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Abstract

The problem of stabilization of a polytope of matrices in a subregion Dg of the com-
plex plane is revisited. A new sufficient condition of robust Dg stabilization is given. It
implies the solution of an LMZ involving matrix variables constrained by a nonlinear
algebraic relation. Some LMZ relaxations are first proposed. Then, it is shown that a
cone complementarity formulation of this condition allows to associate an efficient itera-
tive numerical procedure which leads to a low computational burden. This algorithm is
tested on different numerical examples for which existing approaches in control literature

fail.
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1 Introduction

In the synthesis of feedback control systems, it is necessary to guarantee that the stability
and some performance properties of the closed-loop system are robust with respect to plant
perturbations. If a state-space approach is considered for modeling, plant uncertain parame-
ters may be viewed as perturbations affecting the coefficients of system matrices and defining
therefore families of system. This paper focuses on families of linear systems in state-space
form where the domain of admissible system matrices is a real convex polytope. The problem
of finding stability conditions for a polytope of matrices has received a considerable attention
in the literature, [5],[6], [9], [18], [19], [25], [26] and some attempts have been made to solve
the synthesis problem [17], [14], [3], [23], [24]. In both cases the problem is known to be
N'P-hard, [11] and therefore a critical tradeoff has to be faced : find testable precise condi-
tions while keeping a weak computational complexity. Robust stability problems have been
attacked via methods which rely heavily on the convexity assumption, (the results based on
quadratic stability concept) or on more complex approaches for which branching operations
may be required. In the first case, it is well known that we get too much conservative results
while for the second case, computational complexity is a major difficulty.



The situation is more awkward in synthesis problems since a constructive method is needed
to get a robust controller. The quadratic stability framework, [14], [3], has proven to be
a successfull design methodology but still suffers from its conservatism when dealing with
structured uncertainty. Recently, a new robust stability analysis condition simultaneously
appeared in [22] and [24]. This £LMZ-based condition involves parameter-dependent Lya-
punov functions and extra matrix variables leading to a drastic reduction of the conservatism,
(see [24] for comparison results). This analysis result has been used in [21] and [23] to tackle
the problems of robust state-feedback synthesis and multiobjective synthesis for discrete-time
systems. Unfortunately, such an extension is surprisingly impossible for continuous-time sys-
tems. In fact, a linearizing change of variables is proposed in [24] to get sufficient £LMZ-based
conditions of stabilization of a polytope of matrices in particular subregions Pp of the com-
plex plane. This change of variables is no more valid for Dp regions such as half-planes
and sectors which do not verify some basic technical assumption. For such regions, a Bilinear
Matrix Inequality, BMZ, formulation may be deduced. There is a considerable amount of lit-
erature reformulating robust stabilization problem as BMIs, [16]. Here, a sufficient condition
of robust Dp stabilization of a polytope of matrices is characterized by an LMZ involving
matrix variables subject to an additional non linear algebraic constraint. Exploiting the par-
ticular structure of this reformulation allows to use a conic complementarity formulation,
[13], of the problem and its related numerical procedure. A fundamental point is that our
approach always ensures to get better results than the quadratic stability framework except
for marginal numerical ill-conditioned problems.

The contribution of this paper is threefold. First, it extends in a very natural way the robust
analysis conditions of [24] leading to an effective synthesis procedure for any LMZ regions.
Second, it generalizes and improves the results of [21] to continuous-time systems and for
any LMT regions. Although the approach is not purely LM7Z-based, the computational
complexity remains reasonable since each iteration consists in an LMZ optimization and
that, in general, the algorithm requires few iterations, (less than 10). Finally, the proposed
method allows to deal with intersection of LMZ regions using different Lyapunov functions
for each elementary region unlike the method proposed in [8]. This obviously reduces the
conservatism of the existing results.

