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Abstract: Traffic control requires looking at traffic models of all types in finer details. This paper is to 
investigate lane-wise flow-density (or equivalently speed-density) relationship which is traditionally 
called Fundamental Diagram (FD) over a stretch of homogeneous freeway section using the microscopic 
NGSIM data. Particularly, it investigates how a homogenous traffic further drop (breakdown) through 
data analysis and modeling. The breakdown of a homogenous traffic is understood as the significant flow 
drop and density increase with noticeable shock-wave back-propagation. The corresponding density is a 
generalization of the critical density for traffic breakdown from free-flow. Variable structure models with 
two limbs of the inverse λ − shape are proposed to model the homogenous flow and its further drop. A 
special Generalized Polynomial Model (with fraction coefficients) is also proposed for the right limb. 
Properly aggregated NGSIM data are used to fit the model with results compared with some other models 
over time at fixed location using Root Mean Square Errors (RMSE) as measure. Principles for 
time/distance aggregation of individual vehicle trajectories to macroscopic traffic state parameters are 
proposed. 

Keywords: Fundamental Diagram, variable structure modeling, speed-density relationship, equilibriums 
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1. INTRODUCTION 

In the nominal work of Greenshields (1934), the 
Fundament Diagram (FD) was defined and used as the 
relationship between traffic flow q  and density ρ  for an 
equilibrium traffic state. Sine then, several works have 
been conducted to establish a static relationship between 
flow and density in theory and in empirical modelling with 
filed data fitting. It is generally recognized that FD is 
location dependent due to road geometry and traffic 
characteristics. FD may have several equivalent forms: 
flow-density (occupancy) which is concave, speed-density 
(occupancy) which is monotone decreasing, and speed-
flow with two foliations: upper limb and lower limb. It is 
noted that the speed- /u c (volume/capacity ratio) 
relationship in HCM (Highway Capacity Manual) is 
equivalent to a speed-flow relationship. Data aggregation 
level in time for modelling determines the application of 
the FD model: short time aggregated data leads to model 
for traffic operation, and long time aggregated data lead to 
model for planning (Skabardonis, 1977). Although some 
models are for planning purpose, some are for operation, 
and several models could be used for both purpose 
depending on the time aggregation level. In fact, several 
models calibrated on the same set of field data could 
produce the similar outputs for the same input data with 
similar level of model mismatch error such as Mean Square 
Error (MSE). A good model should be flexible enough to 
capture the intrinsic functional relationship for a range of 
field data.  

Lighthill and Whitman (1995) investigated the FD in 
q ρ−  (flow-density) plane and suggested that the FD 
should have a flat top as depicted by Greenshields (1934). 
Del Castillo et al (1995) considered the functional form of 
the speed-density relationship. The FD can be obtained 
from q v ρ= ⋅ which is true if v is distance means speed 
and if the data aggregation level for the three are the same. 

The FD is the basis of several traffic flow modelling 
approaches. A generally accepted model is the macroscopic 
LWR model (Lighthill and Whitham, 1955) which has 
been used for traffic simulation and control. For practical 
calculation, the model is usually simplified based on the 
assumption of the existence of an FD. Thus the speed is 
eliminated from the LWR model with the density left as the 
only traffic state variable for the dynamic system, as in the 
Cell Transmission Model (CTM) (Daganzo, 1994, 1995). 
A primary result of that paper is that the CTM is equivalent 
to the LWR hydrodynamic model based the existence of 
the FD and the assumption of homogeneous highway 
traffic. For non-homogeneous highway traffic (phase 
transition), the equivalence would be difficult to prove.  

Beside the importance for model simplification, FD is also 
used to estimate some critical traffic parameters such as 
capacity/critical flow, critical/jammed density, etc. 
provided that the FD truly reflects the intrinsic traffic 
characteristics. 

Controversial opinions regarding the existence and forms 
of the FD are well-known. Different forms of FD have 
been suggested: (a) the simplest form - a triangle; (b) 
reversed parabolic and reversed Gambell; and (c) a 
reversed λ  etc. However, it is generally agreed that 

( )q q ρ= , if it exists, is a concave function of density ρ
defined in [ ]0, Jρ  ( Jρ − jam density) and boundary 

conditions ( ) ( )0 0Jq q ρ= = ;  and the corresponding 
speed-density relationship is monotone decreasing. 

