

cor-pustel
 P) 95

The Dancroft Library
University of California • Berkeley

AMERICAN YOUTH:

 BEINGA NEW AND COMPLETE COURSE - F

Introductory Mathematics :
DESIGNED FOR THE USE OF
PRIVATE STUDENTS.

CONSIDER ${ }^{\text {B }}$ T JOHN STERRY.

V O L. I.

-where the mind
In endlefs growth and infinite afcent, Rijes from fate to fate, and world to world. THOMSON.

$\frac{6}{8}$

e.
\square $1+2+1-2=$

 [14.2

 Geque itiof comice - Notzen nato to charsb

 twat jx wit 3 y....

 $\operatorname{lin}_{4} \rightarrow 4$ in

TI ME, ever big with wonders to be. unfolded to the buman mind, bas u/bered in, through a feries of the moft important events, the rifing Empire of America; who bath eftablibed ber own Independence, and the flame of her liberty bas Spread itfelf to the remoteft parts of the earth; the effeet of which great example has not yet spent its force, but muft continue to operate tbrougbout ages, and form a grand ingredient in the aEtive fermentation, and in the biftory of nestions.

But the great object of true national dignity and grandeur, confifts in the cultivation of the buman mind, whereby the natural Savage barbarity, rudenefs and inmbecility of bumian nature are eradicated, and those principles of knowledge and virtue engrafted in the foul, which are the foundation of that knoweledige and preeminence of merit, which is the nobleft of all difinetions.

As soon as we begin to exif, tbat savage and imbecile spirit takes root in the Soul, and growes as the mind enlarges, till the feeds of knowledge by cultivation do take effectual root, and then like the tender bud it will burft its native bonds, expand and flourifh in its own beauty: The veil will then dijappear, and ans infinite
infinite diverfity of fcenes, botb pleafing and inftructing, zvill open them jelves to our vierw. But in order to prepare the mind for thefe pleafing and enlarging vieres, zee maft early employ ourfelves in the ftudy of fomething which is noble and important, whereby our minds may be cultivated aud brought to maturity. "A juft and perfect acquaintance with the fimple elements of Science, is a neceffary flep towards our future progrefs and advancement ; and this, effifed by laborious inveftigation, and babitual enquiry will conftantly lead to eminence and perfection."
"But as the various modes, fituations and circumftences of life are various, fo accident, babit and education, bave each their predominante influence, and give to every mind its particular bias." It is, therefore, for this reafor, we particularly admire those things which are the moft compatible with our genius and purfuits in life.
"Riches and bonours are the gifts of fortune, cafually beftowed, or bereditarily received, and are frequently abused by their poffeffors; but the fuperiority of twiddom and knowledge, is a pre-eminence of merit, that originates with the man, and is the nobleft of all diftinEtions."

Since, therefore, the cultivation of knowledge is a thing of the laft importance, too.many attempts cannot be made to. render, it univerSal, and fince youtb is the time therefor, we bave therefore, "only to point out to tbem Jome valuable acquifition, and the means of obtcining it. The active principles are immediately put in motion, and the certainty of the conqueft is enfured from a determination to conquer." But of all the sciences, cultivated by mankind, none are more ufeful than the

Maibematics,

(v)

Maibematics, to call fortb a spirit of enterprife and enquiry. The unbounded variety of their application, which is of universal utility to mankind, firft prompts our curiçity to bave in poffefion a treajure of fuch inefimable value. By their elegant and fublime manner of reafoning, our minds are enlightened and our underfanding enlarged, and thereby we acquire a babit of reafoning, an elevation of thought, that determines the mind and fixes it for every other purfuit; and none but thofe who eitber from fordid views, or a grofs ignorance of what they difpife, will ever tbink their time mifpent, or their labours ufeless in the purfuit of that, which is the guide of our youth, and the perfection of our reafon.

The fubject of the prefent performance, is Aritbmetic and Algebra, the foundation of all. our mathematical enquiries.

Altbough a great number of books has been publifhed on the jubjeet of Matbematics, yet fere of them are adapted to the capacity of young and. tender minds. Where is that fimplicity, plainnefs and brevity, which is abjolutely neceffary for the young and unaffifted beginner? Tbat clofe and refined reafoning with which thofe Autbors' writings are replete, renders them unfit for learners in general, and entirely ufeless to tbofe unadijted by a Tiutor: They bave confulted more the elegance of their diEtion, and refined demonftrations, tban the method of conveying their knowledge to their readers. Others again, in attempting to render their jubjects at tainable to the weakeft minds, bave been fo prolix and voluminous, as even to difcourage a learner at the fight of their works: Thbus, we jee that writers in general, aim at the extremes, while the true and proper medium is for the mof part omited. Propriety tbcrefore, and compatibility

(vi)

compatibility ougbt always to be the grand text, wbile, fimplicity joined with brevity leads the chain of argument.

In all countries, where the fciences are cultivateds local interefts bave been particularly confidered, which muft therefore exclude thofe who neglect the cultivation of the Arts and Sciences, from many advantages of their works.

Taking into confideration the works of thofe who bave gone before us on this Jubject, the utility of an alteration appeared manifeft, while reafon and convenience urged. the praiticability thereof.

In the profecution of this plan, we bave in the firft Book of the prefent Volume, explained the rudiments: and application of numbers; beginning with the properties of an unit, we bave led the learner by eafy and natural gradations to the moft remote analogies of the fcience. In all the calculations relating to money, we bave made ufe of the Federal Money, or Money of the United. States, qubich is not only mucb more concife than the prefent practice by pounds, Billings, EJc. but it is equal!y eftimable for its fimplicity and brevity. The denominations of this money being in a decimal ratio, are therefore above all other numbers, the mof natural and eafy to be managed, and which muft consequently give it a preference to any other metbod whatever.

The fubject of the fecond Book is Algebra, or the analytic art; which above allothers is the mof extenfive and fublime. It was by this, with the confo. deration of motion, that one did in fome ineafure do bonour to bnman nature itfelf, by bis almoft divine invention*; which fucceeding ages will viere with pleaf. ing admiration.

[^0]
(vii)

Algebra is a general metbod of difcovering truth in all cajes where proper data can be eftabliked, witb tbe greateft expedition, elegance and eafe.

In delivering the rudiments of this ficnce, we bave particularly confulted the eafe and accomodation of the learner, by confining every thing within thesphere of the ingenious Student, and therefore, exploding thofe tedious and complicated explanations, wibich are comanculy to be found in autbors on this fubject. The leading queftions are 乃oort and fimple, and the method of arguing brief and conspicuous; wbich particular, altbougb of tbe lajt importance to facilitate the progress of learners, is too much neglected by moft writers, and confequently, deter many from becoming acquainted with this interefting and important acquirement. Great attention bas been paid to render the doctrine of irrational quantities plain and intelligible, particularly the metbod of expanding quantities into infinite Series, and noting their powers and roots, which is a matter of the laft importance in the bigber branches of the Matbematics. And finally, through the whole of the folloreing Joeets, Implicity and brevity bas been our general aim, and at the fame time to explode all foreign and provincial cuftoms, and adapt the robole to the practice and convenience of the United States.

Thus far, for the fatisfaction of the learner, we bave explained the economy of the prefent performance, we Thall now fubmit it to the candid public, and from the pains we have taken to render the JubjeEt ufcful to learners in general, are not without bopes of its meeting with their approbation.

The AUTHORS.

 Prefton (Connecticut) July, 1790.
RECOMMENDATIONS.

Extract of a letter from $M r$. Nathan Daboll, Teacher of Matbematics and Aftronomy, in the Academic School in Plainfield, to the Autbors; dated March 1, 1787.

Gentlemen,
" HA VE perufed the firt Volume of your new courfe of introductory Mathematics, entitled the american youth; and it appears to me a work well executed, and compatible with its defign. You have given your rules and examples in a concife, plain and familiar manner, and confequently well-adapted your matter to the capacities of learners : I therefore efteem it a very valuable performance, and wifh you fuccefs in its publication, and that it may meet with an encouragement from the public equal to its merit."

RECOMMENDATIONS.

From Mr. Jared Mansfield, to the Autbors; dated New-Haven, December, 1787.

Geivtlemen,
" TOUR Treatife of Arithmetic and Algebra, I have perufed with care and attention, and have the pleafure of affuring you I think it a work of ingenuity and merit. - My reading of mathematical books hath been extenfive; yet I know of no writer who hath treated thefe fubjects in a more icientific and comprehenfive manner, and at the fame time accommodated his matter fo well to the capacities of learners, as I find to be done in your work. If you publifh it (which I hope you will not fail to (do) I have no doubt it will be received into our Schools and Seminaries, as it is high time that Ward, Hainmond, and other inferior treatifes now in common ufe, were exploded. For my own part, as a lover of Mathematics, I wifh you all poffible fuccefs, and that you may be encouraged to proceed, and write on the higher and more fublime branches of the Mathematics ; and that a fpirit of emulation may be excited among the Youth of America, to excel in thefe ufeful and exalted, but hitherto much-neglected purfuits."

RECOMMENDATIONS.

From Col. Samuel Mott to the Autbors, dated Prefon, April 28, 1788.

Gentlemen,
" TOUR Manufcript Treatife on Arithmetic and Algebra, entitled the american youth, has been put into my hands. I have paid particular attention in its perufal. I have heretofore been confiderably engaged in the reading and ftudy of authors upon the various branches of Mathematics, though of late. I have been more diverted from that purfuit. It has however given me great pleafure and fatisfaction to obferve the ingenuity, concifenefs and perfpicuity which appears in your work, notwithftanding the extenfive and finifhed refearches demonftrated in all your rules and examples; yet it appears to me exceedingly well accommodated to the capacity of a learner, and your method through the whole more eafy than any I have before feen. If you fhould publifh your book (which my high efteem for mathematical fcience, and fincere regard for the progrefs of literature among the youth of our country, induces me earneftly to wifh you may) juftice obliges me to fay, that I am clearly of opinion it will be found more ufeful among ftudents than any other author now extant upon the fubject. I fincerely wifh

RECOMMENDATIONS.

you fucceis, and that you may meet with every encouragement which the merit of fo important a work deferves."

From the Rev. Joseph Huntington, D. D. one of the Truftees of Dartmouth College, Ejc. to the Hon. John Douglas, Efq. dated Coventry, May 23, 1788.
" HAVE with much pleafure perufed the mathematical compofition in which the two Meffrs. Sterry's are united, and really think it worthy of publication and encouragement : The fcience of Arithmetic and Algebra has hitherto been extended nearly to its bounds, but I efteem this work an excellent piece for the ftudy of youth, to lead them to the knowledge of this ufeful fcience, fince it is more eafy and intelligible to tender capacities than any work of the kind preceaing, and this, more efpecially in the moft abftrufe part of the whole fcience, i.e. Algebra. I could wifh that you, Sir, and many other gentlemen, eminent for their friendfip to the liberal fciences, might pay attention to the work I have alluded to."

TABLE of CONTENTS.

PART I.
ChapterPage
I. Of Definitions and Illuftrations, 17
II. Of Notation or Numeration, 20
III. Of Addition of fimple whole Numbers, 22
IV. Of Subtraction of fimple whole Numbers, 27
V. Of Simple Multiplication, 30
VI. Of Divifion of Simple Numbers, 36
VII. Of Addition of Compound Quantities 48
VIII. Of Subtraction of Compounds, 60
IX. Of Multiplication, \& cc. of Compounds, 63
X. Of Reduction, 68
P A R T II.
I. Of Definitions and Illuffrations, 76
II. Of Reduction of Vulgar-Fractions, 78
III. Of Addition, \&cc. of Vulgar Fractions, 95
PART III.
I. Of Definitions and Illuftrations, 100
II. Of Addition, \&c. of Decimal Fractions, 102
III. Of Reduction of Decimals, 114

(xiv)

A Supplement to P A R T III.
Chap. Page
I. Of Definitions and Illuftrations, 119
II. Of Reduction of circulating Decimals, 121
III. Of Addition, \&cc. of circulating Decimals, 127
A Supplement to PARTI.

1. Of Proportion, or Analogy, 132
II. Of Disjunct Proportion, 149
III. Of Simple Intereft, 162
IV. Of Compound Intereft, 179
V. Of Rebate, or Difcount, 183
VI. Of Equation of Payments, 187
VII. Of Barrer, 189
VIIi. Of Lofs and Gain, 191
IX. Of Fellowfhip, 193
X. Of Compound Proportion, 200
XI. Of Conjoined Proportion, 204
XII. Of Allegation, 206
XIII. Of Pofition, or the Gueffing Rule, 214
XIV. Concerning Permutation \& Combination, 218
XV. Of Involution, 228
XVI. Of Evolution, 229

BOOK II.

I. Of Definitions and Illuftrations 241
II. Of Addition of whole Quantities, 245
III. Of Subtraction of whole Quantities, 248
IV. Of Multiplication, 249
V. Of Divifion, 252
VI. Of Involution of whole Quantities, 257

(xv)

Chap. Page
VII. Of Multiplication and Divifion of Powers, 26
VIII. Of Evolution of whole Quantities, 268
IX. Of Algebraic Fractions, 273
X. Concerning Surd Quantities, 285
XI. Of infinite Series, 296
XII. Of Proportion, 306
XIII. Of fimple Equations, 315
XIV. Of Extermination of unknownQuantities, $32 \mathbf{2}$
XV. Solution of a Variety of Queftions, 330
XVI. Of Quadratic Equations, 34 I
XVII. Solution of Queftions with Quadratics, 348
XVIII. Of the Genelis of Equations, 355
XIX. Of the Transformation of Equations, \&cc. 362
XX. Of the Refolution of Equations byDivifors, 363
XXI. Of finding the Roots of numeral Equa-
tions, by the Method of Approximation, 373
XXII. Concerning unlimited Problems, 377

ALTHOUGH the Authors ex-

 amine the Proof-Sheets, yet the following escaped their Notice.
ERRATA.

PAGE 28, lat line, dele See the Example. P. 34, 1. I2. read 695.30000. 1. 14, r. 720800 . P. 35, 1. 18, for 3, r. 4. P. $55,1.4$, r. content. 1. 24 , for 3 qr. 3 na. r. 1 qr. 3 na. 1.26, for 3 qr. 2 na. r. 1. qr. = na. P. 67, 1. 4, r. 105 dol. P. 74, 1. 9, r. 56388. 1. 19, r. 15480 yards. P. $77,1.20$, for in, r. is. P. $80,1$. re, for is, r. 15. P. 85,1 . I, for $20 \frac{8}{20} \div 20$, r. $20 \frac{8}{20} \div 24$. P. 100, 1. 15 , for 5 , r. 5. P. 106, 1. 20, r. preceding. P. 107, 1. 27, r. $8=$ P. $113,1.12, r .31 .415$, \&cc. P. 132, 1.25, r. numbers. P. 157, 1. 13, r. operation. P. 169, 1. I3, r. 49 cts. P. 193, l. 7, r. 51 dol. $72 \frac{24}{58}$ cts. 1. 15 , r. fellowfhip. P. $322,1.5$, r. $6 \times 2 \times 6$. P. 245,1 . 16 , for $+2 a$, r. $+2 b$. P. 246, for $a x$, r. $a z$. P. 249, for $\sqrt{ }$ aw - $y b$, r. $\sqrt{\text { arv-yb }}$. P. 266, 1. 16 , r. $\left.\overline{x+y}\right|^{2} \div\left.\overline{x+y}\right|^{2} . \quad$ P. 238, for $a^{\frac{3}{6}}$, r. $a^{\frac{2}{6}}$. P. $353,1.16$, for lat, r. xvi. P. $357,1.19$, r. $v=-$ c. P. $379,1.9$, read axiom 8 . 1. Io, r. axiom 8. 1. 18 , r. axiom 8 . P. $380,1$. r, r. ax. 7. 1. 2, r. ax. 9. 1. 3, r. ax. 8. 1. 5 , r. ax. 8 .

B O O K I.

OF ARITHMETIC.

PART I.

ARITHMETIC OF WHOLE NUMBERS.

CHAP. I.

Of DEFINITIONS and ILLUST'RATIONS.

ARITHMETIC confifts of three parts; two of which are natural, and the third artificial. The firft part of natural Arithmetic, is wherein an unit or integer reprefents one whole quantity, of any kind or fpecies; and is therefore ftiled Arithmetic of whole numbers. The fecond part of natural Arithmetic, is wherein an unit is confidered as broker or divided into parts, either even or uneven, which are confidered either as pure parts of an unit, or as parts mixed with an unit ; and is ufually, ftiled the doctrine of vulgar fractions. The third part, or artificial Arithmetic, is an eafy and elegant method of managing fractional, or broken quantities ; the operations are nearly fimilar to thofe of whole numbers. This part is of general ufe in the various branches of the Mathematics.

The operations of common Arithmetic in all its parts, are performed by the various ordering and difpofing of ten Arabic characters, or numeral figures ; which are thefe following, viz. one two three four five fix feven eight nine cypher

1	2	3	4	5	6	7	8	9	0

An unit (by Euclid) is that by which every thing that is, is one; and number is compofed of a multitude of units.

Nine of the aforefaid figures, are compofed of units ; each character reprefenting fo many units put together in one fum, as was intended they fhould denote; nine of thofe units, being the greateft number which is thought beft for any one character to reprefent ; the laft of the before-mentioned characters, is a cypher, or as fome call it a nothing; for of itfelf it is nothing ; becaufe, if ever fo many cyphers be added to, or fubtracted from an unit or number, they will neither increafe nor diminifh its value : confequently a cypher of itfelf is no affignable quantity ; but cyphers annexed or prefixed to an unit or number, will increafe, or diminifh that unit or number in a tenfold proportion.

That the learner may underftand the following Theets, it is abfolutely neceffary for him to be well acquainted with the following Algebraic figns. Signs \& Names. Significations.

+ Plus, or more, $\{$ is the fign of Addition: as $4+6$; which denotes that 6 is to be added to 4 , and is read thus, 4 more 6.
is the fign of, Subtraction: as
- Minus, or lefs, $\{4-2$, which fignifies that 2 is to be taken from 4 ; and is read thus, 4 lefs 2.

The whole doctrine of Number is founded on the five following general rules, 10 wit, Notation, Addition, Subtraction, Multiplication and Divifion.

(20)

CHAP. II.

Of NOTATION or NUMERATION.

NOTATION or Numeration teaches us, how to exprefs the value of figures ; and confequently to note or write down any propofed number, according to its juft value ; in the operation of which, two things muft be obferved, viz, the order of writing down figures, and the method of valuing each in its proper place, as in the following Table :

Here

(21)

Here the order of reckoning begins on the right hand, to wit, at unity, and fo on as the table directs. But to make the underftanding of this table plain, it is required to exprefs the value of the numeral figures 321 . Firft, beginning at the firt figure on the right hand, viz. at 1 , which ftands in the units' place, where it reprefents its own fimple value, which is an unit, or 1 ; the next to be confidered is the figure 2 , which ftands in the tens ${ }^{2}$ place, reprefenting to many tens, as the figure 2 is compofed of units, which are two; fo that the figure 2 ftanding in the place of eens reprefents 2 tens, or 20 ; the next figure, 3, ftands in the hundreds' place, and fignifies as many hundreds as the faid figure hath units, viz. 3, that is, three hundred : now, if the whole value of the figures 32 I be expreffed, the expreffion will be three hundred twenty-one. Altho the figure 3 , is in the laft place on the right, or the firlt on the left, yet when we come to read or exprefs them, we begin with the figure 3 ; becaufe the method of reading figures is the fame as that of words. Hence the firft figure in numbering, is the firft figure on the right hand; but in reading or expreffing the value of numbers, the firft figure in the expreflion is the firt figure on the left hand. Again, let it be required to read or exprefs 7645 . Here as before, the firft figure of the propofed number, to wit. 5, Itands in the units' place, and is 5 units, or five, the fecond figure which is 4 , is in the tens' place, and is four tens or 40 , the third figure which is 6 , in the hundreds' place, is called hundreds, and the fourth figure, which ftands in the thoufands' place, is for the fame reafon called thoufands; and the expreffion for the whole value, beginning as before, is feven thpufand fix hundred forty-five.

If what has been faid concerning notation and valuation of figures, be thoroughly confidered, together with the following examples and their anfwers, the whole bufinefs of Numeration will appear plain to the meaneft capacity.

EXAMPLES.

What is the value of 56434 ?
Anfwer. Fifty-fix thoufand four bundred tbirty-four. What is the value of 7843217 ?
Anf. Seven million eight bundred forty-tbree thoufand troo bundred ferenteen.

What is the value of 640036 ?
Anf. Six bundred forty thoufand thirty-fix.
What is 891000002 ?
Anf. Eigbt bundred ninety-one million troo.

C H A P. III.

Of ADDITION of SIMPLE WHOLE NUMBERS.

ADDITION is the collecting or putting together feveral quantities or numbers into one fum, fo that their total amount may be known ; and in order to perform the operations of this rule, two things muft be carefully obferved, which are, Firft, the right placing or fetting each figure in its proper place ; that is, units muft fand under units, tens under tens, hundreds under hundreds, and fo on, fetting each denomination under that of the fame value: thus $246+25+163$, being fet as directed, will ftand thus,

$$
\text { thus, } \frac{23)}{\left\{\begin{array}{l}
246 \\
25 \\
163
\end{array}\right.}
$$

The fecond thing to be obferved, is the right collecting or adding together each perpendicular row of figures, placed as before directed; which is performed as in the following example, being the fame as made ufe of above, viz. $246+25+163$:

$$
\text { or thus, }\left\{\begin{array}{l}
246 \\
25 \\
163
\end{array}\right.
$$

Then ftriking a line beneath the figures, as in the example ; begin on the right hand at the units' place, adding together all thofe figures which ftand in the units' place, and if their fum be under ten, fet it down underneath in the units' place; but if their fum exceed ten, fet down the furplus, carrying one to the next place, viz. the tens' place : or, more generally, as many tens as the fum of thofe units amounts to, you mult carry to the next place of figures, to wit, the tens' place, adding them up with all the figures that fland in that perpendicular line; and fo on for the reft ; remembering to carry one for every ten of your aggregate: the whole of which will be illuftrated in the following

EXAMPLE.

Find the fum of the following numbers, viz. $392+466+256$.

Those numbers being placed as the rule directs, will ftand

III4二fum required.
Then

Then begin with the bottom figure, in the units' place ; faying 6 and 6 is 12 , and 2 is 14 ; fetting down 4 , carry 1 to the next, or place of tens, faying 5 and I that I carry make 6, and 6 is 12 , and 9 is 21 ; here becaufe the aggregate or fum total is 21 units (or becaufe it ftands in the tens' place) 2 tens and one unit ; therefore fet down I and carry 2 to the next place, faying 2 and 2 that I carry make 4 , and 4 is 8 , and 3 is 11 ; which being the fum of the laft place of figures in the example, fer down the whole. [See the work at the bottom of the preceding page.]

The reafon of fetting down the furplus, or odd figures, and carrying for the tens, as in the laft and all other examples in addition of fimple quantities, is to fhorten the work under confideration; and to fave the trouble of ufing fuperfluous figures. To exemplify which, let us make ufe of the foregoing example, to wit, $392+466+256$, which mult be placed
thus, $\left|\begin{array}{l|l|l}3 & 9 & 2 \\ 4 & 6 & 6 \\ 2 & 5 & 6\end{array}\right|$

$$
\begin{array}{|l|l|l|l|l}
& & \text { the fum of the row of units } \\
2 & 0 & 0 & \begin{array}{l}
\text { the fum of the row of tens } \\
\text { the unw of the rowe of bundreds }
\end{array} \\
9 & 0 & 0 & \text { the jum of the whole; }
\end{array}
$$

then adding up each fingle row, fet down its fum in its proper place, in the fame manner as if there were but one fingle row; fupplying the vacant places on the right hand with cyphers. Hence the refult of this operation is the fame as in the former method of carrying for the tens; and hence alfo it appears, that, adding the cyphers, makes no alteration in the value of the fum of the other figures.

(25)

The manner of proving your work, flows as a natural confequent, from the following felf-evident propofition, on which the truth of the rule depends, viz. that every whole is equal to all its parts taken together. Wherefore if you divide, or feperate the given numbers into two, or more parcels, according to your propofition; and by adding together each part fo feperated, if the fum of all thofe pasts added together, is equal to the fum total of all the given numbers, found before feperation, your work is right.

This method will appear plain by the following example. Suppofe it were required to add together the following numbers, viz. $3489+6725+2324+$ 6744 ; which according to the rule of Notation muft ftand thus,

$$
\begin{aligned}
& 3489 \\
& 6725 \\
& 2324 \\
& 6744
\end{aligned}
$$

$19282=$ fum before Seperation.
 Second
part $\underline{\left\{\begin{array}{l}2324 \\ 6744\end{array}\right.} \begin{array}{r}9068=\text { fum of } \\ \text { Second part. }\end{array}$
The fum of the firf and Second parts $\left\{\begin{array}{r}9068 \\ 10214\end{array}\right.$
Sum of all the parts 19282
which agrees with the fum total before feperation; therefore the work is right. But the moft ufual methods of proving Addition, is either by beginning at the top, and reckoning downwards; which fum, if equal to that found by cafting upwards, the work is right. Or, firft add together all the propofed num-

(26)

bers into one fum; then feperate the upper number from the reft, by a line, and add together the remaining numbers beneath; placing their fum under the former, or fum total before feperation ; which being done, add the fum laft found to the upper line in your example; which fum, if equal to the fum total or firft addition, the work is right: this is the fame in effect, as the firft method of proof, though a little different in mode, as will appear by the following example.

$$
\begin{aligned}
& \frac{34678}{24532} \\
& 12760 \\
& 53865 \\
& 21671
\end{aligned}
$$

$$
\begin{aligned}
& 147506=\text { fum of the whole } \\
& \text { II } 2828 \text { = fum of all but the upper line }
\end{aligned}
$$

$$
147506=34678+112828=\text { fum of the whole : }
$$ therefore the work is right.

Take the following examples, without their anfwers, for practice.

		2	6538764
$3457643{ }^{\circ}$	460039	372	875623
4567012	914321	42734	43521
2354123	675422	8173456	6300
1678432	342310	37240	579
		42 I	84
		2	1

CHAP.

(27)

C H A P. IV.

Of SUBTRACTION of SIMPLE WHOLE NUMBERS.

SUBTRACTION is the taking one number out of another; whereby the remainder, difference, or excefs may be known : thus 3 taken out or from 5 , leaves 2 , which is the difference between 3 and 5 ; and is alfo the excefs of 5 above 3 .

Hence it follows, that the number from which fubtraction is to be made, muft be equal to, or greater than the fuburahend, or number to be fubtracted ; and alfo, that Subtraction is the reverfe of Addition; for Subtraction is the taking of one number from another, but Addition is the collecting or putting them together.

Here the Notation is the fame as in Addition, to wit, thofe numbers which are of like value, muft ftand directly beneath each other; that is, units muft ftand under units, tens under tens, \&cc. After having thus placed your numbers, the lefs beneath the greater, you may proceed to fubtract them apart, by obferving the following

$$
R U L E .
$$

Begin with the firft figureon the right-hand, whicli ftands in the units' place, and fubtract the lower figure from that which ftands directly over it, of the fame value; fetting down the remainder (if any) beneath in the units' place: If the figure in your fubtrahend be equal to the figure which ftands directly over it, you muft fet a cypher for the remainder; but if the lower, or figure in your fubtrahend, contains more units than your upper figure, you muft add 10 to the upper figure, or fuppofe it to be fo add-

(28)

ed in your mind; then fubtract your lower figure from your upper fo increafed, fetting down the remainder or difference in its proper place ; then proceed to your next place of figures; now it is fuppofed that the 10 you before added was borrowed from your next fuperior place of figures, where you muft pay what you before borrowed, which is performed as the ufual method is, by calling the lower figure, ftanding in that place, ane more than it really is ; then fubtracting it fo augmented, from your upper figure, or figure ftanding directly over it, fet down the difference as before directed; and foon, from one place of figures to another, until the whole be completed; the whole of which, is illuftrated in the following
EXAMPLES.

Suppose, that from 4567 , you were to fubtract 3692 ; which numbers, being placed according to the rule, will ftand

$$
\text { thus, }\left\{\begin{array}{l}
4567 \\
3^{6} 92
\end{array}\right.
$$

Here begin with the 2 , faying 2 from 7 and there remains 5 , fetting it down as directed; then proceed to your next place of figures, faying 9 from 6 I cannot, becaufe my lower figure, to wit, 9 , contains more units than my upper, or figure from which I would fubtract; therefore I fuppofe 10 to be added to the upper figure which makes 16 ; then faying 9 from 16 and there remains 7 ; then proceed to the next place, where you muft pay what you have borrowed, by faying 6 and 1 that I borrowed make 7 ; then 7 from 5 I cannot, but 7 from $5+10=15$, and there remains 8 ; then to the next place, faying 3 and I that I borrowed make 4,4 from 5 and there remains I; now there being no more places of figures, fet down the 1 and the work is done.

The truth of fubtraction is founded on the fanse felf-evident propofition, or axiom, as that of Addition, viz. the whole is equal to all its parts taker together. From which propofition is deduced the following method of proving your work, to wit, by adding the fubtrahend, or number to be fubtracted, to the remainder : for the number from which fubtraction is made, is here confidered as the whole, and the fubtrahend, as a part of that whole; confequently if that part be taken from the whole, the remainder will be the other part; therefore if both parts when added together, be equal to the whole, the work is right.

Hence it is manifeft that fubtraction may be proved by fubtraction; for if from

67834 the whole, is taken 53723 a part of that whole,
there will remain 14 III the other part; and if from 67834 the whole, there is taken the laft part 1411 i
there will remain 53723 the firft part, or fubtrahend: confequently, \&xc.

Again, if from 27942 the whole, is taken 13724 a part of that whole;
there will remain 14218 the other part, $27942=$ fum of the fubtrahend and remainder the whole.

TAKE the following examples for practice.

CHAP. V.

C H A P. V.

Of SIMPLE MULTIPLICATION.

MULTIPLICATION is a rule by which a given number may be increafed any number of times propofed.

There are three requifites in Multiplication : firf, the multiplicand, or number to be multiplied : fecond, the multiplier, which denotes how many times the multiplicand is to be taken; for by Euclid, as many units as there are in the multiplier, fo many times is the multiplicand to be added to itfelf: third, the product, or multiplicand increafed fo many times as there are units in the multiplier.

Suppose for example, that 7 be increafed 4 times; that is, to multiply 7 into or with 4 ; thefe numbers muft be placed as in Addition,

$$
\text { thus, }\left\{\begin{array}{l}
7 \text { multiplicand } \\
4 \text { multiplier }
\end{array}\right.
$$

28 product.
Now that 4 times 7 make 28, will appear evident by fetting down the multiplicand 4 times, and adding up the whole, as in this, $\left\{\begin{array}{l}7 \\ 7 \\ 7 \\ 7\end{array}\right.$

$$
28=\text { fum or product. }
$$

Hence it is plain, that multiplication is a concife method of Addition.

But before you proceed any further on the fubject of multiplication, you muft learn the following Table:

MULTIPLICATION TABLE.

1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10	12	14	16	18	20	22	24
3	6	9	12	15	18	21	24	27	30	33	36
4	8	12	16	20	24	28	32	36	40	44	48
5	10	15	20	25	30	35	40	45	50	55	60
6	12	18	24	30	36	42	4^{8}	54	60	66	72
7	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	56	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

For an explanation of the foregoing Table, fuppofe that it were required to find the product of 3×4. Firft, look in the left hand column for 3 , and right oppofite with it in the column under 4 at the top, is 12, the product of 3×4.

Again, to find the product of 9×12. Look for 9 in the left hand column as before, and right oppofite to it, under 12 in the upper column, is 108, the product required; and the like is to be undertood of all the reft.

Having given you this fhort, but comprehenfive idea of the foregoing Table, we fhall now proceed to examples,
examples, with this caution, to wit, that in multiplying, care muft be taken, that the product of the firft figures, ftand directly under its multiplier; alfo remembering to carry i for every 10 of the product.

EXAMPLES.
IT is required to multiply 120×94; which placed as before directed will ftand thus,

120 multiplicand
94 multiplier
480
1080

11280 produck.

Here you begin with that figure of your multiplier, which ftands in the units' place, viz. 4, faying 4 times O is O, which fet down directly under the figure you are multiplying with; then fay 4 times 2 is 8 , which fet under the 9 ; then 4 times I is 4 , which alfo place as in the example; and the product of the multiplicand with the firft figure of your multiplier, is 480 : then begin with the next figure of your multiplier, faying 9 times O is O, which place under your multiplying figure, then fay 9 times 2 is 18 ; here fet down 8 and carry 1 to the next place, faying 9 times I is 9 , and I that I carry makes 10; now this being the product of the laft place of figures, fet down the whole, and the product of the multiplicand, with the fecond figure of your multiplier is 1080 , or more properly 10800: then adding up both products, their fum is 11280 , the product required. (See the example above.)

Ir is required to multiply 2439×421; thefe numbers placed as directed will ftand

$$
\text { thus, } \begin{gathered}
\left\{\begin{array}{r}
2439 \\
421
\end{array}\right\} \text { faitors } \\
2439 \text { =produEZ of } 2439 \times 1 \\
48780=\text { produEt of } 2439 \times 20 \\
\frac{975600}{}=\text { produEt of } 2439 \times 400 \\
1026819
\end{gathered}=\text { product of } 2439 \times 4210
$$

The annexing of cyphers, as in the laft example, is to fupply the vacant places; and to fhew the feveral products are increafed in a tenfold proportion, with regard to the places in which your multiplying figures ftand. Thus the product of the multiplicand with the fecond figure of your multiplier, is not the product of 2439×2, but the product of 2439×2 tens or 20 ; which product is 10 times more than it would have been, had the multiplying figure (2) ftood in the units' place; fo alfo the annexing of two cyphers, as in the product of the multiplicand with the third figure of the multiplier, to wit, 4 , is becaufe that figure ftands in the hundreds' place; and therefore the product is not 2439×4, but really the product of 2439×400; yet thofe cyphers may be omitted, by obferving the direction in the beginning of this chapter, viz. that the firft figure of the feveral products ftand directly beneath its correfponding figure of the multiplier.

Find the product of $24354 i<32001$
thus, $\left\{\begin{array}{l}24354 \\ 32001\end{array}\right\}$ factors
$\quad 24354$
48708
73062

$779352354=24354 \times 32001=$ produEt required.
 E
 Here

(34)

Here you may obferve that we pafs the cyphers, taking care only to place the next figure according to the foregoing directions.

When there are cyphers on the right-hand of the multiplicand, or multiplier, or to both, you may multiply the figures as before, neglecting the cyphers, until you have found the product of the digets only; to which annex fo many cyphers as there are in both factors: as in thefe,

$\left.\begin{array}{l}24000000 \\ 24000000\end{array}\right\}$ factors

$576000000000000=24000000 \times 24000000$

If it be required to multiply any number with $10,100,1000, \& c$. you need only annex to your multiplicand fo many cyphers as are in the multiplier, and the work is done; as in the following,

```
4647\times10=46470
5224\times1000=5224000
\(20 \times 100=2000\)
\(300 \times 1000=300000\)
\(26460 \times 10000=264600000\)
```

Here it may perhaps be ufeful, to acquaint the learner of the method of performing Multiplication by Addition; which in fome cafes will be found ufe-

(35)

ful : the method is as follows: firft, fet down the, digets, or numeral figures, in a fmall column made for that purpofe ; then againft I, place the multiplicand, againft 2, double the multiplicand, againft 3, three times the multiplicand, and fo on to the laft.

Find the product of 2439×421 by Addition.

$$
\begin{array}{|l|ccc}
1 & 2439=\text { multiplicand } \\
2 & 4878=2 & \text { times } & \text { do. } \\
3 & 7317=3 & \text { do. } & \text { do. } \\
4 & 9756=4 & \text { do. } & \text { do. } \\
5 & 12195=5 & \text { do. } & \text { do. } \\
6 & 14634=6 & \text { do. } & \text { do. } \\
7 & 17073=7 & \text { do. } & \text { do. } \\
8 & 19512=8 & \text { do. } & \text { do. } \\
9 & 21951=9 & \text { do. } & \text { do. }
\end{array}
$$

2gainft $\begin{cases}1 & \text { is } \\ 2 & 2439 \\ 4 & 4878 \\ 4 & 9756\end{cases}$
Sum $1026819=2439 \times 421=$ prod. req.
Here it is evident, that the foregoing table will ferve let the multiplier be any number whatever; for fuppofe it were required to find the product of 2439×6734.

> OPERATION.

Sum $16424226=2439 \times 6734=$ prod.req.
EXAM-

EXAMPLES.

$$
\begin{gathered}
691861 \times 26=17988386 \\
346732 \times 65=226069264 \\
7901375 \times 30000=237041250000 \\
129186 \times 98=12660228 \\
76001 \times 1302=98953302 \\
3581 \times 2007=7187067
\end{gathered}
$$

The proof of Multiplication, is beft done by Divifion.

C H A P. VI.

Of DIVISION of SIMPLE NUMBERS.

DI VISION is a fpeedy method of fubtracting one number from another; to know how many times one number is contained in another ; and alfo what remains.

There are three requifites in Divifion; the divifor; the dividend, and the quotient; which fhews how, many times the divifor is contained in the dividend.

When any number meafures another, the number fo meafured, is faid to be a multiple of the other : thus, 21 is meafured by 7 , for 7 is contained juft 3 times in 21 ; confequently 21 is a multiple of 7 .

One number is faid to meafure another, by a third number, when it either multiplies, or is multiplied by the meafuring number, produces the number meafured. (See Euclid's 7 th book, def. 23.)

Hence it follows, that in Divifion the quotient muft be fuch a number, which if multiplied with the divifor, will produce the dividend; confequently

Divifion

37)

Divifion is the reverfe of Multiplication ; and therefore operations in Divifion, muft be performed directly reverfe of thofe in Multiplication; that is, the divifor muft be placed firft ; then make a ftroke on the right-hand of it, and fet down your dividend, on the right-hand of which, make another ftroke, to feperate the dividend from the quotient ; then begin on the left-hand, and decreafe the dividend by a repeated fubtraction of the products of the divifor and each quotient figure, as they become known.

EXAMPLES.

Required to divide 344 by 4 ; the operation of which will ftand in the following order,

> dividend divifor 4) $344(86$ quotient $\frac{32}{}$ 24 24 $-\infty 0$

The explanation of the above is as follows: firtt enquire how many times your divifor, which confitts of I figure, is contained in the firtt figure of vour dividend, which is o times ; becaufe your divifor (4) is greater, than the firft figure of your dividend (3), as appears by infpection; and therefore cannot meafure it ; for a greater number to meafure a lefs is abfurd; therefore you muft increafe the value of the firft figure of the dividend, by taking the annexed figure (4) into the expreffion; which will then be 34 (for the reafons before given) ; then enquire how many times your divifor is contained in thofe two figures
of the dividend, to wit, 34 ; which is 8 times, for 8 times 4 is 32 , and 32 being the greateft multiple of the divifor that can be made under 34 ; confequently 8 muft be the firft figure of the quotient, which place as in the example ; then multiplying the quotient figure (8) with your divifor, as in Multiplication, fubtract their product from thofe two figures of the dividend, by which the faid quotient figure was obtained; and to the remainder (2) annex the next figure of your dividend (4), and the remainder fo increafed becomes 24 ; then enquire how many times 4 is contained in 24 , which is 6 times; therefore place 6 in the quotient, and multiply it with your divifor, fubtracting their product as before, and the work is done. (See the example page 37.)

Now the quotient obtained in the example is 86 ; and there being no remainder, fhews that 4 is contained in 344 , juft 86 times.

The greateft difficulty in divifion, is when your divifor confifts of many places of figures, and does not exactly meafure the figures of the dividend with which you compare it : therefore to find the right quotient figure, may be done by confidering that the product of the quotient figure with your divifor, mult never be greater than that part of the dividend, with which you compare it ; nor yet fo fmall, that the number remaining after fubtracting the product of the quotient figure and divifor from the aforefaid part of the dividend, fhall be greater than the divifor. Therefore by fuppofing a figure for the quotient, and multiplying it with a figure or two on the left-hand of your divifor, you may eafily determine the right quotient figure ; which may be obtained by fuch mental operations, on the fecond or third trial, at fartheft.

By thoroughly obferving the foregoing directions, you may proceed to the performance of the following examples;

(39)

examples; wherein we fhall prove thofe operations, performed in the laft chapter; in order to which, we fhall begin with the fecond example; taking the product of the factors for a dividend, and the multiplier for a divifor; and proceed as before. (See the operation annexed.)

$$
\begin{aligned}
& \text { dividend } \\
& \text { divifor } 42 \mathrm{I}) \\
& \frac{10268 \mathrm{I} 9(2439 \text { quotient }}{842 \cdots} \\
& \frac{1848}{1684} \\
& \frac{1641}{164} \\
& 1263 \\
& \hline 3789 \\
& 3789
\end{aligned}
$$

Note, It will be bojt to point the figures of the dividend, as they are annexed to the feveral remainders; without wbich you may annex a wrong one.

Here you may fee the quotient is the fame as the multiplicand of the example before quoted; which proves that the product of $2439 \times 421=1026819$.

Required to divide 779352354 by 32001 .

```
                (40)
                OPERATION.
32001)779352354(24354=779352354\div32001
    64002
139332
128004
113283
96003
    172805
    160005
    12800.4
128004
.....0
```

Again, divide $17988{ }_{3} 6$ by 26 .
OPERATION.
26) $)_{156}^{1798836(69186=1798836 \div 26}$
238

234
48
26
223
208

156
156

Once more, divide 12660228 by 98 . OPERATION:
98) ${ }_{98}^{12660228(129186=q u o t i e n t ~ r e q u i r e d . ~}$
286
196
900 882

$$
182
$$

98
842
784
588
588

If there be cyphers annexed to the divifor and dividend, expunge an equal number in both factors: as in the following example.

Divide 694000 by 2000 .

OPERATION.

$2(000) \frac{694(000(347=694000 \div 2000}{6}$

(42)

It will fometimes happen in Divifion, that the remainder, when augmented by annexing the next figure of the dividend, is lees than the divifor, and consequently cannot be meafured by it; in which cafe, place o in the quotient, and annex the next figure of the dividend to the former number; but if this number be fill left than the divifor, place o in the quotient and annex another figure of the dividend; and fo on, in like manner till the faid nombeer be fo increafed, that it may be meafured by the divifor. (See this illuftrated in the following.)

Divide 98953302 by 1302 .
OPERATION.
$1302)_{9114}^{98953302}(76001=98953302 \div 1302$

```
7813
```

7812

1302
1302
... 0

The proof of the remaining examples in Multiplication, are left to the fagacity of the learner.

It is required to divide 32176432 by 3476 .

OP ER-

(43$)$
 OPERATION.

8924 6952
19723 17380
23432 20856
2576 remainder.

Here follows fome examples and their anfwers without their work.

What is the quotient of $23884044718 \div 45007$?
Anfwer. 530674.
What is the quotient of $34500000 \div 100000$?
Anfwer. 345.
What is the quotient of $244572000 \div 356$?
Anjwer. 687000.
What is the quotient of $1332250 \div 365$? Anfwer. 3650.

That Divifion is a fpeedy method of fubtraction, as before hinted, may be thus proved. Suppofe 18 were to be divided by 6 : firft fubtract the divifor from the dividend, and the divifor again from that remainder, and fo on till nothing remains. (Sae the operation in the next page.)

OPER-

OPERATION.

18 dividend
-6 divifor
12 remainder
-6 divifor

> 6 remainder
> -6 divifor

0

Hence it is manifeft, that the divifor is contained in the dividend, juft 3 times; that is, 3 times $6=18$: confequently, \&c. 2. E. D.

The next thing to be confidered, is the proof of your work, i. e. whether the quotient found is a true one. The method is directly reverfe of that ufed for the proof of Multiplication; for, as the truth of Multiplication is known by Divifion, fo that of Divifion is known by Multiplication; that is, by multiplying the quotient with the divifor, which product mutt be equal to the dividend; therefore multiply the quotient with the divifor, and to their product add what remains after divifion; which aggregate will be equal to the dividend, if the work is right.

There is another method of proving Divifion; which is much fhorter than the former, and is no more than adding together the products of the feveral quotient figures with the divifor, as they ftand in your operation; which aggregate, together with the remainder, will be equal to the dividend. (See the following example.)

Required to divide 8765452 by 3463 .
O PER-.

$$
\begin{aligned}
& \text { (} 45 \text {) } \\
& \text { OPERATION. } \\
& \begin{array}{l}
3463) 8765452(2531 \\
+6926 \cdots=3463 \times 2000
\end{array} \\
& 18394 \\
& +17315=3463 \times 500 \\
& 10795 \\
& +103^{89}=3463 \times 30 \\
& 4062 \\
& +3463=346_{3} \times 1 \\
& +599 \text { remainder } \\
& 8765452=\text { dividend. }
\end{aligned}
$$

Or, $6926000+1731500+103^{8} 90+3463+599=$ 8765452. Therefore, \&cc.

A Supplement to Chapter VI.

TOTWITHSTANDING what hath been faid on this fubject, refpecting the divifion of fimple quantities, is univerfally true; yet there is another method of dividing quantities, which is very ready in practice ; and is therefore called Short Divifion: this method is performed by the following Rules.

$$
R U L E \quad I
$$

Arrange the factors as before in Divifion; then by comparing the divifor with the dividend, you

(46)

will obtain a quotient figure, which mult be fet in its proper place, under that part of the dividend by which your divifor was compared ; valuing faid figure as though there were no other; alfo obtain the difference (if any) of the product of the divifor and quotient figure, and the aforefaid part of the dividend; prefixing that difference in your mind to the next figure of your dividend ; which forms an expreffion for obtaining the next quotient figure, which muft be fet directly under that figure, to which the difference was prefixed; and fo on till the whole be completed.

> EXAMPLES.

Divide 46782 by 3 .
Those numbers being placed as directed will ftand thus,

$$
\text { 3) } \frac{46782}{15594}=46782 \div 3
$$

Again, divide 68432 by 4 :

$$
\text { thus, } 4 \longdiv { 6 8 4 3 2 } \frac { 1 7 1 0 8 } { } = \text { quotient required. }
$$

Note 1. If there be a remainder after the laft quotient figure is found, Set it at a little diftance on the right-band of your quotient, making a dot with your pen, denoting tbe feperation; as in the following. Divide 23764 by 5 : thus, 5) 23764
$\frac{2352 \cdot 4}{475}=\frac{23764}{5}$

Again,

(47)

Again, find the quotient of $73215 \div 6$:

$$
\text { thus, } 6)^{73215}
$$

Alfo, divide 43206 by 8 :

$$
\text { thus, } 8) \frac{432106}{54013.2 \mathrm{rcmiz}}
$$

Note 2. If your divifor be 10 , Seperate the firft figure on the right-band of your dividend for a remainder, and the work is done.

$$
\text { thus, } 10)^{76435(2 r e m .}
$$

Find the quotient of $645384 \div 12$:

$$
\text { thus, } 12 \frac{645384}{53782}=\text { anfreer. }
$$

$$
R \cup L E \quad I I .
$$

1. Resolve your divifor into feveral parts fuch, that their continued product fhall be equal to the given divifor.
2. Substitute thofe parts fucceffively as divifors, in the following manner, viz. divide the given dividend by one of thofe parts, now called divifors, and the refulting quotient by another of thofe divifors, and fo on; the laft quotient arifing by fuch divifors, will be the quotient required.

EXAMPLE.

Divide 2904 by 24 .

Your divifor refolved into parts as above directed will be, either 8 and 3,6 and 4 , or 12 and 2 ; for $8 \times 3=24,6 \times 4=24$, or $12 \times 2=24$; therefore let the parts be 6 and 4 ; then $2904 \div 6=484$, and $484 \div 4$ $=121$ =quotient required; and if the others be tryed they will equally fucceed.

CHAP. VII.

ADDIIION of COMPOUND QUANTITIES or NUMBERS.

ADDITION of compound quantities, is the adding together numbers of different denominations, fo that their aggregate, or total amount may be known. The operations are performed by the following general

$$
R U L E .
$$

1. Write down the feveral denominations fo, that all thofe of the fame name may ftand directly under each other.
2. Begin on the right-hand, at the leaft of the given denominations, adding together the whole of that denomination, as in Simple Addition; then divide this fum by fuch a number, as it takes parts to make one of the next greater denomination; placing the remainder (if any) under its own denomination, and carrying the quotient to the faid next greater denomination, add them up with the whole of that denomination, then divide as before ; and fo on, from one denomination to another, until the whole be completed.

(49)

SE CT. I.

ADDITION of TROX WEIGHT.

Troy Weight is that by which gold, filver, jewels, medical compofitions, and all liquors are weighed. It is divided into four denominations, to wit, 1 Ib . pounds, oz. ounces. dwt. pennyweights and $g r$. grains, according to the following

TABLE.
$24 \mathrm{gr} .=1 d$ wot. $480 \mathrm{gr} .=20 \mathrm{drot}_{\mathrm{t}}=1 \mathrm{oz} . \quad 7560 \mathrm{gr} .=$ $240 \mathrm{drw}=120$. $=1 \mathrm{It}$.

EXAMPLES.
Find the fum of the following, $14 \mathrm{ID} .110 z$. 16 drot . $13 g r .+19 \mathrm{lb}$. 100z. 17d rot. $17 \mathrm{gr} .+17 \mathrm{lb}$. 110 . $12 d w t$. 22 gr .

These numbers being placed, according as the general rule directs, will ftand

$$
\text { thus, }\left\{\begin{array}{llll}
\text { Ib. } & \text { oz. } & \text { dwt. } & \text { gr } \\
14 & 11 & 16 & 13 \\
19 & 10 & 17 & 17 \\
17 & 11 & 12 & 22
\end{array},\right.
$$

Then begin at the leapt denomination, to wit, grains, and adding together all that denomination, we find the fum to be 52 : now becaufe 24 grains make one pennyweight, divide 52 by 24 , and the quotient will be 2 , leaving a remainder of 4 , which write under grains, and carry the quotient 2 , to the next place, and adding it up with that denomination, we find the fum to be 47, which divide by 20 (becaufe 20 pennyweights make one ounce) and the quotient will

(50)

be 2 , leaving a remainder 7 , which write in its proper place, and carry the quotient 2, to the next place; this being added up with the denomination, we find the fum to be 34 , which divided by 12 quotes 2 , and 10 remainitg; write this under its own denomination, and carry the quotient 2 to the next place, which added up with that denomination, we find the fum to be 52 ; and becaufe this is the laft denomination, write the whole, and the work is done. Hence we find the fum total to be 52 Jb .10 oz . $7 d r w t$. and 4 gr . as was required. (See the example, page 49.)

tb.	oz.	dwt.	gr.	lib.	oz.	dwot.	gr.
37	10	17	19	47	11	19	24
12	7	12	17	27	8	17	20
17	10	17	12	19	7	12	17
18	9	19	23	10	5	15	17

S E C T. II.
$A D D I T I O N$ of MONET.
-Tuis is to find the aggregate, or fum total of fereral fums of money.

Every nation of the world has a particular method of reckoning theirmoney. Great-Britain makes ufe of pounds, fhillings, pence and farthings; and the United States followed the lame method, until the prefent fyftem of government was eftablifhed; by which it is enacted, that all the monies of every nation or kingdom, fhall be reckoned or eftimated in America, in dollars and cents: fo that thefe two fpecies of money are to be made the ftandard money of the United States.

Nrote that 100 cents make ont dollar.

EXAMPLES.

Find the fum of 174 dol . $17 \mathrm{cts} .+19 \mathrm{i}$ dol. $19 \mathrm{cts} .+$ 375 dol. 92 cts. +275 dol. 92 cts. There being placed according to the general rule, will fund

$$
\text { thus, }\left\{\begin{array}{l}
\text { dol. } \\
\text { cts. } \\
174 \\
197 \\
979 \\
375 \\
275 \\
\hline 22 \\
\hline 1023 \\
\hline 1020
\end{array}\right.
$$

Note. Since 100 cents make one dollar, we must divide the fum of the cents by 100 ; but to divide by 100 is no more than to Seperate the two right-band figures of the dividend for a remainder, the reft are the quotient. Therefore, after you bave addcd up the last place of figures in the cents' place, proceed to the dollars' place as though the whole was but one denomination.

Find the fum of 127 dol. $19 \mathrm{cts} .+278 \mathrm{dol} .19 \mathrm{cts} .+$ 137 dol. 1 gets. +122 dol. 92 cts. +127 dol. gocts.
dol. cts.
$127-19$
$278 \quad 19$
$137 \quad 19$
$122 \quad 92$
$127 \quad 90$.
793 39 = fum required.

dol.	cts.	dol.	cts.	dol.	cts.
127	17	3787	19	2784	19
172	57	3729	72	1234	27
189	68		4229	91	3456

Having thus explained the principles, and given a general rule for the Addition of all compounds in whole numbers; we foal leave the reft to the ragacity of the learner, who with the affiftance of the following tables and examples, will be able to manage any fuch compounds as have relation therewith.

S EC T. III.

Of AVOIRDUPOIS WEIGHT.

By Avoirdupois Weight are weighed, flefh, butter, cheefe, fat; alfo all coarfe and droffy commodities; as grocery wares; likewife pitch, tar, rofin, wax, iron, fteel, copper, brafs, tin, lead, hemp, flax, tobacco, \&c.

The characters in Avoirdupois Weight are $d r . o z$. lb. qr. C. T. that is drachm, ounce, pound, quarter, hundred, tun.

TABLE.

$16 d r .=10 z . \quad 256 d r .=160 z .=17 b . \quad 7168 d r .=$ $4480 z .=28 \mathrm{lb} .=1 q \mathrm{qr} . \quad 28672 \mathrm{dr} .=17920 \mathrm{z} .=112 \mathrm{lb}$. $=4 q r=1 C . \quad 573440 \mathrm{dr} .=35840 \mathrm{oz} .=2240 \mathrm{lb} .=$ $80 \mathrm{qr} .=20 \mathrm{C} .=17$.

EXAMPLES.

$$
\begin{array}{rlllllllll}
\text { T. } & \text { C. } & \text { qr. lb. } & \text { oz. } & d r . & \text { T. } & \text { C. qr. } & \text { lb. oz. } & \text { dr. } \\
346 & 12 & 2 & 16 & 10 & 14 & 57 & 19 & 1 & 16 \\
\hline 2 & 12 & 13 \\
67 & 16 & 3 & 22 & 8 & 10 & 867 & 4 & 0 & 24 \\
14 & 13 \\
46 & 10 & 3 & 15 & 12 & 15 & 453 & 6 & 3 & 27 \\
3 & 4 & 4
\end{array}
$$

53)

S EC.T. IV.

Of APOTHECARIES WEIGHT.

The Apothecaries pound and ounce is the fame as the pound and ounce Troy, but differently divided, as in the following

TABLE.

Abstract

$20 \mathrm{gr} .=1 \ni . \quad 60 \mathrm{gr} .=39 .=13 . \quad 480 \mathrm{gr} .=24 Э$.

Apothecaries make ufe of thefe weights in the compofition or mixture of their medicines, but fell their drugs by Avoirdupois Weight.

EXAMPLES.

Ib.	3.	$3 \cdot$	$9 \cdot$	$g r$	Ib.	3.	3.	9.	$g r$.
124	10	4	2	14	266	9	5	1	15
64	8	6	1	16	76	10	4	2	14
30	11	7	0	17	96	11	6	2	10
50	9	3	1	12		10	7	1	1

S E C T. V.

By Long Meafure, is eftimated length, where no regard is had to breadth: or in other words, it meafures the diftance of one thing from another: and the ufual method of dividing and fub-dividing of length, is into degrees, leagues, milés, furlongs, poles, yards, feet, inches, and barley-corns, as in the following

TABLE I.

$3 b c .=1$ in. $\quad 36 b c .=12$ in. $=1 f . \quad 108 b c .=36$ in. $=3 f$. $=1 y d .594 b c .=198 \mathrm{in} .=16^{\frac{1}{2}} f$. $=5^{\frac{1}{2}} y d$. $=\mathrm{r} p .23760 b c$. $=7920 \mathrm{in} .=660 \mathrm{f} .=220 y \mathrm{~d} .=40 \mathrm{p} .=1$ fur. 190080 bc . $=63360 \mathrm{in}$.
$=63360 \mathrm{in} .=5280 \mathrm{f} .=1760 \mathrm{yd}=320 \mathrm{p} .=8$ fur $=1 \mathrm{~m}$. $570240 b c .=190080 \mathrm{in}=15840 \mathrm{f}$. $=5280 \mathrm{jd} .=960 p$. = 24 fur. $=3 m$. $=1 l e$.

TABLE II.

$3 b c=1$ in. $36 b c=12$ in. $=1 f . \quad 108 b c=36$ in $=3 f$. $=1 y d .1188 b c .=396 \mathrm{in} .=33 f=6 y d=1 c h . \quad\llcorner 23760 b c$. $=7820 \mathrm{in} .=660 \mathrm{f} .=220 \mathrm{yd} .=20 \mathrm{ch}$. $=1$ fur. 190080 bc . $=63360 \mathrm{in} .=5280 \mathrm{f} .=1760$ yd. $=160 \mathrm{ch} .=3$ fur $=1 \mathrm{~m}$. $570240 \mathrm{bc} .=190080 \mathrm{in} .=15840 \mathrm{f} .=5280 \mathrm{yd} .=480 \mathrm{cb}$. $=24 \mathrm{fur} .=2 \mathrm{~m}$. $=1$ le. $11404800 \mathrm{bc} .=3801600 \mathrm{in} .=$ $316800 f=105600$ yd $=9600 \cdot \mathrm{cb} .=480$ fur $.=60 \mathrm{~m}:=$ $20 \mathrm{le}=\mathrm{I}$ deg.

The length of a degree as laid down in table 2 d. is not to be underftood as the true one, but the length of a degree as commonly received and practifed; for the length of the greateft degree is $70 \frac{1}{2}$. miles, and the leapt $67 \frac{3}{4}$ miles nearly; a mean degree is therefore $68 \frac{92}{140}$ miles.

EXAMPLES.

deg. le. n. fur. cb. yd. f. in, bc. $\begin{array}{lllllllll}120 & 14 & 2 & 6 & 14 & -5 & 2 & 10 & 1\end{array}$ $\begin{array}{lllllllll}87 & 12 & 0 & 7 & 12 & 3 & 1 & 5 & 0 \\ 90 & 19 & 1 & 5 & 18 & 2 & 2 & 4 & 2\end{array}$
deg. le. m. fur. cb. yd. f. in. bc:
$\begin{array}{lllllllll}332 & 15 & 1 & 7 & 12 & 8 & 1 & 10 & 2\end{array}$
$\begin{array}{lllllll}19 & 2 & 0 & 14 & 9 & 2 & 9\end{array}$
$4 \quad 10 \quad 4$
9.

(55)

> S E C T. VI.
> Of LAND MEASURE.

The ufe of this meafure, is to find the area or fuperficial content of any piece of land in acres, and parts of an acre ; which parts are as in the following

TABLE.

g qq. $f=1 \int q \cdot y d . \quad 108 g / q \cdot f=121 / q \cdot y d=1 / q \cdot c b$. $10800 / q \cdot f=1210 / q \cdot y d=10 \rho q \cdot c b \cdot=1 \rho q \cdot q r . \quad 43560$ $\left.f_{1}\right) f=\uparrow \delta 4 \circ \int q \cdot y d \cdot=40 \int q \cdot c b \cdot=4 \sqrt{q} \cdot q r=1 \int q \cdot a c t c$.

EXAMPLES.
sic. qr. cb. $y d . f$.
240 2) 3 (f104 8
$37 \div 3=7, \quad 111 \quad 7$
$4.7 \quad 2 \quad 4 \quad 90 \quad 7$

S E CT. VII.
Of CLOTH MEASURE.
The divifions of Cloth Meafure are as in the following

TABLE.

$4 n a=1 q r . \quad 16 n a=4 q r .=1 y d . \quad$ Alto, $3 q r .=\mathrm{rell}$ Flem. $\quad 5 q r=1$ ell Eng. $6 q r=1$ ell Fr.

