FORTH IIMETSIONS

Forth Interest Group
P.O. Box 8231
San Jose, CA 95155

VOLUME III
Numbers 1-6

HOATH IMIESIONS

FORTH INTEREST GROUP Volume il
P.O.Box 1105 Number 1
San Carlos, CA 94070 Price $2.00

Pl
2 Letters
4 Announcements
5 FORTH-79 Dialog
/ /
7 Technical Notes
b
/_ 10 Programming Aids
13 FORTH, Inc. News
14 Parameter Passing
%/’d
J J 15 Compiler Security
!
20 Userstack
23 A Stack Diagram Utility
71 ,
33 Chapters/Meetings

FINTH (RTIEISHDTS

Published by Forth Interest Group

Volume lii No. 1 May/June 1981
Publisher Roy C. Martens
Guest Editor C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Marris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner

FORTH DIMENSIONS solicits editorial material,
comments and ietters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year {$24.00 foreign air). For membership, change of
address and/or to submit material, the address is:

Forth interest Group
P.O.Box 1105
San Cartos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA. it was created out of dissatisfaction
witn availabie programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1873 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California. Our membership is over 2,400 worldwide. It
was formed in 1978 by FORTH programmers to encour-
age use of the language by the interchange of ideas
through seminars and publications.

EDITOR’S COLUMN

The last edition of FORTH DIMENSIONS was the
beginning of many changes in editorial policy and
format. All these changes are designed to make FORTH
DIMENSIONS a practical and useful communications
tool.

This practical approach continues. in this edition
you will find a number of utility programs that will make
the task of implementing practical applications in
FORTH easier and faster. All of these utilities have
been contributed by FIG members who have found
them to be valuable tools. The editorial staff thanks
these contributors and would like 10 encourage all FIG
members to share their ideas and experience.

if you have a programming idea or toot that you have
found useful, please send it to
Editor
FORTH DIMENSIONS
P.O.Box 1105
San Carlos, CA 94070

YOU DON'T HAVE TO BE A WRITER—the editorial
staft will provide whatever copywriting is necessary to
make your ideas publishable.

On the aesthetic side, you will find this edition con-
tains several photographs and art illustrations. This is
a FORTH DIMENSIONS' first and you can expect to see
more in the future. Photographs and art illustrations
will be chosen and published on the basis of their
educational and human interest value.

This issue aiso introduces the character HEX who
will be FORTH DIMENSIONS' official comic strip. You
will find the HEX comic strip in future editions of
FORTH DIMENSIONS. HEX's adventures will be a com-
bination of humor and education. Ideas for HEX comic
strips are welcome.

C. J. Street
Editor

PUBLISHER’S COLUMN

Renewals and new members are coming in at a fast
pace. We expect to climb to 3,000 members:in the next
few months and to 5,000 within a year.

Both the Computer Faire in San Francisco and the
Computer Festival in Trenton, New Jersey were huge
successes. We'll be in both again next year. {'d like to
know of any other shows where you think FIG should
exhibit.)

Good material is coming in for FORTH

DIMENSIONS. Keep it coming and send in your
comments.

Roy Martens

Page 1

FORTH DIMENSIONS ITI/1

LETTERS

Dear Fig:

My <company is developing business
systems using FORTH and we would be
interested in communicating with local
FIGGIES as well as offering our input to
FST, PORML, FIG and other applicable "P"
acronyms since it is obviously in our
interest to promote the spread and
acceptance of FORTH. We're also confirmed
FORTH fanatics.

David B. Moens

BUSINESS SYSTEMS SOFTWARE, INC.
27 East Kings Highway
Haddonfield, NJ 08033

(609) 429-0229

You are our kind of fanatic and we're

happy to put the word out for you Dave! --
ed.

Dear Fig:

Re: "Born-again programmer" and "Born-
again FIGGER" in FORTH DIMENSIONS II/S.

My interest in FORTH as a programming
language does not envolve becoming mired
down in the morass of a religion. It
would be best to stay on rational grounds
in the development of FORTH and leave
religion to those who are unable to think
without faith.

I will not take part in a religious
group. Therefore I will not be renewing
my membership.

Larry R. Shultis
P.0. Box 218
Fontana, WI 53125

Just goes to show you that there is more
than one type of fanatic! Keep the faith,
Larry, (OOPS, sorry about that! I meant:
Don't worry, Larry,) FIG is not envolving
(your spelling) into a religious group. --
ed,

Dear Fig:

Thank you for the prompt and efficient
service I have received. 1 realize that
you can't have wmuch time left to look
after the rest of the world, but without
your interest it may never have reached
these shores. Spread the good WORD.

J. Huttley

UNIVERSITY OF AUCKLAND
19 Duncan Avenue
Auckland 8,

New Zealand

You are very welcome! -~- ed.

Editor's note:

At the WEST COAST COMPUTER FAIRE in
California two versions of a FORTH bumper
strip were circulated:

TFORTH IF HONK THEN
or alternately

¢ LOVE-FORTH
IF HONK THEN

Just thought you might like to know. --
ed.

Dear Fig:

TGIF is wvery interested in swapping
listings with other Fig-FORTH groups. Our
current listings are 2 Decompilers; Full
screen editor; CASE statements for 8080,
Z80 and 6502; 6502 Assembler.

TCIF

FORTH INTEREST GROUP -- TULSA
Bex 1133

Tulsa, OK 74103

How about sending them in to FORTH
DIMENSIONS? -—- ed.

FORTH DIMENSIONS III/1

Page 2

Dear Fig:

I was lucky enough to attend one day of
the recent West Coast Computer Faire and
to meet some of the mentors of FIG. I had
numerous questions and enjoyed talking to
Bill Ragsdale and others about them. (By
the way, for those of you who couldn't
make it to the Faire, the FIG booth was
one of the most crowded. People were
standing there like no where else even as
the 5:00 closing approached. We all owe a
thanks to the dedicated folks for their
time and effort in this endeavor,

promoting and spreading the word of FORTH
and FIG.)

One of my questions to Bill was "How can
we remote members contribute to FIG" in
ways other than articles for FORTH
DIMENS IONS. I got a number of project
ideas, for one of which I need the help of
the whole membership. So PLEASE: NOW
HERE THIS!

I propose to assemble a book of utility
program packages for publication by FIG.
I have a list of functions which I think
should be 1included. This covers such
things as editors (both the current FIG
line oriented editor and a video screen
type editor), string processing, data
structures, extended math (double prec-
ision as an example), math functions (sin,
log, etc.), matrix operations, and float-
ing point routines. No doubt there are
others to be considered and I solicit your
suggestions.

The plan 1 propose to compile and
publish such a document is as follows:

1. Members are asked to send their
proposals for implementing utility
packages to me at the above address
(or through FIG). These proposals
should consist of well documented
(lots of comments) fig~FORTH source
code accompanied by complete instruc-
tions for use, any known operating
limitations, and a brief technical
description or reference if appro-
priate. The programs should be as
transportable as practicable; 1if
system unique routines are necessary,

enough information should be provided
so as to allow them to be adapted to
a different machine.

I will compile a draft of the pro~
posed publication and submit it to a
technical review committee for review
and appropriate testing. This com-
mittee of FIG members (I am looking
for volunteers) will scrutinize the
proposals (and alternatives if appro-
priate), test them on a running FORTH
system, and make recommendations.

I will then compile the final version
and submit it to FIG for publication.

I have set some timelines for com-
piling this compendium such that it
can be published by next year's
Computer Faire. Material should be
sent in no later then 1 September
1981 (please send them early and give
me a chance to get ahead). I will
distribute the draft for review and
testing by 15 October 1981. Finally
I will begin compiling the final
version by 1 January 1982 and have it
ready for publication by 1 February
1982.

This may seem like a long time
abuilding, but I want to provide
ample opportunity for the contribu-
tors to develop their ideas fully and
conduct a fair amount of testing
themselves before submission, I also
want to provide a good review by the
committee to provide the highest
quality document for FIG. It will be
worth it in the lomg run. Your con-
tributions will be sincerely appre-
ciated, and though the publication,
as are all of FIG's, will be in the
public domain, credit will be given
to the authors and contributors. So
if nothing else, this is a chance to
get your name in print, in an inter-
national publication.

Sincerely,

George 0. Young III
617 Mark NE
Albuquerque, NM 87123

Page 3

FORTH DIMENSIONS III/1

This is a great project. Our goals
continue to be to decentralize FIG
activities, and George's project of a
published 'Goodies Package" will be
helpful to all. Contributors should send
a brief description to George and then
prepare the full document. This will
allow co-ordination of similar material.
-- ed.

-y
M e L, .
. e ' s o K B L A I 1]
v o T N Ny
SR T . ‘ “
L RN “ M

Spreading the fig-FORTH at the West Coast
Computer Faire, April, 1981,

Top: (1-r) Michel Mannoni (FORTH vendor),
Dave Boulton and Martin Schaaf (Answering
the question: What's FORTH? 10,000 times)
Bottom: (1-r) Roy Martens (FD Publisher),
Anne & Bill Ragsdale (FIG prime movers).
Order your T-shirt, like Bill's!

ANNOUNCEMENTS

FORML CONFERENCE CALL FOR PAPERS

Papers are requested for the three day
technical workshop to be held next
November 25th to 27th at the Asilomar
Conference Grounds in Pacific Grove,
California (Monterey Peninsula).

Although registration for this con-
ference is not yet open, attendance will
be limited to 60 persons. Authors will be
accepted before listeners, so if you want
to attend, the only sure way is to write a
paper. Please note: abstracts or propo-
sals for papers or discussions must be
submitted no later than September 1, 1981
for inclusion in the conference and its
proceedings; completed papers by Sep-
tember 15, 1981.

The purpose of this workshop is to dis-
cuss advanced technical topics related to
FORTH implementation, language and its
applications. Potential authors should
write for an author's packet for detailed
instructions, Send all correspondence
regarding the conference or papers to:

FORML. CONFERENCE
P.0. Box 51351
Palo Alto, CA 94303

FORTH WORKSHOPS

Beginners and advanced workshops in
FORTH are being jointly sponsored by the
College of Notre Dame and Inner Access
Corporation both of Belmont, CA.

Beginners workshops start June 23 and
advanced workshops start July 14. Classes
meet every Tuesday and Thursday evening
from 7:00 to 9:00 P.M. [Registration is
$135 for 3 weeks (12 hours).

For more information and registration
contact:

College of Notre Dame (415) 593-1601

FORTH DIMENSIONS III/1

Page &4

CONTINUING DIALOG ON
FORTH-79 STANDARD

Dear Bill:

We recently obtained a copy of the
FORTH-70 Standard from FIG and are
attempting to align our version of FORTH
with it. The document is generally well
done and in most cases clearly and con-
cisely expressed. However, there are
about a half dozen or so definitions that
seem to us somewhat ambiguous.

I am writing to you in the hopes that
you can clarify the word definitionms in
question; or, that you can refer us to
someone who can, I am also interested in
knowing whether the FIG model has been
aligned yet, if not, when it will be.

My list of questions is enclosed and 1
would appreciate anything you can do to
assist us in their resolution.

Cordially,

Robert D. Villwock
MICROSYSTEMS, INC.

2500 E. Foothill Blvd., #102
Pasadena, CA 91107

OPEN QUESTIONS
FORTH-79 Standard

1. For the words / and */ does the
terminology ‘'rounded toward zero"
essentially mean truncated? If not,
precisely what does it mean?

2. The word SGIN 1is now apparently

defined to be used "outside" of the
{#, #)operators. What is the pre-
cise definitiom of where the minus
sign character is to be stored? Why
was this word changed from its former
function between {# and #) ?

3. The word ':' is defined as a non-
precedence word. Is this a typo or
is it intentional? If intentional,
could you explain the rationale? It
seems that the number of occasions
for which "colon" needs to be com~

piled are few and could easily be
handled by wusing the [COMPILE]
operator. ON the other hand, syntax
errors and typos often result in
mistaken attempts to compile ':’
which, when it's an immediate word,
can be flagged by the compiler.

The word CODE is defined as using the
form:

CODE (name) ...END-CODE

However, the word ;CODE says nothing
about the corresponding form. Our
version of FORTH rquires that code
level action routines defined by
;CODE also be terminated by the word
END-CODE. Is this compatible with
FORTH-797?

The words FIND, ',' ':', etc., as
defined in the Standard, indicated a
search of CONTEXT and FORTH only. Is
it considered an incompatibility if
the CURRENT vocabulary 1is also
searched (if different)? The defini-
tion of VOCABULARY is not clear
regarding the possibility of "sub-
vocabularies" such as ABC chained to
XYZ chained to FORTH. If this is
allowed, and, ABC is the CONTEXT
vocabulary, is not ABC, XYZ, and
FORTH searched?

What is the mmemonic significance of
the C words s8such as C!, CMOVE,
etc.? Surely it doesn't stand for
"cell," does it? The term "cell” is
defined on page 3 of the Standard to
be a 16-bit memory location. The word
MOVE is defined on page 26 to trans-
fer 16-bit words ("cells"), while the
word CMOVE on page 20 is defined to
move bytes (not "cells"). 1If the C
does stand for "cell" what is the
rationale? Why was the former stan-
dard's B (for byte) replaced by the
mysterious C?

I note that in the reference section
of the Standard, the word DPL which
formerly used to handle both input
and output "point" situations now
strongly emphasizes that input con-
versations should not affect its

Page 5

FORTH DIMENSIONS III/1

value. What is the reason for this
restriction? How likely is it that
this may become part of the Standard?

The definition for CREATE is not

clear. Does the second sentence
"When {name) is subsequently
executed, the address of the first

byte of {name) 's parameter field is
left on the stack" mean that the word
CREATE alone is to function this way
or only when followed by ;CODE or
DOES) ? In other words, is it
intended that CREATE work as in the
FIG model or has its definition
changed? Taken literally, PFORTH-79
says that CREATE will generate an
unsmudged header with the CFA point-
ing to the run time procedure for
variables., 1Is this what is intended?

COMMENTARY FROM THE FORTH DOCTOR

Some computers apparently (by Stan-
dard Team comment) round quotients
and remainders to smaller magnitude
(more negative). Trucation of nega-
tive quotients would do this, 1f a
correct representation is not possi-
ble, the result should be nearer
zero. Dave Boulton is more know-
ledgeable on this point.

" Sign is to be used within {# and
#). The user chooses where to store
the sign. Notice that no word gener-
ates the saving of the sign. 1In fig-
FORTH the only difference is the ROT
would be explicitly done just before
SIGN, rather than in SIGN.

FIG and the Europeans make : an imme-
diate word for error control. Other
users, and FORTH, Inc. reject this
level of error control--too bad! We
need a technical paper presenting the
trade-offs (code needed and compila-
tion slowdown). Conversation at a
team wmeeting is insufficient to
change opinions developed over ten
years.

These topics were barely touched on
by the Team as CODE definitions are
not portable. ;CODE probably should

5.

terminate in END-CODE., This is an

unresolved area.

The standard wording was painstaking-
ly done regarding vocabularies. This
is the most divergent topic among
users. all known methods can comply
with the Standard, but it does less
than all systems. The rationale is
that you build CURRENT but you exe-
cute only from CONTEXT (and FORTH).
No chaining is recognized, beyond
context leading to FORTH. This may
be physical links or logical (within
FIND). Again, position papers are
essential to get a common, more
advanced, construct,

Charles Moore has used C for ten
years as a character (byte) prefix.
Ignore (if you can) that a character
is defined as 7 bits in the Stan-
dard. This was a hotly disputed
point with FIG and the Europeans for
"B"yte and FORTH, Inc. and a couple
of others for "C". Kitt Peak was
adamant before the meeting for "B"
and other uniformity improvements.
Their representatives made no defense
of the issue. Historical precedence
wins this one.

Reference Section 1is just left-
overs. Only one vote of any team
member was sufficient to maintain a
Reference word on the list. The
Standard attempts to minimize system

variables, Increased usage of
special variables is unlikely.
Things 1like DPS are delegated to

applications.

The definition of CREATE is quite
clear. You have stated it and then
correctly paraphrased it. Other
defining words may be used before
DOES D> which help build a parameter
field. DOES) rewrites the code field
to its own code.

: CPU CONSTANT DOES)

-e

is equivalent to

: CPU CREATE , DOES)

-e

FORTH DIMENSIONS III/1

Page 6

TECHNICAL NOTES, BUGS & FIXES

Dear Fig:

I have recently brought up FORTH on a
6800 system and find it to be a very easy
and powerful system for microcomputers.

I have a wmini-computer with a cross-
assembler on it which I used to assemble
the source after keying it in. Naturally,
as soon as I got it working I wanted to
change it. 1 feel that the EXPECT routine
and backspace handling could be improved
significantly by incorporation of the en-
closed recommendations.

1 also experimented with the GLOSSARY
routine submitted by D.W. Borden in FORTH
DIMENSIONS, Volume 1, No. 4. I modified
it to handle the variable length name
field and changed the format slightly.

Keep up the good work.

Toby L. Kraft
San Diego

EXPECY
001 (EXPECT MODIFIED FOR VSER DEFINED BACREPACE CHARN)
002 (FERN1 TORY L RRAFT
003 EXPECT

004 OVER + OVEN (ADD COUNT TO ADDRESS FOR LOOP LIMITY)
003 DO
006 KEY D@ (GEY CHAR AND SAVE COPY)
007 OF +ORIGIN & = (OET SYSTEM BACKSPACE AND CHMECK FOR IV)
oce 1F
(100 DROP DUP | = ¢ LOSE CMAR . CMECK DUFFER BED!
010 DUP R> 2 ~ & DR « ADWEST IFFER POINTER muvu\ .
011 IF 07 €LBE BSTOF C@ ENDIF (DELL & ®
012 ELSE
013 DUP 0D = { CHECR FOR CARRIAGE RETURN)
Cr4 1F
019 LEAVE DROF BL © { PREPARE TO LEAVE)
Ots ELSE DV ENDIF
a7 1Cr 01l te { STORE CHARACTER IN BUPFER)
Ol ENDIF
o1® EMIY t ECHO CHAR TO TERWINAL)
020 t.oor
021 DROP
OLOBBARY
001 (LOBSARY OREMERATOR ROUTINES

002 DECIMAL

003 O VARIABLE (M0

004 TOF CR CR 32 SPACES "~ OLOSSARY" CR CR (OENERATE PASE MEADING)
008 “ LEN WORD™ 13 SPACES -~ NFA PFA" CR CR .
006 HEX

007 OLOBSARY TOF COMTEXT @ @ CWD *

008 BECIN CMD ¢ IF

00% CMD € C& IF AND

01C DECIMAL DUP 3 R SPACE

Oi1 F GuWAP - CMD @ ID SPACES

012 CMD @ WEX & R SPACE

013 CMD & | TRAVERSE Dup

034 3 « & R SPACE CR

018 1+ @ CHb

016 TERMINAL IF QUIT ENDIF

017 €LSE QUIT THEN AQAIN .

Modifications to the fig-FORTH boot~-up
literals:

1. Backspace Character
Character to emit in response to a
backspace entry. X'08' (control-H)
is character FORTH responds to for
backspace function. Character to
emit is terminal dependent and should
be defined in the user table.

This also allows use of a printable
character (e.g. C'\') to emit for
backspace for use on printing
terminals.

2. Form Feed Character
Character to emit to cause terminal
(or printer) to advance to top of
form. This is also device dependent
and should be in user table.

3. Form Feed Delay
Number of null characters to emit
after issuing a form feed charac-
ter. This is similar to CR/LF delay
vhich is already provided.

Recommendation @
Add variasble 'BSTOF' to user table.

X'BBFF' -~ two characters of data
FF - form feed character
(X'0C' initial value)
BB - back space character
(X'08' initial value)

Add word 'BSTOF' to vocabulary to access
this variable in user table. (Similar
to 'BASE')

Modify definition of current user varia-
ble 'DELAY' to include formfeed delay in
upper byte.

Add word 'DELAY' to vocabulary to access
this variable in user table.

Modify startup parameters and cold start
accordingly.

Page 7

FORTH DIMENSIONS III/1

i -t e e m A o a

Modify EXPECT to use user defined
backspace character and to explicitly
generate bell code (X'07'). Currently,
EXPECT tests for the beginning of the
buffer and subtracts the boolean flag
result from X'08' to generate the char-

acter to emit in response to a back-
space.

Toby L. Kraft

7822 Convoy Court
San Diego, CA 92111
(714) 268-3390

This really needs expansion and gener-
ality. How about terminals that need an
"escape sequence” to clear screen, i.e.
form feed? Toby, HEX should be used
insteat of X'.,—-ed.

Dear Fig:

I wish to convey a concept which has
greatly increased the clarity of my FORTH
coding. It has to do with in-line docu~-
mentation of the contents of the stack
(comments within parathesis).

Unfortunately, none of the existing
techniques (space, hyphens, brackets, or
ordinal suffix) provide the brevity and
clarity that one becomes accustomed to
with FORTH. The technique which I have
devised provides both. It revolves around
the backslash character '\', which I refer
to as ‘under' and the double hyphen '—',
which 1 refer to as 'leaves'. Using this
terminology, the following comment:

(address\count -~)

is read '"address under count leaves
nothing," and

(NI\N2 — N3)

is read "Numberl under Number? 1leaves
Number3."

The ‘under' symbol imparts a clear
verbal and graphic representation of the
ordering of the stack contents, and
provides an elegant solution to a major
problem encountered when transporting
FORTH algorithms and source code.

Don Colburn

Creative Solutions, Inc.
4801 Randolph Road
Rockville, MD 20852

Dear Fig:

Some time ago I bought your Installation
Manual and the 6502 Assembly Listing. I
have been studying both for quite a while,
and am also a charter member of the
Potomac FORTH Interest Group (PFIG: Joel
Shprentz and Paul VanDerEijk).

I have MMS FORTH (cassette) for the
TRS80 up, and have just bought GEOTEC
FLEX-FORTH for my KIM, although I don't
have my 16K ram card installed in KIM
yet. I do like FORTH!!! The PFIG has
been fairly inactive for some time due to
lack of a meeting place, but Joel Shprentz
has been conducting some Intermediate
FORTH classes ($30 for six lessons) which
are ongoing, and very interesting - we are
well into {BUILDS/DOES), and will then go
on to disking, etc. Ask Joel for details.

1'm still planning to bring up FORTH on
the KIM from my own hand-assembled ver-
sion, just to satisfy my own curiousity
about what makes FORTH tick. I do think
I'm finally beginning to understand how
everything fits together.

In this vein, I have a few comments to
pass on from an (advancing) novice FORTH
enthusiast. The first two comments regard
the above referenced Installation Manual
and 6502 Assembly Listing. The last two
are ideas of my own which I offer for what
they are worth.

1. There is a disparity in the Instal-
lation Manual version of the 6502
memory map regarding the placement of
the Disk buffer and User Area.

FORTH DIMENSIONS III/1

Page 8

Indeed, there 1is disparity in the
6502 Assembly Listing between what is
done near the front and what is actu-
ally implemented (per the installa-
tion Manual), The Installation
Manual puts the Disk buffer at the
top of RAM with the User area just
below. Line 0051 of the assembly
manual says User area is top 128
bytes, with disk buffer next (line
0052). CREATE assumes just the
oppposite in both the Installation
Manual and Assembly Listing. (Editor
-- correct on all all points. The
author was inconsistent.)

2. In screen 49 of the 1Installation
Manual, I see no need whatsoever for
a dedicated word such as ID. to move
the word name to Pad and then type it

out! The first 4 words are not
needed, and neither are the words
following " - " (PAD SWAP CMOVE

PAD). Just a waste of time and space
to bring the name to PAD and then
type it out! (Editor -- this is not
80o. I1f you have WIDTH set to less
than 31, ID. is required.)

3. I would suggest a word (Q) that
might be inserted into any type of
loop (DO/LOOP or BEGIN/AGAIN) to
allow a timely exit when things go
awry (as they do with Novices!).
It's very simple - : Q ?TERMINAL IF
QUIT ENDIF MMS FORTH has this
embedded into the code of " : " , but
I think that's overkill. But it sure
is nice to undo errors put into
loops. (Editor -- this is terrible
style. LEAVE is the correct way for
a controlled termination.)

4. This has specifically to do with the
Jump Indirect of the 6502 as used in
both the Installation Manual and the
assembly 1listing. Having used the
6502 for better than 4 years, I have
yet to use the JMP indirect after
finding out about its shortcoming of
wrapping around within a page if low
byte of address is $FF. I pretend
this opcode does not exist. (Editor
-- CREATE on 6502 systems correctly

places code field. Anymore commentse
should be directed to Chuck Peddle,
designer of 6502.)

Keep up the good work.
Edward B. (Ted) Beach

5112 Williamsburg Blvd.
Arlington, VA 22207

CORRECTION ON SEARCH

by John James
(Vol. II #6)

When you are debugging or modifying a
program, it is often important to search
the whole program text, or a range of it,
for a given string (e.g. an operation

name). The 'SEARCH' operation given below
does this.

To use 'SEARCH', you need to have the
FIG editor running already. This is
because 'SEARCH' uses some of the editor
operations in its own definition. The
'SEARCH' source code fits easily into a
single screen; it is so short because it
uses the already-defined editing func~
tions. Incidently, the FIG editor is
documented and listed in the back of FIG's
Installation Manual.

Use the editor to store the source code
of 'SEARCH' onto a screen. Then when you
need to search, load the screen. (of
course if you are using a proprietary
version of FORTH, it may have an editor
and search function built in and auto-~
matically available when needed. This
article-ette is mainly for FORTH users
whose systems are the ten-dollar type-it-
in-yourself variety).

Here is an example of using 'SEARCH'.
We are searching for the string 'COUNT' in
screens 39-41; the source code of 'SEARCH'’
is on screen 40. The screen and line
numbers are shown for each hit. Inci-
dently, the search string may contain
blanks. Just type the first screen
number, the last screen number, 'SEARCH'
followed by one blank and the target text
string. Conclude the line with return.
The routine will scan over the range of

Page 9

FORTH DIMENSIONS III/1

th

.0

screens doing a text match for the target
string. All matches will be listed with
the line number and screen number.

Happy SEARCHing!

39 41 SEARCH COUNT

00 VARIABIE COUNT ER 240
1 COUNT ER +! ~COUNIER @ 4 40
1 COUNIER +! COUNT ER @ 440
56 DIF 0 COUNT ER ! 5 40

12 BMIT 01 TEXT O COUNT ER! 8460 K

SCR & 40

0 « SEARCH, OVER RANGE OF SCREENS UFk)
1 DECIMAL

2 00 VARIABLE COUNTER

RIS 111,14 { THE LINE NUMBER AND HANDLE PAGING)
4 1 COUNTER +! COUNTER @

S $6 > IF 0 COUNTER !

] CR CR 13 MESSAGE 12 EMIT THEN ;

7 s SEARCH (FRON, TO --- TARGET STRING)
(] 12 ENLT 01 TEXT O COUNTER !

¥ 14 SUAP DO FORTM I SCR ¢

10 €DITOR TOP

n BEGIN TLINE IF ¢ M SCR ? BUMP THEN

12 1023 RE @ C UNTIL

13 LOOP ; CR ." SEARCH IS LOADED ° ;5

15 TYPICAL USE TO LNCATE "KEY-UORD’: 21 44 SEARCH KEY-UORD

PROGRAMMING AIDS & UTILITIES

Kim Harris
FORTHRIGHT ENTERPRISES
P.0. Box 50911
Palo Alto, CA 94303

In true ideal FORTH programming style
the definitions contained within the
screens clearly designates their use.

81 LIST 82 LIST
SR # 81
0 (Software Development tools fig~FORTH l.x)
1 (for 10ADing)
2:10D (sca#é—) DUP. IDAD
3: TRy (lstScreend lastScreed —)

(non—destructive stack print)
: DEPTH (— #StackCellsUsed) SP@
SO@ SWAP - 2/

8 : .S (prints stack contents, top last;
stack unchanged)

9 DEPHIF SPQ2- S0@2- D0 I?
=2 +L.00P

10 IS " Epty" THN ;

1

12 (vhich vocabulary is being referenced?)

13 : WC (prints CONTEXT VOCABUIARY name)

14 CONIEXT@ 4- NAD. ;

15
SCR # 82
? (Tools: mmber printing fig-RRMH l.x)
2: BASE (—) (prints anrent radix in
decimal)

3 PBASEQIUP IECIML . BASE!
4

5

(create base~specific stack-print operators)
: BASSD. ({BUILDS: newBase —)
(DOES): n—)

6

7 BUILDS),

8 DOFS)Q@ BASE@ SWAPBASE ! SWaP .
BASE!

9

10 16 BASED. H. (print top-of-stack in hex)
11 8 BASED. 0. (print in octal)

12 2 BASED. B. (print in binary)

13

A

15

X

The following utility indexes 10 screens
at a time and is an excellent aid in
searching.

HEX : +INDEX 113 0 DO
DUP 10+ SWAP OVER INDEX
KEY ?ESC IF LEAVE THEN LOOP;

The following utility was contributed by
Sam Bassett and is an excellent program
development aid that shows you what the
current base is

BASE?
BASE @
Dup
DECIMAL

BASE !

FORTH DIMENSIONS III/1

Page 10

Here is an adaptation of George Shaw's
VIEW to use the word WHERE, which on my
system invokes a full screeen editor that
highlights the word pointed to by a block
number and displacement. It certainly
helps pick out a word in dense code.

SR # 66

0 ('VIBW' USING '"WHERE' 4/15/81 R.E.E.)

1 (ADAPTED FROM FORTH DIMENSIONS VII,
MR 6, P 162)

2 FORIH DEFINITIONS

3:>m0c(BIK@, IN@ ,; (SAVE BIK AN
DISPLACRMENT)

4 : CONSTANT D>D0CS [COMPTLE) CONSIANT ;
(REBULLD THE WORDS)

5 : VARIABLE)>D0C < (COMPILE) VARIABIE
(THAT: BUTLD WORDS.)

6:: poC { [OMPIIE]) :

-e

1
7 5 BUILDS Doc {[CMPIIE] BUILDS
8 : USER DOC ¢ [OMPTLE] USER H
9 : CREATE DOCS [OMPIIE] CREATE 3
10 : VIEW [OOMPTIIE] ' NFA (GET HEAD OF
TRE BEADER)
11 DUP (COPY THE AITRESS)
12 2- @ (GET THE DISPLACRMENT)
13 SWAP 4 -@ (GET THE BLOCK NIMBER)
14 WHERE (GO SHOW & HIGHLIGHT) ;
15]
HELP WANTED

Senior Level FORTH Programmers

Friends-Amis

505 Beach Street

San Francisco, CA 94133
Call: Tom Buckholtz
(415) 928-2800

Intermediate & Senior Level FORTH
Programmers for Data Entry Applications

MSI Data

340 Fischer Avenue
Costa Mesa, CA 92627
Call: Joan Ramstedt
(714) 549-6125

PRODUCT REVIEW

by C.H. Ting, Feb. 26, 1981

Timin-FORTH, from Mitchel E. Timin Engi-
neering Co., 9575 Genesee Ave., Suite E2,
San Diego, CA 92121, (714) 455-9008.
8" single density diskette, $95.00

1 was invited by Dr. Timin to compare
his CP/M FORTH (FD II/3, p. 56) with the
2~80 FORTH by Ray Duncan, Laboratory
Microsystems (FD II/3, p. 54; FD II/S,
p. 145) 1 ran the two FORTH systems on
his home made Z-80 computer (S-100 bus,
6 MHz) The results of a few bench marks
were:

Program Timin 2Z-80
: LOOPTEST 7FFF O DO 1OCP 3 2.3 sec 2.9 sec

: =TEST 7FFF O DO I DUP - DROP LOOP; 5.9 7.4
: ¥EST 7FFF O DO I DUP * DROP LOOP ; 44.0 54.9
: /TEST 7FFF O DO 7FFF I / DROP LOOP ; 74.3 88.6
: WIPE 120 61 DO I CLEAR LOCP ; 3%.3 81.8

97 10AD (four hundred eighty 9's) 17.9 18.6
)

I was surprised that Timin-FORTH which
is 8080 fig~-FORTH ran faster than Z-80
FORTH which uses the extra Z-80 registers
for IP and W. Dr. Timin's opinion was
that the 2Z-80 instructions using these
extra registers are slower then the
simpler 8080 instructions. The word WIPE
tests disc access time. Timin-FORTH
accesses the disc by 1024 byte blocks, and
it is twice as fast as Z-80 FORTH, which
reads/writes by 128 byte sectors, as in
the fig-FORTH model.

The dictionary in Timin-FORTH is about
11 Kbytes, including an editor and an
assembler. The editor is the same as that
of the fig-FORTH model. The assembler has
all the Z-80 instructions. An interesting
word SAVE allows the whole system in-
cluding application words to be preserved

Page 11

FPORTH DIMENSIONS III/1

T o0 O

[~ T -

as a CP/M file which can be loaded back
for execution. 1t maintains eight 1 Kbyte
disc buffers.

The documentation supplied with the
system 18 a 68 page booklet 'USER'S MANUAL
& TUTORIAL'. It is a very well done
manual introducing users to the systems
and to the FORTH language. However,
source listings are not provided.

My overall impresssion was that this is
a well rounded FORTH system suitable for
engineering and professional applications.

Editors Comment -- FORTH Dimensions
refrains from publishing timing benchmarks
as this reflects processor speed more than
effectiveness of problem solving. How-
ever, the above review points out that the
allegedly superior Z-80 runs these tests
slower than the 8080. Our point is that
the user should evaluate all aspects of
problem solving: hardware characteris—-
tics, language implementation and appli-
cation technique. The Timin manual is
sold separatly for $20.00. This price is
not justified by the copy received for our
evaluation.

HELP WANTED
FORTH PROGRAMMER

PDP-11 RSX Op Sys On Site Contractor

Micro/Temps

790 Lucerne Dr.
Sunnyvale, CA 94086
(408) 738-4100

FORTH TELE-CONFERENCE IS NOW OPERATIONAL

FORTH now has a dynamic, public access
data Dbase. By dialing into the FIG
CommuniTree (tm, the CommuniTree Group)
you may access our tele-conferencing
system, It was created by Figger John
James to allow group interaction to build
upon our collective knowledge.

The number is 415-538-3580. The system
runs 24 hours a day. Use a 300 baud modem
and start with two "returns”, the system

is self-iastructing. This conference
holds information on employment, vendors,
applications, announcement calendar,

inquiries, books, etc. Information of the
conference is organized in a tree struc-
ture, hence the name " Conference Tree",

Our hope is that half of the callers
will review the available material and
then ask questions. The other half should

add answers to these questions. You
simply find a topic or message and attach
your query/response. Users naturally

organize their material in a form that
facilitates retrieval.

This system was written in Cap'n
Software Version 1.7. Versions for other
than Apple II are being developed.

For availability contact:
The CommuniTree Group
Box 14431
San Francisco, CA 94119

or call the original Tree: (415)
526-7733.

STEWARD, WHAT
KIND OF AIRPLANE

KO

FORTH DIMENSIONS III/1

FORTH, INC. NEWS

MAJOR EXPANSION PLANS

FORTH, Inc. is now entering a major
expansion phase, according to President
Elizabeth Rather. Appearing on a panel on
"Programming Languages for Small Systems"
at the recent NCC in Chicago, Rather
observed, "The level of excitement and
enthusiasm about FORTH in the industry is
tremendouus. We are increasing our number
of OEM'S and we have been approached by
several major silicon manufacturers
desiring to obtain marketing rights for
special versions of polyFORTH. Arrange-
ments are also being made to produce the
FORTH processor, and we expect this
project to start very soon."

LIFEBOAT REPRESENTATIVE VISITS

Masa Tasaki, Managing Director of
Lifeboat, Inc., FORTH, Inc.'s distributor
in Japan, spent two days at FORTH, Inc.
recently to discuss mutual marketing
plans. Lifeboat, Inc. is one of the few
software distributors in Japan, and
polyFORTH is the top of their product
line. Tasaki has installed over 40
polyFORTH systems in Japan in the past
year, and plans to sell an additional 50
polyFORTH systems by the end of 1981.

STARTING FORTH BOOK PREPRINTS AVAILABLE

STARTING FORTH, a 380-page book intro-
ducing the FORTH language and operating
system will be published by Prentice-Hall
this September in both hard and soft-bound
editions. FORTH, Inc. is offering limited
preprints to customers until then. The
preprint, numbered and signed by both
author Leo Brodie and Charles H. Moore
sells for $50.00 (plus 6% sales tax for
residents of California). You may reserve
a copy of STARTING FORTH by calling Winnie
Shows at (213)372-8493. All orders must
be pre-paid.

RECENT FORTH COMMERCIAL APPLICATIGNS

Work has just ©been completed for
Raytheon Corporation on a terminal cluster
(up to 32 terminals with a single concen-
trator). Each component of the system is
controlled by an 8085 processor, and all
are programmed independently, using
polyFORTH. This 1s a capability they've
never had before -- to do custom program-
nming and provide extensibility. Terminals
up to two miles away can be polled at a
rate 30 times faster than the previous
protocol, which was written in assem-
bler. Dean Sanderson was the principal
programmer on the project.

The famous 200" Hale Telescope at Mt.
Palomar Observatory (near San Diego) has
recently installed a polyFORTH system for
data acquisition and analysis using a
PDP11/44 and a Grinnell display proces-
sor. The Observatory has been using FORTH
since the early 1970's, including a
miniFORTH system installed in 1975 and an
early polyFORTH installed in the late
70's. Barbara Zimmerman, a programmer at
Cal Tech (which operates the observatory)
said, "I am extremely impressed by the
level of polish and sophistication in
polyFORTH, and the performance of this
system is outstanding.” The type of work
done invclves reading data from an 800 x
800 array of CCD sensors, integrating and
recording the data, and displaying it in
the Grinnell. Charles Moore installed the
system, which features a comprehensive
math package for analysis as well as basic
image-processing functions.

A by~-product of this installation is the
availability of polyFORTH in RKO5 disk
cartridges. These are available with on-
site installation.

SCHEDULE OF UPCOMING FORTH, INC. SEMINARS
AND WORKSHOPS:

Location Seminar Workshop
Palo Alto June 4 June 5
Houston July 7 July 8
Tampa July 9 July 8
Irvine July 23 July 24

Page 13

FORTH DIMENSIONS II1/1

P

- A a4 s A B e h e S e -

— an

M s ot M A = e A S

~ am s -

PARAMETER PASSING TO ooss>

David McKibbin
Sygnetron
2103 Greenspring Drive
Timonium, MD 21093

Often in programming one runs into the
case where several different processes
share similar structures. Not wanting to
waste time or space for redundant code,
the programmer usually creates a sub-
routine or procedure to execute the basic
structure. Then the individual processes
merely pass arguments to the prodecure to
accomplish their task. Several schemes
can be used to pass these parameters. In
simple cases, the stack can be used
directly. This is the typical act of
programming in FORTH.

DELAY 0O DO LOOP ; (SPIN FOR A WHIIE)

100 DETAY (OOUNT PASSED ON THE STACK)

However, as the procedures get more com~
plex it gets more and more difficult to
keep track of the passed parameters espe-
cially when the procedure itself is using
the stack heavily. Also many times it is
necessary to pass not only numbers but
operators or words as parameters. One
means of accomplishing this is via {BUILDS
DOES). Parameters will be stored in the
parameter field of the newly defined word
and accessed from DOES) via a new word
{$}. 1§ will push the first parameter
on the stack, 2 $ will push the second,
etc. All parameters are 16 bits., Varia-

ble R# is used to store the parameter base
address.

¢ 1-DP+RFE@+Q ;
PARAMETER)

(PUSH THE N'TH

EXAMPIE (BUILDS DOES)R$! 1§ 2§ EXBOUIE ;
EXAMPIE ZZZ 90, 'EMITCFA, (TYPEA"Z")
EXAMPIE SPC 10 , ' SPACES CPA , (TYPE 10 SPACES)

Now that the mechanics are explained the
following example will more fully demon-

strate its usage. Both DUMP (16 bit dump)
and CDUMP (8 bit dump) share a common
structure with only a few inmer words dif-
fering. DUMPS is a new defining word used
as a procedure for both DUMP and CDUMP.

: U.R O SWAP D.R ;

: DS (BUILDS DOES) RF ! (STURE PARAMETFR BASE
ADIRESS

BASE @ R) HEX (SAVE BASE AND SET HEX)

OVER + SWAP (CONVERT TO BEGINNING
AD BD AIDRESS)

BEGIN

R DUP 4 U.R 2 SPAES (TYPE AIDKESS)

1$0m0

UP2$EXECUTE 3$UR 4§+
2P = OVER 16 MD O= (R IF
IEAVE THEN
Looe
2UP = TERMINAL (R
UNTIL
DROP TROP CR
ROBASE ! ; (RESTORE BASE)
XMPS CDOMP 16, 'CRCFA, 4, 1,
(2-AIDRESS, 1-COUNT)
DMPS DO 8, ' QCFA, 6, 2,
(2-AIXBESS, 1-COUNT)

What has been accomplished is akin to
passing procedures/functions as parameters
in Pascal. I expect that there are other
ways to do this FORTH beyond what has been
proposed.

FIG-FORTH UNDER 0S-65U

Software Consultants has announced the
availability of Fig-FORTH under 0S8-65U for
the Ohio Scientific Line, The package
includes assembler and a terminal oriented
editor and is available now for $79.95.

This version is said to support hard-
disk, multi-user systems and may even be
run in one partition and BASIC in another.

For more information contact:

Software Consultants
7053 Rose Trail
Memphis, TN 38134
(901) 377-3503

FORTH DIMENSIONS IIL/1

Page 14

COMPILER SECURITY

George W. Shaw III
SHAW LABS, LTD.
17453 Via Valencia
San Lorenzo, CA 94580

How it Works and How it Doesn't (Adapted
from a section of the Acropolis A-FORTH
manual)

There is much argument about parameter
validation and error detection in FORTH.
Many problems exist with many good solu-
tions. Fig-FORTH and its derivitives have
taken one route of extensive protection in
compiler directives and their associated
words. This is not an only solution in
this area. Its extensiveness may not be
necessary. There may be better alterna-

tives, Read on, learn how fig-FORTH
works, consider the options and then
decide. Your opinion and ideas are
needed, '

Fig-FORTH and its derivitives provide a
type of compiler error detection referred
to as "compiler security”. Compiler
security provides protection against
structural programming errors made by the
programmer as well as insuring the proper
machine state and, in a very few in-
stances, the wvalidity of parameters.
Though it depends on the type of program—
ming, the most common errors are struc-
tural errors* , machine state errors, and
then parameter errors, respectively.

_ (* structural errors may be caught
internally by detecting parameter
errors. See text.)

STRUCTURAL ERRORS

The compiler security system uses two
methods to trap structural programming
errors inside of colon~definitions.
$tructura1 errors are those caused by
incorrect program structure; either
improper mnesting of structures or not
completing a structure inside of a defi-
nition. Either of these conditions would
cause the program to compile incorrectly

and could cause disastrous effects (i.e. a
system crash) at run-time. The methods
used by the compiler security system
entail either checking a value on the top
of the stack (to verify the proper nesting
of structures) or checking that the stack
position is the same at the end of a defi-
nition as it was at the beginning of the
definition (to ensure program structure

- completion). These two methods probably

trap about ninety percent (902Z) of the
structural programming errors that a pro-
grammer might make.

The first in each of the paired struc-
tural compiler directives (i.e. pairs such
as IF THEN , DO LOOP , etc.) leave
on the stack at compile time a value which
is checked by the ending structure to
ensure the proper nesting of structures.
For example the word IF leaves, in
addition to the other data necessary to
compile an IF , the value of two (2) on
the top of the stack. The words ELSE
and THEN remove a value from the top of
the stack and check to see if it is a two
(2). 1f the value on the stack was not a
two (2), a Conditionals Not Paired error
(#19) results, and compilation is termi-
nated (control returns to the keyboard).
1f the value is a two (2) the remainder
of ELSE or THEN executes, removing the
necessary data from the stack to finish
the structure, and compilation continues
on to the next word.

Below is a table of the conditional
pairs for the current structural compiler
directives, with the values placed on the
stack open and the values removed from the
stack in parenthesis. Note that UNTIL
and END as well as THEN and ENDIF
have the same effect. Only the former of

_each pair are presented here for clarity.

BEGIN 1 UNTIL (1)
BEGIN 1 WHILE 4 REPEAT (1) (&)
BEGIN 1 AGAIN (1)

IF 2 THEN (2)
IF 2 ELSE (2) 2 THEN (2)
DO 3 LOOP (3)
D0 3 +LOOP (3)
Do 3 /LooP (3)
DO 3 +/LOOP (3)

Page 15

FORTH DIMENSIONS III/1

i N € Q r»m

Y W~

rn

[B o - I« T A - I A DN - L B RS

Note that FELSE tests and replaces the
same value on the stack. Because of this
the current compiler security system
cannot detect the presence of multiple
ELSEs in a definition. For example, in
the definition:

: ELSE-EXAMPIE =~ flag — true or false message)
IF ." True part 1" FLSE ." False part 1"
ELSE ." False part 2" HSE ." False part 3"
THEN

if compiled , (and it will compile,) and
then executed with a boolean value (zero
or non-zero) on the stack, will execute
without crashing the system. But the
execution may not be what you expected.
I1f entered with a true flag (non-zero) the
"True Part 1" and the "False Part 2" will
print, while if entered with a false flag
(zero) the '"False Part 1" and "False part
3" messages will print, To borrow a
phrase from Kim Harris, probably 'Not what
you had in mind!",

This is the only case I know of where
the compiler security system plainly does
not work, but there are probably more.

How 1is this, apparently incomplete,
structure checking performed? Read on.

The values on the stack is verified by
?PAIRS . For example the words ?PAIRS ,
BEGIN and AGAIN are defined as follows:

7PAIRS - 19 ?ERROR ;
: BEGIN ?COMP HERE 1 ; IMMEDIATE
: AGAIN 1 ?PAIRS COMPILE BRANCH BACK
: IMMEDIATE

BEGIN first checks to make sure that it
is being executed in compile mode (inside
a definition) with ?COMP which issues an
error if it is not. It leaves the current
dictionary address on the stack (HERE)
as a branching reference for AGAIN , and
then the 1 as the first of a conditional
pair. When AGAIN later executes during
the compilation of the definition it first
checks the stack to see that a BEGIN
preceded it at the same level of nesting
by executing ?PAIRS . ?PAIRS expects
to find a matched pair of values, in this
case ones (1), as a matched set of condi-

tional pairs. If 7?PAIRS does not find a
matched set, it aborts with a Conditionals
Not Paired error (#19). 1If the values on
the stack are paired, it removes them and
returns.

The above simple form of error checking
is very effective, but as structures
become more complex, manipulating and
maintaining the stack values can become
cumbersome and unwieldy. The above is
also not yet complete. One more check
must be executed to ensure that the
structures in the definition have been
completed. Since the above error checking
leaves data on the stack if a structure
has not been completed, the simplest check
is that of the stack position. When a
definition is entered : (colon) stores
the Current Stack Position in the user
variable CSP . At the end of a defini-
tion, ; (semi-colon) executes ?CSP to
compare the current stack position to the
value stored in CSP . 1If the values
differ a Definition Not Finished error
(#20) occurs indicating that either data
was left on the stack or that too much
data was removed from the stack, i.e. that
a programming structure was probably not
completed. The word "probably" is used
here because other conditions, such as the
improper or sometimes various proper uses
of the word LITERAL , will cause the same
error condition to occur.

MACHINE STATE ERRORS

The loading and execution of a FORTH
program causes the system to eanter several
different machine states. Three of these
are loading, compiling, and executing.
Each of these states is defined by its own
set of parameters and some states may even
overlap. For example, while 1loading a
screen off the disk the machine will be
either executing or compiling. Here the
loading state has overlapped with either
the execution or compilation state. The
machine cannot be in the execution state
and the compilation state at the same
time, though the states may be inter-
leaved. An example of interleaved states
is the use inside a definition of a pro-
gram segment similar to this:

FORTH DIMENSIONS III/1

Page 16

[scmeen 3c0]+ LITERAL

which temporarily suspends compilation to
calculate the value within the brackets
and then compiles it as a sixteen (16) bit
literal. Remember though, that to com—
pile, the machine is executing a program,
and that compiler directives (such as
LITERAL above) execute during compilation
to perform their task, but the machine
state remains that of compilation.

Certain words require that the machine
be in a specific state to execute proper-
ly. These words are programmed to contain
one of the following words:

7COMP 7EXEC ?LOADING

which check for their corresponding state
and issue an error message if the machine
is not in that state. Below is a descrip-
tion of each of the above words and the
parameters which determine the current
machine state.

EXEC or ?COMP

. The execution state or compilation state
1s determined by the value of the user
variable STATE which has a zero (0)
value if the machine is in the execution
state and a non-zero value the machine is
in the compilation state.

?LOADING

Loading is determined when the value of
the user variable BLK has a non-zero
value. A value of zero for BLK indi-
cates that input is coming from the user's

terminal and that the machine is therefore
not loading.

Th: above words are defined as follows:

7EXEC STATE @ 18 7?ERROR ;
7COMP STATE @ O= 17 7?ERROR ;
?LOADING BLK @ O= 22 7?ERROR ;

If the machine is not in the execution
state when ?EXEC executes an Execution
Only error (#18) occurs.

If the machine is not in the compilation

state when 7COMP executes a Compilation
Only, Use in Definition error (#17)
occurs.

If the machine is not in a state of
loading when ?LOADING is executed a Use
Only When Loading error (#22) occurs.

The testing of machine states as above
is necessary when words such as BEGIN
and AGAIN (see example in STRUCTURE
ERRORS above) are used. These words may
only be compiled because they must compile
something other than themselves which is
pot known at the time they are executed.

PARAMETER ERRORS

During compiling and similar operations
there are only a few parameters which are
actually checked. In most cases, the
parameters checked are those involved in
the other areas of compiler security or
those which deal with the size or validity
of the dictionary and stack.

The words involved in other compiler
security areas are icsp , csP
7PAIRS . These words are used to protect
against structural programming errors as
described above in STRUCTURAL ERRORS. An
explanation of each of the uses of these
words is as follows:

ICSP 2CSP

These words are used together to check
for changes in the stack position.
ICSP stores the current stack position in
the user variable CSP . 7CSP compares
the value in CSP to the current stack
position and, if they are not the same;
issues a Definition Not Finished error
(#20). ICSP and 7?CSP are currently
used in : and ; respectively to ensure
that all structures in the definition have
been completed before the semi-colon. Any
structures uncompleted will leave data on
the stack and thus allow ?CSP to flag
the error. These words can also be used
to check the stack effect of user defini-
tions. For example, if a definition
should have no stack effect (leaves the
same number of items on the stack as it
removes) the following would test this:

Page 17

FORTH DIMENSIONS I1I/1

wvhi
4d
er
sti

N wToamoeltrpinmMmn

B T I N e S S R B CTRE T Y

i e -

~

1 Q.09 D m W~ -

3

rr

1CSP ccee Csp

which would execute a definition named
cccc and issue a Definition Not Finished
error (#20) if the number of items on the
stack at the beginning and end of the
definition were different.

"PAIRS

This word is used when testing for
correct structure in compiler directives
"see STRUCTURE ERRORS) to check that the
value of the two numbers on the stack is
the same. If the value of the two compi-
"ation conditionals on the stack is not
-he same, a Conditionals Not Paired error
4#19) occurs. ?PAIRS can be used to test
similar situations in user programs, but
the error message given will be the same
‘error #19).

The checks on the dictionary and stack
consist of testing the stack for under-
flow, the dictionary and stack for over-
f{low, and the name of the dictionary entry
to be created for uniqueness (in A-FORTH
this test is optional and there is a test
to ensure that a definition name is not
null). Some of the tests are performed
during the execution of other functions by
the testing word (such as the tests per-
formed by WORD and by CREATE). Onmly
the testing performed by these words will
be described here.

CREATE

This word creates a dictionary header
for a new word. In the process of
creating this header a dictionary search
is performed to check that the header is
unique. The message given if a duplicate
is found is Isn't Unique (#4). This is
aot a fatal error but just a warning.
A-FORTH allows the disabling of this test
(and the associated message) and performs
another test for a dictionary entry whose
name is a null. The creation of a dic-
tionary entry with a null name is not
allowed because the null is the name of
the entry interpreted at the end of the
disk or terminal buffers. If an attempt
to create a null entry is detected a Null

Definition Name! error (#9) is given. If
a dictionary entry with a null name were
created, the system would attempt to
interpret this as the end of the current
buffer with unpredictable results.

STACK

This word checks that the parameter
stack is within bounds. It compares the
current stack position (by executing SP@)
against the base stack position in user
variable S0 to check for a stack under-
flow. It also checks that there are at
least 128 bytes of dictionary space left
(to leave room for PAD and stack work).
If the stack underflows an Empty Stack
error (#1) is given. If the stack comes
within the 128 bytes of the dictionary a
Full Stack error (#7) is given. ?STACK
is not executed at runtime unless compiled
by the programmer, though it is executed
frequently during compiling and text
interpretation.

WORD (A-FORTH only)

This definition moves text from the
current input buffer to the head of the
dictionary. The error test performed
checks that there is enough space between
the head of the dictionary and the top of
the stack for the text about to be
moved. If there is not enough space a
Dictionary Full error (#2) is given. This
prevents the system from crashing by
writing over its own stacks.

DO WE NEED IT?

Should we have all this security all the
time? Or just when we think we need it?
Fig-FORTH currently does not give us a
choice on the matter. Sure, we can com—
pile on top a new set of compiler direc-
tives which don't have the tests, but we
have then already wasted all the memory
for the secure directives, the ?XXX words,
and the lot. The reverse course I con-
sider more appropriate. The kernel system
should have as little protection as pos-—
sible. The system should not suffer the
overhead for those who do not desire it.
1f security is desired, a "Novice Pro-
grammer Protection" package could be

FORTH DIMENSIONS III/1

Page 18

compiled into a user's area which would
include all the words necessary to protect
him or her (and the other users) from him
or herself. This would allow protection
even for the words such as ! (store),
FILL and CMOVE when desired.

Something as simple and extremely effec~
tive as the !CSP and ?CSP in : and
: respectively may be left in the kernel
system to give warning to even the best of
us when unecessary. Definitely, also the
stack checks at compile time and possibly
the uniqueness (though it should be
optional) and null definition (currently
A-FORTE only) checks should be left iam,
but the structure and state testing 1is
>ften incomplete and annoying. Anyone who
has tried to write and secure a good
general CASE structure, or a BEGIN
WHILE REPEAT loop which allows mul-
tiple WHILEs will know what a pain it is
to try to secure them in & reasonably
complete fashion. For these people
compiler security dosn't work. Addition-
a'ly, new structures transported from my
system to another may not remain secure
because the same conditional pair numbers
used in my structure on my system may have
been used in a different structure on the
other system. Again, the compiler secur-
1ty dosn't work.

The same method used in high level struc-
ture testing is also used in one known
assembler, which the author considers
totally inappropriate. If one is program—
ming in FORTH assembler one is doing so
for speed, which may require not being
structured at all.

Currently, the matter of compiler security
is being studied by the group writing the
next 8080 fig~FORTH version (which could
possibly outline a new model). Should we
have all the protection all the time, or
just some of it and a programmer protec-
tion package? Or maybe there is a better
alternative. Your input is wanted and
needed. Write to the 8080 group at FIG,
PO Box !'105, San Carlos CA 94070 and tell
us what you think.

NEW PRODUCTS

POLYMORPHIC FORTH NOW AVAILABLE

FORTH is now available for the Poly-
Morphic Systems SSSD 5" systems (8813 &
8810). The PolyMorphic disk operating
system has been patched in and the system
is interfaced to the PolyMorphic operating
system. PolyMorphic FORTH includes a
modified systems disk, and brief documen-
tation on changes to interface to the
PolyMorphic S8SD 5" disk operating system
-~ based on 8080 Fig-FORTH. Price is
$50.00. For more information contact:

Ralph E. Kenyon, Jr.
ABSTRACT SYSTEMS, ETC.
145-103 S. Budding Avenue
Virginia Beach, VA 23452

FORTH FOR HP83/HP85

A disk based FORTH is now available for
the HP85/HP83 personal computers. The
implementation is the FIG FORTH 1978
standard with some machine dependent util-
ities, User receives both 16k and 32k
versions with user space being 2k and 18k
respectively. Both versions require a
disk. Included is an assembler, a FORTH
decompiler and editor. This is not an HP
supported product but available through
the user's library. FORTH, in object form
(no source), an assembler, decompiler and
editor, in source, are sent on a disk.
This product recommended for experienced
users only! Those familiar with FORTH
should have no trouble using this system
(i.e. there is no manual inluded).
However, sufficient references are
given. Current cost is $50.00. For more
information contact Nany Reddington at
{503) 757-3003.

FORTH PROGRAMMER AVAILABLE

3 mos. experience with FORTH (also know
BASIC & COBOL) Active member of F.I.G.
Contact: Martin Schaaf, PO Box 1001, Daly
City, CA 94017 (415)992-4784

Page 19

FORTH DIMENSIONS III/1

- aA ek sal e s s et o -

USERSTACK

Peter H. Helmers
University of Rochester
Department of Radiology
Medical Center, Box 648

Rochester, NY 14642

INTRODUCTION

One of the advantages of FORTH is its
use of a stack oriented architecture. 1In
conventional FORTH implementations, ome
has available two kinds of stacks: the
return stack and the parameter stack. In
general, the return stack is used to keep
track, at execution time, of the path of
invocation of nested FORTH words while the
parameter stack is used to manipulate data
used within and/or passed between FORTH
words.

Unfortunately, in the real world, such a
clean segmentation between parameter data
and execution nesting data tends to break
down. For example, DO...LOOPs are imple-
wented by using the return stack to keep
track of the loop count and associated
data. The motivation for this violation
of the sanctity of the return stack with
DO...LOOP parameters is the desire to
separate the DO...LOOP data from any
parameters being used by the programmer
within the loop. Failure to do so would
allow confusion of loop parameters with
actual user data -- causing a consequent
abnormal! execution of the DO...LOOP
arising from an unwarranted modification
of loop parameters.

In addition to the above saving of
DO...LOOP parameters on the return stack,
it is not uncommon practice for a program-
mer to want to save some parameter stack
data in order to be able to first calcu-
.ate using data beneath it. One previous—
ly employed method to do this was to
temporarily push the parameter stack data
onto the return stack, and then later

Rditor's Mote: Mr. Helmers uses URTH, a
dialect of FORTH.

retrieve it when subsequently needed,.
Admittedly, this is an easy -— lazy! -~
way to achieve tranisent data storage.
But woe unto those who forgot to pop the
return stack of this temporary data...!

USER STACKS

The "user" stack concept allows a FORTH
program to retain the convenience of an
auxiliary stack, but in such a way as to
avoid mixing temporary data with execution
time return information. As an added
convenience, this concept allows creation
of multiple, named, stacks which can be
typed according to the number of (two
byte) words per stack element.

A user stack can be thought of as an
array (integer, double precision, or real)
of data which has implicit addressing.
Consider, by way of analogy, a conven-
tional array such as:

100 ()DIM MY-ARRAY

One would store the 53rd integer element
by explicitly stating the index:
52 MY-ARRAY ! (ZERO ORIGIN...)
This would take data from the top of the
parameter stack and store it in MY-

ARRAY. Alternatively, one would access an
integer from this array by:

27 MY-ARRAY @

The disadvantage of arrays is that they
require both an explicit index, and an
explicit load (@) or store (!) operator.
While an array could be used for temporary
storage of parameter stack data, such
programming practice is not neccessarily
clear or efficient.

So how does a user stack help wus?
Consider the integer user stack defined:

100 STACK MY-STACK

MY-STACK would, in this case, have a
size of 100 integer elements. Data can be
put into this user stack from the top of
the parameter stack by:

FORTH DIMENSIONS III/1

Page 20

PUSH MY-STACK

while it can be retrieved back to the
parameter stack by:

POP MY-STACK

Note that addressing is implicit-- there
are no indices -- and that the direction
of data transfer is set by the PUSH and
POP words.

USER STACK WORDS:

In practice, three types of user stacks
have proved useful; STACK, DSTACK, and
FSTACK. While stack variables created by
these three defining words all use the
PUSH and POP words to save and retrieve
data, the amount -- or type -— of data
pushed or popped differs, As discussed
earlier, STACK deals with integer (two
byte) words. DSTACK consists of elements
of double precision integer words (four
bytes) while FSTACK elements are floating
point numbers (six bytes). All three of
these words are defined in terms of an
arbitrary n-precision NSTACK word which
allows specification of any number of two
byte words per stack element,

Two other words are also useful with
user stacks. There are EMPTY-STACK and
?8TACK. Note that both of these cannot
(presently) be used within colon
definitions. The line:

EMPTY-STACK MY-STACK

will, for example, reset the stack pointer
for the user stack: MY-STACK so that it
will be empty. Again using the MY~STACK
example, .

?STACK MY-STACK
will dump out the contents of the stack
from the top of the stack through the

bottom of the stack. 7?STACK is intended
purely as an aid in debugging.

IMPLEMENTATION:

As was
DSTACK,

previously mentioned, STACK,
and FSTACK are all defined in

WCREASING

ménsgy ADDRESSER

terms of a more general NSTACK defining
word. A line such as:

22 &4 NSTACK WIDE-STACK

will define a 22 element stack with eight
bytes (four words) per element. NSTACK
has two primary parts. The first part,
executed when a new stack is defined,
builds a FORTH word header, stores some
stack definition parameters into the dic-
tionary, and finally allocates the actual
dictionary space for the stack, The
second part, written in 8080 assembly
language for speed, defines the execution
time actions taken by the stack varia-
ble. Both of these defining parts will be
explored in greater detail below.

The format of the user stack in the
dictionary is shown in Fig. 1. It con-
gists of a normal FORTH header, followed
by the following four stack definition
parameters:

a) current stack pointer (two bytes)
b) #words per stack element (one byte)

¢) maximum stack pointer address (two
bytes)
d) minimum stack pointer address (two
bytes)
#BYTES FIELD COMMENTS
1 CHAR. OQUNT
CHARACTERS # characters saved
for word name
2 VOCAB LI
2 CODE ATDRESS Points to ;000E part
of NSTAX def.
2 CURRENT STACK PIR
1 NORDS/STACK. ELEMENT
2 MAX STK PIR ADDRESS
2 MIN SIK PIR AIDRESS
m STACK DATA AREA # bytes needed to

cmtain specified #
of stack elements

Figure 1 -- Dictionary Layout
for a Stack Type Variable

Page 21

FORTH DIMENSIONS III/1

ese BLOCK @ 150

t STACK DATA TYPES —- P 23 OCT @0 3

((GELEMENTS){OWORDS/ELEMENT] NSTACK MO CREATES THE STACK)

¢ CALLED NN WITH THE GIVEN NUMBER OF ELEMENTS. STACK DATA)

[TYPES MAY SE PURMED OR POPPED TO OR FRON THE PARAMETER)

¢ STACK)

V MBTACK <BUILDS SHAP OVER DUP + © DUP { SBYTES IN STACK)
HERE + DUP . (SET UP CURRENT 8TK PTR)

ROY C. (GNORDS/STX ELEM) ., (MAX 8P ADDR)
MERE . (MIN SF ADDR) 10 + ALLOY (SPACE FOR @

ICODE WPARAM 2 « B LXI, B DAD. W PUBH. (M. PTS T)
AP LMD, K OCX. DM MOV, M DCX. € M MOV, AP S.D. (SV IP)
M POP. B POP. (PUGM/POP FLAG) C A MOV, B ORA,
1IF, { POP DATA FROM NSTACK TO PARAMETER STACK)

M A MOV. (GMRDS/ELE) N DCX:. B B MOV, W DCX,
¢ coP 1N BC)

-->

*se BLOCK @ 131

{ NSTACK DEFINITION CON’T)
BEGIN. (MOVING DATA. WORDS AT A TIME) PSN PUSH.
B LDAX, B INK, A & MOV., B LDAX, B INX, A D MOV,
PSU POP. (COUNT) D PUSH. (DATA FROM NBTACK)
A DCR, O=,

ELSE. ¢ PUSH PARAMETER STACK DATA TO NSTACK)
R A MOV, HDCX. M D MOV, W DCX, N C MOV, ¢ COP IN BC)
SECIN. (TO PUSM DATA) D POP. PEM PUSH. (
8 DCX, D A NOV. lsfﬂl 8 DCX. € A MOV. D STAX

PSH POP. A DCR
END.
THEN,
C MoV, M INK. " MOV, (SAVE NEW COP)
AP LED. M E MOV, H INK. M D NOV. ¥ INX, AP SHLD. MEXT J®

ese BLOCK & 132

¢ STACK TYPE VARIANLES CON‘T)
CODE POP O W LXI. PUBM 9,
CODE PUSM -1 M LXI. PUSH JWP,

 SYACK | NBTACK (¢ INTEGER SLEVENTS)
¢ DETACK 2 NSTACK 1+ (DOUBLE PREC INTEUER ELEPENTS)
t FSTACK 3 NSTACK + (FLOATING POINT ELENINTS)

UBER AIDS WHICH CANNOT BE COMPILED ...)

EFPTY-STACK NN — DNPTIES THE UBER STACK "MON" BY
RESETTING 178 STACK POINTER)

EMPTY-STACK)'L DUP 3 « @ SWAP '

PETACK MNM -- PRINTS OUT THE CONTENTS OF THE UBER STACK)
PETACK 170 DUP 3« @ OVER @ ~ DUP 0> IF | -Ji. SHAP @ DIOWP
ELSE 20M0P T* UBER STACK ENPTY ° THEN 1

AL

100 STACK MY-STACK
33 STACK YOUR-STACK

11 22 33 44 S3 64 77 88 99

PUSH MY-STACK

PUSH MY-STACK

PUSH YOUR-STACK

PUSH MY-STACK

. PUSH MY-STACK

3K PUSH MY-STACK

oK PUSH YOUR-STACK

oK + POP MY-STACK - .

=11 OK

OK POP YOUR-STACK POP YOUR-STACK 2DUP . . + .
77 33 110 0K

0K POP MY-STACK .

PRRIREARRRES

Q0
X%

$S 0K

OK POP MY-STACK .
23

OK POP MY-STACK .
88

DK POP MY-STACK .
99 OK

oK

oK

oK

oK

K

o

UK EMPTY-STACK MY-STACK ?STACK MY-STACK
USER STACK EMPTY OK

RRRY

Note that the stack, consistant with the
8080 architecture, grows down in memory.
Following these stack parameters is the
actual stack area which is allocated in
the dictionary.

The PUSH and POP words are code defini-
tions (for speed) which push a 0 or -l
flag value to the top of the parameter
stack. Thus, when the stack variable is
subsequently executed, this flag is used
to differentiate between popping from the
user stack (flag=0) and pushing to the
user stack (flag=1). The assembly code is
thus separated into two very similar exe-
cution loops which move stack data omne
word at a time until the proper number of
words for the stack element have been
moved; these two loops differ only in the
direction of the data transfer. In both
loops, the A register contains the current
word count which is intially set to the
number of words per stack element and
decremented each time through the loop.
The BC register pair contains the current
user stack pointer while the HL register
pair contains the address of the stacks
parameter field so that the new user stack
pointer value may be saved after all words
within the stack element have been trans-
ferred.

CONCLUDING REMARKS

These user stacks have been optimized to
provide rapid execution speed at the
expense of high level transportability and
error checking for a stack pointer out of
bounds. It is felt that the concept, in
whatever realization, is important since
it provides a very readable and structured
method to temporarily store and sort data
without having to resort to such "unclean"
practices as using either explicitly
addressed arrays or the return stack.
It's the type of FORTH word that, once you
have it, prompts the question: "it's so
obvious, why didn't someone think of it

A before?"

FORTH DIMENSIONS III/1

Page 22

NEW PRODUCT

STAND-ALONE FIG-FORTH FOR OSI

FORTH Tools has announced stand-alone
Fig-FORTH for all OSI mini-floppy com-
puters that combines Fig-FORTH with stand-
alone machine drivers by FORTH Tools.
With this system OSI-65D is superfluous—
with FORTH booting up directly, yet the
disk is 0S$-65D compatible.

Since FORTH Tools FORTH dispeanses with
the 0SI operating system, FORTH Tools has
developed disk, display and keyboard
drivers for the OSI hardware.

FORTH Tools FORTH for OSI is strictly
compatible with Fig-FORTH. All words in
the Fig model, including disk support,
work correctly. Portability to other
machines is also claimed.

Stand-alone Fig-FORTH for 0SI is avail-
able on one 5-1/4" disk for Cl (Super-
board), €2 and C4 wmachines with 24K,
Product includes a structured 6502 macro-
assembler and disk utilities designed by
FORTH Tools and the FIG portable 1line
editor. Complete technical documentation
and the fig-FORTH glossary are also
included. The complete price is $49.95.
For more information contact:

FORTH Tools
Box 12054
Seattle, WA 98102

2FA- EDI---
T AV AFX=-= THA- THE LLT-«= IN THE LAS- T8S8S-- 5330-~-
7O0R-- INC~ USI~- ONL- HR-~ LET~--- NAM- FlE~-~- HAS
HAAD TUZ LPPeevcae ITTe== RO- Whn= TUE WRI=-== WAli===
I8 LETe-- 1Ine THIe SUE | SHU-= THA- 3AV--- 1NL-
THP~= LET==--= &&D OU=-=- 18 JUS~- ABO- fme—-
TI-- OF A TRY-- OFF BITe-w- SAV--- MEM--- AND
XEE-~== LEG==-====
ANE STI-- DON-~ SEE THE NEE~ FOR 31 CHA=-===-- NAM=~-
"N THT GEN=--- ZAS-
YOU-= TRU--
o] oo
CHU == MOQ-~
TOR-~ INC-
®.S5- MR. FRE- THO==~~-=- 1S NOT AN EMP=-==- OF

FOR=-=- INC~

A STACK DIAGRAM UTILITY

Barry A. Cole
3450 Sawtelle Blvd. #332
Los Angeles, CA 90066

INTRODUCTION AND CONCEPT

A year and a half ago, when I was still
fairly new to FORTH, I spent a lot of time
drawing pictures of stacks as I made up
programs. I crumpled them up and started
over each time I changed them. As
sections were debugged, 1 drew up another
copy to document the code. When I found
an error, I would have to redraw whole
series of stacks, just as a cartoonist
would have to change a whole series of
frames. It soon became clear that I was
expending time to do rather tedious
work, I came up with an idea for an
automated tool to update these diagrams.
I thought up a way to represent the stack
data easily and an approach to implement
the tool. The original implementation was
done in 8080 polyFORTH by my co-worker
Greg Toussaint. We collaborated in the
initial debugging and then passed it back
and forth over the next four months,
After nearly a year ia active use, I
converted it to fig-FORTH and updated
several messy areas to be more straight-
forward. The results of these pursuits
are detailed in this paper for more
general consumption.

ORIGINAL IMPLEMENTATION

The original program was going to take
push and pop information from the keyboard
to generate pictures of what was on the
stack. It became immediately clear that
the stack could more easily be represented
horizontally than down the page. We chose
to put the stack to the right so that the
size of the stack could be read like a bar
graph. 1 figured that if 1 represented
each item on the stack as an address
pointing to a count and printable striang,
that many of the stack diagram words would
be identical to the FORTH word equiva-
lent. Thus, DUP, OVER, DROP as well as
many other primitives would be coded
before 1 started. Even as it was being

Page 23

FORTH DIMENSIONS III/1

Mo 0w

EX

AR I

SAYQaSene

X
[B T

PR

[64]
[

REig

built, the tool grew to get the source
codes directly from disk and then to
generate a printer format spool file also
onto FORTH screens. Keeping track of
values when an IF was encountered and
restoring them on ELSE and THEN was
added. This generates a warning message
if the two paths leave different numbers
of parameters on the stack. Finally,
concatenation of strings for algebraic and
logical expressions was added.

USAGE AND OPERATION
The main routines called by a user are:

screend DOC defname to docunent 1 definition

screendt SDOC to document a whole screen
screerdt PRIDOC to print fram given screen
PDOC to print last documentation

The program clears the display stack
before each colon definition. A search is
made for the first colon on SDOC or the
specified name following a colon on DOC.
The name of the function is displayed
along with the currently empty stack con-
tents. It requires user input to continue
since the entry conditions of the routine
are unknown. 1t prompts "DROP?" to see
how many excess elements should be dropped
from the stack, A carriage return suf-
fices to leave it alome. It continues
with the prompt , "PUSH VALUE?". For each
symbolic name of a value on the stack, a
free form name should be typed followed by
a carriage return, The prompt will be
repeated until a line consisting of only a
carriage return is typed. There are no
limitations imposed on the input, however,
it is advised that nulls and tabs should
not be included as this will detract from
the clarity of the final output. The
program will then continue reading words
from the source s8creen and generating

output lines to the console and spool
file.

In a typical sequence, up to about a
dozen lines will be handled without inter-
vention. For example, occurences of DUP,
DROP, and numeric literals will be pro-
cessed automatically. When a @ is encoun-

tered, it will revert to the prompts since
it is not known what a symbolically appro-
priate name is for the fetched value.

Processing will terminate with an "OK"
for sucessful completion of the screen or
colon for SDOC or PDOC, respectively. If
stack underflow occures, it will abort.
It is good practice to do a FORTH after an
abort condition to insure that the stack
vocabulary is properly exited. A user
abort is also provided. This is accom—
plished by typing an escape key followed
by a carriage return in response to the
"PUSH VALUE?" prompt.

SAMPLE DIALOG

The package creates a special stack
vocabulary as well as the user entry
points. The use of the package is best
seen by example. Figure 1 is a sample
dialog. Notice how little intervention is
required and how the ELSE restores the
stack values. Figure 2 is the source that
was used in the examples. Figure 3 is the
printer output as displayed by PDOC.

FIGURE 1

100 SboC
ANALYZE |
DROP?

PUSH VALUE? add:
PUSH VALUE? len
PUSH VALUE?

ANALYZE { addr 1len
SWAP | len addr
INCH |

DROP?

PUSH VALUE? char
PUSH VALUE?

INCH | len addr char

DUP | len addr char char

kA4 { len addr char char 7F
- | len addr char {char-7F)
IF | len addr char

DUP | len addr char char

oD | len addr char char 0D
- | len addr char (char-0D)
i | len addr char

DUP | len addr char char
OUCH }

DROP? 1

PUSH VALUE?

FORTH DIMENSIONS III/1

Page 24

FIGURE 1 (cont.)

DROP? 1
PUSH VALUE?
OUCH

0

OVER
Ci

0
THEN
E(LSE

DROP

8

OUCH

DROP? 1
PUSH VALUE?
OuCH

1-

SWAP

1+

THEN

OK

100 LIST
SCR ¢ 100

FIGURE 3

PDOC STACK DIAGRAN ~ SCREEN & 100

| len addr char
| len addr char add:
i len addr
| len (addr+l)
| (addr+l) len
| (addr+l) (len-l)
| len addr char
| len addr char
| len add:
| addr len
| add:
| addr 20
|
| add:
| addr 0
| addr 0 add:
| addr
| addr 0
| addr 0
len addr char
len addr char
| len addx
| len addr 8
v

len
len

addr
(addr-1)

(addr-1) (len+l)

ANALYZE | addt len

SWHAP | len add:

INCH | len add: cha:

bup | len addr char chat
T? | lem addx char char 7r
- | len addr char (cha:r-7?)
Ir | lern add:1 chat

oup | len add:r char char
1]+ | len add: chat chat 0D
- { len add: char (chat-0D)
} 44 | len addt chat

oue | len addt char chat
oucCH | len addr char

oveR | len addr char add:
[} | len add:

1+ | len (addi+l)

SWAP i (adée+l) len

1- | (addr+l) (len-l)
ELSE | len addr cha:r

(| len addr cha:

DROP | len addz

SWAP | addr len

DROP | addt

20 | addz 20

oucn { addr

0 | addr ¢

OVER | sddr 0 addr

ct | add:

0 | add: 0

THEN | ad8r 0

ZLSE | len add1 char

(| len addr char

DROP | len add:

[] | len add:r 8

oucs | len adé:

1- | len (addi-l)

SWAP | (addz-1) 1len

1+ | (add2-1) (len+l)
™HEN | (addr-1) (len+l)

a | (ad8r-1) (len+l)

K

)
|
| (addr-1l) 1len
|
]
|

(addr-1) (len+l)
(addr-1) (len+l)
FIGURE 2

0
: ANALYZE SWAP INCH OUP 7F - IF DUP OD - IF
DUP OUCH OVER Cl 14 SWAP 1-

ELSE (CR) DROP SWAP DROP 20 OUCH 0 OVER Ci! O THEN
DROP 8 OUCH 1~ SWAP 1+ THEN

1
2
3
4 ELSE (DELETE)
S
3
o

HELP WANTED

FORTH PROGRAMMER

Entry Level - Will Train

John Sackis
Data Breeze

Oakbrook, IL 60521

(312) 323-1564

2625 Butterfield Rd. Suite 112E

Page 25

PORTH DIMENSIONS III/1

tr < M

G o Ma M owu e

n s

‘o om0 £ W

M A A d i wam

- A & & e o e ma A i ...

1]

CONDITIONALS

The IF...ELSE...THEN construct
automatically saves and restores the stack
values. A mismatch in number along the
two paths produces a warning message,

"STK ERROR, ELSE -m THEN -n"

where m is the number of parameters left
on the stack at the end of the IF clause
and n is the number left when the THEN is
encountered. The DROP/PUSH prompts are
presented for the user to attempt
recovery, A known cause of this message
is a -DUP preceding the IF, as this is
not handled.

SPOOLING TO DISK

To be useful, a hard copy of the output
without all the intermediate operator
conversation is useful., It is also quite
possible that a machine readable version
would be handy to facilitate distribution
>f the documentations. A spool file is
generated to satisfy these requirements,
It may later be displayed or printed by
PDOC.

The spool file contains the encoded
screen from which the diagram was made
followed by variable length 1lines
separated by carriage return characters.
The file 1is terminated by an ascii null
character. It resides on a set of
consecutive screens. The first screen and
Jaximum number are determined by literals
.1 SPIT and PRTDOC. I use 10 screens
srarting at 230. These may be copied
=lsewhere and printed by PRTDOC. Failure
o copy them will cause the listing to be
.ost the next time a function or screen is
iiagrammed.

"MPLEMENTATION PROBLEMS AND SOLUTIONS

It is important not to search the
standard vocabularies when diagramming
stacks. This 1is because actions are
di1fferent for the same name, depending
:pon state. By way of example, for the
cperator + must concatenate the symbolic
name strings representing these elements

with an embedded plus sign, rather than
adding the top two elements on the
stack., Also, not all operators are
defined. On detection of this case, the
diagrammer must shift control to the
operator prompt section. In polyFORTH,
this was accomplished by defining a new
vocabulary and having it be the only one
searched. in fig-FORTH, this option 1is
not directly available since the FORTH
vocabulary is searched after the current
vocabulary. This may be solwed by
carefully breaking 1links with =zero
entries, or alternatively by defining a
special dictionary search routine that
stops at some fence value. 1 chose the
latter.

It wasa't obvious until the
implementation began that operators would
require concatenation of their identifying
strings. It was also decided that
parenthesis would be placed around each
level of expression nesting 8o that
ambiguity could be eliminated without
rearranging expressions for precedence.
This occasionally leads to expression such
as ((array+2)+2). This is unavoidable
since even the constants within the
expression are treated as strings rather
than numbers. Thus, the example cannot be
reduced to (array+4).

Error recovery is not nearly as good as
1'd like it to be. Stack underflow in the
diagramming session is generally fatal.
Due to the amount of bookkeeping already
being done, there is no provision for
retracting answers after wrong data has
been put on the diagram stack. This is
inconvenient in a first pass through a
function, but has not proved to be a
problem once a feel for the tool and the
function being diagrammed has been
acquired.

Provision is 1left for wuser defined
functions in the last two screens of the
diagram source. This allows commonly used
functions to be handled in an automated
fashion., This makes it very easy to
define composite functions such as, 1- as
the sum of its component parts. For out-
gside of functions, constant and variable

FORTH DIMENSIONS III/1

Page 26

have been redefined to put their own name
on the stack. Before this facility was
added, 1 always retyped the variable name
manually when it came up.

The spool function and some of the
source reading routines such DOC assume
that screen blocks are contiguous 1,024
byte areas. Those functions using BLOCK
will have to be rewritten if this is not
the case in your system. 1 recommend that
you instead generate a new system with lk
buffers as that is faster and more
flexible,

WEAKNESSES AND PROPOSED FUTURE EXTENSIONS

The diagrammer presently does not keep
track of the contents of the return

stack. This requires uses of R) and 1 go

to the operator for clarification. Try a
pencil for now. This could be added in a
similar fashion as IF..ELSE..THEN by an
additional stack.

The area of error recovery is ripe for
suggestions. Perhaps some dummy buffer
area could be added and tested in PSTAK.
This would allow detection prior to
destruction on stack underflow. Backing
up by reading backwards would be nice but
also very difficult to implement.

CONCLUSION

Now that the tool has been built, its
real function is more evident. It is
still used for documenting words as origi-
nally intended, however, its primary usage
is debugging and validating code. It has
also proved to be very useful as a
teaching aid to explain what is going on
within the stack. 1 hope it will be as
useful to you as it has been to me.

A STACK DIAGRAM GLOSSARY
VARIABLES

:BK The base block number for spooled
stack diagram.

:LN Line number being printed. Used
for page headings.

:SC Current screen number being
spooled.

IFPTR The address of top of IF stack.
Used to restore values on stack for
IF...ELSE...THEN construct.

IFST The area reserved for pointers to
previous stack contents. It is used to
restore the stack on ELSE and THEN
clauses.

SPL A temporary variable used by :NFD
to retreat the spool file to erase the
unknown stack prior to operator specifi-
cation of what is added or dropped.

SPOOL Offset into spooled print file.

SUM The sum of differences in two
strings. Used in ~TEXT. Value is 0 for a
text match and nonzero if different.

Tl Pointer to curreant input word in
memory (type format).

CONSTANTS

LLIMIT The limit address for dictionmary
search to keep from using standard FORTH
words from within the STACK diagrammed
words.

FUNCTIONS
-— 'FIND pfa length true (found)
-— 'PIND false (not found)

This is the same as -FIND except that
the true condition is set only if the work
is found above LLIMIT. This restricts the
search to stack vocabulary words.

—— (‘('

A string constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
grammed input string.

Page 27

FORTH DIMENSIONS III/1

Defined back to its original state
after being used as a concatenation token,
this marks the beginning of a comment.

All text following it 1is ignored
until the next) .

Tests two strings for not equal.
——) 0)'

A string constant used for building
expressions when arithmetic or logical

operations are encountered in the dia-
grammed input string.

stl st2 -TEXT cond
True if the two strings differ.
val 1- val-1

Decrements the top of stack value by
one.

vl v2 2DROP —-

Drops the top 2 elements off the
stack and discards them.

This is the stack diagram
redefinition of colon. It diagrams the
word following it instead of compiling.

It is invoked by colon as the very
last definition from within this package.

stl st2 :C st3

Concatenates two strings into a
single combined string. It is used to
build expressions when operators are en-
countered in the screen to be diagrammed.

--- tHEAD —-
Prints the header for a 1line of
output to the console and also the spool

file.

-— :KILL —-

Removes and discards the top of the
IFST.

— :NFD addr

This is called when the word being
analyzed is not in the special stack
vocabulary. It checks for wvalid
numbers. If this test is passed, it
returns a pointer to that string.
Otherwise, it invokes SKBD to get user
help.

adr sPSH -

Pushes the address of a level of the
stack values onto the separate IF stack.
This is used for IF..ELSE..THEN stack
restoration and checking.
adr tRST ell el2 etc

Restores the stack from the IFST
gstack. Does not affect the IFST.

adr $SAV —

Saves current stack element list on
the IFST. Does not affect the parameter
stack.

-—- P -

Marks the end of the spool file with
a zero.

adr INUM cond

Checks current word to determine
whether it qualifies as a legal
hexadecimal number.
— CONSTANT ~-—

A defining word which causes the name
of the defined word to be put on the stack
when that word is encountered.

— DEPTH depth

Computes the depth of the stack in
items.

scr# DOC —

FORTH DIMENSIONS III/1

Page 28

Searches for a colon followed by the
word whose name follows this invocation on
the specified screen. It aborts if the
definition is not on the specified
screen. Otherwise, it commences to gen-
erate the diagram for the word specified.
- ELSE ell el2 etc

Clears the stack and then restores it
from IFST.

--- ESC -—-

Aborts the package if an escape key
was the first key pressed in answer to the
"PUSH?" prompt. The vocabulary reverts to
FORTH; however, the stack diagram package
is still loaded and ready to go.

-— G-HERE adr cond

Moves a string from PAD into the dic-
tionary. It allots the space and leaves
the address of the item and a true cond if
successful. It leaves only a false cond
if no valid string was found.

expr G(1) op(expr)

Builds an expression from a simpler
expression. At execution time of the
following word, the top of the stack is
enclosed in parenthesis and preceded by
the operation symbol. It is used for
unary operations. eg. -{name)

expr G(2) op(expr)

Similar to G(1) except that umary
operation is also enclosed within the
parenthesis. eg. (name*2)
espr G(3) op(expr)

Similar to G(1) except that binary
operation 1is also enclosed within the
parenthesis. eg. (vall+val2)

inadr GBLD —

An auxiliary word used to build a
named string in the dictionary from the
word following GBLD. This is used at

compile time of the stack diagram package.

— GWRD -—

A defining word for building strings
into the dictionary at compile time of the
stack package. On invocation of the new
word, the address of the string displaying
its own name is put on the stack. The
word that follows GWRD is read twice at
compile time, once for the name of the
function, and a second time to be placed
in string format into the dictionary.
This is used to build up constant words
for the diagramming package.

cond IF ——

Drops the condition flag from the top
of the stack without evaluating it. It
then invokes :SAV for ELSE restoration and
THEN error checking.

adr cant MTYP

Types the message to the screen and
also passes the parameters to STYP for
spooling.

grc dst len MVB dst len src+l src

Intermediate function to set up for
mEL.

src dst delim MVDEL adr

Move a string from the source to the
destination address until the specified
delimiter is encountered. This is used to
build data strings within the dictiomary.

-— PDOC -—

Prints the latest generated diagram
from the default spool file blocks.

-— PHDG -—
Prints the top of page heading and
sets the lines per page count. Used by

PRTDOC.

blk# PRTDOC ——

Page 29

FORTH DIMENSIONS III/1

o A4 i

v uw .-y

la]

Prints the stack diagram from the

spool file whose starting block is the
specified blk#.

--- PSTAK -

Prints all words from the string
addresses on the stack. The top element
s printed to the right of previous
2lements. The stack is uachanged.

adr cnt PWRD ——

Prints one word via MTYP. Used by
PSTAK.

--- REPEAT = -—-

Functionally identical to the re-
defined THEN.

scré# SCRST scr#

Resets the spool pointer and places
the screen number into the beginning of

the output spool to be used in top of page
“eaders by PDOC.

scré# SDOC —

Documents ome whole screen by exe-
cuting it, using the diagram definitionms.

--- SKBD —-

This scans the keyboard for user
interaction. It generates the "DROP?" and
"PUSH VALUE?" prompts. It is invoked
vhenever intervention is required in the
ilagramming process.

zhar SPIT -

Writes character out to disk spool

“le.

-—- STACK —-—

This is the name of the vocabulary
:ontaining this package.

adr cat STYP —

Similar to TYPE but spools to disk
rather than typing to the screen. Outputs
an additional two blanks after the
message.

adr T; cond

Tests the current string for a match
to the FORTH word semicolon. This is used
to exit DOC.

-— THEN -—

Re-defined in the @tack vocabulary,
this cleans up the IFST. 1If the depth of
the stack has changed from before the
ELSE, it issues a warning and calls SKBD
to allow the user to correct a stack depth
disparrity between the 1IF and ELSE
clauses.

-== VARIABLE -_

A defining word which causes the name
of the defined word to be put on the stack
when that word is encountered.

102 ThIAD

3Ch ¢ 102
0 { stacx disgras package tof 14 b. A. Cole B810326)
1

1 te t-;
: 20M0P DROP LROF ; -2

1

z Calling sequences:
screen defnasa

7 screen 3DOC

] roocC

9

10 DUC builds atack diagram for one definition.

11 SDOC dbuilds stack dlagrass for entire screen.

12 POOC prints stack diagraa built by DOC ar SDOC.

SCh ¢ 103
{ stack diagram package 2 of 18 4. A. Cole B810326)
O VARIABLE SPOOL offset into spooled print file
G VARIABLE SPL
0 VARIABLE TV
0 VARIABLE SUN

]

1

2

3 polater to curreat itaput word
L]

2 O VARIABLE :LM

7

8

9

in ~-TEX? : true for difference
1ine number being printed
base blockd for spocoled diagraam
current screen # spocled
address of top of IP stack
define IF stack

and initialize to empty

O VARIABLE :BK

O VARIABLE :3C

0 YVARIABLE IFPTR

0 VARIABLE IFST 20 ALLOT
10 IFST IFPTR I
1 -

o~~~
e o S o o e

¢ 108
{ stack diagram package 3 of & B. A. Cole 610326)
: SPIT SPQOL @ 102v /MOD 9 NIN 230 «

BLOCK « Ct ¢ SPOOL +! UPDATK ; { spool one character
: 13P SPOOL & O SPIT 3POOL 1! ;
1 DKPTH SO @ SP® - 2/ 1V - ;

3Cr
]
1
2
3
L]
H
[}
1
8 : STYP SWAP DUP 20T « SWAP
9
10
1"
12
13
1
15

-~

mark spool file ens

coaputs stack depth

PR
R

50 spool word
1 @ SPIT LOOP 32 SPIT 32 SPIT ;

: NTYP 20UP STYP TYPE 2 SPACES :SP ; { type snd spool word)
r PWRD DUP C# 72 >
1r * ERR "

. ABORT
ELSE COUNT MTTP THEN ; -->

print encoded word)

0288 from: Barry A. Cole Los Angeles, CA 213-390-3851 essse
oK

FORTH DIMENSIONS I1II/1

Page 30

105 THlaD

R P10 SCh ¢ 110
St:o (ch- dlagras package 4 of 14 B. A. Cole B810326) 0 (stack disgras packege 9 of 1% b. A. Cole 810326)
' : PSTAK DEPTH IF SP@ 2 - SO @ 2 - { print all words on stack) 1 : <TEXT O SUM | SWAP O { true §f 2 strings differ)
2 BEGIN DUP @ PWKD 2 « 2DUP = END 2 DO OVER I o C# OVER I o CO - SUM o LOOP
3 DROP DAOP THEN ; 2 20R0P SUn ¢ ;
1
5 HEX © T, @3B0V - DECIMAL (test for not sesicolon)} 2 ¢ WTEST OVER DUP C@ 1o SWAP -TEXT ; { test 2 words for ©)
: . :C SWAP COUNT DUP ROT SUAP 7 ¢ DOC SCRST NERE 32 WORD DUP C# V¢ ALLOT { document 1} def)
8 HERE Yo SWAP CMOVE DUP HERE 1o » 8 BLK & >R IN @ >R 0 IN | SwaP BLK
9 ROT COUNT ROT SWAP DUP >R CHOVE 9 BEGIN S8 WORD IN @ >R 32 wWuND { find colon,word)
10 R> « DUP HERE DUP ROT SWAP) :t‘! ::::::Es:”.
: nate 2 words .
:; CH SWAP Ve ALLOT ; ¢ soncatens 12 IF ." NGT FOUND® non (THER REPEAT
13 . 13 DAOP B> IN 1 STACK 1 now go fros hers)
b 14 {COMPILE) FORTH R> 1% 1 n 78 SN
15 15 -
®08es from: Barry A. Cole Los Angeles, CA 213-390-3851 #eees
SCR 4 106 ok
0 (stack dlagras pnen(o 5 of 18 B, A. Cole 810326)
1 7HUM DUP Yo C@ 85 (test i{r input is nuaber)
2 BEGIN 1. DuP C@ |b Dx 11
3 WHILE DROP REPEAT C@ 32 «
4 :HEAD CR 13 SPIT 10 SPIT DUP (print line hesder)
§ COUNT 10 MIN SwaP OYER NTYP 11
6 SWAP - 0 DO 32 SPIT SPACE LOOP
7 L™ 1 % 128 SPIT 32 SPIT :8P ;
8 : Wy ROT DUP 1o SWA? ; { setup for MVDEL)
9 : MVDEL BEGIN WYB Cé€ DR nvs 1 SWAP Ci { src dst len --
10 ROT DUP R> = END ROT 2DROP ; { move s to a til delim)
11 : G-MERE HERE PAD KERE 1e O WMVYDEL { string into mesory)
12 HERE - V- DUP 1. DUP ROT SwAP DUP 111 TRIAD
13 IF HERE C! ALLOY
14 ELSE 2DROP 2DROP C THEW ; SCR 1M1

V& ; ESC PAD C# 27 = IF .» €S¢ = ABOAT THEN ; (escape } -=>

tPSH 2 IFPTR +! IFPTR € 1 ;

$SAV HERE :PSH SP@ DEPTH 1 -~ DUP ,

DUP + HERE SWAP DUP ALLOT CMOVE ;

$RST IFPTR @ @ DUP & DUP 2 ® ROT « SWAP -DUP IF
0 DO DUP @ SWAP 2 - LOOP THEN DROP ;

SKILL <2 IFPTR +1

’
{ stack diagram package 10 of B. A, Cole B810425)
[
[

¢ 107
(stack clagram package 6 of 14 B. A, Cole 810326}
VOCABULARY STACK © CONSTANT LLIMIT { filled in later)

R

]

1

2

3+ SKBD CR .™ DROPT * KEY DUP EWIT (scan xbe for drop,pushes)
& 8 XOR DUP § <
s
]
+
8
9

- et b ot
VW EUMNaOOBI AN EWN =0

17 "UDEPTH 1 < MIN O DO DAOP LOOP STACK DEFINITIONS HERE ° LLIMIT ¢
ELSE DROP THEN
BEGIN =R .® PUSH VALUE? ® PAD 80 =)
EXPECT ESC G-MENE Os EWD ;
10 : HFD T1 e UM (nandle word not found)
1" T e { nuaber)
12 E..s: snm SPOOL @ SPL 1t (undefined)
13 TV @ :NEAD OROP SPL € SPOOL | T H
" .-
e
#0909 frop: Barry A. Cole Los Angeles, CA 213-390-385% sesde SCR ¢ 112
ox 0 (stack diagras package 11 of & B, A. Cole 810425)
]
2 'I'HEI DEPTH IFPTI e @ te C& -DUP
3 IF 128 -
4 IF cn ." STK ERROR, ELSE -* .
5 ." THEN -" ., SKBD
6 ELSE 2DROP THEN
108 TRIAD Z ELSE DROP THEN :KILL ;
SCH ¢ 108 9 : ELSE DEPTH 128 + >R SPt :RST A> IFPTR @ € te Ct ;
[sucu dlagras package 7 of 14 B. A. Cole 8103¢0) 10
1o IND ~FIND DUP {F 2DRUP DUP LLIMIT > 1% : IF DNOP :SAV ; FORTH DEFPINITIONS -->
g IF 1 ELSE Ox THEN THEN ; 12
TR stack diagras redef of) 13
5 BECIN FIND HERE DUP DUP TV 1 word to sem and printed) L0
6 GO 1e ALLOT :HEAD T; 15
7 WHILE IF CFA EXECUTE ELSE :NFD THEW { execute each word and)
8 ?STACK PSTAK REPEAY (print stack)
9 DROP PSTAX CR 13 SPIY 10 SPIT :SP SPt SCR # 11
10 N (nzck diagram package 12 of 14 B, A, Cole 810326)
11 : SCRST 0 SPOOL 1 DUP 256 /MOD { reset spocl ptr and plsce o B
12 SWAP SPIT SPIT ; (screens in spool) ; H gs:g §: ; zgu:ﬁ)g g:zg Ce e ALLOT ;
13 3
14 : SDOC SCHST STACK LOAD (document 1 screen) 3 DOES> ;
15 [COMPILE] FORTH ; o> 4 GWAD) GWRD (
5 3 G(1) 1IN @ <BUILDS GBLD
sch » 109 6 DOES> SWAP) (SWAP :C iC ;
0 (stacx disgras package B of 1% b. 4. Cole 810326} l : G(2) 1M Q <BUILDS GBLD
; : rungrng ENIT (print neading on top of pags) DOES) :C sC (SWAP :C ;
% STACK DIAGHAM - scnu;n ’ - 9 5 G(3) 1Im Q <BUILDS GBLD
3 7€ T CRCR 5y Lk 10 DOES> SWAP) :C 3C 3C (SWAP :C ;
S comToOC ouP B 1 BLOCK ¢ (print dlagras fros spec scr) 11 2 (41 WORD ; IMMEDIATE -=>
s :SC 1 rnpc 10240 2 12
? I 1020 /MOD :BK € o ac.oc& + Co -Du? 13
8 iF DUP EMIT 10 = "
3 Lol—nur (LN 1 Os 15
H ELSE ant rgg '"33 THen
: N L H
2 4 #8088 from: Barry A. Cole Los Angeles, CA 213-390-3851 enose
3 PDC” 230 PRYDOC (print last generateo diagras) oK

Page 31 FORTH DIMENSIONS III/1

Tin TRIAD
5% ¢ 1
O (stack diagram package 13 of I8 B, &. Cole 810425)
1
2 STACK DEFINLTIONS
31 32 WORD HERE DUP Ce& Y+ ALLOT
¢ : DUP DUP ; s ROT IOT ; t SWAP SWAP ; : OVER OVEM ;
€ : R> DROP ; : DROP DROP ; : . DROP ; : HEX HEX ; s MSG ;
S : DECIMAL DECIMAL ; ; 2DUP 2DUP ; : t DROP DROP ; s Ct It ;
T oet ot 3 DROP ; 1 SPACE ; s [xi
8 : 21 1 DROP ; :7DIOP.IALLOTDIOP;JILIIII:
$: C, DROP ; :DOY ¢ : DUMP 1 ; ¢ EMIT OROP ; : -DUP DUP ;
10 : END DROP H : ERASE It ; : +LOOP DROP ; : /LOQOP DROP ;
17 ; EXPECT t : MOVE f DROP ; t LEAVE
12 i SPACES DROP : : TYPE 1 ; & BEGIN ; 1 LOOB ; ;s om g
13 ; ENDIF THEM ; : REPEAT THEN ; s WRILE Ir ;
4 : AGAIN : UNTIL 8 ;
15 o>
3204 115
S (stasck diagram package 14 of A l A. Cole 0!0!25)
) GwAD 0 GWRD ¢ GURD b3
2 6{1) = : MINUS ~ ; G(3) - 6(3) . 0(3) ' G(3) 7
1G(3) & : AND & ; G(3) ! :10R | ; G(3)s s x00 8 ;
8 G(C) ot i Ve o) Gl2) =t ;3 te o1 ; G(2) «2 1 20 o2 ;
5 G(2) %2 : 2% *2 G(2) 72 : 27 12 ; G(2) =2 5 2= <2 ;
b G(1) moT GWRD 1 GWRD cond
" GWRD here : HERE here ; G\lln pad t PAD pad ;
3 : 3 2DROP cond ; : ALLOT DR
lg : VANIABLE DROP GWRD ; l COISTAI‘I’ Vllllll.! H
HEC S)
U-Sol‘r'x--)ouﬂ.x'JlMD; T8 23 ;
l§ FORTH DEFINITIONS S
1
1
te
3Cm ¢ Vb
i
2
)
H
<
H
-
9
1°
"
2

¢0¢4% from: Barry A. Cole Los Angeles, CA 213-390-3851 #sece
I

FORTH CLASS

Date: June 22 - 26

Where: Humbolt State University
Arcata, CA 95521

Who: Kim Harris and Henry Laxen
What: Intengsive 5-day course on the use
of FORTH

Cost: $100 - $140 plus room and board

How: Call Prof. Ron Zammit
(707) 826-3275

MMS-FORTH FOR STRINGY FLOPPIES

Kalth Microsystems will make available
to all licensed MMS-FORTH users a modified
version that runs on the TRS-80 with an
EXATRON stringy floppy. This modification
is said to make MMS-FORTH operate as it
would on a disk except for the speed.
Users retain the capability to switch back
to cassette operation with a single com
mand. Implementation includes the normal
read/write block commands plus a number of
new utility words. The modification is
available on ESF wafer for $14.95 includ-
ing shipping. For more information
contact:

Kalman Fejes

KALTH MICROSYSTEMS

P.0. Box 5457, Station F
Ottawa, Ontario K2C 3J1
Canada

FORTH DIMENSIONS III/1

Page 32

How to form a FIG Chapter:

1. You decide on a time and place for
the first meeting in your area.
(Allow about 8 weeks for steps 2
and 3.)

2. Send to FIG in San Carlos, CA a
meeting announcement on one side
of 8-1/2 x 11 paper (one copy is
enough). Also send list of 2IP
numbers that you want mailed to
(use first three digits if it
works for you).

