
TM

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK

A DIVISION OF TANDY CORPORATION

^

**'.;

m

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

CUSTOMER OBLIGATIONS
LIMITED WARRANTY

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio

Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities,

versatility, and other requirements of CUSTOMER.
B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software

are to function, and for its installation.

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing

defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS

AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been

subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment

must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer

for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of

a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole

expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this

paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a

Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,

participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf

of RADIO SHACK.
D Except as provided herein, RADID SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE.
E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

III. LIMITATION DF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or

Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following

provisions:

A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.

C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for

TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each

one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from

CUSTOMER.
G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY DF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or

Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to

CUSTOMER.
B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the

Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary

from state to state.

"3SSJ

m

./.-.;

-. -is?.';..

'Xl'V

:.-

••:;• '"£>,••:. -~!r :

TM

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK

A DIVISION OF TANDY CORPORATION

Disk EDTASM Software: Copyright 1983, Microsoft. All

Rights Reserved. Licensed to Tandy Corporation.

Disk EDTASM Manual: Copyright 1983, Tandy Corporation.

All Rights Reserved.

Reproduction or use without express written permission from

Tandy Corporation, of any portion of this manual is prohib-

ited. While reasonable efforts have been taken in the prep-

aration of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or

omissions in this manual, or from the use of the information

contained herein.

To Our Customers . .

.

The heart of the Color Computer is a 6809E "proces-

sor." It controls all other parts of the Color Computer.

The processor understands only a code of Os and 1s,

not at all intelligible to the human mind. This code is

called "6809 machine code."

When you run a BASIC program, a system called the

"BASIC Interpreter" translates each statement, one at a
time, into 6809 machine code. This is an easy way to

program, but inefficient.

The Disk EDTASM lets you program using an intelligible

representation of 6809 machine code, called "assembly
language," that talks directly to the processor. You then

assemble the entire program into 6809 machine code
before running it.

Programming with the Disk EDTASM gives you these

benefits:

• You have direct and complete control of the Color

Computer. You can use its features — such as high

resolution graphics— in ways that are impossible with

BASIC.

• Your program runs faster. This is because it is already

translated into 6809 machine code when you run it.

To Use the Disk EDTASM
You Need . .

.

A Color Computer Disk System that has at least 16K of

RAM, preferably 32K. (A 16K System will leave you little

room for programs.)

The Disk EDTASM
Contains:

• EDTASM/BIN, a system for creating 6809 programs.

EDTASM contains:

An editor, for writing and editing 6809 assembly-

language programs.

An assembler, for assembling the programs into

6809 machine code.

ZBUG, for examining and debugging 6809
machine-code programs.

You must have 32K to run EDTASM. If you have 16K,

run EDTASMOV (described next).

• EDTASMOV/BIN, a memory-efficient version of

EDTASM consisting of overlays. EDTASMOV con-

tains the editor and assembler, but not ZBUG.

• ZBUG/BIN, a stand-alone version of ZBUG, primarily

for use with EDTASMOV.

• DOS/BIN, a disk operating system. DOS contains disk

access routines that you can call from an assembly
language program. (You cannot call BASIC'S disk ac-

cess routines with any program other than BASIC.)

EDTASM/BIN, EDTASMOV/BIN, and ZBUG/BIN all

use DOS routines and must be run with DOS.

The Disk EDTASM also contains:

• DOS/BAS. A BASIC program that loads DOS/BIN.

• ZBUG/BAS. A BASIC program that loads ZBUG/BIN.

How to Use this Manual

This manual is organized for both beginning and ad-

vanced assembly language programmers. Sections i-IV

are tutorials; Section V is reference.

Beginning Programmers:

Read Section I first. It shows how the entire system
works and explains enough about assembly language to

get you started.

Then, read Sections II, III, and IV in any order you want.

Use Section V, "Reference," as a summary.

This manual does not try to teach you 6809 mnemonics.
To learn this, read:

Radio Shack Catalog #62-2077
by William Barden Jr.

6809 Assembly Language Programming
by Lance A. Leventhal

Nor does it teach you disk programming concepts. To
learn these, read:

Color Computer Disk System Manual
(Radio Shack Catalog #26-3022)

Advanced Programmers:

First, read Chapters 1 and 2 to get started and see

how the entire system works. Then, read Section V,

"Reference."

You can use the DOS program listing to obtain informa-

tion on routines and addresses not explained in this

manual. Please note the following:

Radio Shack supports only these DOS routines:

OPEN, CLOSE, READ, and WRITE. Additional

DOS routines are listed in Reference H. However,
Radio Shack does not promise to support them.

Even more DOS routines and addresses can be
found in the program listing. However, Radio Shack
does not promise to support them nor even provide

them in the future.

For technical information on the Color Computer Disk

System and 6809, refer to 6809 Assembly Language
Programming and Color Computer Disk System Manual,

listed above.

This manual uses these
terms and notations:

(KEY) To denote a key you must press.

Italics To denote a value you must supply.

fiiespec To denote a DOS file specification. A DOS
filespec is in one of these formats:

ft/ename/exLdrive

///ename.ext.drive

filename has one to eight characters.

extension has one to three characters.

drive is the drive number. If the drive num-
ber is omitted, DOS uses the first available

drive.

$ To denote a hexadecimal (Base 16) num-
ber. For example, $0F represents hexa-

decimal OF, which is equal to 15 in decimal

(Base 10) notation.

Contents

Section 1/ Getting Started

Chapter 1/ Preparing Diskettes 3

Chapter 2/ Running a Sample Program 5

Chapter 3/ Overview 9

Section 11/ Commands

Chapter 4/ Using the DOS Menu
(DOS Commands) 15

Chapter 5/ Examining Memory
(ZBUG Commands — Part I) 17

Chapter 6/ Editing the Source Program
(Editor Commands) 21

Chapter 7/ Assembling the Program
(Assembler Commands) 25

Chapter 8/ Debugging the Program
(ZBUG Commands — Part II) 31

Chapter 9/ Using the ZBUG Calculator

(ZBUG Commands — Part III) 35

Section III/

Assembly Language

Chapter 10/ Writing the Program 41

Chapter 11/ Using Pseudo Ops 47
Chapter 12/ Using Macros 51

Section IV/ ROM
and DOS Routines

Chapter 13/ Using the Keyboard and Video Display

(ROM Routines) 57
Chapter 14/ Opening and Closing a Disk File

(DOS Routines — Part I) 61

Chapter 15/ Reading and Writing a Disk File

(DOS Routines — Part II) 65

Section V/ Reference

A/ Editor Commands 71

B/ Assembler Commands and Switches 75
C/ ZBUG Commands 77
D/ EDTASM Error Messages 81

E/ Assembler Pseudo Ops 85
F/ ROM Routines 89
G/ DOS Data Control Block (DCB) 91

H/ DOS Routines 95
I/ DOS Error Codes 101

J/ Memory Map 1 03
K/ ASCII Codes 105
L/ 6809 Mnemonics 109

M/ Sample Programs 1 25

Section Vl/ Program Listing

Index

This section gets you started using the Disk

EDTASM and explains some concepts you
need to know.

Chapter 1/ Preparing Diskettes

Before using the Disk EDTASM, you need to format

blank diskettes and back up the master Disk EDTASM
diskette.

Formatting Blank Diskettes

1

.

Power up your disk system and insert a blank disk-

ette in Drive 0. (See the Color Computer Disk Sys-

tem Manual for help.)

2. At the OK prompt, type:

2. At the BASIC OK prompt, type:

DSKINIfl CENTER)

BASIC formats the diskette. When finished, it again

shows the OK prompt.

Making Backups
of Disk EDTASM

Single-Drive Systems
1. Insert the master Disk EDTASM diskette, your

"source" diskette, in Drive 0.

BACKUP TO CENTER)

3. BASIC then prompts you to insert the "destination"

diskette. Remove the source d iskette and insert a

formatted diskette. Press (ENTER)

4. BASIC prompts you to alternatively insert the

source, then destination diskettes. When the back-

up is finished, the OK prompt appears.

The destination diskette is now a duplicate of the master
Disk EDTASM diskette.

Multi-Drive Systems

1. Insert the master Disk EDTASM diskette in Drive 0.

2. Insert a formatted diskette in Drive 1.

3. At BASIC'S OK prompt, type:

BACKUP TO 1 [ENTER)

BASIC makes the backup. When the backup is

finished, the OK prompt appears.

The diskette in Drive 1 is now a duplicate of the master

Disk EDTASM diskette.

Chapter 2/

Running a Sample Program

This "sample session" gets you started writing programs
and shows how to use the Disk EDTASM. The next

chapters explain why the program works the way it does.

1. Load and Run DOS

Insert the Disk EDTASM diskette in Drive 0. At the OK
prompt, type:

RUN "DOS" CENTER]

DOS then loads and puts you in its "command mode."
The screen shows the DOS command menu:

It Exit to BASIC
2 Exec a Program
3t Start ClocK Display
4 Disk Allocation Map
5. Cop/ Files
6

•

Directory

DOS consists of many disk input and output routines

which EDTASM uses. You must load DOS before load-

ing EDTASM.

2. Load and Run EDTASM

At the DOS Menu, press (2) to select "Execute a Pro-

gram." The screen asks for the name of a program file.

If your system has 32K or more, use EDTASM. If it has
only a 16K system, use EDTASMOV.

Loading EDTASM:
Type EDTASM. The screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: CEDTASM]/BIN

If you make a typing error, use the © to reposition the

cursor at the beginning of the line, then correct the mis-

take. Replace any trailing characters with blank spaces.

Press CENTER] . EDTASM loads and shows its startup

message.

Loading EDTASMOV:
Type EDTASMOV. The screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: CEDTASMOY] /BIN

If you make a mistake, use the© to reposition the cur-

sor, then correct the mistake.

EDTASMOV loads and shows its startup message.

Always keep EDTASMOV in Drive 0. It contains overlays

which it loads into memory as required. It always looks

for these overlays in Drive 0.

3. Type the Source Program

Notice the asterisk (*) prompt. This means you are in the

editor program of EDTASM or EDTASMOV. The editor

lets you type and edit an assembly language "source"

program.

At the * prompt, type:

I (ENTER]

This puts you in the editor's insert mode. The editor re-

sponds with line number 00100. Type:

START O LDA ® **F9 CENTER)

The right arrow tabs to the next column. CENTER) inserts

the line in the editor's "edit buffer." The $ means that F9

is a hexadecimal (Base 16) number.

2 I RUNNING A SAMPLE PROGRAM

Your screen should show:

001 10
START LDA »*F9

meaning that you inserted line 100 and can now insert

line 110.

If you make a mistake, press (BREAK) . Then, at the
*

prompt, delete Line 100 by typing:

D100 (ENTER]

Now, insert Line 100 correctly in the same manner
described above.

Insert the entire assembly language program listed

below.

Note that line 150 uses brackets. Do not substitute

parentheses for the brackets. To produce the left

bracket, press (SHIFT) and (T) at the same time. To
produce the right bracket, press (SHIFT) and O at

the same time.

00100 START LDA #$F9
001 10 LDX «$400
00120 SCREEN STA *)< +

00130 CMPX #$600
00140 BNE SCREEN
00150 WAIT JSR [$A000]
001G0 BEQ WAIT
00170 CLR $71
00180 JMP EtFFFE]
00190 DONE EQU *

00200 END

If you make a mistake, press (BREAK) . Then, at the *

prompt, delete the program by typing:

Da : *

Now, insert the program correctly.

When finished, press (BREAK) . The program you have in-

serted is an assembly language "source" program,
which we'll explain in the next chapter.

4. Assemble the Source
Program in Memory

At the * prompt, type:

A/IM/WE CENTER)

which loads the assembler program. The assembler then

assembles your source program into 6809 machine code

into the memory area just above the EDTASM or

EDTASMOV program. To let you know what it has done,

it prints this listing:

4B28 86 F9 00100 START
LDA *$F9

4B2A 8E 0400 001 10
LDX *$400

4B2D A7 80 00120 SCREEN
STA tX +

4B2F 8C 0600 00130
CMPX *t$600

4B32 26 F9 00140
BNE SCREEN

4B34 AD 9F A000 00150 WAIT
JSR [$A000]

4B38 27 FA 00160
BEQ WAIT

4B3A 0F 71 00170
CLR $71

4B3C 6E 9F FFFE 00180
JMP [$FFFE]

4B40 00190 DONE
EQU #

0000 00200
END

0(3000 TOTAL ERRORS

DONE 4B40
SCREEN 4B2D
START 4B28
WAIT 4B34

(If using EDTASMOV, the numbers will be different.)

If the assembler does not print this entire listing, but

stops and shows an error message instead, you have an
error in the source program. Repeat Steps 3 and 4.

The assembler listing is explained in Figure 1 of

Chapter 7.

5. Prepare the
Program for DOS

Before saving the program, you need to prepare it so

that you can load and run it from DOS.

First, you must give it an "origination address" for DOS
to use in loading the program back into memory. (We
recommend you use Address $1200, the first address

available after the DOS system.) To do so, type:

150 CENTER]

and insert this line:

50 ORG $12(30

Next, you need to add two lines to your program to tell

DOS how long the program is. Insert these lines:

B0
70

BEGIN JMP
FDB

START
DONE-BEGIN

When finished, press (BREAK) . To see the entire program,

type:

P*:* (ENTER)

It should look like this:

00050
00060
00070
00100
001 10
00120
00130
00140
00150
001G0
00170
00180
00190
00200

BEGIN

START

SCREEN

WAIT

DONE

ORG $1200
JMP START
FDB DONE-BEGIN
LDA »$F9
LDX »$400
STA »X+
CMPX *$S00
BNE SCREEN

C$A000]
WAIT
$71
C$FFFE]

JSR
BEO
CLR
JMP
EQU
END

If you make a mistake, delete the line with the error

and insert it again.

6. Save the Source
Program on Disk

To save the source program, type (at the * prompt):

WD SAMPLE (ENTER)

This saves the source program on disk as SAMPLE/
ASM.

7. Save the Assembled
Program on Disk

At the * prompt, type:

Be sure you have a blank space between SAMPLE and
/SR. This causes the assembler to again assemble the

source program into 6809 code. This time, the Assem-
bler saves the assembled program on disk as SAMPLE/
BIN.

(You must use the /SR "switch" to assemble any pro-

gram that you want to load and run from DOS.)

8. Run the Assembled
Program from DOS

To run the assembled program, you need to be in the

DOS command mode. At the * prompt, type:

K (ENTER]

which causes the Editor to return you to the DOS com-
mand menu. Press 3D to execute a program. Then type

SAMPLE, the name of the assembled program. (The
assembler assumes you mean SAMPLE/BIN.) The
screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [SAMPLE 1/BIN

AD SAMPLE /SR CENTER)

Press (ENTER) . The SAMPLE program executes, filling

your entire screen with a graphics checkerboard.

Press any key to exit the program. The program returns

to BASIC startup message.

9. Debug the Program
(if necessary)

ZBUG lets you to look at memory. How you load ZBUG
depends on whether you are using EDTASM or EDTAS-
MOV.

EDTASM Users:

You can load ZBUG from EDTASM. Load DOS and
EDTASM again (Steps 1 and 2). Then, at the * prompt,

type:

2 [ENTER)

EDTASM loads its ZBUG program and displays ZBUG's
prompt. You can now examine any memory address.

Type:

4000/

2 / RUNNING A SAMPLE PROGRAM

and ZBUG shows you what is in memory at this address.

Press CD a few times to look at more memory addres-

ses. When finished, press (BREAK) .

In Chapter 8, we'll show you how to use ZBUG to ex-

amine and test your program. To return to EDTASM's
editor, type:

EXECUTE A PROGRAM
PROGRAM NAME: CZBUG 3/BIN

E (ENTER)

EDTASMOV Users:

You must use the Stand-Alone ZBUG. Load DOS again

(Step 1). At the DOS Menu, press (T), "Execute a Pro-

gram," and run the ZBUG program. After typing ZBUG,
the screen shows:

DOS loads the stand-alone ZBUG and displays ZBUG's
prompt. You can now examine any memory address.

Type:

3800/

and ZBUG shows you what is in memory at this address.

Press CD a few times to look at more memory addres-

ses. When finished, press (BREAK) .

In Chapter 8, we'll show you how to use ZBUG to ex-

amine and test your program. To return to DOS, type:

K CENTER)

Chapter 3/ Overview

This chapter is for beginning assembly language pro-

grammers. It explains some concepts you need. If you're

not a beginner, use this chapter as a refresher or skip it.

The Color
Computer Hardware

The Color Computer consists of:

• The 6809E Processor

• Memory
• Input/Output Devices

This shows how they relate to each other:

I/O

device

I/O

device

Memory

i

Processor

I/O

device

I/O

device

• Buses — for transferring data to or from the processor.

All instructions to the processor must be in 6809
machine code: a code of 0s and 1s containing
"opcodes" and data. "Opcodes" are instructions that tell

the processor to manipulate data in some way.

For example, the machine-code instruction "10000110
11111001" contains:

• The opcode "10000110" (decimal 134 or hexadecimal

86)
• The data "11111001" (decimal 249 or hexadecimal

F9)

This instruction tells the processor to load Register A
with 11111001.

Memory
Memory is a storage area for programs and data. There
are two kinds of memory:

• Random access memory (RAM) — for temporary stor-

age of programs or data. When you load a program
from disk, you load it into RAM. Many opcodes store

data in RAM temporarily.

• Read only memory (ROM) — for permanent storage

of programs. BASIC, as well as any program pack you
use, is stored in ROM. The Color Computer contains

several "ROM routines" that you can use to access
the keyboard, screen, or tape recorder.

When writing an assembly language program, you must
constantly be aware of what's happening in memory. For

this reason, this manual provides a memory map. (See
Reference J.)

The Processor

The processor processes all data going to each memory
address and device. It contains:

• Registers — for temporarily storing 1- or 2-byte

values.

Devices

All other parts of the hardware are called devices. A de-

vice expects the processor to input or output data to it in

a certain format. To input or output data in this format,

you can use these pre-programmed subroutines:

3 / OVERVIEW

• Routines stored in ROM (ROM routines) — for input-

ting or outputting to the keyboard, screen, printer, or

tape recorder.

• Routines stored in DOS (DOS routines) — for input-

ting or outputting to disk.

(Addressing-mode characters are discussed below.)

Mnemonics are specific to a particular processor. For ex-

ample, Radio Shack's Model 4 uses the Z80 processor,

which understands Z80 mnemonics, rather than the

6809 mnemonics.

The Disk EDTASM
Assembler

The Disk EDTASM looks for three fields in your instruc-

tions: label, command, and operand. For example, in this

instruction:

BEGIN JMP START

BEGIN is the label. JMP is the command. START is the

operand.

In the label field, it looks for:

• Symbols (symbolic names)

In the command field, it looks for:

• Mnemonics
• Pseudo Ops

In the operand field, it looks for:

• Symbols
• Operators

• Addressing-Mode Characters

• Data

Symbols
A symbol is similar to a variable. It can represent a value

or a location. BEGIN (in the sample session) is a symbol

that represents the location of the instruction JMP
START. START is also a symbol that represents the

location of LDA #$F9.

Mnemonics
A mnemonic is a symbolic representation of an opcode.

It is a command to the processor. "LDA" is a mnemonic.

Depending on which "addressing-mode character" you

use, LDA represents one of these opcodes:

10000110
10010110
10110110
10100110

Pseudo Ops
A pseudo op is a command to the assembler. END (in

the sample session) is a pseudo op. It tells the assem-
bler to quit assembling the program.

Data

Data is numbers or characters. Many of the mnemonics
and pseudo ops call for data. Unless you use an oper-

ator (described next), the assembler interprets your data

as a decimal (Base 10) number.

Operators

An operator tells the assembler to perform a certain op-

eration on the data. In the value $1200, the $ sign is an
operator. It tells the assembler that 1200 is a hexadeci-

mal (Base 16) number, rather than a decimal (Base 10)

number.

The more commonly used operators are arithmetic and
relational. Addition (+) and equation (

=
) are examples

of these operators.

Addressing-Mode Characters

An addressing mode character tells the assembler how it

should interpret the mnemonic. The assembler then

assembles the mnemonic into the appropriate opcode.

The sample session uses the # character with the LDA
mnemonic to denote the "immediate" addressing mode.
This causes the assembler to assemble LDA into the

opcode 10000110.

The immediate mode means that the number following

the mnemonic (in this case, $F9) is data rather than an
address where the data is stored.

Pseudo ops, symbols, operators, and addressing-mode
characters vary from one assembler to another. Section

HI explains them in detail.

10

Sample Program

This is how each line in the sample program works:

50 ORG $1200

ORG is a pseudo op for "originate." It tells the assem-
bler to begin loading the program at Location $1200
(Hexadecimal 1200). This means that when you load

and run the program from DOS, the program starts at

Memory Address $1200.

G0 BEGIN JMP START

BEGIN is a symbol. It equals the location where the JMP
START instruction is stored.

JMP is a mnemonic for "jump to an address." It causes
the processor to jump to the location of the program

labeled by the symbol START, which is the LDA #$F9
instruction. You must use JMP or LBRA as the first in-

struction in a DOS program.

70 FDB D0NE-BEGIN

FDB is a pseudo op for "store a 2-byte value in mem-
ory." It stores the value of DONE-BEGIN (the length of

the program) in the next two bytes of memory. You must
store this value at the beginning of the program to tell

DOS how much of the program to load.

00100 START LDA #$F9

START is a symbol. It equals the location where LDA
#$F9 is stored.

LDA is a mnemonic for "load Register A." It loads Regis-

ter A with $F9, which is the hexadecimal ASCII code for

a graphics character. The ASCII characters are listed in

Reference K.

00110 LDX *$400

LDX is a mnemonic for "load Register X." It loads Regis-

ter X with $400, the first address of video memory. Ref-

erence J shows where video memory begins and ends.

SCREEN STA)< +

SCREEN is a symbol. It equals the location where STA
,X+ is stored.

STA is a mnemonic for "store Register A." It stores the

contents of Register A ($F9) in the address contained in

Register X ($400). This puts the $F9 graphics character

at the upper left corner of your screen.

The "," and " + " are addressing-mode characters. The
,

causes the processor to store $F9 in the address con-

tained in Register X. The + causes the processor

then increment the contents of Register X to $401

.

to

00130 CMPX #$G00

CMPX is a mnemonic for "compare Register X." It com-
pares the contents of Register X with $600. If Register X
contains $600, the processor sets the "Z" bit in the Reg-
ister CC to 1

.

00140 BNE SCREEN

BNE is a mnemonic for "branch if not equal." It tells the

processor return to SCREEN (the STA,X + instruction)

until the Z bit is set.

The BNE SCREEN instruction creates a loop. The pro-

gram branches back to SCREEN, filling all video mem-
ory addresses with $F9, until it fills Address $600. At that

time, Register X contains $600, Bit Z is set, and program
control continues to the next instruction.

00150 WAIT JSR C$A000]

JSR is a mnemonic for "jump to a subroutine." $A000 is

a memory address that stores the address of a ROM
routine called POLCAT. (See Reference F.)

POLCAT scans the keyboard to see if you press a key.

When you do, it clears the Z bit.

The "[]" are addressing-mode characters. They tell the

processor to use an address contained in an address,

rather than the address itself. Always use the "[]" signs

when calling ROM routines.

001G0 BE0 WAIT

BEQ is a mnemonic for "branch if equal." It branches to

the JSR [$A000] instruction until the Z bit is clear. This

causes the program to loop until you press a key, at

which time POLCAT clears the Z bit.

00170
00180

CLR
JMP

$71
[$FFFE]

CLR is a mnemonic for "clear," and JMP is a mnemonic
for "jump to memory address." These two instructions

end the program and return to BASIC'S startup mes-
sage.

(CLR inserts a zero in Address $71 ; this signals that the

system is at its original "uninitialized" condition. JMP
goes to the address contained in Address $FFFE; this is

where BASIC initialization begins.)

00180 DONE E0U

EQU is a pseudo op. It equates the symbol DONE with

an asterisk (*), which represents the last line in the

program.

11

3 / OVERVIEW

00190 END

END is a pseudo op. It tells the assembler to quit

assembling the program.

12

Section II

COMMANDS

Section II

COMMANDS
This section shows how to use the many
Disk EDTASM commands. Knowing these

commands will help you edit and test your
program.

13

Chapter 4/ Using the DOS Menu
(DOS Commands)

When you first enter DOS, a menu of six DOS com-
mands appear on the screen. Chapter 2 shows how to

use the first two DOS commands. This chapter shows
how to use the remaining commands:

• Start Clock Display

• Disk Allocation Map
• Copy Files

• Directory

To use the examples in this chapter, you need to have
the SAMPLE disk files, which you created in Chapter 2,

on the diskette in Drive 0.

Directory

The DOS "directory" command lets you select the direc-

tory entries you want to see, using three fields: filename,

extension, and drive number.

To select the directory entries, press GD at the DOS
Menu. Then, press the CD to move the cursor left or CD
to move right.

Type this line to select all directory entries that have the

filename SAMPLE.

[SAMPLE**] [***] s[0] <FILE SPEC

Use the (SPACEBAR) to erase characters. Press (ENTER]

when finished. Then, press any key to return to the DOS
menu, and press GD to return to the directory.

Type this line to select all directory entries with the ex-

tension /BIN:

[********] [BIN] :[0] <FILE SPEC

Press (ENTER] when finished. Return to the main menu.

To see all directory entries on the disk in Drive 0, simply

press (ENTER) without specifying a filename or extension:

[********] [***] s[03 <FILE SPEC

Disk Allocation Map

The "disk allocation map" command tells you how much
free space you have on your diskettes. To see the map,
press (A) at the DOS menu.

DOS shows a map of the diskettes that are in each
drive. The map shows how each of the diskette's 68
granules is allocated:

• A period (.) means the granule is free.

• An X means all the sectors in the granule are currently

allocated to a file.

• A number indicates how many sectors in the granule

are currently allocated to a file.

Press any key to return to the DOS menu.

Copy Files

The "Copy Files" command makes a duplicate of a disk

file. To use it, press GD at the DOS menu. DOS then

prompts you for the names of the files.

Single-Drive Copy
The first example copies SAMPLE/ASM to another file

named COPY/ASM. Use the CD and CD to position the

cursor. Answer the prompts as shown:

Source File Name
Extension
Drive

Destination File
Extension
Drive

N a m e

[SAMPLE
[ASM]
[0]

[COPY
[ASM]
[0]

If Drives are the same are
a s i n a different diskettes?

(Y or N) ? [N

]

o u

15

4 / USING THE DOS MENU

When finished, press (ENTER) . DOS copies SAMPLE/
ASM to a new file named COPY/ASM and then returns

to the DOS menu. Check the directory (by pressing GD)
and you'll see that both SAMPLE/ASM and COPY/ASM
are on your diskette.

The next example copies SAMPLE/ASM to another disk-

ette. Answer the prompts as shown:

Multi-Drive Copy
This example copies SAMPLE/ASM in Drive to SAM-
PLE/ASM in Drive 1. Answer the prompts as shown:

Source File Name
Extension
D r i y e

Destination File
Extension
D r i y e

Name

[SAMPLE
[ASM]
[0]

[COPY
[ASM]
[0]

Source File Name
Extension
D r i v e

Destination File
Extension
D r i y e

Name

[SAMPLE
[ASM]
[0]

[SAMPLE
[ASM]
[1]

If Drives are the same are
u s i n 3 different diskettes?
< Y or N)? [Y]

o u

Press (ENTER) . DOS then prompts you to insert the

source diskette. Press (ENTER) again.

DOS then prompts you for a destination diskette. Insert

the destination diskette and press (ENTER) . After copying

the fil e, DOS prompts you for a system diskette. If you
press (ENTER) without inserting a system diskette, you will

get a SYSTEM FAILURE error.

When finished, it returns to the DOS menu.

If Driyes are the same are you
u s i n 4 different disKettes?
(Y or N)? [|\|]

Start Clock Display

The Color Computer has a clock that runs on 60-cycle

interrupts. Since the clock skips a second or more when
the computer accesses tape or disk, we recommend that

you not use it while executing a program.

To use the clock, press 3D, "Start Clock Display." Six

digits appear at the upper right corner of your screen.

The first two are hours, the next are minutes, and the

next are seconds. This clock counts the time until you
exit DOS.

16

Chapter 5/ Examining Memory
ZBUG Commands — Part I

To use the Disk EDTASM, you must understand the

Color Computer's memory. You need to know about

memory to write the program, assemble it, debug it, and
execute it.

In this chapter, we'll explore memory and see some of

the many ways you can get the information you want. To
do this, we'll use ZBUG.

If you are not "in" ZBUG, with the ZBUG # prompt dis-

played, you need to get in it now.

EDTASM: Load and run DOS, then execute the

EDTASM program. At the editor's * prompt, type

CENTER]

EDTASMOV: Load and run DOS, then execute the

ZBUG program.

You should now have a # prompt on your screen. This

means you are in ZBUG and you may enter a ZBUG
command. All ZBUG commands must be entered at this

command level. You can return to the command level by

pressing (BREAK) or (ENTER) .

Examining a
Memory Location

The 6809 can address 65,536 one-byte memory addres-

ses, numbered 0-65535 ($0000-$FFFF). We'll examine

Address $A000. At the # prompt, type:

B (ENTER)

to get into the "byte mode." Then type:

A000/

and ZBUG shows the contents of Address $A000. To
see the contents of the next bytes, press CD- Use CD to

scroll to the preceding address.

Continue pressing CD or CD- Notice that as you use the

CD the screen continues to scroll down. The smaller

addresses are on the lower part of the screen.

All the numbers you see are hexadecimal (Base 16).

You see not only the 10 numeric digits, but also the 6
alpha characters needed for Base 16 (A-F). Unless you
specify another base (which we do in Chapter 9), ZBUG
assumes you want to see Base 16 numbers.

Notice that a zero precedes all the hexadecimal num-
bers that begin with an alphabetic character. This is

done to avoid any confusion between hexadecimal num-
bers and registers.

Examination Modes

To help you interpret the contents of memory, ZBUG
offers four ways of examining it:

• Byte Mode
• Word Mode
• ASCII Mode
• Mnemonic Mode

Byte Mode
Until now, you've been using the byte mode. Typing B
(ENTER) , at the # prompt got you into this mode.

The byte mode displays every byte of memory as a num-
ber, whether it is part of a machine-language program or

data.

In this examination mode, the CD increments the ad-

dress by one. The CD decrements the address by one.

17

S / EXAMINING MEMORY

Word Mode
Type (ENTER) to get back to the # prompt. To enter the

word mode, type:

IaI CENTER)

Look at the same memory address again. Press the CD
key a few times. In this mode, the CD increments the

address by two. The numbers contained in each address

are the same, but you are seeing them two bytes or one
word at a time.

Press the CD a few times. The CD always decrements
the address by one, regardless of the examination

mode.

Look at Address $A000 again by typing:

A000/

Note the contents of this address "word." This is the

address where POLCAT, a ROM routine, is stored.

Examine the POLCAT routine. For example, if $A000
contains A1C1, type:

Aici/

and you'll see the contents of the first two bytes in the

POLCAT routine. Well examine this routine later in this

chapter using the "mnemonic mode."

ASCII Mode
Return to the command level. To enter the ASCII mode,
type:

A CENTER)

ZBUG now assumes the content of each memory
address is an ASCII code. If the "code" is between $21

and $7F, ZBUG displays the character it represents.

Otherwise, it displays meaningless characters or

"garbage."

Here, the CD increments the address by one.

Mnemonic Mode
This is the default mode. Unless you ask for some other

mode, you will be in the default mode.

Return to the # prompt. To enter the mnemonic mode
from another mode, type:

M (ENTER)

Look at the addresses where the POLCAT routine is

stored. For example, if you found that POLCAT is at

address $A1C1, type:

Aid/

Press the (T) a few times. In the mnemonic mode,
ZBUG assumes you're examining an assembly language
program. The CD increments memory one to five bytes

at a time by "disassembling" the numbers into the mne-
monics they represent.

For example, assume the first two addresses in POL-
CAT contain $3454. $3454 is an opcode for the PSHS
U,X,B mnemonic. Therefore, ZBUG disassembles $3454
into PSHS U,X,B.

Begin the disassembly at a different byte. Press (BREAK)

and then examine the address of POLCAT plus one. For

example, if POLCAT starts at address $A1C1, type:

A1C2/

You now see a different disassembly. The contents of

memory have not changed. ZBUG has, however, inter-

preted them differently.

For example, assume $A1C2 contains a $54. This is the

opcode for the LSRB mnemonic. Therefore, ZBUG dis-

assembles $54 into LSRB.

To see the program correctly, you must be sure you are

beginning at the correct byte. Sometimes, several bytes

will contain the symbol "??". This means ZBUG can't

figure out which instruction is in that byte and is possibly

disassembling from the wrong point. The only way of

knowing you're on the right byte is to know where the

program starts.

Changing Memory

As you look at the contents of memory addresses, notice

that the cursor is to the right. This allows you to change
the contents of that address. After typing the new con-

tents, press (ENTER) or CD; the change will be made.

To show how to change memory, we'll open an address
in video memory. Get into the byte mode and open
Address $01 5A by typing:

(BREAK) B (ENTER)

015A/

Note that the cursor is to the right. To put a 1 in that

address, type:

i CENTER)

18

If you want to change the contents of more than one
address, type:

015A/

Then type:

DDQD
This changes the contents to DD and lets you change
the next address. (Press the CD to see that the change
has been made.)

The size of the changes you make depends on the ex-

amination mode you are in. In the byte mode, you will

change one byte only and can type one or two digits.

In the word mode, you will change one word at a time.

Any 1-, 2-, 3-, or 4-digit number you type will be the new
value of the word.

If you type a hexadecimal number that is also the name
of a 6809 registers (A,B,D,CC,DP,X,Y,U,S,PC), ZBUG
assumes it's a register and gives you an "EXPRESSION
ERROR." To avoid this confusion, include a leading zero

(0A.0B, etc.)

To change memory in the ASCII mode, use an apos-

trophe before the new letter. For example, here's how to

write the letter C in memory at Address $01 5A. To get

into the ASCII examination mode, type:

A CENTER]

To open Address $015A,type:

015A/

To change its contents to a C, type:

'C QD

Pressing the CD will assure you that the address con-

tains the letter C.

If you are in mnemonic mode, you must change one to

five bytes of memory depending on the length of the

opcode. Changing memory is complex in mnemonic
mode because you must type the opcodes rather than

the mnemonic.

For example, get into the mnemonic mode and open
Address $01 5A. Type:

M CENTER]

015A/

To change this instruction, type:

8G CENTER)

Now Address $01 5A contains the opcode for the LDA
mnemonic. Open location 01 5B:

015B/

and insert $06, the operand:

Upon examining Address $01 5A again, you'll see it now
contains an LDA #6 instruction.

Exploring the
Computer's Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Reference J.

Don't hesitate to try commands or change memory. You
can restore anything you alter simply by removing the

diskette and turning the computer off and then on again.

19

Chapter 6/ Editing the Program
Editor Commands

The editor has many commands to help you edit your

source program. Chapter 2 shows how to enter a source
program. This chapter shows how to edit it.

To use the edit commands you must return to the editor

from ZBUG:

EDTASM: From EDTASM ZBUG, return to the edi-

tor by typing E (ENTER)

EDTASMOV: From Stand-Alone ZBUG, return to

the DOS menu by typing K [ENTER) . Then, execute

the EDTASMOV program.

The screen now shows the editor's * prompt. While in

the editor
,
you can return to the * prompt at any time by

pressing (BREAK) .

This chapter uses SAMPLE/ASM from Chapter 2 as an
example. To load SAMPLE/ASM into the editor, type:

To print the entire text of the sample program, type:

L SAMPLE/ASM (ENTER)

Print Command
Prange

To print a line of the program on the screen, type:

P100 (ENTER)

To print more than one line, type:

P100: 130 (ENTER)

You will often refer to the first line, last line, and current

line (the last line you printed or inserted). To make this

easier, you can refer to each with a single character:

first line

* last line

• current line (the last line you printed or

inserted.)

To print the current line, type:

P#:* (ENTER)

This is the same as P050:200 (ENTER) .

The colon separates the beginning and ending lines in a
range of lines. Another way to specify a range of lines is

with !. Type:

and five lines of your program, beginning with the first

one, are printed on the screen.

To stop the listing while it is scrolling, quickly type:

(SHIFT) @

To continue, press any key.

Printer Commands
Hrange
Trange

If you have a printer, you can print your program with the

H and T commands. The H command prints the editor-

supplied line numbers. The T command does not.

To print every line of the edit buffer to the printer, type:

H#:* (ENTER)

You are prompted with:

PRINTER READY

P. (ENTER)

Respond with (ENTER) when ready.

The next example prints six lines, beginning with line

100, but without the editor-supplied line numbers. Type:

T100 !B (ENTER)

Edit Command
Eline

You can edit lines in the same way you edit Extended

21

B / EDITING THE SOURCE PROGRAM

COLOR BASIC lines. For example, to edit line 100, type:

E100 CENTER]

The new line 100 is displayed below the old line 100 and

is ready to be changed.

Press the (SPACEBAR) to position the cursor just after

START. Type this insert subcommand:

IED (ENTER]

which inserts ED in the line.

The edit subcommands are listed in Reference A.

Delete Command
Orange

If you are using the sample program, be sure you have
written it on disk before you experiment with this com-
mand. Type:

D110s 140 (ENTER!

Lines 1 10 through 140 are gone.

Insert Command
\startline, increment

Type:

1152 ,2 (INTER]

You may now insert lines (up to 127 characters long)

beginning with line 152. Each line is incremented by two.

(The editor does not allow you to accidently overwrite an

existing line. When you get to line 160, it gives you an

error message.)

Press (BREAK] to return to the command level. Then type:

1200 (EHtm

This lets you begin inserting lines at the end of the pro-

gram. Each line is incremented by two, the last incre-

ment you used.

Type:

(BREAK) I (ENTER)

The editor begins inserting at the current line.

On startup, the editor sets the current line to 100 and the

increment to 10. You may use any line numbers be-

tween and 63999.

Renumber Command
Nstartlinejncrement

Another command that helps with inserting lines be-

tween the lines is N (for renumber). From the command
level, type:

N100 ,50 CENTER]

The first line is now Line 100 and each line is in-

cremented by 50. This allows much more room for in-

serting between lines.

Type:

N (ENTER)

The current line is now the first line number.

Renumber now so you will be ready for the next instruc-

tion. Type:

N100 ,10 (ENTER)

Replace Command
Rstartline/mcrement

The replace command is a variation of the insert com-
mand. Type:

R100 ,3 (ENTER)

You may now replace line 100 with a new line and begin

inserting lines using an increment of three.

Copy Command
C$tartline,range,increment

The copy command saves typing by duplicating any part

of your program to another location in the program.

To copy lines, type:

C500 ,100: 150 ,10 (ENTER)

This copies lines 100 to 150 to a new location beginning

at Line 500, with an increment of 10. An attempt to copy
lines over each other will fail.

ZBUG Command
The EDTASM system contains a copy of the stand-alone

ZBUG program. This allows you to enter ZBUG while

your program is still in memory.

EDTASMOV Users: You need to use the Stand-

Alone ZBUG program, as shown in Chapter 2.

22

To enter ZBUG, type:

Z CENTER]

The # prompt tells you that you are now in ZBUG.

To re-enter the editor from ZBUG, type the ZBUG
command:

E CENTER)

If you print your program, you'll see that entering and
exiting ZBUG did not change it.

BASIC Command
To enter BASIC from the editor, type:

(ENTER)

If you want to enter DOS from the editor, type:

K CENTER)

Entering DOS or BASIC empties your edit buffer. Re-

entering the editor empties your BASIC buffer.

Write Command
WD filespec

This command is the same one you used in Chapter 2 to

write the source program to disk. It saves the program in

a disk file named filespec. Filespec can be in one of

these forms:

filenameIextdrive

filename.extdrive

The filename can be one to eight characters. It is

required.

The extension can be one to three characters. It is

optional. If the extension is omitted, the editor assigns

the file the extension /ASM.

The drive can be a number from to 4. It is also option-

al. If the drive number is omitted, the editor uses the first

available drive.

Examples:

WD TEST CENTER)

saves source file currently in memory as TEST/ASM.

ND TEST/PR1

saves the source file currently in memory as TEST/PR1

Load Command
LD filespec

LDA filespec

This command loads a source filespec from disk into the

edit buffer. If the source filespec you specify does not

have an extension, the editor uses /ASM.

If you don't specify the A option, the editor empties the

edit buffer before loading the file.

If you specify the A option, the editor appends the file to

the current contents of the edit buffer.

Appending files can be useful for chaining long pro-

grams. When the second file is loaded, simply renumber
the file with the renumber command.

Examples:

LD SAMPLEsl

empties the edit buffer, then loads a file named SAM-
PLE/ASM from Drive 1

.

LDA SAMPLE/PRO

loads a file named SAMPLE/PRO from the first available

drive, then appends to the current contents of the edit

buffer.

The editor has several other commands. These are

listed in Reference A.

Hints on Writing Your Program
• Copy short programs from any legal source available

to you. Then modify them one step at a time to learn

how different commands and addressing modes work.

Try to make the program relocatable by using in-

dexed, relative, and indirect addressing (described in

Section III).

• Try to write a long program as a series of short

routines that use the same symbols. They will be
easier to understand and debug. They can later be
combined into longer routines.

Note: You can use the editor to edit your BASIC pro-

grams, as well as assembly language programs. You
might find this very useful since the EDTASM editor is

much more powerful than the BASIC editor. You need
to first save the BASIC program in ASCII format:

SAVE filespec, A

Then, load the program into the editor.

23

Chapter 7/ Assembling the Program
(Assembler Commands)

To load the assembler program and assemble the

source program into 6809 machine code, EDTASM (or

EDTASMOV) has an "assembly command." Depending
on how you enter the command, the assembler:

• Shows an "assembly listing" giving information on
how the assembler is assembling the program.

• Stores the assembled program in memory.

• Stores the assembled program on disk.

• Stores the assembled program on tape.

This chapter shows the different ways you can control

the assembly listing, the in-memory assembly, and the

disk assembly. Knowing this will help you understand

and debug a program.

The Assembly Command

The command to assemble your source program into

6809 machine code is:

Assembling in memory:

A /IM /switch2/switch3f . . .

The /IM (in memory) switch is required.

Assembling to disk:

A filespec /switch1/switch2/ . . .

The assembled program is stored on disk as filespec. If

filespec does not include an extension, the assembler

uses /BIN.

The assembled program is stored on tape as filename.

The switch options are as follows:

/AO
/IM

/LP

/MO
/NL

/NO
/NS
/SR
/SS
/WE
/WS

Absolute origin

Assemble into memory
Assembler listing on the line printer

Manual origin

No listing

No object code in memory or disk

No symbol table in the listing

Single record

Short screen listing

Wait on assembly errors

With symbols

You may use any combination of the switch options. Be
sure to include a blank space before the first switch. If

you omit filespec, you must use the in-memory switch

(/IM).

Examples:

A/IM/WE

assembles the source program in memory (/IM) and
stops at each error (/WE).

A TEST /LP

assembles the source program and saves it on disk as
TEST/BIN. The listing is printed on the printer (/LP).

Note that there must be a space between the filespec

and the switch.

A TEST/PRO

assembles the source program and saves it on disk as

TEST/PRO.

Assembling to tape:

A filename Iswitch1iswitch2i .

.

25

7 / ASSEMBLING THE PROGRAM

1

.

The location in memory where the assembled code
will be stored. In this example, the assembled code
for LDA#$F9 will be stored at hexadecimal location

#1200.

2. The assembled code for the program line. $86F9 is

the assembled code for LDA #$F9.

3. The program line.

4. The number of errors. If you have errors, you will

want to assemble the program again with the /WE
switch.

5. The symbols you used in your program and the

memory locations they refer to.

Figure 1. Assembly Display Listing

26

Controlling the
Assembly Listing

The assembler normally displays an assembly listing

similar to the one in Figure 1. You can alter this listing

with one of these switches:

/SS Short screen listing

/NS No symbol table in the listing

/NL No Hsting

/LP Listing printed on the printer

For example:

A SAMPLE /NS

assembles SAMPLE and shows a listing without the

symbol table.

If you are printing the listing on the printer, you might

want to set different parameters. You can do this with

the editor's "set line printer parameters" command:

To use this command, type (at the * prompt):

S (ENTER)

The editor shows you the current values for:

• LINCNT — the number of lines printed on each page,

("line count")

• PAGLEN — the number of lines on a page, ("page

length")

• PAGWID — the number of columns on a page, ("page

width")

• FLDFLG — the "fold flag" (This flag should contain 1

if your printer does not "wrap around." Otherwise, the

flag should contain 0.)

EDTASMOV PROGRAM

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM
STARTS HERE

S36D6

TOP OF RAM
$3FFF(16K)
$7FFF (32K)

It then prompts you for different values. Check your

printer manual for the appropriate parameters. If you
want the value to remain the same, simply press (ENTER) .

For example:

LINCNT=58
PAGLEN=GG
PAGWID=80
FLDFLG=0

sets the number of lines to 58, the page length to 66,

and the page width to 80 columns. You can then assem-
ble the program with the /LP switch:

A SAMPLE /LP

and the assembler prints the listing on the line printer

using the parameters just set.

In-Memory Assembly
The /IM Switch

The /IM switch causes the program to be assembled in

memory, not on disk or tape. This is a good way to find

errors in a program.

Where in memory? This depends on whether you use

the /IM switch alone or accompany it with an ORG in-

struction, an /AO switch, or an /MO switch.

Using the /IM Switch Alone

This is the most efficient use of memory. The assembler

stores your program at the first available address after

the EDTASM (or EDTASMOV) program, the edit buffer,

and the symbol table:

EDTASM PROGRAM

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM
STARTS HERE

$4A2E

TOP OF RAM

Figure 2. In-Memory Assembly

S7FFF (32K)

27

7 / ASSEMBLING THE PROGRAM

The EDTASM program ends at Address $4A2D. The
EDTASMOV program ends at $36D5.

The edit buffer contains the source program. It begins at

Address $4A2E or $36D6 and varies in size depending
on your program's length.

The macro table references all the macro symbols in

your program and their corresponding values. (Macros
are described in Chapter 12.) Its size varies depending
on how many macros your program contains.

The symbol table references all your program's symbols
and their corresponding values. Its size varies depend-
ing on how many symbols your program contains.

Example:

Load the SAMPLE/ASM back into the edit buffer. At the *

prompt, type:

L SAMPLE/ASM (ENTER)

Delete the ORG line. At the * prompt, type:

D50 CENTER)

Then assemble the program in memory by typing:

A/IM (ENTER)

(If you want another look, type A/IM again. You can
pause the display by pressing (SHIFT) (M) and continue

by pressing any key.)

Since this sample program uses START to label the be-

ginning of the program, you can find its originating

address from the assembler listing. If you are using

EDTASM, it should begin at Address $4B1E. If you are

using EDTASMOV, it should begin at $37C6.

EDTASMOV PROGRAM

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM
STARTS HERE

$36D6

$3800

TOP OF RAM

Using ORG with /IM

for Origination Offset

If you have an ORG instruction in your program and do
not use the AO switch, the assembler stores your pro-

gram at:

the first available address + the value of ORG

Example:

Insert this line at the beginning of the sample program:

EDTASM Systems:

0050 ORG $G000

EDTASMOV Systems:

0050 ORG $3800

Then, at the * prompt, type:

The START address is now the first available address +
$6000 or $3800. This means that if you have less than

32K (with EDTASM) or less than 16K (with EDTAS-
MOV), the program extends past the top of RAM and
you will get a BAD MEMORY error.

Using IM with /AO for Absolute Origin

The AO switch causes the assembler to store your pro-

gram "absolutely" at the address specified by ORG.

With the ORG instruction inserted, type (at the * prompt):

A/IM/AO (ENTER)

Your program now starts at address $6000 or $3800:

EDTASM PROGRAM

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM
STARTS HERE

$3FFF(16K)
$7FFF(32K)

Figure 3. /AO In-Memory Assembly.

$4A2E

$6000

TOP OF RAM $7FFF (32K)

28

As you can see, the AO switch set the location of the

assembled program only. It did not set the location of the

edit buffer or the symbol table.

If your ORG instruction does not allow enough memory
for your program, you will get a BAD MEMORY error.

The assembler cannot store your program beyond the

top of RAM.

Using /MO with /IM

for Manual Origin

The /MO switch causes your program to be assembled
at the address set by USRORG (plus the value set in

your ORG instruction, if you use one). To set USRORG,
use the editor's "origin" command.

Before setting USRORG, remove the ORG instruction

from your program. Then, at the * prompt, type:

(ENTER)

The editor shows you the current values for:

• FIRST — the first hexadecimal address available

• LAST — the last hexadecimal address available

• USRORG — the current hexadecimal value of

USRORG. (On startup, USRORG is

set to the top of RAM.)

It then prompts you for a new value for USRORG . If you
want USRORG to remain the same, press (ENTER) .

If you want to enter a new value, it must be between the

FIRST address and LAST address. Otherwise, you will

get a BAD MEMORY error.

EDTASM Systems: Set USRORG to $6050:

USRORG = B050 (ENTER)

EDTASMOV Systems: Set USRORG to $3800:

USRORG = 3800 (ENTER)

After setting USRORG, you can assemble the program

at the USRORG address. Type:

A/IM/MO CENTER)

Your assembled program now starts at Address $6050
or $3800:

EDTASMOV PROGRAM

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM
STARTS HERE

$36D6

TOP OF RAM

$3800

$3FFF (16K)

$7FFF(32K)

EDTASM PROGRAM

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM
STARTS HERE

$4A2E

TOP OF RAM

$6050

$7FFF (32K)

Figure 4. /MO In-Memory Assembly.

29

7 / ASSEMBLING THE PROGRAM

Disk Assembly

When you specify a filespec in the assembler command,
the assembler saves the assembled program on disk.

You can then load the program from one of these

systems:

• DOS (to run as a stand-alone program)

• ZBUG (to debug with the stand-alone ZBUG program)

• BASIC (to call from a BASIC program)

The program originates at the address you specify in the

ORG instruction.

What address you should use as the originating address

depends upon which of the three systems you will be

loading it into.

Assembling for DOS
Reference J shows the memory map that is in effect

when DOS is loaded. As you can see, DOS consumes
all the memory up to Address $1200. This means you

must originate the program after $1200 or you will over-

write DOS.

In the sample program, reinsert the ORG $1200
instruction:

50 ORG $120

and assemble it to disk by typing:

A SAMPLE /SR CENTER)

Note the /SR switch. You must use /SR when assem-
bling to disk a program that you plan to load back into

DOS. This puts the program in the format expected by

DOS.

The assembler saves SAMPLE/BIN to disk with a start-

ing address of $1200. You can now load and execute

SAMPLE/BIN from the DOS menu.

Assembling for Stand-Alone
ZBUG (EDTASMOV Users)

If you plan to use the stand-alone ZBUG for debugging

your program, you need to save the program on disk so

that you can load it into ZBUG.

Reference J also shows the memory map that is in effect

when ZBUG is loaded. As you can see, you must use an
originating address of at least $3800 or you will overwrite

ZBUG. Change the ORG instruction to:

50 ORG $380'

So that you can test this from ZBUG, without the pro-

gram returning to BASIC, you need to change the ending

of it. First, delete the CLR instruction in Line 170:

D170 [ENTER]

Then, change the JMP instruction in Line 180 to this:

180 SWI

After making the changes to the program, assemble it to

disk by typing:

A SAMPLE/BUG /WS (ENTER]

The assembler saves SAMPLE/BUG on disk with a start-

ing address of $3800. The /WS switch causes the

assembler to save the symbol table also.

Hints On Assembly

• Use a symbol to label the beginning of your program.

• When doing an in-memory assembly on a program
with an ORG instruction, you may want to use the /AO
switch. Otherwise, the assembler will not use ORG as

the program's originating address. It will use it to

offset (add- to) the loading address.

• The /WE switch is an excellent debugging tool. Use it

to detect assembly errors before debugging the

program.

• If you would like to examine the edit buffer and symbol
table after an in-memory assembly, use ZBUG to ex-

amine the appropriate memory locations.

30

Chapter 8/ Debugging the Program
(ZBUG Commands — Part II)

ZBUG has some powerful tools for a trial run of your

assembled program. You can use them to look at each
register, every flag, and every memory address during

every step of running the program.

Before reading any further, you might want to review the

ZBUG commands you learned in Chapter 5. We will be

using these commands here.

Preparing the
Program for ZBUG

In this chapter, we'll use the sample program from

Chapter 2 to show how to test a program. How you load

the program into ZBUG depends on whether you are us-

ing EDTASM's ZBUG program or the stand-alone ZBUG
program.

EDTASM ZBUG:
If you are using EDTASM, you can use EDTASM's
ZBUG program.

1. Load SAMPLE/ASM into EDTASM (if it's not already

loaded).

2. So that your program will be in the same area of

memory as ours, change the ORG instruction to:

50 ORG $58(3(3

3. So that you can test the program properly from

ZBUG (without the program returning to BASIC),

you need to change the program's ending. First, de-

lete the CLR instruction in Line 170:

D170 (ENTER)

Then, change the JMP instruction in Line 180 to

this:

Assemble the program in memory using the /IM and
/AO switches. At the * prompt, type:

A/IM/AO CENTER)

Enter ZBUG. At the * prompt, type:

Z CENTER)

When the # prompt appears, you're in ZBUG and
can test the sample program.

Stand-Alone ZBUG:
If you are using EDTASMOV, you should use the Stand-

Alone ZBUG.

1

.

Assemble SAMPLE/BUG to disk as instructed in the

last chapter ("Assembling for Stand-Alone ZBUG").

2. Return to DOS and execute the stand-alone ZBUG
program:

EXECUTE A PROGRAM
PROGRAM NAME CZBUG]/BIN

ZBUG loads and displays its # prompt.

3. Load SAMPLE/BUG, along with its symbol table,

into ZBUG. Type:

LDS SAMPLE/BUG (ENTER)

When the # prompt appears, you're ready to test the

sample program with ZBUG.

180 SWI

Display Modes

In Chapter 5, we discussed four examination modes.
ZBUG also has three display modes.

