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SUMMARY 
 

Environmental monitoring over a large expanse in remote areas is difficult with traditional in-

situ vegetation surveys. Remote sensing (RS) helps to overcome the problem by balancing 

the need to monitor a large study area with adequate spatial resolution to detect the object of 

interest across a large area.  This study uses high-resolution 0.5 metre Pleiades satellite 

imagery, together with imagery from aerial surveys at 0.03m spatial resolution taken with a 

camera mounted on an Unmanned Aerial Vehicle (UAV) which acts as pseudo ground control. 

Classification of the Pleiades imagery is being used to map chenopod shrubs with 2 distinct 

spatial distribution patterns in Witchelina Nature Reserve (WNR) located in the western 

Flinders Ranges in the South Australian Arid Lands, a region that covers more than half of 

South Australia, bordering with New South Wales, Northern Territory and Queensland. 

The objective of this study was to employ machine learning methods to achieve high-resolution 

and accurate mapping of the chenopod habitat of the endangered Thick-billed Grass Wren 

(TBGW) from a high-resolution satellite imagery. A detailed comparison was made between 

four vastly different methods of image classification: a) Unsupervised ISO Pixel-based 

classification; b) Supervised Maximum Likelihood (ML) Pixel-based classification; c) Object-

based Image Classification using segmentation- Support Vector Machines (SVM) and d) 

Object Classification using Deep Learning (DL)- Convolutional Neural Network (CNN). 

Accuracy was assessed using withheld pseudo ground truth data and suitability for objective.  

Results obtained showed that classification accuracy for object-based methods are sufficiently 

accurate and that RS methods can be used to map the whole of WNR with cost-effective 

means to support the planning of conservation activities. 
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1. INTRODUCTION 

Environmental monitoring in arid regions can be achieved through employing various remote 

sensing (RS) methods in order to meet multiple environmental objectives for the user. This 

research thesis demonstrates the use of multiplatform RS and image classification 

methodologies to produce a thematic map, mapping objects of interest for land and 

conservation managers in order to support their conservation efforts in a private nature reserve, 

managed and owned by Nature Foundation (NF), a conservation organisation based in 

Adelaide.  Witchelina Nature Reserve (WNR) is a 421,000-hectare former pastoral property 

that was purchased by Nature Foundation in 2010 for conservation.  

Nature Foundation, a conservation organisation founded in 1981, managing several properties 

across South Australia faces the problem that most landowners have with their property- the 

large expanse with limited manpower and resources makes it difficult for the Land managers 

to manage assets and resources across their property.  

As a conservation organisation focused on land acquisition for conservation, NF manages a 

few properties that are vast in size but with limited rotational land managers for conservation 

activities including removal of weeds, de-fencing and baiting of predators.  These interventions 

often do not have the support of monitoring schemes because of issues of accessibility, 

vastness, resource constraints.  

At WNR, land managers are rotated regularly to help with conservation management activities 

including de-stocking of cattle, weeds removal, baiting of predators and de-fencing. Given the 

large expanse of land with limited time and resources, RS can help land managers make 

decisions on where best to focus conservation activities and assess the effectiveness of their 

conservation efforts.  

Due to WNR’s previous existence as pastoral land and its subsequent conversion into 

conservation land from 2010, it represents a unique proposition as prime conservation land in 

the middle of the arid region in South Australia and an opportunity to compare biodiversity 
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levels and ecological status when it was under pastoral ownership and its current incarnation 

as conservation land to measure the impact of conservation activities undertaken in the area.   

Hence, numerous researchers have carried out research studies and experiments in diverse 

disciplines across ecology, biology among others in the past years (Namyatova, Schwartz, 

and Cassis 2013; Namyatova, Elias, and Cassis 2011; Woinarski et al. 2017; Slender et al. 

2018).  

In terms of its biodiversity value, WNR is significant as it forms a strategic habitat link from 

Lake Torrens in South Australia into the Northern Territory functioning as “the world’s first 

transcontinental wildlife corridor” between Port Augusta and Arnhem Land (Department of 

Agriculture Water and the Environment 2021). It serves as a refuge for many animals including 

the nationally vulnerable Eastern Thick-billed Grass Wren (Amytornis modestus) (TBGW), 

protecting unique ecosystems not found in other parks and reserves.  

Following a discussion with the Science and Knowledge Program Manager from Nature 

Foundation, the following research objectives were identified: 

1. Explore detailed mapping of chenopod shrubs and its distribution in Witchelina 

Nature Reserve 

2. Undertake broad-level mapping of the WNR to help inform conservation efforts in the 

privately-owned nature reserve and also fill a knowledge gap in state-level vegetation 

mapping 

Chenopod shrublands were selected as the main object of interest as prior extensive 

surveys of these shrublands had not been done before. As the primary habitat of the 

endangered TBGW, mapping chenopod shrublands will yield insights into the distribution of 

the habitat of the TBGW and help with the conservation strategies of the endangered wren.  

Thick-billed Grass Wren (TBGW) and its habitat link to Witchelina Nature Reserve  
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Louter (2016) examined the relationship between habitat restoration of the nationally 

vulnerable thick-billed grass wren, mainly found in arid regions of South Australia and New 

South Wales, and its influence on the population of the threatened wren with a study from 

2012-2015 conducted at Witchelina Nature Reserve, a formal pastoral station. The reserve 

lies within the range of the TBGW spanning three bioregions, Willouran, Mulgarie, and Marree 

– see figure 3 for location of Willouran- (Louter et al. 2015: 18). 

Located in the Australian arid zone means that the environment is prone to developing 

heterogenous ecological landscapes with irregular soil types and limited sporadic rainfall, 

creating patchy distributions of plant communities which greatly affects the animals living in 

the arid zone (Tongway and Ludwig 1980; Ford 1987; Martin 2006 cited in Slender et al. 2017: 

273).  

TBGW generally live in saltbush (Rhagodia sp.), blue bush (Maireana sp.) cotton bush 

(Maireana sp.), rock samphire (Crithmum sp.) and grasses on watercourse and among flood 

debris (Schodde 1982; Serventy 1982; Rowley and Russell 1997 cited in Louter 2016: 7).  

Mapping Plant Functional Types (PFT) 

 

Mapping individual shrub and plant communities requires distinct approaches for the 

segmentation process. The former requires the RS analyst to specify the minimum number of 

pixel (relating to its size) to consider detecting an individual shrub so non-mature shrubs can 

be filtered out of the classification. For the latter, the plant community can be described by 

either the species of flora in the community or by its Phyto physiognomy (its structure) (Ustin 

and Gamon 2010: 797). For example, a wide open shrubland may comprise of dense covering 

of shrubs interspersed with short trees like acacias and forbs.  

Any remote sensing method needs to acutely define the object of interest to collect relevant 

data on it. While broad classification makes this task relatively straightforward (e.g., buildings 

vs non-buildings, vegetation vs non-vegetation), mapping a plant group is a more difficult task 
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due to the “small inter-class variance between visually similar sub-classes” and the 

contextually rich sub-categories in the world of taxonomy (Cai et al. 2019: 166). 

In ecological science, taxonomy is viewed through the lens of the plant group’s functional type 

that uses “structural, physiological and/or phenological features” grouping species in response 

to environmental conditions or impacts on ecosystems (Ustin and Gamon 2010: 796). 

Chenopod shrubs, samphire shrublands and forblands- Major Vegetation Group 22 

 

The habitat of the TBGW all generally fall under the Chenopodiaceae family vegetation major 

group and appear most commonly with acacia covering more than a quarter of the Australian 

continent as open shrubland, lying entirely within the arid zone on “extensive clay plains, 

gibber hills and plains, aeolian sandplains and hypersaline flats” (Foulkes et al. 2014: 439); 

(Commonwealth of Australia 2017). These plants are slow growing, even without grazing 

(Slender et al. 2017: 276). They tend to dominate where there is rainfall, with regeneration 

only possible with prolonged rainfall events, but are both drought and salt-tolerant (Foulkes et 

al. 2014: 440) 

Mapping Habitats 

 

Louter’s vegetation survey in Witchelina Reserve looked at long-live perennial (its cover, 

abundance, and diversity), limiting it to only adult shrubs larger than 10cm in height, and 

species belonging to genus, Rhagodia, Atriplex, Maireana, Eremophila and Acacia (Louter 

2016: 21) . 

Chenopod vegetation cover was used in analysis for TBGW presence and Louter noted that 

TBGW were more likely to occur at sites with more chenopod vegetation cover as it signifies 

shrub abundance and diversity which supports more birdlife. Group vegetation cover maps 

are too broad for conservation purposes- TBGW do not thrive in any areas with high vegetation 

cover; while species-level mapping based solely on spectral information of chenopod 

vegetation cover does not tell us if the chenopod shrubs are mature and wide enough to 

support the TBGW (Louter 2016: 31). 
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Nagendra at al. (2013: 48) noted that often, land cover mapping does not translate accurately 

into habitat mapping as attributing spectral signatures from land cover to finer details in habitat 

classification is complicated, with the added complexity of a heterogenous landscape (arid 

land environments are notorious for that) and requirements of high geometric accuracy.   

Some methods were devised to overcome these challenges including the use of fuzzy 

classification, probability theory and object-oriented method (which this study uses) but 

ultimately, the choice of remote sensing dataset determines the amount of information to map 

the complex, fine scale and structurally and floristically variable habitat to sufficient degrees 

of accuracy. Vegetation surveys previously undertaken by Louter (2016), while useful in 

establishing a correlation between two variables, is inadequate for mapping the habitat of the 

threatened TBGW over the entire nature reserve. RS, and this study, thus can play a role in 

filling that gap in order to support conservation efforts in the nature reserve.   
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2. STUDY AREA 

The study area is bounded by the extent 6674000 N 6664995 S, 209300 E 217000 W (UTM 

Zone 54S) with an area of 69.34km2 or 6934 hectares. It is 1.6% of the entire WNR.

 

Figure 1-Map of Study Area 
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Figure 3- Thematic Map of WNR (Department of Water, Land, and Biodiversity Conservation 2009) 

 

The study area is comprised of three distinct bioregions characterised by then Department of 

Water, Land, and Biodiversity Conservation, which at present is the Department for 

Environment and Water. The three distinct bioregions are Willouran, Paradise, and Myrtle 

Louter (2016: 18). TBGW can be found across the entire study area but are especially 

concentrated in Willouran and Paradise where chenopod shrubs such as saltbush, bluebush, 

blackbush, and samphires can be found. 

  

Figure 2- study area extent (approximate) 1: 200,000 

Removed due to copyright restriction 
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3. LITERATURE REVIEW 

3.1 Vegetation Mapping using Remote Sensing in Australia 
 

Environmental monitoring is an important process both on its own merit and also as part of 

the Environment Impact Assessment process for development projects undertaken in 

Australia and other parts of the world to assess environmental risks and impacts that arise 

from development projects (Nagendra 2013 :47).  

Environmental monitoring is also important for the ecologically sustainable management of 

natural resources and aids in supporting ecology, environmental management and policy 

making. (Lindenmayer et al. 2014: 44). These authors for instance recommended long-term 

ecological studies spanning continuous periods of years which will then allow us to quantify 

ecological responses to environmental change. Long-term surveys have been instrumental in 

quantifying effectiveness of conservation management activities which can be linked to the 

proliferation of individual species that thrive with certain conditions. 

Vegetation mapping efforts across Australia  

 

One key example of a monitoring scheme is vegetation mapping which can occur at various 

levels and scales, including at national, state, or council level. For example, on a national level, 

the National Vegetation Information System (NVIS) was developed to assess the state of 

native vegetation in Australia on a timely basis (Department of Agriculture Water and the 

Environment. 2021). It is also used as input data for other applications, including for carbon 

accounting, native vegetation and biodiversity reporting, for research and fire modelling (NVIS 

Technical Working Group 2017: 7). The NVIS manual (version 7.0) sets out a few standards 

including standards for data management and compilation, taxonomic attributes, vegetation 

condition attributes, standards for vegetation spatial data, among others.  

Vegetation mapping efforts exist nationally under the guide of the federal Department of 

Agriculture, Water and the Environment on the  NVIS which “provides information on the extent 
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and distribution of vegetation types in Australian landscapes.” (Department of Agriculture 

Water and the Environment 2020). It is managed through the NVIS technical Working group 

established in 2015 which publishes the Vegetation Attribute manual for the ongoing 

development of the NVIS.  

Under the NVIS, there are 32 classified major Vegetation groups based on an aggregation of 

NVIS level five-six types based on dominant genus-plus categories. Example groups are: 

MVG 1- Rainforest and vine thickets; MVG 3- Eucalypts open forests. MVG 13- Acacia open 

woodlands and MVG 22- Chenopod shrublands, samphire shrublands and Forblands (NVIS 

Technical Working Group 2017). 

In WNR, MVG13 and MVG 22 are the two most dominant groups with the latter the focus of 

the study area in this study. 

Other state-specific vegetation mapping guidelines also exist. One such guideline is the Native 

Vegetation Council rangelands assessment manual developed to assess native vegetation 

systems in the arid zone of South Australia (managed under the SA Arid Lands board and 

Alinytjara Wilurarar (AW) board) for purposes like including clearance or regulation application 

areas, demarcating potential and established Significant Environmental Benefit offset areas, 

and Heritage agreements (Natural Resource South Australia 2017).  

