4	0.36

13.

x	-	-	2	3	4	6	20
$y-$	-	20	45	80	180	2000	

14.

x	-	-	4	9	16	25
$y-$	-	60	40	30	24	120

15. If $y \infty \frac{1}{x}$, and if $y=7$ when $x=9$, write down (without simplifying) (i) the value of y when $x=11$; (ii) the value of x when $y=13$.
16. If $y \propto \frac{1}{\sqrt{ } x}$ and if $y=5$ when $x=10$, write down (without simplifying) the value of y when $x=7$.

Write down also how x varies with y, and then write down the value of x when $y=6$.
17. The weight of a given body, as measured by a-spring balance, varies inversely as the square of its distance from the centre of the Earth, if it is above the Earth's surface. A body weighs 10 lb . when on the ground; what will it weigh if it is 1000 miles above the Earth's surface? [Redius of Earth $\simeq 4000$ miles.]
18. With the data of No. 17, find the height to which a body must be raised to reduce its weight by 25 por cent.
19. For wires of fixed length and material, the electrical resistance varies inversely as the square of the diameter of the cross-section. If the resistance is 0.5 ohms when the diameter is 1.2 cm ., find the resistance of a wire of the same length and composition, 1.5 cm . in diameter.
20. Two unlike magnetic poles attract one another with a force which varies inversely as the square of the distance between them. At 6 cm . apart, the force of attraction is found to be 5.4 gm . wt. ; what will the force be if they are placed 9 cm . apart?

What is the percentage change in the force, if the distance is increased by 25 per cent.?
D.S.A.

Functions of Two or More Variables

Suppose we have a number of cylindrical metal bolts and we wish to compare their weights.
The weight of any particular bolt depends on several quantities which can alter independently, the radius of its circular crosssection r in., the length of the bolt l in., and the density of the mąterial composing it, $\rho \mathrm{lb}$. per cu. in.
Since the volume of the bolt is $\pi r^{2} l \mathrm{cu}$. in., the weight W lb . of the bolt is given by the formula

$$
\mathrm{W}=\pi \rho r^{2} l
$$

Suppose we have a number of cast-iron bolts (density 0.26 lb . per cu. in.), each of radius 0.75 in ., then

$$
W=\pi \times 0.26 \times(0.75)^{2} l \bumpeq 0.46 l
$$

This relation can be described by saying that if the bolts are all of the same material and of equal cross-section, then $W \propto l$ or $\frac{W}{l}$ is constant ; the value of this constant can be found, as above, if we know the material and the cross-section.
Similarly, suppose we have a number of copper bolts (density 0.31 lb . per cu. in.), each of length 3 in ., then

$$
\mathrm{W}=\pi \times 0.31 \times r^{2} \times 3 \bumpeq 2.9 r^{2} ;
$$

and we say that, if the bolts are all of the same material and of equal length, then $W \propto r^{2}$ or $\frac{W}{r^{2}}$ is constant; and the value of the constant can be found as above.
Similarly, if all the bolts are the same size, but of various materials,

$$
W \infty \rho \text { or } \frac{W}{\rho} \text { is constant, } l \text { and } r \text { being fixed. }
$$

Now the variables ρ, r, l, or powers of these variables, are factors of the expression for W , and the remaining factor is a constant. We therefore say that W varies directly as ρ and as l and as the square of r. This is called joint variation.

Example 4. If the density of a cylindrical bolt is increased by 20 por cent., and the radius is decreased by 25 per cent., and the length is increased by 60 per cent., find the percentage increase in the weight.
If the original density is $\rho \mathrm{lb}$. per cu. in. and the original radius
is r in. and the original length is l in., then the original weight W lb . is given by $\mathrm{W}=\pi \rho r^{2} l$.
\therefore the new weight $\mathrm{W}_{1} \mathrm{lb}$. is given by

$$
\begin{aligned}
& W_{1}=\pi\left(\frac{120 \rho}{100}\right) \times\left(\frac{75 r}{100}\right)^{2} \times\left(\frac{160 l}{100}\right) ; \\
\therefore & \frac{W_{1}}{W}=\frac{q}{8} \times\left(\frac{7}{t}\right)^{2} \times \frac{8}{8}=1 \frac{8}{8} \bar{\delta}=188 . \\
\therefore & W_{1} \text { exceeds } W \text { by } 8 \text { per cent. }
\end{aligned}
$$

It will be seen that this argument can be expressed more shortly, as follows :
Since

$$
W \propto \rho r^{2} l,
$$

if the density is multiplied by $128=8$, and if the radius is multi. plied by $\frac{75}{100}=\frac{3}{4}$, and if the length is multiplied by $1880=4$, then

\therefore the weight increases by 8 per cent.
Suppose next we wish to compare the densities of a number of cylindrical metal bolts. Take the formula obtained above, $\mathrm{W}=\pi \rho r^{2} l$, and make ρ the subjoct. Then

$$
\rho=\frac{1}{\pi} \cdot \frac{W}{r^{2} l} .
$$

Here ρ is expressed as a function of the three variables W, r, l; but further the factors of this expression for ρ are powers of these variables, and the remaining factor is a constant, since

$$
\rho=\frac{1}{\pi} \times W \times r^{-3} \times l^{-1} .
$$

Therefore we say that ρ varies directly as W and inversely as the square of r and inversely as l. This is another type of joint variation.

Example 5. If the radius of a cylindrical bolt is increased by 25 per cent., and if the length is decreased by 70 per cent., find the percentage change in the density, if the weight is reduced by 40 per cent.
With the previous notation, $\rho \propto \frac{\mathrm{W}}{r^{2}}$.
If W is multiplied by $\frac{60}{100}=\frac{5}{4}$, and if r is multiplied by $\frac{788}{28}=\frac{5}{3}$, and if l is multiplied by $\frac{89}{80}=\frac{s}{10}$, then the density is multiplied by

$$
\frac{\frac{3}{6}}{\left(\frac{5}{4}\right)^{2} \times\left(\frac{20}{}\right)}=\frac{3}{8} \times \frac{16}{26} \times \frac{30}{3}=\frac{32}{26}=1 \frac{28}{80} ;
$$

\therefore the density increases by 28 per cent.

Example 6. The volume of a given mass of gas varies directly as the absolute temperature and inversely as the pressure.

At absolute temperature 288° and at pressare 825 mm ., the volume is 450 c.c.; what is its volume at absolute temperature 320° and at pressure 750 mm .?

If the volume is v c.c. at absolute temperature T° and at pressure p mm., then $v \infty \frac{T}{p}$.

When $v=450, \mathrm{~T}=288, p=825$;
\therefore the value of v when $T=320$ and $p=750$ is given by

$$
\begin{aligned}
& \frac{v}{450}=\frac{320}{750} \div \frac{288}{825}=\frac{320 \times 825}{750 \times 288} \\
& \therefore v=\frac{320 \times 825}{750 \times 288} \times 450=550 .
\end{aligned}
$$

\therefore the volume is 550 c.c.
The following method is easier but a little longer :
Since $v \propto \frac{T}{p}, v=k \times \frac{T}{p}$ where k is constant.
But $v=450$ when $T=288$ and $p=825$,

$$
\begin{aligned}
\therefore 450 & =k \times \frac{288}{825} ; \therefore k=\frac{450 \times 825}{288} ; \\
\therefore v & =\frac{450 \times 825}{288} \times \frac{T}{p}
\end{aligned}
$$

\therefore when $T=320$ and $p=750, v=\frac{450 \times 825}{288} \times \frac{320}{750}=550$, as before.
If a function of a variable consists of two or more terms, it does not vary directly or inversely as any power of that variable, although the separate terms may do so.

Example 7. If a train is running along the level, the distance in which it can be stopped varies partly as the velocity and partly as the square of the velocity. Express this statement in symbols.

Suppose that the train can be stopped in s yards when running at v miles per hour.

If B is expressed in terms of v, the function is formed of two parts; ons of them varies directly as v, call it $a v$; the other varies directly as v^{2}, call it $b v^{2}$. Then

$$
s=a v+b v^{2}
$$

where a and b are constants.

It is untrue to say that s " varies as " v or as any power of v, although of course the value of s changes when the value of v changes. But the phrase " s varies as some power of v " is seserved for relations of the form, $\frac{s}{v^{n}}=$ constant. For relations such as $s=a v+b v^{2}$, the phrase " partly varies " is used.

Similarly, the relation $s=a+b v^{2}$, where a, b are constants, is sometimes described by the phrase, " s is partly constant and partly varies as the square of $v . "$

Example 8. The volume of a segment of a sphere varies partly as the radius and the square of the height jointly, and partly as the cube of the height. Find the formula for the volume Vcu . in. of a segment of a sphere of radius r in., height of segment h in., given that the volume of a sphere of radius r in. is ${ }_{3}^{4} \pi r^{3} \mathrm{cu}$. in.

If V is expressed as a function of r and h, there are two terms; one of them $\propto r \times h^{2}$, the other $\propto h^{3}$.

$$
\therefore \mathrm{V}=a r h^{2}+b h^{3}
$$

where a and b are constant.
Now a hemisphere is a segment such that $h=r$.

$$
\begin{gathered}
\therefore \text { if } h=r, \mathrm{~V}=\frac{2}{3} \pi r^{3} ; \quad \therefore \frac{2}{3} \pi r^{3}=a r^{3}+b r^{3} \\
\therefore a+b=\frac{2 \pi}{3}
\end{gathered}
$$

Also the complete sphere is a segment such that $h=2 r$;

$$
\begin{gathered}
\therefore \text { if } h=2 r, \mathrm{~V}=\frac{4}{3} \pi r^{3} ; \quad \therefore \frac{4}{3} \pi r^{3}=a r(2 r)^{2}+(b 2 r)^{3} ; \\
\therefore 4 a+8 b=\frac{4 \pi}{3} .
\end{gathered}
$$

Solving for a, b, we have $a=\pi, b=-\frac{\pi}{3}$.

$$
\therefore \mathrm{V}=\pi \mathrm{rh}^{2}-\frac{\pi}{3} \mathrm{~h}^{3}
$$

EXERCISE II.c

1. A rectangular brasa slab has a square base, side x in., and is h in. high ; its weight W lb. is given by the formula $W={ }_{1}{ }^{9} x^{2} h$.
(i) How is W altered if x is trebled and h remains constant ?
(ii) How is W altered if x is trebled and h is halved?
(iii) Complete the sentence: W varies \qquad .
(iv) What kind of variation expresses h in terms of W, x ?
(v) What kind of variation expresses x in terms of W, h ?
(vi) What is the effect on h if W is trebled and x is multiplied by 4 ?
(vii) What is the effect on x if W is divided by 4 and h is multiplied by 100 ?

Express the following statements by symbols, Nos. 2-7:
2. The volume of a cone varies directly as the height and the square of the base-radius. (V,h,r.)
3. The force necessary to stop a tramcar in a certain distance varies directly as its weight and the square of its velocity and inversely as the distance. (F, W, v, d. .)
4. The time taken to repair a road varies directly as the length of the road and as the square root of its breadth and inversely as the number of men employed. (t, l, b, n.)
5. The electrical resistance of a wire varies directly as its length and inversely as the square of its diameter. ($\mathrm{R}, \boldsymbol{l}, \boldsymbol{d}$.)
6. The cost of the fuel consumed by a coasting steamer between two ports of call varies as the cube of the distance and inversely as the square of the time. (C, d, t.)
7. The resistance to the motion of a train of given weight is partly constant and partly varies as the square of the velocity.
8. Copy and fill in the given table for the values of a function Z,
(i) if Z varies directly as x and inversely as y;
(ii) if Z varies directly as x^{3} and inversely as y^{2}. [All working to be done mentally.]

9. If W varies directly as x and inversely as y, and if $W=0$ when $x=12$ and $y=2$, find W when $x=20$ and $y=15$.
10. If Z varies directly as the square of x and inversely as the square root of y, and if $Z=3$ when $x=6, y=16$, find Z when $x=12, y=25$.
11. A mass $w \mathrm{lb}$. is fastened to one end of a string l feet long, and the other end is held in the hand. If the mass is now whirled round in a horizontal circle at speed $v \mathrm{ft}$. per sec., the tension, T lb . weight, in the string varies directly as w and the square of v and inversely as l. If the mass of the body is $1 \frac{1}{2} \mathrm{lb}$., if the string is 3 ft . long and if the speed is 40 ft . per sec., the tension is 25 Jb . wt . ; find the general formula.
12. The heat, h calories, developed in a wire varies directly as the time, t seconds, and as the square of the voltage, v volts, and inversely as the resistance, R ohms.

If $V=100$ and $R=50$, the heat developed is 48 calories per second. Find how much heat is developed in 1 minute in a wire of resistance 2 ohms , if the voltage is 2 volts.
13. A smooth plank is held at a slope with one end on the ground and objects slide down it. The time of descent varies directly as the length of the plank and inversely as the squars root of the height of the top of the plank above the grourd. For a plank 30 ft . long, with the upper end 25 ft . above the ground, the time of descent is 1.5 sec .; find the general formula.
14. The illumination of a small object by a lamp varies directly as the candle power and inversely as the square of its distance from the lamp. If an electric lamp of 32 candle power, fixed 6 ft . above a table, is replaced by a lamp of 18 candle power, how much must the new lamp be lowered to give the same illumination as before at the point of the table directly below the lamp?
15. If a wooden beam is supported at its ends, the central breaking load varies directly as the width and as the square of the thickness of the beam and inversely as the length of the beam. A specimen of pitch pine 1 in . wide, 1 in . thick, and 2 ft . long was found to break under a load of 200 lb . What is the breaking load for a beam of the same timber, 8 ft . long, 6 in . wide, 1 ft . thick ? Answer to nearest ton.
16. The deflection at the centre of a girder, $l \mathrm{ft}$. long, of given material with fixed ends under a uniformly distributed load, W tons, varies as $\frac{W l^{3}}{}$, where I is the moment of inertia about the centre. If the load is increased by 50 per cent. and the moment of inertia by 20 per cent., find what percentage change must be made in the length, in order that the deflection may be unaltered.
17. (i) Equal masses of copper are drawn out into wires of different lengths. Use the fact stated in No. 5 to prove that the electrical resistance varies as the square of the length.
(ii) If a number of copper wires are of equal lengths, find, how the resistance varies with the weight.
18. Use the statement in No. 6 to find how the cost varies with the distance and the speed, assumed uniform.
19. If $\mathrm{P} \propto \frac{v^{2}}{x}$ and $x \propto v t$, find how P varies (i) with v and t, (ii) with x and t. [These results illustrate certain formulae in dynamics.]
20. The weight that can be carried by a cylindrical iron column varies directly as the fourth power of the diameter and inversely as the square of its length.
(i) If the length is doubled, how must the diameter be altered, if the same weight is to be carried ?
(ii) If a load W tons is to be carried by a cylindrical column $l \mathrm{ft}$. long and of volume $\mathrm{V} \mathrm{cu} . \mathrm{ft}$., find how W varies with l and V.
21. y is partly constant and partly varies as x. When x is 2 , y is 16 , and when x is $7, y$ is 31. Find a general formula for y in terms of x.
22. W varies partly as x and partly as the square of x. When x is $2, W$ is 14 , and when x is $4, W$ is 44 . Find W when x is 3.
23. The resistance to the motion of a car is partly constant and partly varies as the square of the velocity. When the car is travelling at $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., the resistance is $60 \mathrm{lb} .-\mathrm{wt}$., and at 30 m.p.h., it is $85 \mathrm{lb} .-\mathrm{wt}$. Find the resistance when the car is travelling at $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
24. y varies partly as x and partly inversely as x. When x is 3 , y is 10 , and when x is $4, y$ is 11. Find the value of y when x is (i) 2 , (ii) $2 \frac{1}{2}$.
25. The distance in which a train can be stopped varies partly as the velocity and partly as the square of the velocity. When running at $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., the train can be stopped in 100 yd ., and at $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in 280 yd . Find the greatest speed at which the train can be travelling, if it can be just stopped in a quarter of a mile.
[For additional examples, see Appendix, Ex. T. 2, p. 167. . For a revision exercise on Ch. I-II, see Appendix, Ex. W. 1, p. 145.]

CHAPTER III

SURDS

Rational and Irrational Numbers. It can be proved that numbers such as $\sqrt{2}, \sqrt[3]{10}$, π, etc., cannot be expressed exactly as the ratio of two integers : they are therefore called irrational numbers; whereas numbers which can be reduced to the form $\frac{p}{q}$, where p and q are integers, are called rational. It is of course possible to obtain rational numbers which approximate as closely as we please to any given irrational number; thus 8 is an approximation for π and 3848508 is a much closer approximation.

If the root of any rational number is not itself rational, it is called a surd, thus $\sqrt{ }\left(\frac{8}{3}\right)$ and $\sqrt[3]{7}$ are surds, but $\sqrt[4]{ } 81$ is not a surd because $\sqrt[4]{ } 81=3$.
Although a number such as 9 has two square roots, +3 and -3 , we shall use the symbol $\sqrt{ } 9$ to denote the positive square root of 9 , and in general $\sqrt{ } x$ denotes the positive square root of x.

EXERCISE III, a

If $a=4, b=9, c=16, d=25$, evaluate the following pairs of expressions and note which pairs are unequal.

1. $\sqrt{ } a \times \sqrt{ } b ; \sqrt{ }(a b)$.
2. $\sqrt{ } b+\sqrt{ } c ; \sqrt{ }(b+c)$.
3. $\sqrt{ } d-\sqrt{ } c ; \sqrt{ }(d-c)$.
4. $\sqrt{ } b \div \sqrt{ } d ; \sqrt{ }(b \div d)$.
5. $\sqrt{ }(100 a) ; 10 \sqrt{ } a$.
6. $\frac{1}{\sqrt{ } b} ; \frac{\sqrt{ } b}{b}$.
7. $(\sqrt{ } a+\sqrt{ } b)^{2} ; a+b+2 \sqrt{ }(a b)$.
8. $(\sqrt{ } b+\sqrt{ } a)(\sqrt{ } b-\sqrt{ } a) ; b-a$.
9. $\sqrt{ } a(\sqrt{ } b+\sqrt{ } d) ; \sqrt{ }(a b)+\sqrt{ }(a d)$.
10. $(\sqrt{ } c-\sqrt{ } b)^{2} ; c+b-2 \sqrt{ }(c b)$.

Operations with Surds. All the operations in Ex. III. a involve only rational numbers. They illustrate that, when $\sqrt{ } a$ and $\sqrt{ } b$ are rational,
(i) $\sqrt{ } a \times \sqrt{ } b=\sqrt{ }(a b)$;
(ii) $\frac{\sqrt{ } a}{\sqrt{b}}=\sqrt{\left(\frac{a}{b}\right)}$.

And that $\sqrt{ } a+\sqrt{ } b$ is not equal to $\sqrt{ }(a+b)$, unless $a=0$ or $b=0$; and that $\sqrt{ } a-\sqrt{ } b$ is not equal to $\sqrt{ }(a-b)$, unless $b=\dot{0}$.

We shall now assume that the fundamental laws of algebra which govern operations with rational numbers hold also for irrational numbers. Consequently,

$$
\begin{gathered}
(\sqrt{ } a \times \sqrt{ } b)^{2}=\sqrt{ } a \times \sqrt{ } b \times \sqrt{ } a \times \sqrt{ } b=\sqrt{ } a \times \sqrt{ } a \times \sqrt{ } b \times \sqrt{ } b \\
\\
\\
\approx a \times b=a b
\end{gathered}
$$

Now take the square root of each expression,
then

$$
\sqrt{ } \mathrm{a} \times \sqrt{ } \mathrm{b}=\sqrt{ }(\mathrm{ab})
$$

Similarly, $\quad\left(\frac{\sqrt{ } a}{\sqrt{b}}\right)^{2}=\frac{\sqrt{ } a}{\sqrt{b}} \times \frac{\sqrt{ } a}{\sqrt{b}}=\frac{\sqrt{ } a \times \sqrt{ } a}{\sqrt{b} \times \sqrt{b}}=\frac{a}{b}$.
Take the square root of each expression,
then

$$
\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\binom{a}{b} . ~ . ~}
$$

Example 1. Given that $\sqrt{ } 3 \bumpeq 1 \cdot 732$, evaluate to three signi-
ficant figures (i) $\sqrt{75}$; (ii) $\frac{2}{\sqrt{ } 3}$.
(i) $\sqrt{ } 75=\sqrt{ }(25 \times 3)=\sqrt{ } 25 \times \sqrt{ } 3=5 \sqrt{ } 3$

$$
\approx 5 \times 1.732=8.66
$$

(ii) $\frac{2}{\sqrt{3}}=\frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{2 \sqrt{3}}{3} \bumpeq \frac{2 \times 1.732}{3} \bumpeq 1.15$.

Note. The fact, $\sqrt{ } 3 \times \sqrt{ } 3=3$, is the definition of $\sqrt{ } 3$, and it should be written down immediately, instead of saying

$$
\sqrt{ } 3 \times \sqrt{ } 3=\sqrt{ } 9=3 .
$$

Example 1 (ii) illustrates an important practical method. Fractions with surds in the denominator can often be dealt with more easily if replaced by equivalent fractions with rational denominators. This process is called "rationalising the denominator."

Example 2. Simplify (i) $\sqrt{ } 15 \times \sqrt{ } 12$; (ii) $\frac{12}{\sqrt{18}}$.

$$
\text { (i) } \begin{aligned}
\sqrt{ } 15 \times \sqrt{ } 12 & =\sqrt{ }(15 \times 12)=\sqrt{ }\left(2^{2} \cdot 3^{2} \cdot 5\right) \\
& =2 \cdot 3 \cdot \sqrt{ } 5=6 \sqrt{ } 5
\end{aligned}
$$

Or, proceed as follows :

$$
\begin{aligned}
\sqrt{ } 5 \times \sqrt{ } 12 & =(\sqrt{ } 3 \times \sqrt{ } 5) \times(\sqrt{ } 4 \times \sqrt{ } 3) \\
& =2 \times \sqrt{ } 3 \times \sqrt{ } 3 \times \sqrt{ } 5=2 \times 3 \times \sqrt{ } 5=6 \sqrt{ } 5
\end{aligned}
$$

(ii) $\frac{12}{\sqrt{18}}=\frac{12}{\sqrt{9 \times \sqrt{ } 2}}=\frac{12}{3 \sqrt{ } 2}$

$$
=\frac{4 \times \sqrt{ } 2}{\sqrt{ } 2 \times \sqrt{ } 2}=\frac{4 \sqrt{ } 2}{2}=2 \sqrt{ } 2
$$

EXERCISE III. b

Express the following surds so that the integer under the square root sign is as amall as possible :

1. $\sqrt{ } 8$.
2. $\sqrt{ } 12$.
3. $\sqrt{ } 90$.
4. $\sqrt{ } 18$.
5. $\sqrt{ } 48$.
6. $\sqrt{ } 50$.
7. $\sqrt{ } 20$.
8. $\sqrt{ } 27$.
9. $\sqrt{ } 80$.
10. $\sqrt{ } 28$.
11. $\sqrt{ } 540$.
12. $\sqrt{ } 720$.

Express the following as the square roots of integers:
13. $2 \sqrt{ } 3$.
14. $3 \sqrt{ } 2$.
15. $5 \sqrt{ } 10$.
16. $2 \sqrt{ } 7$.
17. $3 \sqrt{ } 6$.
18. $5 \sqrt{ } 5$.
19. $7 \sqrt{ } 2$.
20. $\frac{1}{2} \sqrt{ } 48$.

Express the following with rational denominators:
21. $\frac{1}{\sqrt{2}}$.
22. $\frac{4}{\sqrt{2}}$.
23. $\frac{2}{\sqrt{6}}$.
24. $\frac{10}{\sqrt{12}}$.
25. $\frac{6}{\sqrt{27}}$,
26. $\frac{15}{\sqrt{ } 50}$.
27. $\sqrt{ }\left(\frac{4}{8}\right)$.
28. $5 \sqrt{ }\left(\frac{2}{5}\right)$.

Evaluate to 3 significant figures the following, given that $\sqrt{ } 2 \bumpeq 1 \cdot 414, \quad \sqrt{ } 5 \approx 2 \cdot 236$.
29. $\frac{10}{\sqrt{2}}$.
30. $\frac{1}{\sqrt{ } 5}$.
31. $\frac{1}{\sqrt{50}}$.
32. $\frac{5}{\sqrt{20}}$.

Simplify the following :
33. $\sqrt{ } 2 \times \sqrt{ } 8$.
34. $\sqrt{ } 6 \times \sqrt{ } 3$.
35. $\sqrt{ } 10 \times \sqrt{ } 20$.
36. $3 \sqrt{ } 2 \times \sqrt{ } 6$.
37. $2 \sqrt{ } 5 \times 5 \sqrt{ } 2$.
38. $3 \sqrt{ } 8 \times 2 \sqrt{ } 8$.
39. $\sqrt{2} \times \sqrt{ }\left(\frac{1}{2}\right)$.
40. $\sqrt{ } 2 \div \sqrt{ }\left(\frac{1}{2}\right)$.
41. $\sqrt{6} \div \sqrt{ } 12$.
42. $(\sqrt{ } 3)^{3}$.
43. $2\left[\sqrt{ }\left(\frac{1}{2}\right)\right]^{3}$.
44. $\sqrt{ } 6 \times \sqrt{ } 8 \times \sqrt{ } 12$.

Reduction

Example 3. Simplify $\sqrt{ } 8+\sqrt{ } 50-6 \sqrt{ }\left(\frac{1}{2}\right)$.

$$
\begin{aligned}
& \sqrt{ } 8=\sqrt{ } 4 \times \sqrt{ } 2=2 \sqrt{ } 2 ; \quad \sqrt{ } 50=\sqrt{ } 25 \times \sqrt{ } 2=5 \sqrt{ } 2 ; \\
& 6 \sqrt{ }\left(\frac{1}{2}\right)=6 \times \frac{1}{\sqrt{ } 2}=6 \times \frac{\sqrt{ } 2}{\sqrt{ } 2 \times \sqrt{ } 2}=\frac{6 \sqrt{ }^{\prime} 2}{2}=3 \sqrt{ } 2 ; \\
& \therefore \text { expression }=2 \sqrt{ } 2+5 \sqrt{ } 2-3 \sqrt{ } 2=4 \sqrt{ } 2
\end{aligned}
$$

Example 4. Expand $(\sqrt{3}-\sqrt{2})^{2}$.
Since $(a-b)^{2}=a^{2}-2 a b+b^{2}$, we have

$$
\begin{aligned}
(\sqrt{ } 3-\sqrt{ } 2)^{2} & =(\sqrt{ } 3)^{2}-2(\sqrt{ } 3)(\sqrt{ } 2)+(\sqrt{ } 2)^{2} \\
& =3-2 \sqrt{ } 6+2=5-2 \sqrt{ } 6
\end{aligned}
$$

Example 5. Expand $(5 \sqrt{2}+4 \sqrt{ } 3)(5 \sqrt{2}-4 \sqrt{ } 3)$.
Since $(a+b)(a-b)=a^{2}-b^{2}$, we have

$$
\begin{aligned}
(5 \sqrt{ } 2+4 \sqrt{ } 3)(5 \sqrt{ } 2-4 \sqrt{ } 3) & =(5 \sqrt{ } 2)^{2}-(4 \sqrt{ } 3)^{2} \\
& =25 \times 2-16 \times 3=50-48 \\
& =2
\end{aligned}
$$

Example 6. Express with a rational denominator, $\frac{\sqrt{ } 3}{3 \sqrt{ } 3+4}$.

$$
\begin{aligned}
\frac{\sqrt{3}}{3 \sqrt{ } 3+4} & =\frac{\sqrt{3}(3 \sqrt{ } 3-4)}{(3 \sqrt{ } 3+4)(3 \sqrt{ } 3-4)}=\frac{3 \sqrt{ } 3 \times \sqrt{ } 3-4 \sqrt{ } 3}{(3 \sqrt{ } 3)^{2}-4^{2}} \\
& =\frac{9-4 \sqrt{ } 3}{9 \times 3-16}=\frac{9-4 \sqrt{ } 3}{27-16} \\
& =\frac{9-4 \sqrt{ } 3}{11} .
\end{aligned}
$$

EXERCISE III. c

Simplify the following:

1. $\sqrt{2}+\sqrt{ } 8$.
2. $\sqrt{ } 12-\sqrt{ } 3$.
3. $2 \sqrt{ } 20-\sqrt{ } 80$.
4. $\sqrt{2}-\sqrt{ }\left(\frac{1}{2}\right)$.
5. $\sqrt{ } 3-\frac{1}{\sqrt{3}}$.
6. $\sqrt{ }\left(\frac{3}{2}\right)-\sqrt{\left(\frac{2}{3}\right)}$.
7. $\sqrt{ } 27+\sqrt{ } 12-\sqrt{ } 48$.
8. $\sqrt{ } 20+2 \sqrt{ } 45-\sqrt{ } 125$.
9. $6 \sqrt{ }\left(\frac{1}{3}\right)+\sqrt{ }\left(\frac{4}{3}\right)-\frac{1}{\sqrt{3}}$.
10. $\sqrt{ }\left(\frac{1}{3}\right)+\sqrt{ }\left(\frac{1}{3}\right)-\frac{5}{\sqrt{20}}$.
11. $\sqrt{ } 2(1+\sqrt{ } 2)$. 12. $\sqrt{ } 6(\sqrt{ } 3+\sqrt{ } 2)$. 13. $2 \sqrt{ } 2(\sqrt{ } 8+3 \sqrt{ } 2)$.
12. $(\sqrt{ } 3+2)(\sqrt{ } 3-1)$.
13. $(3+2 \sqrt{ } 2)(5-3 \sqrt{ } 2)$.
14. $(5 \sqrt{ } 6-7 \sqrt{ } 2)(2 \sqrt{ } 6+3 \sqrt{ } 2)$.
15. $(2 \sqrt{ } 10-\sqrt{ } 5)(2 \sqrt{ } 2+1)$.
16. $(5 \sqrt{ } 2-3)^{2}$.
17. $(5 \sqrt{ } 6+3 \sqrt{ } 2)^{2}$.
18. $(3+\sqrt{ } 7)(3-\sqrt{ } 7)$.
19. $(2 \sqrt{ } 5-5 \sqrt{ } 7)(2 \sqrt{ } 5+5 \sqrt{ } 7)$.
20. $(\sqrt{ } x-\sqrt{ } y)^{2}$.
21. $(\sqrt{ } c+\sqrt{ } d)(\sqrt{ } c-\sqrt{d})$.

Express the following with rational denominators :
24. $\frac{1}{\sqrt{2}+1}$.
25. $\frac{1}{3-\sqrt{5}}$.
26. $\frac{6}{\sqrt{3}-1}$.
27. $\frac{1}{\sqrt{5}-\sqrt{3}}$.
28. $\frac{1}{3 \sqrt{2}-3}$.
29. $\frac{\sqrt{2}}{\sqrt{ } 6-\sqrt{ } 2}$.
30. $\frac{\sqrt{ } 2+1}{\sqrt{ } 2-1}$.
31. $\frac{\sqrt{ } 7-\sqrt{ } 5}{\sqrt{ } 7+\sqrt{ } 5}$.
32. $\frac{3 \sqrt{ } 5-2}{2 \sqrt{ } 5-4}$.

Simplify the following :
33. $\frac{1}{\sqrt{ } 3+1}+\frac{1}{\sqrt{ } 3-1}$.
34. $\frac{\sqrt{ } 5+2}{\sqrt{5}-2}-\frac{\sqrt{5}-2}{\sqrt{5}+2}$.
35. If $a=\frac{\sqrt{6}+\sqrt{ } 2}{\sqrt{6}-\sqrt{ } 2}$, find, correct to 3 significant figures, the value of (i) $a-\frac{1}{a}$; (ii) $\frac{a-1}{a+1}$.
36. Solve (to 3 figures) $x+x \sqrt{ } 3=10$.
37. Find x in terms of a if $(x+a)^{2}=3 x^{2}$.
38. Evaluate $y^{2}+2 y$ when $y=\sqrt{ } 3-1$.
39. The perimeter of an isosceles right-angled triangle is 10 cm . ; find, correct to $\frac{1}{10} \mathrm{~mm}$., the length of each of the equal sides.
40. In $\triangle A B C, A B=2$ in., $B C=1$ in., $\angle A B C=90^{\circ}$; P is a point on $A C$ such that $C P=1$ in.; Q is a point on $A B$ such that $A Q=A P$. Write down expressions for the lengths of $A C, A Q, B Q$ and prove that $A B . B Q=A Q^{2}$.
[For further practice, see Appendix, Ex. F.P.4, Nos. 1-22, p. 156.]

Example 7. Find the square roots of $21-6 \sqrt{ } 10$.

The square of $\sqrt{ } x-\sqrt{ } y$ is $x+y-2 \sqrt{ }(x y)$.
If therefore we wish to express $21-6 \sqrt{ } 10$ as a square, we first write it in the form $21-2 \sqrt{ } 90$, and then try to find two numbers x and y such that

$$
x+y=21 ; \quad x y=93 .
$$

Either by solving in the ordinary way (Part II, Ch. XV) or by inspection, we have

$$
x=15, y=6 \text { or } y=15, x=6 \text {. }
$$

$\therefore(\sqrt{ } 15-\sqrt{ } 6)^{2}$ and $(\sqrt{ } 6-\sqrt{ } 15)^{2}$ each equal $21-6 \sqrt{ } 10$.
\therefore the square roots of $21-6 \sqrt{ } 10$ are $\pm(\sqrt{ } 15-\sqrt{ } 6)$.
Note. To find the square roots of $21+6 \sqrt{ } 10$, we use the fact that the square of $\sqrt{ } x+\sqrt{ } y$ is $x+y+2 \sqrt{ }(x y)$; the square roots are obtiously $\pm(\sqrt{15}+\sqrt{6})$.

Example 8. Solve $\sqrt{ } \cdot x+\sqrt{ }(3 x+1)=3$.
We have
$\sqrt{ }(3 x+1)=3-\sqrt{ } x$.
Square each side; $\quad \therefore 3 x+1=9+x-6 \sqrt{ } x$;

$$
\therefore 2 x-8=-6 \sqrt{ } x ; \quad \therefore x-4=-3 \sqrt{ } x ;
$$

square each side; $\quad \therefore x^{2}-8 x+16=9 x$;

$$
\begin{gathered}
\therefore x^{2}-17 x+16=0 ; \quad \therefore(x-1)(x-16)=0 ; \\
\therefore x=1 \text { or } 16 .
\end{gathered}
$$

If $x=1, \quad \sqrt{ } x+\sqrt{ }(3 x+1)=\sqrt{ } 1+\sqrt{ } 4=1+2=3$.
If $x=16, \sqrt{ } x+\sqrt{ }(3 x+1)=\sqrt{ } 16+\sqrt{ } 49=4+7=11$.
$\therefore x=1$ is a solution of the given equation ; but $x=16$ is not a solution if, as was agreed on p. 41, the symbol $\sqrt{ } x$ means the positive square root of x.

The process of squaring each side of an equation may, as above, introduce extra roots; it is therefore essential to test the results, by substituting in the original equation. The root $x=16$ is the solution of $\sqrt{ }(3 x+1)-\sqrt{ } x=3$. If we solve this equation by the method given above, we shall find it leads to the same equation as before, $x^{2}-17 x+16=0$, giving $x=1$ or $x=16$; but now we must reject $x=1$ and take $x=16$.

Before squaring each side, arrange the equation so that the process of squaring reduces the number of radical signs; e.g. in $\sqrt{ }(x+1)+x=11$, if we square each side as it stands we still have a radical sign left; but if we write it in the form $\gamma(x+1)=11-x$, the process of squaring removes the radical sign.

Example 9. Express with a rational denominitor $\frac{1}{3+\sqrt{2}-\sqrt{5}}$.

$$
\begin{aligned}
\frac{1}{3+\sqrt{ } 2-\sqrt{ } 5} & =\frac{3+\sqrt{ } 2+\sqrt{ } 5}{[(3+\sqrt{ } 2)-\sqrt{ } 5][(3+\sqrt{ } 2)+\sqrt{ } 5]} \\
& =\frac{3+\sqrt{ } 2+\sqrt{ } 5}{(3+\sqrt{2})^{2}-(\sqrt{ } 5)^{2}}=\frac{3+\sqrt{ } 2+\sqrt{ } 5}{9+2+6 \sqrt{ } 2-5} \\
& =\frac{3+\sqrt{ } 2+\sqrt{ } 5}{6+6 \sqrt{ } 2}=\frac{3+\sqrt{ } 2+\sqrt{ } 5}{6(1+\sqrt{ } 2)} \\
& =\frac{(3+\sqrt{ } 2+\sqrt{ } 5)(\sqrt{ } 2-1)}{6(\sqrt{ } 2+1)(\sqrt{2}-1)} \\
& =\frac{3 \sqrt{ } 2-3+2-\sqrt{ } 2+\sqrt{ } 10-\sqrt{ } 5}{6(2-1)} \\
& =\frac{2 \sqrt{2}+\sqrt{ } 10-\sqrt{ } 5-1}{6}
\end{aligned}
$$

exercise III. d

1. Write down the squares of
(i) $5-\sqrt{ } 3$; (ii) $3+\sqrt{ } 7$; (iii) $\sqrt{ } 7-\sqrt{ } 3$; (iv) $\sqrt{ } 10+\sqrt{ } 6$.
2. Find by inspection rational values of x and y such that:
(i) $x+y+2 \sqrt{ }(x y)=5+2 \sqrt{ } 6$;
(ii) $x+y-2 \sqrt{ }(x y)=12-2 \sqrt{ } 35$.

What are the square roots of $5+2 \sqrt{ } 6$ and $12-2 \sqrt{ } 35$?
3. Verify that $\sqrt{ }\left(3 \frac{1}{2}\right)+\sqrt{ }\left(1 \frac{1}{2}\right)$ is a square root of $5+\sqrt{2} 2$.

Write doum a square root of $5-\sqrt{ } 21$.
Find the positive square roots of the following :
4. $11+6 \sqrt{ } 2$.
5. $7-4 \sqrt{ } 3$.
6. $53+20 \sqrt{ } 7$.
7. $5-2 \sqrt{ } 6$.
8. $18+12 \sqrt{ } 2$.
9. $15(4-\sqrt{ } 15)$.
10. Simplify $\sqrt{ }(2+\sqrt{ } 3)-\sqrt{ }(2-\sqrt{ } 3)$.
11. Simplify $(2+\sqrt{ } 3)^{3}-(2-\sqrt{ } 3)^{3}$.
12. Can you find rational values of x and y such that $x+y \sqrt{ } 2$ equals $(3-\sqrt{ } 2)^{3}$?
13. Simplify $\{1+\sqrt{ }(1-a)\}\{1-\sqrt{ }(1-a)\}$.

Solve the following equations :
14. $2 x-\sqrt{ } x=6$.
15. $5+\sqrt{ }(x-2)=2 x$.
16. $\sqrt{ }(3 x+1)=\frac{1}{2}(x+3)$.
17. $\sqrt{ }(8 x)+\sqrt{ }(2 x)=30$.
18. $\sqrt{ }(x+8)-1=\sqrt{ }(3 x+1)$.
19. $\sqrt{ }(x+1)=3-\sqrt{ }(x-2)$.
20. $\sqrt{ }(12+x)-\sqrt{ }(4+x)=\sqrt{ }(1-x)$.
21. $\sqrt{ }(3 x+1)+\sqrt{ }(2 x+2)=\sqrt{ }(2 x+3)+\sqrt{ }(3 x)$.
22. (i) Simplify $(\sqrt{ } 2+\sqrt{ } 3+\sqrt{ } 6)(\sqrt{ } 2+\sqrt{ } 3-\sqrt{ } 6)$.
(ii) Express with a rational denominator $\frac{\sqrt{ } 2}{\sqrt{2}+\sqrt{ } 3+\sqrt{ } 6}$.

Express with rational denominators Nos. 23-25:
23. $\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}-\sqrt{5}}$.
24. $\frac{1}{1+\sqrt{7}-\sqrt{5}}$.
25. $\frac{\sqrt{ } 10}{\sqrt{7}-\sqrt{5}-\sqrt{2}}$.
26. Simplify $\sqrt{ }\left\{\frac{\sqrt{ } 7-\sqrt{ } 6}{\sqrt{7}+\sqrt{6}}\right\}$.
27. The following equations occur in the restricted theory of relativity:

$$
x_{1}=\frac{x-u t}{\sqrt{ }\left(1-u^{2}\right\rangle} \text { and } t_{1}=\frac{t-u x}{\sqrt{\left(1-u^{2}\right)}}
$$

Proge that (i) $\frac{x_{1}+u t_{1}}{\sqrt{ }\left(1-u^{2}\right)}=x$; (ii) $\frac{t_{1}+u x_{1}}{\sqrt{ }\left(1-u^{2}\right)}=t$.
28. With the data of No. 27, prove that

$$
t_{1}^{2}-x_{1}^{2}=t^{2}-x^{2}
$$

[For further practice, see Appendix, Ex. F'P. 4, Nos. 23-32, p.157.]

TEST PAPERS C. 1.10

[For test papers on the work of Parts I.II, see Appendix, Y 1-10, p. 180.]

$$
\text { C. } 1
$$

1. Find to 3 figures the values of

$$
\text { (i) } \frac{1.472 \times 1728}{92.43} \text {; (ii) } \sqrt[9]{\sqrt{2}}(14.97)
$$

2. Express as powers of x,

$$
\frac{x^{5}}{x^{7}} ; \frac{x}{x^{2}} ; \frac{x}{\sqrt{x}} ;(\sqrt{ } x)^{3} ; \frac{x^{5} \times x^{10}}{x^{15}}
$$

3. The volume of a sphere, radius r inches, is $\frac{4}{3} \pi r^{3} \mathrm{cu}$. in. Find the volume of a sphere of radius 2.07 inches.
4. Simplify : (i) $3+\frac{x^{2}+x}{x^{2}-3 x+2}-\frac{6}{x-2}$;

$$
\text { (ii) } \frac{\left(4 a^{2}-3 a-10\right)(3 a-6)}{3 a^{2}-12}
$$

5. If a body moves s feet in t seconds from rest, under the action of a constant force, then s varies as the square of t. If it moves 3 feet in the first 2 seconds, find how far it will move in (i) the first 4 seconds, (ii) the fifth second, (iii) the nth second.

$$
\text { 0. } 2
$$

1. Find to 3 figures the values of

$$
\text { (i) }(1 \cdot 172)^{9}+(0.9168)^{3} \text {; (ii) } \sqrt[5]{(146 \cdot 8) .}
$$

2. Evaluate (i) $27^{\frac{1}{2}}$; (ii) $32^{0.8}$; (iii) $8^{-\frac{8}{2}}$; (iv) $(0.8)^{-1}$.
3. Show that the values of x, y in the given table obey the law $y \infty x^{3}$.

x	\cdot	-	-	2	3	5
y	-	-	$4 \cdot 8$	$16 \cdot 2$	75	600

(i) What is y if $x=20$? (ii) What is x if $y=0.075$?
(iii) Find to the nearest unit the percentage increase in y if x is increased by 20 per cent.
4. Express in their simplest surd forms,

$$
\text { (i) } 6 \sqrt{ }\left(\frac{1}{2}\right) ; \text { (ii) } \frac{\sqrt{ } 96}{\sqrt{18}} ; \text { (iii) } \frac{3+\sqrt{ } 3}{3-\sqrt{3}}
$$

5. The receipts from the sale of entrance tickets to a cricket natch were $£ 400$. It is estimated that if the price of a ticket is reduced by sixpence, 2000 more people will pay for admission; the receipts will then be $£ 50$ more. What was the original price of a ticket?

C. 3

1. Find to 3 figures the values of

$$
\text { (i) } \frac{94.78 \times 0.000137}{0.08123} \text {; (ii) }(0.8168)^{\frac{2}{3}}
$$

2. Express as powers of 8 :

$$
2 ; 16 ; \frac{1}{8} ; 1 ; 32 ; \frac{1}{4} ; \sqrt{ } 2 ; 2^{p} \times 4^{q}
$$

3. (i) What is the value of c if $x+1$ is a factor of $9 x^{2}-4 x-c$?
(ii) Solve $2 x+3 y=1, \quad 3 x^{2}+5 x y-y^{2}=1$.
4. Express in their simplest forms:
(i) $\sqrt{ } 12 \times \sqrt{ } 27$;
(ii) $\frac{\sqrt{3}}{\sqrt{27}}$;
(iii) $\frac{6}{\sqrt{ } 18}$;
(iv) $\sqrt{ } 2-\sqrt{ }\left(\frac{1}{2}\right)$.
5. The cost of manufacturing a motor-car is assumed to consist of a fixed sum together with an additional sum which varies inversely as the number of cars produced per day. When the daily output is 40 cars, the cost of each is $£ 170$; for 50 cars daily, it is $£ 160$. Find the cost of each when the daily output is 80 cars .

C. 4

1. (i) Find the value of $\pi r^{2} h$ when $r=0.76$ and $h=0.142$.
(ii) Evaluate $100 \div(3 \cdot 004)^{2}$.
2. What are the values of

$$
\text { (i) } 16^{\frac{3}{2}} \text {; (ii) } 4^{-\frac{1}{2}} \text {; (iii) }\left(\frac{1}{2}\right)^{-1} \text {; (iv) }(-1)^{-2} \text { ? }
$$

3. Simplify (i) $\frac{\left(9-4 x^{2}\right)\left(4-x^{2}+3 x\right)}{\left(3+x-2 x^{2}\right)(x-4)}$;
(ii) $\frac{3}{y+2}-\frac{2}{y+3}+\frac{y+1}{y^{2}+5 y+6}$.
4. (i) Find a simple surd form for $\sqrt{ }(9-6 \sqrt{ } 2)$.
(ii) Simplify $\sqrt{ }(9-6 \sqrt{ } 2) \times \sqrt{ }(9+6 \sqrt{ } 2)$.
5. The distance of the visible horizon at sea varies as the square root of the observer's height above sea level. If the distance is 3 miles for a height of 6 feet, find a formula for the height $\%$ feet at which an observer must be placed to see d miles.
D.S.A.
C. 5
6. Find x if
(i) $3^{x}=81$;
(ii) $81^{\alpha}=3$;
(iii) $3^{x}=\frac{1}{6}$;
(iv) $9^{-x}=3$;
(v) $27^{x}=\sqrt{ } 3$; (vi) $27^{x+1}=81^{1 x}$.
$\begin{aligned} & \text { 2. Find } l \\ & g=981 \text {. }\end{aligned}$ to three figures if $t=2 \pi \sqrt{ }\left(\frac{l}{g}\right)$, when $t=1 \cdot 20$;
7. (i) Factorise $42 a^{2}+a b-30 b^{2}$;
(ii) Solve $42 x-\frac{30}{x}=1$;
(iii) Solve $p(q-1)=8 ; q(p-1)=9$.
8. Evaluate $x^{2}-\frac{1}{x^{2}}$ if $x=3-\sqrt{ } 7$.
9. In 4 years from now, A will be $\frac{2}{3}$ of B's present age; in 11 years from now, B will be double C's present age; 14 years ago, C was half of A's present age. Find the present ages of A, B, C.
C. 6
10. Evaluate (i) $(7.22)^{\frac{2}{s}}$; (ii) $(0.722)^{\frac{7}{6}}$.
11. Express as powers of y,
(i) $\frac{1}{\sqrt[8]{y}}$;
(ii) $\sqrt[3]{y^{2} \times \sqrt{ } y^{3}}$;
(iii) $\frac{\sqrt{ } y \times \sqrt{ } y}{y}$; (iv) $\frac{y^{8 n}}{y^{n+2}}$.
12. Solve the equations:
(i) $7 x=4-2 x^{2}$; (ii) $\sqrt{ }(2 y+1)-\sqrt{ } y=1$.
13. Express in their simplest surd forms:
(i) $\sqrt{ } 54 \times \sqrt{75}$;
(ii) $\sqrt{ } 32 \div \sqrt{ } 12$;
(iii) $\frac{6}{\sqrt{5}-\sqrt{2}}$;
(iv) $\left(\sqrt{\frac{1}{2}}\right)^{3}$
14. The height that the outer rail should be raised above the inner at a curve on a railway varies directly as the gauge of the railway and the square of the greatest train-speed allowed and inversely as the radius of the curve. In what ratio should this height be altered if the gauge is increased by 20 per cent., the speed by 50 per cent., and the radius by 100 per cent. ?

C. 7

1. Find to 3 figures the yalue of t given by the equation, $\frac{1}{2} g t^{2}=90 \cdot 5$, when $g=32 \cdot 2$.
2. (i) Express in prime factors $6^{n} \times 9^{n+1} \times 12^{n-2}$.
(ii) Simplify $\sqrt{ } 75+\sqrt{ } 48-2 \sqrt{ } 27$.
3. (i) Given $\sqrt{ } 5 \bumpeq 2 \cdot 236$, find the value of x to 3 figures without using tables, if $x+x \sqrt{5}=20$.
(ii) Solve $y^{2}-2 y \sqrt{ } 6=4$ (to 3 figures).
4. I a howitzer is fired at a given elevation, the range varies as the square of the muzzle velocity. If the range is 5000 yards when the muzule velocity is 600 ft . per sec., what muzzle velocity would be required for a range of 6000 yards?
5. The sum of the cubes of the whole numbers from 1 to n inclusive is $\cdot \frac{n^{2}(n+1)^{2}}{4}$. Use this fact to find the sum of the cubes of the whole numbers from 11 to 20 inclusive.

C. 8

1. Find to 3 figures the value of

$$
\text { (i) }\left(\frac{417.2 \times 0.0468}{91.48 \times 3712}\right)^{\frac{1}{2}} ; \text { (ii) }(0.003)^{-\frac{1}{2}} \text {. }
$$

2. Simplify (i) $\sqrt{ } 6 \times \sqrt{ } 10 \times \sqrt{ } 20$; (ii) $(\sqrt{ } 10-\sqrt{2})^{\prime}$.
3. Express in its simplest form, with a rational denominator,

$$
\frac{7}{(3-\sqrt{ } 2)(\sqrt{ } 6-\sqrt{ } 3)} .
$$

4. Solve the equations:
(i) $\mathrm{W}(x-2)=10, \mathrm{~W}(2 x-3)=27$;
(ii) $\sqrt{ }(x+7)=1+\sqrt{ }(3 x-2)$.
5. The safe load that can be carried by a beam of rectangular section varies directly as the breadth and the square of the depth and inversely as the length of the beam. What is the percentage change in the safe load if the breadth is halved, the depth increased by 50 per cent. and the length increased by 25 per cent. ?
How does the safe load vary with the length, breadth and volume of the beam !
C. 9
6. Find to 3 figures the values of
(i) $(4.68)^{\frac{?}{f}}$;
(ii) $(0.00468)^{\frac{?}{i}}$;
(iii) $(0.1)^{0 \cdot 2}$.
7. Simplify

> (i) $\frac{\sqrt{ } 27 \times \sqrt{ } 32}{\sqrt{ } 50}$; (ii) $\frac{1}{\sqrt{ } 3-\sqrt{ } 2}+\frac{2}{\sqrt{3}+\sqrt{ } 2}$
> (iii) $\sqrt{ }(14+6 \sqrt{ } 5)$.
3. If $y=a+b x+c x^{2}$ where a, b, c are constant, and if the values of y when x is equal to $-\frac{1}{2}, \frac{1}{2}, 1 \frac{1}{2}$ are $5 \frac{1}{2}, 2 \frac{1}{2},-3 \frac{1}{2}$ respectively, find the values of a, b, c.
4. The official H.P. rating of a car varies directly as the number of cylinders and the square of their diameter. A four-cylinder car with cylinders of diameter $3^{\prime \prime}$ is rated as 14.4 H.P.; what is the H>P. of a six-cylinder car with cylinders of diameter 2.5"
5. The denominator of a fraction is positive and is $3 \mathrm{md} / \mathrm{e}$ than its numerator. A new fraction is formed by adding 7 to both numerator and denominator. If the product of the two fractions is $\frac{1}{2}$, find the original fraction.

$$
\text { C. } 10
$$

1. Find to 3 figures the value of

$$
\text { (i) } \sqrt[3]{\left(\frac{47 \cdot 18 \times 1.473}{328.7}\right) ; ~\left(\text { ii) } \frac{1}{(0.2807)^{3}}\right.}
$$

2. Simplify (i) $\frac{12}{\sqrt{5}-\sqrt{2}}$; (ii) $\sqrt{3}-\sqrt{ }\left(\frac{4}{5}\right)$; (iii) $(1 \cdot 5)^{2 n} \times 12^{n}$.
3. (i) Simplify $\frac{1}{y+3}-\frac{2 y}{y^{2}-9}$;
(ii) If $y=\frac{3-2 z}{4 z-8}$ and if $z=\frac{5+4 x}{3 x+2}$, find x in terms of y.
4. The expense of a ship's voyage between two places is the sum of two parts, one of which varies directly, and the other of which varies inversely, as the number of days the voyage lasts. If the time taken is 10 days, the expense is $£ 9200$, and for 14 days it is $£ 10,000$. What is it for 12 days ?
5. An express, travelling at a certain rate, is 2 minutes late when passing A, and 4 minutes late when passing $B, 40$ miles further on. Its speed is then increased by 12 miles an hour so that it passes C, 20 miles further on, punctually. At what rate in miles per hour would it have travelled if it had been running to time all the way?
[For additional test papers, see Appendix, Z. 1-10, p. 184.]

CHAPTER IV

THEORY OF LOGARITHMS AND HARDER INDICES

The general logarithm is defined as follows:
If $x=a^{m}$, then m is called the logarithm of x to base a, and we write

$$
\mathrm{m}=\log _{a} \mathbf{x}
$$

Thus the logarithm of a number x to any base a is the power to which the base must be raised to give the number ; in short, a logarithm is always an index.

The definition may be expressed also in the form :

$$
\log _{a}\left(\mathrm{a}^{m}\right)=\mathrm{m} ;
$$

and in particular, $\log _{a} 1=0$, since $a^{0}=1$;
and $\quad \log _{a} a=1$, since $a=a^{1}$.
Properties of General Logarithms.

$$
\text { (i) } \log _{a}(x y)=\log _{a} x+\log _{a} y \text {. }
$$

Let $\log _{a} x=m$ and $\log _{a} y=n$.
Then $\quad x=a^{m}$ and $y=a^{n}$;

$$
\therefore x y=a^{m} \times a^{n}=a^{m+n} ;
$$

$\therefore \log _{a} x y=m+n=\log _{a} x+\log _{a} y$.
(ii) $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$.

With the same notation as before,

$$
\begin{aligned}
\frac{x}{y} & =a^{m} \div a^{n}=a^{m-n} ; \\
\therefore \log _{a}\left(\frac{x}{y}\right) & =m-n=\log _{a} x-\log _{a} y . \\
\text { (iii) } \log _{a}\left(\mathbf{x}^{p}\right) & =\mathrm{p} \log _{a} \mathrm{x} .
\end{aligned}
$$

Let $\log _{a} x=m, \quad \therefore x=a^{m}$;

$$
\therefore x^{p}=\left(a^{m}\right)^{p}=a^{m p} ;
$$

$$
\therefore \log _{a}\left(x^{p}\right)=m p=p \times m=p \log _{a} x
$$

[CH,

From this result, we have the following :
and

$$
\log _{a}\left(\frac{1}{x^{a}}\right)=\log _{a}\left(x^{-q}\right)=-q \log _{a} x ;
$$

If we have a table of logarithms calculated for some given base a, we can deduce the logarithms for any other base b by the following relation :

$$
\text { (iv) } \log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Let $\log _{b} x=m, \quad \therefore x=b^{m}$;

$$
\begin{aligned}
& \therefore \log _{a} x=\log _{a}\left(b^{m}\right)=m \log _{a} b ; \\
& \therefore \frac{\log _{a} x}{\log _{a} b}=m=\log _{0} x .
\end{aligned}
$$

In particular, if in this result we put $x=a$, we have

$$
\log _{b} a=\frac{\log _{a} a}{\log _{a} b}=\frac{1}{\log _{a} b}
$$

Example 1. What is the value of $\log _{3} 32$?
If $\log _{8} 32=n, 32=8^{n}$.
But $\quad 32=2^{5}$ and $8=2^{3}, \quad \therefore 2^{5}=\left(2^{2}\right)^{n}=2^{3 n}$;

$$
\therefore 3 n=5 ; \quad \therefore n=\frac{5}{3} \text {. }
$$

Or, $\quad 32=2^{5}=\left(2^{3}\right)^{\frac{5}{8}}=8^{8} ; \quad \therefore \log _{8} 32=\frac{5}{8}$.
Or, $\quad \log _{3} 32=\frac{\log _{2} 32}{\log _{2} 8}=\frac{\log _{2}\left(2^{5}\right)}{\log _{2}\left(2^{3}\right)}=\frac{5}{3}$.
Example 2. Simplify $\frac{\log 125}{\log 25}$.

$$
\begin{aligned}
\log 125 & =\log \left(5^{3}\right)=3 \log 5 ; \\
\log 25 & =\log \left(5^{2}\right)=2 \log 5 . \\
\therefore \text { expression } & =\frac{3 \log 5}{2 \log 5}=\frac{3}{2} .
\end{aligned}
$$

Note. If the base is not specified, as here, it is implied that all logarithms which occur have the same base, unless otherwise stated. Thus the expression in Example 2 is an abbreviation for $\log _{a} 125$

EXERCISE IV.a

Express the following in the form $\log x$:

1. $\log 2+\log 5$.
2. $\log 12-\log 3$.
3. $3 \log 2$.
4. $-\log 4$.
5. $2 \log 5+\log 1$.
6. $\frac{1}{2} \log 16$.

Write down the values of
7. $\log _{19} 100$.
8. $\log _{10}(0 \cdot \mathrm{i})$.
9. $\log _{2} 8$.
10. $\log _{2} 2$.
11. $\log _{4} 16$.
12. $\log _{4} \frac{1}{2}$.
13. $\log _{8} 81$.
14. $\log _{3} \frac{1}{8}$.
15. $\log _{9} 1$.
16. $\log _{9} 3$.
17. $\log _{9} 27$.
18. $\log _{\frac{1}{2}} 8$.

Write down the values of x for the following equations:
19. $\log _{10} x=2$.
20. $\log _{10} x=\frac{1}{2}$.
21. $\log _{5} x=3$.
22. $\log _{4} x=1$.
23. $\log _{4} x=0$.
24. $\log _{4} x=\frac{1}{4}$.
25. $\log _{9} x=-1$.
26. $\log _{9} x=\frac{1}{2}$.
27. $\log _{9} x=-\frac{1}{2}$.
28. $\log x=\frac{8}{2}$.
29. $\log _{8} x=\frac{?}{3}$.
30. $\log _{8} x=-\frac{1}{3}$.

Express the following in the form $\log _{a} x$:
31. $1+\log _{10} 3$.
32. $2+\log _{3} 5$.
33. $\frac{1}{2}+\log _{9} 7$.
34. $2-\log _{5} 4$.
35. $\frac{1}{5}-2 \log _{9} 5$.
36. $\frac{1}{4} \log 4+\frac{1}{2} \log 2$.
37. Given $\log _{10} 2 \bumpeq 0.301$ and $\log _{10} 3 \bumpeq 0.477$, obtain the values of $\log _{10} x$ for $x=20,18,16,15,5,0 \cdot 5,0 \cdot 2$.
38. Find the value of x correct to 3 significant figures, if $10^{x}=\sqrt[3]{2}$.
39. Write down the logarithms to base 2 of
(i) 2^{n}; (ii) $\frac{1}{4}$; (iii) $\sqrt[3]{32}$; (iv) $8 \times 16^{n-2}$.
40. Write down the logarithms to base 8 of
(i) 2 ;
(ii) 4 ; (iii) 16 ;
(iv) 0.5 ;
(v) 0.125.