EXAMPLES.
yd. qr. no.
ell Fl. qr. ne.
$226 \quad 3 \quad 2$
$74 \quad 3 \quad 0$
$362: 2$

Dry Measure is fo called becaufe it meafures all fuch dry commodities as corn, wheat, rye, oats, barley, peas, beans, and all kinds of grafs-feed; alfo all kinds of roots and fruits.

Theftandard of this meafure is a bushel of a cylindrical form, of the following dimenfions, viz: $18 \frac{1}{2}$ inches in diameter, and 8 inches's in altitude; confequently a veffel of fuch form and dimenfions will contain $2150 \frac{42}{100}$ cubic inches, which is the content of the Winchefter bufhel: Therefore the quart Dry Meafure, contains $67 \frac{2}{10}$ cubic inches nearly; and the divifions are as in the following

TABLE.

67.2 cu. in. $=1$ gut. $\quad 268.8 \mathrm{cu}$. in $=4$ gut. $=1 \mathrm{gal}$. $537.6 \mathrm{cu} . \mathrm{in} .=8$ qr. $=2 \mathrm{gal} .=1 \mathrm{pc} .2150 .42 \mathrm{cu}$. in. $=32$ qr. $=8 \mathrm{gal} .=4 p c .=1$ buff.
EXAMPLES.
buff. pc.gal.qrt. buff. pc.gal.qrt. buff. pc.gal.qrt.
$\left.\begin{array}{lllllllllllll}57 & 3 & 1 & 3 & & 37 & 3 & 1 & 1 & & 2 & 3 & 1 \\ 24 & 0 & 0 & 2 & & 19 & 0 & 0 & 0 & & 2 \\ 47 & 2 & 1 & 0 & & 33 & 2 & 0 & 3 & & 2 & 3 & 1\end{array}\right)$

SE CT.

(57)

SE CT. IX.

 Of LIQUID MEASURES.In Liquid Measures, the gallon is made the ftandard, and from thence are deduced the other denominations made ufe of in fuch meafures. The wine gallon is fuppofed to contain 231 cubic inches, conequently the quart muff contain $57 \frac{3}{4}$ cubic inches; from thence is deduced the following

TABLE of WINE MEASURE.

$57 \frac{3}{4}$ cu. in. $=1$ qrt. $231 \mathrm{cu} . \mathrm{in} .=4 \mathrm{qrt} .=1 \mathrm{gal} .9702$ cu. in. $=168 \mathrm{qrt} .=42 \mathrm{gal} .=1 \mathrm{tr} . \quad 14553 \mathrm{cu} . \mathrm{in} .=252 \mathrm{qrt}$. $=63 \mathrm{gal} .=1 \frac{1}{2} \mathrm{tr} .=1 \mathrm{bbd} . \quad 19404 \mathrm{cu} . \mathrm{in} .-336 \mathrm{qrt} .=84$ gal. $=2 \mathrm{tr} .=1 \frac{1}{3} \mathrm{bbd} .=1$ pun. $29106 \mathrm{cu} . \mathrm{in} .=504 \mathrm{qrt}$. $=126 \mathrm{gal} .=3 \mathrm{tr} .=2 b b d .=1 \frac{1}{2}$ pun. $=1 \mathrm{bt} . \quad 58212 \mathrm{cu}$. in. $-1008 \mathrm{qrt} .=252 \mathrm{gal} .=6 \mathrm{tr} .=4 \mathrm{bbd} .-3$ pun. $=2 \mathrm{bt}$. 1 tun.

EXAMPLES.

tun	bbl.	gal.	grit.	tun.	bid.	gal.	qrt.
237	2	62	3	279	2	57	2
234	1	27	0	273	0	39	0
72	2	25	3	99	2	47	3
34	0	59	0	93	1	24	2

Of ALE or BEER MEASURE.

The gallon of Ale or Beer Meafure contains 282 cubic inches, as in the following

TABLE.

$70 \frac{1}{2}$ cu. in. $=1$ qrt. 282 cu. in. $=4$. qrt. =1 gal. 2397 cu. in. $=34$ qr. $=8 \frac{1}{2}$ gal. $=1$ fir. 4794 cu. in $=68$ rt. $=17 \mathrm{gal}=2 \mathrm{fir} .=1 \mathrm{kil} . \mathrm{g} 98 \mathrm{cu} . \mathrm{in}_{0}=136 \mathrm{qrt} .=34$
$\mathrm{gal} .=4 \mathrm{fr} .=2 \mathrm{kil} .=1 \mathrm{bar} . \quad 14382 \mathrm{cu} . \mathrm{in} .=204 \mathrm{qrt}=$ $51 \mathrm{gal} .=6$ fir. $=3 \mathrm{kil} .=1 \frac{1}{2}$ bar. $=1 \mathrm{bbd}$.

EXAMPLES.

bd. gil. fir. gal. qrt. bd. kil. fir. gal. qrt.

79	2	1	7	2	73	2	$\mathbf{1}$	6	3
64	3	0	5	0	97	$\mathbf{1}$	$\mathbf{1}$	7	2
49	1	1	6	2	37	2	1	2	0

SE CT. X.

Of the MEASURE of TIME.

In the divifion of Time, a year is made the ftandard or integer, which is determined by the revolucion of come celestial body in its orbit; which body is either the fun or moon. The time meafured by the fun's revolution in the ecliptic (or imaginary circle in the heavens, fo called by aftronomers) from any equinox or foltice to the fame again, is 365 days, 5 hours, 48 minutes, 57 feconds, and is called the filar or tropical year. Although the folar year before mentioned, is the only proper or natural year, yet the civil or Julian year is the one which the different nations of the world make fe of in the regulation of civil affairs.

THE civil folar year contains 365 days, 6 hours ; but in common mathematical computations, the odd hours are generally neglected, and the year taken only for 365 days; from which, the divifions in the following TABLE are made, wherein a fecond is confidered (as it really is) the least part of time that can be truly meafured by any mechanical engine.

$$
\begin{aligned}
& 60^{\prime \prime} .=1^{\prime} . \quad 3600^{\prime \prime} .=60^{\prime}=1 \text { b. } 86400^{\prime \prime}=1440^{\prime}= \\
& 24 \mathrm{~b} .=1 \mathrm{~d} . \\
& =1 \text { year. }
\end{aligned}
$$

(59)

EXAMPLES.

S E CT. XI.

Of CIRCULAR MOTION.

What is here meant by Circular Motion, is that of the heavenly bodies in their orbits; which are reckoned in figns, degrees, minutes, and feconds, as in the following

TABLE.

$60^{\prime \prime}=1^{\prime} . \quad 3600^{\prime \prime}=60^{\prime}=10 . \quad 108000^{\prime \prime}=1800^{\prime}=30^{\circ}$ $=1$ S. $\quad 1296000^{\prime \prime}=21600^{\prime}=360^{\circ}=12 \mathrm{~S}$. $=$ great circle of the ecliptic.

EXAMPLES.

S.	0	1	1	S	0	1	0
10	12	30	10	11	13	13	13
9	11	47	47	8	17	23	43
8	4	37	4	7	29	44	27
7	24	42	36		6	19	38

Note. In the Addition of Circular Motion, whenthe fum of the signs exceed 12, or any multiple of it, write such excess in the place of figns, rejecting. the reft.

$60 \quad 1$

Note. In order to prevent a misconstruction of the abbreviations, in the nine preceding tables, we have subjoined the following explanation, viz. gr. ftands for grains. $Э$ scruples. 3 drachms. $\overline{3}$ ounces. It pounds.-bc. barley-corns.i in. inches. f. feet. yd. yards. ch. chains. p. poles. fur. furlongs. m. miles. le. leagues. deg. degrees.sq. Square. qr. quarters. ac. acres.-na. nails. Flem. Flemish. Eng. English. Fr. French.-cu. cubic.-qrt.quarts, gal. gallons. pc. pecks. bulb. bubels.-tr. tierces. bd. bogheads. pun. punchcons. bt.butts.-fir. firkins. kil.kilderkins. bar. barrels.-" Seconds. 'minutes. b. bours. d. days. y. years. degrees. S. Signs.

CH A P. VIII.

SUBTRRACTION of COMPOUNDS.

5UBTRACTION of Compounds is the taking one number from another: and is performed by s the following general

$$
R U L E .
$$

1. Range the given denominations according to the directions in the lat chapter.
2. Begin at the fame place as in Addition, to wit, at the leaf of the given denominations, fubtracting the lower number from the upper, as in Simple Subtracion, writing the difference under its own name; but if the number in the fubtrahend or under number, be greater than that which ftands directly over it (as it often happens) you mut add to your upper number, fo many units of that denomination as are equal to one
one of the next greater; from which perform the intended fubtretion, writing the difference as before. Then proceed to the next place, where you muft pay what you before borrowed of this denomination, by adding one to the fubtrahend; and then perform fubtraction as before; and fo on to the laft place, where the fubtraction is performed as in fimple quantities.

EX:AMPLES.

From 37 方 $100 z$. 17 dret. 20 gr . take 27 Ib 11 oz. 19 dwt .17 gr.

Thefe numbers being placed according to the rule, will ftand

$$
\text { thus, }\left\{\left.\begin{array}{llll}
1 b & \text { oz. } & \text { drot. } & \text { gr. } \\
37 & 10 & 17 & 20 \\
27 & 11 & 19 & 17
\end{array} \right\rvert\, \begin{array}{llll}
9 & 10 & 18 & 3
\end{array}\right.
$$

Here beginning at the leaf denomination, to wit, at grains, fubtract 17 from 20, and there remains 3, which write under its own name; then proceed to the next denomination; but here the under number is the greateft, and therefore cannot be taken from the upper; wherefore add 20 to the upper num: ber (becaufe 20 pennyweights make one ounce) and the fum is 37 , from which take 19, and their remains 18 ; or take 19 from 20 , and then add 17 , and the fum will be 18, as before. Then proceed to the next place; and here again, the under number is the greateft, therefore add ito in for what you before borrowed, and the fuin will be 12 , which taken from 22 , leaves 10 , which write in its proper place, and proceed to the laft denomination, where paying what you before borrowed, perform the fubtraction as in whole numbers,

(62)

bers, and the remainder will be 9 . Hence we find the whole difference to be 9 pounds, 10 ounces, 18 pennyweights, and 3 grains.

As the foregoing rule is general, the learner by duly observing the application of it, to the above examples, may very readily perform the following ones without any further direction.

T. bbd.gal. art. bsd. kil.fir. gal.qrt.

$$
\begin{array}{lllll}
33 & 2 & 1 & 7 & 3 \\
27 & 1 & 0 & 4 & 3
\end{array}
$$

(63)

The method of proving your work, is the fame as that of Simple Subtraction.

C H A P. IX.

MULTIPLICATION and DIVISION of COMPOUNDS.

S E CT. I.
Of MULTIPLICATION.

MULTIPLICATION of Compound Numbers is the multiplying any fum compofed of divers denominations, with a fimple multiplier, according to the following

$$
R \cup L E .
$$

Begin the operation as in all other compounds, multiplying that denomination with your multiplier, as in Simple Multiplication; then divide this product by as many units as make one of the next greater denomination, writing the remainder as in Addition; then note the quotient, and proceed to the next place, and multiply that denomination with your multiplier, to which add the aforefaid quotient ; then divide this product as before, and fo on, till you have multiplied your multiplier with every denomination in your multiplicand; and the refult will be the product required.

> EXAMPLES.

Multiply 120 谏 $100 z$. 13 divt. 17 gr . with 4. OPER-

(64)

OPERATION.

Ib oz. dwt. gr.

$$
\begin{array}{llll}
120 & 10 & 13 & 17 \text { multiplicand } \\
4 \text { multiplier }
\end{array}
$$

$483 \quad 6 \quad 14 \quad 20$ producE required.
Here we begin with $4 \times 17=68$; then $68 \div 24=$ 2 , and 20 remaining, which write in its proper place; then $4 \times 1_{3}=52$, to which add 2 , the quotient juft found, and the fum will be 54 ; then $54 \div 20=2$, and 14 remaining, which write in its proper place; then $4 \times 10=40$, to which add the lat quotient 2 , and the fum is 42 ; now $42 \div 12=3$, and 6 remaining, which write in its proper place. Laftly, $4 \times 120=480$, to which add 3 , the lat found quotient, and the fum is 483. Hence we find the whole product to be 483 pounds, 6 ounces, 14 pennyweights, and 20 grains.

Multiply 127 dol. 17 cts , with 6. OPERATION.
dol. cts.
$127 \quad 17$
$763 \quad 2$ product.

(65)

ell Fl. qr. na. ell Eng. qr. na. ell Fr. qr. na.
$\begin{array}{lll}17 & 2 & 1 \\ & 7\end{array}$
$\begin{array}{ll}10 & 4 \\ & 12 \\ & 12\end{array}$
$\begin{array}{lll}13 & 5 & 3 \\ & & 8\end{array}$
12403313040 III 4 prod.
$\begin{array}{cccccccc}\text { deg. } & \text { le. m. fur. } & \text { p. } & \text { f. in. } & \text { bc. } \\ 12 . & 10 & 2 & 5 & 10 & 10 & 1 & 2 \\ & & & & & & 4\end{array}$
$\begin{array}{llllllll}50 & 3 & 1 & 5 & 2 & 7 & 6 & 2\end{array}$

Note. You may resolve your multiplier into several parts, as in Short Divifion, and if those parts when multiplied together, do not exactly make the given multiplier, add as many times the multiplicand to the product, as the produCt of the said pert fall Sort of the given multiplier; as in the fe:

Find the product of $127 \mathrm{dol} .19 \mathrm{cts} . \times 15$.
Here the parts of the multiplier are 3 and 5.
Therefore, $\left\{\begin{array}{cc}\text { dol. } & \text { cts. } \\ 127 & 19\end{array}\right.$
3

Required the product of $197 \mathrm{dol} .87 \mathrm{cts} . \times 23$.

Leet the parts be 3 and 7. Therefore,

$$
\begin{array}{l|l}
\text { dol. } & \text { cts. } \\
197 & 87
\end{array}
$$

3
59361

$$
\frac{7}{4155} \text { dol. cts. } 27=197 \quad 87 \times 21 .
$$ add 2 times 197 dol. 87 cts. or 39574

4551 I product req.

What is the product of $22 \mathrm{lb} 6 \mathrm{oz}, 10 \mathrm{drwt}, 12 \mathrm{gr}$. $\times 32$?

Anfrocr. $721 \mathrm{lb} 40 z .16$ dwt.
What is the product of $13 y d .3 \mathrm{qr} .2 \mathrm{na} . \times 48$? Anger. $666 y d$.

> SE C T. II.

DIVISION of COMPOUNDS.

Division being directly the reverfe of Multiplication, needs no other explanation than the following examples; only observe, that when any denomination is not exactly meafured by the divifor, the remainder mut be reduced to the next inferiour denomination, and added to it; then perform the divifion.
EXAMPLES.

$$
\begin{aligned}
& 67 \text {) } \\
& \begin{array}{llllllll}
& \text { 4) le. m. fur. ch. } & \text { d } \\
47 & 14 & 2 & 6 & 12 & 5 & 1 & 7
\end{array}
\end{aligned}
$$

$3165 \mathrm{dol} . \div 6=527 \mathrm{dol} .50 \mathrm{cts}$. and 527 dol .50 cts . $\div 5=1$ ar dol. 50 cts .

Likewife, 101 dol. $50 \mathrm{cts} . \div 5=20$ dol. 30 cts . (because $6 \times 5 \times 5=150=3165 \div 150$

Mifcellaneous Queftions for the Learn-

 er's Practice.SIR Ifaac Newton was born in the year 1642 , and died in 1726: What was his age when he died ?
There are two numbers, the greater 96 , and the lees 45 : What is their fum and difference?

To find a number fuch, that 426 taken from it, will leave 127 remainder.

A certain number of merchants in trade, gained 19140 dollars, which being equally divided, a flare was found to be 4785 dollars: How many merchants were there in that trade ?
What is the quotient of 3276 divided by 3 , and by 9 ?
What number is the divifor of 1530320 , when the quotient is 470 ?

What is the colt of 51 yards of broadcloth, at 4 dol . 10 cts . per yard?

GHAP. X.

REDUCTION.

BY Reduction, numbers compofed of different denominations are brought into one, by unfolding the feveral denominations by the parts that compofe them. Or, from any number of homologous parts, to difcover the number of certain heterogeneous, or unlike denominations. The former is called Reduction by Multiplication, and the latter Reduction by Divifion.——Reduction by Multiplication has the following general

$$
R \cup L E
$$

Begin at the greatef denomination mentioned, multiplying it with as many units as one of this de-nomination contains units of the next inferiour dedenomination; and to the product add the numbers in the lefs denomination; then multiply this fum as before, add as above, and fo on (multiplying with as many units as it takes thofe of the next lefs denomination to make one of the prefent), until you have reduced the given parts to the denomination required.

EXAMPLES.

Required the number of cents equal to 1000 dollat.
OPERAIION.
1000
$100=$ number of cents in a dollar.

[^1]Reduce

Reduce 1057 dol. gocts. into cents.
OPERATION.

```
dol. cts.
1,057 90
    100
```

105790 = number of cents required.

But to reduce the monies of foreign nations, to thofe of the United States, confult the following

TABLE.

Pound Sterling of Great-Britain=4,44 Tivre Tournois of Frarice :1		
Guilder of the United Neth		39
Mark Banco of Hamburgb		$33 \frac{1}{3}$
Rix Dollar of Denmark	1	
Rix Dollar of Sweden	I	
Real Plate of Spain		10
Milree of Portugal	1	24
Pound Sterling of Ireland	4	10
Tale of Cbina	1	48
Pagoda of India	1	94
Rupee of Bengal		$55 \frac{7}{2}$
Mexican Dollar	1	
Crown of France	1	15
Crown of England	1	1

Note. The gold coins of France, England, Spain, and
Portugal, are valued at 89 cents per pennyweight.

(701)

In 127 pounds fterling of Great-Britain, how many cents?

Here multiply the pounds with 444.

$$
\begin{aligned}
& \frac{127}{444} \\
& \frac{508}{508} \\
& 508 \\
& 56388 \text { the anfwer. }
\end{aligned}
$$

In 274 livtes tournois of France, how many cents?
Multiply with 18, and add half the multiplicand to that product.

$$
\begin{array}{r}
274 \\
\left.\begin{array}{r}
18 \\
2192 \\
274 \\
\hline 4932 \\
\frac{137}{} \\
\hline 5069
\end{array}\right] \text { the anfwer. }
\end{array}
$$

In 540 marks banco of Hamburg : how many cents?"

Multiply with 33, and add one third of the multiplicand to that product.

In 424 rupees of Bengal : how many cents?
Multiply with 55, and proceed as in the livres tournois of France.

Note. In reducing the following fpecies of money to cents, take the following methods.
For the Guilders of the United Netberlands, multiply with
Real Plate of Spain

Tale of Cbina
Pagoda of India
194
Crown of France
Crown of England
III
III
In 127 Ib , how many ounces, pennyweights and grains?

127
$12=$ number of ourices in 1 pound
1524 $=$ number of ounces in 127 pounds 20 =number of pennyweigbts in 1 ounce
$30480=$ number of pennyweights in 127 pounds 24 = number of grains in a pennyweight

121920
60960
$731520=$ number of grains in 127 pounds.

1b. oz. dwt.gr.
In 128124 how many grains? 12

$$
\underset{20}{152}=12 \times 12+8
$$

$3052=152 \times 20+12$ 24

12212
6104
$73252=3052 \times 24+4=$ number of grains req:

(73)

In 333 milrees of Portugal : how many cents? Anfwer. 41292.
In 555 tales of China : how many cents? Anfwer. 82140.

REDUCTION by DIVISION.

This method is directly reverfe of the former; for where we before multiplied, here we mult divide with the fame number; and therefore admits of the following

$$
R \cup L E
$$

Divide the numbers in each denomination, by the number of units that make one of the next fuperiour denomination; and the quotients refulting, will be the numbers in the feveral denominations required.

> EXAMPLES.

In 57200 cents : how many dollars?

$$
1(00) 572(00
$$

Therefore 572 dollars is the anfwer.
In 73252 grains A voirdupois : how many penny weights, ounces, and pounds?

(74)

Therefore in 73252 grains, there are 3052 pennyweights, 152 ounces, or 12 pounds.

Note. The Several remainders are of the fame name of their dividends.

In 41292 cents : how many milrees of Portugal ? $41292 \div 124=333$, the answer.
In 82140 cents : how many tales of China ? Answer. 555.
In 56388 cents: how many pounds fterling of England?

Answer. 127.
Note. In reducing cents into lives tournois of France, you must multiply with 2, and divide that product by 37. -The mark banco of Hamburg, multiply with 3, and divide that product by 100. The rupee of Bengal, multiply with 2 , and divide by 11 .

In 752 nails: how many yards? Answer. 47 yards.
In i 5840 bards : how many miles? Answer. 3 miles.
In 469 gallons : how many hogheads?
Answer. 7 bd. 3^{8} gal.

Mifcellaneous Quefions.

THE comet of 1680 , at its greater diftance from the fun, was 11184768000 miles: now fuppole a body had been projected from the fun, with a degree of fwifnefs equal to that of a cannon ball, which
which is at the rate of 480 miles per hour : in what time would this body reach the aforefaid comet; allowing the year to confift of 365 days?

Anfzer. 2660 years.
How many times will a fhip of 97 feet 6 inches long, fail her length, in the diftance of $: 2800$ leagues and 10 yards:

Anfwer. 2079408.
A merchant bought 4 tuns, 15 hundreds, and 24 pounds of fugar, and ordered it to be put up into parcels of 24 pounds, of 20 , of 16 , of 12 , of 8 , of 4 , of 2 , and of each a like number. How many parcels will be made of the fugar ?

Anfwer. 124.
A gentleman had is dollars to pay among his labourers-to every boy he gave io cents-to every woman 20 cents, and to every inan 45 cents: the number of men, women and boys was the fame. I demand the number of each fort?

Anfwer. 20.
There are five tooth wheels placed in fuch order, that their teeth play directly into each other : the firft wheel contains 500 teeth-the fecond 750-the third 1500 -the fourth 2000 , and the fifth 3000 : how many times will the fifth wheel turn in 100 turns of the firft?

Anfwer. 600.
The velocity of light being at the rate of 10000000 miles per minute, takes up 6 years, 32 days, 5 hours, and 20 minutes in coming from the neareft fixed ftar to the earth: what is the diftance of that ftar?

Anfreer. 3200000000000.

P A R T II.

CONTAINING THE DOCTRINE OF

VULGAR FRACTIONṢ.

menomonomonomonomanamanoma.

CHAP. I.

DEFINITIONS and ILLUSTRATIONS.

AFRACTION is a broken quantity, or the parts of an unit, which are expreffed like quantities in divifion; to wit, by writing two quantities, one above and the other below a finall line; thus, $\left\{\frac{3}{4}\right.$ numerator denominator or divifor or $\} \frac{x \times 3}{4}=\frac{1}{4} \times 3$ which is three times the quotient of unity divided by 4: therefore in all Vulgar Fractions, unity is divided into fuch parts, as are expreffed by the denominator; that is, the denominator expreffes what kind of parts the unit is divided into, and the numerator the number of thofe parts.

Hence it follows, that all Vulgar Fractions whatfoever, reprefent the quotients of quantities, which are to unity, as the numerator to the denominator; thus, if the fraction be $\frac{3}{4}$, it will be $\frac{3}{4}: 1:: 3: 4$; and fo on for others.

Ale. Vulgar Fractions whatfoever, fall under the five following forms, viz. proper, improper, fingle, compounded, and mixed.

(77)

A proper fraction, is when the numerator is lefs then the denominator: thus $\frac{3}{4}, \frac{4}{5}$, and $\frac{7}{12}$, are proper factions.

An improper fraction, is when the numerator is greater than the denominator: thus $\frac{5}{4}, \frac{7}{3}$, and $\frac{x 0}{5}$, are improper fractions.

A single fraction, is a fimple expreffion for the parts of an unit: thus $\frac{3}{2}, \frac{8}{3}$, and $\frac{3}{4}$, are fingle fractions.

A compound fraction, is a fraction of a fraction: thus, $\frac{1}{3}$ of $\frac{1}{2}$ and $\frac{2}{3}$ of $\frac{1}{4}$ of $\frac{5}{7}$, are compound fractions.

Whin whole numbers are joined or connected with fractions, they are fometimes called mixed numbers; as $10 \frac{1}{2}$, and $15 \frac{9}{8}$.

A mixed fraction, is when either or both the numerator and denominator, is a mixed number: thus, $\left\{\frac{12 \frac{1}{2}}{17}\right.$ and $\frac{17 \frac{1}{Y} \frac{1}{9}}{42 \frac{12}{20}}$, are mixed fractions.

Any whole number may be expreffed in the form of a Vulgar Fraction, by writing unity, or I under it: thus, $120=\frac{120}{1}$ and $52=\frac{52}{1} \& c$.

The common meafure of two numbers, is any number that will meafure both without a remainder: thus, 3 is the common meafure of 9 and 12 ; becaufe it meafures 9 by 3 , and 12 by 4 .

The greateft common meafure of two numbers, is the greateft number that will meafure both without a remainder: thus, 7 is the greateft common meafure of 21 and 49 ; becaufe no number greater than 7 can meafure 21 and 49 , without a remainder.

Any number that can be meafured by feveral other numbers, the number meafured, is called their common multiple: thus, 24 is a common multiple of 4 and 6 , for $2 \times 1_{2}=24,4 \times 6=24$, and $6 \times 4=24$: the leaft number that can be meafured in this manner, is
called the leaft common multiple: thus, 12 is the leaft common multipie of 4 and 6 ; becaufe no number lefs than 12 , can be divided by 4 and 6 , without a remainder.

A prime number is that, which is meafured only by unity: as $5,7,11,19,8 \mathrm{c}$.

Numbers prime to each other are fuch, as no number except unity will meafure both without a remainder: thus, 9 and 4 are numbers prime to each other; for although 2 will meafure 4 without a remainder, yet it cannot divide 9 without a remainder: 3 may meafure 9 , but it cannot meafure 4 : therefore, $\&<c$.

A composed number is that, which fome certain number meafures: thus, 6,8 and 12 , are compofed numbers; for $3 \times 2=6,4 \times 2=8$, and $2 \times 6=12$.

C H A P. II.

REDUCTION of VULGAR FRACTIONS.

REDUCTION of Vulgar Fractions, is the changing of one fraction into another of equivalent value; and thereby fitting them for the purpofe of Addition, Subtraction, \&rc.

The whole bufinefs of Reduction, is comprifed in the following Problems.

PROBLEM I.

To find the leaft common multiple of Several numbers.

$$
R U L E .
$$

1. Range the numbers in a direct line.
2. Find what number will divide two or more of them. without a remainder; by which divide them, and
and fet their quotients together with the undivided numbers, in a line beneath.
3. Divide this line in the fame manner as the firft; and fo on, from line to line, until no number, except unity will divide two of them without a remainder; then the continued product of all the divifors, and the laft quotients, will be the leaft common multiple rêquired.

EXAMPLES.

Find the leaft common multiple of 4,8 , and 12 . OPERATION.

$$
\begin{array}{rrr}
4)_{1}^{4} & 8 & 12 \\
2 & 3
\end{array}
$$

Whence, $4 \times 1 \times 2 \times 3=24$, the leaft common multiple required.

Find the leaft common multiple of $2,4,6,7$ and 20 .
OPERATION.

$$
\begin{array}{l|lllll}
2 & 2 & 4 & 6 & 7 & 20 \\
2 & 1 & 2 & 3 & 7 & 10 \\
1 & 1 & 3 & 7 & 5
\end{array}
$$

Whence, $2 \times 2 \times 3 \times 7 \times 5=420$, the leaft common multiple required.

PROBLEM II.

To find the greateft common meafure of two or more quantities.

$$
R \cup \mathcal{E}
$$

1. Find the greateft common meafure of any two of the quantities, by dividing the greater by the lefs, and the divifor by the remainder; and fo on, dividing the laft divifor, by the laft remainder, till nothing
ing remains; and the laft divifor made ufe of, will be the greateft common meafure of thefe two quantities.
2. Find the greateft common meafure of any one of the other quantities, and the common meafure laft found; and fo on, from one number to another, thro' the whole; and the laft common meafure thus found, will be the greateft common meafure required.
EXAMPLES.

Find the greateft common meafure of 12 and $15 \cdot$
OPERATION.

$$
\frac{12)_{12}^{15(1}}{3)_{12}^{12(4)}}
$$

Hence, 3 is the greateft common meafure required, Find the greateft common meafure of $12,18,26,36$
OPERATION.

Firf find the greateft common meafure of 12 and 18.

$$
\text { thus, }\left\{\begin{array}{l}
12)_{12}^{18(1}, ~
\end{array}\right.
$$

$$
6)_{12}^{12(2}
$$

Hence, the greateft common meafure of 12 and 18 is 6 .

Again, find the greateft common meafure of 6 and 26 ,

$$
\text { thus, }\left\{\frac{8 \mathrm{f}}{\left(\begin{array}{l}
6 \\
)_{24}^{26(4} \\
2)_{6}^{6(3}
\end{array}\right.}\right.
$$

Therefore the greateft common meafure is 2 .
Laftly, find the greateft common meafure of 2 and $36:$

$$
\text { thus, }\left\{\begin{array}{l}
2)_{18}^{36}
\end{array}\right.
$$

Confequently the greateft common meafure of 12, 18,26 , and 36 , is 2 ; which was to be done.

PROBLEM III.

To abbreviate, or reduce a Vulgar Fraction to its leaft or moft fimple terms.

$$
R U L E .
$$

Find the greateft common meafure of the numerator and denominator, by the laft problem; then divide them by their greateft common meafure, and the refult will be the terms of the fraction required. Or,

Divide both the numerator and denominator of the given fraction, by fuch a number, as will divide them without a remainder, and the refulting fraction in the fame manner; and fo on, till no number except unity, will divide both without a remainder ; and you will have the fraction required.
EXAMPLES.

Reduce $\frac{6_{4}}{384}$ to its moft fimple terms.

82)

THE greateft common meafure of 64 and 384 , is 64. Therefore $64 \div 64=1$, and $384 \div 64=6$; confequently $\frac{64}{384}=\frac{1}{6}$, the frattion required.
Or, $\frac{64 \div 8}{3^{84} \div 8}=\frac{8}{48}$, and $\frac{8 \div 8}{48 \div 8}=\frac{1}{6}$, the same as before.
Find the value of $\frac{35}{45}$, in its moft fimple terms.
Thus, $\frac{35 \div 5}{45 \div 5}=\frac{7}{9}$, the fraction required.
Reduce $\frac{192}{480}$, to its moft fimple terms. $\quad \mathrm{An} \cdot \frac{2}{5}$

PROBLEM IV.

Io write a mixed number, in the form of a Vulgar Fraction.

$$
R U L E
$$

Multiply the whole number with the denominator of the fraction, and to the product add its numerator ; then under this, write the faid denominator; and you will have the fraction required.

EXAMPLES.

Write $4 \frac{2}{2}$, in the form of a Vilgar Fraction. Thus, $4 \times 2=8$, and $8+1=9$ the numerator;

Whence $\frac{9}{2}$ is the fraction required.

$$
\begin{aligned}
& 12 \frac{6}{10}=\frac{\overline{12 \times 10}+6}{10}=\frac{126}{10} ; \text { and } 40 \frac{20}{100}=\frac{\frac{40 \times 100}{100}}{100} \\
& =\frac{4020}{100} ; \text { Alfo, } 20 \frac{17}{20}=\frac{20 \times 20}{20}+17 \\
& =\frac{417}{20} .
\end{aligned}
$$

(83)

PROBLEM V.

To find the value of an improper fraction.

$$
R U L E
$$

Divide the numerator of the given fraction by the denominator; and the quotient will be the value fought.

$$
E X A M P L E S
$$

Find the value of $\frac{120}{12}$.
Thus, $\frac{120}{12}=120 \div 12=10 ; \frac{126}{10}=126 \div 10=12 \frac{6}{10}$ $\frac{4020}{100}=4020 \div 100=40 \frac{20}{100} ; \frac{417}{20}=20 \frac{17}{20}$.
PROBLEM VI.

To write a whole number in the form of a Vuigar Fraction, whofe denominator is given.

$$
R U L E
$$

Multiply the whole number with the given denominator; and under this product write the faid denominator; and you will have the fraction required.

EXAMPLES.

Reduce 40 to its equivalent Vulgar Fraction, whofe denominator is 10 .

Thus, $40 \times 10=400=$ numerator.
Whence, $\frac{400}{10}$ is the fraction required.
Change 304 inta its equivalent Vulgar Fraction, having 5 for its denominator.

Thus,

Thus, $\frac{304 \times 3}{5}=\frac{1520}{5}$ the fraction required.
Change 3476 into its equvialent Vulgar Fraction, having 12 for its denominator.
Thus, $\frac{3476 \times 12}{12}=\frac{41712}{12}$ the fraction required.
PROBLEM VII.

To alter or cbange a Vulgar Fraction into anotber of equivalent value; whofe denominator is given.

$$
R U L E .
$$

Multiply the given numerator with the propofed denominator; the product divided by the denominator of the given fraction, will give a new numerator ; under which write the propofed denominator ; and you will have the fraction required.
EXAMPLES.

Change $\frac{I}{2}$ into its equivalent Vulgar Fraction, whofe denominator is 20 .

Thiss, $\frac{20 \times 1}{2}=10$ the nerw numerator.
Therefore, $\frac{10}{20}$ is the fraction required.
Change $\frac{15}{20}$ into its equivalent Vulgar Fraction, having 40 for its denominator.
Thus, $\frac{15 \times 40}{20}=30$: therefore $\frac{30}{40}$ is the fraction req.
Change $\frac{17}{20}$ into its equivalent Vulgar Fraction, whofe denominator is 24 .

Thus,

Thus, $\frac{17 \times 24}{20}=20 \frac{8}{20}:$ therefore $\frac{20 \frac{3}{20}}{20}=$ fraction req.

PROBLEM VIII.

To cbange a Vulgar Fraction into anotber of equivalent value, whofe numerator is given.

$$
R \cup L E
$$

Multiply the given denominator with the propofed numerator; and the product divided by the numerator of the given fraction, will give a new denominator; over which write the propofed numerator ; and you will have the fraction required.

> EXAMPLES.

Change $\frac{5}{10}$ into its equivalent Vulgar Fraction, whofe numerator is 20 .
Thus, $\frac{10 \times 20}{5}=40$: therefore, $\frac{20}{40}$, is the frattion req.
Change $\frac{7}{9}$ into its equivalent Vulgar Fraction, whofe numerator is 8 .
Thus, $\frac{9 \times 8}{7}=10 \frac{2}{7}$: therefore, $\frac{8}{1 \mathrm{O}_{\frac{2}{7}}^{2}}$, is thefraction req.
Change $\frac{24}{27}$ into its equivalent Vulgar Fraction, whofe numerator is 37.
P R O B L E M IX.
To reduce a mixed fraction to fimple terms.

$$
R \cup L E .
$$

1. ReDUce the numerator and denominator of the given fraction to improper fractions.

86)

2. Muritiply the numerator of the denominator, into the denominator of the numerator, for a new denominator ; and multiply the numerator of the numerator, into the denominator of the denominator, for a new numerator ; and you will have the terms of the fraction required.
EXAMPLES.

Reduce $\frac{4 \frac{1}{4}}{7 \frac{1}{3}}$ to fimple terms.
Firt, $\frac{4^{\frac{1}{4}}}{7 \frac{1}{3}}=$ (by reducing to impr. fract.) $\frac{\frac{17}{4}}{\frac{7}{3}}=\frac{3 \times 17}{4 \times 22}$ $=\frac{51}{88}$ the fraction required.

Reduce $\frac{8 \frac{1}{2}}{10}$ to fimple terms.
Thus, $\frac{8 \frac{1}{2}}{10}=\frac{1 \frac{7}{2}}{10}=\frac{17}{2 \times 10}=\frac{17}{20}$; and $\frac{12 \frac{1}{3}}{16}=\frac{\frac{57}{3}}{16}=\frac{37}{48}$.
Alfo, $\frac{20}{30_{\frac{1}{2}}^{1}}=\frac{20}{\frac{61}{2}}=\frac{20 \times 2}{61}=\frac{40}{61} ; \frac{10}{20 \frac{1}{20}}=\frac{10}{\frac{410}{20}}=\frac{10 \times 20}{410}$
$=\frac{200}{410} ; \frac{300}{640^{\frac{1}{4}}}=\frac{300}{\frac{5007}{4}}=\frac{1200}{2561}$.

PROBLEM X.

Ta reduce a compound fraction to a fimple one of equal value.

$$
R \cup L E
$$

1. Reduce all fuch parts of the given fraction as are whole numbers, mixed numbers, and mixed fractions; according to the foregoing rules; that is, whole and mixed numbers muft be reduced to improper fractions, and mixed fractions to fimple terms.
2. Multiply all the numerators continually together, for a new numerator, and all the denominators continually together, for a new denominator ; and the former product written above the latter, will give the fraction required.

Note. Any number that is found among the numbrators and denominators, may be firuck out of both.

EXAMPLES.

Reduce $\frac{2}{3}$ of $\frac{3}{4}$ of $-\frac{5}{6}$, to a fimple fraction.
Thus, $\frac{2 \times 3 \times 5}{3 \times 4 \times 6}=$ (by Atriking out the 3$) \frac{2 \times 5}{4 \times 6}=\frac{10}{24}$ the 'ration required.
Reduce $\frac{3}{4}$ of $\frac{7}{9^{\frac{1}{2}}}$, to a rimple fraction
Firft, $\frac{7}{9 \frac{7}{2}}=\frac{14}{19}$; then $3 \times 14=42$ the nero numerator, and
$+\times 19=76$ the new denominator: therefore $\frac{42}{76}$ is $t b s$ ration required.

$$
\begin{aligned}
& \frac{1}{2} \text { of } \frac{4}{6} \text { of } \frac{2}{4 \frac{1}{2}} \text { of } 8=\frac{1}{2} \text { of } \frac{4}{6} \text { of } \frac{4}{9} \text { of } \frac{8}{1}=\frac{128}{108} . \\
& \frac{4}{3} \text { of } \frac{2}{5} \text { of } \frac{17}{\frac{17}{3}}=\frac{4}{3} \text { of } \frac{2}{5} \text { of } \frac{51}{88}=\frac{4 \times 2 \times 51}{3 \times 5 \times 88}=\frac{408}{1320} \\
& \text { PR OB LEM XI. }
\end{aligned}
$$

To reduce several fractions of different denominators, to equivalent fractions, baving a common denominator.

$$
R U L E .
$$

1. REDUCE all fractions to fimble terms.
2. Multiply each numerator into all the demominators except its own, for new numerators.
3. Multiply all the denominators continually together, for a new and common denominator, and this written under the feveral new numerators, will give the fractions required.

EXAMPLES.

Reduce $\frac{1,}{2} \frac{3}{4}$, and $\frac{5}{6}$, to their equivalent fractions, having a common denominator.

Firft, $\left\{\begin{array}{l}1 \times 4 \times 6=24 \text { the new numerator for } \frac{\frac{3}{2}}{2} \\ 2 \times 3 \times 6=36 \text { the new numerator for } \frac{3}{4} \\ 5 \times 2 \times 4=40 \text { the new numerator for } \frac{5}{6}\end{array}\right.$
Then $2 \times 4 \times 6=48$ the new and common denominator. Hence $\frac{24}{48^{\prime}}, \frac{36}{48}$, and $\frac{40}{48}$, are the fractions required.
$\frac{4}{7}, \frac{3}{4}$, and $\frac{1}{9}$, reduced to a common denominator $=\frac{4 \times 4 \times 9}{7 \times 4 \times 9}$, $\frac{3 \times 7 \times 9}{7 \times 4 \times 9}$, and $\frac{1 \times 7 \times 4}{7 \times 4 \times 9}=\frac{144}{252}, \frac{189}{252}$, and $\frac{28}{252}$.
$\frac{1}{3}$ and $\frac{4}{3}$ of $\frac{2}{5}$ of $\frac{4 \frac{\pi}{4}}{7 \frac{1}{3}}$, reduced to a commoiz denominator $=$
$\frac{1 \times 1320}{3 \times 1320}$, and $\frac{3 \times 408}{3 \times 1320}=\frac{1320}{3960}$, and $\frac{1224}{3960}$.
$27, \frac{2 \frac{1}{4}}{4}$, and $\frac{1}{3}$ of 4 , reduced to a common denominator $=$

$$
\frac{720}{33^{6}}, \frac{189}{33^{6}} \text {, and } \frac{448}{33^{6}} .
$$

(89)

PROBLEM XII.

To reduce Several fractions of different denominators, to others of equivalent value, baying the leafs polible common denominator.

$R \cup L E$.

1. Reduce all the fractions to fimple terms.
2. Find the leaft common multiple of all the denominators; and you will have the leaft common denominator required.
3. Divide the denominator thus found by the denominator of each fraction, and multiply the quotent with its numerator, and you will have new numerators, under which write the common denominator; and you will have the fractions required.

EXAMPLES.

Reduce $\frac{1}{8}, \frac{3}{4}$, and $\frac{1}{2}$ to equivalent fractions, that Shall have the leaf poffible common denominator. Firft, the leaf common multiple of 8,4 , and 2 , is 8 : Then, $\overline{8 \div 8} \times \mathrm{I}=1$, the new numerator for $\frac{8}{8}$ And, $\overline{8 \div 4} \times 3=6$, the new numerator for $\frac{3}{4}$ Alpo, $\overline{8 \div 2} \times 1=4$, the new numerator for $\frac{x}{2}$.

Hence the fractions required are $\frac{1}{8}, \frac{6}{8}$, and $\frac{4}{8}$.
Reduce $\frac{1}{3}, \frac{3}{4}, \frac{4}{5}$, and $\frac{5}{6}$, to equivalent fractions, having the least poffible common denominator. - First, the leaf common multiple of the $3,4,5$, and 6 , is 60 .
Then, $\overline{60 \div 3} \times 1=20$, the new number tor for $\frac{3}{3}$ And, $\overline{60 \div 4} \times 3=45$, the new numerator for $\frac{3}{4}$

$$
\mathrm{M}
$$

90)

 Lastly, $\overline{60 \div 6} \times 5=50$ the new numerator for $\frac{5}{8}$. Hence, $\frac{20}{60}, \frac{45}{60^{\prime}}, \frac{48}{60}$, and $\frac{50}{60^{\prime}}$, are the fractions req. PROBLEM XIII.

To change the fraction of one denomination to the fraction of a greater one, retaining its same value.

$$
R \cup L E .
$$

Change the given fraction into a compound one, by writing its value in all the intermediate denomnations up to the one wherein the value of the fracton is to be expreffed; and the value of this compound fraction, will be the fraction required.

EXAMPLES.

Change $\frac{1}{3}$ of a nail, to the fraction of an ell Eng First, $\frac{1}{3}$ of a nail $=\frac{1}{3}$ of a quarter, and $\frac{1}{4}=\frac{1}{5}$ of an ell: Therefore, $\frac{1}{3}$ of a nail $=\frac{1}{3}$ of $\frac{1}{4}$ of $\frac{1}{5}=\frac{1}{60}$. the fraction req. 2 pennyweights, reduced to the fraction of a pound $=\frac{2}{20}$ of $\frac{1}{12}=\frac{2}{240^{\circ}} .3$ grains, reduced to fraction of an ounce $=\frac{3}{24}$ of $\frac{I}{20}=\frac{3}{480} \quad \frac{1}{3}$ of a cent, reduced to the fraction of a mire of Portugal $=\frac{1}{3}$ of $\frac{1}{124}=\frac{1}{372}$ 10 cents, reduced to the fraction of a pound fterling of Ireland $=\frac{10}{410}=\frac{1}{4 i} \quad \frac{7}{8}$ of a cent, reduced to the factron

(91)

ton of a dollar $=\frac{7}{8}$ of $\frac{1}{100}=\frac{7}{800}$. 1 drachm Avoirdupois $=\frac{1}{16}$ of $\frac{1}{16}$ of $\frac{1}{112}$ of $\frac{1}{20}$ of a tun.
PROBLEM XIV.

Io change the fraction of one denomination to the fratton of a less one, retaining its fame value.

$$
R U L E .
$$

Multiply the numerator of the given fraction into all the intermediate denominations down to the one wherein the value of the given fraction is to be expreffed, and under this product, write the given denominator, and you will have the fraction required.

EXAMPLES.

Reduce $\frac{1}{70}$ of an ell Eng. to the fraction of a nail.
Thus, $1 \times 5 \times 4=20$ the numerator
Therefore, $\frac{20}{70}=\frac{2}{7}$ is the fraction required.
Reduce $\frac{3}{1120}$ of a lb Troy to the fract. of a grain. Thus, $\frac{3 \times 12 \times_{20} \times 24}{1120}=\frac{17280}{1120}$ is the fraction required. $\frac{2}{1240}$ of a pound Troy, reduced to the fraction of a pennyweight $=\frac{2 \times 12 \times 20}{1240}=\frac{480}{1240} ; \frac{8}{17920}$ of an hundree weight, reduced to the fraction of an ounce $=$
$\frac{8 X_{112} \times 16}{17920}=\frac{14336}{179^{20}} . \quad \frac{1}{372}$ of a milree of Portugal, reduced to the fraction of a cent $=\frac{1 \times 124}{372}=\frac{124}{372}=\frac{\pi}{3}$. PROBLEM XV.
To find the value of a Vulgar FraEtion in known paris of the integer.

$$
R U L E .
$$

Multiply the numerator of the given fraction with the parts in the next inferiour denomination, and divide the product by the denominator; then if there e any remainder, multiply it with the parts in the next inferiour denomination, and divide by the former divifor, and fo on, and the feveral quotients refulting will exhibit the value fought.

EXAMPLES.

Find the value of $\frac{5}{24}$ of an ounce Troy.
OPERATION.
5
20
24) ${ }_{96}^{100(4 \text { pennyroeigbts. }}$

24
24) ${ }_{96}^{96}$ (4 grains.

Therefore

Therefore, $\frac{5}{24}$ of an ounce $=4$ dwt. 4 gr . the vat fought.

Find the value of $\frac{5}{7}$ of an ounce Troy.
OPERATION.

$$
\frac{5}{20}
$$

$$
-24
$$

$$
\text { 7) } \frac{48}{6}(6 r \mathrm{~cm} .
$$

Therefore $14 \mathrm{dw} t .6^{6} \mathrm{gr}$. is the value fought.
Find the value of $\frac{6}{7}$ of an hundred weight.

$$
\begin{gathered}
\text { OPERATION. } \\
6 \\
\frac{4}{24(} \\
7)^{24(} 3 \text { rems. } \\
-28 \\
7)_{12}^{84 \mathrm{C}}
\end{gathered}
$$

Therefore $3 \mathrm{qr}$.12 lb . is the value fought.
Find the value of $\frac{x}{4 I}$ of a pound fterl, of Ireland:
Thus,

(94)

Thus, $\frac{\times 410}{41}=10$ cts. the value fought.

Find the value of $\frac{2}{97}$ of a pagoda of India.
Thus, $\frac{2 \times 194}{97}=4$ cts. the value fought.
PROBLEM XVI.

To reduce the known parts of an integer to their equivalent Vulgar Fraction.

$$
R U L E .
$$

1. Reduce the given parts to the leaft denominaton mentioned.
2. Reduce the integer to the fame denomination; and the latter written beneath the former, will be the fraction required.

EXAMPLES.

Reduce 3 dwt. 7 gr . to the fraction of a pound.
OPERATION.

Therefore, $\frac{79}{5760}$ is the fraction required.
Reduce

(95)

Reduce 10 cts. to the fraction of a pound ferling of Ireland.

Thus, $\frac{10}{410}$ is the fration required. .nim $10^{\frac{8}{5}} \mathrm{in}$. reduced to the fraction of a foot $=\frac{10^{8} 0}{12}-\frac{2}{10}$. $5_{3}^{2} p$. reduced to the fract. of an acre $=\frac{5^{\frac{7}{3}}}{160}=\frac{16}{480}=\frac{1}{30}$

CHAP. III.

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION OP $V U L G A R \quad F R A C T I O N S$.
SECT. I.

Of ADDIIION of VULGAR FRACTIONS.

$$
R U L E .
$$

:. DDUCE all the fractions to a common denominator; by the rule to problem xi of the aft chapter: thofe of different denominations to the ame, by the rules to problem xin or xiv.
2. ADD all the numerators together for a new nunerator, under which write the common denominaor ; and you will have a fraction equal to the fum equired.

EXAMPLES.

Find the fum of $\frac{1}{2}+\frac{x}{3}+\frac{1}{4}$

Thus, $\frac{\pi}{2}+\frac{1}{3}+\frac{1}{4}=$ (by reducing to a common denominator) $\frac{12}{24}+\frac{8}{24}+\frac{6}{24}=\frac{12+8+6}{24}=\frac{26}{24}$ fum required.

Required the fum of $2 \frac{1}{7}+\frac{2 \frac{1}{4}}{4}+\frac{1}{3}$ of 4 .
Thus, $2 \frac{1}{7}+\frac{2 \frac{1}{4}}{4}+\frac{1}{3}$ of $4=\frac{15}{7}+\frac{9}{16}+\frac{4}{3}=$ (by reduction) $\frac{720}{33^{6}}+\frac{189}{33^{6}}+\frac{448}{336}=\frac{720+189+448}{336}=\frac{1357}{336}$ sum req.

Find the fum of $\frac{3}{4}$ of a grair $+\frac{5}{7}$ of an ounce.
Firt, $\frac{3}{4}$ of a grain $=\frac{3}{4}$ of $\frac{1}{24}$ of $\frac{1}{20}=\frac{3}{1920}$ of an ounce; shen the Jum becomes $\frac{3}{1920}+\frac{5}{7}=\frac{9621}{13440}$ the Jumr req.

$$
\text { S E C T. } \quad 11 .
$$

Of SUBIRRACTION of VULGAR FRACTIONS.

$$
R \cup L E:
$$

x. Prepare the fractions as in Addition.
2. Subirract the numerator of one fraction from the numerator of the other, and the refult placed above the common denominator will be the difference required.

> EXAMPLES.

From $\frac{1}{3}$ take $\frac{1}{4}$
Thus, $\frac{1}{3}-\frac{1}{4}=\frac{4}{12}-\frac{3}{12}=\frac{4-3}{12}=\frac{1}{12}$ the difference req.

(97)

From $\frac{4}{5}$ take $\frac{1}{3}$ of $\frac{1}{3}$.
Thus, $\frac{4}{5}-\frac{1}{3}$ of $\frac{1}{3}=\frac{4}{5}-\frac{1}{9}=\frac{36}{45}-\frac{5}{45}=\frac{36-5}{45}=\frac{31}{45}$ the difference required.
$3 \frac{2}{3}-\frac{3}{4}$ of $\frac{1}{9}$ of $\frac{2}{3}=\frac{10}{3}-\frac{6}{108}=\frac{1080}{324}-\frac{18}{324}=\frac{1080-18}{324}$
$=\frac{1062}{324} ;-\frac{1}{4}-\frac{\frac{17}{4}}{\frac{22}{3}}=\frac{5}{4}-\frac{51}{88}=\frac{440}{35^{2}}-\frac{204}{352}=\frac{236}{35^{2}}$.
From $\frac{5}{7}$ of an ounce take $\frac{3}{4}$ of a grain Troy.
Firft, $\frac{3}{4}$ of a grain $=\frac{3}{1920}$ of and ounce : Therefore, $\frac{5}{7}-\frac{3}{1920}=\frac{95^{8} 9}{13440}$ is the difference required.

> SE CT. III.

Of MULTIPLICATION of VULGAR FRAGTIONS.

$$
R \cup L E .
$$

1. Reduce all whole and mixed numbers to impproper fractions, mixed fractions to fimple terms, and fractions of different denominations to the fame.
2. Multiply all the numerators together for a new numerator, and all the denominators together for a new denominator; and you will have the terms * of the fraction required.

$$
E X A M P L E S
$$

Required the product of $\frac{1}{3} \times \frac{3}{4}$.
Thus, $\frac{1 \times 3}{3 \times 4}=\frac{3}{12}$ the product required.

(9^{8})

$6 \frac{5}{3} \times \frac{1}{4}$ of $\frac{2}{9}=\left(\right.$ by reducion $\frac{19}{3} \times \frac{2}{36}=\frac{19 \times 2}{3 \times 36}=\frac{38}{108} ;$
$\frac{4}{3 \frac{1}{3}} \times \frac{3 \frac{1}{3}}{4}=$ (by reduction) $\frac{12}{10} \times \frac{10}{12}=\frac{12 \times 10}{10 \times 12}=\frac{120}{120}=1$;
$\frac{1}{3}$ 㐌 $\times \frac{1}{4} d r=\frac{1}{3} \times \frac{1}{4 \times 16 \times 16}=\frac{1 \times 1}{3 \times 4 \times 16 \times 16}=\frac{1}{3072} 15$ S E C T. IV.
Of DIVISION of VULGAR FRACTIONS.

$$
R U L E .
$$

Prepare the numbers as in Addition, then multiply the numerator of the divifor into the denominator of the dividend, and the numerator of the dividend into the denominator of the divifor ; then the latter written above the former, will give the quotient required.

Or,
Invert the divifor, that is, write the denominator in the place of the numerator, and the numerator in the place of the denominator; then proceed as in Multiplication, and the refult will give the quotient required.

EXAMPLES.

Required the quotient of $\frac{I}{2} \div 4_{4}^{I}$.
Thus, $1 \times 4=4$ the numerator; and $1 \times 2=2$ the denom. Therefore, $\frac{4}{2}=2$ is the quotient required.
Or, $\frac{4}{1} \times \frac{1}{2}=\frac{4}{2}$ the lame as before.
$\frac{2}{3} \div \frac{8}{27}=\frac{27}{8} \times \frac{2}{3}=\frac{27 \times 2}{8 \times 3}=\frac{54}{24} ; \frac{4}{7} \div \frac{4}{28}=\frac{28}{4} \times \frac{4}{7}=$

(99)

$$
\begin{aligned}
& \frac{28 \times 4}{4 \times 7}=\frac{112}{28}=4 ; \frac{1 \frac{1}{3}}{8} \div \frac{3 \frac{1}{2}}{1}=\text { (by reduction) } \frac{4}{24} \div \frac{7}{2}= \\
& \frac{4 \times 2}{7 \times 24}=8 \\
& 168
\end{aligned} \frac{1}{4} \text { of } \frac{1}{2} \div \frac{1}{3} \text { of } 1=\frac{1}{8} \div \frac{1}{3}=\frac{3 \times 1}{1 \times 8}=3.3 .
$$

Mifcellaneous Quefions.

AMAN at hazard won the firft throw $2 \frac{2}{2}$ dol-lars-the fecond throw he won as much as he then had in his purket-the third throw he won 4 dollars, and the fourth throw he won double of all that he then had, at which time he found that he had, in all 45 dollars. How many had he at firft. Anfroer. 3 dollars.
There is a certain club, whereof $\frac{\tau}{4}$ are merchants, $\frac{8}{3}$ mathematicians, $\frac{1}{5}$ mechanics, and 13 phyficians. How many were there in the whole?

Anfzer. 60.
Required the difference between three times thir-ty-three and a third ; and three times three and thirty and a third.

Anfwer. $60 \frac{2}{3}$.
A man who was driving fome fheep to market, was met by another who demanded the number of Theep in his drove : the drover to evade a direct anfwer replies, that if I had as many more, and half as many more, and $12 \frac{\pi}{2}$ fheep, I fhould have 100. What number had he ?

Anfwer. 35.

PAR T III.

CONTAINING THE DOCTRINE OF

DECIMAL FRACTIONS.

C HAP. I.

DEFINIIIONS and ILLUSIRATIONS.

ADECIMAL Fraction is formed from a proper Vulgar Fraction, by dividing the numerator with cyphers annexed to it, by the denominator; that is; the equivalent Decimal of any Vulgar Fraction is found by multiplying the numerator with 10,100 , or $1000, \& \mathrm{c}$. till it be fo increafed, that it may be exactly meafured by its denominator; and this quotient will be the decimal required :
Thus, $\frac{1}{4} \times 100=\frac{1 \times 100}{4}=\frac{100}{4}=25$; and $\frac{1}{2} \times 10=$ $\frac{1 \times 10}{2}=\frac{10}{2}=5$; Alfo, $\frac{3}{4} \times 100=\frac{3 \times 100}{4}=\frac{300}{4}=75:$ which quotients are expreffed by writing them with a point on the left-hand: Thus, $\frac{1}{4}=.25, \frac{1}{2}=.5$, and $\frac{3}{4}=.75$; which are refpectively equal to $\frac{2.5}{100}, \frac{5}{10}$, and $\frac{78}{100}$; but thefe denominators are always omitted, and the numerators written as above, where the point diftinguifhes them from whole numbers: Thus, $2.3=$ $2 \frac{3}{10}, 4.25=4 \frac{25}{100}, 8 x c$.

Hence it appears that every Decimal Fraction, is equal to a Vulgar one, whofe numerator is the decimal, and the denominator unity, with as many cyphers annexed to it as there are places of figures in the numerator: Thus, $.1, .44$, and .127 , are refpectively equal to $\frac{1}{T 0}, \frac{44}{100}$, and $\frac{1}{10} \frac{7}{20}$.

Therefore it follows, that in decimals, unity is divided in 10,100 , or $1000, \& \%$. equal parts; and the given decimal reprefents the number of thofe parts: Thus, $.1=\frac{1}{10}$ reprefents one tenth part of an unit, .44 reprefents forty-four hundred parts of an unit, \&cc. Therefore, in decimals, cyphers annexed neither increafe nor diminifh their value ; but cyphers prefixed, diminifh their value in a ten fold proportion : Thus, $440=\frac{440}{1000}=$ (by the nature of Divifion) $\frac{44}{100}$ $=.44$; but $.04=\frac{4}{100}=\frac{1}{10}$ of $\left(\frac{4}{20}\right) \cdot 4$, and fo on for any other decimal.

Whence it follows, that the farther any diget or numeral figure ftands from the units' place, or decimal point towards the right-hand, the lefs will be its value, to wit, in a tenfold proportion. Thus in the decimal IIII, the figure next to the decimal point is $\frac{x}{10}$, the fecond is $\frac{1}{100}$, the third $\frac{x}{1000}$, and the fourth $\frac{1}{0000}$, that is, $1111=\frac{1}{10}+\frac{1}{40}+\frac{1}{000}+$ T0000, which is plainly a feries of numbers in geometrical proportion, decreafing by the common divifor 10. Again . $0123=\frac{1}{100}+\frac{2}{1000}+\frac{3}{10000}$; and the like to be underttood of all others.

Hence, the notation of decimals, or the valuation of the feveral places from unity downwards, is the fame among themfelves as that of integers or whole numbers; therefore every figure is to be valued according to the diftance it fands from unity downwards.

CHAP. II.

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION OF DECIMAL FRACTIONS.

> S E C T. I.

Of ADDITION of DECIMALS.

$$
R \cup L E .
$$

1. TRITE the given decimals in fuch order, that thofe places of equal diftance from unity or the decimal point, may ftand directly under each other.
2. Find their fum as in whole numbers, then diftinguifh with a point as many places of figures on the right-hand, as are equal to the greateft number found in any given decimal; and you will have the fuin required.

EXAMPLES.

Find the fum of $.176+.1264+.34+.994$
Thefe numbers being placed according to the rule will ftand

$$
\text { thus, }\left\{\begin{array}{l}
.176 \\
.1264 \\
.34 \\
.994
\end{array}\right.
$$

Find the fum of $34.123+6437.27+347.2+$ 1. $347634+347634$. .

$$
\text { thus, }\left\{\begin{array}{l}
\frac{(103)}{\begin{array}{c}
34.123 \\
647.27 \\
347.2 \\
1.347634 \\
147634.1
\end{array}} \\
\frac{354454.040634}{}=\text { sum n required. }
\end{array}\right.
$$

Required the fum of $25.124+12.247+24.3485$ $+352.1+4578.74$

$$
\text { thus, }\left\{\begin{array}{c}
25.124 \\
12.247 \\
24.3485 \\
352.1 \\
4578.74
\end{array}\right.
$$

$4992.5595=$ fum required.
$17.45+.42+345.284+34+4232.425=4629.579$
S E C T. II. Of SUBTRACTION of DECIMALS.

$$
R \cup L E .
$$

Write down the numbers as in Addition, then fubtract the left from the greater as in whole nombers, remembering to point off in the remainder as in Addition; and you will have the difference fought. EXAMPLES.

