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A B S T R A C T   

Large-scale geotagged social media data have been increasingly used for exploring human movement patterns in 
cities. Challenges of this new data type, such as non-representative users and the lack of activity purposes, remain 
unsolved and limit its applications in exploring activity-based human patterns in cities. To deal with the above 
challenges, this paper proposed an analytical framework of social media data enrichment — by revealing the 
demographic composition of non-representative social media data users and inferring activity purposes of geo
tagged posts — for better exploring spatial-temporal patterns of human activity in cities. A deep learning model 
is employed to reveal social media users' age and gender groups from user names, profile images, biographies, 
and language settings. Eight types of activity purposes are inferred from embedded geo-location by spatially 
joining with fine-scale building and land use data. Using Greater London as the case study, this paper explores the 
temporal dynamics of activity purposes with heatmaps of hourly frequency of tweets and identifies spatial dif
ferences across age and gender groups using hotspots analysis (Getis–Ord Gi* statistics). This paper demonstrates 
the application of geotagged social media data in identifying spatial, temporal and demographic patterns of 
urban activities, which potentially helps shape better place-based and age/gender-sensitive urban policies and 
planning decisions.   

1. Introduction 

Geotagged social media data such as Twitter data have been 
increasingly used in urban analytics as this type of new data with precise 
timestamps and fine-scale geographic locations records ‘whereabouts’ of 
individuals in cities. It provides opportunities for researchers to explore 
collective patterns in many domains such as mobility patterns (Huang, 
Yao, Krisp, & Jiang, 2021; Osorio-Arjona & Garcıa-Palomares, 2019; 
Wu, Zhi, Sui, & Liu, 2014; Yuan, Zheng, & Xie, 2012), urban activities 
(Ouyang, Fan, Wang, Zhu, & Yang, 2022; Wu et al., 2014; Wu, Ye, Ren, 
& Du, 2018) and event detection (Xu et al., 2016, 2020) by following a 
data-driven approach. Despite the potential advantages, some general 
challenges appear when using geotagged social media data for under
standing human patterns in cities. Firstly, the lack of activity purposes 
embedded in geotagged social media posts is a challenge for exploring 
activity-based patterns. Although the specific coordinate (latitude and 
longitude) is embedded in geotagged social media posts, this geographic 
information is not directly linked to activity locations and needs to be 
interpreted for activity purposes (Cui, Meng, He, & Gao, 2018). 

Another challenge is that social media data are non-representative 
samples as the users mostly under-represent certain groups such as the 
elderly and some ethnic minorities. For instance, according to the study 
of Longley, Adnan, and Lansley (2015), young men and white British 
people are overrepresented among Twitter users in London, while 
middle-aged/older women, South Asian, and Chinese users are under
represented. Thus, the spatio-temporal patterns identified from social 
media data in London may be biased and not representative of the 
general population. Moreover, the limited access to data sources can 
also lead to getting biased samples during data collection. Taking 
Twitter data as an example, only about 1% of Twitter users are willing to 
generate geotagged tweets and only 1% of tweets are accessible via the 
free Twitter Streaming API (Huang & Wong, 2016; Morstatter, Pfeffer, 
Liu, & Carley, 2013). Malik, Lamba, Nakos, and Pfeffer (2015) examined 
the population (i.e., gender) bias of geotagged tweets by conducting 
statistical tests based on tweets and census data in the United States, 
arguing that geotagged tweets are not representative of the US popula
tion. This problem is also noted for other social media data sources, such 
as Weibo in China (Yuan, Wei, & Lu, 2018). This challenge generally 
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applies to overall urban research employing social media data and has 
been extensively cited (Kitchin, 2013; Li et al., 2016; Tufekci, 2014). 
However, it still remains unsolved according to recent reviews and 
studies (Martı, Serrano-Estrada, & Nolasco-Cirugeda, 2019; Niu & Silva, 
2020). With this challenge in mind, there is an urgent need to properly 
employ this type of geographic big data and unlock its true value for 
understanding cities better. 

When zooming into the context of identifying activity patterns, one 
question must be answered before exploring the spatio-temporal pat
terns from the geotagged social media data: who generate the geotagged 
posts? Specifically, researchers need to reveal the composition of users, 
e.g., their sociodemographic attributes. This is important because users 
generating those footprints in cities are only a sample of the general 
population. Exploring activity patterns from social media data without 
understanding the demographic composition of data generators might 
underrepresent certain groups, for instance, senior and female groups in 
the context of Twitter. Moreover, individuals' demographic backgrounds 
and socioeconomic status have a significant impact on their activity 
patterns in cities (Huang & Wong, 2016; Lenormand et al., 2015). 
Exploring activity patterns of people with different sociodemographic 
characteristics can help to better understand socio-spatial segregation, 
mobility inequality and travel demand. Thus, this study aims to answer 
the following research questions: who are the data contributors of 
geotagged social media? Seeing through these data, how does it help to 
reveal the difference in activity patterns across demographic groups? 
Using Greater London as the case study, this paper firstly proposes an 
analytical framework to enrich social media data for exploring activity 
patterns: 1) By employing a deep learning model, certain demographic 
characteristics (i.e., age and gender) of non-representative Twitter users 
are inferred from user names, profile images, biographies and language 
settings; 2) Activities purposes (i.e., commercial, recreation, residential, 
work, transport, medical, education and sports) of geotagged posts are 
inferred from their geographic locations that are spatially joined with 
fine-scale building and land use data. Then, this paper explores the 
temporal and spatial patterns of urban activities from enriched Twitter 
data. The proposed hourly frequency heatmap method measures 
standardised hourly frequencies of tweets over the daily number of 
tweets for each type of activity. This allows comparing temporal dy
namics across paired groups (e.g., weekdays and weekends, and daytime 
and nighttime). In exploring spatial patterns, standardised differences of 
tweets in hexagon grids are measured and examined for the local spatial 
association (Getis-Ord Gi statistic). The spatial association results help to 
identify the spatial clusters of high or low standardised differences of 
tweets between groups, revealing the specific locations where age and 
gender groups have different patterns of urban activities. 

The paper is organised as follows. Section 2 reviews the applications 
of geotagged social media data in exploring human activity patterns and 
also the demographic inference of geotagged social media data. Section 
3 introduces the study area and data used in this study. Section 4 ex
plains the methodology employed herein, including data cleaning, data 
preparation, data enrichment, and metrics and methods for spatial, 
temporal and demographic pattern recognition. Section 5 presents the 
results. Section 6 further discusses results, contributions, limitations and 
further directions. 