Critical density cρ  is originally defined as the density at 
which free-flow traffic is to breakdown. It is well-known 
that traffic may have infinite number of equilibrium state 
which can be described as homogeneous flow sustainable 
for certain period of time with mean speed within the 
interval (0, fv �� ( fv − free-flow speed), in which speed and 
density (thus flow) are close to some constants. However, 
the traffic could further breakdown (or transition) from one 
equilibrium state to another with lower flow. An strong 
evidence for this is the shockwave observed through 
NGSIM data which are collected in peak hours (Lu and 
Skabardonis, 2007). Traffic breakdown from free-flow is to 
transit from free-flow (a special homogenous flow) to a 
congested flow. The objective of active traffic control is to 
achieve the following in the order of priority and 
feasibility: (i) to smoothly transit to equilibrium state with 
higher flow; (ii) to keep it a homogenous flow (without 
shockwave); (iii) to smoothly transit to a homogeneous 
traffic with lower flow if it is unavoidable (without 
shockwave). For this purpose, it is not only necessary to 
understand how the traffic transit (breakdown) to a 
equilibrium state with lower flow, but also necessary to 
understand the mechanism and characteristics how to 
transit smoothly from one equilibrium state to another. The 
break-down density is denoted as h

cρ  for homogenous 
traffic state h, which is understood as the density with 
abrupt flow drop and density increase, such as, with shock-
wave back-propagation.  

The most accepted FD model from a practical traffic data 
viewpoint is a reversed λ  shape with the two limbs, which 
has also been observed in NGSIM data analysis. The left 
limb of the FD corresponds to the homogenous-flow (free-
flow as a special case) which is close to a straight line and 
it matches pretty well with practical data. However, 
different ideas arise as to what shape the right limb 
corresponding to congested traffic should look like. Notice 
the following facts: (a) practical data are scattered for the 
congested flow as shown by many studies; (b) jammed 
density is fixed as generally accepted, for example, 

230Jρ = vehicle per lane per mile (vplpm), at which 

( ) 0Jv ρ =  and ( ) 0Jq ρ =  must hold; and (c) the other end 
of the right limb has to intersect with the left limb at 
critical density and maximum flow. Usually, the scattered 
data do not fit the right limb well with those constraints if 
the model is not properly chosen. To solve the problem, 



    

this paper proposes several choices for modelling the right 
limb. 

The main contributions of the paper are: (a) A Generalized 
Polynomial Model with some non-integer coefficients is 
proposed for v ρ−  model, which produce concave q ρ−
relationship; Variable structure model is proposed for the 
reversed λ  shape FD for homogenous traffic flow. The 
left limb includes linear and parabolic curves, and the right 
limb includes linear, Generalized Polynomial, and Edie 
models; (b) Those variable structure models are compared 
using the properly aggregated NGSIM data for both v ρ−
and q ρ−  relationships using Root-Means- Square Error 
(RMSE) as the performance measure; (c) The density range 
for further breakdown of the  homogenous traffic recorded 
in NGSIM H

cρ  is investigated with the available data sets. 
It shows that the range is [ ]90,120  per-veh-per-mile for the 
recorded saturated traffic; this is might be significantly 
higher than the generally believed critical density range for 
the free-flow to breakdown;; and (d) The impact of the 
value for h

cρ  in the range on modelling is investigated with 
RMSE for comparison of different model combinations. It 
shows that this value is different, though within the range, 
in times as well as in locations for the same model. 

It is noted that Edie (1961) also suggested using a variable 
structure model to represent the traffic breakdown near 
maxim density mρ , where from field data, [ ]75,100mρ ∈
which was close to what is observed with NGSIM data. 

The paper is structured as follows: Section 2 review 
previous work on Fundamental Diagram modelling and 
application; Section 3 proposes a Generalized Polynomial 
Model and investigate the temporal behaviour of several 
FD models for the same location using properly aggregated 
NGSIM data; Section 4 establishes some variable structure 
models which are calibrated using properly aggregated 
NGSIN data. Section 5 is for concluding remarks. 

