$50 p$

DECEMBER 1981

Video games for Christmas

Review: ZX printer

Chess end-game

ZX-81 strings

Computers in schools

More micro music

Vic-20 casseties

Make the most of your Sinclair ZX Computer... Sinclair ZX software on cassette. £3. ${ }^{5}{ }^{-1}$ percassette.

The unprecedented popularity of the ZX Series of Sinclair Personal Computers has generated a large volume of programs written byusers.

Sinclair has undertaken to publish the most elegant of these on pre-recorded cassettes. Each program is carefully vetted for interest and quality, and then grouped with other programs to form a single-subject cassette.

Each cassette costs $£ 3.95$ (including VAT and p\&p) and comes complete with full instructions.

Although primarily designed for the Sinclair ZX81, many of the cassettes are suitable for running on a Sinclair ZX80-if fitted with a replacement 8 K BASIC ROM.

Some of the more elaborate programs can be run only on a Sinclair ZX Personal Computer augmented by a 16 K -byte add-on RAM pack.

This RAM pack and the replacement ROM are described below. And the description of each cassette makes it clear what hardware is required.

8K BASIC ROM

The 8K BASIC ROM used in the ZX81 is available to ZX80 owners as a drop-in replacement chip. With the exception of animated graphics, all the advanced features of the ZX 81 are now available on a ZX80-including the ability to run much of the Sinclair ZX Software.

The ROM chip comes with a new keyboard template, which can be overlaid on the existing keyboard in minutes, and a new operating manual.

16K-BYTE RAM pack

The 16 K -byte RAM pack provides 16 -times more memory in one complete module. Compatible with the ZX81 and the ZX80, itcan beused for program storage or as a database.

The RAM pack simply plugs into the existing expansion port on the rear of a Sinclair ZX Personal Computer.

Cassette 1-Games

For ZX81 (and ZX80 with 8 K
BASICROM)
ORBIT -your space craft's mission is to pickup a very valuable cargo that's in orbit around a star.

SNIPER-you're surrounded by 40 of the enemy. How quickly can you spot and shoot them when they appear?

METEORS-your starship is cruising through space when you meet a meteor storm. Howlong can you dodge the deadly danger?

LIFE-J.H.Conway's 'Game of Life' has achieved tremendous popularity in the computing world. Study the life, death and evolution patterns of cells.

WOLFPACK - your naval destroyer is on a submarine hunt. The depth charges are armed, but must be fired with precision.

GOLF-what's your handicap? It's a tricky course but you control the strength of your shots.

Cassette 2-Junior

Education: 7-11-year-olds For ZXXI with 16 K RAM pack

CRASH-simple addition-with the added attraction of a car crash if you get it wrong.

MULTIPLY-long multiplication with five levels of difficulty. If the answer's wrongthe solution is explained.

TRAIN-multiplication tests against the computer. The winner's train reaches the station first.

FRACTIONS-fractions explained at three levels of difficulty. A ten-question test completes the program.

ADDSUB-addition and subtraction with three levels of difficulty. Again, wrong answers are followed by an explanation.

DIVISION - with five levels of difficulty. Mistakes are explained graphically, and a running score is displayed.
SPELLING-up to 500 words over five levels of difficulty. You can even change the words yourself.
Cassette 3-Business and

Household

For ZX81 (and ZX80 with 8 K BASIC ROM) with 16 K RAM pack

TELEPHONE-setup yourown computerised telephone directory and address book. Changes, additions and deletions of up to 50 entries are easy.

NOTE PAD-a powerful, easy-to-run system for storing and
retrieving everyday information. Use it as a diary, a catalogue, a reminder system, or a directory.

BANK ACCOUNT-a sophisticated financial recording system with comprehensive documentation. Use it at home to keep track of 'where the money goes,' and at work for expenses, departmental budgets, etc.

Cassette 4-Games

For ZX81 (and ZX80 with 8K BASIC ROM) and 16K RAM pack

LUNAR LANDING-bring the lunar module down from orbit to a soft landing. You control attitude and orbital direction-but watch the fuel gauge! The screen displays your flightstatus-digitally and graphically.

TWENTYONE-a dice version of Blackjack.

COMBAT-you're on a suicide space mission. You have only 12 missiles but the aliens have unlimited strength. Can you take 12 of them with you?
SUBSTRIKE-on patrol, your frigate detects a pack of 10 enemy subs. Can you depth-charge them before they torpedo you?

CODEBREAKER - the computer thinks of a 4 -digit number which you have to guess in up to 10 tries. The logical approach is best!

MAYDAY-in answer to a distress call, you've narrowed down the search area to 343 cubic kilometers of deep space. Can you find the astronaut before his life-support system fails in 10 hours time?

Cassette 5-Junior

Education: 9-11-year-olds For ZX81 (and ZX800 tith $8 K$ BASIC ROM

MATHS-tests anthmetic with three levels of difficulty, and gives your score out of 10 .

BAL_ANCE-tests undersanding of levers/fulcrum theory with a series of graphic examples

VOLUMES-'yes or'no' answers from the computer to a series of cube volume calculations.

AVERAGES - whats the average height of your class: The average shoe size of your family: The average pocket money of your thends: The computer plots a bar chart and distinguishes MEAN from MEDLAN.

BASES-convert from decimal (base 10) to other bases of your choice in the range $2: 109$

TEMP-Volumes temperatures -and their combinations

How to order

Simply use the order form below, and either enclose a cheque or give us the number of your Access. Barclaycard or Trustcard account. Please allow 28 days for delivery: 14-day money-back option.

두그밈 ZX SOFTWARE

Sinclair Research Lid.
6 Kings Parade, Cambridge. Cambs.,CB21SN. Tel: 027666104.

To: Sinclair Research, FREEPOST 7, Cambridge, CB2117

Please send me the items I have indicated below

Qty	Code	Item	fempros	Total
	21	Cassette 1-Games	(3)5	
	22	Cassette 2-Junior Education	C395	
	23	Cassette 3-Business and Household	C3.93	
\cdots	24	Cassette 4-Games	63.95	
	25	Cassente5-Junior Education	¢3.95	
	17	*8K BASIC ROM for ZX80	¢19.95	
	18	-16KRAM pack for 2X81 and 2Xs0	¢49.95	
		*Post and packing if applicable)	¢.2.95	
			Total \mathcal{L}	

*Please add $\ell, 2.95$ to total order value only if ordering ROM and/or RAM.
I enclose a cheque/PO to Sinclait Research Lid for \mathcal{L}
Please charge my Access*/Barclaycard/Trustcard no.

- Picase delete ar applicable

Name:Mr/Mrs/Miss
Address:

YOUR LETTERS:

ZX cassettes, Sinclair machine code.

Japanese deal for Sinclair, Vic-20 peripherals.

COMPUTER CLUB:

David Pollard visits the Notting Dale Technology Centre and discovers its origins.

VIDEO GAMES:

A review of the main video games on sale for Christmas, by Selwyn Ward.

ZX PRINTER:

Eric Deeson and Stephen Adams test the new ZX printer and ask if it really is worth $£ 50$.

INTERVIEW:

Bill Bennett talks to Richard Fothergill who runs the Government's micro project.

CHESS:

30
John White presents a program for working through the end-game, and Phillip Joy relates how he wrote his program for the ZX-80/81.

Editor

DUNCAN SCOT
Staff Writer
BILL BENNETT
Production Editor
TOBY WOLPE
Production Assistant
JOHN LIEBMANN
Editorial Secretary
LYNN COWLING
Editorial: 01-661 3500

Advertisement Manager

DAVID LAKE 01-661 3021
Assistant Advertisement Manager
PHILIP KIRBY 01-661 3127
Advertisement Executives
KEN WALFORD 01-661 3139
BILL ARDLEY 01-661 3127

Midlands Office

DAVID HARVETT 021-356 4838

Northern Office

RON SOUTHALL 061-872 8861
Advertisement Secretary
MANDY MORLEY
Publishing Director
CHRIS HIPWELL
Your Computer, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Typesetting by In-Step Ltd, London EC1. Printed by Riverside Press Ltd,
Whitstable, Kent.
Subscriptions: U.K. $\mathfrak{6 6}$ for 12 issues. © IPC Business Press Ltd 1981

MICRO MUSIC:

36
In two articles we present a range of ideas and programs for generating live music on the Tandy TRS-80 and the Sharp MZ-80K.

ZX STRINGS:

Graham Thomson explains how to make full use of those space-saving string functions.

EDUCATION:

The Government plans to have a microcomputer in every school by the end of next year. Eric Deeson presents some of his own ideas on how these machines should be used.

VIC-20 PROGRAMMING:

Nick Hampshire explains the use of the cassette recorder on the Vic-20.

ATOM DISASSEMBLER:

Roy Burgin presents a disassembler program for the Acorn Atom.

COMPUTER CONTROL:

This month, John Dawson describes how he set about writing an interpreter for his machine.

RESPONSE FRAME:

More answers to your technical queries.

FINGERTIPS:

David Pringle presents some more thoughts on programming calculators, discusses last month's program and introduces some new games.

BOOK REVIEWS:

69
ZX-81 machine-code, video computers, Atom theory.

SOFTWARE FILE:

Seven pages of programs.

COMPETITION CORNER:

A $£ 15$ book token is the prize in our Christmas quiz, and we reveal the solution to ZX-81 crossword competition. The ZX printer crossword falls between pages 14 and 15 .

Cover photograph by Stephen Oliver. Our thanks to the Silica Shop for lending us the video games for the photograph and the review.
-

EDITORIAL

There is A plan to impose an extra charge on the cost of blank cassette tapes - the medium most of use to save our lovingly-created programs. One might argue that cassettes are expensive enough already, especially if one always plays it safe and keeps a back-up copy of every program.
The proposal originates from the British Phonographic Institute (BPI), the industry association of record manufacturers. The industry has been in a steady decline since its days of heady success in the sixties. Sales of records, LPs and singles, have fallen and a number of record-producing companies have gone to the wall. The reason, so the BPI argues, is that too many potential record buyers have chosen to break the law of copyright and tape their favourite records. This, the BPI says, robs the industry of its just rewards, and deprives the original recording artists of royalties.
The BPI believes it is powerful and influential enough to persuade the Government to include the levy proposal in the forthcoming revision of the law of copyright.
There are a number of objections to this proposal. The first is that it will cost money to implement and supervise the levy - money which is effectively wasted. Secondly, it will be left entirely to the discretion of the record producers how to distribute the proceeds there is no guarantee that it will be fair and equitable. Thirdly, some tape manufacturers may try to avoid paying the levy by selling tapes of Argentinian dance music on which there is no copyright - the user could easily record over these.
There are other reasons why the proposal is bad. For the last 10 years, perhaps longer, the record industry has been producing consistently bad-quality pressings, distorted records, records with scratches and bumps on them from the moment they were pressed in low-quality vinyl. The quality of the products has been so poor that it has often seemed hardly worth the bother of buying a record, knowing that it would have to be returned. Because of the falling sales, the prices have been pushed up in an attempt to stay profitable, thereby trapping the industry into a circle of decline.
Now, rather than improve their own quality control, the companies look to a levy, raising extra cash from the wide section of the population who use blank tapes quite legally. We think this is wrong and would like your help to campaign against it. Please either write to your MP, or your local or national nęwspaper. Or else write to Your Computer and we will forward copies of your letters on to a number of MPs who will be taking an interest in opposing this proposal. If your response is large enough we might be able to stop the proposal getting off the ground.
THE NEXT ISSUE of Your Computer will cost 60 p and the price of a subscription will rise from L6 to 28 . If you want to subscribe to Your Computer, do it before the end of the year and you save $£ 2$. There is a subscription card between pages 86 and 87 of this magazine.

The MV1 computer kit uses the ubiquitous Nascom 1 Pcb and the $Z 80$ CPU. Interfaces are included for television, printer and cassefte. 2K memory. Gemini power supply (drives up to 3 extra boards). Cherry full ASCII keyboard and Quantum Graphics are also included. Available with either an ASCII version of the Nas-Sys 3 monitor, or a Tiny BASIC. MV1 is expandable to Gemini 80-BUS specification.

microvalue MicroValue's 'Nascom Special'

SAVE
OVER £65
We've put together a microcomputer kit containing the Nascom 2, Nas-Sys 3, Graphics ROM, Bits \& PC's programmers aid, Gemini 3 APSU, 16 K RAM Board and mini motherboard. The result is a powerful micro using market proven boards and components.

RRP OVER $£ 405$ +VAT MicroValue price

+ VAT

SHARP MZ80K with Super Graphics

The 48K RAM System is offered at a rock bottom price with the Quantum Micros Hi Res Graphics which gives resolution down to a single dot and high res. plotting Characters are user definable and the pixel characters actually join. Five tree games packages are included tool

RRP $\mathbf{2} 645$ +VAT
MicroValue price

+ VAT

£30
worth of accessories
FREE with every Epson Printer

Microvalue price

Buy one of the above Epsons from MicroValue and we'll give you a Pack of Fanfold paper, Spare Ribbon Cartridge. Interfacing Document and Connecting Cord for Multiboard or Nascorm. The accessones are worth $£ 30$ but you can have them absolutely FREE.

printer in the $U K$

Nascom IMP + Graphics Only £199 + vat

Microvalue has slashed the price ot the 80 cps .80 column IMP dot matrix printer: And added Imprint's high res. graphics and double width character option. IMP has bi-directional printing and friction/tractorfeed.

NASBUS Compatible DOUBLE DENSITY Disk System Available Ex Stock

With hundreds in daily use the Gemini Disk systern is now the standard for Nascom and Gemini Multiboard systems Single or twin drive configurations are available, giving 350 K storage per drive. The CP/M 2.2 package supplied supports on-screen editing with either the normal Nascom or Gemini IVC screens, parallel or serial printers, and auto single-double density selection. An optional altemative to CP/M is available for Nascom owners wishing to support existing software. Called POLYDOS 2 it includes an editor and assembler and extends the Nascom BASIC to include disk commands.

Single drive system (G809, G815/1)
£ 465 - VAT
Double drive system (G809, G845/2)
$乏 690$ + VAT
CP/M 2.2 package
(G513)
$£ 100$ + VAT
Polydos 2
£90. vat

MV2-Twin 280A

Controlled Development Computer

The fully built and tested MV2 microcomputer is controlled by two 280A microprocessors. Interfaces include RS232, cassette, 2×8 bit parallel ports, and graphics including programmable graphics. It provides 80×25 screen format and includes 64 K RAM, Integral PSU and full ASCll keyboard.
Software witten to run under the RP/M ROM based monitor can be transtened to disk to run under CP/M at a later date, This rugged
 environa and indu supplied with the odvanced COMAL structured BASIC. SAVE £76.50 MV3 WP System Word Processing System for only $£ 2550$ +vat Bycombining the power of the MV3 and the popular CP/Mword processing package wordstat, an then adding the Oympia daisywheel printer, we can now offer a systemfor computerised letter and report writing. catalogue and price list compilation, etc. etc., as well as handling all the doto processingfunctions of the MV3.

MicroValue
 Business Software Package

A fully integrated business package is available for the MV3 and MV3WP systems and includes Sales, Purchase, and Nominal ledgers and Stock Control, plus all documentation. MicroValue price -
$£ 400$ Microvalue

New Software for Nascom Systems

POLYDOS 1 A disk ODetoting sysiem for use with Nascom 1 of 2 and Gemini G80s Disk Systems. An incomporoble and extremely well presented OOS fnat includes an editor and ossembler and odds disk commands to the Noscom BASIC. MicroVolue price $\mathbf{\Sigma 9 0}$ - VAT MATHSPAK DOuble precision maths pockage on tope. MicroValue pnce - $\mathbf{5 1 3}$ - VAT MATHSPAK Handier Used in conjunction with MATHSPAK. MicroVolue price - $\mathbf{\varepsilon . 9 5}$ - VAI Command Exdender For use with MATHSPAK it extends BASIC's reseme word list

MicroValue pnce 89.95 . Var
Logic Son Relocater An integrated assembler and disossembler packoge which allows disassembly and reossembly form anywhere on the memory mop

Microvalue pace - $\mathbf{5 1 3}$ - VAT

Standard Firmware for Nascom at Reduced prices

NASPEN	RRP £ 30 - VAT	MicroValue p
NasEss 3	RRP ¢ 25 - VAI	MicroVolue price $£ 20$ + VAT
NasDis - D-Bug (EPROM)	RRP $¢ 50$. VAT	Microvalue price $£ 30$ - VAT
NosDis - D-Bug (TAPE)	RRP 540 - VAT	Microvalue price $£ 20$ - VAT
imprint	RRP 530 - VAT	Microvalue price $\mathbf{\Sigma} 20$. VAT
Bits \& PCs Prog. Ais	£28-VAT	Microvalue price $\mathbf{5} 20$ - VAT

80×25 Video for Nascom

Noscom owners con now hove a prolessionol 80×25 Video disploy by using the Gemin G812 inteligent video Card with onboord 280A inis card does not occupy system memory spoce ond provides over 50 user controllobie functions including prog chatacier set fulty compatible with Gernini G805 and G815/609 Disk systems Buill and lested £140. vat

*MicroValue Warranty

All products, except kits, sold by MicroValue dealers are supplied with 12 months' warranty and will be replaced or repaired by any dealer (even if you didn't buy if from him) in the group in the event of faulty manufacture.

YOURLOCAL MICROVALUE DEALER

Nil the products on Mese Nop poger are ovailabie while slocks iast from the Microvolue deolers listed on aght Mor ordee enquiries shoult and pocking costs) Accoss and DOS Bortigycors micome

BITS \& PC'S

4 Westgate, Wetherby, W.Yorks. Tel:(0937) 63774.

EECTROVALUE LTD.
700 Burnage Lane, Burnage, Manchester M19 1NA. Tel:(061) 4314866.
28 st Judes, Englefield Green, Egham, Surrey TW20 OHB. Tel:(0784) 33603. Tlx:264475. Tlx:262284 (quote ref:1400).

TARGET ELECTRONICS

 16 Cherry Lane, Bristol BS4 3 3NG. rel:(0272) 424196.INTERFACE COMPONENTS LTD. Oakfield Comer,Sycamore Road, Amersham,Bucks.
Tel:(02403) 22307.T1x:837788.

HENRY'S RADIO

404 Edgware Road, London W2.
Tel:(01) 4026822. TRS80 MODEL

III 9089
48 K

$$
\begin{aligned}
& \text { KIT ONLY £99.95 + VAT } \\
& \hline \text { Fully Assembled - £149 + VAT } \\
& \hline
\end{aligned}
$$

NEW MONITOR IN ROM - available separately at $\mathbf{E 7 . 9 0}+$ VAT
evised GARBAGE routine. Allows correct use of STRING ARRAYS $\mathbf{c 4 . 9 0}$ This chip can be sold separately to existing Compukit and Super board users

FOR THE COMPUKIT - Assembler Editor $\mathbf{\$ 1 4 . 9 0}$
GAME PACKS - 11. Four Games $\mathbf{E 5 . 0 0}$ 2). Four Games $\mathbf{5 5 . 0 0}$ 3). Three Games 8 K only ES .00 Super Space Invaders I8KI $\mathbf{f 6 . 5 0}$ Chequers $\mathbf{f 3 . 0 0}$ Realtume Clock $\mathbf{C 3 . 0 0}$
Case for Compukit $\mathrm{tz9.50}$ 40 pin Expansion Jumper Cable $\mathbf{f 8} .50$ \qquad

It's a new kind of musical instrument. A computer controlled synthesiser that helps you create, play and arrange compos. tions that normaliy take years of musical training

WE ARE NOW STOCKING THE APPLE II AT REDUCED PRICES AUTOSTART

Getting Started APPLE II is faster, smaller, and more powerful than its predecessors. And it's more tun to use too powerful than its predocossors.

- BASIC - The Language that Makes Programming Fun - High-Resolution Graphics (in a 54.000 -Point Array) for Finely-Detaied Displays. - Sound Capability that Brings Programs to Life. - Hand Controls for Games and Other Human-Input Applications. - internal Memory Capacity of 48K Bytes of RAM, 12 K Bvtes of ROM: for Big -System Pettormance in a Smal Package. Eight Accessory Expansion Slots to let the System Grow With Your Needs You don't need to be an expert to enjoy APPLE II. It is a complete, ready to-fun computer. Just connect it to a video first day. You'll find that its futorial manuals help you make your own personal probiem soher
- 80 cps Uni-directional •Small size: $342(\mathrm{~W}) \times 254$ (D) \times $108(\mathrm{H}) \mathrm{mm}$. 0160 Characters. 96 ASCII and 64 graphics 03 Character sizes: ${ }^{40,80 \text { or } 132 \text { chars/ine }- \text { Friction }}$ and Pin Feed \bullet Low noise $65 \mathrm{~dB} \bullet$ Low weight 65 kg MICROLINE $82 \quad \mathbf{~} 449$ +VAT - 80 cps Bi-directional logic seeking e Small size: 360 (W) $\times 328(\mathrm{D}) \times 130(\mathrm{H}) \mathrm{mm} . \bullet 160$ characters, 96 ASClI and 64 graphics, with 10 National character-ser Variants. ©4 parallet and senial intertaces. ©Fiction and Pin Feed paratel and senal interfaces. © Friction
- Low noise:
$65 d B$ olow weight: 8 kg
MICROLINE 83
$£ 779$ + VAT
on up to $1 \sin$ forms e Smbll size: $512(\mathrm{~W} \mid \times 328(0) \times 130$ (H) mm . - 160 charactets. 96 ASCll and 64 graphics with 10 National character-set variants e 3 Character spacings: 5,10 and 16.5 Chars in. © Buittin parallel and setial interfaces weight: 13 kg

ACORN ATOM
unigue in concept THE HOME COMPUTER THAT GROWS AS YOU DO Fully Assembled $£ 149$ + VaI

Special features include - Full Sized Kevboard Assembler and Basi © Traphics © © 6502 Mictoprocessor

THE VIDEO GENIE SYSTEM

Ideal for small businesses, schools, colleges, nomes, et

 range of software already available e Self contained. PSU mon modulator, and cassette - Simply plugs into videc - Absolutely complete - just fit into mains plug

The Video Genie is a complete computer system, requaing only connection to a domestic 625 line TV set to be futty
operational; or if required a video monitor can be connected to provide the best quality display. 51 kev typewriter stvie to provide the best quality display. 51 key typewnter sthit
kevhoard, which features a 10 key rollover. Supplied with the following accessories:- - BASIC demonsvation tape - Video lead: - Second cassetee lead; - Users manual - BASIC manual: - Beginners programming manual Write

HITACHI
 PROFESSIONAL MONITORS
£129 $£ 99.95$ £199 £149

- Reliebility Solid state circuitry using an IC and sulicon Vansistors ensures high reliability. 500 lines horizontal achieved in plicture center o Stable picture Even played back pictures of VTR can be displayed without jittering - Looping video input Video input can be looped through with buit-in termination switch. Extornal aync operetion (available as option for U and C tvpes) o Compact conatruction Two monifors are mountable side by side in a standard 19 inch rack.

"Europes Largest Discount Personal Computer Stores"

Delivery is added at cost. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number,

MAIL ORDER AND SHOP:
 CREDIT FACILITIES ARRANGED - send S.A.E. for application form

14 Station Road, New Barnet, Hertfordshire, EN5 1QW IClose to New Barnet BR Station - Moorgate Line Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G TELEPHONE SALES OPEN (BARNET) - 10am - 7pm - Monday to Saturday NEW WEST END SHOWROOM:
311 Edgware Road, London W2. Telephone: 01-262 0387 OPEN (LONDON) - 10am - 6 pm - Monday to Saturday帮 IRELAND: 19 Herbert Street, Dublin 2. Telephone: Dublin 604165家 COMPSHOP USA, 1348 East Edinger, Santa Ana, Caitorna, Zip Code 92705 Telephone: 01017145472526

What would Idowith a computer?

Row golr Estimate your dinve fores
whene farmay

Teach tie chidden maths frum
Divion to volumie.

Of withina week you can wrile zourown
Of withina weck you

${ }^{*}$ Fhammox your Bank Manuger by ketping pourfinancesatyourfingerligh

-Keepa dary effuture appointments

16 K RAM pusk expunds the memrory capubility by

*Keep the rundown onfinendi, everything from theirtelsotone numbers to birthdys.

*Cathozacall your collections

All younced to inow foe git iss.

Pay Orbiand aptain s spucternf:

"Teach une chideren multiplication
and pay traminat he semetime.

Andatrat range of booksand magaines

You'll be surprised how much you can do T pe fret personal computer and even more surprised with a persona costs.
at how little it cos

We made it our business to find not only the best-value-for-money computer on the market, butalso the best books to enable you to progress from a beginner to an advanced user. And W.H. Smith is the only retail chain where you can buy the incredible ZX81.
The Sinclair ZX81 is a masterpiece of design.
Which is why it can carry out programs you'd normally expect from more expensive computers.

Although the ZX81 is fast and powerful, it's also simple to use. Within hours you can learn to run programs and within a week you could be writing your own complex programs. All you need is your own TV (any model that receives BBC 2) and a cassette player when using pre-programmed cassettes. And W.H. Smith have a range available from $£ 3.95$ each.

So take your first steps in computing at W.H. Smith and make your life easier to run.

[^0] GenieI
ingenious!
... that's the only word to really describe the superb Genie microcomputer system, the home computer which is compatible with the TRS 80, and ideal for all micro - enthusiasts, especially the committed hobbyist.
Genie has now been upgraded to Genie I, incorporating all of the original, excellent features, but with the addition of:

- Extended BASIC, including

RENUMBER and SCREEN PRINT.

- Full upper and lower case, flashing cursor and auto-repeat on all keys.
- An internal SOUND UNIT, to add a new dimension to your own programs.
- A MACHINE LANGUAGE

MONITOR, with Display, modify,
enter and execute(with break points) facilities.
Genie I has all of this, plus the built-in cassette deck, 16 K RAM, 12 K ROM with BASIC interpreter, full-size keyboard, an extremely wide range of new and up-dated peripherals, and literally 1000's of pre-recorded programmes available.
Yet, almost unbelievably, the price of Genie I is even lower than that of the original Genie!

Ingenious for business

The Genie II is a major breakthrough for small business computers. Harnessing all the advantages of Genie I, including

- Numeric keyboard
- Four usable, definable function keys
- Extension to BASIC
- Basic business commands
- Fully expandable with the same periperals low price, Genie II adapts perfectly to commercial functions with the following features:

New . . . 12" Monitor.

There is now a choice of $2,12^{\prime \prime}$ monitors with the Genie I system, allowing a clear, easy to read image, and no interference with your domestic T.V. viewing. The new EG 101 comes with an updated, green phospher tube.

New! . . Expander Box. An updated Expansion Box (EG 3014) is a major feature of the new Genie I system, and unleashes all its possibilities, allowing for up to 4 disk drives with optional double density. It connects to a printer, or RS232 interface or S100 cards. There is 16k RAM fitted and it has a new low price!

New! . . Parallel Printer Interface.
Enables you to connect the printer directly into the Genie computer without using the expansion box.

Disk Drive.

New! . . Printer The EG 602 printer can be connected to the Genie either through the expander, or directly into the computer using the Parallel printer interface. It is a compact unit, with an 80 column, 5×7 matrix print-out, operating quietly and efficiently at 30 characters per second.

As well as the obvious advantage of mass storage, the addition of the disk system to the Genie means much faster access to other languages and full random access file handling. Up to 4 of these 40 track drives can be used on a system.

New! . . . Double Density Adaptor
Doubles the storage capacity of your disk drive by allowing it to work double density.

SPECIAL TECHNICAL GENIE
 HOT - LINE ON 06294995
 for all your tecbnical advice and service backup on aspect of the Cenie syatem direct from the expents.

For full details and demonstration of Genie I, Genie II of advice on any aspect of the system, either call in to your local dealer, or write directly to the sole importers at the address below.

Genie I and II approved dealers

AVON Microstyle, Bath, 0225 334659/319705. BEDFORD Compatopia, Leighton Sazzard. 0525376600 . Comserve. Bedford. 0234216749 . BERKSHIRE P.C.P. Reading. 0734 \$89249 BIRMINGHAM Laskys Microdigital, Birmingharm, 021-632 6303. Ward Electronics, Birmingham, 021-564 0708 BRISTOL Laskys Microdigital, Bristol 0272 20421. BUCKINGHAMSHIRE Photo Acoustics, Newport Pagnell. 0908610625 CAMBRIDGESHIRE Cambridge Micro Compulers. Cambridge. 0223314666 CHESHRER Hewart Electrorics, Macclesfield. 062522030 . Mid Shite Computer Centre. Crewe. Laskys Microdigital, Chester 0844317667 . CUMBRIA Kendall Computer Centre. Kendall. 0539 22559. Northrock Music, Carlisle. 0228 37114. DERBYSHIRE Kays Electronics, Chesterfield 024631696. T Crossley. Chesterfield, 0246850357 DORSET Blandford Computers. Blandford Forum, 025 53732 . Parkstone Electrics. Poole, 0202746555 ESSEX Emprise. Colchester. 0206365926 Compuskill. Romford 0708751906 . Infolab, Chelmsford, 0245357111 Micro Computer Services. Clacton on Sea, 025529018 . CSSC Hord. Computers. Chellenham. 0242582090 . Petrie Systems, 0242584343 Zeta Computers Stonehouse. Chelienham 0242584343 . Zeta Computers. Stonehouse, 04538224 40686. Watford Electronics, Watford, 0923 40588/3773 O Tek Systems. Slevenage, 043865385 . Comp Shop. New Barnett.01-441 2922 KENT Matrix Computer Systems. Beckenham, 01-685 7508/7551 Business Systems Hempstead. 0635362652 The Computer Room, Tunbridge Wells, 069241645 . SMG Microcomputers. Gravesend, 047455813. Swanley Electronics. Swanley. 0322 64851. LAN CASHIRE Laskys Microdigital. Liverpool, $051-2272535$, Mighty Micro. Burnley, 02B2 58758 Leisuronics. Blackpool. 025327590 . Harden Micronystems, Alackpool, O253 27590. Micro Chip Shop
Fleetwood, 0391779480 . Sound Service, Burnley 0282 Fleetwood, 0391779480 . Sourd Service, Burnley, 02 Microdigital, Preston, 077259264 LEICESTERSHIRE Eley Electronics, Leicester, 0533871522 . Arden Data Processing. Leicester 053322255 Kram Electronics. Leicestet, 053327556 LONDON (CENTRAL) City Microsystems, EC2,01-588 7272/4 LONDON (NORTH) Radio Stack, NW 6. 01-624 7174. Comp Shop. Edgeware Road. 01-262 0837 Chromasoric Electronics, N19. 01-263 9493. Wason Microchup, Ni8, 01-907 1757/2230. Comp Shop. New Barnet. 01-441 2922 LONDON (WEST) Heary's Radio W2,01-402 6R22. BDM Compater Marketing. W9,01-236 7374. LONDON (SOUTH) Lasky Microdigital, Kingsion, $01-5461271$. MANCHESTER Supplies, Levenshulme 051.4319265 NORTH EAST 3 Lire Compuning Joll 0493859169 Derwanl Radio 3 Line Computing, Hull, 0488859169 Derwant kadio, Scarborough, 072365996 . Briets Cormputer Services Middiesborough, 0642242017 General Northern Associates, Gateshead. 06 32821924 NORTH RNTS Arden Data Processing. Peterborough, 073349577 NOTTINGH AMSHIRE University Radio, Nottingham, 0602 45466. Midland Microcomputers, Nottingham, 0602 298281, Laskys Microdigital, Nottingham, 0602415150. Mansfield Computers. Mansfield. 062131202. East Midland Competer Services. Arnold, 060226707 Electronic Servieing Co, Lenton. 0602783938 NORFOLK Anglia Computer Centre, Norwich. 0603 29652. Betinetts, Derehath, $03622488 / 3$

OXFORDSHIRE Magnes Microcompeters, Kidlingtoa 086756703. Micro Business Systems, Whitney, 0993 73145. SCOTLAND Computer and Chips. St Andrews 2914 Scotbyte Computers Ediaburgh. 03i-343 2005 Laskys Microdigital. Glasgow. 041-226 3342. Esco Corrputing. Glasgow, 041-204 1811. Siticon Centre. Edinburgh. 031-332 5277 SHROPSHIRE Tarrant Electronics. Newpost, 0952812134 . SOUTH Aerco Gemsoth, Woking. 04862 22881. Castle Electronics. Hastings. 0424437875 . Gamer. Brighton. 027369824 SOUTH WEST Disikwise Lid. Plymouth, 0752276000 Diskwise Lid. Callington. 057933780 Electrosure, Exeter, $039256260 / 56687$. West Devon Electronics. Yury St Edmunds, 095 381 316 Marshion Ele Computers Buryst Edanunds, 1 . Elgelec 1hd Computer Centre. Thornton Heath. 0 R- 6891280 Catronics Led. Wallisgtos. $01-66767001$ SUSSEX Nestra Electronics. Chicheater, 0243512661 WALES Morriston Computer Centre. Swansea. 0702796817 MRS Commuaications. Cardif. $0222616336 / 7$ Tiyta Computera, Bangot, 0248 S2042 WEST MIDLANDS Allen TV Services, Stoke on Trent 0782616929. Microprimt, Stoke on Trent. 078248348 WILTSHIRE Everyman Compusers, Weatbury, 0373623764 YORKSHIRE Advance TV Services. Shipley. 0274 555333. Amatoar Radio Shop. Hoddersfield. 048420774 Thomas Wright, Bradford. 0274663471 . Scene and Heard. Halifax, 042259116 Spot Compater Systems. Doncastet 030225119 . Superior Systems Lid. Sheffeld. Photo Electncs, Sheffield, 074253865 EIRE Compshop. Dublia. Dublin 24933 NORTHERN IRELAND Business Electronic Equipment Belfast. 0232 46161. Bratais Laboratories Ltd. Belfast. 033228374 CHANNEL ISLANDS GB Organs. Se Savior $053426788 / 23564$

Chesterfield Road, Matlock, Derbyshire DE4 5LE Telephone: 0629 4995. Telex: 377482Lowlec G.

TheNorthernShow thatmeansBusiness

 Research Machines

Comments like this were made by many exhibitors at the 1981
Manchester Micro Show - in fact so encouraging has been the response that two exhibition floors have been made available for the 1982 Show.

If your organisation has not yet confirmed its booking ring the Online Exhibition department now. They will reserve your space awaiting your written confirmation.

3-5 March 1982
New Century Hall, Manchester

Online Conferences Ltd., Argyle House, Northwood Hills, HA6 1TS, Middlesex. U.K.
Phone: Northwood (09274) 28211 Telex: 923498

ZX-81 CODE

A fter reading the November issue from cover to cover, I tried to run the programs in listing 2 of Brendan Clancy's informative article. It seems to omit four values between addresses 16586 and 16661 , and two values between addresses 16686 and 16736.
This was my first attempt at machine-code programming, so I took great care to enter all the values and have re-counted the number of bytes given in the listing several times. Please can you print the missing values, or tell me where I've gone wrong, so that I can at last see the advantages of machine-code programing?

Nick Carter,
Milford-on-Sea,
Hampshire.

Before byte number 16661 insert two lines which should read:
LD HL 16438 33,54,64; crash INC(HL) 52
Just before byte number 16736 insert:
JR Z $6 \quad 40,6$
Line number 2 in the first Basic program should read line number 5 , and there should be a space between the " " in line 20 in the second Basic program.

FAULTY CASSETTE

The article by Eric Deeson on ZX programs in the October issue was excellent. It arrived in time to stop me from pulling the remaining grey hairs from my head. I had repeatedly tried to load my cassette and had tried everything, including prayer, without success. The article reassured me and I have subsequently returned the cassette to Sinclair Research for exchange.

I should add that the cassette sent was a free cassette issued to calm my nerves because I had waited since July 11 for a RAM. I have not as yet received two cassettes ordered at the same time. What a pity that such an excellent machine as the $\mathrm{ZX}-81$ seems to be marred by such inadequate software and after-sales service. I hate to think what use the cassettes will be when they eventually arrive.

D B Orpin, Binbrook,

Lincoln.

RAM ALTERNATIVE

In the October issue of Your Computer, P C Jowsey indicated in Response Frame that the circuit diagram supplied with the kit version of the ZX-81 suggested the
use of a 48162 K RAM instead of the IK RAM supplied.
I have carried out this modification but using a 4802 which is an updated 24 -pin version of the 4816. It is pin-compatible with the 4118 except that pin 19 must go to the A10 rail - as for the 4816.
The 4864 could be fitted to replace either of the devices mentioned this will give 8 K of RAM. All these RAMs are available in the Mostek Bytewide series and can be fitted without any serious modifications to the printed-circuit board.

I am a newcomer to the Sinclair ZX-81 which I have just finished constructing. I read with interest that some users have had problems recording on cassettes from the ZX-81.
Some very cheap cassette machines have an integration capacitor across the speaker or earphone socket. Mine had one of $0.068 \mu \mathrm{~F}$ and I found that it upset the replay into the computer. Removal of this capacitor completely solved the problem. If you are lucky enough to have a circuit diagram, check to see if your recorder has this capacitor.
1 found that cheap cassettes could not be used. Their oxide is such that they do not saturate properly, and recording digital information becomes impossible. Mediumquality cassettes such as BASF SL or similar are suitable.
I hope this helps others who may have problems with the ZX-81 - it is possible that the problems do not lie within the computer but with the cassette recorder.

Stuart Stirling,
Ilford,
Essex.

ZX-81 CONTACTS

have found the solution to fitting the ZX-81 RAM pack securely. The main problem is that the RAM pack wobbles when nudged even slightly, which is due to poor contacts and results in total data loss.
To cure the problem permanently, you must first remove the ZX circuit board from the casing and then plug in a soldering iron. When the iron is hot, apply small quantities of solder to the strips of solder already present on the board. This should be done on both sides of the output port, so that the RAM pack fits much more tightly.
I also noticed, in your October edition, that Eric Deeson had loading problems with some of the software he was reviewing. He blames software-recording quality, but I am reasonably sure this is not the cause. The problems are more likely caused by cassette-player incompatibility.
I have found that speeds and tones vary according to the cassette players
used - I have eight of them. The simplest cure for this is not to send the software back to the suppliers but to borrow someone else's player and try with that. When the program is loaded into the computer, save it again on your own cassette player.
fem Software,
Lilbourne,
Warwickshire.

SCOPE TEST

A. fter a look through the Your Computer survey of program and tape standards in the October issue, I think it is worth mentioning that an oscilloscope is extremely useful when making or testing ZX-81 tapes.
So far, we have only examined our own tapes - made in the course of developing a reliable mass-duplication system.
The oscilloscope is probably the best tool for distinguishing between perfect tapes, those that will load with a tail wind and some luck and those not worth spending time on. The only problems that the oscilloscope will not bring to light quickly

are those which only affect part of the tape, e.g., dropouts and bad patches. These can be very largely avoided in production by using good-quality tape.

All our batches of tapes are tested by sampling. If a few samples load impeccably, and the wave-form is near perfect, we accept the batch. If anything suspicious is found, we test part of each tape for a few seconds on the oscilloscope.

Mike Salem,
Hilderbray Ltd,
London NW1.

"LIFE" ON 16K

2X-81 owners who have tried to run Sinclair's Life program with a 16 K RAM pack fitted will know that the system crashes - albeit gracefully. The following procedure permits the program to run with 16 K . Load the program and enter these three lines:

900 FOR $\mathrm{N}=16666$ TO
16550 STEP -1
910 POKE ($\mathrm{N}+2$), PEEK N

920 NET N

Then type:

GO TQ 900
Amend line 700 to
700 LET C = USR 16572
Lines 500 to 540 inclusive are now redundant and lines 900 to 920 should be deleted. Save the program before running.
This procedure works because the original program ran with a page width of 16 characters, whereas the 16 K RAM creates a 32 -character
display. The two additional memory locations created by opening the machine code at the right place contain the shift left instruction, and effectively multiply the page width by two.

Martin Buckley,

Southamplon.

SKETCH SUCCESS

agree whole-heartedly with the opinion G A Bobker expressed in the August/September issue about Sinclair cassettes. Admittedly it requires very little work to make them run smoothly, but why leave it to the poor purchaser - surely they could have been altered before release? I was undoubtedly unlucky - I bought cassettes 1 and 4 and have had to return number 4 because of errors.

Eric Deeson's Sketch Pad program in the same issue proved a great success with my couldren, but they kept entering too few or too many characters, which of course terminates the program. This can be avoided by adding between lines 9 and 10 or 90 and 100 .
95 IF LEN AS < > 3 THEN GO TO 60
Gillian Turner,
St Neots,
Cambridgeshire.

VIC OR ATOM?

Iam at present considering buying microcomputer. I read the September issue of Your Computer and found it very informative. However, having joined the local computer club - something I would advise anyone in a similar position to do $-I$ have had a chance to use several home computers and I am forced to disagree with your views on the Vic.
At the price of about $£ 300$ for the Vic-20, the Super Expander Cartridge and the cassette recorder, I cannot see that it is good value when compared to the expanded Acorn Atom. This machine offers twice the screen capacity and if the colour card is used, it is more than a match for the Vic graphics.

Admittedly, the Acorn has a nonstandard Basic, but once you become accustomed to it, aided by the excellent manual, it is easier to understand than the Pet version. Added to this is the fact that the Atom comes as standard equipped with an assembler, rather than the Vic's clumsy Peek and Poke surely a big point in its favour.
In short I feel that this British competition is more than a match for imported machines. I would advise anyone wanting a computer to buy British - not only out of patriotism but for value for money.
N Goodwin,
Horley,
Horley

Co-op to help U.K. clubs

Co-operative Retail Services is to create a network of home-computer clubs for its customers, members and staff. It has long been the practice of the Co-operative movement to assign part of its profits to financing educational, cultural and leisuretime schemes. In the past, the money has been spent on a wide range of activities including choirs, youth groups and classes.
The Co-operative Societies' national member relations officer, Frank Dent, says that he sees home computing as possibly the biggest leisure growth area which could soon rival photography. "In the Coop, we have always tried to respond to new needs. I am convinced that there must be many thousands of people just waiting to join homecomputer clubs".

To start such a club, contact Frank Dent, CRS Ltd, 29 Dantzic Street, Manchester M4 4BA.

Upgrade ZX-81 memory to 48 K

OWNERS OF either the Sinclair ZX-80 or ZX-81 microcomputers are constantly frustrated by the shortage of user-memory available for their machines. The meagre amounts of RAM available with the basic machines is enough for a very simple program but for one of any degree of sophistication, the low-capacity memory is prohibitive.
Many ZX fans find the greed for memory satisfied by the 16 K RAM packs which wobble about on the rear connector. Yet for the more avaricious memory user, even a generous 16 K may not be enough. For those, Memotech has introduced a new 48 K memory extension.
The Memotech memory-extension board will allow the ZX-81 to run 48 K Basic programs which can include up to 16 K of assembly code. The memory is available in either a ready-built form or, for the more adventurous, a kit is available. Unlike the 16 K RAM pack, the 48 K memory extension is complete with a power supply which services the computer as well as the memory extension.
The memory extension resides in a case on which the microcomputer sits. It has a fully-buffered control-data-address bus with a printedcircuit board 40 -way header plug.
The memory is configured in such a way that there is a 16 K "gap" between 16 K and 32 K for assembly programming. Top of memory can then be set at any point up to 64 K .
The ZX memory expansion costs $£ 129$ plus VAT built, or $£ 109$ plus VAT for the kit. For the Nascom 2 the memory expansion costs $£ 85$ plus VAT. Memotech: 0865513356.

Sinclair seals Japan deal

Clive sinclatr has good reason to look pleased with himself. The two gentlemen with him are British representatives of Mitsui, the giant Japanese trading company, who are about to begin marketing the Sinclair ZX-81 microcomputer in Japan.
M Ohtaki, left, assistant general manager at the London branch of the Mitsui organisation and Hiroshi Shimizu, right, the manager of Mitsui computers, told Your Computer that Mitsui would be selling the machines in Japan using the same mail-order techniques Clive Sinclair pioncered in the U.K.
"We will retain the Englishlanguage keyboard - the difference in languages will not be important in the market where we are selling. We regard the $\mathrm{ZX}-81$ as an educational toy":

Shimizu is the man responsible
This is the $\mathrm{ZX}-81$ Print ' n ' Plotter Jotter from Butler, Currie and Hook. It is a useful aid for anyone interested in exploiting the graphics capabilities of the Sinclair microcomputers to the full. Consisting of a tear-off pad of 100 leaves, the Jotter has each page printed with a $Z X$ print grid and a ZX plot grid. Each grid is fully numbered and clearly definable. The pad measures
11.75 in. by 8.25 in . - the standard A4 size. On the print grid each of the 704 character
positions are shown and numbered. The plot grid has all 2,816 pixel co-ordinates. The price of the $\mathrm{ZX}-80 / 81$ Print ' n ' Plotter Jotter is $£ 3.50$ for one pad. When ordering by post, second and subsequent pads cost $£ 3.15$; if five are ordered, a free ZX Print ' n ' Plotter Film is yours. The Film costs $£ 2$ if bought separately. Discounts on larger quantities are offered to clubs and user groups. The retailer of the Jotter - Butler, Currie and Hook, 19 Borough High Street, London SE1 - is planning to extend the scope of the Jotters to cover other popular microcomputers. Butler, Currie and Hook can be contacted by telephone on 01-403 6644.

Payroll geared to small firm

A sMaLL-FIRM payroll program together with step-by-step instructions, which runs on the $\mathrm{ZX}-81$ with 16 K RAM pack and printer, will perform all the payment and deduction calculations and keep the records for a small company with 30 or fewer employees.
The program can also cope with bonuses and any occasional payments which need to be made. It can also gross a nett payment. There is a program-replacement service in case of any tax changes. Contact Hilderbray Ltd, 8.10 Parkway, London NW1 7AA. Telephone 01-485 1059.

Learning Basic in the lab

Sinclair Research has developed a hands-on ZX learning laboratory to enable users to learn programming at the machine. Developed by Sinclair to meet popular demand, the laboratory comprises eight cassettes and a 160 -page manual. The 20 programs each demonstrate an aspect of $\mathrm{ZX}-81$ programming. These aspects are spread over the first six cassettes - the last two are left blank for the user to practice with.

The laboratory is available from Sinclair Research, 6 Kings Parade, Cambridge, CB2 1SN, and costs £19.95.

Schools enjoy special price

More than 2,300 secondary schools have opted for the Sinclair ZX-81. The machines were sold to the schools under a special low-price scheme which was run earlier this year by Sinclair in conjunction with educational distributors Griffin and George. The scheme was Clive Sinclair's personal bid to widen the choice of microcomputer equipment available to schools.
The Government-assisted scheme restricts the choice of machines to either the Research Machines $380-\bar{Z}$ or the new BBC computer from Acorn. Clive Sinclair commented that "although we welcome the Government's initiative, we felt that it did not fully account for the needs of all schools. We believe that the success of our scheme vindicates our approach as both practical and economic".

Vic extras that add power
 A wide range of Commodore-

 approved peripherals for use with the new CBM Vic- 20 microcomputer has been released by Stack Computer Services. The peripherals give the Vic many of those facilities associated with larger or more expensive computers. Judging by the response Stack has already received, these products are destined to be very popular.The most obvious add-on to any small microcomputer system - after the tape recorder - is extra memory. RAM is always at a premium inside any microcomputer; especially those which do not provide much as standard. The 3.5 K of RAM provided with the Basic machine should be enough to keep most happy for a month or two, but soon the user will want more.
Stack markets a 3 K memory addon for $£ 39$ which has the advantage of moving Basic to the same memory

The Vic joystick from Stack is just one of a new range of peripherals.
space as on the Commodore Pet that means programs written on the Pet can be transferred. The unit plugs into the Vic and acts as the memory port so you do not lose any of the machine's facilities. Another advantage of the device is that it offers high-resolution graphics.

There are in fact a whole range of memory expansions to suit every user. They are available in both CMOS and NMOS and range in size and price from $£ 11.50$ for 1 K up to f 184 for 24 K plus a switchable 3 K . Another memory product of interest is the 19 K memory expansion which is battery-protected so that programs remain even when the computer is switched off.