Required the difference between 12.19 , and 8.9

$$
\text { thus, }\left\{\begin{array}{c}
12.19 \\
8.9
\end{array}\right]=\text { difference required. }
$$

104)

Required the difference between 342.364 , and 299.2437

$$
\text { thus, }\left\{\begin{array}{l}
342 \cdot 364 \\
299.2437
\end{array}\right.
$$

$43.1203=$ difference required.
$2473.0024-1999.99998=473.00242$;
$2479.3777-930.000045=1549.377655$;
$9999.8888-8888.9999=1110.8889$

S E C T. III.
 Of MULTIPLICATION of DECIMALS.

$$
R \cup L E .
$$

Write the numbers and multiply them as in common Multiplication; then diftinguifh with a point as many places of decimals in the product, as are equal to the number in both factors; and you will have the product required.

Note. If the number of places in the product, are le/s than the number of decimal places in both faEEors, you muft Jupply the deficiency by prefixing cyphers.

That the number of decimal places in the produet, ought to be equal to the number in both factors, may be thus demonftrated.

Suppose .34 were to be multiplied with .27 ; the product of thefe two numbers by common Multiplication is 918 ; but $34=\frac{34}{100}$ and $.27=\frac{27}{100}$; therefore, $.34 \times .27=\frac{34}{100} \times \frac{27}{100}=\frac{918}{10000}=$ (by thenature of decimal notation).0918, confifting of as many places of figures as there were in both factors; and the fame will hold true in any others. 2. E. D.

EXAM-

(105)

EXAMPLES.
Required the product of $2.43^{8} \times .005$. OPERATION.

$$
\begin{array}{r}
2.43^{8} \\
.005
\end{array}
$$

$.012190=$ product reqxired.
Required the product of 34.38×24.7 OPERAIION.
34.38

24:7
24066
1375^{2}
6876
849.186=produEZ required.

Required the product of $384.02 \times$. or

$$
\text { thus, }\left\{\begin{array}{r}
384.02 \\
.01
\end{array}\right.
$$

$3.8402=$ product required.
Required the product of $2.7122 \times 3.212 \mathrm{I}$
thus $\left\{\begin{array}{l}3.2121 \\ 2.7122\end{array}\right.$
64242
64242
32121
224847
64242
$8.71185762=$ product required.
O

In the multiplication of decimals, where the factors confift of a great number of decimal places, the operation becomes very prolix, and befides, a great part of it is entirely ufelefs, fince that four or five places of decimals in the product, is fufficient for common purpofes. Therefore to abridge the work by obtaining the-product true to any defigned number of places of decimals, you muft obferve the following

$$
R U L E .
$$

1. Write the multiplier inverted, fo that the units' place may ftand under that figure of the multiplicand, to whofe place the product is to be found true.
2. In multiplying with the feveral figures of the multiplier, you muft reject all the figures of the multiplicand, that are to the right-hand of the figure you are multiplying with; placing the firft figure of the feveral products directly under each other, increaled by adding 1 from 5 to 15,2 from 15 to 25 , \&xc. of the product of the multiplying figure with the proceeding figure of the multiplicand, when you begin to multiply; and the fum of all the products will be the product required.

EXAMPLES.

Required the product of 3.2121×2.712, to three places of decimals.

6424=produEt of 3.212×2.
$2248=$ product of $3.2 \times \times 7$, increased by adding 1 for $32=$ product of $3.2 \times 1 \quad$ [the prod. of $7 \times{ }^{2}$ $6=$ produEF of 3×2
$8.710=$ product required.
Required the product of 3.24211×2.34634, to four places of decimals.

```
3.242II
436432
    64842 =3.2421\times2
    9726=3.242\times3
    1297=3.24\times4, increased by adding I for. 4X2
        194=3.2\times6, increafed by adding 2 for 6}\times
        10}=3\times3\mathrm{ , increafed by adding 1 for }3\times
```

$7.6069=$ produEt required
Required the product of 2.13214×2.21134, to five places of decimals.

$$
\begin{array}{r}
2.13214 \\
431122
\end{array}
$$

$426428=2.13214 \times 2$
$42643=2.1321 \times 2$, increajed by adding 1 for $2 X_{4}$ $2132=2.132 \times 1$ $213=2.13 \times 1$ $64=2.1 \times 3$, increafed by adding 1 for 3×3. $2=2 \times 4$
4.71488=produEt required.

Required

(108)

Required the product of 27.17×19.14, in integers only.
27.17

4191
$272=27.1 \times 1$, increafed by adding : for 1×7 $244=27 \times 9$, increafed by adding 1 for 9×1

$$
3=2 \times 1 \text {, increaled by adding } 1 \text { for } 1 \times 7
$$

$1=4 \times 0$, increajed by adding 1 for 4×2
$520=$ product required.
S E C T. IV.

Of DIVISION of DECIMALS.
In divifion of decimals, it may at firft appear dificult to determine the number of decimal places the quotient muft confift of ; but this difficulty will vanifh, when we confider that the quotient muft be fuch a number that when multiplied with the divifor will produce the dividend; therefore it follows, that the number of decimal places in the divifor and quotient taken together, muft be equal to the number in the dividend, by the nature of Multiplication; confequently the difference between thofe in the divifor and dividend, muft be equal to the number in the quotient; which affords the following

$$
R \cup L E
$$

Range the numbers and divide them as in common Divifion, then point off as many places of decimals in the quotient, as are equal to the difference between thofe in the divifor and dividend; and you will have the quotient required.

Note I. If there are not fo many places of figures in the quotient, as are equal to the difference between thofe in the divifor and dividend, you muft supply the defect by prefixing cypbers.
2. If the places of figures in the dividend, are lefs in number than thofe in the divifor, you muft annex cypbers to the dividend.

EXAMPLES.

Required the quotient of 849.186 divided by 24.7

OPERATION.

938
741
1976
1976

Note. If the divifor be 10 , or $100, \mathcal{E}^{2}$. the quotient may be found by removing the decimal point in the dividend, as many places towards the left-band as there are cyphers in the divifor: thus, the quotient of 1000) 2737.45 is 2.73745 and $.0234 \div$ $100=.000234$.

Required the quotient of .012190 $\div 2.438$

$\left.2.43^{8}\right) .012190(5$
12190
0
Here, the quotient found by divifion is 5 ; but the difference between the decimal places in the divifor and dividend are three; therefore .005 is the quotient required.

Required the quotient of $2 \div 42$. OPERATION.
42) $)_{168}^{200000(.04761 ~ E c .=q u o t i e n t ~ r e q u i r e d . ~}$

$\overline{320}$
294
260
25^{2}
$\frac{80}{42}$
$\frac{38}{3} c$.

Required the quotient of $165.6995001296 \div$ 52.743^{8}

(111)

OPERATION.
$\left.52.743^{8}\right)_{155.6995001296(3.141592=\text { quotient req. }}^{16214}$.

0
Here, as in Multiplication, the work may be greatly contracted, by finding the quotient true to any determinate number of decimal places: The method is as follows.

$$
R \cup L E
$$

I. Range the numbers as in common Divifion.
2. Tare the figures of the given divifor, to as many places of decimals as you intend the quotient fhall confift of, for your firft divifor, and find a quotient figure by comparing this divifor as in common

Divifion;

Divifion ; then fubtract its product with the divifor, from the dividend as ufual, calling the remainder a new dividend.
3. Reject the right hand figure of your former divifor, and call the refult a new divifor; then find a quotient figure by comparing the new divifor and dividend together, and place it in the former quotient, fubtracting as before ; and fo on, making each remainder a new dividend, and rejecting the righthand figure of the laft divifor for a new one; alfo remembering to add for the figures rejected as in Multiplication.

Note I. If there are not so many places of decimals in the divifor, as you intend there foall be in the quotient, Jupply the defect by annexing cyphers.
2. You may determine bow many places of whole numbers there will be in the quotient, by confider. ing that the firft figure of the quotient, is always of the fame denomination of that figure of the divi. dend, which fands direetly over the units' place of the product of the firt quotient figure and divijor.

EXAMPLES.

Required the quotient of $10.1934 \div 4.2$, to three places of decimals.

(113)

4.200) $)^{10.1934(2.427} 8400$
420)1793
1680
$\begin{array}{r}\text { 42) } 113 \\ \quad 84 \\ \hline 4 \lcm{29} \\ 28 \\ \hline\end{array}$

Required the quotient of $165.6995001296 \div$ 52.7438 , to five places of decimals. $\left.52.743^{80}\right)_{1}^{165823140} \underset{1}{6595001296(3.141592=\text { quotient req. }}$
$\left.52.743^{8}\right) 746810$ 52743^{8}
52.743)219372 $210975=52.743 \times 4$, encreafed by add[ing 3 for 4×8

$$
\begin{array}{r}
52.74 \begin{array}{r}
8397 \\
5274 \\
\hline 52.7) 3123
\end{array} \text { } 5607
\end{array}
$$

$2637=527 \times 5$, encreajed by adding
[2 for 5×4
52) 486
$473=52 \times 9$, increased by adding 5 [for 9×7
5) 13

(114)

Required the quotient of $780.516 \div 24.3$, in integers only.

OPERATION.

24) $780.516(32=$ quotient required.
$73=24 \times 3$, increafed by adding 1 for 3×3
25) 5
$5=2 \times 2$, increafed by adding I for 2×4
0

C H A P. III.

Of REDUCTION of DECIMALS.
PROBLEM I.

To reduce a Vulgar Fraction to its equivalent decimal.

$$
R \cup L E
$$

ANNEX cyphers to the numerator, and divide by the denominator till nothing remains, and the quotient will be the decimal required.

EXAMPLE.

Reduce $\frac{3}{-}$ to its equivalent decimal. 20
Thus, 30$)_{20}^{3.00(.15=\text { the decimal required. }}$

(115)

18
Reduce - to its equivalent decimal.
20
Thus, 20$)_{180}^{18.0(.9=\text { the decimal required. }}$

6
Reduce - to its equivalent decimal. 15
Thus, 15$)_{60}^{6.0(.4=\text { the decimal required. }}$
$-$

$8 E^{2} c$.

Here, we have what is called a circulating decimal for the quotient, that is, a continual repetition of the fame figure without any poffibility of ever coming to an end, as is evident from the example. Therefore it follows, that the equivalent decimal of $\frac{3}{9}$ can never be found in finite terms; but may be obtained to any degree of exactnefs you pleafe.

(116)

Note. When a vulgar fraction is annexed to any number of cents, reduce the fraction to its equivalent decimal, and annex it to the cents, and the whole will beconie a decinal: Tbus, $37 \frac{3}{4}$ sents $=.3775$

PROBLEM II,

To reduce numbers of different denominations to their equivalent decimal.

$$
R U L \dot{E}
$$

REDUCE the given numbers to their equivalent vulgar fraction, by problem xvi of vulgar fractions, then proceed as in the laft problem,

EXAMPLES.

Reduce 3 gr .2 na . to their equivalent decimal of a yard.

Firft, 3 qr. 2 na. $=\frac{14}{16}$ of a yard;
Then 16$)_{128}^{14.000(.875=\text { the decimal required. }}$

$4 b .30^{\prime} 10^{\prime \prime}$, reduced to the decimal of a day $=$.187615 \& 6.
8. S. reduced to the decimal of the ecliptic $=.666$ $E^{\circ} c$. ad infinitum:
10_{20}^{8} in. reduced to the decimal of a foot $=.9$
$5^{\frac{2}{3} p}$. reduced to the decimal of an acre $=.0333 \delta^{\circ} c$. ad infinitum.
PROBLEM III.

To find the value of a decimal in known parts of the integer.

$$
R \cup L E
$$

r. Multiply the given decimal with the parts in the next inferiour denomination, and point off as in common multiplication of decimals; and the whole numbers will be the value of the given decimal in that denomination.
2. Multiply the remaining decimal with the parts in the next inferiour denomination, and point off as before, and fo on, thro all the inferiour denomination, if need be; and you will have the value fought.

EXAMPLES.
Find the value of .875 of a yard.

Find the value of .426 of a pound troy.

Find the value of .75 of a pound fterling of GreatBritain.

$$
\begin{aligned}
& \text { OPERATION. } \\
& .75 \\
& 444 \\
& 300 \\
& 300 \\
& 300 \\
& 333.00 \text { therefore } .75=333=333 \text {. }
\end{aligned}
$$

Find the value of .37752 of a pound furling of Great-Britain.

$$
\text { Thus } \cdot 37752 \times 444=167.61888=16761888 .
$$

Note. There never can be more then two places of cents, and where there are other figures annexed, they are the parts of another cent: thus, in the last example, the 6761888 cts . is 67 cents, and .61888 of another.

119)

A Supplement to Part III,

 CONTAINING THE DOCTRINE OF CIRCULATING DECIMALS.CHAP. I.

DEFINITIONS and ILLUSTRATIONS.

ACIRCULATING decimal is generated or produced from a vulgar fraction, whofe numerator and denominator are incommenfurable to each other ; and therefore if the numerator with cyphers annexed, be divided by the denominator, there will always be a remainder, or the quotient will run on fempiternally; confequently the true and adequate decimal of every fuch vulgar fraction, muft confift of an infinite number of decimal places, which is therefore not affignable in finite terms, and confequently the true and complete decimal impolfible.

Notwithstanding the equivalent decimal of every vulgar fraction of the kind above defcribed, if actually completed, would then confift of an infinite number of decimal places; yet from a few of the firft, we obtain fome certain law by which the figures ever after circulate or return again; and is is for this reafon they are called circulating decimals: the circulating figures are called repetends, of which there are four kinds, viz. fingle, compound, mixedfingle, and mixed compound.

A single repetend is a continual repetition of the fame figure: Thus : $666 \mathcal{E}^{\circ} c$, and $.2222 \mathcal{E}^{2} c$. are firsgle repetends, which are expreffed by writing the re-
peating figure with a point over it: thus, for .666 E8c. write .6 for $.2222 \mathcal{E}^{2}$ c. we write .2 ; and fo on fol others.

A compound repetend is when the fame figure circulate or return alternately: thus $.9595^{\circ} \mathrm{E}^{\circ} \mathrm{c}$. and .321321 E c are compound repetends, which are expreffed by writing the combination of figures that circulate or return together, with a point over the firft and laft figure : thus, inftead of. $9595 \mathcal{E}^{2} c$. we
write .95 for .321321 E3.c. we write .321 ; and fo on for others.

A mixed fingle repetend is when one or more figures occur before the repeating ones: :thus. 172444 $\xi^{\circ} c$. and $.1942777 \mathcal{E G}_{6}$. are mixed fingle repetends.

A mixed compound repetend is when feveral figures ftand before thofe that circulate alternately: thus 1724747 E'c. and $^{2} 41972972$ Evc. are mixed compound repetends,

Those combinations of figures, which circulate or return together, are called circulates, of which there are three kinds, viz. fimilar, diffimilar, fimilar and conterminous.

Similar circulates are thofe that confift of the fame number of repeating figures, beginning either before or after the decimal point: thus 4.2 .7 and 9.19 are fimilar circulates.

Dissimilar circulates are thofe that confift of an unequal number of repeating figures, beginning at different places: thus $1: 77$ and 217.4 are diffimilat eirculates.

(121)

Similar and conterminous circulates, are thofe which confift of an equal number of repeating figures, beginning and ending together : thus, 27.47 and 4.73 are fimilar and conterminous circulates.

C H A P. II.

Of REDUCテ̇ION of GIRCULATING DECIMALS.

PROBLEM I.

To reduce a fingle repetend to its equivalent Vulgar Fraction.

$$
R \cup L E
$$

UNDER the given repetend, with as many cyphers annexed to it, as there are places of whole numbers, write as many 9 's as there are places of figures in the repetend; and you will have the Vulgar Fraction required.

The reafon of this rule will appear obvious, when we confider, that. $\dot{9}=1$; for $\frac{1}{9}=$. I I $\mathcal{E}^{2} c$. $=\dot{1}$; confequently $.1 \times 9=\frac{1}{9} \times 9$; that is, $. \dot{9}=9=1$; whence it follows, that each figure of the repetend is equal to that figure divided by 9 : thus $.3=\frac{3}{9}=\frac{x}{3} \cdot 5=\frac{5}{9}, \mathcal{E}^{3} c$.

EXAMPLES.

Required the leaftVulgarFraction equivalent to .72
Thus,

> Thus, $\frac{72}{95}==^{3}=$ fraction required.
> $21.3=\frac{21300}{999} \cdot 643.25=\frac{64325000}{99999} . \quad$. $.7421=$
> $\frac{174210}{99999^{\circ}} \cdot 127.0002=\frac{1270002000}{9999999}$.

PROBLEM II.

To reduce a mixed compound repetend to its equivalent Vulgar Fraction.

$$
R \cup L E .
$$

Write down as many 9's as there are places of figures in the repetend, to which annex as many cyphers as are equal to the number of occurring places of figures in the finite part, (i.e. the figures occurring before the alternate circulates) for a denominator ; then multiply the 9 's in the denominator, with the finite part, to which product, add the infinite or circulating part for a numerator ; and you will have the fraction required.

Note. When the circulate begins any where in the integral part, omit the cyphers in the denominator, and annex as many to the numerator as there are places of whole numbers included in the circulate.
Thereafon of this rule will appear plain from the following. Suppofe the decimal whofe equivalent VulgarFraction is required, to be .53 : Conceive it to be divided into finite and infinite parts ; that is, conceive it to be made of the finite part .5 and the infinite or circulating part .03 ; then $.53=.5+.03$; but $.3=\frac{3}{3} ;$ confequently $.03=\frac{1}{10}$ of $\frac{3}{8}=\frac{3}{96}$; wherefore
$.53=\frac{5}{10}+\frac{3}{90}=\frac{450}{900}+\frac{30}{900}=\frac{\overline{9 x 5}+3}{90}$, which is the fame as the rule.

EXAMPLES.

Required the Vulgar Fraction equivalent to $.4739^{\circ}$ Firt, $9990=$ denominator.
Then $999 \times 4=3996=$ product of the 9 's in the denominator and finite part ; and $3996+739=4735=$ numerator.

Wherefore $\frac{4735}{9990}$ is the fration required.
Required the equivalent Vulgar Fraction of $5 \cdot 27^{\circ}$:
Thus, $\overline{52 \times 9}+7 \div 900=468+7 \div 900=\frac{475}{300}$ the fraEtion required.

Required the equivalent Vulgar Fraction of 42.3 :
Thus, $\overline{990 \times 4}+230 \div 99=4 \frac{190^{\circ}}{99}$ the fraction required.
Required the equivalent Vulgar Fraction of 321.7° :
Thus, $999 \times 3+217 \div 999=3214 \div 999$; then $3 \frac{2 \times 400}{999}=$ fraEtion required.

PROBLEM. III.

To determine robetber the decimal equivalent te any Vulgar Fraction be finite, or infinite; and if infinite, to find the number of places of figures that confitute the circulate.

$$
R U L E .
$$

1. Reduce the given fraction to its leaft terms.
2. Divide the denominator of the refulting frac-

(124)

tion by 2,5 or 10, as often as you can without a remainder, making the refult a divifor, and $999 \mathcal{E}^{\circ}$ c. a dividend, divide till nothing remains, then will the circulate confift of as many places of figures as you ufed places of 9 's.

Note. 1. The circulate will begin, after as many places of figures as you made divirions of the denominator.
2. In dividing the denominator as above, if the quotient become equal to unity, then the decimal is finite, confifing of as many places of figures as you made divifions of the denominator.

The principles on which this rule is inveftigated, may be fliewn in the following manner.

Firf, let it be premifed, that if unity with cyphers annexed, be divided by any prime number, except 2 , or 5 , the figures in the quotient will begin to repeat when the remainder becomes unity; confequently $999 \mathcal{E}^{\circ}$ c. divided by any prime number, except 2 , or 5 , will leave no remainder.

Now if the places of figures in the circulate are any number, when the dividend is unity, they will remain the fame, let the dividend be any other number whatever; for it is plain, that if the decimal be multiplied with any number, every circulate will be equally multiplied, and what one is increafed will be carried to another, and fo on through the whole; confequently, the places of figures will remain the fame: But to multiply the decimal or quotient with any number, is the fame thing, as to divide the divifor by the fame number before divifion is made; whence, $\mathcal{E}^{2} c$.

(125)

EXAMPLES.

Required to know, whether the equivalent decimal , of $\frac{158}{557}$ is infinite or finite, and if infinite, how many places of figures there will be in the circulate.

Firf, $\frac{158}{557}$ reduced to its leaft terms $=\frac{2}{7}$; then $999999 \div 7=142857$, and therefore the decimal is infinite, whofe circulate confifts of 6 places of figures, beginning at the tenth's place.

Required to know whether the equivalent dicimal of $\frac{210}{12120}$ is infinite, or finite; and if infinite, how many places of figures there will be in the circulate.

Firft, $\frac{210}{1120}=$ (by reducing to its leaft terms) $\frac{3}{16}$; then, $16 \div 2=8,8 \div 2=4,4 \div 2=2$, and $2 \div 2=1$: Confequently the decimal is finite, confifting of 4 places of figures.

Required to know whether the equivalent decimal of $\frac{364}{490}$ is infinite, or finite; and if infinite, to know how many places of figures there will be in the circulate.

Firft, $\frac{364}{490}=$ (by reducing to its leaft terms) $\frac{52}{70}$; then $70 \div 10=7$, and $999999 \div 7=142857$: Confequently the dicimal is infinite, and the circulate confifts of 6 places of figures, beginning at the hundredth's place.

PROBLEM IV.

To make diffimilar circulates, fimilar and conterminous.

$$
R U \perp E .
$$

1. Find the leaft poffible common multiple of the feveral numbers exprefling the number of places of figules in the given circulates.

(126)

2. Change the given circulates into others, confifting each of as many places of figures as the leaft common multiple found as above, and the work will be done.

EXAMPLES.

Make $\cdot \dot{7} 2 \%, .17 \dot{9}, .12$ and $\cdot 19$ fimilar and conterminous.

Firft the leaft common multiple of $3,3,2$ and 2 , is 6 .

Difinilar. Similar and conterminous.

$$
\text { Then, }\left\{\begin{array}{l}
.727=127727 \\
179=179179 \\
12=121212 \\
19=191919
\end{array}\right.
$$

Make $24.3, .4762,32, .6$ and $.576^{\circ}$ fimilar and conterminous.

Difimilar. Similar and conterminous.

$$
\text { Thus, }\left\{\begin{array}{l}
24 \cdot 3=24 \cdot 333333333333^{\circ} \\
.4762=47624762476 \dot{2}_{2}^{\circ} \\
32.6^{\circ}=32.66666666666 \dot{6}^{\circ} \\
.57 \dot{6}=.576576576576^{\circ}
\end{array}\right.
$$

CHAP.

(127)

CHAP. III.

ADDITION, SUBTRACTION, MUL. TIPLICATION AND DIVISION OF GIRCULATING DECIMALS.

S E C T. I.

Of ADDITION of CIRCULATING DECIMALS.
$R U L E$.

MAKE the given circulates fimilar and conterminous, by problem Iv, of the laft chapter; then add them together as in common Addition, and becaufe each figure of the circulate is equal to that figure divided by 9 , you muft divide the fum of the circulates, by as many places of 9 's as there are places of figures in the circulate, and writing the remainder (if any) direclly beneath the figures of the circulate, carry the above quotient to the next place; then proceed as in common decimals, and you will have the fum required.

Note. When the remainder conffes of a lefs number of places than the circulate, you muft fupp hy the defeer by prefixing cyphers.

(128)

EXAMPLES.

Required the fum of $3 \cdot \dot{3}+4 \cdot 27 \dot{1}+3 \cdot \dot{7} 2 \dot{5}$:
Difimilar. Similar and conterminous.

$$
\text { Thus, }\left\{\begin{array}{l}
3 . \dot{3}=3 . \dot{3} 3 \dot{3} \\
4.27 \dot{i}=4.27 \dot{\dot{I}} \\
3 . \dot{725}=\frac{3.72 \dot{5}}{11.33 \dot{0}}=\text { fum required. }
\end{array}\right.
$$

Required the fum of $24.32742 \dot{5}^{\circ}+37.274+27.35^{\circ}+$ 34.27:

Difimilar. Similar and conterminous.
Thus, $\left\{\begin{aligned} 24.3274^{25} & =24.327425425 \\ 37.274 & =37.274444444 \\ 27.35 & =27.353535353 \\ 34.27 & =\frac{34.277777777}{\circ} \\ & 123.233 \mathrm{i} 8300 \mathrm{i}=\text { }\end{aligned}\right.$

> SE C T., II.

Of SUBTRACTION of CIRCULATING DECIMADS.

$$
R \cup L E .
$$

Prepare the given numbers, as in Addition, and then fubtract them as in common Subtraction, only with this difference, viz. when the circulate to be fubtracked, is greater than the one from which Subtraction is to be made, you mut make the right-hand figure
figure of the difference lefs by unity, than as found by common Subtraction. The reafon of this rule will appear plain from the following.
SUPPOSE I. $\dot{8} \dot{I}$ were to be taken from $2 . \dot{7} \dot{2}$; the difference by common Subtraction would be .99 ; but $2 . \dot{7} \dot{2}=\frac{270}{99}$ and $1 . \dot{8} \dot{1}=\frac{130}{95}$, then $2.72-1 . \dot{8} \dot{1}=\frac{270}{99}$
$-\frac{180}{99}=\frac{90}{99}=.90$; whence, $\varepsilon^{2} c$.

EXAMPLES.

Required the difference between 6.4729 and $3 \cdot 49^{\circ}$:
Difimilar. Similar and conterminous.
Thus, $\left\{\begin{array}{l}6.472=6.472972 \dot{9} \\ 3.49=3.4949494\end{array}\right.$
2.9780234^{-}= difference required.
Required the difference between 4.375° and 1.122° :
Diflmilar. Similar and conterminous.
Thus,

$$
\left\{\begin{array}{l}
4.3752=4.37525252 \\
1.1210=1.12101210
\end{array}\right.
$$

$3.2542404{ }^{\circ}=$ difference required. S E C T. III.

Of MULTIPLICATION of GIRCULATING DECIMALS.
R.ULE.

Instead of the given circulates, write their equivalent Vulgar Fractions, and find their product as
ufual ; then this product thrown into a decimal, will give the product required.

EXAMPLES.

Required the product of $3.2 \times .7$
Firt, $.32=\frac{29}{9}$ and $.7=\frac{7}{9}$; wherefore $\cdot 32 \times \cdot 7=$ $\frac{29}{90} \times \frac{7}{9}=\frac{203}{8} \frac{3}{10}$, which thrown into a decimal is, $.25061739=$ product required.

Required the product of 1.8×2.7 :
Thus, $1 . \dot{8} \times 2.7=\frac{17}{9} \times \frac{25}{9}=\frac{225}{81}=5.246913580^{\circ}$ the product required.

Required the product of $.20 \times \cdot 36$:
Thus, $20 \times \cdot 3 \dot{6}=\frac{20}{10} \times \frac{36}{9}=\frac{720}{900}=\frac{8}{10}=.072=$ product required.
S E C T. IV.

$$
\begin{gathered}
\text { Of DIVISION of CIRCULATING DE- } \\
\text { CIMALS: }
\end{gathered}
$$

$R U L E$.

Change the given decimals into their equivalent Vulgar Fractions, and find their quotient as ulual ; then this quotient thrown into a decimal, will give the quotient required.

$$
E X A M P L E S
$$

Required the quotient of $.2 \dot{6}$ divided by $\cdot \dot{3}$: Firf, $.2 \dot{6}=\frac{24}{80}$ and $. \dot{3}=\frac{3}{8}$:

($\mathrm{I}_{3} \mathrm{I}$)

Wherefore, $.26 \div \cdot 3=\frac{24}{90} \div \frac{3}{9}=\frac{216}{270}=.8$ the quotient required.

Required the quotient of $9 \div \cdot 108$:
Thus, $\dot{9} \div 10 \dot{8}=\frac{9}{9} \div \frac{108}{999}=\frac{1}{4} \div \frac{12}{131}=\frac{181}{32}=9.25$ =quotient required.

Required the quotient of $2.9 \div .27^{\circ}$:
Thus, $2 . \dot{9} \div 27=\frac{27}{9} \div \frac{27}{9}=\frac{59}{9}=$ II the quotient required.

A

(132)

A Supplement to Part I,

CONTAININGTHEDOCTRINEAND APPLICATION OF RATIOS, OR PROPORTION, EXTRACTION OF ROOTS; E\%.

CHAP. I.

Of PROPORTION or ANALOGY.

PROPORTION is a degree of likenefs which quantities bear to each other, by a fimilitude of ratios.

Ratio is the mutual refpect of two quantities of the fame kind; but they form no Analogy, becaufe there can be no fimilitude of ratios between two quantities, and therefore Analogy confifts of three, quantities at leaft, whereof the fecond fupplies the placeof two: Thus the refpect of 2 to 6 , being compared with 18 , it will be, $2: 6:: 6: 18$.
S E C T. I.

Of CONTINUED PROPORTION ARITHMETICAL,

OR
ARITHMETICALPROGRESSION.
When quantities increafe or decreafe by an equal difference, thofe quantities are in Arithmetical Proportion continued: Thus, the number $1,2,3, \mathcal{E}^{2} \mathrm{c}$, are a feries of quantities in Arithmetical Proportion continued,
continued, increafing by unity, or 1 , which is called the common difference of the feries.

Also, the numbers 2, 4, 6, 8, are numbers in Arithmetical Progreffion, whofe common difference is 2 ; but the numbers $9,7,5,3,1$, are a feries of quantities in Arithmetical Progreffion, decreafing by the common difference, 2 .

LEMMAI.

If three numbers are in Aritbmetical Progreflion, the Jum of the two extreme numbers will be, double the mean or middle number.

Thus, let $\mathrm{I}, 3,5$, be the numbers in progreffion;
Then, $1+5$, the fum of the two extremes $=3+3$ the double of the mean. Iigain, in the numbers $14,10,6$, the fum of the two extremes are $14+6=$ 20 , and the double of the mean $10+10=20$; and the like will hold in any other numbers.

LEMM A II.

If four numbers are in Aritbmetical Progreflion, the fum of the two extremes will be equal to the fum of the. two means.

Let the number be $4,7,10,13$; then $4+13=17$. the fum of the two extremes, and $1+10=17$, the fum of the two means: Again, in the numbers 16, $13,10,7 ; 16+7=13+10$.

And fince in four numbers as above, the fum of the two extremes, is equal to the fum of the two means, we have no reafon to doubt of the like, let the terms be any number whatever: Whence it follows, that in any Arithmetical feries, of any affignable number of terms whatever, the, fum of any two terms equidifant from the mean, will be equal to

(134)

the fum of any other two terms, equidiftant from the mean; as in there, $2,4,6,8,10,12,14,16,18,20$; where $2+20=4+18=6 \gamma-16=8+14=10+12$: Therefore, $E^{\circ} c$.

LEM M A III.

In any Series of numbers in Aritbmetical Progrefion, the Several terms are formed or made up by the addition of the common difference to the firft term, So often repeated, as there are number of terms to the feveral places, except the firft.

Let the feries be, $1,4,7,10,13,16,19,22,6^{\circ} c$. wherein the common difference is 3 .

Now $1+3=4$ the second term, $1+3+3=7$, the third term; $1+3+3+3=10$, the fourth term; $1+3+3+3+3=13$, the fifth term; and $1+\overline{3 \times 7}$ $=22$, the 8 th term, E c. Confequently the difference of the two extremes, is equal to the common difference multiplied with the number of terms lefs I: Thus in the above feries, the common difference is 3 , and number of terms 8 ; therefore $\overline{8-1} \times 3=7$ $x_{3}=21=$ difference of the two extremes.

PROBLEM I.

To find the sum of a Series of numbers in Aritbmetical Progrefion.

There are feveral ways of deducing a rule for the folution of this problem, but perhaps none more fimple and natural than the following.

Let the feries whofe fum is required, be $2+4+6$ $+8+10+12$.

$$
\begin{aligned}
& \text { I } 35 \text {) } \\
& \text { Or, } \\
& 2+2+2+2+2+2 \\
& \begin{array}{l}
t \\
{ }_{2}
\end{array}+\underset{2}{t}+\underset{2}{t}+ \\
& +\underset{2}{+}+\underset{2}{+}+ \\
& \begin{array}{l}
2{ }^{2}+2 \\
++_{2}+
\end{array} \\
& ++ \\
& 22 \\
& \begin{array}{r}
2 \\
+ \\
+ \\
\hline
\end{array}
\end{aligned}
$$

which is the fame as the former, though differently expreffed: Now under the given fries place the fame inverted and add up the whole.

$14+14+14+14+14+14=$ =um.
By this means the terms of the ferries are reduced to an equality, to wit, equal to the fum of the fort and left term ; but the fum above found, is evidentdy double the fum of the proposed faeries: Whence
it follows, that the fum of an Arithnetical feries, is equal to half the product of the firft and laft term, with the number of terms; wherefore if the firft term, laft term, and number of terms of an Arithmetical Progreffion be given, the fum of the feries may be found by the following

$$
R U L E
$$

Multiply the fum of the firft and laft terms, or two extremes, with the number of terms, and half of that product will be the fum required.

EXAMPLES.

Let the firf term of a feries of numbers in Arithmetical Progreffion, $=1$, laft term $=37$, and number of terms 19 ; required the fum of the feries.
OPERATION.

Firf, $x+37=38=$ Jum of the firft and laft terms: Then $38 \times 19 \div 2=722 \div-2=361$ the fum required.

A man bought 20 yards of broad-cloth; for the firf yard he gave 2 dol. and for the laft 80 dol. what did the whole coft?

The fum of the two extremes, is $2 \neq 80$, then $2+80 \times 20 \div 2=820$ dol. the anfwer.

A MAN travelled 12 days, the firft day 4 miles, and the laft day 40 miles; what was the diftance travelled in the 12 days? Anfwer. 264 miles.

PROBLEM II.

To find the common difference of an Aritbmetical feries, roben the two extremes and number of terms are given.

(137)

A rule for the folution of this problem, is eafily deduced from the inference to Lemma int for fince the difference of the two extremes, is equal to the common difference multiplied with the number of terms lefs 1 , it follows, that if that difference, be divided by the number of terms lef. 1 , the quotient mult be the common difference of the feries; whence the following rule is evident.

$$
R \cup L E .
$$

Divide the difference of the two extremes by the number of terms lefs 1 , and the quotient will be the common difference required.

EXAMPLES.

In an Arithmetical feries, there is given the firit term $=3$, laft term $=60$, and number of terms 20 : Required the common difference.
OPERAIION.

The difference of the two extremes, is $60-3$; therefore(pr.rule) $\frac{\overline{60-3}}{\frac{50-1}{20-1}}=\frac{57}{19}=$ the common difference required.

Four men differing in their ages by an equal interval: The age of the firft, is 19 years, and the fourth 40 : What are their feveral ages?
OPERAI'ION.

Firt, find the common difference of their ages : Thus, $\overline{40-19} \div 4-1=21 \div 3=7$ vears; therefore
$19+7=26$ years, the age of the second, and $26+7=33$ years, the age oof the third; lastly, $33+7=40$ years, the age of the fourth, as given above.

A man owes a certain debt, to be difcharged at 8 feveral payments ; all of which are to be made in Arithmetical Progreffion, the firft payment to be 4 dol. and the laft 32 dol. Query, the whole debt and each payment.

OPERATION.

$\overline{32+4 \times 8}=144$ dol. the whole debt, and $\overline{32-4 \div}$
$\overline{8-1}=4$ dol. the common difference; wherefore $4+4$ $=8$ dol. the second payment, and $8+4=12$ dol. the third payment ; aldo, $12+4=16 \mathrm{dol}$. ; for the four th; moreover $16+4=20$ dol. for the 5 th, in like mannee $20+4=24$ dol. for the 6 th, and $24+4=28$ dol. for the 7 th; daftly $28+4=32 \mathrm{dol}$. for the last payment. as before.

> PROBLEM III.

To find the number of terms of an Arithmetical series, when the first term; lift term and common difference are given.

From the lat rule, it is eafy to conceive how a rule for the folution of this problem may be obtained; for fince the difference of the two extremes, divided by the number of terms lefs 1 , gives the common difference ; it follows, that the difference of the two extremes, divided by the common difference, mut quote the number of terms lees I .

Whence is deduced the following
$R U L E:$

$R U L E$.

Divide the difference of the two extremes, by the common difference, the quotient increafed by unity or 1 , will be the number of terms.

EXAMPLES.

Given the firf term of an Arithmetical feries=2, lat term $=167$, and common difference 3 , to find the number of terms.

OPERATION.

$$
\frac{\overline{167-2}}{3}+1=\frac{165}{3}+1=55+1=56 \text { the number of }
$$ terms required.

A man bought a quantity of broad-cloth; for the frt yard he gave 6 dol. for the fecond, 10 dol, and fo on, in Arithmetical Progreffion, to the lat yard, for which he gave 246 dol. ; what was the quantity of cloth bought?

OPERATION.

$\frac{\overline{246-6}}{4}+\mathrm{I}=\frac{240}{4}+\mathrm{I}=6 \mathrm{I}$, the number of yards bought.
A man travels from Bolton, to a certain place, in the following manner, viz. the firft day 10 miles; the fecond day 15 miles, and fo on, till a day's journey is 55 miles: In how many days will he perform the whole journey ; alfo, how many miles is the place he goes to, diftant from Bolton?

Answer. He will perform the whole in eleven days. The place difant from Boffin, 330 miles.

(,140)

S E C T. II.

Of CONTINUED PROPORTION GEOMETRICAL,

Or
GEOMETRICAL PROGRESSION.
Geometrical Progrefion continued, differs fror Arithmetical Progrefion in this ; in Arithmetical Progreffion, each following term of the feries is formed or made up by the Addition or Subtraction of the common difference, (as we have before hewn) Whereas in Geometrical Progreffion, each fucceffive term of the feries, is produced by the Multiplication or Divifion of the preceeding term, with a common multiplier or divifor: Or in other words, Arithmetical Progreffion, is the effect of a conftant Addition or Subtraction; but Geometrical Progreffion, of a conftant Multiplication or Divifion.

Thus, $2,4,8,16,32,64,128, \varepsilon^{2} c$. are a feries of numbers in Geometrical Proportion continued; whofe refpective terms are compofed by the Multiplication of the Ratio or common multiplier, (2): thus, $2 \times 2=4$, the fecond term, $4 \times 2=8$, the third term; $8 \times_{2}=16$, the fourth term, and fo on.

Also, $16,8,4,2$, are a feries of numbers in Geometrical Proportion, continually decreafing by the divifion of the Ratio, or common divifor, (2): Thus, $\frac{16}{2}=8$, the fecond term, $\frac{3}{2}=4$, the third term, $\frac{4}{2}=2$, the fourth term, and $\frac{2}{2}=1$, the fifth term.

LEMMA1.

If ibree numbers are in Geometrical Progiefion, the product of the two extremes, will be equal to the prodult of the mean with itfelf.

(141)

Let the numbers be $2,8,32$; where $2 \times 32=64$, and $8 \times 8=64$; confequently $2 \times 32=8 \times 8$.

LEMMA.II.

In any Geometrical Proportion confiting of four terms, the product of the two extremes, is equal to the prodult of the two means.

If the numbers are, $2,8,32,128$, it will be $\overline{2 \times 128}=\overline{8 \times 32}$; therefore $2: 8:: 32: 128$.

Consequently, if the product of any two numbers, be equal to the product of any other two numbers, thofe four numbers are proportional.

Hence it may be ealily underfood, that if any number of terms are in \div the product of the two extremes, will be equal to the product of any other two terms, equidiftant from thofe extremes.

Let the feries be $3,6,12,24,48,9^{6}$; where $\overline{3 \times 96}=\overline{6 \times 48}=\overline{12 \times 24}$.

When numbers are compared together, in order to difcover their relation to each other, the number compared is writen firt, and called the antecedent, and the number by which you compare the other, being written next, is called the confequent : Thus if you would compare 2 with 4 , the numbers muft be wrote thus, 2,4 ; where 2 is the antecedent, and 4 the confequent: Again in thefe, $3: 6:: 6: 12$; where 3 is antecedent; and 6 its confequent ; alfo, 6 the middle term, is an antecedent to 12 , its confequent. Therefore in every feries of numbers in Geometrical Proportion continued, all the terms except the laft, are antecedents, and all except the firft are confequents.

Thus in the feries $3,9,27,31,243,729$, the munbers $3,9,27,81,243$, are all antecedents, and

142)

$9,27,81,243,729$, are all confequents; therefore $3: 9:: 9: 27:: 27: 81:: 81: 243:: 243: 729$.

The Ratio is had by dividing any confequent by its antecedent.

LEMMAII.

If any numbers are preportional, it will be, as any one of the antecedents, is to its confequent; So is the furin of all the antecedents, to to the fum of all the confequents, (Vid. Euclid's fifth book, Propofition 12.)

Leet the numbers be thefe, $4,8,16,32,64$, then $4: 8:: \overline{4+8+10+32}: \overline{8+16+32+64}$, that is, $4: 8:: 60: 120$; for $\overline{4 \times 120}=\overline{8 \times 60}$; therefore, EVC_{6}

PROBLEMI.

To find the jum of any Geometrical Series increafing. Suppose the fum of the following feries, $1,4,16$, 64, 256, is required: Multiply this feries with the Ratio, which is 4 , and the product will be a new feries, $4,16,64,256,1024$: Now it is plain, that the fum of the produced feries, is as many times the fum of the former, as the Ratio hath units; or the produced feries, is to the propofed, as the Ratio to unity, or 1: Subtract the firft feries from the fecond.

Thus, $\left\{\begin{array}{l}4,16,64,256,1024 \\ r, 4,16,64,256 .\end{array}\right.$

$$
-\mathrm{r}, * * * *+1024, \quad \text { or, } 1024-\mathrm{r},
$$ which is evidently equal to the fum of the firft feries multiplied with the Ratio, lefs I, by what has been faid; confequently the fame divided by the Ratio, lefs i, muft give the fum of the propofed feries; that

$$
\text { is, } \frac{256 \times 4}{4-1}=\frac{\left(\frac{1+3}{1024-1}\right.}{4-1}=\text { fum of the series re- }
$$ quired.

Therefore, when the firft term, lift term, and Ratio of a Geometrical fries are given, we may find the fum of all the terms by the following

$$
R \cup L E .
$$

Multiply the lat term with the Ratio, from which product, fubtract the first term, divide the remainder by the Ratio left I, and the quotient refulting will be the fun c^{\prime} the faeries.

Mr. WARD, in his introduction to the Mathematics, page 78, has given an analytical inverigadion of a rule for finding the fum of any fries in \because increafing; which is after the manner following.

Let a Geometrical faeries be given, fuppole the following, $2,4,8,16,32,64$.

Put $x=$ fum of the Series:
Then, $x-64=$ fum of all the antecedents:
And $x-2=$ fum of all the confequents:
Therefore, $2: 4:: x-64: x-2$; per Lemma iII.

Confequently, $\overline{x-2} \times 2=\overline{x-64} \times 4$;
That is, $2 x-4=4 x-256$:
Then, $4 x-2 x=256-4$:
Therefore, (by divifion) $2 x-x=128-2$:
Whence, $x=\overline{128-2} \div \overline{2-1}$, which affords the fame rule as that above.

Or finding the value of x in the equation $4 x-2 x=$ $256-4$, to wit, $x=\overline{256-4} \div 4-1$ wibich admits of the following

$$
\frac{(144)}{R \cup L E}
$$

From the product of the fecond and laft terms, fubtract the fquare of the firft, divide the remainder by the fecond term lefs the firft ; and the quotient will be the fum of the feries.

EXAMPLES.

In a Geometrical feries, there is given, the firft term $=3$, laft term $=243$, and Ratio 3 ; to find the fum of the feries, per Rule firf.

$$
O P E R A T O N .
$$

Firf, $243 \times 3=729=$ produEt of the laft term with the Ratio; then $729-3 \div 3-1=726 \div 2=363$ the fum required.

A man bought a quantity of cloth; for the firft yard he gave 2 dol. for the fecond 4 ; and fo on, in continued proportion Geometrical to the laft yard, for which he gave 256 dol. what did the whole coft ?

Here, is given the firt, fecond, and laft terms, to find the fum of the feries, per Rule fecond.
$\overline{256 \times 4}-4=1024-4=1020=$ product of the fecond and laft terms, lefs the Square of the firt; then $\frac{1020}{4-2}=\frac{1020}{2}=510$ dol. . the aforefaid difference divided by the fecond te:nn lefs the firft =fum that the woble clotb cof.

But in finding the fum of the feries by the foregoing rules, it is neceffary to have the laft term given : thercfore the next thing in order, is, to fhew how the laft term of the feries, when it is not given in the queftion, may be obtained.

(145)

PROBLEM II.

The firft term, Ratio, and number of terms of a Geometrical feries being given, to find the laft term.
I. When the firlt term and Ratio are alike.

$$
R U L E \quad I .
$$

1. Write down an Arithmetical feries of a convenient number of terms, whofe firlt term, and common difference is unity or 1 .
2. Write a few of the leading terms of the Geometrical feries, under the firft terms of the Arithmetical one.

Thus, $\left\{\begin{array}{l}1,2,3,4,5 \text {, Indices, or expoments. } \\ 2,4 ; 8,16,32, \text { Geometrical feries. }\end{array}\right.$
3. ADD together any two of the indices, and mulsiply the terms in the Geometrical feries, which belong to thofe indices, together, and their product will be that term of the Geometrical feries, which the fum of thofe two correfponding indices point out.
4. Continue the addition of the indices, and multiply their correfponding terms, of the Geometrical feries, refpectively as before, until the fum of the indices is equal to the number of terms, the product anfwering thereunto, will be the laft term required.
II. When the firft term is either greater or lefs than the Ratio, (unity excepted.)

$$
R U L E \quad I I .
$$

1. Write down an Arithmetical feries, beginning with a cypher, the common difference, the fame as in the laft rule.

(146)

2. Place the leading terms of the Geometrical feries, under the Arithmetical, fo that the cypher may ftand over the firft term of the Geometrical feries ; then add the indices, and multiply their correfponding terms as before.
3. Divide that product by the firf term, and the quotient will be that term of the feries, which is denominated by the fum of thofe indices: The reft the fame as before.
III. Waen the firft term is unity or I .

$$
R \dot{U} L E \text { III. }
$$

Write down the terms, and place their indices as in the laft rule ; then add the indices, and multiply the terms which they denominate, together, till the fum of the indices is one lefs than the number of terms, and the refult will be the laft term, as required.

An example in each of the foregoing rules, will make their application eafy.

In a Geometrical feries, there is given, the firft term $=2$, Ratio 2 , and number of terms 12 , to find the laft term, per rule 1 .

> OPERATION.

Thus, $\left\{\begin{array}{l}1,2,3,4,5,6, \text { Indices. } \\ 2,4,8,16,32,64, \div .\end{array}\right.$
Here, $4+2=6$, the index of the fixth term; consequently $4 \times 16=64$, the fixtb term. Again, $6+6=12$, and $64 \times 64=4096=$ tweelfth term, as required.

Suppofe the firt term of a feries in \because, is 3, Ratio 2 , and number of terms 15 ; required the laft term, per rule 2.

OPERATION.

(147)

OPERATION.

Firft, $\left\{\begin{array}{l}0,1,2,3,4,-5, \text { Indices. } \\ 3,6,12,24,48,96, \div .\end{array}\right.$
Then, $3+5=8$, and $24 \times 96=2304$; therefore, $2304 \div 3=768=$ eight b term. Again, $3+4=7$, and $24 \times 48=1152$; therefore, $1152 \div 3=384=$ Seventh term. Laftly, $7+8=15$; cobence $\frac{\overline{384 \times 768}}{3}=98304$
$=15 \mathrm{tb}$, and raft term which was to be done.
Given frt term =1, Ratio 4, and number of terms ir, to find the laft term, per rule 3 .

Thus, $\left\{\begin{array}{l}0,1,2,3,4, \text { Indices. } \\ 1,4,16,64,256, \ldots .\end{array}\right.$
Then, $4+3+3=10=$ number of terms less one $=$ index to the 11 th term; therefore, $256 \times 64 \times 64=$ 1048576 In 1 th term as was required.

Mifcellaneous Quefions.

A Man hired himfelf to a farmer, for 28 weeks upon thee confiderations ; that for the firft week to have 1 ct .; for the fecond 2 cts .; and the third 4 cts ; and fo on, in \because : What did his 28 weeks wages amount to ?

The lat term by the foregoing rules, is, I 34217728 , which multiplied with the Ratio (2) produces
268435456 ; therefore, $\frac{\overline{268435456-1}}{2-1}=268435455$ cts. $=2684354$ dol. 55 cts. the answer.

A MaN bought 20 yards of velvet, at the following prices, viz. for the firt yard he gave 2.cts. ; for the fecond, 4 cts . ; for the third, 8 cts . and fo on, in Geometrical Proportion: How much did the whole coft?

Anfiwer. 2097 I dol. 50 cts.

A merchant fold 24 yards of lace; the firft yard for 3 pins, the fecond for 9 , the third for 27 ; and fo on, in triple Proportion Geometrical : Now fuppofe he afterwards fold his pins 120 for a cent : What did his lace amount to, and what was his gain in the whole, when he gave 50 cts. per yard for his lace?

> AnS. $\{$ Lace come to, 4236443047 dol. 20 cts.$$ Gein in the whbole, 4236443035 dol. 20 cts.

A thresher agreed with a farmer to work fer him 25 days, for no other confideration than 2 barleycorns for the firt day 8 ; for the fecond 32 ; for the third ; and fo on, in quadruple proportion Geometrical : How much did his wages amount to, allowing 7680 barley-corns to make one pint, and the barley to be fold for 25 cts . per bufhel ?

Answer. $3^{81774870 ~ d o l . ~} 75 \mathrm{cts}$.
Suppose a wheat-corn had been fowed at the creation, and continued to increafe in a ten-fold proportion every year, down to the prefent time ; now allowing 5000. years for the elapfe of time: What would be the number of wheat-corns produced?

Here the firft term being 1 , the Ratio 10 , and the number of terms 5000 , it is therefore plain, that the laft term will be 1 , having as many cyphers annexed, as there are number of terms; lefs one; confequently its value is I (4999) o's, where the numeral figures included in the parenthefis, exprefs the number of cyphers annexed to the 1: Next to find the fum of the feries:

Firft,

(149)

Firft, ' I (4999) o's $\times 10=I(5000) 0^{\prime} s$, then $1(5000)$ 0's-I $=(5000)$ g's $=$ the number of 9 's therefore 5000 9's $=$
10-I
places of figures=number of wheat-corns produced; which number far exceeds all human imagination; for the whole fpace occupied by our folar fyttem, which is at leaft twenty thoufand million of miles in diameter, is by much too finall, to contain the aforefaid quantity of wheat: Nay, fuch a quantity would take up more fpace, than is contained in the whole heavens on this fide the fixed ftars. Hence we may learn the great power of progreffive numbers, and that fmall portion of fpace, neceffary to exprefs a number by the help of numeral figures contrived for that purpofe, which to far exceeds all our imagination.

CHAP. II.

DISJUNCT PROPORTION,
The RULE of THREE.

wHEN of four numbers, the firf has the fame Ratio to the fecond, as the third has to the fourth: . Or when the fecond is the fame multiple or quotient of the firft, as the fourth is of the third; then are thofe numbers faid to be in Disjunct Proportion.

If four numbers are proportional clirectly, as the firt to the fecond ; fo is the third to the fourth; then will they alfo be proportional; Inverfely, Alternate-

(150)

ly, Compoundedly, Dividedly, and Mixtly. (Vid Book 11. Chap. xir.)

> S E C T. I.

$$
\begin{gathered}
\text { DIRECT PROPORTION, } \\
\text { OR }
\end{gathered}
$$

The RULE of THREE DIRECT.
This is fometimes called the golden rule, from the great benefit people in all kinds of bufinefs receive from it, as well the farmer and mechanic as the merchant, \&ac. It confifts of four numbers, which are proportional, as the firft to the fecond; fo is the third to the fourth, as above: The two firft are a fuppofition, the third a demand, and the fourth the anfwer. The two fuppofitions and the demand are always given, and the fourth required.

Let the four numbers be, a, b, c, d. Then $a: b::$ $c: d$, diredtly ; therefore, $a \times d=b \times c$, or $a d=b c$, per Lemma if, of the laft Section.

Whence by the nature of divifion $b c \div a=d$, that is, if the product of the fecond and third terms, be divided by the firtt, the quotient will be the fourth. Or fince the Ratio of the firft to the fecond, is the fame as that of the third to the fourth; it follows, that $b \div a \times c=d$, that is, if the fecond term be divided by the firit, and that quotient multiplied into the third, it will produce the fourth.

Now, in order to prepare your numbers for obtaining a fourth proportional, according to the foregoing rules, you mut obferve the following

(151)

$$
R \cup L E .
$$

Write that number which is of the fame name with the number fought, in the middle place, and the other two fo, that the expreffion may read according to the nature of the queftion.

Let the following conditions be expreffed in numbers.

What is the coft of 24 lb . of cheefe, when the price of 3 lb . is 20 cts . ?

Here the middle number muft be coft, becaufe the fourth, or number required, is always of the fame name and denomination of the fecond, by the nature of the proportion: Hence the above conditions in numbers, is,

Thus, 3 lb . 20 cts . 24 bl . ; that is, if 3 pounds coft 20 cts. what will 24 pounds coft? Then to find a fourth number, proceed as before directed.

Note. If the firft and third numbers are not of the fame name, they muft be made so by the rules of reduction: Alfo, if any of the numbers are compounds, they muft be reduced to the leaft denomination mentioned.

EXAMPLES.

If 4 lb . of cheefe coft $3^{2} \mathrm{cts}$. ; what will 320 lb . coft at the fame rate?

(152)

OPERATION.

There numbers being placed according to the lb. cts. 1 b . rule, will ftand thus, $4: 32:: 3,20$

$$
\frac{32}{640}
$$

4) 10240

$$
\begin{array}{r}
1(00) \cdot 25(60=25 \text { dol. } 60 \\
{[\text { cts, the anfwer. }}
\end{array}
$$

Or, $32 \div 4=8$; therefore, $320 \times 8=2560$ cts. $=25$ dol. 60 cts. the fame as before.

What will 6 yards of holland coft, when the price of 40 yards, is 24 dol .40 cts . ?

OPERATION:

yd. dol.cts. yd.

As $40: 2440:: 6$ fated.
Then, $24.40 \div 40=.61$, and $6 \times .6 \mathrm{r}=366 \mathrm{cts} .=$ 3 dol. 66 cts. the anfwer.

Find the value of roolb. of flax, when the price of 11b. is 12 cts ?

> OPERATION:
ib. cts. 1 b .
As $1: 12:: 100$

$$
\frac{a^{12}}{12.00}=12 \text { dol. the anfwer. }
$$

(153)

What is the coft of 401 lb . of cheefe, when the price of 3 lb. is 15 cts .

OPERATION.

Firft, $15 \div 3=5$, the ratio of the firft term to the recond.

Then, $40 \times 5=200 \mathrm{cts} .=2$ dol. the anfwer.
What is the coft of 87 lb . of tobacco, at $8 \frac{1}{2}$ cts. per lb. ?

OPERATION.

lb. cts. cts. lb . As $1: 8 \frac{1}{2}=8.5:: 87$
8.5

435
696

$739 \cdot 5=739 \frac{1}{2}$ cts. $=7$ dol. [39. $\frac{1}{2}$ cts. the anfwer.
A goldfmith fold a tankard for 29 dol. 97 cts . at the rate of I dob. II cts. per oz. : What was the weight of it ?

Anfwer. 27 oz.
A man bought fheep at I dol. II cts. per head, to the amount of 51 dol. 6 cts . : How many fheep did he buy? Anfwer. 46.
S E C T. II.

RECIPROCAL, or INVERTED PROPORIION OR
The RULE of THREE INDIRECT.
This kind of proportion, is the reverfe of the former, as to the performance ; for the greater the

$154 \quad$

third term is, in refpect of the firf, the lefs will be the fourth, in refpect of the fecond; whereas in direct proportion, the greater or lefs the third term is in refpect of the firft, the greater or lefs will be the fourth term, in refpect of the fecond; but to illuftrate the former. If two men can produce a certain effect in 12 days: In how many davs would 6 mer produce the fame? Here it is manifent, that 6 mer would produce the effeet in lefs time than 2 ; anc therefore the greater the third term is, the lefs wil be the fourth. Again, if romen can produce a certain effect in 6 days: In how many days would 4 men do the fame? Here it is evident, that 10 men would produce the effect in lefs time than 4 men; and therefore the lefs the third term is, the greater will be the fourth : Confequently, more requires lefs, and lefs requires more, in indirect proportion.

Here the fame rule is to be oblerved, in ftating your queftion, as in the former proportion, and the refults in refpect of names and denominations are the fame alfo: Then to find a fourth proportional, proceed with the following rules.

$$
R \cup L E \mathrm{I} .
$$

Mulfiply the firft and fecond numbers together, and divide that product by the third ; the quotient refulting will be the fourth proportional required.

$$
R \cup L E \quad \text { I. }
$$

Divide the fecond number by the third, and that quotient multiplied into the firf, will produce the fourth.

$$
R \cup L E
$$

$$
\frac{(155)}{R U L E \text { III. }}
$$

Divide the third term by the firft, and the fecond erm by this quotient ; and the refulting quotient rill be the fourth number.

EXAMPLES.

If 5 men can perform a certain piece of work in days: How long will four men be in doing the ame ?

OPERAIION.

Men. D. Men.
Or,

If 20 bufhels of grain, at 50 cents per bufhel, will jay a debt: How many bufhels at 60 cents per bufh1 will pay the fame?

OPERATION.

156)

OPERATION.

$$
\begin{array}{ccc}
\text { cts. } & \text { Buff. } & \text { cts. } \\
50 & 20 & 60 \\
20 & : &
\end{array}
$$

$6(0) 100(0$
$16 \frac{4}{6}$
Answer. $16 \frac{4}{6}$ bushels.
If 2 yards of cloth, 1 yard and 3 quarters wide, is fufficient to make a coat ; how many yards of I yard wide, will make the fame ?

A man being defirous to draw off a calk of brandy into bottles, finds that if he makes use of three quart bottles, it will require 60 : How many fivepint bottles will it require, to draw off the aforesaid calk of brandy.ic Answer. 72 bottles.

A man bought a piece of cloth 9 quarters wide, and in quarters long: How many yards of 3 quarter cloth will line it? Answer. $8 \frac{1}{4}$ yards.

If $3 \frac{1}{2}$ yards of yard-wide cloth will make a coat : How many yards of 7 quarters cloth, will make the fame?

$$
\text { Anfreer. } 2 \text { yards. }
$$

$$
\begin{gathered}
\frac{(157)}{\text { SECT. III. }} \\
\text { COMPOUNDED RATIO. }
\end{gathered}
$$

Compounded Ratio is when the antecedent and confequent taken together, is compared to the confequent itelf: thus, $a: b:: c: d$, directly, therefore by compofition; as $a+b: b:: c+d: d$.
Note. The fame Rule is to be obferved bere, as in direct proportion.

EXAMPLES.

If A can produce a certain effect in 5 days, B can do the fame in 7 days ; fet them both about it together, in what time will it be finifhed ?

ORERATION.

22 bours. Anf. 2 days 22 b.
If A in in 5 hours, can make 1000 nails, B in 8 hours, can make 2000 : In what time would they jointly make 50000 nails?