2. LITERATURE REVEW 

Many models exist for modelling the static v ρ−  or q ρ−
relationship. Although the function expressions are 
different, they are more or less similar in the domain 

[ ]0, Jρ ρ∈ . However, some of them do not satisfy the two 

boundary conditions ( ) ( )0 , 0f Jv v ρ= = simultaneously. 

2.1 Models for Speed-Density ( v ρ− ) relationship 

(1) Edie Model 

Edie (1961) Showed that the Greenberg model (1959) 

lnm
J

v V ρ
ρ

� �
= � �

� 	
                                     (2.1) 

can be obtained by integration of the following car-
following model 

( ) ( ) ( )( )
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M − vehicle mass 
1λ − driver sensitivity character coefficient 
tΔ − average time lag, a constant, for driver-car system
( ) ( )1,n nx t x t+ − the coordinate of front vehicle and the 

subjective vehicle with respect to the an inertia coordinate 
system at time t. ( ) ( )1n nx t x t+−  is the distance headway. It 
is noted that a constant tΔ  would not affect the integration. 
Using the relationship between average distance headway 

and density 
1
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y
x x

ρ
+

= =
−

, the boundary condition 

( ) 0Jv ρ =  and 1 /mV Mλ= , (2.1) is obtained. General 
Greenberg model is obtained by adding parameters for data 
fitting flexibility: 

( ) 1 2 ln
J

v g g ρρ
ρ

� �
= + � �

� 	
                        (2.2) 

It is pointed out the flaw of the Greenberg model is  

0
lim ln J

mV
ρ

ρ
ρ→

� � = ∞� �
� 	

which means the model is not suitable for sparse traffic. 
Edie suggested a further improvement by starting the 
following microscopic car-following model for the 
uncongested traffic  
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with the boundary condition  

( )
1

1 10  (free-flow)  if  0 or infinite spacingf
n n

v v
x x y+

= = =
−

One can reach the following model noticing the density and 
headway relationship 1/ yρ = : 
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Or equivalently 

expf
m

v v ρ
ρ

� �−= � �
� 	

which is exactly the Underwood model (1961). 
my − the spacing of maximum flow which is deduced by 

minimizing the ( )q v ; mρ − the density of maximum flow. 
Parameters 

1 2  and  w w  are added for flexibility in data 
fitting: 

( ) 1 2exp
J

v V w wρρ
ρ

� �
= = − +� �

� 	
                          (2.3)                



    

It is strictly concave for [ )0,2 mρ ρ∈ . 

Those two can be combined in one model as: 

( )
1 2

1 2

exp ,   

ln ,     

J
J

J
J

w w

v
g g

ρ ρ ρ
ρ

ρ
ρ ρ ρ
ρ


 � �
− + ≤� � �

� � 	= �
� �� + >� ��
� 	


(2) The following polynomial model is cited in (Zhang, 
1999) as the one-parameter polynomial model: 

1
n

f
J

v v ρ
ρ

� �� �
� �= − � �� �� 	� 	

                         (2.4) 

where  fv - the free-flow speed; Jρ  - the jammed density. 
1n = is the Geenshields model (Geenshields , 1934). This 

model can be considered as a special case of the model 
proposed in this paper in Section 3. 

(3) An exponential model used in (Hegyi et al, 2002): 

( ) 1exp
a

f
c

V v
a

ρρ
ρ

� �� �
� �= − � �� �� 	� 	

                        (2.5) 

fv −  free-flow speed; 
a −  model parameter;  

cρ −  critical density, the same as the mρ  used above.  
It generalizes somehow the Underwood model. 

(4) Some other models such as BPR model and Van Aerde 
model used in planning are referred to Skabardonis and 
Dowling (1997) and Van Aerde (1995).                                     

3. GENERALIZED POLYNOMIAL MODEL FOR ( )v ρ

Since the NGSIM data is microscopic from video camera 
instead of inductive loops, vehicle count and distance mean 
speed can be estimated directly. The v ρ−  relationship 

( )v ρ  is investigated. A new Generalized Polynomial 
model with non-integer power for FD is proposed for 

( )v ρ  with unit-sum and non-negative constraints on the 
coefficients.  

