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Abstract

The problem of stabilization of a polytope of matrices in a subregion DR of the com�
plex plane is revisited� A new su�cient condition of robust DR stabilization is given� It
implies the solution of an LMI involving matrix variables constrained by a nonlinear
algebraic relation� Some LMI relaxations are �rst proposed� Then� it is shown that a
cone complementarity formulation of this condition allows to associate an e�cient itera�
tive numerical procedure which leads to a low computational burden� This algorithm is
tested on di�erent numerical examples for which existing approaches in control literature
fail�
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� Introduction

In the synthesis of feedback control systems� it is necessary to guarantee that the stability
and some performance properties of the closed�loop system are robust with respect to plant
perturbations� If a state�space approach is considered for modeling� plant uncertain parame�
ters may be viewed as perturbations a�ecting the coe�cients of system matrices and de�ning
therefore families of system� This paper focuses on families of linear systems in state�space
form where the domain of admissible system matrices is a real convex polytope� The problem
of �nding stability conditions for a polytope of matrices has received a considerable attention
in the literature� �����	�� �
�� ����� ��
�� �
��� �
	� and some attempts have been made to solve
the synthesis problem ����� ����� ���� �
��� �
��� In both cases the problem is known to be
NP�hard� ���� and therefore a critical tradeo� has to be faced � �nd testable precise condi�
tions while keeping a weak computational complexity� Robust stability problems have been
attacked via methods which rely heavily on the convexity assumption� �the results based on
quadratic stability concept� or on more complex approaches for which branching operations
may be required� In the �rst case� it is well known that we get too much conservative results
while for the second case� computational complexity is a major di�culty�

�



The situation is more awkward in synthesis problems since a constructive method is needed
to get a robust controller� The quadratic stability framework� ����� ���� has proven to be
a successfull design methodology but still su�ers from its conservatism when dealing with
structured uncertainty� Recently� a new robust stability analysis condition simultaneously
appeared in �

� and �
��� This LMI�based condition involves parameter�dependent Lya�
punov functions and extra matrix variables leading to a drastic reduction of the conservatism�
�see �
�� for comparison results�� This analysis result has been used in �
�� and �
�� to tackle
the problems of robust state�feedback synthesis and multiobjective synthesis for discrete�time
systems� Unfortunately� such an extension is surprisingly impossible for continuous�time sys�
tems� In fact� a linearizing change of variables is proposed in �
�� to get su�cient LMI�based
conditions of stabilization of a polytope of matrices in particular subregions DR of the com�
plex plane� This change of variables is no more valid for DR regions such as half�planes
and sectors which do not verify some basic technical assumption� For such regions� a Bilinear
Matrix Inequality� BMI� formulation may be deduced� There is a considerable amount of lit�
erature reformulating robust stabilization problem as BMIs� ��	�� Here� a su�cient condition
of robust DR stabilization of a polytope of matrices is characterized by an LMI involving
matrix variables subject to an additional non linear algebraic constraint� Exploiting the par�
ticular structure of this reformulation allows to use a conic complementarity formulation�
����� of the problem and its related numerical procedure� A fundamental point is that our
approach always ensures to get better results than the quadratic stability framework except
for marginal numerical ill�conditioned problems�
The contribution of this paper is threefold� First� it extends in a very natural way the robust
analysis conditions of �
�� leading to an e�ective synthesis procedure for any LMI regions�
Second� it generalizes and improves the results of �
�� to continuous�time systems and for
any LMI regions� Although the approach is not purely LMI�based� the computational
complexity remains reasonable since each iteration consists in an LMI optimization and
that� in general� the algorithm requires few iterations� �less than ���� Finally� the proposed
method allows to deal with intersection of LMI regions using di�erent Lyapunov functions
for each elementary region unlike the method proposed in ���� This obviously reduces the
conservatism of the existing results�
Notation is standard� The transpose of a matrix A is denoted A�� For symmetric matrices� �
��� denotes the L�oewner partial order� i�e� A � ��� B i� A�B is positive �semi� de�nite�
� stands for the identity matrix and � for the zero matrix with the appropriate dimensions�
Sn denotes the set of symmetric matrices of Rn�n and S�

n � �S
��
n �� the cone of positive semi�

de�nite� �de�nite� matrices in Sn� C is the set of complex numbers� R�� �R��� is the set
of positive� �strictly positive�� real numbers� � is the Kronecker product of two matrices�
We remind that �A � B��C �D� � �AC�� �BD�� The symetric part of a square matrix A
is denoted sym�A�� i�e� sym�A� � A � A�� � is the derivation operator for continuous�time
systems� ���x�t�� � �x�t�� and the delay operator for discrete�time ones� ���x�t�� � x�t� T ���

� Preliminaries

��� Background

Let us consider the linear uncertain dynamical system�

��x�t�� � Ax�t� �Bu�t� � M

�
x�t�
u�t�

�
M �

�
A B

�
� M ���






where x � Rn is the state vector� u � Rm is the control vector� The dynamical matrix A and
the input matrix B are in the convex polytope M de�ned by�

M � co
n
M ���� � � � �M �N �

o
�

�
M �

NX
i��

�iM
�i� � �i � � �

NX
i��

�i � �

�
�
�

This representation is quite general and encompasses the well�known case of interval systems
de�ned by�

M � �mij � mij � mij � mij ���

Let
DR � fz � C � fDR �z	 � R�� 
R��z 
 R���z

� 
 R��zz
� � �g ��	

be a given region of the complex plane� where R � R�d��d is a symmetric matrix partitionned
as�

R �

�
R�� R��

R��� R��

�
�

R�� � R��� � R
d�d

R�� � R��� � R
d�d

�
	

Following the terminology of ���� the matrix�valued function fDR
�z� is called the characteristic

function of DR� Without any assumption on the matrix R��� DR regions are not convex� With
the assumption of positive de�niteness� R�� � �� ��� appears to be a slight modi�cation of
the characterisation of LMI regions� �
��� Usual choices for DR are the left half�plane�
�d � �� R�� � R�� � �� R�� � ��� and the unit disk� �d � �� R�� � ��� R�� � �� R�� � ���

� Remarks � As for LMI regions the DR regions are symmetric with respect to the real
axis and an intersection of DR regions is a DR region�

Note that the class of LMI regions belongs to the class of DR regions but our investigations
will be restricted to the former� i�e� we assume that R�� � �� For a more complete description
of possible LMI�regions� the interested reader may have a look to the references ����
A straightforward extension of the usual stability property of dynamical systems may be
easily extrapolated�

De�nition �

A matrix A � R
n�n is said to be DR�stable if and only if all its eigenvalues lie in the DR

region de
ned by �	��

Usually� two di�erent robust stability concepts may been de�ned to study the robustness of
pole clustering of a matrix A belonging in a convex matrix polytope A de�ned as �
�� in DR

regions�

De�nition �

� A is robustly DR�stable� if and only if� for all A � A� A is DR�stable�

� A is quadraticaly DR�stable� if and only if� there exists a matrix P � S��
n such that for

all A � A 

R�� � P 
 R�� � �PA	 
 R��� � �A�P 	 
 R�� � �A�PA	 � � ��	

These two notions are not in general equivalent except in special cases� e�g�� complex or real
unstructured uncertainty for the open left half�plane� Quadratic DR stability is well�known
to be more conservative though it proves useful for analysis and synthesis purpose�

�



��� The robust pole clustering analysis problem

The problem addressed in this paper is to �nd a robust state�feedback matrix K � R
m�n

such that every closed�loop matrix Acl � A�BK belonging to the convex polytope A de�ned
as�

A �

�
Acl �

NX
i��

�i�A
�i� � B�i�K� � �i � ��

NX
i��

�i � �

�
���

has all its eigenvalues in theDR region� A is robustlyDR�stable if and only if� for eachAcl � A�
there exists a symmetric positive de�nite matrix P such that �	� holds� It is well�known
that deciding whether or not every member of the polytope maintains eigenvalue locations
in the speci�ed DR region is equivalent to solve an NP�hard problem� ����� The related
problem of robust stabilization via state�feedback of the convex polytope M is therefore
equivalent to an NP�hard problem� Most of the approaches dealing with the synthesis
problem are based on the quadratic stability notion which leads to inherently conservative
stability tests� In ���� analysis results with respect to unstructured uncertainty are given in
the quadratic DR stability framework� Parameter�dependent Lyapunov functions are then
used to derive su�cient conditions of robust pole clustering� Finally� the output�feedback
synthesis problem is tackled in a somewhat framework� Note that our approach is based on a
di�erent parametrization of the parameter�dependent Lyapunov functions and relies on very
di�erent conditions where no scaling matrices are involved�

Theorem � ��	�
If� there exists two matrices H� � R

dn�dn� H� � R
dn�n and N matrices Pi � S

��
n such that�

� i � �� � � � � N 


R� P �i� 


�
��
sym

h
��d � A

�i�
cl
	H�

i
��d � A

�i�
cl
	H� �H�

�

� �H� �H�
�

�
�� � � ��	

then A is robustly DR�stable�

Proof

Theorem 
 is a dual� �transposed� version of theorem � in �
�� and the proof is easily trans�
posable from this reference� �

� Remarks � 

If the DR region of pole clustering consists in the intersection of L elementary DRi

regions�
independent parameter�dependent Lyapunov functions involving L sets of N positive de
nite
matrices Pi may be used� The interest of this new condition is that this feature may be not
only used for analysis purpose but also when synthesizing a controller as will be seen in the
next section� This is a major di�erence with the approach proposed in ����

The closed�loop matrixAcl � A�BK is a�ne in the controller parameterK� For the synthesis
problem where we are looking for the gain matrix K� the inequality ��� is therefore a bilinear
matrix inequality with respect to the unknown matrices due to the products between H��
H� and the gain matrix K� The next section proposes a su�cient condition of robust DR

stabilization implying the solution of an LMI involving matrix variables constrained by a
nonlinear algebraic condition�

�



� State feedback DR stabilization

��� Pseudo LMI�based formulation

In �
��� for stability of discrete�time systems� it is proposed to choose H� � � and to generalize
a well�known linearizing change of variables� ����� by letting S � KH�� An LMI formulation
of the robust state�feedback stabilization problem is then possible� This change of variables
is generalized in �
�� where it is shown that it is possible to perform such a linearization
only for DR regions satisfying the additional assumption R�� � �� This assumption is not
satis�ed by DR regions of major importance such as half�planes� conic sectors� or their inter�
section� In particular� no equivalent condition exists for the robust stabilization of polytopes
of continuous�time systems� The next result recasts the original bilinear problem as an LMI
feasibility problem subject to a nonlinear algebraic constraint�

Theorem � 

If there exist N matrices P �i� � S��

n and four matrices H� � Rdn�dn� G� � Rdm�dn� h� �
R
n�n� g� � R

m�n solutions of the following linear inequalities� � i � �� � � � � N

R�P �i��

�
sym

�
��d � A�i��H�

�
� sym

�
��d �B�i��G�

�
�H �

� � �d �
�
A�i�h� � B�i�g�

�
� ��d � �h� � h���

�
� �

�
�
under the nonlinear equation�

G� � ��d � �g�h
��
� ��H� � � ����

then the polytope M is DR stabilizable and a robust state�feedback matrix is given by 


KDR
� g�h

��
� ����

Let us note inequality �
��
L�i��P �i�� G�� H�� g�� h�� � � ��
�

Proof

Suppose there exist N matrices P �i� � S��
n and matrices H� � Rdn�dn� G� � Rdm�dn�

h� � R
n�n� g� � R

m�n solutions of �
�� � i � �� � � � � N under the nonlinear algebraic constraint
���� then replacing G� in �
� leads to the following inequality after some elementary algebraic
manipulations� � i � �� � � � � N �

R� P �i� �

�
sym

�
��d � �A�i� � B�i�g�h

��
� ��H�

�
�H �

� �
�
�d � �A�i� � B�i�g�h

��
� �

�
H�

� ��d � �h� � h���

�
� �

����
It therefore exist N matrices P �i� � S��

n and matrices H� � R
dn�dn� G� � R

dm�dn� H� �
�d � h� � Rdn�dn� G� � �d � g� � Rdm�dn solutions of ��� where the robust state�feedback
gain is given by�

KDR
� g�h

��
� ����

This proves that the gain ���� robustly stabilizes the polytope of matrices M� �

The proof of theorem 
 shows that the unknown matrix H� must have a bloc structure
given by the constraint H� � �d � h� which induces extra conservatism in the condition for
regions which have an order greater than one� i�e� d � �� It is important to note that in the
conditions of theorem 
� the non convex feature of the original problem is entirely enclosed
in the nonlinear algebraic equality ����� One way to overcome this di�culty is to �nd convex
LMI relaxations of the condition�

�



��� LMI Relaxations

Similarly to the previous change of variables� a conservative change of variables is considered
in �
�� and �
��� H� � R�� � H � H� � R�� � H and S � KH � This leads to the following
su�cient condition of robust DR stabilization for regions such that R�� � ��

Theorem � ��	�
If there exist two matrices H � R

n�n� S � R
m�n and N matrices P �i� � S��

n such that
�i � fi� � � � � Ng 


R� P �i� 


�
� sym

�
R��� �A�i�H 
B�i�S	

	
�R��� �H� 
R�� � �A�i�H 
B�i�S	

� �R�� � �H 
H�	

�
� � � ��
	

then the polytope M is robustly DR�stabilisable by state feedback and an admissible gain is


K � SH�� ��	�

Another way to relax the problem is to give a structure to the matrices H� and G� in order
to enforce the nonlinear condition ����� Obviously� a simple condition to verify ���� is to
choose H� � x� h� and G� � x� g� for a given matrix x � Rd�d�

Theorem �
If there exist two matrices h � Rn�n� g � Rm�n and N matrices P �i� � S��

n such that
�i � fi� � � � � Ng and for a given matrix x � Rd�d


R� P �i� 


�
� sym

�
x� �A�i�h
 B�i�g	

	
�x� � h� 
 �d � �A�i�h
B�i�g	

� ��d � �h 
 h�	

�
� � � ���	

then the polytope M is robustly DR�stabilisable by state feedback and an admissible gain is


K � gh�� ����

Proof

This result is readily proved by remarking that a particular solution of the nonlinear equation
���� is given by H� � x� h� and G� � x� g� for a given matrix x� �

The previous result gives an LMI condition when the matrix x is a priori given� It is clear
that the relevance of the condition is strongly related to the choice of x� For regions of order
�� this choice is equivalent to the choice of a scalar x � R�
Finally� a necessary and su�cient condition of quadratic DR stabilizability is easily recovered
from ���� by choosing H � P and P �i� � P� � i � �� � � � � n� In this regard� the relationships
between these di�erent conditions are investigated in the following corollary�

Corollary � 


�� If the order of the DR region is equal to � then the quadratic DR stability condition is
a su�cient condition for the condition of theorem ��

�� If R�� � � then the quadratic DR stability condition is a su�cient condition for the
condition of theorem ��

	



�� If R�� � � and the order of the DR region is equal to � then the quadratic DR stability
condition is a su�cient condition for the condition of theorem � which implies the
condition of theorem ��

	� The condition given in theorem 	 is a su�cient condition for the condition of theorem
��

� Remarks � 


� Note that in the previous corollary little is said about regions of order greater than ��
In fact� the main regions of concern when imposing explicit constraints on the closed�
loop dynamics are the disk� the half�plane� the conic sector which is considered as the
intersection of two half�planes and their intersection which are or may be converted
into DR regions of order �� In the sequel� the case of intersection of elementary DR

regions is carefully studied� DR regions of order � are� for instance� the ellipse and the
hyperbolic sector for which the condition of theorem � cannot be applied� �R�� � ���

� The relationships between the quadratic stability condition and the condition of theorem
	 are not so clear to establish� In particular� it is easy to 
nd instances for which
quadratic stability is better than the condition of theorem 	 for some x� In general� the
condition is better than the quadratic one but it may be a non trivial work to 
nd a good
guess for x for some instances�

��� Intersection of DR regions

One of the main features of the new proposed condition is that it is possible to deal with
the intersection of DR regions by considering a parameter�dependent Lyapunov function for
each elementary DR regions� This is in stark contrast with the approach proposed in ���� In
the case of an intersection of regions of identical orders� this may be done by choosing single
extra variables G�� g�� H�� h�� When the regions de�ning the intersection are of di�erent
orders� it is necessary to give a structure to the extra variables de�ned for each j region H�j �
G�j as is show in the following theorem�

Theorem � 

Let us de
ne the region DR of the complex plane as the intersection of L elementary regions
DRj

of respective order dj and characterized by the symmetric matrix Rj � Rdj�dj �

DR �
L�

j��

DRj ��
�

�� Suppose that dj � d� � j � �� � � � � L� If there exist L � N matrices P �i�
j � S��

n and

matrices H� � Rdn�dn� G� � Rdm�dn� h� � Rn�n� g� � Rm�n solutions of the following
linear inequalities� � i � �� � � � � N and � j � �� � � � � L�

Rj�P
�i�
j �

�
sym

�
��d �A�i��H� � ��d �B�i��G�

�
�H �

� � �d �
�
A�i�h� � B�i�g�

�
� ��d � �h� � h���

�
� �

�
��
under the nonlinear equation�

G� � ��d � �g�h
��
� ��H� � � �
��

then the polytope M is DR stabilizable and a robust state�feedback matrix is given by


KDR
� g�h

��
� �

�

�



�� Suppose now that the DRj
are of di�erent order� If there exist L�N matrices P

�i�
j � S��

n

and matrices h� � R
n�n� g� � R

m�n� h� � R
n�n� g� � R

m�n solutions of the following
linear inequalities� � i � �� � � � � N and � j � �� � � � � L�

Rj�P
�i�
j �

�
sym

�
R��j � �A�i�h� �B�i�g��

�
�R���j � h�� � �d �

�
A�i�h� � B�i�g�

�
� ��d � �h� � h���

�
� �

�
��
under the nonlinear equation�

g� � �g�h
��
� �h� � � �
��

then the polytope M is DR stabilizable and a robust state�feedback matrix is given by


KDR
� g�h

��
� �
��

Proof

�� It is easily deduced from the proof of the theorem 
 by writing the conditions for each
region DRj

�


� Writing the conditions of theorem 
� we get the LMI �
�� with the L additional
nonlinear constraints�

G�j � ��d � �g�h
��
� ��H�j � � �
	�

by choosing H�j � R��j � h� with G�j � R��j � �g�h
��
� h�� � R��j � g�� it leads to the

result�

�

� Remarks � 

For intersection of regions of di�erent order� the condition is deduced using the additional
change of variables
 H�j � R��j � h�� Another choice is possible� H� � �dj � h� which leads
to a di�erent su�cient condition� The 
rst one is particularly interesting since it ensures
that the quadratic stability as well as the result in ��	� are included by this one� Another way
to tackle the problem of the intersection of DR regions consists in applying results of theorem
� with the matrix R de
ned as the concatenation of elementary Rj matrices� Of course� in
that case� a single parameter�dependent Lyapunov function is used for the di�erent regions�

� A conic complementarity problem

The problem of synthetizing a DR stabilizing gain via the condition of theorem 
 is not trivial
due to the nonlinear condition ����� One way to tackle this problem is to recast it as a conic

complementarity problem�

�



Problem � 
 CCP

min Trace

�
T� T�
T �� T�

�
	 
z �

T

Zz �	 
�
Z� Z�

Z�� Z�

�

under

�


�
Z� Z� G� �d � g�
Z�� Z� H� �d � h�
� � � �

� � � �

�
��� � �

�
T� T�
T �� T�

�
� �

T� � �

Pi � � � i � �� � � � � N

L�i��P �i�� G�� H�� g�� h�� � � � i � �� � � � � N

�
��

The relationships between theorem 
 and problem � are now stated more formally�

Lemma � 

The su�cient condition of theorem � is veri
ed if and only if the global minimum of problem
� is ��

Proof

The proof is easily deduced from ��
� and ���� by noting that the nonlinear constraint ���� is
equivalently written as a rank constraint on the matrix�

� �

�
G� �d � g�
H� �d � h�

�
�
��

�

Note that this formulation is a generalization of the ones presented in �
� and in ��
� and
originates from ����� The conic complementarity formulation is a generalizaion of the linear
complementarity problems for which exist many di�erent numerical approaches� Some CCP
can be solved using primal�dual interior�point algorithms� Here� a linearization algorithm
such as the constrained gradient� �known as the Franck and Wolfe algorithm� may then be
used to �nd local solutions of this problem�

Algorithm � 
 CCA

Step �� Let k � �� Find a feasible point T�� Z�� ��� P
�i�
� for LMI problem ����� If

there is no solution� stop� Problem ��������� is not feasible�






Step �� Solve the LMI problem


min trace�TZk � TkZ�
s�t� �
��

for Tk��� Zk���

Step �� Let �� � �� � � � � � �n�m denote the singular values of matrix M � If
�n�� � 	�n then a solution to problem ��������� is found and the D�stabilizing state�
feedback matrix is K � Y G��� �	 de
nes some accuracy level��

Step �� Let k � k � �� If k � kmax� then matrix K was not found� Otherwise go to
step ��

The initialization step amounts to solve an LMI problem� The solvability of this �rst step
is therefore a necessary condition for the feasibility of the original BMI problem� In ��
�� it
is shown that the sequence tk � trace�TkZ � ZkT � is a decreasing sequence bounded below
by � and therefore always converges�
The iterative process is stopped as soon as the ratio of two successive singular values� �testing
the rank�� of the matrix M is less than some accuracy level or as soon as a prescribed maxi�
mum number of iterations is exceeded or as soon as the relative variation of the criterion is
less than ������ With this stopping criteria� the behaviour of this algorithm has been care�
fully studied and extensively compared with existing methods� quadratic�based conditions
and conditions of theorem �� Thousands of random polytopes of matrices have been tested for
the continuous�time and discrete�time stabilization problem� Due to the vertexization of the
di�erent conditions� the generated systems are limited to � states� � vertices and 
 inputs�
For continuous�time polytopes� the new algorithm is compared to the quadratic approach
while for discrete�time� it is compared to the LMI�based method from �
��� For both cases
the behavior is similar and the new proposed approach stabilizes between �� � and 
� � of
polytopes for which all the other methods fails� It is important to note that in each case� the
algorithm is �plateauing� for less than � � of polytopes which are stabilized by the quadratic
approach or by the method from �
��� This behavior has been noticed in ��� where an e�cient
hybrid algorithm based on a combination of conditional gradient and second�order Newton
methods is proposed� The interest of the new proposed approach is now illustrated by three
numerical examples corresponding to three characteristic cases�

� Illustrative examples

These numerical examples are intended to illustrate three main features of the proposed ap�
proach� First� a continuous�time polytope of matrices example is considered and a comparison
between quadratic state�feedback stabilization� condition of theorem 
 and LMI relaxations
is done�
The second example shows that the cone complementarity approach is a valuable extension
of the purely LMI�based one proposed in �
��� A discrete�time polytope of matrices is
de�ned for which this last method fails while the one proposed in this article succeeds in few
iterations�
Second� a particular region of regional pole placement is considered� It consists in the in�
tersection of three subregions� a disk� a half�plane and a sector� Such a region cannot be
considered by the method of �
�� and has therefore to be approximated by a disk� In each
case� the number of outer iterations� �number of step 
� is given to show the weak complexity
of the algorithm�

��



��� Example �

The previous algorithm is now applied to the robust stabilization problem of an uncertain
continuous�time system de�ned by the following system matrices�

A �

�
� � � �

 �

�
B �

�
�

�� 


�

The uncertain parameters are de�ned as j�� ���j � � j
 � ���j � � � This de�nes a poly�
tope of matrices �A�B� with four vertices�
This example is borrowed from ���� where a quadratic state feedback stabilizing gain is
computed� Moreover� it is shown that the set of quadratic state feedback stabilizing gains is
not empty for all � � �� � ���	�� For � � ���	 a quadratic state�feedback stabilizing gain is
given by Kquad� �

�
���
	 ���
�

�
�

Applying the algorithm � based on cone complementarity� we are able to �nd robust state
feedback stabilizing gains for all � � �� � ����	� where 	 is of the order of the relative accurracy
of the LMI solver� Note that two of the vertices of the polytope are not controllable pairs
for � � ���� For 	 � ����
� after � iterations� the obtained robust state�feedback gain is
Krob� �

�
�������� ��������

�
� Note that the maximum real part of the closed�loop poles

is equal to ���������
For continuous�time instances� it is not possible to apply condition of theorem �� On the
contrary� the LMI condition of theorem � leads to similar results for x � �� For 	 � �����
�
we get a stabilizing gain KLMI �

�
�����

 ������	

�
�

��� Example �

The second example is given as a discrete�time polytope of matrices with three vertices
de�ning the three following couples of �A�i�� B�i�� matrices�

A� �

�
� � 
 �

� � ��
�� 
 �

�
� B� �

�
� �


�
�


�
� A� �

�
� � � �
�� �� �
�
 � �

�
� B� �

�
� �

�
�

�
�

A� �

�
� � � �


� � �
� � �

�
� B� �

�
� ��

�
��

�
�

�

�

This polytope of matrices is not quadratically stabilizable and the LMI approaches pro�
posed in �
�� and in the theorem � also fail� �the associated LMI�s are found infeasi�
ble�� After � iterations� our algorithm gives the following robust state�feedback gain K ��
�����

 ������ �������

�
�

��� Example �

Let the continuous�time polytope of matrices be given by�

A� �

�
�� �
�� ��

�
B� �

�
�
��

�
A� �

�
�
 �
�� �

�
B� �

�
��



�
����

The polytope of matrices de�ned by the two vertices A�� A� is not stable� The DR region
of pole placement is the intersection between the disk centered at �� � ���� with radius
r � �� the conic sector de�ned by its angle with the vertical � � 
�	 and its apex �� � ���
�
and the left half�plane de�ned for x � �� � ������ After � iterations� the algorithm gives

��



a DR stabilizing gain K �
�
������
 ������


�
and 	 � � � 
 Lyapunov matrices� The

�gure 
 shows the closed�loop poles of the polytope in the considered region along the convex
combination of the closed�loop matrices ��A� � B�K� � �� � ���A� � B�K� � � � � ��
Note that it is impossible to �nd a disk included in this region for which the method of �
��
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Figure �� Uncertain system closed�loop poles
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� Conclusions

In this paper� a tractable state�feedback synthesis method has been proposed for robust re�
gional pole placement in DR regions� A recently developped framework based on parameter�
dependent Lyapunov functions is used to generalize existing conditions� The main result
consists in a su�cient condition involving an LMI condition and a nonlinear equality relat�
ing the di�erent matrix variables� Some pure LMI relaxations are �rst proposed� Then� the
original nonlinear problem is formulated as a conic complementarity problem for which an
e�cient linearization approach is used to get at least local solutions� The relevance of the
approach is then illustrated by di�erent numerical examples� Note that the proposed algo�
rithm may be numerically improved by considering simple modi�cations proposed in �
���
The particular class of CCP is likely to encourage us to �nd generalizations of the numerical
methods proposed for LCP and to apply it to our particular control problems� Another cur�
rent area of research is the synthesis of output�feedback controller assigning the closed�loop
poles in a prescribed DR region via parameter�dependent Lyapunov functions�
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