Notation is standard. The transpose of a matrix A is denoted A’. For symmetric matrices, >
(>) denotes the Léewner partial order,i.e. A > (>) B iff A— B is positive (semi) definite.
1 stands for the identity matrix and O for the zero matrix with the appropriate dimensions.
S, denotes the set of symmetric matrices of R™*" and S, (§;*), the cone of positive semi-
definite, (definite) matrices in S,,. C is the set of complex numbers. RT, (R**) is the set
of positive, (strictly positive), real numbers. ® is the Kronecker product of two matrices.
We remind that (A ® B)(C' @ D) = (AC) @ (BD). The symetric part of a square matrix A
is denoted sym[A], i.e. sym[A] = A+ A’. § is the derivation operator for continuous-time
systems, (6[z(t)] = &(t)) and the delay operator for discrete-time ones, (6[z(t)] = z(t + T)).

2 Preliminaries

2.1 Background

Let us consider the linear uncertain dynamical system,

Sz (t)] = Az(t) + Bu(t) = M [ z(t) ] M=[A BleM (1)



where z € R"™ is the state vector, u € R™ is the control vector. The dynamical matrix A and
the input matrix B are in the convex polytope M defined by,

N N
M= co{mt,.. N} = {M:Z&MW L6 >0, Z&:l} 2)
=1 =1

This representation is quite general and encompasses the well-known case of interval systems
defined by,
M = [mi;]  my; <mg; < Ty (3)
Let
Pr={2€C : fpn(z) = Ri1+ Risz+ Ri52" + Ranzz™ < 0} (4)

be a given region of the complex plane, where R € R2?%2? is a symmetric matrix partitionned

as:
R= Ri1 Ry Ry = Rj, e Rdxd (5)
R/12 Roo ’ Rsy = R/22 S [Rdxd

Following the terminology of [7], the matrix-valued function fp,(2) is called the characteristic
function of Dp. Without any assumption on the matrix Ry, Dp regions are not convex. With
the assumption of positive definiteness, Rz > 0, (4) appears to be a slight modification of

the characterisation of LMZ regions, [24]. Usual choices for Dg are the left half-plane,
(d = 17 Rll = R22 = 07 R12 = 1)7 and the unit diSk7 (d = 17 Rll = —17 R22 = 17 R12 = 0)

e Remarks 1 As for LMZ regions the Dp regions are symmetric with respect to the real
axis and an intersection of D regions is a Dp region.

Note that the class of LMIZ regions belongs to the class of Dy regions but our investigations
will be restricted to the former, i.e. we assume that Rqo > 0. For a more complete description
of possible LMZ-regions, the interested reader may have a look to the references [7].

A straightforward extension of the usual stability property of dynamical systems may be
easily extrapolated.

Definition 1
A matriv A € R™ " is said to be Dgr-stable if and only if all its eigenvalues lie in the Dr
region defined by (4).

Usually, two different robust stability concepts may been defined to study the robustness of
pole clustering of a matrix A belonging in a convex matrix polytope A defined as (2), in Dg
regions.

Definition 2

- A is robustly Dgr-stable, if and only if, for all A € A, A is Dg-stable.

- A is quadraticaly Dg-stable, if and only if, there exists a matriz P € SF* such that for
allAe A :

Ri1 ® P+ R ® (PA)+ R}, @ (A'P) + Roy @ (A'PA) < 0 (6)

These two notions are not in general equivalent except in special cases, e.g., complex or real
unstructured uncertainty for the open left half-plane. Quadratic Dg stability is well-known
to be more conservative though it proves useful for analysis and synthesis purpose.