We'll examine each of these display modes from the

mnemonic examination mode. If you're not in this mode,
type M (ENTER) to get into it.

31

B / DEBUGGING THE PROGRAM

Numeric Mode
Type:

N CENTER)

and examine the memory addresses that contain your

program: $5800-$5817 for EDTASM's ZBUG or $3800-
$3817 for Stand-Alone ZBUG.

In the numeric mode, you do not see any of the symbols
in your program (BEGIN, START, SCREEN, WAIT, and
DONE). All you see are numbers. For example, with

EDTASM's ZBUG, Address $580F shows the instruction

BNE 580A rather than BNE SCREEN.

Symbolic Mode
From the command level, type:

S (ENTER)

and examine your program again. ZBUG displays your

entire program in terms of its symbols (BEGIN, START,
SCREEN, WAIT, and DONE). Examine the memory
address containing the BNE SCREEN instruction and
type:

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (580A or 380A).

Half-Symbolic Mode
From the command level, type:

H (ENTER)

and examine the program. Now all the memory addres-

ses (on the left) are shown as symbols, but the operands
(on the right) are shown as numbers.

Using Symbols to

Examine Memory

Since ZBUG understands symbols, you can use them in

your commands. For example, with EDTASM's ZBUG,
both these commands open the same memory address
no matter which display mode you are in:

6EGIN/
5800/

Both of these commands get ZBUG to display your en-

tire program:

T BEGIN DONE
T 5800 5817

You can print this same listing on your printer by substi-

tuting TH for T.

Executing the Program

You can run your program from ZBUG using the G (Go)

command followed by the program's start address:

EDTASM ZBUG: Type either of the following:

GBEGIN CENTER)

G5800 CENTER)

Stand-Alone ZBUG: Type either of the following:

GBEGIN CENTER)

G3800 CENTER)

The program executes, filling all of your screen with a

pattern made up of F9 graphics characters. If you don't

get this pattern, the program probably has a "bug." The
rest of the chapter discusses program bugs.

After executing the program, ZBUG displays 8 BRK @
5817, 8 BRK @ 3817, or 8 BRK @ DONE. This tells you
the program stopped executing at the SWI instruction lo-

cated at Address DONE. ZBUG interprets your closing

SWI instruction as the eighth or final "breakpoint" (dis-

cussed below).

Setting Breakpoints

If your program doesn't work properly, you might find it

easier to debug it if you break it up into small units and
run each unit separately. From the command level, type

X followed by the address where you want execution to

break.

We'll set a breakpoint at the first address that contains

the symbol SCREEN: $580A for EDTASM's ZBUG or

380A for Stand-Alone ZBUG.

EDTASM ZBUG: Type either of the following:

XSCREEN [ENTER)

X580A

32

Stand-Alone ZBUG: Type either of the following:

X5CREE N (ENTER)

X380A CENTER)

Type:

Now type GBEGIN (ENTER) to execute the program. Each
time execution breaks, type:

C (ENTER)

to continue. A graphics character appears on the screen

each time ZBUG executes the SCREEN loop. (The char-

acters appear to be in different positions because of

scrolling.You will not see the first 32 characters because
they scroll off the screen.)

Type:

D (ENTER)

to display all the breakpoints you have set. (You may set

up to eight breakpoints numbered through 7.)

Type:

C10 (ENTER)

and the tenth time ZBUG encounters that breakpoint, it

halts execution.

Type:

Y CENTER)

This is the command to "yank" (delete) all breakpoints.

You can also delete a specific breakpoint. For example:

Y0 (ENTER)

This deletes the first breakpoint (Breakpoint 0).

You may not set a breakpoint in a ROM routine. If you
set a breakpoint at the point where you are calling a

ROM routine, the C command will not let you continue.

Examining Registers
and Flags

Type:

R CENTER)

What you see are the contents of every register during

this stage of program execution. (See Chapter 10 for

definition of all the 6809 registers and flags.)

Look at Register CC (the Condition Code). Notice the

letters to the right of it. These are the flags that are set in

Register CC. The E, for example, means the E flag is

set.

A /

and ZBUG displays only the contents of Register X. You
can change this in the same way you change the con-

tents of memory. Type:

(ENTER)

and the Register X now contains a zero.

Stepping Through
the Program

Type:

BEGIN t Note the comma!

LDA #$F9 is the next instruction to be executed. The
first instruction, JMP START, has just been executed. To
see the next instruction, type:

* Simply a co m m

a

Now, LDA #$F9 has been executed and LDX #$500 is

the next. Type:

R (ENTER)

and you'll see this instruction has loaded Register A with

$F9.

Use the comma and R command to continue single-

stepping through the program examining the registers at

will. If you manage to reach the JSR [$A000] instruction,

ZBUG prints:

CAN'T CONTINUE

ZBUG cannot single-step through a ROM routine or

through some of the DOS routines.

Transferring a Block
of Memory

EDTASM ZBUG: Type:

U 5800 5000 S (ENTER)

Stand-Alone ZBUG: Type:

U 3800 3850 B (ENTER)

Now the first six bytes of your program have been
copied to memory addresses beginning at 5000 or 3850.

33

8 / DEBUGGING THE PROGRAM

Saving Memory to Disk

To save a block of memory from ZBUG, including the

symbol table, type:

EDTASM ZBUG: PS TEST/BUG 5800
5817 5800 (ENTER)

Stand-Alone ZBUG
3817 3800 (ENTER!

PS TEST/BUG 3800

This saves your program on disk, beginning at Address
5800 (or 3800) and ending at Address 5817 (or 3817).

The last address is where your program begins execu-
tion when you load it back into memory. In this case, this

address is the same as the start address.

To load TEST/BUG and its symbol table back into

ZBUG, type:

LDS TEST/BUG (ENTER)

Hints on Debugging
• Don't expect your first program to work the first time.

Have patience. Most new programs have bugs. De-

bugging is a fact of life for ail programmers, not just

beginners.

• Be sure to make a copy of what you have in the edit

buffer before executing the program. The edit buffer is

not protected from machine language programs.

34

Chapter 9/ Using the ZBUG Calculator
(ZBUG Commands — Part III)

ZBUG has a built-in calculator that performs arithmetic,

relational, and logical operations. Also, it lets you use
three different numbering systems, ASCII characters,

and symbols.

This chapter contains many examples of how to use the

calculator. Some of these examples use the same
assembled program that we used in the last chapter.

Stand-Alone ZBUG: Some of the memory
addresses we use in the examples are too high for

your system. Subtract $1000 from all the hexadeci-

mal addresses and 4096 from all the decimal
numbers.

Numbering System Modes
ZBUG recognizes numbers in three numbering systems:

hexadecimal (Base 16), decimal (Base 10), and octal

(Base 8).

Output Mode
The output mode determines which numbering system

ZBUG uses to output (display) numbers. From the ZBUG
command level, type:

010 CENTER)

Examine memory. The T at the end of each number
stands for Base 10. Type:

08 CENTER)

Examine memory. The Q at the end of each number
stands for Base 8. Type:

Input Mode
You can change input modes in the same way you
change output modes. For example, type:

110 (ENTER)

Now, ZBUG interprets any number you input as a Base
10 number. For example, if you are in this mode and
type:

T 49152 491G2 CENTER)

ZSBUG shows you memory addresses 49152 (Base 10)

through 49162 (Base 10). Note that what is printed on
the screen is determined by the output mode, not the

input mode.

You can use these special characters to "override" your

input mode:

BASE BEFORE NUMBER AFTERNUMBER
Base 10

Base 16

Base 8

&
$

@

T
H
Q

016 CENTER)

You're now back in Base 16, the default output mode.

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:

T 49152 $C010 CENTER]

The "$" overrides the 110 mode. ZBUG, therefore, inter-

prets C010 as a hexadecimal number. As another exam-
ple, get into the 116 mode and type:

T 49152T C010 CENTER)

Here, the "T" overrides the 116 mode. ZBUG interprets

49152 as decimal.

35

9 / USING THE ZBUG CALCULATOR

Operations
ZBUG performs many kinds of operations for you. For

example, type:

C000+25T/

and ZBUG goes to memory address C019 (Base 16),

the sum of C000 (Base 16) and 25 (Base 10). If you
simply want ZBUG to print the results of this calculation,

type:

C000+25T=

On the following pages, we'll use the terms "operands,"

"operators," and "operation." An operation is any cal-

culation you want ZBUG to solve. In this operation:

1 + 2 =

"1" and "2" are the operands. " + " is the operator.

Operands

You may use any of these as operands:.

1. ASCII characters

2. Symbols

3. Numbers (in either Base 8, 10, or 16) — Please note

that ZBUG recognizes integers (whole numbers) only

Examples (Get into the 016 mode):

'A =

prints 41, the ASCII hexadecimal code for "A".

START=

prints the START address of the sample program. (It will

print UNDEFINDED SYMBOL if you don't have the sam-
ple program assembled in memory.)

150 =

prints the hexadecimal equivalent of octal 15.

If you want your results printed in a different numbering

+

.DIV.

.MOD.
+

system, use a different output mode. For example, get

into the 01 mode and try the above examples again.

Operators

You may use arithmetic, relational, or logical operators.

(Get into the 016 mode for the following examples.)

Arithmetic Operators

Addition

Subtraction

Multiplication

Division

Modulus
Positive

Negative

Examples:

DONE-START=

prints the length of the sample program (not including

the SWI at the end).

9* DIM* 2=

prints 4. (ZBUG can divide integers only.)

9*M0D t 2=

prints 1, the remainder of 9 divided by 2.

1-2 =

prints OFFFF,65535T, or 177777Q, depending on which

output mode you are in. ZBUG does not use negative

numbers. Instead, it uses a "number circle" which oper-

ates on modulus 10000 (hexadecimal):

FFFD

minus
equals 2
FFFF 1

Figure 5. Number Circle Illustration of Memory.

36

To understand this number circle, you can use the clock

as an analogy. A clock operates on modulus 12 in the

same way the ZBUG operates on modulus 10000.
Therefore, on a clock, 1 :00 minus 2 equals 1 1 :00:

11:00

10:00

3:00

minus
equals 2

11:00 1 :00

Figure 6. Number Circle illustration of Clock.

Relational Operators

Equal to

Not Equal to

.EQU.
NEQ*

These operators determine whether a relationship is true

or false.

Examples:

5*EQU*5=

prints 0FFFF, since the relationship is true. (ZBUG prints

65535T in the 01 mode or 177777Q in the 08 mode.)

5*NEQ*5=

prints 0, since the relationship is false.

Logical Operators

Shift

LogicalAND AND*
InclusiveOR .OR*
ExclusiveOR XOR*
Complement NOT,

Logical operators perform bit manipulation on bi-

nary numbers. To understand bit manipulation, see the

6809 assembly language book we referred to in the

introduction.

Examples:

10<2 =

shifts 10 two bits to the left to equal 40. The 6809 SL
instruction also performs this operation.

10<-2=

shifts 10 two bits to the right to equal 4. The 6809 ASR
instruction also performs this operation.

G*X0R*5=

prints 3, the exclusive or of 6 and 5. The 6809 EOR
instruction also performs this operation.

Complex Operations

ZBUG calculates complex operations in this order:

+ DIM* MOD* <

AND*
0R *X0R

+

EQU* *NEQ*

You may use parentheses to change this order.

Examples:

4 + 4*DU'*2 =

The division is performed first.

(4+4) .DIM. 2=

The addition is performed first.

4*4*DH'*4 =

The multiplication is performed first.

37

Ill

LANGUAGE

Ill

ASSEMBLY LANGUAGE
This section gives details on the Disk
EDTASM assembly language. It does not ex-

plain the 6809 mnemonics, however, since

there are many books available on the 6809.

To learn about 6809 mnemonics, read one
of the books listed in "About This Manual." If

you need more technical information on the

6809, read:

MC6809-MC6809E
8-Bit Microprocessor Programming
Manual
Motorola, Inc.

39

Chapter 1 0/

Writing the Program

Chapter 3 gives a general description of assembly lan-

guage instructions. This chapter describes them in

detail.

The 6809 Registers

The 6809 contains nine temporary storage areas that

you may use in your program:

V&feGISTER '' ^uu-tv
\:.-'

,

\;:
;i^scaira<M.-v-w;

A 1 byte Accumulator

B 1 byte Accumulator

D 2 bytes Accumulator

(a combination

of A and B)

DP 1 byte Direct Page

CC 1 byte Condition Code

PC 2 bytes Program Counter

X 2 bytes Index

Y 2 bytes Index

U 2 bytes Stack Pointer

S 2 bvtes Stack Pointer

Table 2. 6809 Registers

Registers A and B can manipulate data and perform

arithmetic calculations. They each hold one byte of data.

If you like, you can address them as D, a single 2-byte

register.

Register DP is for direct addressing. It stores the most

significant byte of an address. This lets the processor

directly access an address with the single, least signifi-

cant byte.

Registers X and Y can each hold two bytes of data.

They are mainly for indexed addressing.

Register PC stores the address of the next instruction to

be executed.

Registers U and S each hold a 2-byte address that

points to an entire "stack" of memory. This address is

the top of the stack + 1. For example, if Register U
contains 0155, the stack begins with Address 154 and
continues downwards.

The processor automatically points Register S to a stack

of memory during subroutine calls and interrupts. Regis-

ter U is solely for your own use. You can access either

stack with the PSH and PUL mnemonics or with indexed

addressing.

Register CC is for testing conditions and setting inter-

rupts. It consists of eight "flags." Many mnemonics "set"

or "clear" one or more of these flags. Others test to see
if a certain flag is set or clear.

This is the meaning of each flag, if set:

C (Carry), Bit — an 8-bit arithmetic operation

caused a carry or borrow from the most significant

bit.

V (Overflow), Bit 1 — an arithmetic operation

caused a signed overflow.

Z (Zero), Bit 2

tion is zero.

the result of the previous opera-

N (Negative), Bit 3 — the result of the previous

operation is a negative number.

I (Interrupt Request Mask), Bit 4 — any requests

for interrupts are disabled.

H (Half Carry), Bit 5 — an 8-bit addition operation

caused a carry from Bit 3.

F (Fast Interrupt Request Mask), Bit 6 — any re-

quests for fast interrupts are disabled.

E (Entire Flag), Bit 7 — all the registers were
stacked during the last interrupt stacking operation.

(If not set, only Registers PC and CC were stacked.)

41

Id / WRITING THE PROGRAM

Assembly Language Fields

You may use four fields in an assembly language in-

struction: label, command, operand, comment. In this

instruction:

START LDA #$F9 GETS CHAR

START is the label. LDA is the command. #$F9 + 1 is

the operand. GETS CHAR is the comment.

The comment is solely for your convenience. The
assembler ignores it.

The Label

You can use a symbol in the label field to define a mem-
ory address or data. The above instruction uses START
to define its memory address.

Once the address is defined, you can use START as an
operand in other instructions. For example:

BNE START

branches to the memory address defined by START.

The assembler stores all the symbols, with the addres-

ses or data they define, in a "symbol table," rather than

as part of the "executable program." The symbol can be

up to six characters.

assembler translates them into opcodes and stores them
with the executable program. For example:

CLRA

tells the processor to clear Register A. The assembler
assembles this into opcode number $4F and stores it

with the executable program.

The next chapter shows how to use pseudo ops. Refer-

ence L lists the 6809 mnemonics.

The Operand

The operand is either a memory address or data. For

example:

LDD #3000+COUNT

loads Register D with $3000 plus the value of COUNT.
The operand, #$3000 + COUNT, specifies a data

constant.

The assembler stores the operand with its opcode. Both

are stored with the executable program.

Operators

The plus sign (+) in the above operand (#3000 +
COUNT) is called an operator.

You can use any of the operators described in Chapter
9, "Using the ZBUG Calculator," as part of the operand.

The Command
The command can be either a pseudo op or a mnemonic.

Pseudo ops are commands to the assembler. The
assembler does not translate them into opcodes and
does not store them with the executable program. For

example:

NAME EQU $43

defines the symbol NAME as $43. The assembler stores

this in its symbol table.

ORG $3000

tells the assembler to begin the executable program at

Address $3000.

SYMBOL FCB $6

stores 6 in the current memory address and labels this

address SYMBOL. The assembler stores this informa-

tion in its symbol table.

Mnemonics are commands to the processor. The

Addressing Modes

The above example uses the # sign to tell the assem-
bler and the processor that $3000 is data. When you
omit the # sign, they interpret $3000 in a different

"addressing mode."

Example:

LDD $3000

tells the assembler and processor that $3000 is an
address. The processor loads D with the data contained

in Address $3000 and $3001

.

Each of the 6809 mnemonics lets you use one to six

addressing modes. These addressing modes tell you:

• If the processor requires an operand to execute

the opcode

• How the assembler and processor will interpret

the operand

42

7. Inherent Addressing

There is no operand, since the instruction doesn't re-

quire one. For example:

SWI

interrupts software. No operand is required.

CLRA

clears Register A. Again, no operand is required. Regis-

ter A is part of the instruction.

2. Immediate Addressing

The operand is data. You must use the # sign to specify

this mode. For example:

ADDA *$30

adds the value $30 to the contents of Register A.

DATA EQU
LDX

$8(304
#DATA

loads the value $8004 into Register X.

CMPX #$1234

compares the contents of Register X with the value

1234.

3. Extended Addressing

The operand is an address. This is the default mode of

all operands.

(Exception: If the first byte of the operand is identical to

the direct page, which is 00 on startup, it is directly

addressed. This is an automatic function of the assem-
bler and the processor. You need not be concerned with

it if you're a beginner.)

For example:

JSR #$1234

jumps to Address $1234.

SPOT EQU $1234
STA SPOT

stores the contents of Register A in Address $1234.

If the instruction calls for data, the operand contains the

address where the data is stored.

LDA $1234

does not load Register A with $1234. The processor

loads A with whatever data is in Address $1234. If $06 is

stored in Address $1234, Register A is loaded with $06.

ADDA $1234

adds whatever data is stored in Address $1234 to the

contents of Register A.

LDD $1234

loads D, a 2-byte register, with the data stored in mem-
ory addresses $1234 and $1235.

You can use the > sign, which is the sign for extended
addressing, to force this mode. (See "Direct Addressing.")

Extended Indirect Addressing.

The operand is the address of an address. This is a
variation of the extended addressing mode. The []

signs specify it. (Use (SHIFT) CD to produce the [sign

and (SHIFT)Q to produce the] sign.)

In understanding this mode, think of a treasure hunt

game. The first instruction is "Look in the clock." The
clock contains the second instruction, "Look in the
refrigerator."

Examples:

JSR C$1234]

jumps to the address contained in Addresses $1234 and
$1235. If $1234 contains $06 and $1235 contains $11,
the effective address is $0611. The program jumps to

$0611.

SPOT EQU
STA

$1234
[SPOT]

stores the contents of Register A in the address con-

tained in Addresses $1234 and $1235.

LDD C$1234]

loads D with the data stored in the address that is stored

in Addresses $1234 and $1235.

This is a good mode of addressing to use when calling

ROM routines. For example, the entry address of the

POLCAT routine is contained in Address $A000. There-
fore, you can call it with these instructions:

POLCAT EQU
JSR

$ A

[POLCAT]

If a new version of ROM puts the entry point in a differ-

ent address, your program still works without changes.

4. Indexed Addressing

The operand is an index register which points to an

43

10/ WRITING THE PROGRAM

address. The index register can be any of the 2-byte

registers, including PC. You can augment it with:

• A constant or register offset

• An auto-increment or auto-decrement of 1 or 2

The comma (,) indicates indexed addressing.

As an example, load X, a 2-byte register, with $1234:

LDX *$1234

You can now access Address $1234 through indexed

addressing. This instruction:

STA t)<

stores the contents of A in Address $1234

STA 3t)<

stores the contents of A in Address $1237, which is

$1234 + 3. (The number 3 is a constant offset.)

SYMBOL EOU
STA

$4
SYMBOL *X

stores the contents of A in Address $1238, which is

$1234 + SYMBOL. (SYMBOL is a constant offset.)

LDB
STA

#$5
B t)<

stores the contents of A in Address $1239 which is

$1234 + the contents of B. (B is a register offset. You
can use either of the accumulator registers as a register

offset.)

STA *X +

This instruction does two tasks: (1) stores A's contents in

Address $1234 (the contents of X) and then (2) incre-

ments X's contents by one, so that X contains $1235.

STA f)< + +

(1) stores A's contents in Address $1235 (the current

contents of X) and then (2) increments X's contents by

two to equal $1237.

STA t --X

(1) decrements the current contents of X by two to equal

$1235 ($1237 - 2) and then (2) stores A's contents in

Address $1235.

As we said above, you can use PC as an index register.

In this form of addressing, called program counter rela-

tive, the offset is interpreted differently. For example:

SYMBOL FOB
LDA SYMBOL tPCR

While assembling the program, the assembler subtracts

the contents of Register PC from the offset:

LDA SYMBOL-PC tPCR

While running the program, the processor adds the con-

tents of Register PC to the offset. This causes A to be
loaded with SYMBOL.

This seems to be the same as extended addressing.

But, by using program counter relative adressing, you
can relocate the program without having to reassemble
it.

Indexed Indirect Addressing.

The operand is an index register which points to the

address of an address. This is a variation of indexed

addressing.

For example, assume that :

• Register X contains $1 234

• Address $1234 contains $1

1

• Address $1235 contains $23

• Address $1 123 contains $64

This instruction:

LDA [,}<]

loads A with 64. (Register X points to the addresses of

the address. This address is storing 6, the required

data.)

STA C tXl

stores the contents of A in Address $1123. (Register X
points to the addresses, $1234 and $1235, of the effec-

tive address, $1123.)

5. Relative Addressing

The assembler interprets the operand as a relative

address. There is no sign to indicate this mode. The
assembler automatically uses it for all branching
instructions.

For example, if this instruction is located at Address
$0580:

BRA $0585

The assembler converts $0585 to a relative branch of

+ 3(0585-0582).

This mode is invisible to you unless you get a BYTE
OVERFLOW error, which we discuss below. Because
the processor uses this mode, you can relocate your

44

program in memory without changing any of the branch-

ing instructions.

The BYTE OVERFLOW error means that the relative

branch is outside the range of -128 to +127. You must
use a long branching instruction instead. For example:

LBRA $0600

allows a relative branching range of -32768 to +32767.

6. Direct Addressing

In this mode, the operand is half of an address. The
other half of the address is in Register DP:

ADDRESS
DP REGISTER

(most significant

byte)

OPERAND
(least significant

byte)

Figure 7. Direct Addressing

The assembler and the processor use this mode auto-

matically whenever they approach an operand whose
first byte is what they assume to be a "direct page" (the

contents of Register DP). Until you change the direct

page, the assembler and the processor assume it is 00.

For example, both of these instructions:

JSR
JSR

$0015
$15

cause a jump to Address $0015. In both cases, the

assembler uses only 15 as the operand, not 00. When
the processor executes them, it gets the 00 portion from

Register DP and combines it with $15. (On startup, DP
contains 0, as do all the other registers.)

Because of direct addressing, all operands beginning

with 00, the direct page, consume less room in memory

and run quicker. If most of your operands begin with

$12, you might want to make $12 the direct page.

To do this, you first need to tell the assembler what you
are doing, by putting a SETDP pseudo-operation in your
program:

SETDP $1

This tells the assembler to drop the $12 from all oper-

ands that begin with $12. That is, the assembler assem-
bles the operand "1234" as simply "34".

Then, you must load Register DP with $12. Since you
can use LD only with the accumulator registers, you
have to load DP in a round-about manner:

LDB
TFR

#$12
B tDP

Now the direct page is $12, rather than 00. The proces-

sor executes all operands that begin with $12 (rather

than 00) in an efficient, direct manner.

The assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
denote direct addressing with the < sign if you want to

document or be sure that direct addressing is being
used.

For example, if the direct page is $12:

JSR <*15

jumps to Address $1215. This instruction documents that

the processor uses direct addressing.

Similarly, you might want to use the > sign to force ex-

tended addressing. For example:

JSR >*1215

jumps to Address $1215. The assembler and processor
use both bytes of the operand.

To learn more about 6809 addressing modes, read one
of the books listed at the beginning of this manual.

45

Chapter 11/

Using Pseudo Ops

As discussed earlier, pseudo ops direct the assembler.

You can use them to:

• Control where the program is assembled

• Define symbols

• Insert data into the program

• Change the assembly listing

• Do a "conditional" assembly

• Include another source file in your program

Pseudo ops are unique to the assembler you are using.

Other 6809 assemblers may not recognize the Disk

EDTASM pseudo ops.

The Disk EDTASM pseudo ops make it easier for you to

program. This chapter shows how to use pseudo ops.

Controlling Where the
Program is Assembled

The Disk EDTASM has two pseudo ops that control

where the program is assembled:

• ORG, sets the first location

• END, ends the assembly

ORG
ORG expression

Tells the assembler to begin assembling the program at

expression. Example:

ORG $1800

tells the assembler to start assembling the program at

Address $1800.

You can put more than one ORG command in a pro-

gram. When the assembler arrives at the new ORG, it

begins assembling at the new expression.

END
END expression

Tells the assembler to quit assembling the program. The
expression option lets you store the program's start

address. Use END as the last instruction in all your

assembly language programs.

Example:

DATA
START

ORG
FCC
LDA

END

$1800
'This is some 'data'

DATA

START

The END pseudo op quits the assembly and stores the

program's entry address (the value of START) on disk.

When you load the program, the processor knows to

start executing at START (the LDA instruction) rather

than at DATA (the FCC instruction).

FCC is a pseudo op explained later in this chapter.

Defining Symbols

Symbols make it easy to write a program and also make
the program easy to read and revise. The Disk EDTASM
has two pseudo ops for defining symbols:

• EQU, for defining a constant value

• SET, for defining a variable value

47

11/ USING PSEUDQ OPS

EQU
symbol EQU expression

Equates symbol to expression. Examples:

CHAR EQU $F9

equates CHAR to $F9.

SCREEN EQU
LDX

$500
•SCREEN

equates SCREEN to $500. The next instruction loads X
with $500.

EQU helps set the values of constants. You can use it

anywhere in your program.

SET
symbol SET expression

Sets symbol equal to expression. You can use SET to

reset the symbol elsewhere in the program. Example:

SYMBOL SET

sets SYMBOL equal to 25. Later in the program, you can

reset SYMBOL.

SYMBOL SET SYMB0L+C0UNT

now SYMBOL equals 25 + COUNT.

Inserting Data into

Your Program

The Disk EDTASM has four pseudo ops that make it

simple for you to reserve memory and insert data in your

program:

• RMB, for reserving areas of memory for data

• FCB, for inserting one byte of data in memory
• FDB, for inserting two bytes of data in memory
• FCC, for inserting a string of data in memory

Remember that the processor cannot "execute" a block

of data in your program. If you use these pseudo ops:

• Use them at the end of your program (just before the

END instruction), or

• Precede them with an instruction that jumps or

branches to the next "executable" instruction.

RMB
symbol RMB expression

Reserves expression bytes of memory for data,

Example:

BUFFER RMB 256

reserves 256 bytes for data, starting at Address
BUFFER.

DATA RMB G+SYMB0L

reserves 6 + SYMBOL bytes for data beginning at

Address DATA.

FCB
symbol FCB expression

Stores a 1-byte expression in memory at the current

address. The symbol is optional.

Examples:

DATA FCB $33

stores $33 in Address DATA.

FACTOR FCB
LDA

NUM/2
FACTOR

stores NUM/2 in Address FACTOR, then, loads NUM/2
into Register A.

FDB
symbol FDB expression

Stores a 2-byte expression in memory starting at the

current address. The symbol is optional. Example:

DATA FDB $3322

stores $3322 in Address DATA and DATA + 1

.

FCC
symbol FCC delimiter string delimiter

Stores an ASCII string in memory, beginning at the cur-

rent address. The symbol is optional. The delimiter can
be any character.

Examples:

TABLE FCC /THIS IS A STRING/

stores the ASCII codes for THIS IS A STRING in mem-
ory locations, beginning with TABLE.

48

NAME

INIT

FCC 'Dylan ' MD
FCB $0D NOMD
LDB #NAME MEX
LDA NAME NOMEX

L

NOL
INCB
CMPA NAME

Example:

BNE INIT OPT

The first instruction stores "Dylan" in the five memory
addresses beginning with NAME. The next instructions

process this data.

Changing the
Assembly Listing

You can use three pseudo ops to change the listing the

assembler prints for you:

• TITLE, inserts a title at the top of each listing page

• PAGE, ejects the listing to the next page

• OPT, turns on or off the switches that determine how
the assembler lists "macros" (Macros are discussed

in the next chapter.)

TITLE string

Tells the assembler to print the first 32 characters of the

string at the top of each assembly listing page. Example:

TITLE Budget Program

causes the assembler to print Budget Program as the

title of each page in the assembly listing.

PAGE
Starts a new page if the assembly listing is being printed

on the line printer. Example:

PAGE

tells the assembler to eject the listing to the next page.

OPT
OPT switch, switch, . .

.

Causes the assembler to use the specified switches

when printing its listing. You can specify these switches

with OPT:

MC List macro calls (default)

NOMC Do not list macro calls

List macro definitions (default)

Do not list macro definitions

List macro expansions
Do not list macro expansions (default)

Turn on the listing (default)

Turn off the listing

MEX

Causes the assembler to list the macro expansions in its

listing. (Macros are discussed in the next chapter.)

Conditional Assembly
You may want to execute a certain section of your pro-

gram only if a certain condition is true. The Disk
EDTASM lets you set up a "conditional" section of your

program, using these two pseudo ops:

COND
COND condition expression

Assembles the following instructions only if the expres-

sion is true (non-zero). If not true (zero), the assembler
goes to the instruction that immediately follows the

ENDC instruction.

Only these operators are recognized in a condition ex-

pression: + ,-/,*. See ENDC below for an example.

ENDC
ENDC

Ends a conditional assembly, initiated by COND.

Examples:

COND SYMBOL

ENDC

assembles the lines between COND SYMBOL and
ENDC only if SYMBOL is not equal to zero.

COND UALUE2-UALUE1

ENDC

assembles the lines between VALUE2-VALUE1 only if

VALUE2-VALUE1 are not equal (which causes the result

to be a non-zero value).

49

11/ USING PSEUDO OPS

IndllHinn Othoi" program. The assembler assembles the entire included
IIIUIUUIIIVJ \suic;i

file before assembling the next instruction.

Source Files Example:

INCLUDE ROUTINE/SRC
To let you load another source file and include it in your

program, the Disk EDTASM offers an INCLUDE pseudo Inserts and assembles ROUTINE/SRC, a source file, be-

p
fore assembling the next instruction.

INCLUDE SUBl/SRC

INCLUDE INCLUDE SUB2/SRC

INCLUDE filespec inserts and assembles SUB1, then inserts and assem-

Inserts filespec, a file of source assembly language in-
bles SUB2

'
then Proceeds wi,h the next instruction,

structions, at the point where INCLUDE appears in the

50

Chapter 1 2/

Using Macros

A macro is like a subroutine. It lets you call an entire

group of instructions with a single program line. This

helps when you want to use the same group of instruc-

tions many times in the program.

This chapter first tells how to use a macro. It then gives

guidelines on the format of a macro.

How to Use a Macro

To use a macro, you must first define it. For example,

you could define the entire sample program (from Chap-
ter 2) as a macro named GRAPH.

After defining the macro, you can use its name the same
way you use a mnemonic. Whenever the assembler en-

counters the macro's name, it expands it into the defined

instructions.

Defining a Macro

To define a macro, you need to:

• Use MACRO (a pseudo op) to begin the macro defini-

tion and assign it a name.

• Use source instructions to define the macro.

• Use ENDM (a pseudo op) to end the macro definition.

This is an example of the sample program converted into

a macro definition:

00030
00100
00110
00120
00130
00140
00150
001G0
00180

GRAPH

*A

\»B

MACRO
LDA #$F9
LDX #$400
STA »X +

CMPX #$G00
BNE \«A
JSR C$A0001
BEO *B
ENDM

Line 30 names the macro as GRAPH, lines 50-160 de-

fine the macro, and line 180 ends the macro definition.

Notice the names of the symbols within the macro def-

inition: \.A and \.B. If you do not use this format for

naming symbols, you'll get a MULTIPLY DEFINED SYM-
BOL error when you call the macro more than once.

(More on this later.)

Insert the above program using (SHIFT) (CLEAR) to gener-

ate the backslash character (\). Save the program on
disk as MACR01 and then delete it.

WD MA CRO! CENTER]

D#:* (INTER)

Calling a Macro

To call a macro, simply use the macro name as if it were
a mnemonic. For example, this sample program calls

GRAPH and then ends:

00110
00120
00130
00140
00150
00160
00170
00180
00190
00200

BEGIN

START

DONE

ORG $1200
JMP START
FOB
#

INCLUDE

DONE-BEGIN

MACR01/ASM
GRAPH
CLR $71
JMP

END

C$FFFE]

Line 150 loads MACR01, the file containing the defini-

tion of GRAPH, and includes it in the source program.

Line 160 calls the GRAPH macro.

To see how the assembler expands the GRAPHIC mac-
ro, insert this line:

00135 OPT MEX

and assemble the program. The assembler listing shows
how the assembler expands GRAPH into its defined in-

structions.

51

IS / USING MACROS

Note that the assembler has replaced \.A with A0000
and \.B with B0000. The zeroes indicate that this is the

first expansion of the symbols in GRAPH. (In this case,

this is the only expansion.)

Passing Values to a Macro

A convenient way to use a macro is to pass values to it.

You can use a macro many times in your program, pas-

sing different values to it each time.

This is a definition of the GRAPH macro, slightly mod-
ified so that you can pass two values to it. insert this

program, save it as MACR02 and then delete it.

00030 GRAPH2 MACRO
00100 LDA \0
001 10 LDX \1

00120 \.A STA »X +

00130 CMPX #$G00
00140 BNE \.A
00150 \.B JSR C$A000]
001G0 BEQ \.B
00190 ENDM

The \0 and \1 are dummy values. The assembler re-

places these numbers with the values you specify when
you call GRAPH.

The following program calls GRAPH2 three times. Each
time it passes two different sets of values:

00100 ORG $1200
00110 BEGIN JMP START
00120 FDB DONE-BEGIN
00130 START *

00140 OPT MEX
00150 INCLUDE MACR02/ASM
001G0 GRAPH2 #$F9 »#$400
00170 GRAPH2 #$F8 ,#$450
00180 GRAPH2 «$F7 ,#$500
00190 CLR $71
00200 JMP C$FFFE]
00210 DONE *

00220 END

When the assembler expands the macro, it replaces the

dummy values with the values passed by the macro call.

For example, the second time GRAPH2 is called, the

assembler replaces \0 with #$F8 and replaces \1 with

#$450.

Assemble the above program. Note that each time the

assembler expands GRAPH2, it replaces the \.A and
\.B symbols with different symbol names: First A0000
and B0000, then A0001 and B0001, and finally A0002
and B0002.

If the assembler used the same symbol names in each
expansion, it would be forced to assign different value to

the symbols in each expansion. You would get a MULTI-
PLY DEFINED SYMBOL error.

Also, note the assembler has inserted an additional sym-
bol, NARG, in the symbol table. NARG is always set to

the number of values passed in the most recent macro
call.

In the sample program, the symbol table shows that

NARG is set to "2" at the end of the assembly. This

shows that there were two values passed to GRAPH2
the last time it was called.

You might want to use NARG as a variable in your pro-

gram. For example, you could conditionally assemble
parts of a macro definition based on the current value of

NARG.

To see the program run, assemble it to disk, press a key

three times to see different graphics and then end the

program.

Format of Macros

The remainder of this chapter gives details on the format

to use in a macro definition and macro call.

Macro Definition

Beginning the Definition

Use this format for beginning the macro definition and
assigning it a name:

symbol MACRO

symbol is the name of the macro. It is, of course, required.

Using Symbols in the Definition

Use this format to name any symbols you use within a

macro definition:

\.c

c is an alpha character (A-Z). When the assembler ex-

pands the macro, it replaces \.c with:

cnnnn

nnnn is a 4-digit hexadecimal number that the assembler

increments each time the assembler expands the macro.

52

For example, if you use the symbol \.M in the macro
definition and you call the macro 10 times, the assem-
bler replaces \.M with these symbol names:

1st expansion
2nd expansion

1X)th expansion

M0001
M0002

M000A

You must use this symbol-name format when calling a

macro more than once. Otherwise, you get MULTIPLY
DEFINED SYMBOL errors.

Using Dummy Values in the Definition

Use this format for specifying dummy values within a

macro definition:

\n

n is an alphanumeric character (0-9,A-Z). The assembler
replaces this dummy value with a corresponding value in

the macro call line:

\0 is replaced with the 1st value

\ 1 is replaced with the 2nd value

\9 is replaced with the 10th value

\A is replaced with the 11th value

\Z is replaced with the 36th value

For example, this line in a macro definition:

LDA \B

specifies \B as a dummy value. The assembler replaces

\B with the 12th value in the macro call line. If the mac-
ro call line is:

ADD NUM0 #NUM1 ,NUM2 ,NUM3 >NUM4 ,

NUM5 tNUMG >NUM7 ,NUM8 ,NUM9 tNUMA ,NUM5

the assembler replaces \B with NUMB.

You do not need to assign macro call values to dummy
values in consecutive order. For example:

graph:
GRAPHX *$
MACRO
LDX \1

LDY \2
LDA \0
LDB \0
EIMDM

$F9 t$400 *#*G00

#$400, replaces dummy value \2 with #$600, and, in

two lines, replaces dummy value \0 with #$F9. Note
that you can pass a value to a macro more than once,

as this example does with #$F9.

If there are more dummy values than values in a macro
call, a byte overflow error results.

If there are more values than dummy values in a macro
call, the extra values are ignored.

Be sure not to enclose dummy values in quotes. If you do
this, the assembler treats them as ordinary characters.

Ending the Macro Definition

Use this format for ending the macro definition:

ENDM

You may not use a symbol to label this line. If you do so,

you get a MISSING END STATEMENT error at the end
of the assembly listing.

Macro Call

Use this format when passing values to a macro in a

macro call line:

macro call string 1, string2, ...

macro call is the name of the macro.

string(s) is the value being passed to the macro. It can
be 1 to 16 characters (any extra characters are ignored).

Each string, except the last, must be separated by a

comma. The last string must be terminated by a comma,
space, carriage return, or tab.

Each string may contain any characters except a car-

riage return. If a string contains a comma, space, tab, or

left parenthesis, you must enclose it in parentheses. For

example, in this macro call:

PRINT (ABC ,DEF>

the assembler interprets ABC,DEF as a single string.

However, in this call:

PRINT ABC ,DEF

Here, the assembler replaces dummy value \1 with

the assembler interprets ABC as one string and DEF as

another.

Hints on Macros

• Remember to define a macro before calling it. If you

call a macro without defining it, you get a BAD
OPCODE error.

53

IS / USING MACROS

• We recommend storing all macro definitions in a file cover the error until you call the macro. The assem-
and then using INCLUDE to insert them into your bier waits until you call the macro before it assembles
main program. it.

• Do not use a mnemonic or pseudo op as a macro • You cannot "nest" macro definitions. That is, one
name. This causes the assembler to redefine the macro definition cannot call another.

mnemonic or pseudo op according to the macro ^ AU .

definition
Using the same macro more than once uses a large

amount of memory. Expand a large macro only once.

• If the macro definition has an error, you will not dis- When you want to use it again, call it as a subroutine.

54

SECTION IV

ROM AND
ROUTINES

SECTION IV

ROM AND DOS ROUTINES

In an assembly language program, the sim-

plest way to use the I/O devices is with ROM
and DOS routines. This section shows how.

Complete lists of the ROM routines and DOS
routines are in the reference section.

55

Chapter 13/

Using the Keyboard and Video Display
(ROM Routines)

The Color Computer uses its own machine-code
routines to access the screen, keyboard, and tape.

These routines are built into the computer's ROM. You
can use the same routines in your own program.

Appendix F lists each ROM routine and the ROM
address that points to it. This chapter uses two of these

routines, POLCAT and CHROUT, as samples in show-
ing the steps for using ROM routines.

Steps for Calling ROM
Routines

We recommend these steps for calling a ROM routine:

1. Equate the routine's address to its name. This lets

you refer to the routine by its name rather than its

address, making your program easier to read and
revise.

2. Set up any entry conditions required by the routine.

This lets you pass data to the routine.

3. Preserve the contents of the registers. Since many
routines change the contents of the registers, you
might want to store the registers' contents temporarily

before jumping to the routine.

4. Call the ROM routine, using the indirect addressing

mode.

5. Use any exit conditions that the routine passes back

to your program.

6. Restore the contents of the registers (if you tempo-
rarily preserved them in Step 3).

Sample 1

Keyboard Input with
POLCAT

POLCAT "polls" the keyboard to see if you press a key.

If you do not, POLCAT sets Bit Z.

If you do press a key, POLCAT:

(1) Clears Bit Z of Register CC and

(2) Loads Register A with the key's ASCII code.

This short program uses POLCAT to poll the keyboard.

When you press a key, the program ends:

ORG $1200
BEGIN JMP START

FDB DONE-BEGIN
POLCAT EQU *A000
START PSHS DP ,CC f)< »Y »U

WAIT JSR [POLCAT]
BEQ WAIT
PULS DP tCCtXtY *U

CLR $71
JMP [$FFFE]

DONE *

END

This is how we applied the above steps in writing this

program:

1. Equate POLCAT to its Address
This equates POLCAT to $A000, the address that points

to POLCATs address:

POLCAT EOU $A000

57

13 / USING THE KEYBOARD AND VIDEO DISPLAY

2. Set Up Entry Conditions

POLCAT has no entry conditions.

3. Preserve the Registers' Contents

POLCATs "Exit Conditions" state that POLCAT mod-
ifies all registers except B and X. Assume that you want
to preserve the contents of Registers DP, CC, X, Y, and

U. To do this, you can "push" these values into the

"hardware stack":

• Register A — to determine which character to

print

• Address $6F — to determine whether to print it

on the screen or the printer

This program uses CHROUT to print "This is a Mes-
sage" on the screen. It then uses POLCAT to wait for

you to press a key before returning to BASIC.

PSHS DP ,CC ,X tY tU

(The hardware stack is an area of memory, pointed to by

Register S, that the processor uses for subroutines.

PSHS "preserves" the contents of certain registers by

storing them in the hardware stack.)

4. Jump to POLCAT
This jumps to POLCAT using its indirect address:

WAIT JSR [POLCAT]

5. Use Exit Conditions

For now, assume you want to look only at the status of

Bit Z to see if a key has been pressed:

ORG
Equates
POLCAT EQU
CHROUT EQU
DEUNUM EQU
*###*******# Variable
SCREEN EQU 00
* * * D S Programming Conuentio n

$1200
for Routines
$A000
$A002
$GF

###########

*

BEGIN

START

PRINT

BEQ WAIT

The above instruction branches back to WAIT (the JSR
[POLCAT] instruction) unless you press a key. (Pressing

a key causes POLCAT to clear Bit Z.)

6. Restore the Register's Contents

This "pulls" (inserts) the contents of the hardware stack

back into the registers:

JMP
FDB
Print
LDB
STB
LDX
LDA
JSR
CMPA
BNE

********* Wait
INPUT PSHS
WAIT JSR

BEQ
PULS
CLR
JMP

************* Message
MSG FCC 'THIS

START
DONE-BEGIN
the Message ********
•SCREEN
DEVNUM
#MSG
>X +

[CHROUT]
«$0D
PRINT
for a Key
DP tCCtX t\

[POLCAT]
WAIT
DP »CC *)< »Y *U

$71
[*FFFE]

IS A MESSAGE'

tU

PULS DP ,CC tX >Y tU

FCB
******** Memo rv

DONE *

END

$0D
for Stack ********

Now, the above registers are restored to the data they

contained before executing the POLCAT routine.

Sample 2
Character Output with

CHROUT
The CHROUT routine prints a character on either the

screen or printer. On entry, it checks two places:

Most of the steps we used in writing this program are

obvious. What may not be obvious is the way we set up

CHROUT's entry conditions, Address $6F and Register

A.

These lines set Address $6F to 00 (the screen):

DEUNUM EQU $GF
SCREEN EQU 00
START LDB •SCREEN

STB DEUNUM

58

Setting Register A involves two steps. First, point Regis-

ter X to the message:

MSG FCC 'THIS IS A MESSAGE'
FCB $0D
LDX • MSG

and then load Register A with each character in the mes-

sage:

PRINT LDA
JSR
CMPA
BNE

CCHROUT]
• $0D
PRINT

Sample 3
POLCAT and CHROUT

This combines POLCAT with CHROUT. It prints on the

screen whatever key you press. When you press CD
(hexadecimal OA), the program returns to BASIC:

************ Variable ************
SCREEN EQU 00
*** DOS Programming Convention ***
BEGIN JMP

FDB
********** Main
MAIN

FINISH

* Input
INPUT
WAIT

JSR
CMPA
BEQ
JSR
BRA
CLR
JMP

MAIN
DQNE-BEGIN
Program **********
INPUT
#$0A
FINISH
PRINT
MAIN
$71
C$FFFE]

a Cha rac t e r f rom
DP ,CC #K tY

C POLCAT]
WAIT
DP tCC *)< ,Y

** Print
PRINT

ORG
****** Equates
POLCAT EQU
CHROUT EQU
DEVNUM EQU

$1200
for Routines
$A000
$A002
$SF

LDB
STB
JSR
RTS

******** Memo r v

DONE *

END

PSHS
JSR
BEQ
PULS
RTS
a Character on

•SCREEN
DEVNUM
CCHROUT3

Ke board *

Display * *

for Stack ********

59

Chapter 14/

Opening and Closing a Disk File

DOS Routines — Part I

Because of the organization and timing of a disk, reading

it and writing to it are complex. This is why you'll want to

make use of DOS routines in your disk programs.

This chapter shows how to use DOS routines to open
and close a disk file. The next chapter shows how to use

them to read a disk and write to it. Reference H contains

a complete list of all the DOS routines supported by

Radio Shack.

there are 256 bytes in the physical buffer, DOS sends
them out to a disk sector.

You need not be concerned that DOS' "physical" rec-

ords are a different size from your program's "logical"

records. DOS handles the "spanning" of logical records

into physical records internally. Except for reserving

memory for a physical buffer, you do not need to be con-

cerned with physical records.

Overview

All DOS routines, like ROM routines, have their own en-

try and exit conditions. However, most DOS routines

have more involved entry conditions than do ROM
routines. They require you to set up three areas in mem-
ory: two "buffers" and a "data control block."

Buffers

Buffers are areas in memory that DOS uses for storing

data to be input or output to disk. DOS requires that you
reserve two buffers:

• A logical buffer — This can be any length. Your pro-

gram uses this to store data for DOS to input or output

to disk.

• A physical buffer — This must be 256 bytes. DOS
uses this to hold data temporarily so that it can input

and output the data to a disk sector in 256-byte

blocks.

For example, suppose you want to output 100 10-byte

records to disk. You can send each record, one at a
time, to the area you reserved as the logical buffer.

DOS then transfers the records from the logical buffer to

the area you reserved as the physical buffer. As soon as

Data Control Block

A data control block is a 49-byte "block" of memory that

DOS uses to control a disk file. You need to reserve this

block of memory for each disk file you are using. If you
have three disk files open at the same time, you need to

reserve three 49-byte data control blocks.

Reference G shows how DOS uses each of the 49
bytes, numbered 0-48, in the data control block. As you
can see, DOS divides the data control block into 21

data-control segments.

Before opening a file, you must load the proper data into

four of the segments of the data control block (DCB):

DCB Segment DCB Address

Filename

(DCBFNM)

Extension

(DCBEXT)

Bytes 0-7

Bytes 8-10

Drive Number Byte 33
(DCBDRV)

You must load

with . .

.

The eight-

character name
of your file.

The three

character

extension of

your filename.

The drive

containing the

disk file.

61

14 / OPENING AND CLOSING A DISK FILE

Physical

Buffer Address
(DCBBUF)

Byte 36-37 The first

address of

the physical

buffer you

have reserved.

For example, if you want to open a file in Drive 1, you
need to load "1

" into the DCBDRV location, which is the

33rd byte of the data control block.

You need not be concerned with most of the remaining

segments of the data control block, unless you want to

use them as data in your program. They are handled

internally by DOS. The exceptions to this are:

• Logical Buffer Address, Record Size, Variable Record
Terminator, and Logical Record Number — You need
to use these when you read and write to the file. They
are discussed in the next chapter.

• File Type and ASCII Flag— If you want your file to be
compatible with BASIC and other Radio Shack pro-

grams, you need to set these when you create the file.

See the "Technical Information" chapter of your Disk

System Owners Manual and Programming Guide.

Steps for Using DOS
Routines

8. Use all exit conditions. Most DOS routines return an
error code in Register A if the routine did not work
properly. If there were no errors, Register A contains

a zero.

Sample Session
Opening and Closing

a Disk File

The DOS routines for opening and closing a file are

OPEN and CLOSE. Both routines check Register U for

the address of DCB. They expect to find the four seg-

ments described above in this block.

OPEN also expects you to set a file mode in Register A.

It creates or opens an existing file depending on the

mode you set.

Both routines return a status code in Register A. Refer-

ence /tells the meaning of the status codes.

Figure 8 at the end of this chapter is a sample program
which creates, opens, and closes a disk file named
WORKFILE/TXT. After running this program, you can
look at your directory to see that the program has cre-

ated this file. This shows how we applied the above
steps in this program.

The steps for using DOS routines are:

1. Equate the routine's address (for ease in reading the

program).

2. Reserve memory for a physical buffer, logical buffer,

and the DCB.

3. Clear the DCB and the physical buffer. You need to

make sure they do not have extraneous data.

4. Set up all other entry conditions. Besides setting up
registers, you need to load certain segments of the

DCB with data. Which segments you load depends
on the DOS routine you are using.

5. Preserve the contents of the registers. DOS routines

change the contents of many of the registers. To be
safe, you should preserve all of them that you want to

use later in your program. Be sure to preserve Regis-

ters U and DP. If DOS changes their contents, your

program acts unpredictably.

6. Call the routine.

7. Restore the contents of the registers.

1. Equate OPEN and CLOSE
This equates OPEN and CLOSE to $600 and $602, their

indirect addresses:

OPEN
CLOSE

EQU
EOU

$600
$B02

2. Reserve Memory for

Buffers and DCB
The OPEN and CLOSE routines use only the physical

buffer, not the logical buffer. This stores 256 bytes for

the physical buffer and uses PBUF to label those bytes:

PBUF RMB 5S

This reserves memory for a 49-byte DCB and stores the

filename, WORKFILE, and the extension, TXT, in the

first 11 bytes:

DCB EQU *

FCC 'WORKFILE
FCC 'TXT'
RMB 38

62

3. Clear DCB
This clears all but the first 1 1 bytes of DCB:

A to select one or more file modes:

RCLEAR LDX
CLEAR1 CLR

CMPX
BNE
LDX

and this clears the physical buffer:

CLEAR CLR
CMPX
BNE
RTS

ttDCB+1

1

*)< +

ftDCB+48
CLEAR1
ttPBUF

tX +

#PBUF+255
CLEAR2

4. Set Up Entry Conditions

On entry, OPEN and CLOSE require you to: (1) Set

Register U to a DCB containing a filename, extension,

drive number, and physical buffer address, and (2) Set

Register A to a file mode.

Setting Register U

This sets Register U to the address of the first byte of

the DCB:

LDU ftDCB

The following lines set the drive number segment to 0.

They do this by storing DRVNUM (0) into DCBDRV (33)

+ the contents of Register U (DCB). This inserts into

the 33rd byte of DCB:

DCBDRV EQU 33
DRVNUM FCB 00

LDA DRVNUM
STA DCBDRV #U

The following lines set the physical buffer address to

PBUF. They do this by storing the address of PBUF into

the memory address pointed to by Register U plus

DCBBUF. This stores PBUF in the 36th byte of DCB:

DCBBUF EQU
LDX
STX

3G
ftPBUF
DCBBUF ,U

MODE BIT

Read BitO

Write Bit 1

Create Bit 2

Extend Bit 3

Work File Bit 4

DECIMAL NUMBER
(IF SET)

1

2

4

8

16

(delete the file, when closed)

FAT Bit 5

(rewrite to the FAT* only when closed)

Shared Buffer Bit 6

32

64

* The disk directory's FAT (file allocation table) is de-

scribed in the "Techncial Information" chapter of the

Disk System Manual.

The sample program loads Register A with decimal
1+2 + 4 + 8 + 32:

LDA *l+2+4+8+3

This tells DOS to set the file mode to read (decimal 1),

write (decimal 2), create (decimal 4), extend (decimal 8),

and rewrite the FAT only when the file is closed (decimal

32).

5. Preserve Registers

This preserves the contents of Registers U and DP:

ROPEN PSHS U»DP

6. Jump to the DOS Routine

These lines jump to OPEN and CLOSE:

JSR
JSR

COPEN]
[CLOSE]

(The filename and extension were set in Step 2.)