Here

$158)$

Here you mult firft find in what time each perfon would make 50000 nails, and then proceed as in the laft example.

OPERATION.

n. h. n.

As $1000: 5:: 50000: \overline{50000 \times 5} \div 1000=250$ bours, the time it would take A to make 50000 nails.

As $2000: 8:: 5000: \overline{50000 \times 8} \div 2000=200$ bours, the time it would take B to make 50000 nails.

Therefore, as $\overline{250+200}: 200:: 250: \overline{200 \times 250} \div$ $450=111 \frac{1}{3}$ bours, the time it would take them jointly to make 50000 nails, as was required.

Note. From this operation, we bave the following general theorem for folving all queftions of a fimilair nature, let the perfons or agents employed, be any number whatever.

THEOREM.

Multiply the joint effect with the time each one would produce his particular effect, and divide the product by the faid particular effect ; then multiply all the refulting quotients together for a dividend, and make the fum of them a divifor; then divide, and the refulting quotient will be the time required.

S E CT.

$$
\begin{aligned}
& \text { (} 159 \text {) } \\
& \text { S E C T. IV. }
\end{aligned}
$$

Divided Ratio is when the excefs wherein the antecedent exceeds the confequent, is compared with the confequent: Thus, $a: b:: c: d$, directly; therefore by divifion as $a-b: b:: c-d: d$.

EXAMPLES.

If A can do a piece of work in 8 days, A and B can do it in 5 days: In what time can B do the fame work?

OPERATION.

As $8-5=3: 5:: 8: \overline{5 \times 8} \div 3=40 \div 3=13$ 8, the time required.

Two fhips, one in chafe of the other, the headmoft thip is 48 miles diftant from the other, and fails at the rate of 4 miles per hour, and the fteramont fhip at the rate of 7 miles per hour:: How long before the fternmoft fhip will overtake the ocher?

OPERATION.

As 7-4二 $3: 1:: 48: \overline{48 \times 1} \div 3=16$ bours, the time required.

A hare is is 50 leaps before a grey-hound, and takes 4 leaps to the grey-hound's three ; but 2 of the grey-hound's leaps are as much as three of the hare's: How many leaps mutt the grey-hound take to catch the hare ?

Here you muft firft find bow many leaps of the bare, anfovers to three of the grey-bound's: "Tbus, 2:3::3'
$: \overline{3 \times 3} \div 2=4 \frac{1}{2}=4.5:$

Ther, as $4.5-4=.5: 3:: 50: \overline{3 \times 50} \div .5=300$ the anfwer.

The hour and minute-hand of a clock are exactly together at 12 o'clock; when are they next together?

Here the proportion of the velofities of the bour and minute-band, is as 1 to 12 . Therefore, 12-1二11:
$:: 12: \overline{12 X 1} \div 11=1$ h. $5 \frac{51}{11}$, the anfreer.
If A, B and C , can produce a certain effect in $\mathbf{1 2}$ days, A candoit in 30 days and C in 50 days, in what time will B do the fame work ?

Firft find the time in which A and C, would produce the effect jointly, by Ratio of compofition. Tbus, $\overline{30+50}: 50:: 30: \overline{50 \times 30} \div 70=21 \frac{3}{7}$ days. Then, as $21 \frac{3}{7}-12=9 \frac{3}{7}: 12:: 21 \frac{3}{7}: 25 \frac{49}{6}$, , the time requir . ed.

There is an inand 100 miles in circumference, and two footmen, A and B , fet out together, to travel the fame way round it, A travels 15 miles per day, and B if miles: When will they come together again?

Firft, find bow many miles B muf travel to overtake A, after their departure: Tbus, as 17-15=2:17 $\therefore 100: 850$, the number of miles B muft travel, which is 50 days journey; therefore they will be together gain 50 days after their departure.

There is three pendulums of unequal lengths; the firt of which vibrates once in 12 feconds, the fecond in 18 feconds, and the third in 24 feconds: Now fuppofing them all to move from a line of conjunction, at the fame moment of time : When will they come into the fame fituation again, and move on together ?

Firft, find the time when the two firft pendulums will move on together, as in the laft example: Thus, 18 $12: 18:: 1: 18 \times 1 \div 6=3$, the number of vibrations of the firft, wbich is performed in 3^{6} jeconds $=2$ vibrations of the fecond. Therefore, after the firft bas vibrated 3 times, and the second 2, they will move on togetber again.

In the next place, we muft examine into the fituation of the third pendulum, at the conjunction of the two firft. In 36 feconds, there is 1.5 vibration of the third pendulum, which is therefore, .5 of a vibration, diftant from the conjunEtion of the other two; wherefore, .5 : I $:: 3: 6$, the number of vibrations of the firft, at which time, they all come into a line of conjunetion, and move on togetber. Consequently, when the firft bas made 6 vibrations, the second will bave performed 4, and the third tbree $=24 \times 3=72$ seconds, the time required.

If A can do a piece of work in 20 days; A and B in 13 days; A and C in II days; and B and C in o days: How many days will it take each perfon to perform the fame work ?

OPERAIION.

As 20-13:13::20:377 the time that B would do it.

As 20-11:11::20:249 the time that C would do it.

162)

C H A P. III.

SIMPLE INTEREST.

SI MPLE intereft is a premium of a certain fum paid for the loan of money borrowed for a particular term of time, at any rate per cent or hundred, as the borrower and lender fhall agree.

Thus, if 100 dollars be lent at 6 per cent per annum, the premiuin for 1 year will be 6 dollars, for 2 years 12 dollars, for 3 years 18 dollars; and fo on.

The fum lent is called the principal, and the premium per 100, the Ratio or rate per cent; and the amount is the principal and intereft added together.

All the varieties of fimple intereft, are comprifed in the following cafes.

> C A S E I.

When the fum lent, is for any number of years, and the rate per cent, any number of dollars.

$$
R U L E
$$

Multiply the principal with the number of years, and that product with the Ratio, and divide by 100 ; the quotient refulting, will be the intereft required.
EXAMPLES.

Required the intereft of 700 dollars, for 4 years, at 6 per cent per annum ?

Anfwer. 168 dollars, the intereft required.
Required the intereft of 3520 dollars, for 7 years, at 6 per cent per annum.

OPERATION.

$$
3520
$$

7

$$
\begin{array}{r}
24640 \\
6
\end{array}
$$

$$
1(00) \times 478(40=1478 \text { dol. } 40 \text { cts. the }
$$ [anfwer.

What is the intereft of 57821 dollars, for 5 years, at 5 per cent per annum? Anf. 2891 dol. 5 cts.

What is the intereft of 5972 dollars, for 12 years, at 3 per cent per annum? Anf. 716 dol. 64 cts.

- C A S E II.

When the fum is lent for years and months; the Ratio the Same as before.

$$
R \cup L E .
$$

Reduce the number of months into the decimal of a year, then multiply the principal with the time, and
and that product with the Ratio, then divide by 100 and you will have the intereft required.
Or,

Multiply the principal with the number of years, and take parts of the principal for the reft part of the time, and add them to the reft ; then proceed as before directed.

Required the intereft of 735 dollars, for 5 years, 4 months, at 5 per cent per annum.

OPERATION.

4 months $=\frac{x}{3}$ of a year, 3)735
$\frac{5}{3675}$
$\frac{245}{3920}$

3 ratio.
$3(00) 196) 00=196$ dollars, the
[intereft required.

Required the intereft of 52374 dollars, for 7 years 8 months, at 6 per cent per annum.

OPERATION.

(165)
 OPERATION.

8 montbs $=\frac{2}{3}$ of a year, 3) 52374

366618
1745^{8}

$\frac{1745^{8}}{401534}$
$6=$ ratio.

$I(00) 24092) 04=$| dol. |
| :---: |
| 24092 |
| [tereft required. |

What is the intereft of 32104 dollars, for 4 years, 3. months, at 5 per cent per annum ?

Anf. 6827 dol. 10 cts.

C A S E III.

When the Ratio is dollars and parts of a dollar, the reft the fame as before.

$$
R U L E .
$$

1. Reduce the number of months into the decimal of a year, and multiply the principal with the whole time.
2. Reduce the fractional parts of the Ratio into the decimal of a dollar.
3. Multiply the former refult with the latter, and divide by 100 , and you will have the intereft required :

Or,
Multiply the principal with the number of years, and take parts of the principal for the reft part of the time, and add them to the former product; then multiply

166)

multiply this product with the dollar's part of the rate, and take parts of the multiplicand for the reft part of the rate, and add them to the latter product; then divide them by 100 , and you will have the intereft required.

EXAMPLES.
Required the intereft of 700 dollars, for 3 years 6 months, at $6 \frac{1}{2}$ per cent per annum.
OPERATION.

700
$3.5=$ time.
$\frac{3500}{2100}$
2450.0
$6.5=$ ratio.

122500 147000
$1(00) 159) 25.00=159 \quad$ dol. 25 , the answer.

Or. 6 months $=\frac{1}{2}$ a year 2)700

for the $\frac{x}{2}$ per cent 2) 2450

$$
\begin{gathered}
14700 \\
1225 \\
1(00) \times 59(25=159 \text { cts. } 25 \text { as be- } \\
\text { Required }
\end{gathered}
$$

(167)

Required the intereft of 3520 dollars 17 cents, for 2 years 6 months, at $5^{\frac{1}{7}}$ per cent.

OPERATION.

$$
\text { 2) } 3520.17
$$

$$
2
$$

704034
$176003.5=3520.17 \div 2$
4) 8800.375 5

44001875
2200.093
dol. cts.
$1(00) 462(01.968=462$ 1. 968 the \quad anf.

C A S E IV.

When the fum is lent for any number of weeks.

$$
R U L E .
$$

ReDUCE the number of weeks into the decimal of a year, and proceed as in the laft cafe. Or,
Find the intereft of the given fum, according to the foregoing rules for one year ; then fay, as 52 , the number of weeks in a year, is to the intereft thus found; $f 0$ is the given number of weeks, to the intereft required.

EXAMPLES.

Required the intereft of 7.20 dollars, for 10 weeks, at $5 \frac{1}{2}$ per cent per annum.

Note. The reafon why the two metbods of operation above, do not bring out the fame anf weer, is because the decimal of 10 weeks sain never be exaitly found; yet the errour arifing from any fuch computation, will be inconfiderable.

(169)

dol. cts.

Required the intereft of 5272 , for 13 weeks, $2 t$ $\frac{1}{3}$ per cent per annum.

OPERAIION.

$$
\begin{array}{r}
527.2 \\
.25
\end{array}=\text { time. }
$$

$$
\overline{26360}
$$

$$
10544
$$

1318.00
$5 \cdot 5$
659000
659000
$I(0) 72(49.000=72$ dol. 46 cts. the anf.
CASEV.

When the fum is lent for any number of days.

$$
R \cup L E
$$

Reduce the days into the decimal of a year, and proceed as in the laft cafe.

Or,

1. Multiply the given fum with the number of days, and that product with the Ratio for a dividend.
2. Multiply 365 , the number of days in a year, with 100 for a divifor; then divide, and the quotient will be the intereft required.

As 365 days, is to the intereft of the principal for one year; fo is the time propofed, to the intereft re. quired.

EXAMPLES.
Required the interest of 300 dollars, for 219 day! at 6 per cent per annum.

OPERATION.

$$
\begin{aligned}
& \text { Or, } 219 \\
& \begin{array}{l}
300 \\
.6=\text { time, } \\
\hline 180.0
\end{array} \\
& 6=\text { ratio, } \\
& \text { d. } 365(00) 3942(00) 1080 \text { as before } \\
& I(00) 10) 80.0=1080 \text { ct. inf. } \frac{365}{292.0} \\
& 2920
\end{aligned}
$$

Required the intereft of 1000 dollars, for 35 days at 6 per cent per annum.

$$
\begin{aligned}
& \text { OPERATION. } \\
& \text { d. dol. d. } \\
& \begin{array}{r}
1000 \\
6
\end{array} \quad \text { As } 365: 60:: 35 \\
& 60.00 \\
& \left.3^{665}\right)_{1825}^{2100(5 d o l .} 75 \mathrm{cts} . \\
& \text { dol. cts. } \\
& \text { Ans. } 575 \frac{129}{365}
\end{aligned}
$$

(171)
 CASE VI.

When the principal, Ratio, and interest are given to ind the time.

$$
R \cup L E .
$$

1. Find the interest of the principal for one year, at the given rate.
2. SAY as the intereft thus found, is to one year ; oo is the given intereft, to the time required.

EXAMPLES.

Required the time in which 500 dollars will gain 150 dollars, at 6 per cent per annum.

OPERATION.

dol. y. dol.
500 - As $30: 1:: 150$
6
30.00

$$
\begin{aligned}
& \text { 30) } 150(5=5 \text { years the time } \\
& 150 \\
& \text { [required. }
\end{aligned}
$$

Find in what time 700 dollars will gain 159 dol. 25 cts . at $6 \frac{1}{2}$ per cent per annum.

OPERATION.

700
dol. cts. y. dol. cts.
$6.5=$ time. As 45 50:1: $: 15925$

dol. cts.
Required the time in which $283333 \frac{1}{3}$ will amount so 370 dol. 50 cts. at 6 per cent per annum.

OPERATION.

CASEVII.

When the Ratio, time, and amount are given to find the principal.

$$
R U L E
$$

As the amount of 100 dollars, at the rate per cent and time given, is to ioo dollars; fo is the given amount, to the principal required.
EXAMPLES.

Required the principal that will amount to 3766 col. 40 cts. in 7 years, at 6 per cent per annum.

(173)

OPERATION.

$$
\begin{array}{r}
100 \\
6
\end{array}
$$

Required the principal that will amount to 868 dollars in 4 years, at 6 per cent per annum.
OPERATIION.

$$
100+24=124: 100:: 868
$$

100
124) $86800(700$ 868
000

Therefore 700 dol . is the principal required.
Required the principal that will amount to 270 dollars, in 2 years at 6 per cent per annum.

OPERATION.

Therefore, 241 dol. $7 \frac{16}{1 \frac{6}{12}}$ cts. is the principal required.

Admit I have a legacy of 196 dol. $66 \frac{2}{3}$ cts. to pay; but is not due till the end of 3 years, and the legatee being in want of money, defires I would lend him fome: What fum muft he have to amount to his legacy in 3 years, at 6 per cent per annum?

Anfreer. 166 dol. 66_{3}^{2} cts.

> C A S E VIII.

When the principal, amount, and time are given to find the Ratio.

$$
R U L E .
$$

1. Subtract the principal from the amount, and the remainder is the intereft.

(175)

2. SAY as the given principal, is to its intereft ; fo is 100 dollars, to the intereft of 100 dollars for the given time.
3. Divide the, intereft of 100 dollars thus found by the given time, and the quotient will be the ratio required.

> EXAMPLES.

Required the rate per cent per annum fuch, that 1240 dollars may amount to 1400 in 3 years.

OPERATION.

Required

(176)

Required the rate per cent per annum, that 100 dollars in 7 years will amount to 135 dollars.

OPERATION.

$35=$ intereft,

$$
\text { 1) } 00 \text { (00(35 } 7(35 \text { dol. }
$$ 5 =ratio req.

At what Ratio will 3333 dollars $33^{\frac{1}{3}}$ cents amount to 4000 dollars in 20 years. Anjwer. 6 dol.

> CASE IX.

COMMISSION or PROVISION.
This is a premium allowed to factors for buying or felling goods, wares, or merchandize, at fo much per cent, without any regard to time; which rate is governed according to the cuttoms of particular places.

The method of proceeding, is the fame as in cafe III, except no regard is had to time.

> EXAMPLES.

If I buy goods for my correfpondent in Philadelphia, to the value of 4000 dollars: What may I demand for my commiffion, at $4 \frac{x}{2}$ per cent?

$$
\begin{gathered}
\left.\frac{(177}{O}\right) \\
\frac{4000}{20000}=\text { ratio, } \\
\frac{16000}{180(00.0}=180 \text { dol. the anfower. }
\end{gathered}
$$

Required the commiffion for felling 5720 dollars worth of goods, at $2 \frac{x}{2}$ per cenr.

OPERATION.

$$
\begin{array}{r}
5720 \\
\frac{2.5}{28600}=\text { ratio, } \\
11440
\end{array}
$$

$143.000=143$ dol. the anf.
My correfpondent fends me word, that he has difburfed goods on my account, to the value of 13333 dollars $33 \frac{1}{3}$ cents: What is his commiffion at $2 \frac{x}{2}$ per cent?

Anfwer. 333 dol. $33 \frac{\mathrm{x}}{3}$ cts.
C ASEX.

$$
B R O K E R A G E
$$

Brokerage is an allowance of fo much per cent, made to perfons called brokers, for finding cuftomers, and felling to them goods, wares, \&xc, which belong to pther men.

(178)

$$
R U L E
$$

Find the intereft of the given fum, at one per cent ; or which is the fame thing; divide the given fum by 100 , and take parts of the quotient, agreeing with the rate per cent.
Or,

Reduce the rate per cent to a decimal, and muletiply it with the given fum; then divide by 100 , and the quotient will be the anfwer.

$$
E X A M P L E S
$$

Required the Brokerage of 1000 dollars, at 25 cents per cent.

OPERATION.

$$
{ }^{1}(\infty) 10(00
$$

25 cents $=\frac{1}{4}$ of a dollar, therefore, $10 \div 4=2$ dollars 50 cents $=$ Brokerage of 1000 dollars divided by $4=$ Brokerage required.

$$
2.5000=2 \text { dol. } 50 \text { cts. as be- }
$$

Required the Brokerage of 324 dollars 40 cents, at $\frac{2}{5}$ of a dollar per cent.

(179)
 OPERATION.

324.40
$\cdot 20=\frac{1}{5}$ of a dollar,
$1(00) 64.8800=64.88$ cts. the Brokerage
required.
What is the Brokerage of 15600 dollars, at 77 lents per cent? Ans. 120 dol. 12 cts.

CHAP. IV.
COMPOUND INTEREST.

cOM P O UN D. Intereft arifes from the computation of the intereft of any principal added o its intereft, when the payment should be made; which forms a new principal at every time when he payments become due ; and is for this reafon, ometimes called interest upon interest.
Thus, if 100 dollars be put to intereft at 6 dollars er cent per annum ; at the end of the first year, the ntereft will be 6 dollars as in fimple intereft, which f added to its principal will be 106 dollars, for a new rincipal the fecond year, which principal at the nd of the fecond year, will amount to 112 dolard 36 cents; which is 36 cents more than if 100 lollars had been put out at fimple intereft only.

The Compound Interest of any fum may be found by the following

$$
R \cup L E
$$

I. Find the intereft of the propofed fum for the int year at the given rate per cent, as in fimple incleft.
2. ADD this intereft to its principal, which amouut makes the principal for the fecond year.
3. Find the intereft of the fecond year's principal, in the fame manner as you did the firft, and add it to its principal, for the third year's principal, which mutt be computed as before; and fo on, for the time required.
4. Subtract the given principal from the laft amount, and the remainder will be the Compound Intereft required. Or,

Find the amount of one dollar for one year, at the given rate per cent, and multiply it continually with the principal, as many times as the given number of years, and the refulting product will be the amount ; from which fubtract the principal, and the remainder will be the Compound Intereft:

EXAMPEES.

Required the Compound Intereft of 100 dollars, for 3 years, at 6 per cent per annum.
OPERATION.

100	100	106	112.36
6	6	$\frac{6.36}{}$	$\frac{6.7416}{112.36}$
6.00	$\frac{6}{119.1016}$	$\frac{6}{6.36}$	$\frac{6.7416}{}$

Then, 119 dol. $10.16 \mathrm{cts} .-100 \mathrm{dol} .=19 \mathrm{dol} .10 .16$ cts. $=$ intereft required.

(181) Or,

As $100: 106:: 1: 1.06 \quad 100 \times 1.06 \times 1.06 \times$ the amount of dollar for $1\{1.06=119.1016=119$ year, at 6 per cent. dol. 10.16 cts.
Then, 119 dol. 10.16 cts.- 100 dol. $=19$ dol. 10.16 cts. the fame as before.

The following is a Table of the amount of i dollar, from I to 30 years; for the more ready computing Compound Intereft at 6 per cent per annum.

By the above table, the amount of any fum may be computed from i to 30 years, by only multiplying the principal with the numbers ftanding againft the number of years in the table, and the product will be the amount required.

EXAMPLES.

Required the amount of 127 dollars, for 7 years, at: 6 per, cent per annuli.

$182 \quad)$

OPERATION.

Against 7 in the table is 1.503630 E sc.

127
10525410
3007260
1503630

dol. cts. $190.961010=19096.1$ Es.
the anger.
Required the Compound Interest of 555 dollars, for 30 years, at 6 per cent per annum.

OPERATION.

dgainft 30 in the table is $5 \cdot 743491$ BC.

$\frac{555}{28717455}$| 28717455 |
| :---: |
| 28717455 |

$3187.637505=$ amount.

Then, 3187 dol. 63.7505 cts. -555 dol $=2632$ dol. 63.7505 cts . the interest required.

CHAP.

$\left(.{ }^{183}\right)$

CHAP. V.

$$
R E B A T E \text { or DISCOUNT. }
$$

RE B A T E or Difcount is when any fum of money is due at a certain time to come, and the debtor is ready to make prefent payment, provided he can have allowance made him at a certain rate per cent per annum, which allowance is called the Rebate or Difcount, and the prefent payment, a fum of money, which if put to intereft, would amount to the given fum, at the rate per cent and time given.

The Rebate of any fum is found by the following

$$
R \cup L E .
$$

As the amount of 100 dollars, at the rate per cent and time given, is to the intereft of roo dollars, at the fame rate and time ; fo is the given fum, to the Rebate : And from the given fum fubtract the Rebate, and the remainder will be the prefent payment.

EXAMPLES.

A, hath 100 dollars due to him, to be paid at the end of 2 years ; but his debtor agrees to make prefent payment, provided A will make a Rebate at 6 dollars per cent per annum: Required the Rebate.

(184))

OPERATION.

Required the Rebate of 720 dollars, for $2 \frac{x}{2}$ years, at 6 per cent per annum.

OPERATION.

(185) OPERATION.

Find what fum ought to be paid down for a debt of 1000 dollars due $3 \frac{1}{2}$ years hence, difcounting at 5 per cent per antrum.

$$
\begin{aligned}
& \text { OPERATION. } \\
& \text { KO } \\
& \begin{array}{l}
5 \\
2) 500 \\
\frac{3}{1500} \\
250
\end{array} \\
& \begin{array}{l}
17.50 \\
\mathrm{Aa}
\end{array} \\
& \hline
\end{aligned}
$$

As $100+17 \cdot 50=117 \cdot 50: 17 \cdot 50:: 1000$

$$
117.50) 1750000(148.93=r e\} .
$$

$$
11750
$$

$$
57500
$$

$$
47000
$$

$$
105000
$$

$$
94000
$$

$$
11000.0
$$

$$
105750
$$

$$
\begin{array}{r}
42500 \\
35250 \\
\hline 7250
\end{array}
$$

And， $1000-148.93=851$ dol． 7 cts ．the anf wer．
Suppofe I have â tegacy due to me of 4000 dollars， whereof 800 dollars is to be paid in 8 months，and the reft at the end of 16 months ：How much ounght I to receive for prefent payment，allowing 6 per cent， \＆cc．difcount？Amfwer． 3732 dol． 21 cts．

A owes B 15000 dollars，one half of which is to be paid in 4 months，and the reft at the end of 8 months： What ought B to receive in piefent payment，allow－ ing 6 per cent difcount？Anf． 14564 dol． 58 cts ．

$\left(\begin{array}{l}187 \\ \hline\end{array}\right.$

CHAP. VI.

EQUATION of PAYMENTS The COMMON WAY.

Eevation of payments, is when feveral fums of money are due at different times, to find a certain time when the whole may be paid without lofs to either party.

$$
R \cup I E
$$

Multiply each payment with its refpective time, and divide the fum of the products by the fum of the payments ; the quotient refulting, will be the time required.

This rule will give the equated time near enough for common practice in matters of this nature; but not accurately true, becaufe the rule is founded on a fuppofition that the fum of the interefts of the debts due before the equated time, computed from the times they become due to that time, is equal to the fum of the intereft of the debts, payable after the equated time, computed from that time to their refpective terms of payment ; that is, the gain made by the debtor's keeping thofe debts which become due before the equated time, until that time, is equal to the lofs fuftained by paying thofe debts at the equated time, which are not due till afterwards; but it is manifert, that the gain made by keeping a debt any time after it is due, is equal to the interef of that debt for that time; but the lofs fuftained by paying a debt any time before it becomes due, is plainly no more than the rebate of the debt for that time; and fince the rebate is always lefs than the intereftiof the fame
fum, it follows that the fuppofition is not true, and confequently the rule falfe.

Examples in equation of payments the common way.

A owes B 100 dollars, whereof 50 dollars is to be paid at the end of 4 months and the reft at the end of 8 months: Required the time when the whole may be paid without lofs to either party:

OPERATION.

Firf, $50 \times 4=200$ the firft payment with its time: Secondly, $50 \times 8=400$ the jecond payment with its time:

Then, $400+200=600$ the fum of the products.
And, $50+50=100$ the fum of the payments:
Consequently, $600 \div 100=6$ months, the time required.

W owes X 865 dollars, whereof 50 dollars is to be paid prefent, 195 dollars to be paid in 8 months, and the reft at the end of 12 months: Required the equated time to pay the whole.

OPERAIION.

$50 \times 1=50$ the firf payment with its time:
$195 \times 8=1560$ the fecond payment with its time :
$620 \times 12=7440$ the laft payment with its time:
And $50+1560+7440=9050$ the Jum of the products.

Confequently, $\frac{9050}{865}=10$ months $13 \frac{755}{865}$ days the time required.

P owes a debt to be paid at 5 feveral payments, in the following manner, to wit, $\frac{\frac{\pi}{5}}{5}$ in 4 months, $\frac{1}{5}$ at 8 months, $\frac{x}{5}$ at 12 months, $\frac{3}{5}$ at 16 months, and $\frac{1}{5}$ at

(189)

20 months: Required the equated time to pay the whole.

OPERAIION.

Suppofe the debt $=25$ dollars, one fifth of which is 5 dollars, then $5 \times 4+5 \times 8+5 \times 12+5 \times 16+5 \times$ $20=20+40+60+80+100=300$. Therefore, $\frac{300}{25}=$ 12 months, the time required.

In the folution of the above queftion, we made ufe of 25 dollars to reprefent the whole debt ; but any other number would have equally fucceeded, as may be thus analytically demonftrated.

Let x =any fum whatever, to be paid in manner as above.

Thben, $\frac{x}{5} x$ is $\frac{x}{5}$, and $\frac{x}{5} \times 4+\frac{x}{5} \times 8+\frac{x}{5} \times 12+\frac{x}{5} \times 16$ $+\frac{x}{5} \times 20=\frac{4 x}{5}+\frac{8 x}{5}+\frac{12 x}{5}+\frac{16 x}{5}+\frac{20 x}{5}=\frac{60 x}{5}=$ jum of the products of the Several payments with their respective times: Therefore, $\frac{60 x}{5} \div x=\frac{60 x}{5 x}=\frac{12 x}{x}=12$ months tbe same as before.

CH A P. VII,

$$
B A R \tau E R
$$

BARTER is the exchanging one commodity for another in fuch a manner, that the parties bartering, may neither of them fuftain lofs. Thus, fuppofe A hath 50 lb . of ginger, at 30 cents per 16 . and would Barter with B for pepper at 70 cents per

(190)

1b. What quantity of pepper mult B give A for his 50 lb . of ginger?

In the folution of this queftion, and all others of the like nature, you muft firft find the value of the given quantity at the given price, and then find how much of the quantity fought at its price, will amount to the value of the given quantity, and the refult will be the anfwer to the queftion,

Thus, in the above queftion, the quantity given, is solb. of ginger, at 30 cents per 1 b . and the quantity fought is pepper, at 70 cents per lb . Therefore, as $70 \mathrm{cts}:$: $1 \mathrm{lb} .:: 15$ dol. (the price of the ginger) $21 \frac{3}{7} \mathrm{lb}$. the quantity of pepper required. Confequently in Barter, the method of operation is the fame as in the rule of three direct.

EXAMPLES:

Required the quantity of flax; at 8 cents per 1 lb . that muft be given in Barter, for 121 b , of indigo, at 2 dol. 50 cts. per 1 b .

> OPERAIION.
lb. dol.cts. lb. dol.
Firft, as $1: 250:: 12: 30$, the value of the indigo.
cts. lb. dol. lb.
Ther, 8:1:: 30:375, the anfwer.
A hath rum at 70 cents per gallon ready money, but in Barter he muft have 80 cents; B hath raifins at 12 cents per 16 . ready money: How many lb. of railins muft A have for 60 gallons of rum.

Here you muft firft find roblat B's raifins ougbt to be per lb. in Barter, which muft be as much more in proportion, as A's price in ready money, is to bis price in

(191)

Barter ; which to obtain, jay as 70 cts . : $80 \mathrm{cts} .:: 12$ cts. $: 13.71 \mathrm{cts}$. 二price of B's raijins per lb. in Barter; then proceed as before direEted, and the quantity of raifins that B muft.give A will be found $=350.11 l b$.

How much wheat at $9 r^{\frac{2}{3}} \mathrm{cts}$. per bufhel, muft be given for 8 cwt . of fugar at $8 \frac{1}{3} \mathrm{cts}$. per lb . ? Anjwer. 81 $\frac{5}{\mathrm{~T}^{\mathrm{T}}}$ bufbels.
A hath rum at 70 cents per gallon ready money, but in Barter he muft have 84 cents ; B hath corn at 50 cents per buhel ready money: How much muft B have per bufhel in Barter for his corn ; alfo, how many buthel of corn B muft give A for a hogithead of rum containing 120 gallons?

Anfwer. Bremuft bave $57 \frac{7}{7}$ cts. per.bufoel in Barter, and muft give $A 168$ bufbel of corn for the 120 gallons of rum.

D hath 12 cwt. of fugar, which he will fell to H for 8 dollars $33 \frac{1}{3}$ cents per cwt. ready money, but in Barter he mult have $8 \frac{1}{3}$ cents per lb. H bath a horfe which he would fell for 90 dollars ready money, but iń Barter he muft have 20 per cent advance: They Barter, D takes the horfe, and H the fugar: Query which is in debt, and how much ?

Anfwer. H is in debt 3 dol.: $37 \frac{1}{7}$ cts. ready money.

C HAP. VIII.

LOSS and GAIN.

L
OSS and gain is a rule by which merchants. are inftructed how to raife or fall in the prices of their goods, fo as to gain or loofe fo much per lb. lag, or barrel, \&c.

(192)

The operations are performed by the rule of three direct.

EXAMPLES.

Suppofe I buy cheefe at 6 dollars per roolb. and fell it again at 8 cents per 1 lb . What do 1 gain in buying and felling 600 lb . ?

Here you mult firft find what 600 lb . comes to, at 6 dollars per roolb. and 600 lb . at 8 cents per lb . then fubtract one fum from the other, and the refult will be the anfwer.

OPERATION.

Firft, $6 \times 6=36$ dol. the value of 60 olb . at 6 dol. per ioolb.

Tben, 600×8 cts. $=48$ dol. the price of 600 lb . at 8 cts. per lb.

And, $48-36=12$ dol. the anfwer.
When butter coft 7 dollars per firkin of 56 lb . To find how it mult be fold per 1 b. to gain 25 per cent.
OPERATION.

As $56 \mathrm{lb} .: 7 \mathrm{dol} .:: \mathrm{Ilb} .: 12 \frac{1}{2} \mathrm{cts}$. the price that the butter coft per 16 .

As $100 / \mathrm{lb}_{\mathrm{o}}: 12 \frac{1}{2}$ cts. $:: 100+25=125: 15.625 \mathrm{cts}$. the anfwer.

When tea coft 75 cts . per 1 b . To find how it muft be fold per lb . to gain 25 per cent.
OPERATION.

As $100: 75:: 100+25=125: 93.75$ cts. the anrever.

(193)

At $12 \frac{1}{2}$ cts. profit in a dollar: How much per cent? As 1 dol. : 12.5 cts. :: $100 \mathrm{dol}:. 12 \frac{1}{2}$ per cent the anfwer.

Bought rum at 50 cents per gallon, and paid inpoit, at 8 cents per gallon, and afterwards fold it at 53 cents per gallon: What do I loofe in laying out 600 dollars.

Answer. 86 dol. 21 cts.
If I buy tallow at $12 \frac{1}{2}$ cents per lb . and give $2 \frac{7}{9}$ cents per lb . to a chandler to make it into candles, and 140 z . of tallow make a dozen of candles, which I fell at $19^{\frac{5}{7} \frac{2}{2}}$ cents per dozen: What do I gain in buying and felling 180 lb . of tallow. Anifwer. 12 dol. 50 cts.

C II A P. IX.
FFLLOWSHIP.

FELL O WS HIP is a rule, when feveral perfons as merchants, \& cc. trade in company with a joint ftock, to afcertain each man's proportional part of the gain or lois, which ärifes from the employment of the joint fock, according to the quantity of goods, fum of money, \&cc. each man puts into the faid ftock ; which admits of a two-fold confideration.

> S E C T. I.

FELLOWSHIP SINGLE.

Single Fellowihip is when all the feveral focks are employed in the common ftock, an equal term of time. Therefore, fince the times of the feveral B b
ftocks employed in the joint ftock, are all equal ; it follows, that each partner's thare of the gain or lofs, is as his Thare of that Itock: Wherefore it is manifeft; if I put in $\frac{1}{4}$ of the whole ftock, I ought to have $\frac{1}{4}$ of the whole gain, or fuffer $\frac{1}{4}$ of the whole lofs: Hence we have the following

$$
R \cup L E
$$

Multiply each partner's part of the joint ftock, with the whole gain or lofs, and divide the feveral products by the whole ftock, and the quotients refulting will be the anfwer to the queftion. Or , as the whole ftock is to the whole gain or lofs; fo is each man's particular part of that fock, to his particular part of the gain or lofs.

EXAMPLES.

Two partners, A and B, conftitute a joint, ftock of 300 dollars, whereof A put in 200 dollars, and B 100 dollars, and they trade and gain 150 dollars: Required each man's part of the gain.

OPERATION.

As $300: 150:: 100: \overline{150 \times 100} \div 300=50$ dol. B's part of the gain:

(195)

Or, $150 \div 300=$. 5 the ratio of the firft term to the Second:

Therefore, $200 \times \cdot 5=100$ A'spart, and $100 \times \cdot 5=$ so B's part as before. (Vid. Chap. II.)

Three merchants; A, B, and C, make a joint ftock of 2000 dollars, whereof A put in 500 dollars, B 800 dollars, and C 700 dollars; and by trading gain 400 dollars: Required each man's part of the gain?

OPERAGION.

Firft, $400 \div 2000=.2$ the ratio of the firft term to the Second.

T'berefore, $\left\{\begin{array}{l}500 \times .2=100 \text { dol. A's } \\ 800 \times .2=160-\text { B' }^{\prime} \\ 700 \times .2=140-C ' s\end{array}\right\}$ gain.
Four merchants enter into partnerfhip, and conftitute a joint ftock of 60000 dollars, whereof A put in 15000 dollars 24 cents, B 20000 dollars 76 cents, C 21000 dollars, and D 3999 dollars, and in trade they gain 24000 dollars: Required each partner's thare of the gain?

OPERAIION.

Firft, $24000 \div 60000=.4$ the ratio of gain: Thberefore, $15000.24 \times .4=6000$ dol. 9.6 cts . A's part of the gain; and $20000.76 \times .4=8000$ dol. 30.4 cts. B's part of the gain; alfo, $21000 \times .4=8400$ dol. C's part ; laftly, $3999 \times .4=1599$ dol. 60 cts. D's part.

Six farmers, A, B, C, D, E, and F, hired a farm for 300 dollars; A paid 20 dollars, B 30, C 40, D 60, E 80, and F 70 dollars; and they gained 60 dollars: What is each man's part of the gain?

Anfwer.

(196)

Anfrew. A*s 4 dol. B's 6, C's 8, D's.12 'E's 16 , and F's 14 dol.
SEC T. II.

COMPOUND FELLOWSHIP.

Theonly difference between Fellowfhip fingle and compound, is, that in the latter regard muft be had to the time each partner's ftock continues in company ; whereas in fingle Fellowhip the times of continuance are all fuppofed equal, and when the times are equal, the thares of gain or lofs, are as their ftocks, as we have before fiewn: Therefore when the ftocks are equal, the fhares muft be as the times. Confequently, when neither the focks nor times are equal, the fhares muft be as their products ; which affords the following

$$
R U L E
$$

1. Multiply each man's fock with the time it is employed, and find the fum of all the products.
2. As the fum of the products thus found, is to the whole gain or lofs; fo is the product of each man's ftock with its time, to its proportional part of the gain or lofs.

> Or,

Find the ratio between the two firft terms, and proceed as in the laft rule.

EXAMPLES.

Two men, A and B, made a joint ftock of 600 dollars, whereof A put in 200 dollars for 2 months, and B put in 400 dollars for 4 months; at the expiration

(197)

ation of which, they find they have loft 200 dollars? Required each man's part of the lofs?.

OPERATION.

Fixft, $200 \times 2=400=$ A's flock with its time: And, $400 \times 4=1600=$ B's flock with its time : Then, $400+1600=2000$ the fum of the products of each man's fock, with its time: Therefore, as 2000 :
$200:: 400: \overline{200} \times 400 \div 2000=40 \mathrm{dol}$. A's part of the
lofs; and as 2000:200::1600:200×1600 $\div 2000$, $=160$ dol. B's part of the lofs.

Or, $200 \div 2000=. \mathrm{I}$ the ratio of lofs; then, $400 \times .1=40$ A's part, and $1600 \times .1=160$ B's part, the fame as before.

Three merchants made a joint flock of 8000 dollars in the following manner, viz. A put in $1200 \mathrm{dcl}-$ laps for 3 years, B 2000 dollars for 7 years, and C 4800 dollars for 8 years; and at the end thereof, they find they have gained 6720 dollars: Required each man's part of the gain?

OPERAIION.

Firft, $1200 \times 3=3600=$ A's Jock with its time: And, $2000 \times 7=14000=B$'s fock with its time: Alfo, $4800 \times 8=38400=C$ s fock with its time :
Then, $3600+14000+38400=56000$ the fum of the products :

And, $6720 \div 56000=12$ the ratio of gain :
Therefore, $3600 \times \cdot 12=432 \mathrm{dol}$. A's part of the gain; and $14000 \times 12=1680$ dol. B's part; Alfoz $38.400 \times 12=4608$ dol. G's part.

Two.

198)

Two merchants, A and B, made a joint fock ; A put in at firft, 300 dollars for 7 months, and 4 months after put in 500 dollars more: B put in at firf, 700 dollars, and 3 months after put in 200 dollars more. Now at the end of 7 months, they make a fettlement of their accounts, and find they have gained 1860 dollars : Required each man's part of the gain, according to his flock and time?

Firf, $300 \times 4=1200$ the product of A'sfirft Aock with its time, and $\overline{300+500} \times 3=800 \times 3=2400$ the product. of A 's increafed fiock, with the remainder of the time : Therefore, $1200+2400=3600$ the product of A's flock with the whole time, according to the queftion.

Secondly, $700 \times 3=2100$ the product of B 's firft tock with its time, and $700+200 \times 4=900 \times 4=3600$ the produEs of B's augmented flock, with the romainder of the time: Therefore, $2100+3600=5700$ the product of B's whole flock, with the robole time, and $3600+$ $5700=9300$ the fum of the products.

Hence, $1860 \div 9300=.2$ the ratio of gain: T'berefore, $3600 \times .2=720$ dol. = A's part of the gain, and $5700 \times .2=1140=B$'s part of the gain.

Four merchants, A, B, C and D, enter into partnerfhip for 12 months: A put into the common ftock at firft, 300 dollars, B 400, C 500 , and D 800 dollars, and at the end of four months, A took out 200 dollars, and 3 months after that, he put in 100 dollars more ; B at the end of 2 months took out 200 dollars, and 2 months after that, put in 200 dollars more: C at the end of 6 months, took out 300 dollars, and two months after that, put in 200 dollars more : D at the end of 8 months, took out 400 dollars, and 2 months after that, put in 200 dollars

(199)

more : Now at the end of 12 months, they find they have gained 406 dollars: Required each man's part of the gain?

OPERATION.

Firft, $300 \times_{4}=1200$ the product of A's firft Alock with its time, and $\overline{300-200} \times 3=100 \times 3=300$ the product of A's remaining flock for 3 months after the taking out of the 200 dol . Again, $\overline{100+100} \times 5=$ $200 \times 5=1000$ the product of A's flock with the remainder of the time according to the queftion; then,
$\overline{1200+300+1000}=2500$ the produst of A's Jlock for the whole time.

Secondly, to obtain the product of B's fock with its time, proceed as before: Tbus $400 \times 2=800$; then, $\overline{400-200} \times_{2}=200 \times 2=400$; and $\overline{200+200} \times 8=$ $400 \times 8=3200$. Hence, $\overline{800+400+3200}=4400$ the product of B's fock with its time.

Thirdly, $500 \times 6=3000$; then $500-300 \times 2=200$ $\times_{2}=400$; and $200+200 \times 4=400 \times 4=1600$; wherefore $3000+400+1600=5000$ the produEt of C 's Alock with its time.

Fourthly, $800 \times 8=6400 ;$ then $800-400 \times 2=$ $400 \times 2=800$; and $\overline{400+200} \times 2=600 \times 2=1200$; therefore $6400+800+1200=8400$ the product of D 's fock with its time.

Consequently,

Confequentiy, $2500+4400+5000+8400=-20300$ the lum of all the products according to the queftion.

Therefore, $406 \div 20300=.02$ the ratio of gain; and $2500 \times .02=50$ dol. A's part of the gain; aljo, 4400 X $.02=88$ dol. D's part; likewife, $5000 \times .02=100$ dol. C's part ; laftly, $8400 \times .02=168$ dol. D's part.

CHAP X.

COMPOUND PROPORTION.

COMPOUND Proportion, is ufed in the folution of queftions that require feveral operations in fimple proportion, whether direct or reciprocal.

For inftance: Suppofe a footman performs a journey of 240 miles in 8 days, when the days are 16 hours long: In what time would he perform a journey of 540 miles, when the days are but 12 hours long. This queftion refolved by fimple proportion is thus,

$$
\text { As } 240: 8:: 540: \frac{\mathrm{m} .}{240 \times 8}=18 \text { days. }
$$

That is it would require 18 days to perform a journey of 540 miles, when the days are 18 hours long; but it is required to know how many days it will take to perform the faid journey of 540 miles when the days are but 12 hours long; which is thus :

$$
\text { As } 16 \text { b: }: \overline{540 \times 8} \div 240 \text { (18d.) }:: 12: \overline{540 \times 8 \times 12} \div
$$

[^2]Now

Now from the laft analogy, is deduced the following rule, for ftating and working all queftions in compound proportion, at one operation.

$$
R U L E .
$$

1. Place that term which is of the fame name of the term fought, fo that it may.ftand in the middle place:
d.

Thus, $\left\{\begin{array}{l}*: 8::{ }^{*} \\ *: \\ \text { : See the aforefaid queftion. }\end{array}\right.$
2. Write the remaining terms of fuppofition, one above the other in the firft places, and the terms of demand in like manner in the third places, fo that the firft and third terms in each row, may be of the fame name and denomination :
m. d. m.

Thus, $\left\{\begin{array}{c}240: 8:: 540 \\ \text { h. } \quad \mathrm{h}, \\ 16: \quad:: 12\end{array}\right.$
3. Having thus ftated your quetion, find your divifor by comparing the terms in each row: Thus if the firft term gives the fecond, does the third term require more or lefs ? If more, diftinguifh the lefs extreme with a point over it ; but if the third term require lefs, point the greater extreme :

> .m. d. m.

Thus, $\left\{\begin{array}{c}240: 8:: 540 \\ \text { h. } \quad: \quad . \mathrm{h} . \\ 16: \quad: \quad \text {. }\end{array}\right.$
4. Multiply together the terms which are pointed for a divifor, and the remaining terms for a dividend, and the quotient refulting will be the anfwer:
Thus, $\overline{540 \times 8 \times 16} \div \overline{240 \times 12}=24$ days as beforc.
C c EXAMPLES

(202)

EXAMPLES.

If 12 bufhels of corn are fufficient for a family of 9 perfons 12 months: How many bufhels will be fufficient for a family of 16 perfons, 20 months ?

OPERATION.

Here bufbels are fougbt; therefore the queftion ftated will ftand

- per. b. per.

Thus, $\left\{\begin{array}{l}9: 12:: 16 \\ \mathrm{~m} \\ 12: \\ \hline:: 20\end{array}\right.$
Then Say, if 9 perfons eat 12 bubbels in 12 months, 16 perfons will eat more; therefore point the lefs extreme, which is 9. Again, fay, if 12 months require 12 bufbels for 9 perfons, 20 montlos will require more; therefore point the lefs extreme, which is $\mathbf{1 2}$.

Therefore, $\overline{12 \times 20 \times 16} \div \overline{12 \times 9}=3840 \div 108=35 \frac{5}{8}$ bufbels, the quantity of corn required.

Note. If the fame quantity is found both in the divijor and dividend, it may be expunged from both:

Thus i: the above expreflion, $\overline{12 \times 20 \times 16} \div \overline{12 \times 9}$, the 12 may be fruck out of the divifor and dividend: thus,
$\overline{20 \times 16} \div 9=35 \frac{5}{9}$ the fame as before.
If 15 dollars be the hire of 8 men 5 days: What time will 40 dollars hire 20 men?

(203)

OPERATION.

$$
\begin{aligned}
& \text { dol. d. dol. } \\
& \text { I } 5: 5:: 40 \\
& \mathrm{~m} . \quad: \mathrm{m} . \\
& 8:-:: 20
\end{aligned}
$$

Whence $\overline{8 \times 5 \times 40} \div 15 \times 20=1600 \div 300=5 \frac{1}{3}$ days, the time required.

If 200 dollars in 2 years, gain 15 dollars: What will 150 dollars gain in half a year ?

Thus, ${ }^{15 \times 150 \times 26 \div 200 \times 104}=2 \frac{69}{208}$ dol. the anfwer:

If 1500 lb . of bread ferve 400 men 14 days: How many pounds of bread will ferve 140 men 9 days ?

Thus, $\overline{1500 \times 140 \times 9} \div \overline{400 \times 14}=337 \mathrm{lb}$. 80z. the anfwer.

If 12 Clerks will write 72 Sheets of paper in 3 days : How many Clerks will write 140 fheets in 8 days?

Anfwer. $\overline{12 \times 3 \times 140} \div \overline{72 \times 8}=8 \frac{432}{576}$ Clerks.
If 5000 bricks are fufficient to make a wall 4 feet high and 5 feet long: How many bricks of the fame fize will make 7 feet of wall 2 feet high ?

Anfwer. 3500.

(204)

C H A P. XI.

CONTOINED PROPORTION.

Conjorned Proportion is when, in a rank of numbers, the firft term is compared with the fecond, and the fecond term being increafed or diminifhed, is compared with the third, and fo on; from thence to determine the equality of any of the terms: Thus, if $3 a=4 \dot{b}$, and $8 b=12 c$, then will $3 a=6 c$; becaufe, as $4 b: 3 a:: 8 b: 6 a=12 c$, or $3 a=6 c$ as before. Again, if $24 a=32 b, 48 b=30 c$, and roc $=9 d$, then will $24 a=20 c=18 d$; becaufe, as $32 b: 24 a:: 48 b:$
$24 a \times 48 b \div 32 b=36 a$, that is, $48 b=36 a=30 c$, and
$24 a=20 c$. Again as $30 c: \overline{24 a \times 48 b} \div 32 b:: 10 c:$
$\overline{24 a \times 4} \overline{8 b \times 10 c} \div 32 b \times 30 c=12 a=9 d$, or $24 a=18 d$. Hence from the foregoing analogy we have the following

$K U L E$.

1. Begin with that term whofe equality with any other term is required, which call A and write out all the terms up to the one B, by which the aforefaid term is to be compared.
2. Nultiply all the alternate numbers together, beginning with the firft, for a dividend, and all the remaining ones together for a divifor.
3. Divide, and the quotient will be the anfwer.

EXAMPLES.

EXAMPLES.

If G in 48 days can produce a certain effect, which will require H 64 days to perform ; H can produce an effect in 80 days, which will take $L 50$ days to perform: Which is the molt profitable to hire, G or L, and what is the difference?

OPERATION.

Firft, $48,64,80$, are the mumbers written out according to the rule:

Then, $\overline{4^{8} \times 80} \div 64=60=50$ days of L, that is, 60 days of G are equal to 50 days of L; and therefore it is the moft profitable to bire L, to wit, in the proportion of 60 to 50 , or as 6 to 5.

If D in 24° days can do as much as E can in 32 days, E can do as much in 48 days, as F can in 30 days, and F can do as much in 10 days, as G can in 9 days: Which is the moft profitable to hire, D, F, or G?

OPERATION.

Firf, find which is the mof profitable to bire, D or F :
Thus, $\overline{24 \times 48} \div 32=36=30$ days of F, that is, 36 days of D are equal to 30 days of F; and therefore F is more profitable to bire than D.

Again, $\overline{24 \times 48 \times 10} \div \overline{32 \times 30}=12=9$ days of G; tbat is, 12 days of D are equal to 9 days of G, and tberefore G is more profitable to bire than D; and fince F is more profitable to bire than D, and G more profitable than F; it follows, that G is the moft profitable to bire of the tbree.

CHAP.

(206)

C H A P. XII.
 ALLEGATION.

BY Allegation we are taught how to mix quantities of different quality, fo that any quantity collectively taken, may be of a mean or middle quality ; that is, it fhews us the value of any part of a compolition, made of things all of a different quality.

We fhall confider Allegation, under the two following general heads, viz. Allegation Medial, and Allegation Alternate.

$$
\begin{gathered}
\text { SECT. } \\
A L L E G A T I O N M E D I A L
\end{gathered}
$$

This is when any number of things are given, and the price of each : To find the price of any quantity of a mixture compounded of the whole.

$$
R \cup L E
$$

1. Multiply each quantity with its price, and find the fum of all the products.
2. Divide the fum of the products by the fum of all the quantities, and the quotient refulting will be the mean price required.

EXAMPLES.

A man is minded to mix 20 burhels of wheat, at 100 cents per bufhel, with 10 bufhels of rye, at 50 cents per bufhel: Required the price of a bufhel of this mixture.

OPERAIION.

(207)

OPERATION.

Firft, $20 \times 100=2000 \mathrm{cts} .=$ price of all the wheat, and $10 \times 50=500 \mathrm{cts}$. = price of the rye; then $2000+500=2500$ the fum of the products, and $20+$ $10=30$ the fum of tbe quantities: Therefore, $2500 \div$ $30=83 \frac{1}{3}$ cts. the price of a bubsel, as was required.

A man would mix 27 bufhels of wheat, at 75 cents per bufhel, with 40 bufhels of rye, at 60 cents per bufhel, and 24 bufhels of oats, at 24 cents per bufhel : Required the price of a bufhel of this mixture.

OPERATION.

Firft, $27 \times 75=1885 \mathrm{cts}$. =price of the wheat, and $40 \times 60=2400 \mathrm{cts}$. = price of the rye, alfo, $24 \times 24=$ 576 cts. = the price of the oats; then $1885+2400+$ $576=486 \mathrm{r}$ the fum of the products, and $27+40+24$ $=$ gr the fum of the quantities.

Wbence 486 r cts. $\div 9 \mathrm{I}=$ price of a bufbel, as was required.
A maltfter would mix 70 gallons of one fort of beer, worth 12 cents per gallon, with 20 gallons of another fort, worth 24 cents per gallon, and 20 gallons of a third fort, worth 22 cents per gallon: How may this mixture be fold per gallon without gain or lofs?

Anjwer. 16 cis.
Required what a gallon of the following mixture is worth, viz. 60 gallons of malaga, at .5 dollars per gallon, 40 gallons at .7 dollars per gallon, and 12 gallons at $\cdot 3$ dollars per gallon.

$$
\text { Anfwer. }-55 \text { dol. }
$$

A Goldfinith melts 18 lb . of gold bullion, of 12 carats fine, with rolb. of 16 carats fine, and 201 D . of

10 carats fine : How many carats fine is a pound of this mixture.

Note. Goldjmiths suppofe every quantity of gold to conifit of 24 parts, which they call carats; but gold is generally mixed with fome other metals, fuch as copper, brafs, Ecc. whicb is called alloy, and the quality of the gold is eftimated according to the quantity of alloy in it: Tbus if 20 carats of pure gold, and 4 of alloy are mixed together, the gold is called 20 carats fine.
S E C T. II.

ALLEGATION ALTERNATE.

Allegation Alternate confifts of 3 cafes.
CASEI.

When the prices of the feveral quantities to be mixed are given, to find what number of each fort muft be taken, 10 compofe a mixture whofe mean price fall be as given in the queftion.

$$
R \cup L E
$$

1. Write all the particular rates or prices directly under each other, and the mean price on the left hand.

Thus, mean price, $4\left\{\begin{array}{l}1 \\ 6 \\ 2 \\ 5\end{array}\right.$ particular prices.
2. Couple or connect the particular prices with lines, fo that one or more of thofe greater than the mean price, may be coupled with one or more of thofe lefs.

Thus,

Thus, $4\left\{\begin{array}{l}1 \\ 6 \\ 2 \\ 5\end{array}\right] \quad$ Or thus, $4\left\{\begin{array}{l}1 \\ 6 \\ 2 \\ 5\end{array}\right]$

3. Write the difference between the mean price and every particular price, directly againft the one with which it is coupled.

Thus, $\left.4\left\{\begin{array}{l}1 \\ 6 \\ 2 \\ 5\end{array}\right]\right]_{3}^{1} 2$ Or thus, $4\left\{\begin{array}{l}1 \\ 6 \\ 2 \\ 2 \\ 5\end{array}\right] \begin{aligned} & 1 \\ & 2 \\ & 2+1=3 \\ & 3+2=5\end{aligned}$
4. The difference ftanding againft each particular price, is the quantity that muft be taken of that kind; and where two or more differences are found ftanding againft any one particular price, their fum is the quantity.
A maltfter has the following forts of beer, viz. at 12 cents, 22 cents, and 24 cents per gallon : Required the quantity of each fort that muft be taken to make a compofition worth 20 cents per gallon.

OPERATTON.

$$
\left.20\left\{\begin{array}{l}
12 \\
22 \\
24
\end{array}\right]\right]_{8}^{8+4=6}
$$

Therefore, there muft be taken 6 gallons at 12 cts. 8 gallons at 22 cts. and 8 gallons at 24 cts. wwbicb may be proved by Allegation Medial.

To find how much wheat at 100 cents per bufhel, rye at 75 cents, corn at 40 cents, and oats at 30 cents per bufhel, may be mixed together, fo that the mixture may be fold for 50 cents per bufhel, without gain or lofs.

(210)

OPERATION.

A merchant has coffee worth $12,15,16$, and ic cents per lb . and would make a mixture worth 14 cents per lb . What quantity of each fort muft be taken?

OPERATION.

Proceeding in this manner, by varying the order of link. ing the particulars, you will difcover five more anfwer: to this queftion, in whole numbers.

How thefe kind of queftions can admit of various anfwers, is eafy to conceive; for if any two of the particular prices make a balance by their increment and decrement, in refpect of the mean price, ther will any multiple or quotient of the fame, make: balance alfo: Therefore all numbers which are ir the fame proportion, equally anfwer the queftion Confequently, there are fome queftions which wil admit of an infinite variety of anfwers: Hence it is that thefe queftions are fometimes called indetermin ate or unlimited problems; yet by an analytical pro

(211)

refs, we can difcover all the poffible anfwers in whole numbers, when thole anfwers are limited to finite terms. (Did. Book II, Chap. xxiii.)

CA SE II.
When the quantity of one of the particulars is limit--d or given, thence to proportion all the others in the composition by it.
$R U L E$.

1. Obtain the difference between the mean price and every particular price, as in the lat rule.
2. As the difference found againft the rimple whore quantity is given, is to the quantity itfelf; fo is each difference, to its refpectiye quantity of the compofiton.

EXAMPLES.

A farmer would mix 12 bushels of wheat at 72 cents per bufhel, with rye at 48 cents, corn at 36 cents, and barley at 30 cents per bufhel, fo that the whole compofition may be fold for 3^{8} cents per bufhel : Required the quantity of each fort that muff be taken.
OPERATION.

$$
3^{8}\left\{\begin{array}{l}
72 \\
48 \\
36 \\
30
\end{array}\right]\left[\begin{array}{c}
8 \\
2 \\
10 \\
34
\end{array}\right.
$$

Whence, as $8: 12:: 2: 3$, the quantity of rye, and, as $8: 12:: 10: 15$, the quantity of corn; alfo, as $8: 12$ $:: 34: 5 \mathrm{I}$, the quantity of barley.

To find how many gallons of frontenaic at 81 cents, claret at 60 cents, and port at 51 cents per gallon, muft be mixed with 42 gallons of madeira at $g \circ$ cents per gallon, fo that the whole compofition may be fold for 72 cents per gallon, without profit or lofs.

$$
\text { Fir } f, 7=\left\{\begin{array}{l}
90 \\
81 \\
60 \\
51
\end{array}\right]\left[\begin{array}{r}
21 \\
12 \\
9 \\
18
\end{array}\right.
$$

Then, $42 \div 21=2$; therefore, $12 \times 2=24$, the quantity of the claret, and $9 \times 2=18$, the quantity of the frontinaic ; alfo, $18 \times 2=36$, the quantity of port.

A tobacconift would mix 6 lb . of tobacco worth 6 cents per lb . with another fort at in cents, and a third fort at 12 cents: What quantity muft be taken of each fort, to make a mixture worth 10 cents per lb ? Anfwer. 8 lb . of each fort.

C A S E III.

When the whole compofition is equal to a given quantity; that is, when the Sum of all the quantities wbich make up the compofition, collectively taken, amount to the given quantity: To find the feveral quantities themfelves.

$$
\hat{R} U L E .
$$

1. Link or couple the feveral particulars, and find their differences, as in the laft cafe.
2. As the fum of the differences, is to the fum of the whole compofition or given quantity ; fo is each difference, to its refpective quantity of the compofition.

EXAMPLES.

A grocer having fugars at 4 cents, 8 cents, and 12 cents per lb . would make a compofition of 240 lb . worth 10 cents per lb . Required the quantity of each fort that mut be taken.
OPERATION.

Firs, $10\left\{\begin{array}{l}4 \\ 8 \\ 12\end{array}\right] \begin{aligned} & 2 \\ & 2 \\ & 6+2=8\end{aligned}$
$1_{2}=$ fum of the differences.
Then, as $12: 240:: 2: 40$, and, as $12: 240:: 2: 40$; also, as $12: 240:: 8: 160$. Therefore, there mut be taken, 40 lb . at 4 cts .40 lb . at 8 cts . and 160 lb . at 12 cts .

A merchant would mix brandy of the following prices, viz. at 60 cents, 72 cents, and 84 cents per gallon, together with water at o cents per gallon, fo that a compofition of 846 gallons, may be fold for 48 cents per gallon, without gain or lofs: Required the quantity of each fort that mut be taken.
OPERATION.

$$
\begin{aligned}
& \text { First, } \left.48\left[\begin{array}{l}
72 \\
60 \\
84 \\
0
\end{array}\right] \right\rvert\,
\end{aligned} \frac{\begin{array}{l}
48 \\
48
\end{array}}{\frac{48}{24+12+36=72}} \begin{aligned}
& 216=f \text { um of the differences. } \\
& 48: 188 \text { at } 72 \text { cts. } \\
& 48: 188 \text { at } 60 \text { cts. } \\
& 48: 188 \text { at } 84 \text { cts. } \\
& 72: 282 \text { of water. In }
\end{aligned}
$$

In this cafe might beftarted, a variety of very curious queftions about the fpecific gravities of metals; but as they would require the knowledge of fome things which are not treated of in this volume, we defift.

