

SPATIAL AND TEMPORAL DISTIRIBUTION OF BENTHIC OLIGOGHAETA IN EUPHRATES RIVER, MIDILLOF IRAQ

Haifa J. Jaweir¹, Jasim M.Salman^{2*}, Zahraa H. Abaid ³

¹Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq.

^{2*} Department of Biology, College of Science, University of Babylon, Hilla, Iraq.

³ Ministry of Science & Technology, Baghdad, Iraq.

*Email: jasimsalman67@yahoo.com

To cite this article:

Jaweir et al., SPATIAL AND TEMPORAL DISTIRIBUTION OF BENTHIC OLIGOGHAETA IN EUPHRATES RIVER, MIDILLOF IRAQ, Mesopotomia Environmental Journal, 2014, Vol. 1, No. 1, pp. 1-8.

Abstract: The present study discusses spatial and temporal distribution of aquatic oligochaetes community as sorted from macrobenthic fauna collected during River Euphrates in Iraq. Extending from Al-Musayab district (S1), Saddat Al-Hindiah district (S2) to Al-Hindiah district (S3).

Twelve species of oligochaetes (9 genera; 3 families) were determined during study period. Highest individual number were recorded in S3 (9954.56 ind../m²) during Jan. 2014 and the lowest number were recorded in S3 (222.2 ind./m²) during Oct.2013. The highest average monthly dencity was recorded during Dec. 2013 and Jan 2014, while the highest site average density was recorded in S3.

Tubificid worms made up the majority component of aquatic oligocheata in investigated area of the river specially *Limnodrilus spp.* which include four species *Limnodrilus hoffmeisteri* (Claparede1862), *L. claparedeians* (Ratzal 1869), *L. profundicola* (Verrill, 1871) L. udekemianus (Claparede1862). *Stylaria lacustris* was the most abundant Naidid worms.

This study recorded two species as new records on Euphrates river {Spirosperma ferox (Eisen, 1879), *Pristina jenkinae* (Stephenson, 1931) } and one species as new record on Iraqi fauna{ *Bothrioneurun pyrrhum* (Marcur, 1842)}.

Keywords; Aquatic Oligochaeta ; Tubificid worms, Naidid worms; Naidinae, Pristininae, diversity, River Euphrates,

1. Introduction

Oligochaetes are the most divergent and abundant group of benthic invertebrates in freshwater system [1]. They are (especially the tubificid worms) important as primary consumers, primary decomposers, modifiers of the substrate, and as food for predators [2].

The distribution and abundance of oligochaetas in fresh waters depend upon many environmental factors ,such as the nature of the substrate ,temperature ,flow rate ,oxygen concentration and availability of nutrients, moss or algae cover, and changes in nitrogen, carbon, and humus contents in the bottom sediments [3,4]. Several authors considered oligochaetes as a good indicators of environmental variations because of easy sampling and identification , relatively long life; limited migration and have different sensitivities to polluted water [5,6].

Oligochaetes are hermaphrodite and reproduce by cross-fertilization, while a few species of them may reproduce asexually by architomy or paratomy [7]. Their identification to species level depends on some external morphological features, among these; the color of the body, number of segment, size, shap and number of chaetae. or on the anatomy of digestive and reproduction systems as well as some features concerning their movement pattern and habitat nature [8].

Several authors in Iraq were studied the oligochaetas in many Iraqi aquatic systems [9, 10, 11, 12, 13, 14] and [15] in addition to some studies which referred to oligocheates as a group within the macrobenthic community samples [16, 17, 18]

The objective of the present work is to determine the spatial and temporal distribution of aquatic oligochaetes species in Euphrates river in middle of Iraq.

2. Materials and Methods

Samples were collected monthly from three sites on River Euphrates in the middle region of Iraq including, (S1) at Al-Musayab district; (S2) at Saddat Al –Hndiaa city and (S3) at Al-Hindiaa city (fig.1).

Ekman dredge (15X15cm) has been used to collect Surface bottom sediments samples during the study period from October 2013 to June 2014. Three random replicates, were washed with water through 0.2 µm mesh size sieves in the field and then brought to the laboratory. In the large worms, like Tubificid worms were easily sorted with the aid of a magnifier using a white try for spreading sediment during sorting. For sorting smaller mieobenthos worms, like Naidid worms, small amount of sediments were transferred to a clean Petri dish containing little amount of tap water, and the worms sorted carefully using dissecting microscope. Sorted worms were place in a watch class containing little amount of clean tap water, few drops of 4 % formalin was then added drop by drop to the dish to kill the worms. The worms were then preserved in 75% ethanol. For the purpose of identification, the preserved worms were prepared by adding a drop of polyvinyl lactophenol on a microscopic slide and then immersed the worms. The cover slip was added and gently pressed. The slides were left for few days before examined under a compound microscope. Species identification was conducted using appropriate keys [19;7].