7. Restore Registers

This restores the contents of Registers U and DP:

PULS U»DP

8. Use Exit Conditions

The sample program branches to an error handling sub-

routine after each DOS routine. The subroutine tests

Register A to see if it contains a non-zero value. If so, it

Setting Register A

This table shows how you should set each bit in Register

63

14 / OPENING AND CLOSING A DISK FILE

prints the status code on the screen and waits for you to

press a key:

WAIT

JSR
TSTA
BEQ
STA
JSR
BEQ
RETURN

ERROR

RETURN
$450
CPOLCAT]
WAIT
RTS

CLEAR2 CLR
CMPX
BNE
RTS

##*****Rout ine to Open a

ROPEN

Figure 8. Sample Program to Open and Close a File

**Equates for
OPEN
CLOSE
POLCAT

****** Equates
DCBDRU EQU
DCBBUF EQU

*****DOS Programming
BEGIN JMP

FDB
************Main

MAIN JSR
JSR
JSR
CLR
JMP

******Rout ine to
******** and Physical

RCLEAR LDX
CLEARl CLR

ORG $1200
DOS and ROM routines **
EQU $600
EQU $602
EQU $A000
for DCB offsets*******

33
36

Convention *****
MAIN
DONE-BEGIN

Program ************
RCLEAR
ROPEN
RCLOSE
$71
C$FFFE]

Clear the DCB ******
Buffer *********

*DCB+11
*X +

***** Rout ine
RCLOSE

*******E r ro

ERROR

WAIT

f o

CMPX
BNE
LDX

#DCB+48
CLEARl
#PBUF

RETURN
*** Memo ry

PBUF
********Memo rv f

o

DRUNUM FCB
***********Memo ry

DCB EQU
FCC
FCC
RMB

PSHS
LDU
LDA
STA
LDX
STX
LDA
JSR
PULS
JSR
RTS
to Close
PSHS
LDU
JSR
PULS
JSR
RTS
H a n d 1 i n *

TSTA
BEQ
STA
JSR
BEQ
RTS

r Buffers
RMB

,X +

#PBUF+255
CLEAR2

File *******
U*DP
#DCB
DRMNUM
DCBDRM *U

#PBUF
DCBBUF ,U

#1+2+4+8+32
[OPEN]
U,DP
ERROR

the File ******
U,DP
#DCB
CCL0SE3
U,DP
ERROR

Routine *******

RETURN
$450
[POLCAT]
WAIT

and Stacks ****
256

Variables ********
00

for DCB ***********
*

'WORKFILE'
'TXT'
38

DONE EQU *

END

64

Chapter 1 5/

Reading and Writing a Disk File

DOS Routines — Part 2

DOS has a WRITE routine for writing to a file and a
READ routine for reading it back into memory. The way
you use these routines depends on which method you
are using to access the file:

• Sequential Access

• Direct Access

This chapter describes how to use these two methods in

their simplest forms. You can use any variation of them
that you want.

When reading data from just one file, you need only

specify the logical buffer address, not the terminator

character. DOS reads the terminator character from the

disk's directory into DCBTRM.

Figure 9 at the end of this chapter is a program that

writes to a file using $0D (the (ENTER) character) as a
terminator character. Figure 10 reads the same file back
into memory.

Sequential vs. Direct Access

Sequential Access
(For Files with Variable-Length Records)

Sequential access lets you read and write to files with

variable-length records. Using this method, you insert a

terminator character at the end of each record. This

character tells DOS where each record ends.

Before writing data to the file, you must load DCB with

the following:

DCB Segment DCB Address

Logical

Buffer Address
(DCBLRB)

Terminator

Character

(DCBTRM)

Bytes 39-40

Byte 19

You must
load with. .

.

The first

address of the

logical buffer

you have
reserved

The character

you select

to end each

record

Direct Access
(For Files with Fixed-Length Records)

Direct access works only with files containing fixed-

length records. With this method, DOS uses the record

size and record number to access the record.

Before reading data from the file or writing data to it, you
must set this DCB segment:

DCB Segment DCB Address

Logical

Buffer Address
(DCBLRB)

Bytes 39-40

You must
load with .

.

The address

of the first

byte of the

logical buffer

you have
reserved

Unless you are using the record size already in the file's

directory, you must also set:

Logical Record

Size (DCBRSZ)

Bytes 17-18 The size of

each record

65

15 / READING AND WRITING A DISK FILE

If you want to write a record which is not sequentially the

next one, you must also set:

Logical

Record Number
(DCBLRN)

Bytes 46-47 The number of

the record

you want to

access

Setting the
Read/Write Option

DOS requires that you set Register A with a "read/write

option" before entering the READ or WRITE routines.

The read/write option lets you specify:

• Whether you want direct or sequential access

• Whether you want DOS to point to the next record

after reading or writing the record

To set the read/write option, load the first two bits of

Register A with one of these four values:

Read/Write Option

Direct Access
Point to next record

Sequential Access
Point to next record

Direct Access
Do not point to next record

Sequential Access
Do not point to next record

For example:

Bits

00

01

10

11

Decimal
Number

LDA
JSR

«2
[READ]

tells DOS to write the record sequentially (up to the ter-

minator character). When finished, DOS points to the

next sequential record.

Figure 9. Sample Program to Write to a File

ORG $1200
** Equate?i f o r DOS and ROM routines
OPEN EQU $G00
CLOSE EQU $G02
WRITE EQU $G06
POLCAT EQU $A000

**

****** Equates fo r DCB offsets*******
DCBTRM EQU 19
DCBDRU EQU 33
DCBBUF EQU 3G
DCBLRB EQU 39
*****D0S Programming Contention *****
BEGIN JMP MAIN

FOB DONE-BEGIN
************Main Program ************
MAIN JSR CLEAR

JSR INTDCB
JSR SOPEN
JSR SPRINT
JSR SWRITE
JSR SCLOSE
CLR $71
JMP C$FFFE]

******Rout ine to Clear the DCB ******
and the Physical and Logical Buffers

CLEAR LDX ttPBUF
CLEAR1 CLR tX +

CMPX #PBUF+255
BNE CLEAR1
LDX #LBUF

CLEAR2 CLR f)< +

CMPX #LBUF+2a
BNE CLEAR2
LDX #DCB+11

CLEAR3 CLR tX +

CMPX #DCB+48
BNE CLEAR3
RTS

********* Routine to Insert**********
********* Values in the DCB**********
INTDCB LDU #DCB

LDA DRVNUM
STA DCBDRM tU

LDA #$0D
STA DCBTRM *U

LDX #PBUF
STX DCBBUF tU

LDX #LBUF
STX DCBLRB #U

RTS
*******Rout ine to Open a File *******
SOPEN LDU #DCB

PSHS U ,DP
LDA #1+2+4+8+32
JSR [OPEN]
PULS U ,DP
JSR ERROR
RTS

********Routine to Print Ms* ********

66

SPRINT LDY *$500
LDX *MSG

CHAR LDA ,X +

STA »Y+
CMPA *$3A
BNE CHAR
LDX *LBUF
LDY #$525

******* Routine to Inpi.it Data********
*********** from Keyboard ************
SINPUT PSHS U»DP*Y
WAIT1 JSR [POLCAT]

BEO HAITI
PULS U*DP*Y
STA »Y +

STA f)< +

CMPA w$0D
BEO ENDINP
CMPX #LBUF+24
BNE SINPUT

ENDINP RTS
******* Routine to Write Data********
************** to File ***************
SWRITE PSHS U»DP

LDU #DCB
LDA #1
JSR [WRITE]
PULS U»DP
JSR ERROR
RTS

******* Routine to Close File********
SCLOSE PSHS U>DP

LDU *DCB
JSR [CLOSE]
PULS U,DP
JSR ERROR
RTS

*******Error Handling Routine *******
ERROR TSTA

BEO RETURN
STA $450

WAIT2 JSR [POLCAT]
BEO WAIT2

RETURN RTS
*** Memory for Buffers and StacKs****
PBUF RMB 25G
LBUF RMB 25
********* Memory for Variables ********

DRVIMUM FCB 00
***********Memorv for DCB ***********
DCB EOU *

FCC 'WORKFILE'
FCC 'TXT'
RMB 38

*********Memory for Message *********
MSG FCC 'ENTER YOUR NAME:'

DONE EOU *

END

Figure 10. Sample Program to Read to a File

Note: When running this program, a status code
(generated by the Error subroutine) may appear
on your screen. Press any key to continue

program execution.

ORG $1200
**E^uates for DOS and ROM routines **
OPEN EOU $G00
CLOSE EOU *G02
READ EOU $604
POLCAT EOU $A000
CHROUT EOU $A002
****** Equates for DCB offsets*******
DEUNUM EOU $GF
SCREEN EOU
DCBTRM EOU 19
DCBDRV EOU 33
DCBBUF EOU 3G
DCBLRB EOU 39
*****DOS Programming Convention *****
BEGIN JMP MAIN

FDB DONE-BEGIN
************Main Program ************
MAIN JSR CLEAR

JSR INTDCB
JSR SOPEN
JSR SREAD
JSR SCLOSE
JSR SPRINT
CLR $71
JMP C$FEEE]

******Rout ine to Clear the DCB ******
and the Physical and Logical Buffers

CLEAR LDX #PBUF
CLEAR1 CLR *X+

CMPX #PBUF+255
BNE CLEAR1
LDX #LBUF

CLEAR2 CLR tX+
CMPX wLBUF+24
BNE CLEAR2
LDX ttDCB+U

CLEAR3 CLR *X+
CMPX ttDCB +48
BNE CLEAR3
RTS

67

IS / READING AND WRITING A DISK FILE

********* Rout ine to Insert **********
********* Values; in the DCB **********
INTDCB LDU #DCB

LDA DRVIMUM
STA DCBDRV *U

LDA #$0D
STA DCBTRMtU
LDX #PBUF
STX DCBBUF ,U

LDX #LBUF
STX DCBLRB *U

RTS
*******Rout ine to Open a File *******
SOPEN PSHS U ,DP

LDU ttDCB

LDA «$2F
JSR [OPEN]
PULS U»DP
JSR ERROR
RTS

*******Rout ine to Read a File *******
SREAD PSHS U *DP

LDU ttDCB

LDA «3
JSR [READ]
PULS U *DP

JSR ERROR
RTS

******* Rout ine to Print Data********
SPRINT LDB wSCREEN

STB DEVNUM
LDX #LBUF

PRINT LDA fX +

JSR [CHROUT]
CMPX «LBUF+24
BNE PRINT
JSR CPOLCAT]
BEO WAIT1
RTS

Routine to
PSHS
LDU
JSR
PULS
JSR
RTS

*******Error Handling

WAIT1

SCLOSE

Close
U»DP
ttDCB

[CLOSE]
U»DP
ERROR

File ********

Routine *******
ERROR TSTA

BEO
STA
JSR
BEQ
RTS

WAIT2

RETURN
*** Memo rv f o r

PBUF RMB
LBUF RMB
******** M e m o r v

DRVNUM FCB
***********Memorv
DCB EOU

FCC
FCC
RMB

RETURN
$450
[POLCAT]
WAIT2

Buffers and Stacks****
256
25

for Variables ********
00

for DCB ***********
*

'WORKFILE'
'TXT'
38

DONE EOU *

END

68

v/

v/

This section summarizes all the features of the

Disk EDTASM.

69

Reference A/
Editor Commands

Definition of Terms

line

A fine number in the program. Any lines between 0-63999 may be used. These symbols may be used:

First line in the program
Last line in the program
Current line in the program

current line

The last line inserted, edited, or printed.

startline

The line where an operation will begin. In most commands startline is optional. If startline is omitted, the current line is

used.

An asterisk (*) denotes a comment line when used as the first character in the line.

range
The line or lines to use in an operation. If the range includes more than one line, they must be specified with one of

these symbols:

: to separate the startline from the ending line

to separate the startline from the number of lines

increment
The increment to use between lines. In most commands, increment is optional. If the increment is omitted, the last

specified increment is used. On startup, increment is set to 10.

filespec

A DOS disk file specification in the format:

filename/ext:drive

COMMANDS PAGES
DISCUSSED

71

A / EDITOR COMMANDS

Cstartline, range, increment
Copies range to a new location beginning with startline using the specified increments, start-

line, range, and increment must be included.

C500 ,100: 150 ,10

Drange
Deletes range. If range is omitted, current line is deleted.

D100 0100:150 D

Bine
Enters a line for editing. If line is omitted, current line is used.

E100 E

These are the editing subcommands:
A
nCstring

nD

E

H
I string

K

L
nScharacter

X
(ENTER)

rsHiFDCD
n (SPACEBAR)

n©

Cancels all changes and restarts the edit.

Changes n characters to string. If n is omitted, changes
the character at the current cursor position.

Deletes n characters. If n is omitted, deletes character at

current cursor position.

Ends line editing and enters all changes without display-

ing the rest of the line.

Deletes rest of line and allows insert.

Inserts string starting at the current cursor position

While in the mode, © deletes a character, and [SHIFT]

CD ESCAPE) ends the mode.
Deletes all characters from the current cursor position to

the end of the line.

Lists current line and continues edit.

Searches for nth occurrence of character. If n is omitted,

searches for the first occurrence.

Extends line.

Ends line editing, enters all changes and displays the

rest of the line.

Escapes from subcommand.
Moves cursor n positions to the right. If n is omitted,

moves one position.

Moves cursor n positions to the left. If n is omitted,

moves the cursor one position.

Fstring

Finds the string of characters. Search begins with the current line and ends each time string is

found. If string is omitted, the last string defined is used.

FABC F

Hrange
Prints range on the printer. If range is omitted, the current line is printed.

H100 H100:200 H

\startlinejncrement

Inserts lines up to 127 characters long beginning at startline, using the specified increment,

startline and increment are optional.

1150 ,5 1200 I ,1

72

K
Returns to DOS.

LCA filename

Loads filename from tape into the edit buffer. A is optional. If included, filename is appended to

the edit buffer. If filename is omitted, the next tape file is loaded.

LC SAMPLE/EXT LCA SAMPLE/EXT

LDA filespec

Loads the specified file from disk into the edit buffer. A is optional. If included, filespec is

appended to the current contents of the edit buffer. If extension is omitted, /ASM is used.

LD SAMPLE/EXT LDA SAMPLE/EXT

Mstartline, range, increment
Move command, works like copy except the original lines are deleted.

Nstartline, increment
Renumbers beginning at startiine, using the specified increment startline and increment are

optional.

N100*50 N100 N

O
Shows the hexadecimal values of (1) the first available memory address, (2) the last available

address, and (3) USRORG, the address where the assembler originates an /IM assembly with

the /MO switch. Then, prompts you to change USRORG.

Prange
Displays range on the screen.

P100:200 P100I5 P# P+
P (Prints 15 lines to the screen)

Q
Returns to BASIC.

R startiine, increment
Allows you to replace startiine and then insert lines using increment, startiine and increment
are optional.

R100»10 R100 R

s
Shows the current printer parameters and lets you change them.

Jrange
Prints range to the printer, without line numbers.

T100 T100:500

^filename
Verifies filename (a tape file) to ensure that it is free of checksum errors. Works like BASIC'S
SKIPF command. If filename is omitted, this command verifies the next file found.

WC filename

Writes filename to tape. If filename is omitted, NONAME is used.

73

A / EDITOR COMMANDS

WD filespec

Writes filespec to disk. If the extension is omitted, ASM is used,

WD SAMPLE/EXT

Z
Jumps to ZBUG (EDTASM system only).

CD
Scrolls up in memory.

CD
Scrolls down in memory.

(SHIFT) CCLEAR)

Is used to create a backslash (\).

74

Reference B/ Assembler
Commands and Switches

COMMANDS PAGES
DISCUSSED

AC filename switch m . .

Assembles the source program into machine code. If you specify the /IM switch, the assembly
is in memory. If you specify filename, the assembly is saved on tape as filename. If you omit

both filename and switch, the assembly is saved on tape as NONAME.

AD filespec switch . .

.

Assembles the source program into machine code. Either the /IM switch or filespec is required:

With /IM, the assembly is in memory; with filespec, the assembly is on disk. The D is optional.

There must be a space between filespec and switch.

The switches are:

/AO
/IM

/LP

/MO
/NL
/NO
/NS
/SR
/SS
/WE
/WS

Examples:

Absolute origin. (Applies only If /IM is set.)

In-memory assembly.

Assembly listing on the printer.

Manual origin. (Applies only if /IM is set.)

No listing printed.

No object code generated.

No symbol table generated.

Single record.

Short screen.

Wait on assembly errors.

With symbofs.

AD SAMPLE
AD/IM/AO
AD SAMPLE /WE/SR
A SAMPLE/TST /WE
AC SAMPLE
AC

75

Reference C/
ZBUG Commands

Definition of Terms

expression
One or more numbers, symbols, or ASCII characters. If more than one is used, you may separate them with these

operators:

Multiplication * Addition +
Division .DIV Subtraction -

Modulus .MOD Equals .EQU
Shift < Not Equal .NEG
Local And .AND Positive +
Exclusive Or .XOR Negative -

Logical Or .OR Complement .NOT

address
A location in memory. This may be specified as an expression using numbers or symbols.

filename

A BASIC cassette file specification.

fiiespec

A DOS file specification. (The same as a BASIC specification.)

COMMANDS PAGES
DISCUSSED

c
Continues execution of the program after interruption at a breakpoint.

D
Displays all breakpoints that have been set.

E
Exits ZBUG and enters the editor. (This applies to the EDTASM ZBUG only, not to Stand-

Alone ZBUG.)

Gaddress
Executes the program beginning at address.

77

C / ZBUG COMMANDS

K
Returns to DOS. (Applies to Stand-Alone ZBUG only.)

LC filename address
Loads filename from tape. The optional address offsets the file's loading address. If filename is

omitted, the next file is loaded.

LD filespec address
Loads filespec from disk. The optional address offsets the file's loading address.

LDS filespec addressl address2
Loads filespec from disk with its appended symbol table. The optional addressl offsets the

file's loading address. The optional address2 offsets the symbol table's loading address. Note
that address2 does not offset the values of the symbols. The D is optional.

PC filename start address end address execution address
Saves memory from start address to end address to tape. You must also specify an execution

address, the first address to be executed when the file is loaded. Filename is optional; if

omitted, NONAME is used.

PD filespec start address end address execution address
Saves memory to disk from start address to end address. You must also specify an execution

address, the first address to be executed when the file is loaded. (The D is optional.)

PDS filespec start address end address execution address
Saves memory to disk from start address to end address, with the current appended symbol
table. You must also specify an execution address, the first address to be executed when the

file is loaded. (The D is optional.)

Q
Returns to BASIC. (Applies to Stand-Alone ZBUG only.)

R
Displays the contents of all the registers.

Taddressl address2
Displays the memory locations from addressl to address2, inclusive.

THaddressI address2
Prints the memory locations from addressl to address2, inclusive.

Usource address destination address count
Transfers the contents of memory beginning at source address and continuing for count bytes

to another location in memory beginning with destination address.

Wfilename
Verifies date on the specified file or, if no filename is specified, the next file on tape.

Xaddress
Sets a breakpoint at address. If address is omitted, the current location is used. Each break-

point is assigned a number from to 7. The first breakpoint set is assigned as Breakpoint 0. A
maximum of eight breakpoints may be set at one time.

Yn
Deletes the breakpoint referenced by the n number. If n is omitted, all breakpoints are deleted.

78

Examination Mode Commands
A ASCII Mode
B Byte Mode
M Mnemonic Mode
W Word Mode
(The default is M)

Display Mode Commands

H Half Symbolic
N Numeric
S Symbolic
(The default is S)

Numbering System Mode Commands

Obase Output

\base Input

(Base can be 8, 10, or 16. The default is 16)

Special Symbols
address!

register!

Opens address of register and displays its contents.

If address or register is omitted, the last address opened will be reopened. After the contents

have been displayed, you may type:

new value To change the contents.

(ENTER) To close and enter any change.

(BREAK) To close and delete any change.

CD To open next address and enter any change.

CD To open preceding address.

address© To branch to the address pointed to by the instruction

beginning at address. If address is omitted, the current

address is used.

;
To force numeric display mode.

= To force numeric and byte modes.
: To force flags.*

To force ASCII mode.

address,

Executes address, if address is omitted, the next instruction is executed.

expression =
Calculates expression and displays the results.

* The colon does not actually have anything to do with the CC (status flag) register. It simply

interprets the contents of the given address AS IF it contained flag bits.

79

Reference D/ EDTASM Error Messages
These are error messages you can get while in EDTASM or EDTASMOV:

BAD BREAKPOINT (ZBUG)
You are attempting to set a breakpoint (1) greater than

7, (2) in ROM, (3) at a SWI command, (4) at an address

where one is already set.

BAD COMMAND (Editor)

An illegal command letter was used on the command
line.

BAD OPCODE (Assembler)
The op code is either not valid or is not terminated with a
space, tab, or carriage return.

BAD OPERAND (Assembler)
There is some syntax error in the operand field. See
Section III for the syntax of assembly language instruc-

tions.

BAD COMMAND (ZBUG)
You are not using a ZBUG command.

BAD FILE DESCRIPTOR (Disk,ZBug)

The filespec is not in the proper DOS format. See "About

This Manual" at the beginning of this manual for the

proper file specification format.

BAD LABEL (Assembler)
The symbol you are using is (1) not a legal symbol, (2)

not terminated with either a space, a tab, or a carriage

return, (3) has been used with ORG or END, which do
not allow labels, or (4) longer than six characters.

BAD MEMORY (Assembler)
You are attempting to do an in-memory assembly that

would (1) overwrite system memory (an address lower

than $1200) (2) overwrite the edit buffer of the symbol

table, (3) go into the protected area set by USROG, or

(4) go over the top of RAM.

If using the /AO switch, check to see that you've in-

cluded an ORG instruction. When using /MO, check the

addresses you set for BEGTEMP and USRORG. This

could also be caused by the data not being stored cor-

rectly because of some code generated by an in-

memory assembly. See Chapter 7 for more information.

BAD MEMORY (ZBUG)
The data did not store correctly on a memory modifica-

tion. This error will occur if you try to modify ROM
addresses or try to store anything beyond MAXMEM.

BAD PARAMETERS (Editor,ZBug)

Usually this means your command line has a syntax

error.

BAD PARAMETERS (ZBUG)
You have specified a filename that has more than eight

characters.

BAD RADIX (ZBUG)
You have specified a numbering system other than 10, 8

or 16.

BUFFER EMPTY (Editor)

The specified command requires that there be some text

in the Edit Buffer, and there isn't any.

BUFFER FULL (Editor)

There is not enough room in the edit buffer for another

line of text.

BYTE OVERFLOW (Assembler)
There is a field overflow in an 8-bit data quantity in an

immediate operand, an offset, a short branch, or an FCB
pseudo op.

DIRECTORY FULL (Disk)

The directory does not have enough room for another

entry. Use another diskette or delete a file (using the

BASIC KILL command).

DISK FULL (Disk)

The diskette does not have enough room for another file.

Use another diskette or delete a file (using the BASIC
KILL command).

81

/ EOTASM ERROR MESSAGES

DISK WRITE PROTECTED (Disk)

You are attempting to write to a diskette that has the

write-protect notch covered. Remove the write-protect

label or use another diskette.

DOS ERROR (Disk)

This indicates an internal DOS error. It usually means
either the DOS or the Editor/Assembler has been mod-
ified by the user program with harmful results.

DP ERROR (Assembler)
Direct Page error. The high order byte of an operand
where direct addressing has been forced (,) does not

match the value set by the most recent SETDP pseudo
op.

DRIVE NOT READY (Disk)

The drive is not connected, powered up, working proper-

ly, or loaded properly.

END OF FILE (Disk)

Your program is attempting to access a record past the

end of the file.

ENDC WITHOUT COND (Assembler)
The pseudo op ENDC was found without a matching

COND having previously been encountered.

ENDM WITHOUT MACRO (Assembler)
The pseudo op ENDM was found without a matching

MACRO having previously been encountered.

EXPRESSION ERROR (Assembler and ZBUG)
Either the syntax for the expression is incorrect (check

Chapter 9) or the expression is dividing by zero.

FILE NOT FOUND (Disk)

The file is not on the disk's directory.

FM ERROR (Editor, ZBUG and Disk)

File Mode Error. The file you are attempting to load is

not a TEXT file (if in the Editor) or a CODE file (if in

ZBUG).

ILLEGAL NESTING (Assembler)
Illegal nesting conditions include the following:

1. Nested macro definitions.

2. Nested macro expansions.

3. Nested INCLUDE pseudo ops.

4. INCLUDE nested within a macro definition.

I/O ERROR (Editor, ZBUG and Disk)

Input/Output error. A checksum error was encountered

while loading a file from a cassette tape. The tape may
be bad, or the volume setting may be wrong. Try a high-

er volume.

MACRO FORWARD REFERENCE
(Assembler)

A reference to the macro, which is defined on the current

line, occurs previous to the macro definition.

MACRO TABLE FULL (Assembler)
The macro table is full, any additional entries will over-

write the symbol table. This happens when all memory
allocated for the edit buffer, macro table, and symbol
table has been used. Adjust USRORG using the Origin

(0) command. (See the Chapter 7.)

MISSING END (Assembler)
Every assembly language program must have END as
its last command.

MISSING INFORMATION (Assembler)

(1) There is a missing delimiter in an FCC pseudo op or

(2) there is no label on a SET or EQU pseudo op.

MISSING OPERAND (Assembler,ZBug)
The command requires one or more operands.

MULTIPLY DEFINED SYMBOL (Assembler)
Your program has defined the same symbol with differ-

ent values. If the error occurs in a macro expansion, use
the IA notation to name the symbols. See Chapter 12.

NO ROOM BETWEEN LINES (Editor)

There is not enough room between lines to use the in-

crement specified. Specify a smaller increment or re-

number (N) the text using a larger increment. Remember
that the last increment you used is kept until you specify

a new one.

NO SUCH LINES (Editor)

The specified line or lines do not exist.

REGISTER ERROR (Assembler)

(1) No registers have been specified with a PSH/PUL
instruction, (2) a register has been specified more than

once in a PSH/PUL instruction, or (3) there is a register

mismatch with an EXG/TFR instruction.

SEARCH FAILS (Editor)

The string specified in the Find (F) command could not

be found in the edit buffer beginning with the line speci-

fied. If no line is specified the current line is used.

82

SYMBOL TABLE OVERFLOW (Assembler) SYNTAX ERROR (Assembler)

The symbol table is extending past USRORG into the There is a syntax error in a macro dummy argument.

protected area of user memory. Adjust USRORG using

the O command. See Chapter 7. UNDEFINED SYMBOL (Assembler,ZBug)
Your program has not defined the symbol being used.

83

Reference E/

Assembler Pseudo Ops

Definition of Terms
symbol
Any string from one to six characters long, typed in the symbol field.

expression

Any expression typed in the operand field. See Reference C, "ZBUG commands," for a definition of valid expressions.

COMMANDS PAGES
DISCUSSED

COND expression
Assembles the instructions between COND and ENDC only if expression is true (a non-zero

value).

COND SYMBOL
SYMBOL FCB 10
VALUE FCB 5

COND SYMBOL-VALUE

Valid operators for a conditional expression are +,-,/, *. If the expression equals zero, it is

false; if non-zero, it is true.

END expression
Ends the assembly. The optional expression specifies the start address of the program.

ENDC
Ends a conditional assembly.

ENDM
Ends a macro definition.

symbol EQU expression

Equates symbol to an expression.

SYMBOL EQU $5000

85

E / ASSEMBLER PSEUDO OPS

symbol FCB expression,

.

.

.

Stores a 1-byte expression beginning at the current address.

DATA2 FCB $33+C0UNT

symbol FCC delimiter string delimiter

Stores string in memory beginning with the current address. The delimiter can be any
character.

TABLE FCC /THIS IS A STRING/

symbol FDB expression
Stores a 2-byte expression in memory begining at the current address.

DATA FDB $3322

INCLUDE source filespec

Includes source filespec in the current position of the source program.

INCLUDE SAMPLE/ASM

symbol MACRO
Defines the instructions between MACRO and ENDM as a macro named symbol.

DIVIDE MACRO

OPT switch, . .

.

Uses switch to control the listing of macros when assembling the program. The switches are:

MC List macro calls (default)

NOMC Do not list macro calls

MD List macro definitions (default)

NOMD Do not list macro definitions

MEX List macro expansionns
NOMEX Do not list macro expansions (default)

L Turn on the listing (default)

NOL Turn off the listing

ORG expression
Originates the program at expression address.

ORG $3F00

PAGE
Ejects the assembly listing to the next page.

RMB expression
Reserves expression bytes of memory for data.

DATA RMB $06

symbol SET expression

Sets or resets symbol to expression.

SYMBOL SET $3500

86

SETDP expression
Sets the direct page to expression.

SETDP $20

TITLE string

Prints string as the title of each page of the assembly listing. String can be up to 32
characters.

TITLE Program 1

87

Reference F/

Rom Routines

This reference lists the indirect addresses where the Color Computer's ROM routines are stored. It also shows the

entry and exit conditions for each routine.

The name of the routine is for documentation only. To jump to the routine, you must use its indirect address (the

address contained in the brackets).

COMMANDS PAGES
DISCUSSED

BLKIN = [$A006]
Reads a block from a cassette.

Entry Conditions:

Cassette must be on and in bit sync (see CSRDON).
CBUFAD contains the buffer address.

Exit Conditions:

BLKTYP, located at $7C, contains the block type:

= file header
1=data
FF = end of file

BLKLEN, located at $7D, contains the number of data bytes in the block (0-255):

Bit Z in the Register CC, Register A, and CSRERR, located at Address $81 , contains the

error:

Z = 1 , A - CSRERR = (if no errors)

Z = 0, A = CSRERR = 1 (if a checksum error occurs)

Z = 0, A = CSRERR = 2 (if a memory error occurs)

BLKOUT = [$A008]
Writes a block to cassette.

Entry Conditions:

If this is the first block write after turning the motor on, the tape should be up to speed
and a $55s should be written first.

CBUFAD, located at $7E, contains the buffer address.

BLKTYP, located at $7C, contains the block type.

BLKLEN, located at $7D, contains the number of bytes.

Exit Conditions:

Interrupts are masked.
X = CBUFAD + BLKLEN.
All registers are modified.

89

F / ROM ROUTINES

CHROUT = [A002]
Outputs a character to a device.

Entry Conditions:

Register A = character to be output

Address 6F (DEVNUM) = the device (-2 = printer; = screen)

Exit Conditions:
Register CC is changed; all others are preserved.

CSRDON = [$A004]
Starts the cassette and gets into bit sync for reading.

Entry Conditions:

None
Exit Conditions:

FIRQ and IRO are masked.
Registers U and Y are preserved. All others are modified.

JOYIN = [$A00A]
Samples the four joystick pots and stores their values in POTVAL through POTVAL + 3.

Left Joystick:

Up/Down 1 5A
Right/Left 15B
Right Joystick:

Up/Down 15C
Right/Left 15D
For Up/Down, the minimum value equals Up.

For Right/Left, the minimum value equals Left.

POLCAT = [A000]
Polls the keyboard for a character.

Entry Conditions:

None
Exit Conditions:

If no key is seen — Flag Z = 1 , Register A =
If a key is seen — Flag Z = 0, Register A = key code
Registers B and X are preserved.

All other registers are modified.

90

Reference G/
DOS Disk Data Control Block (DCB)

DOS uses a 49-byte DCB to access a disk file. This reference shows the contents of each of

the bytes (Bytes 0-48) in the DCB.

Bytes 0-31

The first 32 bytes of the DCB correspond to the disk file's 32-byte directory entry. When
creating a file, DOS writes the DCB's first 32 bytes to the directory.

When opening an existing file, DOS searches each directory entry for the filename and exten-

sion you have set in the DCB. If it finds a match, it overwrites the first 32 bytes of the DCB with

the 32-byte directory entry.

When you close the file, DOS overwrites the directory entry with the first 32 bytes of the DCB.

Filename (DCBFNM) Bytes 0-7

Contains the name of the file you want to access. You must set this value.

Extension (DCBFNM) Bytes 8-10

Contains the extension of the file you want to access. You must set this value.

File Type (DCBFTY) Byte 1

1

Contains the type of file you want to access. DOS ignores this, but BASIC uses it. You need to

set this value when creating the file if you want the file compatible with BASIC.

ASCII Flag (DCBASC) Byte 12

Contains a flag if the file is in ASCII format. DOS ignores this, but BASIC uses it. You need to

set this value when creating the file if you want the file compatible with BASIC.

First Cluster (DCBFCL) Byte 1

3

Contains the number of the first cluster in the file. (When you first create a file, this contains

$FF.) DOS sets this value.. Do not change it.

First Sector Bytes (DCBNLS) Bytes 14-15

Contains the number of bytes used in the first sector of the file. DOS ignores this. However, to

be compatible with BASIC files, you should set this value before closing an output file.

File Mode (DCBCFS) Byte 16
Contains the mode you specified with Register A in the OPEN, WRITE, or READ routine. DOS
sets this value.

91

G / DOS DATA CONTROL BLOCK CDCB)

Record Size (DCBRSZ) Bytes 17-18

Contains the size of each record. Use this with fixed-length records only. You set this value

before reading from or writing to a direct access file.

Record Terminator (DCBTRM) Byte 19
Contains the character that DOS uses to terminate each record. You supply this value when
reading from or writing to a sequential access file.

Undefined (DCBUSR) Bytes 20-31

Contains nothing at present. In future releases, DOS may use part of this.

Bytes 32 - 48

Bytes 32-48 are primarily set by DOS. However, you may use the contents of these bytes as

data in your program.

The exceptions to this are the bytes for the drive number, physical buffer address, and logical

buffer address. You must set the contents of these bytes before opening a file.

Operation Code (DCBOPC) Byte 32
Contains the last physical I/O operation performed on the file. See your Disk System Manual
for details. DOS sets this value.

Drive Number (DCBDRV) Byte 33
Contains the drive number (0-3 or $FF). $FF tells DOS to use the first available drive and then

insert the drive number in this segment. You must set this value before opening a file.

Track Number (DCBTRK) Byte 34
Contains the number of the last track DOS accessed while doing I/O for this file. DOS sets this

value.

Sector Number (DCBSEC) Byte 35
Contains the number of the last sector DOS accessed while doing I/O for this file. DOS sets

this value.

Physical Buffer Address (DCBBUF) Bytes 36-37

Contains the start address of a 256-byte physical buffer. The physical buffer is for storing data

before or after disk I/O. You must set this value before opening a file.

Error Code (DCBOK) Byte 38
Contains the same value that the DOS routine returns in Register A: a zero if the last DOS
routine was successful; the error number if there was an error. DOS sets this value.

Logical Buffer Address (DCBLRN) Bytes 39-40

Contains the start address of a logical buffer. The logical buffer is for storing a logical record

before or after it goes through the physical buffer. You must set this value before opening a

file, unless you have specified the "share" file mode. (See OPEN.)

Physical Record Number (DCBPRN). Bytes 41-42

Contains the number of the physical record currently in the physical buffer. DOS uses this to

determine whether another physical read or write is required. This contains $FFFF when the

file is opened. It also contains $FFFF after every read or write when the buffer is "shared."

DOS sets this value.

92

Relative Byte Address (DCBRBA) Bytes 43-45

Contains an address which points to the record you want to read or write (zero when the file is

first opened). With sequential access, this address always points to the next record. With direct

access, this address is the product of DCBRSZ times DCBPRN. DOS sets and updates this

value.

Logical Record Number (DCBLRN). Bytes 46-47

Contains the number of the next record to be accessed (zero when the file is first opened).

Unless you set this value, DOS increments it after accessing each record.

Modified Data Tag (DCBMDT) Byte 48
Contains a tag ("1") if the contents of the physical buffer need to be written to disk. DOS sets

this tag each time it writes to the logical buffer. The contents of the physical buffer are written

to disk only when DOS must access a different sector (because the 256-byte buffer is full) or

close the file. If the physical buffer is "shared," the physical buffer is written to disk after each
logical write. DOS sets and updates this value.

93

Reference H/
DOS Routines

This reference lists all the DOS routines that Radio Shack will continue to provide in future releases. Please note that

Radio Shack will support only the OPEN, CLOSE, READ, and WRITE routines. The other routines listed in this refer-

ence will be provided, but not necessarily supported.

Definition of Terms
root program
The portion of the program that is not an overlay. If you are not using overlays, this is the entire program.

overlay

A portion of the program that DOS loads into memory only when called. This can be your own overlay (called with

DOUSR, GOUSR, or LOUSR) or a DOS overlay (called with DO, GO, or LOAD).

DOS programming convention
A convention, which any program using DOS routines must follow:

• The execution address must be the first instruction in the program.

• The first three bytes of the program must contain a JMP or LBR to any part of the root program. (JMP and LBR are

both 3-byte instructions.) Example:

START JMP BEGIN

• The next two bytes must contain the length of the root program. If you are not using overlays, this is the entire

program. Example:

FDB DONE-START

• If you are using overlays, this is the root program. Example:

FDB D0NE-0VY1

DOS overlay conventions
A convention, which any of your own overlays must follow:

• The first two bytes must contain the size of the overlay. Example:

0VY1 FDB 0VY2-0VY1

• The next three bytes must contain a JMP or LBRA to any part of the overlay. Example:

JSR PRO VI

• The last instruction should be an RTS, GO, or GOUSR.
• You must assign the overlay a number that is sequential. For example, assign your first overlay the overlay number

of 1:

OYY EQU 1

95

H / DOS ROUTINES

• The overlay must be written with relocatable (rather than absolute) addresses. When DOS loads the overlay, it sets

Register X equal to the overlay's base address. Therefore, you can refer to all the local variables as an offset to

Register X.

COMMANDS PAGES
DISCUSSED

CLOSE =[$602]
Closes access to a disk file.

Entry Conditions:
Register U = the address of the DCB that was previously opened.
Program must follow DOS programming convention.

Exit Conditions
Register A = status code

Technical Function of CLOSE:
• Checks the drive specified by DCBDRV for a directory entry matching DCBFNM and
DCBFEX. When the entry is found, checks to see if the file was previously open by seeing if

DCBCFS contains a non-zero value.

• Checks DCBMDT for a modification tag. If found, writes the contents of the physical buffer to

the disk.

• Sets DCBCFS to zero.

• Rewrites the directory entry with the first 32 bytes of the DCB. Any changes in the first 32
bytes of the DCB after OPEN and before CLOSE are recorded in the directory.

• Rewrites the diskette's FAT.

DO = [$60A]
Calls a DOS overlay.

Entry Conditions:

Register A = DOS overlay number
Exit Conditions:

Register A = status code

DOUSR = [$0610]
Calls one of your own overlays.

Entry Conditions:

Register A = overlay number (the number you have assigned to the overlay)

Exit Conditions:

Register A = status code

GO = [$60C]
Calls one DOS overlay from another DOS overlay.

Entry Conditions:
Register A = DOS overlay number

Exit Conditions:

Register A = status code

96

GOUSR = [$612]
Calls one overlay from another overlay. For example, OVY1 calls OVY2.
Entry Conditions:

Register A = overlay number (the number you have assigned to the overlay)

Exit Conditions:

Register A = "0"
if no error; error code if error

LOAD = [$60E]
Loads a DOS overlay but does not execute it.

Entry Conditions:

Register A = DOS overlay number
Exit Conditions:

Register A = "0"
if no error; error code if error

LODUSR = [$614]
Loads one of your overlays but does not execute it.

Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)

Exit Conditions:

Register A = "0"
if no error; error code if error

OPEN = [$600]
Opens access to a disk file using the specified file mode.
Entry Conditions:

Register A = file mode
The file modes are:

allows reads

allows writes

allows file creation

allows extension past end of file

deletes the file when closed (work file)

rewrites the directory's file allocation table (FAT) only when the file is

closed. (Otherwise, rewrites FAT after each READ; see the Disk Sys-

tem Manual for information on the FAT.)

shares the physical and logical buffer

undefined

Register U = the address where the DCB is stored.

The DCB must contain values for DCBFNM, DCBFEX, DCBDRV, and DCBBUF
Program must follow DOS programming conventions.

Exit Conditions:

Register A = if no error; error code if error

Technical Function of OPEN:
• Checks the drive specified by DCBDRV for a directory entry matching DCBFNM and
DCBFEX.

• If a match is found:

• Uses the directory entry to overwrite the first 32 bytes of the DCB
• Checks DCBCFS. It indicates a write, create, or extend, the file is opened and Status

Code L is returned.

• Inserts the file mode (contained in Register A) in DCBCFS.
• Overwrites the directory entry with the first 32 bytes of the DCB.

• If a match is not found and the file mode is "create," creates a directory entry using the first

32 bytes of the DCB

Bit set

Bit 1 set

Bit 2 set

Bit 3 set

Bit 4 set

Bit 5 set

Bit 6 set

Bit 7 set

97

H / DOS ROUTINES

• Sets DCBPRN to $FFFF
• Clears DCBLRN, DCBMDT, and DCBRBA.

READ = [$604]
Reads a record from a disk fjle.

Entry Conditions
Register A = read option

The read options are:

Bit clear— direct access (read by record number; fixed length records)

Bit set — sequential access (read by terminator character; variable length re-

cords)

Bit 1 clear— exit READ pointing to next record

Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to

next record)

The other bits can contain any value.

Register U = address pointing to the DCB
Program must follow DOS programming convention

Exit Conditions:
Register A = if no error; error number if error logical buffer (pointed to by DCBLRB)
contains the record

Technical Function of READ:
• Checks DCBCFS to see if the file was opened for "read."

• Checks DCBRBA for the record you want to access. (If Bit in Register A is clear, READ
calculates DCBRBA as the product of DCBLRN times DCBRSZ).

• Checks to see if the record is in the physical buffer (by comparing the high two bytes of

DCBRBA with the contents of DCBPRN).
If the record is not in the physical buffer, READ reads the record into the physical buffer

then transfers it to the logical buffer.

• Checks to see if Register A's Bit 1 is set. If so, restore DCBLRN and DCBRBA to their

original values.

RELSE = [$608]
Frees a physical buffer so that you can use it with another file.

Entry Conditions:
Register U = address where the DCB is stored of the file currently using the physical

buffer.

Register A = if no error; error code if error.

Technical Function of RELSE:
• Check DCBMDT. If the tag is set, the contents of the physical buffer are written to disk and
DCBMDT is cleared.

• Sets DCBPRN to $FFFF.

WRITE = [$606]
Writes a logical record to disk.

Entry Conditions:
Register A = read/write option

The read/write options are:

Bit clear— direct access (write by record number; fixed length records)

Bit set — sequential access (write by terminator character; variable length

records)

98

Bit 1 clear— exit READ pointing to next record

Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to

next record)

The other bits can contain any value.

Register U = address pointing to the DCB logical buffer (pointed to by DCBLRB) con-

tains the record you want to write

Program must follow DOS programming conventions.

Exit Conditions:
Register A = if no error; status code if error

Technical Function of WRITE:
• Checks DCBCFS to see if the file was opened for "write."

• Checks DCBRBA for the record you want to access. (If Bit in Register A is off, WRITE
calculates DCBRBA as the product of DCBLRN times DCBRSZ).

• Transfers the contents of the logical buffer to the physical buffer. If all 256 bytes of the

physical buffer are full, writes the contents of the physical buffer to disk. If there is still more
contents in the logical buffer, WRITE transfer these contents to the physical buffer and sets

DCBMDTto 1.

• If the file mode is "share," writes the complete contents of the physical buffer to disk regard-

less of whether it completely fills the sector. Then, sets DCBPRN to $FFFF.

99

Reference 1/

DOS Error Codes

Error Hex Character
Code Code Displayed
00 40 @
01 41 A
02 42 B
03 43 C
04 44 D
05 45 E
06 46 F

07 47 G
08 48 H
09 49 I

0A 4A J

0B 4B K
OC 4C L

OD 4D M
OE 4E N
OF 4F

10 50 P
11 51 Q
12 52 R
13 53 S
14 54 T
15 55 U
16 56 V
17 57 w
18 58 X
19 59 Y
1A 5A z
1B 5B [

1C 5C \

1D 5D]

1E 5E ~

1F 5F —

Error

No errors

I/O error (drive not ready)

I/O error (write-protected diskette)

I/O error (write fault)

I/O error (seek error or record not found)

I/O error (CER error)

I/O error (lost data)

I/O error (undefined Bit 1)

I/O error (undefined Bit 0)

Register argument is invalid

File directory entry not found

Full directory

File was created by the OPEN function

File not closed after changes

Attempt to access an opened file

Attempt to read a read-protected file

RBA overflow (exceeds 3 bytes -16,777,216)

Access beyond EOF or extension not allowed

FAT rewrite error

Attempt to close an unopened file

Can't access directly (record size is 0)

Attempt to write on write-protected diskette

Can't extend file (disk capacity exceeded)

Error while loading overlay

Insufficient print space allocated

I/O error during BASIC line read

Program's load address is too low

First byte of program file is not equal to zero

Not enough space for buffered keyboard

Not enough memory
Output file already exists

Wrong diskette

101

Reference J/

Memory Map

$0 - $69
$70-$FF
$100-$111
$112-$119
$11A
$11B-$159
$15A-$15D
$15E-$3FF
$400-$5FF
$600-$1 1 FF
$1200-$3FFF
$1200-$7FFF
$8000-$9FFF
$A000-$BFFF
$C000-$DFFF
$E000-$FEFF
$FF00-$FFEE
$FFF0-$FFFF

Direct page RAM
System direct page RAM
Interrupt vectors

System RAM
Keyboard alpha lock flag

System RAM
Joystick pot values

System RAM
Video memory
DOS
16K user memory
32K user memory
Extended BASIC
BASIC
Disk BASIC
ROM expansion

Hardware address
Interrupt vectors

103

Reference K/
ASCII Codes

Video Control Codes
Dec Hex PRINT CHR$ (code)

8 08 Backspaces and erases current character.

13 0D Line feed with carriage return.

32 20 Space

Color Codes
CODE COLOR

Black

1 Green
2 Yellow

3 Blue

4 Red
5 Buff

6 Cyan
7 Magenta
8 Orange

Graphic Character
Codes

Given the color (1-8) and the pattern (0-15), this formula

will generate the correct code:

code = 1 28 + 1 6 * (color -
1) + pattern

1

7

13

2 3 4 5

8 9 10 11

4 1512

For example, to print pattern 9 in blue (code 3), type:

C = 128 + IB * (3-1) + 9

? CHR* (C)

105

K / ASCII CODES

Alphanumeric
Character Codes

CHARACTER DECIMAL
CODE

HEXADECIMAL
CODE

(SPACEBAR) 32 20
I 33 21
>)

34 22
35 23

$ 36 24
% 37 25
& 38 26

'

39 27

(40 28

)
41 29

*
42 2A

+ 43 2B
?

44 2C
45 2D
46 2E

/ 47 2F
48 30

1 49 31

2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

58 3A
»

59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41

B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48

I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E

79 4F
P 80 50
Q 81 51

R 82 52
S 83 53

106

CHARACTER DECIMAL
CODE

HEXADECIMAL
CODE

T 84 54
U 85 55
V 86 56
w 87 57
X 88 58
Y 89 59
z 90 5A

CD* 94 5E
LJJ

*
10 OA

G*3
*

8 08©* 9 09
(BREAK) 03 03
(CLEAR) 12 OC
(ENTER) 13 OD

*lf shifted, the code for these characters are as follows:

(CLEAR) is 92 (hex 5C); CD is 95 (hex 5F); CD is 91 (hex

5B);© is 21 (hex 15); and© is 93 (hex 5D).

These are the ASCII codes for lowercase letters. You can

produce these characters by pressing (SHIFT)CcT) simul-

taneously to get into an upper-lowercase mode. The lower-

case letters will appear on your screen in reversed colors

(green with a black background).

CHARACTER DECIMAL
CODE

HEXADECIMAL
CODE

a 97 61

b 98 62
c 99 63
d 100 64
e 101 65
f 102 66

g 103 67
h 104 68
i 105 69

j
106 6A

k 107 6B
I 108 6C
m 109 6D
n 110 6E

111 6F

P 112 70

q 113 71

r 114 72
s 115 73
t 116 74
u 117 75
V 118 76
w 119 77
X 120 78

y 121 79
z 122 7A

107

Reference U
6809 Mnemonics

Definition of Terms

Source Forms:
This shows all the possible variations you can use with

the instruction. Table 4 gives the meaning of all the nota-

tions we use. The notations in italics represent values

you can supply

For example, the BEQ instruction has two source forms.

BEQ dd allows you to use these instructions:

BEQ $08 BEQ $FF BEQ *A0

Whereas LBEQ DDDD allows you these:

LBEQ $C000 LBEQ *FFFF

Operation:
This uses shorthand notation to show exactly what the

instruction does, step by step. The meaning of all the

codes are also in Table 4.

For example, the BEQ operation does this:

% (but only if), the zero flag is set, branch to

the location indicated by the program counter

plus the value of the 8-bit offset"

Condition Codes:
This shows which of the flags in the CC register are

affected by the instruction, if any. As you'll note, BEQ
does not set or clear any of the flags.

Description:

This is an overall description, in English, of what the

instruction does.

Addressing Mode:
This tells you which addressing modes you may use with

the instruction. BEQ allows only the Relative addressing

mode.

109

L / 6809 MNEMONICS

ABERRATION MEANING
ACCA or A Accumulator A.

ACCB or B Accumulator B.

ACCA:ACCB or D Accumulator D.

ACCX Either accumulator A or

accumulator B.

CCR or CC Condition code register.

DPR or DP Direct page register.

EA Effective address.

IFF If and only if.

IXorX Index register X.

lYorY Index register Y.

LSN Least significant nibble.

M Memory location.

Ml Memory immediate.

MSN Most significant nibble.

PC Program counter.

R A register before the operation.

R' A register after the operation.

TEMP A temporary storage location.

xxH Most significant byte of any
location.

xxL Least significant byte of any
location.

SporS Hardware stack pointer.

ABBREVIATION MEANING
UsorU User stack pointer.

P A memory location with immediate,

direct, extended, and indexed

addressing modes.

Q A read-write-modify argument with

direct, extended and indexed

addressing modes.
() The data pointed to by the enclosed

(16 bit address).

dd 8-bit branch offset.

DDDD 16-bit offset.

Immediate value follows.

$ Hexadecimal value follows.

[] Indirection.

t
Indicates indexed addressing.

<- Is transferred to.

/ Boolean AND.
V Boolean OR.

Boolean Exclusive OR (XOR).
— Boolean NOT

Concatination.

+ Arithmetic plus.

- Arithmetic minus.

X Arithmetic multiply.

Table 4. Notations and Codes

110

Add Accumulator B
into Index Register X
Source Form: ABX
Operation: IX'-IX + ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B
into index register X.

Addressing Mode: Inherent.

Add with Carry into Register
Source Forms: ADCA P; ADCB P
Operation: R'-R + M + C
Condition Codes:

H — Set if a half-carry is generated; cleared otherwise.

N —Set if the result is negative; cleared otherwise.

Z ^Set if the result is zero; cleared otherwise.

V Set if an overflow is generated; cleared otherwise.

C — Set if a carry is generated; cleared otherwise.

Description: Adds the contents of the C (carry) bit and the

memory byte into an 8-bit accumulator.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Add Memory into Register
Source Forms: ADDA P\ ADDB P
Operation: R'-R + M
Condition Codes:

H —Set if a half-carry is generated; cleared otherwise.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.

C — Set if a carry is generated; cleared otherwise.

Description: Adds the memory byte into an 8-bit

accumulator.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Add Memory into Register
Source Form: ADDD P
Operation: R'-R + M:M + 1

Condition Codes:
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.

C — Set if a carry is generated; cleared otherwise.

Description: Adds the 16-bit memory value into the 16-bit

accumulator.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Memory
into Register
Source Forms: ANDA P; ANDB P
Operation: R'-R/VM
Condition Codes:

H — Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.

Description: Performs the logical AND operation between
the contents of an accumulator and the contents of memory
location M and the result is stored in the accumulator.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Immediate Memory
into Condition Code Register
Source Form: ANDCC #xx
Operation: R'-R A Ml

Condition Codes: Affected according to the operation.

Description: Performs a logical AND between the condition

code register and the immediate byte specified in the

instruction and places the result in the condition code
register.

Addressing Mode: Immediate.

Arithmetic Shift Left
Source Forms: ASL Q; ASLA; ASLB

Operation: C«- -0

bOb7

Condition Codes:
H —Undefined.
N —Set if the result is negative; cleared otherwise.

Z -^Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.

Description: Shifts all bits of the operand one place to the

left. Bit zero is loaded with a zero. Bit seven is shifted into

the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

ABX

ADC

ADD
(8-Bit)

ADD
(16-Bit)

AND

AND

ASL

111

L / 6BQ9 MNEMONICS

ABR

BCC

BCS

BEO

BGE

BGT

BHI

Arithmetic Shift Right
Source Forms: ASR Q; ASRA; ASRB

1

Operation: I
I I T

b7 bO
Condition Codes:

H —Undefined.

N —Set if the result is negative; cleared otherwise.

Branch on Carry Clear
Source Forms: BCC dd; LBCC DDDD
Operation:

TEMP-MI
IFFC = OthenPC-PC + TEMP

Branch on Carry Set
Source Forms: BCS dd; LBCS DDDD
Operation:

TEMP-MI
IFFC=1 then PC-PC + TEMP

Branch on Equal
Source Forms: BEQ dd, LBEQ DDDD
Operation:

TEMP-MI
IFFZ=1 then PC-PC + TEMP

Condition Codes: Not affected.

Branch on Greater than
or Equal to Zero
Source Forms: BGE dd] LBGE DDDD
Operation:

TEMP-MI
IFF [N0V1 = O then PC-'-PC

Condition Codes: Not affected.

TEMP

Branch on Greater
Source Forms: BGT dd; LBGT DDDD
Operation:

TEMP-MI
IFF Z A IN VI = then PC- PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and

V (overflow) bit are either both set or both clear and the

Branch if Higher
Source Forms: BHI dd; LBHI DDDD
Operation:

TEMP-MI
IFF [C v ZJ = then PC-PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if the previous operation

caused neither a carry nor a zero result. When used after a

Z —Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.

Description: Shifts all bits of the operand one place to the

right. Bit seven is held constant. Bit zero is shifted into the

C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a

branch if it is clear.

Addressing Mode: Relative.

Comments: Equivalent to BHS dd; LBHS DDDD.

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a

branch if it is set.

Addressing Mode: Relative.

Comments: Equivalent to BLO dd; LBLO DDDD.

Description: Tests the state of the Z (zero) bit and causes a

branch if it is set. When used after a subtract or compare
operation, this instruction will branch if the compared values,

signed or unsigned, were exactly the same.

Addressing Mode: Relative.

Description: Causes a branch if the N (negative) bit and the

V (overflow) bit are either both set or both clear. That is.

branch if the sign of a valid twos complement result is, or

would be, positive. When used after a subtract or compare
operation on twos complement values, this instruction will

branch if the register was greater than or equal to the

memory operand.

Addressing Mode: Relative.

Z (zero) bit is clear. In other words, branch if the sign of a

valid" twos complement result is, or would be, positive and

not zero. When used after a subtract or compare operation

on twos complement values, this instruction will branch if the

register was greater than the memory operand.

