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Abstract. To enhance the timeliness and accuracy of spatial
prediction of coseismic landslides, we propose an improved
three-stage spatial prediction strategy and develop corre-
sponding hazard assessment software named Mat.LShazard
V1.0. Based on this software, we evaluate the applicability
of this improved spatial prediction strategy in six earthquake
events that have occurred near the Sichuan–Yunnan region,
including the Wenchuan, Ludian, Lushan, Jiuzhaigou, Minx-
ian, and Yushu earthquakes. The results indicate that in the
first stage (immediately after the quake event), except for the
2013 Minxian earthquake, the area under the curve (AUC)
values of the modeling performance are above 0.8. Among
them, the AUC value of the Wenchuan earthquake is the
highest, reaching 0.947. The prediction results in the first
stage can meet the requirements of emergency rescue by im-
mediately obtaining the overall predicted information of the
possible coseismic landslide locations in the quake-affected
area. In the second and third stages, with the improvement
of landslide data quality, the prediction ability of the model
based on the entire landslide database is gradually improved.
Based on the entire landslide database, the AUC value of the
six events exceeds 0.9, indicating a very high prediction ac-
curacy. For the second and third stages, the predicted land-
slide area (Ap) is relatively consistent with the observed land-
slide area (Ao). However, based on the incomplete landslide
data in the meizoseismal area, Ap is much smaller than Ao.
When the prediction model based on complete landslide data
is built, Ap is nearly identical to Ao. This study provides a

new application tool for coseismic landslide disaster preven-
tion and mitigation in different stages of emergency rescue,
temporary resettlement, and late reconstruction after a major
earthquake.

1 Introduction

Coseismic landslides are one of the most widespread and
destructive hazards triggered by earthquakes in mountain-
ous geological environments (Robinson et al., 2017). The
Sichuan–Yunnan region of China has experienced frequent
seismic activity due to the characteristics of crustal move-
ment and the action of active faults (Cheng et al., 2020; Xu
et al., 2005). Furthermore, due to its unique subtropical mon-
soon climate with rich and concentrated rainfall, the region
is considered an intense coseismic-landslide-prone zone (Cui
et al., 2009). Therefore, deep scientific understandings of the
spatial distribution of earthquake-induced landslides in this
area, followed by near-real-time emergency assessment (Cao
et al., 2019; Tanyas et al., 2019) and medium- and long-term
risk assessment (Guzzetti et al., 2005; Lari et al., 2014), can
effectively reduce the landslide risk after the earthquake and
also serve a role in emergency rescue and town planning (Lan
et al., 2022).

Evaluation and production of landslide susceptibility map-
ping can be broadly categorized into three different types,
including exploratory analysis based on professional expe-
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rience, the Newmark model based on seismic landslide oc-
currence mechanism, and the data-driven machine learning
model (Tian et al., 2020; Shao and Xu, 2022). In the ap-
plication of expert knowledge, this method is heavily influ-
enced by subjective human factors, so human experience er-
ror is unavoidable. The physically based Newmark model is
widely used in seismic landslide hazard assessment of mul-
tiple earthquake events, including the 1994 Northridge, Cal-
ifornia, earthquake (Jibson et al., 2000); the 2008 Wenchuan
earthquake (S. Ma and Xu, 2019); and the 2017 Jiuzhaigou
earthquake (Liu et al., 2017). However, since the simplified
Newmark method generalizes the calculation process and the
input parameters of the evaluation results, the regional eval-
uation results are not ideal in earthquake emergency assess-
ment (Liu et al., 2017; S. Y. Ma and Xu, 2019). In contrast,
the data-driven machine learning method is frequently em-
ployed and has the widest application potential, such as in
terms of information value (Demir et al., 2013), logistic re-
gression (LR; Bai et al., 2015; Dai et al., 2001; Umar et
al., 2014), fuzzy logic (Ercanoglu and Temiz, 2011; Kritikos
et al., 2015), artificial neural networks (Pradhan and Saro,
2010), or support vector machines (Xu et al., 2012; Yao et al.,
2008). Among them, the LR model is one of the most widely
used models in the susceptibility assessment of earthquake-
induced landslides by virtue of its simplicity, high efficiency,
and high prediction accuracy (Shao and Xu, 2022; Reichen-
bach et al., 2018).

For a single earthquake event, rapidly identifying the high-
hazard area of landslides is crucial for understanding the to-
tal earthquake impacts (Nowicki Jessee et al., 2019; Tanyas
et al., 2019). However, the issue of the data-driven machine
learning method is that the training model often needs de-
tailed coseismic landslide data. Seismic landslide mapping
is often a difficult and time-consuming task, hindered by is-
sues related to the collection and processing of appropriate
satellite or aerial images, cloud cover, and the slow speeds
associated with manual identification and mapping of large
numbers of landslides (Robinson et al., 2017). Consequently,
the evaluation result based on data-driven methods lags be-
hind practical emergency response and thus is unable to be
of service in short-term disaster prevention and mitigation
(Nowicki et al., 2014; He et al., 2021).

To address the issue that the current spatial prediction of
coseismic landslides is not timely enough for practical appli-
cation, Ma et al. (2020) propose a three-stage spatial predic-
tion strategy for seismic landslides, including emergency re-
sponse, temporary resettlement, and late reconstruction, and
use this strategy in the 2013 Lushan earthquake event. In
the emergency response stage, the Newmark model is used
to carry out rapid emergency hazard mapping in the several
hours after the earthquake. However, it should be noted that
the Newmark model’s prediction results are strongly influ-
enced by the input parameters (Dreyfus et al., 2013), and
obtaining relatively reasonable geotechnical parameters for
a large area is extremely difficult (Wang et al., 2016; Zhuang

et al., 2019). As a result, the accuracy of prediction results
based on the Newmark model is relatively low, and it cannot
meet the needs of emergency assessment (S. Y. Ma and Xu,
2019). At the same time, the three-stage prediction strategy
has only been tested in the Lushan earthquake, and its ap-
plicability in other seismic events with different magnitudes
and structural landform environments still needs to be deter-
mined.