C H A P. XIII.

Of POSITION, or the GUESSING RULE.

POSITION is a method of folving queftions, by fuppofing numbers, and then adding them, fubtracting, multiplying, \&c. according as the refult or number given in the queftion is produced by addition, fubtraction, multiplication, $\& c \mathrm{c}$, of the number required.

Position is diftinguifhed into two kinds, fingle and double.

$$
\begin{array}{lllll}
\text { S } & \mathrm{E} & \mathrm{C} & \mathrm{~T} . & \mathrm{I}
\end{array}
$$

Of SINGLE POSITION.

Single Pofition is when one quantity is required, the propertics of which are given in the queftion.

$$
R \cup L E .
$$

Suppose a number for the quantity required, and multiply or divide it, \&cc. according as the quantity required was multiplied, 'divided, \&c. then; as the refult of the fuppofition, is to the fuppofition, fo is the refult given in the queftion, to the number required.

(215)

EXAMPLES.

To find fuch a number, that being divided by 2 , 4 , and 8 , refpectively, the fum of the quotients fhall be 7 .

OPERATION.

Suppofe the number to be 24 , then, $\frac{24}{2}+\frac{24}{4}+\frac{24}{8}=$ $12+6+3=21$.

Whence, $21: 24:: 7: \overline{24 \times 7} \div 21=8$, the number required.

For, $\frac{8}{2}+\frac{8}{4}+\frac{8}{8}=4+2+\mathrm{I}=7$; therefore, $\xi^{3} c$.
A man having a certain fum of money, faid one half, one third, and one fourth of it being added together, made 13 dollars: What fum had he ?

Suppofe be bad 36 dol. then $\frac{36}{2}+\frac{36}{3}+\frac{36}{4}=18+12$ $+9=39$, which ought to be 13 , by the queftion.

$$
\text { Therefore, } 39: 3^{6}:: 13: 12 \text {, the anfwer. . }
$$

Three men found a purfe of dollars, difputed hov it fhould be divided between them. A faid he would have one third; B faid he would have one third and one quarter ; well fays C, I fhall have but 2 dollars left for my part: How many dollars were there in the purfe, and how many did each one take?

Suppole the purfe contained 12 dollars:
Then, $\frac{12}{3}+\frac{12}{3}+\frac{12}{4}=4+4+3=11$:
And, 12-11=1, wobich ought to be 2.
Wherefore, $1: 2:: 12: 24$, the number of dollars in the purse; whence, $\frac{24}{3}=8$, the number of dollars that A took; and $\frac{24}{3}+\frac{24}{4}=8+6=14$, the number that B to6k.

Delivered to a banker, a certain fum of money, to receive intereft for the fame, at the annual rate of 6 dollars per cent ; at the end of 7 years, received
for intereft and principal, 2495 dollars $27 \frac{7}{9}$ cents: What was the fum lent?

$$
\text { Anfwer. } 1736 \text { dol. } 11 \frac{1}{9} \text { cts. }
$$

$$
\begin{gathered}
\text { S.ECT. II. } \\
\text { Of DOUBLE POSITION. }
\end{gathered}
$$

Double Pofition is when there are feveral unknown numbers in the queftion, analogous to each other; fo that when one or more are found, the reft may be had, either by addition, fubtraction, or multiplication, \&cc. according as the queftion requires.

$$
R U L E .
$$

1. Assume two convenient numbers, and work with them as the queftion directs, finding their refults.
2. Find the difference between thefe refults and the refult given in the queftion, and call thofe differences errors, which place under their refpective fuppofitions.

$$
\text { Thus, }\left\{\begin{array}{l}
x, y, \text { fuppofitions. } \\
a, b, \text { errors. }
\end{array}\right.
$$

3. Multiply the firft error with the fecond fuppofition ; and the fecond error with the firft fuppofition. Tibus, $a \times y$, and $b \times x$.
4. If. the errors are alike, that is, both too great, or both too fmall, or more properly, the numbers from whence they were deduced, are both either greater or lefs than the true ones, you muft divide the difference of the products, by the difference of the errors, that is, $\overline{a \overline{x y}-b \overline{x x} \div a-b}$; but if the errors are unlike, that is, one too great and the other too fmall, divide the fum of the products by the fum of the

(217)

the errors: Thus, $\overline{\overline{a x y}+\overline{b x x}} \div \overline{a+b}$ and the quotient in either cafe, will be the number fought.

EXAMPLES.

A, B, and C, difcourfing of their money: Says B, I have 6 dollars more than A : Says C, I have 7 dollars more than B : Well fays A , the fum of all our money is 100 dollars: How much had each one ?

Suppofe A bad 20 dol. then B muft bave $20+6=26$ dol. and $C 26+7=33$ dol. but $20+26+33=79$, which fhould be IOO by the queftion.

Therefore, $100-79=21$, the firf error, to jmall.
Again, juppore A bad 24 dol. then B muft have $24+6$ $=30$, and C $30+7=37$, but $24+30+37=91$, which fould be 100. Therefore, $100-9 \mathrm{I}=9$, the fecond error, too jmall.

Whence, $24 \times 21=504=$ product of the recond SuppoSition and firft error;

And, $20 \times 9=180=$ produEE of the firft fuppofition and fecond error ;

Wherefore, $\overline{504-180} \div \overline{2 \Gamma-9}=27$ dol. A's money; Then, $27+6=33$ dol. $=$ B's money, and $33+7=40$ C's money.

A man having been to market with hogs, pigs and geefe ; received for them all 190° dollars, for every hog he received 4 dollars, for every pig 75 cents, and for every goofe 25 cents; there were for every pig two hogs and three geefe : What was the number of each fort?

Suppole be bad 12 pigs, then be muft bave 24 bogs, and 36 geefe, by the queftion; and 12 pigs at 75 cts . eacb, is 9 dol. 24 boys at 4 dol. each, is 96 dol. and 36 geefe at 25 cts. each, is 9 dol. but $\frac{9+96+9}{\mathrm{E} e}=114$, which fould

(218)

be190: Therefore, $190-114=76$, the firft error, $t 00$ mall. Again, Juppose be bad 16 pigs, then be muft bave 32 bogs, and 48 geefe; and 16 pigs at 75 cts. is 12 dol. 32 bogs at 4 dol. is 128 dol. and 48 geefe at 25 cts. is 12 dol. but $12+128+12=152$ which Bould be 190. Therefore, $190-15^{2}=3^{8}$, the jecond error, too fmall.

Whence we bave $\overline{16 \times 76}-12 \times 3^{8} \div 76-38=760$ $\div 3^{8}=20$, the number of pigs, and $20 \times 2=40$, the wumber of bogs; allo, $20 \times 3=60$, the number. of geeje.

C H A P. XIV.

CONGERNING PERMUTATION AND
COMBINATION.

$$
S E C T . \quad \text { I. }
$$

Of PERMUTATION.

PERMUTATION is the changing or varying the order of things; and is when any number of quantities are given; to find how many ways it is poffible to range them, fo that no two parcels fhall have the fame quantities ftanding in the fame place, with refpect to each other.
PROBLEM I.

To find all the variations or changes that can be made of any number of things, all different one from another.

First it is evident, that any one thing is capable of one pofition only, and therefore cannot poffibly have any change or variation ; but any two quantities; as

(219)

a and b, are capable of change or variation; as $a b$, and $b a$, that is, the number of variations is $\pm \times 2$. Again, if there be 3 quantities; as a, b, c, their variations are $a b c, a c b, b a c, b c a, c a b, c b a$; for taking only the two firf, a and b, the number of their variations is 1×2; therefore taking in c; the number of changes is $3 \times 2 \times 3=6$; and fo on for any number of quantities. Hence we have the following

$$
R U L E .
$$

Multiply together the natural feries of numbers, $1,2,3,4, \& c$. continually, till your multiplier is equal to the number of things propofed, and the laft product will be the number of variations required.
EXAMPLES.

In how many different pofitions may a company of 8 perfons ftand ?

Anfwer. $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=40320$ pofstions.

How many changes may be rung with 12 bells? Anfwer. ${ }_{1} \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 1$ I $X_{12}=479001600$, the number of changes required.
PROBLEM II.

To find all the pofible aliernations or cbanges that can be made of any given number of different quantities, by taking any given number of them at a time.

The manner in which this problem is folved, is directly the reverfe of the laft; for it is manifeft, that let the number of quantities be ever fo many, and we take one of them at a time, the number of alternations will be equal to the number of quantities. Therefore
it follows, that the operation muft begin at the number of things propofed, and then decreafe by unity, till the number of multiplications are one lefs than the number of things propofed. Hence we get the following

$$
R U L E .
$$

Multiply continually together, the terms of the feries, beginning at the number of things propofed ; and decreafing by unity or 1 , until the number of multiplications, are one lefs than the number of things to be taken at a cime, and the laft product will be the number of alternations required.

EXAMPLES.

How many different pofitions may a company of 9 men be placed in, taking 3 at a time ?

Here the number of multiplications muft be 2 , and the feries $9,8,7,6, \& c$. Therefore, $9 \times 8 \times 7=504$, the number of pofitions required.

How many alternations will the letters $a b b$ admit of, taking 2 at a time ?
Anfwer. $3 \times 2=6$, the number of alternations requir$e d$, and the letters will ftand tbus, $a b, b a, a b, b a$, $b b, b b$.

How many alterhations or changes can be made with the letters $a b c d$, taken 3 at a time ?

Anfwer. $4 \times 3 \times 2=24$, the number of alternations required; and the letters will ftand

- Thus, $\left\{\begin{array}{l}a b c, a c b, b a c, b c a, c a b, c b a=\text { alter. of } a b c \\ a c d, a d c, c a d, c d a, d a c, d c a=d o \text { of } a c d \\ b c d, b d c, c b d, c d b, d c b, d b c=d o \text {. of } b c d \\ d a b, d b a, a b d, a d b, b d a, b a d=d o . \text { of } d a b .\end{array}\right.$

How

(222)

How many alternations or changes can be made with the letters of the word Algebra, taking 4 at a time ? Answer. $7 \times 6 \times 5 \times 4=840$ 。

PROBLEM III.

To find all the alternations or changes that can be made of any given number of quantities, which conjoft of Several of one fort, and Several of another.

$R \cup E E$.

1. Find the product of the feries, $1 \times 2 \times 3 \times 4$, \&c. to the number of things to be changed, which call your dividend.
2. Find all the alternations that can be made of each of thofe things which are of the fame fort, by problem I, and multiply them continually together for your divifor.
3. Dividy, and the quotient refulting will be the anfwer.

EXAMPLES.

Find all the variations that can be made of the following letters, $a a b c c c$.

OPERATION.

Firf, $1 \times 2 \times 3 \times 4 \times 5 \times 6=720=$ number of variations that can be made of 6 different things, and $1 \times 2=2$, the variations of the a 's; allo, $1 \times 2 \times 3=6$ the variations of the c's.

Whence, $720 \div \overline{6 \times 2}=60$, the number of variations required.

Find all the different numbers that can be made of the following numeral figures, 11122777.

OPERATION.

OPERAIION.

Firfi, $1 \times 2<_{3}=6=$ variations of the 1 's, and 1×2 $=2=$ r'ariations of the 2 's; alfo, $1 \times 2 \times 3=6=$ varitions of the 7 's.

$$
\text { Whence, } 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \div \overline{6 \times 2 \times 7}
$$

$=40320 \div 72=560$, the anfwer.

$$
S \quad E \quad C \quad \text { T. II. }
$$

Of COMBINATION.

Combination of quantities, is, when any number of things are given, to find all the different forms in which thofe quantities can be poffibly ordered, and from thence, all the different combinations in thofe forms, without any regard to the order in which the feveral quantities ftand in thofe combinations. That is, by combination we determine how many ways it is pofiible to combine any number of things, fo that no two combinations fhall have the fame things in both. Combinations of the fame form, are thofe that have a like number of quantities which repeat in the fame manner in both: Thus, $a b c d$, and $y y x z$, are of the fame form; but a $a a b c$, and $s m n r y$, are of different forms.

PROBLEMI.

To find all the different combinations that can be made of any number of quantities all different one from anotber, by taking any number of them at a time.

The rule for the folution of this problem, is eafily deduced from the rule to Problem in, of permutation. For it is plain, that the number of combina-

(223)

tions multiplied with the changes in the number of things taken at a time, gives the number of alternations in the whole. Therefore it follows, that the number of alternations in the whole, divided by the changes in a number of things equal to thofe taken at a time, gives the number of all the different combinations. Hence we have the following

$$
R \cup L E .
$$

1. Find all the alternations or changes of the given quantities, taken as many at a time, as are equal to the number of things to be combined at a time ; and call the refult your dividend.
2. Find all the changes in as many quantities, as are equal to thofe to be taken at a time; and call the refult your divifor.
3. Divide, and the refulting quotient will be the number of combinations required.

$$
E X A M P L E S .
$$

Find all the different combinations that can be made with the following numeral figures, $1,2,3,4$, 5,6 , taken 2 at a time.

Here the number of given quantities are 6; and the number to be taken at a time are 2 ; therefore, $5 \times 5=30=$ dividend ; and $1 \times 2=2=$ divifor.

Whence $30 \div 2=15$, the number of combinations required; and the figures will ftand as follows:

$$
\begin{array}{r}
12,13,14,15,16 \\
23,24,25,26 \\
34,35,36 \\
45,46 \\
56
\end{array}
$$

Find all the different combinations that can be made, with the following letters, $a b c d b$, taken 3 at a time.

Here the number of quantities are 5 , and the number to be taken at a time are 3 ; therefore, $5 \times$ $4 \times 3=60=$ dividend ; and $1 \times 2 \times 3=6=$ divifor.

Whence, $60 \div 6=10$, the number of combinations required : and the letters will ftand as follows:

$$
\begin{array}{r}
a b c, a b d, b b b, a c d \\
a c b, a d b, b c d \\
b c b, b a b \\
\qquad a b
\end{array}
$$

How many different combinations may be made with the following numeral figures, $1,2,3,4,5,6$, $7,8,9$, taken 5 at a time?

Anfwer. i26 combinations.

PROBLEM II.

To find the number of different combinations that may be made from any number of Sets, by taking one out of each ret and combining them together; the things in every set being all different one from another.

$$
R U L E .
$$

Multiply the number of things in each fet continually together, and the product refulting, will be the number of combinations required.
EXAMPLES.

How many different combinations of two letters, may be made of thefe two fets $a n w$ and $s x y$?

Here

(225)

Here the number of things in each feet are 3:
Therefore, $3 \times 3=9$, the number of combinations required.

The method of making the combinations, may be Shewn in the following manner.

Write down the two Rets one beneath the other, and join thole letters that are to be combined, with a straight line,

$$
\text { Thous, }\left\{\begin{array}{lll}
a & n & w \\
1 & 1 & 1 \\
s & x & y
\end{array}\right.
$$

Then drawing lines from s to a, from x to n, and from y to w, you will have three of the required combinations, to wit, $s a, x n$, and $y w$.

Again, let the fats be placed as before :

Then joining s and w, x and a, and y to n, we get $s w, x a$ and $y n$. Once more, place the fats as love.

Thus,

Then joining s and n, x and w, and y to a, we get $s, x w$, and $y a$.

Hence, all the combinations are as follows,

$$
\begin{gathered}
\text { sa, sn, sw, } \\
x a, x n, x w, \\
y a, y n, y w, \\
\text { Ff }
\end{gathered}
$$

(226)

Suppofe there are three flocks of fheep; in one of which there is 10 , and in the orher two, 20 each : To find how many ways it is poffible to choofe 3 fheep, one out of each flock.

Thus, $10 \times 20 \times 20=4000$, the amfwer.

PROBLEMII.

To find the number of forms in which any given number of quantities may be combined, by taking any number at a time; wherein there are Several of one jort, and Several of another.

$$
R \cup L E .
$$

1. Write the quantities according to the order of the letters. Thus, a, a, b, c, d.
2. Join the firft letter to the fecond, third, fourth, \&cc. to the laft; and the fecond letter to the third, fourth, $\& c$. to the laft; alfo, the third letter to the fourth, fifth, \&xc. to the laft: Proceeding in like manner through the whole, taking care to reject all combinations that have before accrued; and you will have the combinations of all the twos.
3. Join the firft letter to every one of the twos, and the fecond, third, fourth, \&c. in like manner to the laft; and you will have the combinations of all the threes.

Thus, $a a a, a a b, a a c, a a d, a b c, a b d, a c d$, $b a a, a b b, b a c, b a d, b b c, b b d, b c d$, $c a a, \longrightarrow c c a,-c c b,-c c d$, $d a a,-\quad d d a,-d d c$,
And proceed in this manner, till the number of things in the combination, are equal to the number to be taken at a time.

Note. All those combinations which contain more things of the fame Jort, than are given of the like kind in the queftion, muft be rejected. EXAM.

(. 227)

EXAMPLES.

Find all the different forms of combination, that can be made of the letters $a a b b c c$, taken 4 at a time,

OPERATION.

$a, a, a b, a c, b b, b c, c c=$ combinations of the twos. $a a b, a a c, b b a, b a c, b b c, b c c, a c c,=$ combinations of the threes.
$a a b b, a a b c, b b c a, c c a b, a a c c, b b c c,=$ combinations of the fours.

Whence, a a $b b, b b c c, a a c c$, and $a a c b, b b a c$, ccab, are the two forms required.

Find all the different forms of combination that can be made of the following figures, 22334455 , taken 3 at a time.

OPERATION.

Thbus, $22,23,24,25,33,34,35,44,45,55=$ combinations of the twos.
$223,224,225,234,235,245,233,334,335$; $345,244,344,445,255,355,455=$ combinations of the threes.

Whence, $223,224,225,233,433,533,244$, $344,544,255,355,455$, and $234,235,245,345$, are the forms required.

Thus far, concerning Permutation and Combination.

CHAP.

(228)
 C H A P. XV.
 Of INVOLUTION.

wHEN any number is multiplied into itfelf, and that product multiplied with the fame number; and fo on, it is what is called Involution, and the feveral products refulting, are called the powers of the multiplying quantity, or roof. Thus,
$\overline{3 \times 3}, \overline{3 \times 3 \times 3}, \overline{3 \times 3 \times 3 \times 3}, 8 \mathrm{cc}$. are the powers of
3. And generally, $\overline{a \times a}, \overline{\times a \times a}$, and $\overline{a \times a \times a \times a}$ $\& c$. are the powers of $a ;$ whofe height is denominared by the number of multiplications more one.

Hence, the 2 d power of 10 , is $10 \times 10=100$
the $3 \mathrm{~d}-10 \times 10 \times 10=1000$ the 4 th $-10 \times 10 \times 10 \times 10=10000$.
Therefore it follows, that the powers of any quantity, are a feries of numbers in Geometrical Proportion continued, whofe firt term and ratio is the fame, to wit, the root of the power: Confequently the height of the power at any particular term, will be expreffed by the exponent of that term: As in thefe, $\frac{1}{10,} \frac{2}{10 \times 10}, \frac{3}{10 \times 10 \times 10,} \frac{4 \text { Esc. Expon. }}{10 \times 10 \times 10 \times 10}$, ほร. \because

Here it is evident, that the index, or exponent of each term of the Geometrical feries, is equal to the number of multiplications of the firft term with itfelf, to that place, more one, and is therefore called the index, or exponent of the pows.
Thus, $\left\{\begin{array}{l}1+1+1+1+1=5 . \\ 5 \times 5 \times 5 \times 5 \times 5=312\end{array}\right.$
and fo on for otbers.

(229.)

Whence it follows, that to raife any number to any given power, is no more than to multiply the given number into itfelf, fo often as there are units in the index of the power- 1 .

EXAMPLES.

Required the 5 th power of 9 . OPERATION.

$59049=5$ th power of 9 , as requir.
Required the 7 th power of 8 .
Thus, $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8=209715^{2}=7$ th power of 8 .

C H A P. XVI.

 Of EVOLUTION.EVOLUTION is the converfe of Involution; and is when any power is given, to find the

(230)

the number from whence fuch power was produced, which number (as we before faid) is called the root of the power ; and the bufinefs of finding it, is called extraction of roots.

All powers whatever, are produced by the continual multiplication of their roots into themfelves, as is evident from what has been faid; yet there are many powers which have no finite root, that is, whofe true and adequate root cannot be expreffed in finite terms; but by approximation may be determined to any affigned degree of exactnefs.

These powers are called furds, or irrational powers.

PROBLEMI.

To extract the root of the Square or Second power of any number.
$R \cup L E$.

1. Prepare the given number for extraction, i.e. diftinguifh it into periods of two figures each, by beginning. at the unit's place and placing a point over the firft, third, fifth, \&xc. figures of the given number, and if there are decimals, point them in the fame manner, from unity towards the right hand.
2. Find a number by the help of a table of powers, whofe fquare is equal to, or lefs than the firft period on the left hand, and this number will be the firft figure of the root, which place in the form of a quotient ; then fubftract its fquare from the aforefaid period; and to the remainder annex the next period for a dividend.
3. Double the firft figure of the root for a divifor.
4. Find fuch a quotient figure, that when annex-
ed to the divifor and the refult multiplied with the fame number, the product will be equal to, or lefs than the dividend; and this will be the fecond figure of the root.
5. To the remainder annex the third period for a new dividend, and add the figure in the root laft found to your former divifor for a new one.
6. Find the third figure of the root as you found the fecond; and fo on, till all be done.

Note I. If there is a remainder after all the periods are annexed, the given number is a furd, and you muft approximate to the root, by annexing cypbers two at a time, to the remainder.
2. If the given number confifts of integers and decimals, you muft ponit. off as many places in the root, as there were periods of decimals in the given number.

$$
E X A M P L E S
$$

Required the fquare root of 5808 I .

OPERATION.

$$
\dot{5} 8 \dot{0} 8 \dot{1}(24 I
$$

$$
4
$$

If divifor $=44$) 180
4176
$2 d$ divifor $=48$ r) 48 I 48 r

0
Therefore, 24 I is the root required, as may be proved by involution: Thbs, $24 \mathrm{I} \times 24 \mathrm{I}=5808 \mathrm{I}$, which is the fame as the given number: Whence, छ̇c.

Required.

Required the fquare root of 1000 .

Required the fquare root of 105462.5625 :

OPERATION.

PROBLEMII.
To extract the Square root of a Vulgar Fraction.

$$
R U L E .
$$

Extract the root of the numerator, for the numes rator of the root ; and the root of the denominator, for the denominator of the root.
EXAMPLE.

Required the fquare root of $\frac{225}{-2 \frac{5}{4}}$.

OPERATION.

Gg

(234)

OPERATION.

Whence, $\frac{\frac{7}{3}}{3} \frac{1}{2}$ is the root required.
P R O B L E M III.

To find the root of the third power or cube, by approximation.

$$
R U L E .
$$

1. Distinguish the given number into periods of three figures each, by beginning at the unit's place, and placing a point over the firt, fourth, feventh, figures, \&cc. and if there are decimals, point them from the unit's place towards the right hand, in the fame manner.
2. Find the root of the firf period on the left hand, by the help of the table of powers, and annex toit, as many cyphers as there are remaining periods, then involve this number to the fame power as the given number, and call the refult the fuppofed cube; then : As twice the fuppofed cube + the given cube; is to twice the given cube + the fuppofed cube; fo is the root of the fuppofed cube; to the root required, nearly.
3. If a greater degree of exactnefs is required, involve the root already found, to the third power, and

(235)

call the refult the fuppofed cube, with which proceed as as before, and fo on, to any degree of exactnets.

Note. When the root is finite, you may fometimes Save the trouble of repeating an operation, by increasing the right band figure of the root found, by unity.

EXAMPLES.

Find the cube root of 1367631 .
OPERATION.
First, $\dot{1}_{3} 6763^{\circ}$ is the given number prepared for extraction, the root of whole first period (I) is I ; then $100 \times 100 \times 100=1000000=$ supposed cube; and,
as $\overline{1000000 \times 2}+1367631: 1367631 ;<2+1000000::$ 100 , ie. $3367631: 3735262:: 100$

100

$$
\begin{gathered}
\frac{3367631)}{373526200(110} \\
\frac{3367631}{3676310}+111=\text { root requir. } \\
\frac{3367631}{3086790}
\end{gathered}
$$

Required the cube root of 729001101.
First, 72900 i 101 is the given number pointed, and the root of the fir ft period $(729)=9$; therefore $900 \times$ $900 \times 900=729000000=$ SuppoSed rube; then,
as $\overline{729000000 \times 2}+729001101: 729001101 \times 2+$ $72900000.0:: 900$.

(236)

Thbat is, $2187001101: 2187002202:: 900$
900

$$
\begin{array}{r}
2187001101) 1968301981800(900.0004= \\
19683009909 \quad[\text { rcot nearly. }
\end{array}
$$

9909000000.

The cube root of a V.ulgar Fraction, is found by extracting the root of the numerator and denominat tor.
PROBLEM.IV.

To extraEt tbe roots of pozeers in general.

$$
R U L E .
$$

1. Let the index of the power whofe root is to be extracted, be denoted by n.
2. Point the given number into periods of às many figures each, as there are units in x, beginning at the unit's place; and if there are integers and decimals together, let them be pointed both wavs from unity.
3. Find the root of the firft period, by the help of the table of powers, and this will be the firt figure of the root.
4. Subtract the n power of the firft figure of the root, from the firt period, and to the remainder annex the firft figure of the next period, which refult call your dividend.

5 Involve the root now found to the $n-1$ power, and multiply the refult with n for your divifor.
6. Divide, and the quotient will be the fecond figure of the root.
7. Involve all the root now found to the n power, ind fubtract it (always) from as many periods, as

(237)

you have found figures of the root : But if the number to be fubtracted, is greater than the aforefaid periods, the laft figure of the root is too great, which mult therefore be diminifhed, fo that the n power of the root now found, may be taken from the aforefaid periods.
8. To the remainder annex the firft figure of the next period for a new dividend, then find a new divifor as before; and fo on, till the whole be done.

EXAMPLES.

Required the cube root of 61209.566621 :
OPERATION.
Here $\mathrm{n}=3$, therefore the given number pointed is $6 \dot{1} 209.566 \dot{6}_{21}$, and the nearef root of the fir \dot{t} period (6I) is 3 , which is the firft figure of the root, the n power of which is $3 \times 3 \times 3=27$; and $6 \mathrm{I}-27=34$, which baving the firft figure of the next period annexed to it, becomes $342=$ firft dividend, and $3 \times 3 \times 3=27=$ fir $/ t$ divifor: Whence, 27) 342 ($9=$ fecond figure of the root, and the whole of the root now found is 39 ; therefore, $39 \times 39 \times 39=59319=$ n power of 39 , which being fubtraited from the two firft periods, leaves 1890 , and $18905=$ Second dividend; alfo, $\overline{39 \times 39} \times 3=4563=$ fecond divifor; whence, 4563) $18905(4=$ third figure of the root. Again, $394 \times 394 \times 394=6 \leq 162984$, robich Jubtracted from the tbree firft periods, leaves 46582 , then, $465826=$ third dividen!, and $394 \times 394 \times 3=$ $465708=$ third divifor; whence, 465708)465826(1 =fourth and laft figure of the root, and becaufe there are two-periods of decimals in the given number, the root required is 39.41 ; for $39.41 \times 39.41 \times 39.41=$ $61209.566621=$ the number whofe root was required: Wbence, Eic.

Required

(238)

Required the 6 th root of 14803588 g .

OPERATION.

First, extract the Square root, and then the cube root of that result will give the root required:

$$
\begin{aligned}
& \text { Thus, } 14803588 \dot{9} \text { (12167 } \\
& \text { I } \\
& \text { 22) } 4^{8} \\
& 2.44 \\
& \begin{array}{l}
\text { 241) } \begin{array}{c}
403 \\
\text { 1 } \\
\hline
\end{array}{ }^{241} \\
\hline
\end{array} \\
& \text { 2426) 16258 } \\
& \begin{array}{ll}
6 & 14556
\end{array} \\
& \text { 24327)170289 } \\
& 170289 \\
& 0 \\
& \text { Again, } 12167^{\circ}(23=\text { root required. } \\
& 2 \times 2 \times 2=8 \\
& \overline{2 \times 2} \times 3=12)_{41} \\
& 23 \times 23 \times 23=12167 \\
& 0
\end{aligned}
$$

The fame at one operation :
T'bus, $14 \dot{8} 03588 \dot{9}$ (23 as before.
$2 \times 2 \times 2 \times 2 \times 2 \times 2=64$
$2 \times 2 \times 2 \times 2 \times 2 \times 3=96) 840$
$23 \times 23 \times 23 \times 23 \times 23 \times 23=148035889$

(239)

In extracting the roots of heigher powers, it will be beft to extract fquare root out of fquare root fucceflively, as often as the index of the given power is divifible by 2 : Thus, in the 16 th power, the index (16) is divifible by 2 , four times; for $16 \div 2=8,8 \div$ $2=4,4 \div 2=2$, and $2 \div 2=1$: Whence it follows, that the root of the 16 th power may be obtained by four feveral extractions of the fquare root; and the like may be fhewn of all the even powers.

The END of BOOK FIRST.

$\begin{array}{ll}+1 \\ 4 & 2\end{array}$

$$
\frac{81}{8}
$$

 (2) $\cdot \quad(2+2$! 1

 $(2+20+2$

$$
54898-5
$$

$$
\begin{aligned}
& x+x+2+2 x_{2}+\frac{4}{2}+2
\end{aligned}
$$

B O O K II.

OF ALGEBRA.

> C H A P.

Of DEFFINITIONS
$A N D$
$I L L U S T R A T I O N S$.

ALGEBRA, one of the moft important branches of mathematical fcienice, is a method of computation by figns and fymbols, which have been invented and found ufeful for that purpofe. Its invention is of the higheft antiquity; and has juiftly challanged the praife and admiration of the learned in all ages. Arithmetic is indeed ufeful, and is not to be the lefs valued, becaure it is allowed to be the moft clear and evident of the fciences; yet it is confined in its object; and partial in its application, Geometry for clearnefs of principles; and elegance of demonftration; no lefs deferves, than commands our efteem; but the many beautiful theories; that arife from the application of Algebra and Geometry to each other, fully evince the excellency and exten*
fivenefs of the former. The doctrine of Fluxions, which is efteemed the fublimity of human fcience, depends on the noble fcience of Algebra for its exiftance and application. In a word, Algebra is juftly efteemed the key to all our mathematical inquiries.

In Algebra, like quantities are thofe which have the fame letters: Thus, $a x$ and $a x$ are like quantities; but $a x$ and $d x$ are unlike quantities.

Given or abfolute numbers, are thofe whofe values are known: Thus, $6,7,8 c$. are given numbers, becaufe their refpective values are known; but the quantities $x, y, \& c$. are not given quantities, becaufe their values are not known, and are therefore called unknown quantities.

Simple quantities are fuch as have but one term: Thus, $b, a x b$, and $x y z$, are fimple whole quantities, and $\frac{e b}{b}$ and $\frac{a b}{c d}$ are fimple fractional quantities.

Compound quantities are fuch as confift of feveral terms connected by the figns + and - : Thus, $a+$ $b+c-d$ and $a x-x y$ are compound whole quantities, and $\frac{a}{b}+\frac{c}{d}-\frac{d x}{b} ; \frac{a+b}{c-d}$ are compound fractional quantities. Compound quantities have fometimes a line drawn over them; as $\overline{a+b+c-d}$.

Co-efficients are numbers prefixed to quantities, denoting how many times the quantity to which they are prefixed, ought to be taken: Thus, $3 a$ denotes that the quantity a is to be taken 3 times; alfo, na Shews that the quantity a is to be taken as many times as there are units in n : Therfore, co-efficients multiply the quantities to which they are prefixed; and quantities which have no co-efficient prefixed to them, are always underfood to have an unit for their coefficient: Thus, a is $\pm a, x \notin x, \& x$.

A Posirive, or an affirmative quantity, is a quantity having the fign + before it; as $+a$: Alfo, all quantities that have no figns fet before them, as the leading quantity generally hath none, are underfood to have the fign + , and are therefore called pofitive quantities.

When quantities have the fign - before them, they are called negative quantities: As $-a,-x$; and when any quantity is to be diftinguifhed, as a quantity to be fubtracted, the fign - muft be placed immediately before it.

Quantities are faid to have like figns, when they are all + or all -.

Unlike figns is when the figns are + and -
A QUANTITY confifting of two terms, as, $\overline{a+b}$ is called a binominal; $\overline{a+b+c}$ a trinominal ; $\overline{a+b+c+d,}$ a quadrinominal, $\& c$.

A residual quantity, is the difference of two quntities. Thus, $\overline{a-b_{2}}$ is a refidual quantity.

The letters made ufe of to reprefent the unknown quantities, are thofe of the laft part of the alphabet, and the letters of the firlt part, reprefent thofe that are known.

The principal figns by which quantities are managed in Algebra, are the following, in addition to thofe made ufe of in the firf book of this treatife.

Signs, and Explanations.

6. 244)

$\checkmark x$ or $x^{\frac{1}{2}}$ denotes the íquare root of x.
$\sqrt[3]{ }$ or or $x^{\frac{\pi}{3}}$ the cube root of x.
$\sqrt{a+b}$ or $\overline{a+b}{ }^{\frac{1}{2}}$ the fquare root of $\overline{a+b}$.
$n \sqrt{a+b}$ or $\overline{a+b})^{\frac{1}{n}}$ the n root of $\overline{a+b}$.
$\frac{1}{6}$ the reciprocal of a.
$\frac{y}{x}$ the reciprocal of $\frac{x}{y}$.
$a \pm b$ the fum or difference of a and $b_{\text {. }}$

AX I OM S.

1. If to thole quantities that are equal, there be gadded the fame quantity, their fum will be equal.
2. If from thole quantities that are equal, there be taken the fame quantity, the remainders will be equal.
3. If thole quantities which are equal, be multiplied with the fame quantity, their products will be equal.
4. IF thole quantities that are equal, be divided by the fame quantity, the quotients will alto be equal.
5. Two quantities refpectively equal to a third, are equal to each other.
6. Equal powers, or roots of equal quantities, are equal to each other.
7. If to any whole number, there be added any other whole number, the fum will be a whole nombet.
8. If from any whole number, there be taken any other whole number, what remains will alpo be a whole number:

$$
(245)
$$

9. If any whole number be multiplied with any other whole number, the product will alfo be a whole number.

C H A P. II.

ADDITION of WHOLE QUANTITIES.
A D D I T I O N confifts of three cafes.
CASE I.

When the quantities are alike, and bave like figns.

$$
R \cup L E .
$$

ADD the co-efficients together, and to their fum annex the common quantity, prefixing the common fign.

> EXAMPLES.

$2 a b$	$-2 x-3 x y$	$3 x-4 a$	$3 x^{2}+b$
$2 a b-6 x-2 x y$	$2 x-2 a$	$2 x^{2}+3 b$	
$6 a b-x-10 x y$	$6 x-4 a$	$6 x^{2}+2 b$	
$3 a b-5 x-2 x y$	$2 x-a$	$1 x^{2}+3 b$	
$\frac{4 a b}{}-4 x-a b$	$\frac{3 x^{2}+b}{15-1}-18 x-18 x y$	$14 x-12 a$	$15 x^{2}+10 b$

2 av.

(246)

$2 a v-3 x y^{2}+2 a z-b-4 v^{\frac{1}{2}}-6 a+3-2 d$ $10 a v-x y^{2}+3 a z-3 b-6 z v^{\frac{x}{2}}-2 a+1-8 d$

$$
a v-6 x y^{2}+9 a z-b-w^{\frac{1}{2}}-a+0-d
$$

$13 a v-10 x y^{2}+14 a z-5 b=11 z w^{\frac{1}{2}}-9 a+4-11^{\prime} d$ Jus.
CASE II.

When the quantities are alike, but have unlike signs.

$$
R \cup L \cdot E,
$$

1. ADD all the affirmative quantities into one fum by the lat rule, and the negative into another.
2. Subtract their co-efficients, the leis from the greater, and to their difference, prefix the fign of the greater, annexing the common quantity.

The reafon of the foregoing rule will appear avident, if you put $a=$ debt due to B , and $-a$ the want of a debt, or a debt due from B; then the balance is evidently equal 0 , or $+a-a=0$: Whence, $\& c$.
EXAMPLES.

247.$)$

$$
\begin{aligned}
& 3 d^{2}+8 d \sqrt{x^{2}+y y} \\
&-4 d^{2}-2 d \sqrt{x^{2}+y y}-3 a+4 d-w^{2} \\
&-7 d^{2}-8 d \sqrt{x^{2}+y y}-a-9 d+w^{2} \\
&-8 d^{2}-2 d \sqrt{x^{2}+y y}-4 a-5 d
\end{aligned}
$$

CA S E III.

When the quantities are unlike, and have unlike signs. $R \cup L E$.

Write the quantities one after another with their proper figns, and they will be the fum required.

Note. If there be like quantities given, you must collect them by the preceding rules. EXAMPLES.

$-3 a$	$7 c y+99 y$
$+4 b$	$-4 d+7 c-y$
$-2 a$	$-8 a+99 y-4 d+7 c-y=$ fum.
$-8 a+4 b-2 c-8 a=$ fum.	

$$
\begin{aligned}
& \begin{array}{l}
3 v^{2}+27 y^{3} \\
- \\
2 y^{\frac{2}{2}}-2 d \sigma+2 y^{\frac{x}{2}}
\end{array} \begin{array}{c}
4 a b v+4 V a v^{2} \\
3 v^{2}+27 y^{3}-2 d \sigma
\end{array} \frac{c b^{2}+96-{ }^{3} \sqrt{ } a^{2}-4 a b^{2}}{4 V a v^{2}-c b^{2}-3 \cdot \sqrt{2}+96}
\end{aligned}
$$

CHAP.

(248)

C. H A P. III.

SUBTRACTION of WHOLE QU゙AN: TITIES。

ALGEBRAIC Subtraction is performed by the following general

$$
R U L E
$$

Change the figns of the quantities in the fubtra= hend (or fuppofe them in yourmind to be changed) then add thie quantities with their figns changed, to the number from which fubtraction is to be made, by the rules of the laft chapter, and their fum will be the remainder required.

The reafon of this rule will appear obvious, when we confider that fubtraction is the revrfe of addition; and therefore, to fubtract an affirmative or negative quantity, is the fame thing as to add its oppofite kind: Whence, if - a is to be taken from $+a$, the difference will be $+2 a$, for if the remainder $2 a$ be added to the fubtrahend - a, their fum will be $=a$ $=$ the number from which fubtraction was made Whence, \&xc.

> EXAMPLES.

From $4 a$	$4 b u-3 b^{2}$ Tike $3 a$ $2 b u-2 b^{2}$	$3 z y+6 a-5$ $2 b y+b^{2}$

(249)

$$
\frac{34 v^{\frac{1}{3}}+6 b c+7 c^{2} b^{2}}{-16 v^{\frac{1}{3}}+16-4 c^{2} b^{2}} \quad \begin{gathered}
3^{3} \sqrt{ } a w-y b+6 d y \\
50 v^{\frac{1}{3}}+6 b c-16+11 c^{2} b^{2} \quad 5^{3} \sqrt{3} \text { aw-yb-yb+6dy}
\end{gathered}
$$

If any doubt arife, refpecting the truth of the peration, add the remainder to the fubtrahend, thich fum mut be equal to the other number.

$$
\begin{gathered}
\text { CHAP. IV. } \\
\text { Of MULTIPLICATION. }
\end{gathered}
$$

\triangle LGEBRAIC Multiplication confifts of three cafes.
CA SE I.

When both the factors are simple quantities.

$$
R \cup L E .
$$

Multiply the co-efficients together, and to their roduct annex all the letters in both factors, as in a ord; this, expreffion being wrote with its proper gn , will give the product required.
Note. Like signs give +, and unlike Signs - for the producE.

EXAMPLES.

> CA SE II.

When one of the factors is a compound quantity.

$$
R \cup \perp E
$$

1. Write the compound quantity for the multiplicand, and the fimple quantity for the multiplier.
2. Obtain the product of the multiplier with every particular term of the multiplicand, by the lat rule, and place the terms of the product one after another, with their proper figns, found as in the lat rule, and you will have the product required.

EXAMPLES.

When both the factors are compound quantities.
RULE.

RULE.
Multiply every particular term of the multiplier, with all the feveral terms of the multiplicand, as in the laft rule, the feveral products collected into one fum by the rules of addition, will give the whole product required.

EXAMPLES.

$y y y y+y y x x$

$$
4 x x y+2 x x-8 x
$$

$$
-y y x x-x x x x
$$

$$
-2 x y-x+4
$$

yyyy
That $+x$ - or $-x+$ gives - , and $-x$ - gives + for the product, is demonftrable feveral ways, but none more fimple than the following. Suppofe $a=b$; then $a-b=0$: Now it is plain, that if this expreflion be multiplied with any number whatever, the product will be $=0$: Therefore, fuppofe $\grave{2}-b=0$, is to be multiplied with $+n$; now it is manifeft, the firt term of the product $a \times n$ will be pofitive; or $+n e$, becaufe both the factors are pofi-
tive ; confequently the other term of the product $+n$ $X-b$ muft be negative, or $-n b$; for both terms of the product taken together, mult deftroy each other, and their amount $=0$; that is, $n a-n b=0$: Confequently $+x-$, or $-x+$ gives - for the product.

Again, fuppofe $a-b=0$, be multiplied with - n; the firft term of the product $-n \times a$ will be negative, or -na, by what has been proved: Confequently, the other term $-n \dot{K}-b$ will be pofitive, or $+n b$; for both terms taken together muft $二 0$; thus, $-n a+n b=0$: Copfequently, $-\times$-gives it for the product. \quad Q. E. D.

$$
\begin{aligned}
& \text { C H A P. V. } \\
& \text { Of } D I V I S I O N .
\end{aligned}
$$

DIVISIO N being the converfe of multiplication; it follows, that the quotient muft be fuch a quantity, that if multiplied with the divifor, will produce the dividend; confequently, like figns in divifion give + , and unlike figns - for the quotient.

$$
\mathrm{C} A S E \mathrm{I} \text {. }
$$

When the divifar is a Simple quantity:

$$
\mathbb{R} U L E .
$$

1. Write down the quantities, in form of a vulgar fraction, having the divifor for the denominator.
2. Expunge all thofe quantities in the dividend and divifor, that are alike ; and divide the co-effi-

(253)

cients of the quantities by any number that will divide them without a remainder; the refult will be the quotient fought.

EXAMPLES.

$\frac{8 a u}{2 a}=4 u$ the quotient; $\frac{24 z y-4 z}{2 z}=12 y-2 ; \frac{a z}{a}=z$ $\frac{a b+b d}{-b}=-a-d ; \frac{12 a d z-8 d c z}{-4 z}=-3 a d+2 d c$ $\frac{16 b c u}{12 c}=\frac{4 b u}{3} ; \frac{8 u z y}{12 d c u}=\frac{2 y z}{3 d c}$.

If you divide any quantity by itfelf, the quotient will be unity or 1 : Thus, $\frac{x}{x}=1$; for if the quotient be multiplied with the divifor, the product will be the dividend; thus, $x \times 1=x$: Confequently, if any term of the dividend be like that of your divifor, the quotient of that term will be I: As in

These, $\frac{a v+b v+v}{v}=a+b+1 ; \frac{2 a b+2 b c-2}{2}=a b$ $+b c-1 ; a l f o, \frac{3 v y z-3 v y z}{3 v y z}=1-1=0$.

C A S E II.
When the divifor and dividend are both compound quantities.

$$
R U L E .
$$

1. Range the quantities in the divifor and dividend, according to the order of the letters.
2. Find how often the firt term of the divifor is contained in the firft term of the dividend, and place the refult in the quotient.
3. Multiply the quotient term thus found, with the whole divifor, fubtract the product from the dividend, and to the remainder bring down the next, term ofthe dividend; which forms a new dividend.
4. Divide the firft term of your new dividend, by the firft term of your divifor, as before ; and fo on, until nothing remains, as in common Arithmetic, and you will have the quotient required.

EXAMPLES.

Suppofe it is required to divide $2 y y y+8 y y+8 y$ by $y y+2 y$; which being ranged as directed in the rule, the operation will ftand

Thus, $y y+2 y) 2 y y y+8 y y+8 y(2 y+4$
$2 y y y+4 y y$

* $4 y y+8 y$
$+4 y y+8 y$
$*$

Here the firft term of the dividend, wbich is 2 yyy, being divided by tbe firft term of tbe divijor $y y$, the quotient is $2 y$; wbich being placed in the quotient as in vulgar Aritbmetic, and multiplied with all the terms of the divifor, the product is $2 y y y+4 y y$, which jubtraEted from the dividend, the remainder is $4 y y$, to which annex the next term of the dividend $8 y$, the new dividend becomes $4 y y+8 y$, and dividing $4 y y$ by $y y$, the quotient is 4 ; which being annexed to the quotient term before found, and multiplied witbevery term of the divifor, produces $4 y y+8 y$, which subtracted from the laft dividend, the remainder is notbing; and baving brougbt doren all the terms of the propofed dividend, the work is done; therefore, $2 y+4$ is the true quotient, for $\overline{2 y+4} \times \overline{y y+2 y}=2 y y y+8 y y+8 y=$ the given dividend.

Divide

(255)

Divide 6 avo- $3 a v-2 v y+2 v+2 y-1$ by
$v \rightarrow 1$.

$$
\text { OPERA } A q^{\prime} T O N \text {. }
$$

$$
\begin{array}{r}
2 v-1) \begin{array}{r}
6 a v v-3 a v-4 v y+2 v+2 y-1(3 a v-1 \\
6 a v v-3 a v \\
*-4 v y \\
\\
\frac{-4 v y+2 y}{*+2 v}{ }^{*}-1 \\
\frac{2 v+1}{*}-1
\end{array}
\end{array}
$$

Divide vv - yr by v-y.
OPERATION.

$$
\begin{gathered}
v-y) v v v-y y y(v v+v y+y y \\
\frac{v v v-v v y}{*+v v y-y y y} \\
+\frac{v v y-v y y}{+v y y-y y y} \\
\frac{+v y y-y y y}{*}
\end{gathered}
$$

Divide I by $\mathrm{x}-\mathrm{z}$

$$
\begin{gathered}
\frac{(2 弓 6)}{\text { OPERATION. }} \begin{array}{c}
(1+v+v v+\& c . \\
\frac{1-v}{*+v} \\
+v-v v \\
++v v \\
+v v-v v v \\
+1+v v v
\end{array}
\end{gathered}
$$

In this example, the divifor cannot exactly be found in the dividend, without a remainder ; and you have what is called an infinite feries for the quotient ; that is, if the divifion could be carried on ad infinitum, you would have a feries of terms for the quotient, that would come infinitely near to an equality with the true quotient, and therefore might be confidered as fuch; for when ratios from that of equality, are but indefinitely little, or lefs than can be affigned, they may be confidered as equal ; but as it is impoffible to carry on the divifion ad infinitum, or take in a fufficient number of terms to exprefs the true quorient: Therefore, in general you need only take a few of the leading terms for the quotient, which will be fufficiently near for moft purpofes. : But more of this in its proper place, fince the knowledge of Algebraic fractions, is in moft cafes, abfolutely neceffary, in order to obtain an infinite feries by divifion.
C A S E III.

When the quantities in the divifor cannot be found in the dividend.

RULE.
$R U L E$.
Place the dividend above, and the divifor below a fmall line, in form of a vulgar fraction; and the expreflion will be the quotient required.
EXAMPLES.

The quotient of a divided $b y b$, is $\frac{a}{b}$.
The quotient of $21 b x \div d=\frac{21 b x}{d}$.
The quotient of $8 a c+d c \div z x+a b=\frac{8 a c+d c}{z x+a b}$

C H A P. VI.

INVOLUTION of WHOLE QUANTITIES.

INVOLUTION is the raifing of powers from quantities called roots, and differs from multiplication in this, viz, that in involution the multiplier is conftant, or the fame; therefore when any quantity is drawn into itfelf, and afterwards into that product, and fo on, the mode of operation is called involution, and the number produced, the power, whofe height is ufually denominated by placing numeral figures over the right hand of the root, or quantity to be involved, and are called indices or exponents of the powers which they denominate: Thus, $a^{2}=a, a$ denominates the fquare of $a, a^{3}=$

(258)

aaa the cube of a, a^{4} the fourth power of a; and generally, a^{n} the n power of a.

Involution of fimple quantities is performed by the following

$R U L E$.

Multiply the index or exponent of the given quantity or root, with the exponent which denominates the power required, making the product the exponent of the power fought.

Note. If the quantities to be involved, bave co-effcients, the co-efficients muft be involved as in vulgar Aribbmetic, to the fame beigbt as the index of the power required denotes.

EXAMPLES.

T'be Square of $a=a^{1} \times 2=a^{2}$; the cube of $a=$ $a^{\mathrm{I}} \times 3=a^{3}$; the fquare of $a^{2}=a^{2 \times 2}=a^{4}$; the cube of $3 a^{2}=3 \times 3 \times 3 \times a^{2 \times 3}=27 a^{6}$; the 4 th power of $4 x^{3} y^{2}=4 \times 4 \times 4 \times 4 \times x^{3 \times 4} \times y^{2 \times 4}=256 x^{12} y^{8}$; the n power of $x=x^{1 \times n}=x^{n}$.

If the quantity propofed to be involved is pofitive, all its powers will be pofitive: Alfo, if the quantity propofed be negative, all its powers whofe exponents are even numbers, will likewife be politive ; becaufe any even number of multiplications of a negative quantity, gives a pofitive one for the product, fince $-x$ - gives + ; confequently $-x-x-x-=$ $+x+$ for the product ; therefore, that power of the negative quantity, only is negative, when its exponent

259)

nent is an odd number: As may be feen in the following form,

$$
\text { -a the root }\left\{\begin{array}{l}
-a \\
-a \\
-a^{2}=\text { square } \\
-a^{3}=\text { cube root } \\
-a \text { tbe root } \\
-a^{4}=\text { 4tb power } \\
-a \text { the root } \\
-a^{5}=5 \text { th power. }
\end{array}\right.
$$

Involution of compound quantities, is performed by the following

$$
R U L E
$$

Multiply the root into itfelf, and then into that product, and fo on, until the number of multiplications are one lefs than the exponent of the power iequired; the refult will be the power fought.
EXAMPLES.

Let the binomial $a+b$ be involved to the s th power.

(260)

OPERATION.

```
\(a+b\) the root
\(a+b\)
\(a a+a b\)
        \(+a b+b b\)
\(a a+2 a b+b b=\) Square \(\varepsilon\)
    \(a+b\)
\(a a a+2 a a b+a b b\)
    \(+a a b+2 a b b+b b b\)
\(a a a+3 a a b+3 a b b+b b b=c u b c\)
    \(a+b\)
\(a a a a+3 a a a b+3 a a b b+a b b b\) \(+a a a b+3 a a b b+3 a b b b+b b b b\)
\(a a a a+4 a a a b+6 a a b b+4 a b b b+b b b b=4 t b\) power \(a+b\)
\(a a a a a+4 a a a a b+6 a a a b b+4 a a b b b+a b b b b\) \(+a a a a b+4 a a a b b+6 a a b b b+4 a b b b b+b b b b b\)
\(a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}=5 t b d \theta\).
```


(261)

Involve $a-b$ to the 3 d power.

OPERATION. .

$$
\begin{aligned}
& a-b \\
& \frac{a-b}{a^{2}-a b} \\
& \frac{-a b+b^{2}}{a^{2}-2 a b+b^{2}=2 d \text { power }} \\
& \frac{a-b}{a^{3}-2 a^{2} b+a b^{2}} \\
& -a^{2} b+2 a b^{2}-b^{3}
\end{aligned}
$$

$a^{3}-3 a^{2} b+3 a b^{2}-b^{3}=3 d$ power.
IT is to be obferved in the foregoing examples.

1. That all the terms in the feveral powers, raifed from the binomial $a+b$, are affirmative.
2. The terms in the feveral powers raifed from the refidual $a-b$, have the figns + and - , alternate$l y$; the firft term being a pure power of a, is confequently affirmative; the fecond term hath a negative fign, and fo on, alternately; but b is no where found negative, only where its exponent is an odd number; as in $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$; where the fecond and fourth terms are negative, becaufe the exponent of b in thofe terms, is an odd number.
3. That the firft term of any power, either of the binomial or refidual, hath the exponent of the power : That is, the index of the firft term, is equal to the index of the power; bui in the reft of the terms following, the exponents of the leading quantity, decreafe in arithmetical progreffion, unity or I, being the common difference; fo that the quantity a is
never found in the laft term; but the exponents of b, on the contrary, increafe in the fame progreffion that the exponents of a decreafe; that is, the quantity b, is not to be found in the firft term; but in the fecond term, its exponent is unity or 1 ; in the third term 2, and fo on in the faid arithmetical progreffion, to the laft term, where its exponent is equal to the exponent of the power.
4. That the number of terms in any power, is one more than the number which denominates that power.

Hence from the foregoing obfervations it follows.

1. That the fum of the exponents of both quantities in any term, are equal to the exponent of the power in which thofe terms belong: Thus, the 6th power of $a+b=a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}$ $+15 a^{2} b^{4}+6 a b^{5}+b^{6}$, where you will pleafe to obferve, that the fum of the exponents of a and b, in any term, are equal to the exponent of the power: Thus in the third term, the exponents of a and b, are 4 and 2 , whofe fum $=6$ =exponent of the power.
2. The method of writing without a continual involution, the terms in any power of a binomial, or refidual quantity, without their co-efficients: Thus the terms of the 4 th power of $x+y$ without their co-efficients, will ftand thus : $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}$ $+y^{4}$; and the terms of the 4th power of $x-y=x^{4}$ $-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$.

In order to find the co-efficients of the feveral terms, it is neceffary to have the co-efficient of one of the terms given: And becaufe the firft term or leading quantity is a pure power, having its index equal to the index of the given power; its co-efficient is therefore unity or 1 : Confequently, you have

(263)

have the co-efficient of the firft term given; thence to find the co-efficients of the reft of the terms by the following

$$
R U L E .
$$

Divide the co-efficient of the preceding term, by the exponent of y in the given term; the quotient multiplied with the exponent of x, in the fame term, increafed by I , will give the co-efficient required.

Or,

Multiply the co-efficient of any term, with the exponent of the leading quantity, in the fame term; the product divided by the number of terms to that place, will give the co-efficient of the next fubfequent term.

> EXAMPLES.

Given $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}$, to find the co-efficients of the feveral terms.

Firft, the co-efficient of x^{4} is I; thence to find the co-efficient of $x^{3} y$: And becaufe the exponent of y in the given term, is unity or I; then per rule, $\frac{I}{I}$ $X_{3}+1=1 \times 4=4$, the co-efficient required: Again, $\frac{4}{2} \times 2+1=\frac{4}{2} \times 3=\frac{12}{2}=6$, the co-efficient of the third term ; and $\frac{6}{3} X_{1}+1=\frac{6}{3} X_{2}=\frac{12}{3}=4$, the co-efficient of the fourth term; but the next term hath the exponent of the power, being the laft term of the 4 th power of $x+y$, and confequently, its co-efficient an unit or 1. Therefore, the co-efficients of the leveral terms of the 4 th power of $x+y$, are $1,4,6,4,1$.

Hence you may obferve, that the coefficients of the feveral terms increafe, until the exponents of x and y become equal to each other, and then decrease in the fame order in which they increafed. And gen trally, the co-efficients of the terms increafe, until the exponents of the two quantities become equal in one term, if the exponent of the power is an.even nomber; and when the exponent is odd, two of the terms will have equal coefficients, and then decrease in the fame order. Therefore, in finding the co-efficlients, you need only obtain the coefficients, until they decrease; the reft of the terms having the fame co-efficients decreafing.

$$
\begin{aligned}
& \text { The } n \text { power of } x+a=x^{n}+n x^{n-1} a+n \times \\
& \frac{n-1}{2} x^{n-2} a^{2}+n \times \frac{n-1}{2} \times \frac{n-2}{3} x^{n-3} a^{3} \text { \&c. to. }
\end{aligned}
$$ $n+1$, terms.

Let $a+b+c$ be involved to the fecond power.

$$
O P E R A G^{\prime} I O N .
$$

$$
\begin{aligned}
& a+b+c \\
& a+b+c \\
& a^{2}+a b+a c \\
& +a b+b^{2}+b c \\
& +c a+b c+c^{2} \\
& a^{2}+2 a b+2 a c+b^{2}+2 b c+c^{2}=2 d \text { power. }
\end{aligned}
$$

(265)

CH A P. VII.

Of MULTIPLICATION and DIVISION of POWERS of the same ROOT.

NULTIPLICATION of powers of the fame root, is performed by the following

$$
R \cup L E
$$

ADD the exponents of the powers together, and make their fum the exponent of the product.

$$
E X A M P L E S
$$

$$
\begin{aligned}
& a^{3} \times a^{2}=a^{3+2}=a^{5} ; 6^{2} \times 6^{3}=6^{2+3}=6^{5}= \\
& 7776 ; 6 x^{3} \times 4 x^{4}=6 \times 4 \times x^{3+4}=24 x^{7} ;-a^{4} \times \\
& a^{6}=-a^{10} ; \text { alfo, }-a^{1} \times-a^{2}=a^{3} ; \text { in like man- } \\
& \text { ner, }\left.\overline{a-b}\right|^{2} \times a-\left.b\right|^{6}=\left.\overline{a-b}\right|^{2+6}=\left.\overline{a-b}\right|^{3} \text {; and } \\
& \text { univerfally, } a^{m} \times a^{n}=a^{m+n} .
\end{aligned}
$$

Division of powers that have the fame roor, is effected by the following

$$
\tilde{R} \cup L E .
$$

From the exponent of the dividend, fubtract the exponent of the divifor, and the remainder will be the exponent of the quotient.

> LI EXAMPLES.
(266)

EXAMPLES.

$$
\begin{aligned}
& \frac{a^{5}}{a^{6}}=a^{8-6}=a^{2} ; \frac{a^{3}}{a^{2}}=a^{3-2}=a^{3} ; \frac{a^{6} b^{4}}{a b^{2}}=a^{6-1} \\
& b^{4-2}=a^{5} b^{2} ; \\
& \text { Alro, } \frac{a+\left.x\right|^{6}}{\left.\overline{a+x}\right|^{2}}=\overline{a+x} \\
& =\overline{a+b+a^{4}}=\overline{a+x} ; \frac{\overline{a+b+a^{1}}}{\overline{a+b+a^{3}}}
\end{aligned}
$$

Hence it follows, that in divifion of powers which have the fame root, if you divide a lefs power by a greater, the exponent of the quotient will be negative; for we have fhewn, that to divide any power of a by a, is to fubtract one from the exponent of the power of a : Thus, $a_{a}^{2}=a^{x}$; therefore, $\frac{a}{a}=a^{1-1}$ $=a^{\circ}$; but $\frac{a}{a}=1$ by the nature of divifion; confequently, $a^{\circ}=1$ by equality; and therefore, $\frac{1}{a}=\frac{a^{\circ}}{a}$ $=a^{0-1}=a^{-1}$; and $\frac{1}{a^{2}}=\frac{a^{0}}{a^{2}}=a^{0-2}=a^{-2}$; and fo on for any power of $\frac{1}{a}:$ Likewife, $\frac{\left.\overline{x+y}\right|^{2}}{\overline{x+y}}=$ $\left.\overline{x+y}\right|^{2}-2=\overline{x+y}^{\circ}=$ (becaufe, $\frac{\overline{x \times\left. y\right|^{2}}}{\overline{x+\left.y\right|^{2}}}=\mathrm{r}$,) confequentiy, $\frac{\mathbf{I}}{\left.\overline{x+y}\right|^{1}}=\frac{\left.\overline{x+y}\right|^{\circ}}{\left.\overline{x+y}\right|^{\mathbf{1}}}=\overline{x+y}{ }^{-\mathbf{I}}$; therefore, $\frac{1}{x+\left.y\right|^{2}}=\frac{\left.\overline{x+y}\right|^{\circ}}{\left.\overline{x+y}\right|^{2}}=\overline{x+\left.y\right|^{\circ}}{ }^{-2}=\left.\overline{x+y}\right|^{-2}$; and $\frac{1}{\overline{x+y y^{3}}}$
$=\overline{x+3}-3$. And generally, $\frac{1}{\overline{x+y y^{2}}}=\frac{\overline{x+y}{ }^{\circ}}{\overline{x+y y^{2}}}=$
$\overline{x+1} 1^{-n}$. Therefore, $a^{0}, a^{-1}, a^{-2}, a^{-3}$, and, $\overline{x+y}^{\circ}, \overline{x+y}^{-1},\left.\overline{x+y}\right|^{-2}, \overline{x+y}-3$, and $\overline{x+y}-1$ reflectively $=1, \frac{1}{a}, \frac{1}{a^{2}}, \quad \frac{1}{a^{3}}, \quad 1, \frac{1}{x+y}, \frac{1}{x+y)^{2}}$, $\frac{1}{\overline{x+\left.y\right|^{3}}}, \frac{1}{\overline{x+\left.y\right|^{n}}}$, and of which they are positive powers.
Hence the propriety of ufing negative exponents.
The multiplication, and divifion of powers which have the fame root, having negative exponents, is performed by the fame rule as thole powers which have affirmative ones; that is, add the exponents of the factors in multiplication, and in divifion fubtract them.