3. FIG will print, address and mail
to members with the ZIP's you want
from San Carlos, CA.

4. When you've had your first meeting
with 5 or more attendees then FIG
will provide you with names in
your area. You have to tell us
when you have 5 or more.

Northern California

4th Sat FIG Monthly Meeting, 1:00
p.m., at Southland Shopping
Ctr., Hayward, CA. FORML
Workshop at 10:00 a.m,

Southern California

Los Angeles

4th Sat FIG Meeting, 11:00 a.m.,
Allstate Savings, 8800 So.
Sepulveda, L.A. Call Phillip
Wasson, (213) 649-1428.

Orange County

3rd sat FIG Meeting, 12:00 noon,
Fullerton Savings, 18020
Brockhorst, Fountain Valley,
CA. (714) 896-2016.

San Diego

Thur FIG Meeting, 12:00 noon. Call
Guy Kelly at (714) 268-3100,
x 4784 for site,

Massachusetts

3rd Wed MMSFORTH Users Group, 7:00
p.m., Cochituate, MA. Call
Dick Miller at (617) 653-6136
for site.

Seattle Chuck Pliske or Dwight
Vandenburg at (206) 542-7611.

Potomac Paul van der Eijk at (703)
354-7443 or Joel Shprentz at
(703) 437-9218.

Tulsa Art Gorski at (918) 743-0113.

Texas Jeff Lewis at (713) 719-3320
or John Earls at (214) 661-
2928 or Dwayne Gustaus at
(817) 387-6976. John Hastings
(512) 835-1918.

Phoenix Peter Bates at (602) 996-8398.

New York Tom Jung at (212) 746-4062.

Detroit Dean Vieau at (313) 493-5105.

England FORTH Interest Group, c/o 38,
Worsley Road, Frimley,
Camberley, Surrey, GU16 5AU,
England

Japan Mr. Okada, Presdient, ASR
Corp. Imnt'l, 3-15-8, Nishi-
Shimbashi Manato-ku, Tokyo,
Japan.

Canada

Quebec Gilles Paillard at (418) 871-
1960.

West Germany Wolf Gervert, Roter Hahn
29, D~2 Hamburg 72, West
Germany, (040) 644-3985.

Publishers Note:

Please send notes (and reports) about
your meetings.

Page 33

FORTH DIMENSIONS III/1

P e peemen PSS e pEnees pEmmne pE—

Lol |

]

1 FORTH IIMENSIOTS

-

S

FORTH INTEREST GROUP Volume Ili
P.O.Box 1105 Number 2
San Carlos, CA 94070 Price $2.50

35 Letters
e
40 Technotes
NG
45 Data Base Design
el
53 Increasing Disk Access Speed
A S
54 Music Generation
57 Dictionary Searches
58 Tracing : Definitions
—
J 59 FORTH, Inc. News
'}
60 ___FORTH Vendors
L 61 Decompiler
e 66 Chapters/Meetings

FHIRTH NSNS

Published by Forth Interest Group

Volume ill No. 2 July/August 1981
Publisher Roy C. Martens
Editor C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner
Bob Berkey

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of materiai submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth interest Group at $15.00 per
year {$27.00 foreign air). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O.Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA. It was created out of dissatisfaction
vsith available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc_in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California. Our membership is over 2,400 worldwide. it
was formed in 1978 by FORTH programmers to encour-
age use of the language by the interchange of ideas
through seminars and publications.

EDITOR’S COLUMN

The feedback on our new applications editorial
policy is ail positive. To date, we are receiving a nice
variety of articles. | want to urge our members not to
slack off. In order to keep up a steady tlow of quality
output, we need quality input—IN QUANTITY.

it you have an article you have been meaning to
write, please get it down and send it in. if you havr an
application, programming trick or tool that you have
found useful, please share it with our members.
Remember: YOU DON'T HAVE TO BE A WRITER—our
staff is set up to help you with whatever you need to
make your idea publishable.

Please send all submissions to:

Editor

FORTH DIMENSIONS
P.O.Box 1105

San Carlos, CA 94070

HEX is back this month, and there are photos of the
Rochester Conference courtesy of George W. Shaw, {l.
We are always looking for photos (black and white or
color prints preferred) and cartoon ideas, too.

Starting next edition, FORTH DIMENSIONS will
have a marketing column in a question and answer
format. If you have had ideas, programs, etc., that you
wondered how to seli, this column will be for you.
Please direct your marketing questions to the above
address. Questions of general interest will be an-
swered in this column by experts chosen for their
knowledge of marketing and computer hardware and
software.

C. J. Street
Editor

PUBLISHER’S COLUMN

Lots of good news! The reaction to the application
orientation of FORTH DIMENSIONS has been very
positive. Thanks to our editor, Carl Street. The more
articles you send Carl, the closer we come to being
able to go monthly. Our plans are to make FORTH
DIMENSIONS more general interest and publish high
level (sic) technical material twice a year, ala, 1980
FORML Proceedings.

Plans for the 1981 FORML (FORTH Modification
Laboratory) Conference are underway. Refer to page
63 for more details. The FIG National Convention will
be on Saturday, November 28th in the San Francisco
Bay Area. Make your plans.

Now, some bad news! We have to raise some of our
prices. it's been a couple of years since we've done
any price adjusting and cost increases have caught up
with us. The order form on the last page reflects the
new costs which are now in effect Sorry, we'll do our
best to hold the line.

Roy Martens

Page 34

FORTH DIMENSIONS II11/2

(o] it B os " @

» %

[N .

il 200000 e

LETTERS

Dear FIG,

Please find enclosed two short articles
vhich might be suitable for publication in
TORTH DIMENSIONS.

I did not ask for the publication kit,
s5> I hope the articles do not violate your
cules too much. Second, my native lan~-
guage is not English but Dutch, so forgive
3e if there are any errors and feel free
2 correct them.

Please note my new telephone number and
correct it in your listing of local FIG
thapters.

We have not had many meetings lately,
srobably because our members are too
zztive!

Paul van der Eijk

5480 Wisconsin Avenue #1128
Chevy Chase, MD 20015
(301) 656-2772

Thank you for your articles, Paul.
Zeaders can find them under the appli-
tations area of this issde.--ed.

cear FIG,

I recently purchased a listing of fig-
7ORTH for the 8080 from you and 1 am very
iapressed with the Language package. You
will find enclosed an order and Bank Draft
Ior several books which I eagerly await.
> teceived my Dual Micropolis Mod II Disk
irives only two weeks ago and my first
;roject 'was to assemble FORTH. The disk
:aterface routines were quite easy to link
25 the Micropolis DOS using ideas from the
P interface supplied. However, when 1
tried to LOAD a short word definition off
2 screen the system would lock up and not
zome back with any error messages or the
")X'; because the system would compile
words from the keyboard and the Disk I/0
worked well, I was puzzled as to why there
+as a problem. After four days of search-

ing and debugging, I found that the
program was looping through INTERPRET, and
each time the parameter stack had an extra
value on it. Eventually, I found the bug;
it was in the ENCLOSE routine and the
problem is that only an 8 bit counter is
used to hold the offset into the buffer.
However, the Micropolis sectors are 256
bytes and so are my Forth Disc Buffers.
1f there are any non-delimiter characters
in a buffer, then all works OK. However,
if the buffer holds 256 blanks, then the
loop around ENCL1 scans to the end of the
buffer but the 8 Bit offset ends up
pointing at the start of the buffer still
an INTERPRET never gets to to see the NULL
at the end of the buffer. Obviously, the
routine works OK for CPM 128 Byte Sectors,
but needs wmodifying for larger capacity
sectors.

I have included the source listing for
ENCLOSE as modified by me (sorry, I
haven't got my printer going yet). I have
used the DE register pair for the offset
counter and have kept the definition
character in the Accumulator which means
pushing and popping it when it is neces-
sary to check for a NULL.

I hope you find this of interest and
maybe you will include a change of this
sort in future versions. I learned a
great deal from this problem, and it was
probably to my advantage that it occurred,
as my only prior information was the
'PORTH' BYTE. I really learned the hard
way.

William D. Miles
P. 0. Box 225
Red Cliffs
Victoria, 3496
Australia

Thank you for your contribution.
NOTE: You will find Mr. Miles' bug fix in
the TECHNOTES, BUGS & FIXES section of
this issue.~--ed.

DON'T MISS OUT! GET YOUR PAPER IN
EARLY FOR THE FORML CONFERENCE!

FORTH DIMENSIONS III/2

Page 35

Dear FIG,

Could you print my address in your next
FORTH DIMENSIONS issue: I would like to
hear from other Belgian FORTH-ists!

Michel Dessaintes
Rue de Zualart 64
B 5810 Suarlee
Begium

OK, Michel, start watching your mail
box!~--ed.

Dear FIG,

Congratulations on your last issue
(Vol. II, No. 6). It's nice to see some
tutorial inputs at a level that beginners
like me can understand. Keep it up!

Would you please print the SEARCH
routine mentioned in John James' article
on page 165 of Vol. 1I, No. 6. It appar-
ently got replaced by the correction
notice at the bottom of the page.

I was interested in trying EDGAR H.
FEY'S FEDIT in Vol. II, No. 5, but was
stumped by the word REPL which was not
defined. Is it possible MR. FEY could
provide the definition? (Also, I noted
that SCR#67 errors at line 48 -B/BUD —
which apparently is supposed to be
B/BUF.) Screens should be required to be
loadable, not edited by publisher or
author without loading edited version.

In respect to editing, please also note
that Major Selzer's article in the Vol.
II, NO. 3 issue on page 83, SCR#200 line 8
should apparently be 08 CASE for left
cursor as opposed to OB as printed, since
OB is used for UP cursor. This screen
does work when above mentioned change is
made.

I realize that submitted copy may need
to be retyped but the dangers of intro-

ducing errors are ever present. I'm sure
that you catch most of them.

Robert I. Demrow
P. O. Box 158 BLUE STA.
Andover, MA 01810

Thank you for your thoughts. Glad you
like our new approach. John James SEARCH
is in a previous issue. Regarding errors,
we do try to minimize them; but we are
only human.--ed.

Dear FIG,

During September of 1980, material was
ordered which included hard copy of
figFORTH for the Motorola 6802 (6809
preferred) CPU, and FIG membership for a
year. Hard copy received was Talbot
Microsystems v.l.1l. 6809 FORTH. After a
considerable amount of study, and a com—
plete rewrite, that software is now up and
running, apparently as designed. (No
operating bugs have been detected, but it
would be reasonable to expect bugs to
appear far into the future.) Some general
comments on the system may be of interest.

A major factor in the acquistion of
this software was the indicated ability to
run high level software on a small sys-
tem. If the Talbot software is designed
for a microsystem, then I must have a
nano-system by definition; a disk would
cost far more than all hardware currently
in use, and appears quite unrealistic for
this home hobby system. The alternative
cassette is implemented, but patience
would be strained beyond limits if nearly
8K words were loaded for each use at 300
baud. Thus, my system clearly demands use
of EPROMs for source code.

I have used several methods of code
reduction.

1. A short branch to several copies of
NEXT.

2. Place the user area in the direct
pad.

Page 36

FORTH DIMENSIONS 111/2

NEYYRY

=t

mapre oy I N W

a0

nadAWwew i RPN a AN

3. Add a byte literal as well as LIT.
4. Some high 1level routines are
shorter in code.

The end result of this process was code
retaining nearly all of Mr. Talbot's word
definitions, and fitting easily in 6K
bytes (3 2716's). There is very little
Senchmark information available (this
would make a worthwhile FORTH DIMENSIONS
article), but those found generally ran in
1/2 the time cited for the APPLE.

A. R. Gunion
182 Minuteman Drive
Concord, MA

The real definitions of unano and micro
as applied to systems vary with each
2ser. Suffice to say that FORTH is by
iefinition a disk based system. If you do
a0t have a disk then you are compromising
on an area vital to obtaining the real
>otential of the system.

Regarding benchmarking, it has always
b>een the position of FORTH DIMENSIONS that
the nature of FORTH makes benchmarks more
3f an indication of the speed of a CPU
than any particular system and we gener-
ally do not publish them. This has been
discussed at 1length in previous edi-
zions.—-ed.

Jdear FIG,

While 1 cannot disagree with the intent
>f "An Open Response' in FORTH DIMENSIONS,
Vvol. II, No. 6, concerning the hardware
requirements for FORTH, 1 feel you may
iiscourage some with the categorical
statements you made. It is possible to
accomplish a great deal with much less
than you described. I hand-installed the
5502-verison of fig-FORTH on a homebrew,
{IM-based system that had only 8K of RAM
and traditional cassette-storage. My
“terminal" was a memory-mapped 16-line by
32-character display with ASCII key-
doard. This minimal system has given me
aours of pleasure and practical experience
with FORTH, and because of the concise
nature of FORTH has been capable of power-

ful counstructs. An acquaintance has
installed a cut-down version on a 5K KIM
with ASCII keyboard and walking 'times-
square” display on the KIM LED's. There
is no question that we would be more
comfortable in the hardware environment
you define, but compared to Tiny-Basic,
for example, these minimal FORTH's are
heaven.

I found the same bugs in the May 1980
6502-version of fig-FORTH that Grotke and
McCarthy have already reported. 1In addi-
tion, I would warn prospective installers
that the TRACE routine depends on the
output routines preserving the Y-register,
and that the MON routine is not quite
correct. Since the 6502-processor incre-
ments the program counter by two when BRK
instruction is executed, BRK should be
followed by a NOP to ensure that a simple
machine~language monitor will return to
the start of the IDX XSAVE instructiom.

My system now includes a 320x200 dot
raster-scan display, and I am interested
in corresponding with others concerning
FORTH-based graphics processors.

Kent A. Reed
49 Midline Court
Gaithersburg, MD 20760

The point of the "Open Response" was
not to condemn anyone's system; rather to
point out that FORTH is designed to be
ugsed with a disk. Naturally, the nature
of FORTH means that it will perform (and
outperform other languages) regardless of
the eavironment. Your "bug" comments are
appreciated.--ed.

Dear FIG,

In bringing up the 6502 Assembly Source
listing on my Rockwell System 65, I
encountered a problem involving writing or
reading the disk drives. The symptoms
involved setting an 0l error everytime the
disk was asked to jump to the next track.

The problem turns out to be hardware
and only exists on a Sys 65 with Pertec

FORTH DIMENSIONS II1/2

Page 37

model FD200 drives. The fix is simple and
is detailed in Rockwell Service Bulletin
'SYSTEM 65~7' which may be obtained by
writing:

Rodger Doerr

SYSTEM 65 Customer Service Dept.
ROCKWELL INTERNATIONAL
Microelectronic Devices

P. 0. Box 3669

Anaheim, CA 92803

(Or call Rodger at (714) 632-2862.)

I hope that this information can be
helpful to other individuals who are
working with FORTH on the SYS 65.

Jack Haller
230 Mechanic St.
Boonton, NJ 07005

Thank you--1 am sure you have saved
more than one frustrated programmer a few
sleepless nights.-—ed.

Dear FIG,

Enclosed is $12.00 (now $15.00-~Pub.)
for another year of FORTH DIMENSIONS. I
have FORTH up on 2 KIM's (Dean's version)
and a Superbrain; although my "playtime"
is limited, 1 enjoy tinkering very much.
It might amuse you and Mr. Moore to know
that one of the systems is going to
control a 10' dish radiotelescope which I
also use for looking at thunderstorms.

I am slowly getting together parts of a
Western Digital-based computer. Their p-
code chip is a natural for FORTH--almost
all primitives are single instructioms.
This is a very long-term project and, no
doubt, someone will beat me to it, but it
needs doing. Please pass this on to any-
one who might be interested. I would be
glad to correspond with them.

As a long-time but not prolific user of
FORTH, I'd like to put in my buck's (in-
flated two bits') worth: KISS-~this
acronym is keep it simple, stupid. 1In
other words, let's not get too many words

into "Basic FORTH" vocabulary. Certainly,
more advanced words are useful and should
be published and documented, and are, of
course, part of the FORTH vocabulary by
definition. Any standards, however,
should be kept very simple. Enough.

Don Latham
Six Mile Road
Huson, MT 59846

OK interested members, drop him a
line.--ed.

Dear FIG,

This letter is in response to C. A.
McCarthy's letter in FORTH DIMENSIONS,
Vol. II No. 6 concerning the errors he
listed:

Page 0061

Yes, there should be a SEMIS at the end
of the UPDATE.

Page 0064
I haven't hooked up disks to FORTH yet,
so I didn't notice this one, but I
agree that the displacement in line
3075 is wrong.

Page 0067

I dropped ome of the STX XSAVE's
without ill effect.

Page 0069

The extra SEMIS is superfluous, but
will not have any harmful effect.

I did find another error in the
listing. This one, rather than being a

. typo, appears to be an error in program

logic.

Page 0017, lines 0803-0805. The listing
for routine ZERO shows:

Page 38

FORTH DIMENSIONS 111/2

ondrdw

-4 X &)

Jre1rrae

(R4

2 W o

LDA 0,X
ORA 1,X
STY 1,X

Since Y contains O at this point, the
zero flag in the processor status register
will always be set by the STY instruc-
tion. Therefore, the branch which follows
will never be taken, resulting in a logi-
cal "false" value always being left on top
of the stack. 1 replaced the above code
with the following:

B
>
Q i =
»¢ pd 4

?
’
’

g3

This causes the processor status to be
set properly to indicate whether the top
stack entry is a zero or not. I know of
no other errors in the listing.

Steve Wheeler
504 Elmira
Aurora, CO 80010

Thank you for passing along the
above.--ed.

Cear FIG,

A little note about changes in the
situation in NW Europe. During the second
zalf of March, there was an exhibition in
“almo (close to Copenhagen) - '"Datacraft
:." (Computer power-81).

Up until then, FORTH was very difficult
> get in touch with here in Sweden. To
ov great astonishment, there were at least
-. perhaps 6, systems running in different
>xols, The most interesting one was a
:c1ly-FORTH system running on an ABC-80 (a
3v Z-80 lowend machine). There were also
Iig-FORTH's running realtime setups on
PET's.

To me, who had up until then been 'dry-
swimming ' FORTH, it was quite an experi-

ence to key in definitions, clear,
compact, and (CR/LF), to be able to use
them. Quite a kick!

Calle Hogard

Glad to hear things are moving ahead.--
ed.

Dear FIG,
Response to "An Open Response".

I object strongly to the tone of the
above (unsigned) article in Vol. II, No.
6. It is the attitude of the 'computer
professional' with access to a large, all
singing, all dancing computer looking down
his/her nose at the pathetic squirmings of
the home computer buff. If this attitude
had prevailed, there would be no cheap
computers. As it is, a lot of harm is
still done by designers making their small
computer systems in the image of large
computer systems instead of making them
like super calculators.

Like many others, I first became
interested in FORTH via the August '80
issue of BYTE. One thing that attracted
we was the idea that here was a high level
language which could be used over the
whole range of hardware. There are
obvious resemblances between the FORTH and
the HP programmable calculator languages
and it is reported that FORTR or similar
languages are used in hand-held language
translators and in one of the hand-held
computers. Compare the editorial and,
more specifically, Charles Moore's
“Characteristics of a FORTH Computer"
(p.88) in that BYTE issue with your "Open
Response". FORTH is a language in which
the user is allowed unparalleled
freedom. Please do mnot insult us by
drawing arbitrary limits which will in any
case be out of date in a short time.

I will agree that a quart cannot usu-
ally be fitted in a pint pot. Solution:
devise a means of listing the glossary in
such a way that for any word, the
indirectly referenced words underlying it

FORTH DIMENSIONS III/2

Page 39

can be read. The answer to those wishing
to devise minimum systems would then be
"go away and get on with it!" Remember
that necessity is the mother of invention
and the professionals are those who carry
on in the wake of the amateurs-- like
Einstein--to name but ome.

N.E.H. Feilden
47 London Road
Halesworth
Sufolk IP19 8LR
England

P.S. Number typing (e.g., Fixed,
floating, double, quad precision, etc.)
Surely, all this business of having
hundreds of different numbers types is
silly, cumbersome, and FORTRAN-like.

Why not forget the whole scheme and do
it like BASE. That is to say, have a
constant, say NTYPE which tells all opera-
tors how many bytes to operate on and
whether fixed or floating. It would, of
course, be necessary to code all constants
and variables in the same way so that when
referenced, the appropriate conversions
would be done. If this were done in
linked 1lists, then the memory overhead
would be very small. The whole thing
would be vastly easier to use than what is
currently proposed. This suggestion would
help to reduce the number of words to
remember.

Sounds like you have some interesting
and creative approaches to problem
solving. You might be interested to know
that the author of "Open Response" works
on a home size computer. I am sure that
no offense was meant and if the author of
"Oper Response" would like to answer in
this space or another column, we will be
glad to print it.--ed.

HELP WANTED

Los Angeles Area FORTH PROGRAMMER WANTED
-- Contact Linda Stoffer at Pace
Personnel, (213) 788-7039.

FPORTH, 1Inc. has the following job
openings:

TECHNOTES, BUGS, FIXES

TIPS ON BRINGING UP 8080 Fig-FORTH

Ted Shapin
5110 E. Elsinore Aenue
Orange, CA 92669

Some of the "gotchas" I ran into in
bringing up 8080 Fig-FORTR may be helpful
to others.

Make sure your assembler will handle
lines such as DW A,B-$ correctly. The
Boston Systems Office cross-assemblers use
the address of the first operand as the
value for "$" in the second operand. This
leads to a system that will print out the
sign-on message but will fail to perform
many other operations correctly. I got
around this by changing such occurrences
to two separate lines: DW A and DW B-§$.

The next problem to solve is how to
type in the editor screems. It is nearly
impossible to type the editor in twice
correctly. As R. Allyn Saroyan pointed
out, you only need to type in a wmini-
editor twice. Once, to get it in the
dictionary so you can use it, and again,
to get it to a screen so you can put in on
disk. The mini-editor is simply taken
from the implementation model editor
screens as follows:

HEX : TEXT HERE C/L 1+ BLANKS WORD HERE
PAD C/L 1+ CMOVE

H LINE DUP FFF§ AND 17 ?ERROR SCR @
(LINE) DROP ;

: -MOVE LINE C/L CMOVE UPDATE ;
: P 1 TEXT PAD 1+ SWAP -MOVE ;
DECIMAL

Now, proceed to use it to write itself
to the disk. You can do this by picking
an unused screen, say 85 and typing 85

LIST. Now use "P" to place a line of text
on the screen, e.g., O P (Mini-editor)

Page 40

FORTH DIMENSIONS III/2

ot o

~ Yy ™

-

will place a comment on line 0 of the
zurrent screen.

Type the rest of the lines above and
then use the word "FLUSH" to write the
mini-editor to disk. Now, when you need
o start the system again, just type 85
OAD and your mini-editor will be put into
the dictionary.

Use the mini-editor to type in the Fig-
FORTH editor. The string search screen
:an be omitted if you do not have a ver-
sion written in highlevel FORTH.

USING ENCLOSE ON 8080
Using ENCLOSE with disk block buffers

2f 256 bytes each or larger on the 8080
processor.,

un 8/n SENCLOSE
D8 'ENCLOS'
b8 'E*4+80H
] PFIND~-9
il ™ $+2
POP D 3 (DE)<=(S1)=DELIMITER CHR
PoP H s (IL)<=(S2)=ADDR. OF TEXT TO SCAN
PUSH [{] ; (S4)<-ADDR.
MOV AE ;(a)<-DELIM CHR
LXI D,-1 SINITIALIZE CHR OFFSET COUNTER
ncx L] : (NL)<~ADDR-1
+SKIP OVER LEADINC DELIMITER CHRS
=%CL) INX il
INX D
cup H 3IF TEXT QIR - DELIM CHR
Jz ENCLI sTHEN LOOP AGAIN
sELSE NON-DELIM CHR FOUND
PUSH D ; (83)<~(DE)=OFFSET TO 1ST NON-DELIM
PUSH PSW sSAVE DELIM CHR ON STACK
MOV AM, ;IF 1ST NON~-DELIM=NULL
ANA A
JNZ ENCL2
POP PSW ;THEEN DISCARD DELIM CuR
INX 1] 3 (S2)<-OFFSET TO BYTE FOLLOWING NULL
PUSH D
DCX D 3 (S1)<-OFFSET TO NULL
pUSH D
JMP NEXT
~ L2 POP rsw ;(A)<-DELIM CHR FROM STACK
INX 1 ;3 (ML) <-ADDR NEXT CUR
INX D ;(DE)<=OFFSET TO NEXT CUR
cHe] +1F NEXT CHRSHDELIM CHR
JZ ENCL4
PUSII PSW ;SAVE DELIM CIIR ON STACK
MOV AM SAND IF NEXT CHRSONULL
AHA A
JNZ ENCL2 ;s THEN CONTINUE SCAN
;ELSE CUR=NULL
POP PSW sDISCARD DELIM CHR
PUSH] ;s (§2)<~OFFSET TO NULL
pPusit D 3 (S1)<-OPFSET TO NULL
Jmp NEXT
sELSE CIHR=DELIM CHR
ENCLA PUSH] ; (§2)<~OFFSET TO BYTE FOLLOWING TEXT
INX D $(S1)<~OFFSET TO 2BYTES AFTER END OF WORD
PUSHt D
i

EXT

NOTE: see Mr. Miles' letter in Letters
section.~-ed.

Mr. William D. Miles
P. 0. Box 225

Red Cliffs

Victoria 3496
Australia

CORRECTIONS TO METAFORTH

John J. Cassady
339 15th Street
Oakland, CA 94612

The following corrections to the Fig-
FORTH cross-compiler, METAFORTH, by John
Cassady should be noted:

page 26 screen 66 line 7 should read

KISR H LXI SRA5 SHLD 12 ORG + LHLD SPHL
NEXT JMP

page 38 dumped memory location 798C
should be 6A

A few lucky purchasers will have noted
that they possess those rare copies of
METAFORTH in which pages 8 and 9 are
swapped.

METAFORTH, by the way, is a cross-
compiler for Fig-FORTH. It can be used to
regenerate a FORTH system including the
nucleus without resort to an external
conventional assembler. This is helpful
when modifying low level words, generating
"stand-alone" applications, converting to
FORTH-79 and the like. A special section
is devoted to generating headless
configurations with the same or different
processor.

METAFORTH is available in thardcopy
through: MOUNTAIN VIEW PRESS, PO Box
4656, Mountain View, CA 94040 for
$30.00. There are plans to have it
available on disk and compatible with
several of the popular commercial fig-
FORTHs from their respective vendors.

PORTH DIMENSIONS III/2

Page 41

CHANGING 8080 fig-FORTH
FOR DISK COPYING

Ted Shapin
5110 E. Elsinore Avenue
Orange, CA 92669

The FigFORTH 8080 implementation uses
all bytes of all sectors on the single and
double density diskette. This means 2002
sectors on a disk for single sector and
4004 sectors for double. This is not a
multiple of eight so the last screen on a
disk will be split across two disks. By
simply changing the equates for SPDRV1 and
SPDRV2 to 2000 and 4000, we will have an
even number of screens per disk., This
allows a screen disk to be copied from
disk A to disk B by using the Fig-FORTH
COPY word.

NOTE: Ted has the correct method. Any
other system setup that could split
screens is incorrect.--ed.

FORTH STANDARDS CORNER

Robert L. Smith

There is a need for a channel of
communication regarding the standard-
ization of FORTH. A major topic is the
clarification of the FORTH-79 Standard.
What changes are required or desirable for
clarification or extensions to the Stan-
dard? Is the FORTH Standards Team the
appropriate mechanism for obtaining a
"seal of approval" for corrections and
changes to the Standards?

?et us first consider a fairly simple
topic, the unsigned count specified in the
definition of FILL in the 79-Standard.
FILL is defined as follows:

FILL addr n byte 234
Fill wemory beginning at address with a
sequence of n copies of byte., If the

quantity n is less than or equal to
zero, take no action.

This is a clear and reasonable un-
ambiguous definition. However, at the
Rochester FORTH Standards Conference,
there was a strong consensus that the byte
count n should be an unsigned number. The
restriction in the definition seems to be
unnecessary; the only thing to be said in
its favor is that it might save a pro-
grammer from an inadvertent error (and
generally FORTH does not try to save
programmers from their errors). If the
unsigned FILL were to be the fundamental
definition, then the signed version would
be trivial to implement. The reverse is
more difficult. Thus, the unsigned FILL
would lead to better "factoring'. Fur-
thermore, a common use for FILL is to
preset a large portion of memory. The
unsigned version is clearly better suited
for this task.

Having said that, what should be
done? Since the current definition is
unambiguous, and since 79-Standard ver-
sions of FORTH currently exist (with
several wore in advanced stages of
development), it seems to me that there
should be no change to the 79-Standard in
this area. The Standard Team has sug-
gested one mechanism for evolutionary
changes in FORTH via "Experimental
Proposals". An experimental program
would, however, involve a new name for the
changed function and could not become a
permanently accepted change until two
revisions of the Standard. That may or
may not be acceptable, depending on the
frequency of the revisions.

Please send in material, questions, and
comments relevant to FORTH Standards. I
will try to cover one or two areas with
each issue. Possible topics for next time
are the words WORD and +LOOP.

CORRECTION

"Systems Guide to fig-FORTH" by Ting is
not available through FIG. Orders for
this book, revised lst edition @ $25.00,
should be sent to:

MOUNTAIN VIEW PRESS
PO Box 4656
Mountain View, CA 94040

Page 42

FORTH DIMENSIONS I1I/2

W= T e

(81

NEW PRODUCTS

SYM-1 FORTH

Saturn Software Limited has implemented
Fig-FORTH for the SYM-1 single board com-
puter. Their implementation takes advan-
tage of many of the features and resources
of the SYM-1.

SYM~FORTH 1.0 (disk version) requires
16K of ram, serial terminal, and the dual
HDE mini disk system. System has been
upgraded to the 79-STANDARD and includes a
versatile input line editor, fig=-style
editor, 6502 assembler, and a cassette
interface. This product is also supported
by a quarterly newsletter with an initial
circulation of 100.

Extras included:

Assembler, editor, cassette interface,
plus numerous wutilities and demos pre-
sented through subscription to newsletter.

Machine on which product runs:

SYM-1, 6502 singleboard computer.
Memory requirements: 16K of ram
Manual:

The 74 page manual includes
introductory tutorial material, system
information, and glossaries for the FORTH,
EDITOR, and ASSEMBLER vocabularies. The
manual is available separately for §25
which will be credited towards a later
purchase.

Form product is shipped in:

Product is distributed on two 5-1/4
inch diskettes, and boots with 79-STANDARD
upgrade iunstalled. (Cassette version is
also available which can be upgraded to a
disk system at any time.)

Product has five active installations
of the disk version (79-STANDARD). There
are also 50 installations of the cassette
version.

Price:

SFD-1 SYM FORTH FOR DUAL HDE MINI DISK
SYSTEM $150 U.S., includes shipping, tax,
etc.

Vendor support:

Direct personal support by phone,
correspondence, and newsletter.

Order turn around time:
Immediate.
For more information, contact:

Jack W. Brown

SATURN SOFTWARE LIMITED

8246 116A Street

Delta, B.C., V4C 5Y9, CANADA
(604) 596-9764

OSI-FORTH 2.0 / FIG-FORTH 1.1

This is a full implementation of the
PORTH Interest Group Version 1.1 of
FORTH. It runs under 08-65D3.12 (or 3.0,
3.1), on any disk-based Ohio Scientific
system, and has access to all DOS commands
and resources.

Extras include resident text editor,
Assembler, and utility screens for
transferring the system to a new disk,
initializing library and system disk block
storage tracks, copying screens from disk
to disk, and reconfiguring the system
memory usage.

Machines:

Ohio Scientific C4P MF, C8P DF, C3, C2-
8P DF, ClP MF, and C4P DF. While only one
drive is needed, dual drives are
supported.

FORTH DIMENSIONS TIII/2

Page 43

Memory Required: 24K
Manual:

Currently 95+ pages--with new OSI-FORTH
Letters added as they are produced.
Twenty-four pages of discussion of
particulars for O0SI, utility screens, and
operation of the editor (includes sample
edit screen). FIG Installation manual
included. Listings of utility and other
sample screens. Available separately for
$9.95, which is credited toward system
purchase.

Media Available: Eight-inch or mini disk.
Approximate number shipped: 25
Price:

$79.95 includes shipping. (Florida

residents add 4% sales tax.)
Delivery: 30 days.
Support:

OSI~FORTH Letters subscription avail-
able for $4 per year. Contains fixes for
any new minor bugs that may be found, as
well as listings of application screens
donated by users, or developed by
Technical Products.

For more information, contact:

Daniel B. Caton

TECHNICAL PRODUCTS COMPANY
4151 N.W. 43 St., #507

-P. 0. Box 12983
Gainesville, FL 32604
(904) 372-8439

NEW PRODUCT

DATRICON FORTH

Datricon now offers D-FORTH, a software
package designed for use in conjunction
with microprocessor-based, STD Bus com
patible products wusing a Single Board
System concept and offering a variety of
68xx/65xx processors. Datricon's single
board controllers use interface standards
such as the STD Bus, RS232, and RS422 for
serial communications and with or without
parallel I1/0 compatible with the popular
isolated AC/DC module racks.

For more information, contact:

DATRICON CORPORATION
7911 N.E. 33rd Drive
Portland, OR 97211
(503) 284-8277

Warning~-this FORTH is different in names
and omitted ‘'vestigal words'.--ed.

- 41 g
o]

T N
PMONEY IF RIDE
ELSE. WALK THEN

: -

QN

—— - — N~ e - j -
<Y -~ stams/fFloor N4l _——— [
BEGN COFFEE AWAKE UNTIL (FLOORS ¥ ¢B DO STAIR Loog‘ ' 1

. / FORGET TASK: ZZZZ...
\ Nt e S N . v
N ey P & |
= >
=]
o

\\ \
~>ﬂ e

ELEVATOR |
T of oRvER
VSE STARS |

Page 44

FORTH DIMENSIONS III/2

ELEMENTS OF A FORTH
DATA BASE DESIGN

by Glen B. Haydon

In this day and age, data base design
and manipulation is one of the major
activities best accomplished with com-
puters. In practice, FORTH proves to be
an ideal language for developing and using
custom data bases. By comparison with
other languages, high or low level, FORTH
is a winner. It meets the requirements of
being interactive and providing documen-
tation as identified by Fred Brooks in his
book, THE MYTHICAL MAN-MONTH, as being
ideal for the development of new sys-
tems. The amazing speed and ease with
which custom data bases can be developed,
more than justifies the effort required to
learn FORTH.

I have developed a number of small data
bases of up to 800 records containing 128
bytes each to serve my specific needs. I
have also initialized, with simple for-
matted input and output routines, a custom
data base for inventory control in a few
hours one evening. Having used languages
other than FORTH for similar work, it is
highly unlikely I will ever go back to
them.

This discussion presents a group of
utility FORTH word definitions which
facilitate the development of custom data
bases and a sample application using these
utilities to define a small file. A
number of techniques available in FORTH
are illustrated.

Some months ago, at a regular monthly
meeting .of the FORTH INTEREST GROUP in
Yayward, the prime mover of the group
distributed and discussed several FORTH
Screens which provided the foundation for
beginning the definition of a data base
file, I have modified his Screens
slightly and expanded them to provide a
general framework with which to define
custom accounting data bases. I will
assume that the reader has some knowledge
of the fig-FORTH Model and proceed with
the examination of Screens developed from
it. In the discussion, FORTH words are

enclosed in single quotes to set them
apart from the English words in the
text. In FORTH, these words are used
without the single quotes.

SCR

[CREEN 21: COMMENTS AND LOAD FOR DEMO DATA FILE)

1 EMIT 69 EMIT CR CR CR CR CR

2 ." This demonstration data system provides & pattern for the®
3 CR ." further develcpment of any type of data base. The basic®
4
H
6
7
[]
9

N -
-~
w

CR ." file formating definitions are on ScCreens 22 and 23. Some”
." utilities are on 24, 25, and 26. The demo file
.® definitions are on 27. Elamentary file manipulation *
CR .* utilities are on 28. This model should get you started.”
: PROCEDE CR CR .* ENTER 'Y' TO LOAD SCREENS * KEY 89 = IF

29 22 DO I LOAD LOOP ENDIP ;

t 22

CR ." SCREEN 22: FILE DEVELORMDNT °

§ VARIABLE REC# (holds the current record mumber)

© VARIABLE OPEN (points to current file descriptor)

1 20 DUP 2+ @ SWAP 0 ; (double fetch)

s LAYOUT (lesve bytes/record-2, and bytes/block-1)
OFEN @ 4 + 20 ;

: READ { n-th record, on stack, is made current)
@ MAX DUP OFEN € 2+ & < 0=

16 IF ." FILE ERROR ® QUIT THEN RECS ! ;

11 : RECORC (leave address of n-th record }

12 {AYOUT */MOD OFEN & @ + BLOCK + ;

13 : ADDRESS { leave address of the curcent record)

14 RECH @ RECORD ;

15 ;8

The first two Screens provide eight
utility FORTH words for developing a data
base file, The comments included in the
Screens within parentheses should, com-
bined with the mnemonic nature of the
words, give you a clue to what is hap-
pening. The first two words are variables
used in manipulating the file, 'REC#' and
'OPEN'. '2@' is a FORTH word, and alias
for 'D@', which fetches the next two
values beginning with the address on the
top of the stack and places them on the
stack. The word, 'LAYOUT', places two
parameters of the new definition of a file
on the stack for subsequent use. 'READ'
is the first word that one will have
occasion to use in routine manipulating
records in the data base. It takes the
number of the desired record from the top
of the stack and, after checking to see
that it is a wvalid record, places its
value in the variable 'REC#' which is used
to identify the record then under con-
sideration. The word 'RECORD' takes the
value for a record number from the stack
and returns its address to the stack.

FORTH DIMENSIONS 111/2

Page 45

Finally, 'ADDRESS' takes the record number
at the variable 'REC#' and using 'RECORD'
leaves the address of that record on the
top of the stack. With only these eight
FORTH words: two variables, one utility
word, and four basic words for file refer-
encing, we can proceed to the definition
of three defining words in the next
Screen.

2 CR .° SCREEN 1): FILE QEVELORENT - 2 °
+ TFIELD <BUILDE . create @ test fisld)

1
2 NER , O, o leaves file cont for this Jefinition)
3 DOES> | leaves: addr, count)
4 28 ADORESS + SWAP
OFIELS \BUILDS Create a cata field

6 DMvER . aaves f1]le count for this defimition
N =y 23 lesves address |
8 8 ADCRESS +
9 . FILE Creata a named storage allocation |
12 <BUILDS origin dlock 1

s nmber of recards la file

DUP B/BUF OWR . v, | Dytes par block)

. T # bytes per record)

COES> JFEN when file name used, pring to)

1ts Jescriptor parseeters.)

The three words on the next Screen are
called defining words because they are
used to define new FORTH words as the
names of fields in our record and to de-
fine the name for the file we are
defining, each with specific properties.
These words utilize the combination of the
FORTH primitives '(BUILDS' and 'DOES)'
which are present in the Model. It may
take some time to fully appreciate what
these primitive words accomplish and the
way they work. Perhaps an examination of
what they are doing in this Screen will
help you understand their function.

Two types of record fields are
distinguished and defined with separate
words, a numerical or data field and a
text field. The first word, "DFIELD', is
used to add to a record being defined, a
field containing the number of bytes given
on the top of the stack and gives that
field a name. In subsequent use, that
newly defined word (data field name) will
cause the address of that field in the
record whose value is curreatly ia the
variable 'REC#' to be left on the stack.
This word is used to identify the location
in a record where a numerical value is to
be stored in a binary form. I call it a
"data field", in contrast with a "text
field" in which the length of the field
should also be immediately available.
Thus 'TFIELD’ is used to define a "text

field" which will identify a field in the
new record with a length in bytes given on
the top of the stack and gives that field
a name. In subsequent use, that newly
defined word (text field name) will cause
not only the address of that text field in
the record whose value is currently ia the
variable 'REC#' to be left on the stack,
but also the length of that ficld, The
length is convenient when the primitive
word 'TYPE' is used to print the character
string in that field. Obviously the
length is not needed in a data field.
Thus, provisions are made for defining two
types of fields in a record. As new
fields are added to a record in the course
of its definition, the current length of
the record is maintained on the top of the
stack.

SCR § 24
CR .* SCREDN 24: DOUBLE PRECISION ARITHMETIC
b -7 {16, u---4d)

SWAP OVER /MDD R SWAP U/ SWAP DROP R> ;
) .

N e Q) i
oe { sddr ~— d } DUP 2 + & SWAP @
-1} (d, sadr -— } P ROT SWAP | 2
toup (d---d, ¢) oW ;
OSWAP (dl, d2, —- 42, d1) ROT R ROT R>
16 : DOROP (41, 42 -— H DROP CROP ;

Once the definition of the fields in a
record is completed, the value of the
record length remains on the stack. To
this we need to add values for the number
of records we wish to include and finally,
the block number in which the records are
to start, before we can use the defining
word 'FILE' to give the file a name.
Later when the new file name is used, the
address of the necessary file parameters
is placed in the receantly defined variable
'OPEN' as required for access to any given
record with the words defined in the first
Screen.

With these two Screens, we have the
file utilities necessary to define a new
file. However, several characteristics of
the particular implementation of FORTH
which is being used are important. Most
systems created under the Model have 128
bytes per block although any multiple of
128 can be used. In these sytems then,
the largest record length can be no longer

Page 46

FORTH DIMENSIONS 1I1/2

e D rTY NN T D A NG oM

rmed Xodaoae

nHed e 98N

1 M ® - (O I @© ™ & J

® o £ O -

than 128 bytes, but with a larger block
size, larger records can be used. In
order to take maximum advantage of the
block size, it should be very nearly equal
to a multiple of the record length. For
example, a record length of 70 bytes would
not leave enough room in a 128 byte block
for a second record and in this case, 58
bytes of space would be wasted. If need
be, such a designed file would work, but
at the expense of memory space. Also, the
initial block to be used in the definition
created by the word 'FILE' must be chosen
according to the block size for the
particular implementation. For example,
block 400 in an implementation with 128
bytes per block would be block 50 in an
implementation with 1024 bytes per block.
Although, I find a block size of 1024 to
be more efficient and use it routinely,
the Screens presented here have been
written for and tested on an imple-
mentation with 128 bytes per block.

Before starting with a discussion of an
example of the application of these file
development utilities, several Screens of
utilities for use in the input and output
of numerical data will prove to be most
helpful. These include a group of double
precision utilities, date compression and
expansion routines, a numerical routines
for handling dollar amounts and storing
them as double precision integers.

SCR § 25
@ CR .” SCREDN 25: DATE COMFRESSION AND EXPANSION
: DATEBIT { corwerts date input to 2 bytes)
32 0° D+ 13 D* O+ DROP
1 PDATE " MWDDAY)
QUERY 47 WORD HERE NUMBER 47 WORD HERE NUMBER BL WORD
HERE NUMBER DATEBIT ;
: JOATE { formats 2 byte date code and prints)
9 13 U/ 32 /M0D ROT 18C * ROT + @ 100 D* ROT ¥ D+
<h § & 47HOLD ¢ # 47 HOLD 9 0 B> TYPE :
;S

LY RRIRERRVY VL RTW WE O

The double precision integer utilities
are used in date compression and expansion
as well as in the double precision integer
operatiouns for dollar amounts. These are
simple extensions from the limited double
precision words found in the Model and
should require no further explanation.
The input on the stack before executing
the word and the output left on the stack

afterwards are indicated in the format
used in the fig~FORTH GLOSSARY. You will
note that several of these are mixed
double and single precision operations
which are sufficient for the requirements
of this program.

The date compression routine is really
simple. When I find the time I will
develop an algorithm to convert the date
to a true Julian day and store the least
significant value. This would make
calculation of the time between two given
dates easy. In the meantime, the present
routine allows one to enter the date as
numerical values separated by slashes, a
commonly used format, and reduce the value
to a single 16 bit integer requiring only
two bytes for storage. The routine
provides an example of using a delimiter
other than a space to parse 'WORD' and the
use of 'NUMBER' to interpret a numerical
value without searching the dictionary.
After the parsing of the input, three
double precision numbers are left on the
stack. The word 'DATEBIT' defines a
simple algorithm which 1is applied to
reduce these three double precision values
to 16 bits. The execution of '?DATE'
first prompts with the format to be used,
then waits for the value to be entered.
The value is then converted to the 16 bits
and left on the stack for starage. since
'*.'! is used to conote "print" in FORTH,
'.DATE' is defined to print a properly
formatted date from a 16 bit integer on
the stack. This routine is useful as an
example of conversion of a binary value to
a text string for printing.

SCR # 26

CR .= SCREEN 26: ?SAMOUNT AND .SAMOUNT °

{ define action tor each icale case)

: OSCALE 100 D* ; : ISCALE 18 0* ; : SCALE ;

s BCALZ . INPUT ERROR “ CR

{ define scale case and extend for wach with ‘CFA® }

* GSCALE CFA VARIABLE NSCALE * 1SCALE CFA , ' 2SCALE CFA ,
' ISCALE CPA

t scale douwble precision velus sccording to 'OPL')

: SCALE DPL & 3 MIN 2 * NSCALZ + @ EXECUTE ;

t Wit for decimal value and scale {t - lesve value on stach }

10 : PSAMOUNT JUERY 8L WORD HERE MUMBER SCALE ;

11 (print d from stack as $ and right justify in & spaces)
t . SAMOUNT

Y R I]

13 !‘:\PMMUGSKIQUISNOLDSSIGNO)
{; IS)GDIXTWFOSiAP-SPACESm‘
nSG 815
CK
Finally, we have a Screen to define
some FORTH words used to input and output
dollar amounts and convert them to and

from double precision 32 bit integers with

FORTH DIMENSIONS III/2

Page 47

the necessary scaling for the location of
the decimal point. 1In FORTH, the use of a
decimal point forces an input number to a
double precision integer which takes four
bytes. A convenient FORTH primitive word,
'DPL' for decimal point locator, keeps a
count on the number of digits entered
following the decimal point. Utilizing
this value as an input for a case type
word, the numerical value entered can be
scaled properly, regardless of how many
digits are entered to the right of the
decimal if any. This method of executing
a case like routine is straight forward.
First, the action to be taken in each case
is defined. '0SCALE' means that there
were no digits to the right of the decimal
which requires that the entered double
precision integer must be multiplied by
100. In a similar manner '1SCALE' is used
meaning that there was only one digit
entered following the decimal point and
the entered double precision integer must
be multiplied by 10. '2SCALE’' does
nothing since no scaling is needed.
Finally, if more than 2 digits are entered
an error must have been made an an appro-
priate error message is given. Once each
of the cases is defined, their code field
addresses, 'CFA', can be stored beginning
with the address of a defined variable
'"NSCALE' and extending into the alloted
space. The word 'SCALE' then finds the
value of the variable 'DPL' and counts
over to the proper code field address
which is then placed on the stack and the
selected word is executed.

After this scaling operation, the word
to input a dollar amount '?$AMOUNT' is
defined which leaves the scaled double
precision integer on the stack ready to be
stored. Finally, a routine defined by the
word '.AMOUNT' connoting "print dollar
amount" will print the double precision
integer on the top of the stack as a
dollar value right justified in eight
spaces.

There are certainly other and probably
better ways to accomplish the work done by
these three Screens of utilities, but they
work. The way they work provides some
examples of the beauty of FORTH as it

exists in the Model.

With these five Screens, we can very
quickly define a record for a data base
with custom selected fields and then the
associated file characteristics. In the
past, 1 have several times included in a
data base values calculated from other
values in the base. On occasion, it has
been necessary to change one of the
original values. This has always required
that the calculated fields be redone,
too, I now find that it is more con-
venient to enter only the basic data. All
calculations can be made while the output
is being formatted and printed with no
significant loss of time. The slowest
part of printing the formatted result is
the delay in the output device.

SCR ¢ 27
8 CR .” SCREEN 27: DEMO FILE - RECORD GENERATION *
18 2 DOFIELD TAG (atag)

2 30 TFIELD NAME (item name)

3 2 OFIELD DAY (the date }

4 4 DPIELD DOLLAR (a dollar amount)

s 200 (nunber of records) 408 (starting block)
[FILE DEMO

7 : INAME (wait for name then store it in record)

e NAME DROP 30 32 FILL QUERY 1 TEXT PAD COUNT

9 NAME ROT MIN CMOVE UPDATE ;

18 : .NAME (print name fleld) NAME TYPE ;

11 (the rest follow in the same way)

12 : IDAY PDATE DAY | UPDATE ; : DAY DAY @ .DATE ;
13 : IDOLLAR ?SAMOUNT DOLLAR D! UPDATE ;

14 : .DOLLAR DOLLAR D@ .SAMOUNT ;

18 : JREC CR REC) @ 3 .R 2 SPACES .NAME DAY 2 SPACES .DOLLAR ;

As an example of the definition of a
new data base, 1 have chosen one in which
each record would be allotted 4 fields for
a two byte tag, a 30 byte stock name, a
two byte date, and a 4 byte stock price.
Though little could be done with this as a
data base, it does provide an example of
each type of input. Finally, a simple set
of routines is given to clear the records,
input new records, and print out a list of
the records in the file.

As a matter of convention, 1 give each
field a name with no prefix. Thus, a data
field name will leave an address on the
stack and a text field name will leave an
address and count on the stack. By using
the FORTH connotations of'!' for store and
'.! for print, I define some utilities for
inputting data and text and printing out
the respective fields. From these util-
ities, I can assemble an input format and
an output format as desired. 1 have not
included routines for error checking which

Page 48

FORTH DIMENSIONS IT1/2

P 2~ VO T o e B @ SO 0 B LA g

=y

g

would be most desirable especially in a
hostile enviromment.

Now, to examine the actual example of
the definition of a file which we will
:all 'DEMO'. Each record will begin with
zero offset from the record address and a
‘0' is entered followed by '2' for a two
Syte length of a data field to be named
'TAG'. Many occasions in later
aanipulation of records make it desirable
2o have such a field for adding flags,
atc. Following this definition, the
.ength value of 2 is left on the stack so
that for the next field, only its length
need be entered. In this case, a text
f{ield of 30 bytes which is given the name
'"NAME' which then leaves the value of 32
‘the length of the 'TAG' field plus the
‘NAME' field) on the stack. Then a two
byte data field, 'DAY' is reserved for a
16 bit compressed date and then a four
Syte data field 'DOLLAR', for a double
precision integer value of a dollar
amount. With this, the 4 fields within
the record of a new file are defined.
Next, we will define the file name.
According to the utility for generating a
new file, we must first add to the value
of the record length remaining on the
stack, a value for the number of records
we plan to include in the file and then
the first block number to be wused as
determined by the FORTH implementation in
use. Then, we use the word 'FILE' to
create a file with these paramters and
give it the name 'DEMO'. The data base
file is now defined. For the record num-
ber whose value is in the variable 'REC#',
we can place the value of the address of
the data fields and the address and count
of the text fields on the stack by simply
entering the field name. Next, a few
simple utilities will make accessing these
new fields easier.

Remembering the connotations associated
with the FORTH words '!' and '.' we will
define words to input data or text to the
appropriate fields of that record whose
value 1is currently in the variable
'REC#'. These are simple file primitives
which will then be available for routines
to format input and outputs as desired.

The field 'TAG' is not used at this time
and specific routines are not defined. To
store a name in the name field, we define
the word '!INAME'. This routine first
fills the existing field with blanks,
ASCITI 32 (decimal) and then pauses for
input from the keyboard. The input text
is truncated to the maximum length of the
text field if necesary and them moved to
that field. 1In order to output the name
in the field, we define the word
'.NAME'. In a similar manner, we define
'"IDAY' to store a 16 bit integer value of
a date which has been compressed into that
field. 1In the earlier utilities, we have
already defined '?DATE' which waits for a
date to be input and leaves the compressed
value on the stack. All that is necessary
is to put the address of the field on the
stack with 'DAY' and then store the en-
coded date there. We then define '.DAY'
to output the date stored in the 'DAY'
field. We get the 16 bit value stored
there to the top of the stack and use the
previously defined word '.DATE' to output
it in the proper format. Finally, we
define ‘'!DOLLAR' to parse a dollar value
input with a decimal point in any location
and scaled to a double precision number
which is then stored in the proper
field. In a similar manner'.DOLLAR'is
defined to format the stored double pre-
cision integer to a right justified eight
digit number preceded by a dollar sign.
With these definitions, we have completed
a set of FORTH words to input and output
data from records in our data base.

Immediately after putting data into a
record, it is often desirable to see what
is actually present in that record. The
values in each byte of a record can be
displayed using a dump routine. Simply
place the desired record address on the
top of the stack by entering the record
number followed by our file utility word
'READ' and 'ADDRESS' followed by the
length of the record and the word for your
dump routinme. But the byte values printed
out in hex or decimal are not really all
that helpful. It is hard to interpret the
numerical value in their byte pattern. A
convenient word ', REC' is defined to print
out the current record number followed by

FORTH DIMENSIONS I11/2

Page 49

the formatted output of the value in each
field using the above utilities and an
appropriate number of spaces and carriage
returns. This is the most rudimentary
form of a formatted output. If desired,
the output could be presented in reverse
vidéo by a slight modification of this
routine. It could also be placed anywhere
on the screen.

SCR ¢ 28
@ CR .” SCREEN 28: DEMO FILE - CLEAR.DATA, INPUT, OUTPUT *
1 { clear especially tag in the @ record in file)
2 : CLEAR.DATA © READ TAG 128 ¢ FILL UPDATE ;
3 (exanple of formatting for input)
4 : INPUT Q@ READ TAG @ 1+ UPDATE DUP TAG ! READ
S CR CR ." ENTER NAME ~> " INAME
6 CR ." ENTER DATE —> " IDAY (has a format prompt)}
7 CR ." ENTER AMOUNT —> " DOLLAR
8 .REC FLUSH ; { save this record on disk)
9 (list files l through the nunber in TAG of § record)
12 : OUTPUT O READ TAG @ DUP 9= IF CR CR .” EMPTY FILE "
11 CROP ELSE 1+ | DO FORTH I READ .REC LOOP EINDIF CR CR ;
12 ;8

Finally, a few examples of formatting
input and output routines are showm on the
last Screen. First, it is desirable to
clear all data in a file with a word
'"CLEAR.DATA' before entering new data.
This particular definition clears only the
first block, all that is necessary in this
application. You should be able to modify
the definition of this word to meet the
requirements of your application and par-
ticular implementation of FORTH.

I use the 0 record in a file for a
variety of information about the file
which 1 can address directly from the
address of its first byte without using
the field definitions or I can use spe-
cific bytes or fields in ways other than I
have defined them. In this example, I use
the value in the integer at the field 'TAG'
in the 0 record to keep track of the last
record curreatly in the file. When this
record is cleared with 'CLEAR.DATA', a
value of 0 is present in the location of
'TAG' which means that there are no
records present. 'O READ' places the
value of 0 in the variable 'REC#' and then
'TAG' places the address on the top of the
stack and '@' gets that value, the last
record number used in the file. To add a
new record, this value is incremented and
then duplicated on the stack. The top
cory is stored back in the field of 'TAG'
in the 0 record which is updated. Then

the second copy is placed in the variable
'REC#' and we are ready to fill in the
information for the next record.

A series of prompts can be formatted on
the screen in any convenient arrangement
as in this example. Following the desired
prompt for each field, the previously
defined word is used to get the informa-
tion for the field and store it there.
After entering a record, it is always nice
to see the data you actually put in. This
is done with the word '.REC' followed by
the FORTH primitive ‘UPDATE' to flag the
buffer as altered and 'FLUSH' to save the
new record on the disk in the file. This
assures that the image of the record which
is displayed is the version saved on the
disk.

An output format can be developed in a
similar manner. In this example I have
included a check to see if there are any
records in a file because the 'DO’'...
'LOOP' will always print one loop and
peculiar output is generated if the bytes
in the fields are all set to zero. This
output routine presents a simple list of
the record numbers and the formatted
content of the fields.

In conclusion, I find this approach to
file definition is time saving and hope
that you will find it useful. The dis-
cussion of the FORTH utilitie: used to
define a new data base file and the
example example of handling data. provides
some elaboration of the information in-
cluded on the Screemns. This will be a
review for one who already has learned the
primitives in the FORTH Model and under-
stands how the language works, but perhaps
the discussion of these Screens will help
those less experienced. There is nothing
sacred about the techniques wused here.
Modify the various words to suit your
particular needs. It is easy enough to
develop new formats interactively. How-
ever, I would encourage you to utilize and
build on the standards of the fig~FORTH
Model. When the '79 Standards become
generally available, it should be rela-
tively easy to update your Screens without
changing the format of the record file.

Page 50

FORTH DIMENSIONS III/2

-
= _
1
B

-

-

5
T

e

tha

fal
of
txa

A N 8 e ud

N~

»

CEDRAETHR

FPREGORNALLIERS

The importance of utilizing an accepted
standard in developing programs for
ultimate use in a wide variety of imple-
sentations of FORTH cannot be over-
egmphasized.

I wish to thank Bill Ragsdale for his
sncouragement to write this discussion
cased on his presentation to the FORTH
INTEREST GROUP at omne of their monthly
deetings last year.

APPLICATION NOTE:

These FORTH routines have been developed
:a a FORTH OPERATING SYSTEM for the
ZEATHKIT H89. This system is available
Irom the MOUNTAIN VIEW PRESS, Box 4656,
Mountain View, CA 94040. The compiled
FORTH program image can be saved on disk
3ad will be up and running in less than
Icur seconds from a cold boot. The system
=as 1024 byte blocks which also increases
tae speed of operation.

However, after develoment, the Screens
were loaded on & FORTH implementation
i2rived from the €£ig-FORTH FOR 8080
423SEMBLY SOURCE LISTING which is available
irom the FORTH INTEREST GROUP, Box 1105,
fan Carlos CA 94070,in printed form and
_.ready on disk also from the MOUTAIN VIEW
i8SS. This wversion has 128 byte block
=& operates in conjunction with CP/M. To
:=is has been added the fig-EDITOR from
c=e fig~FORTH INSTALLATION MANUAL and a
s.agle extension, DUMP, used to illustrate
tne appearance of the records as stored in
2 Slock.

Ly

The printed session illustrated was
zzde using the CP/M control P to echo the
::tput on the printer. The session starts
s:th CP/M loaded and its usual prompt.
Te CP/M file, FORTH60.COM, is the object
acdule of the fig-FORTH Model. The
varning messages are not on Screens 4 and
* and the warning flag is turned off.
Taen, the Screens for the fig-EDITOR and a
g>od dump routine are loaded. Finally,
:=e Screens discussed are loaded. The
:ile 'DEMO' is called and the application
:¢ some of the file utilities is illus-
zrated. This presentation will hopefully

assure that there are no errors in the
printed Screens.

BIBLIOGRAPHY

BrOOkB, Fo P. ’ Jro ’ mE HYTEICAL HAN-
MONTH, Addison-Wesley Publishing Company,
1975.

fig-FORTH INSTALLATION MANUAL, GLOSSARY,
MODEL, Forth Interest Group, Box 1105, San
Carlos, CA 94070.

fig-FORTH FOR 8080 ASSEMBLY SOURCE

LISTING, Forth Interest Group, Box 1105,
San Carlos, CA 94070.

A>

A>FORTHSO { €1g-PORTH Model)

8809 fig-FORTH 1.1

o

OK

[1 { 1| not on 495)
o

oK

o

47 LOAD (tig-EDITR)

RMSG) & I NSGH 4

FLUSH meG § 4 X

oK

oK

oK

49 LOAD { My version of a good dump }

SCREEM 49t GOOD DANP

o

oK

oK

21 LOND (Loads Screens discuseed }

This demonstration data system provides a psttern for the
further develogment of any type of data bese. The basic
tile formsting definitions are on Scresns 32 and 23. Some
utilities are on 24, 25, and 26. The dmo file
definitions are on 27. £l y tile lation
utilities are on 28. This model should get you started.

- SAMOUNT
SCREEN 27: DEMO FILE - RECORD GEMERATION

ox
DENO 0K
CLEAR.DATA Ok
OUTRUT
DUPTY FILE
ox
INRY
ENTER AN > TOIITH
DITER DATE —> (MWDDAY } 42141
ENTER NONT -—> 18,54
1 B #4211 8 15.500K
oK
el g
DITIR W -> T
DITER DATE -=> { MVDDAY) 4/21/8)
DNTER AMOUNT -> 6.
2 Im H21A § €8.000k
oK
NPT

TORTH DIMENSIONS III/2

Page 51

INTER NAME -—> DEC
DITIR OATE ==> { MVODAYY) 4/21/8)
ENTER NMOUNT ~—> 183.5
3 oec 0421A1 $ 19).300K
oK
oK
¢ READ ADCRESS MEX 88 DUMP DECIMAL
SICA 3 0 9 0 6 0 8 8 ¢ 0 0 8 D 8 0 0iiiieescrens
SOh 3 86 0 80 8 0 80 90 000G
SBEA 9 0 ¢ 0 0 0 O # SAASAE Q9S4 4B 280
SEFA 26 20 28 29 20 20 20 20 20 20 28 20 20 28 26 20
SO 202020 2208584 G @A 7 @ €49 42
SN D 28 W W22 N WHHHWWHNE N
S92 202020 20 29 20 20 26 20 20 20 2008584 0 ¢
SO 7617 @ A 9 2 @ 0 0 @ 0 0 9 B 0 0 Peicreecieresess
ox
oK
oK
UTRUT
1z 84721581 3 10.99
2 18M 2421781 5 60.00
3 DeC 042181 S§ 183.5
oK
x

oK

oK

: STATEMENT CR (R 20 SPRCES ." STATEMINT * CR (R QUTRUT
RCR .° TOTAL VAU * 33 SPACES 0 0 8 READ TAG € 1+]
00 I READ DOLLAR D D+ LOOP .SAMOUNT CR CR (R ; OK

o

oK

STATEMINT

STATIMDNT
1 IENITH 21§ 1.9
2 IBM "2IAl S W
3 CEC $4/21/81 5 103,50
TOTAL VALUE § 182.98
oK

fig-TREE TELECONFERENCE

(415) 538-3580

If you are an active FORTH programmer, or
just have an interest in FORTH, you will
want to save this phone number. With your
terminal or computer and a wmodem, the
number will get you on-line to a dynamic
data-base on FORTH.

Want to ask a question? Want to know
where and when the next important FORTH
Interest Group seminar, meeting, workshop,
or other event is going to be? The fig-
Tree has a calendar section where you can
find out about these events and let others
know about yours. Want to find out about
FORTH-related software, products and
services?

Dial-up the fig-Tree for on~line
information, Use any 300 or 110 baud
modem, and type several carriage returns;
then the system is self-instructing.

HELP WANTED

FORTH PROGRAMMERS Experienced with

mini/micro computers and peripherals to
produce new polyFORTH systems and scien-
tific/industrial applications. Degree
in science or engineering and knowledge
of FORTH essential.

PRODUCT SUPPORT PROGRAMMER Responsible
for maintaining existing list of soft-
ware products, including the polyFORTH
Operating System and Programming Lan-
guage, file management options, math
options and utilities and their documen-
tation. Also provide technical support
to customers.

PROJECT MANAGER Supervise applications
and special systems programming
projects: writing proposals, setting
technical specifications, customer liai-
son, hands-on prograiming, and
supervision of senior programmers.
Extensive FORTH programmin; experience,
gome scientific or engin:ering back-
ground and management skills required.
Bachelors degree or equivalent.

Contact: Min Moore
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 92054
(213) 372-8493

WRITERS WANTED

ANY FORTH SUBJECT
SEND TO:

FORTH INTEREST GROUP
P.0.Box 1105
San Carlos, CA 94070

t
[-
b
£on
a
he:
2
ot
;i
Eae
L

P

|

Page 52

FORTH DIMENSIONS III/2

[o]

®©

1 m e

INCREASING fig-FORTH
DISK ACCESS SPEED

by Michael Burton

Anyone who has used CP/M and has then
:sed 8080 fig-FORTH will have noticed that
?/M is much faster than fig-FORTH when
reading or writing data on floppy disk-
z2:tes, The reason for this apparent speed
:.fference lies in the manner in which
?/M stores its files as opposed to how
{.g-FORTH stores its screens. (Editor's
=ate: Speed is also reflected in hardware
fatails such as interleaved formatting and
iirect memory access. It is not neces-
sarily a FORTH characteristic.) 1 shall
:ztempt to explain the difference.

A single-sided 8" diskette formatted in
zSe normal manner contains 77 tracks, with
zach track containing 26 sectors with 128
:vtes of data in each sector. In order
I:r the disk controller to be able to find
:+ particular sector in a given track,
-2ader data is stored on the diskette just
clor to each 128 byte data block - a sort
{ preamble. Among other information in
~is preamble is the sector number. A
Isrmat program writes this information on
zach track in a consecutive manner; in
zther words, immediately following the
.ndex hole pulse is sector 1,2,3, ... 26.

A program that reads a sector must
i.rst select the proper track and proper
sector, then must read that sector's data
:=d store it someplace for use., It is
fairly easy to select the proper track and
sactor and read the data; the problem
:>mes in trying to read two consecutive
tzztors. There is not enough time between
ite time when the first sector's data is
read and the time when the next sector is
vailable, to store the data from the
rst sector and request the data from the
cond sector. This means that reading
nsecutive sectors 5 and 6, for example,
requires a minimum of two revolutions of
:ne diskette.

"

L EE]

2
-
>

CP/M accesses files faster than fig-
TIRTH accesses screens because the files
are not stored 1in consecutive sectors.

CP/M uses a translation table to tell it
vhich sector to use. Someone figured out
that while storing the data from one
sector, about five more sectors go by
before CP/M 1is able to read another
sector. So instead of storing a file in
sectors 1,2,3 ... it uses its translation
table and stores the file in sectors 1, 7,
13, etc. This means that 1024 bytes of
information can be read or written in two
or three revolutions of the diskette
instead of eight.

What can be done about the manner in
which fig-PORTH reads/writes screens? A
CP/M-style translation table could be
added to fig-FORTH, but that would make
the diskettes, and the FORTH program,
incompatible with the rest of the FORTH
world. Instead, the diskettes can be
formatted to look like a CP/M translation
table, which is extremely easy and still
allows compatibility. A diskette would
look like this:

Sector

Old format: 1 2 345 67 8 910111213

New format: 114310236192151124 72 3
Old format: 14 151617181920 21 222324 25 2%
New format: 161225 821 417132 922 518

Most format programs use an incre-
menting register to supply the proper
sector number when formatting. To imple-
ment the translation scheme, a table must
be added to the program and must be
accessed in place of the sector register
vhen formatting the diskette.

With this new format, fig-FORTH still
reads 'consecutive' sectors (1, 2, 3,
etc.), but they are available sooner.
Using the new style format, fig~FORTH
should be able to read or write a screen
in two or three disk revolutions instead

" of eight.

Two simple tests were run to determine
how this affects fig-FORTH performance:

T3RTH DIMENSIONS III/2

Page 53

oud New Speed

Format Format Increase
L1OAD 13 Screens: 1:28 1:17 12.5%
QOPY 50 Screens: 2:24 153 63.22

If you can't reformat your diskettes,
you may choose to copy diskettes simu-
lating interleaveing by this program. The
multiple screen copy definition used for
the second test is listed in screen 167.

SRR # 167

0 (BATCH-COPY FRM #, TO#, IDEST #)

1

2 : BATGH-OOPY (FROM-SCR, TO-S(R, DEST-SCR —)
3 BEIImR

4 FOT ROT (DEST, FROM, TO)
5 1+ SWP (DEST, TO+1, FROM)
6 DO

7 1 (mesT, 1)
8 OVER (DEST, I, DEST)
9 PY (from screen I to IEST)
10 1+ (DEST+n)
11 LooP

12 DROP FORIH

13

1%

15

ok

¢ Ll

. Music¢ - Experimental Constructs

{ Music with Digital hesesrch: Computers 5-1+o8
{ Sound Effects board - uUses two AY3I-891#

! sound generator ICs

v
‘

AV @R e e T

#5248) -avy

(1/0 port and variahle declaration

HEX
AER CONSTANT REC-POKT #ES CONSTANT (W1-PURT
ORf VARIABLE VOICF PRA VARTABLE CHANNEL
OFF VARIAPLE FMASK)
O8NS VARTABLE ALV]
17 1¥4¢C VARTARLE DVAL
1} -->

AFF VARIAMLE EMASK?
ONS VARIABLEY ALV2-F
PFF VARIAHLE IVAL

SCH 8 Y2

{ Music -~ tapurimenstel Constructa 952481 -nPy)
(Music Loard access Jufinitions,)
i RRGE KEG-POMT CHANNLL & ¢ Pt { WEGE ===)
i DATA DAT-PUNT CHANNEL € ¢ P#I { REG-DATA =-=)
fone enadle detinitions }

ENABLE] 7 KEG-PONT #1 DAT-rURT PI ;

ENABLEZ 7 REG-PORT 2 ¢ P! DAT-PONT 2 ¢ P! ;

{ ERASK] ==~
{ EMASK2 +~-

11 ¢ SET PTENMINAL I# BFFr LNABLEL #FF ENASLE2 WFE EMASK] 2

12 AFF EMASK2 1| ABORT THEN KEGE DAIA { HEC) REG-DATA ---
13 : TON-PER # VOICE # 2 * + SET

14 1 voIice & 2 * + SET
IS AMp R VOICE #» + SET -=>

{ COARSE FINE ---

)

)

Set nusic Loard reqisters detinitions }
)

)

(AMPLITUDE ~=~)

-
x

53
Music - txperimental Constructs

-2

52481 -nbb)

Select voice and set enable mash)

8v1 CBUILDS €, €, €, NOES> DUP Je NUP)+ C¥ EMASK]L & AND

! EMASK) | € VOICE | CP CHANNEL | ;

$F8 D 8 av] vl MED) & vl v2 OFE 8 P 3vl v)

8v2 <BUILDS €, C, C, DOES> DUP ¢ DUP 1+ CO EMASK? @ AND

orn EMASK2 | CP .VOICL 1 CP CHANNEL 1t
2 2 8v2 w4 9D 1 2 svZ ¥S BFL 8 2 3v2 vé

LRV SV

Heset voice bit in enadble mask }
11 : vd) <wultps C. UOES> Ch EMASK] ¢ OR EmASK] | H

12 4 vl vidis 2 vdl v2dis 1 vdl vidis

13 ¢ vd2 <pulLDS C, DOES> C@ LMASK2 @ Ok EMASK2 | 3

1: 4 vd2 vadis 2 vd2 vSdis 1 vd2 védis .->

MUSIC GENERATION IN FORTH

by Michael Burton

The General Instruments programmable
sound generator (PSG), the AY3-8910, can
be used to produce very acceptable three
voice music when properly programued.
FORTH's background as a device control
language makes it a good choice to use
with the PSG for music production.

The programmable sound generator is
capable of producing sound on three
separate analog channels. The amplitude
and/or envelope of each of these channels
is also separately controllable. Although
the PSG is used by several manufacturers
on their music boards, the board that was
used for the development of the attached
music constructs is the S-100 Sound
Effects Board produced by Digital Research
Computers of Garland, Texas. This
particular board contains two AY3-8910
chips, allowing up to six voices to be
generated simultaneously.

Now, for an explanation of the music
screens. Screen 51 consists of defini-
tions of 1/0 port values and variable
declarations. The variable ALVl is the
melody voice amplitude (voice one) and the
variable ALV2-6 is the harmony voices
amplitude (voices two through six). These
amplitudes may be varied from O (off)
through 15. It is a good idea to keep the
harmony amplitude about two steps lower
than the wmelody amplitude, in order to
make the melody stand out. The variable
DVAL controls the length of the notes,
DVAL being the length of a whole note.
The variable IVAL controls the length of
the slight no-tone period between notes.
Together, DVAL and IVAL control the song's
tempo. Experimentation is necessary with
these two variables to produce the proper
tempo for a particular song.

Screen 52 contains all the definitions
necessary to access the S-100 Sound
Effects Board in order to play music. The
only PSG registers currently being used in
music generation are the tone period,
enable and amplitude registers. Note the
use of the 8080 fig-FORTH peculiar word

Page 54

FORTH DIMENSIONS III/2

P!, P! simply sends a data byte to a
particular I/0 port.

Screen 53 marks the start of the actual
definitions used in producing a song. The
definitions vl through vé are used to
select voices 1 (melody voice) through
6. These definitions do not turn the
appropriate voice on, they merely select
it so that a tone period (note) may be ret
for that wvoice. Voices are actually
played only when & note duration is
selected. The definitions vldis through
vbdis are used to disable a particular
voice the next time a note duration is
executed. They do not turn a voice off if
it is currently being played, they just
turn it off the next time it is supposed
o be played.

Screens 54 and 55 define the musical
aotes. The lowest note that may be played
:s b of octave 0, and the highest note
that may be played is b of octave 8.

Screen 56 contains the definitions
RINIT, VON and VOFF. RINIT initializes
all the registers on each PSG. RINIT is
the only place where the amplitude of the
voices is initialized, and should be used
cefore playing any music. The definitions
“ON and VOFF are used to turn all selected
volces on and off. They are used inside
the note duration definitions and are not
meant to be used in a song definition.

Screen 57 contains definitions for rest
iurations, from a sixty-fourth rest (fr)
:o a whole rest (wr). It also contains
Zefinitions for slur note durations, from
2 sixty-fourth slur (fs) to a whole slur
vs). A slur note is one that does not go
cif after its duration is finished,
1.lowing a smooth transition between notes
waen desired. Screen 57 also contains
iefinitions for dotted slur durations,
irom a sixty-fourth dotted slur (£fds) to a
vaole dotted slur (wds).

Screen 58 is the last of the music
zonstructs screens, and contains defini-
tions for note durations, from a sixty-
fourth note (f) to a whole note (w). Note
t2at after the note 1is turned off, a

slight delay (IVAL) is introduced so that
the notes will be distinct from one
another. Screen 58 also contains defini-
tions for dotted notes, from a dotted

sixty-fourth (fd) to a dotted whole note
(wd).

There is room for improvement in these
music definitions. Control of the notes'
envelope could be introduced to simulate
other musical instruments, and
restrictions imposed by the non-interrupt
nature of the note duration generation
could be eliminated. These exercises will
be left to other aspiring composer/
programmers.

SCh # 54

{ Music - Expecimental Constructs W52AR}-mpD)
1

2 t Note tefinitions]
3 : n CRUILDS C, C, DOES) DUP 1o CA SWAp C8 TON-PEK ;

¢ 2 0 bR Nf 0EL n c) fC AIR n chl *D #4C n AL

S RC #PE n 40) fR 8DA n o] SR 02F n f1] OA PPF n ()]

[83 0FY p gl P9 C8* n al) #0 AF) n al AR OR] n al)

? 87 OES n b) #7 #77 n 2 87 A8C n ch2 #h OAT n 42

] 8K 94?7 n di2 A5 BED n @2 4% 998 n 2 B85 847 n f§2

9 84 PFC n q2 f4 ARA n g2 04 R0 n a2 04 Pl n ad2
in 83} fF4 n h2 83 #C n) #3 884 n ct) #3 853 n d)
n 0 924 n 493 ®2 OFA n el 92 aCC n fY 82 PA4A n 03
12 #2 w7t n q3 82 05A n 98] #2 0)8 n) 82 918 n of)
1 Bl #FA n b} #) ODE n cd 9] ACY n e M) BAA n d4

14 ®1 ¥92 n and 8] 078 n e4 Pl #hé n £4 Ul 052 n £h4

1% 81 93t n g4 ¥l W20 n gid o1 ¢1C n 4 #1 w0C n a8d -->

SCH § 95
{ music - cxperimental Constructs 052A81~nAPp)

(Note definitions }

[
1
2
3
4
5 #0 #9F n g5 0 895
(3
?
A
Q

< @8 #37 n bR 80 #3C

10 #8832 n A7 fF N2F [2 a0 820 t? a9 P2A
11 AR 928 n a7 e N5 947 on 624 a? 022 as?
12 anr 028 n b7 A0 PIE n 8 "8 PIC n ciR LI 2] a8
1) a8 P19 n din AR A8 n eB 0% AlS n 10 #0 815 n £48
14 #P #)A n ok A8 Fl3 n alt AP F12 n ap #¢ Al1 n a¥8
15 #8 B1O n bR -

c? ap NIR ci? 0 #S a7

“?

#9 8tD n b4 €6 PE} n oS 88 SL1 n ctd #8 LS n dS
#® 0CY9 n 415 00 9BE n o5 #0 883 n 5 8O RA9 n £4S
(13 #9 06E n a5 80 #8A ats
@ 87F n S o8 877 ek R 07) n cib 80 BRA dh
98 RA4 n AR #0 ASF (13 on 859 n 4 LI AT (€13
n ak as 843 a6

n

n

n

n
n
n
o0 858 n qf OF 940 n gif " 847
n
n
n

33333333

SCh ¢ 56

8 (music - Experimental Constructs #5248]1-mP8)
1
2 { Clear &)l music board regs and set amplitudes)
3 : WINIT WFF ENABLEL #FF ENASLE2 3 ¢ DU 1 CHANNEL |
4 7 9 DO ® 1 SET LOOP #b 8 DO ALV2-6 # 1 SET LOOP
-3 #t #¢ DD 8 1 SET LOOP 2 +LOOP 8 CRANNEL | 2 VOICE 1
L3 ALV] @ AP ;
?
L]
9

{ Voices ensble/disable definitions)
1 VON EMASK] @ ENABLEL EMASK2 @ ENAsLLZ

18 : vOrt SFF ENABLE] ory ENABLE2

11 -

PO AT

¥ { music - expetinental Constructs VS2481-nko)
1

2 (dest duration definitions)
3 st <BUILPS C, DOES> CR DVAL ¢ SwAr / & DO LOOP

4 64 1 fr 32 r te 16t o1 8 1 er

£ #4 1 qr 62 ¢ hr 81 r wr

(3

7 { Slur duration definitions)
8 : 5] <BUILDS €, DOES> CA DVAL ¢ SWAP / 8 VON DO LOOP

9 4 5] fs 32 5] ts 16 5] ss 48 s] o3

iU #4 5) gs #2 8] hs 9 sl ws

1l

12 (Dotted slur duration definitions)
13 s fAs DVAL # K4 / DUP 2 / + & VON DO LOOP ;

14 : tds ts ts ; t sds 83 ts 3 eds s 88

18 3+ qis a3 es ; ¢ hds hs qs ; : wis ws hs ; .-y

FORTH DIMENSIONS III/2

Page 55

sCu § S8 BCR 1 A8
0 (music Laparimental Constructs WS24h\V-npl) ® { Sonq - Jesus Christ Supecstas LRTRLYEL I A
1)
2 { Note duration definitions } 21 3C) v) ab v2 ef v ch vd 15 vS ©d vh c) 4 vidis vddis
) : d <aUILDS C, DUES> CP UVAL @ SWAr / 8 VON DU LUK) vl e5 v2 eS @ vl cf v2 95 v) #5 va ¢S en h v] 8k v2 f(
4 vOrPr 1vaL ¢ [] U LOOY 4 v) cf v4 a5 q vIdis vddis vi [6 v2 (S e v) c% v2 85
$ 6at 32ut 16 d 8 d e E) vl 5 v4 c5 a3 h vl alf v2 LA v) d% vd 885 q vidis
¢ v d g w2 dh sldw [vdais vl g% v2 g% o v] alf v2 245 @ v) a6 v2 (6 v) ck
2 ? ve a5 y v3dis vddis v] gF v2 gS @ vl {6 v2 £S5 @
8 (Dotted note duration definitions)] vl gh v2 ef v ch vd g5 q vidis vidis v] ef v2 e5 @
9 : do VOrF IVAL ¢ » DO LOOFr 9 vl ch v2 g5 v3 e5 vé C% eb 4 vidis v2dis vidis vddis
10 : td tds do ; 1 td tds Jo ¢ : 8¢ sds du 19 v5d1s vh gl s & 8
11 : ed eds do ; t qd yds do ; 1 M hds do ; 11 5 JC2 vhdis v2 95 v) @5 vd c4 vl 45 & c6 ¢ 33 vadis s
12 : wd wds do 12 vlllSvqu.clvlcﬁtllSccSe“SQl
13 DeClmAL HINIT 13 2 JCA cf v3 iS5 vd d8d ¢ v2dis vidis vi ad5 @ g5 sx viédis
14 CB .° music Constructs Loaded ° 14 s vl di5 v2 884 v gé va a)) e5 A13 4s g es add @
1% ;s 15 ~=>
SCR § %9 SCR D) T8
LK #52401-urh) § (Sonq - Jesus Christ Superstar #51281-NPb)
1 1 .
? 2t JCI vl €f v2 a5 v] A95 v4 {3 & v] a)5 33 vadis 8 vi ch
3 3 @ vl bS vé f) e vl €5 e b5 e ck « b5 e vl ¢4 v2dis
M [vl e5 va cd e vl a9t ss vidis vddis 3 vl 9% e
S 5 vl €5 v? atd v) Q4 v4 c4 es e3 €3 G} o5 oS ¢ ;
& A3 JCA v) AR5 v2 2% v) FS vd f4 ¢ @ 35 vedis s vi s 8
? 7 vl cd e e f1 e vl c5 @ vl di5 v? 885 v) 5 vé cd e
] A vl 8h @ cf 35 vddis & 285 v4 es vl cf v2 v) es vd a3
e . c4 es g9l ¢
1v 18 JCS vl 835 v2 q5 v) €5 vd cd e v] ch e 38 vadis 3 v4
13 11 vl 385 @ @ ch ¢ adS & cé e 45 v2 adS v g% ve
12 12 d8) e fFf ¢ g5 ss v2dis vidis vedis s vl fh v2 v] vé
13 13 ak) @8 483 ¢ vl cf v2 g5 v) €85 qd ; -->
14 14
15 15
ox FN R
{ Song ~ Jesus Christ Superstar 051281 -mps)
1
Suk g o4 , 21 JCA v2 a5 v3 495 v4 £3 vl €6 @ & 35 vadis 5 vd cd @ 14
.l‘ | Sam n Met Kiver valley e31781-nfe) 3 e e vl 805 @ c6 @ 406 v2 895 v3 e5 vd cd e v) cf e
¢ WL VA €S w15 0 vZ 4 VD 13 VA €3 V3 1) s C4 @ AR LR TR AR R RS LR Rl
Doyl ad vs dhe vk 410 a8 v2 ok v) 115 vi 8 v d) e v2 a3 §10C7 6 o3 vl g5 5 % @85 v2 15 v) 5 5 €5 vl €6 v2 g5 ¢
L] v3 5 vd b4 vR g3 q v2 @5 v] o5 vd afd vS cd vRdis q 3
Y V2 €5 v €5 va 4 v5 cd wh 11 s v2 85 v3 L5 vé €5 ox 7 ss h vidis v2dis vidis v4 f4 es v! g5 s s ald v2 95
M . v) d#S s vl ¢c6 v2 85 e 85 qs vd cd q vidis v2dis vidis
v2 ch v3 a5 v {5 ¢ v2 th y4d ; 9 fa ws vl aSs sv2 £S5 s vadis vl ch @ fh vZ cf v) as
7 : WRZ vidis vddis vSJdis vRdis vl s vl (S v2 £S5 18 a8 vé cd qs (3 q ;
[} vl 8% v2 a% v} c5 ve () vS) o vd ol o 13 —=>
9 vl g5 v2 g% v) ald vd cd o v] v) ad ve 4 12
10 v £3 q vl 95 v2 g5 v) 415 ve vl ty 1n
1l vZ 1S & vl A5 v2 @5 v) ats v o 14
12 vl 5 vZ2 S v) 4% es v4 gd v5 a4 g 3 1s
13 ==>
i scw 8 72
8 (song - Jesus Christ Superstar 951581 -mpy)
3
SCR § &5 2t JCB vidis v2dis vidis vd4 cd as v} gf 5 3 {6 v2 ¢ v) a5 s
0 - Somnqg - Red River Valley #5126)-nbPu) 3 v2dis vidis v) 646 @ c6b v2 g5 v] o5 88 g8 vd g) es @
] 4 vidis v2dis vidis cé es vl 95 5 3 805 v2 {5 v3 d5 & e5
2 1 RRY v3idis vddis vSdis vAdas vl ¢5 v2 c5 es v} fS v2 f5 @ 3 vl ¢ch v2 g5 @ 38 98 vd g3 es c4 o vidis vidis vidis
3 vl 85 v2 25 v) €5 va €3 vS f) o3 v4 c4 o5 v] a% v1 ah [6 es vl a5 8 8 v2 £5 8 v2dis vl ch e f6 v2 ch v] a5 8
4 v3 5 v& ¢S vd d4 en vd cd o vl ©5 v2 cf v) £S5 vd €5 7 vd c4d g8 [} es chd @
s vS a4 vidis es vS cd o8 v] 285 v? 205 v) oS ve S $ 1 JCY vidis v2dis vIAis vd f4 e v] f6 8 (46 8 16 v2 cf
£ vS g4 es vl a5 v2 a5 v) 3 vS f4 ¢ v) a5 v2 q% v3 S 9 vl a% s v28is vidis vl AlS e f5 v2 ck v] a5 ss vl ded
) vd c5 v5 gt vk cd qs v2dis vd ed es v) D) vé f4 vS @5 10 qs cd es 3 @ vidis v2dis vidis cd es v] 05 3 5 {F
a8 es v] aS v) ad4 vi ed vS ¢t q ; 11 v2 cf v) a% 8 v2dis vidis v] 48K e ¢k v2 Q5 v] e5 ss
9 : KR4 vidis v4dis vSAis vAdis v) €5 v2 c5 es vl 15 v2 IS @ 12 ve all qs 9% 3 ;
1f vi 85 v2 a5 v) ¢S vd 3 vS £3 @5 v4 c4 o5 od o5 v] oS 13 ==>
1) v2 95 v] afs vé c4 o vl [5S v2 £S5 v) a8 vl f4 es vé cl @ 1a
3 vl g5 v2 g5 v3 o5 v4 a8d vS cé es vl a5 v2 aS v) IS 18
13 vd €5 vS €3 e ;
14
15 ~=> SCR ¢ 73
{ Somn - Jesus Christ Superstar #51281-mpPs }
SCu ¢ 66 b
9 { Song - Med River Valley 05128 ~nry) 21 JCI0 vi 95 v2 &5 v) ¢% vé gé vS c4 v6 c) q v2dis vidis védis
1 3 vl @5 @ ¢35 v2 q4 v e4 @8 h vl a5 v2 €5 v) c5 va a4 v5 £
2t RRS vl ok v2 ©6 v3 £5 ve o5 v5 8] vé &82 es v] a0 4 v6 1) 4 v2dis v3dis vddis vl {5 @ ¢S v2 ad es h 5 v] als
3 v2 al% v3 IS vé A5 es védis v5 4 es g es a4 4 S v) d5 804 v5 803 v6 a2 q v2dis vIdis vadis vl g5 @ ajS @
4 vl 35 v2 d5 v) g#4 vé 4 vS ad3 es vl c#S v2 oS 6 a5 v2 £5 v) ©5 v4 a4 v5 f4 v6 £3 q v2dis vidis védis vi g5
5 v5 bl @ vl €5 v2 ¢5 v) ad vd €4 vS ¢4 gs vl 25 ? ® 15 @ g5 v2 a5 v] ©5 vé g4 v5 v5 ¢4 vh ¢) q v2dis vidis
[v2 5 v) €5 vd ad v5 c) es @ v) a5 v2 8% v) £S5 [] védis v1 @5 ¢ c5 v2 gd v) ed es s v6dis v5 g) qs e v5dis ;
? v4 B4 v5 d4 v6 g3 q vl @5 v2 g% v] e5 v4 als vS c4 9 -2
8 vAdis es o vl £5 v2 £5 v3 ad v4 cd vS £3 qs v3 ald 144
9 vé 34 e3 o8 v3 8d vi cd q ; i
IP : RRE vi cf v2 €6 v) 15 vd dI5 v5 303 vé 882 es v1 8i$ 12
11 v2 als v4 45 es vadis v8 f4 st o5 ald o vl 4% 13
12 v2 d5 v) al4 vé 14 vS al) ex b3 v] c8S v2 etS @ ; 4
13 ==» 18
14
15
SCR ¢ 4
SCh & 67 : { Bong - Jesus Christ Superstar 052481 -mPB)
§ (Sony - Ked River Valley #3240 -aps) 21 JC11 vl 4% v2 €5 vi c5 va cd g v2dis vIdis vl e5 e 5 v2 qé
1 5 va €5 3 vl ed vl cd o5 Gs N3 es cd @ £3 vl a5 v2 £S5 v3 ¢S q v2dis
23 T vl €S v2eS v) ad va f4vScaq eI vl ISy ¢ vidis v) £5 @ c5 v2 ad v} fd va £3 @5 gs ¢5 a1 @ A8) vi asS
3 v) €5 v4 a5 o5 @ v1 8% v2 a$ v) £5 vd b4 vS dd S w2 £S5 v) S q v2dis vidis vl g5 @ a5 e a5 v2 £5 v3 c5 va 3
4 v6 93 q vidis vAdis vl 95 v2 5 v} e5 vd at4 es @ £ q v2dis v3dis v] q5 v4 g1 @ a) vl 5 @S v2 e5 v] c5 vé c&
5 vi €5 v2 £5 v3 c5 v4 ad vS cd vh £3 oS es v2 ad ? q v2dis vidis vl 5 @ ¢S v2 g4 v) el es o3 V4 gI Q8 ¢ ;
6 v £S5 vd cS es 5 v2 c6 v] a5 es v2 {6 v3 ch vi 13 8 1 JCFA ALVI 1 - ALV1 | ALV2-k 8 1 - ALVZ-k { vl ALVI B Amp
? vS a4 qd 9 v2 ALV2-6 @ AMP v) ALV2-6 8 AMP vd ALVI-f & AWP ;
8 1 RIVER llﬂ.. DVAL) 254 JVAL | 16 1 JCEND 88 ALVI 1 6 ALV2-6 | ;
9 RR1 AR2 RR} WK RRS MRZ RR) WR¢ RRS 11 © SUPERSTAN 11880 DVAL § 128 IVAL |
10 RR? RR3 RA4 RRR RA7 RINIT ; 12 JC1 JC2 JCA JC3 JC2 JCA JC4 JCS ICh JCT
11 CR . Red River Valley loaded * N
12 38 1) JCB JC9 JCI# JC1e JC2 JCA IC3 ICZ JCA Jud JCS JCA JC? JCB JCo
13 14 JC1} JCrA JC3) JCFA JC11 JCFA JCFA JC11 JCEND RINIY ;
14 19 CR .* Jesus Christ Superstar loaded ° ;S
15
ok oKk
Page 56 FORTH DIMENSIONS II1/2

Of

o O A ma Amd .

OPTIMIZING DICTIONARY SEARCHES

Paul van der Eijk
5480 Wisconsin Avenue, #1128
Chevy Chase, MD 20015
(301) 656-2772

Recently, I finished the implementation
of fig-FORTH on my Radio Shack model II.
I must admit that I did not follow the FIG
model precisely; some high level defini-
tions were recoded 1in assembler to
increase their speed. For example, sign
extraction in the divide and multiply
words gives an execution time improvement
of a factor two. These improvements are
predictable and probably implemented many
times already.

One deviation from the FIG model I want
to share with you is the structure of the
dictionary.

In the FIG model, the Link Field
Address is stored after the last character
of the name. When (FIND) searches the
dictionary for an entry, the lengths of
the strings are compared. If the compari-
son fails, and this happens a lot, the
characters stored are scanned for a high
5it in the last character. When the scan
stops at the last character, we know the
address of the LFA, because it follows the
_ast character. It will be obvious that
the time spent on searching for the LFA
w#ill be linear with the average numbers of
characters stored for an entry. One way
to get around scanning 1is adding an
additional byte in every dictionary entry,
indicating the actual number of characters
stored. Another approach was taken by
Robert Smith, see FORTH DIMENSIONS, Vol.
i, No. 5.

The structure 1 implemented puts the
LFA in front of the Name Field Address.
#hen (FIND) stores the address of the NFA
in a machine register, a search for the
_FA is not necessary because it precedes
the NFA directly. 1In addition, the char-
acters of the entry can be stored in
normal order, which makes changing 1ID.
unnecessary.

The new dictionary structure can
improve compilation speed substantially.

An application program 70 screens long
took 210 seconds to compile; the new
dictionary structure reduced the com-
pilation time to 98 seconds.

To implement the new dictionary struc-
ture, the following words have to be
rewritten:

CREATE VOCABULARY LFA NFA PFA .
(FIND) has to be rewritten as well, but is
not given here because it is machine
dependent.

0 (LFA prececds NFA | of 2:

1 NEX

2 : CREATE ~FIND 1IF DROP NFA 1ID. & MESSAGE SPACE TUEN

3 (check unique In CURRENT and CONTEXT)
[} HERE C8 wWIDTH € MIN OR { save number of chars stored)
5 HERE OA0 TOGCLE 1IERE R + DUP 080 TOGGLE

() (smudge snd delimjter bits)
7 DUP 2+ R 1+ -CHOVE (move entry down to insert LFA)
L) LATEST HERE HERE 2+ CURRENT 8 1

9 R> 3 4 ALLOT LERE 24 ,

10

11 : NFA 3 ~ =1 TRAVERSE ;

12 : LFA NPA 2 - ;

13 : PPA)} TRAVERSE 3 + ;

14

15 -

{ LFA precceds NFA 2 of 2: Paul van der tijk apri)-12-1981)
: VOCABULARY <BUILDS CURRENT @ 2+ , 0AOBl

HERE vOC-LINK 0 , voC-LINX |

DOES> CONTEXT

the following change in ~F1ND speeds up dictionary searches)
in case the CURRENT and CONTEXT vocabularies are the same.)
the change is not necessary for the new dictjonary structure)

o~ o~

: =FIND 8L WORD WERE COUTEXT & @ (PIND) OUP O=
1F DROP LATEST CONTEXT & @ oviR -
IF UERE SWAP (FIND)
ELSE DROP O
TUEN THER
DECIMAL S

-, e
VB WNCOWEBNE NS~ O

MEETING

POTOMAC FORTH INTEREST GROUP MEETING

Program was presented by Paul van
der Eijk on IQS - An Interactive Query
System. He described this system which
lets the user create, edit, search and
list a file without writing a program.

The next meeting is Tuesday, Aug.
4, 1981 at Lee Center, Lee Hiahway at
Lexington St., Arlington, Virginia from
7:00 - 9:00pm.

FORTH DIMENSIONS III/2

Page 57

TRACING COLON-DEFINITIONS

Paul van der Eijk
5480 Wisconsin Avenue, #1128
Chevy Chase, MD 20015
(301) 656-2772

This short article describes a few
simple words to trace colon definitions.
When I am completely lost trying to find a
bug in a FORTH program, I use colon
tracing to get a print-out of all words
executed together with a few parameters on
the data-stack. Such a print-out is often
enough to spot the bug; in additiom, it
gives some insight how many times certain
words are executed which can help to
improve the execution time of a program.

How it works:

A technique to trace colon
definitions is to insert a tracing word
directly after the colon.

i.e., : TEST Tl T2 ; TEST can be traced by
having a definition compiled as if it
were:

: TEST (TRACE) Tl T2;

When (TRACE) executes, the address of
the word following it is on the return
stack. Subtracting two from this address
will give the parameter field address,
from which we can reach the name field
address using the word NFA. In order to
enable/disable the trace ouput, the varia-
ble TFLAG is used; a non-zero value will
enable the output and a zero value will
suppress the trace output.

TLe insertion of the (TRACE) word can
be automated if we redefine the definition
of the colon.

The colon is redefined to insert the
runtime procedure for the colon followed
by the address of (TRACE).

Note that the address of the colon
runtime procedure is obtained by taking it
from the code field address of the word
(TRACE).

Improvements:

1. If we save in (TRACE) the value of the
variable OUT and direct output to the
line-printer, words doing formatted
terminal output can be debugged
effectively.