On the academic front, terrestrial ecosystem research network (TERN) involving various 

universities across the country, provides spatial data products at regional and continental 

scales to characterise and monitor Australian ecosystems over time. The data on the platform 

include land cover data, vegetation composition, fire dynamics, field survey datasets, 

attributes of soil, and landscape attributes including slope, aspect, solar radiation, etc. (TERN 

2021). These research-focused projects fill in the need for more comprehensive monitoring 

projects carried out in smaller, critical areas which helps to support state-level and national 

vegetation mapping efforts at a coarser scale. 
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TERN is also dedicated to using remote sensing techniques to characterise and monitor 

Australian landscapes. It uses a mix of space-borne, airborne and in-situ remote sensing 

equipment for its diverse product offerings. At present, it is developing case studies for UAV 

multispectral data collection for producing fractional cover and canopy structure products, 

satellite imagery correction from the Himawari satellite, and blending multi-sensor reflectance. 

(TERN 2021). 

3.2 Satellite Remote Sensing -collecting data from the environment 

Remote sensing, which is one of the two primary ways to collect data in the environment, the 

other being in situ monitoring, contributes to information gathering, that becomes knowledge 

with context provided by the domain expert that can be translated into action by the land 

manager or government department responsible for the area (See Figure 4 below) 

 

Figure 4- Adapted from Systems Analysis for Sustainable Engineering, (Ni-Bin 2011) 

 

As a remote sensing method, satellite-based imagery is one of the most popular platforms due 

to its relatively ease of accessibility and multiple applications.  There exists a multitude of 

methodologies using active or passive sensors, and through spaceborne (land observation 

satellites), airborne (UAVs or planes) or in-situ sensing equipment (ground spectroradiometers 

using field methods like transects). Under passive sensors on earth observation satellites, 

there are panchromatic, multispectral, and hyperspectral sensors. With active sensors, we 

have synthetic aperture radar (SAR) and Light Detection and Ranging (LiDAR) 

The choice of sensors depends on the variable to be observed, keeping in mind that the choice 

of satellite imagery is also a compromise of the issues presented in figure 5: 

Data (in situ 
monitoring, remote 

sensing)

Information 
(database 

management, 
information 

retrieval)

Knowledge (data 
mining, systems 

analysis)

Action 
(management 

alternative)
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Figure 5-Three different considerations when selecting a satellite image for analysis 

The ideal satellite image would cover the entire study area (wide areal coverage), have high 

spatial, radiometric, and spectral resolution (sub-meter spatial resolution, 12-bit radiometric 

resolution-, many more than 4 narrow spectral bands), and high temporal resolution (daily 

coverage). This ideal satellite imagery does not exist unfortunately, and even if it did, would 

be very costly to obtain. Compromises are often made when considering the objectives of the 

research and characteristics of the study area.  

Because of its wide areal coverage, satellite imagery has played an important role as a 

remote sensing method for land cover monitoring and thematic mapping. 

The first wave of studies employing remote sensing of vegetation was first driven by 

“environmental monitoring” satellites like the Landsat Thematic Mapper with 30m MS 

resolution and 15m Pan resolution, which allows monitoring “physiognomy, cover type and 

fractional canopy cover.” (Ustin and Gamon 2010: 799), the second group of satellites 

monitored vegetation structure and phenology to monitor climate response (Tucket et al. 1985 

cited in Ustin and Gamon 2010: 799) while the third group of satellite allowed access to sub-

meter resolution civilian satellites which allowed accurate measurement of vegetation by 

species-level augmenting vegetation field surveys. 

Three 
considerations 

when using 
Satellite 
Imagery

Spatial 
Resolution 
(amount of 

details)

Areal 
Coverage 

Currency 
(how 

recent)
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The wide array of remote sensing sensors means that there is a wide choice of satellite 

imagery for analysis, and each would need adjusted approaches towards processing them in 

order to retrieve the desired information.  RS is vital for the monitoring of environmental 

resources distributed all around the world and conservation monitoring which runs the gamut 

of assessing protected areas, habitat extent and condition, species diversity, and threats. 

(Andrefouet et al. 2003; Goetz et al. 2003; Sawaya 2003; Kayitakire et al. 2006; Wang et al. 

2004 cited in Poon 2007: 76; Nagendra et al. 2013). The wide range of applications and 

objectives mean that a universal criterion for choosing a feasible sensing technology and data 

processing steps has not yet been, and may not be defined (Sandino et al. 2018: 2) 

In addition to space-borne satellite imagery, the availability of alternatives of other RS data 

sources (including aerial imagery or aerial LiDAR) means that the former can be augmented 

with observations from other RS platforms. Aerial imagery captured from UAVs has grown in 

popularity in recent years due to its accessibility and spatial resolution and is one of the most 

popular data sources for multi-platform RS for overcoming limitations arising from the sole use 

of a single platform remote sensing.  Examples of these successful studies will be presented 

in section 3.2.3. 

3.2.1 A plethora of information- spectral, spatial, and radiometric details 

When a satellite image over a study area is obtained, it comes with a plethora of information: 

the spectral bands, the spatial resolution of the image, the temporal resolution, and the 

radiometric resolution which allows the RS user to interpret the values in each band; the object 

shape and edge; and brightness value from its respective resolution (Richards 2013: 4). This 

information can be interpreted meaningfully with context to form knowledge about the scene 

captured in the satellite image. In the natural environment, vegetation, soil, and water, the 

three major components have different spectral characteristics that allow the RS user to 

differentiate them based on spectral resolution alone (figure 6).  The four typical multispectral 

bands used in many remote sensing sensors are blue (0.45-0.510 μm); green (0.510-0.580 

μm); red (0.630-0.690 μm) and near infrared (0.770-0.895 μm) (Xue and Su 2017: 1).  
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Spectral Resolution 

What most studies have used at minimum is the use of spectral resolution to quantify and map 

vegetation in their respective study areas. The utility of satellite imagery can be defined by its 

ability to record “fine details in a distinguishable manner” through its spectral, spatial, and 

radiometric resolution (Campbell 2011: 285). Spectral resolution works on the premise that 

physical objects reflect sunlight in different ways due to its chemical composition.  The spectral 

properties of vegetation, in all its diversity, form and species, has a spectral response that is 

correlated with the biochemical characteristics of the plant (Campbell 2011: 471). For a main 

component of photosynthetic plants, the higher the amount of chlorophyll, the higher the 

absorption of red energy and the higher the reflectance of near-infrared energy which can be 

seen clearly in the spectral graph- see spike in NIR (0.770-0.895 μm) in figure 6 below.  

 

 

Figure 6- Reflectance characteristics in the visible and reflective infrared range (Richards 2013: 11). 

Vegetation indices are common formulae used in remote sensing, to calculate vegetation 

cover, vigour, or growth dynamics among other applications (Xue and Su 2017: 1). They are 

calculated by the ratio of reflectance in the red and NIR section to calculate vegetation cover 

Removed due to copyright restriction 
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(Glenn et al. 2008).  Normalised Difference Vegetation index (NDVI) is the simplest and most 

popular index which depends mainly on the reflectance of red and NIR and is strong correlated 

with the chlorophyll content- including green biomass and leaf water content (Tucker 1979 

cited in Glenn, 2008: 2138). In Xu & Su’s review of vegetation indices, they noted over 100 

vegetation indices that focus on different spectral bands because of different vegetation 

properties under different circumstances that can not only improve the detection of green 

vegetation through adjustment of the reflectance from background soil, but also detect water 

stress or detect the amount of chlorophyll in the plant (Xue and Su 2017: 7).  

Spatial Resolution 

The next important resolution would be the spatial resolution of the imagery that allows us to 

see the shape and form of the image object. The general rule of thumb is a minimum of 3 

pixels in order to differentiate objects from other objects (Poon 2007: 45). With the advent of 

meter and sub-meter resolution satellite imagery, Poon argues that we can move beyond the 

traditional thematic mapping associated with Land Use Land Cover (LULC) and delve into 

“exploiting spatial and contextual attributes” with an eye towards metric applications (2007: 

27).  

Radiometric Resolution 

Another less important but relevant resolution is the radiometric resolution of the image. It 

describes the sensor’s ability to discriminate small differences in radiation within a pixel (Poon 

2007: 44) which allows the RS user to discern in detail two objects with similar but slightly 

different spectral reflectance due to its material composition for example. This can be 

advantageous when trying to quantify nuanced differences in material changes of the object  

3.2.2 Satellite remote sensing in the arid lands 

In the South Australian outback (also known as the SA Arid Lands in terms of regional land 

management), its arid environment contains some of the driest part in South Australia and the 

“largest percentage of intact ecosystems and natural biodiversity” (Department of Environment 
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and Natural Resources 2020). Given its vastness and relative inaccessibility, it proves a 

problem for land managers to efficiently deploy resources to help protect wildlife habitat and 

promote biodiversity over the arid expanse. Conservation efforts are often hampered by lack 

of knowledge, capacity constraints and lack of resources, key constraints faced among land 

managers managing large properties (Okin and Roberts 2004; del Río-Mena et al. 2020).  One 

way to overcome the vastness and remoteness of the outback is to use satellite imagery to 

monitor the vast landscape as it is a time- and cost- efficient method for monitoring change in 

the desert environment (Okin and Roberts 2004: 1).  

As mentioned before, the arid environment is a complex environment that brings with it its own 

unique challenges for satellite remote sensing. One prominent challenge is the dominance of 

background effects -due to soil being the dominant land surface in arid environment. Good for 

geological remote sensing with the absence of vegetation but not great for vegetation remote 

sensing with vegetation’s smaller contribution to the area-averaged reflectance in a pixel (Okin 

and Roberts 2004: 11).  

Some authors have noted the over-estimation of vegetation cover in in darker and bright soils 

while others have noted that the spectral reflectance for Band 2/4 for the Landsat Enhanced 

Thematic Mapper Plus (ETM+) does not increase by more than 5% even as the percent of 

vegetation cover increases from 0% to 100% (Okin and Roberts 2004: 12; Huete et al. 1985 

cited in Jafari 2007: 67).  

Vegetation in the arid environment also have different spectral response to their counterparts 

in a more humid environment. This can be seen in the difference in spectral response of 

Non-Photosynthetic Vegetation (NPV), the most common vegetation present in an arid 

environment compared with the spectral response of its Green Vegetation counterpart (GV) 

which is prevalent in humid environments in the NIR wavelength bandwidth circled in red in 

figure 7: 
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Figure 7- Comparison of spectra of vegetation from humid and arid environment (Okin and Roberts 2004: 12) 

 

Plants in the arid environments have different considerations from plants in the humid 

environment. They need to reduce the absorption of photosynthetically active radiation (PAR) 

(i.e., sunlight) because it is in abundance in the desert while at the same time limit the loss of 

water through evapo-transpiration thus the area of leaf size is a lot smaller than plants in the 

humid environment. The highly reflective spines also help to protect the photosynthetic part of 

the plant.   

Another factor of added complexity is that the reflectance can differ based on the state of the 

vegetation. Desert plants are dormant during most of the year and can appear senesced which 

is accompanied by a change in spectral reflectance as it turns duller than a plant that is 

flowering. Other challenges include: 

• Exposed and variable soil surfaces can contribute to within-scene variability (true for 

Witchelina Study Area where Chenopod Shrubs occur both on sandy clay soil as well 

as dark shale) 

Removed due to copyright restriction 
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• Open canopies contribute to multiple scattering and nonlinear mixing 

• Lack of red edge compared to humid vegetation 

(Okin and Roberts 2004: 16). 

Despite those unique challenges, plenty of researchers have tried to overcome these 

challenges by inventing new ways circumvent those issues.  

One of the earliest applications of remote sensing methods in the arid region was an attempt 

to map the distribution of distinct biomass- that of the arid shrub and semiarid grassland- in 

the southern New Mexico desert in the US using airborne digital video imagery, NDVI and 

spatial statistics (interpolation methods) that required the use of a satellite imagery with high 

enough spatial resolution- larger than that of the arid shrub- in order to map the former  (Phinn 

et al. 1996).  Another study looked into the degradation of arid zones by observing the 

conversion of arid grasses into woody shrubs that could be monitored by geostatistical and 

textural analysis of high-resolution satellite image (Okin and Gillette 2001). 

Apart from the use of multispectral satellite imagery, there is a small but growing subset of 

researchers who have employed the use of hyperspectral RS, whether on airborne, satellite, 

or in situ platforms. Hyperspectral methods use hyperspectral sensors which are able to 

magnify the standard spectral bands and magnify it to nanometer resolution, allowing the RS 

user to use spectroscopy to examine fine spectral differences between different objects and 

objects with different properties.  

Studies using hyperspectral RS have looked at vegetation in complex scenes in areas like 

western Kalahari, Botswana (Meyer & Okin 2015) ; southern Arid Lands of South Australia 

(Jafari, 2007); east of Terowie, South Australia (Lewis, Jooste & de Gasparis, 2001); Sonoran 

desert, USA- Invasive Grass Detection (Olsson, van Leeuwen, and Marsh 2011);  south-

eastern Arizona, USA (Sankey et al. 2018), APY Lands North Western SA (Marshall, Lewis, 

and Ostendorf 2014),  just to name a few.  
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Often studies using hyperspectral RS to map vegetation employ spectral mixture analysis 

(SMA) or multiple endmember spectral mixture analysis (MESMA) to determine the ground 

cover components. These methods assume that overall surface reflectance can be modeled 

as “a combination of the spectra of separable ground components”, and that the total sum of 

the various spectra equals the actual fractional cover on site (Ray & Murray 1996; Settle & 

Drake 1993 cited in Meyer and Okin 2015, pp. 123).  

Some have sought to take advantage of the increasingly availability of HR satellite imagery to 

use methods that harness the potential of increased spatial resolution.   (Malatesta et al. 2013) 

for example, used HR Rapid-eye 5m resolution satellite images and image classification 

(Maximum Likelihood classification) to map vegetation in Yemen through the use of spectral 

signatures from different plant species to augment the classification  

Cao. et al. (2018) used HR satellite image to estimate the age of encroaching shrubs in the 

arid/semi-arid grasslands.  