> EXAMPLES.

$$
\begin{aligned}
& a^{-2} \text { multiplied witt } a^{-4}=a^{-2-4}=a^{-6} ; \\
& a^{-3} \times a^{-1}=a^{-1-3}=a^{-4} ; a^{-2} \times a^{2}= \\
& a^{-2+2}=a^{0}=1=a \div a_{2} \text { and }-4 \vee a \times+2 \vee a \\
& =^{-2} \vee a .
\end{aligned}
$$

$a^{-6} \div a^{-3}=$ (by the nature of fubtraction) $a^{-6+3}=a^{-3}=1 \div a^{3}$ and $a^{-3} \div a^{-6}=a^{-3}$ $+6=a^{3}$; but by the nature of multiplication and division, $a^{-3} \div a^{-6}=a^{-3} \div a^{-3} \times a^{-3}=$ $3 \div a^{-3}=a^{0} \div a-3=a^{0}+3=a^{3}$; likewife,

$$
-4 \sqrt{z+y}
$$

$-4 \sqrt{z+y} \div-2 \sqrt{z+y}=-4+2 \sqrt{z+y}=$
$-2 \sqrt{z+y}$.

CH A P. VIII.

EVOLUTION of WHOLE QUANTI$\mathcal{T} I E S$.

EVOLUTION is the unfolding of powers produced by involution; thereby difcovering the roots with which they are compofed, and is therefore the reverfe of involution.

The rule for evolution of powers, whole roots are fimple quantities, flows from this confideration; that to involve any fimple quantity to any power, is to multiply the exponent of the quantity, with the exponent of the power; making the product the exponent of the required power; confequently, if the exponent of the power, be divided by the index which denominates the root required, the quotient will be the exponent of the root. Therefore, when the exponent of the power whole root is required, is not a multiple of the number which denominates the kind of root required; it follows, that the root will be expreffed by a fractional exponent: Thus, the Square root of $a^{5}=a^{\frac{5}{2}}$, and the cube root of $a^{4}=a^{\frac{4}{3}}$ Whence, we have the following rule for evolution of rimple quantities.

$$
R \cup L E .
$$

Extract the root of the co-efficient, as in vulgar arithmetic, and divide the exponent of the power ${ }_{2}$

(269)

by the index of the root rquired; making the root of the co-efficient, the co-efficient of the root.

EXAMPLES.

The cube root of $a^{9}=a^{\frac{2}{3}}=a^{3}$: The square root of $4 a^{4}=2 a^{\frac{4}{2}}=2 a^{2}:$ The cube root of $64 x^{9} a^{3}={ }^{3} \sqrt{ } 64$ $\times x^{\frac{9}{3}} a^{\frac{3}{3}}=4 x^{3} a:$ The 4 th root of $256 a^{4} b^{x 2}=4 \sqrt{256}$ $\times a^{\frac{4}{4}} b^{\frac{12}{7}}=4 a b^{3}:$ The cube root of $-27 a^{3}=-3 a^{3}$. But the fquare root of a negative quantity; as - x^{2}, cannot be afligned, becaufe no even number of multiplications, either of a pofitive or negative quantity, can give a negative one for the product, as was fully explained in chapter VI; therefore, the fquare root of $-x^{2}$ is an imaginary quantitiy: And fince the fquare of any negative or pofitive quantity, is always pofitive ; it follows, that the fquare root of x^{2} may be $+x$, or $-x$. Therefore, when the number which denominates the root to be extracted, is odd, the fign of the root will the fame as the fign of the power; and when the number which denominates the root, is even, the fign of the root may be either + or - : Thus, the cube root of $-27 a^{15} b^{9}=-3 a^{5} b^{3}$, and the 4 th root of $16 a^{8} x^{4}=2 a^{2} x$ or $-2 a^{2} x$; the the n power of $x^{m}=x^{\frac{m}{n}}$

Evolution of compound quantities, requires a different method of proceeding from that of fimple ones.

To extract the fquare root of a compound quantity we have the following

$$
R U L E .
$$

(270)

$R U L E$.

1. Range the quantities according to the order of the letters, fo that the firft term fhall have the index of the power.
2. Find the root of the firt term, as in evolution of fimple quantities, and place it in the quotient.
3. Subtract the fquare of the root thus found, from the firft term of the power propofed, and to the remainder bring down the reft of the terms for a dividend.
4. Divide the firft term of the dividend, by double the root, and write the refult in the quotient, for the fecond cerm of the root,
5. ADD the laft term of the quotient to your divifor, and multiply their fum with the faid quotient term, fubtracting the product from the dividend; and fo on, to obtain the next term of the root, by the help of thofe already found, in the fame manner as the fecond term was obtained by the help of the firft.

EXAMPLE.

Extract the fquare root of $a^{2}+2 a y+y^{2}+2 z a$ $+2 y z+z^{2}$.

The fquare root of the firft term viz. a^{2}, is a, which being placed in the quotient, is the firft term of the root, (See tbe operation annexed) which Squared and Subtracted. from the firft term of the propofed power, leaves no remainder; the reft of the terms being brought down for a dividend, the firft term, viz. 2 ay divided by 2 a (the double of the root) gives y for the Second term of the root; wbich with the divifor, being multiplied with y, and the product fubtratied from the firft terms of the dividend,

(271)

dividend, the remainder is notbing; the remaining terms being brought doren as before and divided by the double of the two firft terms of the root, gives z for the tbird term of the root, which added to the divifor and multiplied with z, the product SubtraEted as before, leaves no remainder: Therefore, the root fought, is $\overline{a+y+z}$, for $\overline{a+y+z} \times \overline{a+y+z}=a^{2}+2 a y$ $+y^{2}+2 a z+2 y z+z^{2}$.

OPERAIION.

$$
\begin{gathered}
a^{2}+2 a y+y^{2}+2 a z+2 y z+z^{2}(a+y+z=r o o t \\
a^{2} \\
2 a+y)^{*}+2 a y+y^{2}+2 a z+2 y z+z^{2} \\
\frac{2 a y+y^{2}}{*} \\
2 a+2 y+z)+2 a z+2 y z+z^{2} \\
2 a z+2 y z+z^{2}
\end{gathered}
$$

And univerfally, to extract any root.

$$
R \cup L E:
$$

1. Range the terms of the given power, as in the laft rule.
2. Extract the root of the firft term as before, and place it in the quotient for the firft term of the root.
3. Subtract the power of the root thus found, and to the remainder bring down the next term for a dividend.
4. Involve the root to a dimenfion lower by unity than the number which denominates the root required, and multiply the refult with the index of the

272)

root to be extracted, which product call your divifor.
5. Find how often the divifor is contained in the dividend, and write the refult in the quotient for the fecond term of the root.
6. Involve the whole of the root thus found, to the dimenfion of the given power, and fubtract the refult from the given power; and call the remainder a new dividend.
7. Involve the whole of the root in the fame manner as you did the firft term, and multiply the refult as before for a new divifor.
8. Divide as before, and the refult will be the third term of the root; and fo on, till the whole be finifhed.

EXAMPLES.
Required the fquare root of $16 y^{6}-48 y^{3}+36 y^{4}$ $+96 y^{2}+54$.

OPERATION.

$$
\begin{aligned}
& 16 y^{6}-48 y^{5}+36 y^{4}-64 y^{3}+96 y^{2}+64\left(4 y^{3}\right. \\
& 16 y^{6}
\end{aligned}
$$

$\left.4 y^{3} \times 2=8 y^{3}\right)-48 y^{5}\left(-6 y^{2}\right.$

$$
16 y^{6}-48 y^{5}+36 y^{4}=4 y^{3}-6 y^{2}{ }^{2}
$$

$$
\left.\overline{4 y^{3}-6 y^{2}} \cdot \dot{x}=8 y^{3}-12 y^{2}\right)-64 y^{3}+96 y^{2}+64(-8
$$

$$
16 y^{6}-48 y^{5}+36 y^{4}-64 y^{3}+96 y^{2}+64
$$

Tberefore, $4 y^{3}-6 y^{2}-8$ is the root required.

273)

Required the cube root of $8 a^{3}+12 a^{2} b+6 a b^{2}+$ b^{3}.
OPERATION.

$$
\begin{aligned}
& 8 a^{3}+12 a^{2} b+6 a b^{2}+b^{3} \\
- & 8 a^{3} \\
2 a^{2} \times 3= & \frac{\left.12 a^{2}\right) 12 a^{2} b(b}{2 a+b}=\frac{8 a^{3}+12 a^{2}+66 a b^{2}+b^{3}}{*}
\end{aligned}
$$

Whence, $2 a+b$, is the root required.

CH A P. IX.

Of ALGEBRAIC FRACTIONS or BROKEN QUANTITIES.

ALGEBRAIC fractions are formed by the divifion of quantities incommenfurable to each other : Thus, if x is to be divided by y, it will be (by cafe III, of algebraic divifion) $\frac{x}{y}$, which is an algebraic fraction; wherein x is the numerator and y the denominator: When fractions are connected with undivided quantities, as $a+\frac{x}{y}$, and $a+\frac{c x+z}{a+b}$. they are called mixed quantities; alpo, if the denominator is left than the numerator, the fraction is called improper.

The various operations, neceflary in managing algebraic fractions, are comprifed in the following problems.

(274)

PROBLEMI.

Toreduce a mixed quantity to an improper frastion of equal value.

$$
R \cup L E .
$$

Multiply the denominator of the fraction with the integral part, to which product add the numerator, and under their fum, fubfcribe the denominator, for the fraction required.
EXAMPLES.

PROBLEM. II.

To reduce an improper fraction to a wobole or mixed quantity.

$$
R \cup L E
$$

Divide the numerator by the denominator for the integral part, and write the denominator under the remainder for the fractional part ; and you will have the number required.

(275)

EXAMPLES.

$$
\begin{aligned}
& \frac{a c+a b}{c}=a+\frac{a b}{c} ; \frac{a y+2 y^{2}}{a+y}=y+\frac{y}{a+y} ; \frac{a^{2}-y^{2}}{a}=a+ \\
& \frac{-y^{2}}{a} ; \frac{a^{2}+b^{2}}{a-b}=a+b+\frac{2 b^{2}}{a-b} .
\end{aligned}
$$

PROBLEM III.

To reduce fractions of different denominations, to fractions of the Same value, that Jall bave a comnion denominator.

$$
R \cup L E .
$$

1. Reduce all mixed quantities to improper fractions.
2. Multiply every numerator feparately taken, into all the denominators except its own, for the feveral numerators, and all the denominators together for the common denominator, which being wrote under the feveral numerators, will give the fractions required.

EXAMPLES.

Reduce $\frac{x}{2}$ and $\frac{y}{4}$ to fractions of the fame value, having a common denominator. Firft, $x \times 4=4 x$ and $y \times 2=2 y$ for the numerators: Then, $2 \times 4=8$, the common denominator. Therefore, $\frac{4 x}{8}$ and $\frac{2 y}{8}$ are the fractions required.

Reduce $\frac{v}{y}, \frac{z}{v}$, and $\frac{a}{c}$ to equivalent fractions, having a common denominator.

$$
\begin{aligned}
& \left.\begin{array}{l}
v \times v \times c=c v^{2} \\
z \times y \times c=c z \\
a \times y \times v=a y v \\
c \times v \times y=c v y=\text { common denominator } .
\end{array}\right\}=\text { numerators. } \\
& i \times v=1
\end{aligned}
$$

Therefore, $\frac{c v^{2}}{c v y}, \frac{c y z}{c v y}$ and $\frac{a y v}{c v y}$ are the fractions required; which are respectively equal to $\frac{v}{y}, \frac{z}{v}, \frac{a}{c}$; for $\frac{c v^{2}}{c v y}=$ (by the nature of divifion) $\frac{v}{y}$; and the like for the reft. Whence, \&cc.
Reduce, $\frac{a-v}{2 v}, \frac{v b}{2}$, and $\frac{a y}{v}$ to a common denominator, retaining their reflective values.
$\left.\begin{array}{c}\overline{a-v} \times 2 \times v=2 a v-2 v^{2} \\ v b \times 2 v \times v=2 v^{3} b \\ a y \times 2 v \times 2=4 a v y\end{array}\right\}=$ numerators.
$2 v \times 2 \times v=4 v^{2}=$ common denominator.
Therefore, $\frac{2 a v-2 v^{2}}{4 v^{2}}, \frac{2 v^{3} b}{4 v^{2}}$, and $\frac{4 a v y}{4 v^{2}}$ are the fractions required:
$a+\frac{b}{x}, \frac{c x}{b a}$, and $\frac{b c}{a x}$ reduced to a common denominstor, are $\frac{b x^{3} a^{3}+b^{2} a^{2} x}{b a^{2} x^{2}}, \frac{c a x^{3}}{b a^{2} x^{2}}$, and $\frac{b^{2} a c x}{b a^{2} x^{2}}$.
PROBLEM IV.

To find the greatest common meafure of algebraic fractions.

$$
R \cup L E .
$$

$$
R \cup L E .
$$

1. Range the quantities as in divifion.
2. Divide the greater quantity by the lefs, and the laft divifor by the laft remainder, until nothing remains; taking care to expunge thofe quantities that are common to each divifor; and the latt divifor will be the greateft common meafure required.

EXAMPLES.

Find the greateft common meafure of $\frac{v a-a^{2}}{v y^{2}}-y^{2} a$.

OPERATION:

$$
\begin{aligned}
& \left.v a-a^{2}\right) v y^{2}-y^{2} a \\
& \text { Or, v-a) } v y^{2}-y^{2} a\left(y^{2}\right. \\
& v y^{2}-y^{2} a
\end{aligned}
$$

Therefore, $v-a$, is the greateft common meafure required.
Find the greateft common meafure of $\frac{a^{2}-b^{2}}{a^{2}-2 a b+b^{2}}$
$\left.a^{2}-2 a b+b^{2}\right) a^{2}-b^{2}(1$

$$
\frac{a^{2}-2 a b+b^{2}}{\left.2 a b-2 b^{2}\right) a^{2}-2 a b+b^{2}}
$$

Or, (by cafting out $2 b$) $a-b) a^{2}-2 a b+b^{2}(a$

$$
\begin{aligned}
& \frac{a^{2}-a b}{\left.*-a b+b^{2}\right) a-b} \\
& \begin{array}{r}
\text { Or, } a-b) a-b(1 \\
\frac{a-b}{*}
\end{array}
\end{aligned}
$$

Therefore, $a-b$, is the greatest common measure require.
PROBLEM V.

To reduce fractions to their leaf terms.

$$
R \cup L E .
$$

1. Find their greater common meafure by the lat problem.
2. Divide both terms of the propofed fraction by their greateft common meafure, and the quotients will be the reflective terms of the fraction, reduced to its leaf terms.

279)

EXAMPLES.

Reduce $\frac{x a+a^{2}}{x y^{2}+y^{2} a}$ to its leaf terms.
First, $\left.x a+a^{2}\right) x y^{2}+y^{2} a$
Or, $x+a) x y^{2}+y^{2} a\left(y^{2}\right.$
$x y^{2}+y^{2} a$

Then, $x+a) x a+a^{2}(a=$ numerator.

And, $x+a) x y^{2}+y^{2} a\left(y^{2}=\right.$ denominator.

$$
\frac{x y^{2}+y^{2} a}{*}
$$

Therefore, $\frac{a}{y^{2}}$ is the proposed fraction in its leaf terms.

Reduce $\frac{y^{4}-x^{4}}{y^{5}-x^{2} y^{3}}$ to its leapt terms.
First, the greateft common measure is $y^{2}-x^{2}$:
Then, $\left.y^{2}-x^{2}\right) \frac{y^{4}-x^{4}}{y^{5}-x^{2} y^{3}}=\frac{y^{2}+x^{2}}{y^{3}}=$ fras.req.

> PROBLEM VI.

To add algebraic fractions.

$$
R \cup L E
$$

1. Prepare the given fractions by reduction; that is, mixed quantities mut be reduced to improp-

(280)

er fractions, and all fractions to a common denominator.
2. ADD all the numerators together, under which write the common denominator; and you will have the fum required.

For, put $\frac{v}{y}=a$, and $\frac{z}{y}=b$; then will $v=y a$ and $z=y b$ by the nature of divifion; confequently $y a+$ $y b=v+z$, and therefore by divifion $a+b=\frac{v+z}{y}$. But, $a+b=\frac{v}{y}+\frac{z}{y}$; confequently, $\frac{v}{y}+\frac{z}{y}=\frac{v+z}{y}$; which is the fame as the rule.

EXAMPLES.

Given $\frac{u}{6}, \frac{u}{6}$ and $\frac{4 z}{6}$ to find their fum. $u+u+4 z=2 u+4 z$ and $\frac{2 u+4 z}{6}=$ fum requir.

Having $\frac{u}{2}, \frac{3 u}{y}$ and $\frac{3}{u}$ given to find their fum.
Firft, $u \times y \times u=u^{2} y$, and $3 u \times 2 \times u=6 u^{2}$, alfo, $3 \times 2 \times y=6 y$; then, $2 \times y \times u=2 u y$, and $u^{i} y+6 u^{2}$ $+6 y \div 2 u y=$ fum required.
$\frac{4 x}{2 a}+x+\frac{2 x}{3}=\frac{4 x}{2 a}+\frac{5 x}{3}=\frac{12 x+10 a x}{6 a}$
PROBLEMVII.
To JubtraEt one fraction from avotber.

$$
R U L E .
$$

1. Prepare the quantities as in the laft problem.

(281)

2. Subtract the numerator of the fubtrahend from the numerator of the other fraction, and write the common denominator under their difference; and you will have the fraction required.

For put $\frac{v}{y}=m$ and $\frac{a}{y}=n$; then $v=y m$ and $a=$ $y n$; aldo, $y n-y m=a-v$ by equality ; and dividing the whole by y, it will be $n-m=\frac{a-v}{y}$; but the difference of m and n_{2} is manifeftly equal to the difference of $\frac{a}{y}$ and $\frac{v}{y}$; confequently, $\frac{a}{y}-\frac{v}{y}=\frac{a-v}{y}$. Hence, \&co.

EXAMPLES.

From $\frac{a}{b}$ take $\frac{c x}{a b}$. Fir ft, $a \times a b=a^{2} b$, and $c x \times b$ $=c b x ; a l f o, b \times a b=a b^{2}$. Therefore, $\frac{a^{2} b}{a b^{2}}$ and $\frac{c b x}{a b^{2}}$ are the fractions reduced; and $\frac{a^{2} b-c b x}{a b^{2}}=$ difference required. From $\frac{c^{2}-x^{2}}{a^{2}}$ take $\frac{c^{2}+x^{2}}{2}$, and it will $b e \frac{c^{2}-x^{2}}{a^{2}}-\frac{c^{2}+x^{2}}{2}=\frac{2 c^{2}-2 x^{2}}{2 a^{2}}-\frac{c^{2} a^{2}+x^{2} a^{2}}{2 a^{2}}=$ $\frac{2 c^{2}-2 x^{2}-c^{2} a^{2}-x^{2} a^{2}}{2 a^{2}}$. From $-x+\frac{x}{2}$ take $-\frac{3 x}{4}$. The fractions reduced are $\frac{-4 x}{8}$ and $\frac{-6 x}{8}$ therefore, $\frac{-4 x+6 x}{8}=\frac{2 x}{8}=$ difference required, by the natore of subtraction.

(282)

PROBLEM. VIII.

To multiply fractional quantities together.

$$
R U L E
$$

Multiply the numerators together for the nomerater of the product, and the denominators together for the denominator of the product; and you will have the product required.
For put $\frac{v}{z}=m$ and $\frac{a}{b}=n$; then $v=z m$ and $a=$ $b n ; a l j o, b n \times z m=a \times v$; that is, $b z n m=a^{\prime} v$, and dividing by $b z, n m=\frac{a v}{b z}$; but $m \times n=\frac{v}{z} \times \frac{a}{b}$; confrequently, $\frac{v}{z} \times \frac{a}{b}=\frac{a v}{b z}$: Therefore, $\& c$.

EXAMPLES.

$$
\begin{aligned}
& \frac{3 y}{6} \times \frac{4 x}{3 y}=\frac{12 x y}{18 y}=\frac{2 x}{3}, \text { or } \frac{2}{3} x ; \frac{a+b}{2 x} \times \frac{a-b}{a-1}=\frac{a^{2}-b^{2}}{2 a x-2 x^{2}} \\
& \text { and } a+\frac{d}{c} \times v=\frac{c a+d}{c} \times \frac{v}{\mathrm{I}}=\frac{c a v+d v}{c} ; a I J, \frac{v y}{4} \times \\
& -v+\frac{6 v}{3}=\frac{v y}{4} \times \frac{-3 v+6 v}{3}=\frac{v y}{4} \times \frac{3 v}{3}=\frac{3 v^{2} y}{12}=\frac{v^{2} y}{4}, \\
& \text { or, } \frac{1}{4} v^{2} y . \\
& \text { PR O B L E M IX. }
\end{aligned}
$$

To divide one fraction by another.

$$
R U L E
$$

Multiply the denominator of the divifor, with the numerator of the dividend, for the numerator of the
the required quotient, and the numerator of the divifor, with the denominator of the dividend, for the denominator of the quotient. Or,
Invert the terms of the divifor, and proceed as in multiplication.

$$
\text { For put } \frac{x}{y}=m \text { and } \frac{z}{d}=n \text {; then } x=y m \text { and } z
$$

$=d n$. Multiply $z=d n$ by y, and it will be $y z=y d n$; in like manner, $d x=d y m$; therefore, $\frac{y d n}{d y m}=\frac{y z}{d x}$; but $\frac{-y d n}{y d m}=$ (by divifion) $\frac{n}{m}$, and therefore by reftitution $\frac{z}{d} \div \frac{x}{y}=\frac{y z}{d x}$: Confequently, \&c,

EXAMPLES,

$\frac{a}{b} \div \frac{c}{d}=\frac{a \times d}{c \times d}=\frac{a d}{c b}$. Or, $\frac{a}{b} \div \frac{c}{d}=\frac{d}{c} \times \frac{a}{b}=\frac{a d}{c b}$ as before; $\frac{a-u}{v} \div \frac{a+u}{v}=\frac{a-u \times v}{a+u \times v}=\frac{v a-u v}{v a+u v}=\frac{a-u}{a+u}$: Therefore, in divifion of fractions that have the fame denominator, caft off the denominators, and divide the numerator of the dividend, by the numerator of the divifor, for the quotient.

Thus, $\frac{4 a^{2}}{3} \div \frac{6 y^{2}}{4} \times a=\frac{4 a^{2}}{3} \div \frac{6 y^{2} a}{4}=\frac{16 a^{2}}{18 y^{2} a} ; \frac{6 a}{3} \div$ $\frac{a y}{3}=\frac{6 a}{a y}$.

> PROBLEM X.

To find the powers of frafional quantities.
$R \cup L E$.

(284)

$R \cup L E$.

1. Prepare the given fraction, if need be, by the rules of reduction.
2. Involve the numerator to the height of the power propofed, as in involution of whole quantities, for the numerator of the power required.
3. Involve the denominator in like manner, for the denominator of the aforefaid power.

EXAMPLES.

Find the fquare of $\frac{c y-y}{y+1}$.
$\overline{c y-y} \times \overline{c y-y}=c^{2} y^{2}-2 c y^{2}+y^{2}$, and $\overline{y+1} \times$ $\overline{y+1}=y^{2}+2 y+1$; therefore, $\frac{c y^{2}-2 c y^{2}+y^{2}}{y^{2}+2 y+1}$ $=$ power required.
1 The 4 th power of $\frac{z a}{z y}=\frac{a z \times a z \times a z \times a z}{z y \times z y \times z y \times z y}=\frac{z^{4} a^{4}}{z^{4} y^{4}}$.
PROBLEM XI.

To find the roots of fractional quantities.

$$
R \cup L E .
$$

1. Extract the root of the numerator, by the rules for extracting the roots of whole quantities, for the numerator of the root required.
2. Eatract the root of the denominator in like manner, for the denominator of the required root.

> EXAMPLES.

EXAMPLES。

Find the fquare root of $\frac{a^{6}}{x^{8}}$.
Here, $a^{6 \div 2}=a^{3}$, for the numerator of the root, and $x^{8 \div 2}=x^{4}$ for the denominator of the root; therefore, $\frac{a^{3}}{x^{4}}$ is the root required. The cube root of $\frac{a^{3}}{z^{3} y^{6}}$ $=\frac{a}{z y^{2}} . \quad \sqrt{a^{2} b^{4}} \frac{a b^{2}}{z^{2} c^{6}}=\frac{.}{z c^{3}}$.

The fquare roo: of $\frac{x^{2}-4 x+4}{y^{2}+6 y+9}=\frac{x-2}{y+3}$.
But if the propofed quantity hath not a true root of the kind required, it mult be diftinguifhed by the fign of the root: Thus, the fquare root of $\frac{a^{2}-x^{2}}{a^{2}+x^{2}}$ $=\sqrt{ } \frac{a^{2}-x^{2}}{a^{2}+x^{2}}$, or $\left.\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right|^{\frac{2}{2}}$.

C H A P. X.

$$
\begin{gathered}
C O N C E R N I N G \\
\text { TIONAL } \text { SURS or IRRA- } \\
\text { UANTIIES. }
\end{gathered}
$$

IF the whole doctrine of furds, with every thing therein, which might be of ufe, were to be explained according to the methods ufed by fome writers on the fubject, it would become very complex, and by far the moft intricate and dfficult part of all Algebra; and necefiarily fwell this volume beyond

(286)

its defigned limit: And befides, there are many things in the explanation and management of furd quantities, as was taught by many writers on Algebra, which were then thought neceffary, are now at moft, confidered as ufeful. We fhall therefore, endevour on the one hand; to avoid all fuch tedious reductions, and complicated explanations, as would ferve rather to puzzle, than inftruct the learner: And on the other hand, not to omit any thing which is neceflary, either in the explanation or management of fuch furds as generally arife in algebraic operations.
A Surd quantity is that which has no exact root: Thus, the fquare root of 5 cannot exactly be found in finite terms, but is expreffed by $5^{\frac{1}{2}}$, or $\sqrt{ }$; the cube root of a by $a^{\frac{1}{3}}$, or $a^{\frac{1}{3}}={ }^{3} \vee a$: The reciprocal of the fquare root of $a+y$, or I divided by the fquare root of $a+y$, is expreffed by $\overline{a+y} 5^{\frac{x}{2}}=$ $\frac{1}{\sqrt{ } a+y}$.

Therefore, the roots of irrational or furd quantities, may be confidered as powers having fractional exponents; that is, the index fhewing the height of the power, is here placed as the numerator of a fraction, whofe denominator is the radical fign.

$$
\begin{gathered}
\text { S E C T. I. } \\
\text { Of REDUCTION of SURD } 2 U A N \\
\text { TITIES. }
\end{gathered}
$$

Reduction of furds has the following problems.
PROB.

(287)

PROBLEMI.

To reduce a rational quantity to the form of an irrational, or furd quantity.

$$
R \cup L E .
$$

Involve the rational quantity to the height of the propofed radical fign, or index fhewing the root to be extracted ; the power diftinguifhed by the radical fign, will be the form required.

EXAMPLES.
a, reduced to the form of the ${ }^{3} \sqrt{ } x$, is ${ }^{3} \sqrt{ } a^{1} \times 3=$ ${ }^{3} \sqrt{ } a^{3} ; 6$ reduced to the form of the Square root of 2 , $=\sqrt{ } 6^{1 \times 2}=\sqrt{ } 6^{2}=\sqrt{ } 36$.

Reduce $\frac{3}{4}$ to the form of a cube root. $\left.\frac{3}{4}\right]^{[\times 3} 3^{\frac{\pi}{3}}$
$={\frac{3^{3}}{4^{3}}}^{\frac{3}{3}}={ }^{3} \sqrt{\frac{27}{64}}=$ form required; $u+y$ reduced to the form of a fourth root, is $\sqrt{4}^{u+y^{\mathrm{I}}}{ }^{\times 4}=\sqrt{4}^{u+y^{4}}$ $=\sqrt[4]{u^{4}+4 u^{3} y+6 u^{2} y^{2}+4 u y^{3}+y^{4}}$. Aljo, $u=\sqrt{ } u^{2}$ $={ }^{3} \sqrt{ } u^{3}={ }^{4} \sqrt{ } u^{4}={ }^{5} \sqrt{ } u^{5}={ }^{n} \sqrt{ } u^{7}$.
PROBLEM II.

To reduce jurds of differentradical fighs to the fame.

$$
R U L E .
$$

Reduce the indices of the furds to a common denominator, and the furds will have the fame radical fign as required.

EXAMPLES.

288)

EXAMPLES.

The ${ }^{3} \checkmark$ of a, and the \checkmark of b, reduced to the Jame radical $\operatorname{sign}=a \frac{1 \times 2}{6}$ and $b \frac{1 \times 3}{6}=a^{\frac{2}{6}}$ and $b^{\frac{3}{6}}$, or ${ }^{6} \sqrt{ } a^{2}$ and ${ }^{6} \sqrt{ } b^{3} . z^{\frac{x}{4}}$ and $y^{\frac{2}{3}}$ reduced to the fame $\operatorname{fign}=z^{\frac{1 \times}{12}}$ and $y^{\frac{2 \times 4}{12}}=z^{\frac{3}{12}}$ and $y^{\frac{-3}{12}}$,or ${ }^{12} \sqrt{ } z^{3}$ and ${ }^{12} \sqrt{y^{8}}$.
$\sqrt[\frac{3}{2}]{\sqrt{a y}+b y \text { and }} \sqrt{\frac{1}{2}} \sqrt{a}+y$ reduced to a common radical fign, are $\frac{3 x^{2}}{4}$ Vay $+b y, \frac{1 X_{2}}{4} \quad \vee a+y=\frac{1}{4} \sqrt{a y+\left.b y\right|^{6}}$ $\left.\frac{1}{4} \sqrt{a+y}\right)^{2}: A l j o, y^{-\frac{x}{2}}$ and $y^{-\frac{2}{3}}=y^{-\frac{3}{6}}$ and $y^{-\frac{4}{6}}$ PROBLEM III.

To reduce furds to their moft simple terms.

$$
R U L E .
$$

1. Divide the quantity under the radical fign, by fuch a rational divifor, as will quote the greateft rational power contained in the propofed furd without a remainder.
2. Extract the root of the rational power, and place it before the furd, with the fign of multiplication, and the propofed furd will be in its moft fimple terms.

EXAMPLES.
Reduce $\sqrt{ } 32$ to its moft fimple terms.

Here $\frac{32}{2}=16$ the greatest rational power contained in $\sqrt{ } 32$; therefore, the $\sqrt{ } 3^{2}=\sqrt{ } 16 \times 2=\sqrt{ } 16 \times \sqrt{ } 2=$ $4 \times \sqrt{2}=4 \sqrt{ } 2$. The $\sqrt{27}=\sqrt{28} \frac{9 \times 3}{4 \times 7}=\frac{3}{2} \times \sqrt{ } \frac{3}{7}$: $\sqrt{a^{3} x}=\sqrt{a^{2} x a x}=a \times \sqrt{ } a x=a \sqrt{ } a x ; \overline{a^{3} x-a^{2} y^{\frac{2}{2}}}$ $\begin{gathered}=\overline{\left.a^{2} \times a x-y\right)^{\frac{1}{2}}}=a \times a x-y y^{\frac{2}{2}} . \\ \left.\frac{64 a^{3} x}{54 y}\right|^{\frac{1}{3}}\end{gathered}=\frac{4 a}{3} \times\left.\frac{x}{2 y}\right|^{\frac{1}{3}}$. SE C T. II.

Of $A D D I I I O N$ of $S U R D$ QUATRIES.

Addition of furd or irrational quantities, confirms of the following cafes.

> CA SE I.

When the proposed surds are of the fame irrational quantity (or can be made so by reduction) and the radical sign the fame in all. -

$$
R U L E .
$$

ADD the rational to the rational, and to their fum annex the irrational part with its radical fign.

EXAMPLES.

$3 \sqrt{ } 20+6 \sqrt{ } 20=\overline{3+6} \times \sqrt{ } 20=9 \sqrt{ } 20 ; \sqrt{3 a^{2} x+}$ $\checkmark 27 x=\sqrt{a^{2} \times 3^{x}}+\sqrt{9 \times 3^{x}}=\overline{a+3} \sqrt{3 x} ;\left.\frac{27}{5}\right|^{\frac{2}{2}}+$
$00^{-\frac{48}{5} \frac{\pi}{3}}$

$$
\begin{aligned}
& 290 \text {) } \\
& \left.\frac{48}{5}\right|^{\frac{1}{2}}=\left.\overline{9 \times 3} 5\right|^{\frac{1}{2}}+\left.\frac{16 \times 3}{5}\right|^{\frac{1}{2}}=3 \times\left.\frac{3}{5}\right|^{\frac{1}{2}}+4 \times\left.\frac{3}{5}\right|^{\frac{1}{2}}=7 \times\left.\frac{3}{5}\right|^{\frac{2}{2}} ; \\
& \frac{8 x^{3}-x^{3}}{]^{-\frac{1}{3}}}+8 a-\left.8\right|^{-\frac{2}{3}}=x^{3} \cdot x a-11^{-\frac{1}{3}}+ \\
& \left.\overline{3 \times a-1}]^{-\frac{2}{3}}=x^{-1} \times(a-1)^{-\frac{2}{3}}+\frac{1}{2} \times a-1\right)^{-\frac{1}{3}}=\frac{1}{x} \\
& +\frac{1}{2} x^{a-1}-\frac{1}{3}=\frac{x+2}{2 x} \times \frac{1}{\overline{a-1})_{3}^{1}} . \\
& \text { C A S E II. }
\end{aligned}
$$

When the irrational or surd quantity, and the radiocal Sign are not the fame in all.

$$
R \cup L E \text {. }
$$

Connect the furds with their proper figns + or -; and you will have the fum required.

Note. If the fume confihs of two terms, it is called a binomial, or residual surd, as the fig is + or-.

EXAMPLES.

$\sqrt{ } a+\sqrt{ } x=\sqrt{ } a+\sqrt{ } x=$ fum; $\sqrt{3}^{\sqrt{2}} 16+\sqrt{ } 27$
$\begin{aligned} & ={ }^{3} \sqrt{8} \times 2+\sqrt{ }{ }^{8} \times{ }_{3}=2^{3} \sqrt{ }{ }^{2}+3 \sqrt{ } 3: \\ & \frac{3}{4} \times\left.\frac{87}{16}\right|^{\frac{3}{3}}+\frac{2}{3} \times\left.\frac{27}{36}\right|^{\frac{1}{2}}=\frac{3}{4} \times\left.\frac{27 \times 3}{8 \times 2}\right|^{\frac{3}{3}}+\frac{2}{3} \times \frac{9 \times 3}{36 \times 1}\end{aligned}{ }^{\frac{1}{2}}=$
$\frac{3}{4} \times \frac{3}{2} \times\left.\frac{3}{2}\right|^{\frac{1}{3}}+\frac{2}{3} \times \frac{3}{6} \times 3^{\frac{2}{2}}=\frac{9}{8} \times\left.\frac{3}{2}\right|^{\frac{2}{3}}+\frac{6}{18} \times 3^{\frac{2}{2}}:$
$\sqrt{ }$ ax added to $-\sqrt{ } x y-y^{2}=\sqrt{ }$ ax- $\sqrt{ } x y-y^{2}$.

SECT. III.

Of SUBTRACTION of SURD $2 U A N$ TITLES.

CASE

(291)

C A S E I.

When the radical sign and quantity are the same in all.

$$
R \cup L E .
$$

Find the difference of the rational parts, to which annex the common irrational or furd quantity, with the fign of multiplication.
, EXAMPLES.

$$
\begin{aligned}
& 80^{\frac{x}{2}}-45^{\frac{x}{2}}=\sqrt{16 \times 5}-\sqrt{9 \times 5}=4 \times 5^{\frac{x}{2}}-3 \times 5^{\frac{x}{2}} \\
& =4-3 \sqrt{5}=\sqrt{5} ;{ }^{3} \sqrt{40 a^{3} y^{2}}-\sqrt[3]{135 y^{2}}= \\
& \sqrt[3]{8 a^{3} \times 5 y^{2}}-3 \sqrt{27 \times 5 y^{2}}=2 a^{3} \sqrt{5 y^{3}} \\
& 3^{3} \sqrt{ } 5 y^{2}=2 a-3^{3} \sqrt{ } 5 y^{2}: \\
& \left.\frac{54 y^{3}}{20}\right|^{\frac{1}{2}}-\left.\frac{150 y^{3}}{80}\right|^{\frac{1}{2}}=\left.\frac{9 y^{2} \times 6 y}{4 \times 5}\right|^{\frac{1}{2}}-\left.\frac{25 y^{2} \times 63}{16 \times 5}\right|^{\frac{1}{2}}= \\
& \frac{3 y}{2} \times\left.\frac{6 y}{5}\right|^{\frac{1}{2}}-\frac{5 y}{4} \times\left.\frac{6 y}{5}\right|^{\frac{1}{2}}=\frac{12 y-10 y}{8} \times\left.\frac{6 y}{5}\right|^{\frac{1}{2}}=\frac{y}{4} \times \\
& \left.\frac{6 y}{5}\right|^{\frac{x}{2}} ; 4 \times a^{2} y-\left.a^{2}\right|^{-\frac{1}{2}}-2 \times a^{2} y-\left.a^{2}\right|^{-\frac{1}{2}}=-\frac{1}{4} \\
& x \overline{y-1}{ }^{-\frac{1}{2}} \text {. }
\end{aligned}
$$

CASE II.

When the irrational parts are not the fame in all.

$$
R U L E
$$

Change the fign of the quantity to be fubtracted, the expreffion connected, is the difference required.

(292)

EXAMPLES.

$27^{\frac{2}{2}}$ subtradted from $80^{\frac{1}{2}},=\sqrt{ } 16 \times 5-\sqrt{2} \times 3=$ $4 \sqrt{ } 5-3 \sqrt{ } 3 ; 48^{\frac{x}{2}}-16^{\frac{x}{3}}=48^{\frac{3}{6}}-16^{\frac{2}{6}}={ }^{6} \sqrt{ } 48^{3}-$ ${ }^{6} \sqrt{ } 16^{2} ; 3^{4} \sqrt{ } a b-z$ subtracted from ${ }^{4} \sqrt{ } z^{2}-y^{2}$, $=\overline{4 \sqrt{z^{2}-y^{2}}}-\overline{3^{4} \sqrt{a b}-z}$.

S E C T. IV.
Of MULTIPLICATION of SURD थUANTITIES.

SURDS being confidered as powers having fractional exponents; it therefore follows, that to multiply one furd with another, is to add their fractional exponents together, making the denominator of their fum the radical fign, and the numerator the index of the root.

Hencz is deduced the following rule for multiplication of furds.

$$
R \cup L E .
$$

3. Reduce the indices of the furds to a common denominator.
4. Annex the product of the furds, to the produet of the rational parts with the fign of multiplication; and it will give the product required.

EXAMPLES.

$$
\begin{aligned}
& { }^{8} \sqrt{16} \times \sqrt{8}={ }^{3} \sqrt{8 \times 2} \times \sqrt{ } 4 \times 2=2{ }^{3} \sqrt{2} \times
\end{aligned}
$$

$$
\begin{aligned}
& =4^{6} \sqrt{ } 32 ;\left.\overline{z^{2}+y^{2}}\right|^{\frac{1}{2}} \times \bar{z}^{2}+\left.y^{2}\right|^{\frac{1}{2}}=\left.\overline{z^{2}+y^{2}}\right|^{\frac{1}{2}}+\frac{1}{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.\overline{a+y}\right|^{-\frac{1}{2}-{ }^{\frac{x}{2}}}=\left.\overline{a+y}\right|^{-\frac{2}{2}}=\overline{a+y}{ }^{-1} ; a^{\frac{1}{m}} \times b^{\frac{x}{n}}= \\
& a^{\frac{n}{n m}} \times b^{\frac{m}{n m}}={ }^{n m} \sqrt{ } a^{n} b^{m} \text {. }
\end{aligned}
$$

SE TV.

Of DIVISION of SURD QUANTITIES.

$R \quad U \quad E$.

1. Reduce the furds to the fame index.
2. Divide the rational by the rational, and to the quotient annex the quotient of the furd quantities; and it will be the quotient required.

Note. If the quantity is the fame in both factors, they are divided by subtracting their exponents.

EXAMPLES.

$$
a^{\frac{\pi}{2}} \div a^{\frac{1}{3}}=a^{\frac{3}{6}} \div a^{\frac{2}{6}}=a^{\frac{3-2}{6}}=a^{\frac{1}{6}}={ }^{6} \sqrt{ } a ; \sqrt{ } 32 \div \sqrt{ } 18
$$

$$
\begin{gathered}
=\sqrt{16 \times 2} \div \sqrt{9 \times 2}=4 \sqrt{2}^{2} \div 3 \sqrt{ } 2=\frac{4}{3} \times \sqrt{\frac{2}{2}}= \\
\frac{4}{3} \sqrt{ } 1=\sqrt{\frac{1}{9}}=\frac{4}{3} ; \overline{x a+y a)^{\frac{1}{2}} \div \sqrt{ }=\left.\frac{x a+y a}{a}\right|^{\frac{1}{2}}=} \\
P \mathrm{P}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (294) } \\
& \overline{x+\left.y\right|^{\frac{1}{2}}} ; x^{\frac{1}{2}} \div y^{\frac{1}{3}}=x^{\frac{3}{6}} \div y^{\frac{2}{6}}=\left.\frac{\overline{x^{3}}}{y^{\frac{1}{2}}}\right|^{\frac{1}{6}} ; \quad \frac{x^{\frac{1}{2}}}{y^{\frac{1}{3}}} \div \\
& \begin{array}{l}
\left.\frac{x^{\frac{\pi}{3}}}{y^{\frac{1}{2}}}=\frac{x^{\frac{3}{6}}}{y^{\frac{2}{6}}} \div \frac{x^{\frac{2}{6}}}{y^{\frac{3}{6}}}=\frac{y^{\frac{3}{6}} x^{\frac{3}{6}}}{x^{\frac{2}{6}} y^{\frac{2}{5}}}=\left.\frac{y^{3} x^{3}}{x^{2} y^{\frac{1}{6}}}\right|^{\frac{1}{n}}=\overline{y x}\right]^{\frac{1}{6}} ; \\
a^{\frac{1}{n}} \div a^{\frac{1}{m}}=a^{\frac{-x}{m x}}
\end{array}
\end{aligned}
$$

S EC T. VI.
Of INVOLUTION. of SURD QUAN.
TITLES.

The powers of fords are found by the following

$$
R U L E .
$$

Involve the rational part, as in involution of nombess; and to the refult annex the power of the ford, found by multiplying its exponent with the exponext of the power required.

EXAMPLES.

The Square of ${ }^{3} \sqrt{ } 6=6^{\frac{1}{3}} X_{2}=6^{\frac{2}{3}}={ }^{3} \sqrt{ } 6^{3}=$ ${ }^{3} \sqrt{ } 36$. The cube of $\sqrt{ } 3=3^{\frac{1}{2}} \times 3=3^{\frac{3}{2}}=\sqrt{ } 3^{3}$ $=\sqrt{27}$. The square of $2^{3} \sqrt{ } x^{2}=2 \times 2 \times x^{\frac{2}{3}} \times 2$ $=4 \times x^{\frac{4}{3}}=4^{3} \sqrt{x^{4}}$. The cube of $\sqrt{\sqrt{a x}-b x}=$
 dex of the power required, is equal to, or a multiple of the exponent of the root ; the power of the ford becomes
comes rational. The cube of $\overline{a-x}-\frac{2}{3}=\overline{a-x}^{-\frac{2}{3}} \times 3$ $=\bar{a}_{3} x^{-\frac{6}{3}}=\overline{a-x}^{-2}$. The n power of $y^{\frac{1}{m}}=$ $y^{\frac{3}{m}} \times n=y^{\frac{n}{m}}={ }^{m} \sqrt{y^{n}}$.

If the proposed furd is a binomial or refidual one, involve it as in chapter viI.

$$
\begin{aligned}
& \text { Thus, the Square of } \sqrt{6+2} \sqrt{x}=6+4 x+4 \sqrt{ } 6 x . \\
& \text { (See the operation annexed.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OPERATION. } \\
& \begin{array}{r}
\sqrt{6}+2 \sqrt{ } x \\
\sqrt{6}+2 \sqrt{x}
\end{array} \\
& \begin{array}{r}
6+2 \sqrt{6} x \\
+2 \sqrt{6} x+4 x \\
6+4 x+4 \sqrt{ } 6 x
\end{array}
\end{aligned}
$$

S E C T. VII.

Of EVOLUTION of SURDS.

The powers of furds are found by multiplying their exponents with the index or exponent of the power to which they are to be involved; as we have Shewn; confequently, if thole exponents be divided by the index of the root to be extracted, the quotient will be the exponent of the root; which gives the following

$$
R \cup L E \text {.. }
$$

Extract the root of the rational part, as in common extraction of roots; and annex the root of the ford, found by dividing the index of the ford, by the index of the root required.

(296)

EXAMPLES.

The cube root of $\checkmark a=a^{\frac{x}{2}} \div 3=a^{\frac{6}{6}}={ }^{6} \vee a$. The cube root of $\frac{8}{27} \sqrt{ } 3={ }^{3} \sqrt{27} \times 3^{\frac{1}{2} \div 3}=\frac{2}{3} \times 3^{\frac{5}{6}}=$ $\frac{2}{3}^{6} \sqrt{ } 3$. The Square root of $\sqrt{ } \frac{a}{x}={ }^{6} \sqrt{ } \frac{a}{x}$. The Square root of $\sqrt{3} \sqrt{a^{3}+b^{3}}=\overline{a^{3}+b^{3}}{ }^{\frac{x}{3} \div 2}=\left.\overline{a^{3}+b^{3}}\right|^{\frac{x^{\frac{1}{3}}}{5}}$ The cube root of $x^{-\frac{2}{3}}=x^{-\frac{2}{8}}=\frac{1}{\sqrt{x^{2}}}$. If the propofed furds are binamial, refidual, or trinomial, \&cc. find their roots as in Chap. virr.

The Square root of $x^{8}+6 x^{4} \sqrt{ } y+9 y=x^{4}+3 \sqrt{ } y$. The n root of $20+2 \sqrt{ } x+z=20+2 \sqrt{x+z} \frac{1}{n}$

C H A P. XI.

Of INFINITE SERIES.

AN infinite feries, is formed from a fraction whofe denominator is a compound quantity, by dividing the numerator by the denominator; or the extracting the root of a furd quantity, which if continued in either cafe, would run on fempiternally ; that is, the number of terms in the feries would be infinite; but by obtaining a few of the firft terms of the feries, you will eafily perceive, what law the feries obferve in their progreflion; by which means you may continue the feries by notation as far as you pleafe, without an actual performance of the whole operation at large.

(297)

PROBLEMI.

To find an infinite feries by divifon; that is, to throw a compound fractional expreflion into Juch a Series, whofe fum, if the number of terms were continued ad infinitum, would be equal to the given fraEtional exprefion.
$R \cup L E$.
Divide the numerator by the denominator until you have $3,4,5$, or more terms in the quotient.

EXAMPLES.
Throw $\frac{1}{y+v}$ into an infinite feries.

OPER.ATION.

$$
\begin{gathered}
\text { (298) } \\
\begin{array}{c}
\text { OPERATION. } \\
\frac{\left(2+\frac{v}{y}\right.}{\left(\frac{1}{y}-\frac{v}{y^{2}}+\frac{v^{2}}{y^{3}}-\frac{v^{3}}{y^{4}}+\mho^{2}\right.} \\
\frac{-\frac{v}{y}-\frac{v^{2}}{y^{2}}}{*+\frac{v^{2}}{y^{2}}} \\
+\frac{v^{2}}{y^{2}}+\frac{v^{3}}{y^{3}} \\
*-\frac{v^{3}}{y^{3}}
\end{array} \\
\frac{-\frac{v^{3}}{y^{3}}-\frac{v^{4}}{y^{4}}}{* *+\frac{v^{4}}{y^{2}}}
\end{gathered}
$$

Here the law of the progrefion which the faeries observe, is plain; for each fucceeding term is produce, by multiplying the preceding one with $\frac{v}{y}$: Thus, the firft term of the faeries is $\frac{1}{y}$, which being multiplied with $-\frac{v}{y}$, gives $-\frac{v}{y^{2}}$ for the fecon

(299)

cond term, and $-\frac{v}{y^{2}} \times-\frac{v}{y}=\frac{v^{2}}{y^{3}}=$ third term; alfo, $\frac{v^{2}}{y^{3}} \times-\frac{v}{y}=-\frac{v^{3}}{y^{4}}$ the 4 th term, which multiplied with $-\frac{y}{y}$ will give the 5 th term; and fo on, multiplying the preceding term by the common ratio - v, you may find any number of terms at pleafure. y
But in onder to have a converging feries, or a feries wherein the terms continually decreafe, the greateft term of the divifor muft ftand firft in the order of arrangement; for fuppofe in the above example, that y is very great in refpeet of v; then will $\frac{v}{y^{2}}$ be very great in refpect of $\frac{v^{2}}{y^{3}}$; fo that in this fuppofition, the terms being multiplied with the powers of v, and divided by thofe of y; it follows, that each fucceeding term is very little in refpect of the preceding one, and confequently the feries, a converging feries. Again, put v for the firft term of the divifor (the fuppofition the fame as before) and the feries will be $\frac{1}{v}-\frac{y}{v^{2}}+\frac{y^{2}}{v^{3}}, \mathcal{E}^{2} c$. and fince y is very great in refpect of v; it follows, that $\frac{1}{v}$ is very litthe in refpect of $\frac{y}{v^{2}}$, and $\frac{y}{v^{2}}$ very little in refpect of $\frac{y^{2}}{v^{3}}$; confequently, the feries is a diverging one; that is, a feries whofe terms continually increafe, and therefore, the farther you proceed in them, the farther you will be from the truth. Hence, \&c.

(300)

AND fence it is imponfible to affign an infinite number; it follows, that the number of terms expreffing the true value of fuch a feries, is not affignable; yet the taking of a few of the firft terms will be fufficient for any practical purpose.

Throw $\frac{a^{2}}{v-d}$ into an infinite faeries.

OPERATION.

$$
\begin{aligned}
& v-d) a^{2} \quad\left(\frac{a^{2}}{v}+\frac{a^{2} d}{v^{2}}+\frac{a^{2} d^{3}}{v^{3}}+\varepsilon^{2} c .\right. \\
& \frac{a^{2}-\frac{a^{2} d}{v}}{} \begin{array}{l}
+\frac{a^{2} d}{v} \\
\\
+\frac{a^{2} d}{v}-\frac{a^{2} d^{2}}{v^{2}} \\
\\
\frac{+\frac{a^{2} d^{2}}{v^{2}}}{a^{2} d^{2}}-\frac{a^{2} d^{3}}{v^{3}} \\
*+\frac{a^{2} d^{3}}{v^{3}}, \varepsilon c .
\end{array}
\end{aligned}
$$

Here, each preceding term, after the firft, is multiplied with $\frac{d}{v}$, and the product is the next term following; therefore, the law of the progreffion is manifest.

Throw $\frac{1}{1+b^{2}}$ into an infinite fries.

(301)

OPERATTON.

$$
\begin{gathered}
\left.1+b^{2}\right) 1 \quad\left(1-b^{3}+b^{4}-b^{6}, \delta^{3} c_{0}\right. \\
\frac{1+b^{2}}{0-b^{2}} \\
\frac{-b^{2}-b^{4}}{* b^{4}} \\
+b^{4}+b_{6} \\
\frac{-b^{6}}{*}-b^{8} \\
\frac{-b^{6}}{*} c .
\end{gathered}
$$

Here the law of the continuation is the preceding terms multiplied with - b^{2}.

PROBLEM II.

To extract the root of a compound furd in an infinite Seriess; that is, to tbrow a compound furd quantity into a converging feries, wwole fum, if the terms were infonitely continued would be equal to the root required.

$$
R \cup L E .
$$

Extract the root of the quantity, as in common algebraic extraction; the operation continued as far as is thought neceflary, will give the feriẹs required,
EXAMPLES.

Throw $\sqrt{a^{2}+y^{2}}$ into an infinite feries.
Qq OPERATIQN.

OPERATION.

$$
\begin{aligned}
& a^{2}+y^{2}\left(a+\frac{y^{2}}{2 a}-\frac{y^{4}}{8 a^{3}}+\cos ^{3} c .\right. \\
& a^{2} \\
& 2 a+\left(\frac{y^{2}}{2 a}\right)^{*}+y^{z} \\
& +y^{2}+\frac{y^{4}}{4 a^{2}} \\
& \left.2 a+\frac{y^{2}}{4 a}-\frac{y^{4}}{8 a^{3}}\right)-\frac{y^{4}}{4 a^{2}} \\
& \frac{-\frac{y^{4}}{4 a^{2}}-\frac{y^{6}}{a^{6}}+\frac{y^{8}}{64 a^{6}}}{+\frac{y^{6}}{a^{4}}-\frac{y^{8}}{64 a^{6}}}
\end{aligned}
$$

That is, $\left.\overline{a^{2}+x^{2}}\right)^{\frac{3}{2}}=a+\frac{x^{2}}{2 a}+\frac{x^{4}}{8 a^{3}}+\mathcal{E}_{6}$.

Find

(303)

Find the value of $1-\left.x^{2}\right|^{\frac{1}{2}}$ in an infinite fries.

OPERATION.

$$
\begin{aligned}
& 1-x^{2}\left(1-\frac{x^{2}}{2}-\frac{x^{4}}{8}-\frac{x^{6}}{16}, \xi_{c}\right. \\
& \left.2-\frac{x^{2}}{2}\right) 0-x^{2} \\
& -x^{2}+\frac{x^{4}}{4} \\
& \left.2-x^{2}-\frac{x^{4}}{8}\right) *-\frac{x^{4}}{4} \\
& -\frac{x^{4}}{4}+\frac{x^{6}}{8}+\frac{x^{8}}{64} \\
& \left.2-x^{2}-\frac{x^{4}}{4}-\frac{x^{6}}{16}\right) *-\frac{x^{6}}{8}-\frac{x^{8}}{64} \\
& -\frac{x^{6}}{8}+\frac{x^{8}}{16}+\frac{x^{20}}{64}+\frac{x^{23}}{25^{2}} \\
& 8_{c_{0}}^{*}
\end{aligned}
$$

PROBLEM III.

To reduce any surd or fractional quantity into an infinite Series, by the celebrated Binomial Theorem, invented by that Prince of Mathematicians, the illustrious Sir ISAAC NEWTON, which is as follows.

Binomial

Binomial Theorem.

$\overline{P+P Q})^{n}=\mathrm{P}^{\frac{m}{n}}+\frac{m}{n} \mathrm{AQ}+\frac{m-n}{2 n} \mathrm{BQ}+\frac{m-2 n}{3^{n}} \mathrm{CQ}$
$+\frac{m-3 n}{4 n} \mathrm{DQ}+\frac{m-4 n}{5 n} \mathrm{EQ}+\frac{n-5 n}{6 n} \mathrm{FQ}+8 \mathrm{c}$. Wherein it is to be obferved, that $\mathrm{P}+\mathrm{PQ}$ is the quantity whofe power is to be thrown into an infinite feries ; P reprefents the firft term of the propofed quantity; Q the other terms divided by the firft; $\frac{m}{n}$ the index of the power, whether it be affimative or H
negative : And $A=$ firft term of the feries; B the fecond; C the third; D the fourth; E the fifth; F the fixth, \&cc. that is, the feveral terms of the feries, are $\mathrm{A}=\mathrm{P}^{\frac{m}{n}}, \mathrm{~B}=\frac{m}{n} \mathrm{AQ}, \mathrm{C}=\frac{m-n}{2 n} \mathrm{BQ}, \mathrm{D}$ $=\frac{n-2 n}{3^{n}} \mathrm{CQ}, 8 \mathrm{Ec}$.

EXAMPLES.

Reduce $\overline{a^{2}+x^{2}} 2^{\frac{x}{2}}$ into an infinite feries.

- Here $a^{2}=P, \frac{x^{2}}{a^{2}}=\mathrm{O}, m=\mathrm{r}$, añd $n=2$:

Therefore, $\mathrm{A}=\mathrm{P}^{\frac{m}{u}}=a, \mathrm{~B}=\frac{m}{n} \mathrm{AQ}=\frac{x^{2}}{2 a^{2}}, \mathrm{C}=$ $\frac{m-n}{2 n} \mathrm{BQ}=-\frac{x^{4}}{8 a^{2}}, \mathrm{D}=\frac{m-3 n}{4 n} \mathrm{CQ}=\frac{x^{6}}{16 a^{4}}, \mathrm{E}_{\mathrm{C}} \mathrm{C}$. Tbat is, $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{4}}$ E c_{0} is the feries required.

Expand

(305)

Expand $\left.\frac{1}{1+z}=\overline{1+z}\right]^{-1}$ into an infinite feries.
Here $\left.\overline{z+1}\right|^{-1}=\left.\overline{1+z}\right|^{-\frac{1}{2}}$; therefore, $m=-1$,
$n=1, P=1$, and $Q=\frac{z}{1}:$ Consequently, $A=\left(\mathrm{P}^{\frac{m}{n}}\right)$
$\mathrm{I}, \mathrm{B}=\left(\frac{m}{n} \mathrm{AQ}\right)-z, \mathrm{C}=\left(\frac{m-n}{2 n} \mathrm{BQ}\right) z^{2}, \mathrm{D}=$
$\left(\frac{m-2 n}{3^{n}} \mathrm{CQ}\right)-z^{3}, \mathrm{E}=\left(\frac{m-3 n}{4^{n}} \mathrm{DQ}\right) z^{4}$ 。
That is, $\left.\overline{1+2}\right|^{-1}=1-z+z^{2}-z^{3}+z^{4}, \varepsilon^{3} c_{0}$.
Find the value of $\frac{v}{a+y}$ in an infinite faeries.
Here $\left.\frac{v}{a+y}=v \times a+y\right)^{-1}$; Wherefore, $P=a$;
$Q=\frac{y}{a^{\prime}}, n=-1$, and $n=1:-$ Then, $^{\prime} A=a^{-1}$, or $\frac{1}{a}$ $\mathrm{B}=-\frac{y}{a^{2}}, \mathrm{C}=\frac{y^{2}}{a^{3}}, \quad \mathrm{D}=-\frac{y^{3}}{a^{4}}$.
That is, $\times \overline{a+y}{ }^{-1}=v \times \frac{1}{a}-\frac{y}{a^{2}}+\frac{y^{2}}{a^{3}}-\frac{y^{3}}{a^{4}} \varepsilon^{2} c_{0}$
Consequently, $\frac{v}{a+y}=\frac{v}{a}-\frac{v y}{a^{2}}+\frac{\partial y^{2}}{a^{3}}-\frac{v y^{3}}{a^{4}}, \delta^{2} c$.
PROBLEM IV.
To find the sum of an infinite series, geometrically decreasing.

$$
R U L E
$$

Divide the fquare of the firft term by the difference between the firft and fecond, and the quotient will be the fum required.