Simplify the following :
41. $\frac{\log 8}{\log 2}$.
42. $\frac{\log 4}{\log \frac{1}{4}}$.
43. $\frac{\log 27}{\log \theta}$.
44. $\log x^{2}-\log x y$.
45. $\log z+\log \frac{1}{z}$.
46. $\frac{\log x^{3}-\log x}{\log x^{2}-\log x}$.
47. $\log \left(\log y^{2}\right)-\log (\log y)$.
48. $\log _{10} 125+\log _{10} 32-\log _{10} 4$.
49. $\log _{10}(\sqrt{ } 10 \times \sqrt[2]{10})$.
50. $\log _{10} 7 \dot{5}+\log _{10} 28-\log _{10} 0.21$.
51. $10^{\log ^{2} 2}$.
52. UUse tables to evaluate $\log _{2} 4$ to 3 significant figures.
53. Use tables to evaluate $\log _{6} 10$, if $e=2.718$.
54. If $a=\log x$ and $b=\log y$ and $a+n b=\log z$, express z in terms of x, y, n.
[For additional examples, see Appendix, Ex. T. 3, p. 169.]
Compound Interest. The amount to which any sum of money £P accumulates at compound interest, r per cent. per annum, in n years may be calculated by logarithms. But if the number of years is large, four-figure tables do not give a sufficient degree of accuracy for practical purposes.
The interest for the first year is $£ P \times \frac{r}{100}$;
\therefore the amount at the end of the first year is

$$
£\left(P+\frac{P r}{100}\right)=£ P\left(1+\frac{r}{100}\right) ;
$$

\therefore the amount at the end of the second year is

$$
\mathrm{EP}\left(1+\frac{r}{100}\right) \times\left(1+\frac{r}{100}\right)=\mathrm{EP}\left(1+\frac{r}{100}\right)^{2} .
$$

Similarly, the amount at the end of the third year is

$$
\operatorname{sP}\left(1+\frac{r}{100}\right)^{8} ;
$$

and so on.
\therefore the amount after n years is $\mathrm{EP}\left(1+\frac{r}{100}\right)^{n}$.
Example 3. Find the amount of $£ 160$ at $4 \frac{1}{2}$ per cent. per annum compound interest for 7 years.
The amount $£ A=£ 160\left(1+\frac{4.5}{100}\right)^{7}=£ 160(1+0.045)^{7}$;

$$
\therefore A=160(1.045)^{7} .
$$

Take logarithms (to base 10) of each side.

$$
\begin{array}{rlr}
\therefore \log A & =\log 160+\log (1 \cdot 045)^{7} \\
& =\log 160+7 \log 1 \cdot 045 \\
& =2 \cdot 2041+7 \times 0 \cdot 0191 \\
& =2 \cdot 3378 .
\end{array}
$$

$$
\therefore A=217.6 .
$$

\therefore the amount is $£ 218$ correct to the nearest $£$.
Although $\log 1.045$ equals 0.0191 correct to 4 places of decimals, the product 7×0.0191 is not necessarily correct to 4 places of decimals. We cannot therefore expect in this example to obtain a higher degree of accuracy than the nearest $£$ in the answer.

] LOGARITHMS AND HARDER INDICES

Examile 4. After how many years will $£ 160$ amount to $£ 500$
$t 3 \frac{1}{2}$ per cent. compound interest ?
Suppose the number of years is n.
Then

$$
\begin{aligned}
160\left(1+\frac{3.5}{100}\right)^{n} & =500 \\
\therefore(1 \cdot 035)^{n} & =\frac{509}{108}
\end{aligned}
$$

Take logarithms (to base 10) of each side :

$$
\begin{aligned}
& \therefore n \log 1 \cdot 035=\log 500-\log 160 ; \\
& \therefore n \times 0 \cdot 0149=2 \cdot 6990-2 \cdot 2041=0.4949 ; \\
& \therefore n=\frac{0.4949}{0.0149} .
\end{aligned}
$$

The value of n may now be found by long division, or we may gain take logarithms, as follows:

$$
\begin{aligned}
\log n & =\log 0 \cdot 4949-\log 0 \cdot 0149 \\
& =\overline{1} \cdot 6945-2 \cdot 1732 \\
& =1 \cdot 5213 . \\
\therefore n & =33 \cdot 2 ;
\end{aligned}
$$

\therefore the length of time is 33 years, correct to the nearest year.
Note. Since the denominator 0.0149 in the expression for n is iven only to 3 significant figures, it is absurd to give more than significant figures in the answer, and we cannot even be sure hat the third figure in 33.2 is corroct.

Example 5. If $2 \log _{10} y+3 \log _{10} x=0 \cdot 7$, express y in terms of x.

$$
\log _{10} y+1.5 \log _{10} x=0.35 ;
$$

ut, from the tables, $10^{0.35} \simeq 2.24$;

$$
\therefore \log _{10} y+\log _{10} x^{1 \cdot 5}=\log _{10} 2 \cdot 24 ;
$$

$\therefore \log \left(y x^{1.5}\right)=\log 2 \cdot 24 ; \quad \therefore y x^{1.5}=2.24$; $\therefore \mathrm{y}=2.24 \mathrm{x}^{1.5}$,

EXERCISE IV. b

[In this Exercise, $\log x$ means $\log _{10} x$.]
Write in a form not involving logarithmic notation the follow. ig equations:

1. $\log x+\log y=\log 2$.
2. $\log x+\log y=2$.
3. $\log x-\log y=3$.
4. $2 \log x=3 \log y$.
5. $3 \log x-4 \log y=1$.
6. $x \log 5=\log 2$.
7. $x \log 3=y \log 4$.
8. $\log y=x \log 3+\log 4$.
9. $\log y=1 \cdot 6 \log x+0.58$.
10. $\log y=0 \cdot 17 x+1 \cdot 46$.

Solve, as accurately as the tables permit, the followinf :
11. $2^{x}=10$.
12. $3^{x}=100$.
13. $5^{x}=\sqrt{ } 10$.
14. $7^{x}=14$.
15. $(8 \cdot 23)^{x}=52$.
16. $(0.06)^{x}=0.15$.
17. Find, as accurately as the tables permit, the amount at compound interest of
(i) 2240 for 9 years at 4 per cent. ;
(ii) $£ 175$ for 20 years at $2 \frac{1}{2}$ per cent. (See p. 76.)
18. Find, as accurately as the tables permit, the sum of money which amounts at compound interest to $£ 350$ in 12 years at $3 \frac{1}{2}$ per cent.
19. After how many years will a sum of money be doubled, if invested at compound interest (i) at 5 per cent. ; (ii) at $5 \frac{1}{2}$ per cent.?
20. Find the least integral value of n for which $(0.95)^{n}$ is less than 0.1 .
21. Find x if $3^{\log 2}=2^{x}$.
22. If $p v^{n}=13800$, and if $p=7 \cdot 62$ and $v=82 \cdot 3$, find the value of n.
23. Find the value of x correct to 2 significant figures, if $7^{x+1}=4^{2 x-8}$.
24. If $r=\frac{1}{3}$, find the least integral value of n for which $\frac{r^{n}}{1-r}$ is less than 0.00001 .
25. If $y=a x^{n}$, where a and n are constants, and if for $x=2$, $y=10.6$ and for $x=3, y=6 \cdot 2$, find the values of a and n.

Harder Examples on Indices

Example 6. Simplify (i) $\left(9 x^{-6}\right)^{-1}$; (ii) $\frac{18 \cdot 12^{3 n}}{8^{2 n+1} \cdot 9^{n}}$.
(i) $\left(9 x^{-6}\right)^{-\frac{2}{2}}=9^{-\frac{8}{4}} x^{9}$

$$
=\frac{x^{9}}{9^{\frac{1}{4}}}=\frac{x^{9}}{(\sqrt{9})^{3}}=\frac{x^{9}}{27} .
$$

(ii) $\frac{18 \cdot 12^{3 n}}{8^{2 n+1} \cdot 9^{n}}=\frac{2 \cdot 3^{3} \cdot\left(2^{2} \cdot 3\right)^{3 n}}{\left(2^{3}\right)^{3 n+1} \cdot\left(3^{3}\right)^{n}}$

$$
\begin{aligned}
& =\frac{2 \cdot 3^{3} \cdot 2^{2 n} \cdot 3^{3 n}}{2^{6 n+3} \cdot 3^{2 n}}=\frac{2^{6 n+1} \cdot 3^{3 n+2}}{2^{2 n+3} \cdot 3^{2 n}} \\
& =\frac{3^{3 n+2}}{2^{2}}=\frac{1}{4} \cdot 3^{n+2} .
\end{aligned}
$$

Example 7. Expand $\left(x^{\frac{1}{2}}+\sqrt{2}+3 x^{-\frac{1}{2}}\right)\left(x^{\frac{1}{2}}-\sqrt{2}+3 x^{-\frac{1}{2}}\right)$. By ordinary multiplication, the expression equals

$$
\begin{aligned}
& x^{\frac{\pi}{2}}\left(x^{\frac{1}{2}}-\sqrt{ } 2+3 x^{-\frac{1}{2}}\right)+\sqrt{ } 2\left(x^{\frac{1}{2}}-\sqrt{ } 2+3 x^{-\frac{1}{2}}\right)+3 x^{-\frac{1}{2}}\left(x^{\frac{1}{2}}-\sqrt{ } 2+3 x^{-\frac{1}{2}}\right) \\
& =x-\sqrt{ } 2 x^{\frac{1}{2}}+3+\sqrt{ } 2 x^{\frac{1}{2}}-2+3 \sqrt{ } 2 x^{-\frac{1}{2}}+3-3 \sqrt{ } 2 x^{-\frac{1}{8}}+9 x^{-1}, \\
& \quad \text { since } x^{0}=1, \\
& = \\
& =x+4+\frac{9}{x}, \text { since } x^{-1}=\frac{1}{x} .
\end{aligned}
$$

Or, \quad Expression $=\left\{\left(x^{\frac{1}{2}}+3 x^{-\frac{1}{2}}\right)+\sqrt{ } 2\right\}\left\{\left(x^{\frac{1}{3}}+3 x^{-\frac{1}{4}}\right)-\sqrt{ } 2\right\}$

$$
\begin{aligned}
& =\left(x^{\frac{1}{2}}+3 x^{-\frac{1}{2}}\right)^{2}-(\sqrt{ } 2)^{2}=x+6+8 x^{-1}-2 \\
& =x+4+\frac{9}{x}, \text { as before }
\end{aligned}
$$

EXERCISE IV. c

Simplify and express with positive indices :

1. $\left(2 \frac{1}{2} a\right)^{-1}$.
2. $\left(2 l^{3}\right)^{3}$.
3. $\left(\frac{8 a^{2}}{b^{2}}\right)^{-\frac{1}{8}}$.
4. $\left(x^{\frac{1}{2}} y^{-\frac{1}{2}}\right)^{-2}$.

5. $\frac{\left(16 x^{6} y^{-2}\right)^{-\frac{1}{6}}}{x^{\frac{1}{2}} y^{-\frac{9}{2}}}$.

Simplify the following :
7. 27^{-1}.
8. $10^{1.7} \times 10^{1.2}$.
9. $10^{2.1} \times \sqrt{ }\left(10^{1-8}\right)$.
10. $\left(1 \frac{95}{1 / 4}\right)^{-\frac{8}{2}}$.
11. $\sqrt{ } 2 \times \sqrt[3]{2} \times \sqrt[6]{2}$.
12. $4^{2 n} \div 2^{n}$.
13. $\frac{2^{n+1}-2^{n-1}}{2^{n}}$.
14. $2^{m} \cdot 3^{n} \cdot 6^{m-n}$.
15. $12^{n} \div 2^{2 n}$.
16. $\frac{5.4^{3 n+1}}{20.8^{2 n}}$.
17. $\frac{4^{m} \cdot 27^{m-n}}{6^{2 m}}$.
18. $\frac{4^{n+1} \cdot 8^{1-n}}{16^{8-n}}$.
19. Solve (i) $9^{x}=27$; (ii) $27^{x}=9$.
20. If $x=\sqrt{2}-1$, prove that $x^{2}+x^{-2}=6$.
21. If $m=a^{x}$ and $n=a^{y}$ and $m^{y} \cdot n^{x}=a$, find y in terms of x.

23. If $t=8 p \cdot v^{14}$, express v in terms of p, t.
24. Simplify $9^{2 n+1} \times 6^{2 n-8} \div\left(18 \times 4^{n-2}\right)$.
25. Expand $\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)\left(x-1+x^{-1}\right)$.
26. Simplify $\frac{x^{3 a}-y^{s b}}{x^{2 a}-y^{2 b}}-x^{a}-y^{b}$.
27. If $x^{\frac{7}{7}} y^{\frac{1}{2}} z^{-\frac{1}{2}}=2$, express x in the form $k y^{m} z^{n}$, giving the value of k correct to 3 significant figures.
28. If $x^{-\frac{1}{2}} y^{2} z^{-2}=3$ and if $x=y=3$, express z as a power of 3.
29. Simplify $\left(a^{8} b^{-1}\right)^{-9} \times\left(a^{-4} b^{3}\right)^{-1}$.
30. Multiply $2 x-x^{\frac{1}{2}}+x^{-\frac{1}{2}}$ by $3 x^{\frac{1}{2}}-2$.
31. Simplify $(x-y) \div\left(x^{\frac{1}{2}}-y^{\frac{1}{2}}\right)$.
32. If $H=0.115 Q^{3} D^{-4}$ express D in the form $k H^{m} Q^{n}$, giving the value of k correct to 3 significant figures.
33. Simplify the relation, $\sqrt{ } x+\sqrt{ } y=\sqrt{ }(x+y)$.
34. Subtract $\frac{a^{n}}{(a+b)^{m}}$ from $\frac{a^{n-1}}{(a+b)^{m-1}}$.
35. What is the square root of $x-2+x^{-1}$?
36. Find values of x and y such that

$$
2^{x+v}=8 ; \quad 3^{x-y}=1 .
$$

37. Solve the equation, $25^{x}=5^{x+1}-6$.
38. Multiply $a^{\frac{2}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}+b^{\frac{1}{3}}$ by $a^{\frac{1}{3}}+b^{\frac{1}{2}}$.
39. Make g the subject of the formula, $d=1 \cdot 25 g^{\frac{3}{4}} \cdot h^{-1}$.
40. Simplify and express with radical signs,

$$
(a+2 b)^{\frac{1}{2}}(a-2 b)^{-\frac{1}{b}}\left(a^{2}-4 b^{2}\right)^{-\frac{1}{b}} .
$$

[For additional examples, see Appendix, Ex. T. 4, p. 170. For a revision exercise on Ch. III-IV, see Appendix, Ex. W. 2, p. 147.]

CHAPTER V

SERIES

If we write down in succession a set of numbers in accordance with some law, the collection of numbers is called a series and each number in the collection is called a term of the series.

Example 1. What are the first 4 terms of the series whose nth term is $2 n^{2}+1$ and what is the 20 th term?

The 1st term is $2.1^{2}+1=2+1=3$;
The 2nd term is $2 \cdot 2^{2}+1=8+1=9$;
The 3 rd term is $2,3^{2}+1=18+1=19$;
The 4th term is $2 \cdot 4^{2}+1=32+1=33$.
The 20th term is $2 \cdot 20^{2}+1=800+1=801$.
The series is therefore the set of numbers,

$$
3,9,19,33, \ldots,\left(2 n^{2}+1\right), \ldots
$$

The nth term of a series is often called the general term, because if its form is given, any term of the series can be computed.

Example 2. Find a law which gives the following series :

$$
4,7,10,13,16,19, \ldots
$$

One rule for this set of numbers may be stated as follows: Start from the number 4, and count upwards by threes; thus, $4,4+3,4+3+3,4+3+3+3$, etc.

But the statement of the law is more compact and more useful, if we express the nth term as a function of n.

For this series, we find the 6th term by adding 5 threes to 4 , and we find the 7 th term by adding 6 threes to 4 , and so on. We therefore find the nth term by adding $(n-1)$ threes to 4.

$$
\begin{aligned}
\therefore \text { the } n \text {th term } & =4+(n-1) \times 3=4+3 n-3 \\
& =3 n+1 .
\end{aligned}
$$

EXERCISE V.a

Write down the first four terms and the l0th term of the following series, Nos. 1-12:

1. nth term $=3 n-1$;
2. nth term $=3 n+7$.
3. nth torm $=10 n^{2}$.
4. nth term $=\frac{1}{n+1}$.
5. nth term $=5 \times 2^{n-1}$.
6. nth term $=(-1)^{n-1}$.
7. nth term $=11-5 n$.
8. nth term $=13-5 n$.
9. Start at 5 and count up by fours.
10. Start at 5 and count down by fours.
11. Odd numbers upwards in order, starting from 15.
12. Starting from 32, make each term half the preceding term.

Write down, in terms of n, the simplest form of the nth term of each of the following series, and check by using this form to compute the 4th term.
13. 3, 4, $5,6,7, \ldots$.
14. $2,4,6,8,10, \ldots$.
15. (i) $1,3,5,7,9, \ldots$;
(ii) $5,7,9,11,13, \ldots$
16. (i) $1,4,9,16,25, \ldots$ (ii) $25,36,49,64,81, \ldots$
17. $\frac{1}{8}, \frac{7}{8}, \frac{7}{6}, \frac{6}{6}, \ldots$. 18. $1 \times 3,3 \times 5,5 \times 7,7 \times 9, \ldots$
19. $3,6,12,24,48, \ldots$.
20. 7, 70, 700, 7000, ...
21. 11, $7,3,-1,-5, \ldots$.
22. $5, \frac{5}{2}, \frac{5}{4}, \frac{5}{3}, \frac{5}{18}, \ldots$.

24. $\frac{7}{3}$, 告, $\left.\frac{2}{2}\right\}, \frac{8}{81}, \ldots$.
25. The nth term of a serios is $7 n-25$.
(i) How many terms of the series are negative?
(ii) Is 66 a term of the series ? If so, which term?
(iii) Express the law of the series in words : start at ... and count....
26. The nth term of a series is $5 \times 3^{n-1}$.
(i) How many terms of the series are less than 200?
(ii) Express the law of the series in words. (Cf. Nos. 9-12.)
27. The nth term of a series is $19-4 n$.
(i) How many terms of the series are positive ?
(ii) Is - 49 a term of the series ? If so, which term?
(iii) Express the law of the series in words.
28. The nth torm of a series is $30 \times\left(\frac{1}{b}\right)^{n-1}$.
(i) How many terms of the series are greater than 1 ?
(ii) Express the law of the series in words.
29. The nth term of a series is $9 n+7$. What is the result of subtracting the $(k-1)$ th term from the k th term :
30. The nth term of a series is $7 \times 8^{n-1}$. What is the result of dividing the k th term by the $(k-1)$ th term ?

Arithmetical Progression

If a series is formed by starting with any number and counting upwards or downwards by some fixed amount, it is called an arithmetical progression, or, more shortly, an A.P.; and the namber obtained by subtracting any term from the term which follows it is called the common difference of the A.P.;
e.g. 7, 11, 15, 19, 23, ... is an A.P., common difference, 4,
and $7,3,-1,-5,-9, \ldots$ is an A.P., common difference, -4 ; and $2 \frac{1}{4}, 1 \frac{1}{2}, \frac{3}{4}, 0,-\frac{3}{2},-1 \frac{1}{2}, \ldots$ is an A.P., common difference, $-\frac{1}{2}$.

Example 3. A man starts with a salary of $£ 250$ a year and receives annual increases of $£ 20$ a year. How much does he receive for the nth year of service ?

His salary for successive years is as follows :

$$
£ 250, £ 270, £ 290, £ 310, \ldots .
$$

The set of numbers $250,270,290,310, \ldots$ form an A.P.
The 1st term $=250$.
The 2nd term $=250+20$.
The 3rd term $=250+2 \times 20$.
The 4th term $=250+3 \times 20$; and so on.
The nth term $=250+(n-1) \times 20$

$$
=250+20 n-20=230+20 n .
$$

\therefore for the nth year, he receives $£(230+20 \mathrm{n})$.
Arithmetic Mean. If we take any 3 numbers in A.P., the middle term is called the Arithmetic Mean of the two outside terms. Thus since 11, 18, 25 are in A.P., the Arithmetic Mean of 11 and 25 is 18 ; it is simply the average of the two numbers.

If x, y, z are in A.P., the common difference is $y-x$ and also $z-y$; $\therefore y-x=z-y$;

$$
\therefore 2 y=z+x ; \quad \therefore y=\frac{1}{2}(z+x) \text {. }
$$

\therefore the arithmetic mean of \mathbf{x}, \mathbf{z} is $\frac{1}{2}(\mathbf{x}+\mathbf{z})$.

EXERCISE V.b .

1. A man, after obtaining a certain post, saves $£ 20$ his first year, $£ 26$ his second year, f 32 his third year, and continues to. increase his annual savings by $£ 6$ each year. What does he save in the nth year?
2. A swimming bath has a plane sloping fioor ; the depth of water is indicated by posts at equal distances down the bath. The reading on the first post is 12 ft ., on the second post is

11 ft .6 in . What is the reading on the 5th post : of the nth post?

How many posts are there altogether if the reading on the last post is 4 ft .?
3. A marble rolls down an inclined groove; the distances it travels in successive seconds are $3 \mathrm{~cm} ., 9 \mathrm{~cm} ., 15 \mathrm{~cm} ., 21 \mathrm{~cm}$., etc. How, far does it travel in the nth second ?
4. The temperature of the water in a boiler is rising at a steady rate; readings taken every 20 minutes are as follows : $82^{\circ} \mathrm{F} ., 88^{\circ} \mathrm{F} ., 94^{\circ} \mathrm{F}$., $100^{\circ} \mathrm{F}$., etc. The last reading was $190^{\circ} \mathrm{F}$.; how many readings were taken in all? What was the nth reading?

Find the nth term in each of the following series in A.P.:
5. $9,11,13,15, \ldots$.
6. $40,37,34,31, \ldots$.
7. $2 \frac{1}{2}, 3 \frac{1}{4}, 4,4 \frac{3}{4}, \ldots$.
8. $13,7,1,-5, \ldots$.
9. $\frac{a}{2}, a, \frac{3 a}{2}, 2 a, \ldots$.
10. $a, a+d, a+2 d, a+3 d, \ldots$.

Find the number of terms in the following series in A.P.:
11. 4, 9, 14, ..., 64 .
12. $8,5,2, \ldots,-25$.
13. $6,5 \cdot 9,5 \cdot 8, \ldots, 3 \cdot 5$.
14. $22,29,36, \ldots, 169$.

Find the common difference and the second term in the follow. ing series in A.P.:
15. lst term 5; 4th term 14. 16. Ist term 4; 3rd term 11.
17. 1st term 8; 10th term 71.
18. 1st term 7; 5th term 17. 19. lst term 32 ; 6th term 12.
20. 1st term 10 ; 8th term -11.
21. nth term, $7 n-3$. 22. nth term, 30-7n.
23. What is the arithmetic mean of (i) 5,13 ; (ii) $3,-7$; (iii) $a+h, a-h$?
24. Write down the numbers 20 and 40 , then insert between them three numbers so as to give five numbers in A.P.
This process is called inserting 3 Arithmetic Means between 20 and 40 .
25. Insert 5 Arithmetic Means between 15 and 60.
26. Find the least number above 100 which belongs to the following A.P.:

$$
\text { (i) } 6,13,20,27, \ldots \text {; (ii) } 1 \cdot 3,1 \cdot 6,1 \cdot 9,2 \cdot 2, \ldots
$$

27. The last term of an A.P. containing n terms is l; the oommon difference is d. What is the first term?
28. The first and last terms of an A.P. are a, l, respectively. If there are n terms, what is the common difference ?

Sum of Numbers in A.P.

Example 4. An instrument for a jazz band is composed of a set of 11 thin metal tubes; their lengths in inches are as follows:

$$
6,7 \frac{1}{2}, 9,10 \frac{1}{3}, 12,13 \frac{1}{8}, 15,16 \frac{1}{3}, 18,18 \frac{1}{\frac{1}{2}, 21 .}
$$

What is the total length of metal tubing required for the set ?
If there are only a few numbers, the quickest and simplest method is to add up in the ordinary way. But if the number of terms is large and if, as here, they form an A.P., it is easier to use a different method.

Fic. 4.
Fig. 4 represents a set of 11 tubes ranging from 6 inches to 21 inches. Suppose sets are manufactured as follows :

Take 11 tubes, each 27 inches long, and cut off in succession from them portions of lengths, as required :

$$
6,7 \frac{1}{2}, 9,10 \frac{1}{2}, 12,13 \frac{1}{2}, 15,16 \frac{1}{2}, 18,19 \frac{1}{2}, 21, \text { inches. }
$$

Then there remain tubes whose lengths in order are :
21, 191 $, 18,16 \frac{1}{2}, 15,13 \frac{1}{2}, 12,10 \frac{1}{2}, 9,7 \frac{1}{2}, 6$, inches ;
these make up exactly a second set.
But the total length of 11 tubes, each 27 inches long, is 11×27 inches, and these tubes form exactly 2 sets.
the length of tubing for each set is $\frac{11 \times 27}{2}$ inches.
The argument used in Example 4 may also be expressed in each of the following ways:

Example 5. What is the average of the 11 numbers:
6, $7 \frac{1}{2}, 9,10 \frac{1}{2}, 12,13 \frac{1}{2}, 15,16 \frac{1}{2}, 18,19 \frac{1}{2}, 21$?
Hence find their sum.
These numbers form an A.P.; reading forwards from the left they increase by $1 \frac{1}{2}$; reading backwards from the right, they decrease by $1 \frac{1}{2}$.

$$
\begin{aligned}
& 6+21=7 \frac{1}{2}+19 \frac{1}{2}=9+18=10 \frac{1}{2}+16 \frac{1}{2}=12+15 \text {. } \\
& \text { p.s.A. }
\end{aligned}
$$

\therefore the average of each of these pairs is $\frac{27}{2}=13 \frac{1}{2}$; theresis also a middle term, 13k.
\therefore the average of the whole set is $\frac{97}{2}$.
\therefore the sum $=\frac{11 \times 27}{2}$.
Example 6. What is the sum of the 11 numbers:
6, $7 \frac{1}{2}, 9,10 \frac{1}{2}, 12,13 \frac{1}{2}, 15,16 \frac{1}{2}, 18,19 \frac{1}{2}, 21$?
Let the sum of the numbers be S.
Then $S=6+7 \frac{1}{2}+9+10 \frac{1}{2}+12+13 \frac{1}{2}+15+16 \frac{1}{2}+18+19 \frac{1}{2}+21$;
also $S=21+19 \frac{1}{2}+18+16 \frac{1}{2}+15+13 \frac{1}{2}+12+10 \frac{1}{2}+9+7 \frac{1}{2}+6$;
\therefore by addition,

$$
\begin{aligned}
2 S & =27+27+27+\ldots \ldots \ldots . ~
\end{aligned}+27 .
$$

$$
\therefore \mathrm{S}=\frac{11 \times 27}{2}
$$

EXERCISE V.c

Find the sum of the following series in A.P.:

1. 5, 7, 9, 11, ..., 21. (9 terms.)
2. $8,11,14,17, \ldots, 65$. (20 terms.)
3. $100,93,86,79, \ldots, 23$. (12 terms.)
4. $15,11,7,3, \ldots,-45$. (10 terms.)
5. $6,7,8,9, \ldots$, to 20 terms.
6. $20,17,14,11, \ldots$, to 15 terms.
7. $5,5 \cdot 2,5 \cdot 4,5 \cdot 6$, ..., to 36 terms.
8. $1,2,3,4,5, \ldots$, to n terms.
9. 1, 3, 5, 7, ..., to n terms.
10. The sum of the A.P., $3+\ldots+59$, is 465 . Find the number of terms and the common difference.
11. The sum of 12 terms of the A.P., $4+\ldots$, is 246. Find the last term and the common difference.
12. The sum of 20 terms of an A.P. is 1280 and the last term is 121. Find the first term and the common difference.

General Method

Suppose the first term of an A.P. is a and that the common difference is d, then the tarms of the series are

$$
a, a+d, a+2 d, a+3 d, \ldots ;
$$

\therefore the nth term is $a+(n-1) d$.
Suppose there are n terms and that the last term is l.

$$
\text { Then } \quad l=a+(n-1) d .
$$

Sum of an A.P. Let the sum of n terms be S.
If the last term is l, the last term but one is $l-d$, and the last torm but two is $l-2 d$, and so on.

$$
\therefore \mathrm{S}=a+(a+d)+(a+2 d)+\ldots+(l-2 d)+(l-d)+l .
$$

Now write this expression for S backwards.

$$
\therefore \mathrm{S}=l+(l-d)+(l-2 d)+\ldots+(a+2 d)+(a+d)+a .
$$

\therefore adding

$$
2 S=(a+l)+(a+l)+(a+l)+\ldots+(a+l)+(a+l)
$$

But there are n brackets,

$$
\begin{aligned}
\therefore 2 S & =n(a+l) ; \\
\therefore S & =\frac{n}{2}(a+1) .
\end{aligned}
$$

Further, $b=a+(n-1) d, \quad \therefore a+l=2 a+(n-1) d$;

$$
\therefore S=\frac{n}{2}[2 a+(n-1) d]
$$

This argument merely sets out in full that the average of a set, of numbers in A.P. is found by taking the average of the first and last terms, and therefore the sum is obtained by multiplying the average by the number of terms.

Example 7. Find the first term and the common difierence of an A.P., if the fourth term is 23 and the tenth term is 110 .

With the previous notation, we have

$$
a+3 d=23 ; \quad a+9 d=110
$$

By subtraction, $6 d=87$; $\quad \therefore d=\frac{87}{8}=14 \frac{1}{2}$;

$$
\therefore a=23-3 d=23-43 \frac{1}{2}=-20 \frac{1}{2} .
$$

\therefore the first term is $-20 \frac{1}{2}$ and the common difference is $14 \frac{1}{2}$

Example 8. Find the sum of 40 terms of the A.P.,

$$
5,5 \frac{2}{3}, 6 \frac{1}{3}, 7,7 \frac{2}{3}, \ldots .
$$

With the previous notation, we have

$$
\begin{aligned}
& a=5, \quad d=\frac{2}{3}, \quad n=40 . \\
\therefore S & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{40}{2}\left[10+39 \times \frac{2}{3}\right]=20(10+26) \\
& =20 \times 36=720 .
\end{aligned}
$$

Harmonical Progression. If a series of numbers is such that their reciprocals are in A.P., the series is said to be in harmonical progression, for short, H.P.
Thus $\frac{1}{6}, \frac{1}{8}, \frac{1}{1}, \frac{1}{1}, \ldots$ are in H.P., because 5, 8, 11, 14, ... are in A.P.; and $\frac{4}{6}, \frac{1}{3}, \frac{1}{15}, \frac{2}{6}, \frac{4}{2} t, \ldots$ are in H.P., because $\frac{4}{4}, 3, \frac{14}{4}, \frac{1}{2}, \frac{2}{4}, \ldots$ are in A.P.
The harmonic mean of 2 numbers a, b is a number x such that a, x, b are in H.P. ; $\therefore \frac{1}{a}, \frac{1}{x}, \frac{1}{b}$ are in A.P.;

$$
\therefore \frac{1}{x}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2 a b} ; \quad \therefore x=\frac{2 a b}{a+b} .
$$

There is no formula for the sum of n terms of a harmonical progression.

EXERCISE V.d

1. Find the 10 th term and 20 th term of $7,11,15,19, \ldots$.
2. Find the 12 th term and 50 th term of $120,113,106,99, \ldots$.

Sum the following series in A.P., Nos. 3-11:
3. $10,13,16,19, \ldots$ to 12 terms.
4. $7,7 \frac{4}{4}, 8 \frac{1}{2}, 94, \ldots$ to 33 terms.
5. $16,12,8,4,0, \ldots$ to 9 terms and to 20 terms.
6. $3,-5, \ldots$ to 10 terms.
7. $3 \cdot 4,2 \cdot 8$, \ldots to 16 terms.
8. $\frac{1}{3}, \frac{1}{3}, \ldots$ to 25 terms.
9. First term 10, last term $30 ; 8$ terms.
10. First term 7, last term $-13 ; 10$ terms.
11. First term 3.5 , last term 8 ; 16 terms.
12. How many terms are taken of the series $1,2,3,4, \delta, \ldots$, if their sum is 120 ?
13. How many terms of the series $3,4 \frac{1}{2}, 6,7 \frac{1}{3}, \ldots$ must be taken to give a sum of 156 ?
14. Find the first term and the common difference of an A.P. if the 3 rd term is 11 and the 7 th term is 35.
15. The 5th term of an A.P. is 7 and the llth term is -35 ; find the lst term and the 7th term.
16. Find the sum of all the odd numbers between 100 and 200.
17. Find the simplest form for the nth term in the series :

$$
\frac{1}{i}, \frac{1+3}{1+4}, \frac{1+3+5}{1+4+7}, \frac{1+3+5+7}{1+4+7+10},
$$

18. A shop sells various sizes of tin kettles, and the prices of successive sizes rise by equal amounts. The smallest costs 28 . and the largest 8s. ; it costs $£ 210 \mathrm{~s}$, to buy one of every kind. How many kinds are there? What is the cost of the smallest but one ?
19. Is 690 a term of the A.P., $4,11,18,25, \ldots$?
20. A clerk's commencing salary is $£ 100$ a year; he is offered a choice between a yearly rise of $£ 5$ and a rise of $£ 22$ every 4 years. Calculate the total sum he will receive in the course of 33 years under each arrangement.
21. The nth term of a series is $3 n+1$; find the sum of n terms.
22. From a piece of wire 5 ft . long, 25 pieces are cut off, each $0 \cdot 1 \mathrm{in}$. longer than the preceding piece. If the wire is exactly used up, find the length of the first piece cut off.
23. I lay aside each year $£ 20$ more than I laid aside the year before, starting with $£ 100$ in the first year. How many years will it take me to lay aside $£ 5800$?
24. Find n if the sum of n terms of the series $2,5,8,11, \ldots$ is equal to the sum of n terms of the series $47,45,43,41, \ldots$.
25. Find the sum of all numbers less than 100 which are not divisible by 5 .
26. Find the harmonic mean of (i) 9 and 12 ; (ii) $\frac{1}{p}$ and $\frac{1}{q}$.
27. The first two terms of a series in H.P. are 6,3 ; find the 3 xd term, the 4 th term and the nth term.
[For further practice, see Appendix, Ex. F.P.5, p. 157.]

Geometrical Progression

Start with any number, say, 7, multiply it by any other number, say, 3; then multiply again by 3, and so on; the successive numbers,

$$
7,21,63,189,567 . \ldots
$$

obtained in this way are said to be in Geometrical Progression, written, for short, G.P. The terms in a G.P. series can be written more simply by using the index notation; thus the series given above may be written,

$$
\begin{equation*}
7,7.3,7.3^{2}, 7.3^{3}, 7.3^{4}, \ldots . \tag{i}
\end{equation*}
$$

Again, start with 24 and multiply successively by $\frac{8}{2}$; this gives the G.P.,

$$
24,36,54,81, \frac{243}{2}, \ldots .
$$

But it is more easily recognised as a G.P. if we write it in the index form :

$$
\begin{equation*}
24,24\left(\frac{3}{2}\right), 24\left(\frac{3}{2}\right)^{2}, 24\left(\frac{3}{2}\right)^{3}, 24\left(\frac{3}{2}\right)^{4}, \ldots \tag{ii}
\end{equation*}
$$

Again, start with 18 and multiply successively by $\frac{f}{3}$; we then obtain the G.P.,

$$
18,12,8, \frac{16}{3}, \frac{32}{6}, \frac{8}{2} 7, \ldots,
$$

and this may be written,

$$
\begin{equation*}
18,18\left(\frac{2}{3}\right), 18\left(\frac{2}{3}\right)^{2}, 18\left(\frac{2}{3}\right)^{3}, \ldots \tag{iii}
\end{equation*}
$$

The fundamental property of a G.P. is that the ratio of each term to the term preceding it is constant.
Thus the "constant ratio" of serios (i) is 3;
the "constant ratio" of series (ii) is $\frac{3}{2}$;
the "constant ratio " of series (iii) is $\frac{2}{3}$.
If the constant ratio of a G.P. is negative, the terms will be alternately positive and negative.
Thus the numbers

$$
\begin{equation*}
12,-6,3,-\frac{3}{2}, \frac{3}{3},-\frac{3}{3}, \tag{iv}
\end{equation*}
$$

form a G.P. in which the constant ratio is ($-\frac{1}{2}$).
Example 9. Find the nth term in each of the series (i)-(iv) above.
(i) The nth term of the series $7,7.3,7.3^{2}, 7.3^{3}, \ldots$ is obviously 7.3^{n-1}.
(ii) The nth term of the series $24,24\left(\frac{3}{2}\right), 24\left(\frac{3}{2}\right)^{2}, \ldots$ is 24 . $\left(\frac{3}{2}\right)^{n-1}$; this may be written :

$$
2^{3} \cdot 3 \cdot \frac{3^{n-1}}{2^{n-1}}=\frac{3^{n}}{2^{n-4}}
$$

(iii) The nth term of the series $18,18\left(\frac{2}{5}\right), 18\left(\frac{2}{3}\right)^{2}, \ldots$ is $18 .\left(\frac{3}{5}\right)^{n-1}$;
this equals $2.3^{3} \cdot \frac{2^{n-1}}{3^{n-1}}=\frac{2^{n}}{3^{n-2}}$.
(iv) The nth term of the series $12,12\left(-\frac{1}{1}\right), 12\left(-\frac{1}{2}\right)^{2}, \ldots$ is $12\left(-\frac{1}{2}\right)^{n-1}$; this equals $2^{2} \cdot 3 \cdot \frac{(-1)^{n-1}}{2^{n-1}}=(-1)^{n-1} \cdot \frac{3}{2^{n-1}}$.

Example 10. Find the sum of 7 terms of the G.P.,

$$
2,6,18,54, \ldots .
$$

Let S denote the required sum. The common ratio is 3 .

$$
\therefore \mathrm{S}=2+6+18+54+162+486+1458 .
$$

If we multiply each side by the common ratio 3 , each term is changed into the term which used to follow it.

$$
\therefore 3 S=6+18+54+162+486+1458+4374 .
$$

Therefore, if we subtract, all terms except the first and last disappear.

$$
\begin{gathered}
\therefore \mathrm{S}-3 \mathrm{~S}=2-4374 ; \quad \therefore 2 \mathrm{~S}=4372 ; \\
\\
\therefore \mathrm{S}=2186 .
\end{gathered}
$$

It saves time to use the index notation throughout. Thus

$$
\begin{aligned}
& S=2+2 \cdot 3+2 \cdot 3^{2}+2 \cdot 3^{3}+2 \cdot 3^{4}+2 \cdot 3^{5}+2 \cdot 3^{6} ; \\
\therefore \quad 3 S & =\quad 2 \cdot 3+2 \cdot 3^{2}+2 \cdot 3^{3}+2 \cdot 3^{4}+2 \cdot 3^{5}+2 \cdot 3^{6}+2 \cdot 3^{7} .
\end{aligned}
$$

Subtract :

$$
\begin{gathered}
\therefore-2 S=2-2.3^{7} ; \quad \therefore 2 \mathrm{~S}=2.3^{7}-2 ; \\
\therefore \mathrm{S}=3^{7}-1 .
\end{gathered}
$$

Geometric Mean. If we take any 3 numbers in G.P., the middle term is called the Geometric Mean between the two outside terms.
For example, 9, 15, 25 are numbers in G.P. because $\frac{15}{5}$ equals ${ }^{25}$, each being
$\therefore 15$ is the geometric mean between 9 and 25 .
Since the numbers $9,-15,25$ are also in G.P. (common ratio -5), it follows that -15 is also the geometric mean between 9 and 25, but it is customary to consider only positive values.
If x, y, z are 3 numbers in G.P., the common ratio is given by $\frac{y}{x}$ and by $\frac{z}{y}$;

$$
\begin{aligned}
& \therefore \frac{y}{x}=\frac{z}{y} ; \quad \therefore y^{2}=x z . \\
& \therefore y= \pm \sqrt{ }(x z)
\end{aligned}
$$

and we say that the geometric mean between x and z is $+\sqrt{ }(\mathbf{z z})$.
Hence the geometric mean between two numbers is the (positive) square root of their product.

EXERCISE V. ©

1. Find a simple form for the nth term of each of the following series. If the series is a G.P., write down the constant ratio.
(i) $5,25,125,625, \ldots$;
(ii) $3^{2}, 3^{5}, 3^{8}, 3^{11}, \ldots$;
(iii) $10^{3}, 10^{6}, 10^{14}, 10^{24}, \ldots$;
(iv) $40 ; 60,90,135, \ldots$; (v) $3^{2}, 6^{4}, 12^{3}, 24^{2}, \ldots$;
(vi) $\frac{1}{4}, \frac{1}{3}, \frac{1}{1}, \ldots$;
(vii) $27,-18,12,-8, \ldots$;
(viii) $2^{2}, 4^{2}, 6^{2}, 8^{2}, \ldots$;
(ix) $\frac{5}{3}, \frac{6}{5}, \frac{8}{12}, \frac{8}{24}, \ldots$;
(x) $a^{2},-a, 1,-\frac{1}{a}, \ldots$.
2. Write down the 3rd term, 4th term and nth term of a G.P., whose first two terms are as follows :
(i) 5,10 ;
(ii) 10,5 ;
(iii) 8,8 ;
(iv) $6,-8$;
(v) 1, -1;
(vi) $-1,1$; (vii) $3, \frac{1}{8}$;
(viii) $72,-54$.

State in index form the last term in the following series in G.P. :
3. $24,12,6, \ldots$ to 7 terms.
4. $\frac{7}{2},-\frac{1}{8}, \frac{1}{1}, \ldots$ to 8 terms.
5. a, ar, $a r^{3}, \ldots$ to 10 terms.
6. $a^{2}, a b, b^{2}, \ldots$ to 15 terms.
7. $3,-3,3, \ldots$ to n terms.
8. $36,-24,16, \ldots$ to n terms.

Find the sum of the following series in G.P.; leave the answer in index form.
9. $5,20,80, \ldots$ t
to 7 terms.
10. $3,6,12, \ldots$ to 8 terms.
11. $4,12,36, \ldots$ to 9 terms.
12. $4,-12,36, \ldots$ to 9 terms.
13. 10, $5,2 \frac{1}{2}, \ldots$ to 12 terms.
14. $1, \frac{1}{2}, \frac{1}{4}, \ldots$ to 10 terms.
15. 24, 36, 54, ... to 8 terms. 16. 144, $-108,81, \ldots$ to 7 terms.
17. Find the Geometric Mean between (i) 12 and 75 ; (ii) 2 and $\frac{1}{2}$.
18. The Ist and 4th terms of a G.P, are 24 and 81. Find the 2nd and 3rd terms.

General Method

Suppose the first term of a G.P. is a and that the common ratio 'is r, then the terms of the series are

$$
a, a r, a r^{2}, a r^{3}, \ldots
$$

In the 3rd term, the power to which + occurs is 2 ; in the 4th term, the power to which r occurs is 3 ;
and so on.

$$
\therefore \text { the } n \text {th term is } a \mathrm{I}^{n-1} \text {. }
$$

Sum of a G.P. Let the sum of n terms be S.
Then $\quad S=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-2}+a r^{n-1}$.
Multiply each side by the common ratio r; each term is then changed into the term which used to follow it.

$$
\therefore r S=a r+a r^{2}+a r^{3}+a r^{4}+\ldots+a r^{n-1}+a r^{n} .
$$

\therefore if we subtract, all terms except the first and last disappear.

$$
\begin{gathered}
\therefore \mathrm{S}-r \mathrm{~S}=a-a r^{n} ; \therefore \mathrm{S}(1-r)=a\left(1-r^{n}\right) ; \\
\therefore \mathrm{S}=\frac{a\left(1-r^{n}\right)}{1-r} .
\end{gathered}
$$

This is the most convenient form for S if r is less than 1; but if r is greater than I, the numerator and denominator would each be negative ; in this case, S is written in the form,

$$
\mathrm{S}=\frac{a\left(r^{n}-1\right)}{r-1} .
$$

The general formula is therefore

$$
\mathrm{S}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}=\frac{\mathrm{a}\left(\frac{\left.1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} .\right.}{} .
$$

Example 11. Find the sum of 12 terms of the G.P.,

$$
63,-4 \frac{1}{2}, 3,-2, \ldots .
$$

Wricing the series in the form, $\frac{27}{4},-\frac{9}{2}, 3,-2, \ldots$, we see that the terms are_in G.P., with common ratio - $-\frac{2}{3}$.
\therefore with the previous notation,

$$
\begin{aligned}
& a=\frac{a_{7}^{2}}{1}, r=-\frac{2}{3}, n=12 . \\
& \therefore \mathrm{S}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{{ }_{2}^{27}\left[1-\left(-\frac{9}{3}\right)^{18]}\right]}{1-\left(-\frac{2}{3}\right)} \\
& =\frac{\frac{27}{4}\left[1-\left(\frac{2}{2}\right)^{12}\right]}{1 \frac{2}{3}}, \operatorname{since}(-1)^{12}=+1 \\
& =\frac{27}{4} \times \underset{Z}{2}\left[1-\left(\frac{2}{3}\right)^{12}\right]=\frac{81}{20}-\frac{3^{4}}{2^{2} \cdot 5} \cdot \frac{2^{12}}{3^{12}} \\
& =43^{2} \gamma-\frac{2^{10}}{5.3^{8}} \text {. }
\end{aligned}
$$

An approximate value of this expression may be found by using logarithms. With 4-figure tables, we find $\frac{2^{10}}{5.3^{30}} \bumpeq 0.031$ (only 2 significant figures are reliable).
\therefore the sum of 12 terms $\bumpeq 4.05-0.031=4.019$.

Example 12. Insert 2 geometric means between 320 and 135.
Another way of stating this is as follows:
Find numbers x and y such that
are in G.P.

$$
320, x, y, 135
$$

Let the common ratio be r.
Then $x=320 r, y=320 r^{2}, 135=320 r^{3}$;

$$
\begin{aligned}
& \therefore x=320 \times \frac{3}{3}=240 ; y=240 \times \frac{3}{4}=180 \text {. }
\end{aligned}
$$

\therefore the required geometric means are 240,180 .
Check: $\frac{24}{328}=\frac{3}{6}, \frac{18}{24} 8=\frac{3}{4}, 1 \frac{138}{185}=3$.

EXERCISE V.f

Sum the following series in G.P., leaving the answer in index form.

1. $6,24,96, \ldots$ to 10 terms.
2. 8, $-24,72, \ldots$ to 12 terms.
3. $4,2,1, \ldots$ to 15 terms.
4. $2 \cdot 5,1,0 \cdot 4, \ldots$ to 20 terms.
5. $1,-a^{2}, a^{4}, \ldots$ to 15 terms.
6. $2 b, 6 b^{2}, 18 b^{3}, \ldots$ to n terms.
7. $c, 1, \frac{1}{c}, \ldots$ to k terms.
8. $2^{2}, 4^{2}, 8^{2}, \ldots$ to $(n-1)$ terms.
9. Insert 2 geometric means between 54 and 2.
10. Insert 3 geometric means between $3 \frac{5}{8}$ and 18.
11. Using 4 -figure logarithms, find an approximate value of
(i) $10\left\{1+(1.04)+(1.04)^{2}+\ldots+(1.04)^{10}\right\}$;
(ii) $12\left\{1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{8}}\right\}$.
12. The nth term of a series is $2^{n-1}+2 n$. Write down the first 4 terms. Find the sum of the first r terms.
13. How many terms of the G.P., $4,6,9, \ldots$, must be taken to give a sum greater than 8000 ?
14. The 3rd term of a G.P. is 40 and the 6 th term is 625 ; find the lst term.
15. Use 4-figure logarithms to find an approximate value of

$$
3+2^{\frac{1}{2}} \cdot 3^{\frac{3}{2}}+2^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}+2^{\frac{3}{2}} \cdot 3^{\frac{1}{2}}+\ldots \text { to } 12 \text { terms. }
$$

16. Use 4 -figure logarithms to find an approximate velue of the sum (i) to 9 terms, (ii) to 10 terms, of the G.P.,

$$
500,-400,320,-256, \ldots .
$$

Compound Interest and Annuities

The most important practical application of series in G.P. is in connection with annuities and insurance.
Nt was shown on p. 56 that the amount of $£$ e invested at r per cent. per annum compound interest for n years is $£ \mathrm{LA}$, where

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}=\mathrm{P} \cdot \mathrm{R}^{n}, \text { if } \mathrm{R}=1+\frac{r}{100} .
$$

Present Value. If a payment of $£ A$ is due in n years' time, we can easily find the present value, if compound interest is reckoned as before.

If the present value is $£ \mathrm{P}$, the amount after n years is $£ \mathrm{P} \cdot \mathrm{R}^{n}$, where as before $\mathrm{R}=1+\frac{r}{100}$;

$$
\therefore \mathrm{P} \cdot \mathrm{R}^{n}=\mathrm{A} ; \quad \therefore \mathrm{P}=\frac{\mathrm{A}}{\mathrm{R}^{n}}=\mathrm{A} \cdot \mathrm{R}^{-n} .
$$

\therefore the present value is $\mathfrak{£}\left(A \cdot R^{-n}\right)$.
The difference, $£ A-£ P=£ A\left(1-R^{-n}\right)$, is called the Discount.
Annuities. To find the purchase price of an annuity of £A, if there are in all n annual payments, the first being made in one year's time, allowing r per cent. per annum compound interest.

As before, put $1+\frac{r}{100}=R$.
The first peyment, $£ A$ in 1 year's time, is worth $£_{\bar{R}}^{A}$ now.
The second payment, $£ A$ in 2 years' time, is worth $£_{\bar{R}^{i}}^{A}$ now ; and so on.
\therefore the whole annuity is worth now

$$
\begin{aligned}
& £\left(\frac{A}{\bar{R}}+\frac{A}{R^{2}}+\frac{A}{R^{3}}+\ldots+\frac{A}{R^{n}}\right) \\
= & £ \frac{A}{\bar{R}\left(1-\frac{1}{R^{n}}\right)} \\
1-\frac{1}{R} & £ \frac{A\left(1-R^{-n}\right)}{R-1} .
\end{aligned}
$$

Note. If the annuity is deferred, i.e. if the first payment takes. place after k years, and if n payments are to be made in all, its purchase price now would be

$$
£\left(\frac{A}{R^{k}}+\frac{A}{R^{k+1}}+\ldots+\frac{A}{R^{k+n-1}}\right)=£ \frac{A\left(1-R^{-n}\right)}{R^{k-1}(R-1)} .
$$

No attempt should be made to commit these resulte to ${ }^{\text {innemory. }}$ If the method is understood, there is no difficulty in applying it to numerical examples.

In general, 4 -figure tables do not give a sufficient degree of accuracy : the following extrects from 7 -figure tables should be used, where appropriate :

Number.	Logarithm.	Number.	Logarithm.
1.025	0.0107239	1.04	0.0170333
1.03	0.0128372	1.045	0.0191163
1.035	0.0149403	1.05	0.0211893

EXERCISE V.g

1. (i) What is the amount of $£ 100$ in 10 years' time, allowing 4 per cent. compound interest?
(ii) A man deposits $£ 100$ annually to accumulate at 4 per cent. per annum compound interest. How much will he have standing to his credit just after he has made the tenth deposit ?
2. A man pays $£ 100$ at the beginning of each year into a pension fund, and it is agreed that at the end of 15 years he will receive back what he has paid together with $4 \frac{1}{2}$ per cent. per annum compound interest. What should he receive ?
3. On January lst of each year from 1915 to 1925 inclusive, a man invested fl 100 at 5 per cent. per annum compound interest. What was the value of his investments on December 31, 1925 ?
4. What lump sum was paid on January 1st, 1920 , in order to secure a payment of $£ 100$ a year for ten years, the first payment being made on January lst, 1921, allowing 5 per cent. per annum compound interest ?
b. A man buys a life annuity of $£ 200$ a year to be paid yearly, starting in 1 year's time. What lump sum will the Insurance Company require if they expect that 12 payments will be nocessary, allowing $2 \frac{1}{2}$ per cent. per annum compound interest !
5. A Corporation borrows $£ 10,000$ and repays it by 30 equal annual payments, the first being made one year after the loan has been raised. Allowing compound interest at 5 per cent. per annum, calculate the amount of each annual payment.
6. Repeat No. 6 if the loan is repaid by 60 equal half-yearly payments, the first being made 6 months after the loan has been raised, allowing $2 \frac{1}{2}$ per cent. half-yearly compound intereet.
7. A man leaves property worth $£ 2000$ a year, paid half yearly, to his wife for her life-time, and after her death to a hospital. His wife's expectation of life is 8 years; what is the preseat value of
the legacy which she receives ? Allow 3 per cent, half yearly compount interest and assume the first. payment igdue in 6 months time.
8. Find to the nearest $£ 10$ the present value of a deferred annuity of $£ 100$ a year for 20 years, if the first payment is due in 5 zears' time ; compound interest, 4 per cent. per annum.
9. On January lst, 1930, a man buys a deferred annuity for £5000. The first payment is to be made on January 1st, 1935, and additional equal annual payments are due up to January 1st, 1950, inclusive. What is the amount of each annual payment, reckoning compound interest at $3 \frac{1}{2}$ per cent. per annum ?

Series with Limiting Sums ${ }^{`}$

Draw a straight line AB 2 inches long. Bisect it at P_{1}; then bisect $P_{1} B$ at P_{3}, and bisect $P_{3} B$ at P_{3}, and so on.

$A P_{1}=1 \mathrm{in} ; A P_{2}=\left(1+\frac{1}{2}\right) \mathrm{in} . ; A P_{3}=\left(1+\frac{1}{2}+\frac{1}{3}\right) \mathrm{in}$. and so on.
After the process has been repeated n times, we have

$$
\mathrm{AP}_{n}=\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{\mathrm{a}}}+\ldots+\frac{1}{2^{n-1}}\right) \mathrm{in}
$$

The method of construction shows that, however often the process is repeated, the point P_{n} remains on the left of B and the length of $A P_{n}$ remains less than the length $A B, 2$ in.

In other words, however many terms of the series,

$$
1, \frac{1}{2}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \ldots,
$$

we add up, the sum always remains less than 2.
But by repeating the process sufficiently often we can make the point P_{n} approach as near B as we like, since $P_{n} B=\frac{1}{2^{n-1}}$ in., and this length can be made as small as we please by taking n sufficiently large.
\therefore by talking a sufficient number of terms of the series,

$$
1, \frac{1}{2}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \ldots,
$$

we can obtain a sum which for this number of terms, and for every greater number of terms, is as near 2 as we please.

We therefore call 2 the limiting sum of the series,

$$
1, \frac{1}{2}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \ldots
$$

Now apply the formula to the same series. Let δ_{n} denote the sum of n terms of the series.
Then $s_{1}=1, s_{2}=1+\frac{1}{2} ; s_{3}=1+\frac{1}{2}+\frac{1}{2^{2}}$; and so on.

$$
\begin{aligned}
\therefore s_{n} & =1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{n-1}} \\
& =\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}=\frac{1-\left(\frac{1}{2}\right)^{n}}{\frac{1}{2}} \\
& =2\left(1-\frac{1}{2^{n}}\right)=2-\frac{1}{2^{n-1}} .
\end{aligned}
$$

However large n is, s_{n} is always less than 2. But by making n large enough, $\frac{1}{2^{n-1}}$ can be made as small as we please.
We therefore say that, when n tends to infinity, $\frac{1}{2^{n-1}}$ tends to 0 , and s_{n} tends to 2.
This is written in the following way :
When

$$
n \rightarrow \infty, \frac{1}{2^{n-1}} \rightarrow 0 \text { and } s_{n} \rightarrow 2 .
$$

The phrase " n tends to infinity" merely means that n is allowed to take values greater than any stated number, however large.
Next consider the series,

$$
3,6,12,24, \ldots .
$$

The sum of n terms $=\frac{3\left(2^{n}-1\right)}{2-1}=3.2^{n}-3$.
By taking n large enough, 3.2^{n} can be made as large as we please ; therefore this series has no limiting sum.
If the common ratio of a G.P. is 1 , the sum s_{n} of n terms is

$$
s_{n}=a+a+a+\ldots+a=n a .
$$

And, if the common ratio is greater than 1 , then $s_{n}>n a$. But by taking n large enough, $n a$ can be made as large as we please; therefore a G.P. for which $r=1$ or $r>1$ has no limiting sum.
From the formula, if $r>1$, we have $s_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$. But by taking n large enough, we have just proved that s_{n} can be made as large as we please, and therefore it follows that, if $r>1, r^{n}$
can be made as large as we please ; and so $\frac{1}{r^{n}}$ or $\left(\frac{1}{r}\right)^{n}$ can be made as small as we please, if $\frac{1}{r}$ lies between 0 and 1.
\therefore if k is any fraction between 0 and $1, k^{n}$ can be made as small as we please by taking n large enough.

But $s_{n}=a+a k+a k^{2}+\ldots+a k^{n-1}=\frac{a\left(1-k^{n}\right)}{1-k}$;

$$
\therefore 8_{n}=\frac{a}{1-k}-\frac{a}{1-k} \cdot k^{n}
$$

\therefore if k is any fraction between 0 and 1 (or between 0 and -1), by taking n large enough, $\frac{a}{1-k} \cdot k^{n}$ can be made as small as we please, and so s_{n} becomes, and remains, as near $\frac{a}{1-k}$ as we please.
\therefore if k is any fraction between -1 and +1 , the series

$$
a, a k, a k^{2}, a k^{3}, \ldots
$$

has a limiting sum equal to $\frac{a}{1-k}$.
This result may be written as follows:

$$
\begin{aligned}
& \text { If }-1<r<1 \text { and if } s_{n}=a+a r+a r^{2}+\ldots+a r^{n-1} \text {, then, when } n \rightarrow \infty \text {, } \\
& \qquad s_{n} \rightarrow \frac{a}{1-r} .
\end{aligned}
$$

If $r=-1$, the series is $a,-a, a,-a, \ldots$, and therefore $s_{n}=a$ if n is odd and $s_{n}=0$ if n is even, so there is no unique limiting sum.

If $r<-1$, e.g. in the series $2,-6,18,-54, \ldots$, the value of s_{n} when n is odd is of opposite sign to its value when n is even; and the numerical value of s_{n} increases indefinitely as n increases; the series has therefore no limiting sum.

The " limiting sum " of a series is generally called its sum to infinity.

Example 13. What is the meaning of $0 . \dot{6}$. Express it as a vulgar fraction.

$$
0.6=\frac{6}{10} ; 0.66=\frac{6}{10}+\frac{6}{10^{2}} ; \quad 0.668=\frac{6}{10}+\frac{6}{10^{2}}+\frac{6}{10^{3}}
$$

and so on.
$0 . \dot{6}$ means the limiting sum of the series,

$$
\frac{6}{10}, \frac{6}{10^{2}}, \frac{6}{10^{3}}, \ldots .
$$

We know that there is a limiting sum, because the common ratio $\frac{1}{10}$ is loss than 1 .
\therefore the limiting sum $=\frac{\frac{9}{10}}{1-\frac{10}{10}}=\frac{6}{10} \div \%^{2}=\frac{2}{8}$.

$$
\therefore 0 \cdot \dot{6}=\frac{2}{3} \text {. }
$$

EXERCISE V.h

1. By using logarithms, find the least integral value of n for which (i) $3^{n}>1,000,000$; (ii) $\left(\frac{3}{4}\right)^{n}<0.0001$.
2. Express in decimals correct to 3 significant figures the sum of $1,2,3,4,5$ terms and the limiting sum of the series.
(i) $\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \ldots$;
(ii) $\frac{1}{2},-\frac{1}{6}, \frac{1}{8},-\frac{1}{18}$;
(iii) $\frac{1}{2}$, $\frac{1}{10},{ }_{6}^{2}, \ldots$;
(iv) $\frac{1}{2},-\frac{1}{6}, \frac{1}{1},-\frac{1}{6}, \ldots$.
3. By using logarithms, find approximately the difference between $\frac{a}{1-r}$ and $\frac{a\left(1-r^{n}\right)}{1-r}$, if
(i) $a=\frac{1}{2}, r=1.05, n=1000$; (see p. 76)
(ii) $a=10, r=0 \cdot 2, n=100$.
4. Find the least number of terms whose sum differs by less than 0.001 from the limiting sum, for the G.P., 12, 9, 64, \ldots.
Find the limiting sums of the following series in G.P.:
5. $12,4,1 \frac{1}{3}, \ldots$.
6. $12,8,5 \ddagger, \ldots$
7. $24,-12,6,-3, \ldots$.
8. $\frac{9}{10}, \frac{9}{100}, \frac{8}{100}, \ldots$.
9. $25,-15,9,-5 \cdot 4, \ldots$.
10. $1,(1.05)^{-1},(1.05)^{-2}, \ldots$.
11. Express as a vulgar fraction, (i) $0.2 \dot{7}$; (ii) $0.4 \dot{5}$.
12. How many terms of the series, $1, \frac{1}{1.04}, \frac{1}{(1.04)^{2}}, \ldots$, must be taken to give a sum which differs from the limiting sum by less than $0 \cdot 1$?
13. A pendulum is set swinging ; its first oscillation is through 18°, and each succeeding oscillation is $\frac{5}{8}$ of the one before it. What is the total angle through which it oscillates before it stops ?
14. The height of a tree was 45 feet; and it increased by 5 feet in the course of the next year. If in each succeeding year, the growth is $\frac{7}{8}$ of that in the previous year, find the limiting height.
15. An elastic ball, dropped from a height of 16 ft ., takes 1 sec . to reach the 'ground; the first bounce up and down takes $1 \frac{1}{2}$ sec., and each following one takes $\frac{s}{4}$ as long as the bounce before it. How long is it from the time the ball is dropped to when it stops bouncing?
16. (i) Use the formula on p. 75 to find what single payment on January lst, 1930 , will secure a payment of $£ 100$ a year on every succeeding January lst for ever, allowing 4 per cent. per annum compound interest ?
(ii) What is the annual simple interest on this lump sum at 4 per cent. per annum?
[For further general practice on series, see Appendix, Ex. F.P. 5, p. 157.]