The $£ 25$ Vic light pen will work in both the normal and the highresolution modes. The pen enables you to interact with the computer without using the keyboard.
A CBM Vic can be used as a remote terminal to a large mainframe computer or can control a printer or any of a large number of other peripherals by the RS-232 interface. There are two versions,

The first ZX Microfair was such an overwhelming success that people queued all the way around London's Central Hall, Westminster, for hours in the pouring rain. Considerably more than $5,000 \mathrm{ZX}$ enthusiasts attended and the opening hours had to be extended so that everyone could have a chance to see the exhibits. The 50 stands in the packed hall reported extremely brisk business, with some stands recording sales well into four figures. Because of the response, organiser Mike Johnston is planning a second fair to be held at Central Hall, Westminster, on Saturday January 30. This time, to cope with the rush, the doors will be open from 10.30 am until 8.30 pm . The floor space will be doubled to give everyone room to breath. Anyone interested in exhibiting should contact Mike Johnston - after 7pm, on 01-801 9172.
one at $£ 17.25$ and the full implementation of the standard interface costs $£ 49$.
Other peripherals include joysticks, two of which can be used if the multiplexor is used, an adaptor cable, a switchable ROM unit and a toolkit ROM.
Stack Computer Services accepts orders over the telephone if you have a credit card. 051-933 5511. However most of the peripherals will be available from your local dealer.

High-resolution on Tangerines

High-RESOLUTION graphics of 256-by-256 definition are now a reality for Microtan users. The programmable graphic generator, developed by the Tangerine Users' Group, follows in the footsteps of the EPROM programmer and also offers a reverse-video ASCII character set.

For more details of these products, contact the Tangerine Users' Group on 0202-294393.

The sound-generator box.
building up a sound, notes on the physics of sound, a list of frequencies and how to obtain them and a note on installing external speakers.

The board also contains two independent eight-bit input/output ports which can be used for control purposes. A second sound-producing chip can be added so that, for example, two chips could sing in harmony.
The Bulldog video sound-generator board costs $£ 44.85$, or $£ 56.35$ with two sound chips; both prices include VAT. Bulldog Video is at 52 Nash Square, Birmingham. Telephone 0299-266143.
 \title{
COMPLETE SINCLAIR ZX81
 \title{
COMPLETE SINCLAIR ZX81 BASIC COURSE
}

At last, a comprehensive text for your Sinclair ZX81! The complete BASIC Course is a manual which will immediately become an indispensible work of reference for all your ZX 81 programming.
Whether you have never done any programming or whether you are an experienced microcomputer user, the Complete BASIC Course will provide itself to you as an invaluable aid.
The Complete BASIC Course is designed to teach you to write and develop BASIC programs for the Sinclair ZX 81 - no other books or aids are necessary. All is revealed in our easy step-by-step guide with programs and "test yourself" exercises all the way through.
As you become more proficient with computing, the Complete BASIC Course will continue to be an essential guide, giving you finger tip references. numerous advanced programming techniques and memory saving devices specifically for the Sinclair ZX 81 .

HOW TO WRITE PROGRAMS:

Even if the idea of writing programs is completely mystifying to you, the Complete BASIC Course will show you just how easy it is. In no time you will be able to write and enjoy complex programs for whatever use you desire.

Using the proven "TOP-DOWN" approach, the Complete BASIC Course will show you systematic and simple ways to write programs. Even experienced programmers will benefit from this Course, making programs easier to write and less prone to error!

NUMEROUS EXAMPLES:

Every concept, every function is fully described by simple programs that you can enter on your Sinclair ZX 81 in minutes.

The Complete BASIC Course contains over 100 programs and examples! These programs illustrate the use and possibilities of the Sinclair ZX 81 :

- Home use
- Financial analysis and planning
- Educational applications
- Games
- Mathematical applications
- Displays of 'Artificial Intelligence

EVERY FUNCTION COVERED:

No matter what your application, what your confusion about any function, you will find it covered in the Complete BASIC Course.

A full and detailed discussion is included of even traditionally taboo topics such as USR. PEEK and POKE.
A handy alphabetical summary section lists all functions, and provides a short description and example programs of all topics.

A PERMANENT WORK OF REFERENCE:

The Complete BASIC Course is an excellent reference work for experienced programmers (including tips on using special techniques) as well as a comprehensive step-by-step guide for complete beginners.
The Complete BASIC Course has over 240 pages filled with information in an attractive durable ring binder - this is a lay-flat work of reference that deserves a place next to every Sinclair ZX 81 microcomputer.

OTHER TITLES AVAILABLE:

Melbourne House is the world's leading publisher of books and software for the Sinclair ZX 81.
The following titles are also available if you wish to expand your horizons:

BASIC Course Programs on Cassette -

All major programs in the BASIC Course are available pre-recorded in this set of cassettes. This is a valuable adjunct to the Course, saving you time and effort.

Not Only 30 Programs for the Sinclair ZX 81: 1 K -

Not only over 30 programs, from arcade games to the final challenging Draughts playing program, which all fit into the unexpanded 1 K Sinclair ZX 81 but also notes on how these programs were written and special tips! Great value!

Machine Language Programming Made Simple

 for the Sinclair -A complete beginner's guide to the computer's own language - Z80 machine language. Machine language programs enable you to save on memory and typically give you programs than run 10-30 times faster than BASIC programs.

Understanding Your ZX 81 ROM -

A brilliant guide for more experienced programmers by Dr. lan Logan, this bookillustrates the Sinclair's own operating system and how you can use it. Includes special section on how to use machine code routines in your BASIC $p+$ rograms.

hp HEWLETT PACKARD

Scientific and technical professionals favour the HP 85 , they are being joined by increasing numbers of business professionals. Find out why the HP 85 is the professional microcomputer at your nearest Laskys store or

 write to our Mail Order department for more details. LASKY/5 is the largest specialist Hi-Fi chain in Europe, in July 1980 they acquired Microdigital - an independent, specialist microcomputer store based in Liverpool. Since then specialist microcomputer departments have been set up within selected Laskys stores under the Microdigital name, these have now been renamed Microcomputers at LASKY/

The Professional Microcomputer Retailer with 10 Outlets Nationwide \& Mail Order

19/21 Corporation Street, Birmingham, B2 4LP Tel 021-632 6303 Manager Peter Stallard 300 yords from Bulling Centre.

BRISTOL

16/20 Penn Street, Bristol, BSI 3AN Tel 027220421
Opening 16th October
Between Holiday Inn and C \& A

CHESTER

The Forum, Northgate Street, Chester, CHI 2BZ Tel 0244317667 Manoger: Jeremy Ashcroft. Next to the Town Hall

EDINBURGH

4 St James Centre, Edinburgh, EH1 3SR Tel 031.5562914 Managen Colin Droper. East end of Princes Street, St. James Centre
KINGSTON (Opering eoly 1982)
38/40 Eden Street, Kingston, KII I EP. Tel: 01.546 1271 Opposite Main Post Office
MTCROCOMPUTERS
$\square \| A T$

12/14 St. Mary's Gate, Market Street, Manchester, MI IPX. Tel: 061 -832 6087 Manager Lesly Jacobs. Corner of Deansgate

NOTTINGHAM (Opening eory) 1982)
1/4 Smithy Row, Nottingham, NGI 2DU. Tel: 0602415150
Manager Alister Hawkes.
Within Market Square, Exchange Buildings, Nottingham

SHEFFIELD

58 Leopold Street, Sheffield, S1 2GZ Tel 074275097 Monager Justin Rowles. Top of the Moor, opposite Town Hall

LIVERPOOL

33 Dale Street, Liverpool, L2 2HF Tel 051. 2362828
Manager: Mark Butler. Between the Town Hall and Magistrotes Courts

LONDON

42 Tottenham Court Rood, London WI 9RD Tel 01.6360845

Mail Order

Microdigital Limited, FREEPOST (No stamp required), Liverpool 122 AB

VIC20 home computer is at your dealer's today. Now you can get your hands on the world's best home computer, we're sure you won't be disappointed. Here's a brief reminder of VIC's many features:

A typewriter keyboard with graphics.

5K Memory-expandable to 29.5 K user RAM.

8 programmable function keys. High resolution graphics. Music in three voices and three
octaves, as well as sound effects.
Eight border colours and sixteen screen colours.

All in a superbly-designed, compact unit with built-in facilities for expansion.

Now you can take a look for yourself. And even take VIC home tonight.

For more information on the VIC 20, telephone or write to: Commodore Information Centre, Baker Street, High Wycombe, Bucks, or Tel: Slough 79292.

COMPUTER CLUB

FOR ONE UNACCUSTOMED to believing that State-financed schemes ever do much good, a visit to London's Notting Dale Technology Centre proves that this time a Government plan is going to work.
Some 18 months ago, Chris Webb established the Technology Centre at Notting Dale in the back streets of Notting Hill Gate. Many of the slums have been replaced in the last few years but the area as a whole remains poor. It is hardly the place where you would expect to find a computer centre, sited opposite the Free Republic of Frestonia - a group of houses occupied by squatters a few years ago.

Four years ago, Webb had been working on community projects with 16 - and 17 -year-olds who were mainly unqualified. No status, no jobs, no prospects, poorly housed. He had foreseen the bleak prospect of six or seven million unemployed by the late eighties. Reading research papers, seeing the engineering industry contract and computing grow, he decided to "dance with the silicon devil".

With the assistance of interested staff at Imperial College, the Institute of Education and the Harrow Trust - a local charitable organisation - he started putting resources

Notting Dale
Technology
Centre

Work at the centre includes development of aids for the disabled
together. $£ 750,000$ was raised. A disused bakery was bought and converted, ready for the computers and peripherals.
Eventually, the Manpower Services Commission (MSC), succumbed to such a strong assault. Now it will be funding 30 similar centres throughout the U.K.
For those contemplating similar projects, the moral is clear: amass what you can from all the resources available; group together with others of like mind for strength, and start your computer or electronics centre. When and if it works, officialdom may well offer some tardy assistance; by then you can, to an extent, dictate your terms.
The notion that Webb had was a complex mixture: there exists a mis-match of jobs and skills; job creation is best locally controlled; unemployed youngsters have plenty of nous and little schooling; education is most effective when motivated by a need to know; integration of real practical work experience is a key feature of adult education.
As an act of faith, on a first-come, firstserved basis, and with self-motivation as the
main criterion for acceptance, 30 youngsters were taken on for a year as a Youth Opportunities Programme (YOP) project. Word of mouth seems to have been the main advertisement. Those who found out about and visited the Centre were presumably the more strongly motivated.
With a teaching staff of six, 15 Pets, several Aim- 65 boards, sundry other computers, test gear, etc., their learning was in four main areas: the modern electronic office; electronics, with an emphasis on the digital; programming, mainly Basic and Logo with some machine code; and prototype development which was directly practical, starting with no previous work experience.

The success rate has been astounding. Some 65 percent are now employed. No wonder the MSC was so keen to help; it cannot achieve this rate with university graduates, let alone poorly-educated youngsters.
The regime, if such it can be called, is essentially informal. Though lateness or nonattendance leads to a docking of the $£ 23.50$ YOP wage, there is no strict timetable or
curriculum. If someone should wish to play Space Invaders for two months to remove all trace of it from his system - it rarely takes longer - then he will probably be left alone to do it. Sooner or later, with this laissez-faire approach, a working understanding is reached. Only by giving the responsibility of action can responsibility be developed.

The youngsters have two definite assets they know when they do not know something and they have commonsense. Given a toolkit - soldering iron and pair of pliers - and a few components, they can start making things. When they realise they do not know something, then it is time for theory. For example, they might ask for a seminar on power amplifiers - to make an electric guitar sound better - or on analogue interfaces to input in a particular way to a computer.

One of the weaker areas is programming. The greater proportion of software uses mathematical modelling. How, then, do you teach someone with a totally non-mathematical background? New languages are needed as are means of incorporating basic mathematics into the brief 12 months.
The trainees are very good at problem solving and this shows, when they are designing. Having gathered components, discovered the necessary theory, in the end they usually find a very elegant final solution.
Where are the jobs at the end of this? Some youngsters have gone into apprenticeship to further their careers. Sound-recording studios, musical-equipment manufacturers and Space Invader emporia have taken on trainees. Further education, working for the Prestel service, and salesmanship are courses taken by others.

After a year's training, they will have acquired some of their tutors' experience, : nd the Centre clearly enhances credibility with local employers. By working with high tech-
(continued on next page)

COMPUTER CLUB

(continued from previous page)

nology, in an area of high potential, their selfrespect and self-confidence is also improved.

A few jobs have been created at the Centre. Integrated into the scheme of things at the Dale are two businesses. As with any form of further education, real products are developed and manufactured alongside the educational process.

Simon Browning runs a small firm developing aids for disabled people. With a start-up capital of $£ 40,000$, they have a year in which to become established. If all goes well, similar firms could be attached to the 30 centres throughout the country. Such a concept is, indeed, a powerful one.
Not only does the design and development of electronics-based aids provide teaching material and direct experience; the manufacture and servicing will provide worthwhile jobs and much-needed equipment for the one in 10 of the U.K.'s population who are disabled.

Local support can be provided at the Centre, backed by the teaching staff and engineering associates. Networking between centres means experience and design work will be shared, so cutting development costs.

Need-based - as opposed to consumerorientated - manufacture is not the easiest of areas in which to start a business. There is little money available. The demand is there and there are many disabilities which can be lessened through the appropriate use of high technology.

If you want to know what devices they will be making, imagine yourself paralysed, or blind, or deaf. Now think how you could use your computer to help. There is plenty of scope.

If you spawn an original idea, forget it for a few weeks. Then if it still seems good, write it down and send it to the Centre.

Richard Hillier is a well-qualified electronics engineer who has set up Countermeasures Ltd alongside the Centre. Having developed high value-added .products - specialised data loggers, a polyphonic synthesiser, an EPROM blower, among others - the deal is a straightforward one of a 50/50 split of profits in return for work space. It looks like a stable and worthwhile interdependence.
Of course there have been problems; there have been breakdowns and not everyone has completed the course. As a whole, it's a definite success. The fact that the Department of Industry's Education Department will be investing $£ 6$ million to $£ 7$ million in creating
similar centres throughout the $\mathrm{U} . \mathrm{K}$. over the next year is a measure of that success.
Chris Webb and three colleagues will be heading the Dol consultancy set up to handle this development, which means that it stands a better-than-average chance of success. They will provide technical and educational advice at an adult and community level as the new units are started in tandem.

The Information Technology Centres (ITECs), as the Press has nominated them, will initially be situated in the depressed innercity areas and will be modelled on the Notting Dale Centre, taking into account current needs, local and industrial resources.
The beauty of a loosely-coupled network is that it can be tailored to suit and adjust to changes in local and immediate requirements. Prestel will link the centres - information will be available on-line - giving an economy of scale, though autonomy can be a strong feature, integrating each unit into its individual environment.

Computer Club is here to encourage you to start your own local computer club or, if one already exists, to join it and become involved. Each month we will devote the page to new ideas from local clubs. We would like to hear of anything which has made a club a success, or of any projects or programs you are developing.

RAM EXPANSION for 6502 and Z80 A Micros

 VIDEOGENIE and ZX81
Prices:

Expansion module	Atom	Old Pet	New Pet	UK/OS	TRS80	Videogenie	ZX81
16 K	$£ 40$	$£ 40$	$£ 40$	$£ 40$	$£ 33$	$£ 33$	$£ 33$
32 K	$£ 52$	$£ 52$	$£ 52$	$£ 52$	$£ 45$	$£ 45$	$£ 45$
64 K	$£ 80$	$£ 80$	$£ 80$	$£ 80$	$£ 73$	$£ 73$	$£ 73$
128 K	$£ 130$	$£ 130$	$£ 130$	$£ 130$	$£ 123$	$£ 123$	$£ 123$

Prices shown are for kit versions. Please add E8.00 + VAT to all prices for ready-built modules.
All prices include full components and documentation. Please add 15\% VAT.
*Extra power supply of $12 \mathrm{~V} / 1 \mathrm{~A}$ and $-5 \mathrm{~V} / 10 \mathrm{~mA}$ required. You can either provide it yourself or we can supply it for you at $£ 8+$ VAT.
Think of the future . . . and then get down to the basics.
The power of your Microcomputer really lies in its software - and the power of its software depends directly upon the availability of Ram.
Memory modules are now easy to install and low cost. So why wait?
We have designed memory modules for the PET, ATOM, UK101/OHIO SUPERBOARD, TRS80,
VIDEOGENIE and the ZX81. Off the shelf and ready to run. In most cases, simply plug into the 40 pin
socket of your Microprocessor and you get $128 \mathrm{~K}, 64 \mathrm{~K}, 32 \mathrm{~K}$ or 16 K more RAM at your fingertips.
How do we do it?
We make the latest device in the field available to everyone - the Motorola MC 6665
L 20 or 64 K bit on a single chip, which consumes a mere 10 mA at 5 V to retain your data or programs. We
put eight of this on to a board the size of a cigarette packet to give you eight times the actual power of your Microcomputer.
If you do not yet know how to make full use of your $64 / 128 \mathrm{~K}$, our latest documentation includes programming examples to start you off.
Please write or ring us for further details:
AUDIO COMPUTERS, 87 BOURNEMOUTH PARK ROAD, SOUTHEND-ON-SEA, ESSEX
TEL: 0702613081

The introduction of a brand new word processor is a major event and AJEDIT is without doubt a major program. There are, however, quite a few Word Processors around and most of them are extremely good ones - why, therefore, another? The question is even more pertinent when it is known that we specifically commissioned the writing of it from an author of the status of Denville Longhurst of Enhanced Basic fame. The answer is that user feedback shows that a large number of customers do not need or want word processor programs which require a quantity of training before use. Scripsit, for instance, is an excellent program, but is complex to use; it even comes with a training course on tape. If one operator is dedicated to using the word processor then it makes sense to have her trained, and the more complex the program (so long as the complexity is accompanied by more and bigger functions) the better.

AJEDIT has been written for the user who needs a word processor intermittently, say three or four times a week. Its prime design criteria was ease of use - and just as importantly - ease of recollection of its commands. Take, for instance, the text editing commands - they are as close to the Basic Edit commands as possible, so that the user will remember them: To insert type 1, to delete D, to take out three letters type 3D and so on.

Furthermore, AJEDIT has benefited from being written after a number of other word processors. The deficiencies in its predecessors are corrected in AJEDIT. For instance, any control characters can be outputted so that full advantage can be taken of the features of the particular printer being used. Disk directory access is available from within AJEDIT as is the killing of files on the disk. The FREE command and a number of other DOS commands can be carried out from within the program with a return to AJEDIT - with its text intact.

AJEDIT contains close to one hundred commands covering most word processor requirements. Dedicated printer commands for the Epson MX series and the Centronics 737 are included -again for ease of use of these two popular printers.

AJEDIT needs 48 K and one disk minimum and is suitable for the TRS-80 Models I and III and the Video Genie Models I and II.

AJEDIT £49.95
Inclusive of V.A.T. and P. \& P.

SURVEY

VIDEO GAMES

Abstract

Selwyn Ward's look at the major video-game computers reveals them to be far more sophisticated beasts than their pedestrian forefathers. Their improved display and definition heighten the effects of the latest adventurous games.

Racing to the finish on a Grand Prix circuit, manoeuvring round trees and moguls in a downhill ski run, destroying hordes of malintentioned Martians, and averting a nuclear holocaust, are some of the more soothing armchair experiences offered by the latest generation of plug-in TV games.
TV games have advanced a long way since the beep-beep of ping-pong tennis and soccer games filled Christmas stockings not so many years ago. Now, games are altogether more sophisticated, considerably more expensive, and usually known by the more grandiose title of "video computer games".
With Christmas rapidly approaching, we look at four video-computer game systems: Atari VCS, Philips G-7000, Mattel Intellivision, and the Interton VC-4000. The Interton is similar to the Acetronic MPU 1000, Radofin 1292/1293, Prinztronic VC6000, Teleng, Rowtron and Database computer-game systems.
All the video-game computers plug into the aerial socket of a conventional television preferably colour, as they all generate colour graphics. All are equipped with game controls and a mains transformer. In the case of the Mattel Intellivision, the transformer is inbuilt.
The video-game computers are described as "programmable", although this does not generally mean that they can be programmed by the user. It refers to the fact that video computers can accept plug-in cartridges which allows you to have a continually-expanding library of games. Inevitably, cartridges produced for use with one video-game computer system cannot be used on another.
The Atari VCS has been on the scene for longer than its rivals and with a range of around 40 cartridges, it has by far the largest selection of games available. Cartridges vary in sophistication from relatively simple bat-andball games to complex animations such as Superman where action is limited not solely to the dimensions of the TV screen.
The player - controlling an animated Superman figure - has to roam through a series of inter-connected displays, flying out of the left-hand side of one display into the righthand side of the next, to capture and jail a
band of desperadoes, find and rebuild the hidden sections of Metropolis Bridge, and change back to meek mild-mannered news reporter Clark Kent to file his story at the Daily Planet. All of this while dodging Kryptonite meteors which rob Superman of his powers - and for which the only cure is to find and kiss Lois Lane.

Cartridges are also available containing excellent chess and checkers programs - I found that the Atari chess cartridge could usually better my dedicated-function Boris chess computer - as well as backgammon and Othello, which is also known as Reversi. A Basic Programming cartridge is also available, although it is extremely limited in scope.
The Atari is best known for its versions of popular arcade games. Most video computer systems now include a Space Invaders cartridge in their range, but the Atari cartridge most closely reproduces the arcade game which has spoiled so many pubs throughout the U.K.
New Atari cartridges include Asteroids and Missile Command; again, both are based on arcade games and both have very fast action, indeed. New cartridges fully compatible with the Atari are also now being produced by an independent company, Activision. These already include some three-dimensional sports games which compete directly with the generally more sophisticated sports-game cartridges available for the Mattel Intellivision.

Separate joysticks

Unlike the other video-computer game systems which have multi-function game controls, the Atari uses separate joysticks and paddles, which means users have the task of plugging and unplugging controllers when changing between some of the cartridges. It also means that to use some cartridges, additional controllers must be bought. In fact the controllers seem to be the weakest feature of the Atari.
The joysticks in particular are prone to jamming or breakdown. On the other hand, the Atari is the only video-game computer which - at least with certain cartridges allows four players to compete simultaneously, provided you buy an additional pair of paddle controls.

The Atari VCS, which can be found for slightly less than $£ 100$, is complete with a Combat cartridge which comprises a variety of tank and air-battle games. Additional cartridges vary considerably in price from around $£ 16$ to $£ 35$. The newer cartridges tend to be in the $£ 23$ to $£ 29$ price range, although the Activision range costs around $£ 16$.

(continued on previous page)

Many of the Mattel cartridges feature a very acceptable simulation of three-dimensional graphics. The tanks manoeuvring in Armour Battle are no mere missle-spouting blobs, but detailed figures - although despite this, and the large variety of terrain displays which can be randomly generated, the game has if anything less potential than the more conventional tank-battle games available with the other systems.
More complex are the battle games which feature both strategic- and tactical-level combat. In Space Battle, for example, play begins with a radar display showing five fleets of alien space ships moving in from different directions towards the player's mother ship. The player has three squadrons, each of three fighter ships, to launch against the approaching enemy.

The radar display is used to deploy forces, but where a squadron intercepts an alien fleet, the player may switch to a tactical display where he can view the action as if from the cockpit of one of the fighter ships. The object at this stage is to shoot down the alien ships while avoiding their laser fire. Players can return at any time to the strategic radar display to check on progress of the squadrons and of invading fleets.

However, where the Mattel system moves into its own is with its range of elaborate sports games. These involve fine detailed graphic displays showing complete animated teams, playing full-length games, and even featuring crowd noises. The team-sports games actually seem more complex than they really are, as players each control only one figure at a time while the computer animates all the remaining figures, but they are certainly entertaining to play and watch.

In Hockey, which is actually an ice hockey game, the cartridge even provides for fouls and player figures being sent off to the penalty box. In Skiing, among the most enjoyable of the Mattel cartridges, players take turns to race against the clock and/or each other on a variety of downhill or slalom runs, dodging trees and jumping moguls, manoeuvring the skier figure by altering the angle of his descent down the mountain. A Soccer sports-game cartridge is supplied with the Mattel Intellivision video-game computer.

The Mattel retails at around $£ 200$, which is perilously close to the price of some genuinely programmable, and more versatile, home computers.
There is, however, no programming cartridge available for the Mattel, although
plans have long been announced for the introduction of an add-on keyboard to convert the Mattel Intellivision into a home computer. There is still no news of when the keyboard will be available in the U.K. nor of how much it will cost. Meanwhile, Mattel cartridges sell for around $£ 19$.
Typical of a number of video computer games, each with similar range of cartridges, there are currently around 25 cartridges available for the Interton VC-4000.
The Interton uses multi-purpose controllers, comprising a joystick attached to a keypad over which overlays can be fitted. I found these controllers easier and more convenient in use than those of the other video computer systems.
The cartridges themselves are varied but generally unremarkable. Some of the combinations are very good value - Car Racing includes games where the object is to avoid crashing into on-coming vehicles, games involving a race around a circuit, and nightdriver games where the object is to stay on a sharply winding road. In the Atari system, where versions of the same games can be found, these are spread over three separate cartridges.

Nevertheless, the graphics and sound effects generated by the Interton system are extremely crude by comparison with the Atari, Mattel and even Philips systems. For some inexplicable reason, tanks or planes blown up in Tank/Air Battle do not explode, they enlarge to several times their original size.
Also in this cartridge, the planes in air-battle games have the irritating habit of freezing in mid-air when they reach the edge of the screen rather than flying around the other side of the screen as is the case with similar cartridges for rival systems.
The Interton VC-4000 retails for around $£ 95$, including a Space Invaders cartridge. Additional cartridges are around $£ 15$. Some of the similar video-game computers can be found from around $£ 65$, although usually the cartridge supplied is only a bat-and-ball game cartridge.

Video-computer games are likely to prove more than just a five-minute wonder in most households. With the new cartridges for all of the systems being released all the time, it is likely that your bank balance will run out long before your family's enthusiasm.

It is a sure bet that Santa will be delivering many video-computer games this Christmas but do not be surprised if he's still elbowing his way through the kids to the front of the TV well into the new year.

HOME COMPUTER RETAILERS
BEDS
Computopia, Leighton Buzzard (376600)
Comserve, Bedford (216749)
Electron Systems (Sandy) Lid. Sandy (81195)
Texas Instruments Led, Supply Division.
Bedford (67460)
CAMBRIDGESHIRE
Intelligent Artefacts
Orwell: 020689 .

Devon

IAD Lud. Plymouth (2003s
Peter Scutt (Exeter) Lid. Exeter (90-(0x+2)

ESSEX

Maplin Electronic Supplict:
Westatit on Sca ($55+1000)$

hants

The Maths Box Southampron (22958)
RDS, Portsmouth (8124-8)
HEREFORDSHIRE
Acoutape Sound, Bromerad it2RHI
herts
Computer Centre (Wathord 14d. Watford (90601)
Computer Plus. Watford (020+9)

HUMBERSIDE

Radias Computers Lad. Hull (22")s!)
Peter Tutty \& Co, Hull (+1/ 5 S
LEICS
Boots Company Lid. Lexcoter (210+1)

LONDON

Adda Computers LId. W8 (5-0 ₹n+ร)
Eurocalc Ldd. EC2 (727-4555
Landau Electronics Lid. W1 $(6+2.5080)$
McDonald Storo, w1 165628^{-7}
Mountaindene Led NWII (+52 ORE23)
elfridges. W1 (629 |224)
Sumlock Bondain Led. ECI (25011505)

NORFOLK

Anglia Computers Norwith (20052)
NORTHANTS
Computer Contact. Rushden (550-3)
Computer Supermarket. Curby (6158^{-})
votts
Beotmioxir Ltd sottinghum (415:5)
oxos
Science studiu Oxford (5+122)
S. GLAM

Computer Buxinew swstems [td
Ely. Cardiff (502255)
5. YORKS

Datron Interform. Sheffield (58549)
W. MidLands

Taylor Witson Systems Lid.
Dorridge Solitull (79404)
w.sussex

Gamer, Brighton (698424)

W. YORKS

Ackroyd Typewriters Ldd, Bradford (\$1835) Bits and PCs, Wetherby (63744)

SCOTLAND

Esco, Glasgow (427-5497)
Robox Lid. Glasgow (221.5401)

ireland

Texas Instruments Ldd.
Supply Division, Dublin (6092222)

RUMBELOWS STORES STOCKING

 HOME COMPUTERBEDS
Bedford (59339)
Dunstable (602018)
Arndale Centre, Luton (414i80)

BUCKS

Bletchley (73505)
Central Milion Keynes (662120)

HERTS

Borcham Woxd (053.1^{-7+4}
Hatfield (64211)
Hemel Hempstead (53225)
Hitchin (59203)
Hoddesdon (66480
Letchworth (71231)
Potters Bar (58809)
St Albans (532290)
Stevenage (54303)
Waltham Cross (22100)
Ware (2316)
Welwyn Garden City (27125
Enfield. Middx. (362.738+)

TheT1-99/4A The Home Computer NTA

Even if you're new to computers, you'll be using the T1-99/4A within minutes of plugging it into any standard TV set. Because the TI-99/4A is a true computer for the home. Immediately accessible to the whole family. All for around £299.

Just snap in one of our wide selection of Solid State Software* Command Modules, touch a few keys, and you're ready to go. The 40 modules can sharpen your children's maths, teach you to win at chess or even help you with household financial decisions. And much more besides. In all, over 400 programs are available.

All enhanced by full music capability and 16 -colour graphics.

Another development which sets the TI-99/4A apart from the rest, is our optional Solid State Speech* Synthesiser. Actually reproducing the human voice. With our new Emulator Command Module; its vocabulary is unlimited.

For data input/output you can use an ordinary audio cassette recorder. And a full-size professional keyboard makes it easy to use.

Ideal for when you want to learn programming and to get you started there's our "Beginner's Basic" course, free with each machine-yet powerful enough for even the most experienced programmer.

To help you get the most from the TI-99/4A you can join the independent users' club. And there's a special magazine (" 99 'er") available through dealers, or on subscription.

So, if you're looking for a home computer, you can't afford to miss the T1-99/4A for versatility, power and value for money.

* 16 K RAM. Expandable to 48 K .
* 26 K ROM including 14 K BASIC.
* Command Modules add up to 36 K ROM.
* 13 -digit floating point.
* Other languages soon-logo, UCSD PASCAL, TMS 9900 Assembler. * Options-Speech Synthesiser, Thermal Printer, RS. 232 Peripheral Adaptor, Disk Memory System.

To find your local dealer check the list on the left, or for more information write to Texas Instruments Ltd., (MS.24), Manton Lane, Bedford NK 41 7PA.

REVIEW

ZX PRINTR

The new $£ 50$ printer from Sinclair means hard copy at a soft price. Eric Deeson assesses the device.

Perhaps $£ 50$ seems a considerable sum to pay for an add-on to a $£ 50$ computer, but the ZX printer is a miracle at this price. Superbly designed, the cigarette-box-sized machine is inexpensive to run and gives impressive results. If you bear in mind that it speedily reproduces all the Sinclair graphics, you soon realise that it would be remarkable at several times the price.
Mechanically, the system is a neat application of a standard approach. A spark-emitting stylus scans the aluminium-coated paper, burning away the metal to create the black points which form the "printed" character. The line of sparks is a pleasure to watch. There is a very slight smell of burning, and the residue of burnt paper soon lines the stylus tracks.
Print quality is good, although there is sometimes a slight distortion in the verticals. Occasionally, the black smears on to the white

Technical Specification

Power Pack
Size: 10 by 7 by 6.5 cm .
Weight: 625 gm .
Output: 9V. 1.2A. Unregulated.
Cost: Included in price of printer.

Printer

Size: 14 by 9 by 5.5 cm .
Weight: 400 gm .
Power: From the computer.
Paper: Electrostatic.
Rolls - 19.8 by 10 cm .
Five rolls $£ 11.95$ - one supplied.
Resolution: $\mathbf{2 5 6}$ by 256.
User graphics: Yes.
Expandability: Via connector to computer. Cost: $£ 49.95$ including VAT, postage and packing.
and makes inverse characters rather hard to read. Even normal characters can be confused more readily than on screen - "I" may be mistaken for 1 and the numerals $3,6,5$ and 8 are sometimes indistinct. This makes reading ZX printed listings rather tiring - especially with graphics and machine-code routines. Generally, print quality is perfectly adequate - photocopies made from the listings are good.
The ZX printer is supplied in the standardsize Sinclair foam box, with a heavy new power supply, and a 16 -page booklet with guarantee. The power supply replaces the one which fed the ZX-81 and is welcome because
of its long leads. It becomes only slightly warm - the temperature of the computer gave me more concern.

The ZX-81 white-out problem is no more frequent than usual - even with the 16 K RAM in position. However, one must now be even more careful during long programming sessions with the 16 K . The printer plug fits into the RAM-pack position, and the RAM pack fits into the plug. The result is surprisingly stable, but must be less reliable than using the 16 K connection alone.
The ZX printer is not silent - the corollary of its design. All the same, the noise is not excessive, and if there is vibration - as there must be - it does not disturb the nearby RAM.
The paper-roll holder is easy to attach and detach, to unload and load. When reinserting, however, push it home with an extra jog for luck to ensure that the clips are correctly located. The serrated tearer will presumably become blunt relatively quickly but works well as long as you hold the roll while tearing off the copy.
The printer's only hardware control is the paper-feed button. Very occasionally, this becomes stuck. In fact, I already bypass it in most cases by using Copy, Break. Otherwise, I use software control, as detailed in chapter 20 of the manual. While the printer is working, video synchronisation is lost - so, if you write a program mixing outputs to printer and display, do not put the instructions too close together; Pause 20 is enough.

The cursor homes, too, so you are obliged to reposition it using cursor control. The Copy command reproduces the contents of the screen-display area on the printer, including empty lines. It does not reproduce the message lines, so commands, report codes and input prompts do not appear. On the whole, that is acceptable, though I have already had occasion to wish it were otherwise. Break and Cont work with the printer as with the screen display, though Cont does not always give a perfect join. If-Then Copy is a useful technique.
Of course, you cannot use the printer for animated graphics games. However, repeated graphics patterns are really beautiful - the mix of striped black and silver is very striking. A few home users are bound to be tempted into creating designs for greetings cards.
The only standard printer feature missing is Echo - reproduce on the printer what is entered at the keyboard. This has a number of uses, not least allowing one to program away from the den without a bulky TV set. The obvious starting command is LPrint Inkey§, but that is not more use than Print Inkey\$.

Technical

Stephen Adams approaches the ZX printer from the technical angle.

The instructions for most printers are at best sketchy, but those supplied with the ZX printer are most detailed and simple. The instructions for using the printer in a program are detailed on page 133 of the ZX- 81 manual and are not included in the printer's documentation.
There is also a clear explanation, illustrated with drawings, on how to load the printer with paper which is the only complicated aspect of using the machine. Although Sinclair recommends its own aluminium-based, electrostatic paper, others can be used.
The feed button is the only control on the printer and when pushed, advances the paper a line at a time. Nothing can be printed while this button is depressed. When the printer has finished a 65 ft . roll of paper, it needs to be cleaned. You can use a child's paintbrush to clear the burnt aluminium top paper from the recess under the paper carrier.
The printer is activated by addressing a port with address line A2 low. This is the usual form for Sinclair and, of course, reduces the number of input/output addresses available to the user. The official address for the printer is port FB which is both written to and read from. The printer also appears at other addresses so if you write machine code to access any one of these, you need to change it before you use the printer. A summary of the data bits and their uses are given in table 1.
The programs provided in the manual vary from a text justifier to a high-resolution plotter which enables the user to define every dot on

cspects

Table 1.

Data Bit		Use	Read Write	
D0	DOT STROBE	X		
D1	MOTOR SLOW		X	
D2	MOTOR STOP		X	
D6	PRINTER EXISTS	X		
D7	HIGH VOLTAGE TO STYLUS		X	
D7	STYLUS ON PAPER	X		

Note: Conditions active on binary 1 , opposite on binary 0 . All conditions are latched. On pressing feed button, D1/D7 are low and D2 high.
the printer. As this resolution is 256 by 256, there are 65,536 dots to define and as can be expected, that occupies 8 K for the array alone. It means, however, that very accurate graphs and user-programmable graphics can output to the printer. Naturally, calculations concerned with these graphics slow down printing speed - in the Fast mode, the high-resolution plot program takes four minutes to complete.
All printing is done in Fast mode which means that there is no screen to watch while the printer is printing. A full screen can be printed by the command Copy and takes 12 seconds.
LPrint prints a line of text to the printer instead of to the screen and uses the same format as the Print command. The only command which cannot be used is At, but you can use Tab in its place as the LPrint prints only one line at a time. LList lists the program lines and can be set to any line in the program. LList will, however, only stop at the end of a program.
The printer is plugged into the back of the

ZX-80 or ZX-81; its connector neither binds on the case or wobbles when a key is pressed. The connecting lead is only 3 in . long, very stiff and must be placed on the right-hand side of the computer.
The 16 K RAM pack plugs into the back of the connector if you have one. No problem was found in using the RAM pack since Sinclair Research has provided another power pack rated at 1.2 A to replace the existing one.
The new power pack must be used - the old one rated at 700 mA cannot cope. The new power pack has several design changes as it uses two power silicon diodes instead of the previous potted-bridge rectifier. It has also increased the size of the smoothing capacitors from $2,000 \mu \mathrm{f}$ to $32,000 \mu \mathrm{f}$. It no longer plugs into the wall socket, but has a mains lead of 5 ft . and no plug. This means you can position your equipment further from the power point, but you now have to go and buy a plug before using it. It would be better if Sinclair provided a plug so that the machine could be complete and ready to go as soon as you receive it.
Once the printer is connected, the power can be turned on. You will hear a short whirr from the printer as it lines up its starting point.
The printer is relatively quiet during normal operation, but when printing makes a noise like a clockwork toy, whirring and spluttering until printing is finished. The blue flashes under the transparent Perspex shield show the printer at work. Its stylus runs fixed to a continuous belt and burns away the aluminium.
When it has finished printing, the paper must be advanced - there is no spacing between pages - if you wish to tear the paper on the serrated edge provided. The print is very clear and the inverse graphics excellent. It can be very easily photocopied for a permanent record if you dislike the shiny surface.
A test was done on the paper to see if the print could be affected by heat as some electrostatic papers are. After three hours sitting above a gas fire, no deterioration could be noticed. The paper does, however, pick up grease from the fingers although it does not affect the clarity of the printing. Creases in the paper can crack the aluminium surface, but I noticed, no flaking of the surface.
The paper was also soaked in water and dried by a fire to test its extremes; the paper did not lose its white backing or the quality of the print. Altogether it seems satisfactorily indestructible. There are no gaps between the graphics so a continuous line can be created. Nor are there gaps between lines so you can print whole pictures - size of the characters is 2.5 mm . square.

The paper is 10 mm . or 4 in . wide and only one 65 ft . roll is provided with the printer. Replacement rolls are available from Sinclair Research at $£ 11.95$ for a five-roll pack.

Removing the top of the printer to look at its insides is not a practice I would recommend as traps lurk for the unwary which might wreck the machine.

The logic is contained in a single uncommitted logic array chip or ULA which has been specially programmed for Sinclair to control all the functions of the printer. It does several jobs:

- Puts out a strobe signal on Do.
- Controls motor on and off, plus the slowing
of the motor near the end of the printed line.
- Checks that the stylus is resting on the metal strip on the left-hand side of the printer before printing.
- Decodes all addresses to the printer and latches them.
Apart from the ULA, there are various capacitors, resistors and a high-voltage transformer all mounted on a single-sided printed-circuit board. The motor and cable also terminate on this board. Under the board is a strobing disc which contains slots to tell the light-dependent resistor whether it is

covering a black line or not. This makes sure that all 256 dots are printed in the same place each time and do not depend on the motor speed.
The motor drives a plastic worm gear to drive the paper up. A belt-driven system takes the stylus to where it should print each dot. This belt is carried between two pulley wheels whose ends are located in the top and bottom of the case. The belt is made of ridges which slot into grooves in the pulley wheels so there is no slipping.
On top of the belt the printing stylus is mounted - two pieces of wire are wound round a spigot on top of the belt. The wire is bent so that one end sticks outwards to write on the electrostatic paper and the other points inwards to connect with a metal track running inside the top of the case along the paper.
The stylus had to be made from special wire since it uses a high voltage to burn away the aluminium coating and must be able to tolerate the wearing away of the tip by these voltages.
The power for this machine is taken from the 9 V line and this means that the voltage to the input of the regulator is lowered. It also means that the regulator runs cooler even though the printer does take some current from the +5 V regulator.

Conclusions

- The printer is well made and robust and the paper-feed button is the only control on the printer.
- The printing quality is excellent and the paper is virtually indestructible.
- The paper can also be replaced by others although this is not recommended by Sinclair.
- Loading paper is simple and well illustrated.
- It is, on the whole a very efficient and above all inexpensive machine which should delight the user.
- The programmer is catered for under the technical section if he wishes to write his own printing routines.

SINTS \& TIPS for the ZX81 bv Andrew Hewson

- 80 pages explaining clearly how to squeeze a computing quart out of a Sinclair pint pot.
Saving Space - vital reading for all ZX81 owners.
-Understanding the Display File - using the display file as memory. clearing a part of the display, using tokens in PRINT statements.
Converting ZX80 programs - explaining simply but comprehensively how to convert the hundreds of published 2×80 pgorams.
- Chaining Programs - revealing techniques for passing data between programs, calling subroutines from cassette and establishing data files. Machine Code Programs - all you want to know about $\mathbf{Z 8 0}$ machine language. Explaining how to write, load, edit and save machine code and how to debug your routines.
Routines and programs are scattered liberally throughout the text and the final chapter consists of twelve useful, interesting and entertaining programs such as LINE RENUMBER, BOUNCER, SHOOT, STATISTICS etc.

Cassettes for 16K ZX81
SPACE INTRUDERS - fight the marauding alien as you battle to save the Earth. All the dynamic parts of this program are written in machine code for super fast fun.. PROGRAMMERS TOOLKIT - line renumber including GOSUBs and GOTOs, Hexadecimal Loader/Printer, Find, Edit and Replace BASIC program strings

Cassettes for 1 K ZX81

MINI SPACE INTRUDERS

- Yesi Our machine language programmers have done it again. Now you can play this super game on your 1 K machinel All the fun of the arcade game in your own homel $\mathbf{£ 5 . 9 6}$ STATISTICS - Mean, standard deviation, regression, trend analysis, chi squared test, graph plot.
handy ready reckoner lists all 600 plus, 280 machine codes in decimal and hexadecimal with their mnemonics. Each code is succinctly explained and cross referenced. Complete with protective transparent wallet. BLANK C12 CASSETTES 10 for £5.50, 25 for £13.25 Send SAE for full catalogue
Cheque with order or quote Access number to:
HEWSON CONSULTANTS, 7 GRAHAME CLOSE, BLEWBURY OXON OX11 9QE. TEL: (0235) 850075

FREE! tape directory with each tape

ZX81•Video Genie • TRS80/LII

Asset Stripper Compete against your computer controlled arch-rival "KO Investments", capitalizing companies on the stock market and bidding for takeovers to gain control of lucrative assets. Can your micro really outwit you?

Kingdom of Nam As ruler of Nam you must control its economy; allocating labour; building cities, factories and ships; importing and exporting; negotiating pay claims and fighting the looming threats of inflation, strikes, starvation, overpopulation and revolution. How long can you stay in power?

High Stakes Buy, sell, train and bet on racehorses. An opportunity to make money shrewdly and spend it recklessly. Scrolling racing commentary. One or two players.
Invaders Your planet is threatened by outer space invaders who will use their ultimate weapon if you let them get too close! (not yet available for ZX81)

Wordgram We have yet to see a better version of this popular word game. Guess jumbled words or fill in the blanks, using the computer's words or your own.

Party Bran Tub Lots of programs - including one of the best message scrollers around. Play your computer at noughts and crosses and analyse each game afterwards if you wish! Guessing games - words/numbers/rhymes etc. (many <1K)

All programs in BASIC (for 16K) on quality cassettes. Send $£ 4.50$ for $1 / £ 8$ any $2 / £ 11.50: 3 / £ 15: 4 / £ 18.50: 5 / £ 22: 6$
Please tell us which micro and send cheque/PO to: 73 The Broadway, Grantchester, Cambridge CB3 9NQ

SPECIAL RMAS OFFERS - GREAT REDUCTIONS!

GAME COMPUTERS FOR ATARI 2600

GAME CARTRIDGES

Brain Games
Adventure
Championship Soccer
Superman
Space Invaders
Maze Craze
Video Checkers
Video Check
Casino
Indy 500
Backgammon
Basic Programming
Chess
Atari Paddies
Joysticks
Keyboards

f. 14.95 | £ 22.25 |
| :--- |
| $£$ | ¢ 25.50

$£$
22.25 £ 22.25
E 27.75 £ 27.75
£ 22.25 22.25
22.25 22.25
22.25 ع 22.25
£ 31.50 ع 22.50

ع 22.75 \begin{tabular}{l}
E

C

\hline

 2.50

E

E

E

E

E

\hline

 1.50

ع

E

E

E

E

\hline
\end{tabular} 1.25 .50 $\begin{array}{lll}\text { £ } & 11.25 \\ £ & 11.25\end{array}$

Game Library Mains Adaptor Olackjsck
Video Pinball Missile Command Asteroids War Lords Flag Capture Super Breakout Air Sea Bartle Space War Outlaw Slot Racer Street Racer
8.75
4.25 4.25
14.95 14.95
21.50 21.50
21.50 21.50
27.25 27.25
29.95 29.75
22.75 15,50 f 22.75
e 14.95 £ 14.95 f 14.95 f 14.95 £ 13.95 f 14.95

Video Olympics
Breakout
Breakout
Basketball
Mini Golf
Human Cannonball
Bowling
Skydiver
Circus
Night Oriver
Golf
Dodge-Em
Surround
Concentration
Codebreaker
Fun Numbers
Hangman
£ 14.95
f 14.50
$\mathrm{f} \quad 14.95$
f 14.50
f 14.75
f 14.75
f 14.95

f 14.95
f 13.95
f

$\begin{array}{ll}\mathrm{f} & 14.95 \\ \mathrm{f} & 14.95\end{array}$
f 14.95
f 14.95

\section*{| f 14.50 |
| :--- |} 14.95 14.95

14.95
14.95
14.95
£ 13.95

GAMES CARTRIDGES TO BE RELEASED FOR XMAS P.O.A.
Phillips G7000
30 Battiefield * 31 Musian POA * 32 Supermind * 33 Jumping Acrobat * 34 Satelite Artack * 358 -ball + Rattation * 36 Soccer/lce Hockey ATARI 2600
Sea Woif * Stellatrek * Flag Copture * Boxing * Tennis * Skiing + Kaboon * Freeway * Oragster * Lasser Blazer * Fishing * Derby INTELLIVISION (MATTELI
Starlight Atari' Billards * Soccer/lce Hockey * Bowling * Boxing * Astro Smash * Snafu * Space Amaarider * Triple Action And Software POA AVAILABLE CASH \& CARBY CUSTOMERS

INTERVIEW

Richard Fothergill heads the Microelectronics Education Programme which is backed by $£ 9.5$ million of State funds. Bill Bennett visited him at his North-East base.

The programme is run from a small semi-detached house on the campus of Newcastle Polytechnic, a short ride on the new Tyne and Wear Metro from the centre of the city. After we had met and I had been introduced to the staff, there was one burning question: "Why run such a seemingly important project from such a remote location"? The answer provided not only justification, but also a deep insight into the mind of the man who leads a team with a very important job.
"I was already working in Newcastle as a teacher trainer on this polytechnic site; I didn't really want to move anyway as I like it here. However, if microelectronics can do all that we are told it can, then it should present no problems. The one advantage of living in the microelectronic age is that one doesn't have to travel to work; the work can travel to you. Information transfer is readily available and we are using it".
What about the inevitable travelling that needs to be done in the course of your work? "Newcastle is fortunate in that it has excellent rail links: the Inter-City 125 trains mean that London is just over three hours away. Most of the travelling is done by the information team though.
"One advantage of our location is the peace and quiet - there is no busy traffic passing our windows all day. It means we are left to get on with our work here. The only disturbance is the occasional cheer from the football pitch". Cheviot House, the nerve-centre of the programme is located next to a sport field.
Having disposed of the questions regarding what now seems like a wise choice of location, I asked Fothergill to sketch the background to the DES Microcomputers in Schools programme. He at once pointed out that it was a microelectronics in schools and not just a microcomputers in schools programme, and that the scheme was to cover pupils from the age of five through to 13.