306)

Thus, the fum of the infinite feries $v-a+\frac{a^{2}}{v}$ $-\frac{a^{3}}{v^{2}}, \mho_{c}=v^{2} \div v+a ;$ and the fum of $v+$ $\frac{v^{2}}{a}+\frac{v^{3}}{a^{2}}, v_{c}=\frac{v^{2}}{a v-v^{2} \div a}=d v \div \overline{a-v}$; for if v^{2} be divided by $v+a$, and av by $a-v$, the quotients will be the feries propofed. Therefore, the rule is manifeft.

EXAMPLES.

Given $\mathrm{I}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}$, \&c. ad infinitum, to find their fum.

$$
\text { Thus, } 1^{2} \div 1-\frac{1}{2}=2 \text { the fum required. }
$$

Given $\frac{0}{10}+\frac{6}{100}+\frac{6}{1000 \%}$ \&cc. ad infinitum; to find their fum.

Thus, $\left.\frac{6}{10}\right]^{3} \div \frac{\bar{\circ}-\frac{0}{10}-\frac{2}{3}}{\frac{2}{3} \text { the Jum required. }}$
Given $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}, \&<c$. adinfinitum, to find their fum.
Thus, $4 \div 2+\frac{2}{5}=1 \frac{5}{T}=$ sum required.

CHAP. XII.

Of PROPORTION or ANALOGX Algebraically Considered.

WHEN quantities are compared together with regard to their differences, or quotients, their relations are expreffed by their ratios. The relation of quantities, arifing from the firl comparifon

(307)

nfon, is expreffed by an arithmetical ratio, that of the fecond, by a geometrical ratio; and the quantities themfelves are faid to be in arithmetical, or geometrical proportion, as the ratios of their comparifon are arithmetical, or geometrical: Which proportions, together with fuch others as arife from the alternation, converfion; \&ee. of thofe proportions that are of any confiderable ufe in Mathematics, will be noticed in the following order.

-1S E C T. I.

Of $A R I T H M E T I C A L P R O P O R T I O N$.
Wher quantities increafe by addition or fubtraction of the fame quantity, thofe quantities are in arithmetical proportion: Thus, $a, a+d, a+2 d$, $a+3 d, \& x$. or $x, x-d, x-2 d, x-3 d, \& x c$. are quantities in arithmetical proportion; wherein the quantity d, which is continually added or fubtracted, is the common difference of the feries; therefore, when in any four quantities, the difference between the firft and fecond, is equal to the difference between the third and fourth, thofe quantities are in arithmetical proportion; as in thefe, $y, y-n, y$ — $2 n, y-3 n$; where $y-\overline{y-n}=n$; and $\overline{y-2 n}$ $-\overline{y-3 n}=n$. Therefore, \&x.

THEOREMI.

If three quantities be in aritbmetical proportion, the -Jum of the two extremes will be double the mean.

Thus if $a, a+d, a+2 d$ are in arithmetical proportion, then will $a+\overline{a+2 d}=\overline{a+d}+\overline{a+d}$.

THEO.

THEOREMII.

If four quantities be in aritbmetical proportion, the fum of the two extremes will be equal to the Jum of the two means.

Thus, if $a, a+d_{2} a+2 d_{3} a+3 d$ are quant1ties in arithmetical proportion, then will $a+\overline{a+3 d}=$ $\overline{a+d}+a \overline{+2 d}$.

THEOREMIII.

In a feries of aritbmetical proportionals, the fum of the two extrense terms, is equal to the fum of any two terms equally diftant from the extrenies.

Let the feries be $a, a+d, a+2 d, a+3 d, a+4 d$, $\& c$. to z : Under which write the fame feries with their order inverted; then adding thofe terms together which ftand directly oppofite each other, and the fum of any two fuch terms, will be equal to the fum of the firf and laft terms, as plainly appears by the following

EXAMPLE.

Propojed jeries, $a, a+d, a+2 d, a+3 d, a+4 d, छ^{2} c ., 10 z$ Series inverted, $z, z-d, z-2 d, z-3 d, z-4 d, \delta^{\circ} c$. to a

$$
a+z, a+z, a+z, a+z, a+z, z^{2} c .=
$$ the jum of every two terms.

Now from this example, a rule for finding the fum of all the terms of any arithmetical feries, may be eafily deduced; for it is plain, that the fum $\overline{a+z}$ $+\overline{a+z}+\overline{a+z}, \& c$. or $\overline{a+z}$, taken as many times as there are number of terms, is double the fum of the feries $a, a+d, a+2 d, \& c$. Confequently, that fum divided

309)

divided by 2 , will be equal to the fum of the feries ; that is, (puting $n=$ number of terms, and $s=$ fum of the feries) $\frac{a+z \times n}{2}=\frac{n a+n z}{2}=s$: Or in words, the fum of the firft and laft terms multiplied with half the number of terms, will give the fum of the feries.

But in any arithmetical feries, the co-efficient of the common difference (d) in any term, is I lefs than the number of terms to that place ; confequently, its co-efficient in the laft term, is equal to the number of terms lefs I ; and therefore, the laft term $z=a+n-\mathrm{I} \times d=a+d n-d$. Confequently, $s=a+a+d n-d \times \frac{n}{2}=\frac{n a+n a+d n^{2}-d n}{2}$ $=\frac{2 n a+d n^{2}-d n}{2}$, which is a theorem for finding the fum of any arithmetical feries, when the firft term, common difference, and number of terms are given. And univerfally, puting

$$
\begin{aligned}
& a=\text { firf term of an aritbmetical series, } \\
& d=\text { common difference, } \\
& l=\text { laft term, } \\
& n=\text { number of terms, } \\
& s=\text { jum of all tbe Series. }
\end{aligned}
$$

Then having given any three of thofe five quantities, the reft may be found by the following theorems.

Theorem $1 \cdot \frac{n a+n l}{2}=s$. Theorem $2 \cdot \frac{2 s}{l+a}=n_{0}$
Theorem $3 \cdot \frac{l-a}{n-1}=d$. Theorem $4 \cdot \frac{2 s-n a}{n}=$? R 5

Theorem

(310)

Theorem $5 \cdot \frac{2 s-n l}{n}=a$. Or, $n=\frac{l-a}{d}+1, l=$ $n d-d+a . a=l+d-n d$.

S E C T. II.

Of GEOMETRICAL PROPORTION.

When of four quantities, the product of the two extremes is equal to the product of the two means; thofe quantities are in geometrical proportion: As, $a, a r, b, b r$; where $a \times b r=a r \times b$: Alfo, when quantities increafe with a common multiplier, ordecreafe by a common divifor; as, $a, a r, a r^{2}, a r^{3}, a r^{4}$, \&zc. and $a, \frac{a}{r}, \frac{a}{r^{2}}, \frac{a}{r^{3}}, \frac{a}{r^{4}}, \& z c$. thofe quantities are faid to be in geometrical proportion continued, where the common multiplier or divifor r is the common ratio.

THEOREMI.

In any series of qumtities in geometrical proportion continued, the firft term bath the Same ratio to the second, as the fecond bath to the third, and as the third to the fourth, \mathcal{E}^{2} c.

Thus, in $a, a r, a r^{2}, a r^{3}, a r^{4}, \& c$. and $a, \frac{a}{r}, \frac{a}{r^{2}}, \frac{a}{r^{3}}$, $\frac{a}{r^{4}}$, \&c. $a: a r::$ ar $: a r^{2}:: a r^{2}: a r^{3}:: a r^{3}: a r^{4}::$ \&c. and $a: \frac{a}{r}:: \frac{a}{r}: \frac{a}{r^{2}}:: \frac{a}{r^{2}}: \frac{a}{r^{3}}:: \frac{a}{r^{3}}: \frac{a}{r^{4}}::$ \&c. For, $a \times a r^{2}=a r \times a r$, and $a \times a r^{4}=a r \times a r^{3}$; alfo, $a \times \frac{a}{r^{2}}=\frac{a}{r} \times \frac{a}{r}$, and $f 0$ on for the reft.

THEOREMII.

In a feries of geometrical proportionals continued, the product of the two extremes, is equal to the product of any two terms equally diftant from the extremes.

Thus, in the feries $a, a r, a r^{2}, a r^{3}, a r^{4}, \& z c$. If x be the laft term, then will $\frac{x}{r}$ be the laft term but one, and $\frac{\alpha}{r^{2}}$ the laft term but two; wherefore; $a \times x$ $=a x$, the produst of the two extremes, and $a r x$ $\frac{x}{r}=\frac{a r x}{r}=a x$ the product of the fecond and laft term but one : That is, $a \times x=a r \times \frac{x}{r}$; in like manner, $a \times x=a r^{2} \times \frac{x}{r^{2}}$, and fo on for the reft.

THEOREM.III.

Thbe Jum of any series of quantiiies in geometrical proportion continued, is obtained by multiplying the laft term by the ratio, and dividing the difference between that product and the firft term, by the ratio lefs I.

Thus, let the feries whofe fum is required, be $a+a r+a r^{2}+a r^{3}+a r^{4}$, which multiplied with r, gives $a r+a r^{2}+a r^{3}+a r^{4}+a r^{5}$, from which fubtract the former.

Thus, $\left\{\begin{array}{c}a r+a r^{2}+a r^{3}+a r^{4}+a r^{5} \\ a+a r+a r^{2}+a r^{3}+a r^{4}\end{array}\right.$

Now

(312)

Now it is plain, that the difference $a r^{5}-a$ is equal to the fum of the propofed feries multiplied by $r-1$; confequently, the fame divided by $r-1$, will give the fum of the feries required: That is, (puting $s=$ fum) $\frac{a r^{5}-a}{r-1}=s$.

Or, generally $a r+a r^{2}+a r^{3}+a r^{4}, \& x c_{0}+\frac{x}{r^{4}}+\frac{x}{r^{3}}$ $+\frac{x}{r^{2}}+\frac{x}{r}+x=r \times a+a r+a r^{2} a r^{3}, \& c_{0}+\frac{x}{r^{5}}+\frac{x}{r^{4}}$ $+\frac{x}{r^{3}}+\frac{x}{r^{2}}+\frac{x}{r}$. That is, the fum of any geometrical feries wanting the firft term, is equal to the fum of the fame feries wanting the laft term, multiplied with the ratio. Wherefore, $s-a=\overline{s-x} \times r$; that is, $s-a=s r-r x$, and $s r-s=r x-a:$ Hence, $s=$ $\frac{r x-a}{r-1}$. And fince r is not in the firft term of the feries, it follows, that in the laft term, its exponent will be I lefs than the number of terms; and therefore, (puting $n=$ number of terms) $x=a r^{n-1:}$ Confequently, $s=$ (by writing for x its equal $a r^{n-1}$)

$$
\begin{aligned}
& \frac{a r^{n-1} \times r-a}{r-1}=\frac{a r^{n}-a}{r-1}: \text { And univerfally, puting } \\
& a=\text { firf term of a geometrical feries, } \\
& r=\text { ratio, } \\
& l=\text { laft term, } \\
& s=\text { fum of the feries. }
\end{aligned}
$$

Then having given any three of the aforefaid quantities, the reft may be readily found by the following theorems, which aire deduced from the above equation.

(313)

Theorem 1. $\frac{r l-a}{r-1}=s$.

$$
\text { 2. } r l+s-s r=a \text {. }
$$

3. $\frac{s-a}{s-l}=r$.
4. $\frac{s r-s+a}{r}=l$.

THEOREMIV.
If four quantities are proportional, as $a: b:: c: d_{\text {, }}$ then will any of the following forms, alfo be proportional. viz.

S E C T. III.

Of HARMONICAL PROPORTION.
Harmonical proportion arifes from the comparifon of mufical intervals, or the relation of thofe numbers "which affign the lengths of ftrings founding mufical notes.

The moft ufeful part of this proportion in practi-. cal Mathematics, is contained in the following theorems.

THEO.

THEOREM I.

If three quantities be in barmonical proportion, the firth will be to the third, as the difference between the firs end Second, to the difference between the Second and third.

THus, if a, b and c, be in harmonical proportion, then, as $a: c:: \overline{b-a}: \overline{c-b}$: Consequently, $a c-a b$ $=c b-c a$, by multiplying means and extremes: From which equation is deduced the following theorems.

Theorem I $\frac{c b}{2 c-b}=a$. Theorem 2 $\frac{2 a c}{a+c}=b$.
Theorem 3. $\frac{a b}{2 a-b}=c$.

THEOREM II.

If four quantities be in barmonical proportion, the frt will be to the fourth, as the difference between the frt and Second, is to the difference between the third and fourth.

Thus, if the quantities a, b, c, d, are harmonical proportionals, it will be, $a: d:: b-a: d-c:$ Wherefore, $a d-a c=d b-d a$. From which equation, we get the following theorems.

$$
\begin{aligned}
& \text { 1. } a=\frac{d b}{2 d-c} \\
& \text { 2. } b=\frac{2 d a-a c}{d} \\
& \text { 3. } c=\frac{2 d a-d b}{a}
\end{aligned}
$$

$$
3: 51
$$

4. $d=\frac{a c}{2 a-b}$.

C H A P. XIII.

Of SIMPLE EQUATIONS.

AN equation is an expreffion, afferting the equality of two quantities, which are compared together by writing the quantities with the fign of equality between them. Thus, if $x+3$ is equal to $2 x-1$, the equation is formed thus, $x+3=2 x-1$: Alfo, $8-3=15-10$.

A simple equation, is an equation which involves one unknown quantity, without including its powers. Thus, $3 x-2=2 x+2$ is a fimple equation which expreffes the value of the unknown quantity ; when that quantity ftands alone on one fide of the equation, the reft being on the other fide, which if known, we then have a determined value of the unknown quantity in known terms. And the bufinefs of bringing the unknown quantity to ftand alone on one fide of a fimple equation, is called reduction of fimple equations : To effect which purpofe, we have the following rules.

$$
R U L E I .
$$

Any quantity may be taken from one fide of an equation and placed on the other, if you change its fign. Or which is the fame thing, fubtraft the quantity from both fides.

(316)

For, if from thofe quantities which are equal, there be taken the fame quantity, what remains will be equal.

EXAMPLES.

Given $x-6=20$, to find the value of x. Thus, $x=20+6$, per rule, and $x=26$ by addition. For, -6 takeri from $x-6$, leaves x, and -6 taken from 20 , leaves $20+6$, or 26 , by the nature of fubtraction. T'berefore, $\Xi^{3} c$.

Given $x+4=30-5$, to find the value of x. Tbus, $x=30-5-4$ by tranfpofition: Or, $x=30-9=21$ by addition and fubtraction. If $x-3+1=21$:
Then will $x=21+3-1$ by tranfpofition:
Or, $x=23$ by addition and Jubtraction.

$$
R U L E \quad \text { II. }
$$

When the unknown quantity is multiplied with any number, it may be taken away by dividing all the reft of the terms in the equation by it.

For if thofe quantities which are equal, be divided by the fame quantity, their quotients will be equal.

EXAMPLES.

Given $4 y-12=2 y+4$, to find the value of y. Firft, $4 y-2 y=12+4$ by $\operatorname{transpofition:~}$ Then, $2 y=16$ by addition and jubtraction: Or, $y=\frac{16}{2}=8$, per rule.

(317)

If $6 y+3=y+18$, then will $6 y-y=18-3$ by tranfpofition; and $5 y=15$ by subtraction.

Whence, $y=\frac{15}{3}=5$ by divifion.
Let $3 x-10=20-x+6$, be given to find x. First, $3^{x}+x=20+6+10$ by transposition:
Or, $4 x=36$, and therefore, $x=\frac{36}{4}=9$.

$R U L E$ III.

When any part of the equation is divided by any quantity, that quantity may be taken away by moltiplying all the reft of the terms by it; which is the fame as to multiply all the terms in the equation by that quantity. And if thole quantities which are equal, be multiplied with the fame quantity, their products will be equal.

EXAMPLES.

Given, $\frac{v}{6}+2=10$, to find the value of v.
Thus, $v+12=60$, per rule :
And $v=60-12=48$ by transposition and subtract: timon.

Let $\frac{y}{2}+\frac{2 y}{4}+\frac{3}{4}=16$, be given to find y.
Firft, $\frac{16 y}{3^{2}}+\frac{16 y}{3^{2}}+\frac{24}{3^{2}}=16$ by redugion:
Then, $\frac{32 y+24}{3^{2}}=16$ by addition:
And $32 y+24=512$ by multioligation: S

Whence,

(318)

Whence, $y=\frac{512-24}{3^{2}}=15^{\frac{3}{2}}$.
Alfo, if $\frac{3 y}{2}+6=2 y+4$, then will $3 y+12=$ $43+8$ per rule ;
And $4 y-3 y=12-8$ by tranfpefition.
Whence, $y=4$.

$$
R U L E \text { IV. }
$$

Ir any quantity be found on both fides of the equation, having the fame fign, it may be expunged from both. Alfo, if all the terms of an equation be multiplied with the fame quantity, it may be ftruck out of them all.

EXAMPLES.

If $2 x+4 a=x+4 a+2$; then will $2 x=x+2$ per rule:

And $2 x-x=2$; or, $x=2$:
Alfo, if $6 x+c=b+c$, then will $6 x=b$, and $x=\frac{b}{6}$.
Moreover, if $\frac{3 \times a}{c}+\frac{2 \times a}{c}-\frac{x a}{c}=\frac{d a}{c}$, then will $3^{x}+2 x-x=d$:
And $4^{x}=d$ by addition and Jubtraction :
Whence, $x=\frac{d}{4}$.

$$
R U L E \quad \mathrm{~V} .
$$

If that part of the equation which involves the unknown quantity be a radical expreffion, it may be made
made free from furds by tranfpofing the reft of the terms by the preceding rules, fo that the furd may ftand alone on one fide of the equation : Then take away the radical fign, and involve the other fide of the equation to the pow whofe index is equal to the denominator of the radical fign.

EXAMPLES.

If $\sqrt{x+3}+4=20$:

Then will $\sqrt{x+3}=20-4=16$ by transpofio tion:

And $x+3=16 \times 16=256$ by involution :
Or, $x=256-3=253$.
And, if $4+\sqrt{2 x+6}=9$; then will $\sqrt{2 x+6}$ $=9-4=5$ by tran Ppofition:

And $2 x+6=25$ by involution :
Whence, $x=\frac{19}{2}=9 \frac{1}{2}$.
In like manner, if ${ }^{3} \sqrt{a x}+3=10$; then will ; $\sqrt{2 x}=10-3=7$; and $a x=343$ by involution ; or, $x=\frac{343}{a}$.

$$
R \cup L E \mathrm{VI}
$$

If both fides of an equation be a complete power, or can be made fo by the preceding rules, it may be reduced to more fimple terms, by extracting the root of both fides.

EXAMPLES.

Given, $y^{2}+6 y+9-57=87$, to find the val ue of y.

Firft,

(320)

Firft, $y^{2}+6 y+9=87+57=144$ by trans. Then, $y+3=12$ by extrabting the root:
Or, $y=12-3=9$ by tranfpofition.
Given, $9 y^{2}+24 y+16=4 y^{2}+32 y+64$, to find the value of y.
Firft, $3 y+4=2 y+8$ by extracting the root : And $3 y-2 y=8-4$ by tranjpofition: That is, $y=4$.

RULE VII.

Any analogy may be converted into an equation, by afferting the product of the two extremes equal to the product of the two means.

EXAMPLES.

If $6+x: 10:: 4: 6$; then will $36+6 x=40$, by multiplying means and extremes, and $6 x=4$; or, $x=\frac{4}{6}$.
And, if $\frac{2 x}{3}: a:: 10: 2$; then will $\frac{4 x}{3}=10 a$; and $4 x=30 a$; or $x=\frac{30 a}{4}$.

And in like manner, if $6: x-2:: 4: 5$; then will $30=4 x-8:$

And $4 x=30+8=38$; or, $x=\frac{3^{8}}{4}=9^{\frac{2}{4}}$.
COROLLAR

Hence it follows, that an equation may be turned into an analogy, by dividing either fide of it into
two fuch parts, which if multiplied together, would produce the fame fide again; making thofe parts, either the two means or extremes; then dividing the other fide in like manner for the other two terms.

CHAP. XIV.

CONCERNING the extermination of unknown quantities, and reducing thofe equations which contain them, to a fingle one.
PROBLEM I.

To exterminate two unknown quantities, or reduce troo equations containing them, to a fingle one.

$$
R U L E \mathrm{I} .
$$

Find the value of one of the unknown quantities in each of the given equations, by the rules of the preceding chapter. And puting thefe two values equal to each other, you will have an equation involving only one unknown quantity; which equation if a fimple one, is to be refolved as in the laft chapter.

EXAMPLES.

Given, $\left\{\begin{array}{l}2 x+y=14 \\ 6 x-3 y=30\end{array}\right\}$ to find x and y.
From the firfe equation, we bave $x=\frac{14-y}{2}$:

(322)

And from the second, $x=\frac{30+3 y}{6}$:
Therefore, $\frac{14-y}{2}=\frac{30+3 y}{6}$:
And $84-6 y=60+6 y$ by multiplication :
Whence, $84-60=12 y$:
Or, $12 y=24$:
And therefore, $y=\frac{24}{2}=2$, and $x=\frac{14-y}{2}=$ (by.
sorting 2 for y its equal) $\frac{14-2}{2}=6$.
Given, $\left\{\begin{array}{l}3 v+y=22 \\ v: y:: 2: 5\end{array}\right\}$ to find v and y.
From the firft equation, $v=\frac{22-y}{3}$, and the analogy turned into an equation, gives $5 v=2 y$, or $v=$ $\frac{2 y}{5}$, and therefore, $\frac{22-y}{3}=\frac{2 y}{5}$.

Whence we get, $110-5 y=6 y$ by multiplication:
And 11 $y=110$:
Or, $y=\frac{110}{11}=10$:
And $v=\frac{2 y}{5}=($ by writing 10 for y its equal $) \frac{20}{5}$ $=4$.

$$
R U L E \text { II. }
$$

Find the value of one of the unknown quantities in either of the given equations ; and inftead of the unknown quantity in the other equation, fubftitute its value thus found, and there will arife a new equation having only one unknown quantity, whole value is to be found as before.

(323)

EXAMPLES.

Given, $\left\{\begin{array}{l}z+y=10 \\ z-y=7\end{array}\right\}$ to find z and y.
From the firt equation, we bave $z=10-y$, which fubfituted for z in the fecond equation,

Gives $10-y-y=7$, or $10-2 y=7$:
And $2 y=10-7=3$:
Or, $y=1.5$:
Whence, $z=$ (by writing I. 5 for y its equal) 10 $3.5=8.5$:

Given, $\left\{\begin{array}{l}2 z-2 y=10 \\ 3 y+z=65\end{array}\right\}$ to find z and y.
From the frrt equation $\dot{z}=\frac{10+2 y}{2}$, and this value snbfituted in the fecond equation, gives $3 y+\frac{10+2 y}{2}$ $=6 \cdot 5: 6 y+10+2 y=130$; we wence, $8 y=120$: $0 r, y=\frac{120}{8}=15 ;$ and $z=\frac{10+2 y}{2}=5+y=$ $5+15=20$.

$$
R U L E \text { M. }
$$

If the unknown quantity is of lower dimenfion in one of the given equations than in the other; find the value of the unknown quantity in the equation where it is of leaft dimerfion, and raife this value to the fame height as the unknown quantity in the other equation; or on the contrary. Then compare this value with the value of the unknown quantity found

(324)

found from the other equation; and you will have a new equation, with which proceed as before.

EXAMPLES.

Given, $\left\{\begin{array}{l}v+y=10 \\ v^{2}-y^{2}=60\end{array}\right\}$ to find v and y.
From the first equation $v=10-y$;
And therefore, $v^{2}=\overline{10-y^{2}}=100-20 y+y^{2}$:
Then, $100-20 y+y^{2}=60+y^{2}$ by rule sf.
Whence, $y=2$ by reduction:
Or, $100-20 y+y^{2}-y^{2}=60$. by rule $2 d$.
W hence, $40=20 y$:
Or, $y=\frac{40}{20}=2$ as before;
And $v=10-y \pm 10-2=8$:
Given, $\left\{\begin{array}{l}z^{2}+y^{2}=25 \\ z^{2}: y z:: 4: 3\end{array}\right\}$ to find z and y.
The analogy turned into an equation, gives $3 z^{2}=$ $4 z y$, which divided by z, gives $3 z=4 y$, or, z $=\frac{4 y}{3}$:

Whence, $x^{2}=\frac{16 y^{2}}{9}$:
And therefore, $\frac{16 y^{2}}{9^{2}}+y^{2}=25$:
Or, $16 y^{2}+9 y^{2}=222^{2}$:
Whence we get, $y^{2}=9 ;$ or, $y=\sqrt{ } 9=3$:
And $z=\frac{4 y}{3}=\frac{12}{3}=4$.
PROB.

(325)

PROBLEMI.

To exterminate any three unknown quantities, x, y, and z, or to reduce three fimple equations that involve them, to a single one.

$$
R: U L E
$$

Find the value of x in the three given equations; then compare the firf value of x with the fecond, and there will arife a new equation involving only y and z. Again compare the firft, or fecond value of x with the third, and there will arife another equation involving only y and z; then proceed with thefe two equations as directed in the laft problem.

EXAMPLE.

Given, $\left\{\begin{array}{c}2 x+y+2 z=15 \\ x+6 y-z=29 \\ 4 x-2 z+2 y=12\end{array}\right\}$ to find x, y and z.
From the firftequation, ve : bave, $x=\frac{15-2 z-y}{2}$
From the jecond, $x=29+z-6 y$:
From the third, $x=\frac{12+2 z-2 y}{4}$:
Whence, $\frac{15-2 z-y}{2}=29+z-6 y$:
And $29+z-6 y=\frac{12+2 z-2 y}{4}$:
From the fir Ω of ibefe equations, we get $15-2 z-$?
$=5^{8}+2 z-12 y$; or, $11 y=58-15+4 z:$

(326)

Whence, $y=\frac{43+4 z}{11}$:
From the second, we bave $116+4 z-24 y=12+$ $2 z-2 y$:

That is, $22 y=116-12+2 z ;$ or; $y=\frac{104+2 z}{22}$
Consequently, $\frac{104+2 z}{22}=\frac{43+4 z}{1 I}$:
Whence, $1144+22 z=946+88 z$:
And $88 z-22 z=198$:
That is, $66 z=198:$
Or, $z=\frac{198}{66}=3$:
Whence, $y=\frac{43+4 z}{11}=\frac{43+12}{11}=5$, and $x=$ $\frac{15-2 z-y}{2}=\frac{15-6-5}{2}=2$.

And nearly in the fame manner, may be exterminted any number of unknown quantities; but there are often much thorter methods for their extermination, which are belt learned by practice; yet forme of them may be thus generally given.

$$
R \cup L E .
$$

LET the given equations be multiplied or divided by fuch numbers, or quantities, that by addition, fubtraction, multiplication, divifion, involution or evolution of any two, or more of the equations, one or more of the unknown quantities may vanifh. Then taking the refultand the other equations, and proceed as before, until you have an equation involving
volving only one unknown quantity, whole value may be found by the foregoing rules.

EXAMPLES.

Given, $\left\{\begin{array}{l}2 x+3 y=29 \\ 3 x+2 y=31\end{array}\right\}$ to find x and y.
Multiply the first equation with 2, and it will give $4 x+6 y=58$, and the Second with 3, gives $9 x+6 y=93$; from which subtract, $4 x+6 y=58$; and you will have $5 x=35$; or, $x=\frac{-35}{5}=7$, and $3 y=29-2 x ;$ or, $y=$ $\frac{29-2 x}{3}=\frac{29-14}{3}=5$.

Given, $\left\{\begin{array}{l}2 x+4 y+3 z=38 \\ 3 x+5 y+6 z=63 \\ 4 x+7 y+12 z=109\end{array}\right\}$ to find x, y, and z.
From double the firs equation Subtract the Second, and from double the Second, subtract the third, and the results will be, $\left\{\begin{array}{c}x+3 y=13 \\ 2 x+3 y=17 .\end{array}\right.$

Again, from the second of the fe equations, subtract the first, and the refult will be $x=4$; and from double the first subtract the second, and it will give $3 y=9$; or, $y=\frac{9}{3}=3$. And from the first of the given equations, we have $3 z=3^{8}-2 x-4 y$; or, $z=\frac{38-2 x-4 y}{3}$ $=\frac{3^{8}-8-12}{3}=6$.

Miscellaneous

(328)

Miscellaneous Examples.
Given, $\left\{\begin{array}{l}v+y=12 \\ v y=32\end{array}\right\}$ to find v and y.
The firs equation involved to a square, gives $v^{2}+$ $2 v y+y^{2}=144$; and $v^{2}-2 v y+y^{2}=16$ by subtraEting $4 v y(=128)$ from the aft equation; or, $v-y$ $=4$ by evolution:

And therefore, $\overline{v+y}+\overline{v-y}=12+4$:
Or, $2 v=16 ;$ and $v=\frac{16}{2}=8$:
Again, $\overline{v+y}-\overline{v-y}=12-4$:
That is, $2 y=8 ;$ or, $y=\frac{8}{2}=4$.
Given, $\left\{\begin{array}{l}v y=144 \\ \frac{v}{y}=9\end{array}\right\}$ to find v and y.
Firft, $v=9 y$ by multiplication:
Consequently, wy $=0 y x y=144$:
That is, $9 y^{2}=144 ;$ or, $y^{2}=\frac{144}{9}=16$.
Whence, $y=\sqrt{ } 16=4 ;$ and $v=9 y=36$.
Given, $\left\{\begin{array}{l}v-y=56 \\ \frac{v}{y}=8\end{array}\right\}$ to find v and y.
Firft, $v=56+y$; and therefore, $\frac{56+y}{y}=8$; or, $56+y=8 y ;$ whence, $y=\frac{56}{7}=8$, and $v=8 y$ $=64$.

Given,

(329)

Given, $\left\{v+\sqrt{16+v^{2}}=\frac{32}{\sqrt{16+v^{2}}}\right\}$ to find v. Fir f, $v \times \sqrt{16+v}+\sqrt{16+v^{2}} \times \sqrt{16+v^{2}}=32$. That is, $v \sqrt{16+v^{2}}+16+v^{2}=32$:
Then, $v \sqrt{ } 16+v^{2}=16-v^{2}$:
And by involution, $v^{2} \times \overline{16+v^{2}}=\overline{16-v^{2} 7^{2}}=256$
$-32 v^{2}+v^{4}:$
That is, $16 v^{2}+v^{4}=256-32 v^{2}+v^{4}$:
Or, $16 v^{2}=256-32 v^{2}$; and $16 v^{2}+32 v^{2}=256$:
Whence, $v^{2}=\frac{256}{48} ;$ or, $v=\sqrt{ } \frac{256}{48}=\sqrt{ } \frac{256 \times 1}{16 \times 3}$
$=\frac{16}{4} \sqrt{ } \frac{1}{3}=4 \sqrt{ } \frac{\pi}{3}$.
Given, $\left\{\begin{array}{l}x^{2}+y^{2}=a \\ x y=\frac{b}{b}\end{array}\right\}$ to find x and y.
Firft, $x^{2}+2 x y+y^{2}=a+2 b:$
Then, $x+y=\sqrt{a+2 b}$.
Again, $x^{2}-2 x y+y^{2}=a-2 b$:
Then, $x-y=\sqrt{a-2 b}$:
Therefore, $x+y+x-y=\sqrt{a+2 b}+\sqrt{a-2 b}$ That is, $2 x=\sqrt{a+2 b}+\sqrt{a-2 b}$:
Or, $x=\frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{2}:$
And $\overline{x+y}-\overline{x-y}=2 y=\sqrt{a+2 b}-\sqrt{a-2 b}$
Whence, $y=\frac{\sqrt{a+2 b}-\sqrt{a-2 b}}{2}$

CHAP.

CHAP. XV.

> Of the SOLUTION of a variety of 2UES. TIONS, that produce SIMPLE EQUATIONS.

AFTER forming a clear and dittinct idea of the quettion propofed ; the unknown quantities mult be expreffed by letters, which muft be ordered in fuch a manner, as to exprefs the conditions given in the queftion concerning thofe quantities. Thus, if the fum (s) of two quantities (x and y) are required ; then is $x+y=s$, an expreffion anfwering that condition. Alfo, if the difference (d) of thofe quantities is required ; that condition mult be expreffed thus, $x-y=d$ (x being the greater). Their product (p) is expreffed thus, $x y=p$. Their quotient (q) is $\frac{x}{y}=q$. Alfo, the fum of their fquares (a) is expreffed thus, $x^{2}+y^{2}=a$, and the difference of their fquares (b) thus, $x^{2}-y^{2}=b$.

Having expreffed the unknown quantities in equations anfwering their relations, or properties, as given in the queftion; you are next to confider whether your queftion is limited or not ; that is, whether the quantities fought, are each of them capable of more known values than one; which may always be difcovered in the following manner. If the equations that arife from exprefling the conditions of the queftion, are in number equal to the quantities fought, then is the queftion truly limited : That is, each of the quantities fought, cannot have more values than one in giving the anfwer : But, if the equations

(33I)

tions exprefling the conditions of the queftion, are fewer in number than the quantities fought, then the queftion is an unlimited one; that is, the quantities fought, are each of them of an indeterminate value, and confequently, the queftion propofed, capable of innumerable anfwers.

After you have difcoyered that the propofed queftion is limited; you mult then proceed to exterminate the unknown quantities by the rules already given, or other methods, which you may learn by practice ; to which we now proceed.

1. What number is that, from which if you take 40 , the remainder will be 115 ?
Call the number. Jought v :
Then will $v-40 \pm 115$ by the queftion:
Or, $v=115+40=155$ the number fougbt.
2. What number is that, from which if you take 10 , and multiply the remainder. with 4 , the product will be 30?

Call the number sougbt v:
Then will $v-10$ be the remainder:
Andv-10 $\times 4=30$ by the queftion:
That is, $4 v-40=30$:
Or, $4 v=30+40=70 ;$ or, $v=\frac{70}{4}=17 \frac{1}{2}$.
3. To find two numbers whofe fum is 80 , and their difference 16 .

Let $v=$ the leaft of the required numbers:
Then will $v+16=$ the greater by the nature of fubtraction:

And $v+v+16=80$ by the queftion:
That is, $2 v=80-16=64$:
Or, $v=\frac{64}{2}=32$; and $y+16=32+16=48$, the greater number required.

(332)

4. What number is that, which if multiplied with one third of itfelf, will produce the number fought?

If you call the number jougbt v:
Then will $\frac{v}{3}$ be one tbird part of v :
And $v \times \frac{v}{3}=v$ by the queftion:
Tbat is, $\frac{v^{2}}{3}=v ;$ or, $v^{2}=3 v$, and $v=3$ the number fought.
5. Suppofe the diftance between Bofon and York, to be 150 miles; and that a traveller fets out from Bofton, and travels at the rate of 5 miles an hour ; another fets out at the fame time from York, and travels at the rate of 8 miles an hour : It is required to know how far each will travel before they meet.

If you put vor the diftance that muf be travelled by the one re bich sets out from Bofton, and y the diftance travelled by the otber before they meet:

Then will $v+y=150$, the diftance travelled by both, and $v: y:: 5: 8$ by the queftion:

That is, $8 v=5 y ;$ or, $v=\frac{5 y}{8}$.
Aljo, v=150-y; confequently, $\frac{5 y}{8}=150-y:$
That is, $5 y=1200-8 y$:
Whence, $y=1200 \div 13=92 \frac{4}{43}$.
And $v=150-y=57 \frac{\circ}{\text { ivं. }}$
6. What fraction is that, if you add Y to the numerator, the value will be $\frac{x}{2}$; but if you add I to the denominator, the value will be $\frac{2}{3}$:

Iut $\frac{v}{y}$ for the frattion fought:-
Then

(333)

Then will, $\frac{v+1}{y}=\frac{1}{2}$

by the question.

That is; $2 v+2=y ;$ or, $v=\frac{y-2}{2}$:
And $3 v=y+1 ;$ or, $v=\frac{y+1}{3}:$
Consequently, $\frac{y-2}{2}=\frac{y+1}{3}$:
Or, $3 y-6=2 y+2$:
Whence, $y=8$, the denominator :
And $v=\frac{y-2}{2}=\frac{8-2}{2}=3$ the numerator:
Therefore, $\frac{3}{8}$ is the fraction required.
7. What two numbers are thole whore fum is 60 , and the fum of their squares 2250 ?

Call one: of the numbers we, and the other y :
$\left.\begin{array}{l}\text { Then will, } w+y=60 \\ \text { And } w^{2}+y^{2}=2250\end{array}\right\}$ by the queftion.
First, $w^{2}+2 w y+y^{2}=60^{2}=3600:$
And $w^{2}+2 w y+y^{2}-\overline{w^{2}+y^{2}}=2 z v y=1350:$
Therefore, 4 wy: 2700 :
Then, $w^{2}+2 w y+y^{2}-4 w y=w^{2}-2 w y$ $+y^{2}=900$:

Wberice, $w-y=\sqrt{ } 900=30$:
And $2 w=60+30=90$, or $w=45$:
And $y=60-w=60-45=15$.
8. There are three numbers in arithmetical progreffion, the firft added to the fecond will make 15 , and the fecond added to the third, 21 : What are tho fe numbers?

334)

Let x, y and z reprefent the three numbers:
Then roill $x+y=15$, the fum of the firtt and Sem cond:

And $y+z=21$, the fum of the ferond and third:
Allo, $x+z=2 y$ by the nature of the proportion.
Wbence, $x+y+y+z=15+21=36:$
\therefore Ibat is, $x+2 y+z=36$; or, $x+z=36-2 y$:
But $x+z=2 y$; therefore, $2 y=36-2 y$; or, $4 y=36:$

Whence, $y=9$; and $x=15-y=15-9=6$:
And $z^{\circ}=21-y=21-9=12$.
9. Two merchants traded in partnerfhip; the fum of their ftocks was 600 dollars; one's ftock was in company 8 months, but the other drew out his at the end of 6 months, when they fettled their accounts, and divided the gain equally between them : What was each man's ftock?

Call one of the focks x; then $600-x=$ the other: But, $x: 600-x:: 6: 8$ by the queftion:
Conjequently, $8 x=3600-6 x ;$ or, $14 x=3600$: Whence, $x=\frac{3600}{14}=257 \frac{x}{7}$; and $600-x=600$ $-257 \frac{2}{7}=342 \frac{6}{7}$ the others frock.
10. To find three numbers, fuch that if the firft be added to the fecond, their fum will be $12 ;$ and the fecond added to the third, their fum will be 20 ; alfo, if the firlt be added to the third, their fum will be 16 .

Call the firf number x, the fecond y, and the tbird z :
Then will $x+y=12$?
And $y+z=20\}$ by the queftion.
Alfo, $x+z=16$
Tberefore, $x+y+x+z=12+16=28$:

(335)

That is, $2 x+y+z=28:$ But $y+z=20$: Confequently, $2 x+20=28 ;$ or, $2 x=8:$
Whence, $x=4$, and $y=12-x=12-4=8$: And $z=20-y=20-8=12$.
11. There are four numbers in arithmetical progrefion; whereof the product of the two extremes is It 2 , and the product of the two means 130 ; alfo, the fum of the firft and fecond terms is 17 : What are thofe numbers?

Put x for the leaft term, and y the common difference; then will $x, x+y, x+2 y, x+3 y$ be the four sumbers required:

AlSo, $\left.\begin{array}{rl}\text { And } x \times \overline{x+3 y}=112 \\ \text { And } x+x+y=13 & =17\end{array}\right\}$ by the queftion,
That is, $x^{2}+3 x y=112$:
And $x^{2}+3 x y+2 y^{2}=130$:
Whence, $\overline{x^{2}+3 x y+2 y^{2}}-\overline{x^{2}+3 x y}=130-112$
$=18$:
That is, $2 y^{2}=18$; or, $y^{2}=\frac{18}{2}=9$, and $y=\sqrt{ } 9$ $=3$:

But, $x+\overline{x+y}=17$; that is, $2 x+3=17$; Or, $2 x=17-3=14$:
Confequently, $x=\frac{14}{2}=7$, the firft term of the progrefion; and therefore, $x+y=10$, the fecond term; and $x+2 y=13$, the third term; alfo, $x+3 y=16$, the fourth term.

So that $7,10,13$, and 16 , are the numbers required.
12. There are three numbers in arithmetical progreffion; the product of the two extremes, is 128 , and the product of the leaft extreme with the mean, is 96 : What are thofe numbers?

(336)

Call the numbers required, v, y and z; v and $z b e$ ing the oxtremes, whereof v is the leaft.
$\left.\begin{array}{rl}\text { Then will } v z & =128 \\ v y & =96^{\circ}\end{array}\right\}$ by the queftion.
And $v+z=2 y$ by the nature of the proportion:
$z=\frac{128}{v}$ from the firt equation:
And $z=2 y-v$ from the third:
Consequently; $\frac{128}{v}=2 y-v$ by equality:
That is, $128=2 y v-v^{2}: \quad$ But $2 y v=96 \times 2=$ 192:

Therefore, $128=192-v^{2}$ by fubfitution:
And $v^{2}=192-128=64 ;$ or, $v=\sqrt{ } 64=8:$
Alfo, $z=\frac{128}{v}=\frac{128}{8}=16$; and $v+z=2 y$;
or, $y=\frac{v+z}{2}=\frac{8+16}{2}=12$; and tberefore the numZers fougbt are 8, 12, 16.
13. To find a fraction, fuch that the fquare of the numerator, added to the denominator, fhall make 30 ; and if 2 be added to the denomirator, the value of the fraction will be equal to the reciprocal of the numerator.

Put $\frac{v}{y}$ for the fraction Sought.
Then will $v^{2}+y=30$?

$$
\text { And } \left.\frac{v}{y+2}=\frac{1}{v}\right\} \text { by the queftion. }
$$

Firf, $v^{2}=30-y$:
And $v^{2}=y+2 \times 1=y+2:$
Consequently, $y+2=30-y_{;}$that is, $2 y=28^{\circ}$:

Or, $y=\frac{28}{2}=14 ;$ and $v^{2}=30-y=30-14$ $=16 ;$ or, $v=\sqrt{ } 16=4$.

So that the fraction fought, is $\frac{4}{14} ;$ for, $\frac{4}{14+2}=$ $\frac{4}{16}=\frac{1}{4}=\frac{1}{v} ;$ Therefore, ξ° :
14. To find a number confifting of two places, fuch that the fum of its digits fhall be 5 , and if 9 be fubtracted from it, the digits will be inverted.

Let v and y represent the two digits, v that which ftands in the tentb's place.

Then by the nature of notation, we bave $10 v+y=$ the number fougbt.

$$
\text { And } \left.\begin{array}{c}
\text { Therefore, } v+y=5 \\
10 v+y-9=10 y+v
\end{array}\right\} \text { by the queftion. }
$$

Whence, $9 v=9 y+9 ;$ or, $v=\frac{9 y+9}{-9}=$ (by divifion) $y+1$:

Alfo, $v=5-y$; and therefore, $y+1=5-y ;$ or, $.2 y=4:$

And $y=\frac{4}{2}=2$; and $v=y+1=2+1=3:$ So that 32 is the number required.
15. A certain company at an inn; when they came to pay their reckoning, found that if there had been two perfons lefs in company, they would have paid a dollar a man more; but if there had been three perfons more in company, they would each of them paid a dollar lefs: What was their reckoning, and the number of perfons to pay it?

Put $v=$ the number of perfons, and y the number of doltars each paid; then will vy = the whole reconing.

Whense,

33^{8})

Whence, $\frac{v y}{v-2}=y+1$
by the quefior.

$$
\text { And } \left.\frac{v y}{v+3}=y-1\right\}
$$

That is, wy $=v y+v-2 y-2$ from the firs equazion:

Or, $2 y+2=v$:
And $v y=v y-v+3 y-3$ from the second aquaion:

Or, $v=3 y-3:$
Consequently, $3 y-3=2 y+2$; or, $3 y-2 y=$ $2+3:$

Whence, $y=5$, the number of dollars each paid: And $v=2 y+2=12$, the number of persons: Consequently, wy $=60$ dollars, the whole reckoning.
16. To find three numbers v, y and v, the product of each with the fum of the other two being given, viz. $v \times \overline{y+w}=930 ; y \times \overline{v+w}=300$, and $w \times \overline{v+y}=1480$:

Or, $\left\{\begin{array}{l}v y+v w=930=a \\ v y+w y=1300=b \\ v w+w y=1480=c\end{array}\right.$
Then, $v y+v w+v w+w y=a+c$. But $v y+$ $x y=b:$

And therefore, $2 v w=a+c-b ;$ or, vw=$=\frac{a+c-b}{2}$
$A l \int o, v y+v w+v y+w y=a+b: B u t v w+w y$ $=c:$

Wherefore, $2 v y=a+b-c ;$ or, wy $=\frac{a+b}{2}=c$: Again, $v y+w y+v w+w y=b+c:$ But $v y+$ $\infty=a:$

And therefore, we have $2 w y=b+c-a ;$ or, wy $=$ $\frac{b+c-a}{2}$

(339)

$\frac{b+c-a}{2}$.

But $y=\frac{a+b-c}{2 v}$; and by writing this value for y
in the equation, wy $=\frac{b+c}{2}=a$, we bave wy $=$ $\frac{a w+b w-c w}{2 v}=\frac{b+c-a}{2}$; whence by reduction, $v=\frac{a w+b w-c w}{b+c-a}: A l \rho o, v w=\frac{a+c-b}{2} ;$ or, v $=\frac{a+c-b}{2 w}$; and therefore by equality, $\frac{a w+b w-c w}{b+c-a}$ $=\frac{a+c-b}{2 w}:$

Or, $2 a w^{2}+2 b w^{2}-2 c w^{2}=2 a b+c^{2}-b^{3}-a^{2}:$

$$
\text { Whence, } w^{2}=\frac{2 a b+c^{2}-b^{2}-a^{2}}{2 a+2 b-2 c} \text { : }
$$

Or, $\sigma=\sqrt{\frac{2 a b+c^{2}-b^{2}-a^{2}}{2 a+2 b-2 c}}$: Wbichexprefion turned into numbers, and the root extracted, wo will be found $=37$; whence the other numbers are readily found; for $v=\frac{a+c-b}{2 v e}=15$, and $y=\frac{a+b-\varepsilon}{2 v}$ $=25$:
17. Two women went to market with 42 eggs, for which they received equal fums of money; afterwards fays one to the other, if I had fold as many eggs as you, I fhould have received 350 cents; fays the other, if I had fold no more than you, I fhould have received but 14 cents. Query, the number of eggs each fold, and the particular prices fold at ; alfo the number of cents each received.

$$
(340)
$$

Let $0=$ number of eggs fold by one, and y the nunsGer fold by the other; alpo, $u=$ price which v eggs were fold at per egg, and w the price that y eggs were sold per egg.

Then will $\left\{\begin{array}{l}v+y=42 \\ v u=y w \\ v w=350 \\ y u=14\end{array}\right\}$ by the queftion.
From the third equation we have, $v=\frac{350}{w}:$ From the fourth equation, $u=\frac{14}{y}$; and therefore, $v u=$ $\frac{350}{w} \times \frac{14}{y}=\frac{4900}{y w}:$ But $v u=y w$ from the fecond aquation; wherefore, $\frac{4900}{y w e}=y w ;$ or $4900=y^{2} w^{2}$, and $y w=\sqrt{ } 4900=70 ;$ whence, $y=\frac{70}{w}:$ But $y=\frac{14}{u}$ from the fourth equation; consequently $=\frac{70}{w}=\frac{14}{u}$; or, $7 \mathrm{Ou}=14 w ;$ or, $5 u=20$: And by writing $5 u$ for w in the Second equation, we have vu $=5 u y$, or dividing both fides by u, wee fall have $v=5 y:$ But $v=42-y$ from the first equation; therefore $5 y=42-y$; or, $6 y=42 ;$ whence, $y=\frac{42}{6}=7, v=5 y=35, u=\frac{14}{y}$ $=2$, and $w=5 u=10$.
18. Given the fum (s) and product (p) of two quantities, to find the fum of their fquares, cubes, biquadrates, \&c.

Let v and wreprefent the two quantities:
Then will $\left\{\begin{array}{l}v+w=s \\ v w=p\end{array}\right\}$ by the quefion. And

(34 x :)

And $x+y^{2}=x^{2}+2 x y+y^{2}=s^{2}$ by involution: Or, ${ }^{\prime} x^{2}+2 x y+y^{2}-2 x y=s^{2}-2 p$ by subtradt. That is, $x^{2}+y^{2}=s^{2}-2 p=$ fum of the fquares.

Again, $\overline{x^{2}+y^{2}} \times \overline{x+y}=\overline{s^{2}-2 p} \times s$:
Tbat is, $x^{3}+x y \times \overline{x+y}+y^{3}=s^{3}-2 s p:$
Or, $x^{3}+s p+y^{3}=s^{3}-2 s p$ by writing sp for its equal, $x y \times \overline{x+y}$; whence, $\overline{x^{3}+y^{3}}=s^{3}-2 s p-s p$ $=s^{3}-3 s p=$ fum of their cubes.

Allo, $\overline{x^{3}+y^{3}} \times x+y=\overline{s^{3}-3 s p} \times s:$
That is, $x^{4}+x y \times \overline{x^{2}+y^{2}}+y^{4}=s^{4}-3 s^{2} p$; or, (by writing for $x y \times \overline{x^{2}+y^{2}}$ its equal, $s^{2} p-2 p^{2}$) $x^{4}+\overline{s^{2} p-2 p^{2}}+y^{4}=\overline{s^{4}-3 s^{2}} p ;$ whence, $x^{4}+y^{4}$ $=s^{4}-4 s^{2} p+2 p^{2}$. $=$ fum of their fourth powers.

And $\overline{x^{4}+y^{4}} \times \overline{x+y}=\overline{s^{4}-4 s^{2} p+2 p^{2}} \times s$:
Tbat is, $x^{5}+x y \times x^{3}+y^{3}+y^{5}=s^{5}-4 s^{3} p+$ $2 p^{2} s$; and therefore, (by writing for $x y \times \overline{x^{3}+y^{3}}$ its equal $s^{3} p-3 s p^{2}$) we bave, $x^{5}+\overline{s^{3} p-3 s p^{2}}+y^{5}$ $=s^{5}-4 s^{3} p+2 s p^{2}$; and by tranfpefition, we get $\overline{x^{5}+y^{5}}=s^{5}-5 s^{3}+5 s p^{2}$ for the sum of their fifth powers; and fo on for the reft.

C HA P. XVI.

Of QUADRATIC EQUATIONS.

 A QUADRATIC EQUATION, is an eunknown quantity; and is either fimple or adfected. X xA simple quadratic, is an equation which involves only the fquare of the unknown quantity. Thus, $v^{2}=a^{2}$ is a fimple quadratic equation.

But when you have an equation which involves the fquare of the unknown quantity, together with its product with fome known co-efficient, you have what is called an adfected quadratic equation. Thus, $v^{2}+a v=b c$, is an adfected quadratic equation.

All adfected quadratic equations, fall under the three following forms:

$$
\text { viz. }\left\{\begin{array}{l}
v^{2}+a v=b c \\
v^{2}-a v=b c \\
v^{2}-a v=b c
\end{array}\right.
$$

The folution of adfected quadratic equations, or finding the value of the unknown quantity in thofe equations, is performed by the following

$$
R U, L E .
$$

1. Transpose all the terms that involve the unknown quantity to one fide of the equation, and all the terms that are known to the other fide.
2. If the fquare of the unknown quantity is multiplied with any co-efficient, you muft caft off that co-efficient, by dividing all the terms in the equation by it, that the co-efficient of the higheft dimenfion of the unknown quantity may be unity.
3. ADD the fquare of half the co-efficient prefixed to the unknown quantity, to both fides of the equation; and that fide which involves the unknown quantity will then become a complete fquare.
4. Extract the root from both fides of the equation, which will confift of the unknown quantity connected with half the aforefaid co-efficient; and therefore by tranfpofing this half, the value of the unknown quantity will be determined. SOL.

SOLUTION of the THREE FORMS Of QUADRATICS ILLUSTRAT゙ED.

Let it be required to determine the value of v, in the form $v^{2}+a v=b c$.

Fir ft, $v^{2}+a v+\frac{a^{2}}{4}=b c+\frac{a^{2}}{4}$ by adding the $\int q r$.
of $\frac{a}{2}$ to both fides of the equation: Then $v+\frac{a}{2}=$ $\sqrt{ } b c+\frac{a^{2}}{4} b y$ extracting the root of bot $\mathfrak{j i d e s}$; or, $v=$ $\sqrt{ } b c+\frac{a^{2}}{4}-\frac{a}{2}$ by tranfiofition. But the square root of any positive quantity, may be either positive, or negalive ; that is, the Square root of $+n^{2}$ may be either + n or $-n$; for $+n \times+n$; or, $-n \times-n$, areteSpectively equal to $+n^{2}$. It follows therefore, that all quadratic equations admit of two Solutions, that is, the unknoren quantity has two values in the given equation. Thus, in the foregoing example, where $v^{2}+a v+$ $\frac{a^{2}}{4}=b c+\frac{a^{2}}{4}$, we may infer, that $v+\frac{a}{2}=\sqrt{ } b c+\frac{a^{2}}{4}$ $r r_{2}-\sqrt{b c+\frac{a^{2}}{4}} ;$ for, $+\underline{\sqrt{ } b c+\frac{a^{2}}{4}} x+\sqrt{b c+\frac{a^{2}}{4}}$ or, $-\sqrt{ } b c+\frac{a^{2}}{4} \times-\sqrt{b c+\frac{a^{2}}{4}}$ are each equal to $b c$ $\pm \frac{a^{2}}{4}$; and therefore the two values of v, are $v=$ $\sqrt{b c+\frac{a^{2}}{4}}-\frac{a}{2}$ and $v=-\sqrt{b c+\frac{a^{2}}{4}}-\frac{a}{2}:$ which ambiguity
ambiguity is expreffed by writing the uncertain fin \pm before $\sqrt{ } b c+\frac{a^{2}}{4}: T b u s, v+\frac{a}{2}= \pm \sqrt{ } b c+\frac{a^{2}}{4}$ or $v= \pm \sqrt{b c+\frac{a^{2}}{4}-\frac{a}{2} .}$

In the first exprefion for the value of v, viz. $\sqrt{b c+}+\frac{a^{2}}{4}-\frac{a}{2}$, the only negative quantity is $\frac{a}{2}=\sqrt{ } \frac{a^{2}}{4}$ which is evidently less than $\sqrt{ } b c+\frac{a^{2}}{4}$; and corsequently, the value of e is positive: But in the second expreffion, viz. $v=-\sqrt{b c+\frac{a^{2}}{4}}-\frac{a}{2}$ paving $\sqrt{ } b c+\frac{a^{2}}{4}$, and $\frac{a}{2}$ both negative; it. follows, that the value of v mut also be negative.

Again, if $z^{2}-a z=b c:$
Then will $z^{2}-a z+\frac{a^{2}}{4}=b c+\frac{a^{2}}{4}$ by adding the Square of $\frac{a}{2}$ to $b a t b$ sides, and $z-\frac{a}{2}= \pm \sqrt{b c+\frac{a^{2}}{4}}$ by extracting the root; and therefore, $z \div \sqrt{ } b c+\frac{a^{2}}{4}$ $+\frac{a}{2}$ for the positive value of z, and $z=-\sqrt{ } b c+\frac{a^{2}}{4}$ $+\frac{a}{2}$ the negative one; for since $b c+\frac{a^{2}}{4}$ is greater than $\frac{a^{2}}{4}$: consequently, $\sqrt{ } b_{6}+\frac{a^{2}}{4}$ is greater than $\sqrt{ } \frac{a^{2}}{4}$; and
(345)
and therefore, $z=-\sqrt{b c+\frac{a^{2}}{4}}+\frac{a}{2}$ is always a negative quantity.

And in like manner, the value of z determined in the third form, viz. $z^{2}-a z=-b c$, is $z= \pm \sqrt{\frac{a^{2}}{4}-b c}$ $+\frac{a}{2}$, where both the values of z will be pofitive, if $\frac{a^{2}}{4}$ is greater than $b c$; for then $z=\sqrt{\frac{a^{2}}{4}-b c}+\frac{a}{2}$ is $e-$ vidently a pofitive quantity; and in the second value of z, viz. $z=-\sqrt{\frac{a^{2}}{4}}-b c+\frac{a}{2}$, it is plain, tbat $\frac{a^{2}}{4}$ is greater than $\frac{a^{2}}{4}-b c$, fince $\frac{a^{2}}{4}$ is greater than $b c$; and tberefore, the $\sqrt{ } \frac{a^{2}}{4}$ is greater than $\sqrt{\frac{a^{2}}{4}-b_{c}}$; consequently, $z=-\sqrt{\frac{a^{2}}{4}-b c}+\sqrt{\frac{a^{2}}{4}}\left(=\frac{a}{2}\right)$ is a pofitive quantity: But wollen $b s$ is greater than $\frac{a^{2}}{4}$ then $\frac{a^{2}}{4}-b c$ is a negative quantity; and fince the Square of any quantity (wbether pofitive or regative) is always pofitive ; it follows, that $\sqrt{ } \frac{a^{2}}{4}-b c$ is inmpofible, or imaginary; and confequently, $z= \pm$ $\sqrt{\frac{a^{2}}{4}-b c}+\frac{a}{2}$ is imaginary. Therefore, in the tbird
form,

(346)

form, when $b c$ is greater than $\frac{a^{2}}{4}$ the Solution of the equation will be, impofible.

EXAMPLES

Of determining the value of the unknown quacity in quadratic equations.

Given, $x^{2}+4 x=32$, to find the value of x.
First, $x^{2}+4 x+4=32+4$. by adding the square of bali the coefficient to both fides:

Then, $\sqrt{x^{2}+4 x+4}= \pm \sqrt{ } 3^{6}$:
That is, $x+2= \pm 6$; or, $x= \pm 6-2=4$, or
-8: Either of which Jubfituted for x, will produce the given equation.

Given, $3 x^{2}-9 x=-6$, to find x.
: Firn, $x^{2}-3^{x}=-2$ by dividing the whole by 3 :
Then, $x^{2}-3 x+\frac{9}{4}=\frac{9}{4}-2$ by completing the Square:
And therefore, $x-\frac{3}{2}= \pm \sqrt{ } \frac{9}{4}-2$ by extracting the root:

$$
\text { Or, } x=\frac{3}{2} \pm \sqrt{\frac{9}{4}-2}=\frac{3}{2}+\frac{1}{2}=\frac{4}{2}=2
$$

Given, $a v^{2}-b v-c=d$, to find v. First, $a v^{2}-b v=d-c b y$ tranfpofition:

And $v^{2}-\frac{b}{a}=\frac{d-c}{a}$ by divifion:
Therefore,

(347)

Therefore, $v^{2}-\frac{b}{a} v+\frac{b^{2}}{4 a^{2}}=\frac{d-c}{a}+\frac{b^{2}}{4 a^{2}}$ by complating the Square:
Whence, v- $\frac{b}{2 a}= \pm \sqrt{\frac{d-c}{a}+\frac{b^{2}}{4 a^{2}}}$ by cevobuion :

$$
\text { Or, v}=\frac{b}{2 a} \pm \sqrt{\frac{d-c}{a}+\frac{b^{2}}{4 a^{2}}} \cdot \text { by } \operatorname{tran} f \text { ofition. }
$$

All equations, wherein there are two terms which involve the unknown quantity, whore index in one term, is jut double its index in the other, are reduce to equations of lower dimenfions, in the fame manner as quadratics.
Thus, $v^{6}+b v^{3}=d$; and $v^{n}+b v^{\frac{n}{2}}=c$, arereduce by completing the fquare, and extracting the root, as in quadratics; and the value of the unknown quantity determined by extracting the root of the refulting equation; as in the following

EXAMPLES.