EXERCISE V.j Miscellaneous Progressions

Sum the series in Nos. 1-12:

3. $2,-\frac{8}{2}, \frac{9}{8}, \ldots 9$ terms. $4 . \frac{8}{3}, \frac{9}{4}, \frac{17}{6}, \ldots 23$ terms.
5. 㝵, $-\frac{8}{8} \frac{8}{2} \frac{9}{2}, \ldots 10$ terms, to 2 places of decimals.
6. $2 \cdot 4,3 \cdot 2,4, \ldots 30$ terms.
7. $8,-4,2,-1, \ldots$ to ∞.
8. $\frac{1}{3},-\frac{1}{2}, \frac{4}{4}, \ldots 8$ terms.
9. $8,20,50, \ldots 7$ terms.
10. $2 \frac{1}{2},-1 \frac{1}{2}, \frac{5}{8}, \ldots 20$ terms, to 2 places of decimals.
11. $-7,-5 \frac{2}{3},-4 \frac{1}{3}, \ldots 21$ terms.
12. $1,-0.4,0.16, \ldots$ to ∞.
13. Evaluate $\frac{n-1}{n}+\frac{n-2}{n}+\frac{n-3}{n}+\ldots$ to n terms.
14. Evaluate $(a+x)^{2}+\left(a^{2}+x^{2}\right)+(a-x)^{2}+\ldots$ to n terms.
15. Insert 3 Arithmetic Means between 117 and 477.
16. Insert 2 Harmonic Means betweon 2 and 4.
17. The sum of 11 terms of an A.P. is 22 and the common difference is ${ }^{3}$. Find the first term.
18. Find the sum of the first n terms of an A.P. whose p th: term is a and q th term is b.
19. A contractor undertakes to bore a well at 30 s . for the first 10 feet, 35 s . for the next 10 feet, 40 s . for the next 10 feet, and so on. What is the depth of a well that costs $£ 105$?
20. How many terms must be taken of a G.P. whose first term is 1.5 and common ratio 0.5 in order that their sum may differ from 3 by less than 0.0001 ?
24. The first term of an A.P. is 24 and the third term is 4 , how many terms are required to give a sum of 20 ?
22. A clerk is engaged at a salary of $£ 120$ a year, to be incroased f12 a year at the end of each year. He saves one-quarter of his salary every year ; find the total saved at the end of 10 years.
D.S.A.
23. The third and fourth terms of an A.P. are 15 and $13 \frac{1}{2}$; how many terms will make the sum zero?
24. Find the sum of all integral powers of 2 between 100 and $1,000,000$. Give the answer in index form.
25. $£ 500$ is invested at 5 per cent. per annum compound interest. After how many complete years will the amount firist exceed.f700?
26. Find to the nearest $£$ the present value of an annuity of £60 a year for 25 years at 5 per cent. per annum compound interest, the first payment being made in I year's time.
[For alditional examples on series, see Appendix, Ex. T. 5, p. 172.]

TEST PAPERS C. 11-20

C. 11

1. Simplify (i) $8^{-\frac{2}{5}}+4^{-1}-6^{-1}$; (ii) $10^{0}-10^{-1}$;

$$
\text { (iii) } 3 x^{\frac{1}{3} y^{\frac{2}{2}} \times\left(3 x^{-\frac{1}{5}} y\right)^{-2} .}
$$

2. Given $\log 2 \bumpeq 0-3010$, find, without using tables, approximate values of $\log 8, \log 5, \log 3 \cdot 2$. (Base 10.)
3. Solve
(i) $4 \cdot 7^{x}=17 \cdot 2$;
(ii) $y-6 \sqrt{ } y=16$.
4. What is (i) the number of terms, (ii) the sum of the following series: 23, 29, 35, 41, 47, , 125 ?
Prove that if n is any pusitive integer, $10^{n}+1$ belongs to this A.P.
5. A man and a boy pace a distance of 60 yards together. The boy's paces are 6 inches shorter than the man's, and he takes 12 more paces for the distance. What is the length of the boy's pace?
C. 12
6. Simplify (i) $9^{2 n} \div 3^{n}$; (ii) $4^{p} \cdot 5^{2} \cdot 10^{p-q}$.
7. Express in their simplest forms, using positive indices only :
(i) $\left(16 a^{-4} b^{2}\right)^{-\frac{1}{2}}$;
(ii) $\frac{\sqrt[3]{ }\left(x^{1} y^{-4}\right)}{\sqrt{ }\left(x^{8} y^{\frac{5}{5}}\right)}$.
8. Simplify $\begin{array}{ll}\text { (i) } \log 14+2 \log 2-\log 8 \text {; } & \text { (ii) } \log 125 \div \log 5 \\ \text { (iii) } \log _{2} 16 \text {; } & \text { (iv) } \log _{2} 8 \times \log _{8} 2\end{array}$
9. Sum the series:
(i) $2+4 \frac{1}{2}+7+9 \frac{1}{2}+\ldots 20$ terms ;
(ii) $14+11+8+5+\ldots 10$ terms.
10. How many terms of the G.P., 7, $3 \frac{1}{2}, 1 \frac{7}{3}, \frac{7}{8}, \ldots$, must be taken, in order that the sum may differ from 14 by less than 0.01 ?
C. 13
11. Simplify (i) $a^{\frac{7}{3}} \times a^{\frac{7}{6}} \div a^{\frac{1}{2}}$; \quad (ii) $\left(\frac{4}{4}\right)^{-\frac{1}{2}} \times\left(\frac{8}{5}\right)^{-\frac{3}{3}}$.
12. What is x if, for base 10 ,
(i) $\log x=1+\log 7$;
(ii) $\log x=2-\log 4$;
(iii) $\log \sqrt{ } x=3$;
(iv) $\log x=3 \log 2-2 \log 3$?
13. Sum the series:
(i) $3+6+9+12+\ldots, 30$ terms ;
(ii) $3+6+12+24+\ldots, 30$ terms.

Use logarithms to evaluate the sum of (ii) correct to 2 figures.
4. If $v \infty l^{3}$ and $a \times l^{2}$, find the variation relation between v and a.

What is the percentage increase in v when a increases by 21 per cent.
5. The 1st, 4th and 8th terms of an A.P. are in G.P., and the lst term is 9 . Find the 2nd term of the A.P. and the common ratio of the G.P.
C. 14

1. Simplify (i) $64^{\frac{1}{3}} \times\left(\frac{4}{f}\right)^{-2} \times 5^{0} \times 9^{-\frac{1}{2}}$; (ii) $4^{m} \times 6^{m-n} \div 12^{m-n}$.
2. Write down the logarithms to base 9 of
(i) 81 ; (ii) 3 ; (iii) 27 ; (iv) $\frac{1}{4}$; (v) 27^{n}.
3. (i) Multiply $a^{\frac{1}{3}}+\sqrt{ } 3+2 a^{-\frac{1}{2}}$ by $a^{\frac{1}{2}}-\sqrt{ } 3+2 a^{-\frac{1}{3}}$.
(ii) Solve $\bar{x}=7 x^{\frac{1}{2}}+18$.
4. (i) Find the sum to 16 terms of $100+90+80+70+\ldots$;
(ii) Find the limit sum of the G.P., $100+90+81+\ldots$.
5. A boat's crew make their boat travel 10 yards for every stroke they take. In travelling 1600 yards, they can reduce the time taken by 20 seconds if they increase their rate of stroke by 2 per minute without decreasing the length travelled per stroke. How many strokes do they take per minute at the faster speed?

C. 15

1. Simplify (i) $\left(x^{3} y^{-1}\right)^{-2} \times\left(x^{-1} y^{-2}\right)^{-1}$;
(ii) $(2 \sqrt{ } 6+5 \sqrt{ } 2)^{2}-(2 \sqrt{ } 6-5 \sqrt{ } 2)^{2}$.
2. (i) Simplify $\log 2 \div \log 0.5$;
(ii) Find to 3 figures the value of x, if $2^{x+2}=3^{x}$.
3. (i) Make y the subject of the formula, $\log _{10} x+2 \log _{10} y=6$;
(ii) Solve $x+y=2, x^{2}+4 y=2 y^{2}$.
4. Sum to $2 n$ terms, n being an integer,
(i) $(a-1)+(3 a-2)+(5 a-3)+(7 a-4)+\ldots$.
(ii) $(1+1)+b(b-c)+b^{2}\left(b^{2}+c^{2}\right)+b^{2}\left(b^{3}-c^{3}\right)+\ldots$.
5. A bell dropped from a height of 6 ft . bounces to a height of 4 ft . after its first impact, and in each successive bounce rises to two-thirds of the height of the previous bounce. How far does it travel altogether before it finally comes to rest :

C. 16

1. Simplify (i) $\frac{12 \times 18^{n}}{8^{2 n+1} \times(0.5)^{n}}$; (ii) $\log \frac{p}{q}+\log \frac{q}{p}$.
2. (i) Expand $\left(x^{\frac{1}{2}}+x^{\frac{1}{3}}\right)\left(x^{\frac{1}{3}}-1\right)$.
(ii) Divide $2 a+3 a^{\frac{1}{2}} b^{-1}+b^{-2}$ by $a^{\frac{1}{2}}+b^{-1}$.
3. (i) If $2 \log a-\log b=\log c$, find a in terms of b, c.
(ii) Evaluate $\log _{3} 36-2 \log _{3} 2$.
4. Prove that $\frac{401+403+405+\ldots+499}{1+3+5+\ldots+99}=9$, and show that $(101+103+105+\ldots+199)$ is a geometric mean between the numerator and the denominator.
5. If two unequal weights connected by a light string are hung over a smooth pulley, the tension in the string during the motion is equal to the harmonic mean between the weights. What is the tension when the weights are (i) 4 lb . and 6 lb ., (ii) $(P+Q) \mathrm{lb}$. and ($\mathrm{P}-\mathrm{Q}$) lb. ?

$$
\text { c. } 17
$$

1. Simplify (i) $\left(a^{-\frac{1}{2}} b^{\frac{4}{4}}\right)^{-2}$;
(ii) $\frac{\sqrt{ } 6+\sqrt{ } 2}{\sqrt{ } 3-1}$.
(iii) $\log a b+\log b c-\log c a$; (iv) $\log \frac{1}{4} \div \log \frac{y}{3}$.
2. Evaluate to 3 figures $\log _{2} 5$ and $\log _{6} 2$. What is the connection between their values !
3. Given that $x^{\frac{8}{8} y^{\frac{1}{2}} z^{-t}}=0.35$, express x in the form $\mathrm{Cy}^{\mathrm{y}} \mathrm{z}^{\mathrm{a}}$, giving c correct to 2 figures.

Find to 2 figures the value of x if $y=16$ and $z=32$.
4. How many terms of the G.P. $2,3,4 \frac{1}{2}, \ldots$ must be taken to obtain a sum exceeding 10,000 ?
5. The sum of n terms of an A.P. is $5 n^{2}-11 n$ for all values of n. (i) What is the common difference ? (ii) What is the sum of $2 n$ terms?

C. 18

1. Find to 3 figures the value of $\frac{(0.4678)^{2}}{(3.592)^{2}-(0.592)^{2}}$

(ii) $\left(\log a^{x}-\log a^{y}\right) \div\left(\log c^{p}-\log a^{8}\right)$.
2. Write the following without using logarithmic notation :
(i) $\log _{2} x+3 \log _{3} y=4$;
(ii) $\log _{9} x-\frac{1}{3} \log , y=\frac{1}{2}$.
3. There are 50 houses on one side of a street and the distance between each door and the next is 6 yards. A stupid coster leaves his barrow opposite house No. 1, and visits each house in turn, returning to his barrow between each visit. How far does he walk altogether ?
4. The Geometric Mean of two numbers p and q is 6 and their Harmonic Mean is 3.6. Find the values of p, q. Find also the nth term of the H.P. whose first 3 terms are $p, 3 \cdot 6, q$. [Two answers.]

C. 19

1. Find the value of x if
(i) $2^{x} \times 4^{2 x-1}=8^{x}$; (ii) $(\sqrt{ } 3)^{x}=\frac{1}{27^{x-1}}$; (iii) $(\sqrt{ } 3)^{x}=2^{x-1}$.
2. Simplify (i) $\left(3 a^{\frac{1}{2}} b^{\frac{1}{3}} c^{\frac{1}{4}}\right)^{2} \times(2 a b c)^{-\frac{1}{2}} \div \sqrt[8]{(8 b)}$;
(ii) $\sqrt{ }(42-24 \sqrt{ } 3)$.
3. (i) If $2 \cdot 37 v^{1.6}=14 \cdot 8$, find the value of $\log _{10} v$.
(ii) Find x if $\log x \cdot \log 27=\log 8 . \log 9$.
4. The first term of a series is 6 and the second term is 8. Find its nth term supposing that the series is (i) an A.P., (ii) a G.P., (iii) an H.P.

Sum to n terms the series :

$$
\log 8+\log 12+\log 18+\log 27+\ldots
$$

5. The maximum velocity attainable by a car varies directly as its horse-power and inversely as the resistance. The resistance varies directly as the square of the velocity. Find how the velocity varies with the horse-power.

What is the percentage increase in the velocity if the horse. power is increased by 40 per cent. ?

C. 20

1. Find to 3 figures the value of
(i) $\log _{2} 17$; (ii) $2^{-1 \cdot 27}$; (iii) $10^{\log _{10} 3}$.
2. Simplify
(i) $\frac{a^{3}}{(a+b)^{\frac{1}{2}}}-\frac{a^{2}}{(a+b)^{-\frac{1}{2}}}$;
(ii) $\log \left(\log c^{9}\right)-\log \left(\log c^{3}\right)$.
3. Solve (i) $5^{x} \times 6^{x+2}=8^{3 x+1}$ (to 3 figures).
(ii) $\sqrt{ }(x+y)+\sqrt{ }(x-y)=\sqrt{ }(2 x), x-y=4$.
4. A man saves $\mathfrak{f 3 0 0}$ every year. If he is able to invest his savings at the end of each year at 4 per cent. compound interest, how much will he have saved at the end of 20 years?
5. An island had at a certain period a population of 200,000 ; and the population was increasing in G.P., the common ratio being 1.05 for 5 -yearly intervals. The island was at this time producing food for 300,000 persons, and its produce was increasing in A.P. at 4000 units per year, the unit being 1 year's supply for one person, any surplus food being exported each year. Show that the island is still self-supporting after 155 years, but after 160 years will have ceased to be so.
[For additional test papers, see Appendix, Z. 11-20, p. 188.]

CHAPTER VI

RATIO AND PROPORTION

The meaning and use of Ratio is one of the fundamental features of Arithmetic and enters into all geometrical problems which involve the idea of similarity.

If x and y are any two numbers, the ratio of x to y is measured by the fraction $\frac{x}{y}$ and is often written $x: y$; it represents the comparison between the two numbers. In the same way, two quantities can be compared with one another, if they are of the same kind. Thus the ratio of a feet to b yards is found by expressing each length in the same unit ; the two lengths are $\frac{a}{3} \mathrm{yd}$. and b yd., or $a \mathrm{ft}$. and $3 b \mathrm{ft}$., or $12 a \mathrm{in}$. and $36 b \mathrm{in}$.; their ratio is represented by any one of the equal fractions, $\frac{\overline{3}}{\frac{a}{3}}$ or $\frac{a}{3 b^{-}}$or $\frac{12 a}{36 b^{\circ}}$.

Two quantities of different kinds cannot be compared ; there is no ratio between, say, 6 shillings and 8 hours.

The following notation is used for comparing three or more numbers with each other.

If x, y, z are three numbers, the relation

$$
x: y: z=7: 3: 15
$$

means that $\frac{x}{y}=\frac{7}{3}$ and $\frac{y}{z}=\frac{3}{15}$, and so $\frac{x}{z}=\frac{7}{15}$. This is also written in the form, $\frac{x}{7}=\frac{y}{3}=\frac{z}{15}$.

Similarly, $x: y: z: v: w=a: b: c: d: e$ means that

$$
\frac{x}{y}=\frac{a}{b}, \frac{y}{z}=\frac{b}{c}, \frac{z}{v}=\frac{c}{d}, \frac{v}{w}=\frac{d}{e}
$$

and so $\frac{v}{x}=\frac{d}{a}$, etc.; this is slso written, $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{v}{d}=\frac{w}{e}$.

Example 1. If $a: b=11: 5$, find the ratio $(3 a-5 b):(a+5 b)$.
We may use either of the following methods:
(i)

$$
\begin{aligned}
& \frac{3 a-5 b}{a+5 b}=\frac{\frac{3 a}{b}-5}{a}+5 \\
& \frac{33}{5}-5 \\
&=\frac{8}{5} \div \frac{36}{5}=\frac{8}{36}=\frac{2}{9} .
\end{aligned}
$$

(ii) Any two numbers in the ratio $11: 5$ can be expressed in the form $11 n$ and $5 n$. Put $a=11 n$, then $b=5 n$.

$$
\therefore \frac{3 a-5 b}{a+5 b}=\frac{33 n-20 n}{11 n+25 n}=\frac{8 n}{36 n}=\frac{2}{9} .
$$

Example 2. If $x: y=4: 5$ and $y: z=3: 7$, compare together x, y, z and find the ratio $(x+2 y): 3 z$.

$$
\begin{gathered}
\frac{x}{4}=\frac{y}{5} \text { and } \frac{y}{3}=\frac{z}{7} ; \\
\therefore \frac{x}{12}=\frac{y}{15} \text { and } \frac{y}{15}=\frac{z}{35} ; \\
\therefore \frac{x}{12}=\frac{y}{15}=\frac{z}{35} .
\end{gathered}
$$

$$
\therefore x: y: z=12: 15: 35 .
$$

Next, put $x=12 n$, then $y=15 n$ and $z=35 n$;

$$
\therefore \frac{x+2 y}{3 z}=\frac{12 n+30 n}{3 \times 35 n}=\frac{42 n}{3 \times 35 n}=\frac{2}{5} .
$$

EXERCISE VI.a

1. What is the ratio of
(i) $18 x$ shillings to $£(3 x)$;
(ii) $2 b$ hours to 16 c minutes;
(iii) y^{2} sq. in. to z^{2} sq. ft.;
(iv) $8 a^{3} \mathrm{cu}$. in. to $b^{3} \mathrm{cu}$, ft . ?
2. If $a: b=3: 5$ and $c: d=2: 5$, find the following ratios:
(i) $a^{2}: b^{2}$;
(ii) $\frac{1}{a}: \frac{1}{b}$;
(iii) $a c: b d$;
(iv) $a d$: $b c$;
(v) $a^{5}: b^{3}$;
(vi) $\frac{a}{c}: \frac{b}{d}$.
3. Two numbers are in the ratio $a: b$. The first is n, what is the second ? The second is k, what is the first?
4. Find the ratio of $x: y$,
(i) if $2 x=3 y$;
(ii) if $4 x^{8}=9 y^{2}$;
(iii) if $7 x-2 y=x+7 y$;
(iv) if $x=y+\frac{1}{2} y$;
(v) if x exceeds y by r per cent.
5. Compare together x, y, z
(i) if $x: y=10: 21$ and $y: z=28: 9$; (ii) if $x=3 y$ and $y=5 z$.
6. If $x: y=5: 3$, find the following ratios:
(i) $\frac{x-y}{x+y}$;
(ii) $\frac{3 x-y}{x+3 y}$;
(iii) $\frac{x^{2}+y^{3}}{x^{2}-y^{2}}$.
7. If $x: y: z=6: 10: 15$, find the following ratios:
(i) $\frac{x}{y+z}$;
(ii) $\frac{x+y}{y+2 z}$;
(iii) $\frac{3 y-x}{x+2 y+2 z}$.
8. The ratio of the radii of two spheres is $2: 5$. What is the ratio of (i) the areas of their surfaces, (ii) their volumes ?
9. The ratio of the heights of two circular cylinders is $3: 4$, and the ratio of their diameters is $4: 5$. What is the ratio of their volumes ?
10. The time of oscillation of a pendulum of length l feet is $1 \cdot 11 \sqrt{ } l$ seconds. The length of a pendulum is increased from 2.4 feet to 15 feet; in what ratio is the time of oscillation altered?
11. With the data of No. 10, find the ratio in which the length of a pendulum must be altered to increase the time of oscillation by 10 per cent.
12. A river stearner takes 60 per cent. longer to make a journey up-stream than to go the same distance down-stream. Compare the speed of the steamer in still water with the rate of the current.
13. If $p v=30$, find the ratio in which v alters when p is increased in the ratio $9: 4$.
14. Find the ratio in which the following expressions are altered if x and y aro each increased in the ratio $3: 2$.
(i) $\frac{x}{y}$;
(ii) $\frac{x^{2}}{y^{2}}$;
(iii) $\frac{x+y}{x-y}$;
(iv) $x+2 y$;
(v) $\frac{x^{2}}{y}$;
(vi) $\frac{x^{3}}{y^{2}}$;
(vii) $\frac{x^{2}-y^{2}}{x y}$;
(viii) $\frac{x^{2} y^{3}}{2 x^{3}+3 y^{3}}$.
15. Find the two possible values of the ratio of $x: y$ if (i) $x^{2}-7 x y+12 y^{2}=0$; (ii) $6 x^{2}+11 x y=10 y^{2}$.
16. What is the ratio of $a: b$ if $\left(\frac{a+3 b}{a-2 b}\right)^{2}=9$.
17. If $\frac{x+5 y}{3 x+y}=\frac{4}{3}$, find the ratio $\frac{2 x+3 y}{x-2 y}$.
18. If $4 x-2 y-7 z=0$ and $3 x+8 y-29 z=0$, prove that $x=3 z$ and find the ratio $y: z$.
19. If $3 x=y+2 z$ and $4 z=2 x+y$, find the value of $\frac{x^{2}+z^{2}}{x y}$.
20. If $3 x-2 y+4 z=x+2 y-3 z=0$, find the ratios $x: y: z$.
21. The sides of an isosceles triangle are in the ratip $p: q: p$, and the perimeter is $2 s$ in.; find the length of the base.
22. If $(a+b):(b+c):(c+a)=17: 18: 25$, prove that the triangle whose sidos are of lengths a, b, c is right-angled.

Propartion. If $\frac{a}{b}$ and $\frac{c}{d}$ are equal ratios, the numbers a, b, c, d are said to be in proportion; and d is called the fourth proportional to a, b, c.
If $\frac{a}{b}=\frac{b}{c}, c$ is called the third proportional to a, b; and b is called the mean proportional between a and c, therefore the mean proportional between two numbers is their geometric mean.

If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\ldots$, the numbers a, b, c, d, e, \ldots are said to be in continued proportion; therefore numbers in continued proportion are successive terms of a G.P., and may be expressed in the form $a, a r, a r^{2}, a r^{3}, \ldots$.
Equal Ratios. If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$; hence we have also $\frac{a}{c}=\frac{b}{d}$. Again, if $\frac{a}{b}=\frac{c}{d}$, then $\frac{a}{b}+1=\frac{c}{d}+1$;

$$
\therefore \frac{a+b}{b}=\frac{c+d}{d} ;
$$

also

$$
\begin{gathered}
\frac{b}{a}=\frac{d}{c} ; \quad \therefore \frac{b}{a}+1=\frac{d}{c}+1 ; \\
\therefore \frac{a+b}{a}=\frac{c+d}{c} .
\end{gathered}
$$

These results have important geometrical interpretations.
If in Fig. $6, P Q$ is parallel to $Y Z$, we know that $\frac{X P}{P Y}=\frac{X Q}{Q Z}$.

Pra. 6.

Hence we have $\frac{X P+P Y}{P Y}=\frac{X Q+Q Z}{Q Z}$, that is, $\frac{X Y}{P Y}=\frac{X Z}{Q Z}$;
also

$$
\frac{X P+P Y}{X P}=\frac{X Q+Q Z}{X Q} \text {, that is, } \frac{X Y}{X P}=\frac{X Z}{X Q} \text {. }
$$

These results are all special cases of the general statement that if $\frac{a}{b}$ and $\frac{c}{d}$ are equal ratios, any expression involving a and b, which can be expressed as a function of $\frac{a}{b}$ only, is equal to the corresponding expression involving c and d.

Thus

$$
\frac{a+b}{a-b}=\frac{a}{\frac{b}{a}+1}=\frac{\frac{c}{d}+1}{\frac{c}{d}-1}=\frac{c+d}{c-d} .
$$

Proofs of such results are often put in the following form :
If $\frac{a}{b}=\frac{c}{d}$, let each ratio $=k$.
Then $\frac{a}{b}=k$ gives $a=b k ; ~ \frac{c}{d}=k$ gives $c=d k$.

$$
\therefore \frac{a+b}{a-b}=\frac{b k+b}{b k-b}=\frac{b(k+1)}{b(k-1)}=\frac{k+1}{k-1} ;
$$

and similarly $\quad \frac{c+d}{c-d}=\frac{d k+d}{d k-d}=\frac{k+1}{k-1}$;

$$
\therefore \frac{a+b}{a-b}=\frac{c+d}{c-d} \text {. }
$$

The chief property of equal ratios is as follows:
If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots$, then each ratio $=\frac{p a+q c+r e+\ldots}{p b+q d+r f+\ldots .}$.
Let each ratio $=k$.

$$
\begin{aligned}
& \therefore a=b k, c=d k, e=f k, \ldots . \\
& \begin{aligned}
\therefore \frac{p a+q c+r e+\ldots}{\bar{p} b+q d+r f+\ldots} & =\frac{p b k+q d k+r f k+\ldots}{p \bar{b}+\bar{d}+r f+\ldots} \\
& =\frac{k(p b+q d+r f+\ldots)}{p b+q d+r f+\ldots} \\
& =k .
\end{aligned}
\end{aligned}
$$

Example 3. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, prove that

$$
\left.\frac{2 a-3 c}{2 b-3 d}=\sqrt{\left(\frac{a^{2}+5 c^{2}-3 a e}{b^{2}+5 d^{2}-3 b f}\right.}\right)
$$

Let each of the ratios $\frac{a}{b}, \frac{c}{d}, \frac{e}{f}$ equal k.

$$
\begin{aligned}
\therefore a & =b k, \quad c=d k, \quad e=f k ; \\
\therefore \text { left side } & =\frac{2 b k-3 d k}{2 b-3 d}=\frac{k(2 b-3 d)}{2 b-3 d}=k ; \\
\text { and } \quad \text { right side } & =\sqrt{\left(\frac{b^{2} k^{2}+5 d^{2} k^{2}-3 b f k^{2}}{b^{2}+5 d^{2}-3 b f}\right)} \\
& =\sqrt{ }\left(k^{2}\right)=k=\text { left side. }
\end{aligned}
$$

EXERCISE VI. b

1. If $\frac{a}{b}$ and $\frac{c}{d}$ are unequal ratios, and if a, b, c, d are positive, it can be proved that $\frac{a+c}{b+d}$ lies between $\frac{a}{b}$ and $\frac{c}{d}$. Verify this statement for the ratios $\frac{2}{3}$ and $\frac{3}{4}$.
2. If $a=8, b=12, c=10, d=15$, write down the values of
(i) $\frac{a}{b}$ and $\frac{c}{d}$;
(ii) $\frac{a+b}{a-b}$ and $\frac{c+d}{c-d}$;
(iii) $\frac{a+b}{c+d}$;
(iv) $\frac{a c}{b d}$;
(v) $\frac{a^{2}+c^{2}}{b^{2}+d^{2}}$;
(vi) $\frac{7 a^{3}-c^{3}}{7 b^{2}-d^{2}}$.
3. Express $\frac{5 a-7 b}{2 a+3 b}$ as a function of $\frac{a}{b}$ only. If also $\frac{a}{b}=\frac{c}{d}$, express it in terms of c and d.
4. If $\frac{a}{b}=\frac{3}{5}$, find the values of (i) $\frac{a+b}{b}$; (ii) $\frac{a-b}{a}$; (iii) $\frac{a+3 b}{3 a-b}$.
5. Find the value of $\frac{x-y}{x+y}$ if (i) $\frac{x}{y}=\frac{7}{3}$; (ii) $\frac{x}{9}=\frac{y}{7}$; (iii) $11 x=5 y$.
6. Find numerical values for x, y, z if

$$
\frac{a}{10}=\frac{b}{9}=\frac{a-b}{x}=\frac{a+b}{y}=\frac{3 a-2 b}{3}
$$

7. Express $\frac{2 a^{2}-3 a b+b^{2}}{a^{2}+5 b^{2}}$ as a function of $\frac{a}{b}$ only. What is its value if (i) $\frac{a}{b}=2$; (ii) $\frac{a}{5}=\frac{b}{2}$? If $\frac{a}{b}=\frac{c}{d}$, express the fraction in terms of c and d.
8. Find numerical values for x, y, if

$$
\frac{a}{6}=\frac{b}{8}=\frac{c}{9}=\frac{a+b-c}{x}=\frac{3 a-b-c}{y}
$$

Also write down the value of $\frac{a-b}{b-c}$.
9. If $8 x=9 y=15 z$, find the 3 smallest integers to which x, y, z are proportional.
10. Find the fourth proportional to

$$
\begin{array}{lll}
\text { (i) } 10,15,24 ; & \text { (ii) } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \text {; } & \text { (iii) } a b, b c, c a .
\end{array}
$$

11. Find the third proportional to
(i) 8,12 ;
(ii) $\frac{1}{4}, \frac{1}{6}$;
(iii) $a, \frac{1}{a}$.
12. Find the mean proportional between
(i) 8,18 ; \quad (ii) $a^{3}, a b^{2}$.
13. Complete the relations,

$$
\frac{x+y}{15}=\frac{x-y}{7}=\frac{2 x}{}=2 y
$$

14. Complete the relations,

$$
\frac{x+y+z}{20}=\frac{x+y-z}{14}=\frac{x-y+z}{11}=\frac{2 x}{11}=\frac{2 y}{=}=\frac{2 x}{}
$$

then write down the proportion, $x: y: z$.
15. If $\frac{x+y}{20}=\frac{x-y+z}{11}=\frac{x+y-z}{5}$, find $x: y: z$.
16. If $\frac{a}{b}=\frac{c}{d}$, prove that $\frac{3 a-c}{3 b-d}=\frac{a+5 c}{b+5 d}$.
17. If $\frac{a}{b}=\frac{c}{d^{\prime}}$, prove that $\frac{a^{2}}{a^{2}-b^{2}}=\frac{c^{2}}{c^{2}-d^{2}}$,
18. If $\frac{a}{b}=\frac{c}{d}$, prove that $\frac{a \dot{+} b-c-d}{b-d}=\frac{a+b}{b}$.
19. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, prove that $\frac{a^{3}-c^{3}}{b^{2}-d^{3}}=\left(\frac{c+e}{d+f}\right)^{2}$.
20. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, complete the following relations,
(i) $\frac{a}{b}=\frac{a-c+e}{}=\overline{f-b-d}=\frac{a x-e y}{}$;
(ii) $\frac{a}{2}_{b^{2}}=\frac{c e}{}=\frac{}{(f-b)(f-d)}$.
21. If $\frac{a}{b}=\frac{b}{c}$, prove that $\frac{a^{2}+b^{2}}{(a+c)^{2}}=\frac{b^{2}}{b^{2}+c^{2}}$.
22. If $\frac{a}{b}=\frac{b}{c}$, prove that $\frac{a^{2}+a b+b^{2}}{a}=\frac{b^{2}+b c+c^{2}}{c}$.
23. If $\frac{a}{b}=\frac{b}{c}$, prove that $\frac{a-b}{b-c}=\sqrt{ }\left(\frac{a}{c}\right)$.
24. If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, prove that $\frac{a b+b c+c a}{b c+c d+d b}=\left(\frac{a}{d}\right)^{\frac{z}{2}}$.
25. If $a: b: c=p q: p^{2}: q r$, express $p: q: r$ in terms of a, b, c.
[For further practice, see Appendix, Ex. F.P. 6, p. 158. For a revision exercise on Ch. V-VI, see Appendix, Ex. W. 3, p. 149.]

CHAPTER VII

GRAPHICAL FORMS

Graphs of Related Functions

Graphs of some of the simpler algebraic functions have been drawn so frequently that their forms and shapes are now familiar; but it is useful to summarise the chief features. The following exercise is therefore intended for class-discussion, and it is suggested that sketches of groups of allied graphs given in the exorciso should be shown on the blackboard.

Exercise VII. 2

The Linear Function

1. Without making a table of values, draw rapidly on squared paper freehand graphs of

$$
y=x, y=2 x, y=\frac{1}{5} x, y=-x, y=-3 x, y=-\frac{1}{3} x
$$

(a) What property is common to all of these graphs?
(b) What function is represented by a straight line through the origin with slope $\frac{1}{2}$? with slope -2 ?
(c) What is the graph of $y=m x$ where m is any given constant ?
2. Draw on squared paper a freehand graph of $y=2 x$. Without making a table of values, draw in the same figure the graph of $y=2 x+1$. Then add the graphs of

$$
y=2 x-1, y=2 x+3, y=2 x-4
$$

(a) What property is common to all of these graphs?
(b) How far from 0 do these graphs cut the y-axis ?
3. Without making a table of values, draw on squared paper freehand graphs of the following :
(i) $y=\frac{1}{2} x+2$ and $y=\frac{1}{2} x-3$;
(ii) $y=-\frac{4}{8} x+3$ and $y=-\frac{4}{8} x-2$.
4. State in words the method for drawing the graph of $y=m x+c$ where m and c are any given constants.

If the graph is given, how can you tell at a glance (i) whether m is + or - , (ii) whether c is + or - ?
[Lines may be drawn on a squared blackboard to represent given graphs and the following questions asked: (a) What is the slope? (b) Through what distance, measured parallel to Oy, must
the line be moved to make it pass through the origin ? (c) What function of x does it represent ?]

The Quadratic Function

5. Draw carefully on squared paper the graph of $y=x^{2}$ for values of x from.-3 to +3 , with the origin in the middle of the paper.,

Use this graph to draw, without making any further table of valıes, freehand graphs of

$$
y=2 x^{2}, y=\frac{1}{2} x^{2}, y=-x^{2}, y=-\frac{1}{2} x^{2}, y=-2 x^{2} .
$$

(a) Which of these graphs have a lowest point ? "Head down."
(b) Which of these graphs have a highest point ! "Head up."
6. Draw carefully on squared paper the graph of $y=2 x^{2}$ for values of x from -3 to +3 . Use this graph to draw rapidly freehand graphs of $y=2 x^{2}+5, y=2 x^{2}-10$; are they "head up" or "head down"?
7. Show in one table the values of $x^{2},(x+2)^{2},(x-1)^{2}$ for $x=4,3,2,1,0,-1,-2,-3,-4$.

Draw carofully tho graph of $y=x^{2}$ from $x=4$ to $x=-4$ and then cut it out.
(a) In what position must you hold it to show the graph of
(i) $y=(x+2)^{2}$;
(ii) $y=(x-1)^{2}$?
(b) How must you hold it to show the graph of
(i) $y=-x^{2}$;
(ii) $y=-(x+1)^{2}$;
(iii) $y=-(x-2)^{2}$?
(c) How must you hold it to show the graph of
(i) $y=(x+2)^{2}+5$; (ii) $y=(x+2)^{2}-10$;
(iii) $y=-(x+1)^{2}+10$; (iv) $y=-(x+1)^{2}-5$?
8. Fig. 7 shows the graph of $y=x^{2}$ in various positions. What functions of x do these graphs represent ?

Fig. 7.
9. Hold the book upside down and suppose the arrows showing the directions of OX, OY in Fig. 7 to be reversed. What functions of x do these graphs now represent ?
10. Any quadratic function can be expressed in the form $a(x+b)^{2}+c$, where a, b, c are constants.
(i) What is the condition that its graph is "head up"? " head down"?
(ii) How can you find the position of the "head" of the graph ?
11. By making a table of values, discover the connection between the graphs of $y=x(x-1)$ and $y=(x-3)(x-4)$.
12. Draw the graphs of $y=x^{2}+2 x+3$ and $y=x^{2}-2 x-1$. Verify from the drawing that the two graphs are exactly equal curves, and prove algebraically that each is an equal curve to the graph of $y=x^{2}$.

Other Functions

13. Draw carefully the graph of $y=x^{3}$ for values of x from -3 to 3. Sketch in the same figure the graphs of $y=\frac{1}{2} x^{3}$ and $y=-x^{3}$.
14. Without making a table of values, sketch the graphs of $y=x^{4}$ and $y=x^{4}+10$.
15. What is the connection between the following pairs of graphs ?
(i) $y=x^{2} ; x=y^{2}$.
(ii) $y=x^{2} ; y= \pm \sqrt{ } x$.
(iii) $y=x^{3}$; $x=y^{3}$.
(iv) $y=x^{3} ; y=\sqrt[3]{x}$.
(v) $y=10^{x} ; x=10^{y}$.
(vi) $y=10^{x} ; y=\log x$.

Graphs with Missing Points

If we are given the formula

$$
x y=6
$$

we can make a table of values showing the values of y for selected values of x.
Thus, if $x=3, y=2$; if $x=\frac{1}{10}, y=60$; if $x=-2, y=-3$; if $x=-\frac{1}{b}, y=-30$; etc.

But it is impossible to suppose that $x=0$, because $0 \times y=0$ and so cannot equal 6.

There is a break in the table of values at $x=0$.
If $x y=6, y=\frac{6}{x}$ unless $x=0$; if $x y=6$, we know that x cannot equal 0 ; therefore there is no such number as $\frac{6}{0}$; the expression ${ }_{6}^{6}$ has no meaning.
D. $\mathbf{s}^{\text {sin }}$.

The table of values for the formula, $x y=6$, may be arranged as follows :

x	-4	-3	-2	-1	- $\frac{1}{2}$	$-\frac{1}{10}$	0	1\%	$\frac{1}{2}$		2	3	4
$y=\frac{6}{x}$	-, 1-5	-2	-3	-6	-12	-60	*	60	12	6	3		1.5

The symbol * is inserted in the table where $x=0$ to show that there is no value for y or $\frac{6}{x}$ when $x=0$; it marks the place where there is a missing point or break in the graph. Points on one side of the break cannot be joined to points on the other side of the break, when the graph is drawn.

Fig. 8 shows points obtained by plotting some of the values in the table, given above, and the corresponding portion of the

Fig. 8.
graph. The other values in the table show how the graph runs for small posivive values of x, that is, to the right of the break, and for small negative values of x, that is, to the left of the break.

The reader should now draw the graph of $y=\frac{6}{x}$ on a large sheet of paper and show as much of the graph as the size of the paper allows.
If $x y=6$, we can give y any value except $y=0$; it is impossible to suppose that $y=0$, bocause $x \times 0=0$ and so cannot equal 6 ; this means that if we make a table of values showing the values of x for solected values of y, there will be a missing value in the table at $y=0$, and a corresponding break in the graph. Points above the x-axis, where y is positive, cannot be joined to points below the x-axis, where y is negative, when the graph is drawn ; see Fig. 8.

Example 1. Represent graphically the formula,

$$
(y-1)(x-2)=3,
$$

and solve the simultaneous equations,

$$
(y-1)(x-2)=3,8 x-10 y=15
$$

From the formula, $(y-1)(x-2)=3$, we can calculate values of y for any selected values of x, except $x=2$. If $x=2,(y-1)(x-2)=0$ and so cannot equal 3. There is a break in the graph at $x=2$.

Before obtaining a table of values, make y the subject of the formula.

Divide each side by $x-2, \quad \therefore y-1=\frac{3}{x-2}$;

$$
\therefore y=\frac{3}{x-2}+1
$$

x	-4	-2	-1	0	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	4	5	6
$x-2$	-6	-4	-3	-2	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2	3	4
$\frac{3}{x-2}$	-0.5	-0.75	-1	-1.5	-3	-6	$*$	6	3	1.5	1	0.75
$y=\frac{3}{x-2}+1$	0.5	0.25	0	-0.5	-2	-5	$*$	7	4	2.5	2	1.75

Fig. 9 shows points obtained by plotting the values in this table and the corresponding part of the graph.

If $y=1,(y-1)(x-2)=0$ and so cannot equal 3. This means that there is no value of x for which $y=1$ and that there is a
correeponding break in the graph where $y=1$. When the graph is drawn, points for which y is greater than 1 cannot be joined to points where y is less than 1 .

For the graph of $8 x-10 y=15$, we have $10 y=8 x-15$;

$$
\therefore y=\frac{8 x-15}{10} \text {. }
$$

When $x=0, y=-\frac{15}{10}=-1.5$; when $x=5, y=\frac{40-15}{10}=2.5$.

Fig. 0.
Fig. θ shows the graph of $y=\frac{8 x-15}{10}$, obtained by joining these points. The graphs intersect at the points,

$$
x=4 \cdot 6 ; y=2 \cdot 2 \text { and } x=0.55, y=-1.05 \text { approximately. }
$$

The reader should compare these solutions with those obtained by calculation.

Since $\frac{3}{x-2}+1=\frac{3+x-2}{x-2}=\frac{x+1}{x-2}$, the curved graph in Fig. 9 represents the function, $y=\frac{x+1}{x-2}$.

From these examples, it is clear that the graph of any fractional function has a gap or break for any value of x for which the denominator of the function is zero.

EXERCISE VII.b

1. Make a table of values from $x=-3$ to $x=+3$ for each of the following functions, and show where there are missing values.
(i) $y=\frac{12}{x}$;
(ii) $y=\frac{12}{x-1}$;
(iii) $y=\frac{12}{x+2}$;
(iv) $y=\frac{x}{x+1}$;
(v) $y=\frac{x-2}{x+3}$;
(vi) $y=2-\frac{1}{x-3}$.
2. Make a table of values from $x=-3$ to $x=+3$ for each of the following formulae, and show where breaks occur in the corresponding graphs. Sketch rough graphs on plain paper.
(i) $x y=60$;
(ii) $y(x-2)=60$;
(iii) $x(y-1)=60$;
(iv) $(x-1)(y+2)=60$;
(v) $(x+3)(y-2)=60$.
3. Find some value of x such that (i) $\frac{1}{x}>100$; (ii) $\frac{1}{x}<-100$ (iii) $\frac{1}{x-2}>100$; (iv) $\frac{1}{x-2}<-100$.
4. Draw as much as your paper allows of the graph of $y=\frac{60}{x}$, taking the origin in the middle of the paper, and 1 inch on each axis to represent 10 units.
5. Repeat No. 4 for the graph of $y=\frac{60}{x-10}-20$.
6. Repeat No. 4 for the graph of $y=\frac{60}{x+20}+10$.
7. Draw, for values of x from -1 to 2, as much of the graph of $4 x y=3$ as your paper allows. Solve graphically the simultaneous equations, $4 x y=3, y=3\left(1-\frac{1}{2} x\right)$. Check by calculation.
8. Draw, for values of x from -1 to 2 , as much of the graph of $y=1+\frac{1}{x}$ as your paper allows. Solve graphically the simultaneous equations, $y=1+\frac{1}{x}, y=3 x-1$. Check by calculation.
9. Draw for values of x from -5 to +5 as much of the graphs of $y=2+\frac{1}{x}$ and $y=\frac{x^{2}}{10}$ as your paper allows.

What cubic equation in x can be solved from these graphs, and what are its roots ?
10. Draw, for values of x from -3 to +3 , as much of the graphof $y=\frac{1}{x^{2}}$ as your paper allows. Solve graphically the simultaneous equations, (i) $y=\frac{1}{x^{2}}, x+y=2$; (ii) $y=\frac{1}{x^{2}}, y=2 x+1$.

What cubic equations in x can be solved from these graphs, and what are the roots ?
11. Draw, for values of x from -5 to +3 , as much of the graph of $y=\frac{1-x}{2+x}$ as your paper allows. Solve the simultaneous equations, $y(x+2)+x=1, y=2 x$. Check by calculation.
12. Draw for values of x from -3 to +3 , as much of the grephs of $y=\frac{1}{x}$ and $y=x^{2}-4$ as your paper allows.
What cubic equation in x can be solved from these graphs, and what are the roots?
13. Solve graphically the simultaneous equations,

$$
(x-2)(y-4)=15,2 y-3 x=12 .
$$

Check by calculation.
14. Solve graphically the simultaneous equations,

$$
y=x^{2}, y=\frac{2(x+3)}{x-3}
$$

Consider values of x from -3 to +5 .
What cubic equation in x can be solved from these graphs, and what are the roots ?
15. Draw, for values of x from -7 to +7 , as much as your paper allows of the graphs of $y=x+\frac{9}{x}$ and $y=\frac{3}{8}\left(x^{2}-25\right)$.
What cubic equation in x can be solved from these graphs, and what are the roots?
[For additional examples, see Appendix, Ex. T. 6, p. 174.]

Empirical Formulae

If we obtain by measurement or observation a table of values of a variable y for selected values of x, we can show the relation between y and x by a graph. If the plotted points lie on a straight line, or nearly so, the relation is of the form $y=a+b x$, and methods for finding the values of a and b have been explained in Part II, Ch. X, see Example 5, p. 169 ; the position of the "best-fit" line should be determined by using a piece of black thread (see p. 29).

- It has also been shown in Ch. II, see p. 30, how to test graphically whether y varies as any given power of x. If there is reason to expect a relation of the form $y=a x^{n}$, although the value of n is unknown, the following process is used.
If $y=a x^{n}$, then $\log y=\log \left(a x^{n}\right)=\log a+\log \left(x^{n}\right)$;

$$
\therefore \log y=\log a+n \log x .
$$

Consequętily if values of $\log y$ are plotted against values of $\log x$, the points should lis on a straight line, or nearly so ; and then the position of the best-fit line determines the values of $\log a$ and n, as before.
In numerical work, it may be assumed, unless otherwise stated, that the logarithmic base is 10 .

Example 2. The relation, $\log y=0.74+2 \cdot 3 \log x$, has been obtained from a straight-line graph, representing values of $\log y$ plotted against values of $\log x$. Find y in terms of x.

$$
\begin{aligned}
\log y=0.74+2 \cdot 3 \log x & =\log 5 \cdot 5+\log \left(x^{2 \cdot 3}\right) \\
& =\log \left(5 \cdot 5 x^{2 \cdot 3}\right) ; \\
\therefore \mathbf{y} & =5 \cdot 5 \cdot \mathbf{x}^{2 \cdot 3} .
\end{aligned}
$$

Example 3. The relation, $\log y=0.85+0.58 x$, has been obtained from a straight-line graph, representing values of $\log y$ plotted against values of x. Find y in terms of x.

$$
\begin{aligned}
& \log y=0.85+0.58 x ; \therefore y=10^{0.58+0.58 x} ; \\
& \therefore y=10^{0.86} \times 10^{0.58 x}=7.1 \times 10^{0.68 x} .
\end{aligned}
$$

Since $10^{0.59} \bumpeq 3 \cdot 8$, this relation may also be written, $y=7 \cdot 1(3 \cdot 8)^{x}$.

EXERCISE VII. c

1. If corresponding values of x and y are given by the follow. ing table, find the simplost expression for y in terms of x.

x	-	-	1	3	4	6
y	-	-	1	5	7	11

2. Repeat No. 1 for the following table:

x	-	-	0	1	3	6
y	-	-	8	5	-1	-10

3. The following values of the effort Plb . required to raise a load of W lb . by means of a differential pulley have been found by experiment.

W	\cdot	-	100	140	180	220	260	300
P	\cdot	-	18.2	24.7	30.4	36.8	42.2	48.6

Plot values of P against values of W and, allowing for small experimental errors, obtain a relation expressing P in terms of W.
4. The following table shows the current C amperes which will fuse a copper wire of diameter $d \mathrm{~mm}$. :

d	\cdot	\cdot	0.2	0.4	0.5	0.6	0.8
c	\cdot	\cdot	7.2	20	28	37	57

Plot values of $\log C$ against values of $\log d$, and use the graph to express C in terms of d.
5. The following table shows, with small errors, values of y corresponding to selected values of x.

x	\cdot	-	2	3	3.5	4
y	\cdot	-	2	6.7	10.7	16

Plot values of $\log y$ against values of $\log x$ and use the graph to express y in terms of x.
6. The following readings connect the candle-power C and the voltage V of an incandescent lamp:

C .	-	-	20.68	23.24	26.00	28.96
$\mathrm{~V} \cdot$	-	-	94	98	102	106

Plot values of $\log C$ against values of $\log V$, and use the graph to express C in terms of V .
7. The following table shows corresponding values of x and y :

x	-	\cdot	2	2.5	3	3.5
y	\ddots	-	7.58	10.8	14.5	18.6

Test graphically whether x and y are connected by a law of the form $y=a x^{n}$, and if so find a and n.
8. The following table shows, with small errors, values of y corresponding to selected values of x :

$a \cdot$	\cdot	\cdot	2	3	4	5	6	7	8
$y \cdot$	\cdot	\cdot	$2 \cdot 5$	$4 \cdot 3$	6.7	10	15	$23 \cdot 3$	40

Plot values of $\frac{y}{x}$ against values of y, and use the graph to express x in terms of y.
9. The following table shows, with small errors, values of y corresponding to selected values of x :

$x-$	-	1	2	4	6	8
$y-$	-	14	18	36	66	120

Plot values of $\log y$ against values of x, and use the graph to find y in terms of x.

CHAPTER VIII

FURTHER PROCESSES

Long Multiplication and Division

Detached Coefficients. Examples of long multiplication and division were given in Part II, Ch. XI. These processes may now be revised and abbreviated.

Example 1. Multiply $2 x^{3}+x^{2}+3$ by $3 x^{2}+2 x+1$, and comparo the working with that of the corresponding example in Arithmetic when $x=10$.

$$
\begin{aligned}
& \text { If } x=10,2 x^{3}+x^{2}+3=2000+100+3=2103 \text {, } \\
& \text { and } \quad 3 x^{2}+2 x+1=300+20+1=321 \text {. } \\
& \begin{array}{lc}
2 x^{3}+x^{2}+3 & 2103 \\
3 x^{2}+2 x+1 & \\
\hline 6 x^{6}+3 x^{4}+9 x^{2} & 321 \\
4 x^{4}+2 x^{3}+6 x & 6309 \\
2 x^{3}+x^{2}+3 & 4206 \\
\hline 6 x^{5}+7 \mathrm{x}^{4}+4 \mathrm{x}^{3}+10 \mathrm{x}^{2}+6 \mathrm{x}+3 & \frac{2103}{675063}
\end{array}
\end{aligned}
$$

The chief difference between these two examples is the "carrying " from one column to the next in the arithmetical work, which cannot be done in algebra.

Expressions should always be arranged in ascending (or descending) powers of some letter. If this is done and if a zero is inserted for each missing power, the working of the above algebraical example can be abbreviated as follows :

$$
\begin{aligned}
& 2+1+0+3 \\
& 3+2+1 \\
& \hline 6+3+0+9 \\
& 4+2+0+6 \\
& 2+1+0+3 \\
& 6 \mathbf{x}^{5}+7 \mathbf{x}^{4}+4 \mathbf{x}^{2}+10 \mathbf{x}^{2}+6 \mathbf{x}+3
\end{aligned}
$$

This is called the method of detached coefficients. The only object of the method is to save time.

Example 2. Multiply $3 a^{3}-2 a b^{2}+5 b^{2}$ by $6 a^{2}-7 a b+4 b^{2}$.
These expressions are arranged in descending powers of a; we can use "detached coefficients" because each expression is homogeneous. In $3 a^{3}-2 a b^{2}+5 b^{3}$, each term is of order $3, a^{3}=a a a$, $a b^{2}=a b b, b^{3}=b b b$; in $6 a^{2}-7 a b+4 b^{2}$, each term is of order 2.

Working in full.

$\begin{aligned} & 3 a^{2}-2 a b^{2}+5 b^{3} \\ & 6 a^{2}-7 a b+4 b^{2} \\ & \hline \end{aligned}$	
$18 a^{5}-21 a^{4} b$	$-12 a^{3} b^{2}+30 a^{2} b^{2}$
	$+14 a^{2} b^{3}-35 a b^{4}$
	$12 a^{3} b^{2}-8 a b^{4}+20 b^{5}$
$18 a^{5}-21 a^{4} b$	$+44 a^{2} b^{3}-43 a b^{4}+20 b^{5}$

Detached Coefficients.

$$
\begin{aligned}
& \begin{array}{r}
3+0-2+5 \\
6-7+4
\end{array} \\
& \hline 18+0-12+30 \\
& -21+0+14-35 \\
& 12+0-8+20 \\
& \hline 18-21+0+44-43+20 \\
& \hline
\end{aligned}
$$

\therefore the product is $18 a^{5}-21 a^{4} b+44 a^{2} b^{8}-43 a b^{4}+20 b^{8}$.
Example 3. Find the coefficient of x^{3} in

$$
\left(1+2 x-3 x^{2}-x^{3}\right)\left(5-x-2 x^{2}+4 x^{3}\right)
$$

Link together the pairs of terms whose product involves x^{8}. These are $1 \times 4 x^{3}, 2 x \times\left(-2 x^{2}\right),\left(-3 x^{2}\right)(-x),\left(-x^{3}\right) \times 5$.
\therefore the coefficient of x^{3} is $4-4+3-5=-2$.
Example 4. Divide $x^{3}-11 x+2$ by $x-3$.

Working in full.

$$
x - 3 \longdiv { x ^ { 3 } - 1 1 x + 2 } \begin{array} { r }
{ x ^ { 2 } + 3 x - 2 } \\
{ \frac { x ^ { 3 } - 3 x ^ { 2 } } { 3 x ^ { 2 } - 1 1 x } } \\
{ \frac { 3 x ^ { 2 } - 9 x } { - 2 x + 2 } } \\
{ \frac { - 2 x + 6 } { - 4 } }
\end{array}
$$

Detached Coefficients.

$$
\begin{array}{r}
1 - 3 \longdiv { 1 + 0 - 1 1 + 2 } \\
\frac{1-3}{3-11} \\
\frac{3-9}{-2+2}
\end{array}
$$

$$
\frac{-2+6}{-4}
$$

Example 5. Divide $16 x^{4}-16 x^{2}+11 x-12$ by $4 x^{2}-3$.

$$
\begin{array}{r}
4 + 0 - 3 \longdiv { 1 6 - 1 6 + 0 + 1 1 - 1 2 } \\
\frac{16+0-12}{-16+12+11} \\
\frac{-16+0+12}{12-1-12} \\
\frac{12+0-9}{-1-3}
\end{array}
$$

The quotient is $4 x^{2}-4 x+3$, the remainder is $-x-3$.
Example 6. Divide $x^{3}-y^{3}$ by $x-y$.
We can regard $x^{3}-y^{2}$ as $x^{3}+0 \cdot x^{2} y+0 . x y^{2}-y^{3}$, and then use detached coefficients.

Worving in full.

$x y^{2}-y^{2}$
Detached Coefficients.

$$
\begin{array}{r}
\frac{1+1+1}{1 - 1 \longdiv { 1 + 0 + 0 - 1 }} \begin{array}{l}
\frac{1-1}{1+0} \\
\frac{1-1}{1-1} \\
1-1
\end{array}
\end{array}
$$

EXERCISE VIII. a

Find the product of the following :

1. $x^{2}-2 x+3,2 x+1$.
2. $a^{8}-2 a b+b^{2}, a+b$.
3. $2 x^{2}+x-1, x^{2}-2 x+4$.
4. $x^{2}+x y+y^{2}, x-y$.
5. $a^{2}+a b+b^{2}, a^{2}-a b+b^{2}$.
6. $1-4 x-3 x^{2}, 1+2 x-6 x^{2}$.
7. $3 x^{2}-x-2,1-x+2 x^{2}$.
8. $a^{2}-a b+b^{2}, a+b$.
9. $2 a^{3}-a+3, a^{3}-2 a^{2}+3$.
10. $1+2 y+3 y^{2}+4 y^{3}, 1-2 y+y^{2}$.
11. $a+b+c, a+b+c$.
12. $x+y+z, x-y+z$.

Divide:
13. $2 x^{4}-x^{2}+x-1$ by $x-2$.
14. $3 x^{2}+2 x-5$ by $x-1$.
15. $6 x^{3}-5 x^{2}-8 x+3$ by $2 x-3$.
16. $9 x^{2}+5 x$ by $3 x-1$.
17. $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ by $a-b$.
18. $x^{4}-3 x y^{5}+2 y^{4}$ by $x-y$.
19. $y^{4}-z^{4}$ by $y+z$.
20. $8-10 x+5 x^{2}-x^{2}$ by $2-x$.
21. $x^{4}+x^{2}-5 x^{4}-3 x+2$ by $x^{2}+2 x-1$.
22. $x^{4}+x^{4} y^{2}+y^{4}$ by $x^{2}+x y+y^{2}$.
23. $x^{4}-x^{3}-2 x+5$ by $x^{2}-x-2$.
24. $x^{2}+y^{3}$ by $x^{2}-x y+y^{2}$.
25. $a^{6}-b^{6}$ by $a^{4}+a^{8} b^{3}+b^{4}$.

Pik out the following coefficients :
26. Coefficients of x^{3} and x in $\left(3 x^{2}-2 x-1\right)\left(2 x^{2}+3 x-4\right)$.
27. Coefficients of x^{4} and x^{2} in $\left(x^{3}-3 x^{2}+x-2\right)\left(2 x^{3}+x^{2}-3 x+1\right)$.
28. Coefficients of x^{2} and x^{3} in $\left(1+2 x+3 x^{2}+4 x^{3}\right)\left(1-2 x+x^{2}\right)$.
29. Coefficients of x and x^{4} in $\left(2-x+3 x^{2}-x^{3}+x^{4}\right)^{2}$.
30. Coefficients of $a^{3} b$ and $a^{2} b^{2}$ in $\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)$.
31. Expand in ascending powers of x as far as x^{3} :
(i) $\left(2-x+3 x^{2}-x^{3}-x^{4}\right)^{2}$; (ii) $\left(2-x+3 x^{2}-x^{3}-x^{4}\right)^{3}$;
(iii) $(1+x)^{2}(2-x)\left(1+3 x-x^{2}\right)$.
32. Expand (i) $(x+b)^{3}$; (ii) $(a-b)^{3}$.
33. Multiply $3 x-2+\frac{1}{x}$ by $x+1-\frac{2}{x}$.
34. Prove that $\frac{x^{2}}{x-2}=x+2+\frac{4}{x-2}$; and express as a similar mixed fraction $\frac{x^{2}}{x+2}$.
35. What is the constant term in $\left(x^{2}-2 x-3+\frac{1}{x}+\frac{3}{x^{2}}\right)^{2}$?
36. By using long division, prove that

$$
\frac{1}{1+x}=1-x+x^{2}-x^{2}+\frac{x^{4}}{1+x} .
$$

37. Find the first 3 terms and the last 3 terms in the quotient when $x^{11}-11 x+10$ is divided by $x^{2}-2 x+1$.
38. Using detached coefficients, find the first 3 terms in the expansion of $(1+x)^{6}$.

The Remainder Theorem

Find the remainder when $a x^{2}+b x+c$ is divided by $x-k$.

$$
\begin{aligned}
& x-k) \frac{a x+(a k+b)}{a x^{2}+b x+c} \\
& \frac{a x^{2}-a k x}{(a k+b) x+c} \\
& \frac{(a k+b) x-k(a k+b)}{a k^{2}+b k+a}
\end{aligned}
$$

This work shows that the remeinder is equal to the result of putting $x=k$ in the dividend. The reader should now' prove by actual division that this is also true if the dividend is

$$
a x^{3}+b x^{2}+c x+d
$$

and the same method may be used for any polynomial,

$$
a x^{n}+b x^{n-1}+c x^{n-2}+\ldots .
$$

The result can, however, be established in another way, as follows:
The long division process in Example 4 proves that

$$
x^{3}-11 x+2 \equiv(x-3)\left(x^{2}+3 x-2\right)-4 .
$$

Since this is an identity, it is true for any value of x we like to substitute. If we put $x=3$, the right side becomes

$$
0 \times(9+9-2)-4=0-4=-4
$$

this is the remainder in the division sum. Therefore if we put $x=3$ in the left side, the result must equal the remainder, when the expression on the left side is divided by $(x-3)$.
This argument (cf. Example 7 below) holds whenever the divisor is of the first degree.

Thus if any polynomial in x

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

is divided by $x-k$, then the remainder equals

$$
a_{n} k^{n}+a_{n-1} k^{n-1}+\ldots+a_{1} k+a_{0} .
$$

And, in particular, $x-k$ is a factor of the polynomial, if

$$
a_{n} k^{n}+a_{n-1} k^{n-1}+\ldots+a_{1} k+a_{0}=0 .
$$

Example 7. What is the remainder if $2 x^{3}+x^{2}+3$ is divided by $(x+2)$?
Without working through the long division sum, we can say

$$
\begin{equation*}
2 x^{2}+x^{2}+3 \equiv(x+2)(\text { quotient })+\text { remainder } . \tag{i}
\end{equation*}
$$

where the remainder does not contain x.
Since this is an identity, it is true for any value of x.
Put $x=-2$, because this makes $x+2$ zero.

$$
\begin{gathered}
\therefore 2(-2)^{2}+(-2)^{2}+3=0 \times(\ldots \ldots)+\text { remainder. } \\
\therefore-16+4+3=0+\text { remainder ; }
\end{gathered}
$$

\therefore the remainder $=-9$.