Other applications include but are not limited to evaluating the productivity of rangeland, 

mapping invasive species, monitoring vegetation and soil moisture, and monitoring and 

mapping fire extent (Al-Bukhari, Hallett, and Brewer 2018: 6-9). 

The critical requirement among all these studies were the spatial resolution or effective pixel 

size of the satellite imagery, one of the three resolutions of satellite imagery sources discussed 

in the previous section. 

Although regional rangeland assessments typically use coarse spatial imagery like Moderate 

Resolution Imaging Spectroradiometer (MODIS) (>250m spatial resolution); Advanced Very-

High Resolution Radiometer (AVHRR)  (1km2 spatial resolution); or Landsat (30m spatial 

resolution), these imagery sources have their uses in providing broad level characterization 

but when looking at specific regions, could be associated with lower accuracy of the extracted 

quantitative measurements (Al-Bukhari, Hallett, and Brewer 2018: 6) 
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For monitoring and characterization of landscapes at a more detailed level, the spatial 

resolution needs to be smaller than the “scale of variability” of one of the dominant landscape 

types (Okin and Roberts 2004: 2). Introducing High resolution satellite imagery like WorldView 

(sub-meter resolution), Quickbird, and IKONOS for the detection of weeds and measurement 

of sagebrush-steppe for example yielded high overall accuracy and better detection in 

variation of shrub cover which demonstrates the material benefits of high-resolution imagery 

(Sant et al. 2014 cited in (Al-Bukhari, Hallett, and Brewer 2018: 6) 

Similarly, the use of a high-resolution Pleiades imagery (pansharpened 0.5m) in this study 

demonstrates the benefits of HR satellite imagery for mapping our object of interest.  

3.2.3 Using other remote sensing dataset to augment Satellite Imagery 

As mentioned earlier, in addition to space-borne satellite imagery, the availability of 

alternatives of other RS data sources (including aerial imagery or aerial LiDAR) means that 

the former can be augmented with observations from other RS platforms 

Studies that have combined more than one type of RS dataset base their choice mainly on 

their object of interest, as well as the environment in which their object of interest is situated 

in.  

Studies that have combined a coarser-resolution satellite imagery with a higher-resolution 

imagery (most commonly airborne imagery) include Olsson, Van Leeuwen & March (2011); 

Alexandridis et al. (2017), Marshall, Lewis & Ostendorf (2014), Sandino et al. (2018) for the 

purpose of detecting weed infestation, with Sandino et al. (2018) also employing ML for that 

purpose.  

The most common addition is aerial imagery from a UAV which helps to augment the spatial 

resolution (or ground sampling distance) up to 0.01m to act as ground-truth or to monitor 

specific areas of interest within the extent of the satellite imagery. Examples of these studies 

include: 
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1. Comparison of machine learning classification methods to classify desert vegetation, 

as Al-Ali et al. has done so in the Kuwaiti desert (Al-Ali et al. 2020). 

2. for the purpose of classifying estuarine environments using ML (Gray et al. 2018) 

3. Drone imagery segmentation using machine and deep learning for mapping bog 

vegetation communities*** (Bhatnagar, Gill, and Ghosh 2020) 

4. UAV multispectral imagery w sat imagery for monitoring forest health (Dash, Pearse, 

and Watt 2018) 

5. Detailed landscape analysis by UAV for post-mining sites in Indonesia compared to 

satellite imagery (Iizuka et al. 2018) 

6. UAV and ML to detect invasive buffel grass in cape range national park WA (Sandino 

et al. 2018) 

Before a study-area wide analysis of RS imagery can take place, it often needs to be classified 

in order to quantify the spatial relations of the various objects present in the imagery. Imagery 

that is not classified will not yield much information and insights for the RS user. 

3.3 Image Classification Approaches 

Image classification is a mainstay of remote-sensing research projects and studies because 

the RS user needs to know what are the real-life objects in the data representation- the raster 

image composed of millions of pixels- to quantify its corresponding characteristics and ascribe 

changes (if any) over space-time or at a single point in time. 

 The process of classification however may be difficult due to the inherent complexity of the 

landscape in the study area or process-related challenges arising due to the selection of the 

satellite image (e.g., unsuitable satellite imagery with regards to spectral, radiometric, spatial 

or temporal resolutions), selection of classification method, or selection of training samples, 

(Lu and Weng 2007) 

The classification of certain scenes for example, is much more complex in practice.  In 

Australia, the “Outback” in colloquial term, make up a major part of the Australian continent, 
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states, and territories notwithstanding. Its arid environment generally comprised of low open 

woodlands and shrublands with a heterogeneity due its low vegetation cover; spectral 

similarity between non-photosynthetic vegetation (the majority of vegetation in the desert) and 

bare soil, shadowing and multiple scattering which proves a challenge for analysts of satellite 

images to discern the components and objects in the scene (Qi et al. 1994; Huete et al. 2002). 

Arid vegetation also lacks a distinct red-edge compared to its humid counterpart which adds 

to another challenge in detecting vegetation in the arid environment. 

Going beyond mapping vegetation and non-vegetation into mapping specific species of 

vegetation is even more challenging without additional augmentation methods to distinguish 

between various species of vegetation in an environment dominated by brown vegetation and 

bare soil. The complexities however, have not deterred remote sensing analysts in trying to 

overcome the challenges listed above, and in that process have spawned a gamut of methods 

in response to the aforementioned challenges.  

Lu and Weng (2007: 830) have summarised a taxonomy of classification methods based on 

various categories including supervised vs unsupervised; parametric vs non-parametric; per-

pixel vs sub-pixel; object-oriented vs per-field; hard vs soft (fuzzy) classification; spectral vs 

contextual as well as the various algorithms that accompany the classification methods. All-

in-all, there were over 50 kinds of classification methods with various permutations due to 

the open plug-and-play approach for image classification processing. 

This literature review limits discussion to the four types of classification methods used for the 

dataset. 

3.3.1 Pixel-based Methods 

Unsupervised Pixel-based Classification  

Unsupervised Pixel-based classification methods do not involve contextual knowledge 

provided by the RS analyst, nor derive any contextual knowledge from the imagery itself 

except for the statistical distribution of the spectral characteristics of the pixels (Lu and Weng 
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2007: 830). It is a “pure” classification process of assigning each pixel into classes. Because 

it is unsupervised, “clustering-based” algorithms stratify the pixels into various classes based 

on statistical information of the digital number (pixel value). Thus, the higher the radiometric 

resolution and wider number of spectral bands the better the classification result will be. Once 

the values are classified into ‘bins’, the RS analyst may merge the classes and apply the class 

labels to the bins. 

Although it normally functions as a single-pixel classifier, take for instance, ESRI’s 

Unsupervised Pixel-based Classification tool (ESRI Inc. 2020), there are sub-pixel tools 

available in the commercial market too1, especially for moderate-resolution satellite imagery 

with pixels that have a high proportion of mixed pixels. As opposed to a “pure” pixel which 

represents only one spectrally homogenous object, a “mixed” pixel represents a mixture of 

objects that is mixed into one pixel. The former is relatively easy to classify by a machine by 

simply matching its profile with its spectral signature while the latter requires more complex 

techniques like fuzzy classification and spectral mixture analysis (SMA) to determine its 

components (Li et al. 2014: 390). 

SMA is the most common (as well as effective) pre-classification analysis step for mixed pixels 

classification (Lu and Weng 2007: 837). SMA works with multispectral imagery because the 

various bands (3 to 10 bands), Red, Green, Blue, Near Infrared (NIR), Short-waved Infrared 

(SWIR1 &2), Thermal Infrared (TIRS1 &2) will be able to better reflect the different reflectance 

from different materials and discriminate different vegetation down to species level and its 

health.  

Some studies that rely on SMA to classify moderate-resolution satellite imagery include: 

1. Fractional Cover in Western Kalahari-Savanna environment, using SMA on MODIS to 

retrieve PV, NPV, and Soil validating with vegetation transects (Meyer and Okin 2015) 

 
1 ERDAS Imagine, a commercial RS software has a subpixel classifier 
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2. Tree cover in semi-arid woodlands (pinyon juniper)- comparison of vegetation indices 

and SMA for detecting tree cover using Landsat TM and 1m NAIP for validation 

(Yang, Weisberg, and Bristow 2012) 

3. Monitoring of dryland woody plant dynamics with the use of vegetation indices or 

spectral mixing analysis to account for the “fine-scale” heterogeneity of vegetation 

and soil in arid landscapes (Yang et al. 2012, pp. 63) 

Although with relatively good accuracy rates (Fisk, Clarke, and Lewis 2019), it requires a 

specialized hyperspectral sensor for the remote sensing equipment (e.g., satellite or airborne 

aircraft) which can be costly or not easily accessible.  

Supervised Pixel-based classification  

Supervised pixel-based classification’s main differentiating factor from the unsupervised 

method is its use of user-input spectral signatures to collect spectral signature for each class 

from the input raster (Lu and Weng 2007: 830). Like unsupervised pixel-based classification, 

neighbouring pixels would not be taken into consideration, but signatures generated from 

training samples are used to train the classifier. Maximum Likelihood classifiers for example, 

are used in ESRI’s supervised classification tool. Because it is a parametric classifier, it 

assumes a normal distribution of the pixel values and distributes them into the classes based 

on the statistical distribution. This means that the quantity of samples collected need to be 

similar in order to avoid introducing selection bias into the classifier. It is also important to 

collect adequate training samples to avoid the “Hughes effect” which describes a drop in 

performance of the classifier when there are not enough training samples relative to the 

number of features used in the classifier (Richards 2013: 386). In some cases, the satellite 

imagery needs to be simplified (e.g. reduction of spectral bands, reduction of radiometric 

depth). 
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3.3.2 The move towards Object-based Methods  

Given that hyperspectral tools might not be available due to its cost, and pixel-based analysis 

could only produce pixel-based outputs and general cover, there was a shift towards object-

based image analysis (OBIA) through “delineating and analysing image-objects rather than 

individual pixels” (Castilla and Hay 2008; Blaschke 2010 cited in (Chen et al. 2018: 159). This 

shift came in tandem with the increased availability of high-resolution satellite imagery as more 

satellites were launched in the early 2000s. (Chen et al. 2018: 160)).  

The shift from pixel-based to image-based represents a leap in capabilities because it 

produces meaning beyond a “technically defined unit”, the pixel by situating an object of 

interest in the image and drawing from it, inferences, and characterisation of a spatial nature 

(Blaschke, Lang, and Hay 2008: 13). By drawing deeper contextual information, we can create 

better quality maps through finer-resolution object classification beyond the pixels. These 

better-quality maps, with enough geo-accuracy, can be used for a multitude of purposes 

including but not limited to resource management; aiding decision-making in conservation 

efforts; carbon accounting; disaster management; biodiversity monitoring; and detecting 

change (including urban changes) all of which requires the identification of image-object and 

its shape boundaries and measuring any changes to its boundaries or characteristics within 

those boundaries.  

This allows OBIA to imbue human-provided contextual knowledge and fuse with a machine’s 

computational power which is more powerful for analysis than assigning a class (or multiple 

classes) to a pixel representation which only clarifies what the object is behind the pixel unit.  

Object-oriented classifiers- Image Segmentation using Support Vector Machine (SVM) 

A popular method of object-oriented classification is image segmentation which is available in 

ESRI’s ArcGIS Pro as well as Trimble’s eCognition software (ESRI Inc. 2020; Trimble Inc. 

2021) . The starting point is pixel-based as it groups pixels it thinks as belonging to an object 
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in order to form a feature-object2. Chen et al. (2018). While a parametric classifier (Maximum 

Likelihood) was used in the supervised pixel-based classification method in ArcGIS Pro (ESRI 

2020b. Segmentation was done using a non-parametric classifier (SVM)r which allows its 

parameters to remain constant regardless of the number of samples used in training and could 

produce better predictions. As statistical information of the image is not used to classify the 

pixels into various segments, other data apart from spectral data can be used to segment the 

various pixels into meaningful segments.  The segmentation process groups pixels into 

shapes according to an algorithm that is defined by the user, most commonly its “texture, 

colour, shape, size and grey levels” (Lucchese and Mitray 2001 cited in (Hossain and Chen 

2019: 116) 

There are various approaches to carry out segmentation, namely edge-based, region-based, 

hybrid methods, and semantic methods. Edge-based methods detects the contours of an 

object by a sudden change in pixel properties; region-based methods start from the centre of 

an object and starts incorporating similar type pixels to merge until it decides that there are no 

similar adjoining pixels in the neighbourhood; hybrid method which uses the former to detect 

edges and then the latter to merge the objects; and semantic methods which employ Machine 

Learning algorithms that approximate from the large number of training datasets that is 

labelled the object of interest by humans (Hossain and Chen 2019: 122). 

The segmented image is then used to train the classifier (using one of the following algorithms: 

Maximum Likelihood, Support Vector Machine or Random Trees) using features like average 

chromaticity colour, count of pixels, compactness, or rectangularity, producing a Classifier 

Definition File (.ecd file) with its final output, classified features as an overlay over the raster 

image (ESRI 2021d). 

Hossain and Chen (2019) noted a few key challenges associated with the object-based 

segmentation methods. While pixels within an individual object display high spectral 

 
2 Also referred to as “geo-object” in some other papers (Wu et al. 2021) 
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autocorrelation, objects have an intrinsic scale, hierarchical structure, and are composed of 

structurally associated parts, properties which need to be considered during segmentation. 