2.2 The robust pole clustering analysis problem

The problem addressed in this paper is to find a robust state-feedback matrix K ¢ R™*"
such that every closed-loop matrix Ay = A+ BK belonging to the convex polytope A defined
as,

N N
A= {Acl = Zai(A[i] + B[i]K) Do >0, Zai = 1} (7)
=1 =1

has all its eigenvalues in the Dy region. A is robustly Dr-stable if and only if, for each A, € A,
there exists a symmetric positive definite matrix P such that (6) holds. It is well-known
that deciding whether or not every member of the polytope maintains eigenvalue locations
in the specified Dp region is equivalent to solve an ANP-hard problem, [11]. The related
problem of robust stabilization via state-feedback of the convex polytope M is therefore
equivalent to an AP-hard problem. Most of the approaches dealing with the synthesis
problem are based on the quadratic stability notion which leads to inherently conservative
stability tests. In [8], analysis results with respect to unstructured uncertainty are given in
the quadratic Dg stability framework. Parameter-dependent Lyapunov functions are then
used to derive sufficient conditions of robust pole clustering. Finally, the output-feedback
synthesis problem is tackled in a somewhat framework. Note that our approach is based on a
different parametrization of the parameter-dependent Lyapunov functions and relies on very
different conditions where no scaling matrices are involved.

Theorem 1 [24]
If, there exists two matrices H; € R™*4" H, € R¥"*™ and N matrices P; € ST* such that,
Ye=1,---,N:

' sym (1d®A[cil])H1 (1d®A[cil])H2—Hi
R Pl 4+ <0 (8)
* —Hy— HY)

then A is robustly Dg-stable.

Proof
Theorem 2 is a dual, (transposed) version of theorem 4 in [24] and the proof is easily trans-
posable from this reference. |

¢ Remarks 2 :

If the DR region of pole clustering consists in the intersection of L elementary Dpg, regions,
independent parameter-dependent Lyapunov functions involving L sets of N positive definite
matrices P; may be used. The interest of this new condition is that this feature may be not
only used for analysis purpose but also when synthesizing a controller as will be seen in the
next section. This is a major difference with the approach proposed in [8].

The closed-loop matrix A = A+BK is affine in the controller parameter K. For the synthesis
problem where we are looking for the gain matrix K, the inequality (8) is therefore a bilinear
matrix inequality with respect to the unknown matrices due to the products between Hi,
H;y and the gain matrix K. The next section proposes a suflicient condition of robust Dg
stabilization implying the solution of an LMZ involving matrix variables constrained by a
nonlinear algebraic condition.



3 State feedback Dy stabilization

3.1 Pseudo LMT7-based formulation

In [21], for stability of discrete-time systems, it is proposed to choose H; = 0 and to generalize
a well-known linearizing change of variables, [14], by letting S = K Hy. An LMZ formulation
of the robust state-feedback stabilization problem is then possible. This change of variables
is generalized in [24] where it is shown that it is possible to perform such a linearization
only for Dp regions satisfying the additional assumption R3; > 0. This assumption is not
satisfied by Dpg regions of major importance such as half-planes, conic sectors, or their inter-
section. In particular, no equivalent condition exists for the robust stabilization of polytopes
of continuous-time systems. The next result recasts the original bilinear problem as an LMZ
feasibility problem subject to a nonlinear algebraic constraint.

Theorem 2 :
If there exist N matrices Pl ¢ ST* and four matrices H; € R7¥4" G ¢ RI™xdn hy ¢

R™ ™, gy € R™*™ solutions of the following linear inequalities, ¥ i =1,--- N
Replly | SYm (14 @ ALY H,] 4 sym [(1a @ BIHYGy] —H{ 4+ 14 @ (AR, + Blig,) <0
* ~14 @ (ha + h3)

under the nonlinear equation,

Gl — (1d & (gghz_l))Hl =0 (10)
then the polytope M is D stabilizable and a robust state-feedback matriz is given by :
Kp, = g2h3" (11)
Let us note inequality (9), o
LU(PH Gy, Hy, g2, ha) < 0 (12)

Proof

Suppose there exist N matrices Pl € St* and matrices H; € R¥*dn G, ¢ Rdmxdn,
hy € R"™" g3 € R™*" solutions of (9),V ¢ =1,---, N under the nonlinear algebraic constraint
(10) then replacing G in (9) leads to the following inequality after some elementary algebraic
manipulations, Ve=1,---, N :

sym [(1d ® (A[i] + B[i]gghz_l))Hl] —-H{ + (1d ® (A[i] + B[i]gghz_l)) H,

R Pl
S « 14 @ (hy + 1))