2. Related work 

2.1. Exploring human activity patterns using geotagged social media data 

Among studies exploring activity patterns from geotagged social 
media, a group of researchers have focused on activity spaces, i.e., the 
spatial extent of individuals' daily activities, by aggregating the spatio- 
temporal information at the individual level. Swier, Komarniczky, and 
Clapperton (2015) linked clusters of geotagged tweets from the UK with 
building-level functions to identify users' residential zones. Shelton, 
Poorthuis, and Zook (2015) used social media data to examine the actual 

activity spaces of segregated neighbourhoods and explored the potential 
of social media data in examining socio-spatial mobility. With activity 
patterns extracted from geotagged social media data, studies such as 
Huang and Wong (2016) and Hu, Li, and Ye (2020) further explored the 
relationship between activity spaces and socioeconomic statistics from 
census data. To quantify activity patterns, the aforementioned studies 
mainly used spatial metrics such as distance of displacement, the radius 
of gyration, numbers of distinct locations, core activity locations and 
Shannon entropy of users' trajectories. Another group of researchers 
used geotagged social media data to infer activity purposes and explore 
the patterns of activity behaviours, including activity choice patterns, 
activity forecasts and lifestyles (Rashidi, Abbasi, Maghrebi, Hasan, & 
Waller, 2017). To infer activity purposes, previous studies have either 
used check-ins (e.g., Foursquare and Yelp review), which record indi
vidual activity with specific locations, or general geotagged social media 
data by spatially joining land use data or points of interest (POI) data. 
Hasan and Ukkusuri (2014) integrated Foursquare check-in data with 
topic modelling to model the activity choice patterns of eight activity 
categories –home, work, eating, entertainment, recreation, shopping, 
social services and education. Huang and Li (2016) identified the pur
poses of activities tagged in social media by spatially joining social 
media data with land use data to explore the semantic patterns from 
activity labels formed by time and location information. Combined with 
fine-scale POI data from Google Places, Cui, Xie, and Liu (2018) used 
geotagged tweets to infer and predict trip purposes in the categories of 
eating out, personal, recreation, education, shopping and 
transportation. 

2.2. Sociodemographic inference from social media data 

Beyond the spatial and temporal patterns of activities, researchers 
are also interested in exploring the sociodemographic characteristics of 
social media users (see Table 1). Some of them assigned sociodemo
graphic attributes to social media users by linking users' visited locations 
(i.e., activity zones or home locations) with either local knowledge of 
sociodemographics or census data. Shelton et al. (2015) identified the 
‘home’ neighbourhoods of social media users according to the frequency 
of their geotagged check-ins in two locally-identified segregated 
neighbourhoods and then examined the activity patterns of the two 
groups in terms of socio-spatial inequality. Huang and Wong (2016) 
identified home and work sites for social media users and inferred their 
socioeconomic status by matching with census data. Exploring the 
consuming activities of different social groups, Davis, Dingel, Monras, 
and Morales (2019) inferred individual home or work locations by 
mining location-related text from Yelp reviews and locating them in 
census tracts with demographic and income information. Although this 
data matching method enriches the individual data with collective at
tributes, it may be subject to the ecological fallacy, i.e., incorrect in
ferences about individuals based on aggregate statistics, when drawing 
conclusions about activity patterns (Li, Ban, Wechsler, & Xu, 2018). To 
extract individual-level demographics, several studies have introduced 
name analysis to social media data inference using names from users' 
profiles. Mislove, Lehmann, Ahn, Onnela, and Rosenquist (2011) found 
that 64.2% of Twitter users use first names in their profile, although 
71.8% of these users are male. 

Longley et al. (2015) also used name analysis to infer the ethnicity, 
gender and age makeup of users from Twitter data. By matching the 
Twitter data with a name database containing over 300 million names, 
the study extracted forenames and surnames, which were each assigned 
a predicted ethnicity, age and gender. Of the sample, 63.6% of the data 
had probable forenames or surnames, and 49.1% of the data were coded 
to age and gender. Similarly, Luo, Cao, Mulligan, and Li (2016) per
formed surname analysis with the Bayesian Improved Surname Geo
coding method to identify the ethnicity of users and forename analysis 
for gender and age by linking to the US Social Security database. In such 
studies, forenames are generally used for age and gender prediction, 
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while surnames are used for ethnicity prediction (Cesare, Grant, 
Nguyen, Lee, & Nsoesie, 2018). However, those matching methods only 
consider names from profiles, neglecting other profile information such 
as photos, biography and posts. 

In recent years, researchers have taken advantage of machine 
learning and deep learning techniques to identify and predict de
mographics (see Table 1). Several studies have trained supervised clas
sifiers to predict the sociodemographics of social media users based on 
features from profile information, such as profile images (An & Weber, 
2016; Zagheni et al., 2014) and screen name (Liu & Ruths, 2013; 
McCormick, Lee, Cesare, Shojaie, & Spiro, 2017), to extended infor
mation such as profile colour (Alowibdi et al., 2013), posts (Guimaraes, 
Rosa, Gaetano, Rodrıguez and Bressan, 2017), network (Fang et al., 

2015), check-ins (Zhong et al., 2015) and self-reported biography (Chen 
et al., 2015; Wang et al., 2019). In general, features such as posts, the 
profile description, profile colour and network are used for gender 
prediction, while profile photos and forenames are used for age pre
diction. For ethnicity prediction, previous studies have included features 
such as profile photos, surnames and posts. In summary, the machine 
learning methods, along with some deep learning advances in natural 
language processing and face recognition, have offered new opportu
nities for inferring sociodemographic characteristics of social media 
users with increasing accuracy (Cesare et al., 2018). However, few 
studies have leveraged the advance in demographic detection to tackle 
the representativeness issue with social media data. To fill this gap, this 
study will utilise deep learning algorithms to infer the 

Table 1 
Studies of sociodemographic inference from geotagged social media data.  

Studies Data Information used Method Algorithm Attributes Supplementary data 

Shelton et al. (2015) Twitter Check-ins 

Data 
matching 
with 
inferred 
activity 
zone Frequent visits 

Sociodemographics (segregated 
neighbourhoods) – 

Huang and Wong 
(2016) Twitter Check-ins 

Data 
matching 
with 
inferred 
home 
location Spatial clustering 

Socioeconomic status (median 
house value) 

American Community 
Survey (ACS) data 

Davis et al. (2019) 
Yelp re- 
views Check-ins 

Data 
matching 
with 
inferred 
home 
location Location detection 

Socioeconomic status 
(consumption) – 

Jiang, Li, and Ye (2019) Twitter Check-ins 

Data 
matching 
with 
inferred 
home 
location Frequent visits 

Demographics (age, gender, 
ethnicity, education, household 
income) 

American Community Survey 
(ACS) data; 2010 Decennial 
Census 

Mislove et al. (2011) Twitter User names 
Name 
analysis – Demographics (age, gender) 

Social Security Administration 
2010 

Longley et al. (2015) Twitter User names 
Name 
analysis OnoMap software1 

Demographics (age, gender, 
ethnicity) 

2011 United Kingdom census; 
OnoMap taxonomy 

Luo et al. (2016) Twitter User names 
Name 
analysis 

Bayesian Improved 
Surname Geocoding 

Demographics (age, gender, 
ethnicity) 

Social Security Administration 
2014 

Yuan et al. (2018) Weibo Biography 
Data 
detection – Demographics (gender) – 

Zagheni, Garimella, 
and Weber (2014) Twitter Profile images 

Face 
recognition Face++ API2 Demographics (age, gender) – 

An and Weber (2016) Twitter Profile images 
Face 
recognition Face++ API 

Demographics (age, gender, 
ethnicity) – 

Alowibdi, Buy, and Yu 
(2013) Twitter Profile colour 

Supervised 
machine 
learning Classifiers Demographics (gender) – 

Liu and Ruths (2013) Twitter User names 

Supervised 
machine 
learning 

Support vector 
machine (SVM) Demographics (gender) – 

Fang, Sang, Xu, and 
Hossain (2015) Google+

User names, biography, 
posts 

Supervised 
machine 
learning 

Relational latent 
SVM 

Demographics (age, gender, 
ethnicity) – 

Chen, Wang, Agichtein, 
and Wang (2015) Twitter 

User names, biography, 
posts, social networks, 
profile images 

Supervised 
machine 
learning SVM 

Demographics (age, gender, 
ethnicity) – 

Zhong, Yuan, Zhong, 
Zhang, and Xie 
(2015) Weibo Check-ins 

Machine 
learning 

Classifiers/ 
Regression 

Sociodemographics (gender, 
age, education, marital status) – 

Guimaraes, Rosa, 
Gaetano, Rodrıguez 
and Bressan (2017) Twitter Posts 

Deep 
learning 

Deep convolutional 
neural network Demographics (age) – 

Wang et al. (2019) Twitter 
User names, biography, 
posts, profile images 

Deep 
learning 

Multimodal deep 
neural architecture Demographics (age, gender) –  

1 https://www.onomap.org/ 
2 https://www.faceplusplus.com/ 
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sociodemographics of social media users before exploring the spatio- 
temporal patterns of urban activities among different age and gender 
groups. 