Addressing Mode: Relative.

subtract or compare operation on unsigned binary values,

this instruction will branch if the register was higher than the

memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LD/TST,

and TST/CLR/COM instructions.

112

Branch if Higher or Same
Source Forms: BHS dd; LBHS DDDD
Operation:

TEMP-MI
IFFC = OthenPC'-PC + Mi

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branch if it is clear. When used after a subtract or compare

on unsigned binary values, this instruction will branch if the

register was higher than or the same as the memory
operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCC. Generally

not useful after INC/DEC, LD/ST, and TST/CLR/COM
instructions.

Bit Test
Source Form: BIT P
Operation: TEMP-R A M
Condition Codes:

H —Not affected.

N —Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V —Always cleared.

C —Not affected.

Description: Performs the logical AND of the contents of

accumulator A or B and the contents of memory location M
and modifies the condition codes accordingly. The contents

of accumulator A or B and memory location M are not

affected.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Branch on Less than
or Equal to Zero
Source Forms: BLE dd; LBLE DDDD
Operation:

TEMP-MI
IFFZvtN0Vl = 1 then PC-PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if the exclusive OR of the N
(negative) and V (overflow) bits is 1 or if the Z (zero) bit is

set. That is, branch if the sign of a valid twos complement
result is, or would be, negative. When used after a subtract

or compare operation on twos complement values, this

instruction will branch if the register was less than or equal

to the memory operand.

Addressing Mode: Relative.

Branch on Lower
Source Forms: BLO dd; LBLO DDDD
Operation:

TEMP-MI
IFFC=1 then PC'-PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a

branch if it is set. When used after a subtract or compare on
unsigned binary values, this instruction will branch if the

register was lower than the memory operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCS. Generally

not useful after INC/DEC, LD/ST, and TST/CLR/COM
instructions.

Branch on Lower or Same
Source Forms: BLS dd; LBLS DDDD
Operation:

TEMP-MI
IFF(CvZ)=1 then PC-PC + TEMP

Condition Codes: Not affected.

Description: Causes a branch if the previous operation

caused either a carry or a zero result. When used after a

subtract or compare operation on unsigned binary values,

this instruction will branch if the register was lower than or

the same as the memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LD/ST, and
TST/CLR/COM instructions.

BHS

Branch on Less than Zero
Source Forms: BLT dd; LBLT DDDD
Operation:

TEMP-MI
IFF [N © VJ= 1 then PC'-PC +TEMP

Condition Codes: Not affected.

Description: Causes a branch if either, but not both, of the

N (negative) or V (overflow) bits is set. That is, branch if the

sign of a valid twos complement result is, or would be,

negative. When used after a subtract or compare operation

on twos complement binary values, this instruction will

branch if the register was less than the memory operand.

Addressing Mode: Relative.

Branch on Minus
Source Forms: BMI dd; LBMl DDDD
Operation:

TEMP-MI
IFF N = 1 then PC'-PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the N (negative) bit and

causes a branch if set. That is, branch if the sign of the twos
complement result is negative.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary

values, this instruction will branch if the result is minus. It is

generally preferred to use the LBLT instruction after signed

operations.

BIT

BLE

BLO

BLS

BLT

BMI

113

L / 6B09 MNEMONICS

BNE

BPL

BRA

BRN

BSR

Branch Not Equal
Source Forms: BNE dd\ LBNE DDDD
Operation:

TEMP-MI
IFF Z- then PC - PC + TEMP

Condition Codes: Not affected.

Branch on Plus
Source Forms: BPL dd\ LBPL DDDD
Operation:

TEMP-MI
IFF N = then PC-PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the N (negative) bit and

Branch Always
Source Forms: BRA dd; LBRA DDDD
Operation:

TEMP-MI
PC-PC + TEMP

Branch Never
Source Forms: BRN dd; LBRN DDDD
Operation: TEMP-MI
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is clear. When used after a subtract or compare
operation on any binary values, this instruction will branch
if the register is, or would be, not equal to the memory
operand.

Addressing Mode: Relative.

causes a branch if it is clear. That is, branch if the sign

of the twos complement result is positive.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary

values, this instruction will branch if the result (possibly

invalid) is positive. It is generally preferred to use the BGE
instruction after signed operations.

Condition Codes: Not affected.

Description: Causes an unconditional branch.

Addressing Mode: Relative.

Description: Does not cause a branch. This instruction is

essentially a no operation, but has a bit pattern logically

related to branch always.

Addressing Mode: Relative.

Branch to Subroutine
Source Forms: BSR dd; LBSR DDDD
Operation:

TEMP-MI
SP'-SP-1,(SP)-PCL
SP'-SP-MSP)-PCH
PC-PC + TEMP

Condition Codes: Not affected.

Description: The program counter is pushed onto the stack.

The program counter is then loaded with the sum of the

program counter and the offset.

Addressing Mode: Relative.

Comments: A return from subroutine (RTS) instruction is

used to reverse this process and must be the last instruction

executed in a subroutine.

BUG Branch on Overflow Clear
Source Forms: BVC dd\ LBVC DDDD
Operation:

TEMP-MI
IFF V = then PC'-PC + TEMP

Condition Codes: Not affected

Description: Tests the state of the V (overflow) bit and
causes a branch if it is clear. That is, branch if the twos
complement result was valid. When used after an operation
on twos complement binary values, this instruction will

branch if there was no overflow.

Addressing Mode: Relative.

BUS

CLR

BVS Branch on Overflow set
Source Forms: BVS dd; LBVS DDDD
Operation: Temp *-MI IFFV = 1 then PC *- PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of V (overflow) bit and causes
a branch if it is set. That is, branch if twos complement
result was invalid. When used after an operation on twos
complement binary values, this instruction will branch if there

was an overflow.

Addressing Mode: Relative.

CLR Clear
Source Forms: CLR Q
Operation: TEMP-*- M M^- 00 (base 16)

Condition codes:
H — Not affected.

N — Always cleared.

Z — Always set.

V — Always cleared.

C — Always cleared.

Description: Accumulator A or B or memory location M is

loaded with 00000000. Note that the EA is read during this

operation.

Addressing Modes: Inherent, Extended, Direct, Indexed.

114

Compare Memory from Register
Source Forms: CMPA P; CMPB P
Operation: TEMPER -M
Condition Codes:

H —Undefined.
N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.

C Set if a borrow is generated; cleared otherwise.

Description: Compares the contents of memory location

to the contents of the specified register and sets the

appropriate condition codes. Neither memory location M nor

the specified register is modified. The carry flag represents a

borrow and is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Compare Memory from Register
Source Forms: CMPD P; CMPX P; CMPY P; CMPU P;

CMPSP
Operation: TEMPER - M:M + 1

Condition Codes:
H — Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.

Description: Compares the 16-bit contents of the

concatenated memory locations M:M + 1 to the contents
of the specified register and sets the appropriate condition
codes. Neither the memory locations nor the specified

register is modified unless autoincrement or autodecrement
are used. The carry flag represents a borrow and is set to

the inverse of the resulting binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Complement
Source Forms: COM_G; COMA; COMB
Operation: M'^O + M
Condition Codes:

H Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C —Always set.

Description: Replaces the contents of memory location M
or accumulator A or B with its logical complement. When
operating on unsigned values, only BEQ and BNE branches
can be expected to behave properly following a COM
instruction. When operating on twos complement vaiues,

all signed branches are available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Clear CC bits and Wait
for Interrupt

HSource Form: CWAI #$XX
|
E

,

Operation:

CCR-CCR A Ml (Possibly clear masks)

Set E [entire state saved)

SP'-SP -1.(SP)«-PCL
SP'-SP-1,(SP)-PCH

1, (SP)«-USL

1,(SP)«-USH
1,(SP)«-IYL

1.CSPMYH
1.CSPMXL
1, (SP)-IXH

DPR
ACCB

I N Z V C

SP'-SP
SP'-SP
SP'-SP
SP'-SP
SP'-SP
SP'-SP
SP'-SP-1,(SP)<
SP'-SP-1,(SP)<
SP'-SP-1,(SP)*-ACCA
SP-SP-1.CSPMXR

Condition Codes: Affected according to the operation.

Description: This instruction ANDs an immediate byte with

the condition code register which may clear the interrupt

mask bits ! and F, stacks the entire machine state on the

hardware stack and then looks for an interrupt. When a

non-masked interrupt occurs, no further machine state

information need be saved before vectoring to the interrupt

handling routine. This instruction replaced the MC6800 CLI

WAI sequence, but does not place the buses in a high-

impedance state. A FIRQ (fast interrupt request) may enter

its interrupt handler with its entire machine state saved. The
RTI (return from interrupt) instruction will automatically return

the entire machine state after testing the E (entire) bit of the

recovered condition code register.

Addressing Mode: Immediate

Comments: The following immediate values will have the

following results:

FF = enable neither

EF = enable IRQ
BF = enable FIRQ
AF = enable both

Decimal Addition Adjust
Source Form: DAA
Operation: ACCA'-ACCA + CF(MSN):CF(LSN)
where CF is a Correction Factor, as follows: the CF for each

nibble (BCD) digit is determined separately, and is either

6or0.
Least Significant Nibble

CF(LSN) = 6IFF 1)C = 1

or 2) LSN>9
Most Significant Nibble

CF(MSN) = 6IFF1)C=1
or2)MSN>9
or3)MSN>8andl_SN>9

Condition Codes:
H — Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Undefined.
C — Set if a carry is generated or if the carry bit was set

before the operation; cleared otherwise.

Description: The sequence of a single-byte add instruction

on accumulator A (either ADDA or ADCA) and a following

decimal addition adjust instruction results in a BCD addition

with an appropriate carry bit. Both values to be added must

be in proper BCD form (each nibble such that: 0s=nibble^9).

Multiple-precision addition must add the carry generated by

this decimal addition adust into the next higher digit during

the add operation (ADCA) immediately prior to the next

decimal addition adjust.

Addressing Mode: Inherent

CMP
(8-Bit)

CMP
(IB-Bit)

COM

CWAI

DAA

115

L / BS09 MNEMONICS

DEC

EOF?

EaG

INC

JMP

JSR

(8-Bit)

Decrement
Source Forms: DEC O; DECA; DECB
Operation: M'«-M- 1

Condition Codes:
H —Not affected.

N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Set if the original operand was 10000000; cleared

otherwise.

C — Not affected.

Description: Subtract one from the operand. The carry bit

is not affected, thus allowing this instruction to be used as

a loop counter in multiple-precision computations. When
operating on unsigned values, only BEQ and BNE branches

can be expected to behave consistently. When operating on
twos complement values, all signed branches are available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Exclusive OR
Source Forms: EORA P; EORB P
Operation: RVR8M
Condition Codes:

H — Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C —Not affected.

Description: The contents of memory location M is

exclusive ORed into an 8-bit register.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Exchange Registers
Source Form: EXG R1,R2
Operation: R1~R2
Condition Codes: Not affected (unless one of the registers

is the condition code register).

Description: Exchanges data between two designated

registers. Bits 3-0 of the postbyte define one register, while

bits 7-4 define the other, as follows;

0000 = A:B 1000 = A
0001 =X 1001 =B

0010 = Y
0011= US
0100 = SP
0101= PC
01 10= Undefined

01 11 = Undefined

1010 = CCR
1011 -DPR
11 00 = Undefined

1101= Undefined
11 10 = Undefined

1 1 1

1

- Undefined

Increment
Source Forms: INC Q; INCA; INCB
Operation: M'«-M + 1

Condition Codes:
H —Not affected.

N —Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 01111111;

cleared otherwise.

Jump
Source Form: JMP EA
Operation: PC'*-EA
Condition Codes: Not affected.

Jump to Subroutine
Source Form: JSR EA
Operation:

SP'«-SP-1,(SP)«-PCL
SP'«-SP-1,(SP)«-PCH
PC'-EA

Load Register from Memory
Source Forms: LDA P\ LDB P
Operation: R '«-M

Condition Codes:
H —Not affected.

N — Set it the loaded data is negative; cleared

otherwise.

Only like size registers may be exchanged. (8-bit with

8-bit or 16-bit with 16-bit.)

Addressing Mode: Immediate.

C —Not affected.

Description: Adds to the operand. The carry bit is not

affected, thus allowing this instruction to be used as a loop

counter in multiple-precision computations. When operating

on unsigned values, only the BEQ and BNE branches can be
expected to behave consistently. When operating on twos
complement values, all signed branches are correctly

available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Description: Program control is transferred to the effective

address.

Addressing Modes: Extended; Direct; Indexed.

Condition Codes: Not affected.

Description: Program control is transferred to the effective

address after storing the return address on the hardware

stack. A RTS instruction should be the last executed

instruction of the subroutine.

Addressing Modes: Extended; Direct; Indexed.

Z — Set if the loaded data is zero; cleared otherwise.

V —Always cleared.

C —Not affected.

Description: Loads the contents of memory location M into

the designated register.

Addressing Modes: Immediate; Extended; Direct; Indexed.

116

Load Register from Memory
Source Forms: LDD P; LDX P; LDY P; LDS P; LDU P
Operation: R'^M:M-M
Condition Codes:

H — Not affected.

N — Set if the loaded data is negative; cleared

otherwise.

Z —Set if the loaded data is zero; cleared otherwise.

V — Always cleared.

C —Not affected,

Description: Load the contents of the memory location

M:M + 1 into the designated 16-bit register.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Load Effective Address
Source Forms: LEAX, LEAY, LEAS, LEAU
Operation: R'-^-EA

Condition Codes:
H —Not affected.

N —Not affected.

Z — LEAX, LEAY: Set if the result is zero; cleared

otherwise. LEAS, LEAU: Not affected.

V — Not affected.

C — Not affected.

Description: Calculates the effective address from the index

addressing mode and places the address in an indexable

register.

LEAX and LEAY affect the Z (zero) bit to allow use of

these registers as counters and for MC6800 INX7DEX
compatibility.

LEAU and LEAS do not affect the Z bit to allow cleaning up
the stack while returning the Z bit as a parameter to a calling

routine, and also for MC6800 INS/DES compatibility.

Addressing Mode: Indexed.

Comments: Due to the order in which effective addresses
are calculated internally, the LEAX, X+ + and LEAX.X+ do
not add 2 and 1 trespectively) to the X register; but instead

leave the X register unchanged. This also applies to the

Y, U, and S registers. For the expected results, use the

faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the

following table.

Comment
Adds 5-bit constant 10 to X.

Adds 16-bit constant 500 to X.

Adds 8-bit accumulator to Y.

Adds 16-bit D accumulator to Y.

Subtracts 10 from U.

Used to reserve area on stack.

Used to clean up' stack.

Transfers as well as adds.

Instruction Operation
LEAX 10.X X+10-X
LEAX 500.X X + 500-X
LEAY A, Y Y +A-Y
LEAY D. Y Y + D-Y
LEAU -10, U U-10-U
LEAS -10, S S-10-S
LEAS 10, S S + 10-S
LEAX 5, S S + 5-X

Logical Shift Left
Source Forms: LSL Q; LSLA; LSLB

Operation: C«-|
| | | |

"

y
b7 bO

Condition Codes:
H —Undefined.
N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.

Description: Shifts all bits of accumulator A or B or memory
location M one place to the left. Bit zero is loaded with a
zero. Bit seven of accumulator A or B or memory location M
is shifted into the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Comments: This is a duplicate assembly-language

mnemonic for the single machine instruction ASL

Logical Shift Right
Source Forms: LSR G; LSRA; LSRB

Operation:

b7

Condition Codes:
H — Not affected.

bO

N — Always cleared.

Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.

Description: Performs a logical shift right on the operand.
Shifts a zero into bit seven and bit zero into the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Multiply
Source Form: MUL
Operation: ACCA':ACCB'^ACCA x ACCB
Condition Codes:

H —Not affected.

N —Not affected.

Z — Set if the result is zero; cleared otherwise.

V —Not affected.

C —Set if ACCB bit 7 of result is set; cleared otherwise.

Description: Multiply the unsigned binary numbers in the

accumulators and place the result in both accumulators
(ACCA contains the most-significant byte of the result).

Unsigned multiply allows multiple-precision operations.

Addressing Mode: Inherent.

Comments: The C (carry) bit allows rounding the most-
significant byte through the sequence: MUL, ADCA #0.

LD
(IB-Bit)

LlM

LSL

LSR

MUL

117

L / GBOS MNEMONICS

NEG

NOP

OR

OR

PSHS

PSHU

Negate
Source Forms: NEG O; NEGA; NEGB
Operation: M'-O-M
Condition Codes:

H —Undefined.
N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Set if the original operand was 10000000.

C —Set if a borrow is generated; cleared otherwise.

Description: Replaces the operand with its twos

complement. The C (carry) bit represents a borrow and is set

to the inverse of the resulting binary carry. Note that 80 16 is

replaced by itself and only in this case is the V (overflow) bit

set. The value 00 16 is also replaced by itself, and only in this

case is the C (carry) bit cleared.

Addressing Modes: Inherent; Extended; Direct.

No Operation
Source Form: NOP
Operation: Not affected.

Condition Codes: This instruction causes only the program
counter to be incremented. No other registers or memory
locations are affected.

Addressing Mode: Inherent.

Inclusive OR Memory
into Register
Source Forms: ORA P; ORB P
Operation: R'^RvM
Condition Codes:

H —Not affected.

N — Set if the result is negative; cleared otherwise.

Z ^Set if the result is zero; cleared otherwise.

V —Always cleared.

C —Not affected.

Description: Performs an inclusive OR operation between
the contents of accumulator A or B and the contents of

memory location M and the result is stored in accumulator
A or B.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Inclusive OR Memory Immediate
into Condition Code Register
Source Form: ORCC #XX
Operation: R'-R v Ml

Condition Codes: Affected according to the operation.

Description: Performs an inclusive OR operation between
the contents of the condition code registers and the

immediate value, and the result is placed in the condition

code register. This instruction may be used to set interrupt

masks (disable interrupts) or any other bit(s).

Addressing Mode: Immediate.

Push Registers on
the Hardware Stack
Source Form:

PSHS register list

PSHS #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 bO

PC
|
U Y X | DP [B

|
A |CC|

push order -»

Operation:

IFF b7 of postbyte set, then: SP'-SP- 1, (SP)«-PCL
SP'<-SP-1,(SP)-PCH

IFF b6 of postbyte set, then: SP'-SP- 1, (SP)<-USL

SP'-SP -1,(SP)-USH

IFF b5 of postbyte set, then: SP'-SP- 1, (SP)-IYL
SP'-SP -1,(SP)-IYH

IFF b4 of postbyte set, then: SP'-SP- 1, (SP)-IXL
SP'-SP -1,(SP)-IXH

IFF b3 of postbyte set, then: SP'-SP- 1, (SP)-DPR
IFF b2 of postbyte set, then: SP'-SP- 1, (SP)-ACCB
IFF b1 of postbyte set, then: SP'-SP- 1, (SP)«-ACCA
IFF bO of postbyte set, then: SP'-SP 1, (SP)-CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers

are pushed onto the hardware stack Cwith the exception of

the hardware stack pointer itself).

Addressing Mode: Immediate.

Comments: A single register may be placed on the stack

with the condition codes set by doing an autodecrement
store onto the stack (example: STX,— S).

Push Registers on
the User Stack
Source Form:

PSHU register list

PSHU #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 bO

IFF b4 of postbyte set, then:

IFF b5 of postbyte set, then: US'-US-1, (US)-IYL
US'-US-1,(US)-IYH
US'-US-1, (US)-IXL
US'-US-1,(US)-IXH

-US -1, (US)-DPR
-US-1,(US)-ACCB
US-1,(US)-ACCA

PC U Y X DP B A CC

push order -»

Operation:

IFF b7 of postbyte set, then: US'-US- 1, (US)*

US'-US-1,(US)<
IFF b6 of postbyte set, then: US'-US- 1, (US)*

US'-US-1,(US)<

PCL
-PCH
-SPL
-SPH

IFF b3 of postbyte set, then: US
IFF b2 of postbyte set, then: US
IFF b1 of postbyte set, then: US
IFF bOof postbyte set, then: US'-US- 1, (US)«-CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers

are pushed onto the user stack (with the exception uf the

user stack pointer itself).

Addressing Mode: Immediate.

Comments: A single register may be placed on the stack

with the condition codes set by doing an autodecrement

store onto the stack (example: STX,— U).

118

Pull Registers from
the Hardware Stack
Source Form:

PULS register list

PULS ^LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 bO

PC U X DP B A CC
- pull order

Operation:

IFF bO of postbyte set, then: CCR' -CSP), SP'

IFF b1 of postbyte set, then: ACCA'-(SP), SP'

IFF b2 of postbyte set, then: ACCB'-(SP), SP'

IFF b3 of postbyte set, then: DPR' -(SP), SP'

IFF b4 of postbyte set, then: IXH' -(SP), SP'

IXL -(SP), SP'

-SP+1
-SP+1
-SP+1
-SP + 1

-SP + 1

-SP+1

IFF b5 of postbyte set, then: IYH ' -(SP), SP'-SP + 1

IYL' -(SP), SP'-SP +1
IFF b6 of postbyte set, then; USH' -(SP), SP'-SP+ 1

USL' -(SP), SP'-SP+1
IFF b7 of postbyte set, then: PCH' -(SP), SP'-SP + 1

PCL' -(SP), SP'-SP +1
Condition Codes: May be pulled from stack; not affected

otherwise.

Description: All, some, or none of the processor registers

are pulled from the hardware stack (with the exception of the

hardware stack pointer itself).

Addressing Mode: Immediate.

Comments: A single register may be pulled from the stack

with condition codes set by doing an autoincrement load

from the stack (example; LDX,S + +).

Pull Registers from
the User Stack
Source Form:

PULU register list

PULU *LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 bO

PC Y
I

X
|
DP

|
B

|

A |CC

— pull order

Operation:

IFF bO of postbyte set, then: CCR' -(US), US'-US + 1

IFF b1 of postbyte set, then: ACCA'-(US), US'-US + 1

IFF b2 of postbyte set, then: ACCB'-(US), US'-US +

1

IFF b3 of postbyte set, then: DPR' -(US), US'-US +

1

IFF b4 of postbyte set, then: IXH' -(US), US-US+1
IXL' -(US), US'-US +1

IFF b5 of postbyte set, then: IYH' -(US), US'-US +

1

IYL' -(US), US'-US + 1

IFF b6 of postbyte set, then: SPH' -(US), US'-US + 1

SPL' -(US), US-US + 1

IFF b7 of postbyte set, then: PCH -(US), US'-US + 1

PCL' -(US), US-US+1
Condition Codes: May be pulled from stack; not affected

otherwise.

Description: All, some, or none of the processor registers

are pulled from the user stack (with the exception of the user

stack pointer itself).

Addressing Mode: Immediate.

Comments: A single register may be pulled from the stack

with condition codes set by doing an autoincrement load

from the stack (example: LDX.U + +).

Rotate Left
Source Forms: ROL O; ROLA; ROLB

Operation: -|_C_

b7

Condition Codes:
H —Not affected.

bO

N —Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.

Description: Rotates all bits of the operand one place left

through the C (carry) bit. This is a 9-bit rotation.

Addressing Mode: Inherent; Extended; Direct; Indexed.

Rotate Right
Source Forms: ROR O; RORA; RORB

Operation: _CJ-

b7

Condition Codes:
H — Not affected.

bO

N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Not affected.

C — Loaded with bit zero of the previous operand.

Description: Rotates all bits of the operand one place right

through the C (carry) bit. This is a 9-bit rotation.

Addressing Modes: Inherent; Extended; Direct; Indexed.

PULS

PULU

ROL

ROR

119

L / 68Q9 MNEMONICS

RTI

RTS

SBC

SEX

ST
(8-Bit)

ST
(16-Bit)

SUB
(8-Bit)

Return from Interrupt
Source Form: RTI

Operation: CCR'-(SP), SP'--SP+1, then

IFF CCR bit E is set, then: ACCA -(SP), SP'-SP+1
ACCB -(SP), SP'-SP+1
DPR' -(SP), SP'-SP+1
IXH' -(SP), SP'-SP+1
IXL' -(SP), SP'-SP+1
IYH' -(SP), SP'-SP+1
IYL' -(SP), SP'-SP+1
USH' -(SP), SP'-SP+1
USL' -(SP), SP'-SP+1

POT -CSP).SP'-SP+1
PCL' -(SP), SP-SP+1

IFF CCR bit E is clear, then: PCH' -(SP), SP'-SP+

1

PCL' -(SP), SP'-SP+1
Condition Codes: Recovered from the stack.

Description: The saved machine state is recovered from the

hardware stack and control is returned to the interrupted

program. If the recovered E (entire) bit is clear, it indicates

that only a subset of the machine state was saved (return

address and condition codes) and only that subset is

recovered.

Addressing Mode: Inherent.

Return from Subroutine
Source Form: RTS
Operation:

PCH'-(SP), SP'-SP+1
PCL'-(SP), SP'-SP+1

Subtract with Borrow
Source Forms: SBCA P; SBCB P
Operation: R'-R-M-C
Condition Codes:

H —Undefined.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

Sign Extended
Source Form: SEX
Operation:

If bit seven of ACCB is set then ACCA'-FF16

else ACCA'-00, 6

Condition Codes:
H — Not affected.

Store Register into Memory
Source Forms: STA P; STB P
Operation: M'-R
Condition Codes:

H — Not affected.

N —Set if the result is negative; cleared otherwise.

Store Register into Memory
Source Forms: STD P; STX P; STY P; STS P; STU P
Operation: M':M + 1'-R
Condition Codes:

H —Not affected.

N —Set if the result is negative; cleared otherwise.

Condition Codes: Not affected.

Description: Program control is returned from the

subroutine to the calling program. The return address

is pulled from the stack.

Addressing Mode: Inherent.

V — Set if an overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.

Description: Subtracts the contents of memory location M
and the borrow (in the C (carry) bit) from the contents of the

designated 8-bit register, and places the result in that

register. The C bit represents a borrow and is set to the

inverse of the resulting binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero, cleared otherwise.

V — Not affected.

C — Not affected.

Description: This instruction transforms a twos complement
8-bit value in accumulator B into a twos complement 16-bit

value in the D accumulator.

Addressing Mode: Inherent.

Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.

Description: Writes the contents of an 8- bit register into a

memory location.

Addressing Modes: Extended; Direct; Indexed.

Z —Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Description: Writes the contents of a 16-bit register into two
consecutive memory locations.

Addressing Modes: Extended; Direct; Indexed.

Subtract Memory from Register
Source Forms: SUBA P; SUBB P
Operation: R'-R-M
Condition Codes:

H —Undefined.
N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Set if the overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M from
the contents of a designated 8-bit register The C (carry) bit

represents a borrow and is set to the inverse of the resulting

binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

120

Subtract Memory from Register V —Set if the overflow is generated; cleared otherwise.

Source Forms: SUBD P C —Set if a borrow is generated; cleared otherwise.

Operation: R'-R - M:M +

1

Description: Subtracts the value in memory location

Condition Codes: M:M + 1 from the contents of a designated 16-bit register.

H — Not affected. The C (carry) bit represents a borrow and is set to the

N — Set if the result is negative; cleared otherwise. inverse of the resulting binary carry.

Z — Set if the result is zero; cleared otherwise. Addressing Modes: Immediate; Extended; Direct; Indexed.

Software Interrupt
SP'-SP-1,(SP)-DPR
SP'-SP-1,(SP)-ACCB

Source Form: SWI SP'-SP-1,(SP)-ACCA
Operation: SP«-SP-1

1
(SP)«-CCR

Set E (entire state will be saved) Set I, F (mask interrupts)

SP'-SP-1,(SP)-PCL PC'-(FFFA);(FFFB)

SP'^SP-1,(SP)-PCH Condition Codes: Not affected.

SP'-SP-1,(SP)-USL Description: All of the processor registers are pushed onto

SP'-SP-1,(SP)«-USH the hardware stack (with the exception of the hardware stack

SP'-SP-1,(SP)«-IYL pointer itself), and control is transferred through the software
SP'«-SP-1,(SP)«-IYH interrupt vector. Both the normal and fast interrupts are

SP-SP-USPMXL masked (disabled).

SP'-SP-1,(SP)«-IXH Addressing Mode: Inherent.

Software Interrupt 2 SP'-SP-1, (SP)-DPR
SP'-SP-1, (SP)«-ACCB

Source Form: SWI 2 SP'«-SP-1, (SP)«-ACCA
Operation: SP'-SP-1,(SP)«-CCR

Set E (entire state saved) PC'^(FFF4):(FFF5)

SP'-SP-1,(SP)«-PCL Condition Codes: Not affected.

SP'^SP-1,(SP)-PCH Description: All of the processor registers are pushed onto

SP'«-SP-1 t (SP)«-USL the hardware stack (with the exception of the hardware stack

SP'«-SP-1,(SP)«-USH pointer itself), and control is transferred through the software

SP'-SP-1,(SP)-IYL interrupt 2 vector. This interrupt is available to the end user

SP'^SP-1, (SP)-IYH and must not be used in packaged software. This interrupt

SP'«-SP-1,(SP)«-IXL does not mask (disable) the normal and fast interrupts.

SP'-SP-1,(SP)«-IXH Addressing Mode: Inherent.

Software Interrupt 3 SP-SP-1,(SP)-DPR
Source Form: SWI3 SP'«-SP-1,(SP)-ACCB
Operation; SP'-SP-1,(SP)«-ACCA

Set E (entire state will be saved) SP'«-SP-1,(SP)«-CCR
SP'«-SP-1,CSP)«-PCL PC'-(FFF2):(FFF3)

SP'-SP-1,(SP)-PCH Condition Codes: Not affected.

SP'«-SP-1,(SP)«-USL Description: All of the processor registers are pushed onto

SP'«-SP-1.(SP)«-USH the hardware stack (with the exception of the hardware stack

SP'-SP-1,(SP)«-IYL pointer itself), and control is transferred through the software

SP'-SP-1,(SPMYH interrupt 3 vector. This interrupt does not mask (disable) the

SP'-SP-1,(SP)-IXL normal and fast interrupts.

SP'^SP-1,(SPMXH Addressing Mode: Inherent.

SUB
(IB-Bit)

SHI

SWI2

SWI3

121

L / 6809 MNEMONICS

SYNC

TFR

TST

FIRO

Synchronize to External Event
Source Form: SYNC
Operation: Stop processing instructions.

Condition Codes: Not affected.

Description: When a SYNC instruction is executed, the

processor enters a synchronizing state, stops processing

instructions, and waits for an interrupt. When an interrupt

occurs, the synchronizing state is cleared and processing

continues. If the interrupt is enabled, and it last three cycles

or more, the processor will perform the interrupt routine. If

the interrupt is masked or is shorter than three cycles, the

processor simply continues to the next instruction. While in

the synchronizing state, the address and data buses are in

the high-impedance state.

This instruction provides software synchronization with a

hardware process. Consider the following example for high-

speed acquisition of data:

FAST SYNC WAIT FOR DATA
Interrupt!

LDA DISC DATA FROM DISC AND
CLEAR INTERRUPT

STA ,x+ PUT IN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT

The synchronizing state is cleared by any interrupt. Of
course, enabled interrupts at this point may destroy the data
transfer and, as such, should represent only emergency
conditions.

The same connection used for interrupt-driven I/O service

may also be used for high-speed data transfers by setting

the interrupt mask and using the SYNC instruction as the

above example demonstrates.

Addressing Mode: Inherent.

Transfer Register to Register
Source Form: TFR Rl R2
Operation: R1^R2
Condition Code: Not affected unless R2 is the condition

code register.

Description: Transfers data between two designated

registers. Bits 7-4 of the postbyte define the source register,

while bits 3-0 define the destination register, as follows:

0000 = A:B 1000 = A
0001 = X 1001 =B

0010 = Y
0011= US
0100 = SP
0101 =PC
01 10= Undefined

0111 = Undefined

1010 = CCR
1011 =DPR
11 00 = Undefined

1101 = Undefined

1110 = Undefined
1111= Undefined

Only like size registers may be transferred. (8-bit to 8-bit,

or 16-bit to 16-bit.)

Addressing Mode: Immediate.

Test
Source Forms: TST O; TSTA; TSTB
Operation: TEMP-M-0
Condition Codes:

H —Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C —Not affected.

Description: Set the N (negative) and 2 (zero) bits according
to the contents of memory location M, and clear the V
(overflow) bit. The TST instruction provides only minimum
information when testing unsigned values; since no unsigned
value is less than zero, BLO and BLS have no utility. While

BHI could be used after TST, it provides exactly the same
control as BNE, which is preferred. The signed branches are

available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Comments: The MC6800 processor clears the C (carry) bit.

Fast Interrupt Request
(Hardware Interrupt)
Operation:

IFF F bit clear, then: SP'«-SP- 1. (SP)-PCL
SP'-SP 1,(SP)«-PCH
Clear E (subset state is saved)

SP'-SP-1,(SP)«-CCR
Set F, I (mask further interrupts)

PC'-(FFF6):(FFF7)

Condition Codes: No t affected.

Description: A FIRQ (fast interrupt request) with the F (fast

interrupt request mask) bit clear causes this interrupt

sequence to occur at the end of the current instruction. The
program counter and condition code register are pushed

onto the hardware stack. Program control is transferred

through the fast interrupt request vector. An RTI (return from

interrupt) instruction returns the processor to the original

task. It is possible to enter the fast interrupt request routine

with the entire machine state saved if the fast interrupt

request occurs after a clear and wait for interrupt instruction.

A normal interrupt request has lower priority than the fast

interrupt request and is prevented from interrupting the

fast interrupt request routine by automatic setting of the

I (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired.

The fast interrupt request allows operations on memory, TST,

INC, DEC, etc. instructions without the overhead of saving

the entire machine state on the stack.

Addressing Mode: Inherent.

122

Interrupt Request
(Hardware Interrupt) Set E (entire state saved)

Operation: SP'-SP-1,(SPK-CCR
IFF 1 bit clear, then: SP'-SP- 1, (SP)^PCL Set I (mask*further IRQ interrupts)

SP'-SP-1,(SP)^PCH PC'^(FFF8):(FFF9)

SP'-SP-1,(SP)-USL Condition Codes: Not affected.

SP'-SP-1,(SP)-USH Description: If the I (interrupt request mask) bit is clear, a

SP'-SP-1,(SP)-IYL low level on the IRQ input causes this interrupt sequence to

SP'-SP-1,(SPMYH occur at the end of the current instruction. Control is

SP'-SP 1,(SPMXL returned to the interrupted program using a RTI (return from
interrupt) instruction. A FIRQ (fast interrupt request) maySP'-SP-1,(SP)HXH

SP'-SP-1,(SP)^DPR interrupt a normal IRQ (interupt request) routine and be
'

SP'-SP-1,(SPKACCB recognized anytime after the interrupt vector is taken.

SP'-SP~1,(SP)^ACCA Addressing Mode: Inherent.

Non-Maskable Interrupt
(Hardware Interrupt) Set I, F (mask interrupts)

PC'^(FFFC):(FFFD)
Operation: Condition Codes: Not affected.

SP'-SP-1,(SP)-PCL Description: A negative edge on the NMI (non-maskable

SP'-SP-1,(SP)^PCH interrupt) input causes all of the processors registers

SP^SP-1,(SP)-USL (except the hardware stack pointer) to be pushed onto the

SP'^SP-1,(SP)^USH hardware stack, starting at the end of the current instruction.

SP'-SP-1,(SP)HYL Program control is transferred through the NMI vector.

SP'-SP-1,(SP)-IYH Successive negative edges on the NMI input will cause
SP'-SP-1,(SP)-1XL
SP'-SP-1,(SP)-IXH

successive NMI operations. Non-maskable interrupt

operation can be internally blocked by a RESET operation

SP'-SP-1,(SP)-DPR and any non-maskable interrupt that occurs will be latched. If

SP'-SP-1,(SP)-ACCB this happens, the non-maskable interrupt operation will occur

SP'-SP-1,(SP)-ACCA after the first load into the stack pointer (LDS; TFR r,s; EXG
Set E (entire state save) r,s; etc.) after RESET.
SP'^SP-1,(SP)-CCR Addressing Mode: Inherent.

Restart (Hardware Interrupt) Condition Codes: Not affected.

Operation: Description: The processor is initialized (required after

CCR'-X1X1XXXX power-on) to start program execution. The starting address

DPR'-00 16
is fetched from the restart vector.

PC'-(FFFE):(FFFF) Addressing Mode: Extended; Indirect.

IRQ

NMI

RESTART

123

Reference M/
Sample Programs

Example 1

10 ' This is an example of a BASIC program that calls
20 ' an assembly language program to paint the screen
30 ' yellow*
a® '

G0 ' After entering the BASIC program save it on disk*
70 '

80 ' Run DOS and enter the assembly language program*
90 ' Use the WD and AD assembler commands to write the
100 ' source p r o g r a m to d i s K a n d to assemble it*

110 '

120 ' After returning to BASIC* load the assembled
130 ' program into memory with the LOADM command* You
140 ' must load the assembled program before the BASIC
150 ' program*
1G0 '

170 ' This program demonstrates how much faster
180 ' an assembly program can perform a function than a

190 ' BASIC statement* After you run the program once*
200 ' delete lines 1030* 1040* 1050* and 1120* Insert
210 ' this statement
220 ' 1120 PAINT (1 *1) *2

230 ' and see how much longer it takes BASIC to paint
240 ' the entire screen yellow*
250 '

1000 'Specify the highest address BASIC can use* This
1010 ' prevents BASIC from using the memory that contains
1020 ' your assembly language subroutine*
1030 CLEAR 200 *1G127
1040 PCLEAR G 'reserve G pages of graphics memory
1050 DEF USR0= 16128 'define the subroutine starting address
1 G ' The disk drive uses pages and 1 of video memory*
1070 ' You must start at page 2* hen 1200*
1080 PMODE 3*2 'select mode 3* starting at page 2

1090 PCLS 'clear the screen
1100 SCREEN 1*0 'select graphics screen* color set
1110 COLOR 3*1 'set foreground color to blue
1120 A=USR(0J 'call the assembly language subroutine
1130 'draw a frame

125

M / SAMPLE PROGRAMS

1140 LINE <0,0)-<255 1 131) ,PSET ,B

1150 LINE (12 #12)- (242 ,178) ,PSET ,B

11G0 PAINT (2,2) ,4,3 'fill in the frame with red
1170 FOR X = 50 TO 90 STEP 20 'draw top circles
1180 Y=30:ST=*5:EN=0 ' of b i sf cloud
1180 GOSUB 5000
1200 Y=50:ST=0:EN= *5 'draw bottom circles
1210 GOSUB 5000: NEXT i< ' of b i sf cloud
1220 FOR X=1G0 TO 180 STEP 20
1230 Y=30:ST=*5:EN=0 'draw top circles
1240 GOSUB 5000 of little cloud
1250 Y=50:ST=0: EN= *5 'draw bottom circles
12G0 GOSUB 5000:NEXT X of little cloud
1270 Y=40:ST=*25:EN=*75 'draw left sides of clouds
1280 GOSUB 5020
1280 X=150:GOSUB 5020
1300 X=100:ST=*75:EN=.25 'draw ri*ht sides of clouds
1310 GOSUB 5020
1320 X=180:GOSUB 5020
1330 PAINT (52, 30), 3, 3 'fill the clouds in with blue
1340 PAINT (1G2 ,30) ,3 ,3

1350 R=G0:H=1 :GOSUB 5040 'draw the umbrella
13G0 R=37:H=i*7:G0SUB 5040 'draw the spoKes of the
1370 R=15:H=4.7:G0SUB 5040 ' umbrella
1380 ST=*5:EN=0 'draw the scalloped edtfes

1380 FOR X=78 TO 184 STEP 23 ' on the umbrella
1400 Y=124:G0SUB 5000
1410 NEXT X

1420 'draw umbrella handle
1430 DRAW "BM121 ,1205D40 5R2 5D2 5 R2 5D2 5R8 5U2 5R2 5U2 5R25U35

L2 ;d2;l2;d2;l2;d2;l3?u2;l2;u2;l2 ;u40 n

1440 PAINT (122 ,122) ,3*3 'paint umbrella handle
1450 PAINT (124 tlGl) ,3

14G0 PAINT (12G ,1G3) ,3

1 4 7 C = 8 'set highest color number
1480 FOR X=G8 TO 180 STEP 24 'paint umbrella panels
1480 PAINT (X ,120) ,C ,3

1500 C=C-1 :NEXT X

1510 'play the son* "Raindrops Keep Fall in* On My Head"
1520 GOSUB G000:PLAY L$
1530 GOSUB 8000: PLAY L*
1540 PLAY M*:PLAY E$: PLAY N$
1550 PLAY G$:PLAY E*:PLAY 0*
15G0 PLAY P$:PLAY Q$:PLAY E*
1570 PLAY R$:PLAY S$:PLAY R$
1580 PLAY T$:PLAY P$:PLAY E$
1580 PLAY U$:GOSUB 8000
1G00 PLAY U$:PLAY E$:PLAY E$
1G10 PLAY W$:PLAY X*
1 G 2 'Keep the i m a * e on the screen until a Key is pressed*
1G30 Z$=INKEY$
1G40 IF Z$= M " THEN 1G30
1G50 END

126

5000
5010
5020
5030
5040
5050
50B0
5070
G000
6010
6020
G030
6040
G050
6060
G070
6080
6030
6100
Gl 10
6120
6130
6140
6150
6160
6170
6180
6130
6200
6210
6220
6230
3000
3010
3020
3030
3040
3050

CIRCLE
RETURN
CIRCLE
RETURN
CIRCLE
RETURN

'These
A$="03
B*="P8
C$="03
D$="03
E$="P4
F$="04
G$="P8
H$="04
I$="04
J$="04
K$="04
L$="03
M$="03
N$="04
0$="03
P$="03
Q$="03
R$="PS
S$="03
T$="03
U$="P2
V$="03
W$="03
X$="03
PLAY A

PLAY
PLAY
PLAY
PLAY

(X .Y) .13 *3 .*45 .ST .EN

(X .Y) .16 .3 .,75 .ST .EN

(124 .124) .R .3 .H .*5 .0

lines "define the notes of the son 3

L4a;l8, ;a;li6a;l8* ;b- ;li6a;ls,g;li6F5L4 . ;a

P4;p8;pi6 m

li6;c;o4;l4c;l8» ;c;li6c;l8 + ;d;li6c;l8. ;c u

liga;l4a;b- ;g ;f;o4;e;p4 m

ls* ;d;ligc;o3?l8. ;A;Ll6E;o4;L4 t E l

G

I

I

RETURN

L4,
L4C
L16
L4.
L4F
L2 ;

L8,
L8,
L8.
L4A
P16
L16
L16
PI"
L4F
L8,
L8A

$:PL
$:PL
$:PL
$:PL
$:PL

;d h

;ls. ;c;o3;li6a;ls» ;b- h

c;o3?L8* ;b- ;liga m

;c;p4"
; f ; g

A"
;c;o3 ;l2G"
;a;l4b- ;l4a;l4g m

5F5L4A5L4. ;g m

;l8. ;b- ;04;l4d;l4C"
ii

a;o4;lsd;l4c;l2C"
a ;o4 ?L8E ;l4d;l2C"

;f;G 5L2. 5A"
;f;li6f;o4;ls* ;d;li6c;o3;l4f h

;g;l4f;l2* ;f h

ay b$:play c$
ay e$:play f$
ay h$:play g$
AY J$
AY K$

0100
01 10
0120
0130
0140
0150
01G0
0170
0180
0130
0200
0210
0220

Use EDTASM or EDTASMOU to enter this program* Saue
the p r o s r a m on disk with WD command a n

d

assemble the program w i t h AD command* Do not
use the SR switch because this program is

called from BASIC, not executed from DOS*

Use the L A D M command to load the assembled code
into m e m o r y before you 1 o a d the BASIC program*
The ORG statement tells BASIC where in memory
to load the program*

ORG $3F00

127

M / SAMPLE PROGRAMS

00230 * Put the hex code for a yellow point (55H) in

00240 * register A and the address of the first bvte
00250 * of video memory (1200) in register X*

002G0 * The first bvte of video memory is 1200 hex
00270 * because the disk d r i v e uses memory up t o * t h a t

00280 * address*
00290 *

00300 START LDA #$55
00310 LDX #$1200
00320 *

00330 * Store the yellow dot at the current video memory
00340 * address and increment X to the next video
00350 * memory address*
003G0 *

00370 SCREEN STA *X+
00380 CMPX #$2FFF Is it the end of video memory?
00390 BNE SCREEN If no* continue to store dots
00400 RTS If vest exit subprogram and
00410 * and return to BASIC
00420 DONE EQU *

00430 END START

Example 2

20 ' After entering the BASIC program save it on disk*
30 '

40 ' Run DOS and enter the assembly language p r o g r a m Use
50 ' the WD and AD assembler commands to write the
G ' source program to disk and to assemble it*
70 '

80 ' After returning" to BASIC* load the assembled
90 ' program into memory with the LO ADM command* You
100 ' must load the assembled program before the BASIC
110 ' program*
120 '

130 ' Specify the highest address BASIC can use* This
140 ' prevents BASIC from using" the memory that contains
150 ' your assembly 1 a n g u a g" e subroutine*
1G0 CLEAR 200 * 16127
170 DEF USR0=1S128 'define address of subroutine
180 CLS 'clear the screen
190 ' Print a prompting message and wait for a response*
200 INPUT "Press [ENTER] when ready"! A$
210 A=USR(0) 'call subroutine
220 'Print a

n

other prompting message and wait for a response
230 INPUT "Want to do it again" 5 A$
240 'If operator types yes* start over* Otherwise end*
250 IF A$="YES" THEN 20 ELSE END

128

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440

Use EDTASM or EDTASMOV to enter this program. Save
the p r o 3 r a m on d i s K with kl D comma n d a n

d

assemble the program with AD c o m m a n d t Do not
use the SR switch because this program is

called from BASIC* not executed from DOS*

Use the LOADM command to load the assembled code
into memory b e f o r e you load the BASIC program*
The ORG statement tells BASIC where in memory
to load the program*

ORG $3F00

* Put
*

*

*

START

*

* Sto r

*

*

*

SCREEN

the hex code for a red checkerboard
register A arid the address of the
of v i d e o memory (400) in register

*

DONE

l n

f i rst b y t e

LDA
LDX

#$0F9
#$400

e the re id checkerboard at the current video
m e m o r y address and incre m e n t X to the next
video m e m o r y address*

STA >>< +

CMPX #$600
BNE SCREEN

RTS

EOU
END

Is it the end of v i d e o m e m o r

If no* continue to store r e J

checkerboards
If yes* exit subprogram and
and return to BASIC

*

START

129

SECTION VI

PROGRAM LISTING

SECTION VI

PROGRAM LISTING
This section provides a complete source list-

ing of the DOS program.