The sum of $£ 9.5$ million indexlinked to the 1979 value had been set aside for the programme by Neil Macfarlane, the then Parliamentary Under-Secretary at the DES, and the programme was to be run from March 1980 for five years. In November 1980 Richard Fothergill was appointed director.
"When I had assembled a team, we proposed a strategy. In effect, we began implementing our plan from February 1981, but it didn't begin officially until April. It was decided to concentrate on three main areas which, for the want of better titles, we have called: resource, teacher training and curriculum development, which is really a catch-all. We decided that because education is run in this country by local author-

'We are on the verge of an explosion'

ities, we realised the importance of involving them.
"The money we were given was not enough to make us significant to each individual local authority, so we divided the country into 14 regions; 12 in England, and one each in Northern Ireland and Wales. The Scottish run their own show from Glasgow. Both groups work in cooperation with each other.
"The resource part of the programme is designed to provide teachers with the support and information they need. It is vital that we can keep these teachers up to date with all the advances that are constantly taking place.
"This will be done by using regional information centres, exhibitions, as well as the more traditional access to books. There will be some machines and some software set aside for the purpose of demonstrations which should enable teachers to see the applications".
At the resource centre at Newcastle Polytechnic, in the middle of the floor, is an exhibition, mainly of posters. Around the edge of the room were all manner of teaching aids involving microelectronics, ranging from the Texas Instruments Speak and Spell game to Pet, Apple and Research Machines microcomputers, and even a word processor. To the side of the main room is a smaller one - this is where teachers are taught how to use the
latest in new technology devices. Teacher training is the second of the three points in the programme. "We train teachers to think of the computer as an instrument. We show them how it can revolutionise the office - indeed, part of the teacher-training programme is devoted to familiarising teachers with the electronic office.
"We also train the teacher to use the computer for computer-based learning. I call it that because of the confusion between the existing terms such as CAL, CAI etc., which all mean separate things. Computerbased learning is my phrase to cover this.
"There is in fact another area in which we train teachers; that is in technology. There is in existence a course in control technology and electronics - run by the Joint Matriculation Board. This takes in just about everything from the switching of one transistor right up to control devices and beyond into the world of microcomputers and the add-ons.
"The third part of our programme is called curriculum development. In effect, it covers everything not covered by the first two parts. Through this part of the programme we provide schools with relevant books, films and charts.
"Although in the main the work is done via the regions, we held back some funds to use centrally. This
money will be spent on what we call our national activities. The inservice training of teachers by the Open University is an example of this.
"One of the tasks facing us is the establishment of some standards, we will issue guide-lines on how to configure equipment, for example. This needs to be done because safety is an important factor in the classroom. We shall also advise on operating systems as well as languages and dialects. This will be done by a process of evolution - we will not lay down hard and fast standards, mainly because we couldn't make them stick. This means we shall have to evolve a set of agreed standards"

ON EDUCATION

"Special education is an area which some of the centrally provided money is being spent. This will be used on making provision for handicapped and retarded children. There will be special software for those children with learning difficulties for example, simple maths exercises.
"Special add-on devices can be used to help children express themselves. One such device is a box with coins struck on pads, the children can relate to this form of input casily. There is even a rubber for them to press if they wish to erase something.
"To the physically-handicapped child, the computer is more important as a communication aid. This is really a matter for the Department of Health and Social Security; we are more interested in education. However, one useful device is an upside.down Tupperware bowl. It has shapes on it: pressing these shapes in various orders causes different noises to be emitted. This is a particularly valuable aid for teaching autistic children spatial skills".
I asked Richard Fothergill if there was a tie-up between his programme and the Department of Industry (Dol) scheme whereby half the funds are provided to any school which does not yet have a micro, so that it may buy one: "I call this the DoI half-micro scheme; I hope that it will soon be extended. So far about 1,600 to 1,750 schools have taken part in this scheme.
"We are supporting the scheme by offering to train teachers from the
schools involved. This means that two teachers from each school will take a four-day in-service training course to learn about their respective computer. We are also supplying training materials. However, the scheme does have its limitations.
"Of course, it is only correct that any Government-funded scheme should support British microcomputer manufacturers. But to simplify the administration of the scheme, there are only two packages available - a yes or no choice between two systems which represent the two ends of the price range. The choice of machines is restricted to the Research Machines $380-\mathrm{Z}$, which is commonly available and hence the best machine, or the new BBC micro, which looks as though it will give plenty of development possibilities.
"Under the circumstances, this is as good a selection as could be made. The Acorn Atom has a proven track record; the BBC machine will be in a form that is bound to be successful. The $380-\mathrm{Z}$ is a machine which is well proven in schools and is a solid machine - it can take the treatment the schools will give it. The machines are the DoI's choice though, not ours".
So what kind of feedback has Fothergill received from the local

'Safety is important in the classroom'

education authorities (LEAs)? "Positive", was the immediate reply. "Many comment on the time scale of the project. For some it can never be fast enough; others have adjustment time problems. The LEAs have been supportive - they especially welcomed the teaching packs. On the whole everybody in the public sector is pressed for funds, so we are pleased that so many schools are prepared to spend money on microcomputers".
Many Your Computer readers will be interested to hear Richard Fothergill's ideas on selecting a home computer, especially with a view to education. First, I asked if he had any views on the trend towards home computing: "The future of the U.K. depends on the imagination of these people. A Sinclair connected to the television is more entertaining than the TV programmes on it". He points out that one of the aims of the

The MEP team from left to right: Mike Bostock, technology manager, Richard Fothergill, director, Helen Hinders, programme assistant, John Anderson, deputy director, Bob Coates, computing manager.
project is to stimulate and excite the next generation about microelectronics. He also says he would like to see an interface for the ZX microcomputers.
If a parent was considering purchasing a home computer for a child to learn programming, what should he or she look for: "First, a machine which can be attached to a TV, stable lettering, a good character display. A simple approach to Basic is important, as is a good manual - in fact there isn't much point without one. Good graphics would be a bonus. Simple dumping probably to cassette, but with the ability to expand to discs later, expansion to colour, communication, and viewdata should all be considered as well as the easy memory expansion.
"If the children were under 12 then any good Basic machine would do. I think the RS-232 interface is preferable to the less popular Centronics type. With the possible exception of the Sinclair computer, a bare minimum of storage would be 8 K . This would soon need updating to 16 K , and as soon as the children want to use databases, as much memory as possible should be added".

Much has been said over the past year or so about the desirability of structured languages; what about
this trend? "There is definitely a trend towards structured languages, but the initial hump of microcomputer work has been done. All future development must take account of this. Movement will be in this direction, as in the Basic chosen for the BBC micro, which is threequarters Comal. Things like this cannot be done fast.
"The Microcomputers in Schools programme did not adopt a language as such - we were stuck with Basic, but let it evolve".
What about the less gifted children - is it possible that the introduction of microcomputers in schools will see them further and further behind? "Not at all, the early computer-aided-learning programs were in the main designed to help the less-thanaverage child. If anything, the microcomputer will help these children by giving them the plodding, patient tutoring that they need. In fact, it is a deliberate policy of the programme to ensure that the belowaverage child gets a chance.
"Education today is at a crossroads, what we have now is a period of transition. For the first time the majority of schools have micros. In a year or two schools will have several more machines which will be scattered around in different departments - we are on the verge of an explosion".

Exotica such as the king ripple and the pawn-advance routine are two of the techniques John White has incorporated into his entertaining chess program in Basic, End-Game.

End-GAME has been written in Basic to complement the draughts program J-Checkers, published in the October issue of Your Computer. It exemplifies the method of move assessment known as iterative deepening.
I have chosen the end-game of chess as a model because it limits the number of pieces used and because the concept of mobility essential in full games of chess - can, at a pinch, be ignored to keep the time taken for the game within manageable limits. I have eschewed fancy time- or memory-saving tricks for clarity.
Having tested this program, I have satisfied myself that it is not possible to write a satisfactory program for playing a chess endgame using a look-ahead of only two-ply. I hope this information will be of use to those contemplating writing their own chess programs.
End-Game does, however, play a fractionally more sensible chess end-game than many of the weaker chess computers available commercially, bearing in mind the fact that a compiled version would run in about two seconds. The interpreted Basic version presented here requires an average of two minutes a move.

The end-game of chess is hard for a human to play well, but very difficult indeed for a chess computer. A human can easily see at a glance what will happen six to seven moves ahead for both sides - grandmasters can see much, much more.
A chess computer will normally only analyse two or three moves ahead - four- to six-ply although one or two of the most modern machines switch in extra routines for the endgame when sufficiently little material remains on the board. Under these circumstances up to five moves ahead - 10 -ply - may be evaluated. Even so, the play is still weak by human standards. The classic problem is that shown in figure 1.
It is possible for a human to see at once that black's only sensible move is K-B6 - or B8 or B7. Anything else loses the pawn to white's attacking king. I shall avoid the problem of whether black can win even if he does save the pawn. Yet very few chess computers can see this solution, and most play pawn endings very badly, moving pieces almost at random.
Since the necessary deep search to play a good end-game is very time-consuming, I have tried in End-Game to produce an evaluation function which will play a recognisable endgame superior to that of most chess computers but using only a two-ply search. Essentially I have relied on the well-known maxim of "Push a passed pawn".
End-Game is written in Basic which imposes its own stunning restriction on what can be placed in the program: interpreted Basic runs some 200 times more slowly than
the machine code used in chess computers and a complete game of chess is out of the question. Restricting the pieces to pawns and king only gives a respectable game with a clear objective: advancement of a pawn to the eighth rank.
The first player to do this has essentially won at chess, and has won End-Game outright. It may be noted that the powerful Sargon 2.5 and Morphy chess programs also adopt this policy in their end-game play, and will make any sacrifice to delay the arrival of an enemy pawn on the eighth rank.
End-Game uses a single subroutine to evaluate the position arising after each move instead of evaluating the merit of each move itself, a strategy employed in other published games. The moves of each piece are generated by the program which assigns a score to the position arising from each move at the first level of search - one-ply.
The moves are then sorted, using a fast-sort routine which arranges the score in order of decreasing merit. The moves creating the scores are also rearranged, of course.

The program now calls itself - an example of recursion in Basic - to generate the

Figure 1. The classic chess problem.
responses to its sorted moves. It assumes that the opponent will be trying to maximise his score, and thus minimise the machine's score. So the best - lowest-scoring - opponent move is stored in location.
This is combined with the first-ply score and compared with the highest total yet found for a program move, which is stored in location $\mathrm{R}(0) . \mathrm{R}(0)$ is continually updated as better moves are found for the machine moves for which the opponent can find only weak responses.
An important feature of this search is the cocalled "alpha-beta pruning". If any opponent response makes the machine's move under consideration worse than a previous stored machine's move, then there is no need for the machine to consider any further responses by the opponent to the machine move under consideration. The flag " AB " is set to 1 , which stops any further searching of that move.
Alpha-beta pruning can save a good deal of unnecessary searching and thus a great deal of time. It is widely used in chess computers today. To be most effective, it is best to consider the most-likely-best machine move first, and also the most-likely-best opponent response.

The most-likely-best machine move has been derived by the sort which we considered earlier. The most-likely-best opponent move is hard to determine without going through them all - which, of course, defeats the whole point of alpha-beta searching.
I have instead adopted what I believe to be a novel heuristic: the best response found for the opponent for the previous machine move is evaluated first for the next machine move. This has proved to be quite effective at saving time in End-Game.
The nett effect of alpha-beta pruning on End-Game is quite spectacular in reducing response time. Anyone who doubts this should try deleting line 800 .

The whole process I have described - move generation, sorting, counter-move generation, alpha-beta pruning - is known as iterative deepening. It will be appreciated that the best move so far found is always available, and machines using this technique generally display this best-move-yet - a feature which I have emulated in End-Game.
Many chess computers employ an adjustable timer which will interrupt the machine and display the best-move-yet as its move examples include the Super System III while others carry the process to its logical conclusion - examples are Sargon 2.5 and End-Game.
Because of the time restrictions imposed by interpreted Basic, End-Game evaluates the material and strategic position for both sides just once. Captures and certain other strong moves are evaluated for material gains at a further two levels.
The form of End-Game has been dictated by attempts to increase the speed. Constant calling of subroutines looks very pretty, but tends to slow execution time, while writing the same thing out several times is faster, but uses far more memory. I have stacked the most commonly-used subroutines at the head of the program to speed up their location when called.
The greatest retardation of any Basic program is caused by the dreaded If statement. When this occurs in a loop, the loss of time accelerates rapidly. The evaluation function is called after every potential move, yet If statements are essential in it if it is to serve any useful purpose. I have moved some of the evaluation features from the main evaluation subroutine to reduce the number of times they are called.
It is interesting to see how careful selection of moves can reduce total thinking time for the machine. Lines 130-170 are called every time a pawn move is considerd and should, one might think, slow the program compared with the speed of execution without these lines which test to see if advancing a pawn enables the opponent to snap it up immediately.
After all, the second level of search will find that the pawn can be captured by a strong opponent move, so why put it in? In fact, EndGame likes to advance pawns and so, by deterring an advance into the jaws of an opponent, a more sensible first move is put at the top of the list after the sort.
Thereafter, alpha-beta pruning does its work and the weak pawn advance is barely considered instead of being fully evaluated as the

Variables defined in program lines 1110-1120:	
$\mathrm{CC}=0.012 \mathrm{CE}=0.1 \mathrm{CF}=0.2 \mathrm{CG}=0.3 \mathrm{CH}=10$	
$C J=30 \mathrm{CK}=15 \mathrm{CL}=50 \mathrm{CM}=10 \mathrm{CQ}=2 \mathrm{CD}=1$	
$C Z=3$	
Material count: pawn $=C D$ king $=C Z$	
Pawn moves:	
Do not approach enemy king -CG	
Do not approach enemy pawn-CG	
Stay off edge of board	$-1 / \mathrm{CH}$
Advance to rank Y	$+Y^{2} \times C C$
Avoid having Y pawns on one	
file	$-(\mathrm{Y}-1) \times \mathrm{Y} \times \mathrm{CF}$
Pawn advance: no opposition in first channel	
	+ CG
to eighth rank	+0.5
score for first channel	Material count/CH
score for second channel	Material count/CM
Enpassant threat	-0.8
King moves:	
King opposition	+ CE
King environment $+1 / C K, 3 / \mathrm{CK}$	
Avoid capture by pawn $\quad-5$	
Do not stray from centres squares \qquad	
King ripple	$\stackrel{+1 / \mathrm{CJ}}{\text { Material }}$
	Material $\text { count } /(C Q \times C L)$

Table 1. Evaluation table for End-Game.
first move on the list. This saves a great deal of time. Thus the nett effect of the timeconsuming lines $130-170$ is actually to accelerate the program.
The evaluation features are listed in table 1. The variables which store the scores for different features, shown in table 1, are all found in lines 1110 and 1120 , and so can be altered if you feel like experimenting.
Two features which I believe to be original are the pawn-advance routine - subroutine 510 - and the king ripple - lines 2260-2290. Both are stored outside the main evaluation subroutine.
The pawn-advance examines a three-squarewide channel ahead of the pawn after it has moved, all the way to the eighth rank. The move is scored according to whether the channel is obstructed - enemy piece in front, king scores high - or assisted - friendly piece in front, king scores high. The same channel is then examined again for its entire length, and again scored.
The second score shows whether the advancing pawn has numerical supremacy over the opposition: that is, one of two pawns will be encouraged to advance if the path is blocked by only one enemy pawn.
Obviously, this is a very crude evaluation feature, but it works relatively well for End-

Game while minimising the number of If statements required.
The king ripple is a very low-scoring feature put in solely to prevent the king wandering aimlessly when most of the other material has been removed from the board. All the squares at a distance of two squares from the king, then three, then four and so on, are examined until another piece of either side has been found. The king then heads towards this piece.
King ripple is time-consuming and is evaluated only for the computer's pieces. Coupled with the routine which weakly discourages the king from wandering outside the central 16 squares, it should prevent the king from becoming "lost" for too long.
King environment searches each square within one move of the king, and scores favourably $-+3 / 15-$ for each enemy pawn so located and less favourably $-+1 / 15-$ for each friendly pawn. Obviously, the two kings cannot approach each other.
Other evaluation features include low scoring for pawns on either edge of the board, avoidance of doubled pawns - trebled or quadrupled pawns are punished exponentially - an exponentially-increasing score as a pawn advances to the eighth rank and encouragement for one king holding the opposition over the other.
I have remembered End-Game's chess origins by not insisting that the machine advance a pawn to the eighth rank if a good move, such as a capture, exists elsewhere on the board.
En passant has been catered for by a somewhat elementary method. If the human makes a move which enables the machine to capture en passant, the capture is given priority and properly evaluated. However, the machine does not allow for en passant when otherwise evaluating moves: instead, the possibility of en passant is assigned a score of "undesirable" without evaluating in depth.
End-Game was written in standard Microsoft Basic with no Peeks or Pokes. The use of cursor commands, including screen clear and home greatly improves display.
Lines 1310 and 1770 operate a timer routine for my Sharp MZ-80K and can be adapted or ignored. Many computers do not like jumping from loops, which has influenced some of my program lines. Other Sharp users will require one of the Basic Extensions for the logical (continued on next page)

(continued from previous page)

operators And and Or in some lines and the string inequalities in others.

Line 500 returns a value of -1 for each bracketed statement which is true, and 0 if false. This line runs some 20 percent faster than the corresponding If statements would.
Sadly, the program runs to 9.5 K as it stands. This can be trimmed to 8 K by removing the fast sort - this will slow it somewhat - by removing the screen-display lines, and by removing all but two of the data statements, together with the lines which select the data statements.

Program Function	Line
Evaluation	$240-400$
King environment	$410-500$
Pawn advance	$510-629$
Move storage	$630-670$
Third-level captures	$680-810$

Fourth-level captures

Data statements
Variables defined for evaluation
Set-up position
First ply
Second ply
Move display
Input moves
King-move generator
Pawn one-move generator
Pawn two-move generator
Pawn capture
Fast sort
Alpha-numeric conversion
Screen display

820-920
930-1040
1110-1120
1130-1280
1290-1540
1550-1760
1770-1820
1830-2080
2090-2310
2320-2350
2360-2450
2460-2550
2560-2830
2840-2870
2880-3010
End-Game has six different games prestored in 12 Data statements - the starting positions are shown in the diagrams. These can be selected, or the program will choose randomly between them. A display of the board is given copy it on to your chess board. To set up your
own pasition, it will be necessary to alter two Data statements.

The machine will prompt YOUR MOVE
when read, followed by
FROM?

It will now accept ordinary alpha-numeric entries, such as
(FROM) D, 2 (TO) D, 4
Alternatively, typing $P, 1$ will give a display of the board which is displayed only if you ask for it. Typing Q,1 will reveal what the machine thinks your move should be and typing $\mathrm{Y}, 1$ will cause the machine to act on its own suggestion for your move without need to enter it.
The only error check run by the machine on your input is that there is a piece of yours at the point from which you are trying to move. Thus you can move pieces round both easily and illegally should you want to.

```
99 REM*EEND-GAME bY J,F,White
100 PRINTICLS316OTOIOSO
110 gosub230
    OOSURSIO! REMG:CAN FANN AOVANCE?
    F0R!J=-1T0!
    (FEZ-NTHEN1>0) =-C7 *AOTHENO=D-A0:CO
    1FA(X*PS, Y-AO) --AOTNENQ2-0-AO*CO
    NEXT
    N-N+1
    GOsubo30
    gosubi480
    RETURN
    ex=A(x,v)1A(x,y)=A(I, J) &A(f,J)=0
    F0%1z=1T0e
    1FA(1,12)-AO OR A(B,12)=AOTHEND-O-AO/CH
    F0NGZ=1T08
    O=0+A(12,JZ
    IFA(I2.J2)=0THENS40
    (F)
    *)
    NEXT
    O=0+((MA-CD) &CFAMB)
    MA=0,M0=0
    NEXT
    A(1,N)=A(x,Y):A(x,y)=RX
    FETUN
    FORP3=-2T02STEPS
```



```
    IFA(12*17.J2*37)=OTMEN490
    0-0-((A)(12+17,v2*37)-2&A0) *CD/CK)
```



```
    DND+({12<3) +(12)b) -(Jz<3) +(J2)b)) *AO/CJ&RETURN
    FORP2=-1TO11:1FP2-x \OTHENSEO
    OP=0P+A(P2+x,021
    FORO2
    00-00*A(F2+x,02)
    NEXT
    NEX1
    FOP-OTMENO-0*CO*AO
    OFV-1TMENO-O+.5
    EETups
    REME*MOVE STORAGE
    OA(N)=x:PE (Ny)=Y
    AP(N)=I:BCINI=
    RETURN
    REMREEVALUATE CAPTURES
    [PDA (K)-O(N) ,BOANDFLAE=1 THEN%10
    GEM079O
    FORIS--1TO1,FORJS--1TO:
    IF15-OANDJS-OTMEN750
```



```
    NEXTINEXT
    [FNG=1THENNG=O:GOTOTQC
    FA(AA(N) +AO, EB (N) -AC) =-AOTHEND (N) =D (N) -A (AB (N), SC (N) ), SOSUPBZO, BOTO79C
    IFOIN) SSOTHENGN-O (N) ISI-AA (N) IS2-BP{N) ISY-AB (N) IS4-BC(N)
    IPDAMCC-SOC-R COL THENAEB=1
    getukn
    NGM4FOURTH LEVEL
```



```
    IFXZ-AB (N) ONVZ-8C (N) THENE70
    FA1X2,Y2) =C2aAOTHENO(N)=D (N) -MOTNGW1
    NEXTINEXTI IFNG-1THENNO-O:RETURN
    IFAA (N)-1 *AB(N) THEN910
    IFAA (N) =1 ~AB(NO)THENNGO
    RE TURN
    朝4,5,3,2,5,1,3,6,1,4,7,1,5,6,1,6,6,1
        \mathrm{ рат4 }0,4,-3,2,3,-1,3,3,-1,4,2,-1,5,7,-1,6,3,-1
        \mathrm{ DATA7,3,-3,1,2,-1,2,2,-1,3,2,-1,0,2,-1,8,3,-1}
        DATA4,6, , 1,5,1,2,7,1,8,7,1,0,0,0,0,0,0
900 DATA4,8,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
000 DАTA4,4,-3,4,2,-1,0,0,0,0,0,0,0,0,0,0,0.
```

1020 DATA $, 3,-3,7,3,-1,8,3,-1,0,0,0,0,0,0,0,0$,
OSO DATA4, $6,3,2,6,1,3,5,1,5,6,1,7,7,1,8,6,1$
040 DATA5, $2,-3,1,2,-1,3,4,-1,4,2,-1,7,3,-1,6,5,-1$
5050 DtMAAI251, BR (25), D125), Al20), B1 20
Ob0 D:MCr201, D 270
1000 DIMAD 25 , BC (25), De (25)
090 DIMR(4),5 (4), FR (4) , $55(4)$
1100 DIMB (INT (LOE (25) /LOO (2) +1), 2)

$120 \mathrm{Ct}=104 \mathrm{CJ}=301 \mathrm{CK}=151 \mathrm{CL}=0501 \mathrm{CM}=101 \mathrm{CZ}=7$
:130 FRINTAFRLNTIPREINT
140 FRINT-SELECT ROSITION(1-b) OR RND

100 RNNVAL (AE) I IFRN 10 RRN) GTMENI 140
170 PFINT(CLS)(ECD)(SCR)"END - Gare by J,F, White.
160 FORIA-1TORN

1220 NEXT
1270 NEXT
1240 RESTORE
1250 sosusabec
1200 PRINTIPRINT"DO YOU wANT TO GO FTRST (YIN) ?
1270 INPUTAS: IFAS- - - TRENPRINTiFRINTigoroieso
280 :FAK -N"THEN: 200 EROM

$13: 0$ t1s-"000000
$1 \geq 20$ R $601=-100$
137. AO-1: 80009 ; AQ $=0$
4J40 FLAO=0
1350 BOTOI 390
$1360 \mathrm{I}=5(3): 3-5(4): 50-99$; $\mathrm{AB}=1$
4365 IFK $=1$ THENIJ4O
1370 iFa (1,) $=$ =nososue 2330
1390 1FA (1,J1=C2*مOBOSU82090

400 :FAE- TMENT 430
416 1FA(I, J)-C2*AOBOSUE2090
420 IFA (I, J) =AOGOSUB2730
4330 NEXT : NEXT
440 IFN >0 THEN1S4

48O IFFLAG=1ORNEOTMENIS\%O

1520 FRINTHOM
1530 RETURE4
1530 RETURA
1540 IFFL.AGA THENAETLAN

50 MzMas FLCRT
1570 GOSLD2S60
ISEO REMER2ND LEVEL

1620 OA (M-K+1) $=0(K), O(K)=0$

1070 AA ${ }^{2} \mathrm{KY}$
1640 NEXT
1640 NEXT
16S0 FORK=2TOM
i650 N=0
$1650 \mathrm{~N}=0$
670 RV-A $(A)(C)$.
6800 gosubiJ60
040 OZ=80-0A MK

710 काTot 750
720 5(1)-511S (2) w521 S(3)-934S(4)-54
1730 gosueze40

1750 NEXT

772 PRINT" SECS.
1730 Gosubze40

Q20 AVR(1), R(2)) -A (R(3), A (4)) A (R13), R(4)) =0

1840 PRINT: INPUT"FROM -1 A14, B14101\%VQL (E14)

1860 IFA1s $>-0^{\prime \prime}$ TREN1890

eeo Gctareso

910 A2=VML (CHEE (ASC (A22)-16))


```
1940 FRINTCCLS3L2CDJ- FROM
l
1980 1FA(az, f() --1AN0Dt -5THGM!QOU
```



```
\** !FDI=2NNDV2v41/#Na0-1/00%02010
S000 00TUS080
```



```
2050 AA,A,,B2-1)=0
20s0 T030(6)
2070 RETLIOG
2090 Femavilug nove
2100 FOR11--1701:FOR1J*-1TBI
2110 tFAB-17NENC3OO
2120 IF11~0wv0IJ=0TuENEJo0
```



```
2150 IFArx, v)-A0TVEN2500
2160 FOAPA&-1TOHFON04--1T01
```



```
2100 1FA(x-1,Y-A0)--nonevera-1
```



```
2210 gonulvzo
2200 N-N+1
2230 GO506630
2240 GOSU6e90
2245 1FFLAG=1TUGN2SOC
2252 FOK+7--COTOC0
```



```
    IFY-CO ETRENZZO
2250 001000+ADS(AIK+FS,Y+CON 
2.200 LFY-CO 1 TMENZZ64
2202200-00+AES(A1P+FS, \gamma-CON)
-2.64 IFY+PY,1ORY +PS \HTNENC274
2266 ifx-C0 (t)HEN2276
2260 00-00+AES (A) (x-co,Y+Fz) 
1FX*CO) &TMCNZ274
227200-0B+ADSca(x+C0, y+p3))
227e TFOD -TMEND (N) -G(m) *g0 ( CO*CL) rgotgz2*0
2278 CONCJ-1:1FCO OTHENE240
2290 00102352
2:90 GOSub1440
2510 RETUNN
2J20 REMorPa,m 1-move
2730 x=1,Y = J-NO
2740 iFArx, v.NO
z350 oosubi:10
<360 nemaspawy z-move
2370 IF MONJVNND,JV7I THENC400
```



```
2760 00ro2400
lol
```

```
2420 GOQul110
425 mem:NEM fassant THEEA
```



```
EA50 kosmini Foumu captuNe
```



```
470 }x=1-1,y=j-4
```



```
2500 60SUb120
510 :Mt+11* V J-no
```



```
2530 IF (AON-1) AND (A (X,
2540 BOSuB140
2540 ROSUB11
2550 RETUAN RGMROUION SORT
2560 REMRN
z580 B(1,1)=1:B(1,2)-N
```



```
lol
2610 IFG(II))-xxTHEN2630
2610 IF0(II)=xxTHEN26
lol
2040 JJnjJ-11500rozs50
lol
```



```
Na**)
```



```
lol
2720 IF1t<-JJTNEN2610
2730 If.J-LL)=0R-1:THd,
```



```
*)
```



```
2770 1FLL mjg7+eN2740
```



```
2790 LL-1!
z010 IFLLSNOThaNcz90
SA20 FRTNT-'OONT COMPLETE-
2a50 RETiNN
```



```
2860 NEST
<3070) REETUNN
2870. RETURN
$2.
Z910 PRINTTAB (5*1-5)1
```



```
2Q20 TFA(t,N)=0TRENFRINT-*",
```



```
2040 TFA(1,J)=-CDTMENFHINT-P&*;
2960 IFA(f,J)N-CzT-EMPR1NT'K:',
2070 NEXT,MNINT S IFRINT,NEKT
2070 NEKTIPRINT D IFRINT,NEEXT
```



```
30so RETINAN
```

Drawing on examples from his program written for the Sinclair machines, Philip Joy shows you how to go about creating a chess game of your own.

THE ZX-80 IS not the best machine on which to write long and complex programs because of its Basic. There are hardware problems as well as software ones - a poor keyboard for entering code in quantity, and slow speed. The Basic does not let you use two-dimensional arrays - which at first might seem a problem - because of an eight-by-eight board.

However, it proves not to be, and in fact it helped me to such an extent that I have kept a 64 array for my version for the ZX-81, even though it has multi-dimensional arrays. By having integer arithmetic only, the troubles with many INTs were overcome. The main hardship is the fact that it did not have a really easy way to enter machine code. Read or Data would have helped or even a monitor would have made the entry of machine code easier.

As the program neared completion, it was structured around five main units: initialisation, movement, points, player, and back-up. Each one of these units has a specific use and place in the program. The movement was the most difficult to write and proved to have a great deal of bugs. The points section is the thinking part of the program and calculates the best moves: it was the easiest part to write.
The player is the unit which keeps the user informed and sorts his moves for the computer to respond to. Back-up plays the greatest part in keeping the program working smoothly. It

Writing
 chess

finds, for example, the level of play, sorts the points and deals with the machine code.
The computer obeys the laws of the game in a much more logical way than the average player might. If a good situation arises, a player might rush his next move and make either an illegal move, or one which could lead to his losing the game. If a computer obeys the laws of chess, checking for such things as discovered check, illegal castling, and general illegal piece moves, it does mean that this element of rush is removed.

Most of the moves are straightforward or are mixtures of two simple moves, e.g., the queen's move. The bishop and the rook move-

Figure 1. How the computer makes a move.
sit chec
$\stackrel{\downarrow}{x}$ points rable.
\downarrow
Find highest score. $\leftarrow _$
$\frac{1}{t}$

\downarrow position bad - and it is not the last piece?

Change the board and the variables for new piece.
t
Displày board.
1
fownersme
ments could be calculated by a person with some experience of computer programming. With some thought, the L-shaped knight movement and the queen's could be solved. However, the two pieces, the king and the pawn which move only one square at a time, are the pieces with many conditions attached to them. These two pieces have many characteristics which, although are not directly connected with them, make the movement hard to perfect.
The program is based around a 64 -character array which holds all the black and white pieces and the blank spaces. The program uses two vectors to search for its move. One is the horizontal vector, or the number of squares down, while the vertical or the number of squares along is used as the other vector. To look into the array, these two vectors are brought together by the equation

$$
(x-1) \cdot 8+y
$$

to give the square about which we want to find some information. Our points table is scanned for a move, and this move is then tried. If the move fails, it is given a value of 0 in the points table to prevent its being tried again. When a move is found, the array is updated, and the board is printed for the player's turn. In any move, the important thing to remember is that the moving of a piece can cause check, or checkmate. Many human players could overlook this part of the game.
(continued on next page)

(continued from previous page)

After each move, the computer will discover whether its king is in check. If it is, the position is restored arid another move tried. If the same directions for a piece were tried in the same sequence every time, the bishop, for example, would always move upwards and left. The computer must, therefore, try different directions in a different order each time.

Difficult decisions

The initialisation stage is the section where the most difficult decisions are made. For example, you have to choose the form of storage, the arrays and their sizes and the different variables. The representation of the pieces, and the style of play will all be affected by the way you decide. It is also here where you can include features which are not needed or could be combined to reduce space, and time.
The movement of the pieces is the only part of the program which has been heavily flowcharted. It is logical and is a part humans do not consider in great detail - hence the danger of bugs. It took about a month to remove the bugs in this section, mostly by trial and error.

We search for a possible move by working across the board and using our memory to decide whether a piece can move or not. The computer discovers a move by trial and error. We must also be careful to take into account that the program could be faced with a situation for which it cannot find a move. In this position, the computer will have to decide whether it is checkmate or stalemate.
The pawn was the easiest to tackle with its one move forward or two if it was on its first move. All you have to do is to subtract from the horizontal vector and check whether the piece can move to this square. If it is on row 7 or row 2 depending on colour, we can take two from the horizontal vector. However, before we move we can check whether a diagonal found by adding or subtracting one from both the vectors, depending on which way you are going - is occupied by an enemy piece. If it is, we would take it if it does not put the computer's king in check. The only problem with the pawn arises when it is about to check - it has two possible moves.

The bishop and the rook are roughly the same. They created no problems and took very little time to develop. For a rook, we add one to the file or row depending on which direction it is moving. The bishop is slightly more difficult as it has to add or subtract one from the file and row - again depending on which way it was moving. When we have found our new position, and before we make it on the board, we check for a number of things.

Complicated pieces

First, we see whether it has reached the other side, or whether it has reached a piece of its own colour. In either case, we know that this is as far as it can go. If it reaches an opponent's piece, it can replace it with its own colour and subtract one from the number of pieces the opponent has on the board. We must also check for a check or checkmate and if there is one, we must either move it to another square or not move that piece at all.

The knight, although it may seem a complicated piece, is very similar to the rook and bishop. You add two to one direction and take one from the other, or any other combination, and you must remember that this piece only moves once, unlike the rook. There are in fact eight moves a knight can make and you must check for the piece going off the board.
The king can move in any direction but only one square at a time, so you can see how easy it is to cater for it in the program. We must remember, however, that it is the piece which must not be attacked. We have to find out whether it is in check both at the beginning, and at the end.
The way this is done is to search along every diagonal, file and row until we meet an edge or a piece of the same colour. If this happens, move on to the next path because the king is not being attacked in that direction. A simple For-Next loop will deal with that.
However, it we find an opponent's piece we must discover which piece it is since all pieces, apart from the queen, are limited in their directions of attack. If the piece is not an attacker, we can consider knight moves away

Element number	Value	Comments
1	0	piece either not present or has been tried
2	540	a pawn on its starting square
3	600	a queen being attacked
4	539	a pawn being attacked
5	450	a bishop in the middle, not being attacked
6	460	a castle on its starting square
7	440	a pawn
8	440	a pawn
9	443	a pawn - a random number is added to make sure each game is different
10	510	a knight in a poor position
11	580	a knight being attacked
12	340	the king
13		a piece already tried
14	508	a bishop in a poor position
15	570	a pawn on the square
16	0	a piece already tried

Table 1. Points table with list of pieces.
from the king to see if they contain a knight of the opposite colour. If we do not find check then we can move on.
If we find check, we have the other problem of discovering whether it is checkmate. The three ways of eluding check are: moving the king, taking the attacking piece, or blocking. The first is the easiest - move the king to all the possible positions and verify to see if the king is in check. If he is not in check, the situation has been solved.
The next option - taking the attacker - is a far more difficult problem to solve. We must use the same routine to see if any piece is attacking. If it is, we can move it to take the attacker and, as long as we do not cause another check or double check, we have again solved the situation.
Blocking a check with a piece is the most difficult aspect. We can first see if the attacker
is a knight, because if it is we cannot block. If it is not, we must, using a For-Next loop, go from every square between the king and the attacker and see if any one of those squares is attacked by one of its own pieces. If it is, we can move the piece to block the attacker.
This again has two conditions, the first is that it is not a double attack, and the second that it does not create a discovered check. If you still cannot find a way out, the computer is in checkmate, and you should have it say so.
The part which decides how well a computer plays is its points table. Each program has its own points' table and a different way of filling it.
The points table is made up of 16 elements, and each element is initially given 500 points. The computer then goes through the board until it finds one of its pieces; it then stops and evaluates the position. It does this by looking at which piece it is and subtracts points if it does not want to move it.

Skill of the game

For example, it is much safer to move a bishop than a queen. The program considers other aspects such as whether it is being attacked. If it is, it will have to move the piece concerned so some points will need adding. Then it can look at its position; if it is in the centre, points will be deducted so that it is less likely to move. Other considerations can be evaluated, depending on how good a game you wish to play, and how much space you have. When this points table is built up, the element with the most points will be tested to see if it can be moved. If it cannot then a zero will be placed in it so that it will not be tested again.
The element with the most points moves first. The skill and standard of the game depends so much on this part of the game that to make it play better, a great deal of work on this section is needed. The results we obtain from a points table need not be accurate enough for playing against some players, but it can be a match for average players if it is dealt with correctly.
The player section is the part which will interact with the player so that he can enter his moves and can see the board. My program displays a full board with the pieces represented as letters:
King-K, Queen-Q, Rook-C, Bishop-B, Knight-N, and Pawn-P.
This is satisfactory for a ZX-80 but if your computer has graphics, or else a user-definable character set, then use the letters. The normal way for entering chess programs into a computer such as a Chess Challenger is by algebraic methods. That is used here - it is also the chess standard.
The final section of the game is the back-up which is just a collection of routines which will deal with such things as:

- Set up points table
- Zeroing of moves already tried

Loading and using machine code if any is present.

- Reprinting board.
- Putting pieces on the board.
- Different board set-ups - black or white.
- Other tasks which can be used by all of the routines already mentioned.

Had enough of games?

The Sinclair 758

PROGRAMMING FOR REAL APPLICATIONS

A NEW BOOK BY RANDLE HURLEY PUBLISHED BY THE MACMILLAN PRESS

Yes, the 16K ZX81 can be used for serious applications. Here is a book that tells you how to make the best use of the 16 K ZX81, how to write big, serious programs in BASIC. These programs are all fully described, listed, and documented:
WORD JUGGLER - a word processor with cursor control, delete, edit, reading age calculator and space for 11,000 characters. SAFE INPUT ROUTINE to avoid input crashes. CASH HANDLING SYSTEM.
PERSONAL FINANCES to look after your accounts cheques, standing orders, credits, etc. BANKING, designed to run a school bank. RECORD stores 18,000 pieces of information - more than the number of bytes in RAM! RANK ORDER and EXAM STATISTICS for analysing school results (DES requirements). And much, much, more!
for 180 pages, including postage and packing

Order from
Liz Digby Firth,
Globe Book Services,
Houndmills,
Basingstoke, Hants.

START ${ }^{\text {low Cot }}$ COMPUTING IN CAMBRIDGE

For less than $£ 100$ you can launch yourself into the world of computing with your own system. At Cambridge Computer Store our "Budget Micro" department offers an exceptionally wide range of inexpensive machines, all generally on demonstration, available from stock and fully supported by our enthusiastic staff.

\author{

- Acorn Atom
 - Commodore VIC 20
 - Tandy Colour Computer
 - TRS-80 Model I
 - UK 101 kit system
 - Sharp Pocket Computer
 - Low-cost peripherals
}

Make the right startl Visit us at:

1 Emmanuel Street, Cambridge CB1 1NE
Telephone (0223) 65334/5

SOUND VIEWS ON IN TUNE WITH TANDY

Abstract

Alun Evans' nine assorted and easily converted - Basic and assembler routines are designed to reveal the musical side of the TRS-80's nature. The sound effects they produce can also be used to improve the games you play.

ONCE YOU HAVE added sound effects to a computer game, you will probably be loathe to play games which lack them. With a little skill the TRS-80 can be induced to gloop and gurgle like the very best arcade Space Invaders and can be made to play tunes and to respond to the keyboard like a simple electronic organ.

The bad news, for Basic fans, is that the means to make sounds is through machinecode programs. Before you abandon hope, however, take heart: I have supplied the data

Figures 1 a and 1 b .
that sets up the machine code so that the routines can be Poked into the top memory and accessed from Basic.

Those who understand assembly language will find some suggestions for further refinements of the routines so that they can be more widely used.
Sound, a simple pure note, is a sine wave figure 1. The pitch of the note is a function of the rate at which the cycles are produced. The more cycles produced in a given time, the higher the pitch of the note. Figure la shows a note which has a higher pitch - more cycles - than the note in figure 1 b . The duration of the note is the length of time we allow a particular rate of cycles to be produced.

It is these two variables, Pitch and Duration, which we shall have to control when we make sounds with the computer.

Sound is generated in the cassette interface which watches bits 0 and 1 at port 255 . The since wave of a simple note is approximated to, in the TRS-80, as shown in figure 2. We set port 255 to 1 , hold it at 1 and then reset it to 2 . If we keep doing this we end up with a square wave-form.

The length of time we hold the port in either state is shown as " P ". Clearly, the longer we make " f ", the fewer cycles we shall be able to complete in a given time. Hence the longer " f " is, the lower the pitch of the note. Similarly, we raise the pitch by shortening " f ".

In the Radio Shack-published TRS-80 Assembly-Language Programming by Barden,
there is a simple assembler program which enables us to produce square waves and which gives us control over both pitch and duration of the note.

However, before we start on the production of some sound-making code, we must set the machine so that we can hear what we are doing. Connect the larger of the two grey jackplugs which normally plug into the computer's CTR into the input socket of an amplifier. I use an old Sanyo cassette radio recorder, plugging into the microphone socket.
I then put a dummy tape into the machine, set it to record, and hear the computer via the recorder's monitoring facilities. Remember to replace the jack-plug into the computercontrolled CTR before attempting any CSaving - or you will finish with a blank tape.
Now let us examine Barden's routine listing 1. Notice that zero values are given for both pitch and duration. This is because they will be Poked into the routine from Basic.
Listing 2 shows the Basic which will let you experiment with tones produced by the machine code. All you obtain at this stage is a single tone repeated 10 times. However, if you keep a record of the numbers you have tried, you begin to develop a feel for the kind of noise to expect from various values.

Experimenting with listing 2 should show you that the relationship between the duration of a note and its pitch is a complex one. If you hold the value for duration constant and vary the pitch, you will see that the higher notes play for less time than the lower ones.
Even such rudimentary sound facilities have their uses. Listing 3 demonstrates just how easy it would be to make your favourite games more lively. Note that there is no need to

Figure 2.
repeat the Mem Size fix or the lines that Poke in the machine code unless the computer has been turned off between programs.

The next step is to experiment with tunes stored in data lines. This is what the listing 4 does. Once again, repeat only lines $10-60$ from listing 1 if you have corrupted any of the contents of the protected memory space.

Saving the musical data as an array, as in lines $90-110$, has two advantages. First, it avoids the need to reread the data if we want to play the tune more than once. Do not forget that Restore would reactivate all data in a program, not just the piece we want. Secondly, it makes it possible to rearrange the
order in which the notes are played. Delete lines $130-180$ from the listing 4 and add listing 5. The computer is now composing, and playing, its own tunes.

To make the computer into a simple organ, we need a program that watches the keyboard for key-pushes, and which then supplies pitch values to the sound-making routines. Inkey\$ would do this but that would supply only a one-off burst of sound - no bad thing if you wanted an audio response to be given to the user but not what we want for the organ. Better for our purposes would be to Peek the keyboard.
The TRS-80s operating system locates the number keys $0-7$ at address 12448 . By Peeking this address the program can read which of the keys is being pressed. If

PEEK $(12448)=1$
then the key is 0 . If
PEEK $(12448)=2$
Melody
The sound of MZ-80K is something owners of the machine can enjoy without having to buy a costly soundbox. Bob Edwards reports.

THE SHARP MZ-sok computer is remarkably versatile in many respects. For instance, it has a set of graphics superior to most other computers in its range. Unlike some of its near competitors, most of the graphics are accessible directly from the keyboard - more than 104 shapes at the press of a key.
Another way in which the MZ-80K is ahead of its rivals is in its built-in music capability; there is no sound box to buy as an optional extra. A straightforward statement such as:
10 Music" \# B1A1R4A1 \# A1-C-AR1-A3-F3R5" will give a passable rendering of the first line of Colonel Bogey. Making this line into a string by replacing the word Music with MS= makes life even easier;

20 MUSIC Ms
will make the machine play the entire phrase. Using the same principle to produce single notes of varying length can provide the beeps and boops that make computer game-playing that much more fun.
This facility, especially when combined with the excellent graphics set, means you can create computer games which surpass those of other machines in the price range. The budding Beethovens among us can compose tunes to their heart's content and then hear them played back at once.

MAKING MUSIC

then the key is 1 and so on up to a maximum PEEK $(12448)=128$
for key 7.
Listing 6 is the Basic which will give you the Stylophone you always wanted.
Assembly-language buffs will see that it would be far more efficient and relatively simple to have the machine language watch the keyboard, rather than Basic. The increase in speed should make it possible to watch all the keys and should remove the vibrato effect from the notes.
Sound effects, laser cannon, flying saucers and the like, all depend on the sound-making routine being supplied with a sequence of frequency values. Each of these it plays for a very short duration and there should be no noticeable gap between the notes used.
The machine-language routine we have been using so far has to return to Basic to find what, if any, values we want it to use next. This process is too slow to achieve the kinds of effects we want.
The answer is to rewrite the machine code so that the routine feeds itself from a block of data that we have set up for it in advance. The
assembler listing is reproduced in listing 7.
Basic programmers will find this routine translated into Pokes in listing 8. Before using the Basic though, look at figure 3.
This shows the TRS-80 memory area where the new routine lies. Notice that the data used by the routine - the frequencies we will want it to play - lie immediately above the routine itself. If you want to use another set of notes, or want to try out sequences of sounds you have invented, it is into this area, from 32489 onwards, that you must Poke your data.
Note, too, that all such sound sequences must end with a zero. It is the 0 that turns off the sound and returns you to Basic. Omit it and you will probably have the humiliation of groping for the reset switch to obtain silence.
Listing 9 offers some replacement sound sequences. In each case replace line 50 in listing 8.
The important thing to realise when you begin to experiment with patterns of your own is that the duration value is fixed for the whole sequence. That means high-pitched notes will play for relatively much less time than the lower ones.

As a counter measure to this, I have found you need to pack the sequences with many high-frequency values, decrementing slowly, while the deeper notes can be fewer in number and can make bigger jumps in value. You could create a table of duration values, and
(continued on next page)

of Sharp distinction

I use the line from Colonel Bogey as the "You lose" music on a number of games. It is surprising how a relatively simple game can benefit by the addition of a few interesting noises - the player interest seems to increase by a factor of 10 .
The otherwise very good manual supplied with the MZ-80K fails to mention that the sound capability of the machine goes very much further than the Music statement, as anyone who has played the Sharp version of Space Invaders will know.
It is a reasonably easy matter to produce a whole range of weird and wonderful noises and effects from a were-wolf to a wolf-whistle, from a telephone to a motorbike. With a galaxy of glissandi and space noises in between.
The secret lies in two monitor subroutines and two memory locations which between them control the way the sound is generated. It is easy to access these from Basic via the Poke and USR instructions.
The machine takes two numbers from one to 255 , which are Poked into memory locations 4513 and 4514 and uses them to divide down the 2 MHz clock which controls the CPU. Monitor subroutines are then used to start and stop the sound. These subroutines are called by USR(68) to start the sound and $\operatorname{USR}(71)$ to stop it.
This may seem a little complicated but it is simple when you are used to it and it operates very much faster than the Music command of Basic. Combining all this with For-Next loops means you can really begin to take control of
the synthesiser and produce sounds that are limited only by your imagination.
The best way to become acquainted with this facility is to experiment. Try the following short routines.
10 FOR A $=255$ TO 0 STEP -12
20 POKE 4514,1: POKE 4513,A
30 USR(68): NEXT A: MUSIC "R2"
40 FOR $A=-255$ TO 255 STEP 8
$50 \mathrm{~B}=\mathrm{ABS}(\mathrm{A})$: POKE 4514,1: POKE 4513,B 60 USR(68): NEXT A: USR(71)
That is how to produce a wolf-whistle. Try altering the values of A and see what happens to the sound. Note also in line 30 the use of Music "R2" in place of USR(71). Try switching them and note the difference.
To produce a photon torpedo or laser gun you could base your experiments on:

10 FOR $T=1$ TO 4: FOR $A=1$ TO 150

20 POKE 4514,A: USR(68): NEXT A
30 USR(71): NEXT T
That is even simpler than it looks. The ForNext loop of T determines how many times the gun is fired. The actual program for the effect will fit on one line. Again, try altering the value of A and see what happens. Replace the USR(71) with Music "R2" and note the effect on the gap between the shots.
Music "Rx" where x is a value from 0 to 9 is another way of stopping the sound but does have a different effect depending on the value of x.