Check:

$$
\begin{array}{r}
x + 2 \longdiv { 2 x ^ { 2 } + x ^ { 2 } - 3 x + 6 } \\
\frac{2 x^{3}+4 x^{2}}{-3 x^{2}} \\
\frac{-3 x^{2}-6 x}{6 x+3} \\
\frac{6 x+12}{-9}
\end{array}
$$

Quotient $2 x^{2}-3 x+6$. Remainder -9.
\therefore equation (i) written in full is

$$
2 x^{3}+x^{2}+3 \equiv(x+2)\left(2 x^{2}-3 x+6\right)-9,
$$

and equation (ii) written in full is

$$
2(-2)^{3}+(-2)^{2}+3=0 \times\left[2(-2)^{2}-3(-2)+6\right]-9=0-9 .
$$

But if we only want to find the remainder, there is no need to fill in what the quotient is.

Example 8. Prove that $x-2$ is a factor of $x^{3}-x^{2}-5 x+6$.
To obtain the remainder when $x^{3}-x^{2}-5 x+6$ is divided by , $x-2$, put $x=2$ in the expression. [This makes $x-2$ zero.]
\therefore the remainder $=2^{3}-2^{3}-5(2)+6=8-4-10+6=0$.
Since the remainder is zero, $x-2$ is a factor.
Example 9. Find the factors of $x^{3}+2 x^{2}-5 x-6$.
Try putting $x=1,-1,2,-2,3,-3,6,-6$, and see if the result is zero in any case. (These are the various factors of 6.)

If $x=1$, expression is $1+2-5-6=-8$.
If $x=-1$, expression is $-1+2+5-6=0$.

$$
\therefore x+1 \text { is a factor. }
$$

The other factor can now be found by long division.
Then

$$
\begin{aligned}
x^{3}+2 x^{2}-5 x-6 & =(x+1)\left(x^{2}+x-6\right) \\
& =(x+1)(x+3)(x-2) .
\end{aligned}
$$

Check this by putting $x=-3$ and $x=2$; in each case the result should be zero.
After a little practice, quotients may be found by inspection. Thus, in the example abuve, we know that $x+1$ is a factor of $x^{2}+2 x^{2}-5 x-6$.
\therefore the quotient must start with x^{2} and must end with -6 ,

$$
\therefore x^{2}+2 x^{4}-5 x-6=(x+1)\left(x^{2} \ldots-6\right) .
$$

When we multiply up the right side, we obtain 1. x^{4} from the terms already there; we need $2 x^{2}$ in all; \therefore the missing term is x. Thus $\quad x^{3}+2 x^{2}-5 x-6=(x+1)\left(x^{2}+x-6\right)$.
Now check by picking out the coefficient of x on the right side, this is $-6+1=-5$.

Example 10. Factorise $(x y+y z+z x)(x+y+z)-x y z$.
Put $y=-z$ in the given expression; we then obtain

$$
\begin{gathered}
\left(-x z-z^{2}+z x\right)(x-z+z)+x z^{2}=\left(-z^{3}\right)(x)+x z^{2}=0 ; \\
\therefore(y+z) \text { is a factor. }
\end{gathered}
$$

Similarly we can prove that $(z+x)$ and $(x+y)$ are factors. \therefore the expression is divisible by $(y+z)(z+x)(x+y)$.
But the expression is a function of 3 dimensions; \therefore any remaining factor must be numerical ;

$$
\therefore(x y+y z+z x)(x+y+z)-x y z \equiv k(y+z)(z+x)(x+y)
$$

where k is a constant, that is, independent of x, y, z.
Put $x=0, y=1, z=1$;
then $\quad(1)(2)-0=k(2)(1)(1) ; \quad \therefore 2 k=2 ; \quad \therefore k=1$.

$$
\therefore \text { the expression }=(y+z)(z+x)(x+y) .
$$

EXERCISE VIII. b

Find the remainder in the following cases :

1. $\left(x^{2}-5 x+4\right) \div(x-1)$.
2. $\left(x^{2}+3 x+2\right) \div(x+1)$.
3. $\left(3 x^{2}+5 x-2\right) \div(x+2)$.
4. $\left(3 x^{2}-11 x+6\right) \div(x-3)$.
5. $\left(2 x^{2}+3 x-2\right) \div(2 x-1)$.
6. $\left(3 x^{2}+x-2\right) \div(3 x-2)$.
7. $\left(2 x^{2}-x-3\right) \div(x-1)$.
8. $\left(3 x^{2}+4 x+1\right) \div(x+2)$.
9. $\left(x^{3}+7 x^{2}+4 x-2\right) \div(x+1)$.
10. $\left(x^{3}-2 x^{2}+3 x-6\right) \div(x-2)$.
11. $\left(2 x^{3}-x^{2}-3 x-1\right) \div(2 x+1)$. 12. $\left(2 x^{2}+5 x^{3}-5 x-6\right) \div(x+3)$.
12. Prove that $x-1$ is a factor of $3 x^{3}-x^{2}-x-1$, and write down the other factor.
13. Prove that $x+1$ is a factor of $2 x^{3}+3 x^{2}-1$, and write down the other factors.
14. Prove that $x+2$ is a factor of $x^{3}-x^{2}-10 x-8$, and write down the other factors.
15. Prove that $x-3$ is a factor of $x^{3}-x^{3}-9 x+9$, and write down the other factors.
16. Prove that $x+1$ is a factor of $x^{3}+1$ and write down the other factor.
17. Prove that $x-a$ is a factor of $x^{3}-a^{2}$ and write down the other factor.
Find the factors of the following:
18. $x^{3}-2 x^{2}-5 x+6$.
19. $x^{2}-4 x^{2}+x+6$.
20. $x^{z}-21 x+20$.
21. $x^{3}+4 x^{2} y-15 x y^{2}-18 y^{2}$
22. $2 a^{2}+a^{2} b-13 a b^{4}+6 b^{2}$.
23. $2+5 x-28 x^{2}-15 x^{2}$.
24. For what value of a is $x-1$ a factor of $x^{4}-7 x+a$;
25. For what value of b is $x+1$ a factor of $x^{2}+b x-5$:
26. For what value of c is $x-1$ a factor of $x^{3}+c x^{2}-5 x+6$? What are then the other factors?
27. For what values of a, b are $x+1$ and $x-2$ factors of $x^{3}+a x^{2}+2 x+b$? What then is the other factor ?
28. For what values of b, c are $x+2$ and $2 x-1$ factors of $4 x^{3}+b x+c$? What then is the other factor ?
29. Prove that $x^{2}+x-2$ is a factor of $x^{4}-x^{2}+4 x-4$.
30. Solve the equation $3 x^{2}-7 x^{2}+4=0$.
31. Solve the equation $x^{2}=7 x+6$.
32. Solve the equation $6 x^{2}-11 x^{2}-37 x+70=0$.
33. Solve the equation $4 x^{3}-8 x^{2}+x+3=0$.
34. Prove that $a-b$ is a factor of $a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)$.
35. Prove that $a-b$ is a factor of $(b-c)^{3}+(c-a)^{2}$.
36. Prove that $x-y$ is a factor of

$$
y z\left(y^{2}-z^{2}\right)+z x\left(z^{2}-x^{2}\right)+x y\left(x^{2}-y^{2}\right)
$$

38. Prove that $x+y$ is a factor of

$$
x y(x+y)+y z(y+z)+z x(z+x)+2 x y z .
$$

39. Find 3 factors of $x\left(y^{2}-z^{2}\right)+y\left(z^{2}-x^{2}\right)+z\left(x^{2}-y^{2}\right)$.
[For additional examples, see Appendix, Ex. T. 7, p. 176.]

Further Factors and Fractions

The previous exercises have included the following identities:

$$
\begin{align*}
& \mathbf{A}^{2}+\mathbf{B}^{2}=(\mathbf{A}+B)\left(\mathbf{A}^{2}-\mathbf{A B}+\mathrm{B}^{2}\right) \tag{i}\\
& \mathbf{A}^{\mathbf{3}}-\mathrm{B}^{\mathbf{3}}=(\mathbf{A}-\mathbf{B})\left(\mathbf{A}^{2}+\mathbf{A B}+\mathbf{B}^{2}\right) \tag{ii}\\
& A^{4}+A^{2} B^{3}+B^{4}=\left(A^{2}+A B+B^{2}\right)\left(A^{2}-A B+B^{2}\right)
\end{align*}
$$

In (i) and (ii) the first factor is easy to remember; the second factor may then be obtained by division.
D.s.A.

H
(iii) may be factorised by expressing it as the difference of two squares;

$$
\begin{aligned}
A^{4}+A^{2} B^{2}+B^{4} & =A^{4}+2 A^{2} B^{2}+B^{4}-A^{2} B^{2}=\left(A^{2}+B^{2}\right)^{2}-A^{2} B^{2} \\
& =\left(A^{2}+B^{2}+A B\right)\left(A^{2}+B^{2}-A B\right) .
\end{aligned}
$$

Perfect Square. The expression $(A+B+C)^{2}$ can be expanded by ordinary multiplication, or as follows:

$$
\begin{aligned}
(A+B+C)^{2} & =[A+(B+C)]^{2}=A^{2}+2 A(B+C)+(B+C)^{2} \\
& =A^{2}+2 A B+2 A C+B^{2}+2 B C+C^{2} \\
& =A^{2}+B^{2}+C^{2}+2 B C+2 C A+2 A B
\end{aligned}
$$

In words, to obtain the square of the sum of three terms, add together the squares of each term and twice the product of every two of them.

The same rule holds for the square of the sum of any number of terms.

Perfect Cube. $\quad \begin{aligned}(A+B)^{3} & =(A+B) \cdot\left(A^{2}+2 A B+B^{2}\right) \\ & =A^{3}+3 A^{2} B+3 A B^{2}+B^{3} .\end{aligned}$
The expansion for $(A-B)^{3}$ may be obtained in the same way, or by writing $-B$ for B in the previous expansion.

Thus $\quad(A-B)^{2}=A^{2}+3 A^{2}(-B)+3 A(-B)^{2}+(-B)^{2}$

$$
=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}
$$

Example 11. Factorise $27 x^{3}-8 y^{3}$.

$$
\begin{aligned}
27 x^{3}-8 y^{3} & =(3 x)^{3}-(2 y)^{3}=(3 x-2 y)\left[(3 x)^{2}+(3 x)(2 y)+(2 y)^{2}\right] \\
& =(3 \mathrm{x}-2 \mathrm{y})\left(9 \mathrm{x}^{2}+6 \mathrm{xy}+4 \mathrm{y}^{2}\right) .
\end{aligned}
$$

Example 12. Factorise $x^{2}-y^{2}+2 y z-z^{2}$.

$$
\begin{aligned}
x^{2}-y^{2}+2 y z-z^{2} & =x^{2}-\left(y^{2}-2 y z+z^{2}\right)=x^{2}-(y-z)^{2} \\
& =[x+(y-z)][x-(y-z)]=(x+y-z)(x-y+2)
\end{aligned}
$$

Example 13. Factorise $a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)$.
Arrange in powers of a,
the expression $=a^{2}(b-c)+b^{2} c-b^{2} a+c^{2} a-c^{2} b$

$$
=a^{2}(b-c)-a\left(b^{2}-c^{2}\right)+b^{2} c-b c^{2}
$$

$$
=a^{2}(b-c)-a(b+c)(b-c)+b c(b-c)
$$

$$
=(b-c)\left[a^{2}-a(b+c)+b c\right]
$$

$$
=(b-c)(a-b)(a-c)
$$

Expressions of this kind are usually arranged in cyclic order. Imagine the letters a, b, c arranged round a circle, and take the
differences obtained by writing the letters in the order in which they occur, round the circle; this $a-b, b-c, c-a$. If an

Fia. 10.
expression contains both ($b-c$) and $(c-b)$ as factors, we retain ($b-c$), but replace $(c-b)$ by $-(b-c)$; similarly we replace $(a-c)$ by $-(c-a)$.

$$
\therefore a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)=-(b-c)(c-a)(a-b) .
$$

This result may also be obtained by using the remainder theorem (compare Example 10 and Ex. VIII b, No. 35).

Example 14. Simplify

$$
\frac{x^{2}}{(x-y)(x-z)}+\frac{y^{2}}{(y-z)(y-x)}+\frac{z^{2}}{(z-x)(z-y)} .
$$

Here, we retain $(x-y),(y-z),(z-x)$ and replace $(y-x)$ by $-(x-y),(z-y)$ by $-(y-z),(x-z)$ by $-(z-x)$.

$$
\begin{aligned}
\therefore \text { the expression } & =-\frac{x^{2}}{(x-y)(z-x)}-\frac{y^{2}}{(y-z)(x-y)}-\frac{z^{2}}{(z-x)(y-z)} \\
& =-\frac{x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y)}{(x-y)(y-z)(z-x)} \\
& =-\frac{-(x-y)(y-z)(z-x)}{(x-y)(y-z)(z-x)}, \text { by Example } 13 . \\
& =-(-1)=1 .
\end{aligned}
$$

EXERCISE VIII. c

Find the factors of the following:

1. $b^{2}-1$.
2. $c^{3}+27$.
3. $8-d^{3}$
4. $8 x^{2}+125 y^{2}$.
5. $x^{4}+x^{2}+1$.
6. $3 z^{3}-24$.
7. $a^{6}+b^{6}$.
8. $x^{4}+4$.
9. $a^{2}-b^{2}-c^{2}-2 b c$.
10. $a^{4}-12 a^{2} b^{2}+4 b^{4}$.
11. $x^{3}-y^{3}-x^{2} y+x y^{2}$.
12. $x^{2}\left(1-z^{2}\right)+2 x y z-y^{2}$.
13. $x^{2}-3 x^{2}+3 x-1$.
14. $x^{4}-7 x^{2}+1$.

Simplify the following:
15. $\frac{x^{3}-y^{3}}{x-y}-\frac{x^{2}+y^{3}}{x+u}$.
16. $\frac{\left(a^{3}+b^{2}\right)(a-b)}{\left(a^{2}-b^{2}\right)(a+b)}$.
17. $\frac{x^{3}+y^{2}}{x^{4}-y^{2}}-\frac{x^{2}}{x^{3}+x y+y^{2}}$.
18. $\frac{a^{4}+a^{2} b^{2}+b^{4}}{\left(a^{2}-b^{2}\right)\left(a^{3}+b^{2}\right)}$.
19. $\frac{b^{3}-c^{3}}{b^{2}+c^{4}-2 b c}-(b-c)$.
20. $\frac{\left(x^{4}-y^{4}\right)(x-y)}{\left(x^{4}-2 x y+y^{3}\right)\left(x^{3}+y^{3}\right)}$.
21. Factorise (i) $x^{3}+(x-y)^{2}$; (ii) $(2 a-b)^{3}-(a-2 b)^{3}$.
22. Write down the squares of (i) $a-2 b+c$; (ii) $x-3 y-2 z$.
23. Expand $\left(2 x^{2}+3 x+5\right)\left(2 x^{2}-3 x-5\right)$.
24. If $x^{2}-y^{2}=98$ and if $x-y=2$, write down the values of $x^{2}-2 x y+y^{2}, x^{2}+x y+y^{2}, x y, x^{2}+2 x y+y^{2}, x+y$. Hence find x and y.
25. If $x^{2}+y^{2}=370$ and if $x+y=10$, write down the values of $x^{2}+2 x y+y^{2}, x^{4}-x y+y^{2}, x y, x^{2}-2 x y+y^{2}, x-y$. Hence find x and y.

Simplify the following:
26. $\left(3-\frac{24}{x+3}\right)\left(2+\frac{16}{x-5}\right) . \quad$ 27. $\frac{x^{2}+x y+y^{2}}{x+y}-\frac{x^{2}-x y+y^{2}}{x-y}$.
28. $\frac{a^{2}+b^{2}-c^{2}-2 a b}{a^{2}+b^{2}+c^{3}+2 b c-2 c a-2 a b}$.
29. $\frac{x^{2}-2 x-35}{x^{2}+2 x-15}-\frac{x^{2}-6 x+8}{x^{2}-2 x-8}$.
30. $\left(x^{2}-x y+y^{2}\right)\left(\frac{1}{x}+\frac{1}{y}\right) \div\left(\frac{x}{y^{2}}+\frac{y}{x^{2}}\right)$.
31. $\left(x-\frac{10}{x+3}\right) \div\left(x-8+\frac{30}{x+3}\right)$.
32. $\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}$. 33. $\left(\frac{a+c}{b}-\frac{b+c}{a}\right) \div\left(1-\frac{a}{b}\right)$.
34. $\frac{x-y}{x^{3}+2 x y+y^{2}}+\frac{x+y}{x^{2}-2 x y+y^{2}}-\frac{2 x}{x^{2}-y^{2}}$.
35. $(a+b-c)^{2}+(a-b+c)^{2}+(a-b-c)^{2}+(a+b+c)^{2}$.
36. $\frac{y+a}{(x-y)(z-y)}+\frac{z+a}{(x-z)(y-z)}$. 37. $\frac{x^{2}-2 x^{2}-5 x+6}{x^{2}+2 x^{2}-x-2}$.
38. Solve $\frac{2}{x+1}+\frac{1}{x-2}=\frac{2}{x+3}+\frac{1}{x-6}$.
39. Solve $\frac{x-2}{x^{2}+2 x}-\frac{x+2}{x^{3}+x}=\frac{x}{x^{2}+3 x+2}$.
40. If $x=a^{2}+2 a b-b^{2}, y=b^{2}+2 a b-a^{2}, z=a^{2}+b^{4}$, prove that $x^{3}+y^{2}=2 z^{2}$.
41. Prove that

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-3 x y z & =(x+y+z)\left(x^{2}+y^{2}+z^{2}-y z-z x-x y\right) \\
& =\frac{1}{2}(x+y+z)\left\{(y-z)^{2}+(z-x)^{2}+(x-y)^{2}\right\}
\end{aligned}
$$

42. Use No. 41 to factorise $a^{3}+b^{3}-c^{3}+3 a b c$.
43. If $\dot{x}+y+z=0$, prove that $x^{2}+y^{2}+z^{2}=3 x y z$.

Simplify the following :
44. $\frac{8 b^{2}}{\left(a^{2}-b^{2}\right)\left(a^{2}+3 b^{1}\right)}+\frac{2 b}{a^{2}+3 b^{2}}+\frac{1}{a+b}$.
45. $\left(\frac{1}{x}-\frac{1}{y}\right)\left(\frac{x}{x-y}+\frac{x}{x+y}\right) \div\left(\frac{y^{2}}{x+y}-\frac{y^{1}}{x-y}\right)$.
46. $\frac{a}{(a-b)(a-c)}+\frac{b}{(b-c)(b-a)}+\frac{c}{(c-a)(c-b)}$.
47. $\frac{x-y}{(x+a)(a+y)}+\frac{y-z}{(y+a)(a+z)}+\frac{z-x}{(z+a)(a+x)}$.
48. $\frac{a^{2}}{(b-a)(c-a)}+\frac{b^{2}}{(c-b)(a-b)}+\frac{a c}{(a-c)(b-c)}$.
49. $\frac{a^{2}-x^{2}}{x^{2}+x(a-p)-a p}+\frac{b^{2}-x^{2}}{x^{2}+x(b-p)-b p}+\frac{x^{2}-c^{2}}{x^{2}+x(c-p)-c p}$.
50. Solve $x^{4}+x^{2} y^{2}+y^{4}=91, x^{2}+x y+y^{2}=13$.
[Note. For further practice, see Appendix, Ex. F.P. 7, p. 160.]

Undetermined Coefflicients

If two expressions are identically equal, that is, are equal for all values of the letters they contain, they must, when simplified, agree term by term.
Example 15. Given that $4 x^{4}-12 x^{3}-11 x^{2}+30 x+25$ is a perfect square, find its square root.
The square root must be of the form, $a x^{2}+b x+c$; we have to find the values of the coefficients a, b, c, as yet undetermined.

$$
\begin{aligned}
4 x^{4}-12 x^{2}-11 x^{4}+30 x+25 & \equiv\left(a x^{2}+b x+c\right)^{2} \\
& \equiv a^{2} x^{4}+2 a b x^{2}+\ldots+2 b c x+c^{1} .
\end{aligned}
$$

We must therefore choose a, b, c so that

$$
a^{2}=4,2 a b=-12,2 b c=30 .
$$

(i) Take $a=2$, then $b=-3$ and $c=-5$.
(ii) Take $a=-2$, then $b=3$ and $c=5$.
\therefore the square root is $2 x^{2}-3 x-5$ or $-2 x^{2}+3 x+5$,

$$
\text { that is, } \pm\left(2 x^{2}-3 x-5\right) \text {. }
$$

Check by showing that the coefficients of x^{2} agree and that the constant terms agree, when $2 x^{2}-3 x-5$ is squared.

The work could be shortened by saying that one of the square roots of $4 x^{4}-12 x^{3} \ldots$ must be of the form, $2 x^{2}+b x+c$.

Example 16. Given that $6 x^{2}+11 x y-10 y^{2}-4 x-29 y-10$ has linear factors in x and y, find them.

$$
\begin{gathered}
6 x^{2}+11 x y-10 y^{2} \equiv(3 x-2 y)(2 x+5 y) ; \\
\therefore 6 x^{2}+11 x y-10 y^{2}-4 x-29 y-10 \equiv(3 x-2 y+a)(2 x+5 y+b)
\end{gathered}
$$

where a, b are constants, whose values are as yet undetermined.

$$
\begin{aligned}
\therefore 6 x^{2} & +11 x y-10 y^{2}-4 x-29 y-10 \\
& \equiv 6 x^{2}+11 x y-10 y^{2}+x(3 b+2 a)+y(-2 b+5 a)+a b .
\end{aligned}
$$

We must therefore choose a, b so that

$$
\begin{aligned}
& 3 b+2 a=-4 \text { and }-2 b+5 a=-29 . \\
& \text { Solving, } \quad 6 b+4 a=-8 \text { and }-6 b+15 a=-87 \text {; } \\
& \therefore 19 a=-95, \quad \therefore a=-5 \text {; } \\
& \therefore 3 b-10=-4 ; \quad \therefore 3 b=6 ; \quad \therefore b=2 \text {. }
\end{aligned}
$$

$\therefore 6 x^{2}+11 x y-10 y^{2}-4 x-29 y-10 \equiv(3 x-2 y-5)(2 x+5 y+2)$.
Check by showing that the constant terms agree.
Example 17. Express $\frac{x-8}{x^{2}-4}$ in the form $\frac{a}{x+2}+\frac{b}{x-2}$, where a, b are independent of x.

$$
\begin{aligned}
\frac{x-8}{x^{2}-4} & \equiv \frac{x-8}{(x+2)(x-2)} \equiv \frac{a}{x+2}+\frac{b}{x-2} . \\
\therefore x-8 & \equiv a(x-2)+b(x+2) \cong a x-2 a+b x+2 b \\
& \equiv x(a+b)+(2 b-2 a)
\end{aligned}
$$

We must therefore choose a, b so that

$$
a+b=1 \text { and } 2 b-2 a=-8
$$

Solving, we have $a+b=1, b-a=-4$.

$$
\begin{aligned}
\therefore & 2 b=-3 ; \quad \therefore b=-1 \frac{1}{2}, \\
& 2 a=5 ; \quad \therefore a=2 \frac{1}{2} ; \\
& \therefore \frac{x-8}{x^{2}-4}=\frac{2 \frac{1}{3}}{x+2}-\frac{1 \frac{1}{2}}{x-2},
\end{aligned}
$$

Instead of "equating coefficients," we can substitute any convenient values for x, since the expressions are identical.

In $(x-8) \equiv a(x-2)+b(x+2)$, put $x=2$;

$$
\therefore 2-8=0+4 b ; \quad \therefore b=-1 \frac{1}{2} .
$$

Also put $x=-2 ; \therefore-2-8=-4 a+0 ; \therefore a=2 \frac{1}{2}$, as before.

EXERCISE VIII. d

The expressions in Nos. 1-6 are perfect squares; find their square roots.

1. $x^{4}-6 x^{2}+17 x^{2}-24 x+16$. 2. $x^{4}+8 x^{3}+14 x^{2}-8 x+1$.

- $3 x 9 x^{4}-24 x^{3}+28 x^{2}-16 x+4$.

4. $9-30 x+x^{2}+40 x^{2}+16 x^{4}$.
5. $4 x^{3}-12 x-7+\frac{24}{x}+\frac{16}{x^{2}}$.
6. $x^{8}-6 x^{5}+7 x^{4}+10 x^{3}-11 x^{2}-4 x+4$.

Find linear factors of the following:
7. $x^{2}-3 x y+2 y^{2}-2 x+5 y-3 . \quad 8 . x^{2}-y^{2}+2 x-14 y-48$.
9. $6 x^{2}+7 x y-20 y^{2}-5 x+22 y-6$.
10. $3 x^{2}-6 y^{2}-2 z^{2}-7 y z-5 z x-7 x y$.
11. Find the values of a, b if $x^{4}-6 x^{3}+a x^{2}+30 x+b$ is a perfect square.
12. Given that $8 x^{3}-36 x^{2}+54 x-27$ is a perfect cube, find its cube root.
13. Find the values of a, b if $27 x^{2}+a x^{2}+b x-125$ is a perfect cube.
14. For what value of c has $2 x^{2}+3 x y-2 y^{2}+5 x-5 y+c$ linear factors? What are then the factors?
15. Express $\frac{x-8}{(x+1)(x-2)}$ in the form $\frac{a}{x+1}+\frac{b}{x-2}$.
16. For what values of b, c is $x^{3}+12 x^{2}+b x+c$ a perfect cube?
17. Express $n^{2}-2 n$ in the form, $a n(n+1)+b(n+1)+c$.
18. Express $\frac{5 x-4}{x(x+1)(x-2)}$ in the form, $\frac{a}{x}+\frac{b}{x+1}+\frac{c}{x-2}$.
19. Express $4 n^{2}-1$ in the form, $a(n+1)^{2}+b(n+1)+c$.
20. For what values of b, c is $x^{2}-x+1$ a factor of

$$
x^{2}+3 x^{2}+b x+c ?
$$

21. For what values of a, b is $x-y+2$ a factor of

$$
x^{2}+2 x y-3 y^{2}+a x+b y-2
$$

What is then the other factor?
22. Express $\frac{5 x^{2}-3 x+4}{(x+1)^{2}(x-2)}$ in the form, $\frac{a}{x+1}+\frac{b}{(x+1)^{2}}+\frac{c}{x-2}$.
23. Express n^{3} in the form, $a+b n+c n(n-1)+d n(n-1)(n-2)$.
24. Show that $(x+y+z)^{2}-\left(x^{2}+y^{9}+z^{3}\right)$ can be put in the form, $c(x+y)(y+z)(z+x)$; and then find the value of c.

The Binomial Theorem

Successive Powers of $1+x$. To work out quickly the expansions $(1+x)^{3},(1+x)^{2},(1+x)^{4}, \ldots$, use detached coefficients.
$(1+x)^{3}$
$1+1$
$\frac{1+1}{1+1}$
$\frac{1+1}{1+2 x+x^{2}}$
$(1+x)^{3}$
$\stackrel{(1+x)^{4}}{1+3 \stackrel{4}{+3}+1}$
$1+2+1$
$\frac{1+1}{1+3+3+1}$
$\frac{1+3+3+1}{1+4 x+6 x^{3}+4 x^{3}+x^{4}}$

From this work, it is clear that the coefficients of any expansion are formed by adding together two consecutive coefficients in the preceding expansion.
Thus $(1+x)^{5}=1+(1+4) x+(4+6) x^{4}+(6+4) x^{2}+(4+1) x^{4}+x^{5}$;

$$
\therefore(1+x)^{5}=1+5 x+10 x^{2}+10 x^{3}+5 x^{6}+x^{5} \text {. }
$$

By the same method, we can write doun the expansion of $(1+x)^{8}$.

$$
(1+x)^{9}=1+6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6} .
$$

The reader should now write doven in succession the expansions of $(1+x)^{7},(1+x)^{8},(1+x)^{9}$, etc.

Pascal's Triangle. The coefficients in these successive expansions may be written as follows:

$(1+x)^{0}$	1						
$(1+x)^{1}$	1	1					
$(1+x)^{2}$	1	2	1				
$(1+x)^{3}$	1	3	3	1			
$(1+x)^{4}$	1	4	6	4	1		
$(1+x)^{6}$	1	5	10	10	5	1	
$(1+x)^{6}$	1	6	15	20	15	6	1

In this arrangement, called Pascal's triangle, each number is the sum of two numbers in the previous row, the number just above it and the next number to the left of that ; thus in the last row $15=5+10,20=10+10$. It follows that each number is the sum of all the numbers in the next column to the left above it ; thus we have in succession

$$
\text { and } \begin{aligned}
& 15=5+10=5+4+6=5+4+3+3=5+4+3+2+1 \\
& 20=10+10=10+6+4=10+6+3+1 ; \text { etc. }
\end{aligned}
$$

There gre n rows above the row containing the coefficients for $(1+x)^{n}$; therefore this row starts

$$
1, n, \ldots
$$

Therefore the third number in this row is the sum of

$$
1,2,3, \ldots, n-2, n-1
$$

which equals $\frac{n(n-1)}{2}$ and is written $\frac{n(n-1)}{1.2}$.
Therefore the fourth number in this row is the sum of

$$
\frac{2.1}{2}, \frac{3.2}{2}, \frac{4.3}{2}, \ldots, \frac{(n-2)(n-3)}{2}, \frac{(n-1)(n-2)}{2}
$$

These numbers may be written

$$
\frac{3.2 .1}{1.2 .3}, \frac{4.3 .2}{1.2 .3}-\frac{3.2 .1}{1.2 .3}, \frac{5.4 .3}{1.2 \cdot 3}-\frac{4.3 .2}{1.2 .3}, \ldots
$$

the last two numbers being

$$
\begin{aligned}
\frac{(n-1)(n-2)(n-3)}{1.2 .3} & -\frac{(n-2)(n-3)(n-4)}{1.2 .3} \text { and } \\
& \frac{n(n-1)(n-2)}{1.2 .3}-\frac{(n-1)(n-2)(n-3)}{1.2 .3} ;
\end{aligned}
$$

\therefore the sum of all these numbers is $\frac{n(n-1)(n-2)}{1.2 .3}$;
\therefore the row of coefficients for $(1+x)^{n}$ runs

$$
1, n, \frac{n(n-1)}{1.2}, \frac{n(n-1)(n-2)}{1.2 .3}, \ldots
$$

By the same method we can show that the next number in the row is $\frac{n(n-1)(n-2)(n-3)}{1.2 .3 .4}$, and so on.

The general formula is as follows:
If n is any positive integer,

$$
\begin{aligned}
& \begin{aligned}
&(1+x)^{n}=1+n x+\frac{n(n-1)}{1 \cdot 2} x^{2}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \\
& \quad+\frac{n(n-1)(n-2) \ldots(n-r+1)}{1 \cdot 2 \cdot 3 \ldots x} x^{r}+\ldots+x^{n}
\end{aligned}
\end{aligned}
$$

and similarly, if n is any positive integer,

$$
\begin{aligned}
(x+y)^{n}=x^{n}+n x^{n-1} y & +\frac{n(n-1)}{1 \cdot 2} x^{n-2} y^{2} \\
& +\frac{n(n-1)(n-2)}{1,2 \cdot 3} x^{n-2} y^{3}+\ldots+y^{n}
\end{aligned}
$$

This formula is called the Binomial Theorem for a positive integral index.

The reader should note that the r th term in the expansion of $(x+y)^{n}$ involves y^{r-1}, therefore the degree of x is $n-(r-1)$; also the denominator is 1.2.3.4...($r-1$), and there are the same number of factors, namoly $r-1$, in the numerator.

Example 18. Write down the expansion of $\left(3 a-\frac{1}{2} b\right)^{4}$.

$$
\left.\left.\begin{array}{rl}
\left(3 a-\frac{1}{2} b\right)^{4}= & (3 a)^{4}+4(3 a)^{8}\left(-\frac{1}{2} b\right)
\end{array}\right)+\frac{4 \cdot 3}{1 \cdot 2}(3 a)^{2}\left(-\frac{1}{2} b\right)^{2}\right)
$$

Example 19. Write down the 5th term in the expansion of $(2 a-3 b)^{10}$.

The 5th term involves $(-3 b)^{4}$; \therefore it also contains $(2 a)^{6}$; and its denominator is 1.2.3.4; \therefore its numerator is 10.9.8.7;
\therefore the 5 th term $=\frac{10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4}(2 a)^{8}(-3 b)^{4}$.
Example 20. Find the term independent of x in the expansion of $\left(3 x-\frac{5}{x^{3}}\right)^{8}$.

$$
\left(3 x-\frac{5}{x^{3}}\right)^{8}=\left(\frac{3 x^{4}-5}{x^{3}}\right)^{8}=\frac{\left(3 x^{4}-5\right)^{3}}{x^{24}}
$$

\therefore we want the term involving x^{24} in $\left(3 x^{4}-5\right)^{8}$.
This term is $\frac{8.7}{1.2}\left(3 x^{2}\right)^{8}(-5)^{2}$

$$
=700 \times 3^{6} x^{24} ;
$$

\therefore the term independent of x is 700×3^{6}.
Factorial r. The product of the first r positive integers,

$$
1.2 .3 .4 . . .(r-1) r
$$

is denoted by the symbol r ! and is called "factorial r."
In mss., as opposed to print, it is often written $\mid r$.
The coefficient of x^{r} in $(1+x)^{n}$ is

$$
\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots(r-1) r}
$$

if we multiply numerator and denominator by

$$
(n-r)(n-r-1)(n-r-2) \ldots 3.2 \cdot 1
$$

that is, by $(n-r)$!, the fraction becomes $\frac{n!}{r!(n-r)!}$; for some
purposes, this is a more convenient form.

Example 21. Write down the coefficient of x^{7} in $(3-5 x)^{12}$.
The coefficient is $\frac{12!}{7!5!} 3^{5} \cdot(-5)^{7}$.
This reduces to $-2^{3}, 3^{7}, 5^{7}, 11$.

EXERCISE VIII.

[Coefficients which are large should be given in factors, not multiplied out.]

Write down the expansions of Nos. I-8.

1. $(1-a)^{4}$.
2. $(b+1)^{5}$.
3. $(1-2 c)^{3}$.
4. $(d+2)^{4}$.
5. $(x-y)^{0}$.
6. $\left(x+\frac{1}{x}\right)^{7}$.
7. $(2 x-3 y)^{4}$.
8. $\left(a^{2}-3 b\right)^{5}$.
9. In the expansion of $(1+x)^{7}$, (i) What is the number of terms? (ii) Which term involves x^{3} ? (iii) What is the power of x in the 6th term? (iv) What is the coefficient of x^{4} ?
10. In the expansion of $(4 x-5 y)^{12}$,
(i) What is the number of terms?
(ii) What powers of x and y occur in the 3rd term? in the llth term?
(iii) If one term is $a x^{p} y^{q}$, what do you know about p and q ?
(iv) What is the last term? the 7th term?
11. What is the coefficient of x^{3} in
(i) $(1+2 x)^{5}$;
(ii) $(1-x)^{7}$;
(iii) $(3-x)^{10}$; (iv) $(x+2)^{8}$?
12. What is the coefficient of x^{4} in (i) $\left(2-\frac{1}{2} x\right)^{8}$; (ii) $(3 x-1)^{0}$?
13. What is the coefficient of x^{7} in (i) ($\left.1-3 x\right)^{10}$; (ii) $(4 x-5)^{16}$?
14. What is the coefficient of x^{8} in (i) $\left(2 x-x^{2}\right)^{6}$; (ii) $\left(3-x^{2}\right)^{7}$?
15. What is the 4th term in the expansion of
(i) $(1-x)^{12}$;
(ii) $(2-x)^{10}$;
(iii) $\left(1+\frac{1}{2} x\right)^{n}$?
16. What is the 7th term in the expansion of
(i) $(x-y)^{0}$;
(ii) $(2-3 x)^{10}$;
(iii) $(5 a-3 b)^{12} 9$
17. What is (i) the 5th term (ii) the r th term in $(1+2 x)^{n}$?
18. What is (i) the 4th term from the beginning, (ii) the 4th term from the end in the expansion of $(x+y)^{10}$?
19. What is the term independent of x in

$$
\text { (i) }\left(x+\frac{2}{x}\right)^{4} ; \quad \text { (ii) }\left(3 x-\frac{5}{x}\right)^{6} \text { ? }
$$

20. How many terms are there in the expansion of $(2 a-3 b)^{6}$? What is the middle term ?
21. What is the greatest coefficient in the expansion of

$$
\text { (i) }(1+x)^{8} \text {; (ii) }(1+x)^{9} \text { ? }
$$

22. Using factorials write down the coefficients of the named terms in the following:

$$
\begin{aligned}
& \text { (i) } x^{5} \text { in }(2-x)^{11} \text {; } \\
& \text { (ii) } x^{9} \text { in }(4-3 x)^{18} \text {; } \\
& \text { (iii) } x^{n} \text { in }(1+x)^{2 n} \text {; } \\
& \text { (iv) } x^{n-1} \text { and } x^{n} \text { in }(1+x)^{2 n-1} \text {; } \\
& \text { (v) } x^{14} \text { in }\left(3 x+2 x^{2}\right)^{7} \text {; } \\
& \text { (vi) } x^{10} \text { in }\left(1-2 x^{2}\right)^{8} \text {; } \\
& \text { (vii) } x^{4} \text { in }\left(x+\frac{1}{x}\right)^{18} \text {; } \\
& \text { (vii) } \frac{1}{x^{3}} \text { in }\left(x-\frac{1}{x}\right)^{8} \text {. }
\end{aligned}
$$

23. What is (i) the 4th term, (ii) the rth term in $\left(1-x^{2}\right)^{n}$?
24. Simplify $(a-1)^{3}+3(a-1)^{2}+3(a-1)+1$.
25. Simplify $1-4(b+1)+6(b+1)^{2}-4(b+1)^{3}+(b+1)^{4}$.
26. What is the coefficient of x^{4} in $\left(1+x+x^{2}\right)^{10}$?
27. What is the coefficient of x^{3} in $\left(1+x+x^{8}\right)^{n}$?
28. What is the nth term in the expansion of $\left(1+x^{2}\right)^{3 n}$?
29. What are the coefficients of x^{4} and x^{5} in $(1+x)^{7}$? Deduce the coefficient of x^{6} in $(1-x)(1+x)^{7}$.
30. What are the coefficients of x^{2} and x^{5} in $(1-x)^{n} ?$ Deduce the coofficient of x^{s} in $(1+x)(1-x)^{n}$.
31. Evaluate $(\sqrt{ } 2+1)^{6}+(\sqrt{ } 2-1)^{6}$.
32. Find the term independent of x in the expansion of

$$
\left(x+\frac{1}{x}\right)^{2 n}
$$

33. Express compactly by using factorials :
(i) 12.11 .10.9.8.7;
(ii) 20.18.16.14.12 . 10;
(iii) 2.4.6.8... $(2 n-2) .2 n$;
(iv) 1.3.5.7... $(2 n-1)$.
34. Simplify (i) $n!\div(n-3)!$; (ii) $n!-(n-1)!$.
35. If 201 is expressed in prime factors, to what power will (i) 2 , (ii) 3 occur ?
36. Simplify (i) $\frac{n!}{r!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!}$;
(ii) $\frac{n!}{r!(n-r)!} \div \frac{n!}{(r-1)!(n-r+1)!}$.
37. Prove that the coefficient of $x^{n} y^{n} z^{n}$ in the expansion of $(x+y+z)^{3 n}$ is $(3 n) y /(n!)^{3}$.
38. Prove that the coefficient of x^{3} in the expansion of $(3+x)(1+x)^{n}$ is $\frac{1}{2} n(n-1)^{2}$.

CHAPTER IX

LITERAL EQUATIONS AND QUADRATIC FUNCTIONS

Literal Equations

Use the same methods as are used for numerical equations

Simple Equations

Collect on the left-hand side terms which contain the unknown ${ }_{4}$ and remove all other terms to the right-hand side.

Example 1. Solve, for $x, a x+\frac{b}{a}=b x+\frac{a}{b}$ where $a \neq b$.
Subtract $\frac{b}{a}$ and $b x$ from each side,

$$
\begin{aligned}
& \therefore a x-b x=\frac{a}{b}-\frac{b}{a} \\
& \therefore x(a-b)=\frac{a^{2}-b^{2}}{a b}=\frac{(a+b)(a-b)}{a b}
\end{aligned}
$$

Divide each side by ($a-b$), since $a-b \neq 0$,

$$
\therefore x=\frac{(a+b)(a-b)}{a b(a-b)}=\frac{a+b}{a b}
$$

EXERCISE IX. a

Solve, for x, the following equations:

1. $b+x=c$.
2. $b x=c$.
3. $\frac{1}{x}=a$.
4. $\frac{a}{x}=\frac{b}{c}$.
5. $a-x=\frac{1}{b}$.
6. $\frac{1}{x}=b+c$.
7. $x=c-x$.
8, $2 x-a=a-b$.
8. $\frac{x}{a}=\frac{a}{b}$,
9. $b x=b+b^{2}$.
10. $\frac{x}{a}=1-a$.
11. $p(x+q)=3 p q$.
12. $2 x+b x=A$.
13. $\frac{1}{x}=\frac{1}{a}+\frac{1}{b}$.
14. $\frac{x}{2 a}+\frac{x}{3 a}=b$.
$16 \frac{c}{x}+\frac{d}{x}=\frac{1}{2} . \quad 17 n x+x=k . \quad$ 18. $x=m x_{1}+c$.
15. $\frac{x+p}{x-q}=2$.
$20 \times-\frac{x}{c}=d$.
16. $\frac{1}{x+r}=8$.
17. $p x+q=p+q x$.
18. $x(a+b)=c(a b-x)$.
19. $a x+b x=a^{2}-b^{2}$.
20. $p(x-p)=q(x-q)$.
21. $r(x+s)=s(x+r)$.
22. $c(x-d)=d(x+c)$.
23. $\frac{x+m}{n}=\frac{x+n}{m}$.
24. $(x-a)^{2}=x^{2}+b^{2}$.
25. $\frac{1}{x-a}+\frac{1}{x-b}=\frac{2}{x}$.
26. $(x-p)(x+c)=(x+p)(x-q)$.
27. $\frac{c}{x-d}+\frac{d}{x-c}=\frac{c+d}{x}$.
28. $\frac{c-b}{x-a}=\frac{c-a}{x-b}$.
[Note. For further practice, see Appendix, Ex. F.P. 8, p. 161.]

Simultaneous Simple Equations

Use the method of addition or subtraction.
Example 2. Find x and y from the simultaneous equations,

$$
\begin{align*}
& a x+b y+c=0 \tag{i}\\
& p x+q y+r=0 \tag{ii}
\end{align*}
$$

Multiply each side of (i) by q and each side of (ii) by b;

$$
\begin{align*}
\therefore \quad a q x+b q y+c q & =0, \tag{iii}\\
b p x+b q y+b r & =0 . \tag{iv}
\end{align*}
$$

\qquad

From (iii) and (iv), by subtraction,

$$
\begin{gathered}
a q x-b p x+c q-b r=0 ; \\
\therefore a q x-b p x=b r-c q ; \quad \therefore x(a q-b p)=b r-c q ; \\
\therefore x=\frac{b r-c q}{a q-b p}
\end{gathered}
$$

The value of y can be found by substituting this value of x in (i) ; but it is easier to find y by starting again with (i) and (ii) and eliminating x. The reader should do this; he will find that

$$
y=\frac{c p-a r}{a q-b p}
$$

\therefore the solution is $\mathbf{x}=\frac{b r-c q}{a q-b p}, y=\frac{c p-a r}{a q-b p}$.

This is a formula for solving any pair of simultaneous equations of the first degree, in two unknowns. The answer can be written in the form :

$$
\frac{x}{b r-c q}=\frac{y}{c p-a r}=\frac{1}{a q-b p}
$$

At first, simultaneous simple equations should be solved from first principles, not by quoting a formula; but it is useful for the reader to see a more symmetrical method of writing this result.

Many formulae can be expressed in a symmetrical form, if the following notation is used.

$$
\left|\begin{array}{ll}
A & B \\
P & Q
\end{array}\right| \text { stands for the " cross-product," } A Q-B P
$$

It is called a determinant.
Using this notation, we see that the roots of the simultaneous equations,

$$
\left.\begin{array}{l}
a x+b y+c=0 \\
p x+q y+r=0
\end{array}\right\}
$$

are given by

$$
\frac{x}{\left|\begin{array}{ll}
b & c \\
q & r
\end{array}\right|}=\frac{y}{\left|\begin{array}{ll}
c & a \\
r & p
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a & b \\
p & q
\end{array}\right|}
$$

The next example shows how time can often be saved by simplifying before starting to eliminate one unknown.

Example 3. Find x and y from the simultaneous equations,

$$
\begin{align*}
(a+b) x+(a-b) y & =a^{2}-b^{2} \tag{i}\\
(a-b) x-(a+b) y & =-2 a b \tag{ii}
\end{align*}
$$

By addition, from (i) and (ii),

$$
\begin{equation*}
2 a x-2 b y=a^{2}-b^{2}-2 a b \tag{iii}
\end{equation*}
$$

By subtraction, from (i) and (ii),

$$
\begin{equation*}
2 b x+2 a y=a^{2}-b^{2}+2 a b \tag{iv}
\end{equation*}
$$

\qquad
Multiply each side of (iii) by a and each side of (iv) by b.

$$
\begin{equation*}
\therefore 2 a^{2} x-2 a b y=a^{2}-a b^{2}-2 a^{2} b \tag{v}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b^{2} x+2 a b y=a^{2} b-b^{3}+2 a b^{2} \tag{vi}
\end{equation*}
$$

By addition, from (v) and (vi),

$$
2 a^{2} x+2 b^{2} x=a^{3}-a^{2} b+a b^{2}-b^{3} ;
$$

$$
\begin{gathered}
\therefore 2 x\left(a^{2}+b^{2}\right)=a^{2}(a-b)+b^{2}(a-b)=(a-b)\left(a^{2}+b^{2}\right) ; \\
\therefore x=\frac{(a-b)\left(a^{2}+b^{2}\right)}{2\left(a^{2}+b^{2}\right)}=\frac{a-b}{2} .
\end{gathered}
$$

Substitute for x in (iv),

$$
\therefore \frac{2 b(a-b)}{2}+2 a y=a^{2}-b^{2}+2 a b ;
$$

$\therefore a b-b^{2}+2 a y=a^{3}-b^{2}+2 a b ; \quad \therefore 2 a y=a^{2}+a b=a(a+b)$;

$$
\therefore y=\frac{a(a+b)}{2 a}=\frac{a+b}{2} ;
$$

\therefore the solution is $x=\frac{1}{2}(a-b), y=\frac{1}{2}(a+b)$.

EXERCISE IX. b

Find x and y from the following simultaneous equations :

1. $x+y=7 c$,
$x-y=3 c$.
2. $2 x-y=a$, $x+3 y=b$.
3. $\begin{aligned} a x+2 b y & =4 c, \\ 2 a x-b y & =3 c .\end{aligned}$
4. $x+c y=d$,
5. $a x+y=a b$,
6. $x+y=p+q$, $p x+q y=2 p q$.

$$
x+d y=c
$$

$$
b x-a y=b^{2}
$$ $b x-a y=b^{2}$.

7. $\frac{x+y}{a}=\frac{x-y}{b}=k$.
8. $\frac{a}{x+b}=\frac{b}{y+a}=\frac{c}{d}$.
9. $a x-b y=a^{2}+b^{2}$, $x+y=2 a$.
10. $c x-d y=0$, $x+y=k$.
11. $\frac{a}{x}+\frac{b}{y}=c$, $\frac{a}{x}-\frac{b}{y}=d$.
12. $b(x-b)=a y$, $a(x-a)=b(x-y)$.
13. $c x+d y=2 c d$,
14. $y=m x+c$,
$d x-c y=d^{2}-c^{2}$.
$x=m y+c$.
15. $a x+b y=b x-a y=a^{2}+b^{2}$.
16. $x-p=y-q=\frac{p x-q y}{p+q}$.
17. $q x=p y$,
$p x-q y=p+q$.
18. $\frac{x}{a}+\frac{y}{b}=2$,
19. $\frac{x-a}{b}+\frac{y}{a}=0$,
$a x+b y=a^{2}+b^{2} . \quad \frac{x-b}{a}-\frac{y}{b}=0$.
20. $\begin{aligned} x(c+d)+y(1-c) & =d(c+d), \\ x(c-d)+y(1+c) & =d(c-d) .\end{aligned}$
21. $(p-q) x+(p+q) y=(p+q)^{2}$, $q x-p y=q^{2}-p q$.
22. $r(x+y)+s(x-y)=2 r s$,
23. $b x-(a+b) y=a b-b^{2}$, $s(x+y)-r(x-y)=s^{2}-r^{2}$. $(a-b) x-2 a y=2 b^{2}$.
24. $x(c+1)+y(1-d)=x(1-c)+y(1+d)=k$.

Write down by means of the formula the solution of the following :
25. $3 x+5 y+2=0$,
$2 x+3 y+4=0$.
26. $4 x+3 y-3=0$,
27. $5 x-2 y-25=0$, $3 x+4 y-2=0$. $4 x+3 y+3=0$.
28. $x-3 y=1$,
29. $6 x+5 y=-7$,
30. $10 x-6 y=3$,
$2 x+y=16$.
$4 x-3 y=8$.
$14 x-9 y=4$.
[For further practice in literal equations and literal relations, ses Appendix, Ex. F.P. 9, 10, pp. 163.5 and Ex. T. 8, p. 177.]

Quadratic Equations

Any quadratic equation can be reduced to the form

$$
a x^{2}+b x+c=0
$$

And it has been proved (Pt. II, Ch. XIV) that its roots are

$$
\frac{-b+\sqrt{ }\left(b^{2}-4 a c\right)}{2 a}, \frac{-b-\sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
$$

unless $b^{2}<4 a c$.
The connection between the roots and the coefficients was indicated in Pt. II, Ch. XII. This work should now be revised and extended.

Denote by α, β the two roots of $a x^{2}+b x+c=0$. Then the equation is

$$
(x-a)(x-\beta)=0 \quad \text { or } \quad x^{2}-a x-\beta x+a \beta=0
$$

$\therefore x^{2}-x(\alpha+\beta)+\alpha \beta=0$ and $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$ are equivalent equations. This requires that

$$
a+\beta=-\frac{b}{a} \text { and } a \beta=\frac{c}{a}
$$

These two facts should be committed to memory ; they may be stated as follows :

If all terms of a quadratic equation are brought to one side, and, if the coefficient of x^{2} is +1 ,
(i) the sum of the roots $=$ the coefficient of x with the sign changed;
(ii) the product of the roots = the constant term.

Nature of Roots of a Quadratic. The forms of the two roots of $a x^{2}+b x+c=0$ lead to the following conclusions.
(i) If $b^{2}-4 a c$ is a perfect square and if a, b, c are rational, the roots are rational and unequal.
(ii) If $b^{2}-4 a c>0$, but is not a perfect square, the roots are irrational and unequal.
(iii) If $b^{2}-4 a c=0$, the roots are equal.
(iv) If $b^{2}-4 a c<0$, there are no roots.

d.s.A.

Note. It is (unfortunately) customary to say that the square root of a negative number is an "imaginary number," and, in contrast, that the square root, of a positive number is a "real tumber." And so the equation tic" $+b x+c=0$ is said to have "real roots" if $b^{4}-4 a c>0$, and to have "imaginary roots" if $b^{3}-4 a 0<0$.

Erample 4., Find the sum of the squares of the roots of the equation $5 x^{6}-x-3=0$.

Let a, β be the roots of $5 x^{2}-x-3=0$ or $x^{2}-\frac{1}{8} x-\frac{1}{8}=0$.

$$
\begin{aligned}
& \therefore a+\beta=+\frac{1}{} \text { and } a \beta=-\frac{8}{8} . \\
& \therefore a^{2}+2 a \beta+\beta^{2}=(a+\beta)^{2}=\frac{2}{25} ; \text { but } 2 a \beta=-\frac{\beta}{8} ; \\
& \therefore \alpha^{2}+\beta^{2}=\frac{1}{25}+\frac{6}{5}=\frac{31}{25} .
\end{aligned}
$$

Example 5. If one root of $x^{2}+p x+36=0$ is four times the other, find the value of p.

Let the roota be $a, 4 a ; \therefore 5 a=-p$ and $4 a^{2}=36$.

$$
\therefore a^{2}=9 ; \quad \therefore a= \pm 3 ; \quad \therefore p=\mp 15
$$

Example 6. If a, β are the roots of $a x^{2}+b x+c=0$,
(i) express $\alpha^{2}+\beta^{3}$ in terms of a, b, c;
(ii) form the equation whose roots are $\alpha-2 \beta, \beta-2 \alpha$.

From the data, $a+\beta=-\frac{b}{a}$ and $a \beta=\frac{c}{a}$.
(i) $a^{3}+\beta^{3}=(\alpha+\beta)\left(a^{3}-\alpha \beta+\beta^{2}\right)=(\alpha+\beta)\left\{(\alpha+\beta)^{2}-3 a \beta\right\}$

$$
=\left(-\frac{b}{a}\right)\left\{\frac{b^{2}}{a^{2}}-\frac{3 c}{a}\right\}=-\frac{b\left(b^{2}-3 a c\right)}{a^{2}}
$$

(ii) Let the required equation be $x^{2}+q x+r=0$;

$$
\text { then } \alpha-2 \beta+\beta-2 \alpha=-q \text { and }(\alpha-2 \beta)(\beta-2 a)=r
$$

$$
\therefore q=a+\beta=-\frac{b}{a}
$$

and $r=-2 \alpha^{2}+5 \alpha \beta-2 \beta^{2}=-2(\alpha+\beta)^{2}+9 \alpha \beta$ $=-\frac{2 b^{2}}{a^{2}}+\frac{9 c}{a}=\frac{9 a c-2 b^{2}}{a^{3}} ;$
\therefore the equation is $x^{2}-\frac{b}{a} x+\frac{9 a c-2 b^{2}}{a^{2}}=0$,

$$
a^{2} x^{2}-a b x+9 a c-2 b^{2}=0 .
$$

or
Note. In questions involving the roots of a quadratic, avoid when poesible treating each root separately. Use the values of $a+\beta$ and $a \beta$, rather than the separate values of α and of β.

EXERCISE IX. c

1. What is the nature of the roats of the following equations The actual roots are not required.
(i) $x^{3}-3 x-7=0$;
(ii) $x^{2}-3 x+7=0$;
(iii) $x^{1}-3 x-10=0$;
(iv) $x^{4}-3 x+2 t=0$;
(v) $5 x^{2}+7 x+3=0$;
(vi) $24 x^{8}-35 x-150=0$;
(vii) $9 x^{2}-24 x+16=0$;
(viii) $3 x^{2}+11 x+9=0$.
2. Form the equations whose roots are
(i) $3,-7$;
(ii) ± 4;
(iii) $\pm \sqrt{ } 3$;
(iv) $3+\sqrt{ } 2,3-\sqrt{ } 2$;
(v) $2 p, 3 p$;
(vi) $-5 p, p$;
(vii) $1, \frac{c}{a}$;
(viii) $\frac{p}{q},-\frac{r}{g}$.
3. Find the greatest value of c for which (i) $x^{1}-6 x+c=0$; (ii) $x^{2}+5 x+c=0$ has roots.
4. If $x=3$ is a root of each of the following equations, write down the other root, and then find the value of p.
(i) $x^{2}-5 x+p=0$;
(ii) $x^{2}+4 x+p=0$;
(iii) $x^{2}+p x+12=0$;
(iv) $5 x^{2}+p x-6=0$.
5. One root of $7 x^{2}+6 x+c=0$ is double the other ; find them ; also find c.
6. Find c if $3 x^{2}-8 x+c=0$ has equal roots.
7. One root of $4 x^{2}+b x+75=0$ is three times the other ; find them; also find b.
8. If α, β are the roots of $x^{8}-4 x-7=0$, find the values of
(i) $\alpha^{2}+\beta^{2}$;
(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$;
(iii) $\frac{1}{a}+\frac{1}{\beta}$.
9. If a, β are the roots of $3 x^{2}+2 x-4=0$, find the values of

$$
\text { (i) } a^{2}+\alpha \beta+\beta^{2} \text {; } \quad \text { (ii) } a^{2}+\beta^{3} \text {. }
$$

10. If α, β are the roots of $2 x^{2}+6 x+3=0$, form the equation whose roots are

$$
\text { (i) } \frac{1}{a}, \frac{1}{\bar{\beta}} ; \text { (ii) } a^{\mathrm{z}}, \beta^{\mathrm{Z}} .
$$

11. If a, β are the roots of $x^{2}+q x+r=0$, find the condition that
(i) $a=\frac{1}{\beta}$;
(ii) $\alpha=2 \beta$;
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}=3$.
12. If a, β are the roots of $a x^{2}+b x+c=0$, form the equation whose roots are

$$
\text { (i) } \frac{1}{a}, \frac{1}{\beta} ; \quad \text { (ii) } \frac{\alpha}{\beta}, \frac{\beta}{a} ; \quad \text { (iii) } \alpha+\frac{1}{\beta}, \beta+\frac{1}{a} \text {. }
$$

13. What is the equation whose roots are 3 times the roots of $6 x^{2}+2 x-5=0$?
14. What is the equation whose roots are each 1 less than the roots of $2 x^{2}-x=5$?
15. Find c if $x^{2}+(c-1) x=2 c+1$ has equal roots.
16. What can you say about b if $x+\frac{1}{x}=b$ has roots ?
17. What can you say about k if $4+2 x-x^{2}=k$ has roots ? Hence find the greatest value of $4+2 x-x^{2}$.
18. What can you say about k if $3 x^{2}-10 x+7=k$ has roots ? Hence find the least value of $3 x^{2}-10 x+7$.
19. If α, β are the roots of $a x^{2}+b x+c=0$, find in terms of a, b, c,

$$
\text { (i) } \frac{a^{2}}{\beta}+\frac{\beta^{2}}{a} ; \quad \text { (ii) }(\alpha-1)(\beta-1)
$$

20. Prove that $a x^{2}-(a+c) x+c=0$ has rational roots.

Solve for x the following equations :
21. $x^{2}-3 c x=10 c^{2}$.
22. $(x-b)^{2}=4 c^{2}$.
23. $x^{2}-4 x=4\left(b^{2}-1\right)$.
24. $x^{2}+2 p x=q^{2}$.
25. $a\left(x^{2}+1\right)=x a\left({ }^{2}+1\right)$.
26. $x-\frac{1}{x}=c$.
27. Find the equation whose roots are the squares of the roots of $2 x^{2}-4 x=3$.
28. Find the condition that the roots of $x^{2}+q x+r=0$ differ by $3 q$.
29. Prove that $(a+4 b) x^{2}-2(a+b) x+a-2 b=0$ has rational roots, if a and b are rational.
30. Prove that $\left(a^{2}+b^{2}\right) x^{2}-2(a+b) x+2=0$ has no roots, if a and b are unequal.
31. What is the condition that $x^{2}+x y-2 y^{2}$ and $a x^{2}+2 h x y+b y^{2}$ have a common factor of the form $x+c y$?
32. What is the condition that the equations, $x^{2}+b x+c=0$ and $x^{2}-c x-b=0$, have a common root ?
33. If α and β are the roots of $p x^{2}+q x+r=0$, simplify

$$
(q \alpha+r)(q \beta+r)
$$

34. Find c if $4(x-2)^{2}=c(5-8 x)$ has equal roots.
35. Find c if the sum of the roots of $x^{3}-(c+6) x+2(2 c-1)=0$ is half their product.
36. (i) Write down the equation whose roots are a, β, γ and simplify it out, collecting like terms in x.
(ii) If a, β, γ are the roots of $a x^{3}+b x^{2}+c x+d=0$, express $\alpha+\beta+\gamma, \beta \gamma+\gamma a+a \beta, \alpha \beta \gamma$ in terms of a, b, c, d.
37. (i) The roots of $x^{3}+p x^{2}+q x+r=0$ are 3, 1, -2 ; what are the values of p, q, r ?
(ii) Two of the roots of $x^{3}+q x+r=0$ are 4, 3; what is the other root ? What are the values of q, r ?
[For further practice, see Appendix, Ex. F.P. 10, p. 165.]