2. A variable TRACE is introduced to
control the insertion of the word
(TRACE) in the new definition for the
colon.

If the value of TRACE equals zero,
(TRACE) is not inserted, if the value is
non-zero (TRACE) will be inserted.

This enables tracing code to be
inserted in a selective way by changing
the value of TRACE preceding a colon
definition.

i.e.:

O TRACE ! : TEST1 TI11 TI12 ; (TEST] will
not be traced)

1 TRACE ! ¢ TEST2 T21 T22 ; (TEST 2 can
be traced)

0 (trece colon words: Paul van der E1jk april-j2-198))
1 FORTNI DEFINITIONS

2 0 VARIARLE TFLAC (controls trace output)

3 : (TRACE) (give trace output. to be inserted as first word)
4 TRLAC @ (trvece output 1f non-zero)
$ IF CR R 2 ~- NFA DUP 1D. (back to PFA NFA for name)
3 C¢ 31 AND 32 SUAP - SPACES (add speces to name)
? =2 4 DO SP€ 1 + & 8 R ~2 4LOOP (showv steck)
8 THEN ;

[B (redefined to snsert trace word afier colon)
10 EXEC 1CSP CURRENT @ CONTEXT | €REATE

11 ' (TRACE) CrPA DUP @ NHERE 2 - 1 , } ; IMMEDIATE
g (exsmple: trace following vae of | and C!)

1W: 3 1

15: €t ct ; S

MEETING

NEW YORK CHAPTER

First meeting of the New York Chapter
wvas held on June 23, 1981. There were
five FIG members and one non-FIG person
in attendance. The second meeting is
scheduled for August 25, 1981 and sub-
sequent meetings every other month.

Iy

Page 58

FORTH DIMENSIONS I11/2

1"

¥

172

FORTH, Inc. NEWS

se're Growing

FORTH, Inc. expects to double its staff
«ithin the next year to accommodate
.acreased product demand and applications
srogramming. (See job openings listed
:_sewhere in this publication.)

The latest addition to our staff is
crogrammer Charles Curley. Curley is a
‘2rmer freelance writer and programmer who
:2its and publishes the Ohio Scientific
.sers’' Newsletter.

"I put FIG FORTH up ian wmy own Ohio
i:ientific C2-8P DF and liked it,” he
:>uments, "but I wanted to learn FORTH
svstematically, and I figured this was the
:est place to do that. At FORTH, I get
cz:d to do what I like to do."

Zzher News

President Elizabeth D. Rather was a
a2aber of a panel on programming languages
r small computers at the NCC Conven-
:ion. She was featured in both Computer-
<2rld and Computer Business News.

Programmer Mike LaManna has relocated
:: Long Island, New York, and is working
:= the 68000 polyFORTH. It should be
:vailable midsummer.

Z:1yFORTH Palo Alto Users Groups Starting

Dr. C. H. Ting has volunteered to Chair
-~e Palo Alto Thread of the FORTH Users
roup for the first three months. Anyone
.~terested in joining the Users Group may
:zatact Dr. Ting at Lockheed Missiles and
izace Corp., (408) 742-1101 or Al Krever
: FORTH, Inc. (213) 372-8493.

i2cent Applicatious

FORTH, Inc. has produced a computer
~zmerical control program for L & F

Industries' rotating longitudinal-stretch
forming machine. This 80-foot-long,
three-story-high giant weighs over a
million pounds and pulls 750 tons. It is
used to form, stretch, bend and stretch
wrap aluminum, steel and titanium sheet
metal or extrusion parts (typically panels
used in C5A-sized aircraft).

An LSI-1]1 detects the yield point of
the metal and maintains a pre-set stress
as the operator directs the initial opera-
tion; it then takes over full control and
manufactures identical production parts.
This computer program, written in poly-
FORTH, coordinates the motion of nine
simultaneously moving servo-controlled
axes with a resolution of .008". The
system also displays on a CRT the position
of all axes and a graph of the stress
curve showing the yield point of the
metal. Mike La Manna, Jim Dewey and Gary
Friedlander were involved in the project.

Starting FORTH Preprints Available

A few unsigned preprints of Startin
FORTH are available now for $30 (plus 62
state tax). The Prentice-Hall edition
will be available in book stores September
8. To order a preprint, send a check to
Winnie Shows at FORTH, Inc., 2309 Pacific
Coast Hwy., Hermosa Beach, CA 90254 or
you may call her at (213) 372-8493 with a
VISA or MASTERCHARGE number.

FORTH, Inc. Seminars, Workshops, Classes

Location Seminar Workshop
Chirago August 4 August 5
Boston August 6 August 7
Boulder, CO September 1 September &4
Los Angeles October 15 October 16
San Diego October 22 October 23

An iatroductory class in polyFORTH
programming will be offered August 10-14
at FORTH, 1Imnc. Call Kris Cramer for
details (213) 372-8493.

i2RTH DIMENSIONS III/2

Page 59

The following vendors have versions
of FORTH available or are
consultante:

ALPHA MICRD
Professional Managemeat Services
724 Arastradero Rd. #109
Palo Alto, CA 94306
(415) 858-2218

Sierrs Computer Co.
617 Mark NE
Albuquerque, NM 87123

APPLE
IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

George Lyons

280 Henderson St.
Jersey City, NJ 07302
(201) 451~-2905

MicroMotion

12077 Wilshire Blvd. #506
Los Angeles, CA 90025
(213) 321-4340

CROSS COMPILERS
Nautilus Systems
P.0. Box 1098
Santa Cruz, CA 95061
(408) 475-7461)

polyFORTd
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

LYNX

3301 Ocean Park #301
Santa Monica, CA 90405
(213) 450-2666

M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

Micropolis
Shav Labs, Ltd.
P. 0. Box 3471
Hayward, CA 94540
(415) 276-6050

North Star
The Software Works, Inc.
P. O. Box 4386
Mountain View, CA 94040
(408) 736-4938

FORTH VENDORS

081
Consumer Computers
8907 LaMesa Blvd.
LaMesa, CA 92041
(714) 698-8088

Software Federation

44 University Dr,

Arlington Heights, IL 60004
(312) 259-1355

Technical Products Co.
P. O, Box 12983
Gaineville, FL 32604
(904) 372-8439

Tom Zimmer
292 Falcato Dr.
Milpitas, CA 95035

6800 & 6809
Kenyon Microsystems
3350 Walnut Blvd.
Houston, TX 77042
(713) 978-6933

mr-11
Laboratory Software Systems, Inc.
3634 Mandeville Canyon Rd.
Los Angeles, CA 90049
(213) 472-6995

John S. James
P. 0. Box 348
Berkeley, CA 94701

TRS-80
Miller Microcomputer Services
61 Lake Shore Rd.
Natick, MA 01760
(617) 653-6136

The Software Farm
P. 0. Box 2304
Reston, VA 22090

Sirius Systems
7528 Oak Ridge Hwy.
Knoxville, TN 37921
(615) 693-~6583

KM
Eric C. Rehnke
$40 S. Ranch View Circle #61
Ansheim Hills, CA 92087

8080/280/CP/M
Laboratory Microsystems
4147 Beethoven St.
Los Angeles, CA 90066
(213) 390-9292

Mitchell E. Timin Engineering Co.
9575 Genesse Ave. #E-2

San Diego, CA 92121

(714) 455-9008

Counsultant

Henry Laxen

1259 Cornell
Berkeley, CA 94706
(41%) 525-8582

Application Packages

InnoSys

2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

Decision Resources Corp.
28203 Ridgefern Ct.

Rancho Palo Verde, CA 90274
(213) 377-3533

o4

Piraware, Boerds and Machines
Datricon
7911 NE 33rd Dr.
Portland, OR 97211
(503) 284-8277

Forward Technology
2595 Martin Avenue
Santa Clara, CA 95050
(408) 293-8993

Rockwell International
Microelectronics Devices
P.0. Box 3669

Anaheim, CA 92803

(714) 632-2862

Zendex Corp.
6398 Dougherty Rd.
Dublin, CA 94566

Variety of FORTH Producta
Interactive Computer Systems, In
6403 Di Marco Rd.
Tampa, FL 33614

Mountain View Press

P. 0. Box 4656
Mountain View, CA 94040
(415) 961-4103

Supersvft Associates
P.0. Box 1628
Champaiga, IL 61820
(217) 359-2112

Consultants
Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852

Dave Boulton

$81 Oakridge Dr.
Redwood City, CA 94062
(415) 368-3257

Elmer W, Fittery

110 Mc Gregor Avenue
Mt. Arlington, NJ 07856
(213) 663-1580

Go FORTH

504 Lakemead Way
Redwood City, CA 94062
(415) 366-6124

Inner Access

P. 0. Box 888
Belmont, CA 94002
(415) 591-8295

Page 60

FORTH DIMENSIONS III/2

DECOMPILER FOR SYN-FORTH

SYN-1 User's Group
PO Box 315
Chico, CA 95927

The following decompiler works very
wvell except that because INTERPRET is not
Temembered by ;S nor (;CODE-) nor QUIT,
this FORTH decompiles loop !

CENT 2 LIST 5 LMY
scan

0 { DECOMPILLR...) REX

1

1 VOCAMWLARY UTIL IMMEDIATE PORTH DEFINITIONS
BTSN I UriL DEFINITIONS

D TESTe (PFA P PRAY <> FRFA R)) P)CX = OR

i$ TEST
* (;co08) TESTH
' QUIT TEST

)
)

p]

»

r

L'rts'rrnn(!cnd'rnv) g ¢ 3¢ B
)

10

8

2 TTERMINAL OR SUAF DROF M=

13 ==>

scr 2
© (...eeCOMPILER...)

H

2 "tlbll‘\‘(.c’l-) ACPas) DUP 2¢ SUAP @ 2¢
3 |u.ﬂ.s'r-xruo'w'! 2+ MPA 1D.

4 n.s:o’cur TEST= IF DROP DUP OF MEX .)

5 Hseo ' (.7) TESTe IF DROP DUP COUNT DUP ROT SWaP
3 TYPE ¢+ 1o 22 DAIT SPACE
7 eLst ¢ ° LIT TEST= DUP IF BEX TREN

)

* BRANCH TEST>
L ©* OBRANCH TESTe
10 * (LooP) TEST- 17 DROP OUP @ . SPACE 2 ELSL DROP

131 THEN THEN THEN DECIMAL TREN ;

15 —->

sex 43
¢ ...0PCONPILER...) FORTN DEFINITIONS mEX

o
1
: DECOMPILE { PRA => WFA OF NIXT WORD) UTIL

3 HEX OUP 4 R DUP CFA & 5 .R DECINAL

. DUP CPA @ 303 =

s IF .7 : " DUP WFA 1D. SPACE DUP

* BECIN DUP @ 2¢ drA DUP CP 40 ARD IF .° {COMPILE) ~ THEN
’

L]

o

uor wv WA € A0 AND IF . LMEDIATE © TN
nuse © pUP WA 10.
ﬂmu.n!cnn;

i4 . DECOMPILE.ALL (PFA -> PPA) OA
1S SECIN DECOMPILL DUP PFa SWAP O= TTERNINAL OR UNTIL CR ;

TIAPLES
DECOMPILE.ALL
1417 803 : . $=30b D. ;8
1AD7 803 : R DR $-2D D> D.R ;§
1SR 803 : D. O D.R SPACE ;S
1903 803 : D.X DR SWAP OVER DABS </ S SICW 0) l) OVER - SPACES TYIE ;$
1980 803 : #S F OVER OVER OR Oe OBRANCH «12
1995 803 : £ MASE @ w/OL ROT CLIT 9 m(unnuv QIrT? +QAIT N ¢
oLy ;S
1980 803 : SICH ROT OC DBRANCH 7 CLIT 20 WOLD ;8
1967 803 : #> DROP DROP WLD & PAD OVER - ;8
1958 AD3 : CF PAD WLD | ;S
1938 803 : SPACES O MAX =DUP OSRANCN 12 O (DO) #PACE (LOOP) =4 ;S
1924 803 : WILZ ({COMPTLE] I¢ 2 ;5 DOEDIATE
1908 803 : ELSE 2 TPAIRS COMPILE DRANCH WNEREL © , SUAP 2 [CONPILE| RNDIF 2 ;3
INEDIATE
TAPT A0 : 1P COMPILE OBRANCH HERE O , 2 ;8 WWEDIATE
18N8 80) : REPEAT DR ‘R [CONPILE| ACAIN-R> R> 2 - {CONPILR) ENDIF DNEDIATE

ox
| WMILE DECOMPILE 1924 803 : WRILY [COMPILE) 17 2¢ {5 DORDIATE

oK

4 oK
Lisy

LY
COLON DEFINITIONS DECONPILES POR SYW-1)
WNICHEL DESSAINTES RARCH 22, 198}

e ve nsrwm~0R

VSE : " VORD.TO.DECONPILE DECONPILE
OR : ' PIRST.VWORD.TO.DECTM DECOMPILE.ALL

OUTPUT : PFA CPA.CONTENT : WORD.TO.DECOMP ...

DISPLACEYENT ARE 1N DPFINAL (BRANCH, OBRAMCH, LIY,...)
OTNER LITTERAL ARE IN REXADECIMAL (LIT, QIT,...)

11 POSSINLE EXTENSIONS : REPLACE (LOOP), (m)

12 BY LOOP, BRANCH

13 JusTiry . ll-i! ... ELSE, ...
14 DECOMPILE VAIIAILI mwulv. vee

ENGLISH FORTH APPLICATION

Golden River company has been using FORTH
for the RCA 1802 for the last three years,
to £fill a need for a low cost development
and prototyping tool with potential for
being used at remote sites where power is
not easily available.

The most interesting concept in the
equipment is it uses 32K of dynamic RAM as
storage space for up to 30 screens of
source FORTH code. The equipment is
designed with low power in mind and is
normally used like an electric car--it is
usually kept connected to an AC source,
although it has nine~days battery life and
can be used remotely.

The product is currently being shipped in
Europe and will be introduced in the U.S.
market through Golden River Corporation,
7315 Reddfield Court, Falls Church, VA
22043,

For more information, contact:

Golden River Company, Ltd.
Churchill Road

Bicester, Oxfordshire 0X6 7XT
England

Phone: Bicester (08692) 44551
Telex: 83147 VIAOR G 'GRIVER'

GET READY!

FORML's COMING!

FORTH DIMENSIONS 1I1/2

Page 61

NEW PRODUCT
ANNOUNCEMENT FORMAT

In the interests of comparison uniform—
ity and completeness of data in new
product announcements, FORTH DIMENSIONS
requests that all future new product
announcements use the following format:

1. Vendor Name (company)

2. Vendor mailing address

3. Vendor street address if PO Box.
Used as mailing address. For

reference file.

4, Vendor area code and telephone
number

5. Person to contact
6. Product name

7. Brief description of
uses/features

product

8. List of extras included (editor,
assembler, data base, games, etc.)

9. List of machines product runs on

10. Memory requirements

11. Number of pages in manual

12. Tell what manual covers

13. 1Indicate whether or not manual is
available for separate purchase

l4. If manual is available, indicate
separate purchase price and whether
or not manual price is credited
towards later purchase

15. Form product is shipped in (must be
diskette or ROM--no RAM only or tape
systems)

16. Approximate number of product
shipments to date (product must have

active installations as of writing--
no unreleased products)

17. Product price

18. What price includes (shipping, tax,

etc.)
19. Vendor warranties, post sale
support, etc.
20. Order turn-around time
MEETINGS/EVENTS

ANNOUNCEMENT FORMAT

In order to have uniformity and insure
complete information in all meeting and
special event aanouncements, FORTH
DIMENSIONS requests that you use the
following format:

1. WHO is holding the event (organi-
zation, club, etc.)

2. WHAT is being held (describe
activity, speakers' names, etc,)

3. WHEN is it being held (days, times,
etc.; please indicate if it is a
repetitive event--monthly meeting
etc.)

4., WHERE is it being held (be as com~
plete as possible--room number,
etc.)

5. WHY is it being held (purpose,
objectives, etc.)

6. REMARKS and SPECIAL NOTES (is there
a fee, are meals/refreshements being
provided, dress, tools, special
requirements, pre-requisites, etc.)

7. PERSON TO CONTACT

8. PHONE NUMBER/ADDRESS (include area
codes, times to call and give work
and home numbers in case we need
clarification)

Page 62

FORTH DIMENSIONS III/2

#RTH DIMENSIONS III/2

FORTH STANDARDS CONFERENCE
ROCHESTER, NY - SPRING 1981

 mmmaries

i
o sill

Page 63

1981 FORML CONFERENCE

Asilomar, California November 25-27, 1981
ATTENDEE REGISTRATION FORM

Conference The 1981 FORML (FORTH Modification Laboratory) is an advanced seminar
Purpose: for the presentation of FORTH language papers and discussioms. It is
not intended for beginning or casual FORTH programmers.

Attendee The FORML Conference is limited to 60 FOEHE programmers (approx. 30
Selection ‘family and other non-participants accommodations are also available).
Priority: The priority for selection of attendees is:

1st —-Paper presentors who send in their 100-word abstract by the
deadline of September 1, 1981.%

2nd - Poster presentors who send in their 100-word abstract by the
deadline of September 1, 1981.%

3rd - FORTH programmers who wish to attend only. Depending upon the
response of paper and poster sessions there way or may not be
room for non-presentors.*

*The FORML Conference Referees will make the final decisions on
paper/poster presentors which will in effect determine attendance and
priority positions.

Registration NAME

Form, Complete

and return to: ADDRESS

FORML CITY STATE ZIP COUNTRY

PO Box 51351 .

Palo Alto, CA PRONE (Day) (Evening)

94303 I have been programming in FORTH for: (years) (months)
Types of CPU's and/or computers:
I have authored the following papers and/or articles about FORTH:
I expect to: present a paper, present a poster session
chair a section, non-presentor

My topic will be:

Accommodations Rooms at Asilomar include meals (including a huge Thanksgiving) and the

Desired: price of the Proceedings is included in participant costs.

Myself Double $110.00 Single $150.00

Wife/Husband/Friend ($85.00 for room and meals)
I will arrive the afternoon or night before, please reserve a room
for: # on Tuesday, November 24 @ $35.00 double

or $47.00 single

FOR MORE INFORMATION CALL: ROY MARTENS (415) 962-8653
Page 64 ' FORTH DIMENSIONS 111/2

v—

LATE NEWS

BURKLUND & ASSOCIATES
3903 Carolyn Ave
Fairfax, VA 22031

(703)273-5663

Mr. Roy C. Martens June 29, 1981
Forth Interest Group

P.O. Box 1105

San Carlos, CA 94070

Sirs:

Tsk, Tsk, Tsk! You really did it this time! Tsk, Tsk, Tsk.
The product review of Timin Eng. version of FORTH is totally
beside the point...what you did, was crucify one of the finest
versions of FORTH currrently available on the market, namely the
Laboratory Microsystems, Z-80 FORTH.

I bought Laboratory Microsystems Z-80 Forth about 3 months
ago, and was ecstatic with what I had bought for a paltry $50.
When I read your product review, I tried the same definitions on
my 4 MHZ system and found that all times were approximately 2-5%
less than your comparative data for Timins 8080 version...there-
fore with the differing CPU clock rates of 4MHz for my and 6Mhz
for Timins systems on which the Laboratory Microsystems Z-80
versions were compared (how convenient is was tried on Mr. Timins
systems) the 2-80 version should reflect benchmark times
approaching 30% better than those cited in the comparison test.
I would have thought that FORTH DIMENSIONS would have staff

expertise of a bit higher quality than that reflected in the
product review article.

As for the tip-toeing disclaimers via the Editors Comment...
hey, it just won't wash!

I think that FORTH DIMENSIONS owes a yery large apology to
LABORATORY MICROSYSTEMS, and at least a full page of space to try
to counter the damage you have done to Z-80 FORTH; or will you
allow the old adage that "the truth never catches up to the lie",
prevail? FORTH DIMENSIONS...Shame! Shame! Shame!

Sincerely,

Glenn A. Burklund

Fublisher's Comment: The following letter was received in feference to a Product Re-
view by C. H. Ting in PORTH DINENSIONS, III/1, page 11-12, which compared some bench

marks between CP/M FORTH from Timin Engineering and Z-80 FORTH from Laboratory Micro-
svstems. We are printing this letter in its entirety for several reasons: to correct
a1y unintentional damage to Laboratory Microsystems; to ask our members whether they

iesire comparisions between FORTH and other languages and between FORTH products; if
ve are to do comparisions then it will have to be by volunteers since we do not have

a staff, it then becomes a problem of who and how, Any volunteers?

NITH DIMENSIONS III/2 Page 65

How to form a FIG Chapter:

1. You decide on a time and place for
the first meeting in your area.
(Allow at least 8 weeks for steps 2
and 3.)

2. Send FIG a meeting announcement on
one side of 8-1/2 x 11 paper (one
copy is enough). Also send list of
ZIP numbers that you want mailed to
(use first three digits if it works
for you).

3. FIG will print, address and mail to
members with the ZIP's you want from
San Carlos, CA.

4. When you've had your first meetiag
with 5 or wmore attendees then FIG
will provide you with names in your
area. You have to tell us when you
have 5 or more.

Northern California

4th Sat FIG Monthly Meeting, 1:00 p.m.,
at Southland Shopping Ctr.,
Hayward, CA. FORML Workshop at
10:00 a.m.

Southern California

Los Angeles

4th Sat FIG Meeting, 11:00 a.m., All-
state Savings, 8800 So.
Sepulveda, L.A. Call Phillip
Wasson, (213) 649-1428.

Orange County

3rd Sat FIG Meeting, 12:00 noon, Fuller-
ton Savings, 18020 Brockhorst,
Fountain Valley, CA. (714) 896-
2016.

San Diego

Thur FIG Meeting, 12:00 noon. Call
Guy [Kelly, (714) 268-3100,
x 4784 for site.

Northwest
Seattle Chuck Pliske or Dwight Vanden-
burg, (206) 542-8370.

Oregon

2nd Sat FIG Meeting, 1:00 pm, Computers &
Things, 3460 SW 185th "D", Aloha,
Eric Smith, (503) 642-1234,

New England

Boston

1st Wed FIG Meeting, 7:00 p.m., Mitre
Corp., Cafeteria, Bedford, MA.
Call Bob Demrow, (617) 389-6400,
x198.,

Boston

3rd Wed MMSFORTH Users Group, 7:00 p.m.,
Cochituate, MA. Call Dick
Miller, (617) 653-6136 for site.

Southwest
Phoenix Peter Bates at (602) 996-8398.

Tulsa

3rd Tues FIG Meeting, 7:30 p.m., The
Computer Store, 4343 So. Peoria,
Tulsa, OK. Call Bob Giles,
(918) 599-9304 or Art Gorski,
(918) 743-0113.

Texas Jeff Lewis, (713) 719-3320 or
John Earls, (214) 661-2928 or
Dwayne Gustaus, (817) 387~
6976. John Hastings (512) 835~
1918.

Mid Atlantic

Potomac Paul van der Eijk, (703) 354~
7443 or Joel Shprentz, (703)
437-9218.

New York Tom Jung, (212) 746-4062.

Midwest
Detroit Dean Vieau, (313) 493-5105.

Foreign
England FORTH Interest Group, c/o 38,

Worsley Road, Frimley, Camber-
ley, Surrey, GU16 5AU, England

Japan FORTH Interest Group, Baba-bldg.
8F, 3-23-8, Nishi-Shimbashi,
Minato-ku, Toyko, 105 Japan.

Canada
Quebec Gilles Paillard, (418) 871-1960
or 643-2561.

West Germany
Wolf Gervert, Roter Hahn 29, D-2

Hamburg 72, West Germany,(040)
644-3985.

Page 66

FORTH DIMENSIONS III/2

FOSTH IIMENSIOTS

N FORTH INTEREST GROUP Volume Ili
L P.O.Box 1105 Number 3
San Carlos, CA 94070 Price $2.50
68 Letters
73 FORTH Standards Corner
74 FORTH-79 Standard—A Tool Box?
el
78 FORTH Engine
[\
| 80 FORTH, Inc. Line Editor
: Recursion and the
\ 89 Ackermann Function
21 FORTH, Inc. News
L 92 Marketing Column
[)
I-{r_‘ 986 Classes
I I 97 Chapters/Meetings
’ 98 FORTH Vendors

F

Published by Forth interest Group

Volume ili No. 3 September/October 1681
Publisher Roy C. Martens
Editor C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner
Bob Berkey

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed
for accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth interest Group at $15.00 per
year ($27.00 foreign air). For membership, change of
address and/or to submit material, the address is:

Forth interest Group
P.O. Box 1105
San Carios, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Chariottesville, VA, it was created out of dissatistaction
wit.1 available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers' unique requirements.

The Forth Interest Group is centered in Northern
California. Our membership is over 2,400 woridwide. It
was formed in 1978 by FORTH programmers to encour-
age use of the language by the interchange of ideas
through seminars and publications.

EDITOR’S COLUMN

This month introduces the long-promised
MARKETING COLUMN. Considering that one of the
best ways to proliferate FORTH is to sell it in the form
of applications, | believe this column wilt contribute to
the financial welfare of our members and help make
the FORTH language a force in the software worlid.
Questions related to all phases of marketing from pro-
duct research and development to pricing, advertising
and distribution channels are welcome.

Our next edition will be devoted to the conference
at the University of Rochester and will be coordinated
by Mr. Larry Forsely of that institution. One of my main
goals as editor has been to “de-Californize” FORTH
DIMENSIONS and make it refiect more accurately the
opinions and techniques employed throughout the
FORTH world. This next edition is a boid experiment in
this regard and | have every confidence in Mr. Forsely
helping to make it a successful one.

The issue foliowing ROCHESTER will be devoted to
music, graphics and games. Currently, this type of ap-
plication is in very short supply and | am appealing to
our members to submit them as soon as possible.
Please remember, YOU DONT HAVE TO BE A
WRITER —our staff will help provide whatever is neces-
sary to make your articie or game pubfishable—but the
raw ideas and code have to come from you. Also, we
are not necessarily looking for lengthy, complex and
elegant applications—simple, instructive, short codes
often are best and the most useful.

Please contribute whatever you can—uitimately the
quality and utility of FORTH DIMENSIONS comes from
our members!

C. J. Street
Editor

PUBLISHER’S COLUMN

Nov. 2-4: Mini/Micro Show, Anaheim, CA

Nov. 25-27: FORML Conference, Pacific Grove, CA
Nov. 28: FIG National Convention, Santa Clara, CA
Mar. 19-21: Computer Faire, San Francisco, CA

FORTH vendors—these shows can be helpful to
you in several ways. First, if you will send FIG approxi-
mately 500 flyers, 82 x 11, about your products, we'll
dispiay them at all four places. Second, you should ex-
hibit at the FIG Convention on November 28 at the Mar-
riott Hotel, Santa Clara, CA. An 8 table is only
$50.00~8end a check to FIG, today. Third, FIG has a
prime location at Computer Faire, March 19-21, 1982
in San Francisco. We have booths 1343C and 1442C;
these face the central booth area and form an Island
with eight other booths. Six of these booths are cur-
rently available. Lets get all FORTH vendors together.
All you have to do is call Computer Faire (415)
851-7075 and tell them you want to be in the same
island as the FORTH Interest Group.

Roy Martens

Page 67

FORTH DIMENSIONS 111/3

I35 x38%

»359%3

»

i to
*OXi-
we'll
j ox-
Mar-
only
1as a
1982
42C,
sland
cur-
ither.
(415)
same

AYP3e9em

—-—

i3

. 3 disturbed to see that you have recently
is~ed a review comparing our Z-80 FORTH
to TIMINS FORTH and stating that the
I “DORTH is significantly slower than the
wersion. Please be informed that the
me~—ark was run on an early version of Z-80
¥ ~— which has not been distributed for the
-.e months. The current version that we
» w_ing has been benchmarked by some of
r =.stomers as 5-10% FASTER than 8080

o

-

8= ~ave made an effort to provide a high
iz., comprehensive FORTH program devel-
mer: package at a very reasonable cost.
300 copies of the current Z-80 FORTH
a have been sold so far and I do not know
F o~ unsatisfied customers. 1 think it reflects
« 2oorly on your publication that you would
mme such a review without checking the facts
e~ all of the interested parties. If you peopie
really concerned with promoting the
T language, please be a little more care-
L «.*h attacking the reputation and products
F ~e "ORTH language vendors.

Ray Duncan

LABORATORY MICROSYSTEMS
4147 Beethoven St.

Los Angeles, CA 90066

#2 fail to see how publishing a comparison
«=w of products that were on the market less
a year ago can be construed as an attack
r =:ther that product or the reputation of its

N osr.

*© inference has been made that Laboratory
cosystems Z-80 FORTH is an inferior
~auct, or that it has dissatified customers. In
=. if the mail we are receiving from your
p=c 2 Mers is any indication, quite the contrary
—ue. Admittedly, the review published failed
r dicate which versions were being com-
g=2, but we know of no facts that were inac-
prately reported. If we are to provide the
“RTH world with useful product reviews,
~cracy is important, and if Laboratory
k. =rosystems knows of any inaccurate facts or
~ud care to provide us with an updated
. ew, ample space will be provided.--ed.

LETTERS

Dear Fig:

Let me introduce myself: I'm Jim Gerow, an
avid MMS FORTH user, a FORTH programmer
(installer) for larger machines, and a member of
the local MMS FORTH user group.

I've been referred to you by Dick Miller of
MMS as a correspondent. Please let me know
how 1 can bas of service and how our MMS
FORTH User Group can support you.

Jim Gerow
1630 Worcester Rd., #630C
Framingham, MA 01701

Thank you--we would appreciate any arti-
cles, ideas, bug fixes, or usable programs or
tools you can send in. Looking forward to
hearing from you--ed.

Dear Fig:

San Diego has a FORTH Interest Group that
meets informally each Thursday and somewhat
formally the 4th Tuesday of each month.

Because of the different machines, MPU's,
and operating systems, (i.e., Disk or Cassette,
etc.) we have a problem of software exchange
(transportability). = We are considering the
development of a communications package
involving RS-232 modems and software.

We are interested in finding out what FIG
has, if anything, in standardizing any of the
communications such as protocol or hardware
specification.

Currently, most of the software exchange
involves hardcopy. If you have any information
relative to communications between FORTH
operating machines or protocol standards used,
we would appreciate your help.

K. G. Busch

Rancho Bernardo
12615 Higa Place

San Diego, CA 92128

O.K. members--how about giving Ken a
hand? Or better yet, send the info to FORTH
DIMENSIONS and we will publish it for all of
our members' use.--ed.

“RTH DIMENSIONS 11173

Dear Fig:

Would you please forward me a writer's
kit? I'm thinking about writing something for
Nov./Dec. GRAPHIC/MUSIC. 1 have imple-
mented a set of graphic words for Columbia
Data Products' MX-964 (Z-80 Micro-*2, 512x256
bit mapped, $10-8080-figFORTH), and am
working on some musical words for a dual GI's
sound chip board. If I can get my hands on
Digitalk (National Semi) early enough, maybe
some work also can be done on that before the
date] send out my articles.

Since you share the very same address as the
8080 Renovation Project, would you please for-
ward the following page to them for me? Many
thanks. Happy FORTH!

Tim Huang
9529 N.E. Gertz Circle
Portland, OR 97211

Thanks, Tim--we'll be in touch. The
graphics issue is approaching rapidly (deadline is
Oct. 15, 1981)--word to the wise-~ed.

Dear Fig:

This is a note authorizing you to use the
cartoon-style illustrations in the book Starting
FORTH by Leo Brodie of FORTH, Inc. The
credit line should read Leo Brodie, FORTH,
Inc., Starting FORTH, a forthcoming Prentice-
Hall publication. Reprinting oy permission of
Prentice-Hall, Inc.,, Englewood Cliffs, N.J.
After October 1, 1981 you can leave the
"forthcoming" out since the book will be in
print. Thank you for your interest.

Jim F. Fegen, Jr.

Editor, The Computing Sciences
PRENTICE-HALL

Englewood Cliffs, NJ 07632

Thank you Prentice-Hall. Watch for
cartoons from this important work.--ed.

Dear Fig:

Here is your complimentary copy of Starting
FORTH. We at FORTH, Inc. hope you enjoy it
as much as Mark Garetz of INFOWORLD, who
said it was the best beginner's book he'd seen.

The hard- and soft-bound editions by
Prentice-Hall will be on the shelves Sept. 8.

Let us know what you think of the book. We
are anxious to hear your comments.

Winnie Shows

Public Relations

FORTH, Inc.

2309 Pacific Coast Highway
Hermosa Beach, CA 90254

Thanks, Winnie. Please note the review in
this issue.--ed.

Dear Fig:

1 live in a country town in Australia and the
number of local computer hobbyists can be
counted on one hand. | have so far converted
one friend to FORTH and we have found all the
back issues of FORTH DIMENSIONS very
helpful with programming examples. [have had
my system for about 5 years; it is an 5100 Z-80
system with recently added dual Micropolis Mod
11 disks. I have rewritten the 8080 FIG FORTH
CP/M interface to work with Micropolis DOS
and am currently reworking some of the 8080
CODE definitions to use 2Z-80 instructions
where they will improve the code. 1 am
interested in corresponding with other FIG
users, particularly those with systems similar to
mine.

1 wish to make a comment about the naming
of words related to 32-bit integer operations.
The present mixture of prefixed "D" and "2"
make these words more frustrating to learn and
use. That would not be the case with consistent
prefix character. | think that the prefix
character should be "D" for double. I am sure
that most of us find the prefix letter "C" easy
to use for 8 bit operations and I am glad the
ASCII did not allow 1/2@ to be used. When
floating point comes around (for example, in a 6
byte format), it seems most likely that F! will
be used, not 3!, So let's be consistent and leave
digits for numbers and use a prefix letter
mnemonic to indicate stack operations, etc,
that are not the usual one word (16 bits).

Could someone please explain what the HEX
value A08l1 is for, in the definition of
VOCABULARY? 1 can't work it out.

Page 69

FORTH DIMENSIONS 111/3

LWLOIsdodwnmwliana<« oamrw

323 x2aNe 3

m € =
%3 =o

tc.

<eep up the good work with the magazine.

Bill Miles

PO Box 225
Red Cliffs
Victoria 3496
Australia

“hanks for your comments, Bill. Glad to
=z FORTH is alive and well in the land down
rer! How about some of our members
—zr-esponding with Bill and helping him over the
=27 spots.--ed.

lezt Figs

“ORTH DIMENSIONS has grown increasingly
=e°_ to me in the past few months as I have
~z..v begun to "get the hang of" FORTH. I
-2 running on my TRS-80 several versions of
i~:C, FORTRAN, PASCAL, APL, SAM76 and
- > under both TRSDQS and CDQOS; but I have
».2> found any language harder to learn that
-~ T"H. Part of the problem is the scope of
“_=T+: at the same time I'm trying to
rcerstand the interpreter, compiler, OS, and a
mrzax as difficult as LISP's. I have found all
e .astruction manuals so far to make a drastic
w—z from simple concepts like 22 +. and
Z7....00PS to discussions of the Dictionary
72 >f Defining Words. (I think the writers had
e same problems | have, of separating the
ar 3Js functions of the system.) One of the
ke ~elps I received was Mr. Bumgarner's Stack
Tiacram in this year's March issue of BYTE.
e necessity of being able to visualize the
kac <« cannot be overemphasized. Once 1 was
a2 20 do that, I starting learning in earnest.

—4

!l

—-zving leaped this hurdle, 1 found FORTH
—~:~= rewarding than any other language to
e=z—. One of its greatest advantages to me as
zpplications programmer is its (almost)
Lr-2-.v consistent syntax: operators, functions,
- “orocedures” disappear and all you have are
wr:s that get their arguments off the stack
@ Siace their return values on the stack. All
. applications so far have been in BASIC.
- are as "structured" as I can make them
subroutines calling subroutines), but it
oy Secomes hard to remember what "GOSUB
7" does and which variables have to have
27 values in order to do whatever to whom
ar- ~here' Not so with FORTH: although a

restricted use of variables does make the
program somewhat less readable, keeping most
of the arguments and returned values on the
stack actually makes it more "writeable"
because there is no need to remember what the
formal or actual parameters are. Right now,
because of my limited experience with FORTH,
it takes longer to write a "routine" than it
would in BASIC: but already the total time to
test and debug is far less.

I'm using Miller Microcomputer Services'
top-notch MMSFORTH, and | have absolutely
nothing bad to say about these people. Last
summer [drove down to New England in order
to pick up some hardware, and decided to drop
in on Richard and Jill Miller in Natick, MA.
They showed me the utmost in hospitality,
helping me purchase equipment and wasting
their time in general to make sure that my trip
was worthwhile. Their product is excellent:
worth it at twice the price and more (you didn't
hear that, Dick!)--with standard features such
as Strings, Double-Precision, Graphics, a good
Screen Editor, and not one, but several fine
demonstrations programs. A+s for
MMSFORTH.

Morningstar is a software house in southern
Ontario that does mainly custom program-
ming. All of it so far has been BASIC, but we
expect to have fully switched to FORTH by the
end of 12 months, D.V. No other language
would have compelied us to give up "Tandy
Compatibility," but the advantages of FORTH
far outweigh any extra cost for the lanage.

Thanks for your attention.

Vincent Otten
MORNINGSTAR
225 Dundas St.
Woodstock, Ontario
CANADA N4S 1A8

I am sure Dick Miller appreciates your
comments. You might also look into Mr. Leo
Brodie's new book Starting FORTH (reviewed
elsewhere in this issue) that will be available in
mid-September.--ed

=_RTH DIMENSIONS II1/3

Page 70

Dear Fig:

I very much enjoyed my first pass through
your article "Compiler Security" in FORTH
DIMENSIONS III/1. 1 plan to re-read the article
when I have more time.

In terms of the multi-user environment,
haven't you almost answered your own question
of security always versus security on demand
with your parenthetical "and the other users"
remark? This was near the end, in the
discussion of the possible use of a "Novice
Programmer Protection" package. In a single-
user environment, more liberties can be taken,
but I know I'm a novice user, having only been
involved with computers since 1958 or so, and
having only "FORTHed" non-intensively for
about 3 years. My single-user system would
always include the protection package
(well. . .almost always). I would not, however,
object to making security optional in the single-
user case (but I am not a prospect for a FORTH
implementation without it).

I don't agree with your characterization of
Assembler security as inappropriate. It is the
ability to have unstructured code that causes
many of the problems with assembly code. If it
is so easy as to be tempting, we will all err.
FORTH makes the cost-to-fix versus time-
error-found curve perhaps less steep, but early
error detection is still cheaper, and software is
still the largest part of the system cost (and
getting larger). I cannot argue against being
able to defeat Assembler security fairly easily,
however, since there may be situations in which
the risk is worth it.

John W. Baxter

Sr. Principal Programmer Analyst
NCR CORPORATION

Coronado, CA

MR. SHAW REPLIES:

I hope that after three years of FORTH
programming that you have developed good
FORTH style. This should be the case uniess
you have let your previous 20 years of
experience interfere with your learning of
FORTH's simplistic concepts.

In either case, you should be aware that
good FORTH code is well thought out and very
short. Most definitions, in either high leve! or
assembler, should be very short; not more than
a few lines. In very few instances is high level
code ever longer. Those definitions that are
long should be so well scrutinized as to the
reasons for their length that the type of errors
that the current compiler security would trap
should not exist. Assembler code should only be
used when speed is a critical factor. And then,
structured code may not be the easiest or
fastest to program without error, or the fastest
to execute. The programmer may still program
structured if he desires. He may even load a
package to ensure this. And if the code
definition is long then the statement for high
level would apply also. The code should be well
scrutinized as to reason.

Note that using SP and ?CSP is a simple and
effective way to catch many of the errors made
in either case. They can even be used outside
of the definitions of : and ; or CODE and END-

CODE, and never otherwise interfere. [am not -

saying there should be NO compiler security at
all. If I had this viewpoint I would not have
bothered to write the article. Even I feel much
more comfortable with an application that I
have programmed after it has been successfully
loaded into a secure system. But I do object to
having to program around the compiler security
(which wastes time and introduces errors) when
I wish to load a perfectly correct program
which the security does not like. With an
optional package, I can check my application as
desired, but do not have to fight the compiler
security to get the job done. Or, I can have the
security package resident. I make the choice.

George W. Shaw

SHAW LABS LTD.

PO Box 303

San Lorenzo, CA 94580

%
«

FIG Convention Coming — Nov. 28

FORTH DIMENSIONS T11/3

L N

| ac
fa
pu
at
o~y
ca
pm

yaga

|

Here is a very short contribution, a compiler
2xtension, which has been helpful to me. I want
1> share it with all FlGgers; perhaps it can
cecome a fig-FORTH standard.

Often in creating a definition, we want to
est or output an ASCII character, using words
.<e EMIT or = or possibly even in a CASE
statement. These are normally supplied as
~teral numbers in the current radix. These
zompile into the usual dictionary pair of LIT
‘zllowed by the literal value. The difficulty is
*nat we must either determine the ASCI code
=xperimentally beforehand, or else reach for
ome reference list (usually in the wrong radix).

This compiler extension allows any editor-
acceptable character to be displayed in its real
‘arm while compiling into a normal literal
sair. While this may prove to be a minor help
2t edit-time, the resultant source code is much
—ore readable at a later time, and is self-
:ommenting, both highly desired features of any
>~ogramming lanquage.

The new word is ASCII, and it is followed by
: literal character. The definition of ASCII is
:.mples

: ASCII BL WORD HERE 1+ C@
[COMPILE] LITERAL; IMMEDIATE

1 is made immediate so that it executes during
zmpile-time. WORD takes the next input-
:iream text, delimited by a blank, and places it
z: HERE. Then the first character is placed on
~e stack for use by LITERAL, which has been
‘zrced to be compiled into our definition. What
>zuld be easier?

Formerly, we had to write 65 EMIT to out-
2.t the letter "A" (assuming decimal radix).
‘ww we can write ASCHIl A EMIT , clearly the
cetter for everybody's understanding. The
cwice of the word ASCI is open to change, but
1~ idea is a valuable addition to our efficient
-32 of the language.

That's my contribution. 1 hope others can
-3¢ it to improve their work. Thank you for
:-aviding a medium for ideas.

Raymond Weisling
Jin. Citropuran No. 23
Solo, Jawa Tengah
Indonesia

MULTIPLE WHILE SOLUTION

I have no way of knowing whether this solu-
tion to the multiple WHILE problem is generally
known, though I am sure that many people must
be using it. The note has been kept as short as
possible, and could easily be expanded.

(: ENDWHILE 2 - ?2COMP 2 ?PAIRS could
be simplified to : ENDWHILE ?COMP 4
7PAIRS probably--it weakens the ENDIF
analogy a little.

Many of your readers may not be familiar
with ENDWHILE as a means of achieving multi-
ple WHILEs in a BEGIN loop. It is simple and
convenient, but not elegant. ENDWHILE is used
in the construction

BEGIN. . .(test) WHILE. . .(test) WHILE. ..
ENOWHILE ENDWHILE AGAIN or

BEGIN. . .(test) WHILE. . .(test) ENDWHILE
UNTIL

with one ENDWHILE for each WHILE in the
loop.

The definition is

: ENDWHILE 2 - ?COMP 2 ?PAIRS HERE
4 + OVER - SWAP ! ; IMMEDIATE.

It causes WHILE to compile a branch to the
word following AGAIN or UNTIL, and is directly
analogous to ENDIF (THEN). It can be easily
understood by comparing the definitions of
WHILE and IF, and ENDWHILE and THEN.

A similar ENDWHILE can be defined for use
in the ASSEMBLER vocabulary.

The ENDWHILE construction is awkward
(poor English) but simple, and is worth using
until something better is decided on.

Julian Hayden
2001 Roosevelt Avenue
Vancouver, WA 98660

TORTH DIMENSIONS 11/3

FORTH STANDARDS CORNER
Robert L. Smith

The word WORD has caused implementers of
the 79-Standard a certain degree of difficulty.
The definition of WORD as it appears in the
FORTH-79 Standard is as follows:

WORD char --- addr 181

Receive characters from the input stream
until the non-zero delimiting character is
encountered or until the input stream is
exhausted, ignoring leading delimiters. The
characters are stored as a packed string
with the character count in the first
position. The actual delimiter encountered
(char or null) is stored at the end of the text
but not included in the count. If the input
stream was exhausted as word is called, then
a zero length will result. The address of the
beginning of this packed string is left on the
stack.

There are a number of problems with the
definition as it stands. Later I will suggest a
slightly modified definition which should clarify
the apparent intent of the Standards Team, al-
though some of the problems will remain for the
present.

1. The phrase "non-zero delimiting charac-
ter" presumably means that char must
not be the null character. An error
condition should be specified if char is
found to be zero.

2. The character count is to be stored In
the first character position of a packed
string. That could mean that the
character count could not exceed 127.

tion. The action to be taken on an error
condition depends on the implementa-
tion. A number of schemes have been
proposed, but there are none that are
completely satisfactory. Many people,
including this author, feel that any
count should be allowed.

4. The definition uses the phrase "actual

delimiter encountered (char or null)". I
do not believe that the Standards Team
meant to required irnplementations to
use a null as a universal delimiter,
although many undoubtedly will. The
sequence in which the above-mentioned
phrase appears probably means that if
the end of the input stream is en-
countered before the specified termi-
nating character is seen, then a null
should be appended at the end of the
packed string instead of the specified
terminating character,

5. Note that in addition to being a termi-
nating delimiter, char also specifies
initial characters to be skipped. That
property makes WORD very difficult to
use in conjunction with strings which
may have a zero length. An example of
a zero length string is the null comment
(). If one attempts to use WORD in a
straightforward manner to enclose the
command terminated by the right
parenthesis, he will find that it and all
succeeding text will be skipped! Since
under the Standard, the use of WORD is
about the only way that one has access
to the contents of the text input buffer,
this limitation appears to this writer to
be unreasonable.

I believe that the following definition of

Since a string holds a sequence of 8 bit
bytes, the Clarification Committee of
the Rochester Standards Conference
felt that the term "character position"
was a typographical error that should
have been "byte position", thus allowing
a string count up to 255 characters.

3. Since the source string could be as long
as a block (1024 bytes), the character
count could exceed 255. This case
should be specified as an error condi-

WORD meets the essential intent of the
Standards Team, and clarifies the problems
stated in (1-4). in order to not add to the
confusion, I have put a new serial number on the
definition.

WORD char --- addr 301

Receive characters from the input stream
according to the delimiter char and place
the characters in a string beginning at

FORTH DIMENSIONS TIII/3

Q2 ()

addr+1. The character count is placed in the
byte position at addr. An error condition
results if char is an ASCH null or if the
count exceeds 255. Initial occurrences of
char in the input stream are ignored. If char
appears in the input stream as a terminating
character, it is appended to the string but
not included in the count. [If the input
stream is exhausted before char is en-
countered as a terminating character, the
terminating character null is appended
instead of char. A zero length will result if
*he input stream is exhausted when WORD is
called.

The problem of the character count limita-
".on could be considered in the future. One
: mple approach would be to use a full word for
-~e character count. Another would be to elim-
~ate the character count and always append a
-all at the end. The user could then do his own
sranning. The problem of null length strings
~suld be "defined" away by making null length
:rings illegal. 1 think that that is a poor
:~iution. The real problem is that WORD is
-sorly factored. As usual in FORTH, the less a
~2rd does, the more useful it becomes. The
=rocess of scanning for initial delimiters should
-2 separated from the process of scanning for
:erminating delimiters.

NEW PRODUCT

28002 Software Development System under
ZP/M®or Cromemco CDOS. Includes cross
~ompiler and a number of utilities. Available
3n 53" or 8" disks. Price: $4,000.00

Inner Access Corp.
517K Marine View
Belmont, CA 94002
(415) 591-8295

"Starting FORTH"
Available NOW!

$16.00 Paperback
$20.00 Hardcover

Mountain View Press
PO Box 4656

Mt. View, CA 94040
(415) 961-4103

THE FORTH-79 STANDARD--A TOOL BOX?
George W. Shaw, Il

As a vendor of a version of the FORTH
language, and a self-proclaimed priest of the
FORTH religion (I carry a soap box in my back
pocket and will mount upon it at a moments
notice), 1 am very interested in the best
standardization of the FORTH language possi-
ble. There are many items in the '79 standard
which need work. Many cannot, and maybe
should not, be changed this time around, but
will have to wait for subsequent standardization
efforts. To this end, I am conducting interviews
to compile as complete a list of problem areas
and solutions as possible. I would like to thank
all of the people who have spent time giving me
the input, comments and ideas which are the
inspiration for this article.

Much discussion centers on the defining:
"What is a '79 standard program? Many of the
questions dre similar to "Can I xxx, and will it
be standard?", or "My system has a zzz which
does more than the standard says. Is it stan-
dard?". These are the wrong questions.
Granted, many of these questions could be
answered by more explanatory text within the
standard. But, in general, the real question is
"What does a standard mean?", or better "What
is the FORTH-79 Standard?"

The '79 standard very clearly defines itself.
But, unfortunately, it seems that many people
skip reading the first page of the standard and
branch right into the glossary. If one is to read
the first page, one notices a section of great
importance:

1. PURPOSE
The purpose of this FORTH
standard is to allow transportability of
standard FORTH programs in source
form among standard FORTH systems.
A standard program shall execute
equivalently on all standard FORTH

systems.

This section very clearly states the standards
purpose is "... to allow transportability of
standard FORTH programs in source form..."
Further, that the program "...shall execute
equivalently..." The section previous to the
above clarifies the extent:

“ORTH DIMENSIONS II1/3

Page 74

0. FORWARD

The computer language FORTH
was created by Mr. Charles Moore, as
an extensible, multi-level environment
containing the elements of an operating
system, a machine monitor, and facili-
ties for program development and
testing.

States clearly of FORTH as "...containing
elements of .." the various environments.
Thus, the standardized FORTH should be a
language which contains only the elements
necessary to allow the transportation and
equivalent execution of programs between
FORTH systems. This is even further limited
by the definition of transportability.

transportability

This term indicates that equivalent
execution results when a program is exe-
cuted on other than the system on which it
was created. See 'equivalent execution'.

Which implies that a '79 standard system (in this
case, a system which contains only the standard
words) does not necessarily allow program
creation (development). This is not to say that
one could not define within the standard the
additional tools necessary to develop pro-
grams. Only that the set of standard words may
not be sufficient for development. (The
additional words necessary for development is
definitely an area to be looked at for the next
standard.)

Considering the above definitions, I propose
this answer to the title question of this
articlee The FORTH-79 Standard is to be a
basic tool box upon which other devices can be
built. From the definitions within the standard
one should be able to build almost any other
needed tool or application. We do not know yet
if this is the case. It is extremely unlikely that
the initial effort would have encompassed all
design possibilities. The '79 standard is a first
effort--a place to start from; a base from which
we may begin to determine the minimum addi-
tions necessary to allow all tools or applications
to be built transportably.

Yet, even with this understanding, it may be
felt that the standard is incomplete. In a few
cases this may definitely be true. A good
example of this is in the text dealing with the

vocabulary mechanism. The standard seems
extremely limiting and impossible to deal
with. But, the solution is simple. Do as you
have always done in FORTH. If a structure is
inadequate for an application, define a struc-
ture which is adequate. The standard itself, by
content, forces development in those areas
which have not yet been fully developed. It
forces new ideas, better solutions, and,
hopefully, a better standard next time around
by its own proper usage.

As for the two most asked questions
mentioned earlier, read the standard carefully.
Does it specifically or implicitly prohibit
xxxing? If not, try to transport it to other
systems. If you are still unsure, send the
question to FIG, we'll work out a clarification
and recommend it to the standards team. What
if your system does more than zzz says? Can it
be made to do only what zzz says by possibly
not exercising options? If so, it is probably
standard. Still not clear? Send in the
questions. We need them to make a better
FORTH-79 Standard document.

There are areas of the tool box which may
be cluttered by parameter testing or unnece-
ssary words. Some areas may require better
factoring. Much work has yet to do done.
These areas need to be expased. Write FIG
about them. All input is greatly appreciated. 1
have found that each person sees different valid
problems. Many are seen by all, but most
people usually see at least one that has not been
seen before; an application or solution which
had not been considered.

When considering the FORTH-79 Standard,
treat it as a basic tool box. Additional tools are
applications from the point of view of the stan-
dard. Extend it as necessary. Can you add
what you need by defining it only in terms of
standard words? If not, what is the minimum
necessary to allow you to do that. More
definitions or more explanations? Experience is
all that will tell. Send in your results.

George W. Shaw, II
Shaw Laboratories, Ltd.
P. O. Box 303

San Lorenzo, CA 94580

Page 75

FORTH DIMENSIONS 111/3

ne w

408 A0t UM IUE 4 P TAR TR

RtugurReggan

n

o7 4 T LA s M

»~»0 0 o

® 3

s

Book Review:

title: Starting FORTH
Author: {eo Brodie
FORTH, Inc.
Copyright: 1981
Publisher: Prentice-Hall, Inc.
Price: $19.95 (hardbound)
$15.95 (softback)
Availability: Mid September, 1981
Review by: George W. Shaw Il
Shaw Laboratories, Ltd.

In most books the useful information begins
1 chapter one, or later. Starting FORTH is an
axception. Useful information starts in the
~orward section of the book.

The book is designed to be interactive.
After only two pages of chapter one, you are
tvping at the terminal. It is seldom that a
sentence will leave you thinking, "Now, what
Zoes that mean?' Analogies are used throug-
~out. Any "buzz" words, or differences between
systems, or phrases which might cause con-
‘ision are footnoted to explain in more detail.
This presents extremely basic or nonessential
.Jeas outside of the main text, allowing the
200k to be simple enough for the beginner, but
~3t to become tiresome to the more knowledge-
able. For example, in the sections of the book
zealing with math, separate sections or foot-
-otes are presented to explain what integers are
x what an absolute value is (for beginners). Or
1> give additional information about a faster
algorithm than was used in an example in the
~ain text (for experts). Where appropriate,
Juizzes or exercises are interspersed within the
-hapters to help with understanding the
material presented.

The book is written for the current "close-
22-79-STANDARD" version of polyFORTH with
~o.ations or footnotes to indicate and explain
she differences from the standard. Throughout
*~e book, tables and lists are used to summarize
and clarify the information presented. The
>ccasional tables of new words (in glossary
‘arm) are of great help. They prevent having to
“ig through the text for the words to perform
the practice problems. At the end of each
>hapter is a complete glossary of the new
~ords. Also, at the end of each chapter are
sroblems, with the answers in the appedicies.

There are even a few surprise questions to
lighten the air.

Moving from the general to the specific, the
value of this work becomes even more apparent
in the following chapter by chapter review.

The Introduction is not just one introduction,
but two: one for beginners (to computers) and
one for professionals. The beginnner's section
explains conceptually what computers and
computer languages are, using an analogy (as
will often be found) to simplify. the
professional's section answers the usual
skeptical questions of "What is" and "Where is"
Forth with an impressive list of facts about the
language and applications in which it has been
used.

Chapter one, "Fundamental Forth", presents
the basic concepts of dictionary extensibility
and problem definition immediately, so that
after only two pages, you are typing at a
terminal executing commands and defining
words. The text steps the reader through the
complete development of a program and then
illustrates its execution with the previously
mentioned cast. The operation of the stack is
then illustrated, and the format of glossary
entries explained.

Chapter two, "How to Get Results", presents
the basic four arithmitic operations, calculator
and definition style, with conversions between
infix and postfix notations. Practice problems
and stack pictures are provided to ensure com-
prehension. The next half of the chapter covers
the basic single and double precision stack
operations with excellent stack pictures and
quizzes to help along the way.

Chapter three, the "Editor (and Staff)",
again looks at the dictionary, but in terms of
redefinition and FORGETing of words. Forth's
use of the disk is also described, along with
LISTing, LOADIing, and the word "(" for
comments.

Chapter four, "Decisions, Decisions, . . .",
illustrates the IF ELSE THEN structure of
Forth; the various conditional tests, their uses
and alternatives; and flags and how to manipu-
late them.

~ORTH DIMENSIONS 11173

Page 76

Chapter five, "The Philosophy of Fixed
Point", expands upon the basic four arithmetic
operations with some of the composite (1+, 2+,
etc.) and some miscellaneous operations. The
operators for the return stack are introduced
with examples of their use in ordering
parameters for formula calculations. A dis-
cussion of benefits of floating or fixed point
math is followed with instruction about scaling
in fixed point to eliminate the need for floating
point. Discussed also are the use of 32 bit
intermediate operators and the use of rational
approximations in fixed point.

Chapter six, "Throw It For a Loop", dis-
cusses the operation of the various types of
loops in Forth. A new cast of characters
illustrate the "how" of DO LOOPs, nesting
loops, using IF ELSE THEN inside loops, etc.
BEGIN UNTIL and BEGIN WHILE REPEAT are
also introduced.

Chapter seven, "A Number of Kinds of
Numbers", is divided into two sections: for
peginners and for everyone. The beginners
section gives an excellent tutorial introducing
the novice to computer numbers. This section
describes in detail both signed and unsigned
single and double length numbers. Also covered
are arithmetic shifts, bit-wise operations,
number bases and ASCIH character representa-
tion. The section for everyone explains Forth's
handling of signed and unsigned single and
double length numbers for input, formatted
output and mathematical operations. The
effect of BASE on 1/0, some usage hints, and
mixed operations are discussed.

Chapter eight, "Variables, Constants, and
Arrays", discusses the uses and operation of
these structures. Both single and double length
structures are introduced. Example problems
are used to show various designs for byte and
single ‘ength arrays. Factoring definitions is
alsa discussed.

Chapter nine, "Under the Hood", presents a
very clear, detailed, explanation of the various
types of execution and structures within a Forth
system. Of the many things examined are: text
interpretation, ticking ('), compiling, vectored
execution, dictionary structure, colon definition
execution, vocabularies, the Forth memory map
and its pieces. Much of the detail applies to

polyFORTH, but the theory is sufficiently
general to apply to the operation and structure
of most Forth systems.

Chapter ten, "I/O and You", discusses string
and text manipulation as they relate to disk and
terminal 1/O. Block buffer and terminal buffer
access is discussed with notes for multi-user
systems. String operators and string to number
conversion are also covered.

Chapter eleven, "Extending the Compiler:
Defining Words and Compiling Words", weans
the reader from the friendly cast of characters
as it shows the code behind the faces. All of
the aspects of Forth compiler are discussed
including: time periods, the varicus compilers
inside Forth, DOES> words and immediate
words. D-charts are introduced.

Chapter twelve, : "Three Examples",
presents three programming problems and their
solutions as an example of good Forth style.
Text manipulation is presented with a random
paper generator; Data manipulation with a file
system; and fixed point number manipulation
with a math problem which would seem to need
tloating point.

Following chapter twelve are four appen-
dices which contain the answers to the
problems, the features of polyFORTH not
discussed in the text, the differences from the
79 Standard and a summary index of the Forth
words presented in Starting Forth.

On the whole, Starting Forth is very well
organized and presented. On occasion a few
topics seemed to appear out of nowhere, as the
section on Factoring Definitions in the chapter
about variables, constants, and arrays. But,
these digressions only serve as short breaks
from the subject at hand and do not detract
from the organization of the material. The text
is very complete and easily understood. I rate
the book very highly for both the novice and
intermediate Forth programmer.

Page 77

FORTH DIMENSIONS 11i/3

THE FORTH ENGINE
David Winkel

What can computer architects do to make
their lives interesting?

It has been clear for some time that building
~onventional Von Neumann computers is useful
out dull. This in spite of large vendors'
advertising literture = which breathlessly
announces new architectural advances for their
.atest machines. Meyers' book* has an
entertaining discussion of the history of these
"new" advances. For example, virtual storage
goes)back to the Atlas system (U. Manchester,
1959).

How can we improve performance? It

appears that there are two practical ways:

a. FEngineering - faster components,
pipelines, caches, etc., applied to
conventional architectures.

b. Architectural - building fundamentally
different computers.

The engineering approach has been remark-
ably successful as shown by Seymour Cray's
oroducts. These machines do an excellent job
with Fortran, but conceal gaps that program-
mers have adjusted to and, in fact, accept as
theologica' necessities. For example, the array
is @ fundamental concept of Fortran, yet is only
.ndirectly supported in hardware. Subscripts
joing out of range is a common run time error
but the hardware happily goes on with the
wrong data pointed to by a bad subscript.

The architectural approach would reverse
*he procedure. Build hardware to support a
.anguage. We can do this at several levels, the
owest being lanquage-directed design where
~ardware features are added to support specific
!anguage features. An example would be
Surroughs' concept of data descriptors to
provide run time checking of subscript ranges.
Another example would be a P-code machine.
P-code is language-directed since it was
proposed as an ideal machine for compiled
Pascal. It would be less suited for FORTRAN
for example. The general idea in language-
cirected design is to mirror important high-
level language concepts in hardware. Semantic
SGap is defined as the degree to which language

features are not mirrored in hardware. Thus,
the semantic gap for ALGOL running on a
Burroughs B6500 would be small, for PL/1
running on COC machines quite large.

If we reduce the semantic gap to zero, we
have a direct execution machine where hard-
ware mirrors all the constructs (both data and
control) of the language. Good discussions and
bibliographies are given in references 1 and 2.

Now we have the maximum in speed and the
minimum of generality. The computer now runs
only one language. What that language should
be is a central question. The SYMBOL com-
puter was an early, truly heroic, system built by
Fairchild _ to directly execute the Symbol
lemguage.3 This is a PL/1-like language with a
great deal of power. System performance was
spectacular and yet the entire exercise cannot
be considered successful. A large part was due
to language complexity which translated into
hardware complexity. It was difficult to fix
bugs and impossible to add features inadver-
tently left out.

What we need is a well-tested, simple
language before we build a corresponding direct
execution machine. FORTH is the obvious
choice.

The goal of this research is to build the
world's fastest FORTH engine. This is a no-
compromise effort to force the hardware to
mirror the language. We did not start by saying
it must be built with bit slices, or PLA's, or ...
In fact, an early paper design was done with bit
slices and discarded because it was too slow.

The measure of speed is clock cycles per
instruction. Clock rate, in turn, is a function of
technology, not architecture. The machine
currently runs at 333 ns but could be easily
speeded up by using ECL or Schottky logic and
faster memories.

The design cycle for a FORTH primitive
proceeds as follows:

a. Pick a primitive such as DO or LOOP.

FORTH DIMENSIONS /3

Page 78

b. Postulate hardware data paths, stacks,
registers, etc., that implement DO and
mating primitives such as LOOP and
+LO0OP.

t. Make sure this hardware supports
hidden logical concepts--in this case, I,
J, K--and violates no other FORTH
concepts.

d. Count clock cycles.

e. Repeat b-d until you can think of no
more speedup possibilities.

f. Make an engineering choice for imple-
mentation. DO takes 2 clock cycles
without overlap, 1 with. LOOP and
+LOOP take 1 clock cycle. For the
first machine, we use a 2-cycle DO and
reserve the l-cycle version for later
enchancements. As a byproduct of this
implementation we can support loop
nesting to a depth of 1024.

This process is repeated for each FORTH
primitive. Finally, this collection of indi-
vidually optimized hardware must be forged
into a coherent whole that makes engineering
sense. The result” is not too surprising. There
are data and return stacks plus separate stacks
for loop control. Of course, the loop stacks are
invisible to the programmer. An arithmetic
unit operates from the data stack, etc. What is
surprising is the mass of data paths required to
support parallel operations such as 2SWAP in
one clock cycle. The results are impressive.
For the fig-FORTH primitives all but 4 can be
executed in one or two clock cycles with the
exception of multiply and divide which take 1
clock cycle per bit. The machine currently has
16k X 16 main memory with 1k X 16 stacks both
extendable by 4 X. I/O is done with a slave
6809 'vith programmed access to the data stack
and DMA access to main memory. Control is
microprogrammed with a 2910 driving a 1k X 60
bit write?ble control store. This follows Logic
Engine philosophy so the user has very
pleasant access to the micromemory for
tailoring high-speed special purpose
instructions.

Results for randomly chosen instructions are
given below. All comparisons are based on a 1
MHz 6809 running fig-FORTH. The FORTH
engine runs at 3 MHz.

DUP 99 X faster SWAP 132 X faster
@ 101 X faster U 96 X faster
! 114 X faster ROT 624 X faster

AND 126 X faster DO....OOP 110 X faster
(null body)

As a rule of thumb the speedup is a factor of
100. Why the 6809 (or any other computer) is so
slow is an interesting question and will be
treated in a more formal paper.

We have received a number of inquiries
about machine availability. Does anyone really
need a machine this fast? It is obviously a large
(200+ IC) machine in the minicomputer class
and will cost more than a Z80. I would
appreciate hearing from readers about this as
well as memory and I/O requirements.

David Winkel

2625 Solar Drive #5
Salt Lake City, UT 84117

REFERENCES

1Advances in Computer Architecture, Glenford
J. Meyers, Wiley, 1978.

Z30uthcon Conference, Atlanta, Georgia, 1981,
Session 20/2, Phillip Crews.

3symMBOL - A Major Departure from Classic
Software Dominated Von Neumann Computing
Systems. Proc. 1971 Spring Joint Computer
Conf., AFIPS, 1971, pp. 575-587.

850uthcon Conference, Atlanta, Georgia, 1981,
Session 20/4, David Winkel

5The Art of Digital Design, D. Winkel & F.

Prosser, Prentice Hall, 1981.

Page 79

FORTH DIMENSIONS Til/3

Y aF2RY

14837034

AEmoun

2wes oc

1285 4 guny

4

THE FORTH, INC. LINE EDITOR

S. H. Daniel
System Development Corporation
500 Macara Avenue
Sunnyvale, CA 94086

The upcoming publication of Starting
- JORTH, which is destined to become the "bible"
:* FORTH neophytes everywhere, provides an
zoportunity to upgrade the existing fig-FORTH
-"e editor at a very small cost in time and
2*fort.

There are at least two good reasons why this
.ograde should be done. The first is standard-
zation. A user of any version of fig-FORTH
«.ll be able to step up to a polyFORTH system
a2 use the line editor. Conversely, FORTH,
2. customers who try fig-FORTH will not have
:z learn to use a different editor.

The second reason for adopting the
::lyFORTH editor is its increased flexibility
:~C ease of use. The current fig line editor uses
rly the PAD for storage of user inputs for
:2arches, deletions, and replacements. The
>2lyFORTH editor employs both a FIND buffer
:d an INSERT buffer, in addition to the PAD.
“-is allows both of the extra buffers to be
caded, and the contents reused several times,
=.thout extra typing by the user. This makes
>mmands like D (Delete) and R (Replace)
zspecially useful,

3y taking a few hints from Starting FORTH,
:~¢ combining them with the existing editor, 1
~3s able to write a line editor which is
_nctionally identical to the polyFORTH editor,
>.% which is in the public domain and can be
-sed by anyone.

T 'STEM REQUIREMENTS

This editor should run on any fig-FORTH
:.stem, including FORTH-79 Standard systems
* the changes mentioned in the section
“JRTH-79 Standard are made). The compiled
e editor requires approximately 2K bytes of
—emory, plus room in the system for the PAD
xd the FIND and INSERT buffers. It operates
«.thin the confines of the default data and
~=.urn stacks.

A high leve!l version of the word MATCH,
used by the line editor for searches, is included
for those who do not already have a version
written in assembly lenguage. If you intend to
use this version of MATCH, screens 216 and 217
should be loaded prior to loading the rest of the
line editor. Credit for this version of MATCH
goes to Peter Midnight of Hayward.

THE EDITOR COMMANDS

The word 'text' following a command indi-
cates that any text typed after the command
will be copied to the text buffer used by that
command. The buffer contents will then be
used when the command executes. If no text is
typed by the user, the contents of that buffer
(left over from the previous command or com-
mands) will be used without modification in the
execution of the command.

X eXtract (-)

Copies the current line into the INSERT buffer,
and removes it from the screen. All following
lines are moved up, and line 15 is left blank.

T Type (n--)

Type line n from the current screen. Set the
cursor to the start of the line.

L List (--)

Like the FORTH word LIST, except that the
current screen number is obtained from the
variable SCR, rather than being typed in by the
user.

N Next (-)

Increments the current screen number by one.
This command is used just before the L. com-
mand, to allow the user to list the next
sequential screen.

B Back (=)

Decrements the current screen number by one.
This command is also used before the L com-
mand, to allow listing of the previous sequential
screen.

TIRTH DIMENSIONS 1/3

“Page 80

P Put (-)
P text

Any following text will be copied into the
INSERT buffer. The INSERT buffer will be
copied into the current line, replacing its
previous contents. If the text consists of one or
more blanks, the current line will be erased.

WIPE Wipe ()

Erases the current screen. Equivalent to the
original CLEAR command, except that the user
need not enter the screen number.

COPY Copy (from -2, to-1 -)

Copy one screen to another.

F Find (-)
F text

Any following text is copied to the INSERT
buffer. The contents of the INSERT buffer are
compared to the contents of the current line. If
a match is found, the line is displayed with the
cursor positioned immediately after the end of
the string searched for. The F command, with
no following text, is exactly the same as the
previous editor command N. If no match is
found, the requested string is echoed to the
terminal and the error message "NONE" is
output.

E Erase (-)

Erases backwards from the cursor, according to
the number of characters in the FIND buffer.
This command should only be used immediately
after the F command.

D Delete (-
D text

Any following text is copied into the FIND
buffer. The D command is a combination of the
F and E commands. The string in the FIND
buffer is matched against the contents of the
current line, and if a match is found, the found
string is deleted from the line.

TILL Till (=)
TILL text

Any following text is copied into the FIND
buffer. Starting from the current cursor

position, TILL searches for a match with the
contents of the FIND buffer. If a match is
found, TILL deletes all the text on the line from
the current cursor position up to any including
the end of the matched text.

S Search (last screenff+1 --)
S text

Any following text is copied into the FIND
buffer. Starting at the top of the current
screen and continuing until the bottom of the
screen immediately before the screen number
on the top of the stack, S searches for a match
to the contents of the FIND buffer. Whenever a
match is found, the line containing the match
will be typed out, along with the line number
and screen number in which the match
occurred. Because of the way FORTH handles
loops, the number on the top of the stack must
be one higher than the highest screen to be
searched.

1 Insert (--)
I text

Any following text will be copied into the
INSERT buffer. The I command copies the
contents of the INSERT buffer into the current
line, starting at the current cursor position.
Any text to the right of the cursor will be
pushed to the right and will be pushed off the
line and lost if the total length of the line
exceeds 64 characters.

U Under (--)
U text

Any following text will be copied into the
INSERT buffer. Spread the screen at the line
immediately below the current line, leaving a
blank line. All following lines are pushed
down. Any text on line 15 will be lost. The
contents of the INSERT buffer will be copied
into the blank line, and that line will be made
the current line.

R Replace (--)
R text

Any following text is copied into the INSERT
buffer. The R command operates as a
combination of the E (Erase) and I (Insert)
commands. Starting at the current cursor
position, and working backwards towards the
start of the line, text corresponding to the

Page 81

FORTH DIMENSIONS /3

(13- &l P WOSOTCTE IO e B Lr re B M m

W TE»

AR

w w

W oW W

D08 0

.ength of the contents of the FIND buffer is
seleted, and the contents of the INSERT buffer
are inserted into the line. Since the contents of
:ne FIND buffer determine how much text will
ce erased, the R command should only be used
nmediately following the F (Find) command.
M Move (Block#, Line# --)

Zopies the current line into the INSERT buffer,
ven copies the INSERT buffer to the block,
:oecified by Block#, UNDER the line specified
Ty LINE#, The original block number is
restored, and the next line in the block becomes
ne current line. This allows sequential lines to
> moved with a minimum of keystrokes. One
snfortunate side-effect of this command is that
13 move something to line 0 of another screen,
-ou must first move it UNDER line 0, using the
command xxx 0 M, make screen xxx current,
3nd then extract the old line 0, moving
2verything else up.

U (=)

Jsed as a terminator for all commands allowing
text input, such as P, F, R, etc. Allows more
than one command to be entered gn a single
-8y .G

3TP Thisisline 3+ L (cr)

Although useful, this feature does preclude the
Jse of the " " as a character in any text to
>2 put on a screen.

SLOSSARY

The following glossary addresses all the
“ORTH words in the line editor except the
actual editing commands, which are discussed
aoove.

TEXT (delimiter —)

Any following text in the input
stream, up to but not including the
delimiter, is moved to the PAD. The
length of the input string is stored at
PAD, with the actual string starting
at PAD+l. In FORTH-79 Standard
systems, if no text follows in the
input stream, a length byte of 0 will
be stored. In non-Standard systems, a

length byte of 1 will be stored, but
PAD+]1 will contain a null to indicate
the absence of text.

(LINE) (Line#, Screen# -- Buffer Address,64)

Using the line and screen numbers,
computes the starting memory
address of the line in the disk
buffer. May not be necessary in
FORTH-79 Standard systems, depend-
ing upon implementation. Should
already be present in earlier
implementations.

LINE (Line# -- Buffer Address)

Ensures that the line number is within
the legal range of the current screen,
then uses (LINE) to set the starting
address of the line in the disk buffer.

WHERE (Offset, Block# --)

Used when a compile time error
occurs during loading. Converts the
block number to a screen number,
makes that screen current, and prints
the line in which the load error
occurred. Underneath the line in
error, the cursor is printed to show
the approximate location of the
error. Enables the EDITOR vocabu-
lary as it exists. Strictly speaking,
this is not part of the polyFORTH
editor, but it is a highly useful tool.

#LOCATE(--Cursor offset, line#)

Uses the current cursor position to
compute the line number which con-
tains the cursor and the offset from
the beginning of the line to the cur-
rent cursor position.

#LEAD (--Line address, offset to cursor)

Computes the beginning address of
the current line in the disk buffer,
and the offset from the start of the
line to the current cursor position.

“ORTH DIMENSIONS T1/3

Page 82

#LAG (-- cursor address, count after
cursor)

Computes the address of the cursor in
the disk buffer and the count of
characters remaining on the line
after the cursor.

-MOVE (from address, to line# —)

Moves a line within the disk buffer to
the line specified, completely re-
placing the previous contents of that
line,

PMOVE (destination buffer address --)

If any text has been entered into the
PAD by TEXT, moves that text to the
specified buffer. Used to load the
FIND and INSERT buffers for
searches, etc. If no text was in the
PAD, no action is taken.

DLINE# (- current line number)

Uses the stored cursor location to
compute the current line number.

FIND-BUF (—-)
Establishes the FIND buffer a fixed
distance above the current address of
the PAD.

INSERT-BUF (-)

Establishes the INSERT buffer a fixed
distance above the FIND buffer.

(HOLD) (Line# --)
Non-destructively copies the contents
of the current line to the INSERT
buffer.

(KILL) (Line# -)

Replaces the specified line with a
blank line.

(SPREAD) (-)

Spreads the screen, starting at the

current line, pushing all lines below
the current line down, and leaving the
current line blank. Any text on line
15 is pushed off the screen and is
lost.

DISPLAY-CURSOR (-)

(R)

(TOP)

1LINE

(SEEX)

(DELETE)

"

Displays the current line with the
cursor in place.

(=)

Replaces the current line with the
contents of the INSERT buffer. Used
as the primitive operation for the P
command.

(--)

Resets the stored cursor position to
the top of the screen.

(--Flag)

Scans the current line for an exact
match with the contents of the FIND
buffer. If a match is found, the
stored cursor position is updated.

(=)

Starting at the current cursor posi-
tion, searches the rest of the current
screen for an exact match to the
contents of the FIND buffer. If no
match is found, the contents of the
FIND buffer are typed and the error
message "NONE" is output.

(Count --)

Starting at the current cursor posi-
tion, text is deleted backwards
(towards the beginning of the line),
according to the count. The remain-
ing text on the line is moved to the
left and the end of the line is filled
with blanks.

(=)

Copies any following text to the
FIND buffer and searches the

Page 63

FOR TH DIMENSIONS II1/3

1A B >

(TTY.)

L’

A ad

t
P
0
e
r

COUNTER

3UMP

current screen for a match. Used
as the primitive operation for the
F and D commands.

(=)

Uses the length of the contents of
the FIND buffer to set the count
for (DELETE). Used as the
primitive for the E and R
commands.

A variable used by the S command
to count the number of lines
output to the screen and printer.

(=)

Increments the number of lines
output and sends a page eject
when 56 lines have been output.
Used by the S command to handle
pagination on the console and
printer.

FORTH-79 STANDARD

The following changes should be made to the
.sad screens shown in order to bring the line
editor into conformance with the FORTH-79

Standard:

Screen

209

*ORTH DIMENSIONS H1/3

Line(s)Change

9,10 The FORTH word R
should be changed to R@.

SCR & 200

214 56,7 The FORTH word R
should be changed to R@.

212 3 The 0 preceding the word
VARIABLE should be de-
leted, since variables are
initialized to 0 auto-
matically under the
FORTH-79 Standard.

202 12 The word 1+ may be de-
leted, since the FORTH-
79 Standard specifies that
a length byte of 0 will be
stored when WORD finds
no text in the input
stream.

ERROR MESSAGES

Only two error messages are output by the line

editor:

NONE Indicates that no match was found
on the current screen
corresponding to the contents of
the FIND buffer.

NOT ON CURRENT EDITING SCREEN

Indicates that the line number
passed to the word LINE was
outside the legal range of 0-15
decimal.

@ < mol9FORTH cosmatiole line editor 81uv1o 5)

FORTH DEFINITIONS HEX

HERE C-L 1+ BLANKS

TR

DUP @FFFB AND

-
-

SCR & <LINE> OROF

- o e
aUN

-—1
15

t TEXT ¢ accert followina Lext to FPHD O
WORD
HERE PRO C/L 1+ CMOVE 3
1 LINE ¢ relative to SCR, leave address o1 line

IF . NOT O CURRENT EDlTlm SCREEN" QUIT TrEn

3

5age 84

-
wwvou‘an»og 5255:00¢u0uaun~o§

L
"~

b e o e L
:55:3wwvv~u.un"o§ azan oow«u-u&uu-—oﬁ

-
(L)

* 201
{ WHERE. SLOCATE #10767 SHD

UOCABULARY EDITOR IMMEDIARTE MWEX

8 WHERE L srint screen # and imase of error)
DUF B/SCR - DUF SCR ' " SCk # " DECIML .
SWAP C/ MO C/L + ROT BLOCK <+ CR C/L TYPE
CR HERE C@# -~ SPHCES Sk EMIT
CCOMPILE) EDITGR @IV 3

EDITOR DEFINITIONS

t SLOCATE ¢ == cursor offset-. line~1
R¢ 4@ C/L M 3

—

* 202
¢ SLERD. SLAG, -MOVE. BUF-MUVE 8ldior S o
t BLEFD (=~ line address—2, offzet to cursor-i.,
SLOCAHTE LINE SWFF 3
: SLAG { === cursor adr-2, cocunt af'ter cursor-lv
WERD DUP R ¢ CLR>X - 3
t —MOUE ¢ move from acdr~2, to line~1 ~—
LINE C-L CMOUE UPDATE 3
t BUF-MOUE ¢ move text Lo buffer—1, if anw ==)
PRL 1+ (4
IF PRD SWAP C/L 1+ CMOLE
ELSE DROF
THEN 3 -—>
* 203 ’ _ . '
¢ JLINES, FIND-BUF, INSERT-BUF 81378 SHU
t DLINE® { cormertd current cursor sosition Lo line®)
SLOCRATE SWAF DROP 3
¢t FIND-BUF < bl for used for all searches)
PRD S0 + 3
t INSERT-BUF ¢ buffer used for all insertions)
FIND-BUF SO0 + 3
-—
. 204
< (HOLD—-, (KILL-., (SPREARD-. X 819707 Sk
. CHOLD> < move line~1 from block Lo insert puffer

LINE INSERT~BUF 1le¢ C1L DUP INSERT-BUF C! CMOVE 3

¢ <KILL> ¢ orase line~1 with blarks)
LINE C/L BLANKS UPORTE

t (SPREFD) < seread., making lined blank)
LINES DUF 1 - @€
DO I LINE @ 1+ -MOUE -1 «LOUF <KILL)> 3

Tt X { delete line® from Dlock. Put in insert buffer)
HINES® DUP <(HOLD> ©F DUWP ROT

DO I 1+ LINE I -MOVE LOOP <(KILL> 3

——

L]
¢ DISPLAY-CURSOR. T, L #$16715 Sil

3 DISPLAY-CURSOR ==
CR SPACE OLERD TVYPE SE EMIT
MAG TYPE OLOCATE . DROP 3

s T twe lined~t)
CL » RO ' @ OISPLAV-CURSOR 3
T L ¢ list current screen)

SCR @ LIST 3
->

(TOP) FIND=-BUF HERE C/L 1+ CMOVE
HERE COUNT TVPE
<" NONE* QUIT 3

SCR 0 206

9 ¢ N. B, (TOP-, SEEK~ERRODR 8187¢7 SHD)
1

2t N { select next sesuesntial screen)

3 1 SCR +' 3

4

St 8 ¢ select srevious sesuential screen)
6 ~1 SCR +' 3

7

8 & (TOP) ¢ reset cursor Lo tor of block)

9 e Re ! 3

18

11 3 SEEK-ERROR ¢ outsut error mss if No match)
12

13

14

15

. 207

C (R~-, P 810787 SHD)

1 (R ¢ rerlace current line with insert buffer)
JLINES

INSERT-BUF 1+ SWAP -MOVE 3

o b pe a po pa §
AEUNRODNURLUWNN—B

t P ¢ following text in insert buffer and line)
SE TEXT
INSERT-BUF BUF-MOUE
11 R 3
-
SCR & 208
9 < VIPE., COPY., ILINE 810715 SHD >
1
2
3t W¥iPE ¢ clear the current screen)
; 1@ @ DO 1 <«KItL> LOOP 3
6 & COPY ¢ corw screen—2 onto screen-i)
7 B/’SCR # OFFSEYT €@ + SWf B/SCK = B/SCR
8 OUER <+ SWAP
9 DO DUF FORTH 1 BLOCK 2 =~ ¢ ¢ UPDRTE LOUOF
:? DROP FLUSH 3
12 & ILINE ¢ scan current line for match with FIND buffer)
13 (urdate cursor. return booclean b
:; SLAG FIND-BUF COUNT MATCH R® +' 3
-—>
. 209
¢ (SEEK-., (DELETE- 818713 S0)
s (SEEX) ¢ FIND buffer match over full screen. else error)

BEGIN 3FF R ¢ <
IF SEEK-ERROR THEN
1LINE

UNTIL 3

s CORLETED ¢ backuwards at cursor bw count-1)
R OAG ¢+ R -~ ¢ save Dlankh ill location D

SLAG R MINUS R® «! < back ur cursor)

<

o a1t b pa o ﬁ
REAUNDBOONOVRRUNS

SLEAD + SWAP CMOE
R> BLANKS UPDATE 3

-

Till from end of text)

- o e B e n
WRAUNDODBNOAIUNSD

(T3 - E
- QVONPORAUNS®

o B 0o bo be b . §
BRAUN O VONPARLUHAN—-O

- e e b bo §
AREUNDOOVIUBAUN»O

® 218
¢ CF-, F, (-, E 810713 SHD)
s P ¢ find occurance of following text »
SE TEXT
FIND-BUF BUF-MOVE
(SEEK> 3
t F ¢ find and dissrlaw followins text)
(F> DISPLAY—CURSOR :
s B (erase bachuwards from cursor)
FIND-BUF Ce (DELETE) 3
t E ¢ erase and disrlaw line >
<E) DISPLAY-CURSOR 3
—
. 213
< D, TIWLL 810715 5HD)
t 0 ¢ find, delete, and disrlaw fOllowins text)
F> E 3
t TILL ¢ aelete from cursor Lo text end)
MERD + SE TEXT
FIND-BUF BUF-MOUE
ILINE o= IF SEEK~-ERROR THEN
SLEMD ¢ SWAP -~ (DELETE)
DISPLAY=-CURSOR 3
-—>
® 212
< COUNTER. BLr®P 810787 SHD)
8 URRIABLE COUNTER
s BUMP ¢ the line mmber and handle rasins)
1 COUNTER <+! COUNTER @
38 > IF @ COUNTER !
CR CR OF MESSAGE oC EMIT THEN 3
-_—D
* 213
¢S 810713 SWD)
t S < from current Lo screen—1 for strire >
OC EMIT SE TEXT @ COUNTER !
FIND-BUF BUF-MOUVE
SCR @ DUP >R DO I SCR !
<TOP>
BEGIN
ILINE IF DISPLAY-CURSOR SCR ? BUMP THEN
IFF R8¢ @& <
UNTIL
LOOP R> SCR ! 3
-—

SCR 9 214
e <1, U 8106715 SHD)
131 ¢ insert text within lire O
2 SE TEXT ¢ load insert buifer with Lext)
3 INSERT-8UF BUF~MCVE C it anw)
4 INSERT-BUF COUNT OLAG ROT OUVER MIN OR
k-1 R R8 ! (bume cursor)
[R =~ DJR ¢ characters Lo save
7 DUP HERE R OCMOVE ¢ from old cursor to HERE)
8 HMERE WLEMD ¢ R> CMOVE ¢ HERE to cursor location)
9 R> CMOUE UPDATE ¢ PRD to old cursor)
16 DISPLAY-CURSCOR C lock at new line)
11
121V ¢ insert following text under current lire)
13 C/L R@ ¢! (SPREFLY P 3
14
15 —>

SCr & 215
@CR, M 816715 SHD »
1
2t R ¢ rerlace found text with insert buffer O
3 E> I 3
4
St m ¢ move Trom current line on current screen)
é SCR ¢ >R { Lo screer—2. UNDER line-l)
7 Ré¢ € DOR (save orisinal screen and cursar location)
8 HINES (HOLD) (¢ move current line to insert buifer)
9 SWAF SCR ! ¢ set new screen ¥ O
18 i1+ C/L » R8O ! C text is stored UNDERK rewussted line)
11 (SPREAMD> (R (store insert buffer i nNew screen)
12 R> C/L +« R® ! C st original cursor Lo next line)
i3 R> SCR !' 3 ¢ restore orisinal screen)
14
15 FORTH DEFINITIONS DECIMAL

SCR 8 216
e < 810715 SHD)
1 FORTH DEFINITIONS DECIMAL
2 t 20ROP DROP DROP 3 ¢ dros a double rumber)
3
4 ¢t 2SWAP ¢ 2nd double number to TOS >
S ROT >R ROT R> 3
[3
; t 2DUP OUER OUVER 3 ¢ dur a double rumber O
9 3 (MATCH) { sddr—-2, addr—-2, count-1 - flas)
10 -DUP IF OUVER + SUWFF
11 24}
12 DUP Ce I Ca« -
3 IF ©= LEME ELSE 31+ THEN
14 LOOP
15 ELSE DROP ©O= THEN -2
SCR & 217
Q< 819715 SHD
1
2 ¢ MATCH < cursor adr—4., bwtes left-3, strins adr-2)
3 ¢ string court-1 — flag-2., cursor offset-{)
4 X R 20UFP R> R> 25WAP OUER + SUWfRP
S ¢ caddr—6, bleft-3. Saddr—4, Slen-3, caddr+bleft-2, caddr—1)
(3 00
7 2P 1 SWRAP (MATCH>
8 IF
9 R 200P R> =~ 1 SWUAP - @ SUw 0 @0 LEME
10 (caddr, bleft., Saddr. $len OR @, offset. 6, @
11 THEN)
12 LOOP
13 20R0P < cadar—2, bleft-1 OR o=2, offset-1)
14 SWAP O= SWFF 3

*3RTH DIMENSIONS /3 Page 88

RECURSION AND THE ACKERMANN
FUNCTION

Joel V. Petersen

Recursion involves the calling of a program
by itself. An example of where recursion might
be used is in the parenthesis handler of an
algebraic string parser. Every time the parser
encounters a left parenthesis, it calls itself;
every time the parser encounters a right
parenthesis, it completes a call of itself.
Recursion is somewhat difficult to explain and
very difficult to use properly. However, the
implementation of recursion in any language
can be tested with a program called the
Ackermann Function. This is a recursive
function of two variables which is almost
impossible to explain. The following is an
implementation of the function in PASCAL.

VAR K,J: INTEGER; CALLCNT;INTEGER;

FUNCTION F(K,J: INTEGER): INTEGER;
B8EGIN
CALLCNT :=CALLCNT+1;
IF K=0O THEN
F 1=J+1
ELSE
IF J=0 THEN
F = F(K-1,1)
ELSE
F :=F(K-1,F(K,J-1));
END(*ACKERMANN FUNC TION#¥);

Recursive programming as illustrated in the
PASCAL example is not possible in FORTH. A
program can not invoke itself simply by using
its own name while defining that word.
However, recursion is not difficult at all to
achieve:

(FIG-FORTH)
: MYSELF LATEST PFA CFA ,
IMMEDIATE

(NIC-forth)
: MYSELF LAST@ @ 2 +, ; IMMEDIATE

MYSELF simply places the address of the
code field of the word being defined into its
own definition. Thus, whenever the program
needs to invoke itself, the word MYSELF should
be used instead. The Ackermann Function now

becomes:

(FIG-FORTH)
0 VARIABLE CALLCNT
+ ACKERMANNI(TIJ-F)
1 CALLCNT +!
O=1IF
SWAP DROP 1+
ELSE
puP
O=1IF
DROP 1- 1 MYSELF
ROT ROT DROP 1- SWAP MYSELF
THEN
THEN ;

(NIC-forth)
VARIABLE CALLCNT

: ACKERMANN (1J-F)
1 CALLCNT +! OVER
THEN
DuUP
THEN
2DUP 1- MYSELF
-ROT DROP 1- SWAP MYSELF
ELSE
DROP 1- 1 MYSELF
ENDIF
ELSE
SWAPDROP 1+
ENDIF ;

For comparison, the Ackermann Function
was tested on the Nicolet 1280 20-bit
processor in both (compiled) PASCAL and
NIC-forth. The K=3, J=5 function took 8
seconds in (compiled) PASCAL and 12
seconds in NIC-forth. (As an aside, the
addition of a simple hardware mod to the
1280 processor to speed up NEXT in NIC-
forth reduced this to 9 seconds! Who says
inline coding is so much faster than indirect
threaded code!)

When attempting to try the Ackermann
Function, one must allocate lots of room for
both the parameter stack and the return
stack. Every time the function is called,
there must be two elements on the
parameter stack, thus the parameter stack
will fill up approximately twice as fast as
the return stack. The K=3, J=6 function

Page 89

FOR TH DIMFENGINOING T3

requires over 1000 elements on the
parameter stack and over S00 elements on
the return stack at its deepest point. When
the K=4, Jz1 function was tried, the pro-
gram finally crashed after five hours with
the return stack containing over 5000
elements!!

The results of the simpler Ackermann
Functions are given below. F is the value
returned by the function. CALLCNT is the
count of how many times the program called
itself. MAXDEPTH is the maximum depth
attained by the return stack.

K J E CALLCNT MAXDEPTH
T 8T 1

0 1 2 1

1 0 2 2

1 1 3 &4 3
1 2 4 6

2 0 3 5

2 1 5 14

2 2 71 27 8
2 3 9 a4 10
2 128 259 33669

3.0 5 15

31 13 106

32 29 sal

3003 61 2432 63
3 4 125 10307 127
35 253 42438 255
3 6 509 172233 511
s 0 13 107 16
& 1 77 7 77

*JIC-forth is the implementation of FORTH on
~e NICOLET INSTRUMENT CORPORATION
--30/1280 series computers. This computer is a
2Z-bit minicomputer with a 19-bit address
s=ace.)

Joel V. Peterson

Nicolet Instrument Corp.

5225 Verona Road

Madison, Wisc. 53711

{608) 271-3333

Iz - A great article, but watch out. Most
“:"ORTH implementations have insufficient
123tk space to execute this function. Programs
rould be reviewed for compatibility.)

REVIEW

A Brief Review of the Manuals
for the PET/CBM fullFORTH+ V1.3/4

by Jim Berkey

Complete system is available from IDPC
Co., Box 11594, Philadelphia, PA 11916 for $65
(plus shipping?). Includes about 70 pages of
documentation and a 54" diskette (not re-
viewed).

IDPC's fullFORTH+ is noted to have taken a
person-year to be developed by an experienced
programming staff. [give them a triple E for
effort, but the product is, at best, rough.

fullFORTH+ is described as "a complete
implementation of the FORTH language, as
defined by the FORTH Interest Group." If this
is true of the disk, then there are glaring
technical errors in the glossary, whose defi-
nitions deviate substantially from the FIG
manual. One example from +LOOP : "If the
counter and limit values are equal, either
before or after adding the increment, the DO
loop is exited . . " If you take this literally, the
counter (read "“index") is compared to the limit
twice—-once before and once after the incre-
ment--and exit can never occur on greater-
than, as it does in the FIG model.

On the plus side, the package includes 6502
assembler, screen editor (not PET's), printer
support, and floating point routines. These are
nice to have, but from the samples of use
shown, I suspect the presence of endless small
inconveniences. To be fair, endless small
inconveniences are a built-in feature of CBM
disk systems which fullFORTH+ has not
corrected.

1 can't recommend fullFORTH+ for any but
the desperate, because of two central prob-
lems: (1) the manual reveals a mangled view of
the FIG model, and (2) fullFORTH+ was
probably not implemented originally for the
PET/CBM.

2R TH DIMENSIONS III/3

Page 90

FORTH, INC. NEWS

BETTER SUPPORT PROMISED THROUGH
FORTH, INC. AND TECHNOLOGY
INDUSTRIES MERGER

FORTH, Inc. and Technology Industries, Inc.
of Santa Clara, CA., have announced a
merger. This means that FORTH, Inc. will
become a wholly owned subsidiary of
Technology, and the present shareholders of
FORTH will become shareholders of
Technology.

Technology Industries is a new company
founded in February 1981 by John Peers. Peers
is best known as founder and former chairman
of Logical Machines Corp. of Sunnyvale, CA.
This very successful company manufactures and
sells business computers that feature a
"programmerless" language called Adam,
designed by Peers.

"The principle change that everyone will
notice," said FORTH, Inc.'s president, Elizabeth
Rather, "is that we'll be doing a lot more of
what we do best--selling and supporting high
quality professional FORTH systems and
applications--and doing it even better. We're
expanding our staff and investing heavily in
equipment training,"

FORTH, Inc. will operate with its individual
identity, retaining the same name and operating
structure. Technology Industries will be the
"parent” of several other new companies as
well. Each will specialize in hardware designed
around and featuring FORTH. "Membership in
this group will provide us with the opportunity
to do some things 've wanted to do for years,"
said Chuck Moore. "I'm extremely excited
about these plans."

EXPAHMSION CONTINUES

~ FORTH, Inc.'s growth in recent months has
included two significant additions to
management.

Joseph "Skip" Reymann, formerly with
GOULD NAVCOM of El Monte, California, has
joined FORTH, Inc. as vice president of opera-
tions. Reymann has extensive experience in
both the technical and business aspects of

program management. He has degrees in
physics, finance, and corporate and contract
law.

Robert E. Smith, Jr. is FORTH, Inc.'s new
vice president of sales and marketing. Smith
has over ten years of experience marketing
application software for minicomputers. He has
already tripled the size of the marketing
department and plans to triple it again within
eighteen months.

Other important additions to the staff
include two people in the accounting depart-
ment and three sales and marketing representa-
tives. The products department has been
reorganized with Leo Brodie, author of Starting

FORTH, acting as manager. The publications

department has grown by two, and three general
support staff members have come on board.

RECENT APPLICATIONS

FORTH, Inc. recently signed a contract with
International Business Services, Inc. in
Washington, D.C., to supply hardware and soft-
ware to the United States Forest Service.

FORTH, Inc. will provide the hardware and
update and enhance the software for a high-
resolution map analyzer system. The system
will work with digitized data from existing
contour maps in raster format.

The raster-scanned maps will be displayed
on a high resolution (1024 x 1024) image
system. A PDP-11/44 is then used to follow a
given contour line and convert it to a string of
vectors. Operator assistance is required in
selecting a contour line, labeling, handling
breaks in data, and making corrections from the
original map. Operator input is via a track ball
interface and alpha-numeric CRT.

Dick Liston of USFS has used FORTH for
several years developing a prototype version of
the system using miniFORTH on a PDP 11/05.

Page 91

MARKETING COLUMN

Q. I've written several programs that all my

friends think are excellent; what is the best
way to market them?--M.L.., New Mexico

There is no universally "best" way to market
anything, and that includes computer
programs. Generally speaking, howsver,
planning is your best ally. Since you have
already received some feedback (and 1
assume you are certain that it is valid and
not just your friends being politely sup-
portive), it makes sense that persons that
closely match the profile of your friends in
terms of need, occupation, income, etc.
would be your best prospects. Simply put,
marketing under these circumstances will
congist of finding a way to communicate
effectively and cost effectively with this
target group.

I've run a number of ads for software I have
developed and while I have sold some, 1 just
don't seem to make any real money for the
time I am putting in—~what am [doing
wrong?--R.B., Sandusky, Ohio

Your problem points up many areas that do
not occur to the amateur entrepreneur. In
the interests of brevity, I will touch on a
few of the more significant as being instruc-
tive to our readers.

® PRODUCT--in this area you may be pro-
moting a product that serves no real need
or is competing with an already estab-

Remember your media should be
purchased on the basis of cost per pros-
pect, not cost per 1,000.

® MESSAGE--you may be saying the right
thing to the right people, but in the wrong
way. Part of your test marketing should
be to give your advertising and sales copy
to a rank amateur and see if what they
think you are saying is the same thing you
think you are saying.

The above list is by no means all-inclusive,
but these are the areas you should start
looking into first.

Q. Is there any way of selling my programs

other than by buying ads, etc.?--B.C.,
Walnut Creek, CA

A. Yes. One of the most common ways is to

have your software merchandised through
any number of firms that specialize in this
field. Basically the way they operate is to
contract with your for ownership of your
software and pay you a royalty on sales--
much like an author receives from a book
publisher. Naturally, the royalty is nowhere
near the amount you would receive if you
sold your software directly to the consumer
yourself; but considering that you have no
risk and your time is free to develop
additional products which in turn can be
sold, the reduced percentage is still often
the best way to go. The point is that it isn't
how large a percentage you receive that is
important--but how much money you make.

lished vendor. Questions of general interest regarding the

marketing of software will be answered in each

® PRICE--your price may be too high, edition in this column. Because of time
causing your potential customers to seek limitations, it will not be possible to provide
other sources or do without; or, more private answers either by phone or mail. In the
commonly, your price may be too low, interests of personal privacy, questioners will
causing you to perform excessive labor in be identified by initials only. Questions should
selling and servicing your accounts for the be addressed to:
amount you are charging. '

MARKETING COLUMN
® MEDIA--you may be advertising or selling Editor, FORTH DIMENSIONS
to the wrong audience. If you have failed PO Box 1105

to research your market and are running
ads based on who's cheapest as opposed to
who's reading (prospect profile), you are
unlikely to achieve any realistic sales.