In recent years, near-real-time coseismic landslide assess-
ment models have become a powerful tool for fast estimates
of ground failure hazards. The core of these models is to in-
corporate the hazard estimate from seismic events by includ-
ing ShakeMap data for each earthquake (available in near
real time from the USGS) combined with environmental fac-
tor data, thus allowing the model to be applied in near real
time for future events. For example, Nowicki et al. (2014)
combine shaking estimates with proxies for slope, geology,
and wetness with 1 km resolution to develop a globally ap-
plicable model for near-real-time prediction of coseismic
landslides based on four landslide inventories. Subsequently,
Nowicki Jessee et al. (2019) expand the observational land-
slide data set which includes 23 landslide inventories and
develop a new global empirical model. Tanyas et al. (2019)
use 25 earthquake-induced landslides and 7 independent the-
matic variables based on the LR model to establish a global
slope unit-based model for the near-real-time prediction of
earthquake-induced landslides. Allstadt et al. (2018) select
the 2016 Mw 7.8 New Zealand earthquake as a test case
for evaluating the performance and near-real-time response
applicability of three published global earthquake-induced
landslide models, and the assessment results show that the
global models have great potential in earthquake landslide
emergency assessment. Simultaneously, Xu et al. (2019)
propose a real probability prediction method of coseismic
landslides, utilizing the Bayesian probability method and
LR model, and establish a new generation of the Chinese
earthquake-triggered landslide hazard model based on nine
real earthquake-triggered landslide cases. However, the na-
tionwide model’s applicability in various earthquake cases
with different tectonic and geomorphologic environments
needs to be further tested.

In view of the issues encountered during the emergency
assessment stage of the three-stage spatial prediction strat-
egy for coseismic landslides, the aim of this study is to pro-
pose an improved three-stage spatial prediction strategy and
develop corresponding hazard assessment software called
Mat.LShazard V1.0. Based on this software, we evaluate the
applicability of this improved spatial prediction strategy in
six earthquake events that have occurred near the Sichuan–
Yunnan region with different tectonic and geomorphologic
environments. These include the 2008 Mw 7.9 Wenchuan
earthquake, the 2014 Mw 6.6 Ludian earthquake, the 2013
Mw 6.6 Lushan earthquake, the 2017 Mw 6.5 Jiuzhaigou
earthquake, the 2013 Mw 5.9 Minxian earthquake, and the
2010 Mw 6.9 Yushu earthquake. The results of this study are
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expected to provide technical supports for the emergency as-
sessment and middle- and long-term hazard zoning of coseis-
mic landslides in the Sichuan and Yunnan regions.

2 Study area

2.1 Geological setting

The Sichuan–Yunnan region is located on the eastern edge
of the Tibetan Plateau. Because of Sichuan Basin blocking
and the impact of fluid movement in the lower crust, tectonic
activities in this region are extremely complex (Jiang et al.,
2012; Zhang et al., 2003; Tapponnier et al., 2001). Further-
more, due to the intricate tectonic mechanisms, various types
of active faults have developed, such as the Lancangjiang
Fault, Jinshajiang Fault, Xianshuihe Fault, Longmenshan
Fault, Anninghe Fault, Honghe Fault, and Xiaojiang Fault,
as well as other fault zones, which control the occurrence
of strong earthquakes in this area (Cheng et al., 2020; Xu
et al., 2005; Ren et al., 2022). At least 16 earthquake events
of magnitude 7.0 or larger have occurred since 1327, includ-
ing four earthquakes with a magnitude larger than 8.0. As a
result, this area has also become the most severely affected
region associated with earthquake-induced landslide disas-
ters (Huang and Fan, 2013; Zhao et al., 2021). Since 2008,
multiple strong earthquakes have frequently struck this area,
which has triggered massive coseismic landslides. For ex-
ample, the 2008 Wenchuan earthquake killed tens of thou-
sands of people, with landslides accounting for 30 % of the
total loss from the earthquake (Cui et al., 2009). The 2013
Lushan earthquake killed 196 people, with 24 missing, at
least 11 826 injured, and more than 968 seriously injured (Xu
et al., 2013). These earthquake events induced a large num-
ber of coseismic landslides, which not only seriously threat-
ened the safety of people’s lives and property and traffic ar-
teries, but also seriously affected the construction and opera-
tion of the Sichuan–Tibet railway, the Yunnan–Tibet railway,
hydropower resource development, and other major national
projects.

2.2 Six landslide inventories

Six landslide-triggered earthquakes have been investigated
to test our model (Fig. 2). For all the available inventories,
landslides have been mapped as polygons from aerial pho-
tographs and satellite images and also through field surveys
including the 2008 Mw 7.9 Wenchuan earthquake (Xu et
al., 2014a), the 2014 Mw 6.6 Ludian earthquake (Wu et al.,
2020), the 2013Mw 6.6 Lushan earthquake (Xu et al., 2015),
the 2017 Mw 6.5 Jiuzhaigou earthquake (Tian et al., 2019),
the 2013Mw 5.9 Minxian earthquake (Xu et al., 2014b; Tian
et al., 2016), and the 2010Mw 6.9 Yushu earthquake (Xu and
Xu, 2014). Landslides in these inventories are reported with-
out differentiating landslide types. These landslide invento-
ries have the following characteristics: (1) all landslides are

Figure 1. Map showing the topography, earthquakes, and tectonic
setting of the Sichuan–Yunnan region.

mapped as polygons with clear boundary information; (2) all
landslides are visually interpreted based on high-resolution
images; (3) all landslides are delineated within the whole
earthquake-affected area.

The 2008 Mw 7.9 Wenchuan earthquake is the result of
sudden dislocation of the Yingxiu–Beichuan Fault in the
Longmenshan fault zone (Xu et al., 2009). This earthquake
ruptured two large thrust faults along the Longmenshan
thrust belt and produced a 240 km long surface rupture zone
along the Yingxiu–Beichuan Fault and a 72 km long surface
rupture zone along the Guanxian–Jiangyou Fault. The earth-
quake triggered nearly 200 000 landslides, covering an area
of about 311 880 km2.

TheMw 6.6 Lushan earthquake occurred on 14 April 2013
and was another strong earthquake that occurred in the south-
west section of the Longmenshan mountain range follow-
ing the 2008 Wenchuan earthquake. The earthquake trig-
gered more than 22 528 landslides, covering an area of about
234.4 km2.