131

PAGE 003 DOC .SA:0

00630 00112
00640 00113
00650 00114
00660 00115
00670 00116
00680 00117
00690 001 IS
00700 00119
00710 00 1 20
00720 00121
00730 00122
00740 00123
00750 00124
00760 00125
00770 00 1 26
007S0 00 1 27
00790 00 1 28
00800 00129
00B10 00130
00820 00131
00830 00132
00840 00133
00B50 00134
00860 00135
00870 00136
00880 00137
00890 00138
00900 00139
00910 00140
00920 00141
00930 00142
00940 00143
00950 00144
00960 00145
00970 00146
00980 00147
00990 0014S
01000 00149
01010 00150

1 020 00151
01030 00152
01040 00153
01050 00154
01060 00155
01070 00156
01080 00157
01090 00158
01100 00159
01110 00160
01120 00161
01130 00162
01140 00163
01150 00164
01160 00165
01170 00166
01180 00167
01190 00168
01200 00169

INSTRUCTIONS FOR USE

**
ERROR NUMBERS AMD THEIR MEANING
(THE EQUATES ARE USED SO THAT ERRORS CAN BE RESEARCHED USING XREF LIST)
DEFINITIONS START WITH BASIC LINE NUMBER 256 IN DOS

**
256 NO ERRORS
257 I/O ERROR - DRIVE NOT READY
258 I/O ERROR - WRITE PROTECTED
259 I/O ERROR - WRITE FAULT
260 I/O ERROR - SEEK ERROR OR RECORD NOT FOUND
261 I/O ERROR - CRC ERROR
262 I/O ERROR - LOST DATA
263 I/O ERROR - UNDEFINED BIT 1

264 I/O ERROR - UNDEFINED BIT
265 REGISTER ARGUMENT INVALID
266 FILE'S DIRECTORY ENTRY NOT FOUND
267 DIRECTORY IS FULL
268 FILE WAS CREATED BY "OPEN" FUNCTION
269 FILE NOT CLOSED AFTER CHANGES
270 ATTEMPTING TO ACCESS AN UNOPENED FILE
271 ATTEMPT TO READ - READ PROTECTED
272 RBA OVERFLOW (EXCEEDS 3 BYTES - 16,777,216)
273 ACCESS BEYOND EOF - EXTENSION NOT ALLOWED
274 FAT REWRITE ERROR
275 ATTEMPT TO CLOSE UNOPENED FILE
276 CAN'T ACCESS RANDOMLY - REC SIZE IS ZERO!
277 ATTEMPT TO WRITE - WRITE PROTECTED
278 CAN'T EXTEND FILE - DISK CAPACITY EXCEEDED
279 ERROR WHILE LOADING OVERLAY - FUNCTION NOT PERFORMED
280 INSUFFICIENT PRINT SPACE ALLOCATED
281 I/O ERROR DURING BASIC LIME READ
282 PROGRAM'S LOAD ADDRESS IS TOO LOW
283 FIRST BYTE OF PROGRAM FILE NOT EQUAL TO ZERO
284 SPACE FOR BUFFERED KBD MOT BIG ENOUGH
285 NOT ENOUGH MEMORY
286 OUTPUT FILE ALREADY EXISTS
287 WRONG DISKETTE

*

**
DISK DATA CONTROL BLOCK <DCB) FORMAT

0000 A ERR0 EQU
0001 A ERR1 EQU 1

0002 A ERR2 EQU 2
0003 A ERR3 EQU 3
0004 A ERR4 EQU 4
0005 A ERR5 EQU 5

0006 A ERR6 EQU 6
0007 A ERR7 EQU 7

000B A ERRS EQU 8
0009 A ERR9 EQU 9
000A A ERR10 EQU 10
000B A ERR11 EQU 11

000C A ERR 12 EQU 12
000D A ERR13 EQU 13
000E A ERR14 EQU 14
000F A ERR15 EQU 15

0010 A ERR16 EQU 16
0011 A ERR17 EQU 17
0012 A ERR18 EQU 18
0013 A ERR19 EQU 19
0014 A ERR20 EQU 20
0015 A ERR21 EQU 21
0016 A ERR22 EQU 22
0017 A ERR23 EQU 23
0018 A ERR24 EQU 24
0019 A ERR25 EQU 25
001

A

A ERR26 EQU 26
001B A ERR27 EQU 27
001 C A ERR28 EQU 28
00 ID A ERR29 EQU 29
001E A ERR30 EQU 30
00 IF A ERR31 EQU 31

PAGE 004 DOC . SA : DO; INSTRUCTIONS

01210
01220
01230
01240
01250
01260

1 270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780

00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
001B4
00185
001B6
00187
001B8
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
002 1

2

00213
002 1

4

00215
002 1

6

00217
002 IS
002 1 9
00220
00221
00222
00223
00224
00225
00226
00227

*

* BYTES CONTENTS

THESE
0-7
8-10
11

12
13
14-15
THESE
16

ITEMS ARE A COPY OF DISK DIRECTORY ENTRY
FILENAME
FILE EXTENSION
FILE TYPE
<0=BASIC PGM,1=BASIC DATA, 2-MACHI NE LANG.
ASCII FLAG (0=BINARYj FF = ASCII FILE)
NUMBER OF FIRST CLUSTER IN FILE
NUMBER OF BYTES IN USE IN LAST SECTOR OF
ITEMS WERE ADDED, USING LAST 16 BYTES OF
CURRENT FILE STATUS

PGM,3=TEXT ED. SOURCE)

FILE
DIRECTORY ENTRY

BIT
BIT
BIT
BIT
BIT
BIT

ALLOWS
ALLOWS
ALLOWS
ALLOWS

READS
WRITES
FILE CREATE IF
FILE EXTENSION

NON-EX I STANT
BEYOND EOF ON ACCESS ATTEMPTS

MEANS WORK FILE - DELETE FILE WHEN CLOSED
PREVENTS REWRITE OF FAT EVERY TIME A SECTOR IS ADDED TO

* THE FILE. (MINOR POWER FAILURE INCONSISTENCY COULD RESULT)
* BIT 6 ON MEANS I/O BUFFER IS SHARED. EACH LOGICAL I/O REQUIRES
* A PHYSICAL I/O
* BIT 7 RESERVED FOR FUTURE OPTION', LIKE RELEASE SPACE WHEN FILE SHORTENED)
* (ALL BITS OFF = FILE CLOSED)
* 17- IS LOGICAL RECORD SIZE (AS OF LAST TIME FILE WAS CLOSED)
* ZERO MEANS VARIABLE LENGTH WITH RECORDS TERMINATED BY THE
* DELIMITER STORED BELOW.
* $FFFF MEANS VARIABLE LENGTH WITH FIRST TWO BYTES OF RECORD
* CONTAINING SIZE OF THE REST OF THE RECORD.
* ALL OTHER VALUES MEAN FIXED LENGTH OF SPECIFIED SIZE.
* 19 VARIABLE LENGTH RECORD TERMINATOR
* 20-31 AT PRESENT* UNUSED PART OF DIRECTORY ENTRY - USE WITH CAUTION.
*
* THESE ITEMS ARE USED FOR PHYSICAL I/O PARAMETERS
* 32 LAST I/O OPCD
* 33 LAST I/O DRIVE
* 34 LAST I/O TRACK
* 35 LAST I/O SECTOR
* 36-37 LAST I/O BUFFER POINTER

38 LAST I/O RESULT CODE

* THESE ITEMS ARE FOR LOGICAL USE
* 39-40 LOGICAL RECORD SUFFER (CAN BE SAME AS DCBBUF IF DCBRSZ=256)
* 41-42 LAST I/O PHYSICAL. RECORD NUMBER (BEFORE XLATE INTO SECTOR WITHIN
* GRANULE). THIS IS THE RECORD CURRENTLY IN THE BUFFER.
* 43-45 CURRENT RELATIVE BYTE ADDRESS (RBA) OF FILE DATA POINTER
* 46-47 CURRENT LOGICAL RECORD NUMBER
* 4S MODIFIED DATA TAG - SET NON-ZERO WHEN BUFFER CONTENTS CHANGED
*

* EQUATES FOLLOW FOR MEANINGFUL SOURCE CODE WHEN ACCESSING DCB
* IE: STD DCBLRNiU SAVE NEW LOGICAL RECORD NUMBER
* (BETTER THAN STD 46iU)

0000 A DCBFNM EQU FILE NAME
0008 A DCBFEX EQU B FILE NAME EXTENSION
000B A DCBFTY EQU 11 FILE TYPE
000C A DCBASC EQU 12 ASCII CODE
000D A DCBFCL EQU 13 FIRST CLUSTER NUMBER

PAGE 005 DOC BA:0 DOS INSTRUCTIONS

01790
01800
01810

1 820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
0205
02060
02070
02080
02090
02100
02110
02 1 20
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360

00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
0026

1

00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285

000E A
0010 A
0011 A
0013 A
0014 A
0017 A
0020 A
0021 A
0022 A
0023 A
0024 A
0026 A
0027 A
0029 A
002B A
002E A
0030 A
0031 A

A000
0152
A00A
A006
A004
A00C
A008
007C
007D
007E
010C
015A
011A

DCBNLS EQU
DCBCFS EQU
DCBRSZ EQU
DCBTRM EQU
DCBMRB EQU
DCBUSR EQU
DCBOPC EQU
DCBDRV EQU
DCBTRK EQU
DCBSEC EQU
DCBBUF EQU
DCBOK EQU
DCBLRB EQU
DCBPRN EQU
DCBRBA EQU
DCBLRN EQU
DCBMDT EQU
DCBS2 EQU

14
16
17
19
20
23
32
33
34
35
36
38
39
41
43
46
48

NUMBER OF BYTES USED IN LAST SECTOR
CURRENT FILE STATUS
RECORD SIZE
VAR LEN RECORD TERMINATOR
MAX RBA
USER AREA
OPERATION CODE
DRIVE
TRACK
SECTOR
I/O BUFFER ADDRESS
I/O RESULT CODE
LOGICAL RECORD BUFFER ADDRESS
PHYSICAL RECORD NUMBER IN BUFFER
CURRENT RELATIVE BYTE ADDRESS
CURRENT LOGICAL RECORD NUMBER
MODIFIED DATA TAG

DCBMDT+1 SIZE OF DCB (CURRENTLY 50 BYTES)
*

* EQUATES TO SUPPORT ROUTINES IN ROM OPERATING SYSTEM

POL CAT EQU
ROLTAB EQU
JOY IN EQU
BLKIN EQU
CSRDON EQU
WRTLDR EQU
BLKOUT EQU
BLKTYP EQU
BLKLEN EQU
CBUFAD EQU
I RQ EQU
POTS EQU
ALPHLK EQU

$A000
$152
$A00A
*A006
$A004
*A00C
$A008
$7C
$7D
*7E
$10C
$15A
*11A

KBD ROLLOVER TABLE

JOYSTICK POT VALUES
KBD RTN'S ALPHA LOCK SWITCH

* EQUATES TO XREF USE OF PIA'S

FF21 A U4ACR EQU *FF21 CONTROL REG
FF20 A U4ADR EQU $FF20 DATA REG
FF20 A U4ADD EQU *FF20 DATA DIRECTION REG
FF23 A U4BCR EQU *FF23
FF22 A U4BDR EQU $FF22
FF22 A U4BDD EQU *FF22
FF01 A UBACR EQU *FF01
FF00 A UBADR EQU *FF00
FF00 A U8ADD EQU $FF00
FF03 A USBCR EQU $FF03
FF02 A U8BDR EQU *FF02
FF02 A UBBDD

*
* MISC

EQU $FF02

ADDITIONAL EQUATES
0035 A ENABLE EQU */.001 10101
0034 A DSABLE EQU 7.001 10100

* COLOR VALUES
0000 A BUFF EQU "/.00000000
0055 A CYAN EQU 7.0 1 1 1 1

PAGE 006 DOC SA:0 DOS INSTRUCTIONS

02370
02380
02390
02400
024 1

02420
02430
02440
02450
02460
02470
024B0
02490
02500
0251O
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620

02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02920
02930
02940

00286
00287
00288
00289
00290
0029

1

00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
\SQ33fS

00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343

00AA A MGNTA EQU "/. 1 1 1 1

00FF A ORANGE EQU 7. 1 1 1 1 1 1 1

1

0000 A GREEN EQU 7.00000000
0055 A YELLOW EQU 7.01 01 01 01
00AA A BLUE EQU 7.10101010
00FF A RED EQU 7,11111111

* CODES RETURNED BY POL
005E A UP EQU $5E 1

000A A DOWN EQU $0A
0009 A RIGHT EQU $09
0008 A LEFT EQU $08 1

005F A SUP EQU $5F I

005B A SDOWN EQU $5B
005D A SRIGHT EQU $5D
0015 A SLEFT EQU $15 :

0003 A BREAK EQU $03 1

000C A CLEAR EQU $0C
005 C A SCLEAR EQU $5C :

000D A ENTER EQU $0D 1

0040 A AT EQU $40
0013 A SAT EQU $13 :

0600
0004
0008
0001
0001
0002
000E
0010
0020
0040

UP ARROW
DOWN ARROW
RIGHT ARROW
LEFT ARROW
SHIFT UP ARROW
SHIFT DOWN ARROW
SHIFT RIGHT ARROW
SHIFT LEFT ARROW
BREAK KEY
CLEAR KEY
SHIFTED CLEAR
ENTER KEY
11 3" KEY
SHIFTED "3" KEY

*DOS MACRO AND LOGICAL EQUATES
MACR

LDA #\1 OPTION
JSR C\0] INDIRECT FUNCTION ADDR
ENDM

DOS
2630
2640
2650
*
* EQUATES USED WITH DOS MACRO

* THE FOLLOWING USED WITH "OPEN

CALL A DOS FUNCTION

OPEN EQU
CREATE EQU
EXTEND EQU
INPUT
IN
OUT
OUTPUT EQU
WORK EQU
FAST
SHARE

EQU
EQU
EQU

$600 OPEN FUNCTION
4 ALLOWS FILE CREATION ON OPEN IF NOT FOUND
8 ALLOWS EXTENSION OF FILE TO POINT OF ACCESS
1 USED TO SIGNIFY THAT READS ARE ALLOWED
1 SHORTER FORM OF ABOVE
2 ALLOWS WRITES
CREATE+EXTEND+OUT USUAL COMBINATION FOR OUTPUT FILES
16
32
64

EQU
EQU

EXAMPLES:
DOS OPEN INPUT
DOS OPEN OUTPUT
DOS OPEN IN+OUT

CAUSES FILE TO BE KILLED WHEN CLOSED (WORK FILE)
MINIMIZES FAT REWRITES
USED WHEN 2 OR MORE FILES SHARE THE SAME I/O BUFFER

TO READ AN EXISTING FILE
TO CREATE & EXTEND AN OUTPUT FILE

* DOS OPEN IN+OUT TO UPDATE AN EXISTING FILE (NO EXTENSIONS)
* DOS OPEN INPUT+OUTPUT+WORK TO CREATE, EXTEND, READ & WRITE AND KILL
* WHEN CLOSED (A WORK FILE)
* "SHARE" CAN BE ADDED TO ANY OF THE ABOVE EXAMPLES IF 2 OR MORE FILES
WILL BE USING THE SAME I/O BUFFER AT THE SAME TIME. THIS OPTION CAUSES
* A PHYSICAL I/O TO REFRESH THE BUFFER WITH EVERY LOGICAL I/O OPERATION.
* WITHOUT THIS OPTION* SEVERAL LOGICAL READS OR WRITES TO OR FROM THE
* SAME PHYSICAL SECTOR CAN BE DONE WITH A SINGLE PHYSICAL I/O. "SHARE"
* INCREASES THE AMOUNT OF ACTUAL I/O ACTIVITY, BUT ALLOWS USE OF MANY
* FILES AT THE SAME TIME WITH MUCH LESS MEMORY REQUIREMENTS FOR BUFFERS.

* USED WITH "CLOSE" FUNCTION

PAGE 007 DOC SA:0 DOS INSTRUCTIONS

02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520

00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00332
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401

0602
0000

0604
0606
0001
0000
0000
0002
0003

0608

060A
060C
060E

B001

000E

000A

CLOSE EQU
IT EQU
* EXAMPLE:
* DOS CLOSE i IT

$60i

* USED WITH "READ"
READ EGU $604
WRITE EQU $606
RBA EQU 1

RECORD EQU
REC EQU
UPDATE EQU 2
NOW EQU 8
* EXAMPLES:
* DOS READ) RECORD

* DOS READ, RBA

* DOS READ, UPDATE

CLOSE A FILE OPTIONS NOT USED

TO CLOSE A FILE

AND "WRITE" FUNCTIONS
READ A RECORD
WRITE A RECORD
TO READ USING REL BYTE ADDR

TO PREVENT ADVANCING REC NBR OR RBA AFTER A READ
1 = ENSURE I/O BUFFER IS WRITTEN TO DISK AFTER LOGICAL WRITE

TO RANDOMLY READ BY RECORD NUMBER
(FIXED LENGTH RECS ONLY)
(USE THIS FOR NORMAL SEQUENTIAL READ OF FIXED LENGTH)
TO READ THE RECORD POINTED AT BY RBA
(REQUIRED IF USING VARIABLE LENGTH RECORDS)
TO READ BY REC NBR WITHOUT ADVANCING REC NBR

DOS READiRBA+UPDATE TO READ THE RECORD POINTED AT BY RBA & NOT CHANGE RBA
* DOS WRITE) REC
* DOS WRITE, RBA
* DOS WRITE, UPDATE
*
* DOS WRITE, RBA+IMOW

WRITE VIA RECORD NUMBER (FIXED LENGTH ONLY)
WRITE FIXED OR VARIABLE RECORD
UNLIKELY OPTION - WRITES RECORD BUT DOES NOT CHANGE
RBA OR REC NUMBER. COULD BE REWRITTEN AGAIN.

SAME AS: DOS WRITE, RBA FOLLOWED BY DOS RELSE, IT

A RELSE EGU $608 USE TO RELEASE I/O BUFFER WITHOUT CLOSING FILE
IF CONTENTS OF BUFFER HAVE BEEN CHANGED, IT IS REWRITTEN. THEN DCBPRN
IS SET TO $FFFF TO ENSURE A PHYSICAL I/O BEFORE THE NEXT LOGICAL I/O.
USE THIS FUNCTION WHEN USER IS CONTROLLING A SHARED BUFFER.
EXAMPLE:
DOS RELSE, IT

* USED WITH OVERLAYABLE FUNCTIONS
DO EQU $60A
GO EQU $60

C

LOAD EQU $60E
* EXAMPLE:
* DOS DO, MAP
*
* THE FOLLOWING USED WITH

USE TO LOAD IF NECESSARY, THEN EXECUTE AN OVERLAY
USE TO XFER CONTROL FROM ONE OVERLAY TO ANOTHER IN SAME AREA
USE TO LOAD A SYSTEM OVERLAY - IT IS LOADED AT THE

LOAD" AND "DO" FUNCTIONS
IN IT EQU 1 INITIALIZATION OF DOS
* EXAMPLE:
* DOS DOiINIT EXIT PROGRAM & RE-INITIALIZE DOS
* NOTE: STACK AND OLYLOC SHOULD BE RESET BEFORE USING THIS OVERLAY

14 DISPLAY DOS MAIN MENUMENU EQU
* EXAMPLE:
* LDS #STACK
* LDD #OVRLAY WHERE OVERLAY AREA SHOULD START
* STD >OLYLOC
* DOS DO, MENU

10 DISPLAY BASIC LINESMAP EQU
* EXAMPLE:
* LDD #280 FIRST LINE NUMBER TO BE DISPLAYED
* LDY #283 LAST LINE TO BE DISPLAYED

PAGE 008 DOC SA:0 DOS - INSTRUCTIONS

03530 00402
03540 00403
03550 00404
03560 00405
03570 00406
03580 00407
03590 0040S
03600 00409
03610 00410
03620 00411
03630 00412
03640 00413
03650 00414
03660 00415
03670 00416
03680 00417
03690 00418
03700 00419
03710 00420
03720 00421
03730 00422
03740 00423
03750 00424
03760 00425
03770 00426
03780 00427
03790 0042S
03S00 00429
038 10 00430
03820 00431
03830 00432
03840 00433
03850 00434
03860 00435
03870 00436
03880 00437
03890 0043S
03900 00439
03910 00440
03920 00441
03930 00442
03940 00443
03950 00444
03960 00445
03970 00446
03980 00447
03990 00448
04000 00449
04010 00450
04020 00451
04030 00452
04040 00453
04050 00454
04060 00455
04070 00456
04080 00457
04090 00458
04100 00459

0005

000B

000C

000D

000F

0011

LDU <CURSOR STARTING DISPLAY ADDRESS
(IF STARTING ADDR IS ZERO* SCREEN WILL BE CLEARED FIRST AND ROUTINE
WILL EXIT WITH U->FIRST CHAR AFTER FIRST LEFT BRACKET ON SCREEN)

PSHS D,Y,U < PARAMETERS ARE PASSED IN THE STACK)
DOS DO.BASMSG
PULS D,Y,U NORMALIZE STACK
BNE ERROR BRANCH ON ANY FAILURE IF DESIRED

RUN IP EQU 2
* EXAMPLES
* DOS DO* RUN IP
*

CPYFLE EQU 5
* EXAMPLE:
* DOS DO, CPYFLE
*

11

KEY IN A NAME AND RUN PGM

GET INFO FROM USER & COPY A FILE

(IF "GO" USED, DOS MENU FOLLOWS COPY FUNCTION)

INPUT A MAPPED FIELDFIELD I EQU
* EXAMPLE:
* LDX DEST WHERE THE DATA GOES IN MEMORY
* LDU FLDADR POINT TO FIELD ON SCREEN
* DOS DO, FIELD I INPUTS THE FIELD
* B IS RETURNED CONTAINING LAST KEYSTROKE ENTERED

GIVEN USRDCB CONTENTS, LOAD ROOT & EXECUTE PROGRAMEXEC EQU 12
* EXAMPLE:
* (WHATEVER LOGIC TO PUT NAME IN DCB AT "USRDCB
* DOS GO, EXEC JUMP TO LOAD & EXECUTE OVERLAY

A REALTM EQU
*

A BUFPRT EQU
* EXAMPLE:
* LDU #SIZE

13

15

CLOCK DISPLAY OVERLAY (SEE SKEL FOR EXAMPLE OF USE)

BUFFERED PRINT OVERLAY

(TOTAL MEMORY TO BE USED (ROUTINE + BUFFER)
(ROUTINE IS ABOUT 220 BYTES)

DOS DO, BUFPRT (SETS IT UP - OVERLAY & BUFFER PROTECTED FROM
BEING OVERLAYED).

FROM THIS POINT ON, CHARACTERS PRINTED BY CALLING "PRNT" WILL GO
THROUGH BUFFERED I/O. TO WRAP UP AT EOJ* DO THIS:

CLRA
JSR [PRNT J REQUEST TO END BUFFERING.

THIS WILL CAUSE "PRNT" TO WAIT UNTIL THE BUFFER IS EMPTIED (PRINTER
AND THEN OVERLAY AND BUFFER AREA ARE RELEASED.

*

* HAS CAUGHT UP)

17 COPY A FILECOPY EQU
* GIVEN:
* U->SOURCE FILE DCB (NOT OPENED)
* Y->DEST FILE DCB (NOT OPENED)
* B (BIT 0) - OFF IF NO DISKETTE SWAPPING,
* RETURNED A=ERROR NUMBER
*

* SIMILAR FUNCTIONS FOR USING USER OVERLAYS
LOAD IF NECESSARY & EXECUTE
JUMP TO A DIFFERENT OVERLAY
LOAD USER OVERLAY

EQUATES FOR HIS OVERLAYS HERE

JSR HERE FOR DISPLAY OF ERR MSG

ON FOR DISKETTE SWAPPING

0610 A DOUSR EQU $610
0612 A GOUSR EQU $612
0614 A LODUSR EQU $614

* USER
*

ERROR

SHOULD PROVIDE

0616 A EQU $616

USER OVERLAY

PAGE 009 DOC SA:0 DOS INSTRUCTIONS

04110 00460 0618
04120 00461 0001
04130 00462 0000
04140 00463
04150 00464
04160 00465
04170 00466
04180 00467 061A
04190 00463
04200 00469
04210 00470
04220 00471 06 1C
04230 00472
04240 00473
04250 00474
04260 00475 06 IE
04270 00476
04280 00477
04290 0047S
04300 00479
04310 00480

00431
00482

04340 00433
04350 00484

00485
00486

04380 00487
04390 00483

00489
00490
00491
00492

04440 00493
04450 00494

00495
00496
00497

04490 00498
04500 00499

00500
00501
00502

04540 00503
04550 00504

00505
00506
00507

04590 00508
04600 00509

00510
00511

04630 00512
04640 00513
04650 00514
04660 00515
04670 00516
04680 00517A 015E

A TIME EQU *618 TURN ON/ OFF TIME ROUTINE
A ON EQU 1

A OFF EQU
* EXAMPLE:
* LDU #TMERTN LOAD ADDR OF ROUTINE
* DOS TIMEiON GO ACTIVATE THIS ROUTINE
*

A PRNT EQU $61 A PRINT A CHARACTER ON PRINTER
* THIS IS CHANGED BY CALLING BUFFERED PRINTER OVERLAY TO POINT
* AT BUFFERED 10 ROUTINE
*

A KEY IN EQU $61C POLL KEYBOARD FOR INPUT CHARACTER
* THIS IS CHANGED BY CALLING BUFFERED KEYBOARD OVERLAY TO POINT
* AT BUFFERED 10 ROUTINE
*

A BASIC EQU $61 E JMP HERE TO RETURN TO BASIC
*

* T H E R USEFUL MACROS FOLLOW

ENABLI MACR
4320 ANDCC #7.11101111
4330 ENDM

DSABLI MACR
4360 orcc tr/.0 10 10000
4370 ENDM
*
NEGD MACR
4400 COMA
4410 COMB
4420 ADDD #1
4430 ENDM

LSRD MACR
4460 LSRA
4470 rorb
4480 ENDM

LSLD MACR
4510 LSLB
4520 ROLA
4530 ENDM
*

CLRD MACR
4560 CLRA
4570 CLRB
4580 ENDM
*
INCD MACR
4610 ADDD #1
4620 ENDM

ENABLE INTERUPTS

DISABLE INTERUPTS

NEGATE D

LOGICAL SHIFT RIGHT D

LOGICAL SHIFT LEFT D

CLEAR D

ADD 1 TO D

**
SYSTEM RAM - D S

**
* ADDITIONAL WS USING EXTENDED ADDRESSING

ORG *15E

PAGE 010 DOC DOS - INSTRUCTIONS

04690 005 ISA 0600
04700 00519
04710 00520A 0600
04720 00521
04730 00522
04740 00523
04750 00524
04760 00525
04770 00526
047B0 00527
04790 00528
04800 00529
04810 00530
04820 00531
04830 00532
04840 00533
04850 00534
04860 00535
04870 00536
048S0 00537A 0620
04890 00538A 0622
04900 00539A 0623
04910 00540A 0625
04920 00541 A 0627
04930 00542

A

0629
04940 00543A 062B
04950 00544A 062D
04960 00545A 062F
04970 00546A 0631
04980 00547A 0633
04990 00548A 0635
05000 00549A 0666
05010 00550A 0697
05020 00551 A 06 C8
05030 00552
05040 00553A 07C8
05050 00554A 080D
05060 00555A 0352
05070 00556A 0897
05080 00557
05090 00558A 08DC
05100 00559A 08DE
05110 00560
05120 00561A 08DF
05130 00562
05140 00563
05150 00564
05160 00565
05170 00566A 0989
00010 00567
00020 00568
00030 00569
00040 00570
00050 00571
00060 00572
00070 00573
00080 0057*+
00090 00575

0020

ORG
* AREA WHERE
VECTOR RMB

$600
USER ACCESSABLE VECTORS & VARIABLES STORED
2*16 2 BYTES PER VECTOR

0002
0001
0002
0002
0002
0002
0002
0002
0002
0002
0002
0031
0031
0031
0100
0045
0045
0045
0045
0045
07 C8
0002
0001

0001

* OPEN
* CLOSE
* READ
* WRITE
* RELSE
* DO
* GO
* LOAD
* DOUSR
* GOUSR
* LODUSR
* ERROR
* TIME
* PRNT
* KEVIN
* BASIC
CLOCK
RETRYS
RATE
OLYLOC
USRBSE
HOOK1
HOOK2
H00K3
HOOKA
HOOKS
RETURN
DOSDCB
MSGDCB
USRDCB
SYSBUF
FATSZ
FAT0
FAT1
FAT2
FAT3
FATS
MAXMEM
DRIVES-

OPEN A DISK FILE
CLOSE A DISK FILE
READ FROM A DISK FILE
WRITE TO A DISK FILE
RELEASE I/O BUFFER (ALLOW USE FOR ANOTHER FILE)
LOAD & EXECUTE A SYSTEM OVERLAY
LOAD ON TOP OF CURRENT OVERLAY & JUMP TO SYSTEM OVERLAY
LOAD SYSTEM OVERLAY
LOAD & EXECUTE USER OVERLAY
LOAD ON TOP OF CURRENT OVERLAY & JUMP TO USER OVERLAY
LOAD USER OVERLAY
DISPLAY ERROR NUMBER IN "A"
TURN ON/OFF TIME INTERVAL ROUTINE
PRINT A CHARACTER ON PRINTER
INPUT NEXT KEYSTROKE FROM KEYBOARD
RETURN TO BASIC CONTROL

2 COUNT OF 60THS OF A SECOND
1 NUMBER OF I/O RETRYS INITIALLY SET TO 5

2 TIME CONSTANT THAT CONTROLS PRINTER TRANSMISSION SPEED
2 ADDRESS WHERE CURRENT OVERLAY WAS LOADED
2 BASE OF USER'S ROOT + 1. POINTS TO ENTRY ZERO OF OVERLAY'S RBA :

2 JUST BEFORE CHECKING FOR AUTO EXECUTE
2 JUST BEFORE BRANCHING TO USER PROGRAM

A ENDWSE

RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
EQU
RMB
RMB
RMB
RMB
EQU
RMB
RMB
OPT
RMB
OPT

DCBSZ
DCBSZ
DCBSZ
256
69
FATSZ
FATSZ
FATSZ
FATSZ
FAT0

1

L
1

NOL

TWO RTS
TO READ
TO READ
TO READ

BUFFER FOR SYSTEM USE < DI RECTORY + FAT READS & WRITES)
FILE ALLOCATION TABLE (FAT) SIZE

AREA FOR DRIVE FAT TABLE
FOR DRIVE 1

CONTAINS
DCB USED
DCB USED
DCB USED

SAVE
SAME

CODES - ALL HOOKS RETURN THRU HERE
SYSTEM OVERLAYS
"MAPS" AND MESSAGES
USER'S PROGRAM & OVERLAYS

ADDR
MAX

OF
NBR

HIGHEST USEABLE MEMORY
OF DRIVES TO SEARCH ON GLOBAL OPEN

END OF EXTENDED WS

* D S STARTS HERE

ORG ORGIN SEE 1ST MODULE FOR VALUE ASSIGNED
OPT L
TTL DOS - I/O ROUTINES
OPT NOL

**
PEN DISK FILE

GIVEN:
A=DESIRED FILE STATUS
U->DCB

PAGE 011 10 SA:0 DOS I/O ROUTINES

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
0025
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
B0580
00590
00600
00610
00620
00630
00640
00650
00660
00670

00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604A
00605A
00606A
00607A
00608A
00609A
00610A
00611

A

006 12A
00613A
00614A
00615A
006 16A
00617A
00618A
00619
00620A
00621

A

00622A
00623

A

00624A
00625

A

00626A
00627A
00628A
S0629A
00630
00631

A

00632A
00633A

0989 E6
098C 34
098E CI
0990 27-

0992 CI
0994 25
0996 86
0998 A7
099A 35
099C 5F
099D E7
09A0 4F
09A1 17
09A4 27
09A6 2B

09A8 81
09AA 26
09AC 6D
09AE 2A
09B0 6D
09e2 2

A

09E4 E6
09B7 5C
09B8 Fl
09BB 25

09BD A6
09BF 85
09 CI 26

C8
16
FF
0A
04
07
09
E4
'96

CB 21

A
A
A

099C
A

099D
A
A

A

02D2 0C76
50 09F6
08 09B0

01
EC
61
E8
61
09
CB 21

A

0998
A

0998
A

09BD
A

0BDE A

E0 099D

* DCBDRV,U = DRIVE TO" BE CHECKED ($FF=CHECK ALL DRIVES)
*
* BEFORE CALLING "OPEN'S DCB SHOULD CONTAIN: FILENAME, EXTENSION,
* I/O BUFFER ADDRESS. NAME AND EXTENSION ONLY ARE COMPARED
* TO DIRECTORY ENTRIES TO FIND MATCH. TYPE AND ASCII FLAG ARE USED ONLY
* WHEN CREATING FILE (OTHERWISE THEY ARE OVERLAYED BY EXISTING VALUES).
* ALL I/O NEEDED TO OPEN FILE USES THE 256 BYTE AREA POINTED TO BY
* LAST I/O ADDRESS AS A BUFFER.
*
* OPEN WORKS EXACTLY THE SAME FOR INPUT OR OUTPUT! ACTION IS CONTROLLED
* BY FILE STATUS SUPPLIED IN "A" (SEE DCBCFS IN DCB DESCRIPTION).
*
* OPENING A NON-EX I STANT FILE - IF CREATION IS ALLOWED, FIRST 32 BYTES OF
* DCB ARE PLACED IN DIRECTORY EXCEPT THAT DCBFCL IS SET TO *FF, DCBNLS
* IS SET TO ZERO AND DCBCFS IS SET TO PROVIDED STATUS.
*
* OPENING AN EXISTING FILE - THE 32 BYTE DIRECTORY ENTRY OVERLAYS THE
* FIRST 32 BYTES OF THE DCB EXCEPT FOR DCBCFS WHICH IS SET TO THE PROVIDED
* VALUE.

* WHEN FILE IS OPENED, DCBPRN IS SET TO $FFFF (AN INVALID VALUE), DCBRBA
* IS SET TO ZERO) AND DCBLRN IS SET TO ZERO. AT ANYTIME BEFORE OR AFTER
* CALLING OPEN? DCBLRB CAN BE SET OR CHANGED.
*
* FILE TYPE AND ASCII FLAG CAN BE CHANGED AFTER OPEN TO CAUSE THEM TO BE
* CHANGED WHEN FILE IS CLOSED.
*

DO PEN

DOERR

DO0
D01

LDB
PSHS
CMPB
BEQ
CMPB
BCS
LDA
STA
PULS
CLRB
STB
CLRA
LBSR
BEQ
BMI

DCBDRV,U
D,X
#$FF
DO0
#4
D01
#ERR9
,S
D, X, PC

DCBDRV,U

CHKDIR
D05
D03

REQUEST FOR SCAN OF ALL DRIVES
IF YES
VALID DRIVE REQUESTED?
IF YES
PARAMETER ERROR

RETURN WITH ERROR CONDITION
START WITH DRIVE ZERO

SAY LOOK FOR MATCH
CHECK DIRECTORY ON THIS DRIVE FOR MATCH
IF MATCH FOUND
IF NO I/O ERRORS JUST DIDNT FIND IT

* IT WAS SOME KIND OF I/O ERROR
CMPA
BNE
TST
BPL

D03 TST
BPL
LDB
INCB
CMPB
BCS

* MATCH NOT FOUND

#1 DRIVE NOT READY?
DOERR IF NO
1,S REQUEST FOR SPECIFIC DRIVE?
DOERR IF YES, THEN THIS IS AN ERROR
1)3 REQUEST FOR SPECIFIC DRIVE?
D04 IF YES, I DIDNT FIND HIS FILE
DCBDRV,U LAST DRIVE CHECKED

A

A

09 C7

D04 LDA
BITA
BNE

DRIVES ANOTHER VALID DRIVE TO CHECK?
D01 IF YES

IS IT OK TO CREATE?
,S (DESIRE-D STATUS)
^CREATE CREATE SIT ON?
D04A IF YES

PAGE 012 1 .SA :0 DOS - I/O ROUTINES

00630 00634A 09 C3 86 0A A LDA #ERR10 FILE DIRECTORY ENTRY NOT FOUND
00690 00635A 09C5 20 Dl 0993 BRA DOERR
00700 00636A 09C7 6D 61 A D04A TST l.S ANY DRIVE SPECIFIED?
00710 00637A 09C9 2A 03 09CE BPL D04B IF SPECIFIC
00720 0063SA 09CB 6F C3 2JL A CLR DCBDRV,U CREATE ON DRIVE ZERO
00730 00639A 09CE 86 FF A D04B LDA #$FF SAY LOOK FOR OPEN SLOT
00740 00640A 09D0 17 02A3 0C76 LBSR CHKDIR SCAN THE DIRECTORY
00750 00641

A

09D3 27 06 09DB BEQ D04C IF SLOT FOUND
00760 00642

A

09D5 2A CI 0993 BPL DOERR IF SOME KIND OF I/O ERROR
00770 00643A 09D7 86 0B A LDA #ERR11 DIRECTORY IS FULL
B07S0 00644A 09D9 20 BD 0993 DOERRL BRA DOERR
00790 00645A 09DB A6 E4 A D04C LDA ,S DESIRED STATUS
00S00 00646A 09DD A7 61 A STA 1,S SAVE IT
00810 00647A 09DF 86 0C A LDA SERR12 SAY DIRECTORY WAS CREATED
00820 0064SA 09E1 A7 E4 A STA ,S
00830 00649A 09E3 86 FF A LDA #*FF
00840 00650A 09E5 A7 4D A STA DCBFCL,U SET NUMBER OF 1ST CLUSTER
00850 00651

A

09E7 CLRD
00860 0065 2

A

09E9 ED 4E A STD DCBNLS,U CLEAR BYTES IN LAST SECTOR
00870 00653A 09EB ED C8 14 A STD DCBMRB,U CLEAR MAX RBA
00880 00654A 09EE A7 CS 16 A STA DCBMRB+2->U
00890 00655A 09F1 17 0263 0C57 LBSR DCBDIR XFER DATA TO DIRECTORY
00900 00656A 09F4 20 IS 0A0E BRA DO6 GO CONTINUE PROCESSING
00910 00657 * DIRECTORY ENTRY FOUND
00920 00658A 09F6 A6 E4 A D05 LDA ,S DESIRED STATUS
00930 00659A 09F8 A7 61 A STA 1,S SAVE IT
00940 0O660A 09FA 6F E4 A CLR)S
00950 00661A 09FC A6 88 10 A LDA DCBCFS,X CHK PREVIOUS FILE STATUS
00960 00662A 09FF 7" "7 0D 0A0E BEQ D06 IF IT WAS CLOSED
00970 00663A 0A01 34 0E A ANDA #CREATE+EXTEND+OUT IF LAST OPENED TO MOD II

00980 00664A 0A03 27 09 0A0E BEQ D06 IF NO
00990 00665A 0A05 6D 83 10 A TST DCBCFSiX CHK PREVIOUS FILE STATUS
01000 00666A 0A08 27 04 0A0E BEQ D06 IF IT WAS CLOSED
01010 00667

A

0A0A S6 0D A LDA #ERR13 SAY IT WASNT PREVIOUSLY CLOSED
01020 00668A 0A0C A7 E4 A STA ,S
01030 00669 * XFER DIRECTORY ENTRY TO DCB
01040 00670A 0A0E A6 61 A D06 LDA liS DESIRED STATUS
01050 00671

A

0A10 A7 8S 10 A STA DCBCFS,X PUT IN DIRECTORY ENTRY
01060 00672A 0A13 17 0249 0C5F LBSR DIRDCB XFER DIRECTORY ENTRY TO DCB
01070 00673A 0A16 A6 ca 10 A LDA DCBCFSjU
01080 00674A 0A19 84 0E A ANDA #CREATE+EXTEND+OUT WRITES ALLOWED?
01090 00675A 0A1B 27 05 0A22 BEQ D06A IF NO
01100 00676A 0A1D 17 03 IF 0D3F LBSR SYSWRT REWRITE DIRECTORY RECORD
01110 00677A 0A20 26 B7 09D9 BNE DOERRL IF I/O ERROR
01120 00678

A

0A22 86 02 A D06A LDA #2
01130 00679A 0A24 A7 C8 23 A STA DCBSECU
01 140 006B0A 0A27 17 02FD 0D27 LBSR SYSRED READ FAT RECORD
01150 006B1A 0A2A 26 AD 09D9 BNE DOERRL
01160 00682A 0A2C 17 02 1C 0C4B LBSR ADRFAT POINT "X" AT FAT TABLE IN MEMORY
01170 006S3A 0A2F 34 40 A PSHS U
01160 00684A 0A31 CE 06C8 A LDU ttSYSBUF POINT TO BUFFER
01190 006S5A 0A34 C6 45 A LDB #69 BYTES TO MOVE
01200 006B6A 0A36 17 02i:E 0C67 LBSR XFRUX MOVE THEM
01210 006S7A 0A39 35 40 A PULS U
01220 00688 * DO OPEN RESETTING
01230 00689A 0A3B CC FFFF A LDD tt$FFFF
01240 00690A 0A3E ED C8 29 A STD DCBPRN,U
01250 00691A 0A41 CLRD

PAGE 013 10 .SA:0 DOS I/O ROUTINES

01260
01270

1 230
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610

1 620
01630
01640
01650
01660
01670
016S0
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830

00692A
00693A
00694A
00695A
00696A
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709A
007 10A
00711A
007 12A
00713A
007 14A
00715A
00716A
00717A
00718A
00719A
00720A
00721

A

00722A
00723A
00724A
00725A
00726A
00727A
0072SA
00729A
00730A
00731A
00732

A

00733A
00734
00735A
00736A
00737A
00738A
00739A
00740A
00741A
00742

A

00743A
00744A
00745A
00746A
00747A
0Q74SA
00749

0A43 ED
0A46 A7
0A49 ED
0A4C 6F
0A4F 16

0A5 2 4F
0A53 34
0A55 4F
0A56 17
0A59 27
0A5B 2A
0A5D 36
0A5F 16
0A62 A6
0A65 26
0A67- 86
0A69 20
0A6B EC
0A6E 34
0A70 17
0A73 35
0A75 26
0A77 ED
0A7A A6
0A7D 34
0A7F 6F
0AS2 B4
0A84 27
0AS6 6F
0A88 34

0A8A 17
0ASD A6
0ABF 2B
0A91 E6
0A93 6F
0A95 6A
0A97 IF
0A99 4D
0A9A 2A
0A9C 35
0A9E 17
0AA1 35
0AA3 84
0AA5 27

CS 2B A
CB 2D A

CB 2E A

CB 30 A
008C 0ADE

STD DCBRBA^U
ST A DCBRBA+2i U
STD DCBLRN,U
CLR DCBMDT,U
LBRA DC5

******************************** J

* CLOSE DISK FILE

* GIVEN: U DCB (CONTAINING FILE STATUS)

* FUNCTION:
* FIND DIRECTORY ENTRY AND VERIFY THAT FILE IS OPEN. THEN* IF FILE IS
* TO BE KEPT, UPDATE AND RE-WRITE DIRECTORY ENTRY AND REWRITE FAT TABLE.
* IF FILE IS TO BE PURGED, MARK DIRECTORY ENTRY AS RE-USEABLE AND RE-WRITE
* THEN MARK CLUSTERS AVAILABLE IN FAT TABLE AND REWRITE.
**

16 A

021D 0C76
07 0A62
02 0A5F
0A A
FF36 0998
CB 10 A

0A6B
A

0A5F
I A

A

04
13
F4
CB
06
02D0 0D43
06
E3
CB
CS 10
02
C8 10
10

A
0A5F

22 A
A
A
A
A

0A9E
A
A

DCLOSE CLRA
PSHS
CLRA
LBSR
BEO
BPL
LDA
LBRA
LDA
BNE
LDA
BRA
LDD
PSHS
LBSR
PULS
BNE
STD
LDA
PSHS
CLR
ANDA
BEQ
CLR
PSHS

(RESULT CODE)
D, X

SAY LOOK FOR A MATCH
CHECK DIRECTORY FOR A MATCH
IF MATCH FOUND
IF I/O ERR
DIRECTORY ENTRY NOT FOUND

DCERR
DC1

DC2

CHKDIR
DC1
DCERR
#ERR10
DOERR
DCBCFS^U IS FILE OPEN?
DC2
#ERR19
DCERR
DCBTRKiU
D
REWRTE
D

DCERR

CLOSING UNOPENED FILE

SAVE LOC OF DIR ENT
REWRITE BUFFER IF IT HAD BEEN MODIFIED

01 BE 0C4B
4D
0B
86
86
86
98

A
0A9C

A
A
A
A

IF I/O ERROR OCCURRED IN THE PROCESS
DCBTRK*U RESTORE LOC OF DIR ENT
DCBCFS,U
A SAVE FOR DIRECTORY RE-WRITE DECISION
DCBCFSiU CLEAR CUR FILE STATUS IN DCB
ttWORK WORK FILE TO BE DELETED?
DC4 IF NO GO REWRITE DIRECTORY & FAT TABLE
,U MARK DIRECTORY ENTRY AS RE-USEABLE
X SAVE ADDR OF DIRECTORY ENTRY

MARK FAT TABLE ENTRIES AS AVAILABLE
LBSR ADRFAT POINT "X" AT FAT TABLE IN MEM

DCBFCLiU GET FIRST CLUSTER NUMBER

F5 0A91
10 A
01B6 0C57
02 A
0E A
15 0ABC

DC3

DC3A
DC4

LDA
BMI
LDB
CLR
DEC
TFR
TSTA
BPL
PULS
LBSR
PULS
ANDA
BEO

DC3A
A,X
AiX
AiX
B,A

IF NO CLUSTERS IN USE
GET NUMBER OF NEXT CLUSTER
CLEAR CLUSTER ENTRY
SET TO $FF

DC3 IF MORE TO GO
X ADDR OF DIR ENTRY
DCBDIR XFER TO DIRECTORY
A PRE-CLOSE CFS
#CREATE+EXTEND+OUT WRITES ALLOWED?
DC4B

SET DCBNLS TO REFLECT DCBMRB (MAX RBA

)

PAGE 014 10 SA:0 DOS I/O ROUTINES

01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
024 1

00750A
00751

A

00752A
00753A
00754A
00755A
00756A
00757A
00758A
00759A
00760A
00761

A

00762A
00763A
00764A
00765A
00766A
00767A
00768A
00769A
00770A
00771A
00772A
00773A
00774A
00775
00776
00777
00778
00779
00780
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799A
00800A
00801 A
00802
00803
00804
00805

A

00806A
00807A

0AA7 4F
0AA8 E6
0AAB 26
0AAD EC
0AB0 27
0AB2 CC
0AB5 ED
0AB7 17
0ABA 26
0ABC 17
0ABF 34
0AC1 CE
0AC4 C6
0AC6 17
0AC9 30
0ACB C6
0ACD 17
0AD0 35
0AD2 86
0AD4 A7
0AD7 17
0ADA 27
0ADC A7
0ADE 6D
0AE0 35

0AE2 34
0AE4 CC
0AE7 17

0AEA E6
0AED 4F
0AEE A6

88 16 A
08 0AB5
88 14 A
03 0AB5
0100 A
0E A
0285 0D3F
A3 0A5F
018C 0C4B
40 A
06C8 A
45 A
01A6 0C6F
41 A
BA A
0197 0C67
40 A
02 A
CB 23 A
0265 0D3F
02 0ADE
E4 A
E4 A
96 A

CLRA
LDB
BNE
LDD
BEO
LDD

DC4A STD
LBSR
BNE

DC4B LBSR
PSHS
LDU
LDB
LBSR
LEAX
LDB
LBSR
PULS
LDA
STA
LBSR
BEO
STA

DC5 TST
PULS

32
010F
0091

C8

A
A

0B7B

DCBMRB+2,
DC4A
DCBMRB»X
DC4A
#$100
DCBNLS,X
SY3WRT
DCERR
ADRFAT
U
#SYSBUF
#69
XFRXU
1>U
#256-69-1
XFRUX
U
#2
DCBSEC.U
SYSWRT
DC5
*S
iS
D,X»PC

IS IT A NULL FILE
IF YES

RE-WRITE DIRECTORY RECORD
IF I/O ERROR

SAVE DCB ADDR
POINT TO SYSTEM ; S BUFFER

XFER INTO BUFFER

CLEAR REST OF BUFFER TO *FF
RESTORE DCB ADDR

WRITE IT

IF I/O ERROR
SET COND CODES

SB

*READ A LOGICAL DISK RECORD
*

* GIVEN: U -> DCB (THAT HAS ALREADY BEEN OPENED!)
* A - FUNCTION DESIRED CODED AS FOLLOWS:
* BIT ON TO READ VIA RBA
* OFF TO READ VIA LRN
* BIT 1 ON TO READ WITHOUT CHANGING POINTER
* OFF TO EXIT AFTER POINTING AT NEXT (PREVIOUS) RECORD
* BIT 2 ON TO READ BACKWARDS
* OFF TO READ FORWARD
* EXAMPLE: A=ZERO TO READ THE CURRENT LOGICAL RECORD AND THEN ADVANCE
* THE LOGICAL RECORD NUMBER BY 1. A = 2 TO "READ FOR UPDATE" A LOGICAL
* RECORD. A = 1+4 (5) TO READ STARTING WITH THE RBA'TH BYTE OF DATA
* IN THE FILE, FOR DCBRS2 BYTES. THEN SET RBA TO POINT DCBRSZ BYTES
* AHEAD OF THE FIRST BYTE READ.
*

* NOTE". LOGICAL RECORD SIZE* RECORD STORAGE ADDRESS AND I/O BUFFER
* ADDRESS ARE USED. IF LOGICAL RECORD SIZE IS 256, RECORD STORAGE
* AND I/O BUFFER MAY BE THE SAME ADDRESS. IF DCBRSZ IS ZEROi READS WILL
* TRANSFER BYTES FROM THE FILE TO [DCBREC3 UNTIL A CHARACTER MATCHING
* DCBTRM IS TRANSFERRED.

DREAD PSHS AiX,Y
LDD #*0100+ERR15
LBSR RDWR DO SETUP COMMON TO READ AND WRITE

*
* LOOP TO XFER BYTES TO RECORD AREA
* (X->BUFFER> Y->RECORD AREA)
DR5 LDB DCBRBA+2,U DISPLACEMENT IN CURRENT SECTOR

CLRA
LDA D*X GET A BYTE

PAGE 015 10 .SA:0 DOS I/O ROUTINES

02420 00S08A 0AF0 A7 A0 A STA ,Y+ STORE IN RECORD AREA
02430 00809A 0AF2 6C C8 2D A INC DCBRBA+2iiU ADVANCE POINTER IN BUFFER
02440 008 10A 0AF5 26 IE 0B15 BNE DR5B IF IN SAME SECTOR
02450 0081 1A 0AF7 17 0249 0D43 LBSR REWRTE ENSURE PREVIOUSLY MODIFIED DATA GETS WRITTEN
02460 008 12A 0AFA 26 0E 0B0A BNE DR5AA IF WRITE ERR
02470 0081 3A 0AFC EC C8 2B A LDD DCBRBA,U
02480 00814A 0AFF C3 0001 A ADDD #1 POINT TO NEXT SECTOR
02490 00815A 0B02 ED C8 2B A STD DCBRBA,U
02500 008 16A 0B05 17 0291 0D99 LBSR CALSEC RECALCULATE TRACK & SECTOR
02510 00817A 0B08 27 06 0B10 BEG DR5A IF OK
02520 00818A 0B0A 32 67 A DR5AA LEAS 7,S SCRAP STUFF IN STACK
02530 00819A 0B0C A7 E4 A STA)S
02540 00820A 0BOE 35 B2 A PULS A,X,Y,PC
02550 00821

A

0B10 17 01D4 0CE7 DR5A LBSR DSKRED
02560 00822A 0B13 26 F5 0B0A BNE DR5AA IF I/O ERROR
02570 00823A 0B15 EC E4 A DR5B LDD iS GET COUNT DOWN VALUE
02580 00824A 0B17 27 09 0B22 BEG DR5C IF VARIABLE LENGTH STRING
02590 00825A 0B19 83 0001 A SUBD #1
02600 00826A 0B1C ED E4 A STD ,S
02610 00827A 0B1E 26 CA 0AEA BNE DR5 GO GET ANOTHER CHR
02620 00828A 0B20 20 07 0B29 BRA RDWRX GO DO CLEAN-UP COMMON TO READ AND WRITE
02630 00829A 0B22 A6 C8 13 A DR5C LDA DCBTRM,U STRING DELIMITER
02640 00830A 0B25 Al 3F A CMPA -1,Y WAS LAST CHR STORED A DELIMITER?
02650 00831 A 0B27 26 CI 0AEA BNE DR5 IF NO, KEEP GOING
02660 00832 *

02670 00833 **************************++++*+***
02680 00834 * CLEAN UP COMMON TO READ AND WRITE
02690 00835 *****************#***+***********
02700 00836 * RECORD HAS BEEN READ - CLEAN UP
027 1 00837A 0B29 35 06 A RDWRX PULS D
02720 00838A 0B2B A6 C8 10 A LDA DCBCFS,U FILE STATUS
02730 00839A 0B2E 85 40 A BITA ttSHARE OPTION SET?
02740 00840A 0B30 27 08 0B3A BEG. DR6A IF NO
02750 00841

A

0B32 17 020E 0D43 DR6AA LBSR REWRTE FREE UP BUFFER
02760 00842A 0B35 CC FFFF A LDD tt$FFFF MARK INVALID SECTOR IN BUFFER
02770 00843A 0B38 20 09 0B43 BRA DR6B
02780 00844A 0B3A A6 65 A DR6A LDA 5,S R/W OPTION
02790 00845A 0B3C 85 08 A BITA ttNOW REWRITE NOW?
02800 00846A 0B3E 26 F2 0B32 BNE DR6AA IF YES
02810 00847A 0B40 EC C8 2B A LDD DCBRBA,U LAST SECTOR ACCESSED
02820 00848A 0B43 ED CQ 29 A DR6B STD DCBPRN,U MARK WHICH SECTOR IS NOW IN BUFFER
02830 00849 * CHECK FOR NEW DCBMRB
02840 00B50A 0B46 EC C8 2B A LDD DCBRBA,U
02850 00B51A 0B49 10A3 C8 14 A CMPD DCBMRB,

U

02860 00B52A 0B4D 25 16 0B65 BCS DR6D IF IN A LOWER SECTOR
02870 00853A 0B4F 26 08 0B59 BNE DR6C IF A HIGHER SECTOR
02880 00B54A 0B51 A6 C8 2D A LDA DCBRBA+2.»U
02890 00855A 0B54 Al CB 16 A CMPA DCBMRB+2-til

02900 00B56A 0B57 25 0C 0B65 BCS DR6D IF A LOWER BYTE
02910 00B57A 0B59 EC C8 2B A DR6C LDD DCBRBA,U
02920 00B58A 0B5C ED C8 14 A STD DCBMRB,

U

02930 00B59A 0B5F A6 C8 2D A LDA DCBRBA+2'.u
02940 00S60A 0B62 A7 C8 16 A STA DCBMRB+2'iU
02950 00S61A 0B65 A6 65 A DR6D LDA 5,S READ/WRITE OPTION
02960 00862A 0B67 84 02 A ANDA ^UPDATE SHOULD RBA & LRN BE RESET TO STARTING VALUE?
02970 00B63A 0B69 35 32 A PULS A,X,Y
02980 00S64A 0B6B 27 0A 0B77 BEQ DR6E IF NO
02990 00B65 * RESTORE ORIGINAL POINTERS

PAGE 016 10 .SA:0 DOE I/O ROUTINES

03000
03010
03020
0303O
03040
03050
03060
03070
03080
03090
03100
031 10
03 1 20
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
033B0
03390
03400
03410
03420
03430
03440
03450
03460
03470
034B0
03490
03500
03510
03520
03530
03540
03550
03560
03570

00S66A
00B67A
00868A
00869A
00S70A
00871
00872
00873
00874
00S75
00876
00877A
00878
00879A
00880A
008S1A
00882A
00883A
00S84A
00885
00886A
00887A
00888A
00S89A
00890
00891
00892
00893A
00S94A
00895A
00S96
00897A
00898A
00899A
00900A
00901A
00902A
00903
00904
00905
00906A
00907A
00908A
00909A
00910A
00911A
00912A
00913A
00914A
00915A
00916A
00917A
0091B
00919
00920
00921 A
00922
00923A

0B6D
0B70
0B73
0B77
0B79

A7
AF
10AF
6F
35

0B7B 34

0B7D
0BB0
0BB2
0B84
0BB6
0BS8

0B8A
0B8C
0B8E
0B90

0B92
0B94
0B96

0B9S
0B9B
0B9D
0B9F
0BA1
0BA4

0BA6
0BA9
0BAD
0BAF
0BB2
0BB4
0BB7
0BB9
0BBC
0BBE
0BC0
0BC3

0BC5

0BC7

EC
10A3
27
17
26
17
26
17
26
20
17
26

C8 2D A
C8 28 A
C3 2E A
E4 A DR6E
B2 A

0E
64
E4
B2

64
01
0E

STA DCBRBA+2
STX DCBRBA,U
STY DCBLRN^U
CLR j S
PULS A>X»Y»PC

CB 10 A

0B 0B8A

E4 A

04 0B92
61 A
F2 0BB4

A
A

0BA6

CB 11 A

04 0BA1
14 A
E3 0BS4
01B3 0D57
DE 0BS4

CB 2B A
C8 29 A
11 0BC0
0191 0D43
D0 0BB4
01E2 0D99
CB 0BB4
012B 0CE7
C6 0B84
05 0BC5
01DC 0D9F
BF 0B84

26

CB 2E

* SETUP FOR READ OR WRITE
* GIVEN: A=l FOR READ, 2 FOR WRITE
* B=ERR NBR FOR POSSIBLE USE

RDWR PSHS D
* IS FILE OPEN?

LDA
BNE
LDA

RDWRER LEAS
STA
PULS

* IS THIS TYPE

SAVE IN CASE NEEDED

DCBCFS,U
RDWR1
SERR14
4,S
,S
Aj X) Y»PC
OF OPERATION ALLOWED

IF YES
IF NOT OPEN
(DIDN'T NEED IT AND RET ADDR)

RDWR1 BITA
BNE
LDA
BRA

CHECK FOR
IS I/O BY

RDWR2
1»S
RDWRER

(1 FOR
IF YES
(ERROR

READ, 2 FOR
OR WRITE)?
WRITE

NUMBER PROVIDED)

rdwr: LDA
ANDA
BNE

STARTING RBA
RBA OR LOGICAL RECORD?

4,S OPTION PROVIDED
#RBA
RDWR4 IF READ VIA RBA

7

USE RBA'S CURRENT CONTENTS
* READ BY RECORD NUMBER

RDWR3

* MAKE
RDWR4

RDWR4A

LDD
BNE
LDA
BRA
LBSR
BNE

OPT
SURE
LDD
CMPD
BEO.

LBSR
BNE
LBSR
BNE
LBSR
BNE
BRA
LBSR
BNE

DCBRSZ,U FIXED OR VARIABLE LENGTH RECORDS?
RDWR3
#ERR20
RDWRER
CALRBA
RDWRER

IF FIXED LENGTH
CANT CALCULATE - RSZ ZERO

CALCULATE RECORD'S STARTING RBA
IF OVERFLOW OCCURRED

U

STARTING RECORD IS IN BUFFER
DCBRBA,U (RELATIVE RECORD NEEDED)

IS NEEDED RECORD IN BUFFER?
IF YES
REWRITE BUFFER IF IT HAS BEEN MODIFIED
IF I/O ERROR IN THE PROCESS
CALCULATE TRACK
IF TRYING TO GO
READ THE SECTOR
IF I/O ERR

DCBPRN:
RDWR4A
REWRTE
RDWRER
CALSEC
RDWRER
DSKRED
RDWRER
RDWR5
CSENT
RDWRER

& SECTOR
BEYOND EOF

CHECK FOR EOF
IF TRYING TO GO PAST EOF

* CORRECT STARTING SECTOR IS IN BUFFER
* GET SET TO XFER RECORD
RDWR5 PULS DiY <D=l/0, ERR NBR.