San Carlos, CA 94070

*IRTH DIMENSIONS /3 Page 92

HELP WANTED
FORTH PROGRAMMERS

Openings at All Levels
At FORTH, Inc.

Programmers experienced with mini/micro
computers and peripherals to produce new
polyFORTH systems and scientific/industrial
applications. Degree in science or engineering
and knowledge of FORTH essential.

PRODUCT SUPPORT PROGRAMMER

DUTIES: Responsible for maintaining existing
list of software products, including polyFORTH
Operating System and Programming Language,
file management options, math options and
utilities and their documentation; and providing
technical support to customers.

Requirements include:

Good familiarity with FORTH--preferably
through one complete target-compiled
application. Assembler level familiarity
preferred with the 8080, PDP/LSI-11, 8086,
Mg800, CDP1802, NOVA, IBM Series I,
TI1990. Communication skills are essential.

PROJECT MANAGER

Project manager to supervise applications and
special systems programming projects: writing
proposals, setting technical specifications,
customer liaison, hands-on programming, and
supervision of senior programmers.

SENIOR INSTRUCTOR

Exper_enced in course writing and development,
technical education in computer software, hard-
ware, and related subjects, including FORTH
programming. Responsibilities include mar-
keting seminar support and instructing in-house
polyFORTH courses.

EDUCATIONAL STAFF ASSISTANT

Experienced in dealing with public, sales and
marketing, and some programming. Duties will
include assisting education department manager
with overflow administrative tasks, active
participation in FORTH, Inc. user group.

JR. INSTRUCTOR

Experienced in public speaking or educational
ingtruction, programming on various processors
--high-level languages and assembler. Micro-
processor and FORTH programming background
valuable.

CONTACT:

Pat Jones

FORTH, Inc.

2309 Pacific Coast Highway
Hermosa Beach, CA 90254
(213) 372-8493

CONSULTANT WANTED

We are designing a heat pump controller
system, which is based on the National Semi-
conductor "COPS" Microcontroller. It is a 4 bit
calculator chip, with 2K of ROM and 128
nibbles of RAM.,

We need a consultant who can:

1. Advise whether or not Forth can be put
on the COPS

2. Estimate the program size, once
compiled

3. Write software which would allow me to
write and debug code on a TRS-80,
Model 1, and then cross compile it to
the COPS.

For information calls

THE COLEMAN COMPANY, INC.
Scott Farley

Design Project Manager

(316) 832-6545

Page 93

FORTH DIMENSIONS /3

C N A O W e e s me el e

SrQARy Om

-— vV W v

w1y

NEW PRODUCTS
FORTH by Timin Engineering, Release 3

Release 3 of FORTH by Timin Engineering is
: complete software development system. It is
-teractive (conversational) in nature. The
“JRTH system incorporates a command proces-
sr, compiler, editor and assembler, all memory
~sident. The principal benefits are a reduction
- software development time and a reduction
- memory size for large applications. The
=-incipal application area has been machine and
z-ocess control. The language is suitable for all
soolications except scientific mathematics.
“~is product is based on the well-known FIG
“ORTH but with numerous enhancements,
-zluding:

- visual (screen) editor

- array handling (implemented in machine
code)

- very fast disk I/O

- configurable for different memory size

- creates turn-key applications .

- CP/M system calls and file handling

Release 3 of Timin FORTH will run on Z-
%/8080/8085 hardware systems with CP/M or
Z20S. Minimum memory size is 28K. The
=-.ce for Release 3 of Timin FORTH is $235 (if
:tver than 8" standard disk, add $15). To order
c2ease 3 of Timin FORTH, write Timin
Z~gineering Company, 9575 Genesee Avenue,
>.ite E-2, San Diego, CA 92121, or call (714)
+35-9008.

HDQOS FORTH
- Vendor: Essex Computer Science

- Address: 1827 St. Anthony Ave., St. Paul,
MN 55104

- Telephone: (612) 645-3345

- Contact: Rick Smith

- Product Name: Essex HDOS FIG-Forth
- Descriptiont

Essex HDOS FIG-Forth is an inexpensive
version of FIG-Forth for Heath

HB89/Zenith Z89 users with the HDOS
operating system. It is a version of 8080
FIG-Forth Version 1.1 customized for
HDOS and the H/Z89. Disk I/O takes
place via a standard HDOS disk file. In
addition, the FIG-Forth source listings are
provided and may be modified and re-
assembled on a single-disk HDOS sytem.

Extras: None.

Target machines: Heath HB89 and Zenith
Z89. Heath H8 users may also use the
system if they modify the console 1/0
routines,

Memory requirements: 32K of RAM
Number of documentation pages: 140
Documentation description:

Documentation consists of release notes,
a copy of the FIG-Forth Installation
Guide, and s copy of the official 8080
FIG-Forth version 1.1 source listing. The
manuals provide the information
necessary to install and modify the Forth
system.

Essex does not offer the manuals
separately. They may be purchased
separately through the Forth Interest
Group.

We will reduce the price to $25.00 for
persons already owning copies of both FIG
documents.

Form of Product: S" HDOS diskette,
including source, object, and release note
files.

Shipments to date: about 4

Price: $45.00, or $25.00 for those who
already own the FIG documentation.

Includes: U. S. postage, local tax.

Warranties and support: 30 day free
replacement of defective media. We are
interested in fixing bugs that crop up but
do not quarantee that bugs will get fixed.

“OR MENSIONS H1/3

Page 94

- Order turnaround time: 3-4 weeks.
Order from:

Essex Computer Science
Richard E. Smith

1827 St. Anthony Avenue
St. Paul, MN 55104
(612) 645-3345.

AN 1802 FIG FORTH

Version 1--RCA CDOS
Load under RCA CDOS
Disc with source and object files for
RCA CDP18S008
CDP185007
CDP185005 with CDOS upgrade
A minimum of 8K from address 0 is required

Version 2--RCA unit-track
Load under RCA unit-track
Disc with source and object files for
RCA CDP185008
CDP185007
CDP185005 with UART card
A minimum of 8K from address O is required

Version 3—object and FORTH screens
Load under RCA unit-track
then LOAD FORTH screens

Version 3 is suggested unless the user wants
to manipulate the 1802 source code. This
version will be continually updated with
program material.

The discs are $50 each (Calif. res add 6
percent sales tax)
Order from: CMOSOFT, P. O. Box 44037,
Sylmar, CA 91342

AIM-FORTH HACKER'S SYSTEM"

I finally got my fig-FORTH 65 running on
my AIM-65 at work and I would like to offer it
to other hackers like myself. This FORTH
system runs on AIM -65 with the DAIN DISK
SYSTEM and uses an external terminal.

The software is on 2 disks. One contains the
complete source and object. The other contains
Editor, Screens, Error Messages and other bits
of FORTH code of my creation done while I
started using FORTH.

I will supply my AIM-FORTH "Hacker's
System” to anyone for $25.00. THIS IS NOT
FOR BEGINNERS! THIS IS NOT A COM-
MERCIAL PRODUCT! I am interested in con-
tacting other FORTH hackers in my area and
would like to possibly make some noise with
them or start a phone line software interchange
of techniques using MODEMS. 1 welcome any
letters or input on this idea.

Eric Johansson

55 A Richardson St.
Billerica, MA 01821

(617) 667-0137 (home)
(617) 899-2719 x 224 (work)

FORTH MAILING LIST FOR APPLE

Allows users to maintain 1,000 entries per
floppy. Functions include adding, deleting, and
modifying entries. The mount option allows
mounting any number of mailing list floppys.
Labels can be generated in 1,2,3, or 4 across
formats with user optional selection criteria.

This application package includes: 16 sector
boot disk for the Apple; Source code for system
and a bonus of one mailing list floppy with name
addresses and phone numbers of over 100
FORTH users.

Price is $45.00 from:

Elmer W. Fittery
INTERNATIONAL COMPUTERS
110 McGregor Avenue

Mt. Arlington, NJ 07856

(201) 663-1580 (call after 6:00 pm)

FIG CONVENTION COMING — NOV. 28

Page 95

FOR TH DIMENSIONS 11/3

Ve E rd

Ceadlanu

KL

FORTH CLASSES

NEW CLASS
BY KIM HARRIS & HENRY LAXEN

FORTH, PRINCIPLES AND PRACTICES

This class is intended to teach the student
-2w to write programs in FORTH, It is a "how
12" class and not a "why" workshop. The class
«ill meet on each Monday in October from 6:30
2 9:30 at Berkeley Computer, 1569 Solano
~venue, Berkeley. The phone number there is
126-5600. The topics to be covered are:

The Language

Input Output Structure
String Handling
Vocabularies

Defining Wards

This is an ambitious schedule, and depending
x the level of the students, more or less will be
:cvered. Experience with other computer lan-
asages would be helpful, though it is not
—equired. There will be homework exercises,
= machines will be available for students'
se. For more information, contact Henry
-axen at (415) 525-8582.

SEMINARS, WORKSHOPS, CLASSES
FROM FORTH, INC.

—ocation Seminar Workshop

-=s Angeles October 15 October 16

tan Diego October 22 October 23
Introductory classes in polyFORTH

srogramming will be offered September 14-18

and October 5-9 at FORTH, Inc. An advanced
course will run October 12-16. Contact Kris
Cramer for details. FORTH, Inc., 2309 Pacific
Coast Highway, Hermosa Beach, CA 90254,
(213) 372-8493.

MORE FORTH CLASSES

Intensive S-day FORTH workshops are being
offered at INNER ACCESS CORPORATION,
These workshops provide an introduction to the
FORTH programming language sufficient to
design and debug programs to solve real
problems. These workshops also serve to
enhance one's understanding of the FORTH
tools necessary for complex applications.

Workshop Dates Time Cost
Sept. 21-25 9-4:30 $295
Oct. 19-23
Nov. 16-20

To obtain more information on these work-
shops, call Inner Access (415) 591-8295 in
Belmont (home of Marine World) in the San
Francisco Bay Area.

AND MORE CLASSES

Free Beginner's Class for Apple users. In
San Diego, two-session course on 9/26/81 and
10/30/81 at 1 p.m. at Computer Merchant, 5107
El Cajon Blvd. K. V. Amatneek, Instructor.

o(BASE

o}
. Q00
@

ANEL BRI

1@
o

“ORTH DIMENSIONS Ti/3

How to form a FIG Chapter:

I. You decide on a time and place for the
first meeting in your area. (Allow at least
8 weeks for steps 2 and 3.)

2. Send FIG a meeting announcement on one
side of 8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP numbers
that you want mailed to (use first three
digits if it works for you).

3. FIG will print, address and mail to
members with the ZIP's you want from
San Carlos, CA.

4. When you've had your first meeting with 5
or more attendees then FIG will provide
you with names in your area. You have to
tell us when you have 5 or more.

Northern California

4th Sat FIG Monthly Meeting, 1:00 p.m., at
Southland Shopping Ctr., Hayward,
CA. FORML Workshop at 10:00 am.

Southern California

Los Angeles

4th Sat FIG Meeting, 11:00 a.m., Alistate
Savings, 8800 So. Sepulveda, L.A.
Philip Wasson, (213) 649-1428.

Orange County
3rd Sat FIG Meeting, 12:00 noon, Fullerton
Savings, 18020 Brockhorst, Fountain

Southwest

Phoenix Peter Bates at (602) 996-8398.

Tulsa

3rd Tues FIG Meeting, 7:30 p.m.,, The
Computer Store, 4343 So. Peoria,
Tulsa, OK. Bob Giles, (918) 599-
9304 or Art Gorski, (918) 743-0113.

Texas Joff Lewis, (713) 719-3320 or John
Earls, (214) 661-2928 or Dwayne
Gustaus, (817) 387-6976. John
Hastings (512) 835-1918.

Mid Atlantic
Potomac Joel Shprentz, (703) 437-9218.

New Jersey George Lyons (201) 451-2905.

New York Tom Jung, (212) 746-4062.

Midwest
Detroit Dean Vieau, (313) 493-5105.

Forel

Kmﬁﬁ%a Lance Collins (03) 292600.
England FORTH Interest Group, c/o 38,
Worsley Road, Frimley, Camberley,
Surrey, GU16 SAU, England

Japan FORTH Interest Group, Baba-bldg.
8F, 3-23-8, Nishi-Shimbashi, Minato-
ku, Toyko, 105 Japan.

Valley, CA. (714) 896-2016. Canada
: Quebec Gilles Paillard, (418) 871-1960 or
San Diego 643-2561.
Thur FIG Meeting, 12:00 noon. Guy
Kelly, (714) 268-3100, x 4784 for West Germany
site,
Wolf Gervert, Roter Hahn 29, D-2
Northwest Hamburg 72, West Germany,(040)
Seattle Chuck Pliske or Dwight Vandenburg, 644-3985.
(206) 542-8370.
New England
Boston
1st Wed FIG Meeting, 7:00 p.m., Mitre Corp.,
Cafeteria, Bedford, MA. Bob
Demrow, (617) 389-6400, x198.
Boston
3rd Wed MMSFORTH Users Group, 7:00 p.m.,
Cochituate, MA. Dick Miller, (617)
653-6136 for site.
Paqge 97 FORTH DIM ONS II1/3

FOSTH IMENSIONS

FORTH INTEREST GROUP Volume lll
P.0.Box 1105 Number 4
San Carlos, CA 84070 Price $2.50

NS0k

101 FORTH and the University

FORTH in Laser Fusion

Proceedings of the 1981 Rochester
FORTH Standards Conference

implementing FORTH-Based
Microcomputers

Data Structuresin a
Telecommunications Front End

Mapped Memory Management
Techniques

A High Level Interrupt Handler in FORTH

Optimized Data Structures for
Hardware Control

EEFEEFREE

The String Stack

125 Complex Analysis in FORTH

A FORTH-Based, Micro-sized
126 Micro Assembler

FOSTH MIMENSIOTS

Published by Forth Interest Group

Volume [T No. 4 November/December 1981
Publisher Roy C. Martens
Editor C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is assumed for accuracy of material
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP 1S IN THE PUBLIC DOMAIN, Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in 1969 et the
Nationa! Radio Astronomy Observatory, Charlottesville, VA. It
was created out of dissatisfaction with available programming
tools, especially for observatory automation.

Mr. Moore and severs! associates formed FORTH, Inc. in 1973
forthe purpose of licensing and support of the FORTH Operating
System and Programming Language, and to supply application
programming to meet customers' unique requirements,

The Forth Interest Group is centered in Northern California.
Our membership is over 2,400 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publications,

ORDER YOUR COPY!
Proceedings of the 1981 Rochester FORTH Standards
Conference
$25.00 US, $35.00 Foreign. Send check or MO to
FIG in US funds on US bank.

"Starting FORTH"
Hard Cover - $20.00 US, $25.00 Foreign
Soft Cover - $16.00 US, $20.00 Foreign

EDITOR'S COLUMN

A special thanks this month goes to Mr. Larry Forsley and the
University of Rochester. The majority of this issue comes from
his efforts and those of his asociates. While acting as guest edi-
tor for this issue of FORTH DIMENSIONS, Mr. Forsiey was also
compiling and editing the proceedings from this year's FORTH
conference at the University of Rochester. Even with this
“double duty," Mr. Forsley has done an exceilent job.

The quality of material we hsve received from the University
of Rochester is excelient and greatly encourages me in my plans
to “de-Californize” FORTH DIMENSIONS through the use of re-
gional guest editors. While Mr. Forsley and the University of
Rochester may be s tough act to follow, I will welcome contacts
from anyone else (person and/or organization) who would like to
try guest editing an issue. For your peace of mind, let me assure
you that production (typesetting, proofing, printing, etc.) will be
handled for you. If you think you have what it takes, give me a
call or drop me a line.

You may find that some of this issue's sections have been re-
duced is size and/or eliminated. This is a temporary concession
because of the volume of material we have to publish in this
issue. Postal costs prohibit expsnding the size of FORTH
DIMENSIONS to publish all we receive, so when we have a quan-
tity of quality material we publish those items that would seem to
have the greatest reader interest.

I hope to meet many of you at the FIG National Convention in
Santa Clara, California on November 28th. Meanwhile,
GO-FORTH and get additional members.

C. J. Street
Editor

PUBLISHER'S COLUMN

We are heading into some busy times for FIG. By the time you
get this copy of FORTH DIMENSIONS we'll have completed the
Mini-Micro Show in Southern Caslifornia and be deep intoc the
details of the FORML Conference and FIG National Convention.
Remember that the Convention is Saturday, November 28th at
the Marriott Hote! in Senta Clara, California. Expect to see
many of you there.

We've sent out packets to FORTH vendors sbout exhibiting at
the FIG National Convention. If you are interested in exhibiting
and haven't received a packet, call the FIG line and request one:
(415) 962-8653. Only $50 for a table!

This issue is the much awaited University of Rochester
effort. Its packed with useful material. You ought to order the
Proceedings of the 1981 Rochester FORTH Standards Conference.
It has 378 pages of excellent papers

"Starting FORTH" by Leo Brodie is available from FIG =~~~
---------- snd replaces "Using FORTH" as the book to have
about the FORTH language.

Now, a little lecture. We have conducted an unscientific
survey and found that in many locations there are people who are
using FORTH and sren't members of the FORTH Interest Group.
You as a member should work on them to join. All you have to do
is make a copy of the Order Form ==~~~ =~-~=-=ceccmaoo. and
have your associates fill in their name and adoress. 1f we each
get one more person to join we'll have over 5,000 members. Let's
do it.

Roy C. Martens

Page 100

FORTH DIMENSIONS II/4

F 4 A80CAHULRRUE CL Il WS "B A it 488 211

ISkyY0289Y

18104

hd

dIEBPaEN

FORTH AND THE UNIVERSITY

Lawrence P. Forsley
Laboratory for L.aser Energetics
University of Rochester

Welcome to the wonderful world of
-RTH, or, University of Rochester
TORTH., URTH was developed several
-ears ago and has been used for many
soolications, some of which are
xccumented here. Beginning with the
.*"8 FORTH Internatina! Standards
Zonference, held on Catalina, we have
‘z.owed the FORTH standardization
#‘‘ort. As a result, the majority of our
s-stems are close to being FORTH-79
tsndard, although not FIG model. Very
“ew papers in this issue will refer to
_RTH,

The 1981 Rochester FORTH Standards
Zznference was held at the University.
“~e major reason for this, aside from the
» ghtful weather at that time of year, is
~e FORTH activity at the University,
“~.s work shows up in several divisions and
ecartments including the University
Z:zmputing Center; Optics; Physics and
= sironomy; Chemical Engineering;
“2chanical Engineering; Department of
= :z2.0logy, Division of Diagnostic Ultra-
s2.nd; Department of Cytopathoiogy;
< eztrical Engineering and the Laboratory
'z= Laser Energetics. Indeed, we are
~cedted to the original work by Dick
z2-3, who in 1976 was an assistant profes-
2 5f Physics and Astronomy, for deriving
“e first URTH system; and to Ken
~a-2wick, who in 1977 was with the
-~.versity Computing Center, for bringing
-z me IBM 360/65 TSO version based on
- z«<'s work. At this time, Ken, Dick and I
272 the only FORTH users at the
-~.versity. I believe the name URTH was
oz ned by Ken, slthough Dick was partial
H PARTH, for Mike Williams'
—.utasking Intel 8080 FORTH system.
-~ ‘srtunately, Ken and Dick are no longer
= .~ the University; and Mike's commit-
~2-ts prevented his authoring a paper.
—tw~ever, their work is reflected in the
~zlerial presented here.

This issue starts with three overview
:«cers. The first paper is mine and covers
~e development of FORTH at the Labora-
=-. for Laser Energetics, which remains
~e largest university FORTH user. The
s=-ond paper, by Peter Helmers, reflects
> e uses of FORTH in medical research
»c clinical applications. The third, by
oro |_efor, covers one of the more visible
- .ersity FORTH systems: The IBM 3032
2 2communications front-end.

“me next three papers demonstrate a
i-.ety of ways by which FORTH can be
s> to interact with hardware. The first
:acer, by Rosemary leary and Carole
* ~«ler, deals with three methods of using
—acoed memory. A second paper, by Bob

Keck and me, demonstrates a high level
interrupt handler used in plasma physics
experiments. The third paper in this
section is by Joe Sawicki, and suggests
powerful structures for easily and
efficiently interfacing hardware.

The last section illustrates the diffi-
culty with defining the difference between
systems and applications. The first paper
is by Michael McCourt and Richad Mariss,
and describes g transportable String
Stack. The second paper is by Alfred
Clark and covers a FORTH-based complex
srithematic calculator. The last paper is
by Greg Cholmondeley and documents a
microprocessing tool similar to one
supplied by Signetics.

These papers have many things in
common. One example is the difficulty in
discriminating between users and imple-
mentors. Bob Keck, a user, worked with
me to develop a tool for high ievel inter-
rupt handling. Likewise, Al Clark, also a
user, has augmented a floating point
package with words appropriate to the
complex plane. The String Stack is clearly
a system tool. Compiex arithmetic is less
so, and a microprogramming system is
clearly an application. Or is it? In the
context of its user, the microprogramming
words are a system. We seem to be for-
ever chasing our tail when determining a
FORTH context. But | think that this is
the power of FORTH.

Another facet is the use nf defining
words used throughout the papers. An
extension of definin? words, Paul
Bartholdi's TO concept,” is used in both
Joe Sawicki's and Greg Cholmondelfy's
code. Mike McCourt's "IN" concept” is
used by Peter Helmer's to implement the
TO concept. However, a student, Carole
Winkler, thought that TO complicated
things unnecessarily, so she doesn't use it.

This tast comment illustrates one of
the virtues of universities: freedom of
dissent. Unfortunately, | have found that
most groups, and many people, using
FORTH are intolerant of different views.
During my involvement with FORTH 1
have watched many groups rise to
ascendency, tout the true way, and then
be replaced by another group. This has
been especially true of the FORTH
Standards effort where Kitt Peak,
FORTH, Inc., the European FORTH User's
Groups and FIG have a!l played this role.
But another view is possible, which is
more in keeping with FORTH's nature.

Many of us see FORTH as being a
system of controlled, or directed,
anarchy. Since every man, or woman, can
be for himse!f it is highly idiosyncratic
and anarchistic in form. Anyone who has
tried & team approach to FORTH
programming is familiar with the tendency
towards a8 Tower of Babel. On the other-
hand, people comfortable with thie

unstructured environment find both their
productivity and creativity increased.
But, some direction must be applied to
share code among users. | suggest that
this direction should be one of form, snd
not of content.

It is appropriate to define documenta-
tion standards which imply 8 form. But is
is inappropriate to state that something
can be done only one (with the implied
right) way. However, pesople who learn
something by doing it the wrong way
understand much better than people who
are told the right way.

1 think an example of this cen be foun
in a conversation | had with Kim Harris.
Kim took exception to an enr%’er paper by
Peter Helmers on Userstacks.” | was told
that the approsch was wrong. Period. But
on further discussion, ! found that I agreed
with Kim. The fault was that Peter had
found only & partial solution to data
typing, and in a multitasking system his
technique might be very cumbersome.
That's fine. Peter Helmers does not use
multitesking systems, as his systems are
all single user, interrupt/event driven.
thus, it is worth remembering that each of
us has different, and valid, viewpoints.

As a major promoter of FORTH at the
University of Rochester, I have tried to
define an environment conducive to this
type of interplay. This has resulted in a
learning environment with many student
opportunities; and with Leo Brodie's book,
Starting Forth, and Don Colburn's study
guide, Going Forth, we can begin teaching
with FORTH, Not teaching FORTH, but
teaching with it. Four of the authors in
this issue are students and three other
authors teach courses or seminars. If
FORTH is ever to catch on like Pascal, or
FORTRAN, then it must begin wtih
university teaching as those two languages
did. In five years my present students will
be in industry, as my first student con-
tacts already are. A univeristy environ-
ment coupled with its students’ enthusiasm
and their eventual employment will
further FORTH more than any seminar
series or interest group. But it will take
time.

1. FORTH DIMENSIONS Vol. I No. 4 and
Vol. I No. 5.

2. FORTH DIMENSIONS Vol. Il No. 4

3. Personal conversation on May 10, 1981
prior to the Rochester Conference.

4. FORTH DIMENSIONS Vol. II, No. 2

5. Since that paper, Peter has published
another one, entitied "Alternative
Parameter Stacks,” which can be found
in the Proceedings of the 1981
Rochester FORTH Standards Con-
ference.

< 2R TH DIMENSIONS 111/4

Page 101

FORTH IN LASER FUSION

Lawrence P. Forsiey
Laboratory for Laser Energetics
University of Rochester

Abstract

Inertial confinement fusion research
using lasers has resulted in the laboratory
creation of extraordinary conditions of
temperature and pressure, duplicating
those found in the cores of white dwarf
stars. The machines which create these
conditions and the diagnostics that moni-
tor them have become increasingly auto-
mated. The demands of this research have
forced us to adopt new techniques, like
FORTH, for enhancing interactions
between engineers, physicists and their
experiments.

Introduction

Lasers have been used to simulate
plasma conditions of high density (ap-
proaching solid) and temperature (over 60
million degrees) for several years. The
goal of these experiments has been either
for weapons effect simulation, practiced
at the national laboratories, or for the
possible commercial generation of
power. This latter program has been
exclusively pursued by the Laboratory for
Laser Energetics (LLE) for almost a
decade. As can be expected, these exper-
iments have resulted in the development
of new diagnostics, and these diagnostics,
in turn, have resulted in new fieids of
physics. Besides the Laser Fusion Feasi-
bility Project, there are research
programs in: sub-picosecond lasers, nano-
second X-Ray sources, X-Ray lasers,
laboratory astrophysics, and materials
damage testing.

These research programs, and the main
supporting lasers, are highly automated.
About one half of the computer systems
on the 24 beam 13 terrawstt infrared
Omeqga laser and all of the computers on
the single beam Glass Development Laser
(GOL) are implemented in FORTH. This
paper will explore the development of
FORTH-like languages at LLE.

The laboratory is also part of the
College of Engineering of the University
of Rochester. Thus, there is an important
interplay between the staffs, and students,
of LLE and the University. Most of our
FORTH systems have been partially, or
totally, implemented by students from
chemistry, electrical engineering, physics
and computer science. Four of the other
papers in this journal issue have a student
author who is also a member of LLE.

Standardization
LLE was one of the first Laser Fusion

laborstoties to automate its laser
systems.” Whenever possible, we relied

upon standard computers, interfaces and
software. Originally, in 1971, we chose
the Hewlett Packard 2100 series com-
puter, and the RTE (Real Time Executive)
Opersting System with Fortran, Assembler
and Algol. We used the HP backplane for
our instrument interface. This system ran
for over five years and 15,000 shots, but
building a completely automated laser
with 24 instead of 4 beams required a8
different approach.

The Hewlett Packard computer back-
plane was limited in the number and vari-
ety of devices which could be procured
and attached to it. We overcame this
difficulty by adopting CAMAC (5).
CAMAC provided us with a large capacity,
computer-independent backplane. It was
also a widely used standard in the nuclear
physics community with instrumentation
and interfaces appropriate to our needs
available from several sources.

The problems of computer and soft-
ware standardization were more diffi-
cult. Some of our applications were real-
time, and appeared to require a fast
interrupt response. In other cases, we
were interested in direct image digitiza-
tion and needed a large address space.
Other requirements suggested the need for
a powerful multiprogramming operating
system. Unfortunately, no one computer
type and operating system supparted all of
our applications; and yet, with limited
manpower, it was difficult to support a
variety of hardware and software.

Computer languages, including
FORTRAN, are different from one vendor
to another, and especially when operating
system calls were taken into account. The
problsm of software consistency and sup-
port was not limited to dissimilar com-
puters. Ehrman (4:16,17) has shown that as
many as 12 different languages may be
encountered by a programmer when edi-
tors, linkers, and loaders are included in
addition to the programming lenguage.
Therefore, s unifying software approach
was needed among various operating sys-
tem functions and languages on the same
and different computers. We did not know
of the unix System from Bell Laboratories
(11:1905-1929) and the 'C' programming
language of Richie and Stevens (12:1991-
2019) in 1976. However, | had talked with
people at Kitt Peak in 1976 and travelled
there in the spring of 1977 to see FORTH
being used.

FORTH

FORTH was originally developed as a
small, real time operating system for tele-
scope control end image processing by
Moore (8:497-511), (9) and Rather (10:223-
240) at the Kitt Peak and NRAO facilities
which are funded by the National Science
Foundation. | found three groups st these
facilities using FORTH: scientists, com-
puter engineers and technicians. In some

cases, the scientists were very knowledge-
able about FORTH, whereas in other
cases, they only knew a few words. | was
especially impressed by Dr. Mark Alcott,
who was, st the time, with Cal Tech and
was observing on NRAQ's 36 foot radio
telescope. He was pleased with his ability
to change the graphics routines and other
"systems" software while continuing to
collect data. Similerly, | found many
technicians programming snd writing test
programs. This appeared to make good
use of their time, especially when they
would be familiar with a device, like a
Varian computer disk controller, and did
not have to explain its function to a pro-
grammer. It also sppeared that many of
the computer group's staff enjoyed
FORTH, although there were problems
witr standardization and change. [found
out several years later, talking with Jeff
Moler, who was then in operations at Kitt
Peak and is now with the Livermore
Tandem Mirror Experiment, how difficult
it was to maintain programs in this envi-
ronment.

FORTH seemed to have many desirable
characteristics, and it provided the same
programming environment on many
machines. It allowed both very low level
sccess to hardware and high level struc-
tures to shield users from that hardware.
There was an assembler, 8 compiler, and
sn interpreter. What we did not know
then was the care required in documenting
it, and the tendency to create personal-
ized applications and words. But, we
needed a version of FORTH at the Univer-
sity.

Dick Berg, an assistant professgr in
physics and astronomy at the time,“ de-
compiled a Kitt Pegk Varian nucleus circa
1974. He recoded it for the National
Semiconductor PACE microprocessor.
Ken Hardwick, thsn with the Univerity
Computing Center,” used this as a model
for the IBM 360/65 under TSO and Mike
Williams developed 8 multitasking version
on the INTEL 8080. This was the birth of
URTH.

We also procurred a version for the
Zilog Development System from FORTH,
Inc. st about the same time to demon-
strate an sutomated X-Ray spectrometer.
Although I had a system for the Hewlett
Packsrd 2100 from Kitt Pesk and a "disk-
less” version from Don Berrian at Prince-
ton, 1 decided that we should develop our
own version based upon the URTH model.
Ken Hardwick and | did this in late 1977.
Since then, other members of the Univer-
sity community and the Laboratory for
Laser Energetics have worked on various
versions of FORTH for Data General,
Modcomp, POP 212 and IBM 3032 compu-
ters. Through the efforts of Mike
McCourt, originally with the Department
of Cytopathology and then with LLE, we
developed a FORTH-79 system. All of
these were muititasking systems (2:314-

Page 102

FORTH DIMENSIONS 11i/4

«ere hardware testbeds.

zress lines.

:em quickly.

Ve w o

‘ailure occurs.

x text interpreter,

ciner applications.

- YV Orem oy WOW Y W

Our FORTH testbed applications in-
:.uded: power conditioning testbed for
necking out laser amplifiers; alignment
:estbed for debugging and calibration of

stomated components; *
ZAMAC module testing.

Z:imensional reticon arrays.

The first FORTH applications at LLE
There are two
z.stinct phases in dealing with hardware.
“=e first occurs during its initial checkout
ad reoccurs when it fails, or you suspect
: of failing. At this stage, one is con-
cerned with device and interface imple-
—entation, and it is important to be able
12 interactively set and test data and ad-

A testbed must be capable of exer-
cising hardware at a rate of about 1 kilo-
~ertz. Devices which operate in a faster
n.me domain will usually be buffered, as
= example, with transient digitizers.
‘ost other devices, such as
coerate in 8 10 Hz or slower time
xmain. At a 1 kHz rate, sufficient sam-
c.es can be taken from A/D's and D/A’'s to
suickly check their accuracy and range,
»nd thereby checkout many parts of a sys-

Several language features are required
‘or tests like these. A means must be pro-
+.Jded to individually and collectively set
scdress and data lines. There must also be
2 way of repetitively issuing data/ address
catterns. Often, a hardware problem is
~termittent, and a test and branch capa-
c.iity is necessary to allow loopiung until a

Thus, the specification for a testbed
.anguage grows quite large, with a major
“oie occupied by the command processor,
Regardless of
~nether the testbed language is imple-
~ented in Fortran, Basic, Pascal or most
siner programming languages, a substan-
t.al effort will be spent on the text inter-
creter. One of the virtues of FORTH is
i=at it comes with a generalized text
~terpreter, suvitable for testbeds and

Other testbeds
t “ave been used to develop image pro-
cessing hardware and software, and one-

3. March 1978- A laser amplifier
testbed was demonstrated.

4, April 1978- Single laser amplifier
testbed was operational at laser
hardware subcontractor's site,
with 8 duplicate at LLE.

By April, it wes clear that the
Omega Power Conditioning com-
puter would not be available until
August, 1978. Since the Depart-
ment of Energy four-beam mile-
stone was originally scheduled for
early September, 1978, this left
insufficient time for laser prepar-
ation.

5. April 1978- An LLE engineer, John
Boles, and a consultant with the
software subcontractor developing
the power conditioning software,
began coverting the single ampli-
fier testbed to run &4 laser beams
synchronized with the laser oscil-
lator.

6. June 1978- A six beam laser sys-
term was operational.

7. August 1978- Preliminary delivery
of full 24 beam system which was
Fortran-based.

8., October 1978- Department of
Energy Milestone passed.

There were substantial differences be-
tween the 24 beam Fortran based system
and the é beam FORTH version. These
included the lack of an error detecting
command processor, a graphic display end
error archiving on disk. However, whereas
the FORTH version used 16K words of
memory and a floppy disk, the Fortran
based system required 196K words of
memory and a 15 megabyte hard disk.

This application also made us aware of
FORTH'S compactness and the speed with
which applications could be developed. It
is my feeling that this, and several other
applications, were brought up in one haif
the time it would have taken in Fortran,
including FORTH training time. Once
good documentation is available, FORTH
will prove even better.

Also, | have found FORTH systems to
be more maintainable than comparable
Fortran systems, because FORTH uses 10
times fewer source lines. Some care is
needed when writing FORTH. Another
advantage can be gained by the ease of
using data base technology when building
process control systems in FORTH.

Spatial and Temporal Relationships

The first phase of dealing with hard-
ware is over when the hardware works.
The relationships among devices then
become important. One can hierarchically

organize related devices into subsystems.
This hierarchy consists of both spatial and
temporal relationships among components
(1), (3). The manipulation of these rela-
tionships requires the development of s
data-base-like language. My initial work
with Fortran and RTE, and discussions
with Ray Helmke agd Eric Knobil at the
Wilson Synchrotron,” led me to develop
such a language for process control called
Maps, because it "maps" relationships
6:109,110.

A Map contained two types of struc-
tures, or Tags. A tag was either a collec-
tion of data, or a set of pointers to other
Tags. The Map contained an inverted list
of pointers to each tag, so that all tags
were unique and accessible. Two special-
ized programs, SETUP and BUILD, were
developed to manipulate and create the
initial Maps from text files. About a dozen
subroutines were developed to allow tags
to be accessed. Data could then either be
placed into one or more Tags, or retrieved
from them. In the interest of speed, this
system was recoded in assembly language
and later microcoded on a Hewlett
Packard 21MX-E computer. This com-
puter currently runs the Omega 24 beam
power conditioning, and was mentioned in
the Testbed Section of this paper.

Alternatively, by using the text inter-
preter and FORTH's capability to define
arbitrary data structures, several date-
base-like systems have been developed. In
its simplest form, everything in FORTH is
an executable data structure. Thus,
FORTH allows one to define spatial and
temporal relationships in & simpler, and
more concise fashion than Maps. In ad-
dition, it is internally consistent, whereas
Maps had Fortran, assembler, microcode
and operating system interface facets.

Production Systems

Once FORTH had proven viable for
small systems, we decided to implement
production systems in it. These systems
included automated diagnostics as well as
the laser control systems. The prototype
Omega 24 beam calorimetry system was
an example of an early production
system. [t used simple, vector like struc-
tures to contain the addresses, relation-
ships and values associated with various
calorimeters, analog to digital convertors
and calibrators. It was capable of display-
ing beam energies and calculating expo-
nential fits to the data.

The Omega 24 beam Alignment System
is more complex. It has run on an LSI 11/2
with 5 CAMAC crates and 3 color dis-
plays, controlling over 1000 devices.
Initially, the operators used the FORTH
text interpreter for all commands and
queries. One advantage was their ability
to write new "macros" to setup compli-
cated alignment procedures more
quickly, However, there was a risk asso-

r

. The laser amplifier testbed was
i seveloped along the following schedule:

; 1. October 1977-Ken Hardwick and 1
5 began writing a FORTH system
. for the HP 2114.

. 2. Janusry 1978- The FORTH system
I was completed and CAMAC soft-
e ware started.

[4

T “ORTH DIMENSIONS 1074

Page 103

ciated with letting operations’ personnel
directly program the system. Therefore,
the new Alignment System has a more
complete command processor imple-
mented in FORTH, but which does more
error detection than the simple text inter-
preter. This system also uses the defining
words capability and has a large disk resi-
dent data base for describing components.
With the advent of the command proces-
sor, the system was switched over to an
LSI 11/23 with mapped memory.” This
addition ailowed approximately 20 tasks to
handle various functions, communicating
via 8 queue-based message protocol.

The laser beam quality is also impor-
tant to us. We use streak cameras inter-
faced to Princeton Applied Research
Optical Multichanne! Analyzers for this
purpose. The PAR OMA includes a
FORTH-based LSl 11 for acquisition and
reduction. As with the early Alignment
and Calorimetry systems, it is pro-
grammed directly in FORTH. Unlike
those systems though, this was originally
not a tumkey system provided by software
engineers, but rather was incrementally
developed by physicists and students.

We also use FORTH exclusively on the
Glass Development Laser (GDL) with simi-
lar computer systems. A FORTH based HP
2100 is used for power conditioning and
interiocks for the main bay and three sur-
rounding laboratories. A DEC LSI 11/2
collects laser and target calorimetry data,
reduces it, and also maintains 8 data base
on disk. A second LSl 11 is used in a PAR
OMA for processing streak camers data.
This is especially significant since GDL is
engaged in converting the infrared Jight to
ultraviolet, and the first harmonic IR, a
second harmonic green and the third har-
monic, UV are observed with the same
streak camera. This required a very flexi-
ble system to allow reduction in 8 quasi-
two dimensional mode. Another Hewlett
Packard 2100 has two video digitizers and
a color graphics unit. It is used for
determining absolute beam intensity and
modulation for materials damage testing.
This system is being converted to a DEC
LSI 11/23 with an RLOL disk sttached. A
third LSI 11 has been used by a graduate
student7tc observe target plasma produced
X-rays.” Finally, an LSI 11/23 is used
with the nanosecond X-Ray facility for
the real time acquisition and reduction of
2D X-ray diffraction patterns. Recently,
this system has had an array processor
interfaced to it to allow real-time fast
fourier transforms of sample diffraction
rings. All of these systems are FORTH
based, with the sutomated imaging diag-
nostics serving as prototypes for Omega
disgnostics. ’

Conclusion
Although FORTH was relstively un-

known, it has made 8 positive impact on
the development of systems and instru-

mentation at LLE. It has sllowed the
computer sytems group to adopt the phi-
losophy of providing tools to scientists snd
engineers, equipping them to do a job
themselves, Sometimes, it was questioned
whether this was the best use of their
time: and, for some people, it wasn't. But,
for the majority of people in GDL, end a
fair number on the Omegs systems snd
other laboratories at LLE, FORTH has
been a success.

Acknowledgements

I would like to thank an aimost endless
list of people for their help over the past
five years. Most important among them
though, are Ken Hardwick, Dick Berg,
Chip Nimick and Mike McCourt. Also,
without the help of many students during
this period, many of these sytems would
never have been built.

This work was partially supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
tric Company, New York State Energy
Research and Development Authority,
Northeast Utilities, The Standard Oil
Company (Ohio), the University of
Rochester, Empire State Electric Energy
Research Corporation, sand the U. S.
Department of Energy inertial fusion pro-
gram under contract number DE-ACDS8-
800P40124.

Lawrence P. Forsley is group leader of
the Computer Systems Group at the
Laboratory for Laser Energetics, Univer-
sity of Rochester, Rochester, N.Y.

Footnotes

1 The four-beam system, Delits, had
computer control end monitoring in
1972. (6:101).

He is now with the Defense Mapping
Agency in Washington, O.C.

3 Kaen is now with Network Systems Inc.,
in Minneapolis, MN.

4 Comell Univerity in the summer of
1977. This facility is now known as the
Cornell Electron Storage Ring.

5 The mapped memory techniques are
discussed by Leary and Winkler in the
"Mapped Memory Techniques in
FORTH" paper in this issue.

6 paR purchased this system from
FORTH, Inc.

7 This is mentioned in Bob Keck's and my
paper, "A High Level Interrupt Handler
in FORTH", which can be found in this
issue.

PROCEEDINGS OF THE
1981 ROCHESTER FORTH STANDARDS
CONFERENCE

Many have been waiting for this con-
ference proceedings to come out, from
what was a very interesting, and different
conference. It was the first conference to
address the FORTH Standard since the
Cataline meeting of October 1979. Al-
though it was suggested that the
Rochester conference was only a regional
meeting, attendees came from six coun-
tries and thirteen states. Also notable, we
successfully divided papers into serial oral
sessions one morning and had parallel
poster sessions that afternoon. This way,
almost sveryone of the seventy partici-
pants presented something, and no one
missed anything (we think).

In addition, we added travel sponsor-
ship this year. The Standard Oil Company
(Ohio), Friends Amis, Inc., Miller Micro-
computer Services, and Software Ventures
contributed over $5,000. This travel fund
covered partial travel expenses for atten-
dees from as far away as Hawaii, Chile,
Germany and the Netherlands, and ss
close as California and Kentucky.

The original csll for papers was in
three major aress: the Standard, floating
point snd files management. These areas
are well represented in the proceedings.
In addition, there are sections on Philoso-
phy, Vocabulary, Multi-tasking and Data
Acquisition, Data Structures and the
Future of FORTH. The organization we
adopted combined poster sessions, oral
sessions and some material not presented
at the conference. There is an entire sec-
tion devoted to working groups on areas
like Standards clarification, FORTH tech-
niques, Floating Point and Files Manage-
ment. There are 378 pages covering the
state of FORTH. The Proceedings are
available for $25. See the FIG Order
Form.

for those who are interested, there
will be another Rochester FORTH Confer-
ence the third week of May, in 1982. The

tentative subject area will be Process

Control and Data Acquisition. We expect

that there will be subareas desling with
microprogramming, FORTH machines,
personal computing, and the Standard.
For information, please contact the con-
ference chairman:

Lawrence P. Forsley

Laboratory for Laser Energetics
250 East River Road

Rochester, NY 14623

Page 104

FORTH OIMENSIONS il1/4

t42 2 'Y aM2es 4 uvoun

vaYun

bl

IMPLEMENTING FORTH BASED
MICROCOMPUTERS AT THE
UNIVERSITY OF ROCHESTER

MEDICAL CENTER

Peter H. Helmers
Introduction

"The micros are coming®" Everyone
~as heard this so that it is not unexpected
‘nat physicians and researchers at the
Jniversity of Rochester Medical Center
ask the question: "How can they be put to
.se?" Over the past four years I've been
attempting to answer this question by
assembling a series of microcomputers for
Soth research and clinical applications.
“nese systems are all similar in their use
cf an 5-100 bus herdware architecture and
3 FORTH software environment. Yet they
ziffer significantly when it comes to
scecific hardware interfaces, application
saftware, and types of system users.

In this article, I am going to focus on
cath these similarities, and these differ-
snces in microcomputer systems. 1 am
;9ing to start out by discussing their
:ommon hardware foundation, and then
+xplore peripheral devices unique to each
s-stem's design. Because the ultimate
-sers of a system have a significant
~pact on application software, I am going
12 try to characterize the types of users |
~ave dealt with, and their specific soft-
~are capabilities and needs. From here |
~.1l discuss some common software pack-
3zes that were written to transcend both
+ariable hardware, and vsariable user,
~ejuirements. By discussing all of this in
rerms of how FORTH has aided system
sevelopment, | hope to fully support my
zzntention that FORTH is an ideal envi-
“znment to meld many different types of
-sers to just as diverse hardware configu-
*ations.,

Seneral Hardware Organization

So let's start out by considering the
:zmmon architectural arrangement of
:~ese microcomputers. They are all Z-80
:3sed machines with typical memory sizes
= from 32K to 48K bytes of static read/
«>:te memory and 1K to 2K of EPROM
—emory used to contain machine specific
—plementations of commonly needed 1/0
~—>Jtines such as console and disk drivers.
Zach microcomputer uses one or two eight
-zh single density floppy disk drives. The
zimary system console is comprised of a
.$ line by 64 character memory mapped
-.ceo display along with detached ASCII
«evboard. Each machine also has an RS-
232 serial port for printer hookup.

These computers are all organized
&£-ound the S$-100 (IEEE-696) bus with from
en to fifteen card slots available. With
e basic setup described above using from
‘ur to six of these slots, the customiza-
»on to specific system configurations is

accomplished by 8 mixture of standard
commercial and/or wire-wrapped peri-
phersl interface cards. Let's consider
some of these systems in greater detail,
looking at special hardware and how this is
reflected in the systems' software.

Ultrasound Diffrection Apparstus (UDA)}

The UDA microcomputer is part of an
experimental system to explore the scat-
tering (diffraction) of medica! ultrasound
signals through tissue samples. The
scattering is a function of both frequency
of the ultrasound signal (2 to 8 Mhz) and
the angular position of a receive trans-
ducer relative to the ultrasound transmit-
ter. The UDA system thus must control
three primary functions: analog carrier
signal generation, tissue sample position-
ing, and received signal analog process-
ing. At present, only sample positioning
(using stepper motors) is not directly
handled by the UDA microcomputer.

Carrier signal generation is controlled
by means of a Hewlett-Packard 8165A
programmable signal generator interfaced
to the microcomputer by means of an
IEEE-488 (GP-1B or HP-IB) instrumenta-
tion bus. An opto-isolated parallel TTL
output port is used to control a program-
mable attenuator on the output of the
8165A. With a range of 0 to 130 db, the
attenuator can be used to automatically
adjust gains for maximum signal dynamic
range.

The most critical aspect of the UDA
hardware is the generation of gating
signals used by the enalog processing
circuitry. This is accomplished by using
high speed analog mixers driven by digital
timing circuitry with a resolution of 100
nsec., and an accuracy of 0.01%.

Study of Vein Mechanics

The basis of this system is an experi-
ment to measure axial force, diameter and
transmural pressure in a blood vein (in
vitro) while controlling axial strain and
pressure. The system consists of a verti-
cal chamber for the vein specimen, a pre-
fusion and pressure clamping apparatus,
force and pressure transducers, and a
microprocessor for data acquisition.

The microprocessor contains a sixteen
channel, twelve bit multiplexed analog to
digital (A/D) converter to digitize the
force and pressure signals under high level
program control.

In conjunction with this A/D is a com-
mercial video (TV) digitizer capable of
programmed resclution up to 240 lines of
256 picture elements. The input to this
digitizer is from a TV camera aimed at
the blood vessel under study. A special
code definition was written to analyze @&
programmable ares of the TV image for an
indication of vessel diameter. This works

by first threshholding, then detecting
vesse! edges via a software algorithm. By
using FORTH/Z-80 assembly language, the
dismeter determination executes in less
than one second.

This data acquisition system also con-
tains a dusl mode graphics display capable
of 128x128x4 grey scale images or 256x
240 dot graphics. Digitized video images
use the former mode while acquired pres-
sure and force data use the dot graphics.
In addition, the TV signal dynamic range
can be studied by a dot graphic plot of TV
signal amplitude versus time.

Also included in this system, to aid in
data reduction, is sn Advanced Micro
Devices AM9511 high speed floating point
processor IC. This circuit's speed, com-
bined with the memory mapped graphics

display, allows resl-time analysis and
display of acquired data, thus giving

continuous feedback on the progress of the
experiment.

Overall, this system replaced a manual
strip chart snd photographic recording
setup that required several days for data
collection and analysis. Now data can be
automatically scquired and processed
within a couple of hours.

Pulmonary Microcomputer

The pulmonary clinic uses a micro-
computer identical to that just described
except without the TV video data acquisi-
tion interface. Used in a clinical setting,
this pulmonary microcomputer is inte-
grated with a mass spectrometer and a
breathing chamber to allow analysis of
pulmonary tissue volume and capillary
blood flow. The basic procedure requires
keeping track of the patient's breathing
(by monitoring volume within the flexible
breathing chamber) while analyzing the
decreasing concentration of two soluble
gases: dimethyl ether (DME) and acetylene
(C,H,), referenced to the concentration
of ‘an insoluble gas: helium (He).

The hardware floating point unit facili-
tates rapid (30 seconds) analysis of the
acquired data, including several curve fit-
ting operations, and analysis of signals for
relative maxima/minima. The graphics
interface allows immediate viewing of the
acquired data to ascertain proper signal
levels, and to compare raw data to the
curve fit data.

X-Ray Scanning System

This experimental scanner uses a
slotted wheel and two horizontal slots
{mounted at 909 to the radial orientation
of the wheel) to achieve a mechanically
raster scanned X-ray source. The wheel
and horizontal slots are controlled by
means of three separate stepper motors
pulsed under control of the
microcomputer. X-ray exposure is also

“3RTH DIMENSIONS HI/4

Page 105

controlled by the computer as a function
of measured patient X-ray attenuation.

The microcomputer contains a
counter/timer chip which is used to
control the stepper motors, a seven
channel multiplexed eight bit A/D con-
verter (used to measure patient X-ray
attenuation and X-ray power), and an
eight bit D/A converter to control the
exposure time of each X-ray pulse.
Severa! digital 1/O lines are used to start
the X-ray rotor, turn on the X-ray genera-
tor, and control stepper mator direction.
Other lines are used to sense mechanical
limit switches.

The software used in this machine is
primarily concerned with controlling
exposure time for esch X-ray pulse in
synchrony with the motor movement. The
system ramps the motors up to speed from
an initial stopped condition. In addition, it
gradually increases speed to compensate
for linear speed as the horizontal slots are
moved radially towards the center of the
wheels. “he software also controls expo-
sure time by sampling the attenuation of
X-rays through the patient once each
motor step, and using table look-up tech-
niques tc set the next pulse's exposure
time. In addition, total x-ray power is
sampled and accumulated to keep track of
total patient dosage and X-ray tube usage.

How Users' Needs Impact These Systems

In my development of these systems, |
have encountered three types of users:
system developers, researchers, and physi-
cians (and their clinical technicians). This
grouping of users also roughly corresponds
to levels of FORTH software utilization.
The system developer--myself and pre-
sumably yourself--is expected to know all
the in's and out's of system operation. If
something is missing, it's generally easy to
add it; this is a primary reason why many
of us like FORTH. However we don't
actually apply a system, we only set up
the software foundation for the system.
As users, we don't count!

A true end user, whether researcher or
physician, cannot be sold on FORTH
because missing capabilities can be easily
filled in; they don't have the knowledge to
do so. Nor do they really want to learn to
do so. They have to be sold on other
virtues of FORTH,

In my experience, researchers have
been very receptive to FORTH. In general
they have sophisticated technical back-
grounds but little practical computer
knowledge. This is a prime benefit: they
may have used FORTRAN on a large
machine for number crunching, but other-
wise they have few preconceived notions
about computer organization. They are
less impressed with structured program-
ming techniques or file systems than they
are by the fact that they can physically,

and interactively, control peripheral
devices. A research scientist may not
understand how @ word like RAMP or
SAMPLE works, but can readily learn what
they do.

For example, the FORTH software
written for the UDA system allows
explicit user control of the hardware for
setup purposes as well as automatic con-
trol during experimental dsta acquisition
runs. Setup can be done through words
such as:

oKX 25 DB

{ RPN's a natural heret)
OK ° FRQ 2500 KHZ" TALK

(via the GP-1IB)
95 2,5 USEC CARRIER-OPF

A data acquisition experiment can be set
up using words such as:

oK 100 2000 SWEPT-FREQUENCY

{ define control of HPB165A)

25 FIXED-ATTENUATION

{ define control of atten)

OK DON'T-SBOW-ATTENUATIONS

OK 1500 32 NOVA-CONTROL

(let the minicomputer take

over control of the micro.)

In addition, the researcher can build
upon basic words to create custom sppli-
cation programs as needed. Thus the X-
ray scanner system can be easily program-
med by:

95 MOTOR WHEEL~MOTOR
{ define a 'MOTOR' data type)

oK DO

E WHEEL-MOTOR RAMP

(ramp stepping motors)

oK LIMIT-SWITCHES?

{ exit loop if motor limited)
25 SYNCHRONIZE

(synchronize to motor pulse)
oK 1ooP

oK :

A physician or clinical technician is
much more of an end-user than the
researcher. As such, they are less
concerned with words that gllow them
flexibility in control of peripheral
hardware; instead they want words that
control hardware in specific ways towards
some specified clinical objectives. Thus
they need to implicitly use both basic
FORTH words and peripheral driver words,
but want to only explicitly know words
that achieve specific aims. But even here
FORTH can be appreciated. It allows a
flexible, conceptual system with a non-
confining syntax. With the pulmonary
microcomputer, the physician might
typically have the following dislog:

OK PULMONARY CALCULATIONS

(acquire data, and calc it)
OK PRINTER SHOW RESULTS

(print results)

OK DME VIEW

(view plots of gases on)
OK C2B2 VIEW

(... graphics display)

By leaming a limited, yet full, vocabulary
of perheps twenty to fifty well chosen
words, these non-technical users can
effectively use a FORTH besed micro-
computer with little training or under-
standing of programming. And without
fail, they learn to use colon definitions to
group these basic words to their own
specific usage patterns.

Common Software Packages

As we have just seen, I group FORTH
software in three coarse categories cor-
responding to types of users: basic
FORTH system software, peripheral sup-
port sxtentions, and custom applications.
The basic system software does not vary
at al! while custom application software is
unique to esch end-user system. Peripher-
al support software is in a hazy area.
From the point of view of documentation
and support, any given type of peripheral
should eppear uniform between systems;
but at the hardware level, each type of
peripheral varies in myriad details. By
creating common software packages with
this in mind 1 have been able to avoid
constantly recreating software because of
hardware varistions.

Common software packages can do
more than just ease support for similar
systems. It can effectively hide hardware
details from the user, thus making dis-
similar A/D converters, for example.
sppear identicsl from the software poaint
of view. And a well designed set of driver
software also imparts increased capabili-
ties to a system than just those of the
“raw" haerdware. Let's look &t a few
examples of software peripheral drivers to
reinforce these points.

Many of these microcomputers are
used for dats acquisition purposes involv-
ing different types of A/D converters and
real time clocks. From a hardware point
of view, some of these A/D's have eight
bit versus twelve bit resolutions. Some
have sseven or eight analog multiplexer
channels while others have sixteen. Some
of the real time clocks have fixed 60 Hz
resolutions, others are programmable.

From a conceptual point of view, these
data acquisition systems all operate
identically: they can randomly sample
multiple analog signals at some specified
rate. The driver software implements
these concepts using two words: SAMPLE
and DELAY. SAMPLE takes an integer
multiplexer channel number as an input
argument, and returns an integer ampli-
tude value. It works identically no matter
what hardware is controlled by it; the
multiplexer addressing and A/D digital

Page 106

FORTH DIMENSIONS 111/a

1 4 8 W W

AP LYYE® U h N

FE R A RYLFLEE N B N

VF-N ™ vV /v 57 rre ww - - -

sutput format are hidden from the user.
Similarly, the real time clock works in a
~anner transparent to hardware
specifics. DELAY requires only an input
argument to specify the number of real
:me clock "ticks” to delsy.

But the conceptual basis of the data
acquisition package transcends just the
4D hardware; there must be some place
12 put the data. This may be on the para-
—eter stack, in data arrays, or in disk
>ased virtual arrays. When this capability
s added, the data acquisition specific
~ardware creates a synergy with the fund-
amental system hardware such as read/
~rite memory or floppy disk.

Another example of a peripheral driver
cackage that | developed is a memory-
~apped vioeo graphics package. The
t.sical hardware interfaces ranged from
2.0x256 resolution up to 512x480 resolu-
1 on, with as many different methods of
aadressing specific dots on the display.

Conceptually, we want, first of all, to
se able to plot physical X,Y points inde-
cendent of hardware specifics. A word
t.ch as PLOT, using X and Y integer para-
—eters on the stack top, can give us this
sapability very readily.

But to really use graphics effectively,
1 15 nice to be able to specify different
sreas on the video screen to plot different
:ata, as well as scaling functions to adopt
zgical coordinates to this specified
;-aphics area. The GRAPH data type
suilt with a defining word) allows these
: fferent graphics areas and scaling func-
1.ons to be associated, and invoked, by a
ccmmon name. Further capabilities were
szded to allow easy creation of vectors,
;7ids, tick marks, axes, and boxes. All of
: sudden, a very proletarian graphics peri-
c~eral is transformed into a powerful
2321, And because these new functions are
3.0 built on the PLOT word, they are
-eadily tansferred between systems with
: fferent hardware interfaces.

A final software driver to consider is
:=at of the hardware floating point unit.
. is interesting to consider this from both
» FORTH, and a conventional language
:oint of view. In a language such as
=ASCAL, the system generally has built in
s2ftware based operators for floating
>oint. Because the system is not inherent-
. extensible, the addition of a hardware
‘.aating point peripheral requires either a
—anufacturer rewrite of the PASCAL
‘.oating point routines, or else a user
~terface through PASCAL functions or
crocedures. The former requires manu-
‘acturer acceptance and support of a new
-ardware peripheral; unless a very popular
tevice, such support will be reluctant at
sest. The latter requires 8 very awkward
anguage syntax to invoke hardware float-
~g point capabilities, Either way, the

problem is that the herdware has to be
torced to conform to the manufacturer's
ianguage standard.

At the Medicel Center, a hardware
floating point package was easily added as
an extention to the basic FORTH system;
the language adopted the hardwars!

Anachronism or Portent?

At this juncture it is valid to ask if
FORTH justified itself in its use at the
University of Rochester Medical Center.
Is it an anachronism of the past, or a phil-
osophy portending the future?

Admittedly, FORTH is somewhat
limited without such thinge @us a file
system or procedural name scoping of
variables. Perhaps there should also be
less explicit knowiedge of addresses, and
more system security, Perhaps. But if so,
then these things will be evolved as
FORTH matures.

It is what FORTH espouses, though,
that justifies its use. It allows hardware
components to dictate the software
design, thus allowing repid incorporation
of technological sdvances, Other lang-
uages force conformance of hardware to
language standards--a slow, expensive
process.

FORTH allows isolation of uscrs from
hardware dependencies, and adds capabili-
ties to the basic hardware. The result is a
user environment that supersedes specific
machine configurations with concept
oriented, yet free syntax, computer opera-
tion. The FORTH system developer might
need to know "how", but the system user
need only know "what". Conventional
systems, to the contrary, generally require
everyone concerned to ask: "why?"

FORTH encourages an exploratory
development technique. A user can
choose between interactively trying con-
cepts, writing full programs, editing pro-
grams. compiling programs, and/or debug-
ging programs. He or she can do this in a
single, consistent FORTH environment,
utilizing any of these phases of develop-
ment as required. The result is efficient
use of all system resources.

The embodiment of the FORTH philos-
ophy is that programming is not what it is
often taught to be: the application of top-
down programming techniques to a single
problem. Instead, it involves a series of
interrelated problems all related to
system use. This might mean a set of
words that allow a ressarcher to control a
TV digitizer, or it may mean a series of
words to ealculate and graphicslly display
the results of a mathematical analysis.
While the spries of capabilities needed will
always vary between different systems, it
is only by providing a rich enough vocabu-

lary that a user cen have a flexible, effec-
tive, and friendly system. FORTH is
unique among languages in that it encour-
ages the programming of solutions!

Peter Helmers is » senior laboratory engi-
naer in the diagnostic ultrasound research
laboratory within the Department of
Radiology st the University of Rochester
Medical Center.

Helmers' article continued
on next two pages

BUG FIXES
Correction to FEDIT

Sorry you had trouble with FEDIT. The
listing was retyped at FIG and several
typos creeped in. They are:

1. SCR 64 Line 10: compile should be
COMPILE

2. SCR 65 Line 23: 1+ /MOD should be 1+
16 /MOD

3. SCR 67 Line 48: B/BUD should be
B/BUF

4, SCR 67 Line 49: : E should be : .E

5. SCR 67 Line 50: + ALIN should be
+ALIN

You are perfectly right that source
text should be loadable, | talked to some
of the people at FIG about this and they
were acutely aware of the problem but
they are simply not set up to directly
reproduce listings in FD at the present
time. They do the best job they can with
the resources available to them, and they
work darn hard at it. Ican't fault them.

REPL is a pseudonym for the fig-
FORTH line editor definition, R . 1 used
the pseudonym because FEDIT was the
first program 1 wrote in FORTH and |
wasn't really femiliar enough with
Vocabularies to comfortably use a word
that was already used in the FORTH
vocabulary.

Let me know how it works for you. If
you would like 8 machine produced listing,
I could run one for you from my current
version. Let me know. Good luck.

Edgar H. Fey
18 Calendar Court
La Grange, IL 60525

“ORTH DIMENSIONS 111/4

Page 107

TV DATA

DISPLAY ASCH
INTERFACE KEYBOARD

ACQUISITION

STATIC cPy FLOPPY DISC
RAM
48K Z80A STYORAGE
SAMPLING MULTIPLEXED ARITHMETIC
AD PROCESSING
cLock CONVERTER uNIT

Fig. 1: Black disgram of a typical S-100 based microcomputer; this ons s used to study

7N

POWER rF
Amp Amp
ML ATTEN,
™ b
| aad . “ve
&ATE &are
nc-w8 [NPOIGS i
. — X,¥ T Aousg
ul osc. DevecTm as
CANEA- O -~
2200 Sus DIGITAL TitwdG METWORK e ALK
O mamcn——————
(S-100 v/ mammce)
I My (wwarr)
S

1

Fosco
Transiducor
Jq T
Overflew -4]h
o
s].e z
- 3 I M
I . |
:‘ ° W 5 TV Camera
= | :
mo’u% != . * 4 :
Pert h
~ : ;
g
Pressure vy nJ v
Transducer H FEL '
U - U Intlow
\‘_/ .
= Pressure .,‘ t_ Pump e ol
Iy Ciamp
[
Fig. @ Disgram of vein mechanics experimental chember Microcomputer ssmples
pressurs and force mmmnhmmmmmmaw
Microcomputer
a)

Grid tank interface

Scanning beam

“

heel)
collimator Fore collimator

Grid tank

X-ray tube

Film cassette
* X-ray detector

Fig. A&z Disgram of X-ray scanner apparstus showing how whee! collimator and fore and

aft horizontsl collimators, controlled by motors, crests a mechenically scenned
X-ray raster. The microcomputesr, with and D/A interfaces, also monitors end
controls X-ray sxposures.

FORTH DIMENSIONS /4 Page 109

DATA STRUCTURES
NA
TELECOMMUNICATIONS FRONT END

John A. Lefor
University of Rochester

Asbtract

URTH, the University of Rochester
dialect of FORTH, was used to implement
a telecommunications front end for an
IBM 3032. This package provides access to
the 1BM 3032 from as many as 160 ASCII
terminal at speeds up to 9.6Kb. Each of
these terminals contend for 128 simulta-
neous connections at the IBM computer.

The reasons for choosing URTH as the
development language and a review of the
major advantages and disadvantages of
using Urth for this project is discussed.
Also, some conclusions as to the applica-
bility of URTH, and the data structures
used in this application is reviewed. The
use of conventional data structures for
providing information paths between the
various components of the system is
examined and the possible advantage of
less conventional data structures more
firmly based in URTH constructs is ex-
plored.

A plan for development of similar sys-
tems is presented which integrates some
of these concerns and promises a better
structured system.

Introduction

In 1977, the University of Rochester
Computing Center first got involved with
the FORTH language. The initial devel-
opment in FORTH was the implementation
of various flavors of the FORTH system
known collectively as URTH. Mast of the
URTH systems developed have provided
multitasking capability on a variety of
micro-, mini-, and mainframe computers.
During the development of the various
URTH systems, a number of people within
the Computing Center showed interest in
using an URTH based system for develop-
ment of real projects rather than viewing
URTH as just another academic curiosity.

Concurrent with the development of
the URTH system, was the growth of tele-
communications in computing st the Uni-
versity, A need for additional tele-
communications lines into the computer
was fast becoming a necessity and the
financial support for such a purchase was
on the verge of becoming a reality.

In this environment, the design and
implementation of a locally designed tele-
communications front end was beginning
to emerge. The front end had to exist in
an academic computing center where the
need for teleprocessing was growing. The
front end had to communicate with an IBM
host (it was generally believed that the

IBM environment was at the University for
many years to come). The front end had
to provide access for the ever growing
number of ASCH terminals being
purchased for both computing and non-
computing environments. Importantly, the
front end had to provide for sccess to the
IBM host from more terminals than could
be dedicated to the host at any one time.
The only front end which could possibly
meet these goals and be reasonably cost
effective had to be one of local design.
meeting local requirements.

Features Provided

The front end designed at the Uni-
versity of Rochester Computing Center
does provide some unique features to the
users of our IBM 3032 computer. To be
sure, the features are not unique within
the context of computing, but are not
generally available in an IBM mainframe
environment.

One of the major advantages provided
by the locally designed front end is the
ability to switch between systems from
the same terminal. In a traditional (non-
SNA) 1BM mainframe, it is not always
convenient to have a terminal switched
between different software teleprocessing
applications. Typically, 8 terminal either
is connected to one application or an-
other. With the locally designed front
end, it is possible to choose the appli-
cation ot which the terminal is attached.
In effect, the front end is a port contender
for various applications on the mainframe.

The second major feature arising from
a local front end is the ability to support
an XON/XOFF protocol. Since the IBM
mainframe communicates with its termin-
als in a half duplex mode, XON/XOFF
support is not traditionally available. The
local front end is based on full duplex
communication to the terminal so
XON/XOFF can be supported in a fully
effective fashion. Those terminals which
have buffers which can overflow can turn
off the input at will, a feature not avail-
able without special support in the IBM
world.

The front end is today running at the
University of Rochester Computing Cen-
ter. It is supporting 160 ASCII terminals
contending for 128 host computer ports.
Each terminal can select connection speed
between 110 and 9600 Baud as well as a
few other tailored features. The fact that
the implementation continues to run fre-
quently sppears to be a miracle but repre-
sents some faith that the concept is at
least essentially sound.

Hardware Decisions

In order to implement the telecom-
munications front end to an IBM
computer, the processor chosen for the
implementation had to provide the capa-
bility to interface to an IBM byte multi-

plexor channel. Since the protocol for
channel interfacing is non trivial, there
are a limited number of vendors of mini-
computers who were ahble to provide this
interface capability. Anather irmportant
consideration in the design of a telecom-
munications front end is the reslization
that if a failure should occur in the front
end, there is a perception that the host
computer failed. Because there s great
need to access the host computer, it is
undesirgble to have hardware failures
affecting the front end. To this end, the
mini-computer chosen as the froat end had
to have both a history of reliable service
and & maintenance team capable of
repairing any difficulty with 8 minimum of
fuss.

In evaluating the available mini-
computers against these criteria, the pro-
cessor which was finally chosen was a
Digital Equipment Corporation PDP
11/34. The interface to the channel is via
a DX-118, and the ASCI! terminals are
supported by DZ-1l's (actuaily many of
the terminals are supported by a Digital
Communications Associates 205, which
emulates 32 lines of DZ-11 on 8 singie
quad height board).

In retrospect, we can see that though
the PDP 11/34 does work in the required
environment there are some deficiencies.
The most notable is in the maintainability
of the DX-118 (the channe! interface
which connects the PDP 11/34 processor
to the IBM processor). There are so few
DX-118's in production throughout the
United States thst the DEC customer
engineers are relatively unfamiliar with
the details of its operation. When subtle
problems have occurred, the repair of the
problems has taken considerable time and
talent. To be sure that the subtle difficul-
ties were discovered and corrected is 8
tribute to the engineers dedication to the
problem, but a more popular interface
would probably have been repaired in a
shorter time.

Software Decisions

In determining the nature of the soft-
ware to run for this application, it was
necessary to evaluate the probable struc-
ture of the end goa! and to consider all the
concerns of a project of this sort. After
the major considerations are evaluated,
the best software choice can be made
based on the concerns and knowledge of
what is available.

A telecommunications front end is a
realtime device which must be able to
handie a relatively large number of poten-
tial 1/O devices. In particular. many ter-
minals are expected to be connected to
the front end. Also, there were consid-
erations for attachment of synchronous
fines for support of Hasp Bisync, Remote
3170's, and local area network communi-
cations. All these considered together, it

Page 110

FORTH DIMENSIONS /4

FA Mk A A K AN SR M m 1A sa

fdaW YA S IR LuE

»

[N L

w~as important to choose a software
.mplementation which provides support for
reltime device handling.

The wide variety of 1/O devices which
were contemplated for the front end also
seuired that the software provide tools to
~eip the designers of the system qain
Jsnderstanding of a wide variety of hard-
ware devices. There were going to be
asynchronous and synchronous devices as
~ell as a channel interface which had no
~ell defined characteristics (the best
Jocumentation of how the DX-11B worked
~as found in the diagnostic programs sup-
clied for hardware maintenance). In
addition, there was always the possibility
>f needing to support a new and different
iass of 1/O device. Though the manuals
Jocumented how the hardware worked,
3ny software which would allow inter-
action with the unfamiliar hardware would
~e beneficial in the debugging of the over-
3. system,

Another area of debugging which was
considered in the software choice was the
scftware protocois. The connection to the
cnannel of an IBM computer by asyn-
cnronous ASCH devices invokes a non-
mivial set of software protocols. A simple
2xample of the kinds of problems is in the
*~ansmission of any single ASCII character
12 the channel. In the IBM environment,
t~e software rumning in the processor
2xpects that any ASCIl characters trans-
—itted from a telecommunications front
:snd are sent not as simple ASCII
cnaracters (as generated by the terminal),
=.t rather demands that each ASCII char-
scter be bit reversed.” Though this is not
s difficult feat to accomplish, it points
>t the nature of some of the software
crotocol issues which must be dealt with
- a telecommunications front end.
s.ffice it to say the software used to
zesign the front end would benefit the
cesigner if it helped to identify, and
-2solve, software protocol issues.

In the development of any realtime
software project, it is recognized that the
imroughput of the system is important.
“ne telecommunications front end is no
=:ception. Since there are to be a large
-.mber of 1/O devices providing input to
:~e software application asynchronous to
1~e operation of the software, it is imper-
2tive that the application software be able
.2 keep pace with the demand. On the
:iner hand, the inability of the front end
1z keep pace with the demand is not criti-
zai. If a character destined to a terminal
s lost, a human being will not die but a
crogrammer may get upset. Keeping
:~ese priorities in mind the project had to
:2 implemented in an environment which
«as not wasteful of processor time, but
ivere was no need to be alarmed if there
=as the potential to loose data.

The hardware decision made specific
‘eatures of the processor had to be con-

sidered in the software choice. Speci-
fically, the PDP 11/34 hed 64K bytes of
memory. We had to have some degree of
confidence that the entire system could be
packaged in 64K bytes, If that was not
possible, the development time could be
slowed down waiting for shipment of addi-
tional memory. The speed of the 11/34
processor led us to believe we would have
sufficient CPU to do the job, but not a lot
to spare.

The fina! and perhaps major consider-
ation which affected the choice of
software was the psrceived development
time. The project was initiated st a time
when there was an extra IBM processor at
the University. It would be possible to
design and debug the entire front end on a
processor which was not in use. That was a
real opportunity not to be passed up.
However, the processor could not remain
idle for too long a time. Any software
package which could help to shorten the
development time and thereby saifow de-
bugging of the front end on the unused
processor would be of great benefit to the
implementation.

Alternative Software Strategies

Examining the issues in making the
software choice, there appear to be three
alternative software strategies. The use of
assembler language, the use of a high level
language such as C or Fortran, or the use
of URTH.

Assembler language provides a number
of solutions to the problems outlined. It
tends to be compact in mernory usage, it
certainly has the potential to make most
efficient use of the limited CPU, and it is
quite capable of handling the foreign
devices needed for & front end. However,
the assembler has a few drawbacks.
Probably the major difficulty with assem-
bly language is the extended development
time. Debugging is slow and tedious and
design of code and data structures to aid
debugging is totally a responsibility of the
programmer. Thus. development of a
major application in assembly language is
concerned both with the solution of the
problem but also much effort is spent on
good design and coding techniques.
Another difficulty with the assembler is
maintainability. Each programmer has an
individual design style. The documenta-
tion rests largely in design of the code. If
the original designer is no longer available
for maintenance of the project, there is a
long learning curve to train a new indi
vidual.

High level languages solve many of the
difficuities with assembly language. If the
language is well conceived for a realtime
problem, it will support the difficult
hardware issues and will provide a frame-
work for data structure design which pro-
vides readability and maintainability of
the software. A major difficulty with high

level languages is their use of memory,
and sophisticated operating system ser-
vices. These two concerns may make a
lsrger faster CPU needed for effective
execution of the application. Another
drawback of both the assembler and high
level solution is the lack of inherent inter-
active develoment and debugging tools.
They typically can be designed into the
system, but they generally are not present
in the basic environment.

Evaluation of URTH

URTH sppears to meet many of the
goais in the software choice. Though
there are limitations, the advantages seem
to outweigh the disadvantages especially
when design time is so important a consid-
eration.

When looking at LJRTH, a clear advan-
tage foorded by URTH is implementation
time.© Most of the other advantages pro-
vided by URTH can be directly tied to the
speed of implementation. URTH provides
easy access to any set of unusual devices,
because the device handlers are ach tai-
fored to the system and the hardware.
Once a program is debugged in URTH,
there is good reas to believe it will
continue to work. Another major
advantage offered in the URTH environ-
ment is the enormous flexibility in design
of both source codes and data structures.
The ability to code both high level URTH
and machine level code and to achieve a
uniform interface provided many oppor-
tunities to speed up inefficient code. The
ability to design new data strucutres to
work in a large scale environment offers
much flexibility in design.

The URTH environment is not without
feult, The fact that URTH is an inter-
preter does mean the code is not as
efficient in CPU speed as possible. Of
course, the ease of generating assembly
code helps alleviate this problem. How-
ever, 8 major drawback of the URTH
environment stems from its flexibility in
data structure design.

The very fact thet it is possibie to
design any needed data structures coupled
with the implementation of the traditional
data structures of arrays, constants, and
variables created some difficulties in the
design of system which had so much pres-
sure for development in a short time.
There was not a lot of time spent on
development of the best data structure for
the problems encounteread. Rather, tradi-
tional data structures were used to meet
individual demands. In particular, many
arrays were implemented for storing of
information relating to specific 1/O
devices, and queues (obtained from a free-
pool) were used to buffer data between
devices. The use of such data structures
had two major impacts on the project.
First, the queues were sufficiently diffi-
cult to handle as to have impact on the

“ORTH DIMENSIONS 111/4

Page 111

speed of the overall system.a The use of
the arrays to hold information for later
processing yielded much difficulty in
debugging individual words and tended to
leave side effects which had impact on
words already debugged.

Thus, the use of URTH has many vir-
tues but it is crucial to recognize the
particular issues which may lead to
difficulty in debugging. Using data
structures such as arrays and variables to
communicate information between tasks
in the front end tended to leave open
many portential pitfalls in the debugging
and design of a system as complex and
highly integrated as a front end.

Alternative Design Strategies

In examining the resulting front end
for difficiencies, it becomes clear that
there are some strategies for alternative
design which could limit the difficulties
encountered in 8ny similar realtime
project, and would make URTH a vehicle
for well designed, well integrated, and
effective systems design.

The issues of code design are well con-
sidered in URTH. The ability to switch
between machine level code and high level
URTH provides a classic tradeoff between
speed of execution and memory utili-
zation. The fact that the interface
between both environments is standard
allows all design in high level URTH, and
conversion to machine code when and
where appropriate. In this area, URTH
provides suffficent tools and a good set of
options.

In the data design area, URTH provides
80 many options that the best data struc-
ture choice is very much at the control of
the programmer. In the case of the front
end design, the traditiona!l data structures
were not sufficient to effect the job but
there was insufficient time to design an
optimal data structure. In retrospect, it is
possible to peruse the alternatives and
choose a structure which provided the
flexibility needed, and also limits the side
effects from preventing effective debug-
ging of words.

One of the major sdvantages URTH
provides over alternstive software
approaches is the stack. Proper design of
URTH words with parameter passing via
the stack helps to insure that a debugged
word will tend to continue to work, and
will have no side effects Given this
observation, it would be natural to use the
stack to pass psrameters in the telecom-
munications environment. Unfortunately,
the stack is not useful in communication
between tasks, and the stack is difficult to
address and use when too much informa-
tion is passed. In the front end, there are
30 many unrelated parameters which need
to be passed between tasks that the stack
is not useful. But, the concept of a stack

does solve one of the major difficulties
encountered in the front end design. Given
this set of considerations, it seems like a
good ;dea to define a "named object
stack"’ for each I/ entity defined in the

telecommunication environment. When a °

particular 1/O device needs some form of
service, the named stack is invoked and all
data relating to the 1/Q device is availa-
ble. The stack can contain pointers to
ring buffers as well as current status of
the device. Using thia strategy provides
an environment that naturally fits within
the basic strucutre of URTH program-
ming, makes effective use of constructs
within the URTH system, and prornotes
good URTH programming prectices which
minimize the side effect problems. Over-
ali speed of the application is not
significantly impacted and many old
functions can take advantage of the data
structure.

The stack will contain sufficient
volumes of information about each 1/O
device that it may be advisable to create
a "framing" of the stack. This would allow
access to individual parts of the stack as
if it were the current top of stack, thus
allowing access to more dsta in s conve-
nient notation.

Summary

The telecommunications front end
designed and implemented at the Univer-
sity of Rochester Computing Center is a
useful mode! of many realtime applica-
tions. In the design are found a number of
flaws which are primarily related to the
particular pressures present at the time of
the design. The choice of URTH as the
software vehicle appears to have been an
excellent one however, the choice of data
structures to use within the URTH envi-
ronment was not as well conceived.

URTH provided 8 software
environment which clearly sffected time
effective development of &8 complex
system. It provided a comprehensive
interactive debugging environment with
the ability to address specific speed
inefficiences in a uniform manner. The
major drawbacks to the URTH environ-
ment resulted from the choice of data
structures for intertask communication
within the application.

URTH does provide tools to develop
the optimal data structures for any par-
ticular application. In the case of real-
time applications, the choice of data
structures is particularly critical. From
my experience, | believe that a data struc-
ture similar to the -named object stack
would benefit many realtime applications
in URTH both function provided and in the
limiting of side effects so prevelant in
global data strucutres such as srrays.

A second feature which would be valu-
sble in an URTH environment would be

any useful stand-alone dump with indexing
to help the programmer walk through the
dictionary. When total application col-
lapse occurs, URTH is not very informa-
tive as to the nature of the problem. A
memory dump (with a good index for the
dictionary) would help to debug some
rather sticky timing problems.

Overall, URTH is a good choice for
development of realtime applications, but
care in the design of data structures
should help to make the overall mainte-
nance of the application a simpler chore.

Footnotos

1. This is not simple an exampie of a per-
verse IBM, but instead is another fact
of IBM computing history. The stan-
dard device IBM used to connect ASCII
terminals to the host (a 270x) was not
designed using today's UARTS, rather
it collected the bit serial data in &
register. The data was collected in a
register in such a way as to cause the
characters to be captured in bit
reverse order. Rather than correcting
the problem in the front end, they
transmitted the bit reversed ASCI to
the host, and translated the bit
reversed ASCIl to EBCDIC for pro-
cessing. The software stayed, so the
need for bit reversed ASCIl exists
todey.

2. This adventage was certainly realized
in the actual project. The basic system
was operstional within four months
from beginning of the project.

3. This is dependent upon good URTH
programming practices. But, in our
project there became clear a seif
evident truth. We attempted to debug
so many "words" which were already
correct, we began to believe that it is
very difficult to debug a working pro-
gram.

4. Converting most of the queues to indi-

vidually sssigned ring buffers speeded

up overal!l processing by 20% or more.

5. See Peter Helmers, "Userstack",
FORTH DIMENSIONS, Vol. III, No. 1
and Peter Helmers, "Alternative
Parameter Stacks”, Proceedings of the
1981 Rochester FORTH Standards
Conference.

Acknowledgements

I would like to thank Richard Marisa, Ken
Hardwick, Mike Armstrong, and Mike
Williams for their assistance.

J.A. Lefor was senior systams programmer
at the University Computing Center at the
University of Rochester and is now Data
Communications Manager.

Page 112

FORTH DIMENSIONS 111/4

~ RE 3 sA 4 aa s aa

& . a

[s N i)

SV

MAPPED MEMORY MANAGEMENT
TECHNIQUES IN FORTH

Rosemary C. Leary
Carole A, Winkler
Laboratory for Laser Energetics
University of Rochester

Abstract

Three techniques for using memory
~anagement hardware in a FORTH system
~ave been implemented at the Lsboratory
‘or Laser Energetics at the University of
Rochester, One method uses mapped
—emory for data storage by cresting a
"data window" in the logical address
soace. A second method increases the
available space for programs by mapping
1asxs in 8 multi-tasking system. The third
-ses mapped memory for data storage by
a<ing advantage of special instructions
:~d a second set of memory management
-egisters,

Introduction

The problem of insufficient memory
‘cr programs or data is commonly encoun-
r2red on computers with a 16 bit word
s.ze, Many manufacturers now offer hard-
~are to alleviate this probiem. At the
-~versity of Rochester's Laboratory for
~aser Energetics we have devised solu-
1075 to three different aspects of the
z-oblem using FORTH on PDP-11/23 and
=D5-11/34 computers.

Two applications at the Laboratory had
: need for large image processing arrays
o to 100K words). We solved this by
-3.ng a double precision array index which
~aps physical memory into a logical mem-
=y "data window" within the FORTH sys-
em.

On a different, very large FORTH ap-
- ..cation, we needed both more program
scace and more data space. We increased
*~e amount of program space by imple-
—enting a multi-tasking system in which
z2rtain portions of memory contain the
-.cleus and common code, while other
szruions are task specific and are period-
2zily switched in and out of active use.

To increase the available data space
=2 are using special instructions and a
s=zond set of memory management regis-
ters on the PDP-11/23 and PDP-11/34
Icmputers.

Additional material on these systems
zan be found in "FORTH in Laser Fusion,"
:. Larry Forsley, in this issue of FORTH
ZIMENSIONS.

~ardware

The memory management hardware on
:ne PDP-11/23 and PDP-11/34 computers
:onsists of two sets of registers that map
. bit logical addresses into 18 bit phys-

ical eddresses. Ons set of registers is
used when the processor is in "kernel"
mode, the other when it is in “user"
mode. The mode is determined by two
bits of the processor status word.

Each set of registers contains eight 32-
bit Active Page Registers (APR's). Esch
APR is actually two registers: the Page
Address Register (PAR) which contains a
base address, and the Page Descriptor
Register (PDR) which contains the page
length and the access control key.

The 16-bit logicsl address space is
divided into eight "pages" shown in
Table 1. When the memory management
unit is enabled, any sccess to memory will
be mapped through the APR for that
address.

Fage Losical Address Range

(octal)
0 0 - 17776
1 20000 - 37776
2 40000 - 57776
3 60000 ~ 772776
4 100000 - 1177726
S 1120000 - 137776
é 140000 - 157776
7 160000 - 177776

Table 1. Losical Address Srace.

The physical memory sddress that will
actually be accessed is @ combination of
the logical address and the PAR for that
page. Figure 1 shows how the logical
address is deriv:d. Bits 15-13 of the
logical address give the page (or APR)
number. The PAR for that page gives the
base address in 64 byte blocks. This value
is added to the block number field of the
logical address (bits 12-6) to find bits 17-6
of the physical eddress. Bits 5-0 of the
physical address are the same as bits 5-0
of the logical address.

19 13 12

Figure 2 shows the logical address

space.
Page 7 170 } 4K
)
Page 6 |_ _ _bl.osk_b\fffe_rf .
return stack
Page § paramet,I stack
Page 4
Page 3 > 28K
Page 2
Page 1 T
dictionary
Page 0 |- ---- nucleus)
Figure 2. Logical address space for

single task without mapped memory.

Additional information on the PDP-11
memory management Tit can be found in
the processor handbook™ .

Deta Window and Memory Managesment

One way to utilize the memory man-
agement hardware and sdditional memory
is to use it for data storage. Two of our
applicstions at LLE require large data
arrays (up to 100K words) for image pro-
cessing. We solved this problem by
creating a "dsta window” in our logical
address space. Figure 3 shows the logical
address layout of a system with a data
window.

Page

Block No.

Logical
DIB Address

Page Address Field

s

Active Page
Register

v .

1Y
ko

Physical Block No. DI8

Physical
Address

Figure 1.

{Displacement
in blocks)

Construction of a Physical Address

(derived from figure 7-9 of [1] and
reprinted with permission from DEC.)

TZRTH DIMENSIONS 11176

Page 113

Figure 3.

Page 7 1/0 } "
Page 6 data window }“
:
Page 5| _ block buffers
return stack
Page 4 parameter stacI
Page 3
\ 24K
Page 2
Page 1 T
dictionary
Page 01~ = =~ Rucveus ~ 7 7]

Logical Address Space With Data Window.

The block buffers, return stack, and
parameter stack are moved down to the
top of the next 4K word page of logica!
memory, leaving 8 4K word gap in the log-
ical address space. In a 128K word sys-
tem, 100K words of physical memory are
then accessed through this window.

The X and Y coordinates of the image
array are converted to a double precision
index. This is done by multiplying the Y
coordinate by the number of pixels per
line and adding the X coordinate. This
index is divided by the number of pages
per image. The quotient indicates which
page the pixel is in, and the remainder will
be the address offset of the pixel into the
page.

The relocation constant for the needed
page is set in the PAR 30 that it can be
accessed through the data window. The
logical address of the pixel is obtained by
adding the address offset to the starting
address of the dsta window.

Multi-tasking and Memory Management

QOur version of FORTH implements
multi-tasking in the following manner.
Each task has a "state vector” which
contains "user" variables that can differ
from task to task. This includes:

- Dictionary and stack pointers

- Program counter and interpreter
pointer

- Status flags and state indicators

- Terminal 1/O routines and buffer
pointers

- Vocabulary pointers

- Number base

The state vector for the master task is
included in the nucleus.

Each task aiso has its own terminal
buffer, dictionary, parameter stack, and
return stack. New tasks are crested with
a routine called BLDTASK which sllocates

space for them in the master task's dic-
tionary. Figure 4 shows the logical
address spsce in an unmapped multi-
tasking system.

Page 7 1/0 }“
Page 6 | Dlock buffers
return stack
Page 5 parameter staik
Page 4
Page 3[-- -~ - - - - - ----
TASK 2 (—-T
Page 2| " """ """ °°
Page 1 1
dictionary
Page 0 |- -~~~ aucteus "
Figure 4. Logical address space for

unmapped system with two tasks.

return stack
parameter stack

+ J—
dictionary
TTY buffer
state vector

Task state vectors sre linked to each
other in 8 circular feshion, one pointing to
the next and the jast back to the first. A
"round robin" scheduler starts running a
new task when the current task executes s
PAUSE. PAUSE stores the current
machine state into the state vector of the
existing task end sets the new machine
state asccording to the new task's state
vector.

Additiona! information on multj-
tasking c!n be found in works by Forsle 4’
McCourt’, and Leary and McClimans™.
Figure 2 shows the logical address space
of a FORTH applicetion with a single task

and not using Memoaty menagement,

To add program spsce to our multi-
tasking system, we reserved s “task win-
dow” in the logical address space. The
magter task occupies the low five pages of
address space. Code in this sres is usable
by sll tasks.

Mapped tasks occupy pages 5 and 6 of
the logical address spece. Definitions and
data within a mapped task sre accessibie
only to itself. Easch task must have s
separste vocabulary. If definitions in a
mapped task are entered into the F ORTH
vocsbulary, the dictionary links will be

when the next task bescomes active.
This ususlly results in e systsm crash.
Figure 5 shows the logical address space in
s mepped multi-tasking system.

Page 7 1/0 }“vK
>
Page 6 |__ _ Meturmstack) %
parameter stack *
pace 5| 1 ' 5
age dictionary] 5
Page 4| _ _b_l_ofk_ b‘uf_fe_rf o
return stack
---------- x
Page 3 parameter stack ~3g
1 - o
| N -4
7]
Page 2 &‘;E
o O
b
x ©
Page 1 T 25
dictionary
Page 0 |— -~ = - nucleus J
Figure 5. Logical Address Space for

Mapped Multi-tasking System.

Implementing this technique required
the following changes:

- Modify the scheduler PAUSE so
thet it sets the page 5 and 6
memory management registers, as
well as swapping in the usual state
vectoar information.

- Move the block buffers and master
task stacks to the top of page 4.

- Change the routine BLDTASK to
assign the new task's return stack,
parameter stack, and dictionary to
pages 5 and 6, instead of giving
them wspace in the master task's
dictionary.

- Change BLDTASK to assign physi-
cel memory to the task. It must
caiculate the appropriate settings
for APR 5 and APR 6 and save
them in the task's state vector so
that they can be loaded into the
memory management registers by
PAUSE.

User Spacs for Data

The two approsches discussed pre-
vipusly both ran in processor "kernel"
mode. To incresse our memory resident
dsta storage in the multi-tasking appli-
cation described previously, we use the
“user” mode memory management regis-
ters.

The processor status word has two
mode fielde: current mode and previous
mode. The instruction MFPD moves a
word from the "previous" mode address
spsce to the “"current” mode processor
stack (the return stack in our FORTH
implementation). The instruction MTPD
moves a word from the “"current” mode
processor stack to the “previous” mode
address space.

Using these instructions it is possible
to retrieve and store data quickly and

Page 114

YEHLYN 0 4w PAY UL N

FYdueH

TR

41l

TN VaRuewnew

AN

+‘‘ ciently, and the data stored there is
zzcessible to all kernel mode programs,
-~ether they are mapped tasks or not.
Zata tables that would otherwise need to
o= disk resident because of their size can
“t« be memory resident to speed response
L Te,

The source listing of the user mode
2213 storage code is included at the end of
- s article.

Zonclusion

The first technique, the data window,
“zs been used for two image processing
tcations. One is used to view infrared
z ultraviolet laser beams in materials
t:mage testing experiments. The system
s circular averaging and calculates an
msclote intensity within the 10 minute
sIlcycle,

The other image processing application
:zserves X-ray diffraction patterns pro-
:.z2d by a nanosecond X-ray source. A
*27nque of radial averaging is aiso used
“2-2 to enhance the diffraction pattern
£~ 2 study changes induced by sample stim-

:1.0n,

“ne second and third techniques are
-+22 on the Omega Alignment System,
=~ zh now has 17 tasks installed and uses
=:>.. 140,000 bytes of memory for pro-
—:~ space. The user mode data storage
~=:nod is used by the data base software

=" 7 ‘or the intertask message queues.

Aithough this paper describes tech-
- zses used with DEC PDP-11 series com-
r.i2rs, the techniques are similar to those
-12Z with any limited address system with
12 z3i/physical mapping hardware. Thus,
-=. are applicable to minicomputers like
~= —ewlett-Packard 1000 series and the
- .27 newer 16 bit microcomputers like
“= Motorola 68000 and Zilog 8000. The
=17 niques are especially appropriate in a
"IRTH-79 context where the FORTH
—#>7ine is defined as having a 64K byte
sI2ress space, carved out of an arbitrarily
-~ ;= physical address space.

4xnowledgements

“me following people played a major
= 2z n the development of the software
bed in this article: Donald P.
.mans, Lawrence P. Forsley, Reade
5 rnick Robert D. Frankel, Joseph A.
tz:=, and Robert L, Keck.

“mis work was partisally supported by
~e ‘scllowing sponsors: Exxon Research
= Ingineering Company, General Elec-
~: Company, New York State Energy
~esearch and Development Authority,
«z-tneast Utilities, The Standard OQOil
:—oany (Ohio), the University of
- :ester, Empire State Electric Energy
- wsearch Corporation, and the U.S.
I=cartment of Energy inertial fusion
~wztam under contract number DE-ACO08-
£ 7240124,

BAKKFAKXRXRKNERARANENE

(MEMORY MANAGEMENT - U@, U!)

BLOCK ¢

445 1332328332232 33 2222200

CODE UR (CABLKSI~~-{DATA) RETRIEVE FROM USER MODE MEMORY)

7777760 8% 300000 ¢ MOV,

S @)+ FFPDy

7777760 @¢ 0 ¢ MOV

s -) RF)+ MOV,
NEXTy

(
(
(
(
(
(

SET PROCESSOR STATUS WOKRD:)
CURRENT=KERNEL,» FREV=USEK)

FROM ADRS ON STACN TO KF)

FSW BACK TO NORMAL)

RF T0 STACK)

RETURN)

CODE U « [DAT“J[ADRSJ---[J STORE IN USER MODE MEMORY)
2

RF =) MOV

¢

DATA FROM STACK TO RF)

7777760 @# 300000 ¢ MOV, (SET PROCESSOK STATUS WORD:)
(CURRENT=KERNELs» FREV=USER)
S @)+ TPLy (FROM KFP TO ADKS ON STACKN)
7777760 @% 0 ¢ MOV, (FSW RACK TO NORMAL)

FOF Jr (RETUKN WITH CLEAN STACK)
EXEKERXKRAEXAKKNRRREAKANX BLOCK ¢ 444 1333333333333 3 323338283
(MEMORY MANAGEMENT - K-U)

CUDE A>U ([N ADIRSILU ADRSICCOUNTI---L] COFIES 'COUNT')
(WORDS FROM KERNEL SFACE TO USER SFACE)
W S 1+ MOVy (W=COUNT)
FO S)+ MOV, (RO=USEK SFACE ADDRESS)
R1 S)+ MOV, (RI=KERNEL SFACE ADINDKRESS)
7777760 @% 300000 ¢ MOVs (SET FROCESSOK STATUS WOR{:)
(CURRENT=KERNELs» FREV=USER)
REGIN,
RF =) R1)+ MOV, (FROM KERNEL SFACE TD RF)
RO)+ TFDhs (FROW KF TO USER SFACE
W SOB» (DEC W» ERANCH IF NOT ZERO)
7777760 8% 0 ¢ MOV, (FSW BACK TO NOKMAL)
NEXT» (RETURN)
BAEKEARERERRRRARAEXKXKRKK ELOCK ¢ 447 KEXERKXRKRANRXKKRRXKRKKKS

(MEMORY MANAGEMENT - UK)
COLE U>»KN

([U ADRSIEN ALRSJICCOUNTI--~C1 COFIES ‘COUNT’)

(WORDS FROM USER SFACE TO KERNEL SFACE)

W S)+ MOV,
RO S)+ MOV,
k1 S ¢ MOV
7777760 @4 300000 & MOV,
EEGIN»
R1)+ FFDo
RO)+ RP)+ MOV
W SOBy
7777760 0% 0 & MOV,
NEXT»

-
(12}

R.C. Leary is a consultant employed by
the Engineering Division of the Laboratory
for Laser Energetics. C.A. Winkler is an
undergraduate in the Department of
Mathematics, University of Rochester.

References

1. Microcomputers and Memories, Digital
Equipment Corporation, Maynard, MA
01754, 1981.

2. Lawrence P. Forsley, "FORTH Multi-
tasking in URTH," Proceedings of the
4th West Coast Computer Faire, 1979.

3. Michael A. McCourt, PDP-11 FORTH-
79 Implementation Guide, University
of Rochester, Laboratory for Laser
Energetics, 250 East River Road,
Rochester, NY 14623, 1981.

(
(
(
(
(

¢
(
(
(
(

W=COUNT)

RO=KERNEL SFACE ADLDRESS

KR1=USER SFACE ADDKRESS)

SET PROCESSOK STATUS WOKD:)
CURRENT=KERNELy» FREV=USER)

FROM USER SPACE TO RF)

FROM RP TO KERNEL SFACE)

[EC W, LOOF IF NOT ZEROC)
CURRENT=KERNELs FREV=KERNEL)
RETURN)

4. Rosemary C. Leary and Donald P.
McClimans, Omega Alignment System
Software Maintenance Manual, Univer-
sity of Rochester, Laboratory for
Laser Energetics, 250 East River Road,
Rochester, NY 14623, 1981.

FORTH CLASSES

November 16-20
December 7-11
January 11-15

Ca!l: Inner Access
(415) 591-8295

“ZF TH DIMENSIONS 11i/a

Page 115

A HIGH LEVEL. INTERRUPT
HANDLER IN FORTH

R. L. Keck and L. P. Forsley
Laboratory for Laser Energetics
Unversity of Rochester

Abstract

A system for writing interrupt service
routines in high level FORTH is des-
cribed. An example of the utility of high
level interrupt service in a dynamic data
acquisition situation is provided.

Introduction

X-ray data from laser-plasma inter-
action experiments on the GDL laser
system at LLE has in the past been
acquired from photographs of oscilloscope
traces. Because of the large number of
detectors currently being employed, this
method has become impractical and we
have chosen to use 12 channel integrating
A/D converters for data acqu'isition. These
A/D converters are CAMAC" compatible
modules and because of the extensive
CAMAC vocabulary available in the UR
FORTH-79 system, as well as the
suitability of FORTH for use in a dynamic
programming environment, FORTH is used
for the acquisition software.

The A/D moduies integrate the signal
at each of their 12 inputs for the duration
of a gate signal, which is derived from the
laser oscillator. The oscillator is fired
once every 10 seconds to keep it in stable
operation, however, our data signal occurs
only when the full system of laser ampli-
fiers is fired as well, an event which
occurs when a fire sequence is carried out
by the laser system controller on com-
mand from the operator. We require a
means of clearing the A/OD modules just in
advance of the oscillator pulse at which
the full system will fire. This is accom-
plished by feeding a ready-to-fire signal,
provided by the laser system controller 4
seconds in advance of fire-time, to a
CAMAC contact sense input module. Our
acquisition sequence then is: look for a
ready-to-fire signal from the contact
sense input module, clear the A/D module,
wait for data available indication from the
A/D module and read the data from the
A/D module.

