DOCUMENT RESUME

ED 061 975 57 LTI 003 645

AUTHOR Shotfner, R "al*h Map, Fda LunﬂlﬂQ\dﬂ; Jay Le, Tds

TITLE The Organizaticn and Searcn of 3ibliographic Recenis:
Componer . Studies. Final Report.

INSTITUTICN California Univ., Berkeley. Inst, of Library
Research.

SPONS AGENCY Of fice of Education (DHEW), Washiugton, D.C, Bureau
of Research.

BUREAD NC BR=7=1083

PUB DATE Sep 71

GRANT OEG=1=7-071023=5068

NOTE 317p.: (32 Reterences)

EDRS PRICE MF-$0.65 BC~-513.16

DESCRTPTCORS *Bibliographic Citations; Indexing; *Information

Retrieval; *Infeormaticn Storage; *Information
Systems; *On Line Systems; Program Design: Search
Strategies

IDENTIFIERS Berkeley; *University of California

ABSTRACT

Contained in this report are the results of the
second phase (July, 1964 - June, 1970) of the File Organization
Project, directed toward the development of a facility in which the
many issues relating to the organization and search of bibliographic
records in on-line computer environments could be studie? The papers
in this volume deal specifically with issues and problems of
organizing and accessing large bibliographic files, and are entitled:
{1) An analysis of the search problem in files of abject
degcrintions; (2) The assignment of index terms; {3) Design of file
structures for on-line bibliographic control systems; ({4) The
analysis of bibliographic structures, using indexed sequential
organization; (5) First-stage model of the economic etffects of
1nccrgora*lnq data comprassion system into an on-line direct-access
storage and retrieval system; (6) Implementation of bibliographic
record compression; (7) Specification for format translation of the
santa Cruz file; (8) CRUNCH: the Santa Cruz file translation system;
{9) Prospects for automatic field recognition; and (10) Translation
from ILR processing format to MARC IT communications format. [Related
documents are LI 003610, LI 003611 and LI 003646 through LI 003648,]

(Author/S5J)

US DEPARTMENT OF HEALTH,

EDUCATION A WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEH REPRC-
NUCED EXACTLY AS RECEIVED rROM f?;f{} &
THE PERSON QR ORGANIZATION ORIG- . FoA7 =
INATING 1T POINTS OF VIEW OR OFIN. FINAL REPORT
{ONS STATED DO NOT NECESSARILY o3 B - 83
REPRESENT OFFICIAL OFFICE OF EDU- Froject No. 7-10 83506

Grant No. OEG-1-T-071083-5068

CATION POSITION GR POLICY

ED 061975

THE ORGANTIZATION AND SEARCH
OF BIBLIOGRAPHIC RECORDS:
COMPONENT STUDIES

Edited by

Ralph M. Shoffner
Jay L. Cunningham

Institute of Library Research
University of California
Berkeley, California 9lr20

September 1971

The research reported herein was performed pursuant to a grant

with the Office of Education, U.5. Department of Health, Education,
and Welfure. Contractors undertaking such projects under Govern-—
ment sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
stated do not, therefore, neces %ariiy represent official Office

of Education p031t1ﬁn or pelicy.

ERIC

Aruitoxt provided by Eic:

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Burean of Research

TABLE OF CONTENTS

=

1. AN ANALYSTIS OF THE SEARCH FPROBLEM IN FILES OF QBRJEC
DESCRIFTIONS by Irene Travis.
1.1 The Purpose and Scope of This Chapter...... v ncennnncersl
1.2 A General View of Object Description FllesS....cevennsoecransal
1.2.,1 Data Structure and Data Proces 1ng,i.,.a..,_,..,.!§,..l
1.2.2 Object Descriptions - Entities, Attributes
and Values......:. Mt et et eanae i easeas o sananne e ee e
l1.2.2.1 The Domain of DiscourSeE. cvvereesnranecannnneel
1.2.2.2 The Attribute List. . i e ioenenrssssnnasssd
1.2.2.3 Attributes and Record Formats................b
1.2.2.4 Value Sets and Record Fields.....veeeecesee. 7T
1.3 Searching Directories......... O &
1.3.1 The Query for a Dlrectory [SYST-N ol o1 s WA &
1.3.2 Retrieval Fallures....uasascescsaasnnnsasa e, |
1.3.3 C(Compensating for Formal Errors, Contenf brrors,
and Variants.........oe et iisnertnsnanrsnnsasernsasrsasalD
1.4 Similarity Between Value SefS.. ... eeriuansrsnnsenssncenssll
1.L.. Definition...veeenencsresennsesns e I
1.4.2 The Three Types of lellarlty between Value Sets,....13
1.L.2.1 Distributional Sjmllarlty....a.........i.ii;13
1.4.2.2 TFunctional Similarity....veeeeeiieneenennn.13
1.4.2.3 Elemental Similarjty.-..,i.,.._.,..,._ 16
1.5 Researth...u.ieisoinioeotnansesessssnssasensansscceocnnnnsnosssssass2l
RET ERENCES : s« e v asevcasostsoassssesansoeosassoaosnssrasenasasssessassscl
2 HE ASSIGNMENT OF INDEX TERMS by Marcia Bates. . s e s s .
2.1 Summary of Study....eeeee. e rerisessrscise e taraceesraessen 23
2.2 Desoaription O0f StUAY..s . tervseronssassesonsricssssnaasssnsss23
2.2.1 The Hypothesest einsersscascnunnsasssansnasssed
2.2.2 BackgroUn@.......reeseesensaccasosssssscancossscsssseesD
2.2.3 The Data BaSe..uceeeriorrotieasssssnssasnsnscsssnsceses 20
2.2.4 Tests on the HypothesSeS: cvureeeeotnrsnsosnansnsnneensslT
2.2.4.1 Busic Data on the File.i.i.iieeenrnneanens 27
2.2.4.2 The Minor HypothesSesS...sc.cveeescancoaraan.as33
2.2.L.3 The Major Hypothesis...ui..oueeeweennoeannannna37
2.2.5 What NeXbtl...uciueiueeenoonnnoeeseosnnconoansenasnssesl?
2.3 Speglflc Tests and Data. ..coesssraeasssns Y 1A
Z.3.1 recise Deseription of Tests Made.....a.......,.....“MB
2 3.1.1 Basic Data on the File...viieeeenoieaceores. 43
2.3.1.2 First Minor Hypothesis: Rate cof
Addition of New TermsS......eeereoneaaceeeres b
2.2.1.3 Becond Minor Hypothesis: Relative Ages
Of SubJect FieldS..veervoesenconnnnnsonaansasltb
2.3.1.4 The Major HypothesiS..eessseeeeeneaonasasaeesiT
2.3.2 Raw Data From TestS ... e eeeesescncescssasocsenssess 49
2.3.2.1 Basic Data on the File......ciuvuaceuvensso...h9
2.3,2.2 PFirst Minor Hypothesis: Rate of

AdQition Of NeW TermMS . ceeeeescasesanesssass b0

TABLE OF CONTENTS (Cont.)

fage
2.3.2.3 Sucond Minor Hypothesis: Relative Ages of
SUDJECt FieldS . veereeeeencneneearanaaenansahtl
3 Major Hypothesis....ceeveraveeeenncaacanvans 50
DESIGN OF FILE STRUCTIRES FOR ON-LINE BIBLICGRAPHIC CONIROL
SYSTEMS by Jorge Rodriguez « « = « « « o & o + o o « & 63

3.1

3.4

) M

e
I

L a3 0
Ld L) a3 J
FWN RN

3.3.5

3.3.6

3.3.7

SAUCEION . e e e e Gt e et eeereeeees st st ennssas e nnna 63
Design Revuirements for Lnfcrmatlon Retrleval
= T .63
Objective of Flle StructLres Analysls TaSK. ce e nn. .. 6l
al Model of a File SysieM...veon.. e e e s a e 6l
Fundamental System Components.....,....n@......éh
3.2.1.1 BStorage BloCKS.....eeceseaosacsacasanssaanans .65
3.2.1.2 Information LinkKages......eeeeessanss-anssasOT
Feasible Storage BloCKSeeeeeercasnsanesaasssannnns 69
le Device File sanization...e.e et i ittt i ii e (0
Purposs of AnalysisS..c.ceesacoscocasnns et ee e mmas e 7O
Cost8. . tecrenevovennsnae fecarserenrrssssssnecaasansnnsans 0
AssumptionS. esssecsssssnsans creseerseanns s evavraaens 1
Analysis of Alternatlre Structure Concepts..creenacea(2
3,3.4.1 Unfeasible SLtruchures....:cssecsessannceassale
3.3.4.2 Teasible StructUres.....cvevsncsannss I
3.3.4.3 Index File Segmentation Based on Index 7
Record Length...vee e eeeoesarecnaaasasssssss
Evaluation of Mixed Structure.....-...cceascaaseosessOl

2.3.5.1 Case 1: N(M)<n-N(M). Largest Group of 7
Keys TLess Than 50% of File....euveeeerarea... .0l
3.3.5.2 Case 2: N(M)<n-N(M). Largest Group of

Keys Greater Than 50% of File....iivenea....082
Segmentation of Index Files Based on Key Length......83
3.3.6.1 Objective Of ANlYSiS...eecevescsansssssssesSh
3.3.6.2 Storage Minimization.....oeeeeessasssssenas..8l
3.3.€.3 Processing Cost Minimization........ecevuve. 85

3.3.6.3.1 Design of Optimization

ProcedUure...oveeeeesssocssannanson 86
3.3.6.3.2 Algorithm for Search PraceqSLng
Cost/Total Processing Time 7
Optimization....covevevveesensn..06
3.2.6,3.3 Parameters.....,.........ii-.iﬁ.iBT
Segmentation of Index Files Based on Usage
FreQUENCY e ¢ s et aesessncncsosoancosassanens A « 11

Consideration of Request Utility as a Funct1@n of

APPENDIX:

Average Retrieval T T 019

PARAMETER DEFINITIONS FOR FILE STRUCTURE ANALYSIS.....98

P

TABLE COF CONTENTS (Cont.)

4. THE ANATLYSIS OF BIBLIOGRAPHIC FILE STRUCTURES, USING
INDEXED SEQUENTIAL ORGANIZATION by Jorge Hinojosa. 101

Uil TntrodUction .. e ee e ieseecscennennnesnsneeennnnenns 101
L.1.1 Object .veenwrrnnnnn. e r s e e teesaeaaee.s 101
U.1.2 Cost Relatlions .cu..eeeeeeeneoneennnneennssnnes 101
U.1.3 The ProblemM su.eeeeesereseseesescsensnsscsesss 103

4,2 General System SErUCLUPEeeeeeesosososaneaenness. 103
L.2.1 TFile Structures Selected for Analysis ...ee... 1073

4,2.1.1 Access Record MappiNg +ececesossenns . 103
h.;.l 2 Connection with Previous Anajy51s ... 105
4.2.1.3 Record Format ,.....eeeeceees ceee.... 108
L.2.2 Comparison of Structures 5 and 7 crssssecrane. 108

4.3 Division of an Index File Based on Key Lengths 109
4.3.1 Cost of Storasge (.oveeeecnronanns G errecce s 110
L.3.2 Co8t of Time ..uevevrnronne seeernnnnnnnsnnsenss 111
4.3.3 Dynamic Programming Formulation vee.. 112
L.3.4 Solution of the Problem ...v.eeeseeseseneseses 115
4,3.5 Sample Computations and Resultsieeveene.. 115

4,4 Division of an Index File Based on Usage Frequency .. 117
LoLh.1l Assumptions ...eeeeeeneeeensecnnnens s s I ¢
b, U.2 Condition for Feasibility ..u.eeeeeeeenenneens. 117
L.4.3 Reguired Distribution G hetieaaeeea. 119
Loh.h Growir< Rate Of TNAeXSSveesusreasencensss 120

.U 00T Small FileS vuvvrvessvvesesssnannnses 120
LiLL,2 Large FIleS cu.iiverererrrnnneennseans 121

LU L.2.1 Case A viieeenrrnnnaneneass 121

BL iU 2.2 Case B vvevernrwernnennase 121

L. U5 CoNnClUSIONS .uvivenrneennrsasneeneosasnneansas 123
L. h.6 An Extension v.seeceececeoeeas cheeeaea R -2 1

4.5 Estimation of Overflow Areas for Index Files 12k
L. 5.1 Overflow RECOTAS +.v.vseeereenneneneneeennneas 124
L.5.2 Probabilistic Modelv.cveocerennesannans 12k

4.5.2.1 New Key Expected Insertionl .eeeeceees 125
h.5.2.2 Estimation of Overflow Areas 125
L.5.3 Alternative Estimatione.eeeeineencenaaas. 126

L.6 Allocation of Non-Keyed Records to Storage Blocks ... 127
L.6.1 Mathematical Modeleieeeeeesoneennneenass 127
4.6.2 Inefficiency of Random Allocation 129
L.6.3 Computational Tool ..ieeeeveeeens Ceneas e 129

4.7 Estimation of Overflow Areas for the Pointers Flle .. 130
4L.7.1 Former Scheme st ssssssessseessrsssenss 130
L.7.2 New SCHEME «i.uvesvosneeeinsennnanascanssseaess 130
4L.7.2 Differences sassssnesesssassasssssessses 131
L.T.4 Stochastic Modelvveveveennsrnnnananeeeos 131

L.7.4.1 Assumptions B R 1
L,7.4,2 Proof of btatlonarlty cetcsanescesess 132
L.7.4.3 Distribution of XiJ ceeeeenenseaeae.. 133
4.7.5 Estimation of Overflow SPaACE ...vewse.soeeess. 135

6.

TABLE OF CONTENTS (Cont.)

Page

L.8 Multiple Device SyStemMS...eceeereenrocereanaansasvasanse..136
L.B.] GENETBl..eeeseeenasecearonesonsasssnssassescansnsesal3b
L.B.2 DASD Control UNibS.vueseeeeooeseeacesanseetsennenseal36

4.8.2.1 Device CombinationS...eeeieceseeceeoeasasal36
U.8.2.2 Device Selection..ueeeeeieaceneasarssssnssl36
L.8.3 Cost COmMPariSOnS.csesetasassssmenaserrsannanensnesns 137
L. 8.k Vertical Division of & File..:s.esvscusssassssssrssasld]
4.8.4.1 Usage Frequency Distributions.............1L0
4.8.4.2 Cost EQUabionS...:ceeeeeaeaansssnasasnsasssllil
4.8.4.3 Equivalent Problems.....eeeeeeeeennneansnn hRIE=
4.8.4.4 Required Cumulative DlstrlbutanS.a...;..glhg
4.8.4.5 Program DUODEV........ Ceeaan R 1Y
h.65.L.6 Some ResultS..iccecessas e et esscsaaanann 147
L.8. 4.7 An Bxtension......ecensceccaes s e 148
L.8.5 ConcluSionS iieeescecsessasenannsesnsasncsansnscaanasan i51

FIRST-STAGE MODEL OF THE ECONOMIC EFFECTS OF INCORPORATING A
DATA COMPRESSION SYSTEM INTO AN ON-LINE DIRECT-ACCESS STORAGE

AND RETRIEVAL SYSTEM by Kelley L. Cartwright . - . -
5.1 Introduction: Compression and Coding.....ceeiansaacsacess155
5.1.1 The Advartages and Constraints of Compression......155
5.1.2 COAing PrOCEAUIE. . vesneeeeaacanacneassnacsanssssssl5h

5.2 A Model of the Effect Upon System Costs of Incorporating a

Huffman Coding Scheme into a Storage and Retrieval System.l57
5.2.1 General Effect Upcn the System...ssecrcrescnsenses15T
5.2.2 Ceneral Evaluation Criteris...c.sccsesssenccsanessa158
5.2.3 General MoAel...eseesoosenasssosssssesssssasasasansslsd
5.2.4 Analysis of Variables......ceeeeeesosnonsasanssaaaal59
5.2.4.1 8tep 3: Machine Processing Prior to
StOraEe . st e eseesasnersssassnnassnssasnssaeslD9
5.2.4.2 Step L: Storage on DiSC...ssssesscassaa. 163
5.2.4.3 Amortizastion of Costs of Sters 3 and
L () eieeeneeonacannnna teeeeccaacaseaes.16l
5.2,4.4 Step 6: Retrleval of Citations...........16L
5.2.4.5 8tep T7: Processing of Citations for
0 R I <1
5.2.5 HUFFMAN COACS v v vnnesennrosnsnnnnsnccenneneseanssnssaslBT
IMPLEMENTATION OF BIBLIOGRAPHIC R®CORD COMPRESSION
by Vikas Sahasrabudhe and Ashok Kulkarni « « « « « + « o o o & o« &
B.l DVErVieW.e.esatsssssctonsssssctasanasosnsnsssas S I ¢
6.2 Record Encoding..:caseacasss e e eeesassnae ceeeeseaainaann 171
6.3 Table StrUChUT .. eeseessacssrensacsasssasssanssasssasssansaslT2
6.3.1 Tirast Letter TableS...cceeeenscscsscsccsssnscnsansssl(
6.3.2 Second Letter TableS.....eceeesssessscasacassansssadlTl
6.3.3 FEncoding Example....ceeeeessesnosassssssssssssessaslT6
6.4 Record DecoOding.seeeeeesessseseansssssnssansansanaeananns.1081
. n &

TABLE OF CONTENTS (Cont.)

Page

6.4.1 Decoding Table SErUChUTrE. .« oue e eeeeenranrenssnsenseal81

6.5.2 Decoding EXampDIie. «cuceeeerareronesesenenonnsnnnnnes .182

£.5 Frequency Analysis and Alphabet Selection.......vcveevec...185

6.5.1 Extension tO Digrams . «v.eeeceenceeernesesnensnsenssons 185

6.5.2 Extension tO K—GramsS......eeocerettoseenenacnnnenos. 8T

6.6 IBM 360 Implementation..............;........_.!,,,,,....ailBT

6.6.1 Analysis P EraGl. . ecoeeessoseesosernsanenaceos e 188
6.6.1.1 COUNT (TABLEl TABLES . NUMBEE NARC

MARKER, TAEBZNM, TQTAL)_@.@@,189

6.6.1.2 ADJUST..¢euvveunn. e K2

6.6.1.3 HUFTRE. .ot v iensneeannnnnacenannanessssnnssssalOT

6.6.1L.4 HUFCOD. . vuruneusnonsosoceonassssosnnnnnnns .199

6.6.1.5 IODISK (TABLEl, TABLES, TAB, TREE).........201

6.6.2 ENCODE. 2o

6.6.3 DECODEE.!,!;.,..q..i........a.....a...............,!:DE
6.6.4 Extension of Program for Inclusion of k-Grams

G0 35 1 - 1o |1

6.6.5 Plagram Operation and ResultS.....eeuu.. e eeeeeesl 206

6.7 ResUlbtS.eievarsnncennns ettt eeseeee st aaae e eeeaeisas..208

6.7.1 Tnitial Methcu.a,,,!,i‘.ii.i,iiiii..i..i..i 208

6.7.2 Second Method. c e et e ieneneneeeresveesseonsnanssanns 208

6.7.3 Third MethoQ...eeueeeeoeoeanossssassrsnsanssnnennnss 208

6.7.4 Effect of Varying Source Alphabet Size...e.eves.en...209

T. SFECIFICATION FOR FORMAT TRANSIATIGN OF THE SANTA CRUZ FILE

by Jay L. Cunningham . . .« « & ¢ & 4 o ¢« ¢ o o « 4 & s+ e e w2 s . 213
Tel INtroQuetiore e ee e e es e oo eeeeeeennennnnssasnasssnsssesnes2l3
7.1.13 Translatior from Santa Cruz Orlglnal Format to
ILR Input. S s es s er e T = I
T-1.2 Tranalatlon frcm ILR Input ta ILR Prac2551ng
e - 216
T.1.3 Translation from 1ILR Pr923551ng Format to
(Latest) MARC TTl..civunsenrnnnennnns Cereersasaaa ..216
7.2 Translation from Santa Cru:z Qr;g;nal Format to ILR
Input Format..... ca s e sae e S r s s et s s asus s anne = craesa 217
T.2.1 Condition of Scurce Flle........... T S N
T.2.2 TFormat Translation Tables to Achieve ILR
INput Format. ... oottt cacrosocnssesosanennccss 217
Te2.3 Notes to FigUre BT ..e.e.eeeeeaseneoneonsssnsceasese2lT
8. CRUNCH: THE SANTA CRUZ FILE TRANSLATION SYSTEM
by Jonn M. Reinke « . o « + = s = = 2 = & & o s o o o o« « a o + &+ « 235
8.1 Introduction..... T ..235
8.1.1 Main Program: LAYOUTl. . ..eenusnesonsscncs-nnennnsna235
8.1.2 Subprogram: STRINGER. ... :eeeeenneennnneennens cee...235
8.2 Subroutine ES200500. ... ecenseeeneenceanesnssasanesans ceere..236
8.3 SUDTOULING ADDALG. v s s e erensnennsosonsnesesneeesnsansnnessad36
8.4 SUbroUtine BIBLIO ..« e seeussanesenonesasnncesnssesasssnesssa 237
8.5 SUbTFroLtine PPD....ce:eeeeeenaneseessecascnennsns vrssceenae 23T
8.6 Subroutine PETSAU TH. . vt i ereeeerosoesnsoeanssnsssnnananeees239
8.7 Bubroutine TITEALG. . cueeurrrenrnennrnanss cessecsscensacenas239

jo.

TABLE OF CONTENTS (Cont.)

PROSPECTS FOR AUTOMATIC FIEID RECOGNITION by John M. Reinke |,

Ealpte]
ny H

£ W

Tty OAUCE Lo e v v sessrmeneor —nsasancasscssssnessaaennnnanssnsss zho
An Example of the Proposed Use of Pre-scanning in

Algorithm Desigh. s csassessessssssssssssenssns cescnennerea2b0
A Proposed System for AFR Algorithm Develcpment ses 252
Adventages of the AFR Algorithm Development (AFRAD)
System......ai.....,............,..,..,..........,...,.iii.954
Remarks on Samplirni@...cceeseeecessssesssssansssssnsssssassssDD
Pre—scanning and MappiNg. cseesssacessesaasscssssssssnsssssa256
Automatic Language Recognition.....eceeeceececarscsnessessa2dT
9.7.1 Subroutine #l....e.eieesssiraricraronssnnsansenacnncald(
9.7.2 SUDYOULINE H2.iuieieeeneescsanansnssannseenrnsssasss--258

TRANSLATION FROM ILR PROCESSING FORMAT TC MARC IT
COMMUNICATIONS FORMAT by Jay L. Cunningham. « « « « + .+ =

10.1

10.3
10. L

INtTrOdUCTEIiON. e : e o vrorennsscssessnasansss P = o35
10.1.] Pl DOSE. cteeesconnonsasesssososessasnnsans e eeeeeer 265
10.1.2 Scope.ggg,............ G etesie e -1
10.1.3 Contents...vee.. G ereseneaaes e e sinenes e eees 265
Narrative Description af Dverall Prggram Btructure......... 265
10.2.1 Housekeeplng....nn................i.i.i.........,...EES
10.2.2 Read the Next INTOCAL Record to an Input Buffer.....265
10.2.3 Shredout of INFOCAL Record Directory....cseeeceesss.265
10.2.3.1 Major Locp..........ii.i............,,.....255
10.2.3.2 BOOKKEEDING e e s s e vnenennccesnscaaccncacaneass 266
10.2.4 MBJOT LOOD.-vrnsseessstenaeronsnennnannanenancensssss26E
10.2.5 Create Fixed Field 008...u.eereerescvrserocnnnsneass266
10.2.6 Create New Leader..ccsceeseoncnsscsasssssssnssasesss2bb
10.2.7 Create New Direchory..ceeesscssscsssssssssssnennsses267
10.2.8 Write the Completed Record to Output Storage........267
10.2.9 End Of File CHECKueeeeeoeeoocroneasssassanssssasssses267
Flcwchartq..ii.._;g_.___................ii...._............ETD
Summary of MARC 71 Record SBtructure {Communication
FOTTIEEL) e s s e o vosssnnssnneascoeseannnannsnsencsosssncessacansessas280
10.4.1 Modifications to Overall Record Structure to
Produce s Reviced MARC IT RecCOTA..vseecescceonsenaa.280
10.%.1.1 Field TerminatorS.. .coeeesssssescacssaassass 280
10.4.1.2 Subfield Delimiter CoOAES....c.vresessessseaa28l
10.4.1.3 MARC IT Indicators 1 and 2.....cc0020s5000..281
10.4.2 Modifications to Leader...cecsserasssrsancasses vee..282
10.4.2.1 Structure and Content of MARC I Eeader.!!.ésg
10.4.2.2 Changes in INFOCAL Leader - Translation
Table.eeeesoaenss < Lo
10.4,3 Modifications to Dlrectary..a.....;i;i._,...........285
10.L4.3.1 Structure and Content of MARC II

TABLE OF CONTENTS (Cont.)

Page
10.4.4.1 Structure and Content of MARC II Tag
008 Field...... st et e e et a s e ar e e anane e 201
10.4.4.2 Changes in INFOCAL Fixed Length Data
Element Field - Translation Table....cc....293
10.4.5 Modifications to Variable Fields. .v..cieeeeeennnn...295
Specifications for Building a Santa Cruz - UC MARC File....298
10.5.1 Overall Record StrUctlUl . u. caoeeeenre osssasssassessa208
10.5.2 Lealereieeeeesocasasansas se e esesssssanenns sesesacsas 301
70.5.3 Fixed Length Data Elements Fler - Tag 007
(U0 MARC) e i es e itse s seaesasannnaenssassecanasanennnns 301
10.5.4 Variable Fields = Redefinition of Tag 090
(Local HeallnEs)eeses ooreaoatassssansansssnssasssens30R

LTVii- 8

LIST OF FIGURES

Title

CHAPTER 1: AN ANALY3IS OF THE SEARCH

CHAPTER 2: THE ASSIGNMENT OF INDEX TE

10.

11.

OBJECT DESCRIPTIONS

One Value Associated with Elements
Sets of Entities « . o .

Two-by-Two Contingency Table . . .
Functional Similarity.

Flemental Similarity . . « « + « .

Distribution of Number of Applications

Headings (Types) « « « + + « + o«

PROEBLEM IN FILES OF

from iwo Different

s = = = & =
L

. « = =2 s
= 2 s = 2 =

RMS

Distribution of Documents by Number of Subject

Assigned + i .+« 4 e 4 e e

Characteristics of the File. . . .

(Tokens) of Unique

Headings

Number of Documents Indexed and Subject Headings Introduced,

1880-3967. « « « & v s 4 v 4 e e s

. -

Blow-Up of Fig. 8 with Mean Number of Subject Headings
Assigned/Doc and Number of Documents and Subject Headings

(1912-1948). + « cih o 4 e 4 4 . .

Mean Co-Assignment for Differences
Date of Individual Application . .

Mean Co-Aszignment for Differences
and Date of Individual Application

CHAPTER 3: DESIGN OF FILE STRUCTURES

1z.

l3!
1k.

CONTROL SYSTEMS

torage Blocks (SB's) . .

wl

Types of
Types of Information Linkages. . .
Unfeasible Blocks. « + « « « « » =«

Processing Cost Curve. . . - . .+ .

. . - . - 2 »

betwesen Mean Date and

between Earliest Date
(Sample Base $20 Only). .

FOR ON-LINE

BIBLIOGRAPHIC

* - - - = - -
2 - - L] - = -
- -] (3 = - -

28

31

32

34

36

38

67
68
69
70

LIST OF FIGURES (Cont.)

Title Page

16, Unfeazible StruchUresS, o + v 2 + o o o o o o + s s & & o o o « Tk
17. Feasible StructuresS. . v v v « v 5 « o s 5 & = s « s « + = o & T

18. Distribution of the Number of Records Associated to Each

éY = . . - = - e » = - ® & . - ® - = 0 = s = & * = * = L3 = ® = 79

tructure 6 ("Mixed"). . . . & & o« v s e e e e e e e e 80

e
O
]

20. Structure 7 ("Modified Mixed") B8O
21. Distribution of Key and Record Lengths «. « « « « « « =« « . . . 8k
22. Matrix For K . ¢ « ¢ « ¢ s o v s 5 s & s & 5 s 2 o s « + <« « « 90
£3. Total Cost/Total Processing Time« « + « + « « - - . 93
2Lh. Usage Frequency Distribution« . « +« + & « & « « +« « « . 94
25. Average Request $/Average Retrieval Time 96
26. All Requests $/T.P.T.. v « v v o & & o o o o o « o o o v o « « 97
CHAPTER L: THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES,
USING INDEXED SEQUENTIAL ORGANIZATION
27. Operational Cost of a File . . .+ .+ « « &« « o o o« = +« « « «» « » 102

28A. Mavpping of Master Records into Access Records for
Structure I. . . « « « « + s « s « = & & & & & & = s s+ s = « . 10k
28B. Mapping for Structure TI . . - + v « « « « « « s « +« « » +« o« - 104

29A, Feasible Structures: Structure 5z - Fixed-Blocked Unit
Listg - - - - - - [a L] - - - - - - - - * - - - & - L] E] - & - L] lDS

29B. Structure 7 - "Modified Mixed" « « « « « &« . . . 105
30. Structure 7 - "Modified Mixed" with Two-Level Lists. 107
31. Key Length Distribution. + . « « = « & « « « « + « . 108
32. Pointers Distribution. <« . .+« + + ¢+ 4+ & 108

33. Costs for a Divided File as a Function of the Set of
Division Points (Di) . & & v & v v v &« & v v o« o = = o « « & . 111

Figure Title Page
3L4. Flow Chart for Dynamic Programming Computations. 11k
35, Parame.crs and Cost Values Used. . . + « + &« 2 « o « o o « « . » 115

36. Cost per Request as a Function _f the Ratio System Volume-
File Size for Five Different Division Strategies « « « « . . . 118

37. Required Cumulative Distribution « « . . . 119
38. Cumulative Required Distribution - Case A. 122
39. Network Representation .« « « + « + « o o o « « o« o+ s+ o « « « . . 128

40. Representation of Transition Probabilities 13k

System Volume-File Size, for Different Devices 138

42. Total Search Cost per Request as a Function of the Ratio
System Volume-File S8ize, for Different Devices 139

43, Usage Fregquency Distributions. . . « « « « « & « &« « &« & s+ « « » 1hO
44, Normalized Usage Frequency Distribution. 1lh1

45. Cumulative-Required Distribution for a Two-Device
File (231L=2321) . - + & « 4 « « « = &« « o« o & o « = « & = « & . 1h3

46, Cumulative-Required Distribution for a Two-Device
Filé (231’4‘*232l> % L £ = L] - L] L] L] L] L] ¥ - - . - - - 2 - . - - L] 11})—:-

47. Cumulative-Reguired Distribution for a Two-=Device
Fi J_E (EBLLLEEBEJE) [} = - - L] - « - a - - - - - - - . = - - - - - . 1Ll‘5

48. Artificial Cumulative Usage Frequency Distributions. 146
CHAPTEE 5: FIRST-STAGE MODEL OF THE ECONOMIC EFFECTS OF

INCORPORATING A DATA COMPRESSION SYSTEM INTO

AN ON--LINE DIRECT-ACCESS STORAGE AND RETRIEVAL

SYSTEM
49, Index of Variable NamesS. . . « . « « =« o « o o 5 s = = o« « « « o 161
50. Combined Model . .+ « 4+ v « 2 o s+ 4 s o s o = s o« s « + + + « . . 166

51, Reduction of = Set of Probabilities. . +« « « « « « « =« « « . . . 168

52. Creation of a Compact Code . « « « « o « o+ o s s « o 2 = « +» » . 168

o BRI, * P

LIST OF FICURES (Cont.)

Figﬁr% Title

53. Fffect of Character Fregquency on Number of Bits of
Compact Variable-Length Code for 6-Character Alphabet . . .

54, Tree Structure for Computing Huffman Code Lengths

CHAPTER 6: IMPLEMENTATION OF BIBLIOGRAPHIC RECORD COMFRESSION

55. Examples of Termination Entries for Illustrative Huffman
Codes .« + « « « & s+ s s s e e s e e e es e s s e ..

56. List of Digrams for the Encoding Example. . . - « . +. . . .
57. Example of First- and Second-lLetter Tables.
58. Convercion Table. .o v v v v v v e v v e e e e e e e e e

59, Probabilities and Huffman Cocdes of Characters
Cys Cpo 235 C1Chs 22—3, and S A R T R

60. Data Analysis CSECT Function and Parameters

61. Layout of Count TableS. . « +v v + & « « & o o o o« o o o o .

63. Encoding ProCessS. .« « « + = o v + o o v e e e e e e e e e e

64, Compression ResULtS . .« v & v v v s v v 0 v e e e e e e e

65. Huffman Coding Procedure ResultsS. . « « « & « « « + o « o«
CHAPTER T: SPECIFICATION FOR FORMAT TRANSLATION OF THE
SANTA CRUZ FIILE
66. Santa Cruz Tile Translation RUn . . . « « v « « & o « o « .
67. TFormat Translation Table I-Field Segment. . . . + « « o« + .

€8.

|

ixed-Tength Publication Dates Logic. . « .« =« . + 4 « &+ + =

59. Logic for Type of Added Entry Code - Series « .

[

T0. Format Translation Table A-Field Segment. « « « .+ .
Tl. Data Element Patterns and Associated Coding Imprint Field .

T2. TFormat Translation Table B-Field Segment.

N £

173
176
178
179

LIST OF FIGURES (Cont.)

Titla

T3. Disposition of Shelf Key Date CT 000 - Shelf Key Card,
Santa CruZ. . . + ¢ « o s o + s o s a « s a « s o a o =

CHAPTER 8: CRUNCH: THE SANTA CRUZ FILE TRANSLATION SYSTEM

Th. Flowechart of Subroutirne ES200500. . . ¢ v v ¢ v o « o @
75. Flowchart of Irbhernal Subroutine ADDALG ¢ « . «
76. Flowchart of Internal Subroutinz BINLIO
TT7T. BSubroutine PFD Flowchart. . . .« « = 2 « &+ +« = s s 1 2 =
78. Flowrzhart of Subreutine PERSAUTH.

T9. Subroutine TITLEALG Flowchart . . . « .« ¢ .« = « &+ « =+ =

CHAPTER Q: FROSFEUTS FOR AUTOMATIC FIELD RECOGNITION
80. Unigue Diatsble Displacement Values + « . « .+ =
81. Short Words Commonly Found in Several Foreign Languages

82. Language Recognition Algoritkm #2 Flowchart

TRANSTATION FROM ILR PROCESSING FORMAT TO MARC

TRANS
II COMMUNICATIONS FORMAT

a
5
H
3
=
I ﬂ\
I._.I
D

83. Tag Translation Table . .« .+ + o o « o « o o o o o« o o s
8L. Dircctory Re-building Control Table . . . « ¢« o « « o« .
85. Format Translation Table Leader Segment . . . « . . « .
86. Indicator Revision. . + « « « « o o o« s s o o o« o s o &
87. Infocal Directory Entry Structure « + « « + « .
88. Reorganization of Indicator Values. « « « . « .

86. Format Translation Taeble Fixed Length Data Elements
Se@ent & L - - L] L] - - - L - - - - - - L] - - - - - - -

90. Variable Field Tag Transiati@n Table. . « =« s =« = s+ =« =

13

g
‘m
\m;

233

260
261

263

287
288

Table Title Page

CHAPTER 2: THE ASSIGNMENT OF INDEX TERMS

1. Rate of Addition of New Terms: Date and Mean Headings
per Document « « = « + + & o« s = s s « s & = s & < 2 « =

WA
=

2. Rate of Addition of New Terms: Mean Fublication Date and
Barliest Date of Appearance .« « « ¢ « v o ¢ o « o v o o o o 53

3. Relative Age of EBubject Fields . .« . . .+ « « « + + & & o o & . 55
L. Major Hypothesis Data: Mean Date of Publication« . . . 57
5. Major Hypothesis Data: Earliest Date of Publication 59

CHAPTER L4: THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES, USING
INDEXED SEQUENTIAL ORGANIZATION

H_l\
()
o

6. Minimum Total Search Cost per Request (Dollars).
T. Percent of Records in Each Subfile 116
8. Cumulative Required Distributicn, Case B 123
9. Comparison of Search Costs for Two Syvetems « . .« . . . 1hk3

10. Total Search Cost as a Function of S;-7 m Volume for a
TVG—DEVi ce File - & - . - - = . - = . - - = 2 - - & - . - - - 1)49

11. Total Search Cost per Request as & Function of Systen Volume
for a Two-Device Fille .+ ¢ « & « ¢ & &+ o 4 & & &« =« s =« < « « « 150

12A. Total Search Ccst per Request for a Two=Device File, Based on
Usage Frequency Distribution and Key-length Distribution . . .

-
\n
Ly

12B. Comparison of Total Search Cost per Regquest, for Three
Basic Structures - . . . « « + + ¢ 4+ 4+ 4+ -+ 4 4 4 4 4 2+ « « 2 . 154
CHAPTER 6: IMPLEMENTATION OF BIBLIQGRAPHIC RECORD COMPRESSION

13. Results for Huffman-coding Procedure for Characters and Digrams
in 200 LC MARC II RecordS : « = & = o s = o s = o o o o = » » 211

. &

FOREWORD

This report contains the resulits of the second phase (July,
1s - June, 1970) of the File Organization Project, directed toward
the development of a facility in vhich the many issues relating to
the organizoticon and search of hibliographic records in on-line com-
puter environments could be studied. This work was supported by a
grant (OEG-1-T-07.783=5068) from the Bureau of Research of the
Office of Educaticn U.Z2. Department of Health, Educaticn, and Welfare
and aiso by the University of California. The prinecipal investigator
was M.E. Maron, Professor of Librarianship and Associate Director,
Inztitute of Library Research; the project director and project manager
were, respectively, Ralph M. Shoffaer and Allan J. Humphrey, Institute
of Library Research.

This report is being issued as seven separate volumes:

* Shoffner, Ralph M., Jay L. Cunningham, and Allan J. Humphrey.
The Organization and Search of Biblicgraphic Records in On-

Line Computer Systems: Project Summary.

Shorfner, kalph M. and Jay L. Cunningham, eds. The Organization
and Eearch of Bibliographic Records: Component Studies.

Aiyer, Arjun K. The CIMARON System: Modular Programs for the
Organization and Search of Large Files.

Silver, Steven 8. INTX: Interactive Assembler Language
Interpreter Users' Manual.

* S8ilver, Steven 5. FM3: Users' Guide to the Format Manipulation

System for Natural Language Documents.

* Silver, Steven S. and Joseph C. Meredith. DISCUS Interactive
Syster Users' Manuel.

System for Information Processing.

- Smith, Stephen F. and William Harrelson. TME: A Terminal Monitor

Because of the Jjoint support provided by the Information Processing
Laboratory Prcject (OEG-1-T7-0T71085-428%) for the development of DISCUS
and of TM3, the volumes concerned with these programs are included as
part of the final report for both projects. Also, the CIMARON system
(which was fully supported by the File Organization Project) has been
incorporated into the Laboratory operation and therefore, in oxrder
to provide a balanced view of the total facility obtained, the volume
is included as part of the Laboratory project report. (See Maron, M.E.
and Don Sherman, et al., An Information Processing Laboratory for
Education and Research in Library Science: Phase 2. Institute of
Library Research, 1971.)

ACKNOWLEDGEMENTS

This volume contains the results of Instiitute work dealing
specifically with issues and problems of organizing and accessing
large biblicographic files. TFor the most part, each chapter was written
by the staff member actually conducting the study. We grateful -
acknowledge Irene Travis, Marcia Bates, Jorge Reodriguez, Jorge Hinojosa,
Kelley Cartsright, Vikas Sashasraboudhe, Ashok Kulkarni, Jay Cunningham,
and John Reinke.

In addition to the authkors, many Institute stalf members contributed
their special abilities tcward completion of the File Organization
Project. Because the study itself was broad in scope, there wer. varied
tasks requiring the talents of a wide spectrum of pecple. 1In particular,
much of owuwr work involved considerable computer programming, without
which these particular studies could not have been accomplished.
Specifically, we wish to thank for thelr design and programming efforts
Ariun Aiyer, Ds=nnis Fried, Bill Harrelson, Birdie Hodges, Steve Johnson,
Naresl Kripalani, John Reinke, and Steve Smith.

Finally, we wish to thank and to commend the work of those who
worked with special zest in the preparation of these pages: Carole Fender,
Linda Herold, Scott Herold, Jan Kumataka, Pat Oyama, and Rhozalyn Perkins.

6

1. AN ANALYSIS OF THYE SEARCH PROBLEM IN FILES
O OBJECT DESCRIPTIONS
By Irene Travis

1.1 The Purpose and Scope of This Chapter

This chapter is intended as an initial exploration of '"the
search problem" for the File Organization Project of the Institute
of Library kesearch at the University of California at Berkeley.
To avoid any misapprehension of its scope and purpose, it sec =
appropriate to clarify immediately what is meant here by ''the
search problem." As a topic in the literature of information
retrieval, "the search problem'" refers, in fact, to a variety
of topics. Two of these will now be specifically excluded from
consideration. The first is the common definition of '"the
search problem" as minimizing the time required to find an item
in a machine store. The other toplc excluded is "the search
problem”" as that of finding "relevant" documents, the point of
view of the literature searcher. The focus will be instead, on
record retrieval, on the problem of retrieving records corres-
ponding to a searcher's query.

Bibliographic files will be used as examples, but the analysis
extends to a considerably larger class of systems, as will be
clear in the course of the discussicon. The aim of this chapter
is to obtain an overview of the problems of searching files
like bibliographic files without limiting ..ttention to any one
such set of records. In the course of this Aiscussion, the
construction of files, the problems of sesrciing them, and the
nature of the tools vhich a system might ncorporate to aid in
file search will be examined.

1.2 A General View of ObJject Description -
1.2.1 Data Structure and Data Processing

"he way in which man stores his knowledge of ch: world in
his brain and nervous system, processes it, and convzrts the
results to a form suitable for communication with ot.er men, is
little known at present. Since man learned %o recorid his
communications in more or less permanent media, however, certain
types of information which we use have come more and more to be
stored externally:; that is, stored in grepnic, written, sound-
recorded, or other forms. Indeed, the amount of information
about the world which is now accumulated is far too vast and
particular for more than a minute part of it to be held in
human memories at any one moment.

Information, whether in the brain or in some external form,
is used and modified in many ways for many purposes. The type
of processing possible is clearly related to the nature of the
information and the way in which it is structured, but our know-

- —1‘

- 1

ledge of these matters is as yet quite limited. The most complex
forms of storage, and processing are still those confined to the
human brain, despite the fact that for certain classes of data

and processes, the electronic computer is a far faster and more
reliable tool. In other words, the brain is still the only means
we have for storing certain data in ways such thal certaln

classes of processes caxn be performed on them. The coalescing

and transformation of data involved in determining the meaning

of a sentence is an example of such a class of processes. Writings
in natlural language are processable only in very limited ways,
without transformation, either by machine or by the brain. Each
mast transform it to other data structures bhefore complex pro-
cessing can be done. In recent years as the amount of informa-
tion has increased, problems associated with organizing these
external stores in a fashion useful for machine processing, that is,
of discovering methods for the external processing of the external
stores, have received even more attention.l-2

If we loolk at the kinds of data whieh have been successfully
used by machines to this peint, we find that much of it can be
characterized as descriptions of objects or "entities'": persons,
buildings, organizations, filing cabinets, bocks, ete. A large
sub-class of such data are those which are observations of
entities involved in systems which =an be adequately represented
by some mathematical or statistical model, such as the struc-
tural aspect of a building. The rules for manipulating such
guantitative data are "formal': they are independent of the
particular detum. The machine can manipulate these data not
only as well as the human brain but with a speed and accuracy
many times greater than any person. Those descriptions, on
the other hand, which are not ocbservations from a system which
can be adequately represented formally are frequently a mix-
ture of strings of words and some measurements. The kinds of
data econtained in personnel records is a good example. It is
this latter type of data with which we will be concerned.

Apart from updating, matching, sorting, and counting of

records are the most usual types of processing carried out on

such descriptions., Its purpose is usually one or a combination
of the following:

a. Finding information about individual objects;

b. Allowing the generation of guantitative data about the
size of various classezs of objects as a means of char-
acterizing the file or the group of objects described;

c. Creaoting a directory to the objects described.

Few of such dats retrieval systems are used for any one of these
purposes exclusively.

The processes which support even these purposes in our present
systems, although very fundamental and very useful, are still
quite limited. 8Such determinations as, for example, f2et member-
ship using non-numeric data may be difficult. Membership fre-
quently cannot be decided by any of the order relations such
as "less than" or "greater than' which are verr powerful for
numeric data, nor, scmetimes., will the list of possible members
or non-rembers be enumersble and storable., An example of such
a difficult determination is the recognition of personal names;
another, the dztermination of the language of 3 string. This
tyr=2 of knowledge does not have to be explicitly stored for the
human user of the library catalog, for instance, who recognizes
such distinctions with little difficulty, but the machine al-
gorithms for recognizing these accurately are as yet rudimentary
and troublesome to develop. In truth, the manner in which
humans make these inferc .ces 1s not formally understood, and
the developm nt of data structures for machines to allow the
simulation of such capabilities is still in its infancy. Our
present programs can use only a limited but important class of
formal clues, such as the punctuation of the string or the
occurrence of certain symbols of words, although this approach is
sufficient for certain applications. It is the search problem
in files of observations of this class of largely noa-gquantified
object descriptions which we will now explore in this paper.

1.2.2 Object Descriptions - Entities, Attributes, and Values
1.2.2.1 The Domain of Discourse

The domain of discourse of a file is that set of objects

or entities which is described in that file. These descriptions
are the values ascertained for certaln properties or attributes
of these entities. For exampls, if the objects are people, we
might wish the values of attributes "height," "weight," "vision"
or similar characteristics: in other cases we might be more
concerned with attributes such as "highest academic degree'" or
"number of years experience as a supervisor." These attributes
would have values such as "150 1lbs." or "20-40," or "M.A."

Values, then, are the data in the file.

These values are each associated with an element of the
domain of discourse; however, given these data or, in other
words, simply looking at a previously prepared description, there
are sgseveral alternative ways of associating these values with
entities. In other words, there is usually more than one pos-—
sible kind of object in domain of diseourse of the file. The
reason these alternative analyses can exist is that frequently
the value of -ne attribute of an entity may itself refer to
another entity. For example, monographs have an attribute

"o

The person, however, is also au entity with an attribute "r- e
whose value is the same as that of "author." (See Fig. 1)

...”"13

The discussion of the domain of discourse presented in "Analy-
tic Information Retrieval" by L.E. Travis® bears on this point.
If a file is a set of descriptions of some homogeneous clasgs of

objects, as is a file used primarily as a dlrectery to that ﬂlaSé

of DbJeété L.E. TIaVla calls this class the "primary members of
the domalﬁ'oL discoursc." The other entities to which the data
also refer are termed the "s- condary members.'" The three types
of file use which might lead the system designer to consider
these secondary aembers and their relations to one another and
to the primary members are roughly parallel to the three general
uses described sbove. They are:

a. Retrieving data about the secondary entities themselves,

e.g., finding the death date of an author from the
catalog entry of one of his books.

b. Counting the number of members of various sub-groups in
order to characterize s set of secondary members of the
domain of discourse. E.g., how many different publisherc
are represented in the catalog of the University of
California library? Has the distribution of publishers
altered radically within the last ten years?

c, Utilizing information about the secondary entities to

dlscaver wh;ch pr;mary member in the directory mlght
be of use.

FIG. 1:
ONE VALUE ASSOCIATED WITH ELEMENIS FROM TWO

Objects: Monograph Person

Name

Values: Smith

Q

ERIC

[A1 7ex provided by eRic:

In deciding the number and types of access points to a file, the

d651gner must therefore consider the 1mportance of each of the
sttributes of the secondary members gas search clues for the pri-
maryyﬁémbers as well as user interest in the_ seccndary members
themselves. The other criteria are, of course, the cost and
storage constralnts of the system. At one extreme there may
be only one type of access for the whole file, such as "member
number'; at the other, each attribute might be a possible ac-—

5
cess polint.

L.E. Travis speaks of the sets of primary and secondary
members as "'relatively homogeneous classes'" (Travis, p. 317). and
we will now examine the influence of this property on file strue-
ture. To explore the matter, let us first take a file consisting
of object descriptions corresponding to a single set of primary
members in the domain of disccurse. Tne secondary members, if
any., are by definition mentioned only as values of the attri-
butes of the primary members. Their selection is not direct
as a result, nor are the listed attributes selected for the
information they contribute about the secondary members. Their
menticn in the file is, in a certain sense, accidental. The
primary members, on the other hand, are selected according to
some classifying criteria. It is Wlth regard to these criteria
that the domain 1s homogeneous. For example, in a hospital
file the selecting characteristics might be that the entities
are (1) people who were (2) patients in the hospital (3) since
1967. An important thing to note, however, is that in such a
file, those gattributes which define the ec¢lass are usually not
recorded in the object description in the file since they carry
no information. They will, on the contrary. be assumed by the
searcher, and they do not distinguish the cbjects represented
in the file. The object description, then, which occurs in the
file is not the characterization of the class, but, rather,
given the characterization, the attributes used in the descrip-
tion constitute a framework for gathering and recording data.

l.2.2.2 The Attribute List

Since the concept of the class is prior to the s=lection
of the attributes for describing the objects, it, of course,
plays an important role in their selection. In the first
place, due to the great value of standardization to searching
any but very small files, we do not usually think of selecting
the attributes for each entity separately. Rather, we conceive
of a set of attributes which "holds" for the class where '"holds"
may be interpreted as follows:

Given any set of defining characteristics for

the class and any proposed attribute, that at-
tribute holds forAﬁhe class if the null value

of the attribute is informative; that i, 1f the
null value could be ascertained only by examining
the individual member and is not inferrable from

the eclass definition.

To rephrase this definition,

An attribute holds for a class, if, given the
class definition, the a priori probability thsat
it holds for each individual is greater than zero.

For example, one may include the class attribute "number of grades
completed" in a file of '"people'; although they may not all have

ledge of what it is to be a "perscit." The null value, then, or,
in other words, the failure of the attribute to hold for the
individual, is informative.

1.2.2.3 Attributes and Record Formats

To pursue the matter on a "ess abstract level, this list of
class attributes is ordinarily translated into the actual file
structure by the rules constituting the record format. With such
a list, iv is possible to put explicitly in the record only the
values of the attributes while the attributes themselves are
carried implicitly either by relative location in a fixed f¢-mat
record or by tags in a more flexible structurce. We shall call
the area of the record where the valv f an attribute is stored,
when it occurs, its atiribute field terms of file structure,
then, the degree of "homogeneity' of the domain of discourse is
the extent to which it is efficient to describe all objects in
the domain using one format.

To look now at a more complex situation, if one has more than
one file of object descriptions in the system, the dichotomy be-
tween the class concept and the description still exists, but
the class concept can no longer be assumed. It will be reflected
in the routine for selecting files and adopting the correct for-
mat in order to channel search requests to the proper file and
attribute field.

The nature of formats as a tool for structuring data is now
apparent. If our application is such that (1) our files are
object descriptions only and (2) that the a priori classification
of these objects is not objectiocnable, formats are a device for
compressing and standardizing files. It is a powerful tool pre-
cisely because there are a multitude of applications in which
that data meet these two requirements. The second on=, after
all, really only implies that we are interested in well-defined
internal distinctions and similarities within one particular set
of objects rathsr than in L.ae relations of these individuals to
entities outside the class. These internal distinetions and
similarities are determined by examination and manipulation of
the values associated with each attribute; therefore, the nature
of these "value sets" and their role in the file structure will
next be considered.

1.2.2.h Value Sets and Record Fields

The process of obtaining the values which appear as data in
the file has two stages: observation and recording. BEach has
rules and procedures governing its performance. Although these
rules may not slways be layed out consciocusly, in complex systems
such as library catalogs they are contained in extensive and
detailed codes. The reliability of the descriptions as guides
to the obJjects they represent is, of course, dependent upon the
quality of the rules and the coasistency with which they are
applied. ir focus on file organizstion excludes the former
proble... but we shall be Interested in whether or not the rules
exist explicitly, what they are, and, of course, whether they
were consistently applied in constructing the file. All this
information has direct bearing on the problasms of record retrieval.

The devices used for the observation of the values, to consi-
der the first step, can rangz in complexity from a single glaace
to the use of sophisticated mechanical, electronic, or statistical
tools. The rule:z may range in exactness from the highly objec-
tive to the almost completely subjective (with resulting inconsis-
tencies).

When these ouservations are recorded, they frequently undergo
transformations. These changes are of two kinds: first, formal
structuring, such as punctuation or transliteration of foreign
alphabets; secondly, conversion to "legal" values; that is,
there may be a linited list of values of color, for example,
which may be used to describe the objects, and the describer must
"reduce" each cbservation to one of these values. In mathematical
terms, ths change (s a many-one mapping. A mapping takss one
set of values call=zd the "domain'" and supplies a rule or "function'
for transforming them to another set of values called the "range"
of the mapping. Ia all many-one mappings, the original = in this
case, the observed - values are not recoverable from the trans-
formed, or recorded, values. A simple example of a "recording
function" is the following rule:

1

"Round-off 'annual income' to the nearest $100."

This rule defines the +transformation. The range is given in-
direcetly; that is, a rule for calculating it is given. The

range consists of all integers whose last two digits are '00°'.

If, moreover, the data gatherer knows "annual income'" to the
penny, there will be 10,000 possible observed values for every
"legal'" one. Here Lhe rule is explicit, but the range must

be calculated. In 2ontrast, in library subjeect ecataloging the
range is explicit in the sibject heading iist, but, unfortunately,
the conversion and observation rules are totally unformalized.

The set of recorded values associated with a single class
attribute, as, for example, a list of all the authors which occur

: .. "23

in the file, will be calied a value set. Associated with the set
of types (the value Sét) e a set of occurrences or tokens. Just
as the class attributes c@rrespand to attribute fields in the
file, this latter set may be regarded as being in one--to-one
correspondence with the actual data strings ip the fields of

the logical records. The mepping between these two sets defines
the final stage in the process goirng from the "true" wvalues to
their representation in the record: that is, from the "true'
values to the observed values: from the observed values to the
zet of occurrences or token; and finally from the set of tokens
to & specific location in the record itself. One goes in the
last step from, say, the fifth ocecurrence of the twentieth value
of +the tentcth attribute in the set of objeects being described

to a record location; for example, the second repeat of the fifth
attribute field of the L410th logical record,

We have now finished describing the creation of "obJject-
description files." We have apprcach:i it essentially as ;
cess of selecting and mapping data about the real world i
file and record structure, delineating the many decision lentE
involved. This analysis has prepared the way for a discussion
of the problems of searching such files. We will concentrate on
the problems raised by the use of such files as directories to
the objects described, since this case presents all tuhe problems
raised by other uses and more.

1.3 Searching Directories
1.3.1 The Query for a Directory BSearch

There are close parallels between the process of constructing
the file of object descriptions and the process of using the file
as a directory; indeed, our interest in the former in a paper on
file search stems from this similarity. The primary distinc-—
+tion is that the searcher is in a state of uncertainty about the
file and its contents, in addition to any uncertainty he may
have about what sort of objects might fulfill his need. Our
interest will begin at the point at which the user's request is
to be translated into a search of a particular directory. This
search may be hampered by either lack of knowledge about the rules
and content of the file or uncertainty about the class of ob-
jects which is beirg searched for. This latter difficulty may
stem either from lack of adeguate cbservation of the class of ob=
jects sought or because the class is only hypothetical, as in the
set of books about the psychological environment of public
libraries. In the first case the class is known to exist;
indeed, the searcher may even have observed its members. The
problem is to find the descriptions of the objects in this par-
ticular file in order to ascertain their imnelusion in it,
their location, availability, or suitability to the searcher's
need. If the eclass is hypothetical, on the other hand, the
sear~her must first ascertain the existence of such a class and

its membership, if any, or, worse problem, ascertain its non-

existence, In any case, however, the searchesr muzt selzct a

domain, a set of att*lbutes and the set of values he thinks might
mosc likely have been used to describe the set of cbjects he
seeks, He must further select taem in such a way that they
correspond to the file-constructor's practice at each of these
points if the searc 1s to be successful. The system, of course,
may provide some help by supplying him with the system construc-—
tien rules and certaii ror—correcting routines. Cleuriy,

the more explicit and better defined the rules, the more help they
will be to the user. The typea of aids which the system may
provide and their role will be considered next as we turn from
the uncertainties which csuse problems in file search to the
gources of information which can aid the searcher or the sysiem
in making cocrrect matches.

\ﬂu\
I~

etrieval Failures

=

1.3.2

Corresponding to the threze socurces of uncertainty mentioned
sbove, (1) lack of knowledge about the files rules, (2) lack of
knowledge about the object or class of objects the searcher is
describing, and (3) lack of knowledge about the actual contents
of the file, we can describe three classes of system or "re-
trieval" fajlures which we will call formal errors, varisuts,
and content errors. Let us first consider those retrieval
fallures caused by formal Grrors . They are th@se dlf*erences

to be matched wh;cg result fr@m one or both forms Déing in-—
correct with rfspect to the system's constructicn rules or
"common knowledge' or language such as is available in a dic-
tionary, itself a set of rules. The importance of this class

is that these errors can be identified and corrected without
kinowledge of the actual contents of the file or furtaer Dbserva—
tion of the objects. They are formal errors in the sense that
knowledge of the rules alone is sufficient to correct them.
These include, specifically, such mistakes as failure to put

the "main entry" in specified form in a library catalog, spelling
errors in common words, typograrhical errors which a user or
proofreader could reasonably correct from his own knowledge,
misplaced parentheses in Boclean search queries and other simi-

lar faults.

caused %y gantant errors and varlants, by c:::»n‘t:n:'as‘t;5 can Gnly be
detected through knowledge of the contents of the file itself or

by tracing back to cther accurate descriptions of the obJects,

if they are agvailable Descriptions by the system and by the
searghgl or any two describers which are cgmpletely correct,
but which because of ambiguities in the rules or inexactness

1; the methods of observation or differences 1n com@ieten&gs
of information fail to match are here called "veriants." An

exe -le of & variant is the use of a man's full middle name in a

query and his initial only in the file. These can be detected
only by examining the file itself, not by examining the objects
or the rules. Content errors are mistakes in the contents of
the guery (or the file) which result from faulty information
aboul the object. ocu the part of either the system or the user.
Content errors include such thlngs as a spelling of a name in

a query which is phonetically reasonable but not the actual
spelling: an inexact title {of a document); or an incorrect

date which is not obviously absurd. In theory, one could fre-
gquently trace this faulty informatiocn back to a correct source
other than the file, but in practice that procedure would often
be impussible, and, moreover, as the eriror would not be detected
in the search process unless the correct record were in fact
retrieved, ithe cause of the failure might not be recognized.

The significance of variants and content error is that, if they
are to be detected and corrected at all, the system must do it
internally as part of the matching process; unlike formal errors,
these mistakes cannot be corrected practically from any other

source.

From this analysis of the possible sources of retrieval
failures, it follows that the criteria for deciding whether or
not to supply search aids is different depending on whether the
failure is due to formal error, content error, or variant. In
the first case the criterion is the level of participation
which the system wishes to require of its users; the less the
demand, the more "formal error" detecting and correcting rou-
tines one needs o supply. In the case of content errors and
variants, it is rather the level and types of failure which the
system's designers and users are willing to accept. If the
system doesn't help, nothing can. In the following section we
will exsmine the nature of the possible retrieval aids.