<0

(13)
It therefore exist N matrices Pl ¢ St* and matrices Hy € Riwxdn G e R™xdn H, =
1@ hy € R Gy = 1, @ gy € R¥™%X9 solutions of (8) where the robust state-feedback
gain is given by:

Kp, = g2hy* (14)

This proves that the gain (14) robustly stabilizes the polytope of matrices M. |
The proof of theorem 2 shows that the unknown matrix H; must have a bloc structure
given by the constraint Hy = 1; ® he which induces extra conservatism in the condition for
regions which have an order greater than one, i.e. d > 1. It is important to note that in the
conditions of theorem 2, the non convex feature of the original problem is entirely enclosed
in the nonlinear algebraic equality (10). One way to overcome this difficulty is to find convex
LMT relaxations of the condition.



3.2 LMIZT Relaxations

Similarly to the previous change of variables, a conservative change of variables is considered
in [21] and [24], Hy = Ri2 ® H, Hy = Ry2 ® H and S = KH. This leads to the following
sufficient condition of robust Dg stabilization for regions such that Ry > 0.

Theorem 3 [24]

If there exist two matrices H € R" ", § € R™*" and N matrices P € St such that
Vied{i,--- N}

' sym [Ri2 @ (A H + BELS)]  —Ri, @ H' + Ras @ (AFlH + BL1S)
R Pl 4+ <0 (15
* —R22 03¢ (H =+ H/)

then the polytope M is robustly Dg-stabilisable by state feedback and an admissible gain is:

K=SH™! (16)

Another way to relax the problem is to give a structure to the matrices Hy and G in order
to enforce the nonlinear condition (10). Obviously, a simple condition to verify (10) is to
choose Hy = 2 ® hy and G1 = z ® g, for a given matrix ¢ € Ryxq.

Theorem 4 '
If there exist two matrices h € R™™, g € R™" and N matrices P! € S+* such that
Vi € {i,---,N} and for a given matriz x € R¥*4:

' sym [l‘ @ (Al + B[i]g)] —2' @ h' 4+ 14 @ (Allh 4 Blilg)
R Pl 4+ <0 (17)
* 1@ (h+ 1)

then the polytope M is robustly Dg-stabilisable by state feedback and an admissible gain is:

K =gh™! (18)

Proof

This result is readily proved by remarking that a particular solution of the nonlinear equation
(10) is given by Hy = 2 @ hy and (1 = z @ ¢, for a given matrix z. [ |
The previous result gives an LMZ condition when the matrix x is a priori given. It is clear
that the relevance of the condition is strongly related to the choice of z. For regions of order
1, this choice is equivalent to the choice of a scalar z € R.

Finally, a necessary and sufficient condition of quadratic Dg stabilizability is easily recovered
from (15) by choosing H = P and Pd=pP Vi=1,---,n. In this regard, the relationships
between these different conditions are investigated in the following corollary.

Corollary 1 :

1- If the order of the Dg region is equal to 1 then the quadratic Dy stability condition is
a sufficient condition for the condition of theorem 2.

2- If Ry > 0 then the quadratic Dy stability condition is a sufficient condition for the
condition of theorem 3.



3- If Rao > 0 and the order of the Dp region is equal to 1 then the quadratic Dr stability
condition is a sufficient condition for the condition of theorem 3 which implies the
condition of theorem 2.

4- The condition given in theorem 4 is a sufficient condition for the condition of theorem

2.
e Remarks 3 :

- Note that in the previous corollary little is said about regions of order greater than 1.
In fact, the main regions of concern when imposing explicit constraints on the closed-
loop dynamics are the disk, the half-plane, the conic sector which is considered as the
intersection of two half-planes and their intersection which are or may be converted
into Dg regions of order 1. In the sequel, the case of intersection of elementary Dgr
regions is carefully studied. Dp regions of order 2 are, for instance, the ellipse and the
hyperbolic sector for which the condition of theorem 3 cannot be applied, (Ra3 > 0).