OPT NOL
LDX DCBLRNjU

RETURN ADDR)

PAGE 1317 10 SA:0 DOS I/O ROUTINES

03580 00924A BBCA 34 10 A
03590 00925A 0BCC 30 01 A
03600 00926

A

0BCE AF C8 2E A

03610 00927A 0BD1 AE C8 2B A
03620 00928A 0BD4 A6 CB 2D A
03630 00929

A

0BD7 34 12 A

03640 00930A 0BD9 EC C8 11 A
03650 00931A 0BDC 34 06 A
03660 00932A 0BDE 34 20 A

03670 00933A 0BE0 AE CB 24 A
03680 00934A 0BE3 10AE C8 27 A
03690 00935A 0BE7 39
03700 00936
03710 00937
03720 00938
03730 00939
03740 00940
03750 00941
03760 00942
03770 00943
03780 00944
03790 00945
03800 00946
03810 00947
03820 00948
03830 00949
03B40 00950
03850 00951
03860 00952A 0BE8 34 32 A

03870 00953A 0BEA CC 0215 A
03880 00954A 0BED 8D 8C 0B7B
03890 00955
03900 00956
03910 00957
03920 00958A 0BEF E6 C8 2D A
03930 00959A 0BF2 4F
03940 00960A 0BF3 AE C8 24 A
03950 00961A 0BF6 30 BB A
03960 00962A 0BF8 A6 A0 A
03970 00963A 0BFA A7 B4 A
03980 00964A 0BFC 6C CB 2D A
03990 00965A 0BFF 26 23 0C24
04000 00966A 0C01 17 00E6 0CEA
04010 00967A 0C04 26 0E 0C14
04020 0096SA 0C06 EC CB 2B A
04030 00969A 0C09 C3 0001 A
04040 00970A QCQC ED CB 2B A
04050 00971A 0C0F 17 01B7 0D99
04060 00972A 0C12 27 06 0C1A
04070 00973A 0C14 32 67 A
04080 00974A 0C16 A7 E4 A
04090 00975A 0C1S 35 B2 A
04100 00976A 0C1A 17 00CA 0CE7
04110 00977A 0C1D 26 F5 0C14
04120 00978A 0C1F B6 01 A
04130 00979A 0C21 A7 CB 30 A
04140 00980A 0C24 EC E4 A
04150 009B1A 0C26 27 09 0C31

SAVE IN CASE POINTERS DON'T ADVANCE
POINT TO NEXT RECORD

PSHS X

LEAX 1 ,

X

STX DCBLRN,U
LDX DCBRBA.U
LDA DCBRBA+2»U
PSHS AtX SAVE INCASE POINTERS DON'T ADVANCE
LDD DCBRSZiU GET RECORD LENGTH
PSHS D SAVE AS COUNT DOWN VALUE FOR LOOP
PSHS Y SAVE RET ADDR
LDX DCBBUFiU ADDR OF BUFFER
LDY DCBLREoU ADDR OF LOGICAL RECORD BUFFER
RTS RETURN TO READ OR WRITE LOOP

*

* W R I T E A LOGICAL DISK RECORD
*
* GIVEN: U -> DCB (THAT HAS ALREADY BEEN OPENED!)
* A = FUNCTION DESIRED CODED AS FOLLOWS:
* BIT ON TO WRITE VIA RBA
* OFF TO WRITE VIA LRN
* BIT 1 ON TO WRITE WITHOUT CHANGING POINTER
* OFF TO EXIT AFTER POINTING AT NEXT (PREVIOUS) RECORD
* BIT 2 ON TO WRITE BACKWARDS
* OFF TO WRITE FORWARD
* BIT 3 ON TO RELEASE BUFFER AFTER WRITE
* OFF TO WAIT UNTIL PHYSICAL I/O IS NECESSARY
* NOTE: FUNCTION IS NEARLY THE SAME AS DREAD - SEE NOTES UNDER DREAD.

DWRITE PSHS A,X,Y

LDD #*02BB+ERR21
BSR RDWR DO SETUP COMMON TO READ AND WRITE

LOOP TO XFER BYTES FROM RECORD AREA
<X-> BUFFER i Y-> RECORD AREA)

DW5

DW5AA

DW5A

DW5B

LDB
CLRA
LDX
LEAX
LDA
STA
INC
BNE
LBSR
BNE
LDD
ADDD
STD
LBSR
BEG)

LEAS
STA
PULS
LBBR
BNE
LDA
STA
LDD
BEQ

DCBRBA+2*U DISPLACEMENT IN CURRENT SECTOR

DCBBUF,U ADDR OF BUFFER
D»X DETERMINE ADDR IN BUFFER
>Y+ GET BYTE FROM RECORD AREA
*X STORE IN BUFFER
DCBRBA+2>U ADVANCE POINTER IN BUFFER
DW5B
DSKWRT
DW5AA
DCBRBA,U
ttl

DCBRBAtU
CALSEC
DW5A
7,S
,S
A*X,Y,PC
DSKRED
DW5AA
#1
DCBMDTjU
tS
DW5C

IF IN SAME SECTOR
REWRITE SECTOR
IF I/O ERROR

POINT TO NEXT SECTOR

RECALCULATE
IF OK
SCRAP STUFF

TRACK & SECTOR

IN STACK

IF I/O ERROR

MARK NEW REC AS MODIFIED
GET COUNT DOWN VALUE
IF VARIABLE LENGTH STRING

PAGE 018 10 .SA:0 DOS I/O ROUTINES

04160
04170
04180
04190
04200
042 1

04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
04380
00010
00020
00030
00040
00050
00060
00070
00060
00090
00100
001 10
00 1 20
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350

00982A
00983A
00984A
00985A
009S6A
00987A
00988A
00989
00990
00991 A
00992A
00993A
00994
00995
00996
00997
00998
00999
01000A
01001A
01002A
01003A
01004A
01005
01006
01007
01008
01009
01010
01011
01012
01013A
01014A
01015A
01016A
01017A
01018A
01019
01020
01021
01022
01023
01024A
01 025

A

01026A
01 027

A

01028
01 029

A

01030A
01 031

A

01032A
01033
01034A
01035A
01036A
01037A
01038A
01039

0C28 83
0C2B ED
0C2D 26
0C2F 20
0C31 A6
0C34 Al
0C36 26

0C38 86
0C3A A7
0C3D 7E

0C40 17
0C43 CC
0C46 ED
0C49 4F
0C4A 39

0C4B 8E
0C4E A6
0C51 C6
0C53 3D
0C54 30
0C56 39

0C57 34
0C59 C6
0C5B 8D
0C5D 35

0C5F 34
0C61 C6
0C63 8D
0C65 35

0C67 A6
0C69 A7
0C6B 5A
0C6C 26
0C6E 39

0001 A
E4 A
C0 0BEF
07 0C38
CS 13 A DW5C
3F A
B7 0BEF

SUBD
STD
BNE
BRA
LDA
CMPA
BNE

01
C8 30
0B29

0100 0D43
FFFF A
C8 29 A

07C8 A
C8 21 A
45 A

8B A

56
20
0A
D6

56
20
0A
D6

C0
80

A
A

0C67
A

A
A

0C6F
A

A
A

* RECORD HAJ
DW6 LDA

STA
JMP

#1
,S
DW5 GO GET ANOTHER CHR
DW6
DCBTRM,U STRING DELIMITER
-liY WAS LAST CHR STORED A DELIMITER?
DW5 IF NO, KEEP GOING

BEEN WRITTEN - CLEAN UP
#1
DCBMDT,U ENSURE THIS SECTOR GETS REWRITTEN
RDWRX CLEAN UP SAME AS FOR READ

EVETUALLY)

* RELEASE THE I/O BUFFER
* (USED WHEN USER WANTS TO CONTROL SHARED BUFFER)
* GIVEN: U->DCB

DRELSE LBSR

LDD
STD
CLRA
RTS
OPT L
TTL DOS
OPT NOL

* POINT "X" AT FAT TABLE IN MEMORY
* GIVEN: U-> DCB CONTAINING DCBDRV
* RETURNED:X

F9 0C67

REWRTE REWRITE BUFFER CONTENTS IF NECESSARY
#$FFFF
DCBPRNiU FORCE READ NEXT TIME

SUPPORTING SUBROUTINES

ADRFAT LDX
LDA
LDB
MUL
LEAX
RTS

#FATS FAT TABLE STORE AREA
DCBDRV, U DRIVE CONTAINING FILE
#69

D)X

NUMBER OF BYTES SAVED

POINT TO CORRECT AREA

*XFER BYTES ROUTINES

* XFER 32 BYTES FROM DCB (AT ,U) TO DIRECTORY (AT , X)
DCBDIR PSHS D»XiU

LDB #32 BYTES TO XFER
BSR XFRUX
PULS D»X*U»PC
32 BYTES FROM DIRECTORY AT , X TO DCB AT ,U

D»X*U
* XFER
DIRDCB PSHS

LDB
BSR
PULS

#32
XFRXU
D,X,U- PC

* TRANSFER B BYTES FROM »U TO
XFRUX LDA

STA
DECB
BNE
RTS

TRANSFER B BYTES FROM , X TO

XFRUX

PAGE 019 RTN DOB SUPPORTING SUBROUTINES

(30360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
03710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930

01040A
01 041

A

01042A
01043A
01044
01045
01046
01047
01048
01049
01050
01051
01052
01053
01054
01055A
01056A
01057A
01058A
01059
01060A
01 061

A

1 062A
01063A
01064A
01 065

A

01066A
01067A
01068A
01069A
01070A
01 071

A

01072A
01073A
01074A
01075
01076A
01077A
01078A
01079A
01080A
01081A
01082A
01083A
01084A
01085A
01086A
01087
0108SA
01089A
01090A
01091A
01092A
01 093

A

01094A
01095A
01096A
01097A

0C6F IE
0C71 8D
0C73 IE
0C75 39

13
F4
13

A
0C67

A

EXG X»U
BSR XFRUX
EXG x*u
RTS

0C76 34
0C78 CC
0C7B A7
0C7E E7

0C81 B6
0C84 34
0C86 86
0C88 B7
0C8B 17
0C8E 35
0C90 27
0C92 F7
0C95 81
0C97 26
0C99 A7
0C9B 35
0C9D 17
0CA0 26
0CA2 20

0CA4 F7
0CA7 86
0CA9 A7
0CAB 8E
0CAE 6D
0CB0 27
0CB2 A6
0CB4 27
0CB6 2

A

0CB8 6F
0CBA 35

0CBC A6
0CBE 27
0CC0 2B
0CC2 5F
0CC3 A6
0CC5 Al
0CC7 26
0CC9 5C
0CCA CI

0CCC 25

06 A
1103 A
C8 22 A
C8 23 A

0622
02
02
0622
0099
04
12
0622
01
04
E4
86
0087
F7
03

0622
08
61
06C8
E4
0A
84
02
IS
E4
86

A
A
A
A

0D27
A

0CA4
A
A

0C9D
A
A

0D27
0C99
0CA7

A
A
A
A
A

0CBC
A

0CB8
0CD0

A
A

84 A
10 0CD0
IF 0CE1

85
C5
07

0B
F5

A
A

0CD0

A
0CC3

XFRXU

* CHECK DIRECTORY ON THIS DRIVE
* GIVEN: A=ZERO IF LOOKING FOR A MATCH
* A NOT ZERO IF LOOKING FOR AVAILABLE SLOT
* U -> DCB
* RETURNED: A=ZERO IF REQUEST SUCCESSFUL
* a=FF IF NO MATCH FOUND
* A=l-8 IF I/O ERROR
* IF SUCCESSFUL, X-> DIRECTORY ENTRY IN BUFFER

CHKDIR PSHS

LDD
STA
STB

* RETRY ONLY
CD1 LDA

PSHS
LDA
STA
LBSR
PULS
BEO
STB
CMPA
BNE

CD IE STA
PULS

CD1A LBSR
BNE
BRA

* CHECK THE
CD2
CD2

** CHANGED IN VER 6 **

DO PHYSICAL READ
GET ORIG NBR OF RETRY5
IF I/O OK

DRIVE NOT READY?
IF I SHOULD TRY SOME MORE

CD3

CD4

STB
LDA
STA
LDX
TST
BEO
LDA
BEO
BPL
CLR
PULS

COMPARE LOOP

D SAVE OPTION
#$1103
DCBTRKiU SET TO READ
DCB5ECU SET TO READ
IF DRIVE IS READY!
>RETRYS
A
#2
>RETRYS
SYSRED
B
CD2
>RETRYS
#ERR1
CD1A
,S
D, PC
SYSRED
CD IE
CD2A

DIRECTORY
>RETRYS
#8
1,5
#SYSBUF
,S
CD5
>X
CD4
CD7
,S
D, PC

DIRECTORY TRACK
FIRST DIRECTORY ENTRIES

TRY SOME MORE
STILL ERROR

CD5

CD6

LDA
BEO
BMI
CLRB
LDA
CMPA
BNE
INCB
CMPB
BCS

, X

CD7
CD8

BtX
Bf U
CD7

#11
CD6

ENTRIES IN THIS RECORD

NUMBER OF DIRECTORY ENTRYS PER REC

POINT AT SYSTEM BUFFER
OPTION?
IF LOOKING FOR A MATCH
LOOK AT 1ST BYTE
IF I FOUND RE-USABLE SPACE
IF MOT USEABLE

RETURN SUCCESSFULLY

LOOK AT 1ST BYTE OF DIRECTORY ENTRY
IF DELETED ENTRY
IF END OF DIRECTORY ENTRIES
CHARACTER POSITION COUNTER
CHR IN DIRECTORY FILE NAME
CHR IN DCB FILE NAME
IF NOT A MATCH

MORE CHARACTERS TO COMPARE?
IF YES

PAGE 020 RTN SA:0 DOS SUPPORTING SUBROUTINES

00940
00950
00960
00970
00980
00990
01000
01010
0102O
01030
01040
01050
01060
01070
01080
01090
01100
01110

1 1 20
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
012S0
01290
01300
01310
01320
01330
01340
01350
01360
01370
013S0
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510

01098
01099A
01100
01101A
01102A
01103A
01104A
01 105

A

01106A
01107A
01 108
01109A
01110A
0111 1A
01112
01113
01 1 14
01115
01116
011 17
01118
01119

1 1 20A
01 121

A

01122
1 1 23
1 1 24

01125
01126
01 127

A

01128A
01129A
01 130
01131
01132
01 133
01134
01135
01136
01 137
01138
01139
01140A
01141A
01142A
01 143A
01144A
01145A
01146A
01147A
01148A
01149A
01150A
01151A
01152A
01153A
01154A
01155A

* MATCH FOUND
0CCE 20

0CD0 30
0CD3 6A
0CD5 26
0CD7 6C
0CDA A6
OCDD 81
0CDF 25

0CE1 86
0CE3 A7
0CE5 35

0CE7 86
0CE9

0CEA 86
0CEC A7
0CEF 6F

0CF2 34
0CF4 BE
0CF7 EC
0CFA ED
0CFC EC
0CFF ED
0D01 EC
0D04 ED
0D06 34
0D08 4F
0D09 IF
0D0B SD
0D0D 35
0D0F 4F
0D10 E6
0D12 27

EB

88
61
D7
CB
C8
0C
A0

FF
E4
86

0CBB

20 A
A

0CAE
23 A
23 A

A
0C81

A
A
A

BRA CD4

CD7

02
8C

03
C8 20
CB 30

14
C006
CS 20
81
C8 22
81

C8 24
81
08

SB
10
08

84
07

A
A
A
A
A
A
A
A
A

A
0D1D

A

A
0D1B

LEAX 32 j X

DEC 1»S
BNE CD3
INC DCBSECU
LDA DCBSECU
CMPA 4*12

BCS GDI

POINT TO NEXT DIRECTORY ENTRY
MORE ENTRIES TO LOOK AT IN THIS REC?
IF YES

MORE DIRECTORY RECORDS TO READ?
IF YES

* DIRECTORY ENTRY NOT FOUND ON THIS DRIVE
CDS LDA tt$FF

STA , S
PULS D.PC

*

************************* *****************
* PHYSICAL DISK READ
* GIVEN: U->DCB
* FUNCTION: READ INTO DCBBUF
* (NOTE:DSKCON RETRYS ON ERROR 5 TIMES)
* RETURNED :DCBOK = RESULT CODE (ALSO IN A)
**
DSKRED LDA #2 READ SECTOR OP CODE

FCB $8C SKIP OVER NEXT INSTR
*

* PHYSICAL DISK WRITE
* ESSENTIALLY SAME AS ABOVE

DSKWRT LDA #3 WRITE OP CODE
DSKIO STA DCBOPCjU

CLR DCBMDTjU
* FALL THRU
*

* CALL DSKCON
* GIVEN: PARAMETERS IN DCB
* FUNCTION: XFER PARAMS TO C C006

:

* CALL DSKCON
* MOVE RESULT CODE TO DCB
* LEAVE RESULT CODE IN A

XFRIOP

X I OENT

PSHS
LDX
LDD
STD
LDD
STD
LDD
STD
PSHS
CLRA
TFR
BSR
PULS
CLRA
LDB
BEG!

B,X
>$CO06
DCBOPCU
j X+ +
DCBTRK*

U

>X+ +

DCBBUF?

U

, X+ +
DP

A»DP
DO 10
DP

,X

XI OX

DO I/O

GET RESULT CODE
IF NO ERROR, EXIT

PAGE 021 RTN . SA:0 DOS - SUPPORTING SUBROUTINES

0152O 01156 * GENERATE ERROR NUMBER BASED ON WHICH BIT IS ON
01530 01157A 0D14 5B XIOA LSLB IS THIS BIT SET?
01540 0115SA 0D15 25 03 0D1A BCS X I OB IF YES
01550 01159A 0D17 4C INCA
01560 01160A 0D18 20 FA 0D14 BRA XIOA
01570 01161A 0D1A 4C XIOB INCA
01580 01162A 0D1B 35 94 A XI OX PULS BiX,PC
01590 01163 0024 A 11 EQU ERR1+ERR2+ERR3+ERR4+ERR5+ERR6+ERR7+ERR8
01600 01164 * THE ABOVE LINE SIMPLY PUTS ERR1-B ON THE XREF MAP
01610 01165A 0D1D 34 76 A DOIO PSHS D,X,Y*U
01620 01166A 0D1F B6 0622 A LDA >RETRY5
01630 01167A 0D22 BE C004 A LDX >$C004
01640 0116SA 0D25 6E 04 A JMP 4,X
01650 01169 *

01660 01170 **
01670 01171 * PHYSICAL DISK READ - SYSTEM FUNCTIONS
01680 01172 * SAME AS DSKRED EXCEPT SYSTEM'S BUFFER USED
01690 01173 **
01700 01174A 0D27 86 02 A SYSRED LDA #2
01710 01175A 0D29 34 14 A SYSIO PSHS B,

X

01720 01176A 0D2B E6 CB 21 A LDB DCBDRViU
01730 01177A 0D2E BE C006 A LDX >*C006
01740 01178A 0D31 ED 81 A STD ,X++
01750 01179A 0D33 EC C3 22 A LDD DCBTRK,

U

01760 011S0A 0D36 ED 81 A STD , X++ TRACK & SECTOR
01770 011S1A 0D3B CC 06C8 A LDD SSYSBUF
017S0 01182A 0D3B ED 81 A STD > X + +

01790 01183A 0D3D 20 C7 0D06 BRA XIOENT FINISH UP LIKE USER 10
01B00 01184 *

01B10 01185 **
01820 01186 * PHYSICAL DISK WRITE - SYSTEM FUNCTIONS
01830 01187 **
01840 01188A 0D3F 86 03 A SYSWRT LDA #3
01850 01189A 0D41 20 E6 0D29 BRA SYSIO
01860 01 190 *

01870 01 191 **
018B0 01192 * IF DATA IN BUFFER HAS BEEN MODIFIED (DCBMDT NOT = 0) CHECK
01B90 01193 * TO SEE IF WRITES ARE ALLOWED. IF NO, DO NOT SET ERROR - JUST EXIT.
01900 01194 * IF YES, REWRITE BLOCK IN BUFFER (EXIT WITH ERROR IN A IF WRITE NO GOOD.)
01910 01195 *

01920 01196 * GIVEN; U->DCB CONTAINING DCBPRN - PHYSICAL REC NUMBER THAT IS IN BUFFER.
01 930 01197 **
01940 0119BA 0D43 6D C8 30 A REWRTE TST DCBMDT, U DATA IN BUFFER MODIFIED?
01950 01199A 0D46 26 02 0D4A BNE RW1 IF YES
01960 01200A 0D4S 4F RWX CLRA
01970 01 201

A

0D49 39 RWXX RTS
01980 01202A 0D4A A6 C8 10 A RW1 LDA DCBCFSiU
01990 01203A 0D4D 84 02 A ANDA #OUT ARE WRITES ALLOWED?
02000 01 204

A

0D4F 27 F7 0D48 BEQ RWX IF NO, EXIT WITH NO ERROR
02010 01205A 0D51 BD 4C 0D9F BSR CSENT RE-ESTABLISH TRK & SEC FROM PRN
02020 01206A 0D53 26 F4 0D49 BNE RWXX IF NGv EXIT WITH ERROR
02030 01207A 0D55 20 93 0CEA BRA DSKWRT GO DO REWRITE & RETURN TO CALLER
02040 01208 *

02050 1 209 **
02060 01210 * CALCULATE RELATIVE BYTE ADDRESS FROM LOGICAL RECORD NUMBER
02070 01211 * (DCBRBA = DCBRSZ * DCBLRN)
02080 01212 **
02090 01213A 0D57 34 70 A CALRBA PSHS X,YjU

PAGE 022 RTN SA:0 DOS - SUPPORTING SUBROUTINES

02100 01214A 0D59 30 C8 2B A LEAX DCBRBAiU
02110 01215A 0D5C 31 C8 11 A LEAY DCBRSZtU
02120 01216A 0D5F 33 C8 2E A LEAU DCBLRN,U
02130 01217A 0D62 6F 84 A CLR >X

02140 01218A 0D64 6F 01 A CLR 1 jX

02150 01219A 0D66 6F 02 A CLR 2iX
02160 01 220

A

0D68 A6 21 A LDA l.Y
02170 01221A 0D6A E6 41 A LDB hU
02180 01 222

A

0D6C 3D MUL
02190 01 223

A

0D6D ED 01 A STD ItX
02200 01 224

A

0D6F A6 21 A LDA IiY

02210 01225A 0D71 E6 C4 A LDB >U

02220 01 226

A

0D73 3D MUL
02230 01 227

A

0D74 E3 84 A ADDD ,X

02240 0122BA 0D76 25 ID 0D95 BCS CRBAER IF CARRY
02250 01 229

A

0D78 ED 84 A STD »X
02260 01 230

A

0D7A A6 A4 A LDA » Y
02270 01231A 0D7C E6 41 A LDB 1,U
02280 01 232

A

0D7E 3D MUL
02290 01 233

A

0D7F E3 84 A ADDD ,X

02300 01234A 0D81 25 12 0D95 BCS CRBAER
02310 01 235

A

0D83 ED 84 A BTD ,X

02320 01 236

A

0D85 A6 A4 A LDA i Y

02330 01237A 0D87 E6 C4 A LDB *U
02340 01238A 0DB9 3D MUL
02350 01 239

A

0D8A EB 84 A ADDE »X

02360 01 240

A

0D8C 25 07 0D95 BCS CRBAER
02370 01241A 0D8E E7 84 A STB iX

02380 01242A 0D90 4D TSTA
02390 01243A 0D91 26 02 0D95 BNE CRBAER
02400 01244A 0D93 35 F0 A PULS X,Y*U,PC
02410 01245A 0D95 86 10 A CRBAER LDA #ERR16
02420 01 246

A

0D97 35 F0 A PULS X,Y,U,PC
02430 01247 #

02440 01248 *#*************##***##*#*******************###*#**####*#####
02450 01249 * CALCULATE TRACK & SECTOR
02460 01250 *

02470 1 25

1

* GIVEN: DCBPRN = RELATIVE RECORD NUMBER
02480 01252 * FUNCTION: FOLLOW CLUSTER CHAIN UNTIL PROPER CLUSTER FOUND
02490 01253 * RESULT: DCBTRK & DCBSEC IF RECORD IN RANGE
02500 01254 # THEY POINT TO LAST SECTOR IF NOT IN RANGE.
02510 01255 * A = ZERO IF SUCCESSFUL
02520 01256 * NON ZERO IF NOT
02530 01257 **
02540 01 25 8

A

0D99 EC CB 2B A CALBEC LDD DCBRBAjU DESIRED REC NUMBER
02550 01259A 0D9C ED C8 29 A STD DCBPRN j U SAVE AS THE REC IN THE BUFFER
02560 01260A 0D9F A6 4D A CBENT LDA DCBFCLiU
02570 01261A 0DA1 34 12 A PSHS A.X
02580 01 262

A

0DA3 8E 07C8 A LDX #FATS
02590 01 263

A

0DA6 A6 C8 21 A LDA DCBDRViU
02600 01264A 0DA9 C6 45 A LDB ttFATBZ
02610 01 265

A

0DAB 3D MUL
02620 01266A 0DAC 30 8B A LEAX DiX POINT TO PROPER FAT TABLE
02630 01 267

A

0DAE EC CB 29 A LDD DCBPRN, U REC NUMBER DESIRED
02640 01268A 0DB1 6D E4 A TST ,S
02650 01269A 0DB3 2B 15 0DCA BMI CS3 IF AT END OF CLUSTERS < NULL FILE)
02660 01 270

A

0DB5 83 0009 A CB1 BUBD #9
02670 01271A 0DB8 25 IB 0DD5 BCS CS4 IF IN THIS CLUSTER

PAGE 023 RTN .5A:0 DOS - SUPPORTING SUBROUTINES

02680
02690
02700
027 1

02720
02730
02740
02750
02760
02770
02780
02790
02800
02B10
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250

01 272

A

01 273

A

01274A
01 275

A

01 276

A

01 277

A

0127BA
01279A

1 280
01281
012S2
01283A
01 284

A

01285A
01286A
01 287

A

01288
01289

1 290A
01291
01 292

A

01 293

A

01 294

A

01 295

A

01296
01297A
01298A
01 299

A

01300A
01301A

1 302A
01303A
01304A
01305A
01306A
01307A
01308A
01309A
01310
01311A
01312A
01313A
01314A
01315A
01316
01317A
01318A
01319A
01320
01 321

A

01 322

A

01 323

A

01324A
01 325

A

01326A
01327A
01328A
01329A

0DEA 34
0DBC A6
0DBE A6
0DC0 2B
0DC2 A7
0DC4 35
0DC6 20
0DCB 35

0DCA A6
0DCD 84
0DCF 26
0DD1 86
0DD3 20

0DD5 CB

0DD7
0DD9
0DDB
0DDD

0DDF
0DE1
0DE3
0DE5
0DE7
0DEA
0DEC
0DEE
0DF0
0DF2
0DF4
0DF7
0DF9

0DFB
0DFE
0DFF
0E02
0E04

A6
6D
2A
34

E6
C4
El
24
E6
C4
26
35
20
26
A6
84
26

E6
4F
10A3
25
20

0E06 E6
0E08 CA
0E0A E7

0E0C A6
0E0F 84
0E11 26
0E13 8D
0E15 27
0E17 35
0E19 86
0E1B A7
0E1D 35

06
62
86
06
62
06
ED
06

CB
0B
66
11

46

0A

E4
86
44
06

86
3F
61
0B
C8
08
18
06
DF
2B
CB
08
24

C8

4E
IB
E8

61
C0
86

CB
20
0C
69
08
06
12
E4
92

A
A
A

0DC8
A
A

0DB5
A

10 A
A

0E37
A

0E1B

A
A

0E21
A

A
A
A

0DF2
10 A

A
0E06

A
0DD1
0E1F

10 A
A

0E1F

A
0E1F
0DEE

A
A
A

A
A

0E1F
0E7E
0E1F

A
A
A
A

CS2

PSHS D
LDA 2iS
LDA A*X
BMI CS2
STA 2»S
PUL5 D
BRA CS1
PULS D

GET NEXT CLUSTER POINTER
IF AT END OF CLUSTERS

REC IS BEYOND END OF CURRENT CLUSTERS
AM I ALLOWED TO ADD ANOTHER CLUSTER?

CS3 LDA
ANDA
BNE

CS3A LDA
BRA

DCBCFSiU
#EXTEND AM
CS6
#ERR17
CSERR

I ALLOWED?
IF YES, GO TRY IT
EXTENSION NOT ALLOWED

+ RECORD IS IN THIS CLUSTER
A CS4 ADDB #10 (RESULT IS 1-9)

* IS THE SECTOR NUMBER IN B IN USE IN THIS CLUSTER YET?
LDA iS (CLUSTER NUMBER)
TST AiX IS THIS CLUSTER THE LAST IN THE FILE?
BPL CSS IF NO
PSHS D CLUSTER NUMBER/SECTOR NUMBER

+ IS THIS RECORD BEYOND CURRENT LAST SECTOR USED?

CS4AE

CS4A

LDB
ANDB
CMPB
BCC
LDB
ANDB
BNE
PULS
BRA
BNE
LDA
ANDA
BNE

A»X
#63 CURRENT LAST SECTOR USED
1,S THIS ONE
CS4A IF THIS IS LESS OR EQUAL TO CURRENT END
DCBCFS.U GET FILE STATUS
#EXTEND FILE EXTENSIONS ALLOWED?

IF YES

EXTENSION NOT ALLOWED
IF NOT IN LAST SECTOR

ALLOWED?
IF ITS OK

10

CS4B
D
CS3A
CS4C
DCBCFSiU
#EXTEND
CS4C

* IS REC BEYOND LAST BYTE?
LDB DCBRBA+2.U
CLRA
CMPD DCBNLSiU
BCS CS4C IF OK
BRA CS4AE IF NG

* EXTEND LAST SECTOR IN THIS CLUSTER
CS4B LDB IjS SECTOR NUMBER

ORB #$C0
STB AiX PUT IN FAT TABLE

* FAT HAS CHANGED - CAN I BYPASS UPDATE THIS TIME?
LDA DCBCFS,U
ANDA #FAST

IF YES
RE-WRITE FAT TABLE TO REFLECT CHANGE
IF I/O WAS OK

BNE
BSR
BEG
PULS
LDA

CSERR STA
PULS

C54C
WRTFAT
CS4C
D
#ERR18
,S
A, XiPC

FAT RW ERR

PAGE 024 RTN SA:0 DOS - SUPPORTING SUBROUTINES

03260
03270
032S0
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
©3440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
036S0
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03B00
03B10
03820
03830

01330A
01331
01 332

A

01333A
01334A
01335A
01336A
01 337

A

01338A
01339A
01 340

A

01 341 A
01342A
01343
01344
01345
01346
01347A
01348A
01349A
01350A
01351A
01352
01353A
01 35 4

A

01355A
01356A
01357A
01358A
01359A
01360A
01361A
01 362

A

01363A
01364A
01365A
01366A
01 367

A

01368A
01369A
01370A
01 371 A
01372A
01373A
0.1374A
01375A
01376A
01377A
01378A
01379A
0.1 330A
01 381 A
01382A
01383A
01384
01385
01386
01387

0E1F 35

0E21 A6
0E23 44
0E24 24
0E26 CB
0E28 E7
0E2B 81
0E2D 25
0E2F 4C
0E30 A7
0E33 6F
0E35 35

0E37 E6
0E39 2

A

0E3B C6
0E3D 4F
0E3E 34

0E40 A6
0E42 AB
0E44 81
0E46 24
0E48 E6
0E4A CI
0E4C 27
0E4E A6
0E50 A0
0E52 25
0E54 E6
0E56 CI
0E58 27
0E5A A6
0E5C 4C
0E5D A7
0E5F 81
0E61 25
0E63 35
0E65 86
0E67 20
0E69 E6
0E6B 2A
0E6D A7
0E6F 20
0E71 A7
0E73 C6
0E75 E7
0E77 35
0E79 35
0E7B 7E

06

E4

02
09
C3 23
11

01

C8 22
E4
92

CS4C PULS
* RECORD IS

A CS5

0E;

a
A
A

0E30

E4
02

06

61
E4
44
06
86
FF
IB
61
E4
06
86
FF
0F
E4

E4
44
DD
06
16
B2
62
04
4D
02
85
C0
86
06
12
0D9F

A
0E3D

A

A
A
A

0E4E
A
A

0E69
A
A

0E5A
A
A

0E69
A

A
A

0E40
A
A

0E1B
A

0E71
A

0E73
A
A
A
A

A
A

CS5A

CS5B

LDA
LSRA
BCC
ADDB
STB
CMPA
BCS
INCA
ST A
CLR
PULS

] RANGE-
RS

CS5A
#9
DCBSEC
#17
CS5B

CONTINUE - IT IS NOW WITHIN RANGE OF FILE
OF FILE - XLATE CLUSTER INTO TRACK & SECTOR

CLUSTER NUMBER
IS THIS AN ODD CLUSTER?
IF NO
IF YES* USE SECTORS 10-18

U
IS CLUSTER BELOW DIRECTORY?
IF YES
IF NOT GO ONE TRACK FARTHER

DCBTRK,U

A,X,PC

TRY TO ADD ANOTHER CLUSTER TO THE FILE
NEXT CLUSTER USED WILL BE THE CLOSEST ONE TO THE

* THIS
CS6

CS6A

* LOOP
CS7

CS7A

CS7B

CSS

CS8A
CS8B

FILE.
LDB
BPL
LDB
CLRA
PSHS
TO LOOK
LDA
ADDA
CMPA
BCC
LDB
CMPB
BEQ
LDA
SUBA
BCS
LDB
CMPB
BEQ
LDA
INCA
STA
CMPA
BCS
PULS
LDA
BRA
LDB
BPL
STA
BRA
STA
LDB
STB
PULS
PULS
JMP

IF FIRST
,S
CS6A
#34

D
FOR
1,S
iS
#68
CS7A
A,X
#$FF
CSS
1,S
iS
CS7B
A,X
#*FF
CSS
»S

*S
#68
CS7
D
#ERR22
CSERR
2,S
CS8A
DCBFCL,U
CS8B
B,X
#$C0
A,X
D
A»X
CSENT

EVER FOR THIS FILE, IT WILL
LAST CLUSTER NUMBER USED
IF NOT VERY FIRST ASSIGNED TO FILE
START SEARCH AT CLUSTER 34
STARTING DISPLACEMENT

AVAILABLE CLUSTER
LAST CLUSTER OF FILE
ADD DISPLACEMENT
IN RANGE OF TABLE?
IF NO
GET FAT TABLE BYTE
IS IT AVAILABLE
IF YES

LOOK THE OTHER WAY
IF NOT IN RANGE OF THE TABLE
GET FAT TABLE BYTE
AVAILABLE?
IF YES

HAVE I TRIED ALL POSSIBILITIES?
IF NOT YET
NORMALIZE STACK
DISK FULL

LAST ONE USED
BE CLOSEST TO

BY
MIDDLE,

ORIGINAL ENDING CLUSTER

THIS IS FIRST CLUSTER

ADD
SAY

TO CHAIN
NONE OF THESE SECTORS USED

NORMALIZE STACK
GO TRY AGAIN FROM THE TOP!

**
* REWRITE FAT TABLE ON DIRECTORY TRACK

PAGE 025 RTN SA:0 DOS - SUPPORTING SUBROUTINES

03840
03850
03860
03870
03880
03B90
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
001 10
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320

00340
00350
00360
00370
003B0

0138B
01389
01390
01391A
01392A
01393A
01394A
01395A
01396A
01397A
01398A
01399A
01400A
01401A
01 402

A

01403A
01404A
01405A
01406A
01407A
01403
01409
01410
0141 1

01412
01413
01414
01415
01416A
01417A
01413A
01419A
01420A
01421A
01 422

A

01423A
01 424

A

01 425

A

01426A
01 427

A

01428A
01429A
01430A
01431A
01432A
01433A
01434A
01435A
01436A
01437
0143BA
01 439

A

01440A
01441A
01442A
01443A
01444A
01445A

* GIVEN: X-> CORRECT FAT TABLE IN MEMORY
* U-> DCB CONTAINING CORRECT DRIVE NUMBER
**

0E7E 34
0E80 BE
0E83 B6
0E85 A7
0E87 A6
0EBA A7
0EBC CC
0EBF ED
0E91 EC
0E93 ED
0E95 34
0E97 4F
0E9S IF
0E9A AD
0E9E 35
0EA0 A6
0EA2 35

0EA4 7E
0EA7
0EA9
0EAB
0EAD
0EAF
0EB1
0EB3
0EB5
0EB7
0EB9
0EBB
0EBD
0EBF
0EC1
0EC3
0EC5
0EC7
0EC9
0ECB
0ECD

0ECF
0ED5 4D
0ED6 27
0EDB AD
OEDC 7E
0EDF CC
0EE2 FD
0EE5 39

10
C006
03
80
C8 21
B0
1102
31

E4
Bl
08

0ECF
0329
035C
037E
03AE
0440
0529
0607
0610
0619
0622
06EA
0762
07D9
0B8A
0BB1
0984
0A49
0C0B
0CA1
0D2A

WRTFAT

SB A
9F C004 A
0B A
84 A
90 A

PSHS
LDX
LDA
STA
LDA
STA
LDD
STD
LDD
STD
PSHS
CLRA
TFR
JSR
PULE
LDA
PULS
TTL

>*C006
#3
» X +

DCBDRV:
»X +

#$1102
,X++
iS
j X++
DP

WRITE

TRACK 17, SECTOR 2

ADDR OF FAT TABLE

A, DP
[$C004 3 DO 10
DP
>X RESULT
X,PC
DOS - PAGING & OVERLAYS

**
* ON DISKt THIS PROGRAM BEGINS HERE! EVERY THING THAT PRECEEDS THIS POINT
* IS RECORDED ON DISK AFTER THE END OF THE OVERLAYS. WHEN DOS IS FIRST
* LOADED INTO MEMORY , THE ROUTINE CALLED "OVRLAY" SHIFTS THOSE ROUTINES
* DOWN TO THEIR PROPER PLACE.
**
DOS JMP

FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

D0S1
Bl-DOS
B2-D0S
B3-D0S
B4-D0S
B5-D0S
B6-D0S
B7-D0S
B8-D0S
B9-D0S
B10-DOS
Bll-DOS
B12-D0S
B 13--DOS
B14-D0S
B15-D0S
B16-D0S
B17-D0S
B18-D0S
B 19-DOS
B20-DOS

JUMP OVER DISPLACEMENTS TO OVERLAYS

* MINIMUM INITIALIZATION FOLLOWS

04 0EDC
9F 0616 A
0FF6 A
10A2 A
0625 A

D0S1

D0S2
DOS3

DOS
TSTA
BEG
JSR
JMP
LDD
STD
RTS

DOsINIT GO INITIALIZE (MENU ETC)

D0S2
[ERROR]
OBAS I

C

ttOVRLAY
>OLYLOC

PAGE 026 ML .GASQ DO; PAG IMG & OVERLAYS

00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00S00
00810
00B20
00B30
00840
00850
00860
00870
00880
00B90
00900
00910
00920
00930
00940
00950
00960

01446
01447
0144S
01449
01450
01451
01452
01453
01454
01455A
01456A
01457A
0145BA
01459A
01460A
01461A
01462A
01463A
01464A
01465A
01466A
01467A
0146BA
01469A
01470A
01471A
01472A
01473A
01474A
01475A
01476
01477A
0147BA
01479A
01480A
01481A
01482A
01483A
01484A
01485A
014B6A
01487
01488
014B9
01490
01491
01492A
01493A
01494A
01495A
01496A
01497A
0149BA
01499A
01500
01501
01502
01503

0EE6 34
0EES B6
0EEB 44
0EEC 24
0EEE 86
0EF0 35
0EF2 34
0EF4
0EF6 A6
0EF8 5F
0EF9 8D
0EFB C6
0EFD 34
0EFF 5F
0F00 44
0F01 59
0F02 59
0F03 8D
0F05 6A
0F07 26
0F09 35

0F0B C6
0F0D F7
0F10 35
0F12 4F
0F13 35
0F15 F7
0F18 BE
0F1B 30
0F1D 26
0F1F 39

0F20 34
0F22 4D
0F23 27
0F25 FC
0F28 ED
0F2A 33
0F2C FF
0F2F 35

16
ff:

04
01
96
01

1A
0B
04

10
E4
F6
04

02
FF20
01

96
FF20
0623
IF
FC

46

0C
010D
41
43
010D
C6

0ef:

0F15
A

0F15
A

0EFF
A

A
A
A

A
A
A
A

0F1B

* 8 BIT PRINTER DRIVER
* GIVEN: A=CHR TO BE BENT TO PRINTER
* RETURNED: A IN TACT
* CC = Z CONDITION IF SENT OK
* CC = NON-Z IF PRINTER NOT READY - TRY AGAIN
#*#**#********************#*********************
* IS PRINTER READY?

0F31
A
A
A
A
A

DPRNT

DPI

PSHS
LDA
LSRA
BCC
LDA
PULS
PSHS
DSABLI
LDA
CLRB
BSR
LDB
PSHS
CLRB
LSRA
ROLB
ROLE
BSR
DEC
BNE
PULS

DiX
>U4BDR

PC

DPI
#1
D) X

CC
NO
1»S

LPSND
#B
B

IF READY
SET NON-; CONDITION

SAVE INTERUPT STATUS
INTERUPTS DURING HARD
CHR TO SEND

LOOP TIMING

SEND
BITS
LOOP

START BIT
TO SEND
COUNTER

SEND THE BIT

GO BACK FOR NEXT BIT

INITIATE
LDB
STB
PULS
CLRA
PULS
STB
LDX
LEAX
BNE
RTS

LPSND
iB
DP2
B

STOP BIT (IT CONTINUES UNTIL PRINTER SAYS "READY")
#2
>U4ADR
CC

LPSND

LPDLP

D,X*PC
>U4ADR
>RATE
-1 jX
LPDLP

RESTORE INTERUPT STATUS
SET ZERO CONDITION CODES

LATCH BIT TO OUTPUT
TINE CONSTANT FOR TRANSMISSION

* TURN ON OR OFF A TINE DRIVEN ROUTINE
* GIVEN: U-> START OF ROUTINE THAT FOLLOWS SPECS

A DTNEON PSHS
TSTA
BEG!

LDD
STD
LEAU
STU
PULS

D,U

DTMEOF
>IRQ+1
1,U
3iU
>IRS+1
D*U,PC

REO FOR
IF OFF

ON OR OFF?

* TURN OFF A TIME DRIVEN ROUTINE
* GIVEN: U -> START OF ROUTINE

PAGE 027 ML SA:0 DOS PAGING & OVERLAYS

00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110

1 1 20
01130
01140
01 150
01160
01170
01 180
01 190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310

1 320
01330
01340
01350
01360
01370
01330
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540

01504
01505A
01506A
01507A
0150BA
01509A

1 5 1 0A
01511A
01512A
01513A
01514A
01515A
01516A
01517A
01518
01519
01520A
01521A
01 522

A

01 523

A

01524
01525
01526
01527
01523A
01529A
01530A
01531A
01 532

A

01533A
01534A
01535
01536
01537
01538
01539
01540
01541
01542A
01543A
01544A
01545A
01546A
01547A
01548A
01549A
01550A
01551A
01552A
01553A
01554A
01555A
01556A
01557A
01558A
01559A
01560A
01561A

0F31 33
0F33 34
0F35 CE
0F38 AE
0F3A 8C
0F3D 27
0F3F AC
0F41 27
0F43 IF
0F45 33
0F47 20
0F49 35
0F4B 35

0F4D AE
0F4F AF
0F51 35
0F53 35

0F55 7E
0F58 FC
0F5B
0F5E FD
0F61 4F
0F62 IF
0F64 20

0F66 8A
0F68 BE
0F6B Al
0F6D 27
0F6F 34
0F71 4D
0F72 2B
0F74 8D
0F76 20
0F73 8D
0F7A 27
0F7C 35
0F7E 35
0F80 8E
0F83 34
0F85 BE
0F88 30
0F8A 34
0F8C 30
0F8E 34

43
50
010D
C4
0F5B
0A
62
0A
03
5E
EF
50
C6

IE
C4
50
C6

0000
0620

0620

8B
EF

80
0625
IF
11

04

04
5C
06
45
02
84
04
0F9B
10
0625
02
10
IE
14

A
A
A
A

A
0F49

A
0F4D

A
A

0F38
A

A

A
0F55

A
A
A

0FS0
A

0F78
0FD2
0F7E
0FBF
0F7E

A
A
A
A
A
A
A
A
A

DTO

DTMEOF LEAU
PSHS
LDU
LDX
CMPX
BEG
CMPX
BEQ
TFR
LEAU
BRA
PULS
PULS

DT02

3,U
X*U
#IRQ+1
»U
#3TDTME
DT02
2iS
DT03
D,U
-2»U
DTO
X»U
DiUi PC

ADDR STORED IN CHAIN

LOOK AT ADDR OF NEXT ROUTINE
IS IT END OF CHAIN?
IF YES, GET OUT
IS IT THE ONE SOUGHT?
IF YES

X POINTING AT DESIRED ROUTINE
U POINTING AT WHERE THAT POINTER CAME FROM

DT03 LDX
STX
PULS
PULS

-2, X

jU

D,U,PC

GET ADDR THAT DESIRED ROUTINE POINTS TO
UNLINK HIS ROUTINE

* STANDARD TIME ROUTINE - LINKED IN BY INITIAL START UP ROUTINE
**
STMX JMP
STDTME LDD

INCD
STD
CLRA
TFR
BRA

>0
> CLOCK

CLOCK

A, DP
STMX

ENSURE ROM ROUTINE USES PAGE ZERO

* CALL A SYSTEM OVERLAY (OR USER OVERLAY)
* GIVEN: OVERLAY NUMBER IN "A"
* OVERLAY IS LOADED IF NOT PRESENT IN MEMORY
* NOTE: X IS NOT PRESERVED - USED FOR OVERLAY BASE ADDRESS

USROLY ORA tt*80

SYSOLY LDX >OLYLOC
CMPA -1 > X

SYS03

JYS01

SYS02
SYS03

BEQ
PSHS
TSTA
BMI
BSR
BRA
BSR
BEa
PULS
PULS
LDX
PSHS
LDX
LEAX
PSHS
LEAX
PSHS

POINT AT CURRENT OVERLAY LOAD AREA
IS THE DESIRED OVERLAY ALREADY THERE?
IF YES

SYS01
SYSLOD
SYS02
USRLOD
SYS02
B«PC
B

#SYS04
X

>OLYLOC
2, X

X

-2»X
B, X

SYSTEM OR USER?
IF USER
LOAD THE OVERLAY

LOAD THE OVERLAY
IF OK
IF LOAD ERROR

WHERE TO GO ON THE WAY BACK FROM THE OVERLAY

OVERLAY LOAD AREA
ENTRY POINT WITHIN OVERLAY

PROVIDE USER WITH HIS BASE ADDRESS

PAGE 028 ML .SA:0 DOS PAGING & OVERLAYS

01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
017S0
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
0198O
01990
02000
020 1

02020
02030
02040
02050
02060
02070
02080
02090
02100
0211
02120

01562A
01563A
01564A
01565A
01566A
01567
01568
01569A
01570A
01571A
01572A
01573A
01574A
01575A
01576A
01577
0157B
01579
01580
01581
01582
01583A
01584A
01585A
015S6A
01587A
015S8A
015B9A
01590
01591
01592
01593
01594
01595A
01596A
01 597

A

0159BA
01599A
01600A
01601A
01602A
01603A
01604A
01605A
01 606

A

01607A
01608A
01609
01610
01611
01612

1 6 1 3A
01614A
01615A
01616A
01617A
01618A
0161 9A

0F90
0F92
0F94
0F96
0F99

0F9B
0F9D
0FA0
0FA2
0FA4
0FA9
0FAB
0FAE

0FB0
0FB2
0FB4
0FB6
0FBB
0FBB
0FBD

0FBF
0FC1
0FC3
0FC7
0FCA
0FCC
0FCE
0FD0
0FD2
0FD4
0FD8
0FDB
0FDD
0FDF

0FE1
0FE4
0FE7
0FE9
0FEC
0FEF
0FF1

EC 84
30 8B
30 03
BF 0625
35 94

8A
34
10BE
CE
8D
27
86
35
34
108E
CE
8D
26
35

17
0625
ID
34

8B
0625
97

80
06
64
62
0F68
64
36

80
60
0627
0697
7A
02
17
E0
60
0EA5
0635
69
02
E0

0400
100D
10
FC7B
0400
F0
FC73

A
A
A
A

1046
0FD0

A
A
A
A
A

1046
0FE1

A

A
A
A

0C67
A
A

0C67

LDD
LEAX
LEAX
STX
PULS

*
* ON THE WAY
SYS04 PSHS

LDX
LEAX
LDD
NEGD
LEAX
STX
PULS

)X

D«X
3,X
>OLYLOC
B,X,PC

GET SIZE OF OVERLAY
POINT TO END OF OVERLAY
POINT TO BASE OF NEXT OVERLAY AREA

BASE ADDR OF OVERLAY

ADJUST
X

BACK,
CCD
>OLYLOC
-3i X

i X

DiX
>OLYLOC
CdDiXiPC

OLYLOC

GET SIZE OF THIS OVERLAY

POINT AT
SAVE IT

BEGINNING OF OVERLAY I AM EXITING

**
* RETURN FROM ONE OVERLAY & XFER CONTROL TO ANOTHER
* GIVEN: STACK NORMALIZED AS IF READY TO RTS FROM AN OVERLAY
* A = DESIRED OVERLAY NUMBER
**
DUSRGO OR

A

DGO PSHJ
LDD
STD
LDD
STD
PULJ

#*80
D
4,S
2,S
ttSYSOLY
4,S
D> PC

SAVE D
(RET ADDR TO SYB04

)

CAUSE "RETURN" TO SYSOLY AFTER "UNDOING 1

RETURNS TO SYS04

* LOAD A SYSTEM OVERLAY (OR USER OVERLAY)
* GIVEN: A = OVERLAY NUMBER

USRLOD

SLDX
SYSLOD

ORA
PSHS
LDY
LDU
BSR
bea
LDA
PULS
PSHS
LDY
LDU
BSR
BNE
PULS

#$B0
Y,U
>USRBSE
ttUSRDCB
PAGEIN
SLDX
#ERR23
Y,U; PC
Y,U
ttDOS+1
ttDOSDCB
PAGEIN
ABORT
YjUj PC

LOAD THE OVERLAY
IF LOADED OK

LOC OF OVERLAY'S RBA TABLE IN MEMORY
POINT AT SYSTEM'S DCB
LOAD THE OVERLAY
IF SYSTEM FAILURE

* FATAL ERROR OCCURRED IN DOS - CAN'T PROCEED

ABORT LDX #$400

LDU BABTMSG
LDB #16
LBSR XFRUX
LDU #$400
LDB #256-16
LBSR XFRUX

VID

PAGE 029 ML JA:0 DOS - PAGING & OVERLAYS

02130
02140
02150
02 1 60
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
022BQ
02290
02300
02310
02320
02330
02340
02350
02360
02370
023313
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
025 00
025 10
025 20
025 30
02540
02550
02560
02570
02580
025 90
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700

1 620A
01621

A

1 622

A

01 623

A

01624A
01625A
01626A
01 627

A

01628A
01629A
01630A
01631A
01632
01633
01634
01635
01636
01637A
01638A
01639A
01640A
01641A
01642A
01643A
01644A
01645A
01646A
01647A
01648A
01649A
01650
01651
01652
01653
01654A
01655A
01656A
01657
01658
01659
01660
01661
01662
01663
01664
01665
01666A
01667A
01668A
01669A
01670A
01671A
01672A
01673A
01674A
01 675

A

01676A
01677A

0FF4 8D
0FF6 4D
0FF7 27
0FF9 10CE
0FFD BD
1000
1006 7F
1009 6E
100D
1013
1014
101E

101D IF
101F 86
1021 34
1023 CC
1026 10BE
102A CE
102D 8D
102F 35
1031 IF
1033 8D
1035
1039 27
103B 39

103C 34
103E
1044 35

3F 1035

1046 BE
1049 A7
104B IF
104D C4
104F 58
1050 4F
1051 EC
1053 C3
1056 6F
1059 ED
105C CC
105F ED

0D 1006
0400 A
0EDF A

0071 A
9F FFFE A
53 A

60 A
46 A
6060 A

89
01
06
0032
0045
0000
0D
06
02
07

FA

66

E6

A

A
A

A
A

A

103C
A
A

103C

1035

BSR
OBASIC TSTA

BEQ
LDS
JSR
DOS

0BAS1 CLR
JMP

ABTMSG FCC
FCB
FCC
FDB

0625
IF
89
7F

AB
0005
C8 2B
CS 2C
0002
CS 11

DERR

0BAB1
ttSTACK
DOS3
DO s MENU
>$71
[sfffe:
/SYSTEM/
$60
/FAILURE/
$6060

WAIT FOR A KEYSTROKE

RESET STACK & OLYLOC

* USER ABORT ROUTINE
* GIVEN: ERROR NUMBER IN A

A,B
#1
D
#50
#69
#0
DOMAP
D
D» Y
DOMAP

DERR SYSTEM POLCAT

DERROR TFR
LDA
PSHS
LDD
LDY
LDU
BSR
PULS
TFR
BSR

(ADD 256 TO IT)
SAVE FOR LATER
START OF INSTRUCTIONS
END OF INSTRUCTIONS
CLEAR SCREEN FIRST
GIVE INSTRUCTIONS-

DISPLAY ERROR
WAIT FOR ANY KEYSTROKE

BEG!

RTS
DERR

it***********-*- -*-***-**-*-*-****

* DO MAP DISPLAY FUNCTION

DOMAP PSHS D?Y>U
DOS DO j MAP
PULS D,Y*U,PC

*

* L A D OVERLAY ROUTINE
GIVEN: A=OVERLAY NUMBER

U-> PROGRAM DCB
Y-> TABLE CONTAINING RBA T S OF OVERLAYS

* THE FILE MUST HAVE PREVIOUSLY BEEN OPENED 1

.