1.2.3 Compensating for Formal Errors, Content Errors, and Variants

A common characteristic of formal errors, content errors,
and variants is that the values to be matched are "close" to
each other in some sense. The problem for the system in com-
pensating for them lies in the fact that not only will the
concept of closeness between values vary from field to field,
but also within a field it may be differently defined for
different types of mismatches. A query which has a formal
error in it may be ”close in differenc wgys fr@m one Which Eaa

CYIrors and varlants may not necessarlly bé ccmpensated far
éasily by the same device. Consider, for example, a name
string, "Smythe, John Dolan," and the following possible
query strings:

a. Smith, Jdohn D.
0. John Smthe

=10=

wvariant (D for Dolan) but is close to "Smythe, John Dolan'" in that
it is a reasonsble transceription of the same or phonetic string
in English. The variant use of only the middle initial is
acceptable under many descriptive rules. The second query con-—
tains a keying error and a violation of the order rules for
entering names, both formal errors under our definition. This
query is also "close" because, on the one hand, a letter was
"just" omitted and on the other, the inversion was not made. The
same algorithm which compensates for "Smythe" and "Smith" or
"Dolan" and the use of the initial might also by chance match
Smythe and Smthe, but the inversion would surely have to be
corrected either externally or, if internally, by a different
algorithm.

Formal errors., then., may be corrected inside or outside the
system with the help of the rules. On the other hand, content
errors often behave like variants, particularly for fields such
as title, but it is probably hard to generalize about them.

More research here would not be amiss. Variants may be corrected
only by providing a means of expanding the search to '"close"
values. Therefore, in solwving "the search problem," one im-
portant field cf interest mmust be definitions or rules for
similarity within value se's or similarity among wvalues of the
game value set. As we have indicated, these may vary wid=1ly

for different fields and may be complicated to construet. Most
bibliographic systems already have some at least rudimertary
tools of this type. Common examples are subject indexing the-
sauri, authority lists for names, and, in some experimental sy-tems,
their formally constructed semi-equivalents.

1.4 Similarity Between Value Sets

1.4.1 Definition

In section 1.2.2.4 we defined the value set of a file of
object descriptions as the set of value types associated with
each attribute of the class of objects in the file, such as the
set of all the different authors' nsmes in a file. Closeness be-
tween pairs of values within a single value set, such as index
tags in a file of bibliographic descriptions or similarity
within value sets, was seen to be an essential concept behind
different types of error compensating devices in file search.

between value sets.

In the discussion of value sets in section 1.2, it was
suggested that values within value sets might be close in a
number of different ways. Two written names, for instance, might
be similar either because they were ''correct" English trans-
criptions of the same spoken string or because there was "only"
one letter at variance because of a keying error. As the basis

. =11~

. 27

for our extrespolation, although others may also be useful, we
will use only one sort of "closeness," statistical association.
The measures of this class, whick: are derived from data about
tlie co-cccurrence of pairs of values of an attribute in object
descriptions, are now used in experimental bibliographic

systems for such purposes as elaborating or expanding searches
by subject tag when the original search has failed to satisfy
the user. Many such measures have been investigated in a limi-
ted way (5,6,8,9) but at the present time much research remains
to be done on their properties and the conditions which may work
to the advantage of one rather than another. The entries in the
two-by-two contingency tables (see Fig. 2) which provide the
data for these measures contain for a pair of values the number
of records in which both values oeccur, each value occurs separ-—
ately, and neither occurs.

FIG. 2: TWO-BY-TWO CONTINEGENCY TABLE

VE Not VE
Vq vy and Vy | ¥y amd Mot vV,
v Not 3
Not V;_ﬁﬂ ﬁ?t,Yl‘?ndﬁfg L NQF Virapé #%FHYE

One possible interpretation of the intuitive idea behind such
measurements is that two values are similar if they are associ-
ated with, or isolate highly overlapping sets of records in a
file. An extension of such an idea to entire sets would suggest
the following rough definition:

Two value sets are similar if they are able, as
established by computation or operational dsta,
to isolate highly overlapping sets of records.

That is to ssay that if one thinks of each value set as the keys
of an index, and if one knows the proper key or combination of
keys, the two indexes are similar if one can isolate roughly
the same group of records through either index. Measures of
value set similarity are therefore potentially one component
of index similarity which could be considered in making de-—

sign decisions about system structure, as we shall see presently.

1.4.2 The Three Types of Similarity Between Value Sets

Having in mind this intuitive idea of similarity between
value sets, let us examine the concept in more detail. Specifi-
cally, we distinguish the following three types of such similar-
ity between value sets: (1) distributional similarity; (2) fune-
tional similarity:; and (3) elemental similarity.

1.4.2.1 Distributional Similarity

ar when they have

Two values sets are distyibutionally simils
similar siva*istical distributions in the file. For the present

we suggeszstl determining distributional resemblance by exam’ ning
the follow.ing parameters:

a. The number of records containing non—-null values of
each set; :
b. The number of occurrences of values of each set in the
fileg
c. The variance and expected value of the number of reccrds
per value (discrimination) (e.g., the average number of
documents by the same author); and

d. The expected value and vu.riance of the number of values
from the one value set per record, (e.g., the average
namber of index terms per document).

The expected value and variance of the number of values of an
attribute per record (d) is a figure frequently of interest Ffor
researcher, but probably of less direct interest to users. The
other three types of data, however, supply the necessary raw
statistics for determining the relative size of the ranges of
the two attributes and their discriminatory capsabilities. We
use such information intuitively in searching. TFor example,
suppose we know the titie of a book (when the title seems dis-—
tinective) and the subject heading assigned to it, and we want
to know the call number. We might seywrch by title rather than
subject heading expecting to retrieve many fewer unwanted records
by using the former.

1.4.2.2 Functional Similarity

Two value sets are functionally similar if, by virtue of the
distribution patterns of their tokens in the file, one could
isolate the same sets of records using either index. TFor example,
suppose that a system designer wished to know whether it was
worthwhile to provide an index by classification rumbers to a
set of document records in addition to an existing subject
heading index. If he finds that, for most seis of records
retrieved by sesrching through the subject index, the same
gset or a highly overlapping one could be isoclated by retrieving
the records associated with the union of the eclass numbers occur=

ring in the first set, he might consider the second index to a larg:
extent redundant. Let us label these sets as follows:

Set A = the records retrieved by a subject heading,
i.e., through a value in the first value
set or index.

iy
m
ct
s
[

the records retrieved by the records associ-
ated with the union of the class numbers
co-occurring with the subject heading:

i.e., the union of the values of the second
attribute co-occcurring with the value from
the first attribute.

If A and B tend to be the same through mary observations, then the
designer might consider providing only a "translator" from class
number to subject heading rather than a second index. The
translator from subject heading to c¢lsss number would presum-

ably be cheaper to maintain than a second index if the composition
of the two vaiue sets and the asscciations between them were fair-
ly stable. This stalility does not seem an unreasonable hypothesis
The translator might range in accuracy and complexity from an

index to all values co-occurring with the values of the first index
to Boolean functions of values of the second set for more exact
approximations. The cost of compiling and maintaining an elaborate
translator, however, might eat up anything saved by not maintaining
an index, but it seems worthy ol consideration for some uses.
Figures on +the comparative use of the two value sets as search

keys as well as the cost constraints of the system and the user
would be factors influencing his decision.

An additional reason to find measures of functional simi-
larity is to provide search aids. A searcher who has retrieved
a Set A in response to his original query might wish to Know
whether it is "worthvwhile" for him to expand his search by re-
trieving the records associated with the union of the class
numbers which he had found in ZSst A, that is, Set B. Consistently
large overlap between A and B would suggest that this extension
would not likely be very productive of new references. For
purposes of search expansion, 'worthwhileness'" would depend on
the user's beilng able to expect several additional references in B.
The most obvious statistic to aid him in his decision would be
the number of records in B but not in (A AND B); that is, the
size of the complement of the intersection of (A AND B) in B.
The distribution of this statistic might te a reasonable basis
for a measure of similarity.

Functional similarity is dependent on distributional sgimi-
larity in important ways. For instance, so long as the value set
of S8et B is distributed with only one value per record,
the union of those values is the only Boeclean function

=

which can be used to define Set B. Intersection and complementa-
tion of the values of that set cannot occur unless there is more
than one wvalue of that set per record. As soon as more than one
value per record ocecurs, however, intersection and complementa-
tlion of values of the second set can produce a closer match to A.
More generally, let us call the degree to which any set of
records may be specified by the value set of a field that field's
degree of flexibility. For example, the records for two books
with different authors cannot be specified as a set; that is,
those and only those records, using the values of the author
field alone unless i1t happens that each author only wrote one
Look. Tt is sufficient for a field to be fully flexible that
within the field each record contains a string which is unique
to that record. At worst, in this case, one can specify any
possible group of records in the file simply by listing these
unique strings. Record identification numbers are an example

of a completely flexible field, whereas in bibliographic records
the author field is not. Shallowly subject-indexed files, such
as those created by the Library of Congress, do not have com-
pletely flexible subject fields, but as more and more index
terms are added to a record., the number of records for which

the 1index terms as a set constitute a unique string will ap-
proach the whole file. How quickly the field becomes fully
flexible is, thus, a function of the distributional character-
istics of the value set; il.e., its size, the number of values
per record, and the number of revcrds per value. The allowable
indexing and .etrieval grammars also play a part. The addition
of full Boolean logic or liunks or roles, for example, should
increase the number of unique strings for the same size vocabu-
lary and the same indexing depth. The distributional character-—
istics of the field, then, have a great role in determining the
ability of one field to function, in our limited sense, like
another.

An additional facet of this ability must be high correlations
between values of the different value sets, ithe less flexivie
the field being compared, the more two-way correlstion is neces-
gsary for this fTield to duplicate the retrieval behavior of the
first one. It may in fact be that a good measure of the simi-
larity between values within a single value set. This process
would have three steps.

a. Calculate the association values using some
appropriate measure between all co-occurring
pairs of values vhere one value is from the
first set and the other from the one being
compared to it.

b. Average or otherwise summarize for each value
in the first set the association value it has
with each value in the set being compared to
it which co-occurs with it. In other words,
for every A, average its associations with
the elements of B.

- |

c. Average these averages for all values in the
first set; i.e.,

_ J,

I B 1‘
N

y = L 8y

Iiél’ijml

where ajj is the association value of the ith
value in +he first set with the jth co-occurring

term in the second.

Another possible measure is the mean of the distribution of
(B-(A AND B)), as suggested above. There are, then, at least
two alternative approaches to developing measures.

It seems doubtful if the measures as such will be very use-
ful as rearch expansion aids, as opposed to serving as criteria
for system design dscisions. It seems probable that too much
information is lost in the summarization process; therefore,
either the size of (B-(A AND 3)) for a particular A or the average
of the associations of the terms in B co-occurring with A, i.e.,

Jas
=1l

would be more informative indicators. We have used A here as a
single term, but the same techniques could be extended to A's
which were Boolean expressions.

The proposed types of measures make sesi3e only so long as
the set being compared is not completely flexible. In this
latter case, we know it is possible to duplicate exactly any
A using the second set; indeed, that is what the standard
gearch. ray-to-re-c d-rumber vy lrcation inde @ is. The guestion
now becomes, how difficult is it to do? Aithough developing
measures for this case seems an interesting problem, it has not
been pursued any further to this time.

1.4.2.3 Elemental Similarity

Elemental similarity can occur when two or more fields of
a record have value sets whose values have common '"'meaningful
elements." Examples of "meaningful elements" are such strings
as dates and keywords in subject heading and title fields.
Funetionally these are the elements which would serve as the
basis of a common index to the two (or more) fields. Since
there is no clear theory of what constitutes a meaningful ele-
ment, the clarification of this rather fuzzy definition will
not be attempted here. IJTn some cases, =ven characters might be
of interest to the user, but more casually one assumes =z larger
unit. We will call a set of such strings for one field its

Elemental Set (ES) and the intersection of two such sets for dif-
ferent value sets a Common Elemental Set (CES). In our present
situation let us assume that the user's information can be trans-
lated inte more than one value set, because the user can ex-
press his needs in terms of the CES. For example, the user may
know a group of keywords associaced with a topie of interest.

If these keywords are in the CES, they may be translated by

some matching algorithms into, for instance, either a set of
subject headings or a set of titles. Let us call these two

sets of documents. thus retrieved C and C'. F-re there are two
levels in the search and, thus, two aspects in determining the
similarity of the two value sets. The first is size of the CES
relative to the two elemental sets, and the overlap of each of
thegse individually with the user's set of elements. The second
is the similarity over many observations of ¢ .14 C'. Note that
C and C' are selected, not because of the co-occurrence of
values as is the case in A and B, but because of the oeccurrence
of elements. Thus search expansion using functional similarity
and search expansion using elemental similarity might frequently
yield quite different results. (See Fig. 3 and Fig. U4.) The
criteria for using one approach as opposed te another when both
are possible as . ~tween title and subject fields, is one of ths
facets of the problem which needs to be investigated.

The basic data needed to measure elemental similarity with
regard to the Elemental Sets is the same as that described in
observing functional similarity; that is, the size of each of the
elemental sets and the size of their intersection. The useful
data concerning C and C' should be the same as that needed
about A and B. The primary complicating factor in the use of
elemental similarity is, of course, that fields must be indexed
and that gqueries using the index must then be translated back
to the value sets. The nature of this matching function clearly
can inifluence the values selected and thus the record sets
C and C'.

FUNCTIONAL

SUBJECT —o
HEADING ——

-~

MASTER
FILE OF
CITATIONS

FIG. 3%
SIMILARTITY

RETRIEVED

——3 SUB-SET

A

L.

RETRIEVED
SUB-SET
B

SET —

OoF
ALL

LC
CLASS.

LC

CLASS .

INDEX

NOoE.

IN

-18-

it

FIC. L:
ELEMENTAL 3IMILARITY

Value

Set T —
(e.g., Subject 3| Retrieved
Feadlings) - Set C
-
Element
Index
(e.g., terms)
\\
U
Value

S=t II

(e.g., titles)

Retrieved
Set C?

- -1935

O

ERIC

Aruitoxt provided by Eic:

Research

The following areas sre suggested for research:

A.

Measures for distributional, functional, and elemental
similarit; -:

The relationship of distributional and funetional simi-
larity and the correlation between functional similarity
and elemental similarity:

The relationship between functional similarity and inter-
value set correlations between pairs or subsets of wvalues:-

The use of statistics on condition or set overlap as
search aids.

—EQf}£;

REFERENCES

Minsky, Marvin, ed., Semantic Information Processing, Cambridge,
Mass .: MIT Press, 1968,

Simmons, Robert F., "Natural Language Question—-Answering Systems,'

CACM (13, Januvary 1970), 15-30.

Travis, L.®E., "Analytic Information Retrieval," In: Paul L.
Garvin, (Ed.), Natural Language and the Ccmputer New York:
McGraw-Hill, 1963, pp. 310-353.

Maron, M.E. and J.L. Kuins, "On Relevauce, Frobabilistic Indexing,
and Information Retrieval,"” JACM (7, July 1960), 216-2ulk,

Stiles, H.E., "The Association Factor in Information Retrieval,
JACM (8, April 1961}, 271-279

Kuhns, J.L., "The Continuum of Coeffinsients of Association," [u:
Statistical Association Methods for Mechanized Documen+at19n,

Washington, D.C.: National Bureau of Ctancards, (lationsi
Bureau of Standards Miscellaneous Publications 269), 19635,

pp; 33_39§

Salton, Gerard, Automatic Information Organization and Fetriesval,
New York: McGrawsH1¢l 1968,

Mignon, Edinond and Irene L. Travis, LABSEARCH: TLR Associative
Search System Terminal Users' Manual, Berkeley: IThstitute of
Library Research, University of California, 1971.

2. THE ASSIGNMENT OF INDEX TERMS-
By Marcia Bates

2.1 Bummary of Study

A 60.000 document file consisting of the first cataloging done for
the library of the new University of California campus at Santa Cruz
was analyzed by computer to gather data about the basic characteristics
of the file, and to test two minor and one major hypothesis about the
behavior of subject headings in the file.

The first minor hypothesis was that during the depression period
catalogers gave more subkject headings per document but did not add more
thai: the usual number of new headings to the thesaurus. VWe found that
more new subject headings were added to the thesaurus relative to the
number of documents indexed during that period, but the conjectured causes
were equivocal.

The second minor hypothesis stated that the mean date of publication
to which a given subject heading is applied is indicative of the rela-
tive age of the subject field described by the heading (relative to
other subjc.t fields described by other headings). A random selection
of headings and thelr mean dates was produced and a visual inspection
gave cone little sense of the progress of time.

The major hypothesis stated that documents with s high number of
terms assigned represent new areas of activity where the vocabulary is
not yet well developed (hence confusion on the part of indexers and a
tendency to assigr. more headings). Two major tests were made on this
hypothesis. In the first test the mean date of publication over all the
aprlications of that term (or "heading'") was computed, and this mean
date was subtrzcted from the publication date of each individual applica-
tion of that hreading. This was done for all headings in the file. Then
the mean number of terms assigned along with a given term was computed
over all term applications (regardless of term) which had the same differ-
erce between mean date and date of publication of individual azpplication.
The second test did the same except the difference computed wasz that
between the eariiest date of application of a term and the date of indi-

vidual application rather than the mean.

The first test appeared to confirm the hypothesis. However, there
were several faults in the test and the second, less Taulty test was
then conducted. It produced negative results, i.e., yielded nothing to
confirm the hypothesis. Finally, it appears that the eritical test has
not yet Leen performed. Therefore, some improvements on the current
tests are discussed.

2.2 Description of Study
2.2.1 The Hypoctheses
One would expect that when confusion exists over the naming of a

subject field or sub-section of a subject field, this confusion would

Q -

ERIC o as

Aruitoxt provided by Eic:

Q

ERIC

Aruitoxt provided by Eic:

be reflected in the assigning of index terms to documents on that sub-
Jject. ©Cne might further expect that this confusion would be demonstrated
in that indexers would tend to give more +terms to documents on such a
subject. In other words, where there was no single generally agreed upon
term, indexers would use several terms to be sure they had covered a1l
the likely access terms to be used by index users.

While this problem might occur in any field or sub-section at any
time, we would expect it to be especially acute in newly developing
fields. BSco the hypothesis: Documents with a high number of terms as-
signed represent new areas of activity where the voecabulary is not yet
well developed.

The hypothessis and the expected results it posits are, of course,
independent of guesses made as to the cause of ths resalts. The reason
given above, that indexers feel they must assign several terms to cover
all the likely access terms to be used, may not be the cause, or it may
be one among several causes for the results. Here are two other possible
explanations:

1. When working with a limited vocabulary, i.e., out of a thessurus,
there may not have been any apt term incorporated intce the thessurus yet
to describe the new field. Among the terms in the thesaurus, thers may
be several each of which only partially describes the fieid. The indexer
then may feel it necessary to use most or all of these to adequately
dezscribe a document's subject.

2. The first explanation, proposed above in presenting the hypothe-
sis, presumed general terminology confusion in the field, with the con-
sequence that the i.dexer must provide for all the possible access terms.
However, even after opinion has largely consclidated around a particular
term or set of terms to describe a field asmong the practitioners in a
field, confusion may linger among non-specialist indexers. With some
thesauri, such as the Library of Congress List of Subject Headings...
there may be a relatively long lag before new terms are introduced to
the list. Such terms will likely be new to the indexsrs and they may
feel hegitant at first in dropping all at once the several terms for-
merly used in favor of the new term or set of terms, especially if they
feel uncertain about how the new terms should be used. Their solution
(consciocus or unconscious) may be to retain some of the older terms, along
with the new ones, in their indexing of the new field for a while.

John Tinker, writing in American Documentation, has some ideas
related to the above. Hig views will be discussed in the next section.

In the process of developing tests for the above hypothesis, several
other minor hypotheses were developed. There was time to carry out work
on two of the three principal ones and they will be describsd here. The
other will be discussed under future work in section 2.2.5.

1. A Ppasic analysis of the data base revealed that the average
number of subject headings assigned per document was significantly higher
between 1930 and 1945 than either before or after. A question which

Q

ERIC

Aruitoxt provided by Eic:

then arises is, 13 this solely because people had more time and fewer

~00ks then because of the depression, and so assigned more headings, or
did they =als~ add more than the usual number of new unique headings to
the thesaurus during this period? Rathier than speculating on the why'
of this phenomenon now, let us simply state an hypothesis and see if it
is confirmed: During the depression period catalogers gave more subject

headings to the thesaurus.

2. A new book can be writtem about an old subJect but an old took
cannot have been written about a new subject. So the hypothesis here
is that the mean date of publication of books indexed under a term is
indicative of the relative age of the subject field. Note that it is
relative age--becasuse old fields can have new books written about them.

2.2.2 Background

A guite thorough literature search produced only three articles
even reasonably relsted to the topic of this study. Two were purely
statistical studies to determine basic characteristins of large files.
and not made to test any hypotheses about the character of literature
or indexing. The data these studies produced will be discussed in
connection with -“he corresponding data from this study later on.

The third study, by John Tinker (L), relates to the hypothesis
of this paper. (This is the first of a two-part secries of articles.
However, the second (3) branche: into other areas and holds nothing of
j-terest to us here.) His chief concern is with indexer inconsistency.
Tc guote the abstract: '"Indexers, in choosing or assigning all words
strongly associated with concepts of & document, assert that the docu-
ment means the word; therefore, consistency of indexing measures the
precision with which meaning is understood by the indexers." (p. 96)

He defines highly precise use of a term as application of that
term to any one document by all the indexers in a study. (Such a term
may be applied @lseyhere,inéonsistently_) He found in a test using
9 indexers, 100 descriptors, and 50 abstracts to be indexed, that 19
descriptors were used highly precis=1y according to the above definition.
Analysis of these descriptors revezled this: "Of the 100 descriptors,
15 describe concepts that were unknown only a few years ago. Five of -
these new words, or 33% of them, were among the 19 most precise descrip-
tors, while only 16% of the older words were used precisely. It would
be interesting to know if new concepts sre understood more precisely
than older ones ag suggested by these data.”" (pp. 99-100) This is con-
trary to one of the possible causes offered above for confirming results
on the hypothesis of this paper (no. 2), namely, that meaning of new
terms 1s poorly understood at first by indexers. Whatever the cause of
results confirming the hypothesis, it seems unlikely (though, as ever,
not impossible) that these results would be due to =a more precise under-—
standing of the new terms (than of oid termc) onm the part of indexers.

Strangely, Tinker says elsewhere: "The differerce in usage of new

E

Q

words and the tendency to use new words less pre risely than ©ld words
fail to appear in Part ITZI..." (p. 100) (emphasis mine). This is a
direct contradiction of what he sgys earlier and in the abstract to
the paper. As the "more precisely" statement appears in two places,
it is oprobably the intended one,.

One more, philosophical, comment with regard to Tinker's study:
He states in various ways throughout his article views to the effect
that low precision in use of words is due to lack of full understanding
of the meaning of a term on the part of individual indexers (see par-
ticularly p. 101). It seems likely, however, that general confusion
or lack of agreement in a fi¢ d can exist, that no one can be said to
know the one correct definition of a term (because there is no single
agreed upon definition yet). For example, Tinker states, "If a given
term is applied to a specifiec abstract by a large number of indexers,
it is fair to say that those who do not apply the term do not fully
understand its meaning." (p. 101)

But it may be that those who did apply it were Just as unsure as
those who did not. And maybe, in the matter of new terms, out of their
insecurity, they applied more than the usual numbher of older terms along
with them (ef. the third cause again). Indeed, Tinker notes elsewhere:
"Twelve of the 100 descriptors on the list were used in 34% of the de-
scriptor—-abstract pairs. Of these often-used descriptors. only 1 was
new. The other 11 descriptors, or 13%*® of the total, were older words.
This suggests that descriptors for older concepts tend to be used more
freguently.”" {(p. 100). They would indeed if they were used along with
new terms to describe new subjects as well as old subJjects.

2.2.3 The Data Base

The data base used was the cataloging data for the basic collection
of the newly-founded Santa Cruz campus of the University of California.
This data had been converted to machine-resdable form and recorded on
magnetic tape. It was received by the Institute about a year before the
beginning of this study. The original base consisted of roughly 80,000
main entrie , composed of two large sub-files. The first, comprising
roughly 35,000 items, were entries for cataloging done under the New
Campuses Program. This program is described in detail in the article
by Voigt and Treyz (5). The purpose of this program was to select,
collect, and catalog basic undergraduate collections for the three new
campuses of the University, San Diego, Irvine, and Santa Cruz. ° The
remaining entries were for cataloging done -+ Santa Cruz on material
collected independently by that campus. The cutoff publication date
for the NCFP collection is 196L, whereas there are some Santa Cruz titles
for as recent as 1967.

¥These p’rceﬁfages do not appear to relate to anything in Tinker's paper.

~26-,

RIC

Aruitoxt provided by Eic:

E

For the purposes of this study, only the way the two projects handled
subject headings is of interest. Both used current subject headings from
the LC List of Subject Headings... If LC c#~?s were bought, they were
amended to current usage.* (5, p. 2207) Ovecy two-thirds of the NCP books
were in print and LC catalog cards were used for these. LC cataloging
was also used for out-of-print books wher available. Ir contrast, most
of the cataloging done at Santa Cruz was original.

The only other major difference between the two portions of the file
1g that Mr. Black says he encouraged his catalogers to add subject headings
of their own to the authority list, especially in science, where they felt
the LC headings were nc: adrjuate. There is no way of knowing how many of
the headings in the data base are of this sort.

The exact number of entries in these two portions (NCP and Santa Cruz)
is not known, nor is there a:ny easy way to tell which came from where.
However, it 1s neot necessary to know this anyway; the value of this infor—
mation on the two porticns is to give an 1dea of the general character of
the file.

When the file was first received by the Institute, there were a number
of probliems in reading and processing the file and about 5% of the original
entries were eliminated by formal methods on a computer (eliminating those
with improper field lengths, ete.). This left a fi'e of T4,732 entries.

Of these, 14,571 were documents to which no subject headings had been as-
signed. This left a2 basic file of 60,161 documents, each of which had at
least one subldect heading assigned teo it. Will Schieber, of the Institute,
had created a new file off this basic one, which was composed only of each
subject heading application, that is, each logical record in the file

gave & subject heading, the number of the document to which it was assigned
and some other data. A particular subject heading was repeated as many
times as there were documents to which it was assigned and a particular
document number appeared as many times as there were subject headings as-
signed to it. There were 103,038 such application records.

2.2.4 Tests on the Hypotheses
2.2.4.1 Basic Data on the File

Computer programs were run oun the file on the IBM 360/L0 and the CDC
6Lo0 computers at the Computer Center of the University of California at
Berkeley. Programming was done in the F@PRTRAN Laaguage.

The purpose of the first computer program was simply to gather some
basic data about the characteristics of the file, particularly with re-
gard to the distribution of the number of subject headings applied to
documents,

¥Tnformation on the Sants Cruz cataloging practices was obtained in a
telephone conversation with Mr. Donald Black, who was Head of Technical
Processes at the UCSC Library from October, 1964 to February, 1967.

Aruitoxt provided by Eic:

KTC .

The total number of unigue headings (types, as opposed to applica-
tions--tokens) in the file is 39,537 and the total number of applications
is 102,614. This makes for a mean of 2.595 applications per term. (This
count was made after the date duds had been removed from the file and a
few other records had beer eliminated in the process of writing new tapes
off the original, so the total number of applications is smaller than
previously.) The significant porticn of the distribution of the number
of unigue headings applied X times and proportions of the totsl number
of headings are given in Figure 5. The highest number of times any cone
term was applied was 19L.

FIG. 5: DISTRIBUTION OF NUMBERS OF APPLICATTIONS (TOKENS)
OF UNIQUE HEADINGS (TYPES)

Number of Nuunber of Proportion of all
applications unigue neadings _unigue headings

i 26508 .6705

2 5336 .1350

3 22h7 . 0568

4 1277 .0322

5 8a7 .0209

6 588 .01k9

T 430 .0109

8 367 . 0093

9 252 . 0064
10 209 .0053
11 169 .00kL3
i2 139 . 0035
13 115 .0029
h 99 .0025
15 TO .0018
16 73 .0018
17 T8 . 0020
18 61 .0015
i9 : 61 .0015
20 55 .001k
21 L5 .0011

(A11 succeeding values are below .001.)

, .

In a similar study made at the Library of Congress (2) the mean
number of applications per unigque heading was found to be 1T7.5. The
highest number of times any one heading was applied was 1,20L (p. 102).
The study was made on a sample of Lz headings rather than on the whole
fil- as in this case. They found that 83.5 per cent of the headings had
fewer than 11 entries (or applications) (p. 101). The comparable figure
in this study is 96.2 per cent.

Frow their write-up it would appear that there is a seriocus weakness
in their sampling procedure. Dubester., the asuthor, says that the same
sampling procedure was used for subject headings as for authors. The
selection method for authors was as follows: "In every twenty-second
drawer of the catalog, the first author entry that was 2 inches from
the front of the card tray was selected for the sample.”" (p. 100) The
use of such a sampling prec-edure would have the result that those head-
ings which had many entries under them would have a higher probability
of being selected because they take up more space in the drawer. Yet
each heading should have an equal chance of being selected. The result
is that the sample is biased toward headings with more entries.

The same mistake was made on a similar catalog tray sample of
headings done "y the Institute a couple of years ago. When the mistake
was discovered and the sample retaken properly, the mean rate of entries
per heading went down markedly. If the sampling at LC wrs done in ex-
actly the manner described, then the sample is biased to neadlings with
many entries. Actually, the biasing may not be as bad in this case as
it was in curs, because the sampling was done in the main catalog.
There, all types of entries are mixed. If a non-subject added entry
was hit first and one then advanced to the first subject heading one
came upon, then this is ne longer a function of the bulk of cards taken
up by a heading. If a subject added entry is hit immediately, however.
the above biasing weskness applies. Thus, Dubester's sample is probably
biased toward large headings about half as badly as ours was. A change
to the proper sampling procedurs would bring the mean number of eniries
down and would raise the percent of headings with fewer than 11 entriez—-—
which in turn would bring the results closer in line with those gotten
on this study. Considering the great difference in size and character
of the two libraries, such closeness would actually be surprising.*

Means, mediana and standard deviations of date of publication,
number of pages, and number of subject headings assigned per docuemnt
were computed. (Detailed descripiions of how these were computed are
given in Section 2.3.1) In the original keypunching the data had not been
verified so a series of formal tests were made first on the date and
page Tigures for each document to eliminate duds. For example, pages
were flagged if alphabetic characters other than V (for Volume) appeared
in the page columns.

¥See Section 2.3.2 for mention of another cause of dif. erence between
Dubester's and this study.

Q -

ERIC . .44

Aruitoxt provided by Eic:

E

Incidentaily, as it would be difficult to make a guess at avrerage
number of pages per volume, documents whose pagination was in volumes
were flagged separately and not included in the caleculations. As it
happened, among the various tests for page duds, the test for the pre-
sence of a V came second, so there may be a few of the "regular'" duds
which are also items with pagination in volumes. The results were as
follows:

Date duds: 262
Page duds: 1127

Pagination in volumes: 2618 (out of 60,161 documents)

There were 33 overlaps, that is, 33 documents which had both date
and page duds. It is interesting to note that the expected number of
overlaps, if the two error funetionz were purely independent, would be
about 5.

The statistical calculations on pages and dates are based on that
section of the file which is error free for that aspect. In other
words, a document with a dud date and a valid page number is not in-
cluded in the date calculations but is included in the page calculations.
No tests were made on the number of subject headings because this was
computed simply by counting records for that document. (Remember, there
is a record for each subject heading spplication, not just for each
document.) However, as the mean subject headings were calculated in re-

identical to that for the date figures, i.e., it ineludes no dud dates.

First, figures for the whole file:

Mean Number of documents
Date: 1953.76 59895
No. of pages: 309.83 56412 T
No. of Subject Headings: 1.713 59895

Next, various calculations were made for dates and number of pages
for each subject heading level. A document at subject heading level 2
is one whick has had two subject headings assigned to it. Listed in
Figure 2 are *he number of documents at each subject heading level in
the file befcre duds were weeded, Along with it, for purpose of com-
parison, are e corresponding figures from a study made by Avram et
al. (1) at the Library of Congress on a sample of entries from cards
issued between 1950 and 1964. (Note that this is cards issued, the dates
~f publication are not restricted to this period, but probably do f£all
almost wholly in this range.) Their sample was restricted to the "re-
gular series." To quote the authors: '"This inecludes both monocgraph
and serial material but excludes special-format materiasls, materials
in oriental languages, and cards for words not cataloged by the Library."
(p. 181) This would make it fairly similar to the Santa Cruz file.

P{fC ; A%

s -

FIG. 6I DISTRIBUTION OF DOCUMENTS BY NUMBER
OF SUBJECT HEADINGS ASSIGNED
No. per
Document 7 Santa Crusz File 1 Library of Congresg Sample
Freguency Per cent Frequency Per cent
0 1Lk,571 19.5 319 14,3
1 31,456 ho.1 1,162 53.6
2 18,371 2h.6 551 2L .8
3 7,353 9.8 127 5.7
L 2,160 2.9 29 1.3
5 791 1.1 € 0.3
6 26 0.03 0 0.0
T 2 0.0G3 0 0.0
8 2 0.003 0 0.0
9 9 0.0 20 _0.0
ete. Th,732 100.0 2,224 100.0

Figure 6 gives all the remaining tasic calculations made on the
file and requires explanation. Means, medians, and standard deviations
were computed at the first 6 subject heading levels. As 7 and 8 had
only two documents in each. they were not included. The number of sub-
Ject headings was computed for each of four date blocks, that is, the
number of subject headings applied to all documents whose date of publi-
cation fell within the date block's range became the basis of computation
for that block. This is the converse process from the computl ition for
mean date at each subject heading level.

Finally, normal distributicns were assumed for each of these three
sets of data and calculations were made to determine whether differences
between means were significant.® For examrle, mean dates at subject

¥Using this theorem: If ¥ and ¥ ave normally and independently distributed,

then X — ¥y is normally distributed with mean Moy = By = Hy and standa.?

I) ¥y ,
deviation & = V82/n_ + 82/n . The null hypothesis was then tested
7 X-y X' K vy =
(p%—? = 0) using the standard conversion so that a standard normnal table
Qéulé be consulted: t =X = § = He = Values of t greater than the

6;’ﬁi i
=y

table values meant the null hypothesis was disproven, i.e. the difference
between means was significant.

46

)
bdian |5ignificance®
dgte | .95 | .99
1960
5 | 1
1060 -
S 3
1959
R
1957 .
5 5
1951
R
948 | I
edian |Significance®
0. of | 95 |.59
agestt
0-279
1 n]
1279 -
, i i
=219
S N
il
SR
g L
edian [3ignificance®
o, of | .95 |.99
adings
ot .
mig- | 5 | 8
be- T g
158 _
dest | F | F
cof =
adings
1ov)

heafing Lovels 1 and 2, 2 and 3, 3 and b, ehe, are bosted, fs there i3
10 g upigrd reason o seswie thab the wean date 25 any particular sub-
jeet heading level will alvays tend in ome divection, (for examle, that
higher subject heading level will have earlier dates), 3 two-tailed test
13 used, This goss for “he mean muber of subject headings as well,
However, ve would expact that if mean mumbers of pages differ, they will
differ in that documents with more pagss will have more subject headings.
flence, a one-tailed test was used fere. Results a: fo significance are
Listed on the table for the .95 and .05 levels.

2,242 The Minor Fynoligses

4 very “mportant poiav should first be noted and kept in mind through-
studying the emtirs prol hing and libvery field, What we see here is
only & reflection of tha' vider field in a very small library collection
vith its o idiesynerabic nature. It is er undergraiuate collsction,
overvhelmingly compesed of receirt imorints, and is a "basie" collection
of importart books, rather than a vesearch collectio,

Hovever, these books were nob selected by the mumber of subject
headings they would raquire nor by the date. vhich are the two major
bases upon which these tests vere made, In other words, no conseious
hunan bias affects the variables used as the nasis for this study, Books
were of course selected for recency, out they were not selected by date
in the sense of $rying tc get a balance so that a1l the years are svenly
represented or any such thing, Instesd, selection vas done on the basis
of tontent; here is where the conscious human effort comes in,

low let us exanine the first minor hypothesis. The significant
difference in the mean mumber of subject headings assigned per document
betveen the various date blocks has been noted previously, The Issue to
be tested nere 18 whether nove than the usual number of new hesdings were
added to the thesaurus during the period of the high rate of subject
headings assigned per document,

Pigure 8 graphs (on & logaritimic seale) the nusber of documents
and mumver of nev subject headings for the period 1000-1967, "Tumber of
docwrents" is the number of documents whose date of publication is in the
ghven year. "New subject headings" is the mumber of subject headings
whose earliest date of application in the file is in the given year—in
obher vords, the earlisst dste of publication over a1l the appl*~ations
of a given heading, For purposes of the experiment these earl st dates
of applizatinn are being assumed o be the date of addition of the hesd
Lng ta the thesawrus, which of cowse, they are not. In many instances
the heading mey first sppesr in the fanta Cruz file long afber it has
been added to the LC List, But here too, as with books being written
about old and new subjects, o heading cannot be used before it is in-
vented, so the results should be st least a blurred replica of the true
profile,

It 15 to be expected that there will de relatively more new
healings earlier than later, because of the particulsr natwe of our

AND

[Aa}
jun)

I

.NDE (=D

SUBJECT

7 R ST G@@ﬁ
86T
o o o o o o
S & o S S S ‘
e & & S S ol 3
N SV = ™ & — a

sBuTpesy qo9fgng pue squsSWNoOg JO Joqumy

Q
. ERIC

"new" headings. As these are the earliest date -f application of a
heading in the file, chances are that more recent documents will have
subject headi...s whose earliest date of applicaticon is earlier than the
dat= of the recent documents--so these subject headings will appear
eariier on the subj=ct heading curve. This can be seen on the graph.
The document curve moves below the subject heading curve at first,
moves up to pace it, and then moves above i1t.

The area of our prime interest is in the thirties, however. This
section is blown up in Figure 9 {on ordinary graph paper). Here, mean
number of subject headings assigned in each year is graphed as well,
on a different scale. While the two curves had bzen neck and neck for
a while, and cne would expect the document curve socn .o rise above the
subject heading curve, instead it dips in the late twenties and thir-
ties with a marked lowering between 1931 and 19_4, So it would appear
that more new subject headings were added during the depression relative
to the number of books than in other periods.

Perhaps librarians had a lot of time on their hands and invented
new headings. Or, perhaps because of the economic squeeze, fewer books
were published, and those that were published were the best, the most
original of an ordinary year's crop. This would mean that just as many
subject headings were created in those years as would be expected, given
the previous shape of t.e curve, but the squeeze lowered the book pub-
lishing rate. In other words, the cause of the flip in the curve could
be either that number of subject headings rose, or the number of books
published fell: the data do not tell us.

AU Tirst glance, it would appeas thal iLlie opposite process occurred
during World War II: more bocks but less time to bother abhout creating
new subject headings. But referring back to Figure 7 again, we see that
this is Just the beginning of the general rise of the document curve
above the subject heading curve. Whether it rises precociously in the
forties, we cannot tell.

by

* % %

The second hypothesis, that the mean date of publication of books
indexed under a subject heading is indicative of the relative age of the
sbject fleld, was to be tested simply by inspection of representative
nieadings. A section of the file, ordered by mean date, was printed out,
and then 100 headings were randomly selected from these. A detailed
description of the method of selection is given in Section 2.3 and the
1list of 100 headings and their mean dates are given in Section 2.3.2.

The results indicate that a test of this sort is of little wvalue
on a group of subject headings of this nature. The hypothesis would
be mosi sharply revealed with a collection that was largely scientifiec.
The great majority of the 100 headings are geographical, personal, and
historical. One gels very little sense of the progress of time in
reading them over.

. 20

357

IG. 9: BLUW-UP OF FIG. 8 WITH MEAN NUMBER OF SURBJECT HEADINGS
ASESIGNED/DOC AND NUMBER CF DOCUMENTS AND CUBJECT HEADINGS (1912-1948)

R O I O A A D — T : T
T 11 T
720 - - - -
700 1 -~
680 L !
N . -
660 -1 N - RN
80 - - T et S i
= 6L0 - 111] ,
g A n { |
s 620 _ L] _
= 600 [T . B]
5 OO0 T A i BN AN
© 580 1 L - Ll -
e ! _ _ . _
3 560 L1 _ AL 1
m [T _ s I FNERE
=t 40 ‘ Il, _ l B . — 1
% p | — N E—
0 520] SR = Mean number of s.h.'s 1)
"g 500 | assigned/document that . ir ‘ ,
£ = year. ~ o
g 480 | sh = Humber of s.h. s intro- 1 B T C
A 6o U duced that year. ! Nl
o hoo {1 N e / ! 0]
%00 ERENEEN - T I - 1
2.L0 280 W O O (W -
L] i | _ — I!)\ \ .
§ £.36 360 T 11 S paN
5 2.32 3L40 EREEEE NN 4 N
2 — B I 17 \ /
A 2,28 320 _ i A AR
- o | .. 4 ,?i:/7)) S
9 2.24 300 e 177 4R [om _
£ 2.20 280 R T TIIR T \ - -
‘g >.16 é B - 1T | \\: T B =
a 2.16 260 |- - e 1’ -] 'W/l -
,, 5 - , 1} _
g 2.12 2kho T \ H- -
al -
v 2.08 220 -+ — r A MRIEI. W NN R, _
= i T = = doec -ty i
2 2,04 200 - sh - xa -
O A 4 A oy NN
2,00 180 HX AP, i L lam
= , 1A FIKY _ _
& -.96 160 %‘ g IR S i ,
&~ = \
o 1.92 1ho Hlh - 54 \ _
- Il iV, _ %
o 1.88 120 UL R]
= NFNTAY T TN
, " i
5 L.%& lQQ #Z \ AT I T - :
L 1,80 80 ,41/' . A
. - ¥ . s L1 |
1.76 60 \f’ At
] = O o (o TR o N - Y e f.‘fiigj o =F VO @ © o = @77@3
N EEE88 8888 0R 82333 3
322333 5 A A A A

¥
@
ek

2.2.4.3 The Major Hypothesis

The first approach taken on the hypothesis was Lo array the co-assign-
ment and date of publication in a two-dimencional array. (Co-assigrment,
as used here, is the number of other headings assigned along with a given
heading to a awuvcument. Looking at it in terms of documents, the co-assign-
ment is always one less than the total number of headings a551gned to a
ducument.) With the array (x,y) all unique subject headings (types) whose
mean date of publication fell in the date range x and whose mean co-sssign-
ment rate fell in the range y would be added to that array element. It
was expected that the mean rate of cc-assigrment on headings -rith recent
nean dates would be higher. This is a mistaken approach bscause the new
heading phenomenon is going on constantly. A certain segment of the head-
ing population in 1920 was new, just as a segment of the 1967 heading
population is new. So over all the mean dates of subject hzadings the
mean co-assignment should be roughly the same.

On the suggestion of Ralph Sheffner, a more sensitive approach was
taken. 'The idea was to take the difference between the mean date of
publication of a heading over all the applications of that ‘eading, and
the date of publication of the individual subject heading application.
For example, the sutject heading entries on the trpe that was created to
do this would look like this:

(rai of (date of
(subject heading) co-asld. terms) (mean date) appl.) (aifr.)
Aesthetics 0 1960.0 1965 =5
Aestihietics 2 1960.0 1955 5
Aesthetics 1 1960.0 1960 0
Asps 1 1 48.2 1950 -2

The tape was then sorted by difference, so theo all entries with a given
difference were together on the tape. Then the mean co-assignment rate

over all those entries with a given difference was computed. The value

of this method was that it blocked all headings applications by the distance
from their mean date. This made it iidependent of date in the chrono-'
logical sense; all those heading applications five years from thelr mean
would be tagether, regardless of when in time the mean was. Tie results

of this test are graphed in Figure 10.

A -20 means that the date of the individual application is 20 years
earlier than the mean. At first sight, this graph is quite impressive;
however, on closer examination, Mr. Shoffner and I fou-d several failts
with this arnrcach. (This ap,arently simple study was sneakier than it
first appeared, especially as the hypothesis and the assumptions behind
it were not as clearly formulated at first.)

First, .t was noted earlier that the mean number of subject headings
assigned to documents varied over the years, with a rate notably higher
during the thirties and esrly forties than during the periods before or
after. (8ee Section 2.3.2 for the mean rate year by year.) Through 1929
it wag 1.86, 1930-45 it was 2.05, and 19L6-6T7 it was 1.67. With a mean

352

FIGURE 10: MEAN CO-ASSIGNMENT F

OR DIFTERENCES BFTWEREN
MEAN DATE AND DATE OF INDIVIDUAL

APPLICATTION

O Y B T A O BT R ' U A A
I ¥ T N A R Y O Y A O O
L - | | - i" N N I

~ | 7 [,
et Sample base > 100 ettt

| 1

i
|
|

H\
o
i
'
N T
I
i
\
1
-
[
I
!
I
[
I
EEEEE

-
[
jo

3

1 : [!
|

L

]

|

I

=
IR

I

|

‘ i

H

|

l

I

t

—
IR o
L
]
|
|
1
I
1
I
I
i
I
I

Mean Co-assignment

N il _ 11+ 1 7 - y
16 | LN _ [
1.264- [. - | \ 41 {
/| AL AV /A =] _
_ _ RN _) ! \J _
1.12 - - -]

LA

]
e}
O
L

—

|

|

|

|

|

|

|
+—

-2k

-20

-1
1
1

o Tndividual Application minus Mean Date

53

-

publication date of 1953.8 over all the documents in the file, it is
evident that the vast majority of the collection is of recent date. So
we can expect most subject headings to have a recent mean date as well,
Thus the graph describes the behavior of recent books and their subject
headings for the most part, simply because most of the collection is
recent. So while th~t gragh is technically independent o chronolog cal
date, in fact, most of the indi--idual subject heading applications whic»
are ten years earlier than their mean date (=10) are in the forties,
ten years earlier than the date of the bulk of the file. So if we look
at the range of highest mean co-assignment, -11 through =27, this would
put us back right into the period where, as a generzl rule, the most
ubject headings were assigned to documents, hence the fall in the curve.

of aubject heading: assigned per year, woul give something closer to a
zaro-slope curve.

Seccndly, there were two fundamental weaknesses with this logically.
For oune, uy g iphing each subject heading by years, we are usiag a car-
dinal, or Interval, approacli for an ordinal problem. I othe_ words, in
using this approach, we are assuming that one year (or ten yvears or what-
ever) has the game effect on vvery subject heading. Yet the rate of de-
cay of various headings, and the resultant curves, may vary sharply from
one to another.

The second logical fault may be even more seriocus. Here, the problem
is in using the mean. Buppose on Subject Heading A, the mean is 5 years
more recent than the earliest date of use of the heading, while for B
the mean is 30 years from the carliest date of use of B. OSuppose we then
look at all subject heading applications which are _ne year earlier and
one year later than the mean of Subject Headings A and B, i.e., -1 and +1.

4(-1)
——f 6(+1)
mesan mean
rate T rateT

of \ of
co-assn. }) T~—____ co-assn.

0 5 (u) 0 30 (u)
earliest date of use earliest date of use
Subject heading A Subject heading B

Whatever the naturs of the curves for the two subject headings (rate
of decay), chances are that the -1 and +1 mean rates of co-assignment
are going to hit at very different points on the curve=. Yet thi-
approach, by averaging together all co-assignments for Subject Headings
A and B will blend these together and produce : rather blurred curve,
that is, one would expect a curve such as in Figure 10 to have less of
s fall in it than there really is.

One way of resolving this is to iake the dirTerence between date
of publicaticn of the 1ndividual subject heading and the earliest date
that subject heading appears in the file. We then have the time from
first use so that all values with a difference of 20 are 20 years more
recent from their first appearance, which would then put all these
values on roughly the same point in the decay curve of each subject
heading. This eliminates the second probism, using the mean, but still
does not sol..: t.e interval problem. Because of differ=ant decay rates,
+20 may still be a different voint on an individual hroding's o rve,
There is also the problem that first use in the Santa Cruz file deoes not
mean first use altogether--we may not get the heading until years after
the initial confusion has died down at the Library of Congress. However,
this problew is with us whatever approach is taken as long as we are using
“he Santa Cruz file and not the Library of Congress file! And anyway, we
would expect a trend to be evident here too, because you cannot assign a
heading whicii has not been invented yet.

There is a way of getting arocund this interval problem too. However,
there was not enough time to perform that test—-so it will be discussed
in the next Section, 2.2.5. Because of the very similar processing in-
volved, there was enough time to do the intermediate experiment, (which
eliminates the second problem but not the first), the one using the ear-
liest date instead of the mean. The results of this test are gravhed in
Figure 11. A +20 means that the date of application of the individual
heading is 20 y-~ars more recent than the earliest date of application of
the heading. A glance ina.cates that the hypothesis is not at all con-
firmed in this test. The averages bounce around so that the lines of the
grarh were not evenly drawn in. The rates disperse more at the right
hand of the graph simply because the sample bases were becoming very small
there (from about 40,000 on the left to 20 on the right.)¥

The interval problem still remains, but unless decay curves are
»adiecally different from heading to heading, it seems that there iz no
reason to believe ‘ne hypothesis to be correct. The impressive fall in
the curve on the first approach is probably whelly due to the factors
conjectured earlier.

and earliest date studies. This is because the great majority of the
headings are applied only once, so the mean and earliest date are equal
to the date of individual subject heading application. Plus 1 on the
mea . study drops to about 4400 and on the earliest date study to 2000.

b

FE)
=
28}
g
[£41]

Ll
[is]
w0
o

i
o]

o)
&
Q

=

1.25~

1.15

95— |

.85 .

FIG,

1i: MEAN CO-ASSICNMENT
AND DATE OF INDIVIDUAL APP

|

OR DITFFERENCES BETWEEN EARLIEST DATE
ICATION (SAMTLE BASE = 20 ONTY)

A . 4 . T 1 _ , 1]
. _ — . _ BN B B B 7’7 |
1T NRN NN _ ~ "~ -
4 -+ _ - RERERS 5777, BN
Ly]
1] 0 O Y . o
s 1] - T T - - = -
— 1 _ - 4T 77 = - =
- RN o [® - .
L - L] NN _
" L
1 m NN C] - ¥ T 115 .
® 8 - I RER
L *) L N L AN
P e s I® 1 .
R N) i ol T | T 1o S
by b "3 []
kz |- _ - - 1 §,.
S e I _ ® il ::;JT,-;_-;WE Ty T T lIal =~
& - r - _
T A% 1T s
[] 7 _ - 8] _ _ .
L B Te — i
= = = — — _ NN _ i = —
, ® 111
o — . _ _ 4 . - [2N
- 1 . _ _ 1 |
L1 LTy 7]

20

=}) e}
m =T L~

o o o
O b= (=]

90
100 —
1

Some comments on the nature of the file and its relationaship to
the tests made are in order here. The Sante Cruz file was used because
it constituted a large mass of data in easily manipulable form. Yet 1t,
by its nature, was not likely to be very revealing of tha ‘rends expected.
First, it was indexed under the Library of Congress system and the number
of terms assigned per document under that system is generally very low,
thus allowing little leeway on the part of catalogers, and reguiring us
to descriminate very small differences on results. Also, as it is an
impliecitly hierarchic:s1l syrstem, the solution resorted to when it appeared
that many headings would be needed may have been to assign a single head-
ing higher in the hierarchy. This is a common practice and a part of
library students' instruction. A non-hierarchical system may evince the
pattern hypothesized.

There are two other characteristics of this particular file which
may make it unsuited for our purposes. First, it was mentioned earlier
that subject headings previously assigned were revised to current usage.
This could have had the effect of cancelling the confusion-resulting-in-
more-headings fcr all periods except the present one. Secondly, the
effect of Mr. Biuck's encouragement of his catalogers to use more head-
ings where needed is unpredictable. This, in effect, results in a system

which is neither purely Library of Congress nor a non-hierachical systen.

2till and all, one persists in the feeling that were the trends
there, they would have shown up. The approach suggested in the next
section for future work should still be ~arried out, as it would eliminate
both the fundamental weaknesses mentioned earlier and therefore provide
more conclusive results. But aside from this it appears to this writer
that the next best approach is to shift to bodies of literature which
are indexed under non-hierarchical systems. The effects of such indexing
gystems are so different that they may well provide very different
results.

2.2.5 What Next?

The following approach, mentioned esrlier, was suggesilad by Ralph Shoffner
to get around the interval problem. Order all the applications of each
term by date of publication associated with that application, from earlier
to later dates. Then go down the list for each subject heading and compare
each palr of applications, 1 and 2, 2 and 3, ete. Look at the number of
co—-assigned terms iIn each pair. If the number of co-assigned terms on

let us call that a yes; if less, a no. If the hypothesis i1s correct, then
the percentage of all such pairs wvhich are yes': should be sinificantly
higher than the percentage <f no's, i.e., higher co-assignment as a rule
early in the 1life of the subject heading.

Another much more laboriovs approach would be tc examine siuaccessive
LC subject heading lists and supplements for new headings and use the date
of the LC list as the earliest date. This would give usg the true date of
birt!. of the subject heading. but here the interval problem is back again.
The results would probably not be much more interesting than the earliest-
date-in-the=file approach already used.

. I%=
&

It was mentioned earlier that several minor hypotheses were developed
in the course of the work. Two have already been tested and discussed.
The only other important one, which there was no time to test, is the
following one. Where no new subject headings Lad been introduced to the
thesaurus yet for a newly developing field, it is to be expected that in-
dexers will use several older terms, each only partially descriptive of
the field, to cover the subject adequately. Taking all the terms used in
the file in pairs, we would expect that some pairs would be co=assigned
{a different definition here, namely, both assigned to the same document)
rery frequently to describe newly developing fields for which single
apt terms had not yet been introduced to the thesaurus. (There is nothing
magical sbout pairs; threesomes may frequently be co-assigned as well.
However, even examining all the palr co-assignments in the file becomes
quite a bulky job.) The number of times palirs are co-assigned can be
counted and pairs witl{ nigh co-assignment printed out and compared to
pairs randomly selected. Given the current rapidity of scientific develop-
ment, most of the high-co-assignment pairs, representing new fields,
should be in science.

2.3 ©Bpecific Tests and Data
2.3.1 Precise Description of Tests Made

The following is a precise description of the various calculations
and tests made during the study. The descriptions are broken down in
the same way as in Sectlon 2. As the particular variables used in each
test vary considerably, i.e., the same variables do not appear repeatedly
in test after test, no attempt has been made to ensure that variables,
when they are used again, have the same letter name.

Z.3.1.1 Basic Data on the File

Distribution of Number of Applications over the File.

h = a ﬁnique heading (type).

a = an application of a unique heading (token).

t = total number of applications a of a unique heading h.
tt = total number of unique headings h which are applied t times.

th = total i1umber of unique headings h.

Find the above totals over the whole file, Produce frequency distribution:

t _ tt tt/th (percentage)

%
ot
C
-.gg

Distribution of Documents g

di = a document with i subject headings assigned to it.
Find the total number of documents with i subject headings assigned for
each value of i1, i = 1, n, and array the totals.

Means, Medians, and Standard Deviations of Dates, Pages and Subject Headings.

d; = date of publication of a (valid-date®) document i.
p; = number of pages of a (valid-page¥*) document i.

number of documents with valid dates.

number of documents with valid pages.

o T I I
(]

mean date of publication over whole file.

P = mean number of pages over the whole file.
Find:
a ;Ai?l,ﬁi, p =i=1 Pi
n m
J = number of headings assigned to a document.
d,.= date of publication of a document i with J headings assigned

I o 1%,
= total number of documents with j headings assigned (valid-date).

n'E
dJd

dj = mean date of publication of documents with j headings.

P~ number of pages of a document i with jJ headings assigned to it.
==

m, = total number of documents with J subject headings assigned
d (valid-page).

55 = mean number of pages of documents with j headings.

b = date block, b = 1,...,4; = thru 1929, 2 = 193C--45, 3 = 1946-59,

4 = 1960-67. :
,jblE number of headings assigned to a document i in date block D.

= total number of documents in date bloek b.

n

J, = mean number of headings of documents in date block b.

*Invalid dates and pages to be eliminated before calculation.

.

' Pind:

i=1
m,
- o .
P, =) D.., For values of j, j = 1,...,6.%
(R = I

y =) Jpq» for values of b, b = 1,...,54.
i=1

Also find: median date at each heading level j, and median number of
pages at each heading level j.

s = standard deviation of dat= of publication at heading level j.

a,
J
SP = gtandard deviation of number of pages at heading level j.
3 :
'sj = standard deviation of number of headings in date block b.
b

Find: i 5
J(a,,)°
sq = i=1 - (a,)", for values of j, J = 1,...-,6.
J n, J
dJ
R SN2
) (pji) - (Pj) , for values of j, j = 1,...,6.
ifn
8 = e
Pj J)
(3 752 =2 ,)) ,
) bi’ = (3,)7, for values of b, b =1,...,k
s, = =1 C

¥There were only two documents each for the values j = 7 and j = 8,
so means were considered useless here.

2.3.1.2 TFirst Minor Hypothesis: Rate of Addition of New Terms

Find earliest date of publication associated with each unique subject
heading in the file.

a unique heading.

h
y = a year of publication.

number of unique headings h first appearing during given
year y, i.e., that year is earliest date of publication
associated with that heading in the file.

th
Y

d = a document.

td = number of documents d whose date of publication falls in a
. given year y.

Graph frequency distributions of the above on the same graph, the num-
ber of unique headings and the number of documents on the y axis, the
date on the x axis.

2.3.1.3 Second Minor Hypothesis: Relative Ages of Bubject Fields

h

a unique subject heading.

date of publication of a document i to which h has been
assigned.

dh,
i

W

nh = +total number of documents to which h has been assigned.
(m = total number of unique headings in t-e file.)

n = total number of heading applications in the file (not
total number of documents), i.e.,

Find average date of publication of documents indexed under h, for

each h.
Izlh
dh = _di=1 i
nh

Selection of subject headings for examination:

As the entire file is extremely lengthy, only portions of the sub-
Jject headings whose mean date was a given year were printed out. If
there were 20 or less in a given year, all headings were ocutput. If
there were more than 20, only the first 20 were output. Exactly how
random this procedure is, is not known. The tape used, which was sorted
by mean date, had been created off another tape which had been sorted
alphabetically by subjeet heading. The sort routine was a packaged pro-
gran and how the sonting was done, and what headings would tend to be
among the first twenty is not known. Perhaps headings near the beginning
of the alphabet tend to be more frequent. However, for purposes of our
visual examination, any tendencies toward non-randomness which do exist
are probably not significant. This output program pr~duced approximately
2000 headings. Of these, the 100 headings reproduce. in Appendix 2
were selected by a purely random procegs--in the usual way with a ran-
dom numbers table.

2.3.1.4 The Major Hypothesis

First Approach--By Mean Date of Publication.

h = a unique heading.
ahis a date of publication i of a given uniqué heading h.
n = +total number of applications of unigue heading h.

Find mean date of publication for that heading over all applications of
that heading.

=]

ano=_i=1 My
In

Do this for all unique headings h in the file.
Find difference of mean date of heading and date of individual application
df = dh, - dh
1

for all applications in the file.

chdf = nunber of headings co-~assigned (other headings assigned to the
i same document) with a heading spplication i, which has a

given difference df between the mean date of publication of
the individual subject heading application.

m = total number of heading applications with a given difference
value df.

Tom

Yoy ®

Find mean

for each value of d4f.
Graph means on the y axis, values of 4f on the x axis.

Second Approach--By Earliest Date.

eh = earliest date of publication over all the applications of
s unique heading h.

dh. = date of publication of an application i of a given unique
heading h.

(o

m = +total number of heading spplications with a given difference
value d4f.

Find earliest date of application eh for each unique heading in the file.
Find difference of earliest date of heading and date of individual
application

ch., = i

m

Graph means on the y axis, values of df on the x axis.