Quadratic Functions

We can transform the quadratic function $a x^{2}+b x+c$ as follows :

$$
\begin{aligned}
a x^{2}+b x+c & =a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& =a\left\{x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}\right\} \\
& =a\left\{\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right\} .
\end{aligned}
$$

(i) If $b^{2}-4 a c>0$, by using the mothod of "difference of two squares," we obtain two real unequal factors of $a x^{2}+b x+c$, for all values of x.
Thus, numbers a and β can be found such that

$$
a x^{2}+b x+c=a(x-a)(x-\beta)
$$

for all values of x.
Therefore the function $a x^{2}+b x+c$ is zero for two values of x, namely $x=\alpha$ and $x=\beta$, and is positive for some values of x, and negative for other values of x.
(ii) If $b^{2}-4 a c=0, a x^{2}+b x+c$ is a perfect square, viz. $a\left(x+\frac{b}{2 a}\right)^{2}$ for all values of x.
In this case, $a x^{2}+b x+c$ is zero for one value of x only, namely , $x=-\frac{b}{2 a}$, and for other values of x has the same sign as a.
(iii) If $b^{2}-4 a c<0$,

$$
a x^{2}+b x+c=a\left\{\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right\},
$$

and is therefore the " sum of two squares," and numbers p and q can be found such that

$$
a x^{2}+b x+c=a\left\{(x+p)^{2}+q^{2}\right\}
$$

for all values of x.
In this case $a x^{8}+b x+c$ is never zero, and for all values of x has the same sign as a.

Rough graphs should now be drawn to illustrate these three cases (cf. Ex. VII. a. Nos. 8-12).

Erample 7. For what range of values of x is the function $5+7 x-6 x^{2}$ negative ? Find also its grestest value.
(i) $5+7 x-6 x^{2}=(1+2 x)(5-3 x)=2\left(\frac{1}{2}+x\right)(-3)\left(x-\frac{5}{3}\right)$ $=-6\left(x-\frac{6}{3}\right)\left(x+\frac{1}{2}\right) ;$
$\therefore 5+7 x-6 x^{2}$ is negative if $\left(x-\frac{5}{3}\right)\left(x+\frac{1}{2}\right)$ is positive, that is, if $x-\frac{5}{3}$ and $x+\frac{1}{2}$ are either both positive or both negative.

Both factors are positive if $x>\frac{5}{5}$.
Both factors are negative if $x<-\frac{1}{2}$.
$\therefore 5+7 x-6 x^{2}$ is negative if $x>\frac{8}{3}$ or if $x<-\frac{1}{2}$.
(ii) $5+7 x-6 x^{2}=5-6\left(x^{2}-\frac{7 x}{6}\right)$

$$
\begin{aligned}
& =5-6\left(x-\frac{7}{12}\right)^{2}+6 \times \frac{64}{142} \\
& =7 \frac{1}{22}-6\left(x-\frac{7}{12}\right)^{2} .
\end{aligned}
$$

Now the least value of $\left(x-\frac{7}{12}\right)^{2}$ is zero;
\therefore the greatest value of $5+7 x-6 x^{2}$ is $7 \frac{1}{2} 4$, and the function takes this value when $x=\frac{7}{12}$.

EXERCISE IX, d

1. For what ranges of values of x is (i) $(2 x-3)(x+4)$ positive ; (ii) $(3 x-5)(2 x+1)$ negative :
2. What is the least value of $3\left\{(2 x-1)^{2}+4\right\} 9$
3. What is the greatest value of $24-3(x-1)^{2}$?
4. Which of the following functions have greatest values :
(i) $(1-x)^{2}$;
(ii) $1-x^{2}$;
(iii) $(5-x)(4-x)$;
(iv) $(x-5)(2-x)$?
5. For what range of values of x is $3-2 x-8 x^{2}$ positive ?
6. For what range of values of x is $2 x^{4}-x-3$ negative ?
7. Find the least value of $(x+1)(x+3)$ and the greatest value of $(x-1)(3-x)$. Illustrate by rough graphs.
8. Prove that $x^{2}-3 x+3$ is always positive. Interpret this graphically.
9. Find (i) the greatest value of $1+2 x-x^{2}$;
(ii) the least value of $5 x^{2}-x$.
10. What is the least value of c, if $2 x^{3}-12 x+c$ is never negative ?
11. What is the greatest value of c, if $c+3 x-2 x^{2}$ is never greater than 2 ?
12. Find an integral value of x such that

$$
5 x-1<(x+1)^{2}<7 x-3 .
$$

13. If $4+2 x-x^{2}=k$, prove that $k>5$.
14. (i) If $\frac{x+4}{(x+1)(x-8)}=k$ has real roots, what limit is there to the possible values of k ?
(ii) Prove that the value of $\frac{x+4}{(x+1)(x-8)}$ cannot lie between - $\frac{1}{3}$ and $-\frac{1}{2}$ r.
15. Find the limits within which the value of $\frac{3 x^{2}+2}{2 x^{1}-2 x+1}$ must lie.
16. Prove that $\frac{x+1}{x^{2}-4}$ is capable of any value.
17. What can you say about m, if

$$
x^{2}-(m-1) x+(m-1)(m-2)=0
$$

has two real roots ?
18. What is the condition that $a x^{2}+a x+c$ is always positive
19. Sketch graphs of the following functions:
(i) $3(x-2)^{2}$;
(ii) $5(x-2)(4-x)$;
(iii) $-2(x-1)^{2}-6$;
(iv) $-3(x+2)(x-1)$.
20. For what range of values of x are the following functions. positive ? Sketch their graphs.
(i) $(x+1)(x-1)(x-3)$;
(ii) $(2 x-3)(x+2)(3 x-1)$;
(iii) $\left(x^{4}-1\right)\left(x^{2}-9\right)$;
(iv) $(2 x-1)^{2}(3-x)$.
[For a revision exercise on Ch. VIII.IX. see Appendix, Ex. W. 4, p. 152].

TEST PAPERS, C. 21-35

C. 21

1. (i) Find the value of c if $x-2$ is a factor of $x^{8}+c x^{2}-6 x-8$.
(ii) Solve $x^{8}+3 x^{2}-6 x=8$.
2. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, prove that

$$
\frac{a-e}{b-f}=\sqrt{\left\{\frac{2 a^{2}-c^{2}+3 e^{2}}{2 b^{2}-d^{2}+3 f^{2}}\right\}}
$$

3. If α, β are the roots of $2 x^{2}-8 x+5=0$, find the value of
(i) $a^{2}+b^{2}$;
(ii) $\frac{1}{a}+\frac{1}{\beta}$;
(iii) $\sqrt{\left.\left(\frac{\alpha}{\beta}\right)+\sqrt{\left(\frac{\beta}{\alpha}\right.}\right) \text {. } ~}$
4. (i) Simplify $\frac{(2 x-y)^{3}+(x-2 y)^{3}}{x^{4}+x^{2} y^{2}+y^{4}}$;
(ii) Solve for $x, b\left(x^{2}-1\right)=x\left(1-b^{2}\right)$.
5. What number must be added to each of the numbers 2 , 6, 9 to obtain four numbers in proportion ?

C. 22

1. Find the numerical values of b and c if

$$
x^{4}-4 x^{3}-x^{2}+b x+c
$$

(i) has $x^{2}-3 x+2$ as a factor; (ii) is a perfect square.
2. If a, b, c are in continued proportion, prove that
(i) $\frac{b^{2}-c^{2}}{a^{2}-c^{2}}=\frac{b^{2}}{a^{2}+b^{2}}$;
(ii) the fourth proportional to a, b, c is $\frac{b^{3}}{a^{2}}$.
3. Make x the subject of the formula $\frac{1+a x}{1+b x}=\frac{c}{d}$.

Simplify the result if $c=b$ and $d=a$.
4. (i) Construct an equation having as roots

$$
\text { (a) } \pm 3,0 ; \text { (b) } 5 \pm 2 \sqrt{ } 3
$$

(ii) What is the value of p if the equation $x^{2}-10 x+p=0$ has (a) equal roots, (b) roots of the form $a, 3 a$?
5. Draw the graph of $y=1+3 x-x^{2}$ for values of x from -1 to +4. Use your graph
(i) to solve $x^{2}=3 x+1$;
(ii) to find the values of x between which $3 x-x^{2}$ is - greater than 1;
(iii) the values of c for which $1+3 x-x^{2}=c$ has no roots.

Sketch on the same figure the graph of $y=3 x-x^{2}$.

C. 23

1. (i) Find the numerical values of b and c if $x-2$ is a common factor of $x^{2}+b x-10$ and $b x^{2}-5 x+c$.
(ii) Express $\frac{7}{(x-2)(2 x-1)}$ in the form $\frac{a}{x-2}+\frac{b}{2 x-1}$.
2. (i) If $6 x^{2}=x y+15 y^{2}$, find the possible values of $\frac{x+y}{x-y}$.
(ii) If $10 p=15 q=6 r$, find the 3 smallest positive integers to which p, q, r are proportional.
3. Solve for x and y,
(i) $2 x+4 y=7 a-b, x-y=b-a$;
(ii) $x^{3}-y^{3}=x-y=2$.
4. If $x^{8}+6 x+4 \equiv(x-\alpha)(x-\beta)$, find the values of

$$
\text { (i) } \frac{1}{\alpha}+\frac{1}{\beta} ; \quad \text { (ii) } \alpha^{2}+\beta^{2}
$$

Also express $(x-3 \alpha)(x-3 \beta)$ as a quadratic function of x with numerical coefficients.
5. The r th term of a series is 2 . (3r) $-\frac{1}{3} r$. What is the sum of n terms?

C. 24

1. (i) Divide $12 x^{4}+7 x^{3}-27 x^{2}-4 x+6$ by $3 x^{2}-2 x-2$.
(ii) Expand in ascending powers of x, as far as the term in x^{3},

$$
\left(1-2 x+3 x^{2}-4 x^{3}\right)^{3}
$$

2. Factorise (i) $x^{3}-5 x^{2}-4 x+20$; (ii) $y^{3}-13 y+12$;
(iii) $z^{s}-27$.
3. If $\frac{a}{b}=\frac{c}{d}$, prove that $a b-c d$ is a mean proportional between $a^{2}-c^{2}$ and $b^{2}-d^{2}$.
4. Find the value of b if the values of x which satisfy the equation $b=20 x-4 x^{3}$ (i) are equal, (ii) differ by 3.
5. Skeich the graph of $y=20 x-4 x^{2}$ showing clearly where it cuts the x-aris. What facts about the graph are obtained from the answers to No. 4 ?

$$
\text { C. } 25
$$

1. (i) For what values of c has the expression

$$
4 x^{2}+4 x y-3 y^{2}+2 x+c y-12
$$

linear factors? What are then the factors?
(ii) Factorise $x^{4}-x^{3}-11 x^{2}+8 x+18$.
2. Solve for x, (i) $x^{3}+2 q x=s^{2}-q^{2}$;
(ii) $\frac{x^{2}+3 x+5}{x^{2}-3 x-5}=\frac{2 x^{2}+x-3}{2 x^{2}-x+3}$.
3. Simplify (i) $(a+b) \cdot \sqrt{\left(\frac{a-b}{a+b}\right)}-(a-b) \sqrt{\left(\frac{a+b}{a-b}\right)}$;
(ii) $\sqrt{ }\left(2 \frac{1}{4}+\sqrt{ } 5\right)$.
4. If s is the sum of n terms of an A.P. whose lst term is a and common difference is d, express a in terms of $8, n, d$.

Find an A.P. with common difference 4 and such that the sum of 10 terms is 230 .
5. If a and β are the roots of $3 x^{2}-2 x-4=0$, form the quadratic equation having as roots, a^{2} and β^{2}.

C. 26

1. (i) Find the square root of $4 a^{4}-4 a^{3}-11 a^{2}+8 a+9$.
(ii) Prove that $x^{2}+3 x-10$ is a factor of

$$
x^{4}+2 x^{8}-15 x^{2}+4 x+20
$$

2. (i) Solve the simultaneous equations,

$$
\begin{aligned}
& x(\sqrt{ } 3+\sqrt{ } 2)+y(\sqrt{ } 3-\sqrt{ } 2)=6 \\
& x(\sqrt{ } 3-\sqrt{ } 2)+y(\sqrt{ } 3+\sqrt{ } 2)=6
\end{aligned}
$$

(ii) Solve for $x, \quad(x+a)^{2}=2 x^{2}$.
3. If $\frac{a}{y-z}=\frac{b}{z-x}=\frac{c}{x-y}$, prove that

$$
\text { (i) } a+b+c=0 \text {; (ii) } x(b+c)+y(c+a)+z(a+b)=0 \text {. }
$$

4. (i) Find a quadratic equation with rational coefficients which has $2+\sqrt{5}$ as one of its roots.
(ii) Find the values of c if the equation, $(x+6)^{2}=c x$, has (a) equal roots, (b) roots in the ratio $4: 1$.
5. A marble rolls down a groove with a gentle slope so that the distance traveiled in t seconds is $\frac{1}{8} t^{2}$ feet. Find how far it goes in (a) the lst second, (b) the 2nd second, (c) the 3rd second, (d) the th second.

Show that the distances travelled in successive seconds form an A.P.

C. 27

1. (i) Simplify $\left(\frac{1}{a}-\frac{1}{b}\right)\left(a^{2}+a b+b^{2}\right) \div\left(\frac{a}{b^{2}}-\frac{b}{a^{2}}\right)$.
(ii) Divide $y^{5}+y+1$ by $y^{2}+y+1$.
2. Prove that $a-b$ is a factor of

$$
(a+b)^{2}(a-b)+(b+c)^{2}(b-c)+(c+a)^{2}(c-a)
$$

What are the other factors ? Hence factorise the expression.
3. (i) If $2 x-y+3 z=0$ and $3 x+2 y-z=0$, find $x: y: z$.
(ii) If $\frac{x+y}{a}=\frac{x-z}{b}=\frac{x+y-z}{c}$, express $x: y: z$ in terms of a, b, c.
4. Make a table of values from $x=-2$ to $x=8$.for the function $y=4+\frac{12}{x-3}$, and show where there are missing values, and draw the corresponding graph.

Solve graphically the simultaneous equations,

$$
(y-4)(x-3)=12, \quad y=2 x+1
$$

5. A stone, thrown vertically upwards, is h feet above the ground after t seconds, where $h=40 t-16 t^{2}$.

What can you say about the numerical value of h if this equa. tion has no roots, and what does this mean?

After what time does the stone strike the ground ?

C. 28

1. If a, b, c are in continued proportion, exprees $\frac{b(a-c)}{a-b}$ in
erms of b, c. terms of b, c.
2. Find the values of p and q if $(x-1)^{2}$ is a factor of

$$
x^{3}+4 x^{2}-(2 p-q) x+p q
$$

3. (i) Solve $8 x y z=20(y+z)=15(z+x)=30(x+y)$.
(ii) Solve for $x, \frac{a-b}{x-b}+\frac{a-c}{x-c}=2$.
4. Make A the subject of
(i) $\log A=\log P+n \log R$;
(ii) $\log A=\frac{1}{2} \log Q-i \log R$

Find to the nearest whole number the value of n from the formula $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}$, if $r=3, \mathrm{P}=4, \mathrm{~A}=10$.
5. If a, β are the roots of the equation $3 x^{2}-7 x+3=0$,
(i) find the values of $\frac{1}{a+1}+\frac{1}{\beta+1}$;
(ii) form the equation whose roots are 2α and 2β;
(iii) form the equation whose roots are $\alpha+1$ and $\beta+1$.

C. 29

1. Prove that $x=3$ is a root of the equation,

$$
x^{3}+x^{2}-16 x+12=0 .
$$

Find the other roots correct to 2 places of decimale.
2. (i) Find the term independent of x in the expansion of $\left(2 x-\frac{3}{x^{2}}\right)^{9}$.
(ii) What is the coefficient of y^{9} in $(1-2 y)(1+y)^{10}$?
3. Prove that

$$
(x+y-z)^{3}+(y+z-x)^{3}+(z+x-y)^{3}-(x+y+z)^{3}
$$

reduces to cxyz, where c is a constant and finds its value.
4. Draw the graph of $y=x^{8}-3 x+3$ for values of x from -2 to +2. From the graph, find
(i) the least value of y for positive values of x;
(ii) the greatest value of y for negative values of x;
(iii) the roots of $x^{s}-3 x=1$.

Draw as wuch more of the graph as is necessary for solving $x^{3}-3 x=4$, and then solve it.
5. The Horse-Power at which a man works in climbing a mountain varies directly as bis weight and the height climbed and inversely as the time taken. Compare the rate of working of two men, one of whom weighs 10 stone and climbs 1000 feet in 50 minutes, while the other weighs 12 stone and climbs 1100 feet in an hour.

C. 30

(i) If $(a+b):(a-b)=c: d$, prove that $(c+d):(c-d)=a: b$.
(ii) Make y the subject of the formula

$$
x=\log _{10}(24-2 y)-\log _{10} 24
$$

2. Sum to 10 terms the series,

$$
2+\sqrt{ } 2+1+\frac{1}{\sqrt{2}}+\ldots
$$

By how much does this sum fall short of the sum to infinity ${ }^{9}$
3. (i) Express $7 x-11$ in the form $b(x-2)+c(x-3)$ where b, c are constants.
(ii) If $a x^{5}+b x^{4}+c x^{2}+d x+e$ is divided by $x-2$, the remainder is 1 ; also if it is divided by $x-3$, the remainder is 2 . Show that the remainder is $x-1$ if it is divided by $(x-2)(x-3)$.
4. (i) Prove that the roots of $2 x^{2}=5 x+11$ differ by the same amount as do the roots of $2 x^{2}+7 x=8$.
(ii) Express c in terms of b if the roots of $x^{2}+2 b x=c$ differ by $6 b$.
5. For what range of values of x is $4+5 x-6 x^{2}$ positive : Express $4+5 x-6 x^{2}$ in the form $a-b(x-c)^{2}$; hence find the greatest value of $4+5 x-6 x^{2}$ and the value of x for which it is greatest.
C. 31

1. If $x^{\frac{1}{4}} y^{-\frac{3}{z}}-\frac{-\frac{2}{2}}{}=5$, express y in the form $c x^{p} z^{q}$, giving c correct to 2 figures.
2. (i) Find the value of b if $x-2$ is a factor of

$$
2 x^{3}-11 x^{2}+b x-6
$$

and in this case find the other factors.
(ii) Factorise

$$
\left(a^{2}-b^{2}\right)(a+b)^{2}+\left(b^{2}-c^{2}\right)(b+c)^{2}+\left(c^{2}-a^{2}\right)(c+a)^{2}
$$

3. (i) Solve for x, y, z,

$$
x: y: z=3: 2: 4 ; 4 x-2 y-z=6
$$

(ii) What is the sum of the cubes of the roots of

$$
\frac{1}{x}+\frac{1}{x+1}=3 ?
$$

4. (i) Prove that the sum of the odd numbers from 1 to 71 inclusive is equal to the sum of the odd numbers from 97 to 119 inclusive.
(ii) If the sum of n consecutive odd numbers is equal to the sum of the first $3 n$ odd numbers, find the greatest and least of the former set.
5. By plotting $\log y$ against $\log x$, find a simple relation, giving y as a function of x, from the following data :

$y-$	\cdot	0.2	1.6	$5 \cdot 4$	12.8
$x \cdot$	\cdot	1	2	3	4

C. 32

1. If $x=a-b$, simplify the expression

$$
\frac{1}{x^{2}+a^{2}-b^{2}}-\frac{1}{x^{2}-a^{2}+b^{2}}+\frac{1}{x^{2}-a^{2}-b^{2}} .
$$

2. Find a, b if $x^{4}-b x^{3}-11 x^{2}+4(b+1) x+a$ is a perfect square and if $x+2$ is a factor.
3. (i) If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, prove that $\frac{a-c}{b-d}=\sqrt[s]{\left(\frac{a}{d}\right) .}$
(ii) If $\frac{a}{x}+\frac{b}{y}=\frac{a}{y}$, express $\frac{x+y}{x-y}$ in terms of a, b.
4. (i) Solve $x^{3}-3 x^{3}+20=4(x+2)$.
(ii) If $x y=c^{3}, y z=a^{2}, z x=b^{2}$ and if $x^{3}+y^{2}+z^{2}=d^{2}$, find an equation connecting a, b, c, d.
5. The weight $y \mathrm{gm}$. which produces a given deflexion in the middle of a beam supported at two points x om, apart, equidistant from the ends is determined experimentally, as follows :

$x \cdot$	-	50	60	70
$y \cdot$	\cdot	300	174	109

Show graphically that x and y are connected by a relation of the form $x^{n} y=0$, and find the best-fit values of n. c.

$$
\text { c. } 33
$$

1. (i) Find n correct to 3 figures if $7^{n+1}=10^{n}$.
(ii) Find y in terms of x if $\log _{10} y=0.75 \log _{10} x+0.82$.
2. (i) 駺valuato $\frac{3^{0.2}}{27^{-0.4}}-\frac{2^{-1}}{4^{-14}}$.
(ii) Find the product of the four expressions, $\sqrt{ } a \pm \sqrt{ } b \pm \sqrt{ } c$.
3. Solve (i) $3 x^{2}+5 x y-2 y^{2}=5,5 x-2 y=1$.

- . (ii) $z^{\frac{1}{2}}-10 z^{-\frac{1}{2}}=3$.

4. If a, β are the roots of $3 x^{2}+x-y=0$, prove that

$$
(3 \alpha+1)^{2}+(3 \beta+1)^{2}+9(\alpha+\beta)=40 .
$$

5. Find the product of n terms of a G.P. if
(i) the Ist term is a and the common ratio is r,
(ii) the lst term is a and the last term is l,
(iii) the lst term is a and the 2nd term is b.

$$
\text { C. } 34
$$

1. (i) If $x^{4}+2 x^{3}+3 x^{2}+4 x+5 \equiv(x-1)(x-2)\left(x^{2}+p x+q\right)+a x+b$, find numerical values of a and b.
(ii) What is the remainder if $x^{4}+2 x^{3}+3 x^{2}+4 x+5$ is divided by $(x-1)(x-2)$?
2. (i) Make x the subject of the formula $\left(\frac{a}{b}\right)^{\frac{1+x}{x}}=c$.
(ii) If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, express $\frac{(a+b)^{3}}{(b+c)^{3}}$ in terms of a, d.
3. (i) If a, b, c are in G.P., prove that $a+b, 2 b, b+c$ are in H.P.
(ii) If a, x, b are in A.P. and if a, y, b are in H.P., find the geometric mean of x and y in terms of a, b.
4. If a, β are the roots of $p x^{2}+q x+r=0$, find in terms of the coefficients,

$$
\text { (i) }(q a+r)(q \beta+r) \text {; (ii) }(p a+q)(p \beta+q) \text {. }
$$

5. The following swimming records are taken from Whitaker's Almanack :

Distance in yards	-	$-d$	150	220	300	440	500
Time in seconds	-	$-t$	$\mathbf{9 2 \cdot 4}$	$\mathbf{1 4 5 \cdot 4}$	210	323	$\mathbf{3 6 7 \cdot 2}$

Plot $\log t$ against $\log d$, and so find a possible formula for t in terms of d. The record for 300 metres is 230.2 sec. Does this agree with the formula you have found ? [1 metre $=1.094$ yards].

C. 35

1. (i) Express
$\frac{x(7 x-13)}{(x-1)^{3}(x+2)}$ in the form $\frac{a}{(x-1)^{2}}+\frac{b}{x-1}+\frac{c}{x+2}$, where a, b, c are constants.
(ii) Simplify $\frac{\sqrt{ }(1+\sqrt{ } 5)}{\sqrt{(2+\sqrt{5})}}$.
2. (i) Find the possible values of c if $x+2$ is a factor of

$$
x^{3}+4 c x^{2}+(c+1)^{2} x-6
$$

(ii) Show that x is one factor and that $(y+z)$ is another factor of $(y z+z x+x y)^{3}-y^{3} z^{3}-z^{3} x^{3}-x^{3} y^{9}$. Hence factorise this expression.
3. Evaluate (i) $(\sqrt{ } 3+\sqrt{ } 2)^{8}+(\sqrt{ } 3-\sqrt{ } 2)^{8}$;
(ii) $(\sqrt{ } 3+\sqrt{ } 2)^{-6}+(\sqrt{ } 3-\sqrt{ } 2)^{-6}$.
4. (i) Sum the serits $1+\left(3+\frac{1}{3}\right)+\left(3^{2}+\frac{1}{3^{2}}\right)+\ldots+\left(3^{n}+\frac{1}{3^{n}}\right)$.
(ii) Find the value of the nth bracket and the sum of the first n brackets of the following series :
$(1+2), \quad(3+4+5+6), \quad(7+8+9+10+11+12), \ldots$.
B. The graph of $y=2 x^{2}+b x+24$ cuts the x-axis at P, Q and the y-axis at R . If the area of $\triangle \mathrm{PQR}$ is 78 units of area, find b.
[For additional test papers, see Appendix, Z. 21-30, p. 193.]

APPENDIX

REVISION EXERCISE W.1. (Ch. I.II)

1. (i) Multiply c^{3} by $\left(c^{3}\right)^{2}$; (ii) cube $4 d^{4}$.
2. Divide (i) $a^{15} \times a^{10}$ by a^{5}; (ii) $\left(b^{2}\right)^{5}$ by b^{2}.
3. What are the values of $6^{-2}, 5^{-1}, 4^{-\frac{1}{2}}, 3^{\circ}$?
4. Evaluate to 3 figures (i) $\frac{18 \cdot 63 \times 94}{7.07}$; (ii) $\frac{\sqrt{ } 10}{\sqrt{6}}$.
5. Find n if (i) $y^{n} \times y^{n}=1$; (ii) $y^{n} \times y^{n}=\frac{1}{y}$.
6. Find to 3 figures $\pi r^{2} h$ if $r=1.08, h=0.85$.
7. Divide the cube of $2 p^{2}$ by the square of $2 p^{3}$.
8. What are the values of $4^{-\frac{3}{2}}, 18^{-\frac{3}{4}}, 100^{2 \cdot 5}, 1^{-\frac{1}{2}}$?
9. Evaluate to 3 figures (i) $4.837 \times \sqrt{ } 7 \cdot 219$; (ii) $\frac{1}{(0.273)^{2}}$.
10. If y varies inversely as x, and if $y=3$ when $x=5$, find y when $x=2$.
11. Express without using fractional or negative indices:
(i) $y=a x^{-2}$; (ii) $p v^{-1}=c$; (iii) $z=x^{-\frac{1}{2} y^{\frac{2}{2}}}$.
12. If $x=16, y=9$, write down the values of

$$
\text { (i) } x^{\frac{1}{2}}+y^{\frac{1}{2}} \text {; (ii) }(x+y)^{\frac{1}{2}} \text {; (iii) }\left(\frac{x}{y}\right)^{-\frac{1}{2}} \text {. }
$$

13. Evaluate to 3 figures (i) $\sqrt{\frac{836 \cdot 4}{92 \cdot 07}}$; (ii) $\sqrt[3]{\frac{1}{0.7564}}$.
14. A cube of aluminium, edge $x \mathrm{~cm}$., weighs $y \mathrm{gm}$. What variation-relation connects x and y ? If $y=325$ when $x=5$, find y when $x=4$.
15. Express as a power of 4 , (i) 8 ; (ii) $\frac{1}{4}$; (iii) 1 .
16. Evaluate to 3 figures $a^{2} b^{3} c^{-\frac{1}{2}}$ when $a=18.37, b=0.0715_{\text {z }}$ $c=0.008472$.
17. Simplify (i) $\left(a^{8} b^{\frac{1}{2}}\right)^{\frac{1}{2}}$; (ii) $c^{8}\left(c^{-1}+c^{-2}\right)$.
18. If $V=\frac{1}{3} \pi \pi^{2} h$, find r when $V=203, h=10.7$.
19. Complete the following: (i) If $s \propto t^{3}$, then $t \propto c$; (ii) if $r \infty \sqrt[3]{V}$, then $V \infty$
20. Find n if (i) $3^{n}=9$; (ii) $9^{n}=3$; (iii) $\left(\frac{1}{5}\right)^{n}=\sqrt{ } 3$.
21. Evaluate
(i) $0.0847 \times \sqrt[8]{0.0716 ; ~(i i) ~} \sqrt[4]{\frac{1}{0.0307}}$.
22. The pressure, P lb. per sq. ft ., on the wind-screen of a car travelling v miles per hour, obeys the law, $\mathrm{P} \propto v^{2}$. If $\mathrm{P}=2$ when $v=20$, find (i) P if $v=30$, (ii) v if $\mathrm{P}=\frac{1}{8}$.
23. Find approximately the value of (i) 2^{30}; (ii) 3^{100}.
24. If $x \propto \sqrt{ } y$ and $y \propto \frac{1}{z}$, what is the effect on x of multiplying z by 100? What is the effect on z of multiplying x by 100 ?
25. If $R=\frac{4 l \rho}{\pi d^{3}}$, find R when $\rho=1.7 \times 10^{-6}, l=94300, d=0.25$.
26. Express as a power of 64, (i) 8 ; (ii) 2 ; (iii) 32 ; (iv) $\frac{1}{4}$; (v) 256.
27. If p varies directly as t and inversely as v, and if $p=240$ when $t=400$ and $v=60$, find p in terms of t, v.
28. If $d^{3}=\left(\frac{c}{12 \cdot 8}\right)^{2}$, find d when $c=72 \cdot 5$.
29. Evaluate, without using tables,

$$
\text { (i) } \log _{10} 10^{3.5} \text {; (ii) } 100^{1 \cdot 5} \text {; (iii) } \log _{10} 0.01
$$

30. If $x \infty \frac{1}{y}$ and if $x \infty z^{2}$, what is the effect on y of doubling z ?
31. In what ratio must the volume of a sphere be increased in order to double the surface?
32. Evaluate $a^{t} b^{-1} c^{-8}$ when $a=0.0376, b=16.92, c=0.3947$.
33. If $\frac{4}{3} \pi r^{3}=10$, find to 3 figures the value of $4 \pi r^{2}$.
34. The volume of a regular octahedron of edge 2 in . is 3.77 cu. in. What is the edge of a regular octahedron whose volume is 5 cu . in.?
35. Evaluate (i) $50 \times(1.05)^{4}$; (ii) $50 \times(1.05)^{-6}$.
36. If z varies as the square of x and inversely as the square root of y, and if $z=8$ when $x=6$ and $y=2 \frac{1}{4}$, find y in terms of x, z.
37. Evaluate $x^{\frac{3}{3}} \div \sqrt{ }\left(y^{2}+z^{2}\right)$ when $x=1 \cdot 037, y=0 \cdot 208, z=0.396$.
38. If $V \propto r^{s}$ and if $r \propto \frac{1}{t^{2}}$, what is the effect on V of halving t ?
39. If $f=1.925 \times 10^{-8} q^{2} d^{4}$, find d when $f=11.03, q=17.94$.
40. Given that $\log _{10} 2=0.30103$, find $\log _{10} 2.5$ without using tables.
41. The force necessary to stop a train in a given distance varies directly as the weight of the train and the square of its speed and inversely as the distance. A force of 10 tons will stop a train weighing 200 tons travelling at $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in 200 yd .; find the formula for the force F tons required to stop a train, weight W tons, travelling at $v \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in d yards.
42. If $\pi r^{\top}=43 \cdot 7$, evaluate to 2 figures $r^{3}-\frac{14 \cdot 64}{r}$.
43. If $z \propto \frac{x^{2}}{y}$ and if $x \propto \frac{w}{r^{3}}$ and $y \propto \frac{r^{2}}{w^{2}}$, find (i) how z varies with w and r; (ii) how r varies with x, z.
44. If $z=3 \cdot 58 x^{0 \cdot 9} y^{-0.4}$, express x in the form, $x=c y^{p_{z} 9}$, giving c correct to 3 figures.

REvision Exercise w. 2. (Ch. III-IV)

1. Simplify (i) $\sqrt{ } 15 \times \sqrt{ } 60$; (ii) $\sqrt{ } 72 \div \sqrt{ } 200$.
2. Simplify (i) $\log x^{3} \div \log \left(\frac{1}{x}\right)$; (ii) $\log y^{3}-\log \left(\frac{1}{y^{3}}\right)$.
3. Without using tables, state which is the greater:
(i) $\log 1+\log 3$ or $\log (1+3)$;
(ii) $\log 2+\log 4$ or $\log (2+4)$;
(iii) $\log 2-\log 1$ or $\log (2-1)$;
(iv) $\log 6-\log 3$ or $\log (6-3)$.
4. Evaluate $4 a-a^{2}$ if $a=2-\sqrt{ } 3$.
5. (i) Multiply $\sqrt[3]{ } x$ by $\sqrt[8]{x}$; (ii) Divide $\sqrt[3]{ } y^{\mathbf{s}}$ by $\sqrt[8]{y}$.
6. Simplify (i) $\frac{12}{\sqrt{2}}$; (ii) $\frac{\sqrt{ } 18}{\sqrt{ } 2}$; (iii) $\sqrt{ } 12-\sqrt{ } 3$.
7. Find, without using tables, the values of
(i) $\log _{9} 16$; (ii) $\log _{2}\left(\frac{1}{38}\right)$; (iii) $\log _{9}(2 \sqrt{ } 2)$; (iv) $\log _{9}\left(\frac{1}{\sqrt{ } 2}\right)$.
8. Expand (i) $(2 \sqrt{ } 3-\sqrt{ } 6)^{8}$;

$$
\text { (ii) }(\sqrt{ } 3+\sqrt{ } 5-2 \sqrt{ } 2)(\sqrt{ } 3+\sqrt{ } 5+2 \sqrt{ } 2) \text {. }
$$

9. What can you say about x if $(0.7)^{x}<0.001$?
10. Simplify (i) $\frac{2-\sqrt{ } 3}{2+\sqrt{ } 3}$; (ii) $\frac{1}{\sqrt{18-\sqrt{ } 8}}$.
11. Find x, y if $\frac{\log x}{\log 5}=\frac{\log 38}{\log 6}=\frac{\log 64}{\log y}$.
12. Find the square root of $21-6 \sqrt{ } 10$.
13. If $\log _{10} 12=a$ and $\log _{10} 18=b$, find in terms of a, b the values of $\log _{10} x$ for $x=2,3,4,5,6,8,9$.
14. Solve the equation, $\sqrt{ } x+\sqrt{ }(3 x+1)=3$.
15. Simplify (i) $10^{\log _{10} 3}$; (ii) $\frac{\log 27}{\log 9}$; (iii) $\frac{\log 32}{\log 16}$.
16. Evaluate $a+\frac{1}{a}$ if $a=\frac{7-3 \sqrt{ } 5}{7+3 \sqrt{5}}$,
17. Express in a form not involving logarithmic notation the following, where the logarithmic base is 10 .
(i) $\log p+\log q=2$;
(ii) $\log r=1+\log s$;
(iii) $2 \log x-3 \log y=1$;
(iv) $a \log 2=b \log 5$;
(v) $b=3 \log c+1$;
(vi) $x=10^{3 \log y}$.
18. Simplify $\frac{a-b}{a \sqrt{b-b} \sqrt{a}}$.
19. If $8^{x}=16^{y}$, find the value of $\frac{x}{y}$.
20. If x is small compared with $1, \log (1+x) \bumpeq 0.434 x$; use this fact to find approximately a root of $\log (1+x)=\frac{\sqrt{ } x}{10}$.
21. If $a=10^{x}, b=10^{y}, c=10^{z}$, express $\log _{10}\left(\frac{10 \sqrt{ } b}{a^{3} c}\right)$ in terms
of x, y, z.
22. Find, without using tables, the values of

$$
\log _{6} x \text { for } x=2,4, \sqrt[3]{2}, \frac{1}{16}
$$

23. Find the square root of $17-4 \sqrt{ } 15$.
24. Find x if $\log _{e} x=1.5$ when $e=2.718$.
25. Evaluate (i) $\log _{5} 3$; (ii) $\log _{3} 5$.
26. If $\log _{10} V=2 \log _{10} r+\log _{10} h+0 \cdot 497$, express V in terms of r, h.
27. Find x if $\log _{3} x=y$, for $y=2 \frac{1}{2},-1 \frac{1}{2}, 0$.
28. Find x if $4^{x+1}=40$.
29. If $\log _{a} p-\log _{a}(\sqrt{ } q)=2$, express q in terms of p, a.
30. If $y=a x^{n}$ is satisfied by $x=2, y=10 \cdot 6$ and by $x=3, y=6 \cdot 2$, find n and a.
31. Solve $\sqrt{ }(7+x)-\sqrt{ }(x-1)=\sqrt{ }(6-x)$.
32. Simplify $\log _{a}\left(a^{2} x\right)-\log _{b}\left(b^{2} x\right)$.
33. Find x, y if $\log _{6} x+\log _{6} y=2$ and $\log _{9} x-\log _{9} y=6$.
34. Simplify $\sqrt{ }(\sqrt{ } 11-\sqrt{ } 10) \div \sqrt{ }(\sqrt{ } 11+\sqrt{ } 10)$.
35. Solve $25^{x}=5^{x+1}-6$.
36. If $\frac{1^{0}}{4 b^{2}}=\frac{2 b}{\left(a^{2}+b^{2}\right)^{\frac{1}{2}}}$, find $\frac{a}{b}$.
37. Find x if $2^{3-x}=3^{2-x}$.
38. Stmplify $\frac{\log _{a} x}{\log _{b} x}-\frac{\log _{a} y}{\log _{b} y}$.
39. If $y=\log _{10}\left(\log _{10} x\right)$, find y when $x=10$ and find x when $y=1$.
40. If $2^{x} \cdot 3^{y}=3^{x} \cdot 4^{y}=6$, prove that $x^{2}-2 y^{2}=2 x-3 y$.

REVISION EXERCISE W. 3. (Ch. V-VI)

1. The nth term of a series is $n^{2}+n$, write down the first 4 terms. What is the $(2 n)$ th term?
2. If $\frac{a}{b}=\frac{7}{3}$, evaluate (i) $\frac{a+b}{a-b}$; (ii) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$.
3. How many terms are there in the following series in A.P. ? (i) $31,38, \ldots, 185$; (ii) $143,140, \ldots, 86$; (iii) x, y, \ldots, z.
4. Write down the nth term of a G.P. if the first two terms are (i) $1, a$; (ii) $b, 1$; (iii) x^{3}, x^{8}; (iv) $1,-2$; (v) 48,72 .
5. If $x: y: z=\frac{1}{2}: \frac{1}{4}: \frac{1}{3}$, evaluate (i) $\frac{x+y}{y+z}$; (ii) $\frac{x^{2}-y^{2}+z^{2}}{(x-y)(y-z)}$.
6. What is the least number above 100 which belongs to the series, (i) $3,14,25,36, \ldots$; (ii) $\frac{500}{50}, \frac{501}{49}, \frac{502}{48}, \frac{503}{47}, \ldots$?
7. Simplify (i) $16\left(-\frac{1}{2}\right)^{7}$; (ii) $144 \cdot\left(\frac{3}{2}\right)^{n-1}$.
8. Find a possible form for the nth term in the series,
$\begin{array}{ll}\text { (i) } \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{1}, \ldots \text {; } & \text { (ii) } 10,200,3000,40000, \ldots \text {; }\end{array}$
(iii) $\frac{1}{2}, \frac{4}{8}, \frac{9}{8}, \frac{16}{1}, \frac{25}{1}, \ldots$; (iv) $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{5}, \frac{81}{3}, \ldots$;
(v) $0.1,0.02,0.003,0.0004, \ldots$;
(vi) $4,-7,10,-13,16,-19, \ldots$.
9. If $\frac{a}{b}=\frac{c}{d}$, prove that $\frac{a c+b d}{a c-b d}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$.

Sum the series,
10. $11,12,13,14, \ldots, 29,30$;
11. 26, 23, 20, 17, ... (20 terms).
12. What is the arithmetic mean of
(i) $\frac{2}{3},-\frac{1}{8}$;
(ii) $(a+b)^{2},\left(a^{2}-b\right)^{2}$; (iii) $\log p, \log q$?
13. If $3 x-y=2 z$ and $y=6(z-x)$, find $x: y: z$.
14. The nth term of a series is $2 \cdot 10^{n-1}+5 n$; write down the first 3 terms.
15. Sum the following series in G.P., leaving the answer in the index form,
(i) $\frac{4}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{6}, \ldots 10$ terms ; (ii) $8,-16,32,-64, \ldots, 12$ terms.
16. The nth term of a series is $5 n-7$; what are the first 3 terms 7 Find also the sum of the first k terms.
17. If $\frac{a}{\tilde{b}}=\frac{c}{d}=\frac{e}{f}$, prove that $\frac{a c-e^{2}}{b d-f^{2}}=\frac{a e}{b f}$.
18. Sum the following series in A.P.:

(ii) $14,16 \frac{1}{2}, 19, \ldots, 39$.
19. What number must be added to each of the numbers, 7, 12, 16, 24 to make them in proportion ?
20. Using logarithms, find an approximate value of
(i) $40+60+90+135+\ldots$ to 12 terms;
(ii) $20+20(1 \cdot 04)+20(1 \cdot 04)^{2}+\ldots$ to 15 terms.
21. The 3rd and 8th terms of an H.P. are $\frac{1}{1}$ and $\frac{1}{98}$; what is the first term !
22. If $\frac{x+y}{6}=\frac{y+z}{7}=\frac{z+x}{8}$, find $x: y: z$.
23. If n is an integer, find the sum of all the integers between n and $2 n$.
24. If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, prove that $\frac{a-b}{b-c}=\frac{b-c}{c-d}$.
25. The first and last terms of an A.P. are 19 and 187 ; find the number of terms if the common difference is

$$
\text { (i) } 2 \text {; (ii) } 0-2 \text {; (iii) } 7 .
$$

26. If $x: y: z=6: 9: 10$, find three integers to which $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$
proportional. are proportional.
27. What is the sum of all numbers divisible by 12 between 2000 and 5000 ?
28. The perimeter of a right-angled triangle is 4 timea the shortest side ; find the ratio of the other two sides.
29. What is the mean proportional between

$$
\text { (i) } a^{8} b \text { and } a b^{3} \text {; (ii) } \frac{c}{d} \text { and } \frac{d}{c} \text { ? }
$$

30. In an A.P. the last term is l, the last term but one is $\frac{9 l}{10}$, and there are n terms. What is the first term? What is the sum of the n terms ?
31. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, complete the relation $\frac{a^{2}-c^{2}}{(a+e)^{3}}=\cdots$.
32. Sum to 8 terms the G.P., 81, -36, 16, $-\frac{84}{8}, \ldots$.
33. If $B\left(x^{2}-y^{4}\right)=6 x y$, find the value of $\frac{x+2 y}{2 x-y}$.
34. Divide $\{1+3+5+\ldots+(2 n-1)\}$ by

$$
\{(2 n+1)+(2 n+3)+\ldots+(4 n-1)\} .
$$

35. If $\frac{a}{5}=\frac{b+c}{11}=\frac{a-b+c}{2}$, find $\frac{1}{a}: \frac{1}{b}: \frac{1}{c}$.
36. Find the limiting sum of $1000+800+640+512+\ldots$.
37. If a, b, c are in A.P. and if b, c, d are in H.P., prove that $a d=b c$.
38. The sum of the first n terms of a series is $\frac{n(n+1)}{6} \underline{(2 n+1)}$, for all positive integral values of n. What are the first 3 terms ? What is the rth term ?
39. If $a x^{2}+b x y+c y^{2}=0$ and $p x^{2}+q x y+r y^{2}=0$, express in terms of a, b, c, p, q, r in two forms, without radical signs, the ratio $\frac{x}{y}$.
40. Find the limiting sum of the series $30-6+1 \cdot 2-0.24+\ldots$. 41. If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, prove that

$$
(a+b+c+d)^{2}=(a+b)^{4}+2(b+c)^{2}+(c+d)^{2}
$$

42. In the series,

$$
[1],[3+5],[7+9+11],[13+15+17+19], \ldots
$$

find (i) the first number in the nth bracket, (ii) the sum of the numbers in the nth bracket, (iii) the sum of the first n brackets.
43. If $\frac{y+z-x}{a}=\frac{z+x-y}{b}=\frac{x+y-z}{c}$, express the ratios

$$
x(y-z): y(z-x): z(x-y)
$$

in terms of a, b, c.
44. A pendulum is sot swinging; its first vibration is through - 30°, and each succeeding vibration is s of the one before it. What is the total angle through which it swings before coming to rest ?

BEVISION EXERCISE W. 4. (Ch. VIII-IX)

1. Find x if (i) $x+c x=c^{2}-1$; (ii) $(x+b)^{2}=(x-b)(r+2 b)$.
2. Find x, y if $x+b y=a b, b x+a y=a^{2}$.
3. Find x, y if $a x-b y=0, a^{2} x+b^{2} y=c$.
4. Find x, y if $y+s x=\frac{a}{8}, y+t x=\frac{a}{t}$.
5. Find x if $x^{3}-2 p x=a$. 6. Find x if $x^{2}+2 a x=1-a^{2}$.
6. If $2 s=a+b+c$, prove that $(s-a)^{2}+a c=(s-b)^{2}+b c$.

Prove the following identities, Nos. 8-10.
8. $x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y) \equiv-(x-y)(y-z)(z-x)$.
9. $(x-y)^{2}+(y-z)^{2}+2(x-y)(y-z) \equiv(x-z)^{2}$.
10. $(a-b)\left(a^{2}+a b+b^{2}\right)+(b-c)\left(b^{2}+b c+c^{2}\right) \equiv(a-c)\left(a^{2}+a c+c^{2}\right)$.
11. If $a+b+c=0$, prove that $a^{2}-b c=b^{2}-c a$.
12. O is the mid-point of a line $A B$; $A B$ is produced to P so that $A P . B P=A B^{2}$. If $A B=2 x$ in. and $B P=y$ in., find a relation between x and y. Hence prove that $O P^{2}=50 A^{2}$.
13. Solve the equation, $x^{3}=39 x+70$.
14. Find the values of a, b if $x-2$ is a common factor of $x^{1}+a x-a-b$ and $x^{2}-2 a x+b+1$.
15. Find the factors of (i) $2 x^{6}-16$; (ii) $a^{4}+4 b^{4}$.
16. Find the factors of $(2 a+b)^{2}+(a+2 b)^{2}$.
17. Simplify $\left(\frac{1}{b^{2}}-\frac{1}{c^{2}}\right)\left(b+\frac{c^{2}}{b}\right) \div\left(\frac{b}{c^{2}}-\frac{c^{2}}{b^{2}}\right)$.
18. Simplify $\frac{\frac{x}{y}+\frac{y}{x}-1}{\frac{x}{y}-\frac{y}{x}} \div \frac{\frac{1}{x^{3}}+\frac{1}{y^{3}}}{\left(\frac{1}{x}-\frac{1}{y}\right)^{2}}$.
19. Simplify $\frac{x^{2}-1}{x^{2}+2 x-3}-\frac{x^{2}-8}{x^{2}+x-6}$.
20. Find the square root of $9 x^{4}-12 x^{3}-8 x^{2}+8 x+4$.
21. Factorise $9 a^{2}-\theta a b-10 b^{2}+6 a-17 b-3$.
22. For what values of b, c is $x^{3}-2 x+5$ a factor of

$$
2 x^{4}-3 x^{2}+b x^{2}+c x-15 ?
$$

23. Find the values of b, c if $8 x^{4}-60 x^{8}+b x+c$ is a perfect cube.
24. Express $\frac{3 x+11}{(x-3)(x+1)}$ in the form, $\frac{a}{x-3}+\frac{b}{x+1}$.
25. Express x^{2} in the form,

$$
f(x-1)(x-2)+b(x-2)(x-3)+c(x-3)(x-1)
$$

where a, b, c are independent of x.
26. Show that $a x y+b x+c y+d$ has factors if $b c=a d$.
27. Simplify $\frac{(x+a)(x-b)}{\left(a x+c^{2}\right)\left(b x-c^{2}\right)}$ if $x=\frac{a b-c^{2}}{a-b}$.
28. If b, c are consecutive integers, b being the smaller, prove that $c^{3}-b^{3}=3 b c+1$.
29. Solve $a x-(a-b) y=b^{3},(a+b) x-b y=a^{2}-b^{2}$.
30. Solve $2 x+y=3 z+4 y-x=2 y+z+2, y-z=6$.
31. Find the value of c if $x+1$ is a factor of

$$
c x^{3}-(c-1) x^{2}-(2 c+1) x-c+1
$$

find in this case the other factors.
32. Find the values of a, b if $x-1$ is a common factor of

$$
2 x^{2}-(a-1) x-b \text { and } 3 x^{2}-(2 a+1) x+2 b
$$

33. If $2(x+1)$ and $3(x-4)$ are the squares of consecutive integers, find the value of x.
34. Solve $a x-b y=1, a x^{2}-b y^{2}=\frac{1}{a-b}$.
35. If $a+b=3$, prove that $a^{3}+b^{\mathbf{3}}+9 a b=27$.
36. For what value of x has $\frac{x^{2}+a^{2}}{x-a}$ the same value as it has when $x=b$?
37. If $x=2$ and $x=-1$ are two roots of the equation,

$$
a x^{2}-3 x^{2}+b x+2=0
$$

find the third root.
38. Express $2 x^{2}-3 x-5$ in the form, $a(x-1)(x-2)+b(x-1)+c$.
39. If $a+\frac{1}{b}=b+\frac{1}{c}=1$, prove that $c+\frac{1}{a}=1$.
40. If $x=\frac{a+y}{b-1}=\frac{a-y}{b+1}$, find x in terms of a, b.
41. Factorise $(x-1)(x-2)(x-3)+24$.
42. If $a=x^{2}-y z, b=y^{2}-z x, c=z^{2}-x y$, prove that $\frac{a c-b^{2}}{a b-c^{2}}=\frac{y}{z}$.
43. Prove that $\frac{1}{x-a}+\frac{1}{x-b}$ has the same value when $x=a+b$ as it has when $x=\frac{2 a b}{a+b}$.
44. What is the coefficient of x^{3} in

$$
\text { (i) }(3-4 x)^{16} \text {; (ii) }(1-2 x)(1+5 x)^{6} \text { ? }
$$

45. What is the ratio of the $(r+1)$ th term in $(1+x)^{n}$ to the r th term? What can you say about r if the $(r+1)$ th term is greator than the r th term?

EXERCISE F.P. 1

Indices: (Chaptor I)

1. Find n if (i) $x^{18} \div x^{6}=x^{n}$;
(ii) $x^{4} \div x^{18}=x^{n}$;
(iii) $x^{3} \div x^{n}=x^{-6}$;
(iv) $x^{3} \div x^{2}=x^{n}$.
2. Find n if (i) $x^{n} \times x^{6}=x^{4}$;
(ii) $x^{n} \times x^{8}=x^{6}$;
(iii) $x^{n} \times x^{n}=x^{16}$;
(iv) $x^{n} \times x^{n}=x$.
3. Express as powers of x, i.e. in the form x^{n},
(i) $\frac{x^{13}}{x^{3}}$;
(ii) $\frac{x^{3}}{x^{12}}$;
(iii) $\frac{x^{3}}{x^{3}}$;
(iv) $\frac{1}{x^{4}}$;
(v) 1 .
4. Express with positive indices :

$$
\text { (i) } a^{-2} \text {; (ii) } b^{-1} \text {; (iii) }\left(\frac{1}{e}\right)^{-3} \text {; (iv) } d^{-1} \times d^{-2} \text {. }
$$

5. What are the values of:
(i) $4^{-\mathbf{3}}$;
(ii) 3^{-3};
(iii) 5^{-1};
(iv) 6°;
(v) $\left(\frac{1}{3}\right)^{-2}$;
(vi) $\left(\frac{2}{3}\right)^{-3}$;
(vii) $(0 \cdot 1)^{-1}$; (viii) $\left(\frac{1}{(}\right)^{-1}$.
6. If $a=2, b=3$, write down the values of
(i) $a^{-1}+b^{-1}$;
(ii) $(a+b)^{-1}$;
(iii) $a b^{-1}$; (iv) $(a-b)^{-1}$.
7. Assign a meaning, with reasons, to (i) x^{-1}; (ii) $y^{\frac{1}{1}}$.
8. What are the values of:
(i) $16^{\frac{1}{2}}$;
(ii) $9^{\frac{1}{2}}$;
(iii) $8^{\frac{1}{2}}$;
(iv) $27^{\frac{7}{3}}$;
(v) 64^{\ddagger};
(vi) $16^{1.45}$;
(vii) $81^{\frac{3}{2}}$;
(viii) $82^{\frac{2}{2}}$.
9. What are the values of:
(i) $8^{-\frac{1}{2}}$;
(ii) $4^{-\frac{3}{2}}$;
(iii) $16^{-\frac{7}{2}}$;
(iv) $100^{-1.5}$;
(v) $\left(\frac{1}{8}\right)^{-\frac{1}{2}}$;
(vi) $\left(2 \frac{1}{4}\right)^{-\frac{3}{2}}$;
(vii) $1^{-\frac{1}{2}}$;
(viii) $\left(\frac{27}{1000}\right)^{-\frac{1}{2}}$.
10. Express the following facts without using.negative indices :
(i) The wave-length of yellow light is 27×10^{-6} inches.
(ii) The diameter of an electron is $3 \times 10^{-13} \mathrm{~mm}$.
(iii) The time between 'two collisions of molecules of hydrogen is 1.06×10^{-10} seconds.
11. Express the following without using fractional or negative indices:
(i) $l t^{-8}$; $m l^{-3} t^{-1}$;
(ii) $d=k t^{-2} ; R=\mu^{-\frac{1}{2}} a^{1}$.
(iii) $\frac{l}{\mathrm{~L}}\left(\frac{\mathrm{~T}}{t}\right)^{-2} ;\left(\frac{m_{1}}{m_{3}}\right)^{-\frac{1}{2}}$;
(iv) $d=k H^{\frac{1}{3}} N^{-\frac{1}{2}}$.
12. Write the following so that the denominator is 1:
(i) $\frac{6}{a^{2}}$;
(ii) $\frac{4}{6}$;
(iii) $\frac{1}{c d}$;
(iv) $\frac{5}{x \sqrt{y}}$,
13. Express as powers of x, i.e. in the form x^{n},
(i) $\sqrt{ } x^{3}$;
(ii) $\sqrt[3]{x}$;
(iii) $\sqrt{ }\left(\frac{1}{x}\right)$;
(iv) $\sqrt{\left(\frac{1}{x^{5}}\right)}$.
14. Simplify :
(i) $3 x^{\frac{1}{2}} \times 3 x^{\frac{1}{2}}$;
(ii) $y^{\frac{1}{4}} \times y^{\frac{1}{2}}$;
(iii) $z \div \sqrt{ } z$;
(iv) $\sqrt{ } a^{2} \div \sqrt{ } a$;
(v) $\sqrt{b} \div \sqrt[3]{b}$;
(vi) $c^{-2} \times c^{4}$.
15. (i) Multiply $a+a^{-1}$ by a; (ii) Divide b^{-10} by b^{-3}.
16. Simplify (i) $\left(x^{2}\right)^{-2}$;
(ii) $\left(y^{-3}\right)^{-3}$;
(iii) $\left(z^{-6}\right)^{-\frac{1}{2}}$.

EXERCISE F.P. 2

Logarithms, Positive Indices. (Chapter I)
Evaluate correct to 3 significant figures :

1. $2 \cdot 76 \times 2 \cdot 13$.
2. $8 \cdot 69 \div 3 \cdot 58$.
3. $48 \cdot 17 \div 5 \cdot 462$.
4. 17.36×6.024.
5. 409×207.
6. $53.07 \div 3.028$.
7. $8607 \div 60 \cdot 09$.
8. $(30 \cdot 07)^{2}$.
9. $(7 \cdot 006)^{2}$.
10. $1000 \div 3.807$.
11. $(10-07)^{4}$.
12. $100 \div 2 \cdot 904$.
13. $\frac{42.3 \times 6.76}{8.27}$.
14. $\frac{782.4}{5.076 \times 73.04}$.
15. $\frac{528 \times 53.9}{70.3 \times 62.4}$.
16. $\frac{(7.327)^{2}}{10.03 \times 3.452}$.
17. $\frac{37 \cdot 25 \times 1000}{(66 \cdot 4)^{2} \times 1 \cdot 01}$.
18. $\frac{5 \cdot 17 \times 86.2 \times 9.06}{4.68 \times 2.03 \times 7.74}$.
19. $\frac{48.03 \times 60.07}{(31.62)^{2}}$.
20. $\frac{2 \ddagger \times 86.27 \times 114}{6 \times(6.23)^{1}}$.
21. (i) $\sqrt{ } 6.725$; (ii) $\sqrt{ } 67 \cdot 25$; (iii) $\sqrt{ } 672 \cdot 5$.
22. (i) $\sqrt[3]{6.725}$; (ii) $\sqrt[2]{67 \cdot 25}$; (iii) $\sqrt[2]{672 \cdot 5}$.
23. $\frac{\sqrt{ } 864 \cdot 7}{(3 \cdot 72 B)^{2}}$.
24. $\sqrt{ }\left(\frac{37 \cdot 16}{8 \cdot 49}\right)$.
25. $\frac{\sqrt{7238}}{\sqrt[3]{8046}}$;
26. $\sqrt{ }\left\{\frac{6.087 \times 153}{11.04 \times 1.11}\right\}$.
27. $\frac{86 \times \sqrt{ } 7.07}{(27.96)^{\frac{3}{2}}}$.

EXERCISE F.P. 3

Logarithms, General Indices (Chapter I)

Find, correct to 3 significant figures :

1. 0.527×8.34.
2. 0.0846×6.15.
3. 0.00472×0.148.
4. 0.0836×0.729.
5. $6.27 \div 8.54$.
6. $0.728 \div 4.37$.
7. $0.0472 \div 0.624$.
8. $0.372 \div 0.00828$.
9. $(0.7273)^{2}$.
10. $(0.04628)^{3}$.
11. $0.2074 \div 0.00089$.
12. $1 \div 0.001008$.
13. (i) $\sqrt{ } 0.8279$; (ii) $\sqrt{ } 0.08279$; (iii) $\sqrt{ } 0.008279$.
14. (i) $\sqrt[3]{0} \cdot 7468$; (ii) $\sqrt[3]{0} \cdot 07468$; (iii) $\sqrt[2]{0} \cdot 007468$.
15. $\frac{0.785 \times 0.472}{18.06}$.
16. $\frac{364.7 \times 0.8275}{7693}$.
17. $\frac{0.0627 \times 5.164}{0.7173 \times 0.05}$.
18. $\frac{1}{(0.8423)^{2} \times 230.6}$.
19. $\sqrt{\left(\frac{55.7 \times 0.75}{9094 \times 23}\right)}$.
20. $\frac{114 \times \sqrt{ } 0.727}{(0.4521)^{2} \times 0.1}$.
21. $\frac{\sqrt[3]{0} \cdot 01}{(72 \cdot 14)^{2} \times 34}$.
22. $\frac{\sqrt{ } 0.5 \times \sqrt[3]{2} 0.6 \times \sqrt[4]{4} 0.7}{(0.765)^{\frac{3}{2}}}$
23. $(0.727)^{-3}$.
24. $(0.084)^{1.5}$
25. $(0.066)^{-0.2}$.

EXERCISE F.P. 4

Surds. (Chapter III)
Simplify the following :

1. $\sqrt{ } 6 \times \sqrt{ } 24$.
2. $\sqrt{ } 32 \times \sqrt{ } 18$.
3. $\sqrt{ } 18 \div \sqrt{ } 200$.
4. $\sqrt{ } 72-\sqrt{ } 18$.
5. $\sqrt{ } 5-\sqrt{ } 0 \cdot 8$.
6. $\frac{6}{\sqrt{ } 2}+\frac{16}{\sqrt{ } 8}$.
7. $\sqrt{ } 3(\sqrt{ } 3-1)$.
8. $\sqrt{2}(\sqrt{ } 6-\sqrt{2})$.
9. $\sqrt{ } 3(\sqrt{ } 27-\sqrt{ } 3)$.
10. $(\sqrt{ } 2+1)(\sqrt{ } 2+2)$.
11. $(2 \sqrt{ } 5-3)(\sqrt{ } 5+1)$.
12. $(\sqrt{ } 5+\sqrt{ } 3)(\sqrt{5}-\sqrt{ } 3)$.
13. $(2 \sqrt{ } 5-3 \sqrt{ } 10)^{2}$.
14. $(\sqrt{ } a-\sqrt{ } b)^{2}$.
15. $\left.\left\{\sqrt{ }\left(\frac{c}{d}\right)+\sqrt{\left(\frac{d}{c}\right.}\right)\right\}^{2}$.
16. $\frac{1}{\sqrt{8}+\sqrt{2}}$.
17. $\frac{12}{\sqrt{5}+\sqrt{ } 2}$.
18. $\frac{2 \sqrt{ } 3}{2 \sqrt{3}-3}$.
19. $\frac{3}{3 \sqrt{2}-2}-\frac{2}{3-\sqrt{ } 2}$.
20. $\frac{\sqrt{ } a}{\sqrt{ } a+\sqrt{ } b}+\frac{\sqrt{ } b}{\sqrt{ } a-\sqrt{ } b}$.
21. Evaluate $\left(x+\frac{1}{x}\right)^{2}$ if $x=\sqrt{ } 7-\sqrt{ } 6$.
22. Solve $x \sqrt{ } 2+x=7$; answer to 3 figures.
23. If x, y are rational and if $x+y \sqrt{3}=(\sqrt{3}-1)^{9}$, find x and y.
24. Find the square root of (i) $29-12 \sqrt{ } 5$; (ii) $24-12 \sqrt{ } 3$.