TheMw 5.9 Minxian earthquake on 12 July 2013 occurred
along the Lintan–Dangchang Fault, located between the East
Kunlun Fault and the northern margin of the West Qinling
Fault (Zheng et al., 2013). The focal depth of this earthquake
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was 8.2 km. The earthquake triggered more than 6479 land-
slides, covering an area of about 830.2 km2.

The seismogenic structure of the Mw 6.6 Ludian earth-
quake is the NNW-striking Baogunao–Xiaohe Fault. The
hypocenter is located at a depth of 12 km. The earthquake
triggered more than 1024 landslides, covering an area of
about 234.4 km2.

The Mw 6.5 Jiuzhaigou earthquake occurred on 8 Au-
gust 2017 in Sichuan Province, China. The depth of the
hypocenter was estimated to be around 9 km. The main seis-
mogenic structure of this earthquake may be a branch of the
Tazang Fault or the northern part of the Huya Fault. Accord-
ing to the focal mechanism solution, the strike of the seismo-
genic fault is NW–SE, the dip is SW, and the fault is a left-
lateral strike-slip earthquake (Sun et al., 2018). The earth-
quake triggered about 5986 landslides, and the total area af-
fected was about 9.6 km2.

The Mw 6.9 Yushu earthquake occurred near Qinghai
Province on 4 April 2010. The hypocenter was located at
a depth of 17 km within the Ganzi–Yushu strike-slip fault
(Chen et al., 2010). The earthquake produced a surface frac-
ture zone with a strike of about 300◦ and a length of 65 km.
The surface rupture zone is characterized by a left-lateral
strike-slip fault. The surface rupture zone is composed of
a series of extrusion bulge and tension fractures (Chen et
al., 2010). The earthquake triggered almost 2036 landslides
within an area of about 1455.3 km2.

3 Data and software

3.1 Data sources

Earthquake-induced landslides are mainly controlled by
earthquakes, topography, geology, and hydrology, among
other factors (Reichenbach et al., 2018; Nowicki Jessee et
al., 2019). In this study, 11 influencing factors are selected to
establish the LR model for the second and third stages, in-
cluding the elevation, hillslope gradient, slope aspect, topo-
graphic relief, curvature, topographic wetness index (TWI),
vegetation coverage percentage, distance from fault, lithol-
ogy, annual average precipitation, and seismic intensity.

The elevation data are acquired from SRTM DEM, and
their projection resolution is 30 m (Jarvis et al., 2008). The
hillslope gradient, slope aspect, and curvature are extracted
using these elevation data and ArcGIS software. Topographic
relief and TWI are also computed using GRASS GIS based
on the elevation data. The slope position is calculated by the
Land Facet Corridor program (Jenness et al., 2013). We con-
sider a global data set that represents the maximum green
vegetation fraction (0 %–100 %) to characterize the vegeta-
tion coverage of the land area and the waterbodies; the vege-
tation coverage is assigned as−1 (Tateishi, 2010). The distri-
bution of active fault data are acquired from a national seis-
micity fault database (Xu et al., 2016). The distances from

the centroid of the grid cells to the nearest fault are calculated
using ArcGIS. The distribution of seismic intensity for every
seismic event is provided by the China Earthquake Networks
Center (https://www.cenc.ac.cn/cenc/zgdztw/index.html, last
access: 17 August 2021), and then the raster format for the
seismic intensity is obtained by kriging interpolation.

The stratigraphic data are from the 1 : 2 500 000 geolog-
ical map published by the China Geological Survey (http:
//dcc.cgs.gov.cn/, last access: 7 May 2021). We divide the
lithology into 12 categories according to stratigraphic age:
Quaternary (Q), Tertiary (R), Cretaceous (K), Jurassic (J),
Triassic (Tr), Permian (P), Carboniferous (C), Devonian (D),
Silurian (S), Ordovician (O), Cambrian (∈), and Precambrian
(Pre∈). The annual average rainfall data are obtained from
1 km spatial resolution climate surfaces for global land areas
of the WorldClim 2 data set (Fick and Hijmans, 2017). Fi-
nally, the spatial distribution of the 11 influencing factors is
converted into a raster format with a grid cell size of 30 m.

3.2 Mat.LShazard V1.0 software description

3.2.1 The computational framework

A number of tools for landslide hazard assessment are al-
ready available in current studies, such as the GIS-based
LSAT toolbox (Polat, 2021), LAND-SE implemented in R
(Rossi and Reichenbach, 2016), r.landslide module based on
GRASS GIS (Bragagnolo et al., 2020), GeoFIS (Osna et al.,
2014), and LSAT PM v1.0 (Torizin et al., 2022), providing
great convenience for us to conduct the regional landslide
susceptibility assessment. However, to our knowledge, there
is currently no specialized software for coseismic landslide
hazard assessment, particularly regarding the various needs
of different stages after a major earthquake.

Based on MATLAB, we develop earthquake-induced haz-
ard assessment software named Mat.LShazard V1.0. This
section describes the computational framework and opera-
tion of the software. A flowchart describing the module is
presented in Fig. 3. Data input, model training, and model
validation are the three main components of the software.
Landslide data and the influencing factors of the study area
are used for the input data. These data are in TIFF grid layer
format. We employ the LR model for model training. We
train the LR model using the aforementioned input data, and
then we produce the seismic landslide hazard maps. Finally,
in order to assess and confirm the accuracy of the model’s
prediction outputs, three indexes are chosen for the verifica-
tion of the receiver operating characteristic (ROC) curve, the
confusion matrix, and the predicted landslide area (Ap).

It is important to note that Mat.LShazard V1.0 is not
the same as traditional landslide susceptibility software. The
goal of this software is to meet the needs of various stages
following a major earthquake. As a result, for different
stages, we calculate seismic landslide hazard assessment re-
sults based on different LR models. For the emergency res-
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Figure 2. Six earthquake-induced landslide inventories used in this study. White lines show the spatial distribution of the seismic intensity,
provided by the China Earthquake Networks Center (CENC).

cue stage I (immediately after the quake event), we select
the new generation of the Chinese earthquake-triggered land-
slide hazard model (Xu2019 model), which is established by
nine earthquake cases, including 306 435 real earthquake
landslide records and 13 influencing factors with a 100 m
resolution (Xu et al., 2019). A total of 13 influencing fac-
tors are selected for model conformation, including the el-
evation, topographic relief, hillslope gradient, slope aspect,
slope curvature, slope position, topographic wetness index,
land-cover type, vegetation coverage percentage, distance to
the fault, lithology, average annual precipitation, and seismic
intensity. More detailed theory and calculation procedures
can be found in the Supplement. In the absence of seismic
landslide data, this model can produce a seismic landslide
hazard distribution map for stage I with only the seismic in-
tensity map.