The above sequence could be imple-
mented directly, using the available
CAMAC vocabulary, by simply continu-
ously interrogating a module until the
desired condition occurs and then pro-
ceeding to the next step. This method
needlessly ties up the computer executing
loops and prevents it from handling any
other task while the sequence is in
progress. Since both the contact sense
input module and A/D module will gener-
ate CAMAC Look At Me's (LAM's) when a
signal occurs st their inputs and 8 CAMAC
LAM can generate an interrupt, we can

use an interrupt driven acquisition system
which will avoid needless looping. This
requires the writing of interrupt service
routines in machine code, which is at best
cumbersome. [t would be nice to be able
to write high level FORTH interrupt ser-
vice routines which could be readily
changed. This can, in fact, be done and
our method for doing this is discussed
below.

Implementation

Our system consists of UR FORTH-79
running on a Digital Equipment Corpora-
tion LSI-11 microcomputer under DEC's
RT-11 operating system. While a com-
plete description of the implementation of
this system may_be found in the imple-
mentation guide‘, we will briefly cover
FORTH's usage of processor registers for
reference in the following discussion.

Four of the processor's general purpose
registers are dedicated FORTH registers.
R4, the system stack pointer, serves as
FORTH's return stack pointer (RP). R5 is
used as the stack pointer (5). R4 is used
as the FORTH interpreter pointer (IC); it
contains the address of the compilation
address (also referred to as the code field
address or CFA) of the next word to be
executed. Finally, Rl is the state vector
pointer {SV); more will be said about the
5V later.

The procedure for executing a FORTH
word from code is essentially quite simple
and is accomplished by the word
XEQ.MACRO (a listing is included in the
appendix). 1t accepts an address, into
which will later be placed the compilation
address of the interrypt service word, on
the stack and generates code which will
place the compilation saddress of the
sefvice word on the stack [MOV @#<ADDR>
,~(5)], loads the IC with the address of the
compilation address of the return from
interrupt code [MOV #<HERE +8%I1C] (note
that <HERE+8> contains the compilation
address of RTI (COMPILE RTI), the return
from interrupt code word) snd then jump
to the executable code for EXECUTE to
begin execution of the interrupt service
word [JMP ' EXECUTE]. The net effect
of this code sequence is to start execution
of a high leve!l interrupt service word and
subsequently execute the return from
interrupt code.

Before execution of the code gener-
ated by XEQ.MACRO can begin, the con-
tents of the processor registers must be
preserved by pushing them onto the sys-
tem stack. Code to do this is generated
by REG.SAVEMACRO. We must addi-
tionally ensure that the S and SV registers
point to valid memory areas. In the muliti-
tasking UR FORTH-79 system, this is
mast easily accomplished by having a
separate interrupt task area. The task
area contains return and parameter stack
memory allocations as well as a state

vector allocation. The SV register points
to the state vector and the state variables
contained in the state vector are addres-
sed relative to the value of the SV
register.

It should be noted that it is not
necessary to have a multi-tasking system
in order to implement high level interrupt
routines. This is because the values of the
state variables referenced by the interrupt
routine are in general identical to those
for the master task. On a non multi-
tasking system we would simply reserve a
parameter stack area for the interrupt
routines and set S to point to it. It is
necessary, however, that FORTH be coded
reentrantly for this scheme to work,

The SV.SET.MACRO is used to gener-
ate code which will set the SV end S
registers. Note that it also changes the
return stack location. This would not be
necessary, except for the fact that the
FORTH stack checking routines require
that the return stack be located in mem-
ory immediately above the parameter
stack. The value of the interrupted task's
return stack pointer is stored in a free
vector location [52T(SV)].

SETUP.INT sets the interrupt vector,
in this case specifically for CAMAC (the
vector for the device in slot N for the
CAMAC crate is located at 400+N*4).
The processor is run at priority 7 during
interrupt service to prevent further
interrupts from occurring.

To make it simple to create interrupt
service routines, the macros previously
discussed are combined to produce a
defining word called

CREATE.CAMAC. INT,WORD .

This word when executed, accepts a task
area and CAMAC slot number on the stack
and creates a8 word which contains the
code sequences previously developed
starting at the second parameter field
location of the newly created word and
sets the interrupt vector to point to this
code. The first parameter field location is
reserved to hold the compilation address
of the word to be executed when an
interrupt occurs. The DOES>part of the
new word will load this reserved location
with the compilation address of the
desired interrupt service word.

An Example

The listing for blocks 3 and 4 illustrate
how the interrupt handler is used in our
acquisition system. A task area (1TASK)
is created and initialized for the interrupt
routines to use. It must be delinked from
the multi-tasking system to make it trans-
parent to the multi-tasking dispatcher.
Then two interrupt service routines are
defined (RDY.WORD and FIRE.WORD)
each with an associated CAMAC slot {or

Page 116

FORTH DIMENSIONS I11/4

sevice), They share the same task ares
s.oce only one interrupt service routine
can be active at a time,

In block 4, the high level service
*2utines are defined. RDVY.INT is used to
1 ear the A/D module, enable A/D LAM's
rZLR XENLAM) and then clear and dis-
az e further LAM's from the contact sense
~out module, on occurrence of a LAM
‘s3m the contact sense module. FIRE[
:zilects the A/D data, disables further
=D LAM's (XCOLLECT XDISLAM) and
aziivates another task which will print the
~esults (2TASK DISPATCH) on occurrence
:’ a LAM from the A/D module. These
~.gh level routines are installed as the
“terrupt service routines for the appro-
:-.ate CAMAC devices with the sequen-
tes: RDOY.WORD RDY.INT and
T'REWORD FIRE[. Changing an interrupt
tervice routined with this system requires
=y defining a new high level handler
-:2rd and installing it as the handler word,
2.3, FIRE.WORD FIRE2[will make the
-crd FIRE2[the new interrupt service
-z.une for the A/D module.

Zanclusions

We have shown that it is possible to
==.te high level interrupt service routines
- “ORTH. This makes it possible for pro-
:-ammers unfamiliar with interrupt pro-
“smming to easily write interrupt service
“sstines. In addition, the facility with
-~ ch this system permits changes to be
~3de to the interrupt handlers makes this
¢~ :deal way to handle data acquisition in
¢ rapidly changing experimental environ-
—ent,

Acknowiedgement

The authors would like to thank
“ zhael McCourt for assistance with
>='ails on the internal operation of UR
TIRTH-79.

= _. Keck is a graduate student in Mech-
cal Engineering at the University of
= xchester. L.P. Forsley is Group Leader
:* Computer Systems at the Laboratory
":= Laser Energetics, University of
= zcnester.

Modular instrument and digital

interface system (CAMAC, IEEE STD.

583-1975)

. McCourt, Michael, "University of
Rochester PDP-11 FORTH-79 Imple-
mentation Guide," Release Number
1.0, May 1981, unpublished.

APPENDIX
WORD LISTINGS

BLOCK PRt ittt etttz iteagdistetedtttoiesfititediidtittsss]

(Yish level FORTH interrurt handler rlk 1ef

25-naw-81)

! REG.RESTORE .MACRO { <{O=<>» restore resisters 0-3)
ASSEMBLER 0 S DO I RP)+ MOV, -1 +LOOP FORTH #

CIDE RTI (restore resisters,» return from interrust %)
RP %2T SV I) MOV, REG.RESTORE.MACRO RTI» FORTH

+ XEQ.MACRO (<addr of xea word, sssemblw time>-<> %)
ASSEMBLER 8 -) SWAP @& MOVs ¢ push handler word addr on stack)

IC HERE 8 + & MOVy» (preset the IC)
¢ EXECUTE P JMPy (Jumr to execute)
COMPILE RTI (mointer to next instruction)

FORTH 3

¢ REG.SAVE.MACRD (<>=<>r» save resisters 0 - 5 x)
ASSEMBLER 4 O DD RP =) I MOV, LOOP FORTH

-2
BLOCK AR 333333323333 83333 0233833333333 8323383333383 333334331
more interrurt stuff 2S5-mavw-81 rlk)
SETUP. INT (<slot#><code addr>-<> set camac vector x)
SWAF 4 X 4000 + DUF ROT SWAP !
2+ 3400 SWAP |

-~

SV.SET.MACRO { <8V loc>-<> set SV for interrurt routines x)
ASSEMBLER SV SWAF & MOV» S 147 SV I) MOVs 527 SV I) RP MOV,
RF 16T SV I) MOV, FORTH

(<SV loc><slot$>-<>» create int. x)
(defin. word., Xx)

<BUILDS 0 » HERE SETUF.,INT HERE 2- REG.SAVE.MACRO

SWAF SV.SET.MACRO XEG.MACRO

DOES> LCOMFILE] INSTALL SUWAF 1 ;

..

CREATE .CAMAC. INT.WORD

-->

BRLOCK PRttt ittt e e it it titiseitited it ededeis et tisdigd

(Interrurt task area initislization rlk 16SEPS81)
(create # task areas %)

(initislize task area Xx)
(delink task from task list x)
(mark tssk as active Xx)

20 30 O 47 BLDTASK 1TASK
1TASK TCLEAR
1TASK DUP !
1TASK DISPATCH

sV pup !

(create » readv to fire handler word for CAMAC slot 6 Xx)
1TASK 6 CREATE.CAMAC.INT.WORD RDY.WORD
(create 8 fire time word for the A/D module %)
1TASK XAD CREATE.CAMAC.INT.WORD FIRE.WORD

S

BLOCK PR3 233333303333 33232323 33332332333 2333334323333 3328432

13-arr~-B81 rlk)
(task area for rost fire word Xx)

(xray interrurt service
40 120 O 47 BLDTASK 2TASK
$ RDYJINT (rdu fire int handler x)

XCLR XENLAM 6 N O A 2 F DROF 24 F
¢ FIRE! (fire time handler x)
XCOLLECT XDISLAM 2TASK DISPATCH #

(make RDY.INT the readv to fire x)
(interrurt service routine x)

ROY,WORD RDYWINT

FIRE.WORD FIRE! (make FIRE! the fire time interrurt handler x)

#

“ORTH DIMENSIONS I1I/4

Page 117

OPTIMIZED DATA STRUCTURES
FOR HARDWARE CONTROL

Joseph D. Sawicki
Laboratory for Laser Energetics
University of Rochester

Abstract

Data structures have been developed to more easily control hardware. A disk driver is used as an example for exploring alternative
FORTH data structures and ways of optimizing them. These examples show that FORTH data structures are well suited to minimizing
programming time and increasing software efficiency.

Introduction

While workli\g at the Laboratory for Laser Energetics this summer one of my projects was to write a general purpose backup routine
for s DEC-like” RXD2 mode floppy disk drive. In doing this certain commonly used FORTH tools became useful. This paper will serve to
illustrate these tools, and the modifications necessary due to the nature of the project.

Deta Structures

The TO concept was developed by Dr. Paul Bartholdi and was described in FORTH DIMENSIONS Vol. I Neo. 4 and Vol. I No. 5 c:om:ept2
in variables. This could be implemented in high level as follows:

0 VARIABLE %TO
: TO 1 %T0 !
: VAL <BUILDS (<#>-<> , ACCEPTS INITIAL VALUE)

]
DOES> (<#>-<>;<>-<¢>, STORES OR GIVES "VAL")
*TO @
IF !
0 %XTO !
ELSE @
THEN ;

It would be used like a varisble. Entering 0 VAL <NAME>would define a variable with en initial value of zero. To change the value to &
six one would say &6 TO<NAME>; sayingeNAME>would now put a six on the stack.

This technique makes the code more readable by sliminating the use of @ and [with varisbles (and ' with constants) to access and
modify them. The backup driver is no exception to this and in fact offers the opportunity to carry the concept one step furthg; In the
DEC PDP-11 architecture, 1/O is memory mapped 0 that, for instance, the Disk Control Status Register is at location 1771700 and the
Data Buffer Register is at location 1771720. One way to communicate with these addresses is to define two constants:

1771700 CONSTANT CSR
1771720 CONSTANT DBR

but then the use of @ and [becomes necessary. A way sround this problem is to define a dats structure similar to VAL except thst it
contains an sddress m its parameter fisld instead of a value. It would also be useful to fetch the address as well as to send data to and
from the address. An easy, though by no means optimal, implementation of such a structure is given below.

t 10 (SETS FLAG SO THAT A NUM WILL BE STORED IN A REG.)
FRG!‘I % gETS FLAG S0 THAT A NUM WILL BE GOTTEH FROM A REG)
~1 270

o

¢ TEST BED FOk BEGINING OF RX02 DKIVEK JbS 15JUNGL I

: TER s UILDS »
REGISTER B k -y nun.ns A DATA TVPE CALLED A REGISTER)
DOES, « GIVES REGISTER ADBy CONTENTS OR_SENDS DaTw
T0 THE REGISTER DEPENDI s on THF STATUS OF %O
@ 270 @ (GET ADDRESS OF REG AMD MO
nuv -1 = IF suar @ SWAP (GET cnnmm

HEN
1= IF ' (STORE \MLUE IN REE b
THEN 0 X0

Once these two structures are implemented it becomes very easy to talk to the disk drive. For example, if a VAL had been defined
called IN-TRACK# which contained the track to be read, sending it to the DBR would simply consist of ssying IN-TRACK# TO DBR.

Page 118 FORTH DIMENSIONS Tl1/4

In the RX02 mode there are eight disk commands. They are all similar in that they need to have & drive and density bit set and they
are sent to the CSR. The first problem is solved by a VAL called DRIVE/OENSITY and the four words shown below:

| SR O SR ST T T
| IENS 5 | }

¢ DOUBLE-DENSITY (.COm. - COM, v/SE‘S THE DENSITY BIT 10 1)
DRIVE/DENSITY 256 BIS 10 [IRIUE’UENSIT\ ;

! ODRIVE « <COM,>- .COM, s SETS THE DRIVE BIT TO 0)
ﬂRIVE/hENSITV 16 K1C 10 DFIVE/DENSITY 3

+ 1DRIVE “COM, - COM, - » SET THE DRIVE BIT TO 1
[\RWE/UENSITY 16 k1S TO DRIVE/DBENSITY &

After setting the drive and density as desired, the VAL DRIVE/DENSITY can then be ORed with the command to produce the desired
resul.ts. The{e are two approaches that can be taken at this point. For example, take the command to format a disk in a single or double
density; call it (SET-DEN). A word could be defined, along with seven others like it, as shown:

¢ (SET-DEN) 110 DRIVE/DENSITY OR TO CSR ;

The second approach would be to again use a defining word:

! DISA~COMMAND - BUILDS « <CON--- - TANES THE CON FOR A DISN OF.)

l'éES (GEY COm AND DRIVE DEN INFO OR» AND SEND)
2 DRIVE/DENSITY Of TO CSKk 4

110 DISK-COMMAND (SET-DEN) ¢ USED TO FORMAT DISNS SING OR D DEN)
Optimization

As usual we have a classic FOR I'H space-time tradeoff. The second approach executes somewhat siower (see figure 1) because the
constant needs to be fetched, but whereas the first approach takes 18 bytes per command or a total of 144 bytes, the second approach
takes only 10 bytes per command plus 24 bytes for the defining word for a total of 104 bytes. Because of the space savings the philoso-
phy that very similar things should be grouped together could override the execution speed losses and the second approach was used.

All of this‘ would have been fine except that when doing the track to track backup a sector interleaving technique must be used to
keep backup times down to a reasonable level. Since these VAL's and REG's have high level IF statements in them and they are used each
time a sector is read or written, they require an overly large interieave step size. The solution to this problem is to use ;CODE instead

of DOES=x Though this makes the word less transportable it isn't seen as a problern since this is a PDP-11 specific disk backup. The VAL
word now can be defined as follows:

¢ VAL (FUILDS - #.--,» TANES THE INITIAL VALUE OFF Tht STACA)

VCODE [OR < >-#°» GETS VALUE OR STORES VALUE)
g? ;FYSTv (SEE IF %70 FOSITIVE
WPARAM U 1) 8§)+ MOVy (STORE VALUE)
£ SEO F O ¢ MOV, (ZEKRO OUT XY0 FLAG ¢
t
S -, WPARAM ¥ 1) MOV « FETCH VkLU OF VAL)
THENy NEXTy -

where W is the PDP-11 register containing the CFA (code field address) of the word executing, WPARAM is a constant equal to the
offset from the CFA to the PFA, and) indicates indexed addressing. Not only is the coded VAL faster than the high leve! version, but it
is also faster than a VAR at fetching and the same speed at storing (see figure 2). It was also necessary to code REG as shown below:

¢ REG ﬂFUILDS ¢ BUILDS A DATA TYPE CALLED A REGISTER)

ICODE [8§, GETS ADDy VALUE OR STORES VaL)
2;01; TSTv (CHECK IF %70 IS PDS NEG Ok ZEKOD
[
WFARAM W @]) S)4 MOYs (STORE VALUE IN REG !
ELSEs
LT IF,
S ~) WFARAM W @1) MOVs (GET VALUE)
ELSEs
§ -) WPARAM W I, MOV, (FUT T.0.S.)
THEN
THEN,
ZI0 F O & HOV» NEXT»

ON iy

To illustrate the use of these concepts the FORMAT-DISK word will be shown. But first to insure that the program doesn't try to do

things before the disk controller is ready, two more words are needed that weit for the done and transfer request bit to be asserted in the
ZSR.

+ TR, “?IT"(OUAELS FggklzstngTﬂ TRANSFER BIT TO BE SET)
000 FROH
H DBNE WAIT (WAITS FOR THE UONE KIT 7O BE ASSERTELD)
KEGIN 400 FROM CSK AND ENI

FORTH DIMENSIONS 11i/4 Page 119

The disk command as shown before was cslied (SET-DEN). After receiving this commend the disk controlier waits for a "key" byte
{1110, the letter I in ASCII) to be sent to the DBR, therefore the antire command is coded as shown:

: FORMAT-DISA (<>=<>y SETS THE DENSITY OF A DISK)
. (SET-DEN) YR.H&ET
1110 TO DBR (SEND °KEY® BYTE)
DONE.WAIT

To format the disk in the drive one double density one would enter 1DRIVE DOUBLE-DENSITY FORMAT-DISK; to format the disk in
drive zero single density one would enter ODRIVE SINGLE-DENSITY FORMAT-DISK.
Timing

To show the effscts of the different approaches timing tests were run. The first contrasts the difference between the two types of
disk commands. In all tests the action was placed inside a double loop like:

+ TEST 10 0 DO 30000 0 DO LOOP LOOP ;

This routine took 23 seconds which was then subtracted from the other resuits to give the time to do the operation 300,000 times. This
was then divided by 300,000 to give the time per operation. These are the results on s DEC LSI 11/2:

To Send Disk Command
Colon definition .23 msec.

Defining word .28 msec.

Then a high level VAL was compared to a coded VAL and a VAR:

fetching (msec) storing (msec)

high level VAL .237 .39
coded VAL .067 .11
VAR .083 .093

Summary

This paper not only showed the usefulness of certain techniques in FORTH but also illustrates some general properties of the
language. The first of thess is the esse of implementation of new data structures. Through the use of BUILDS ... DOES or BURDS ...
sCODE one can first build the structure to suit the needs of the application and then imbed in the executsble code necessary operstions
for the structure. Also 8 structure can easily be given varisble execution as in the case of VAL and REG. Another important benefit of
FORI}’H is the ease of optimization of the word by the use of assembly code. Changing the VAL end REG words to ;CODE took iess than
a half hour.

Acknowledgements
1 would like to thank Mike McCourt, Bob Keck, Lawrence Forsley and Peter Paulson for their help in getting the hn;dvnre running and

for comments on the software.

This work was partislly supported by the following sponsors: Exxon Ressarch and Engineering Company, Genersl Electric Company,
New York State Energy Research and Development Authority, Northeast Utilitiss, The Stendard Oil Company (Ohio), the University of
Rochester, Empire State Electric Energy Research Corporation, and the U.S. Department of Energy inertial fusion program under
contract number DE-AC08-80DP40124. '

J. Sawicki is sn undergraduate with the Electrical Engineering Departmaent of the Callege of Enginsering at the University of Rochester.
He is a DJ in his spare time.

1. DEC snd PDP-11 are trademarks
2. The TO concept by Paul Bartholdi FORTH DIMENSIONS Vol. I No. 4 snd Vol. I No. 5.
3. Where an O lui?ix indicates octal

Pags 150 FORTH fifa

SKRAERTRRSRELEEHEE BLOCA 94 SBRBARREABAB220R4 42
{ STRING STACA--FIXED LENGTH STRING COMPARISON LAR 19-SEP-79)

THE STRING STACK

Michael McCourt L35 s (NDTE: PAKAM OKIER NOW <ADK <LEN> NAM _11-JUN-BG
, { {ADD A» AGD Br LENIv---CADDA» ADDEy = OK + OR - 3)
Laboratory for Laser Energetics (COMFARES CHARS. IN STRINGS & 8 B PAKIWISE} RETURNS 0 1F
University of Rochester (STRINGS ARE =» + [F ADKr - IF AR
. . §7F00 0 SWAP 0 [0 IROP OVER CO OVEK CO - ROT it
Richard A. Marisa (K0T 14 ROT DUP 0 NOT IF LEAVE THEN LO

[AD ADD By LEN)---[= Ok ¢ OR -1y ShHE AS STFD0)
EXCEPT ADDRESSES NOT RETURNED)

Production Autamation Project (
{
P S?F S?FI0 ROT ROT "UROP -
(
(
?

University of Rochester

Abstract [ADD Ay LEN]-- Ok Ok E ﬁREi STRING A TO)
. A STRING OF BLANKS--RETURNS 0 IF TW0 ARE EQUAL)
Applications which require a text data P78 ox?“tgav[ngugsotoggpSﬁszﬁR-OPS‘:M 1+ SuAF [.’E'F o<
type are supported by a group of functions
which operate with string var{ables and a SAESEANERRARSERIRE RLOCK 97 SESRERBARARBEATAINL
string stack. The string stack is analogous
to the parameter stack, however, the data { 5{"‘%:3{ anpsggsg""g:“g#?? LE?GTB‘E H OR - FIRST TESTS)
; ok i : : 1 Ay ' K L e -
type with which it operates is the string, (70 SEE IF LENGTH DIFF. BTWN, A & K IS 0'; IF NOT, TESTS)
containing length and character data. { THE LONGER STRING TO SEE IF THE EXTRA CHAKS. AKE BLANKS)
slglR AR CRGES I g ReTlkutn, Safrbise, o8 -
- . H | = {] <,
String Defining Words IF MINUS ROT DROF_S78 KINUS ELSE SUAP DORP S8 THEN THEW i
o ¢ CADL Ay ALD R)---L0 =ky - IF A-K» ¢ IF A2k] TESTS)
Two defining words are available for z S?E(T::E;S: x:FI?SEESkSEG'&g[ES;RIG?? EM?E BOTH THE SAME ¢)
th ti f stri ities. o AND !
o oation of string data entities. The §7 QUER Ce QUER C@ 30UE - ok NIN ROT 1+ ROT 1+ ROT S7FD0
: BUFo e R0T RGE 20N A0
<maxlen> STRING-VAR <NAME> v Bt HEN §
which creates a varying length character ==
string with maximum length <maxlen>.
Invoking<NAMBE»places SXEERRABAABKAENBKS BLOCK 98 SEARBBENERLRRNLRUSE
<beginni dd ><aaxi i (STRING STACA WORDS LAR 19-SEP-79)
eginning address><maxisus string length> 0 SUAK S50 0 SVAR SSH 0 SVAR SST
on the parameter stack. The first byte : ggagz ;gag i : sgLOP' ggT I@ P
at <beginning address>is the current string ' KOM» ' gt <
length; the string text begins at the next : swaf.gg: ng;: %ggpé U €73 CHECAS FOR STACK BOUNDARIES)
byte. IF SSHAX SSTOP ! 147 TARORT

éutanm—--u INSURES THAT ADDRESS POINTS 1D STRING)
The second string defining word is: ?F E'gn['ups“‘,’spce :3?5?% M T THEN
<ousber of elements> <paxlen> ()STRING <NAME> s(snordn'n gsprgre IRING]---[AD of NEXT STRING DOWN])
. . (LADBI--~[1 Pusucs STRING AT ADLR. 10 TOS
which creates an array of variable length ! SSPUSH DUP CR 1+ SSTOF OVER - DUF SSTOP! suae RMOVE
strings. Invoking

-

<i»><NAME> EEENEEARRRRARRIRRE BLOCK 99 SERRBARRESRRRRRALRY
places <address of the i-th string> <maxlen> (STRING STACK UOR[IC LAR 19-SEP-79)
s 'DROP [}---C] REHOVES TOP STRING FROM STACK %)
on the parameter stack. Note that ssmp SSVER ssnouu SSTOF
(number of elements) x {(maxlen) bytes will : S"S-$0P SSVER CQ £3---01 RETURN LEN OF TOS STRING %}
H '
be allocated to hold the string array. ; SS%P s ¢ 13---11 RETURN ALDR OF T0S STRING %)
’
String Stack Manipulation HEY (1 4 ([1---C) COPY TOS STRING %)
: SSTOE SSVER SSPUE”]‘ ' -[] EXCHANGE TOP 2 STRINGS %)
A string stack, separate from the para- ' géagPSSPusasgggg [iuF SSPUSH SSDOWN SSTOF SWAP SSTOF!
meter stack, is maintained in memory for ’

. i f T °*ROT []--- 3} ROTATE TOF THREE STRINGS AKC "‘BCA %)
the purpose of manipulating string data. 5570p DUP SSDOUN DU SSDDMN DUP SSPUSH SSDOWN SSTOP SWA
Several words which manipulate the string SSTOF! SWAP SSPUSH SUM‘ SSPUSH SSFPUSH + .
stack are defined in the string stack ==?
library which cen be compiled by execut- EXERLERRRRARANRERS K SARRRARERRKRRARARAL
ing >STRINGS (which loads in the string seass ¥ BLoC 100 '
stack package). Currently 200 (decimal) (STRING STACK WORDS NAN 13-JUN-80
bytes are allocated for the string stack. ! *OVER (C1---[3 PUSH 2ND STRING DOWN ONTO TOS %)

SSTOF SSDUWN SSVEK SSPUSH
DUF [1---(3 COFY TOP 2 STRINGS %)

[1---C] DROF TOF 2 STRINGS %)

SS70F SSIOUN sﬁ%aaifnu’i”%’énéﬁﬁ 2’%‘6;3‘243&"%«.;
$SI0F SSDOWN SSLOMN DUE 8o O By e SR uITH GKD AND ATH %)

" is followed by exactly one space, then DUP ssnouu ssnoun ssnoum 5ST0F sswusn SSPUSH SSPUSH SSPUSH 4
(text> delimited by a quotation mark. TR copusn (i AIDRS ‘LEN:---L1 PUSH STRING AT ALDK T0 SS 8
] 13

A string print word .SS is used to print .-
the top element of the string stack,

The quote word () is available for :
placing a string on the string stack. To ,Qgsgp

stack a string, type: 'flkor' *DROF
" <text>"

o~ o~ -

..

FORTH DIMENSIONS /4 Page 121

removing the top element in the process. SERERARSRARLL52888 BLOCK 101 (12332222 2R EEER PRV
For example, { STRING STACK WORDS CONT‘D HAN 13-JUN-B0)
Ok " STACK THIS STRING " <CR> § %1 ([ADRI[LENI---(] STORE TOS AT ADDR. & DKOF TOS §)
oK 3 }Og“ gRaP SUM’ OVER C® MIN 2DUF SWAP C! 14
([STRING]---[J STORES STRING IN PAD THEN MOVES IT FROM)
{ THERE TO TME TOSS -~ WORKS DUKING EXECUTION TINME)
.88 <CR> v X' 420 WORD 0 °*@
R e o 3 o
STACK THIS STRING OK (TSTRINBI--£2 STORES STKING AT TOP OF DICT. STACK)
Notice that the functions .SS and . are : cﬁ E'ﬁ'f‘yffecg'!q%fao“ ce DUP 2 NOD
similar. Several other functions operate IF 1+ ELSE 24 THEN ALLOT
on the string stack in @ manner analogous ¢ ° STATE @ IF C* ELSE X* TNEN i Inp *
to words which operate on the parameter h
stack. These are:
WORD FUNCTION BEFORE AFTER
"DUP copies top of stack BA BAA
"SWAP reverses top two
strings on the stack B A AB
"DROP removes top of stack B A B
"OVER copes 2nd string onto top B A BADB
ROT moves 3rd string to top CBA BAC
::ZDUP copies top 2 strings B A BABA
"2DR°P removes top 2 strings CBaA c
2SwAP reverses 1 & 2 with 3 & 4 DCBA BADC
| ZOVER copies 3 & 4 to top DCBA DCBADC
+ string addition (catenation) BA BA
BRERERSARSBLRELEERE BLOCK 102 SESEEXURRSNEERLLLLL
String Reistionals

Just as the parameter stack relational
operators ~emove their arguments from

os oo

SS?OP SSVER gR?P Cou

STRING STACK UORDS CONT‘D NAN 18-MAR-81)
F’E OUT STRING AT TO0SS %)

R NG lN DICTIONARYs MAKE EVEN LENGTH

the parameter stack, the following string A20 uoan coum DUP HERE SWAP 1+ -2 AND ALLOT SWAP CHOVE +
rmants from. e g sk "o { IoMipak AED LEACTH ST EEATION o 1o r0ss
arguments from the string stack. The . 4l e
logical result of the string relstion Is I 14 nur SSTOP ovea - 1- SSTOP! SSTOP C' SSTOF
+ SWAP CMOVE
placed on the parameter stack. The avail- ¢ unnn.nnx LENJ---[J COPY CHARS ONLY FROM T0SS T0 ADDR)
able reiationals are: ¢ *1F 2DUP BLANK °*LEN WIN SSTOF 14 ROT ROT CHOVE *DROP
e ex
-=>
l|<> ">‘
"e “>
SIREXLBSEIEIASRELE BLOCK 103 SEEXERRATERNLESELL
String Variable Storsge and Retrieval
(smns STACK WORDS co:r P " 0 aaFn SE:J?)
. ——- NGS. ON STACK LEFT T
The string store word, ", places the 'sww sg? §§nou ?v:ff fe gs?&rf Be 10 nb? 9 RIGHT %)
top of the string stack in the string vari- s(tLEN BEG!NMNG cmm 0] [] VE SE?P égsssrow ¥
able described by the parameter stack, ! 51
. . (SUBSTRING OF LENGY LENJ suarons WITH srecmsn)
popping the string stack. The string (EHAR OF ORIGINAL SIRING
e o e e =?%m&%m%w*mmﬁ&m%u,
referred to by the psrameter stack onto ! 2 '
. (—--TOFFSET OR 0] ~SEARCHES 2MD §Tk. FOk 15T CHAR OF)
the string stack. (1ST STR. & x? FOUND: COMPARES 2ND STR. FROM THAT POINT
{ TO 1ST STR)
¢ *INDEXDO DO OVER I + ER -
OK 30 STRING-VAR MYSTRING <CR> IF

VER I +_ SSTOP
YF DROP I 14 RO
0K

string text " MYSTRING "! <CR>

0K
MYSTRING "@ MYSTRING "@ "+ .S§ <CR> string text string text

0K

VRD* LEAVE ?HEI THEN LOOP_C

Page 122

FORTH DIMENSIONS /3

AFE A RN LY |

[" B B SR ¥ I 4N

-

ng

PR AN O S

e d

YdRon 2

F BAeCENRBNEN

“.cxing the name of the string varlable
- 3TRING in the preceding example
: ated <address> <maxlen> on the para-
—eter stack, String store and string
#:nieve check the maximum and current
+=3th of the string variable when moving
t*.1g data.

#hen it is required to move fields of
222 length which do not contain an
+—>edded current length in the first byte,
“ 123 length string store and retrieved
»:72s may be used. The syntax is:

<address> <length> "!F

<address> <length> "@F
S=ing Functions

'_EN returns on the parameter stack,
-+ .ength of the string on top of the
- ~3 stack, The string remains on the
. = ~3 stack. The address of the first byte
e string (one byte after the jength
= 2 is found by executing "LOC.,
.==gth> <beginning character number>
"SUBSTR
~»>.3ces the top of the string stack with a
s.z8tring of length <length>, beginning
-~ the specified character of the
* 3.nal string. For example,
JK
' abcde" 2 3 "substr .SS
cd OK

“ne "INDEX function searches for the
“s1 occurrence of the string in the
»#:2nd string. If an occurrence is found,
: zffset is returned on the parameter
=z2:<. If an occurrence is not found, -1 is
= _ned. The top of the string stack is
:.-,:ed.

3ng Stack Errors

“wo errors are reported by the string
- 3¢ package: string stack underflow and
- z~flow. As stated previously 200 bytes
= 1nitially allocated for the string
;<. If repeated overflows are gener-
: =2 maore space can be allocated for the
* g stack by changing the parameter
::rsed to "INIT in the string stack
t-ary. String stack initialization is the
::0 function performed when the string
-:2« library is loaded.

asmmary

This was the first major software
x:«<age transported throughout the
.~ versity URTH community. Originally,

~ad a few code routines which were
-zzhine specific to reduce execution
-—e. However, these were removed on
¢ the systems but the Intel 8080. The
:z:xage has run, without change (except
= the above mentioned machine-specific
:z3e' on Hewlett Packard 2100, DEC
=22-11, IBM 360 and the INTEL 8080.

8300008028 2283388 BLOCK 104 (3233200333330 0 33} 8]

(STRING STACK WORDS CONT'D LAR 19-SEF-79
[)---[-1 OR DFFSEYJ SEQRCHES FOR lST OCCURENCE OF)
(TOP STR, IN 2ND STK.---1F FOQUND T 1S RETURNED)
. '&N%EXP‘R“” ?BQC% ELS% -l IS RETURNED- TUSS IS FOFPED .)
) éSTDgP.§SgOUN SSVER DUP C! ROT 14 C@ ROT 1+ SwaP
ELSE 0 ROT ROT THEN ZDROP 'DRU i
([1==-(]) EO TgP STRINGS! LEAVE 0+<0 Ok 0
s Y §STOP DU SSDOUN 57 'DRO
([2-6-I;IFJ LOGICAL =) TESTS TDP STRINGS »
[-
. .2 E;-B'[T/F] LOGICAL LESS THAN TESTS TOP 2 STRINGS)
. 7

RESEEERERERR88288% BLOCK 105 ERLEBLERLERLLRIALNR

{ STRING STACK WORDS CONT'D NAM 10-MAR-81)
L ([)--=[T/F) TESTS TOP 2 STRINGS FOR §)

’ }
L= g [J---LT/F) TESTS TOP 2 STRINGS FOR <= ¥)
([3---CT/F1 TESTS TOF 2 STRINGS FOR >= ¥)

..
-

s e
-
W A
v "
>E
Q0
Yo

-

(SN>-<>y PUSH A STRING OF N S ON 85 &)
DUP 0 gO SSTOP 1- BL (WCHiCk OVER c! § E! LDO?‘
SSTOP 1- DUP ROT SWAF C! SSTOP!

"INIT (<4CHARS TOD ALLOCATE FOR SS»-<>+ XNIT SS INTO DICT
1 74 MWERE SSO ! ALLOT HERE 2- DUP SSK ¢ SST

2007 "INIT (ALLOCATE 200 CHARS FOR STRING STACK)

-->

SEELAXXERASREBNLEE BLOCK 106 SERBALALBEREILRL2XS

(STRING VARIABLE AND STRING ARRAY HAM 13-JUN-80)
([MAX LENI=---() ALLOTS SPACE IN DICT FOR MAX LEN AND)

)

0 v 2/ DP+! i

G <NAME> --- BUILDS A STRING VARIABLE)
EXECUTED THE BYTE ADDR. OF THE STRING)

H _ARE LEFT ON THE STACK)

L ING-SPACE

OVs (PUSH PARAM ADDR)

DDy (POINT TO COUNT AND FIRST CHAK)
0Vr» (PUSH MAX LENGTH)

..
n
-t
x
—
z>

D>OX

> §
[+ 1)
2
>
O
m
<

1

S

START AND LENG
STRXNG UAR (BUILU
DE S -]

4

[]

iC

EXRERASRANRRRLRERE BLOCK 107 SEBSREABAEBRBERRLLE

(STRING ARRAY ROUT(I#EE EHENTS NAX L Hgﬂ 13- JUN 80)
: 4 —==(N
\BUIL&SGS (D([lF‘ t B'I NEADER: STBRE 0 oF STRINUS)

0 DO DUF STRING SPQCE (QLLOT DIC SFACE» STOKE MWAX LEN)
LOOP DROF

DOES> 2+ DUP @ ROT ROT 3 PICK (ADDR OF 1ST ELEMENT)
DUP 2 MOD IF 3 + ELSE 4 + THEN (1+ TO MAX LEN IF ODb)
(2¢ IF EVEN» 24 FOR MAXLEN)
ROT % 24 + SWAF i (STRING ADDR + ELEMENT OFFSET)
RETURNS COUNT AND ADDR)
-
NS RREATRELLRNEEE BLOCK 108 [3teeietReistisd s iy
(STRING EXECUTION ROUTINE LPFoMAN 18-NAR-81)

: *EXEC (UORD NAME ON TOSS>-<>» EXECUTE WORD IF FOUND)

’F‘%S% ;%SP (3 EXECU E
ELSE O TABORT THEN ; (UNDEFINED WORD ERKOR)

: 'FORGET ¢ <UORB NAME ON T0SS>-<>» FORGET WORD IF FOUND)

HERE °
FIND ?DUP IF WPARAM + SFORGEY
! ELSE 0 TABORT THEN 7 (UNDEFINED WORD ERROR)

is

7 ZRTH DIMENSIONS II1/4

Page 123

The first application was for a screen-
oriented data entry system, Later appli-
cations included an ISAM data base, a
menu-driven interface for flow cytometry
and a word processing system. The pack-
age consists almost entirely of its original
code written in 1977 by Mike Williams, of
the University Computing Center. The
major change has been the addition of
comments,

Acknowledgements
We would like to thank the following
people for their assistance: Mike

Williams, of the University Computing
Center, who developed the original String
Stack Package for URTH on the IBM 360
and the Intel 8080; and two undergradu-
ates who worked for Lawrence Forsley,
Lynn Raymond and Dan Blumenthal, for
documenting this package.

This work was partially supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
tric Company, New York State Energy
Research and Development Authority,
Northeast Utilities, The Standard Oit
Company (Ohio), the University of
Rochester, Empire State Electric Energy
Research Corporation, and the U.S.
Department of Energy inertial fusion
program under contract number DE-ACO8-
80DP40124.

R. Marisa is the manager of the computing
facility of the Production Automation
Project in the College of Engineering at
the University of Rochester. M. McCourt
was 3 senior laboratory engineer with the
Laboratory for Laser Energetics at the
University of Rochester and is now an
applications engineer for Harvey
Electronics.

HELP WANTED

Associste Systems Manager,
Pulmonary Computsr Systems

Primary responsibility for designing,
debugging and implementing major soft-
ware projects on the Pulmonary Computer
System. Programming experience with
POP-11 Assembly language and FORTH
desirable. Some hardware experience will
be useful.

Salary range to $35,000. Superior
benefits package, three weeks vacation
first year.

Contact:

John Gilbert, Employment Officer
Cedars-Sinai Medical Center

8723 Alden Drive

P.O. Box 48750

Los Angeles, CA 90048

(213) 855-5529

NEW PRODUCTS

FORTH Application Modules
Disketts

The diskette of FORTH application
moduels, a new product by Timin
Engineering, is 8 variety package of
FORTH source code. It contains hundreds
of FORTH definitions not previously pub-
lished. Included on the diskette are deta
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calculator, a typing
practice program, and & menu genera-
tion/selection program. In addition, the
diskette provides examples of recursion,
<BUILDS...DOES> usage, output number
formatting, assembler definitons, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
in exemplary F ORTH programming style.

The FORTH screens, written by Scott
Pickett, may be used with Timin FORTH
or other fig-FORTH. The price for the
diskette of FORTH application modules is
$75 (if other than 8" standard disk, add
$15). To order the FORTH modules, write
Timin Engineering Company, 9575
Genesee Ave,, Suite E-2, Sen Diego, CA
92121, or call (714) 455-9008.

INNER ACCESS FORTH
SOF TWARE AND DOCUMENTATION

Fig-FORTH compiler/interpreter for
PDP-11 for RT-11, RSX11M or stand-
alone with source code in native as-
sembler. Included in this package are an
assembler and editor written in FORTH
and installation documentation.

This is available on a one 8" single
density diskette only. #20011-01 ($80)

Reference Manual for PDP-11 fig-
FORTH sbove. #20011-99 ($20)

Fig-FORTH compiler/interpreter for
CP/M or CROMEMCO CDOS system
comes complete with source code written
in native sssembler. Included in this
package are an assembler and editor
written in FORTH end instsliation
documentation.

All diskettes are single density, with
5.25" diskettes in 128 byte, 18
sector/track format and 8" diskettes in
128 byte, 26 sector/track (IBM) farmat.

Released on t;vo 5.25" diskettes with
source in 8080 assembler #20080-85 ($80).

Releasad on two 5.25" diskettes with
source in 280 asssmbler #20080-25 ($80).

Released on one 8" diskette with
source in Z80 assembler #@0080-Z8 ($80).

Manual for CP/M (or CROMEMCO)
fig-F ORTH above #20080-99 ($20).

METAFORTH Cross-Compiler for
CP/M or CROMEMCO CDOS to produce
fig-FORTH on a target machine. The
target can include an application without
dictionary heads snd link words. It is
available on single density diskettes with
128 byte 26 sector/track format. Target
compiles may be readily produced for any
of the following machines,

CROMEMCO--all models
TRS80 Mode] Il under CP/M
Northstar Horizon

Prolog Z80

Reieased on two 5.25" diskettes
#20100-85 ($1,000).

Released on one B" diskette #20100-88
($1,000).

Complete Zilog (AMD) Z8002
develoment system that can be run under
CP/M or CROMEMCD CDOS. System
includes a8 METAFORTH Cross-Compiler
which produces a Z8002 fig-FORTH
compiler/interpreter for the Zilog 28000
Development Module, Package includes e
28002 assembler, a Tektronix download
program and a number of utilities.

Released on two 5.25" diskettes
#29102-85 ($4,000).

Released on one 8" diskette #29102-88
($4,000).

Zilog Z8002 Develoment Module fig-
FORTH ROM set, Contains fig-FORTH
with Z800Z assembler and editor in &
(2716) PROMS, #38002-00 ($850).

For orders and further information,
contact:

INNER ACCESS CORPORATION
Software Division

Box 888

Belmont, CA 94002

(415) 591-8295

ANNOUNCEMENTS

Sym-FORTH Newsletter now availsble,
contact: Saturn Software Ltd.,, PO Box
397, New Westminister, British Columbia,

Released on one 8" diskette with V3L 4Y7, CANADA.

source in 8080 assembler #20080-88 ($80).

Page 124

FORTH DIMENSIONS 1i1/8

28 aa A

- e oA

COMPLEX ANALYSIS IN FORTH

Alfred Clark, Jr.
Department of
Mechanical Engineering
University of Rochester

During my years as an engineering
educator and a researcher in theoretical
fluid mechanics, | have often wished for
the perfect calculator--a compact
machine which would perform intricate
and useful mathematical tasks in response
to a few keystrokes. The pocket scientific
calculators, amazing as they are, never
seemed to have quite the power and flexi-
bility (and certainly not the graphics
ability) that [hoped for. | always sup-
posed that my hopes were unreasonable
until I discovered FORTH two years ago.
Having been a FORTRAN programmer for
20 years, | found the transition to FORTH
somewhat difficult and even painful at
times. Originally, | took up FORTH out of
curiosity, but gradually | realized that the
quest for the perfect calculator was over-
-it is FORTH plus a microcomputer.

Perhaps ! should say a little more
about what a perfect calculator is sup-
posed to do. Armong other features, it
should have (1) standard trigonometric and
exponential functions, (2) other common
special functions (e.q., Besse! functions),
(3) graphics and automated plotting of
functions, (4) numerical integration, (5) a
root-finder, (6) special purpose applica-
tions, such as a direction field plotter for
first order differential equations, and (7)
complex arithmetic, including complex
transcendental functions. Further, all
procedures should be executable with a
few keystrokes.

The last item in the list--complex--is
in some ways the most stringent test of
any would-be perfect calculator. It's
certainly not available on any pocket
calculator. Although it can be imple-
mented in BASIC, it is cumbersome and
requires a large package of subroutines.
The versions of FORTRAN available for
small machines generally omit the com-
plex arithmetic and complex functions
which are available on large machines.
With FORTH, however, the extension to
complex from real floating point is simple
to implement, easy to use, and powerful.
Since complex arithmetic is not yet very
common in FORTH on small machines, |
thought it would be worthwhile to sketch
briefly my implementation.

The most fundamental question in
introducing complex analysis is how to
represent complex numbers. Here it turns
out that the pure mathematician's defini-
tion of a camplex number as an ordered
pair of real numbers is exactly what we
need. Thus the complex number 3.5 + 7.2i
i8 regarded as an ordered pair, and is
pushed on the stack by typing 3.5 7.2 .
With this convention established, it is easy

to define all of the important stack mani-
pulations such as ZDROP, ZDUP, ZOVER,
ZROT, and ZSWAP, which perform exactly
like their integer and floating point
counterparts. The basic losd and store
operators, Z@ end Z{, can be defined in
terms of @ and [

There are many single number opera-
tions which are useful. These include the
real part REZ, the imaginary part IMZ,
the complex conjugate CONJ, the modulus
12/, the square of the modulus /Z/2, the
reciprocal 1/Z, and the phase ARGZ
{radians). Most of these are quite simple
to define. IMZ, for example, is just
: IMZ FSWAP FDROP ; where FSWAP and
FORQP ere floating point stack oper-
ations. As another example, consider 1/Z

defined by . /2 2nup /2/2 FROT FOVER F/
FROT PROT F/ O ;

For ARGZ it is very important to establish
a precise range and to implement it cere-
fully. The conventional range, which I
have used, is -PI < ARGZ <= Pl. Any care-
lessness in the definition of ARGZ will
lend to disasters later when multi-valued
tunctions are introduced. Many engineer-
ing applications require the phase in
degrees, and it is convenient to build in a
function DARGZ which supplies this.

Conversion words between rectangular
and polar forms are also very useful. To
go from retangular to polar, with the
phase (in radians) on top of the stack and
the modulus just below, we have

: FOLAR ZOUP /Z/ FROT FROT ARGZ ;

A similar word, DPOLAR, leaves the argu-
ment in degrees. For corversion from
polar to rectangular, we have RECT (angle
in radians)

: RECT FOVER FOVER COS F* FROT FROT SIN F* ;

and a word DRECT for the angle in
degrees. A very useful application of
these is a rotation operator ROTZ, defined
3o that the sequence Z F ROTZ rotates
Z by F radians and leaves the result on the
stack. The definition is

: ROTZ FROT FROT POLAR FROT F+ RECT ; .

There are several different useful
formats for complex output. (*‘y system
has 8 different formats, which is handy
but a little extreme.) The word 2. prints
the number as an ordered pair -- 3.5 7.2,
for example. The conventional mathema-
tical notations is obtained by ZI. -- (3.5) +
(7.2)l. Words to print in polar form are
also useful. For example, ZP. is defined
so that the sequence 3.5 7.2 ZP. gives

MOD = 8.00562303 ARG = 1.11832144 (RAD) .

All of these output words are defined in
terms of the basic floating point print
word F. . For example, Z, is defined by

FSWAP F. 2 SPACES F. ;

The binary complex operations are Z+,
Z-, Z*, and Z/. These are quite easy to

: Z.

define. For example, Z+ is defined by
: 2+ FROT P+ FROT FROT F+ FSWAP ;

where FROT is a floating point ROT, and
F+ is a floating point add.

Higher functions can be defined, pro-
vided the underlying real floating point
has the standard real functions SIN, COS,
ATN, and EXP. The complex exponential,
for example, is then defined by

: ZEXP FSWAP EXP FOUP FROT FDUP Q06 FROT F*
FROT F* FROYT FROT SIN F*

Other useful functions such as ZSIN,
2C0S, ZTAN, ZSINH, ZCOSH, and ZTANH
are defined similarly,

Of the multi-valued functions, the
most useful are the square root ZSGR, the
logarithm ZL.OG, and the power Z**, As
an example of the definitions, consider the
principal value of the square root:

: ZSOR POLAR 2. F/ FSWAP SOR FSWAP RECT ;

The basic words described above can
be the building blocks for substantial
applications. One such application, which
is particularly useful pedagogically, is
conformal mapping. [have defined a word
MAP such that the sequence

MAP <curve> <function>

will take any previouslv defined curve in
the Z-plane and any previously defined
complex function, and produce a graph
showing the curve and its image under the
transformation. This tool allows students
(and the instructorD to improve their
understanding of the geometry of complex
functions.

Notes on Implementation

The code described sbave runs on the
author's 48K Apple Il. The underlying
integer FORTH is the excellent version
written by William Graves and distributed
by SOFTAPE. The real floating point
arithmetic and functions have been
implemented by interfacing the SOF TAPE
FORTH with the Applesoft ROM rou-
tines. The same data stack is used for
integers (2 bytes), reals (6 bytes), and
complex numbers {12 bytes). The code for
the complex routines was written entirely
in FORTH, and, in compiled form, occu-
pies about 2K. The conformal mapping
code compiles to about 1K additional.

ORDER NOW!

Proceedings of the 1981 Rochester
FORTH Standards Conference
$25.00 US, $35.00 Foreign. Send
check or MO to FIG in US funds
on US bank.
"Starting FORTH"

Hard - $20.00 US, $25.00 Foreign
Soft - $16.00 US, $20.00 Poreign

ORDER NOW!

FORTH DIMENSIONS 1I/4

Page 125

A FORTH BASED
MICRO-SIZED
MICRO ASSEMBLER

Gregory E. Cholmondeley
Laboratory for Laser Energetics
University of Rochester

Abstract

The FORTH programming language can
be used to implement a very small and
useful micro assembler. Functions ranging
from automatic field alignment to user
definable macros can be written and
altered easily, permitting a flexible and
easy to use microcoding technique. This
paper also serves to illustrate several of
the many programming features found in
FORTH.

Introduction

Computer central processors often
contain an iternal data form called
"microcode." This code defines the
instruction set of the processor. The
creation of this internal code is called
"microcoding."

Microcoding by hand is at best a tedi-
ous and wasteful undertaking where a sig-
nificiant portion of a programmer's time is
spent aligning fieids, formatting output
and correcting typographical errors,
Understanding (let alone debugging) a
microcode program is difficult due to the
lack of readability from a human point of
view. Through the use of comments, auto-
matic field positioning, labeis and other
such tools, a good micro assembler should
minimize the above problems making
microcoding a much more agreeable form
of programming.

There salready are micro assemblers
written which handle these along with
other problems associated with micro-
coding, but most of them share one rather
serious drawback: they are large pro-
grams. The micro assembler presentef
here is based heavily upon the Signetics
micro assembler but requires only a few
“blocks” of FORTH code. Thus it is pos-
sible to have a micro assembler on a small
home computer{ Such an assembler could
be used as a design tool as well as an
inexpensive and effective teaching aid. It
would allow even wide instruction words
:o be built in a simple to use, high level
orm.

Usage

There are twe main phases associated
with this micro assembler: instruction
definition and actual programming. A
third phase will be implamented shortly to
allow the user to explicitly and easily
define output formats. The first of these
phases to be explored is the instruction
definition phase. This is the time when
the various instruction word formats are

defined. A simple example of such s
definition would be as follows:

INSTRUCTION WIDTH 8
Define an B-bit instruction.

FIELD A WIDTH 4 DEFAULT 3
Define field A as the 4 most signifi-
cant bit positions in the instruction,
having a default value of 3.

FIELD B WIDTH 2
Define field B as the next 2 bit posi-
tions, having a default value of 0.

FIELDC WIDTH 2 DEFAULT 1
Define field C as the 2 least signifi-
cant bits, having a default value of 1.

END.INSTRUCTION
Close the instruction definition.

FORMAT
FIELD GG WIDTH 16 DEFAULT 65535
FORMAT .END
FIELD HH WIDTH 8
END. INSTRUCTION

DEFAULT 255

Figure (1) : Sample Instructon Definition

instruction
/
/

/
AA-->BB-->HHN fields AA, BB and HH

]
|
wo--->% field BB has 2 alternate
/ | formats
/ |
/

|
CC-->DD GG format 1 contains fields CC
| and DD format 2 contains field

The resulting instruction word would | 56
appear in the following form: L]
field DD h 1 alt t
.7 4:3 2:1 0: // f;:mn as alternate
| A { B] C | /
EE-->FF fields EE and FF

From this point on the field names A, B,
and C will be unique and may not be used
to define other fields.

While the preceding example is rather
trivial an instruction definition may
become quite complex. It is, for instance,
possible to define multiple formats for
every field, with each of these containing
multipie sub-fields. This is useful when it
is deemed that fields should have different
meanings depending upon the context of
the rest of the instruction word (vertical
versus horizontal programming). Sub-
fields are treated in the same manner as
fields so that they too may have multiple
formats and sub-fields. This feature is
implemented as a tree structure allowing
an unlimited nesting of fields, formats and
sub-fields. Figures (1) asnd (2) should
clarify this concept.

This part of the micro sssembler has
error checking cspabilities which prevent
unintentiona! overwriting of fields. For
example, if field EE of figure (1) is filled,
then fields BB, DD and GG (and of course
EE) could not be used. Automatic field’

FIELD DD WIDTH 12 DEFAULT 4095
FORMAT
F1ELD EE WIDTH 10 DEFAULT 1023
FIELD FF WIDTH 2 DEFAULT 3
FORMAT .END

FORMAT .END

Figure (2) : Structure of Figure (1)

The programming phase of the micro
sssembler is where the actual microcoding
takes place. An instruction is created by
typing the name of a field followed by 8
number or expression representing the
value thet thet field should take. This is
continued for as many fields as needed in
the instruction word. When the instruc-
tion is complete a "$" (dollar sign) is typed
and the computer readies itseif for
another word. At this point any undefined
fields are set to their default values, the
instruction and other related information
is stored in memory, and the location
counter is incremented. Figures (3) and
(4) demonstrate a simple microcoded pro-
gram which merely sets one field at a
time equal to a zero.

PROGRAM 1EXAMPLE WIDTH 32

defaulting uses the same mechanism so ORG 512
that if field EE is the only field filled AA O
(using the format .from the previous BB 0 $
example) then fields AA, CC, FF and HH o o :
will be defaulted. DD o §
INSTRUCTION WIDTH 32 EEO S
FIELD AA WIDTH 8 DEFAULT 255 FF 0 §
FIELD BB WIDTH 16 DEFAULT 65535 GG 0§
FORMAT 5 HH O §
CC WIDTH 4 DEFAULT 1
FIELD END . PROGRAM

Figure (3) : Sample Program

Page 126

FORTH DIMENSIONS 111/4

MM F e Mt AaM i Mo s m TV Y T PN

[I B W VERY B B Y

Another way to increase readability in

120000011111111 1111111111111111 AA used BB & HH defsulted '

©111111100000000 1111111111111111 BB used AA & HH defaulted the micro assembler is through the use of
.111111100001111 1111111111111111 CC used AA, DD & KX defaulted labels. This feature is only partially
.111111111110000 0000000011111111 DD used AA, CC & HH defaulted implemented at this time but will work as

follows. Labels must have unique names
and must be deciared via LABEL state-
ments before they are used. When a iabe!
is found immediately preceding a new
instruction word {or in other words;
immediately following a "$") the current
value of the location counter (LC) is

HH
FF & HH defaulted
EE & HH defaulted

©111111111110000 0000001111111111 EE used
©221111111111111 1111110011111111 FF used
.+11111100000000 0000000011111111 GG used
©131111111111112 1111111100000000 HH used

333333L
P'Q‘ggou

Figure (4) : Sample Output

While automnatic field alignment is in
~self a vast improvement over hand
:oding, there are a few other tools svail-
adle to the programmer which make
microcoding even easier. A "(." denotes a
comment allowing anything up to end
~cluding 8 ".)" to be ignored. Typing ORG
37d a number or an expression will set the
.ocation counter {(LC) to that value.

Tyding SET <new variable name>
TO <number or expression>

=l declare and initialize a variable, while
*INg EQU <old variable name>

WITH <number or expression>

~ill store a new value into s previously
seclared variable. These variables return
:veir value when they are typed (similar to
3 constant in FORTH) and can be used in
2xpressions at any time and in any phase
:¢ the micro assembler.

One of the most versatile tools avail-
3dle in this micro assembler is the
ICROP function. Microps are user-
sfinable functions designed to eliminate
: iarge part of the repetitious program-
—:ng associated with microcoding. For
sxample there may be times when several
‘eids will always take on constant or
-zlative values. Rather than cluttering
.~e program by having to set all of these
‘.eids every time, a microp can be written
13 do this automatically. A program writ-
ten using well named microps can in turn
t2 quite a bit easier to read and under-
stand than one which merely sets the
‘ields.

The definition of a microp requires a
-nique name and a set of commands which
~ill be executed whenever its name is
:alled. Any FORTH programmer will soon
-ealize that a microp definition is nothing
zther than a colon definition, thus allow-
~g the full power of FORTH to be easily
accessed directly from the micro assem-
>er[An example of a simple microp that
sets a few fields to zero would be:

MICROP EX1 (.
cco
FF O
HH O
END.MICROP

set fields CC, FF,
and HH to 0 .)

An example of this microp in use would be
found in the programming phase and might
look like:

HE (LC) $

A7
A 8 EXI 8

NOTE: LC in the preceding example is
s variable, the "(" and ™" are required
for its proper sxecution. They do not
denote @ comment in the MICRO
vocsbulary context. This is also true
when building microps. In the MICRO
vocabulary comments are defimited by
.M and ")".

Being simple colon definitions, microps
can do internal testing, looping and every-
thing else offered in FORTH. Microps can
expect parameters on the stack as well as
numbers or expressions from the input
buffer via s function called GET#. For
example: :

MICROP ?GT (.
GET# >
IFAAOBBOCCO
ELSE HH (ILC)
THEN
END.MICROP

This could be used like:

AA i9 $
<variable.name> ?GT 1024 §

Finally, microps have macro capasbilities
in that they can be nested and may even
create several lines of code in one call (as
may be needed in a test and branch, or
jump substitute routine).

MICROP EX3
LC 100 >
IF EX1 §
ILC ?GT 1000 §
ELSE AA 0 §
CCOHHOS
THEN
END.MICROP

stored as the value of the label. Muitiple
fsbeis may be used to represent the same
line of code. When a label is used inside
an instruction definition after its value
has been set, it will be trested as any
other variable. If the label has not been
set to a value (i.e., forwerd referencing) a
zero will be returned and all information
necessary to resolve the reference will be
stored in memory for the second pass.
During the second pass the micro assem-
bler will shift the correct velue(s) of the
label(s) into the proper place(s) and then
8dd the resulting number tc the rest of the
word. This allows labels to be refarenced
more than once in a single instruction. It
also allows addition and subtrsction of
other non-label expressions to labels (i.e.,
AA (1LABEL + 2) or AA (ILABEL - 1)
but not AA (1024 - 1LABEL)). When this
is implemented another extended precision
function (E+) will be needed to perform
the extended precision addition.

<exprl> ?GT <expr2> -- tests if exprl is > expr2 .)

The last major feature of the micro
assembler concerns output formatting.
This has not been developed at all but will
consist of a basic instruction set for
programmers to use to define specific
output formats (i.e., hex, insertion of
special delimiting characters, etc.). The
programmer will define a function (similar
to a microp or colon definition) for each
type of output format. The executable
code field address of the current format-
ting function is stored along with the
other instruction word information on the
first pass. On the second pass the format-
ting function will be executed to produce
the desired result. It will be possible to
change the current format function
between instruction words by using a
command of the form:

SET.FORMAT <format function name>

allowing multiple output formats within a
single program. By installing different
formats in currently existing ones, it will
be possible to view the code in punched
card format as well as a format suitable
for blowing PROMs!

FORTH DIMENSIONS 174

Page 127

Implementing Techniques

SRSESRNABALRISR88S BLOCK 160 EESRRRRRBAR084008 40
The first problem that I addressed was (alsedraic notation 6EC 15-JUL-81
how to align the fields in an instruction ¢ BET# ([<r=--<anput exrression’s value-l »
word definition. For words that are 32 or " 32 WORD NUNBER NQT "¢ get next input char/nus)

fcwel; bits vlvld_e imﬁg«f:lptim i; gr'gple. IF R> R> SWAP >k >k THEN 3 (1f char then treat 3s ‘('
qerely do logica ffting an g ¢ (. CCOMPILE) (3 IMMEDIATE « define (. as comaent delisiter)

Since 32 bits is a rather stringent limit on '
the word width, [have kept the same basic oc“m_.m pu(;ao MICKD DEFINITIONS
ET® +

v
strategy but have defined a set of func- t ot t. E::y--(:{ + :5’% regﬂ'me t 0
tions which can do logical operations upon P -9 N s=-81 - 92,3 redefine -)
extended precision words. The precision : ; GE;: , : :', E:"1> &:{ ’ :51% ;:2:',}2: ’ :;
(in terms of 16-bit words) is stored in a H : g';' R> SIMP >R OR 4 i. («2} {% or{d :xruss:on o}
variable called PRECISION and is set at : o Brmoiod start exeression .
the PROGRAM WIDTH statement. These FORTH DEFINITIONS ’
Ilre the extended precision functions which SESRBEERERLRSLRANS BLOCK 161 SERSRSEERRNETAESIRS
ded:
nee ((’ ;:éu;rand ernor tures 10 1 g%% - 10-JUN-81)
as : !
1. EXT.PREC - This is a defining
word that creates an extended ¢ VAL (returns value of variasble [not address 1)
precision variable which uses the .BUILDS ' b?Es’, o 110 ! (store value)
Bartholdi "TO concept” to store ELSE ¢ push value)
and fetch extended precision THEN

numbers. EXT.PREC expects the

FLIPFLOP (returns 0/1 and !'.OI(‘OS 170)

dea?red precision of the new <BUILDS © » [<r==4>) 1nmitralaze F.F
variable on the stack. DOES> 1 e
IF 1 0 X70 ! T ROT ¢ < E<_110>-f3>] :n Firi ;
2. EFILL - EFILL expects e number %25 BuF'® bur wor kot ¢ Lom=cis0ed thar F.F.

and the precision of that number M
in terms of 16-bit words on the

stack. It uses this to fill in the SEEERXASARRLLI8EE BLOCK 162 jdtetettititesyseg

most significant places with zeros ‘(, ;nizs'lzo.g;zmnions GEC (!9-J2N-g‘l’ ! ,

t L AL . current address
untul the number has a precision 0 VAL C.FIELD (current field)
equal to the current value of 0 ValL E-FOR!\ (cyrrent format)
PRECISION. Notice that the 0 VAL .Igs;? (current mst;uc'l.;or; uo{g)
value of PRECISION must be 0 VAL F.LENGTH { fie ensth
VaL F.POS (field rosation)
larger or equal to the length of 8 v“t LC 0 (location counter)
the given number. 0 VAL INSTRWIDTH (instruction width)
0 VAL L.FIELD (lla:tffma)
: f 0 VAL L.FORM ¢ last format)
3. E.DROP - This function drops an § VAL L:iRe%e ¢ 1ast 1nstruction)
extended precision number from 8 VAL HEH DRD (?u;;ont lt.o:v :dd: ﬂ;r rrint routxne: E
th . VAL NEW as set at start of new instr. word
© top of the stack 0 VAL OFFSET { offset of shaft {(used in ESL))

4. ESL - The ESL function performs

a logical shift to the left on an KESSRSESRRXNNEENNE BLOCK 163 j322etittiteesyyses
extended precision number. It ‘(’ vcruble dohmuons -2 6EC 19-JUN-81)
expects the extended precision VAL 0 (overflow flas)
. Q VAL FLA (3ddr of temr storase 1n extended orerations)
number and the number of shifts 0 vaL PkEE?SION (precision of word in 16 bit uwnits)
on the stack and returns the 0 VAL TEST.FLAG (flas used in error checkins and defaulting)
shifted number. 0 VAL TSHIFTY { 1nternediate nusber of shifts {(ESL)
8 321': gf:s { default rhase((0.l uszll.‘sn/‘.’. Hnul“x)::;)
. value to store 1n flags {0/)
5. EOR - This takes two extended O VAL XPRINT.FORMAT (addr of outrut foreat code
precision numbers off of the SL)I(E;L%O;'L‘?&FF (bh:'l'd F, fr’. for Q{r?r f‘r"ﬁkms‘l)defaulnns;
: rother of current fie oras
stack, logically ORs them togeth- O XEQ PARENT (parent of C.FIELD
er and returns the resulting 0 XEQ SELF « C FIELn)
number, 0 XEQ UNCLE (uncle of C.FIELD)

6. EXOR - This executes sn sxclu- ’
sive OR operation between two
extended precision numbers. It
expects two extended precision
numbers and retums the result.

SREBEREEEREERNRRERT
12-JUN-81
EXT.PREC ¢ vrﬂ:uion’)-{) builds an extended precision §)

SRRLBIRALLLREL2R8E BLOCK 164

extended rrecision functions GEC

-

<BUILDS DUP 2! ’
DOE

0 DO 0 » LOOF

7. ECOM - ECOM does a l's comple- %UP DUP . %o -gader It high-order or reversed if %70)
ment of the given extended preci- XT0 @ _IF no l ! 2 #LOOP O XTO ! (res ¢)
sion number. . %ﬂgs F2-D01 @ -2 #OOF (fetches t)

One extended arithmetic function will be
needed to implement forward referencing
of labels. This function has alresdy been
mentioned and will be called E+.

EFILL (<8 len>-<¢ 0 vee 0> puts 0°s 1n high order rlaces)

PRECISION SWAP 2DUP :

IF DO O LOOP ELSE 2DKOF THEN ¢

EDROP (<low-order ... higsh-order>-<> drors ext.rrecision ¢)
PRECISION O DO DROP LOCF §

-

Page 128

FORTH DIMENSIONS 111/a

" .
MEBUE T AR AN]

[N}

When a field is assigned a value and is
aligned, the following process occurs. An SXTAXXRERRTRARXERT BLOCK 169 BERXRKERRRATLAINLNS

extended precision number with a preci- (!wunded prec. functions - 2 GEC 12-JUN-81)

sion equa!l to PRECISION is on the stack. tESL ¢ lou ord +.. hish-ord $-shifts. -alou-ord +er hish.ord:
This is the value of the current line of s #-shifts to lo!t (drors high ov § shifts in v’'s }
microcode. After the field-name is typed, 0 TO gVF(L,G HERE P{(SCISION + DUF TO PLhCE HEF\E ‘

an extended precision number with @ o PRECISION1'=02% B0 I To OFFSET bup PRI 1 2 1
precision equal to the width of the field is for bwte from high to low do
accepted. E.FILL is used on this number BEGIN TSHIFT 16 o= $-shift »= 16)
to make it the same precision as the OFFSET 2 ¢+ TO OFFSEY s
instruction word, ESL is used to shift it IS'T‘(IJ OU}fG- T0 TSHIFT (set overflow flas)
over the proper number of bits, and EOR . overfiow

is used to update the micro-instruction. ELSEP TSHIFT <-L 6;;52?‘&';;;‘ 36 (shift norsally 3 o
This is repeated until a "$" is encountered DUF @ ROT OR SWAP !

which will clear the flags, set any default- ==

ed fields, store the extended precision

instruction word in memory and leave an SARSESSEAREANAILEE BLOCK 146 TITITTT IR RE
extended precision number equal to zero

on the stack (for the next micro- (extended rrec. functions = 3 BEC 12-JUN-81)

instruction). OFFSET 2 + HERE + DUP ® (handles #s that are seplit)

ROT 16 TSHIFT = =»>L OR SWAF ! (into 2 bytes bv shift)

The second main problem that I faced THEN OVFLG NOT 0 TO WFLG
deait with how to handle muitiple for- .2 EN e bRO
mats. [implemented a tree structure PLACE HERE DO 1@ 2 4L00F ¢ (fetch ¢ from temr worksrace)

where the instruction is the root with the
iist of fields as its children. Each field
nas a list of formats or a zero for its EGET ¢ [<addr of variasble: extorre 4o)
children. Every format has a list of fields a3ddr of variab o ociexi.pre.s.s

as its children and the cycle continues. DUP PRECISION 1 - 28 + O I @ -2 4L00P ¢

Zach node in this tree has pointers to its o=
parent, "oldest" child, and next youngest

TPRECISION ((4 of bitsl--L¢ of 1é6-bit words))
0 17 M/MOD DROP SWAF DROP 1+ i

-

srother. Each node also contains a flag SERRRSREAEARLRRLE KLOCA 167 SESEEESRERRRRLXTNLL
denoting whether it is a valid field or not,
a value corresponding to its starting posi- g E“""d'd rrec. .:g:c:x::s “.GEE" sre.4s Uﬁlg ‘.’?:.2:.)")
tion in the instruction word, its field HERE pnzcxsmn 2241 - BUP 10 PLACE "RERE B0 0 1 T 3" iL0oF
length and its default value. Thus when a 1 FRECISION DO
fleld is accessed a test is executed to I EEE%%%{‘DT T E PRECIS'I‘OE 1 EO(’JPFICK
determine whether it is valid or not. This Hgg: PLACE DO 1 ¢ -7 +LOOF
.s accomplished by traversing up the tree PBECISION 22 0 0O EROP LOOf’
and checking the validity flag. If the first PLACE HERE 10 1 @ 2 +LOOP ;
set flag is found in a field, then the ¢ ECOM ([<ext.$>--<NOT ext.$:] one comrlements ext.rre.$)
programmer is trying to overwrite another HERE FRECI‘-.‘»Ibﬁ 2% * 1- DUF 70 FLACE HEKRE
‘ormat in the same field. If no flag is set o~ .
and this is not a new line of microcode, PL“CE HERE DO I e COH 2 +LOOF §
then this field is not defined in the same ¢ ERROR.FUNCT .* ERROR CODE: * . CKk § --
. 8 v

nstruction word as the previous one(s) and KERBRRSSESALNNIXES BLOCK 148 BESEEIARIRRRRRNLRLEL
another error condition is found. If, how-
ever, the field is determined to be valid, { Exsended rrec. func:xons -9 'GEC ok 12 JUN 81)'
then the flag bit of that fieid will be set : re.¥ ext.rre,b;-<ext 2 ext yorre)
along with the flag of its parent, and its MEEEREFC'OIigCBSIOg 2% + 1 - [UF TO FLACE HERE DO 01 ¢ 2 +LOOF
oarent, continuing up to the root. When a I PRECISION + PRECISION I - + PICK
"$" is encountered, the tree is traversed in weRERFCAREON Yt PIEK KOR -1 tLooP
the same manner but from the root down PRECISION 2% ¢ 1O DROF LOOF
and all filags are reset. At the same time PLACE HERE DO I @ 2 +LOOF
any unused brothers of the lowest level]
‘ields used will be assigned their default ==
values.

LXSRERIARRARLLR8K% BLOCK 169 EERANEREANEERBRALAN
INSTRUCTION FORMAT FIELD (offsets in field structure GEC 3-JuiL-81)

¢ OFF.VAL . R

INSTRUCTION FORMAT FIELD +2T0@ IF ! O XTO ¢ ELSE DUF 0<> IF @ THEN THEN §

TPARENT O OFF, VAL § PBROTHER 2 OFF. VAL i

tarent] 0| T field | | format | : :Ekegsrogrr;“RENT "PAKENT 3 2CHILD 6 OFF.VAL i
- s M v
srother | 0_ | | format | |_field | : TINSTRUCTION.WIDTH 8 OFF.VAL § { INSTRUCTION
sed Flag |_0/1 | {_0/1__11_o0/1 | ! PFIELD.START C.FIELD 8 orr vaL { FIELD)
ild { " field | | field | | format | { PFIELD.LENGTH Cef FIELD 10 OFF.UAL ¢ EIELD)
.eld Starting Position | i : ;EEFﬁgLT C.FIELD 12 + 3 { ELD
.eld Length I l ' BUP 7CHILD DU ROT ANI
“efault Value i i IF 8" SHAF"KEGIN DUP 7BROTHER ROT DROP DUP NOT END DROP
ELSE DR
>t Zeros { --- —} SHER T BROTHER 5 BN

FORTH DIMENSIONS III/4 Page 129

With the structures defined, the task
of creating a program comes to light. An
explanation has already been given des-
cribing how the words are constructed.
The following diagram should help clarify
how a "program" is actually stored in
memory in its first pass form.

General First Pams Structure for

Microcode Programs
IEREEE S S S S S SRS NS N | Forth
Forth 1 | Name
Header | *eefjorees Link
triiirisiiiitiif Weefeeoaa Description
Program | keojemee- Instruction Word Width
Header |0 |
tiiiriiiriiiii) Heeleaoms Address of Label
| *eefecens Field (ie. # of shifts)
N
Complete |__: 1
First Pass | Fec|eeee~ Address of Label
Data For | ®ew|ome-- Field
One [
Instruction | #ee|ee=-- Output Format
Word | #eofee--- c
f__ | Instruction
1 _ _ | Word
rrriirirarraey] |
| Heejoceas Address of Label
| Heejemawm Field
T
|
1 _ _ | Instruction
|) Word
| |

End of Program

Each program has a unique name which
defines a FORTH header. When this name
is typed, the program is listed in & basic
binary and hex form along with the format
address, LC, and any unresolved labels.

One of the primary objectives of this
micro assembler is to make microcoding
easier by making it more readable, and
there are quite a few places where the
reverse polish notation found in FORTH
does not appear quite as nice as sn infix or
prefix form. Hence, I have written a few
short functions to allow FORTH functions
to accept numbers and expressions from
the input bufter as well as from the para-
meter stack.

This method uses the return stack vis a
function GET# which accepts input from
the input buffer. If the input is a number
GET# places it on the stack and returns.
If the input is not a number then GET#
assumes that the programmer typed a left
parentheses "(" meaning that there is an
expression or a variable in the input
buffer. If this is the case then GET# will
swap the last two values on the return
stack and return. When a right parenthe-
ses is found, the top two values of the
return stack are agesin swapped and the
system is back to normal. This is simple
and fast, slthough it has no method of
checking whether a set of parentheses is
properly closed. However, a variable
could be used which would be incremented

SEEREERRRERELRLERE BLOCK 170

ee eees

o

SERRREXERERERREIRE BLOCK 171
{ instruction and forsat defs. GEC

..

SRSRARBBABRRAK4RE BLOCK 172

{

SOEREEERERNNRARANNY
headers of fields § formats GEC 3-JuL-81)
TNAME DUP 0<> IF CFA TMAME ELSE DROP THEN

IGNORE 32 WORD DROF i

HEADER (creates fst 4 fields 1n FIELD and FORMAT
0 TO UNCLE HERE TO SELF
BROTHER 0> IF SELF BROTHER TQ ?BROTHER

E SELF FARENT TO TCHILD

HEN SELF TO BROTHER
PARENT +» 0 + O » 0 » i} ¢ parent/brother/flas/child

FORMAT .HEADER (defines FORMAT rohhvos § executes MEAIIER
INSTALL L.FIELD IN UNCLE INSTALL C.FIELD IN PARENT

INSTALL L.FORM 1IN BRDYNE INSTALL C.FORM IN SELF
C.FIELD NEW.SON HEADEK 0 TO C.FIELD i -->

SERRABEBERREEBNERNL
3-JuL~-61)

-~

NSTRUCTION (INSTRUCTION <name: WIDTH <width’)
: ?0 C.FIELD FORMAT.HEADEK
IGNORE GET#

{ instruction width

thlf 1d rosition
(field lens 1e '(.OFORM

(f1eld lensth
(tield rosition

gléf' 70 F.LENGTH TO F.POS

'FIELD LENGTH TO F,LENGTH
YFIELD.START F.LERGTH + TO F,.POS

EORMAT.MERDER ' 4o-<> sets flass fros C.FIELD ur to

-

~

-

ZFL“? T0 OVER ?FLAS DUP NOT END DROF
TO ?FLAG ¢

SEERBENIREREAIRNELE

for.at.end and field header GEC 3-JuL~81)
FOR T.END (END.FORMAT)

FXELB TANCESTOR DUP YO L.FIELD TO C.FIELD
c. FIELD TPARENT IF ?FIELD.START ELSE O THEN F.POS <

IF 2 ERROR.FUNCT RESTART

ELSE ’FIELD LENGTH TO F.LENGTH

THEN TFIELL.START 70 F.PDS

?

¢ FIELD,HEADER

SRRENEBRRRAEIRLRAE BLOCK 173

(

SEREERERASRIRENENE BLOCK 174

(

INSTALL L.FORH IN UNCLE INSTALL C.FORM IN FARENT
INSTQLL +FIELD IN BROTHER INSTALL C.FIELD IN SELF
SELF 0<, IF SELF ?PARENT ELSE C.FORN THEN

DUP TO PARENT NEW,.SON
HEADER

SEERERSERRABRLABILY

error checking for used fields GEC 3-Jui-81
ER.CHECK { check to see if field 1s rerartted
OE'TSSJ FLD.FF C.FIELD

DUP ’FLMS TO TEST.FLAG set TEST.FLAGSFLAG)

FLD.F (fhr field.flip.flos
PARENT { 80 to »arent)
DUP NOT TEST.FLAG OR (if flas found or root resched’

END_DROP
TEST. FLAG FLD.FF AND
IF 4 ERROR. FUNCY RESYﬁRT
ELSE YEST FLAG
IF S ERROR. FUNCT RESTART

TH
THEN O TO TEST.FLAG i

{ field defined twice)

(not rrorer 1nstruction)

SEERRERRBEARARRRINL
gahglts 6EC 8-JUL-81)
"FIELlsi LENGTN TPRECISION

==> DROP O DO 0 » LOOP O TO XDEF 0 >>
<< 1 ==> DROF E.FILL ’bEFhULY TFIELD.LENGTH
PPRECISION OVER + 23 SWAF
PO I ! 2 4LOOF 0 TO ZDEF 0 22
K 0 == DROP ’DEFAULT SUhP 3 OVER ¢
po1e-2+¢ 7FIELD LENGTH 7PRECISION
, EWFILL ’FIELD START ESL EOK

T0. DEF 1 TO ZDEF i ¢ INIT.DEF 2 70 XDEF 3

DEFAULT A
GETH TO.DEF DO.BEFAULT -

Page 130

FORTH DIMENSIONS T/

IUNY

T

B o=y gy oy

dYALYENS

J

when a " is encountared snd decrement-
ed when a ™" is found. This would catch
any errors involving too many closing par- SEERAALEERAEREARES BLOCK
entheses. A " 1" function could be written

which would behave in the same manner as (field structure

:ne UCI LISP function of the same name, :
't would use the variable mentioned above

173 EXERXBARIERERIARNAK
GEC 3-JuL-Bt

FIELD (FIELD <nawe. WIDTH <width’)
<{BUILDS IGNORE GET#

4 - DUP F.LENGTH <=
Cesstal evaluation of tne swpression. TF FilD.uealcn
- presaion. F.LENGTH OVER ~ 7O F.LENGTH
F.POS OVEK - DUF 10 F.POS (f1e1d start/faeld 1)
GET# and its related algsbraic func- ' 1eld start/fae ens
tions have some interesting features in ml"{Tgkisg?ﬂaﬁ'ﬂ“&éym
tnat there is no hierarchial ordering of DOES‘TH% C.FIELD
‘unctions (i.e., 2 +3®5 =25 while5®3+ : 4
- . . . WOR 'R,CHECN THEN +FLAGS
© = 17), however, expressions enclosed in R o ToRee T lon b piLL " (et} SET.FLA
carentheses will be solved before others PFIELD.START ESL EOKR ¥ -2
£, 2+(395)=17). The entire code for
N is only a f li 1 i
“3lows: 4 ew lines long and is as FORTH-like, it does result in much
cleaner code. 1 adspted the concept in
SET# 32 WORD NUMBER gets number one place to build a flip-flop function.

This function creates a data type which
alternately returns zeros and ones when-
ever it is called and makes use of the "TO
concept” to allow itself to be initialized to
sither state. The micro assembler also
makes use of multiple vocabularies to
allow the same function to have different
meanings in different contexts. While this
is not absolutely essential for the assem-
bler to run, it again makes the code
cleaner and easier to use.

NOT IF R> R> SWAP >R >R
THEN

swap if not s number

-ZZABULARY ALGEBRAIC ALGEBRAIC DEFINITIONS redefine functions

- GET# + : o~ GET# -
=~ GET# * :/ GET# / ;
R> R> SWAP >R >R ;
)

re-swap return stack
swap return stack

“I3TH DEFINITIONS Conclusion

The reason why [have chosen to write
this micro assembler in FORTH is simpli-
city. As | mentioned earlier, this “pro-
gram” is based largely upon a very lengthy
micro assembler written by Signetics and
yet the FORTH code is only a few pages
long. The time spent programming was
equally short. It took roughly half of my

A typical usage of this function could

: {4} GET# + ;

3{+) (4 {+}5) .

12 time at work from around June 10 through

July 15 to complete the micro assembler

. to this point (although I have occasionally

[-rrent | | Parameter | Return gone back to add or change a feature or

snction | Command | Stack Stack two). Two of the features that I did

il i R R iibbdoieluleialialidehdalebebde change, labels and forward referencing

Tf;n ’) 3 . input &8 3 through the first pass, brought up another

. ' ' 3 l main call function {+} quality of FORTH: its modular nature.

SET# | GET# | 3 | main {+) call function GET# These are rather major additions and yet

_ | (| 3 | {+) main swap return stack they only required one new "block" of

?5;“ } (:‘) ; ; 2 : (+§+|)uin ::;‘;’?J"i;’i‘:“t 84 code, a few minor changes in the old code
T | M | 345 | {+) main {#) tnput a S and took only a few hours to implement(

4} | + l 39 I {+) main return and add Once the forward referencing is com-

m;m :) } g z : { +§+} . ";‘l’m to main pleted and the output formatting is imple-

| I 39 | oai n::r); call function) X mented, this code will be a micro assem-

(+) i + | 12 | ;: in :::zr?::;"‘:;“ bler by itself as well as a kernel for more

nain | | . | - return and print extended versions. An example of an

extended feature is the compilation of a
symbol table et the end of a program. A
further extension would involve tying this
symbol table to other symbo! tables to
sllow external references. Through the
use of external symbol tables the micro-

There are a few general concepts
~nich are used throughout this micro
zssembler, one of which is the "TO con-

zept” (see Joe Sawicki's paper entitled
Zotimized Data Structures for Hardware
Zontrol). This concept allows the use of
-ariables without the programmer having
2 deal directly with the address. While
:nis may be thought of as being a bit un-

code could be maintained in the first pass
format so that the external references
could be resoived several times for labels
with differing values. This could result in
a modular microcoding technique.
Another extension could be a FORTH pro-

“ORTH DIMENSIONS I11/a

Page 131

SRXZRELXXRS0XSRE28 BLOCK 176 EESREBERRRRARSNRARRL
gram which would be used, in much the

same manner as the micro assembler, and (end.instr § find root § brother GEC 11-JUN-81)
similar to Hardware Description Lang- t END_INSTRUCTION (checks for any undefined fields)
uages, to describe a simulator for the BEGIN FORMAT.ENDI C.FIELD TANCESTOR NOT END i
microcode. These two programs would ! ROOT 0 SWAF (finds instruction
constitute a powerful yet inexpensive BEGIN ({8 selft)--[selt rarent])
teaching aid as well as an effective design DUP ?PARENT ROT DROF DUF NOT
tool. Programmers and students would not END DROF i
need to waste their time punching cards or ¢ FIND.BKOTHER O SWAF (finds brother with flas set)
blowing PROMs in order to discover the “géF ?RROTHER KOT DROF ([8 selfl--(self brother] ;
: ; ; -- erl
errora in their codel A dozen other "nice” QUEK TFLAG OVER WOT OK (tlag OF not brother)
features can be imagined (i.e., prohibiting END DROF DUF
forward referencing to allow interactive 7FLAG NOT IF DROF O THEN + ([brother OK 0]) -->
microcoding, or the development of intrin-
sic microps to define commercial chips, EEREERBASNRRLSRRAX KLOCK 177 SERFEBRERRARARANNRE
etc.), but the point is that they coulq all (default - 2 BEC B-JUL-81
be based around the small "kernel" micro ! DEFAULT!
assembler presented here. C.FIELL ROOT O OVER TQ ?FLAG ?CHILD
BEGIN DUF TO C.FIELD ?FLAG NOT
1F 0O, DEFAULT C.FIELD DUF "I«ROTHER (no flas set-default:
Acknowledgements C.FIELL Ck 7NAME .' DEFAU
agiimre i B L ne s,
. v ? J (fin sub ornt used)
I would like ta thank L awrence F orsley IF G QUEK TO FLAG (resel foreat flas to 0)
for the time and effort he expended help- TCHILD (check sudb-fields
ing to direct and complete this project. | ELSE DROF ['UP "BROYHER (no format used-finc brother:
would also like to extend thenks to Dr. C.FIELD CR TNARE .* USED®
. : THEN THEN DUF NOT
Charles Merriam for his useful comments %:EEEE‘I‘:PUR% ?ancesma DUP ?BROTHEK OVER NOT OVER OF END
N

and suggestions.
END DROF CR -

This work was partially supported by

the foliowing sponsors: Exxon Resesrch SEREKXEXRXNBEISRNE BLOCK 178 SERSRRRRERSLSARIRREL
and Engineering Company, General Elec- micro-assesdler! foruard ref. GEC 17-JUL~81)
tric Company, New York State Energy t LABEL (LABEL <name:)
Research and Development Authority, <BYILDS
Northeast Utilities, The Standard OQil W(E)SI" NEl'i.l(lO?\Elf flas / val)
Company (Ohio), the University of IF DUP @ IF .*' Label previously defined® CR RESTART THEN
Rochester, Empire State Electric Energy 1 OVER ! \ (set flaf)
Research Corporation, the Center for EL§E ‘f,f,;.sgﬁ ' t set value
Naval Analysis, under grant number CNA iF
SUB NO0014-76-C-0001 and the U.S. ELSE ’FIELD START SWAF v ¢+ O
Department of Energy inertial fusion THEN THEN
program under contract number DE-AC08-
800P40124. .
G.E. Cholmondeley is currently an undsr-)
graduate student in the department of EXASEERANRRRARRRIXE BLOCK 179 (s 2331333373328 27¢)
Electrical Engineering at the University of { end of word % orisin 6EC 11-JUN-81)
Rochester. His interests lie in computer . (ends word in srosras mode)
software and hardware design. " L.FIELD ROOT IF DEFAULT! THEW
g I'UNT FORMAT LC Dup 1+ TO‘L.M, of labels)
1. Signetics Micro Assembler Reference PR Ecxsiu N 0 ho'lUP B. v'LDOP CR
Manual 01 EFILL
1 TO NEW. UORB i
¢ ORG
GET# 70 LC +
HELP WANTED
FORTH Software Engineer o
Program, edit and maintain files for SEESKEXRRABERERELL BLOCK 180 (223880030 03333303%]
80?0. Ability to troubleshoot the (";Ekm‘ routine GEC 18-JUN-81)
software-hardware interface.
re intertace DUP 40967 ys= IF 0T
ELSE LUF 2567 Ux= IF 17
Call: ELSE DUF 14T U»= IF 27
THEN THEN LEE .
Wendy Palmer DUe IF LUF o1 DO OT 17 U.k LOOF THEN
1-800-225-4040 T SWAF - U.k

Instrumentation Laboratory, Inc.
Analytical Instrument Division
Jonapin Road

Wilmington, MA 01887

Page 132 FORTH DIMENSIONS 111/8

BREIRERERLRARRAESE BLOCK 181 p32223 23R b2 eedt)

i mrinting routines - 2 6EC 16-JUN-81)

tOBPRINT (<ext.prre.$.3ddr>=<> print ext.rre.$ 1n binary § hex)

buF FRE"ISION 27 t + SWAF 2DUP DQ I l B. 27 +LOOF
MO 1 @ U.ZERD 2T +LOOF 3

¢ MEM.INC MEM DUF 24 YO HMEN @ i

BEASKEREBRARRNSESE RLOCKN 182 SEXRRRESAREAERAREERR
v printing routines - 3 GEC 16-JUN-81)
t 1.PASS.FKINT

DUF_TO MEM 9 1 AND

1 ERKOR - PROGRAM LENGTH 0 * CR
ELSE lg BASE ! CF BEGIN HE
, B L ¢ * MEM DUP @ CFA TNAME CR 2+ T0 MEM
é;nSHIFTEn' ' MEN DUP @ . CR CR 2¢ DUF TO MEM @ NOT
THEN MEW 24 TO MEM
«) FORMAT: ° MERM DUP @ , CR 24 TO MEM
1 * MEM DUF @ ., CR 2¢ 70 MEM
HEW §FKINT CR MEW PRECISION 22 + 10 NEM
Ck CR ’R MER @ 1 = END CR 10T BASE !
THEN —-n
FEREREREREBRIRALEE RLOCK 183 (3222332t tte el
{ prograa statement GEC 16-JUN-81 ;
: FROGRAM

~BUILDS IGNORE GET# DUF » P?PRECISION YO PRECISION 0 »
1 10 NEW.WORD

¢ 1 EFILL
BOE3.: DUP @ ?PRECYSION TO PRECISION 4 + 1.PASS.PRINT § -~

ERRERABBANLERANREE BLOCK 184 SEXBELSEERRSTRRARNR
(end prosram t Micror commands GEC 17-JUN-8%)
. ENL.PROGRAM

elUROF 3 v 4

MICROF C[COMFILE] : 4
. ENDLMICROF CCOMFILEY # 3 IMMEDIATE

: SET (defines 3 variable data ture)
<BUILDS IGNORE GET# » (SET
HOES: @

¢ EQU ¢ EQU “var.naee: WITH <exrression’ J
J'C IGNORE GET$# SWAF !

MICKO DEFINITIONS S

svar.nane> 70 <{exrression>)
(<var.name returns value

INDUSTRY NEWS

FOR TH-Based Savvy Lets User
Talk to Computer

FORTH, Inc. is working with its parent
company, Technology Industries, Inc. of
Santa Clara, California, to develop a new
software package for the Apple Il, using a
Z80 processor. With it, the Apple will
offer the kind of casual and efficient man-
computer interface that until now, existed
only in movies like 2001 and Star Wars.

The project calls for Savvy--the trade
name for Excalibur Technology Corpora-
tion's Adaptive Pattern Recognition Pro-
cessor--to be used as a unique language
interpreter. Savvy permits a user to com-
municate with a computer in the user's
native language and normal praseclogy--no
special lsnguage and formm are needed.
Specifically, Savvy:

o Recognizes written words strung
together in idiomatic phrases.
(Future versions will understand
spoken words and respond to
Spanish commands as well as
English. Other langusges will
follow.)

o Translates these imprecise
patterns into precise computer
commands.

Savvy's unique interactive approach to
desling with computers is an important
development for the 80s. The powerful
combination of FORTH and Savvy will be
significant in realizing the system's full
potential and demonstrating the power of
FORTH. A special development team has
been formed for this project, including Art
Gravina, Chuck More, Dean Sanderson,
and another programmer who has not been
identified.

NO ROOM FOR THE ORDER FORM THIS TIME!
ORDER - Proceedings 1981 Rochester FORTH Standards Conference. Send
check or MO to FIG in US funds on US bank, $25.00 US, $35.00 Foreign.

TR -
4 VACATION N
TRAVEL THERE
v RESORT

¢ *TRAVEL® MONEY. \ - T
TRESORT MON EY.. TMONEY WORK ;
, i 7

,f

FORTH DIMENSIONS 174

Page 133

1 FORTH IIMIENSIOS

} \] | FORTH INTEREST GROUP Volume Ili
P.0.Box 1105 Number 5
San Carlos, CA 94070 Price: $2.%

A

NS0k

Functional Programming and Forth

137 Harvey Glass
h‘\f_——! Forth and Artificial Linguistics
138 Raymond Weisling
/ 140 Technotes
A Forth Assembler for The 6502
143 William F. Ragsdale
? t\ A Technical Tutorial:
Table Lookup Examples
/7-‘ 151 Henry Laxen
The Game of Reverse
152 M. Burton
The 31 Game
154 Tony Lewis

Simulated Tektronics
4010 Graphics with Forth

156 Timothy Huang
A Video Version of Master Mind
158 David Butler

Transfer of Forth Screens by Modem
162 Guy T. Grotke

=

FORTH ITIENSIDIS

Published by Forth Iinterest Group

Volums I No. § January/F ebruery 1982
Publisher Roy C. Martens
Editor C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is assumed for accuracy of materisl
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

Forth Interest Group
P.O. Box 1105
Sen Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moors in 1969 at the
National Radio Astronomy Observatory, Charlottesville, VA. It
was created out of dissatisfaction with avsilable programming
tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Inc. in 1973
fo the purpose of licensing and support of the FORTH Operating
System and Programming Language, and to supply spplicstion
programming to meet customers' unique requirements.

The Forth Interest Group is centered in Northem California.
Our membership is over 2,400 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publications.

EDITOR'S COLUMN

1981 is behind us and as 1 look back, | am pleased to see how
much has been accomplished for FORTH, FIG sand FORTH
DIMENSIONS.

1 really appreciate all the heip and support | have received
from our readers. ! have not done everything right and some of
the best help has been your disagreement. Intelligent, construc-
tive criticism is as welcome as earned praise.

1982 will be a year of continued growth. You can look
forward to continuing responsiveness. It is my plan to contact
every FIG chapter by telephone at least quarterly to get feedback
and encourage reader contributions.

FORTH DIMENSIONS will also be awarding AUTHOR'S

CERTIFICATES for outstanding articles that contribute to the’

growth and understanding of the language. While we are not yet
in a position to give you cash for your contributions, we at least
will give you credit.

Starting in this issue will be a policy of putting in tutorial
srticles designed to help our entry level readers. This, however,
will not be done at the expense of our more seasoned FIGGERS
who will find an expanded base of challenging articles and
spplications.

In closing, | want to say that the writer's kits have finally
come off the presses and | will be glad to send one to anyone who
wants to contribute. Please send in applications and utilities,
philosophy, questions and problems -- in the final analysis,
FORTH DIMENSIONS is what you make it.

C. J. Street

PUBLISHER'S COLUMN

1981 has been a great year for FORTH, the FORTH Interest
Group and for me, personally. FORTH has sprea’ around the
world and is being used on thousands of computer and
microprocessor-based products. It is being taught extensively in
schools, companies and by FORTH programmers. FIG has just
completed its most successful national convention with almost
500 attendees, over 20 exhibitors and multiple sessions. (Thanks
to Bob Reiling, Conference Chairman and Gary Feterbach,
Program Chairman.) The FORML conference was well attended
and the Proceedings are now available--see order form.

My deepest thanks to the FORTH community for "THE

FIGGY", Man of Year Award. It was a fantastic thrill and a
surprise. 1 stand in good company.

Roy C. Martens

Page 134

FORTH DIMENSIONS 111/5

LN " 'S BEIFY P

LV VI B

[

tions of volunteers serving without reim-
bursement. The FORTH DIMENSIONS
editorial staff supports FIG efforts to
kesp FORTH intact and resist the temp-
tation to obtain mere popularity and in the
process, fail in their mission to provide
and support the finest software concepts
and tools available today. This has not
been an easy task (and all too often, a
thankless one) but it is hoped that if
others will least try to understand, the
efforts and contributions of these volun-
teers will continue to benefit us all.--ed.

Dear Fig:

Congratulations to all the psople who
produce FORTH DIMENSIONS on its qual-
ity and improvement. Please send me s
writer's kit so I can make some of my ap-
plications presentable for publication.

Bob Royce
Box 57 Michiana
New Buffalo, MI 49117

Your kit is on the way! Anyone else?

--ed.

Oear Fig:

Glen Haydon's nice article in FORTH
DIMENSIONS 111/2, page 47 talks about an
algorithm he would like to have to
Jetermine the Julian day. With the
sackground that FORTH has in astronomy,
I'm sure there must be several, but this is
e nicest | know. It comes from the U. S.
Naval Observatory via an article in the
Astrophysical Journal Supplement Series,
vol. 41 No. 3 Noav. 1979 pp 391-2.

9 (JULIANDATE)

1 :JD >R SWAP

2 DUP 9 +12 /R +7 *4 /] MINUS

3 OVER9-7/R +100/1+3 %4/~
4 SWAP 2759 %/ 4+ .

5 +5-> D 1.721029 D+

5 367 R> M#* D+ ;

xample: 3 20 1982 JD D,
2445049 OK

If you are only concerned with dates
detween 3/1/1900 and 2/28/2000, then you
can omit line 3 entirely.

On another subject, there is another
correction I noticed in the dump of the
fig-FORTH 6502 Assembly Source - at
acation OC32, 80 1A should be D7 08B.

Peter 8. Dunckel
52 Seventh Avenue
San Francisco, CA 94118

Really slick! But the algorithm would be
nard to explain to most people.-~-ed.

FUNCTIONAL PROGRAMMING AND
FORTH

Harvey Glsss
University of South Florida
College of Engineering
Depsartment of Computer Science
Tampa, FL 33620

The distinguished computer scientist,
John Backus, in his 1977 Turing Award
lecture (1) describes the shortcomings of
conventional programming languages and
suggests a new approach to programming
in a style described as functional pro-
gramming (FP). We will summarize the
faults that Backus finds in conventiona!l
languages, briefly describe the functional
programming style, and lastly show that
FORTH meets the spirit of this style of
programming.

Conventional Languages

An underlying problem of conventional
programming languages is that they tend
to be high level! descriptions of the Von
Neumann computer. The assignment
statement is the principal construct of
these languages. A program becomes a
series of these assignment statements,
each of which requires the modification of
a single cell. We may think of the Von
Neumann computer as a set of storage
cells, a separate processor, and a channel
connecting the two. If assignment state-
ments imitate the store operation, then
branch statements imitate jump and test
while variables imitate storage cells. The
high level languages provide sophisticated
constructs to directly model the under-
lying Von Neumann design. Conventional
languages in the "word at a time" flow
described ebove require large data trans-
fers through this small channel connecting
main storage and the CPU. Backus calls
this the Von Neumann bottleneck. It is
not merely a physical bottieneck but,
more importantly, it is a bottleneck to our
thinking about computer languages.
Backus refers to it as an "“intellectual
battleneck." He characterizes conven-
tional languages as both fat and weak
since increases in the size and complexity
of these languages have provided only
small increases in power. The typical pro-
gramming language requires a large fixed
set of constructs, is inflexible, and is not
extensible. The problem has been eased
by approaches such as top-down design and
structured programming, but these have
not provided a solution to the underlying
difficulty, Backus suggests that we need a
new way of thinking about computing. He
describes a new style which he calls func-
tional programming.