Solve the equations :
25. $x=\sqrt{ }(2 x+3)$.
26. $x-\sqrt{ }(x+4)=2$.
27. $\sqrt{ }(x+1)=3+\sqrt{ }(x-2)$.
28. $\sqrt{ }(3 x+1)-\sqrt{ }(2 x-1)=\sqrt{ } x$.
29. Simplify $(\sqrt{5}+2) \div \sqrt{ }(9-4 \sqrt{ } 5)$.
30. Express with a rational denominator, $\frac{1}{\sqrt{3+2} \sqrt{2+\sqrt{5}}}$.
31. Solve (i) $\sqrt[3]{2}(2 x-1)=3$; (ii) $\sqrt[3]{x}=\frac{1}{2} \sqrt{ } x$.
32. If $a=\sqrt{\left(\frac{e-1}{e+1}\right)}$, express $\frac{1-a}{1+a}$ in terms of e as simply as
possible.

EXERCISE F.P. 5

Series. (Chapter V)

1. How many terms are there in the following series ?
(i) $22,29,36$,
162, 169 ;
; (ii) $100,97,94, \ldots$ 43, 40.
2. Find the least number of three digits which belongs to the series (i) $5,11,17, \ldots$; (ii) $\frac{3}{4}, 1 \frac{1}{2}, 3,6, \ldots$.
3. The Ist term of an A.P. is 10 , the 3rd term is 11 ; find the 20th.
4. The 1st and last terms of an A.P. are 21, 193 ; the common difference is 2 ; find the number of terms and their sum.

Sum the following series, Nos. 5-14:
5. $7,8,9,10, \ldots$ (100 terms).
6. $22,19,16,13, \ldots$ (20 terms).
7. $\frac{3}{4}, \frac{1}{2}, \frac{1}{3}, \frac{2}{8}, \ldots$ (8 terms).
8. $7,-14,28,-56, \ldots$ (11 terms).
9. $5 \cdot 3,7 \cdot 2,9 \cdot 1,11, \ldots$ (25 perms).
10. $8 \frac{1}{3}, 65,5 \frac{1}{3}, 36, \ldots$ (18 terms).
11. 27, $-12,5 \frac{1}{3},-2 \frac{19}{9}, \ldots$ (20 terms).
12. $5,2,0.8,0.32, \ldots$ (12 terms).
13. $1,3,5,7, \ldots$ (n terms).
14. $2,4,6,8, \ldots$ ($2 n$ terms).
15. Simplify (i) $8\left(-\frac{1}{2}\right)^{7}$; (ii) $(-1)^{2 n}-(-1)^{2 n-1}, n$ integral.
16. Write down, using the index notation, the nth term of a G.P. if the first two terms are
(i) 8,4 ;
(ii) $9,-3$;
(iii) $-a, a^{3}$;
(iv) $b^{3}, 1$;
(v) 144, 96.
17. The 7 th term of an A.P. is 5 and the 9 th term is $5 \frac{5}{5}$; find the 25 th term.
18. Find the sum of 30 terms of an A.P. whose 3rd term is 6, and whose 8th term is 9.
19. A man saves $£ 80$ his first year of work, and each year afterwards saves $\mathrm{fl5}$ more than in the preceding year. How much does he save in 10 years ?
20. Find, using logarithms, an approximate value of
(i) $50+50(1.05)+50(1.05)^{2}+\ldots$ to 10 terms.
(ii) $8+12+18+27+\ldots$ to 18 terms.
21. A firm sends out a set of sample iron bolts, the difference in weight of successive sizes being the same. The smallest weighs $1 \frac{1}{2}$ oz., the largest $10 \frac{1}{2} \mathrm{oz}$. , and the total weight of a complete set is 4 lb .14 oz . What is the weight of the largest bolt but one ?
22. A man starting business loses $£ 240$ the first year, $£ 160$ the second year, 880 the third year; if the same improvement continues, what is his total gain or loss after 12 years ?
23. Find the sum, $0.7+0.71+0.72+0.73+\ldots$ to 100 terms.
24. The first two terms of an H.P. are 10, 9 ; what is the 10th term ?
25. Express $0.4 \dot{5}$ as a G.P. and then find its limiting sum.
26. Insert three harmonic means tetween 2 and 6.
27. The height of a tree is 20 feet, and one year later is 24 feet; its growth each year is $\frac{3}{4}$ of its growth the previous year. What is the limiting height of the tree, however long it lives ?

EXERCISE F.P. 6

- Ratio and Proportion. (Chapter VI)

1. By deducting discount at the rate of ls . in the f , a bill of f x is reduced to $x y$; find $x: y$.
2. If $\frac{1}{a}+\frac{1}{b}=3\left(\frac{1}{a}-\frac{1}{b}\right)$, find $a: b$.
3. If $4 x^{4}+9 y^{2}=12 x y$, find $x: y$.
4. The ratio of the radii of two circles is $p: q$ and the ratio of their areas is $(p-x):(q-x)$; find x in terms of p, q.
5. The ratio of a man's expenditure to his income is

$$
(1-n):(1+n) ;
$$

find the ratio of his savings to his expenditure.
6. The incomes of A and B are in the ratio $5: 4$; their expenditures are in the ratio $6: 5$, and their savings are in the ratio $10: 7$. Find the ratio of A 's income to B 's expenditure.
7. If $\frac{x+y+z}{11}=\frac{x+y-z}{8}=\frac{x-y}{5}$, find $x: y: z$.
8. If $\frac{a}{b}=\frac{c}{d}$, prove that $\frac{a c}{b d}=\frac{a^{2}-3 c^{2}}{b^{2}-3 d^{2}}$.
9. If $\frac{x+y}{11}=\frac{x-y}{5}$, find $\frac{x^{2}-y^{2}}{x y}$.

11. If b is the mean proportional between a, c, prove that $\left(\frac{a}{b}\right)^{2}=\frac{a}{c}$.
12. If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, prove that $\left(\frac{b}{c}\right)^{3}=\frac{a}{d}$.
13. If $\frac{x^{2}}{p}=\frac{x}{q}=\frac{1}{r}$, find p in terms of q, r.
14. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, state which of the following relations must be
(i) $\frac{a+c}{b+d}=\frac{c-e}{d-f}$;
(ii) $\frac{a-c}{c-e}=\frac{b+d}{d+f}$;
(iii) $\frac{a c}{b d}=\frac{e}{f}$;
(iv) $\frac{3 a+c}{3 b+d}=\frac{2 c-f}{2 d-e}$;
(v) $\sqrt{\left(\frac{a^{2}-e^{2}}{b^{2}-f^{2}}\right)}=\frac{c}{d}$;
(vi) $\frac{a^{3}-a^{2} c}{b^{3}-b^{2} d}=\frac{c^{3}+e^{3}}{d^{3}+f^{3}}$;
(vii) $\frac{2 a^{2}-7 e}{2} b^{2}-7 f=\left(\frac{c}{d}\right)^{2}$.
15. If $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$, prove that $b \not y c$ is a mean proportional botween $a+b$ and $c+d$.
16. If $\frac{a}{b}>\frac{c}{d}$ and if a, b, c, d are positive, prove that

$$
\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}
$$

17. If $\frac{a}{x-y}=\frac{b}{y-z}=\frac{c}{x-z}$, prove that $a+b=c$.
18. Solve $\frac{x^{2}-2 x+5}{3 x^{2}+4 x-1}=\frac{x^{2}+2 x-5}{3 x^{2}-4 x+1}$.
19. If $\frac{x}{y}+\frac{y}{x}=\frac{a}{b}$, express $\left(\frac{x+y}{x-y}\right)^{2}$ in terms of a, b.
20. If $p^{2}+q^{2}=1$ and $\frac{p}{a}=\frac{q}{b}$, express $p q$ in terms of a, b.

EXERCISE F.P. 7

Factors and Fractions (Chapter VIII)

Find the factors of the following:

1. $c^{3}+1$.
2. $x^{6}-y^{6}$.
3. $x y^{3}-y x^{3}$.
4. $x^{3} y^{3}-1$.
5. $27 a^{3}-8 b^{2}$.
6. $1+a^{3} b^{6}$.
7. $(c+d)^{3}-1$.
8. $8 a^{2}-a^{5}$.
9. $(a+b)^{3}-(a+b)$.
10. $x^{2}-y^{2}-2 x+1$.
11. $a^{2} x^{2}+2 a b x+b^{2}-c^{2}$.

Simplify the following :
12. $\frac{x^{2}-x y-x+y}{x^{4}-x^{3} y^{2}-x^{2}+y^{2}}$.
13. $\frac{(a-b)^{2}-9 c^{2}}{a^{2}-(b+3 c)^{2}}$.
14. $a-\frac{a^{2}-1}{a^{2}+\frac{1}{a}}$.
15. $\left(a-\frac{b^{2}}{a}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \div\left(\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a}\right)$.
16. $\frac{x^{3}+y^{2}}{x^{2}-x y+y^{2}}-\frac{x^{3}-y^{3}}{x^{2}+x y+y^{2}}$.
17. $\left(a^{2}-\frac{b^{3}}{a}\right) \div\left\{\frac{(a+b)^{2}}{a b}-1\right\}$.
18. $\left(x^{2}+4 y^{2}+\frac{15 y^{4}}{x^{2}-4 y^{2}}\right) \div\left(x+2 y+\frac{3 y^{2}}{x-2 y}\right)$.
19. $(x+y-z)^{2}-(x-y+z)^{2}+(x-y-z)^{2}-(x+y+z)^{2}$.
20. $\left(\frac{x}{y}+\frac{y}{x}-2\right) \div\left(\frac{1}{x}-\frac{1}{y}\right)^{2}$.
21. $\frac{a b}{a^{3}+b^{3}}+\frac{a+b}{a^{2}-a b+b^{2}}-\frac{1}{a+b}$.
22. $\frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{2}{a b}}{a+b}-\frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{2}{a b}}{a-b}$.
23. $\left(\frac{x+y}{x-y}+\frac{x-y}{x+y}\right) \div\left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)$.
24. $\left(\frac{a}{b}-1+\frac{b}{a}\right)\left(\frac{a}{b}+2+\frac{b}{a}\right) \div\left(\frac{a^{2}}{b}+\frac{b^{2}}{a}\right)$.
25. $\left(\frac{a}{b}-\frac{a-b}{a+b}\right)\left(\frac{a}{a-b}-1\right) \div\left\{\left(\frac{b}{a}-\frac{b+a}{b-a}\right)\left(\frac{a}{a+b}-1\right)\right\}$.
26. $\frac{a(b+c)}{(a-b)(a-c)}+\frac{b(c+a)}{(b-c)(b-a)}+\frac{c(a+b)}{(c-a)(c-b)}$.
27. Expand $(a-b+c-d)(a-b-c+d)$.
28. Solve $\frac{6}{x-4}+\frac{4}{x-2}=\frac{1}{x-5}+\frac{9}{x-3}$.
29. Solve $(a+b) x+(a-b) y=(a+b) y-(a-b) x=a\left(a^{2}+b^{2}\right)$.
30. Solve $\left(\frac{x-1}{x+1}\right)^{2}=1-\frac{4}{x}$.
31. If $c^{1}=c+1$, prove that $c^{5}=5 c+3$.
32. Factorise $(b-c)(x-a)^{2}+(c-a)(x-b)^{2}+(a-b)(x-c)^{2}$.
33. Prove that $(a-b)^{3}+(b-c)^{3}+(c-a)^{3}=3(a-b)(b-c)(c-a)$.
34. Simplify $\left\{\frac{a-b}{(a+b)(c+b)}+\frac{1}{b+c}\right\}\left\{a+b+c+\frac{a c}{b}\right\}$.
35. If $\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}=\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}$, prove that $(b-c)(c-a)(a-b)=0$.

EXERCISE F.P. 8

Literal Equations (Chapter IX)
Solve for x the following equations:
$\begin{array}{ll}\text { 1. } a x=b-a x . & \text { 2. } 3(x+a)=5(a-x) . \\ \text { 3. } a+\frac{1}{x}=c .\end{array}$
4. $b x=1-c x$.
5. $x=b-c x$.
6. $\frac{a}{x}=a b+a c$.
7. $a x-a^{2}=b x-b^{2}$.
8. $a x+a=b x+b$.
9. $\frac{x+p}{p}=\frac{x-q}{q}$.
10. $\frac{a x}{b}-1=\frac{b x}{a}+\frac{a}{b}$.
11. $(x-p)^{2}=(x-q)^{1}$.
12. $(x-a)(x-b)=(x+a)(x+b)$.
13. $(x-a)^{2}=c^{3}$.
14. $\frac{x}{a}=\frac{b}{x}$.

Find x and y from the following simultaneous equations:
15. $x+2 y=5 a$,
$2 x-y=2 a$.
16. $a x+b y=c$,
$x-y=1$.
17. $x-y=2 b$,
$a x-b y=a^{2}+b^{2}$
18. $x=p y$, $a x+y=c$. "
19. $p x+q y=q^{3}$,
$q x-p y=p^{2}$.
20. $\frac{x}{p}+\frac{y}{q}=1$,
$p x-q y=p^{2}$.
Solve for x the following equations:
21. $x^{2}+6 a^{2}=5 a x$.
22. $x^{2}=3 b x+28 b^{2}$.
23. $x^{2}-(c+d) x+c d=0$.
24. $x^{1}-2 p x=q^{2}-p^{2}$.
25. $x^{3}+2 x=a^{3}-1$.
26. $a b\left(x^{2}+1\right)=x\left(a^{2}+b^{2}\right)$.
27. $a x^{4}+(1+a b) x+b=0$.
28. $a x^{2}-c^{2} x=a^{2} x-a c^{3}$.
29. $(a+b) x^{2}+(a+2 b) x+b=0$.
30. $(x+a)\left(x-a^{2}\right)+4 a^{4}=2 a\left(x+a^{2}\right)$.
31. $\frac{2 b}{x-a}=1+\frac{a}{x-b}$.
32. $\frac{a x}{b}-\frac{b}{a x}=b-\frac{1}{b}$.

The Rectangle contained by two Lines

If $A B$ and $C D$ are two given straight lines, "the rectangle contained by $A B$ and $C D$ " means the area of a rectangle whose

length equals $A B$ and whose breadth equals $C D$, and is written $A B . C D$. This rectangle is shown in Fig. 11, and we have $A B, C D=x y$ sq. inches.

Similiarly $A B^{9}$ means the area of a square whose side equals $A B$, and we have $A B^{2}=x^{2} \mathrm{sq}$. inches.

Example. In Fig. 12, O is the mid point of a line $A B$, and P is any point on $A B$. Prove that $A P^{2}+P B^{2}=2 A O^{2}+2 O P^{2}$.

Let $A O=x$ in. and $O P=y$ in.; then also $O B=x$ in.
$\therefore \mathrm{AP}=(x+y)$ in. and $\mathrm{PB}=\mathrm{OB}-\mathrm{OP}=(x-y) \mathrm{in}$.

$$
\begin{array}{rlr}
\therefore A P^{2}+\mathrm{PB}^{3} & =(x+y)^{2}+(x-y)^{2} & \text { sq. in. } \\
& =x^{2}+2 x y+y^{2}+x^{2}-2 x y+y^{2} \text { sq. in. } \\
& =2 x^{2}+2 y^{2} & \text { sq. in. } \\
& =2 A O^{2}+2 O P^{3} . &
\end{array}
$$

EXERCISE F.P. 9

Which of the following relations are equations and which are identities in Nos. 1-6:

1. $(x-1)=-(1-x)$.
2. $(x+1)=-(1+x)$.
3. $x^{3}-1=(x-1)^{2}$.
4. $(x-1)^{2}=(1-x)^{2}$.
5. $(x+1)^{2}-(x-1)^{2}=4 x$.
6. $(2 x-1)^{2}=(x-2)^{3}$.

Under what conditions are the relations in Nos. 7-13 true ?
7. $2(x-3)+5(x+1)=3(2 x-1)+2(x-2)$.
8. $2(x-3)+5(x+1)=3(5 x+4)-2(4 x+5)$.
9. $2(x-3)+5(x+1)=3(5 x+9)-4(2 x+7)$.
10. $x=\frac{1}{x}$.
11. $x y-3 x-2 y+6=0$.
12. $(x+y)^{2}=x^{2}+y^{2}$.
13. $(x-3)^{2}+(y-4)^{2}=0$.

Prove the following identities, Nos, 14-20:
14. $(x-y)^{2} \equiv(y-x)^{2} . \quad$ 15. $(a-b)(x-y) \equiv(b-a)(y-x)$.
16. $x(y-z)+y(z-x)+z(x-y) \equiv 0$. 17. $(a+b)^{2}-(a-b)^{2} \equiv 4 a b$.
18. $(x+y)(x-y)-z^{2}=(x+z)(x-z)-y^{2}$.
19. $(a-x)(b-c)+(b-x)(c-a)+(c-x)(a-b) \equiv 0$.
20. $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \equiv(a c+b d)^{2}+(a d-b c)^{2}$.
21. $A B C D$ is a straight line such that $A B=B C=C D$; prove that $A D^{2}=A B^{2}+2 B D^{2}$.
22. With the date of No. 21, prove that $A C^{2}-C D^{2}=A B$. AD.
23. A straight line $A B$ is bisected at O and produced to any point P, prove that $A P^{2}+B P^{2}=2 A O^{2}+2 O P^{2}$.
24. With the data of No. 23, prove that $A P^{\prime}=4 A O . O P+B P^{2}$.
25. If $A B C D$ is a straight line, and if $A B=C D$, prove that $A D^{2}+B C^{2}=2 A B^{2}+2 B D^{2}$.
26. If $A B C D$ is any straight lipe, prove that $A C . B D=A B \cdot C D+A D . B C$.
27. If a line $A B$ is produced to any point P, prove that

$$
A B^{2}+A P^{2}=2 A B \cdot A P+P B^{2} .
$$

28. If the lengths of the sides of a triangle are $\left(x^{2}+1\right),\left(x^{3}-1\right)$, $2 x$ inches, prave that they satisfy the condition that the triangle is right-angled.
What result is obtained if $x=2$?
29. Prove that the area between two concentric círcles of radii a, b inches is $\pi(a+b)(a-b)$ sq. inches.
30. If a room is c feet wide, $\left(c^{2}-c\right)$ feet long and ($c-1$) feet high, verify that the length of a diagonal of the room is $\left(c^{2}-c+1\right)$ feet long.
31. If a, b, c are three consecutive integers, prove that

$$
\text { (i) } a c=b^{2}-1 \text {; } \quad \text { (ii) } a^{2}-2 b^{2}+c^{2}=2 \text {. }
$$

32. If a, b, c, d are four consecutive integers, prove that $b c-a d=2$.
33. If $x=p+\frac{1}{p}$ and $y=p-\frac{1}{p}$, prove that $x^{2}-y^{2}=4$,
34. If $2 s=a+b+c+d$ and if $a+c=b+d$, prove that $(s-a)(s-b)(s-c)(s-d)=a b c d$.
35. P is a point on a line $A B$ such that $A P^{2}=A B$. $P B$; if $A B=l$ in., $\mathrm{AP}=y$ in., find a relation between l and y. Use this to prove that $A B^{2}+\mathrm{PB}^{2}=3 \mathrm{AP}^{2}$.
36. With the data of No. 35, prove that $\mathrm{AP} \cdot \mathrm{PB}=\mathrm{AP}^{2}-\mathrm{PB}^{2}$.
37. O is the mid point of a line $A B$; $A B$ is produced to P so that $\mathrm{OB} . \mathrm{OP}=\mathrm{BP}^{2}$; prove that $\mathrm{PA}^{2}=5 \mathrm{~PB}^{2}$.
38. In Fig. 13, prove that $A B^{2}=B C^{2}+A C^{2}-2 B C$. CD. [Let $\mathrm{AB}=x$ in., $\mathrm{BC}=y$ in., $\mathrm{CA}=z$ in., $\mathrm{CD}=p$ in., $\mathrm{AD}=h$ in., and use Pythagoras' theorem twice.]

FiG. 13.

Fic. 14.
39. In Fig. 14, prove that $\left\{B^{3}=B C^{2}+A C^{2}+2 B C . C D\right.$. [Use the method of No. 38.]
40. If, in Fig. 15, the radii of the circles are a, b inches, prove that $P Q=2 d(a b)$.

Fia. 15.

EXERCISE F.P. 10

Roots of Quadratic Equations (Chapter IX)

1. If a, β are the roots of $3 x^{2}+4 x=2$, find the values of

$$
\text { (i) } \frac{1}{\alpha}+\frac{1}{\beta} ; \quad \text { (ii) }(\alpha-3 \beta)(\beta-3 a)
$$

2. If α, β are the roots of $2 x^{2}=5 x+4$, find the values of

$$
\text { (i) } \frac{1}{a^{2}}+\frac{1}{\beta^{2}} ; \quad \text { (ii) }(a+2)(\beta+2)
$$

3. One root of $3 x^{2}-8 x+c=0$ is three times the other root. Find c.
4. Find b if $2 x^{2}+b x+18=0$ has equal roots.
5. Form the equation whose roots are
(i) $1 \frac{1}{2},-\frac{2}{3}$;
(ii) ± 6;
(iii) $0,-1$;
(iv) $2 c,-3 c$;
(v) $5-2 \sqrt{ } 3,5+2 \sqrt{ } 3$.
6. What is the nature of the roots of
(i) $9 x^{2}+25=30 x$;
(ii) $9 x^{2}+16=30 x$;
(iii) $9 x^{2}+29=30 x$?

7 If α, β are the roots of $2 x^{2}-3 x-4=0$, form the equation whose roots are

$$
\begin{array}{ll}
\text { (i) } \frac{1}{a}, \frac{1}{\beta} ; & \text { (ii) } a+\frac{1}{\beta}, \beta+\frac{1}{\alpha}
\end{array}
$$

8. If α, β are the roots of $p x^{2}+2 q x+r=0$, express in terms of p, q, r,

$$
\text { (i) } a^{2}+\beta^{2}
$$

(ii) $\alpha^{3}+\beta^{9}$.
9. If $\frac{a}{a-x}+\frac{b}{b-x}=2$, show, whout solving, that $a>b>x>0$ is impossible. Then solve the equation.
10. If $a>b>0$, prove that $x(x-a)=c(x-b)$ has real roots.
11. If a, β are the roots of $\frac{1}{x+p}=q x$, find in terms of p, q,
(i) $a \beta$;
(ii) $(a-\beta)^{2}$;
(iii) $\frac{a}{\beta^{2}}+\frac{\beta}{a^{3}}$.
12. If a, β are the roots of $(p x+q)^{2}=p r x$, find the conditien that
(i) $a=-\beta$;
(ii) $\alpha=\frac{2}{3} \beta$;
(iii) $a^{2}+\beta^{2}=3 a \beta$.
13. Form the equation whose roots are three-quarters of the roots of $a x^{2}+b x+c=0$.
14. Find the value of c if the simultaneous equations, $3 x+4 y=c$, $x^{2}+y^{2}=4$ have one, and only one, solution.
15. Prove that $x=c(x-1)(x+2)$ has real roots for all real values of c.
16. Prove that $x=c(x-1)(x-2)$ has real roote, only if the value of c does not lie between $-3-2 \sqrt{ } 2$ and $-3+2 \sqrt{ } 2$.

EXERCISE T. 1

Application of Logarithms. (Chapter I)
[In this exercise, take $\log \pi=0.4971$. Give answers correct to 3 significant figures.]

1. The volume of a sphere, radius $r \mathrm{~cm} .$, is ${ }_{5}^{3} \pi r^{3} \mathrm{cu} . \mathrm{cm}$.
(i) Find the volume of a sphere of radius 1.076 cm .
(ii) Find the radius of a sphere of volume 4 cu . in.
2. A pendulum of length l feet makes one complete oscillation in $2 \pi \sqrt{ }(l \div 32 \cdot 2)$ seconds.
(i) Find the time of oscillation if the length is 50 ft .
(ii) Find the length if the time of oscillation is 5 seconds.
3. The horse-power H of a steam turbine is given by $H=\frac{6 D^{2} \mathrm{~V}^{3}}{10^{\circ} \mathrm{V}}$; find H , if $\mathrm{D}=2 \cdot 4$ (mean diameter in ft.), $\mathrm{U}=1530$ (blade speed in ft ./sec.), $\mathrm{V}=285$ (specific volume of steam in cu. ft .)
4. If $M=\frac{\pi f d^{3}}{32 \cdot 2}$, find M when $f=8.07, d=2.48$.
5. If $d=k \sqrt[3]{(}\left(\frac{\mathrm{H}}{\mathrm{N}}\right)$, find d when $k=173, \mathrm{H}=49, \mathrm{~N}=3$.
6. If $W=\frac{H m}{W=1 \cdot 43 \times 10^{7} \text {. }}$, find W when $N=160, D=5 \cdot 25, H=18$,
7. If $Y=\pi l\left(R^{2}-r^{2}\right)$, find V when $l=0.84, R=0.745, r=0.23$.
8. Find the value of $A \cdot e^{\text {th }}$ when $A=6.35, e=2.718, k=3$, $t=1$.
9. If $n=\frac{a H^{\frac{t}{t}}}{p^{\frac{1}{8}}}$, find n when $a=31 \cdot 5, H=10, p=160$.
10. The time t seconds for pneumatic transmission through a tube $l \mathrm{ft}$. long, of diameter d ft., under a pressure of $p \mathrm{lb}$. per sq. in., is $t=0.000482 \sqrt{\left(\frac{l^{3}}{P d}\right)}$; find t if $l=37.5, d=0.35, P=9.2$.
11. From the formula for drilling mild steel, $P=35,500 D^{0.7} \mathrm{~T}^{\mathrm{e} \cdot 6}$, calculate P (thrust in lb .), if $\mathrm{D}={ }_{8}^{1}$ (diam. in inches), $\mathrm{T}=\frac{1}{80}$ (feed in inches per rev.).
12. The present value $£ P$ of an annuity of $£ A$ per annum to last for n years, r per cent. per annum compound interest, is given by $\mathrm{P}=\frac{100 \mathrm{~A}}{r}\left\{1-\left(1+\frac{r}{100}\right)^{-n}\right\}$.
(i) Find the present value of an annuity of $£ 250$ to last for 10 years, interest 4 per cent.
(ii) What life annuity can a man purchase with $£ 2000$ when his expectation of life is 20 years (3 per cent. C.I.) ?
13. If $p v^{n}=475$, find n when $p=3 \cdot 62, v=98 \cdot 5$.
14. If $h=391 Q^{n}$, find n when $h=7 \cdot 95, Q=0 \cdot 125$.
15. If $3^{x}=4^{y}$, find $\frac{x}{y}$.
16. Find ϕ from the formula,

$$
\phi=\frac{\log t-\log 273}{\log 2 \cdot 718} \text { when } t=373
$$

EXERCISE T. 2

Variation. (Chapter II)

1. To produce a fixed intensity of illumination, the candlepower cof a lamp must be increased four-fold when the distance x feet from the light is doubled. What is the variation-relation between c and x ?
2. If multiplying x by 10 always produces the effect of dividing y by 100 , what is the variation-relation between x and y ?
3. If $y=x+x^{8}$, in what ratio is y increased when x alters from (i) 1 to 2, (ii) 2 to 4 , (iii) 4108 ? Does y vary as any power cf \boldsymbol{x} ?
4. If $y \propto \sqrt{ } x$, copy and complete the table:

$x \cdot$	\cdot	0	1	2	4	25	100
$y \cdot$	\cdot				4		

5. If $y \propto \frac{1}{\sqrt{x}}$, what is the effect on y of increasing x in the ratio 6. If $x \propto \frac{1}{y}$ and if $y \propto z^{2}$, what is the effect on x of doubling z ?
6. In the given graph, Fig. 16, y varies as a power of x. What is the formula connecting y and x ?

7. In the given graph, Fig. 17, y varies inversely as a power of x. What is the formula connecting y and x ?
8. The danger distance from the muzzle of a gun, within which the hearing may be injured by the firing, varies as the fifth root of the weight of the charge. For a $5-\mathrm{lb}$. charge of cordite, the distance is 10 ft .; what is it for 187 lb . of cordite ?
9. $\mathrm{S}=\frac{6}{x}$ if $y=2$ and $\mathrm{S}=\frac{8}{y^{2}}$ if $x=3$; what is the simplest expression for S in terms of x and y ?
10. If x varies directly as y^{2} and inversely as the square root of z, and if $x=8$ when $y=2$ and $z=9$, find the equation connecting x, y, z.
11. If $A \propto B C^{2}$ and $B \propto x y^{8}$ and $C \propto \frac{y}{x}$, what variation-relation connects A with x and y ?
12. The horse-power required to propel a ship of given pattern varies jointly as the cube of the speed and as the cube root of the square of its displacement. A ship of 1000 tons displacement is found to require a certain horse-power at 10 knots; by what factor must this horse-power be multiplied in order to propel a similar ship of 8000 tons displacement at 12 knots ?
13. The economical diameter for copper wire in an electric circuit varies directly as the squape root of the normal current and the fourth root of the cost per horse-power per annum and
inversely as the fourth root of the price of copper per lb. In what ratio should the diameter be altered if the cost of horse-power rises 50 per cent. and the price of copper rises 200 per cent. and if the current is reduced by 25 per cent.?
14. The velocity, $v \mathrm{ft}$. per sec., of a jet of water varies directly as the weight of water, W lb., delivered per second and inversely as the area of the cross-section, A sq. in., of the jet. Also the horse-power H necessary to produce the jet varies directly as the cube of W and inversely as the square of A. Find (i) how v varies with H and W; (ii) how v varies with H and A.
15. In a certain machine the effort $P \mathrm{lb}$. required to raise a load W lb. is partly constant and partly varies as the load. For loads of $40 \mathrm{lb} ., 56 \mathrm{lb} .$, the necessary efforts are $11 \mathrm{lb} ., 13 \mathrm{lb}$. ; find the general formula.
16. On a certain building estate near London, the ground rents for plots of land vary partly as the frontage and partly as the frontage and depth jointly.

The ground rent for a plot with 30 ft . frontage and 100 ft . depth is $£ 38$, and for a plot with 36 ft . frontage and 140 ft . depth is £ 60 ; find the general formula. The smallest plot on the estate has a frontage of 24 ft . and a depth of 90 ft . ; what is its ground rent?
18. The sum of the first n whole numbers, $1,2,3,4, \ldots$ varies partly as n and partly as n^{2}. What is the sum for $n=2$ and for $n=3$? Hence find the general formula.

EXERCISE T. 3

Logarithmic Theory and Notation. (Chapter IV)
Simplify the following :

1. $\log 27-\log 3$.
2. $\log 27 \div \log 3$.
3. $\log 3-\log \sqrt{ } 3$.
4. $\log 5 \div \log \sqrt{ } 5$.
5. $\log 1 \times \log 2$.
6. $\frac{1}{4} \log 16$.
7. $\frac{\log \left(x^{2}\right)}{\log x}$.
8. $\frac{\log \sqrt{ } x}{\log x^{2}}$.
9. $\frac{\log \left(a^{2} b\right)-\log b}{\log a^{2}+\log a}$.
10. Find x if $\frac{\log x}{\log 2}=\frac{\log 4}{\log 16}$.
11. Express the following in a form which does not involve the logarithmic notation, the logarithmic base being 10:
(i) $\log x+\log y=3$;
(ii) $\log x+2 \log y=3$;
(ii) $x \log 2=-1$;
(iv) $3 \log x-2 \log y=1$;
(v) $x \log 5=\log 6$;
(vi) $x \log 5=y \log 6+2$.
12. If $\log 6=b$ and $\log 12=f c$, express $\log 2, \log 3, \log 4$ in terms of b, c.
13. Simplify
(i) $\log \left(1-x^{2}\right)-\log (1-x)$; (ii) $\log \left(1+2 x+x^{2}\right) \div \log (1+x)$.
14. If $\log (x+y)=\log x+\log y$, find y in terms of x, and prove that $\log x-\log y=\log (x-1)$.
15. Find, without using logarithmic tables, the characteristics of $\log _{3} 15, \log _{9} 30, \log _{3} 0 \cdot 2, \log _{9} 0 \cdot 001$.
16. Find x if (i) $\log _{4} x=1.5$; (ii) $\log _{4} x=-2 \cdot 5$.
17. Simplify (i) $\log _{a} b \times \log _{b} c$; (ii) $a^{\log _{a} b}$.
18. Simplify $\frac{\log _{2} 5}{\log _{2} 7}-\log _{8} 5$.
19. Solve $\log _{3} x+\log _{3} y=6, \log _{2} x-\log _{2} y=4$.
20. If $5 \log _{10} y-2 \log _{10} x=4 \cdot 1$, express y in terms of x.
21. Use tables to find the value of $10^{-1} r^{x^{x}}$ for x equal to 0 , $\pm 1, \pm 2, \pm 3, \pm 4$. Draw the graph of the function, and find for what values of x it is equal to half its maximum value.
22. Prove that $\log _{a} b \times \log _{b} c \times \log _{c} a=1$.

EXERCISE T. 4

Harder Indices. (Chapter IV)

Find n from the following equations :

1. (i) $81^{n}=3$; (ii) $81^{n}=1$; (iii) $81^{n}=\sqrt{3}$.
2. (i) $5^{n}=\frac{1}{25}$; (ii) $5^{n}=0.2$; (iii) $5^{n}=\frac{1}{5 \sqrt{5}}$.
3. (i) $(0.01)^{n}=10$; (ii) $(0.01)^{n}=\sqrt{ } 10$; (iii) $(0.01)^{n}=\sqrt{ }(0.1)$.
4. (i) $9^{n}=9.3^{-n}$; (ii) $16^{8+n} \cdot 2^{1+n}=\left(\frac{1}{2}\right)^{1-n^{2}}$.

Simplify the following :
5. $1000^{2 n} \div 100^{n}$.
6. $\sqrt{ } b^{3} \div(\sqrt[4]{b})^{3}$.
7. $\left(y^{-4}\right)^{-\frac{1}{2}}$.
8. $\frac{(4 x)^{-\frac{1}{2}}}{(2 x)^{-2}}$.
9. $\sqrt{ } y^{5} \div y^{-1.5}$.
10. $\left(\frac{p^{-1}}{3 q^{2}}\right)^{-2}$.
11. $\frac{6 a b^{\mathbf{9}}}{\left.\sqrt[3]{\left(8 a^{-3}\right.}\right)}$.
12. $\frac{c d^{-1}}{\sqrt{ }\left(c^{-3} d^{-4}\right)}$.
13. $\frac{4 a^{\frac{1}{2}} b^{-2}}{(4 a)^{-\frac{1}{b}}}$.
14. $\frac{12^{8 n} \cdot 16^{2 n}}{48^{n}}$.
15. $\frac{20^{\frac{17}{n}} \cdot 100^{n}}{(\sqrt{ } 5)^{3 n}}$.
16. $\frac{4^{n}+8^{2 n}}{2^{n}}$.
17. $\sqrt{2}^{\left(a b^{4} c^{8}\right)} \div\left(a^{\frac{4}{2}} b^{-\frac{1}{c}} c^{-1}\right) . \quad 18 .\left(27 x^{\frac{4}{2}} y^{-\frac{1}{4}}\right)^{\frac{4}{4}} \div\left(x^{\frac{1}{2} y^{\frac{3}{3}}}\right)$.
19. $\left(\frac{25 x^{4}}{2 \cdot 25 y^{6}}\right)^{-\frac{1}{2}}$.
20. $\frac{g^{2 n-1} \cdot 27^{2-n}}{(\sqrt{3})^{0-n}}$.

Express z in the form $c x^{p} y^{2}$, giving c correct to 3 significant figures, in the following cases:
21. $z^{3}=\left\{\begin{array}{l} \\ x\end{array} y^{3}\right.$.
22. $z^{4}=\frac{3 y^{2}}{7 x}$.
23. $9 x^{2} y z=4$.
24. $x^{2}=6 y z^{2}$.
25. $x=3.4 y^{1 \cdot 2} z^{-0.4}$.
26. $x^{2}=\frac{z^{\frac{3}{2}}}{52 y^{\frac{1}{4}}}$.
27. Make l the subject of the formula, $r=0.0315 n^{0.40 \cdot:} p^{-0.25}$, giving the constant factor correct to 2 significant figures.
28. Simplify (i) $\left(x^{\frac{1}{4}}-x^{-\frac{1}{4}}\right) \sqrt{x}$; (ii) $x^{\frac{6}{6}}\left(x^{\frac{1}{3}}+x^{-\frac{5}{4}}\right)$.
29. Divide $3 x^{4}-6 x^{\frac{2}{2}}+3$ by x^{4}.
30. Multiply $x+1+x^{-1}$ by $x-1+x^{-1}$.
31. Multiply $a^{\frac{1}{2}}+a^{\frac{1}{2}}+1$ by $a^{\frac{1}{2}}-1$.
32. Divide $b-1$ by $b^{\frac{1}{2}}-1$.
33. Divide $c+1$ by $c^{\frac{1}{3}}+1$.
34. Simplify $\frac{1}{(a+b)^{-2}} \div\left(a^{-2}-b^{-2}\right)$.
35. If $a^{b}=b^{a}$, express $a b$ in the form a^{p}.
36. If $a^{x}=b^{y}=c^{z}$ and $x y+x z=y z$, find a relation between a, b, c.
37. If x is small compared with $1,(1+x)^{n} \bumpeq 1+n x$; use this fact to find approximate values of

$$
\begin{aligned}
& \text { (i) }(1+0.05)^{2} ; \text { (ii) } \sqrt{ }(1.06) ; \text { (iii) } \frac{1}{1.03} \text {; } \\
& \text { (iv) } \frac{1}{\sqrt{ }(1.008)} ; \text { (v) } \sqrt[2]{1003 .}
\end{aligned}
$$

38. The slope of the graph of $y=x^{n}$ at $x=c$ is $n c^{n-1}$. Use this fact to find the slope at $x=c$ of each of the following graphs :

$$
\text { (i) } y=x^{3} \text {; (ii) } y=\frac{1}{x^{2}} \text {; (iii) } y=\sqrt{ } x \text {; (iv) } y=\frac{1}{\sqrt{x}} \text {. }
$$

39. The area bounded by the curve $y=x^{n}$, the x-axis, and the ordinates $x=0$ and $x=c$, is $\frac{o^{n+1}}{n+1}$ units, if $n>-1$. Show that this statement is true if $n=1$ and if $n=0$; and use it to find the area for each of the following curves :

$$
\text { (i) } y=x^{2} \text {; (ii) } y=\sqrt{ } x \text {; (iii) } y=x \sqrt{ } x \text {; (iv) } y=\frac{1}{\sqrt{x}} \text {. }
$$

EXERCISE T. 5

Series. (Chaptor V)

1. Divide the sum of the odd numbers between 50 and 100 by the sum of the odd numbers less than 50 .
2. A Chinese nest of boxes is made so that each box coptains all those smaller than it; the outermost weighs 2 oz . and the innermost $\frac{1}{8}$ oz., and their weights decrease by equal amounts. The whole nest weighs 17 oz . ; how many boxes are there in it ?
3. Find the sum of all numbers between 100 and 200 which are not divisible either by 2 or by 5 .
4. The first term of an A.P. is $5 x-3 y$ and the fifth term is $5 y-3 x$; find the three intermediate terms.
5. The first, second and nth terms of a G.P. are a, b, l respectively ; prove that the sum of n terms is $\frac{a^{2}-b l}{a-b}$.
6. If the sum of n terms of a series is $5 n^{2}+2 n$ for all values of n, find the first 3 terms. Find also the r th term and the $(r-1)$ th term, and show that the series is in A.P.
7. A man borrows $£ 1000$ and discharges the debt by paying 10 equal annual instalments, the first being paid 1 year after the loan is made. Find to the nearest $£$ the amount of each instalment, reckoning 4 per cent. per annum compound interest.
8. Prove that $(1+2+3+\ldots+n)^{2}-(1+2+3+\ldots+\overline{n-1})^{2}=n^{3}$.
9. In an A.P. the 8th term is twice the 4th term, prove that the 9 th term is 3 times the 3 rd term.
10. The sum of 10 terms of an A.P. is 145 and the sum of its 4th and 9th terms is 5 times its 3rd term. Find the series.
11. What is the first number in the nth bracket of the series,

$$
[1],[2+3],[4+5+6],[7+8+9+10], \ldots \text { ? }
$$

What is the sum of the numbers inside the nth bracket, and what is the sum of the first n brackets ?
12. Prove that the sum to n terms of $\log a+\log a x+\log a x^{2}+\ldots$ is $n \log a+\frac{1}{2} n(n-1) \log x$.
13. The first and last terms of an A.P. are a, l; there are n terms in all. What is the second term?
14. If a, b are positive integers and if $a<b$, find the sum of all integers from a to b inclusive.
15. In an A.P., the p th term is $\left\{_{\text {, and the }}\right.$ qth term is $\frac{1}{p}$; find the ($p q$)th term and the sum of $p q$ terms.
16. Find the present value of an annuity of $£ 25$ to commence in 8 years' time, if there are 15 annual payments in all, reckoning $3 \frac{1}{2}$ per ceat. per annum compound interest.
17. If $s=1+2 x+3 x^{2}+4 x^{3}+\ldots+n x^{n-1}$, express $s-x s$ as a function of x, and so find a simple expression for s in terms of x.
18. Sum to n terms: (i) $9+99+999+9999+\ldots$;
(ii) $2+22+222+2222+\ldots$.
19. In an A.P. of n terms, the sum of the first 2 terms is b and the sum of the last two terms is c, find the sum of n terms.
20. Find the value of the nth bracket and the sum of the first n brackets, of the series :

$$
[1],[2+4],[8+16+32], \ldots .
$$

21. The nth term of a series is $\frac{n}{n+1}$; find the sum of the first 3 terms.
22. The first and last terms of a G.P. are a, l; there are n terms in all. Find their product.
23. Find the sum of 198 terms of the series

$$
\log 1 \frac{1}{2}+\log 1 \frac{1}{3}+\log 1 \frac{1}{4}+\log 1 \frac{1}{2}+\ldots
$$

24. Prove that $\frac{1}{r(r+1)}=\frac{1}{r}-\frac{1}{r+1}$; use this fact to find the sum of n terms of the series, $\frac{1}{1 \times 2}, \frac{1}{2 \times 3}, \frac{1}{3 \times 4}, \frac{1}{4 \times 5}, \ldots$. Then find the limiting sum of this series.
25. Use the method of No. 24 to find the sum of n terms of the series $\frac{1}{3 \times 5}, \frac{1}{5 \times 7}, \frac{1}{7 \times 9}, \ldots$.
26. If all rational numbers are written down as follows,
$\frac{1}{2}, \frac{2}{2}, \frac{1}{2}, \frac{4}{2}, \frac{2}{2}, \frac{1}{3}, \frac{4}{4}, \frac{8}{2}, \frac{2}{3}, \frac{1}{4}, \frac{5}{1}, \frac{1}{2}, \frac{3}{3}, \frac{2}{4}, \frac{1}{3}, \frac{6}{1}, \ldots$,
(i) how many terms are there before $\$$?
(ii) what will be the 100 th term ?
27. Show that the contents of each bracket in the series

$$
\left[\frac{1}{3}+\frac{1}{6}\right],\left[\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right],\left[\frac{1}{b}+\frac{1}{10}+\ldots+\frac{1}{18}\right], \ldots,
$$

is greater than $\frac{1}{2}$; and then prove that the series,

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots,
$$

has no limiting sum.
28. Prove that the sum of gny number of terms of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}-\ldots$ is not less than $\frac{1}{2}$ and not more than 1 .
29. Sum to 20 terms the series $1+\frac{9}{2}+\frac{5}{4}+\frac{7}{8}+\frac{9}{18}+\ldots$.
30. If a^{2}, b^{2}, c^{2} are in A.?., prove that $b+c, c+a, a+b$ are in H.P.

EXERCISE T. 6

Use of Graphs. (Chapter VII).

1. Sketch the graphs of $y=\frac{2}{x}, y=x^{2}+3, y=x^{4}-6$, and use them to find the number of roots (not their values) of the equations (i) $x^{3}+3 x-2=0$; (ii) $x^{3}-6 x-2=0$.

Find by inspection the roots of $x^{8}-3 x-2=0$; what can you now say about the graphs of $y=\frac{2}{x}$ and $y=x^{2}-3$?
2. Draw the graph of $y={ }_{10}\left(x^{4}-4 x\right)$ for values of x from -4 to +4 , and read off answers to the following:
(i) For what positive value of x is $x^{3}-4 x$ a minimum ?
(ii) What is the maximum value of $x^{3}-4 x$ if x is negative ?
(iii) For what values of x is $\frac{x^{3}-4 x}{10}$ equal to 0.2 ?
(iv) Solve the equations (a) $x^{3}-4 x=1$; (b) $x^{3}-4 x+1=0$.
3. Draw the graphs of $y=\frac{x^{2}}{x+3}$ and $y=1-\frac{x}{2}$ for values of x from -2 to +6 . What is the quadratic equation whose roots are connected with the intersections of the two graphs ? Obtain its roots graphically and by calculation.
4. Draw the graph of $y=\frac{1}{2} x(x+1)(x-4)$ for values of x from -3 to +5 . Use it to answer the following:
(i) For what values of x does $x^{3}-3 x^{3}-4 x$ equal 6 ?
(ii) For what range of values of x is $x^{3}-3 x^{2}-4 x$ greater than 6 ?
(iii) What is the least value of $x^{3}-3 x^{2}-4 x$ if x is positive ?
(iv) What is the largest value of $x^{3}-3 x^{2}-4 x$ if x is negative ?
(v) Solve the equations:
(a) $x^{3}-3 x^{2}-4 x=13$;
(b) $x^{3}-3 x^{2}-4 x=-4$;
(c) $x^{3}-3 x^{4}-4 x+18=0$;
(d) $x^{3}-3 x^{2}-4 x=16$;
(e) $x^{3}-3 x^{2}-4 x+12=0$.
5. Draw as much as your paper allows of the graph of

$$
y=\frac{120}{x-30}+20
$$

taking the origin in the middle of the paper, and 1 inch on each axis to represent 20 units.

Solve graphically the simultaneous" equations,

$$
y=\frac{120}{x-30}+20, x-2 y+40=0
$$

Check by calculation.
6. Draw the graph of $y=10^{x}$ for values of x from 0 to 1 . By drawing other suitsble graphs, solve the equations :
(i) $10^{x}=10 x$;
(ii) $10^{x}=7 x$;
(iii) $10^{x}+10 x=6$;
(iv) $10^{x}=10 x-1$.
7. Draw the graph of $y=\log x$ for values of x from 1 to 10 . By drawing other suitable graphs, solve the equations:
(i) $\log x=\frac{x}{10}$;
(ii) $\log x=0.6-0.06 x$;
(iii) $5 \log x+x=4$.
8. (i) What is the value of $\frac{x-1}{x-2}$ if $x=2 \cdot 01$, if $x=2 \cdot 001$? What is the value if $x=1.99$, if $x=1.999$?
(ii) What is the value of x if $\frac{x-1}{x-2}=1 \cdot 01$, if $\frac{x-1}{x-2}=1.001$? What is the value if $\frac{x-1}{x-2}=0.99$, if $\frac{x-1}{x-2}=0.999$?
(iii) Sketch the graph of $y=\frac{x-1}{x-2}$.
9. (i) For what values of x is $(x-1)(x-3)(x-6)$ zero ?
(ii) For what range of values of x is this function positive?
(iii) Find the values of the function when $x=11,0,-9$.
(iv) Sketch the graph of $y=(x-1)(x-3)(x-6)$.
10. Make a table of values from $x=-2$ to $x=10$ for the function $y=\frac{(x-1)(x-6)}{x-3}$, and show where there are missing values, if any; then sketch the graph of the function.
11. Make a table of values from $x=-2$ to $x=10$ for the function $y=\frac{x(x-6)}{(x-2)(x-4)}$, and show where there are missing values. Add to the table the values of y when $x= \pm 100, \pm 1000$. Then sketch the graph of the function.
12. The base of an open cistern is a square of side x feet; its volume is $200 \mathrm{cu} . \mathrm{ft}$. If the total area of the base and sides is A sq. ft., prove that $A=x^{2}+\frac{800}{x}$. Represent the relation between A and x by a graph for values of x from 4 to 12 . For what value of x is A least ? For what positive values of x is A equal to 175 ?
13. A sheet of tin is 24 inches square; equal squares, side x in., are cut at the four corners, and the sides are then turned up to make a rectangular box. If the volume of the box is V cu. in., express V in terms of x. Show by a graph the relation between V and x for values of x from 0 to 12. (i) For what value of x is \vee greatest ? (ii) For what positive values of x is V equal to 500?
14. The following observations show the connection between the pressure and volume of saturated steam :

Volume, cu. ft. per lb. water	v	297	173	82.4	$55 \cdot 1$	$21 \cdot 3$
Pressure, lb. per sq. in.	\cdot	p	1.13	2.02	4.42	6.77

Plot $\log p$ against $\log v$, and then express p in terms of v.
15. Draw the graphs of $y=1-x^{2}$ and $x=\frac{1}{2}\left(3-y^{2}\right)$ from $x=-2$ to $x=+2$. Thence find approximate solutions of these simultaneous equations. What equation in x can be solved from these graphs ? What equation in y can be solved?
16. The graph of $y=a+b x+c x^{2}$ passes through the origin and through the two points $(1,1) ;(2,-2)$. Find the values of a, b, c, and calculate the values of x when $y=-5$. Sketch the graph.

EXERCISE T. 7

Remainder Theorem. (Chapter VIII)

1. Prove that $x+2 y$ is a factor of $x^{4}+10 x y^{3}+4 y^{4}$.
2. Find a if $x-2$ is a factor of $x^{9}+a x-4$.
3. Find a, b if $x^{2}+x-6$ is a factor of $x^{3}-a x^{2}-b x-6$.
4. What is the remainder when (i) $x^{3}-1$ is divided by $x+1$, (ii) $x^{4}-x-2$ is divided by $x-3$?
5. Factorise (i) $x^{3}-8 x^{2}+19 x-12$; (ii) $2 x^{3}-3 x^{2}-3 x+2$.
6. Solve the equation, $2 x^{3}=x^{2}+13 x+6$.
7. If n is a positive integer, find the condition that
(i) $x+1$ is a factor of $x^{n}+1$;
(ii) $x+1$ is a factor of $x^{n}-1$.
8. Prove that $x-y$ is a factor of $(x-y)^{3}+(y-z)^{3}+(z-x)^{3}$; then factorise the expression.
9. Prove that $x+y$ is a factor of

$$
(x y-y z-z x)(x+y-z)+x y z ;
$$

then factorise the expression.
10. Prove that x and $y+z$ are each factors of

$$
(x y-y z+z x)^{3}-x^{3} y^{3}+y^{3} z^{3}-z^{3} x^{3}
$$

then fertorise the expression.
11. Factorise $\left(x^{\prime}+y+z\right)^{3}-\left(x^{3}+y^{3}+z^{3}\right)$.
12. Prove that $x+a+b+c$ is a factor of

$$
(x+b+c)(x+c+a)(x+a+b)+a b c .
$$

13. Prove that $x-y, y-z, z-x$ are each factors of

$$
x(y-2)^{3}+y(z-x)^{3}+z(x-y)^{3} ;
$$

then find the remaining factor.
14. Prove that a is a factor of

$$
(a+b+c)^{3}-(b+c-a)^{3}-(c+a-b)^{3}-(a+b-c)^{3} ;
$$

then factorise the expression.
15. Factorise

$$
\left(x^{2}-y^{2}\right)(x-y)^{2}+\left(y^{2}-z^{2}\right)(y-z)^{2}+\left(z^{2}-x^{2}\right)(z-x)^{2} .
$$

EXERCISE T. 8

Literal Relations. (Chapter IX)

1. Make n the subject of the electrical formula, $\mathrm{C}=\frac{n \mathrm{E}}{\bar{R}+n r}$.
2. If a, b are consecutive even integers, prove that

$$
a^{2}+b^{2}=2 a b+4
$$

3. If $x+y=t+\frac{1}{i}$ and $x-y=t-\frac{1}{i}$, prove that $x y=1$.
4. Simplify $\left(a+\frac{1}{a}\right)^{2}-\left(a-\frac{1}{a}\right)^{2}$.
5. If $\frac{1}{x}+\frac{1}{a}=\frac{1}{p}$ and $\frac{1}{y}-\frac{1}{a}=\frac{1}{q}$, express $\frac{x y}{x+y}$ in a form not containing x or y.
6. If $x+3 y+7 z=14$ and $x+4 y+10 z=17$, show that there is a numerical value of c for which it is possible to find the numerical value of $x+5 y+c z$ from the data. What is this value of c ?
d.s.A.
m
7. Is it possible to find three consecutive integers a, b, c such that $a^{2}+c^{2}=2 b^{2}$?
8. If $a(x+y)=a^{2}-x y$, express $x+y$ in terms of a, x.

Solve, for x, the following equations:
9. $a(x-b)+b(x-c)+c(x-a)=0$.
10. $a\left(x+\frac{1}{b}\right)=b\left(x+\frac{1}{a}\right)$.
11. $(x+a)^{2}+(x+b)^{2}=2 x^{2}$.
12. $(x-a)(x-c)=(x-b)^{2}$.
13. $\left(\frac{1}{x}+\frac{1}{d}\right)=d\left(\frac{1}{x}+\frac{1}{c}\right)$.
14. $\frac{a}{x(x+a)}=\frac{1}{x}+\frac{1}{a}$.

Find x, y from the following simultaneous equations :
15. $x-u y+u^{2}=0, x-v y+v^{2}=0$.
16. $m x-y=b, x+m y=m b$.
17. If $a+b+c=2 s$, prove that $a(2 s-a)-b(2 s-b)=(a-b) c$.
18. If $x+a y=b$ and $x+b y=a$, prove that $x-c y=a+b+c$.
19. Given that $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$, prove that $(u-f)(v-f)=f^{2}$.
20. If b cows and c sheep cost as much as p cows or. q sheep, prove that $\frac{b}{p}+\frac{c}{q}=1$.
21. If $a+b=c$, prove that $a^{2}+b^{2}+c^{2}=2(b c+c a-a b)$.
22. If $\frac{x+a}{x+b}=\frac{b^{5}}{a^{3}}$ and $\frac{y+a}{y+b}=\frac{a^{4}}{b^{4}}$, express $x y$ in terms of a, b.
23. The result of increasing b by x per cent. is the same as decreasing c by x per cent. Find x in terms of b, c.
24. A, B, C, D are 4 points in order on a straight line. If B is the mid point of AD , and if $\mathrm{AB}=k . \mathrm{CD}$ and $\mathrm{AB}=l . \mathrm{BC}$, find l in terms of k.
25. From $£ x y$ s. $z \mathrm{~d}$., where $12>x>z$, subtract $£ z y s . x \mathrm{~d}$. If the result is $£ p q 3 . r \mathrm{~d}$., find the sum of $£ p q 3$. rd. and $\mathrm{fr} q \mathrm{~g}$. $p \mathrm{~d}$.
26. If $x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1-t^{2}}{1+t^{2}}$, prove that $x^{2}+y^{2}=1$.
27. If $x+y+z=0$, prove that $x^{2}-y^{2}-z^{2}=2 y z$.
28. If $x+y+z=0$, prove that

$$
(x-y-z)(y-z-x)(z-x-y)=8 x y z .
$$

29. Given that $P t=m(v-u)$ and $P_{s}=\frac{1}{2} m\left(v^{2}-u^{1}\right)$, prove that $s=\frac{1}{2}(u+v) t$.
30. Given that $v=u+a t$ and $s=\frac{1}{2}(u+v) t$, prove that
(i) $s=u t+\frac{1}{2} a t^{2}$;
(ii) $8=v t-\frac{1}{2} a t^{2}$;
(iii) $v^{2}=u^{2} \div 2 a s$.
31. A circular cylinder rests on a table between two rectangular blocks as shown in Fig. 18; if the diameter of the oylinder equals $A C$, prove that $A B+B C=1 \ddagger A C$.

Fig. 18.

Fia. 19.
32. Fig. 19 represents the inner ring of a race-course, formed of a rectangle with semicircular ends, radii r yd. The perimeter of the ring is C yd. and the area enclosed is A sq. yd. Express A and C in terms of l, r. Prove that $l^{2}=\frac{1}{c} C^{2}-\pi A$.
33. Fig. 20 is formed by four semicircular ares; prove that its area is $\frac{1}{2} \pi . \mathrm{AC} . \mathrm{BD} . \quad[$ Take $\mathrm{AB}=2 x$ in., $\mathrm{BC}=2 y$ in., $\mathrm{CD}=2 z \mathrm{in}$.]

Fio. 20.

Fig. 21.
34. In Fig. 21, $P Q$ bisects $\triangle A B C$. If $A B=5$ in., $A C=4 \mathrm{in}$., $\mathrm{AP}=x$ in., $\mathrm{PQ}=y$ in., express y in terms of x.
35. If $a+b+c=t$, prove that $(a t+b c)(b t+c a)(c t+a b)$ is a perfect square.
36. If $\frac{1}{x+y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{y+z}$, prove that either $x=z$ or $y=0$ or $x+y+z=0$.
37. If $a+\sqrt{ } a=1$, prove that (i) $a+\frac{1}{\sqrt{ } a}=2$; (ii) $a+\frac{1}{a}=3$.
38. A common type of error when using an adding machine is to renord sums such as $£ 7$. 5 s , as 7 s .5 d . or $£ 13$. 9 s . as 13 s . 9 d . If only one amount is recorded,incorrectly in this manner, and if the error is $£ x . y / z . z$., prove that $x+y+z$ is either 11 or 30 .

SUPPLEMENTARY TEST PAPERS Y. 1-10. (Parte I, II.)

Y. 1

1. Simplify (i) (4a $)^{2}-4 a^{2}$; (ii) $\left(\frac{b}{2}\right)^{3}-\frac{1}{2}(-b)^{3}$; (iii) $c+\frac{d}{2}-\frac{c+d}{2}$.
2. Make n the subject of the formula, $P=\frac{Q+n R}{1-n}$.
3. Factorise (i) $5 x^{2}-20$; (ii) $3 a^{2}+7 a b-6 b^{2}$.
4. Solve (i) $(x+1)(x-2)-\frac{1}{2}(x-1)(x+2)=\frac{1}{2}(x+3)(x-1)$;
(ii) $x^{2}-12 x=9$ (to 2 places of decimals).
5. A sum of 1 guinea can be made up of either c shillings and d florins or of c sixpences and d half-crowns. Find the values of c and d.

$$
\text { Y. } 2
$$

1. (i) Write down the L.C.M. of $2 x y(x-y)^{2}, 3 y^{2}\left(x^{2}-y^{2}\right)$, $4 x^{2}(x+y)^{2}$.
(ii) Find the H.C.F. of $a^{3}-2 a^{2}-3 a$ and $a^{4}-5 a^{3}-6 a^{2}$.
2. Simplify $\left(\frac{1}{a}-\frac{1}{a+b}\right) \div\left(\frac{1}{a}+\frac{1}{b-a}\right)$.
3. Solve
(i) $4 \mathrm{P}=5 \mathrm{Q} ; 14 \mathrm{P}-13 \mathrm{Q}=1.8$;
(ii) $2 x+\frac{2}{x}=5$.
4. Find the value of c if $x=\frac{8}{3}$ is a root of $9 x^{2}-5 c x=14$. What is the other root?
5. Two regular polygons are such that the number of sides in one is double that in the other, and an angle of the first is $\frac{1}{2}$ times that of the second. Find the number of sides of each.

Y. 3

1. (i) What number must be added to $a^{2}-9 a$ to make the result a perfect square ?
(ii) Express $(3 x-5)(x+11)$ as the difference of two squares.
2. Make a the subject of the formula, $e=\frac{\mathrm{W}(a-b)}{2 \mathrm{P} a}$.
3. Simplify

(ii) $\frac{x^{2}-4 x+3}{x^{2}-5 x+6} \div \frac{x^{2}-1}{x^{2}-4}$.
4. Solve (i) $\frac{1}{x-1}-\frac{2}{x}=\frac{1}{2-x}$; (ii) $x=\frac{1}{y}=\frac{2}{x-1}$.
5. A spring 4 in . long is lengthened $\ddagger \mathrm{W}$ in. when a weight W lb . is hung on it. Another spring $3 \frac{1}{2} \mathrm{in}$. long is lengthened $\$ W \mathrm{in}$. when a weight W lb . is hụng on it. For what value of W will the two springs have the same length -

Y. 4

1. $\left.x=\sqrt{ } 6 y z^{3}\right) ; y=2 t^{4} ; z=2 s^{2}$. Express x in terms of s, t.
2. A man walks S miles up a hill at $3 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and the same distance back at $6 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. What is his average speed?
3. Factorise
(i) $x^{2}-7 x-30$;
(ii) $a b-a-b+1$;
(iii) $c^{2}-c^{6}$;
(iv) $6 y^{2}-23 y z-18 z^{2}$.
4. (i) For what values of x is $(x+1)^{3}$ equal to $x^{3}+1$?
(ii) Solve $4 x-5 y-3=9 x+2 y-20=3 y-2 x+1$.
5. Eggs are sold either at $3 x$ shillings a dozen or at x eggs for a shilling. What is x if these two prices are the same ?