For temporary resettlement, stage II (hours to a few days
(e.g., Planet)), remote sensing images can be gradually ob-
tained following the earthquake. Based on visual interpreta-
tion or automatic identification, we can obtain the seismic
landslide distribution map of the meizoseismal area, which
can be used as the preliminary results of this event. We
choose the influencing factors that are similar to the model’s
input for the second and third stages so that we can easily
compare the regression coefficient changes of different influ-
encing factors in different stages and thus explain the rela-

tionship between each influencing factor and the earthquake-
induced landslide occurrence. Combining the above influ-
encing factors with a 30 m resolution and incomplete land-
slide data, we can establish a new LR model and provide the
seismic landslide hazard distribution map for stage II.

For late reconstruction, stage III (a few days to weeks (e.g.,
Planet, Sentinel-2, Landsat 8/Landsat 9)), a large number of
remote sensing images collected before and after the earth-
quake in the quake-affected area can be obtained, which can
effectively cover the entire earthquake area and achieve the
establishment of a comprehensive earthquake-induced land-
slide inventory. In stage III, we are faced with the problem
of not only identification of the coseismic landslide, but also
the weakened slope caused by the quake. As a result, it is
critical to locate areas of landslide that are stable during the
earthquake but unstable for a period of time after the earth-
quake. At this stage, we combine the complete landslide data
and influencing factor data with a 30 m resolution to train and
update the LR model and then provide the seismic landslide
hazard map for stage III. Therefore, the results obtained in
stage III will definitely be more objective than those obtained
in stage II because the training samples used in the model in
this stage are more abundant and objective.
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Figure 3. Logical schema of the Mat.LShazard V1.0 software for earthquake-induced hazard assessment.

3.2.2 Logistic regression model

A logistic regression (LR) model is a statistical model that
predicts the probability of one event taking place by having
the log odds (the logarithm of the odds) for the event be a lin-
ear combination of one or more independent variables (“pre-
dictors”) (Dai and Lee, 2002; Merghadi et al., 2020; Tolles
and Meurer, 2016). It is a nonlinear multivariate statistical
model that has been widely used in landslide hazard model-
ing by virtue of its simplicity, high efficiency, and high pre-
diction accuracy (Massey et al., 2018; Broeckx et al., 2018;
Allstadt et al., 2018; Lin et al., 2017; Reichenbach et al.,
2018). It is also the preferred method for establishing the
near-real-time prediction model of earthquake-induced land-
slides (Tanyas et al., 2019; Xu et al., 2019; Nowicki Jessee
et al., 2019). An LR model converts dependent variables into
binary logic variables that occur (recorded as 1) and do not
occur (recorded as 0). The relationship between the landslide
occurrence probability and impact factors can be expressed
as

Z = β0+β1χ1+β2χ2+β3χ3, . . ., βiχi, (1)
P = 1/(1+ e−z), (2)

where P represents the probability of landslide occurrence,
ranging from 0 to 1. Z represents the sum of linear weight
values after variable superposition. χi denotes each impact
factor, and βi is the corresponding regression coefficient.

3.2.3 Bayesian probability method

The aim of this study is to develop a probability estimator for
predicting the areal extent of landslides. In other words, we
correlate the resulting probability with spatial extent (e.g.,
areas labeled “5 % probability of landsliding” contain about
5 % landslides by area) (Shao et al., 2020b; Nowicki Jessee et
al., 2019). As a result, we generate sample points randomly
in the study area. The points within the landslide area are
sliding samples, while the others are not; such a setting en-
sures that the ratio of sliding to non-sliding is equivalent to
the probability of coseismic landslides occurring in the study
area (Shao et al., 2020b). The coseismic landslide probabil-
ity (Pcols) in the region is simply defined as the ratio of the
area of all landslides to the total area of the region based on
Bayesian theory:

Pcols =
Al

As
× 100%, (3)

where Al is the total area of all coseismic landslides and As
is the area of the entire study area.

Based on the above Bayesian probability method and
the corresponding landslide surface data, the corresponding
landslide sample points and non-landslide sample points can
be randomly generated; thus, the predictive model can be
constructed.
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3.2.4 Model validation

In this study, three indexes including the receiver operating
characteristic (ROC) curve, the confusion matrix, and the
predicted landslide area (Ap) are used to evaluate our results.
First, we assess the modeling performance by checking the
variation in area under the curve (AUC) value (varying be-
tween 0.5 for a random classification model and 1 for the
best performance), which is a metric referring to the area
under the ROC curve (Swets, 1988; Brenning, 2005). Sec-
ond, we use the confusion matrix for the performance evalua-
tions of the prediction results. The confusion matrix consists
of four basic characteristics (numbers) that are used to de-
fine the measurement metrics of the classifier, which are TP
(true positive), TN (true negative), FP (false positive), and
FN (false negative) (Fawcett, 2006). One of the most com-
monly employed metrics for classification is accuracy. The
accuracy of a model through a confusion matrix is calculated
using the formula expressed as

accuracy= TP+TN/TN+FP+FN+TP. (4)

Otherwise, in order to evaluate the model prediction perfor-
mance, we compute the predicted landslide area (Ap) as a
metric to summarize the total hazard estimated by a given
model for a given earthquake with a single number. The prob-
ability value of each grid multiplied by the grid area repre-
sents the predicted landslide area in each grid. The predicted
landslide area in the study area can be obtained by all grids’
superposition (Shao et al., 2020b; Allstadt et al., 2018). The
predicted landslide area (Ap) is computed by Eq. (5) (Shao
et al., 2020b; Allstadt et al., 2018).

Ap =

m∑
i=1

n∑
j=1

pi,jA, (5)

in which pi,j is the probability of a landslide at pixel i and
j , m is the number of rows, n is the number of columns, and
A is the pixel area (constant).