3. Study area and data 

The study area is Greater London which includes 32 London Bor
oughs (i.e., local authority districts). According to the census output area 
population estimates (mid-2019) by the Office of National Statistics 
(ONS), there are 8.96 million people living in the region of Greater 
London, an area of 1572 km2. Several data sets are used in this study: 

Twitter data The initial Twitter data in Greater London were 
collected through the Twitter Streaming API, which provides a 1% 
sample of tweets from the database. Although the retrieved tweets make 
up only 1% of the database, they essentially cover 90% of all geotagged 
tweets (Morstatter et al., 2013). We used the Streaming API to collect 
tweets by setting a bounding box of Greater London.1 Although Twitter 
data show periodical patterns across times of day and days of the week, 
short-term observations from social media data are not sufficient to 
capture activity patterns at the individual level (Lee, Davis, Yoon, & 
Goulias, 2016). Thus, we chose a period of over one year (starting from 
2019) to include sufficient data as observations for exploring in
dividuals' activities. Considering that the COVID-19 pandemic has 
dramatically impacted the movement of citizens in the city, we only 
included the tweets before the first lockdown in London, resulting in a 
period of 1 January 2019 to 1 March 2020. 

The data collection was collected via the python package Tweepy 
(Version 3.5.0) and stored in a PostgreSQL database. Each entry in the 
database included attributes related to the tweet and the user, such as 
created time of the post, text, language, timestamp, user name, location 
of the user, profile image link, the profile description, etc. Most impor
tantly, it contained attributes regarding the geo-locations of tweets. 

Land and building use data Building use data were acquired from 
Geomni UKBuildings,2 a spatial property database that provides indi
vidual building characteristics such as use, age and residential types. 
There are 25 classes of detailed building use, such as retail, recreation, 
transport, educational use and residential. There are, in total, 2,385,214 
building features with specific uses in Greater London. Another dataset 
used was the Ordnance Survey MasterMap Greenspace layer,3 which 
includes open space features (e.g., public parks, garden, and sports 
grounds) in London. 

4. Methodology 

4.1. Data cleaning and preparation 

Given the focus of this study on spatio-temporal patterns of geo
tagged social media in London, we first removed bot and inactive ac
counts according to the following standards. Table 2 shows the number 
of tweets and users for the above data cleaning process.  

• Created time of tweets are within the time range from 2019 to 01-01 
00:00:00 + 00 to 2020-03-01 00:00:00 + 00.  

• Geotags referring to bounding boxes of administrations or cities are 
removed. Only tweets geotagged by coordinates objects and place 
objects (place type = poi) are selected. (See Fig. 1 for the distribution 
of distinct point-based geotags in Greater London).  

• Geotagged tweets outside of the Greater London boundary are 
removed. 

The next step included filtering users such as inactive accounts, bot 
accounts and spatially inactive account.  

• Users who send over 3500 geotagged tweets are identified as bot 
accounts.  

• By summarising daily tweets sent by users, we identify users as active 
accounts when they send at least two geotagged tweet at least in one 
day.  

• Since this study focuses on the activity of Twitter users, we exclude 
users with low spatial mobility, referring to users with tags in the 
same location. To do this, we calculate the centroid of geo-locations 
for each user and measure the movement distance between the 
centroids of all geotagged tweets. Users with a movement distance of 
fewer than 50 m are tagged as spatially inactive accounts and 
removed from the dataset. 

The timestamp recorded in Twitter metadata provides accurate 
temporal information, allowing for exploring the dynamics of urban 
activities. Considering the hourly and daily periodicity in human 
mobility, we extracted the time of day (24 h) and the day of the week (7 
days) for each tweet (Song, Koren, Wang, & Barabasi, 2010). We first 
labelled the tweets sent from 7 am to 7 pm as daytime tweets and those 
sent from 7 pm to 7 am as nighttime tweets. We also labelled tweets as 
weekday tweets (from Monday to 5 pm Friday) and weekend tweets 
(from 5 pm Friday to Sunday). 

4.2. Data enrichment with inferred attributes 

To explore the activity patterns of different demographic groups 
from tweets, two types of attributes needed to be extended via data 
enrichment: demographic characteristics of users and the activity pur
poses of their geotagged tweets (see Fig. 2). In inferring demographics, 
we utilised user metadata (i.e., profile image, username, screen name 
and biography) for training a deep learning model that predicts de
mographic characteristics, including age and gender.4 Another data 
enrichment method intended to reveal the activity purposes related to 
the locations of tweets. However, only a small number of geotagged 
tweets were specifically linked with POIs. In this study, we inferred the 
activity purpose by following two steps: first, we classified the building 
and land features in London into several activity types (e.g., commercial, 
recreation, residential, and work) according to their specific uses; then, 

Table 2 
Filtering process with numbers of tweets and users.  

Cleaning process Number of 
tweets 

Users 

Tweets collected between Jan 2019 and March 2020 18,169,124 611,348 
Tweets with valid geolocation 15,665,004 532,959 
Tweets in Greater London Bounding Box 15,196,971 503,847 
User filtering process (separately) 

Users whose total number of tweets is <35001 13,349,368 503,665 

Users sending at least two geotagged tweets in 
one day 

13,710,968 248,557 

Users with spatial mobility2 13,319,851 265,913 
Tweets after user filtering3 11,278,041 205,026  

1 By manually checking high-frequency accounts, we found that users who 
generated over 3500 geotagged tweets during the whole time period are almost 
bots. 

2 Users whose movement distance is over 50 m. 
3 Around 62% of tweets are left after the filtering process. 

1 Coordinates of the bounding box in WGS84 (EPSG:4326): [− 0.510375, 
51.28676, 0.334015, 51.691874].  

2 https://www.geomni.co.uk/ukbuildings  
3 https://www.ordnancesurvey.co.uk/business-government/products/mast 

ermap-greenspace 

4 We follow the recommendation from General Data Protection Regulation 
2016 (https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:3 
2016R0679) and Twitter Developer Agreement and Policy (https://developer. 
twitter.com/en/developer-terms/more-on-restricted-use-cases) to collect, store 
and process data. 
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the geotagged tweets were spatially joined with the above spatial fea
tures assigned by activity purposes. 