- The relationships between the quadratic stability condition and the condition of theorem
4 are not so clear to establish. In particular, it is easy to find instances for which
quadratic stability is better than the condition of theorem 4 for some x. In general, the
condition is better than the quadratic one but it may be a non trivial work to find a good
qguess for x for some instances.

3.3 Intersection of Dy regions

One of the main features of the new proposed condition is that it is possible to deal with
the intersection of Dp regions by considering a parameter-dependent Lyapunov function for
each elementary Dp regions. This is in stark contrast with the approach proposed in [8]. In
the case of an intersection of regions of identical orders, this may be done by choosing single
extra variables G, g2, Hy, ha. When the regions defining the intersection are of different
orders, it is necessary to give a structure to the extra variables defined for each j region Hy;,
(15 as is show in the following theorem.

Theorem 5 :
Let us define the region Dg of the complex plane as the intersection of L elementary regions
Dr; of respective order d; and characterized by the symmetric matriz R; € R4%ds

L
Dr= m Dg; (19)
j=1
1- Suppose that d; = d, ¥ j = 1,---,L. If there exist L X N matrices P][i] € S and
matrices Hy € R™x47 G ¢ RImxdn py € R?*™, gy € R™*™ solutions of the following
linear inequalities, Vi=1,---,N andV j=1,---, L,

sym [(1a @ ARV, + (100 BRG] —H{ + 1, © (AR, + Bllg,)

.o pli
Rk x 146 (hy 4 1Y) <0
(20)
under the nonlinear equation,
Gl — (1d & (gghgl))Hl =0 (21)

then the polytope M is D stabilizable and a robust state-feedback matriz is given by:

Kp, = g2hy* (22)



2- Suppose now that the Dg, are of different order. If there exist LX N matrices P][i] €St
and matrices hy € R"*", g1 € R™*" hy € R"*", gy € R™*" solutions of the following
linear inequalities, V1 =1,--- N andV j=1,---, L,

sym [Ri; @ (Allpy 4 BM!h)] —Riy; @b +14® (A[i]hz + B[i]gz)

o Pl
Hiob ) ~149 (hy + b)) <0
(23)
under the nonlinear equation,
a1 — (gghgl)hl =0 (24)

then the polytope M is D stabilizable and a robust state-feedback matriz is given by:

Kp, = g2hy* (25)

Proof
1- It is easily deduced from the proof of the theorem 2 by writing the conditions for each

region Dp,.

2- Writing the conditions of theorem 2, we get the LMZ (20) with the L additional
nonlinear constraints:

Gij— (1a® (92h3 ") Hij =0 (26)
by choosing Hy; = Ri2; @ by with G; = Ri2; ® (gghglhl) = Ri2; ® g1, it leads to the
result.

|

¢ Remarks 4 :

For intersection of regions of different order, the condition is deduced using the additional
change of variables: Hy; = Ri2; @ h1. Another choice is possible, H, = 1q, ® h1 which leads
to a different sufficient condition. The first one is particularly interesting since it ensures
that the quadratic stability as well as the result in [24] are included by this one. Another way
to tackle the problem of the intersection of Dgr regions consists in applying results of theorem
2 with the matriz R defined as the concatenation of elementary R; matrices. Of course, in
that case, a single parameter-dependent Lyapunov function is used for the different regions.

4 A conic complementarity problem

The problem of synthetizing a Dp stabilizing gain via the condition of theorem 2 is not trivial
due to the nonlinear condition (10). One way to tackle this problem is to recast it as a conic
complementarity problem:



Problem 1 : CCP

A
—_—
min  Trace Ty Ty 1 2
T, Ts VARV
——_— —
T
under
[ Z1 Zy | Gi 1@ ¢
!
Zh Zs | Hy 15@ hy >0
| x x| O 1
T T
T, TB] =0
T, >1
P,>0 VvVei=1,---.N

ﬁ[i](P[i]7G17H17927h2) <0 Y= 17,”7N

The relationships between theorem 2 and problem 1 are now stated more formally.