4 Results and analysis

4.1 First stage

The landslide hazard estimate of the six earthquake events in
the first stage (immediately after the event) is obtained us-
ing the Chinese earthquake-triggered landslide hazard model
(Xu et al., 2019). The predicted results in our software can be
processed at the first stage by entering the seismic intensity
maps of the six cases produced by CENC. Figure 4 shows
the predicted probability distribution for the six earthquake
events in the first stage. Overall, the Chinese earthquake-
triggered landslide hazard model has different forecasting
abilities for different earthquake events. For the Wenchuan
earthquake, the prediction results in this stage are reliable.

The regions with high hazard are primarily found to have in-
tensity X and XI, and the distribution of actual landslides also
reveals that nearly 80 % of the landslides are concentrated in
the northeast area with intensity X and XI. In addition, for
the 2013 Lushan earthquake and the 2017 Jiuzhaigou earth-
quake, most of the actual landslides are basically located
in high-hazard areas. Especially for the Lushan earthquake,
the prediction results can better forecast the northwest re-
gion located in the epicenter region, which corresponds to
the landslide-concentrated area. For the 2010 Yushu earth-
quake, the high-hazard area is located in the southeast region
with intensity VII and the whole region with intensity IX.
The actual coseismic landslides of the Yushu earthquake are
primarily distributed in regions with intensity IX, indicating
that with the exception of the overestimated southeast region
with intensity VII, the remaining area can accurately predict
the potential high-hazard areas. However, the prediction re-
sults of the 2013 Minxian earthquake are barely satisfactory.
According to Fig. 4e, the high-hazard-prediction areas are
primarily concentrated in the northwest region with inten-
sity VII and the southwest region with intensity VIII. How-
ever, according to the actual distribution of landslides, most
of the landslides triggered by this earthquake are located in
the central region with intensity VIII. Namely, the prediction
results do not accurately predict the actual landslide distribu-
tion, and the majority of coseismic landslides occur in low-
hazard-prediction areas.

We compare the predicted landslide area (Ap) in the first
stage with the actual landslide area. Figure 5 shows that the
slope of the fitting curve between the predicted and actual ar-
eas of the six earthquakes is close to 1. The Ap values for the
Yushu, Lushan, and Wenchuan earthquakes are on the high
side, with an error range of 50 %–78 %. On the other hand,
theAp values of Minxian, Ludian, and Jiuzhaigou earthquake
are on the low side, with an error range of 17 %–30 %. In
general, the prediction results meet the requirements of emer-
gency rescue by quickly obtaining the predicted information
of the possible coseismic landslide locations in the whole
quake-affected area.

4.2 Second and third stages

As mentioned in Sect. 3.2.1, for the landslide hazard pre-
diction of the second and third stages, we train the evalu-
ation model of these two stages using landslide data from
the meizoseismal area and the whole quake-affected area, re-
spectively. To reduce the stochastic effects of data sampling,
we calculate the LR model by randomly selecting the train-
ing samples considering the uncertainty in the samples (Shao
et al., 2020b; Tanyas et al., 2019). We choose 70 % of all
samples at random and independently repeated experiments
50 times to construct the LR model. All the predicted mod-
els for the six earthquake cases are run 50 times, yielding 50
predicted pictures of potential landslides in the study area for
each event.
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Figure 4. Maps showing the predicted landslide probability distri-
bution for the six earthquake events in the first stage: (a) the 2013
Mw 5.9 Minxian earthquake; (b) the 2014 Mw 6.6 Ludian earth-
quake; (c) the 2017 Mw 6.5 Jiuzhaigou earthquake; (d) the 2013
Mw 6.6 Lushan earthquake; (e) the 2010Mw 6.9 Yushu earthquake;
(f) the 2008 Mw 7.9 Wenchuan earthquake.

Figure 6 shows the mean predicted probability distribu-
tion of the six events in the second stage (hours to a few
days (e.g., Planet)). The majority of the high-hazard areas
of the six earthquakes are located in high-intensity areas.
For example, the high-hazard areas of the Ludian earthquake
are concentrated in the meizoseismal area, which is essen-
tially consistent with the actual landslide distribution. How-
ever, in the southwest region where landslides are well de-
veloped beyond the meizoseismal area with intensity VIII,
the landslide density is high but the prediction probability is
quite low. Similar phenomena have been observed with re-
spect to the Jiuzhaigou and Lushan earthquakes. The above
phenomenon is less obvious in the other three earthquake

Figure 5. Relationships between the observed landslide area (Ao)
and the predicted landslide area (Ap) for the six earthquake events
in the first stage.

events: the Minxian, Wenchuan, and Yushu earthquakes. For
instance, the seismogenic fault of the Yushu earthquake is a
left-lateral strike-slip fault, and thus the majority of the co-
seismic landslides are basically distributed along both sides
of the seismogenic fault. The high-hazard areas of the Yushu
earthquake are distributed in the meizoseismal area on both
sides of the seismogenic fault, and these areas essentially cor-
respond to the main development areas of seismic landslides.

To obtain the prediction probability distribution map of the
third stage, we use all available landslide data from the en-
tire earthquake-affected region (a few days to weeks (e.g.,
Planet, Sentinel-2, Landsat 8/Landsat 9)). Based on the same
method, 70 % of all samples are used for modeling, and then
50 model results are generated by repeating 50 experiments.
Figure 7 shows the mean probability distribution of the six
events in the third stage. Compared to the second stage, the
predicted results in the third one are more consistent with
the actual landslide distribution. The majority of actual land-
slides are basically distributed in areas with high hazard, in-
dicating that the evaluation model has high prediction abil-
ity at this stage. Particularly for the Ludian, Jiuzhaigou, and
Lushan earthquakes, the assessment results can better predict
the actual landslide distribution in all earthquake-affected ar-
eas.