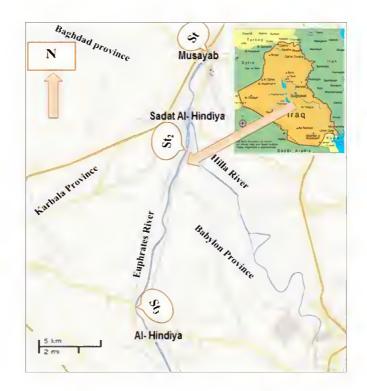


Fig. 1. Map of the study area in the mid sector of River Euphrates, Iraq

3. Results and Discussion

Table 1 shows the total densities of aquatic oligochaetes during the study period, it was notes that they were present at all sites and and in all months.. The highest monthly average density of 7066.04 and 7465.90 ind/m² were recorded during Dec. 2013 and Jan.2014 respectively, while the highest average site density of 4809.418 was recorded in S3. The lowest monthly average density of 503.65ind/m² were recorded during Oct 2014, and lowest site average density of 2676.28 ind/m² were recorded in S2. Fig(1) shows that Tubificid worms comprised 91% of total numbers of oligochaetes, in which *Eiseniella tetrahedral* and Naidid worms comprised only 6 & 3% respectively.

A total of 2436 individuals represented 12 species were sorted during the study period. Eleven species were belonging to the family Naididae, three of them identified as Naidid worms (2 species Naidinae + 1 species Pristininae); 8 species of Tubificid worms, in addition to one species of family Lumbricidae. It is clear from this table that *Limnodrilus hoffmeisteri* was the most abundant species with 49.55% of the total oligochaetes individuals identified , Followed by, *L. profundicola* and *Branchiure sowerbyi*, which they recorded a percentage of 19.34% and 18.08% respectively, while other spies recorded percentages ranged from 4.66 -1.20%. Highest species richness was recorded in S1, S3 (10 species each), while at S2 the number of species did not exceed 7.

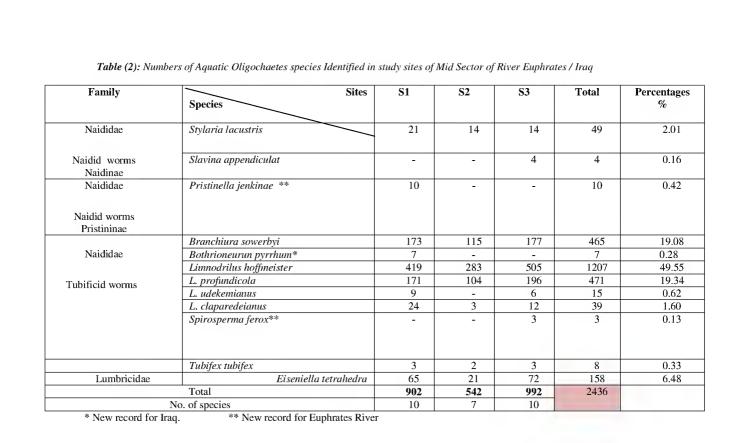
Fig (2) shows that naidid worms were represented by *Stylaria lacustris* (78%) *Pristinella jenkinae* (16%) and *Slavina appendiculata* (6%). Among Tubificid worms, Fig (3) shows that, *L.hoffmeisteri* had a higher percentage of 55%, followed by, *L. Profundicola* and *B. sowerbyi* (21%) each. Other species includes *L. udekemianus*, *L. claparedeianus*, *Tubifex tubifex, Spirosperma ferox*, and *Bothrioneurun pyrrhum*. All of them form 3% of total Tubificid.

The occurrence, abundance, diversity, and density of aquatic Oligochaetes were highly affected by variation of environmental features such as heavy metals pollution [20]; prevalence of gravelly sediment [21]; low availability of organic matter [22] and competition and predation [23] and [4]

The high density of Tubificidae in study sites may be indicated to the entrance of organic matter into the aquatic system [4]. The abundance of oligochaetes may be due to several reasons such as high organic contenst and dissolved oxygen concentrations [24].

Some authors such as [25] and [26] used the counts of oligochaete to classify of water pollution levels : 100 to 999 individuals (light pollution) ; 1000-5000 individuals, (moderate pollution) and exceeding 5000 individuals(heavy pollution) . From this point of view, the state of pollution in the River Euphrates is considered as moderately polluted to heavy pollution as about 10000 ind/ m2 was recorded in S3, due to decrease in degradation rates in cold temperature during Dec.2013 and Jan. 2014 .