A Trimphone-type telephone might find an application in a program:

[^1]40 FOR D = 1 TO 6: NEXT D
50 POKE 4513,255: USR(68)
60 FOR E = 1 TO 6: NEXT E
70 NEXT C: MUSIC "R3"
80 NEXT B: MUSIC "R7": NEXT A
This routine will also supply the ringing tone and the engaged tone by altering the values in lines 20,30 and 50 . This is a good routine with which to experiment by altering all the values and noting the effect. Note once again the use of Music "Rx" in place of $\operatorname{USR}(71)$; exchange them just to see what happens.
The programs for different sounds are quite similar to each other which makes is possible, for instance, to have only one subroutine in a program but obtain several sound effects from it merely by altering the values of the variables when the routine is called.
I have written a short program to demonstrate some of the sounds available from the $\mathrm{MZ}-80 \mathrm{~K}$ and to show how to go about achieving them. Anyone who cares to send me one of their programs and an SAE for the return of the cassette is welcome to a copy. The address to write to is 95 Bowring Park Avenue, Liverpool L16.

If you have ever played the game of Star Chess you will be familiar with the "Game won" noise; this produces something similar:

[^2](continued from previous page)
maintain a duration table pointer at machinecode level.

The problem our program has is that it can cope with only one set of sound-effects data. If in a game we wanted several different effects we would have the slow job of Poking each sound sequence into memory before we could hear it.

It would be much better to have a situation in which we could store all the sounds in advance and then tell the sound-maker where to find the set we wanted at any time.
The machine code knows where to look for the sequence of notes we want it to play because it is given the address at which this data starts. At the moment, the routine looks at address 32489 . Suppose we had several blocks of data, as in figure 4, each stacked above the other. All we need to do is feed address " x " to the routine to hear the flying saucer, address " y " to hear the laser gun.

The complication is that the machine-code routine cannot accept a whole address. The address must be split into two bytes, called the
most- and the least-significant bytes respectively - MSB and LSB.
The mathematics to calculate these values for any address is not difficult, and the computer will crunch the numbers for you. If N is the address, then

$$
\begin{aligned}
& M S B=I N T(N / 256) \\
& L S B=N-(M S B \cdot 256)
\end{aligned}
$$

Now we have our stacked sound effects, we have the addresses at which they start converting into an MSB and LSB. All we need to know now is how to convey this information to the sound-making routine.
This, at least, is simple enough. You need the LSB in the second byte of the routine, and the MSB in the third byte. You can amend the current Basic program by inserting the following just before making the USR call:

POKE 32459, LSB: POKE 32460, MSB :
You can alter the MSB and LSB as much as you like but they must always go into the third and second bytes of the machine-code routine. You can even try putting some ROM addresses there. The computer will then make music from its own ROMs until it hits a zero.

Assembly-language programmers will have realised that a major weakness of the routine we are using to generate the sound is that while the sound is playing, the CPU bothers about nothing else. Most of the time it sits, gently contemplating its Nor gates, waiting for the B register to go zero, as in lines like

LOOP DJNZ LOOP

This means that a graphics-orientated game would not receive any screen updates while the sound was playing. A solution might be to replace the simple idea of consuming time by decrementing a register. Set the port to 1 or 2 and then check and update the board. You could control the time, and hence the frequency of the sound by controlling the number of T-states your screen check involved.

Those intrigued by the use of assembly language and who want to know more about the subject could do worse than buy Barden's book. Despite its relentlessly cheery approach, it is as gentle an introduction to assembly language as any I have read and a good deal cheaper than most.

Listing 1.

	LD	C,0; this will be duration.
NOTE	LD	B,0, thas will be frecuenoy.
	LD	
	OUT	(OFFH, A, tow half of wave
LOOP1	DJNZ	LOOP1; ho ld the wave for this lons.
	$\underset{L D}{L D}$	B,0: this is the frecuency asain. A, 2
	OUT,	(OFFH) , A; bottom half of wave
L00P2	DJNZ	LOOP 2 , hold the wave for this lons.
	DEC	C. durstion counter
	JR RET	NZ. NOTE: 20 back if duration not f

Listing 2.
10 POKE 16562,126 : POKE 16561,178 CLERR 50 :CLS: REM
20 IATR This is a memory size $+1 \times, 6,0,62,1,21,255,16,254,6,8,60$, 21 John Hepuass.
20 IATA $14,0,6,0,62,1,211,255,16,254,6,8,60,211,255,16,254,13,32$,
233.201
$30 \mathrm{~A}=32437$ REM Rtart address for machine code.
40
40
$44 \mathrm{MA}=1 N T \quad(A / 256) \quad \mathrm{LA}=A-(M A * 256): \mathrm{REM}$ usr pointers.

60 FOR $X=A$ TO $A+20$: READ Z : POKE X, Z : NEXT : $E E M$
this line rokes in the m / o routine.
70 INPUT "DUPATION"; D_{2}
30 INPUT "EREOUENCY:
99 POKE A $+1, \mathrm{D}$. POKE A+3, F POKE A+11,F: REM data to routine
10e FOR GOES = 1 TO 10
$110 \mathrm{~S}=$ USR (0)
120 NEXT
130 goto 70
Listing 3.
10..... Iines 10 to 60 are as for LISTING TWO

65 FOR GOES $=1$ TO 3
70 CLS POKE A $+1,50$ POKE A $+11,110$: POKE A $+3,110$
80 FOR $=1$ TO 7 PRINT: NEXT
90 AI= "WE HAVE VISUAL SIGHTINO OF INTRUDER AROVE SASE ZERO-4"
90 RIF $=$ WE HAVE VISUAL SIO
100 FOR L $=1$ TO LEN (As)
10 Lf= MIDs (As,L, 1)
120 PRINT Ls.
$130 \mathrm{~F}=\mathrm{I}$ USR(e)
140 NEXT
150 FOR DELAY $=1$ T0 $100=$ NEXT DELAY, GOES
160 CLS
$170 \mathrm{Y}=3$ 3: POKE $\mathrm{A}+1$, 20: POKE $\mathrm{A}+3$, 50; POKE $A+11,50$
180 FOR $X=41$ TO 43: SET (X, Y) NEXT
190 FOR $X=40$ T0 44 STEP $2:$ SET $(X, Y+1)$ NEXT
200 FOR $X=38$ TO 46 SET $(X, Y+2)$ NEXT
200 FOR $X=38$ TO 46:SET $(X, Y+2)$ NEXT
216 FOR $X=910$ TO 925 PRINTEX, CHRS (191); NEXT

240 SET (X,Z)
250 F = USR(0)
260 RESET $\langle X, 2$)
270 IF POINT $(X, Z-1)$ THEN 280 ELSE NEXT
280 60TO 230
Listing 4.
65 A $=32437$: POKE 16526,181 POKE 16527,126
66 REM in the data lines, freauency is first, duration seoond.
70 DATA $66,50,70,45,80,40,90,35,100,28,110,23,120,19,138,15,0,0$
$80 \mathrm{~N}=1$
90 READ $F(N), D(N)$
$100 \mathrm{NaN} \mathrm{N}+1$
110 IF NF(H-1) $=9$ THEN SO:REM THE SIGN IS NOT EOUAL TO'
120 INPUT " TEMPO, FOR $\$$ ";AS: IF AS $=$ " S^{\prime} " THEN $M=3$ ELSE $M=1$
$130 F(T)=1 T 0 N^{2}$
$149 R(T)=D(T) \quad M^{2}$
$140 R(T)=D(T){ }^{*}{ }^{M}$ MOKE $15+3, F(T)$: POKE $A+11, F(T)$
159 POKE A $+1, R$
$160 \mathrm{~S}=\mathrm{USR}$ ($)$
160 SEXT
170 NETV
180 INPUT " WAETT TO HERR IT RGAIN"; AS: IF AS = "VES" THEN 120
Listing 5.
$130 \mathrm{~T}=\mathrm{RND}(8)$
$140 R(T)=D(T)$ * $M \cdot R 1\langle T\rangle=F(T)$ * 1.25
150 POKE $A+1, R(T)=$ POKE $A+3, R 1(T):$ POKE $A+11, R 1(T)$
$160 \mathrm{~S}=\mathrm{USR}(0)$
$170 \mathrm{Fs}=\mathrm{INEYS}$ IF Fs $=\boldsymbol{\sim}$. THEN 130

Listing 6.
10 DEFINT A-Z
$\begin{array}{ll}28 & \mathrm{~A}=32437 \\ 30 & \text { POKE 16527, 126: POKE 16526,181 }\end{array}$
$40 \quad R=$ PEEK (12488) : REM THIS IS NUMERAL KEYS 0 - 7

```
IF \(R=0\) THEN 40
IF \(R=1\) THEN
*)
\0, IFR=2 THENF=35:D = 45:G0T0 140
00 IF R=16 THENF = 50: D= 28: G0T0 14e
lol
liv IF R=64 THEN F=60: D= 19: 60T0 140
lol
la
Listing 7.
```

KPON
SING
LOOP1
LOOP2

LD	HL, NOTES; put address of note table in ML
LD	E, DURTIM; duration will ke POKEd in trom EASIC
LD	D, (HL) ; D hold current frequenoy.
LD	C, E ; tive the durstion to C for decrements
LD	B, D ; sive pitoh to B for diecrements
LD	A. 1
Qut	(225), A
DJNZ	LOOP1, mait till first half of wave done.
LD	B, D ; restore the frecuency counter.
LD	A. 2
OUT	(255), A
DJNZ	LOOP 2; wait for second half of wave
DEC	c
JR	NZ, \$ING; keen soing on smae note.
IHC	HL , move on the note mointer
LD	D, (HL) ; set the diata and
XOR	A
CP	D ; see if it's zer
RET	2 ; back to EASIC if it is.
JR	KPON ; play next note if it's not.

Listing 8.

10 DEFINT A-Z
20 REM first set of DATA is machine code instruction list
36 DATA $33,242,126,30,00,86,75,66,62,1,211,255,16,254,66,62$,
REM next lot of DATA is sound eftect
DATA $80,64,43,32,16,9,8,7,6,5,4,3,2,1,2,3,4,5,6,7,8,9,16,32$,
DATA $80,64,48,32,16,9,8,7,6,5$
FOR $X=32458$ TO $X+30$
READ D: POKE X,D
NEXT
READ D:POKE X, D
$x=x+1$
110 IF D \# O THEN 98
120 REM an OD ERROR orash means no zero at end.

140 INPUT HHAT SPEED DO YOU WANT.. SEST TRIES EETWEEN 5 \& $15 *$; S
150 FOKE 32471.5
160 POKE 16527, AM FOKE 16526, PL
170 FOR $G O=1$ TO 10
$189 \mathrm{~F}=$ USR (0)
190 NEXT GO
Listing 9.
49 REM this is. DATA for f lying saucer. Suypest duration of 10 .
Se DATA $80,73,72,72,68,67,66,65,64,63,62,61,60,59,53,57,56,55,54,53$,
$52.51,50,49,0$
49 REM this is the vallow of the steel horse if duration 6 or
is
the mystioal envine if duration 1810
50 DATA $48,64,80,96,112,128,144,160,176,192,208,209,210,211,212$,
$48,64,80,96,112,128,144,160,176,192,208,209,218,211,212$,
$213,214,215,216,221,173,189,205,221,237,254,14,94,158,239$,
$15,159,225,9$

Video Genie

\star Latest version with vu-meter \& extra keys
\star 16K RAM, 12K Microsoft Basic
\star Includes software, manuals and leads
\star All our machines are fitted with lower case characters as standard
$\star 32 \mathrm{~K}$ Ram memory version of Video Genie $£ 329$ + VAT

Optional Extras

- The unique 1 K 'BIONIC' Rom £29.50 + VAT
- Sound unit £15 + VAT
- Double joysticks with software £28 + VAT

- Lower case characters with ' $£$ ' sign. $£ 20+$ VAT

We stock a wide range of Genie accessories for the businessman and the hobbyist, Word processing, stock control, ledgers systems plus games. Refer to catalogue

BIONIC ROM

The Rom enhancement for your Video Genie will add the following immediately accessible features to your machine:

- Lower case driver
- Keyboard debounce
- Shift lock
- Repeat key routine
- Screen printout
- Cursor select
- Keyboard lock
- Bleeping keyboard etc.

Available only from us.
Kit $£ 25$ + VAT fitting $£ 4.50$

π
 ATARI ${ }^{\circ}$

400 \& 800 Computer Systems

ATARI 400 £ 295 + vat
ATARI $800 £ 543$ + vat

ACORN ATOM

8K ROM, 2K RAM BUILT £ 149 12 K ROM, 12 K RAM BUILT $£ 229$
Power supply $£ 10.20$
Colour moduator $£ 23$
all plus vat
Available shortly

- The BBC Microsoft basic upgrade
- 'Plug in' disc drive unit

Phone for availability
of VIC 20 Computer

ZX-81 strings unravel knotty storage problems

Strings and their allied functions constitute a valuable armoury for users of any machine who wish to write elegant Basic. For the ZX-81, with its relatively low storage threshold, these powerful techniques are vital. Graham Thomson explains.

A zX .81 with 16 K ram is a useful little machine. Among the most attractive facilities of its Basic is the string array used in conjunction with the functions Code and CHRS and the slicing operator, To. Some powerful programming techniques can be implemented with these tools - and you do not need to have recourse to assembly language.
Most Basics will have equivalent functions, so the techniques I shall discuss should be generally applicable. The particular array used is that declared as, for example:

$$
10 \mathrm{DMSS}(2000)
$$

Unlike the undeclared string, the $\mathrm{S} \$$ defined has the very useful property that its length

Figure 2.
never varies. We can, therefore, access the individual bytes at random using, e.g.,

$$
\mathbf{S} \$ \text { II) or } \mathrm{S} \$(1 \text { TO J) }
$$

for both reference and assignment. In particular, we can maintain a simple numeric variable, say, NFB, which points to the "next free byte" in S\$. Obviously, we set this to one initially and as we add to SS, we can increment NFB. For example:

200 LET S $\$($ NFB TO NFB $-1+$ LEN AS) $=$ A 210 LET NFB = NFB + LEN AS
adds $\mathrm{A} \$$ into $\mathrm{S} \$$ at the next free position, and adjusts the next free-byte pointer. It is true that you can achieve the same effect with an undeclared S\$:

$$
300 \text { LET } \mathrm{S} \$=\mathrm{S} \$+\mathrm{A} \$
$$

but the easiest way, as so often, has disadvantages.

Firstly, in many Basics line 300 will be executed by constructing a shadow copy of $\$ \$$,

Figure 1.

so that for a time there are two copies occupying precious space in your RAM. That is acceptable if $\mathrm{S} \$$ is short, but what about an S\$ that is 1,000 or 2,000 characters? Secondly, the easy way does not work with the more complex structures I shall outline. In the following examples, assume $\mathrm{S} \$$ declared as before and NFB initialised to one.
Now what might we want to store in this string-and-pointer structure? An obvious starting example is a list of words - such as you might want in that good old classic Hangman. A very simple piece of code to construct such a list is:

90 LET NW $=0$
100 INPUT AS
110 IF A\$ = "END" THEN GOTO 170
120 LET S $\$($ NFB $)=$ CHRS LEN AS
130 LET S $\$($ NFB + 1 TO NFB + LEN
$A S)=A S$
140 LET NFB $=$ NFB $+1+$ LEN AS
150 LET NW = NW + 1
160 GOTO 100
170 ...
This builds a list of words in S\$. Each word is preceded by one byte containing, as an eight-bit binary number, the number of characters in the word. The variable NW counts the number of words.
Obviously, one would like to refine the code to ensure that no attempt is made to extend the list beyond the end of S\$. I find it helps to draw simple diagrams of the structures being built in strings - figure 1 shows how the simple list of words appears in S\$.
To pick words from the list - choosing, say, the next word in Hangman - we can count along using the length bytes to skip over words. For example:

400 LET $N=$ INT (RND *NW + 1)
410 LET $P=1$
420 LET $\mathrm{N}=\mathrm{N}-1$
430 IF $\mathrm{N}=0$ THEN GOTO 460
440 LET $P=P+1+\operatorname{CODES} S(P)$

450 GOTO 420
460 LET A $=\mathrm{S} \$(\mathrm{P}+1$ TO $\mathrm{P}+\mathrm{CODE} \mathrm{S} \$(\mathrm{P}))$ 470...

The code sets A\$ to the Nth word in the list, where N is created as a random number between 1 and NW, the number of words. Note how the variable P hops along SS always pointing to one of the length bytes. This type of sequential search can take several seconds on a ZX-81 if you have a long list of, say, 200 words.

The general principle which we have seen is that we can form in a single string, a set of list entries which constitute a simple list. This particular list entry had two components or "fields":

- Field 1 was one byte long and contained the length of field 2.
- Field 2 was of variable length and contained a word.
We can expand on this theme and add further fields to form more complex list entries. For example, we can add a two-byte field containing a line number. This gives us the type of list which can be employed to control a program using single-word, English commands. Figure 2 shows this type of list entry. Lists of this type, where there are several fields, are commonly called "tables".

The code to build this kind of control table could be:
30 PRINT "WORD?"
40 INPUT W\$
50 IF WS = "END" THEN GOTO 150
60 PRINT "LINE NO.?"
70 INPUT L
80 LET A $=\operatorname{INT}(\mathrm{L} / 256)$
90 LET $\$ \$($ NFB $)=$ CHR $\$ A$
100 LET S $\$($ NFB +1$)=$ CHR $\$\left(\mathrm{~L}-256^{\circ} \mathrm{A}\right)$
110 LET $\mathbf{S} \$(\mathrm{NFB}+2)=$ CHR $\$$ LEN W $\$$
120 LET S\$(NFB + 3 TO NFB + $2+$ LEN
$\mathrm{W} \$$) $=\mathrm{W}$ \$
130 LET NFB = NFB $+3+$ LEN W\$
140 GOTO 30
150..
(continued on next page)

(continued from previous page)

Lines 80 to 100 convert the line number, L , to a 16 -bit binary number stored in the first two bytes of table entry. The code used to control such a table might be:
200 PRINT "WHAT NEXT?"
210 INPUT A\$
220 LET P = 1
230 LET L = LEN A\$
$240 \mathrm{IF} \mathrm{L}<>$ CODE $\mathrm{S} \$(\mathrm{P}+2)$ THEN GOTO 260
250 IF $\mathbf{S} \$(\mathrm{P}+3$ TO $\mathrm{P}+2+\mathrm{L})=\mathrm{A} \$$ THEN GOTO 300
260 LET $P=P+3+\operatorname{CODES} \$(P+2)$
270 IF P $<$ NFB THEN GOTO 240
280 PRINT "I DO NOT UNDERSTAND"
290 GOTO 200
$300 \mathrm{LET} X=256^{\circ} \operatorname{CODES} \$(P)+\operatorname{CODE}$
S $\$(\mathrm{P}+1)$
310 GOTO X
Obviously, the line number extracted from the entry at line 300 would start the code to process whatever word was typed. Building control tables and lists can save space in your RAM if you are writing complex programs.

Other examples of uses of lists and tables are in storing the co-ordinates of plot points to

Figure 3.
draw diagrams or sections of diagrams. I have used this to store the plot points to draw the 10 separate stages of the Hangman picture. The list entry consisted of a one-byte count of plot points followed by two bytes for each point one X co-ordinate, one Y co-ordinate. There were, of course, 10 such entries.
In a similar example, I wanted to draw large characters on the TV screen, specifically the digits 0 to 9 and the characters " + ", " - ", and " $=$ ". The characters were drawn using a four-by-seven grid of plot points, and each table entry included a count of plot points followed by their co-ordinates.

In fact, these were co-ordinates within the four-by-seven grid, so that the program could draw the large character anywhere on the screen by adding the full screen co-ordinates of the bottom-left corner of the character grid to the plot-point co-ordinates from the table.
It can be useful to keep a separate array of pointers to the table or list entries. It means you can construct a numeric array PTRS such that PTRS(I) gives the index into SS of the Ith entry in the list or table. Naturally, if your list entries are all the same fixed length, you can calculate directly the index to the Ith entry.
In ZX-81 Basic such a pointer array requires five bytes per element. If you were particularly short on RAM, you might use another string, P\$, with pairs of bytes holding a 16 -bit binary numbers as indices into $\mathbf{\$ \$}$.

So the index of the Ith table entry is S\$ would be

256* CODE P\$(2*1) + CODE P\$(2* $\left.\mathbf{1}^{*} 1\right)$
This is one of the situations where you need to consider whether or not the space saved by using a complicated string-based pointer system is wasted because of the extra program code needed to use it.

An interesting and often useful variation of the list or table concept is the chain or linked list. Here, one of the fields - usually the first in each entry is, in fact, a pointer to the next entry. A simple example is a linked list of words.

The entries look just like figure 2, except that instead of a line number, the first two bytes of each entry hold the index to the next entry. A very obvious use of such a linked structure is in sorting lists. To sort the words in our example, there is no need to physically reorder the list entries - we just swap the pointers.
The use of such linked lists usually requires a separate variable to hold the index to the first entry of the chain. This variable is commonly called the head-of-chain pointer. Similarly, it is often useful to have another variable pointing to the last entry on the chain - the tail-of-chain pointer. The last entry on the chain usually has zero in the next-entry pointer.
A useful example of linked lists is a simple name and address program. The entries used have the format shown in figure 3. The following program code illustrates how this type of linked list can be manipulated.

It is a set of subroutines to request a complete name and address from the terminal. Add it into the string S\$ at the next free byte, NFB, and adjust the links so that the list is maintained in alphabetical order of surname, irrespective of initials.

For convenience, the head-of-chain pointer is the first two bytes of the array SS. The subroutine at line 1600 prints all the names and addresses in alphabetical order by following the chain of pointers. On the first use of the subroutine at line $1000, \mathrm{NFB}$ is 3 , and the first two bytes of SS are binary zero - space characters on ZX-81.
1000 REM SUBR. TO ADD AN ADDRESS
1010 CLS
1020 LET PNEW = NFB
1030 LET S $\$($ NFB TO NFB +1$)=$ " "
1040 LET NFB $=$ NFB +2
1050 PRINT "SURNAME?"
1060 GOSUB/1500
1070 PRINT "INITIALS?"
1080 GOSUB 1500
1090 PRINT "HOW MANY ADDRESS LINES?"

1100 INPUT N

1110 LET $\mathbf{S} \$(N F B)=$ CHR $\$ \mathrm{~N}$
1120 LET NFB $=$ NFB +1
1130 FOR I = 1 TO N
1140 PRINT "LINE ";
1150 GOSUB 1500
1160 NEXT I
1170 REM NOW LINK IT IN CHAIN
1180 LET LP $=1$
1190 LET $P=256^{*}$ CODE $\$ \$($ LP $)+$ CODE
S\$(LP+1)
$1200 \mathrm{IF} \mathrm{P}=0$ THEN GOTO 1280
1210 LET A $\$=\mathrm{S} \$(\mathrm{P}+2)$
1220 IF $A \$>S \$(P N E W+2$) THEN LET
A $\$=$ S $\$($ PNEW +2$)$
1230 LET L = CODE A $\$+2$
1240 IF S $\$($ PNEW +3 TO PNEW +L)
<=S\$(P+3 TO P + L) THEN GOTO 1270
1250 LET LP $=P$

1260 GOTO 1190

1270 LET S\$(PNEW TO PNEW + 1) = S\$(LP TO LP + 1)
1280 LET A $=$ INT (PNEW/256)
1290 LET S $\$$ (LP TO LP $+11=$ CHR $\$$ A + CHRS(PNEW - 256^{*} A)
1300 RETURN
1500 REM SUBR TO INPUT A LINE
1510 INPUT A\$
1520 LET L = LEN A\$
1530 LET S $\$($ NFB $)=$ CHR $\$$ L
1540 LET $\mathrm{S} \$(\mathrm{NFB}+1$ TO NFB +L$)=\mathrm{A} \$$
1550 LET NFB $=\mathrm{NFB}+\mathrm{L}+1$
1560 RETURN
1600 REM SUBR. PRINT ALL NAMES AND ADDRESSES
1610 LET $P=1$
1620 LET $P=256^{*} \operatorname{CODE~} \mathrm{~S} \$(\mathrm{P})+$
CODE SS(P + 11
1630 IF $\mathrm{P}=0$ THEN RETURN
1640 LET PT $=$ P +2
1650 GOSUB 1800
1660 LET B $\$=$ A $\$$
1670 GOSUB 1800
1680 SCROLL
1690 PRINT A\$;" ";B\$
1700 LET $\mathrm{N}=$ CODE $\$$ (PT)
1710 LET PT = PT + 1
1720 FOR I= 1 TO N
1730 GOSUB 1800
1740 SCROLL
1750 PRINT AS
1760 NEXT I
1770 SCROLL
1780 PRINT
1790 GOTO 1620
1800 REM SUBR SET AS = LINE AT PT
1810 LET L = CODE S\$(PT)
1820 LET ASS\$(PT + 1 TO PT +L)
1830 LET PT $=$ PT $+\mathrm{L}+1$
1840 RETURN
Occasionally, it is even useful to create a double-linked chain. There, each entry contains two pointer fields; one to the next entry, one to the preceding entry. With such a chain you can process both forwards and backwards.
It is often the case that an entry in a chain or list consists of several fields, some of which are fixed in length, others are variable and need to be prefixed by a length byte. In general, it is convenient to group fixed-length fields at the beginning of the entry, followed by the variablelength fields.
Surprising as it may seen, the techniques used by writers of fundamental software operating systems, compilers, interpreters can be implemented in Basic. If you can think "pointers, lists, tables and chains" you can broaden the scope of your programming ability.
I have recently used all these techniques in a general-purpose Adventure program. It consists of the code to request descriptions of places - short description, long description, other places you reach by going north, south, east, west, objects and special words.
The place descriptions and linkages form a table, the object descriptions form chains. Each place entry has a head-of-chain pointer field from which will hang all of the objects dropped at that place.
Thus defining a new game for the children does not involve writing another program just typing in the new place and object descriptions.

ZX81 Workstation...

 ergonomic plinth for the ZX81. It raises and tilts the TV to avoid eyestrain, holds the 16KRAM in place and hides the wiring and power supply. This very professional unit costs $£ 15$, a built-in power switch is $£ 3$, plus postage at $£ 1.50$, inc. VAT. Peter Furlong Products, 125 Catford Hill, London SE6 4PR. Callers by appointment, please. Tel 016907799 . Visa, Access.

THE $\triangle \rightarrow=1$ POCKETBOOK
Also suitable for ZX80 with 8 K ROM

JRS SOFTWARE

2X80 - PROORAMMABLE MÓVING DISPLAY (4K. MOM only) Yes! This really is a gonuine moving displav, not another pause routine. If you want moving. flicker free displays land who doesn't] then this is the program for you. The secret lies in the 2×80 's ability
to keep the display on your screen without the need to use all of the time available to it. Normally the ZX80 would be doing nothing during this spare time
but the programmable moving display cleverly intefupts to process your own instructions written in the simple but highly effective JRS numeric code. Great care has been taken so that the processing of
your codes can always be interupted to return to the display toutine at the your codes can always be interupted to retutn to, the display foutine at the
precise microsecond that is tequired to ensure that your T.V. pictute remains completely rock-steady.
Normally a true moving display on a 2×80 would take weeks to write and you would need to be an expert at machine-code programming. Now, at last, this program offers you the ability to wtite yout own true moving displays in under an hour with no machine-code experience required whatsoevet
64.95

Awarded top place in 2×80 software review ' in 'YOUR COMPUTER' October 1981 issue

NEW - An ESSENTIAL addition to your 1K RAM 2X81 (or 2X80 8K ROM)
TOOLKIT: (written by PAUL HOLMES)
Provides the following additional facilities:
Line renumber - you state starting number and increment value
Search and replace - changes every occurence of a character as you require SPECIAL GRAPHICS ROUTINES
SPECIAL GRAPHICS ROUTINES
Hyper graphics mode - graphics never seen on a 2×81 before.
Fill - used in conjunction with OPEN fills your screen instantly with your
specified character
Reverse - changes each character on your screen to its inverse video
TAPE ROUTINE - provides a system WAIT condition until a signal is received in the cassette ear jack - many uses
Alf these routines are written in machine code and together take up only 164 BYTES of your precious RAM - an incredible achievementl!
The price is incredible tool ONLY $\mathbf{c 3 . 9 5}$ for cassette, including FULL instructions and example programs.
ALSO available 16 K version ONLY $\mathbf{C 4 . 9 6}$ which includes all the above PLUS
GOTO's and GOSUB's included in line renumber.
Search for and list every line sontaining specified character
2X81 2 K proyrams SLALOM and BLACK HOLES now available as listings only E 1.25 sach, f 2 for both. OVERSEAS CUSTOMERS payment must te made in Sterling by internatonal Monay Oriser twailable
at your tank) Please add 50 pence to cover oversess pestage.

ZX81
1 K and 16 K computer owners Have you ever wondered if you are paying too much tax? Check your payslip!
Your personal PAYE tax check is now available for year ended 5 April 1982.
Just enter the information from your payslip as instructed by the computer and your Tax Deductions, National Insurance Contributions, etc., will be checked and displayed for you to compare with your actual payslip. Remember an independent verification is the most satisfactory.

Program specifications:

16 K

- Monthly or weekly
- Tax code change
- All rates of tax
- National Insurance tables A, B or C
- Not contracted out National Insurance
- Contracted out National Insurance

1K

- Monthly or weekly
- Basic rate tax
- National Insurance Table A

Not contracted out National Insurance

- Contracted out National Insurance
and a tax code check is included
£2.95 per cassette inclusive from:
STROUD LITT AND CO. 85 Jamestown Road, London NW1 7DB

Professional Programs for the Sinclair ZX81+16K Softare designed for people by computer professionals

THE HILDERBAY PAYROLL $£ 25^{*}$

- 1 to 30 employees. Weekly, monthly, etc. No tables needed. Very easy to use.
- Payslips and summaries printed.
- All pay levels and numeric tax codes catered for. All National Insurance contributions lincluding contracted-out).
- Provision for pre- and post-tax changes for any reason (overtime, bonus, etc.)
- Last-minute changes no problems.
- Will also work backwards! (Complete gross and deductions from net pay.I
- Possible to go back to manual calculations at any time - you don't depend on your computer!
- Program maintained and updated by Hilderbay Ltd. Training not necessary, but can be arranged.
- Easily used by the non-specialist. Routine payroll quickly handled. Senior managers can process senior staff salaries confidentially.
- Check you own pay!
- Will handle a payroll of 500 employees(1) with 48 K RAM pack!
- The Inland Revenue does not 'approve' computer programs (we did ask). The Hilderbay payroll satisfactorily deals with the 21 test cases of inland Revenue systems unit note series 6 number 4 annex B.

THE £ 25

f25

- Program I: up to 400 items in 16 K ; up to 2,000 in 48 K . Numerical code, description, supplier code, type code, stock level, re-order level, unit price. Prints lists by supplier, by type, of understocked items, or all items.
- Program II: up to 2,500 items in $16 \mathrm{~K}, 8,000$ items in 48 K . Numerical code and stock level only.
- Both programs are very fast! Locate, insert, delete an item from a list of 2,700 in well under two seconds!

THE GIBBONS PERSONAL BANKING SYSTEM £15*

- Do you sometimes wonder where all the money goes? Now you can find out!
- Keep your finances under control. Standing orders automatically allowed for.
- Do you wish your bank statements told you what each item was? Now you can print better statements than your bank can!

HILDERBAY CRITICAL PATH ANALYSIS (CPA) £15
2X81 implementation of a powerful tool of modern management. Designed for practical use, but also suitable for learning about CPA.

HILDERBAY FINANCIAL PACK I $£ 8$
VAT: Given a mixture of bills with and without VAT at several rates, prints table of: price, VAT, total, VAT rate. Displays and prints running totals. MORTGAGE: How much longer will your mortgage take to repay if you pay $£ 25$ less per month? (The answer may surprise you. I How much must you pay per month to repay in 15 years? How long to repay at $£ 200$ per month? How much of your latest payment went towards interest, and how much towards principal (the answer will shock you), Results given either for UK Building Society or (different) bank loan.
LOAN: Calculates one of the following in terms of the other three: principal, number of payments, instalment, interest.

HILDERBAY GAMES PACK I $£ 8$

GOLD: A rather difficult adventure. We guarantee that you can get there with the treasure - but we're not telling you how
PICK A WORD: An unusual game of chance. Play against the computer, pick words from the list until one of you gets a winning set of letters.

CHESS $£ 10$

Plays excellent games. Several levels of play.

- All programs require 16K RAM pack. All prices include VAT, postage and packing. C.O.D. (cash on delivery - pay the postman) orders are accepted for a supplement of $£ 2$ per order. Urgent orders no problem.
- All programs are supported by Hilderbay Lid - we won't abandon you to your fate. Cassettes are produced with great care and are guaranteed.
- Programs are designed for use by people who are not familiar with computers.
- All programs are supplied with full documentation. Manuals for programs marked (*) can be bought separately ($£ 2$, refundable on program purchase).
- Programs can be demonstrated (by appointment only). Further details available on request.
- 48 K Memotechs demonstrated and sold.

Software also supplied for mainframe computers, Hewlett-Packard 9845 and 85 , various microcomputers.
Hilderbay Ltd is not associated with any other company. Hilderbay software is now sold only by us and our authorised dealers.
Please telephone before visiting us.

HILDERBAY LTD (founded 1979)

8/10 Parkway, Regents Park, London NW1 7AA Telephone: 01-485 1059 Telex: 22870

School computers: some lessons to be learnt

Eric Deeson reviews the problems and progress of educational computing.

WE ARE NOW approaching the stage at which half of Britain's secondary schools have computer power available. Even the number of primary schools with computing facilities is no longer negligible.
A number of recent surveys, shown in table 1, have attempted to discover just how many computers there are in schools, but their results have been overtaken by the advent of Sinclair's ZX-81. Both the Commodore Vic and the eagerly-awaited Acorn/BBC machine are likely to have a significant impact on educational computing.
The Government plans to subsidise the purchase of micros for schools. It will pay half the cost of either the Research Machines 380-Z or the Acorn/BBC machine for schools which so far have no computer. This project has been much criticised on the grounds that support for specific machines might be unwise. It is also feared that schools which have shown little interest until now will continue to be inactive.
The educational use of computers can be broken down into a number of categories:
Computer awareness, to familiarise students with computers and their uses.
Computer studies, where the computers
Figure 1. Material available from a single frame of a typical computer-assisted learning program.

	CET				CLS	MUSE
Commodore Pet	276	53	579			
RML 380-Z	429	99	702			
Tandy/Video Genie	53	9	125			
ZX-80/81	-	9	87			
Apple/ITT	115	25	252			
Nascom	-	-	44			
Acorn Atom	-	-	59			
Acr	-					

CET: Council for Educational Technology, 1980.

CLS: Cambridge Learning Systems, January 1981.

MUSE: Microcomputer Users in Secondary Education, July 1981.

Table 1. Recent surveys of computers in schools.
themselves are the object of interest.

- Computer-assisted learning, in which computers are used to teach other subjects.
Administration, where a computer is used in helping to run the school.
Computer-assisted learning includes all aspects of computer use in which the machine plays a direct part in teaching the student. Computers can help teachers by taking over the dull, routine, repetitive tasks - like marking, calculating class orders, working out attendance records and scheduling pupils to resources - in fact, acting as a clerical assistant.
The most remarkable commercial system of this kind is Plato, which has come to Britain from the U.S. Users of Plato terminals can log in what they want with their own code. The computer guides them through their chosen courses, managing the statistics of their progress, enabling assessment, supervising the use of books, audio-visual and laboratory work, and providing interactive learning programs.
Within a decade, small straightforward micro-based systems of this versatility will be able to handle courses held on EPROMs or bubble memories. Plato is essentially a development of the programmed-learning technology of the 1960s, and there is still very little that is useful. Material available from a typical single frame is shown in figure 1 .
Individual teachers are spending a lot of time trying to mirror their own teaching technique - one of flexibility, sophistication, and explanation - to two computer programs. An incorrect answer should lead to real help; a correct input should be checked for understanding.
Programming for teaching calls for a combination of teaching expertise and programming ability - and a great deal of time. Rush leads to rubbish, and there's plenty of rubbish around. One of the reasons for the
failure of many mechanical teaching aids in the 1970s was the general inadequacy of the software.

To many people, computer-assisted learning is viewed as just one of the many resources available for a class. It is viewed in conjunction with the chalk board, a projector, maps and hand-outs, and specialist laboratory equipment. Its applications include:

- computation in geography, mathematics and the sciences;
- development, testing and using models in the practical and social sciences, and in sports;
- retrieval of stored data;
- graphical presentation of data;

Eeducational game-playing and assimilations in social, general and science subjects;
Ereinforcement and testing;
control of laboratory experiments and data capture.
Software problems and teachers' inexperience remain major bugbears. Though most schools with a micro probably have a couple of real enthusiasts on the staff, the

Figure 2. Number of entries for computerstudies papers in public examinations.
majority of serving teachers have no knowledge of computing and its potential. Those teachers who are expert in computing still have a full teaching timetable of their own, and no time for good software development. Ideas often have to come from the pupils themselves.
Though computer-assisted learning has not travelled far towards achieving its potential, it is probably the most important area of educational computing. Another important field at the moment is computer studies. There cannot be many people who would deny that schools should attempt to teach something of our new micro-world.
(continued on next page)

(continued from previous page)

That attempt is being made in several ways. Firstly, there are signs of changes in this direction in formal examination syllabuses, particularly in physics, maths and technology, where some knowledge of simple microelectronics and computer arithmetic is coming to be expected.
A number of examination boards now offer papers in computer studies - see figure 2. Opinions of the value of these examinations vary greatly, but even if they give little direct career benefit to the students, they do fulfil the essential task of helping teachers learn basic principles. The same applies to test editing in commerce departments, a related growing field.

Computer-awareness courses are potentially the most useful, giving a brief introduction to computers and their uses for all pupils. They are usually short courses, often run fairly informally as part of general or social studies.

Their aim is to indicate in broad outline what computers are, what they do, and their possible effects on society. Topics which ought to be covered include the future electronic office, employment effects, privacy and high-grade robots, for instance.

The fundamentals of computer programming may also be covered in these classes. Not all children need to learn programming, but most can benefit from the logical approach and some are itching to make their own arcade games.
Attendance at an introductory course should be a requirement of all pupils wanting to get into the computer club. The numbers involved in club activities and the high demand on non-lesson time mean that the club should be self-supervised as much as possible. The teacher ought to be available to give advice, but need not act as a detailed organiser.
In many schools, the computer club is a haven for hardware freaks and software addicts. It should also provide a unique opportunity for academically less able pupils to develop new and enjoyable skills. This kind of work can lead to the development of little business enterprises, again providing a great deal of real education.

Figure 3. The exercise book of the future? A small A4-sized computer could have tremendous potential in school and at home.

Practical microprocessor work with the Nanocomputer.

School administration by computer is beginning to take off. The direct beneficiaries are the staff who are relieved of much of their routine work.

There are now programs which make a fair attempt at timetabling - the deputy head's nightmare. Computer assistance in the library, resource centre, and general ofice can much improve working conditions. Some folk are even using Sinclairs to handle the tuck-shop accounts.

Data capture and process control are areas with enormous potential which are, as yet, hardly touched. Science laboratories and technology workshops are the sites for these developments in the first instance, but doubtless other areas will get the spin-off later. Computerised thermostats and the old favourite, model traffic-light control, are appearing at more and more school open days. Pressure from pupils will accelerate the process.

The pessimistic view for the future - one fairly often expressed - is that schools' computers will follow the 1960 s' teaching machines into oblivion, leaving hardly a ripple behind. Of course, teaching is a pretty conservative profession which remains highly labour-intensive despite all the existing technological claims. Sceptics compare schools' computing to the audio-visual vogue of a decade ago. Certainly, a lot of money was wasted at that time, but now equilibrium has been reached at a much higher level of use than before.

At the other end of the spectrum are the visionaries who see schools reduced to social development or "play" centres. Learning would, they say, take place at home or in small units under the management of computers with little human intervention.

Who knows? Maybe that will come in a number of decades. Certainly there are some children I'd be glad to hand over to such a
system, and many who would do well on it.
Between these extremes lie the more realistic possibilities. They will follow from progress towards large memory on cheap chips input pads, flat-screen output, plug-in EPROM language, programs and data.

Within five or 10 years we could have a flat A4-sized multi-purpose computer which would be capable of everything a 64 K micro could do and more, and could communicate with the local databases and other machines. If the cost came down to around $£ 30$ at today's prices, it would have tremendous potential in schools as well as in the home - see figure 3.
Before that day dawns, we should all have developed a fair idea of how to use such a machine in the classroom. So let's get on with it.
Several national educational computing associations already exist. The largest and most active is MUSE - MicrocomputerUsers in Secondary Education - whose membership gains access to a network of user, regional and local groups with many activities. The three-day annual meeting takes place in July. Details are available from Bob Trigger, MUSE, Freepost, Bromsgrove, B61 0JT for details.
There are far too many books on educational computing to give a comprehensive list here. One recent addition to the list is Mindstorms by Professor Seymour Papert, which could become very influential. It is published by Harvester Press at 19.95 . Run, computer, run by Anthony Oettinger, published by Macmillan, may not be in print any longer it first appeared in 1969 - but I still find a scan of it most salutory when my enthusiasm runs out of bounds.
Computing is exciting to many of our pupils, including the less able. It is richly rewarding to find a trouble-maker suddenly immersed in a program and thereby gain an interest in school work. Believe me, it does happen.

ZX8I goes REALTIME

The RD 8100 SYSTEM is a complete range of professionally engineered hardware interfacing your $Z X$ computer to the real world (with or without Printer and RAMpack). Simply PEEK and POKE for control, datalogging, instant graphics

MODULAR SYSTEM - YOUR ZX SYSTEM GROWS WITH EACH MODULE
RD 8110 'ON-OFFer' 8 channel logic In/Out £ 22.50
RD 8130 'VOLT-CATCHER' Analogue Input Port £ 29.50
RD 8180 'D00DLER' Light Pen System £ 32.50
RD 8100 'SUPER-MUM' Motherboard/Console, for up to 8 modules. Fully buffered $£ 40.00$

RD 8101 'MICRO-MUM' Simple motherboard £ 15.00 Prices include 15\% VAT. Please add 80 p per order P\&P

* INTRODUCTORY OFFER for orders placed before 31 Dec 1981 Save 40% on either motherboard when buying TWO Modules RD 8101 special price $£ 9.00$..RD 8100 special price $£ 24$.

Send stamp for full details of these and other modules.

Ware (0920) $84380 \quad$| (Department Y) |
| :--- |
| 5 Kennedy Road |
| Dane End, WARE |
| Herts SGI2 OLU |

IDEAL FOR THE HOME HOBBYIST

Pitman
 Programming Pocket Guides

A Series of Concise, Pocket-Sized Reference Guides to the Main Computer Languages

Pocket Guide to Programming John Shelley
Pocket Guide to BASIC Roger Hunt
Pocket Guide to COBOL Ray Welland
Pocket Guide to FORTRAN Philip Ridler
Pocket Guide to PASCAL David Watt
For Anyone interested in programming-no prior knowledge of the subject is needed as the Pocket Guide to Programming gives an introduction to the principles of programming. The other texts in the series give a clear and detailed examination of the rules and structure of the programming languages.

* Cheap, Attractive and Easy to Use

All Titles: Paper $/ 152 \times 98 \mathrm{~mm} /$ Spiral Bound/ $/ 1.95$
Pitman Books

5 MORE

Superb Scenarios from the Specialists in Computer Simulated Conflict

SEA BATTLE

A graphics simulation of naval warfare in the days of the Bismark as Gunnery Office of one of the most impressive fighting machines devised by man, you will experience all the thrills and drama of action at sea... 9.95

WORLD WAR III

It's your finger on the buttonl..

CHARIOT OF DEATH

The ultimate weapon, can you stop the unstopable?£8.75
STAR FIGHTER
A dogfight in space, real-time 3D action. \qquad
BATTLE BEYOND THE STARS
Only its battle fleet stands between earth and the end of mankind..45 All prices are fully inclusive.

Send your cheque/P.O. to:
"THE WAR GAMES LIBRARY" at
2 Highfield House, Courtenay Road, Lower Parkstone, Poole, Dorset BH14 OHE TRS-80 LII 16K

COMPUTACALC ZX

Financial Planning for the ZX81 16K
Ideal for solving "what if" problems at work or home. The screen acts as a window on an "electronic worksheet" consisting of a grid of rows and columns of headings, numbers or formulae. Move the cursor up, down or sideways to the desired row and column then enter a new figure or formula and everything on the worksheet dependant on it changes automatically.

Features include selectable format, "slow" mode for smooth scrolling across grid, single key cursor and grid control, capacity for over 2000 numbers (should you ever need that many!), very fast computation of results, ability to work with ZX printer, and operational procedure designed for convenience and speed in use.
This powerful piece of software brings the capabilities of the ZX81 into line with much more expensive computers. Computacalc will quickly become the most used program in your library as it takes over from pen, paper and calculator in aiding everyday financial decisions.
For cassette and full documentation send cheque or P.O. for $\$ 7.95$ to: Silicon Tricks, Dept. C2,

2-4 Chichester Rents, Chancery Lane, London WCZ.
BiLicon $\frac{1 \text { ricks }}{}$

C.U.A-new shop Only 2 Minutes from Romford Station

14 CARLTON ROAD, ROMFORD, ESSEX - ROMFORD 64954

PRINTERS:

* Wide range of printers.

EPSON - OKI-QUANTEX - ETC.
\star Lowest Possible Prices.

* FREE delivery (mainland UK).
* FREE paper with every printer.
\star Phone for best prices.

PAPER:

Buy directly from our NEW SHOP
$\mathbf{2 0 0 0}$ sheet box - $\mathbf{£ 1 5 . 0 0}$
500 sheet pack - $\mathbf{£ 4 . 0 0}$
inc VAT
AND NOW VIC PAPER!!!

* UK101 GRAPHICS BOARD - Just $£ 49.00$ Built * Sound Board for 101 - Just £27.00 Built. * Programmers Aid Eprom - $\mathbf{£ 1 6 . 0 0}$ * Eproms/Rams/Chips/Software.
* DISC system for your UK101.
* Expansion $M /$ Board - $£ 11.73$.

From
£249

HOW TO FIND US:

 SAVE
£££'s

;

COMPUTER USER AIDS
*** GREAT DEALS AT REALLY COMPETITIVE PRICES***

irccir
 PERSONAL COMPUTER

Sinclair ZX81 Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZXRAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability

 With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Every ZX 81 comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs.