2.3.2 Raw Dzgta From Tests

On {he following pages are listed those raw data from various tests
which are not given elsewhere in the report. Due to the difficulties
of xeroxing computer output paper, there is some overlap from page to
page; please disregard all material above and below the horizontal lines
drawn in.

2.3.2.1 Basic Data on the File

All pertinent data on this portion of the study have already been
, given.

2.3.2,2 TFirst Minor Hypothesis: Rate of Addition of New Terms

The data are given in two separate tables. In the first, Table 1,
, the date, the mean number of subject headings assigned per document in

- that year, and the number of documents with that date of publicatlion are
listed. In the second, Table 2, the number of subject headings whose
mean date of publication over all applications of the heading fall in the
given year, and the number of headings whose eariiest date falls in the
given year are listed. The former, the mean, did not play a part in this
test, but is left in here in case it is of interest.¥* OCnly the years
graphed, 1880-1967 are listed.

2.2.2.3 Becond Minor Hypothesis: Relsative Ages of Subject Fields

Listed in Table 3, are the 100 headings selected more or less ran-
domly from the whole file (see Section 2.3.1 for description of selection
procedure) and ordered by mean date of publication.

Due to the lack of verification on the keypunching, and due to different
practices with regard to punctuation between Santa Cruz and NCP, all blanks
and punctuation marks were removed so that headings which were truly the
same would sort together and tally correctly. The headings are reproduced
in this compressed form. :

There was not enough time to get an estimate of how many errors
remained, i.e., how many "true" unique headings were considered as more than one
heading by the program because errors in spelling csused divergence. It
should be noted, however, that error in number=of-unique-heading counts
will show up in figures which are more than the t:ue number.

*In this calculation, by mistaken analogy with the usual practice of
rounding numbers, mean dates were rounded in this manner: e.g., 1950 =
1949,5-1950.499...In the calculations for the major hypothesis this
practice wss dropped and e.g., 1950 = 1950.0-1950.99...,vhich is our
usual way of thinking about dates.

, g

2.3.2.4 Major Hypothesis

The difference, the mean number of co-assigned headings, and the
number of applications which go into the calculation of the means are
listed. Table L gives the data for the first approach, by mean date
of publication and Table 5 gives the data for the second approach, by
earliest date. Because of the sort program used, the positive and
negative numbers are intermixed for the mean date data. Also, because
of the way the subtraction was done, the signs on the original output
were the opposite from the way graphed. So the signs have been changed

o s

Table 1:
Rate of Addition of New Terms: Date and Mean Headings per Document

Mean No. No. of Docu=
of Headings ments with
per Document that Date of

Date in that Year : Publication
1880 1.722221}4 18
1881 1.8125000 16
1882 1.4814806 27
1883 1.5224113 17
1884 1.8571h2k 21
B 1885 1.6190472) 21
1886 - 1.8799992 25
1887 1.8095236 21
1888 1.6071k42L 28
1889 2.0270262 37
1890 1.5882349 3L
B o 1891 1.6999998 20

1892 '1.763i578 38 }
1893 1.8135586 59
1894 1.8378372 37
1985 1.k41176k41 3k
1896 1.89830k9 59
1897 1.7948713 - 39
1898 1.6130347 57
1899 1.7291660 L8
1900 1.66071kh1 56
1901 1.8409090 Ly
1902 1.6964283 56

- 1903 1.7272720 . , 55

o 1904 1.8548388 62
1905 1.5806Lk46 62
1906 1.8289LT1 76
1507 1.71428L9 . 8L
1508 1.68L2098 76
1909 1.7402592 T7
1910 1.9647055 -85
1911 1.6Lk51607 93
1912 1.8631573 95
1913 2.0000000 89
1914 2.0341824 115

_ 1915 1.80L8773 . 8

- 1916 R 2.,0888882 90
1917 1.7999992 5
1918 1.7500000 . T2
1919 1.7653055 98
1920 1.8108101 111
1921 1.8518515 108

e . _géggl

Table 1:
Rate of Addition of New Terms: Date and Mean Headings per Document (cont.)

Mean No. No. of Docu-
of Headings ments with
per Document that Date of
Date in that Year ~Publication
1922 1.8773003 163
1923 1.9371k24 175
1924 1.7621355 206
1925 1.7932692 208
1926 1.9252329 21Lk
- 1927 1.90690900 215
T 1928 - 2,0551h62 " 272
1929 1.9359426 281
1930 1.9k405937 303
1931 2.2068958 261
1932 2.1865072 252
. 1933 2.2850876 228 B
B 193L - 2.4157295 267
1935 2.1733332 300
1936 2.,1111107 306
1937 2.034k0557 323
1938 2.0408163 392
_ _ 1939 2.049LT85 B e 384)
- 19ko 2.156009T7 391
1941 1.90L49997 Loo
19k 1.9085712 350
1943 1.8953L85 3l
19kLL 1.8964577. 367
) 19L5 . 1.88683517 k33
1946 1.8330307 551
1947 1.7430553 T20
1948 1.7072010 8L7
1949 1.6902456 . 933
1950 1.6379309 104k
- 1951 ~1.71ikkiaTt 1131
)) 1952 - 1.6797066 - 127
© 1953 1.6355925 1180
1954 1.6150303 130k
1955 1.6604118 1599
1956 1.6534491 ‘ 1841
1957 ____1.6688023) 2029 -
1958 1.64356h2 - : 2323
1959 1.690312k 2622
1960 1.6631041 3369
1961 1.6634102 3993
1962 1.6197491 LoT1
) 1963 1.6787481 ~ ho28 -
B 1964 1.6Lk32L28 ‘ 5180
1965 1.6781263 ' 5701
1966 1.6821985 Lose
1967 1.7189188 ; 185

s mﬁi
[L

Rate of Addition of New Terms:

Table 2:

Mean Publication Date and Earllest Date of Appearance

No. of No. of
Headings Headings
with that with that

Date Mean Date Earliest Date
1880 8 26
1881 T 19
1882 16 36
1883 9 1L
188k 12 26

. 1885 10 28
1886 11 32
1887 8 30
1888 23 Lo
188¢ 22 48
1890 18 36
1891 12 25
1892 23 L6
1893 38 87
189k 22 51
1895 15 37
1896 24 76

1897 __ 27 50
1898 27 66
1899 23 57
1300 30 61
1901 22 59
1902 27 T2
1903 32) 66
1904 28 - 66
1905 37 69
1906 28 98
1907 51 95
1908 28 8h
1909 b1 88

- 1910 56 112
1911 5k 100
1912 55 113
1913 59 128
191k 85 15h

_ 1915 51 95 ',

1916 47 - 121

1917 L 88
1918 43 67
1919 L2 88
1920 67 118

B 1921 . 60 108
1922 89 157
1923 11k 192
1924 10k 176

e SRS Bl B, Bt g et :

e Do R L i pr

Table 2:
Rate of Addition of New Terms:
Mesn Publication Date and Earliest Date of Appearance (cont.)

No. of No. of
Headings Headings
with thsat with that
Date Mean Date Barliest Date
1925 103 198
1926 121 208
1927 139 27h
1928 156 279
1929 166 300
1930 20k - 309
T 1931 - 180 302
1932 188 289
1933 190 256
1934 216 313
1935 22k 303
B - 1936 B 258 313
1937 - 279 329
1938 285 363
1939 290 38L
19L0 324 356
1941 303 351
_1g9ke 300 _ 298
1543 - 308 279
1oky 364 298
19k4s5 352 316
1946 383 379
1947 5Ll 511
19L48 ____ 611 56T____
- ~ 19h9 - 675 640
1950 696 671
1951 805 : 767
1952 881 8h2
1953 911 T53
1954 956 869
1955 1137 998
1956 1271 1156
1957 1430 © 1215
. 1958 1613 1333
1959 1747 1458
1860 2181 o 1920
1961 2411 2203)
1962 2500 2079
1963 2589 . 2153
1964 3269 2908
1965 3591 3382
1966 2393 2k
1967 119 T 110
Q - el - n
EMC gé F ;:;i.g Lo

Table 3:

Relative Age of SubJject Fields

Heading

GTBRITCOLONIESATRICAWEST
NATURALHISTORYOCEANICA
LEEBOOD1784
NEWSOUTHWALESAUSTCOMMERCE
AFRTICASOUTHDISCEXFLOR
CHANSONDEGESTECOLLECTIONS
DEBTSPUBLISUS
COMMERCEFERICD
LOUISXVIIOFFRANCEFICTION
RCMANCELANGUAGESETYMOLGGY
CHARITIESUSCONGRESSES
NEWGUINEADISCEXPLOR
SCIENTIFICSOCIETIESBIBL
POETRYOFPLACESYQOSEMITEVALLEY
SINDBADDTHEPHILOSOPHER
MANUSCRIPTSENGLISHCATALOGE
TASMANTADESCRTRAV
RIVERSRIGHTOFNAVIGATTIONOF
FOLKLOREHUNGARTAN
PUNICWARS

SCOTCHINAMERICA
SANLUISOBISPOCOCALIFBIOG

MIRAREAUHONORECGABRIELRIQUETTICOMTEDELTHO1 791

PACIFICCOAST
STMARTHOLOMEWSDAYMASSACREQF15T2FICTION
GRESSETJEANBAPTISTELOUIS1TO091T7TT
BERKSHIRECOMASSDESCRTRAV
SANTACLARACOCALIF
OREGONHISTFICTION
MINNESOTADESCRTRAV
. SPECTRUMANALYSISBIBL

ETCHING
NETHERLS16L481T14FICTION
LONDONROYALACADEMYOFARTS
HAECKELERNSTHEINRICHPHILIPPAUGUST18341919DIE
POLITICALSCIENCEDICTIONARIES
WHITMANWALT1819018925ERIESAMERI CANMENOFLET
TOLEDOSPAINDESCR
LEARNEDINSTITUTIONSSOCIETIES
BASKETMAKING
MINIATUREPAINTINGHIST
ESPERANTOGRAMMER
GIOTTODIBONDONEI12661337
WEBERKARILMARTAFRIEDRICHERNSTFREIHERRVON1T861
ARNOULDSOPHIEDRAMA
WATERCOLORSBRITISHEXHIBITIONS
FOLKLOREENGL

EPICPOETRYFRENCH

-$é ‘:?(), g%w%

Mean Date

of Publication

1805.000
1811.000
1822.000
1823.000
1836.000
1859.000
1865.000
1866.000
1867.000
1870.000
187k .000
1876.000
1879.000
1880.000
1882.000
1884 .000
1885.667
1886.000
1889.000
1889.000
1889 .000
1891.000
1891.000
1891 .500
1893.000
189L.000
1895.000
1895.000
1900.000
1901.000
1902.000
1902.000
1902.000
190k, 000
1905.000
1906.000
1906.000
1907.000
1908.000
1914.000
1917.000
1917.000
1917.000
1918.000
1919.000
1919.000
1919.000
1919.9000

W e N

R

Table 3: 7
Relative Age of Subject Fields (cont.)
‘Mean Date
i of Publication

Heading

EUROPEANWAR1914191 8REGIMENTATHISTORIESUS103D 1920.000
FOLKL.OREPHILIPPINEISLS 1921.000
MASSEST01800VOCALSCORES 1923.000
CHILDRENASMUSICIANS 1925.000
ARCHIVESWESTINDIESBRITISH 1926.000
TRAVELMEDIEVAL 1926.000
FOUNDINGKINGSCOLLEGE 1929.000
PHILOSOPHYENGLISH13THCENTURY 1930.000
SPANISHAMERICARELATIONSGENERALWITHSPAIN 1931.000
SPANISHAMERICACOMM 1931.000
ROSSETTIGABRIELEPASQUALEGIUSEPPELT831854 1932.000
PASSIONMUSCITO1800VOCALSCORES 1932.000
FRENCHDRAMAMEDIEVALHISTCRIT 1933.000
GERMANLITERATUREMIDDLEHIGHGERMANBIOBIBL 1933.000
EUROPEANWAR19141918AFRICAGERMANS OUTHWEST 1933.000
NATTONALMUSICHISTCRIT 193L4.000
FRANCERELATTONSGENERATLWITHITALY 1936.000
FRONTIERPIONEERLIFENEWZEATOTAGO 1936.000
FRONTIERPIONEERLIFEILLINOISPIKECO 1936.000
NEWHEBRIDESHIST 1937.000
CALIFORNIAUNIVERSITYVIEWS 1937.000
BRAJLANGUAGEGRAMMAR 1938,000
BLACKHAWKWAR1832FICTION 1938.000
JOHNSONMARTINEIMER18841937 1940.000
BEHAVIORISMPSYCHOLOGY 1943.000
THEWESTECONCONDIT 1943.000
LOWELLJAMESRUSSELL18191891 19Lkk 000
PAINTERSCANADIAN 19hk5.000
HUAHINESOCLIFECUST 1946.000
USHISTWARWITHMEXICO18L4518L8NAVALOPER 1947.000
UNITEDNATIONSPALESTINE 1947.000
"REUTHERWALTERPHILIP190T 1949.000
AMERICANLITERATURECALIFORNIAHISTCRIT 1950.000
CRIMINALLAWCALIFORNIACASES 1951.000
ENGLRELATIONSGENERALWITHGENEVA 1952.000
FEUGENICSHIST 1952,000
ARGENTINEFICTIONCOLLECTIONS 1953.000
FLAGELLANTSFLAGELLATION 1954 .000
FERMIENRIC01901 195k .000
MINASVELHASBRAZIL 1956.000
EDUCATIONINDIA 1957.000
ENGLISHLITERATURETRANSLATIONFROMSPANISH 1957.000 .
ENGELEREKTENGELBREKTSSOND1436DRAMA 1959..000
ENGLISHLANGUAGEDICTICNARIESCZECH 1959:.000
EGYPTIANLANGUAGEDICTIONARIES 1960.000
USRELATIONSGENERALWITHITALY 1961..000 .
PORTUALCGOLONTESNATIVERACES 1963.000
POWERMECHANICS ' 1963.000
FOUNTAINALBERTJANNINGS18381895 1965.000
FERGUSSONROBERT1TS5017Th 1965.,000
RESEARCHEURCPEEASTERNDIRECT 1967.000

Table L: :
Major Hypothesis Data: Mean Date of Publication

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE
0 1.19130 31824 {
-1 1.12394 3905 :
-2 1.12912 3067
-3 1.15666 2héh
-4 1.139L4k 1922
~5 1.18301 1683
- - -6 - 1l.201ks 1375 -
-7 1.30L2)k 1180
-8 1.36639 1089
-9 1.36182 901
+1 1.10988 Lhha]
- 2 1.073k6__ , his52 :
+3 1.11256 3767
+L4 1.11108 3466
+5 1.11015 3132
+6 1.11578 2902
+7 1.15568 26Lo
_ 48 1.1568k 2280
+9 1.1330k 2067
-10 1.40069 871
=11 1.45317 726
=12 1.56250 , 656
-13 1.53795 ' 506
R R 1.58667__ 525
-15 1.7005L4 551
=16 ; 1.70588 5LL
-17 1.64795 463
-18 1.67483 Lo
-19 1.62763 Lo
_ _ -20___ 1.68462 , 390
=21 1.60382 366 o
-22 : 1.592Lk9 346
-23 1.56949 295
-2L 1.57382 208
=25 1.56800 250
- =26 1.70089 224
=27 1.45411 - 207 R
-28 1.29167 192
=29 1.473k0 188
-30 1.47273 165
-31 1.32749 - 171
-32 1.34848 132
=33 T 1.k9s565 115
=3k 1.25k2L 118
-35 1.34210 .11k
-36 ' ‘ 1.27103 : 107
=37 1.362T7L 102
\) V . ° . . R
i

Table h: :
Major Hypothesis Data: Mean Date of Publication (cont.)

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE
~-87 2.25000 I
-88 0. 40000 5
-89 1.00000 i
~-90 1.30000 10
-91 0.66667 6 - :
=92 _______1.00000 N 1 :
-93 2.00000 R 3 , ;
-9k 1.42857 T ;
=95 0.0 1
-96 1.50000 L i
-97 2.25000 I !
=98 e _0.6666T o 3 . ;
-99 - 1.80000 5 |
+10 1.10910 1769 ;
+11 1.18155 1691 !
. +12 1.159k9 1486 |
+13 1.18Lko2 1239 , |
L +1h _ 1.15019 1072 B L |
+15 - 4.1h4379 918 ' g
+16 1.14578 782 [
+17 1.11755 621 ;
+18 1.19669 . shl |
+19 1.25000 L16 i
_ __+20_) 1.23876 - 356 B B , §
+21 ~1.20323 310 o !
+22 1.27197 239 I
+23 1.20895 201 E
+2h 1.0L4348 161 f
+25 1.35404 161 i
D 426 ____1.02655 - 113 o |
~2T 1.13861 101 ' i
+28 1.1k912 11k |
+29 1.27586 87 ;
+30 1.18518 81 %
+31 1.23077 : 78
. +32 7 1.05660 ' 53 i
+33 1.15517 o 58 o
+34 0.92308 39
+35 1.18Lk21 38
+36 1.19L4L4L 36
+37 1.00000 30
_ _+38 __1.31818 - - 22 B
+39 1.41379 i 29 IR
+Lo 1.2k000 25
+41 1.16667 18
+42 1.25000 - 20
+43 1.071L3 1L
_ _ by 0.90LT6 o 21
+U5 o "0.90909 - 11
+146 0.93333 15
+hT ' 1.5u4545 11
+48 1.25000 16
o : +19 1.35714 R L
ERIC +5Q__ iiaob%ng;;;;;"':i“ . ,%%,,,7
e i ; , . 11,5386 ey S
- N 1l L gtqn_ 73 ‘

Table 5:
Major Hypothesis Data: Earliest Date of Publication

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE
0 1.23421 L0988
1 1.23338 2031
2 1.15814 1897
3 1.1k080 1875
N 1.15283 1819
L B 5 _ 1,16871 - 1713
6 1.1504k2 154k -
7 1.1h637 1k62
8 1.19341 1kt
9 1.25236 1379
10 1.18805 1372
i 1.13033__ _ 1289 v
12 1.16247 1231
13 1.05792 117h
1k 1.14748 1173
15 1.16229 1029
16 1.184k31 1020
. 17 ~1.16438 o _9L9 L
18 1.17534 941 '
19 1.23853 872
20 1.156L3 863
21 1.287k0 849
22 1.17150 828
23 ~.1.18396 ~ gLs
=30 1.10270 925
25 1.16122 887
26 1.22161 907
27 1.27042 869
28 1.2311h 822
29 - ~ 1l.2229k - T76 e
30 1.25196 i 66
31 1.17728 801
32 1.15809 821
33 1.17245 835
3k 1.20187 TL8
. 35 ~l.2311% _T31 . B
36 _ 1.203L41 , T62 S
37 1.2hk512 718
38 1.16227 T21
39 1.24337 : 641
40 1.15916 622
- hi 1.26263. L S
. ke 1.17647 , 561
43 1.1L689 : 531
me S q.

R, . ._59_‘ P

Sacevicans

Table 5:
Major Hypothesis Data: Mean Date of Publication (Cont.)

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE
Ly 1.15258 485
45 1.22336 188
L& 1.24286 490
L7 1.17h7h 475
48 1.12076 Y2
49 1.18610 Lh6 e
50 ; - 1l.2hk314 510
51 1.22993 L61
52 1.18619 478
53 1.04728 L3 j
5k 1.22857 420 |
55 _1.09850 467 o |
56 l.215%2 L1 :
27 1.19775 4145 }
58 1.21469 354 !
59 1.15168 356 !
60 1.09315 365 ;
61 __1.20L1k 338 i
62 l1.19019 - 304 !
63 1.08191 293 !
64 1.09718 319 ;
65 1.10239 293]
66 1.08896 276 i
____ér _1.07807 - 269
68 1.11k09 298
69 1.05556 270
T0 1.21901 2h2
T1 1.108k9 212
72 1.15347 202
I - D 1.119%0 201
Th ~1.23172 164 T
75 1.28k92 179
76 1.14197 162
7 1.33793 1k5
T8 1.11333 i50
Tt 1.02069_ 145)
80 1.29286 10 T
81 1.06803 147
82 1.07018 11k
83 1.35000 120
8k 1.13158 11k
-85 1.21k428 : L 112 S
86 - 0.9636k S 110 _
87 1.13483 89
88 1.29885 87

Table 5: J
Major Hypothesis Data: Mean Date of Publication (cont.)

DIFFERENCE MEAN CO-ASSN, SAMPLE BASE é

89 1.20690 87 ;
90 1.13%02 97 :
91 1.26596 oL 2
92 1.17391 92 ;
93 1.08036 112
,,,,,, oL 1.3k4375 , 96
95 0.95455 88 ;
96 0.99123 11k ;
97 1.22785 T9 3
98 1.19000 100 i
99 1.21k428 98
100 B 1.17857 84
- 101 1.49123) 11k T
102 1.081k40 86
103 1.43678 87
104 1.11224 98
105 1.23k483 89
106 1.35632 87
) 107 1.12500 Y T
108 1.bk1791 67
109 1.15873 63
110 0.93182 Ly
111 0.98333 60
112 1.29091 55 B
- 113 - 1.0k L8
11k 0.96000 50
115 0.76190 ho
116 0.88889 45
117 1.19512 L1
118 0.92683 b1 -
119 - 0.82759 29
120 1.05556 36
121 1.37143 35
122 1.21428 28
123 0.04hkY 18
12k 0.93103 29
125 S ~ 1.00000 25
126 1.28000 25
127 1.27273 : 22
128 0.57143 28
129 0.878T9 33
R <) 0.96296 27
131 S 0.9hLh)y ' 18 -~
132 0.47619 21
133 1.20000 - 20
13k 1.11111 9
- , : b
i —6‘1‘9:;'

REFERENCES

Congress Catalog Cards: Analysis of a Random Sample, 1950-196L,"
The Library Quarterly, (XOXVIII, April 1967), 180-192.

Dubester, Henry J., "Stulides Related to Catalog Problems," In: Ruth
F. Strout (Ed.), Library Catalogs: Changing Dimensions, Chicago:
University of Chicago Press. 196k,

Tinker, John F., "Imprecision in Indexing--Part II," American
Documentation, (XIX, July 1968), 322-330.

Tinker, John F., "Imprecisiorn in Meaning Measured by Inconsistency
of Indexing," American Documentation, (XVII, April 1966), 96-102.

Voigt, Melvin J., and Joseph H. Treyz, "The New Campuses Program,"
Library Journal,” (XC, May 15, 1965), 220L-2208.

et

3. DESIGN OF FILE STRUCTURES FOR ON-LINE BIBLIOGRAPHIC CONTROL SYSTEMS
by Jorge Rodriguez

3.1 Intreduction
3.1.1 Design Requirements for Information Retrieval Systems

Designing an information retrieval system for a library is a difficult
task. The intriecate complexity of the decisions and the large dimension
of the system that is required contribute to the present inability of
performing a unified and simultaneous sanalysis of all its components.
Furthermore, the design of such a system requires the effort of specialists
who are qualified to solve specific probiems related to only certain aspects
of the total project. :

In general, we can group the design requirements of an information
retrieval system as follows:

a., FPro he Most T Services related to the use
of libraries. More zpecifically, to facilitate search of information rele-
vant to library users, and to expand the kinds of library services into
areas wvhich are projected as necessary for the future.

ide the Most Useful and Necessgsa

b, Minimize Retrieval Time, A good measure of the usefulness of any
retrieval system is the time saving that can be provided to the users. Also,
if the retrieval time in the machine system is larger than the time required
to locate a specific record using index cards, then the retrieval system
becomes unfeasiblie. Consequently, this paresmeter is most important for our
specific system.

¢, Minimize Storage Requirements. Decisions that directly or indi-
rectly affect the structure or organlzatlon of the files will affect the
amount of storage needed. Associated with the storage requirements are

many costs which should be minimized wherever possible.

. Twec of these processes are

d. Provi for Efficient File Updatin
of importance in bibliographic application.

(1) Additions. This represents an important process in library
systems due to the high rate of new publica“ions that can be expected.

(2) Changes. This is mainly cancerned with corrections of
errors in stored records, which are impossible to eliminate completely.

e. Maximize File Security. It is desirable to minimize the possibil-
ities of destroying any information in the files due to malfunctioning of
the system or erroneous updating procedures, i

Any infnrmation search and retrieval system will contain the following
phases:

a. Input Specification Phase. In our system this process will be
performed at some kind of terminal where the requests will be specified

and placed by the file users.

f;;
i
i
3
1
b

N Bl

RCRE.
.

b. Execution Phase. This phase has three sub-parts:

(1) Compilation: the transformation of the request topic into

machine languasge readily usable by the central processing unit.

(2) Retrieval Phase: includes the search for the requested
records and the retrieval of the lists of master records, if any, to the
central processing unit.

(3) Analytical Phase: information derived from the content of
the files is processed for logical conditions in order to prezent only
that information which the user has regquested. Also, this information is
transformed into a language understandable to the user.

c. Output FPhase. Finally, the information requested is sequenced,
formatted, and presented at some kind of display terminal.

The time required te input, compile, analyze, and output will not be
affected by the structure and organization of the files. For this reason,
the present analysis is limited to the Retrieval Phase only.

3.1.2 Objective of File Structures Analysis Task

Of the general objectives mentioned, only b and ¢ (minimization of
retrieval time and storage) are related to parameters that can be expressed
readily in mathematical form. Hence, this task will be concerned mainly
with the optimization of the Retrieval Fhase, using the criteria of mini-~
mizing costs associated with both auxiliary (secondary) storage and total
processing time.

3.2 General Model of g File System

This part will be directed to the desigzn of a generalized model of a
bibliocgraphic file management system which will be useful in the analyses
to follow.

This model can also be adopted for simulation purposes because some
of the essential features desirable for simulation are present.

This study will be mainly analytical and speclalized on structures
determined by the type of storage devices under consideration and the
characteristics of bibliographic catalog data. However, the concept of
the general model will always be Implicit in each structure. Also, this
model will prove useful as an analytical tool in the event that new: dev;ces
and crganlzations appear worth ccnslderlng in the future.. .

3.2. l Fundamental System Componentb
In general, we can state that a;l retrie#alASystéms'éré coﬁ@oséa of

two types of components which will be. referred to as Storage Blocks and
Informatlcn Linkages. . : : : ,

el . o e o B i -

The storage blocks are associated with a physical storage unit. The
content of these blocks can differ considerably; however, all the possible
kinds of blocks are formed by a combination of only four different types
of data.

The information linkages are aszsociated with flow of information that
is controlled by a central processing unit. Hence, considerable simpli-
fications are also achievaed by a proper classifification of these linkages.

3.2.1.1 BStorage Blocks

A Storage Block (SB) is a structural entity which is operationally
defined as the basic logical design unit of a file. It should not be
confused with blocking as an IOCS programming concept synonymous with
"physical records," or with bucket, a term for an addressable location
in storage having a specified capacity in terms of data reecords which
can be stored at the location or its extensions, e.g., a cylinder or a
track in a disk pack.

The four different forms of content that can singly or in combination
form a storage block are: a) device address, b) keys, c) stored information
such-as catalog records, and d) pointers (or links). Both a and b can be
regarded as Access Points and ¢ and 4 as Data.

Under certain circumstances the content of an SB may be identical to
more than one of the above forms. PFor instance, it is possible te structure
a file such that a list of author names (an index file) could serve as
both search keys and information elements. The authors would not be re-
peated in the master record for the file with which they were associated
but would be linked back by a pointer to the index file. In another case,
the author names might be treated as both keys and addresses. The internal
representation of the name information could serve as the input to some
algorithm which transforms it to a storage address. In a further case the
record number (primary key) could serve as the file address ("key-as-address"
techniques). This overlapping of forms does not Present any difficulty
for our analysis, however.

‘The reason fcr defining storage block in the way we have is to provide
for analytically frultful manipulations of the structure of a file.

These operat1ons involve alternatlve technlques of record and file
segmentation - splitting logical records or logical files into multiple.
physical flles or regrouping reccrds intc useful sub—flles by attrlbutes
such as publlcatlcn date.,f . oo

its addressablllty to any traek and 1nformatlon within: the track by
pointing directly (ncn=ser1a11y) to its location. This means that a unit
of information pcssesses a phys;cal address just by being stored by action
of the system. The 2314 Direct Access’ Storage Fac;llty disk, for example,
contains in each track a’ field called the Home Address Whlch defines the ’
physical location of the start: of the usable storage ‘area to facilitate
operation of the access mechanism.r Begause,stcrage blocks, no matter what

their form of content (keys, information records, or pointers) are inherently
thus addressable, we will not include the address in describing the alter-
native block forms which will be postulated, in order to eliminate confusion.
All blocks are assumed to be addressable, either directly by actual device
address or indirectly by various kinds of relative address. Actual addresses
will not be considered in the File Organization Project since they have the
disadvantage of rendering the data set unmovable. A further reason for eli-
minating the address from che analysis 1s that it simplifies the storage
allocation space (except when explicitly recorded as data, i.e., an index
reference, called a pointer in this analysis).

There are a large number of conceivable combinations of forms in storage
blocks. We have selected & limited number of these for examination as
feasible alternatives. After enumerating the blocks which seem most per-
tinent for analysis, we will describe the concept of information linkages
briefly and then pass to a review of the block structure alternatives to see
which ones are feasible for extended analysis.

There are six possible combinations of blocks which could be used to
build a direct access file. These are listed in Figure 12.

FIG. 1l2:
TYPES OF STORAGE BLOCKS (SB's)

R - 7777: 7:7 Form A ,i,] _ ED:L'ID B Form-C —
I. Information — —

] II. || Information i?ginter(s) =
ITI. Pointer(s) - B

i ™., 77§e§;7 "::7:7 Pointer(s) | = -~
V. Key | Information = —
VT. Key Information Pointer(s)

Note that the access path to a block always connects at Form A
in any given type of block. Content type (a), address, is always
implicit as the location of the block. That is, Form A is the part
that is addressable from outside the block. It is necessary agein
to point out that the storage block concept is distinguishable from
blocking factor. A storage block might be co-extensive with a physical
record made up of many logical records. In that regard, an 8B can
be said to exhibit the property of having a "blocking factor." However,
as a logical entity., a single SB may extend across multiple physical
records, or there could be several SB's in a single physical record.
And a logical record might span multiple linked storage blocks,.
stored on different types of devices, as in a horizontally segmented
file. '"Blocking factor" is restricted to» the programming sense of
a unit physical record on a storage medium, consisting of one or
more logical records, separated by inter-block gaps on tape. It has an
operational meaning that is important to remember; that is, as the
unit of data transmitted between main storage and an I/0 device by
the manufacturer supported operating system data management facilities,
when the direct aceess method is used.

3.2.1.2 Information Linkages

Important to a file system where ths structure is complicated by
efforts to optimize such parameters as inquiry response time is the notion
of information linkages. When g file segmentation is undertsken in .order
to improve retrieval time, as when the expected volume of search or
update activity is unevenly distributed across file records, the
transfers of . earch requests, intermediate information, and ocutput
products to the requester may involve complex paths to snd from. the CPU and
secondary storage, and within the secondary unit. To account for costs of
such transfer paths, the concept of information linkages was devised. Such
linkages are associated with the flow of information to and from users and

¥'Key' in Form A does not exclude the possibility of placing more than
one attribute in a keyed record in what is called a combined secondary
index file. An example wauld'be 8 key ccmblnlng authcr plus some pcrtlon
of title fields. : I

M

s M

files, which may be in the form of input requests for searches,
requests for I/0 operations on data sets issued by the search
program in the CPU to the peripheral file unit, and retrieved
information being sent for display to the requesting individual.
Using these types of flows, the linkages can be grouped into three
- general categories to determine their effect on file organization.
Fig. 13 shows these categories and the possible sub-types of
linkages under each category.

FIG. 13:
TYPES OF INFORMATION LINKAGES

Linkage Type Origin Destlnatlon

Key (SB Types iv,

I. ﬂégsage Block to . ”:L
__Storage Block) ,,lnp};t Mes,sagse:i V., or VI*) __
Pointer (Form A, Key

II. Storage Block to B, or C¥) A _

Storage Block Pointer (Form A,| Information (Form

_ ___|B, or C¥) A* SB's only)
. = Output Message

ITT. Storage Block to 7K§y utp g

Message Block Information Output Message

The forms of content which can be included in the various Message
Blocks - an Input Block, e.g., & command language repertory,

search arguments involving a file attribute code set, such as

'AU' for Author index file and a key value such as the name 'SMITH',
and an Output Block, e.g., the message repertory and action options
displayed on a visual terminal to the requester, are beyond the

scope of the present effort and will be dealt with in other sections

of the report.

Since these linkages all imply hardware and software actions -

(seeks, reads, etc.) there are définite time penalties implied

in file struetures 1nvalv1ng numerous transfers among messsage
blocks and llnkage segments (starage blgcks) These timing factors
will be examined in detail in subseguent discuss;on.

* See Fig. 12.

3.2.2 Feasible Storage Blocks

Continuing the analysis, we now introduce the characteristics
of bioliographic records and the types of devices and I/O techniques
that are presently availsble, the effect of which is to 1imit the
number of feasible storage blocks. The present analysis will include
only IBM direct access storage devices. As a result, the following
storage blocks previously defined are not feasible for secondary
key access:

FIG. 1kh:
UNFEASIBLE BLOCKS

SB Type Forms in Block)
v Key Information
VI Key Information Pointers

These: are ruled out because of the reguirement for multiple
secondary key access to bibliographic files - authors, titles, sub-
Jeets, ete. In the blocks containing index structures, one would not
wish, therefore, to repeat the bibliographic master record data
(the "information" form). The argument could be mede for using
Blocks V or VI for at least the primery key (record mumber), and
indeed this should be considered.® For alphanumeric keys, however, the
Direet Organization, which supports variable Zength records, does not
possess the part-key feature which is manufacturer-supported in the
indexed sequential access method software. And the ISAM software
available to the ILR facility does not currently support ‘varisble-
length records. Hence, the storage blocks that will be considered
in the remginder of the analysis are types I- -IV, shown in Fig. 12,

The list of possible linkages remsins as in Fig. 13. '

*The mas*er file reccrd nuﬂbers in +the ILR faci ity- have been
stored in a "f;nder file" of master record link ‘addresses because
the links once ccm;uted are used frequently in the index file-
bullding pracess._ A shcrt fixed length flle Qf these pclnters

was desired for efflciénqy.

R

3.3 B8ingle~Device File Organization

3.3.1 Purpose of Analysis

The present analysis 1is intended to optimize the organization
of bibliographic records within one direct access storage facility
of a given type (which may contain multiple storage units, e.g.,
disk packs), under two criteria:

a. Minimum Average Retrieval Time, as the principal measure

of the retrieval response time distribution, and

b. Minimum Cost Associated with Auvxiliary Storage and Processing

Time. Future work will extend the analysis to organizations using
multiple facilities of different types (e.g., disk facility and data
cell facility).

3.3.2 Costs
The following costs will be assumed given:

a. Cost of Auxiliary Storage (Cs). This refers to the cost
of DASD space which is assumed to vary l;nearly with respect to the
number of bytes stored.

b. Cost of Process;ng Time (PT). This represents the cost of
using the central processing unit (CPU), and it is expected to be
a concave, non-decreasing function as shown in Fig. 15.

FIG. 15:
PROCESSING COST CURVE

Cost per
CPU-CORE
UNIT per
it time

Er926551ng ‘Time Eer Unit Tlme (PT)

Generally, the cost of process;gg tlme of a central pracesslng
unit depends also on the amount of main storage that is used. For
this reason the cost is shown per core unit, which represents. the
amount of core used in the processing of a. request Fcr this. analysis -
it will be assumgd that the central pro23351ng unit is. used for ..
costlng purposeg all the time durlng the search and retrieval stage.’ '

3.3.3 Assumptions

Assumption 1: All the unkeyed files are assumed to be blocked

to full track capacity where possible.

Assumption 2: The seek time is independent of the record length
and its loecation. This is Justified considering that the bibliographic
records are shorter than the track length of the first DAS facility
to be considered. Therefore, the probability of & record being split
into two tracks is low.

Assumption 3: For an indexed file of fixed number of index
levels,* the amount of storage required is assumed proportional to the
number of keys. In a blocked unkeyed file, the storage requirements
are egqual to the total sum of the records' lengths, but in an index
file +the storage requirement is more than the total lengths of the
records due to the overhead storage needed for cylinder indexes and
track indexes (ISAM). Then, this assumption states that the extra
amount of storage needed is proportional to the number of keys. A
useful implication of this assumption is that for a given keyed
file, we can obtain the cost of storage per keyed record in a given
device.

Assumption 4: The requests are served on a first-come-first-
" served (FIFO) basis, and the reguests of each record are randomly
distributed in time. This implies that the system cannot expect
more than one request of a record at a given time.

Assumption 5: The structure and crggnlzatlcn of the file is
to be regarded as having no effect on the user's behavior. This
implies that the cost and retrieval time variations will not affect
the usage fregquency of any record.

The catalog structure that will be studied contains. several
index files; i.e., author, title, subject, etc., and the ccrrespondence
of the keys and records is not unitary (one-to-one).

These different types of indexed files are assumed to be the
only types of on-line accesses to the files. WNon-indexed on-line
access to the content of master records is a separate analytlc issue
outside the scope ‘of the presegt repcrt.

Scme useful perfgrmance analyses of the manufacturer—supparted indexed
sequential access method software are now beeamlng available. For
£example, in- regard to trade-offs 1nvelved in going to a masteralevel
1nder, and cther aspects of ISAM, see Lum V. ¥., H. Llng, and
M.E. Senko, "Analysis of a Complex Data Management Access Method by
- Simulation Mcdell;ﬂg," In AFIPS Cenf. Proc., Vol. 37, (Fall Joint Comp.
Genf., 1970), Montvale, “N. Jd.: AFIPS Press, 1970, 211—222. .

e

Assumption 6: The number of records associated with a key is
independent of its usage frequency.

Assumption T: The index key field length is a fixed value. (It
is selected as a file parameter at load time, up to a maximum
specified in the manufgcturer-supported software.)

More assumptions will be adopted at later stages of the analysis.
3.3.4 Analysis of Alternative Structure Concepts

The present problem represents a special case of file structure
which limits the alternatives to only a few cases. For this reason,
each organization will be described and a method to select the best
one will be provided.

The type of index file that will be considered for this system
is the Index Seguential Organization for DASD, which represents the
most attractive organization method because of the key prefix
retrieval capeability in the manufacturer-supported access method.
This feature permits any number of characters to be submitted in
the search key to be matched against the 1ndex key. This is called
the "part-key" facility.

3.3.4.1 Unfeasible Structures

We begin the discussion of alternative structures comprised of
Type I-IV Storage Blocks with a review of file structures which can
be rejected on various grounds.

Most of the possible structures will be ruled out due to the
particular characteristics of bibliographic catalogs and to the
timing characteristics of DAS devices. The following is a di-cussion
of the unfeasibility of the structures shown in Fig. 16. In 2
course of this discussion, we will point out other factors relat~d
to the dynamics of the files.

a. Threaded List Master Records. Structure 1 represents a
conventional linked list. The key 'directory" is placed in a
separate index file. The master records associated with an index
key are retrieved in a sequential pattern, where each record con
tains a link address or pc;nter to the next associated master
record to be retrieved. However, each of the various keys asso-
ciated with & given master record is not necessarlly associated with
the same group of master records. This will thus require in each
master record a large: nuﬂber of pointers associated with different
keys and records, which will be ‘extremely difficult to maintain.
Also, it rules cut the possibility of bl@cklrg the master file to
full track capacity because storage has to be prov1ded for addltlans
to the chains.- Furthermare, dits average retrlavai tlme w111 prQbﬁbLy

¥When multiple seccndary key access is regu1red as 1n,blbllographje
systems thiS structure is ecalled a multiple threaded 1l5t, or Multi-

be higher than that of more feasible structures to be discusged.¥® TFor
this reason, we now consider various forms of inverted list structure;
that is, where the links to master records are physically removed
from the master file.

b. Begmented Master File. In connection with this strue-
ture, it is appropriate to review the role of file and record seg-
mentation in this analysis. Structure 2 has two possible refinements,
based on activity of the file. One is called "horizontal segmentation,"
and the other "vertical segmentation." In horizontal segmentation,
the most frequently used parts of each of the master records are
prlaced in the first or primary segment, the one which is linked by
pointer from the sccess (index) file, and the remasinder of the record
is placed in segment 2. The two physical segments (files) form one
logical master file. A pointer links the record segments in each of
the two sub-files.

In vertical segmentation, some variations are possible. Here,
whole records are separated into relative high use vs. low use groups
and allocated to segment 1 and segment 2 accordingly. Two possible
linkage arrangements are possible: +the first is to use two sets of
pointers in the index file, one set pointing to the high use segments
and the other sot pointing to the sssociated low use records. The
other possibility is to connect the segment 2 group of master records
by a pointer from the trailing record in segment 1 of the master file,
as shown in Fig. 16. This is a variation on Structure 1, and has the
same disadvantages.

These structures can be improved by employing multiple devices
where feasible. For example, the high use segment could be sllocated
to a fast but expenslive DASD, while the lower use records are stored
on a slower but cheaper device, thus bringing cptimization from the
viewpoint of access time in relation to expected file activity.

Combinations can be visualized. For example, vertical seg-
mentlng could be performed first on the master file, then secondary
horizontal segmenting on the resultant high use (segment 1) group,
in addition. This would leave only the high use sub-record portions
of the high use group of records to be stored on the faster DASD, if
that were found to be an effective scheme. Moreover, the same seg-
menting strategies can be performed on the index file. We turn our
attention to that issue in the next section on "Feasible Structures."”

*For comparative perfcrmance analyses of threaded list structures vs.
inverted lists, see: Lefkovitz, Dav1i Flle Structures for On-Line

Systems, New York: Spartan, 19613 Lcwe, ‘Thoma.s C.,'D351gn Principles
for an On-Line Information Retrieval System, (Moore School Report No.

6T~1L . Phlladelphla Moore Schocl of Elec. Engr., Univ. of Penn..
Dec. 1966, or the same author's '"The Influence of Data-Base Charac-
teristics and Usage on Direct-Access File Organlzatlcn," JACM (15,.
October, 1968), 535-548; and Martin, Lawrence David, A Model for File
Structure Determlnatlon fbr Large Onéilne Data Flles, Pullman: Systems
Div., Washington State Univ. ., lQSB’ o

»

FIG. 16:
UNFEASIELE STRUCTURES

STRUCTURE 1 - THREADED LISTS

Keyed File 7 ___Master File (Non-keyed)
KEY | POINTER, - 4 INFORMATION POTNTER,,
- 7) B ~ - B I] - T7)
key
length
~__ - i, I PQINTERI
index record length — \L

next record

STRUCTURE 2 -~ MASTER FILE SEGMENTS

_______Keyed File _Master Segment 1 Master Segment 2
KEY | POINTERS 5 SBLECIED loo;ynpp |—3) REMAINDER OF
T INFORMATION{ "~ "™ INFORMATION
STRUCTURE 3 -~ CIRCULAR LINKED LISTS
Keyed Files ' Pointers Files Lt .~ Master File L
KEY 1 | POINTER _ 4 ' POINTERS ;EEEE{? ‘
| : _ I INFORMATION | POINTERS

NOT USED | (BACK TO
AS KEYS | KEYED
| FIzES) [

| KEY 2 | POINTER"

5 PDTﬁTERSi' —
1 =

Structure 2 may be Justified, as will he shown later, when
some costs can be reduced by storing information of infrequent use
in slower, more inexpensive devices, or when the retrieval time
is affected considerably by the length of the information to ve
read. . Acceptance of Assumption 2 eliminates that time factor for
the present stage of analysis.

c. (i _Linked Lists (Non-Repe < . BStructure 3
is an attempt to save some space by excluding from the master file
the fields or terms that are used as keys; this would be useful if
these terms were of fixed length. However, this is not the case with
bibliographic data. The keyed terms are erglnslly of variable length
but are truncated into fixed length fields in the index record.
During this process, some information is lost, and in some cases this
key is of little value when the keyed terms themselves constitute the
information requested by the searcher. Moreover, even if varisble-
length key fields for index records were supported in the software,
there is often a representation problem. For example, a key value
such as an author name which would be stored in upper and lower
case in the master record, may have to be stored in upper case, with
diacritics, etc., removed, in the index key for convenience in
searching.

Moreover, there is & further space penalty in chaining from
each key value instance in a mester record back to the index file.
A retrieval and presentation probliem also lies in the method used
to link the key values and master record for displasy purposes.

3.3.4.2 Feasible Structures

ke : peated K er File).
ﬁsmmtnﬁsfﬁmﬂmﬁtMtwsmmﬂaﬁnmthf&ﬂﬂs
are shown disgramatically in Fig. 17. These are special cases of
inverted lists. Separate ansalyses will dlscuss the possibilities of
segmenting a single keyed file into linked physical files according
to criteria such as key length. That analysis -iz independent of
the kind of structure to be selected, for it i= performed for each
keyed file individually. The present sns;ysis is also performed for
each type of key individually because the different keyed files.
functlon independently. : ; —

b. ¥ N e F T = - N 4= 15 =3 =3z =0 =
Structure 4 rep:essnts a 1inhedspclnter 1ndex ccncept 1ntendsd tc
overcome. a system limitation in the. access flls whlsh must ‘be. flxed :
record length format. It includes a fieid for the key and a field
for a single pcinter,‘whlc“ points to the" head cf a ‘1ist stored in
an intermediate file called the Pointers Fils or. Address File. - The
pointers. in the Address File are link adgressss of msster rscsrds
associated with the key vslue. B : - - ~ e

uFlearibh > = N Structure 5 slss 1nvclvss

keys which are ccpied out of: the master file. It can bs'i“plsmsntsd,~
with either fixed or varisble. lsngth 1ndex rscsrds and t e inter-
medlste file is not used. 5a plsces the. key and - all msstsf file

8

pointers together in a fixed length record. . Structure 5b. represents
the more conventional inverted list structure. 5b is a relaxed form
of S8tructure U in that varisble length records are permitted in the
access file, thereby ocbviating the necessity for a Pointers File. The
key field must still be fixed length.

At the time of this writing, only Structure L4 and Structure 5a
or slight modifications cculd actually be given trial implementation
in the ILR facility, due to software limitations. In fact, the
difference between the storage requirements of Structure 4 and Structure
5a is due to a (temporary) constraint on implementation which requires
fixed length records in keyed files.¥ This imposes the condition in
Structure 5a of setting the record length +to a specified maximum value
at load time for the file. That value must therefore correspond to
the sum of the maximum desired index key field length plus the length
of the field containing the pointers. The pointers field must be
long enough to contain all the pointers for that key instance which 1is
associgted vwvith the largest number of master records. As a conseqguence,
most of the index records will contein unused space. (The key field
length must alszo be set at szome predetermined fixed length by the file
designer.)

3.3.4.3 Index File Segmentation Based on Index Record Length

To overcome this waste of storage, the records of an index file in
Structure 5a can be grouped according to their total record length,
or equivalently according to the number of master records, i.e.,
pointers, associated with their keys. This is to be distinguished from
segmenting the file on the basis of key field length. Using structure
5a ms a basis, in the following section we will analyze the effect
of dividing the access file aceerding to reeerd length.— The eegmented
Structure 5a will require the same amount of sterage as that of .
Structure L4, which has no storage wasted for pointers. However, each:
division of the 5a index file repreeente an incresase in retrlevel :
tlme due to the t1me to transfer the seareh frem ane sub file te another.

The segmented structure Sa requlree lees eeeees tlme than : that o
cf Structure h hecause of the EBsence cf the 1ntermedlate p01nters '

for the’ key hev1ng the greeteet number of - pelnters. The t;ﬁés“whlehl
are of 1mportance 1n the precese of eeareh and retrleval ;are:. '

. format reeords are nct eupp_
-_Aeeeee Methed in Releases K=)

FIG. 1T:
FEASTBLE STRUCTURES

STRUCTURE 4 - TWO LEVEL LISTS (REPEATED KEYS)

"ixed Record Length Varieble Length (Non-Keyed)

Keyed Files

Pointers Fil Magter File
. D - S
Key 1 POINTER | POINTERS —
,47 i - , o ——— > N i
KEY 2 POINTER POINTERS INFORMATION
KEY 3 POINTER “| POINTERS —
STRUCTURE 5 - UNIuY LISTS
5a. Fixed Record Length Index Record
5b. Varisble Record Length Index Record
o ':Maste;%Eilei
KEY 1 OINTERS — >
KEY 2 POINTERS “1 . INFORMATION
KEY 3 | POINTERS : - 3

time and operating system supervisor time. It is wvalid to assume this
time as constant for a given type of file. Hence, these will be
represented by Tk for a keyed file and Tunk for an unkeyed file,

where Td>Tunk.

b. Seek Time (T_). Also called Access Motion Time. This
is the time required to reach any location of the DASD. As mentioned
before, this is a constant for these types of devices. . For our analyses,
it includes two other parameters, rotational delay (latEﬂcy) and

data transfer time, which are constants.

C. : ,FediE;l (¥ ! The average search tima
in a keyed file ‘under Index Sequential Organization can. be estimated
by adding the times to go from one index level to snother, and tae
average times required to search each index level sequentially. Before
estimating this time, the number of index levels in s given index

file and their respective lengths should be obtained.

Hence, the average search time K in an indexed file is given by:

K = T,(NIL-1) + S25 [MP1 + MI2 + MI3 + CT + TT + 1] (1)
where MI1l = min [NTM, M1] (1.a)
MI2 = min [NTM, M2] (1.v)
MT3 = min [NTM, M3] (1.¢e)
CT = min [NTM, CIT] _ (1.4)
NIL = number of index levels (system created)
ROT = time required to read a track (equal to one full rotation in
s disk type of DASD). Includes Transfer Time.
M1l = number of tracks in first master-level index
MZ = number of tracks in second master-level index _
M3 = number of tracks in third master-level index (if required)

CIT = number of Cylinder Index tracks

TI number of Track Index tracks

NTM = minimum number of tracks in an index level that will Justify
a higher level.

T

For this ansiysis, the distribution of Fig. 18 is assumed given:

FIG. 18:
DISTRIBUTION OF THE NUMBER OF RECORDS
ASSOCIATED TO EACH KEY

N(k4)
N(2)
) ~] N
Number of keys (§2,
N associated N(1)
with m master [~
records. N(m)
1 2 3 L . e .

Also, for each keyed file, the following data is assumed given:

n = total number of keys

Sk = total number of requesits per unit time, which is equal to
the number of key searches.

Sp = total number of successful searches, this is equal to the

number of accesses to the Pointers File, under structure k.
Sm = total number of records retrieved; this is equal to the
number of accesses to the master file.

With this information given, the total Bgccéssing time can be
evaluated for each structure. :

For structure L4, we have:
Index File:

‘Tindex = 8k(Tk + T_ + K) , : (

B (2)
Pointers File:
Tpointer = Sp(Tunk + TB) - - (3)
Master File: ‘
Tmaster = Sm(Tunk + Tj) - ()
Therefcre, the tatal time for structure L4 is: ;
Tst.4 = Sk(Tk + T +K) + (Sp+ Sm) (Iunk +. Ty) - (5)

“B

o

The number of groups (m) of the distribution shown in Fig. 18
will be fairly large for the bibliographic catalog under consideration;
consequently, the adoption of the segmented Structure 5a will require
much larger processing time than that of. Structu.e 4, and no storage
savings can be accomplished. For this reason a mere usciil analysis
will now be directed to the effects of using a mixed structure,
called Structure 6, wherein some groups of index records. are organized
together under each of Structures 4 and Sa. Two discrete files,
each organized under Index Sequential, are necessary. A diagram of
s mixed structure is shown in Fig. 19. This is designated Structure 6
and is the form used for analiysis in the remainder of the paper.

FIG. 19:
STRUCTURE 6 ("MIXED")
Fointers Filgr

Keyed Files Master File

N ,7
KEY |POINTER POINTERS —
INFORMATION
KEY |POINTERS [~ %

In a preliminary analysis of the Santa Cruz data base, it was
determined that the second largest group constituted approximately
6% of the index records for the author names file. Index records in
this group had only 1 pointer, i.e., were associated with only one master
record). These unitary keyed tecords constitute a special case of
Structure 5a. When this occurs, a variant of Structure 6 can
be implemented immediately prior to further analysis of the key/
master record ratios, for division by record length. The single-
pointer index records can be retained in the Index Sequential File
for Structure 4, using the same record length as for Structure L.
The structure in this case ig as follows: ‘

o FIG. 20:. o
STRUCTURE 7 ("MODIFIED MIXED")

Keyed Files .Eaiﬁifﬁsa_gilés;
Str. 4| KEY| POINTER [—>| POINTERS |
Str. S5a 7("Singles")
KEY 7PDINTER -
str. 5a ("Multiples") . s
KEY | POINTERS [—— —— — — B

The group of Structure U index records (not in the M=1 portiomn
of segment 1) is, of course, still subject to division according to
thé procedures suggested for ecreating a mixed structure based on
index record length. The '"singles", being already of minimum
record length, would thus be excluded from candidacy for segment 2.
If singles constitute the largest group, the division procedure can
proceed with the next largest group, depending on the conditions.

3.3.5 EBEvaluation of Mixed Structure

The problem now is to determine the conditions that will Jjustify
the organization of a given group of index records under Structure 5a,
as part of a mixed structure. The mixed structure (Structure 6)
will be the subject of the remsinder of this analysis.

¥From the distribution of Fig. 18, select the largest group.
Let this be N(M) and organize it as an ISAM file using the minimum
record length for M pointers under structure 5a. The remaining records
are organized under Structure 4, using a record length for one pointer

(to the Pointers File). The next step is to evaluate the total pro-—
cessing time for the mixed structure.

index flle depends anly on the number of records in each file. Also,
the time to transfer from one index file segment to another will be
relatively large. Consequently, it is more efficient to search the
largest file segment first.

On this basis, the Total Processing Time will be evaluated for
two cases of Structure 6 (M1 red Structure):

3.3.5.1 Case 1: N(M)<n-N(M). Largest Group of Ke eys Léss Than 50% of File

Processing time for the first segment of the in.sx file:
(8tructure L4) (Largest File) '

Tindex 1 = Sk(Tk + Ty + K1) (6)
For the second segment of the 1ndex file:
(Structure 5) "

Tindex 2 = [Sk - Sp(l N(M))] (Tk + TB + k2) (7)

For the Pclnters Fllé..
Tpointer =_Sp(n7H(M)) (Tunk + Ty) - (8)

and, for the master file, the same as (5)- Heﬁcé;’the total time
for this case is:’ : :
. Tmixed str. case 1 : Sk(Tk+T +K) +[Sk Sp(1—¥=§;)] (TK+I +K,,)+

B
N(M) +Sm] (Tunk + T) p "'_ (9)

%

- R ok

[Sp(1-~

where K1 is the average search time for the keyed file segment left
under Structure ki, and K2 for the one under Structure 5.

Now 1t will be prcven, as might be expected 1ntu1t1vely, that
use of the mixed struecture, when Case 1 cbtains, is not Justified
for any value of N(M) in the designated range. It will be proven
that the following is true:

Tmixed Str. Case l}T 4 or Tm;xed Str. Cage 1 = TSTh>O-’ (1@)

(Tmixed Str. Case 1 - TSIL) Sp(1- N(M) (Tk+T KE) + Sk(Tk+TB)
NiM) Sp(Tp+Tunk) + Sk(Kl+K -K) (11)

The first term is clearly positive because N(M)<1 the second term
is larger than the third one because Sp<Sk and Tunk<Tk and the
last term is also positive, for the search time does n@t decrease
more than linearly as the number of records decreases. Hence, con-
dition (10) holds.

3.3.5.2 Case 2: N(M)>n-N(M) Largest Group of Keys Greater Than 50%
of File . : :

For the first segment of the index file: (Structure k)

Tindex 1 = Sk (Tk + Ty + K1) ' (12)
For the second index file: (Structure 5) (Largest file)
Tindex 2 = Esk-sp(gﬁygoj (Tk + T, + Kp) : (13)

The times for the pointers file ana the master file Wlll be the same
as those for Case 1.

Hence, the total processing time for this case is:
Tmixed Str. Case 2 = Sk(rk+iﬁ+KE+Kl-K)—SP(E§¥l)‘
(Tk + giB + K + TUEK)': , B (14)

‘Next, it will be shown that a mixed structure of Case 2 is
Justified for certain values of KﬁMl, Using’equaticns (5) and (14) and

simplifying, we get: _ n
Tmixed Str. Case 2 - Tl = Sk(Tk+T +K2+K —K)-SP(ELEL)
(Tk + 2T, + K, + TUNK) ; : (1 5)

Fxpr3551on (15) will be negative and the mlxed,structure of Cage 2
is justified when the follcw1ng 1s true:

N(M) | Sk(Tk+T +K +K >~K)

Q no Sp(Tk+E Ty K1+TUNK)

That is, the largest group N(M) which is the one placed in Structure 5a,
and is searched first, must be a high snough proportion of the keys
which are matchez to the search requests of the system, in order to
reduce sufficiently the search effort (time) spent on requests put

to the group remaining under Structure 4. If the latter is too high,
the mixed structure for this case will be inefficient.

This analysis has considered the effects on the retrieval time
only, assuming that the storsasge requirements for the mixed structure
are essentially the same as that for Structure L.

The exact difference in storage can be estimated easily using
the following form:

Smixed ST - Sgy, = (NT1 + NT2 -~ NT)ITC (16)

total number of tracks needed for the index file under
Structure L.

where NT

NT1l = total number of tracks needed for the index file under
Structure 4 in the mixed structure.

NT2 = total number of tracks needed for the index file under
Structure 5 in the mixed structure.

ITC = track capacity in bytes.

NT, NT1l and NTZ2 are given by program STOCAP¥* that was used to
obtain the necessary parameters to estimate K1, K2, and K.

In the event that a mixed structure of Case 2 is favored, a
similar analysis to the one just described can be perfarmed to-de~
termine whether further subdivisions are justified. This analysis is
performed using only the records that were left under Structure b after
the first group 's segment has been removed. : :

3.3.6 Segmﬁntaiicn of Index r;les Based on Key Length

Now the pcss;blllty cf sp lttlng the flles by key 1ength tc ‘
achleve improved storsage allocation, will be. .analyzed. :As mentioned
before, the terms in the records that are used as- keys have to be
transfarmsd into fixed length fields not: changeable after load time.
In order to maintain a’ reascnable level. of uniqueness in the’ key
search, the key field length of a keyed file is usually set by a
relatively small set of records havlng leng keyed terms. As" a re—
sult, many of the index. recards wlll eontaln a keyed flela lgnger
than neceesary The pessibllity of. d1v1d1ng the index file ‘into
greups hav:ng different key fleld lengths thus is - plausible.-'

< . .- .
A Fortran rout;ne written to provide computatlcnal support in analy21ng o
the model. . ‘

3.3.6.1 Objective of Analysis
At this point the following additional assumption will be adopted:
Assumption 7: The minimum key length required for an index record

is independent of the key usage frequency and of the number of master
records associated with it. ~

This assumption meskes the analysis independent of the previous
one. It can be performed independently on each keyed file deter-
mined by the previous analysis.

In this case the changes in storage requirement and processing
time have to be considered simultaneocusly because both factors will
change when a file is segmented. Furthermore, the effects of the
partitions on these parameters are different.

Hence, the present analysis will not attempt to obtain an optimum,
but to express in a useful way the effects of these divisions. In
particular, this analysis will yield a graph of the minimum storage
requirements versus the total processing time.