PAGEIN LDX
STA
TFR
ANDB
LSLB
CLRA
LDD
ADDD
CLR
BTD
LDD
STD

>OLYLOC
-1»X
A,B
#*7F

BYTES PER VECTOR

GET RBA OF START OF OVERLAY
ADJUST TO RBA WITHIN DISK FILE

U

DtY
#5
DCB RBA ,U
DCBRBA+1
#2 LENGTH OF A SIZE FIELD
DCBRSZiU SET TO READ 2 BYTES

PAGE 030 ML SA:0 DOS - PAGING & OVERLAYS

02710
02720
02730
02740
02750
02760
02770
027S0
02790
02S00
02810
02820
02830
02840
02850
02860
02870
02880
02B90
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020

03040
03050
03060
03070
030B0
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280

01678A
01679A
01680A
016B1A
01682A
01683A
01684A
016S5A
01686A
016S7A
01688A
01 689

A

01 690

A

01691A
01692A
01693A
01694A
01695A
01696A
01697A
01698A
01699A
01700
01701
01702
01703
01704
01705A
01706A
01707A
01708
01709A
01710
01711
01712
01713
01714
01715
01716
01717
01718
01719
01720
01 721

A

01722A
1 723A

01 724

A

01 725

A

01726A
01727A
01728
01729A
01730A
01731A
01732A
01733
01734A
01735A

AF
CC

1062
1065
1068 ED
106B 8D
106D 30
106F EC
1072 AF
1075 30
1077 ED
1079 6F
107B S3
107E ED
1081 8D
1083 4F
1084 39
1085
10BB 27
108D 32
10SF BE
1092 6F
1094 4D
1095 39

1096
109C AE
109F IF

10A1

C8 27 A
FFFF A
C8 29 A
18 1085
02
DS 27
C8 27
8B
IE
84
0002
C8 11

02

A
A
A
A
A
A
A
A

1085

08 1095
62 A
0625 A
84 A

C8 27
15

00

10A2 8E
10A5 CE
10A8 108E 05 IB
10AC A6 80
10AE A7
10B0 31
10B2 26

1BD0
09B9

C0
3F
F8

10B4 CE
10B7 BE
10BA C6
10BC BD

0600
1104
C8
0C6F

10BF 10CE 0400
10C3 BE 010D

A
A
A
A
A
A

10AC

A
A
A
A

A
A

PIRD

PIERR

STX
LDD
STD
BSR
LEAX
LDD
STX
LEAX
STD
CLR
SUBD
BTD
BSR
CLRA
RTB
DOB
BEQ
LEAS
LDX
CLR
TSTA
RTS

DCBLRBiU
#$FFFF
DCBPRN,U FORCE INITIAL PHYSICAL READ
PIRD
2.X
CDCBLRBiUD LENGTH OF ROUTINE (INCLUDING SIZE WORD)
DCBLRB^U WHERE REST OF OVERLAY GOES
DiX POINT TO END OF OVERLAY + 2
-2iX SAVE HIS SIZE AT END
.X SAY NO VALID OVERLAYS FOLLOW
#2 SIZE OF THE REST
DCBRSZ,U SAVE AB RECORD SIZE
PIRD

READ,RBA
PIERX
2»S
>OLYLOC
»X

BYPASS RET ADDR

SAY THIS OVERLAY DOSN' T EXIST IN MEMORY
SET COND CODES

PIERX
*

* MINIMUM LOGIC TO LOAD & PASS CONTROL TO USER PROGRAM
* JUMP HERE FROM OVERLAY 12

B12A DOB
LDX
TFR

FCB

READiRBA READ
DCBLRB»U base
X,PC JUMP

THE ROOT
PROGRAM
ROOT

SEGMENT

PLACE WHERE NUMBER OF 1ST OVERLAY LOADED GOES

**
* OVERLAY SECTION FOLLOWS
* ALL SECTIONS THAT FOLLOW ARE RELOCATABLE.
* (THE FIRST OVERLAY IS LOADED AT THIS ADDRESS)
**
*
* THE FOLLOWING ROUTINE SIMPLY SHIFTS PART OF DOS DOWN TO $989. IT
* IB LOADED AFTER THE END OF THE REST OF THE PGM SO AS TO PREVENT
* CONFLICTS WITH BASIC.
* IT IS CLOBBERED WHEN FIRST OVERLAY IS LOADED!
OVRLAY LDX #LASTPG

LDU #$989
LDY #DOS-ORGIN AMOUNT OF PGM TO XFER

OVLP LDA , X +

STA ,U+
LEAY -1,Y
BNE OVLP

* INITIALIZE VECTORS AT $600
LDU #$600
LDX #VECINI
LDB #ENDVEC-VECINI
JSR XFRXU MOVE IT TO $600

* FROM THIS POINT ON? VECTORS AT $600 MAY BE USED
LDS #STACK
LDX >IRQ+1 VECTOR TO DISK ROM TIME ROUTINE

PAGE 031 ML 3A:0 PAGING & OVERLAYS

03290 01736A 10C6 30 05 A LEAX 5i X BYPASS CHECK FOR WHICH INTERUI
03300 01737A 10C8 BF 010D A STX >IRQ+1 STORE REVISED ENTRY POINT
03310 0173SA 10CB CE 0F55 A LDU #STMX
03320 01739A 10CE DOS TIME, ON
03330 01740A 10D4 FC A000 A LDD > POLCAT ADDR OF ROM KBD SCAN ROUTINE
03340 01741A 10D7 FD 06 1C A STD >KEY IN SAVE IN KEY IN VECTOR
03350 01742 * DETERMINE MEMORY SIZE
03360 01743A 10DA 8E 7FFF A LDX #$7FFF END OF 32K
03370 01744A 10DD A6 34 A LDA iX

033S0 01745A 10DF 43 COMA
03390 01746A 10E0 A7 84 A STA , X

03400 01747A 10E2 Al 84 A CMPA iX

03410 01748A 10E4 27 03 10E9 BEQ OVLP1 IF 32K MACHINE
03420 01749A 10E6 8E 3FFF A LDX #*3FFF FOR 16K
03430 01750A 10E9 BF 08DC A OVLP1 STX >MAXMEM
03440 01751A 10EC 86 04 A LDA #4 MAX NUMBER OF DRIVES
03450 01 752

A

10EE B7 08DE A STA DRIVES
03460 01753A 10F1 CE 0635 A LDU ttDOSDCB
03470 01754A 10F4 10CE 0400 A LDS #STACK
03480 01755A 10F8 BD 0EDF A JSR D0S3
03490 01756A 10FB DOS OPEN, INPUT READ ONLY
03500 01757A 1101 7E 0EA4 A JMP DOS
03510 01758 *

03520 01759A 1104 0989 A VECINI FDB DOPEN POINTER TO OPEN FUNCTION
03530 01760A 1106 0A52 A FDB D CLOSE
03540 01761A 1108 0AE2 A FDB DREAD
03550 01762A 110A 0BE8 A FDB DWRITE
03560 01763A 110C 0C40 A FDB DRELSE RELEASE I/O BUFFER
03570 01764A 110E 0F6S A FDB SYSOLY CALL SYSTEM OVERLAY
03580 01765A 1110 0FB2 A FDB DGO JUMP BETWEEN SYSTEM OVERLAYS
03590 01766A 1112 0FD2 A FDB SYSLOD LOAD A SYSTEM OVERLAY
03600 01767A 1114 0F66 A FDB USROLY CALL USER OVERLAY
03610 01768A 1 116 0FB0 A FDB DUSRGO JUMP BETWEEN USER OVERLAYS
03620 01769A 1118 0FBF A FDB USRLOD LOAD A USER OVERLAY
03630 01770A 111A 101D A FDB DERROR USER FATAL ERROR EXIT
03640 01771A 111C 0F20 A FDB DTMEON TIME ROUTINE ON/OFF
03650 01772A 111E ,0EE6 A FDB DPRNT 8 BIT PRINTER DRIVER
03660 01773A 1120 0000 A FDB SLOT FOR KEY IN
03670 01774A 1122 0FF6 A FDB OBASIC RETURN TO BASIC
03680 01775A 1124 0000 A FDB INITIAL CLOCK VALUE
03690 01776A 1126 05 A FCB 5 INITIAL RETRY COUNT
03700 01777A 1127 00AE A FDB $AE PRINTER TIME CONSTANT
03710 01778A 1129 10A2 A FDB OVRLAY LOAD ADDRESS FOR NEXT OVERLAY
03720 01779A 1 1 2B 0000 A FDB BASE ADDR OF USER PGM + 1

03730 01780A 11 2D 0633 A FDB RETURN HOOK1
03740 01781A 112F 0633 A FDB RETURN H00K2
03750 01782A 1131 0633 A FDB RETURN H00K3
03760 017S3A 1133 0633 A FDB RETURN H0OK4
03770 01784A 1135 0633 A FDB RETURN HOOKS
03780 01785A 1137 3939 A FDB $3939 RETURN CODE FOR HOOKS
03790 01786 # INIT COPY OF DOSDCB
03B00 01787A 1139 44 A FCC /DOS BIN/
03810 017S8A 1144 00 A FCB 0? 0i 0i 0» 010) 0, 01

03820 01789A 114D 00 A FCB 0, 0? 0?0i 010107070)050?
03830 01790A 1159 00 A FCB 0i$FFi0i
03840 01791A H5D 06CS A FDB SYSBUF
03850 01792A 115F 00 A FCB
03860 01793A 1160 06C8 A FDB SYSBUF

PAGE 03^ ML SA:0 DOS PAGING & OVERLAYS

03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03970
03930
03990
04000
04010
04020
04030
04040
04050
04060
04070
04080
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360

01794A
01795
01796A
01797A
01798A
01799A
01 800

A

01801A
01 802

A

01803A
01804
01B05A
01806A
01807A
01B0BA
01Q09A
01B10A
01B11A
01B12A
01B13
0181 4A
01815
01816
01817
01B18
01819
01820A

1 B2

1

01822A
1 823A

01824A
01B25A
01 826

A

01 827

A

01823A
01B29A
01B30A
01831A

1 832A
01B33A
01834A
01835A
01B36A
01837A
01B3BA
01B39A
01840
01841
01B42
01B43
01B44A
01845A
01846A
01S47A
01848A
01849
01B50A
01B51A

1162

116A
1175
117E
118A
USE
1190
1191
1193

119B
11A6
11AF
11BB
11BF
1 1 CI
1 1 C2
11C4

11CC

11 CD

11CF
11D2
11D6
11D9
11DC
11DF
11E1
11E3
11E5
11E7
11E9
11EB
11ED
11EF
11F1
11F2
11F4
UFA

1200
1202
1205
1209
120C

120F
1212

00 FCB 0; 0i 0)0i0i 0i 0i

I NIT COPY OF MSGDCB

CC
108E
CE
BD
BE
C6
A6
81
27
A6
81
25
88
A7
5A
26

CC
108E
CE
BD

SE
34

44 A FCC
00 A FCB
00 A FCB
00 A FCB
06CB A FDB
00 A FCB
0000 A FDB
00 A FCB

* INIT COP 1

20 A FCC
00 A FCB
00 A FCB
00 A FCB
06C8 A FDB
00 A FCB
0000 A FDB
00 A

#
FCB

00 A ENDVEC FCB

0033

0001
0001
0000
103C
0697
08
C4
60
13
C0
60
02
40
80

F3

0022
0200
0225
0000
103C

0697
50

/DOB BAS/
0? 01 0505 0) 01 0) 01

01010101010101010101010
0,$FFi0i0
SYSBUF

(SET WHEN USED)
0i 010101 0i0i 0i

USER PGM DCB
/ BIN/
0i 0i0i 0i 0i0i 0i 0i0
010101010)01010101010)0
0i$FFi 0i0
SYSBUF

00
0i 0i 0i 0i 0i 0i 0i

END OF PRESET DATA

A
A
A
A
A
A
A
A

UFA
A
A

11EF
A

A

11E7

* INITIAL START UP - CHECK FOR AUTO EXECUTE
+

Bl FDB B2-B1 SIZE OF OVERLAY
* CHECK FOR AUTO PROGRAM EXECUTION

CLR SCREEN & IF AUTO EXISTS) DISPLAY IT

NAME LENGTH
GET 1ST CHR FROM SCREEN
IS IT A BLANK?
IF YE Si NO AUTO FUNCTION

STRT1

STRT2

MENU0

LDD #*1
LDY #*1
LDU #$0
JSR DOMAP
LDX ttUSRDCB
LDB #8
LDA ,U
CMPA #$60
BEG MENU0
LDA iU+
CMPA #*60
BCS STRT2
EORA #$40
STA iX +

DECB
BNE STRT1
DOS GOiEXEC
DOS GOi MENU

GO LOAD & EXECUTE PROGRAM
GO DISPLAY MENU & RE-INITIALIZE

* MAIN MENU SELECTION 2 - EXECUTE A PROGRAM

* NOTE

FDB
LDD
LDY
LDU
JSR
U ->

LDX
PSHS

SIZE OF OVERLAY
STARTING LINE NUMBER
ENDING NUMBER

B3-B;
#512
#549
#0
DOMAP DISPLAY SCREEN FORMAT & GET ADDR OF INPUT FIELD

FIRST INPUT FIELD ON SCREEN
#USRDCB POINT AT DCB
XiU ADDR OF VID AREA & DEST AREA

PAGE 033 OLY . SA : DOS PAGING & OVERLAYS

00370 01852A 1214 DOS DOiFIELDI INPUT A FIELD
0(3380 01853A 121 A 35 50 A PULS XiU
00390 01854A 121C DOS GO i EXEC GO EXECUTE IT
00400 01855 *

00410 01856 **
00420 01857 * MAIN MENU SELECTION 3 - TURN ON CLOCK DISPLAY
00430 01858 **
00440 01859A 1222 0030 A B3 FDB B4-B3 SIZE OF OVERLAY
00450 01860A 1224 FC 08DC A LDD MAXMEM
00460 01861A 1 227 83 00B6 A SUBD #B14-B13+5 ALLOW ROOM FOR CLOCK ROUTINE
00470 01 862

A

122A FD 08DC A STD MAXMEM
004B0 01863A 122D 10BE 0625 A LDY OLYLOC
00490 01864A 1231 34 20 A PSHS Y
00500 01865A 1233 FD 0625 A STD OLYLOC
00510 01866A 1236 CE 0418 A LDU #$400+35:-8 DISPLAY AT TOP RIGHT CORNER
00520 01867A 1239 5F CLRB
00530 01868A 123A 108E 0007 A LDY #7
00540 01869A 123E DOS DO,REALTM TURN ON DISPLAY
00550 01870A 1244 32 64 A LEAS 4,S NORMALIZE STACK
00560 01871A 1246 35 20 A PULS Y
00570 01872A 1248 10BF 0625 A STY OLYLOC
005S0 01873A 124C DOS GO, MENU
00590 01874 *

00600 01875 **
00610 01876 * MAIN MENU SELECTION 4 - DISPLAY FREE SPACE MAP
00620 01877 **
00630 01878A 1252 0092 A B4 FDB B5-B4 SIZE
00640 01879A 1254 CC 0046 A LDD #70 START OF SCREEN FORMAT
00650 01880A 1257 108E 0063 A LDY #99 END OF FORMAT
00660 01881A 125B CE 0000 A LDU #0
00670 01 882

A

125E BD 103C A JSR DOMAP DISPLAY FORMAT
00680 01B83A 1261 4F CLRA
00690 01884A 1262 34 02 A PSHS A (DRIVE COUNTER)
00700 01S85A 1264 CE 0400 A LDU #$400 VID BUFFER
00710 018B6A 1267 8D 6C 12D5 BSR FRES1 FIND STARTING DISPLAY POSN
00720 01887 * LOOP ONCE PER DRIVE
00730 01BSBA 1269 1183 05FF A FRE1 CMPU #$5FF MORE DISPLAY ROOM?
00740 01889A 126D 24 3D 12AC BCC FREX IF NO
00750 01B90A 126F 34 40 A PSHS U SAVE NEXT DISPLAY ADDRESS
00760 01891A 1271 BE C006 A LDX >$C006 POINT AT PARAMETERS
00770 01 89 2

A

1274 B6 02 A LDA #2 (READ)
00780 01893A 1276 E6 62 A LDB 2iS (DRIVE)
00790 01894A 1278 ED 81 A STD ,X++
00800 01895A 127A CC 1102 A LDD #$1102 (TRK 17, SEC 2)
00810 01896A 127D ED 81 A STD iX++
00820 01897A 127F CC 06C8 A LDD #SYSBUF
00830 01B98A 1282 ED 81 A STD j X+ +
00B40 01899A 1284 86 02 A LDA #2 (ONLY 2 RETRYS)
00850 01900A 12S6 B7 0622 A STA >RETRYS
00860 01901A 1289 BD 0D1D A JSR DO 10
00870 01902A 128C 86 05 A LDA #5 (RESTORE TO 5)
00880 01903A 128E B7 0622 A STA >RETRYS
00B90 01904A 1291 35 40 A PULS U (DISPLAY LOO
00900 01905A 1293 108E 06C8 A LDY ttSYSBUF
00910 01906A 1297 C6 44 A LDB #68 LOOP COUNT
00920 01907A 1299 A6 84 A LDA iX RESULT
00930 01908A 129B 27 IB 12B8 BEG! FRE5 IF OK
00940 01909A 129D 86 58 A FRE3 LDA #$58 (X)

PAGE 034 OLY .SA:0 DOS - PAGING & OVERLAYS

00950 01910A 129F SD 32 12D3 BSR FRESET
00960 01911A 12A1 5A DECB
00970 01912A 12A2 26 F9 129D BNE FRE3
00980 01913A 12A4 6C E4 A FRE4 INC iS DRIVE COUNT
00990 01914A 12A6 A6 E4 A LDA iS
01000 01915A 12AS 81 04 A CMPA #4 MORE DRIVES TO GO?
01010 01916A 12AA 25 BD 1269 BCS FRE1 IF YES

1 020 01917A 12AC BD 1035 A FREX JSR DERR WAIT FOR A KEYSTROKE
01030 01918A 12AF 35 02 A PULS A
01040 01919A 12B1 DOS GO , MENU
01050 01920A 12B7 39 RTS
01060 01921 * DISPLAY FOR THIS DRIVE
01070 01922A 12B8 A6 A0 A FRE5 LDA ,Y+
01080 01 923

A

12BA 2B 04 12C0 BMI FRE6 IF PART OR ALL AVAILABLE
01090 1 924A 1.2BC 86 58 A LDA #$58 (X)

01100 01 925

A

12BE 20 0C 12CC BRA FRES
01110 01 926

A

12C0 81 FF A FRE6 CMPA #$FF ALL AVAILABLE?
01120 01 927

A

12C2 26 04 12C8 BNE FRE7 IF PART USED
01130 01928A 12C4 86 6E A LDA #$6E (PERIOD)
01140 01929A 12C6 20 04 12CC BRA FRES
01150 01930A 12C8 84 0F A FRE7 ANDA #$F
01160 01931A 12CA 8A 70 A ORA #$70
01170 01 932

A

12CC SD 05 12D3 FRES BSR FRESET
01180 01933A 12CE 5A DECB
01190 01934A 12CF 26 E7 12B8 BNE FRE5

1 200 01935A 12D1 20 Dl 12A4 BRA FRE4 GO BACK FOR NEXT DRIVE
01210 01936 *

01220 01937 * STORE CHR ON SCREEN & FIND NEXT DISPLAY POSN
01230 01 938

A

12D3 A7 5F A FRESET STA -liU
01240 01939A 12D5 A6 C0 A FRES1 LDA *u+
01250 01940A 12D7 81 6E A CMPA #$6E PERIOD 1

*

01260 01941A 12D9 27 0S 12E3 BEO. FRESX
01270 01 94 2

A

12DB 1183 0600 A CMPU #$600 END OF SCREEN?
1 280 01943A 12DF 26 F4 12D5 BNE FRES1 IF NO

01290 01944A 12E1 33 5F A LEAU ~1,U
01300 01945A 12E3 39 FRESX RTS
01310 01946 *
01320 01947 ********************+***************
01330 01948 * MAIN MENU SELECTION 5 - COPY FILES
01340 01949 *##*#*######+#**-*#**#*#****+********
01350 01950A 12E4 00E9 A B5 FDB B6-B5 SIZE OF OVERLAY
01360 01951A 12E6 34 10 A PSHS X

01370 01 95 2

A

12E8 20 62 134C BRA B5A
01380 01953A 12EA 0031 A B5DCB1 RMB DCBSZ
01390 01954A 131B 0031 A B5DCB2 RMB DCBSZ
01400 01955A 134C CC 0226 A B5A LDD #550 START OF FORMAT
01410 0195 6A 134F 10SE 0257 A LDY #599 END OF FORMAT
01420 01957A 1353 CE 0000 A LDU #0 CLEAR SCREEN FIRST
01430 01958A 1356 BD 103C A JSR DOMAP DISPLAY SCREEN
01440 01959A 1359 C6 07 A LDB #7
01450 01960A 135B DOS DO, INPTS
01460 01961A 1361 CI 03 A CMPB #BREAK
01470 01962A 1363 27 5F 13C4 BEG! B5X
01480 01963 *
01490 01964 + ENTER PUSHED SET UP DCBS
01500 01965A 1365 SE 0400 A B5J LDX #$400
01510 01966A 1363 EE E4 A LDU ,S BASE ADDR
01520 01967A 136A 33 46 A LEAU B5DCB1-B5,U POINT AT SOURCE DCB

PAGE 035 OLY BA:0 DOS PAGING & OVERLAYS

01530
01540
01550
01560
01570
015B0
01590
01600
01610
01620
01630
01640
01650

1 660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
017B0
01790
01800
01B10
01B20
01830
01S40
01B50
01860
01B70
01880
01890
01900
01910

1 920
01930
01940
01950
01960
01970
019B0
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100

01968A
01969A
01970A
01971A
01972
01973A
01974A
01975A
01976A
01977A
01978A
01979A
019B0A
019B1A
019B2A
019B3A
01984A
019B5A
019B6A
019B7A
01988A
01989A
01990A
01991A
01992A
01993A
01994A
01995A
01996A
01997A
01998
01999A
02000A
02001

A

02002A
02003

A

02004A
02005A
02006A
02007A
02008A
02009

A

020 10A
0201 1A
02012
02013A
0201 4

A

02015A
02016
02017
020 IB
02019
02020

A

02021

A

02022

A

02023

A

02024A
02025A

136C BD
136E 33
1371 BD
1373 20

1375 BD
1377 C6
1379 31
137B BD
137D 8D
137F 31
1381 C6
13B3 8D
1385 BD
13B7 A6
1389 80
13BB A7
138E 39
13BF A6
1391 81
1393 26
1395 39
1396 A6
139B Bl
139A 25
139C B0
139E A7
13A0 5A
13A1 26
13A3 39

13A4 8D
13A6 E6
13A8 CI
13AA 27
13AC CI

13AE 26
13B0 AE
13B2 33
13B4 31
13B7
13ED 4D
13BE 27
13C0 AD

13C4 35
13C6
13CC 39

13CD
13CF 30
13D3 34
13D5 20
13D7
13D9

07 1375
CB 31 A
02 1375
2F 13A4

IB
0B
C4
19
10
4B
03
11

0B
84
70
C8 21

80
60
02
40
A0

F3

13BF
A
A

1396
13SF

A
A

1396
138F

A
A

B0 A
5B A
FA 138F

A
A

139E
A
A

1396

E9
84
59
04
4E
14
E4
06
SB 37

04 13C4
9F 0616 A

10

BSR
LEAU
BSR
BRA

* SETUP A DCB
B5K BSR

LDB
LEAY
BSR
BSR
LEAY
LDB
BSR
BSR
LDA
SUBA
STA
RTS

B5TAB LDA
CMPA
BNE
RTS

B5M0V LDA
CMPA
BCS
SUBA

B5M0V1 STA
DECB
BNE
RTS

13SF B5L
A
A

13B0
A

13C4
A
A
A

B5M

A B5X

BSR
LDB
CMPB
BEG!

CMPB
BNE
LDX
LEAU
LEAY
DOS
TSTA
BEG!

JSR

PULS
DOS
RTS

B5K
DCB3Z,U
B5K
B5L

B5TAB
#8
>U
B5M0V
B5TAB
DCBFEX»U
#3
B5M0V
B5TAB
,X

#*70
DCBDRV,U

*X +

tt$5B
B5TAB

,X +

#$60
B5M0V1
#$40
, Y+

B5M0V

B5TAB TO Y/N
,X

#$59 Y
B5M
#$4E N
B5X
i S BASE
B5DCB1-B5)

X

B5DCB2-B5,X
DO, COPY

SET UP SOURCE DCB
POINT AT DEST DCB

MOVE EXTENT ION

<ZERO)

B5X
C ERROR 3

GO * MENU

00DE A
89 000A A
10 A
2D 1404
00 A
20 A

* DISPLAY SELECTED DIRECTORY LIST

B6

B6ARG

FDB B7-B6
LEAX B6ARG-B6,X
PSHS X

BRA B6A
FCB 0)0
FCC / /

PAGE 036 OLY SA:0 PAGING & OVERLAYS

02110 02026A 13E4 20 A FCC /

02120 02027A 1404 CC 0258 A B6A LDD #600
02130 02028A 1407 108E 0289 A LDY #649
02140 02029A 140B CE 0000 A LDU #0
02150 02030

A

140E BD 103C A JSR DOMAP DISPLAY INPUT SCREEN
02160 02031 * GET USER INPUTS
02170 02032A 1411 C6 03 A LDB #3 NUMBER OF FIELDS
02180 02033A 1413 DOS DO, INPTS GET INPUTS
02190 02034 * SETUP ARGUMENTS
02200 02035

A

1419 EE E4 A LDU ,S
022 1 02036A 141B 33 42 A LEAU 2iU POINT TO NAME
02220 02037A 141D SE 0400 A LDX #$400
02230 02038A 1420 8D 74 1496 BSR B6TAB
02240 02039A 1422 C6 03 A LDB #8
02250 02040A 1424 8D 77 149D BSR B6M0V
02260 02041

A

1426 SD 6E 1496 BSR B6TAB
02270 0204 2

A

1428 C6 03 A LDB #3
02280 02043A 142A SD 71 149D BSR B6M0V
02290 02044A 142C SD 68. 1496 BSR B6TAB
02300 02045A 142E A6 B0 A LDA i X +

02310 02046A 1430 84 03 A ANDA #3
02320 02047A 1432 EE E4 A LDU iS
02330 02048A 1434 A7 C4 A STA ?u
02340 02049A 1436 6F 41 A CLR liU
02350 02050 * PREPARE LISTING
02360 0205 1 A 1438 A6 80 A B6D LDA i x +

02370 02052A 143A 81 6E A CMPA #$6E
02380 02053A 143C 27 15 1453 BEQ B6E
02390 02054A 143E 91 6F A CMPA $6F /

0240E 02055A 1440 27 11 1453 BEQ B6E
02410 02056A 1442 8C 0600 A CMPX #$600
02420 0205 7

A

1445 25 Fl 1438 BCS B6D
02430 02058A 1447 BD 1035 A B6D1 JSR DERR WAIT FOR A KEYSTROKE
02440 0205 9A 144A 35 40 A PULS U
02450 02060A 144C DOS GO, MENU
02460 02061

A

1452 39 RTS
02470 02062

A

1453 EE E4 A B6E LDU 5 S
02480 02063A 1455 34 50 A PSHS X,U
02490 02064A 1457 DOS DO,SCMDIR
02500 02065A 145D 35 50 A PULS XiU
025 1 02066A 145F A6 41 A LDA 1,U ENTRY FOUND?
02520 02067A 1461 2B E4 1447 BMI B6D1 IF NO
02530 02068A 1463 33 4D A LEAU 13! U POINT AT NAME FOUND
02540 02069A 1465 30 IF A LEAX -1, X

02550 02070A 1467 C6 08 A LDB #8 MAX NAME LENGTH
02560 02071 # DISPLAY NAME
02570 02072A 1469 A6 84 A B6F LDA ? X

02580 02073A 146B 81 6E A CMPA #$6E ,

02590 02074A 146D 26 09 1478 BNE B6G
02600 02075A 146F A6 C0 A LDA iU+
02610 02076A 1471 8A 40 A ORA #$40
02620 02077A 1473 A7 80 A STA i X +

02630 02078A 1475 5A DECB
02640 02079A 1476 26 Fl 1469 BNE B6F
02650 02080 * DISPLAY EXTENT
02660 02081

A

1478 EE E4 A B6G LDU iS
02670 020S2A 147A 33 C8 15 A LEAU 21, U POINT AT EXT
026B0 02083

A

147D A6 80 A LDA , X +

PAGE 037 OLY SA:0 DOS - PAGING & OVERLAYS

02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02B0B
02810
02820
02S30
02840
02850
02860
02870
028S0
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
030B0
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260

02084A
02085

A

02086A
020S7A
02088A
020S9A
02090A
02091 A
02092A
02093A
02094A
02095A
02096A
02097A
02093A
02099A
02100A
02101A
02102A
02103A
02 104

A

02105A
02106A
02107A
02108
02109
021 10
02111
02112
021 13A
021 14A
021 15A
02116
021 17A
021 ISA
021 19A
02120
02 1 2 1 A
02122A
02123A
02124
02125
02126
02127
02128
02129
02130
02131
02132
02133
02134
02 135

A

02136
02137A
02 138

A

02 139

A

02140
02 1 4 1

A

147F 81
1481 26
1483 C6
1485 A6
1487 81
1489 26
148B A6
148D 8A
143F A7
1491 5A
1492 26
1494 20
1496 A6
1498 81
149A 26
149C 39
149D A6
149F 81
14A1 25
14A3 B0
14A5 A7
14A7 5A
14AS 26

14AB
14AD
14B3

14AA 39

39

14B4
14B6
14BC 39

14BD
14BF
14C5 39

14C6

14CB 20
14CA
14CB

6F
B5
03
84
6E
AD
C0
40
80

Fl
A2
80
5B
FA

80
60
02
40
C0

F3

0009

0009

0009

A
1438

A
A
A

1438
A
A
A

1485
1438

A
A

1496

A
A

14A5
A
A

149D

00CB
14C6
03
00
0000

A
A

14CD
A
A

B6H

B6TAB

B6M0V

B6M0V1

CMPA
BNE
LDB
LDA
CMPA
BNE
LDA
ORA
STA
DECB
BNE
BRA
LDA
CMPA
BNE
RTS
LDA
CMPA
BCS
SUBA
STA
DECB
BNE
RTS

#*6F
B6D
#3
, X

#$6E
B6D
,U +

#*40
, X +

B6H
B6D
j X +

B6TAB

,X +

4*$60

B6M0V1
#$40
iU+

B6M0V

/

GO GET NEXT ONE

FILL FOR ROUTINES NOT YET WRITTEN

* (OTHER MAIN MENU FUNCTIONS)
B7 FDB

DOS
RTS

B8-B7
GO, MENU

SIZE OF OVERLAY

*

BS FDB
DOS
RTS

B9-B8
GO, MENU

SIZE OF OVERLAY

*

B9 FDB
DOS
RTS

B10-B9
GO, MENU

SIZE OF OVERLAY

* GET SCREEN LINES OUT OF BASIC FILE & DISPLAY
*
* GIVEN IN THE STACK (PUSHED BEFORE CALLING:
* (,S = RET ADDR TO UNDO)
* (2,S = RET ADDR TO CALLER)
* 4,S STARTING LINE NUMBER DESIRED

6>S ENDING LINE NUMBER DESIRED
8>S INITIAL DISPLAY LOC

*
*

B10
MAPBSE

FDB
EQU
BRA

MAPOSW FCB
MAPLN FDB

14 CD CE 0666 A MAPI LDU

B11-B10 OVERLAY SIZE
B10 (ONLY THIS LINE & ONE ABOVE MUST CHG TO USE DIF OVRLAY NBR)
MAPI BYPASS LOCALS

FILE OPEN SW - WHEN OVERLAY 1ST LOADED, 1 FROM THEN ON
LAST LINE NUMBER READ

ttMSGDCB POINT AT DCB

PAGE 038 OLY .SA:0 DOS PAGING & OVERLAYS

03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
0365
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
037B0
03790
03800
03S10
03820
03330
03840

02 142

A

021 43

A

021 44A
021 45A
02146
02147A
02 148

A

02 149

A

02150
02151

A

02152A
02 153

A

02154A
02155A
02156
02157
0215BA
02159A
021 60

A

02161A
02 162

A

02 1 63
02164A
02 165

A

02166
02 167

A

02 168

A

021 69A
02170A
02171A
02172A
02 173

A

02174
02175
02176
02 177

A

02 178

A

02179A
02 180

A

02 1 8 1 A
02182A
021S3A
021S4A
02 185

A

02 186

A

02 187

A

0218SA
02189A
02190A
02191A
02 192

A

02193A
02 194

A

02 195

A

02196A
02 1 97
0219BA
021 99

A

14D0
14D4
14D8
14DA

14DC
14E2
14E4

14E6
14E8
14EA
14ED
14EF

14F2
14F5
14F8
14FA
1AFD

14FF
1501

1503
1506
1508
150B
150F
1511
1513

1515
1518
151B
151E
1524
1526
152A
152C
152E
1530
1532
1534
1537
153D
153F
1541
1544
1546
1549
154B

154D
154F

10BE
10AF
6D
26

0625 A
C8 27 A
04 A
16 14F2

01
04

CC
ED
EC
10A3
24

EC
26

CE
EF
CC
108E
ED
31
26

CE
CC
ED

26
10BE
EC
27
EC
ED
34
6F

35
26
10A3
25
10A3
27
24

34
BE

05 A
CB 2B A
03 A
CS 2D A

LDY >OLYLOC (POINTS BEYOND THIS OVERLAY (WHERE NEXT OVRLAY WOULD GO)
STY DCBLRB,U USE AS LOGICAL RECORD BUFFER
TST MAPOSW-MAPBSE, X FILE OPENED?
BNE MAP3 IF YES

* IF FIRST TIME CALLED i OPEN DISK FILE
DOS OPEN, INPUT OPEN DISK FILE
LDA #1
STA MAPOSW-MAPBSEiX SAY FILE IS OPEN

* RESET TO BEGINNING OF FILE
MAP2 CLRD

STD MAPLN-MAPBSE, X RESET LAST LINE READ
STD DCBRBAsU
LDA #3 (START READING AT RBA 00 00 03)
STA DCBRBA+2,U

* CHECK TO SEE IF FILE NEEDS TO BE RESET
* (REQUEST MUST BE > LAST LINE READ)

FFFF A MAP3
CS 29 A
05 A
64 A
E7 14E6

LDD #$FFFF
STD DCBPRNjU TO FORCE RE-READ INTO BUFFER
LDD MAPLN-MAPBSEiX LAST LINE READ
CMPD 4,S 1ST LINE TO BE DISPLAYED
BCC MAP2 GO START OVER AT BOF

* CHECK DISPLAY LOC OPTION
68
12

0400
68
6060
0100
CI
3F
FA

A
1515

A
A
A
A

150F

LDD 8)S
BNE MAP5

CLEAR THE SCREEN
LDU
STU
LDD
LDY

MAP4 STD
LEAY
BNE

tt*400
BiS
#$6060
#256
iU++
-1, Y
MAP4

STARTING DISPLAY LOC
IF ADDRESS GIVEN

START DISPLAY AT TOP OF SCREEN
BLANKS

READ/DISPLAY LOOP
READ A LINE

0666 A MAP5
0004 A
CB 11 A

65
0625
A4
45

05
06
cs i:

06
4A
64
CF
66
02
26

30
0625

15SB
A
A

1573
A
A
A

: A

A
15 SB

A
1515

A
154D
1573

A
A

LDU
LDD
STD
DOS
BNE
LDY
LDD
BEQ
LDD
STD
PSHS
CLR
DOS
PULS
BNE
CMPD
BCS
CMPD
BEG!

BCC
* LINE FOUND
MAP6 PSHS

LDX

#MSGDCB
#4

MAPERR
>OLYLOC
»Y
MAP10
2.Y

POINT AT DCB
LENGTH OF LINE NBR & MEM ADDR

DCBRSZ»U SET TO READ 4 BYTE RECORD
READ * RBA

IF I/O ERROR
(LOGICAL REC BUFFER)
GET "MEMORY ADDRESS"
IF AT EOF
GET LINE NUMBER

MAPLN-MAPBSE,X SAVE FOR FUTURE REFERENCE
D
DCBRSZ+l.U SET FOR VARIABLE LENGTH RECORDS
READ i RBA READ A STRING
D

IF I/O ERROR
IS AT LEAST AS FAR AS STARTING LINE NUMBER?
NOT FAR ENOUGH, GO READ ANOTHER
IS IT BEYOND LAST ONE?
IF THIS IS THE LAST ONE
IF AT END OF RANGE

MAPERR
4,S
MAP5
6,S
MAP6
MAP10

- XFER IT TO SCREEN
X,Y
>OLYLOC

PAGE 039 OLY .SA:0 DOS PAGING & OVERLAYS

03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03970
039B0
03990
04000
04010
04020
04030
04040
04050
04060
04070
040S0
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
042 10
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360
04370
043S0
04390
04400
04410
04420

02200

A

02201

A

02202
02203A
02204A
02205A
02206A
02207A
02208A
02209A
022 10A
02211

A

022 12A
022 13A
022 14A
022 15A
02216
022 17A
022 13A
022 19A
02220A
02221

A

02222A
02223

A

02224A
02225

A

02226A
02227A
0222SA
02229A
02230
02231
02232
02233
02234
02235
02236
02237
02238
02239

A

02240A
02241

A

02242A
02243A
02244
02245

A

02246A
02247A
0224BA
02249

A

02250

A

02251

A

0225 2

A

0225 3

A

02254A
02255

A

02256A
0225 7A

1552 30
1554 10AE

1557 A6
1559 Al
155C 27
155E 81
1560 24
1562 8A
1564 A7
1566 20
156B AE
156A 30
156D AF
156F 35
1571 20

1573 CE
1576 10BE
157A 86
157C Al
157E 27
1580 31
1582 26
1584 CE
15B7 EF
1589 4F
158A 39
158B 86
158D 39

80 A
CS 13 A
0A 1568
40
02
40
A0
EF
6C
BB 20
6C
30

0400
0200
5B
C0
07
3F
FB
0400
68

19

A
1564

A

A
1557

A
A
A
A

1515

A
A
A
A

1587
A

157C
A
A

15BE
1590 EE
1592 10AE
1595 1183
1599 27

159B A6
159D 81
159F 27
15A1 81
15A3 27
15A5 A6
15A7 A7
15A9 20
15AB BD
15AE IF
15B0 EE
15B2 10AE
15B5 1183

0140 A
66 A
64 A
0400 A
10 15AB

C4
5B
0A
5D
06
A0
C0
F0
1035
89
66
64
0400

A
A

15AB
A

15AB
A
A

159B
A
A
A
A
A

* MOVE
MAP7

MAPS

LEAX 1,X
LDY 8+4iS
CHARACTER LOOP

MAP9

* FIND
MAP10

MAPI!

MAP 12

A MAPERR

LDA
CMPA
BEQ
CMPA
BCC
ORA
STA
BRA
LDX
LEAX
STX
PULS
BRA
START
LDU
LDY
LDA
CMPA
BEQ
LEAY
BNE
LDU
STU
CLRA
RTS
LDA
RTS

,X +

DCBTRMil
MAP9
#$40
MAPS
#$40
*Y+
MAP7
8+4, S
32, X

8+4 ,S
X,Y
MAP5

OF INPUT
#$400
#512
#$5B
iU+
MAP 12
-liY
MAF11
#$400
8*S

#ERR25

(SKIP THE "REM" CODE)
DESTINATION ADDRESS

GET A CHARACTER
IS IT THE TERMINATOR BYTE?
IF YES
IS IT SPL CHR?
IF NO

GO GET
FIELD

NEXT LINE

MAX CHRS TO TEST
(LEFT BRACKET ON SCREEN)

IF NO FIELD FOUND

* INPUT A FIELD FROM THE KEYBOARD <ECHO ON THE SCREEN)
*
* GIVEN: (*S = RET TO UNDO)
* (2iS = RET TO CALLER
* 4,S = ADDR OF INPUT FIELD IN WS
* 6,S = ADDR OF INPUT FIELD ON SCREEN

Bll

* MOVE
FLDI1

FLDI2

FDB
LDU
LDY
CMPU
BEQ
ORIG
LDA
CMPA
BEQ
CMPA
BEQ
LDA
STA
BRA
JSR
TFR
LDU
LDY
CMPU

Bl
6,S
4»S
#$400
FL.DI2

CONTENTS
*U
#$5B
FLDI2
#$5D
FLDI2
»Y+
,U+
FLDI1
DERR
AjB
6»S
4*S
#$400

B10 SIZE OF OVERLAY

NO FIELD DEFINED?
IF NO FIELD MARKERS

TO SCREEN
LOOK AT DESTINATION POSITION
LEFT BRACKET?
IF YES
RIGHT BRACKET?
IF YES

WAIT FOR A KEYSTROKE

NO FIELD MARKERS?

PAGE 040 OLY JA:0 DOS PAGING & OVERLAYS

04430
04440
04450
04460
04470
04480
04490
04500
04510
0452©
04530
04540
04550
04560
04570
045S0
04590
04600
04610
04620
04630
04640
04650
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04790
04800
04810
04B20
04830
04B40
04S50
04860
04B70
04B80
04890
04900
04910
04920
04930
04940
04950
04960
04970
04980
04990
05000

02253A
0225 9A
02260A
02261

A

02262A
02263

A

02264A
02265
02266A
02267A
0226SA
02269A
02270A
02271

A

02272A
02273

A

02274A
02275A
02276A
02277A
02278A
02279A
02280A
02231

A

022S2A
02283
022B4
02285A
02286A
0228 7

A

288A
2S9A
290 A

02291

A

02292A
02293A
02294A
02295

A

02296A
02297A
02298

A

02299A
02300
02301
02302
02303
02304
02305
02306A
02307A
02308
02309A
023 10A
02311A
023 12A
023 13A
02314A
02315A

15B9 27
15BB Bl
15BD 25
15BF 81
15C1 25
15C3 81
15C5 25

15C7
15C9
15CB
15CD
15CF
15D1
15D3
15D5
15D7
15D9
15DB
15DD
15E0
15E2
15E3
15E5
15E7

A6
81
27
81
2~7

IF
A7
31
24
8A
A7
10AF
EF
5F
A6
81
26

15E9 81
15EB 26
15ED B6
15EF A7
15F1 A7
15F3 A6
15F5 81
15F7 27
15F9 31
15FB 33
15FD 86
15FF A7
1601 A7
1603 20
1605 39

1606
1608 34

160A CE
160D 86
160F A7
1612
1618 27
161A 81
161 C 27

4A
20
2A
5B
04
60

C4
5B
1C
5D
18
98
A0
40
02
40
C0
64
66

C4
5D
C2

03
18
20
A4
C4
5F
5B
04
3F
5F
20
A4
C4
D8

0077
10

1605
A

15E9
A

15C7
A

15E9

A
A

15E9
A

15E9
A
A
A

15DB
A
A
A
A

A
A

15AB

A
1605

A
A
A

A
A

15FD
A
A
A

A

A

15DD

BEQ FLDI.XX IF NO FIELD MARKERS. EXIT WITH KEY IN A
CMPA #$20 WAS IT LOW CONTROL KEY?
BCS FLDIX IF YES
CMPA tt$5B SPL CHR/NUMBERS/UPPER CASE?
BCS FLDI4 IF YES
CMPA #$60 HIGH CONTROL CODES?
BCS FLDIX IF YES

* FALL THRU WITH LOWER CASE

& B

FLDI4

0697 A
FF A

C8 21 A

10 162A
0D A

0C 162

A

LDA
CMPA
BEQ
CMPA
BEQ
TFR
STA
CMPA
BCC
ORA

FLDI5 STA
FLDI5A STY

ST'J

CLRB
LDA
CMPA
BNE

#$5B
FLDIX
#$5D
FLDIX
B,A
*Y +

#*40
FLDI5
#$40
,U+
4,S
6*S

#$5D
FLDI2

IS CURSOR OVER START OF FIELD?
IF YES
OVER END OF FIELD?
IF YES

SAVE CHR IN INPUT AREA
SPL CHR?
IF YES

FIELD OVERFLOW?

* EXIT WITH LAST KEY PUSHED IN B (ZERO IF FIELD OVERFLOW)
FLDIX CMPA

BNE
LDA
STA
STA
LDA
CMPA
BEG
LEAY
LEAU

FLDIX1 LDA
STA
STA
BRA

FLDIXX RTS

#LEFT
FLDIXX
#$20
» Y
tU
-iiU
#*5B
FLDIX1
-1, Y
-IiU
#$20
,Y
*U
FLDI5A

(LEFT ARROW?)

IN FIRST POSN NOW?
IF YES

*********************»*#*****#*************
* ACTUALLY LOAD AND EXECUTE PROGRAM
* GIVEN: DCB FOR THE PROGRAM FILE STORED
* IN USRDCB

B12 FDB B13-B12 SIZE OF OVERLAY
PSHS X SAVE MY BASE (LOWEST LOAD ADDRESS ALLOWED)

* STEP 1 OPEN THE PROGRAM FILE - DOES IT EXIST?
LDU #USRDCB
LDA #$FF
STA DCBDRV,U SEARCH ALL DRIVES
DOS OPEN? INPUT
BEQ EX1 IF OK
CMPA #ERR13 NOT PREV CLOSED IS OK
BEQ EX1

PAGE 041 OLY SA:(3 DOB PAGING & OVERLAYS

05010
05020
05030
05040
05050
05060
05070
05080
05090
05100
051 10
05 1 20
05130
05140
05150
05160
05170
051S0
05190
05200
05210
05220
05230
05240
05250
05260
05270
05280
05290
05300
05310
05320
05330
05340
05350
05360
05370
053S0
05390
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190

02316A
023 17A
023 18A
023 1

9

02320
02321

A

02322

A

02323

A

02324A
02325A
02326A
02327A
02328A
02329A
02330A
02331

A

02332A
02333A
02334A
02335A
02336A
02337
02338A
02339A
02340A
02341

A

02342A
02343A
02344A
0234 5

A

02346A
02347A
02348A
02349A
02350

A

02351

A

02352A
0235 3

A

02354
02355
02356
02357
02358
02359
02360
0236 1

02362
02363
02364
02365
02366
02367
02368
02369
02370
02371
02372
02373A

161E AD
1622 35
1624

162A
162D
1630
1633
1636
163C
163E
1640
1642
1644
1646
1648
164A
164D
164F
1651

BE
AF
CC
ED

26
6D
27
36
20
EC
27
10A3
24
S6
20

9F 0616 A
10 A

0625 A
C8 27 A
000A A
CS 11 A

EXERR JSR
PUL<
DOB

[ERROR]
X

GO, MENU

1653 ED
1656 EC
1659
165C FD
165F EC
1661 ED
1664 E3
1667 C3
166A FD
166D IF
166F 86
1671 A7
1673 B6
1675 A7
167S 35
167A 7E

161E
A

1646
A

161E
A

1656
A

1653
A

161E

A
A

0627
08
C8 11

C8 27
0003
0625
02
FF
3F
05
CS 2D
10
1096

* READ FILE PREFIX DATA (LOAD ADDRj RBA OF 1ST OVERLAY i ETC)
EX1

EX;

LDX
BTX
LDD
STD
DOS
BNE
TST
BEO
LDA
BRA
LDD
BEQ
CMPD
BCC
LDA
BRA

>OLYLOC POINT BEYOND ME
DCBLRB,U USE AS LOGICAL REC BUFFER
#10
DCBRSZ,U
READ t RBA
EXERR
, X

EX2
#ERR27
EXERR
3.X
EX3A
iS
EX3
#ERR26
EXERR

READ 1ST 10 BYTES OF PROGRAM FILE

IS 1ST BYTE ZERO?
IF YES, OK
WRONG TYPE FILE

(LOAD ADDRESS)
IF BASED AT ZERO, ASSUME RELOCATABLE
HE MUST LOAD ABOVE THIS POINT
IF HE IS OK
LOAD ADDR IS TOO LOW

167D 00B1

* LOAD ADDRESS IS HIGH ENOUGH
EX3 STD DCBLRRoU SET THIS AS LOGICAL RECORD BUFFER
EX3A LDD DCBLRBiU

INCD
STD >USRBSE
LDD 8,X (SHOULD BE RBA OF 1ST OVERLAY)
STD DCBRSZ,U THAT IS ALSO HOW BIG ROOT SECTION IS
ADDD DCBLRB,U RESULT IS WHERE END OF ROOT WILL BE IN MEMORY
ADDD #3
STD >OLYLOC SET THIS AS BASE OF FUTURE OVERLAYS
TFR D,Y
LDA tt*FF INVALIDATE WHICH OVERLAY IS IN OVERLAY AKEA
STA -1,Y
LDA #5
STA DCBRBA+2»U START READING WITH 6TH BYTE
PULS X

JMP B12A GO LOAD ROOT & XFER CONTROL TO IT

* RELOCATABLE REAL-TIME CLOCK ROUTINE
*

* DESIGNED TO BE LOADED BY MAINLINE OF USER'S PROGRAM, SAVING ITS
* LOAD ADDRESS. THEN ACCESSED THRU THE SAVED VECTOR TO PERFORM
* FUNCTIONS.
*
* GIVEN: B=0 - INITIAL CALL, LINK SELF INTO TIME INTERUPT AND PROTECT
* MYSELF FROM BEING OVERLAYED
* B=FF - UNLINK AND RELEASE OVERLAY SPACE
* B=l - GET TIME
* B=2 - SET TIME
* WITH GET & SET TIME, Y CONTAINS SECONDS AND 60THS OF SECONDS
* U CONTAINS HOURS AND MINUTES
* WITH INITIAL CALL, U -> DISPLAY ADDRESS t 0=NO DISPLAY DESIRED)
* Y = 1 FOR HOURS, 2 FOR MINUTES, 4 FOR SECONDS
* OR ANY COMBINATION (ADDED TOGETHER)
##***#*#******#*****##*#*#****###*#*#*#**#*#*#*# **^
B13 FDB B14-B13 OVERLAY SIZE

PAGE 042 0LY2 .SA:0 DOS PAGING & OVERLAYS

00200
00210
00220
00230
00240
00250
00260
00270
00230
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
004B0
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
006B0
00690
00700
00710
00720
00730
00740
00750
00760
00770

02374
02375A
02376A
02377A
02378A
02379A
02380A
02381 A
02382

A

023B3A
02384A
02385A
02386A
02337A
2388

A

02389A
02390A
02391 A

0239 2

A

02393A
02394

A

02395

A

02396A
02397
02398A
02399A
02400A
02401 A
02 402

A

02403A
02404

A

02405A
02406A
02407A
02403A
02409
024 10A
02411 A
024 1 2A
024 13A
024 14A
02415

A

024 1

6

024 17A
024 ISA
024 19A
02420A
02421

A

02422

A

02423A
02424A
02425

A

02426

A

02427A
0242BA
02429

A

02430A
02431

A

167F
16B1
1632
1683
1634
1685
1637
1688
1689
16SB
163D
168E
1690
1691
1693
1695
1693
1699
169A
169C
169F
16A0

5D
27
30
5D
2B
5A
27
EF
10AF
4F
39
EE
10AE
4F
39

167D
07
00
00
00
00
0000
00

16
IE

A
1683

A
A
A
A
A
A

16A1
A

16BB

169A
A
A

16A1 EF
16A3 IF
16A5 E7
16A7 33
16AB AF
16AD
16B3 EC
16B5 34
16B7 4F
16BB 30
16BA 39

16BB 33
16BF
16C5 35
16C7 ED
16C9 4F
16CA 39

16CB 7E
16CE BE
16D1 EC
16D3 5C
16D4 ED
16D6 CI
16D8 25
16DA 5F
16DB SB
16DD 19
16DE ED
16E0 31
16E2 25
16E4 4F
16E5 A7

03 A

20 A
0A A

B9 004E A
44 A

62
06

02

CLK

HRS
MIN
SEC
CNT
TMELOC
TMEOPT
CLK1

CLKGO

39 004E A CLKSTP

06
62

0000
0000
06

06
33
Fl

01

06
60
1A

06

CLKTME

A

A
16CB

A
A

16FE

EQU
BRA
FCB
FCB
FCB
FCB
FDB
FCB
TSTB
BEO
LEAX
TSTB
BMI
DECB
BEa
STU
STY
CLRA
RT3
LDU
LDY
CLRA
RTS

STU
TFR
STB
LEAU
STX
DOS
LDD
PSHS
CLRA
LEAX
RTS

LEAU
DOS
PULS
STD
CLRA
RTS

JMP
L.DX

LDD
INCB
STD
CMPB
BCS
CLRB
ADDA
DAA
STD
CMPA
BCS
CLRA
STA

B13
CLK1

CLKGO
-2 » X

CLKSTP

CLK GET
HRS-CLK>X
5EC-CLK*

X

HRS-CLK,X
SEC-CLK,

X

(TO ALLOW CHANGING TO DIFFERENT OVERLAY DURING DEVELOPMENT)
JUMP OVER LOCALS
HOURS (COUNTS TO 255

)

MINUTES (ALL VALUES SET TO ZERO WHEN LOADED)
SECONDS

TINE DISPLAY LOC
HR, MIN, SEC OPTION
WHICH OPTION?

TMELOC-CLKsX SAVE DISPLAY ADDRESS
YiD
TMEOPT-CLKiX SAVE DISPLAY OPTION
CLKTME-CLK»X POINT AT INTERVAL ROUTINE
4<U SET LDX COMMAND TO LOAD CURRENT X VALUE
TIME, ON PLUG IN THE CLOCK
2»S RET ADDR TO CALLER
D PUT IN TOP OF STACK TO BYPASS NORMAL EXIT OF OVERLAY

2,X TELL USER WHERE TO ENTER ME
RETURN TO CALLER

CLKTME-CLK,X POINT AT INTERVAL ROUTINE
TIME, OFF PULL THE PLUG
D RET ADDR TO CALLER
2,S SET TO RET TO HIM AFTER EXITING FROM OVERLAY

>0
#0 THIS INST R MODIFIED BY ABOVE ROUTINE
SEC-CLK, X LOAD SEC & 60THS

SEC-CLK,

X

#56 FULL SECOND?
CLKTME IF NO, EXIT

#1

SEC-CLK,

X

#$60 FULL MINUTE?
CLKDSP IF NO

SEC-CLK,

X

PAGE 043 0LY2 .SA:0 DOS PAGING & OVERLAYS

00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
©1140
01150
01160
01170
01180
01190
01200
01210

1 220
1 230

01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350

02432A
02433A
02434A
02435A
02436A
02437

A

02438A
02439A
02440A
02441

A

02442A
02443A
02444A
02445
02446A
02447

A

0244BA
02449A
02450A
02451

A

0245 2

A

0245 3A
02454A
02455

A

0245 6

A

0245 7

A

0245 BA
02459A
02460

A

02461 A
02462
02463A
02464

A

02465

A

02466

A

02467A
02463A
02469

A

02470

A

02471

A

02472A
02473A
02474A
02475
02476
02477
02478
02479A
02480
02481

A

024S2A
02483A
02484

A

02485

A

02486

A

02487A
02488A
02489A

16E7 EC
16E9 CB
16EB IE
16ED 19
16EE IE
16F0 E7
16F2 CI
16F4 25
16F6 5F
16F7 8B
16F9 19
16FA ED
16FC 20

16FE EE
27
E6

1700
1702
1704 54
1705 24
1707 A6
1709 8D
170B 54
170C 24
170E A6
1710 8D
1712 54
1713 24
1715 A6
1717 8D
1719 20

171 B 34
171D 44
171E 44
171F 44
1720 44
1721 8B
1723 A7
1725 35
1727 84
1729 SB
172B A7
172D 39

172E

1730
1733
1737 CE
173A BD
173D
1741 27
1743 SO
1745 27
1747 25

CC
108E

04
01
89

89
05
60
08

01

04
CD

08
C9
0A

04
04
10

04
05
09

B6
06
02
B0

02

30
C0
02
0F
30
CI

0027

0064
00C7
0000
103C

A
A
A

A
A
A

16FE

A
16CB

A
16CB

A

170B
A

171B

1712
A

171B

16CB
A

171B
16CB

LDD
ADDB
EXG
DAA
EXG
STB
CMPB
BC3
CLRB
ADDA
DAA
STD
BRA

HRS-
ttl

A,B

CLK> X

MIIM-CLK
#*60
CLKDSP

#1

HRS-CLKj X

CLKTME

FULL HOUR?
IF NO

* DISPLAY RESULTS IF
CLKDSP

CL.K2

CLK3

* EDIT
CLKEDT

LDU
BEG)

LDB
LSRB
BCC
LDA
BSR
LSRB
BCC
LDA
BSR
LSRB
BCC
LDA
BSR
BRA
THE BCD
PSHS
LSRA
LSRA
LSRA
LSRA
ADDA
STA
PULS
AMDA
ADDA
STA
RTS

TMELOC-
CLKTME
TMEOPT-

CLK2
HRS-CLK'
CLKEDT

NECESSARY
-CLK»X DISPLAY LOC

EXIT
-CLKjX DISPLAY OPTION

IF NO

CLK3
MIN-CLK,X
CLKEDT

CLKTME
SEC-CLK'
CLKEDT
CLKTME
NUMBER

A

#$30
>U+
A
#$0F
#$30
»U+ +

MINUTES
IF NO

SECONDS
IF NO

DESIRED?