Kit: 41095

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

- Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

: 79170 569

Kit or built - it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

. the ZX81 compares with other personal computers

SYSTEM IDENTIFICATION		2X81	2X80	ACORN ATOM	APPLE II PLUS	$\begin{aligned} & \text { PET } \\ & 2001 \end{aligned}$	TRS 80 LEVELI	TRS 80 LEVELII
ROM		8 K	4K	8 K	8 K	14 K	4 K	12K
GUIDE PRICE	$\begin{aligned} & \text { Basic unit - inc. VAT } \\ & \text { Unit plus 16K RAM (*12K RAM) } \end{aligned}$	$\begin{aligned} & £ 70 \\ & £ 120 \end{aligned}$	$\begin{aligned} & £ 100 \\ & £ 150 \end{aligned}$	$\begin{aligned} & £ 175 \\ & £ 285^{*} \end{aligned}$	$\begin{aligned} & £ 630 \\ & £ 630 \end{aligned}$	$\begin{aligned} & £ 435 \\ & £ 530 \end{aligned}$	$\begin{aligned} & £ 290 \\ & £ 360 \end{aligned}$	$\begin{aligned} & £ 375 \\ & £ 375 \end{aligned}$
COMMANDS	LIST, LOAD, NEW, RUN, SAVE	-	\bullet	-	\bullet	-	-	-
STATEMENTS	PRINT, INPUT, LET, GOTO, GOSUB/RETURN, FOR/NEXTIF/THEN	-	\bullet	\bullet	-	-	-	-
	STEP	-		\bullet	-	\bullet	-	-
	TAB	-			-	\bullet	\bullet	-
ARITHMETIC	ABS, RND	-	\bullet	\bullet	\bullet	-	\bullet	-
FUNCTIONS	INT	\bullet			-	-	\bullet	-
	ATN, COS, EXP, LOG, SGN, SIN, SQR, TAN	-			\bullet	\bullet		\bullet
	ARCSIN, ARCOS	-						
STRING FUNCTIONS	CHRS	-	\bullet		\bullet	-		-
	LEN	-		\bullet	-	-		\bullet
	ASC(CODE). STRS, VAL. INKEYS	\bullet				-		\bullet
NUMBERS	FLOATING PT ± 10	\bullet			-	-	-	\bullet
	INTEGERS		\bullet	-	\bullet	-		\bullet
NUMERIC VARIABLES	A-Z			\bullet			-	
	AA-Z $\bar{\prime}$				\bullet	\bullet		\bullet
	An-Zn, $\mathrm{n}=$ any alphanumeric string	\bullet	\bullet					
STRING VARIABLES	AS \& BS						-	
	AS to ZS	\bullet	\bullet	\bullet				
	AnS to $\mathrm{ZnS} n=$ any alphanumeric character				\bullet	-		\bullet
NUMERIC ARRAYS	SINGLE DIMENSIONAL		\bullet	\bullet			-	
	MULTI DIMENSIONAL	\bullet			-	\bullet		\bullet
DISPLAY	ROWS	24	24	16	24	25	16	16
	COLUMNS	32	32	32	40	40	64	64
	LOW RES GRAPHICS (<7000 pixels)	\bullet	\bullet	\bullet	-	\bullet	-	\bullet
	HI RES GRAPHICS (>40000 pixels)			-	\bullet			
SPECIAL FEATURES	USR (CALL, LINK)	\bullet	\bullet	\bullet	\bullet	\bullet		-
	PEEK, POKE (OREQUIV)	-	-	\bullet	-	-		\bullet

Sinclair software on cassefte.

The unprecedented popularity of the ZX Series of Sinclair Personal Computers has generated a large volume of programs written by users.

Sinclair has undertaken to publish the most elegant of these on pre-recorded cassettes. Each program is carefully vetted for interest and quality, and then grouped with others to form single-subject cassettes.

Software currently available includes games, junior education, and business/household management systems. You'll receive a Sinclair ZX Software catalogue with your ZX81 - or see our separate advertisement in this magazine.

The ultimate course in 2X81 BASIC programming.

Some people prefer to learn their programming from books. For them, the ZX81 BASIC manual is ideal.

But many have expressed a preference to learn on the machine, through the machine. Hence the new cassette-based ZX81 Learning Lab.

The package comprises a $160-$ page manual and 8 cassettes. 20 programs, each demonstrating a particular aspect of Z X81 programming, are spread over 6 of the cassettes. The other two are blank practice cassettes.

Full details with your Sinclair ZX81.

If you own a Sinclair $\mathbf{Z X 8 0}$...

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop-in replacement chip. (Complete with new keyboard template and operating manual.)

With the exception of animated graphics, all the advanced features of the ZX81 are now available on your ZX80 - including the ability to drive the Sinclair ZX Printer.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Pin\#	FUNCTION
A-1	GND
B-2	+5V
C-3	Cassette motor
D-4	Cassette read
E-5	Cassette write
F-6	Cassette switch

Figure 1. Connector configuration.
Figure 2. VIA assignments.

Hardware

THE VIC HAS a single, external cassette unit which is used for program and data storage. This unit is connected to the Vic by six lines - write, read, motor, sense and two power lines, ground and +5 V . The connections are shown in figure 1.
The cassette is controlled by I/O lines from the two VIA (versatile interface adaptor) chips, and you can see the source of each of the cassette-control lines from the VIAs in figure 2.

The cassette-motor power-supply lines are connected to the interface chips via a threetransistor driver which is used to boost the power and voltage - it allows the motor to be driven directly. The output to the motor is an unregulated +9 V at a power rating of up to 500 mA . The cassette-deck motor can be turned on and off by toggling the CA2 line on 6522 \# 1 .

POKE 37148, PEEK (37148) AND 241 OR 14 turns the motor on:

POKE 37148, PEEK (37148) OR 12 AND NOT 2 turns it off.

The sense-line input, line PA6 on VIA $\# 1$, is connected to a switch on the cassette deck which senses when either the play, rewind or
fast-forward buttons have been pressed. The switch is only required to sense whether or not you have pushed the play button during a read- or write-to-tape routine. This is done by a subroutine at $\$$ F8AB.
If either the rewind or fast-forward button is pressed accidentally instead of the play button, the system will be unable to tell the difference and will act as if the play button had been pressed. Because recording will start as soon as the play button has closed the sense switch, you must press the record button first in any record routine.
The cassette read line is connected to the CAI line of VIA \#2 and the cassette write line to line PB3 of VIA \#2. During a read operation, the operating system uses the setting of the CA1 interrupt flag to detect transitions on the cassette-read line. The read and write lines are controlled entirely by the operating system the only hardware required is signal-amplification and pulse-shaping circuitry.

These circuits are contained on a small, printed-circuit board within the cassette deck. Their function is to give correct voltage and current to the record head and to amplify the input from the read head. That gives a 5 V square-wave output capable of producing an interrupt on the CA1 or CB1 lines.

Figure 3. Cassette interface circuit.

Cassette operation techniques

For normal purposes the cassette deck is assigned the device number 1. The I/O number of the device currently in use is stored in location 186. This number, the logical file number, and the secondary address are used when saving or retrieving data files from the cassette deck.

The logical file number can be any number from 1 to 255 and is used to allow multiple files to be kept on the same device. It is of little use with cassette tape and is intended primarily for floppy-disc units. Usually the logical file number is the same as the device number and is stored in location 184.
Since it determines the operational mode of the cassette, the secondary address is important and the current one is stored in location 185. The normal default value is zero. If the secondary address is zero, the tape is Opened for a read operation. If it is set to one, it is opened for a write operation and if two, it
is opened for a write, and an end-of-tape header is forced when the file is closed.

The Vic operating system is configured to allow two types of file to be stored on cassette: program files and data files. These names are however rather misleading since a program can be stored as a data file and data can be stored as a program file.
The difference between the two types is not in their application but in the way the contents of the machine's memory is recorded. Instead of program and data files, we must look on them as binary and ASCII files.
A binary file is usually used to store programs, since it is created by the operating system to store the contents of memory between a starting location and an end location. It is called a binary file because it stores on tape the binary value in each memory location within the assigned memory area.

Basic statements are stored in memory using tokens. The use of tokens means that Basic commands are not stored in the same manner as they are listed on the display or were entered from the keyboard. Instead, they are stored in memory in a partly-encoded form. Being partly encoded, a binary file is a quicker and more efficient way of storing programs. Binary files are essential when saving and loading machine-code programs.
The starting address from which a binary file will be saved is stored in locations 172 and 173. These locations are loaded by the save routine, with the memory locations at which the save will begin normally set to 0 and 4, thereby pointing to the start of the Basic text area at 1024.
They can be altered by the save routine to point to any location in memory. The end address of the area of memory to be saved is stored in locations 174 and 175. Normally, when saving a Basic program, these are set to the address of the double-zero byte which
(continued on next page)
(continued from previous page)
terminates the link address. The end address can be altered to any desired location.
To change either of these addresses one cannot use the normal save routine since it automatically initialises these locations. Instead, one must write a small machine-code initialisation routine incorporating the desired operating-system subroutines. By default, a Save command will write a binary file and a Load command will read a binary file.
ASCII files are normally used to store data but they can be used to store programs. Their format is the same as that displayed on the screen or entered from the keyboard. ASCII files are created or read almost exclusively by instructions from within a Basic program. A binary file is created or read mostly by direct instructions, though the Load and Save instructions can be used within a program.
An ASCII file must first be opened with an Open statement which specifies the logical file, device number, secondary address and file name. The operating system interprets these parameters and allows the user to read or write the file to the specified device.
Data is written to an ASCII file on a particular device with a command to Print to the specified logical file number, and data is read by a Read from the logical-file command.

Tape buffer

Whereas a binary file is loaded with the contents of successive memory locations, an ASCII file is loaded with a string of variables. Storing these would require the tape to be turned on and off repeatedly, retaining a few bytes of data at a time. The Vic overcomes this by having a 192 -byte tape buffer into which all data to be written to, or read from tape is loaded. Only when this buffer is full is the tape motor turned on.
Data is stored on tape in blocks of 192 bytes and since the motor is turned on and off between blocks, a two-second interval is left between blocks to allow the motor to accelerate and decelerate. The beginning of the 192 -character buffer starts at address 828 ; the pointer to the start of the buffer is located at addresses 178 and 179; the number of characters in a buffer is stored at location 166.
These locations can be used by the programmer to control the amount of space left in a data file. If, having opened a file on cassette, the command Poke 166,191 is executed, then the contents of the tape buffer - even if empty - are loaded on to the tape. If records are kept in multiples of 191 bytes, we can very easily keep null or partially-filled records allowing future data expansion.
Whether the file being stored is binary or ASCII, the recording method used is the same and involves an encoding method peculiar to Commodore and designed to ensure maximum reliability of recording and playback. Each byte of data or program is encoded by the operating system using pulses of three distinct audio frequencies, these are: long pulses with a frequency of $1,488 \mathrm{~Hz}$, medium pulses at $1,953 \mathrm{~Hz}$ and short pulses at $2,840 \mathrm{~Hz}$.
All these pulses are square waves with a mark-space ratio of $1: 1$. One cycle of a medium frequency is 256μ s. in the high state and $256 \mu \mathrm{~s}$. in the low state.
The operating system takes about 9 ms , to
record a byte of data consisting of the eight data bits, a word-marker bit and an odd-parity bit. The data bits are either ones or zeros and are encoded by a sequence of medium and short pulses. A one is one cycle of a mediumlength pulse followed by one cycle of a shortlength pulse and zero is one cycle of a shortlength pulse followed by one cycle of a medium-length pulse. Each bit consists of two square-wave pulse cycles, one short and one medium with a total duration of $864 \mu \mathrm{~s}$. The wave-form timing is shown in the diagram in figure 4.
The odd-parity bit is required for error checking and is encoded like the eight data bits - using a long and short pulse. Its state is determined by the contents of the eight data bits. The word marker separates each byte of data and also signals to the operating system the beginning of each byte. The word marker is encoded as one cycle of a long pulse followed by one cycle of a medium pulse, see figure 4.

Figure 4. Operating system pulse sequences.

Since a byte of data is recorded in just 8.96 ms ., a 192 -byte block of data in an ASCII file should be recorded in slightly more than 1.7 seconds. However, timing such a recording shows that it takes 5.7 seconds. There are two causes for this discrepancy in timing. First, to reduce the possibility of audio dropouts, the data is recorded twice. Secondly, a two-second inter-record gap is left between each record of 192 bytes.
The extensive use of error-checking techniques is one reason why the tape system on the Vic is so much better than that available on most other popular computers. There are two levels of error checking. The first divides the data into blocks of eight bytes and then computes a ninth byte, the check-sum digit. The check-sum is obtained by adding the eight data bytes together; it is the least-significant byte of the result.

On reading the tape, if one bit in the eight bytes is dropped and a zero becomes a one or vice versa, the check-sum can be used to detect this error. To do this, the same procedure to calculate the check digit is performed. The result will be different to that stored in byte 9 which is the check digit of that block computed when the tape was recorded.
The second level of error checking involves recording each block of data twice. This allows errors detected by the check digit to be corrected during the second reading of the 192-byte data block. By recording the data twice, a verification can be performed by comparing the contents of the two blocks.

This will detect the few errors not detected by the check-sum.
The use of pulse sequences, rather than two frequencies as in a standard FSK (frequencyshift keying) recording, has a great advantage since it allows the operating system to compensate easily for variations in recording speed. Normally, a hardware phase-lockedloop circuit would be used to lock the system on to the correct frequencies transmitted from the tape head. The Vic, however, uses software to perform this process.

Inter-record gaps

A 10 -second leader is written on the tape before recording of the data or program commences. This leader has two functions: first, it allows the tape motor to reach the correct speed, and secondly, the sequence of short pulses written on the leader is used to synchronise the read-routine timing to the timing on the tape.
The operating system can thus produce a correction factor which allows a very wide variation in tape speed without affecting reading. The system timing used to perform both reading and writing is very accurate, based as it is on the crystal-controlled system clock and timer 1 and timer 2 of VIA \#2. Inter-record gaps are only used in ASCII files and their function is to allow the tape motor time to decelerate after being turned off and accelerate to the correct speed when turned on prior to a block read or write.
Each inter-record gap is approximately two seconds long and is recorded as a sequence of short pulses in the same manner as the 10 -second leader. There is also a gap between blocks. When the first block of 192 bytes is recorded, it is followed by a block end-marker which consists of one single, long pulse followed by more than 50 cycles of short pulses. Then the second recording of the 192 block starts.
The first record written on the tape after the 10 -second leader in both ASCII and binary files is a 192 -character file-header block. The file header contains the name of the file, the starting memory location, and the end location. In an ASCII file these addresses are the beginning and end of the tape buffer; in a binary file they point to the area of memory in which the program is to be stored.
The file name can be up to 128 bytes long, the length of the file name is stored in location 183, and when read is compared with the requested file name in the Load or Open command. If the name is the same, the operating system will read the file; if different, it will search for the next 10 -second inter-file gap and another header block.
The file name is stored during a read or write operation in a block memory whose starting address is stored in locations 187 and 188. When the operation is completed these are reset to point to a location in the operating system. The starting location is normally set to the beginning of the user-memory area.
The starting address is pointed to by the contents of locations 172 and 173. The end address is stored in locations 174 and 175. Normally this is the highest byte of memory occupied by the program; it can, however, be altered to point to any address, providing it is greater than the start address.

NEW ATOM SOFTWARE

SOFTSCREEN (9K RAM)

only $£ 11.40$ incl.
For the first time ATOM owners can have facilities of the B.B.C. Micro on their computer, e.g. mixed text and high resolution graphics, definable text window areas. Also for the first time on an Atom, 40 characters per line. Other features include:

- Extensive cursor contours
- Text in all modes
- Upper, lower case and inverse test - 40×24 text
- Definable text area, etc. etc.

INVADERS (12K RAM)

only $£ 7.50$ incl.
A new version and without doubt better than all those reviewed last month. More features, including six skill levels and high scores, 'walking' invaders, sound effects, free from video noise. High resolution graphics and a high speed game. Ask for more details.

ALARM CLOCK AND SOUND EFFECTS

 (2K RAM each)only $£ 4.95$ for the two
Incredible value. The clock keeps accurate time while other programs are running. Sound effects give a range of tone and noise effects without stopping the Atom. Both programs need 6522 VIA. Ask for more details.
WANTED: Good quality software for the B.B.C. Micro and Acorn Atom. 20\% royalties paid. Further details on request.

MAIL ORDER ONLY

16 WAYŞIDE
CHIPPERFIELD
HERTS. WD4 9JJ
Tel: (09277) 62955

BIG EARS
 SPEECH
 INPUT
 FOR
 YOUR
 GOMPUTER!

BIG EARS opens the door to direct
man-machine communication. The system
comprises analogue frequency separation filters, preamps and signal conversion, together with a quality microphone and extensive software.
Words, in any language, are stored as "voice-prints" by simply repeating them a few times in "learn" mode. Using keyword selection techniques, large vocabularies can be constructed.
Use BIG EARS as a front end for any application: data enquiry, robot control, starwars - the possibilities are unlimited...
BUILT, TESTED \& GUARANTEED
£49!
PRICE INCLUDES POSTAGE \& PACKING PLEASE ADD VAT AT 15% PLEASE STATE COMPUTER: UK101, SUPERBOARD, NASCOM2,

ZX80/81, PET, TRS80, ETC.
COLOUR MODULATOR
KIT £12
RGB in, PALUHF out
Please add VAT at 15\% to al! prices
BâcclàylAcceesss orderśs àccepted on telephone

FOR ONLY $£ 159.95$ (excl.IAT)

Here is one present all the family could use. The VIC 20 is a fully fledged computer that simply piugs into your television receiver.

DATALECT COMPUTERS

Showrooms: 7, St.Georges Walk, Croydon, Surrey 32, Chertsey Rd., Woking, Surrey GU21 5BG

At an incredibly low price of $£ 159.95$, it can help the children with their computer studies, handle business and home budgeting or you can relax and play space invaders or one of the many video games soon to be available. Dealer supplies of the VIC 20 are limited, make sure you're one of the first owners of the VIC 20. Fill in the coupon TODAY or give us a ring on Woking (04862) 63901 or Croydon 01-680 3581.

I would like to order the VIC 20 Home Computer. (Quantity)
Please charge my ACCESS/VISA YC account no:

Name
Address

[^3]
ACORN

I DECIDED to adopt the very simple approach of using a calculated Gosub - line $60-$ to pick the appropriate print line. Each individual digit is printed separately after the address to avoid suppressing zeros. To help you understand the program, here are some notes:
Line 40: Sets P, Q and R to the next three bytes of code then prints the address location and the first byte at that location in hexadecimal.
Line 45: Calculates the individual hex digits of the next two bytes for later printing.
Line 50 : T is set to the second hex digit of the instruction code already printed out in line 40 . Line 55: If the second digit of the instruction is $3,7, B$ or F, it is not an instruction code and this section of machine code is either garbage or data. This line picks them out, see figure 1. Line 60: Jump calculation and Gosub.
Lines 75 to 77: Subroutines to print the appropriate number of bytes after the instruction code. This is either none, one or two.
Lines 78 to 89 : Subroutines to print the description following the assembly mnemonic.
Lines $100+$: Initial jump locations where each line number is equal to $100+$ the value of the instruction code.
All the numbers are printed in hexadecimal form for compactness, allowing each complete instruction group to be printed on one line.
It should be possible to convert this program to run on any machine which uses a 6502 processor assuming that you can understand

Roy Burgin noticed several advertisements for machine-code
disassemblers for the Acorn Atom. They set him thinking that a
disassembler would be a useful tool, so one evening he sat down disassembler would be a useful tool, so one evening he sat down at the keyboard and set about writing one for himself.
the Atom's advanced features. For example,
?= PEEK or POKE, P. = PRINT, \% = Remainder After division, a, b, c, etc., are labels for Goto or Gosub, P.\&L means Print the variable L in hexadecimal form, @ is used as the field size for number printing, R. means Return. Line number 89 is interesting as it uses Boolean algebra to print a calculated forward or backward branch destination as appropriate.
Having entered and checked the program, what does one do with it? We need some machine code to disassemble; the obvious first choice is the resident operating system.
I started by exploring the various jumps and subroutines associated with input and output and discovered the section of code responsible for scrolling the screen. This routine is normally used only when a Print statement would otherwise move off the bottom of the screen.
All it does is copy each character into the line above and then blank out the bottom line. This short piece of code is very useful, especially with the Atom's ability to Link and execute machine code at any address. Add to this the other facility provided on the Atom

Figure 1. Atom op-codes, showing number of bytes.
2nd Digit

MNEMONIC OPERATION
No of BYTES
whereby Basic variables A, X and Y are automatically transferred into the accumulator, the X register and the Y register whenever Link is used, and you can do magic. By placing the right numbers in A and Y , you can achieve the following:

- Keep up to seven lines static at the top of the screen while scrolling the lower part: see demonstration program. The Y register is normally loaded with 32 before scrolling. That is to avoid scrolling the top line into nothing. If the Basic variable Y is set equal to any number greater than this and less than 255 , then the extra number of characters will be left unscrolled when used with Basic code LINK \# FEOA
Use in multiples of 32 to scroll whole lines.
- Keep seven or more lines static while scrolling the lower part by omitting the first section of code which scrolls the top of the screen and Linking into the section which scrolls the bottom half only - again setting the number of unscrolled characters in the Basic variable Y. This time the code does not wait for the frame refresh so it is advisable to include a Wait statement. So this time the code is

WAIT:LINK \# FE19

- Blank 32 characters from the cursor position. This uses the routine which normally blanks the bottom line of the screen but it uses for reference the cursor position which is stored in locations \# DE and \#DF and this means that 32 characters will be blanked from wherever the cursor happens to be. The code is:

LINK \# FE22

- Blank up to four lines from the cursor position. Again, the Basic variable Y is used to indicate the number of characters to be blanked, less one, and we Link into the code after the point where the Y register would normally be loaded. The code is:
$\mathrm{Y}=$ (number of characters - 1); LINK FE24
- Fill up to four lines from the cursor position with any chosen character. This is an extension of the last one and is very fast with four lines being filled within the frame refresh time - Basic prints only about eight characters in this time. We set the Basic variable Y to the number of characters minus one as before - and the Basic variable A to the character code of the chosen character. Thus we have:
$Y=$ (number of characters -1 1
$A=$ (the chosen character code value)
Link $=$ FE26

To see just how fast this routine is, try typing:

$\mathrm{Y}=127$

DO A = RND\% 128;WAIT;LINK FE26; U.0
After pressing Return, this totally useless piece of code will cause the four lines following it to be completely filled with a random character and then filled, over and over again, about 30 times per second - so fast that you cannot recognise any of the characters.
A more useful method of using this routine can be achieved by directing the position of

CODE MAGIC

Listing 1. Atom disassembler.

```
10 IN.
    \(\begin{array}{ll}20 \mathrm{e}=1 ; \mathrm{U} & 16 \\ 30 \text { FOR } \mathrm{L}=\mathrm{S} \\ \mathrm{TO} \mathrm{E}\end{array}\)
    \(46 \mathrm{P}=7 \mathrm{~L}, \mathrm{QaL} 31 ; \mathrm{R}=\mathrm{L} 72 ; \mathrm{P}\). 8 L " "P/U Pia
    \(45 \mathrm{~V}=0 / \mathrm{U}: 0-05 \% \mathrm{U}: \mathrm{X}=\mathrm{R} / \mathrm{U}: \dot{\mathrm{Y}}=\mathrm{R} 2 \mathrm{U}\)
    S5 TF TF: (T+1) \(2: 4=0\) :.605. di:0.65
    60 G0s. (10etP)
    65 MEXT L
7 MEN \(^{2}\)
ENE
```



```
    TBAP:" (-KV DATA- \(\mathrm{H}^{-}\),
```



```
    \(371 P^{\circ}\) Y Y WR
    38ns. \(\mathrm{na}^{-} s \mathrm{~V}\) W:R
    100 GOS. A P. \(^{2}\) "EFK",R.
    101 GOS.b;P. "OPA"; 6.
    1620.1
\(1840 . \mathrm{d}\)
    COS.b:P. "OPA";0.
    GO5. BIP. "ASL"; 60.
    GOS. \(2, P\) PR
    GOS,b;P."0RA" 0 .
    G.d
    G0S. 0, P. "ORA" \(\mathrm{G} . \mathrm{k}\)
    GO5.0; P , "ASL" 0.
    GOS.b.F. "Fpl-.6.n
    117 GOS.b;P. -GAA",G.
    120 G.
    GOS.b:P. "ORA";G.
    COS.b:P: "ASL-1G.
    G0S. \(2 \cdot P\). "CLC", R.
    OOS. O.F. "OFO", G.h
    \(0 . d\)
\(6 . d\)
    cos.c)P. "ORR"; Q. 3
    GOS.O.P. -ASL \(=\). 6.
    GOS.C.F. "JSR", G.
    GOS.b;F. "RelD": i.e
    0.d
    GOS.b;P. "BIT", 0. 1
        GOS.6.P. "AtD". 0.1
        G05.b, P. "ROL-:
        W0S.a.P. "PLP",R.
GOS.b.P. "RUD":G.
        OOS. aiP. "ROL A" \(\mathrm{A}^{\circ} \mathrm{R}\).
        GOS.O:P. \(-\mathrm{BIT}^{\prime \prime} ; 0 . \mathrm{k}\)
        GOS.O.P. "AND"; \(0 . \mathrm{K}\)
        COS.O.F."RCL"; G.K
```



```
        G.d
        cos.b:P. "ReD", O. 1
        60S.b;P: "ROL" G .1
        O05.A.F."SEC \({ }^{\text {iR }}\)
    i57 GOS. Q.P. "ARID".G.h
```

 69 nP, " "8y W" (T0 "8(L+ \((0(128)+(0+1)+(05127) *(0-255))=0 ", R\)
 the cursor by altering the values stored in locations \# DE and \# DF, or if you prefer, 222 and 223. Try this:

$$
Y=127
$$

$$
A=127
$$

FOR $I=\# 8000$ TO \# 8180 STEP $128 ; 1222=1 ; 1$ LINK \# FE26;NEXT I
This routine will turn the screen white in a fraction of a second and appears instantaneous.

Have fun experimenting with these routines but be warned, using pieces of code like this is like reading something out of context and odd things may happen. For instance, if you cause the screen to scroll while the cursor is not at the bottom of the screen, anything already on the bottom line will not be erased but will be copied into the next line.

If you have not made the cursor invisible by typing
? ${ }^{2} \mathrm{E} 1=0$,
you may leave the odd white square at the previous cursor position.

The demonstration program given in listing 2 shows how the scrolling routine works. It is only a demonstration but it illustrates the principle satisfactorily.

Listing 2. Demonstration program.

```
100 P. क12" DEMONSTRATION PROGRAM
120 F." FARTLY SCROLLING SCREEN "
160 REM REMOVE THE CURSOR
180 ?#E1=0
220 REM SET NUMBER OF UNSCROLLED LINES IN '
240 REM Y=(NUMBER OF UNSCROLLED LINES+1)*32
250 REM }\Psi=(6+1)*32=224 FOR SIX LINES
260 Y=224
300 REM PRINT SOMETHING ON ONE LINE
320sFOR I=1 TO S
340 P.RND% (I*30)
360 NEXT I
40日 REM DELFG
420 FOR I=1 TO 10;WAIT:NEXT I
460 REM SCROLL IT
480 LINK#FEOA
520 REM MOVE THE CURSOR BACK TO THE START OF THE SAME LINE
540 F. $11'
5 8 0 \text { REM GO BACK RND PRINT SOME MORE}
600 GOTOS
```


Quality support for;

ZX80 ACTION!

Flicker-free action games for your ZX80, need only 1 K RAM and the original 4 K ROM.

ATOM ZX80 Cassette C80A. BRKOUT . . . ACK-ACK ZX81 £4.00
Cassette C80B. SHELL GAME -
INVADERS $£ 4.00$.
The ZX80 Magic Book * WITH 8K ROM/ZX81 SUPPLEMENT * Games programs, computer music, converting programs written in other BASIC's, improving the picture, RAM and I/O circuits, and much more
£4.75
Getting Acquainted with your ZX81 £4.95
Mastering Machine Code on your ZX801 $81 \quad$ £5.95
23-23 WAY ZX80/81 EDGE CONNECTOR SOCKET £3.50 23-23 WAY ZX80/81 GOLD PLATED PLUG EXTENSION £ 3.50 ATOM CASSETTES; $£ 5$ each
CAAA: BREAKOUT - CUPBALL - 3D MAZE - SIMON 2.
CAAB: PINBALL - LETTERS - SPACEWAR - DRIVE
Both tapes need 1 K VDU $-5 K$ text RAM.
The ATOM Magic Book
A wealth of games and other programs; storing speech in your ATOM, converting programs written in other BASICs, tape recording hints, plus many other useful hardware and software tips.
£5.50
16/32K ATOM RAM Boards
from $£ 59.50$
Single Eurocard, can fit inside ATOMs case. Built and tested. Bare PCB only £23. S.A.E. for details.
ALL PRICES INCLUDE U.K. P\&P - VAT WHERE APPLICABLE TIMEDATA LTD. 57 Swallowdale, Basildon, Essex

Can you become a carpenter without a chizel
 PROGRAMS ON PAPER

£2.00 each (inclusive)

Z80 MACHINE CODE LOAD
Load your machine code fast.
Features:

- HEX code input.
- Decimal augument input.
- Simple load address input.

Z80 MACHINE CODE EDIT

Debug your machine code fast.
Features:

- 3-byte break point.
- Report the contents of A, F, BC, DE, HL and PC registers at each break point.
- Read/amend machine code.
- Restart machine code routine from the last break point.

Michael Cox Information Services 62 High Road, North Weald, Essex CM16 6BY

- We thank Sinclair Research Ltd. for permission to use their product names. The companies are in no other way related.

ZX80/81 HARDWARE/SOFTWARE
 2K RAM Pack 4K RAM Pack 16K RAM Pack
 £15.95
 £22.95
 £42.95
 16K RAM Kit £32.95 ZX Keyboard 16K Software from
 £27.95 £3.95

RAM PACKS. All RAM Packs are supplied built and tested, and simply plug into your port on the rear of the computer. The 2 K and 4 K RAM work with the onboard RAM, example $4 \mathrm{~K}+$ Onboard $=5 \mathrm{~K}$. KEYBOARD. A full size keyboard for the 80/81. The keyboard has all the $80 / 81$ functions on the keys, and will greatly increase your programming speed. It is fitted with push type keys as in larger computers. The keyboard has been especially designed for Sinclair computers and is supplied ready built. It also has facilities for four extra buttons which could be used for on/off switch reset, etc.
DEFLEX - $£ 3.95$. This totally new and very addictive game, which was highly acclaimed at the Microfair, uses fast moving graphics to provide a challenge requiring not only quick reaction, but also clever thinking. One and two player versions on same cassette.
LIFE $\mathbf{-} £ 3.95$. Uses M/C to achieve a processing speed of three generations a second on a 20×32 grid with a superbly flexible colony editing system. This is without a doubt the best ZX Life available.
3D/3D LABYRINTH - $£ 3.95$. You have all seen 3D Labyrinth games, but this goes one stage beyond; you must manoeuvre within a cubic maze and contend with corridors which may go left/right/up/down. Full size 3D graphical representation. This Program is written in MC/BASIC.
All above software on one cassette at $£ 5.95$.
CENTIPEDE $\mathbf{-} \mathbf{£ 4 . 9 5}$. This is the first implementation of the popular arcade game on any Micro anywhere.
Never mind your Invaders etc., this is positively stunning. The speed at which this runs, makes ZX invaders
look like a game of simple snap. This Program is written in MC.
Please add $£ 1.00$ p\&p for all Hardware. Software post free. All our products are covered by money back guarantee.
Specify on Order ZX80/81

23 Sussex Road, Gorleston, Gt. Yarmouth, Norfolk Tel: Yarmouth (0493) 602453

ZX81 1K PROGRAMS FROM VIDEO SOFTWARE LTD.

These programs are written to the same high standard as our highly acclaimed 16 K software. All the programs are entirely original (note the absense of Mastermind, Lunar Lander, etc.). They are so good that they are worth buying even if you have the 16K RAM.

ZX81 1K PARTY TRICKS NO. 1 includes:

1. SHOOT. Pick your spot, take the penalty and watch the goalie attempt to save - sometimes he succeeds.
2. SKETCH. Use cursor keys to draw large pictures - almost full screen and save them on tape.
3. NAME THE DAY. Calculates the day of the week corresponding to any valid date in the twentieth century.
4. DRIVE THE TRAIN. Ever wanted to drive a train. This little program will amuse the youngest members of the family.
5. ONGER-WONGER. Watch the computer draw its own pictures and set it up to draw yours.
6. WEATHER. An endless variety of regional weather forecasts - all of them inaccurate but then so are the real ones.
7. UFO. The inevitable space game. Shoot down the circling UFO using your photon torpedo under keyboard control.
8. WHO SHOT J.R. Four suspects, four places, four times of day, four weapons. From the clues given deduce who shot J.R. 9. FIELD GUN. You are the officer in charge of a field gun. Can you hit the target
9. MYSTERY PROGRAM. Still to be decided but it will be as good as the others.
Note: These programs are NOT suitable for ZX80.
Manual only with fully annotated listing................................. $£ 1.95$
Manual and cassette
De luxe boxed set - ideal gift .. 7.95
VIDEO SOFTWARE LTD.
Stone Lane, Kinver, Stourbridge, West Midlands DY7 6EO
Allow 28 days for delivery

SHARP MZ80K £375 inc. VAT

COMPUTER 100 LIMITED 7 Southcote Parade Southcode Farm Road Reading Berkshire Tel: Reading 584545

Please supply complete 48 K Sharp MZ-801 NAME

ADDRESS

Mail order:
If you are unable to visit our showroom, then please add $£ 7.50$ to cover insurance and transit.

PROJECT

COGENT STEPSTOWAR

In the previous part of his series, John Dawson began to outline an interpreter for the 6502 microprocessor. He continues with an analysis of the most suitable language level and some fundamental subroutines.
Last month, I discussed the difference between compiled and interpreted high-level computer languages and gave some building. block subroutines as the start of a controlorientated interpreter for the Tangerine Microtan or Micron computer. Programs need names and Cogent seems appropriate for this project.
Last year I spent some time working on a program called Duncan which was an interpreted language for the Nascom 1 microcomputer. Figure 1 is a short but typical Duncan program. Program instructions in Duncan consisted of a single letter to identify the main instruction heading followed, where necessary, by suffixed letters or numbers.

These identify either a port or label, or provide a conditional code for a Jump or Goto instruction and the label to which the program should transfer execution. When you are familiar with Duncan it is easy to use and you can build reasonably complex control procedures.
Duncan used reversed-Polish notation for its number-handling procedures based on an earlier language M5, and could cope with positive integers in the range zero to 65,535 . Eight-bit - one-byte - values could be set to output devices or obtained as an input value. Duncan had no facility for handling interrupts but could be used to poll a number of devices, either continuously, or at a defined stage in the execution of a program.
A number of ideas occurred to me in the course of thinking about an improved interpreter for the Microtan: first, it seemed desirable that the source program should be written in English with as few restrictions on the author as possible. A person writing the program should be able to describe the tasks the computer would perform using plain language and full-length words.
The compacted coding used in many highlevel languages is less relevant now that RAM is less expensive and this code will become increasingly obsolete as more people become familiar with typewriter keyboards. I thought that the program should be constructed along the lines of simple but recognisable English grammar.
For example, the source program should
consist of a series of sentences with a constant terminating feature - a full stop at the end of the sentence followed by one or more spaces. It seemed that spaces between words would become significant since the transition from an alpha-numeric character to a space marks the end of a word. Consequently, the names of variables and input/output devices should be linked by a hyphen when they consist of more than one word.
I thought it important that the program should allow redundant material in the source program. In other words, the author should not have to formally declare that a word or a group of words is a remark to be ignored by the computer. The computer should be able to look through a source sentence and extract from it the information it needs to carry out the instructions contained in the sentence.
Third, eight-bit accuracy is entirely adequate for the vast majority of domestic applications and school or amateur experimental purposes. However, the interpreter should be able to handle large integer numbers, both positive and negative, for many tasks including signal averaging and other scientific applications.
Fourth, reverse-Polish notation is easy to work with, both in programming terms and as a user. Hewlett Packard has built a successful

```
(TEST ROUTINE - SR CALL AND JUMP BACK)
(FIRST NUMBER) ? =A PL P P P
(SECOND NUMBER) ?=B PL P. €7
(FIRST PLUS SECOND =| \(\mathrm{C}=\) ? PL JS L7 A,B+=C
(END)
```

FIRST NUMBER 479 SECOND NUMBER 513 FIRST PLUS SECOND $=00992$

Figure 1. A typical Duncan program.
range of calculators around RPN for good reasons, and I thought that I would continue to use RPN for Cogent.
There is a classic dilemma inherent in interpreted languages - if it is easy for humans to read and understand, it will be slow for the machine to interpret and execute. Duncan ran very quickly because the Nascom had only to examine a single character to jump to the next instruction group.

Identifying an instruction from a variablelength word, which requires the computer to match a list of instructions and list of input and output devices, might slow the program considerably. It could even be slowed to the point where, while still acceptable for many domestic control jobs, it would be useless for
acquiring data from many experiments in a school physics laboratory.

The task of writing an interpreter which would compress a source program to singlebyte instructions for execution by the machine, re-expanding the compacted code to the full source listing for editing purposes is not for a part-time amateur systems analyst and programmer - however dedicated or obsessed.

What is much more important in the design of a language is the framework it provides for describing the problem faced by the analyst. In other words, a good programming language should be capable of helping a user to describe what he wishes the computer to achieve - it should lead him through the design of a program along a logical route.

Some of the newer languages such as Pascal and APL have comparatively simple, coherent designs which influence the programmer's perception of the problem. In this way, the expressions Do-Until or Repeat-While describe not just a feature of a programming language but a useful and powerful approach to investigating and writing a solution to a problem.

Let us now examine an important part of any control-orientated program - a real-time clock. I used the two-pass assembler from Microtanic Software to write the clock subroutines and it is an enormous advance on the translator/disassembler in the Tangerine XBug.

The good features of the Microtanic product are that: the assembler is very fast; the second, and longer, pass through more than 200 lines of source code took just 4.5 seconds. There is a high degree of control over the positioning of source and object code and it is possible to assemble directly form a source-code tape with the result that the whole of the Microtan memory can be filled with object code.
The pseudo-ops BYT and WOR allow the use of labels as operands which considerably enhances the assembler because it makes the object code truly relocatable. There is a tantalising mention in the documentation of further pseudo-op codes to allow the use of macro instructions in the future.

On the debit side, my comments are mostly to do with the documentation. It is adequate, but more examples would have been helpful and the layout could have been improved to make some difficult concepts more easily understood. The documentation is printed on a dot-matrix printer with no descenders. Software of this quality justifies a higher standard of presentation.

One section describing the use of labels as operands to the BYT and WOR pseudo-ops

JS

 PROCESS

 PROCESS}
still gives me problems even though I used the feature successfully in programming the realtime clock.
The assembler controls a printer, somewhat clumsily, either by internal software in the EPROM or by your own external program. However, the printer can only be used during the second-pass assembly or to list the sourceprogram labels, and I could not find a way of listing the source program alone.
These criticisms are minor - the Tansoft two-pass assembler is an effective and powerful piece of work, backed up by more than 5,000 words of explanation and support. The three sections of the documentation "Installations", "What is a two-pass assembler?" and "All the technical stuff" will start you off on the right track if you are prepared to concentrate. The results of using the assembler are shown in figure 2.
The timing values $£ \$ 40$ in line 0053 and
$£ 58 \mathrm{~B}$ in line 0055 may need adjustment to the crystal frequency in your own machine. At present, the program will measure only elapsed time from the moment when the program starts to run. I hope to list another short routine to set the real time in next month's article.

The clock records the week of the year, day of the week, as well as hours, minutes and seconds. When the program is executed at 0400 hex, there should be a one-second delay and then the top line of the screen is partially cleared and the following figures should be displayed:

00-00 00:00:01
The figures read from the left according to the following key:

> Week $(0-51)-$ Day $(0-6)$
> Hours(24):Minutes:Seconds

Every 50 ms , the VIA counter reaches zero and generates an interrupt. The VIA timer is
then automatically reloaded with the initial values and the timing cycle recommences. The interrupt diverts the 6502 CPU from whatever program it is executing to the clock interrupt CLKINT routine starting at line 107. In the course of updating the clock counters, the routine displays the current time using the CLODIS and B2D subroutines. The time is updated every second which explains the initial delay when the program is started.
The instruction LSR @ is equivalent to LSR A and is peculiar to the Tansoft two-pass assembler. With this exception, all the mnemonics are standard 6502 assemblylanguage instructions. Check the machine code corresponding to the assembly instruction if you have any difficulty.

The final program section at line 183 initialises the clock and starts it running. The program then loops and will look for an input from the keyboard to display on the VDU.

Figure 2. Clock subroutines generated by the Microtanic Software two-pass assembler.

Acorn Atom
 ATOM INVADERS $12 \mathrm{~K}, \mathrm{Gr} .4$

PINBALL 6K, Gr. 2
ATOM BREAKOUT 4K, Gr. 1
FRUIT MACHINE 8K, Gr. 2
STAR TREK 12K, F.P.
DISASSEMBLER $2 K$
UFO BOMBER 7K
LABYRINTH 12K, Gr.2A, F.P.
LUNAR LANDER 12K, Gr. 4
BACKGAMMON 7K
GOLF 7K, F.P.
TYPIST 7K
LAST RUN 7K
WIGGLE + RHINO 10K
SQUARES + SIMON + PARACHUTE 8K
MINI-BREAKOUT + MINI-INVADERS $2 K$
STATISTICS (4 programs) 12 K
2114L MEMORY CHIP
C12 CASSETTE
ORDER NOW FOR CHRISTMAS

THE ATOM: a bi-monthly magazine for Atom users, containing TESTED programs. Covers machine code and BASIC programming. Six issues for only $£ 4.50$ inclusive.

BUG-BYIE

Sinclair 2×81

ZXAS MACHINE CODE ASSEMBLER Although many people have expressed disbelief, we assure you that this is a full-specification Z80 assembler. Standard mnemonics are written directly into your BASIC program. Code may be assembled anywhere in memory. Handles labels.
FOR 16K ZX81 \& 8K ROM ZX80 - A GIVEAWAY AT ONLY £3.95 ZXDB DISASSEMBLER/ DEBUGGER The perfect complement to ZXAS, giving you the power of every expensive computers. Apart from a full disassembler, the program contains Single step routines, string search, block transfer, hex loader and many more. Can be held in memory at the same time as ZXAS, still leaving about 8 K free. FOR 16 K ZX81 \& 8KROM ZX80 - ONLY $£ 5.95$
MULTIFILE A multi-purpose menu-driven filing system supplied on cassette, together with three blank data cassettes and comprehensive documentation describing many applications.
FOR 16K ZX81 \& 8K ROM ZX80 - NOW ONLY £12.50 NEW RELEASES:
STARTREK for 16 K ZX81. All the usual features; nine levels of play ONLY £5.00 THE DAMSEL AND THE BEAST A fantastic adventure game for the 16 K ZX81 - one of the best 16 K games available ONLY $£ 6.50$

ALL PRICES INCLUDE VAT \& POSTAGE 24 hour answering service on 0512272642 for Access orders

PLEASE SUPPLY

I enclose a cheque/PO for $£$. \qquad made payable to Bug-byte, OR debit my Access card number.
Signature
Name \qquad
Address

PROGRAM PACK 6 for the 16 K ZX81 \& 8 K

 ROM ZX80Two programs for the expanded ZX81 to keep you entertained for hours! 3-D OXO is written in machine code, and is hard to beat. The other is a compulsive adventure game called MARS RESCUE.
BOTH PROGRAMS FOR ONLY $£ 4.50$

BREAKOUT

This cassette contains two versions of the popular arcade game, both written in machine code, and both fitting into the 1 K ZX81. Flicker-free fast moving graphics. BOTH GAMES FOR ONLY $£ 3.50$

Connects directly to TRS-80 Level 2 Keyboard. Operating and file handling software in ROM. 8 commands add 12 powerful functions to Level 2 BASIC. No buttons, switches or volume controls. Full control of all functions from Keyboard or program. Daisy chain multiple drives. Certified digital tape in endless loop cartridges. Reads and writes in FM format at 9000 Baud. Soft sectored with parity and checksum error detection for highly reliable operation-just like discs. Maintains directory with up to 32 files on each tape, tapes may be writeprotected. Supports Basic and machine-language program files, memory image and random access data files. 12 character filespecs-: "FILENAME/EXT: d " (d is drive no. $0-7$). Automatic keyboard debounce. Full manual with programming examples and useful file-handling routines.

COMMANDS lusuaily followed with a filespec and possible parameter list).
@SAVE, @LOAD, @RUN -for BASIC programs, machine language programs and memory image files. ©GET, BPUT -moves a 256 -byte record between a random access file and BASIC's data buffer. @KILL -removes a file from the directory and releases tape sectors for immediate re-use, @LIST - displays file directory along with sector allocation and free sectors. @NEW -formats tape and creates a blank directory.
Master drive with PSU, Manual and a selection of tapes.
For TRS-80 £169-00, for Video Genie £174-00.
Slave drives £125-00. (add £2-00 p.p. + vat).
(Export orders pp chargedat cost)

The tape that behaves like a disc, For TRS-80 LEVEL II and Video Genie.
 information Telephone 0525371393
 Lid.
24 Heath Road, Leighton Buzzard, Beds. LU7 8AB

Do you have a problem? Your manual is incomprehensible or you just cannot get the hang of that programming trick you tried whatever it is, Tim Hartnell will do his best to answer your queries. Please include only one question per letter and mark them "Response Frame".

CODE BOOKS

EI should very much like to know if any books exist dealing with the vexed question of ZX-80 machine code - preferably for beginners. I have seen the odd machine-code routine, but no explanation about how to enter it, or reserve space in the RAM, and little to explain what the Pushing and Banking actually do.

Michael Pout,
Bexley, Kent.
Books Which could help you include: Machine language programming made simple, $£ 8.95$ and Understanding your $2 \mathrm{X}-81$ ROM, by Dr Ian Logan, $£ 8.95$. Both are available from The Essential Software Company, 47 Brunswick Centre, London, WC1. Mastering machine code on your $2 X-8 I$ or $2 X-80$, Tony Baker, $£ 5.95$ is available from Interface, 44-46 Earls Court Road, London, W8 6EJ.

CHESS CHOICE

Interested in microcomputers and as the owner of a chess computer, I particularly enjoyed the article by John White on chess computers in the August/ September issue. I wish to exchange my chess computer for a more powerful model and thought it might be a good idea to buy a microcomputer with such a chess-playing capability. John White stated that the Morphy 2.5 program was written on only 8 K ROM and 1 K RAM. The Sinclair ZX-81 also is advertised as having 8 K ROM and IK RAM. Would I be mistaken in thinking that such a powerful program as the Morphy 2.5 could be written for use on the Sinclair ZX-81?

I S Strange,
kett, Stansea.
Cockett, Swansea.
As a general rule, I would suggest that a chess program for a microcomputer is unlikely to play as well as a chess machine. The Morphy program you refer to is written entirely for chess, that is, the memory is totally dedicated to chess, whereas the same memory on, say, a ZX-81 is required to do many, many things. When a chess program is used with a computer, it uses only part of the computer's capabilities. John White suggests in his article that the Sargon 2.5 is the best chessplaying machine available, and - if you are serious about chess - is a better buy for that purpose than buying a computer and then buying a chess program for it. However,
when you have a computer, you can, of course, do far more with it than just play chess. One shop which carries a number of chess computers, where you can compare their levels of play, is the Silica Shop, 1-4 The Mews, Hatherley Road, Sidcup, Kent; telephone 01-301 1111.

ZX-81 BUG TEST

WE HAVE RECEIVED a number of questions about a bug in the ZX-81 ROM. The bug appears when dealing with very small, or very large numbers, and is especially evident with some \log functions, and raising numbers less than one - such as squaring $0.125-$ to a power. The bug in the ROM has been located. We believe three extraneous lines in the original ROM have simply been deleted, a discovery made by Frank O'Hara and comfirmed by Ian Logan. Sinclair Research is now swapping old ROMs for new. If you ring Nigel Brown on 0276-62155, he will tell you how to go about obtaining a modified ROM. If you decide to buy a ZX-81 from W H Smith, test it first to see if it has a ROM-with-bug by entering the following line:

PRINT . 125**2
Any answer other than the correct one - .015625 - shows the computer has an old ROM in it. Sinclair Research tell us that only new ROMs are now on the market, but it has admitted that a few old ROMs may still be in circulation.

POOLS SYSTEM

El was delighted to read your first issue, particularly the ZX-81 review. Unlike others, you do not hesitate to find fault, and I trust you for this attitude. I am interested in football pools, and to date have laboriously conducted research by hand, which covers the data of 15 seasons with 42 matches on each of the season's 55 playing days - no mean effort. I would like your opinion as to the best computer to aim at. Obviously I cannot run to an IBM or similar. Would you care to make any suggestions, please?

Robert Mason,
Pickering, North Yorkshire.
You DO NOT actually say what you wish to do with the computer in relation to the pools, but we imagine you wish to be able to compare, analyse and predict. The volume of data is rather large, but could be handled in one-year chunks by a ZX-81 with 16 K of memory, or any small microcomputer of similar
capacity. However, to handle all 15
years at once, to be able to call anything from those 15 years at will, would require much more memory. A disc-operating system would possibly be an idea, if you really must have all 15 years on tap at any one time. A $£ 7$ football-pools program is available for the ZX - 80 from: Peter Vasey, 18 Ferndale Grove, East Boldon, Tyne and Wear.

VIC DOWN UNDER

EI would like to pose a question regarding the Vic-20. 1 read in your magazine the Vic-20 has to be tuned to suit the differing sound channels and TV standards. I will be buying a Vic-20 soon, and hope to build it into a larger system with all the peripherals. The trouble is that in a few years I may go to Australia. Would I be able to adjust the Vic-20 to suit the TV or would I have to sell the system?