Functional Programming

This new style of programming has the
following characteristics:

- A function (program) is constructed
from a set of previously defined

functions using a set of functional
forms that combine these existing
unctions to form new ones.

- The most fundamental functional
form is called composition. If the
composition operator is denoted by
o, then in Backus' notation "fog" is
the function where g is first applied
and then f.

- The functions incorporate no data
and do not neme their conventions
nor subatitution rules.

- A function is hierarchical; i.e., built
from simpler functions.

Beckus points out that, "FP (Functional
Programming) systems are s0 minimal that
some readers may find it difficult to view
them as programming languages." We
have a set of predefined functions in a
library (dictionary) and may define new
functions in terms of thess predefined
functions.

Functional forms are constructs de-
noting functions which take functions as
parameters. For example, the construct
"if-else-then", and the construct "do
while" are functional forms. As indicated
above, compasition is also a functional
form.

FORTH of course has predefined con-
structs which serve as the functional
forms of FP systems. In fact, FORTH
provides facilities for adding new func-
tional forms. An example would be a
“case" construct to provide a more flex-
ible and clear decision structure than that
of a set of nested "if-else-then™s. The
capability of language to add new func-
tional forms is not inherent in FP
systems. Backus defines a language with
this capability as a formal functional pro-
gramming (FFP) language.

An Example of Functional Programming:

The Factorial Function

An example of a program written in
the style of functional programming is as
follows:

def#=eq0 + 15?0 [id, 2subl], where
the notation 0,5, and [1 denote func-
tional forms. As we have seen, o denotes
composition. The notation [fl,f] denotes
construction where [fl,le applied to en
argument x vyields the sequence <fy(x),-
f,(x)> . The notation p =~ f;g applied to an
argument x indicates that the value p(x) is
to be examined and if p(x) is true the ex-
pression yields f(x) else it yields g(x).

Other definitions useu in the above
are:

eq0 applied to x yields a value true if x
is 0, and yields false otherwise.

1 is the literal value 1 and yislds the

M /5

Page 137

value 1, regardiess of the argument.

® is the multiplication operator, and
applied to a sequence <x,y> yields x*y,

id is the identity operator. id applied
to x yields x.

subl applied to an argument x yields x-

Following the logic of the above func-
tion we see that I applied to an argument
n yields 1 if n is zero. If n is not zero we
generate n¥(n-1)!

Clearly then for n0 this is a definition
of the factorial function. In FORTH (if
the language were recursive) we would
write:

DUP 0= IF 1+
ELSE DUP 1- 8 @
THEN ;

.
H

The syntaxes of the two examples are
different. The composition rule is applied
right to left in the first example and left
to right in FORTH. The rules for dropping
arguments are different. Construction is
not used in FORTH.* That the rules of
syntax are different should not be sur-
prising. The operations were defined by
different people at different times. What
is most important is that on close exami-
nation it is apparent that the style is es-
sentially the same. We have "words"
which denote functions which are eval-
uated following very similar rules.

FORTH as a L with Charac-
teristics of Functional %ﬁmmig

Consider the FORTH (outer) inter-
preter. Literally all that the interpreter
recognizes are functions; or to be precise,
words that denote functions.** The fund-
amental combining form is compaosition
where in FORTH "fog” would be expressad
as g f. Functions need not incorporate
data, do not name their arguments, and
require no substitution rules for parameter
passing. There are no assignment state-
ments and a new function is built from
simpler previously defined functions. It is
this style of programming in FORTH--s0
different than that of conventional lang-
uages--that provides a power and flex-
ibility that has sparked the enthusiasm of
so many of us.

Summary

This very short summary of the article
by Jobn Backus does not begin to do
justice to either the scope or depth of the
paper.

The "new" type of programming has
generated considerable interest within the
computing community and most perticu-

larly among those interested in innovative
approaches to computer architectures. It
is this author's contention that FORTH is
a functional programming language which
closely resembles the approach suggested
by John Backus in his definitive paper. It
will be interesting to see if, as a result of
this paper, languages which have attri-
butes similar to FORTH begin to appear in
academic circles.

® The suthor has recently implemented
such an operator in FORTH.

#+ The way that litersls are handled can
be viewed as merely a question of im-
plementation and efficiency.

References

1. J. Backus, "Can Programming be
Liberated from the Von Neumann
Style? CACM, Vol. 21, No. 8, August
1978, p. 613.

FORTH AND ARTFICIAL LINGUISTICS

Raymond Weisling
Surakarte, Jawa Tengah
Republik Indonesia

There has not been much said sbout
the linguistic nature of computer
languages, principailly because so few of
them permit the development of syntax
structures that apporsch human language,
and hence foster linguistic observation.
FORTH and its other threaded-code rela-
tives allow for such structures to be
developed, principaily because of the
larger body of words that arise from its
extensibility and hierarchal function of
operators.

The point [wish to address here is the
syntactical limitations of the language we
are building, an artificial language based
in part on a human language (English) that
is widely used whersver technology has
developed. But there is a fundamental
weakness in this English which [think we
must be aware of, since it runs counter to
the philosophy of FORTH. This is the syn-
tax-sensitivity of word forms, especially
nouns and verbs, which in English are
commonly spelied and pronounced exactly
the same. We rely on the structure (word-
order, partly) to distinguish these often
unrelated worda.

A few examplas are in order. Consider
the possible function .of these FORTH
words, both with respect to their current
use (some are nouns while others are
verbs), but also in their opposite hypothet-
ical use: BUFFER , FENCE , KEY ,
LIMIT , LOOP , SPACE , TYPE , etc.
Others which a programmer might wish to
use in developing applications might
include: OFFSET , SPAN , INSERT ,

FILE , CATALOG , OUTPUT . Since the
action of these words is not known from

. the word itself, but only from either pre-

vious agreement or syntax, and since syn-
tax sensitivity is not a common part of
FORTH (i.e., where a syntactical form
does not alter the way in which a word is
compiled), some degree of confusion can
result.

Furthermore, use of a word in only one
form rules out its use in another form, ex-
cept where it can reside in a different vo-
cabulary. Thus words like KEY , LOOFP ,
BLANK , and TYPE (all FORTH verbs)
cannot function as nouns despite our
temptation to use them that way for their
inherent (English language-based) clarity.
The same is true of some of the FORTH
nouns like BLOCK , BUFFER , STATE ,
LIMIT , and BASE .

Thus it is not possible to know the
nature of the word from its name alone.
Would prefixes for verbs unnecessarily
clutter the language? Would some prefix
or suffix to differentiate constants from
variables be useful? Or should we leave it
alone. The TO and FROM words help clar-
ify things but are not without problems,
whereas ! and @ are perfectly uniform in
function. Could a FORTH-like language
be built that allows the word-type to be-
come part of the header, with the com-
piler choosing which form of the same-
named word to use based on its syntactical
position, like nouns (variables, constants,
arrays) being objects of TO and FROM ?
Or does this push us back into the horrible
mess of artificial syntax forms such as
algebraic notation (something we are per-
haps proud to have departed from)?

I offer no solution per se. [only wish
to point out a weakness that we all should
be sensitive to when we assign names to
our words. Since FORTH is still in evo-
lution, this is yet another aspect to con-
sider when standards are defined. [wish
to disclaim any implication that I am a
linguist of any sort other than Armchair
Linguist. My sensitivity to this is a result
of living in a different culture where | am
learning a human language that permits
far greater fluidity of structure due to the
inherent differences in nouns and verbs,
shown by a well codified system of pre-
fixes and suffixes {(morphemological dif-
ferentiators). Those here who learn
English struggle with the structural dif-
ferentiation of all the parts of speech
while our morpheme differentiators are
used for relatively useless things like verb
conjugation, plurality, cases, and tenses
(which are all essentially absent in this
part of the world). As technology spreads,
an artificial language for man-machine
manipulation (a two way street) should be
more universally based, at least with re-
spect to linguistic modeling. As FORTH is
already in use in many parts of the world,
the channel for feedback is already open.

Page 138

FOR TH DIMENSIONS 111/5

I NI TN R

1]

dadddd andBidnngpny

9

FORTH STANDARDS CORNER
Robert L. Smith

More Words on WORD

In my last column, I discussed WORD,
. neglected to mention an important topic
relating to the implementations of WORD
which may influence transportability.
Prior to the 79-Standard, the exscution of
#ORD caused the string from the input
~edium to be moved to the dictionary
area, starting at HERE with the charecter
sount. Some implementers would be
tempted to define the 79-Standard WORD
‘rom the older WORD in a8 manner some-
~hat like this:

: WORD WORD HERE ;

Other implementers would probably put
tne string elsewhere. Now suppose that
*he user wished to reverse the character
siring and emplace the modified string in
:ve dictionary. The result from the for-
—er implementer's system will not be as
2xpected, and will not result in "equiva-
.ent execution” on the later implementer's
system. A similar but much less serious
-~oblem occurs with PAD, PAD is
conventionally offset from HERE by a
“xed amount (68 bytes in fig-FORTH).
“nere are at least three different solu-
.ons:

{1) Implementations which place the
string at HERE could be con-
sidered non-standard, and the
problem goes away.

{2) A clarification could be added to
the Standard indicating either that
the string will always be at HERE,
or that it may be at HERE.

At
P

The problem could be forced upon
users by requiring that the char-
acters from WORD be stored in a
user-defined area prior to their
movement to the final destination.

-2t Me Number the Ways

In many areas the 79-Standard defines
Tits and formats in painful detail. There
s an important area in which very little is

:3id, namely the format for single and
‘ouble precision numbers in the input
siream. In the section "interpreter, text"
t is clear that "numbers" are allowed in
e input text stream and may either be
:ompiled or placed on the parameter
stack. A definition of the format of a
~umber should include at a minimum the
zstinction between double and single pre-
:.sion, the sign of the number, and the set
:* allowed characters from which the
~umber is constructed. In keeping with
1ne spirit of the rest of the Standard, I
~ould like to propose a few definitions
~nich should be fairly easy to implement
:7d which appear to be compatible with
most current implementations (including

fig-FORTH). First, we define a digit:

digit

A digit is any one of a set of ASCH
characters which represent numeric values
in the range from O to bass-1. For bases
greater than decimal 10, the set of char-
acters is 0 ... 9 A B C ... where the as-
cending ASCII sequence is used for A and
above.

Next, we add to the original definition of
number as follows:

number

A number is represented in the input
stream as a word composed of a sequence
of one or more digits with a lesding ASCIl
minus (-) if the number is negative and a
trailing ASCII dot (.) if the value is to be
considered double precision.

[recommend that implementers allow
the above format, and that authors of
transportable programs adhere to the
same format. In any case, when the Stan-
dards Team meets again, they should cer-
tainly clarify this area.

Under the Spreading FIG-TREE

As many of you are aware, there is a
Computer Conference Tree (now nick-
named the FIG-TREE) which contains
items of interest to the FORTH com-
munity. [would like to encourage all
persons interested in the 73-Standard to
read and contribute to the branch of the
FIG-TREE called 79-STANDARD. All you
need is a terminal (110 or 300 baud), a
modem, and a telephone. The number is
(415) 538-3580. See back issues of FORTH
DIMENSIONS for further information, or
just call up and send a few carriage
returns until the system responds.

CORRECTIONS
Add to: FD Il1/4, pg. 102 the following:
REFERENCES

l. Forsley, Lawrence P. The Beta
Laser Contro!l System. A talk given
at the Laboratory for Laser Energet-
ics on March 9, 1977 and on July 16,
1977 at the Wilson Synchrotron,
Cornell University.

2. Forsley, Lawrence P. "Forth Multi-
tasking in URTH". The Best of the

Computer Faires Volume IV, San

Francisco: 1979.

3. Boles, J. A., Pessel, D. and L. P.
Forsley. "Omega Automated Laser

Control and Data Acquisition", IEEE
Journal of Quantum Electronics, Vol
QE-17 No. 9. New York, New
York: IEEE, September, 1981,

Towards More Usable

Systems: The C3RAD _Report.
lLarge Systems Requirements for

Application Development). Chicagos
Share, Inc., 1979,

5. =~=---, IEEE Standard 583-1975.
New York: IEEE, 1975.

6. —----. 1977 Lsboratory for Laser
Energetics Annual Report.
ochester, NY: Laboratory for
Laser Energetics, 1978.

7. Moore, Charles. "Forth: A New
Way to Program Minicoimputers”
Journal of Astronomy and Astro-
physics Supplement 15. New York:
AAAS, September, 1974.

8. Moore, Charles. "Forth, The Past
Ten Years K and the Next Two
Weeks". Forth Dimensions. Vol 16
San Carlos, CA: Forth Interest

Group, 1979.

9. Rather, Elizabeth and Charles
Moore. "The FORTH Approach to
Operating Systems". ACM '76 Pro-
ceedings. New York: ACM,
October, 1976.

10. Ritchie, D. M. and K. Thompson.
"The UNIX Time-Sharing System™.
The Bell System Technical Journal.
Vol. 57 No. 6 Part 2. New Provi-
dence, NJ: A.T. and T., July-August,

1978.
11. Ritchie, D. M,, et al. "The C Pro-
gramming Language”. The Bell Sys-

tem Technical Journal. Vol 57 No. 6§
Part 2. New Providence, NJ: A.T.
and T., July-August, 1978.

Change: FDIIl/4, pg. 118, para 3 to:
The TO concept évas developed by
Dr. Paul Bartholdi® as an alternative
to constants and variables.

EDITOR'S NOTE:

Peter Bengtson of DATATRONIC AB in
Stockholm, Sweden sent us a copy of the
September, 1981 edition of Electronics
And Computing Monthly. Feature article
was FORTH, "The Language of the Eight-
ies" in which FIG is mentioned prominent-
ly. More confirmation we are all riding
the crest!

- DRTH DIMENSIONS TII/5

Peage 139

TECHNOTES, BUGS AND FIXES
I have three questions about FORTH:

@Q. 1 know of two CP/M FORTHs that have
their own way of dealing with the BIOS
and BDOS and as a result cannot read each
other's screens. What I'm leading to is
this: CP/M and fig-FORTH are both sup-
posed to be machine independent systems
but cannot read each other's source code
files. CP/M figgers ought to get together
on this one.

A. Differences between disk organizations
are sector skewing and location. It is easy
to add definitions to &8 FORTH which uses
BIOS so it can read other organizations; it
is not possible the other direction.

2, When selecting a new drive, you need
to do a COLD start or you'll remain on the
fast drive--this is only true if you are
accessing the same screen number. If you
leave an empty line between two defini-
tions on the screen, a LOAD will stop
loading at the empty line. Are these
FORTH conventions 1 haven't heard about
yet or are they peculiar to my Timin
FORTH?

A. Both of these are bugs--demand fixes
from Timin.

3. Somehow(?), 've been lesving a lot of
control characters behind when using the
editor. They don't show up on a screen list
but they sure ruin any attempt at loading
the screen. 1 am not sure if this is a
common problem but [have enclosed a

short routine to replace control charaters -

with spaces for anyone else who has this
problem.

SCREEN: 95
(HUNT FOR CONTROL CHARACTERS)
: HUNT (SCREEN # --—)
BLOCK
1024 0 DO DUP C@ DUP 32 <
F CR ."t" 64 + EMIT
M@ " DUP U, ELSE DROP
ENDIF 1+ LOOP DROP ;
t FIXSCREEN (SCREEN # ---)
BLOCK
1024 0 DO DUP C@ 32 < IF
DUP 32 SWAP C! ENDIF
) 1+ LOOP DROP ;

(ACTUALLY HUNT AND FIXSCREEN
ARE QUITE SIMILAR, HUNT JUST
SHOWS UP ANY GUILTY CHARACTERS

AND FIXSCREEN REPLACES THEM)

A. Don't know. May be an editor bug or
the way you are using it. If you add a line
with #P followed immediately by a car-
riage return in the fig editor, a null is
introduced into the line which stops com-
piling. (editor fix should be supplied)

THAT MYSTERIOUS fig-FORTH
AMNESIA

Many fig-FORTH users have probably
noticed the curious phenomenon I refer to
as "amnesia" in their computers, and those
who understand the method of the fig--
FORTH dictionary search, no doubt under-
stand it as well. It is an amusing, often
perplexing, but wusually useful property
peculiar to fig-FOR TH dictionaries.

Because names in fig-FORTH may
have variable length, the distance between
the start of the name and the link to the
next name in the dictionary is also vari-
able. Because the width (number of char-
acters saved) is also allowed to be less
than the actual number of characters in
the name, one cannot rely on the count to
provide the address of the link-field, given
the address of the name-field. This is why
the fig-FORTH compiler automatically
sets the most significant bit of the first
character and the last character in every
name. By this device, one can scan a
name forward or backward by looking for
this bit.

In a dictionary search, the address in
the link-field is followed to the beginning
of the name-field of the previous word. If
it is not a match to the key you are look-
ing for, we scan forward in meémory until
the most significant bit tells us we have
found the link-field to the next word.
When a dictionary link is "broken" by clob-
bering RAM, an erroneous address is fol-
lowed, and the system is said to "crash".

However, in fig-FORTH, the system
does not always "die". In many cases, it is
merely "wounded", displaying a strange
kind of amnesia in which it has no recol-
lection of recent definitions, but remem-
bers with clarity its “childhood™. What
happens is this: the broken link sends the
dictionary search off to a totally random
part of memory (if you do not have 64K, it
may address RAM where there are no
boards). Since it is not likely to find a
match at this address, it scans forward for
the most significant bit that marks the
end of the "name". The odds are that it
will eventually find one, mistake the next
two bytes for a link, and follow another
wild address somewhere else.

Now, depending on how much of your
memory is filled with dictionary, and de-
pending on what is in your unused RAM,
the odds ere not bad that after bouncing
aimlessly around for awhile, the search
may land in the middle of a valid name.
One does not expect a match to compare
with the middle of a name, but the search
then scans for the most significant bit,
finds a valid link, and gets back into the
dictionary. What the "amnesia" has ac-
tually forgotten, then, is everything be-
tween the broken link and the point where
the search re-enters the dictionary.

If your used RAM is large in compar-
ison to FORTH, you are likely to find most
of FORTH still available as a kind of crip-
pled monitor to help you find out what
went wrong without re-booting the system
(which destroys the dasmage). Further-
more, since you now know the cause of
this illness, you can exploit it to your ad-
vantage. Simply modify your boot-up
RAM-check routine so that it leaves a
pattern in your unused RAM, such that no
matter how it is viewed, it will appear to
be an address somewhere in the middle of
a name-field, somewhere near the top of
your basic FORTH and utilities. You will
now find, to your delight, that when you
"crash", you usually have your most
powerful tools still at your disposal.

Users of FORTH, Inc. Micro-FORTH
are not likely to observe this phenomenon.
Because names are always exactly four
characters long, the link field does not
have to be scanned for; instead, it is found
by simple arithmetic. In order to re-enter
the dictionary, one must land by chance on
the exact beginning of a name-field.
Much more likely than this, is that the
search will enter a loop in which it goes
again to an address it has already visited,
and get caught forever. Remember that
the addresses found are by no means ran-
dom. All you have to do is cover the most
common ones.

Steve Munson
8071 E. 7th Street, #14
Buena Park, CA 90621

TRANSIENT DEFINITIONS

These utiliites allow you to have tem-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) in the dictionary during
compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area™ which must be above the
end of the current dictionary. The tem-
porary definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to its normal
location. Now the application program is
compiled and the temporary definitions
are removed with the word DISPOSE.
DISPOSE will take a few seconds because
it goes through every link (including vo-
cabulary links) and patches them to bypass
all words above the dictionary pointer.

NOTE: These words are written in
MicroMotion's FORTH-79 but some
non-79-Standard words are used. The
non-Standard words have the fig-
FORTH definitions.

Philip Wasson

Page 140

FORTH DIMENSIONS {I1/5

O g 28 B L 3 & o o8 o @ o

1Y d 0 RY SNl Va1 ¥

¥ IR

i
1

BHMA L8007 4870

3
h

ass

MORE WORDS ABOUT WORD

Robert D. Villwock
Microsystems, Inc.

In analyzing or proposing changes to
any Standard definition, it is very impor-
tant to concentrate on the details of the
needed function and to avoid any precon-
ceived notion of internal implementation
details, unless, of course, the two are in-
separable. If this is not done, we can
severely and unnecessarily constrain
future implementors from doing their best
possible job, or, worse yet, find them a-
voiding the Standard entirely.

A good case in point is the word
WORD. Since most FORTH implementors
have favored using the "free space" sbove
the dictionary to store tokens extracted
5y WORD, and further since their exper-
ience seems to be centered around small
to medium sized application programs, it
is tacitly assumed that this free space is
arbitrarily large. In addition to storing
tokens at HERE, PAD is usually also de-
fined to float above the dictionary in this
"unbounded” free space. Therefore,
whether WORD handles tokens of length
128, 256 or even 1024 bytes is innocently
discussed with the idea that the only issue
involved is the length descriptor preceding
the string!

However, whether this token buffer
and PAD float above HERE or are fixed
:ocation buffers or some different scheme
is devised, they consume real memory and
are not really "free space". To illustrate,
suppose we assume the traditional imple-
mentation for 8 moment and use HERE as
the start of the token buffer used by
NORD. The PAD is then usually floated
at a location equal to HERE plus some
constant. If WORD must handle tokens as
‘ong as 255 bytes, then PAD must be
floated at least 256 bytes above HERE to
prevent token extraction from corrupting
the contents of PAD. The 79-STANDARD
requires that PAD be able to hold at least
54 bytes, so now we're at HERE + 320
Jytes.

If one is compiting a large application
program, the dictionary will grow until
eventually HERE + 320 hits the peq
‘whether it is a fixed boundary or the
PSTACK bottom or whatever). When it
Joes, no more compilation can take place
even though there is at least 320 bytes of
Jnused dictionary left) without violating
the Standard. If you permit further com-
oilation, the size of PAD begins to drop
Selow the minimum 64, which is not al-
.owed. Even if you start automatically
reducing the PAD offset so that it remains
fixed in size, the token buffer begins
shrinking and can no longer satisfy the 256
oyte string requirement.

I'm trying to illustrate that "free
space" is only "free" as long as all of

memory isn't nesded. When memory fills,
these "fres space" buffers prevent code
from being compiled into their space. The
floating buffer concept seems to obscure
this fact more than if the token buffer and
the PAD were given fixed, dedicated areas
of memory.

If the token buffer must handle 1024
byte strings, the situation is even worse.
We then have to stop compiling when the
dictionary has over 1K bytes of space
left! Since most of the time the taokens
extracted by WORD are very short (31
characters or less), we pay a desr price to
be able to handle the occasional long
string, given that WORD must handle it,
and WORD is defined as at present.

[f you discard the notion that 2 more
or less unbounded "free space" exists
somewhere in memory, the approach to
WORD's definition takes on a new facet.
At Microsystems, we have developed
several large applications using FORTH,
which resulted in target compiled code in
the range of 32K to 48K bytes, exclusive

of the dictionary headers and the FORTH

operating sysem software. When appli-
cations become that large, there isn't even
room to hold all the names in memory at
one time (even if constrained to 3 char-
acters and length), let alone room to burn
for large "free space” buffers! Our im-
plementati?nM which is called
proFORTH '™, handles this problem by
means of multiple dictionaries and
ROM/RAM segment control with selective
symbol purging. Names are classified as
to their needed lifetimes during com-
pilation. When the names are no longer
needed, they are purged and their memory
space is reclaimed. This allows much of
the memory devoted to dictionary headers
to be reused many times during com-
pilation, thereby enabling very large ap-
plications to be compiled.

The foregoing is not a commercial for
proFORTH, but rather is intended to illus-
trate that the scope of usage to which
FORTH can be applied is very broad. In a
situation where you have multiple diction-
aries and are fighting for every byte of
memory available, thinking in terms of
storing unbounded tokens at HERE and
floating PADs of arbitrary length becomes
very incongruous. Admittedly, I've des-
cribed a somewhat extreme situation, but
it is not as rare as you may think. Micro-
processor applications are getting more
ambitious every day and sooner or later
you will have a crowded memory
condition. [think FORTH should be able
to handle these situations gracefully,
without having to deviate from the
Standard.

When defining WORD, then, one ob-
jective should be to enable users to
extract arbitrarily long tokens from the
text stream but not force the implementor
to provide an arbitrarily long memory

buffer to accomplish it. Whils this may
sound a little like trying to "have your
cake and eat it too", a rather simple
factoring of WORD can sasily sccomplish
it. To illustrate my point, supposs we
devise a more basic WORD called (WORD)
and define it as follows:

+ (WORD) (c--an)
IF BLOCK
FLSE TIB @
THEN >IN @ + SWAP ENCLOSE
>IN #1 OVER - -ROT + SWAP i

BLK & ?DUP

where ENCLOSE is defined as in the FIG
glossary and -ROT is equivalent to ROT
ROT.

This new (WORD) extracts the next
token from the text stream, delimited by
¢, and leaves its address and length on the
stack. Actually, the token is merely left
in the input buffer (keyboard or disk) and a
pointer to it is given. Thus, no additional
or temporary buffer is needed. The user
may now do snything he (she) wants with
the string, including moving it to HERE if
desired (and if it will fit).

For example, if you want to compile
the token as s "dot-quote"” string, 8 defini-
tion such as WORD, can be used.

t WORD, (c ==)
(WORD) HERE OVER 1+ ALLOT SWAP OVER (!
COUNT CMOVE

If you want a blank-filled line put in
PAD, the following could be used:

t TEXT { © ==) PAD C/L 2+ BLANKS
(WORD) C/L MIN PAD CI PAD
COUNT CMOVE 3

For the routine compiler/interpreter
job of extracting small (31 characters or
less) tokens from the text stream, the fol-
lowing could be used:

t WORD (¢ -~ a)
(WORD) WDSZ MIN WBFR C1 WBFR COUNT 1+
CMOVE WBFR

where WBFR is a "small" word buffer
limited to WDSZ + 2. Note that except
possibly for the self-imposed size limi-
tation®, the last definition satisfies the
79-STANDARD definition of WORD.

If you will carefully examine these
constructs, you cen quickly discover that
given (WORD) as the elementary form, the
user can extract tokens of any size, put
them wherever he wants, and format them
with or without the trailing delimiter, or
for that matter, the leading count byte (or
16 bit word if you prefer.. In other words,
the user ought to be able to do essentially
anything that he may desire, but, the im-
plementor need not provide any special,
temporary buffers or arbitrary size just to

“ORTH DIMENSIONS /5

Page 141

satisfy the Standard.

Using (WORD) as the fundamental
token extractor allows implementors to
compiie dot quote strings, for example,
without the need for any transitional buf-
fers (see WORD,). On the other hand, if
dot quote strings are acquired by the
present form of WORD in the Standard,
then the token buffer must be at least as
large as the longest dot quote string,
which is presently specified to be 127
characters.

One might argue that if the buffer is
at HERE, there is no penalty since that is
where the string must go anyway, and if it
won't fit it can't be compiled. However,
this line of reasoning is again limited by a
parochial view that ail FORTH implemen-
tations must be alike. If a system like
proF ORTH is being used, the target defin-
ition body can optionally be compiled "in
place” separate from the dictionary
header. There may be room for the string
in the target segment of memory but not
enough in the dictionary.

In conciusion, let me say that if there
is sufficient memory, the user may
declare all the buffers he wants, but we
should not require thet these buffers be
preallocated by the implementor in order
to satisfy the Standard. Therefore, | sub-
mit that my definition of (WORD) is a
more fundamentally valuable function
than WORD (as currently defined in the
79-STANDARD,) from which all others
can be built without buming sometimes
precious memory space. Thers are al-
ready enough buffers and such required
(directly or indirectly) by the Standard.
Let's not arbitrarily insist on more by ac-
cidently defining words in such a way as to
force an implementor to provide them.

® | emphasize "possibly” bscause fortun-
ately the Standard is not explicit as to the

length of tokens that must be handled by
WORD.

CORRECTION TO FEDIT

. Sorry you had trouble with FEDIT. The
listing was retyped at FIG and several
typos creeped in. They are:

1. SCR 64 Line 10:
COMPILE

2. SCR 65 Line 23: 1+/MOD should be 1+
16 /MOD

3. SCR 67 Line 48: B/BUD shouid be
B/BUF

4. SCR 67 Line 49: :e should be : .E

5. SCR 67 Line 50: + ALIN should be
+ALIN

compile should be

You are perfectly right that source
text should be loadable. 1 talked to some

of the people at FIG about this and they
were acutely aware of the problem but
they are simply not set up to directly
reproduce listings into FD at the present
time. They do the best job they can with
the resources available to them, and they
work darn hard at it. | can't fault them.

REPL is a pseudonym for the Fig-
FORTH line editor definition, R . I used
the pseudonym because FEDIT was the
tirst progrem 1 wrote in FORTH and 1
really wasn't familiar enough with Vocab-
ularies to comfortably use a word that was
already used in the FORTH vocabulary.

Let me know how it works for you. If
you would like a machine produced listing,
I could run one for you from my current
version.

Edgar H. Fey, Jr.
18 Calendar Court
La Grange, IL 60525

A HELPFUL UTILITY

Here's a short FORTH word of great
utility that 1 use heavily in my screens. 1
hope you like it. Its name is CVD, which
stands for "convert to decimal”.

DECIMAL

: CVD
BASE @ SWAP
OVER /MOD
ROT /MOD
10@ .
10° +

I like to work in hexidecimal, but often
make mistakes when using the words
ILOAD, LIST, and many of the FORTH
screen editor words because I'm thinking
in decimal when the system's in hex. 1f |
do the following:

s LIST CVDLIST;

then 130 LIST lists screen 130 whether I'm
in decimal or hex. It also works for any
other base, as long as that base accepts
the number.

As to how it works, a little work will
show that CVD splits a three-digit number
into its respective digits (IE, 130 becomes
1, 3, and 0) end reassembles the digits into
the number that is, in decimal, the same
as the keys pressed by the user.

Gregg Williams
BYTE Publications
PO Box 372
Hancock, NH 03449

CALL FOR PAPERS

1982 Rochester FORTH Conference
on
Data Bases and Process Control

May 17 through May 21, 1982

University of Rochester
Rochester, New York

The second annual Rochester FORTH
Conference will be held in May, and will
be hosted by the University of Rochester's
Laboratory for Laser Energetics. This
year's topics complement and extend the
work described at the 1981 FORML Con-
ference and the previous Rochester Con-
ference. We believe that the areas of
data bases and process control can be
uniquely dealt with using FORTH.

There 'is a call for papers on the fol-
lowing topics:

1. Data Bases, including, but not lim-
ited to: hierarchical, network and
relational models; scientific use;
process control; and commercial
systems.,

2. Process Control, including, but not
limited to: multitasking, meta-
compilation, data acquisition and
real time systems; video games.

3. Related concepts of:
implementation, speed/space
tradeoffs; user interactions; de-
signer tools; and graphics.

Papers will be handled in either oral
sessions or poster sessions, although oral
papers will be refereed in accordance with
conference direction, paper quality and
topic. Please submit a 200 word abstract
by March 15, 1982. The oral papers dead-
line is April 15, 1982, and the poster
papers deadline is May 1, 1982. Send ab-
stracts and pepers to the conference
chairman, Lawrence Forsley, by those
dates. Please keep papers to a maximum
of 10 printed pages. If this restriction
causes a serious problem, contact us.

For more information, please contact
the conference chairman at:

L.awrence P, Forsley
Laboratory for Laser Energetics
University of Rochester

250 East River Road

Rochester, New York 14623

Page 142

FORTH DIMERISIONS 1175

. W o

A FORTH ASSEMBLER
FOR THE 6502
by William F. Ragsdale

INTRODUCTION

This article should further polarize the
attitudes of those outside the growing
community of FORTH users. Some will be
fascinated by a label-less, macro-
assembler whose source code is only 96
lines long! Others will be repelled by
reverse Pglish syntax and the absence of
labels.

The author immodestly claims that this
is the best FORTH assembler ever distri-
buted. It is the only such assembler that
detects all errors in op-code generation
and conditional structuring. It is released
to the public domain as a defense mechan-
ism, Three good 6502 assemblers were
submitted to the FORTH Interest Group
but each had some lack. Rather than
merge and edit for publication, I chose to
publish mine with all the submitted fea-
tures plus several more.

Imagine having an assembler in 1300
bytes of object code with:

1. User macros (like IF, UNTIL,) de-
finable at any time.

2. Literal values expressed in any
numeric base, alterable at any
time.

3. Expressions using any resident
computation capability.

4. Nested control structures without
labels, with error control.

5. Assembler source itself in a port-
able high level language.

OVERVIEW

Forth is provided with a machine lang-
vage assembler to create execution pro-
cedures that would be time inefficient, if
written as colon-definitions. It is intended
that "code" be written similarly to high
level, for clarity of expression. Functions
may be written first in high-level, tested,
and then re-coded into assembly, with a
minimum of restructuring.

THE ASSEMBLY PROCESS

Code assembly just consists of inter-
preting with the ASSEMBLER vocabulary
as CONTEXT. Thus, each word in the in-
put stream will be matched according the
Forth practice of searching CONTEXT
first then CURRENT.

ASSEMBLER {now CONTEXT)

FORTH (chained to ASSEMBLER)
user's (CURRENT if one exits)
FORTH (cheined to user's voceb)
try for literal number

else, do error abort

The above sequence is the usus! action
of Forth's text interpreter, which remains
in control during assembly.

During assembly of CODE definitions,
Forth continues interpretstion of each
word encountered in the input stream (not
in the compile mode). These assembler
words specify operands, address modes,
and op-codes. At the conclusion of the
CODE definition a final error check veri-
fies correct completion by "unsmudging"
the definition's name, to make it available
for dictionary searches.

RUN-TIME, ASSEMBLY-TIME

One must be careful to understand at
what time a particular word definition
executes. During assembly, each as-
sembler word interpreted executes. Its
function at that instant is calied 'assemb-
ling' or ‘assembly-time'. This function
may involve op-code generation, address
celculation, mode selection, etc.

The later execution of the generated
code is called 'run-time'. This distinction
is particulary important with the condi-
tionals. At assembly time each such word
(i.e., IF, UNTIL, BEGIN, etc.) itself ‘runs'
to produce machine code which will later
execute st what is labeled 'run-time' when
its named code definition is used,

AN EXAMPLE

As a practical example, here's a simple
call to the systern monitor, via the NMI
address vector (using the BRK opcode).

CODE MON (exit to monitor)
BRK, NEXT IJMP, END-CODE

The word CODE is first encountered,
and executed by Forth, CODE builds the
following name "MON" into a dictionary
header and calls ASSEMBLER as the
CONTEXT vocabularly.

The (" is next found in FORTH and
executed to skip til ")". This method skips
over comments. Note that the name after
CODE and the ")" after (" must be on the
same text line.

OP-CODES

BRK, is next found in the assembler as
the op-code. When BRK, executes, it as-
sembles the byte value 00 into the dic-
tionary as the op-code for "break to moni-
tor via "NMI".

Many assembler words names end in
", The significance of this is:

1. The comma shows the conclusion
of a logical grouping that would be
one line of classical sssembly
source code.

2. "," compiles into the dictionary;
thus a comma implies the point at
which code is generated.

3. The ", distinguishes op-codes
from possible hex numbers ADC
and ADD.

NEXT

Forth executes your word definitions
under control of the address interpreter,
named NEXT. This short code routine
movas execution from one definition, to
the next. At the end of your code defini-
tion, you must return control to NEXT or
else to code which returns to NEXT.

RETURN OF CONTROL

Most 6502 systems cen resume execu-
tion after a break, since the monitor saves
the CPU register contents. Therefore, we
must return control to Forth after a
return from the monitor. NEXT is a con-
stant that specifies the machine address
of Forth's address interpreter (say
$0242). Here it is the operand for JMP,.
As IJMP, executes, it assembles a machine
code jump to the address of NEXT from
the assembly time stack value.

SECURITY

Numerous tests are made within the
assembler for user errors:

1. All psrameters used in CODE
definitions must be removed.

2. Conditionals must be properly
nested and paired.

3. Address modes and operands must
be allowable for the op-codes

These tests are accomplished by
checking the stack position (in CSP) at the
creation of the definition name and
comparing it with the position at END-
CODE. (Legality of address modes and
operands is insured by means of a bit mask
associated with each operand.

Remember that if an error occurs
during assembly, END-CODE never exe-
cutes. The result is that the "smudged"
condition of the definition name remains
in the "“smudged" condition and will not be
found during dictionary searches.

The user should be aware that one
error not trapped is referencing a defini-
tion in the wrong vocabrilary:

i.e., 0= of ASSEMBLER when you want
0= of FORTH

FORTH DIMENSIONS 11175

Page 143

(Editor's note: the listing assumes that
the figF ORTH error messages are already
available in the system, as follows:

?CSP issues the error message "DEF1-
NITION NOT FINISHED" if the stack
position differs from the value saved in
the user variable CSP, which is set at the
creation of teh definition name.

7PAIRS issues the error message
"CONDITIONALS NOT IMPAIRED" if its
two arguments do not match.

3 ERROR prints the error message
"HAS INCORRECT ADDRESS MODE™.)

SUMMARY
The object code of our example is:
305 983 4D 4F CE CODE MON
305D 4D 30 link field
305F 61 30 code fieid
3061 00 BRK
3062 4C 42 02 IMP NEXT

OP-CODES, revisited

The bulk of the assembler consists of
dictionary entries for each op-code. The
6502 one mode op-codes are:

BRK, CLC, CLD, CLI, CLV,
DEX, DEY, INX, INY, NOP,
PHA, PHP, PLA, PLP, RTI],

RTS, SEC, SED, SEI, TAX,
TAY, TsSX, TXS, TXA, TYA,

When any of these are executed, the
corresponding op-code byte is assembled
into the dictionary.

The multi-mode op-codes are:

ADC, AND, CMP, EOR, LDA,
ORA, SBC, STA, ASL, DEC,
INC, LSR, ROL, ROR, STX,
CPX, CPY, LDX, LDY, STY,
JSR, JMP, B8IT,

These usually take an operand, which
must already be on the stack. An address
mode may also be specified. If none is

EXAMPLES

Here are examples of Forth vs. con-
ventional assembler. Note that the oper-
and comes first, followed by any mode
modifier, and then the op-code
mnemonic. This makes best use of the
stack at assembly time. Also, each as-
sembler word is set off by blanks, as is
required for sil Forth source text.

ROL A

LDY #1

STA DATA,X
CMP DATA,Y
ADC (06,X)
STA (POINT),Y
IMP (VECTOR)

A ROL,

1 # LOY,

DATA ,X STA,
DATA ,Y CMP,
6 X) ADC,
POINT)Y STA,
VECTOR) IMP,

(.A distinguishes from hex number 0A)

The words DATA and VECTOR specify
machine addresses. In the case of "6)X
ADC," the operand memory address $0006
was given directly. This is occasionally
done if the usage of a value doesn't justify
devoting the dictionary space to a symbol-
ic value.

6502 CONVENTIONS
Stack Addressing

The data stack is located in z-page,
usually addressed by "Z-PAGE,X". The
stack starts near $009E and grows down-
ward. The X index register is the data
stack pointer. Thus, incrementing X by
two removes a data stack value; decre-
menting X twice makes room for one new
data stack value.

Sixteen bit values are placed on the
stack according to the 6502 convention;
the low byte is at low memory, with the
high byte following. This allows "indexed,
indirect X" directly off a stack value.

The bottom and second stack values
are referenced often enough that the sup-
port words BOT and SEC are included.
Using

BOT LDA, LDA (0,X)
BOT 1+ ORA, ORA(1,X)
SEC ORA, ORA (2,X)
SEC 1+ ORA, ORA (3,X)

To obtain the 1l4-th byte on the stack:
BOT 13 + LDA,

RETURN STACK

The Forth Return Stack is located in
the 6502 machine stack in Page 1. It
starts at $0LFE and builds downward. No
lower bound is set or checked as Page 1
has sufficient capacity for all (non--
recursive) applications.

By 6502 convention the CPU's register
points to the next free byte below the bot-
tom of the Return Stack. The byte order
follows the convention of low significance
byte at the lower address.

Return stack values may be obtained
by: PLA, PLA, which will pull the low
byte, then the high byte from the return
stack. To operate on aribitrary bytes, the
method is:

1) save X in XSAVE
to bring the S

2) execute TSX,
register to X.

to address the lowest
byte of the return stack. Offset
the value to address higher
bytes. (Address mode s
automatically set to ,X.)

3) use RP)

4) Restore X from XSAVE.

As an example, this definition non-
destructively tests that the second item
on the return stack (also the machine
stack) is zero.

CODE 1S-IT (zero?)
XSAVE STX, TSX,
return stack)

RP) 2+ LDA, RP) 3 + ORA,
(or 2nd item's two bytes

(setup for

given, the op-code uses z-page or absolute BOT LDA, assembles LDA (0,X) and together)
addressing. The address modes are deter- SEC ADC, assembles ADC (2,X) 0= IF, INY, THEN, (if zero, bump
mined by: Y to one)
BOT leaves 0 on the stack and sets the TYA, PHA, XSAVE LDX, (save
Symbol Mode Operand address mode to ,X. SEC leaves 2 on the low byte, rstore data stack)
stack also setting the address mode to ,X. PUSH IMP, END-CODE (push
A accumulator none boolean)
immediate 8 bits only Here is a pictorial representation of
WX indexed X z-page or the stack in z-page. Return Stack
absolute
,Y indexed Y z-page or hi byte second
absolute sec high PR) =$0101,X--> | lo byte item
X) indexed indirect X z-page only sec low
)Y indirect indexed Y z-page only hi byte bottom
) indirect absolute only bot high io byte item
none memory z-page or bat low ==X offset
absolute above $0000 S--> free byte
Here is an examples of code to "or" to
the accumulator four bytes on the stack:
FOR TH DIMENSIONS

Page 144

FORTH REGISTERS

Several Forth registers are available
only at the assembly level and have been
given names that return their memory ad-
dresses. These are:

IP address of the Interpretive
Pointer, specifying the next Forth
address which will be interpreted
by NEXT.

W address of the pointer to the code
field of the dictionary definition
just interpreted by NEXT., W-l
contains $6C, the op-code for in-
direct jump. Therefore, jumping
to W-1 will indirectly jump via W
to the machine code for the def-
inition.

UP User Pointer containing ad-
dress of the base of the user
area.

N a utility area in z-page from
N-1 thru N+7.

CPU Registers

When Forth execution leaves NEXT to
execute a CODE definition, the following
conventions apply:

1. The Y index register is zero, It
may be freely used.

2. The X index register defines the
fow byte of the bottom data stack
item relative to machine address
$0000.

3. The CPU stack pointer S points
one byte below the low byte of the
bottom return stack item. Exe-
cuting PLA, will pull this byte to
the accumulator.

4. The accumulator may be freely
used.

5. The processor is in the binary
mode and must be returned in that
mode.

XSAVE

XSAVE is a byte buffer in z-page, for
temporary storage of the X register.
Typical usage, with a call which will
change X, is:

CODE DEMO
XSAVE STX, USER'S JSR,
(which will change X)
XSAVE LDX, NEXT IMP,
END-CODE

N Area
When absolute memory registers are

required, use the W Area' in the base
page. These registers may be used as

pointers for indexed/indirect addressing or
for temporary values. As an example of
use, see CMOVE in the system source
code.

The assembler word N returns the
base address (usually $00D1). The N Area
spans 9 bytes, from N-1 thru N+7. Con-
ventionally, N-1 holds one byte and N,
N+2, N+4, N+6 are pairs which may hold
16-bit values. See SETUP for help on
moving vaiues to the N Area.

It is very important to note that many
Forth procedures use N. Thus, N may only
be used within a single code definition.
Never expect that a value will remain
there, outside a single definition!

CODE DEMO HEX
6 #LDA, N1 - STA,
(setup a counter)

BEGIN, 8001 BIT,
(tickle a port)

N 1 - DEC,
(decrement the counter)

0= UNTIL, NEXT JMP, END-CODE
(loop till negative)

SETUP

Often we wish to move stack values to
the N area. The sub-routine SETUP has
been provided for this purpose. Upon en-
tering SETUP the accumulator specifies
the quantity of 16-bit stack values to be
moved to the N area. That is, A may
be 1, 2, 3, or 4 only:

3 # LDA, SETUP JSR,
stack before N after stack after

H high H
G low bot--> G_
F F
E_ E
0 D

sec--> C_ C
B B

bot--> A_ N--> A

CONTROL FLOW

Forth discards the usual convention of
assembler labels. Instead, two replace-
ments are used. First, each Forth defini-
tion name is permanently included in the
dictionary, This allows procedures to be
located and executed by name at any time
as well as be compiled within other defini-
tions.

Secondly, within a code definition,
execution flow is controlled by label-less
branching according to "structured pro-
gramming”. This method is identical to
the form used in colon-definitions. Branch
calculations are done at assembly time by
temporary stack values placed by the con-

trol words:

BEGIN,
THEN,

UNTLL, IF, ELSE,

Here again, the assembler words end
with a comma, to indicate that code is
being produced and to clearly differen-
tiate from the high-ievel form.

One major difference occurg! High-
level flow is controlled by run-time
boolean values on the data stack. As-
sembly flow is instead controlled by pro-
cessor status bits. The programmer must
indicate which status bit to test, just be-
fore a conditiona! branching word (IF,
and UNTIL,).

Examples are:

PORT LDA, 0= IF,<a> THEN,
(read port, if equal to zero do<a>)

PORT LDA, 0= NOTIF, <a> THEN,

(read port, if not equal to zero
do <)

The conditional specifiers for 6502 are:

cs test carry set C=1 in
processor
status
1. byte less than zerc N=1
0= equal to zero Z=1
CS NOT test carry clear C=0
0<NOT test positive N=0
0= NOT test not equal zero Z=0

The overflow status bit is so rarely
used, that it is not included. If it is
desired, compile:

ASSEMBLER DEFINITIONS HEX
50 CONSTANT VS (test overflow
set)

CONDITIONAL LOOPING

A conditional loop is formed at as-
sembler level by placing the portion to be
repeated between BEGIN, and UNTIL,:

6 # LDA, N STA,
(define loop counter in N)
BEGIN, PORT DEC,
(repeated action)
N DEC, 0= UNTIL,
(N reaches zero)

First, the byte at address N is losded
with the value 6. The beginning of the
loop is marked (at assembly time) by
BEGIN,. Memory at PORT is decrement-
ed, then the loop counter in N is decre-
mented. Of course, the CPU updates its
status register as N is decremented.
Finally, a test for Z=1 is made; if N hasn't
reached zero, execution returns to
BEGIN,. When N reaches zero (after exe-
cuting PORT DEC, 6 times) execution
continues ahead after UNTIL,. Note that

FORTH DIMENSIONS I11/5

Page 145

BEGIN, generates no machine code, but is
only an assembly time locator.

CONDITIONAL EXECUTION

Paths of execution may be chosen at
assembly in a similar fashion and done in
colon-definitions. In this case, the branch
is chosen based on a processor status con-
dition code.

PORT LDA, O= I,
THEN, (continuing code)

(for zero set)

In this example, the accumulator is
loaded from PORT. The zero status is
tested if set (Z=1). If so, the code (for
zero set) is executed. Whether the zero
status is set or not, execution will resume
at THEN,.

The conditional branching also allows a
specific action for the false case. Here
we see the addition of the ELSE, part.

PORT LDA, 0=1IF, < for zero set>
ELSE, <for zero clear>
THEN, <continuing code>

The test of PORT will select one of
two execution paths, before resuming
execution after THEN,. The next
example increments N based on bit D7 of
a port:

PORT LDA, (fetch one byte)
K IF, N DEC, (if O7=1, decrement
N)
ELSE, N INC, (if D7=0, increment
N)
THEN, (continue ahead)

CONDITIONAL NESTING

Conditionals may be nested, according
to the conventions of structured pro-
gramming. That is, each conditional se-
quence begun (IF, BEGIN,) must be ter-
minated (THEN, UNTIL,) before the next
earlier conditional is terminated. An
ELSE, must pair with the immediately
preceding IF,.

BEGIN, < code always executed>
CS IF, <code if carry set>
ELSE, <code if carry clear>
THEN,
0= NOT UNTIL, (loop till condition
flag is non-zero)
<{code that continues onward>

Next is an error that the assembler
security will reveal.

BEGIN, PORT LDA,
0=F, BOTINC,
0=UNTIL, ENDIF,

The UNTIL, will not complete the
pending BEGIN, since the immediately
preceding IF, is not completed. An error
trap will occur at UNTIL, saying "condi-
tionals not paired”.

RETURN OF CONTROL, revisited

When concluding a code definition,
several common stack manipulations often
are needed. These functions are elready
in the nucleus, so we may share their use
just by knowing their return points. Each
of these returns control to NEXT.

POP POPTWO remove one 16-bit stack

values.

POPTWO remove two l6-bit stack
values.,

PUSH add two bytes to the data
stack.

PUT write two bytes to the
data stack, over the
present bottom of the
stack.

Our next example complements a byte
in memory. The bytes' address is on the
stack when INVERT is executed.

CODE INVERT (a memory byte) HEX

BOT X) LDA, (fetch byte addressed
by stack)
FF # EOR, (complement accumu-
lator)

BOT X) STA, (replace in memory)

POP IJMP, END-CODE (discard
pointer from stack,
return to NEXT)

A new stack value rmay result from 8
code definition. We could program plecing
it on the stack by:

CODE ONE (put 1 on the stack)
DEX, DEX, (mske room on the
data stack)
1 # LDA, BOT STA, (store low byte)
BOT 1+ STY, (hi byte stored from Y
since = zero)
NEXT IMP, END-CODE

A simpler version could use PUSH:

CODE ONE
1 # LDA, PHA, (push low byte to
machine stack)
TYA, PUSH IMP, (high byte to
accumulator, push to data stack)
END-CODE

The convention for PUSH and PUT is:
1. push the low byte onto the
machine stack.
2. leave the high byte
accumulator.
3. jump to PUSH or PUT.

in the

PUSH will place the two bytes as the
new bottom of the data stack. PUT will
over-write the present bottom of the
stack with the two bytes. Failure to push
exactly one byte on the machine stack will
disrupt execution upon usage!

FOOLING SECURITY

Occasionally we wish to generate
unstructured code. To accomplish this, we
can control the assembly time security
checks, to our purpose. First, we must
note the parameters utilized by the
control structures at assembly time. The
notation below is taken from the as-
sembler glossary. The --- indicates as-
sembly time execution, and separate input
stack values from the output stack values
of the words execution.

BEGIN, ==> --- addrB 1
UNTIL, ==> "addtB 1 c¢cc ---
IF, ==> cc --- addrl 2
ELSE, ==> addrl 2 --- addrf 2
THEN, ==> addrl 2 -
or addrE 2 ——
The address values indicate the

machine location of the corresponding
'B'EGIN, 'T'F, or 'E'LSE,. cc represents the
condition code to select the processor
status bit referenced. The digit 1 or 2 is
tested for conditional pairing.

The general method of security controi
is to drop off the check digit and manipu-
late the addresses at assembly time. The
security againet errors is less, but the pro-
grammer is usually paying intense atten-
tion to detail during this effort.

To generate the equivalent of the high
level:

BEGIN <a> WHILE REPEAT
we write in assembly:

BEGIN, DROP (the check digit
1, leaving addrB)

L

(leaves addrl and digit

2)

CST,

ROT (bring addrB to bottom)
IMP, (to addrB of BEGIN,)
ENDJF, (complete false for-
ward branch from IF,)

It is essential to write the assembly
time stack on paper, and run through the
assembly steps, to be sure that the check
digits are dropped and re-inserted at the
correct points and addresses are correctly
available.

ASSEMBLER GLOSSARY

Specify 'immediate' addressing
mode for the next op-code gener-
ated.

Y Specify ‘indirect indexed Y' ad-
dressing mode for the next op-
code generated.

Page 146

FORTH DIMENSIONS 111/5

A

0«

;CODE

ASSEMBLER

BEGIN,

FORTH DIMENSIONS 1075

Specify ‘indexed X' addressing
mode for the next op-code gener-
sted.

Specify ‘indexed Y' addressing
mode for the next op-code gener-
ated.

Specify asccumulator addressing
mode for the next op-code gener-
ated.

—- cc (assembling)

Specify that the immediately fol-
lowing conditional will branch
based on the processor status bit
being negative (Z=1), i.e., less
than zero. The flag cc is left at
assembly time; there is no run--
time effect on the stack.

-—- ce (assembling)

Specify that the immediately fol-
lowing conditional will branch
based on the processor status bit
being equal to zero (Z=1). The
flag cc is left at assembly time;
there is no run-time effect on the
stack.

Used to conclude a colon-defini-
tion in the form:

H <name> ... ;sCODE
<assembly code> END-CODE
Stop compilation and terminate a
new defining word <name> . Set
the CONTEXT vocabulary to AS-
SEMBLER, assembling to machine
code the following nmenonics. An
existing defining word must exist

in name prior to ;CODE.

When <name>
the form:
<name> <namex>

the definition <namex> will be
created with its execution proced-
ure given by the machine code fol-
lowing <name> . That is, when
<namex> is executed, the address
interpreter jumps to the code fol-
lowing ;CODE in <name> .

later executes in

in FORTH

Make ASSEMBLER the CON-
TEXT vocsbulary. It will be
searched first when the input
stream in interpreted.

--- addr 1

(assembling)
(run-time)
Occurs in a CODE definition in
the form:

BEGIN, . . . cc UNTL,
At run-time, BEGIN, marks the
start of an assembly sequence re-
peatedly executed. It serves as
the return point for the corres-
ponding UNTIL,. When reaching
UNTIL, a branch to BEGIN, will
occur if the processor status bit
given by cc is false; otherwise

CPU

cs

ELSE,

exescution continues shead.

At sssembly time, BEGIN, leaves
the dictionary pointer address
sddr and the vaive 1 for later
testing of conditionary pairing by
UNTLL,.

-== n (assembling)
Used during code assembly in the
form:

BOT LDA, or BOT 1+ X) STA,

Addresses the bottom of the dsta
stack (containing the low byte) by
selecting the ,X mode and leaving
n=0, at sssembly time. This value
of n may be modified to another
byte offset into the data stack.
Must be followed by & multi-mode
op-code mnemonic.

A defining word used in the form:
CODE <name>.... END-CODE

to create a dictionary entry for
<name> in the CURRENT vocabu-
lary. Name's code field contains
the eddress of its parameter
field. When <name> is later
executed, the machine code in this

parameter field will execute.
The CONTEXT vocebulary is
made ASEMBLER, to make

available the op-code mnemonics.

n --- (compiling assemblier)
An sssembler defining word used
to crate assembler mnemonics
that have only one addressing
mode:

EA CPU NOP,

CPU creates the work NOP, with
its op-code EA as a parameter.
When NOP, later executes, it
assembles EA as a one byte op-
code.

--- cc (assembling)
Specify that the immediately fol-
lowing conditional will branch
based on the processor carry is set
(Cz1). The flag cc is left at as-
sembly time; there is no run-time
effect on the stack.

(run-time)
--- addr2 2
(assembling)
Occurs within a code definition in
the form:
cc IF, <{trye part> ELSE,
<false part> THEN,
At run-time, if the condition code
specified by cc is false, execu-
tion will skip to the machine code
following ELSE,. At sssembly
time ELSE, sssembles a forward
jump to just after THEN, and re-

addrl 2

solves a pending forward branch
from IF. The values 2 ars used for
error checking of conditional pair-
ing.

ENO-CODE

¥,

INDEX

P

An error check word marking the
end of a CODE definition. Suc-
cessful execution to and including
END-CODE will unsmudge the
most recent CURRENT vocabu-
lary definition, making it available
for execution. END-CODE also
exits the ASSEMBLER making

CONTEXT the same as
CURRENT, This word previously
was named C;
cc --- addr 2 (assembly
time)
--- addr 2 (assembly-
time)

Occurs within a code definition in
the form:
cc IF, <true part> ELSE,
false part THEN,

At run time, IF, branches based on
the condition code cc, (X or 0=
or CS). If the specified processor
status is true, execution continues
shead, otherwise branching occurs
to just after ELSE, (or THEN,
when ELSE, is not present). At
ELSE, execution resumes at the
corresponding THEN,.

When assembling, IF, creates an
unresolved forward brench based
on the condition code cc, and
leaves addr and 2 for resolution
of the branch by the corresponding
ELSE, or THEN,. Conditionals
may be nested.

--- addr (essembling)
An array used within the assem-
bler, which holds bit patterns of
allowable addressing modes.

--- addr (assembling)
Used in a code definition in the
form:

IPSTA, or IP)Y LDA,
A constant which leaves at as-
sembly time the address of the
pointer to the next FORTH exe-
cution address in a colon-defini-
tion to be interpreted.

At run-time, NEXT moves I[P
ahead within a colon-definition.
Therefore, IP points just after the
execution address being inter-
preted. If an in-line data struc-
ture has been compiled (i.e., a
character string', indexing ahead
by IP can access this data:

IP STA, or IP)Y LDA,

Page 147

M/CPU

MEM

MODE

NEXT

ioads the third byte ahead in the
colon-definition being interpreted.

nl n2 --- (compiling assembler)
An assembler defining word used
to create assembler mnemonics
that have multiple address modes:
1C6E 60 M/CU ADC,

M/CPU creates the word ADC,

with two parameters. When
ADC, later executes, it uses
these parameters, along with

stack values and the contents of
MODE to calculate and assemble
the correct op-code and operand.

Used within the assembler to set
MODE to the default value for
direct memory addressing, z-page.

--- addr
A variable wused within the
assembler, which holds a flag
indicating the addressing mode of
the op-code being generated.

--- addr (assembling)
Used in a code definition in the
form:

N1l -
ADC,

STA, or N 2+)Y

A constant which leaves the ad-
dress of a 9 byte workspace in z-
page. Within a single code defini-
tion, free use may be made over

the range N-1 thru N+7. See
SETUP.

--- addr (assembling)
A constant which leaves the

machine address of the Forth ad-
dress interpreter. All code defini-
tions must return execution to
NEXT, or code that returns to

NEXT (i.e., PUSH, PUT, POP,
POPTWO).
ccl —- ecl (assembly-time)

When assembling, reverse the con-
dition code for the following con-
ditional. For example:

0= NOT IF, <true part> THEN,

will branch based on 'not equal to
zero'.

addr

n ---

(assembling)
(run-time)

A constant which leaves (during
assembly) the machine address of
the return point which, at run-
time, will pop a 16-bit value from
the data stack and continue inter-
pretation.

POPTWO

PUSH

RP)

SEC

THEN,

--- addr (assembling)

nl n2 (run-time)

A constant which leaves (during

assembly) the machine address of

the return point which, at run--

time, will pop two 16-bit values

from the data stack and continue
interpretation.

--- addr (assembling)

-~ n (run-time)
A constant which leaves (during
assembly) the machine address of
the return point which, at run--
time, will add the accumulator (as
high-byte) and the bottom
machine stack byte (as low-byte)
to the data stack.

--- addr (assembling)

nl --- n2 (run-time)
A constant which leaves (during
assembly) the machine address of
the return point which, at run--
time, will write the accumulator
(as high-byte) and the bottom
machine stack byte (as low-byte)
over the existing data stack 16-bit
value (nl).

-— (assembly-time)

Used in a code definition in the
form:

RP) LDA, or RP) 3+ STA,
Address the bottom byte of the
return stack (containing the low
byte) by selecting the ,X mode and
leaving n=$101. n may be modi-
fied to another byte offset. Be-
fore operating on the return stack
the X register must be saved in
XSAVE and TSX, be executed; be-
fore returning to NEXT, the X
register must be restored.

--- n (assembling)
Identical to BOT, except that
n=2. Addresses the low byte of
the second 16-bit data stack value
(third byte on the data stack).

--= (run-time)
addr 2 --- (assembly-time)
Occurs in a code definition in the
form:

ce IF, <true part> ELSE,
<false part> THEN,

At run-time THEN, marks the
conclusion of a conditional struc-
ture. Execution of either. the true
part or false part resymes fol-
lowing THEN,. When assembling
addr and 2 are used to resolve the
pending forward branch to THEN,.

UNTIL,

x)

XSAVE

«== (run-time)
addr1 cc --- (assembling)
Occurs in a CODE definition in

the form:

BEGIN, . . . cc UNTIL,

At run-time, UNTIL, controls the
conditional branching back to
BEGIN,. If the processor status
bit specified by cc is false, exe-
cution returns to BEGIN,; other-
wise execution continues ahead.

At assembly time, UNTIL, as-
sembles a conditional relative
branch to addr based on the condi-
tion code cc. The number 1 is
used for error checking.

--- addr (assembling)
Used in a code definition in the
form:

UP LDA, or UP)Y STA,

A constant leaving at assembly
time the address of the pointer to
the base of the user area. i.e.,

HEX 12 # LDY, UP)Y LDA,

load the low byte of the sixth user
variable, DP.

--- addr (assembling)
Used in a code definition in the
form:

W1+ STA, or W1 -JIMP, or
W)Y ADC,

A constant which leaves at as-
sembly time the address of the
pointer to the code field (exe-
cution address) of the Forth dic-
tionary word being executed. In-
dexing relative to W can yield
any byte in the definition's
parameter field. i.e.,

2 #LDY, W)YLDA,

fetches the first byte of the
parameter field.

Specify ‘indexed indirect X' ad-
dressing mode for the next op-
code generated.

--- addr (assembling)
Used in a code definition in the
form:

XSAVE STX, or XSAVE LDX,

A constant which leaves the ad-
dress at assembly time of a tem-
porary buffer for saving the X
register. Since the X register in-
dexes to the data stack in z-page,
it must be saved and restored
when used for other purposes.

Page 148

FORTH DIMENSIONS 1l1/5

FORTH Assembler for 6502 by W.

F. Ragsdale July i, 1980

SCR # 81
0 (FORTH-65 ASSEMBLER WPR-79JUNO))
1 HEX
2 VOCABULARY ASSEMBLER IMMEDIATE ASSENBLER DEFIMITIONS
3
4 (REGISTER ASSIGNMENT SPECIFIC TO IMPLEMENTATION
5 EO CONSTANT XSAVE DC CONSTART W DR COMSTANT UP
6 D9 CONSTANT 1IP DL CONSTANT N
7
8 (NUCLEUS LOCATIONS ARE IMPLEMENTATION SPECIPIC)
9 ° (DO) OE + CONSTANT POP
10 © (DO) 0OC + CONSTANT POPTWO
11 * LIT 13 4+ CONSTANT PUT
12 © LIT 11 + CONSTANT PUSH
13 ° LIT i8 + CONSTANT NEXT
14 ° EXECUTE NFA !1 - CONSTANT SETUP
15
SCR # 82
0 (ASSEMBLER, CONT. WFR-780CTO)3)
1 0 VARIABLE INDEX -2 ALLOT
2 0909 , 1505 , 0115 , 8011 , 8009 , 1DOD , 8019 , 8080 ,
3 0080 , 1404 , 8014 , 8080 , 8080 , 1COC , 80lC , 2C80 ,
4
S 2 VARIABLE NMODE
6 : .A 0 MODE | ; : # 1 MODE | ; s MEM 2 MODE | ;
7 ,X 3 MODE | ; : LY 4 MODE | ; : X) 5 uodbR ! ;
8 :)Y 6 MODE ! ; 1) F MODE ! ;
9
10 : BOT X 0 ; (ADDRESS THE BOTTOM OF THE STACK *)
11 : SEC X 2 (ADDRESS SECOND ITEM OM STACK *)
12 : RP) ,X 101 (ADDRESS BOTTOM OF RETURN STACK *)
13
14
15
SCR # 83
0 (UPMODE, CPU WPR~-780CT23)
1
2 UPMODE IF MODE @ 8 AND O= 1IF 8 MODE +(THEN TREN
3 1 MODE @ OF AND ~DUP IF O DO DUP + LOOP THEN
4 OVER 1+ @ AND 0= ;
5
6 : CPU <BUILDS C, DOES> C@ C, MEM ;
7 00 CPU BRK, 18 cPU CLC, D8 CPU CLD, S8 CPU CLI,
8 B8 CPU CLV, CA CPU DEX, 88 CPU DEY, BE8 CPU INX,
9 C8 CPU INY, EA CPU NOP, 48 CPU PHA, 08 CPU PHP,
10 68 CPU PLA, 28 CPU PLP, 40 CPU RTI, 60 CPU RTS,

—
—

98 CPU TYA,

— b
v e wN

38 CPU SEC, F8 CPU SED, 78 CPU SEI, AA CPU TAX,
A8 CPU TAY, BA CPU TSX, 8A CPU TXA, 9A CPU TXS,

FOR TH DIMENSIONS /5

Page 147

"
[2)
=

WO NI WNE WN- O

OOV EWN~O

o e g pus P
VWEBEWLUN~O

SCR

[
COVBIYORO VNI WN~-O

[
—

g
WwrwN

4 84
(M/CPU, MULTI-M
: M/CPYU <BUILDS
DUP 1+ @ 80
FFOO AND UPNM
3 ERROR TH
INDEX + C@ +
OF AND 7 <
1C6E 60 M/CPU AD
1C6E 40 M/CPU EO
1C6E EO M/CPU SB
0COC C1 M/CPU DE
0DOD 21 M/CPU RO
0486 EO M/CPU CP
OC8E A0 M/CPU LD
8480 40 M/CPU JM
¢ 85
(ASSEMBLER CONDIT
¢ BEGIN, HERE 1
¢ UNTIL, 7EXEC >R
: IF, C, HERE
¢ THEN, 7EXEC 2
IF SWAP !
: BELSE, 2 ?PAIRS
SWAP HER
: NOT 20 +
90 CONSTANT CS
DO CONSTANT O=
10 CONSTANT 0Oc<
90 CONSTANT »>=
? 86
(USE OF ASSEMBLER
t END~CODE

CURRENT @ CON

PORTH DEFINITIONS
t CODE
7EXEC CREATE
ASSEMBLER NME|

(LOCK ASSEMBLER IN
° ASSEMBLER CPA
LATEST 12 +ORIGIN
HERS 28 +ORIGIN
HERE 30 <4ORIGIN
* ASSEMBLER 6 +
BERE FEINCE |

ODE WFR-79MAR26)

c’ *
AND
ODE
EN
c'
IF

OP-CODES
DOES>
IF 10 MODE +| THEN OVER
UPMODE IF MEM CR LATEST ID.
cCe@ MODE C@
MODE C@ 7 AND
ELSE , THEN

IF MODE C@
c, THEK MEM
1C6E
LC6E
0D0D
0DOD
0414
1496
0480

co
00
01
41
81
A2
14

M/CPU
M/CPU
M/CPU
M/CPU
M/CPU
M/CPU
M/CPU

M/CPU
M/CPU
M/CPU
M/CPU
M/CPU
M/CPU
M/CPU
M/CPU

1C6E
1C6E
1C6C
ococ
000D
0486
048C
0484

CMP,
ORA,
ASL,
LSR,
STX,
LDX,
ISk,

c,
R,
c,
C,
L,
X,
Y,
P,

AND,
LDA,
STA,
INC,
ROR,
cPY,
STY,
BIT,

IONALS WFR-79MAR26)

: IMMEDIATE

| ?PAIRS R> C, HERE i+ - C, ;
0 ¢, 2 ; IMMEDIATE
TPAIRS HERE OVER C@

ELSE OVER 1+ - SWAP C!

HERE 1+ 1 JMP,

£ OVER 1+ - SWAP

IMMEDIATE

THER ; IMMEDIATE

Cct IMMEDIATE
(REVERSE ASSEMBLY TEST)

(ASSEMBLE TEST FOR CARRY SET)

(ASSEMBLER TEST FOR EQUAL ZERO)

(ASSEMBLE TEST FOR LESS THAN ZERO)
)
)

2

(ASSEMBLE TEST FOR GREATER OR EQUAL ZERO

{ >= IS ONLY CORRECT AFTER SUB, OR CMP,

WFR-79APR28)
(END OF CODE DEFINITION *)

TEXT 1 ?7EXEC ?2CSP SMUDGE ; [IMMEDIATE
DECIMAL
{ CREATE WORD AT ASSEMBLY CODE LEVEL *)
[COMPILE] ASSEMBLER
M ICSP ; IMMEDIATE
TO SYSTEM)
° ;CODE 8 + ! (OVER-WRITE SMUDGE)
{ (TOP NFA)
f (FENCE)
! (DP)
32 +ORIGIN { (VOC-LINK)

FORTH DIMENSIONS /5

APPLICATIONS

A TECHNICAL TUTORIAL:
TABLE LOOKUP EXAMPLES

Henry Laxen
L axen and Harris, Inc.

One of the problems with FORTH, as
with every rich language, is that given an
idea, there are many ways of expressing
it. Some are more eloquent than others,
but it takes practice and experience to
create the poetry and avoid the mundane.

This article is written to illustrate 4
different ways of implementing a simple
Table Lookup operation. The goal is the
following: we want to create a FORTH
word, named DAYS/MONTH which be-
haves as follows: Given an index on the
stack which is the month number, such as
1 for January and 12 for December, we
want to return the number of days in that
month, in a normal year. Thus if we exe-
cute 6 DAYS/MONTH it should return 30,
which is the number of days in the month
June. [will use the Starting FORTH dia-
lect in this paper, not fig-FORTH, so if
you try to type in the examples, they
probably won't work unless you are running
a systemn that behaves as described in
Starting FORTH (or the 79-Standard).

Our first attempt at solving this prob-
lem uses the FORTH word VARIABLE.
The code is as follows:

VARIABLE 'DAYS/MONTH 22 ALLOT

31 'DAYS/MONTH
28 'DAYS/MONTH
31 'DAYS/MONTH
30 'DAYS/MONTH
31 'DAYS/MONTH
30 'DAYS/MONTH 10
31 DAYS/MONTH 12
31 'DAYS/MONTH 14
30 DAYS/MONTH 16
31 'DAYS/MONTH 18
30 'DAYS/MONTH 20
31 'DAYS/MONTH 22
: DAYS/MONTH (INDEX --- VALUE)
1- 2% 'DAYS/MONTH * @ 3

DANEN
L P R L L L araunpan

+ + 4t

There is nothing significant about the '
(apostrophe), 1 only prefaced the VARI-
ABLE name with it because | want to use
the word DAYS/MONTH later. Now, what
happened is that VARIABLE allocated 2
bytes in the dictionary for the value of
DAYS/MONTH, The 22 ALLOT then allo-
cated another 22 bytes, for a total of 24
bytes, or 2*12 celis. We next proceeded
to initialize the values that were allocated
by explicitly calculating the offsets and
storing in the appropriate location.
Finaily, we defined DAYS/MONTH as a
colon definition which performs arith-
metic on the index, adds it to the start of
the table, and fetches the result.

Now, let's look at another way of doing

this that requires less typing and is also
more general. We will first define a word
called TABLE which will aid us in the cre-
ation of tables like the one sbove, What
we will do is first place the initial values
of the TABLE on the stack, together with
the number of the initial values. Then, we
will define TABLE to copy these into the
dictionary. Here is how it works:

:TABLE (NnNn-1..Nln---)
0 DO, LCOP;

CREATE 'DAYS/MONTH
3130313031313031303128
3112 TABLE

: DAYS/MONTH (INDEX --- VALUE)
1- 2% 'DAYS/MONTH + @ ;

Now this is considerably less typing than
the first way of doing it, but notice that]
had to reverse the order of the days per
month since that is the way stacks be-
have. | used CREATE instead of VARI-
ABLE because it does not allocate any
space for the initial value, but otherwise
behaves just like VARIABLE. The access
word DAYS/MONTH is identical to before,

I am still not satisfied, however, so
let's try it yet another way. Instead of
defining TABLE to add values to the dic-
tionary with , (comma) why not just use ,
directly?

CREATE *DAYS/MONTH
31,28.31,30,31,30,
31,31,30,31,30,31,

+ DAYS/MONTH (INDEX --- VALUE)
1- 2* 'DAYS/MONTH + @ ;

Now we are getting somewherel If we
simply use the FORTH word , (comma) to
add the value to the dictionary, see how
simple and readable it becomes. The
values are just typed in and separated by
commasl Is it possible to improve even on
this? Funny you should ask. There is a
quality that can be abstracted from the
definition of DAYS/MONTH, namely that
of table lookup. Wouldn't it be nice if we
didn't need to create that extra name
'DAYS/MONTH simply so we could access
it later in our : definition. Well, that is
where our friend CREATE OOES> comes
in.

Instead of defining a particular in-
stance of a TABLE, we will create a new
Defining Word celled TABLE, which acts
as follows. It creates 8 new entry in the
dictionary which when executed, uses the
value that was placed on the stack as an
index into itself and returns the contents
of that location. It would be coded as fol-
lows:

: TABLE
CREATE (=)
DOES> (INDEX --- VALUE)
SWAP 1- 2% + @ ;

TABLE DAYS/MONTH
31,28,31,30,31,30,
31,31,30,31,30,31,

Now we have truly generalized the
problem and solve it in an elegant way.
We have defined a new data type, called
TABLE, which is capable of defining new
words. Part of the definition of TABLE
was specifying the run-time behavior of
the word being defined. This is the code
following the DOES>. We then use the ,
(comma) technique discovered sbove to
initialize the table. Note that
DAYS/MONTH is now just a special case
of TABLE, and is in fact defined by the
new defining word TABLE.

The above examples illustrate the im-
mense diversity available in FORTH.
There is no obvious right or wrong, and the
simplest and usually most general solution
to a given problem must be discoversd,
usually by trial and error. FORTH's big-
gest virtue, in my opinion, is that it makes
the trial and error process extremely ef-
ficient, and therefore, allows people to
experiment and discover the best solution
for themselves.

HELP WANTED

Programmers needeed to produce new
polyFORTH systems and applications.
Two to three years extensive FORTH
experience working with mini/micro
computers and peripherals.

Contact: Patricia Jones

FORTH, INC.

2309 Pacific Coast Highway
Hermosa Beach, CA 90254
(213) 372-8493

fig-FORTH NOVA GROUP

Mr. Francis Saint, 2218 tLulu, Wichita,
KS 67211, (316) 261-6280 (days) has
formed a FIG Group to trade information
and assistance between fig-FORTH NOVA
users.

Pub. Comment: Hope to see a new,
clean listing. How about some other
specific groups!

FOR TH DIMENSIONS /5

Page 151

THE GAME. OF REVERSE
M. Burton

REVERSE is a number game written in SCR 0 228
FORTH, primarily as an exercise in array O (The Game of Reverse {(SEED, MOVES, RND, DIM, Y/N) 101201-MPB)
manipulation. The object of REVERSE is 1
to arrange a list of numbers (1 through 9) 2 0 VARIABLE SEED { Seed for randoa number generator)
in ascending numerical order from left to 3 0 VARIABLE MNOVES { Number of reverses so far)
right. Moves are made by reversing a sub- 4 CR ." Please depress any key:™ (Fertilise the seed)
set of the list (from the left). For) KEY SEED
example, if the current list is 6
7 : RND { Random number ganerator range -- rndé)
234516789 8 SEED @ 2%9 °* 3 «+ 32767 AND DUP S8EED ! 32767 °*/ ;
9
and four numbers are reversed, the list 10 : DIM (Reserve an integer word array n —-)
will be 11 <BUILDS 1+ 2 * ALLOT
12 DOES> ;
543216789 13
14 : Y/N { Get & Y or N response -~ flag)
13

then if five numbers are reversed, the

PAD 60 EXPECT PAD Co0 CR CR 935 AND 69 = ; -->
game is won.

123456789 SCR & 229
0 (The Game of Reverse (Game instructions! 101281-MPB)
To leave a game that is in progress,)
simply reverse zero numbers. 2 : INSTRUCT CR CR 18 SPACES ." The Game of REVERSE"
3 CR CR ." Hould you like instructions? " Y/N
REVERSE Glossary 4 IF ." The object of the game is to arrange a random list”
S CR .” of nine numbers into ascending humerical order in°®
SEED - 6 CR ." as fevw moves as possible Dby reversing a subset of"
The number seed for the pseudorandom 7 CR ." the 1list. For example, given the random list,” CR
number generator. SEED is initialized [] [+ B S 2 4 8 7 3 9 3 6 ° CR
as the REVERSE words are compiled, [CR .” reversing a subset of 4 would yield the list,” CR
by hitting any key on the console. 10 CR .* 8 4 2 5 7 3 9 1 6 " CR
11 CR ." To quit the game, simply reverse 0. CR CR
MOVES - 12 THEN ;
Keeps track of the number of moves 13
made in a REVERSE game. If more 14 ==>
than fifteen moves are made to win, 1%
you haven't got the hang of the game.
RND range -- random.number ® 230
The pseudorsndom number generator, { The Game of Reverse (ARRAY operations) 101281-MPB)

SCR
4]
courtesy of FORTH DIMENSIONS. 1
RND generates random.number in the 29 DIM ARRAY (Reserve s ten word array)
range 0 through range-1. RND is used 3
4
S
6
7
]
9

to scramble the number list.

: AQ { Fetch an array word index -- array.value)}
2 * ARRAY + ¢
DM n--
A defining word used in the form : At (Store an array wvord erray.valuelindex --)
n DIM xxxx 2 * ARRAY + 1
Produces an n+l length word array
named xxxx, with elements 0 through 10 : AINIT (Initislise ARRAY -)
n. For the REVERSE application, 11 10 1 DO I DUP Al LOOP ;
element 0 is not used. 12
13 : A. t Print ARRAY -}
Y/N -- flag 14 CR ." The list is now..."
Solicits &n input string from the con- 13 CR 6 SPACES 10 1 DO I Ae 3 .R LOOP ; -->
sole, then checks the first character of
the string for an uppercase or lower- £41g-FORTH Version 1.1% M. Burton

Page 152 FORTH DIMENSIONS W5

SCR 0 231 case 'Y'. If & 'Y' is present, the flag
0 { The Game of Reverse [ARRAY operations, cont.! 100781-NPD) returned is true, For any other char-
1 scter, the flag is false.

2 : ASCRAMBLE (Mix up the array values -

3 1 9 DO I RND 1+ (Caleulate K) INSTRUCT -

4 1 Ao (Get ARRAY(I) value) Prints the name of the game and then

s OVER AS { Get ARRAYIK) vslue) asks if Instructions are required. If

6 I At { Store ARRAYIK) in ARRAYII]) yss, instructions are displayed.

4 SWAP Al -1 (Store ARRAY(I) in ARRAYIK])

[] +LO00P ; ARRAY -

[2. ten word array that contsins the

10 : GETIN { Get amount to reverse -~ n) number list thet REVERSE works on.

11 BEGIN CR ." Reverse hov many? " Element zero of the list is not used.

12 PAD 80 EXPECT PAD @ 48 -

13 DUP OC OVER 9 > OR DUP AR index -- array.value

14 IF CR ." Only O through 9 is alloved. “ THEN O= Fetches the index array.value of

13 UNTIL CR -=> ARRAY and leaves it on the data
stack.

SCR & 232 Al array.value index —

0 (The Game of Reverse (ARRAY operations, comt.) 100701-MPB) Stores array.value into the index ele-
1 ment of ARRAY.
2 : AREVERSE (Reverss @ subset of ARRAY n-~-=)
3 DUP 2 /7 1+ 1 { Loop limits are 1 to (n/2)e¢1) AINIT -
4 DODUP I - 1+ { Calculate index n~I¢l) Initializes ARRAY with the numbers 1
3 pup A® SHAP (Get ARRAY{n-I+¢1)) through nine in game winning order.
6 I AC (Get ARRAYI(I))
7 SUAP At (Store ARRAY(I]) im ARRAY(n-I+l)) A, -
8 I At (Store ARRAY(n~I+¢l) in ARRAYII)) Displays ARRAY in an understandable
9 LOOP DROP ; format.
10
11 : ACHECK { Check for ascending seq. -- flag) ASCRAMBLE -
12 1 10 1 DO Using RND, scrambles the numbers in
13 I DUP A® = AND ARRAY for a new REVERSE game,
14 wor ;
18 ==> GETIN -n
Solicits the number of elements of the
list to reverse. If any character other

SCR & 233 than 0 through 9 is entered, GETIN
O (The Game of Reverse (REVERSE definition! 101201-MPB) prints *Only 0 through 9 is allowed.",
1 and solicits snother number.

2 : REVERSE (Play the game)

3 INSTRUCT AINIT AREVERSE n--

4 BEGIN Reverses the nth length subset of

S ASCRAMBLE O MOVES ! ARRAY, starting from element 1.

6 BEGIN

4 A. GETIN DUP O= ACHECK -- flag

6 IF 1 ELSE Checks ARRAY for proper ascending

9 AREVERSE 1 NOVES <+! ACHECK numerical order. If ARRAY is in the

10 THENR proper order, ACHECK returns a true

11 UNTIL flag.

12 A. CR ." Youmade " NMOVES @ . ." reverssls.” CR

13 CR .* Csre to play again? * Y/N Oe REVERSE --

14 UNTIL The game definition. Uses all pre-

13 CR .™ Thanks for playing REVERSE... " CR CR ; ;8 viously defined words to play the game
of REVERSE.

£1g~-FORTH Version 1.19% M. Burton

ok

TORTH DIMERGIONS TS Page 153

THE 31 GAME
Written by Tony Lewis 11/81

The "31 Game" is an attempt to use
FORTH fundamentals to produce an enter-
taining result. The object is to entice you
into anlyzing both the game itslef and the
methods used to produce it. The game
buffs might wish to know that I have been
an avid "player” (not gambler!) for over 30
years and have made extensive practical
studies of various games. Any phone
communication is welcome. | am two
years behind in my written corres-
pondence; so sending me letters which
require replies will prove futile. The pro-
gram is my first effort in FORTH. How-
ever, | have had extensive experience with
six different main frame assemblers plus a
little COBOL of the late 60's vintage.
Any constructive suggestions on general
style and technique are welcome, hut I am
not really interested in being told that 1
could heve shaved 100 microseconds from
my run time or saved fifteen bytes of
memory. In fact, there are indeed extran-
eous "Cr's" which were included to get
good hard copy, also.

This program was written in micro-
motion (¢) FORTH-79 Version 1.2 to be
run on a8 48K *Apple 1.

Therefore, the following words are
non-standard but included in the micro-
motion FORTH.

Home - position the cursor to the
upper left corner of the CRT and clear the
CRT to blanks.

CV and CH are used to position the
input cursor snywhwere on the text win-
dow per Ex. 4 CV 10 CH moves the cursor
to the 4th {pun) row 10th column of
screen.

SETINV, SETFLASH, and SETNORM
set flags in the Apple output subroutines
which respectively cause all subsequent
characters to be displayed on the text
screen inverse, flashing and normal mode
without affecting chearcters already dis-
played.

In closing, I wish to thank Bill Ragsdale
for his gracious support and 1 especially
acknowledge the incredibly patient treat-
ment | received from Phil Wasson of
Micromotion as he neatly led me through
my FORTH initiation.

Tony Lewis

100 Mariner Green Dr.
Corte Madera, CA 94925
(415) 924-1481

(815) 924-4216 (late hours)

*Apple is a registered trademark of Apple
Computer, Inc.

SCRNS1
: HOWTOZ1 HOME « 31 GAME-TONY LEWIS) .~
31 GAME BY TONY LEWIS
*31° IS PLAYED WITH A DECk OF 24 CARDS
CONTAININING ONLY THE ACES THRU SI1XES.
EACH OF THMO PLAYERS ALTERNATELY DRAWS
CARDS FROM THE DECk. ONE CARD AT A TIME.
A RUNNING TOTAL IS KEPT OF THE COMBINED™

SUmM OF THE CARDS DRAWN. THE PLAYER WHO
ARKIVES AT THE SUM OF 31 EXACTLY WINS.
IF NEITHER FLAYER CAN MAKE 31 EXACTLY.
THEN THE FLAYER WHO MUST GO OVER 1
LOSES' THE GAME MAY APFEAR TOD EASY. BUT
17 1S DECEPTIVE. WHEN [OR IF7?) YOU WAVE"

WON THREE GAMES. TRY TO BEAT THE PROGRAM
FOR "THE EIG BET' BY TYPING IN B
RGTHER THAN "Y' OR "N° WHEN "NEW GAME?"
(OMES UF, THE "RIG BEY' IS A TWO GAME
SERIES. YOU GO FIKST IN GAME 1 AND
SECUND IN GAM: 2. YOU MAY BE SURFRISED'®
CR Ck CR ." HIT ANY kEY TO BEGIN"

KEY DROF HMOME &6 CV 3 —-—

SCHNS2

¢ WORDS OF WiSDOM 1 EY TONY LEWIS)
t THE “ANSWER" PAGE IS NEXT. 1T DOESN’T
REGUIRE ANY Sk ILL TO FIGURE OUT WHAT THE
CONSTANTS REALLY ARE' THEY ARE ENCODED
SU THAT YOU CAN ENTER AND COMFILE THE
GAME WITHOUT DISCOVERING ITS PRINCIFLE.
REMEMBER. THE PURPOSE OF THIS PROJECT
WAS TG GET YOU TO FIRST EXAMINE THE GAME
BY PLAYING IT. THEN FIGURE OUT HOW TO
APFROACH THE FROBLEM OF PROGRAMMING IT.
AND FINALLY GO BACK AND COMPARE YOUR
METHODS TO MINE. THE GAME 1S AMUSING
AND IS A LITTLE KNOWN CINCH BAR BEY. IF
YOU YAKE THE TIME TO ENTER 1T ONTO YOUR
FORKTH DISC. YOU SHOULD HAVE FUN BOTH
ANALYZING IT AND THEN ENTERTAINING [OR
HUSTLING) FRIENDS AND FAMILY WITH IT.

OF COURSE WHEN PLAYING AT A BaR YOU MUST
USE A REAL DECK OF CARDS AS 1T WOWLD
PROBABLY TEND TO DISCOURAGE WAGERING IF
YOU SHOULD BRING YOUR °HICRO® WITH YOU.)

SCREST

{ ENCODED CONSTANTS 31 BY TONY LEWIS)
« NOTE: THESE CONSTANTS ARE USED ONLY
TO CONCEAL THE SOLUTION OF THE GAME.
NOT TO MAKE THE CODING HARD TO FOLLOW!)

O CONSTANT ri
O CONSTANT 2
¢ CONSTANT 3
O CONSTANT 14

HE X

+ CODECONS

CODEF & AB BC & - 4108 - ~ kI !
DCFE S BACB S - 46C7 - = 2!
CEED® AC BDS - TFBe - " kK3 °
ECDEs CADB S -~ 1FD8 - ' k& ! 3
DECIMAL

SCRe%4

(SETUF AND UTILITY WORDS S1-TONY LEWIS)
CREATE DECH

O, 4. 4,4,4,4,.4,0,
VARIABLE CAKDSUM VARIABLE GAMESWON

1 NEWGAME « FIRST, NEW DECK)
7 1 DO I 25 DECr. + 4 SWAP ' LOOF
O CARDSUM ' MHOME 4 CV 3

1 SHOWDECHSUM CR CK
- % THE DECK NOW CONTAINS *
7 1D0GI ¢ NOY 3 5 28
DECK + C& ¢ DUCk ¢ DO) DuUP
IF 1+ 1 CR DO J . LOOP
ELSE DROP
THEN
LOOF 12 CH
. " THE RUNNING TOTAL 1§ * CARDSBUM @ .

1 BADPLAY
< FLAG BAD FLAY) O CR CR
<" BAD TYPE-IN" SHONDECKSUM 3

SCRESS
¢ UTILITY WORDS CONT. 31 BY TONY LEWIS)

s+ UPDATEDECKSUM « 1 YO & NOW ON STACK)
DU 28 DUP DECk + Cd DUP (ANY LEFT™)
If 1- ¢ UPDATE DECL) SWAF DECH + C!
CARDSLIM C@ + CARDSUM (' (NEW SUNM)
2 « CARD-IN-DECK FLAG)
ELSE DROF LROF DROF ©
THEN 3

S W' io

¢ MU INE WORDS

3 PLRYERMOVE CKR (K
. TYFE IN LARD 3§ - 6 " kEY CK
48 - (FROM ASCII, DLF DUF DUF
¢ CHECK VRLID ENTRY)
7

31 bY TONY LEWIS)

IF . CLARD 1 - 6)

IF UFLATEDECKSUM SWAF
HOME .“ YOUR CAKD WaS A " . DUF

O ¢ In CARD IN THE DECr."»
IF DROF (FLAG BmD PLAY) O
CR Ck ." CARD NOT IN DECK*®

SHOWDECK. SUM
THEN
ELSE DROF DROF BADFLAY
THEN
ELSE DROF DROF DRUF BADPLAY
THEN
SCHRES7
(MAINLINE WOKDS CONY.) BY TONY LEWIS)
1 MyCAKRD KR CR

IF v CHECKE 18T Pty SWITUM)
b RANDON 1+ DUF UPDATEDECH SUM DROF
ELSE k1 DUF CARDSUM Cd +
k2 - +1 MDD - DN
UFPDATEOR (¥ Sum
= ¢« T FLAG ON VALID CHOICE!
I# DRI 1 DAw UPDARTEDECS.SUM
1F
€i.5E DiROP = UF DATEDECK Sum
THE N 1 FLnBG=CaRD, SO NO DROH)
THEN
THE " MY PLay 15 ", SAGWLECHSum

Liran
U MeINLanE WORDS CONT. 1 By TuNY LLWIS!

T YORIRICAKL
B FoRYERMULE
v T i, PLAY LEAVES © ON STACK)
UNT L SHOWDE(r SUM
O« FLAVEKR MRDE LAST PLAY:

3 YOUWIN Gk OROSETINY
L0 On RS YOU WIN.* Se TNOKh
OAMLSWLIN Ca 1e GHMESWON (* 3

s YOMLOSE CR Ch SETINV
o YU LOSE. BETTER LUK rEAT TIME.™
SETNORM 3

BCRNS
¢ MAINLINE WORDS (UNT. T3 By TONY LEWIS)
3 NORMAL31 HWOME 7 v
." DO YOu WANT FIROHT PLAY™ Tyfe v OR N.”
CR rEY 78 = (N
Ir 1« 1ST MOVE) MYyCakD ELSE YOURCAD
THEN © Sk « SET UF LO0P:
PEGIN
3F + TRUE FLRAG SET ON MY(ARD)
21 CARDSIN Lo -
IF YOUWIN 1e « SET LOUr £l
ELSE 1 CARDSLUM C =
IF YUROSE)+ ELSE YOURCARL
tHEN
1HEN
£ 5SE ¢ REVURN FROM YOURCHRD)
Sl CuRDSUN Le -
1F YOULDSE 3+
ELSE 21 VARDSUM (o =
IF YIUWIN 1+ ELSE 2 AYCARD O
THEN i NOV 18T HOVE:
THEN
TreN
UNTIL O ¢« LOOP BACK IN MAINZL) g -

Page 154

FORTH DIMENSIONS /S~

o

r

SCRAS0
« MAINLINE WORDS CONY.
: MYBIGBETY CR CR
K3 DUP CARDSUM C& + 2 -
LUP UPDATEDECKSUM (=

31 BY TONY LEWIS)

K1 Mo -

IF DROP K3 DUP UPDATEDECHSUM DROP
THEN ." My PLAY 18 " . SHOWDECKSUM I 1

1 MYRIGBET2 CR CR
1Ff DUF UPDATEDECKSUM DROP
ELSE Ki CARDSUM Cd K2 ~ +1 MOD -~ DUF
UPDATEDECHKHSUM s
1F DROP KA DUP UPDATEDECKSUM DRNP
THEN
THEN ." MY PLAY IS *

\

« SHOWDECKSUM 3 3

SCRe61
¢ MAINLINE WORDS CONT.
i RIGBET!
YOURCARD
BF.GIN
IF ¢ TRUE FROM MYBIGBEYL)
1 CARDSUM Lé
1IF YOUWIN 1« GET LOOFP EXIT)
ELEE 21 CARDSUM Co =
ir YOULOBE
ELSE YOURCARD O
THEN
THIEN
riiE (RETURN FROUM
%G1 CARDSUM Lo .
IF YOULUSE

I HY TUNY LEWLS)

YUURLKRRL)

ELSkE 71 CARDSUM Co =
1 YOUWIN 1
ELSE MYBIGHETL «
TN
1irN
frer
UNTIL 3
LDURSHD
. MOINLINE WOKDS CONT. +1 8y TUNY LEWIS)
HIGBEY X
T MYBIGBET.
BEGIN

1+ 21 LARDSHUM e 2
IF YDULUSE 1

ELSE YOURCARD o
THEN

ELSE 31 ULARDSUM (L& -
1F YOULOSE 1
ELSE o« NOT
THEN

THERN

UNTIL

1657 MYBIGBETS O

EIW { T°B1

¢ MAINL INt WUKDS CutNY. 31 BY TUNY LEWIS)

SCRE6A
(PLAY THE GAME OF 31

BY TONY LEWIS)

: MAIN3L (LOGIC SHELL) O GAMESWON
SEGIN CR CR

" NEW GAME? *

. TYPE Y OR N OR B(B1G BET)."
CR CR KEY DUP 7@ - (CHECK FOR N)

¢ FALSE LEAVES 78 ON STACK FOR ’UNTIL®)

IF NEWGAME 66 = (D)
IF GAMESHON C9 2 >
1F BIGRET

ELSE HOME O .“ YOU HAVE WON
GAMESWON C® DUP .

" OAME" I =
F .~
ELBE ." 8."
THEN CR
.* YOU MUBT WIN 3 GAMES TO
.* PLAY 'BIG BET"."

THEN

EL.BE NORMAL 31

THEN

THEN
UNTIL 3

1 S1GAME HOWTO31 CODECONS MAINII 1

CODECONSA MAIN31

NEW GAME? TYPE ¥ OR N OR B(BIS MET).

DO YOU WANT FIRST PLAY? TYPE ¥ OR N.

My PLAY 18 2

[LR R

TYPE IN CARD

#

[R _NLR SR g

DECH. NOW CONTAINE

T AR -
[LIE RV)

THE RUNNING TOTaL IS 2

1 -6

YOUR CARD WAS A 3

B i 8 == -

o L

#

O L ity=
[L Y W)

DECY. NOW CONTAINS

-

-

4
b
-]

FHE KUNNING T01s. 15 5

MYy FLAY IS S

LN RN

]

T ME -

DECk. NOW CONTAING

TUE -

)

4

-3

THE RUNNING TOTAL 15 14

MY PLAY 18 4

THE DECK NOW CONTAINS

111

a2

33

4 4 4

-

o bo THE RUNNING Tutal 1S e
TYFE iN CARD | - &

YOUR CARL whH A %

THE DECH NOW CUNITRINS

111

222

53

4 4 4

5%

bbb THE RUNNING TOTAL 15 29

MY PLRY 15 2

THE DECK NOW CONTAINS

1t

> 2

L3

44 4

5%

b bo THE RUNNING J0TaL 1S oo
YOu LOSE, BETTER LUCH NEXT TIME.

NEW GAME © TYPE ¥ Ok N UR h(H1L BET.

YUU HAVE WON O BAMES.

YOU MUST WIN © BAM S 10 Flay BIG BE1.

Cnt 2 TYPE Y UR N UK BB BET),

FORTH CLASSES

LAXEN AND HARRIS, INC.

24301 Southland Drive

Hayward, CA 94545

(415) 887-2894
Introductory classes
Process control
Applications programming
Systems level programming

GREG STEVENSON
Ansheim, CA
(714) 523-4202

Introductory classes

HIGBE! S HOME
WEL COME 10 "HIE HEY'. THE FINAL PHAGE OF tYME IN CHRD 1 - &
THE 71 GAME. TWO GAMES Witk BE FLAYED." Yigh CARD WAL » e
(R . YOU WiLL GU FIKS) IN GAME ONE AND
I WILL WD FINST IN taMe Twis, 60uh Uk ™ IHE DECH nNwW CONTAINS KMWARE lNST‘TUTE a._ TECH
R NOLOGY
Bk T1 22 Box 8222
LR LR) _ . SN Stanford, CA 94305
“ HMI1 ANY FEY AND 1 WILL HEGIN GaME 2. 4 4434 (408) 338-2720
LR FEY DROF NEWGHML N5 -
SEFFLASH " BLG RET GaME o THE FINALE" -6 & THE RUNNING TOTAL IS 16 Introductory classes
CROUR SE TNGRM Graphics classes
My FLAY IS 1§
BIGRE 12
LR THE DECK NOW CONTAINS
WELL DID YOU HAVE I CORREL T ANWLYSIS ™ 111 INNER ACCESS CORPORATION
IF 80, THEN SEE 1+ vyOU AN FIGURE LLT" 222 Belmont, CA
K " T3
WHU WINS WLTH 5 18T CAKD UF ONE UK TR, 444 (a15) 591-8295
1T 5 A TOUGH CUMBINATORIAL PROBLEM: ‘" 55 : Introductory classes
1 SET FINAL EAIT IN MAINZLY 3 -~ 666 THE RUNNING TOTAL IS 17
TYPE IN CARD 1 - &
YOUR CARD WAS A 3 FORTH, INC.
) 2309 Pacific Coast Highway
THE DECK NOW CONTAINS Hermosa Beach, CA 90254
202 (213) 372-8493
b1 Introductory classes
4444 Advanced classes
BRI
666 THE RUNNING TOTAL 1S 20
FORTH DIMENSIONS /5 Page 155

SIMULATED TEKTRONICS
4010 GRAPHICS
WITH FORTH
by Timothy Huang
Portland, OR 97211

In this article, | am going to tell a true
story. For those people wh think FORTH
is a religion, they might just consider this
to be my testimony.

Last November, | had access to a very
little known, but well built microcomputer
-- MX 964/2 by Columbia Data Products,
Inc. of Maryland. This little machine has
two Z-80A CPUs. One is for the Host and
the other for terminal. There are 64 K of
RAM in the Host, and 32 K of the Ter-
minal RAM is dedicated to the 512 x 256
bit mapped graphics. It also includes a 9"
CRT, 2 doubie density drives, keyboard, &
serial ports, and 4 paraliel ports, Its all in
one piece. It boots up with wheatever
operating system is on the disk after
powered up and the carriage return key

Screen ¢ 10

0 ¢ Video coatgols focr Coluemoirs NIFé4 Tun 13109481
i FORTH DEFINITIONS DECINAL

3 - COTOXY (x ¥y =---

3 0 MAX 23 MIN 33 . SWA?