When many trees make up a forest, the forest can be contextualised better at a coarser 

resolution rather than at a finer resolution where individual trees can be discerned. On the 

other hand, if the object is an individual tree, then it is better to segment that object at a finer 

resolution where individual trees can be discerned.  

While the Segmentation method in ArcGIS Pro 2.8 uses a linear classifier like Support Vector 

Machine (SVM) to linearly separate distinct classes using support vectors and separation 

hyperplane with lesser samples needed compared to Maximum Likelihood Classifiers or Deep 

Learning classifiers. Training attributes could include scale, shape, compactness, or 

smoothness for the segmenting process3 (Huang et al. 2020: 3463). 

Because of its wide utility and standing as one of the more important classification methods, 

there are a few modelling frameworks introduced for varying classification purposes. The 

standard segmentation framework consists of: segmentation- feature extraction- classification 

(in that particular order). There are however, other frameworks that exist including multi-step 

classification, where classification results from a segmentation at a coarser scale is used to 

refine segmentation process at a finer scale; as well as preliminary classification by using the 

characteristics of an adjacent neighbour to the studied object (Eckert et al. 2017; Guo, Zhou, 

and Zhu 2013 cited in (Chen et al. 2018: 170).  

In a study at a national park in Western Australia, Sandino et al. (2018) employed a 

straightforward standard segmentation framework (figure 8) to map invasive grass. The 

framework (see figure below) involves image acquisition, pre-processing of the image, image 

labelling (of the 6 classes), feeding these samples totalling 85,657 pixels into a XGBoost 

 
3 In ESRI’s Image Segmentation tool for training the SVM classifier, Converged Colours, Mean Digital 
Numbers, Standard Deviation, Pixel Count, Compactness and Rectangularity are some of the 
attributes used for training the classifier.  
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classifier (Decision Tree Model), and through the classifier, producing a segmented image 

with a detection rate over 95% for invasive grass.  

 

Figure 8- Extracted from 'UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in 

Remote Arid Lands’ (Sandino et al. 2018) 

3.3.3 The step towards multilayered classifiers- Deep Learning Convolutional Neural 

Networks 

Deep Learning has started trending again in recent years because of its varied applications to 

complex tasks but Convolutional Neural Network (CNN), in its earlier conception as Artificial 

Neural Network (ANN) has always demonstrated high potential for a powerful image 

classification algorithm classifier (Vaidya and Paunwala 2019: 55). CNN however, evolved in 

its capabilities with the availability of large quantity of datasets and better computing power 

from faster Graphics Processing Units (GPUs) (Vaidya and Paunwala 2019: 55). 

In Deep Learning, the feature extraction process is more complex with layers and layers of 

convolutional and pooling layers (as opposed to a single layer classifier in SVM) that learn 

from examples and solves the issues of identifying relevant features for image classification 

as a multi-parameter optimization problem (Kumar, Upadhyay, and Kumar 2020: 34). Vis-à-

vis SVM, Deep Learning requires more labelled image samples for training to find a well-fitting 

model for classifying the image. Because of its multilayer structure, DL frameworks like 

Removed due to copyright restriction 
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Convolutional Neural network, as its name suggests, works similarly to a human brain in 

image, language, and speech recognition tasks compared to traditional classifiers with shallow 

layers (Chen, Lin et al. 2014 cited in (Yue et al. 2015: 469) 

CNN Architectures 

 

Behind the design of the CNN is a complex set of code (or architectures) complete with 

mathematical algorithms that assists with the tasks at hand. Some examples of CNN 

architectures used for image classification tasks include LeNet-5, AlexNet, VGGNet, 

GoogleNet, ZFNet and ResNet (Vaidya and Paunwala 2019: 69). ResNet was introduced in 

2015 and had the least error rates in a comparison study of the listed architectures on an 

ImageNet dataset (Vaidya and Paunwala 2019: 69). It was revolutionary for its optimization in 

spite of its 152 layers by overcoming a potential over-fitting problem with learned layers from 

shallower models (Vaidya and Paunwala 2019: 67). 

For the classifier to work properly, the dimensionality of the dataset often needs to be reduced 

to avoid the “Hughes effect” mentioned earlier under pixel-based classification but is also a 

concern for machine-learning classifiers (Maxwell, Warner, and Fang 2018: 2802). This would 

be relevant for the Pleiades imagery used in this study as it is a 4-band multispectral image 

and subsequently reduced to 3-band for the purpose of classification, as most CNN classifiers 

only work with three dimensional datasets.  

To overcome the “Hughes effect” with regards to quantity of training samples, a pre-trained 

ResNet with 34 layers instead of the original 152 was used as the backbone model with 

transfer learning to ensure that a pre-trained CNN can be used on another set of data without 

the need to train the model from scratch. This overcomes the limitations of a smaller training 

dataset when data acquisition is limited or in the absence of big data (Hu et al. 2015: 14682) 
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Key Points 

 

From a summary of the literature on remote sensing, vegetation mapping in the arid 

environment, and classification methods, it is apparent that Sandino et al. (2018: 2)’s axiom 

that there is no one-size-fits-all approach largely rings true.  

There are however, important considerations for various steps of a classification process: 

1. Spectral and spatial characteristics of the object of interest to be analysed; 

2. Choice of primary imagery source (and secondary source if necessary to augment the 

first) determined by the requirements across the four types of resolutions; 

3. Pre-processing requirements for input into the classification software and its fidelity to 

its original format; 

4. Classification methods suitability to objective and object of interest; 

5. General performance of classifiers and their associated algorithms 

These considerations were referred to in the methodology used for this study. 
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4. METHODOLOGY 

For the mapping segment, four classification methods were employed: a) Unsupervised ISO 

Pixel-based classification; b) Supervised Pixel-based classification- Maximum Likelihood (ML);  

c) Object-based Image Classification using segmentation- SVM; and d) Object Classification 

using Deep Learning- Convolutional Neural Network on Pleiades 0.5m pansharpened satellite 

imagery using ArcGIS Pro (ESRI Inc. 2020) to map 2 types of distribution in which Chenopod 

Shrubs present itself and make a detailed analysis and comparison of the benefits and 

drawbacks of each method.  

Field work involved the collection of UAV imagery containing chenopod shrub communities 

(and other non-chenopod classes including ground and other vegetation classes) as training 

samples and validation and accuracy assessment. Field work was timed to be conducted 

during the winter months (where Pleiades imagery was captured a year earlier), which reduced 

the disparate effects of seasons on the variability of the landscape.   

4.1 Mapping vegetation and Classification Schema 

In this study, Chenopod Shrubs are the object of interest for their role as habitat for the TBGW 

and its links with population growth of the TBGW. As its habitat, the size of the plant and its 

density distribution are influential factors of its viability to support the proliferation of the TBGW.  

Dense chenopod communities are especially suited to hosting birdlife than individual shrubs 

alone. Its state, and whether it is green and flowering chenopod shrubs also matters as they 

are a better source of food than senesced shrubs, which are barren.  

Originally, four distinct patterns of distribution of chenopod shrubs were identified in the study 

area. They range from the smallest individual adult shrubs to two-three shrub-clusters to 

sparsely-distributed communities to dense chenopod communities. These distinct distributions 

can be discerned from the aerial photos taken by the UAV during field work over the study 

area. Original Classification Schema as documented in Table 1 below: 
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Table 1- Original Classification schema 

4 Classification Classes 

 Individual Adult shrub  

0.5m < Shrub width < 2m 

 

Chenopod Communities 

• 2 or more shrubs combined 

• densely packed or sparsely distributed 

Object Size & Spectral Variance 

Small → Large 

1. Individual 
Chenopod 
occurring on 
sandy build-up 
over a shale 
environment 
 

2. Chenopod 
Communities 
comprising 
3-4 shrubs  

3. Dense 
Chenopod 
Communities 
comprising 
over 100 
shrubs 
densely 
packed over 
large swaths 

4. Chenopod 
Patches 
(large 
swaths of 
patches of 
Chenopod 
shrubs 
widely 
dispersed) 

 

 

       

Sub-Class 1 Individual Chenopod Shrub    Sub-Class 2- 2-3 Shrub Community

        

Sub-Class 3-Dense Chenopod Communities   Sub-Class 4 Sparsely-distributed Chenopod 

Communities 
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Upon running preliminary segmentation with the above classification schema, it was noted 

that results were difficult to obtain for sub-class 1 and 2 due to the small number of pixels 

per segment. Individual shrubs, mostly measuring 0.3-1m in width could not be picked up by 

the segmentation tool because of the spatial resolution of the Pleiades imagery, with each 

pixel measuring 0.5m. This concurs with Poon (2007: 45) who commented that there needs 

to be a minimum of three pixels in order to make out the object from HR satellite imagery. 

Running the segmentation with lesser than 80 pixels per segment would also not be ideal as 

it would generate a salt and pepper effect that is associated with pixel-based classification 

that contributes to inaccuracies from the classification process (De Jong et al. 2001; Van de 

Voorde et al. 2004; Campagnolo and Cerdeira 2007; Gao and Mas 2008 cited in Weih and 

Riggan 2010: 1). 

Upon a reappraisal of the ecological value of individual shrubs and 2-3 shrub community vis-

à-vis dense and sparsely distributed (dispersed) chenopod communities it was decided that 

the former two sub-classes be replaced, leaving just the latter two sub-classes which 

represent higher propensity to support the TBGW as its habitat. The classification schema 

was subsequently modified to the following in table 2 and table 4 below: 
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Table 2- Final classification schema- chenopod classes 

Class 1-Dense Chenopod Communities 

    

 

Class 2 Sparsely-Distributed Chenopod 

Communities  

 

 

 

Original Sub-class 2, with communities consisting of 2-3 shrub classes was merged under 

dispersed chenopod community class 1.  

A grid method was used to calculate the average density per 50X50m grid = 2500m2 

/0.25km2(25 hectares) by sampling three random areas over the UAV sample sites to derive 

the average chenopod density per hectare: 
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Table 3- Definition of chenopod classes by density of chenopod shrubs 

(i) Dispersed Chenopod Communities Density Measurement= 7 
shrubs/hectare or 700 shrubs/ km2 

         
Fishnet 1- N= 164, Area 1E   Fishnet 2-  N=182 , Area 1F       Fishnet 3- N=178 , Area 1D 

(ii) Dense Chenopod Communities Density Measurement = 20 shrubs/ 
hectare or 2000 shrubs/ km2 

        

Fishnet 4- N= 334, Area 1C     Fishnet 5- N=576, Area 1A     Fishnet 6- N= 613 ,Area 1A 

 

The definition of sparse and dense chenopod communities are thus 7 shrubs per hectare and 

20 shrubs and above per hectare respectively. In comparing the accuracies of the various 

classification methods for dense and dispersed chenopod community classes, these 

definitions were used to gauge the performance of the classification methods.  

Other non-chenopod classes were also introduced in the classification schema to allow the 

machine to distinguish between chenopod shrubs and other photosynthetic plants like mallees 

and acacias as well as wide patches of bare soil, the former with its high NIR reflectance tends 

to be conflated with chenopod shrub communities and the latter which tends to drown out the 

reflectance of chenopod shrub communities especially for subclass (i). As a major vegetation 
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group classification class, they are the official NVIS classification schema, as MVG 22 (NVIS 

Technical Working Group 2017). 

Other non-chenopod classes: 

Table 4- Final Classification Schema- Non-chenopod classes 

Acacia Open Woodlands class (non-chenopod vegetation class) 

                            

Shale class (Ground) 
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Bright Sand/ Clay Class- circled in green and Dark Sand Class- circled in blue (Ground)  

 

 

4.2 Methodology Flow Chart 
 

 

Figure 9- Classification flow-chart 

 

4.3 Data Acquisition 

4.3.1 Obtaining Pleiades Imagery of study area 

Pleiades imagery was chosen for this study with primary consideration towards its high spatial 

resolution property. For this study which compares pixel-based and object-based classification 

methods, out of the four different resolutions mentioned earlier in the literature review, spatial 

resolution is of the utmost importance (followed by spectral, radiometric, and then temporal 

resolution), as it provides contextual information to the classifiers.   

Acquisition of satellite 
image for classification

• 18 UAV surveys over study area 
to acquire ground truth and 
visual aid for selecting training 
samples

Pre-processing of 
Satellite Imagery

• georeferencing

• pan-sharpening

• extracting of 3 bands 
out of 4 spectral bands

Specification of 
classification 
schema and 
collecting of 

training samples 
over Pleiades 

imagery

• digitising training 
polygons for each 
class

[for Deep Learning 
Method] Use 

polygons to export 
training samples 

as image chips for 
training DL model

[for Deep Learning 
Method] Train DL 

model using 
ResNet-34 and 

image chips  

Classify Pleiades 
Imagery using 
tools in ArcGIS 

Pro software
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 Pleiades imagery meets the requirements of the project and was thus chosen for the 

classification process for its costs and adequate specifications.  