3.1 A Generalized Polynomial FD Model 

It can be shown that the most of the previous models can 
be approximated by or generalized to the following 
polynomial with non-negative coefficients and non-integer 
power: 

0

( ) 1

0, 0,  0,1,...,

ibN

m i
i J

i i

v V a

b a i N

ρρ
ρ=

� �� �
� �= ⋅ − � �
� �� 	� �

> ≥ =

�                           (3.1) 

To avoid any ambiguity, ,   1,...,ib i N=   are assumed to be 
known real numbers and  ,  for i jb b i j≠ ≠ . (3.1) is called 
Generalized Polynomial FD Model. The nonnegative 
coefficients ( )0 1, ,..., Na a a  are to be determined by fitting 
from practical data. In practice, one could choose lower or 
higher order instead of  6.  

3.2 Concavity and Boundary Conditions 

Concavity is an important property for FD for the 
following reasons: (a) modelling of the static relationship; 
(b) understanding average driver behaviour; and (c) its 
potential application in traffic control. The concavity 
holding for previous models is also true for the Generalized 
Polynomial FD model (3.1) in q ρ−  relationship for 

( ]0, Jρ ρ∈ . In fact, it is easy to calculate that  

( )2

2 0  for  >0
d q

d
ρ

ρ
ρ

<

which means that  ( ) ( )q Vρ ρ ρ= ⋅  is strictly concave for 

>0ρ  since the coefficients ( )0 1, ,..., Na a a  are all 

nonnegative. It is clear that ( )0 fv v=  the free-flow speed. 

( ) 0Jv ρ =  leads to the constraint that 
0

1.
N

i
i

a
=

=�  It is thus 

called Generalized Polynomial Model with Unit Sum 
Coefficients (GPMUSC). Intuitively, this model is 
generalization of previous models (2.1 – 2.5) if one 
considers Taylor series approximation to order N. 

Theorem 1. The generalized polynomial model (3.1) for 
the flow-density ( q ρ− ) relationship is strictly concave 
for  >0ρ .  

3.3 A Specific Model for ( )v ρ
In practice, (3.1) may be too general. A special case of the 
Generalized Polynomial FD Model is proposed. It is noted 
that 1

J

ρ
ρ

<  for most interested cases, the power β  plays a 

significant role in , 0
J

β
ρ β
ρ

� �
>� �

� 	

 since 

,   1
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J J

J J
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β

ρ ρ β
ρ ρ

ρ ρ β
ρ ρ

� �
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� 	

� �
<� �

� 	
To exploit such characteristics for modelling the traffic 
variation in transition phases, it might be necessary to 
include terms with non-integer power. Based on this 
consideration, the following model is proposed for ( )v ρ
with the exponents set to some known values: 

( )
0.3 0.6 2 3 4

0.3 0.6 1 2 3 4

0.3 0.6 1 2 3 4

0.3 0.6 1 2 3 4

1

1
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a a a a a a
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ρ
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� � � � � � � � � � � � � �
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(3.2) 



    

  
Linear Least Squares Method with non-negativity 
constraints (Lawson and Hanson, 1974) can be used for 
model fitting. For model calibration, one parameter is to be 
eliminated using the unit sum constraint, say, 1a  with  

( )1 0.3 0.6 2 3 41a a a a a a= − + + + +

0.3 0.6 2

0.3 0.6 2

3 4

3 4

0.3 0.6 2 3 4
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(3.3) 

which can be estimated using Least Square Method. It is 
noted that the proposed model generalizes several existing 
models based on Taylor expansion. It opens a new class of 
possible models for FD while keeping the concavity of 
q ρ−  relationship. 

4. VARIABLE STRUCTURE MODELING 

This section presents some variable structure models for 
the reversed λ  shape FD. The traffic drops from 
homogeneous flow happens between the two limbs. Edie 
model, and the GPMUSC are used to fit the left and right 
limbs of the reversed λ  shape FD. 