The results showed by Fig(1) indicates that the ratio of Naididae to Tubificidae was too low. This ratio was used by some authors as bioindicator of water quality in respect to environmental factors [27]. Fig (2) indicates that *S. lacustris* was the most abundant species among Naidid worms, while among tubificid worms (Fig3) *L. hoffmeisteri*, was the most abundant followed by *L. profundicala and S. sowerbyi*. In general *L. hoffmeisteri* and *B. sowerbyi* are the most abundant tubificid in Iraqi water surfaces, while *T. tubifex* always recorded in a low percentages [12,13,15]

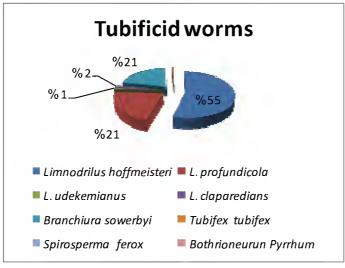

According to [28], the current study was recorded the species *Spirosperma ferox* (Eisen, 1879) and *Pristinella jenkinae* (Stephenson, 1931) as a new records to River Euphrates and the species *Bothrioneurun pyrrhum* (Marcur, 1842) as a new record species to Iraq fauna.

Sites				
	S1	S2	S3	Monthly average
Month				
October2013	666.6	622.16	222.2	503.65
November2013	5421.67	3110.8	5510.56	4681.01
December2013	7243.68	4088.48	9865.98	7066.04
January 2014	7510.32	4932.84	9954.56	7465.90
February2014	7207.28	4355.12	6399.36	5987.25
March2014	5377.24	2710.84	4532.88	4206.98
April2014	3244.12	1866.48	3066.36	2725.65
May2014	2444.2	1199.88	2177.56	1207.21
June2014	1599.84	1199.88	1555.3	1118.34
Site Average	3689.40	2676.28	4809.418	

 Table (1): Total Numbers of aquatic Oligochaetes (individual /m²) in study sites of Mid Sector of River Euphrates / Iraq for a period (Oct.2013- June.2014.)

Mesopotamia Environmental Journal (MEJ)

2014, Vol.1, No.1:1-8



Fig(1) :Oligochaet worms

Fig (2): Naidid worms

Fig(3): Tubificid worms

References

- [1] Wetzel, M. J., Kathman, R. D., Fend, S. and Coates, K. A. Taxonomy, Systematic and Ecology of freshwater Oligochaeta. Work(Tubificidae) using cellulose substrate. *Aquaculture*, 2000, Vol. 40, No.1, pp.:89-94.
- [2] Schwank, P. Turbellarien, Oligochaeten und Archianneliden des Breitenbach und andereroberhessischer Mittelgebirgsbache. III. Die Taxozonosen der Turbellarien und Oligochaeten in Fliessgewassern – eine synokologische Gliederung. Schlitzer produktionsbiologische Studien (43–3). Arch Hydrobiol Suppl, 1982, Vol.62, pp.191–253.
- [3] Martinovic-Vitanovic, V, Djikanovic, V., Obradovic, S. and Kalafatic, V. Composition and stricture of the oligochaeta (Annelida) in Benthic Assemblages of the Danube River in the Belgrade region During May and October of 2004. *Ekologia(Bratislava)*, 2007, *Vol.26, No.2, pp. 174-189.*
- [4] Martins, R.T., Stephan, N.N.C. and Alves, R.G. Tubificidae (Annelida: Oligochaeta) as an indicator of water quality in an urban stream in southeast Brazil. Acta Limnol. Bras., 2008, Vol.20, No.3, pp.: 221-226.
- [5] Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B. Rapid bioassessment protocols for use in streams and rivers: periphyton, benthic macroinvertebrates, and fish. Second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. book prepared for North America Benthological Society Technical, 1999.