Original Pleiades imagery over study area was purchased from Airbus using an academic 

license. A panchromatic (P) TIFF file and multispectral (MS) TIFF file was provided with the 

following specifications: 

Table 5- Processing level of Pleiades imagery ordered from Airbus 

Processing level Ortho 
-Corrected from acquisition and terrain off-nadir 
effects 
 
-Radiometric and Geometric adjustments 

Date of Acquisition 19 June 2020 

Time of Acquisition 01:01 GMT / 10:30AM  

Geodetic Datum WGS84 

Projection UTM 53S 

Radiometric Processing Reflectance 

Cloud Cover  0% 

 

Table 6- Pixel Values (Digital Numbers) Statistics of Pleiades Imagery 

 Min Max Mean Median Std Dev 

a) MS 
-Band 1 (B) 
-Band 2 (G) 
-Band 3 (R) 
-Band 4 
(NIR) 

0  
7506 
5579 
4139 
7857 

 
2306.334 
1593.579 
1107.880 
2656.453 

 
2387 
1636 
1134 
2772 

 
660.303 
439.157 
295.390 
740.866 

b) Pan-
Chromatic 

0 7949 2119.275 2186 619.380 

c) Pan-
sharpened 
image using 
GS method 

0 4228 
5855 
7994 
8191 

957.0868 
1377.122 
1993.07 
2294.66 

- 468.534 
684.321 
1009.159 
1149.65 

 

4.3.2 Pre-calibration of Pleiades Imagery 

Pansharpening  

A 2m Pan-sharpened image was obtained from the 12-bit 4 Bands MS resampled and 

pansharpened with the 0.5m panchromatic image. 
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Rationale for pan-sharpening: 

Nagendra (2001) recommended that pixel size of the satellite imagery be ¼ - 1/3 the size of 

the scene or vegetation being mapped. Meyer et al. (1996) were less prescriptive and opined 

that the ideal spatial resolution depends on the size of the object and needs to be fine enough 

to discern the outline of the object, allowing maximisation of between-object variance while 

coarse enough so that the within-object variance (components of the object) is minimised and 

cannot be distinguished (Meyera et al. 1996 cited in Nagendra 2001: 2379). By pan-

sharpening the Pleiades imagery from 2m to 0.5m, each individual adult chenopod shrub can 

be identified with chenopod communities even more identifiable within the context of 

neighbouring pixels.  

Original Pleiades multi-spectral satellite image with 2m resolution were fused with its 

panchromatic counterpart 0.5m to produce a pan-sharpened image with the resolution of the 

latter. Traditional methods of pan-sharpening although benefits the spatial resolution of the 

imagery, do “alter the spectral integrity” of the data, thus it is important to pick a suitable pan-

sharpening method (Laben and Brower 2000: 1; Jones et al. 2020). 

Gram-Schmidt pan-sharpening was used in ArcGIS Pro to pan-sharpened the image (ESRI 

Inc. 2020). Gram-Schmidt was chosen as it often preferred by RS practitioners as it can 

process MS imagery with more than 3 spectral bands, less computationally intensive than 

other pan-sharpening methods, while minimising spectral distortions compared to other 

methods (Zhou et al. 2008 cited in Jones et al. 2020: 4). 

Radiometric and spectral calibration for Object-based Image Classification- SVM and Object 

classification using deep learning 

As ArcGIS Pro’s Segmentation tool and DL tool only works on an 8-bit, 3-band raster image, 

Green (Band 2), Red (Band 3) and NIR (Band 4) bands were extracted in preparation for the 

segmentation-based classification process and the classification by deep learning process.  
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The blue band was left out as its spectral response for vegetation is often similar to that of 

the green band.  

After the image was pan-sharpened and resampled to a 3-band image, the pixel value range 

across the three bands were similar to each other thus, no statistical normalisation of the 

pixel values was required prior to classification by the software.  

4.3.3 18 UAV surveys over study area from 5th -7th August 2021 

18 UAV surveys were conducted over the 80km2 study area. The purpose of the UAV survey 

was to: 

(i) act as ground-truth for the satellite imagery; 

(ii) to form in-situ knowledge about the study area; 

(iii) guide the drawing of sample polygons over the Pleiades satellite imagery for the 

image classification process; 

(iv) provide accuracy assessments for the image classification methods  

Each survey area was flown at height of 120m over 260m X 524 m, with a Ground Sampling 

Distance of 0.03m. Photos were taken at 75% frontal overlaps and 60% side overlap as 

recommended by pix4D (pix4D 2021a). 

Camera: Hasselblad L1D-20c_10.3_5472x3648 

Survey Areas were chosen to reflect the diverse landforms where chenopods can be found 

in the study area (see figure 17). These are namely: 

a) Gilgai Plains – a depression in the soil surface with cracking exposed clay plains 

b) Gilgai Plains- a depression in the soil surface with stony shale plains  

c) Drainage lines and floodplains which host up to 3 vegetation communities including 

Woodland (taller gum trees and Mulga); Shrubland; and Grassland over mixed 

chenopods  

(Department for Environment and Heritage 2009: 16)  
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The 18 survey areas covered below covers 3.765 km2 or 5.4% of the total study area.  

Table 7- Details of each survey area 

Flight Surveys and Scene 
Description 

Date Way
point 

Aver
age 
GSD 
(cm) 

Area 
Cover
ed 
(km2 ) 

GCP 
Points 

4D- 
 
Shale and Bright Sandy 
background with dispersed 
chenopod communities 

5/08/21 87 (2 
disca
rded) 

2.76 0.200 4 

4C 
Sandy background with 
dispersed chenopod 
communities and acacia 
open woodlands 

5/08/21 89 2.9 0.212 Nil 

4B 
Shale and Bright Sandy 
background with dispersed 
chenopod communities and 
acacia open woodlands 

5/08/21 89 2.82 0.201 Nil 

5A 
Shale and Bright Sandy 
background with dispersed 
chenopod communities and 
acacia open woodlands 

5/08/21 88 2.81 0.209 Nil 

5D 
Dark Sand, Shale and 
Bright Sandy background 
with dispersed chenopo ies 
and dense chenopod 
communities  

5/08/21 88 2.88 0.215 Nil 

4E 
Dark Sand, Shale and 
Bright Sandy background 
with dispersed chenopod 
communities and dense 
chenopod communities 

6/08/21 80 3.01 0.220 2 

4F 
Dark Sand, Shale and 
Bright Sandy background 
with dispersed chenopod 
communities 

6/08/21 92 2.75 0.213 2 

4G 
Dark Sand, Shale and 
Bright Sandy background 
with dispersed chenopod 
communities 

6/08/21 78 2.82 0.186 2 

1E 
Dark Sand Shale and Bright 
Sandy background with 

6/08/21 86 2.89 0.214 2 
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dispersed chenopod 
communities 

1F 
Dark Sand, Bright Sandy 
background with dispersed 
chenopod communities and 
dense chenopod 
communities 

6/08/21 84 2.88 0.205 2 

1A 
Dark Sand, Bright Sandy 
background with dispersed 
chenopod communities and 
dense chenopod 
communities 

6/08/21 88 2.99 0.224 2 

1D 
Dark Sand, Bright Sandy 
background chenopod 
communities and dense 
chenopod with dispersed 
communities and acacia 
open woodlands 

6/08/21 89 2.99 0.224 2 

1B. 
Dark Sand, Bright Sandy 
Background, and Dense 
Chenopod communities 

7/08/21 88 2.88 0.204 2 

1C 
Dispersed and Dense 
chenopod communities 

7/08/21 90 2.89 0.208 2 

2A 
Dispersed and Dense 
chenopod communities with 
Acacia open woodlands 

7/08/21 88 2.92 0.218 2 

2D 
Dispersed and Dense 
chenopod communities with 
woodlands Acacia open 

7/08/21 88 2.67 0.185 2 

2B 
Dispersed and Dense 
chenopod communities with 
Acacia open woodlands 

7/08/21 88 2.94 0.213 2 

2C 
Dispersed and Dense 
chenopod communities with 
Acacia open woodlands 

7/08/21 88 2.89 0.214 2 

 

4.3.4 Processing Ortho-imagery in Pix4D 

Processing options- Full Image Scale, using Geometrically Verified matching. The latter option 

helps to exclude image pair matches that are inconsistent. This helps in matching images that 

includes objects with similar features (e.g. crops, fences) which are prevalent in the areas to 
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be surveyed (pix4D 2021b). Images were pseudo-georeferenced with two GCPs for 2D 

orientation and scale.   

Step 1: Initial Processing 

Initial processing was done automatically by Pix4D software through “bundle block adjustment” 

which refers to the “bundle of light” analysed in each image translated from 2D to 3D projection 

using algorithms and collinearity equations (of image coordinates and altitude) from Pix4D to 

achieve true orthorectification (Burnham 2019: 8).    

 

Figure 10- Initial Processing in Pix4D 

Step 2: Point Cloud and Mesh 

 

Figure 11- Point Cloud densification in Pix4D 

 

Step 3: DSM, Orthomosaic and Index 



43 
 

 

Figure 12- DSM Processing Options in Pix4D. Note GSD is slightly different for each orthomosaic.  

 

Figure 13- UAV surveys carried out at study area from 5th -7th August 
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Figure 14- Area 4d 

 

Figure 15-Area 2 (a,b,c,d) 

 

Figure 16- Area 1 (a,b,c,d) 

From the UAV surveys flown, it can be observed that chenopod shrubs present themselves 

on 3 types of background, namely Bright Sand/Clay, Shale, and Dark Sand as seen in figure 

17: 
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Varied background where chenopod 

communities present themselves 

 Bright Sand/Clay 

 Shale 

       Dark Sand  

         

Figure 17-varied background where chenopod shrubs are present 

 

4.4 Image Classification Tools 

Image classification tools from the ArcGIS Pro software was processed on the pre-calibrated 

Pleiades Imagery that was clipped to the extent of the study area. 

Polygon samples both for training and for a reference dataset for accuracy measurement were 

digitised manually, visually guided by the ortho-imagery collected from the UAV and used in 

the last three classification methods.   

ISO vs Maximum Likelihood vs SVM vs CNN (resnet-34 ) 

The four classification methods used four dissimilar algorithms which did the heavy lifting of 

the image classification work in either assigning each pixel to a class, grouping similar pixels 

to form objects, or identifying relevant features in an image which helps to classify image tiles 

across the entire study area.  

The unsupervised Pixel-based tool uses an ISO classifier with k-means algorithm to partition 

the spectral image into spectral classes based on the overall statistics of the image (Lu and 

Weng 2007: 830). K-means clustering works on an iterative approach which links each 

observation with the nearest mean with the ‘centroid’ of each cluster becoming the new mean 

until a convergence is attained (ESRI 2021a).  

The supervised pixel-based tool was processed using the Maximum Likelihood (ML) classifier 

which is based on Bayes theorem- it assumes a normal distribution for all samples in a class 
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and assign a class to each sample based on the highest probability. To avoid the “Hughes 

effect,” at least 100 samples were collected for each class, with a total of 837 samples taken 

for the 5 classes. (ESRI 2021b) 

The object-based image classification tool was based on segmentation using SVM which 

groups similar pixels into various segments using a region-based approach4. It also requires 

lesser and less equally distributed samples compared to the Maximum Likelihood classifier 

and does not need the samples to be normally distributed.  (ESRI 2021c) 

The object classification using Deep Learning (DL) is based on a Convolutional Neural 

Network (CNN) which identify and rank features that are relevant to a class for image 

classification. It is pre-optimised with the ResNet architecture with 34 layers instead of the 

original 152 for training the DL model. ResNet is different from traditional CNN because it uses 

the residuals from each layer with reference to the layer inputs which helps to optimise the 

layers and gain higher accuracy (He et al. 2016: 770).  

The tool was run twice, first using a larger image chip size and then a smaller image chip size. 

Only the accuracy results from the latter was retained for discussion as the performance for 

both training models were very similar and the latter will be able to present a classified result 

that is twice the resolution of the first attempt.  

 

  

 
4 As mentioned in section 3.3.2, there are a few approaches to segmentation. A region-based 
approach starts from the centre of the object and incorporates similar-type pixels until it decides there 
are no more similar adjoining pixels in the neighbourhood. 
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4.4.1 Unsupervised ISO Pixel-based image classification 

Unsupervised Classification was run on ArcGIS Pro (Esri Inc. 2020) with performs an 

unsupervised classification using ISO Cluster algorithm which groups the raster cells based 

on its spectral characteristics. A classification schema as delineated in section 4.1 was used 

to provide classes to label the separated spectral classes into semantically meaningful classes.  

It has the least number of steps among all the methods because the software does the 

grouping of the pixels with the user only applying the class label to each group to form distinct 

classes.  

4.4.2 Supervised Pixel-based image classification- Maximum Likelihood 

The supervised version of the pixel-based tool also involves the use of the classification 

schema in addition to the use of spectral signatures collected from each class to train the 

Maximum Likelihood classifier.  

The following samples were digitised and used to train the classifier: 

Table 8- Samples for Supervised Pixel-Based Image Classification 

Class # Samples Pixels (%) 

Dispersed Chenopod 
Communities 

193 6.46 

Dense Chenopod 
Communities 

128 3.46 

Acacia Open Woodlands 77 0.73 

Bright Sand/Clay 121 68.47 

Dark Sand 106 5.81 

Shale Ground 138 15.07 

Total  763  

 

 

 

4.4.3 Object-based Image Classification using Support Vector Machine (SVM) 

 

4.4.3.1 Segmentation Process 
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Figure 18- Object-oriented feature extraction workflow, extracted from (ESRI 2021) 

The purpose of segmentation is to extract homogenous objects for vegetation mapping (Wu 

et al. 2021: 5). The segment mean-shift function groups similar adjacent pixels (controlled by 

spatial and spectral parameters decided by the user) into a contiguous segment. In ArcGIS 

Pro, it works only on 8-bits rasters (satellite image) with 1 or 3 bands. Before segmentation, 

the raster was pre-processed as in Section 4.3.2. 

Image segmentation was carried out using the following parameters: Spectral Detail- 16.46; 

Spatial Detail- 8; Minimum Segment Size in Pixels- 80; Scale- 1: 1939 and mean-shift 

segmentation which group similar pixels (based firstly on spectral and then on spatial detail 

as determined in the parameters) with a minimum segment size of 80 pixels that could be 4.5 

m wide segments that are suitable for classifying both dense and sparse chenopod shrub 

communities.  