3.3.6.2 BStorage Minimization
The following assumption will be made on the distribution of the
key lengths: . '

Assumption 8: The minimum lengths that are requiréd to make
key values unique in any Qrdered 1ndex are uniformly distrlbuted

Corrected Key Length. Assumgticn 8 and Assumptlan 3 tcgether imply
that a "corrected key length'" can be cbtained for each key length, the
use of which in the model will absorb the extra storage required for
2ll the different index levels within an access file, These corrected
key lengths are also uniformly distributed. Let these corrected key
lengths be designated by and the total index record lengths bty LR'
In Fig. 21 2 hypothetical stributicn of these lengths is shown.
Also shown in dotted line are the "actual™ minimum key léngths L _ required
to achieve unigueness of keys. ‘ s S u

FIG. 21:

DIETRIBUTIDN OF KEY AND RECORD. LENGTHS

Record and
key lengths
required .
(1n bytes)

,mai; LR

max;Lk

The minimum storage requirements for a given number of groups
are achieved when the groups are all of the same size, and this minimum
decreases as the number of groups increases. Hence, to obtain the
graph of the minimum storage requirement versus total processing time,
it is sufficient to evaluate these two parameters when the file is
divided into different numbers of equal size groups.

The minimum storage required when the number of groups is h, is
given by:

n(h+1l)

RAE } - = F . — min - 177
Min. storage = n(min LB) + e (max L Ly - min LR) (17)
where n = total number of records in the index file.
h = number of groups
min LR = minimum record length (See Fig. 21)
max LR = maximum record length (See Fig. 21)
And the time is given by:
k=h
Processing time = z [sk - %E-(ksl)] (Kk+Tk+TB) (18)
k=1 l il :
where K, = average search time of the kth keyed file which is e,t1mated

using program STOCAP and Expression (1). Si» S5 Ty, and Tp
are as defined in the previous analysis. B P)

Depending upon the severity of the increase in search time as
the key length increases, it is clesar that the files with shortest
keys should be searched first, if the effect of usage frequency is
not considered.

When the search is done sequentially, group-by-group %ﬂ increasing
key lengths, then by Assumption 8, the key length of the 1 group is
given by:

L, = min L_+ i (mBXLk i Y (19)

Again, the exact value for the storage can be estimated frcm the
output of the program STOCAP using the form:
i=h v .
s =1ITC § NT(i) _ (20)
i=1

where NT(i) is the number of tracks needed to store the i index file
and ITC the number of bytes per track.

3.3.6.3 Precessing Cost Minimizéticg

Equations (17), (18), (19), and (20) give the value of the parameters

‘using the criteria of minimum amouwat of storage. This, hcwever,vmay not

be a reasonable objective when cost of processing time varies significantly
with changes in total processing time. For this last cese a more represen-
tative graph will be that of.Minimum Total Cost vs. Total Processing Time.

.« RO

Here, the size of the groups will not be the same, and the analysis
has to yield not only the minimum cost and total processing time, but
also the size of each group, for a given number of groups.

The introduction of the processing cost eliminates the possibility
of analyzing each index file independently. This is due to the non-
linearity of the graph in Fig. 15 and the fact that this cost is for
the total processing time of the system and not for each file. Hence,
this time is the sum of the processing times in each file, both index
and master. The implication here is that the optimal partition of
one file varies for different values of the total processing time,
and because this time is & function of the structures of the other
files, the overall dependence is established.

Consequently, any reasonsble analysis will have to consider all
the files simultsneously. To achieve this, an algorithm has been de-
vised which generates the minimum cost vs. total processing time curve.

3.3.6.3.1 Design of Optimization Procasdure

This algorithm describes an iterative procedure which starts with
all the index files unsegmented, obtains the change in costs resulting
by different divisiona of each index file independently, selects the
most advantageous change among all the files and possible parti- -
tions, changes the structure and repeats the process. Recall that the
group which is removed from the basic corpus, by virtue of the division
procedure, is formatted into Structure Sa (Unit Lists) and must have
a fixed key length and a fixed record length specified at load time.

The total processing time is expected to increase as the number
of partitions in each file increases. This is due to the time
required to transfer the search from one segment to the next.

From the results already available on the distribution of the
key length of the authors index file, it seems that in certain
cases Assumption 8 is not Jjustified. The algorithm will be essen-
tially the same when Assumption 8 holds and when it does not. How-
ever, the process of evaluation of certain wvalues will differ in each
step. These differences will be pointed out when each step is
discussed in detail.

3.3.6.3.2 Algorithm for Search ErGCESslng Cost/Total P1322531ng Time
Optimization

Step 1 - Estimate the storage requirements, total processing tlme,
and total cost for the whole system without partitioning any index
file with respect to key lengih, and plot their corresponding values -
in the minimum cost versus total processing tlme graph.

Step 2 - Obtain the optimal (minimum cost) group sizes for each
index file when they are independently d1v1ded into h, h+l,...,.
h+AH groups, with respect to their key lengths, where h is the number
of partitions of that file in the present structure.

Step 3 - Estlmate the total cost when each of the index files is
titioned into h, h+l,...,h+AH grcqp, “without partitioning the others.

sdﬂl

Step U4 - Select the best change of structure from the possibilities
evaluated in step 3.

SteE 5 = Plot the corresponding values of the structure selected
by step in the minimum total cost versus lotal processing time
graph, and let this structure be the present solution for the next
iteration.

Step 6 - Repeat step 2, 3, 4, and 5 recur51vely, until the

minimum cost versus proc3551ng time graph achieves a trend where
both parameters increase simultaneously.

3.3.6.3.3 Parameters
The following data are assumed given:

For the Keyed (Index) Files:

N(J) = number of records in the J B keyed file
in Ik(J) = minimum key length for the J°2 file

max Lk(J) = maximum key length for the J'2 file

min L. (7) = minimum record length for the J°2 file

max Lp (7) - maximum record length for the I ri1e

Sk(J) = total number of requests which are searched in
the Jth keyed file per unit time

For the Pointers File:

P(J) = total number of pointers in the J°P file

IP = length of the pointers in bytes

total number of accesses tp'the,Pcinters‘File asgo~
ciated with the JPH index file, per unit time.

SP(J)

3]
o]
Pt

> the Master File:

2

= total number of Master Records

= aﬁerage'length of the MastEr Records

:

total number of records r=trieved in the maater file
per unit tlme

.
g
I

Also assumed given are all the characterlstlcs of the device,
ineluding its timings and costs described in ‘the prevlcus analysis.,
With the previous information, the search time for each index file

can be cobtained using the program STOCAP and Equatﬂcn (l) The
desired factors will be designated by:

K(J) = search time of the J'® index file when this is
‘not partitioned and is organized as an Index
Sequential File.
The following notations will be used for the other wvarisables:
n(J,h,I) = number of records in the Ith‘partition of the
Jth jindex file, when this is partitioned into
h groups (I s h)

sT(J) = storage requirements for the Jth index file

T(J) = total processing time of the Jth keyed file

search time for the I°H group of the JP index
file, when this is partitioned intoc h groups
and each group is organized as an Index Se-
quential File.

K(J,h,I)

An asterisk will be added to these values to de51gnate their
expressions when et optimality (minimum ccst), e . Fe 5 D¥ *(Jg,h,I).
Le(J,h,I) = record length of the I group Df.the IR ingex
) file, when this is partitioned into h groups.

key length of the 7th grgup'cf,fhe“jth index

- Lx(J,h,I) ,
file, when this is paxtitianed inta h,grcups.

These two last vErlables will be used fcr I<h gnly, because
Ik(J,h,h) = maka(J) and L (J L,h) = max LR(J)

sk(JghQI) = number cf requésts“af'the Tt Partltlén of the
wo Jth file when thls is &;viaed into h grcups.

3.3.6.3. h Prgcedure Descriptian

Ncw, 8 detailed descrlptlon of each step Qf the 1terat10n will
be presented.‘ : :

EEEE_L.V The stcrage requlrements'for each 1ndex f11e can be
obtained by program STDCAP. ‘Let: thls‘ e’ ST,-; g .

The stcrage needed fgr the Pclnter Flle can be expressed as . the.
sum of all the number of PDlﬂtEIE tlmes the 1ength cf ‘these
pclnters,'cr. ’ , R P RS DT

sTp = PER(3) . B S R

For the Master File:

STm = NMR - LMR (22)
The total stcrage; then, can be represented by:

ST = STk + STp + STm (23)

If the cost of auxiliary storage is linear, then this cost
can be expressed as:

8TC = Cs - ST (24)

If not linear, then STC is evaluated using the corresponding
function. The processing times can be obtained as follows:

For the Keyed Files:

Tk =§ Sk(J) (Tk + Tg + K(J3)) (25)
And for the Unkeyed Files:
(26)

Tp + Tm = (TUNK + T;)Z 8p(J) + Sm(TUNK + Tp)
e g

where SP(J) is the total number of requests for the existing pointer

file or equivalently., the total number of successful searches in
files organized under'Structure L.

Then, the Total Processing Time is given by:

TPT = Tk + Tp +{Tm | (27)

and its cost can be obtained from Figure 15. Having the total cost
and processing time, these can be plotted in the corresponding gravh.

- Step 2: he process for obtaining the group sizes when
Assumption 8 holds, varies considerably compared to the case when
it does not hold. Under Assumption 8, a good approximation of the
optimal group sizes, when the file is divded inte h groups, is
obtained using the following expressions:

N#(T,h) = £ [K(n)] [D(3,h)] , (28)

where

N*(J,h)
(29)

S

[0(T)

Q(J) (T, + Tg)
() K, (30)
g(J) K

LN

Cr Sp(J) (31)

Os (max Ly (9)-min LR(d))

D(J,h)=

where @ =

NOTE: When index file J is of Structure 5a,i.e., without a separate
Pointer File, then SP(J) is taken as the total number of successful
searches in that file.

K(h) is a matrix that can be obtained from Fig. 22.

FIG. 22:
MATRIX FOR K
. E 1
R(2) = 1 1 1
1 -1 -1
1 3 2 1
' =1 1
k3 = [+ °
1 -3 -1 -2
1 6 3 2 1
K(Y) = 1 2 =1 2 1
!i -6 =1 =2z ’24
1 10 L 3 2 1
1 5 =1 3 2 1
EKE(5) = |1 0 -1 -2 2 1
1 =5 =1 -2 =3 1
1 =-10 =1 -2 =3 fi

k(6) =

R D N no

-12 -1 -2 -3 =k
-18 -1 -2 -3 =4 -

S e e |

determined by Program OPT FPART, which is designed to accept any given
distribution of key lengths.

Selecting the Optimal Number of Groups. Due to the lack of con-
vexity of the processing cost versus total processing time curves
for each file and the total system, we cannot assume that the next
best structure is found when each file is successively partitioned
into a number of segmented groups, each structure being one group
larger than the present structure. For this reason, at each iteration,
we need to investigate the possibility of partitioning each group
independently into h+l, h+2,...h+AH, groups, where h is the number of
partitions in the present solution, and AH is a parameter that indicates
the maximum extia number of partitions that will be czonsidered for each
file in every iteration. A suggested value of AH is 3,because when
the number of partitions is more than 4 for a file, the changes in
time and storage are expected to decrease and will not yield more
significant changes in total cost than the partitions with a smaller
number of groups. :

Determining the Optimal Group Sizes. In order to determine the
optimal group sizes, wWhether under Assumption 8 or not, the value of
Cr (the slope of the cost of total processing time curve, evaluated
at the total processing time corresponding to the present solution)
is required. This value may be only a poor approximation for evalu-
ating the optimal group sizes when the partitions are h +4 H. For
this reason, it will be better to re—-evaluate Cp prior to every
evaluation of the optimal group sizes. This can be achieved as
follows for each file:

a. Evaluate the optimal group sizes for h + 1,
using the value of Cp when the file was divided intu h groups.

b. With the groups obtained, calculate the change
in processing time from h to h + 1. .

¢. Get the corresponding Cp when the'change calcu-
lated in (P) is added to the total processing time.

d. Evaluate the optimal group sizes for h + 2 using
the value of Cp obtained in (e¢), ete.

Step 3: Having the optimal sizes for the partitions that will
be considered for each file, the storage capacities and processing
time can be obtained using program STOCAP and relation (a).

Before using program STOCAP, the record lengths and key lengths
n*(J,h,I) (32)

n(J)
(33)

for each gfcﬁp'haVE to be evaluated.
When Assumption 8 holds, these values are glven by
max L (J)-min Lg (3)
Z n¥(J,h,I)

min LB(J) +

ax L (J)-min Lk(J)

LR(JSh,I)
n(J)

and
L (J,h,I) = min L (J)-+Eh

When Assumption 8 is not valid, then the key and record length can

be obtained using their corresponding distributions and <the n*{J,h,I)

(34)

cbtained in Steﬁ”Ei
The Total Storage requirement for each pertitioned index file

is obtained by:
5
»h,T)

ST (¢
. th
,I) is the storage requirement for the optimal T
n by:

H
)

W~

sT#*(J) ,
1
group of the Jth file wvhen this is partitioned into h groups.
he rster shen give

i

structure.

where ST*(J,h
The Total Storage requirement for the system is
file is given by:

IST*(J) + STp + STm

TST =

J
where only one of the 8T*#(J) differ from the present
The Total Processing Time for a segmented 1ndex

I=k-1
n*(J,h,I)] (T +T

[sk(J) - —E-(—g— —
1 J Iél
(37)

o k
T(J) = } [

k=1
Then, the Total Processing Time for the System becomes:

I T(J) + Tp + Tm
Tm is the same as that obtained by expression (26)

TPT
J
where Tp h ame as t

Having the total processing time and storaze values for each

4+ Tm i
structure under consideration in.the present iteration, then their

ccrrespénaing costs can be obtained

P S

Stggﬁh -- The proper selection of the change to be adopted cannot
be selected on the criterion of Minimum Cost change. Some large files
may yield a large reduction in cost, but at the same time a large
change in Total Processing Time. This could skip some important point
in the graph.

To illustrate the problem, suppose that the points corresponding
to the previous structure and the ones corresponding to changes in
different ‘files are those shown in Fig. 23,

FIG. 23:
TOTAL COST/TOTAL PROCESSING TIME

¥ = previous

PR structure
minimum
total cost *® 0= changing
per unit File 1
time n O = changing
@) File 2

T.P.T./UNIT TIME

It is clear that the change of File 1 yields an important point
that is missed when the criterion of Minimum Cost change is used.

Cpnsequéntly, the criterion of minimum slope has been adopted
(min %%- . In this case, it is clear that the change of file 1 of

the example will be selected.

Hence, for each of the new structures that are being considered

in the iteration, we evaluate %%-using the expression:
c

AC _ NS PS
NS T AT T T - Too | (38)
where Cp. and Ty. have been evaluated by Step 4 and C g and T

are them%otal cost and processing time corresponding %o the present
solution and have been plotted already by Step 5 (or Step 1).

2

A

Steps 5 and 6 are self—eﬁplanatoryrand do not require any
special formulas. :

!';,r_.' L
I

ERIC . 18

I3

3.3.7 Segmentation of Index Files Based on Usage Frequency

Up to now, the file activity of the individual records has not
been considered. This distribution was not necessary for the previous
analyses because of Assumptions 6 and 7. Next we will explore the
possibility of dividing an index file when a different usage frequency
for the file occurs. '

The reordering of records within an index file is not possible
because the Index Sequential Orgenization uses the concept of High
or Equal Key, which underlines the need of a lexicographic ordering.
Moreover, even if reordering were possible, the search in an index
file has to go through each index level (see Equation 1), and the time
to go from one index file to another (Tg), which represents the more
time consuming process, will always be present; therefore, no sig-
nificant reduction in processing time can be achieved.

Another alternative, however, seems plausible for certain cases:
a partition of an index file into two separate files, each organized -
under Index Sequential. One will contain the records of high usage
frequency which will be searched first and the other, the records
of low usage frequency.

The total storage requirements will be assumed to remain essen-—
tially the same. This implies that the storage requirement for an
index file varies linearly with the number of records.

Hence, we n=z=ed only to compare the search times to determine
whether this alternative is convenient or not.

(Comment: Program STOCAP was run for different number of

For this analysis, we also assumed as given the usage fre-
quency of the records of each index file. When the records are ordered
in decreasing usage rate, we obtain a distribution as shown in Fig. 2kL.

FIG. 2k:
USAGE FREQUENCY DISTRIBUTION

Number of
Requests

per unit

time

oy o R

-

When the Jth index file is divided into two group=z, then its pro-
cessing time .3 given by:

To=8, (7) [T +Tp+K(3,2,1)] + [8,.(7)-5p(7,2,1)] [Tp+TK(7,2,2)] (39)

where gp(Jahal) = number of successful searches in the Ith group of
the Jt” index file, when this is divided into h groups. K(J,2,1)
and K(J,2,2) are the average search times for the first and second
group of the Jth index file when this is divided in 2 groups.

These searched times are evaluated as before using Equation (1)

and program STOCAP for a given partition.

The processing time for the Jth index file when this is not parti-
tioned, is given by (2), which is eguivalent to (40) with new notation:

T, = 8.(J) [TK+TB+K(J)] (L40)

It will be advantageous to partition when the following
condition holds:

T >T, or T, — T,>0 (41)

After substituting (40) and (41) in (42) and rearranging, we

sEngzsig > T T +K(T,1)+K(T,2)-K(JT) 7
Sp (T o TK+TB+K(J,2) (L2)

get:

For any given usage distribution of the records, we can start
increasing the size of the first group from C to n, where n is the
total number of records, and test for condition (L2) at emch small
‘increase. For each group size, the search times have to be re-
evaluated using Equation (1) and program STOCAP.

Note also that the distribution shown in Fig. 2) refers to the
number of requests of the existing records; therefore, the area under
the curve is equal to Sp(J), =and when this is divided into two groups,
Sp(J,2,1) is the area under the curve from 0 to the number of records
in the first group.

If Condition (42) is satisfied for some partitions, the optimal
size value of this partition is the one that yields the largest
difference between the two sides of ineguality (42).

7 This analysis can be performed independently from the other
gnalyses discussed in this section. This is justified by Assumptions
and 7. ’

It may be convenient to perform first the analysis considering
the index record length, i.e., the number of pointers (Structure 4
versus "mixed" structure); then the usage analysis Just described;
t =

and lastly, the iterative procedure to select the index seguentis
with respect to the key lengths.

Before each of these analyses is performed, each of the
partitions that are organized as index seguential should be taken
as an independent index file. For this, the proper SK(J)’ SK(J,h,I),
Sp(J), and Sp(J,h,I) of each index file have to be ca¥efully determined.

3.4 Consideration of Request Utility as a Function of Average
Retrieval Time

It is generally agreed that the utility of file informsation
;sdecreases in some, fashion as its retrieval time increases. This is
pProbably true in the case of many users of the bibliographic type of
system. And it is especially meaningful when there is available
another type of storage system that could provide the information
requested. In other words, as the time savings that are achieved
using the computer system over a card catalog decrease, the value

of former system decreases for the users.

It is possible, then, to obtalin some kind of a curve that will
represent the value of a request versus the length of its average
retrieval time. Transforming this subjective value into some kind of
cost equivalent, this curve can be related to the previous analysis.

Suppose that the value of an average request versus its average
retrieval time is expressed as in Fig. 25.

FIG. 25:
AVERAGE REQUEST $/AVERAGE RETRIEVAL TIME

Value of :
average :
reguest in j
dollars $,

Average Retrieval Time

?j; jtgil .2;3

Then, by multiplying each coordinate by the total number of requests
per unit time, we cbtain another curve as shown in Fig. 26,

~ FIG. 26:
ALIL, REQUESTS $/T.P.T.

Value of all
requests
per unit
time in
dollars

Total Processing Time per Unit Time

The negative of these values can be interpreted as a cost assigned
to each value of the processing time; therefore, we can absorb this
curve in the previous analyses by subtracting the curve of Fig. 26
from the cost curve of Fig. 15, and using the resulting curve as the
cost of total processing time.

In the previous analyses, there were no assumptions made on the
actual shape of the cost curve of Fig. 15; therefore, no alterations
are needed when this alternate cost curve is used.

T

e

Symbol

BI

APPENDIX

PARAMETER DEFINITIONS FOR FILE STRUCTURE ANALYSIS

Definition

Bloek Length (ISAM; with Overhead)

Number of Cylinders

Number of Tracks in Cylinder Index
TQtalISEEZQh Cost of Next Solution

Total Search Cost of Present Solution

Cost of Auxiliary Storage

Cost of Total Processing Time

Number of Groups into which Index File is Divided
Block Length of Last Block (With Overhead)
Blocks Per Track

Data Field Length (ISAM)

Logical Record Length of Last Index Record
Number of Overflow Tracks Per Cylinder
Number Qf Prime ﬁata Tracks Per Cyl nder (ISAM)
Number of Logical Records_Eer Block

Number of Track Index Entries Per Track
Track Capacity (Bytes)

Number of Tracks FPer Cylinder

Constant (Last Record, Keyed)

Average Search Time in ISAM File

Key Length

Average Search Time, Index File Segment ST&

Average Search Time, Index File Segment ETS

v e W ¥ s S
P T e y -2 4 H

At b .

e ceon P

LBLK

NIL
N(J)
N(M)
NT

NTM

RM3
RNT

ROT

Block Length (Data Only)

.Corrected Key Length

Average Record Length, Master Records

Record Length of Pointer Record (Bytes)

Total Index Record Léngth (Includes all levels)

Actﬁal Minimum Key Eéngth for Uniqueness

Number of Mastér Records

See "RM", bélow

Total Numper of Discrete Key Values

Number of Blocks Per Track

Number of Index Levels (ISAM)

Humber of Records in Index File Segment J

Number of Keys Associated with M Master
Records (Largest Group)

Total Number of Tracks, Structure L4 Index File

Minimum Number Tracks at Given Level That Will

Total Humber of Tracks Needed for Structure 4
Segment of Index File Organized in "Mixed" Form
Total Number of Tracks Needed for Structure 5
Segment of Index File Organized in "Mixed" Form
Number of Prime Data Tracks

Total Number of Pointers in the J°O File
Number of Tracks in First Master Index (IsAM)
Number of Tracks in Second Master Index (ISAM) .
Number of Tracks in Third Master Index (IsAM)
Total Storage Required (Tracks)
Time Required to Read 1 Track (One Full Rota-
tion in a Disk DASD)
Records Per Track
Total Number of Requests Per Unit Time
(Number of Key Searches) 7
Total Number. of Records Reuirieved (Number
of Accesses to the Master File)

Total Number of Successful Searches (Number of
Accesses to Pointers File under Structure 4)

‘ §§§§§éﬂ1QL€E

SP(J)
STC

5Tk

STp

TB

Total Number of Accesses to Pointers File Asso-
ciated with Jth Index File, Per Unit of Time

Total Cost of Auxiliary Storage

Storage Required for Index File

Storage Required for Pointers File

Saek Time

Number of Tracks in Track Index

Non-DASD Timing Factors, Keyed File (Constant)

Non-DASD Timing Factors, Master File
Total Search Processing Time of Next Solution
Non-DASD Timing Factors, Pointers File

Total Search Proceszsing Time of Present Solution
Total Search Processing Time

Non-DASD Timing Factors, Non-Keyed File (Constant)

Device.constaﬁt

Device Constant

L, THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES, USING
INDEXED SEQUENTIAL ORGANIZATION
By Jorge HinoJocsa

4.1 Introduction

Different file structures can be used in an information retrieval
system. The choiece of a specific type of hardware and the operational
goals of the system determine the feasibility or unfeasibility of such
structures.

The present study is concerned with an information retrieval system
for bibliographic catalogs using direct access storage devices. The
system is formed of different index sequential files organized under
some feasible structure which may be the same for all files. The index
files provide access to a master file composed of MARC-structure records.

A measure of retrieval performance of the system would have two
main properties. First, it would express the ability of the system to
accomplish the goals for which it was created, or its "effectiveness."
Second, it would consider factors related to cost, or "efficiency."

We are concerned with the second property.

L.1.1 Objert
The objective of the project is to maximize the efficiency <f the
system, or what is equivalent, to minimize its operstional cost.

The specific 2riterion is to obtain a minimum cost per request put to
the system by a person searching the computer data hase.

L,1.2 Cost Relations

Two main costs are considered:

a. Cost of Auxiliary Storage (Cs). This is the cost of the Direct
Access Storage Device (DASD) space used and is assumed to vary linearly
with the smount of information stored.

b. Cost of Processing Time (Ct). This represents the cost of
using the central processing unit (CPU). In general, this cost is
caleulated as follows:

Rate (CPU+ALPHA-PP) + F(CR, LP, CP) where

COST = ,
CPU = Central processing time (minutes)
ATPHA = A function of central memory used
PP = Peripheral processor time (minutes)

A function of the number of input cards,
lines printed and cards punched.

F (CR, LP, CP)

We are not concerned with F{JR,LP,CP), and we assume that the amount
of central memory used and peripheral processor time are not affected
by changes in the file structure. We also assume that the central
processing unit is used all the time during tihie search and retrieval
stage of system operation. Under these assumptions, the cost of total
processing time varies linearly with respect to retrieval time.

= o 5 ilﬂﬁébi;

IToxt Provided by ERI o

FIG. 27:
OPERATIONAL CO3T OF A FILE

e

Total Cost $

.

No. Requests/month

A. TOTAL COST AS A FUNCTION OF REQUEST VOLUME

total cest
cost of time
cost of storage

TC
CT
cs

=

TC

Cost/Request $/Request

ACT

No. Reguests,/month

B. AVERAGE COST AS A FUNCTION OF REQUEST VOLUME

ATC = average total cost
ACT = average cost of time
ACS = average cost of storage

»

117

=02=

a sg;;_;

If the system consists of J files, the total operational cost of
the system for a given period of time i=s given by:

TCS = C_ } S, + C.] T,
Si=1 9 Hy=1

For each of the files, both storage (8) and time (T) are a function
of the file structure, and so is the operational cost (C) of the file.
Hence, TCS is better expressed as:

e~y

ch = Q(Ej) (1)
=L < =1

=

3

t

1}
Y

Operational cost of File J

where TCJ

H
Q
I

— Q(Ej)

Ej = Btructure of file J
Because of the assumptions that cost per byte of storage for a given
device and cost per minute of processing time are constant, it is clear
that minimum operational cost of the system is equal to the szum of the
minimum operational cozst of the individual files.

J>
Min TCS =) Min Q(E,) (2)
el J
J=1
1t is jmportant tc emphasize that TCS is total cost per period of
time and NOT total cost per request. This is because it is unlikely
that all the files would be used with the same intensity. Furthermore,
the optimal structure E. that yields Min ch is conditioned to the
expected usage frequency of the file j.

ig. 27, A and B, illustrates the behavior of cost for a given
iléi Each different structure defines a set of curves.

T
4.1.3 The Problem

Given the expected usage frequency zmer period of time, the file
and the data characteristies, find an optimal structure that

ds minimum operational cost for the file, or equivalently, minimum

Gst per request.

n<n
e |_I\
D W
0
Flnu

k.2 General System Structure
4.2,1 File Structures Selected for Analysis
4.2.1.1 Access Record Mapping

Let M ='£mj} be the set of bibliographic records. (This set

I‘\

1

wmr

EEY

constitutes the Master File.) Let A = {a.,} be the set of inverted access
records that comprise an index file. .Theée may be several index files

in the system. If the subset of master records M, = {my} j=1,...,k are
indexed under the same index record a;, we say that MjeM; maps into a; .
This mapping, shown in Fig. 28A, constitutes one of the feasible '
structures, say I. The elements of Mj mapping into Aj are not contiguous
in M in a physical sense and might just as well map into an element of
another access file. Hence, aj needs to contain all addresses {(pointers)
pointing to m%sMii

w

FIG. 28A:
MAPPLING OF MASTER RECORDS INTO ACCESS RECORDS FOR
STRUCTURE I

If we define a set of addresses (or pointers) P = {pj}, such that there
is a one-to-one correspondence of mj to pj (mj—pj) and the P3ePi:

P; = ipJ;s mj_%ipj,fmjaMi} are contiguous in P in a physical sense, then
a; needs to contain only the address of the first pjePi. If only one
mj maps into a given aj, we assume a direct mapping mj—raj. This
conbination constitutes structure II and is presented in Fig. 28B.

FIG. 28B:
MAPPING FOR STRUCTURE II

4.2.,1.2 Connection with Previous Analysis

To provide continuity with a previous analysis, the reader may
note that Structure I in the present paper corresponds in part to
Structure 5a in the prior chapter by Rodriguez and Structure II
corresponds in part to Recdriguez' Structure 7. In that analysis,
division of an index file into segments was pioposed using either index
record total length or key length as a basis. The diagrams for the
previously defined Structure 5a and Structure T follow (Flg. 29).

(The hachured asreas are waste space in index record.)

FIG. Z9A:
FEASIBLE STRUCTURES

[y

STRUCTURE 5a - FIXED-BLOCKED UNIT LISTS

Index Files (Fixed Record Length) Master File
KEY 1 |[P1 [Po | Ps / ' == —

— < ———— —_—
RNz I R

3 — - - —> TNFORMATTON
KEY 3 |P; [P, Py [Py >

— e — e—

FIG. 29B: 7
STRUCTURE T - "MODIFIED MIXED"
Tllustrating Segmentation Based on Index Record Length

|
|
N
I

|F11e Segment 1 (Structures Pointers File l ,
i) Y} and 5a)) - i i T
v [y 1 e,] P1| P2 (P3 f—t— o
i L A i
i N
1 Record Length L |
I — s, :
| , —
] KBY 2 P . — i _— —
1)

|

L ("SINGLES" i.=1) 7 INFORMATION

T e T T T / > (MASTER

File Segment 2 . 7 RECORDS, M)
(Structure 5a) ~ ‘

KEY 3 1P P> | P3 |Py

— — —

Record Eéngth Lo
File Segment 3
(Structure S5a)

|KEY n,...|P; | Ps

Note that Structure II in Fig. 28B is identical to the structure in
File Segment 1 of Structure 7 (Fig. 29B) prior to division into a second, etec.,
file segment based on index record length, which was the basis for the
original study. To avoid confusion, we shall continue to use the previous-
1y established structure designations.

It is also important to note that the access records (index file)
in Structures 5a and T must be of fixed length, and must be pre-set
at file load time. In Structure 5a, this impcses a space penalty: record
length must be set to that of the longest record. That is, the maximum
record length corresponds to the key field length plus the number of
rointers corresponding to the key a4y associated with the largest number
of master records Mj. The existence of a dispersed, asymmetric distribution
of key-lengths implies a conseguent inefficient use of storage.

As an example of segmentation by some criterion using index record
length, suppose the largest group of keys N(M) was associated with four
master records, that is M=lW. This group is extracted from File Segment 1,
"Non-Singles", which is the initial file, and placed in File Segment 2
using Structure 5. (See Fig. 29B.) The process is then repeated recurs: vely,
as the model prescribes,

A variant of Structure T which provides the maximum flexibility., since
it frees the analysis from need to attend to the ratio of the number of keys
N associated with m master records, employs the distribution of key lengths
solely as the basis of division. This structure is illustrated in Fig.30.
It is this version of Structure T which supplies the basis of the remainder
of this paper, since it is the form of access file that can be tested unc=r
software currently available to the ILR facility. Moreover, it permits
future experimentation with optimal. indexed sequential files using variable-
-blocked inde:r record support now becoming available (IBM OS Release 18).

At t%at time, it will be possible to eliminate the Pointers File (Addresses
list).

FIG. 30:.
STRUCTURE T - "MODIFIED MIXED" WITH TWO-LEVEIL LISTS

Illustrating Segmentation Based on Key Field Length

Accezs TFile Pointers File
Is;—e-e——a—’—*—F——_"i?_i—"'__j - Master File
| File Segﬂent. 1 (Stru.,tures 4 ;

, KEY 1 |P_ i
| £ ,
: Key Lengtﬁ Ll
| -
| KEY 2 |P
- s
| Yo s o -
v - __("Singles')
sfgfgg;gger INFORMATTON
File Segment 2 ,(Structure L) ///"////s’_é‘e/;z
, P :
)) T 3
Key Length Lg
File Segment 3 (Structure L) _
- B N U - - - .
KEY nye.. P P | Py
— N ’ _
Key Length LB

L.2.1.3 Record Format

We shall assume that all index records are blocked. For keyed
files, both key areas and data areas are fixed length; that is, the
index record is fixed length.

4,2.2 Comparison of Structures 5 and 7T
There are tro factors that determine storage efficiency for

index files: 1) distribution of key lengths (Fig. 31); and 2) master
records mapping into an access record (Fig. 32).

FIG. 31: FIG. 32:
KEY LENGTH DISTRIBUTION POINTERS DISTRIBUTION
[49]
ap
o
2
£ R
&)
a =
B =)
o=
,'i m
=) .
= B
:
=

Key Length # of Master Records

Because of the restrictions on Indexed Segquential keyed records,
it is clear that for Structure 5 there is a waste of storage in both key
area and data area. For Structvre T, it occurs only in the key area
(Fig. 29B and 30). Using Structure 5, all the information needed to
retrieve the subset of relsted master records is reached with one
search. Using Structure T, we need an additional seek If the Pointers
File has to be accessed. There are many other considerations to be
taken into account before deciding which structure is better. Therefore,
each one should be analyzed individually to determine how it can be
improved.

Since the analysis by Rodriguez (Chapter 3) concluded that Structure 5,
used slone, was 1lnefficient for segmentation by record length due to the
much larger required processing time (to transfer the search from
segment to segment), we will concentrate our analysis on the "Mixed
Structure," Structure [, to see how it can be improved. Later
analyses will be directed at comparing the two structures for suitability

O

to a given file.¥
4,3 Division of an Index File Based on Key Lengths

One way to avoid the waste of storage in the key area of the saccess
file is to divide or segment the file into several groups based on key
lengths. Records with short keys might be in one group, medium-length
keys in another, and so on. However, the search time for some records
would increase because we may need to loock for those records in each of
several files. Hence, a division would be feasible only if the total
search cost per reguest for the divided file is less than the totsal
cost per request for the undivided file.

The ocoperational cost of a file using Structure 7 mar be improved
by a better utilization of the storage, minimization of search time,
and by more efficient allocation of both overflow records and non-
keyed (pointer) records. In what follows, we present different schemes
for analyzing wand improving the index and pointer files. The following
assumptions are used in the analysis.

a. A discrete distribution of key lengths for the file under
consideration is available.

b. The usage frequency for a group of records with a given key
length is independent of the key length.

c¢. The usage frequency for a group of records is proportional to
the number of records in the group. This assumption can be
interpreted in two ways: a) each record is equally likely to
be requested, b) each group of records has the same usage
frequency distribution. Obviously, the second interpretation
is stronger.

!:11

Search is done sequentially *%* beginning with the access group
or file segwment having the largest number of index :records.
This follows from assumption 3.

¥ The index record must be of fixed length in the currently availsble
version of the manufacturer-supported Indexed Seguential Organization.

A future release promises to support variable-length records (although.
key field must still be fixed length). This means that when implemented,
Structure 5 would probably supplant Structure T in efficiency,

because the need for a separate Pointers File would be cbviated. The
efficiency of the software implementation is, of course, another issue
for testing to zesolve.

¥®¥That is, groups placed in tiles f3, fp, f3...,)y must be searched
successively to respond to a search reque ;, parbticularly in light of the
part-key (i.e., key prefix) capability of the Indexed Seguential Access
Method. For this reason, attention must be given to the need for both
explicit stopping signals prior to the last file segment, and to algorithmic
stopping rules for multi-group searches, to minimize retrieval time.

sssss

IToxt Provided by ERI

If the file requires master index levels, the highest of these
is stored in core, if possible,

f. The cost per unit of storage and cost per unit of time are
constant for a given period of time.

4.3.1 Cost of Storage

Let T dencte the undivided index file, containing = set K of
records with key lengths k; which have a density function g(kj) and
a distribution function G(éj). If we divide F in n subfiles or segments,
Fi, the index i is increasihg as the key length increases,.

The storage requirement “T(K) of file F is proportional to the
longest key (kx) and the number of records in the index file.

ST(K) = C-kxcG(k), where C is a proportionality factor that takes
into account the différent index levels. We assume that C is constant
for all subfiles. Then,

n n
ST(n,K,D;) = i£1 ST(K}) = C izlki[e(ki) - Gk, ;)] (3)

Where Di = {k,} is the set of division points such that Di>Dj
.o i i
if ki>ki.

the storage cost of a file F divided in n subfiles is & unimodal funection,
and its central part behaves as a convex function of the set of division
points Di. '

Let's assume that n = 2, and kj, kj are the éorresgonding division
points for two different sets Di and Dj’ such that kj>ki. We have that,

ST(2,K,D;) = Ck,G(k;) + Ck, [a(k,) - G(x;)] (%)

ST(E,K,DJ) GEJG(kj) + Ck_ [Gka) - G(kj)] (5)

1

Then, if k, = xgi+(1gx)53 and 0=<Asl.. the function ST(2,K,D} is convex
if:] i

AST{2,K,D) + (l—A)SI(Q,K,Dj) > ST(E,K,Dl) (6)

Using (L4) and (5) we reach the conclusion that (6) is true if:

G(k,) - a(k,) k_-k

s [— 2 x 1 holds. (7
Glk,) - c(k.) k -k,
J 1 X 1

s

It is obvious that for the central values of the distribution
function G(x), the first parenthesis in (7) is almost equal to A, and
the second parenthesis is always lems than one. Therefore, (7) holds.
This implies that there exists only one set of division poin.: for
which the storage cost of the divided file is minimum.

Subtracting (5) from (4) and eliminating common terms, we obtain
the expression,

sT(D;) - ST(Dj) = G(kj) (kx—kj) - G(Ki)(kx_ki) (8)

We can see that for small values of kj and Ki, the expression
above is positive and for very large values of kj and ks (8) is
negative, which is the property of the unimodal functioiis.

4.3.2 Cost of Time

By assumptions (3) and (4), search time is also a function of the
set of division points Di, and its value is increasing as the number
of records per subset becomes equal. Hence, the shape of the search-
time cost as a function of division points Di is a positive unimodal
funection.

Furthermore, we notice that for a given structuré, the cost of storage
per request is proportional to 1/NR* while the cost of search time per
request is constant. We conclude that a minimization of the combined
cost per request cannot be achieved independently of request volume.
However, we can find an optimal set of division points Di that minimizes
TC = C8 + CT for a given File size-Request Volume relation a.

In Fig. 32, TC denotes total cost, CS denotes cost of storage, and
CT, the cost of time. The bar above denotes average cost per request.
o = NR/N, where NR is the expected nunber of requests, and N is the total
nunber of records in the index file.)

FIG. 33:
COSTS FOR A DIVIDED FILE AS A FUNCTION OF THE
SET OF DIVISION POINTS (Di)

al

b
>

Di ' o Di
COST OF STORAGE ~ COST OF TIME PER REQUEST

¥NR = number of requests.

1267

From Fig. 33 it is possible to see that the combined cost function
TC is not a "well behaved" function and that it might contain local
minima, Therefore, to find the global minimum and be sure of its
unigueness, we have to consider the set of all possible division points Di,
at whick the first division occurs. For a set (F,G(k), n) in which the key-
length distribution G(k) has a maximum number of points NK, we have to
conslder all the different combinations. The number of combinations can be
expressed as:

_ NK!
n! (NK-n)!

L4L.3.3 Dynamic Programming Formulation

We state the problem as follows: given a file F, containing a
set K of records with key lengths distributed as G(kj), find the set of
(n-1) division points (n=2,3,...) that minimizes the total search cost
per request TC(n,K). The total storage requirements of the file
divided into n subfiles is,

n : '
ST(n,K) = } st(1,K]) (9)
i=1

. . . th s - .
where gt(i.K!) is the storage requirement for the i subfile containing
&a.subset Ki of records.

The combined search time per request under assumptions 3 and U4 is
given .by:

- n 1 h-1
T(n,K) = €, *) (;L-ﬁf

N(3))t (10)
© h=2 J 2 n

11

1

where N(j) is the size of the jth subfile and t, is the search time per
request for the hth gubrile. The subscript i in equation (9) makes
reference to position of the subfile within the key length distribution
G(k). The subscripts j and h, make reference to the size of the file.

The total search cost per request is given by:

C (n,K) = 87(n,K) CSTR/NR + T(n,K) -CTM _ (11)

where CSTR
CTM

cost of storage in dellars per track,
cost of computer time in dollars per millisecond.

The principle of optimality of Dynamic Programming states that
"an optimal policy has the property that whatever the initial state and
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.”

In applying this principle, let £(2,K') be the minimum total cost

127

per request obtained by dividing a file ccnualnlng a subset K' of
records into TWO SUBFILES,

then

=
N
R

£(2,X') = Min‘{c[eiki + (6, - G)k IR + 5 + (1 - NL1/N)t,} (1
(klskiékx)

O<K'<K

where tl gearch time for the fifst subfile

search time for the second subfile.

| “2

Let's define the first subfile as the subset of records K. containing

all records with keys greater than or equal to the first key and smaller , ;
than or equal to kj. Once we have found the key length ki that yields f(2,k) :
we can add the storage requirements of both subfiles and store it as j
one value which we call S(2,K'). The same optimization is carried out ?
for all possible subfile sizes K'.

The minimum total cost for a file divided in THREE SUBFILES is |
cbtained in a similar way.

.'hi 7

3 =1
£(3,K') = MinﬁCG k, + S(2,K - K})]/NR + t, +] (1= % 1 Nj)tl;i. (13) |
h=2 j=1 P ?
(k 13k, < kx) ’
0<K'<K |
And in general i
£(n,K') = Min [[CGiki +8(n-1,K - Ki)]/NR ’

P -2 (14)
+ gy + 1-= N,)t 1
= Nyz ?}

It should be noticed that the search-time cost cannot be stored as one !
value because the subfiles' size is continuously changing., However,
defining g(1,K,) as the cost apportioned to the first subfile containing
a subget K! of "records, it is possible to obtain a more general
recursive relation, namely: l

f(n,K') = Min {g(l,Ki) + £(n-1, E' - Ki)} (15)
=Y
QSK:.LSK \
0<K'sK

FIG. 3k:

FLOW CHART FOR DYNAMIC PROGRAMMING COMPUTATIONS

— s SR,
j=1L3,...,Lk4

k'

i =

j =

nunmber of subfiles

points of domain of
Cost Function

F(i+1,K-K

COMPUTE

1

1,

) = Min[g(2,K})+£(i,K-K]-K})]

-NO

/SAVE
£(i+1,K-K

1)

3] B

AL e il e i

The recursive relation presented asbove suggests the use of a
general numerical procedure similar to the one described in the flow-
chart of Fiz. 34. However, there exist some difficulties due to the
use of assumptions 3 and 4 in the computation of search time for file
F, when divided into n subf;les. The optimal values f(l, K—Kj) cannot
be stored as cogt, but rather as the combined storage requirement for
the group of subflles F'i in (K-Ks), and the individual search times
for each F'i. This is because the size of each subfile is changing, and
we need to know at each step of the optimal value computation [£(i+1,K) =

g(1, K)+£(1, KeKl)] what is the ordering according to size of the (i+l)
subf;les

Therefore, as i increases, the number of values (which we have to
store and later c@mparp) also increases, making it difficult to use
the same loop to evaluate the optimal vaiues for different numbers of
divisions.*

4.3.5 Sample Computations and Results

Using a key-length distribution obtained from "Author File" and
the characteristics of the IBM 231k DASD (zs given in Fig. 36), we
divided a file in h = 2,3,L4,5 subfiles for eight different file size/
request volume relations. (Division was recursive.)

FIG. 35:
_ PARAMETERS AND COST VALUES USED
T PARAMETER Vv _VALUE _
TB: Access Motion Time : T5.0 msec,
T Data Transfer Time = 25.0 msec.

ROT: Rotational Delay Time

|1 25.0 nmsec.

Unit of Time :A month

| $80.00/hr. (IBM 360 Model ho ,108K
I Core Partltlon)

$. 00002142 /byte-month, or .15625/
, track-month (2314 DASD)

Cost of Computer Time

Cost of Auxiliary Storage

*In our subroutine DYNPART, coded to test the proposed solution, we do not
use the outmost loop shown in the flow chart. Storage requirements are
calculated using subroutine STOCAP; search times are calculated using sub-
routine TIEMPO, To appreciate the computational power of DYNPART, we
compare the number of calculations and computer time. When using direct
enumeration methods, we needed to call subroutines STOCAP and TIEMPO
approximately five million times, to divide a file in 1, 2, 3, 4, and 5
parts. The average ccmgutatlgnal time was 1.5 minutes. DYNPART uses sub-
routines STOCAP and TIEMPO only 1,200 times for doing the same job and takes
an average time of three seconds.

éﬂﬁ%f?ﬂﬂgagj .

Table 6: Min. Total Search Cost per Request (Dollars)

NR/N| _ NUMBER OF SUBFILES (SEGMENTS)
(No Division)
1 2 3. R 5

01| .200135 .1k276 .1307h 12776 .1255k
.02 .102L5 .07k08 0691k .06794 .06762
.05 .0L38L .03288 .03203 .03184 .031768
.10 . .o2u4307 .01915 0189k .018908

.20 L0145k .01222 .01217

.50 .0086T7 .007989 .00797

.70 .007561 .007147 .0071h

1.00| 00672k 006509 .006505 3

From the results presented above, we deduce an effect of increase in volume
of searches, viz., that as the relation NR/N increases, the number of
possible division: decreases. This is due to the greater importance of
search time cost over total cost. For NR/N = .01, .02, .05, we cbserve
that the marginal total cost improvement decreases as we divide the file

in several subfiles; this is because at each step the possible storage
saving decreases (see Fig. 36).

Thus, within this range, it seems to be always possible to divide the
file into 2 and 3 subfiles, but we point out some facts that could lead
to a different conclusion at the decision-making Zovel. As the ratio NR/N
increases, the first subfile tends to increage in size, as is shown in
Table 7. This is because the critical variable is key length of the first
group. Storage cost per request decreases inversely to request volume.
And minimum total cost per request depends heavily on not having to search
the second subfile as request volume grows, which means more of the records
are economically pulled into the first group, Ki; as ki varies. (See eq. 13.)

Table T: Percent of Records in Each Subfile

NR/N TWO GROUP DIVISION THREE GROUP DIVISION
I II I II TIT
0.01 | 85.5 1L.5 59.0 3.0 10,0
0.02 85.5 14,5 63.6 27.5 8.9 ;i
0.05 | 85.5 14.5 80.6 13.3 6.1
0.10 85.5 14.5 85.5 10.1 hol
0.20 89.0 11.0 89.0 10.7 0.2
0.50 92,1 7.6 y 7.599 " 0.000k1
0.70 93.6 6.4 6.399 00041
o 1.00 9k.1 5.9 5.899 _.oooht

1

e el o ey b b s 3

We can see that for NR/N larger than 0.2,. the percentage of records in
the third group is so small that for some files it might not be feasible
to divide it in three parts. Besides, from Table 6, we find out that
the improvement from 2 to 3 divisions for similar NR/N is very small.
This result is shown graphically in Fig. 3T, which gives. the average
cost per search as a function of search volume and of the number of
files.

U, 4 Division of an Index File Based on Usage Frequency

A second consideration in improving the efficiency of an indexed
sequential file is the division of the file into two subfiles F'(1),
F'(2), one containing the records of high usage frecv=ncy, which will |
be searched first, and the other the records of low . age frequency. /
Both subfiles are to be stored in the same type of device. /

b.4,1 Assumptions

As in the previous analysis, we assume that if the file is large
enough to require one or more master index levels, the highest is
stored in core. We also assume sequential search beginning in the first
subfile, which impliez the gbility to recognize if a given request has
been satisfied in the first file. If this is the case, the search
ends; otherwise, we search the second subfile. The following notetion
is used:

TU = total search time for the undivided file

TD = total search time for a divided file

NR = total number of requests per unit of time

N = total number of records in a file

TB = access motion time

NIL = number of required index levels
TK = datae transfer time
K = seek time

Subscript (1) makes reference to the first subfile, (2) to the second
subfile.

L 4,2 Condition for Feasibility
The total storage requirement is essentially the same, hence only

search time will be taken into account.* A division of file F into
subfiles F'(1), F'(2) is convenient if TU>TD, or

*Assume sll file segments are to have equal key length and record lengths,
at this stage of analysis.

e W i et A

FIG. 36: COST PER REQUEST AS A FUNCTION OF THE RATIO SYSTEM
VOLUME - FILE SIZE FOR FIVE DIFFERENT DIVISION STRATEGIES

T 1 I] =TT i .
— T L | 1]
1.

_ I -

= = Ji e —

- I T
.2 = - ' = . e 8 S :
L - - e e o e EEE t |

i 1 — No division

(Dollars)

N - -~ ————— 2 groups

O P

-1 :},; TS S ——-= 3 groups

PRSI P H mRRE ~———— L groups

sesasrsienss 5 groups ;”

!OS == 3 V_ = = ,,: = =FT = =

.03 V’:;—jri';? = T - 7 ;

Total Search Cost/ Reguest
|

.005 [EeeehEe e ESSSSsais

.01 .02 .05 1

Mo
o

Volume cf request/ File size (NR/N) -

e At Rt o e et VG N) e L s g

NR[TB+TK+K |>NR[TB(1)+TK+K(1)] = (NR-NR1) [TB(2)+TK+K(2)] (16)

After some algebra,

NRL _ K(1) + TB(1) + K(2) + TK + TB(2) -TB - K

NR TB(2) + TK + K(2) — or

NR1 _ K(1) + T8(1) - TB - K o i
R C O TB(2) + K+ K(2) T LtE¢ (17)

where _ NR1 _ .
SFR St

Therefore, if a>l, we have a contradiction and no division is possible.
We say that a division is feasible if NRI , and a<l.
NR

Because the value of o 1s only a function of the subfile size N1 and
the device's characteristics, we can cobtain a one-to-one correspondence
between N1/N and a. Then, a necessary condition for dividing a file F
into subfiles F'(1), F'(2) is that subfile F'(1l) must satisfy a percentage
of requests (NR1/NR) larger than a.

4.%,3 Required Distribution

Using the ideas presented above, it is possible to obtain a
"Required Cumulative Distribution" L(x), X = N1/N = o0,..., 1 a8 presented
in Fig. 37. Assuming we have an actual usage frequency distribution
with cumulative function G(x), the optimal division point for a given
file F corresponds to an X, for which G(x) - L(x) = Maximum,

FIG. 37:
REQUIRED CUMULATIVE DISTRIBUTION

o=
> ¥ 5w

Observing equation (17), we notics that a<l if (TB+K)>[TB(1) + K(1)]. To
restate this in prose: o<l if the access motion time plus data transfer
time corresponding to the undivided file is larger than the sum of

those corresponding to the first subfile. The seek time is given by:

K = TB(NIT~1) = ROT(MT2 + MTL + CT + TI + 1)/2 (18)

where

ROT = Rotational delay time for a given device (latency)

MI2 = 1, if RM3 # 0
0, if RM3 = 0
MPl = 1, if RM2 # 0, RM3 # O or RM3 = O
0, if RM2 = 0
CT = 1, if RM(1i) # 0, 1 = 1,...,3

CIT, if RM(i) = 0 for all i
TI = Constant = Track index tracks
CIT

RM(1i)

Cylinder index tracks

Master index tracks, i = 1,2,3

From equation (18) we see that seek time K depends on the number and
gsize of the different index levels. Before continuing our analysis,
we point out some observations of the growing rate of index levels.

4. 4.4 Growing Rate of Indexes
Cylinder Index size (CIT) increases linearly with respect to file

size. Using subroutine STOCAP, keyed records with total length of 80
bytes and different N, we obtained the following equation:
CIT = 0,0303 + (oi1891).10_u.m (19)

If we create a master index when the cylinder index exceeds 4 tracks,
the growing rate for the first master index is given by:

-6

RM1 + .00384 + (0.6) .10 ~ .N for N 2 250,000 records (20)

From equations (19) and (20) we observe that, while we need a file of
250,000 records to create the first entries of master index I, 2 million
records are required for filling up the first track and beginning the
.second track of the master index. Let's consider the following cases.
4.4 4.1 Small Files
F does not need a master index (N<250,000 for RL = 80)
Then: TB = TB(1)

NIL =2

0<CT<L, 0<CT(1)<CT (21)a,b

MI'2 = 0, MT1 = O for F and F'(1)

Then recalling the condition, [a<i if TB + K>TB(1) + K(1)],
it becomes CT>CT(1l) from equation (18). , (22)

a,b relation (22) is true. Therefore, for small files,

By relations (21 T
= a<l.

such that NIL = ;,

L, h,h,2 Large Files

F requires a master index (2.53105<N<731Q6).
First subfile size N1<250,000.

L.h.h.2.1 Case A:

TB = 0, TB(1) # 0, implies the condition K>TB(1) + K(1), for o<l from
equation (3), eliminating all constants, and noticing that

MI2 = 03 M1 = O for F and F'{1)
CT = 1; CT(1) = CIT(1)
NIL = 3 for F, NIL = 2 for F'{(1), we have that,

2:TB + ROT(1 + 1)/2>TB(1) + TB + ROT(CT(1) + 1)/2
EOT»ROT(CT(1) + 1)/2

where 0<CT(1)<k
then a<l for 0<(CT(1) + 1)<1, or a<l for CT(1)<1
2

To restate in prose, o<l only if the first subfile F'(1) is so small
that it requires less than one full track of cylinder index.

4, L, Lh,2,2 Cage B:

First subfile size N1>250,000,

TB = TB(1) = 0

NIL = 3 for F and F'(1)

M2 = 03 M1 = 03 CT = 1 for F and F'(1)

then for a<l we need:
TB + K>TB(1) + K(1), or
K>K(1), but
2TB + ROT(1 + TI + 1)/2 + 2TB(1) + ROT(1 + TT + 1)/2
and K = K(1)

Therefore, a=1, and no division is possible. The results presented above
were found consistent with numerical calculations. Using subroutine
TSPO, we obtained "Required Cumulative Distributions" for both cases, A
and B. Results for case A are presented in Fig. 38 and for case B in
Table 8. '

e s e

~ FIG. 38:
CUMULATIVE REQUIRED DISTRIBUTION - CASE A

.92,

.90,

. 88

Y = NR1/NR
i

. 8k

|

Table 8: Cumulative Required Distribution, Case B

N1/N _C.R.D. B
.02 | 955

N .9655

.06 9765

.08 .9875

.10 .0986

.12 1.0096

1k 1.0206

Lo 1.1638

2 1.00

. Lk 1.00 .

.98 1.00

1.00 . l.00.
Record Length: 80 bytes. N = 500,000 R.

4. 4.5 Conclusions

The analysis presented for cases A and B above covers a'W1de range
of file sizes, and the results can be shown to be exact and consistent
under the assumptions used. We have no data ebout real usage frequency

distributions presently availsble, and no reasonsable estimation can be
made until an exper1men+al system is installed and testlng can begin.
However the cgncept ‘of "required distribution" does enable us to rule
ocut nat possible' 'cases.i Case A (for small files) presents an interest—
ing distribution. (See Fig; 39). We cannot talk of "feasible divi=zion
points,” but it is not. unrealistic to say that. TO% of the records in a
file are used or are required more than 93% of the t1mea In case B
(for large files) we cbta;n X3 ccntradicticn for N1/N>0.1 or N1>5G 000,
and no division is possible. ' For Nl<50 ,000 or N1/N<0.1l, a<l, but it is.
unrealistic to assume that 8% (or less) of the records ;n & flle are
required more than 95% of the tlme.

4L.4.6 An Extension

A combination of the two kinds of segmentation may be viewed as
follows. Suppose a file F which is expected to be used heavily is given
and that the set of most frequently requested records is known. Assum-
ing that any subset of the records in the file has a similar Xkey
length distribution, F may be divided as follows:

Segment 1. A first subfile containing the records most frequently
used. This subfile will probably have a high "Volume of request - file
size" ratio, (o>1), end no division recording to key lengths will be
possible, in this segment. (See Section L4.3.)

Segment 2. The rest of the records (F-F) which will be larger
than Fq' and will have a low volume of requests (the ideal condition for

a division based on key length)

Therefore, even if the usage frequency distribution for the file F does
not meet the "required cumulative distribution," the savings in storage
cost of the set of less frequently used records may make the division

fe331ble. (See Section 4.8 for further analysis and interim results of

L.5 Estimation of Overflow Areas for Index Files

At thiz point we turn our attention to one of the maintenarnce aspects
of the index file - updating. In general, the efficiency of ISAM file
operation decreases as it is subject to updatings. This is due to the
use of overflow areas, "cylinder'" or "independent', or both, where the
new records are stored. Links have to be established to maintain the
logical relationshin between o0ld and new records, with corresponding
inerease in retrieval time. We shall attempt to analyze the prcblem and
make suggestions which hopefully will lead to better performance.

4.5.1 Overflow Records

Under indexed sequential organization, records are stored in
lexicographic order on vertically adjacent tracks which form a cylinder.
When a new record arrives, it is written in its proper seguential location
on the corresponding prime track. The rest of the records are moved up
one location, the bumped record is written in the first availsble lccatloﬂ
in the overflow area, and the track index entries are properly changed.

If the overflow area is located in the same cylinder, no additional seek
time is required to retrieve overflow records. The question remains how
to distribute the overflow tracks among the cylinders such that the
probability of exceeding the overflow area is equal for all the cylinders.

L.5.2 Probabilistic Model

William S. Jewell® has solved s similar prgblem,uslng order
statisties concepts.

i AR

*Jéweil, W.S., "A Filing Problem," Management Science, (8, 1962),
210-14. —a A

139

4.5.2.1 New Key Expected Insertion

Let {ki} be the sequence of keys 3ttashed to the access records in
the file and {3} be the set of prime area cylinders. If k, is the lowest
key in cylinder J and ki, is the highest, the probability of a new
record being inserted 1n cylinder J 1is,

P(j) = P(ky<kis<Kt+m) (23)

Total number of new records to be added,

If N
F(k) = Probability of a new key less than k,,

Pk t+)= Probability of a key less than Kipm?

= Number of existent records in the file,

then P(C.) F(k ,") - F(k) (2k)

b

Gumbel¥ shows that the Jjoint density distribution of the (k)th

(kt+m yth ordered values is
. = m=1 —t—
Q (kg ok,) = CF HF,, ~F)™ H1-F,,)" Pt reem (25)
' o
— . (26)

where C = YT {m-1) T (netom)

Then the probability that, on the average, X new keys are inserted hetween
the t* and (t+m)th keys, is,
w(n,m,N,x) = [ﬁp (ky ok,)P (N,m, xlk)k, dk

0=k Sau

t<bt+

which Jewell shows is equal to the distribution of exceedances

o\ /i)
w(n,m,N,x) =(NT11 g%é%) , (27)
xtm=-1

with a mean value of, X(n,m,N,x) = T%i) NN (28)

4,5.2,2 Estimation of Overflow Areas

From (27) and (28) it is clear that W depends only on the original
number of records in the file n, on the interval m between the lowest and
highest key in the cylinder, and on the nunber of new records N. The
probability that the overflow area of :yllnder Js (S), is exceeded is

given by: |
v N L v S

j) =7 ﬁ(n,m,N,x) S (29)
x=8+41 : ' IR

The prcbébll;ty that the Qverflcw area af cyl;nde* g is not exceeded is

w(s

¥GQumbel, E.C., Statistics of Extremes, New York: -Cclumb;a University
Press, l958 P. S{=Thk. , S

Iet A. be the event that the overflow area of cylinder jJ is exceeded and
assumé the As's are independent; then W(sj) = P(A) and

X CL CcL CL
W(F) = P(UA,) =] W(s,) - I wi(sy) (31)
=1 g=1 7 5=

is the probability that an independent overflow area is used. CL is the

total number of cylinders. Recalling that

CL cL
v(s,) = P(a®) with (M a)%= N aS, (32)
3 3 je1 9 j=1 9
cL CL
then V(F) = (N 4% =1 v(s,)
J=1 J=1

chm.(E;) w () is equal for s;mllar intervals m. Hence, if m is the same
for all cyllnders, equations (31) and (32) can be expressed as

W(F) = GL:W(SJ) - [W(S) 1L (33)

[v(sj)]CL (34)

v(F)

If the ratio N/(n+N) converges to a value g, w(+) in equation (27) can be
approximated by

m—i+x

W(m,x)~ (("777) & *(1-g)"" (35)

If Q is the cylinder capacity, then CL = n/(Q-3), and m = Q-S, where Q

and 5 are expressed as records per cylinder. If we know N, equations

(29), (30), (33), and (34) depend on the value of 8, and V(F) in equation
(34) can be used as a tolerance limit. As S increases, V(S3) and V(F)

increase, and we can find a cylinder overflow capacity S that yields =a

probabilility o = ¥(F) that no independent overflow area is needad. Thus, it

has been proved that the best policy to follow in the allocation of cylinder
overflow areas is that of assigning the same number of overflow tracks to

each cyllnder. :

4.5.3 Alternative Estimation

Ancther kind of tolerance limit can be achieved by using a value of N
obtained by testing a null hypothesis on its true value. This is justified
by the fact that N will certainly behave as a random varisble. Then if N¥*
is a number such that,

P(NgN#*¥) = o, the cylinder overflow area S is given by:

= Q-N/(N + %g%wn' (overflow records per cylinder)

or, expressed as overflow tracks per cylinder IOTC,
ORT
NRT

cylinder capacity

I0TC = N"TPC/(N + .n)

. where, Q

ORT = overflow records per track
NRT = normal records per track
TPC = number of tracks per cylinder

4.6 Allocation of Non-Keyed Records to Storage Blocks

So far we have presented two methods of improving the performance of
the index file and suggested a way of combining both. In what follows,
we introduce a general procedure to allocate non-keyed records to blocks,
that msy be gpplied either to the pointers file, or to the master file
of varisble-length records. The next section deals with the estimation
of overflow areas for the pointers file, which we show is & different
case from that of the index file.