Lemma 1 :
The sufficient condition of theorem 3 is verified if and only if the global minimum of problem
11s0.

Proof

The proof is easily deduced from [12] and [13] by noting that the nonlinear constraint (10) is
equivalently written as a rank constraint on the matrix:

Gi 1;® g9 ]
U= 28
|:H1 1;® hy (28)

[
Note that this formulation is a generalization of the ones presented in [2] and in [12] and
originates from [13]. The conic complementarity formulation is a generalizaion of the linear
complementarity problems for which exist many different numerical approaches. Some CCP
can be solved using primal-dual interior-point algorithms. Here, a linearization algorithm
such as the constrained gradient, (known as the Franck and Wolfe algorithm) may then be
used to find local solutions of this problem.

Algorithm 1 : CCA

Step 1: Let k = 0. Find a feasible point Ty, 7o, Vo, P(Ei] for LMT problem (27). If
there is no solution, stop. Problem (12)-(10) is not feasible.



Step 2: Solve the LMI problem:

min  trace(TZ, + Ty 7)
s.t.  (27)

Jor Ty, Zpqy.

Step 3: let 0y > 09 > -+ > Opym denote the singular values of matriz M. If
ont1 < €0y, then a solution to problem (12)-(10) is found and the D-stabilizing state-
Jeedback matriz is K = YG™!, (¢ defines some accuracy level).

Step 4: Letk =k + 1. If k > ke, then matric K was not found. Otherwise go to
step 2.

The initialization step amounts to solve an LMZ problem. The solvability of this first step
is therefore a necessary condition for the feasibility of the original BMZ problem. In [12], it
is shown that the sequence ty = trace(T,Z + Z;T) is a decreasing sequence bounded below
by 0 and therefore always converges.

The iterative process is stopped as soon as the ratio of two successive singular values, (testing
the rank), of the matrix M is less than some accuracy level or as soon as a prescribed maxi-
mum number of iterations is exceeded or as soon as the relative variation of the criterion is
less than 0.01%. With this stopping criteria, the behaviour of this algorithm has been care-
fully studied and extensively compared with existing methods: quadratic-based conditions
and conditions of theorem 3. Thousands of random polytopes of matrices have been tested for
the continuous-time and discrete-time stabilization problem. Due to the vertexization of the
different conditions, the generated systems are limited to 4 states, 5 vertices and 2 inputs.
For continuous-time polytopes, the new algorithm is compared to the quadratic approach
while for discrete-time, it is compared to the LMZ-based method from [21]. For both cases
the behavior is similar and the new proposed approach stabilizes between 15 % and 25 % of
polytopes for which all the other methods fails. It is important to note that in each case, the
algorithm is “plateauing” for less than 5 % of polytopes which are stabilized by the quadratic
approach or by the method from [21]. This behavior has been noticed in [1] where an efficient
hybrid algorithm based on a combination of conditional gradient and second-order Newton
methods is proposed. The interest of the new proposed approach is now illustrated by three
numerical examples corresponding to three characteristic cases.

5 Illustrative examples

These numerical examples are intended to illustrate three main features of the proposed ap-
proach. First, a continuous-time polytope of matrices example is considered and a comparison
between quadratic state-feedback stabilization, condition of theorem 2 and £LMZT relaxations
is done.

The second example shows that the cone complementarity approach is a valuable extension
of the purely LMZ-based one proposed in [21]. A discrete-time polytope of matrices is
defined for which this last method fails while the one proposed in this article succeeds in few
iterations.

Second, a particular region of regional pole placement is considered. It consists in the in-
tersection of three subregions, a disk, a half-plane and a sector. Such a region cannot be
considered by the method of [21] and has therefore to be approximated by a disk. In each
case, the number of outer iterations, (number of step 2) is given to show the weak complexity
of the algorithm.