4.2.1. Inferring demographics from user profile data with deep learning 
The demographic inference was based on an open-source model – 

M3Inference – developed by Wang et al. (2019). The M3Inference model 
can infer gender, age and organisation identity from multilingual social 
media data. The model is also multimodal since it can integrate both text 
and image models, which has been neglected in previous studies. 
Compared to previous sociodemographic inference methods, this model 
takes full advantage of Twitter metadata such as a user's name, profile 
image, biography and language setting that can be accessed via the 

RESTful API. The full model includes two pipelines for learning images 
(i.e., profile images) and text (i.e., username, screen name, and bi
ography). Specifically, the image model uses DenseNet (Huang, Liu, van 
der Maaten, & Weinberger, 2017), a state-of-the-art neural network for 
visual object recognition, while the text model trains 2-layer long short- 
term memory networks with character-based embedding (i.e., the 
character embedding is constructed separately for different languages). 
Both the image and text models are joined to the full model with a 
modality drop-out layer, two fully connected layers of size 2048 and a 
rectified linear unit layer (see Fig. 3). The outputs are separate layers for 
each task, i.e., gender, age and isorganisation identification, with gender 
and is-organisation being binary classifications. The categories for age 

Fig. 1. Distribution of distinct point-based geotags in Greater London. Distinct locations tagged in tweets are represented as circles whose size refers to the total 
number of tweets at the location. Only tweets geotagged by coordinates objects and place objects (place type = poi) are selected in this study. See Appendix A for 
visualisations of different geographic objects tagged in Greater London. 

Fig. 2. Data enrichment method for Twitter data.  

H. Niu and E.A. Silva                                                                                                                                                                                                                          



Computers, Environment and Urban Systems 100 (2023) 101934

6

have four levels: ≤ 18, (18, 30), [30, 40) and [40, 99). It is worth noting 
that the model has been evaluated with the gender and age distribution 
of the European population dataset (including the UK) provided by the 
European Statistical Office. M3 model achieved macro F1-scores (i.e., 
the weighted average of precision and recall) of 0.918, 0.522 and 0.898 
in gender, age are organisation status, which outperforms all tested 
model on Twitter data. Readers are referred to Wang et al. (2019) for 
more details regarding the m3inference model. 

4.2.2. Inferring activity purposes by joining with building/land use data 
To infer activity purposes from geotagged social media, we followed 

a data matching method by spatially joining the geotagged tweets with 
building use data that indicates potential human activity Huang and Li 
(2016). However, public data for land use classification in the UK, such 
as the Generalised Land Use Database, only provide simplified classifi
cations (e.g., domestic buildings, non-domestic buildings, roads, green 
space, and water), which is insufficient as a reference for activity 
inference, especially in Greater London. To fill this gap, we combined 
the building use data from Geomni UKBuildings (GUKB) and land fea
tures (e.g., public park, garden, sports grounds) from the Ordnance 
Survey MasterMap Greenspace (OSMG) layer as the reference to infer 
activity purposes (see the visualisation in Appendix B). We assigned 
building and land uses based on eight activity types: commercial, rec
reation, residential, work, transport, medical, education and sports (see 
Table 3). For each geotagged tweet, we conducted a nearby search and 
spatially joined the coordinates of the tweet with the nearest building/ 
land features with related activity types. Tweets whose distance to the 
nearest building/land was over 300 m were eliminated from the dataset. 
Four categories of attributes were gathered from data enrichment: tweet 
metadata, user profile, user sociodemographics and activity purpose. 
The detailed attributes and their acquisition methods are listed in 
Table 4. 

4.3. Temporal pattern of activity-based tweets with hourly frequency 
heatmap 

To understand the temporal rhythms of different types of activity, we 
measured the standardised hourly frequencies of tweets (z-score) over 
the daily number of tweets in each type of activity. We calculated the 
hourly frequency of tweets separately for eight types of activities using 
the Eqs. (1) and (2) as: 

Za,h =
Na,h − Xa

Sa
(1)  

Xa =

∑H
h=1 Na,h

H
, Sa =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑H

h=1 N2
a,h

H

√

− (Xa)
2 (2)  

where Na,h refers to the number of tweets related to activity a sent during 
the hour h, Xa and Sa are the mean and standard deviation of the hourly 

frequency of tweets related to activity a. The matrix of hourly frequency 
of activity P is given by using activity types as rows and hours as 
columns: 

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z1,1 Z1,2 … Z1,h … Z1,H
Z2,1 Z2,2 … Z2,h … Z2,H
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Zi,1 Zi,2 … Zi,h … Zi,H
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

ZA,1 ZA,2 … ZA,h … ZA,H

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)  

where A refers to the total number of activity types and H refers to the 
hour of the day (in 24-h time). The sum of [Z1,1,Z1,2…Z1,j…Z1,H] is equal 
to 1. For better visualisation, we converted the hourly frequency 
matrices of activity into heatmaps. 

To compare the temporal patterns of activity between different age 
or gender groups, we first calculated the matrix for each subset and 
measured the difference using matrix subtraction. For example, we 
calculate the difference in temporal patterns between male and female 

Fig. 3. M3Inference model (adapted from Wang et al. (2019)).  

Table 3 
Activity identification based on building and land use in London.  

Activity 
types 

Building/land use classifications Data 
source1 

Commercial 

General commercial - mixed use 
General commercial - mixed use - derelict 
Retail - petrol station 

GUKB 
GUKB 
GUKB  

Retail - with more recent extensions of different type 
construction/age GUKB  
Retail only GUKB  
Retail with office/residential above GUKB 

Recreation 
Recreation and leisure 
Public park or garden 

GUKB 
OSMG  

Religious grounds OSMG  
Community - religious GUKB 

Residential 

Community - institutional and communal 
accommodation 
Residential only 

GUKB 
GUKB  

Residential with retail on ground floor GUKB 

Work 

Industry - manufacturing/processing 
Office only 
Office with retail on ground floor 
Community - governmental (central and local) 

GUKB 
GUKB 
GUKB 
GUKB  

Storage/warehousing GUKB  
Storage/warehousing with linked office block GUKB  
Utilities GUKB 

Transport Transport GUKB 
Medical Community - health GUKB 
Education School grounds OSMG  

Community - educational GUKB 
Sports Tennis court OSMG  

Other sports facility OSMG  

1 GUKB: Geomni UKBuildings dataset; OSMG: Ordnance Survey MasterMap 
Greenspace layer. 

H. Niu and E.A. Silva                                                                                                                                                                                                                          



Computers, Environment and Urban Systems 100 (2023) 101934

7

users in London by subtracting the z-score of male users, Z(gender=male), 
from the z-score of female users, Z(gender=female). When measuring the 
standardised difference in temporal patterns across demographic 
groups, we chose the matrix of overall hourly frequency of activities, 
Z(Subset), as the subtrahend and the equivalent for specific gender and age 
subsets Z(all), as the minuend. 

4.4. Spatial pattern of activity-based tweets with hotspot identification 

To explore the spatial pattern of activities, we created a hexagon grid 
with a perimeter of 200 m to aggregate tweets in the city. Considering 
the uneven sample sizes, we calculated z-scores, i.e., standardised fre
quency of tweets, for all hexagonal cells. Following the method used in 
Lansley and Longley (2016), we then compared the z-scores in the same 
cell between different subgroups to delineate their spatial disparities. 
For instance, when identifying the spatial patterns of gender groups, we 
split the entire dataset of tweets into two subsets according to the gender 
attribute of Twitter users. For each cell, we calculated the standardised 
frequencies of tweets separately for the male and female groups. By 
using the standardised frequencies (z-scores) of tweets sent by men to 
subtract the equivalent for women, we achieved the standardised dif
ferences (z-score difference) of tweets between men and women in the 
hexagon cell. A positive standardised difference in a cell means there 
were more tweets sent from female users than male users at that specific 
location. This analysis was also applied to the exploration of the spatial 
differences between tweets sent from the four age groups of Twitter 
users at different times of day (i.e., daytime and nighttime) and days of 
the week (i.e., weekdays and weekends). 