Figure 8 shows the relationships between the observed
landslide area (Ao) and the predicted landslide area (Ap) for
the six earthquake events in the second and third stages. The
results show that whether in the second or third stage, Ap is
in good agreement with Ao. In the second and third stages,
the slopes of the fitting curves of the two stages are 0.86 and
1.01, respectively. In addition, we can observe that in the sec-
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Figure 6. Maps showing the predicted landslide probability distri-
bution for the six earthquake events in the second stage: (a) the 2013
Mw 5.9 Minxian earthquake; (b) the 2014 Mw 6.6 Ludian earth-
quake; (c) the 2017 Mw 6.5 Jiuzhaigou earthquake; (d) the 2013
Mw 6.6 Lushan earthquake; (e) the 2010Mw 6.9 Yushu earthquake;
(f) the 2008 Mw 7.9 Wenchuan earthquake.

ond stage, the Ap values of the six earthquakes are generally
lower than the corresponding Ao values, and the overall error
is between 9 % and 74 %. Among them, the prediction error
of the Wenchuan earthquake is the lowest (9 %) and the error
of the Jiuzhaigou earthquake is the highest, reaching 74 %.
For the six cases in the third stage, Ap is basically consis-
tent with Ao, and the error range is about 1 %, showing high
performance of the LR model in this stage.

Figure 9 shows the distribution of regression coefficients
of various influencing factors in the second and third stages.
For continuous variables, if the regression coefficient is pos-
itive, with the increase in the independent variable, the prob-
ability of landslide occurrence is larger (Shao et al., 2020a;

Figure 7. Maps showing the predicted landslide probability distri-
bution for the six earthquake events in the third stage: (a) the 2013
Mw 5.9 Minxian earthquake; (b) the 2014 Mw 6.6 Ludian earth-
quake; (c) the 2017 Mw 6.5 Jiuzhaigou earthquake; (d) the 2013
Mw 6.6 Lushan earthquake; (e) the 2010Mw 6.9 Yushu earthquake;
(f) the 2008 Mw 7.9 Wenchuan earthquake.

Nowicki Jessee et al., 2019). According to the regression co-
efficient, we can explain the relationship between each in-
fluencing factor and the corresponding landslide occurrence.
We choose four independent variables that have large impact
on landslide occurrence, namely, the topographic relief, hill-
slope gradient, seismic intensity, and distance to seismogenic
fault. The results show that the regression coefficient of seis-
mic intensity is the largest in all seismic events, followed by
that of the hillslope gradient, indicating that the seismic fac-
tor and hillslope gradient are the main factors controlling the
occurrence of seismic landslides. The distance to fault is an-
other important factor that controls the occurrence of seismic
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Figure 8. Relationships between the observed landslide area (Ao)
and the predicted landslide area (Ap) for the six earthquake events
in the second and third stages. The unfilled and filled circles rep-
resent the predicted landslide area for the second and third stages,
respectively. The red and black lines represent the fitting curves of
the second and third stages, respectively.

landslides. The regression coefficient of this variable is neg-
ative, implying that it has a negative effect on the occurrence
of seismic landslides (i.e., the farther away from the seismo-
genic fault, the less likely the occurrence of seismic land-
slides). Furthermore, with the exception of the 2010 Yushu
earthquake, the regression coefficients of topographic relief
in the earthquake events are all positive, indicating that to-
pographic relief in these five other earthquake events plays
an essential role in the occurrence of seismic landslides. Fig-
ure S1 in the Supplement shows the LR regression coeffi-
cients of all the continuous independent variables of the six
earthquake events in different stages.

4.3 Quantitative analysis

In order to quantitatively analyze the model results of the
six earthquakes at different stages, three indexes including
the receiver operating characteristic (ROC) curve, the confu-
sion matrix, and the predicted landslide area (Ap) are used.
Figure 10 and Table S1 in the Supplement show the pre-
dicted landslide area for the six earthquake events in differ-
ent stages. The results reveal that the Ap of the three events
including the Minxian, Ludian, and Jiuzhaigou earthquakes
in the first stage is much lower than the corresponding Ao,
whereas the Ap of the Lushan, Yushu, and Wenchuan earth-
quakes is significantly greater. Furthermore, based on incom-
plete landslide data in the meizoseismal area, Ap is much
smaller than Ao. However, when the prediction model of the
third stage based on complete landslide data is built, Ap is
nearly identical to Ao.

Figure 9. Regression coefficients of independent variables at dif-
ferent evaluation stages. The red box represents the regression co-
efficients of the independent variables in the second stage, and the
blue box represents the regression coefficients of the independent
variables in the third stage.

In this study, we randomly select 70 % of the total sam-
ples for model training, and the remaining 30 % are used for
modeling validation. Figure 11 and Table S2 show the distri-
bution of AUC values based on validation samples for the six
earthquake events in different stages. The results show that
except for the Ludian earthquake, the prediction accuracy of
the model outputs for the earthquake events exhibits an up-
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Figure 10. Predicted landslide area for the six earthquake events in different evaluation stages. The horizontal line represents the total area
of landslides triggered by the earthquake.

ward trend. In the first stage, the AUC value of the model-
ing performance of the Wenchuan earthquake is the highest,
reaching 0.947, while the AUC value of the Minxian earth-
quake is the lowest, only 0.57. Additionally, the AUC values
of the four other earthquakes range from 0.8 to 0.85. In the
second and third stages, we can observe that as landslide data
quality is continuously improved, the prediction accuracy of
the model based on the entire landslide database gradually
increases. Based on the entire landslide database, the AUC
value of the six events exceeds 0.9, indicating a very high
prediction accuracy.

Figure 12 and Table S3 show the calculated model accu-
racy using actual landslide data from the six seismic events
at different stages. The accuracy of the model fluctuates from
58 % to 78 % in the first stage, indicating that the model’s
applicability for different seismic events changes. In the sec-
ond stage, with the exception of the Wenchuan earthquake,
the accuracy of earthquake events is less than 80 %. In the
third stage, the model accuracy of all seismic events exceeds
80 %, with the Jiuzhaigou event reaching 91 %.