Y. 5

1. Given that $2 x-1$ is a factor of $8 x^{3}-1$, find the other factor. What are the factors of $8 y^{3}+1$?
2. Simplify (i) $\left\{\frac{1}{2} n(n+1)\right\}^{2}-\left\{\frac{1}{2} n(n-1)\right\}^{2}$.
(ii) $\frac{x^{2}+11 x+30}{x^{2}-5 x-66} \div \frac{25-x^{2}}{x^{2}-121}$.
3. Make V the subject of the formula, $\frac{1}{R}=\frac{C L}{t} \cdot \frac{V}{V-V_{1}}$.
4. (i) Solve $\mathrm{P} x=88 ; \mathrm{P}(x+2)=120$.
(ii) If $4 x^{2}+4 x-3=0$ and if $t=2 x+1$, find t.
5. The weight of a foot of iron piping, external diameter D in., internal diameter d in., is $2 \cdot 45\left(D^{2}-d^{2}\right)$ lb. Express this in terms of the mean radius r in., and the thickness t in.

Y. 6

1. Factorise (i) $2 a-a^{2}-1$; (ii) $(x y-1)^{2}+(x+y)^{2}$.
2. Find the values of the constants a, b in the formula $\frac{1}{w}=\frac{a}{u}+\frac{b}{v}$, if $w=5$ when $u=4, v=10$, and if $w=6$ when $u=3, v=9$.
3. (i) Simplify $\frac{2}{x^{2}-1}+\frac{3}{x-1}+\frac{5}{x+1}$.
(ii) Solve $\frac{2}{x^{2}-1}+\frac{3}{x-1}+\frac{5}{x+1}=0$.
4. (i) Find x if the squares of $5 x+3$ and $5 x+4$ are equal.
(ii) Solve $y=x+2 ; x^{2}+2 y=7$.
5. The outer dimensions of a picture frame are 16 in . by 12 in , The width of the frame is the same all round, and the surface aree of the frame is 75 sq , in. Find the width.

Y. 7

1. Find the value of $\frac{x^{n+1}}{y^{n+1}}-\frac{x^{n}}{y^{n}}$ when $x=3, y=2, n=2$.
2. Factorise (i) $36 x^{2}+42 x-18$;
(ii) $a^{2} c^{8}-b^{8} d^{8}+a^{8} d^{8}-b^{8} c^{8}$.
3. (i) Make W the subject of the formula, $t=\frac{2 a \mathrm{~W}}{\mathrm{~W}+w}\left(1+\frac{\mathrm{V}}{v}\right)$
(ii) If a and b are two positive numbers such that

$$
a^{2}+a b+b^{2}=79 \text { and } a^{2}+b^{2}=58,
$$

calculate in succession $a b, a^{2}+2 a b+b^{2}, a+b, a-b$.
4. (i) Solve $z=\frac{1}{z+1}$ (to 2 places of decimals).
(ii) $y=2 x-1 ; y^{2}=8 x+1$.
5. $\frac{1}{\frac{1}{2}(x-1)}$ and $\frac{1}{(}(2 x-1)$ are consecutive integers. What integers are they? Is there more than one answer ?

$$
\text { Y. } 8
$$

1. Simplify (i) $\frac{x-4}{(x-2)(x+3)}+\frac{14}{(x-2)(x+3)(x+5)}$;

$$
\text { (ii) } \frac{a^{4}-a b}{a^{2}-2 a-3} \times \frac{a^{4}+2 a b-3 a-6 b}{a^{2}+a b-2 b^{2}} \text {. }
$$

2. The equation $s=a+b t+t^{2}$ is satisfied by the two pairs of values $t=3, \dot{s}=5$ and $t=5, s=29 ; a$ and b are constants, find their values.
3. It is known that $\frac{6 a-7}{2}$ is greater than $\frac{5 a+4}{3}$. If a is an integer, find its least value.
4. Solve (i) $\frac{1}{2 x-1}=\frac{3 x-4}{3 x}$;
(ii) $x=2 y+3, x^{3}-3 y^{2}=22$.
5. A man buys a number of motor-cars at $£ 400$ each. He keeps one for his own use and sells the remainder at 10 per cent. profit. As the result, he finds that he has got his own car for nothing. How many cars did hé buy ?

Y. 9

1. Prove that $x^{2}+x-1$ is a factor of $x^{5}-5 x+3$. Find a factor of $y^{5}-5 y-3$.
2. (i) Make μ the subject of the formula, $\frac{1}{f}=(\mu-1)\left(\frac{1}{r}-\frac{1}{\mathrm{R}}\right)$.
(ii) If $3 x+y-2 z=7$ and $x-y-2 z=5$, find the numerical value of $2 x+y-z$.
3. Solve (i) $W(x-3)=12, W(x-2)=14$.
(ii) $3 x^{2}-5 x=9$ (to 2 places of decimals).
4. (i) Form an equation having as roots, $-2 \frac{1}{2}$, is.
(ii) What can you say about c if $x^{2}-12 x+c=0$ has no roots ?

FTG. 22.
5. A rectangular sheet of paper $A B C D$ (see Fig. 22) is folded so that A falls on F, with $B G$ os crease. Show that $D F=1$ inch. Also, if $\mathrm{AG}=x$ in., express GF, GD in terms of x; then obtain an equation in x and solve it.

X. 10

1. (i) Factorise $a b\left(1+c^{2}\right)-c\left(a^{2}+b^{2}\right)$.
(ii) If $x-y=4$ and $x^{2}-y^{2}=64$, prove that $x^{2}-y^{3}=28^{2}$.
2. If $x=\frac{a-1}{a+1}$ and $y=\frac{2 a-1}{2 a+1}$, find a in terms of x. Find also an equation connecting x and y not involving a.
3. Two numbers R, v are connected by the equation,

$$
\mathrm{R}=a+b \sqrt{ } v
$$

where a, b are constants. If $R=10$ when $v=64$ and $R=11 \cdot 2$ when $v=81$, find the values of a, b.
4. Solve (i) $\frac{1}{2(x-1)}+\frac{3}{x^{2}-1}=\frac{1}{4}$;
(ii) $x y=40, y z=60, x+z=20$.
5. A boy is told to think of a number, subtract q from it and divide the result by r. By mistake he subtracts r and divides by q, but gets the same answer as he otherwise would have done. Find the number he obtains.

SUPPLEMENTARY TEST PAPERS Z. 1-10. (Part III, Ch. I-III)

Z. 1

1. Simplify :
(i) $4 a^{6} \div a^{2}$;
(ii) $3 b^{\frac{1}{2}} \div b^{\frac{1}{t}}$;
(iii) $4 c^{-2} \times 2 c^{-2}$;
(iv) $6 d^{\frac{2}{3}} \times d^{\frac{4}{3}}$;
(v) $\left(2 n^{\text {t }}\right)^{3}$;
(vi) $y^{-3} \times y^{3}$.
2. Find the value of
(i) $\sqrt{(}\left(\frac{H D^{5}}{L}\right)$ when $H=18 \cdot 4, D=3 \cdot 06, L=880$;
(ii) $\mathrm{P}^{\frac{1}{3}} \mathrm{H}^{-\frac{3}{4}}$ when $\mathrm{P}=144, \mathrm{H}=16$.
3. Solve (i) $\frac{2}{x}+\frac{y}{2}=1=\frac{3}{x}+\frac{y}{3}$.
(ii) $(z-3)^{4}=16$.
4. Write as simply as possible :
(i) $\frac{3}{\sqrt{12}}$;
(ii) $\sqrt{ } 45-\sqrt{ } 20$;
(iii) $\frac{12}{\sqrt{5}-1}$.
5. The displacements of similar ships vary as the cubes of their lengths. Find the displacement of a ship which is half as long as a similar ship of displacement 2000 tons.

Z. 2

1. If $x=\sqrt{ } y, y^{3}=z^{3}, z=t^{5}$, express as powers of t, (i) y, (ii) x. Also express z as a power of x.
2. Find x, y, z if

$$
\begin{array}{ll}
\text { (i) } x=10^{1.7794} ; & \text { (ii) } 10^{y}=0.52 ; \quad \text { (iii) } z^{-8}=0.078 . . ~
\end{array}
$$

Evaluate $\sqrt[2]{ }(0.623) \div(0.472)^{2}$.
3. (i) Factorise $\left(x^{2}-5 x\right)^{2}+10\left(x^{2}-5 x\right)+24$.
(ii) Solv $\frac{1}{x}+\frac{1}{y}=5,6 x y=1$.
4. A certain sheet of transparent material absorbs $\frac{1}{1 n}$ th of the red light falling on it. How many sheets must be placed one over another so that the red light is reduced by 60 per cent. ?
5. The weight of the shell of a d-inch gum (i.e. internal diameter, d in.) varies as d^{3}. Find the internal diameter of a gun whose shell is twice as heavy as the shell of a $4 \cdot 7 \mathrm{in}$. gun.

Z. 3

1. (i) What are the values of $\left(10^{-3}\right)^{\frac{1}{2}},\left(10^{-4}\right)^{\frac{1}{2}},(0 \cdot 1)^{-3}$?
(ii) If $\mathrm{V}=\frac{8}{3} \pi r^{3}$, find r to 3 figures when $V=1$.
2. Rewrite the following without using negative or fractional indices: (i) $(1+x)^{-3}$; (ii) $u t^{-1}$; (iii) $l^{\frac{1}{2}} g^{-\frac{1}{2}}$.
3. (i) Solve $\frac{5 x+2}{2 x-1}-\frac{x-13}{x+3}=4$.
(ii) If $y=4 x+5$ and $6 x z=3 y-2 x$, find z in terms of y.
4. Given $\sqrt{ } 2 \bumpeq 1 \cdot 414$ and $\sqrt{ } 3 \bumpeq 1 \cdot 732$, evaluate
(i) $\frac{4}{\sqrt{2}}$;
(ii) $\frac{6}{\sqrt{3}}$;
(iii) $\frac{\sqrt{3}}{\sqrt{6}}$;
(iv) $\frac{1}{\sqrt{3}-\sqrt{ } 2^{2}}$.
5. The electrical resistance of a wire varies as its length and inversely as the square of its diameter. Compare the resistances of two copper wires, one 100 ft . long, diameter $\frac{1}{18}$ inch, the other 50 ft . long, diameter $\frac{1}{10}$ inch.
State in words how the diameter varies with the length and the resistance.

Z. 4

1. Write as simply as possible :
(i) $\frac{\sqrt{45}}{\sqrt{3}}$;
(ii) $\frac{\sqrt{5}}{\sqrt{20}}$;
(iii) $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}$;
(iv) $4^{\frac{9}{3}} \times 2^{-\frac{1}{3}}$.
2. The volume of a sphere, radius r in., is $3 \pi r^{3} \mathrm{cu}$. in. ; find the volume of metal in a hollow spherical shell, if the external diameter is 11.5 in ., and the metal is 0.7 in . thick.
3. (i) If $y=a x+\frac{h}{x^{2}}$ where a, b are constants, and if $y=-3$ when $x=2$, and if $y=6$ when $x=-1$, find y if $x=\frac{1}{2}$.
(ii) Express $\frac{2 x^{2}+9 x-2 l}{x+5}$ in the form $p x+q+\frac{r}{x+5}$.
4. If $x=c y^{1.25} z^{-0.5}$, express z in terms of c, x, y, Evaluate c to 2 figures if $z=6 \cdot 4$ when $x=11$ and $y=18$.
5. An aeroplane travelling against a wind of 20 ft . per sec. takes half as long again to travel a certain distance as anothor aeroplane travelling with the wind. If there is no wind, the first takes 46 minutes and the second 44 minutes. What is the distance?

Z. 5

1. Find the values of (i) $10^{-\frac{6}{6}}$; (ii) (\mathbf{y}^{-10}. What is the least integral value of n for which $(0.95)^{n}$ is less than 0.01 ?
2. Simplify $(2 \sqrt{3}+3 \sqrt{ } 2)^{2}-(\sqrt{ } 6-\sqrt{2})^{2}$.
3. Prove that $\frac{B}{2 x^{2}-x}$ and $7-x(2 x-1)$ are equal, both when $x=2$ and when $x=-\frac{1}{2}$. For what other values of x are they equal?
4. What are the values of a, b if the following equations have the same roots for x :

$$
x^{2}+1=a x+b ; \quad 3 x^{2}-2=b x+8 a ?
$$

5. The square of the time taken by a planet to revolve round the Sun varies as the cube of its mean distance from the Sun. If the mean distances of Jupiter and the Earth from the Sun are in the ratio $16: 3$, find the number of our days in Jupiter's year.

2. 6

1. Express 4^{n} and 8^{n-1} as powers of 2 , and simplify $2^{n} \times 4^{n} \div 8^{n-1}$.
2. Evaluate $e^{\mu \theta}$ when $e=2.718, \mu=0.35, \theta=1.8$.
3. If $\sqrt{ } a+\sqrt{ } b=1$, prove that $(a-b+1)(a-b-1)=2(a+b-1)$.
4. (i) What is the ratio of the roots of $3 x^{2}+7 x=26$?
(ii) Solve $y^{3}-1=x(2 x-1), y-1=x$.
5. The force Plb . acting on a body is inversely proportional to the square of the distance, $r \mathrm{ft}$., of the body from a fixed point. If to the square of the velocity v (in ft. per sec.) a certain fixed number is added, the result is inversely proportional to r. If $\mathrm{P}=2$ and $r=3$, then $v^{2}=7 \cdot 5$, and if $\mathrm{P}=\frac{H}{,}$, then $v^{4}=4 \cdot 5$. What is $v^{\frac{2}{3}}$ if $\mathrm{P}=4 \frac{1}{2}$? Also express P in terms of v.

2. 7

1. Evaluate $\frac{0.045}{d^{1 \cdot 16}} \times \frac{v^{2} l}{2 g}$ when $l=75, v=7 \cdot 4, d=2 \cdot 3, g=32 \cdot 2$.
2. (i) Simplify $\frac{1}{8^{-\frac{1}{4}}}-\frac{1}{16^{-\frac{4}{4}}}$.
(ii) Express in prime factors $18^{n} \times 12^{2 n} \times 6^{3 n}$.

(ii) Find x, y if $x=\frac{1}{y}=\frac{20}{x-1}$.
3. Find an integral value of x such that the expressions,

$$
\frac{x}{2}+\frac{5}{6}, \frac{x+2}{4}+\frac{x}{3}, \frac{x+2}{2}
$$

are in ascending order of magnituds.
5. A motor boat can travel at 12 m.p.h. in still water. It goes 15 miles down stream and returns against the current. If the whole jounerey takes 10 minutes more than it would do in still water, find the speed of the current.

Z. 8

1. Find to 3 figures the value of

$$
\text { (i) } 4 \times \sqrt{ } 1000 \div \sqrt[3]{ } 100 ; \text { (ii) }(0.08)^{-0.4}
$$

2. Find the value of x if
(i) $27^{x}=3$;
(ii) $\left(\frac{1}{y}\right)^{x}=3$;
(iii) $9^{2}=\frac{1}{3}$
(iv) $3^{x}=\left(\frac{1}{3}\right)^{x}$;
(v) $\frac{1}{3}$ of $27^{x}=9^{2 x}$.
3. Simplify (i) $\sqrt{ }(42+12 \sqrt{ } 6)+\sqrt{ }(42-12 \sqrt{ } 6)$;
(ii) $\left\{a+\sqrt{ }\left(a^{2}-b^{2}\right)\right\}\left\{a-\sqrt{ }\left(a^{2}-b^{2}\right)\right\}$.
4. Solve the equations:
(i) $2 x-3 y=1, x^{2}-2 x=y^{2}-1$.
(ii) $\sqrt{ }(2 x+3)+\sqrt{ }(x-2)^{\circ}=2 \sqrt{ }(x+1)$.
5. The weight that can be supported by a eylindrical strut varies as the fourth power of the diameter of the strut and inversely as the square of its length. If one strut is twice as long as another, and if they carry equal weights, what should be the ratio of their diameters?

Find also how the length of a strut varies with its volume and the weight it can support.

Z. 9

1. The bore d in. of a pipe through whioh a pump of horse. power H can deliver G gallons per sec. is given by $d=1 \cdot 25 \mathrm{G}^{\frac{1}{4}} \mathrm{H}^{-\frac{1}{6}}$. (i) Find the bore necessary for an engine of $15 \mathrm{H}, \mathrm{P}$, required to doliver 300 gallons per minute. (ii) Make G the subject of the formula, and express the numerical coefficient to 2 flgures.
2. (i) Subtract $\frac{x^{n}}{(x+y)^{m}}$ from $\frac{x^{n-1}}{(x+y)^{m-1}}$;
(ii) Simplify $\left(a^{\frac{1}{3}}-b^{\frac{1}{3}}\right)\left(a^{\frac{2}{3}}+a^{\frac{1}{2}} b^{\frac{1}{4}}+b^{\frac{2}{3}}\right)$.
3. (i) Prove that $2 x-y$ is a factor of $4 x^{2}-3 x y^{2}+y^{2}$ and find the other factors.
(ii) Solve $x^{2}+x y=2, x y+3 y^{2}=1$.
4. If $(h-a)(1-a)=(h-b)(1-b)=k$, find k in terms of a, b.
5. The annual cost of running a car is the sum of two quantities, one of which is fixed and the other varies direotly as the mileage. If the cost is $£ 40$ in a year when the mileaga is 3000 , and $£ 47.10 \mathrm{~s}$, when the mileage is 4500 , find the cost when the mileage is 7000 .

Z. 10

1. Prove that $2^{\sqrt{3}}-2^{-\sqrt{3}}$ is nearly equal to 3 .
2. What are the logarithms (to base 10) of $1000, \sqrt{ } 1000, \sqrt[8]{100}$, $0.01, \frac{1}{\sqrt{ } 0 \cdot 1}$?

Express 2 as a power of 5 .
3. (i) Find x to 3 figures if $(x+1)^{3}=2 x^{3}$.
(ii) The quadratics

$$
x^{2}+81 x-1666=0 \text { and } 2 x^{2}-185 x+2567=0
$$

have a common root. Find it.
4. The cube of the horse-power required for a ship of given type varies as the ninth power of the speed and the square of the displacement. A ship of 1000 tons displacement is found to require a certain H.P. at 10 knots; by what factor must this H.P. be multiplied for a similarship of 8000 tons to give 12 knots ?
5. I think of an odd number. I then multiply it by 3 and divide by 2 and find that the quotient is even. I then multiply the quotient by 3 and divide by 2 , and obtain a number between 170 and 180. Find the original number.

Z. 11-20. (Part III, Ch. I-V)

Z. 11

1. Simplify (i) $20^{\frac{1}{2}} \times 5^{\frac{3}{2}}$; (ii) $(2 \cdot 25)^{-1.5}$; (iii) $6^{4 x} \div 18^{2 x}$.
2. Prove that
$x=1+\sqrt{ } 2$ is a root of the equation, $x^{4}-6 x^{2}+1=0$.
What are the other roots?
3. Sum to n terms,

$$
\text { (i) } \frac{5}{8}-\frac{5}{8}+\frac{10}{2}-\ldots \text {; (ii) } \frac{5}{8}+\frac{7}{12}+\frac{1}{3}+\ldots .
$$

Which of these series has a "sum to infinity " and what is it ?
4. If $p v^{n}=c$ where n, c are constants, and if $p=90$ when $v=4$, and if $p=40$ when $v=6 \cdot 2$, find the values of n and c. Find also the value of v when $p=60$.
5. A cylindrical boiler is raade with hemispherical ends. If its greatest length is a feet and if its breadth is b feet, show that its volume is $\frac{\pi}{12} b^{2}(3 a-b)$ cu. feet.

Z. 12

1. Simplify (i) $\left(27^{\frac{1}{2}}+9^{\frac{2}{7}}\right) \times 81^{-\frac{7}{7}}$;

$$
\text { (ii) } \frac{\sqrt{ } 18}{(1+\sqrt{ } 3)(\sqrt{6}-\sqrt{2})} \text {. }
$$

2. If $a=\log \frac{f}{b}, b=\log \frac{10}{9}, c=\log \frac{8}{8}$, express as simply as possible $3 a+b+c$.
3. (i) Sum to n terms the series

$$
\log a+\log \frac{a}{b}+\log \frac{a}{b^{2}}+\ldots
$$

(ii) Find to 2 significant figures the value of the sum of 20 terms of the series, ${ }_{3}^{\circ}, \frac{4}{3}, \frac{8}{3}, \frac{12}{3}, \ldots$.
4. Solve (i) $u+v=6 ; u^{2} v^{2}+2 u v=35$;
(ii) $(3 x-1)^{4}=(x+3)^{4}$.
5. A series of similar articles is made in different sizes. Their weights form a series in A.P., and their values a series in G.P. Size 1 weighs 3 lb . and is worth 2 s . 8 d .; size 4 weighs $7 \frac{1}{2} \mathrm{lb}$. and is worth 9 s. Find the weight and value of size 7.

Z. 13

1. (i) Simplify $2^{n+3}-6 \times 2^{n}$.
(ii) Find x if $4^{x}=32^{8}$.
2. The population of a country increases by 3 per cent. every 10 years. What is the percentage increase in 70 years ?
What is the value of n if $(1.03)^{n}=2$?
3. Factorise (i) $6 x^{2}-11 x-10$; (ii) $a^{2}+a b+b-1$.

Divide $\left\{\log \left(a^{2}\right)-\log \left(b^{2}\right)\right\}$ by $\{\log a-\log b\}$.
4. (i) Sum the series

$$
\left(n-n^{2}\right),\left(2 n-n^{2}\right),\left(3 n-n^{2}\right), \ldots \text { to } 2 n \text { terms. }
$$

(ii) Two consecutive terms of a H.P. are $\frac{9}{5}$ and $\frac{1}{2}$; what is the largest positive term in the series ?
5. A non-stop train leaves A for B at 8 a.m., and another nonstop train leaves B for A at $8.15 \mathrm{a} . \mathrm{m}$. The trains arrive at their destinations 20 minutes and 50 minutes respectively after passing one another. If the speed of each train is uniform, find the time at which they meet.
[s.T.P.

Z. 14

1. (i) Evaluate $\frac{3.28 \times 10^{-2} \times \frac{8}{1}}{\frac{1}{4} \pi\left(7.26 \times 10^{-3}\right)^{2}}$,
(ii) Express $18^{2 x} \div 12^{3 x}$ in the form $2^{p} \cdot 3^{\text {a }}$.
2. If $a=2 \sqrt{ } 2-\sqrt{ } 7$ and $b=2 \sqrt{ } 2+\sqrt{ } 7$, simplify $a b^{-3}+b a^{-3}$.
3. Solve (i) $x+y=z=2 x y ; \frac{1}{x}-\frac{1}{y}=1$.
(ii) $\sqrt{ }(x+4)+\sqrt{ }(x-3)=\sqrt{ } 7$.
4. (i) The 3 rd term of an A.P. is 8 , and the 10th term is 36 . Find the sum of n terms.
(ii) What is the least number of terms of the G.P., 4, 6, 9, ... whose sum is greater than 10,000 ?
5. Two men, A, B, receive the same initial salary, $£ 200$ a year. A receives an increase of $£ 20$ a year at the end of every 2 years; B receives an increase of $£ 10$ a year at the end of every year. Find the total sum each has received at the end of $2 n$ years, n being an integer.

$$
\text { Z. } 15
$$

1. (i) Simplify $5 \times 4^{3 n+1}-20 \times 8^{2 n}$.
(ii) Find x if $\log _{10}(x+1)-\log _{10} x=1$.
2. Find rational numbers a, b such that

$$
(a+b \sqrt{ } 2)(6-\sqrt{ } 2)^{2}=3+\sqrt{ } 2
$$

3. Solve (i) $\frac{1}{2} x^{2}+x=3$ (to 2 places of decimals).
(ii) $3 x+4 y=18, x^{2}+3 x y+2 y^{2}=40$.
4. (i) Find the sum of all positive integers less than 1000 which are not divisible either by 2 or 5 .
(ii) Sum to n terms the series

$$
1+\frac{x}{2}, 2+\frac{x^{2}}{4}, 3+\frac{x^{3}}{8}, 4+\frac{x^{4}}{16}, \ldots .
$$

5. Show that a triangle whose sides are of lengths ($\sqrt{5}-1$) in., $(\sqrt{ } 5+1)$ in., $2 \sqrt{ } 3 \mathrm{in}$. is right-angled, and find its area.

Z. 16

1. (i) Simplify $\left(a^{3} b^{-1}\right)^{-2} \times\left(a^{-8} b^{3}\right)^{-1}$;
(ii) Evaluate $\frac{a}{b}+\frac{b}{a}$, if $a=3 \sqrt{ } 2-2 \sqrt{ } 3$ and $b=3 \sqrt{ } 2+2 \sqrt{ } 3$.
2. (i) Factorise $2 x^{2}-\frac{3}{x^{2}}+1$.
(ii) Simplify $\left(9^{2 n}-4^{2 n}\right) \div\left(3^{n}-2^{n}\right)$.
3. (i) Express $\log _{3} 6$ in the form $\log _{9} n$.
(ii) Express, without using logarithmic notation, the relation, * $\log _{9} x=3 \log _{3} y$.
4. (i) Sum to $(2 n+1)$ terms, n being integral, the series

$$
1-4+7-10+13-\ldots .
$$

(ii) The 3rd term of an H.P. is 5, and the 5 th term is 3 . Find (i) the l5th term ; (ii) the rth term.
5. The time for a railway journey varies directly as the distance and inversely as the velocity. The velocity varies directly as the square root of the amount of coal used per mile and inversely as the number of coaches in the train. For a journey of 25 miles in half an hour with 18 coaches, 10 cwt. of coal is consumed. How much coal is used in a journey of 15 miles in 20 minutes with 24 coaches ?

Z. 17

1. Simplify (i) $4^{n+8} \times 8^{2-n} \div 16^{3-n}$; (ii) $\left(\frac{9}{10}\right)^{-\frac{1}{2}} \times\left(3 \frac{3}{3}\right)^{\frac{1}{2}}$.
2. (i) Simplify $\{\sqrt{ }(x+1)-\sqrt{ }(x-1)\} \div\{\sqrt{ }(x+1)+\sqrt{ }(x-1)\}$.
(ii) If $\log \frac{b+c}{2}=\frac{1}{2}(\log b+\log c)$, prove that $b=c$.
3. Solve (i) $x^{2} y z=12, x y^{2} z=6, x y z^{2}=18$;
(ii) $\sqrt{ }(x-3)+\sqrt{ }(x+2)=\sqrt{ }(3 x+4)$.
4. (i) The sum of the first 5 terms of an A.P. is -2 , and the sum of its first 9 terms is 0 . Find the sum of the first n terms.
(ii) Use legarithms to evaluate the sum to 10 terms of the

$$
\text { G.P., } 3+2^{\frac{1}{2}} \cdot 3^{\frac{3}{4}}+2^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}+\ldots
$$

5. If $r^{x}=10$ and $r^{x+4}=20$, what is the value of $r^{x+8} ?$ Find also the value of r.

$$
\text { Z. } 18
$$

1. (i) Multiply $(\sqrt{ } 2+\sqrt{ } 3+\sqrt{ } 5)(\sqrt{ } 2-\sqrt{ } 3+\sqrt{5})$ by

$$
(\sqrt{ } 2+\sqrt{ } 3-\sqrt{ } 5)(-\sqrt{ } 2+\sqrt{ } 3+\sqrt{ } 5)
$$

(ii) Find x if $\frac{\log x}{\log a^{2}}=\frac{\log b^{2}}{\log b}$.
2. If $2^{x}=5^{y}=10^{z}$, prove that $z=\frac{x y}{x+y}$.
3. (i) Solve $3 x+5 y=4 ; \frac{3}{x}+\frac{5}{y}=17$.
(ii) If $x y-a b=a(x+y)$, espress $x+y$ in terms of x, a, b.
4. (i) The sum of n terms of a sories is $3 n^{2}-5 n$ for all values of n. Find the lst term, the 2nd term, the r th term.
(ii) What is the sum of the series,

$$
1+(a+a)+\left(a^{2}+2 a\right)+\left(a^{9}+3 a\right)+\ldots+\left(a^{n}+n a\right) ?
$$

5. A man borrows $£ 1400$ to be repaid by 5 equal annual instalments, the first being made 12 months after the loan is contracted. Reckoning compound interest at $4 \frac{1}{2}$ per cent. per annum, find the amount of each annual payment as accurately as your tables permit.

$$
\text { Z. } 19
$$

1. (i) Simplify $9^{2 n+1} \times 6^{2 n-3} \div\left(3^{5 n-2} \times 18 \times 4^{n-2}\right)$.
(ii) Find the square root of $57-12 \sqrt{ } 15$.
2. Prove that $x=\sqrt{2}+\sqrt{ } 3$ is a root of $x^{2}+\frac{1}{x^{2}}=10$. What are the other roots?
3. (i) Simplify $\log \left(\log x^{p}\right)-\log \left(\log x^{x}\right)$.
(ii) Find n if $4^{5 n+2}=8^{3 n}$.
4. (i) Find the value of n if the sum of n terms of the series $2,5,8,11, \ldots$ equals the sum of n terms of the series 47, 45, 43, 41,
(ii) The first torm of a G.P. is x, its last term is x^{2}, and its sum is x^{3}. Find its common ratio.
5. The cost of material in a spoon of given design is the sum of two parts which vary as the square and the cube respectively of the length. If p shillings, q shillings are the costs for two spoons, the latter being twice as long as the former, prove that the cost for a spoon $1 \frac{1}{2}$ times as long as the former is ${ }_{9}^{9}(4 p+q)$ shillings.
Z. 20
6. (i) If $a+\frac{1}{a}=\sqrt{ } 3$, find the values of $a^{2}+\frac{1}{a^{2}}$ and $a^{3}+\frac{1}{a^{3}}$.
(ii) Simplify $\left\{b(b+c)^{-1}+c(b-c)^{-1}\right\}\left\{b c^{-1}+b^{-1} c\right\}^{-1}$.
7. (i) If $a^{2}+b^{2}=14 a b$, prove that $\log \frac{a+b}{4}=\frac{1}{2}(\log a+\log b)$.
(ii) Make n the subject of the formula, $T_{1}=T_{2}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{n-1}{n}}$, using
logarithmic notation.
8. The equation $x^{3}+a x^{2}=b x-1$, where a and b are rational, is satisfied by $x=1+\sqrt{ } 2$. Find a and b. Find also the other roots of the equation.
9. A man, whose income has increased every year by 5 per cent. of what it was the year before, made $£ 1000$ in the year 1901. What did he make in 1924, and what was his total income in the 24 years?
10. If $8=1+3 r+5 r^{2}+7 r^{8}+\ldots+(2 n-1) r^{n-1}$, simplify the expression $s-r s$ as much as possible. Hence find s.

If $r^{2}<1$, find the sum to infinity of the given series.

Z. 21.30. (Part III, Ch. I-IX)

Z. 21

1. (i) Simplify $\frac{3^{n+3}-3 \times 3^{n}}{4 \times 3^{n+2}}$; (ii) Evaluate $(1 \cdot 21)^{-\frac{1}{2}}$.
2. If $a=\frac{1}{2}(\sqrt{ } 13-1)$, prove that $\frac{5-a}{2-a}=4+\alpha$ and evaluate $(2-\alpha)(3+\alpha)$.
3. (i) If $\frac{c}{b}=\frac{b}{c}=\frac{c}{d}$, prove that $\frac{a}{d}=\frac{b\left(b^{2}-c^{2}\right)}{c\left(c^{2}-d^{2}\right)}$.
(ii) For what value of a is $x-1$ a factor of $3 x^{3}+a x^{2}+4$, and what are the other factors in this case ?
4. The sum of the roots of $x^{2}-(c+3) x+2(c+1)=0$ is twothirds of their product. Find the roots.
5. What digit must the symbol x represent if the product of the two numbers " $x 5$ " and " $3 x$ " is the number " $2 x x 5$ "?

Z. 22

1. Solve $6^{2 x-1}=8^{x}$ (2 places of decimals).
2. (i) If $\frac{a+x}{a-x}=\frac{y-b}{y+b}$, express y in terms of a, b, x.
(ii) If $\frac{a}{b}=\frac{c}{d}$, prove that $\frac{a c-c^{2}}{b-d}=\frac{d\left(a^{2}+c^{2}\right)}{b^{2}+d^{2}}$.
3. Show that $x^{4}+2 x^{3}-3 x^{2}-8 x-4$ can be expressed in the form $\left(x^{2}+a x+2\right)\left(x^{2}+b x-2\right)$ and find the values of a, b.

Hence solve the equation, $x^{4}+2 x^{3}-3 x^{2}-8 x=4$.
4. If s_{r} is the sum of r terms of the G.P., $1+3+9+27+\ldots$, find the sum of n terms of the series,
D.s.A.

$$
\underset{\mathrm{N}}{8_{1}+8_{2}+s_{3}+s_{4}+\ldots}
$$

5. Prove that the sum of the cubes of three consecutive integers exceeds 3 times their product by 3 times their sum.

State and prove a similar result for three consccutive odd integers.

$$
\text { Z. } 23
$$

1. Simplify (i) $\log 12+2 \log 0.75-\log 6.75$;
2. Find the square root of

$$
x^{4}-4 x^{5}+10 x^{4}-10 x^{2}+5 x^{2}+6 x+1
$$

3. (i) If α, β are the roote of $x^{2}-4 x+1=0$, prove that $\alpha^{8}+\beta^{3}=52$, and find the value of $\alpha^{4}+\beta^{4}$.
(ii) If a is a root of $x^{n}+p x+q=0$, prove that it is also a root of $x^{3}-p x^{2}-\left(2 p^{2}-q\right) x=2 p q$.
4. Solve (i) $\frac{x}{a^{4}}=\frac{y}{b^{4}}=\frac{z}{c^{4}}=x y z$; (ii) $x-y=3, x^{3}-y^{3}=819$.
5. What is the coefficient of x^{10} in the expansion of

$$
\left(x^{2}-1\right)(x+2)^{12} ?
$$

Z. 24

1. Factorise (i) $2 x^{3}-3 x^{2}-3 x+2$; (ii) $a^{2}-a(b+1)+2(b-1)$.
2. If the graph of $y=a x^{3}+b x+c$ passes through the points $(1,7),(2,23),(3,17)$, find the values of a, b, c. Also find y when $x=4$.
3. (i) If $a b+b c+c a=0$, prove that $\frac{a}{b}$ is a square root of $\frac{a+c}{b+c}$.
(ii) What is the coefficient of x^{4} in the expansion of

$$
\left(3 x^{2}-\frac{1}{2 x}\right)^{8} ?
$$

4. Find the sum of n brackets of the series,

$$
(1+2),(1+2+4),(1+2+4+8),(1+2+4+8+16), \ldots
$$

6. A train after running 1 hour is delayed for half an hour, after which its speed is reduced by one-quarter, and the train arrives at its destination $1 \frac{1}{8}$ hours later than if it had travelled uniformly throughout. If the telay had occurred 45 miles
further on, the train would have been only 1 hour late. Find the distance travelled and the first speed of the train.
Z. 25
7. (i) If $8 x^{3}-36 x^{2}+a x+b$ is a perfect cube, find the values of $a, b . z$
(ii) If $a+\frac{1}{a}=3$, evaluate $a^{5}+\frac{1}{a^{5}}$.
8. (i) Find p, q if $x-2$ and $x+3$ are factors of $x^{4}-p x^{2}-q x-6$.
(ii) Factorise $4 y^{2}-\left(y^{2}-z^{2}+1\right)^{2}$.
9. Find x if $(x+1)^{2}$ is greater then $5 x-1$ and less than $7 x-3$, and if x is an integer.
10. (i) Solve for $x, \frac{1}{x}-\frac{1}{x+a}=\frac{a}{b(a+b)}$.
(ii) Solve for x, y, z,

$$
\frac{x+y}{2 a}=\frac{y+z}{2 b}=\frac{z+x}{2 c}=y z
$$

5. Construct a quadratic in x, such that the arithmetic mean between its roots is A, and the geometric mean between them is \mathcal{G}. Find also the harmonic mean between them.

Z. 26

1. Simplify $\sqrt{ }\left\{\frac{1}{2}-\frac{1}{3} \sqrt{ } 2\right\}$.
2. Show how $4 x^{3}-5 x^{2}+6 x-7$ can be expressed in the form $a+b(x-1)+c(x-1)(x-2)+d(x-1)(x-2)(x-3)$, and find the numerical values of a, b, c, d.
3. (i) Factorise $x(y-z)^{3}+y(z-x)^{3}+z(x-y)^{3}$.
(ii) Simplify $\frac{(a x+b y)^{2}-(a y+b x)^{2}}{(c x+d y)^{2}-(c y+d x)^{2}}$.
4. (i) Solve $\frac{x^{2}-2 x+5}{3 x^{2}+4 x-1}=\frac{x^{2}+2 x-5}{3 x^{2}-4 x+1}$.
(ii) If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, prove that $\frac{a^{m}}{b^{m-1}}+\frac{c^{m}}{d^{m-1}}+\frac{e^{m}}{f^{m-1}}=\frac{(a+c+e)^{m}}{(b+d+f)^{m-1}}$.
5. If both n and $\frac{5 n+1}{7}$ are positive integers less than 10 , prove that $\frac{1!n+1}{9}$ is also a positive infeger less than 10.

Z. 27

1. Simplify (i) $\frac{9^{n+2}-12 \times 3^{2 n+1}}{27^{n}}$; (ii) $\frac{\sqrt{ }(8-4 \sqrt{3})}{3-\sqrt{3}}$.
2. (i) If $(a+b):(a-b)=7: 4$, evaluate $\left(a^{2}+b^{2}\right):\left(a^{2}-b^{2}\right)$.
(ii) If y is a mean proportional between x and z, prove that

$$
\frac{x^{2}+y^{2}+z^{2}}{x+y+z}=\frac{y^{3}+z^{3}}{z(y+z)}
$$

3. (i) Prove that the roots of $x^{2}-18 x+125=0$ are the cubcs of the roots of $x^{2}+3 x+5=0$.
(ii) For what values of x is $4 x^{2}+5 x$ greater than 69

Fig. 23.
4. Fig. 23 represents the graph of $y=(x-1)(x-2)$. Sketch, with the same scale, the graphs of (i) $y=1+(x-1)(x-2)$; (ii) $y=(x+1)(x+2)$; (iii) $y=(x-2)(x-3)$; (iv) $y=\frac{1}{(x-1)(x-2)}$.
5. The price of gas is reduced by x per cent., and a household consequently consumes x per cent. more gas in a year. Prove that the yearly gas bill is certainly reduced. Find the value of x if the bill is reduced by 9 per cent.

Z. 28

1. (i) Factorise $x^{6}+2 x^{2}+9$.
(ii) Show that

$$
(x+y+z)^{4}-(y+z)^{4}-(z+x)^{4}-(x+y)^{4}+x^{4}+y^{4}+z^{4}
$$

$$
\text { is equal to } 12 x y z(x+y+z) \text {. }
$$

2. Express $0.97 \dot{2}^{\circ}$ as a series, and find the sum to infinity.
3. (i) Solve for x and y,

$$
x(1+y)=b(a-1), \quad y(1+x)=a(b-1) .
$$

(ii) Find two pairs of solutions of the equations,

$$
x^{x+y}=y^{24}, \quad y^{x+y}=x^{8} .
$$

4. Prove that the relation $y=\frac{2(4 x-5)}{x+1}$ can be expressed in the form $\frac{y-a}{y-b}=\frac{2(x-a)}{x-b}$, and find the numerical values of a, b.
5. What is the nth term of the series, $1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \ldots$?

If the sum of n terms is denoted by 8 , write down the series obtained by subtracting $\frac{1}{2} 8$ from 8 , and then find its value in terms of n. Hence find s.
What is the sum to infinity of the given series ?

Z. 29

1. If $\frac{a+b}{b+c}=\frac{c+d}{d+a}$, prove that either $a=c$ or $a+b+c+d=0$.
2. Express $\mathrm{H}=\frac{\mathrm{G}^{2} \mathrm{~L}}{80 d^{3}}$ in the form $d=k . \mathrm{G}^{p} \mathrm{~L}^{Q} \mathrm{H}^{r}$, giving k correct to 2 significant figures.
3. (i) Factorise $x^{2}-x y-6 y^{2}-3 x+19 y-10$.
(ii) Solve $x-6=y+4=z-3=\sqrt[3]{(}(x y z)$.
4. For what value of k are the roots of the equation,

$$
\frac{x^{2}+5 x}{7 x+9}=\frac{1-k}{1+k}
$$

equal in magnitude and opposite in sign ?
5. Find the condition that the roots of

$$
3 x^{2}-6 x y+10 y-3=0
$$

regarded as an equation in x, may be (i) real and different, (ii) coincident, (iii) imaginary.
Use these results to sketch the graph of $y=\frac{3\left(x^{2}-1\right)}{2(3 x-5)}$.

Z. 30

1. a, b, c are in continued proportion, and are the mean proportionals to x and y, y and z, z and w respectively. Prove that $\frac{x}{y}=\frac{z}{w}$.
2. (i) What is the coefficient of x^{3} in

$$
\text { (a) }\left(1-x^{2}\right)\left({ }^{8} 1+x\right)^{8} ; \quad(b)(1-x)^{2}(1+x)^{8} \text { ? }
$$

(ii) Find r if the coefficients of x^{4} and x^{r+1} in the expansion of $\left(3^{m}+2\right)^{18}$ are eqtual.
3. Solve $x^{3}=5 x-y, y^{2}=5 y-x$.
4. If s equals the sum of n terms of the series,

$$
1+x(1+x)+x^{2}\left(1+x+x^{2}\right)+x^{2}\left(1+x+x^{2}+x^{2}\right)+\ldots
$$

write as simply as possible the terms of the series a $(1-x)$. Then prove that

$$
s(1-x)\left(1-x^{2}\right)=\left(1-x^{n}\right)\left(1-x^{n+1}\right) .
$$

5. Find a quadratic equation such that the sum of the squares of the roots is greater by 40 than the sum of the roots, and the sum of the cubes of the roots is greater by 20 than the sum of the squares of the roots.

SUPPLEMENT

[covering further requirements of certain examining bodies for "additional mathematics" in School Certificate]

I. PERMUTATIONS AND COMBINATIONS

The r, s Principle

Example 1. There are 5 ways from A to B and 3 from B to C; how many are there from A to C via B ?

Any one of the 5 ways from A to B can be combined with any one of the $\mathbf{3}$ ways from B to C.
\therefore there are 5×3 different routes from A to C via B.
The principle used in this example may be stated as follows :
If one operation can be performed in r different ways, and if a second operation can then be performed in e different ways, the two operations can be performed in succession in $r \times s$ different ways."

Example 2. How many different arrangements can be made of the 4 letters, a, b, c, d ?

Any one of the 4 letters can be put first. When the first place is filled, 3 letters remain, any one of which can be put second.
\therefore the first two places can be filled in 4×3 ways.
2 letters remain, either of which can be put third, and 1 letter then remains for the fourth place.
\therefore the number of different arrangements is $4 \times 3 \times 2 \times 1$.
This example illustrates the principle that if one operation can be performed in r different ways, and if a second operation can then be performed in s different ways, and if a third operation can then be performed in t different ways, the three operations can he performed in succession in $r \times 8 \times t$ different ways.

The principle can evidently be extended to any number of operations performed in succession.

2A

NEW ALGEBRA (SUPPLEMENT

Arrangements with Repetitions

Example 3. Residents at a boarding-house can cloose either fish or eggs or bacon or sausages for breakfast. In how many ways can a man arrange his breakfasts for a week ?

He has 4 choices on Sunday, 4 on Monday, 4 on Tuesday, and so on.
\therefore the number of different arrangements for a week is

$$
4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4=4^{7}
$$

The number of arrangements of n unlike things, r at a time, when each may be repeated any number of times, is n^{r}.
Imagine r compartments in a row, each of which can hold one of the unlike things, but no more.

The first compartment can be filled in n ways. And, as repetitions are allowed, the second can also be filled in n ways, and so on.
\therefore the number of different arrangements is

$$
n \times n \times n \times \ldots r \text { factors }=\mathrm{n}^{\mathrm{F}} .
$$

Factorials

The index notation makes it possible to write the result of Ex. 3 in a concise form. It is often desirable to have a short way of expressing the product of a number of consecutive integers. The product of the first n positive integers, $1 \times 2 \times 3 \times 4 \times \ldots \times n$ is denoted by n ! or $\lfloor n$ and is called " factorial n."

Thus the answer to Example 2, p. 1a, could be given as 4!. The product of any number of consecutive integers can be represented as the quotient of two factorials.

Thus

$$
9 \times 8 \times 7 \times 6=\frac{9!}{5!} .
$$

More generally, the product of r consecutive integers, of which n is the greatest, can be written

$$
n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!} .
$$

Arrangements of Unlike Things in Line

The number of ways of arranging n unlike things all in a row is n !

Any one of the n things can be put first. When the first place has been filled, $(n-1)$ things remain, any gne of which can be put second.
\therefore the first two places can be filled in $n(n-1)$ ways.
When the first two places have been filled, ($n-2$) things remain, any one of which can be put third.
\therefore the first three places can be filled in $n(n-1)(n-2)$ ways; and so on.
\therefore the total number of ways of arranging the n unlike thinga in a row is

$$
n(n-1)(n-2)(n-3) \ldots 3.2 .1=n!
$$

Circular Arrangements of Unlike Things
The number of ways of arranging n unlike things round a circle, regarding clockwise and counterclockwise arrangements as different, is $(n-1)$!.
Since the order round the circle is all that matters, we can choose one special thing and keep it always in the same place. The remaining $(n-1)$ things can then be arranged in $(n-1)!$ ways.
If no distinction is made between clockwise and counterclockuise arrangements, the total number is half this amount, namely

$$
\frac{(n-1)!}{2}
$$

Thus 6 men can be arranged at a round table in 5 ! ways; but if 6 beads of unlike colours are threaded on a ring, there are only $\frac{5!}{2}$ different designs.

Example 4. In how many ways can 10 different books be arranged on a shelf so that two particular books are next to one another ?
Imagine the two particular books fastened together ; this can be done in 2 ways, as either may come first.
There are now 9 unlike things to be arranged in a row, and this can be done in 9 ! ways.
\therefore the number of arrangentents is $9!\times 2$.

EXERCISE I. a

1. In howmany ways can a boy and girl be chosen from 6 boys and θ girls ?
2. In how many ways can 5 boys take their places on a bench ?
3. In how many waya can 3 different prizes be awarded to 10 boys, if any boy may win them all ?
4. In how many ways can a first and second prize be awarded in a class of 10 boys ?
5. In how many ways can a first, second and third prize be awarded in a class of 10 boys ?
6. In how many ways can I choose I novel, 1 magazine and 1 newspaper from 12 novels, 5 magazines and 8 newspapers ?
7. How many code words of 4 letters can be formed from the 26 letters of the alphabet ?
8. There are 5 gramophone records with a dance tune on each side of each record. In how many orders can the tunes be played, none being repeated? How many arrangements are possible if there is only time to play 4 tunes?
9. Find the values of
(i) 61 ;
(ii) $\frac{7!}{4!}$;
(iii) $\frac{8!}{5!3!}$.
10. Express in factorials :
(i) $10 \times 9 \times 8$;
(ii) $10 \times 11 \times 12 \times 13$;
(iii) $n(n-1)(n-2)$;
(iv) $n(n+1)(n+2)(n+3) ;$;
(v) $n\left(n^{2}-1\right)\left(n^{2}-4\right)\left(n^{2}-9\right)$;
(vi) $n(n+1)(n+2)(n+3) \ldots(n+r)$.
11. In how many orders can the letters A, B, C, D, E be marked round a circle drawn on the blackboard?
12. Every day can be described as either fine or wet or indif. ferent. Within how many years must there be a repetition of the description of a week's weather? (A week begins on Sunday.)
13. In how many orders can the letters of the word treason be arranged? How many arrangements begin with t ? How many begin with t and end with n ?
14. In how many ways can 8 boys be arranged in a row? In how many of these ways do 2 particular boys occupy end places ?
15. In how many ways can 6 people be arranged at a round table so that 2 particular people sit together ?
16. How many even numbers of 3 digits can be formed with the figures 4, 5 , 6 , (i) if no figure is repeated, (ii) if repetitions are allowed!
17. Simplify (i) $n!\div(n-1)!$; (ii) $n!-(n-1)!$
18. In how many orders can the letters of the word Sunday be arranged ? How many of these arrangements do not begin with s ! How many begin with s and do not end with y ?
19. There are n stations on a local railway line. How many different kinds of single third-class tickets must be printed if it is possible to book from any one station to any other ?
20. Prove that $(2 n)!\div n!=2^{n} .\{1.3 .5 .7 \ldots(2 n-1)\}$.
21. Prove that 2.6. $10.14 \ldots(4 n-6)(4 n-2)$

$$
\text { equals }(n+1)(n+2)(n+3) \ldots(2 n-1) 2 n
$$

22. If ($m n+1$) pairs of numbers are written down, each pair consisting of one chosen from the m letters $a_{1}, a_{2}, \ldots a_{m}$, and one from the n letters $b_{1}, b_{1}, \ldots, b_{n}$, prove that at least two of the pairs are identicel.

Notation for Number of Permutations

Example 5. How many arrangements can be made with the 26 letters of the alphabet, if each contains 3 different letters ?
Imagine three compartments in a row.

First letter	Second letter	Third letter

Any, one of the 26 letters can be put in the first compartment. When this has been done, 25 letters remain, any one of which can be put in the second compartment.
\therefore the first two compartments can be filled in 26×25 ways.
24 letters now remain, any one of which can be put in the third compartment.
\therefore the total number of arrangements is $26 \times 25 \times 24$.
This is called " the number of permutations of 26 things, taken 3 at a time," and is written ${ }_{26} \mathrm{P}_{3}$.
More generally, the number of arrangements that can be made with n unlike things, if each arrangement contains r of them, is called the number of permutations of a things, taken r at a time, and is denoted by ${ }_{n} P_{r}$.
In particular, ${ }_{n} P_{n}$ denotes the number of ways of arranging n unlike things, all being taken; this is the number of ways of arranging n unlike things, all in a row, which was shown on p. 3s to be n !.

6A NEW ALGEBRA? SUPPLEMENT

The number of arrangements, or permutations, of n unlike things, taken r at a time, is

$$
{ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1) .
$$

The number of arrangements equals the number of ways of putting one thing into each one of a row of r compartments, when n unlike things are available.

The first compartment can be filled in n ways. When this has been done, the second can be filled in $(n \sim 1)$ ways.
\therefore the first two can be filled in $n(n-1)$ ways.
The third can then be filled in $(n-2)$ ways ; therefore the first three can be filled in $n(n-1)(n-2)$ ways, and so on.

The r th or last compartment can finally be filled in $n-(r-1)$ ways, that is $(n-r+1)$ ways.

$$
\therefore{ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1) .
$$

${ }_{n} P_{r}$ has been defined only for $r=1,2,3, \ldots, n$, and except for $r=n$, the expression just obtained for it can be written

$$
{ }_{n} P_{r}=\frac{n(n-1)(n-2) \ldots(n-r+1) \times(n-r)!}{(n-r)!}=\frac{n!}{(n-r)!} .
$$

Since ${ }_{n} P_{n}=n!$, this result holds also for $r=n$ if $0!$ is given the value 1; the symbol 0 ! has not been previously defined in this book, and so we now define it to be 1 .

Conditional Arrangements

In a few of the examples of Exercise I. a, the required arrangements were subject to very simple restrictions. The following example illustrates the procedure when the conditions are a little more elaborate.

Example 6. How many numbers greater than 7000 can be formed with the digits $3,5,7,8,9$, no digit being repeated ?

If the number contains 5 digits, it can be formed in ${ }_{8} \mathrm{P}_{5}=5!=120$ ways.

If the number contains 4 digits, the left-hand digit can be 7 or 8 or 9 , but not 3 or 5 ; therefore the left-hand digit can be chosen in 3 ways. Whichever left-hand digit is chosen, the arrangement can be completed in ${ }_{4} P_{3}$ ways.
\therefore the number of arrangements with 4 digits is

$$
P_{3} \times 3=4.3 .2 .3=72 .
$$

\therefore the total number of arrangements is $120+72=192$.

Like and Unlike Things

The number of ways of arranging n things, all in a row, when there are p alike of one kind, q alike of another kind, I alike of another kind, and so on, is

$$
\frac{\mathrm{n}!}{\mathrm{p}!\mathrm{q}|\mathrm{r}| \ldots}
$$

Consider the n unlike letters,

$$
a_{1}, a_{21}, a_{3}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{q}, c_{1}, c_{2}, \ldots, c_{\psi}, \ldots
$$

The number of ways of arranging n unlike things, all in a row, is n !.
Now if any one arrangement is written down, the letters, $a_{1}, a_{3}, \ldots, a_{p}$, can be arranged among themselves, without altering the positions of any other letters, in p ! ways. But if the suffixes of all the letters a are removed, these p ! different arrangements become identical.
\therefore the number of arrangements with p like letters a and all other letters unlike, n letters in all, is $\frac{n!}{p!}$.
Similarly, in any one of these $\frac{n!}{p!}$ arrangements, the letters, $b_{1}, b_{2}, \ldots, b_{q}$, can be arranged among themselves, without altering the position of any other letters in q ! ways, and if the suffixes of all the letters b are removed, these q ! different arrangements become identical.
\therefore the number of arrangements with p like letters a and q like letters b, and all other letters unlike, is $-\frac{n!}{p!q!}$.

This argument can be repeated as often as necessary.
\therefore the final number of arrangements is $\frac{n!}{p!q!r!\ldots}$.
Example 7. Find the number of ways of arranging the letters aaaaabbbccdef in a row, if the letters b are separated frorn one another.
The 10 letters aaaaaccdef can be arranged in $\frac{10!}{6!2!}$ ways.

In any one of these arrangements, there are 11 places where the letter b_{1} can be inserted. When this has been done, there are 10 places where b_{2} can be inserted so as not to be next to b_{1}; and then 9 places where b_{2} can be inserted so as not to be next to b_{1} or b_{3}.
\therefore the total number of arrangements of aaaaucedefb $b_{1} b_{\mathbf{r}} b_{\mathbf{p}}$ when $b_{1}, b_{\mathbf{2}}, b_{\mathbf{2}}$ are separated from one another is

$$
\frac{10!}{5!2!} \times 11 \times 10 \times 9 .
$$

\therefore when the suffixes are removed, the number is

$$
\frac{10!}{5!2!} \cdot \frac{11 \times 10 \times 9}{3!}=\frac{10!11!}{2!} 3!5!8!
$$

EXERCISE I. b

1. How many arrangements can be made with the letters, a, b, c, d, e, f, if each contains (i) 2 unlike letters, (ii) 5 unlike letters ?
2. A shelf holds 6 books. In how many ways can it be filled if 10 unlike books are available ?
3. How many numbers of 3 different digits can be formed with the figures $1,2,3,4,5,6,7$?
4. How many numbers greater than 500 can be formed with the digits 4, 5, 6, 7, repetitions not being allowed.
5. In how many ways can 7 people be arranged at a round table so that the oldest and youngest sit together ?
6. In how many ways can 8 beads of different colours be arranged on a ring ? In how many of these arrangements are the red and yellow beads separated ?
7. Find the values of

$$
\text { (i) }{ }_{5} P_{2} \text {; (ii) }{ }_{8} P_{8} \text {; (iii) }{ }_{5} P_{5} \text {. }
$$

8. Write down expressions for

$$
\text { (i) }{ }_{n} P_{2} \text {; (ii) }{ }_{n} P_{D} \text {; (iii) }{ }_{2 n} P_{n} \text {. }
$$

9. How many even numbers of 4 digits can be formed from the figures $2,3,4,6$, if repetitions are allowed ?
10. How many odd numbers above 4000 can be formed from the figures 1, 2, 3, 4, 6, if repetitions are not allowed ?
11. In how many ways can 5 dots and 3 dashes be arranged in a row ?
12. In how many ways can the letters in rearrange be arranged ! In how many of these do the lettery a come together ?
13. In how many ways can 4 red counters, 4 white counters and 1 black counter be arranged in a row ?
14. In how many ways can 4 boys and 3 girls be arranged in a line so that boys and girls are placed alternately ?
15. In how many ways can the crew of an eight-oared boat be arranged (i) if 4 of the crew can row only on the stroke side, (ii) if a of the crew can row only on the stroke side and if 2 can row only on the bow side ?
16. In how many orders can 8 stories be arranged in a book if neither the longest nor the shortest comes first ? In how many of these ways does the longest come last ?
17. How many arrangements can be made of the letters in photograph ? In how many of these are there exactly 5 letters between the two letters h ?
18. Four travellers arrive at a town where there are 5 hotels. In how many ways can they be lodged (i) if no two go to the same hotel, (ii) if a given pair go to the same hotel, and the others to any of the other hotels, (iii) if there are no restrictions?
19. In how many ways can 5 men and 2 ladies be arranged at a round table if the two ladies (i) sit together, (ii) are separated ?
20. In how many ways can 5 different Latin books, 4 different Greek books, 3 different French books be arranged on a shelf so that the books in each language come together?

21: In how many ways can the letters in deposit be arranged if the vowels come in the even places ?
22. How many arrangements of the letters in tomato are such that the t 's are separated?
23. Find the number of ways in which 10 candidates can be ranked in order of merit if (i) A is next to B, (ii) A is above B t None are bracketed equal.
24. In how many ways can the 8 seats in a railway carriage be assigned to 8 men, 2 of whom must face the engine and 1 must have his back to the engine ?
25. In how many ways can B ladies and 6 gentlemen be arranged at a round table, if two particular ladies must not sit next to one particular man, all the men being separated ?
26. There are $5 a$'s, $4 b$'s, 3 c 's, 3 d 's, and 6 other different letters. In how many ways can they be arranged so that no two a's come together?
27. In how many different orders can 10 examination papers be set so that no two of the three mathematical papers are consecutive ?

Selections

In calculating the number of selections. which cax be made from a given set of unlike things, no regard is paid to the order in which the things occur in the chosen group. A change of order of the things in the group gives a new arrangement, but does not affect the selection.

There are two methods of tackling the general problem : the first treats it ab initio; the second is easier but assumes the formula obtained for ${ }_{n} P_{r}$.

First Method

Example 8. How many selections of 2 letters can be made from the 6 letters, a, b, c, d, e, f ?

If we write down all the different selections, each letter (such as a) comes 5 times in the list, namely once with each of the other letters (b, c, d, e, f) ; hence the total number of letters in the list is 6×5, and therefore the number of selections is $\frac{6 \times 5}{2}$.

This is called the number of combinations of 6 things taken 2 at a time and is denoted by ${ }_{8} \mathrm{C}_{1}$ or $\binom{6}{2}$.

Thus

$$
{ }_{0} C_{2}=\frac{6 \times 5}{2} .
$$

More generally, the number of ways of selecting r things from n unlike things is called the number of combinations of n things, taken r at a time, and is denoted by ${ }_{n} \mathrm{C}_{\mathrm{r}}$ or $\binom{n}{r}$.

Example 9. How many selections of 3 letters can be made from the 7 letters, a, b, c, d, e, f, g ?