However, hexagon cells with high or low values (i.e., z-score dif
ference) may not be statistically significant hotspots. To be a statistically 
significant hotspot, the cell should have a high value while being sur
rounded by other cells with high values. The same applies to cold spots. 
Thus, we utilised hotspot analysis (Getis–Ord Gi* statistic) to mea
sure the local spatial association of high or low standardised differences 
between different groups. The Getis–Ord Gi* statistic is given as: 

G*
i =

∑n
j=1 wi,jxj − X

∑n
j=1 wi,j

S

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑n

j=1
w2

i,j −

(
∑n

j=1
wi,j

)2
]

n− 1

√
√
√
√

(4)  

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
j=1 x2

j

n

√

− (X)2
,X =

∑n
j=1 xj

n
(5)  

where xj is the z-score difference in hexagon cell j, wi,j is the spatial 
weight between cells i and j, and n is equal to the total number of 
hexagons. The results of the Getis–Ord Gi* statistical analysis include a 
G*

i score for each spatial feature and a p-value as its statistical signifi
cance (95%, 99%, 99.9%). To understand the activity pattern within the 
hotspots, we further calculated the hourly frequencies of tweets only 
located in the hotspot cells by type of activity. We visualised the sta
tistics as a heatmap by using the method explained in Section 4.3, but 
summarised by boroughs. 

The methodology was implemented on a machine running the 
Windows 10(x64) operating system. PostgreSQL with the PostGIS 
extension was used to manage the geospatial data and perform geo
processing. We calculated the Getis–Ord Gi* statistics with GeoDa 
version 1.18. The results were visualised with QGIS version 3.10 and 
Python version 3.7 with the Matplotlib (https://matplotlib.org/) and 
Seaborn (https://seaborn.pydata.org/) packages. 

5. Results 

5.1. Statistics of social media users with inferred demographic 
characteristics 

The results suggest that there is an overrepresentation of men among 
the Twitter users in Greater London (see Table 5). The ratio of male 
Twitter users to all Twitter users in London is 15% higher than that of 
official population estimates of mid–2019 (Park, 2020). Compared to 
the results of a previous study by Sloan (2017), this ratio is also 7.9% 
higher than the one found in the Twitter dataset of users in Great Britain. 
In terms of age, underrepresentation was noted both in the groups of 
young (aged <18) and senior citizens (aged over 40). On the contrary, 
the ratio of Twitter users aged 19–29 to users of all ages is 17.8% higher 
than that of the official population estimates (see Table 6). Fig. 4 shows 
the difference in gender ratios for each age group between Twitter data 
and government statistics in London. The comparison highlights that the 
overrepresentation of men in the sample of Twitter users exists in each 
age group, but especially for the 30–39 and over 40 age groups. 

5.2. Temporal and spatial patterns of activity-based tweets 

5.2.1. Daily dynamics 
The results of the hourly patterns of tweets for the eight types of 

activities show that residential-related tweets dominate the whole 
dataset, followed by tweets inferred as recreation and work activities 
(see Fig. 5a). In total, around 52.3% of 11,278,041 tweets are identified 
as residential-related, and 21.9% of all tweets are identified as 
recreation-related. The proportion of work-related tweets is 11.34%. 
Fig. 5b depicts the heatmap of standardised hourly frequencies of 
tweets. It shows that most of the geotagged tweets in London were sent 
between 9 am and 10 pm. In each row, the continuous cells in the red 
colour reveal the peak times of tweets related to the specific type of 
activity. Focusing on the peak hours of activities inferred from geo
tagged tweets, residential and recreation activities share a similar 
pattern in that most of the related tweets were sent during the nighttime 
from 6 pm to 10 pm. Work- and medical-related tweets were primarily 

Table 4 
Enriched attributes of geotagged social media data.  

Attribute type Attribute name Acquisition method 

Tweet metadata tweet_id Metadata  
user_id Metadata  
created_at Metadata  
geom Metadata  
hour Extracted from metadata  
day Extracted from metadata  
weekdays/ 
weekends Extracted from metadata  
daytime/nighttime Extracted from metadata 

User profile user_id Metadata  
user_name Metadata  
user_bio Metadata  
user_profile_image Metadata 

User 
sociodemographics age Inferred by deep learning  

gender Inferred by deep learning  
is/non-organisation Inferred by deep learning  

home borough 
Inferred by spatio-temporal 
clustering 

Activity purpose activity type 
Inferred from building/land use 
data  

Table 5 
Population of Twitter users by gender.   

Male Female 

London Twitter users 66.2% 33.8% 
London Twitter users (refined)1 64.9% 35.1% 
London Population estimates 20192 49.9% 50.1% 
GB Twitter users3 57.0% 43.0%  

1 Refined by excluding tweets from organisation accounts. 
2 Population estimates by Office for National Statistics (ONS). 
3 Source: Sloan (2017). 
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sent during working hours (9 am to 7 pm) and peaked around noon. The 
active time for transport-related tweets started earlier, at 8 am, and 
ended around 7 pm, while sports-related tweets had a short active time 
between 11 am and 9 pm. Compared to tweets related to all other ac
tivity purposes, sports-related tweets had a shorter active time but had 
two surprising peak times, around 2 pm and 7 pm. It should be noted 
that the hourly frequency of tweets only reflects the general trends of 
activity purposes, as these check-in locations are not necessarily activity 
destinations. 

5.2.2. Weekly dynamics 
To explore the temporal rhythms of activities in a week, we first 

calculated the standardised hourly frequency of tweets on weekdays and 
weekends and then compared the weekday and weekend frequencies of 
the tweets. The standardised differences shown in Fig. 6 were calculated 
by subtracting the standardised hourly frequency of tweets on weekends 
from those on weekdays. A red-violet cell indicates that there were more 
tweets related to that specific activity sent during the weekdays than 
those sent during the weekends at the same time. The results show that, 
generally, tweets sent on weekdays had higher frequencies during the 
early morning (i.e., 7–8 am) than those sent on weekends. It is also 
evident that tweets related to commercial, recreation, residential, edu
cation and sports were more active in the evenings on weekdays, pre
sumably during after-work or after-class time. Especially for tweets 
inferred as sports activities, there were two peaks identified in the last 
row of Fig. 6: one around 2–4 pm on weekends and the other around 7 
pm on weekdays. Transport-related tweets during the weekdays were 
more concentrated in the mornings and evening rush hours compared to 
the tweets sent on the weekends. Furthermore, there was an increase of 
tweets inferred as commercial, recreation and education activities dur
ing the daytime (i.e., 9 am–5 pm) on weekends, which is reasonable as 
people usually have more free time on the weekends. It was surprising to 
see that work-related tweets were more active during the nighttime on 
weekends instead of on weekdays. 