5 Discussion

Time is of the essence in the emergency response stage,
stage I. Rapid evaluation of earthquake-induced landslides
can quickly determine the high-hazard areas of seismic land-
slides and provide a basis for optimizing emergency de-
ployment. Although the Newmark model is widely used in
the emergency evaluation of earthquake-induced landslides,
this method is affected by input parameters and model sim-
plification, resulting in the problem of practicability in the
emergency rescue stages (S. Y. Ma and Xu, 2019). In re-
cent years, near-real-time coseismic landslide models based
on global landslide data have been proposed and tested
in some earthquake cases. Allstadt et al. (2018) compare
three global earthquake-induced landslide models and use
the 2016Mw 7.8 Kaikōura, New Zealand, earthquake to eval-
uate the performance of three models. The seismic landslide
hazard assessment map of this earthquake event is created
by the abovementioned models and the ShakeMap data pub-
lished by the USGS, demonstrating the remarkable potential
of near-real-time models in earthquake landslide emergency
assessment. Similarly, Xu et al. (2019) have established a
new generation of the Chinese earthquake-triggered land-
slide hazard model based on nine real earthquake-triggered
landslide cases. We applied this model to the six earthquake
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Figure 11. Distribution of AUC values for the six earthquake events in different evaluation stages.

Figure 12. Results of models validated by the six earthquake in-
ventories. TN: true negative; TP: true positive; FN: false negative;
FP: false positive. The accuracy (ACC) of the models is represented
graphically by the sum of the two lower bars.

events in the Sichuan–Yunnan region, and the result shows
that although the prediction result based on this model is the
landslide hazard estimate with 100 m resolution, the model
can quickly determine the high-hazard area after the earth-
quake. Furthermore, with the exception of the Minxian earth-
quake, the model shows strong prediction ability, and the
AUC values of the five other events are greater than 0.8

(Fig. 11). However, the AUC value of the Minxian event is
only 0.57, illustrating that the model cannot be applied in the
Minxian region (Fig. 11).

The main lithology of the landslides triggered by the earth-
quake in the Minxian region is Pleistocene loess, and thus
the main landslide type is small- and medium-sized loess
landslide (Xu et al., 2014b). In contrast, the coseismic land-
slides triggered by the five other events are primarily rock
landslides. Furthermore, the landform of the Minxian area
is typical loess landform with thick loess covering the hill-
side. The remaining five earthquake zones are typical moun-
tainous landforms with high altitudes and steep slopes, and
their rock joints are well developed due to the strong influ-
ence of tectonic activity. Therefore, the Minxian earthquake
took place in extremely different geological, topographic,
and geomorphic conditions compared with other five earth-
quake events. Such differences lead to the poor evaluation
ability of the model for the Minxian earthquake. Otherwise,
the AUC value of the Wenchuan earthquake is the highest,
reaching 0.947 (Fig. 11). The Chinese earthquake-triggered
landslide hazard model includes more than 300 000 real land-
slide records, of which the landslide records of the Wenchuan
earthquake account for more than 60 % of the total records.
Because of the relatively large number of landslides triggered
by the Wenchuan event, the global data set remains domi-
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nated by this earthquake. The construction of the LR model
is most affected by the landslide samples of the Wenchuan
events, which leads to the highest applicability and accuracy
of the model in the Wenchuan region. The same phenomenon
can also be found in previous studies (Nowicki et al., 2014;
Nowicki Jessee et al., 2019).

In the first stage, we have to admit that the evaluation re-
sults of the six earthquakes based on the Xu2019 model have
still to be improved. It is clear that landslide observations
from the earthquake match well with the predicted high prob-
abilities, but the model predicts potential landslides in a large
area beyond the mapped landslide area. Especially in the
Minxian, Jiuzhaigou, and Yushu earthquake cases, the per-
formance of the model is not satisfactory (Fig. 4). Most of the
current near-real-time models have similar problems in that
the model performs well when evaluated over the domain of
an entire event area, but clearly, individual pixels will predict
probabilities that underestimate or overestimate the landslide
hazard (Nowicki Jessee et al., 2019). We propose two possi-
ble reasons for this phenomenon: (1) the resolution of the in-
put data of the Xu2019 model is 100 m, which affects the pre-
diction accuracy of the model to a certain extent. Therefore,
there may be errors between the modeling prediction and the
actual result at the regional scale. (2) The nine earthquake
cases used for the establishment of the Xu2019 model are lo-
cated in China and its adjacent areas. The corresponding epi-
central areas have different topographic and geological con-
ditions, and only four cases are in the Sichuan–Yunnan area,
which may weaken the applicability of the Xu2019 model
in other quake events. Therefore, in the past few years, we
have been constantly supplementing the earthquake landslide
database in the Sichuan–Yunnan region (e.g., with the 2014
Ms 6.6 Jinggu earthquake, 2020 Ms 5.0 Qiaojia earthquake,
2018 Ms 5.7 Xingwen earthquake, 2019 Ms 6.0 Changning
earthquake, and 2022 Ms 6.8 Luding earthquake). We sug-
gest that with the accumulation of enough coseismic land-
slide inventories in the Sichuan–Yunnan area, we can con-
tinue to update the near-real-time earthquake-triggered land-
slide hazard model based on these abundant landslide data
and high-resolution input factor data, further improving the
accuracy of the modeling in the emergency assessment stage.

Considering the fact that remote sensing and GIS technol-
ogy have advanced significantly in recent years, a consider-
able number of post-earthquake images may appear within
a few hours or days of the earthquake. However, due to the
broad quake-affected area, cloud coverage, satellite schedul-
ing, and other factors, it is difficult to acquire the post-quake
optical imagery immediately (Roback et al., 2018; Kargel et
al., 2016). Therefore, in the temporary resettlement stage,
stage II, we can only obtain the images of the meizoseis-
mal area and must carry out visual interpretation or automatic
identification of the seismic landslides in this area. Robinson
et al. (2017) use the coseismic landslide database of the 2016
Nepal earthquake to conduct the rapid post-earthquake mod-
eling of coseismic landslides. The evaluation results obtained

by randomly selecting a small number of landslide samples
are not much different from those obtained based on the com-
plete landslide database, indicating that incomplete landslide
samples can also be used to conduct seismic landslide haz-
ard assessments. Our findings also reveal that the AUC val-
ues of all seismic events in the second stage are greater than
0.8, demonstrating that the prediction results based on in-
complete landslide data in the meizoseismal area can better
predict the location of the landslides in the entire earthquake
area (Figs. 11 and 12). Although theAp calculated by incom-
plete landslide data is slightly less than the Ao triggered by
earthquake events (Fig. 10), the prediction model generally
has a certain applicability in the mid-term stage of the earth-
quakes, which can better take into account timeliness and ac-
curacy and thus more effectively serve a role in post-disaster
resettlement in earthquake-stricken areas (Ma et al., 2020).