10



5.1 Example 1

The previous algorithm is now applied to the robust stabilization problem of an uncertain
continuous-time system defined by the following system matrices:

=5t =l

The uncertain parameters are defined as | — 0.5 <~y |8 — 0.5 <+ . This defines a poly-
tope of matrices (A4, B) with four vertices.

This example is borrowed from [10] where a quadratic state feedback stabilizing gain is
computed. Moreover, it is shown that the set of quadratic state feedback stabilizing gains is
not empty for all ¥ € [0, 0.36]. For v = 0.36 a quadratic state-feedback stabilizing gain is
given by Kyueq. = [ —0.26 —4.94 ].

Applying the algorithm 1 based on cone complementarity, we are able to find robust state
feedback stabilizing gains for all v € [0, 0.5—¢] where € is of the order of the relative accurracy
of the LMZ solver. Note that two of the vertices of the polytope are not controllable pairs
for v = 0.5. For ¢ = 0.002, after 4 iterations, the obtained robust state-feedback gain is
K, = [ —0.00038 —0.88784 ] Note that the maximum real part of the closed-loop poles
is equal to —0.00071.

For continuous-time instances, it is not possible to apply condition of theorem 3. On the
contrary, the LMZ condition of theorem 4 leads to similar results for z = 1. For ¢ = 0.0002,
we get, a stabilizing gain Kom7 = [ —41.899 —3.5356 ]

5.2 Example 2

The second example is given as a discrete-time polytope of matrices with three vertices
defining the three following couples of (A1, BIl) matrices:

0 2 0 —2 0 0 0 0
Ay=| 0 0 -1 | Bi=| 0 | A=|-1 -1 0| By=]1
-1 2 0 -2 | —2 0 0 0
(29)
[0 1 -2 [ 1]
As=10 0 0 Bs=| 0
00 0 -1 ]

This polytope of matrices is not quadratically stabilizable and the LMZ approaches pro-
posed in [21] and in the theorem 4 also fail, (the associated LMZ’s are found infeasi-
ble). After 3 iterations, our algorithm gives the following robust state-feedback gain K =
[ —0.0592 0.5758 —0.1080 |.

5.3 Example 3

Let the continuous-time polytope of matrices be given by,

-1 1 1 -2 1 -1
R e B e B
The polytope of matrices defined by the two vertices Ay, A, is not stable. The Dp region
of pole placement is the intersection between the disk centered at oy = —0.4 with radius

r = 1, the conic sector defined by its angle with the vertical # = 7 /6 and its apex ag = —0.25
and the left half-plane defined for @ = a3 = —0.75. After 7 iterations, the algorithm gives

11



a Dp stabilizing gain K = [ —0.0809 —0.3849 ] and 6 = 3 X 2 Lyapunov matrices. The
figure 2 shows the closed-loop poles of the polytope in the considered region along the convex
combination of the closed-loop matrices AM(A; + B1K) + (1 — A\) (A + BoK) 0 < A< 1.
Note that it is impossible to find a disk included in this region for which the method of [21]

Imaginary part
.

Figure 1: Uncertain system closed-loop poles

or [24] succeeds.

6 Conclusions

In this paper, a tractable state-feedback synthesis method has been proposed for robust re-
gional pole placement in Dp regions. A recently developped framework based on parameter-
dependent Lyapunov functions is used to generalize existing conditions. The main result
consists in a sufficient condition involving an LMZ condition and a nonlinear equality relat-
ing the different matrix variables. Some pure LMZ relaxations are first proposed. Then, the
original nonlinear problem is formulated as a conic complementarity problem for which an
efficient linearization approach is used to get at least local solutions. The relevance of the
approach is then illustrated by different numerical examples. Note that the proposed algo-
rithm may be numerically improved by considering simple modifications proposed in [20].
The particular class of CCP is likely to encourage us to find generalizations of the numerical
methods proposed for LCP and to apply it to our particular control problems. Another cur-
rent area of research is the synthesis of output-feedback controller assigning the closed-loop
poles in a prescribed Dpg region via parameter-dependent Lyapunov functions.
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