5.2.3. Spatial differences between daytime and nighttime tweets 
To examine the spatial patterns of tweets from different times of day, 

we calculated the standardised frequencies of tweets (z-scores) during 
the daytime and nighttime. For each hexagon cell, the attribute value 
refers to the standardised difference between z-scores for daytime and 
nighttime, as ZDiff. By applying the hotspot analysis based on the 
Getis–Ord Gi* statistic, we identified those statistically clustered cells 
with high ZDiff values as hotspots and those with low ZDiff values as cold 
spots (see Fig. 7). The colour shade indicates different levels of signifi
cance, where the darkest shades indicate that the spatial cluster of high 
values or low values is significant at a 99.9% confidence level. To the 
right of the hexagon map, the heatmap further illustrates the hourly 
frequencies of tweets by activity types only for hotspots or cold spots 
within each borough. Considering that hotspots or cold spots are nor
mally concentrated in some areas, we only included the heatmaps for 
certain boroughs. Fig. 7a focuses on the hotspots (i.e., red cells) where 
more tweets were sent during the daytime. Daytime activities were 
mainly distributed in boroughs such as the City of London, Camden and 
Islington, but just around the city centre. Most of the daytime tweets in 
hotspots within the City of London were work-related. Within the Bor
ough of Camden, hotspots of daytime activities included tweets related 
to commercial, work, transport and education activities, which is 
reasonable considering that places such as Holborn, King's Cross and 
University College London are included there. Hotspots in the London 
Borough of Islington covered areas such as Bunhill and Clerkenwell, 
with more tweets inferred as work, commercial, recreation and sports. 
Moreover, areas within Southwark and Lambeth along the River Thames 
had more clusters for daytime activities. 

Fig. 7b focuses on the cold spots (i.e., blue cells) where there were 
more tweets sent during the night, revealing areas that may have more 
nighttime activities. A major and contiguous cluster of nighttime ac
tivities was found in the City of Westminster, including the West End, 
Soho, Mayfair, Head Park Estate and Trafalgar Square, in which com
mercial-, work- and recreation-related activities dominated because of 
the high-density and mixed-use commercial, leisure, retail and office 
spaces. The other centres for nightlife shown in the hexagon map are not 
obvious, except for the O2 stadium in the Borough of Greenwich, where 
most tweets were inferred as recreation activities. This is reasonable as 
the stadium hosts many matches, concerts and other events during the 
night. 

5.2.4. Spatial differences between weekdays and weekends tweets 
Fig. 8 shows the spatial disparity between weekday and weekend 

tweets. Similarly, hotspots (i.e., red cells) denote places where more 

Table 6 
Population of Twitter users by age.   

≤18 19–29 30–39 >40 

London Twitter users 10.0% 31.3% 22.0% 36.6% 
London Twitter users (refined)1 10.2% 33.7% 22.8% 33.3% 
London Population estimates 20192 23.7% 15.9% 18.1% 42.3%  

1 Refined by excluding tweets from organisation account. 
2 Source: Population estimates by Office for National Statistics (ONS). 

Fig. 4. Comparison of gender ratios in age groups between Twitter data and population estimates from ONS.  
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tweets were sent during weekdays than on weekends, while cold spots (i. 
e., blue cells) highlight places with more tweets during the weekends. 
Londoners sent more tweets during weekdays from central London, 
including most areas of the City of London, southern parts of Camden 
and Islington and certain areas distributed over the City of Westminster 
and South Bank. Specifically, tweets from hotspots in the City of London 
were almost all work-related, while those from Camden, Westminster, 
and Kensington and Chelsea were tagged as commercial-, recreation-, 
residential- and work-related activities. It is noted that hotspots in the 
City of Westminster only existed around Westminster, Warwick, Mar
ylebone High Street, Hyde Park and Bayswater, not including West End, 
Soho and Covent Garden, which had more tweets during weekends than 

during weekdays. 
Fig. 8b focuses on cold spots scattered outside of central London. 

Local town centres in Greater London such as Camden Town, Hampstead 
Town, Romford Town, Twickenham Riverside and Blackheath saw more 
tweets sent during the weekends than on weekdays. A similar pattern 
can be seen in recreation and sports facilities such as Twickenham Sta
dium, Wembley Stadium, Copthall Stadium, Olympic Park, Victoria Park 
and Tottenham Hotspur. 

Stadium, which people visit more during the week. 

Fig. 5. Daily rhythms of geotagged tweets with inferred activity purposes. (a) Line plot of the hourly frequency of geotagged tweets by eight types of activity. (b) 
Heatmap of hourly frequency of geotagged tweets by eight types of activity. Standardised differences in the heatmap are within ±1.5 standard deviation. 

Fig. 6. Heatmap of standardised differences in temporal patterns of geotagged tweets between weekdays and weekends. The value in each cell refers to the 
standardised difference calculated by subtracting the standardised hourly frequency of tweets sent during weekdays Z(weekdays) from the number for weekends 
Z(weekends). Standardised differences in the heatmap are within ±1.5 standard deviation. 
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5.3. Temporal pattern of activity-based tweets across demographic groups 

5.3.1. Temporal differences between gender groups 
The difference in temporal patterns of activities between genders is 

not evident. For example, according to the rows for recreation and work 
activity shown in Fig. 9, the absolute values of the z-score differences are 
<0.2 standard deviations, indicating a similar temporal pattern between 
the male and female groups. Minor differences can be found during the 
night time after 7 pm when female users were involved in more com
mercial, work, transport and education activities, and also during the 
morning when female users were involved in more commercial, medical, 
education and sports activities than male users. Especially for sports 
activities, there was a significant pattern that tweets from female users 
were mainly sent during the morning and around noon. 

5.3.2. Temporal differences across age groups 
Fig. 10 illustrates the difference in temporal patterns of activities 

between tweets sent from each age group and all users. By comparing 
the red-violet cells across the four visualisations in Fig. 10, we see that 
the younger groups under 29 years old sent more tweets during the night 
or after midnight, specifically involving recreation, residential and ed
ucation activities. People between 19 and 29 tweeted about more 
commercial- and work-related activities after 8 pm than users in other 
age groups. They also sent more sports-related tweets from 5 to 10 pm. 
The Fig. 10d for users over 40 years old shows that users in this group 
tended to send more tweets related to almost all types of activity during 

the daytime, although the difference was not significant. Also, there 
were more tweets inferred as recreation, residential and education ac
tivities in this group than others, especially during the morning from 7 to 
9 am. 

5.4. Spatial pattern of activity-based tweets across demographic groups 

5.4.1. Spatial differences between gender groups 
Within the central areas of London around the West End, there was a 

contiguous hotspot of commercial-, recreation- and work-related tweets 
sent by women covering Soho, Mayfair, Marylebone and Bloomsbury, 
Covent Garden and St James's, likely due to the densely concentrated 
high streets (see Fig. 11). In some especially popular destinations such as 
Buckingham Palace, Tower Bridge, London Bridge, North Greenwich, 
King's Cross station and Victoria Station, women were more active than 
men in tagging tweets. Similar patterns were also found in some resi
dential areas, such as Notting Hill and Brook Green in Hammersmith. On 
the south bank of the River Thames, cold spot clusters were found in 
northern Lambeth, including Waterloo, Vauxhall and Oval, indicating 
more tweets sent from men than women in this area. Another main cold 
spot area was around Paddington, including Bayswater and Westbourne. 
Within the City of London, there was not much spatial disparity in 
geotagged tweets between the gender groups. Near this district, there 
were two cold spot areas, Old Street from the Borough of Islington and 
Whitechapel from the Borough of Tower Hamlets, and a hotspot area, 
Spitalfields and Shoreditch Streets, between the aforementioned areas. 