4.4.3.2 Managing Training Samples 

The same training samples used for supervised pixel-base classification were used for this 

method:   

Table 9- Samples for Segmentation using SVM 

Class # Samples Pixels (%) 

Dispersed Chenopod 
Communities 

193 6.46 

Dense Chenopod 
Communities 

128 3.46 

Acacia Open Woodlands 77 0.73 

Bright Sand/Clay 121 68.47 

Dark Sand 106 5.81 

Shale Ground 138 15.07 

Total  763  

Removed due to copyright restriction 
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A spectral profile was also generated for each class, looking at the mean reflectance value to 

see the difference in spectral response across the four bands (red, green, blue, and NIR) 

which also helps to inform the calibration of the spectral parameters of the segmentation tool. 

If spectral responses are similar between classes of interest, parameter for spectral details 

should be higher to better distinguish the two classes. In this case, as both dense and sparse 

chenopod classes had similar responses, the spectral parameter in the tool was kept at 16.46 

(out of a maximum of 20).  

 

Figure 19-Spectral Profile of classes 

The results of the segmentation are in section 5.3. 

 

4.4.4 Object Classification using Deep Learning- Convolutional Neural Network (CNN) 

 

4.3.4.1 Label Objects for Deep Learning 

• Labelling objects for deep learning and exporting training samples 
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• Importing Top-level Schema informed by the NVIS Classification Scheme, followed 

by sub-groups pertains to the requirements of the research objective and the dataset  

• Ensure minimum of 100 training samples per class 

The first step for the classification processing using DL is the labelling of objects for training 

the model. It is recommended that the optimal training size for Deep Learning be 20% of the 

study area (69.34km2) which means 13.87 km2 of samples should be collected. However, 

because of the sampling area was limited to the area covered by the UAV, a minimum of 

100 samples (totalling 837 samples, amounting to 0.52 km2) were taken for each class. With 

a preconfigured training architecture and transfer learning however, the issue of the training 

size is ameliorated.  

The previously segmented image helped in the selection of samples with segmented 

polygons and additional polygons digitised to help in the export of training samples for 

training the DL model  

 
Figure 20- Distribution of training samples across study area 

 



51 
 

 

Table 10- Training Samples used for training the deep learning model 

Class # Samples Total Area (km2) 

Dispersed Chenopod 
Communities 

231 0.066990 

Dense Chenopod 
Communities 

130 0.028508 

Acacia Open Woodlands 105 0.099717 

Bright Sand/Clay 129 0.147642 

Shale Ground 132 0.130678 

Dark Sand 110 0.054131 

Total 837  
 

4.3.4.2 Prepare Training Chips and Train Deep Learning Model 

Table 11- Parameters of Training DL Model 

Classify Objects using 
Deep Learning 

Step 1: 
 
Export Training Data 

Step 2: 
 
Training Deep Learning 
Model 
 

Attempt 1 
 
-ImgClassificationChip1 
-ImgClassificationModel1 
 
Processing extent-  
4a/4b/4c/4d/4g/4g 
5a/5d 
1a/1b/1c/1d/1f 
2a/2d 
  

Tile Size (X, Y)- 128,128 Max Epoch 20 

Model Type Feature 
Classifier 

Batch Size 64 

Chip_size* 108 

Stride (X, Y)- 64,64 Backbone Model resnet-34 

Effective Tile Size (m)- 64X64m 

Number of Samples- 2617 Validation- 10% 

Attempt 2 
 
-ImgClassificationChip2 
-ImgClassificationModel2 
 
Processing extent-  
4a/4b/4c/4d/4g/4g 
5a/5d 
1a/1b/1c/1d/1f 
2a/2d 
 

Tile Size (X, Y) 64, 64 Max Epoch 20 

Stride (X, Y) 32,32 Model Type Feature 
Classifier 

Batch Size 64  

Chip_size* 54 

Effective Tile Size (m2)- 
32X32m 

Learning Rate 

Number of Samples- 2617 Backbone Model resnet-34 
Validation- 10% 

 

Epoch was set at 20 to avoid overfitting of the data. This means the dataset gets passed 

through the neural network 20 times at most, with no more than 20 learning cycles. The 
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number of epochs should be relative to the size of the training set to avoid over-fitting (Courtial 

et al. 2020: 10) Over-fitting the data means that the model has learned how to solve the training 

data well but is not generalised enough to solve other classification needs.  

Selecting the image tile size is one of the most important determinants of the model accuracy, 

as the image tile size gives specific context to the model. A smaller chip size magnifies minute 

details to the machine giving it as one of the options to include when selecting relevant features 

while a larger chip size can be used to obscure these minute details in favour of the larger 

context if the RS user deems the latter more relevant to the object of interest. Previous studies 

have shown that a calibration of the image chip size that preserves as much context as 

possible gives better results (Courtial et al. 2020: 14) 

 

 

 

 

        

Attempt 1 – 128 X128 pixels (effective tile size- 64 X 64m) 

 

        

Attempt 2- 64 X 64 pixels (effective tile size- 32 X 32m) 

Figure 21- Sample Training Chips for both attempts 
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Dispersed 
Chenopod 
Communities 
 

Dense 
Chenopod 
Communities 
 

Acacia Open 
Woodlands 
 

Bright 
Sand/Clay 
 

Shale 
Ground 
 

Dark Sand 

      

      

      

      

      

Figure 22- Sample Training Chips according to labels (classes) 

Training of the DL model is also done within ArcGIS Pro 2.8 (ESRI Inc 2020.) which makes 

the DL process more user-friendly. The training uses the image chips, 2617 chips for training 

the DL model with a preconfigured neural network with 34 layers (resnet-34) used as the 

backbone architecture. Transfer learning ensured that we did not have to train a neural 

network from scratch and that the 2617 training chips were sufficient for training a reliable 

model.  

The training works by first identifying lower level features (e.g. edge) important for 

distinguishing between object, and then builds on these lower level feature to find the 

combination that are the most relevant for the class (Vaidya and Paunwala 2019: 56).  

In the CNN, the input image goes through the convolution process that involves the 

multiplication of a set of weights with the input, iteratively selected during the training to 
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achieve desired output, to help select and identify these relevant features, back and forth 

through the CNN (Vaidya and Paunwala 2019: 58).  

4.3.4.3 Classify Objects using Deep Learning Tool 

 

Due to software limitations, the tool could only run at smaller extents each time, instead of 

the entire study area.  The Classify Objects using DL Tool was run 10 times over areas 

surveyed during the field work from 5th -7th August. The results of the classified area are in 

section 5.4.2. 

4.4.5 Measuring Accuracy of the results from the four methods 
 

There are a few approaches to measuring accuracy in RS classification and (Richards et al. 

2013: 396) noted four main ones: (i) Testing Set (or Accuracy Assessment Points); (ii) Error 

Matrix or Confusion Matrix; (iii) Kappa Coefficient; (iv) cross-validation accuracy assessment.  

The first three accuracy assessment methods were used on all four classification methods 

while the last one was already in-built into the DL training model software tool. The cross-

validation accuracy assessment involves excluding a subset of the training samples for 

validation purposes after the classification is done. In DL, 10% of the training samples were 

kept as validation samples to assess the model performance (or precision) and used to halt 

training once an equilibrium has been reached for the loss value (which refers to the predicted 

number of errors for a DL training model).  

Classification accuracies are commonly tabulated in the confusion matrix which provides the 

user’s accuracy and producer’s accuracy that can be used to determine the overall accuracy. 

In the software used for this study, the accuracy assessment tool is in-built in 2 out of the 4 

classification tools used for this study- Supervised Pixel-based classification and Object-based 

Image Classification using segmentation. 500 accuracy assessment points were generated, 

randomly distributed across the classified area, and stratified (proportionate to the size of each 

class). Maxwell, Warner & Guillen (2021:3) noted that sampling could also be done 



55 
 

systematically, and with different sampling units (e.g. pixels, polygons). Point sampling was 

chosen because of the different sized outputs from the different classification methods.  It was 

measured against the reference dataset comprised of 213 ground truth samples drawn 

separately from the training samples: 

 

Figure 23-Sample of accuracy reference polygons Scale 1:6613 

 

Table 12- Accuracy Samples for reference dataset 

Class # Samples 

Dispersed Chenopod 
Communities 

60 

Dense Chenopod 
Communities 

64 

Acacia Open Woodlands 15 

Bright Sand/Clay 59 

Shale Ground 15 

Dark Sand 10 

 

A confusion matrix was then computed, together with the metrics used to assess accuracy of 

the classified result. The confusion matrix lists down in a table format, the classes that were 

correctly classified and misclassified as other classes. To see the probability that a labelled 

class is accurate, the user’s accuracy is used; to gauge the performance of the classifier for a 
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particular class, the producer’s accuracy is used. The kappa coefficient is an indicator of 

overall accuracy that is adjusted for the probability that a positive prediction was made by 

chance.  Formulae of the various metrics of a confusion matrix is as follows: 

Measure Type of Measure Equation 

Overall 

Accuracy 

Integrated Summary  
Area of map correctly labelled 

Total area of map 

Kappa Integrated Summary  
(OA-expected agreement) 
(1-expected agreement) 

User’s Accuracy 

(UA) 

Class-based  
Area of map correctly labelled as class x 
Area of predicted map labelled class x 

Producer’s 

Accuracy (PA) 

Class-based  
Area of map correctly labelled as class x 
Area of reference map labelled class x 

Figure 24- Multiclass metrics derived from a confusion matric, adapted from (Maxwell, 
Warner & Guillen 2021: 6) 

 

With the rise of DL methodologies based on CNN in RS classification, (Maxwell, Warner, and 

Fang 2018: 3) noted that the approaches to measuring accuracy differs slightly from traditional 

RS accuracy measurements with terminologies like precision, recall, and confidence level. 

 In some ways, some of the terminologies (precision for user’s accuracy, recall for producer’s 

accuracy) are interchangeable because of the same way both set of metrics of calculated and 

for this reason, will be used to compare the performance across the four methods for the 

classification of the chenopod shrubs.  

The Classify objects using deep learning tool, however, only provides precision statistics of its 

training model, and not for the actual classification results. A manual accuracy assessment 

check was devised with the following steps: 
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Figure 25- Manual Accuracy Assessment Tool Check for DL Results 

A test set of random points, equalised, and stratified for each class was then generated with 

the same reference set used previously to produce a confusion matrix in Section 5.4.2. 

 

 

 
                   
Figure 26- Sample of random accuracy points 

 

 
 
Figure 27- 220 Accuracy points distributed across 
processed DL results 

 

    

  

1. Convert output from DL tool 
(classified polygon features) into 
raster dataset with same cell size 

2. Create 220 Accuracy 
Assessment Points with 

Classified column 
populated with raster 

classified values 

3. Update GroundTruth 
Column with Accuracy 

Reference Dataset

4. Run compute 
confusion matrix tool on 

Accuracy Assessment 
Points
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5. RESULTS 

 

The results for the four classification methods are presented below as classified images 

together with its accuracy results derived from the accuracy reference dataset that was 

collected with the same process as the training samples.  

All results are fully classified images of the study area except for the output from Object 

Classification using DL due to limitations of the software. However, the tool was run 10 times 

over the UAV survey areas, a smaller extent compared to the entire study area but 

nonetheless, provides some representative results of the performance of the DL method. Only 

the accuracy results from the second attempts of the DL method were retained for comparison 

with the other three methods. 
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5.1 Unsupervised Pixel-based Image Classification Results 

 

Figure 28- Classified Results from Unsupervised ISO Pixel-based Method 

A full map of the classified result is attached as Appendix E, under 9.4.1. 
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5.1.1 Accuracy Results 

Table 13- Confusion Matrix for Unsupervised Classification 

ClassValue C_4 C_3 C_4 C_13 C_12 C_2 Total U_Accuracy Kappa 

Shale 3 3 0 4 0 15 25 0.12 - 

Dispersed 
Chenopod 

0 67 1 0 2 9 79 0.85 - 

Bright 
Sand/Clay 

0 41 6 1 5 2 55 0.11 - 

Acacia 
Open 
Woodlands 

0 0 0 0 0 0 0 0 - 

Dark Sand 1 25 3 0 6 8 43 0.14 - 

Dense 
Chenopod 

0 0 0 15 0 3 18 0.17 - 

Total 4 136 10 20 13 37 220 0 - 

P_Accuracy 0.75 0.49 0.6 0 0.46 0.08 0 0.39 - 

Kappa 
 

0.17 

 

From table 13, the kappa coefficient is low at 0.17, indicating low overall accuracy for 

classified result. There are no results for Acacia Open Woodlands as the classification only 

yielded 5 classes instead of 6, as the classifier only managed to detect 5 classes.  
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5.2 Supervised Pixel Classification Results 

 

Figure 29-Classified Results from Supervised ML Pixel-based Method 

A full map of the classified result is attached as Appendix E, under 9.4.2. 
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5.2.1 Accuracy Results 

Table 14-Confusion Matrix for Supervised Pixel Classification 

ClassValue C_2 C_3 C_4 C_10 C_1
2 

C_13 Total U_Accu
racy 

Kappa 

Dense 
Chenopod 
Communitie
s 

305 3 5 2 0 270 585 0.52 - 

Dispersed 
Chenopod 
Communitie
s 

74 272 66 12 0 43 467 0.58 - 

Bright 
Sand/ Clay 

41 95 201 0 0 5 342 0.59 - 

Shale 32 47 0 451 0 8 538 0.84 - 

Dark Sand 41 83 228 35 0 0 387 0 - 

Acacia 
Open 
Woodlands 

7 0 0 0 0 174 181 0.96 - 

Total 500 500 500 500 0 500 2500 0 - 

P_Accuracy 0.61 0.54 0.40 0.90 0 0.35 0 0.56 - 

Kappa 0.47 

 

The kappa coefficient for supervised pixel classification is higher at 0.47 but still considered 

inaccurate for classification purposes.  
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5.3 Segmentation Results 

 

Figure 30- Classified Results from Object-based Segmentation-SVMA full map of the 

classified result is attached as Appendix E, under 9.4.3. 