Paul Ormonde- Gones, St Albans, Hertfordshire.

Theaustralian television system is fully compatible with the British system, so you will have no problems. You can find out more about the Vic from distributors, which include the Byteshop, 01-387 0505, and The Vic Centre, 01-992 9904.

BOARD CONTACT

EI am interested in chess programming, but do not know where to start. I am a programmer by profession and my favourite languages are Basic, Cobol and Fortran. Please let me know of anyone who has written chess programs in this part of the world. Perhaps we could meet and help each other.

John Kay,
Lagos, Nigeria.
We do not know of anyone in your part of the globe who has worked on chess programs, but suggest that one way to contact people who thave done so in the U.K. would be to write to a few of the smaller firms advertising chess programs. These are most likely to have been written by the people running the company, and they may be able to help you. Also, you could buy some of these programs to analyse them. Doing this may give you some ideas for writing your own.

COMPROMISE

■During the past month I have had limited access to a Commodore Pet. During this time I have acquired some programming skills, and I would now like to buy a micro for use at home. The Pet is out of my price range. Perhaps you would advise me about which computer would incorporate the features listed and would give
me the best value for money:
Reliability with software available.
Cassette loading using existing cassette player.
Expandable memory.
GGood format size with good graphics for drawing purposes.
Should cost not more than $£ 200$.

A Birch,
Tuffley, Gloucester.
Unfortunately, your demands are incompatible. The Vic- 20 would enable you to use, almost without modification, the programming skills you have picked up on the Pet and also has expandable memory. There is software available for it and the machine costs around $£ 200$. However, you need the special Vic cassette player - $£ 40$ to $£ 50$ - and the graphics as supplied are coarse. If you are prepared to spend up to $£ 300$ or $£ 350$, a number of suitable machines are available, including the BBC Micro, Tangerine, Video Genie and the like. If you have limited money, your purchase will have to be a compromise.

SANITY SAVER

-Can you please save my sanity? I am 14 and sold my ZX-80 hoping to save up for a Vic-20, when a friend suggested I buy the whole ZX-81 kit memory, printer, computer which would be the same price. Another friend proposed an Atom or UK101, and my father advocated a Superboard. Please could you help and guide me?

D f Marsh,
Cadishead, Manchester.
Rodney zaks, of Sybex tells Your Computer that the trend in America nowadays is for people to work out what they want to do with their computer, and then buy one which fits that specification. We can only suggest you do the same. The questions you will need to have clear in your mind when deciding what to buy could include:

- How much money do I have to spend?
- What graphics quality do I want? What do I want to do with it? for example, play Space Invaders; program in machine code, in Basic; control external devices like lights.
- How much memory will I need for this?
-Will I be likely to want to add a printer or other peripherals?
- Does it need an external cassette machine or has it one built in, or will it require floppies?
- If the computer generates a colour picture, do I have access to a colour TV to make use of the colour facility?
Ask your self these questions, putting the answers in writing, then try and find a machine to match your answers.

E WILTSHIRE SPECIAL OPENING OFFER

*LOWESTPRICE

- SHARP MZ-80K 20K Machine only $£ \mathbf{£ 6 5 . 0 0}$
16K RAM upgrade (including fitting) $£ 42.50$
Also in stock - VIDEO GENE at $£ 299.00$ VIDEO GENE II at $£ 235.00$
Sound Kit $£ 10.00$ Colour Board Kit $£ 35.00$ D.A.I. Colour Computer - $48 \mathrm{~K}+$ Stereo Sound only
$£ 595.00$
Centronix 737 Printer $£ 359.95$
Software - Books - Service
Orders accepted by telephone using Access or Barclaycard. Postage $£ 9.00$.
Credit terms are available.
Please add 15% VAT to all prices.
Orders now being taken for Vic 20
VISIT the Friendly Computer Shop Everyman

E14 EDWARD STREET, WESTBURY, WILTS. Tel: (0373) 864644 Home Tel: 823764

Open all day Saturday

259.00

\qquad
-
ZX81owners
Protos
Keyboard is here!
At last! A real, full size keyboard in a top quality case foryour ZX-81.

Simply unscrew your ZX-81 printed circuit board from its black Sinclair case and plug into Protos.

FULLY BUILT $\mathbf{f 6 4 . 9 5}$ inc. VAT

- More accurate, faster typing with bigger and real keys
- 40 colour coded key-tops for easy reading
- Robust, 'big' computer construction
- PCB prepared for more add-ons to come
- New edge connector provided for Sinclair and other manufacturers' peripherals
- Key legends can be changed for future new ROM functions
- Sinclair PCB fully enclosed - and room for much more If you feel you've outgrown your $\mathrm{ZX}-81$ don't sell it for peanuts and move to another system. Add it to Protos and make your $\mathrm{ZX}-81$ grow.
For details, large SAE, please. For orders add $£ 2.50$ post and packing. Cheques to 'Frome Computing'.

Protos Computer Systems
Frome Computing, 20 Ashtree Road, Frome, Somerset, BA11 2SF

MORE POWERTOYOUR POCKET!

the FX702p. A pocket computer that communicates in BASIC language.

- and held alphanumeric I programmable-BASIC language-holds up to ten different programs simultaneouslysubroutines nested up to ten levels-program looping up to eight levels-simplified program editing and debugging-variable programming capacity: between 1680 steps with 26 memories and 80 steps with 226 memories 55 single key routines including \log, trig and hyperbolic-built-in routines include stand̆ard deviation (both types), regression analysis and correlation coefficient-all programs and memory data retained even when switched off. Comprehensive library with over 70 program examples. Optional FA2 adaptor for program storage on cassette and FP10 printer.

r.r. $£ 134.95$

 AVAILABLE AT SPECIALIST CASIO CALCULATOR OUTLETS. - \triangle WHATWILLTHEY THINK OF NEXT?CASIO ELECTRONICS CO. LTD. SHAIBURN HOUSE, 28 SCRUTTON STREET, LONDON ECZA 4TY.

> Fingertips is our regular calculator column covering calculator news, programming hints and examples of unusual applications. The column is written and compiled by calculator enthusiast David Pringle who is glad to hear of any of your ideas. Your Computer pays $£ 6$ for each of your contributions published.

For casio to release its third major line of calculators in a year - as it has done with the Casio 702-P, takes some organisation, in both senses of the word. The 702 provides the first opposition to the Sharp PC-1211 and Tandy programmables in that it uses Basic and has similar capabilities. Table 1 gives a check list of the more important characteristics.
Robin Terry of Barking provides us with our first Basic program of the column: Kalah - or Owani - is a game which is played widely in Africa, he writes. The playing area consists of two rows of six pits in the ground, each filled with five stones. There are two pits to the side, such that the board looks like this: Player 1
-000000
123456 O 000000 Player 2
The large pit on the player's right is called his Kalah. To play, a player chooses a small pit on his side, and removes all the stones, holding them in his hand. Then, one by one, moving anti-clockwise he drops the stones in successive pits - including his own, but not his opponent's Kalah. If he holds enough stones, he will drop them into his opponent's smaller pits also. Then his opponent follows suit.
If, however, the last stone a player drops falls into his own Kalah, he then earns another turn. Also, if the last stone falls into an small, empty pit on his own side, he may empty the small pit directly opposite on his opponent's side and, together with the winning stone, drop them into his own Kalah. The game continues in this way until a player cannot play; then the player with most stones in his Kalah wins.
In reply to my request for information on methods of matrix inversion, Boris Allan of Stockport writes: It has been found by a correspondent to Fingertips - Billy Wadsworth, Your Computer August/ September - that the Cholesky method of matrix inversion is not always satisfactory - sometimes there is an attempt to take the square root of a negative number. The Cholesky decomposition method is used to invert symmetric, positive definite matrices - that is, matrices which are symmetric and have a positive, non-zero determinant.
To attempt to take the square root of a negative number during the decomposition suggests that the determinant is negative or zero. In this situation one can exercise various options, of which the three most popular are:

- Give up
A.

4	5	8	2
5	6.5	10	1.5
8	10	16	4
2	1.5	4	6

A pseudo-inverse routine would step through this matrix, performing various computations, until it reached column 3. If the routine were a normal Cholesky procedure, it would take the square root of zero and then try to divide by the zero value, or - with rounding errors it might take the square root of a negative number.
The pseudo-inverse routine, however, sets the appropriate row and column to zero, so that the original matrix becomes

B.	4	5	0	2
	5	6.5	0	1.5
	0	0	0	0
	2	1.5	0	6

and what is really inverted is the submatrix

C.	4	5	2
	5	6.5	1.5
	2	1.5	6

and the inverse of this matrix is
D. $\quad \begin{array}{llll}36.5 & -27 & -5.5 \\ & -27 & 20 & 4\end{array}$
$\begin{array}{lll}-27 & 20 & 4 \\ -5.5 & 4 & 1\end{array}$
This inverse is then substituted back into the modified matrix, B, to give the pseudo-inverse

E. | | 36.5 | -27 | 0 | -5.5 |
| :--- | :--- | :--- | :--- | :--- |
| | -27 | 20 | 0 | 4 |
| 0 | 0 | 0 | 0 | |
| | -5.5 | 4 | 0 | 1 |

To have the problem, as expressed by Billy Wadsworth, suggests that it is in part due to rounding errors - a change in order of the rows and columns might then solve the problem by not having perhaps so many rounding errors.
To accept a pseudo-inverse is up to the individual, but, in case, here is an algorithm for the Cholesky pseudo-inverse routine. It is worth noting that the two-dimensional array $\mathrm{A}(\mathrm{n}, \mathrm{n})$ can be simulated by a one-dimensional array

$$
B(n(n+1) / 2)
$$

in the case of a symmetric matrix. The cell $A(\mathrm{i}, \mathrm{i})$ is then the equivalent of the cell

$$
B(i i(2 n+1-i) / 2-n+j)
$$

I have written an Atom routine on this basis. Only the lower-triangular part of the matrix is used in the routine, so I give the example matrix and after each stage the new contents of the matrix so that you can check the translated algorithm.

Input matrix	4	5	2
	5	6.5	1.5
	2	1.5	6

(continued on next page)

Table 1. Comparison of Sharp PC-1211 and Casio 702-P

Sharp PC-1211/
 Tandy
 Price

£79.90 from CompshopLondon
Keyboard
QWERTY
57 keys
Display
24 character seven-by-five dot matrix. 10 -digit mantissa
Memory Non-volatile
User-definable:
From 1,424 program
steps/ 26 memories to 208
program steps/
178 memories
All standard scientific
functions except hyperbolic and statistical

Arithmetic

15 levels of parenthesis
priority as in standard Basic
Maximum subroutine nesting $=4$
Accessories
CE-121 cassette interface
CE-122 printer

Casio 702-P
£119.95 from TempusCambridge

ABCD
65 keys
20 characters of similar type
Non-volatile
User-definable:
From 1,680 program steps/26
memories to 80 program
steps/226 memories
All scientific functions including
linear regression and standard deviation

20 levels of parenthesis and priority as in standard arithmetic
Maximum subroutine nest
$=10$
FA-2 cassette interface
FP-10 printer and ROM packs are available next year

FINGERT/PS

```
print n;"<";a;b;c;d;e;f;"(mine)"
print m;l;k;j;i;h;">";s;"(yours)"
    return
    t=0 : for a=8to13: t=t+(a(a)<>0): next a
    return
    "k" olear: pause"Kalah prosram by R.terry":pause" 5 stones/pit
to start."
    15 for a=1 to 6: a(a)=5:a(a+7)=5 : next a: sosub 1
    17 sause "when you cant move, "pause" enter 0 when asked": pause
"<what wit?>"
    inwut "@=i start, 1 = you start";s : ifs stoto 115
```



```
    u=0: for }c=1\mathrm{ to 6:a(c+26)=1
    if a (a)=0 soto 65
    if a (a)>b let }u=a(c
    w=c-a(c) : w=14*(w<1)+w: w=w-(w=7): }\quadv=c+2
    if }\omega=14\mathrm{ let a (p)=2.5 : soto 65
    a(s)=a(p)+(a(\alpha)=u)
    a(p)=a(p)+(a(c+1)=1)
    a(v)=a(n)+(a(w)=0)|(w>7)+(a(w+1)=1)
    a(s)=a(s)+(a(w)=0))
    next a : u=1
    for a=6 to 1 ster - 1 : it a (a+26)>u let u=a(a+26):r=a
    next a: beep r: if u=0 pause " i cant move ": soto 165
    orint "i emoty oit";r:w=r-1
    for a=1 to a. (r) : w=14米 (w<1) +w:w=w-(w=7)
    a(w)=a(w)+1:w=w-1:ne\timest a: a (r) =0: w=w+1
    if (a(w)=1)来(w<7) letn=n+a(14-w)+1: a(14-w)=0 : a(w)=0
    sosub 1: if w=14 pause "m's so asain" : soto 30
    beer 1: pause "Your so"
    inout "what rit? (1-6)";r:r=14-r : if (r<8)+(r>13) soto 160
    if a(r)=0}\mathrm{ soto 120
    w=r-1 : for a=1 to a (r) : w=14*(w<1)+w:w=w-(w=14)
    a(w)=a(w)+1: w=w-1: next a: a(r) = 0
    if (a(m+1)=1)*(m>6) let s=s+a(13-w)+1: a(13-w)=0:a(m+1)=0
    sosub 1: if }\omega=6\mathrm{ rause"your so asain" :soto 120
    sosub }2
    sosuk 5: if t rrint "cheat! you can move":soto 120
    165 if sin print "צou win... this time...":end
    170 if s<n rovint "i win (ha! ha!): end
    175 krint " its a draw.....": end.
    tyre shift K in DEF mode to run
```

Listing for Kalah or Owani.
(continued from previous page)

Cholesky Decomposition

$\mathrm{E}=1.0 \mathrm{E}-5$; Criterion for pivoting
For $J=1$ to N; Go down each column starting at the diagonal If $\mathrm{J}=1$ goto L 1 ; The first column is slightly odd
For $\mathrm{K}=1$ to $\mathrm{J}-1$; if $\mathrm{J}=1$ then $J-1$ is zero, so it is odd
$A(J, J)=A(J, J)-A(J, K) \times A(J, K)$; Much better than using a power of two
EndloopK
L1: If $\mathrm{A}(\mathrm{J}, \mathrm{J})$ less than E then $\mathrm{A}(\mathrm{J}, \mathrm{J})=0$: Pivot check, for sart of negative
If $\mathrm{A}(\mathrm{J}, \mathrm{J})$ more than E then
$A(J, J)=1 /$ sqrt $(A(J, J))$; Normal action
If $\mathrm{J}=\mathrm{N}$ goto L2 : Everything has finished
For $\mathrm{I}=\mathrm{J}+1$ to N : Now we are on to the off-diagonal

If $\mathrm{J}=1$ goto L3 : Jump over this K

loop

For $\mathrm{K}=1$ to $\mathrm{J}-1$; if $\mathrm{J}=1$ then
$J-1$ is zero
$A(I, J)=A(I, J)-A(I, K) \times A(J, K)$ EndloopK
L3: $A(1, J)=A(1, J) \times A(J, J)$; Do not divide, as reciprocal already Endloopl
L2: EndloopJ
Matrix

.5	2.5	1
2.5	2	${ }_{1}-2$
1	-2	1

Inverse Cholesky Matrix
For $1=1$ to $\mathrm{N}-1$: Columnwise from 1 to $\mathrm{N}-1$
For $\mathrm{J}=1+1$ to N ; The diagonal element is OK
$\mathrm{X}=0$; Temporary storage
For $\mathrm{K}=1$ to $\mathrm{J}-1$; Collects a row and column multiple
$X=X+A(K, I) \times A(J, K)$
EndloopK
$A(J, 1)=-X \times A(J, J)$; The final move
EndloopJ
Endloopl
Matrix

.5	-2.5	-5.5
-2.5	2^{2}	4
-5.5	4	1

Forming Inverse Matrix

For $\mathrm{I}=1$ to N ; Column-wise
For $\mathrm{J}=1$ to N ; From diagonal down
$\mathrm{X}=0$; Temporary
For $\mathrm{K}=\mathrm{J}$ to N ; Row and column
multiple
$X=X+A(K, J) \times A(K, 1)$
EndloopK
$\mathrm{A}(\mathrm{J}, \mathrm{I})=\mathrm{X}$; That is it
Endloop.J
Endloopl

Matrix

36.75	-27	-5.5
-27	20	4
-5.5	4	1

If you found that you could not
quite lift off with the flight simulator program in the October issue, it may have been due to lines 46 and 57 which should have read $X \neq 0$? and lines 171 and $296 \mathrm{X} \neq \mathrm{Y}$?

This month's finisher is another small brain-teaser. Consider a row of four points:

If you are at an end then the only way of moving is back towards the centre; at the middle points the probability of going to the left or right is exactly equal to $1 / 2$. Starting at one end, what is the expected - or average - number of moves to take you to the other end?

The solution is asymptotic, so take two consecutive answers separated by less than 10^{-6} to be the ending criterion. A year's subscription to the most elegant solution.

4
 FORTH for TANGERINE

 \square ?FORTH - the dictionary based language which is generating so much interest is NOW available to Tangerine users. FORTH Is both an interpreter and compiler offering the power of a high level language with the flexibility and speed of assembler.
Supplied on cassette is:

- A full standard implementation of fig-FORTH release 1.1 (variable length names and compiler security) with RAM simulation of disc
- Plus in-line assembly via linkage to the XBUG line assembler - Plus a FORTH editor
- Plus a cut down version offering 8 K users (Micron or Microtan + Tanex) increased dictionary space.
Price - $£ 24.95$ inclusive of VAT, p\&p and documentation.
Documentation consists of the FORTH model overview, the FORTH glossary (containing definitions of all FORTH words), editor instructions and implementation instructions. A FORTH primer or user manual is recommended for newcomers. The full implementation ideally requires 12 to 16 K of RAM, although it will load into 8 K (but then dictionary space is limited and lack of buffer space precludes the use of input/output). The cut down version, by excluding $i / 0$ and related utilities, offers the 8 K users extra dictionary space.
For those wishing to customise their own versions, assembler source code can also be supplied for an extra cost of E5. This is suitable for assembly by the Microtanic 2 pass assembler. EPROM implementations also undertaken by request.
Orders (sent by return where possible) to:
MICROTANIC SOFTWARE, 235 Friern Road, Dulwich, London SE22

The SENSATIONAL

 CROFTON Offer

9" metal cased monitor at lowest ever price - $£ 48.50$ plus VAT - $£ 55.77$ total plus carriage.

P31 green tube models available at $\mathbf{£ 6 0}+$ VAT
$-\mathbf{£ 6 9}$ total + carriage

STOCKISTS IN ALL AREAS WANTED.
 WRITE FOR DETAILS.

$12^{\prime \prime}$ Model available at following prices.
Standard P4 white $\mathbf{£ 1 4 5}+$ VAT
$£ 166$ total + carriage
Standard P31 green £160 + VAT

- $£ 184+$ carriage

© 钅

Ask for Crofton Mail All major credit cards accepted. Order Catalogue.
All items subject to availability. The above prices include VAT Carriage will be charged at cost

Phone or write to

CROFTON ELECTRONICS LIMITED
35 Grosvenor Road, Twickenham, Middx TW1 4AD. Tel: 01.891 1923/1513

CASIO
 WORLD BEATERS

World's Most Powerful BASIC Pocket Computer

FX-702P
RRP $£ 134.95$
ONLY $£ 119.95$

Flattens the Sharp PC1211

Alpha/numeric dot matrix scrolling LCD. Variable input from 1680 steps, 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR: NEXTlooping; 8 levels. Debugging by tracing. Editing by moving cursor. 55 built-in functions, including Regression Analysis and Correlation, all usable in programs. Program/data storage on cassette tape via optional FA-2 adaptor, $£ 19.95$. Two lithium batteries give approx 200 hours continuous operation, with Auto Power Off,
$17 \times 165 \times 82 \mathrm{~mm}\left(5 / 8 \times 61 / 2 \times 31 / 4^{\prime \prime}\right) 176 \mathrm{~g}(6.2 \mathrm{oz})$.
FREE MICROL PROFESSIONAL PROGRAMMING PACK
supplied free of charge with every FX-702P or FX-602P purchased from us.
Only on request, at time of ordering. RRP $£ 9.95$

World's Fastest Programmable? FX-602P

*LCD alpha/numeric (idotmatrix) scrolling display(86 types).
-Variable input from 32 program steps with 88 memories, to 512 steps with 22 memories.
-Memory and program retention when switched off.
-Up to 10 pairs unconditioned jumps (6010). Manual jump.
-Conditional jumps and count jumps. Indirect addressing.
-Up to 9 subroutines, 9 levels.
*50 built-in scientific functions, all usable in
programmes.

- PAM (Perfect Algebraic Method) with 33 brackets at

11 levels.

- Program storage on cassette tape using optional FA-1, £19.95
Campatible with FX-501/2P
$\cdot 2$ lithium batteries. Approx 660 hours use with Auto Power Off.
$\cdot 9.6 \times 71 \times 141.2 \mathrm{~mm}, \quad 100 \mathrm{~g}$.
ONLY £74.95 (RRP £84.95)

> FP- 10 MINI PRINTER
> For FX-702P, FX-602P, FX-601P, FX-502P, FX-501P Available soon. Price and delivery on application.

World's Most Versatile

 Alarm Chronograph Watch
AX. 210

10 alternative displays; over 60 functions. LCD ANALOG display of time, plus: DIGITAL display of: Time (12 or 24 hour); Calendar; Full month calendar (this month and next month); Dual time (12 or 24 hour); Alarm time; Countdown alarm timer with memory function; Professional $1 / 100$ second stopwatch with laps, etc. Hourly time signal. Alarm - electronic buzzer or 3 selectable melodies. Rapid forward/ backward setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.
(RRP £34.95) ONLY £29.95

SHORT FORM CATALOGUE
 Available on request. 14pstampappreciated

Price includes VAT, PGP. Delivery normally by return of post. Send cheques, P.O., of 'phone your Access of B'card number to:-

TEMPUS

Dept WW/12 FREEPOST, 164-167 East Road, Cambridge CB1 1DB Tel: 0223312866

"'OUTSTANDINGLY USEFUL"

THE
 ZX81 COMPANION

Bob Maunder
Price $£ 7.95$ incl. UK postage ISBN 0907211011
THE ZX81 COMPANION was reviewed in the September 1981 issue of the Educational ZX80/81 Users' Group Newsletter as follows:

Bob Maunder's ZX80 Companion was rightly recognised to be one of the best books published on progressive use of Sinclair's first micro. This is likely to gain a similar reputation. In its 130 pages, its author does not go as far as he did before, but his attempt to show meaningful uses of the machine is brilliantly successful.
The book has four sections, with the author exploring in turn interactive graphics (gaming), information retrieval, educational computing, and the ZX81 monitor. In each case the exploration is thoughtfully written, detailed, and illustrated with meaningful programs. The educational section is the same - Bob Maunder is a teacher - and here we find sensible ideas, tips, warnings and programs too. The monitor listing (0000 to 0CB9), while unique, is less fully backed up, and will be of no use to the ZX81 beginner without some knowledge of Z-80 assembly.
To conclude - this book is definitely an outstandingly useful second step for the ZX81 user.
Send cheques for $£ 7.95$ to:
LINSAC

BOOK REVIEWS

The gateway guide to the ZX-81 and ZX-80
By Mark Charlton. Published by Database Consultancy, 180 pages, paperback. Price £5.95.
on the whole, this book, unsurprisingly, follows the standard Hartnel//Database pattern. It is a collection of programs, mainly games, with notes on ZX programming along the way. That is a welltried and, without doubt, very successful pattern - even if it is one which does not add much sparkle to life.
This particular follower of the pattern is no better and no worse than the others. If you have just started with the ZX-81, it will teach you no more and no less than the others. If you are beyond the basics, it will give you more ideas for simple games.
Charlton's book has a few pluses - better binding, somewhat better layout and accuracy and some useful appendices. It does not, however, tackle anything serious, there are plenty of examples of poor programming, and there is no index.

Conclusions

If you have not advanced very far into Sinclair microcomputing, this book is as good as any other introductory collection of programs for these machines.
-If you already have plenty of material, it will not offer much apart from a few more game variations.

Eric Deeson.

Atomic theory and

 practicePublished by Acorn Computers. Supplied with each Atom or supplied separately for £8.00.
TO A NEWCOMER to computing, there is one component of a computer system which is of crucial importance - the instruction book. Acorn seems to be aware of this and the book supplied with the Atom is of a particularly high quality.
It tackles the subject with a delicacy of touch rarely found in a technical manual. The inexperienced user is shown that programming a computer is reasonably straightforward.
At the same time, the more experienced reader is advised to turn to an alternative section which corresponds better to his interests and experience. The book also deals with assembly-language programming, and to make it easier to find the chapter required, the book has colour-coded sections.
Most features are illustrated with
excellent program examples which reinforce the text. There are additional reference sections, covering just about everything you need to know.
Many manuals cover their machines as comprehensively as the Atom one, but few are as well designed to help you quickly find the information you require. An exceptional 11 -page index comes to your assistance if contents page and colour coding fail.

Conclusions

Atom Theory and Practice is the hand-book against which other manuals should be judged.

Alan Taylor

Atom Business

Published by Phipps Associates, 3 Downs Avenue, Epsom, Surrey. Price £6.95.
THIS BOOK is most interesting and unusual. As the title suggests, it contains business programs and the most notable ones are the nominal ledger system and the pair to keep sales records and plot the results graphically.
The book would be of most use to someone with a fully-expanded Atom and a printer, but there are items of interest to most Atom users. For example, in the sales graph, a technique is shown for mixing text and high-resolution graphics. Additionally, ways are shown to save large amounts of data to cassette and read them as required.
The programs for the most part are menu-driven and easy to load and use. They do their jobs very well and the book includes some useful tips and explanations.

One particularly noteworthy feature is the way that each program has its own chapter, divided into three parts. The first part explains what the program does, the second explains how to operate the program - usually including a sample run and the third part gives the listing and explains how the program works.

Conclusions

This book is particularly appealing as it shows how the Atom can do useful jobs rather than just play games.
\square Very few books show how to use popular computers in serious ways, and Atom users are lucky to have a work of this quality at their disposal. Alan Taylor.

Video/Computers

By Sippland Dahl. Published by Prentice Hall International. Price $£ 5.55$.
THIS is a frustrating and eventually worthless book. The full message on the front cover is: "How to select, mix, and operate personal computers and home video systems".
The concept that information
technology is spreading into people's homes and that it is desirable for the hardware to converge into one grand information terminal is faultless; it is only the book itself which is flawed. There are many illustrations in the book, all of a typically American high standard, but the captions appear to be taken directly from the manufacturer's advertising material. Why do you need nine pictures of colour TV cameras one after another for any purpose apart from filling space?

The book fails to carry through its theme and there is no serious discussion of how a system might be assembled and no mention of the major problems of incompatibility both at an electronic-signal level and at a data-transmission protocol level.
You will be interested to know that the Sinclair ZX-80 is described thus: "Despite these minikin proportions, it does everything that larger, more expensive home computers do".
There are factual inaccuracies as soon as the book drifts away from the material supplied by the makers of a host of hardware.

Conclusions

Elf you want your imagination stimulated and fuelled with accurate, up-to-date information on the silicon revolution, this is not the book to do it.
II regret the loss of the trees which were pulped and wasted for the printing of Video/Computers.

John Dawson

Mastering machine code on your ZX-81 or ZX-80

By Tony Baker. Published by Database Consultancy, 180 pages, paperback. Price £5.95.
WHILE IT is possible to prepare good ZX programs in Basic, it is not possible to do so with full efficiency, high speed and high effectiveness. This book is an exceedingly brave attempt to introduce the thousands of ZX novices to the effective use of machine code. It consists of 180 close-packed pages of text and routines through which the author adeptly leads the diligent reader from first steps to a complete understanding of the subject.

The reader must be diligent, though. There is little point in skipping through until one finds some exciting routine and tries to enter it.

One must work at machine code, step by step. One must also be diligent to overcome the few errors in the book's first real machine-code program.
To use this book properly - and by the end of it be able to write long, useful programs and routines - you need to give yourself a solid week in the Common Cold Research Laboratory. Yet even after three or
four hours - and with the benefit of some background knowledge - I can now work through published programs and see what they are intended to achieve.
In those 180 pages we find all kinds of techniques which should be used in commercial cassettes. The main theme is a 1 K draughts program. There is also material on character generation, keyboard scanning, making music, displaying a series of pictures at speed, disassembly and arithmetic. There are games and serious routines, and the final program is a delight.

Conclusions

- A beautifully-structured guide for the uninitiated which pulls no punches and yet which is easy to use.
It contains plenty of useful machinecode routines and programs.
If you can tolerate the poor presentation and tiny type - the end result is a new world.

Eric Deeson

Getting acquainted with your Acorn Atom
 Published by Database Consultancy, 105
 Fairholme Avenue, Gidea Park, Romford, Essex. Price £7.95.

This work has fallen into the trap which has claimed so many victims among computer volumes. Books written as complete programming courses, in which you follow examples to master the computer, always duplicate material contained in the manuals.
The style of this book is to give a program listing in sections, with explanatory comments about what is happening. A cynic might suggest that this is a way of making 40 z . of programs fit a 2 lb . book, but the comments may be of great in:terest to some readers.
My greatest reservation is that the examples given have a large number of errors in them. Most are of a minor nature, but in a book which assumes negligible experience on the part of the reader, such errors should not be present.

Many of the programs were originally written for other machines and have been converted. This means they do not take advantage of the Atom's programming strong points. We are even told to use the Stop command - the Atom does not have one.

Conclusions

国 There are some good things to be said for the book; it gives you many ideas to try, and the style may be just what some people need to help them on their way to writing their own programs.

- Perhaps the best advice is to look at this book in a shop and see for yourself if it is what you need. Alan Taylor.

UK 101 - OHIO - SHARP TRS 80 - V.G. - ZX80/ 81

MICROTRAIN

At last you can combine two of the most popular hobbies in the country - railways and computing, MICROTRAIN, a brand-new quality game simulation from Premier, allows you set up a network of tracks, points, stations, tunnels, bridges etc. and then run trains to your own timetablel Signalling is provided either automatically or to your design.
MICROTRAIN is a screen-based simulation. With one keystroke you can draw and signal lines many scale-miles long. Up to five trains can be run simultaneously and the speod and length of each train is user-selectabie. A cursor is used to move the whole screen display . The site of the network is only limited by your RAM your imagination. You can use any of the machine's graphics on screen to build up scenery, etc. Designs can be stored on to tape/disc for future retrieval.
If you already own a model railway, MICROTRAIN will allow you to transfer your design on to computer and run the two together, and TOOLKIT2, a sure guarantee of quality. It is entirely in machine code and will run on any Video Genie or TRS80 (Model 1 or ilil. State machine and cassette or disc when ordering.
CASSETTE $£ 14.95$ inc. DISC $£ 16.96$ inc

WORDAWORD

Stunning new TRS80 VG WORD PROCESSOR
Why pay $£ 75$ to $£ 150+$ for a W.P.? W4W gives you all the facilities you could wish for in WP for a sensible price. Amongst the features included are:
FULL SCREEN EDITING \& TWO WAY SCROLLING GLOBAL TEXT INSERT/DELETE ON SCREEN GLOBAL SEARCH GO AMEND
TEXT SEARCH - TOTAL TEXT MOBILITY
TEXT FORMATTING TO SCREEN OR PRINTER
CASSETTE/DISC STORAGE OF TEXT
VISION LOAD OF STORED TEX
STANDARD LETTER ROUTINES
OVERTYPE CORRECTION
SINGLE KEY WORD DELETION
PAGE LAYOUT \& NUMBERING
TOTAL PRINTER CONTROL
TEXT HIGHLIGHTANG FOR U/L RECOGNITION
Many other features are included
Many other features are included in W4W. We would need several pages to do justice to this superb product. W 4 W is comparable to most purpose built systems. Commissioned and developed by Please state machine type and printer when ordering.
CASSETTE 533.95 . DISC $£ 37.95$

TOOLKIT 2 for TRS80 I \& IIII VG
TOOLKIT 2 now features 17 new easy-to-remember command words which greatly enhance an already powerful BASIC and gives you a machine-code monitor for the first time.
REPLACE - find and replace any string, word or variable in a BASIC listing.
VARS - gives a list of variables on screen.
TRACE - displays the WHOLE line of BASIC during execution. User selectable speeds.
ABBREV -26 BASIC words become single-key entries.
BLANK - removes unwanted spaces and LET statements.
VTAPE - gives true Vision loading of incoming program, plus
VTAPE - gives true Vision loading of incoming program, plus
MC - a full machine code monitor.
VARTRACE - lists lines as executed plus variables.
PAGE - controlled list scrolling.
OLD - retrieves lost programs!
FIND - anything in a BASIC listing.
REMKIL - kills REMS
DUPL - copy existing line to new line.
LFIND LVARS LREPLACE - all work to printer.
CASSETTE E 29.95 . DISC $£ 32.95$

CHRISTMAS GAMES PACK
Available for the UK101, Superboard, TRS80. Video Genie, SHARP and Microtan, PREMIER's Christmas Games Pack will entertain youngsters and challenge adults, Super Santa, Reindeer Roundup and Toboggan Run. Three game pack for only $£ 7.95$

TOOLKIT 2 for UK101/ OHIO
The most powerful TOOLKIT on the market, TOOLKIT 2 gves you
all the following facilities in only ONE EPROM
REPL - exceptionally powerful Global Search and Replace of BASIC listings.
DUPL - copy a line into a new line.
LIST/ - controlled listing of program
FIND - anything in a BASIC listing
RENUM - renumber from any start in any inctement - full error messages, totally reliable
AUTO - generate new line numbers automatically, any start, any increment
DELETE -
DELETE - high-speed block line delete VIEW - examine cassette contents without loading to memon
TRACE - superb trace feature - screen transparent. Can be
turned on and off within a program
MC - enter the monitor quicklyl
TOOLKIT 2 also lists the relevant line of BASIC where any error
occurs and cures the warm start 'OM ERROR' bup
Available in EPROM only (8000 hex), for CEGMON. MON01 and 2. and SYNMON monitors (DISK soon), Price £19.95, State machine and monitor when ordering.
BASIC 5 for UK101 and OHIO
The most devastating enhancement yet, adding 17 new BASIC words to your interpreter which can be used in program ines and give machine-code response speed to graphics and formatting HLIN, VLIN, SCR, BLK, SET and TEST allow generation and manipulation of graphics at speeds which are unobtainable in BASIC.
PRINTUSING, PRINTAT, INAT allow total control of screen input/output.
GET (key), RD (Read DATA), GS and GT (GOSUB and GOTO a variable), GO and GOS (GOTO a machine code routine), allow tota progrand CWI allity.
WI and CWI allow CEGMON users to manipulate their screen under variable control, using one command, in Hex or Decimal
8 ASIC 5 is available for CEGMON and MONO2 only. State precisel your computer and monitor when ordering. Comes complete with
Available on DISC or in EPROM (9000hex) $\mathbf{£ 1 9 . 9 5 .}$
BASIC 4 cassotte file handling system
This new EPROM for the UK101/OHIO provides a comprehensive
file-handling system, capable of working at up to 4800 baud.

- Named programs to cassette
- Verify tape contents facility
- Selectable auto-run of loaded BASIC program
- Crash recovery command (OLD)
- Original SAVE/LOAD commands unaltered
- Reduces LOAD/SAVE times
- Seven new SAVE/LOAD commands
- Non-destructive memory test
${ }^{*}$ Initialises BASIC 5 automatically if resident
BASIC 4 is a plug-in replacement for your existingf BASIC 4 ROM Price f 11.95

SOUNDI V.I.A. BOARD

The TES II VIA/SOUND kit gives you up to 56 Input/Output lines and programmable sound generation, In order to allow you total flexibility in designing your system, we are offering the kit in low cost packs.
The Base Kit consists of PCB, connector, address decoding and buffering, plus IC sockets.
The Sound Pack consists of AY-3-8910 sound chip, ampifier and components.
The VIA Pack consists of VIA and support.
BASE KIT $£ 24.95$. SOUND $£ 11,95$. VIA $£ 9.95$

TES II HARDWARE RANGE

PRODUCT
8K RAM BOARD
8 Slot MOTHERBOARD + PSU
II BUFFER BOARD
MINI EPROM/ROM BOARD
SCREEN ENHANCEMENT KIT

\section*{| KIT |
| :--- |
| $\mathbf{6 2 9 . 9 6}$ |
| 29.96 |
| 29.96 |
| f 19.96 |
| f 14.96 |}

BUI
f39.9
639.9
639.9
629.9
620.96
f 69.9

SPECIAL OFFERS
TOOLKIT 2 + MINI EPROM BOARD
BASIC 5+MINI EPAOM BOARD
SOUND/VIA - Base, Sound and VIA kits
POSTAGE \& PACKING EPROMS/DISCS 80 p per ordet HARDWARE $\mathrm{E} 1,50$ per item. Maximum $£ 3.00$ ALL PRICES INCLUDE V.A.T.

Software File gives you the opportunity to have your programs, ideas or discoveries published. We will accept contributions for any personal computer and will group programs for like machines together in the file. Please double-check your listings before sending them. Mark your letter clearly for Your Computer. We will pay $£ 6$ for each contribution published.

Machine-code tips

W E Thomson, Aldeburgh, Suffolk. $\quad 230$

Trevor sharples' article in the August/September issue did not perhaps draw a sufficiently sharp distinction between working with the ZX-80 and ZX-81.
For example, in talking about putting machine-code programs in Rem statements, he said:
Do not list the Rem statement. Sometimes, but not always, this will cause the ZX-80/81 to crash.
True enough, but the statement hides the vast difference between the machines. Onequarter of the character codes - those from 64 to 127 - appearing in a Rem statement listed by the ZX-80 cause chaos. The ZX-81 is much more placid: only 118 and 126 bother it.

They lead to corruption of the listing in degrees of severity varying from the omission of six characters within the REM, to a listing
that stops half-way through the Rem. There is, however, no crash; only the listing is corrupted and the program can be run without trouble.
The other example is the renumbering routine. The text has:
The ZX-80/81 will then execute line 9070 .
This gives the impression that the routine can be used for either machine, whereas it can be used only for the ZX-80. This routine advances from line to line by looking for character 118 - Newline - knowing that, apart from the line number itself, 118 can appear nowhere else in a statement.
In the ZX-81, however, 118 can also appear in the bytes the listing does not print namely, those that give the text length and those that give the binary form of numerical constants. A ZX-81 renumbering program must use a different approach.
My program uses the text length to skip to the end of each line. It also detects the end of program by looking for the address where the
display file starts, so there is no need to have a 9999 line in the program.

A possible loading program is:
1000 LET $A=$ (address of
lst byte of prosram)
1001 FOR $\mathrm{I}=\mathrm{A}$ TO $\mathrm{A}+30$
1002 INPUT B
1003 FRINT B,
1004 FOKE I, E
1005 NEXT I
1006 CLS
1007 RANI USR A
1008 LIST
This differs from that associated with the ZX- 80 renumbering program but the differences are not vital - just a matter of individual preference.
The program renumbers in steps of 10 , but only one byte need be changed to alter this. Instead of 10 - about half-way down - use whatever you want. Or, if the routine has been loaded, Poke $\mathrm{A}+17, \mathrm{n}$ will make the change.
It may be as well to remind you that such a renumbering program does only half the job. The arithmetic expressions following Gotos must be altered by editing to agree with the new numbering scheme, with possibly other changes.

Bytes in decimal				
33	124	64	start	
17	0	0		next :
35			64	
237	75	12	64	
167				
237	66			
200				
9				
6	10			inc:
19				
16	253			
114				
35				
115				
35				
35				
70				
9	231			

Security numbers

A D Robinson,

Wath on Dearne,
233-31
South Yorkshire.
made up of any number of digits in length. The first line of the program is a Rem statement into which the machine code will be Poked. The number of Xs in it is determined as follows: 10 for each digit of the security code plus 21. For example a three-digit security code would need 51 Xs in line 1. Enter this short program before your main program:

```
1 REM XXXXXX .....etc.
2 LET A= 16514
3 INPUT B
4 POKE A,B
5 LET A =A +1
6 GOTO 3
```

WITH THE popularity of private bank-account and home-finance programs for the ZX-81, my routine requires the entry of a security number before a program will run. Any incorrect entry will mean the execution of New, and the program will vanish.

Because the routine is written in machine code, it is possible to break out or return to Basic without the correct code which can be

Comments

$\mathrm{HL}=$ ProsramStart -1
New linenumber $=0$
HL=address of lst byte If
HL=D FILE
then
return
else
New linenumber=
New linenumber+ 10:
Linenumber =
New linenumber:
HL=
HL+
Text lersth (leavins HL set to last byte of line) next line

Symbolic Instr
LII HL, 16508
LII IE, 0
INC HL
LD BC, (D FILE)
FNI H
SEC HL, BC
RET Z
FDD HL, BC
LI B, 10
INC DE
DJHZ ine
LII(HL), I INC HL LI(HL), E INC HL
LD C, (HL)
INC HL LII B, (HL) ADD HL, BC JR next.

Now run this, and enter the following numbers, pressing newline after each:
$205,187,2,44,32,250,205,187,2,68,77,81,20,40$, $247,205,189,7,126,201$.
The next few numbers form the machine code to check one digit. Enter them as required depending on the number of digits in your chosen security code.
$205,130,64,254,44,40,3,205,0,0$.
The number underlined is the one you must alter to the code of any key you choose - at the moment it is set for G. Finally enter 201, and then press to halt the program. When you

SOFTWARE FILE

（continued from previous page）

List，you will see that the Rem statement now contains the machine code．Lines 2 to 6 can now be deleted－their job is done．Now enter：

2 RAND USR 16534

To make the program Run automatically after loading，enter the following at the end of your main program：

9995 STOP

9996 SAVE＂ANYNAME＂ 9997 GOTO 2
Save the whole program by typing Goto 9996．It will save as normal，but，more importantly，when loaded back from tape it will run immediately．This means that no－one can gain access to the main program without the exact code．
The program works by scanning the key－ board waiting for a key to be depressed．When
this occurs，a routine is called in the ROM which finds the code of that key．This is then compared with the code you have programmed． If it is identical，the program jumps to the next section to wait for another key depression；but if it is different，the program calls the routine in ROM which executes New．

As any ordinary key or shifted key code can be selected，even a two－digit security code gives more than 6,000 possible combinations．

Card Sharp

C J Davison，
 Newton Abbot，Devon

My routine，creates，stores and shuffles a pack of cards in the normal way．The advan－ tages of this are that the shuffled array may be called in order－i．e．， $\mathrm{A} \$(1)$ to $\mathrm{A} \$(52)$－and yet the output is completely random．Once you have gone through all the cards，you just call the shuffle routine，and you are ready to go．

Using this structure，Pontoon for instance becomes very simple and easy to write since the cards do not need to be picked randomly and the whole pack can be used．The Basic used is Xtal 2．2．However，because of its simplicity and size－less than $.5 \mathrm{~K}-$ it should work on any system without any alteration．

Real－time clock

Kamal Jabbour， Salford．

Here is an efficient way of realising a 24 －hour，real－time clock for the Acorn Atom using its 6522 VIA．Once initialised，the program occupies only 130 bytes of machine code．Time is permanently displayed in hours， minutes and seconds at the top right－hand corner of the screen．The clock does not interfere in any way with the operation of the system．A programmable alarm facility is also provided．
Among the facilities provided by the 6522 VIA are two programmable counter timers， CT1 and CT2．Used in the free－running mode，CT1－addresses \＃B805，6，7 in the Atom－creates an interrupt each time the count is decremented to zero．Note that link LK2 on the Atom must be closed for the interrupt request of the VIA to reach the 6502 microprocessor．
CT1 has 16 bits and is decremented at the Atom clock rate of 1 MHz ，so a programmable delay of up to $65,536 \mu \mathrm{~s}$ ．can be generated．In our application，CT1 is programmed to give an interrupt every 50 ms ．－line 100 in the program listing．The recurring interrupts are used as the time base for the clock．
The clock is incremented by one second

5

```
10 REM f*** SET UP STRINGS ****
DIM AOC (53)
C=0}:S$="CLUBS.. HEARTS.SPADES.DIAMONDS"
D&= "ACE..TWO..THREE FOUR.FIVE.SI%..SEVEN EIGHT NINE:
    TEN. .JACK.QUEEN KING."
    REM *** CREATE UNSHUFFLED PRCK ***
    FOR S = 1 TO 4
    FOR N=1 TO 13
    C=C+1
```



```
    NEXT N
    NEXT S
    REM **** SHUFFLE PACK ****
    FOR C=53 TO 2 STEP - 1
    A=INT(1+52**ND(8))
    A$(C)=A$(A): R$(A) = A* (C-1)
    NEXT C
```

FULL STOP IS EQUIVALENT TO A SPRCE．

every 20th interrupt－lines $250-260$ ．Time is permanently stored at locations \＃A0－\＃A8 in ASCII format，and is copied on to the screen at top right－hand corner locations \＃8017－ \＃801F at every interrupt to avoid any flicker of the time display during computer operation －lines 230－240．
Lines 270－360 increment seconds，minutes and hours as applicable，and reset the clock to zero at 2400 hours．Lines $365-400$ compare the current time with the alarm setting stored in ASCII at locations \＃AB－\＃AE，every minute． The alarm can be disabled by storing zero in location \＃AF．
When the pre－set alarm time is reached，a user subroutine at L is called and executed－ in my program $\mathrm{L}=\# \mathrm{~A} 000$ where I have a utility EPROM．Lines 210 and 420 preserve the registers of the 6502 so that normal computer operation is not disturbed by the clock routine．
The Basic part of the program assembles the real－time routine and initialises the clock and the alarm．Press ESC if no alarm is required． After initialisation，only the 130 bytes of machine code are needed for the clock operation，and the source code can be destroyed．
The machine－code routine is relocatable by changing the value of $P-P=\# 2800$ in this listing－and can happily reside in the utility EPROM．The alarm setting can be modified
by changing the contents of $\# \mathrm{AB} \cdot \# \mathrm{AE}$ ，e．g．：

1\＃$A B=\# 31373330$

will set the alarm to 1730 hours．Note that the alarm is automatically disabled once reached． It can be enabled by storing a non－zero number in \＃AF．

Once the initialisation routine is run，the Atom can be used as normal．The clock routine spends some $50 \mu \mathrm{~s}$ ．at each interrupt to update the display．So the operation of the computer is slowed by about 0.1 percent only －insignificant，and programs run at normal speed．
The bell，CTRL－G，sounds a bit shaky as it is interrupted some 10 times．Obviously，the clock stops when loading or saving programs as the COS disables interrupts．The displayed time could always be updated by modifying the contents of \＃A0－\＃A7．Note that the interrupt is enabled when the Break key is pressed．

Finally，the clock may run slow or fast depending on the crystal in individual Atoms． This can be cured by changing the contents of \＃B805，6，7－or line 100 －as the 50 ms ．delay is obtained by

$$
(195)^{*} \cdot 256+(80)=50000
$$

where 195 is the contents of locations \＃B805 and \＃B807，and 80 is the contents of \＃B806 for fine adjustment．

```
1
19
20
30
40
56
60
106
118
120
130
148
```

```
REM REAL - TIME CLOCK FOR THE ATOM, BY KPMAL JRBBOUR
```

REM REAL - TIME CLOCK FOR THE ATOM, BY KPMAL JRBBOUR
DIM BBS; GOS. a, GOS. a
DIM BBS; GOS. a, GOS. a
IN. "TIME; HOURS"H, "MINUTES"M, "SECONDS"S
IN. "TIME; HOURS"H, "MINUTES"M, "SECONDS"S
?\#RG=H210+48;?解 1=H%10+48;?HA2=H3A,?|9F=32
?\#RG=H210+48;?解 1=H%10+48;?HA2=H3A,?|9F=32
?\#AS=M/10+48;?\#A4=M%10+48;? ARS = 20
?\#AS=M/10+48;?\#A4=M%10+48;? ARS = 20
?\#R6=$/10+48;?#A7=5%10+48;? #RS=20
 ?#R6=$/10+48;?\#A7=5%10+48;? \#RS=20
?\#AF=9
?\#AF=9
B=\#B800; B?11=64;B?6=80; B?7=195; B?S=195; B?14m\#C0
B=\#B800; B?11=64;B?6=80; B?7=195; B?S=195; B?14m\#C0
IN. "RLARM: HOURS"H, "MINUTES"M
IN. "RLARM: HOURS"H, "MINUTES"M
?\#RE=H/10+48;?等D=H%10+48
?\#RE=H/10+48;?等D=H%10+48
?\#AC=N/10+48;?\#RB=N%10+48
?\#AC=N/10+48;?\#RB=N%10+48
?\#AF=1;E

```
?#AF=1;E
```

180a P．T21
$190 \quad \mathrm{~F}=\mathrm{H} 2800 ;$ ？ $204=\mathrm{P} / 2256 ; 7$ ： $205=\mathrm{P} / 256$ ； $\mathrm{L}=\mathrm{\# R} 000$ 200 ［ LDA B＋4
210 STXIA9；STYMAR
230 LDKe8
240：BE2 LDR\＃9F，X；STF\＃8917，X；DEX；BFL BB2
250 DEC\＃AS；BNE BE3
260 LDRe29；STA\＃R8
270 LDXa\＃3A；LDYC\＃36；LDAC\＃30
289 INC\＃A？；CFX\＃A？；EHE BB3；STAHA？
290 INCHA6；CPY ARG；ENE BR3；STRHA6
300 INCHA4；CPXHR4；BHE BB4；STAHR4
（listing continued on next page）

(listing continued from previous page)					370	LDR\#A4;	CMP\#RB;	BNE	BE3
319	INC\#R3;	CPY'\#3;	BNE BB4	STA\#A3	380	LDAHA3,	CMP\#AC;	BHE	BB3
320	INC\#R1;	CPX事A1;	BEQ BBS		390	LDA ${ }^{\text {a }}$ A1,	CMP\#AD;	BNE	BR3
330	LDXe\#34	; CPX\#A1,	BNE BB		400	LDR\#R@;	CMP\#RE;	BNE	BB3
340	LDKE\#32	; СРХ\#AQ	ENE BE4		410	CLI; LD	AQ@; STAl	GF;	JSR L
350	LDXe\#2F	; STX\#A0			420 .	EB3 LD.	\#R9; LDY	ARA;	PLA;
360:	BE5 STA	HR1; INC	Ra		4301				
365 :	BE4 LDA	\#AF; BEQ	EB3		440	P.s6;R.			