Fig. 7. Spatial clusters of standardised differences between frequencies of tweets during daytime and nighttime. (a) Map zoomed in on hotspots where red indicates 
there were more tweets sent during the daytime than the nighttime. (b) Map zoomed in on cold spots where blue indicates there were more tweets sent during the 
nighttime than the daytime. The colour shade indicates the confidence level: 99.9%, 99% and 95%, where the darkest shades indicate the highest confidence interval. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5.4.2. Spatial differences between age groups 
To identify the spatial pattern of different age groups among the 

Twitter users, we calculated the standardised differences between each 
age group and all users. Each subfigure in Fig. 12 shows the preferred 
locations tagged by each age group. According to the concentrated and 
contiguous hotspots, the youngest group (under 18 years old) appeared 
distinctly more often in Central London, especially in the areas around 
the River Thames. The hotspots covered places such as the City of 
Westminster, Marylebone, Holborn, Finsbury and the riversides of 
Vauxhall Bridge, Blackfriars Bridge and Tower Bridge. In contrast, the 
hotspots of geotagged tweets from users aged 19–29 were mostly 

distributed outside the Central Activities Zone (CAZ) of London. Clusters 
were also apparent around Hyde Park, Regent's Park, Paddington Sta
tion, Camden Town, Bethnal Green and St Katharine's & Wapping. 
Further from the city core, users from this group also clustered around 
Shepherd's Bush in the Borough of Hammersmith and South Hamstead 
in the Borough of Camden. Users in more senior groups in London had 
more geotagged tweets outside the city core (see cold spots in both 
Figs. 12c and 12d). For instance, the main hotspots for users aged 30–39 
were located around Fulham, especially the riversides, although some 
small clusters appeared around the City of London. This pattern is more 
noticeable in the group of users over 40, who were more active in 

Fig. 8. Spatial clusters of standardised differences between frequencies of tweets during weekdays and weekends. (a) Map zoomed in on hotspots where red indicates 
there were more tweets sent during the weekdays than on weekends. (b) Map zoomed in on cold spots where blue indicates there were more tweets sent during the 
weekends than on weekdays. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Heatmap of standardised differences in temporal patterns of geotagged tweets between female and male groups. The value in each cell refers to the 
standardised difference calculated by subtracting the standardised hourly frequency of tweets sent by men Z(female) from the number for women Z(male). 
Standardised differences in the heatmap are within ±1.5 standard deviation. 
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Fig. 10. Heatmap of standardised differences in temporal patterns of geotagged tweets between each age group and all users. The value in each cell refers to the 
standardised difference calculated by subtracting the standardised hourly frequency of tweets sent by all Z(all) from that of the age group Z(subset). Standardised 
differences in the heatmap are within ±1.5 standard deviation. 

Fig. 11. Spatial clusters of standardised differences of tweets frequencies between male and female user groups. (a) Map zoomed in on hotspots where red indicates 
that more tweets were sent by women than men. (b) Map zoomed in on cold spots where blue indicates that more tweets were sent by men than women. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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southwest London along the River Thames (e.g., Hammersmith, Houn
slow, Richmond upon Thames and Kingston upon Thames) and north
east London (e.g., Hackney). In outer London, hotspots for this group are 
also evident in Croydon, Haringey and Ealing, which differed from the 
younger groups. However, inside the city core, the hotspots only appear 
in Westminster, Chelsea and St George's Cathedral in Southwark. 

6. Discussion 

The result of inferring demographic characteristics of Twitter users 
in London confirmed the overrepresentation of male users noted in 
previous studies (Longley et al., 2015; Sloan, 2017) and further identi
fied the overrepresentation of Twitter users aged between 19 and 40 in 
Greater London, compared with data from official population estimates. 
When using geotagged tweets to infer activity patterns for people in 
London, the patterns are highly likely to be biased toward the group of 
male Londoners over 30. This shows the importance of understanding 
the demographic attributes of users before conducting urban analysis 
with social media data. 

The result also shows that, by spatially joining geotagged social 
media posts with fine-scale land use data, purposes of activities can be 
inferred and used for the identification of activity patterns. The heatmap 
of the hourly frequencies of tweets (Figs. 5 and 6) shows the daily and 
weekly rhythms of geotagged tweets with eight inferred activity purpose 

categories. The results of analysing daily tweet frequency (Fig. 5b) show 
that patterns of commercial, recreation, residential and education ac
tivities are similar. This analysis also revealed that there were two peak 
hours of sports activities in the city. The two peaks are impressively 
explained by the fact that the 2–4 pm peak appeared only during the 
weekends while the one around 7 pm appeared during weekdays. In 
exploring the differences in the temporal patterns of activities within 
demographic groups, the findings for the gender groups were limited as 
men and women shared similar daily activity patterns (see Fig. 9). For 
the age groups, there were more findings in terms of the differences in 
temporal patterns as shown in Fig. 10. This may suggest that the dif
ferences in temporal patterns between gender groups are less evident 
than those across age groups, which might require further exploration in 
the future. 

In exploring the spatial patterns of activity-based tweets, the results 
shown in Fig. 7 indicate the spatial differences between daytime and 
nighttime activities in the central area of London. By looking into the 
frequency of tweets in the eight activity categories in the nighttime 
hotspots of the City of Westminster, it was unexpected to find many 
work-related activities during the night time and throughout the whole 
day. This appeared presumably because the geotagged tweets were 
accidentally inferred as work-related activities due to the high-density 
and mixed-use buildings in these areas that were used for process 
enrichment. In comparison, a difference between weekday and weekend 

Fig. 12. Spatial clusters of standardised differences of tweets frequencies between each age group and by all users. (a) Hotspots (in red) indicates there are more 
tweets sent by users aged under 18 than general users. (b) Hotspots (in red) indicates there are more tweets sent by users aged between 19 and 29 than general users. 
(c) Hotspots (in red) indicates there are more tweets sent by users aged between 29 and 39 than general users. (d) Hotspots (in red) indicates there are more tweets 
sent by users aged over 40 than general users. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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tweets was not evident likely because tweets sent during the weekdays 
mainly dominate the city core. Only certain areas such as West End, 
Soho and Covent Garden were also identified as clustered areas where 
there were more tagged activities during the weekends. This suggests 
that the spatial difference between daytime and nighttime activity pat
terns is more obvious than that of weekdays and weekends. 

The spatial difference of activity-based tweets between gender 
groups (Fig. 11) shows that female Londoners tend to participate in 
commercial and recreation activities in those highdensity and mixed-use 
areas. Interestingly, the distribution of hotspots of women's tweets 
overlapped with the hotspots for nighttime activities, especially in the 
City of Westminster, where many commercial and recreation services 
are provided (see Fig. 7b). The results in Fig. 12 shows that the younger 
groups generate more location-based tweets within the city core, while 
senior groups are relatively more active in outer areas. The youngest 
groups generate more location-based tweets in more often in Central 
London that are mostly commercial and recreation-related. The hotspots 
for the group aged 19–29 are more scattered but mainly located within 
Inner London. Geotagged tweets sent from this group seem to have more 
commercial and work-related activities. The hotspots for 30–39 and 
more senior groups are mostly in town centres of outer areas. These 
patterns identified for each age group provide spatial-explicit evidence 
for age-sensitive planning and policy-making. 