A non-keyed file using the direct (random) organization is not
system-controlled and sllows the user almost complete freedom of design.
In general, non-keyed master records are variable length and blocked to
full +track size (FTB). If the records are allocated to the blocks at
random, it is likely that often the last record in the block is split
between two consecutive blocks., When retrieving such a record, it is
necessary to read both blocks (tracks) and when the file is heavily used,
its overall performance will be affected. Therefore, it is desirable
that all records fit exactly in the blocks such that no record is split
across track boundaries.

4,6.1 Mathematical Model

Let R be the set of all records r, and Ri be the subset of records
of R with identical length i. Obviously, all Ri are disjoint and R =

Z Ri.

Let B be the set of blocks bj, J = i,...,NB. We assume that all
blocks have equal length, for otherwise there would be no protlem. NB
is calculated using the average record length.

If we consider each subset Ri as a node i called a source, having
a cap city equal to the number of records which belong to the subset, say
Ci, and each block bj as a node j called slnk with cepacity t, and if
we let S = {i} be the set of sources and T = {j} be the set. cf sinks,
can formulate the problem as a flow prablem.w1th gains, (See Fig. 40)
The concept of '"gains" is relsted to the fact that if we allocate X
records riy to =a bleock j, the capacity of source i is naow (ci - X), while
the capacity of block j is (t = i-%). The X records from source i are
multiplied by (i). Hence, we define multipliers my = i. We state the

problem as follows:

Let G = (S,T,A,) be a bipartite graph, where 5 = {i} is a set of

*Spllttlng of Pointer File records cen easily be precluded... They are short,
flxed length ana should be bl@cked tc a blocksize which itself is evenly

sources, T =
connecting soivrces and sinks.

Maximize z Xij
ij
Subject to ZinjsCi, i=1,....,8R
ls;g !!,NP‘

I m Xijsty, § = 1
i
Xijz0; 1 = (i), for all i

FIG. 39:
NETWORK REPRESENTATTION

{j} the set of sinks and A = {(i,Jj)} the set of arcs

(36)

(37)
(38)

Each node (i) in the figure corresponds to a different record size (i),
its capacity Ci corresponds to the number of records with size i3 each

node j corresponds to a different block j. We say that the
(1,3) is larger than zero (Xi3>0) is ome or more records of
allocated to block j. Then it is cbvious that if we find a
which satisfy (37) and (38) with the equality sign, we have
existent records to the different blocks in such a way that
wasted,

equality form, and 7
z %J holds, the problem always

flow in are
size i are
set of Xij's
allocated all
no space is

Moreover, we can show that is (37) and (38) are expressed in

‘has a golution. (39)

simi Ci =
1 E
=

In fact, assume we have found a set of XiJ that satisfies
$Xijmi = tj for all tj's, then

Jqmi § Xid =

i.

thj =)) xijwi
i

Y,mi Ci

Ci for all i's Q.E.D.

Therefore, jZXij

A proof beginning with Zinj'

= Ci follows a similar argument.

by (40)

Let us estimate the probability of failing to obtain an optimal
packing if the records are allocated to the blocks at random. The
problem given by (37) and (38) is a linear programming problem of the type

Azp (k1)

where A is an (ND + NT) x (ND.NT) matrix. Because of the multipliers =i,
the rank of A is (ND + NT). The set of solutions X to (41) are contained
in a ND.NT) - dimensional vector space. A feasible solution X to (4l)

forms a convex polyhedral cone C spanned by (ND + NT) independent vectors.
Therefore, the number of feasible solutions X to (L41) is equal to the number
of ways we can choose (ND + NT) vectors out of (ND.NT), namely,

ND.NT
8 =(ND+NT) (h2)

Let us now calculate the total number of possible allocsations of records
to tracks. Assume that all blocks are placed one after the other forming
a big block MB divided in NT parts, by NT - 1 division lines. By equation
(LO) the length of MB is

IMB =) bj = Jm, Ci (43)

J i
and) Ci = K, the total number of records.
i

The packing is optimal if no record intercepts any division line. We can

see that the total number of ways K records can be allocated to MB is K!
Therefore, the probability of obtaining an optimal random packing is:

WD.NT . -
P¥ =\ND+NT (44)
K!
For a small example with K = 75, ND = 11, NT = 5, we have
551 __(1.26)1075

P¥#= - — R —
39! 16! (2.09)1013 (2.03)104€ (2.4)10102

5!
It is clear that P¥ is indeed very small.
4.6.3 Computational Tool

Subroutine BLOCKING (MD, LSD, ND, KM, NT) has been developed to solve
the allocation problem. The inputs are: :

MD = A (ND x 2) matrix, such that MD (i,1) is the record length, and
MD (i,2) the number of records with the same length -
NUL = Block capacity
ND = Number of different record lengths
KM = A large numbers500 o o
NT = ete.
]

2sd44

The elements of matrix MD are ordered (Beginning with the smallest), and
all the records are assigned a number (beginning with the largest).
The output consists of an enumeration of records allocated to each block.

4.7 Estimation of Overflow Areas for the Pointers File

Let Pi be the subset of pointers pj mapping into an access record
al. A subset Pi may be considered as a logical record because all pjePi
are contiguous in the pointers file in a physical sense. To simplify
notation, let ri = Pi. The set of address records {ri} has a distribu-
tion G(i), which we assume remains constant over time. When new master
records are added to the master file, two things can happen to the
pointers file: a) a new record r; is added, or b) a new pointer py is
added to an existing record, r;. The first case does not present
difficulties and the new r; is located at the end of the pointers file.
It implies the addition of a new access record.

4.7.1 Former Scheme
In the second case the following procedure has been suggested:
Given ri = {pj;j = 1,...,k} and pk + 1
a. Move pk from its original location and write it together
with pk + 1 on an overflow ares

Write the new address of pk on its original location

o'

Change the count field of the access record ai to indicate
the addition of pk + 1.

Two difficulties are evident. First, if n new pointers are added to a
record, the total storage used is (n + 1) times the pointer's length.
Second, the retrieval time for & record with additions increases by

at least a rotational time (when the new pointers are locsated on a
cylinder overflow area) or by an access motion time plus rotational time
(when the new pointers are written in an independent overflow area).

]

L.7.2 New Scheme

If, instead of using cylinder overflow areas, we define track
overflow areas when a new pointer is added to any of the records in the
track, it can be written contiguous to the proper record with the other
records being moved one place toward the end of the track. 1In this
form, the retrieval time of the record is not increased, and no additional
link is used. There still remains the problem of estimating the size of
track overflow areas. Also, if at any of the tracks of a given cylinder,
the overflow area is exceeded, a cylinder overflow area becomes necessary.

It should be noticed that the first scheme méntiéﬂéd above is similar
to that used for the index file. We allocate some overflow tracks to
each cylinder, and if one or meore are exceeded, an independent overflow

ade

ar.a is used. In the second case, the cylinder overflow area plays the
same role as the independent overflow area. The better efficiency of
the second method is obvious,.

4.7.3 Differences

Let us point out the differences between the polnters file and index
file cases. We say that an address re-ord is in "state i" if it consists
of (i) pointers. If such a record receives an addition we say that it
changes to state (i + 1). We shall use consecutive letters to denote

consecutive states.

a. Index records ai have equal length L. Hence, the total storage
required is L)ai. Address records in state (i) have length
(i) and the total storage required is Zln ., where nj .
represents the number of records in state 1.

b. An addition to the index file is a record as; which is inserted
in its proper sequential location with respect to the existing
aj's. Additions to the pointers file are pointers pj which
change the state of the corresponding records in such a way
that the resulting set of [ri] have the same distribution. If
the records r; were in order, after a set of sdditions, the
order is destroyed.

€. TFor the index file, the overflow ares needed is proportional
to the size of the subset of records already stored in s
cylinder. For the pointers file the overflow area is
proportional to the number of records which are likely to
change of state.

4.7.4 8Stochastic Model
h,7.4.1 Assumptions

We assume that the pointers file constitutes a system governed
by a Markov process defined by & finite set of states snd a matrix of
transition probabilities. Furthermore, we assume that the process is
stationary and the state of largest value is persistent over a
reasonable period of time. :

The matrix of transition Erdbabllitles is a stochastic matrix Q =
]qi ||, such that,
glng for jzi
=0 for i<]

1

B~
o]
[ary
1]

g._ =1; n = largest state. _
. . .] . t .
Let nt be the total number of records in the file at time t. n 1is
distributed as G(i), and n¥ = g(i)n® is the number of records in

!w:f;'

gstate 1 at time t. The tetal number. of pcinters'in the file ig p~ =
Ysnt. The total number of new pointers to be added to the file at the
endacf period t is Nt., We assume that,

t
N t
T = C, as Pt, N~ = e, (45)
P 4+N

4.7.4.2 Proof of Stationarity
We shall show thét for a simplified case in which the probability

of two or more simultaneous additions is zero, the process is indeed
stationary under the assumption of constant distribution G(i).

pt+l _ ot b (L6)
t . -
by 1, N = ¢ P° (L7)

i-C

The average record length L, is constant for all periods t.
. >3 pt o
L= geely) =297 2 FF | (48)
J z nt nt

ny' = (50)

Recalling that the expected value of the number of exceedances is given
by, X = N-M/(n+1l), we can say that the expected number of records in
state J at pE?iQd t+1 is equal to the nuwnber of records in state j at
period t plus the exPected number of new records in stateil

11-§+1 - n? + nIB ,

n +1
t _ t i .
vhere R* = n (IEC) is the number of new records.
t /_t :
t+1 t . N y
Then, n =n, [1 Ht *nt] (51)
J J P ot+1

Hence, the results ocbtained in equatlcn (50) are egual to those- given by
(51) for nt large enough, such that

t
n

nt+1

&1 e . s , (52)

=

This implies, as may be expected, that the behavior of the number of
records in state Jj as a funct;on of' time, follows the order statistics
concepts presented before. IT ¥t is the number of records in state
J that change to state k at the éna of periocd £, then eqguation (53) is
the probability that a record in state j will change to state k at the
end of period t.

. .
t X, 7
xh (53)
7 71 . (1-¢) thl (54)
Using (50), Ay ¥ 1 = E__TE__EQ? ”

n.
dJ
t+l _ t L. t t+l

It is obvious that g, =q. ., if X, = (1-C) X
Jk “Jk Jk

We shall prove this recursively, beginning with the largest stuate n.

By ‘the assumption of persistency, + Xt
qQ = ‘my
_t
n
m
] t t+1 t
and an = I'J.n - nﬁ. (55)

t+1 _ n; ¢ = t
Yt I¢ ™
I
n
) .t .
t+1 _ X' _
and Xﬁn = "mn (56)
-C
-,) , +] t)
Proceeding backwards, n; 1 n; + X;m - Xﬁn’ (57)
: vt _ ot A t (58)
by (50)9 le = nm G) + ans
1m s 4 Xtm,
1-C mn
t+1 X-b
~ And using equations (50) and (56), lm = “1m
1=C

Equation (57) is general enough to conclude that equatlon (58) hclds .
for any consecutive pair of indices (ij).

4.7.4.3 Distribution of Xi]

Let us give more attentlian to equation (58)., Replacing C for its

value, we obtain:

H 8!
[
|
\HH :
[
[
+
2| Zhe

o=

which is similar to (50) and suggests that the number of transitions
(i3) at time t + 1, is equal to the number of transitions (ij) at
time t plus the ex expected nunmber of new transitions (ij). Under the
assumptlcn of one step transition for which (58) was obtained, we
find that

Sl Nt

- 1d Pl

This leads to the conclusion that XU, has sn unknown distribution F(i3).
Then, it is possible to predict the ¥alue of n¥+l and if F(ij) is

known, also the value of Xttl., However, the first element alone is not
en>ugh to estimate the required overflow areas, and if, as is. expected
in a real case, the transition probabilities for more than one step are
not equal to zero, it may be impractical to estimate F(ij). In order

to appreciate the complexity of the pointers file behavior, we introduce
a simple example.
’ FIG. LoO:

REPRESENTATION OF TRANSITION PROBABILITIES

Any stochastic matrix msy be expressed as a graph. The nodes :
represent the states of the system and the arrows the possible transitions.
For instance, any element in state 2 has a probability pps3 of going to '
state 3, and a probability ps) of going to state 4., We notice that -this
case is more general than the case used to prove. the stationarity of the
transition probabilities. Let us assume that the graph in Fig. hQ , :
represents the pointers file and at time t, all the records in state 2
and 3 are stored in the same track. After updatlng at the end of the
period t tha amount of storage used 1n the track ls glvEn by, '

1 _ t s R
87 = 2q,,n, + 3 (q33n3 + apgn) + h (qghn + thn 5y 4 5 q35 3 (59)2_

We may be tempted to say that. simllarly to the 1ndex flle, the amgunt gf

‘overflow area used in a track depends cnly on the number of records
already present in the track. If this was. true by equatlon (51) and

Al -

assuming that nt is large, the amount of storage used in the track would
be,

§% = 2ng (1 + X% + 3n% (1+09) = 2ng"™ + 305

ot ot
2 % t vt t .
8% = 2(qyny + aypny) + 3 (aggns + a3307 + 4p3np) (60)

Then Sl given by (59) is equal to g2 only if,

t t e B _ Lt % o
L (qghng + thnB + 5q35n3 = qugnl + 3q13nl_ (61)

Equation (61) introduces a condition on either the distribution G(i),

or the stochastic matrix, or both. Moreover, it is possible to visualize
that condition (61) depends on the specific physical allocation of the
records to the tracks. Therefore, we conclude that in general (61).

is not true, and the expected overflow area is not properly estimated

by equations similar to (60).

4.7.5 Estimation o# Overflow Space

The praposed méthcd for estimatlng the overflow is the following.

1_ .6, ot t b Y+ gt
g = EDE + 3n3 +”q2332 + 23433 + 2 (qghné * q35n3

1t N t 3= e)
8" =ny (2 + agg + 2q,,) + ng (3 =.qg, + 290), : (62)

and in general, if at time t & given track contains records in states,
Kysvisn.,. The expected storage used at time t + 1 is given by,

S %iZ n (i+ jg qia i+j) . . | . (63)

The expression in parentheses may be regérded as a multiplier that can
be estimated using the stochastic matrix Q. ' An ‘easier method to estimate
this multiplier 13 to use cnly qll for all pcss:ble states, and an average

"transition steP T. Then,

(1 £ (1 - qy))‘ 'Vf ;:" ”;_L ,- . _;' . - (6h)

\HA.

to the pointers file using a mndifiear

sﬁbrcutine BLOCKING that aceepts'f
real multlpllers (as well as 1ntege : S : =

4.8 Multiple Device Systems

4,8.1 General Z

The operational characteristics of a multiple device system are
determined by a set of factors, among which one finds the following:

a. File size, sys’=m volume, average record length and average
number of master records mapping into an index record.

b. Device capacity, access motion, rotational delsy and data
transfer times.

¢. Contrcl unit used.

It is difficult to state in general which of the factors are more impor-
tant than others and how they interact. Any priority relationship will
probably change for different cases. However, under some assumptions
one may be gble to analyze the alternatives and draw some conclusions.

4,8.2 DASD Control Unlts
4,8.,2,1 Device Combinations

There are three contrel units for the different devices. The
231h storage facility has its self-contained control unit which handles
up to eight disk packs or access mechanisms. The 2301 drum uses the
2820 control unit which controls up to four 2301's. The control unit
for the other four devices is the 2841 Storage Control which in theory
can control up to eight access mechanisms in any combination, but it is
actually subject to certain restrictions. These restrictions may be
stated as follows*

a, If no 2303 is attached, any combination of 2311‘3, 2321's and
2302'5, up to eight may be attached.

b. If one 2303 is installed, a maximum of three 2311's may be
attached.

e. If two 2303's (maximum) are attached, no . 2311's may be.gttachea.

In ceses b and c any combination of 2321's and 2302's, such that the
total number of access mechanisms is eight, is permitted.

4,8.2.2 Device Selectlon

When considering a multi-device system, it is important to exploit
the opportunities of parallel operatlan.e From the brief description of
the control units presented above, it follows that some devices present’
more advantages than others. The 2314 is the best suited for +his kind
of operation, espegially for medium and large files where the . data is
likely to fill up many or all eight of the disk packs.r ~

The 2301 drum presents the dlsadvantage that it ‘can be used only

with the 2820 control unit and therefore, if less than four 2301's

are needed, the operational cost will increase. The 2302 disk and

the 2311 disk have some features similar to the 2314, but cannot

compete with its operational characteristies. Thus, we shall consider
three devices as possible candidates for a multi-device system: the
2314 disk drive, 2303 drum, and 2321 data cell. The latter two would
be attached to the same 2841 control unit. The 2321 data cell is a very
slow device with a huge storage capacity, but considering that a large
percentage of records in a file are seldom used, one may expect that

the overall system performance won't be affec%ea

Using the same approach as in the previous parts of this report
(one~device system), we shall consider the division of a file in two
or more subfiles, each of them stored in different devices, under the
assumption that only one request is processed at a time. Later we
shall present some ideas on parallel operations.

4.8.3 Cost Comparisons

In order to give an idea of the operational ranges for the three
devices mentioned asbove, we present a set of cost. curves defined over
a wide range of the ratio "volume of requests/file size" (NR/N). These
curves are presented in Figs. 41 and L2,

As may be expected, for low values of NR/N, the 2321 data cell
presents lower costs than the 231L4. The bresk-even point for these
two devices was found at NR/N = 0.05. This figure should be interpreted
cnly as a rough estimate of the true break-even point. On one hand,
it has been assumed that the CPU-time cost is charged for the whole
search time (clock time) and on the other, no parallel operation has been
assumed. The second consideration places the 231hk storage facility in A
a less favorsble position. The reason for this statement is the focllowing.
The 2321 data cell has a storage capacity which is sbout 13.T7 times
larger than a 2314 pack; for each 2314 pack, there is an access mechanism
and thus for the same file size, if possible, one could use more than
one 2314 access mechanism (a.m.) while still having only one 2321 a.m.
Therefore, if parallel operation were to be considered, the bresk-
even point for the 2321, 2314 would shift to the left.

The 2303 drum presents very high cost all along the range of NR/N
covered by the graphs. The break-even point for the 2303 and the 2321
is shown at NR/N = 2.1. Even for the ratic NR/N = 10, the 2303 drum pre-
sents a higher search cost per request than the 2314 storage facility.
This means that an economic operation of the.2303 drum is only possible
for a range of very high NR/N ratios.

4L.8,4 Vertical Division of E.File
Vertical segmentation of a file is the division of it into two or
more subfiles, the first of which contains the set of records most

frequently requested. The idea is similar to that of "Division of an
- Index File Based on Usage Frequency'" presented in Sec. 4.k ‘above,

T A

qt Dollars
|..J
1

que
le
=3

Total Search Coqﬁlﬂe
o]
i

O‘
p

.01,

FIG. Ll:
TOTAL SEARCH COST PER REQUEST AS A FUNCTION OF THE RATIO
SYSTEM VOLUME-FILE SIZE, FOR DIFFERENT DEVICES

2321 Data Cell

’qeiashhf**ﬁam__a__e__;éﬁ__ég_ga_

- v i S .
™\ _231k Sto. Fac.

LTI

S

f'V§1ﬁﬁe»éflr§§ﬁéSﬁZf;
T

Sy

30

|
1

FIG. he:
TOTAL SEARCH COST PER REQUEST AS A FUNCTION OF THE RATIO SYSTEM

=
I

~
\\ 2303 Drum

/Request Dollars
o
3
IL
e
s

<
A%
1
%
/!

b= S
e

‘ ‘Tota_,l Search Cost
o
L
[
w s
s
/J

Y
m‘
I

S

~
.01 , -~
- 0074 f » 231k sto. Fat;.i» “"'*'--‘,_

. 0057

.00hd

e |
/# records) -

but unlike that case, two devices are considered here, and the different
storage costs and other factors have to be taken into. account.,

4.8.4.1 Usage Frequency Distributions

When considering vertical segmentation of a file, we are assuming
implicitly the existence and knowledge of a usage frequency distribution
Such a distribution can be expressed in different form

Let us sssume that during a time period of a month, one has observed
the distribution of requests over the set of records. A histogram or.
frequency distribution may be constructed by tsking as class marks the
number of reguests and as fregquencies the number of records which have
received the same number of requests during the month.

FIG. L3:
USAGE FREQUENCY DISTRIBUTIONS

- 100 B é""?ﬂﬂ
uofb g 8ot g
g o 60 s ‘
221 = 4O | 4
e /
g 101 S§ 20 L f’
= ; J I . I:—lc If/ o) .
1 2 3 4 5 | 1 2 3 4 5 |
No. of Requests No. of Requests

frequency and cumulatlve distrlbutlans have the same range, and the
moments of the dlstrlbutlon can-be calculated from them

The crlglﬂal data caﬁ be c13551f13d as fallaws;

Xi :. 1 72' '3_ S ,5.7 _v‘ (No. of requests)

fi .:bO 30 15 10, 5 | (No. of records) .
Xifi:h0 60 45 b0 2 e (Tctal no. oF, requests)

Ifi =T =100 E’X;lfi— n=210._

If'we re-crder fl frcm smallest tc largest and deflne Z(;) = fi/n +
2{i-1) and Y(i) = X1fi/n+¥(1—1) ‘where Xifi hds also been :e-order d'&s
the ccrrespenﬂing f1 we dbtaln the fellUW1ng table..ﬂy»ﬂ~ co

R TTE

Zi : 0.05 0.15 0.30 'o{So 1.0 .
Yi :+ ,119 . 309 .525 .810 1.0

cumulative percent of records

&
P
[

cumulative percent of requests

g
e
]

The graph of Zi vs. Yi constitutes a "normalized usage frequency
distribution" and is presented in Fig. ULk,

Hereafter it is assumed that any frequency distribution is
expressed as a normalized cumulative distribution.

FIG. LL:
NOERMALIZED USAGE FREQUENCY DISTRIBUTION
1i0! E,-x"'ga
- f‘i
.8 e
Vm ;.e"'
é T ffr
) p
2= f‘f
45 T /
/
éls b ,
. 7
) i 7
n 2 /1
/
‘/
S T ¥ T T e T N 1 §
.2 .4 .6 8 1.0

Per~Cent Records

4,8.4,2 Cost Equations

The total search cast per r6quest fcr a tva-device file is given
by equation (65), ~and for an undivided file by Equatlcn (65) Wwhere

gi = starage used by the 1th sﬁbflle

Ci = ccst of stcrage fnr the 1th subfile

‘I‘ivE search tlme per, request fcr the 1th subfile
CT = cost af tlme ‘ ' o o
ST = storage used.by “the undlv1&ed flle

ATﬁ = seareh time/réquest for the und1v1ded fllef”

VF(Xl) pereent4geﬁcf tatal reguests sat;sfléd An a fractlan X3y of
‘ - recards stcred in the flrst subfile. i G

CD (slc +C,)/NR+CT(T +(1—F(X))T) (65)

1

cu STCl/NR+TuCT (66)

4,8.4,3 Equivalent Problems

As in the case of one-device systems, one can ssy that it is
convenient to divide the file if the search cost per request for the
divided file is less than the cost for the undivided file using the
fagter device, i.e.

CU>CD. : (67)

Noticing that CU is a constant for a given set of data, this is
equivalent to finding the optimum first subfile size X1 for which CD is
a minimum.

Using the first approach, the problem is to find the .optimum X1, such
that the positive difference (CU - CD) is a maximum.

Replacing equations (65) and (66) in (67), we want to cobtain,

Max {{'(Xl) - l:%—E(T AT = -TU) - T CT [C (8T - g-l]} (68)

4.8.4.4 Required Cumulative Distributions

The function F(X,) in equation (68) is given by a cumulative usage
freguency distributiorn, live data for which at the present time are
unknown. However, calllng the expression w1th1n the first square
brackets G(X,, NR), it is possible to generate "required cumulative
distributions"” (RCD) for different values of system request volume NR.
The meaning of these RCD's is the same as for the one-device car-~. i.e.,
a file is divided only if F(Xj) - G(X3, NR)>0, and the optimal -~ -sion
point is given by

Max-{%(x) - G(x . NR};

Figures 46, U7, and 48 present sets of RCD's for different large
index file sizes: 250K, 500K, and T50K records, respectively. The
curves at Figures 47 and L8 have points at which their:slopes are
negative. ' Those points ccrrespcnd to flrst-flle gizes at which the
first master index 1evel is createdi

T T | I TYCRPr e DR R

FIG. L5:
CUMULATIVE - REQUIRED DISTRIBUTION FOR A !
TWO-DEVICE FILE (231k-2321)

NR1/NR

.80 .

G(X, ,NR)

LTO -
N = 250000 .

(1) : NR = 25000

(2) = 50000

(3). : . = 75000 .

(%) = . 100000 .

(5) : 125000 -
62 - (8) 150000
60 | - IR

T T 1 *F T T
1 2 3 L 5 .6 . .7 8 9 1.0

FIG. L6:
CUMULATIVE - REQUIRED DISTRIBUTION FOR A
TWO-DEVICE FILE (2314-2321

— f“f”g’; 7 | .
Jx"s. ‘-x-"";:e“/,“ :

—
5" e “‘: e pd
o s //

.

1.0 Egzgggfiffiﬂ

.90 4 (k)

G(X, ,NR), or NR1/NR

.80 | (2)
A
70 N = 500000
o (1) : NR = 0.1N
| (2) - = 2N
(3) : = .3
(1) = N
(5) = 5N
1 (1)
.60 |
1 2 .3 % .5 ..6..7 .8 .9 1.0
o ox =W/

G{Kl,“) or, NR1/NR

1.0

.20

.80 |

.70

.60

FIG. LT:
CUMULATIVE - REQUIRED DISTRIBUTION FOR A
TWO-DEVICE FILE (231h-2321)

(1)

N = 750000.
(1) MR =
(2) .=
(3) . =
(5) =

W

2

FIG. L8:
ARTIFICIAL CUMULATIVE USAGE
FREQUENCY DISTRIBUTIONS

] . /

(2)

NR1/NR
®
[
}

. 1) y=1- exp(—,Bx.),
i 2) y=1 = ’exp(—.éx)

- exploubx)

. 60 4

4.8.4,5 Program DUODEV

Under the assumption that a usage frequency distribution is known, the
calculation of optimal division points for two-device files is carried out
by program DUODEV. The logic steps followed by this program are:

a. Input the file size and characteristics for the two devices under
consideration.

b. Compute a set of ten "cumulative required distributions” (G(X))
and stcre them in a matrix. :

¢. Input usage frequency distribution.

d. Compare each of the ten RCD's with the usage frequency distr ibution,

and find the point X3 {if it exists) at which F(X1) - G(X;) is
maximum.

e. Calculate requireu storage, search time and total search cost per
request for the divided file corresponding to each Xi.

To test these ideas in advance of the availability of "real-world" data,
we used exponential functions to develop "artificial” usage frequency

distributions which are plotted in Fig. uL8.

h 8.4.6 Some Results

Using program DUODEV, we calculated optimal leiSan points for
three different file sizes and a range of ratios NR/N from 0.01 to 0.9.
The results are presented in tables 10 and 11, from which one can notice
the following: : , -

a. In general the cost values corresponding to usage frequency
#1 are lower than those for usage frequency #2. It is obvious
that the larger the parameter of the negative exponential
function (in this case .8), the. more advantageous the division.

b. PFor file sizes N—EDOK and N—TSOK the lelSan points do not

c¢oincide for svery NRﬁN value, -and the casts ‘are not- equal. On
the contrary, we fcund that the resultq af thé leiSlQn 01 a
NR/N{_ Figures hS and héwm&y expiaan thls behav;cr- the set of
cumnlative reguired dlstrlbutlgg curves. ehanges ‘as file ‘gize N
does. 8 :

It is interestlng ta compare the resglts ébtalned for the d1v1s Lon . cf a
file based on key—lengths, and. the twc—ievlce files. hased on usage..
frequency (Table 9). We can see that for usage frequency dlstributlcn
#1 only the 1ast two costs based on "key=1ength" lelSLQn are lower thaﬁ
those based on. 'usage fregugncy dlvisig ' '

courSe, othér ccnslderatl -
ziving a more favorable scorsz:

Comparison of Search Costs for Two Systems

Table 9:
NR/N ONE DEVICE | TWO DEVICES
I IT IIT v

G.02 0.0926 0.0649 0.0569 0.0599
0.05 .0399 .0292 0288 .0309
0.10 .0223 L0172 0181 .0191
0.20 .01355 .01126 0118 .0125
0.50 .0083 . 00759 00782 .0082
1.00 . 00653 .00631 00634 . 0065
Notes: I = undivided file

IT = one division hased on key-lengths

IIT = two devices for u.f.d. (1)
IV = two devices for u.f.d. (2)

4.8.4.7 An Extension

The following scheme constitutes
gsegmentation of a file based on usage

a natural extension of the vertical
frequency distribution and

employing two devices.

a. The first division is based on usage frequency distribution as
before, .

b. The first subfile is stored in the faster device, and is
searched first, as before.

c. The remaining set of records which do not belong to the first
subfile is divided ;nto two subfiles according to key—length '
distribution. :

d. Subfiles 2 and 3 are then stored in a slower device,

Program MIXPART has been devised to handle this case.

This. is a variation

of program DUODEV with the additional use of subroutine OPTWO.

MIXPART calculates the'necessary
compares them with the giveh usage frequency distribution (U.F7.D.)

(CRD),

and finds the first division polnt.

'eumulative required distributions"

Then, assuming that any- subset of

records has the same key-length distribution, the program uses subrcu‘bine

OPTWO to find the second division point.

Storage regulremgnts for the

three subfiles are calculated, and search time per rEquest is ccmputed

based on the assumption that far th
f requests is Praporticnate t

IToxt Provided by ERI

seboond and. third sdbflles, the vclume
1le size.

L iwéfb;z

Table 10: Total Search Cost as a Function of System
Velume for a Two-Device File*¥

Usage Frequency Distribution 1

T NR/N "N = 250k N = 500K N = TS50K
— | pp* cosT . | Dp* cosT | op* cosT
.01 .10 09757 .10 .09821 .10 .09832
.02 .15 .05636 .15 .05688 .15 .05706.
.03 .20 .0Lh126 .20 .oh1T2 .20 .0k196
N .25 .03325 .25 .03370 .25 .03399
.05 .25 .02832 .25 .02877 .35 .02869
.06 .30 .02485. .30 .02531 .35 .02501
.07 .30 .02236 .30 .02282 .35 .02237
.08 .35 . 02047 .30 .02095 .35 .02039
.09 .35 .01893 .35 .01901 .35 .01885
.1 .35 - .0LT69 | .35 .01810 .35 .01T62
.2 L5 .01194 .50 .01175 b5 011711
.3 b5 .00989 .55 .0096 .50 .00960
.t .50 .00883 | .55 .00850 | .55 .008L9
.5 .50 .00818 | .55 .00782 .55 .00782.
.6 .55 .00TT4 .60 .00735 .60 .007356
T .60 .00TO1 .60 .00702
.8 .65 00676 | .65 " .00678kh
.9 .65 00655 . | .70 .00657

* Division point as percentage cf_:gcé:ésjin the;firét file.
First subfile in 2314 DASF, second subfile in 2321 data cell.

Table 11: Total Search Cos*t per Request as a Function
of System Volume for a Two-Device File*¥

Usage Frequency Distribution 2

I

NR/N | N = 250K T N=500K | N = T50K
N | oex costT DP#* COST DP* COST

.01 .05 .0996L .05 .10055 - .05 10061
.02 .15 .05931 .15 .05995 .15 .06012
.03 .25 .04390 | .25 .okkk5 .25 .oLLTh
.ob .30 .03563 .30 .03617 .35 .03599
.05 .30 .030Lk0 .30 .0309% .35 .030L46
.06 .35 .0267TT .35 .02732 .35 .02676
.07 .35 .02413 .50 .024k60 .Lo . .02ko6.
.08 .o .50 .02229 ko .02197
.09 .ho .50 .02050 .Ls .0203%
.10 .40 .50 .01906 45 L01897
.20 .55 .01250 .55 .01254
.30 .60 .60 .01018 .65 ° .01020
Lo .65 .00896 .70 . .00896
.50 .70 .008194 .70 00819k
.60 -T5 .00T6TL .T5 00767
.70 .75 .00T294 .75 .00T29
.80 .80 .00700 .80 .00T700
.90 - .80 .00677 .80 600677»

D:ij.slcn points as a pe:centa.ge of recaras

in f;rst file.
*% First subfile in 2314 DASF, secgnd sﬁbf;le in 2321 data cell.

Some results obtained using UFD #1 are tabulated in Table 12.
An overall observation of this table shows that the results dbtalned
are better than those presented in Table 10 and even better than the

results for the two divisions based on key-length distribution.

4.8.5 Conclusions

It seems reasonsble to state that the order of efficiency for
the different structures considered in this study is the following:

l. Two-device system: first division based on usage frequency
distribution; second division based on key-length distribution.
Devices used: 2314 and 2321 (Program: MIXPART).

2. One-device system using the 231k storage facility: division
based on key-length distribution (Program: DYNPART).

3. Two-device system: Only one division, to be based on usage
frequency distribution. Devices: 2314 and 2321 (Program:
DUODEV) . .

However, before generalizing these ccnclusions, the following remarks
should be kept in mind:

-~ No parallel operation has been considered.
~- No real usage frequency distribution is known.
As was stated before, these two factors might change the outcome.

It should be noted that both irograms DUODEV and MIXPART may be
used for s one-device system as well. This is achieved by using as
input the same set of data.

If the three basic structures are compared on the basis of search cost
er request alone (see Table 13), the two-device, triple segmentation appreach
%MIXPART) yields the lowest cost for any given value of request. vclume/file
size (NR/N), followed by the two-device, dqual segment alternative (DUDDEV) .
and finally the single-device dual segmert technique using key length (DYNPART).
As request volume rises for a given file size, the multiple—dev¢ce, triple
segmentation approach begins to have payoffs if looked at in terms of £ross
search cost per month. For example, at NR/N=0.10 the total search ccst per
month for SD 000 requests, for ‘the structures would be:

MIXPART: Two-device, 3 segments ‘$8_05.5c_) (. 01611 x . 501:)
DUODEV: Two-device, 2 segments 905.00 (.0181 x 50k)
DYNPART : One-deﬁce, 2 segments 957.5@‘ (01915 x 591:)

- This analysis does not 1nc1ude file malntenance costs and other 1mple— v
mentatlcn considerations, nor does it consider other device combinations which -
moxe llkely mlght be available in a pract;cal sense (e E. multlple EBLM‘S)

However, we have aimed at laying out a provisional framework to guide
d351gners of large inverted file systems when they know or can estimate the
following:

3. size of the master file;

b. number of index records linked to master file and average index
record length;

¢. average number of master records mapping into an index record;

d. key length distributions of the indexes;

e. asystem search request volume;

f. nusage frequency distributions of indexes and mauter records;
and elther decisions must be made on efficient use of storage within one
available storage device, or opportunities for operational minimization by
use of available multiple types of devices must be exploited to maximum
advantage. And a decision must be reached either *., use & single available

storage device to best cost advantage, or to try to exploit multlple types
of devices to reach the lowest possible cost.

o gy L

Table 12A:

Total Search Cost per Request for a Two-Device File,

Based on Usage Frequency Distribution and Key-Length Distribution®

NR/N = 250K N=500K | N=T50K
I DP COST DP____COST | DP___ COST

.01 .15 08699 .15 .08717 .15 .0873h
.02 .25 05175 .25 .05205 .20 .06229
.03 .30 03821 .25 .03854h .25 ,03884
.0k .30 03085 .30 .03120 | .35 .03089
.05 .35 02626 .35 .0266T7 .35 .02611
.06 .35 02307 .35 .023L48 .35 .02293
.07 ho .02076 .35 .02120 .| .hO . .02056
.08 4o .01892 .50 .01927 4o . ,01872
.09 .bho .01T7hg .50 . .0176h .bo . .o1T729
.10 .ho .01635 .50 .01634 | .45 _01612
.20 .50 .01075 .50 .0104T | .50 .01047T
.30 .55 .00875 .55 .oo08h1 :55 .oo08k1
ko .55 .00TT1 .60 .00733 | .60 . ,007329
.50 .60 .00706 .65 .00666 | .65 .006662
.60 .65 .00620 | .65 .006198
.70 .65 .00587 | .65 .005866
.80 .70 .00560. | .70 . .005606
.90 .75 .00535 | .70 ~.oosko .

‘#First division based on U.F.D. No. 1, and is stored in 2314
_DASF. The second subfile is divided according toc key lengths..
‘Both second and third subfiles are stored in 2321 data cell.

Table 12B: Comparison of Total Search Coét per Reguest,
for Three Basic Structures '

TR/N — DUODEV — MLXPART "DYNPART

231k & 2321 DASF 2314 & 2321 DASF 2314 DASF
Two Subfiles _ Three Subfiles Two Subfiles

.01 .09821 .85h41 .1Lk276

.02 .05688 .05053 .07408

.03 .Ok172 .03728

.0k . 03370 .03018

.05 . 02877 .02567 .03288

.06 .02531 .02260

.07 . 02282 . 02034

.08 . 02095 .01858

.09 . 01901 .01720

.10 .01810 .01611 .01915

.20 . 01175 .01045 .01222

.30 . 0096 .0082h4

.ho . 0085 .00T713

.50 .00782 .0064T .00799

.60 .00735 . 00602 S

. 70 .00T701 .00570 .00T15

.80 .00676 .00541

.90 00655 00521 -0066__

DUODEV: Division is based on UFD #1. only.

MIXPART: First Division based on UFD #1; Second Division based on
Bl ' Key Length Distribution (KLD). - :
DYNPART: Division based on KLD only.

N = 500K, for all three programs.

5. FIRST-STAGE MODEL OF THE ECONOMIC EFFECTS OF INCORPORATING
A DATA COMPRESSION SYSTEM INTO AN ON~LINE DIRECT-ACCESS
STORAGE. AND RETRIEVAL SYSTEM
By Kelley L. Cartwright

5.1 Introduction: Compression and Coding

5.1.1 The Advantages and Constraints of Compression

The amount of bibllcgrayhle information availdgble in machine-readgble
form is constantly growing, and can be expected to increase rapidly in
the coming years. . Eventually, much of this information will be stored
in random-access devices, where it will be available in very brief times
through on-line consoles. A very significant element of the costs of
such systems will be the cost of zstoring the data in random-access
devices. For example, the cost of storing a bibliographic citation on
disc is presently sbout 60 cents per year, so that to store a million of
these would cost approximately $600,000 per year. Even a 10% reduction
in such costs would represent an appreciable saving. If anything, a
reduction of this amount seems conservative, since natural language is
highly redundant; thus we would expect bibliographie records to be
redundant also. Redundancy means that the number of symbols used to
express a given amount of information is usually far greater than the
number that would actually be required if the symbols were used with
maximum efficiency. Shannon* has developed an expression that allows
us to estimate the amount of redundancy in messages. This is the famous
entropy formula: __

oy =

(O<P3<1 hence log,P;<0; hence the minus 51gn in the abcve expre551cng to
give Hb a p931t1ve value.) . , :

r
Z ;log, Py

e

Hy, is the entrcpy Df a message; it is the mean number of individual
symbols (out of a total of b available symbols): that would be required -
to express the same amount of information as does a message in a given.
set of r symbols, if all redundancy were removed. from the message, and
given that each symbol of the r-length alghabet ‘has a freq_ency P in the
message. (The sum of the P., of course, is 1.)

The two alphabets may be the same (1 e, b = r), thus we could
calculate Hgg in letters for messages in the Engl;sh,alghébet (if we
1gnared blanks, punctuation, capitalization, all of which could, of course,

be included in the alphabet).

For any,EESSage and'any‘given‘vaiue'cf b ’HE dééreases as r increases.

?éﬁéﬁﬁén, Claude E. and Warren Weaver, The. Ma+hemat1cal Thea;y of
Communication, Urbana: Unlverslty of Illincls Press, 19&9

For example, in natural languages H, decreases as the '"alphabet" is
changed from cne that consists only of single letters to one that
includes digrams, trigrams, etc., then words, sentences, and larger
bodies of text. This is because the creation cf a message in natural
strlng Df charactars influences the prcbsblllty Df_ocguxrence cf
succeedlng characters. (Example: '"Probagbilit" may be followed by "y"
or "ies", but not, in English, by any other letter or letters. Thus
the normal letter freguencies of English do not hold at this point,
when the preceding letters are taken intc consideration.)®

Before proceeding, it should be noted that we accept as a constraint
the assumption that the amount of information in bibliographic citations
is properly determined by the catalogers and indexers who cresate themn.
Therefore, whatever the information content of a record, this content
must not be altered by the storage and retrieval system. The system magy,
however, alter the internal physical format of the information in any
way desired. More succinctly, the system must be able to output exactly
what was input, What happens in between is the system's business.

5.1.2 Coding Procedure

The process of converting a string of syﬁbéls in an alphabet of r
symbols to their egquivalent in an alphabet of b symbols is called codlng.
We are specifically concerned here with convert;ng the natural-language
texts of bibliographic records into their equivaients in the binary
alphabet of 2 symbols. Shannon's formula tells us that redundancy would
be eliminated if each symbol were translated into H bits. Unfortunately,
H turns out to be an integer in only very epecial cases; what is usually
done, therefore, is to translate each original symbol into some integral
number of bits. In the coding schemes of most computers, this is a
fixed number which is the same for all symbols. Greater efficiency can
be achieved by assigning a variasble number of bits to the original
symbols, assigning the smallest number to the most frequently occurring
symbol. The mean number of bits per symbol into which the symbols in
the original array are translated can then be caleculated as follows:

F ¥ o=
L' =) LiPi
L. is the length in bits of the bina:y regresentatlcn of

symbol i.
Pi is as above.

*As a result the entropy of Engllsh text has been estlmatedzjn the range
of one to twc bits per character. No comparable estlmatlcn of the entropy
of bibliographic records has been ma&e. -For example, see. Shannan,:CIaude
E. "Prediction snd Entropy of Printed Engllsh '"'Bell System Technical
Journal, (Jan. 1951), 50-6L; and Miller, George A. and Elizabeth -A.
Friedman, "The Reconstruction of Mutilated English Texts," Infcrmatlcn

and’ Contrcl (1, 1957), 38-55.

vnfortunately, it is posslbls only in special cases (e.g. when Py Py =
P3 = ... Pp, and r = 2K, and k is an integer) to have L' = H; hence

we have an 111ustratlon of the problem stated by Warren Wssvsr.*

The statistical nature of messages is sﬂtirely determined
by the character of the source. But the statistical character
of the signal as actually transmitted by = channel...is
determined both by what one attempts to feed into the channel
and by the capabilities of the channel to handle different
signal situations. For example, in telegraphy, there have
tc bs spacss hetwesn dots snd dots, between dots and dashes,
or the dots and dashes would not
[ITtaliecs Wsavsris]

be rssognlsSble.

Huffman** has devised a method of variable-length binary encoding
which, given all the requirements such a code must meet, results in
the minimum poszsible value of L' for a given series of symbols with
known probabilities. It has been decided to uze this procedure in the
present project.

5.2 A Model of the Effect Upon System Costs of Incorporating a Huffman
Coding Scheme into a Storage and Retrieval System

5.2.1 QGeneral Effect Upon the System

The following is a very general schematic drawing of the ?rgcsssss
involved in mechanized information storage and retrieval:

1 , 2 3 _ . - b ,
Creation of Conversion) Machine —_—
citations _|[to machine- |. Iprocessing o Storage
(indexing, [Plreadsble F————Mof citations|[' - S
cataloging) form | | = -
Query Retrieval | ‘[Machine , ' T
analysis and| ___ of citations | _o|processing of

prossssing "leitations

Steps 1, 2 5, and & will be the same regardlsss ‘of whsthsr ssmpress;sn

is used. (It is assumed that in Step 5 indexes are consul 1ted=-by the
computer-—-and that this procsss yields the . disec addresses ‘of a number -

of records. Then, in Step 6, these are found and trsnsfsrred ta ‘the CPU)

* Shannon and Wssver, op. cit., p. 108.
**Huffssn D. A., "A Method for the Csnstructlsn of Minlmum Redundsncy
" Proe. (40, Sept. '1952)7,°'1098-1101. . “Also in Willis Jaekson,‘

Codes, '
Ed., Communlcstsgn Thesry, Nsw Ycrk, Acadsm;c-PrESS: 195d-§;f h

If some or all of the citations stored in Step 4 are stored in a
compressed (Huffman-encoded) form, then the following other steps will
be affected as indicated:

Step 3. This must now include the compression routines; hence its
cost will be increased.

Step 6. This step will be decreased in cost for all compressed
records, since the shorter a record the less time it takes to transfer
it from disc to the CPU.

Step 7. Cost of this step will be increased because each com~
pressed record will have to be "decompressed" prior to output.

5.2.2 General Evaluation Criteria

In general terms, the criteria for deciding whether to incorporate
code compression intoc a storage and retrieval system are two. First,
the cost of the system which includes compression must be less thicn
the cost of the same system without it; and second, the effectiveness
of the system must not be reduced significantly.

It appears possible that effectiveness could be reduced in two ways:

a. Turn-around time. The expansion routine will increase the time
betw=en the user's submission of his regquest and his receipt of resultis.
It is assumed, however, that this increase will be measurable in terms
of microseconds, or at most, milliseconds, and will be imperceptible
to the user. : ' :

b. Error rate. An error is an unintended non-correspondence .
between the data as input and as output, and-—-for present purpéses—- =
attributable to the fact that a compression system has been 1ncarparatsd
We know that computers introduce =a certain level of random error into :
data, by occasionally altering one or more bits. In a data-handiing
system in which the data are encoded in a fixed-length scheme, this

‘means that occasionally a character will be altered; but the redundancy.

in. the rsccrd will usually. mean. that this. slteratlon does . not ssrisusly
distort the msssage. :

Tn a varisble—lsngth schems, hcwsvsr, the altsraticn ‘of evsn s’
single bit may have more serious effects, sltering successive eharactsrs;
However, for the purposes. of this pager,'it is assumed’ thst this érror.; '
level will be low enough to. be' tolersble, as. 1t usually 1s ‘in. systems
not involving ccmprsssicn.*.dj : P ol R

S 2.3 Gsneral ﬁcdel

The attempt of this paper is to arrive at a model that rsf1eets: 3
the dlffsrsncs 1n cast psr ststsd period of twc stcrags and retri’val ,’

-*Extsns1ve work has bsen perfcrmed on limlting the error?pr,paga,icn of

variable-length codes. - Bee for example:. Nsumsnn, Eeter G., Eff;Clént
Error-Limiting Variabls—Length Ccdss," IRE: Trans. cn Infcrmaticn Ths x

(Tuly, 1962).

systems that are identical in every way except that one incorporates
a data compression system and the other does not. Let us call the
difference in the cost of these two systems D; and, since it is

expected that the difference will favor the system incorporating

compression, we will need a model in the form
D=U-2¢C

This equation introduces a convention on variable naming which is
used in the balance of this psper. Cost components will be named in
terms of the steps in the general schematic diagram (Section 5.2.1) in
which they are irncurred. Thus the variable 853 will represent the costs
incurred in Step 3; specifically, it will represent those costs in Step 3
which vary depending upon whether the system incorporates data compression.

When we discuss Step 3, this step will be broken down into steps (a)
through (g), and it will be asserted that only steps (e), (£), and (g)
will vary depend¢ng upon whether the system incorporates data compression;
hence, we will discuss the variables S53e, 53f, and 83g. B3f, it will

be shown, has three components; hence, we will discuss the var;&bies

53f1, 83f2, and S31r3. It should be clear, then, that any variable
beginning ﬁith "s" nepresents the sum of all longer variables beginning
with the same characters, Thus, for example, S3 = S3e + S3f + S5S3g,

and S83f = 83f1 + 83Tz + S3f3.

Further, any variible name that begins with § refers to the cost
of a step without regaril to whether the system incorporates data
compression. If we are\élscu551ng one of the variables as it applies
in a system with data conpression, then I will substitute "C" for "s"
in the variable name; if we are discussing an "S" varisble as it applies
in a system without data compression, then I will substitute "U" for '"s".
Thus "Slia" refers to the cost, in either system, of transferring a
record to disc; "Cha'' refers\ to this cost in a system with compression;
"Uha" refers to this cost in a system without compression.

Ay

On this basis, it can be seen that the sbove equation "D = U - C"
is a simplification of the following:

D

(U3 + ULk + U6 + U%X - (c3 + Ch + C6 + CT)

I regret imposing variable names like "S3f2" upon the reader, but
this procedure saves much complex subscripting and has the advantage
that the neame gives a clue to where it iz discussed. And these wlll
be dropped in the final composite model., There are other variable names
not relating to specific steps which are listed in Fig. 49, Index of
Variasble Names.

5.2.4 Analysis of Variables

5.2.4.1 Step 3: Machlne Processing Pr jor to Storage

The input to this step will be a citation in machine-readable form;
the output will be a citation ready for storage on disc. -The processing

(€] "'?f - ﬁﬁz ey
B) R - . By 1?,)
S |

steps include principally (a) machine editing, (b) conversion of the
input format to the prescribed storage format, (c) creation of new
index entries and updating of existing ones, (d) assignment of disc
addresses to each new record. (e) determination. of whether the record
is to be compressed, (f) compression of those records that. are to
receive it, and (g) movement of the reco.i to an output area from

which it ean be transferred to disec.

The steps in this process which will vary depending upon whether
compression is incorporated are (e), (f), and (g). These will now
be considered in turn.

Step 3(e). The process of examining a record to determine whether
it is to be compressed should be a straightforward one, involving
logical operations upon such characteristies of each citation as its
date of publication, language, and subject area. When statisties on
these characteristics are available, and the algorithm has been
developed, a mean cost per record for this step can be determined.

Cost component of Step 3(e):

r

fu1]

very citation

S3e: mean cost per period of determining ry r
s to be compressed.

(¢]
newly entered in the system whether it

o
H

Methods of determining values:

U3e 0
C3e dR

Step 3(f). An Encoding Dictionary will be used to convert natural
language records into Huffman-encoded records. It is assumed that this
dictionary will itself be stored on 74 ¢ and brought into main memory
whenever enccding is to take place. 1t is further assumed that this
transfer process involves moving the dictionary to an input area and
then to a work area. (Note that it may be desirasble to store the
dictionary on tape, depending upon how often encoding takes place.)

The avsrage cost of spplying the encoding algorithm to a record is the
sum of the number of encodable single characters times the cost of
applying the algorithm to a single character, plus the number of encod-
able digrems times the cost of encoding a digram, ete. An "encodable"
symbol is one for which a Huffman code has been provided. Mean number
of enccdable symbols of lengths 1, 2, ..., n par record will have been
estimated carefully at the time that the encoding dictionary was estab-
lished, and the amount of time required to encode a symbol of length i
can be predicted after the encoding algorithm has been flowcharted.

FIG. ho:
INDEX OF VARIABLE NAMES

Varigbles reprezenting the cost of applying algorithms

0

The cost of checking a record retrieved frocm disc to
determine whether it is in compressed or uncompressed form.

Mean cost per record to be compressed, of applying the
encoding algorithm,

Mean cost per application of spplying the decompression
algorithm to a compressed record.

Mean cost per record of analyzing a record to determine
whether it should be compressed.

Variasbles representing equipment costs

Cost of maintaining a byte on disc for one pericd. This
is an equipment cost only; it is simply the rental (or
depreciated purchase) cost of the disc and its interface
equipment per perilod, divided by the number of bytes that
can actually be stored on the disc. (The latter nunber is
usually somewhat less than the disc's capacity.)

Cost of transferring s byte from disc to an input area of
core storage, or froin an output ares of core storage to disc.

Cost of positioning the read/write mechanism of a disc
drive at a specified address on the disc.

Cost of moving one byte from one position in storage to
another.

~—

Varisbles representing system characteristics

Mean length (in bytes) of uncompressed records in storage
format.

Mean percentage reduction of record size achieved through
data compression.

FIG. 49 (Cont.)

Varisbles rePresantlng system.characteristlcs (cont.)

o

il

Number of times per period that the encodlng dictionary
is transferred from disc. If input is done on line, then
it may be desirable to encode each record as it is input,
1f it is to be encoded. In this case, we will have

E = PR.

Length (in bytes) of the encoding dictionary.

Number of times per period that the decoding dictionary.

is brought into main storage. If this is done each time a
record is to be decompressed, then G = Y; or if it is done,
for example, n times per working dsy, then G = n times the
number of worklng days per period.

Lengtn (in bytes) of the decoding dictionary.

The percentage of R which receive compression (0 < P < 1;
P = 1 only if no records are stored in uncompressed fcrms

The number of citations added to the file per period.

The number of uncompressed records retrieved from disc per
period.

The nunber of compressed records retrieved from disc per
period. '

Cost components of Step 3(f):

33fl: Cost per period of storing the encoding dictionary.

83f2: Cost per period of bringing the encoding dictionary into
core storage each time it is needed.

83f3: Cost per period of gpplying the encoding algorithm.

S3th: Cost per period of moving new records from a work area in
storage to an output area.

U3fl 0
u3r2 0

U3f3 0

U3fh RAu

C3f1 qF

c3f2 E(t + rF + uF)

C3f3 BPR

C3fL u(RAa[1 = P] + RAP[1 - B])

5.2.4.2 Step U: Storage on Disc

Two cost components involved here are (a) the transfer of records
from “he output area of the CPU to the disc, and (b) their storage on
the disc during the stated period. It is assumed that the new records
will enter the system at a constant rate during the period; hence,
the average time that records will be resident on the disc during their
first period of inclusion in the system will be one-half period.

Cost components to Step U:

Slka: Cost per period of transferring newly entered records from
core storage to dise.

Skb: Cost in the nth period of maintaining on disc the records
entered during the lst through nth periods.

Methods of determining values:

Ukbs RATr
‘nil
Ukb q -
Clha RAr(1 - P) + RArP(1 - B)
[(n-1) ‘
CLB al I [RA(L-P)+ PR.A(1L - B)] + .5[R A(1L - P) + PR A(1 - B)]
iél 1) 1 - n) . n 7

Note that the above assumes the values of ‘P and B remain constant over
time. Actually, the expression for Cib will need to be modified because
some records originally stored in uncompressed form will later be stored
in compressed form. Also, t is not a variable in Ulba and Clha because

T ik

R will not vary depending upon whether compression is used. Hence tR
will be the ccst in both systems per period of finding the specified
addresses of records ready to be stored on disa.

5.2.4.3. Amortization of Costs of Steps 2 and L (a)

The costs of S3e, S3f, S3g, and Sla are a1l one-time costs whose
benefits will be realized over time; it seems reasonable, therefore, to
amortize them over a number of periods. These four cost compcnents may
be collectively charscterized as "initial processing costs." Let us
assume that it has been decided to amortize these costs over m periods,
and that we are in the nth period. Then we will assign to each period,

n place of the costs S3e, S3f, S3g, and Sha, a cost equal to the follow-
1g sum:

g =g

=

Il
_E (53i + shai)

Note: j=n-m+1

(Actually, S3fl will be a constant value from Periad to peried, so
that we could more properly write a more complex expression to take
account of this fact.)

5.2.4.4 Step 6: Retrieval of Citations

The input to this step is the disc address of a record. At the
end of it we will have in the input area of main memory a record in
exactly the form in which it wss stored on disc. The steps involved
are (a) go to the specified address on the disc; and (b) transfer the
record found at that address to main memory. The only cost component
that will vary depending upon whether data compression is emplayea is
Step 6(b).

Cost component:

S6b: Cost per period of transferring retrieved records from disc
to core storage. , . .

Method of calculating values:

Uéb XAr

Céb XAr + YA(1 - B)
5.2.4.5 8Step T7: Processing of Citations fcr'OutPut

The input to this step is a record (campressed or unccmpressea)
located in the input area; the output must be a record ready to be
displayed on an output device. The major stePs are the following:

(a) the record is moved from the input area to a work area; (b) the
record is checked to determine whether it is compressed; (c) Af it is
compressed, it is'decompressed;g(d)'the‘recora;is,cgnverted from storage

1'?9 e

format to output format; (e) the record is moved to the output area.
Steps (a), (b), and (c) are the steps that will vary depending upon
whether the system incorporates data compression. Step T(b) will be

a very straightforward operation, probably involving no more than
checking the first bit in the record. Step T{c) will take place in two
steps-~(1) a decoding dictionary must be brought in from dise; and

(2) the record must be decoded. Thus we are confronted here, as in Step
3(f), with a continuing dictionary storage cost. We are also confronted,
as in several other areas, with the cost of applying an algorithm to =
record--a cost that can be estimated carefully only on the basis of detail-
ed flowcharts that have not yet been developed.

Cost components:

STa: Cost per period to move retrieved records from the input
area to the work area.

STb: Cost per period of checking records retrieved from disc to
determine whether they are compressed or uncompressed.

87cl: Cost per period of storing the decoding dictionary on disc.

8Tc2: Cost per period of transferring the decoding dictionary from
disc to core storaoge.

8Tc3: Cost per period of decoding retrieved compressed records.

Methods of determining values:

UTa uAXx

UTh 0

UTcl 0

UT-2 0

U7 3 0

CTa u(AX + AY[1 - B])
CTb a(X + Y)

CTecl gH ,
CTe2 G(t + rH + uH)
CTe3 cY)

5.2.5 The Detailed Model

Fig. 50 presents the combined values of U and C, and their combina-
tion, via the general model "D = U - C," into a formula for D. The
formula has the form one would expect = an expression represeﬂting the
savings in record storage and transmisison costs minus a number of costs
representing the storage of the encoding and decodgng dictionaries and
the compr3581on and decompresslon routines.

FIG. 50:.
COMBINED. MODEL

GENERAL MODEL: D = U = C

1
|

= Alq(1 - PB)(N + .5Rn) + (v + r)(Y - ¥B)]
+ (1/m)M[Ad + P + A(u + r)(1 - PB)]
+ Elt+ Flu+r)] +clt + Hu + r)]

+ q(F +H) + Y + a(X + Y)

=
[

= A[(1/m)(u + r)M + q(N + ,ERn) + (u + r)Xx]

N = R, M= R,
i=p-m+l" i=1 *

=]

1
m = the number of periods over which initial processing
costs are amortized.