If all the ${ }_{7} \mathrm{C}_{3}$ selections are written down, there are $3 \times{ }_{7} \mathrm{C}_{3}$ letters in the list, since each selection contains 3 letters. Each letter (such as a) comes ${ }_{8} \mathrm{C}_{2}$ times in the list since it occurs with each selection of 2 letters from the other 6 letters (b, c, d, e, f, g). Hence the total number of letters in the list is also $7 \times \times_{4} \mathbf{C}_{2}$.

$$
\therefore 3 \times{ }_{7} C_{8}=7 \times{ }_{8} C_{2} ; \quad \therefore{ }_{3} C_{3}=\frac{7}{3} \times{ }_{4} C_{2} .
$$

But ${ }_{6} \mathrm{C}_{2}=\frac{6 \times 5}{2}$, see Example 8,

$$
\therefore C_{3}=\frac{7}{3} \times \frac{6 \times 5}{26}=\frac{7.6 .5}{1.2 .3} .
$$

The number of selections, or combinations, of a unlike things, taken r at a time, is

$$
{ }_{\mathrm{n}} \mathrm{C}_{2}=\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(n-r+1)}{1.2 .3 \ldots 5}=\frac{n!}{r!(n-r)!} .
$$

Denote the n unlike things by the letters, $a_{1}, a_{3}, a_{3}, \ldots, a_{n}$.
If ald the ${ }_{n} \mathrm{C}_{r}$ selections are written down, there are $r \times{ }_{n} \mathrm{C}_{\mathrm{r}}$ letters in the list, since each selection contains r letters. Each letter (such as a_{1}) comes ${ }_{n-1} C_{r-1}$ times in the list since it occurs with each selection of $(r-1)$ letters from the other $(n-1)$ letters, $\left(a_{2}, a_{3}, \ldots, a_{n}\right)$. Hence the total number of letters in the list is also $n \times n-1 C_{r-1}$.

$$
\therefore r \times{ }_{n} C_{r}=n \times{ }_{n-1} C_{r-1} ; \quad \therefore{ }_{n} C_{r}=\frac{n}{r} \times{ }_{n-1} C_{r-1}
$$

This relation holds for all values of n and r so long as $n \geqslant r>1$.

$$
\therefore{ }_{n-1} \mathrm{C}_{r-1}=\frac{n-1}{r-1} x_{n-2} \mathrm{C}_{r-3} ; \quad{ }_{n-2} \mathrm{C}_{r-3}=\frac{n-2}{r-2} \times_{n-3} \mathrm{C}_{r-1} ;
$$

and so on, down to ${ }_{n-r+2} \mathrm{C}_{2}=\frac{n-r+2}{2} \times{ }_{n-r+1} \mathrm{c}_{1}$.

$$
\therefore{ }_{n} \mathrm{C}_{r}=\frac{n}{r} \cdot \frac{n-1}{r-1} \cdot \frac{n-2}{r-2} \cdots \frac{n-r+2}{2} \times_{n-r+1} \mathrm{C}_{1} .
$$

But ${ }_{n-r+1} \mathrm{C}_{1}=n-r+1$, because 1 thing can be selected from ($n-r+1$) things in $(n-r+1)$ ways.

$$
\therefore{ }_{n} \mathrm{C}_{r}=\frac{n(n-1)(n-2) \ldots(n-r+2)(n-r+1)}{r(r-1)(r-2) \ldots 2.1} .
$$

Multiply numerator and denominator by ($n-r)$!,

$$
\therefore{ }_{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!} .
$$

Second Method

Example 10. How many selections of 3 letters can be made from the 7 Ietters, a, b, c, d, e, f, g ?
Each selection of 3 letters can be arranged in 3! ways; for example, the selection bcf corresponds to the 6 different arrangements $b c f, b f c, c b f, c f b, f b c, f c b$.
But the number of arrangements of 7 things, taken 3 at a time, is ${ }_{7} \mathrm{P}_{\mathbf{z}}=7.6 .5$. Therefore the number of selections is

$$
\begin{gathered}
{ }_{7} \mathrm{P}_{3} \div 3!=\frac{7.6 .5}{1.2 .3}, \\
\text { and we write } \quad{ }_{7} \mathrm{C}_{2}={ }_{7} \mathrm{P}_{3} \div 8!=\frac{7.6 .5}{1.2 .3}=\frac{7!}{3!4!} .
\end{gathered}
$$

12A

 NEW ALGEBRA \& SUPPLEMENTThe number of selections, or combinations, of n unlike things, taken r at a time, is

$$
{ }_{n} 0_{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots r}=\frac{n!}{r!(n-r)!} .
$$

Each selection of r unlike things can be arranged in r ! ways; therefore each selection corresponds to r ! arrangements.
But the number of arrangements is

$$
{ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!} .
$$

Therefore the number of selections is ${ }_{n} P_{r} \div r!$.

$$
\therefore{ }_{n} \mathrm{C}_{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots r}=\frac{n!}{r!(n-r)!} .
$$

Since the number of selections must be an integer, the formula for ${ }_{n} \mathrm{C}_{\mathrm{r}}$ proves that $n(n-1)(n-2) \ldots(n-r+1)$ is always a multiple of $r!$, that is to say, the product of any r consecutive integers is a multiple of $r!$.
The value of ${ }_{n} \mathrm{C}_{n}$ is 1 , since there is only 1 way of selecting n things from n things; thus, using the definition of 0 ! on p. 6 , we see that the relation ${ }_{n} \mathrm{C}_{r}=\frac{n!}{n!(n-r)!}$ holds even for $r=n$. It will also hold for $r=0$, if we define ${ }_{n} \mathrm{C}_{0}$ to be 1 , and this definition is also suggested by the important relation, ${ }_{n} \mathrm{C}_{r}={ }_{n} \mathrm{C}_{n-r}$, which we now proceed to prove.
There are two relations which deserve special attention:

$$
\text { (i) }{ }_{n} C_{r}={ }_{n} C_{n-r} \text {. }
$$

If r things are selected from n things, ($n-r$) things remain. Therefore the number of selections of r things from n, namely ${ }_{n} \mathrm{C}_{r}$, is the same as the number of selections of $(n-r)$ things from n, namely ${ }_{n} \mathrm{C}_{n-r}$.
Alternatively, we may say

$$
{ }_{n} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
$$

and

$$
{ }_{n} C_{n-r}=\frac{n!}{(n-r)![n-(m-r)]!}=\frac{n!}{(n-r)!r!} .
$$

$$
\text { (ii) }{ }_{n} C_{T}+{ }_{2} C_{T-1}={ }_{n+1} C_{T}
$$

${ }_{n+1} \mathrm{C}_{r}$ iso the number of ways of selecting n letters from the ($n+1$) unlike letteris $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, b$.
If each selection is mado only from the letters a, the number of selections is ${ }_{n} \mathrm{C}_{r}$.
If each selection contains the letter b, it contains ($r-1$) of the n letters a, and can therefore be made in ${ }_{n} \mathrm{C}_{r-1}$ ways.
\therefore the total number of selections is ${ }_{n} \mathrm{C}_{r}+{ }_{n} \mathrm{C}_{r-1}$.
But the total number is ${ }_{n+1} \mathrm{C}_{r} ; \therefore{ }_{n} \mathrm{C}_{r}+{ }_{n} \mathrm{C}_{\mathrm{r}-1}={ }_{n+1} \mathrm{C}_{r}$.
Alternatively, we may say

$$
\begin{aligned}
{ }_{n} \mathrm{C}_{r}+{ }_{n} \mathrm{C}_{r-1} & =\frac{n!}{r!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!} \\
& =\frac{n!\{(n-r+1)+r)}{r!(n-r+1)!}=\frac{n!(n+1)}{r!(n-r+1)!} \\
& =\frac{(n+1)!}{r!(n-r+1)!}{ }_{n+1} C_{r} .
\end{aligned}
$$

Example 11. In how many ways can a committee of 3 women and 4 men be chosen from 8 women and 7 men! What is the number of ways if Miss X refuses to serve if Mr . Y is a member !
(i) There are ${ }_{8} \mathrm{C}_{3}$ ways of selecting 3 women from 8 women, and ${ }_{7} \mathrm{C}_{4}$ ways of selecting 4 men from 7 men.
\therefore the number of ways of choosing the committee is

$$
{ }_{8} C_{3} \times{ }_{3} C_{4}=\frac{8.7 .6}{1.2 .3} \times \frac{7.6 .5 .4}{1.2 .3 .4}=1960
$$

(ii) If both Miss X and Mr . Y are members, there remain to be selected 2 women from 7 women, and 3 men from 6 men . This can be done in ${ }_{7} \mathrm{C}_{2} \times_{5} \mathrm{C}_{3}=\frac{7.6}{1.2} \times \frac{6.5 .4}{1.2 .3}=420$ ways.
\therefore the number of ways of making selections which do not include both Miss X and Mr. Y is $1960-420=1540$.

EXERCISE I. c

1. In how many ways can 3 books be selected from 7 different books!
2. In how many difierent ways can a football eleven be chosen fromal4 boys ?
3. In how many different ways can a hand of 3 cards be selected from a pack of 52 cards ?

14A NEW ALGEBRA; SUPPLEMENT

4. Find the number of ways in which a pair of triangles can be drawn with 6 given points as vertices, no three of the points being collinear.
5. What is the greatest number of points of intersection of (i) 12 straight lines, (ii) 9 circles, (iii) 8 straight lines and 5 circles ?
6. In how many ways can a committee of 4 men and 3 ladies be formed from 10 men and 8 ladies?
7. There are 9 houses in a row. In how many ways can 5 of the front-doors be chosen for painting green!
8. I have written 10 letters, but only have enough stamps for 4 of them. In how many ways can I choose the letters to be stamped ?
9. In how many ways can 10 men be divided into two groups of 3 and 7 respectively ?
10. In how many ways can 2 photographs and 3 drawings be selected from 5 photographs and 5 drawings ?
11. In how many ways can a committee of 5 be chosen from 10 candidates (i) so as to include both the youngest and oldest, (ii) so as to exclude the youngest if it includes the oldest ?
12. In how many ways can 3 books be chosen from a shelf holding n different books? In how many of these ways is the longest book included?
13. (i) n points are marked on a circle. How many chords can be obtained by joining them in pairs ?
(ii) How many diagonals does an n-sided polygon have, if a diagonal means any line joining two non-consecutive corners ?
14. In a group of 15 boys, there are 7 boy-scouts. In how many ways can 12 boys be selected so as to include (i) exactly 6 boy-scouts, (ii) at least 6 boy-scouts ?
15. In how many ways can a committee of 5 be chosen from 7 Conservatives and 4 Socialists so as to give a Conservative majority, if at least 1 Socialist is included ?
16. A committee of 6 is chosen from 10 men and 7 women so as to contain at least 3 men and 2 women. How many different ways can this be done if two particular women refuse to serve on the same committee ?
17. The results of 21 football matches (win, lose or draw) are to be predicted. How many different forecasts can contain exactly 18 correct results ?
18. Find n if (i) ${ }_{n} \mathrm{C}_{3}={ }_{n} \mathrm{C}_{5}$; (ii) ${ }_{n} \mathrm{C}_{2}=55$.
19. Simplify (i) ${ }_{n+1} \mathrm{C}_{3} \div{ }_{n} \mathrm{C}_{2}$; (ii) ${ }_{n+1} \mathrm{C}_{r+1} \div{ }_{n} \mathrm{C}_{r}$.

20: Simplify ${ }_{4 n} \mathrm{C}_{3 n} \times{ }_{2 n} \mathrm{C}_{2 n} \times{ }_{2 n} \mathrm{C}_{n}$ -
21. Prove that ${ }_{n} \mathrm{C}_{r}=\left(\frac{n+1}{r}-1\right) \cdot{ }_{n} \mathrm{C}_{r-1}$.
22. Prove that ${ }_{n} \mathrm{C}_{r}+{ }_{n} \mathrm{C}_{r+1}={ }_{n+1} \mathrm{C}_{r+1}$.
23. Prove that the product of the first n odd numbers equals $\left(\frac{1}{2}\right)^{n} \cdot{ }_{n n} \mathrm{C}_{n} \cdot{ }_{n} \mathrm{P}_{n}$.

Distribution in Groups

The number of ways of dividing ($p+q+r$) unlike thinga into 3 unequal groups, containing respectively p, q, r things, is

$$
\frac{(p+q+r)!}{p!q!r!}
$$

A group of p things can be selected in ${ }_{p+Q+r} \mathrm{C}_{p}$ ways. From the remaining ($q+r$) things, a group of q things can be selected in ${ }_{q+r} \mathrm{C}_{q}$ ways. This leaves r things for the third group. Therefore the total number of ways is

$$
\begin{gathered}
p+q+r \mathrm{C}_{\boldsymbol{p}} \times{ }_{q++} \mathrm{C}_{q} \\
=\frac{(p+q+r)!}{p!(q+r)!} \times \frac{(q+r)!}{q!r!}=\frac{(p+q+r)!}{p!q!r!} .
\end{gathered}
$$

If two or more groups contain equal numbers of things, and if no regard is paid to the order of the groups, the number of dif. ferent distributions is modified. Thus if $3 p$ unlike things are dividet into 3 groups each containing p things, the groups can be arranged in 3! orders. Therefore the number of possible distributions, if no regard is paid to the order of the groups, is

$$
\frac{(3 p)!}{p!p!p!} \div 3!
$$

Example 12. (i) How many different hands can be held by 4 men playing bridge (13 cards each) ?
(ii) How many ways can a pack of 52 cards be arranged in 4 heaps of 13 cards each ?
In (i), regard must be paid to the order in which the hands are placed on the table. The number of ways is

$$
{ }_{52} \mathrm{C}_{13} \times{ }_{38} \mathrm{C}_{13} \times{ }_{26} \mathrm{C}_{13}=\frac{52!}{(13!)^{\top}}
$$

In (ii), no regard is paid to the order of the heapa. Therefore the number of ways is $\frac{52!}{(131)^{4}} \div 4!$.

16A NEW ALGEBRA. SUPPLEMENT
Selections taking any Number at a Time
The number of selections from n unlike things, taking any number at a time, is $2^{\mathbf{D}}-1$.
Each thing may be selected or rejected, that is, it may be disposed of in two ways.
\therefore the number of ways of disposing of the n things is '

$$
2 \times 2 \times 2 \times \ldots n \text { factors }=2^{n}
$$

But this includes the case where all are rejected.
\therefore the number of selections, if at least one thing is chosen, is $2^{n}-1$.

The total number may also be obtained by considering in succession groups containing $1,2,3,4, \ldots, n$ things. The number of selections is therefore

$$
{ }_{n} \mathrm{C}_{1}+{ }_{n} \mathrm{C}_{2}+{ }_{n} \mathrm{C}_{3}+\ldots+{ }_{n} \mathrm{C}_{n}
$$

It follows that

$$
{ }_{n} C_{1}+{ }_{n} C_{2}+{ }_{n} C_{3}+\ldots+{ }_{n} C_{n}=2^{n}-1 .
$$

A different proof of this relation is given on p. 28A.
Given k unlike things and in addition p things alike of one kind, q alike of another kind, r alike of another kind, etc., the number of selections which can be made, taking any number at a time, is

$$
2^{k}(p+1)(q+1)(r+1) \ldots-1
$$

From the p like things we can select either 0 or 1 or 2 or ... or p; we can therefore dispose of them in ($p+1$) ways. Similarly the other groups of like things can be disposed of in $(q+1)$ ways, $(r+1)$ ways, etc.

Also each of the k unlike things can be disposed of in 2 waya (taken or left).
\therefore the number of ways of disposing of them all is

$$
\begin{gathered}
(p+1)(q+1)(r+1) \ldots(2 \times 2 \times 2 \times \ldots k \text { factors }) \\
=2^{k}(p+1)(q+1)(r+1) \ldots .
\end{gathered}
$$

But this includes the case where all are rejected. \therefore the number of selections, taking at least I thing, is

$$
2^{k}(p+1)(q+1)(r+1) \ldots-1 .
$$

Example 13. How many different sums of money can be made up from five $£ 1$ notes, one 10 s. note, four florins, three sixpences, one penny?

The number is $(5+1)(1+1)(4+1)(3+1)(1+1)-1$

$$
=6 \cdot 2 \cdot 5 \cdot 4.2-1=480-1=479 .
$$

,
The value of r for which ${ }_{n} \mathrm{C}_{\mathrm{r}}$ is greatest is $\mathrm{r}=\frac{1}{2} \mathrm{n}$ if n is even, and is $r=\frac{1}{2}(n-1)$ or $r=\frac{1}{2}(n+1)$ if n is odd.

The series of terms

$$
{ }_{n} C_{0} ;{ }_{n} C_{1} ;{ }_{n} C_{1} ;{ }_{n} C_{3} ; \ldots ;{ }_{n} C_{r} ; \ldots ;{ }_{n} C_{n-1} ;{ }_{n} C_{n}
$$

can be written

$$
1 ; \frac{n}{1} ; \frac{n}{1} \cdot \frac{n-1}{2} ; \frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} ; \ldots
$$

The multiplying factors which convert each term into the next, namely $\frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{3}, \ldots$, steadily decrease; and the terms themselyes steadily increase so long as the multiplying factors exceed 1 , and steadily decrease as soon as the multiplying factors become less than 1 .
But since ${ }_{n} \mathrm{C}_{\mathrm{r}}={ }_{n} \mathrm{C}_{n-r}$, the terms which are equidistant from the beginning and end are equal. Therefore the greatest term is the middle one when n is even, and there are two equal greatest terms, namely the two middle terms, when n is odd : these are given respectively by $r=\frac{1}{2} n$ and by $r=\frac{1}{2}(n-1)$ or $\frac{1}{\frac{1}{2}}(n+1)$.

EXERCISE I.d

1. In how many ways can 6 different books be divided between A, B, C so that A has $3, B$ hes 2 and C hes 1!
2. Two elevens are made up from 22 players. In how many arrangements will 2 particular players be on opposite sides ?
3. In how many ways can 6 people bo divided into three pairs ?
4. How many selections can be made from 10 different books, if any number may be taken?
5. How many whole numbers are factors of $2^{4} .3^{4} .5^{\mathbf{1}} .7 .11$, not coynting 1 or the number itself 9
6. How many selections can be made from the letters, a, a, a, a, b, c, d, if any number may be taken?
D. 1.1.

18A NEW ALGEBRA: SUPPLEMENT

7 In how many ways can 144 be expressed as the product of 2 positive integers, counting 1×144 as one way ?
8. There are 6 points on a straight line and 8 other points. What is the greatest possible number of triangles that can ever be formed having these points as vertices ?
9. Prove that the number of ways of dividing up 20 unlike things into 5 packets of 4 each is to the number of ways of dividing them into 4 packets of 5 each as 125 is to 24 .
10. 8 men are to play 4 singles at tennis, the games being simultaneous. In how many ways can the games be arranged ?
11. Two similar dice with faces numbered 1 to 6 are thrown. How many different (i) throws, (ii) totals are possible ?
12. In how many ways can a selection be made from 3 red balls, 4 blue balls, 5 green balls, if any number from 1 to 12 may be chosen?
13. Two crews of 8 are formed from 16 oarsmen, of whom 4 can row only on bow side and 5 only on stroke side. In how many ways can this be done, regard being paid to the order in which they row?
14. How many circles can be drawn so that each passes through 3 out of 9 given points (i) when no 4 of the points are concyclic, (ii) when 5 of the given points lie on one circle and the remaining 4 lie on another circle, no other set of 4 points being cyclic ?
15. 5 roads, A, B, C, D, E, meet at a junction, and a car comes along each road to this junction. In how many different ${ }^{\text {oways }}$ may these cars continue their journeys across the junction?

In how many of these cases do exactly 2 of the cars go down the road A?
16. If ${ }_{3 n} \mathrm{C}_{r}={ }_{9 n} \mathrm{C}_{n+r}$ express the value of each in terms of n.
17. Prove that ${ }_{n} \mathrm{C}_{r}+2 \cdot{ }_{n} \mathrm{C}_{r-1}+{ }_{n} \mathrm{C}_{r-1}={ }_{n+2} \mathrm{C}_{r}$.
18. Prove that the greatest value of ${ }_{2 n} \mathrm{C}_{\mathrm{r}}$ is double the greatest value of ${ }_{2 n-1} \mathrm{C}_{r}$.
19. In how many ways can $2 n$ people be divided into n couples?
20. Find the number of ways in which 6 men and 6 women can be arranged in 3 sets for tennis (i) if there is no restriction, (ii) if each man has a woman as partner.
21. There are $2 n$ things of which n are 'alke and the rest are unlike. How many selections can be made, if any number may be taken :
22. There are m points on one straight line $A B$ and n points on another line $A C$, none of them being the point A. Howr many triangles can be formed with these points as vertices? How many, if the point A is added?

MISCELLANEOUS EXAMPLES

EXERCISE I.

1. In how many ways can 9 different books be arranged on a shelf if two particular books are separated?
2. In how many ways can n boys stand in a row if two particular boys are excluded from being at either end, and if two other boys must sit next to each other?
3. In how many ways can three cards be selected from a pack of 52 cards, if at least one of them is to be an ace ?
4. Four letters are written and four envelopes addressed. In how many ways can all the letters be placed in the wrong envelopes?
5. In how many ways can two sets of tennis, 4 players in each set, be arranged if 10 people are available ?
6. How many even numbers greater than 300 can be formed with the digits $1,2,3,4,5$, no repetitions being allowed ?
7. Find the number of arrangements of letters in alchemist if the order of the consonants must not be changed.
8. Prove that there are about 40 million different arrangements of the letters in inequalities.
9. In how many ways can a committee of 2 Englishmen, 2 Frenchmen, 1 American be chosen from 6 Englishmen, 7 Frenchmen, 3 Americans ! In how many of these ways do a particular Englishman and a particular Frenchman belong to the committee ?
10. Attempts are made to predict the results (win, draw, lose) of 10 football matches. In how many different ways can exactly 6 correct results be given ?
11. Find the number of arrangements of the letters in ratatatatat. How many are there in which the a 's are all separated from one another?
12. A detachment consists of 3 sergeants, 4 corporals and 70 privates. In how many ways can a guard of 6 be selected to include 1 sergeant, 1 corporal and 4 privates ?
13. In how many ways can a lawn-tennis mixed double be made up from 5 married couples, if no husband and wife play in the same sot ?
14. $2 m$ white counters and $2 n$ red counters are arranged in a straight line with $(m+n)$ counters on each side of a central mark. Find how many of the arrangements are symmetrical with respect to this mark.

II. BINOMIAL THEOREM

Product of Binomial Factors

The expansion of $\left(x+a_{1}\right)\left(x+a_{2}\right)$ is the sum of the terms obtained by multiplying together 2 letters, one taken from each of the 2 factors.

$$
\left(x+a_{1}\right)\left(x+a_{8}\right)=x^{2}+x a_{1}+x a_{2}+a_{1} a_{2}
$$

It is convenient to group them according to the number of x fectore in the terms.

Similarly,

$$
\left(x+a_{1}\right)\left(x+a_{2}\right)=x^{2}+x\left(a_{1}+a_{2}\right)+a_{1} a_{2}
$$

$$
=x^{3}+x^{2}\left(a_{1}+a_{2}+a_{8}\right)+x\left(a_{2} a_{2}+a_{3} a_{1}+a_{1} a_{2}\right)+a_{1} a_{2} a_{8}
$$

Similarly,

$$
\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right)\left(x+a_{4}\right)
$$

$$
\begin{aligned}
= & x^{4} \\
& +x^{3}\left(a_{1}+a_{2}+a_{3}+a_{4}\right) \\
& +x^{2}\left(a_{1} a_{2}+a_{1} a_{2}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) \\
& +x\left(a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{5} a_{4}+a_{1} a_{3} a_{4}\right)+a_{1} a_{9} a_{8} a_{4}
\end{aligned}
$$

This may be written

$$
\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right)\left(x+a_{4}\right)=x^{4}+8_{1} x^{8}+8 x^{2}+8_{8} x+8_{4}
$$

where $s_{1}=$ the sum of the terms $a_{1}, a_{2}, a_{3}, a_{4}$,
$8_{2}=$ the sum of their products, two at a time,
$s_{8}=$ the sum of their products, three at a time,
$s_{4}=$ the product, four at a time, $a_{1} a_{2} a_{2} a_{4}$.
This process can be applied to as many factors as required.
Thus $\quad\left(x+a_{1}\right)\left(x+a_{n}\right)\left(x+a_{3}\right) \ldots\left(x+a_{n}\right)$

$$
=x^{n}+8_{1} x^{n-1}+8 x^{2 n-1}+8 x^{n} x^{n-8}+\ldots+s_{n-1} x+8^{n}
$$

where s_{1} contains n terms, $\left(a_{1}+a_{2}+\ldots+a_{n}\right)$,
s_{2} contains ${ }_{n} C_{2}$ torms, $\left(a_{1} \delta_{1}+a_{1} a_{3}+a_{9} a_{9}+\ldots\right)$. 20A
because it consists of the selections, two at a time, from n unlike thinga,

$$
\ldots \text { contains }{ }_{n} C_{3} \text { terms, }\left(a_{1} a_{3} a_{2}+a_{1} a_{2} a_{4}+\ldots\right),
$$

and, in general, s_{r} contains ${ }_{n} \mathrm{C}_{r}$ terms.
If $a_{1}=a_{8}=a_{3}=\ldots=a_{n}=a$, the left side becomes $(x+a)^{n}$.
Alson. $\quad s_{2}=a+a+\ldots, n$ terms, $=n a$;

$$
s_{2}=a^{2}+a^{2}+\ldots,{ }_{n} C_{8} \text { terms, }={ }_{n} C_{3} a^{2} ;
$$

$$
s_{3}=a^{3}+a^{3}+\ldots,{ }_{n} \mathrm{C}_{8} \text { terms, }={ }_{n} \mathrm{C}_{2} a^{3} ;
$$

and so on.
Therefore, if n is any positive integer,

$$
\begin{aligned}
(x+8)^{n}= & x^{n}+n x^{1 n-1} a+n_{n} x_{2} x^{n-2} a^{2}+\ldots+n^{C} x^{n-r} a^{r}+\ldots+a^{n} \\
= & x^{n}+n x^{n-1} a+\frac{n(n-1)}{1.2} x^{n-2} a^{2}+\frac{n(n-1)(n-2)}{1,2.3} x^{n-3} a^{3}+\ldots \\
& +\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots r} x^{n-r} a^{x}+\ldots+a^{n} .
\end{aligned}
$$

This is called the Binomial Theorem for a positive integral index.
It may also be proved by "induction." The method of induc. tion consists in showing that, if the theorem is true for some special integral value of n, say $n=k$, then it is true for $n=k+1$. Consequently, if it is true for $n=2$, then it is true for $n=3$, and thergfere for $n=4$, and so on indefinitely.

Suppose that the theorem is true for $n=k$, that is, suppose that

$$
\begin{aligned}
(x+a)^{k}=x^{k} & +{ }_{k} \mathrm{C}_{1} x^{k-1} a+{ }_{k} \mathrm{C}_{2} x^{k-8} a^{2}+\ldots \\
& +{ }_{k} \mathrm{C}_{r-1} x^{k-r+1} a^{r-1}+{ }_{k} \mathrm{C}_{2} x^{k-r} a^{r}+\ldots+a^{k}
\end{aligned}
$$

Then $(x+a)^{k+1}=(x+a)(x+a)^{k}$

$$
\begin{aligned}
=x^{k+1} & +\left(1+{ }_{k} \mathrm{C}_{1}\right) x^{k} a+\left({ }_{k} \mathrm{C}_{1}+{ }_{k} \mathrm{C}_{8}\right) x^{k-1} a^{2}+\ldots \\
& +\left({ }_{k} \mathrm{C}_{r-1}+{ }_{k} \mathrm{C}_{7}\right) x^{k-r+1} a^{r}+\ldots+a^{k+1}
\end{aligned}
$$

But ${ }_{k} \mathrm{C}_{r-1}+{ }_{k} \mathrm{C}_{\boldsymbol{r}}={ }_{k+1} \mathrm{C}_{p}$, see p. 13A,

$$
\begin{aligned}
\therefore(x+a)^{k+1}=x^{k+1} & +k_{+1} C_{1} x^{k} a+k_{+1} C_{1} x^{k-1} a^{k}+\ldots \\
& +k_{+1} C_{r} x^{k-r+1} a^{k}+\ldots+a^{k+1}
\end{aligned}
$$

\therefore if the theorem is true for $n=k$, it is true for $n=k+1$.
But it is true when $n=2$ because

$$
(x+a)^{2}=x^{4}+2 x a+a^{4}=x^{2}+{ }_{2} C_{1} x a+a^{2}
$$

\therefore it is true when $n=3$, and \therefore when $n=4$, and so on in. definitely.
\therefore it is true for all positive integral values of n.

Properties of the Binomial Expansion
(i) The expansion of $(x+a)^{n}$ contains $(n+1)$ terms, of which ${ }_{n} \mathrm{C}_{r^{n}} x^{n-r} a^{r}$ is the $(\mathrm{r}+1)$ th term ; this term or the r th term is called the general term.

Also the coefficients of terms equidistant from the two ends are equal, for the $(r+1)$ th term from the end is ${ }_{n} \mathrm{C}_{n-r} x^{r} a^{n+r}$, and ${ }_{n} \mathrm{C}_{r}={ }_{n} \mathrm{C}_{n-p}$, see p. 12A.
(ii) If n is even, there is one middle term given by putting $r=\frac{1}{2} n$ in ${ }_{n} \mathrm{C}_{r} x^{n-r} a^{r}$. If n is odd, there are two middle terms given by putting $r=\frac{1}{2}(n-1)$ and $r=\frac{1}{2}(n+1)$.
(iii) If $a=1$, we have

$$
(1+x)^{n}=1+{ }_{n} \mathrm{C}_{1} x+{ }_{n} \mathrm{C}_{2} x^{2}+\ldots+{ }_{n} \mathrm{c}_{r} x^{4}+\ldots+x^{n} .
$$

(iv) If we write $-a$ for a, we have

$$
\begin{aligned}
(x-a)^{n}=x^{n}-{ }_{n} \mathrm{C}_{1} x^{n-1} a & +{ }_{n} \mathrm{C}_{2} x^{n-2} a^{2}-\ldots \\
& +(-1)^{r}{ }_{n} \mathrm{C}_{r} x^{n-r} a^{r}+\ldots+(-1)^{n} a^{n}
\end{aligned}
$$

Some practice in writing down binomial expansions has been given in Chapter VIII., p. 123. For convenience, further examples are added here.

EXERCISE II. a

[Large coefficients should be left in factors, not multiplied out.]

1. Write down the expansions of
(i) $(x+a)(x+b)(x+c)$; (ii) $(x+2 a)(x+2 b)(x+2 c)$;
(iii) $(x+a)(x+b)(x+c)(x+d)$.
2. What is the coefficient of x^{3} in the expansion of

$$
\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right)\left(x+a_{4}\right)\left(x+a_{5}\right) ?
$$

How many terms are there in the coefficient of x^{2} ? What are the coefficients of x^{5} and x^{2} in $(x+a)^{5}$?
3. How many terms are there in the coefficients of x^{n-2}, x^{2}, x^{4} in the expansion of

$$
\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right) \ldots\left(x+a_{n}\right) ?
$$

What are the coefficients of x^{n-2}, x^{2}, x^{r} in $(x+a)^{n}$?
Write down the expansions of Nos. 4-11:
4. $(x+1)^{4}$.
5. $(y-1)^{4}$.
6. $(x+2 a)^{2}$.
7. $(z+2)^{4}$:
8. $(a-b)^{5}$.
9. $\left(y+\frac{1}{y}\right)^{6}$.
10. $(3 x-2 y)^{4}$
11. $\left(x^{2}+3 y^{2}\right)^{5}$.
12. For the expansion of $(x+1)^{d}$, find (i) the number of terms, (ii) which term involves x^{4}, (iii) the power of x in the 7 th term, (iv) the coefficient of x^{5}.
13. For the expansion of $(5 x-3 y)^{30}$, find (i) the number of terms, (ii) the powers of x and y in the 6th term and in the 12th term, (iii) the 3rd term, the 19th term, the middle term.
14. Find the coefficient of x^{2} in the expansions of
(i) $(1+2 x)^{1}$;
(ii) $(1-3 x)^{7}$;
(iii) $(x+3)^{6}$;
(iv) $(2 x-5)^{2}$.
15. Find the coefficient of x^{8} in the expansions of
(i) $(x-10)^{5}$;
(ii) $\left(2 x-\frac{1}{2}\right)^{6}$;
(iii) $(x-y)^{10}$;
(iv) $\left(x+\frac{1}{x}\right)^{7}$.
16. Find the 4 th term in the expansions of
(i) $(2 a+5 b)^{7}$;
(ii) $(1+3 x)^{n}$;
(iii) $\left(x+\frac{1}{x}\right)^{n}$.
17. Find the $(r+1)$ th term in the expansions of
(i) $(x+y)^{n}$;
(ii) $(a-2 b)^{n}$;
(iii) $\left(x+\frac{1}{x}\right)^{n}$.
18. Expand in ascending powers of x :

$$
\text { (i) }(1+x)^{n}+(1-x)^{n} \text {; (ii) }(1+x)^{n}-(1-x)^{n} \text {. }
$$

19. Evaluate ($1 \cdot 0025)^{10}$ correct to 0 decimal places.
20. Use the binomial expansion to show that f 1000 will amount to $£ 1480$, to the nearest $£$, in 10 years at 4 per cent. per annum compound interest.
21. What is the coefficient of x^{20} in $\left(x^{2}+3 x\right)^{18}$?
22. What is the coefficient of x^{n} in $\left(1+\frac{1}{4} x\right)^{2 n}$?
23. (i) What is the middle term of the expansion of $\left(x+\frac{1}{x}\right)^{2 n}$?
(ii) What are the two middle terms for $\left(x-\frac{1}{x}\right)^{2 n+1}$?
24. Simplify $(a+b)^{3}-3 b(a+b)^{2}+3 b^{2}(a+b)-b^{3}$,
25. Simplify $(x-1)^{4}+4(x-1)^{3}+6(x-1)^{2}+4(x-1)+1$.
26. Find the coefficient of x^{4} in the expansions of

$$
\text { (i) }(1-x)(1+x)^{5} ; \quad \text { (ii) }(1+x)(1-x)^{n} .
$$

27. Find the first 4 terms in the expansion in ascending powers of x of $(1+2 x)\left(1-x^{3}\right)^{9}$. What is the coefficient of x^{19} ?
28. Simplify $(\sqrt{ } 2+1)^{5}-(\sqrt{ } 2-1)^{5}$.
29. Find (i) the sum, (ii) the product of $(2+\sqrt{ } 3)^{7}$ and $(2-\sqrt{3})^{7}$. Hence show that the integral part of $(2+\sqrt{ } 3)^{7}$ is 10,083 .
30. Simplify $x^{n}(x-1)^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1}(x-1)^{n-1}(x+1)$

$$
+\ldots+{ }_{n} e_{1} x^{n-r}(x-1)^{n-r}(x+1)^{r}+\ldots(x+1)^{n}
$$

24A

Special Terms

The following examplea illustrate the selection of particular terms from an expansion.

Example 1. Find the term independent of x in the expansion of $\left(3 x-\frac{5}{x^{3}}\right)^{8}$.

The general term is ${ }_{8} \mathrm{C}_{\mathrm{r}}(3 x)^{8-r}\left(-\frac{5}{x^{3}}\right)^{r}$ in which the power of x is $8-4 r$. Taking $r=2$, we get ${ }_{8} \mathrm{C}_{3}(3 x)^{6}\left(-\frac{5}{x^{3}}\right)^{2}$, which equals

$$
\frac{8.7}{1.2} \cdot 3^{6} .5^{2}=700 \times 3^{6} .
$$

Alternatively, as follows:

$$
\left(3 x-\frac{5}{x^{3}}\right)^{8}=\left(\frac{3 x^{4}-5}{x^{3}}\right)^{8}=\frac{\left(3 x^{4}-5\right)^{8}}{x^{24}}
$$

\therefore we require the coefficient of x^{24} in $\left(3 x^{4}-5\right)^{8}$.
The term in x^{24} is ${ }_{8} \mathrm{C}_{2}\left(3 x^{-4}\right)^{8}(-5)^{2}$;
\therefore the coefficient is $\frac{8.7}{1.2} \cdot 3^{6} .5^{2}=700 \times 3^{8}$.
Example 2. Expand $\left(2+3 x-x^{2}\right)^{n}$ in ascending powers $c f, x$ as far as x^{2}.

$$
\begin{aligned}
\left(2+3 x-x^{2}\right)^{n} & =[2+x(3-x)]^{n} \\
& =2^{n}+n \cdot 2^{n-1} x(3-x)+\frac{n(n-1)}{1 \cdot 2} \cdot 2^{n-2} x^{2}(3-x)^{2}+\ldots \\
& =2^{n}+3 n x \cdot 2^{n-1}-n x^{1} \cdot 2^{n-1}+\left(n^{1}-n\right) \cdot 2^{n-3} \cdot 9 x^{2}+\ldots \\
& =2^{n}+3 n x \cdot 2^{n-1}+\left(9 n^{2}-13 n\right) x^{4} \cdot 2^{2 n-8}+\ldots \cdot
\end{aligned}
$$

Example 3. Find which is the numerically greatest term in the expansion of $(5-4 x)^{12}$ when $x=\frac{\mathbf{3}}{3}$.
The terms in the expansion are alternately positive and negative, but the numerically greatest term will be the same term as in the expansion of $(5+4 x)^{14}$.
If u_{r} denotes the r th term, $u_{r+1}>u_{r}$ if $\frac{12-r+1}{r} \cdot \frac{4 x}{5}>1$ or if $8(13-r)>15 r$ since $x=3$.
$\therefore u_{r+1}>u_{r}$ if $104-8 r>15 r$ or $23 r<104$ or $r<418$.
$\therefore u_{6}>u_{4}>u_{1} \ldots$ and $u_{5}>u_{6}>u_{7} \ldots$.
\therefore the bth term ig the greatest.

EXERCISE II. b

[Large coefflcients should be left in factors, not multiplied out.]

1. Write down the named terms in the following expansions:
(i) 4th term in $(2 x-3 y)^{7}$;
(ii) 10 th term in $\left(3 x+\frac{2}{x}\right)^{12}$;
(iii) 6th term in $\left(\frac{x^{2}}{2}-\frac{x}{3}\right)^{8}$;
(iv) rth term in $\left(x+\frac{1}{x}\right)^{n}$.
2. Write down the coefficients of tho named terms in the following expansions:
(i) x^{5} in $(2-x)^{12}$;
(ii) x^{4} in $\left(2 x-\frac{3}{x}\right)^{12}$;
(iii) x^{11} in $\left(3 x+2 x^{2}\right)^{0}$;
(iv) $x^{8 \pi}$ in $\left(1-x^{2}\right)^{\text {dr }}$;
(v) x^{r+1} in $(1-x)^{n-1}$;
(v) $x^{\text {Ir }}$ in $\left(x+\frac{1}{x}\right)^{4 r}$.
3. Write down the terms independent of x in the following expansions:
(i) $\left(x-\frac{2}{x}\right)^{10}$;
(ii) $\left(2 x^{3}-\frac{1}{x}\right)^{12}$;
(iii) $\left(x+\frac{1}{x}\right)^{2 n}$.

4 Write down the coefficients of the named terms in the following expansions :
(i) x^{2} in $\left(2 x^{2}-\frac{1}{2 x}\right)^{18}$;
(ii) x^{8} in $\left(x^{1}-\frac{1}{2 x}\right)^{12}$;
(iii) x^{7} in $\left(2 x-\frac{3}{x}\right)^{15}$;
(iv) x^{7} in $\left(2 x^{2}-\frac{1}{4 x}\right)^{11}$.
5. Expand ($\left.1-2 x+3 x^{2}\right)^{7}$ in ascending powers of x as far as x^{3}.
6. Find the coefficient of x^{4} in the expansion of $\left(2+x-x^{4}\right)^{4}$.
7. Find the coefficient of x^{7} in the expansion of $\left(1-x^{2}-x^{3}\right)^{n}$.
8. What is the ratio of the $(r+1)$ th term to the r th term in the expansions of

$$
\text { (i) }\left(1+\frac{x}{2}\right)^{n} \text {; (ii) }\left(x-\frac{3}{x}\right)^{n} \text {; (iii) }(2 x+3 y)^{2 r} \text { ? }
$$

9. What is the ratio of the $(r+1)$ th term to the $(r-1)$ th term in the expansions of (i) $(x-y)^{n}$; (ii) $(2 x+3 y)^{n}$?
10. Find the value of r if the coefficients of x^{r} and of x^{r+1} in $(3 x+2)^{19}$ are equal.
11. If $x=0 \cdot 2$, prove that the llth term in the expansion of $\left(1+{ }^{+} x\right)^{4}$ is $\frac{1}{10}$ th of the l0th term.
12. What is the greatest ceefficient in the expansions of
(i) $(1+x)^{10}$;
(ii) $(1+x)^{11}$;
(iii) $(1+x)^{\text {an+d }}$?
13. In the expansion of $(1+x)^{11}$, the ratio of a certain coefficient to the preceding coefficient is $\frac{9}{7}$; find the numerical values of the two coefficients.
14. Find which term in the expansion of $\left(x+\frac{1}{2 x}\right)^{2 n}$ has the
largeat coefficient.
15. Find which are the numerically greatest terms in the expansions of the following :
(i) $(1+2 x)^{9}$ if $x=\frac{1}{3}$; (ii) $(1+2 x)^{9}$ if $x=3$;
(iii) $(7+x)^{29}$ if $x=3$; (iv) $(1+3 x)^{7}$ if $x=\frac{1}{1}$;
(v) $(a x-b y)^{10}$ if $a=2, b=5, x=3, y=\frac{1}{2}$?
16. The expression $(3+5)^{30}$ is expanded by the binomial theorem. Prove that each of the 2nd, 3rd, ..., 10th terms is more than double the term which precedes it, and that each of the 11th, 12th, ... , 2lst terms is less than double the term which precedes it.
17. Prove that the coefficients of x^{2} and x^{3} in the expansion of $\left(x^{2}+2 x+2\right)^{n}$ are $2^{n-1} \cdot n^{2}$ and $\frac{1}{3} n\left(n^{2}-1\right) \cdot 2^{n-1}$.
18. Find the term independent of x in the expension of

$$
\left(x+\frac{1}{x}\right)^{2}\left(x-\frac{1}{x}\right)^{5}
$$

19. Expand $\left(x+\frac{1}{x}\right)^{4}\left(x-\frac{1}{x}\right)^{3}$ in descending powers of x.
20. Expand ($\left.1+x+x^{2}\right)^{n}$ in ascending powers of x as far as x^{3}.
21. If a_{r} is the coefficient of x^{r} in $\left(1+b x^{2}+c x^{n}\right)^{n}$, prove that $2 n a_{4}=(n-1) a_{2}{ }^{3}$.
22. Find the coefficient of x^{r} in the expansion of

$$
\text { (i) }(1-x)(1+x)^{n} \text {; (ii) }\left(1+2 x+x^{2}\right)(1+x)^{n} \text {. }
$$

Relations between Binomial Coefflcients
For the rest of the chapter, we shall for simplicity denote ${ }_{n} \mathrm{C}_{r}$ by c_{r}.

Thus $\quad(1+x)^{n} \equiv c_{0}+c_{1} x+c_{r} x^{2}+\ldots+c_{r} x^{r}+\ldots+c_{n} x^{n}$.
Here, $c_{0}, c_{1}, c_{2}, \ldots, c_{n}$ are called binomial coefficients.
In the expansion of $(1+x)^{n}$,
(i) the sum of the coefficients is $2^{\text {n }}$,
(ii) the sum of the coeflcients of the odd terms equals that of the even terms, each being 2^{n-1}.
(i) In the expansion of $(1+x)^{n}$, put $x=1$;

$$
\begin{aligned}
\therefore & (1+1)^{n}=c_{0}+c_{1}+c_{2}+\ldots+c_{n} ; \\
& \therefore c_{0}+c_{1}+c_{2}+\ldots+c_{2}=2^{n} .
\end{aligned}
$$

(ii) In the expansion of $(1+x)^{n}$, put $x=-1$;

$$
\begin{aligned}
& \therefore(1-1)^{n}=c_{0}-c_{1}+c_{2}-\ldots+(-1)^{n} c_{n} ; \\
& \therefore c_{0}+c_{3}+c_{1}+\ldots=c_{1}+c_{3}+c_{6}+\ldots .
\end{aligned}
$$

But the sum of all the coefficients is 2^{n},

$$
\therefore c_{0}+c_{2}+c_{1}+\ldots=\left(\frac{1}{2} \text { of } 2^{n}\right)=2^{n-1}
$$

Note. An slternative proof of (i) was given on p. 16A.

Finite Series involving Binomial Coofficients

The most useful methods of summation may be classified as follows :
(i) Expresse the series as the sum of two or more binomial expansions.
(ii) Obtain the series by differentiation or integration of a finite series whose sum is known.
(iii) Build up a function in which the given series is the coeff. cient of a particular power of the variable and evabuate this coefficient in an independent manner.

The following examples illustrate these methods.

Example 4. Sum the series

First Method

$$
c_{0}+2 c_{1} x+3 c_{2} x^{2}+\ldots+(n+1) c_{n} x^{n}
$$

The series $=\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}\right)+\left(c_{1} x+2 c_{1} x^{2}+\ldots+n c_{n} x^{n}\right)$.
The first bracket $=(1+x)^{n}$;
the second bracket

$$
\begin{aligned}
& =n x+2 \cdot \frac{n(n-1)}{2!} x^{2}+3 \cdot \frac{n(n-1)(n-2)}{3!} x^{3}+\ldots+n x^{n} \\
& =n x\left\{1+(n-1) x+\frac{(n-1)(n-2)}{2!} x^{2}+\ldots+x^{n-1}\right\} \\
& =n x(1+x)^{n-1} . \\
& \therefore \text { the series }=(1+x)^{n}+n x(1+x)^{n-1} .
\end{aligned}
$$

Second Method

$$
c_{0} x+c_{1} x^{2}+c_{c_{2}} x^{n}+\ldots+c_{n} x^{n+1} \equiv x(1+x)^{n} .
$$

Differentiate each side w.r.t. x;

$$
\therefore c_{0}+2 c_{1} x+3 c_{2} x^{2}+\ldots+(n+1) c_{n} x^{n}=(1+x)^{n}+n x(1+x)^{n-1}
$$

28A NEW ALGEBRA : ${ }^{\text {SUPPRLEMENT }}$

Note. The sum of the series

$$
c_{0}+2 c_{1}+3 c_{2}+\ldots+(n+1) c_{n} .
$$

is obtained by putting $x=1$.
The sum $=(1+1)^{n}+n(1+1)^{n-1}=2^{n}+n \cdot 2^{n-1}=(n+2) \cdot 2^{n-1}$.
Example 5. Find the value of
(i) $c_{0}{ }^{2}+c_{1}{ }^{2}+c_{2}{ }^{2}+\ldots+c_{n}^{2}$; (ii) $c_{0} c_{1}+c_{1} c_{2}+c_{3} c_{3}+\ldots+c_{n-1} c_{n}$.
$\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}\right)\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}\right) \equiv(1+x)^{n}(1+x)^{n}$.
(i) The coefficient of x^{n} on the left side

$$
\begin{aligned}
& =c_{0} c_{n}+c_{1} c_{n-1}+c_{2} c_{n-2}+\ldots+c_{n} c_{0} \\
& =c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+\ldots+c_{n}^{2}, \text { since } c_{r}=c_{n-r}:
\end{aligned}
$$

$\therefore c_{0}{ }^{2}+c_{1}{ }^{2}+\ldots+c_{n}{ }^{2}$ equals the coefficient of x^{n} in ($\left.1+x\right)^{\text {in }}$, and this is ${ }_{\mathrm{H}} \mathrm{C}_{n}=\frac{(2 n)!}{n!n!}$.

$$
\therefore c_{0}^{2}+c_{1}^{2}+\ldots+c_{n}^{2}=\frac{(2 n)!}{n!n!} .
$$

(ii) The coefficient of x^{n-1} on the left side

$$
\begin{aligned}
& =c_{0} c_{n-1}+c_{1} c_{n-1}+c_{2} c_{n-3}+\ldots+c_{n-1} c_{0} \\
& =c_{0} c_{1}+c_{1} c_{2}+c_{2} c_{8}+\ldots+c_{n-1} c_{n}, \text { since } c_{r}=c_{n-r} \\
& =\text { coefficient of } x^{n-1} \text { in }(1+x)^{2 n} \\
& ={ }_{2 n} c_{n-1}=\frac{(2 n)!}{(n-1)!(n+1)!} .
\end{aligned}
$$

Example 6. Sum the series

$$
c_{1}+2^{3} c_{2} x+3^{2} c_{8} x^{2}+4^{2} c_{1} x^{3}+\ldots+n^{2} c_{n} x^{x-1}
$$

and deduce the value, if $n>2$, of

$$
\begin{gathered}
c_{1}-2^{2} c_{2}+3^{2} c_{3}-\ldots+(-1)^{n-1} n^{2} c_{n} . \\
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{n}+\ldots+c_{n} x^{n} \equiv(1+x)^{n} .
\end{gathered}
$$

Differentiate w.r.t. x,

$$
\begin{aligned}
& \therefore c_{1}+2 c_{y} x+3 c_{y} x^{2}+\ldots+n c_{n} x^{n-1} \equiv n(1+x)^{n-1} ; \\
& \therefore c_{1} x+2 c_{x} x^{2}+3 c_{2} x^{2}+\ldots+n c_{n} x^{n} \equiv n x(1+x)^{n-1} .
\end{aligned}
$$

Differentiate w.r.t. x,

$$
\begin{aligned}
& \therefore c_{1}+2^{1} c_{x} x+3^{3} c_{x} x^{2}+\ldots+n^{2} c_{n} x^{n-1} \\
& \equiv n(1+x)^{n-1}+n(n-1) x(1+x)^{n-1} ; \\
& \therefore \text { the sum }=n\left(1+x x^{n-2}(1+n x) .\right.
\end{aligned}
$$

If $x=-1,(1+x)^{n-1}=0$ for $n>2$;

$$
\therefore c_{1}-2^{2} c_{2}+3^{3} c_{1}-\ldots+(-1)^{n-1} 4^{2} c_{n}=0
$$

EXERCISE II. c

1. What relations are obtained by putting (i) $x=2$, (ii) $x=-2$ in the expansion of $(1+x)^{n}$?
2. What is the sum of the coefficients of the powers of x, in. cluding x^{0}, in the expansion of (i) $(1+x)^{8}$; (ii) $\left(1+x+x^{2}\right)^{4}$?
3. If $\left(1+2 x+2 x^{2}\right)^{3} \equiv a_{0}+a_{1} x+a_{8} x^{1}+\ldots+a_{6} x^{6}$, find the values of (i) $a_{0}+a_{1}+a_{2}+\ldots+a_{3}$; (ii) $a_{0}+a_{2}+a_{4}+a_{8}$; (iii) $a_{1}+a_{3}+a_{5}$.
4. Expand $\left(1-2 x+3 x^{2}\right)^{5}$ in ascending powers of x as far as x^{4}. Find in the ${ }^{\circ}$ complete expansion (i) the algebraic sum of the coefficients of all the powers of x, (ii) the sum of all these coeff. cients, each taken positively, (iii) the algebraic sum of the coefficients of all the odd powers of x.
5. Prove that $\left(1+c_{1}+c_{2}+\ldots+c_{n}\right)^{2}$ equals

$$
1+{ }_{2 n} \mathrm{C}_{1}+{ }_{2 n} \mathrm{C}_{2}+\ldots+{ }_{2 n} \mathrm{C}_{2 n}
$$

6. Obtain relations by equating the coefficients of $x^{\prime \prime}$ in the expansions of each side of the following identities :
(i) $(1+x)^{n+1} \cong(1+x)\left(c_{0}+c_{1} x+\ldots+c_{n} x^{n}\right)$;
(ii) $(1+x)^{n+2} \equiv\left(1+2 x+x^{2}\right)\left(c_{0}+c_{1} x+\ldots+c_{n} x^{n}\right)$;
(iii) $(1+x)^{n+8} \equiv\left(1+3 x+3 x^{2}+x^{8}\right)(1+x)^{n}$.
\because. Prove that (i) $c_{1}+2 c_{2}+3 c_{3}+\ldots+n c_{n}=n .2^{n-1}$.
(ii) $c_{1}-2 c_{2}+3 c_{3}+\ldots+(-1)^{n-1} n c_{n}=0$.
7. What is the value of $c_{0}-2 c_{1}+3 c_{1}-\ldots+(-1)^{n}(n+1) c_{n}$?
8. Sum the series $c_{0} x+c_{1} \frac{x^{2}}{2}+c_{2} \frac{x^{3}}{3}+\ldots+c_{n} \frac{x^{n+1}}{n+1}$.

Prove that $c_{0}+\frac{1}{2} c_{1}+\frac{f}{3} c_{1}+\ldots+\frac{1}{n+1} c_{n}=\frac{1}{n+1}\left(2^{n+1}-1\right)$.
[For a calculus method, use integration.]
10. Sum the series
(i) $c_{0}+c_{2} x^{2}+c_{4} x^{4}+\ldots+c_{n} x^{n}, n$ even;
(ii) $c_{0}+c_{x} x^{2}+c_{4} x^{4}+\ldots+c_{n-1} x^{n-1}, n$ odd.
11. Use the identity $(1+x)^{n}(1-x)^{n} \equiv\left(1-x^{2}\right)^{n}$ to show that

$$
c_{0}^{2}-c_{1}^{2}+c_{2}^{2}-\ldots+(-1)^{n} c_{n}^{2}=(-1)^{\frac{1}{n}} \frac{n!}{(!n)!\left(\frac{1}{2} n\right)!}
$$

if n is even.
What is its value if n is odd?
12. Prove that $c_{0} c_{r}-c_{1} c_{r-1}+c_{2} c_{r-2}-\ldots+(-1)^{r} c_{1} c_{0}$ equals

$$
(-1)^{i r} \frac{n!}{\left(\frac{1}{2} r\right)!\left(n-\frac{1}{2} r\right)!} \text { if } r \text { is even. }
$$

What is its value if r is odd?
13. Use the identity $(1+x)^{m}(1+x)^{n}=(1+x)^{m+n}$ to prove Vandermonde's theorem,

$$
{ }_{n} \mathrm{C}_{r}+{ }_{m} \mathrm{C}_{r-1} \mathrm{C}_{1}+{ }_{m} \mathrm{C}_{r-1} \mathrm{C}_{2}+\ldots+{ }_{n} \mathrm{C}_{r}={ }_{m+n} \mathrm{C}_{r}
$$

14. Prove that

$$
c_{1}+3 c_{3}+5 c_{5}+\ldots=2 c_{1}+4 c_{4}+b c_{6}+\ldots=n .2^{n-8} .
$$

15. Prove that $c_{0}+3 c_{1}+5 c_{2}+\ldots+(2 n+1) c_{n}=(n+1) .2^{n}$.
16. Prove that $c_{2}+2 c_{3}+3 c_{4}+\ldots+(n-1) c_{n}=1+(n-2) \cdot 2^{n-}$:
17. Prove that $c_{1}^{2}+2 c_{3}{ }^{2}+3 c_{3}{ }^{2}+\ldots+n c_{n}{ }^{2}=\frac{\left(2 n_{n}-1\right)!}{(n-1)!(n-1)!}$.
18. Prove that

$$
c_{0}{ }^{2}+2 c_{1}{ }^{2}+3 c_{2}{ }^{2}+\ldots+(n+1) c_{n}{ }^{2}=\frac{(n+2) \cdot(2 n-1)!}{n!(n-1)!} .
$$

19. Find the sum of the coefficients in the expansion of

$$
\text { (i) }(1+2 x)^{5} \text {; (ii) }(3 x+7 y)^{4} \text {; (iii) }\left(1+x+x^{2}\right)^{4} \text {. }
$$

20. Prove that

$$
\begin{array}{cc}
& a+c_{1}(a+d) x+c_{2}(a+2 d) x^{\mathbf{4}}+\ldots+c_{n}(a+n d) x^{n} \\
\text { equals } & (1+x)^{n-1}[a(1+x)+n d x] .
\end{array}
$$

21. Expand $x^{p}\left(1+x^{q}\right)^{n}$, where p, q, n are positive integers, in powers of x. What identity is obtained by differentiating w.r.t. x ? Deduce special results by putting (i) $x=1$, (ii) $x=-1$.

If m is a positive integer, the series

$$
1+m x+\frac{m(m-1)}{1.2} x^{2}+\frac{m(m-1)(m-2)}{1.2 .3} x^{2}+\ldots
$$

terminates automatically after ($m+1$) terms, since each later coefficient contains the factor ($m-m$) $=0$; and the sum of this finite series is ($1+x)^{m}$, (see Ch. II, p. 22A).

If m is a positive fraction or any negative number, the series does not terminate. For example, the series becomes,
if $m=-1, \quad 1-x+x^{2}-x^{3}+x^{4}-\ldots$;
if $m=-2, \quad 1-2 x+3 x^{2}-4 x^{2}+\ldots$;
if $m=-\frac{1}{2}, \quad 1-\frac{1}{2} x+\frac{1.3}{2.4} x^{2}-\frac{1.3 .5}{2.4 .6} x^{3}+\ldots$;
if $m=\frac{1}{2}, \quad 1+\frac{1}{2} x+\frac{(-1) \cdot 1}{2 \cdot 4} x^{2}-\frac{(-1) \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}$

$$
+\frac{(-1) \cdot 1.3 .5}{2.4 .6 .8} x^{4}-
$$

Series of this form are called binomial series.

The Binomial Theorem for a Fractional or Negative Index

If m is a positive fraction or any negative number, and if $|x|<1$, the sum to infinity of

$$
1+m x+\frac{m(m-1)}{1.2} \mathbf{x}^{2}+\frac{m(m-1)(m-2)}{1.2 .3} \mathbf{x}^{3}+\ldots
$$

is the POSITIVE value of $(1+x)^{\mathrm{m}}$.
Note. The notation $|x|<1$ is used to mean that $-1<x<1$; similarly $|x|<\frac{1}{2}$ means $-\frac{1}{2}<x<\frac{1}{2}$; and so on.

The formal proof of the Binomial Theorem is given in Advanced Algebra, Vol. I, Ch. V ; but applications of it can be practised without difficulty.

Example 7. Expand $(1-x)^{-5}$ given $|x|<1$.

$$
\begin{aligned}
(1-x)^{-8}= & 1+(-3)(-x)+\frac{(-3)(-4)}{1.2}(-x)^{2} \\
& +\frac{(-3)(-4)(-5)}{1.2 .3}(-x)^{3}+\ldots \\
= & 1+3 x+\frac{3.4}{1.2} x^{2}+\frac{4.5}{1.2} x^{3}+\ldots
\end{aligned}
$$

Example 8. Expand ($1+2 x)^{\frac{5}{s}}$ given $|x|<\frac{1}{2}$.
The function can be expanded in ascending powere of x it $|2 x|<1$, that is, if $|x|<\frac{1}{2}$. The first 4 terms are

$$
\begin{gathered}
1+\frac{5}{3}(2 x)+\frac{5 \cdot 3}{1.2}(2 x)^{2}+\frac{5 \cdot 2 \cdot\left(-\frac{1}{3}\right)}{1.2 .3}(2 x)^{2} \\
\text { or } \quad 1+\frac{5}{1}\left(\frac{2 x}{3}\right)+\frac{5.2}{1.2}\left(\frac{2 x}{3}\right)^{2}+\frac{5 \cdot 2 \cdot(-1)}{1.2 .3}\left(\frac{2 x}{3}\right)^{3}
\end{gathered}
$$

The terms which follow are alternately positive and negative, and the general term is

$$
(-1)^{r} \frac{5 \cdot 2 \cdot 1 \cdot 4,7 \ldots(3 r-8)}{1 \cdot 2 \cdot 3 \cdot 4.5 \ldots r}\left(\frac{2 x}{3}\right)^{r}, r>2 .
$$

32A NEW ALGEBRA : SUPPLEMENT
Example 9. Expand $\frac{1}{\sqrt{ }\left(1+x^{2}\right)}$ given $x>1$.

$$
\begin{aligned}
\frac{1}{\sqrt{ }\left(1+x^{3}\right)} & =\frac{1}{x}\left(1+\frac{1}{x^{5}}\right)^{-\frac{1}{2}} ; \text { but } 0<\frac{1}{x}<1, \\
\therefore \frac{1}{\sqrt{ }\left(1+x^{2}\right)} & =\frac{1}{x}\left\{1-\frac{1}{2} \cdot \frac{1}{x^{4}}+\frac{1.3}{2 \cdot 4} \cdot \frac{1}{x^{4}}-\frac{1.3 .5}{2.4 \cdot 6} \cdot \frac{1}{x^{6}}+\ldots\right\} \\
& =\frac{1}{x}-\frac{1}{2} \cdot \frac{1}{x^{8}}+\frac{1.3}{2.4} \cdot \frac{1}{x^{5}}-\frac{1.3 .5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{x^{7}}+\ldots .
\end{aligned}
$$

EXERCISE II. d

Write down the first 4 terms and the coefficient of x^{r} in the expansions in ascending powers of x of the following functions. In each case, state when the expansion is valid.

1. $(1-x)^{-2}$.
2. $(1+x)^{-3}$.
3. $(1-3 x)^{-\frac{1}{2}}$.
4. $(1-5 x)^{-1}$.
5. $(1-2 x)^{-6}$.
6. $(1+4 x)^{\frac{1}{2}}$.
7. $\left(1-x^{2}\right)^{-1}$.
8. $(1+3 x)^{\frac{3}{2}}$.
9. $\sqrt{ }\left(4+x^{2}\right)$.
10. $(1-x)^{-n}$.
11. $\frac{x}{1+x^{2}}$.
12. $(a+x)^{-2}$.
13. $\frac{x}{\sqrt{ }\left(a^{2}-x^{3}\right)}$.
14. $\sqrt[8]{\left(8-x^{3}\right)^{8} \text {. }}$
15. $(1-n x)^{-\frac{1}{n}}$.

Find the named terms in the expansions of the following :
16. 10th term in $(1-4 x)^{-3}$ if $|x|<\frac{1}{4}$.
17. 9th term in $(1-5 x)^{-2}$ if $|x|>\frac{1}{8}$.
18. 4th term in $(1+3 x)^{2 \frac{1}{2}}$ if $|x|<\frac{1}{3}$.
19. 5th term in $\left(1+4 x^{2}\right)^{-2 \frac{1}{2}}$ if $|x|>\frac{1}{2}$.
20. 6th term in $\left(1-3 x^{2}\right)^{-n}$ if $|x|<\frac{1}{2}$.

[^0]: * These details apply to the edition with Appendix. The book, as