6.1. Contribution to the literature 

This study is distinct from many other studies employing social 
media data in exploring activity patterns in cities. Firstly, the study deal 
with the unsolved non-representativeness issue of geotagged social 
media data, which has been extensively criticised in many previous 
studies (Kitchin, 2013; Li et al., 2016; Martı et al., 2019; Tufekci, 2014). 
To reveal the demographic composition of non-representative Twitter 
users, this study utilised a deep learning model with using users' meta
data, i.e., profile image, user name, description and language setting, as 
inputs. Two gender groups and four age groups are inferred. Comparing 
with previous studies, it have much higher accuracy than other methods 
such as name analysis (Cesare et al., 2018; Longley et al., 2015; Luo 
et al., 2016; Mislove et al., 2011) and the home detection method (Davis 
et al., 2019; Huang & Wong, 2016). This provides opportunities to 
further explore the spatio-temporal patterns of urban activities across 
different age and gender groups. 

By taking advantage of the demographic inference of Twitter users in 
London, this paper is the first attempt to explore the spatio-temproal 
patterns of human activity across different demographic groups (Hu 
et al., 2020; Huang & Wong, 2016). To better illustrate the differential 
patterns across age and gender groups temporally and spatially, this 
paper also proposes new analytical approaches. An hourly frequency 
heatmap of activity-based tweets was introduced to illustrate the daily 
and weekly rhythms. This study calculated the difference in stand
ardised frequency of tweets in hexagon cells between different groups (e. 
g., daytime and nighttime, weekdays and weekends, and male and fe
male groups) and utilised hotspot analysis to visualise the spatial dis
parities between them. 

6.2. Implications for urban planning and policy 

By inferring the age and gender from geotagged social media data, 
this paper reveals the demographic composition of non-representative 
Twitter users. The following analysis of activity patterns across de
mographic groups provides urban planners and policymakers with 
quantitative evidence related to specific groups, such as female and 
middle-aged people in London. For instance, Fig. 7 reveals the major and 
contiguous cluster of nighttime activities in the City of Westminster and 
identifies specific locations such as the West End, Soho, Mayfair, Head 
Park Estate and Trafalgar Square. This provides nearly real-time evi
dence to support policymaking regarding the nighttime economy with 

spatial interventions (GLA, 2020). Moreover, based on the finding that 
the spatial difference between daytime and nighttime activity patterns is 
more obvious than those between weekdays and weekends, the gov
ernment should implement spatial interventions based on daily rhythms 
instead of weekly rhythms. Understanding the activity patterns for 
specific demographic groups, such as women, can also help support 
policies such as the ‘Women's Night Safety Charter’ recently issued to 
combat the violence against women during the night. 

The study could further be used to support the ‘High Streets Strategy’ 
in the UK with the spatial patterns linked to the high streets in London 
(Ministry of Housing, Communities, & Local Government, 2021). For 
instance, most of the high streets in the City of Westminster are more 
active during the nighttime, and the high streets around Soho, Mayfair, 
Marylebone and Bloomsbury, Covent Garden and St James's are more 
active on weekends. These findings will be helpful for understanding the 
patterns in the high streets of different areas, which can support poli
cymaking for the high streets in the local government. 

Although the abovementioned applications of geotagged social 
media data for planning and policy-making are promising, it should be 
noted that geotagged social media data is not a silver bullet. Researchers 
and practitioners need to ask the flip side of the first research question – 
who has not contributed to the geotagged tweets and who has been 
missed from the result? The digital divide driven by internet access, 
digital skills and usage preferences hugely impacts the generation of 
geotagged social media data. Specific groups such as the elderly group, 
teenagers, people with lower education and people with limited access 
to the internet may not be reflected in the geotagged social media data. 
When applying social media data to answer urban questions related to 
the above groups, it is necessary to introduce other data sources, such as 
public surveys and census data, as complements. 

6.3. Limitations and future work 

When carrying out the study at the scale of a metropolitan area such 
as Greater London, the geotagged social media dataset collected is 
spatially imbalanced since people in the city core generate many more 
posts than people in the outer areas. When examining spatial patterns 
for those areas, we see small, randomly scattered clusters with low 
significance levels. However, for densely populated areas, geotagged 
social media posts provide a valid source for exploring spatial patterns, 
as shown in the results. Another limitation is related to the data 
enrichment for inferring activity purposes. As this study used a ‘spatial 
join’ method (i.e., linking geotagged social media with building and 
land use data) to infer the activity purposes related to tweets, there were 
a few errors generated, especially in highdensity and mixed-use areas. 
For example, there were a certain number of tweets in the City of 
Westminster inferred as work-related even for the group under 19 years 
old during the nighttime. In the future, this limitation can be improved 
by increasing the accuracy of inference for activity purposes. For 
instance, the activity purpose of geotagged tweets could be inferred 
through deep learning with multiple inputs. Furthermore, future studies 
can further explore individual characteristics beyond age and gender, 
such as race, income and social status. Exploring urban activity patterns 
with socioeconomic characteristics will facilitate the understanding of 
how citizens use urban spaces and how cities provide functions for 
different groups of people. 

7. Conclusion 

The study demonstrates the application of exploring urban activity 
patterns with geotagged social media data while dealing with challenges 
such as the non-representativeness issue (i.e., the data are not repre
sentative of the population) and the lack of activity purposes of social 
media data. This study utilised a deep learning model to infer the certain 
sociodemographic groups of users from users' profile information and 
then explored their activity patterns in Greater London. This study first 
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answered the question ‘who are the data contributors?’ to reveal the 
composition of the sample of users contributing geotagged social media 
data, which provided a feasible approach to deal with the non- 
representativeness issue of social media data. The results show that, in 
terms of geotagged tweets, Twitter users in London underrepresent the 
female population and age groups of the youngest (aged <18) and senior 
citizens (aged over 40). The overrepresentation of males in London 
Twitter users is around 15%, mainly among the 30–39 and over 40 age 
groups. 

This paper also integrates geotagged social media data with fine- 
scale building and land use data in London to infer the activity pur
poses of social media posts. Among eight types of activity purposes, 
residential, recreation, and work ranked the top three. Building on this, 
the study explores the spatial and temporal patterns of human activity 
among different age and gender groups. The result shows that female 
Londoners tend to participate in commercial and recreational activities 
in those high-density and mixed-use areas. Younger groups generate 
more location-based tweets within the city core, while senior groups are 
relatively more active in outer areas. Via the lens of geotagged social 
media data, we are able to understand the temporal (i.e., daily and 
weekly) rhythms and spatial patterns of different activities across age 
and gender groups, which potentially provide data-driven evidence for 
better planning and policymaking. 
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Appendix A. Visualisation of place and coordinates geo-objects tagged in geo-tagged tweets

Fig. A.1. Place objects tagged in tweets in Greater London.   
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Fig. A.2. Coordinates objects tagged in tweets in Greater London.  

Appendix B. Visualisation of land and building use data in Greater London

Fig. B.1. Classification of building and land use in Greater London based on activity types. Data are from Geomni UKBuildings dataset and Ordnance Survey 
MasterMap Greenspace layer. 
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