- A[PBg(N + aiﬁn) + (X =Y -1YB)(u+r)]

lw)
I

(1/m)M[d + pP + A(u + r)(1 - PB)]

E[t + F(u + r)] -Gl[t + H(u + r)]

qQ(F + H) = Y - a(X + Y)

The most important use of this model is as an aid in determining
whether to incorporate a data compression system into a storage and
retrieval system. In particular, one wants to estimate he effect of
the values of P and B upon the value of C, and consequently upon the
value of D. The reason that it is assumed that P < 1 is that there would
appear to be some number n such that if the number of times that a given
record is retrieved dur;ng a given period is greater than or equal to n,
then the total cost of compressing the record, storing it in compressed
form, and decompressing it each time it is :etrleved'w1ll exceed the cost
of simply storing it in uncompressed form. An exact model of this
relationship needs to be worked out.

The latter model will allow us to predict the value of P, with the
characteristics of the records known. This is clearly a crucial varisble
in the expression shown for D in Fig. 50. More crucial is the value of
B, which itself partially determines the value of P as well as affecting
the values of b, ¢, F, H, X, and Y. Hence the most important next step

is to determine how these vary in " relation to B, which must be done on
the basis of data not yet available.

5.3 Huffman Codes

A method of constructing compact binary codes was developed by D.A.
Huffman.¥* The method is the following. A source alphabet of 1 symbols
has associated with it a set of n symbol probabilities (?1, Po» ?3,.“?11).

n
[0 <P, <1, and Yy P, = 1]

First rearrange and renumber these probabilities so that Pl = F z P,2... 2P .
Form the sum of the two smallest probsbilities (P, + Pp_71)- WeZnow Rave n
a set nf (n-1) probabilities. Rearrange and renumber the set so that

| 2‘?2 2 FPyz ...z Pn—l- Again add the two smallest probabilities
(Pp-2 + ?nﬁl? to form a set of (n-2) probabilities. Continue this process,
each time forming an ordered set of probabilities that is one probability
shorter than the preceding set. Let us call these sets of prcbabilities
An, Ap_1, An_2, etc. When the set Ap is formed (by reducing A3z), the
process stops. Fig. 51 illustrates the process.

¥fuffman, D.A., op. cit. . £y

FIG. 51:
REDUCTION OF A SET OF PROBAEBILITIES

AS A Ah A ' A

5 3 2
P, .o L0 ko .40 .60
¥, .30 .30 .30 .30 ko
7, .15 .15 .159—5 .30
Py, 0T —>.08 .15]
s .05 .OT}J—? n=6
Pg .03

Note that in any set A; (except Ay), one of the probabilities is the
sum of two of the probabilities of Ai+1'

The first step in constructing a code on the basis of this reduction
process is to assign the codes 0 and 1 to F1 and P2 in A2. Now let P;.
be the probability in A, which is the sum of Po and Pz of As. Tha’c@%es
for P2 and P35 of A3 are formed by putting a one and a zero on the end
of the code for ?i; Thus if the code for P¥j is "1", the codes for ¥
and P3 of A3z are "10" and "11".

This process is now repeated to form codes for A), Ag,...3An. In
each case the code associsted with the probability Fj of A; which is the
sum of the probebilities Pi and Pi_j of Aj+] is converted fo. the codes
for these two probabilities by putting a "0" and a "1" on the end of the
code associated with ?j and Aj. This process is illustrated in Fig. 52.

FIG. 52:
CREATION OF A COMPACT CODE

AE ”7??§§7” %37 Code Ah Cede 755 Code AS C?éé]
.60 %0 Lho 1 , Lo 1 . L0 1 Lo 1
.40 1 .30 00 .30 00 .30 oo | .30 . - 00
.30 *¥01 .15 010 .15 010 .15 010
.15 %011 .08 #0110 | .oT 0111

.07 0111 .05 01100
.03 01101

Based on Fig. 51. : . AU o .-
Codes marked with an asterisk (*) are those which, at the next stage, will
e decomposed (by having a "0" and "1" added to them) to produce two

new codes. SRR : v :

The code shown in the rightmost column of Fig. 52 satisfies all of
the criteria we have established for an optimal binary code. Its mean
symbol length is the following:

L=
i

P.L.
i1

il >0

1

L (2x.3)+(3%. 15)+ (bx.0T)+(5%x.05)+{(5x.03)

= 2,13 bits per symbol

This code satisfies all the criteria we have established. It is
not the only code which will do so, "“~owever. For example, the following
are acceptable alternatives to the above code:

0 1 0

10 01 11
110 001 100
1110 0001 1010
11110 : 00001 10110
11111 Q0000 10111

These codes are egquivalent and any might be determined by the
Huffman method; their lengths satisfy the criterion of compactness. We
may therefore use a somevwhat simplified version (Fig. 53) of the
procedures shown in Fig. 52. Now when we retrace our steps through the
reduction process we do not actually synthesize codes, but calculate
their lengths. From Fig. 53 we see that a compact variable-length

code for a 6-character alphabet having these symbol probsbilities will
have a 1l-bit code for the most frequent character, a 2-bit code for the
second most frequent, etc.

FIG. 53: EFFECT OF CHARACTER FREQUENCY ON NUMBER OF BITS IN COMPACT
VARIABLE~LENGTH CODE FOR 6-CHARACTER ALPHABET

Aé' L, | A4 Aii A, | L | A % L, | Ag | Iy
*¥.60 1 Lo o1 Jho o1 Lo 1 Lo 1
. Lo 1 .30 2 .30 2 .30 2 .30 2
¥,30 2 15 3 15 3 .15 3

*.15 3 | ¥,08 L .07 L

0T L .05 5

' .03 5

This example mgy tempt the’ reader to. suppcse that given|5
probabilities, with P 2 P, 2...2 Pp, the corresponding code lengths .
will be 1, 2,...,n—1 n—l bits. This is not the case., Nor is it true
that the Huffman code for the most frequent source symbol will have
length one. The characteristics of a Huffman code we can predict, given
PlEFE -4 Pn, are that Li = Lo 5-;-51&1251:[1_1—%5

Ancther method of ccmputing symbol lengths for Huffman codes
derives from the rule that the length of the code associated with each
probability in the original set will be one greater than the number of
times that it or another probsbility which is a sum that includes it was
combined to form a sum. Thus, in Fig. 51, P) (.15) was first used to
form P53 (.30) in A3; this .30 was used to form Py (.60) in An. Hence
L), 5h0uld be 1+2=3; this is indeed the length shown in Fig. 53.

The latter fact leads to the idea of using a tree structure to
compute code lengths. The probabilities are arranged in descending
order, as before, and the tree structure created by repeatedly Joining
together the two least probebilities that have not already been joinead.
The process is shown in Fig. 54. The lengths of the Huffmen codes are
determined by tracing a path through the tree from 1.0 to each original
probability. The number of branches one is required to take is the
length of the Huffman code for the probability in question.

FIG. 5k:
TREE STRUCTURE FOR COMPUTING HUFFMAN CODE LENGEHS

Y
3

VU oW ow W R

6. IMPLEMENTATION OF BIBLTOGRAPHIC RECORD COMPRESSION
By Vikas Sahasrabudhe and Ashok Kulkarni

6.1 Overview

The first step in exploring the general model of the effects of
bibliographic compression is to develop a set of programs for analyzing
the records, and for encoding them into the compressed representation
and for decoding them to restore the original representation when pro-
cessing or display is required. Initial exploratory work was carried
out which led to the development of programs for the CDC 6400 (written
in the assembly language COMPASS). Following the brief results obtained
from the LC MARC test tape, a modified design was established which
was coded in assembly language for the IBM 360 so that it could be in-
corporated in the ILR file organization system, CIMARON.

These programs have parameter controls which allow varying degrees
of compression to be obtained through control of the size and compo-
siticn of the encoding "alphabet". However, additional study and
analysis has revealed some errors in the design which need to be cor-
rected. These modifications are identified in the report. As a result
of the chauges needed, these routines have not been incorporated irnto
CIMARCN. Finally, the results obtained thus far indicate that there is
indeed practical value to be derived from the incorporation of compres-
sion techniques as part of on-line bibliographic systems.

6.2 Record Encoding

The discussion of encoding and decoding presupposes that an "alphabet"
of source symbols, consisting of single characters, digrams, trigrams,
and longer polygrams each will have individual Huffman codes assigned to
them. The encoding program will scan the record from left to right, and
at each successive point in this scanning will encode the longest possibl=
string with a single Huffman code. It will then proceed to the first
character beyond this string and repeat the process,

For example, suppose that the system is being operated on a machine
with a 6-bit byte, so that 2%, or 64, individual characters must be in-
cluded in the source symbol alphabet. Let us call these cj, €35 +c<5 Cghe
Suppose further that the digrams cjcz and cpcjz have been included in
the alphabet, as has the trigram cijcsez. The digram cje; and the quadri-
gram cjcpsczcy have not been included. Then the message cjcjcpcgcjcCy =
would receive 3 Huffman codes = the first for cj; alone, the second for
cicocy, and the third for cjcy.

|.J.

Three major problems arise in implementing -uch a scheme. The first
is that of devising an encoding algorithm, the second is that of devising
a decoding algorithm, and the third is the determination of the series
of symbols of which the "alphabet" is to be composed. The first two
problems are dealt with in this section, and the third in Section 6.5.

e

6.3 Table Structure

The encoding algorithm is based upon the use of a dictionary. A
method of dictionary construction and use developed by Lamb et al.¥* for
use in mechanical translation work has been adapted for the present pur-
pose. This dictionary consists of a "first-letter table," which will
have a number position corresponding to each character in the computer's
particular character set which is also a member of the source alphabet.
These are backed up by "second-letter-tables," "third-letter-tables,"
ete., depending upon the maximum length of a polygram included in the
source alphabet.

6.3.1 TFirst Letter Tables

BEach position in this table which corresponds to a source alphabet
character will contain one of two kinds of entry-—-either a "termination
entry" or a "continuation entry." The former will be present if no
programs beginning with the charascter in question have been included in
the source symbol alphabet; otherwise, the continuation entryv will be
present. Both forms of entry will begin with a single bit that indicates
their type - e.g., a "0" may indicate a continuation entry and a "1"

a termination entry.

Following the bit which indicates entry type will be a string of
N+1 bits, where N is the number of bits in the longest Huffman code
that must be stored in the first-letter table. A single extra bit (the
"1" in the above sum) will be a demarcating bit. Its function will be
clear after the complete structure of the termination entry is given
in detail. For that purpose let us let N=19; then each entry in the
first-letter table must be 19 bits + 1 indicater bit + 1 demarcating
bit = 21 bits long. Let us assume that in the computer in question it
is reasonsble to make each entry 24 bits long (3 bytes on the IBM 360,
4 on the CDC 6400). The last three bits will be filled with anything
(let us say O's for illustration). Let us also assume that the demar-
cating bit will be a "1". Finally, let n be the length in bits of an
individual Huffman code. n will range in value from some minimum to
N. Then an entry in the first-lettcir table will have the following
structure: .

Length 1 bit m bits 1 bit n bits 3 bits
Contents 1 _ 700!7-7-707077 1 , B _XX...XX) QOD,,
Descrip- Indicator Filler Demarcat- Huf fman Filler
tion bit ing bit code

the above illustration is a number so chosen that m ¢+ n + 2 = N + 2.

]
-
o)

Figure 55 presents two specific examples of termination entries for the

i
7/

*Lamb, Sydney M. and W. H. Jacobsen, Jr., "A High-Speed Large-Capacity
Dictionary System," Mechanical Translation, (6, 1961), T76-10T.

ustrations Huffman codes. The second of these illustrates that if
N, then m = 0.

illu
m=

FIG, 55:

1. Huffman code: 000111000 (n = 9)
Termination entry: 1000000000 OOOlllOOOOOO
la 3Filler
Huffman code
[_; sLemarcating bit
sFiller
Indicator bit
2. Huffman code: 11lloooc111;00001ll (n = 19 =

Termination entry: 111111000 1110000111100@@%5
Filler

7 = Huffman code
? Demarcating bit
Indicator bit

The algorithm to extract the Huffman code from these entries would scan the
termination entry from left to right (after determining that the first bit
is a "1"), and the next "1" encountered would indicate that the balance of
the entry (except the last three bits) is the Huffman code. It would then

be inserted into the coded record.

(The demarcating "1" is not, of course, a part of the Huffman code. The
demarcating bit would be unneccessary if the code were so designed that all
Huffman codes entered in the first-letter table actually began with the same

bit.)

Every character that is the initial character of one or more poly-
grams that are included in the source "alphabet" will have a continusation
entry in the first-letter table. Each such entry will have two parts -
(1) the indicator bit that identifies the entry as of the continuation type,
and (2) the address of the first position of the second-letter table which
contains entries for characters that may be the second character of poly-
grams that are included in the symbol alphabet and which begin with the
character corresponding to the position in the first-letter table in which
the continuation entry was found. Note that if the indicator bit is the
leftmost bit in the entry, and is a zero, and if the rest of the entry is
simply the binary representation of the proper address, then the entry can
be used directly for addressing, without the necesasity of manipulating it
in any way.

ot :iﬁg&;

. - -

Note that the length of each entry in the first-letter table will be
determined by the length of the longest Huffman code that must be stored
in it, or by the number of bits required to store the address of the second-
letter table with the highest address - whichever is longer.

6.3.2 Second-Letter Tables

The structure and use of the second-letter tables can best be made
clear with an example. BSuppose that a separate Huffman code has been pro-
vided for the digram "de" (and, for the moment, suppose that no longer
polygrams beginning with "de" have been given separate Huffman codes).

Then, when a "d" is encountered in a bibliographic record, the continuation
entry in the first-letter-table position corresponding to "d" would give the
sddress of the second-letter table corresponding to "d". We would now in-
spect the next character in the bibliographic record and, if it is an "e“:

we would go to the "e" position in the "d" second-letter table. Here we would
find a termination entry giving us the Huffman code for the digram "de."
(Alternatively, if we had provided Huffman codes for some longer polygrams
beginning with "de," we would find a continuation entry.)

A not ingignificant problem is imbedded in the above description. There
it is specified that we must "go to the 'e' position in the 'd' second-
letter table." The problem is how to determine the address of this "e"
position. One way would be to calculate it on the basis of the numeric va-
lue of "e" in the computer's fixed-length coding scheme. This, however,
could lead to very long second-letter tables, many positions of which would
not be used. EBEach such table would have to be as long as the highest
numeric value of a character ineluded in that table, times the length of

each position in the table.

Another method that would result in considersbly smaller tsbles would

involve translating the code for each second letter to a valuz equal to
its position in the second-letter table. That is, when a continuation entry
iz found in the first-letter table, the code for the next character in the

record would be converted to a value which, when added to the address found
in the first-letter table, would be the address of the desired position of
the second~letter tables. The values to which the cocdes were converted
would be such that there would be no empty positions in the table caused by
gaps between the numeric values of the characters.,

There will be a second=letter table for esch character in the first-
letter table which begins one or more polygrams for which Huffman codes
have been provided. The suggested method of addressing these tables sug-
gests that they should be of the same length, and that the g;h'gosition in
each such table should correspond to the same second character. Thus each
position in s second-letter table will refer to a unique digram-=-=the one
composed of the character whose entry in the first-letter table contained
the base address of the second-letter table in guestion, plus the character
which corresponds to a specific position in that second-letter table.

Let us assume that the code-conversion method of addressing the second-
letter tables is adopted, that all second-letter tables are of the same
length. Let c; be & character for which a second-letter tsble has been

provided and let c; be one of the characters for which an entry is provided
in each second-letter tab’~. Then when the string cjcy is encountered in
a record, three conditions may apply:)

1. A Huffman code has been created for cjcj, but no Huffman codes
have been assigned to polygrams of length greater than 2 which begin with

cicy-

2. One or more polygrams of length greater than 2, and beginning with
cjcy have been provided with individual Huffman codes; cjcj also has been
provided with a Huffman code.

3. cjc4 has not been provided with an individual Huffman code, and no
polygrams of length longer than 2 characters have been provided with indi-
vidual Huffman codes.

The following actions are desired when each of the gbove conditions
applies:

1. The Huffman code for cjc; is entered into the encoded record, and
the character following cjy is ;gaﬂed up in the first-letter table.

2. The character ckx following cjcj must be tested to determine whether

3. The Huffman code for cj must be entered into the encoded record,
and c3 looked up in the first-letter table.

To deal with these three conditions, then, three kinds of entries are
provided:

l. Terminsation entry. Identical to a first-letter-table termination
entry, except that (because there are 3 types of entries) the indicator is
2 bits long. The Huffman code is that for cjcy.

2. Continuation entry. Identical to a first-letter-table termination
entry, with the above exception, and with the further exception that the
address supplied is that of a third-letter table.

3. Retiace entry. This will be structured exactly like a termination
entry; but the Huffmen code it contains will be the code for the single
character cy.

Code conversion. Again, let c; and cs; be conservative cheracters in
the unencoded record. Suppose that cjy has a continuation entry in the
first-letter table. Then the action required is that the computer's code
for ¢: be converted to another code. If c,; is a character for which a
position has been provided in each seccnd—iétter table, then it will be
converted tc a code whose numeric value, x, satisfie€s the condition
0 £ x5 £ n-1, where n is the number of positions in each second-letter
table. If y; is the base address of the second-letter table for character
i, then x; + ¥ will be that address in the second-letter table for

1
590
* Lo 2 =

v

character i which corresponds to the second letter j.

6.3.3 Encoding Example

The discussion up to this point will perhaps be clarified 1f an
example is given. Suppose that we have source records written in an
alphabet of 8 characters, c¢j,c2,....c8. Suppose further that we have
decided to provide Huffman codes for these 8 characters, plus the 1h

digrams composed as shown in Figure 56.
Fig. 56: LIST OF DIGRAMS FOR THE ENCODING EXAMPIE

components

digram

d, 2223*
d, cgch*
d3 3225
dh 2227
d5 C5Co
ié EBEL
dT 2325*
dB ghCB
69 chch*
le , chGS
dll QhET*
dip 6%y
d;q ' 2625*
dqy, 2627*

Suppose further that Huffman codes have been provided for certain poly-
‘grams of length greater than 2 which begin with the components marked
with an asterisk in Figure 56.

EBach individual chars~ter is represented in a 5-bit computer code,
with the characters having the following values in that code: ~

character value
cl L
cy 5
cq 6
c), 8
Cg 10
Ce 1k
cq 18
Cg 20

Because cs, €3, Cy, 8and cg can begin polygrams for which Huffman codes
have been provided, we will need four second-letter tables; and because
only ez, cy, c5, and cy are used as the second character of such poly-
grams, each second-letter table will contain U4 positions. Let us assume
that our first-letter table begins at address 100; sinece it can end at
position 120 (the maximum numeric value of a source-alphabet character
is 20), the second-letter tables can begin at address 121. Our first
and second letter-tables, then, will be as shown in Figure 57.

"T#*'" in Figure 57 indicates that a termination entry code would be
found at that address; a¥* asterisk ¢ means that at a¥%, a continuation
entry table would be found. (Continuation entries in-the first-letter

tents are iiiéievant; and R§ stands for "Retrace code." Let us discuss

how these tables would be used to encode s record. ILet us assume we
have the message czeczcjcycics to encode.

Step 1. e5 (= decimal 5) is used as a displacement in the first-
letter table.

Step 2. At 105 in the first-letter table, we find a continuation
entry and the address 121.

FIG. 5T7:

EXAMPLE OF FIRST= AND SECOND- LETTER TABLES

Contents

XXX)

T#

H\
b

2
1z

H =43 3B B
® wm R ¥

Tn B

) (

} {

)

N

First=letter table

Second~letter table

corresponding to c,

2D=1etter table

corresponding to ¢

3

2D=1letter table

corresponding to c),

2D-letter table

corresponding to Cg

Step 3. We now convert the ccde for eg (the second character of the .
message we are encoding) according to the conversion table shown in Figure 58.

FIG. 58: CONVERSION TABLE

Character 1 0ld Value o New Value
¢y Y Y
ey 5 » 5
cg 6 0
c), 8 1
Cg 10 2
g 1k 6
Cro 18 3
cg 20 T

Step 4. We now inspect the contents of the storage location whose ad-
dress is: 121 (the number found in Step 2) + O (the new value of 23)-

Step 5. At location 121 we discover a termination entry. We therefore
extract the Huffman code for czez from this entry, and it becomes che first
element of the encoded string.

Stap 6. We now use the numeric value (4) of the next character (c;)
in the message as a displacement in the first-letter table.

Step 7. At location 104 we find a termination entry; we therefore ex-
tract the Huffman code for c; from the entry and place it in the encoded
message, following the code just placed there.

Step 8. The numeric value (8) of the next character (cy) of the
message is used as a displacement in the first-letter table.

Step 9. At position 108 we find a continuation entry containing the
address 129.

Step 10. The code for c3 (the next character in our message) is
converted (by the above teble) to O. :

Step 11. At position 129 (= 129 + 0), we find a termination entry;
we therefore place the Huffman code for cyr in the encoded message.

Step 12. The next (and final) chara-ter of the message (cg) is used
as a displacement in the first-letter table; a termination entry is found:
the Huffman code is placed in the encoded message; and the encoding process

is now complete. o " &94

=170=

It is now interesting to observe whas would have occurred had we
encountered, for example, the sequence cz25. By the assumptions of our
example, no Huffman code is provided for this digram; yet if this sequence
had occurred either as the first two charscters in the record or immediately
following a character which had ylelded a terminsation entry, then the follow-
ing would have happened:

1. ¢35 would have caused the program to go to location 105 (in the

first-letter table), where 121 would have been fouud.

7 2. c¢g would have been converted to 2, and at loeation 123 we find
(Figure 57) a "retrace code." Here we would find the Huffman code for ca.
Tt would be inserted into the encoded record, and cg (its original code)
would then be used as a displacement in the first-letter table. :

6.4 Record Decoding

This section will discuss a method of decoding a string of bits,
when the string is a series of variable-length Huffman codes. The
decoding method described herein is based upon the use of +hat we may
call the Decoding DictipnarI,(DD)i Its maximum length (in bytes) will
be the following:

r t ri-ri
£ = 2 b+) x.2 +§i(n-)
DD 201 i 1
i=2 i=1

r = +the set of Huffman code lengths

.

x5 = +the number of Huffman codes of length ry

t = +the number of separate Huffman code lengths

q = the length (in characters) of the longest polygram for
which a separate Huffman code is provided

n, = the number of source symbols of length i

b = the number of bytes required to encode the numberaED

(the actual iDD’ not the maximum as calculated zbove).

The above formula represents a maximum value, rather than an actual
value, for reasons which will be evident after considering the decoding
example given later. In most cases, the actual value ofJEDD will be
considerably less than this maximum. '

6.4.1 Decoding Table Structure

The Decoding Dictionary, DD, may be conceived as having two parts.
The first part, which we mry call the Code String Segmentation (CSS)
portion, in effect inspects the string of bits constituting the Huffman-
encoded record, determines when a particular segment of the string con-
stitutes a complete code, and supplies the address at which the source-
alphabet equivalent of this code is to be found. The second part of DD
may be ealled the Code Translation (CT) section. It supplies the source-
alphabet equivalent of each Huffman code.

The method of constructing DD will be clear after the method of
using it for decompression is described. Suppose that a group of source
symbols consisting of single characters, digrams, and trigrams has been
encoded in a Huffman code. The length of the shortest Huffman code used
will be known. A number, n, or bits equal to this length is extracted
from the left side of the coded stream. These bits are regarded as a
number and added to the address of the first position of DD. At the
address thus determined, a number will be found. If this number is less
means that the n leftmost bits of the Huffman-encoded stream do not
constitute a complete Huffman code., Theretore, the next bit to the

L =181-
R - e

i w

right in the stream is added to the number Jjust found in CSS5; this sum

this address (which will be somewhere in CSS) is inspected. As before,
this number is tested to determine whether it is less than or egual to
the length of C8S. If it is, the above process is repeated - the sum
of the number just found, plus the next bit in the encoded stream, plus
the address of the first position in DD, is formed; at this addresszs a
number is found; it is tested for "less than or equal to the length of
¢ss"; etec.

At some point (on the average, this will occur after the sbove process
has been eXecuted a number of times that is equal to the mean number of
bits per source symbol, minus the length of the shortest code) a number
will be found in CSS that is greater than the length of CS8S. This will
indicate that the end of the Huffman code has been reasched; the number
found in C38 is the address of the first byte of the socurce-=alphabet
equivalent of the Huffman code. However, since this egquivalent may be
a digram, trigram, etc., it will be necessary to know how many bytes are
to be taken as the source egquivalent. This is done as follows: Let
n=the displacement of the first position in DD following CSS from the
first position in DD. Then bytes n, n+l, n+2,..., ntg~1l will esch house
a single character for which a Huffman code has been provided; the pairs
of bytes beginning at n+g, n+q+2, n+q+h,... ,mtq+x, will each house a digram
for which & Huffman code has been provided; the triplets of bytes beginning
at n+g+2, n+q+x+5, ete., will each house a trigram. Let us assume that no
source symbols longer than a trigram have been provided with a separate
Huffman code; and let the last trigram be stored in the threzs bytes beginning
at n+q+x+y. [n+gq+x+y+2 then equals the length of DD.]

Now let r be the number (greater than the length of CSS) found in CSS.
The following table indicates tlie length of the source symbol in bytes:

Condition Length
(n<) r < ntq 1
n+qgs=< r < n+gEx 2
ntg+xs r < ntgtxty 3

(Again, the values n+g+x and n+g+x+y are defined at theilr maximum value.
That these values will be considerably less than these maxima will be
apparent below.) _

6.4.2 Decoding Example

Let us assume a source alphabet of six symbols, composed of the four
individual charscters c 5CpsC3s and ¢),, and the two digrams ejeo and SELED

Let these six symbols have thé probabilities shown in Fig. 59, and have
assigned to them the Huffman codes shown there. '

137

-182= .

FIG. 59:
PROBABRILITIES AND HUFFMAN CODES OF
CHARACTERS s cg, 23, clcg, 2223, and c),

sourece character) Huffman
symbol equivalent probability code
54 cq .o | | 1
55 c5 | .30 Qo
54 cq .15 010
8), ¢ Cs .07 0111
55 csts .05 01100
Sg c), . .03 01101

Let us assume that the DD array begins in byte 100. Its contents are
the following:

byte no. 100 101 102 103 104 105 106 107 108

contents nz2 10 11 ok 12 06 08 1k 15
vyte no. | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116
contents 13 ¢y 22 23 c), c Cy 33

(This example illustrates why the formula given above was for the
maximus value of &,... Note that the two digrams cjcsand cpeqrequire
only three bytes (I14-116) of storage, since the method described herein
prescribes a first byte and a length. Hence, for example, the trigrams
"the" and "her" could be stored in four bytes; these two and "ern” in
five; these three and "new" in seven; etc.)

Now suppose that the message 000111101101 (the Huffman code for
cgclcgclcu) is to be decoded. Let the 12 bits of this message be
through Bjp, and let Dy through Dg be the five bytes of the decoded message.
The decoding procedure is as follows:

1. El=0; the sum 100£0 is formed.
2. At byte 100, 02 is found (02<10).

3. The sum 100+02+B2=1DE is formed.

198

—iS?;v'

P

L. At byte 102, 11 is found (11>10).
5, Since 111<11L, byte 111 (cg) becomes D, .

6. B.=0; the sum 100+0 is formed.

3 :
7. At byte 100, 02 is found (02<10). i
8. The sum 100+02+B,) =103 is farmedi‘ ;
9. At byte 103, Ok is found (0L<10). é
10. The sum 1DO+04+BS=105 is formed. %
11. At byte 105, 06 is found (06<10). ?
12, The sum 100+06+B,=107 is formed. 5
13. At byte 107, 1k is found (1l>10).
1h. Sinceil}hfllh, the two byte 114 (cl) and 115 (cg) becomes |
11)2 and D3. ?
15. B=l; the sum 100+1 is formed. g
16. At byte 101, 10 is found (10=10). }
17. Since 110<11k, byte 110 (;1) becomes D) . §
18. B=0; the sum 100+0 is formed. %
19. At byte 100, 02 is found (02<10). ;
20. The sum 1OO+02+BQ=103 is formed.
21. At byte 103, Ok is found (04<10). %
22, The sum 100+Oh+Blo=lOS is formed.
23. At byte 105, 06 is found (06<10). ?
24, The sum 100+06+Bll;106 is formed.
25. At byte 106, 08 is found (08<10).
26. The sum lOO+08+Blgsl09 is formed.
27. At byte 109, 13 is found (13>10).
28. Since 113<1lk, byte 113 (ch) becomes D5.
The process terminates at this point; thé assumption is that the }

record began with a length counter, and that the value of this counter
was 12.

188

= il

; .

6.5 TFrequency Analysis and Alphabet Selection

The key element in the compression system is the selecticn of the
 symbol list which will be used in the source alphabet, each element of
which will be replaced by a unique Huffman code. If the probability of
occurrence of the characters of the alphabet (a,b,...z,0,1...9, ete.)

at a given point were independent of the occurrence of the characters

at other points in the record, then the maximum compression could be
obtained through the use of a symbol list containing all and only the
single rharacters. However, since this condition is violated in normal
text (and, we assume, in bibliographic records as well) the inclusion of
multiple character strings in the symbol list can lead to increased
compression. The reason for this is that the frequency of the character
string is not the product of the individual frequencies as would be in-
dicated by independence. Thus, if the frequency of the string is higher
than predicted, the Huffman code will be shorter than the sum of the
individual character codes; and if lower, it will be longer.

But, at the same time, each increase in the size of the alphabet will
increase the encoding and decoding efforts as well. Therefore, it appears
desirable to investigate initially small increases in the size of the
source alphabet by including a few two-character strings in the symbol
list in addition to the basic single character set. In this way it will
not be necessary to maintain a source alphabet of all digrams regardless
of whether they appear. Because it is no longer a prefix code, encoding
is no longer unique. This in turn can lead to an investigation of optimal
encoding strategies. For the present, however, we are restricting our
attention to the linear scan, maximum length character string procedure
described earlier.

Thus, the procedure for selecting the symbol list is as follows.
Initially the symbol list is set to contain only single characters, and
the frequency of this occurrence is computed. From these frequencies
the Huffman codes for the encoding alphabet can be computed.

6.5.1 Extension to Digrams

Next, the digrams (two-character strings) to be included are selected.
To do this the single characters are arranged with descending frequencies:
C1:C2sC3se«4+,Cp4 with ¢; being the most frequent character, cp being the
second most and so on. The n? digrams which can be obtained from the pair-
wise permutations are then inecluded in the symbol list. If the characters
are arranged in a matrix form as shcwn below, then the digrams to be
selected are in the upper left sguare. 3Some of the digrams will have
zero frequency because the count is obtained from a finite sample.

Ordered List of Characters

(s3] ’ Cz (5] : Cn : Cph
c] cijcy cico clCy3 . cicp . Ci1Cgy
co caC) cpCo cpeg 1 eacp . Cacgy
ca c3cy caco e3cy . C3Cp . C3Cgy
Cn CnC1 CnC2 CcncCs3 . Cntn : CnCey
Ceu CeuCl CeucC2 Ceucy CeLCoY

Before proceeding with the process of generating the Huffman code
for this symbol list, it is necessary to adjust the frequencies of the
first n-characters because some of the occurrences of these characters
will be encoded as digrams. :

Consider a digram cjcy with frequency f. If this digram is to be
included in the symbol list, we have to reduce the frequency of cj and cj
by an amount equal to the expected number of times characters cj and cj
will be encoded as a digram cjcj. The string of characters before each
occurrence of cjcy 1s arbitrary. Hence, in the process of encoding, we
will assume that we may end up in position 1 or 2 with equal probability.¥

c; and cj will be encoded as a digram only if previous encoding ends
in position 1, which has a probability of 1/2. Therefore, the expected
humber of times c; and cy; will be encoded as a digram is f/2. Hence, the

frequency of c; and ¢y i§ reduced by f£/2.

Varying n from 0O to 15, different symbol lists were obtained. Huffman
code was generated for these lists and the average number of bits per
character was calculated. The following shows the results of these codes.

n Av. No. of Bits Redueticn Remarks
4,796 20.6% Only charsacters
L, ukL6e - 25.9%

10 4.364 27.3%

15 4,343 27.6%

#This assumption is inappropriate, especially where small numbers of
"multi-character strings are included in the symbol list.

The results clearly show that increasing n increases the reduction,
but this increase is very small after n=10. On the other hand, as n
increasas, the number of symbols in the symbol list increases approxi-
mately in a square proportion. The computer time required for generating
the code also increases more than linearly with the size of the symbol
list. Hence, if only characters and digrams are to be included in the
symbol 1list, it is not advisable to increase n beyond 15 or 20.

6.5.2 Extension to k-Grams

The following method of obtaining the symbol list and generating
the code may be used to extend this idea to k-grams. It appears that
the digrams may follow the same frequency order as that of the characters,
so far as raw frequencies are concerned. This leads us to assume that
trigrams, L4-grams, etc. will also follow the same order. Hen . the
symbol list can be made to consist of all characters, n? digraus, n3
trigrams,..., nk k-grams, if we want to restrict ourselves to k-grams,
where all these digrams, trigrams, etc. consgist of the first n characters
in the ordered list of characters. n will be made to vary from 1 to a
certain feasible number.

This introduces the problem of adjusting the frequencies of single
characters, digrams,..., (k-1) grams, if k-grams are to be included in
the symbol list. Consider a case when only digrams and trigrams are to
be included. One point should be noted at the outset: all the digrams
that go to make all the n3 trigrams are the n? digrams to be included in
the list.

We start off with single characters being included in the symbol
list. Next the n? digrams are included, for a certain value of n. In
doing so, the frequencies of the constituent characters are adjusted in
a manner explained sbove. When trigrams have to be included in the
symbol list, for example a trigram cjcsci, it is obvious that digrams
cjcy and cyck already will be present 1in the symbol list. Hence the
occurrence of the characters cj, qjand ¢y is already taken care of while
including the digrams cic3 and CsCxk- Now it is necessary to adjust the
frequencies of the digrams cicy and cs;c, only. This can be done in the
same way as was done for digrams and characters. 'The difference is that
if £ is the frequency of c:c:c,, then £/3 is subtracted from the frequencies
of cicé and C4Cx - The coefficient 1/3 was obtained with the same con-
siderations a8 were used with digrams. (In the case of trigrams, the re-
quired probability is 1/3.)

In general, the inclusion of k-grams is to be achieved step by step.
First characters are inecluded, then digrams, then trigrams,..., (k~1) grams.
If k~grams having a frequency f are to be included, it is done by reducing
the frequency of the constituent (k~1) grams by fk/k. After completing
these adjustments, Huffman code can be generated for the new symbol list.

6.6 TIBM 360 Implementation
The design of the compression system was then encoded for operation

on the IBM 360/L40. It was planned that ‘the decoding routine would be
established initially as a hatch routine for debugging purposes and then

O ¢

AN

. b

established as an on-line component of the CIMARON system. The remain-
ing routines for analysis and encoding would remain as batch oriented
routines available for file building purposes. As yet, debugging of
thege routines has not been completed.

6.6.1 Analysis Program

The analysis program consists of a Fortran main program, ASMFOR,
which calls a series of assembly language routines (CSECTS) to analysze
the input data and establish the Huffman codes. These codes are then
used by two other assembly language routines, ENCODE and DECODE, to
encode and decode the source data and to record the times required and
the compression obtained.

The main program, AMSFOR, calls the following assembly langusge
CSECTS: PACK; COUNT; ADJUST; HUFTRE; HUFCOD; and IODISK. The function
performed by each of the CSECTS and the parameters passed to them from i
the Fortran program are given in Fig. 60. The input parameters to these
routines (as specified in ASMFOR) are:

a. the number of digrams to be included in the source alphabet ;
set = DINUM (see Fortran listing); z

. the number of trigrams to be included in the source alphabet
set = TRINUM;

c¢.- the number of sample records from which the Huffman code is
to be derived. This number = 5, is specified as the number
of times the DO loop L4 in ASMFOR is to be executed.

The output of the six CSECTS are four tables (arrays) called TABLE 1,
TABLES, TAB and TREE, which contain the Huffman code for all source
alphabets selected, and the binary tree (TREE) that will be used during
decoding. These arrays have been stored on the disk ILROL4 and given
the DSNAMES ASHTABEl, ASHTABE2, ASHTABDL and ASHTABD2, respectively.

|
|
i
{
i
{
!
i
1
:

The description of all the parameters is listed below:

TABLEl = starting address of the table which stores all information
concerning l-grams. '

TABLES -~ starting address of the table which stores all information
concerning digrams and trigrams.

TAB = starting address of the array which contains all the
l-grams, digrams and trigrams included in the source
alphabet.

TREE ~ starting address of the binary tree that is used for code
generation and decoding.

NARC -~ starting address of a MARC record read in from tape.

TOTAL =~ number of bytes in MARC record read into core,

MARKER - wused as a flag when COUNT is called. Its value is zero
when COUNT is called the first time (first sample record),
and subsequently it is non-zero.

TABANM - denotes the number of half words used up by "table 2," viz.
the first portion of TABLES which contain information on all
digrams. The latter part of TABLES has trigram information
in it. The division of TABLES into "table 2" and "table 3"
takes place when COUNT is called the first time.

NUMBER - number of "table 3" entries, which is initially set to 6000,
but increases until TABLES is filled up. NUMBER is increased
every time that COUNT is called, since new trigrams are un-
covered in the sample records.

DINUM - number of digrams to be included in the source alphabet set.
TRINUM - number of trigrams to be included in the source alphabet set.

TOTNUM -~ total number of alphabets (l-grams, digrams and trigrams)
in the source alphabet set.

TRETOP - index of the cell within TREE which constitutes the top of
the binary tree.

6.6.1.1 COUNT (TABLEl, TABLES, NUMBER, NARC, MARKER, TAB2NM, TOTAL)

COUNT is called by the Fortran program, ASMFOR, for each MARC record
that is to be sampled for the frequency of occurrence of l-grams, digrams
and trigrams. The array NARC contains the record; TOTAL gives the length
of the record (in bytes). TOTAL is returned by the subroutine PACK; ASMFOR
then calls COUNT. .

COUNT then samples the first 1000 bytes¥ of this record and divides
the array TABLES into "table 2" and "table 3." TABLEl stores the l-gram
count, TABLEZ2 the digram count, and TABLE3 the trigram count. The layout
of the tables is shown in Fig. 61. Note that "TABLE2" and "TABLE3" are
contiguous in core and constitute TABLES.

!

COUNT samples the first 1000 bytes of the first sample record for
l-grams and fill up TABLES accordingly. The COUNT field in TABLEl stores
the count for the particular l-gram (alphabet), while the last byte of
each entry stores the alphabet (using the internal code for alphabets).

The POINTER field points to the head of a group of entries in TAS.E2 where
the digram counts for digrams starting with this alphabet would he stored.
Thus, if the first sample (10CO bytes) containing aja) occurred nj times,
ga1a» occurred np times, and if no other digram starting with a; was en-
countered, then COUNT would take the following action. In the first scan
of the sample text (scan for l-grams only) a) may have been founhd to occur
n3 times. Then COUNT assumes that at most ns3 distinet digrams could have

*This limit was " established to limit the total core requirement during the
initial study. For regular operation it would be expanded to be consistent
with the record gize limitation of the rest of the CIMARON system. [ed.]

204

B i

b

SRRl e s e e A T

B S dans B

FIG. 60:

DSNAME

DATA ANALYSTIS CSECT FUNCTION AND PARAMETERS

CSECT

PARAMETERS

DESCRIPTION

ILR DEVOMOD
(PHASE D)

PACK

NARC, TOTAL

Reads in a MARC record
from tape, extracts its
length from the first few
bytes and passes Lthe length
and starting address as
parameters to CO'THT using
NARC and TOTAL.

ILR DEVOMOD

(PHASE 1)

TABLE1, TABLES,
NUMBERS, NARC,
MARKER, TAB2NM,
TOTAL

Counts the occurrence of

all l-grams, digrams and
trigrams in each sample re-
cord that is given as an
input to it. It is respon-
sible for partitioning TABLES
into "table 2" and "table 3."
The number of distinet di-
grams and trigrams sampled

is fixed by the size of the
TABLES array.

ILR DEVOMOD
(PHASE 2)

ADJUST

TABLE1l, TABLES,
NUMBER, TREE, TAB,
TAB2NM, DINUM,
TRINUM

Takes as input the tables
that have been filled in by
COUNT. It adjusts the

counts for digrams to

account for the fact that
certain trigrams with that di-
gram gs prefix or postfix
have been included as separ-
bets). Similarly, it adjusts
the l-gram counts to acccunt
for the digrams (containing
the l-gram) which have been
included in the alphabet

set. ADJUBT is also responsi-
ble for selecting the DINUM
most frequently occcurring 4di-
grams and TRINUM most fre-
quently occurring trigrams in
the records sampled. All
other digram and trigram en-
tries in TABLES are cleared
to zero. TAB is filled up
with the 256 l-grams, DINUM
digrams and TRINUM trigrams
selected, along with their
adjusted and weighed count,
on the busis of which the
binary tree will be generated.

1

b Sy, R i

E
-
s

o i e At B

DSNAME

DATA AWALYSIS CSECT FUNCTION AND PARAMETERS (cont.)

CsECT

PARAMETERS

DESCRIPTION

ILR.DEVOMOD
(PHASE 3)

HUF'TRE

TAB, TREE, TRETOP,
TOTNUM, TABLES

Takes as input the TAB arrsy
with the weighted counts
(weighing factor = 1 for 1-
grams, 2 for digrams, and 3
for trigrams), and constructs
a binary tree (TREE). The
method for constructing the
tree is given in the detail-
ed description of this CSECT.
The index of the top cell

of the tree is stored in
TRETOP,

ILR.DEVOMOD
(PHASE k)

HUFCOD

TABLEl, TABLES,

NUMBER, TAB, TREE,
TAB2NM, TOTNUM

It takes as input the tree
generaced by HUFTRE, traces
the path from each lea? of
the tree toc the top of the
tree and thus derives the
Huffman code for each source
alphabet. Information con-
cerning the number cf bits
in the code, and the code
itself, are stored in TABLE]
and TABLES for all source
alphabets.

ILR.DEVOMOD
(PHASE Y)

iopis

TABLE1, TABLES,
TAB, TREE

Writes out the four arrays
on disk (ILRO4) as data
sets with names ASHTARE],
ASHTABREZ, ASHTABD1 and
ASBHTABDZ., The first two
will be used by the encod-
ing routine, the latter two
by the decoding routine,.
TRETOF is stored in the
first half word of TREE,

and TABZ2NM ir the first half
word of TABLES. These two
parameters are also re-
quired by ENCODE and DECODE.

Vs i

QT

BT e v

FIG. 61: LAYOUT OF COUNT TABLES

TABLES i

- - o 2 bytes 2 bytes 2 bytes

2 bytes| 2 bytes 2 bytes Digram | TABLES 2nd A ;
l-gram | TABLE2 1st alphabet |¢-(with zero | COUNT POINTER | airhabest ;
CQUNT POINTER . left f£i11)) I , :
0o , I 3

) | "paBLER™ |
— — —_ — I) e

256 entries
A
\
I
\
|
|
|
I
|

—e R e %‘!* 7 j V — V 77

\ | S S i S - — -
- 2

e — -

e —_— i

T — — — i

7 3

—— - . — §

3

1

i

H

/| Trigram| POINTER | 3rd }
COUNT alphabet

VAR
Note: +the first entry in TABLES ///’ N I R
is not used for storing a digram. \ ! 7 , 7 -
Instead, its first two bytes are /. |
used to store the position (with- "TABLE3'\| _ _
in TABLES) at which TABLE3 starts. (L 7 S
This information is required by -l I)
ENCODE.

SOTJIUS 00OH

occurred with a; as the first alphabet, since ng entries are reserved
in TABLE2 for digrams starting with a;. The TABLES count field would

show n5, byte 6 would have a;, and the pointer field would point to the
head of a group of n, words in TABLE2 (see Fig. 61).

in the second scan of the sample text, all the digrams are
counted and their count stored in TABLE2. After the second scan, the
TABLE2 entry pointed to by the a; entry would have n; in the
field, and b; in the "alphabet" field. The next entry would have n,
and b, respectively in the above fields. BSince the other entries in
this TABLE2 group are empty. they may be used for storing new digrams
encountered in other sample records.

After scan 2 (scan for digrams) 1000 entries in TABLE2 would have

been reserved (by pointer in TABLEl entries), though many of them would
be empty since digrams would have repeated in the text. However, if a par-
ticular character did not oceur in the sample of 1000 bytes, the TABLEL

"ecount" field for it would be zero and no TABLE2 entries would be reserved
for digrams. What happens if this character occurs in another sample
record? To solve this probiem, we reserve five entries for each of the
characters that did not occur in the first sample, and the 'pointer" field
in TABLEl set appropriately.

Thus, if N of the 250 l-grams did not ocecur in the first sample, the
length of TABLE2 would be (1000 + 5W¥) entries. This quantity is stored
in TAB2NM, and TABLES assum=d to start immediately after this as shown
in the figure.

In the third scan (for trigrams) the procedure for setting up pointers

in TABLE2 is similar to that used for TABLEl, and the number of entries

in TABLE3 reserved for trigrams starting with a,b; equals the "eount" for
a;b; as shown by the "count" field in its TABLE2 entry. It is apparent
that 1000 TABLE3 entries would have been reserved after scan 3 of COUNT.
Since there may still be space in TABLES to store more trigrams, NUMBER

is used to store the current size of TABLE3. COUNT then returns control
to ASMFOR.

- MARKER is set to a non-zero number so that in subsequent calls to COUNT
this subroutine observes that the first sample has been tsken and that
TABLES 2 and 3 have been carried out of TABLES.

In any other call to COUNT after the first one, the text is scanned
twice as before, with this difference: if any digram occurs in the text
whieh was not encountered in earlier samples, there would be no TAELE
entry for it. If a;b; had not occurred before, then none of the entries
in the group of nj reserved in TABLE2 would contain bj in the "alphabet"
field. If, however, there is space in this group for more digrams, b4
is entered in the apprcprlate field, and the count is set to 1.” It is
necessary to reserve some space in TABLE3 for trigrams starting with a3 bs.
NUMBER indicates the current size of TABLE3. Hence, five TABLE3 entrles
in the available space in TABLES are reserved and "pointers" set to point
to the start of this group. HNUMBER is also increased by 5. (or 30 bytes)
to show the increase in TABLE3 size. If all space in TABLES is used up,
it follows that trigrams with any digrem (as prefix) not encountered in

previous samples cannot be counted, and these are discarded. Similarly,
since there can be 2562 digrams and 2563 trigrams (distinet), it is
possible that within any group of entries reserved we may run out of
space. These digrams or trigrams are discarded. With the size of TABLES
equal to 24000 bytes, a maximum of L0O0OO distinet digrams and trigrams

can be sampled and their counts stored.

6.6.1.2 ADJUST

This program is used to adjust the counts entered in TABLEl and TABLEZ
for l—-grams and 2-grams. Thus if aj; occcurs p; times in the text, and if,
of the n, digrams selected, the total number of times that a; occurs in
them is q;, then the count for aj; must be changed to (pj-a;). Similarly,
the digram count must be adjusted to account for the count of those trigrams
which include the digram as part of its body (prefix or postfix).

The first step is to seleect the n3 trigrams which occur most frequently
in the text. As mentioned earlier, TABLE3 contains the trigram count and
is divided into groups whose pointer is stored in TABLE2 with the digram
that is a common prefix of all the trigrams in this group.)

TABLEZ2 7 TABLE3
2 bytes/ 2 bytes 2 bytes 2 bytes 2 bytes
pointer | Z2nd count pointer | 3rd
alphabet| W | alphabet
o —— group :
group - po1ntérg§%§h

000] |

ptrs. of T Pgigtéia%‘ fﬁ’gg%g‘*ss‘i ' — ——
TABLEL 5 ~—] 4+ —

—— pointer] T~ | - :, , rfi

000 T : — ' —

N T - 000 \ — 1

000

The program sorts out TABLE3 in a particular manner by sorting each group
within TABLE3 in descending order of "counts" entries in TABLE3. Then it
is necessary to select the highest n3 trigrams. This is done as follows:

Q

ERIC

wll Toxt Provided by ERIC

-~
Pejy
52, _
_ o _
256)
entries— —
Pczss
N —_— -
COMPAF

Each group in TABLE3 may be looked upon as a stack, the highest item
being on top of each stack. Thus, if all the tops of all the stacks are
compared, the highest member can be found. Now that stack in which the
selected trigram occurred is popped up so that its second member comes
on top.

Once again the top members of all stacks are compared to select the
second most frequently occurring trigram, ete., until ny items have been
gelected. The 2-byte array COMPAR is used to store the pointers to the
current tops of all the stacks, viz., the items that are to be compared
to select the next trigram. Note that the pointers in TABLEZ still point
at the highest items of each group in TABLE3 Thus, starting with the
COMPAR pointers identical to the pointers in TABLEL, the COMPAR pointers
for the selected stack (whose member was the highest) are incremented by
one. When ny items have been selected, all non-seiected entries in TABLE3
are cleared to zerco. This is done in the following manner. The items in
group 1 in TABLE3 between the pointer in TABLEZ2 and Pec; in the COMPAR
array are to be retained and those between Pcl and Pc, (viz., the pointer
+o0 the start of the second group) are to be '"zeroced." Similarly, those
between Pc, and P3 (including Pe,), Pc, and Pcg, etc. are all cleared to
Zero.

The next step is to find out those groups in TABLE3 which have all
zero entries. The corresponding pointer for that group stored in TABLE2
is also cleared to zero.

Next the counts for some of the digrams in TABLEZ2 have to be adjusted
to account for the inclusion of the trigrams which have that digram as a
prefix or postfix, e.g., if ajag is counted dj times in the text, then the
Pc, in TABLE2 points to the group of trigrams starting with alas, so the
counts for all the non-zero trigrams in that group are added, divided by
2,% and subtracted from the count for the digram. This is repeated for
all entries in TARBLE2. Adjustment is necessary only for those digrams
whose pointers are non-zero. Next, it is necessary to look for trigrams

®If 3135 occurred d, times, then for each occurrence of it a trigram a;ajag
and another ajasa; must have- been; counted. Thus Zalas— }§[2313135+z&1&53‘]
and, hence, when adjustlng for" thf”d;gram count, the trigram count must be
ilvided by 2.

of the form a,ajag since the count for these must alsoc be subtracted
from the coung for ajag. This task is less methodical to execute since
the TABLES were ordered according to prefixes rather than postfixes.
Pogtfix adjustment is done in the following manner: TABLEZ2 is searched
for all entries having its "alphabet" portion egual to a;. These are
the entries for all digrams of the form ajaj. Next, the "pointers" in
all these entries are used to locate the group of trigrams of the form
These entries are searched for entries having "alphabet" equal
AlL these "ecounts" in TABLE3 are added, divided by 2, and sub-
This procedurs is repeated for all

,Jalak-
tracted from the count for ajasg.
TABLEZ entries.

Now the single character (TABLEl) entries are adjusted similarly to
account for all l-gram counts which are contained in the digram selected.
N, digrams are selected from TABLEZ in an identical manner to the selection
procedure for N3 trigrams, the remaining entries being cleared to zero.

Now if the count for ay is py, and if a7 occurs in digrams of the form
ayay Or agay in TABLEZ p,; times, the adjusted count is (p7 - 97) The same
procedure is followed. All digrams having ay as prefix are grouped to-
gether and their counts are sdded and subtracted from py. Next TABLE2
is searched for all entries with "alphabet" equal to ay; their counts are
added, divided by 2, and subtracted from p7.

Next, all the counts in TABLEl, TABLE2 and TABLE3 are multiplied
by their appropriate weighing factor, 1 for l-grams, 2 for digrams and
3 for trigrams.

Next, it is necessary to identify all 1l-, 2- and 3-grams to be in-
cluded in the source alphabets and to sort their counts in inereasing
order to facilitate the setting up of a binary tree from which the Huffman
code will be derived. This is done by setting up an array of TAB whose
format is shown below. '

TAB
1l byte 3 bytes 2 bytes
IND alphabetﬁ Count
] 1 ay - -~ P1
256 2 aj as - di
+ No 1 . — —
+ N 3 [s2eas| 1
entries 1
3 —_
2

IND 1nd1cates number of alphabets in the source alphabet, viz., whether it
is a 1=; 2= or 3=gram. The alphabet (k—grami itself is stored in the next
3 bytes, and its count in the last 2 bytes. This array TAB is filled up
using the non-zero entries in TABLES 1, 2 and 3. Then the TAB array is
sorted in increasing order of counts. The TAB array will be used to con-
struct the three and any source ‘alphabet (1-, 2- or trlgram) is -identified

in the tree, TREE, b: I

its chatlcn 1n the sorted TAB Table whlchKlater will

=+

be used to enter the Huffman code into TABLES 1, 2, and 33 i.e., if the
digram aja; occurs in the 2lst location in the sorted TAB array when working
with the binary tree, TREE, a;8a, will be known by the number 21, called the
TAB index. J

Note: +to conserve space, the array TREE is used to store the pointers
used during sorting, instead of having a separate array - COMPAR. TREE
will be used by HUFTRE and, hence, it is cleared to zero after exiting
from ADJUST back to ASMFOR.

6.6.1.3 HUFTRE
This program constructs the binary tree using an array TREE (see Fig. 62)
from which the Huffman code for each source alphabet will be derived in the

subsequent program phase.

FIG. 62: STRUCTURE OF TREE ARRAY

2 bytes 2 bytes 2 bytes = 2 bytes
" [TAS index GO Up
identify al- o unt Pointer Link
phabet, e.g.,
asas by 21 , e
Np - leaves of
entrie5'< — — tree
N — - e v
| Left Us Right :
D igh ~
Pointer | U¥Sed | pointer | Pointer
N 2 - _) o B Fincdes of
entries : tree
N I - N N .

The contents of all sections of the TREE entries will be clear from a pic-
ture of the TREE that is set up., the linkages of the TREE being provided

by the UP, LEFT, and RIGHT pointers. The purpose of LINK will be explained
when the mechanism of the program is explained.

212

;—19?%

Assume that there are eight elements in the source alphabet (an
element may be 1l-, 2- or 3-gram) and their counts may be as follows:

Alph abets |A

o
Q
o
e
rzf
]
o]

Count 10|20|32|L47]|55

751100

| =
o

?}ee : [égi

Left Pointer Right Pointer

Niodes of

- H_
- 73] 100
l - Left R;ght
—— Pointer Pcin er
Count) Tab Index to

Identify Alphabet

Leaves
of tree

The manner in which HUFIRE sets up this tree will now be described.
Let Np be the total number of source alphabets = ny + np + h3 (where n; is
‘always 256). First, the counts for all Np source alphabets and the appro- .
priate TAB index to identify each source alphabet are copied into the top
Np entries of TREE using the TAB array set up in the last phase. .All UP,
LEFT and RIGHT pointers are "zervced." All the Np entries in the TREE are
linked into a long 1ist using the LINK field (see TREE format for top Nep
words). Thus the first item on the list has the’ least count, and the battcm
" item the largest count. The LINK Qf the last item is cleared to zero.

The next Np words of TREE will be used as nodes in the tree (see
figure). Now we need an indicator to show how many cells in the lower
Np group are available for use when a new node is being formed. Hence a
pointer AVSPAC (available space) is used to point to the first available
cell in TREE, and when a node is formed, the AVSPAC is incremented by
one., Another pointer called TOP is used to point to the top of the first
Np words which are linked as a list. TOP points at the current least count
item. This item may be a single source alphabet or a set of two alphabets,

ete. This is explained below.

The program proceeds as follows: TOP is used to obtain the least
count alphabet (source) and using its link, the second lowest (i.e.,
second in the 1list) source alphabet. Their counts are added and stored in
the second item. The top word is deleted from the list. Then TQP is made
to point to the second item. Next, one cell is plucked off the lower Nep
words, i.e., the top-most available cell, AVSPAC, is plucked off, and its
left and right peinters are made to point at the top two cells as shown
in the figure of the tree, the UP pointer in these two cells being directed
toward the node cell (that was plucked off). AVSPAC is updated to point
to the next available cell. Now the second cell which holds a count egual
to the sum of the least two counts is treated as a single item. This count

may not be the lowest in the list any longer, so the list is searched and

a pair of links in these cells changed and the TOP made to point to a new
cell which has the lowest count. Note that the location of the cells them-
selves in the TREE array are not changed, but only the LINKS adjusted.

Now the same procedure is repeated and a new node created with its
LEFT and RIGHT pointers pointing to two nodes (or leaves) to ics left and
right (left denotes the cell with the lower count). In this way the entire
tree is constructed. AVSPAC finally points to the topmost celil in the TREE.
This tree can now be used to derive the Huffman code for all the source
alphabets in the next phase, HUFCOD.

Note: The index of the top cell of the binary tree (header) is stored
in the first half of the array TREE.

6.6.1.4 HUFCOD

This program phase, as the-name suggests, is used to derive the Huffman

‘code for the Ngp source alphabets (1~, 2= and 3-grams) using the TREE con-

structed in the HUFTRE phase.

The TAB array is ordered in increasing order of count. Assume that
the ith alphabet in TAB (say a-) is being encoded inte Huffman code. Then
the ith entry in the tree contalns information about this alphabet and is
actually a leaf of the tree from which we must climb up the tree to the
header, TRETOP. The item to the left is denoted by a 0, the one at the J
right by 1. The UP pointer of the leaf is used to get the node cell. The i
LEFT pointer of this is compared with the leaf address, and if they coincide,
the leaf was to the left so the last digit for the ccde is Q, otherwise it
is 1. Then; using the UP pointer of the ncde cell, we go one level higher
up in the tree, and again the same test is carried on, the code is shifted
in a palr of registers using the SRDL instruction, and each time the level
is inereased by one, a count is kept which denotes t@e number of bits in the

Pk-21e

Huffman code for that source alphabet. When the header is reached, the
register contains the H-code and another contains the levels in the tree
traversed, i.e., the number of bhits in the Huffman code.

When the Huffman code has been generated for a particular source
alphabet, TAB is checked to see whether it is a 1-, 2- or 3-gram. If
it is a l-gram, say ai, then the ith entry in TABLElL is fetched and its
format changed to contain the Huffman code and number of bits of the code
for a4.

This new format for TABLES 1, 2 and 3 (from Fig. 61) is given below.

TABLE1l ABLE2 TABLE3
1 1 2 2 1 1 2 2 1 1 2 2
byte byte bytes bytes byte ULyte bytes bytes byte byte tytes bytes

1st |Length Huff- Pointw |[2nd |Length Huffd Point- Brd |Length Huff-] Point-
alpha-of H- | man er alpha-of H= | man er alpha-of H-| man er
bet code code| | bet Jlcode | code bet _|code code 7
[12]
& - - — B — _
o=l
Bel
=
= —T - —1T— 1 - = — - —F
o -
L, —
o — I [=
— § _ - — —-
i
I
I—;
I —t - —t- E

There are 256 l-grams, N, digrams, and N3 trigrams in the source alphabet.
As each Huffmar code is derived, the appropriate TAB entry is looked up

to find out if it is a l-gram, 2-gram or 3-gram. If it is a l-gram, say
ai, then the Huffman code A number of bits in it are stored in the i™"
entry in TABLEl as shown above. If it is a digram, say aja;, ther the ith
entry in TABLEL is inspected for its pointer, which gives the start of the
group within TABLE2 holding the digrams starting with a;. The entry, viz.,
H-code, and number of bits are entered at the place where the "alphabet"
entry matches the digram's second alphabet aj.

For trigrams, a search in TABLE2 for a match with the second alpha-
bet is necessary. Using its pointer, TABLE3 is entered, and a sgearch is
made for a match with the third alphabet. The code is then inserted appro-
priately there.