6 Conclusions

The aim of this study is to propose an improved three-stage
spatial prediction strategy and evaluate its applicability in
six earthquake events. The results reveal that in the first
stage, the AUC value of the modeling performance of the
Wenchuan earthquake is the highest, reaching 0.947, while
the AUC value of the Minxian earthquake is the lowest, only
0.57. In the second and third stages, we can observe that
as landslide data are continuously improved, the prediction
ability of the model based on the entire landslide database is
gradually enhanced. Based on the entire landslide database,
the AUC values of the six events exceed 0.9, indicating a
very high prediction accuracy. Furthermore, the Ap for the
six earthquake events in different evaluation stages shows
that based on incomplete landslide data in the meizoseismal
area, it is much smaller than Ao. Nevertheless, when the pre-
diction model based on complete landslide data is built, Ap
is nearly identical to Ao. Overall, the prediction results in the
first stage can meet the requirements of emergency rescue
by quickly obtaining the overall predicted information of the
possible coseismic landslide locations in the quake-affected
area. With the improvement of the coseismic landslide data
in the second and third stages, the accuracy of the prediction
results can improve, and thus the model can meet the require-
ments of temporary restoration and later reconstruction. This
improved three-stage spatial prediction strategy has prefer-
able practicability for regional landslide prevention and the
mitigation of the effects of major earthquakes in the Sichuan
and Yunnan regions.

Code availability. Mat.LShazard V1.0 is composed of three mod-
ules including data input, model training, and model validation
coded as separate MATLAB script files and can be executed un-
der Windows operating systems with the MATLAB 2016 version
or higher. Mat.LShazard V1.0 is free software, and the codes are
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all public. The codes can be made available by the corresponding
author upon request.

Data availability. Data used in this study include mapped land-
slide inventories of the 2008 Mw 7.9 Wenchuan earthquake (Xu
et al., 2014b), the 2014 Mw 6.6 Ludian earthquake (Wu et al.,
2020), the 2013 Mw 6.6 Lushan earthquake (Xu et al., 2015),
the 2017 Mw 6.5 Jiuzhaigou earthquake (Tian et al., 2019), the
2013 Mw 5.9 Minxian earthquake (Tian et al., 2016), and the
2010 Mw 6.9 Yushu earthquake (Xu and Xu, 2014). A sub-
set of these landslide inventories is publicly available in an
open-access data repository from https://www.sciencebase.gov/
catalog/item/586d824ce4b0f5ce109fc9a6 (U.S. Geological Survey
(USGS), 2017). The elevation data are from the 30 m resolu-
tion SRTM DEM (Jarvis et al., 2008). The distribution of seis-
mic intensity for every seismic event is provided by the China
Earthquake Networks Center (2022, https://www.cenc.ac.cn/cenc/
zgdztw/index.html). Lithology data are from the China Geological
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Kaikōura, New Zealand, Earthquake, B. Seismol. Soc. Am., 108,
1649–1664, https://doi.org/10.1785/0120170297, 2018.

Bai, S. B., Lu, P., and Wang, J.: Landslide susceptibility assessment
of the Youfang Catchment using logistic regression, J. Mt. Sci.,
816–827, https://doi.org/10.1007/s11629-014-3171-5, 2015.

Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M.
V.: Landslide susceptibility mapping with r.landslide: A
free open-source GIS-integrated tool based on Artificial
Neural Networks, Environ. Modell. Softw., 123, 104565,
https://doi.org/10.1016/j.envsoft.2019.104565, 2020.

Brenning, A.: Spatial prediction models for landslide hazards: re-
view, comparison and evaluation, Nat. Hazards Earth Syst. Sci.,
5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005.

Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A data-
based landslide susceptibility map of Africa, Earth-Sci. Rev.,
185, 102–121, https://doi.org/10.1016/j.earscirev.2018.05.002,
2018.

Cao, J., Zhang, Z., Wang, C., Liu, J., and Zhang, L.:
Susceptibility assessment of landslides triggered by earth-
quakes in the Western Sichuan Plateau, Catena, 175, 63–76,
https://doi.org/10.1016/j.catena.2018.12.013, 2019.

Chen, L., Wang, H., Ran, Y., Sun, X., Su, G., Wang, J., Tan, X., Li,
Z., and Zhang, X.: The MS7.1 Yushu earthquake surface rupture
and large historical earthquakes on the Garzê-Yushu Fault, Chi-
nese Sci. Bull., 55, 3504–3509, https://doi.org/10.1007/s11434-
010-4079-2, 2010.

Cheng, J., Xu, X., and Chen, G.: A new prediction model of seismic
hazard for the Sichuan-Yunnan region based on the occurrence
rate of large earthquakes, Chinese J. Geophys.-Ch., 63, 1170–
1182, https://doi.org/10.6038/cjg2020N0204, 2020.

China Earthquake Networks Center: The distribution of seismic in-
tensity, https://www.cenc.ac.cn/cenc/zgdztw/index.html, last ac-
cess: 4 August 2022.

China Geological Survey: 1: 250000 geological map, http://dcc.cgs.
gov.cn/ last access: 5 August 2021.

Cui, P., Zhu, Y.-Y., Han, Y.-S., Chen, X.-Q., and Zhuang, J.-Q.: The
12 May Wenchuan earthquake-induced landslide lakes: distri-
bution and preliminary risk evaluation, Landslides, 6, 209–223,
https://doi.org/10.1007/s10346-009-0160-9, 2009.

Dai, F., Lee, C. F., Li, J., and Xu, Z. W.: Assessment
of landslide susceptibility on the natural terrain of Lan-
tau Island, Hong Kong, Environ. Geol., 40, 381–391,
https://doi.org/10.1007/s002540000163, 2001.

Dai, F. C. and Lee, C. F.: Landslide characteristics and slope
instability modeling using GIS, Lantau Island, Hong Kong,
Geomorphology, 42, 213–228, https://doi.org/10.1016/S0169-
555X(01)00087-3, 2002.

Demir, G., Aytekin, M., Akgün, A., İkizler, S. B., and Tatar, O.:
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