[} 3 MAS 79 MIN 33

H 18 EMIT EMiT EMIT .

)

? HOME 3% EMIT . SLA-VILEC 26 EMIT .

8 . CLR CLR-VIDEO HOME . . CLEARSCREEIN CLR

H
0 owW-C 10 EMIT . YP-C 11 EMIT | .- 8 BT
[§} RT-C 33 EMIT . . BELL 7 EMIT .
12
i3 CLREOS 23 EMIT . . CLREOL 2 EMIT .
14 ;. CLALINE 21 EMIT ,
1%

Screen % 1}
¢ + Graphic Package - & Ton 13130430

0 VARIABLE X
0 VARIABLE 11

0 VARIABLE Y
0 VARIABLE Y.

0 VARIABLE L

3 VARIMILE ¥

has been pressed. Beautiful isn't it?
£sC 37 EMIT . P 12 taT ., G5 29 EMIT (vevtos .

UsS 3: EMIT ¢ alpha) C CME 34 EMIT « nem-@telac)
EM 2% IMIT (clear video memory) .

However, there is a big problem, as
with most microcomputer companies, the

RN T P R

instruction manuals are terrible. And | VHITE £5C 97 EMIT . . BLASK B3¢ 122 EMIT .
mean terrible! Let me just give you one ’
examle: "For this information, please see 10
figure __", only to find there was no such i
figure and no page number. 12
Graphics are one of the most impor- 14
tant features with this machine. 512 x i

256 bit mapped graphic is the best that

.
can be expected under the price al- Screen § 12

Giaphic Package - 2 T $3/09/80 ,
lowance. There are quite a few well known g« Giaphic Fackes
microcomputers on the market claiming : - victon (W — Lo M)
High Resolution Graphics. But those High 3 1023 AND 32 /mop
Resolution ones are just like a big blob s
compared with the individual pixel that bit s . zcin (LeX, X =)
mapped. So, I have a nice machine with ' 32 . T ¢4 o LMIT .
all the fancy graphic capsbilities, but 7 . 1ok C(leY , Y —)
lacking the key to open it. Anxiety s 12 . EMIT 26 ¢+ IMIT .
mounts up quickly. v
10 PRC-OUT ¢ wM-—
I have a friend who's an excellent 1 VECTOR YGLM VECTOR ICEN .
8080/Z80 assembly programmer. He im- 12
plemented UCSD Pascal for a microcom- 13 : PAGE ¢ enter slpha {rom vector)
puter. Naturally, since he was the first e zsc Fr
one, it seemed logical to seek his help. is
With a poorly written computer manual
Screan § 13
3 ¢ Graphic Package 3 ToH 1209088 o
1
3 NIt -
: PAGE ©3 32 EMIT %6 EMIT 33 ERIT &8 1T
[
$ ENDRAV
¢ SVIT
] QRAW (4§ ===}
) 2UP Y ¢ SWAF pU? I @ SUAP PRE-OUT
10
H CHMOVE « a § ===
13 (4.3 DRAVW f
13
19

Peage 156

Screen # 14

9 ¢ Goaphic Package RER) TUd 16107 /08C
H RORAV (Relative ORAV)
¢ Y e. SR X @ SWAP ORAV (we at least knew that the graphic part
! simulates Tektronics 4010), he spent a
3 RMOVE « Relative MOVE whole week just trying to draw one mere
‘7 oe RORAW square along the edges of the CRT. Seem-
-) ingly it would be an easy job, but even so
: ACURSOR ;l;\t’"",‘f:'“ Ly o it never came near to what he would have
.0 b o liked. Later on, I spent a couple of weeks
: . P e 2 o twiddling with Microsoft BASIC compiler
:.1‘ SCROLL CAN R .“ press FUNC & 3 keys and it also produced lousy results.
:“3 “iNC-ERASE e i At the same time, | received my 8080
,‘ BLACK %2 ve ¢RL-OUT fig-FORTH listing. So, | typed the whole
15 60 K of assembly listing with the lousiest
Screen ¢ 19 text editor (i.e., ED. COM). It was a mon-
i . Craphic Packags -3 TR PR E Y S umental job. Nevertheless, | had the fig-
H FORTH up and running.
1 OINITO
3 INIT ROT L ! GUP Y SWAF ODU? % LMAE GMIVE . IBV ﬂ%w, ll wet:’e vgg 3:09;\3;61_& get it
9 SQUARE [T going. Equipped wi e power
5 INITO X ; L @ e OUF X 1 % LRAW [T and the poor manual, I set forth to try the
3 T eV @L# s LU Y . DRAV N graphics again. Again, [sought help from
? T &L Q- DUFX Y& DRAW e @ friend who works for Tektronics and is
[} X ® Y@L ®-DUP Y . DRAW COSSWN L experienced with FORTH. With FORTH,
s the whole task turned into a very simple
19 ERASESGU Cloa oy e-- job, compared to the previous attempts we
} INITO X @ L @ +« X ! LiKD-ERASC cm.i had with the assembly and BASIC. Thus,
] 18 L@ ¥ ! LINC-ERAZRE R now 1 am steadfast in my Dbelief in
i3 T QL @ - X ! LINE-ERAZL —— FORTH,
34 Y @ L@ - 1 LINC-ERASL et
i Screen 10 and 11 sets up the variables
" and the Columbia Mx964 hardware depen-
a”".'n,.' ”', b . cipsemiit dent words. The X-coordinate starts at
§ 7 Graphic Tackige Tt o Tefmrred the lower left corner as O, far right as
N IMIT1 ¢ advance < i v, cheit ringe 1023, while Y = 0O starts at the lower left
oo e e s saam mase . .- cCOMNET to the top 8s 779. Screen 12 to 14
y L N T Tk 5 T T defines the basic words, which draw the
! SRk e e e . line, move the cursor, relative draw and
H Y@ Y{ O - DUP ZUP DUF ¢ (IT ODROF LAcP TRCT I Iv.)
120 799 5 I oRuP DRLT v LUS THED THEE T move. Screen 15 defines the words to
: Lzt ! viae BRE ©oemEe draw a square and the erasing of it.
3 NiT: L e X @ (e T e v - . Screen 16 lets me draw many squares.
: HANYZQUAREE ¢ S s - 1 know that there are still a lot of nice
: “a vy .‘.v;‘\;. ...:Z.,,'.' ol e e e words that can be written, such as, to
t IHITS SGOARe T2 2 5 = b e GBE sueRie ees draw triangles, curve lines, etc. But, from
2 [Crmn s e e A ris this small exercise, [am totally convinced
3 UELALLD PEBE . Dv LOCD . Gl omi.decirls the FORTH is the one [will use from now
i JSLLAY o © DU LILAYIL 6T RO TT T3 on
iy

K PLATANOS\.
\ BANANAS ;,

PLATANOS 2

g e | PLA

3

f
[

—

FORTH DIMENSIONS /% Page 157

A VIDEO VERSION OF MASTER MIND
David Butler
Dorado Systems

The writing of this program served as
my introduction to FORTH, Using the fig-
FORTH Installation Manual, 1 stumbled my
way through the basic concepts of FORTH
and eventuslly arrived at this video
Master Mind game. The game is derived
completely from the original board version
of Master Mind, therefore, all credit for
the game itself goes to the Invicta Game
Company,

The program contains many of the
functions found in video editors, including
cursor management and character col-
lection. The sequence of this computer
version of the game is as follows: After
displaying the directions, the program
prompts the piayer to enter his skill level.
Then a 'secret code’ is generated with the
help of the player tapping the space bar.
The screen is cleared, and & 'mask’ of the
Master Mind playing board is displeyed.
The cursor lands at the location where the
player is to begin entering his guess. The
program retains control of the cursor, re-
sponding to the player's key strokes.
Backspacing and tabbing are allowed, en-

o
[w]
ol)

—
DOONFA DL =D

e
[R

13

15

(Master Mind in Forth by David A. Butler DAB-17nov80)
David A, Butler
33300 Mission Blvd
Art 1246

Union City. CA.
(415) 487-6039

94387

LA 222 - not; about stvle: If there is anv, it is an
This was my first arerlication in Forth,
some elesance.

accident.
s$0o it may lack

Reauirements:t A video dismlay 80 x 24 characters,
cursor addressing and clear screen

functions,

* 19
(Master Mind
-2

-notes- DAB-17nov80)
This is an immiementation of Master Mind by Invicta.
The dame is very romular because it is easy to learn and a
challende to play. There is a bit of luck to it, but it 1s
mainly an exercise in lodgical deduction. A "secret" code is
denerated,. and it 1s "cracked" by analvyzing a set of clues.

Those
difficulty

familiar with the orisinal board same will have no
adiusting to the computer version. To newcomers,
follow the directions carefully and vou will have it 1n no
time. The Forth version is functionally identical to the
board version, It 1s written in fig=Forth, and has been run

successfully on 6502, 8080, 7180, and 48000 rrocessors. It
is a sood demonstration prosram as well as an ensovable same.
20

(Master Mind set up some variasbles DAB-17novB0)
: TASK $ (FORGETTYABLE MARKER)

O VARIABLE COLORS 28 ALLOT COLORS 30 BLANKS

O VARIABLE SCODE 2 ALLOT O VARIABLE GUESS 2 ALLOT

O VARIABLE SECRET 2 ALLOT

0 VARIABLE BLACKER O VARIABLE WHITER

& VARIABLE #COLORS

3 VARIABLE CUR.ROW 2% VARIABLE CUR.COL

1 VARIABLE XLOC 1 VARIABLE YLOC O VARIABLE DONE

-—D

» 21

(Master Mind set up - cont, DAB-17nov80)
i C.CONSTANT " YELLOWRED BLACK GREEN WHITE BLUE -
0 VARIABLE COLOR.KEY & ALLOT ("colors" table)

(Use the sum of the ASCII code of the first 3 letters)

(i.e. BLUE = "B" + "L" + "U" = &6 + 76 + 85 = 27)
234 COLOR.KEY C! 219 COLOR.KEY 1+ (!

222 COLOR.KEY 2 + (¢
227 COLOR.KEY S + C!

207 COLOR.KEY 2 + C!
232 COLOR.KEY 4 + C!
96 COLOR.KEY & + C!

O VARIABLE W#ATTEMPTS (used to keer score)
-2

Page 158

SCR

* 22
(Master Mind rromrt and randomize DAB-17nov80)
(These definitions set the random values for the same)

t NEWCOUNT ([COLOR# + ']) DUP #COLORS @ <
IF 1+ ELSE DROP 1 THEN 3

¢ RAND 1 BEGIN NEWCOUNT ?TERMINAL UNTIL KEY DROP

3 ASK.FOR.RANDOM «" To randomize: tar smpace bar 4 times."
4 O DO RAND I SCODE + C! LOOP CR 1}

: ASK,FOR. LEVEL
CR ." Level 1 or 2 7 " KEY DUP EMIT KEY EMIT

50 = IF 7 WCOLORS ! ELSE & #COLURS ! THEN CR ¢
23
(Master Mind transiate color to numeric DAB~17nov80)
¢ COLOR.FIND (LCOLOR#]) --—-~L] TYPES COLOR FROM #)

1 - &6 @ ° C,CONSTANT 2 + + & TYPE $
¢t TRANSLATE.CODE
(converts color # from SCODE to COLOR.KEY)
(nymeric value in array "SECRET")

4 0 DO SCODE 1 + L@ 1 - COLUOR.KEY + C€ SECRET

1 + C' LOOP $

LI R> R* R> (COMPILE] R SWAF >R SWAF >R SWAP DR

* 24

{ Master Mind cursor motion DAB-17novRk0)
{ Of course, CRT dependent. Here is Heath:)

(##% start CRT derendent words ###)
: CHRSOR ¢ CY] {X)===[] ABSOLLITE CURSOR FOSITION)
31+ SWAF 21 4+ 89 27 EMIT EMIT EMIT EMIT ¢

t CLEAR (CLEAR CRT SCREEN) 27 EMIY &9 EMIT 4

: HOME ¢ FUT CURSOR AT HOME FOSITION) O O CURSOR 3
(#%#% eond ot Rl dercendent words ##%
fOSHOW. COLORS (DISFLAY COLOR CHOICES)
71 D2+ S8 CURSOR 1 COLOR.FINDG LOOP
#COLORS @ 7 = IF % 57 CURSOR . " <BLANK:" FLSE THEN
12 S8 CURSOR . TAB between colors,”
13 S8 CURSOR " RETURN to det clues." ¢

2%

(Master Mind board lavout mask [AR=17n0vE0)
kAR .t s LW BOARLD SYMBOLS)

: TITLE HI

= MASTER MIND ===z
DASHER 2 21 CURSOR BAR 32 0 DO . * ~" LiMP BAR (R f
F 21 CURSOR BAR 54 CURSOR BAR 1

]
r-.
-
4
m
=]
c

P SPACER 21 CURSOR " " oo D ———— e ————— C———— LR
t CBLOCKE DUP CLINE 1+ SPACER 3
: HIDDEN % 23 CURSOR . " XXXXXX XXXXXX XXXXXX XXX¥XX® 2

: DISPLAY.BUARD
CLEAR TITLE DASHER HIDDEN 24 3 D0 I CBLOCK 2 +LOOP
SHOW. COLORS §

.

)

sbling the player to keep changing his
Quess until he is satisfied that it is consis-
tent with the clues he has thus far recelyv-
ed. A correct guess is the result of the
player's logical deduction (or very good
luek) based on his previous clues. The
directions on screen 31 explain the mean-
ing of the two types of clues.

When the player signals he is ready,
the program compares the player's guess
to the secret code which was stored away
earlier. Clues are generated and dis-
played, indicating to the player how close
he is to the solution. The player has ten
chances to deduce the secret code.

There are many improvements which
could be made to this program to take ad-
vantage of more of FORTH'S built-in
vocabulsry -- most notably PAD and re-
lated words. For those short of memory,
note that the directions could be short-
ened, left out, or read from disk with no
change to the overall logic of the pro-
gram.

Further notes and comments may be
found in the source screens.

Page 159

SCR # 2¢
0O (Master Mind cursor tracking definitions DAB~17nov80)
1
ot X XLoc @ 3 : v YLOC @ 3
4 3 XBUMFP X %52 =
b1 IF 22 DUPF CUR.COL ' XLOC !
[ELSE 1 XLOC +' X CUR.COL € & + =
7 IF X CUR.COL * THEN
= THEN 3
<
10 ¢ UNBUMPX X 23 = [F 92 XLoC ¢ ELSE -1 XLOC +' THEN 3
11
12 : TAB CUR.COL @ 47 =
13 IF 23 CUrR.COL ¢
14 ELSE & CUR.COL +°
15 THEN CUR.COL @ XLOC ! DROP Y X CURSOR 3 -->
SCR # 27
0 (Master Mind character collection/editing DAB-17nov80)
1 ¢ BACKSPACE X CUR.COL @ =
= IF DROP
3 ELSE UNBUMPX Y X CURSOR SPACE Y X CURSOR DROFP
4 3% COLORS X + 23 - (¢
S THEN H
F
7 = PROCESS ([CHAR] -- [) PROCESSES CHAR, MANAGES UURSOR)
2 DI EMIT COLORS X + 23 - (' XBUMP Y X CURSOR 3
<7
10 @ GET.CHAR KEY DUF 127 =
11 IF BACKSPACE ELSE DUP v =
12 IF TAB ELSE DUF 132 =
13 IF 1 DONE ' DROP
14 ELSE PROCESS THEN THEN THEN 3
15 —-=>
SCR # 28
O {(Master Mind duess / row section [IAK-17rnovB0)
1
2
2
4 : INITIAL Zz ® 3 4+ DUP YLOC ' CUR.ROW ' 23 3 XLOKC
5 ' CUR.COL ' Y X CURSUOR
& 30 0 DO 22 1 COLORS + (! LUOP 3
7
2 ¢ GET.COLORS INITIAL. O DONE ' BEGIN GET.(MAR DMNE @ UNTIL 3
<o
10 ¢ PARSE.GUESS 4 O DO 1 & @ COLURS + (e
11 1 & # COLORS 1+ + (@
1z 1 & e COLOR- 2 + + C@
13 + +] GUESS + C!' LOOP
14 ~->
15
SCR # 29
O (Master Mind Clue dgeneration DAB~17nove()
1
2 ¢ CLUE.CHECK
2 O BLACKER ', = O WHITER ! (INITIALIZE COUNTS)
4 4 O DD
] SECRET I + (e GUESS)} + (@ = (CHECK FOR LOYRECT HIT)
& IF 1 BLALCKER +! O 1 GUESS +« (!
7 THEN LODOP
& 4 0 DU GUESS | « 1@ O > IF ©IF ND MHIT)
k] 4 0 DD
10 GUESS] + C@ SECRET o + Ceé = (CHELK FOR WHIIE)
113 IF 1 WHITEKR +! 1 [GUESS + L LLEAVE
1z THEN
12 LOOP THEN
14 LOoE 8
15 ==

Pege 160 FORTH DIMENSIONS T7S

C

¥

GNP NS =OD

SCR #
O
10
LR
CR
CR

DAL -V R

IR

LR O#
[

1z
14

1<

These @
Auran

o BLACY
1 BLACY
o FLACH

" BLACK

* 30

Master Mind rresent clues DAB=17nov80)

GIVE.CLUES PARSE.GUESS CLUE.CHECK
Y 1 CURSOR BLACKER @ . ." BLACK "
WHITER @ . .” WHITE * 3
UNMASK. 3 23 CURSOR

4 0 DO
IF v

1 SCODE + Ce@ COLOR.FIND 1 3 =

* ELSE " * THEN LOOP 23 1 CURSOR 13
TAGAIN 20 S8 CURSOR ." TYPE MASTER TO" 21 S8 UCURSOR
. " PLAY AGAIN." UNMASK 23 1 CURSOR 3

LOSER 16 58 CURSOR ." NICE TRY BUT" 17 %8 CURSOR

" NO CIGAR." 7AGAIN 3

WINNER 16 S8 CURSOR ." PRECISELY. " #ATTEMPTS ?

. TRYS." PAGAIN 3

31

Master Mind Directions to mlaver DAB-17nov&0)
DIRECTIONS CLEAR CR CR CR CR CR

O DD LoOP " Welcome to MASTER MIND." CR CR

The object of Master Mind 1s to break the secret code.*

. The computer will mick the secret code,» and vou must"
" fidure it out. Two kinds of clues are siveni” CR

.M (1) # BLACK means that vou have # meds correct “ TR
L in both color and mosition.” CR (R

LM (Z) # WHITE means that vou have # mess of the " (R
. correct color that are incorrectly " CR

. rlaced. " CR CR
Ee sure to spell the colors correctlvy. You may tab amouns
" the 4 Positions until vou've make vour best duess.” (R

. Tvpe [RETURN] to receive clues."” CR (R ." Good-luck.”
CR IR 5 =~
3z

Master Mind ++ FINAL ++ DAB-17nov80)
MAZTER DIRECT IONS OO0 SATTEMPTES 0

Azk . FOR. LEVEL
DISFLAY. BOARD
O 10 Dny

1 #ATTEMPTS +!
FARSE . GLIESE 1 GET. COLORS
BLACKER @ 4 =

{F WINNER LEAVF

ASE . FOR. RANDIOM

TRANSLATE. CIOLE ¢ mut UNMASE to debus)

G1VE. CLUES

ELSE. THEN

-1 +LOUF

BLACKFR @ 4 -

IF LUOSER ELSE THEN 3 MAZTER
sawe MASTFR MIND =ess

re nidden REQ KED UE mﬁ” ;

% wia B vELLOW
RED
wac
GREEN
wITE
e

O WMITE

o WHITE X

o e ! emECISELY.
_i & TRIES

1 WHITE

¢ Lnaeshot of board after slaving Master Miné)

ANNOUNCEMENTS

NEW JERSEY FIG CHAPTER BEING
FORMED

Interested parties should contact:
George B. Lyons

280 Henderson St.

(212) 696-7606 - days

(201) 451-2905 - aves

BOSTON FIG CHAPTER SEEKING
MEMBERS

Interested parties should contact:
R. l. Demrow

P. 0. Box 158, Blv. Sts.

Andover, MA 01810

(617) 389-6400 x 198 - work

(617) 664-5796 - home
MOUNTAIN WEST FIG CHAPTER
ORGANIZING

Interested parties in the greater Sait Lake
City area should contact:

8ill Haywood

(801) 942-8000

TECHNICAL PRODUCTS CO. MOVES

New address:
P. O. Box 2358
Boone, NC 28607-2358

FIG NEW YORK CITY MEETING
CONTACT

James Basile

40 Circle Drive
Westbury, NY 115900
(516) 333-1298

DALLAS-FT. WORTH METROPLEX FIG
MEETING CHANGE

Meetings now being held at:
Software Automation, Inc.
1005 Business Parkway
Richardson, TX

contact:
Marvin Elder (214) 231-9142
Bill Orissel (214) 264-9680

™M

Page 161

TRANSFER OF FORTH SCREENS
BY MODEM

Guy T. Grotke
Forth Gear
San Diego, CA

Here is & simple but hopefully useful
set of definitions for serial transfer of
FORTH screens between machines.
Several of us in the San Diego FIG are in-
terested in sharing software, but we have
been unable to do so because of all the
different disk formats in use. While only a
few had access to similar machines, we
took a poll and found that more than 90%
had RS-232 ports. The following two
screens permit unidirectional transfer
with a modem cver telephone lines at 300
baud or hardwired at 19,200 baud. The
definitions are not particularly sophisti-
cated. There is no errar checking or
ack/nack with retry. Since it is source
code which is being transferred, some
editing will probably be necessary anyway,
so such safeguards aren't worth the effort
to write them.

There are four definitions which are
entirely system dependent in each
screen. These are SOUTPUT, COUTPUT,
SINPUT, and CINPUT. Respectively, they
direct output to the serial port, output to
the console, input from the serial port,
and input from the console. If your sys-
tem doesn't use 1/O flags or vectors, you
may have to write serial port drivers and

point KEY and EMIT to them for
SOUTPUT and SINPUT. In screen 80,
these four words are defined for an

APPLE running a serial interface in slot
two (driver at $C200). In screen 58, they
are defined for an Ohio Scientific with the
normal serial port found in the personal
models. These are examples of vectored
and flagged 1/O redirection.

The remaining definitions should be
quite universal among fig (and other)
systems. Screen 80 contains all that is
necessary to receive screens under the
control of the sender. FINISHED and
RECEIVE simply redirect input and out-
put. The word P redefines the fig editor
word P to do the same thing except with
1/0 redirection. Note that these three
definitions are simple and fool-proof
enough that they could be sent to another
computer if that computer was first told
to accept all input from the serial transfer
line. Once these definitions were com-
piled by the receiving system, screen
transfer could begin. In screen 58, the
word WAIT waits for anything to be sent
back from the receiver with a carriage
return on the end. The word OK is defined
just in case the receiver sends one or more
OK's back to the sender during transfers.
SEND-SCREEN will send a screen to the
receiver, one line at a time, by emulating
a user entering lines with the receiver's
line editor. First SEND-SCREEN asks the
receiver to list the screen being sent.

This insures that the proper disk blocks
are resident. After the LIST, the receiver
will reply "OK" followed by a carriage re-
turn. WAIT makes the transmitter wait
for this carriage return. This is the only
handshaking needed. Each line's text is
sent preceded with the letter P and a
space, and followed by a carriage return.
WAIT causes the transmitter to wait for
the receiver to reply "OK" after each line
is sent. SEND is a multi-screen transmit-
ter. Note that the range of screens re-
ceived and recorded on disk will corres-
pond exactly to the screen numbers sent.

wUk # Sy
Y0 Beryal
HE X
3 SUUTPUY H
COUTFUT H
SINPUT H
CINPUT 2321 €
SOUT SOUTPUT CINPUT
3 Ok 3
: SEND.SCREEN
SOUT DUF .

Screen {ranster

Py o b

o s se we @

o~

I s RN S A

~- sending

If that is inconvenient, a variable contain-
ing an offset or starting receiver screen
number could be added.

The proof that it works is before you:
the differsnt screen formats and distant
screen numbers reflect the fact that
screen 58 was written on my OSI and sent
to my APPLE to be printed. | have used
these definitions to send a 6502 assembler,
a database manager, and several hundred
data entries between my machines with no
trouble.

GTe 7-u2-81

SEND OUTPUT TO SERIAL + CONSOLE
SEND OUTPUT ONLY TO CONSOLE
GET INPUT FROM SERIAL

GET INPUT FROM CONSOLE

SIN COUTPUT SINPUT ;

WAIT SIN QUERY ;

(SCR# —-; nothing le+ft

. COUTPUT LIST SOUTPUT * CR WAIT

.LINE CR

nothing lett

10 10 0 PO 1 SQUT . ." P " I OVER
11 WAIT CINPUT ?TERMINAL IF LEAVE THEN LOOP :
12 : SEND (FIRS1 SCR# / LAST SCR# -~- -
13 1+ SWAF DO I SEND.SCREEN 7TERMINAL IF LEAVE THEN LUOOF
14 SOUT CR WAIT SOUT ." FINISHED " CR COUTRUT ;
15 DECIMAL 38
SCR # 80

v CONSOLE/SERIAL 170)

1 FORTH DEFINITIONS HEA

2 ¢ UNLINK FDFO 36 ! FDIB 38 ! 3

3 1 SOUTPUT C200 36 ! H

4 1 LOUTPUT FDFO 36 !¢ 3

S = SINPUT C200 38 !

CINPUT FDIE 38 !

=)
7
8 EDITOR DEFINITIONS
9

F COUTPUT P SOUTPUT ;
RECEIVE COUTFUT SINFUT
13 FORTH DEFINITIONS EDITOR

14 DECIMAL

1% 38

-
3 - €]
e 4 e

HELP WANTED

Part-time -~ New York-New Jersey Area

Agsist internationally known sound
artist, Max Neuhaus, develop additional
software for micro computer controlled
sound synthesis system. FORTH con-
trolling 32 synthesizers from CRT Light
Pen Terminal.

Moderate fees, travel possibilities,
hardware experience preferred.
Send information or resume to:

Max Neuhaus

210 5th Avenue

New York, NY 10010

FINISHED CINPUT COUTPUT FLUSH ;

FORTH mmers to im-
plement Marx FORTH for TRS-80, Apple,
CP/M and other systems. Royalties paid
for best implementation with most en-
hancements. Great opportunity for the
competitive programmer who, like me,
would like to make a living at home and
nat have to move to California to do it.

Contact:

Marc Perkel

Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803
(417) 862-9830

Page 162

FORTH DIMENSIONS /5

-~

8 M A "N oa .

Ydadeurv n

d

PRODUCTS REVIEW

SORCERER-FORTH
by Quality Software

For about a year, | have been using an
excellent version of fig-FORTH tailored
for the Exidy Sorcerer. It is a product of
Quality Software, 6660 Reseda Blvd.,
Suite 105, Reseda, CA 91335,

FORTH for the Sorcerer implements
Release 1.1 of 8080 fig-FORTH, It in-
cludes a full screen editor and input/-
output routines for the keyboard, screen,
and both serial and Centronics printers.
The Sorcerer's excellent graphics are also
available.

Disc storage is simulated in RAM, A
32 K Sorcerer can hold 14 screens--with
48 K, up to 30 screens. Tape-handling
routines are provided, to move data to and
from the simulated disk space. The CP/M
disk interface routines are present, but
not implemented.

One of the nicest features of Quality
Software's FORTH is its documentation.
The 126-page manual is well-written, and
relatively complete. It includes sufficient
information for a FORTH neophyte,
though it does not delve too deeply into
system operations.

Quality Software permits--even en-
courages--users to market application
programs incorporating Sorcerer FORTH.
They do ask that written permission be
obtained frist, but promise that permission
will normally be granted after review of a
sample of the program.

I highly recommend this excellent pro-
duct, and ask that you include it in your
periodic listing of available software.

C. Kevin McCabe

1560 N. Sandburg Terr. #4105
Chicago, IL. 60610

(312) 664-1632

A COMPARISON OF TRANSFORTH
WITH FORTH
Insoft
Medford, OR

A question we've been hearing a lot
lately is "How does TransFORTH compare
with fig-FORTH?" In structure, Trans-
FORTH is similar to most version of
FORTH, but is is not a FORTH-79 Stand-
ard System. The major differences are
outlined in this paper.

Floating-point numbers

In TransFORTH, the stack itself con-
tains floating-point numbers, with 9 digits
of accuracy. No special sequences are
required to retrieve floating-point
values. Words are available for storing or
retrieving single bytes and two-byte cells,
but all values are stored on the stack in

floating-point format. Numbers can be as
large as 1E38, and as small as 1E-38,

Transcendenta! functions

The floating-point format mentioned
above makes TransFORTH a natural lang-
uage for transcendental functions. Func-
tions included in the system which are not

found in most versions of FORTH
include: sine, cosine, tangent, arctangent,
natural logarithm, exponential, square

root, and powers.
Data structures

TransFORTH contains words that will
store or fetch S5-byte floating-point
values, 2-byte cells, and single bytes from
any location in memory. TransFORTH
does not have the fig-FORTH <BUILDS,
DOES> construction, but instead uses a
powerful built-in array declaration.
Arrays can either fill space in the diction-
ary, or be located absolutely in memory.
Arrays with any number of dimensions
may be declared, and each dimension can
have any length, within the limits of
available memory.

Strings

Strings are merely arrays (of any di-
mension and size) with an element length
of one. Each character occupies one byte,
i.e., one element of the array. Built-in
string functions included.

Disk access and the editor

TransFORTH does not use the virtual
memory arrangement found in most ver-
sions of FORTH. Instead a standard DOS
3.3 format is used, and files are called
from the disk by name,

TransFORTH includes a straightfor-
ward line-based text editor. The editor is
not added to the dictionary as a list of de-
fined words, but is included as a separate
module callable from TransFORTH. DOS
text files are used for saving source
files. This means that any text editor that
uses DOS text files may be used for edit-
ing TransFORTH programs. In addition,
TransFORTH program data rmay be shared
with other programs and languages.

Grahics

Two graphics utilities along with a
couple of graphics demo programs are in-
cluded on the system diskette. One utility
contains high-resolution graphics and
Turtiegraphics commands, and the other
has low resolution graphics commands.
The graphics capabilities are added to the
system by compiling these utilities into
the dictionary. The hi-res package in-
cludes a call to a module which allows
text and graphics to appear together any-
where on the screen.

Vocabulary

TransFORTH is a single-vocabulary

system. Related programs cen be grouped
together in disk files, rather than in sep-
arate vocabularies. (Multiple vocabularies
find their most usage in muiti-user sys-
tems.)

Compilation and speed

All entries in TransFORTH are com-
piled directly into 6502 machine language
for greater speed. No address interpreter
is used. Even immediate keyboard entries
are compiled before being executed. This
means that routines cen be tested at the
keyboard for speed before being added as
colon definitions.

TransFORTH is fast, [t is not as fast
an integer versions of FORTH, because it
handles 5 bytes with every stack manipu-
lation instead of two. TransFORTH pro-
grams will run faster than similar Apple-
soft programs, and show a great increase
in speed when longer programs are com-
pared.

While TransFORTH works much like
Fig-FORTH, the differences between the
two become readily apparent under closer
examination. FORTH programmers will
pick up TransFORTH with littie trouble,
but nearly all FORTH programs will re-
quire translation into TransFORTH to
take advantage of its powerful features.
These features are accessible with a min-
imum of work from the user, bringing a
FORTH-like environment into the realm
of practical scientific and business pro-
gramming for the first time.

EDITOR'S RESPONSE TO
TRANSFORTH

The above material is extracted from
explanatory sales material from the pro-
gram vendor. Commentary we have indi-
cated from TransFORTH users can be
summarized:

1. This implementation should be
named as one of the CONVERS group
of languages, as it compiles to as-
sembly language rather than threaded
code.
2. it is easier to add floating point
math to FORTH, than to alter Trans-
FORTH to use integers for execution
speed improvements. Why not both?
3. If the implementor had done his
DOS 3.3 interface using the standard
FORTH word BLOCK, an immense gain
in value would result. Direct access
and DOS compatibility.
4, <BUILDS DOES probably could be
added but apparently the implementor
doesn't know how or chooses to deprive
his customers of this powerful struc-
ture. Arrays are definitely not equiva-
lent technically or philosophically.

In conclusion, it appears that

TransFORTH is a reverse POLISH
BASIC, with names rather than
labels. A small amount of additional

effort would have built upon FORTH,
rather than strip out major attributes._-
~-ed.

FORTH DIMENSIONS /5

Page 163

NEW PRODUCTS

FLEX-FORTH

Complete compiler/interpreter,
bler, editor, operating system for:

assem-

APPLE Il computers
KIM computers

$25.00
$21.00

FLEX-FORTH is a complete structured
langquage with compiler, interpreter,
editor, assembler and operating system for
any APPLE 1l or APPLE lI+ computer with
48K and disk or KIM with 16K of mem-
ory. Most application programs run in less
than 16K starting at 1000 HEX and often
as little as 12K, including the FLEX-
FORTH system, itself.

This is a full-featured FORTH follow-
ing the F.L.G. standard, and contains a
6502 assembler for encoding machine
language algorithms if desired. The
assembler permits macros BEGIN...UNTIL,
BEGIN...AGAIN, BEGIN...WHILE...
REPEAT, F...ENDIF, and [F...ELSE...
ENDIF. Editor and virtual memory files
are linked to the Apple DOS 3.2. An ap-
plication note for upgrading to DOS 3.3 is
included. Object code on disk with user
manual sells for $25.00. (APPLE) or on
cassette with user manual for $21.00
(KIM).

A complete source listing is available
to purchasers of FLEX-FORTH for
$20.00. The source is valuable in both
showing how FORTH works and in giving
examples of FORTH code and integrated
assembly code.

Order from:
Milford Way, Seattle, WA 98177. Be sure
to specify machine.

MARX FORTH V1.1
Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803
(417) 862-9830

Enhanced Z80 fig-FORTH implemented
for Northstar System enhancements in-
clude linik fields in front of name for fast
compile speed; dynamic vocabulary relink-
ing; case; arguments-results with 'to’ vari-
ables: and more. 79-Standard package in-
cludes easy to use screen editor.

Price: $75.00

Smart assembler, meta-compiler and
source code (in FORTH) sold separately.
Call for information.

TWO NEW PRODUCTS FROM
LAXEN AND HARRIS, INC.

Laxen and Harris, Inc.
24301 Southland Drive
Hayward, CA 94545
(415) 887-2894

1. Working FORTH
Release 2.1

GEOTEC, 1920 N. W.

"Starting FORTH" compatible FORTH
software for a 8080 or Z80 computer
system with the CP/M (TM) operating
system.

Copyright (C) 1981 by Laxen and Harris,
Inc. All rights reserved.

This FORTH implementation is com-
patible with the popular book "Starting
FORTH" by Leo Brodie. It is intended to
be a companion to the book to aid learning
FORTH. It is also a complete environ-
ment for developing and executing FORTH
programs. It contains:

Compilers

Disk operating systermn

Full names stored, up to 31 characters

String handling

Enhanced error checking

16-bit and 32-bit integer arithmetic

and input/output

This is a single-user, single-task sys-
tem which is not ROM-able as supplied.
Floating point arithmetic and CP/M file
access are not supported.

This system as supplied runs comfort-
ably in a 8080 or Z80 computer system
with at least 32K bytes of RAM memory,
at least one floppy disk drive (8" single
density, single sided, soft sectored format
is assumed), and the "BIOS" part of the
CP/M operating system. The use of a
printer is supported but not required. This
software may be easily modified to use
other memory sizes or disk formats. It
requires 14K bytes of memory which in-
cludes 4K bytes of disk buffers.

This FORTH system was adapted from
the fig-FORTH model but is not fully
compatible with that lJanguage dialect. It
is also not fully compatible with the
FORTH-79 Standard. The three dialects
are similar, but the Starting-FORTH ver-
sion has advantages over the other two.

Price: $33.00 - plus $2.00 - Postage and
Handling

CP/M is a registered trademark of Digital
Research, Inc.

2. Learning FORTH

Learning FORTH is a computer aided
instruction package that interactively
teaches the student the fundamentals of
the FORTH programming l!anguage and
philosophy. It consists of a set of
FORTH screens that contain program
source code and instruction text. It is
based on the book, "Starting FORTH," by
Leo Brodie. It will run with any Starting
FORTH compatible system, as well as fig-
FORTH system. The manual is only one
page long and describes how to load the
system. After that, everything is self
explanatory. It is supplied on 8" single
density diskettes in IBM 3740 format. The
price is $33.00 if ordered together with
the Working FORTH Disk. Please add
$2.00 for shipping and handling, and allow
at least 3 weeks for delivery.

Note: Buy both for $55.00 plus $2.00
postage and handling.

POLYMORPHIC FORTH
Abstract Systems, etc.
1686 West Main Road
Portsmouth, RI 02871

(401) 683-0845
Ralph E. Kenyon, Jr.

Product Description: FORTH (Polv-
Morphic fig-FORTH 1.1.0). 8080 fig-
FORTH 1.1 without asmb. or Editor (uses
PolyMorphic resident editor.)

A demo application which computes a
table of values for a general quadratic
equation is included.

PolyMorphic Systems 8813, BB10 needs
only 16K. Documentation on FORTH not
included.

Manual: documentation covers parti-
cular implementation details for fig-
FORTH to interface to the PolyMorphic
Systems Microcomputer. Sorted VLIST
included.

Implementation document available
separately. Separate document avaiiable
for cost of postage. Product data avail-
able on PolyMorphic SSSD 5" diskette
format. &4 copies sold to date. Price:
$40.00, includes shipping, diskette, (R.I.
residents add 6% sales tax). Warranty
limited to replacement of a diskette
damaged in shipment. (We'll try to fix any
bugs discovered.) Orders shipped out
within 3 days of receipt (usually next day).

HEATH HBY? FORTH
MCA
8 Newfield Lane
Newtown, Conn. 06470

MCA announces the availability of
FORTH for the Heath HB89 computer.
MCA FORTH is 8080 fig-FORTH V1.1
configured to run on a single disk H89 with
32K or more of memory, utilizing HDOS
1.6 or later.

MCA FORTH provides the standard
FORTH facilities plus the following
special features: HDOS file manipulation
capability, a control character to restart
FORTH (recover from loops), on-line
tailoring of FORTH facilities (e.q., num-
ber of disk buffers), ability to hook to sep-
arately assembled routines, and use of
Heath DBUG.

Items supplied with FORTH include the
fig-Editor, an 8080 structured assembler,
and two games provided as examples of
FORTH programming.

The documentation supplied with MCA
FORTH is suitable for experienced
FORTH programmers; however, a bibli-
ography of documentation for beginners is
provided.

MCA FORTH is available from MCA
on a S5-1/8" disk for $25 including docu-
mentation. Documentation is available
for $4.00. (Conn. residents please acd
sales tax).

Page 164

FORTH DIMENSIONS 111/5

" BT & T

nHEY»

NEW PRODUCTS FROM
INNER ACCESS CORPORATION

1. Fig-FORTH compiler/interpreter for
PDP-11 for RT1l, RSX11M or stand-
alone with source code in native as-
sembler. Included in this package are
an assembler and editor written in
FORTH and installation documenta-
tion. Price: $80.00

This is available on a one 8" single
density diskette only.

Reference Manual for PDP-11 fig-
FORTH above. Price: $20.00

2. Fig-FORTH compiler/interpreter for
CP/M or CROMEMCO CDOS system
comes complete with source code writ-
ten in native assembler. Included in
this package are an assembler and
editor written in FORTH and instal-
lation documentation. Price: $80.00

All diskettes are single density, with 5-
1/4" diskettes in 128 byte, 18 sector/-
track format and 8" diskettes in 128
byte, 26 sector/track (IBM) format.

Released on two 5-1/4" diskettes with
source in 8080 assembler.

Released on one 8" diskette with
source in 8080 assembler.

Released on two 5-1/4" diskettes with
source in Z80 assembler.

Released on one 8" diskette with
source in Z80 assembler.

Manual for CP/M (or Cromemco) fig-
FORTH above. Price: $20.00

3. METAFORTHTM Cross-compiler for
CP/M or Cromemco CDOS to produce
79-Standard FORTH on a target
machine. The target can include an
application without dictionary heads
and link words. It is available on single
density diskettes with 128 hyte 26
sector/track format. Target compiles
may be readily produced for any of the
fotlowing machines:

CROMEMCO-all models
TRS80 Model II under CP/M
Northstar Horizon

Prolog 280

Released on two 5-1/4" diskettes or on
one 8" diskette.

Price: $450.00

4. Complete Zilog (AMD) Z8002 develop-
ment system that can be run under
CP/M or Cromemco CQ&S System
includes a METAFORTH cross com-
piler which produces a 28002 79-
Standard FORTH compiler/interpreter
for the Zilog Z8008 ODevelopment
Module. Package includes a Z8002
assembler, a Tektronix download
program and a number of utilities,

Released on two 5-1/4" diskettes or on

one 8" diskette.
Price: $1,450.00

5. Zilog 28002 Development Module fig-
FORTH ROM set. Contains 79-Stand-
ard FORTH with 28002 assembler and
editor in 4 (2716) PROMS, Prices
$280.00

CODEY
Arthur M, Gorski
2240 S. Evanston Avenue
Tulsa, OK 74114
(918) 743-0113

CODE9 is a M6809 Assembler for use
with any fig-FORTH system. It features
all M6809 addressing modes except long
relative branch instructions. It performs
syntax error checking at assembly time.
Memory requirements: 4.75K bytes free
RAM above FORTH. CODES9 is distribut-
ed as a commented source listing and
manual. Price: $20.00

PET-FORTH
by

Datatronic AB
Box 42094
§-126 12 Stockholm
Sweden
(0)-8-744 59 20
Peter Bengtson

Product Oescription: Extended fig-
FORTH for the Commodore CBM/PET
cormputer series.

Screen editor, utilizing the special CBM
screen editing possibilities for compact-
ness and ease of use, macro-assembler,
double-precision extensions, CRT hand-
ling, random numbers, real-time clock, a
very complete string package, [EEE con-
trol words, integer trig functions.

An expansion disk {coming soon) will con-
tain floating point arithmetic including
complex numbers, transpsrent overlay
control words for data and program
segments, a file system, and more. A
METAFORTH compiler will shortly be
available.

Runs on CBM 8032 plus an 8050 dual disk
drive. Other configurations coming: 4032,
4040, VIC, and MicroMainFrame.

8032 version runs in 32K only. 4032
versions will run in either 16 or 32K,

Manual Description: 322 pages, including
all source code.

Complete introduction to FORTH. Special
chapters cover the asembler, <BUILDS and
DOES, IEEE handling, strings etc.

Manual is available separately.

te purchase price is $40.00. This is
not creditable towards later purchase.

Product/Ordering Data: Shipped as disk-
ette and an accompanying security ROM,
holding part of the Kernel.

Currently, there are approximately 75 in-
stallations, after 2 months on the market.

Prices $290.00 Includes diskette, ROM,
manual, shipping and taxes.

PET-FORTH, as all other Datatronic soft-
ware, carries a life-time guarantee. All
future versions will be distributed to the
registered owners without any cost what-
soever.

Delivery is immediate.

US dealers are invited. UK sole distrib-
utor is Petalect Electronic Services Ltd,
33/35 Portugal Road, Woking Surrey. You
may also order directly from us.

Diskette of FORTH Application Modules
from
Timin Engineering Company
9575 Genessee Avenue, Ste. £-2
Sen Diego, CA 92121
(714) 455-9008

The diskette of FORTH application
modules, a new product by Timin Engin-
eering, is a variety package of FORTH
source code. It contains hundreds of
FORTH definitions not previously pub-
lished. Included on the diskette are data
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calculator, a typing
practice program, and a menu gener-
ation/selection program. In addition, the
diskette provides examples of recursion,
<BUILDS...DOES> usage, output number
formatting, assembler definitions, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
in exemplary FORTH programming style.

The FORTH screens, written by Scott
Pickett, may be used with Timin FORTH
or other fig-FORTH. The price for the
diskette of FORTH application modules is
$75.00 (if other than 8" standard disk, add
$15.00). To order the FORTH modules,
write Timin Engineering Company, 9575
Genesee Avenue, Suite £-2, San Diego,
CA 92121, or call (714) 455-9008.

AUDIO TAPES OF
1980 FORML CONF ERENCE
AND 1980 F1G CONVENTION

1. FORTH-79 Discussion, 200 min. Prices
$35.00

2. Purpose of FIG, 37 min. Price: $10.00
3. Charles Moore, 63 min. Price: $15.00

4, FORTH, Alan Taylor, 47 min. Price:
$15.00

Complete set $65.00
edu-FORTH
1442-A Walnut Street, #332
Berkeley, CA 94709

FORTH DIMENSIONS 1175

Page 165

FORTH VENDORS

The following vendors have versions of

FORTH availsble or are consultants. (FIG ﬁft;:::r::‘;';“"‘ 68000 rical Res, Grp
makes no judgment on sny products.) Arlington Heights, IL 60004 P. 0. Box 1176
Professional Management Services Technical Co. (206) 631-4855
724 Arastradero Rd. #109 echnical Products
Palo Alto, CA 94306 P. O. Box 12983 Firmware, Boards and Mechines
(415) 858-2218 Gainsville, FL 32604 Datricon
(904) 372-8439 7911 NE 33rd Dr.
< Portland, OR 97211
2'187";3?: ':;%um Co- Tom Zimmer (503) 284-8277
292 Faleato Dr.
Albugquerque, NM 87123 Milpitas, CA 95035 Forward Technalogy
APPLE 2595 Martin Avenue
IDPC Company 1002 Senta Clara, CA 95050
P. 0. Box 11594 FSS (408) 293-8993
P. O. Box 8403

Phiiadelphia, PA 19116
(215) 676-3235

ILJS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

George Lyons

280 Henderson St.
Jersey City, NJ 07302
(201) 451-2905

MicroMotion

12077 wilshire Blvd. #506
Los Angeles, CA 90025
(213) 821-4340

CROSS COMPLLERS
Nautilus Systems
P.O. Box 1098
Santa Cruz, CA 95061
(408) 475-7461

polyF ORTH
FORTH, Inc.
2309 Pacific Coast Hwy,
Hermose Beach, CA 90254
(213) 372-8493

LYNX

330! Ocean Park #301
Santa Monica, CA 90405
(213) 450-2466

M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

Micropolis
Shaw Labs, Ltd.
P. O. Box 3471
Hayward, CA 94540
(415) 276-6050

North Ster
The Software Works, Inc.
P. 0. Box 4386
Mountain View, CA 94040
(408) 736-4938

POP-11
Laboratory Software Systems, Inc.
3634 Mandeville Canyon Rd.
Los Angeles, CA 90049
(213) 472-6995

ost
Consumer Computers
8907 LaMesa Bivd.
L.aMesa, CA 92041
(714) 698-8088

Austin, TX 78712
(512) 477-2207

6800 & 6809
Kenyon Microsysterns
1927 Curtis Avenue
Redondo Beach, CA 90278
(213) 376-9941

TRS-80
The Micro Works
P. 0. Box 1110
Del Mar, CA 92014
(714) 942-2400

Miller Microcomputsr Services
61 Lake Shore Rd.

Natick, MA 01760

(617) 653-6136

The Software Farm
P. O. Box 2304
Reston, VA 22090

Sirius Systems

7528 Osk Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

6502
Eric C. Rehnke
540 S. Ranch View Circle #61
Anaheim Hilis, CA 92087

Ssturn Software, Ltd.
P. O, Box 397

New Westminister, 8C
V3L 4Y7 CANADA

8080/280/CP/M
L.aborstory Microsystems
4147 Beethoven St.
Los Angeles, CA 90066
(213) 390-9292

Timin Engineering Co.
9575 Genesss Ave, FE-2
Sen Diego, CA 92121
(714) 455-9008

Agpplicstion Packages
Inno!

2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

Decision Resources Carp.
28203 Ridgefern Ct.

Rencho Pslo Verds, CA 90274
(213) 377-3533

Rockwell International
Microelectronics Devices
P.0. Box 3669

Anaheim, CA 92803
(714) 632-2862

Zandex Corp.

6398 Dougherty Rd.
Dublin, CA 94566

Variety of FORTH Products
Interactive Computer Systems, Inc.
6403 Di Marco Rd.

Tampa, FL 33614

Mountain View Press

P. O. Box 4656

Mountain View, CA 94040
(415) 961-4103

Supersoft Associates
P.O. Box 1628
Champaign, It 61820
(217) 359-2112

Consuitants

Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852

Dave Boulton

581 Oakridge Dr.
Redwood City, CA 94062
(415) 368-3257

Go FORTH

504 Lakemead Way
Redwood City, CA 94062
(415) 366-6124

Inner Access

517K Marine View
Belmont, CA 94002
(415) 591-8295

John S. James
P. O. Box 348
Berkeley, CA 94701

Laxen & Harris, Inc.

24301 Southiand Drive, #303
Hayward, CA 94545

(415) 887-2894

Microsystems, Inc.

2500 E. Foothill Bivd., #102
Pesadens, CA 91107

(213) 577-1471

Pege 166

FORTH DIMENSIONS TS~

/‘7"
HOSTH IMIETSIDNS
. :%I.I;:IXI:I;RIST GROUP \;‘olurrt;e m
San Carlos, CA 84070 Price: §2.5

NSOk

168 Letters
170 Technotes
174 Techniques Journal:

Execution Vectors

/7- Henry Laxon
\

175 Charles Moore’'s BASIC

A Compiler Revisited
Michael Perry
180 8080 Assembler
John Cassady
T 182 Skewed Sectors for CP/M
Roger D. Knapp
186 Graphic Graphics
Bob Gotsch
1 187 Cases Continued
195 FORTH Standard Team Meeting
196 1982 Rochester Conference

FORTH IMENSIOTS

Published by Forth Interest Group

Velume 1T No. 6 March/April 1982
Publisher Roy C. Martens
Editor Leo Brodie

Editorial Review Board

Biil Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner
Gary Feierbach
Bob Berkey

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is assumed for accuracy of materisl
submitted. MOST MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Ihformation in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was crested by Mr. Charles H. Moore in 1969 at the
National Radio Astronomy Observatory, Charlottesville, VA, It
was created out of dissatisfaction with available programming
tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Inc. in 1973
fo the purpose of licensing and support of the FORTH Operating
System and Programming lLanguage, and to supply application
programming to meet customers' unique requirements,

The Forth Interest Group is centered in Northern California.
Our membership is over 3,500 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publications.

PUBLIC NOTICE

~ Although the FORTH Interest Group specifies all its publica-

tinns are non-copyright (public domain), several exceptions
exnst.‘ As a matter of record, we would like to note that the
copyright has been retained on the 6809 Assembly listing by
Tabott Microsystems and the Alpha-Micro Assembly listing by
Robert Berkey. Several conference papers have had copyright
reserved. The general statement by FIG cannot be taken an
sbsolute, where the author states otherwise.

FROM THE EDITOR

Hi! I'm happy to say that starting with this issue, I'll be
serving as reqular editor of FORTH Dimensions. I'd like to thank
Car! Street, the previous editor, who has been a great help to me
during the transition. Carl has meade several important contribu-
tions to FORTH Dimensions, such as the writer's kit for helping
you submit articles. Carl will rejoin FORTH Dimensions as our
advertising director beginning later this year.

I'd also like to thank Roy Martens, the publisher, for sug-
gesting that I take the editor's post, and for teaching me some of
the facts of life in magazine publication.

I hope to make this magazine as useful as possible to the
greatest number of people. Since most of our readers are still
learning FORTH at one level or another, I intend to encourage the
publication of tutorials (such as Henry Laxen's excellent series
which continues with this issue), application stories (sure, FORTH
is fun, but let's show the world what we can do with itl), examples
of well-written FORTH code (the best way to learn style is by
reading elegant examples), and any ideas, discoveries, impressions
or feelings you care to express (this is your magazine, after allf).

In short, we'll be concentrating on how to use FORTH in
solving problems.

By contrast, system implementation details are more the
responsibility of the individual vendors' documentation. In
addition, the FORTH community boasts two organizations
devoted to improving and extending the language: the Standards
Team and the FORTH Modification Laboratory (FORML). Each
of these groups convenes annually, and the proceedings of these
conventions (available through FIG) are extremely valuable docu-
ments for the advanced study of FORTH.

I'm looking to each of you to help meke this the kind of
magazine you want it to be, by contributing articles, examples,
and letters. We don't have a staff of writers, so everything we
print comes from you. (If you want to contribute but don't know
what or how, drop me a line. I'll send you the information kit that
Car! put together, and answer any questions you may have.)

I hope you enjoy FORTH Dimensions. And remember, | hope
to hear from all of you.

Leo Brodie

NEW POLICY

The 79-Standard has been voted on and adopted tc serve as a
common denominator for transportable FORTH code and for
future discussion of FORTH systems. Beginning with the next
issue, FORTH DIMENSIONS will give preference to articles that
adopt the 79-Standard

Listings which uea words that are not 79-Standard are
welcome, but if possible explain such words in a brief glossary
with a note that they are not 79-Standard. For instance, if your
application addresses the name field of a definition (which is
illegal in the Standard), you should supply a glossary description
of NFA.

If possible, also include the definition of such a word. High
level source is preferred, but if necessary, the definition may be
written in assembler.

We hope this policy will encourage unification, eliminate
ambiquity, and simplify explanations.

Page 167

FORTH DIMENSIONS 111/6

Ay LR

[F]
-

-

=
2
=

—a
o

“e!
>=1

exs

~a
ey
ok 4

9

FORTH Application Library
Dear fig,

As distributors in the UK for FORTH
Ac., with a rapidly growing customer
sase, we are potentially interested in any
application software that is generally
_se ful.

Most of our customers are in the pro-
cess control/industrial/scientific sectors
~Aich, by their nature, require fairly spe-
-:alized and customized software, Never-
‘heless, we are sure there are many areas
cf commonly useful software and that
such software would be useful even if only
2s a starting point or guideline, in order to
zvoid too much reinvention of the wheel!

Such software might be offered as free
and unsupported, at media cost, or as a
snargeable product. Whichever way, it
seeds to have at least some documenta-
-.on, (i.e., overview and glossary) but it
zoes not have to be a professional pack-
age.

We have an initial enquiry from a user
~"o needs a 3-term controller program for
servo control, and some process mathe-
—atics for numerical filtering and linear
conversion. As he said to us, "surely
someone has done this before and written
* up enough to be useful?. So can you
~elp? If you're offering something free,
serhaps we can do a trade for something
.24 would like,

If people are interested in application
=xchanging we would be happy to act as a
~ode' for making contacts. And where
someone has some software that has a
marketable value, we are interested in
~2lping to create and promote viable
~ackages. We'll not make any firmer plans
-r suggestions until we hear from you!

Nic Vine

Director

COMSOL

Treway House

Hanworth Lane

Chertsey, Surrey KT16 LA

Benchmark Battles
Dear Figs

[believe that the primary considera-
tion of an implementation be fluency of
sse, and not speed or size except when
specific problems arise. But after reading
:ne "Product Review" in FORTH Dimen-
zions [1I/1, page 11 and seeing some
cenchmarks, [couldn't resist trying the
same on my own home-brew implementa-
dion: 4mHz Z-80, S-100 bus {one wait
state on all memory ref's). These are the
esults I got, plus another column correct-
ng for my slower clock (but not for the

LETTERS

wait state). [guess I designed for speed.

Just want to stick up for the ol' Z-80.
If other people can brag sbout how com-
pact their implementations are, can't |
brag about how fast mine is?

Timin Duncan

LOOPTEST 23 29
-TEST 5.9 7.4
*TEST 440 54.9
/TEST 743 88.6

Bonadio 4%6)
LOOPTEST 1.7 11
-TEST 6.8 4.5
*TEST 175 11.7
JTEST 29.4 19.6
Note

All times in seconds. Each test involves

32767 iterations.

No, I don't use any special hardware.
Just the normal Z-80 instruction set. That
mulitply threw me off when I first timed
it, but the cycles add up ebout right, 1
just can't figure out why everyone eise is
so slow.

1 don't have mass storage. That's why |
skipped the last two benchmarks. I store
everything in EPROMs, Much faster than
those clumsy mechanical devices.

Allan Bonadio
1521 Acton St.
Berkeley, CA 94702

Editor's Note:

Here is the code for the benchmarks
published in Volume I, No. 1:

: LOOPTEST
7FFF 0 DO LOOP
: -TEST
TIFFFODOIDUP -
: *TEST
TFFFODOIDUP © DROPLOOP;
+ /TEST
7FFF 0 DO 7FFF

DROP LOOP 3

I / DROPLOOP;

To "G" or not to "G"
Dear Fig,

I would like to comment on the "Start-
ing FORTH Editor.” The "M" command is
bad for reasons of safety and philosophy.
It takes a line from the current screen,
and puts it "out there" somewhere, If it
goes to the wrong place (these things hep-
pen), good luck finding it.

A far better siternative is the inverse
command, which I call "G" for "get." G
takes the same parameters as M (block/
line-) and gets a line onto the current
screen, | believe that only the screen

being edited should change.
this rule, G does not.

M violates

One further point: G inserts the new
line at the current line, not under it, This
allows you to alter line 0, which M cannot.

The next extension is BRING , which
gets ssveral lines. It takes (block/line/
count-). 1 find G end BRING extremely
useful. Comments are solicited.

Mike Perry

1 agree! G is more satisfying from the
ussr's point of view. With M, | find myself
checking back and forth between the
source and destination blocks repeatedly.

The problem of copying & line onto line
zero with "M" reminds me of the same
problem one has with "U" (also in the
"Starting FORTH" editor). I'd like to point
out a simple way to "push" a line onto line
zero, moving the current line zero and
everything else down:

0 T U This will be the new line zero
0TXU

The second phrase swaps lines zero and
one.--ed.

FORTH in its Own Write
Deasr Fig,

The two paragraphs below appeared in
an article in BYTE Magazine on pg. 109 of
the August 1980 issue. When it first
appeared, | agreed with what it was saying
but did not feel the need to point it out to
others. Now, however, | think that it's
time to remind all of us about FORTH and
what it isn't. Clearly it isn't any other
language.

The most important criticism of
FORTH is that its source pro-
grams are difficult to read.
Some of this impression results
from unfamiliarity with a lan-
guage different from others in
common use. However, much of
it results from its historical
development in systems work and
in read-only-memory-based
machine control, where very
tight programming that sacrifices
clarity for memory economy can
be justified. Today's trend is
strongly toward adequate com-
menting and design for readabil-
ity.

FORTH benefits most from a
new, different programming
style; techniques blindly carried
over from other environments
can produce cumbersome results.

~ORTH DIMENSIONS I11/6

Page 168

It still eludes me as to why people
insist on building things into FORTH which
are "imports" from other language struc-
tures and that in most places do not have
any logical place in FORTH. Surely they
would not be used by a good FORTH pro-
grammer. Take as a simple example spac-
ings. FORTH does not impose indentation
or strict spacing requirements as do some
other constructs, so why do people insist
on indenting? [disagree that this contri-
butes to the readsbility of the language as
FORTH is one of the most terse con-
structs in existence. One might say that a
first attempt to improve the readability of
FORTH should center around removing the
cryptological do-dads that are used. For

instance, "@" should be renamed
"FETCH". Likewise, " ! " should be re-
named "STORE" and "." changed to

"PRINT",

Obviously this is absurd and so is the
notion of indentation and other pseudo
spacing requirements that some say con-
tribute to '"good prograrnming style."
Good programming style is writing clear,
concise, fast code that does simple things
and then using that and other code to
construct more complex definitions. This
is the premise upon which FORTH was
based. [have seen readable code that was
sloppily written, too big for the job that it
attempted to accomplish and in a single
word was abominable. However, it
"looked neat and clean."

When the FORTH 79 standard was
released | applauded. We are all aware of
the small ambiguities and possible defi-
ciencies in the standard. However, the
standards team must be commended mere-
ly because they exist and they at least
attempted to create a standard of some
kind. Why then don't people write in stan-
dard code? It aggravates me to see code
in your journal prefixed or post-addended
by a phrase similar to "all you need to do
to bring this code up to the standard
is.." Why not write standard code in the
first place?

This letter is purposely provocative
and I sincerely hope that you decide to
publish it. Through it I hope to force a re-
evaluation of the way some individuals
look at FORTH. Some of us still think
that FORTH is elegant because of its
simplicity. It is unfortunate that many
refuse to see FORTH as the beautiful
language that it is, but see it only as
another language that they'd like to
resemble,

J.T. Currie, Jr.
Virginia Polytechnic Institute
Blacksburg, VA 24061

Well-expressed, on both paints! Regarding
the use of the 79-Standard, see our "New
Policy” at the front of this issue.--ed.

Minnesota Chapter
Dear fig,
Greetings from the Frozen Wastsland:

This letter is to inform you of the
formation of a Minnesota chapter of the
FORTH Interest Group. We have had two
meetings so far, with attendances of
tweive and sixteen respectively. We plan
to be meeting once a month. Anyone who
is interested should get in contact with us
first at the above address.

We hope to start some kind of news-
letter in the near future. I've heard that
it's possible to get copies of program list-
ings and other handouts which have
appeared at Northern California meet-
ings. Could you please let us know how we
go about getting copies? [have enclosed a
SASE for you to respond.

One of our members is running a Con-
ference Tree (a Flagship for The Commui-
Tree Group) which we hope to use for
interchange of ideas, programs, etc. out-
side the general meeting, snd to comple-
ment the newsletter. The phone number
for that Tree is (612) 227-0307. The
FORTH branch is very sparse right now,
however, since we are just getting off the
ground.

We are also contacting local computer
groups about jointly sponsoring FORTH
tutorials for specific machines, and pro-
viding a public-domain, tum-key FORTH
system that will turn on their machines.
We currently have such software for the
Apple 1, SYM-1, are close on an Osborne-
1, close on an OSl, and are seeking out a
TRS-80 version.

Well, that's our plans for the next few
months. We would appreciate your cur-
rent mailing list of Minnesota residents
(55xxx and 56xxx zip codes, I believe).

Hope to hear from you soon!

Mark Abbott
Fred Olson
Co-founders of MNfig

Happy to - hear sbout your new
chapter! Your mailing list is on its way.
And yes, handouts from the Northern Cali-
fornia Chapter meetings are available.
Here's how to obtain them:

John Cassady of the Northern Cali-
fornia chapter has agreed to serve as 8
clearinghouse. The Secretary of any FIG
Chapter can mail, each month, handouts
from his own Chapter's meetings to Mr.
Cassady. In return, John will send back
one set of all handouts he receives each
month, including those from the Northern
California meetings. Even if a local
Chapter has no handouts, the Secretary
must sent at least a postcard to indicate
the Chapter's continued interest. The

local Chapter's Secretary will make the
necessary copies to distribute to members
of that Chapter.

So, let's see those handouts from all
the Chapters! Write to:

John Cassady
339 15th Street
Oakland, CA 94612

Brain-System

Dear fiq,

The special FORTH issue of Dr. Dobb's
Journal made a deep impression on me and
on my son. My son is since 12 years a
system programmer and knows more than
a dozen computer programming lan-
guages. [am a logician and engineer, cade
designer and the developer of the only
existing proto-madel of Interdisciplinary
Unified Science and its computer-
compatible language, the UNICODE.

Thus, [represent a radically different
path of scientific development--disre-
garded by many because it does not
promise immediate financial returns.

My approach is centered on a new and
far more encompassing system-idea of the
temporary name "brain-system" having a
physical-hetero-categorical genetically
ordered sequence of models of logic. This
sequence has a specific case for present-
day forma! logic and a corresponding sim-
plified variant of the system-idea: this is
the system-idea of the digital computer.

UNICGODE is the first' specific brain-
system programming language. It is a
content oriented language, it has powerful
semantics and register-techniques. It has
"words" which are at the same time total
programs for the generation of the invars
and "content" the term intends to com-
municate.

1 think to study UNICODE will lead to
unsuspected breakthrough in the develop-
ment of programming, especially if think-
ing has been made elastic and modular by
studying FORTH.

I would like to receive the private
addresses of a few creative FORTH fans.
In the hope of your early reply, I remain...

Prof. Dipl. Inqg. D.L. Szekely
P.O. Box 1364

91013 Jerusalem, Israel
December 1981

Anyone follow that?--ed.

Page 169

FORTH DIMENSIONS

TECHNOTES

ENCLOSE Correction
for 6502
Andy Biggs *ENCLOSE® PRIMITIVE FOR GXF2 VITH 16-31T INDEVIwG
41, Lode Way THE *Y* PEGISTCR FORMS THE LOv IKDEZ IYTF
Haddenham SIACK LOCATION $1.X FORMS HE MIGH IN.0Lx RYTL
TIEE CASE ADDRESS NFLD IN SHe2 . TN«3 15 ALSO AFFECTED
Ely, Cambs
CB6 3UL
.CYTE $07.ENCLOSFE®
England WORG L243
LWORD ®e2
On converting my 6502 fig-FORTH 14+« S
(V1.1) to work with 256 byte disc sectors, | TXA
discovered (after many system hang-ups) gsg os8
that WFR's 'ENCLOSE' primitive is not TAX
quaranteed to work with disc sector sizes STY £3.X .
greater than or equal ta 256 bytes in size. sTY $1.X L ANpeCT oRE
DEY
In his 'ENCLOSE,' Bill uses the 6502 Y 433 SK+3
.) . o $1,X : PRIME TH VAR oor
register to index through the input text 1313 1§$! € THESE VARIABLES FOR L
stream, but this register is only 8 bits, %0 BNE XXX1
if the text stream contains a block of ;:g :"‘:: ; mc“"{:; :: ?2825”
delimiter characters, e.g. 'space’ bigger XXX1 t':‘:: ;:uoz).v 3 Gerlgmyﬂt:nﬂgz _llmur STREAM
it wi : 1 - i
't::rlgjg, it will loop forever, as I found to iEQ L313 ; LOOP 1F TRUE
sTY 84X ; NON-DELIMITIR SO PUT FIRST
When will this occur? Never from the §'T’: :é:; 3 RESULT ON T4E STACK
terminal input buffer, which is only 80 2
L318 LDA (SNe2) ¥ ; GET CHARACTIR AGAIN
characters long. BRE 1327 i CRANCW 1F HOT £ HULL
With a disc sector size of 256 or STY $2,X . .
bigger, if you have an entire sector of fgx :7:: : TIDY uP RESJLTS FOR °NULL® EXIT
spaces in a load screen, then the load will STA $3.X
i TYA
hang up on this chunk of spaces. eMP $4,% i IF FIPST AND LAST INDEXES ARE EQUAL
Or.es SNE L326
If your sector size is bigger than 256, then LDA $1.X
any chunk of spaces 256 or bigger will e T 3 THEN
hang it. INC $2,X : INCREMENT THIS RESULT
BNE L326
I encountered this because | decided to 1326 ‘l,:,c, :2,’;
emulate John James' method used on the
PDP-11 version, where R/W' handies 1K Lazz rua e2.x : SAVE CHARACTER
every time, so as far as BLOCK, BUFFER, LDA $1.X : SAVE ZURRENT INDEX AS OFFSET TO
and ENCLOSE are concerned, the disc STA $3,X : FIRST DELIMITER AFTER TEXT
block is 1024 bytes, and compiling hung up é:g XXXS
on any text gap bigger than 256 bytes! INC $1.,X ; INCREMENT INDEX
ws b5 RARIR s
Anyway, | ENCLOSE (ha ha) 8 revised ‘ ; AT
version of the ENCLOSE primitive which 1
am now using, which has full 16 bit index-
ing. I'm sure some assembly language
programmer could produce a neater ver-
sion, but at jeast I know that this one
rks cHP SN : IF NOT DELIMITEP
works. 8NE L318 : THEN LOO?
STY $8,.X : ELSE EXIT
Keep up the good work. Jwp NEXT

By the way, I'm willing to act as a fig
software exchange/library In the XK,
unless there is someone already doing it?

FORTH DIMENSIONS T1/6 Page 170

TRANSIENT DEFINITIONS
Phillip Wasson

Editor's Note: This article appeared in
the last issue, but, unfortunately, without
the source code. Here is the srticle as it
should have appeared. Our apologies.

These utiliites allow you to have tem-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) in the dictionary during
compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area” which must be above the
end of the current dictionary. The tem-
porary definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to its normal
location. Now the application program is
compiled and the temporary definitions
are removed with the word DISPOSE.
DISPOSE. will take a few seconds because
it goes through every link (including vo-
cabulary links) and patches them to bypass
all words above the dictionary pointer.

NOTE: These words are written in
MicroMotion's FORTH-79 but some
non-79-Standard words are used. The
non-Standard words have the fig-
FORTH definitions.

FIRST 1000 - CONSTANT TAREA (Transient area address)

VARIABLE TP TAREA TP ! (Transient rointer)
t TRANSIENT (--- ADDR)

HERE TP @ DP 1
+ PERMANENT (ADDR ---)

HERE TP ! DP ! 4
¢+ DISFOSE (~--)
TAREA TP ! VOC-LINK
BEGIN DUP
BEGIN @ DUP TAREA U(UNTIL DUP ROT ! DUP O=
UNTIL DRDOP VOC-LINK @
BEGIN DUP 4 -
BEGIN DUP
BEGIN PFA LFA @ DUP TAREA U(
UNTIl. DUP ROT PFA LFA | DUP O~
UNTIL DROP @ DUP O=
UNTIL DROP [COMPILE FORTH DEFINITIONS i

{ Example)

TRANSIENT
¢ CASE ses #
s+ OF ves §

+ ENDOF ves
B ENmASE vee #
PERMANENT
+ DEMOL
LN CASE
ses OF +v+ ENDOF
voe OF 4+ ENDOF
ENDCASE

TRANSIENT
t+ EQUATE (N ---)

CREATE » IMMEDIATE

DOES) @ STATE @

IF C(COMPILE LITERAL THEN 3
7 EQUATE SOME-LONG-WORD-NAME
FPERMANENT

+ DEMO2 (SOME-LONG-WORD-NAME is comriled)

SOME-LONG-WORD-NAME . { as a literal)

DISPOSE { Removes the words EQUATE,» SOME -LONG-WORD-NAME,
(CASL, OF,» ENDOF+ ardd ENDCASE from the)

(dictionary.)
DEMD2 7 OK (Teat DEMO2s, it prints a seven.)

RENEW TODAY!

Page 171

il

NOVA bugs

John K. Gotwals
Computer Technology Department
South Campus Courts C
Purdue University
W. Lafayette, IN 47907

I have just finished installing fig-
FORTH on my NOVA 1200, using the
listing I received from fig. Instead of
running it standalone, as the fig listing
does, I run it as a task under RDOS Rev,
5.00.

So far | have found four bugs or omis-
sions in the listing. They are as follows:

Page 10 of the listing - EMIT does not
increment OUT.

[COMPILE] does not work properly. It
can be fixed by removing CFA, from
line 07 on page 42 of the listing.

VOCABULARY does not work proper-
ly. This can be fixed by adding CFA
between AT and COMMA on line 53 of
page 44.

(FLUSH) can not be accessed until a
missing <51> is inserted after FLUSH
on line 13 of page 52.

After installing fig FORTH, | entered
the CYBOS editor from the keyboard and
used this editor to boot the fig editor
listed in the installation manual. After
this experience, | am somewhat pessimis-
tic about FORTH's portability between
word and byte addressing machines. I had
to make quite a few changes before the
fig editor would run. Some examples:

BLANKS expects a word address and
word count.

COUNT expects a word address and
returns a byte address.

HOLD and PAD both retum word
addresses.

If any RDOS NOVA users would like a
copy of my "fig-FORTH," they should feel
free to contact me.

RENEW NOW!

RENEW TODAY!

FORTH Standards Corner

Robert L. Smith

DO, LOOP, and +L.OOP

There have been some complaints
about the way that +LOOP is defined in
the FORTH-79 Standard. The first
obvious problem is that the Standard does
not define the action to be taken when the
increment n is equal to zero. Presumably
that was either an oversight, or a typogra-
phical error. The most likely correction is
to treat the nz0 case the same as n>0,
since the arithmetic is defined to be two's
complement, and for that arithmetic, the
sign of 0 may be considered to be posi-
tive. 1 am aware of other possibilities, but
they seem to be fairly difficult to imple-
ment or explain.

The second point that is mentioned is
that the parameter range seems to have a
strange asymmetry. When a positive in-
crement is used, the DO-LOOP index I
may not reach the specified limit. How-
ever when a negative increment is used,
the index I may be equal to the specified
increment. Users of fig-FORTH systems
have pointed out that the fig +LOOP is
symmetric in the sense that for either
negative or positive increments the limit
value is never reached. One may consider
that the Standard version terminates when
the boundary between the limit n and n-1
is crossed, whether the increment is
positive or negative.

Finally it has been noted that the
Standard LOOP and +LOOP depend on
signed arithmetic. Many, but not all,
FORTHs use a modular or circular arith-
metic on DO-LOOPs, allowing the index 1
to directly address memory. The use of |
to address memory in a Standard LOOP
may result in a non-transportable program
unless a certain amount of care is taken.
The Standard version is easier to define
than one involving circular arithmetic.
Note also that the Standard version allows
approximately twice the range of most
circular loops (such as in fig-FORTH),

The best suggestions for new looping
methods can be found in a paper given by
Robert Berkey at the recent FORML
Conference. The paper is entitled "A
Generalized FORTH Looping Structure." |
recommend that readers interested in the
topic get a copy of this paper and imple-
ment his suggested words. | wqould like to
slightly modify his results for the current
discussion. Berkey essentially shows a
technique for looping in which the incre-
ment for +LOOP may alternate between
positive and negative values without
necessarily terminating the loop. Modular
arithmetic is used so that either signed or
unsigned use of the index I may be
employed. The increment may be any
value. The terminating condition is when

the boundary between n and n-1 (actuelly
n+l in Berkey's paper) is crossed dynemi-
cally. The implementation appears to be
even more efficient than that described by
Brodie and Sanderson (™Division, Rela-
tions, and Loops," Rochester Conference,
1981). The only apparent disadvantage of
the implementation is that the index is
computed by addition or subtraction. A
novel feature of Berkey's implementation
is that when the word LEAVE is executed,
the loop is terminated at that point (i.e.,
LEAVE actually leaves). Berkey also
suggests that for normal positive
incrementing loops that the index range
should include the upper limit, in a manner
more consistent with other languages as
well as typical use in the fig-FORTH
INDEX. Finally, he suggests a construct
%0 that a loop may be skipped entirely if a
counting parameter is zero.

The work discussed above is of paten-
tial interest to future directions in
FORTH. It shows that FORTH is still
evolving, even though it cannot effect the
current Standard.

Position Wanted

I am looking for a software engineering
position with another company that uses
FORTH. I would like to work for a firm
using FORTH to develop state-of-the-art
systems software; specifically, a FORTH-
based development and oeprating system
environment to compete head on with
UNIX.

Brent Hoffman
13533 37th N.E.
Seattle, WA 98125
(206) 363-0642

FORTH DIMENSIONS 1i1/6

Page 172

9900 Trace

Hainz F. Lenk BEEBESERIREIINIREILERRERERERRINEIRELERININNTES
Loewensteiner Ring 17 ¢ SUBPROGRAM TO OUTPUT A STRING TERMINATED BY >00
6501 Woerrstadt 3 CALL. WITH XOF SADRESS,J
s
Germany CB DOBD MENTR MOVB SR11+,R2 FETCH BYTE
cA 1302 JEO MEXITY EXIT IF ZERO
[have had some trouble getting iny cc C'—;‘é *’0" :é"‘;n FPRINT ASCII CHAR.
i CE 1 Je N
9900 FOR TH running. 06 380 MEXIT RTWP
. SESSBEESRINREISEINENBANISBEETENEBINILEANNINNESES
To ease the finding of errors | wrote 8 § SUBPROGRAM TO OUTFUT A HEX WOKD
program to display all important vectors s CALL XuP SOURCE, 4
(IP, W, CODE, R, SP) and the first 7 stuck *
contents. Even the stack's yrowing is gf 20'4 WENTRY LD RL.A count
visible. D& CZEB MOV SR11,R11 FETCH WORD
D8 BaAn SKC K11,4 AL TGNMENT
i ibute i DA COHB WNEXT MOV REL,R2 COPY
1 would hke. to contribute it to you, s ve 242 ANDL R2. 00 MASH OUT
you can offer it to all 9910 users with & nE Foo
100M or similar board. € 287 5] 2, 100 NUMBEKR?
3 POL
It was a great luck for ne that ! did b ":',0".'_ el .
oo Al R2, 0700 ADJUST L ETTER
not need the addresses >37C and >35717, and Eé' 0K ! }
could use it for a branch to the STATUSY EA 222 NUM Al 2,33000 ADJUST ASCIL
program. This program is switched off by ce oun - 1
the code HEX 455 384 ! and switched on by €L 2cu7 row ke o
: ; R :
HEX 457 384 M DBCB SKE Rif,1 SHIFT
.. ¥2 st DEC K1 COUNT -}
F4 16F2 INE WNEXT ZERQ ™
The prograin list contains the routines Fa 380 R1we ExIi

BEOSBEEREEOSIRSRINSERELEEEBINNBNSRRRISRENX
$ PRINT STAIRT PROGRAM
s SED FOR DFEBUG DAKING SET WP

for termina! input and output, ton.

[hope | can help some people with my FA 1000 S1ATUS N SHAKE
. FA 2CEO XOP 8 AR, MSG TiF
program b oa
s $310-FURTH 4900 FF Cha9 MOV RY,RO Ciwy
& HYSTEM DEPENDEND CODE FOR P07 Lo BOAKD 1060 hA0- DECT RO MD 21F
$ FOLLOWING HEOGIAMS SURFORT T HEY AND 02 2D X0k RO, 4 ;NPul 21
8 OCEMITT OINGTRURLUNY, [T S BT YR 8 ALY MG W
] 16 n
$ TO EASE ERKUK FINDING HHERE 15 A PROHKAM 108 Look MOV K11, Re
s TO PRINT OUT 1MF HFOINITEKS AND M1 B ERGT 10A &40 IRCT RO
§ SEVEN H1ACE CUNIENTS 1000 Uhoe Xt R, 4
$ HEINZ LENE, LOLWENSIEINER KING 17, o901 WEORRSTDY 1E 2CHo X & k4,3 MUGU CUNE
& (ERMANY . 1.706/61 110 B4
BEONBSUEIIOINSISOININIBEANOINNINOEIOBNININNESTIS 112 200% X K%, 4
ADRL 44 114 2CE0 X0 W, MG LK
44 FFOO [T XOF b VRO W 118 L
44 ao DATA K NTRY XUH: 1 VEC 1N i 118 TDod X Kiw, 4
48 FFnO natn Fron X0 2 Vi CIOR W 11Aa 7Cfo x4 C2 MYG 256
4A BE VATA EHILSE X2 VXN e [BAd
AC FF20 DATA - FF20 X L VECTOR W HE 2DoR Xt KE, 4
AE ce DATA Mt NI AUE L VLN L [FATIN TET NL#
50 FF20 DAL EEDO XUE A VEETOM W s MIEPLI 7 SHALLS
52 2 DATA WL N TKY XU A VHCTOK B w2 By 1 KL,/ COUNTS
SRANUNNSINSBININDNENRORNLINININUSIEENSODSOS00RNE 1.4 ?
¢ READ DATA 10 STALE FOINTED BY RA 126 Cko MYV 8 3IARY FEICH STACK SIAKE STAX
s CALL WITH XU sRH, 1 198 1A
ARG Fio 1I2n 0 L1 K2, G0 SHACE
@ DO RENTRY 11 K12, -HO LGB 1A 000
2 s 12€ 2LCD ST we R MG RLANG
B84 1K1Y (LTI I G EVEIC I8N . 1A 130 2013 XH a3, 4 FRINT HFX
86 14FT I K ENERY 152 @20y B K4 RH LIRRENT S1ACE POINTER?
[11] STER 83D,/ [ERIFTIT M N 134 1303 JEL HTEX]Y JUMe T8 E UL
B8A 1E12 spl 10 KEUCE IVEK ENTR Dtitst 136 447 DECT K3 NEYY ST
ac 380 RTwWt- 138 A0l pEe Kl COUNT 1
SONSESASEIPIEATEAENIEERISEB0RNNO0000IR000000S 1A 16FY INE STOUT KLFEAT UNT I ZERO
8 WRITE A CHORATER T IERHINM CEREL 182 4%h STEXIT 1z sZltmy RESOME WO BY SRS
s CALL WLHI XU sk, .
s SORORBBERNSENSSRIINIRRENUNEAENSIRNSOBINOUNEIENERIRIY
BE 20C EMLISK 11 12, Ho LT CROBOME o THE URIGINAL DYNAMIL RAM ALLOCATEIN PROGRAM DUES
20 a0 ¢ NDI WORK WILH AN UNTEKRMINATED DATARUS,
92 1bio SB0 KIS ON s THIS 4 L IMNES HOLVE 11 FRUBLEM.
94 1F1e T22 T THANSIL L (98 . MY ADKEG 4R
96 16FE Jnt 344 ADY LK MRS Cl EAK 1KaM ALDKLHS
%8 1F1B 127 0 Dhire 40 CHES MWV SRS, SRS DIMMY
A 16FE JNL T SE L ¥B JEQ SENREN JuMP BACE IF ZEk0
9C 1B LDCH skil, 8 i AN 5 TR YL O N
9% 1F14 TEDD H o TIANSMIT . EMPLYS]
AD 14FE INE SESEBSAEIINEAISTENIBEEIOENERISNEISNRINNNUTININSE
A2 IF17 1§} TRANSGHIY SIOFL EMPTY? 9 THFE INNEK INTEFRETER 1S CHANGED 1O PRINT ALL
A4 16FC JNE ¢ POINTERS (I W,CODERQDY,R,SF) AND STACK.
A6 380 RIW s THE STATUS 1S SWITCHED ON BY HEX A%7 TH4 !
SEEESEIBRUNISNSORIORNSERINNNIIBINOOOsEI0IEIOsOINS s FHE SIATUS (S SWLITCHED OFF BY HEX 455 384
AG 0AOD 81 DATA GALD LKLY ARG -37C
AN TEX) “{b=® b7/ VA VY § 11 R7,>F8 PL OF STATUS
AE 82 TEXT * W-» I fa
2] [:5 TEXT * LNk~ 380 CF9 MOV SZ21IPe,ZW
sC 54 TEXT " Ru" B2 C17B MOV SZW+, 2TEMP FOINT TO.BODY
c2 5% TEXT * Ghav e AS?] R7 BRANCH 10 STATUS

Page 173 - T FORTH DIMENSIONS 1076

A TECHNIQUES TUTORIAL: EXECUTION VECTORS

This month, we continue our explors-
tion of FORTH programming techniques
by teking @ look at a concept known as
Execution Vectors. This is really a fancy
name for very simple concept, namely
using a variable to hold s pointer to a
routine that is to be executed later.

It is only fair to warn you that the
dialect of FORTH that 1 am using is the
one discussed in Starting FORTH by Leo
Brodie. It has several differences from
figFORTH, not the least of which is the
fact that in figfORTH EXECUTE operates
on code field addresses (cfa's), while in
Starting FORTH EXECUTE operates on
parameter field addresses (pfa's). This
may not seem like a big deal, but if you
have ever fed EXECUTE a pfa when it was
expecting a cfa, you have undoubtedly
remembered the result. Anyway, my
EXECUTE uses pfa's. Its function is to
perform or EXECUTE the word that this
pfa points to. An example will clear this
up. Suppose we have the following:

: GREET ."HELLO, HOW ARE YOU" ;
* GREET (LEAVE THE PFA OF
GREET ON THE STACK)
EXECUTE (AND NOW PERFORM IT)

the result is:
HELLO, HOW ARE YOU

which is the same result as just typing
GREET.

The above may not seem too signifi-
cant, but the implications are tremen-
dous. Consider the following examples:

VARIABLE 'EMIT

(EMIT (CHAR —-)
'EMIT @ EXECUTE ;

' (EMIT) 'EMIT !

I assume that (EMIT) is a routine which
takes a character from the stack and
sends it to the terminal. By defining EMIT
to use 'EMIT as an execution vector, we
now have the ability to redirect the output
of FORTH in any manner we choose. For
example, suppose we want all control
characters that are sent to the screen to
be prefixed with a caret. We could do the
following:

v CONTROL-EMIT { CHAR =~)
DUP 32 (BLANK) < IF { Control Char?)
94 ¢ ~) (EMIT) (Yas, eait an ~)

64 ¢ ABCII A - 1) e (and convert tt }

THEN
(EMIT)

* CONTROL-EMIT °"EMIT !

Now all regular characters will fail the
test, since they will be larger than blanks;

Henry Laxen
Laxen & Harris Inc.
24301 Southland Drive
Hayward, CA 94545

however, control characters will succeed
and will be incremented by 64, making
them displaysble.

There are ssvera) other FORTH words
that have proven useful to vector. Some
of these include:

KEY input from keyboard primitive
CREATE change header structures
LOAD useful for many utilities
R/W disk i/o primitive

For example, if LOAD were vectored,

_then by redefining it to print a screen

instead of loading it, you could write a
print utility which prints screens in load
order by LOADIing a load screen and rede-
fining LOAD to print. CREATE could be
changed to add the screen number of each
definition to the dictionary header so that
it could later be retrieved with VIEW or
the equivalent. KEY may be changed to
get its characters from a file somewhere
instead of the keyboard. In short, there
are a thousand and one uses for Execution
Vectors.

But be careful, I may have opened
Pandora's box with the above selling job.
There is a price to be paid for execution
vectors, and that is complexity, the arch-
enemy of reliability. Every word that you
decide to vector at least doubles the com-
plexity of the FORTH system you are
running, since it introduces at least two or
more states that the system can be in.
You must now also know what the version
is of each execution vector you are
using. If you have 3 different EMITs and 2
different KEYs and 3 different LOADs,
you have a total of 18 different states
that the system can be in just on these
vectors alone. So use vectors sparingly,
otherwise you will lose control of the
complexity very very quickly.

Having decided to use execution vec-.

tors, we're now faced with different
approaches towards implementing them.
The one described above works, and is
used by many people, but it has one unfor-
tunate property, namely the need to name
a varisble which is basically overhead.
Here is another way to accomplish the
same thing without having to define a
variable, Consider the following:

s DIE { ===
1 ABORT* THIS WOLR.D HAVE CRABMED!"

t EXECUTE:

DIE is ussd to send an erTor masage te
the terminal and resst the FORTH system
into a clesn state. EXECUTE: is » deofin-
ing word which initializes itself to DIE,
but hopefully will be changed later by the
user. Words defined with EXECUTE: can
be changed with 1S as follows:

EXECUTE: EMIT

* (EMIT) ISEMIT (or perhaps)
' CONTROL-EMIT IS EMIT

What EXECUTE: has done is combined
the variable name with the Execution
Vector name into one name. IS is used as
a convenience, so that the user can forget
the internal structure of words defined by
EXECUTE:. Also it provides an extremely
readable way of redefining Execution
Vectors. Notice that as defined, IS may
only be used during interpretation. |leave
it as on exercise for the reader to define
an IS that may be compiled within : defini-
tions,

Another approach to redefining execu-
tion vectors is via the word ASSIGN. It
could be defined as follows:

1 (ASBIaN) « CFA ——-)
R> 2+ SwAP ¢

1 ABSIEN { -=-
COMPILE (ABSIGN)

€ 1 CFA @ J LITERAL , 1 IMMEDIATE

It would be used as follows:

1 UPPER-ONLY
€’] ENIT ASSIGN
DUP 94 (ASCII a-1) > IF
DUP 123 (ASCII z+¢1) < IF
32 -
THEN
THEN
(EMIT) ¢ AS ALWAYS) ;

-

When UPPER-ONLY is executed, EMIT
is redefined to execute the code following
the ASSIGN, which will convert all lower
case characters to upper case, and send
them to the terminal. Note that unlike IS,
ASSIGN may only be used within : defini-
tions.

That's all for now, good luck, and may
the FORTH be with you.

FORTH DIMENSIONS 11/6

Page 174

CHARLES MOORE’S BASIC COMPILER REVISITED

In this psper I will discuss several
interesting features of the "BASIC
Compiler in FORTH" by Charles Moore
(1981 FORML Proceedings).

Why is a BASIC compiler interesting?
There are a number of reasons, Foremost
of them is that BASIC is in many ways
typical of a variety of popular languages,
psrticularly FORTRAN, PASCAL, and
ADA. Conspicuous features of these lan-
guages are algebraic notation, lack of
access to the underlying hardware, poor
input and output facilities, and non-exten-
sibility. FORTRAN and BASIC also suffer
from poor structuring due to the extensive
use of GOTO. These langueges all tend to
be best at solving equations. Other prom-
inent features of BASIC are it s use of
statement numbers as labels, low speed,
and its use of a few complicated functions
(e.g., PRINT) rather than many simple
ones.

Why is it slow? BASIC interpreters
usually convert source code statements to
an intermediate form, where keywords
become tokens. The token interpreter is
slow because tokens must be deciphered
(translated into actions) at run time, This
BASIC to FORTH compiler produces code
which runs unusually fast. This is because
it produces FORTH object code, i.e., se-
quences of addresses of code routines.

You should look at the example pro-
grams (blocks 80-82) before reading the
text. You will notice that each BASIC
program becomes a FORTH word named
RUN. It is executed by typing its name,
i.e,, RUN. This is how BASIC usually
works; you type RUN to execute the
program. It serves to demonstrate that
from FORTH's point of view, BASIC only
knows one "word,” RUN. Is it not more
use ful and flexible to let routines have eny
name, and to be able to execute any of

them by typing its name? Yes, and that is
a key feature of FORTH.

How It Works

L will refrain from commenting on the
intrinsic value of g BASIC compiler; that
has already been covered well in Moore's
paper. The principal features 1 will dis-
Cuss are the handling of operator prece-
dence, variables in algebraic equations,
and the use of the FORTH compiler. The
most important part of this BASIC com-
glle_r is its ability to convert algebraic
(infix) source code to reverse polish (post-
fix) object code.

A BASIC program is compiled imside
the colon definition of a word named
RUN This means that the FOR TH system
is in its compile state, and any words to be

Michael Perry

executed during compilation must be
immediate. This use of the FORTH com-
piler was perhaps my greatest lesson from
studying this BASIC compiler. The ordi-
nary FORTH compiler is far more versa-
tile than 1 had realized. If I had written
this compiler, it would doubtiess have run
in the execution state and would have
been far more complicated as a result.

Let's look at an example. The BASIC
statement
10LETX=A+8
will be compiled into object code equiva-
lent to the FORTH expression
X A@B@+SWAP!
where X, A, and B sre varisbles. One of
the variables (X) returns sn address, the
rest return values (with a fetch). The add
is compiled after the fetches of the values
to be added. The equals becomes the
" SWAP ! " gt the end. Because the source
code (in BASIC) is in algebrsic notation,
and the (FORTH) object code is in reverse
polish order, some way is needed to
change the order of operations when com-
piling the BASIC program. The mecha-
nism which controls the compilation order
is based on the ides of operator prece-
dence, which means that some operators
are assigned higher priority than others.

PRECEDENCE

The idea of operator precedence is a
prominent feature of most computer lan-
guages (FORTH is a notable exception).
Operations are not necesssrily performed
in the order you specify. An example will
help. The equation X=5+792 could
mean either X=z(5+7)%2 or X=5+
(7 # 2), ususlly the latter. In FORTH this
would be 72 %5 + X !where the order is
explicit. In algebraic lenguages some
method is needed to clarify the order of
evaluastion of operators in expressions.
That is what precedence does. Esch oper-
ation s assigned a precedence level.
Operations with higher precedence are
performed earlier,

During compilation of the BASIC pro-
gram (the FORTH word named RUN) the
compilation of many words is deferred.
This allows the order of words to differ
betwesn the source code and the object
code. Take '+' as an example. To defer
compilation of '+' 8 new word is created
which is immediate (and so executes at
compile time). When this new word is
executed, it leaves the address of '+' on
the stack, and on top it leaves the prece-
dence value of '+. The defining word
PRECEDENCE creatss the new word as
follows: "2 PRECEDENCE +". This
creates a new, immediate word named '+,
which will leave the sddress of the old
word *+' under the value 2,

The word which decides how long to
defer compilation is DEFER. DEFER
looks at two pairs of numbers on the
stack. Each pair consists of an address
8nd a precedence value. If the precedence
of the top pair is larger than that of the
lower, DEFER does nothing. If the top
precedence is less than or equal to the one
below, the address part of the lower pair
is compiled, and its precedence is dis-
carded. DEFER will continue to compile
until the upper precedence is larger than
the lower.

So how do you get started? Essen-
tially, most BASIC keywords (such as LET)
execute START wqghich leaves NOTHING
0 on the stack, where 'NOTHING is the
address of a do nothing routine and 0 is its
precedence. This pair will remain on the
stack during the compilation of that
statement, because everything has higher
than zero precedence.

At the end of each line, RPN is execut
ed. It performs a 0 1 DEFER, which
forces the compilation of any deferred
words, becsuse every operator has a pre-
cedence of at least 1. RPN then consumes
the 0 and executes NOTHING. Actually,
each statement is ended by the start of
the next. BASIC keywords such as LET
execute STATEMENT, which contains
RPN (to finish the previous statement) and
START (to begin the next).

BRANCHING

Three new branching primitives are
used. They are compiled by various higher
level words. JUMP is used by GOTO.
SKIP end JUMP are used by IF-THEN.
JUMP is compiled followed by an absolute
address. When executed it simply loads
that address into the IP (virtual machine
instruction pointer). When SKIP executes,
it takes a boolean off the stack. If true it
adds 4 to the IP, ekipping (usually) the
following JUMP,

(NEXT) is ussd for FOR-NEXT loops.
It is compiled followed by an absolute
address. When executed it takes three
parameters from the stack: final value of
the loop index, step size, and the address
of the varieble containing the current
valus of the loop index. It adds the step
(plus or minus) to the varisble, and loops
until the index passes the limit.

Adding GOSUB would require another
brenching primitive, CALL.

Pege 175

STATEMENT NUMBERS

Each BASIC statement must be pre-
ceded by a number. This number acts as a
label, allowing branches between lines. In
this compifer, the numerical value of the
labels does not affect execution order,
When a statement number is encountered,
it is compiled in line as a literal. The
address of LIT is compiled foliowed by the
literal value 10. For example, when the
statment "10 REM" is encountered, 10 is
compiled as a literal. The keyword REM
is immediate, and so is executed. It
begins by executing STATEMENT, which,
amangst other things, fetches the value of
the line number just compiled (10), and
enters it into the statement number table
#S) along with the address (HERE) of the
start of that statement. STATEMENT
then de-allocates the space used by the
literal 10 {with a -4 ALLOT). It scans the
table and resolves any forward references
to the new statement. When a forward
reference occurs, as in "GOTO 50" before
statement 50 is compiled, GOTO compiles
'JUMP 0'. The zero will later be replaced
by the address of line 50. The reference is
entered into the table with the address to
he patched instead of the actual address
~f statement 50. Additional forward
references to the same point will be
chained to each other. To indicate that
this is a forward reference, the address in
the table is negated. This means that
BASIC programs must be compiled below
3C0CH, so that ail addresses appear to be
positive. Here simplicity was chosen over
generality.

VARIABLES

There are two particularly interesting
things to notice about variables. They are
immediate, and they know which side of
an equation they are on. Three types of
variables are supported: integers, arrays,
and two dimensional arrays. Variables
must be declared (defined) before use.
The BASIC expressions: LETX =A+8
{where X, A, and B are variables) compiles
into the following FOR TH equivalent:

X A@3 @ +SWAP!

Notice that when an integer appears on
the left of an equals sign, it must compile
its address, and when on the right side, its
value (address, fetch). Also note that only
one can appear on the left, while many
can be on the right.

The way this is implemented is sur-
prisingly simple. The variable ADDRESS
contains a flag which indicates which side
of the equals sign a variable is on. The
word LET sets ADDRESS to 1. "INTEGER
X" creates a variable named X, which is

immediate. When X is executed it com-
piles its address. X then examines
ADDRESS. If it is true (non-zero), X

simply makes it zero, If ADDRESS is
false, X compiles a @ after the address,
thereby rturning the value when the
BASIC program is run.

Notlce thet the squais sign plye &8

role in this process; everything is dans by
keywords (e.g., LET) and varisbiss.

Future Directions

Many more features can easily be
added to this BASIC compiler. But why
bother? A much more fruitful line of
endeavor would be to make use of the
lessons learned in this compiler to write
compilers for other, more useful, lan-
guages such as C. A C compiler which is
easy to modify and extend, and just as
portable as FORTH is, could actually be

Whether the compilers thesassl—

them.
(screens on following pages)

Transportable Control Structures
With Compiler Security

Marc Perkel
Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803

This article is an enhancement of the
idea presented by Kim Haris at the
Rochester FORTH Conference (from the
Conference Proceedings, page 97).
Basically, the article proposes a wordset
of primitives for defining control words
such as IF , EL.SE , THEN , DO, LOOP ,
BEGIN , WHILE , REPEAT , UNTIL ,
AGAIN , CASE , etc. Kim points out that
these strucures are either compiling a
branch to a location not yet defined (such
as IF --> THEN) or back to a location
previously defined (BEGIN <-- UNTIL).
There are two steps in compiling either
kind of branch: marking the first place
compiled and then later resolving the
branch. This observation leads to four of
Kim's words:

>MARK Marks the source of forward
branch and leaves a gap.

SRESOLVE Resolves forward branch and
leaves a gap.

<MARK Marks destination of back-

ward branch.

<RESOLVE Resolves backward branch.

1 complement Kim at this point for his
excellent choice of names. Here's where

compiler security comes in.

The word >RESOLVE is filling a gep
left by D)MARK . If J)RESOLVE were to
first check to make sure a gap was there
(DUP @ 0 ?PAIRS) it would help ensure
that the value on the stack was indeed left
by D)MARK . Likewise, if C(RESOLVE made
sure that the point where it branches back
to does not have a gap (DUP @ NOT
0 ?PAIRS) it would guarantee that it was
not answering a YMARK . This method
allows some compiler security where it is
important not to carry pairs on the stack.