Given, $v^{4}-2 v^{2}=224$, to find the value of v.
First, $v^{4}-2 v^{2}+1=224+1=225$ by complating the Square:

And $v^{2}-1=\sqrt{225}$ by evolution: Or, $v^{2}=\sqrt{225}+1$ by transpofition:

Whence, $v=\sqrt{225+11^{\frac{1}{2}}}=4$.
Given, $b v^{n}+c v^{\frac{n}{2}}-d=e$, to find τ.
Fire, $b v^{n}+c v^{\frac{n}{2}}=c+d$ by tranfpofition. Then, $v^{n}+\frac{c}{b} v^{\frac{n}{2}}=\frac{e+d}{b}$ ty division:

(34^{8})

And $v^{n}+\frac{c}{b} v^{\frac{n}{2}}+\frac{c^{2}}{4 b^{2}}=\frac{c+d}{b}+\frac{c^{2}}{4 b^{2}}$ by com plating the Square:

Therefore, $v^{\frac{n}{2}}+\frac{c}{2 b}= \pm \sqrt{\frac{e+d}{b}+\frac{c^{2}}{4 b^{2}}}$ by evolu: sion.

Whence, $v= \pm \sqrt{\frac{\overline{e+d}}{b}+\frac{c^{2}}{4 b^{2}}}-\left.\frac{c}{2 b}\right|^{\frac{n}{2}}$.

CHAP. XVII.

The SOLUTION of a Variety of QUESTIONS, Producing QUADRATIC EQUATIONS.
x. TJ HAT two numbers are thole, whole fum is 20 , and their product 96 ?
Call one of the numbers w; then will $20-w$ be the. other:

And $w \times \overline{20-w}=96$ by theqquefion:
That is, $20 w-w^{2}=96$:
Or, $v^{2}-20 w=-96$ by tranjpofition:
And $w^{2}-20 w+100=100-96$ by completing the Square:

Therefore, $w-10= \pm \sqrt{100-96}= \pm \sqrt{ }$ $= \pm 2$ by coevolution:

Or, $w= \pm 2+10=12$ or 8 ; and $20-w=20$ $-12=8$ the other number.
2. What two numbers are tho fe, whole fum is 36_{2} and the fum of their fquares 720 ?

Put w for the greater number:
Then will $36-w=$ the other:

And $w^{2}+\overline{36-w}^{2}=720$ by the quefion:
That is, $w^{2}+1296-72 w+w^{2}=720$:
Or, $22 v^{2}-72 w=-576$ by $\operatorname{tranfpofition:~}$ And $w^{2}-36 w=-288$ by division:
Wherefore, $w^{2}-36 w+324=324-288=35$ by completing the Square:

Consequently, w- $18= \pm \sqrt{ } 36=6$ by evolution: Or, $w=6+18=24$, and $3^{6}-w=3^{6}-24$ $=12$:
3. What number being divided by the product of its two digits, the quotient will be 2 ; and 1 f. 27 be added to it, the digits will be inverted ?

Put w and y for the two digits:
Then will 10 w $+y$ be the number fought, by the nature of notation :

$$
\left.\begin{array}{l}
\text { And } \frac{10 w+y}{w y}=2 \\
y+27=10 y+w
\end{array}\right\} \text { by the quefion: }
$$

Or, $9 w=9 y-27$ by tranfpofition:
And $w=\frac{9 y-27}{9}=y-3:$
But $10 w+y=2 w y$; whence, (by writing for w its equal $y-3$, in the equation $10 w+y=2 w y$) we get $10 y-30+y=2 y^{2}-6 y$:

Or, $17 y-2 y^{2}=30 ;$ or, $2 y^{2}-17 y=-30 \quad$ by transposition:

Whence, $y^{2}-8 \frac{1}{2} y=-15$ by divifon:
And $y^{2}-8 \frac{1}{2} y+\frac{289}{16}=\frac{289}{16}-15=\frac{49}{16}$ by com. plating the Square:

Consequently,

$$
(350)
$$

Conjequentiy, $y=\frac{17}{4}+\frac{7}{4}=\frac{24}{4}=6$, and $w=y-3$ $=3$:

Therefore 36 is the number required.
4. To find three numbers in geometrical proporion continued, whore fum is 78 ; and if the fum of the extremes be multiplied with the mean, the product will be 1080 .

Fut v $=$ leaf extreme, and z the greater ; also, $y=$ nisan:
$\left.\begin{array}{l}\text { Then will } v+y+z=78 \\ \text { And } v+z x y=1080\end{array}\right\}$ by the question.
That is, $v y+z y=1080$; and $v y+y^{2}+z y=78 y$ by multiplying the first equation with y;

Whence, $y^{2}=($ by writing for vo $+z y$ its equal 1080$)$ $78 y$ - 1080,

$$
0 r, y^{2}-78 y=-1080:
$$

And $y^{2}-78 y+1521=1521-1080=441$ by completing the square:

And therefore, $y-39= \pm \sqrt{ } 441= \pm 21$ by evolutesion:

Or, $y=39 \pm 21=$ (because $39+21=60$, is greater than the fum of the extremes, which is absurd) $39-21=18:$

But,vz $=y^{2}=324$ by the nature of the proportion:
Consequently, $v=\frac{324}{2}$, which wrote for in the e-
quation $v y+z y=1080$, gives $\frac{324 y}{z}+z y=1080$:
That is, $5932+18 z^{2}=1080 z$:
Or, $18 z^{2}-1080 z=-5932$ by tranfpofition :
And $z^{2}-60 z=-324$ by division:
Therefore, $z^{2}-60 z+900=900-324=576 . b y$ completing the Square:
(351)

Whence, $z-30= \pm \sqrt{576}= \pm 24$ by evolution:
Or, $z=30+24=54$, and $v=78-z-y=78$
$-54-18=6$. Therefore, 6,18 , and 54 , are the numbers required.
5. There are three numbers in geometrical progreffion, whole fum is 117 , and the fum ot their squares 737 I : What are thole numbers?

Call the numbers x, y and v :
$\left.\begin{array}{l}\text { Then will } x+y+v=117 \\ \text { And } x^{2}+y^{2}+v^{2}=7371\end{array}\right\}$ by the question.
AlSo, $x v=y^{2}$ by the nature of the proportion:
And $x+v=117-y$ by the first equation:
Whence, $x^{2}+2 x v+v^{2}=13689-234 y+y^{2}$ by involution:

But, $2 x v=2 y^{2}$, which fubfituted for $2 x v$ in the lat equation, gives $x^{2}+2 y+v^{2}=13689-234 y+$ y^{2} :

$$
\text { Or, } x^{2}+v^{2}=13689-234 y-y^{2}:
$$

But, $x^{2}+v^{2}=7371-y^{2}$ by the Second equation:
Consequently, $7371-y^{2}=13689-234 y-y^{2}$:
Or, $234 y=13689-7371=6310:$
Whence, $y=\frac{6310}{234}=27$, and $x v=y^{2}=729$:
Or, $x=\frac{729}{v}$, which fubfituted in the equation $x+$

$$
\begin{aligned}
& y+v=117, \text { gives } \frac{729}{v}+27+v=117 ; \text { or, } \frac{729}{v} \\
& +v=117-27=90:
\end{aligned}
$$

Whence, $729+v^{2}=90 v$ by multiplication:
Or, $v^{2}-90 v=-729$ by $\operatorname{tranfpofition:~}$
And therefore, $v^{2}-900+2025=2025-729$
$=1296$ by completing the Square:
Consequently,

(352)

Consequently, $v-45= \pm \sqrt{ } 1296=36$ by evolutimon:

Or, $v=45+36=81$, and $x=\frac{729}{v}=9$.
And the numbers required, are $9,27,81$.
MISCELLANEOUS QUESTIONS, with their SOLUTIONS.

1. Suppose two cities, A and B,-whore diftance from each other is 216 miles; and that two coutiers fer out at the fame time, one from A, and the other from B; the firft travels 10 miles a day, and the other 4 miles lefs than the number of days in which they will meet. Query the number of days before they meet?

Put $\kappa=$ number of days required:
Then will $10 x+\overline{x-4} \times x=216$ by the question:
That is, $10 x+x^{2}-4 x=216$; or, $x^{2}+6 x=$ $216:$

And $x^{2}+6 x+9=216+9=225:$
Whence, $x+3= \pm \sqrt{225}=15$; or, $x=15-3$ $=12$, the number of day's required.
2. A traveller fees out from the city A, and traveld at the rate of 9 miles an hour; and another at the fame time fats out from the fame city, and follows him, travelling the firft hour 4 miles; the fecong 5 ; the third 6, and fo on, in arithmetical progrelfion: In what time will he overtake the firft?
Put $x=$ number of hours in which the frA will be overtaken:

Then will $9 x=$ the diffance be travels:
And $\overline{x-2} \times 1+\overline{4+4}=x+7:$

(353)

And $\overline{x+7} \times \frac{1}{2}=\frac{x^{2}+7 x}{2}=$ distance the other travels before be overtakes the fir ρ, by the nature of the proportion: Consequently, $\frac{x^{2}+7 x}{2}=9 x$ by the que fton:

Or, $x^{2}+7 x=18 x:$ Whence, $x+7=18 ;$ or, x $=11$ bour, the time required.
3. There are four numbers in geometrical progreffion, the fum of the extremes is 8.4 , and the fum of the means 36 : What are thole numbers?

Put v and y for the means:
Then will $\frac{v^{2}}{y}$ and $\frac{y^{2}}{\psi}$ be the extremes by the nature of the proportion:

$$
\left.\begin{array}{r}
\text { Therefore, } v+y=36=a \\
\frac{v^{2}}{y}+\frac{y^{2}}{v}=84=b
\end{array}\right\} \text { by the quefion: }
$$

Or, $y^{3}+y^{3}=v y x^{b}=$ (by writing p for $v y$) $p b$.

But, $v^{3}+y^{3}=$ (by problem 18 of the lat chap.) $a^{3}-3 a p:$

Consequently, $p_{b}=a^{3}-3 a p ;$ or $p=\frac{a^{3}}{b+3^{a}}=$ c by fubfitution:

Therefore, $v^{3}+y^{3}=b c ;$ or, $v^{3}=k c-y^{3}:$
But, $v=a-y$; therefore, $v^{3}=a^{3}-3 a^{2} y+$ $3 a y^{2}-y^{3}=$

Consequently, $a^{3}-3 a^{2} y+3 a y^{2}-y^{3}=b 6-y^{3}:$ or, $a^{3}-3 a^{2} y+3 a y^{2}=b c$:

Or $3 a y^{2}-3 a^{2} x=b c-a^{3}$:
And therefore, $y^{2}-a y=\frac{b c-a^{3}}{3 a}$:

(354)

And. $y^{2}-a y+\frac{a^{2}}{4}=\frac{b c-a^{3}}{3 a}+\frac{a^{2}}{4}=\frac{4 b c-a^{3}}{12 a}:$
Whence, $y-\frac{a}{2}= \pm\left.\frac{\overline{4 b c-a} a^{3}}{12 a}\right|^{\frac{1}{2}}=9 ;$ or, $y=9+$
$\frac{a}{2}=27$, and v$=35-y=9$; therefore, $\frac{v^{2}}{y}=3$, and $\frac{y^{2}}{v}=8 \mathrm{I}$,

- Consequently, 3, 9, 27 and 8 r , are the inmbers require.

4. Suppofe two cities, A and B, whore diftance from each other is 152 miles; and that two men fer out at the fame time from thole cities to meet each ether ; the one which goes from A, travels the firlt day 5 mile, the fecond day 2 , the third day 3 , and fo on; and the one which fess out from B, , goes the firft day 4 miles, the fecond day 7 , and the third 10 , and fo on. Query the number of days before they meet, and the number of miles that each travels?

Put $y=$ number of days before they meet:
-Then roil $\frac{y^{2} \cdot+y}{2}+\frac{3 y^{2}+5 y}{2}=152$ by the queftion: $=$ T. rat is, $\frac{4 y^{2}+6 y}{2}=152 ;$ or, $4 y^{2}+6 y=304$:

Where e $y^{2}++^{2} 3 y=76$

$$
\begin{aligned}
& \text { And } y^{2}+\frac{3}{2} y+\frac{9}{16}=76+\frac{9}{16}=\frac{1225}{16}: \\
& \text { Or, } y+\frac{3}{4}= \pm 1 \frac{1225}{16}=\frac{35}{4} ; \\
& =8 \text {, and } y=\frac{35}{4}-\frac{3}{4}
\end{aligned}
$$

355.)

Consequently, $\frac{y^{2}+y}{2}=-36$, the number of miles travelled by the one wobich fat out from A, and $\frac{3 y^{2}+5 y}{2}=115$, the diftance travelled by the other.

CHAP. XVIII.

Of the GENESIS, or FORMATTON of E2UATIONS in GENERAL.

ALL equations of fuperior order, are confidered, as produced by the multiplication of aquatons of inferior orders, that involve the fame unknown quantity.

Thus, a quadratic equation may be confidered as generated by the multiplication of two fipple equatons; a cubic equation by the multiplication of three fimple "equations, or one quadratic" and one fimple equation; and a biquadratic equation by the multiplication of four dimple equations, or two quadratio equations, or one cubic and one fimple equaton.

- Suppose wo to be the unknown quantity, and a, z_{2} $c, d, \& x c$. its feveral values in any fimple equation:

That is, $w=a, w=b, w=c, w=d, 8 c c$. Then by tranfpofition, w-a=0,w-b=0,w-c= $0, w-d=0,8 c$. And the product of two of the ie equations as $\overline{w-a} \times \overline{w-b}=0$, gives a quadratic equation, or one of two dimenfions.

The product of any three; as $\overline{w-a} \times \overline{20-b} \times$ $\overline{w-c}=0$, produces a cubic equation, or one of three dimenfions.

The product of any four of thenff; as $\overline{w-a} \times$ $\overline{w-b} \times \overline{w-c} \times \overline{w-d}=0$, produces a biquad. ratic equation, or one of four dimenfions.

Hence it appears, that in every equation, the higeft dimenfion of the unknown quantity, is equal to the number of fimple equations that generate that equation; and therefore it follows, that every equation has as many roots, or values of the unknown quantity, as there are units in the higheft dimenfion of that unknown quantitv. For fuppofe an equation $=\overline{w-a} \times w-b \times w-6=0$; and that for w you fubfitute any of its values (a, b or c) in the given equation, then all the terms of an equation will vanifh; for if $w=a, w=b$, and $w=c$, then $\overline{w-a}$ $x w-b \times w-c=0$, becaufe each of the factors are equal to nothing. And after the fame manner, it appears, that there are three fuppofitions that give $\overline{w-a} \times \overline{w-b} \times \overline{w-c}=0$: But fince there are no other quantities befides there a, b, c, which fubftituted for win the equation $w-a \times \overline{w-b} \times$ $w-c=0$, will make all the terins vanifh; it follows, that the equation $\overline{w-a} \times \overline{w-b} \times \overline{w-c}=$ 0 , can have no more than thefe three roots, or admit of more than three folutions. For if you fubftisute for $z v$ in the propofed equation, any other quantity c, which is neither equal to a, b; nor c; then neither $\overline{e-a}, \overline{e-b}, \overline{e-c}$, is equal to nothing; and confequently their product $\overline{e-a} \times \overline{e-b} \times \overline{e-c}$, cannot be equal to nothing, but muft be fome real product: So that no other quantity, befides one of thofe before-mentioned, will give a true value of w in the propofed equation. And therefore, no equacion can have more roots than it contains dimenfions of the unknown quantity.

To be more plain: Suppofe that $x^{4}-10 x^{2}+35 x^{2}$ $-50 x+24=0$, is the equation to be refolved; and that you find it to be the fame as the product of $x-1 \times x-2 \times x-3 \times x-4$: Then you will infer, that the four roots or values of x, are 1,2 , 3 , and 4 ; for any of thefe numbers fubfituted for x, will make that product, and confequently, x^{4}. $10 x^{3}+35 x^{2}-50 x+24$ equal to nothing, according to the propofed equation.

THE roots of equations are either pofitive or negative, according as the roots or values of the unknown quantity in the fimple equations which produce them, are pofitive or negative. Thus, if $v=-a$, $v=-b, v=-c, v=-d$; then will $v+a=0$, $v+b=0, v+c=0$, and $v+d=0$; and confequently, $\overline{v+a} \times \overline{v+b} \times \overline{v+c} \times \overline{v+a}=0$, will be an equation whofe roots $-a,-b,-\vec{c},-d$, are all negative. And after the fame manner, if $v=a, v=-b, v=c$, the equation $\overline{v-a} \times \overline{v+b}$ $X v-c$, will have its roots $+a,-b,+c$.

But to difcover when the roots of an equation are pofitive, and when negative, and how many there are of each kind, it will be neceffary to confider the figns and co-efficients of equations, generated from the multiplication of thofe fimple equations that produce them; which will be beff underftood by confidering the following table, where the fimple equations $v-a$, $v-b, v-c$, \& x. are multiplied continually with one another, and produce fuccelfively the higher equations.

$$
\begin{aligned}
& 358 \quad \\
& \begin{array}{l}
\begin{array}{r}
v-a \\
\times v-b
\end{array} \\
\left.\begin{array}{rl}
v^{2} & -a v \\
-b v
\end{array}\right\}+a b=0, a \text { quadratic }
\end{array} \\
& \overline{x-c} \\
& \left.\left.\begin{array}{r}
=v^{3}-a \\
-b \\
-c
\end{array}\right\} \times \begin{array}{r}
\\
\\
\\
+a b \\
+b c
\end{array}\right\} \times v-a b c=\begin{array}{r}
0, a c u b i c \\
\text { [equation }
\end{array} \\
& x \overline{v-d}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{r}
+a d \\
+b c \\
+b d \\
+c d
\end{array}\right\} \times \begin{array}{r}
\\
+\quad-a b c \\
-a b d \\
-a c d \\
-b c d
\end{array}\right\} \times v+a b c d=
\end{aligned}
$$

Etc.

From the infection of there equations it appears that the coefficient of the firft term is unity or 1 .

The co-efficient of the fecond term, is the fum of all the roots (a, b, c, d) with contrary fins.

The co-efficient of the third term, is the fum of all the products of thole roots that can poffibly be made by multiplying any two of them together.

The coefficient of the fourth term, is the fum of all the products of the roots that can be made by combining
combining them, three and three : And fo on for any other co-efficient. The laft term is always the product of all the roots, having their figns changed:

Notwithstanding thofe fimple equations made ufe of in the foregoing table, in forming the higher $\mathrm{e}=$ quations, are fuch as have pofitive roots; yet the fame reafoning holds, whether the roots are pofitive or negative. Whence, if $v^{4}-p v^{3}+q v^{2}-r v+s=0$, reprefents a biquadratic equation; then will p be the furn of all the roots, q the fum of all the products made by multiplying any two of them together, r the fum of all the products made by multiplying any three of them together, and s the product of all four.

It likewife appears from infpection, that the figns of the terms in any equation in the foregoing table, are alternately + and - : The firt term is always fome pure power of v, and is pofitive: The fecond term is fome power of v, multiplied with the quantities, $-a,-b,-c, \& c$. and fince thefe quantities are all negative, it follows, that the fecond term muft alfo be negative. The third term hath for its co-efficient the product of any two of thefe quantities, $\left(-a,-b,-c, \mathcal{E}_{6}\right.$.) and fince $-X-$ gives + ; it follows, that the third term mult be pofitive. For the fame reafon, the co-efficient of the fourth term, which is formed of the products of any three of there negative quantities, mult be negative alfo, and the co-efficient of the fifth term pofitive. But in this care, $v=a, v=b, v=c, v=d$, \&c. that is, the roots are all pofitive: Confequently, when the roots of an equation are all pofitive, the figns of the terms are + and - alternately. But, when the roots are all negative; that is, $v \equiv-a, v=-b$, $v=-c, v=-d, \& c$. then $\overline{v+a} \times \overline{v+b} x$ $\overline{v+c} \times \overline{v+d}=0$, will exprefs the equation produced
duce, whole terms are evidently all pofitive. And therefore when the roots of an equation are all nega. five, there will be no change in the figns of the terms. Confequently, there will be as many pofitive roots in an equation, as there are changes in the figs of the terms of that equation, and the reft of the roots will be negative.

Hence it follows, that the roots of a quadratic eguation may be both negative, or both pofitive, or one negative and the other pofitive. Thus, in the equation $\left.\left.v^{2}-a,\right\} \times v+a b=\overline{(v-a} \times \overline{v-b}\right)$
0 , there are two changes of the figns, viz. the firft term is pofitive, the fecond negative, and the third pofitive ; confequently, the roots are both pofitive.

Bur in the equation $\left.v^{2}+a\right\} \times v+a b=\overline{(v+a}$
$x \overline{v+b})$, there are no change in the figns, and therefore both the roots are negative.

AND in like manner, in the equation $v^{2}+a, b x$ $\tilde{v}-a b=\overline{(v+a} \times \overline{v-b)} 0$, one of the roots will be pofitive, and the other negative ; for fince the firn term is pofitive, and the laft negative, it is plain, there can be but one change in the figns, whethe the fecond term is pofitive or negative.

Hence aldo it appears, how that a cubic equation may have all its roots pofitive, or all negative, or two pofitive and one negative; or two negative and one pofitive. For fuppofe the cubic equation is,

$$
\left.\left.\begin{array}{r}
v^{3}-a \\
-b
\end{array}\right\} \times v^{2}+a b+\begin{array}{r}
+a c \\
+b c
\end{array}\right\} \times v-a b c=\overline{(v-a} \times
$$

(351)

$\overline{v-6} \times \sqrt[v-c]{ } 0$, wherein there are three changes in the figns; and confequently all three of the roots pofitive.

AGAIN, fuppofe the cubic equation is of this form, $\left.\begin{array}{r}v^{3}-a \\ -b \\ +c\end{array}\right\}$

$$
\left.\begin{array}{r}
\times v^{2} \neq a b \\
-a c \\
-b c
\end{array}\right\}
$$

$$
x v+a b c=\overline{(v-a} x
$$

$\overline{v-b} \times \overline{v-c}) 0$, where-there are two changes in the figns; for if $a+b$ is greater than c, then the fecond co-efficient - $a-b+c$ muft be negative ; if $a \neq b$ is lefs than c, then the third term will be negative ; for its co-efficient $\overline{a b-a c-b c}(=a b-c$ $x \overline{a+b)}$ is, in this cafe negative, becaufe the produet $a \times b$ is always lefs than the fquare $\overline{a+b \times a+b}$ and confequently, much lefs than $c \times \overline{a+b}$; and fince there cannot be three changes in the figns, the firl and lat terms having the fame fign; it follows, that tivo of the roots of the propofed equation are pofitive, and the other negative.

In like manner, the equation $v^{3}+a+b-v^{2}$ $+\overline{a b-a c-b c v-a b c=0 \text {, will have two of its roots }}$ negative, and the other pofitive ; for if $a+b$ is lefs tha c, the fecond and third terms muft be'negative, by what was proved in the laft example; and if the fecond term is pofitive, that is, $a+b$ is greater than c, it is plain there can be but one change in the figns, and confequently but one pofitive root, the other two being negative.

And by parity of reafon, the pofitive and negative roots of the other equations may be difcovered;

(362)

this method being general, and extends to all kinds of equations whatever.

C H A P. XIX.

CONCERNING the TRANSFORMATION of EQUATIONS, and EXTERMINATING their INTERMEDIATETERMS.

AN Y equation may be transformed into another, whofe roots fhall be greater, or lefs than the roots of the propofed equation by any given difference (ε) by the following

$$
R \cup L E .
$$

Assume a new unknown quantity (y) and connect it with the given difference (e), with the fign + or -, according as the roots of the propofed equation are to be increafed, or diminifhed ; and make this aggregate equal to the unknown quantity (x) in the propofed equation; then inftead of the unknown quantity (x) and its powers in the propofed equation, fubftitute this aggregate, $(y \pm e)$ and its powers; and there will arife a new equation, whofe roots will be greater or lefs than the roots of the propofed equation, as required.

EXAMPLES.

1. Let $x^{3}-p x^{2}+q x-r=0$, be an equation to be transformed into another whofe roots Thall be lefs than the roots of the propofed equation, by the difference c.

(363)

Afume $x=y+e:$
Then will $x^{3}=y^{3}+3 y^{2} e+3 y e^{2}+e^{3}$

$$
\begin{array}{r}
-p x^{2} \equiv-p y^{2}-2 y e-p e^{2} \\
+q x \equiv \\
-r
\end{array}
$$

2. Let $x^{2}-$ II $x+30=0$, be transformed into an equation that fhall have its roots lefs than the roots of the propofed equation by the difference 4.

$$
\begin{aligned}
& \text { Aكume } x=y+4: \\
& \text { Then, } x^{2}=y^{2}+8 y+16: \\
& -11 x=-11 y-44 \\
& +30=\frac{130}{y^{2}-3 y+2=0 \text {, is the equation required. }}
\end{aligned}
$$

In the firft example of the foregoing transformations, the co-efficient of the fecond term in the tranfformed equation, is $3 e-p$; and if you fuppofe $e=$ $\frac{1}{3} p$, and therefore, $3 e-p=0$; then the fecond term of the transformed equation will vanifh. Let the propofed equation be of n dimenfions, and the co-efficient of the fecond term - p; and fuppofe \approx $=y+\frac{p}{n}$; then if this value be fubftituted for m in the propofed equation, there will arife a new equation that fhall want the fecond term. For if $p=$ fum of all the roots of the propofed equation, and x $=y+\frac{p}{n}$; it follows, that each value of y in the new equation, will be lefs than the value of x in the propofed equation, by $\frac{p}{n}$; and fince the number of roots is n, it follows, that the fum of the values of y, will be

(364)

be lefs than p, the fum of the values of x, by $\% x \frac{p}{n}$ $=p$; that is, the fum of the values of y, is $+p-p$ $=0$; and fince the co-efficient of the fecond term in the equation of y, is the fum of the values of y, viz. $+p-p$, which is equal to nothing; it follows, that in the equation of y, arifing from the fuppofition of $x=y+\frac{p}{n}$, the fecond term muft vanifh: And therefore the fecond term of any equation may be exterminated by the following

$$
R U L E
$$

Divide the co-efficient of the fecond term of the propofed equation by the index of the higheft power of the unknown quantity; and affume a new unknown quantity (y) and annex to it the faid quotient with its fign changed; then put this aggregate equal to the unknown quantity (x) in the propofed equation, and inftead of x and its powers, write this aggregate and its powers, and the equation that arifes fhall want the fecond term.

EXAMPLES.

Let the equation $x^{2}-8 x+12=0$, be propofed to have its fecond term exterminated.

Firf, $-8 \div 2=\div 4$:
Therefore, $x=y+4$, per rule:
Then, $x^{2}=y^{2}+8 y+16$
$-8 x=-8 y-32$
$2.12=\frac{+12}{y^{2}} *-4=0$
Hence,

Hence it appears, that a quadratic equation may be refolved without completing the fquare, by exterminating the fecond term ; for fince $y^{i}-4=0$; or, $y^{2}=4$, and $y=\sqrt{ } 4$, we fhall have $x=y+4=$ $4+4=6$.
Let the fecond term of the equation $x^{3}-9 x^{2}+$ $26 x-34=0$, be exterminated.

$$
\begin{aligned}
& \text { Firft, } x=y+\left(\frac{9}{3}\right) 3 \text { : } \\
& \text { Then, } x^{3}=y^{3}+9 y^{2}+27 y+27 \\
& \begin{array}{rrr}
-9 x^{2}= & -9 y^{2}-54 y-81 \\
+26 y+78 \\
+24= & -34 \\
-34 & -y-10=0 .
\end{array}
\end{aligned}
$$

When the fecond term in any equation is wanting, it is plain, that the equation hath boch pofitive and negative roots ; and fince the co-efficient of the fecond term in any equation, is the difference between the fum of the pofitive, and fum of the negative roots ; it follows therefore, that when the pofitive and negative roots are made equal to each other, that difference vanifhes. Confequently, when an equation has the fecond term wanting, the fum of the pofitive roots is equal to the fum of the negative ones.

Hence, by the foregoing transformation of equations and the exterminating their fecond terms, the pofitive and negative roots are reduced to an equality, and the folution of the equation thereby rendered more eafy.
IF the equation $v^{3}-p v^{2}+q v-r=0$, be transformed into another, by affuming $v=y+e$, the co-efficient of the third term of the transformed equation will be $3 e^{2}-2 p e+q$; now if we fuppofe this Aаа
eo-efficient equal to nothing and refolve the quad. ratic $3 e^{2}-2 p+q=0$ we fhall havee $=\frac{p+\sqrt{p^{2}}-3 q}{\text { so }}$ which fubitituted for e in the equation $v=y+\varepsilon$, the third term of the transformed equation will vanin : Alfo, if the propoled equation be of n dimentfions, the value of e, by which the third term is to be exterminated, is found by refolving the quadratic equation $e^{s}+\frac{2 p}{n} x e+\frac{2 q}{n \times \frac{1}{n-1}}=0$, that is, by finding the value of e in the co-efficient of the third term of the transformed equation, when that co-efficient is equal to nothing. And in like manner, the fourth term of any equation may be exterminated, by folving a cubic equation, which is the co-efficient of the fourth term of a transformed equation : And after the fame manner, the other terms may be taken away.

There are other transformations which are of ufe in the refolution of equations; of which the moft ufeful, and the only one that we Thall confider, is, when the higheft term of the unknown quantity is multiplied with fome given quantity, to transform the equation into another that fhall have the co-efficient of the higheft term unity.
LeT the propofed equation be $a v^{3}-p v^{2}+q v-$ $r=0$; and fuppofe $a v=y$, then $v=y \div a$, and this value fubftituted for v in the propofed equation, there willarife $\frac{a y^{3}}{a^{3}}-\frac{p y^{2}}{a^{2}}+\frac{q y}{a}-r=0$, or $\frac{y^{3}}{a^{2}}$ $-\frac{p y^{2}}{\frac{a^{2}}{}}+\frac{q y}{a}-r=0$, and by multiplying the whole by a^{2}, we fhall have $y^{3}-p y^{2}+q a y-r a^{2}$ $=0$; which gives the following

- haup gify guloiss $\mathrm{b} \boldsymbol{R} \boldsymbol{U} \boldsymbol{L} \boldsymbol{E}$ 。 os laupe fnoiontio-0s

Cifang e the unknown quantity (v) in the propof: ed equation, into another (y), prefix no co-efficient to the firft term, pafs the fecond, multiply the third term with the co-efficient of the higheft term of the cunknown quantity in the propofed equation, and the fourth term by the quare of that co-efficient, the fifth by the cube; and fo on, and the higheft term of the unknown quantity in the refulting equation Thall have its co-efficient unity, as required.

EXAMPLES.

- Let the equation $2 v^{2}+6 v-36=0$, be changed Anto another that will have unity for the co-efficient of the higheft term of the unknown quantity.
?MTbus, $y^{2}+6 y-36 \times 2=0 ;$ or, $y^{2}+6 y-72$ $=0$, is the equation required.

The finding the roots of the propofed equation, and all others of the like kind, will be very eafy when the roots of the transformed equation are found; fince ${ }^{2} \cdot \bar{T}=$ (in this cafe) $\frac{1}{2} y$.

Transform the equation $5 v^{3}-10 v^{2}+16 v-93$ $=0$, into another that the higheft term of the unknown quantity may have an unir for its colefficient. Thus, $y^{3}-10 y+80 y-2325=0$, is the equation required.

(368)

CHAP. XX.

Of the RESOLUTION of EQUATIONS by DIVISORS.

IF the laft term of an equation is the product of all its roots; it follows, that the roots of an equation when commenfurable, will be found among the divifors of the laft term; which gives the fol lowing

$$
R \cup \mathcal{L} E ;
$$

1. Transpose all the terms to one fide of the equation. Find all the divifors of the laft term, and fubftitute them fucceffively for the unknown quantity in the propofed equation; and that divifor, which fubftituted as aforefaid, gives the refult $=0$, is one of the roots of the equation. But if none of the divifors fucceed, the roots of the equation are for the moft part, either irrational or impoffible.

Note. If the laft term of the propofed equation is large, and confequently its divifors numerous; they may be diminibed, by transforming the equation into another, by the rules of the lafi cbapter.

EXAMPLES.

Gives,

(369)

-5 We omit trying the negative divifors, fince there are three changes in the figns of the propofed equation, and therefore none of its roots can be negative: And fince none of the divifors fucceed, except 2 ; it follows, that 2 is the only rational root of the equation, the other two being either irrational, or impoffible.

Let it be required to find the roots of the equa$\operatorname{tion} x^{3}+2 x^{2}-40 x+64=0$.

Here the divifors of the laft term, are $1,2,4,8$, 16, 32, which fubfituted Juccelfively for x in the propofed equation,
Gives, $\left\{\begin{array}{l}1+2-40+64=27 \\ 8+8-80+64=0 \\ 64+32-160+64=0\end{array}\right.$

- Where the only divifors that fucceed, are 2, and 4; and fince there are but two changes in the figns of the propofed equation, there muft be one negarive root: We are therefore to fubftitute the divifors negatively taken, in order to difcover the other value of x; and on trial, we find that -8 fucceeds. Therefore the three roots of the propofed equation, are +2 $+4-8$.

But when one of the roots of an equation is found, the relt of the roots may be found with lefs trouble, by dividing the propofed equation by the fimple equation, deduced from the root already found, and
finding

(370$)$

finding the roots of the quotient, which will be an equation a degree lower than the propofed one.

Thus, in the laft example the root +2 firt found, gives $x=2$; or, $x-2=0$, by which dividing the propofed equation: Thus, $x-2) x^{3}+2 x^{2}-40 x+64\left(x^{2}+4 x-32\right.$

$$
\begin{aligned}
& 4 x^{2}-40 x \\
& 4 x^{2}-8 x
\end{aligned}
$$

$-32 x+64$
$-32 x+64$

The quotient will be a quadratic equation $x^{2}+$ $4 x-32=0$; which is the product of the other two fimple equations, from which the propofed cubic was generated; and whofe two roots are confequently, two of the roots of that cubic. But the two roots of the quadratic, are +4 and -8 . Therffore, the three roots of the cubic equation, are $2,4,-18$, the fame as before.

The finding all the divifors of the laft term of an equation, efpecially if that term be large, is much facilitated by the following

$$
R \cup L E .
$$

1. Divide the laft term by its leaft divifor that ex--ceeds unity, and the quotient by its leaft divifor; proceeding in this manner, till you have a quotient -that is not farther divifible by any number greater than aǹ unit: And this quotient together with thofe divifors, are the firt divifors of the daft terma
2. Find all the products of thofe divifors which arife by combining them two and two, and all the products which arife by combining them three and three, and fo on, until the continued product of the firf divifors, is equal to the quantity to be divided; and you will have the divifors required.

EXAMPLES.

Thus, fuppofe the laft term of an equation to be 60 : Then $60 \div 2=30,30 \div 2=15,15 \div 3=5$; therefore, $\overline{2 \times 2}, \overline{2 \times 3}, \overline{2 \times 5}$, and $\overline{3 \times 5}$, are the combinations of the twos; and $2 \times \overline{2 \times 3}, 2 \times 2 \times 5$, $2 \times \overline{3 \times 5}$, the combinations of the threes; alfo, $2 \times 2 \times 3 \times 5$, is the combination of the fours = their continued product, equal to the quantity to be divided. Therefore all the divifors of 60 , are $2,3,5$, $14,6,10,15,12,20,30,60$.

And in like manner, the divifors of roab, are 2,5 , $a, b, 10,2 a, 2 b, 5 a, 5 b, a b$, 10 $a, 5 a b, 2 a b$ and $10 a b$.

But there is another method for the reduction of nequations by divifors, which is lefs prolix, by reducing the divifors to more narrow limits, by the following

$$
R U L E .
$$

1. INSTEAD of the unknown quantity in the pro--pofed equation, fubftitute fucceffively the terms of the progretion, $1,0,-1,8 \mathrm{c}$. and find all the diviIOOIs of the fums that refult by fuch fubftitution. 2132. PaKe out all the arithmetical progreffions that ${ }^{3}$ cant be found among thofe divifors, whofe terms correfpond with the order of the terms, $1,0,-1$,

(372)

\&xc. and common difference unity; and the values of x will be found among the divifors which arife from the fubftitution of $x=0$, that belong to thofe progreffions.

Note. When the arithmetical progrefion is increafing according to the order of the terms $1,0,-1$, the value of x will be aiffirmative; but when the arithmetical progrefion is decreafing, the value of x will be negative.

EXAMPLES.

Let $x^{3}-x^{2}-10 x+6=0$, be the propored equation; and by fubtituting fucceffively for x, the terms $1,0,-I$, the work will ftand as follows.

Suppofitions. Refults.
$\left.\begin{array}{l}x=1 \\ x=0 \\ x=-1\end{array}\right\} x^{3}-x^{2}-10 x+6=\left\{\begin{array}{l|l|l}-4 & 1,2,4 & 4 \\ +6 & 1,2,3,6 & 3 \\ +14 & 1,2,7,14 & 2\end{array}, ~\right.$
Here the progreffion is decreafing, and 3, that term which ftands againt the fuppofition of $x=0$; therefore, - 3 , fubftituted for x in the propofed equation, gives, $-27-9+30+6=0$; where all the terms vanifhing, it follows, that -3 is one of the roots of the propofed equation; and $2+\sqrt{2}$, and $2-\sqrt{2}$, the other two roots, found by dividing the propofed equation by $x+3$, and refolving the quadratic quotient.

Suppofe it be required to find the roots of the equation $v^{4}+3 v^{3}-19 v^{2}-27 v+90=0$.

Then by fubftituting as before, the work will ftand as follows.

Suppofitions. Refults.
Divifors.

Arith. Progref: | $v=1$ | 48 |
| :--- | :--- |
| $v=0$ | 90 |
| $v=-1$ | 96 |

Here are five arithmetical progreffions; and fubftituting $2,3,-3,-5$, refpectively for v in the propofed equation, the whole vanifhes; the other progreffion being in this cafe ufelefs, fince the number of roots are but four. Confequently,2,3, -3 , -5 , are the four ronts required.

There are many other methods befide thofe which we have here given for the refolution of equations; which the confined linits of our plan obliges us to omit, and proceed to difcover the roots of equations by the method of approximation.

C H A P. XXI.

The FINDING the ROOTS of NUMERAL E QUATIONS in GENERAL, by the METHOD of APPROXIMATION.

ALTHOUGH there are other methods for the refolution of equations, than thofe given in the laft chapter, yet the moft of them are either very prolex, or confined to particular cafes; but the following method of approximation is general, and extends to numeral equations of all kinds whatever, and though not accurately true, gives the value of the root to any affigned degree of exactnefs you pleafe, by the following

(374)
 $R \cup L E$.

1. Find by trial, a number nearly equal to the root required, and call it r; and put x for the difference between the real root and that already found, then will $r \pm x=v$.
2. Instead of v and its powers in the propofed equation, fubftitute $r \pm x$ and its powers; and there will arife a new equation involving x and known quantities.
3. Then by rejecting all the terms of this new equation that involve the powers of x; and affuming the reft equal to nothing, the value of x will be determined by means of a fimple equation.
4. ADd the value of x thus found to r, and you will have a nearer value of the root required; which if not fufficiently exact, repeat the operation, by fubftituting this value for r in the formula exhibiting the value of x, and it will give a correction of the root ; which if not yet exact enough, proceed to 2 third correction; and fo on, to any affigned degree of exactnefs.

EXAMPLES.

Given, $v^{2}+6 v-3^{1}=0$, to find v by approximation.

The root found by trial is nearly equal to 3: Therefore, $r=3$, and $r+x=v$:
Then, $v^{2}=r^{2}+2 r x+x^{2}$
$+6 v=6 r+6 x$
$-3^{1}=-3^{1}$
And, $r^{2}+2 r x+6 x+6 r-31=0:$

(375)

Whence, $x=\frac{31-r^{2}-6 r}{2 r+6}=($ by writing 3 for r
its equal) $\frac{31-9-18}{6+6}=\frac{4}{12}=3$; and $v=3.3$
And if 3.3 befubfituted for r in the equation, $x=$ $\frac{3^{1}-r^{2}-6 r}{2 r+6}$, we fall have $x=\frac{31-10.89-19.8}{6.6+6}$
$=\frac{.31}{12.6}=.0246$, or rather $x=.0245$, and $v=$ $r+x=3.3245:$

Again, if this value be fubfituted for r, wee foal have $x=.000005$, and $v=r+x=3.324505$, for a nearer value of v; and $\int 0$ on, to any aligned degree of exactness.

Given, $v^{3}+2 v-73=0$, to find v by approximation.

The root found by trial, is nearly equal 4 :
Therefore, $r=4$, and $r+z=v$:
Then, $v^{3}=r^{3}+3^{2} z+3^{r} z^{2}+z^{3}$.
$+2 v=2 r+2 z$
$-73=-73$
Whence, $r^{3}+3 r^{2} z+2 r+2 z-73=0$; or, $z=\frac{73-r^{3}-2 r}{3 r^{2}+2}=($ by writing 4 for $z) \frac{73-64-8}{4^{8}+2}$ $=\frac{1}{50}=.02$; and therefore, $v=r+z=4.02$; and writing this value for r, in the equation $z=$ $\frac{73-r^{3}-2 r}{3 r^{2}+2} ;$

We Ball have $z=\frac{73-64.964808-8.04}{48.4812+2}$

(376)

$=\frac{-.004808}{50.4812}=-.000095 ;$ and $v=r+z=$ 4.019905 nearly.

And after this manner of reafoning, we may obtain theorems for approximating to the roots of pure powers.

Thus, if Abe a given quantity whole n root is required, r the neareft less root in the integers, and v the difference between r and the root required: Then will $r^{n}+$ $n r^{n-1} v+n \times \frac{n-1}{2} r^{n-2} v^{2}+n \times \frac{n-1}{2} \times$ $\frac{n-2}{3} r^{n-3_{v^{3}}}, \varepsilon_{c}=A$; and affuming $v=$ $\frac{A-r^{n}}{n r^{n-1}}$; or, more nearly, taking the three first terms, $v=\frac{A-r^{n}}{n r^{n-1}+n \times \frac{n-1}{2} r^{n-2} v^{2}}=$ (by writing for v its $\left.=\frac{A-r^{n}}{n r^{n-1}}\right) \frac{A-r^{n}}{n r^{n-1}+n \times \frac{n-1}{2} r^{n-2} \times \frac{A-r^{n}}{n-r}}$

$A-r^{n}$
$n r^{n-1}+\frac{n-1}{2 r} \times \overline{A-r^{n}} ;$ and by writing

(377)

a, for $A-r^{n}$, zoe lave $v=\frac{a}{n r^{n-1}+\frac{n-1}{2 r} \times a}$
$=$ (by reduction) $\frac{r a}{n r^{n}+\frac{n-1}{2} a}$, the theorem for approximating to the value of v, which added to r_{3} will give a correction of the root ; which if not fufficiently near the truth, the operation mut be repeated, by fubftituting the new r in the equation exhibiting the value of v.

Thus, for example, fuppofe the cube root of 3 is required.

Here $r=\mathrm{I}$, the nearef less root in the integers, and $r+v=$ root required.
Therefore, $v=\frac{r a}{n r^{n}+\frac{n-1}{2} a}=\frac{2}{2+3}=\frac{2}{5}=.4$, and
$r+v=1+.4=1.4$, which fubfituted for r, and the operation repeated, v will be found $=.0397$; therefore, $r+v=1.4+.0397=1.4397=$ cube root of 3 , very near.

CHAP. XXII.

CONCERNING UNLIMITED PROBLEMS.

HAVING gone through, and explained the methods ufed in arguing limited problems, or fuch as admit of but one folution; it remains therefore, that we hew the learner how to reafon about thole

378

thofe problems which are unlimited, or admit of vaw rious anfwers.

It was obferved in Chap. xv, of this Book, that when the equations expreffing the conditions of the queftion, are lefs in number than the quantities fought, the queftion is unlimited, or capable of innumerable anfwers; yet all the poffible anfwers in whole numbers, are for the moft part limited to a determinate number.

As queftions of this nature admit of fome variations as to their general folution; we fhall therefore confider them in the following problems.

PROBLEMI.

To find the values of v and y in whole numbers, in the equation $a v \pm b y \pm c=0$; vebere a, b and c, are given quantities.

$R \dot{U} L$.

3. Reduce the given equation to its leaft terms, by dividing it by its greateft common divifor.
4. FInD the value of v from the given equation; and reduce the refulting expreffion, by expunging all whole numbers from it, until c be lefs than $a_{\text {, }}$ and the co-efficient of y becomes unity.
5. Assume this laft refult equal to fome known whole number, and the expreffion reduced, will give the value of y in known terms; from which the value of v may be determined in the given equation.

Note. If after the given equation is divided by its greateft common divifor, the co-efficients of the unknoron quantities, are commenfurable to each ctber, the queftion is impolible.

EXAMPLES.

Given, $10 v-8 y-36=0$, to find v and y in whole numbers.

Firth, $5 v-4 y-18=0$, by dividing the whole by 2; or, $5 v-4 y=18$.

Put $W N$ for any whole number:
Then $v=\frac{18+4 y}{5}=W N$ by the quefion:
But, $\frac{18+4 y}{5}=3+\frac{3+4 y}{5}$; therefore, $\frac{3+4 y}{5}$
$=W N$, per axiom 9. Alpo, $\frac{5 y}{5}=W N$: Consequentby, $\frac{5 y}{5}-\frac{3+4 y}{5}=\frac{y-3}{5}=W N$, per axiom 9; and therefore, $\frac{y-3}{5}=n$; and for the leafs value of y, aflame $n=0$, and we fol have $y-3=5 n=0$; or, $y=3$, and $v=\frac{18+4 y}{5}=6$.

Given, $26 v+18 y=140$, to find v and y in whole numbers.

Firft, $13 v+9 y=70$ by dividing the cobole by $2:$
Then v $=\frac{70-9 y}{13}=W N: B u t, \frac{70-9 y}{13}=5$ $+\frac{5-9 y}{13}$;

Therefore, $\frac{5-9 y}{13}=W N$, per axioni2 9 ; also, $\frac{13 y}{13}=W N ;$ consequently, $\frac{5-9 y}{13}+\frac{13 y}{13}=\frac{5+4 y}{13}$

(380)

$=W N_{3}$ per ax. 8 ; and $\frac{5+4 y}{13} \times 3=\frac{15+12 y}{13}$ $=W N$, per ax. 7. But, $\frac{15+12 y}{13}=1+\frac{2+12 y}{13}$; therefore, $\frac{2+12 y}{13}=W N$, per ax. 9. Also, $\frac{13 y}{13}=$ $W N$; whence, $\frac{13 y}{13}-\frac{2+12 y}{13}=\frac{y-2}{13}=W N$, per ax. 9: And $\frac{y-2}{13}=n ;$ or, $y=: 3^{n}+2$; and afuming $n=0$, we bare $y=2$, and $x=\frac{70-9 y}{13}=$ 4.

I owe my friend a moidore, have nothing about me but crowns, and he has nothing but guineas: How mut we exchange there pieces of money, fo that I may acquit myself of the debt? A moidore being valued at 27 fillings, a crown at 5 fillings, and a guinea at 21 Shillings.

Put $x=$ number of crowns, and y the number of guimeas:

Then $5 x-21 y=27$ by the queftion:

$$
\text { Or, } x=\frac{27+21 y}{5}=W N . \quad \text { But, } \frac{27+21 y}{5}=
$$

$5+4 y+\frac{2+y}{5}$; consequently, $\frac{2+y}{5}=W N$, and $\frac{2+y}{-5}=n ;$ or, $2+y=5 n$; and afuming $n=1$, we Gave $y=3$, the number of guineas, and $x=\frac{27+21 y}{5}$ $=18$, the number of crowns. Therefore, I must give my friend 18 crowns, and be mus give me three guineas.

Given,

(3^{81})

Given, $4 x+17 y=2900$, to find all the pofible values of x and y in whole numbers.

Fir, $y=\frac{2900-4^{x}}{17}=W N$; but $\frac{2900-4 x}{17}$
$=170+\frac{10-4 x}{17} ;$ therefore, $\frac{10-4 x}{17}=W N$, per
ax. 8. And $\frac{10-4^{x}}{17} \times 4=\frac{40-16 x}{17}=W N$, per
ax. 9. Also, $\frac{17 x}{17}=W N$: Consequently, $\frac{40-16 x}{17}+$ $\frac{17 x}{17}=\frac{40+x}{17}=W$ N, per ax. 7. But, $\frac{40+x}{17}=2$ $+\frac{6+x}{17}$; therefore, $\frac{6+x}{17}=W N$, per ax. 8. And affuming this laft equation $=n$, we get $x=17 n-6$, where, if n be taken $=1$, we Shall have $x=17-6=$ II for the leafs value of x, and $y=\frac{2900-4 x}{17}=$ 168 for the greatest value of y : And since $\overline{6+x} \div 17$ $=n$, is a whole number; it is plain, that $n+1$ is the fir $ر$ augment of $\overline{6+x} \div 17$ in whole numbers; and therefore, $x=17 n+17-6$, the fecund value of x; which fubfituted for x in the equation $y=\frac{2900-4 x}{17}$ will give the second value of y : Or, by adding 17 fuccellively to the values of x, and subtracting 4 from tho fe of y, we fall have all the pofible values of x and y in whole numbers, as follows: viz. $x=11,28,45, \mathcal{E}^{\circ} c_{\text {. }}$ to 708 ; and $y=168,164,160$, Ec. $^{2} 4$.
PROBLEM II •

To find the leaf whole number x, that being divided by the given numbers, $a, b, c, d, \mathcal{E}^{3} c$. Ball leave giver remainders, $g, k, l, m, n, \xi_{0} c$.

Cc o
$R U L E$ 。

$\left(3^{882}\right)$
 $R U L E$.

1. Subtract each of the remainders from x, and divide the feveral refults by their refpective divifors, $a, b, c, d, \& c$. and the refulting quotients will equal whole numbers.
2. Assume the firf equation equal h, and find the value of x in terms of b.
3. Substitute the value of x in terms of b, in the fecond equation; and proceed with the refult as in the laft problem, by expunging all whole numbers, until, the co-efficient of b becomes unity, \&xc.
4. Put this expreffion equal p, and find the value of x in terms of p, by means of the equation of b.
5. Substitute the value of x in terms of p, in the third equation, with which proceed as before, and fo on, through all the given equations; affuming the final refult equal to fome known whole number, and finding the values of the feveral fubftituted letters, b, $p, \& x$. from which the value of x may be determined in known terms.

EXAMPLES.

To find the leaft whole number, that being di-, vided by 7 fhall leave 6 remainder.; but being divided by 6 hall leave 4 remainder.

Put $v=$ number fought.

- Then, $\frac{v-6}{7}=W N$, and $\frac{v-4}{6}=W N$.
A.fume $\frac{v-6}{7}=b$, and we foall bave $v=7 b+$

6, which Jubfituted for v in the Second equation, gives

$$
7 b+2 \div 6
$$

(3^{88})

$\frac{7 b+2}{6}=W N:$ But, $\frac{6 b}{6}=W N:$ Consequently $\frac{7 b+2}{6}-\frac{6 b}{6}=\frac{b+2}{6}=W N$, and assuming $\frac{b+2}{6}$ $=n$, we fall have $b=6 n-2$; where if n be taken 1 , we Ball have $b=4$, and $v=7 b+6=34$, the number required.

To find the leaft whole number, that being divided by 18, hall leave 14 remainder; but being divided by 28 , hall leave 20 remainder.

Put $v=$ number . ought .
Then, $\frac{v-14}{18}=W N: A n d_{3} \frac{v-20}{28}=W N$.
AsSume, $\frac{v-14}{18}=b$; and we have $v=18 b+14$, which fubfituted for v in the second equation, gives $\frac{18 b-6}{28}=W N$; or, $\frac{9 b-3}{14}=W N$ by dividing all the terms by 2 ; and $\frac{9 b-3}{14} \times 3=\frac{27 b-9}{14}=W N$. Alpo, $\frac{14 b}{14} \times 2=\frac{28 b}{14}=W$ N. Consequently, $\frac{28 b}{14}-$ $\frac{27 b-9}{14}=\frac{b+9}{14}=W N:$ and affuming $\frac{b+9}{14}=n_{2}$ we have $b=14 n-9$; and putting $n=1$, we have $b=14 n-9=5$, and $v=18 b+14=104$, the number required.

Diophantine Problems.

Diophantine Problems, fo called, from Diopbanbus their inventor, are fuch as relate to the finding of square and cube numbers, \&cc.

These

(384)

These problems are fo exceedingly curious, that nothing lefs than the moft refined Algebra, appited with the utmoft fkill and judgment, could ever furmount the difficulties which neceffarily attend their folution. The peculiar artifice made ufe of in forming fuch pofitions as the nature of the problems require, thews the great ufe of Algebra, or the analytic art, in difcovering thofe things that otherwife, would be without the reach of human underftanding.

Altho no general rule can be given for the folution of thefe problems ; yet the following direction will be very ferviceable on many occations.

Direction.

Assume one or more letters, for the root of the required fquare, cube, \&c. fuch that when involved to the height of the propofed power, either the given number, or the higheft term of the unknown quantity mav vanifh. Then if the unknown quantity in the refultiny equation, be of fimple dimenfion, find its value by reducing the equation. But if the unknown quantity be ftill a fquare, cube, or other power; affuine other letter or letters, with which proceed as before, until the higheft term of the unknown quantity become of fimple dimenfion in the equa: tion.

EXAMPLES.
To find a fquare number x^{2}, fuch that $x^{2}+1$ fhall be a fquare number.

Afume $x-2$ for the root of $x^{2}+1$:
Then will $x-2{ }^{2}=x^{2}+1$; that is, $x^{2}-4 x+4$三 $x^{2}+1$; or, $4 x=4-1=3$; whence, $x=3$, and $x^{2}=\frac{9}{80}$, and $x^{2}+1=\frac{9}{86}+1=\frac{25}{4}$: Therefore,

(385)

$\frac{\rho}{20}$, is the number required. But if we bad affined $\frac{r^{4}-2 r^{2}+1}{4 r^{2}}$ for x^{2}, we gould have bad $\frac{r^{4}-2 r^{2}+1}{4 r^{2}}$ $+1=\frac{r^{4}+2 r^{2}+1}{4 r^{2}}$, which is evidently a square number; wobere r may be taken for any number.

To find two nuinvers, fact that their product and quotient may be both fquare and cube numbers.

Anime v^{9} and v^{3} for the required numbers:
Then $v^{9} \times v^{3}=v^{x 2}$, and $v^{9} \div v^{3}=v^{6}$, are avidenitly Square and cube numbers; where v may be any number taken at pleafure.

To find four fquare numbers in arithmetical progreflion.

For the fun of the two extremes, a/jume $2 n^{2}$; then will the fum of the two means be aldo $2 n^{2}$ by the nature of the proportion:

For the roots of the two means, affume $n+3 z$, and $n-4 z$:

Then will $\overline{n+3 z}{ }^{2}+\overline{n-4 z}{ }^{2}=2 n^{2}$:
That is, $n^{2}+6 n z+9 z^{2}+n^{2}-8 n x+16 z^{2}=$ $2 n^{2}$:

Or, $25 z^{2}-2 n z+2 n^{2}=2 n^{2}:$
Or, $25 z^{2}=2 n z$; and by dividing by z, we have $25 z$ $=2 n$:

Whence, $z=2 n \div 25$; and puting $n=1$, we have $z=\frac{2}{25}:$

Therefore, $n+\left.3 z\right|^{2}$, and $n-4{ }^{2}=\frac{96}{6} \frac{6}{25}$, and ${ }_{62 \frac{8}{5} \text {, }}^{28}$ are the two means:
And for the roots of the two extremes, assume $n-2 z$, and $n+z$:

Then will $n-{ }^{2}+\overline{n+z}{ }^{2}=2 n^{2}$:
Or, $n^{2}-4 n z+4 z+n^{2}+2 n z+z^{2}=2 n^{2}:$ And by reduction, $z=2 n \div 5=\frac{2}{5}$:

W\%ence,

Where, $\left.\overline{n-2 z}\right|^{2}$, and $\overline{n+z]^{2}}=\frac{1}{25}$, and $\frac{29}{2}$, the two extremes. So that the four Square numbers in arithmetical progrefion, are $\frac{1}{25}, \frac{289}{625}, \frac{961}{625}, \frac{49}{25}$.

To find a number, foch that being multiplied with one tenth part of itfelf, and the product increafed by 36, hall produce a fquare number.

Put v for the number fought; then $v^{2} \div 10+36$, is to be a Square number:

Allure the root of this square $=v-6$, then will $\overline{v-t}=\overline{v^{2} \div 10}+36$; that is, $v^{2}-12 v+36=$ $v^{2} \div 10+36:$

Or, $10 v^{2}-120 v=v^{2} ;$ robence, by reduction $v=$ $\times \frac{20}{3}$, the number required.

To divide a given number 29, confifting of two known fquare numbers 4 and 25 , into two other square numbers.

For the root of the fir k square, aflame $r v-2$; and for the root of the second $n v-5$:

Then will rv-2 $\left.\right|^{2}+n v-5 \|^{2}=29$:
That is, $\overline{r^{2} v^{2}-4 r v+4}+n^{2} v^{2}-10 n v+25=$ 29:

Or, $\overline{r^{2}+n^{2} v^{2}}-4 r-10 n v+29=29$; or, $r^{2}+n^{2} v^{2}=4 r+1 u n v$; and by dividing by v, we have $r^{2}+n^{2} v=4 r+10 n:$

Or, $v=\frac{4 r+10 n}{r^{2}+n^{2}}$; and therefore, $r v-2=$ $\frac{4 r^{2}+10 n r}{r^{2}+n^{2}}-2=\frac{2 r^{2}-2 n^{2}+10 n r}{r^{2}+n^{2}} ;$ and $n v-5=$ $\frac{4 r n+10 n^{2}}{r^{2}+n^{2}}-5=\frac{4 r n-5 r^{2}+5 n^{2}}{r^{2}+n^{2}} ;$ and affuming $r=\mathrm{I}$, and $n=2$, we foll have $\frac{2 r^{2}-2 n^{2}+10 n r}{r^{2}+n^{2}}=$
$\frac{14}{5}$ for the root of the fir Square, and $\frac{4 r n-5 r^{2}+5 n^{2}}{r^{2}+n^{2}}$ $=\frac{25}{5}$ for the root of the Second.

To find three fquare numbers in arithmetical pro greffion.

ASsume n^{2} for the mean; then will $2 n^{2}=$ the fum of the extremes by the nature of the proportion.

For the root of the greater extreme, afore $n+2 v$, and for the root of the less $n-3 v$:

Then will $\overline{n-3 v^{2}}+\overline{n+2 v^{2}}=2 n^{2}$:
That is, $n^{2}-6 n v+9 v^{2}+n^{2}+4 v n+4 v^{2}=2 n^{2}$:
Or, $13 v^{2}-2 n v+2 n^{2}=2 n^{2}$:
Or, $13 v^{2}=2 n v$; and by dividing by v, we have $13 v=2 n$; whence, $v=2 n \div 13$; cohere n may be any number at pleafure:

And by affuming $n=1$, we fall have $v=2 \div 13$:
Whence, $1-\left.\frac{6}{13}\right|^{2}=\frac{49}{169}$ for the leaf extreme:
And $\left.\overline{1+\frac{4}{13}}\right]^{2}=\frac{289}{169}$ for the greater: Wherefore, the numbers required; are $\frac{49}{169}, 1$, and $\frac{289}{169}$.

[^3]

\[

$$
\begin{aligned}
& Q A 35 \\
& S 82
\end{aligned}
$$
\]

[^0]: * Alluding to Sir Ifaac Newton's invention of Fluxions.

[^1]: $100000=$ umber of cents required.

[^2]: $\overline{240 \times 12}=24$ days, by inverje proportion.

[^3]: The end of Volume I.