4.1 Reversed λ  Shape FD 

The simplest reversed λ  shape FD is to adopt straight line 
segment for the two limbs as in  Figure 1. 

Figure 1. Reversed λ  Shape FD with both limbs as 
straight line (constant slope) 

With this shape, the slope of the left limb is the 
homogenous-flow speed hv . Several possible models for 
the left and right limbs are listed bellow. 

Left Limb Models:

(1) Linear model: 
1 1 ,   h

cq a b ρ ρ ρ= + ≤
(2) Parabolic model: 

2 ,   h
cq α βρ γρ ρ ρ= + + ≤

Right Limb Models:
(1) Linear model:  

2 2 ,   h
c Jq a b ρ ρ ρ ρ= + < ≤

(2) GPMUSC Model for h
c Jρ ρ ρ< ≤  as in (3.2); 

(3) Edie model for  h
c Jρ ρ ρ< ≤  as in (2.3); 

The combinations of the left and right limb with the above 
alternatives provides 6 models.  

4.2 Data for Model Fitting 

NGSIM data are used to fit them. Since current NGSIM 
data were collected in peak periods for congested traffic, it 
was not for a free-flow breakdown directly. The model 
calibration will focus on saturated traffic due to data 
availability. Since the data need to contain homogenous-
flow (not necessarily free-flow) traffic as well as 
shockwave, the data set for US101 Lane 1 in 3 time 
intervals are used including that for Figure 2. The distance 
aggregation is 170m and time aggregation is 10s which 
determines the size of the box  A (aggregation level in time 
and space) in Figure 2. 

Several time and distance aggregation intervals have tested 
in aggregating the vehicle-by-vehicle NGSIM data. 
Certainly, longer time and distance intervals for 
aggregation will generate neater static relationship but will 
swing further away from real-time control perspective. The 
most important criteria for the selection of time and 
distance intervals are as follows: (a) as short time and 
distance interval as possible to reduce time delay; (b) but 
they need to be appropriately long such that each interval 
has adequate data points so that traffic state parameters 
( ), ,v qρ are well defined; (c) noise level is acceptable; and 
(d) the macroscopic relationship between traffic state 
parameters hold: q vρ= . Based on those principles, the 
following aggregation intervals are suggested:  

• time aggregation interval:  10~20s 
• distance aggregation interval: 150~ 200m.  

In those levels, distance mean speed, density and thus flow 
are well-defined and the noise reduction through 
aggregation is acceptable. Data aggregation over distance 

DΔ  and time tΔ  is equivalent to shrink all the trajectory 
points within the rectangular box A with sides DΔ  and tΔ
into one point as shown in Figure 2 with Data Source: 
NGSIM data an US-101; Time: 07:50am-08:05am; Lane 1. 

It is noted that the original NGSIM data update rate is 
10Hz. The basic parameters to be estimated are distance 
means speed v  and density ρ  for each lane. The lane-flow 
q  is calculated from the former.  



    

The data are aggregated within the rectangular box as 
follows: vehicle count in that box divided by distance is the 
density ρ ; the average of speed trajectories corresponding 
to those distance trajectories within the box is the distance 
mean speed v ; and the flow q  is then calculated as 
q vρ= ⋅ . It is noted that data in box A should reflect 
shockwave, and data in box B homogenous flow. 

Figure 2. Upper/lower plot: individual vehicle speed 
/distance trajectories; distance trajectories were used for 
aggregation in a box with sides DΔ  and tΔ  to estimate 
traffic state parameters. 

(1) Add the boundary condition under the assumption that 
190Jρ = per/lane/per/mile:  

( ) ( )0 190 0v v= =

4.3 Model Fitting and Observations 

The following facts are observed from model fitting using 
aggregated data: 
(1) Break down density h

cρ  is in a range 

[ ],1 ,2, 90,120h h
c cρ ρ� � =� � . The value of h

cρ  which are 
different from lanes to lane; 
(2) Selection of h

cρ  is important for two reasons: 
a. if it is not selected properly, traffic breakdown at 

h
cρ  will not show up; 

b. h
cρ  selection affects estimation error for all the 

models with different magnitudes;  
(3)  In figure 3 and Figure 4, h

cρ  is chosen such that the 
RMSE is minimum. Such a selection is possible because 
density has discrete value in the interval of interests; 
(4) 95h

cρ =  veh/lane-mile   seems to be more reasonable 
than other choices; 

It can be seen that for speed error, linear model for right 
limb is worse. However, for flow error, there is no 
significant different between the four models. 