DESIRED?

IN A - DISPLAY AT U

FA 173D
31 A
0B 1752
F4 173D

* DOS MAIN MENU DISPLAY
#******-**-*&**•**** *-********************«*********#***#********
B14 FDB B15-B14 SIZE OF OVERLAY
* DISPLAY DOS MENU SCREEN

STARTING LINE NUMBER
END OF RANGE
SAY CLEAR SCREEN FIRST
DISPLAY MENU MAP

LESS THAN 1?
IF 1 ENTERED (RET TO BASIC)
IF YES

LDD #100
LDY #199
LDU #0
JSR DOMAP
SYSTEM POL CAT
BEG. MENU1
SUBA tt*3i

BEG. MENU2
BCS MENU1

PAGE 044 0LY2 BA:0 DOS - PAGING & OVERLAYS

01360
01370
01380
01390
014O0
01410

1 420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610

1 620
01630
01640
01650
01660
01670
01630
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01B00
01810
01820
01S30
01S40
01850
01860
0.1370
01830
01390
01900
01910
01920
01930

02490A
02491

A

02492A
02493A
02494A
02495
02496
02497
02493
02499
02500
02501
02502
02503
02504
02505
02506
02507
02503
02509
025 1

025 1 1

025 12
025 13A
025 1

4

025 15A
025 16A
025 17A
025 1 8A
025 19A
025 20

A

02521

A

02522
02523
02524

A

025 25

A

025 26

A

02527A
025 28

A

02529
02530

A

02531

A

02532

A

02533A
02534A
025 35

A

02536A
02537A
0253BA
02539A
025 40

A

02541

A

02542A
02543A
02544

A

02545

A

02546A
02547A

1749
174B
174D
174E
1752

1755

1757
1759
175B
175D
175F
1761
1763

1765
1767
176A
176C
176E

176F
1772
1774
177B
177B
177D
177F
1783
1787
178B
178F
1 795
179B
179A
179E
17A1
17A3
17A5

SI
24
4C
AD
7E

06
F0

A
173D

20

9F 060C A
0FF6 A

00D3
1755
0C
0000
0000
0000
0000
0000
0000

IF
33
24
36
39

C3
ED
31
10AF
31
6F
10BF
AF
AF
33

FE
EF
33
FF
EE
34
4F

A

A
1765

A
A
A

A
A
A

30 A
00D3 A
03 176F
18 A

0001
06
39 00D6
04
AB
A0
0625
89 00AB
39 0055
39 00A7

061A
0E
39 0052
061A
62
40

NUMBER OF MENU SELECTIONS THAT HAVE BEEN WRITTEN
IF NOT IN RANGE
TO GET OVERLAY NUMBER OF SERVICE ROUTINE
PAGE IT IN &: GO TO IT

MENU2
*
**
* B.UFFERED PRINT I/O OVERLAY

CMPA #6
BCC MENU1
INCA
JSR [GO 3

JMP 0BA3IC

TO ACTIVATE
LDU #SIZE (TOTAL
DOS DOiBUFPRT

MEMORY TO USE FOR THIS PURPOSE)

TO USE:
LDA CHARACTER TO

AGAIN CLRB (SAYS " I AM
JSR I PRNT 1

BNE AGAIN IF BUFFER

PRINT
MOT SHUTTING DOWN"

)

WAS FULL^ TRY AGAIN (OR GO DISPLAY MSG)

* TO TERMINATE;
LDB
JSR

ttl (ANY
I PRNT

3

NON-ZERO SAYS SHUT DOWN)

**
B15
BP

PRTBUF
BUFSZ
BUFCNT
SNDCHR
STRCHR
PRNTSV
*

* SEE
BP1

FDB B16-B15 SIZE OF OVERLAY
EQU B15 (FOR USE IN RELATIVE ADDRESSING
BRA BP1 JUMP OVER LOCALS
FDB POINTER TO PRINT BUFFER
FDB SIZE OF PRINT BUFFER
FDB NUMBER OF CHRS IN BUFFER
FDB POINTER INTO BUFFER FOR CHR
FDB POINTER INTO BUFFER FOR CHR
FDB SAVE AREA FOR VECTOR TO OR I'

BEING BENT
BEING STORED
PRNT ROUTINE

* SET
BP1A

TFR
SUBD
BCC
LDA
RTS

UP FOR
ADDD
STD
LEAY
STY
LEAY
CLR
STY
3TX
STX
LEAU
DOS
LDU
STU
LEAU
STU
LDU
PSHS
CLRA

IF ENOUGH ROOM
U»D
#BPSZ+5
BP1A
#ERR24

PROVIDED
PUT SPACE ALLOWED IN D
AMOUNT NOT AVAILABLE FOR BUFFER
IF ROOM FOR AT LEAST 1 BYTE BUFFER
BUFFER NOT BIG ENOUGH

BUFFERED PRINTING
#1 (ACTUAL. SIZE OF BUFFER)
BUFSZ-BP*X SAVE BUFFER SZ
BPS7+3,X POINT AT BASE OF BUFFER
PRTBUF-BPiX SAVE IT

DiY POINT BEYOND END OF BUFFER
<Y + SAY NO VALID OVERLAY FOLLOWS
>OLYLOC THIS IS WHERE NEXT OVERLAY GOES
BPTME+4-BP.X MODIFY LDX COMMAND
BP0UT+3-BP»X (SO IT KNOWS WHERE LOCAL WS
BPTME-BP,X POINT AT TIME ROUTINE
TIME, ON PLUG IT IN
>PRNT GET ADDR OF ORIGINAL PRINT ROUTINE
PRNTSY-BPjX SAVE IT
BPOUT-BPiX POINT AT ENTRY FOR BUFFERED PRINT
>PRNT
2iS
U

IS)

RET ADR
(BYPASS
SAY DONE

TO USER
NORMAL RETURN
OK

THRU UN-DO)

PAGE 045 OLY: ;a:o PAGING & OVERLAYS

01940
01950
01960
01970
01980

1 990
02000
02010
02020
02030
02040
02050
02060
02070
020B0
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02330
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510

02548A
02549
02550
02551

A

025 52A
02553A
02554A
02555A
02556A
025 57

A

02558A
025 5 9

A

02560A
02561

A

02562A
0256 3

A

02564A
025 65

A

02566A
02567A
0256SA
02569A
02570A
02571A
025 72

A

025 73

A

02574

A

02575A
02576A
02577
025 7BA
025 79A
02580A
02581

A

025 S2A
025B3A
02584A
02585A
02586A
02587A
025B8A
02589
02590
02591

A

02592A
02593
02594A
025 95

A

02596
025 97

A

02598A
025 99

A

02600A
02601 A
02602
02603A
02604

A

02605

A

17A7
17A9
17AC
17AD
17AF
17B1
17B4
17B6
17B3
17BA
17BC
17BE
17C0
17C2
17C4
17C7
17CA
17CC
17CE
17D0
17D2
17D4
17D6
17D9
17DB
17DD

17DF
17E1
17E3
17E7
17ED
17EF
17F2
17F4
17F7
17F9
17FB

17FC
17FF

1802
1804

1806
1808
1B0A
180C
1B0F

1811
1813
1816

34
8E
5D
26
EC
10A3
25
B6
35
24

EE
EC
33
C3
10A3
25

ED
A6
A7
EC
C3
ED

35

EC
26
33

EC
FD
EC
FD
35
ED
39

52
0000

30
08
06
06
01
52
F3

04
0C
CB
0001
06
02

0C
E4
C4
08
0001
08

D2

EC

EE
EC
A6
AD
26

EC
C3
10A3

A
A

17DF
A
A

17BC
A
A

17AF

A
A
A
A
A

17CE

A
A
A
A
A
A

* SEND
BPOUT

BPOl

BPOIA

RTS

A CHARACTER TO THE PRINTER VIA BUFFERED I/O

bpo:;

PSHS
LDX
TSTB
BNE
LDD
CMPD
BCS
LDA
PULS
BCC
DSABLI
LDU
LDD
LEAU
ADDD
CMPD
BCS
CLRD
STD
LDA
STA
LDD
ADDD
STD
ENABL

I

PULS

A,X,U
#0 (THIS INSTR MODIFIED BY SETUP LOGIC)

REQUEST TO SHUT DOWN?
BP03
BUFCNT-BP,

X

BUFSZ--BP,X ROOM FOR MORE?
BPOIA
#1
A , X , U
BPOl

IF ROOM
SET NON-Z COND

IF NO ROOM

PRTBUF~BP,X
STRCHR-BP,X DISPLACEMENT IN BUFFER
D,U POINT AT NEXT STORE POSITION
#1
BUFSZ-BP,X WRAP AROUND?
BPO 2 IF NO

STRCHR-BPh X

, S (CHR TO BE PRINTED)
jU
BUFCNT-BP,

X

#1
BUFCNT-BP?

X

A, X,U,PC
* WAIT FOR BUFFER TO EMPTY

08 A BPO

3

FC 17DF
89 00A7 A

0E
061A
04
0625
40
62

0000 A
0000 A

08 A
F6 17FC

04
0A
CB
98 0E
EB

A
A
A
A

17FC

0A A
0001 A
06 A

LDD BUFCNT-BPiX EMPTY YET?
BNE BP03 IF NO WAIT
LEAU BPTME-BP-X POINT AT TIME ROUTINE
DOS TIME, OFF UN PLUG IT
LDD PRNTSV-BP,X GET ADDR OF ORIG DRIVER
STD >PRNT RESTORE IT
LDD PRTBUF-BPiX WHERE NEXT OVERLAY SHOULD HAVE GONE
STD >OLYLOC
PULS U (RET ADDR)
STD 2iS I'M SET TO RETURN VIA UN-DO)
RTS

*
* TIME INTERVAL DRIVEN PRINT LOGIC
BPTME JMP >0 (TO NEXT TIME ROUTINE)

LDX #0 (INSTRUCTION MODIFIED BY ABOVE LOGIC)
* IS THERE DATA IN THE BUFFER TO BE SENT TO PRINTER?

LDD BUFCNT-BP,

X

BEO BPTME IF NO, EXIT
* TRY TO SEND IT (PRINTER MIGHT NOT BE READY)

LDU PRTBUF-BP,X POINT AT BUFFER
LDD SNDCHR-BP,X DISPLACEMENT WITHIN BUFFER
LDA D»U GET CHR OUT OF BUFFER
JSR [PRNTSV-~BP,X3
BNE BPTME IF PRINTER WAS NOT READY

* ADVANCE BUFFER POINTER
LDD SNDCHR-BP,X
ADDD #1
CMPD BUFS2-BP,X IS POINTER WRAPPING AROUND END OF BUFFER?

PAGE 046 OLY: SA:0 DOS PAGING & OVERLAYS

02520
02530
02540
02550
02560
02570
025S0
02590
02600
02610
02620
02630
02640
02650
02660
02670
026B0
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02300
02S10
02820
02830
02840
02B50
02860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090

02606A
02607A
026OSA
02609
026 10A
0261 1A
026 12A
02613A
02614
02615
02616
02617
026 ISA
02619
02620
02621

A

02622A
02623

A

02624

A

02625

A

02626A
02627

A

02628
02629
02630A
02631 A
02632A
02633A
02634

A

02635A
02636A
02637A
02633A
02639A
O2640A
02641

A

02642A
02643A
02644A
0264 5

A

02646A
02647A
0264 8

A

02649A
0265 0A
02651

A

02652A
02653A
02654
02655
02656A
02657A
02658A
02659A
02660A
02661

A

02662A
02663A

1819 25
1B1B
IBID ED

181F EC
1821 83
1B24 ED
1826 20

1S2B

182A
182C
182E
1830
1832
1B34
1836

1338
183A
183D
183F
1S41
1842
1845
1847
1S4B
134E
1850
1852
1856
185A
185E
1862
1868
1B6B
136D
1871
1874
1876
1878
1B79

IE
B3
24
86
39
C3
ED
31
10AF
31
6F
10BF
AF
AF
33

FE
EF
33
FF
EE
34
4F
39

187A 34
187C 8E
1B7F EC
1S81 26
1883 35
1BS5 EE
1887 EC
1389 33

02

0A

08
0001
03
D4

00C5
00D3
1828
0C
0000
0000
0000
0000
0000
0000

IBID

A
A
A

17FC

A
A
A

1838
A
A
A
A
A
A

BCS BPT1
CLRD

BPT1 STD SNDCHR-BP
* ADJUST BUFFER COUNT

IF NO

X SAVE POINTER TO NEXT CHR

30 A
00CA A

03 1842
1C A

0001
06
S9 00C8
04
AB
A0
0625
39 0082
89 0055
89 007E

06 1C
0E
89 0052
06 1C
62
40

54
0000
0B
02
D4
04
0A
CB

A
A
A

1885
A
A
A
A

LDD
SUBD
STD
BRA

BUFCNT-BPi X

#1
BUFCNT-BP, X

BPTME EXIT (ONLY SEND ONE CHR PER INTERUPT!)

* BUFFERED KEYBOARD INPUT OVERLAY

B16
BPSZ
BK

FDB
EQU
EG!U

BRA
KEYBUF FDB
KEYSZ FDB
KEYCNT FDB
SNDKEY FDB
STRKEY FDB
KEYSV FDB

B17-B16
B16-B15
B16
BK1

(FOR PREVIOUS ROUTINE'S USE)

JUMP OVER LOCALS
ADDR OF KEYBOARD BUFFER
SIZE OF KBD BUFFER
NUMBER OF KEYSTROKES IN BUFFER
DISPLACEMENT TO NEXT KEY TO GIVE USER
DISPLACEMENT FOR STORING NEXT KEYSTROKE
SAVE AREA FOR ADDR OF ORIGINAL KBD ROUTINE

BK1
* SET UP FOR BUFFERED KBD

U,D PUT SPACE ALLOWED IN D
ttBKSZ+5 AMOUNT NOT AVAILABLE FOR BUFFER
BK1A IF ROOM FOR AT LEAST 1 BYTE BUFFER
#ERR28 BUFFER NOT BIG ENOUGH

BK1A

TFR
SUBD
BCC
LDA
RTS
ADDD
STD
LEAY
STY
LEAY
CLR
STY
STX
STX
LEAU
DOS
LDU
STU
LEAU
STU
LDU
PSHS
CLRA
RTS

* POLL FOR A
BKGIVE PSHS

LDX
LDD
BNE
PULS

BKG1 LDU
LDD
LEAU

#1 (ACTUAL SIZE OF BUFFER)
KEYSZ-BKi X SAVE BUF SZ
BKSZ+3,X POINT AT EASE OF BUFFER
KEYBUF-BK,X
D,Y
»Y+ SAV NO VALID OVERLAY FOLLOWS
>OLYLOC NEXT OVERLAY GOES HERE
BKTME+4-BK^X MODIFY LDX IN3TR
BKGIVE+3-BK.X DITTO
BKTME-BK ? X

TIME i ON PLUG IN TIME RTN
>KEYIN
KEYSV-BK,X
BK6IVE-BK,X
>KEY IN
2>S
U

CHARACTER TO GIVE USER
B,X*U
#0 (THIS INSTRUCTION MODIFIED BY SETUP)
KEYCNT-BKiX COUNT OF BUFFERED CHRS
BKG1 IF ONE TO SEND
B,X,UiPC IF NONE? EXIT WITH A=ZERO
KEYBUF-BKjX ADDR OF BUFFER
SNDKEY-BKiX DISPLACEMENT
D,U POINT AT CHARACTER

PAGE 047 0LY2 SA:0 DOS PAGING & OVERLAYS

03100
03110
03 1 20
03130
03140
03150
03160
03170
03130
03190
03200
B3210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03330
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670

02664
02665A
02666A
02667A
02668A
02669A
02670

A

02671

A

02672

A

02673A
02674A
02675A
02676A
02677
02673
02679A
02630A
02681A
02632

A

02633A
02684
02685

A

026S6A
02687A
02688A
02689A
02690A
02691A
02692A
02693A
02694

A

02695A
02696A
02697A
02698

A

02699A
02700A
02701A
02702

A

02703A
02704A
02705

A

02706

A

02707A
02708

A

02709A
027 IDA
02711
02712
02713
027 1

4

02715
027 1

6

02717
027 1

8

02719
02720

A

02721A

188B
188E
1891
1893
1895
1897
1899
189B
189D
18A0
1SA2
18A4

18A6
13A9
18AC
1SAE
18B1

18B3
18B6
18B8
18BA
18BC
13C0
18C2
18C4
18C6
18C9
18CA
18CC
13CE
18D0
18D2
18D4
18D7
1BDA
18DC
13DE
18E0
18E2
18E5
18E7
13E9
18EB

C3 0001 A
10A3 06 A
25 F'2 1B85

0A
C4
02
08
0001
03
E4
D6

3E
A6
88
A7
108E
31
26
20
AD
4D
27
34
EE
EC
33
C3
10A3

7E 0000 A
3E 0000 A
EC 08 A
10A3 06 A
25 13 18C6

FF22
34
02
84
0020
3F
FC
E0
98 0E

DA
02
04
0C
CB
0001
06
02

0C
03
0001
03
02
C4
BF

A
A
A
A
A
A

18C0
18A6

A

18A6
A
A
A
A
A
A

1SDE

A
A
A
A
A
A

18AC

* ADJUST POINTER TO NEXT POSITION
ADDD #1
CMPD KEYSZ-BK>X WRAP AROUND?
BCS BKG1 IF NO
CLRD

BKG2 STD SNDKEY-BKSX
LDA >U
PSHS A
LDD KEYCNT-BK,X
SUBD #1
STD KEYCNT-BKiX
TST ,5
PULS DiXiUjPC

#

KEYBOARD SCAN ROUTINE
>0 TO NEXT TIME ROUTINE
#0 (MODIFIED BY SETUP)
KEYCNT-BK,X
KEYSZ-BK,X IS BUFFER FULL?

* TIME
BKTME

BKT0

BKT1

INTERVA
JMP
LDX

BKTMEA LDD
CMPD
BCS

* BUFFER IS
LDX
LDA
EORA
STA
LDY
LEAY
BNE
BRA
JSR
TSTA
BEQ
PSHS
LDU
LDD
LEAU
ADDD
CMPD
BCS
CLRD
STD
LDD
ADDD
STD
PULS
STA
BRA

BKT1
FULL - GO

*U4BDR
»X

#2
, X

#$20
-1,Y
BKT0
BKTME
C KEYSV-

BKTME
A
KEYBUF-
STRKEY-
D»U
#1

IF NO
BEEP

COMPLIMENT SOUND BIT

PULSE WIDTH

BK
EXIT
X] GO POLL KEYBOARD

IF NO NEW KEYSTROKES, EXIT
SAVE KEY

BK,X
•BK,X DISPLACEMENT TO SAVE LOC

POINT AT SAVE LOC
POINT TO NEXT SAVE LOC

KEY5Z-BK,X WRAP AROUND?

BKT2

BKT2

STRKEY-
KEYCNT-
#1
KEYCNT-
A
>U
BKTMEA

IF MO

BK , X

GO CHECK FOR ANOTHER KEY DOWN

18ED
1BEF

01BF
76

* COPY FILE OVERLAY
* GIVEN: B (BIT 0) = ZERO IF NO DISK SWAPPING! 1 IF SWAPPING
* U-> SOURCE FILE DCB (UNOPENED)
* Y-> DEST FILE DCB (UNOPENED)
* USES MEMORY FROM "OLYLOC" TO "MAXMEM"
* USES LAST LINE ON SCREEN FOR PROMPTS IF SWAPPING DISKETTES
**
B17 FDB B1B-B17

PSHS D,X,Y,U

PAGE 048 0LY2 „SA:E DOS PAGING & OVERLAYS

03680 02722A 1BF1 32 7A A LEAS -6,S
03690 02723A 1BF3 20 60 1955 BRA B17A
03700 02724 *)S COUNT OF SECTORS :IN MEMORY
03710 02725 * 1,S EOF SW
03720 02726 * 2>S=NEXT INPUT PRN
03730 02727 * 4,S=NEXT OUTPUT PRN
03740 0272B * 6»S= PGS AVAIL
03750 02729 * 7,S=SWAP SW
03760 02730 * BiS=BASE
03770 02731 * 10,

S

-DEST DCB ADDR
037B0 02732 * 12,8=SOURCE DCB ADDR
03790 02733 * 14,

S

=RET ADDR
03B00 02734A 18F5 4C A B17M1 FCC /LOAD SOURCE DISKETTE /

03B10 02735A 1915 4C A B17M2 FCC /LOAD DESTINATION DISKETTE /

03B20 02736A 1935 4C A B17M3 FCC /LOAD S Y S T E M DISKETTE /

03B30 02737 *

03840 0273B * SETUP STACK
03850 02739A 1955 C4 01 A B17A ANDB #1 SET TO 1 OR
03860 02740A 1957 A6 C3 21 A LDA DCBDRVjU
03B70 02741

A

195A Al A8 21 A CM PA DCBDRV,

Y

SAME DRIVE?
03BB0 02742A 195D 27 01 1960 BEG) B17B IF YES-

03890 02743A 195F 5F CLRB
03900 02744A 1960 E7 67 A B17B STB 7,S
03910 02745A 1962 4F CLRA
03920 02746A 1963 5F CLRB
03930 02747A 1964 ED E4 A STD ,S
03940 0274SA 1966 ED 62 A STD 2,S STARTING INPUT PRN
03950 02749A 1968 ED 64 A STD 4,S STARTING OUTPUT PRN
03960 02750A 196A FC 0BDC A LDD >MAXMEM
03970 02751

A

196D B3 0625 A SUBD >OLYLOC HOW MUCH MEM TO WORK WITH
039B0 0275 2

A

1970 25 03 1975 BCS B17B1 IF NOT ENOUGH
03990 02753A 1972 4D TSTA
0400B 0275 4

A

1973 26 51 19C6 BNE B17C IF AT LEAST 1 PAGE
04010 02755A 1975 86 ID A B17B1 LDA #ERR29 NOT ENOUGH MEM
04020 02756 *

04030 02757 * COMMON EXIT
04040 02758A 1977 A7 66 A B17X STA 6,S
04050 02759A 1979 6D 67 A TST 7,S
04060 02760A 197B 27 .10 19QD BEQ B17XIT
04070 02761 * RECOVER SYSTEM DISKETTE
040B0 027 62

A

197D AE 68 A LDX 8,3
04090 02763A 197F 30 88 4B A LEAX B17M3-B17.X
04100 02764A 1982 BD 0D 1991 BSR B17WTE
04110 02765A 19B4 CE 0666 A LDU ttMSGDCB
04 1 20 02766A 19B7 DOS OPEN, INPUT TO RE-LOAD FAT TABLE
04130 02767A 19SD 32 66 A B17XIT LEAS 6,S
04140 02768A 19BF 35 F6 A PULS D i X i Y i U i 1

3 C

04150 02769 *

04160 02770 * DISPLAY FLASHING MSG &: WAIT FOR DISKETTE SWAP
04170 02771

A

1991 10BE 05EO A B17WTE LDY #$400+51:2-32 (LAST LINE)
04180 027 72A 1995 C6 20 A LDB #32
04190 02773A 1997 A6 80 A B17WT1 LDA » X +

04200 02774A 1999 A7 A0 A STA ,Y +

04210 02775A 199B 5A DECB
04220 02776A 199C 26 F9 1997 BNE B17WT1
04230 02777A 199E 7F 0621 A CLR >CLOCK+l
04240 027 7 8

A

19A1 B 1 7WT2 SYSTEM POLCAT WAIT FOR KEYSTROKE
04250 02779A 19A5 81 0D A CM PA #*0D

PAGE 049 OLY: .SA:0 DOS PAGING 6: OVERLAYS

04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
0436O
04370
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510
04520
04530
04540
04550
04560
04570
04580
04590
04600
04610
04620
04630
04640
04650
04660
04670
046B0
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04790
04S00
04810
04820
04830

02780A
02781 A
02782A
027S3A
02784A
02785A
02786A
02787A
02788A
02789A
02790A
02791 A

02792A
02793A
02794A
02795

A

02796
02797A
02793
02799
02300

A

02801

A

02802A
02S03A
02804

A

02805
02806A
02S07A
02S0SA
02809

A

028 10A
02811

A

028 12A
02B13A
02314
0281 5

A

02S16A
028 17A
02S1SA
02B19A
02820

A

02821

A

02822A
02S23A
02B24A
02325
02826
02827

A

02828A
02829A
02830A
02831A
02S32A
02333

A

02834A
02835

A

02836A
02837A

19A7 27
19A9 3E
19AC B6
19AF 84
19B1 43
19B2 34
19B4 C6
19B6 A6
19BS 84
19BA AA
19BC A7
19BE 5

A

19BF 26
19C1 35
19C3 20
19C5 39

19C6 A7

19CS EE
19CA FC
19CD ED
19D0 6D
19D2 27

19D4 AE
19D6 30
19DS 8D
19DA
19E0 26
19E2 EC
19E4 ED
19E7 26

19E9 10AE
19EC 33
19EE 31
19F0 C6
19F2 A6
19F4 A7
19F6 5

A

19F7 26
19F9 EE
19FB 6F

19FD BD
1A00 26
1A02 BD
1A05 26
1A07 EC
1A0A C3
1A0D ED
1A10 6C
1A13 6C
1A15 E6
1A17 El

1C 19C5
05E0 A
0621 A
20 A

02
20
34
BF
E4
80

F5 19B6
02 A
DC 19A1

BEQ
LDX
LDA
ANDA
LSLA
PSHS
LDB

B17WT3 LDA
ANDA
ORA
ST A
DECB
BNE
PULS
BRA

B17WTX RTS

B17WTX
#$400+512-:
>CL0CK+1
#$20

A
#32
, X

#y.i0in ii i

B17WT3
A
B17WT2

66 A B17C STA 6,S

* LOOP TO COPY FILE
6C A B17D
0625 A
C8 24 A
67 A
06 19DA

LDU
LDD
STD
TST
BEQ

12, S
>OLYLOC
DCBBUFjU
7*B
B17D0

PAGES AVAILABLE

SOURCE

SWAPPING?
IF NO

* WAIT FOR SOURCE DISKETTE
68 A
08 A
B7 1991

95 1977
62 A
C8 29 A
12 19FB

6A
4B
2B
15

C0
A0

F9
6C
E4

A
A
A
A

A
A

1 9F2
A
A

LDX
LEAX
BSR

B17D0 DOS
BNE
LDD
STD
BNE

* FIRST TIME
LDY
LEAU
LEAY
LDB
LDA
STA
DECB
BNE
LDU
CLR

S,S
B17M1-B17-.X
B17WTE
OPEN, INPUT
B17X IF NOT FOUND
2*S
DCBPRNiU SET STARTING SECTOR NUMBER

B17D1

B17E

0D9F A
1 E 1 A20
0CE7 A
16 1 A 1

D

CB 29 A
0001
CB 29
CS 24
E4
E4
66

* LOAD LOOP
B17F JSR

BNE
JBR
BNE
LDD
ADDD
STD
INC
INC
LDB
CMPB

B17E
SAVE

10i S
11,

U

11,

Y

#32-11
>U+
,Y +

B 1 7D

1

12,

S

,S

CBENT
B17F1
DSKRED
B17XX
DCBPRNiU
#1
DCBPRN,U
DCBBUF,U

IF NOT FIRST TIME
DIRECTORY DATA IN OUTPUT DCB

EXCEPT FOR NAME

SOURCE
SECTORS IN MEMORY

XLATE PRN INTO TRACK & SECTOR
IF OUT OF RANGE

PHYSICAL I/O
I/O ERR

,s
6, S

COUNT SECTORS READ

IS BUFFER FULL

PAGE-: 050 OLYi SA:0 DOS PAGING & OVERLAYS

04840 02838A 1A19 26 E2 19FD BNE B17F IF MO
04850 02B39A 1A1B 20 05 1A22 BRA B17G GO WRITE IT

04860 02840A 1A1D 16 FF5 -y 1977 Bl 7XX LBRA B17X THIS STMT USED AS AN UP-LINK
04870 0284

1

*
04880 02842 * INPUT AT END - SET EC)F BW
04890 02843A 1A20 6C 61 A B17F1 INC 1,S
04900 02844 *
04910 02845 * CLOSE INPUT
04920 02846A 1A22 EC CB 29 A B17G LDD DCBPRN, U

04930 02B47A 1A25 ED 62 A STD 2iS SAVE FOR NEXT BATCH
04940 02848A 1A27

*

DOS CLOSE j I

T

04950 02849A 1A2D A6 E4 A LDA ,5 ANY SECTORS READ?
04960 02850

A

1A2F 27 EC 1A1D BEG! B17XX IF NO, I'M DONE
04970 02851 *

04980 02852 * OPEN OUTPUT
04990 0285 3

A

1A31 6D 67 A TST 7,S SWAPPING?
05000 0285 4

A

1A33 27 08 1A3D BEQ B17H IF NO
05010 0285 5

A

1A35 AE 6B A LDX B,S
05020 02856A 1A37 30 B8 28 A LEAX B17M2-B17, X

05030 0285 7

A

1A3A 17 FF54 1991 LBSR B17WTE WAIT FOR DESTINATION DISKETTE
05040 0285 8A 1A3D EE 6A A B17H LDU 10*S OUTPUT FILE DCB
05050 0285 9

A

1A3F FC 06;;5 A LDD >OLYLOC START OF BUFFER
05060 02860A 1A42 ED CB 24 A STD DCBBUF,iU
05070 02861

A

1A45 DOS OPENjOUTPUT+FAST
05080 02862A 1A4B 27 06 1A53 BEO B17H1 IF FILE EXISTS
05090 02863A 1A4D 81 0C A CMPA #12
05100 02B64A 1A4F 27 10 1A61 BEQ B17H2 IF CREATED
05110 02865

A

1A51 20 CA 1A1D BRA B17XX IF OTHER ERROR
05120 02866 *

05130 02867 # FILE EXISTS
05140 02868A 1A53 EC 64 A B17H1 LDD 4iS
05150 02869

A

1A55 26 12 1A69 BNE B17I IF NOT FIRST TIME, ITS OK
05160 02B70A 1A57 DOS close, :IT

05170 02B71A 1A5D B6 IE A LDA #ERR30
05180 02B72A 1A5F 20 BC 1A1D BRA B17XX
05190 02B73 *

05200 02874 * FILE CREATED
05210 02B75A 1A61 EC 64 A B17H2 LDD 4,S
05220 02B76A 1A63 27 04 1A69 BEQ B17I IF FIRST TIME, OK
05230 02B77A 1A65 86 IF A LDA #ERR31 MISC ERR
05240 02B78A 1A67 20 B4 1A1D BRA B17XX
05250 02B79 *

05260 0288EA 1A69 ED CB 29 A B17I STD DCBPRN-.'J

05270 02881 *

05280 02B82 * WRITE LOOP
05290 02883A 1A6C BD 0D9F A B17J JSR CSENT XLATE PRN INTO TRACK & SECTOR
05300 02884A 1A6F 26 AC 1A1D BNE B17XX
05310 02885

A

1A71 BD 0CEA A JSR DSKWRT WRITE SECTOR
05320 02B86A 1A74 1026 FEFF 1977 LBNE B17X
05330 028B7A 1A7B EC C3 29 A LDD DCBPRN!>u
05340 028B8

A

1A7B C3 0001 A ADDD #1
05350 02889A 1A7E ED C8 29 A STD DCBPRN'iU
05360 02890A 1A81 6C C8 24 A INC DCBBUF.,u
05370 02B91A 1AB4 6A E4 A DEC ,S COUNT DOWN SECTORS WRITTEN
05380 02892

A

1A86 26 E4 1A6C BNE B17J
05390 02B93 *

05400 02894 * CLOSE OUTPUT
05410 02895

A

1A88 EC CB 29 A LDD DCBPRN->u

PAGE 051 0LY2 .SA:0 PAGING & OVERLAYS

05420 02896

A

1A8B ED 64 A STD 4iS ' SAVE FOR NEXT BATCH
05430 02S97A 1ASD 83 0001 A SUED #1
05440 02898

A

1A90 ED CS 14 A STD DCBMRB,U
05450 02899

A

1A93 AE 6C A LDX 12tS SOURCE DCB
05460 02900

A

1A95 EC 0E A LDD DCBNLStX
05470 02901

A

1A97 ED 4E A STD DCBNLS^J
054B0 02902

A

1A99 E7 CB 16 A STB DCBMRB+2,U
05490 02903

A

1A9C DOS CLOSE, IT
05500 02904A 1AA2 4F CLRA
05510 02905

A

1AA3 6D 61 A TST liB AT EOF?
05520 02906

A

1AA5 1026 FF74 1A1D LBNE B17XX I
T M DOME

05530 02907A 1AA9 16 FF1C 19CS LBRA B17D GO COPY ANOTHER BATCH OF SECTORS
05540 02908 *

05550 02909 *******************************

05560 02910 * GET MULTIPLE USER INPUTS
05570 02911 * GIVEN B=NUMBER OF INPUTS
055S0 02912 *****+****************•****
05590 029 13A 1AAC 0099 A BIB FDB B19-B18
05600 02914 0012 A INPTS EQU IS
05610 029 15A 1AAE 86 01 A LDA #1
05620 029 16A 1AB0 34 06 A PSHS D
05630 029 17A 1AB2 CE 0400 A BIBB LDU #$400
05640 029 18A 1AB5 E6 E4 A LDB ,S
05650 029 19A 1AB7 A6 C0 A B1BC LDA ,U+
05660 02920

A

1AB9 81 5B A CMPA #$5B C

05670 02921

A

1 ABB 27 09 1AC6 BEQ B18D
056B0 02922A 1ABD 1183 0600 A CMPU #*60Q
05690 02923

A

1AC1 25 F4 1AB7 BCS B1SC
05700 02924A 1AC3 CE 0401 A LDU #$401
05710 02925

A

1AC6 5A B1BD DECB
05720 02926A 1AC7 26 EE 1AB7 BNE B1BC
05730 02927 * INPUT A FIELD
05740 0292BA 1AC9 7F 0621 A CLR CLOCK+1
05750 02929

A

1ACC 30 5F A LEAX -l,U
05760 02930

A

1ACE F6 0621 A B18E LDB CLOCK+1
05770 02931

A

1AD1 C4 10 A ANDB #16
05780 02932

A

1AD3 27 04 1AD9 BEO B1BE1
05790 02933

A

1AD5 86 5B A LDA #$5B
05B00 02934A 1AD7 20 02 1ADB BRA B1BE2
05810 02935A 1AD9 86 IB A B18E1 LDA #$1B
05820 02936

A

1ADB A7 84 A B1SE2 STA > X

05830 02937A 1ADD 34 50 A PSHS X,U
05840 02938A 1ADF SYSTEM POL CAT
05850 02939A 1AE3 35 50 A PULS X,U
05860 02940A 1AE5 4D TSTA
05870 02941 A 1AE6 27 E6 1ACE BEQ B18E
05880 0294 2

A

1AE8 81 03 A CMPA #BREAK
05890 02943

A

IAEA 27 50 1B3C BEQ B18X
05900 02944A 1AEC 81 0A A CMPA #DOWN
05910 0294 5

A

1AEE 27 1A 1B0A BEG! B1BF
05920 02946

A

1AF0 81 5E A CMPA #UP
05930 02947A 1AF2 27 21 1B15 BEQ B1SG
05940 0294BA 1AF4 Bl 0D A CMPA #ENTER
05950 02949A 1AF6 27 44 1B3C BEQ B18X
05960 02950

A

1AFB 81 03 A CMPA #LEFT
05970 02951

A

1AFA ""? 34 1B30 BEQ B18I
05980 0295 2

A

1AFC 81 20 A CMPA #$20
05990 02953A 1AFE 25 CE 1ACE BCS B1BE

PAGE 052 0LY2 .BA:0 DOS PAGING & OVERLAYS

06000 0295 4

A

.1 B00 31 5B A CMPA #*5B
06010 0295 5

A

1 B02 25 20 1B24 BCS B13H
06020 02956A 1B04 31 60 A CM PA #$60
06030 02957A 1B06 25 1C 1B24 BCS B1SH
06040 0295SA 1B0B 20 C4 1ACE BRA B1SE
06050 02959 + DOWN
06060 02960A 1B0A A6 E4 A B18F LDA ,S
06070 02961 A 1B0C Al 61 A CM PA 1*S
06080 02962A 1B0E 24 0E IB IE BCC B1861 IF AT END ALREADY
06090 02963A 1B10 4C INCA
06100 02964A 1B11 A7 E4 A STA ,S
06110 02965A 1B13 20 09 1B1E BRA B18G1
06 1 20 02966 * UP
06130 02967A 1B15 A6 E4 A B13G LDA iS
06140 0296SA 1B17 Bl 01 A CM PA #1
06150 02969A 1B19 27 03 1B1E BEQ B1361
06160 02970A 1 B 1

B

4A DECA
06170 02971 A 1B1C A7 E4 A STA i 5
06180 02972

A

1B1E 86 5B- A B18G1 LDA #$5B
06190 02973A 1 B20 A7 34 A STA ,X
06200 02974A 1B22 20 8E 1 AB2 BRA B1SB
06210 02975 * TEXT CHR
06220 029 76

A

IB24 SA 40 A B 1 8H ORA #$40
06230 02977A IB26 A7 C0 A STA »U+

06240 02973A IB23 A6 C4 A LDA * U
06250 02979A 1B2A 81 5D A CMPA #*5D 1

G6260 029S0A 1B2C 27 DC 1B0A BEQ B13F
06270 029S1A 1B2E 20 9E 1ACE BRA B13E
062S0 029S2 * BACK ARROW
06290 02983

A

IB30 A6 C2 A B1SI LDA i-U
06300 02934A IB32 34 BF A ANDA #$BF
06310 02985A 1B34 81 IB A CMPA #*1B
06320 02936A 1B36 26 96 1ACE BNE B1SE
06330 02937

A

1B3S A6 C0 A LDA iU+
06340 0293SA .1B3A 20 F4 1B30 BRA B18I
06350 02939 * BREAK OR ENTER
06360 02990A 1B3C IF 39 A B18X TFR A»B
06370 02991A 1B3E 32 62 A LEAS 2<S
06330 02992A 1B40 36 5B A LDA #$58
06390 02993A 1B42 A7 84 A STA > X

06400 02994A 1B44 39 RTS
06410 02995 *

06420 02996 *+**+*++****#**#**#******+*+******+
06430 02997 * SCAN FOR SELECTED DIRECTORY ENTRY
06440 02993 ******************#*******-** **-*-**#*

06450 02999

A

1B45 0039 A B19 FDB B20-B19
06460 03000 0013 A SCNDIR EQL1 19
06470 03001 A 1B47 BE C006 A LDX 4C006 PARAMETER AREA
06480 03002A 1B4A 86 02 A LDA #2 READ
06490 03003A 1B4C A7 80 A STA tX +
06500 03004A 1B4E A6 C4 A LDA)U DRIVE
06510 03005A 1B50 A 7 80 A STA »X +
06520 03006

A

1B52 CC 1103 A LDD #$1103 TRACK & SECTOR
06530 03007A 1B55 ED 90 A STD »X+ LEAVE X -> SECTOR
06540 0300BA 1B57 10SE 06C8 A LDY ttSYSBUF
06550 03009A 1B5B 10AF 01 A STY 1»X
06560 03010A 1B5E A6 41 A LDA liU STARTING OCCURANCE
06570 03011A 1B60 31 48 A B19A CMPA #72 ANY MORE ON THIS DRIVE

PAGE 053 0LY2 SA:0 DOS PAGING & OVERLAYS

065B0
06590
06600
06610
06620
06630
06640
06650
06660
06670
066B0
06690
06700
06710
06720
06730
06740
06750
06760
06770
06780
06790
06B00
06S10
06820
06830
06840
06850
06860
06870
06S30
06890
06900
06910
06920
06930
06940
06950
06960
06970
06980
06990
07000
07010
07020
07030
07040
07050
07060
07 07^)-

07080
07090
07100
07110
07120
07130
07140
07150

030 12A
03013A
03014A
03015A
030 16A
03017A
03018A
03019A
03020A
03021 A
03022A
03023A
03024

A

03025

A

03026

A

03027

A

03028
03029
03030
03031
03032A
03033A
03034A
03035A
03036A
03037A
03038A
03039A
03040A
03041

A

0304 2

A

03043
03044A
03045A
03046A
03047A
03048A
03049A
0305 0A
03051

A

03052
03053A
03054A
03055A
03056A
03057A
03058A
03059
030jb0A
03061

A

03062A
03063A
03064A
03065A
03066A
03067A
03063A
03069A

1B62 24
1B64 80
IB66 25
1B6S 6C
1B6A 20
1B6C SB
1B6E 27
1B70 C6
1B72 3D
1B73 31
1B75 20
1B77 34
1B79 AD
1B7D 35
1B7F A6
1BS1 26

1BS3 34
1BS5 C6
1B87 33
1B89 A6
1 B8B
1B8D
1B8F A6
1B91 81
1B93
1B95
1B97

27
2B

27
Al
27

65
08
04
84
F8
08
07
20

1B99 35
1B9B 6C
1B9D A6
1B9F 81
1BA1 24
1BA3 31
1BA6 108C
1BAA 25

IBAC 108E
1BB0 6C
1BB2 20
1BB4 A6
1BB6 5

A

1BB7 26

1BB9 35
1BBB 6C
1BBD 33
1BBF C6
1BC1 A6
1BC3 A7
1BC5 5

A

1BC6 26
1BC8 39
1BC9 86

1BC9
A

1B6C
A

IB64
A

1B77
A

B19B

AB A
0C 1B83
70 A B19D
9F C004 A
70 A
03 A

46 1BC9

BCC
SUBA
BCS
INC
BRA
ADDA
BEG!

LDB
MUL
LEAY
BRA
PSHS
JSR
PULS
LDA
BNE

B19N0
#8
B19C
iX
B19B
#8
B19D
#32

D, Y
B19D1
X,Y,U
I $C004]

X*Y*U
3,X
B19N0

IF IN THIS SECTOR

DISPLACEMENT IN THIS SECTOR
OFFSET TO 1ST ENT TO SCAN

RESULT
IF I/O ERR

* COMPARE AGAINST ARGUMENT

60
0B
42
A4
0C
0A
C0
2A
IF
A0
ID

60
41
41
48
26
AB 2t

07 C8
D7

A
A
A
A

1B99
1B99

A
A

1BB4
A

1 BB6

A
A
A
A

1BC9
I A

A
1B83

D6

60
41
4D
20
A0
C0

1B8F

* REGISTERS!

B19D1 PSHS
LDB
LEAU
LDA
BEQ
BMI

B19E LDA
CMPA
BEG!

CMPA
BEG!

* NO MATCH
B19E1 PULS

INC
LDA
CMPA
BCC
LEAY
CMPY
BCS

* READ NEXT SECTOR
06C8 A

84 A
C3 1B77
A0 A

X->SECTOR NBR
Y->ENTRY IN BUFFER
U-> SEARCH ARGUMENT

Y,U
#11
2,U
iY
B19E1
B 1 9E 1

tU+
#'*
B19F
, Y+
B19G

Y*U
i»u

#72
B19N0
32, Y

BYTES TO COMPARE
TO START OF ARGUMENT

IF EMPTY ENTRY
IF END OF DIRECTORY

WILDCARD?

ANY MORE?

POINT AT NEXT ENTRY
#SYSBUF+256
B19D1

F9 1BC1

FF A

LDY
INC
BRA

B19F LDA
B196 DECB

BNE
* MATCH FOUND

PULS
INC
LEAU
LDB
LDA
STA
DECB
BNE
RTS
LDA

B19H

B19N0

#SYSBUF
iX

B19D
»Y +

B19E

YjU
1 ,U
2+1 1*U
#32
)Y+

)U +

B19H

#$FF

BYPASS SOURCE CHR

SEARCH CONTINUES WITH NEXT ENTRY

PAGE 054 OLY: SA:0 DOS PAGING & OVERLAYS

07160
07170
07180
07190
07200
07210
07220
07230
07240
07250
07260
07270
07280
07290
07300
07310
07320
07330
07340
TOTAL
TOTAL

03070A 1ECB A7
03071

A

1BCD 39
03072
03073A 1BCE
03074A 1BCF

41

0001
0001

03075
03076
03077A 1BD0 0001
03078 1ED0
03079 00C5
03080 0718
03081 1246
03082 0EA4
03083 20EB
03084 10A2
03085 10A5
03086 0BB9
03087
03088
ERRORS 00000—00000
WARNINGS 00000—00000

A B20
A B21

LASTPG
B22
BKSZ
PGMSZ
TOTBZ
START
END
ENTRY
LOWUSR
FIXIT

STA
RTS

RMB
RMB

OPT
RMB
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
TTL
END

SAY NO MORE

END OF OVERLAYS

liU

L

1

LASTPG
B17-B16
OVRLAY-ORGIN-1
LASTPG-ORGIN-1
DOS START OF DISK FILE
LASTPG+DOS-ORGIN END OF DISK FILE
OVRLAY INITIAL ENTRY POINT INTO PROGRAM
OVRLAY+3 LOWEST POINT WHERE USER PGM CAN LOAD
*1E00-LASTPG+ORGIN POINT THAT BASIC CLOBBERS
DOS - CROSS REFERENCE

Index

& 35

$ 35

@ 35

[
43

] 43

/AO (Absolute origin) 25

/IM (Assemble into memory) 25

/IM Switch 27

/LP (Assembler listing) 25

/MO (Manual origin) 25, 29

/NL (No listing) 25

/NO (No object code in memory) 25

/NS (No symbol table) 25

/SR (Single record) 25

/SR "switch" 7

/SS (Short screen listing) 25

/WE (Wait on assembly errors) 25

/WS (With symbols) 25

6809 41

6809 Mnemonics, Reference 1 09

6809 Registers 41

— A —
Absolute Origin Assembly 28

Addressing-Mode Characters 10

Addressing Modes 42

Direct Addressing 45

Extended Addressing 43

Immediate Addressing 43

Indexed Addressing 43

Indirect Addressing 43

Inherent Addressing 43

Relative Addressing 44

Alphanumeric Character Codes 106

Arithmetic Operators 36

Addition (+)
36

Subtraction (-) 36

Multiplication (*) 36

Division (.DIV.) 36

Modulus (.MOD.) 36

Positive (+)
36

Negative (-) 36

ASCII Codes 105

Alphanumeric Character 106

Color 105

Graphic Character 105

Video Control 105

ASCII Mode... 18

Assembler Commands 25

Assembler Commands and Switches,

Reference 75

Assembler Pseudo Ops, Reference 85

Assembling 25

Assembling for DOS 30

Assembling for Stand-Alone ZBUG 30

Assembly Display Listing 26

Assembly Listing, Changing 49
COND 49

ENDC 49

INCLUDE 50

OPT 49
PAGE 49

TITLE 49

— B —
Backups 3

BASIC Command 23
Breakpoints 32
Buffers 61

Byte Mode 17

— C —
Changing Memory 18
CHROUT 58
Clock Display 16

Closing a Disk File 62

Color Codes 105
Command 42
Complex Operations 37
COND 49
Controlling Assembly Origin 47

END 47
ORG 47

Copy Command 22
Cstartline, range, increment 22

Copy Files 15

Cstartline, range, increment 22

— D —
Data Control Block 61

Data Control Block (DCB), Reference 91

Defining Symbols 47
EQU 48

SET 48
Delete Command 22

Orange 22
Direct Access 65
Direct Addressing 45

Directory 15

Disk Allocation Map 15

Disk Assembly 30
Assembling for DOS 30
Assembling Stand-Alone ZBUG 30

Display Modes 31

Half-Symbolic Mode 32

Numeric Mode 32

Symbolic Mode 32

DOS Error Codes, Reference 101

DOS Routines 10, 61

DOS Routines, Reference 95

Orange 22

— E —
Edit Command 21

Eline 21

Editor Commands, Reference 71

EDTASM 5

EDTASMOV 5

Eline 21

END 47
ENDC 49

EQU 48

Error Codes, DOS Reference 101

Error Messages, EDTASM Reference 81

Examination Modes 17

ASCII Mode 18

Byte Mode 17

Mnemonic Mode 18

Word Mode 18

Examining Memory 17

Examining Registers and Flags 33

Executing a Program from ZBUG 32
Extended Addressing 43

Indirect Addressing 43

Extended Indirect Addressing 43

— F —
FCB 48

FCC 48

FDB 48

Flags, Examining 33

FLDFLG - 27

Formatting 3

— G —
Graphic Character Codes 1 05

— H —
Half-Symbolic Mode 32

Hrange 21

Immediate Addressing 43

INCLUDE 50

Indexed Addressing 43

Indirect Addressing 44
Indexed Indirect Addressing 44

Indirect Addressing 43

Inherent Addressing 43

Input Mode 35
Insert Command 22

\startline, increment 22
Inserting Data 48

FCB 48
FCC 48
FDB 48
RMB 48

\startline, increment 22

— L —
Label 42
LD filespec 23
LDA filespec 23
Left bracket ([) 6

LINCNT 27
Load Command 23

LD filespec 23
LDA filespec 23

Logical Operators 37
Shift (<) 37
LogicalAND (.AND.) 37
InclusiveOR (.OR.) 37
ExclusiveOR (.XOR.) 37
Complement (.NOT.) 37

— M —
Macro Call 53
Macro, Calling 51

Macro, Defining 51

Macro, Dummy Values 53
Macro, Format 52

Macro Definition 52
Macro, Passing Values 52
Macros 51

Manual Origin Assembly 29
Memory Map 1 03
Mnemonic Mode 18

Mnemonics 10

Mnemonics, 6809 Reference 1 09

— N —
Nstartline, increment 22
Numbering System Modes 35

Input Mode 35
Output Mode 35

Numeric Mode 32

— O —
Opcode 9

Opening a Disk File 62
Operands 36
Operations 36

Operands 36
Operators 36

Arithmetic 36
Logical 37
Relational 37

Complex Operations 37
Operators 10, 36

Arithmetic 36
Logical 37
Relational 37

OPT 49
ORG 47
Origination Offset Assembly 28
Output Mode 35

— P —
PAGE 49
PAGLEN 27
PAGWID 27

POLCAT 57

Prange 21

Print Command 21

Prange 21

Printer Commands 21

Hrange 21

Irange 21

Processor 9

Registers 9

Opcode 9

Program Editor Commands 21

Copy Command 22
Cstartline, range,

increment 22

Delete Command 22
Orange 22

Edit Command 21

Bine 21

Insert Command 22

\startline, increment 22

Load Command 23

LD filespec 23
LDA filespec 23

Print Command 21

Prange 21

Printer Commands 21

Hrange 21

Irange. 21

Renumber Command 22

Cstartline, increment— 22

Replace Command 22

Rstartiine, increment 22

Write Command 23

WD filespec 23
ZBUG Command 22

Pseudo Ops 10, 47
Pseudo Ops, Reference 85

— R —
Read/Write Option 66
Reading a Disk File 65
Read to a File Sample Program 67
Registers 9

6809 41

Registers, Examining 33
Relational Operators 37

Equal to (.EQU.) 37
Not Equal to (.NEQ.) 37

Relative Addressing 44
Renumber Command 22

Nstartline, increment 22
Replace Command 22

Rstartiine, increment 22
Right bracket (]) 6

RMB 48
ROM Routines 10, 57

CHROUT 58
POLCAT 57

ROM Routines, Reference 89
Routines

DOS 10

ROM 10

Rstartiine, increment 22

— S —
Sample Program 5, 11

Sample Programs 125
Saving Memory from ZBUG 34
SET 48
Sequential Access 65
Single Stepping 33
Switches

/AO 25
/IM 25
/LP 25, 27
/MO 25
/NL. 25, 27
/NO 25
/NS 25, 27
/SR 7, 25
/SS 25
/WE 25, 27
/WS 25

Symbolic Mode 32
Symbols 10

Examine Memory 32

— T —
TITLE 49
Trange 21

Transferring Memory Blocks 33

— V —
Video Control Codes 1 05

— W —
WD filespec 23
Word Mode 18

Write Command 23
WD filespec 23

Write to a File Sample Program 67
Writing a Disk File 65

— Z —
ZBUG Calculator 35
ZBUG Command 22
ZBUG Commands 17, 31

ZBUG Commands Reference 77

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U. K.

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

263254-12/83-TM Printed in U.S.A.