 

5.3.1 Accuracy Results 

Table 15- Confusion Matrix for Object-based Classification-SVM 

ClassValue C_2 C_3 C_4 C_10 C_13 Total U_Accuracy Kappa 
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Dense 

Chenopod 

398 42 28 0 154 622 0.64 - 

Dispersed 

Chenopod 

23 335 150 86 13 607 0.55 - 

Bright 

Sand/Clay 

58 90 315 0 45 508 0.62 - 

Shale 14 0 0 414 0 428 0.97 - 

Acacia 

Open 

Woodlands 

3 33 0 0 288 324 0.89 - 

Total 500 500 500 500 500 2500 0 - 

P_Accuracy 0.8 0.67 0.63 0.83 0.58 0 0.7 - 

Kappa 0.63 

 

From the table above, it is noted that Dispersed Chenopod Class has the lowest User’s 

accuracy which signifies that a large number of objects were incorrectly classified. It was 

mostly misclassified as Bright Sand/Clay followed by Shale. Kappa coefficient stands at 0.63 

which represents good agreement with ground truth although it stands at the lower end of the 

strength of agreement.  
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5.4 Object Classification using Deep Learning 

5.4.1 Attempt 1- Classification Results using image_chip size 128 x 128 
The Classify Objects using Deep Learning tool was run 8 times at smaller extents because 

the software was not able to process the classification of the entire image. The areas 

processed were all survey areas flown by the UAV except for 1e. 

 

Figure 31- Classified Results from DL-  Attempt 1 
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Model Performance using image_chip size 128 x 128 

  

 

 

Figure 32-Loss Graph and Confusion Matrix (Attempt 1) 

In figure 32 above, we can see that the loss value, representing the errors made for each 

training set has decreased to a point of stability at the 600 batches mark. A small gap between 

the training curve and validation curve indicates a good fit and any further training will not yield 

a better accuracy but might lead to over-fitting of the model instead (Schlüter 2019).  

The confusion matrix shows the precision of the deep learning model (not the performance of 

the classification results itself) by showing the predictions vs the actual classes using the test 

set (10% of the training set aside during training of the model) as reference.  

It shows that for dense chenopod communities, it predicted 97 correctly and misclassified 2 

samples as dispersed chenopod communities. For dispersed chenopod communities, it 

predicted 67 correctly and misclassified 7 as other classes.  

Table 16-Confusion Matrix of Training Model of DL Attempt 1- The precision scores and recall scores 

Dense Chenopod Shrubs Dispersed Chenopod Shrubs 
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TP=97 TN= 162 TP=67 TN= 176 

FP= 0 FN= 2 FP= 11 FN= 7 

Precision= 97/ (97+0) =1 

Recall= 97/ (97+2) = 0.98 

Precision= 67/(67+11) = 0.86 

Recall= 67/ (67+7) = 0.71 

 

From table 16, the precision scores and recall scores for dense chenopod communities and 

dispersed chenopod communities are 1, 0.98 and 0.86, 0.71   respectively. 
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5.4.2 Attempt 2- Classification Results using image_chip size 64 x 64 
Image Classification was run 10 times at smaller extents because the software was not able 

to process the classification of the entire image. The areas processed were all survey areas 

flown by the UAV.  

 

Figure 33- Classified Results from DL- Attempt 2 

A full map of the classified result is attached as Appendix E, under 9.4.4. 
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Model Performance using image_chip size 64 x 64 

 

 

 

Figure 34- Loss Graph and Confusion Matrix (Attempt 2) 

In figure 34 above, we can see that the loss value, representing the errors made for each 

training set has decreased to a point of stability at the 600 batches mark. A small gap between 

the training curve and validation curve indicates a good fit and any further training will not yield 

a better accuracy but might lead to over-fitting of the model instead 

It shows that for dense chenopod communities, it predicted 98 correctly and misclassified 1 

sample as dispersed chenopod communities. For dispersed chenopod communities, it 

predicted 67 correctly and misclassified 7 as other classes.  

Table 17- Confusion Matrix of Training Model of DL Attempt 1- The precision scores and recall scores 

Dense Chenopod Shrubs Dispersed Chenopod Shrubs 

TP=98 TN= 160 TP=67 TN= 184 

FP= 2 FN= 1 FP=11 FN= 7 

Precision= 98/ (98+2) =0.98 Precision= 67/ (67+11) = 0.86 
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Recall= 98/ (98+1) = 0.99 Recall= 67/ (67+7) = 0.91 

 

The precision scores and recall scores for dense chenopod communities and dispersed 

chenopod communities, from the table above are 0.98, 0.99 and 0.86, 0.91 respectively. 

With the performance of both model comparable, further accuracy assessment on the results 

of the classification output from attempt 2 was done to gauge the actual performance of the 

classification results.  

7.4.1 Accuracy Results 

Table 18-Confusion Matrix for Classify Objects using DL (2nd attempt) 

ClassVal
ue 

Shal
e 

Dispers
ed 
Chenop
od 

Bright 
Sand/Cl
ay 

Acacia 
Open 
Woodlan
ds 

Dar
k 
San
d 

Dense 
Chenop
od 

Tot
al 

U_ 
Accura
cy 

Kapp
a 

Shale 1 1 1 0 3 1 7 0.14 - 

Disperse
d 
Chenopo
d 

1 112 3 1 5 2 124 0.90 - 

Bright 
Sand/Cla
y 

2 5 3 1 3 1 15 0.2 - 

Acacia 
Open 
Woodlan
ds 

0 0 0 16 0 0 16 1 - 

Dark 
Sand 

0 1 2 0 2 0 5 0.4 - 

Dense 
Chenopo
d 

0 17 1 2 0 33 53 0.62 - 

Total 4 136 10 20 13 37 220 0 - 

P_ 
Accuracy 

0.25 0.82 0.3 0.8 0.1
5 

0.89 0 0.76 - 

Kappa 0.6 

 

 

 

 

 

 



71 
 

5.5 Summary of Accuracy Metrics for the four methods for Chenopod Classes 
 

Table 19- Summary of selected accuracy metrics 

Methods/Accuracy 
Score 

User’s Accuracy 
-Dispersed 
Chenopod Class 
-Dense Chenopod 
Class 

Producer’s 
Accuracy 
-Dispersed Chenopod 
Class 
-Dense Chenopod 
Class 

Kappa 
coefficient 
For all 
classes 

Unsupervised ISO 
Pixel 

0.85 
0.17 
 

0.49 
0.08 

0.17 

Supervised Pixel 0.58 
0.52 
 

0.54 
0.61 

0.47 

 

Object-based 
Segmentation using 
SVM 

0.55 
0.64 

0.67 
0.80 

0.63 

Object-based 
Classification using 
64*64 chip size 

0.90 
0.62 

0.82 
0.89 

0.6 
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5.6 Visual Comparison of Results for two selected areas- Area 2a, 1f  
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Drainage lines with Acacia Open Woodlands 
dominant, followed by dark sand, dispersed 
chenopod communities, and bright sand.  
             Dispersed Chenopod Communities 
             Dense Chenopod Communities 
             Correctly Classified 
             Misclassified                                                              

A large part of Acacia Open Woodlands was 
misclassified as dense chenopod communities. 
There was an over classification of dense 
chenopod communities which could explain 
the two correctly classified dense chenopod 
areas in this scene   

Better classification for Acacia open 
woodlands but still over classification of dense 
chenopod communities. Better distinction of 
dark sand and dispersed chenopod 
communities.   

Supervised Pixel classification seems to have 
done better than Object-based segmentation, 
which in this scene seem to have 
overclassified dense chenopod communities, 
more so than the previous method.  

Object-based classification using DL classified 
the areas with dense and dispersed chenopod 
classes accurately 

Object-based classification using DL classified 
the areas with dense and dispersed chenopod 
classes accurately  

Figure 35- Area 2a- Scale 1:1,1849 In order of results: Orthoimage (ground truth), Unsupervised ISO Pixel 
Classification, Supervised Pixel Classification, Object-based Classification using SVM, Object-based 
classification using DL (128*128), Object-based classification using DL (64*64) 
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Dark Sand, Bright Sandy background with 
dispersed chenopod communities on the left and 
dense chenopod communities on the right 
              Dispersed Chenopod Communities 
              Dense Chenopod Communities 
             Correctly Classified 
             Misclassified 

Unsupervised Pixel Classification did relatively 
well for this scene, mapping dispersed 
chenopod on the left and dense chenopod on 
the right. Some really dense parts of chenopod 
communities were misclassified as shale 
however 

Supervised Pixel classification yielded similar 
results to the previous method with lesser 
misclassification of dense chenopod 
communities as shale. Some areas of dispersed 
chenopod communities on dark sand on the left 
however, seem to have been drowned out by 
the background 

Object-based segmentation did well for dense 
chenopod classes but not so well for dispersed 
chenopod classes, classifying them as forblands 
instead of disperse chenopod classes or dark 
sand  

Object-based classification using DL did not 
seem to classify well, dispersed chenopod 
classes on the left, which seem to have 
completely drowned out by the background 

2nd attempt of Object-based classification using 
DL seems to have done better by recognising 
areas of dispersed chenopod classes on the 
left interspersed with background classes 
(shale and bright sand).  

Figure 36- Area 1F- Scale 1:1,1849   In order of results: Orthoimagery (ground truth), Unsupervised ISO Pixel 
Classification, Supervised Pixel Classification, Object-based Classification using SVM, Object-based 

classification using DL (128*128), Object-based classification using DL (64*64) 
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6. DISCUSSION 

6.1 Overall Results  

The classification results from the four methods have shown varying results in terms of 

classified results and level of accuracy. Each method is theoretically, mathematically, and 

procedurally more sophisticated than the method preceding them, and this translates to the 

accuracy of the thematic map generated when looking at the increasing kappa coefficient 

figure from the unsupervised pixel-based classification to the object-based classification using 

DL (see Table 19). According to Table 19, the two most accurate methods are Object-based 

methods with a kappa coefficient of 0.63 and 0.6 for segmentation and DL respectively. This 

agrees with the literature, with some authors also noting higher overall accuracy from DL 

methods (Yue et al. 2015; Huang et al. 2018).  

Looking into the metric which measures the percentage of area correctly labelled as dispersed 

chenopod communities vs all areas labelled as dispersed chenopod communities, the user’s 

accuracy for dispersed chenopod communities is highest for object-based classification using 

DL (0.9), followed by unsupervised pixel classification (0.85), and then Supervised Pixel 

Classification (0.58).  

While the user’s accuracy for the dispersed chenopod shrub class is high for unsupervised 

pixel classification, the low kappa coefficient for the unsupervised method casts doubts on the 

accuracy of the figure. It may be highly skewed due to the over classification of areas as 

dispersed chenopod communities5. This is supported by the lower producer’s accuracy (0.49) 

for the same class which denotes the areas correctly labelled as dispersed chenopod 

communities vs the areas that are actual chenopod communities.  

Looking at the metric for dense chenopod class, the highest user’s accuracy comes from 

object-based classification using segmentation (0.64), followed by object-based classification 

using DL (0.62), and then supervised pixel classification (0.52). The high user’s accuracy 

 
5 Dispersed Chenopod Communities is the most classified area of the entire results  
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figure is supported by high producer’s accuracy figures (0.8 for segmentation and 0.89 for DL). 

This means that the percentage of correctly labelled areas vs all areas labelled dense 

chenopod is fairly high, while the percentage of areas that are correctly labelled as dense 

chenopod vs areas that are actually dense chenopod is even higher.  

Overall, it appears that object-based classification methods do better than pixel-based 

classification methods for classifying our object of interest under the two main classes, dense 

and dispersed chenopod communities with both object-based segmentation and DL having 

comparable accuracies with the latter slightly more accurate than the former. This agrees with 

the general literature which non-parametric classifiers (as in the object-based methods) have 

been proven to provide better classification results when classifying complex landscapes (Lu 

and Weng 2018: 836). Lu and Weng noted that parametric classifiers like ML (which was used 

in Supervised Pixel-based classification) does not tend to work well on complex landscapes 

and will generally produce “noisy” results (2018: 830). 

When taking other non-chenopod classes (2 ground classes and 1 other vegetation class) into 

consideration however, object-based segmentation has, on average, a higher user’s accuracy 

than the DL method. This shows that object-based segmentation, which starts from a pixel-

based approach may be more suitable for classifying ground classes which tend to have more 

‘pure’ pixels than other object classes.  

Further discussions on the results from each method is presented below.  

6.2 Limitations of Pixel-based Classification 

The results from running pixel-based classification of a small study area in WNR has shown 

that it does not work as well as the object-based methods for mapping our object of interest, 

chenopod shrub communities. This can be attributed to a few reasons: 

The size of the object of interest is larger than a pixel (0.5m) and has mixed spectral qualities 

due to a mix of bare ground and vegetation within the object itself. This is especially the case 

for dispersed chenopod class, where background effect can make up at least half of the object. 



77 
 

This likely led to the common misclassification between dispersed chenopod class and bright 

sand/clay class- as seen from table 13, and table 14 where 41 out of 55 bright sand/clay pixels 

were misclassified as dispersed chenopod, and 95 out of 342 pixels classified by supervised 

pixel classification were misclassified as dispersed chenopod.  