Figure 3.  Variable Structure Model fitting from data set 
US101 7:50~8:05am Lane 1 in the first section of 170m; 

95h
cρ =  with time aggregation interval 10 steps (1s). 

Figure 4. Variable Structure Model fitting from data set 
US101 Lane 1 and combined three time period: 0750-
0805am,  0805-0820am,  0820-0835am; in the first section 
of 170m; 115h

cρ =  with time aggregation interval 10s; 



    

Similarly, for speed estimation error, linear model for right 
limb is worse than other three. However, for flow 
estimation error, there is no significant difference between 
the four models. It can also be observed that using data 
from different time periods for the same location leads to 
different estimation error. This, together with the difference 
in model coefficients, suggests that FD might not be static 
in time. 

Figure 5.  FD for homogenous flow; hv  is the speed of the 
homogenous flow; breakdown density for a homogenous 
flow falls into a range ,1 ,2,h h

c cρ ρ� �� �  which is different in 
time and locations. 

4.4 Practical Shape of FD 

Based on the model variable structure model fitting for the 
reversed λ  shape model, a general shape of a practical FD 
is proposed in Figure 5.  With density in the 
range ,1 ,2,h h

c cρ ρ� �� � , the homogenous traffic would have 
higher probability to breakdown.  
 It would be interesting to analyze analytically the 
physical meaning of the tangent for the right limb of the 
FD curve (Figure 5). Starting from q v ρ= ⋅   and using the 
difference rule in mathematics, it is obtained that

q v
q v v
q vv

ρ
ρ ρ

ρ
ρ ρ

= ⋅
Δ = Δ ⋅ + ⋅ Δ
Δ Δ= + ⋅
Δ Δ

It is clear to have the following: 

General Physical Meaning for the Tangent of Right Limb 
in FD:  the tangent in the right limb is the distance means 

speed v  plus an increment term v ρ
ρ

Δ
Δ

  which must be 

negative since 0v
ρ

Δ <
Δ

.  

5.  CONCLUDING REMARKS 

FD describes the flow-density q ρ− (speed-density v ρ− ) 
relationship. FD is very important in understanding 
macroscopic traffic model and critical for traffic control 
such as ramp metering and VSL in model simplification, 
capacity estimation, and prediction of traffic drops from a 
homogenous flow, of which a special case is traffic direct 
breakdown from free-flow. This paper proposed a 
generalized polynomial model for the v ρ− (or q ρ− )
function which naturally satisfy the boundary conditions. 
Properly aggregated NGSIM data for saturated traffic are 
used for model calibration and comparison. Linear and 
parabolic lines are used for left limb; Edie, linear and 
GPMUSC are used for right limb. RMSE indicates that 
they are not significantly different for q ρ−  relationship 
although the GPMUSC is slightly better for v ρ−
relationship. The linear mode is not as good for the right 
limb of v ρ− . It thus opens a new class of models for 
further investigation. 

Proper length of the distance and time intervals used for 
data aggregation from microscopic data to macroscopic 
data are very recognized important. Too short distance 
interval will not generate meaningful traffic parameters 
such as density, distance mean speed and flow ( ), ,v qρ ; too 
long distance would smooth out traffic characteristics such 
as shockwaves and flow-drops. The following principles 
are proposed for traffic data aggregation: (a) as short time 
and distance interval as possible to reduce time delay (for 
traffic control purpose); (b) but they need to be long 
enough such that each interval has adequate data points so 
that traffic state parameters ( ), ,v qρ are well defined; (c) 
noise level is acceptable; and (d) the macroscopic 
relationship between traffic state parameters hold: q vρ= . 
Obvious, there is trade-off in the selection of such intervals 
in practice. 