Demon at the wheel

Demon driver will run on a Sharp MZ-80K
and uses approximately 2 K . The idea of the game is to destroy as many people as possible without hitting any of the white barriers. The car moves across the screen and the key " B ", will move it upwards and " M " downwards: " N " holds the car straight.

In a tight spot, the $£$ key will destroy all
barriers and people in sight. The " V " key produces a machine-gun effect which can be used five times. After this, no firepower is produced until reloaded. Whenever you hit a person or barrier, a certain sound is produced. As well as the maximum number of people destroyed, the time is also given.

```
557 POKERQ+1,250: POKEQQ-1,245: POKERR+4e, 2524POKEAQ-40,243
S56 POKERA-41,2491 POKERQ-39.2461POKEAR +39,2461POKERA+41,249
```



```
$,
    IF zi=1 ThEN S52 
    POKERA-80,243IPOKERA+S9,252! POKEAR +2,25e:POKEPQ-2,2454POKEAR-81,246
    FOKKEA-82,2491POKEAR-79,2491 POKEAA-78,2461POKEAS-42,2461POKEAA-38,249
    FPOKEAR+38,249.FOKEAR+G
    *)
```



```
    2 POKEAA+30.8 
    21=1:G0T0 557 _
```



```
    F
    69e FOR }0<=1\mathrm{ TO 100e+NEXT XK
```



```
72e FOR \OK=1TO1000!NEXTXK
lol
M,
760 PRINTIPRINTIPRINT'PUSH RNN KEV FOR FMOTHER OME:
    *)
    6010 220
    8.0e OV*GW*1
    820 MUSIC"A181A1B1A181ALDIALBI*
    820 MUSIC-AIEIAIBIRIB
gSe NUSIC'C1"
860 IF UEY2
```


Sound-box

\square

2030 31

J Chalmers,
 East Grinstead, West Sussex.

Have you ever wished that your ZX-81 could play tunes, give audible warnings, add sound effects to games or just make noises? Sound is made up of a series of clicks in rapid succession. If the ZX-81 can produce these clicks rapidly enough, the noise produced

represents a musical tone. The more clicks per second produced, the higher the note.
To achieve a sufficiently fast speed, the sound box can be used only when the machine is in Fast mode. Again, for speed but also because of the limits of the Basic language, it is necessary to use a machine-code routine to produce the noise required. The note required is selected by Poke commands.
Poke 16526 will vary the frequency of the note and very fine tuning can be achieved. This Poke will from now be known as the fine-
tune byte. Poke 16527 will vary the base frequency, and will be referred to as the coarse-tuning byte. The length of the note is set by Poke 16519 , and this will be known as the length byte.
The circuit can be constructed on a piece of 10 -by- 10 -hole 0.1 in . stripboard. If the diagram is followed, construction should be simple. Only eight connections are needed to the computer and they can either be hard-wired, or taken to a 23 -by- 23 -way edge connector plugged into the expansion port at the rear. The sound output is taken to a small 8 -ohm loudspeaker. If a greater volume is required, the speaker can be disconnected and the output taken to a suitable amplifier.
The chip used in the circuit is a three-to-eight-line decoder. The three lines are the lowest three bits of the address bus, $\mathrm{A} 0, \mathrm{~A} 1$, and A2. If the chip is enabled using all three enables lines provided and these lines are connected to A4, $\overline{\mathrm{ORQQ}}$, and $\overline{\mathrm{WR}}$, it is possible to produce eight port-select lines for ports 8 to 15 . By trial and error it was found that port 11 was not actually used by the ZX81. This port-select output can, therefore, be used to make the speaker click every time the port is written to by the $\mathrm{Z}-80 \operatorname{Out}(\mathrm{C})$, C instruction. This is where the machine code is required.
All you have to do is to write a short routine to call port 11, wait depending on the note required, and then jump back to calling the port. To make a note of certain length and then return to Basic is achieved by encasing the routine in another loop which returns to

Basic after completing a number of cycles.
Listed here is a Basic program which enables the machine-code routine to be entered into the memory. Also listed here is a hex dump. After the Basic program has been started, you enter this hex code, two characters

at a time with a press of Newline between each pair.

When you have typed in the code a 9 error report will appear at the bottom of the screen; try entering Run 100. If you have done everything correctly your sound-box should be making a series of random notes.
When you have built your sound-box and made it work, you can start writing software to control it. Any program which is to use the sound-box must contain a Rem statement in the first line. This statement will contain the machine-code routine. It is advisable, therefore, to add lines to the program. Alternatively, the lines can all be deleted, with the exception of the Rem statement.
As I mentioned, there are three controls to produce a sound, these are coarse, fine tune,
(continued on page 75)

（continued from page 73）
and length．For normal musical sounds it is advised to leave coarse tune set at 2．Poking fine tune with 0 will produce the highest note available，and with 255 will produce the lowest note．Poking length with 0 will deliver the longest note available and 255 will deliver the shortest note．

When the various controls have been set，the following line will actually make the noise：

LET SOUND＝USR16514
To test the controls，use the same program as before and type Run 200．You will be invited to type in a number between 0 and 255 corresponding to the length of note required， and then invited to enter another correspond－ ing to the frequency of the note required．It will then play the note．

Maths teaching

M N Scarlett， Maidenhead，Berkshire．

THE IDEA FOR this program originated from the Mathematics program in the Sinclair software catalogue，but it is a considerable improvement－particularly in the way the program seems friendly to the user．The user begins by entering his name which appears during the program run and the computer acknowledges by printing＂Hello，I am the ZX－81＂on the screen．

The function required，$+-* /$ ，is entered directly，rather than via a numeric code and then the user is asked by name for the level of difficulty he requires．Levels 1,2 and 3 are offered on the screen but any numeric value

HEX DUMP
$\begin{array}{llllllll}O E & O B & 3 E & 00 & 16 & 00 & 14 & \mathrm{BA} \\ \mathrm{CB}\end{array}$
ED 4921 FF 02 BC CA 8840
2E C3 8F 49 s

EASIC PROGRAM

1 REMXXXXXXXXXXXXXXXXXXXXXXXXX
2 LETX $=0$
10 INPUTAS
20 PRINTA ，
39 IFA事＝＂S＂THENGOTOBQ
40 LETB $=16$＊CODER $\$+$ CODERs $\langle 2\rangle-476$
50 POKE $16514+\%$ ， B

60 LETX $=\mathrm{X}+1$

79 GOTO19
30 PRINT＂TOP＂
90 STOP
100 FAST
110 POKE16519，INT＜RND＊255） 120 POKE16526，INT（RHD＊255）
130 LETSOUND＝USR16514
148 GOTO110
200 FRST
218 PRINT＂LENGTH？＂
220 INPUTL
230 POKE16519，L
240 PRINT＂NOTE？＂
250 INPUTL
260 POKE16526，L
270 LETSOUND＝USR16514
280 got0210
can be inputted．1， 2 and 3 produce sums capable of solution by mental arithmetic．
Lines 130 and 140 derive the two variables used in the question，＂C＂is related to＂D＂so that a negative result cannot be produced and in division the answer will always be a whole number．Line 150 assembles the sum into a string which is printed on the screen together with＂$=$＂．This string consists of the variable ＂ D ＂with the operator entered earlier，and the variable＂C＂．

If the answer entered in response to printing the sum on the screen is correct，the score variable＂ S ＂is incremented and the user is told by name that his answer is correct and the score out of the number of sums attempted so far is printed．After a delay，the screen clears and a new sum is presented．
If the answer is wrong，＂Wrong＂appears on
the screen and the sum is reprinted with the correct answer．For extra impact，＂Wrong＂ can be programmed in reverse characters．
After 10 sums have been attempted，the user is told＂Well done＂，and his score out of 10 is printed．This display remains on the screen for several seconds after which the program restarts automatically．
The Pause function has not been used within the main body of the program where delays were required since it tends to cause disturbances to the display．Instead，the single－ line $\quad X=$ RND $^{* *}$ RND＊＊RND
is used．A For－Next loop could have been used，but it would have required two lines for each delay．The program will run on a 1 K ZX－81 and should provide a good deal of educational entertainment for the younger members of the family．

```
5 REM "SUMS"
10 PRINT "WHAT IS YOU NRME?"
20 INPUT N$
30 PRINT "HELLO ";N$;",",,"I RM THE ZX81"
40 LET X=RND***RND**RND
60 CLS
70 PRINT "DO YOU WRNT + - * OR / ?"
80 INPUT A$
90 PRINT "HOW DIFFICULT, ";N$;",","1,2 OR 3?"
100 INPUT B
105 LET S=0
110 FOR N=1 TO 10
120 CLS
130 LET C=1+INT (5**B*RND)
140 LET D=C⿱⿻肀一一小彡
150 LET B = =STR $ D +A$+STR* C
```

```
160 PRINT B \(;\) " \(=\) ";
170 INPUT D
180 PRINT D
190 IF ABS (VAL BF -D) \({ }^{2} 0.01\) THEN GOTO 230
200 LET \(\mathrm{S}=\mathrm{S}+1\)
205 PRINT," "CORRECT, ";N\$;"."
206 IF \(\mathrm{N}=10\) THEN GOTO 280
210 PRINT S; " OUT OF ";N;" SO FAR."
210 PRINT S;"
230 PRINT, "WRONG", B \(\$\); " \(=\) "; VRL B \(\$\)
240 LET X=RND * * \({ }^{*}\) RND
240 LET X=R
260 NEXT N
290 PRINT "WELL DONE," ,, "SCORE"; ; ;" OUT OF 10."
300 PAUSE 300
310 CLS
320 RUN
```


Zero dropper

G Stephen，
 Aberdeen．

The floating－point ROM in the Acorn Atom is very untidy when it comes to printing floating－point numbers on the VDU．The display takes the form 3.70000000 for the number 3.7 and the form $6.28000000 \mathrm{E}-12$ for the number 6.28×10^{-n} ．It would be much neater and more easily read if all the trailing zeros of the mantissa were dropped，and that is the job of this short subroutine．
The floating－point number to be printed is held in the variable ZN and the subroutine is called．The first line after the Rems－line 10010 －converts the number ZN to a string and stores it in the free RAM space starting at location 540 decimal．
If we assume that the number held in ZN is
$6.28000000 \mathrm{E}-12$ ，the string format will be：

$$
\underset{540}{6}=28000000 \mathrm{E}-1213
$$

There are two specific string areas used for this conversion；the main area is $540-554$ decimal which holds the mantissa，and the secondary area $560-564$ decimal holds the exponent．
Line 10010 also sets the secondary string to the null string by storing 13 at 560 ．The carriage return character 13 also signifies the end of a string．If there is an exponent，line 10030 is activated and proceeds to separate the mantissa from the exponent by moving the five bytes of data from $550-554$ to $560-564$ ． Then it stores 13 in 550 and so terminates the mantissa string．
$6=28000000 E-1213$
$560 \rightarrow E-1213$
$6=2800000013+550$

We now have two strings $\$ 540$ and $\$ 560$－ $\$ 540=6.28000000$ and $\$ 560=\mathrm{E}-12$－so we can proceed to remove those zeros in $\$ 540$ ． Line 10050 does this by substituting the string terminator 13 for every zero until a non－zero value is detected．
Line 10060 then removes the decimal point if appropriate and the next line prints the two strings before returning to the main program． The value in ZN remains unchanged and can be used in further computations．This routine can be saved on tape and appended on to any program requiring a numerical printout．Here is a table of ASCII characters and their decimal values used：

ASCII	Decimal
carriage return	13
＝	46
0	48
E	69

（continued on page 77）

МЕМОТЕСН

 48h memoryextension for the Z881

The MEMOTECH memory extension board will allow the ZX81 to run 48 K BASIC programs which may include up to 16 K of assembly code.
The unit contains a genuine 48 K of user transparent RAM, and accepts such BASIC commands as: 10 DIM A (9000).
A range of $1 / O$ Port boards and $A / D, D / A$ convertors is available. The unit is compatible with the ZX Printer, and RS232 interface will be available soon.
The MEMOTECH memory has a fully buffered control-data-address bus with PCB 40 way header plug. The ZX81 sits on a custom built case which contains the MEMOTECH memory and a power supply which not only powers the MEMOTECH memory, but also the ZX81.
All Leads are provided. The MEMOTECH memory extension board costs: $£ 109.00+$ VAT in kit form, $£ 129.00$ + VAT assembled. 15\% Educational user discounts are available.

```
(continued from page 75)
>IO日ge REN ROUTINE TO REMOUE TRAILING ZERO'S FROM A FLOATING-
>HGg日S REN POINT NUWBER(ZN). USES FREE RAN SPACE S4E-564(DEC)
>10010 STR IN,549; 7560=23
>10620 IF >550<>69 THEN GOTO t904G
>10030 FOR I=550 TO 554; 1710=2I ; NEKT I ; 255e=13
```


>10040 I=549

>1695 DO $2 I=13, I=I-1$, UNTIL $7 I<>48$
>19060 IF $71=46$ THEN $7 I=13$
>19076 PRINT 5540, 5569.
>1998e RETURN
>READY

Never a crossword
lain Hancock,
Potters Bar,
Hertfordshire.

253030

This program, written for a ZX-81 - or a ZX-80 with the 8 K Basic ROM - will print on the screen 20 anagrams of a word input by

Half life

Raymond Nugent, Aberdeen.

Half LIFE may be of interest to science teachers. It was developed using the ZX-81 with 16 K RAM. The program simulates the radioactive decay of a sample of 196 radioactive atoms which decay exponentially with respect to time.

The display shows the 196 atoms decaying randomly within a square and there is a continuous tally of the numbers of atoms which remain undecayed and those which have decayed as time passes. The display also gives an activity/time graph and the half life on two separate occasions.
the user. The main section of the program, lines 130-180, removes a letter from the word, displays it and updates the original string.
It then repeats this until there are no more
letters and returns to the beginning. The maximum length of a word on an unexpanded ZX-81 is about 10 letters, so a RAM pack would be useful.

5	REM *RNRGRAMS BY I. HANCOCK*	110 120	LET A=LEN A FOR $\mathrm{B}=1$ TO A
10	RAND	120	
28	PRINT AT 6, 11; "RNAGRRMS"	140	PRINT AS (C);
30	SCROLL	150	LET D \$= ft (1 TO $\mathrm{C}-1$)
40	FRINT"PHRASE?"	160	LET E ¢ $=$ A $\$(C+1$ TO)
50	INPUT B ${ }^{\text {a }}$	170	LET $\mathrm{A}=1=\mathrm{D} \boldsymbol{*}+\mathrm{E}=$
60	CLS	180	LET $\mathrm{A}=\hat{\mathrm{A}}-1$
70	PRINT TAB 10; "FHRRSE-"; B	190	NEXT B
80	FRINT	200	PRINT
90	FOR $\mathrm{D}=1$ TO 20	210	NEXT D
108	LET A ($=$ B \%	220	END

Line 10 Sets up Dim space for 196 atoms. Variables X and Y give the number of decayed and undecayed atoms respectively. The variable E stands for the total number of attempts which the computer makes at finding an undecayed atom - this is equivalent to total time. "V" is used to give the correct number of " - " in subroutine 400 .
" I " and " J " are selected randomly - if $\mathrm{A}(\mathrm{I}, \mathrm{J})$ is null then the display shows a pixel unplotted simulating the decay of that particular atom. $\mathrm{A} \$(1, \mathrm{~J})$ is then made equal to one and the tally altered. If $\mathrm{AS}(\mathrm{I}, \mathrm{J})$ is not null, there is no change except in the time tally. A pixel showing the number of undecayed atoms is plotted every 14 attempts.

Palindromes

Tim Goldingham,
 Maidenhead, Berkshire.

Sex at noon taxes. Apart from its biological significance, this observation by John Julius Norwich is interesting because it is a palindrome - that is, it reads the same backwards as forwards.
Palindromes have always fascinated literary men. In a Charles Osbourne's recent
biography of W H Auden, The Life of a Poet, the following is quoted:
T Eliot, top bard, notes putrid tang emanating, is sad, I'd assign it a name: gnat dirt upset on drab pot toilet.
This has 85 letters; but according to the Guinness Book of Records the longest palindrome, devised by Jeff Grant of New Zealand, has 11,125 words.

You may not be able to match that record, but you can have some fun with this ZX-81 program, which displays text both fowards
and backwards on the screen as you type, thus:

SS

SEES

SEX XES
SEX AAXES
SEX AT TAXES
SEX AT NN TAXES
SEX AT NOON TAXES
Because the program uses Inkey\$, the space key would be interpreted as Break, so the adjacent key is used for spacing: a full stop
(continued on next page)

SOFTWARE FILE

（continued from previous page）
gives a space on the left，and a comma on the right：＊，shifted H ，clears the screen ready for
you to try and create more new palindromes． As an extra refinement，if the palindrome pivots about a single letter as in the Auden
example，a single＊will remove the duplicate． The Rubout key can be used in the normal way．

```
    1 \text { REM PRLINDROME GENERATOR}
    2 COPYRIGHT T P GOLDINGHRM 1981
10 CLS
20 LET A变=""
30 LET B真=""
40 FFUSE 40000
50 POKE 16437,255
60 LET C = = INKEY$ 
70 IF C乎="米米" THEN RUN
80 IF C&="㐘" THEN GOTO 110
90 IF C&<\CHR& }119\mathrm{ THEN GOTO 130
1 REM PALINDROME GENERATOR
2 COPYRIGHT T P GOLDINGHAM 1981
CLS
ET A \(==" "\)
```



```
FRUSE 40001
POKE 16437，255
LET \(\mathrm{C}=1 \mathrm{HKEY}\)
8 IF C \(\mathrm{C}=\)＝＂粦＂THEN GOTO 110
90 IF C C C＜CHR 119 THEN GOTO 130
```

```
100 LET. A$=R$(TO LEN R$-1)
110 LET Bj=Bま(2 TO LEN B悉)
120 GOTO 190
130 IF C&<>"." AND C&<>"," THEN GOTO 170
140 IF C = ="." THEN LET R象=R%+"\Delta"
150 IF C = ="," THEN LET B % ="\triangle"+B車
160 GOTO 190
179 LET A$=A$+Cま
```



```
190 PRINT AT 10,0;" 32 swaces "
200 PRINT AT 10,0;At;B*
210 G0T0 40
```


Paying a mortgage

K Ward， Nottingham． PST

MY WIFE and I had decided to move house， but we did not know how much this would cost in new mortgage repayments or how much we could loan from a building society． After enquiries，we found as a general rule that a first－time buyer could usually loan between two and two－and－a－half times his annual salary， and if you are on your second or third house
you could loan only two to two－and－a－quarter times your annual salary，if loaned over about 20 years．

The next problem was to calculate what the monthly payments would be before and after tax relief．All this is done by our program which is written in Basic and on a 16 K Pet 2001 series with the large keyboard．The whole program consumes 1,835 bytes of memory but there are many Rem statements． Also the line statements are kept short to make it easier to understand．

The reverse character＂R＂prints the
statement in reverse characters．The reverse character＂ S ＂homes the cursor．The Tab（） starts printing after the number of spaces indicated in the brackets－a maximum of 255 is allowed on the Pet．

```
INT(PNx 100+.5)/100
```

rounds up to the nearest two decimal places．
Line 200．A change in the For－Next loop in line 200 will alter the number of years displayed on the screen： 12 are shown on the Pet．Any more and information will scroll off the top of the screen．

```
5 REM-"T"MCURSER UP
    REM- REMHRE(147)=CLEAR SCRN, +CURSER HOHE
    REM-T=TAN-T2=TAX AS DECIMPL 
15 REM-T=TRN-T2=TRX AS DECIMAL 
39 REM-PNOMONTHLY FAVHENTS
35 REH-X|SFLFRY
*)
    MRINTTAR(10) " SNORTOAGE PROOFAM" PRINT
    INPUT"HNAT IS YOUR FNAUAL SALARY " X FRINT 
    60 IFA&-*NTHENZS
```



```
$5 PRINT'AS YOU ARE NOT G FIRST TIME DUVER YOU AFE USUMLY ONLY ALOUD N
```



```
    S INPUT "LNAT IS TME SI2E OF THE LOPA - PY FRDNT
    e INPUT"MHAT is STAHDARD RATE OF TRO, -T PRINT,
```



```
lol
i1S PaPV*I! REM INTEREST OH LORA!
    REM-N=NO.OF YERKS-NI = NO.OF MONTHS
```



```
THe THPIT*HOL MPRY YERKS IS THE LONN FCR' N FFINT
```


125 PRINTCRI (147)
139 PNIFP/PH REH-MOHTHCY FRVIEITS
135 PRIMT"3 LOAN OF:'Ry-OUER-H

150 รค円
150 SRATNT'のIITH TAK: RELIEF MONTHLY PAYMENTS ARE -
155 FRTNT * AnI
160 FORJ=1TOU4

ise $\mathrm{FS}=1 \mathrm{NT}(P S * 100+, 5) / 160$
$195 \mathrm{FV}=\mathrm{FV}+12-(\mathrm{FN+12)}: \mathrm{REM}$ LORN AFTER ALN,FFIMENT

PRINT 7 AS
PRIPNEN1-5
230 PRINTTAE 30)-ara-1MT(P15+100-.5)/100 EN

Transposing music

$J F$ Vincent， Reading，Berkshire．
 － 203031

This program was developed to transpose music from one key to another．The string A\＄ contains the 12 notes of the chromatic scale－ the flattened notes are represented by inverse characters．
The rest of the program converts the notes input in string BS to integers or near－integers， then adds T ，which is the number of semi－ tones through which you want to transpose the music，and reads the appropriate note from AS．
Obviously，if you want to transpose down you either use（12－T）or change the plus sign in line 110 to a minus symbol．The program has been simplified in line 310 which will not return an integer－as you can see if you put line 130 to

PRINT P；A\＄（P）

Yet the number is treated as the next highest integer－this saves some space．Some interesting patterns can be generated by this

```
5 REM "TRANSPOSITION"
DIM A* (12)
```



```
LET T = ?? (the number of semitones of transwosition)
INPUT B%
FOR N = 1 TO LEN B 
LET P = CODE Bs (N)
IF P>45 THEN GOTO 300
LET P = (P - 37) *2
IF P = 6 OR P=8 OR P=10 THEN LET P = P - 1
IF P) }10\mathrm{ THEN LET P = P-2
LET P = F + T
    IF P>12 THEN LET P=P-12
PRINT R* (P);
NEXT N
PRINT
RUN
LET P = P - 165
IF P>= 2 THEN LET P = P + P/2
GOTO 119
```

program．For instance，put $T=5$ ，enter $\mathrm{B} \$$ as
＂CDEFGABCDEFGAB＂
then enter the result which the program prints out．Do this until your first B\＄is repeated．
The program can also be used to compose
music－albeit music of a rather modern nature－if T is replaced by a random function．For example，delete line 30 and change 110 to

LET $\mathrm{P}=\mathrm{P}+\mathrm{INT}($ RND＊ 10$)$

SOFTWARE FILE

Bomb disposal

Roger Brooks,
Binton Green,
Warwickshire.
203030
The article on games applications for the ZX-80/81 in the August/September issue by Tim Hartnell prompted me to write this program which only just fits into 1 K . The program maps the top left-hand corner of the screen with a 10 -by- 10 matrix. In it lies a point which corresponds to the location of a bomb. By entering various points in the normal coordinate fashion, values are printed which give an indication to where it is.

Obviously, a large number of values will lead to easy location and so the score is weighted accordingly and printed after the bomb has been diffused.
Those with 16 K RAM packs can modify this program to include more elaborate Print statements and a combination problem to be solved before the bomb is diffused.

One tip 1 find useful when programming is the use of keywords in print statements. They save the valuable memory space in the ZX-81.

The words above the keys can be entered by the K cursor mode then editing, placing words if necessary in front. Those words in red can be entered by simply pressing shift, and it is this which must be used in line 19 - the word stop. In the list inverse characters are underlined.

Screen artist

TM Humphries,
Sutton Coldfield,
West Midlands.

233087

PAGE 121 of the ZX-81 manual lists a program which draws a line from pixel (A, B) to pixel (C,D) but its 25 lines take nearly 1 K of memory so it is little use as a subroutine for unexpanded machines.
My eight-line program does not only the same job, but leaves the initial values A, B, C and D unaltered and uses only four new variables. As this listing is intended as a subroutine you will first need to Input (A,B) and (C,D).

The program works on the principle that the distance between the " x " co-ordinates, X , and the " y ' co-ordinates, Y , can be covered in M steps where M is the greater of the absolute

1

FOR $X=0$ TO 9

FRINT AT $11, \mathrm{X} ; \mathrm{X}$
FRINT AT $\mathrm{X}, 11$; X
FOR $Y=0$ TO 9
FRINT AT X, 'r'j"...." $^{\prime}$
NEXT ${ }^{\top}$
NEXT X
LET $\mathrm{A}=\mathrm{INT}$ (RNL*)
LET $\mathrm{B}=\mathrm{INT}$ (RND 稳 9)
10 LET G=40
11 PRINT RT 13,0;"DETONATION IN ";6;" CHCLES"
12 LET $\mathrm{G}=\mathrm{G}-1$
13 IF $G=\varnothing$ THEN GOTO 22
14 INPUT C
15 INPUT II
16 IF $\mathrm{C}=\mathrm{F}$ FIND $\mathrm{D}=\mathrm{B}$ THEN GOTO 19
17 FRINT FT I, C ; (INT ($(\mathrm{ABS}(\mathrm{I}-\mathrm{B})+\mathrm{RBS}(\mathrm{C}-\mathrm{A})$) /2)
18 GOTO 11
19 FRINT AT 17, 0 ; "STOP DETONATION-FRESS I"
20 IF IHKEY事="I" THEN GOTO 25
21 GOTO 20
22 CLS
23 FRINT "BOOM"
24 STOP
25 PRINT "BOMB SAFE - SCORE=";G***2
READY

values of X and Y . The distance to be travelled in each step is, therefore, X / M and Y / M respectively.

The appearance of very steep or very shallow lines can be improved by adding Step 2 to line 1040 and plotting every other point.

Ark Royal
D Ewan, Haddington,
East Lothian.

You are challenged to land an aeroplane on the aircraft carrier, Ark Royal. There is an obstruction at the start of the flight deck which you must not hit with the wheel of your aircraft - landing too hard on the flight deck also spells disaster.

Once mastered, the game can be made much harder by changing line 300 . You now have to judge your height above the flight deck. If it is not correct, you will require to increase altitude to correct your descent rate. The program runs in 1 K .

```
\begin{tabular}{|c|c|}
\hline 10 & LET S \(=0\) \\
\hline 29 & LET PY = INT (RND * 15) * 1 \\
\hline 39 & FOR \(Q=1\) TO 29 \\
\hline 49 & FOR \(\mathrm{A}=\) TO 28 STEP 2 \\
\hline 199 & CLS \\
\hline 116 &  [1] " \({ }^{\text {" } ; ~ A T ~ 20, ~ 0 ; ~}\) \\
\hline 120 &  \\
\hline 130 & LET \(\mathrm{S}=\mathrm{s}+1\) \\
\hline 140 & IF S \(=27\) THEN LET \(\mathrm{S}=0\) \\
\hline 150 &  \\
\hline 200 & IF PY \(+1=19\) AND \(\mathrm{A}+3=5\) THEN GOTO 420 \\
\hline
\end{tabular}
```

[^4]
PUT YOUR

 MICRO TO WORK!or mineres

YOUR MACHINE

MDA INTERFACESL.

CONTROL MACHINES, ROBOTS, FACTORY OR HOME

Have you ever wanted your MICRO to control a machine for you, or manage your house? If so, the MDR 'MICROCOMPUTER CONTROL INTERFACE' will give you isolated channels of OUTPUT (8A @ 250 volts) and switch sensing INPUTS.
Available now for connection to PET USER, PORT, RS232 and IEEE488, allowing expansion up to more than 900 channels. Supplied complete with connecting cables, full data and guarantee from $£ 12.54$ per channel. Complete preprogrammed systems or individual components available. Write or phone for details.

M D R (INTERFACES) LTD.
 Little Bridge House, Dane Hill,

Nr. Haywards Heath, Sussex RH17 7JD. Telephone: 0825-790294.

Bridge Software Quality Software

7 have bought numerous other items of software . . . Yours are excellent . . . They LOAD well, have perfect instructions the most user-friendly / have ever met. " (P.R. Notts)
very pleased to find the program load first time and play a creditable version of Invaders . . . Please supply
MULTIGRAPHICS." (M.Z. Cumbria)
"Enjoying 'GAMES' very much - 'Letter Square" is quite addictive." (F. W. Manchester)
"Many thanks for the Statistics programme. I am well pleased with it. " (A.M. Herts)
ZX80 software now half price - send s.a.e. for details.
SAMPLE PRICES for ZX81 software:
1K GRAPHICS (Kaleidoscope, Large Print, Medium Print, Draw a Picture). Manual only (contains accurate listings, notes, information and ideas).. \qquad
Package of cassette and manual. E4.50
1K GAMES (Duck Shoot, Moonlander, Hangman, Crossword, Letter Square). Cassette and instructions.......................... $£ 3.00$ 16K GALAXY INVADERS in machine code. Cassette and instructions.
(16K RAM pack needed)
16K MULTIGRAPHICS - create drawings, advertising displays, etc. on screen. Displays can be saved on tape, printed on your ZX printer. Cassette and instructions.
instructions \qquad
1K STATISTICS - cassette and instructions
${ }_{\text {€ } 3.00}$
(16K RAM pack needed)

> *Mail order only ${ }^{*}$ Send s.a.e for details
> BRIDGE SOFTWARE (Y) 36 FERNWOOD, MARPLE BRIDGE STOCKPORT, CHESHIRE SK6 5BE

A.C.E. - A program line editor with macro facilities.

 Alien Rain (Galaxian) - Colour + hi-tes versson of pub game Alien Typhoon - A much more difficult version of Alien Rain Akalabeth - An advanced tantasy role playing game Apple Doc - Cross reterence utity + Variable replacemen Apple Parsc - Chase hrie apples up and down ladders: Ascil Express il - A complete inteligent terminal package Asteron - The ultimate Asteroids replica game.Autobahn - Road race game with sound and hi-res graphics. Beneath Apple DOS - The detinitive guide to the Apply DOS. Both Barrels -2 hi-res action games on one disk
Cartels and Cutthroats - Business simulation for 1 to 6 players. Computw Air Combat - Simulaton of Wohd War 11 air baniles CPS Multifunction Card - Serial, Parallel and Clock on one card. Cranston Manor - A new hires aoventure like Wcard a the Princess Cross-Ret - Cross reterénce Applessoft programmers utility Cyber Strike - 3-D hi-res action adventure in space DOA FILES CONTROLIER - Sort, copy \& testructure DOA fies DDA PROGRAMMERS UTILITIES - Direct Disk Access for programmers
Demon Derby (Hyper Head-On) - 4 skill level hi-tes cat race game. EXPEDITER II - THE APPLESOFT COMPILER AT A LOW LOW PRICE
Fracas - Graphics adventure tor up to 8 players
Galaxy Wars - Colour graphics + Sound effect
Galactic Aftack - A hi-ros Star Trek type garne
Gambier - Eat up the dots but watch out for the Gobblers Ggrgen - Angther supert pub game tor your Apple
Higher Graphics - Hires picture drawing utility
Hi-Res Criboage - The title describes it. Even hear the pegs move. Hi-Res Soccer - Engish football tor 1 or 2 players in hi-res Jaworoaker - Hires machine-code action game.
KRAM - Fast and powerful Kuyed Random Access Method Linker - A liriking koader/editor for assombly sottware development LISA - The assembity language divelopment systum for protessionals List Master - An excellont companion product to Apple-Doc on a RAM card
Microsoft 16K RAM Expansion Card.
Missile Detense - Hi-res animation and sound arcade game. Mission Asteroid - Hi-res adventure in 21 colours. Save the Worldit MultiBoot Upgrade - Upgrade 3.2 disks to boot under 3.2 or 3.3 Mystery Fun House - Scolt Adam's adventute on cassutte. Mystery House - Hi-res adventure using ovor 100 pictures: Norad - A hi-res simulation of an I.C. B.M attack.
Oldorf's Aevenge - Hi-res adventure with 100 rooms
Olympic Decathion - Long jump, high jump, hurdles plus much more. Oplane-A A ew concept in dial-up soltware for the Apple 11 Operation Apocalypse - Four computer simulations of World War Paddle Graphics - Draw your own pictures in 21 hi-tes coloul Pegasus II - The latest in pub giames now availabie tor the Apple. Pirate Adventure - Scott Adam's adventure on cassette. Pool 1.5 - Hi-fes colour graphics pool lable simulation. 4 games. Pulsar II - 2 superb hi-fes games on one disk.
Pyramid of Doom - Scot Adam's adventure on cassette Sabotage - Shoot down helicopters and bombers in hi-res. Shooting Gallery - A shouting gallery simulation in hi-res.
Sneakers - Waves of little creatures attack you in hi-fes Snoggle (Puckman) - Hi-res maze of ghosts Great fun Sohporn Adventure - An adventure for adults only. Space Eggs - Hr-res super-tast arcade style game Space Warrior - Hi-res pub game
Star Avenger - A tast paced game of guerilla warfare in space Strange Odyssey - Scott Adam's acventure on cassette SuprGraphics - A 3.D game development system in coiour SUperKRAM - as KRAM out with mult-ikey and mult-index
SUPERSCRIBE - WORD PROCESSOR TAUE UPPER/LOWER CUPERSCRIBE-WO
CASE ON SCREEN
Tarturian (Wizard) - Another hires adventure with 160 rooms. The Prisoner - A A game based on the tamous TV series The Shattered Alance - Swords \& Sorcury on a far-liung wond. The Warp Factor - 1 or 2 player hi-tes Star Treiv Space War game. The Wizard and the Princess - Heres advanture in 21 colours. Threshold - Yet another fast acbon arcade style game. Torpedo Fire - A hi-fes sumulaton of submanne wartare. Toxophily - Text only adventure with spit screen VERY HARD. Tranquilty Base - A superb moon-lanang game in hi-res. Visicalc 3.3-The 16 sector version with enhanced manual. Visidex - Store and retneve intormabon by key words.
visitrend - Performs maths operations on lime series dat Wizardry - 3-D adventure The best we have seen yet Z-Term - A hill-leature termanal package for the CP/M Apple.

C19.95 A48K £13.95 M48K C13.95 M48K C22.95 M48K
C 22.95 A48K C22.95 A48K c16.95 M4aK
ع38.95 M48K c 8.95 MabK
C 2.95 A 8 K C19.95 M48K C14.95 M48K £11.95 Book C12.95 A48K £23.95 A48K ¢35.95 A48K c183.95 Card $£ 19.95$ M48K
£14.95 A32K C14.95 A32K
ع19.95 M48K C19.95 M48K
C39.95 A48K C39.95 A48K
C39.95 A48K

C199.95 A48K £13.95 M 32 K
£56.95 A48K
C14.95 M32K
E13.95 M32K
C19.95 M48K
£ 19.95 M48K
ع 16.95 M48K
c16.95 M48K
C13.95 M48K
c13.95 M48K
$〔 21.95 \mathrm{M48K}$
£23.95 M48K
โ14.95 M48K
ᄃ16.95 M48K
c 16.95 M48K

CS8.95 M32K
c

C26.95 M32K

£29.95 M64K
f114.95 Card £ 16.95 M48K c10.95 M32K c23.95 M48K
c8. 95 M 32 K
c8.95 M32K
C12.95 M48K
ع19.95 M48K ع19.95 M48K C17.95 M48K £59.95 A48K
£35.95 A48K £35.95 A48K
C14.95 M48K £21,.95 A48K C16.95 M48K c8. 95 M 32 K £19.95 M48K £14.95 M48K C8.95 M32K C13.95 M48K c16.95 M48K C16.95 M48K
C13.95 M48K C16.95 M48K ع14.95 M48K C13.95 M48K c19.95 M48K c8.95 M32K c23.95 M48K c73.95 M48K ع73.95 M48K $c 14.95$ A48K
c129.95 A48K 129.95 A48K
C21.95 A48K C21.95 A48K
c 35.95 A48K C23.95 A48K C18.95 M48K £ 16.95 M48K c35.95 A48K C9.95 A48K £16.95 M48K
ci19.95 M48K C119.95 M48K c89.95 M48K §149.95 A48K ᄃ28.95 M48K A: Requires Applesof in ROM M: Will run on any Apple il

Please specity which DOS you require when ordering if you dont see what you are looking for please give us a call. WE ALSO OFFER A BE
PRICES INCLUDE VAT AT 15% Add 50 P P +P for orders under C 30 totally.
Please whte or telephone for your tree copy of our up-to-date software list.
Deaters inquiries invited. PERSONAL CALLERS BY APPOINTMENT ONLY PLEASE.

SPIDER SOFTWARE

98 AVONDALE ROAD, SOUTH CROYDON, SURREY.

Tel: 01-680 0267 (24 hours a day -7 days a week)

COMPETITION CORNER

Christmas competition

BY ANTHONY ROBERTS

Round 1

1. When was the transistor invented?
2. The Millionaire was one of the first calculators sold commercially; when did it appear?
3. Babbage never succeeded in making his Analytical Engine work. IBM made the first machine to use all of Babbage's principles - when?
4. The first commerical computer was the Ferranti Mark 1 Star made at Manchester University. It consumed 27,000 kilowatts of power and had 4,000 valves. When was it announced?
5. The first digital calculator machine - it could add, subtract, multiply and divide was invented in 1642. By whom?
6. One of the first electronic digital computers weighed in at 30 tons with 18,000 vacuum tubes and was called Eniac. What did the name stand for?

Round 2

What are the names of the seven Dwarfs?

Round 3

What follows in these sequences?

1. $512213245 \ldots$
2. $854917610 \ldots$
3. F4E S9 ...
4. 19821988199319992010 ...
5. $5143055 \ldots$

Round 4

Flowchart Puzzle

You are asked to help sort out a micro evaluation kit which comprises four machines - Ant, Bat, Cat, Dog - each of which has a
terminal and its very own connecting cable. Naturally, everything is colour-coded. The wires are coloured ebony, fawn, gold and hazel; the screens are indigo, jade, kingfisher and lilac and the machines are mauve, navy blue, ochre and puce.
They have all been packed in a single, large box with computer-type instructions provided to enable one to set them up in a straight row with each screen sitting on its micro, ready to run. But the kingfisher screen is not mentioned. Can you say what colour machine it connects with? Here are the instructions provided.

Competition reports

Thank you for sending in so many entries to the October ZX-81 Crossword comperition. The winner is George Lang, Lonepine School Road, Romsey, Hampshire, who completed the sentence, "I will not use a $\mathrm{ZX}-81$ to run a power station but be less 'ampered learning what's Watt in the computer age". A ZX-81 is on its way.
Almost everyone else followed a similar theme. A special mention though to J Duncan from Durham

for writing, "but I did see the manager of Windscale in W H Smith".
Many readers complained that the first puzzle we ran in Competition Corner was too easy. In November we really got our own back with Crater Robots. Out of all the entries not one of you found the right solution - it was hard, though.
We have a solution, on the Sharp MZ-80K, which fits into about 2 K of memory and took about nine minutes to run. It should be possible to write a solution to fit into a 1 K Sinclair.
There are exactly $7,529,536,000,000$ different ways for the robots to move, 101,566 of which produce results in which no two groups are in adjacent craters. If you tried to write a program that went through all these possible moves the run-time would take longer than was allowed for the competition. So a solution should concentrate on the different positions the groups could end up in. The correct number is just 168 .
A mistake a lot of people make is to forget that there is no robot in the centre crater to start with. They then produce the wrong answer of 138 . We do not have the space to publish the full program which gives the solution.
If you would like to see the program, write to us and we will post you a copy.
Congratulations to Jean Hartopp for trying hardest.

Round 5

Quotations

1. "Out of sight, out of mind" when translated into Russian by computer and back again became - what?
2. "I don't believe in maths" - who said it?
3. "Chips with everything" - who wrote it?
4. C P Scott said: "Television? No good will come of this device" Why?

Round 6

CAN you find the well-known phrases? Start at any letter and spell out the phrase by moving letter by letter into adjacent cells.

Round 7

What process does this Basic program describe?
05 INPUT A,B
10 LET $A=X$
20 LET $B=Y$
30 LET $Z=0$
40 IF B<A THEN GOTO 80
50 LET $A=A-B$
60 LET $Z=Z+1$
70 GOTO 40
80 DISPLAY Z,A
90 STOP

Round 8

Here are five store locations which were intended to contain our Christmas message to you. Unfortunately, they have been put in reverse order. At least they can be moved along the connecting wires in the directions shown.

No location can hold two words, so if you move Your to Computer for instance, you must immediately move Computer to From. From can then move into the blank space left by your first move. Can you put the message right in just one sequence of 15 moves? Can you do it in less?

Round 9

IF YOU TAKE the digits of 1,634 , take the fourth power of each and add them all together you get $1+1,296+81+256=1,634-$ your original number. There are two other numbers which have this property - what are they?

Round 10

The solutions are all in front of your nose!

1. It goes rude.
2. Coe, your trump.
3. React to no ham.
4. Sam; free person.
5. Drop me, O comet!

A $£ 15$ book token will be awarded to the first correct solution. All entries must be at the Your Computer offices by the last working day in December. The result will be published in the February issue.

The $\mathbf{Z X 8 0} / 81$ DESK CONSOLE
including switches for cassette and power Complete and Assembled

- Fits your $\mathbf{Z X 8 0}$ or $\mathbf{Z X 8 1}$
- Just plug-in. NO soldering
- Switched for SAVE/RUN/LOAD
- Both cassette and computer inputs
earthed when not functional
- Switch for your 9V supply
- LED monitor for supply

Fits 16 RAM on 80 and 81 - Fitted with button cover

- Deep enough for mains plug cluster at rear (not supplied) - Black grain finish in ABS plastic
- Recessed for manual/pencil

Price $£ 24.08$ + £2.00 p\&p UK + VAT
Send your Name, Address, 80 or 81 , together with cheque or PO only for £29.99 to:
TTL BOX 2, WARMINSTER, WILTSHIRE BA12 7QX.
All orders acknowledged but allow 30 days for delivery.

Programs for your

 ZX81
$£ 3.95$ each (post free)

from A. Parsons, 23 Coxhill Gardens, River, Dover, Kent

1K Learning Fun. Learn spellings, add in hours and minutes, price quantities of groceries or give change. Plus four function sums with whole figure answers and score. Plus Tables.

16K Learning Fun. Add in words, work out areas and perimeters, translate between French and English or enter words in any two languages. Plus vocabulary and two versions of Hangman.

16K Geography. Find towns in the U.K. or Europe with a series of five maps drawn on the screen. Plus Town and Country naming program and English Towns Hangman.

16K Art and Fun. Play Noughts and Crosses, Battleships or Board Game against the computer. Plus Draw a Picture. Print it if you have a printer, record it to display again, even add to it. Plus two fascinating pattern generators.

New titles continually being added

Fuller FD System for ZX80/81

The Fuller FD System is not a $\mathbf{Z x 8 0} 81$ add on' but uses the micro board at the heart of a more powerfull system, allowing the user to expand with the system or stop with a standard keyboard $\&$ case and using existing Sinclair 16K RAM pack etc, either way you only need a screwdriver to assemble the built items, the FD Keyboard simply plugs into the $\mathbf{Z X 8 1}$ which is screwed in position in the FD case, $\mathbf{Z} \times 80$ installation requires soldering to the keyboard, we will carry out this work at a fixed charge of $£ 10$. SAE will bring you details of our products. Have your $\mathbf{Z X} 81$ Kit built by us FREE when you buy The FD Keyboard, Case and Power Supply at $£ 42.95+£ 2.25 p$ \& p

- FD Keyboard Kit $£ \mathbf{1 8 . 9 5}$
- FD Keyboard Built $£ \mathbf{2 4 . 9 5}$
- FD 16K RAM Board $£ 39.95$
- Above items +80p p\&p
- FD Keyboard/Motherboard add $£ 15.95$ to Keyboard price

- FD Case $£ 11.75+£ 1.25 \mathrm{p}$ \& p

ZX81

have you seen

The Cambridge Collection

A book of 30 PROGRAMS

For Only $£ 4.95$

NO MEMORY EXPANSION NEEDED
Each program has been designed to fit into 1 K of RAM
TEACH YOURSELF PROGRAMMING Comprehensive explanations of each listing will teach you many techniques of $\mathbf{Z X 8 1}$ programming.

HOURS OF AMUSEMENT

With titles such as FORTRESS, BALLOON, and ODD MAN OUT, you could easily become a ZX81 addict. Plus, entirely new implementations of well-known favourites; LUNAR LANDING, MASTER CODE, ORBITAL INVADERS, and many others.
CASSETTE AVAILABLE TOO!
If you order the book you can also buy the programs on a quality cassette for only $£ 4.95$ extra.

Please send me:
copies of the book at £4.95 each
copies of the book and cassette at $£ 9.90$ pair

Please send your orders with cheques/PO's to: Richard Francis, Dept. YC A/S 22 Foxhollow, Barhill. Cambridge, CB3 8EP

ZX81 ATOM VIC

Make the most of your microcomputer with our popular range of proven books:
\square GETTING ACQUAINTED WITH YOUR VIC 20, by Tim Hartnell, with over 60 programs to get your VIC up and running from day one.
.f5.95
\square GETTING ACQUAINTED WITH YOUR ACORN ATOM, by Trevor Sharples and Tim Hartnell. 184 pages, 80 programs, including draughts..........£7.95
\square GETTING ACQUAINTED WITH YOUR ZX81, by Tim Hartnell. Eighty plus programs in this 120 -page book, including draughts.
.£4.95
\square MASTERING MACHINE CODE ON YOUR ZX81 OR ZX80, by Tony Baker. 180 pages, teaches machine code from first principles.
.f5.95
\square THE GATEWAY GUIDE TO THE ZX81 AND ZX80, by Mark Chariton. Over 60 programs and routines, ZX BASIC explained in detail. \qquad .f5.95
$\square 30$ AMAZING GAMES FOR THE 1 K ZX81, by Alistair Gourlay ... $\mathbf{£ 3 . 9 5}$
$\square 50$ RIP-ROARING GAMES FOR THE ZX80 and ZX81, edited by Jeff Weinrich.
£4.95
\square INTERFACE, the monthly magazine published by the National ZX80 and ZX81 Users' Club, in conjunction with the Independent Atom Users' Group, is just $£ 8.50$ for 12 issues. Sample copy, with many programs for each machine, book, software and hardware reviews, education, contact addresses, just $£ 1$.