- [6] Liu, Y., Vermaat, J.E., Ruyter, E.D. De Kruji, H.A.M. Modification and application of biomonitoring ISO BMWP method of macrofauna in river pollution evaluation in China, *Acta Scientiarum Naturalium Uni-versitatis Sunyatseni*, 2004, *Vol.43*, *No.4*, pp. 102-105.
- [7] **Timm, T.** A guide to freshwater oligochaeta and polychaeta of northern and central Europe. *Lauterbornia*, 2009, Vol. *66,pp. 1-23*.
- [8] Harman, W.J. Specific and Generic Criteria in Freshwater Oligochaete, With Special Emphasis on Naididae. Aquatic Oligochaete Biology, Plenum press, New York and London, 1980.
- [9] Al-Abbad ,M.Y.M. New records of *Pristine proposcidea* and *P. aquiseta* (oligochaetes : Naididae) from Iraq. *Marsh Bulletin*, 2010, Vol.5, No.2, pp.132-142.
- [10] Al-Abbad ,M.Y.M. and Al-Mayah, S.H. New records of two species of oligochaetes (Naididae): pristine longiseta and P. Macrochaeta from Iraq, with note on their morphology and reproduction. *Mesopot. J. Mar.Sci.* 2010, Vol. 25, No.2,pp. 57-66.
- [11] Jaweir, H.J. A new record of three tubificid species (Annelida : Oligochaeta) from Al-Hawiezah marsh, Iraq. Mesopot. J. Mar. Sci. 2011, Vol. 26, No.2, pp. 114-121.
- .[12] Jaweir,H.J., Almukhtar,E.A. and Sebtie, H.A. Aquatic Oligochaet of Iraq's southern marshes. *Baghdad* J. For Sci., 2012, Vol.10, No.1, pp.116-122.
- [13] Jaweir, H.J. and Al-Janabi, E.S.O. Biodiversity and abundance of aquatic oligochaetes- family Naididae in the middle sector of Euphrates river, al Al-Mussayab City/ Iraq. The International Journal of the Environment and Water, 2012, Vol. 1,No.1, pp.122-130.
- [14] Jaweir, H. J. And Rhadi, M.M. Naididae (Clitellata: oligichaeta) and Aeolosomstidae (Polychaeta: Aphanoneura) species associated with aquatic plants in Tigris River / Baghdad / Iraq. J. Baghdad . Sci. 2013, Vol. 10, No.1, pp. 116-125.
- [15] Jaweir, H. J. And Alwan, A.M. Sludge worms species (Oligochaeta: Naididae: Tubificinae) from different aquatic habitat in Baghdad /Iraq. J. Baghdad . Sci., 2013, Vol. 10, No.2, pp. 269-281.
- [16] Ali, L.A. A study of macroinvertebrates communities in the middle sector of greater Zab River / Iraq. PhD. Thesis, College of Science for Women, University of Baghdad ,Iraq, 2007.
- [17] **Sabtie, H.A**. An ecological study of the benthic macroinvertebrates community in the Southern Marshes of Iraq. Ph.D. thesis, College of Science for Women, Baghdad University, Iraq, 2009.
- [18] Nashaat, M.R. Impact of AL-Durah Power Plant effluents on physical, chemical and invertebrates biodiversity in Tigris River Southern Baghdad. PhD. thesis, College of Science, Baghdad University, Iraq, 2010.
- [19] Brinkhurst R.O. and Jamieson B.G.M. Aquatic Oligochaeta of the World. University of Toronto Press. Toronto., 1971, 860p.
- [20] Chapman, P.M. Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment. *Hydrobiologia*, 2001, Vol. 463, No. 1, pp.149-169.
- [21] Schenkova, J. and Helesic, J. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokttná River, Czech Republic- a small highland stream. *Hydrobiologia*, 2006, Vol. *564*, *No.1*, *pp. 117-126*.

- [22] Lin, K..J. and Yo, S.P. The effect of organic pollution on the abundance and distribution of aquatic oligochaetes in an urban water basin, Taiwan. *Hydrobiologia*, .2008, Vol. 596,No.1, pp. 213-223.
- [23] Nijboer, R.C., Wetzel, M.J. and Verdonschot, P.F.M. Diversity and distribution of Tubifi cidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. *Hydrobiologia*, 2004, *Vol. 520, pp. 127-41*.
- [24] Jaweir, H.J and Ibraheem, S.S. Pollution Bioindicators in Al-Diwania River, Iraq . J. of Um-Salama for Science, 2004, Vol. 1, No.1, pp. 23-30.
- [25] Millbrook, G. An improved environmental index based on the relative abundance of Oligochaetaspecies . *Hydrobiologia* , 1983, Vol. *102, pp. 89-97*.
- [26] Casellato, S. and Caneva, F. Composition and distribution of bottom oligochaete fauna of a north Italian eutrophic lake (Lake Ledro). *Hydrobiologia*, 1994, Vol. 278, pp. 87-92.
- [27] **Al-Kuti, S.S.I.** Use of annelid, oligochaeta as bioindicators in evaluating the pollution in Al-Dewania River. MSc. Thesis, College of Education, Univ. of Al-Qadisiyah, Iraq,2000.
- [28] Jaweir, H.J. Checklist of Aquatic Oligochaetes Species in Tigris Euphrates . In press, 2014.