6.6.1.5 TIODISK (TABLEl, TABLES, TAB, TREE)
This subroutine is responsible for putting the tables created by

HUFTRE and HUFCOD, viz., TABLEl, TABLES, TAB and TREE, on a disk for
subsequent use by the ENCODE and DECODE routines. The sizes of these

~tables and their DSNAMEs are given below.

TABLE NAME SIZE (bytes) DENAME USED BY
TABLE1l 1536 ASMTABE1 ENCODE
TABLES 24000 ASMTABEZ2 ENCODE
TAB £000 ASMTABRD] DECODE
TREE 6000 ASMTABD2 DECODE

Note that the size of "TABLE2" within TABLES is stored in the first
half word of TABLES, and the index of the header of the binary tree is
stored in the first half word of TREE. These two pieces of information are
needed by ENCODE and DECODE.

6.6.2. ENCODE

This program will be used as a batch processing job to take as input
variable length alphanumeric records, encode them using the Huffman code
derived for the chosen alphabet set (consisting of l-grams, digrams and
trigrams) and store the compressed records in an output file.

ENCODE makes use of TABLEl and TABLES, which were put on disk as data
sets with DSNAMEs, ASMTABEl, and ASMTABEZ, respectively. Beiore prcéessing
the input tape (ALPREC), the routine does two GETMAINs and reads in the two
tables from disk. An internal array, OUTBUF, of 2048 words is used to store
the encoded record before transferring it to the output tape (HUFREC) .

For each record from ALPREC, the following prgcess is executed. The

216

record is read into a core area reserved by a GETMAIN construction. The
first word of the record gives the length of the record in bytes. The
characters in the input stream are inspected from "left to right." Suppose
the first three alphabets are ajajpa.. First, the jth entry in TABLE is
inspected. If the "pointer" filled is zero, it follows that no digram or
trigram starting with a; is included in the alphabet set. Hence, only

aj can be encoded. The“Huffman code (and number of bits) are extracted
from TABLEl and inserted in a register. Encoding starts again at ax and
proceeds as before. BSuppose the pointer in the jth TABLEl entry is non-zero.
We then enter TABLE2 (using the pointer) and search the group of entries
to seek a match between and the alphabet field. If no match exists,
only aj can be encoded and a; is the new starting point for encoding.

If the match succeeds, and the number of the Huffman code byte (i.e.,

byte #2) is zero, it follows that though ajag is not Huffman-coded, a
trigram beginning with a.a) is present. Using the pointer, we enter
TABLE3 and seek a match with akg. If it succeeds, ajakae can be encoded,
and the code is present in TABLE3. Encoding begins beyond this trigram.
If the match fails, only ay can be encoded, and encoding starts next with
ax as the first input character. If byte 2 of TABLE2 was non-zero, ajak
is a legal digram. This fact is noted, and next we seek to find a trigram
beginning with it. If the pointer field is Zero, or if a match in TABLE3
for ag fails, then a;s, is encoded from the code stored in TABLEZ. and ae
becomes the start of the input stream. If the match with a, succeeds,
858c8s is encoded (using Huffman code stored in TABLE3). This process is
repeated until the entire ALPREC text is encoded.

During +the encoding process, the Huffman code is stored in a register
and packed as each alphabet is encoded. When the register is filled,
it is stored in OUTBUF. The first four bytes of OUTBUF are kept empty,
and when the record has been encoded, the number of bytes in the total
record (encoded record), including the first four bytes, is stored in
binary format in the first four bytes as shown below.

- S —— 1l bytes i - 2048
B j — S S _fl}z / 7 P ST T T
) //egém/d/ﬂ;’ﬁ%é/fé@ code)
/1220, LS e L7 220 L /

A _ — —
OUTBUF “length

This array in then put on the output tape MUFREC. The next alphanaming

record is read in and the same process repeated until every tape is encoded
and stored in a compressed form on MUFREC. The encoding process is summarized
in the flow chart below. The input stream is: ajagasap ... etec.

6.6.3 DECCDE

This program will be called by a larger program and eventually will be
called with two parameters. HRegister 0 will contain the length of the
Huffman-coded record to be decoded, register 1, the starting address of
the record in core. After DECODE is executed, it will return two parama-
meters via the same registers, register O containing the length of the .
decoded record (in bytes), register 1, the starting address of the area

TN~
= 5.

1

FIG. 63: ENCODING PROCESS

Start encoding

at aj
—f—
int NO
P _—
73 LEL1

Encode a3 fronm
TABLE1l infor-
maticn. Start
encoding at ay

vte #2
of TABLE2

1

Encode ajsapx

from TABLE2 YES
informaticn.
S3tart encoding

Encode ajakae
from TABLE3
information.
Start encoding
at ap .

TABLEZ2

in core where the decoded record is stored.

However, this subroutine was tested as an independent unit. It read
the tape, HUFREC, which contained the Huffman-coded record produced by
ENCODE, and the encoded text for the first fifty records was printed out.
The input records were loaded into a core area reserved by GETMAIN. The
length of the record is stored in binary in the first four bytes and is
used to detect the end of the decoding process. The decoded record is
stored in another core area obtained by a GETMAIN.

DECODE requires two tables, TAB and TREE, stored on disk as ASMTAED1 '
and ASMTABDZ2, respectively. These are loaded into two areas also obtained
by GETMAIRs.

The process of decoding will be described now. Recall that the rou-
tine HUFTRE stored the index of the header of the binary tree in the first
half word of TREE. The dividing of an input stream of bits begins from
the header. When a 1 is encountered, we move to the right to the lower
level node, and if a 0 is detected, we move -to the left using the left
pointer of the TREE entry. The TREE is traced until we reach a leaf of
the TREE (detected by zero in last two bytes). The first two bytes of the
leaf of the tree contains the index of a TAB entry. This entry is scanned.
It may contain a l-gram, digram or trigram. This k—gram is inserted into
the area reserved for the decoded text. The decoding process is repeated
using the bit of the input record following the point when the last decoding
process concluded. The decoding starts at the top of the binary tree once
again. The process is repeated until the input record is completed decoded.
The decoded record is printed out as a file with DDNAME = PRINTQUT.

Space Condensation: The sizes of TAE and TREE are 6000 bytes esach.
However, the actual non-zero entries in these two tables would be a function
of the number of source alphabets (i.e., the number of l-grams, digrams and
trigrams included). Thus, if N = number of source alphabets, the actual
size of TAB would be 6N bytes, and the size of TREE = 8N (i.e., number
of leaves of tree) + 8N (i.e., number of nodes jin the tree) + 8 (top all
used as pointer to the top of the tree)

Hence, if the value of N is also passed to DECODE, the GETMAINs above
for TAB and TREE may be adjusted to accomodate only the non—-zero portions
of these tables. In this way a considerable saving in core area used by
DECODE can be effected. :

6.6.4 Extension of Program for Inclusion of k-grams (k>3)

It may be found necessary to extend the source alphabét set to 1nclude
h-grams, 5- grams,:etc. A scheme is suggested for incéluding up to Q-grams
in the alphabet sét. However, for any k-gram (k>3) the count, Huffman code,
etec. are stored in a téble,vealled TABLEK. It can contain anythlng from
a b-gram up to a 9-gram. Prior to the COUNT phase, the k-gram(s), which
seem to occur often in the text, would have to kngw, or. Suppose we. know,
that "WILEY" occurs very frequently in a record set. We then may want to
count its occurrence .in ‘a‘sample text and include it iﬁ the source set.
Note that the ADJUST phase would not select from. amcng these k—grams but .
include all of them 1n the scurce alphabet. :

= ;g;g;,

After COUNT had worked on the first sample record of 1000 bytes,
TABLE]1l and TABLE3 would have been initialized, and the latter split up
into "table 2" and "table 3." Now the k-grams that we desire to be in-
cluded could be read into an array, GRAMS, within the Fortran program,
ASMFOR, via data cards. The k—-grams would, of course, vary in size.

Then an assembly language routine called KAGRAM would insert these k-grams
into TABLEK, creating entries in TABLEl and TABLES, if necessary, and
setting the TABLES (actually '"table 3") pointer to peint into TABLEK.

An AVSPAC (available space) indicator would be kept to indicate the first
available entry in TABLEK while this insertion process is going on. The
k-grams having the same first three alphabets would have entries in TABLEK
linked together using the "link" field. The link of the last entry in any
chain would be zero. The format of a TABLEK entry prior to ADJUST is

shown below.

2 bytes 1 1 __6 , 2 bytes
count L ay asg ag as - - link iﬁ\‘
—_— , b | points to
| A — - — : another
#9 alphabets unused et eyt 3 , TABLEK
'1n this entry Last portion of the | entry

k-gram ajyasazajyasagay
I - |
Lg- 12 bytes : N

The routine KAGRAM would insert the k-gram ajasazayasagay in the follow-
ing manner. It would look at entry for aj in TABLEl and, using the pointer,
enter TARLEZ2., If a match for sz then failed, it would create a new entry
and set up its pointer to a group of five entries avallable in TABLE3, as
indicated by NUMBER, insert a3 in the topmost entry, and set the TABLE3

_pointer to point at AVSPAC in TABLEK. It would insert the last six characters
as shown above. If the as pointer field were non-zero, it would enter TABLE3
and search for a match with az. If present, it would examine its pointer
field. I zero, it would create a TABLEK entry, and if non-zero, it would
enter TABLEK and then use the link field to g0 dnwn the chain. It would

and update AVSPAC- If the match for asj falled in TABLEB, lt would create
an a3 entry and ‘'a TABLEK entry as éxplalned above. .

After the k-grams were 1nserte& COUNT wauld be called S times, -where
8 = number of sample records. The only dlffarence in the executlcn of COUNT
for any sample would be that 1f WhllE scannlng for trigrams,- the trigram's
TABLE3 entry had a non-zero pclnter, we would look for k-grams in the: input
stream and 1ncrement the "count" field of :the TABLEK entry. - The routine
ADJUST remains unaltered, and, as far as it is concerned, TABLEK does not
exist. k-grams are not sarted or. "count. adjusted.:' Howéver,. when the
time comes to- £i11 up TAB with tﬁe l—grams, digrams and. trigrams selected,
ADJUST must go ‘a step further and also look:for- non=zero:- TABLEK -entries.
These k-grams are also inserted into . TAB.. For any. kfgram,_tworTAB
?ntrﬁes are used and the féfmat is shown below. TAB entry for k-gram

k>3 S L - S

o h ‘.;,fiﬁfwg | . ‘ .,~IC§E:3()'»

1 byte 5 bytes

8 - L o | L . -
number of alpha—: a ! a r ‘)
bets in k—gram I 1] 2, 83 ' ay as
— — 77i7 - : '7— — - l 77—; - -~ - e
ag ' ay , I , weighted count
) O _ Bl A i 2 bytes
-« —————————— 6 bytes — —»

‘The weighted count = count in TABLEK % k. When sorting TAB, care must be

taken to recognize an entry for a k-gram so that both entries are treated

az one. The TAB entries in the leaf of TREE for this k-gram points to the
first byte of the first word of this TAB entry.

After MUFLOD has given abd the code, a TABLEK entry looks like the
following:

- - - 12 bytes —— — »
1 1 2 6 2

alphabets link

of alpha- # of bits Huffman
bets in k- in Hurff- code for
gram man code k—gram

ENCODE would remain unchanged except for the following salteration: if,
while encoding an input stream, we enter TABLE3, we also. seek a match with
k-grams of the pointer if the TABLE3 entry is non-zero. We go down the chain
of TABLEK entriez pointed to by the TABLE3 entry, and if the match succeeds
for any of the k-grams, that k-gram is encoded using the Huffman code in
that TABLEK entry, and encoding starts again beyond the kth elphabet in the

input stream.
6.6.5 Program Operation and Results

The usefulness of Huffman coding can be measured best by noting the
tradeoff between encoding and decoding time and the space compression achieved.
The variables in this program are: ' '

mumber of source alphabets, l-grams, digrams and trigrams

Ns =

Nd "= pumber of digramé selectei'

N, = number of trigrams selected

N, =N+ N + 256 (number of l-grams = 256)

= = number of sampl= reccrds on which the Huffman code for the N alpha=

bets is derived.

421

C_ = average compression obtained per record

av
= (g alphanumerie text length - g Huffman coded record length)
Z alphanumeric text length
i
T, = average encoding time per alphanumeric character (i.e., byte)
TE = average decoding time per byte
Lav = average number of bits per source alphabet
Ng
=) L1i/Ng, where L. = number of bits in Huffman code for ith source
i=1 alphabet
A maximum number of bits in Huffman code for a source alphabet =
ax number of bits in least frequently occurring source alphabet
Lmin = minimum number of bits in a source alphabet = number of bits in

the most frequently occurring source alphabet.

o]
y

Some of the functional relationships between these parameters are
interest as they focus attention on the space-time tradeoff in Huffman
code compression technigques. These relationships could be obtained by
varying certain parameters in the program, while keeping others fixed.

Lav = fl (NS’ 5)
Cav = fE (Ns’ Nd’ Nt’ 5)
TE = f3 (ms, cav)

T = f)-k (NS’ CE.V)

max 75 (Ns’ 8)

[
n
H;

Lmin = %6 (Ng, s)

Among these parameters the input program parameters (which can be varied)

are:

Ny = TOINUM (see ASMFOR)

N; = DINUM (see ASMFOR)

N, = TRINUM (see ASMFOR)

S = Index of DO loop 4 in ASMFOR.

e

PSR

6.7 Results
6.7T.1 Initial Method

Prototype programs for frequency anaiysis and for encoding were then
written in the assembly language for the CDC 6L00, COMPASE.¥ The method
Just discussed was used to obtain the scurce-symbol-alphabet and also
the corresponding frequency of occurrence of each symbol. Huffman code
was generated for the scurce-symbol-alphabet using the first method de-
scribed before, and 200 records from the Library of Congress MARC II test
tape were encoded in that code. The results of the actual encoding are
shown in Fig. 6bL.

Two more methods were tried to select the source-symbol-alphabet and
the corresponding frequency distribution. Both these methods are desceribed
below.

6.7.2 Second Method

As was explained, the probability of the previous encoding ending at
position 1 or 2 of a digram cjc: was assumed egual. Hence, if the digram
cicj has frequency f, then the expected number of times the characters c4
and c¢s will be encoded as'a digram is f/2., Therefore, thes frequencies
of the constituting characters were reduced by f/2, but the frequency of
the digram was left unchanged at f. But the same argument suggests that
the digram freguencies should also be reduced to 1/2. Also by the same
reasoning, the trigram frequencies should be reduced to 1/3 of their origi-
nal frequencies. This additional feature was incorporated in this second
method to obtain the freguency distribution for the source-symbol-alphabet.
The result of this method is shown in Fig. 6L. It clearly indicates that
this method gives slightly greater reduction than the first method.

6.7.3 Third Method

This method is to skip all these arguments about probabilities and
instead scan the records to get the actual count. The first drawback of
this method is that each time a new source alphabet is tried, the records
have to be scanned to obtain the actual frequency distribution. In
addition to that, the reduction obtained by this method for any particular
source alphabet was found to be less than that obtained by the first or

the second method for the same source- symbol—alphabét.

Observing the results of these three meth@dS'glven in Fig. Shg'it is
clear that the second method gives the maximum reduction. It also has
another advantage in that the frequencies of all digrams and other. pcly—
grams can be obtained once for a given type of data, and these values :
can be used to select the optimal sourceﬁsymbcl-alphabet., Lo

* The analytic error was found after these runs were mede. -However, the
results are included as 1nd;cat1ve of the. potent;al of blbllggraphlc com=—
pression, since carrnctlan Qf the‘errpr W1Jl lmprove fhe results. {ed]

FIG. 6L4: COMPRESSION RESULTS*
|

!
!

Methed No. Ave. No, of Bits per Char. Reduction

For N = 10

1 Lh.675 22.1%

2 L.658 22, 4%

3 5.029 16.2%
For N = 5

1 L.800 20 %

2 L.732 21.17%

3 4,831 19.5%

6.7.4 Effect of Varying Source Alphabet Size

Although the second methed is the most effective, a separate analysis
had beern run with the first method to determine the effect of varying the
size of the source alphabet. Thirteen different source alphabets were
created by varying the value of N from O to 60 in steps of 5. The results
are given in Table 13. The following explains the significance of each
column in Table 13.

1. N is the number of the highest frequency single characters
used to obtain digrams (pairs) to be represented in the source
alphabets. '

2. NLAST gives the resultant number of symbols in the source alpha-
bet. Pince there are always 64 single character symbols in the
source alphabet, NLAST - Eh gives the number of digrams actually
used in the scurce alphabet

3. The expected count for each symbol in one record.

4., The variance obtained from the count for each symbéi.

5. Time taken in seconds to generate Huffman code, given the count
for each symbol.

6. Minimum code length obtained in bits.
T. Maximum code length obtained in bits.

8. Avéragg code length in bitslper source ghaﬁa;tér."

*Saﬁrcéﬁsymhgleéiphabet'c&nsi§t§;§f éhgractersi"iigfaﬁs;aﬁditfigraﬁs. .

s

Q L ‘ e Le

9. Compression obtained using that source alphabet.
10. Average time in .1lliseconds taken to en. -~ one reccrd.

11. Average time in milliseconds taken to decuue an encoded
record.

An interesting result that we did not anticipate is that the decoding
time appears to decrease slightly with increases in the size of the source
alphabet. Similarly, encoding times did not increase as anticipated.

In future work it would be interesting to determine whether there is

indeed a structural reason for this behavior. It should alsoc be noted
that the final two rows in the table have the same results. This is be-
cause increasing the value of N from 55 te 60 did not increase the number
of digrams which are actually present in the 200 MARC II records which were
processed. Finally, it should be noted that the frequency of oceurrence

of the symbols was computed using the same records which were subsequently
encoded utilizing the codes obtained. Thus the compression cbtained might
be interpreted as a best possible compression ratio for a larger bady of
bibliographic records.

The two plots shown in Fig. 65 have been established using the data
from Table 13. They show both the effect on the average number of bits
required in the encoded representation for each character in the source
string and the overall compression that is obtained utilizing this repre-
sentation. These are shown as functions of the number of single letters
whose pairs were considered for incorporation in the source alphabet.

While much work remains to be performed, these results are most encouraging.

m@aoumh.ccm wsp,ga.ma§QWW@_mgoa Ollx

of 62 o e9TE | 6ot | AT | | 08R°ST | OLY670. amﬁ&mua..f*mmaﬁ_.mgg

o€ 62 | go°T: 660 | LT |4 | 0gH"$T | okt60 _mﬁbm.q_,<JWQCH_M.mm,.

o€ 6z CLSTE 90Tq | 9T | wabeqT | 1E96°0 | oklzto | ot |

£62ET Wppmayﬁm.h_&mmng+.wmmpmam

£ | 62 L2UTE wel'y | 9T

o€ 62 | 8ot st | ot 220" T [TeTTT [LLIS*0 | 006

o€ 62 | <g62 60z'q | Lt | Tgg Fmgth w“>mmmmLa.m__mmhu

o . | o | ege 20gq | 9T | ToL'S |666g°T |olesto | 619

| 06 | e | 6w | LT | w | €96z |TelUE [eelio | Een

Tt | 1€ L gethe Gasw | L1 _ EE .ﬁmﬁia | m@ﬁ:y@,, _:j@%qﬁmw,,ﬁmmwumuam,ﬁ._@_. m ,_

TS €t | sgree 629"t | LT | | grl'o.|TeLqT [69%0%2 | £Te | <1

€ 2 - eTe | el LT | o« n62°0 m&maﬂmm. fﬁamn,m‘ﬁ_ HET | ot

TE | gt LT6T [BTI8'% gT neT*0 m@m@lwm.,wmﬁ@m.m«@@mmm, 7,_m,

(o I I o

9€ - TE | ET"6T 289 1 | It

10T'0 | 660°0TZ | 9068°8 | 19 | O

‘998

| g uwots rego ||| fepod sy |, ¥ Iovm |

| -sexdmoy Jsatq Sy | T UM | oo toues TBA v ﬂ%m | ISYIN | N
] ! .

| | 09 aWIg
£ .2

*oosm | *0esm
9poosp 04 | 9poous ©}
amTy *3AY | swrq *SAy

T ot | 6 8 119 ¢

=
—t

SPI023Y IT DMYW DT 002 UT SWeaSTg pue SJ9308I8Y) JI0J
2Jnpsdodd JUIpos-UBRMIINY J0I SqTNSSY

€T STABE

=

£
3
H
£
m.

¢
Q
E

35 - — 1 I
' —o——e

25 —<t— T
| I ;+/ NN I S A N N AN AN N A _
9 : Compression % v/s N B B

20 ——— T — 1 —

N=20 —anAj_l characters -

15 F—1— - — N D R I e e

% Compression —>
|

5.0 S N A A

75 F—1— — o — -
— \\ : _| Avg. Bits per Char. v/s N

N = 0 =» All characters i

Avg. Bits per Char. —»
i
N
i
|
|/
|

T. SPECIFICATION FOR FORMAT TRANSLATION OF THE SANTA CRUZ FILE
By Jay L. Cunningham '

Tel Introduction

In the Spring of 1968, a joint task of the File Organization Project
and the Operations Task Force Project¥® was begun. Its objective was
to investigate the possibility of translation by computer program of
the record format of the UC-Santa Cruz Library's machine catalog file
into the prototype LC MARC II format then available. This file was
originally creatgd'beglnnlng in 1965 and conversion has continued since
then. The size of the file is estimated to be in excess of 120,000 master
records. The file is in a record format that was designed prior to
the advent of the MARC I format established by the Library of Cangress
in 1966; however, the level of identification 1s similar.

Since then, the LC MARC project has grown in scope and momentum,
and the MARC II format has been revised and accepted as the USA standard
for bibliographic data in machine form. The MARC II format is intended
as a "communications format" for the exchange of machine files among
libraries and other agencies, and it has been adopted by the University
of California as the exchange standard for library records. In additionm,
it is being used in augmented form, as the common processing format for
the computer-based library systems of the University and for the
University's Union Catalog Supplement. The latter format is called
"UC MARC." As a result, the processing format of the File Organization
Project was changed to the UC MARC format, and the objective of the
sutomatic translation task became that of achieving this formsat. It
was expected that the resultant file would bte compatible with MARC II
in structure, and the content would be a close approximation to exact
MARC II tagging and other identifying conventions. Because of the
volatile nature of the record standards during this effort, there are
a nunber of intermediate programs and record formats which are used
which would be dispensed with if a comparable effort were to be initiated
at this time. However, the same functions would need to be performed
if one is attempting an automatic translation of bibliographic records into
a higher level of explicit content definition than is available in
the source records. Therefore, the logic of thiE specific translatlcn
effort may. be of general 1nterest.

As an example of how "close" is "close': all personal name main
entries and added erntries will be identified and given the proper MARC II
tag. However, the recognition algcrlthms at this time do not 1dentify
the sub-type of name. Each such name is therefore assigned the "single
surname'" indicator code, as a default. It is hoped that the deeper
identification of’ this and numerous other imbedded dsta. elements can
take place in a later stage. MEanwhlle, the file at the! level of.
detailed identlflcatlgn attained in the routines. speclfled herein should
be adequate for book catalog productlan, search experimentation, and

*Thiéuéiéject is funded by the University of California.

228

other uses not depending heavily on a "perfectly clean" data base at
Level 1 MARC ITI. This file as described in this specification will
have encoding at somewhere between Level 2 and Level 2 MARC.*

The specification has three sections: instructions for translating
‘the Santa Cruz original format to ILR Input Format instructions for
updating the resulting ILR Processing Format into the latest MARC IT
features, and lastly, some brief instructions on hcw to set up a
UC~-MARC record as an augmentation of the current C IT.

When the translation study was initiated, the development of an
input format and a program for translating this input into the ILR
processing format had been completed. Therefore the translation
objective was identified as that of producing translated records in
the ILR Input Format in order to avoid duplicating the logic of the
existing program. When the decision was made to change the processing
record format, ancother zsub-task was added to translate this format
into the UC MARC format.

The following paragraphs cite the relation of the present specifi-
cation to other documentation, for which no attempt to duplicate is made
herein.

A diagram of the overall translation run is presented in Fig. 66.

*See: RECON Working Task Force, Ccnversion of Retrospective Catalog
Records to Machine-readable Form: A Study of the Feasibility of a
National Bibtliographic Service, Washlﬁgtcn, ‘D C.. Library of Congress,
1969, Appendix F.

%

FIG. 66:
SANTA CRUZ FILE TRANSLATION RUN

) (Original Format)

(ILR

Mecessing Format)
(Obsocllete MARC)II)

Routines
‘|to Translate
to Latest
MARC II
‘1Comm. 1
{Fegmgt : ,':

e ———] R
... lroutines. - . - T -
s 4o Build : i
» Jue mamrc 11|
NProcessing .

T.1.1 Tranclation from Santa Cruz Original Format to ILR Input

The most cémplete specification of the Santa Cruz original record
format is contained in the Key Punch Manual; University of Califormin,
Santa Cruz Library, July 1, 1965, rev. July 1, 1966.

The Santa Cruz original format is the gource record format which
constitutes the input to the CRUNCH program. The object record format
is that which i=s produced as the output of the same program. This
object record format is the ILR input record formet.

The specification for the ILR input record format iz contained in
Appendix V, Part 2 of: Cunningham, Jay L., W.D. Schieber, and R.M.
Shoffner. A 5tudy of the Orgenization and Search of Bibliographic
Holdings Records in On-Line Computer Systems: Phase I. Final Report.
Berkeley, Institute of Library Research, University of California,
March 1969,

The documentation of the equivalences produced by CRUNCH is
contained in Section 7.2, below. TFor information on the meanings of
the codes and the overall framework into which they fit, refer to the
gbove-cited reports.

T.-1.2 Translation from ILR Input to ILR Processing Format

From IIR Input Format the Santa Cruz records will be processed
through the INFOCAL program written by ILR in May 1968. The output of
this run will be records in ILR Processing Format, which is a modified
MARC II format as of that date. (It is therefore cbsolete in several
respects.) See Appendix V-2 and Appendix IV of the gbove—clted Final
Report of the File Organlzat;gn Project.

T.1.3 Traﬁslaticn fromfILR Processing Formet to (Latest) MAEC'II

The speclfleatlan cf the MARC II Communleatlans Format w1th whieh
this translation program will comply is contained in: Subscrib S
Guide to the MARC Distribution Servicej Spéclficatlcns for: Mggngﬁ;q

‘Tapes Ccntalnlng Monographic Catalog Records in the- MABC IT Format. .
Third Edition." Washlngtan, Infcrmatlon Systems Offlce L@brary Qf '“'7»5

Cengreas, March 1959 76 P-,"_*

Further _deJ_:E‘J_catlons to the resultlng flle w1ll ‘be - ma.de 'by rou‘tines o
Whlch adapt the. .MARC .TT. Communlcamlans Format as. spec1f1ed in Section . ..
T h to the UC MABC Format whleh 15 ‘a- ccmmon preeessing ana cammunicatlcns}_;

(Tecnni Leal ‘Pape:
»,\e “15. 1969 P

T.2 Translation from Santa Cruz Original Format to ILR Input Format
T.2.1 Condition of Source File

Each logical record in the Sants Cruz original format is cgmprlsed
of N tab cards. With the addition of. the 8-character ILR-assigned
record number ("Shoffner. number"), the physicel source (card image)
record is now 88 characters in length. The obiect record--that which
is to be 1nput to INFOCAL--must be comprised of from one to fifteen 80-
character images, in continuous string. The same record number (6 digits)
plus card number (2 digits) is to he preserved from the original file.

Each record has an SC Accession Number which is to be preserved and
placed in the special "#U" Shelf Key ("SK") field which is to be placed
at the end of the recérd. It will be placed at the head of the field
in character positions 1-6. (The SK field is fixed length--12 character
prefix +26 characters. There is no $a delimifer at the beginning of the
field; the number starts in character position one. This number is not
used sz the record number because it is not always unique over the
whole file. .

T.2.2 Format Translation Tables to Achieve ILR Input Format

Detailed equivalences for translation of Santa Cruz encoding to
ILR input encoding follow in Figures 67-T73. The emphasis in these
figures is on the data elemerites and codeg involved in the translation,
rather than the program algorithms. For details on the program
routines. see documentation for the TRANSCOF program in the following
chapter.

T.2.3 Notes to Figure 67

1. This holdings code was defined prior to the advent of UC MARC.
Since INFOCAL requires at least one JA-field to be input, and the
routine has been written in the translate program, this field will
appear as an 090 tag in the output record. The contents of the field

should be purged in the program to revise Santa Cruz-INFOCAL, and replaced
by & string corresponding to the revised UC MARC definition of a holdings
field.

2, Due to an inadvertent ;ragramming error in INFOCAL, INFOCAL
interprets the input code "RA" to mean "make title added entry'" rather
than "don't make title added entry," as crlglnaily intended. Thefefgr55
for the purposes of the Santa Cruz conversion, “RA" will be supplied in
the translated record when the symbol "L'" is present in CT 200, Col. 69
of the source record. Do NOT insert "RA" if there is no CT 1XX‘éar& '
however. The latter condition indicates e Title Mein Entry, for which
there iz no such thing as a title added entry in the: game form, by
definition. A code "UB" will be inserted in clear cases of title main
entry (absence of a CT '1XX card), %o set the MARC indicator to "1", for
"make title entry from Short Tltle.' This will assure unlfcrmity of
encoding for title fields whether main or added.

232

» = .

R

FIG. 67:
FORMAT IRANSLATTON TABLE I—FIELD SEGMENT

NAME QF FIELD SOURCE FORMAT CODE OR OBJECT FORMAT CODE (IN
OR SUB-FIELD CCNDITION ILR INPUT FORMAT)

(Tables are in log-

ical sequence ac-—
cording to ILR In-
put data stream
prescribed for

INFOCAL)
1. Master Record No. Col, 1-6 = ILR machine- [Col, 1-6 = logical rec.
(MRI) assigned record no. no. (same as source rec.)

("sShoffner number"),
same in each card in log
rec.

Col. T7-8 = physical Col. 7-=8 = physical
record no. (within log- |record no., in ascend—
ical record), in ascend- ing sequence (same as
ing gsequence from Card source rec., for as

- o1. - many cards as needed.)
2. Publication Date 1,|CT (Card Type) 000, (See Fig. 68)

Publication Date 2,|Col. 31-34 contains Year
& Type of Date Key |of Publication in Fixed |[Build continuous string
Field format. (Card of codes beginning in.
Type always appears in character position 9
Col. T78-80 of the card of card 01.

image.)

CT 300, variable posi-
tion, contains wvariable
date information, when
condition is other than
single date of publica-
tion. If record con-
tains only one date, it
appears only in CT 000, _ -

2 Bibliographic CT QUO, Col. hS.
Level Other than 1 = Book DM (Monograph)
-] =Serial DS (Serial)
4. Content Form CT 500: HB (Bibliographies)
) _ . Scan for key word. - _
5. Holdings(1)+ None (a dummy string JA/2%T90% (Santa Cruz,

is inserted) " {stacks). TO BE REPLACED
IN REVISION FOR UC MARC.

FIG. 67 (Cont.):

FORMAT TRANSLATION TABLE I-FIELD SEGMENT

NAME OF FIELD
OR SUB=FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT)

6. Main Entry in Body
Indicator

Use same logic as for
detecting presence of
"C" Sub-field in Title
(Rem. of Title Page

NA

CT 1XX ig present;

7. Title Added Entry
Indicator CT 200, Col. 69:
Blank = nmake no title No getion - no title
added ent. for title in |traced same
this form (2)*
L = make title added RA:
entry for this form of
the title
SEE ALSO TYPE OF ADDED ENTRY CODES (W-CODES)
AND "#*Q" CODE IN B-FIELDS, FOR HANDLING OF
- PARTTAL TITLE ADDED ENTRIES. ,

8. Language Code CT 000, Col. L46-50: SAccc% (For list of 3-
Blank = English (def.) character codes, see
For other codes, see p. 183, Vol. 2 of The
p. 10 of Key Punch MARC Manuals. If blank,
Manual, UCSC no action: INFOCAL

) _|default is "eng". =
9. Translation- CT 1XX, Col. 69: At
Indicator T = Translatecr and

other than Blank in +NOTE: It is not known

Col. 46

Indicates likelihoocd
that work is a trans-
lation. ALSO: must
be two languages coded,
at least, inecl. "eng"
as the default.

whether the language
codes will be recorded
in the order prescribed
by MARC.

10. Type of Main Entry
Code

If CT 1XX card present:
Test first CT 1XO 000:
CcT 100 FPersonal

CT 110 = Corporate

If NO CT 1XX card is
present, this record

UAP1 (Single Surname -

as default)

UAC2 (Nam.. dir. order

1as default;

has Title Main Entry:

*See Section T.2.3

234

__FORMAT TRANSLATION TABLE I-FIELD

SEGMENT

NAME OF FIELD

SOURCE FORMAT CODE OR

OFJECT FORMAT CODE (IN
ILR INPUT FORMAT)

OR SUB-FIELD

¥According to the Santa
69 if there
main entry. There will

"L" in Col.

entries.

CONDITION
CT 200, Col. 69: {ist)
"L" or Blank¥*
"D"
NOTE: There may be

both a CT D200 and a

CT L200 or Y200, in a
single record. The "D"
is usually first. If
it is preceded by a CT
1XX, it is a supplied
title (see Fig. T70). If
it is NOT preceded by

a CT 1XX, then assume
Uniform Title Main

Entry.

UATO (Title Main Entry;
Set MARC Indic. to "1"
UAUO (Uniform Title Main
Entry Heading; Not
Subject)

ATS0: dinsert "UB" code
in string next; when
"UATO" occurs.

Do NOT insert "RA' code
if there is no CT 1XX
card present.

Cruz Keypunch Manual, p.

17, there will be an

are any added entries on a card having title’

be ne "L"

on such a card if it has no added
This means that in the case of cards having added entries, it

may be impossible to identify the fact that the title main entry exists.
In cases of ambiguity, the rule that the first CT 1XX card is the msain
The condition is left ambiguous above since
there is no assurance that Santa Cruz followed the keypunch conventions

entry will be followed.

consistently over the whele file.

translation purposes.

the MARC indicator to "1", i.e.,

A “‘LE“

The "L" is really superfluous for
code should be inserted in order to set
"make title ent

=

I-T'E

11. Main Entry is Sub-

Jject

Test first CT 1XX cp.
to first 6XX CT for
exact match on initial
n characters, if date
is 6XX.

UB

12. Type of Added
Entry Codes:

a. Other added
3ntries

For each CT 1XX card
beyond the first 1XX
‘cdrd in the reécord:

String comprised of 2-
character codes preceded
by letter "W':

CT 100 = Personal:
Col. 69 = J

|PA (Single Surname;

Alternative)

_FORMAT TRANSLATION TABLE I-FIELD SEGMENT

FIG. 67 (Cont.):

NAME CF ¢ELD SQURCE FORMAT CODE OR OBJECT FORMAT CODE (IN
OF SUB—FIELD 'CONDITION ILR INPUT FORMAT)
=C PA
=E PA
=G PA
=T PE
=P PA
=T FE
=F PE
CT 110 = Corporate CB (Name in direct
Col. 69: order; Alternative)
P = Publisher U0 (Unif. Title Added

Series Added
Entries

Subject Added
Entries

Suvbject Sub-

divisions

NOTE:

Same Added Entries ("L" in Col.

function is taken care

Ent.)

NO W-CODE is required for Title-Traced-

69).
"RA"

This

of by the code when

the card is NOT title main entry.

N.B.:
110's.

For Title-Traced-Diff.
Added Entries, W-CODE
logic is: CT 200,
Col. 69: P = Partial
Title (added %ntry)

Problem on personal nsmes coded as

Tl (Secondary Title
added entry) (default)

CT 200, Col. 69:

S = Series Tracing
and, when present:
CT 500 containing

a Series Note

(S%e Fig. 699'

- CT 600—604 Scan for

dates in string. If

present: - Perscnal P1 {Single Surname)
Name Heading

Else: "00 (Topical) default)
CT GOO—SOh

Scan fcr 51ggle hyphen

236

FIG. 67 (CQnt-GE)

FORMAT TRANSLATTON TABLE I-FIELD SEGMENT

NAME OF FIELD
OF SUB-FIELD

SOURCE FORMAT CODE OF
 CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT)

preceded by space

50 (General Subj.
Subdiv.) (defsault)

SEE ALS0O FIG. TO . FOR DISPOSITION OF VARIABLE FIELD

INFORMATION ASSOCIATED WITH EACH OF THESE TYPES OF

ADDED ENTRIES.

SPECIAL NOTE:

ORDER OF CODES IN W-CODES STRING:

W followed by 1) all 2-character

strings for Series Traced Same, 2) all 2-character strings for
Subject Added Entries, 3) all 2-character strings for Other Added

Entries,

4) all 2-character strings for Series Traced Differently.

Within each sub-group, 2-character strings should be in same order
corresponding to order in source record.

~

-) FIG. 6B: R o -
_FIXED-LENGTH PUBLICATION DATES LOGIC -
SOURCE CONDITION DISPOSITION - ILR INPUR WORMAT
COMBINATIONS T | 7
MOVE DATE TO MOVE DATE TO CODE
COL. 9 = 12 COL. 13 - 16 |FOR KEY*
CT 000 date present X
————- — BC
CT 300 date present - X
"o" for copr. (use
first L digits after
iic")
CT 000 date present
CT 300 date(s) present
- multiple date) \)
span: (2 patterns) X (1lst group X. (2nd group BM
dddd-dddd of b digits) of bk digits)
dddd-ad X X (same as
sbove but
expand to L.
digits)
CT 000 date present
CT 300 date(s) present
- "open" entry:
(2nd group of U4
digits missing) v
dddd-~ X No action - EBM
(omit hyphen)| omit {(INFOCAL
will insert
"'9999")
CT 000 date not No action No action ‘BN
‘presept - o : _
cT BDO.aéLe not : IR
present No action No action
CT 000 date present-— . o
dig.ts missing: INSERT NORMALIZED SPAN
196~ X(1960) X(1968) L e
19-~ X(1900) . ﬂ;fl965); - Bq .-
T SOOLnot-preseﬁt S

¥Ingert in ﬁext;segﬁential %wc éhéracﬁef pésitigné aftéf_1ast four
digits of date element,, . o T o

fIG.’SBikCont.jg

FIXED-LENGTH PUBLICATION DATES LOGIC

SOURCE CONDITION ____ DISPOSITION — ILR INPUT FORMAT
COMBINATIONS
MOVE DATE TO MOVE DATE TO CODE
— . lcor. 9 — 12 [COL. i3 ~ 16 | FOR KEY
CT 000 date present - INSERT NORMALIZED SPAN
digits missing (as above) BQ
CT 300 present (dt. (Disregard dates in CT 300
of repro. or such) for Dates 1 & 2 purposes)
CT 000 date present -
(orig. date of pub.) X
N —— BR
CT 300 date present
(at. of reprint) . X
CT 000 date present
— — —— BS
CT 300 date not present Omit

SEE ALSO PAGE 19 FOR DISPOSITION OF PUBLICATION DATES IN
VARIABLE FIELDS.

FIG. 69:

__LOGIC FOR TYPE OF ADDED ENTRY CODE - SERIES °

SO0URCE CONDITION,

DISPOSITION - ILR INPUT

FORMAT

W-CODES; REMARKS

the first CT 500
present has string
bounded by paren's.
in initial portion
of field.

(NOTE: CT S200 is
the series tracing

- if present: string
in CT 500 is the
series note.)

Compare . length of
string in CT S$200:

Set codes according
to

length of string below:
ingide ()'s in CT
500.

Lengths EQUAL: Scan

for intervening
period in CT S200.
Period = evidence
of Corporate Series
Traced Same in CT
S200. No Period =
evidence of Title-
Only Series Traced
Same in CT S5200.

€2 (Corp. in direct
order; author not
main entry) (*4)
NO W-CODE (¥B)

in

Lengths UNEQUAL:
CT S200 = Corporate
Series Tracing, ;
Traced Differently
CT 500 = Corporate
Series Note, Traced
Differently in form
in CT S200,

c2 (Corp. in direct
order) (*R)

NO W-CODE (*D)

First CT 500 has string

None

NO W—CODE (*C)

in (), but there is no (Series note not
CT S200 card. traced)
NO CT S200 card present; _None] WNdise:ies note in this

NQ CT 500 card with ()

SEE ALSO FIG. T2 FOR
ASSOCIATED WITH THESE TYPES OF ADDED ENTRIES |

DISPOSITION OF VARIABLE

record =

FIELD INFORMATION

FORMAT TRANSLATION TABLE A-FIELD SEGMENT

NAME OF FIELD

SOURCE FOEMAT CODE OR

OBJECT FORMAT CODE (IN

OR SUB-FIELD CONDITION ILR INPUT FORMAT)

1. Loeal Call Number] CT 000, Col. 1-30: Concatenate with end of
Scan right to left fr.| W-CODES: Insert ist "/"
Col. 30 for lst non- followed by call number
blank

2. Main Entry Head-

Personal Name
Sub-fields:

ing

CT1XX present (first
1XX card):

CT 1XX not present
(i.e., title main
entry):

Insert 2nd "/" after end
of call number, followed
by author string.

Insert 2nd "/" followed
by 3rd "/" in next
sequential character
position. Proceed to
logic feor CT 2XX.

B,

;pm

Dates of birth,

Personal Name

CT 100, Col. 1-60:
Scan left to right,
test for numerals;
test for 3 consecu-
tive blanks, ete.

Insert "1F;gA" in next
sequential character
position following 2nd
"/, followed by author
surname.

Titles of Ecncr

Scan for key word.

Insert "1F;gC" in charac-
ter position preceding
title of honor. Re-
position element as
needed.

ete,

Scan for digits not
immediately
succeeded by non-
blanks.

‘Insert "1F,¢D" in charac-
ter position preceding
date element, following
punctuation, if any.

Relator

CT 100, Col. 69:

HHQEQY

InéértA"iFléE"ifcliawed
by indicsated sbbrevia-
“tion:

t

J . author
‘comp.

ed.

Joint ed.
illus-.

publ.

_241

FIG. T0 (Cont.):
FORMAT TRANSLATION TABLE AeFIELD SEGMENT

NAME OF FIELD , SOURCE FORMAT CODE OR OBJECT FORMAT CODEV(IN
OR SUB—FIELD CONDITION . ILR INPUT FORMAT) -

T tr.

F ed./tr.

Concatenate after dates.
This code and element
should be preceded by

8 comma..

3. Sort Key Author CT 1XX, Cgl. 69: Disregard. TField not
Field carried to object record.

X = SBort Key Version :

of Author Name

4, Uniform Title CT 200, Col. 69: After end of 2nd "/"
{Supplied) (for Main Entry), insert
D = Standard Title one "$" rfollowed by the
AND at least one CT uni form title string.
1XX

(‘THIS FIELD NORMALLY PRECEDES THE CT 2XX FOR TITLE STATEMENT,
WHICH WILL BE CODED "L" OR "BLANK" IN COL. 69. THESE TITLE
CODES ARE INDEFPENDENT.)

(IF THERE ARE 2 OR MORE SUPPLIED TITLES--CODE "D"——ALL
SUCCEEDING FIELDS WILL BE GIVEN W-CODE "U2" AND B-FIELD TAG
"*Q" THEN MOVE @TEING\Q) T0 B-FIELD REGION.)

5. Tltle Statement: cT 200, Col 69
"L" or "BLANK"

a. Short Title sub- CT 200, Col. 1-60 Insert 3rd "/" at head
field (may be contin.) of title string beginning
in character position 1.
b. Remainder of Titlg Algorithmic test for | Insert Lth "/" between
end of Short Title. end of Short Title and

‘beginning of Remainder
‘of Title string. "/"
goes after punctuatlgn
mark, if any, at end of
Short Title (4th "/"

, must’always.be present.)

c. Remainder of Algorithmic test for . ‘Insert "lF15C" followed
Title Page end of Title Page : by string. This de—
Transcrip. . ;Transcr1p. R limiter is present only

i e .
Lol g saézz%

Y14

FIG. 70 (Ccnt)
FORMAT TRANSLAZION TABLE A-FIELD

SEGMENT

NAME OF FTELD SOURCE FORMAT CODE OR
OR SUB-FIELD - _CONDITION

CBIECT FORMAT CODE (IN
_ILR INPUT FORMAT)

when data is present.
Edition field in this
position is not regarded
as part of this sub=field
Coding is independent.

6. Series Tracing CT 200, Col. 69:

5 = Series Tracing

(THIS FIELD NORMALLY FOLLOWS THE CT 2XX FOR

(See Fig. T2 for dis-
position of this field.)

TITLE STATEMENT,

WHICH WILL BE CDDED "L," OR "BLANK" IN COL. F9.)

7. Added Entry for CT 20X, Cél. 69

Partisl Title .
P = Partial Title

Insert "*Q" at head of
string and move entire
string to end of B=Fields
after last CT 6XX card.

‘Note also W-CODE needed.

This "P" code is indepen-
dent of whether or not
main title card has "L"
(for "meke title added
entryﬂ‘ig Col. Sg)i'

8. Translitersted OT 20X, Col. 69:

Title . .
’ T = Transliterated

Insert "’Q" at heaﬂ of
field and mnve entlre

‘string to end of: BeFlelas

Titie -after last "*Q" or T ¥R"

o | fleld. e
9. FEdition State- | CT.20X: ‘Scen for . Inse:t;##ﬁmlﬂiéﬁe‘cfffﬁfé
ment - digit/key word occur- positions: . (1). after Lth

ring;after end of
1 Short Title and Pprior
. tc start of CT 30@

A"/, (2) after end of
“|Rem. of Title string; (3)-
|after: end of Rem. -of

L Tltle“Page Transcr.rccde
Jis = then follﬁwed by

10. Imprint: -

a. Place ' {er 300 = Pubilsher‘
or Source.

FIG. TO (Cont.):
FORMAT TRANSLATION TABLE A-FIELD SEGMENT
NAME OF FIELD SOURCE FORMAT CODE OR OBJECT FORMAT CODE (IN
OR SUB-FIELD CONDITION) ILR INPUT FORMAT)
"NW.P." This field is
always present.
b. Publisher CT 300: Scan for punc- Insert 6th "/" after
tuation (comma) punctuation and prior to
first character in pub-
lisher name.
c. Date of CT 300: Scan for punc- Insert Tth "/" after
Publication tuation and digits. punctuation and prior to
If record contains first character in date
more than one date, it (may be an alpha such as
will appear here in "C"). This field is
variable length format.| always present. If data
Use as is for Tth "/". is "ND", change to "N.D."
If record contains (See Fig. Tl for complex
only one date, it will | patterns)
appear only in CT 000,
Col. 31-34. Move from
that position and
concatenate with Tth
“/"- ’
11l. Collation State-—
ment:
a. Pagination CT 000, Col. 51-55: Preface with 8th " /"
(left justified) and concatenate at end
IF REPEATED IN CT of data for Tth "/".
LOO, IGNORE CT 000
DATA
b. ITllustrative CT Loo Insert 9th "/" at head of
Matter “illus. matter string
beginning in character-
position 1, and conca-
tenate with end of psag.
data moved from CT 00O0.
c. Size CT LOO (This data may Insert 10th "/" after end
not have been input of illus. matter data
to the source record) | string, even if no "size"
- information is present.

<443

FIG. T1l:
DATA ELEMENT PATTERNS AND ASSOCIATED .CODING IMPRINT FIELD

/PLACE, /PUBLISHER, /DATE.
/PLACEl,$ELACE,/PﬁBLISHEE,/DATE.
/PLACElg/EUBLISHE31,$PEACE2,$PUBLISHERE,/,WTEi

/PLACE,//DATE.

(The absence of a publisher is not signified in the data,)

/PLACE , /PUBLISHER, /DATE ,DATE.

(Two contiguous dates, separated by either a comma or a
hyphen indicating a span, are not regarded as separate
values of the data element for coding purposes. The

two values are coded as one, in the wvariable field. See
aiso I-Fields, b-codes, for fixed format dates.)

/PLACEl,/PUBLISHERl,lFléc DATE $PLACE2,QPUELISHERE,/DATE2

(Note the use of the MARC II delimiter pieceding the

first date in the example immediately above. This pattern
was not foreseen in INFOCAL. The non-contiguous dates of
publication are treated as repeated occurrénces of the sub-
field and are explicitly delimited accordingly. The slash
preceding the secornd date currently translates to a Tag
262, and will have to be re-translated to "lFléc" in the
revision of INFOCAL.)

Note that PLACE is always present: the absence of PLACE is signified
by "n.p." which is to be regarded as a value of the element. Likewise,
the absence of a data of publication is signified by "n.d." which is to be
regarded as a value of the element.

Note also the use of the "$" to signify repeated values of PLACE and -
PUBLISHER only. The translation of these "$" is ordinelly dependent on
whether they follow the 5th "/" or the 6th "/". If the "$" follows the
5th "/", it translates to Tag 260. If the "$" follows the 6th "/", the
"$" must appear in multiples of two. The first "$" translates to Tag
260, the second to Tag 261.

FIG. T2:
__FORMAT TRANSLATION TABLE B-FIELD SEGMENT

NAME OF FIELD SOURCE FORMAT CODE O.. OBJECT FORMAT CODE (IN
OR SUB-FIELD CONDITION ILR TNPUT FORMAT)
—_— — = —— = —— —— —
1. Bibliographic CT 500: Scan for "(" i See logic for Type of
Notes: character position 1, Added Entry Codes for
to detect Series Note. |Series (Fig. 68).
a. Series Note Series strlng present.
(1) Traced Same CT 8200 = CT 500, Insert "¥A" prior to
(Author + Period detected string in CT S200 and
Title) concatenate with end of

10th A-Field "/" string.
Contents of CT 500 in ()
not carried to object

record.
(2) Traced Same CT S200 = CT 500 Insert "*B" and praceed
(Title Only) NO Period detected as sbove,
(3) Traced Diff. CT sgoo # CT 500 Insert "*D" prior to

string in CT 500 and
concatenate with end of
10th A-Field string.

Insert "*R" prior to
string in CT S200 and
concatenate after end of
data from last 6XX card.

(4) Not Traced CT 500 Series string Insert "*C" prior to
present, but no CT string in CT 500 and
8200 present concatenate with end of

10th A-Field string.

SEE ALSO FIG. 69 FOR TYPE OF ADDED ENTRY CODES (W-~CODES)
TO BE ASSOCIATED WITH THE ABOVE SERIES NOTE PATTERNS.

b. Other Special Data to right of ")"
Notes (close of Series Note)

in CT 500 is to be

scanned for key words:

(1) Bibliography "BIBLIOG" Insert "¥F" at head of
Note string (after right
paren. of Series Note,
if ‘any) and scan to end
of sentence. (May be on
continuation card.)

246

FIG. T2 (Cont):
B FORMAT TRANSLATION TABLE B-FIELD SEGMENT .

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT)

(2) Contents Note "CONTEN" Insert "¥I" at head of
string.
c¢. General Notes Else: All other strings in CT

500 cards will be coded
"#K" ag the default.

2, Subject Tracings

CT 6XX, Main Headings:
(1 neading = 1 card)

Insert "*M" at head of
each card in character
position 1.

Subj=ct Subdivisions:

Scan for blank +
hyphen as evidence of
subdivision.

Expand to 2 hyphens in
each case found.

3. Each CT 1XX card beyond | Insert "¥Q" at head of
Entries (Authors, |the first in a record; each string in character
ete.) preceding card must not |position 1. Note that

contain continuaticn string may extend to
sign { a minus "-" in more than one card.

Col. 68)

(see Fig. 70, paragraph T for disposition of title
added entries in CT 2XX cards.)

Shelf Key Data
(for purposes of
internal revision
of records by
Santa Cruz.)

(i.e., Local
System Number,
Tag 035 in MARC
II)

CT 000, Col. 39-6k4
47-50, 84-88

Insert "¥U" at head of
string, followed by the
SC Accession Number in
character positions 1-6,
right justified with
zero left fill, followed
by Accession Date in c.p.
T-10, then letters '"SK";
and move entire string

intact to end of B-Fields|

Concatenate with end of

15.51: " *Q!! . H*RH or " !Q.“

field in the record.
(see Fig. T3)

* Optional

e Tatot

‘247

FIG. T3: _
DISPOSITION OF SHELF KEY DATA CT 000. -
SHELF KEY CARD, SANTA CRUZ

00645001_Q_LT752._855 1961 0566 0 184 000 | |0861k
0 - ENE 6L 7 88
) —7 Card —
Type
SHELF KEY o J yas] N
it L TLELD fuooss1uos66]sk (1961 0566 o 18k | +|eEna-or-
INPUT FORMAT tg» """"] — — — Record Mark

The first ten characters in the reformatted shelf key field may be
used to build an index file to the master file, using the old SC accession
nunber and the accession date as the key.

The remainder of the field, if not needed, masy be dropped. Informa-
tion will be extracted from Col. 39-64 to set other MARC codes, via
other routines. However, it may be advisable to preserve the entire
string from Col. 39-6L due to unanticipated encoding patterns in the
original SC records. It is often possible to reconstruct how an error
was made if the original data is easily accessible.

8. CRUNCH: THE SANTA CRUZ FILE TRANSLATION SYSTEM
By John M. Reinke

8.1 Introduction

This chapter describes the general functioning of the Santa Cruz
file translation program, CRUNCH, with emphasis on the operation of
the subroutines, which delimit certain types of data through the appli-
cation of asutomatic field recognition technigques.

The purpose of this program is to accept library catalog card data
coded in the UC Santa Cruz format and convert it to the ILR input format,
which is considersbly more complex. While there is no change of textual
content, the knowledge of the nature of the content is increased by
means of AFR analysis and the explicit identification which is added.

8.1.1 Main Program: LAYOUT1

The main program, called LAYOUT1l, reads the set of card images
(which hava been punched to represent the data on a single catalog card)
for a given catalog card from tape and lays out the data in core. It
does some checking of the data for completeness and correctness., FParti-
cularly, it checks to insure that at least the following are included:

a type 000 card (containing call number and some other information), a
type 100 or type 110 card (personal or corporate author name) and a type
200 card (title). If these are not present, the data is rejected. The
main program checks to see which types of data are present and which are
not, and accordingly sets & series of switches or gates, which will inform
‘the subprogram how to proceed with the proceusing. The subprogram
STRINGER is then called. It returns the completed output string to the
main program, which then writes the string out on tape, and proceeds to
read in a new set of cards, etc.

8.1.2 Subprogram: STRINGER

The subprogram, called STRINGER, uses the switching information pro-
vided by the main program to set a series of gates which will insure
that the data is processed in the correct manner and order, and that
nothing will be erroneously excluded from or included in the final output
string. '

The subroutines TITLEALG and PPD will be called. Subroutines
ES200500 and PERSAUTH may or may not be called, depending on the data.
The subroutine TITLEALG processes the title. PPD processes the place,
publisher, end date data. PERSAUTH processes the personal author data,
if present. STRINGER processes the subject heading information, if present,
and generates the I-field codes which correspond to this B-field infor-
mation. After the data has been processed, it is all assembled into a
final output string, and contrcl is g;turned to the main program. .

The structures of LAYOUT1 and STRINGER'are large and fairly complex
and are peculiar to the Santa Cruz data. The remaining subroutines
may be of more general interest, since they are concerned directly with

T ReS

the translation functions.

Note that although the flowcharts may not represent entirely faith-
fully the actual coding of the subroutines, they do give a generalized
outline of the logic involved, for purposes ci' clarity. It is expected
that the comments supplied in the actual code, with the aid of the flowcharts,
will permit anyone who is interested to understand the actual logic of the
subroutines.

8.2 Subroutine ES200500

This subroutine compares the type 500 (comment) cards (if present)
with the type 8200 (serials title) cards (if also present), in order to
determine the type of serials title, and to determine if the comment cards
mention the presence of a bibliography, contents note, ete. An S200
card always appears together with a 500 card, but a 500 card may appear
by itself. If a series title is present in vhe 500 data it appears at
the beginning of the string and is enclosed in parentheses. The flowchart
is given in Fig. Th.

First the subroutine checks to see if there is any 5200 data present.
If not, the subroutine checks the 500 string for left and right parentheses,
which enclose the serials title if it is present. The title always appears
at the start of the string. If the title is present, the parentheses are
deleted and an "#c'" is prefixed to the title. The remainder of the 500
string (if any) is processed by internal subroutine BIBLIO. If the title
is not present, the 500 string is processed by subroutine BIBLIQ to deter-
mine and delimit B-Tield cuategories.

If both SEOD and 500 data are present the length @f the title‘ih the
The lengths cf the 5DD tltle and the 5200 title are comparedi If they
are of equal length, the titles are assumed to be identical and the S200
title is now superfluous. The title is now known to be either type "¥a"
(series note - traced same (author + title)) or type "*b" (series note -
traced same (title only)). Internal subroutine ADDALG. is then called
to ascertain which type the title is, and to delimit it if it is type
"*a" .

Prlér to the determination of the lengths of the title, the remainder
of the 500 string (following the title) is prccessed by subroutine BIBLIO
to delimit the B-field categorlesi

If the title lengths (as,ccmpared above) are of unequal lengths, the
titles are considered to be different. The 500 title is taken as the main
title and the code "#¥Q3" (series note - traced dlfferently) is prefixed to
it. The S200 title has prefixed to it the code "#*r" title. The remainder
of the 500 string (after the title) is processed by subroutine BIBLIO in
order to determine and delimit the B-field categor;es., :

8.3 sSubroutine ADDALG

This subroutine processes a title string (see Fig. 75). The sub-
routine scans left to right for a period followed by two blanks. If this

E | o e & ' 25¢

condition is not encountered, no delimiting is done and the title is assigned
code "#b" (unless it is known in advance to be type "¥r"). In either

event, the delimiter "¥b" is inserted after the period. The scan is con-
tinued in order to locate the last period in the string (the first period

may be -—he last also). The portion of the tltle whlch f@llaws the last

perlod is now scanned for the abbreviations "v.' "vol." (for volume), and
"no." (for number), and for numerals (as in "3rd“ or "2nd"). If any one

of these is found, the code "1F .v" is inserted in front of it. Control

iz then returned to ES200500. 16
8.4 Subroutine BIBLIO

This subroutine deals with the remainder of the 500 string which may
follow (or appear without) the 500 title (see Fig. T6). A default code of
"¥e" (g1l other notes (geueral)) is initially installed at the start of
the string. This may be overwritten. A left to right scan is made for
the terms "biblio" (for bibliography), "includes bib" and "contents."

If none of these ig encountered, the default code remains and control is
returned to ES200500.

If either "biblio" or "inecludes bib" is detected, the code "¥f" is
prefixed to it. The address where an "¥k" should now be reinserted follow-
ing the words 'bibliography" or '"includes bibliography'" is now calculated,
and that address is saved. The scan now continues from that point for the

word "contents." If it is not detected, an "#¥k" is inserted at the address
just calculated. If "contents" is detected, the code "*i" is inserted
in front of the word "contents." Control is then returned to ES200500.

8.5 Subroutine PPD

This subroutine deals with the place, publisher and date data which
is found on type 300 and 000 cards. The flowchart is given in Fig. TT.

The subroutine first determines if there is any FPD data. If there
is no data, dummy delimiters are created for what could have been the
place and publisher fields. A check is made to see if there is a date
on the type 000 card. If there is none, the I-field code "bn" (date not
known) is assigned. If there is a date, it is examined to see whether it
has four or fewer digits (as described below), and is appended to the dummy

PPD string.

If there is PPD data, a left to right scan for a comma is performed
on the data. If no comma is found, place only is assumed to be present.
Delimiters are then inserted, and control is returned to the main routine.

If a comma is located, the routine tests tc see whether it is followed
immediately by a date. If it is, a delimiter (1) is inserted after the
comma. and before the date., This separates the place and/or publisher from
the date. If the comms is not followed immediately by a date, the routine
continues to scan for anather comma, which is then tested for a following

¥In the event that the word "contents" was detected during the first sean
above, the code "#i" is inserted in front of lt, and control is returned

to ES200500.