Please send me the items marked. I enclose $£$.
\qquad
Address \qquad

Please make cheques payable to INTERFACE, and send the above form, or a copy, to:
INTERFACE, Dept. YC3, 44-46 Earls Court Road, London W8 6EJ

Meroelectrontcs and seminars wi. ortunities for mich the se seminars apar offer little practica manutacturing. This approach sets new technology, bu and factory engineers events which generalise about engineering designer companies are to survive advice. Individual manage an absolute must if the.
NEC, BIRMINGHAM are certain to find them an atitive market place MARCH 2-3, 1982 in an increasingly

Tuesday, March 2 Getting microelectronics into products

This seminar will combine the broadly based experience of speakers who have assessed and advised on a wide range of applications, with that of companies who have used microelectronics to produce a new generation of equipment, and who can therefore comment at first hand on the technical and commercial aspects of such a transition.

Chairman's introduction

Ken Edwards, Chief Executive, BEAMA.
Are designers responding?
Trevor Gilpin, Electronics Applications Division, Department of Industry. Overview and comments on UK industry s response to microelectronics technology
Identifying an application
Ron Wainwright, Patscentre International. Observationsfrom an organisation with experience of identifying, advising on and developing applications of microelectronics.
Case Study 1
M. A. Morling. Technical Director. Harmer \& Simmons Lid Microprocessor boosts battery charger technology

Case Study 2

Dr E. W. Firth, Product Engineer (Industrial Electronics). Normalair-Garrett Ltd. Digital micro-ohm meter improves field measurements
Case Study 3
Derek Pay, Sales Director. Tempatron Ltd. Programmable controller ensures a market share.
Panel Session The day's speakers will answer and discuss delegates questions.
There will be ample opportunity for delegates to inspect recently developed equipment which will be displayed.

Wednesday, March 3 Microelectronics for manufacturing industry

A large range of off-the-shelf equipment employing microelectronics is now available to industry. More can be made to meet individual requirements, and new developments are constantly widening the scope for increased automation and improved control. No company can afford to ignore the worldwide trend towards programmable devices in the factory. Chairman's introduction
Ken Edwards. Chief Executive, BEAMA
Is industry grasping the opportunities?
Trevor Gilpin, Electronics Applications Division. Department of Industry. Review of industrial response to microelectronic technology and available Government support Applications in the factory
David Foster. Project Otficer. Microelectronics Applications Unit. UMIST. Where micros are finding use, plus a look at ponts new users should consider and possible problems
The role of the process controller
Chris Gritfiths. MTE Limited. What P.C's can now do - and where they are finding applications both sophisticated and simple Towards programmable automated manufacturing
Professor Keith Rathmill, Robotics and Automation Group. Cranefield Institute of Technology. Technology now exists-and more is on the way - 10 help industry boost productivity Microcomputer-aided design
Dr Peter Wilson, Principal Research Officer Lucas Research Centre. Low cost entry has widened the appeal of CAD. Panel Session
The day's speakers will answer and discuss delegates questions
There will be ample opportunity for delegates to inspect recently developed equipment which will be displayed

REGISTRATION

Please complete in CAPITALS and returnto:-
I Conterence Administrator, Room 1313. IPC Conferences L.td. Surrey House, Throwley Way Sutton, Surrey SM1 4QO
Tel: 01-6438040 Ext 4890/4892
Please reserve_....place(s) tor the Electrical Review Seminars
I to be held at the Metropole Hotel - NEC. Birmingham on Tuesday
I and Wednesday. March 2 and 3.1982.
The tee is $£ 150$ plus 15% VAT ($£ 22.50$) per delegate for both days and §90 plus 15\% VAT ($£ 13.50$) per delegate for one day An invoice will be sent. This includes attendance at the conterence. documentation morning cottee. lunch and atternoon tea

Mr/Mrs/Miss

Position
$\mathrm{Mr} / \mathrm{Mrs} / \mathrm{Miss}$
Position

Please send confirmation of bookings io Mr/Mrs/Miss
Position
Company
Address Adda Computers Lid, a major supplier of computer
to industry and business, have opened the Vic Centre in 10 industry and business, have opened the Vic Centre in West London. Here you can see, discuss and buy everything to do with the new VIC 20 personal computer-in person or by mail. Hardware, software, technical advice and information is available from an experienced staff of experts. Even if you already own a VIC 20, get on our mailing list to know about new developments. Remember-everything has the backing of Adda's reputation, and there's a full 12 -month warranty on all hardware. The Vic Centre is easy to reach-Just off the A40, close to North Acton tube

station.
 cl expandable system AT ONLY E189.95 inc.VAT. Special cassette deck $\mathbf{£ 4 4 . 9 5}$ inc.VAT.

 Not just a computer but a wholeThe VIC 20 is a fully-fledged, easy-to-use computer. It's the core of a great expandable system, with full-size keyboard operation. First-time users can work it immediately with plug-in program cartridges. using your own colour TV to get up to 24 colours on screen, and three different sound tones. Or write your own programs in BASIC. The VIC 20 lets you build a system as needs and budget dictate. You can expand its memory to 32 k Byte with Plug-in modules, and transfer data to external storage units. So the VIC 20 is more than just a personal computer-and its system will expand to put it even further ahead. VIC 20 Dot Matrix Printer
Tractor-feed, 80 character-per-line, 30 characters-per-second printer. £ 229.95 incl VAT.

VIC-RS232 INTERFACE

filly implemented (true
 RUly implemented (true levels)

BI-DIRECTION
BI-DIRECTIONAL INTERFACE
Allows VIc to work as Mainirame Terminal Punch etc. elc.
FEATURE This unit contains master power supply which supports Vic's own supply when carrying Memory Expansions.
Cassette Drives, Light Pens. Printers etc VIC-MEMORY 3 K
Small size - low cost memory expansion. Plugs into Vic and reproduces memory-port Can be used with other expansions gives a total of 6k user static ramon Vic.
FEATURE This board allows Vic to move Basic to begin at 1024 ($\$ 0400$) as in Pet. and enables the use of HIGH RESOLUTION COLOUR GRAPHICS $£ 40.25$ incl VAT VIC-TOOL KIT £28.75 incl VAT For those who know tool kit on Pet we now have same facilities for Vic.
Aenumber. Auto, Append etc.
This may be used with the stack VIC Rom Switch Board.

VIC ROM SWITCH BOARD £40.25 incl VAT. An inexpensive unit which plugs direct on to Memory Expansion Port of the VIC and allows the insertion of up to 4 ROMS for games packs or toolkit aids, etc. FEATURE. Simple software switch exchanges each pair of ROMS into VIC's ROM space allowing 'clashing' ROMS to be used.
FEATURE. Plug-in zero force sockets are available as optional extras to help eliminate pin damage to valuable ROMS.

TERMS AND CONDITIONS: All goods sold subject to Adda terms and conditions of sale. Full details available
on request, but include: 7 day money back guarantee. Adda 12 month hardware warranty. Please allow 21 days for delivery. Allow 7 days for personat cheques to be cleared. Quoted Allow 7 days for personal cher
prices are inclusive of VAT.

£56.35 incl VAT.

VIC-LIGHT PEN
This high quality light pen works in both normal and Hi-Res modes on the Vic allowing simple interaction with the Vic without keyboard entry.
Easy to program and easy to use.
E.s. Menu selection. Non-keyboard entry. Teaching Games.
FEATURE touch sensitive "Enter" contacts to eliminate accidental entry.

VIC-Games Port Adaptor Cable games port plug.
228.75 incl VAT.

A two into one adaptor for use with both joysticks and light pens. A must for those who require full control of games with
graphics
FEATURE Iow-cost High quality. Robust. VIC JOYSTICK
Single
Hand-Held joystick units for games use available in Pair or Single configuration N.B. 2 Singles will not work as a pair
 unless modified)

Le Stick $£ 30.75$ incl VAT.
The ultimate joystick. One handed multi-directional super sensitive stick with built in fire button.

VIC software Each of these tapes $£ 14.95$ incl VAT. Codebreaker/Codemaker
You play the VIC or the VIC plays you in this computerised version of Mastermind.
VIC Seawolf, VIC Trap and Bounce-out
3 fun games, a submarine shoot out. a beat the VIC and an old favourite pub game. Good games with different skill levels. Monster Maze and Maths Hurdler
A fun game with good colour and sound and a mental arithmetic learning game. Highly rated by everyone we have shown it to. Harder than you think.

Add £2.00 p. 8 p. for
Add $£ 2.00$ p. $\$$ p.
orders under $£ 50.00$
Total $£$
Name:
Address
SHOP ADDRESS: Adda Comvuters Limited.
154. Victoria Road. Acton. London. W3. Tel 01.9929904. OPEN: $10 \mathrm{am}-6 \mathrm{pm}$ (Tuesday-Friday). $10 \mathrm{am}-5 \mathrm{pm}$ (Saturday).

> In all walks of life, personal computers have revolutionised computer power - bringing it within the reach of a far wider and more popular market than ever before.
In 1982 this revolution will explode onto the home and personal computer market. To meet this demand, Practical Computing and Your Computer announce a brand new event - The Computer Fair. The promotion of the exhibition will be heavily geared to attract the growing market of potential and existing users of personal computers, from home computer enthusiasts to businessmen. Bring your computers and services to life-all walks of life-at The Computer Fair!
Complete and return the coupon - we'll send you details. Computèr Exhibition Manager, THE COMPUTER FAIR, IPC Exhibitions Ltd. 1, Throwley Way, Sutton, Surrey, SM1 4QQ

Sams Books Stockists

Business θ Electronic Machines
7 Castle Street
Edinburgh
Byteshop Computerland Ltd PO. Box 2
St Neots
Huntingdon
Cambridgeshare
Cambridge Computer Store 1 Emmanuel Street
Cambridge

Datron Micro Centre Latham House 2 Abbeydale Road Sheffield 7

Micro-C
5-11 Martineau Way Union Street Birmingham

Micro-C
Unit 2. Channons Hill Industrial Estate Fishponds Bristol
Micro-C
$57-59$ Albion Street
Leeds
Micro-C
127 Charles Street
Leicester
Micro-C
Units $91-93$ Arndale Centre
Luton
Bedfordshire
Micro-C
19 Brown Street
Manchester

Micro-C
31-35 Blagdon Road New Malden Surrey

Micro-C 2 Wheeler Gate Nottingham

Micro-C
10-11 Bargate Southampton Hampshire

Newbear Computing Store 40 Bartholomew Street Newbury Berkshire
Silicon Centre

Software House
Horseshoe Yard Brooke Street London WI
Tomorrow's World Grafton Arcade Grafton Street Dublin 2

B.B.C. ROM Sets Single Floppy Disk Units (100K)

Write for details to: the Acorn Specialist in Yorkshire

New Hardware	
CORNAtoms...................................	From E140.00
ACORN GP 80 Printer + Cable.	f232.00
- ATOM Word Pack ROM.	E30.00
Extra Memory per 1K (tecommended).	¢3.20
New Software from ACORNSOFT	
GAME 1 Asteroids + Subhunt + Breakout.	E11.50
GAME 2 Dogfight + Mastermind + Zombie	E11.50
- GAME 3 Rat Trap + Lunar Lander + Black Box	E11.50
- GAME 4 Star Trek + Four Row + Space Attack	E11.50
GAME 5 Invaders + Wumpus + Revers	f11.50
* GAME 6 Dodgerns + Simon + Amoebo	¢11.50
* GAME 7 Green Things + Ballistics + Snake	¢11.50
GAME 8 Stargate + Go + Moko + Rob	E11.50
- SOFT VDU New character set design	E11.50
- MATHS PACK 1. MATHS PACK 2.	E11.50
- UTILITY PACK 1. Disassemble + Fast COS	f11.50
- ATOM DATABASE, Versatile \& efficient.	¢11.50
- PEEKO-Processor Simulates micro.	¢11.50
- ATOM FORTH. Full implementatic	£11.50
- ATOM FORTH. User's Guide..	
- ATOMBusiness by J Phipps Books	
- ATOM Business by J. Phipps. - The ATOM Magic Book	f6.95 f5.50
- Getting Acquainted with	\%7.

AIf prices include U.K. PGP P + VAT where applicable

ADD A PROFESSIONAL KEYBOARD TO YOUR 2X 81
 No de-soldering necessary - just plug in.

- Full travel keyboard as used by international computer and terminal manufacturers.

"All-you-need" easy to assemble kit comprises:
One piece 47 key keyboard module fitted but not soldered to doublesided printed circuit board; connectors; simple plug-in flexible cables; screws, mounting feet and legends. Two-part keycaps with buttons pre-assembled on keyboard and clear protective clip-on caps for fitting after legends have been positioned. Comprehensive assembly instructions supplied with each kit. Allow 28 days for delivery.
PPlease send keyboard kit(s) @ $\overline{\mathrm{f} 28.95}$ each, cheque or postal order made payable to:-

YC Nov. COMPUTER KEYBOARDS (dept. Glendale Park. Fernbank Road, Ascot, Berkshire. Phone-a-Leaflet 034474731 Please ensure your name and address are clearly stated

Sigma Technical Press
 The UK Software Publisher

New Books:

BYTEING DEEPER INTO YOUR ZX81

by Mark Harrison

The ZX81 Microcomputer is now, debatedly, the fastest selling personal computer in the U.K. Unfortunately, the user's manual cannot answer all the questions and problems that arise when using the ZX81. Also, the user's manual gives the distinct impression of being written by an engineer, for engineers . . . not for the average user of the ZX81. The only way you can see the manual is by buying the machine! BYTEING DEEPER INTO YOUR ZX81 supplements the ZX81 manual and provides an excellent introduction to computer programming. It starts from first principles, and, by reference to over 30 carefully graded examples, progresses to some of the most advanced techniques useable on this computer. It presents detailed projects and programs for the user to solve; each of these is suitable for domestic use (e.g. games, personal data banks, and homework aids).
0905104137
December 1981
150 pages
$€ 4.95$

PRACTICAL PROGRAMS FOR THE B.B.C. COMPUTER AND THE ACORN ATOM

by David Johnson-Davies

Approved by Acorn for use with the ATOM, this book contains 20 practical programs for a wide range of different applications, ranging from mathematics and graphics, to language manipulation, and games. The programs are explained in great detail so they can be tailored to individual requirements, and many of them could be translated to run on other microcomputers.
The book is intended for owners of the Acorn ATOM and BBC Proton who understand how to ewier and run programs, but do not necessarily consider themselves fully acquainted with BASIC or machine code. Many of the programs will run on minimum ATOMs, although some of the programs require a machine with the full 12 k of memory.
0905104145 December $1981 \quad 125$ pages $£ 5.95$ Please write for full details of the SIGMA forthcoming publishing programme to: John Wilson, Product Manager, John Wiley \& Sons Ltd., Baffins Lane, Chichester, Sussex or to: Dr. Graham Beech, Sigma Technical Press, 5, Alton Road, Wilmslow, Cheshire.

Distributed by

John Wiley \& Sons Limited
Baffins Lane - Chichester - Sussex PO19 IUD England

PRESENT TWO NEW REAL TIME GAMES

 FOR ATOM USERSEARLY WARNING

5K TEXT \& 6K GRAPHICS
Destroy the attacking wave of ICBMs using a radar tracking system and intercept missiles. At each attack wave becomes progressively harder.
48 levels - sound - score and level counters.

6K TEXT \& 6K GRAPHICS
Avoiding the hungry Polecat, make your way through the maze to the surface, and steal the food growing there. The maze changes when all the available food has been returned home. Millions of random mazes and auto score.

Price: Early Warning: $£ 4.95$. Polecat: $£ 4.95$ OR Both Programs on one cassette $£ 8.50$.

Dealer Enquiries Welcome.

ORDER FORM

Send cheque/PO payable to: "ANDERSON" to A \& F SOFTWARE, 10 WILPSHIRE AVE., LONGSIGHT, MANCHESTER M125TL.
(061) 2487195.

Return Name \& Address

Code Nd Program Title	Ory	
G0100	Polecat	
G0101	Early Warning	
00100	Polecat/Early Warning	
	Ch/PO No	
Program List		

E189.95includinguat

ทx

scowntut Nove

72 Heath Road Twickenham Middlesex

Have you bought a ZX81? Now here's a cassette recorder to match it!

The ECR81 Enhanced Certified Recorder from MONOLITH is a major advancement in cassette recorder technology which minimises the problems associated with standard audio recorders. This is a high quality proven cassette mechanism, enhanced to provide just the right signal levels to ensure reliable read and write data transfer between the magnetic tape and your ZX81.

- Each ECR81 comes complete with its own individual certification tape, tested and serial numbered to prove your machine reliability.
- Signal enhancement circuit board with phase - locked - loop control and signal shaping for peak performance.

 Britain's Leading Personal Computer Magazine

Practical Computing is read by businessmen, scientists, administrators, teachers, students. In fact by everyone who is interested in personal computers and wants to know more about them ...

More about computér equipment. Down-to-earth reviews of personal computers and peripherals such as printers, terminals, VDU's and disc drives.

More about software. How to write it. What to look for in business software. Evaluations of software packages to take the guess-work out of your software purchases.

More about applications. What can you do with a personal computer? Case studies of the ways in which people as diverse as businessmen, manufacturers, doctors, scientists and teachers are using computers in their everyday work.

More about games. Designing your own games. How to achieve better graphics. Games and program listings to run on your own computer.

It all adds up to colossal value. The best and most informative selection of articles and regular features about personal computers for only 80 p a month!

Practical Computing is available from leading newsagents. Or complete the form and return it together with your cheque/postal order to obtain copies on subscription.
To: Marketing Services Dept., Rm 316, IPC Electrical Electronic Press Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Please send me a copy of Practical Computing every month for a year. I enclose a cheque/P.O. for $£ 10$ (UK)/ $£ 16$ (Overseas) payable to IPC Business Press Ltd.
Name
Address ...

Acorn Atom 747

FLIGHT SIMULATION PROGRAM FOR THE 12K ATOM
Written for Bug-byte by a 747 pilot. Accurate simulation of a 747 's cockpit display (airspeed, altitude, rate of climb, attitude, flaps, etc., and graphic display of horizontal situation \& attitude); allows you to guide your craft to the landing strip. On making your final approach the display changes to a high-resolution 3 D representation of the runway coming up to meet you. A real test of skill. Finding the runway is quite a challenge - landing safely is even more difficult. If you succeed, you are awarded a skill rating and the chance to take off and trying again. REQUIRES FLOATING POINT ROM

PRICE ONL Y E8.00

Acorn Atom CHESS

THE PROGRAM YOU'VE BEEN WAITING FOR! Fantastic machine code chess game for the 12 K Atom. Features include: split screen (high res. + alphanumerics); many levels of play; castling \& en passant; computer plays black or white. Supplied on cassette with instructions.

PRICE ONL Y E9.00
DON'T FORGET - OUR PRICES INCLUDE VAT \& POSTAGE
BUG-BUTE
98.100 THE ALBANY OLD HALL STREET

LIVERPOOL L3 9EP
@@@@@@@ QUICKSILVA PRESENTS A RANGE OF QUALITY @@@@@@@@@@@@ HARDWARE / SOFTWARE FOR THE
HARDWARE Al hadwore is sent with complete ins(a)progromming examples. Please allow 28 doys for delivery .QS MOTHER BD ZX-80/81
\qquad
Extends existing port to allow any Ram Pock + two other boards to be fitted. On board 5 V . Regulator ; Two 23 woy double sided edge connectors for add-ons,
\qquad Relioble (pre-shrunk?) Static Ram Board which combines with the Computers internal 1 K to give a total of 4 K . Plugs direct into Computer or Mother Board.
 A programmable sound generator boord using the versatile AY-3-8910. 3 Pitches / 3 Volumes / Noise scurce / two 8 bit Input ; Output Ports / Envelope shaper, all controlled from 'BASIC' . Plugs into any external amplifior.
 "Simple Hardware mod (1 eut ; 1 resistor ; 1 wire) required to $\mathrm{ZX}-80$. Gives two progrommoble charocter sets of 64 characters eoch. Uses grophics key to shift between the two sets. Uses NO Ram spoce. Creote your own characters - Upper and lower case alphobet ; scientific choracters ; fine line grophics chorocters ; games charocters (real spoce invaders). Works with existing progroms and with the Printer. Price includes Demo Cossette . QS CONNECTOR.
 Consists of two 23 woy double sided edge connectors back to back. One needed for any or all QS Expansions, (Except Ram Boarch)
SOFTWARE --"--*-- All software is recorded twice on high quality cossettes and is sent complete with full operating instructions .
 Fast, Flicker free, Mochine code, Moving grophies version of Arcode Game. Most complex moving graphics game yet for ZX-Computers. Up to 84 Fat moving characters on sereen ot once. First and only Full sereen display.
 Fast program with Machine Code cell generation and screen disploy routine . Simulates the growth of living cells in a $20 * 32$ Matrix. Random or programmed start positions plus MVC routine make this a fast, complex and varied program .
Send S, A. E. for FULL deta sheeth on all hordware and softwore . Cheques mode poyable to 'Quickallya' and ordens sent to the following oddress , --...-. QUICKSILVA : 95, UPPER BROWNHILL RD.: MAYBUSH : SOTON : HANTS.

THE

BUFFER MICRO SHOP
 (NEXT TO STREATHAM STATION) * \star * NEW SOFTWARE SHOP EXCLUSIVELY FOR

PROGRAMS, GAMES, "ADD-ONS"

MOST OF THE MAIL ORDER ITEMS ADVERTISED IN THIS MAGAZINE AVAIL ABLE OVER THE COUNTER

LOADING PROBLEMS? TRY OUR INTERFACE BUSINESS \& TECHNICAL DATA HANDLING PROGS. PROPER KEYBOARDS; CONSOLES; VDUs

DUE TO OPEN

 1st DECEMBERBUT, PLEASE RING 01-274 6674 FOR CONFIRMATION AND FREE CATALOGUE

CAMBRIDGE LEARNING SELF-NSTRUCTION COURSES

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC- the
 language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging. clear documentation
COMPUTER PROGRAMMING IN BASIC £10.50
Bookt Compoters and what they do wet READ, DATA. PRINT, powers, brockets. rarable names: LET; errors, coding simple programs
Book 2 High and low level languages, fowchating: functions: REM and docurentation INPUT, IF TMEN $G O$ TO fimitevions of computers probiemn defintion.
Book 3 Complers and interpetesers: Hops, FOR...NEXT, RESTORE: dobugging. armen butble sorting. TAB.
camples glossary.
Understand Digital Electronics
Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and computers.

DESIGN OF DIGITAL SYSTEMS $£ 14.00$
Book 1 Octal, henadecimal and binary number systems, conversion between number svstems. representation of negatve numbers: complementary systems sook 2 OR and AND functions: loge gates. NOI, exclusve.OR, NAND, NOR and exclusve-NOA functiona multiple input gates, truth labies. Oe Morgans Laws Book 3 Halt adders and full adders. subtractors serial and paratel adders processos Book 3 hat adders and lul doderis. sublractors. Book 4 Flo flops. vint regaters, asynchron
tohnson and exclusve. OR leedback counters, RON年 5 Sructure of calculaters tertoand ancoding and RAMS
ivstems: consrol unit, program ROM, address decoding -
Book 6 CPU; memory organisation; character repiestntation, program storage, address modes, input/ oulput systems, progiam intervpts: interrupt phonites, programinig. assembiers: computers exwcutive proprams; opersting systems.
GUARANTEE No risk to you.
if you are not completely satisfied, your money will be refunded upon return of the books in good condition
CAMBRIDGE LEARNING LIMITED. UNIT B9. RIVERMILL SITE,
FREEPOST, ST IVES. HUNTINGDON. CAMBS. PE17 4 BR ENGLAND TELEPHONE ST. IVES (O480) 67446
All prices include worldwide postage fairmant is extra - please ask for prepayment invoice). Mease allow 28 days for delivery in U.K

Please send me the following books:

Computer Programming in BASIC © $£ 10.50$
Design of Digital Systems © € 14.00
enclose a "cheque/PO payable to Combndge Learning Ltd
for $€$

* delete where applicabie)

Please charge my

- Access/Amencan Express/Barclaycard/Diners Clubt Eurocant Visat Mastercharge/Trustcard
Exprery Date Credit Card No
Signature
Telephone orders from credt cand holders accepteit on 048067446 (Ansatone)
Overseas customers finct. Eire) should send a bank dratt in sterting drawn on a London bank, or quote credit card number
Name
Address

Cambridge Learning Limited, Unit 89, Rivermill Gite,
FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.
(Registored in England, No. 1328762)

L. systems Itd.

A/ D BOARD FOR NASCOM

- 8 input channels
- 30 miscrosec conversion
- Over voltage protection
- Prototyping area
- NASBUS compatible

Price $£ 135+15 \%$ VAT (post free)
GRAPHICS BOARD FOR NASCOM

- $384(\mathrm{H}) \times 256$ (V) high resolution graphics display
- Fully bit mapped - Mixed text and graphics
- Full software control - NASCOM 2 or 4 MHz

NASCOM 1

- Graphics software supplied

Price $\mathbf{f 5 5}+15 \%$ VAT (post free)

EPROM PROGRAMMER

- Programs 3 rail:

2708/2716
Single rail:
2508/2758
2516/2716
2532/2732

- Software supplied for Read/Program/Verify
- Can be used with other machines with 2 parallel ports

Price $\mathbf{£ 6}+\mathbf{1 5 \%}$ (post free)

DUNCAN

- Fast real time interpreter/control language for NASCOM 1 or 2 (please specify)

Price $£ 12+15 \%$ VAT (post free)

MEMORIES

- 4116-150ns 95p each + 15\% VAT (min order 8)
- $64 \mathrm{~K}-200 \mathrm{~ns} \mathrm{f} 10$ each + 15\% VAT

MONITORS

- BMC $12^{\prime \prime}$ green phosphor -18 MHz

Price $£ 175 \times 15 \%$ VAT (carriage paid)

6 Laleham Avenue, Mill Hill, London NW7 3HL Tel: 01-959 0106

TIIERDRE ELELTAGIIES

* Personal Computers * TV Games *VCR's* Printers * Monitors* Software

ATOM's and DAI's ALWAYS IN STOCK

Complete range of Atari games. Open Mon-Sat. 9am till late. Credit cards welcome.
£5 voucher on goods over $£ 100$ $£ 5$ voucher when you introduce a new customer
The Seikosta 96 ASCII character printer only £199 inc. VAT. Paper and cable free.

Send for price list and mail order details. 135 HALE LANE EDGWARE MIDDLESEX HA8 9QP TEL: 01-959 7119 TELEX 8813241

MICRO-80 UK subscarition oept

24 Woodhill Park Pembury Tunbridge Wells Kent TN2 4NW
WE ARE PLEASED TO ANNOUNCE that MICRO-80 is now available in the UK in CASSETTE EDITION.
Each month we publish at least six programs for the TRS-80 or VIDEO GENIE and
SUBSCRIBERS may now have the benefit of receiving their programs on cassette for IMMEDIATE LOADING.
WE ARE ALSO CONTINUING our special offer of a FREE cassette program to all new subscribers who complete the coupon below - even if you order a subscription to the magazine only.

Please enrol me for an annual subscription and send me my FREE cassette program. I enclose $£ 16.00 \square$ (magazine only) or $£ 43.60 \square$ (magazine and cassette edition). (enclose your cheque/P.O. made payable to MICRO-80 and send to the above address)
Software offer, and cassette edition prices applies to U.K. residents only. Overseas subscription rates on application.

Name
block capitalsplease
Address

THE 1 1 (1) PO1) EG3000 Series

WITH ' 16 K user RAM plus extended 12 K Microsoft BASIC in ROM 'Fully TRS -80 Level II software compatiole "Huge range of soffware already available 'Solf contained, PSU, UHF modulator, and cassette "Simply plugs into video monitor or UHF TV 'Full expansion to disks, and printer "Absolutely complete just fit into mains plug.
$\sum_{2}^{\infty}-1$ + VAT

The most compact 80 column impact graphic-dot printer available at a very compact price
by seikosha
Graphics Normal and Double- Width Characters can be printed on the same line. Pine Feed Tractor is equipped as standard
Two Line-Feed
 Commands ($1 / 6$ and 1/9 inch)
Print on Plain Paper with two copies
Continuous Self-Inking Ribbon for easy handlirlg Centronics type Parallel Interface standard Wide Range of Optional Interface Boards Self-Test Programme standard

SUPERBRAIN

SuperBrain's CP/M operating system boasts an overwheiming amount of available sottware in BASIC, FORTRAN, COBOL, and APL. Whatever your application. . . General Ledger, Accounts Receivable, Payroll, Inventory or Word Processing. SuperBrain is tops in its class.
320K £ $1850700 \mathrm{~K} £ 2400$ $1.5 \mathrm{Mb} f 2750$
COMMODORE COMPUTERS

PET 8K

PET 16K
PET 32K
£415

PET 8032
£525

DISK DRIVES
4040
$£ 695$

PRINTERS

EPSON TX80B (inc. $1 / F$ \& cable)
EPSON MX80T
ANADEX DP8000
ANADEX DP9500
ANADEX DP9501

VIDEO MONITORS
 10 BLACK \& WHITE
 £85
 10" GREEN SCREEN
 £95

 £299 £395 £495 2895 995
Aculab

Floppy Tape

 The tape that behaves like a disk.Connects directly to TRS-80 level 2 keyboard. Operating and file handling software in ROM 8 commands add 12 powerful functions to level 2 BASIC. No buttons, switches or volume controls. Full control of all functions from keyboard or program. Maintains directory with up to 32 files on each tape. for all TRS 80 \& Video Genie owners

TRS80 version:

Video Genie : 8165

MilirraStule

Simple to build, simple to operate A powerful, full facility computer with all the features you would expect.
Just connect the assembled computer to any domestic TV and power source and you are ready to begin.
Full-sized QWERTY keyboard
6502 Microprocessor Rugged injection-moulded case 2 K RAM 8K HYPER-ROM 23 integrated circuits and sockets Audio
nque in concept the home computer that grows as you do!
Special features include
*FULL SIZEDKEYBOARD
*ASSEMBLER AND BASIC
*TOP QUALITY MOULDED CASE
*HIGH RESOLUTION COLOUR GRAPHICS

Highest performance•lowest price

-48K (8080A)
-16 Colours or shades of Grey - Multiple High Resolution Graphics

Modes ($64 \times 71,129 \times 159,255 \times 335$
*Character mode (60×24)

- Split Screen Modes

DA ${ }^{\text {peranam }}$

PaperTiger 460

The Paper. Tiger 460 sets new standar by incorporating many features previousi only available on units costing much more Features like a specially developed nine wire 'staggered column' head which overiaps the dots of each matrix character with just one pass of the printhead giving a dense, high quality print innage without reducing the units 160 c.p.s. print speed
It also offers a bi-directional logic seeking device to enhance its print optimisation chatacter istics and wide range of 'print versatility' features such as mono or proportional spacing. automatic justification, programmable horizontal and vertical tabbing, and 'fine' positioning for word processing applications

Paper Tiger 560

296

The Paper Tiger 560 is the first printer which bridges the gap between convenitonal matrix and 'daisy wheel' types offering quality printing at a relatively low price.
Full 'width' 132 column printing at 160 c.p.s., a unique nine wire 'staggered' print head, bidirectional printing, an inbuilt tractor feed and a host of selectable leatures set it apart from proinary matrix printers
Plus for even greater versatity a full dot plot graphics
facility if supplied which includes a 2 K
butfer.
$£ 995$

+ VAT

Books \& bits

Books - Manuals - Diskettes - ribbons - Paper

- chips $(2114 \times 2 \quad 1 \mathrm{~K}) £ 4$ pair.

RS232 to Centronics interfaces $£ 40$ etc. etc.
A variety of second-hand computer equipment usually available,
spares, repairs and service.

[^5]

Find out how exhibiling at MICROSYSTEMS ' 82 can work for you by completing and returning the coupon now, to:
Exhibition Manager, MICROSYSTEMS '82, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ.

MICROSYSTEMS ' 82 is sponsored by Computer Weekly. Systems international, Practical Computing, Your Computer, Computer Talk, Ottice Systems, Data Processing and Microprocessors and Microsystems and organised by IPC Exhibitions Ltd.

Please send details of exhibiting at MICROSYSTEMS ' 82 , to:
Name
Position in company
Company
Address \qquad
Tel. No. \qquad

ZX81 16k software

PACK 16/ 1 includes all of:
AIR TRAFFIC CONTROL: Animated radar screen of busy airport shown, you must bring planes into land; INVADERS SELF PLAY; PHONEBOOK - keep friends' and relatives' numbers on cassette; DATE '81 computer dating program. Who will it pick for you? ALL ONLY $£ 4.95$

PACK 16/ 3 includes all of:
INDI 500; video roadracer; DRAUGHTS; Computer Chequers; BATTLESHIPS - nautical warfare on your own computer.
MASTERMIND - Brain Teaser, see if you can beat a microelectronic mind.
ALL ONLY £4.95

The breakthrough you've waited for: PROGRAM THE ZX81 IN ENGLISH!!! With GAMAL 81 you can now.write adventure programs in hours not weeks and with GAMAL 81 you'll have every adventure you'll ever want for the price of one.

Comes on cassette with instruction book, £7.95

PACK 16/ 2 includes all of:

ADVENTURE ATLANTIC: You may become very rich or you may be marooned forever; BREAKOUT: SQUASH PRACTICE; LANGUAGE TRANSLATOR translates any European language to any other; COMPUTAPRINT use this program to predict results of horse races, football pools, etc.
ALL ONLY $£ 4.95$

All our software comes with full instructions and is SAVEd and ready to RUN, no need to spend hours laboriously typing in from books.

CONTROL TECHNOLOGY PERSONAL COMPUTER SCIENCE

ZX - 81

Cassette $11 / 2$

A super value cassette of 16 K and 1 K software written in Machine Code and Basic.
Includes:
React, Invaders, Phantom Aliens, Maze of Death,
Planetlander, I Ching, Hangman, Invaders, Laser Base, rectangle plus more.
ALL ONLY $£ 4.95$

Tapebook 50, Version 3

50 programs for the IKRAM ZX81.
Latest version includes:
SQUASH, BREAKOUT, COLUMBIA, SPLAT, INTEGRATION, CREDIT CARD CALCULATOR, BANK A/C, VATCHECK, TANK BATTLE, TORPEDO, HEXLOADER, BINARY CONVERTER, AND LOTS, LOTS MORE.
Still amazing value at $£ 6.95$ the lot.

PACK $16 / 1+16 / 2+16 / 3$ (any two only $£ 5.95$) ALL THREE ONLY £6.95

BOTH OFFERS ARE ONLY $£ 13.95$ CHRISTMAS SPECIAL OFFER TO ALL ZX81 OWNERS

All prices include VAT and postage and packing
CONTROL TECHNOLOGY, 39 Gloucester Road, Gee Cross, Hyde, Cheshire SK14 5JG 061-368 7558

ZX81 SOFTWARE (16K)

TITLE \& DESCRIPTION
ZX81 BUSINESS SOFTWARE
VIDEO-AD. Continuously rotating display of 16 pages of advertising or other information. Shop window/ classroom/exhibition/seminar.
VIDEO-PLAN. Financial modelling package. Scaled down to fit the ZX81 computer. Space for up to 1000×10 digit numbers plus headings and titles.

ZX81 SERIOUS SOFTWARE

VIDEO-GRAPH. Use the computer
GRAPH81S 5.95
to build pictures and merge them like an identikit.

VIDEO-VIEW. Your own personal and private version of teletext/ viewdata.

CODE
PRICE

AD81S	7.95
(Std) AD81L	9.95
(Lux)	
PLAN81S (Std)	7.95^{*}
PLAN 81L (Lux)	9.95^{*}

(Std
GRAPH81L 7.95 (Lux)
VIEW81S 5.95
(Std)
VIEW81L 7.95
(Lux)
MAP81S
5.95*

VIDEO-MAP. A game with a serious
(Std) MAP81L 7.95^{*} (Lux)

ZX81 GAMES PACKS
FORCE-FIELD. Hostile UFOs attack FORCE 3.95*
a city. You control the force field which destroys their bombs.
SPACE-RACE. Party game for up to SPACE eight players.
FOOTBALL-LEAGUE. For the FOOT 3.95
student of football. Simulate an entire season's play.
TEST-MATCH. For the student of TEST 3.95 cricket. Select your teams and see who wins.
STOCK-MARKET. Buy and sell STOCK 3.95* your way to a fortune.
*Not suitable for ZX80 with 8K ROM.
Send large s.a.e. for further details.

To: Video Software Ltd. Stone Lane, Kinver, Stourbridge, W. Midlands. DY7 6EQ			ORDER FORM YC12	
CODE	TITLE	QTY	PRICE	TOTAL
Cheque/PO No. For				
NAME				
ADDRESS ..				

CASSETTE ONE
 PROGRAMS FOR ZX81

"I had your Invaders/React cassette . . . I was delighted with this first cassette."
P. Rubython, London
"Thanks for your Cassette One you sent me - some excellent games at a very cheap pricel"
P. Rushton, Leeds

MACHINE CODE	BABIC
REACT	I CHING
INVADERS	MASTERMIND
PHANTOM ALIENS	BASIC HANGMAN
MAZE OF DEATH	ROBOTS
PLANET LANDER	
BOUNCING LETTERS	
BUG SPLAT	

Ideal if you have a 1 K ZX81 because:

- All the ACTION programmes are in machine code
- No-one else sells machine code programs as cheaply
- Quality cassettes (FUJI or TDK) are used
- The sequence of 11 programs is repeated 4 times, just in case a program won't load
- Cassette One is posted First Class
- Side 2 contains large screen versions of INVADERS and MAZE OF DEATH, ready for when you get the 16 k RAM pack

Send $\$ 3.80$ to
Michael Orwin, 26 Brownlow Road, Willesden, London NW1O 9QL
P.S. Previous customers who did not get the large screen versions (for 16K) can get free upgrade instructions by sending me a sae.

EHBOMASOMIC electronics
 DEPT Y.C., 48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD 100 yds FROM ARCHWAY STATION \& 9 BUS ROUTES

 TELEPHONE 01-263 94932639495

 TELEPHONE 01-263 94932639495}

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPUTERS

32K SYSTEMS AVAILABLE FROM ONLY £1,499
 CHROMASONICS PROGRAMABLE SOUND KIT 524.94 SOUND KIT (FITTING EXTRA)
Utilises $280,12 \mathrm{~K}$ level II Basic, Integral Cassette Deck, UHF O/P, 16 K RAM, all TRS80 features. Simply plugs into monitor or UHF TV. With V. U. Meter. NOW WITH LOWER CASE AS STANDARD f279 LOWER CASE KIT IFITTING EXTR \qquad COLOUR KIT (FITTING EXTRA) \qquad
\qquad $16 \mathrm{~K} / 32 \mathrm{~K}$ RAM CARD . NEW GENIE II NOW AVAILABLE 127.50 $\begin{array}{r}\text { E } 34.95 \\ \\ \hline\end{array}$ f2151 185 .594129
£299.00

APPLE

APPLE II PLUS
Apple
II plus

48 K Machines $\mathbf{£ 5 9 5}$

Disk Drive with Controller $£ 349$
Disc Drive without Controller $£ 289$
Colour Card $\mathbf{£ 6 9}$
Graphics Tablet $\mathbf{£ 4 2 5}$
Silent type printer $£ 199$
48K system available from $£ 1,786$

- UK101 UK 101 Kit Inc 8K memory	£125
Ready Built Inc 8K memory	£175
Complete in case	£199
4 K Expansion 8×2114	£10
Memory Expansion Kit	
Printer Interface	$£ 24.50$
Sound generator plus	
PIO kit	£29.95
Cases	£19.95
NEW * NEW * NEW	
Chromasonic Sound Kit	$£ 24.50$
Colour Kit	$£ 69.95$
32K Dynamic Memory Expansion Kit Inc. Demo Tape \& Full Documentation. Send for details	£89.95
PIO and Eprom programmer kit	± 24.50

TANTEL

PRESTEL BY TANTEL

COMMUNICATION AT YOUR FINGER TIPS FOR BUSINESS \& HOME. UP TO DATE INFO
180,000 pages of information on Travel, News, Investment, Holidays,
Hotels Etc., Etc
only £159
Hotels Etc., Etc
only £159
TANTEL IS POST OFFICE APPROVED. SEND FOR DETAILS DEMONSTRATION AVAILABLE AT OUR SHOWROOM

EPSON MX80 $£ 359$
Dot-matrix printer with Pet graphics interface. Centronics parallel and serial. Pet and Apple compatible. True bidirectional, 80 cps .
EPSON MX80 FT/ 1 E399 Dual single sheet friction and tractor, 9 wire head, true descenders.

INTERFACES AND CABLES

for Apple II, Pet
TRS80, RS232, UK 101 Sharp Superboard all available.
EPSON MX80 FT/ 2 £440 An FT/ / with high resolution graphics.
EPSON MX100 $£ 570$
Friction and tractor feed, high resolution graphics, wide carriage 15% inches.
SEIKOSHA GP80A £199
Dot matrix $5 \times 7,80$ columns 30 cps . graphics, double width characters.

MONITORS

V

 75 £19910
24.50

E29.95
19.95
24.50
69.95
24.50

ALL ITEMS CARRY A ONE YEAR GUARANTEE

BARCLAKCARD	Please add VAT 15% to all prices Postage on computers printers and cassette decks charged at cost, all other items
P\&P 30p. Place your order using your Access or Barclaycard (Min tel order $£ 5$) Trade and export enquiries welcome.	

VISA

specification includes:-

- IEEE-488 AH1, L1, E1 Interface
- Full A4 format - $700 \mathrm{~mm} / \mathrm{s}$ max. writing speed - Suitable for direct connection to PET and any other computer
- Optional software including character generator available

Price including IEEE Interface $\mathbf{£ 5 9 6}$ + vat

J.J. LLOYD INSTRUMENTS LTD.

Brook Avenue, Warsash, Southampton, SO3 6 HP England. Tel: Locks Heath 4221 (STD 04895).

Telex: 477042 - JAY JAY - SOTON

ADVERTISEMENT INDEX

THE ATOM DEALER LIST

Computer stores are stocking Atoms - there's a list below. If there isn't one near you, fill in the coupon and we'll rush an Atom to you within 28 days.

Granite Chips Ltd. Aberdeen 22863. Inismor Holdings, Ayr 58602. Micro Style, Bath 334659. Broadway Elect, Bedford 213639. Micro-C, Birmingham 021-233-1105. Owl Computers, Bishops Stortford 52682. Microcentre, Bognor Regis 827779. Eltec Services, Bradford 491372. Gamer, Brighton 698424. Electronic Information Systems, Bristol 428165, Micro-C, Bristol 0272-650501. Cambridge Comp Store, Cambridge 65334. Rhombus, Cambridge 312953. Cardiff Micros, Cardiff 373072. Bellard Elect. Chester 380123. Vixon Computer Systems, Cieethorpes 58561. Customised Electronics Ltd., Cleveland 247727. Emprise, Colchester 865926. Ibek Systems Coventry. Lendac Data Systems, Dublin 37052. Silicon Centre, Edinburgh 332 5277. Highland Microcomputer, Forres 73505. H.C.C.S. Associates, Gateshead 821924. Mikrotronic, Germany 053172 223. Esco Computing, Glasgow 204 1811. Computer Shack Ltd., Gloucester 584343.Control Universal, Harlow 31604. Unitron Elect, Haslington. Castle Elect., Hastings 437875. Currys Micro Systems, High Wycombe 36431.Northern Micro, Huddersfield 892062. Customised Electronics, Leeds 792332. Micro-C, Leeds 446601 . D.A. Computers, Leicester 549407. Micro-C, Leicester 546224, Microdigital, Liverpool 2360707 . Barrie Elect, EC3 4883316. Eurocalc, London 729 4555-9. Group 70, E18 352 7333. Microage, North London 9597119. Ragnorak Electronic Systems, E2 981 2748. Sinclair Equip. Int. (Export), W1 235 9649. OFF Records, SW12 674 1205. Technomatic, NW10 7230233. Micro-C, Luton 425079. Micro-C, Ace Business Comp, Maidstone 677947, Manchester 834-0144. NSC Comp Shops, Manchester, 8322269. Customised Electronics, Middlesborough 247727. Compshop, New Barnet 441 2922. Micro-C, New Malden 949 2091. Newbear Computing Store, Newbury 30505. H.C.C.S., Newcastle 821924. Newcastle Comp Services, Newcastle 761158. Anglia Comp Centre, Norwich 29652. Leasalink Viewdata, Nottingham 396976. Micro-C, Nottingham 412455. J.A.D. International Services, Plymouth 62616. R.D.S. Electrical, Portsmouth 812478. Computers for All, Romford 60725. Intelligent Artifacts, Royston Arrington 689. Owl Computers, Sawbridgeworth 723848. Computer Facilities, Scunthorpe 63167. Datron Micro Centre, Sheffield 585 490. Superior Systems, Sheffield 755005. Micro-C, Southampton 29676. Q-TEC Systems, Stevenage 65385. 3D Computers, Surbiton (01) 337 4317. Computer Supplies, Swansea 290047. Abacus Micro Comp., Tonbridge Paddock Wood 3861. Bellard Electronics Ltd., Upton 380123. Northern Comp, Warrington 601683. Compass Design, Wigan Standish 426252. Datex Micros, Worthing 39290.

SEE OURADVERTISEMENT ONPAGE

The Atom is a machine to be used. Every day, day after day. It's a full function machine-check the specification against others. It's rugged, easy to operate built to last and features a full-size typewriter keyboard.
Just look at some of the features!

- More hardware support than any other microcomputer - Superfast BASIC-can be updated to BBC BASIC if required - High resolution and comprehensive graphics ideal for games programmers and players* \oplus Integral printor connoction* ${ }^{*}$ - Software available for games, education, maths, graphs, business, word processing, etc - Other languages: Pascal, FORTH, LISP - I/O port for control of external devices - Built-in loudspeaker © Cassette interface - Full service/repair facility • Users club

Expanded vericon conly

Optional Extras

- Network facility with Econet - Disk \bullet PAL UHF colour encoder - Add-on cards include 32 K memory, analogue to digital, viewdata VDU, disk controller, daisywheel printer, plus many, many morel © Power supply

FREE MANUAL

The Atom's highly acclaimed manual comes free with every Atom and leaves nothing out In just a while you'll be completely at ease with your new machinel Within hours you'll be writing your own programs.

YOU AND YOUR CHILDREN

More and more schools are buying Atoms.
More and more children will leam on an Atom You can give them that extra familiarity with an Atom in the home.

4a Market Hill.
CAMBRIDGE CB2 3NJ

VIC 20

See it here, buy it now AT YOUR LOCAL BRANCH TODAY!

[^0]:

 Winchenter Woking Wolverhampton-Wood Grees. Woolwich - Worsester- Worthing. Wrexham York.

[^1]: 10 FOR $A=1$ TO 3: FOR $B=1$ TO 2
 20 POKE 4514,1: FOR C= 1 TO 15
 30 POKE 4513,150: USR(68)

[^2]: 5 FOR T= 1 TO 5
 10 FOR A $=10$ TO 1 STEP -1
 20 POKE 4514, A
 30 FOR B $=0$ TO 255 STEP A
 40 POKE 4513,B: USRI68)
 50 NEXT B,A: USR(71)
 60 NEXT T

[^3]: Post Code
 DATALECT Computers. (Formerly Petalect).
 33/35 Portugal Road, Woking, Surrey GU21 5JE

[^4]: 210 IF PY $=18$ AND A $=5$ THEN GOTO 400
 220 IF PY $>=19$ THEN GOTO 426
 390 IF TNKEY $=$ " 6 " THEN LET $P Y=P Y+1$
 310 IF INKEY $=$ " 7 " THEN LET $P Y=P Y-1$
 NEXT A
 NEXT Q
 STOP
 PRINT AT 9, 1; "LANDED", Q; " ATTEMPTS"
 STOP
 420 PRINT AT 0, 1; "CRASHED"
 430 STOP
 FOR A MORE ADVANCED GAME CHANGE LINE 303 AS FOLLOWS:-
 309 TF TNKEYS - "6" THEN LET PY $=\mathrm{PY}+2$

[^5]: 29 Belvedere, Lansdown Road, Bath BA1 5HR
 Telephone: (0225) 334659