For NGSIM (peak hour traffic) vehicle-by-vehicle tracking 
data with 10Hz update rate, the distance interval should be 
between 150~200m and time interval be 10~20s. 



    

Different model coefficients determined through Least 
Squares fitting from data at the same location but different 
time periods and the same time periods but different 
locations indicate that the FD is neither static in time nor 
homogenous in distance. This is also enhanced by the fact 
that the estimation errors are different for the same model 
but data from different locations of the same time period, 
or the same location but different time periods. How those 
results would mean for traffic modelling and control needs 
further consideration. 

All the static models only represent some static 
relationships between speed (flow) and density. It can only 
represent the traffic in an equilibrium state. Even in this 
case, data has to be properly aggregated over time for fixed 
location to induce such a relationship. Thus the use of use 
of FD must be under certain conditions. However, FD 
reflects to some extent the driver behaviour which could be 
incorporated in dynamic model in the future. The eventual 
purpose is to use some aspects of the FD in traffic control 
design as well be addressed in the future. 

6. ACKNOWLEDGEMENT 

This work was supported by the Federal Highway 
Administration (FHWA) Exploratory Advanced Research 
Project (Cooperative Agreement DTFH61-07-H-00038) 
with Match Funding from the California Department of 
Transportation (Caltrans) TO6224. The contents of this 
report reflect the views of the authors who are responsible 
for the facts and the accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or 
policies of FHWA and the State of California. This paper 
does not constitute a standard, specification, or regulation. 

REFERENCES 

Alexiadis, V., Colyar, J. Halkias, J., Hranac, R., and 
McHale, G. (2004). The Next Generation Simulation 
Program. ITE Journal, Vol. 74, No. 8, p. 22-26.   

Del Castillo, J.M. and Benitez, F.G., (1995). On the 
functional form of the speed-density relationship. Part 
Two: Empirical investigation. Transportation Research B 
29, 391-406. 

Daganzo, C. F. (1994). The Cell Transmission Model: A 
Dynamic Representation of Highway Traffic Consistent 
with the Hydrodynamic Theory. Transportation Research 
-B, Vol. 28, No. 4, 1994, pp. 269-287.  

Daganzo, C. F. (1995). The Cell Transmission Model, Part 
II: Network Traffic. Transportation Research -B, Vol. 29, 
No. 2, pp. 79-93.  

Edie, L. C., Car following and steady state theory for non-
congested traffic, Operations Research, 9, (1961), p66-76 

Greeberg, H., (1959). An analysis of traffic flow, 
Operations Research, Vol. 7, no. 1, p79-85 

Greenshields, B. D., (1934). A study of traffic capacity, 
HRB Proc. 14, p448-481 

Hegyi, A.; De Schutter, B.; Hellendoorn, H.; van den 
Boom, T., (2002). Optimal coordination of ramp 

metering and variable speed control-an MPC approach, 
Proc. American Control Conf. Vol. 5,  p3600-3605 

Lighthill M. J. and Whitham G. B. (1955) On kinematic 
waves II. A theory of traffic flow on long crowded roads. 
Proc. Royal Society of London, Series A, 229, 317-345. 

Lawson, C.L. and R.J. Hanson, (1974). Solving Least 
Squares Problems, Prentice-Hall, Chapter 23, p. 161. 

Lu, X. Y. and Skabardonis, A., Freeway Traffic 
Shockwave Analysis: Exploring the NGSIM Trajectory 
Data, 86th TRB Annual Meeting, Washington, D.C.,Jan. 
21-25, 2007 

Underwood, R. T., (1961). Speed, volume and density 
relationships, Quality and Theory of Traffic Flow, Yale 
Bureau of Highway Traffic, p141-88 

Van Aerde, M. (1995). Single regime speed-flow-density 
relationship for congested and uncongested highways. 
74th TRB Annual Conference, Washington D.C., Paper 
No. 95080.  

Skabardonis, A. and Dowling, R., (1997), Improved speed-
flow relationships for planning applications, 
Transportation Research Record, #1572 

Zhang, H.M., (1999). A mathematical theory of traffic 
hysteresis. Transportation Research, B 33, p1-23 