Pixel-based classification methods which assigns a class pixel by pixel only according to its 

spectral qualities would not be able to assign accurately a class with mixed spectral 

reflectance value to pixels with pure reflectance value (Fisher 1997, Cracknell 1998 cited in 

Lu and Weng 2007: 836). 

Supervised ML pixel classification, however, appears to produce better results compared to 

unsupervised ISO pixel classification. This can be seen from the consistent higher user’s and 

producer’s accuracies for both Dispersed and Dense chenopod classes. This could be due to 

the sufficient training samples (a total of 763 sample) provided to the software as a parametric 

classifier like ML is likelier to yield an accurate result with more samples available (Lu & Weng 

2007:839). 

The User’s Accuracy for Supervised classification for Dense Chenopod Communities and 

Dispersed Chenopod Communities was 0.52 and 0.58 respectively, relatively lower than the 

accuracy results for other non-chenopod classes which ranged from 0.58-0.96.  

Dense chenopod communities were often misclassified as Acacia Open Woodlands, while 

Dispersed chenopod communities were often misclassified as Bright Sand/Clay due to the 

preponderance of Bright Sand/Clay in Dispersed Chenopod Communities. These two classes 

were often misclassified as each other due to its characteristics and would prove to be the 

difficult class to classify across all four methods. Pixel classification, however, did relatively 

well for Acacia Open Woodlands and Shale with User’s accuracy at 0.96 and 0.84 respectively. 

This can be attributed to the distinct spectral reflectance for both classes compared to other 

classes and it appears that pixel-based classification does well for classes with distinct 

spectral reflectance due to its focus on spectral quality when classifying. 
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6.3 Limitations of Object-based segmentation classification 

Accuracy rates for dense chenopod class is generally acceptable at 0.64, however, dispersed 

chenopod class has a lower accuracy rate at 0.55 with misclassification of dispersed chenopod 

classes prevalent, as in the case with other methods. 

Given the minimum pixel size of each segment (80 pixels), individual adult chenopod shrubs 

were not classified, with only chenopod communities at a minimum of 80 pixels (m wide 

approximately) being mapped. 

While kappa coefficient for Object-based segmentation is higher than pixel-based methods at 

0.63, its user’s accuracy for dispersed chenopod class did not differ too much from the 

supervised pixel classification method, in fact, it is 0.03 lower than the latter. While it does 

considerably better than supervised pixel for dense chenopod classes, its performance for 

dispersed chenopod is comparable with supervised pixel classification.  

6.4 Limitations of Deep Learning- CNN 

(Wu et al. 2021: 3) noted a large amount of training samples, with even distribution across 

the study area is needed for representative sampling to achieve high accuracy rates for deep 

learning classification. However, he also noted that with many studies now using pre-trained 

classifiers with transfer learning, those limitations could be plugged.    

Object classification using DL while producing excellent results for dispersed chenopod class 

(according to the matrix and visuals in table 18 and figure 36), did no better than object-based 

SVM for dense chenopod class.  Dense chenopod areas were most often misclassified as 

dispersed chenopod classes with 17 out of 53 (32%) misclassified as dispersed chenopod 

classes for example (table 18). Given similar contextual information and characteristics 

between the two classes, and similar visuals, it is not surprising that the two tends to be 

misclassified. Object-based segmentation however, managed to produce a better result, likely 

because of the spectral signature of dense chenopod class and the way segmentation has 

managed to group all suitable pixels from that spectral signature as one coherent object which 
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demonstrates that segmentation has its advantages for object classes that can be defined by 

its spectral signature. Segmentation, however, will not be as effective for classes that have 

higher proportion of background or ground pixels in its class, and DL may be better in 

classifying those as its focuses more on textural information.  

Although the literature states that DL approaches tend to outperform classification methods 

using SVM and other approaches for classification results (Huang et al. 2020: 3473) (Yue et 

al. 2015), the object of interest in those studies needs to be taken into consideration when 

citing those high accuracy figures. In Yue et al.’s study for example, while her comparison 

between DL and SVM methods showed that the former yielded considerably higher overall 

agreement and kappa coefficient, the object analysed was a hyperspectral image which has 

pixel values and textural information completely different from an RGB image, which was 

used in this study.  

The accuracy results from DL methods demonstrates the need for separate accuracy 

assessment to be conducted in addition to the precision figures for model performance, 

which tends to be overstated. 

While DL approach is generally accurate and especially accurate for the dispersed chenopod 

class (where other methods are found lacking), it also has some specific requirements 

including the need for many training samples and high computing capabilities in the form of a 

power GPU processor. Although the classification output is not as fine as the pixel-based 

methods and object-based segmentation, the resolution of the classified area is adequate for 

informing land management and conservation strategies.  
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6.5 Comparison of classification methods  

Object-based tools are on the whole, better than Pixel-based tools for classifying Chenopod 

shrub communities’ classes. They work better because chenopod shrub communities are 

complex objects with varying shapes, and spectral qualities because of the way the shrubs 

are interspersed into the background. As discussed in the earlier sections, the dispersed 

chenopod shrub class is the trickiest to classify and tends to be misclassified because of the 

similar spectral reflectance for sparse chenopod communities with large portion of background. 

Hence, image context, which is used more in object-based classification methods is more 

important for classifying these objects, making object-based methods using both 

segmentation and DL approaches better for classifying landscapes with large proportion of 

background.  Between segmentation and DL, the results have also shown that with the former 

outperforming the latter for the dense chenopod class, spectral details matter more when 

classifying certain object.   

The varying results across the four classification methods tie in with the literature that 

classification performance is multi-faceted. There are factors that are more important and 

according to Khatami, Mountrakis, and Stehman (2016), the inclusion of textural information 

yields the greatest improvement in accuracy for classification while inclusion of spectral 

information based in index yield much smaller improvements in accuracy.  

When considering the object of interest. Pixel-based classification might be more suitable for 

homogenous land types with huge swathes of homogenous areas, e.g., bare soil, sand, dense 

forest which would be likely to produce ‘pure’ pixels with one unique component. For mapping 

landscapes, because of the variance in spectral information within a class, object-based 

classification methods are more suitable than pixel-based methods (Buscombe & Ritchie 

2018).  
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6.6 Potential datasets to augment image-based classification 

Apart from solely using imagery (with reflectance value and texture) to classify vegetation, 

auxiliary environmental data could also have been used to augment the classification process. 

Examples of these data include altitude, aspect, soil type, and precipitation to aid in the 

classification of forested areas in Greater Yellowstone Area (Burrough et al. 2001 cited in Wu 

et al. 2021: 3) 

In Wu et al. own study for example, up to 73 environmental variables were extracted and 

ranked by importance, noting that climate-related factors followed by terrain-related factors 

influence vegetation classification, with notable factors including elevation and slope in the 

distribution of vegetation in their study area (2021: 18).  

Although our study area is relatively flat in terms of elevation, high-resolution DEM, 

precipitation data, topographic wetness, and detailed soil-type maps if attainable for this study 

area can be considered for incorporation into the classification methodology to augment the 

object-based classification results. These datasets can function as multiple features or 

explanatory variables linked to the proliferation of chenopod shrubs to produce spatial 

classifiers for verifying training samples in order to produce more accurate training samples 

for object classification (Wu et al. 2021: 7). 

Apart from auxiliary data, classification results from pixel-based classification could also be 

used to augment the output from the DL classification by using it to train DL models.   

Buscombe & Ritchie demonstrated the feasibility of this hybrid method using a conditional 

random fields (CRFs) modelling for predicting classes for each pixel in an image. The image 

is then divided into training tiles with fixed sample tile size and exported as training tiles with 

its label being the class label with the highest proportion of pixels classified as that class. This 

has proven to achieve higher levels of accuracies for DL landscape-classification at a finer 

level compared to conventional DL frameworks (Buscombe and Ritchie 2018: 17) 

Conventional DL frameworks often lose spatial resolution when pooling and may cause label 

images to appear “coarse” at object/label boundaries. Conventional DL frameworks also 
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typically need larger, more sophisticated DL architecture, (not to mention more training 

samples) in order to produce a similarly accurate classification at a finer scale. With the hybrid 

method, the authors have developed a way to incorporate pixel-classification into DL to 

produce better accuracy at finer-scale if needed6. This shows that pixel-based methods, 

although generally with lower accuracies when classifying landscapes, can complement DL 

methods with advanced methods of data processing. 

 

  

 
6 Another study used a similar hybrid method (with CRFs) to map weeds in rice crops and found 

that the hybrid method also produced better accuracy, 13.6% higher than OBIA (Huang et al. 

2018) 
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7. CONCLUSION 

As noted earlier at the start of this study, the wide array of remote sensing applications means 

that there is no one standard process nor universal criterion for data imagery or processing 

steps (Sandino et al. 2018: 2).  

This study has demonstrated the potential of using a wide array of classification methods with 

a corresponding algorithm, and attempted to make a straightforward comparison between the 

performance of each classification methods for mapping the habitat of the TBGW for 

conservation purposes and the benefits and drawbacks of each method.  

While it has demonstrated better performance from object-based and DL methods for mapping 

our object of interest, further studies can be done to examine how to improve the accuracy 

rates for our object of interest given that classification of the natural environment are inherently 

difficult due to the complex composition of the image, unlike in an urban setting where objects 

to be classified tend to be spectrally and spatially homogenous, with distinct and sharp edges.  

Further studies could also compare the performance of certain algorithms and DL 

architectures. This study, which compared the performance of 4 classification methods, did 

not have the scope to compare algorithm performance with the use of a control method, for 

example object-based segmentation with ML vs SVM or DL model training with a different 

architecture.   

While DL methods have been proven in this study to produce good accuracy results for 

classification of complex scenes, it remains to be seen if there will be higher uptake of DL 

approaches for classification tasks. In a meta-analysis of 1651 articles, Yu et al. (2014) found 

that 32% of the articles employed parametric methods using ML classifiers, with non-

parametric SVM segmentation methods coming in a close second. This was attributed to the 

wide availability of software tools that uses these methods. Given the difficulty and added 

steps needed for DL approaches to classification tasks, it is unclear if DL approaches will gain 

currency as an accurate and reliable method for mapping vegetation like the chenopod shrubs.  
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Maxwell, Warner, and Fang and Richards et al. (2018: 2785; 2013: 381) opined that once RS 

users are more familiar with the processes and concepts of DL, it is predicted that more studies 

will be employing DL methods for satellite imagery classification.  

At the moment, the study shows a potential for DL approaches for mapping chenopod shrubs 

in a complex environment across the entire WNR. It demonstrates the primary steps and pre-

processing needed in order to achieve a relatively accurate mapping of the habitat of the 

TBGW. A classified map at the resolution produced in Attempt 2 of the DL classification 

provides enough spatial information on chenopod shrubs country for land managers to focus 

conservation efforts in specific areas given limited resources and time, in order to achieve 

efficiencies in conservation efforts. Traditional in-situ vegetation surveys will never be able to 

scale-up to the level of RS in trying to map entire nature reserve with similar levels of resources 

and manpower. Combining the results from this classification process with the observations 

of the TBGW in the future can help develop further insights into the effectiveness of 

conservation activities on a spatial level.   
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9.1 Appendix A- Map of Study Area and Witchelina Station Map 
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9.3 Appendix C- Ground Control Points for UAV Survey Missions 

 

UTM z53 

Eastings 

Units:Metres 

Northing 

Elevation (Z-

value) 

Area Name 

1 789030.7 6669116 173.798 4d 

2 789554.7 6669098 172.556 4d 

3 789543.4 6668837 175.111 4d 

4 789023.7 6668859 175.333 4d 

5 787394.3 6667487 157.281 4e 

6 787435.3 6667439 158.765 4e 

7 787928.8 6668335 164.738 4f 

8 788023.5 6668300 169.257 4f 

9 788618.5 6668773 170.363 4g 

10 788565.4 6668687 169.573 4g 

11 794085.9 6673638 153.144 1e 

12 794067.9 6673557 154.525 1e 

13 794488.3 6672572 145.857 1f 

14 794548.3 6672584 145.74 1f 

15 794652.6 6671672 139.943 1a 

16 794732.9 6671650 139.496 1a 

17 794587.1 6671218 141.261 1d 

18 794551.7 6671266 141.615 1d 

19 795009 6671700 138.74 1b 

20 795084.4 6671596 138.477 1b 

21 794870.8 6671231 139.637 1c 

22 794956.5 6671252 139.198 1c 

23 794717.5 6670247 141.613 2a 

24 794836.1 6670181 140.521 2a 



101 
 

25 794798.8 6669963 141.972 2d 

26 794900.9 6669902 140.832 2d 

27 795236.6 6670298 140.214 2b 

29 795483.8 6670246 138.333 2b 

30 795553.6 6670122 140.405 2c 

31 795492.7 6670091 139.302 2c 

 

 

9.3 Appendix D- Field Notes taken using Survey 123 

Available at: https://arcg.is/WynrG0 

9.4 Appendix E- Maps of Classification Results 

 

Results from Object based image segmentation using SVM and Object-based image 

classification   Using Deep Learning can be viewed on an online map accessible through this 

online URL:  

https://flindersuni.maps.arcgis.com/apps/MapSeries/index.html?appid=5789bb9946474ec9b

777037366af0ed3

https://arcg.is/WynrG0
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9.4.1- Unsupervised ISO Pixel Classification 
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9.4.2- Supervised ML Pixel Classification 
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9.4.3- Object-based Image Segmentation- SVM 
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9.4.4- Object-based Image Classification using Deep Learning 

 