Example:

SMARK HERE O, ;

SRESOLVE DUP @ 0 7PAIRS HERE
SWAP !;

<MARK HERE ;

(RESOLVE DUP @ NOT 0 ?PAIRS , ;

F C, YMARK ;

ENDIF >RESOLVE ;

ELSE C3 IF SWAP ENDFF ;

BEGIN <MARK ;

UNTIL €, <RESOLVE ;

AGAIN C3 UNTIL :

WHILE TF;

REPEAT SWAP AGAIN ENDFF ;

o ae

“e 4s se s se se ss se oo ae

FORTH DIMENSIONS 111/6

Page 176

useful or not, it is worthwhile W el

7 i

0 (Charles Moore’s BASIC cospiler, sodified for fig-FORTH) { Precedence)
1 VOCABULARY ARITHMETIC ARITNWETIC DEFINITIONS O VARIADLE ADDRESS 0 VARIABLE 8(
2 VOCABULARY LIGIC VOCABULARY INPUT FORTH DEFINITIONS 31 =10 81 +1 80 3 0C ABORT® Unsatched)* ; IMMEDIATE
3 : DEFER tanan-an) #(3+
4 HOAD BLK 3 ¢+ LDAD; BEGIN 20VER SWAP DROP OVER < NOT
3 1 (SETE) RL WORD HERE NUNBER DROP ; WHILE 25WA® DROP CFA , REPEAT ;
b1 (.} 5-:D SWAP CVER DABS ¥ #5 SIGN & ; ; PRECEDEMCE ¢ n -) INJ (COMPILE]®)R IN!
7 0 YARIARLE #5 128 ALLOT 'BUILDS , RY , IMMEDIATE DOES> 23 DEFER ;
B:SCR 952+ 452
9 { Procedence ') +LORD 2 +LDAD I +LOAD s RPN {n) O3 DEFER 20ROP (3 OR ABORT® Syntax® ;
10: 1 97 WORD ; INMEDIATE 3 NOTHING
11 ARITHMETIC DEFINITIONS s STARY ¢ - am) O ® ' (ADDRESS ! ' MOTHING 0
12 { BASIC) & #LDAD S +LOAD b +LDAD 7 +LOAD ARITHNETIC & IMMEDRIATE
i1 0 10 &0 el s IMEDIATE : 26NORE BC 3 IF O ! DEFER 2DROP R> DROP THEN ;
835 Dael . ¢ | PRECEDENCE ;
'S FORTH DEFINITIONS
™)i}
¢ { Branching - high level) { Variables)
1 s INTEGER (BUILDS 0 , IMMEDIATE DOES: ([COMPILE] LITERAL
T 3UMP R IOR ADDRESS 3 IF C ADDRESS ' ELSE COMPILE @ THEN ;
3ISKI® 0= JF RY 4+ 3R THEN ;
4 : (NEXT) { to \ step \ variable address -- ! s (ARRAY) {aa-ap!
5 20UP ! { add step to var ! SWAP R 7 DEFER R> [COWPILE] LITERAL
5 MIWPR>GSMP (tstvs) ADDRESS 3 IF 0 ADDRESS !
T IF OSWAP THEN - ELSE " @ 7 8t 3¢ 25MAP THEN ;
§ O IF ZDROP R 2+ ELSE R 3 THEN R tfe) bra-a SWAP1- 20 ¢
3 : [NEXT] COMPILE (NEXT} , s ARRAY (0 -) (BUILDS 28 ALLOT IMMEDATE
8 DOES: * [+) (ARRAY: ;
12 t {3} {xya-a) ROTROTOR - OVER &S R>¢ 20 ¢
13 s JARRAY { y x -} (BUILDS DUP , t 28 MLCT IMMEDIATE
i DOES> ' [8+] (ARRAY! ;
1€
7 n
0 (Statesent nusbers) (BASIC)
LiFIR (a-a 1059852+ D0 s LET STATEWENT 1 ADDRESS ' ; INMEDIATE
2 QVER 1 3 = IF 20ROP I 2+ © LEAVE THER 4 +L00P : FOR [COWPILE) LET ; [IMMEDIATE
TOOIF OSHAP 85232 95320 485! THEN; s £33 COMPILE | MERE ;
4 :TO RPN DROP * {110 : IMMECIATE
5 i RESOLVE (n) FIND DUP @ [UP O ABORT" duplicated® + GTEP RPN DROP ° HERE 0 ; IMMEDIATE
& BEBIN T0UP WMILE ODUP 3 MERE RCT ! REPEAY s NEXT STATENENT 20R0P ' [NEXT] 0 1 ADDRESS ' ; IMMEDIATE
7 HERE NEGATE SWAP ° ; s REM STATEMENT IN @ C/L ./ f¢ C/L 1IN 3 IMMEDIATE
8 s CHAIN (n - a) FIND DUP @ 0C IF @ MEBATE t DIM [COMPILE] REM ; IMMEDIATE
L LSE DUP @ MERE ROT ' THEN ; : STOP CSTATEMENT COMPILE ;5 ; IWMEDIATE
10 ; END STATEMENT 20RCP [CONPILE) ; [COWPILE] FGRTH ; IMMEDIATE
i1 : STATENENT { a; NERE 2- & 'R -4 ALLOT RPN CFA EXECUTE
12 R RESOLVE [COWPILS) START ; ¢+ (6OTO: (GET®) COMPILE JUNP CHAIN , ;
13 : B0T0 STATENENT (BC70) ; IMWMEDIATE
H e STATENENT LOGIC ; IMMEDIATE
15 s THEX RPN O COMPILE SKIP (GQT0! ; INMMEDIATE

Michael Perry 198!

Page 177 FORTH DIMENSIONS 111/6

] 4]

0 (Charles Moore's BASIC coapiler, Input and Output) { Operators)
L ASK L" 7 " QUERY ; LOGIC DEFINITIONS
2 PUT (GETH SWaP ! ; 3O lan-t) =NT; 2 PRECEDENCE (>
I ¢ (INPUT) COMPILE PUT ; t{=lan-t1])NOT; 2 PRECEDENCE ¢=
4 () {a) () 14 OVER - SPACES TYPE SPACE ; tlan-t) (NOT; 2 PRECEDENCE)=
Se, tn) ?I6NORE " (,) 1 DEFER ; IMMEDIATE 2 PRECEDENCE =
6 (COMPILE) .* 20ROP ; IMMEDIATE
7 INPUT DEFINITIONS ARITHMETIC DEFINITIONS
83, IGNORE RPN O (INPUT) 1 ADDRESS ' ; IMMEDIATE s = (an) SWAP ! ; | PRECEDENCE =
9 s88({an-n 1 ENAP 1 DO OVER $LOOP 8 ;
10 ARITHMETIC DEFINITIONS & PRECEDENCE ABS
112 PRINT STATEMENT COMPILE CR * (,) 1 ; IMMEDIATE S PRECEDENCE 18
12 ¢ INPUT STATEMENT 20ROP COMPILE ASK * (INPUT) 0 INPUT & PRECEDENCE ¢ 4 PRECEDEMCE / 4 PRECEDENCE 8/
£3) ADDRESS ' ; IMMEDIATE 3 PRECEDENCE + 3 PRECEDENCE -
14 2 PRECEDEWCE ¢ 2 PRECEDENCE
13
8¢ 81
0 [Dwyer, page {7, Progras 1) SCR [basic: array desc J SCR
1 INTEGER J INTEGER K INTEGER X
2 9 ARRAY COCRDINATE
31 RUN START
4 10 PRINT * THIS IS A COMPUTER® s RUN START
S20FRK=1T04 I0FRX=1T0¢
& 30 PRINT * NOTNING AN 60° 20 LET COORDIMATE K = (3¢ - X) 88 3
TACFRI=1T03 40 PRINT COORDINATE K ¢ 5
8 5S¢ PRINT * NRONG® 40 NEXT K
9 69 NEXT) 80 END
0 70 NEXT K
80 END RUN

2 !
o1 basicr inputforint 3 SIR
1 INTEGER X
2 INTEBER
T INTEGER ¥ BEESSRAIILLRTASIIILALLLLILIILLALASALIILILILLLLNLLS

4 1] 3
5 ¢ RUN STARY ' Michael Perrv '
S I INPUT X, Y ' 1446 Stannage Ave.]
THLETY XYY] Berkeley, Calif. 94702 L
SACPRINT X , ¥, K t (415) 526-8496 L
9 80 END ']
HOH BESSSIRISELLSIRRLNLLILIRLERRETELLERIRALAILLLNLLIGE
i
17
i4
13

Michael Perry 1981

FOR TH DIMENSIONS 11I/6 Page 178

A ROUNDTABLE ON RECURSION

Recursion, as it applies to FORTH, is
the technique of defining a word in such a
way that it calls itself. One of the nicest
examples I've seen of a good use for
recursion can be found in Douglas R.
Hofstadter's book Godel, Escher, Bach.
e describes a system which can produce
gramatically correct phrases out of parts
of speech.

Ml use FORTH to describe his
example:

: FANCY-NOUN
4 CHOOSE
(select random number 0-3)
CASE
0 OF NOUN ENDOF
1 OF
NOUN PRONOUN
VERB FANCY-NOUN ENDOF
2 OF
NOUN PRONOUN
FANCY-NOUN VERB ENDOF
3 OF
NOUN PREPOSITION
FANCY-NOUN ENGOF
ENDC ASE. ;

Three of the four possible variations on
FANCY-NOUN include a call on FANCY-
NOUN itself. Case 0 might produce
'books."” Case 1 might produce "man who
reads books." But Case 1 might also
oroduce something more complicated, like
‘man who reads books that explain alge-
bra,” if the iner call to FANCY-NOUN
decides to get fancy.

Normally FORTH deliberately prevents
recursion so that you can call an existing
word inside the definition of a new defini-
tion of the same name. For example:

: + SHOW-STACK + SHOW-STACK ;

This example might be a redefinition
of plus to teach beginners what the stack
'ooks like before and after addition. The
olus that is called in the middle of the
definition is the original + , not the one
seing defined.

FORTH prevents recursion with a word
called SMUDGE . This word usually tog-
gles a bit in the name field of the word
most recently defined. With this bit tog-
gled, the name is "smudged"; that is, un-
recognizable. In the definition of + above,
the colon lays down a head in the diction-
ary., and then executes SMUDGE before
compiling the rest of the definition.

When the second + is encountered, the
compiler searches the dictionary for a
word of that name. The new head with
the same name is bypassed only because it
has been smudged.

At the end of the definition, semi-
colon again executes SMUDGE . This
toggles the bit back to its original state,
so that the name is again findable.

There are various means of circum-
venting FORTH's protection against recur-
sion. Here are two recent contributions
from our readers:

A Recursion Technique

Christoph P. Kukulies
Aachen, West Germany

Here is my solution to the problem of
recursion in FORTH shown in & possible
way to implement the ACKERMANN's
function (see FORTH DIMENSIONS, Vol.
Ill, No. 3, p. 89).,

First test if your FORTH-system is
"crash-proof" with the following sequence:

;:CRASH [SMUDGE] CRASH;
SMUDGE CRASH

After having recovered from CRASH
you should try this:

(m n -> ACKERMANN (m,n)
tACKERMANN (m n — ACK)
[SMUDGE] SWAP DUP 0= IF DROP 1+
ELSE SWAP DUP
0= IF DROP 1 - 1 ACKERMANN
ELSE OVER SWAP
1 - ACKERMANN SWAP
1 - SWAP ACKERMANN
THEN
THEN ; SMUDGE

Be aware of typing
3 4 ACKERMANN ,

Another Recursion

Arthur J. Smith
Osahawa Canada LIG 6P7

Regarding the recursion problem, 1
think that I have found a more elegant
solution. The solution involves an
immediately executed word to re-
SMUDGE the word being de fined.

[define a word RECURS as follows:
: RECURS SMUDGE ; IMMEDIATE

then use the word to bracket the recursive
self definition as in the example:

: SUM
DUP 1- DUP IF RECURS SUM RECURS
ENOF

+

-e

1 use the RECURS word in tree
searches,

Editor's note:

The technique that is generally pre-
ferred was described by Joel Petersen in
the original article. It defines MYSELF as

: MYSELF
LATEST PFA CFA, ; IMMEDIATE

or, for some other versions such as poly-
FORTH:

: MYSELF
LAST @ @ 2+ , ; IMMEDIATE

MYSELF simply compiles the code
field of the latest header in the dictionary
(the word being defined) into the defini-
tion.

The problem with using the word
SMUDGE inside a definition is 1) it's not
readable, since smudging has nothing to do
with what the definition is about, and 2)
its behavior is different on different sys-
tems.

Similerly, having to say RECURS
ACKERMANN RECURS is not quite as
readable as simply MYSELF.

An even more readable solution is this:

R
[COMPILE] : SMUDGE ; IMMEDIATE

R;
SMUDGE [COMPILE] ;; IMMEDIATE

Here a special version of colon and of
semi-calon named :R and R; are defined to
allow recursion without any other hooplia.

RENEW

RENEW TODAY!

Page 179

FORTH DIMENSIONS 1176

100 e 3

23 =

*]

I

ReYRgY

A

N
=

i

(3

aly
Tar
ad

very

8080 ASSEMBLER

John J. Cassady
339 15th Street
Oskland, CA 94612

This 8080 assembler has been available
in a slightly different form for approxi-
mately one and one-half years. It appears

to be bug-free. Sere 48 308
0 (FIGFORTH 8080 ASSEMBLER 1 81AUG1T JJC BOMARO4)
ENDIF 's have been replaced by THEN, 1 HEX VOCABULARY ASSEMBLER IMMEDIATE : 8% DUP + DUP + DUP + ;

and AGAIN has been removed in conform-
ance with FORTH-79. 1 have never had
occasion to use AGAIN ; 1 doubt if I'll
miss it.

2 ' ASSEMBLER CFA ' ;CODE 8 + ! (PATCH ;CODE IN NUCLEUS)
3 : CODE ?EXEC CREATE [COMPILE] ASSEMBLER !CSP ; IMMEDIATE
4 : C; CURRENT @ CONTEXT ! ?EXEC ?CSP SMUDGE ; IMMEDIATE
5 LABEL 7EXEC O VARIABLE SMUDGE -2 ALLOT (COMPILE] ASSEMBLER
6 1CSP ; IMMEDIATE ASSEMBLER DEFINITIONS

! have removed the compiler security. 7 CONSTANT H 5 CONSTANT L 7 CONSTANT A 6 CONSTANT PSW
We frequently want non-structured control 8 2 CONSTANT D 3 CONSTANT E O CONSTANT B 1 CONSTANT C
mechanisms at the code level. The 9 CONSTANT M 6 CONSTANT SP ' ;S OB + @ CONSTANT (NEXT)
?PAIRS really gets in the way. 10 : 1MI <BUILDS C, DOES> C@ C, ; : 2MI <BUILDS C, DOES> C@ + C, ;

11 : 3MI <BUILDS C, DOES> C@ SWAP 8' +C,

I have introduced three macros: NEXT 12 : 4MI <BUILDS C, DOES> c@ C, C, ;
PSHL and PSHZ. They emplace, respec- 13 : S5MI <BUILDS C, DOES> C@ C, , 3 ¢ PSHY1 C3 C, (NEXT) 1 -,
tively, a jump to NEXT , a jump to the 14 : PSH2 €3 C, (NEXT) 2 - , ; : NEXT C3 €, (NEXT) , ;
byte before NEXT and a jump to two bytes 15 ;S
before NEXT . Literally, PSH1 means
push one level (HL) and fall into NEXT. 1 Screen u9

31H
believe this is a more traditional approach 0 (FIGFORTH 8080 ASSEMBLER 2 8 1MAR22 JJC 8OMAROY)

o E

and the source code has a cleaner appear- 1 00 1MI NOP 76 1MI HLT F3 IMI DI FB 1MI EI
ance. 2 07 1MI RLC OF 1MI RRC 17 1MI RAL 1F 1MI RAR
3 E9 IMI PCHL F9 1MI SPHL E3 IMI XTHL EB 1MI XCHG
The actual address of NEXT is stored 4 27 1MI DAA 2F 1MI CMA 37 1MI STC 3F 1MI CMC
in (NEXT) . Its value is plucked from ;S . 5 80 2MI ADD 88 2MI ADC 90 2MI sSUB 98 2MI SBB
This technique was suggested by Patrick 6 A0 2MI ANA A8 2MI XRA BO 2MI ORA B8 2MI CMP
Swayne of the Heath User's Group. 1 say 7 09 3MI DAD C1 3MI POP C5 3MI PUSH 02 3MI STAX
"suggested" because Swayne's method is a 8 O0A 3MI LDAX o4 3MI INR 05 3MI DCR 03 3MI INX
bit different. 9 0B 3MI DCX C7 3MI RST D3 4MI OUT DB u4MI IN
10 C6 4MI ADI CE 4MI ACI D6 u4MI SUI DE 4MI SBI
I have left out the conditional 11 E6 4MI ANI EE 4MI XRI F6 UMI ORI FE 4MI CPI
CALLs. I never used them and they can 12 22 SMI SHLD 2A SMI LHLD 32 SMI STA 3A SMI LDA
always be " C, " 'd in. The conditional 13 €D SMI CALL ;S
jumps are, of course, handled automatic- 14
ally by the conditionals: IF WHILE and 15
UNTIL, in conjunction with the flag
testers: 0 = CS PE 0< and NOT . Screen 50 32H
0 (FIGFORTH 8080 ASSEMBLER 3 81AUG17 JJC BOMAROY)
| have opted to retain the immediate 1 C9 IMI RET C3 SMI JMP C2 CONSTANT 0= D2 CONSTANT CS
instructions MVI and LVI as opposed to an 2 E2 CONSTANT PE F2 CONSTANT 0O : NOT 8 «+«
immediate flag #. : MOV 8% 40 + + C, ; : MVI 8% 6 +C, C, ; : LXI 8* 1+ C, , ;
: THEN HERE SWAP 1 ; : IF C, HERE 0 , ;
The 1MI 2MI etc stands for "number : ELSE C3 IF SWAP THEN ; : BEGIN HERE ;
one machine instruction" etc. The first : UNTIL C, , 3 ¢ WHILE IF ;

cut of this assembler was written when

: REPEAT SWAP C3 C, , THEN ;
three letter names were the craze. S

OO~ N W

I have a selfish motive in publishing 10
this assembler. | hope that this will flush 11

out assemblers for other processors and 12
that there will be a "rush to publish.," 13
There is a good reason to do this besides 14

vanity. If someone else publishes the 15
assembler for the "xyz" chip that you use,

and it becomes established, it meens that

you will have to change your code to con-

form with the quirks of the "established"
version. It pays to get there first.

FORTH DIMENSIONS 111/6 Page 180

Screen 51 334
0 (EXAMPLES USING FORTH 8080 ASSEMBLER 1 81AUG1T JJC BOMAR12)

1 FORTH DEFINITIONS HEX

2 CODE CSWAP (WORD-1--- SWAPS HI AND LOW BYTE OF WORD ON STACK)
3 H POP L AMOV HUL MOV A H MOV PSH1 C;

4 CODE LCFOLD (FROM-2 QTY-1--~ CONVERTS LOHER CASE TO UPPER)
5 D POP H POP

6 BEGIN D A MOV E ORA 0= NOT

7 WHILE M A MOV 60 CPI CS NOT

8 IF 20 SUI A M MoV

9 THEN D DCX H INX

10 REPEAT NEXT C;

15
Screen 52 34H

0 (EXAMPLES USING FORTH 8080 ASSEMBLER 2 81AUG17 JJC 80MAR12)
1 CODE CMOVE { FROM-3 TO-2 QTY-1--~ SAME AS IN NUCLEUS)

2 C LMOY B H MOV B POP D POP XTHL

3 BEGIN B A MOV C ORA 0= NOT

4 WHILE M A MOV H INX D STAX D INX B DCX

5 REPEAT B POP NEXT C;

6 CODE -CMOVE (FROM=-3 TO-2 QTY=~-1--~ SAME BUT OPP DIRECTION)
7 CL 40V BH MOV B POP XCHG

3 4 o 3 DAD XCHG XTHL B DAD

9 3tGIN B A MOV C ORA 0= NOT

10 WHILE H DCX M A MOV D DCX D STAX B DCX

1 REPEAT B POP NEXT C;

12 : MOVE (FROM-3 TO-2 y{Y-1--- SMART MOVE, DOES NOT OVERLAY)
13 >R 2DUP R> ROT ROT -

14 LF -CMOVE ELSE CMOVE THEN

15 ;S
Screen 53 35H

0 (EXAMPLES USING FORTY 8080 ASSEMBLER 3 81AUG17 JJC BOMAR12)
1 80 CONSTANT CMMD (COMMAND BYTE)

2 FO CONSTANT CMMDPORT (COMMAND PORT)

3 F1 CONSTANT STATUSPORT (STATUS PORT)

4 LABEL DELAY (--- DELAY CONSTANT IN DE, DON’T USE THE STACK)
5 BEGIN D DCX D A MOV E ORA 0= UNTIL RET C;

5 CODE STATUS (BIT MASK-1~==-)
! 5 POF CMMD A MVI CMMDPORT OUT

3 1234 5 LX{ DELAY CALL

9 BEGIN
10 STATUSPORT IN L ANA 0= NOT
11 UNTIL NEXT C;
12 ;S

Sieve of Eratostenes 3s

in FORTH The Sieve of Eratosthenes: after J. Cilbreath: BYTE 9/81)
190 CONSTANT SIZE SIZE STRING FLAGS (make array of flaos)
PR

IME 0 FLAGS SIZE 1 FILL (start by settina the flaas)

oW 8

Ti M.ltc"e“. E T_imlnc [+] (creoate counter which remains on tor of stack)
imin Engineering Co. SIIE 0 DO repeat followina loor 8190 times)

I FLAGS C@ (fetch next flac to tor of stack)

1F t if flaag is true then do the follo-imt,)
P i
The enclosed version of Eratosthenes &’ o 3 . ((:::2‘;1::: ::.'m::'?'"i", %)

S :ve was written for an implementation
of Timin FORTH release 3. [was pleased
that it executed in 75.9 seconds, as com-
pared to the 85 seconds of figFORTH.
Mine was run on a 4 MHZ Z-80 machine,
as were the others in the BY TE magazine
article.

The speed improvement is primarily
de to the array handling capability of
T:min FORTH release 3. FLAGS is
created with the defining word STRING;
n “LAGS leaves the address of the nth
slament of FLAGS. This calculation
occurs in machine code.

0 OVER FLAGS C!
REPEAT
ENDIF

3
testino the -Sovo aloorithm) O VARIABLE KOUNT
BELL 7 EMIT

NEU-LINE CR O OUT ! $

NEW-LINE? OUT @ 70 > IF NEW-LINE ENDIF 3

e to sy

above is for timino test:, below is for validation)
0 KOUNT

IF 1 DUP + 3¢
7 «R NEW-LINE?
31 KOUNT +!

dismlay it)
count it)

e s o 8
AN OYIDONOCORAWNSO BAWNSOBONGCUALWUN>O
-~~~

.BEGIN DUP SIZE < WHILE (rereat for K < B190)

{ clear Kth flao)
OVER ¢+ (add rrime to K)

DROP DROP 1+ (droe K & prime: increment counter)

LOOP 3 SPACES . .°® PRIMES ° i (finish: diserlay count)

t PRIME-TEST BELL t first sound the bell)
10 0D0O PRIME LOOP BELL (run the rrime finder 10 X)

' NEW-LINE (clear counter: start new line)
SIZE O DO ({ check each flaa)
I FLAGS Ce see if it's set)

calculate the rrime nuaber)

ENDIF
13 LOOP CR KOUNT ? ." PRIMES ° 3 ¢ diselay the ceunt)

Sage 181

FOR TH DIMENSIONS T1/6

SKEWED SECTORS FOR CP/M

Roger D. Knapp
207
In regard to Michael Burton's article in LD DE,SETDSK 3 SEMD DRIVE # TO CP/M
FORTH DIMENSIONS, 1II/2, page 53, "In- CALL 108
creasing fig-FORTH Disk Access Speed," | POP RC ; RESTORE (1P)
enclose a simple mod to the 8080 or Z80 Jp HEXTY
assembly list to effect the CP/M skewed : ~
sector disk /O. The FORTH routines I TFTRL: D2 0,1,7,12,19,25,5,11,17,23,2,9
used to test the scheme are included. The N8 15,21,2,7,14,20,26,6,12,1R,24,4,10,16,22
first cluster or screen is offset by 52 sec- H :
tors 8o that the operating system is trans- ng RER s S-SKEW
parent and screens 0 end 1 hold the direc- o3 'S-SKE' ADDED
tory. 1 move the message screens to D3 '\ 480H
SCRA 24 wnd 25 lesving 220 for the o SETORV-1? F RETER
FORTH binary program run by CP/M or SSKEW: DV 42
CDOS. PP DE ; SECTOR SECUENTIAL | "SETDRwve”
LD HL,TRTBL 3 TRANSLATION TABLE ABOVE
In order to check any increase in disk ADD “L,DE ; ADDR OF HEW SECTOR
access speed | timed the following opera-] E,(HL)
tion with a 10 screen buffer: PISH DE ; SECTOR TRANSLATED
JP NEXT ~
20 270 10 MCOPY 20 270 10 MCOPY H
20 270 10 MCOPY *107
Elapsed times were 204 and 138 seconds ’ DR R]7H s TASCALC
for straight and skewed sectors respec- nR ‘TESCAL®
tively. Note that this reflects disk access hy) 'C 420y
speed for read/write of severa! sequential v SSKEY.0 - MDDIFIED
sectors and in no way compensates for TSreLC: DY DOCOL . DENSTY)
inadequate planning or poor programming oW AT *
in other disk I/O epplications. O 28RN, TSCALS-$
If this seems trivial, then you have no ' ge,UBLE of'_ﬁlglpokz
need for CP/M file compatible /O. My *07 !
motive for these changes is the desire to . SINGLE DENSITY
write the assembler program for fig- TSCELS: TN LIT.52 .PLUS ., CKIP 52 SECTORS FoOR
FORTH via modem (easy to implement in T——-—m‘ﬁﬁk—r———;
FORTH) to friends and colleagues. As W RE OPERATING SYSTE M
added value my disk 1/O cen be faster. oy LI|T| MXDRY-1
W MM
o DUP DRIVE
bW AT EQuAL
D! 29RAN TSCAL3-S
o DROP
b BRAM,TSCALA-S
TSCAL3: U¥ DRIVE,STORE
2 SETDRY
TSCaLE: DW LIT,SEPTRY
B2 SLICD, TRACK
D STORE ,ONEP

e

bl

SSKE! s SEQUENTIAL TOQ CP/Y SKEV

o SERTS
M

SCR = &
T £8P style eisk Tiyout snd 1/0)
1 FOSTH DEFINITIAMS DECIUAL
2
2 LABEL 10§ { CP/ SERVICE REGUEST) 1 LDHLE, 2 A0DP, JPHL, O
a4
€ £r9E SET-10 (sector track adirs --- |
& H 93P, B PUSH, HB LD, L C LD, 21 D LOP1, 10S CALL, B PP,
7 B PGP, B PUSH, H B LD, L C LD, 18 D LDPI, I0S CALL, B PP,
2 H POP, B PUSH, L C LD, 1E D LDPI, INS CALL, R POP,
o MEXT, C;

10

11 CODE SET-DRIVE (n ---)}

12 E PNP, B PUSH, L C LD, '% D LDPI, InS CALL, B POP,
13 NEXT, C;

14

15

FOR TH DIMENSIONS 11176 Page 182

Diagnostics on Disk Buffers

SCR » 61
N { SECTCR SKEW FCR CP/N FORMAT CLUSTERS) Timothy Hueng
1 FORTH DEFIMITIONS DECINAL 9529 NE Gertz Circle
2 : CTEBLE (bytesize TABLE) Portland, OR 97211
3 <BUILDS 0 D7 C, LNOP DOES> + CO ;
42216104824 112620 2014R 2211593231711 652519
512 710 27 CTABLE S-SKEW { for CP/M clusters) While I was in the process of explaining
A the disking to some friends, I found it
7 : VSETUP (Setup n sectors for NXTS,) would be nice to show them some sort of
8 (adrs blk n --- sec trk addr ... sacn trkn adden) representation which lists all the disk
2 POT NVER 12R * + ROT ROT OVER + 1- SWAP 1- SWAP buffer status. This short program was
10 DD 1 26 /NOD SWAP 1+ S-SKEW SWAP ROT 128 - DUP then written for this purpose.
11 -1 +L00P DROP
12 The figF ORTH uses the memory above
12 : "RTS (Read n sectors.) { s t a ... Sn tn an n ee-) USER ares for the disk buffer. This disk
16 © 00 SET-10 SEC-READ DISK-ERRNR £ IF LEAVE THEN LOOP buffer area is further divided into several
15 blocks with the length of each block equal
to B/BUF + 4 bytes. There are some im-
SCR = 62 plementations that set B/BUF to be 1024
D { 10RE CP/ FRPNAT NISK 1/0) bytes and some, like 8080 CP/M, that set
1 FORTH DEFINITIONS NECIMAL it to be 128 bytes. Another constant
2 beside B/BUF frequently referred in disk-
20278 { Write nosectors to CP/V cluster,) ing is the B/SCR (buffers per screen). For
4 NN SETLIN SECLURITE DISK-ERRCP £ 1F LEAVE THEM LOP B/BUF = 1024, the B/SCR = 1 and for
S B/BUF =128, B/SCR = 8.
& 1 T/NLCPIY L O skevma clyster 1/0.)
7 { addrs BV £ oo-) P §2 « 2000 /MO0 SET-DRIVE Each block needs 2 bytes in front of it
e SEC/HLK “SETUP (&2 + sn clus%er alloc CP/*) 88 the header which contains the update
e B> IF SEC/BLK MRTS bit (bit 15) and block number (lower 0-14
e ELSE SEC/RLK MTS bite). It also needs a 2-byte tail to end the
11 EYDIF DISK-ERRDR P 8 2ERRPR block,
17
12 £ LN of screens &1 and A2 shanelessly adantac from John James') The word BLOCK will put the begin-
1¢ { fig-FraT# for the LSI-11.) ning eddress of a given block (assuming
15 the block number on stack before exe-
ov cuting BLOCK). With these simple words,
virtual memory can be utilized, but it is
beyond the scope of this short article.
‘\\ N
SCR # 90 The short program will display the
status of each disk block until it is ex-
0o (.BUMPS T™DH ?7/11/81) heusted or you terminate it by pressing
1 DECIMAL sny key. The first thing it does is print
2 : ,BUFS (display adr of all buffers) out the title line (line 4). Line 5 sets up
3 CR ,* # Addr(hex) Upd Blockf# Soreen -sud’ the boundery for the DO ... LOOP. Line 6
4 PIRST #BUFF 1+ 1 DO prints the buffer number while line 7
5 CRI 2 .R 2 SPACES prints the beginning address of each buffer
6 DUP 2+ HEX 6 0 SWAP D,R DECIBAL 3 SPACES in hex. Lines B and 9 check the buffer
7 DUP @ 132768 AND update status. If it has been updated, then
8 O= O= 32 + EMIT 2 SPACES an " !" will be printed in the upd
9 DUP @ 732767 AND DUP 6 R & SPACES column. Lines 10 and 11 calculate the
10 B/SCR /MOoD 5 ,R 4 SPACES 2 R block number, screen number and the -sub
11 132 + ?TERMINAL IF LEAVE THEN mnumber. The reason for teh -sub is
12 I00P DROP CR ; beceuse for my system, B/LBUF = 1286,
13 B/SCR = 8, there are 8 blocks to meke s
L whole screen. So, 1 thought it would be
15 - hendier to know which subpart of a given
screen the block [want.
ox Lines 12 and 13 check the sarly termi-
.BUPS netion snd finish the de finition,
AdAr(hex) UpAd Block# Screen -sud \
1 3E82 720 90 0 o
2 P06 721 90 1
3 IPBA 722 90 2
& LooE 723 90 3
] L092 724 9 . &
6 116 725 90 z
Ké biga 726 90
8 L21E 727 90 ?
9 B2A2 0 0 0
Page 183 FORTH DIMENSIONS Tii/6

i

FLOATING POINT ON THE TRS-80

Kalman Fejes
Kalth Microsystems
PO Box 5457, Station F

Ottawa, Ontario K2C 331
Canada
Most FORTH systems have no provi-
sions for handling floating piont numbers, BLOCK 9
although most popular micros have the 0 (PTP #1 :KIF 810816) FORGET PTASK : PTASK ; HEX

necessary routines hidden in their ROM-

. ATING POINT -80 IN MMSFPORTH V1.8
based BASIC interpreter. These are fast 1 (SINGLE PREC. FLOATI I FOR TES-8)

h) ‘ 2 ¢ EXX Dg C,
routines written in assembler. The follow- 3 CODE P.& EXX OFBD CALL 28A7 CALL EXX NEXT
ing ie to demonstrate how these can be [CODE P#& EXX HL POP 2 RST OE5C CALL
accessed and used to implement single [OAB1 CALL EXX NEXT
precision floating pint arithmetics for the 6 : P DUP 2+@ SWAP @ 4 LOAP C!
TRS-80 in MMSFOR TH, Version 1.8. 7 : Pl DUP ROT SWAP ! 2 + ! U4 LOAF C! ;
) 8 :AS 4121 PO ;
Single precision floating point data is 9 : P40 HERE 0 OVER 3E PFILL BL WORD F#&k A S ;
stored as a normalized binary fraction, 10 : P#IN " 9% PAD DUP 1+ 63 EXPECT F#k A S ;
with an assumed decimal point before the 11 : F#1 FP#0 SWAP (L) (L) s +» (L) (L), :
most significant bit. The most significant 12 : F# STATE Cé@ IF PF#1 ELSE F#0 THEN ; IMMEDIATE
bit also doubles as a sign bit. 13 : P, S A F.& U4 40AP C! ;
14 ; 10PT ; DECIMAL
A binary exponent takes one byte in 15
each floating point number. It is kept in
excess 128 form; that is, 128 is added to BLOCK 10
the actual binary exponent needed.
0 (PLOT, PT. #2 :IP 810816) FPORGET 10PT : 10FT ;
The binary mantissa is 24 bits long, the 1 HEX
most significant bit representing the sign 2 CODE P+ EXX DE POP BC POP 716 CALL EXX NEXT
bit. It is stored as 3 bytes normally with 3 CODE P& EXX DE POP BC POP 713 CALL EXX NEXT
the least significant byte (LSB) stored 4 CODE P#& EXX DE POP BC POP 847 CALL EXX NEXT
first and the most significant byte (MSB) S CODE @& EXX DE POP BC POP 8A2 CALL EXX NEXT
tast, foliowed by the exponent. 6 :F+ S A P+ AS ; : P~ S A P& AS ;
7 : Pe S A F*% AS ; : P/ S A F/& AS ;
Numbers should be entered using the 8 DECIMAL
notation specified for the TRS-80 L2 9 { SAMPLE AND TEST ROUTINES)
BASIC. Integers and dobule precision 10 : PTEST F#IN CR F# 2 P+ P# 200,0E-2 P-
numbers are converted to and stored in- 11 F# 5000,1 P* PF# 5,0001E+3 P/
ternally as single precision numbers. i?’ s PAD F! PAD P@ P, ;
P 14
The complete vocabulary and listing of 4
the source screens for either MMSFORTH 15
or figFORTH (specify) is available for $7
(U.5) from Kalth microsystems. It in-
cludes both single and double precision,
trigonometric and log functions, filoating
point constant, variable and stack opera- F# (-F) F TEST (-)

tors, conversion routines to/from integers
(FORTH type) and floating piont numbers.

GLOSSARY

Single Precision Floating Point

F e+ (F1F1 --F) Add
(F=F2+F1)

F- (F2F1 --F) Subtract
(F=F1-F1)

F* (F2ZFl--F) Multiply
(F=F2*F1)

F/ (F1F1 —F) Divide
(F=F2/F1)

F#IN

F@a

Takes a number from the current
buffer, converts it to single pre-
cision floating point number and
leaves it on the stack.

(-F)

Asks for a floating pint number
from the keyboard, and leaves it
on the stack.

(A-F)
Floating point fetch. Takes a
floating point number from

memory at address and leaves it
on the stack.

(F A-)

Floating point store, Stores the
floating point number on stack in
memory at location A,

Notes:

A sample program to demon-
strate the use of these floating
point operators. It asks for a
floating point number from the
keyboard, manipulates it using all
the operators defined and prints
the result. (It should be the same
number that was supplied.)

A -- 16 bit address
F, F1, F2 -- are single precision

floating pint numbers (two 16-bit
words each),

FORTH DIMENSIONS I11/6

Page 184

TURNING THE STACK INTO LOCAL VARIABLES

Marc Perkel
Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803

Occasionally in writing a definition, I SCR & B
find that 1 need to do unwieldly stack
juggling. For example, suppose you come
into a word with the length, width, and
height of a box and want to return the
volume, surface area, and length of

(xx%{ ARGUMENTS-RESULTS)}Xxx%)
VARIARLE [ARG1 VARIABLE [TO]
: +ARG CREATE » DOES> @ L[ARG]I @ SWAF - [T0) @ ?DUF
IF 0= IF +) ELSE ! ENDIF ELSE @ ENDIIF O [T01 ! 5

edges. Try it 0 +ARG S1 2 +ARG S2 4 +ARG S3 6 +ARG S4
8 +ARG S5 A +ARG S& € +ARG S7 E +ARG S8
For this kind of siuation 1 developed 10 +ARG S9 (XTO VARIABLESX)
my ARGUMENTS-RESULTS words. The
middle block fo the triad shows my solu- TO 1 CTOD ¢ (¥SETS STORE FLAG FOR +ARGX)

(XSETS +STORE FLAG FOR +ARGX)

- es

tion to the box problem. ; +T0 -1 CTO2 !

1 ARGUMENTS R>» [ARG]I @ >R R 2% 8F@ + DUF [ARG]I ! 12 - SF@ SuWaAF
- 2/ 0 DO O LOOF O LTOD !

¢ RESULTS 2% [ARG] @ SWAF - SF@ - 2/

0 DO DROFP LOOF R> R> LARG]I ! >R 3

The phrase "3 ARGUMENTS" assigns
the names of local variables 1 through 9 to
nine stack positions, wtih S1, S2 and S3
returning the top 3 stack values that were
there before 3 ARGUMENTS was exe-
cuted. 5S4 through S9 are zero-fiiled and
the stackpointer is set to just below S9.

TMEODD ORNTUD GO

S1 thorugh S9 act as local varisbles
returning their contents, not their

addresses. To write to them you precede SCR & C
them with the word " TO *. For example, 0 ¢ ARGUMENT EXAMFLE --- BOX COMES IN WITH HEIGHT» LENGTH
5 TO S4 writes a 5 into S4. Execution of 1 & WIDNTH ANDN LEAVES VOLUME» SURFACE AREA & LENGTH OF EDGES)
S4 returns a 5 to the stack. 2
3 ! BOX 3 ARGUMENTS
After all calculating is done, the 4 ¢ voLM) S1 82 83 x x TO S4
phrase "3 RESULTS" leaves that many g (SURF) G1 82 2 X x 82 83 2 x x 81 S3 2 x x + + TO S.
results on the stack relative to the stack & (EDGE) 51 4 x S2 4 x 83 4 x + + TO S3
position when ARGUMENTS was exe- 7 85 TO S2
cuted. All intermediate stack values are 8 S4 T0O 51
fost, which is good because you can leave 9 3 RESULTS 7
the stack "dirty" and it doesn't matter. A
B
C
D
E
I3

N ot P rPes A -

SRS IZTARIQORD

Q

vt

gr
di

la
Dl

th
us
usi

B8A

SCR & 20
0 ! TASK
1 & DISK@! 5 ARGUMENTS
2 §1 52 0400 U/MOD 14+ TO S1 TQ 82
3 REGIN S4 0>
4 WHILE S1 BLUCK §2 + 83
S 8% IF SWAF UFDATE ENDIF
) 84 0400 S2 -~ MIN DUF TO S& CMOVE
7 S6 +T0 83
8 86 NEGATE +70 S4
9 1 +70 S2
A 0 10 s2
B REPEAT
c 0 RESULTS
b ¢ DISK@ O DISKe!
E ¢ DISK! 1 DISK@! 3
Foo==

Page 185 : FORTH DIMENSIONS 111/6

GRAPHIC GRAPHICS

Bob Gotsch
California College of Arts and Crafts

Accompanying these comments are
several graphic specimens drawn on Apple
computer using FORTH and printed on a
dot-matrix printer. They range from logo-
type design to experiments in geometry
and pattern. One can generate real-time
motion graphics on the Apple in which
color and action partially compensate for
the low resolution of 280 by 192 pixels.
Hardcopy, whether prinout or color photo,
isn't the final product. The interactive,
sequenced and timed display on the screen
is the designed product, likely to displace
the medium of print on paper in the
future.

V%’ '

'b.

While these graphic samples could have
been programmed in other languages, 1
have found the advantages of using
FORTH are both practical and

expressive: immediate and modular ex-
perimentation with the peculiarities and

limitations of the Apple video dispiay, and Q <>
orchestration of complex visual effects .

with self-named procedures rather than NN NN
the tedious plots and pokes to undis- (\

tinguished addresses. With this ease of 9 ; /\\ /‘B. "“‘ ’-/
wielding visual ideas, FORTH might lead /‘7-- Y <

to a new era of computer graphics, even <> >\.4‘/ P - ; 'y(}“"\\
creative expression. \ o N
p - - \} N,
It may remain individual and personal A N A . S Q .< e
expression, however, without graphics <> / 0 o "h\\ A \\,/ ,_K/" \.)

standards. Transportability of grahics--
generating code may be neither possible

nor desirable considering the differences . N P PA Py
in video display generation, alternate LR S NN \/ hY
character sets, shape tables, display lists, /) NG A \//’ RS LN S
interrupts, available colors, etc., between \ /\ ?1&//\\ : /\L‘ v'””f;f‘ % ,'x’/
microcomputers., Each has some individ- O LN LN PN A,
ual features to exploit. Most have, how- Py “"\\,f’, N ™,
/ 4 W AR ~ \ . y
ever, such limited memory for graphics as { K Neoog Y A e
to mgkg machine-dependent economy an \ //- K ‘\), /:i j\ j\)”;" ‘ﬁ_;’ ,"s,"jff\;, ‘\,I_J-‘
overriding aspect of programming for : / Tl S\ ‘,\J /} < N
raphics. R B) rd e
grap ,';;-*'\..\ . {/""L\ ,,«‘ J,“A\}/‘ < “\\}J P
Despite the rarity of FORTH graphics 1 B f\ N PIEAN /.-;{; N
thus far, I'm convinced it is an excellent o, /’\ \/‘/ﬁ‘\ s NN
vehicle for bringing out undiscovered R A v > A B
graphics potential of each micro. In ad- h\\ / '}r\\\w/ eV, /.»"\1-.___,:'
dition, the visibility gained by some effort (S S N A
to evolve grahic ideas in FORTH would T ‘\ A T e <
help in both spreading and teaching the s 4 i

language. Perhaps this issue of FORTH -
DIMENSIONS will stimulate just such
activity.

Editor's Note: The author tells me
that Osborne/McGraw-Hill publishers have
used his patterns, generated on Apple I

using Cap'n Software FORTH, as cover R — e e e e e
artwork for their book "Some Common N
BASIC Programs'! T —— ————
—— e S SEe—— D m— Sm— anm—
S—— e N _____

FORTH DIMENSIONS I/6 Page 186

CASES CONTINUED

Editor's Note: In Volume I, Number 3,
FOR TH DIMENSIONS published the resuits
of FIG' CASE Statement Contest. As we
had hoped, the variety of responses has
stimulated further work on the subject.
Here are four additional CASE constructes
submitted by our readers.

0 (CASE STATEMENT BY CHARLES EAKER FD I1 3 39 JJC B81AUGO9)
Esker's CASE for 8080 1 CASE TCONF CSP € ICSP 4 ; IMMEDIATE ’
2 CODE (OF) H POP D POP ' - + CALL L A MOV H ORA O=
John J. Cassady 3 IF B INX B INX NEXT ENDIF D PUSH ' BRANCH JMP C;
. . 4 : OF 4 ?PAIRS COMPILE (OF) HERE 0 5 ; IMMEDIATE
He 8080 (280 f th]
ey came s b o a5 ¢ ENDOF 5 7PAIRS COMPILE BRANCH WERE 0',
that was published in FORTH DIMEN- 6 SWAP 2 (COMPILE] THEN 4 ; IMMEDIATE
SIONS 13, page 37. [have found it very 7 : ENDCASE 4 ?PAIRS COMPILE DROP
e 8 BEGIN SP€ CSP @ = 0=
9 WHILE 2 [COMPILE] THEN
10 REPEAT CSP ! ; IMMEDIATE
11 : TEST CASE 41 OF ." A " ENDOF
12 42 OF ." B " ENDOF
13 65 OF .m» e " ENDOF ENDCASE ;
14 (81 TEST A OK)
15
Eaker's CASE Augmentsd
Alfred J. Monroe
3769 Grandview Bivd.
Los Angeles, CA 90066
! was delighted with Dr. Esker's
CASE construction (FORTH DIMEN- Sl # 144 . .
SIONS, Vol. I, No. 3, p. 37) and imple- B < DR, ERKER"S Lok CUNSTKUCT W1TH H. SL1GHT MUDIFICARTION >
mented it immediately. Recently I have 1 & Chak /LOMP CSH @ !Lﬂ; 4 3 lm?;h,
found it desirable to sugment CASE with 28 Uk OuER = Ak DROP 1 ELSE
three additional const?wm in order to o 3 “‘*" "‘H"“‘g %5;%) LOMFILE GBiANCH
treat ranges of variables. It has occurred 4 Kt @ » O 3 i ‘ » SWUEE =
to me thet other FORTH users may be 5 & ENLDUF 5 PPHIKO (UMPILE BIRANCH HERE © <
interested in the same extension, hence 6 LCUMFILES ENULF 4 3 1MMEDIHIE .
this short note. v 3 ENDUHSE 4 HIRS LUMPILE DRIF BEGIN SFQ CSFP ¢ = @ =
8 WHiLE 2 LCOMPLiEd ENDLF KEFEAT CSF ! 5 IMEDIATE
Screen 144 lists Dr. Esker's CASE 9
construct with one slight modification. e
OF has been modified to use (OF). The 11
original OF compiled to ten bytes. The iz
revised OF compiles to six bytes. This 13
forty percent reduction in code s not as 14
impressive as that which occurs using Dr. 15 ~—>

Esker's CODE word (OF) construct, but
it does have the advantage that it is highly
portable. (OF) tests for equality and
leaves a true or false flag on the stack.
Nate that it drops the test value if the
test is true.

145
THE <UF, JUF., HNL KNG-OF EXTENSIONS O
CAUFY OUEKR > 1F DRUF 1 ELSE @ ENDIF 3
<O 4 rPHLIKRS CuMPILE (KOF) CUMPLILE GBRANCH
HekE © 2 5 5 IMMEDIHIE
¢ CoUb) WER < 1F ukUP 1 ELSE 8 ENDIF 3
¢ oUF 4 YPALRS CukiPiLE (O0F) COMPILE GBRFNCH
HekE @ . 5 3 IMMEDIRTE
: RANGE DR OUER DUF K> 1+ < IF SUFRF 1~ > IF DROP 1 ELSE ©
ENDLIF elok UKOF DG @ ENDIF 3
3 ORNG-OF 4 YPRIKRS COMPILE RANGE COMPILE GBRANCH HERE @ . S5 3
IMELIHIE

e,y

Screen 145 lists the extensions that I
have found useful, <OF, >OF, and RNG-
OF. <OF does a "less than" test. >OF does
a "greater than" test. RNG-OF does an
inclusive range test. <OF and >OF are
trivial modifications of OF snd (OF).
RANGE and RNG-OF are constructed in
the same spirit as (OF) and OF .

b P e g
CHBEN=ELRVOULEUN &

Screen 144 compiles to 175 bytes.
Screen 145 compiles to 223 bytes.

Page 187 ~FORTH DIMENSIONS /6

SCk # 148 Screen 147 illustrates » pre-Esker

solution to the design of an interactive
LOEX : >
S S CONTTR e 5 CONGTRNG *5" 65 CONSTANT "W terminel input that places a hexadecimal
L LLN'—"I'N't' WEY 1% CONSTHNT "CR® number on the stack, end which provides
A :N CNTRL=C for error detection and error recovery. It
3 5 CUNSTRN - is, of course written in my usual sloppy,
‘; @ UMMIHSLE FLAG unennotated, semi-rsadabls fashion.
s s p " i E R — Screen 148 offers a neater solution In
L R K e ERKOR. REENTER NMUMBER " Ck terms of <OF and OF. It is definitely
- - 1R "D""UWW HBORT * CR DROP DROF WUIT 3 more resdsble. Screen 149 offers a still
g ¢ R - neater solution in terms of RNG-OF.,
i i1 »
: e e OENTRA " _— ; Screen 147 compiles to 160 bytes,
i if. : YHEOGR CNTRL-C = élLSzRgLPPC.Eu.);FLC‘Mﬂ) ABOKT " CR QUIT o 148 to 176 bytes, and screen 149 to
? ™ 144 bytes. Need I say more?
iy -
SUR # Ly

G o LEI-Hex LEAUE H HEM # ON TOP OF STRCK D
LR FRE Uk, BAKER SOLLITION TO AN INTERACTIVE TERMINAL INFUT)

15 = Ik L FLAG ! DROP

1

4 : Ghki-HEX @ FLAG ' 6 BEGIN KEY DUF DUP EMIT 2RHBOKT
5

o ELSE DUP “"@" < IF SYN—ERK

ELSE DUP "9" > IF DUP "A" < IF SYN-ERR
) ELot DUP "F" > IF SWN-ERK ENDIF SEND A CHECK TO FIG TODAY!
4 END1F ENLIF ENDIF ENDIF o MAKE THIS YOUR BEGINNINGI
14 FLHO ® @= IF 4% —~ DUP 9 > IF 7 — ENDIF SWHP 16 » + 1F
11 RENEW NOW!
12 FLHG ® UNTIL 3
id
1%
’; Sk Bl
: Wl M OMERITER SOLLTTION 10 THE TERMINAL INFUT ROUTINE O
1oz GEI-HEX @ RLHG !
2 © BEGIN KEY LU LUF EMLT
K CHsE CNIRL-C OF C~FARORT ENDOF
4 "Ck" OF 1 FLAG ' DROFP ENUOF
) "g" CUF SYN-ERK ENDOF
L3 TR SUF SYN-ERK ENDOF
: "at Lo+ <UR 4Y - ENDOF
8 "R 1 - SOF 55 - ENDCF
] SYN~ERR
@ ENLCASE

A

11 Bl @ b= iF SWAF 16 % + ENDIF
L2 bLhs w UdtIL 3
1
1

4
1o
oLk # 149 ’
v on HOSTILL NERTER SCLUTION)
i s GEi-HEX 8 FLRG ! RENEW TODAY!
<. b BEGIN KeY LUF DUP EMIT
S CHSE LHIRL=-C OF C-FBORT ENDCOF
4 "R OF 1 FLAG ! DROF ENDOF
5 @t "9 ENG-UF 48 -~ ENDO-
5 HEn o npn RNG—UF 55 -~ ENDOF
¥ SYN—-ERk
& EHUCARSE
2 FLAG @ 6= IF SWAP 16 % + ENDIF
1@ FLHG @ UNTIL 5
11
12
15
14
15

FORTH DIMENSIONS T1/8 Page 188
T
1
\

&

CASE as a Defining Word
Dan Lerner

After reading the CASE contest arti-
cles and looking for a simple function, 1
am compelled to submit a simple CASE
statement. These words are fast to
compile and execute, compact, simple,
generate minimum code, and very sim-
ple. There is no error checking since the
form is so simple the most novice pro-
grammer can use it.

CASE is analogous to vectored GOTO
in other languages. Its usage with my

words is:

CASE NAME
A IS FUNCTION A
B IS FUNCTION B
cC IS FUNCTIONC
(etc.)

OTHERS ERROR FUNCTION

General usage would be as a menu
selector; for example, you print a menu:

1 BREAKFAST

2 LUNCH

3 DINNER
SELECTION -<>

The user types a number which goes n
the stack, then executes the CASE word

MEAL. MEAL selects BREAKFAST,
LUNCH or DINNER, or ABORTS on
error. The source is:
CASE MEAL

1 IS BREAKFAST

2 IS LUNCH

3 Is DINNER

OTHERS NO MEAL

You have previously defined BREAK-
FAST, LUNCH, DINNER and NO MEAL.

How CASE is Structured

CASE builds an array using IS and
OTHERS to fill and complete the values in
the array. At execution, the DOES>
portion of CASE takes a value from the
stack and looks through the array for it.
A match executes the word, no match
executes the word after OTHERS in
source.

The form of CASE is a new class of
words, as CONSTANT , VARIABLE ,
MSG , etc. are. The code executed to test
the array i8 minimal.

106
0 (CASE NAME
1 A IS FUNCTION-A PAIR = VALUE-A
2 B IS FUNCTION-B ADDR OF FUNCTION-A
3 c 1Is FUNCTION-D
4 ETC.
5 OTHERS ERRORFUNCTION)
6
7 ¢ CASE CREATE HERE 0. , (AT COMPILATION BUILDS HEADER,LINK
8 POINTS TO ADDR OF 3 OF PAIRS
9 HERE SET TO ADDR OF VALUE-1)
10 DOES) ¢ AT EXECUTION, ADDR OF #OF PAIRS)
11 1 ROT ROT DUP 2+ SWAP @
12 0 DO 2DUP @ = IF DUP 2+ @ (COMPAIRS INPUT VALUE)
13 EXECUTE ROT DROP O ROT ROT (WITH VALUE A, By C, ETC, AND)
14 LEAVE ELSE 2+ 2+ THEN LOOP (EXECUTES ASSOCIATED FUNCTION)
15 ROT IF @ EXECUTE ELSE DROP THEN DROF ;
107
0 (CASE WORDS)
1:18 , ", 1+ 3 (HERE, PAIR® -- HERE, NEXT-PAIR¢)
2 : OTHERS ' , SWAP T j ¢ HERE, $-OF-PAIRS)
3
4
5
6
?
8
9
10
11
12
13
14
15
THIS IS THE END!
THE END OF VOLUME 111
THE END OF YOUR MEMBERSHIP?
™" DON'T LET IT HAPPEN!
RENEW TODAY!

Dage 189

FORTH DIMENSIONS /6

Generalized CASE Structure
in FORTH
E.H. Fey
Introduction

The CASE CONTEST held by FIG last
year ended with some excellent
contributions to the FORTH literature,
The judges noted however that few people
tried tc devise a general case structure
encompassing both the positional type,
where the case is selected by an integer
denoting its position in the list of cases
(ala FORTRAN's computed GO TO), and
the more general keyed type of structure,
where the case selector key is tested for a
match in the case words key list,

This article discusses a general case
structure which combines the positional
and keyed types. Like FORTH itself, the
case structure is extensible. I have added
a third type called range where the case
selector key is tested to be within the
range of pairs of values in the case words
key list.

For any of the three types of
structures, the user is also provided with
the option of using headerless high level
code sequences to specify the execution
behavior of the individual cases,

A complete source listing in fig-
FORTH is given on screens 165 to 180
with illustrative examples on screens 180
and 181. The source code listings may
seem lengthier than usual but it is the
author's practice to include the Glossary
definition right with the source and to
annotate the source code with notes on
the status of the parameter stack. When
this practice is followed, I find FORTH to
be an emminently readable languaqge, even
months after the particular coding has
been prepared. However, this style of
coding requires a good FORTH video
editor, With a good case structure in
FORTH, that is not difficult to develop.

Background

In the Aug. 80 issue of Byte, Kim
Harris introduced a very simple positional
type of case compiler. A slightly revised
version of his compiler is

: CASE: <LIST DOES> IX @ EXECUTE ;

where
: <LIST <BUILDS SMUDGE XSP 1 ;
: IX {kpfa..adr) SWAP 1 MAX

1- DUP + +

and is used in the form:

CASE: xxxx cfal cfa?cfan

to define a case selector word named
XXXX,

When the new word, xxx , is executad
in the form

(k=1,2,u.0yn)
the k'th word in the list will be executed.

For example, define the following words,
COwW , CHICK , PIG , snd BARN :

Kk xx%X

s COW " MooOQoo" ;
: CHICK L Peep"
: PIG S Oink™ 3

: i
CASE: BARN COW PIG CHICK ;

If we now execute the sequence 2
BARN , Oink will be typed. Simileriy 1
BARN will type MooOQoo.

Although there sre no error checks,
this case structure is easy to use, executes
fast and requires a minimum of dictionary
space for each case word, xxx. Bilobran,
etal have used CASE: extensively in
developing a FORTH file system with
named record components (1980 FORML
proc. pp 188, Nov. 1980). 1 have done
likewise following their example,

The interesting part of the definition
of CASE: is the <BUILDS part which [have
called <LIST for obvious reasons. It
creates the dictionary entry for xxxx.
Then, after executing SMUDGE and ! CSP
which are part of fig-FORTH's compiler
security, it executes] which forces
FORTH into the compilation state so that
the user can enter the list. The list is
terminated by ; which completes the
definition of xxxx .

For CASE: words, the list is a list of
code field addresses of previously defined
FORTH words. Since FORTH is in the
compilation state when the list is being
entered, all the user has to do is list the
names of the case select words (COW PIG
CHICK in the example of BARN).
FORTH then compiles their code field
addresses, as long as they are not special
IMMEDIATE words which execute during
compilation.

Now suppose that we knew beforehand
that the code field address of PIG was say
14382, The same definition of BARN
could then have been achieved by

CASE: BARN COW [14382,] CHICK ;

where [stopped the compilation state,
14382 was entered to the stack, the word ,
(comma) , compiled it and } resumed the
compilation state.

The point is that <LIST is a powerful
word for entering named lists and data of
all sorts to the dictionary. The method of
retrieval of the data is determined by the

DOES> part of the compiler. Hence if we
simply change the definition of the DOES>
part of CASE: , we can transform it into a
general purpose case compiler,

The Multi-Purpose Case Compiler

The method utilized to develop a
generalized case compiler is to compile a
number for the case type as the first byte
in the parameter field of xxx . At
execution time, the number is retrieved
and used to select the appropriate DOES>
part for the case type of xxxx . The type
number is transparent to the user.

The definition of
compiler is:

the new case

: MCASE: <BUILDS SMUDGE
HERE 1 C, 0 C,
DOES> DUP C@ DOESPART ;

1CSP

where DOESPART is a case selector word
defined by CASE: .,

The <BUILDS part of MCASE: compiles
a "1" for the default case type (positional)
and a "0" for the count of the number of
cases entered into the case list. It also
leaves the parameter field address of the
newly defined word on the stack so that it
can be found later during the compilation
process even though its name field is
smudged.

If the newly defined case word, say
xxxx , is to be other than the positional
type, it is immediately followed by the
word KEYED or RANGE to define the
type of xxxx as keyed type = 3 or range
type = S,

:KEYED 3 OVER C!; IMMEDIATE
:RANGE 5% OVER C!; IMMEDIATE
The case list subsequently entered

must agree with the case type specified.

Two options are provided for the
execution elements of the case list. The
first or default option is the single word
execution as in CASE: . The second option
allows a headerless sequence of FORTH
words to be defined as the execution
elements of each case. The two may not
be mixed.

A default case at the end of the case
list is mandatory, although it may be a
null word, The default case must be
preceded by the word DEFAULT: whose
definition is

:DEFAULT: ?2COMP £E0OL , HERE
OVER C@ [DEF] ; IMMEDIATE

where EOL is an end of list terminator
constant defined by

'35 CFA CONSTANT EOL

FORTH DIMENSIONS 111/6

Page 190

and [DEF] is a case selector word defined
by CASE: .

DEFAULT: first checks to see that you
are in the compile state since you should
be compiling xxxx . It then enters the end
of list terminator, EOL , to the diction-
ary. Finally it takes the parameter field
address of xxxx left on the stack by the
<BUILDS part of MCASE: , gets the type
of xxxx and executes the case selector
word [DEF 1 depending on the type of xxxx

If the type is 1, 3 or 5, [DEF] counts
the number of cases entered and stores it
in the second byte of the parameter field
of xxxx . If the case type is 2, 4 or 6, then
the execution elements are headeriess
code sequences. Hence for these types,
DEF] initiates the process of defining
the de fault code sequence.

Execution of Case Selector

All case selector words, xxxx , defined
by MCASE: are executed in the form:

kK xxxx

where the key, k , is an integer. The
interpretation of k in selecting the case
depends on the case list type.

With three case list types end two
options for each type, there are actually 6
different forms of case lists available,
Let's consider first the lists with single
word execution elements.

Single Word Execution Elements
(1) Positional type
MCASE: is used in the form:

MCASE: xxxx cfal cfa2 ... cfan
DEFAULT: cfad ;

When xxxx is executed in the form k
xxxx , the case cfak will be sejected if
k=1, 2,..,n . Otherwise the defsult
case, cfad, will be selected and
executed,

(2) Keyed type

MCASE: xxxx KEYED
{1,] cfal
[k2,] cfa2

[kn ,] cfen
DEFAULT: cfad ;

When xxxx is later executed in the
form k xxxx , the case cfai will be
executed if a vajue of k=ki is found in
the list, Otherwise, the default case,
cfad , will be executed.

165 ¢
165 1
165 2
165 3
163 4
165 3
165 6
163 7
i 8
165 9
165 1¢
165 11
165 12
165 13
165 14
165 13
166 ¢
166 1
168 2
166 3
166 4
166 S
166 6
168 7
166 8
166 9
166 16
166 11
166 12
166 13
166 14
166 15
167 ¢
167 1
167 2
167 3
167 4
167 S
167 6
167 7
167 8
167 9
167 19
187 i1
167 12
167 13
167 14
167 15
168 0
168 1
168 2
168 3
168 4
163 9
168 6
168 7
1468 8
168 ¢
168 10
168 11
168 12
168 13
168 14
168 13
169 ¢
169 1
169 2
169 3
169 4
169 5
16% 6
169 7
169 8
169 ¢

¢ GENERAL CASE STRUCTURE EWF 10/23/81)
(EXECUTION VARIABLES AND ARRAYS ala Kim Harriss Bule Aus ‘86)
(»r 184 3lso see M. A, McCourts FD II/4 ke 109, ENWF 2/11/81)

¢ IX 0K Pfaeveadr) ¢ Cowputes adr of indext K = 192su00en)
SWAF 1 MAX C ooopfa kmaxi)
1 ~DUF + ¢4 (eospT342{k-11)

¢ <LIST (General <BUILDS word to construct named lisis)
<BUILDS SMUDGE !CSF 1 4

¢ CFA @ CONSTANT COLOX
‘ i8 CFa

(For hesderliess code definitions)
CONSTANT EOL { End of list delimiter)

? CASE! <LIST DIES: Ix @ EXECUTE
¢ Used in the formi CASES xaux cfal cfalececfan i)
{ Lo create an execution arras xxxXx wilh initisi vaiues cfal:.
(cfa2resscfan which are cooe field addresses of rreviously)
(defined words. Executing »:ux in the form: K ot

(will proguce the execution 0f efah » k= 1sdsssusn)

$ LIST! <LIST DOES: IX @ i

{ Used in fors: LIST: ik L 0l v 62 9 03 seves 0 1 4)
{ Lo create & list of constants named xxxx « Execuline »ouin)
(in the fTorm!: &k wixx will lesve K on the stack,)

+ XEQUAR: <LIST DOES> @ EXECUTE i
{ Used in the fora! XEQVAR: bt cfs 5)
(to create an execution variable «xxx with an initisi value
(efs which is an existing word., Execuling xuxx csuses) --
{ cfa to be executed, The word cfa may be chensed by usins)
¢ INSTALL nann AT ooy where nnnn is the new word.)

t INSTALL ¢ ...cf3) [CONFILE] * STATE @ IF COMFILE CFA ELSE CF&
THEN § IMMEDIATE

t AT (cfa...) CCONPILE] * STATE @ IF CONFILE 24 COAMPILE !
ELSE 2¢ ! THEN § IMMILIATE

t CATRIN) (k cfa Pfases) ROT 1 MAX 2 % ¢+ 1 § (Stores cfa at)
(sar=2k¢rfa where K=1s2ss0ern Comriled by ATAIN .)

¢ ATKIN (K cfa...) [CONPILE] ‘ STATE @ IF COMPILE C(ATRIN)
ELSE (ATKIN) THEN i IMMEDRIATE
{ Used in form: Kk INSTALL cfa ATKIN »uux)
{ where xxxx is an execution array defined bw CASE: s cfs) --.
(is the new word Lo be installed as element K=1s2s,0ern)

{DuN § -

{ NOTE:! MNclourt’s imeslesentation of the function INSTALL ATKIK.
(does not work inside @ : definition., The above does.

NCASE: » A GENERALIZED EXTENSION OF CASE:

1. Thres Lures of case stuctures:
8. POSITIONAL (defaull)
b. KEYED
c+ RANGE
2, Tuo structure ortions for each Lure!
@, SINGLE WORD EXECUTION (defauit)
b. HIGH LEVEL HEABERLESS COLE SEQUENCE

(Define BOESPART ancd [DEF] as Execution arraws Lo be filled)
(in later)
CASE?

DOESFART DUM DUN DUNM DUM DUM DUM DUN & (6 Cases)

CASE: C[DEF1] DUN DYN DUM DUM DUM DUM DUM §
! NCASE: (The seneralized case comriler)

<BUILDS SNUDGE ICSP HERE (Leave efa on stack)

Page 191

FORTHD S 111/6

(3) Rangs type

MCASE: xxxx RANGE
(L1, H,] cfal
[L2, H2,] cfa2
[Ln, H,] cten
DEFAULT: cfad 3

For this type sach of the n entries to
the case list consists of a pair of
values specifying the upper and lower
limits of the range , Li and HI ,
followed by the execution elsment,
cfai.

When xxxx is laster executed in the
form k xxxx , the cass cfal will be
selected if the condition

Li<=k<=Hj

is found during & search of the list, If
not, the defeult case, cfed , will be
executed.

Headerless Code Execution Elements

Instead of specifying the execution
elements as previously defined FORTH
words, the elements may be specified as a
sequence of FORTH words in the form:

M e88Gee.. jH
or as
DEFAULT: ... 9€Ge.. 3
whereseq.... is the sequence of

executable FORTH words.

Again we have the three applicable
case list types, the default type, position,
the keyed type and the range type.
Examples of the structure of each of these
types is

(1) Positional type

MCASE: xxxx
H ...seql.. jH
H: ...seq2... ;H

H: ...seqn... jH
DEFAULT: ...seqd.... ;

(2) Keyed type
MCASE: xxxx KEYED
[kl ,] H: ..seql.. ;H
[k2,] H ..0q2. H

[kn,] H: ..seqn.. H
DEFAULT; ...seqd.... }

169 10
169 11
169 12
169 13
169 14
169 13
176 ¢
70 1
70 2
76 3
17¢ 4
176 3
170 6
17¢ 7
170 8
e 9
17¢ 10
170 11
170 12
170 13
170 ¢
170 i3
7. ¢
170 1
71 2
7003
71 4
7t 3
171 6
e 7
171 8
71 9
171 i¢
171 i
171 32
7113
7i 14
7135
172 ¢
e 1
e 2
172 3
w2 3
7208
7 b
172 7
172 8
729
172 1¢
172 1t
i72 12
172 13
72 14
72 15
173
73 1
173 2
173 3
173 4
173 5
173 6
173 7
173 8
173 9
173 i
73 1
173 12
173 13
173 14
173 15
174 %
174 1
174 2
174 3
174 4
174 5

1Cs (Default ture = 1)
0 Cr (Number of cases in list = 0)
b ¢ Enter comrile state for list)
DOES> DUF C@ (Cels ture)
DOESPART i (Executes spsrorriate sesrch)

? DEFAULT: ¢ pfeess) (Mandators word used afler caselist in)
(an MCASE: definition, Conriles iS5 ,)
TCOMP EOL + HERE OVER Co C oookfe a0°h Lsrg)

[DEF] § IMMEDIATE

$ KEYED ¢ »fa.oopfa) (Used after MTASE! »uu: L0 sel cosetlwresd)
3 OVER C! # IMMEDIATE

¢ RANGE ¢ pfa +oerfa) (Used after MTASE: o Lo set turesS)
S OVER C! 4 IMMEDIATE
P N? (nopfaeeon T8 f) (Checks for valig casecounls n s with)
{ counl in case list with rfa specified. True if valig,)
OVER OVER 1+ C@ C veon pfa n count)

OVER 1 < *R (+oon Ffa n count)
>Ry 0K 0=

¢ POSITIONAL TYFE WITH SINGLE WORD EXECUTION OFTIONs TYFE 1)

¢ PSFIND ¢ n pfasss) (Tyre 1 case for DOESFARTy finds ang)
{ executes cese n or default if ndl or nrcasecount for)
(MCASE: list pfa. Similar to IX for CASE:)
N IF (valid n) 2 + SWAF { soorfa2 0)
ELSE DUF C@ R & + SWAP DROF R> (,.erfaté ©)

THEN 1 - DUF ¢ 4 { ovipfatkedln-1])
2 EXECUTE 3

: PSLEF (pf3 adrdef..s) (Counts 4 cases entered ang stores)
(1n casecount at rfatl , The address of the default cfas is)
{ 8L adrdef = pfatét2in-11)
OVER 6 + - 2 / C seorfa n-1)
1+ SWAS 1+ C! 5
3 INSTALL FSFTIND ATHRIN DIZS%AST
1 INSTALL P3DZF ATWIN [LEF3

(POSITIONAL TYFE WITH KIGH LEVEL BEF IN LISTy TYFE 2)

&~
¢ 2FIND C n ef3oeeadrn) (Finds 343 essy adrn » of nih high)
{ level code seauence. 5tsri &t rfs of list. Return defauii}
{ code agiress if nil 6 nicssecodnt)
N? 0= IF (gef) R DROF R 1+ C@ 14 K> THEN (.ountf pfa)
SWA® SR 4 + 0 BEGIN 1+ { «ospTaté 1rSave nitf.
R OVER = 0= (+oorfats 1)
WHILE ¢ count not=ntf) (sosrfatd count)
R 2-82¢R: ¢ evsaarnnt count)
REFERT LROQ¥ R LRGT 3§
-
¢ PHFIND ¢ n pfa..0) { Find and execule hi code sex n in Lsred

(2 caselists rfs . Execute defsuli if oul of ranse.)
2FIND ‘EXECUTE 5

..

Hi C pfaseopfa 3d71) (Bzsins hesderless gefinition in an)
(MCASE; words Ffa + Comriles dumdy Jink 845resss comeiles)
(colon anG leaves adi-ess of link io be used bz iH)

DUF 1+ C2 1+ OVER 14 C! (Urdstes casecount)

BUe C@ 2 MOL IF { od44)
BUs €@ 1+ OVER C! THEN
HERE EQL o

COLON » 4

(Urgates ture) .

{ Temrorars link)
IMMIDIATE

-

iH (pfa atrlvoerfe) { Terminates heasderlese definition)
(besun bw HY o« AZJuzts linky comriles 5)
HERE 2+ SWA® | EDL » 5 IMMZLIATE e

7

..

PHUZF (pf2 3d-Gef.ss) { Besins heade-less defin of)
(default., Comsiles COLON) DRO™ DLRO= COLON » &

2 INSTALL PHFIND ATKIN D[JZSCART
2 INSTALL PHLEF ATKIN [(DEF)

FORTH DIMENSIONS I11/6

Page 192

(3) Range type

MC ASE: xxxx RANGE
[u, H,] He ..seql.. H
[Lz, H2,] H ..seql... 3H

[Ln, Hh ,] H: ..seqn.. ;H
DEFAULT: ...seqd... ;

The interpretation of k in case
selecting is the same as previously
discussed for the single word execution of
the same case type. The only difference
is that a FORTH sequence, ...seqi.. i8
executed instead of a single FORTH word,
cfai.

Examples

Examples of all [possible
combinations of case structures are given
on Screens 180 and 181, If the screen is
'oaded and examples tested, typical
execution results should be:

EXECUTE RESULT TYPED
1 BARN MOO
2 BARN OINK
18 BARN PEEP (Default)
1200 PEEP PEEP PEEP
3 Z00 PEEP PEEP MOO
-6 200 OINK OINK OINK
(Default)
1 FARM OINK (Default)
77 FARM MOO
-10 CASE MOOOINK PEEP
(Default)
77 CASE MOGC000000

-10 CORRAL PEEP PEEP

-1 CORRAL OINK OINK
309 CORRAL PEEP OINK MOO
310 CORRAL MOO (Default)

COMMENTS

1. Kim Harris' case compiler, CASE:
avoids the use of OVER = IF DROP
ELSE...THEN for every case as used in
many of the other CASE constructs.
The result is shorter compiled code in
the application. The compiler,
MCASE: presented here is an extension
of CASE: and consequently shares this
feature.

2. The compiler, CASE: and the
Execution Array introduced by M.A.
McCourt in FD 1/4 pp 109 are
functionally equivalent. Further, the
Execution Variable, XEQVAR , of
McCourt turns out to be a degenerate
case of CASE: with only one element
in the case list, The definitions

: XEQARRAY CASE: ;
: XEQVAR <UIST DOES) @ EXECUTE 3

1

174

174

.‘M
\“4
- -

174

~3
>

174

"
~4
»~

4
-~

B babe s b e N
B BT R B B B i
[ANENUNCILNLNANE LN N

[

e P

b S e TN
FRERR
o L XX

P
4% 4ty

s
- < S A B

4

L4
4~
o

-
-~
- O

-
4

176

76

[
~4
~3

el ol el o

VRS R SR ISR IR EIN
PR RS R IRV TR IR SN NG

—

(4]

-
e [T
v Voot e Lt e @

Lt

R N LY X 7Y Yoy

...
[-
ot

[=)

-

w

Rl NILANWISY

..

-
ComNCTaTunTorg

[y
(RSN

(KEYED TYPE MITH SINGLE WORD EXECUTION OPTION, TYPE 3)

¢ KSDEF ¢ »fa sdrdef...) (Countis ¢ cases entered and stores)

(in caseczount st rfatl. Ad3ress of default cfa is)
(adroef=pfatétdln-11)
OVEF. 6 + - 4 / 1+ 3uAF 1+ C!

FSEIND (K Pfaess) (S2arches ture 3 lisl for melch of Kew)
(to K » St,rts 8l pfet2 . Executles cfe after malohed) --:
{ Ker o7 G&fssit it no astah found,)

2 BEGIN 1 *R Uos @ 200 - ook Bdrl)
IF (not EQL) OVER OVER 8 = (,,.K &4-1 k=27)
IF (matched) 2+ C veek 837142)
ELSE R 1 -~ >R 4 + THEN (+vok adrnnt)
EL3E { ECL) 2+ C veok Baroef)
THEN R { ook 38 new T)
UNTIL { Metched or EOL) SWAT DRJF @ EXECUTE
3 INSTALL ASFINDG ATKIN DIZSZART
3 INSTALL KSLEF ATRIN [LEF3
NEYEL OFTI0H WITH HIGH LEVEL DEF Iw LISTy TYrg 4)

KHEIRL (k pfasee) (Szarches luce 4 lisl for melch of Rkes
(to kK . Sterts st rfa+l o Execules hish levei sexuence) —-.
{ followinz mslih or cefsull seauwente if no matoh found.)

2t BZGIN 1 R [J° @ EOL - C seek 28375)
IF (not ECC) OVER OVER € = (+yoK 2471 R=27)

IF ¢ m3izhed) 4 + { soek 3drits)

ELSE R: 1 = 2R 2+ @ THEN ¢ +oob aarnxt)

ELSE (EGL) 24 (veok drgef)
THEN R veek 3G nER T)

UNTIL (Matched or EOL) 5waA® LROF EXECunc i

4 INSTALL NHEIND ATKIN D3ESFART
4 IN

N3TALL PHLEF ATKIN [DEF] (Saz a5 tsre 2)

(RANGE TYFE WITH SINCLE W3TL EXZCUTION OFTIONs TYFE S)

R3LEF (pfa aa0mdefses) { gdrasef= pfaté6téIn-il Comruis n 8ha)
(store &t rfatl) -
OVER 6 + - 6 / 1+ 3Wa™ 1+ C4 4

RANSET (K adreeef) (True if Ki= velue L a3 AND K= vsiue.
{ 8L 8042
Jf DUS R @ < SWAT R> 2¢ @ > Ok 0= j

RSFIND (K Ffaves) (Searches tgre O list for first c-curren.
{ ce of kx within rair of ranse vasiues. Exezules cfs foiiow-
{ ins F3ir. Execules defauit cfe if not foung

24 BEGIN 1 R DJF @ EGL - { ...K il)
IF { nol EQ0L) OVER OVER RANGE? ook 8971 8
IF ¢ in ranse) 4 + (...K adri+4)
ELSE R 1 = >R 6 + TREN (+..k a4-nnt
ELSE (EQOL) 2+ C vook drdef)
THEN R C veok adonew T)

UNTIL { In ranse or EOL) SWA® LZ0% @ EXECUTE -5

v INSTALL RSFIND ATKIN DIESPART
S INSTA.L RSDEF ATKIN CDEF]

(RANGE OPTION WITH HIGHM LEVEL DZF IN LISTs TYFE 6)

¢ RHFIND ¢ K Ffasse) ¢ Sesrches lyre 6 list for first o-curr-)

{ ence of K within rair of range values, IT founds execuies)
(following high level seauences else execules def seauence)
2+ BEGIN { £ DUP @ EOL - (ook 3971 1)
IF { nol ED.) DVER OVER RANGE? { vook 3071 8)
IF ¢ in ranse) & ¢ (sosk 33146)
ELSS R: 1 -~ R 4 + @ THEN (vk adrnxzt)
ELSE (EOL) 2+ { vook adrgef)

Page 193

FORTH DIMENSIONS 11176

are fig-FORTH functional equivaients 178 4 THEN R C vook adrnee ©)
of McCourt's definitions, Hence 178 19 UNTIL ¢ In renge o EOL) SWA® DRO® EXECUTE § -3
CASE: can be used as an Execution 7 ¢
Array as suggested by McCourt. The 179 3 6 INSTALL RNTIND ATKIN DIESFART
definitions of AT , ATKIN end 79 2 & INSTALL PHDEF ATRIN [LEF] ¢ Same as Luras 2 and 4)
INSTALL on screens 167 and 168 can 7?9 3 is
be used ala McCourt to change the 79 4
elements in CASE: list words. They 179 S
are used in the form 179 6
177 7
k INSTAL yyyy ATKIN xxxx 17 8
7% ¢
to change the k'th element in a case 7T W
list, xxxx defined by CASE: to the code P B
field address of yyyy . Now whenever 179 i
k xxxx is encountered, the word yyyy 179 i3
will be executed rather than the 177 14
original word in the k'th position of the 179 1%
case list. 10 ¢ (MZASES EXAMPLES)
1y 1
Using the previous CASE: example of ey 2 $ PIC " OINN " §
BARN , if we execute 185 3 ¢ COW .° NIt 4
180 & ¢ CHICK +* PEEP *
2 INSTALL. COW ATKIN BARN 189 8
18y ¢ WCASES BARN COW PIG CHICK DEFAULT! CHICK 4
the second case in BARN will be 18, 7
changed from PIG to COW. Later 18 & HCASES 200 MY CHICK CHICK CHICHK iH
execution of 2 BARN anywhere in the 18; ¢ Hi COW «* 032932" il
program will then type MooOOoco 185 10 Hi CHICK CHICN COW iH
instead of Oink. 183 13 DIFAULT? FIG FIC PIC ¢
180 12
Although this is non-structured 185 13 MCA3ES FASM KEYED C 8 + 3 PIS
programming, it is still a valuable 183 14 €77 3 COW
programming tool when used 185 19 L 67 v 3 CHICA s
properly. The present definitions of 181 0 BIFAULTS P16 §
INSTALL. and ATKIN can be used 18: 1
within a color definition. 181 2 MoASES CASE REYED (77 » 1 H: COM . 023333 #H
181 3 € 8 ») H! PIGCFIC H|
Please note that the use of the 181 4 £ 67 v 3 B! CHICN CHICA iH
Execution Array in the development of 181 % DIFAL.T: CO4 FIG CAICN 5
MCASE: on screen 169 is purely 181 o
stylistic. 1t is not & necessary feature 18: 7 MCASES PEN RANGE [-32748 » -1 9 3 CHICH
of the development. 181 8 { 0 1+ 3 FiG
181 ¢ L 1+ 32767 + 3 COW
3. The essentially unique feature of 181 16 DEFAJLTS
FORTH is that it is extendable by the 183 13
user, With an expanding FORTH 158 12 MCASES CORRAL RANSE € -10 » -5 » 3 Hi CHICK CHilh i
literature, it is clear to this author 181 313 C -1+ -3 o3 K FIG STASE FIC +H
that FORTH will improve with time 181 14 L 0 0 s+ 3 H: CO4 SFATE COWw iH
faster than all other lanquages and 181 15 C1 s 309 ») B! CHICN FIC COW #H DEFAULT: COW 5 i3

that there is no upper limit to its
improvement. [t has heen less than 18
months since | first got FORTH up and
ruming. In that short period of time,
thanks to the fig literature, the
FORTH system | have rumning now is,
in my opinion, vastly superior to any
other lanquage | have ever seen. And
it will get better!

FOR TH DIMENSIONS I11/6) Page 194

FORTH STANDARDS TEAM MEETING

A FORTH Standards Team meeting
will be held in Bethesda, MD, from May 11
through May 14. The meeting is open to
the current Standards Team members and
a limited number of observers. The site
will be the National 4H Center, a self-
contained educational facility, just outside
Washington, DC. The campus-like Center
has meeting rooms, dining facilities and
dormitory accommodations.

This four-day meeting will allow
world-wide Teamm members to consider
proposals and corrections for the current
FORTH Standard and develop future stan-
dards policy. Participation is possible by
submittal and attendance. Written sub-
mittals received by April 30 will be
distributed to attendees before the
meeting. Late receipts will be distribued
at the team meeting. Those wishing to
attend must apply without delay, as space
is severely limited.

Applicants (other than team members)
must submit a biography by April 15 for
consideration by the credentials com-
mittee. You should include:

1. Your skills and comprehension of
muitiple FORTH dialects and their
application.

2. Why your views are representative
of a significant portion of the
FORTH community.

Accommodations are $41 to $47 per
day, per person, including meals. Send a
refundable $100 deposit (and biography for
observers) to the meeting coordinator.
You will receive further details on choices
in housing and meals.

Submittals are essential if Team
actions are to represent the broadening
scope of FORTH users. Specific con-
sideration will be given to an addendum
correcting FORTH-79, the Team Charter,
and alliance with other standards groups.
Those not atterding may receive copies of
submittals by sending $30 to the meeting
coordinator.

All submittals and reservations should
be directed to the meeting coordinator:

Pam Totta

Creative Solutions
4801 Randolph Road
Rockville, MD 20852
(301) 984-0262

FORTH DIMENSIONS
VOLUME IV
BEGINS NEXT ISSUE

From the Editor:

Beginning with the next issue, each
edition of FORTH DIMENSIONS will high-
light a special theme. Our May/June issue
will feature several articles on complex
arithmetic routines in FORTH such as
fixed-point trig, square root, and floating
point. Of course, the remainder of each
issue will contain the usual technotes,
product reviews, tutorials, letters, etc.

Suggestions for future themes include:

Process Control Applications
Database System Applications
Teaching FORTH

Data Acquisition and Analysis
FORTH in the Arts

cPM

Laboratory Workstations

Serial Communications
Metacompilation and its Alternatives
The FORTH Environment

Your input to these topics is greatly
needed.

RENEW TODAY!

Page 195

FOR TH DIMENSIONS 11176

LECTURES ON APPLIED FORTH
a two day seminar on Forth and its application
and the

1982 ROCHESTER FORTH CONFERENCE ON DATA BASES AND PROCESS CONTROL

May 17 through May 21, 1982
University of Rochester Rochester, New York

As part of the 1982 Rochester FORTH Confarence on Data Bases and Process
Control there will be a two day seminar on Applied PORTH. Managers and pro-
grammers will find these lectures very useful for exploring FORTH applications
and programming concepts. Each lecturer will also lead a Working Group at the
subsequent Conference. Participants should have a copy of Leo Brodie's book,
Starting FORTH, which is available from Mountain View Press, PO Box 4656, Mt.

View, CA 94040 for $16.00.
Lecturers for the two day seminar are:

Leo Brodie, author of Starting FORTH, on "Begimning FORTH".
Kim Harris, of Laxen & Harris, Inc., on "FORTH Programming Style".

Hans Nieuwenhuijzen, of the University of Utrecht, on "FORTH Programming
Environment".

Larry Forsley, of the Laboratory for Laser Energetics, on "Extensible
Control and Data Structure”.

David Beers of Aregon Systems, Inc., on "A Large Programming Project Case
Study: Building a Relational Database in FORTH".

Steven Marcus of Kitt Peak National Observatory, on "Assemblers & Cross
Asgemblers",

James Harwood of the Institute for Astronomy at the University of Hawaii,
on "Computation Tradeoffs".

Roger Stapleton of St. Andrews Observatory, Scotland, on "Hardware Control
with FORTH".

Raymond Dessey of Virginia Polytechnic Institute, on "Concurrency, Net-
working and Instrument Control".

REGISTRATION FORM
(must be received by April 23, 1982)

Name
Address
City State 2IP
Phone (Days) ()
CHOICES TO BE MADE
— Applied FORTH Seminar, May 17 & 18 $200.00
____ 1982 Rochester FORTH Conference, May 19~21 100.00
__ Housing for: (circle dates) May 16 17 18 19 20 21 $ 13.00/person dbl

16.50/person sgl

TOTAL AMOUNT ENCLOSED §
Make checks payable to: "University of Rochester/FORTH Conference™
Send check and Registration to:

Mrs. B. Rueckert, Lab for Laser Energetics, 250 E River Rd, Rochester, NY 14623

For information call: Barbara Rueckert (716) 275-2357

FORTH DIMENSIONS I11/6

Pege 196

Marx FORTH for Northstar
now Available

Marx FORTH is a fast, powerful
FORTH system written in Z2-80 code.
Package includes self-compiler, complete
source code, screen editor, and "smart"
assembler. Some of the features include
calis to the N* directory functions allow-
ing creation, deletion and listing of
directories and ease of writing FORTH
programs that operate on files created by
N#* BASIC. Some of the performance fea-
tures include very fast compile speeds,
very fast math, 3l-character variable
length names, case compiler security,
arguments-results, link field in front of
name, and many machine code definitions
for high speed.

The self-compiler allows you to change
anything. If you don't like how I do it,
change it! Add anything you want, Price
is $85 on N* single density diskette.
Source listing available separately for $25.

Perke! Software Systems
1636 N. Sherman
Springfield, MO 65803
(417) 862-9830

FORTH Programming Aids

FORTH Programming Aids are high
level FORTH routines which enhance the
development and debugging of FORTH
programs and complement cross compiler
and meta compiler operations with the
following features:

- A command to decompile high level
FORTH words from RAM into struc-
tured FORTH source code including
structure control words. This
command is useful to examine the
actual source code of a FORTH
word, or to obtAln variations of
FORTH words by decompiling to
disk, editing, and recompiling the
modified source code.

- A command to find words called by a
specified word to all nesting levels.

- Commands to patch improvements
into compiled words and to merge
infrequently called words for in-
creased program speed.

- Complete source code and 40-page
manual are provided.

Requires a FORTH nucleus using the
fig-FORTH model; a minimum of 3K bytes
and a recommended 13K bytes of free dic-
tionary space. $150 single CPU license;
$25 for manual alone (credit applied
toward program purchase). California
residents add 6.5% tax. Add $15 for
foreign air shipments. Available on 8-inch
ss/sd disks (FORTH screens or CP/M 2.2

NEW PRODUCTS

file of screens), and Apple 3.2 and 3.3
disks; inquite about other formats.

Ben Curry

Curry Associates

PO Box 11324

Palo Alto, CA 94306

New Book: Introduction to FORTH

Introduction to FORTH, a 142-page
textbook by Ken Knecht, presents the
most complete information available on
the MMS FORTH version of the FORTH
language. It is written for anyone who
wants to leamn how to write computer
software using FORTH.

No previous knowledge of FORTH is
required, but some exposure to Microsoft
Level 1 BASIC will be heipful. Although
the book is designed specifically for the
MMSFORTH version of FORTH for the
Radio Shack TRS-80 Models I and 11, most
program examples can be adapted to run
on other microcomputers that use dif-
ferent versions of FORTH.

RENEW NOW!
FORTH for Ohio Scientific
We've received from Technical

Products Co. a copy of their newsletter.
This issue contains product news anr
update screens for FORTH-79. We
applaud their intent of good customer
support, but note technical errors in
definition of several standard words
({ WORD , R@ , END-CODE , 2CONSTANT
, DX). This OSI-FORTH operates with
Ohio Scientific OS_65D 3.3 operating
system release.

Their new address is Technical
Products Co., Box 2358, Boone, NC
28607 --ed.

RENEW TODAY!

MCZ, Z0S, UDS FORTH

FORTH is now running on Zilog MC2Z,
ZDS, and Multitech UDS microcomputer
systems, It has conmpiler, editor,
assembler, text interpreter, and 1/O drives
for floppy disk, Centronics printer, and
RS232 devices.

Assembly source listing is available
now for $10. Source code on diskette is
$50 (specify MCZ, ZDS, or UDS). Users
manual will accompany each order.

Send checks to Thomas Y. Lo, Electri-
cal Engineering Department, Chung Yuan
Christian University, Chung Li, Taiwan,
Republic of China,

Software for OSI C1P

Shoot The Teacher - Find the teacher and
shoot him with your water pistol.
(Teaches basic graphing) $6.95

Speedo Math - Race the computer with
your car. (Drills basic addition and

multiplication) $6.95

Kamakaze Education Pack - Four pro-
grams in one. Addition, X Tables,
Spelling, and Place Value Drill. Answer a
question and your men go on their last
mission. $11.95.

That's Crazy - A takeoff from a famous
TV Show where you risk your life to jump
over cars and a canyon. A spelling
program that provides hours of enter-
tainment. 1 $11.95 (specify grade level)

Want Ads Life Skills - A program that
helps slow readers understand the Want
Ads. Five levels of difficulty. $7.95

Rescue Ship - Transport injured soldiers to
the hospital. But the enemy has covered
the ocean with mines. One of them could
destroy you.

Addition - $11.95
Subtraction - $11.95
Multiplication ~ $11.95
(all three on tape - $28.00)

Please include $1.00 to cover postage and
handling and send to:

Henry Svec

668 Sherene Terrace
London Ontario Canada
Né6H 3K1

Page 197

FORTH DIMENSIONS I/6

The following vendors have versions of
FORTH availsble or are consuitants, (FIG

makes no judgment on any products.)

ALPHA MICRO
Professional Manegement Services
724 Arastradero Rd, #109
Palo Alto, CA 94306
(408) 252-2218

Sierra Computer Co.
617 Mark NE
Albuquerque, NM 87123

APPLE
IDPC Company
P. O. Box 11594
Philadelphis, PA 19116
(215) £76-3235

IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

George Lyons

280 Henderson St.
Jersey City, NJ 07302
(201) 451-2905

MicroMotion

12077 Wilshire Blvd. #506
Los Angeles, CA 90025
(213) 821-4340

CROSS COMPILERS
Nautilus Systems
P.O. Box 1098
Santa Cruz, CA 95061
(408) 475-7461

™
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

LYNX

3301 Ocean Park #301
Santa Monica, CA 90405
(213) 450-2466

M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

Micropolis
Shaw Labs, Ltd.
P. O. Box 3471
Hayward, CA 94540
(815) 276-6050

North Star
The Software Works, Inc.
P. O. Box 4386
Mountain View, CA 94040
(408) 736-4938

PDP-11
Laboratory Software Systems, Inc.
3634 Mandeaville Canyon Rd.
Los Angeles, CA 90049
(213) 472-6995

os
Consumer Computers
8907 LaMesa Blvd.
LaMesa, CA 92041
(714) 698-8088

FORTH VENDORS

Software Federation

44 Unlversity Dr.

Arlington Heights, IL 60004
(312) 259-1355

Technical Products Co.
P, O. Box 12983
Gainsville, FL 32604
(904) 372-8439

Tom Zimmer
292 Falcato Dr,
Miipites, CA 95035

1802
FsS
P, O. Box 8403
Austin, TX 78712
(512) 477-2207

6800 & 6809

Redondo Besch, CA 90278
(213) 376-9941

TRS-80
The Micro Works (Color Computer)
P. 0. Box 1110
Del Mar, CA 92014
(714) 942-2400

Milier Microcomputer Services
61 Lake Shore Rd.

Natick, MA 01760

(617) 653-6136

The Software Farm
P. O. Box 2304
Reston, VA 22090

Sirius Systems

7528 Osk Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

6502
Eric C. Rehnke
540 S, Ranch View Circle #61
Ansheim Hills, CA 92087

Saturn Software, Ltd.
P, 0. Box 397

New Westminister, BC
V3L 4Y7 CANADA

8080/Z80/CP/M
Laboratory Microsystems
4147 Beethoven St.
Los Angeles, CA 90066
(213) 390-9292

Timin Engineering Co.
9575 Genesse Ave. #E-2
San Diego, CA 92121
(714) 455-9008

Application Packages
InnoSys :
2150 Shattuck Avenue
Berkeley, CA 94704
(815) 843-8114

Decision Resources Corp.
28203 Ridgefern Ct.

Rancho Palo Verde, CA 90274
(213) 377-3533

68000
Emperical Res. Grp.
P. O, Box 1176
Milton, WA 98354
(206) 631-4855

Firmware, Bosrde and Machines
Datricon
7911 NE 33rd Or,
Portland, OR 97211
(503) 284-8277

Forward Technology
2595 Martin Avenue
Sants Clars, CA 95050
(408) 293-8993

Rockwell International
Microelectronics Devices
P.O. Box 3669

Aneheim, CA 92803

(718) 632-2862

Zendex Corp.

6398 Dougherty Rd.
Dublin, CA 94566

Variety of FORTH Products
Interactive Computer Systems, Inc,
6403 Di Marco Rd.

Tampa, FL. 33614

Mountain View Press

P, O. Box 4656

Mountain View, CA 94040
(415) 961-4103

Supersoft Associates
P.0. Box 1628

aign, IL 61820
(217) 359-2112

Consultants
Crestive Solutions, Inc.
4801 Rendolph Rd.
Rockville, MD 20852

Dave Boulton

581 Oskridge Dr.
Redwood City, CA 94062
(415) 368-3257

Leo Brodie

9720 Baden Avenus
Chatsworth, CA 91311
(213) 998-8302

Go FORTH

504 Lakemead Way
Redwood City, CA 94062
(815) 366-6124

Inner Access

517K Marine View
Belmont, CA 94002
(a15) 591-8295

Laxen & Harris, Inc.

24301 Southisnd Drive, #303
Hayward, CA 94545

(415) 887-2894

Microsystems, Inc.

2500 E. Foothill Blvd., #102
Pasadena, CA 91107

(213) 577-1471

VENDORS: FORTH DIMENSIONS will go to a product matrix in Volume IV. Serd in & list of your products and services by April 18

FORTH DIMEN:! S 1l/6

~ Page 198

FIG CHAPTERS

How to form a FIG Chapter:

l. You decide on a time and place for the
first meeting in your area. (Allow at least
8 weeks for steps 2 and 3.)

2. Send FIG a meeting announcement on one
side of B8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP numbers
that you want mailed to (use first three
digits if it works for you).

3. FIG will print, address and mail to
members with the ZIP's you want from
San Carlos, CA,

4. When you've had your first meeting with 5
or more attendees then FIG will provide
you with names in your area. You have to
tell us when you have 5 or more.

Northern California

4th Sat F1IG Monthly Meeting, 1:00 p.m., at
Southland Shopping Ctr., Hayward,
CA. FORML Workshop at 10:00 am.

Southern Califoria

Los Angeles

4th Sat FIG Meeting, 11:00 a.m., Allstate
Savings, 8800 So. Sepulveds, L.A.
Philip Wasson, (213) 649-1428,

Orange County

3rd Sat FIG Meeting, 12:00 noon, Fullerton
Savings, 18020 Brockhorst, Fountain
Valley, CA. (714) 896-2016.

San Diego

Thur FIG Meeting, 12:00 noon. Guy
Kelly, (714) 268-3100, x 4784 for
site.

Northwest

Seattle Chuck Pliske or Dwight Vandenburg,
(206) 542-7611.

New land

Boston

lst Wed FIG Meeting, 7:00 p.m., Mitre Corp.,
Cafeteria, Bedford, MA. Bob
Demrow, (617) 389-6400, x198,

Boston

3rd Wed MMSFORTH Users Group, 7:00 p.m.,

Cochituate, MA. Dick Miller, (617)
653-6136 for site.

%

Southwest
Phoenix Peter Bates at (602) 996-8398.

Tulsa

3rd Tues FIG Meeting, 7:30 p.m., The
Computer Store, 4343 So. Pecria,
Tulsa, OK. Bob Giles, (918) 599-
9304 or Art Gorski, (918) 743-0113.

Austin John Haetings, (512) 327-5864.

Dallas

Ft. Worth

4th Thur FIG Meeting, 7:00 p.m., Software
Automation, 1005 Business
Parkway, Richardson, TX. Marvin
Elder, (214) 231-9142 or Bill Drisse)
(214) 264-9680.

Mountain West
Salt Lake City
Bill Haygood, (801) 942-8000

Mid Atlantic
Potomac Joel Shprentz, (703) 437-9218.

New Jersey George Lyons (201) 451-2905.
New York Tom Jung, (212) 746-4062.

Midwest
Detroit Dean Vieau, (313) 493-5105.

Minnesota

Ist Mon FIG Meeting. Mark Abbott (days),
(612) 854-8776 or Fred Olson, (612)
588-9532. Call for meeting place
or write ta: MNFIG, 1156 Lincoin
Avenue, St. Paul, MN 55105,

Foreign
Australia Lance Collins (03) 292600.

England FORTH Interest Group, c/o 38,
Worsley Road, Frimley, Camberley,
Surrey, GU16 S5AU, England

Japan FORTH Interest Group, Baba-bldg.
8F, 3-23-8, Nishi-Shimbashi,
Minato-ku, Toyko, 105 Japan.

Canada - GQuebec
Gilles Paillard, (418) 871-1960 or
643-2561.

W. Germany Wolf Gervert, Roter Hahn 29, D-2
Hamburg 72, West Germany,(040)
644-3985.

L4

SIGN UP A FRIEND

- —

START A FIG CHAPTER
PUT THE ORDER FORM ON THE BULLETIN BOARD

Page 199

FORTH DIMENSIONS /6 l