‘ | - z:

e

date, and so on. If a date finally is encountered after a series of commas,
the delimiter is inserted before the date, as described above. The comma
which is the next to last comma is assumed to separate the place from the
publisher. Therefore, a delimiter is inserted after this next to . ist
comma. If there is no next to last comma, an additiocnal delimiter is
inserted between the place and/or publisher and the date. The place and/or
publisher field is now considered by default to be the place field.

If no date is encountered after one or more commas, the last comma en-
countered is considered to separate the place from the publisher, and a
delimiter is inserted after it. If no comma is found, place only is assumed
to be present.

The - subroutine has now to consider the relation of the date in the
PPD string (from the type 300 card) with the date which may appear on the
type 000 card. Also yet to be determined is whether there are two dates
in the PPD string.

The subroutine determines whether the (first) date in the PPD string
has "e" in front of it, indicating a copyright date. If there is a "e",
a note is made of this fact. The subroutine next determines whether the
PPD string contains a second date., 1If there is a second date, any date
which may be present on the 000 card is ignored. If the second date has
only two digits, (as in 1943-4T), it is expanded to four digits by insert-
ing the appropriate century digits. If the first date was a copyright
date, it is placed second in the output string and the dates are given
the I-field designation "be" (two dates = 2d is copyright). If the first
date was not a copyright date, the two dates are given the I-field desig-
nation "bm" (two dates - 24 is terminal).

If there is no second date in the FPD string, the date from the PPD
string is compared with the date on the type 000 card. If the PPD date
is earlier than the type 000 card dete, the I-field code "br" (reprod./
reprint - no digits out) is assigned.

If the PPD (type 300) date is later than the type 000 date, the I-field
code is "bm'" (two dates - 2d is terminal). In either case, a comma is
placed at the end of the PPD string, and the type 000 date is appended to
it. (Both dates will also appear in the I-field.)

If the type 300 and type 000 dates are identical, one will be examined
to see if it has four digits. If it does, the I-field code "bs'" (single
date ~ no digits out) is assigned. If digits are missing, the I-field
code "bq" (digits missing) is assigned, and the digits are expanded (e.g.,
186~ becomes two dates: 1860-1869). This date will be printed as part
of the I-field code, but the original form of the PPD date w;ll appear
as such in the A-field.

In the event that there is no date, in the PPD (type 300) string,
but there is a date on the type 000 card, then this date will be appended
to the PPD string for printing in the A-field. The date will be expanded to
four digits if need be (as described above), and in this event it will

be assigned I-field code "bq". Otherwise, it will be given code 'bs"
(single date - no digits out).

8.6 Subroutine PERSAUTH

This subroutine deals with type 100 data (personal author names) and
type 600 dats (subject headings) which have been identified as personal
names (see Fig. T8). Column 69 of the type 100 cards may contain a code

indicating whether the person named is co-author, editor, etc.

The string is scanned left to right for the appearance of the word
"Sir" (the most commen iitle of honor) in the string. If it is present,
it is removed from the string, and a note made of this fact. The string
then is scanned for the presence of a date. If a date is found, the de-
limiter "$b" is inserted in front of it. The delimiter "$a'" is inserted
at the head of the string. If the word "sir" was previously encountered,
it is inserted back into the string, after the name and before the date.
The delimiter "$c" is inserted in front of the word "sir." If no date
was encountered, the word "sir" with its delimiter will still be appended
to the end of the name.

The code in column 69 of the type 100 card i1s examined. If the code
is present, the appropriate abbreviation with the delimiter "$e" is attached
to the end of the type 100 string. TFor instance, the code "e" in column 69
stands for "compiler." Therefore, when this code is detected, the substring

"$ccomp." will be appended to the name string.
8.7 Subroutine TITLEALG

'Thls subroutine delimits the subfields of the monograph title, which

appears on the SC type 200 cards (see Fig. T9).

a. The subfields which may be present are (in order): (1) short
title (always present); (2) long title; (3) author statement and
additional information; (4) edition statement; (5) remainder of
edition statement. The short title is the third A-field, accord-
ing to the ILR input format. Subfields (2) through (5), above,
constitute (when present) the fourth A-field.

b. The title string is scanned initially for the following: (1) a
questlen mark or perlod followed by two blanks, which would be
taken as end of sentence indicators; (2) a colon or semi-colon,
which would be taken as end of short title indicators; (3) the
word "by," (either standing alone or enclosed in brackets), which
would be taken as an end. of short title indicsator.

c. If a guestion mark or period followed by two blanks is encountered,
everything preceding this punctuation symbol is taken as belong-
ing to the short title subfleld If there is no further data,
control is returned to the subprogram STRINGER.

d. The routine next tests to determine if the remainder of the string

begins with a numeral or the characters "Rev'" (for "Revised" or
"Rev."). The presence of any of these is taken to indicate the

253

P

iy,
-
g

o

P
5 !

start of the fourth subfield, the edition statement.

e, The second and third subfields are considered absent. The
appropriate delimiters are inserted, and this remainder string
is then scanned for the word "by.'" If "by'" is present, it is
assumed to mark the beginning of the fifth subfield (the remainder
of the edition statement), and is so marked. Control is returned
to the subprogran.

f. If the remainder of the string does not start with numerals or
"Rev," it is considered to constitute only the third subfield
(author statement and additional information). It is so marked
(unless it already has been marked; see H. below), and control
is returned to the subprogram.

g. If, during the initial scan (B.), a colon or semi-colon is en-
countered, this is taken to indicate the end of the short %itle.
What follows immediately is considered to be the long title (or
title elaboration = second subfield). This remainder is then
scanned for a period followed by two blanks or the word "by"

(or "[by]").

The word "by" or ("[by]") is taken to delimit the start of the
third subfield, and the appropriate delimiter is inserted if

it is encountered. In the event it is encountered, the remainder
of the string is scanned for a period followed by two blanks. If
no period is found, the remainder of the string thus scanned is
considered to be a continuation of the third subfield and no
further delimiters are inserted; control is returned to the sub-
program. If a period followed by two blanks is found, control
(for scanning remainder of string) is transferred to that portion
of the program outlined in paragraphs D. to F. '

i. If, during the second scan (described in paragraph G.), a period
followed by two blanks is encountered, the period is considered
to signal the end of the second subfield (long title or title
elaboration). Control {for scanning the remainder of the string)
is transferred to that portion of the program outlined in r:ira-
graphs D. to F.

j. If, during the initial scan (described in paragraph B.), the
word "by" or ("[byl]") is found, it is taken to delimit the first
and third subfields, with the second subfield considered to be
absent. The remainder of the string is scanned for a period
followed by two blanks. If none is found, the remainder is con-
sidered to belong entirely to the third subfield, and control is
returned to the subprogram. If a period followed by two blanks
is found, control (for scanning the remainder of the string) is
transferred to that portion of the program outlined in paragraphs

. to F. ‘

k. If, during the initial scan (described_in paragraph B.), none
of the scan characters or words is found, the title is considered.
to consist only of the short title. Delimiters are accordingly
inserted and control is returned to the subprogram.

ERIC . 2sa

T

FIG. Th: FLOWCHART OF SUBROUTINE ES200500

This subroutine compares the SC type 500 (comment) cards (if present)
with the SC type 8200 (serials title) cards (if also present), in order
to determine the type of serials title, and to determine if the comment
cards mention the presence of & bibliography, contents note, ete. An
8200 card always appears together with a 500 card, but a 500 card may
appear by itself. If a series title is present in the 500 data, it
appears at the beginning of the string and is enclosed in parentheses.

Call Subrou-
tine BIBLIO
to process
string

Eelete aren.

fserle%
ncte - not
traced) to
title
Call subrou-
‘tlne EIBLIO tD
h

Titles are as
edfldentlcal-

mine jf title]j
type ﬁ ﬁﬁ !

500 title is
aken as "main|' -
title and "#%a" 2

fs preflxed to
i 5200 title is
Ferpate

Branch to sub-
routine ADDALG
in order to de
limit the "¥pr"
(SEDO) title

-t
s RS

FIG. 75: TFLOWCHART OF INTERNAL

SUBROUTINE ADDALG

This subroutine (internal to subroutine ES200500) determines whether
a title is of type "¥a" (series note traced same (author + title)) or of

type "#b" (series note traced same (title

to ES200500 to indicate which type the title is.

only)). A code will be returned

in the event that ES200500 has determined previocusly that the title is

type '"¥r'".

Store zero in
R7. This is
default code
indicating .,
title is " ¥b

!

Sean left to
right for a
period

Title is '"'*¥p"

Insert delimi-
ter "+b" aften
the period

Stcreaddressg

of period. Cor-
tinue scan left
to right for
another perio

<encountered’

\\\

¢
¢

=
|

If the title is type "¥a", it will be delimited.

Insert "1Fpgt’
in the string
after the last
period encountler-
ed in ths string

y

Scan left to |
right for "v'",
H,\ral-" s |} - "
or numersals

Insert "1F gv'
in front e}
characters
found

|

Load RT with
a code indi-
cating this

title is "¥a"

256

FIG. T76: FLOWCHART OF INTERNAL SUBROUTINE BIBLIO

This subroutine (internal to subroutine ES200500) assigns the B-field
category indicator "*k" to those portions of the commentary data which
cannot be identified as serial title, bibliographic information (code "¥f"),
or contents information (code "¥i").

!

Store zero in
k lace.Insert

*E at start
of effectlve

strin using
the ﬁ%ﬂ, in R

-1?pen gate

Scan left to

right for the| |
worgds chpentS'
or "biblio", gr

"Includes blbllo"

these ie—
e Gte@?

insert "®*f" in [e ,

fﬁiﬁi of de_l Insert "*I" in Insert "#k" af

tected word(s)l. front of this address

This may erase 'contents" : .
the "¥k"" code.

[- T

Calculate addr|.
for, reﬁnsertlc
£ Store
ikl K@;ace
Close gate.

i

oo™ AR L oy I g e S T RN D AT i B TR R T T

TR o (T R

fy
i
S RTTE Conoe

FIG. TT7: SUBROUTINE PPD FLOWCHART

This flowchart shows the conceptual logic by which subroutine PPD
handles the place, publisher, and date data which is found on SC card types
300 and 000 (date only).

Aim: (1) to create the I-field date and to ascertain the I-field date

Insert dumm,
delimiters
separating
place, publish=
er and pub.
date)

Scan 300
data string

left to right
for a comma

Insert date
after
delimiters

Place only is
assumed to be
present in the—————
300 string.
Insert delimifl-
ers accordingly

Insert a de-
1limiter after

Store address

7 = addres L_____pithe commsa.This
of this comma [separates place
Scan left to '(and/or pub.)

right fer

from dat
another comma

€.

Insert a 2nd
delimiter be-
fore date.Place
is assumed pre-
sent before %ﬁte

Is
there
ancther
comma?

nsert a de-
limiter after
gﬁéVléus,ccmma

This is taken
a8 demarca’ onl
betw. pl. & pub.

ERlc S, wE

FIG. 77: FLOWCHART OF SUBROUTINE FPD (Cont.)

The last commg
in the 300
string is assym-
ed to_ separats
the place &

publer.fields

Turn on copy+
right indi-

Insert delimit-
after last

comma and at
end of string

- YES

Assign I-field %ave st daté
code '"bn" for later use

in I-field

(Date is not

YES

Attach the
date to the

Create 4 digit
date by copying
: [century digits
from 1lst date.
Save for late
use in I-fiel

o]o]

Save 2nd date
for later use
in I-field

I-field code

P o « {"be" (2 dates-=
indicator 3lond is copyright).

Reverse pos. ¢f |
dates in 300 gtring,
so copyright date

on?

is 2nd:

[T-field code
is "bm" (2
dates - 2nd -
Iis terminal).

FIG. TT:

e

I-field code
is "bm" (2

dates - 2nd
is terminal)

!
FLOWCHART OF SUBROUTINE PPD (Cpnt.)

Campare date
in 300 string
with date on
000 card

earlier?

I-field code
is "br" (Re-
prod. /Reprint
no digits out

‘

e

Set I- fleld
code to "bq"
(Digits
missing)

Add a comma
the end of th

300 string &
attach the
000 date

l

Save the 2

dates, but in
reverse order,
for later in-

clusion in I-
fisld

E&pand date tg
Imake 1t XXQDJXQQ

co%eé 601399 T Id

;an Save fgr Tlf

Date has L
digits. I-fielld
code is "bs"
(single date 4
no digits out)

Save date for

later Prlﬂtin

in I-field jn —PRetur

xpanded

?E gi, g
86]

Lcomes |

260

FIG. 78: FLOWCHART OF SUBROUTINE PERSAUTH

This subroutine scans the personeal author data string (SC card type
100) and delimits the name subfield ("1Fjga"), together with the date
("1F,¢d"), title of honor (i.e., "sir" - "1F;¢c"), and relator (e.g.,
"editor" - "1Fjge") if any or all of these is present.

Check col. 6§
Set of the orig. in-
w SIRFLAG = O put card for gre=
' sence of a code
which indicateas
nic = ot
dd, , trans-—
“{dtor, ete.

is an

i YES

ot M_som If code is prg-
Delete "sir sent attacﬁ gppro-
from string _ pria%e abbrev.
and set with delimiten
o A - at end of exigt-
SIRFLAG = 1 ing string

Scan for numeyp-
als not follow-
ed by alpha-
betics

v

If this situad
tion occurszs, the
first numeral
{hilperonsiggred
aave 1i1e14d o

situation

present. Iﬁseft
occur?

delimiter "1F;jga"

Tnsert the worgd

vgs |'sir"_ preceded
_E;__EFHX deljmiter

"1F1ge” back |

into string after

hame subfield

Ingsert delimifler
in front of - -
name field'"1lF)ga’-
Insert delimiter
in front of date
field “1F16@"j

:
=
E
=
-
-
=
,,
|-
;
g
L
:

+
TR TR TR

FIG., T79: SUBROUTINE TITLEALG FLOWCHART

Given: Complete meonograph title. 7
To be determined: (1) short title, (2) long title, (3) author statement
and additional information, (h) edition statement, (5) remainder of edition

statement.
Left to rlght
p| scan for any
of the
following: o
Period, | Colon, | "by" or ;iegzii Tt
question | semi- "[by]" pP—W %;)onl
mark colon y J.
Colon or - B
NO semi=coloh o
— separates| v
gfrcm "by" se—
i parates
from (3
when

' |not present
Pericd sig- _ | a
nals end of ‘*

1 Left to right]
o »| scan for:

No fur-

ther fisllds
are T g™ !
present “%b]gr
~ Period -, " -
4 by Seppl
@ ptes @ &
i 1
Indlcates, e
the startqngSf , right
of @ , —Mscan for
period

ieftrtoui
right scan

for "by"

If "by" 1E This is
present, it pither the
separates pegin. or

Prom ront. of y -
gu® £..s0d of] G

9. PROSPECTS FOR AUTOMATIC FIELD RECOGNITION
By John M. Reinke

9.1 Intr@duétion

At present, automatic field recognition (AFR) is an "art," not a
"science." The development of algorithms seems to depend on the int:itive
recognition of patterns of content-structure associations in the data by
the analyst. Hence, the success of the algorithms hinges on the prescnce or
absence of certain punctuation keys and a few keywcrds, such as "by,"
"edited," ete. Algorithms are developed by an initial "eyebal.ing" of a
sample of the data base. Output is then checked against a hand-corrected

setfcf the same data, a fee&back pr@cess then ensues through which the al-

correctly prccessed_ ThlS process increases the cem;lexlty Df the algorlthm
and usually results in some sacrifice of speed for greater accuracy.

Existing algorithms make relativaly little use of pre-scanning or
"look-ahead" techniques, but charge through the data-strings head-on, after
the fashion of a python swallowing a cow. Consequently, existing algorithms
take a shotgun approach to the data, being designed very generally to handle
any extreme data case of the type under consideration. In contrast to an
approach of matching the rifle calibre to the type of game being hunted, this
approach presupposes that the type of game being stalked has been more or
less successfully identified in advance.

Faowever, it seems entirely possible to create a standardized and
systematic approach to algorithm design, through a careful ana1y51s of what
actually transpires (in the analyst's mind) in the current "subjective"
approach and through the introduction of new analytic techniques, such as
pre-scanning.

It is possible tc foresee the develcpment of a computer language

patterns Which are 1mpllclt in the data Constraint pa:aheters for speed
and acecuracy, together with optional methods of attack will be available
to the user. Newly developing data compression and indexing schemes,
coupled with the steady increase in available computational power (and
decrease in cost) will make possible any des red degree of algorithmic
accuracy, through a change in the content-to-structure mix of the input
data., That is, it will be possible by explicit enumeration to treat former
content matter (such as given words and phrases) as structure. (The ides
of structure vs. content needs to be clarified. It has to do with the
computer's ability to make pattern recognitions but not associative
recognitions.)

In the short run, an analysis by which analysts conceive and execute
algorithms should result in some "algorithms" which will not only facilitate
the teaching of algorithm desig. to others, but also speed up the process
and increase the accuracy of the end product. As we learn more sbout the process,
we will be able to produce programs to aid the algorithm design process by

applying classification and pattern-emergence techniques to the sample
data bases under consideration. At this stage the algorithm design
procese will have been partially automated, wiih the transference of
lower levels of data analysis from the analyst to the computer.

9.2 An Example of the Proposed Use of Pre-scanning in Algorithm Design

Assume that the input data is the imprint field of a catalog card.
It is desired to design an algorithm which will identify the place,
publisher, and date elements within this field.

These elements can appear in at least the following combinations:

1 PLACE, PUBLISHER, DATE.

2 PLACE, , PLACE,, PUBLISHER, DATE.

3 PLACEl3 continuation of PLACEl, PUBLISHER, DATE.

L4 PLACE, , PUBLISHER,, PLACE,, PUBLISHER,, DATE.

5 PLACE, DATE.

6 PLACE, PUBLISHER, DATE, DATE.

7 - PLACE, , PUBLISHER, , DATE, ; PLACE,, PﬁBLISHERE;'DATEE.
8 PLACE, PUBLISHER.

It is not necessary to have decided beforehand what the various
combinations are or may be. However, it is necessary to make an initial
aecision as to which structural elements will delimit or identify the
content elements in the imprint field. BSuppose that the key struc-
tural elements are taken to be the comma, period, and semi-colon (,.3).

We now can write a pre-scan routine which will process some reason-
able samples of imprint fields and produce a characteristic "key" for
each imprint field. The type classes of imprint fields listed above
would have the following keys:

Key Key Class
1 Togs! 1
2 535 2
3 Tasse! 2
b sasss 3
5 ! L
6 233 2
7 5
8 ! L

264

=250

Note that only five unique keys have been produced using the given
structural element set. If the ten digits are added to the existing
structural element set, the following keys will be generated:

Type Class Key Key Class
1 ',.9." 1
2 :::-9-‘ 2
3 ‘9999" 2
LI’ 5!239" 3
5 ',9;' LL
6 939?9' 5
T '!!95559' 6
8 ! 7 where 9 stands

for any digit

(The possibilities now become apparent for the development of
efficiency equations for a given structural element set.) The keys are
composed of various members of the structural element set. Observe that
there are now seven unique keys for the eight type classes.

The pre-scan routine will operate in the following manner: after the
analyst decides upon the structural element set, to be input to the program,
the program scans an input imprint field and produces its characteristic
key. It then compares that key with unique key patterns which have been
stored already, and either assigns the input imprint field a number corre-
sponding to the key on which a match was cbtained, or if it is unique, adds
the current key to the table and assigns the corresponding number to the
input imprint field. The input field with its newly assigned number will
then be written out on tape.’

After sl1l input data has been processed, the table of unique keys
will be dumped, and the output tape will be sorted so that the imprint
fields will be grouped according to their characteristic key patterns.
These will then be printed.

The output of this program will ensable the analyst to ascertain quickly
both the most commen type class (or classes) of data in the imprint field,
and the degree of consistency (the presens: of more than one type class
within a given key class) within a given key class for a given structural
element set. Output from different structural element sets can be compared.

This data will provide the analyst with & much clearer picture of
the accuracy he can expect than he could obtain merely from "eyeballing"
the data before designing an aligorithm. :

In fact, it will now be possible for the analyst to design several

algorithms, perhaps one for each characteristic key. During actual
processing, pre-scanning can be used to produce a key which will then

265

~257~

route the imprint field to the specific algorithmic subroutine designed
for it. Hence, what formerly would have been tackled by one subroutine
will now be acc@mplished instead by a whole family of subroutines.

9.3 A Proposed System for AFR Algorithm Developmernt

I+ iz possible to establish an interactive system for the devel-
opment and modification of algorithmic field recognition routines
‘(4o achieve optimum data transformation) through a continual moni=
toring of the data during retrospective conversion of large files.
The proposed system will cperate in the following way:

An analyst seated at a CRT terminal will ask for a relatively
small random sample n (of the data for which an AFR algorithm
is to be developed) to be flashed on the screen from files
stored on disk or tape.

ai

b. The analyst will choose an initial set of keys on the basis of
his (brief) analysis of the data.

c. These keys will be input to the pre-scan program (the nature
of which will be described below) which will be run against
another random sample m (>n) of a suitable size.

d. The results of this program will be flashed on the screen for
further analysis (if necessary) by the analyst. The results
will be of the following sort:

l. A list of the k key classes generated from the
sample m.

2., The elements of sample m will be sorted into k
groups according to the key class to which they belong,
and the various frequencies (F; to F,) of the elements
of m belonging to the k key classes Will be calcu-
lated. (These will be calculated as percentages.
Example: suppose m = 100 and k = 5, If 25 elements
of m belong to the second key class, then F, = 25%.

€. The analyst will examine the %X groups of the elements of
the sample m for internal consistency (i.e., is there more
then one type class within a given key class?), depending
on their associated freguencies. For example, if a given
group ky has a frequency F; < 2%, the analyst may not wish
to determine the internal c@nslstency of the group, because
it appears (for his purposes) so rarely.

The analyst also will determine whether the original
set of keys generate an inordinste number of spurious key
classes (the case of a single type class generatlng a
number of key classes).

f. On the basis of this analysis, the analyst will have at
least four optionsz:

1. The analyst may decide that the set of keys has
produced key classes of such consistency and favor-
able frequency that no further pre-scanning or modifi-
cation of the key set is necessary. As an example,
suppose a key set has generated 5 key classes with
frequencies F; = 25%, Fp - 20%, F3 = 15%, F), = 387,
Fg = 2%. The snalyst has determined that key classes
kg to k) are internally consistent, but that ks is
very inconsistent. He may decide in this
case that the 2% of cases represented by kg are
negligible.

2. The analyst may decide to delete or add to the set
of keys and repeat steps C-F in order to generate
new key classes, which hopefully will be more
internally consistent than the old key classes.
Efficiency functions can be developed which will
give the analyst another criterion for deciding
which of two keys to employ in creating his algorithms.
Tor example, suppose that one set of three keys
generates 6 key classes with a net inconsistency
of 3%, while another set of 5 keys generates 12
key classes with a net inconsistency of 2-1/2%. Ef-
ficiency functions will help the analyst decide
which set to use.

3. The analyst may decide upon a secondary set of keys
which will be used to reprocess those original
(primary) key classes which have exhiblted internal
inconsistency. The hope is that the secondary key
classes thus produced will be internally consistent.
The analyst will then repeat steps C-F. This
approach is an alternative to step Fo. Again, it
will be possible to develop criteria for determining
whether approach FE or F3 is superior in a given
situation.

4. The analyst may decide that the results of the pre-
scan are conditionally acceptabie. For example,
he may find that 90% of the members of sample
m belong to key classes which are internally consis-
tent. The other 10% may belong to a key class ki
which contains two type classes. Suppose that 707
of the members of key class k. belong to one
type class and that the other 30% of the members
belong to the other type class. The analyst may
find it accepltable to specify a default algorithm
for the T0% and asn alternate algorithm for the 30%.
The use of the alternate algorithm may occur either
during post-editing or during actual processing.
Its implementation will be discussed below.

If the analyst has decided on either step Fl or F), ne

may wish to check the generality of his finding by applying
his chosen key set (s) ngainst one or two other random samples
drawn from the data fil=.

Assuming the successful completion of step G, the analyst
is ready to write some algorithmic sentences which will
be translated (probably by a SNCBOL-type program) into

a series of logical operators (notation for which must

be developed or borroweu from somewhere).

These operators together with some output from the
pre-=-scan program (such as the final key set, key classes
and some mapping tables to be explained later) will be
input to another program {languag- to be determined)
which will generate either assemb.y language or machine
language code. This final code will be used actually to
process the data. ’

As an example, the following could be the sort of algorith-
miec statement which might be written to generate the appropriate
code for sub-fielding type class 1, which has the form: "PLACE,
PUBLISHER, DATE." and which has the key class:',,.' "Key class 1:
insert "1" after the first comma and '$c' after the second
comma.. "

With this type of system, it is reasonable to expect that in
cases an analyst will be able to produce executable code
a given class of data) in a morning or day's time.

9.4 Advantages of the AFR Algorithm Development (AFRAD) System

.

It will produce results much more rapidly than they can be
obtained with existing methods.

It will produce a family of simple (default and alternate)
algorithms to replace the single complex algorithm produced
at present. Since the algorithms are simpler, they will be
much easier to write or modify. Due to their simpliecity,
they may be written by persons who are relatively unfamiliar
with algorithmic techniques.

This method potentially is more accurate than the current
method.

During the prccessing of large files, this approach will

make possible the maintenance of a rumning statistical check

of the frequency with which certain (key) classes are appearing.
It will then be possible (if necessary) to modify certain
algorithms using cumulative occurrence data teo improve on the
design originally formulated on the basis of limited sample data.

by,

b

RC!

.0
W
oy

L

a. Since the algorithms are produced by writing algorithmic state=
ments, anyone who wishes to understand the functioning of & given
algorithm can do so by reading the algorithmic statements.

In effect, the algorithmic statements provide flow charts of
the functioning of the algorithms.

f. It will be possible during processing to tag, for post-editing,
those (key) classes of data which the AFRAD system has indicated
will be most inconsistent.

9.5 Remarks on Sampling

The algorithms to be developed in the AFRAD system will be based
on patterns which ocecur in the random sample(s) drawn from the data
file. It is well to remember that the frequencies obtained from the
sample are only estimates of the true population freguencies. It
will be impoessible to predict whether the actual frequencies will be
more favorable or less faverable to the correct conversion of the data.
This is important to recall in connection with those key classes which
exhibit some degree of internal inconsistency: they may comprise a
larger section of the file than the sample would lead you tc believe.
Some key classes may be so rare as not to appear in the sample at all.

However, the processing program will be able to detect them.
These can be dealt with during processing by saving the numbers of the
records in which they appear, and saving the actual examples until
some specified number has been accumulated. These will +then be read
out. An analyst can write an algorithm to handle them which will be
incorporated into the processing program. Those records already pro-
cessed can be re-processed also.

A "run" is a phenomenon of some interest in probability theory.
An example of a "run" could be having a tossed coin come up heads 50
times in a row. We might c¢all a "near run" the case where the coin
comes up heads U5 times in a total of 50 times. These phenomena may
have some bearing on our work.

Suppose we had a million marbles, T0% of which were black and
30% white. Assume that they were mixed about (intégrated) and then
lined up in a single row (or string). According to probability theory,
it is highly unlikely that the white marbles would everywhere be
regularly distributed among the black marbles. There probably would
be o fair cmount of "elumping" of both the white marbles and the black
marbles. That is, it would be possible to pick out some gegments of
the string which were composed of all, or nearly all white marbles,
even though the predcminant color is black. Using a continuous left-
to-right sampling technique, taking every nth marble, we could probably
predict with a reasonable degree of accuracy when a given segment
(of length m marbles) of the string contained a percentage of black
marbles equal to p (some arbitrarily chosen percentage) or greater.

The application to our work is as follows: BSuppose that a certain
key class comprises 35% of a given class of data. Suppose also that the
key class contains two type classes (analogous to the black and white
marbles) which cannot be distinguished readily from each other by

ERIC s R69

punctuation keyword lists, or the like. 1t would be possible during processing
to use the sampling technique described to determinc (with some reasonable
degree of accuracy) whether a given section of the data contained mostly

one type class or the other. Based on this, the appropriate default or
alternate algorithm could be invoked. The problem is that sample taking

and analysis is likely to be much slower than the speed of the program
processing the data, because some form of human intervention will be required
to determine the type class.

If this problem should prove insurmountable, it might be better to
apply this technique at the post-editing stage (or maybe forget about it
altogether). The advantage of this approach (if implementable) is that it
produces a file with a lower absolute amount of error. The disadvantage
is that now, instead of one type of error (some A's should be B's), there are
two types of errors (some A's should be B's, and some B's should be A's).
This approach will be most successful where the type classes (within a key
class) are nearly egual to each other, because such relatively equal fre-
quencies are most likely to exhibit clumping.

An alternative to this approach would be to process the entire file
according to a default algorithm and then step the entire file through a
CRT terminal where an analyst would make a judgment as to the appropriate-
ness of the default algorithm to the individual members of the file. TIf the
analyst decided that the applied algorithm were wrong, he would do a
reverse purge (restore the data to its original form) and apply the default
algorithm to the data, all with the press of a button. Data which were still
incorrect could be corrected manually.

9,6 Pre-scanning and Mapping

The aim of the pre-scan should be to obtain from the data string
readily extractable information which is highly relevant to the tasks to
be performed by the algorithms., It should be very fast, as all data must
undergo pre-scanning, and should "map'" the string in order to obviate
further re-scanning as much as possible. The map of a string will be a
table which stores the locations (in the string) of the key characters
(and keywords, etc.) encountered during the pre-scan, together with said
key characters (and keywords, ete.).

Such maps will enable the translation of algorithmic sentences into
object code. The algorithmic sentence compiler will have the job of
properly linking to the maps the algorithmic operators which were derived
from the sentences.

Experimentation will be required to determine what the optimal
capabilities of the pre-scan should be. Although it is easy to write a
pre-scan which deteets only individual characters, the detection of strings
of characters (dates, keywords) becomes a little bit more complicated and
slower.

Should the pre-scan also be able to detect discontiguous patterns as
single conditions? (E.g., a comma followed by a date to be considered
as a unit; a semi-colon not followed by a word "edited" to be con~
sidered as a unit.) Such capabilities require more programming effort,
slow down the pre-scan, and permit the pre-scan to take on some of

2770
-256-

the characteristics of the complex algorithms we are trying to replace.
However, it may be decided that the utility of such capabilities may
outweigh their disadvantages.

9.7 Automatiec Language Recognition

Though it was not possible to simulate the performance of the AFRAD
system in any exact sense, the quantitative approach was used in the
development of algorithms for the recognition of language. First, some
statistics were gathered from a test file. Then, algorithms based upon
these statistics were developed, tested, and refined. The following
general data was obtained:)

a. OF the first 551 titles in the test file, 59% were English titles.

b. In a sample of the first 228 foreign language titles of the file,
78% had special sywbols or diacritics in title and place,
publisher, date string.

c. Based on the Tirst 200 English titles of the file, the most fre-
quent 1, 2, and 3 letter words (in decreasing frequency) are:
the, and, in, a, ofs by, an, te, for.

d. "A" is also found in Spanish, Portuguese, and Italian.
e. "In" and "an" also are found in German.

Figure 81 gives short words (1-3 characters) commonly found in several
foreign languages.

9.7.1 Subroutine #1

This subroutine, scanning a given string of data until it hits a
diacritic or special character, is very short and very fast. If the
diascritic or special character is unique to a particular language, the
code for that language is assigned to the string. If the diacritic or
special character is found in two or more languages, the code for that
language (of the given set) which is most frequent in the file is assigned
as the defsult code. If no diacritic or special character is encountered in
the string, the ccde for Erglish is assigned as the default code. This
subroutine has not yet been timed.

Based on a sample of the first 1000 records on the AFR MARC tape,
this algorithm has an overall accuracy of sbout 81%. 98% of the English
titles were identified as such. T2% of all foreign titles were recognized
as being foreign language, and 15% of the foreign titles were mistakenly
classified as English titles.

Of the titles, 619 are English, 381 are foreign. Of the 381 foreign
titles, 220 were identified correctly as to actual language. Foreign
languages correctly identified were: German, Prench, Spanish, Portuguese,
and Czech. Potentially, with a few minor medifications to the
tables in some cases, the following languages are recognizable: Danish,
Swedish, Latvian, Polish, Hungarian, Turkish, and Indonesian.

win I

ERIC T e BT

9.7.2 Subroutine #2

This subroutine is very complicated and much slower relative to sub-
routine #1. The flow chart is given in Figure 82. The heart of the program
is a table called DIATABLE, containing 86 fullwords (see Figure 80). Each
fullword corresponds to a special character. Bit positions 2-2h correspond
to 23 languages which may occur in the file. For example, German is assigned
bit position 2, French is assigned bit position 3, and so forth all the way
down to Albanian, which is assigned bit position 2. These languages are
arranged in order of their presumed frequency ia the AFR MARC File, with the
more frequent languages vdeing ahead of the less frequent ones. This order
is important because it determines which language will be the default
language in a given situation.

Tor the fullword in DIATABLE corresponding to a given dilacritie-
alphabetic combination or a given special character, the corresponding
bit position is turned on for each language in which the given diacriti
alphabetic ccmbination or special charscter may occur. For example, the
eleventh word of DIATABLE is for the Diacritic-alphabetic combination A-GRAVE.
This combination is found in the following languages: French, Italian,
Portuguese, Catalan, Tagalog, and Latvian. The bit positions corresponding
to these languages are turned on (i.e., made 1). All other bits are turned
off. This results in a fullword whose hexadecimal representation is:
2C0CT000.

Bit position 1 is turned on only when the particular diacritic-
alphabetic combination or special character is unique to one language. Some
of the words in DIATABLE are dummies, having the lst and 31lst bits turned
on. Special characters which are usually found in non-Roman alphabets are
routed to the 86th word, whose lst and 32nd bits are turned on. Bit
positions 25-=30 are not used currently. Six additional languages, therefore,
can be implemented in these positions.

The program operates in the followling manner:

Step 1: A left-to-right scan is made of the data string. If a
special character or diacritic~alphabetic combination is encountered, it is
tested to see that it is legitimate. Illegitimate characters or combina-
tions will generate a BAD DATA message, and the scan terminates.

~ Btep 2: If legitimate, the corresponding fullword from DIATABLE will
be "anded" with register 8, which initially contains all ones.

Step 3: The first bit of the fullword from DIATABLE is then tested to
see if it is a one. If so, that special character or diacritic-alphabetic
combination is unique to one language. The string is therefore scanned for
English keywords. If one is found, ENG is assigned as the code. If not,
the code for the unique language is assigned tc the string.

Step 4: If the bit tested at step 3 was zero, the scan continues for
additional diacritics and special characters. Proceed as in steps (1)-(3)
until the end of string is encountered or one of the exception conditions
above occurs.

22

Step 5: At the end of a complete scan of the string, if any dia-
critics or speciwal characters have been encountered, then R8 will contain
a one bit for each language in which the particular combination found in
this string could possitly occur.

Step 6: Register 8 is then tested %o see if it is zero. If so, then
the string contains contradictory discritics or special characters. A
message to this effect is generated, and processing terminates. This could
occur, for example, if a string somehow contained an acute accent and an
angstrom. There is no language which uses both the acute and the angstrom.
As a result, the fullwords corresponding to the acute and angstrom, when
"anded" into K8, would produce a zero result in R8.

Step 7: If, after testing, R8 is found not to be zero, the routine
proceeds to link together a corresponding language block for each one bit
in R8.. In this manner, from one to 23 language blocks may be linked. Each
lsnguage block contains up to 4 each of 1-, 2-, and 3-letter words commonly
used in the particular language and usually unique to it. Please note that
no words at all have yet been inserted in some of the language blocks (for
exsuple, Rumanian). This needs to be done. The language of the first block
linked is assigned as the default code.

Step 8: The input string is now scanned for 1l-, 2-, and 3-letter
words, which are compared against the words in the linked blocks. If a
match occurs, the language of the block in which the match occurred is
taken as the language of the string. If no match occurs, the default code
is assigned.

Step 9: If the scan of the string in step 1 encountered no dia-
critics or special characters, then the string is scanned for English key
words. If one is found, the string is considered to be English. If none
are found, the fullword located at FIVELANG is loaded into R8. This
fullword can be set to any combination of ones and zeros. Control then
passes to step T, where all of the language blocks corresponding to the one
bits in FIVELANG will be linked, and the string again scanned for 1-, 2-,
and 3-letter words as described above.

This routine has not been timed yet. Hopefully, it is apparent to the
reader that several modifications can be made to the algorithm to increase
or decrease its accurary and speed. In general, greater accuracy means

lower speed, although nothing is known about the quantitative relation
between the two.

273

FIG. 80:

UNIQUE DIATABLE DISFLACEMENT VALUW3

(for the current 23 Roman alphabet forsign languages used in Subroutine 2)

m

[

L

ACUTE 1|12 3|4 6_| 9o | |8 -

GRAVE

[
ina

_DIERESIS

[t
rJ

BREVE _ SN T N _]

CIRCUM- |

FLE}.

W

CIRCLE ||

CEDILLA || o _ 6 0 -
LEFT , i
HOOK 1) 5 75 3 i 2 -0 1

RIGHT
HOOK

_HECEK

P
-

TILDE

| L
o

SUPERIOR
DOT

LY

81: SHORT WORDS COMMONLY FOUND IN SEVERAL FOREIGN LANGUAGES

ey
=
&

2-Letter Words l1-Letter Words

Language 3-Letter Words

GER die, das, der, von, und: fu ("r}
den, dem, ein

FRE les, par, uanz, des du, le, et: un, de,
la

SPA las, los: una, una, por 31, el: un, la, de, via
en

ITA dal, gli, per, un' da, di, il, lo: in, i: a, e, o
le, 1!

POR aps, uma: por as, do, os, um: em, :a, e, O
ac, da

DuT een, met, van
DAN : ein, den, det, til af, et, eu, og: de

HUN és, egy az

SWE ett, med, och: den, det en, av: de i

PLS i,w: k

CHE :na v: a, k

CR{ nad, pod, prd, rad do, s&, za:od, po

sLv : od, po, za (0, k

TAG ang, kay at, ni

ICE hin, hit: ein, til ag:af H

FIN _ S Ja _ _ _) _

Notes:

a. Words preceding colcn are "keywords" for the given language.

b. Words following & colon are not unique to the given language. They
may sometimes be used as keywords in another language of the same
family which is considered to be more frequent in the file, but
which is not the default (most frequent) language cof the family.
For example, Danish is the most frequent of the Scandinavian

7S

langusges. Yet the word "i" is used as a keyword for Swedish

because Swedish is considered to be much more frequent than the-
other Scandinavian language which uses this word, which is
Icelandic.

Keywords have not yet been cobtained for the following languages:
Indonesian, Rumanian, Turkish, Catalan, Latvian, Afrikaans, and
Albanian.

Additional keywords are needed for most of the languages listed
in the table. The second version of the language recognition
subroutirne is designed to contain up to four 3-letter words,
four 2-letter words, and four l-letter words for each language.

2)

ai

LANGUAGE RECOGNITION ALGORITHM #2 FLOW CHART

Iniiializef'
Load shift byte

with zero
Load R8 with &ll

uula

Scan L to R

for diacrits

and special
chars.

Must be a
acritic. BacKk

up to look at preceding

gcocute
o]

"lthis diacrit

[character

FIG. 82:

\ﬁxxSpec. g&rr.

un1§5$536 one
XES:& lang?

Store code fo
his particular
language as the
default code

1

Scan the
string

r key English
words

bl

Obtain shift
amnount for

or spec. char.

ﬁeplacé
old amt.
with new

amt.

Language 1s
given by
default code

131

of3" the Fullwodd
from diafable which c@itains one

spec.
+h R8

IOR
for
ics or

FIG. 82 (Cont.):

10W héé a Qné
h language to
ar comb. of

for =a
the particu

bit

which
diacritics
tring could

or spec. in the =

g

Scan LTOR
for English
keywords

crities and/o
|chars.
to mutually e
lang. groups.

be indicat

Link the corresponding
language block for esgch one

bit in R8 lang.
to be linked {is taken as

Fac¢h language blg
contdins up to 4 es
1, 2 and 3 letter

common in the lan

=

ck
ch of

words

guage

can string L fo
for 1, 2 and |3

letter words

String
B assigned
default
1 anguage

fa¥o's

ol

Lang. code as

language bloc

| is that for t}

which match o

String containk

which b

punching erro

"-lang

= 7 7
delusiive HIT?

fullyord mey be se
no,. tend-copl—of—<

FIVELANG." Thi

Set default
code to
English

278

Agsign
English as
langusge

code

s
with
ne bits.

10. TRANSLATION FROM ILR PROCESSING FORMAT TO MARC II
COMMUNICATTONS FORMAT
by Jay L. Cunningham

10.1 Introduction
10.1.1 Purpose

A program, namned LURCH, was designed to convert files of bibliographic
data records from an obsolete version of the MARC II format to a very
close spproximation of the latest, full MARC TI format. The obsolete
records were created by the ILR program named "INFOCAL." The files created
by INFOCAL will serve as input to LURCH. The output of LURCH will be
files of records, one-for-one, in the UC MARC format.

10.1.2 Scope

LURCH, as presently designed, is intended for use with two particular
files: the San Diego Bicmedical Library book catalog source file, and
the Santa Cruz holdings records file. However, any file output from
INFOCAL can be processed by the program.

10.1.3 Contents

This description proceeds from a general narrative overview of the
program, to a set of intermediate level flow charts, to a detailed
definition of the modifications to be accomplished.

10.2 Narrative Description of Overall Program Structure
10.2.1 Housekeeplng

Initialize buffers and tables for input record area, output record
area, for old and new record directories, and for receiving new indicator
values. Set up Tag Translation. (See Fig. 83 for table content and
structure.)

10.2.2 Read the next INFOCAL Record to an Input Buffer

First extract current record's length, base address, source agency
(8anta Cruz or San Diego), and number of directory entries, for use in
subsequent routines.

10.2.3.1 Major Loop

Extract each tag after the first, which will always be "000" (fixed
fields). In sequence, tag by tag, and using the tag as the index to the
Tag Translation Table, do a look-up to determine the identity and
disposition of each field (i.e. keep same tag number, or replace with
new tag number, or delete the tag, or delete both tag and field). Also,

<79
—-265-

for each tag, find new indicator values, using old tag and old Indicator

1 (in INFOCATL directory) as arguments. Extract old field length and old
starting character position Trom directory entry. Compute right-end
address for later use in moving the fields. The old tag and old Indicator
1 are posted incidentally to a table but this is not strictly necessary,
once their look-up functions have been performed. See Fig. 84 for the
format of this table (used in the Fortran version of the program).

In the same major loop, a call or a branch is next made to a subroutine or
program segment, depending uporr th2 outcome of the look-up of the current
tag in the Tag Translation Tagble. For each tag in the table, a flag or
signal controls the program flow depending upon the tag's identity. For
example, in the simplest case (default), nothing is done; the old tag
nunmber is copied to the new directory table, preparatory to copying it to
the new directory area in the output buffer. At this time there are ten of
these segments. At the end of the logic for each tag, the new field length
and new starting character position are computed, the new tag number is
copied to the new directory table, and the new indicator values likewise
are copied to a table preparatory to being copied to the proper variable
fields in the output buffer. This ends this major loop, when all tags in
the current input record's directory have been processed. (At this point
no data have been moved.)

10.2.3.2 EBookkeepling

Prior to moving anything, the new directory table must be systematically
adjusted to reflect the outcomes of the changes found to be needed in the
previous loop. For exarmple, the field length of data items which were
previously tag fields but are now subfields, must be added to the length
of the new "parent" field.

10.2.4% Major Loop

Move wvarisble fields data from input buffer to output buffer. An
output buffer pointer is computed as a result of knowing now the length
of the new directory, which was computed in the previous major loop.
Depending upon the file (San Diego or Sunta Cruz) end the tag number,
the loop proceeds through the new directory table, tag by tag, copying
the new valueg for Indicators 1 and 2 into the positions formerly
occupied by INFOCAL Indicators 6 and 7, inserts the $a, transfers the
variable field data for the new field, and inserts the field terminator.
The last field terminator in the current record is replaced by a record
terminator.

10.2.5 Create Fixed Field 008

This field is comprised of elements extracted and slightly re-
arranged from the 000 Fixed Field in the input record.

10.2.6 Create New Lesader

This field is comprised of elements extracted from the leader and
000 Fixed Fields in the input record.

10.2.7 Create New Directory

The new directory entries are copied to this area of the output
buffer from the new directory table.

10.2.8 Write the Completed Record to Output Storage
Return to read the next record (10.2.2).
10.2.9 End of File Check -

Stop.

ERIC A~ Sx |

FIG. 83:
TAG TRANSLATION TABLE

Action Code Pattern #
for Special Indicator
Processing Key

Position
(Implied)

New Tag
Number

(3)*

(3)

(2)

(2)

) 000 o 008 ﬁii i ¥
003 | ok o - 01
090) 74' 11@777 L 02 T ﬂfi)
100 I %3 o2
899

*Number of character positicns in column of table.

FIG. 8h:
DIRECTORY RE-BUILDING CONTROL TABLE

Creatlion of

—~Shredout of 01d Record Directory —New Directory and Indicators
jjp% 014 Directory and Indicators J:—New Directory and Indicators
: Starting
Field Character Right Field

Tag | Ind. 1 Length | Position Address| Tag |Length SCP | Ind. 1 |Ind. 2
000 ¥ 26 00 25 007 | 0026 | 0000 ¥ B
003 0 05 26 30 008 b 26 ¥ ¥
090 ¥ 28 31 58 g* ¥ ¥ ¥ ¥
100 1 18 59 76 090 =1 67| "3" ¥
240 0 90 7T 166 100 21 91 1 0

. 2u5 93 112 1 ¥
660 ¥ 1T 281 297 .
66k | ¥ 09 298 306 660 | w29 | 331 | ¥ ¥

. 999* |([og1**| o | ¥ ¥

*"¢" means "delete both the tag and the varisble field data' (currently
applies only to language code). "999" means 'delete tag only"; data
becomes a subfield under most recent preceding "parent” tag.

*%P, value is added to preceding "parent' FL.

10.3 Flowcharts
PROGRAM "LURCH"

(o)
:

Housekeeping
and
friitialization

Tag table [~

= N S
data S s Set up tag Santa C
- indicator now in
translate processy
tables

Read file
to I/0 area

Read 1 logical
record to
input buffer

:

Error
checks

Handle bad
record by
kipping, but
log record no.
“possible

<84

base address, source lagency,
f entries in directory

aumber

&

Indicator 1

Access old didectory:
Copy old tag fHo old
Pldirectory table; old

Names

IND(JT)

ITAG(J)

First extract
length and sta
character posi
and right addr

field
rting
tion,
ess of

fretd—for corr

ent tag

Pointers

L = number of total old tags
L2= number of total new tags
KK= input buffer pointer
(8tarts at c.p. 69--after
Tag 000 in directory.)

Extract oid

tag's field

length and
starting character poglition

lopy to Input
Field Length
table and

[nput SCP table

WV

Comppte field's right-
enfl address for the
currepht tag and post to
current figld in Input RlA. table

)
@
o

Now repdy to process
o0ld take with status| ___ __ ______|
returnpd from loock-
up in Tpg Translation

Tabie——————
110% .150% 200% 250, 260% 3¢
Tag 003 Tag 090 : Tag XX8 7 Tags 261, 263%
(Special proc.) [Special proc. (Bpecial proc.) (Special proc.)|)

350%: Tag 655, 661
LOO :| Tag 65T, 662
450 4 Tag 656, 663
500 :| Tag 664

o change in
1 simple repl

¥Statement Number in
Fortran Simulator
Version of the Program.

N

Santa Cruz

Add only "1"
Y alnew field length.

1006 Reinke already|l in-

serted the "$

—

Add "3" to NFL

R 2 2

550 701/703
Simple replace- No change:
ment: Copy new copy old tag
tag to new Diry. t9 new Dir. table

talb 1=
P

Compute and post
field length to ngw
Diregtory table (fields
that|were not deleted)

'

Advance the
new tag
number pointej

new

Pést returned new
ijdicator valuesg,
if sny, to Il and|lZ2
teblgs, for this fileld

289

AdYance total tags
pointer, input buffer
pointer, and new tag

counter |(if tag not deleted)

Logp toc add deletfed
tags) field lengthgd to
theif corresponding new

MARC I tags' field lengths

Compute all
new starting
character
bosition wvalues

Compute wvalue
of output
buffer pointen

(0.B.P.)

Advgnce the O0.B.P. past
the two flixed fields 047 and 008
to cJp. I7 and 67 (JI7 is
stgrt of 00T's dgta)

IVAR

.t KMARK

Set I pointers 1T
- 1 INPUT

G

new variable field (output
buffer) pointer

new directory table pointer
old directory table pointer
0ld variable field (input
buffer) pointer

Q) ;?53(}

Ready to move
vapiable fields f{rom
input buffer
to output buffer

- Insert new Indicator
1 in first charagter
position of new fleld

n output buffer

sert Indicator
2 in second
t. of new field

I

Tnsert "$a"|delimiter in ¢.p. 3 and L
of eabh field if not Tag
100,| 600, T00, 800} and
not Santg Cruz source fgency

Insert
field term.;
get next ———»

field -

Insert
rgéérd terminator

— Include: Recomputed
record length
and base address

Move

reconstructed

leader to
OBUF

Move new
directory datd
o OBUY directdry
area (startin

o

29%

007/008

insert fields

Widite complet

record from
utput buffer Yo
new file

ed

IO

293

Get next
record

10.L4 Summary of MARC II Record Structure (Communication Format)

1. 2, _ 3. Lo
_ S s Contro! Variabl
Leader Record Directory Ogiiiés Var;?éizs

1. LEADER=-The leader is fixed in length for all records
and contains 2L characters.

2. RECORD DIRECTORY--The record directory is made up of s
series of fixed-length entries (twelve characters
each) which contain the identification tag, the length,
and the starting character position in the record
of each of the variable fields. The record directory
will end with a field terminator code (lElé)i

3. CONTROL FIELDS-=The control fields contain alphameric
data elements, many of which have a fixed length.
These fields end with a field terminator code.
Each control field is identified by a 3-character
numerie tag in the record directory, and these
tags will not be repeated in a logical record.

L, VARIABLE FIELDS--The vari.ble fields are made up of
variable length sliphsameric dats, and all fields
end with a field terminator code except the last
variable field in a logical record which replaces
the field terminator with an end-of-record code
(1D1g). Each variable field is identified by a 3-
character numeric tag in the record directory,
and tags may be repeated as required in a logical
record.

10.4.1 Modifications to Overall Record Structure to Produce a Revised
MARC II Record

10.4.1.1 TField Terminators
To bring the Santa Cruz file into conformity with MARC IT,
after it has been run throusgh the INFOCAL program, the following

aclions should be taken to update the structure of each record:

a. Insert a field terminator code (1Ej¢) at the end of
the record directory.

b. Insert a field terminator code at the end of éach of the control
fields (Tag 008 in MARC IT; and Tag 00T in addition, if used).

294

c. Insert a fleld terminator code at the end of each variable
field, except the last variable 21d in =a logical record which
will contain an end-of-record coue in place of the field terminator
code, The end-of-record code is "iDlEi"

10.4.1.2 Subfield Delimiter Codes

In some cases, subfield delimiter codes have been inserted in
the proper positions by the TRANSCOF program. However, as a final
cleanup of the translated Santa Cruz file to conform to the latest
MARC II, the following actions should be taken:

a. Insert, by a test on presence of the code in ¢.p. 3-k of
each varisble field except those listed below, the delimiter "1F a"
in c.p. 3L of each variable field, if it is not already there. =

Exceptions:

(1) Tag 007 and Tag 008, the fixed length data elements fields.
These fields do not have indicators or subfield delimiters.

(2) Teg 091, the revised field for Santa Cruz shelf key data.
This field will not use the subfield delimiters.

b. Comply with such other instructions as to subfield coding
as below specified, including those in Section 10.5 governing the
coding of the Tag 090 holdings field for UC MARC.

Fields in which delimiters other than the first subfield ("1F;ga")
have been inserted by the TRANSCOF program are listed in the tables
in Section 10.2.

No further action on subfields is necessary in this phase of the
file transletion. Further subfield identification will be deferred
until AFR development has progressed far enough to enable recognition

10.%4.1.3 MARC iI Indicators 1 and 2

It will not be necessary to place space in the record for
Indicators 1 and 2. Two spaces are already created by INFOCAL at the
head of each varisble field for this purpose. The two spaces now
contain zeros in the INFOCAL record. The appropriate values for the
indicators that apply to any given field must be sought in the "o1a"
Indicator 1 position in the INFOCAL directory entry, and the value found
must be translated snd moved to the appropriate position, either in
Indicator 1 ("new") or Indicator 2 ("new") in the varisble fields.
The logic for this translation is contained in Fig. 88.

o o 295

10.4.2 Modifications to Leader
10.4.2.1 Structure snd Content of MARC II Leader

Qutline of Leader

@ L s 6 T 8 9 10 11 12 16 17 23
I
@ +
Record = — 8 e = 5 ! Base Address
Length . Hlg w |%= 8 5 S8 of Data Blanks
g . w4 @ i o O o
goglE~ 8 [g° | §4
+2 - = = = =]
al &4 M 0 — —
Element Name of Leader Number of Character Position
Nunber Data Element Characters —din Record
1. Logical Record Length 5 @~k
2. Record Status 1 ;
3. Legend :
a. Type of Record 1 6
b. Bibliographic Level 1 T
¢. Blanks 2 8-9
L, Indicator Count 1 10
5. Subfield Code Count 1 11
6. Base Address of Data 5 12-16
T. Blanks T 17-23

: A 2| f Dats a number which is the starting character
EOSlthn Df the first control field. That is, it is equal to
the length of the leader and the record directory (including the
record directory field terminator).* The starting character
position for each field entered in thé record is relative t@ the

record). The base address of data glves the ba: base from whlch each
field is addressed. The number is right justified with leading
Zeros.

®The record character position count starts at position zero, Therefore
if there are 50 characters in the leader and directory, the address of
the first position of the first control field (data for Tag 007 in UC
MARC) will be "50".

O » ;ESBQ;

10.4.2.2 Changes in INFOCAL Leader

Translation Table

] FIé; 8s:
FORMAT TRANSLATION TABLE

LEADER SEGMENT

- [o NEW
FIELD NAME POS. ACTION POS. CONTENTS, REMARKS, ETC.
Record Length | 0=k NC#* 0=4 5 EBCDIC digits
Status Date 5~10 DELETE
Record Status | 11 CHANGE 5
CONTENTS
& POSITION
Legend 12 DELETE
Extension
Record Type 13 CHANGE 6 a = language material
POSITION (printed)
Bibliographic | 1k-16 CHANGE T m = monograph OR
Level LENGTH s = serial
& POSITION
(Blanks) - - ADD 8-9
Indicator 17 CHANGE 10 Count = 2
Count CONTENTS
& POSITION
Subfield - ADD 11 Count = 2
Code Count
Base Address | 18-19 RECOMPUTE 12-16| 5 EBCDIC digits
of Varisble & CHANGE
Fields POSITION
ILR Master 39-45 CHANGE 17-23| See old c.p. 39=L5
Record POSITION 7 EBCDIC digits, right
Number TO HERE just./left Zeros
Origin of 20-22 DELETE -
Record
Processor 23-28 DELETE
Date
Processor of 29-31 DELETE
Record
¥NC = No Change -]) —

FIG. 85 (Cont.):
FORMAT TRANSLATION TABLE LEADER SEGMENT

OLD NEW
FIELD NAME POS. ACTION POS. CONTENTS, REMARKS, ETC.

Source Type 32 DELETE
of Catalog
Card

Agency of 33-35 DELETE
Source Type

Adapter of 36-38 DELETE
Catalog Card

Master Record | 39-45 CHANGE 17=23 |T EBCDIC digits in
Number (ILR- POSITION new c.p. 17-23
assigned) FROM HERE

Cheeck Sum on 46 DELETE

Record Number

Nurmber Entries| 47-L9 DELETE -
in Directory

[fy]
(]
1]
He
[1s]
a0
W

Date Entered 50-55 MOVE TO FIXED
on Master LENGTH DATA
File ELEMENTS
FIELD

298

284~

10.4.3 Modifications to Directory

{ .
1p.4.3.1 Structure and Content of MARC II Directory

D/E 1——— — - e —» D/E 2 ... B
o B Starting
Tag Length Character F/T
Position

F/T - Field Terminator (1E16)

Element Name of Record Directory Number of Character Positions
Number _____Data Element Characters in Directory Entries
1. Tag 3 g-2
2. Field Length h 3-6
3. Starting Character Pogdition 5 T-11

Contents of Record Directory Entries,

l. Tag-—a 3-character numerié symbol which identifies the field.

2. Field Length--the number of characters in the field identified
by the tag. This count includes indicators, subfield codes,
data, and field terminator. The number is right Jjustified
with leading zeros.

3. Starting Character Position--five numeric characters which give
the character position in the record of the first character
of the field. The character position is relative to a base
which begins with the first character of the first field
(i.e., for monographs the first character of the control
nunber field). The first record directory entry will contain
the starting character position. Subsequent record directory
entries will have starting character positions incremented
by the field length of the previous entry.

4. Mode-—-All data in a directory entry will be in EBCDIC.

Example: _
Entwy 1 | 8¢ | gdiu*[éé¢¢§7

Entry 2 | ¢g8| ggl7 | gggik
Entry 3 | 199] 9958 | #g@61 |

<99

-285-

Tt should be noted that in a variasble field (as opposed to a
control field) the first actual data character ig the fifth character,
i.e., the starting character position plus four. . The starting character
position number is right justified with leading zeros.

10.4.3.2 Changes in INFOCAL Directory
a. Structure of Directory. The record directory produced by

INFOCAL will require extensive revision to bring it into consonance
with LC MARC IT.

In INFOCAL there were a total of seven indicator positions allocated.
See Pig. 87. TFive of these were placed in the directory entry. The
r=maining two were placed at the beginning of the variable field
(filled with blanks if not applicable to any given field). The revision
of the indicator structure is as follows:

FIG. 86:
INDICATOR REVISION
New T ola T T
Indicator No. Indicator No. Position Disposition

None ' 1 Diféctof&ur Change contents according
to Fig. 88 logic, and
place transformed contents
in new Indicators 1 and 2
at head of varisble field,
as needed.

" 2 Directory DELETE.

" 3-5 Directory DELETE,

1 6 Var. Field | Place contents resulting
from transformation of
old Indicator 1, according
to logic in Fig. 88.

2 7 Var. Field | Same as 6.

The field length and starting character positions in the individual
directory entry will have to be recomputed as a result of a change in.
the length of the fixed length data element field (the first variable
field in every record), and the addition of field terminators and
record terminator to every record. The formula for recomputation is
given as part "c" of Section 10.4.3.2.

b. Content of INFOCAL Tndicator l,(InfDirgch:y)i Each directory
entry must be processed to change its structure. As part of this
revision, the values resident in Indicator 1 (e.p. 3 in INFOCAL-produced

QG0

—286-

FIG. 87:
INFOCAL DIRECTORY ENTRY STRUCTURE

Content
Directory Entry 1 3 0 Tag (3 EBCDIC digits)
1 3 Indicator 1. (EBCDIC cheracter.

If not used, blank.)

1 L Indicator 2 (Repeatable tag
number, applicable to those
tags which can appesr more
than once in a given record.

If tag is not currently repeat-
gble, indicator will be set to
binary zero. An 8-bit binary
digit.)

1 5 Indicators 3, 4, 5 (Character
positions provided for future
expansion. Currently set to

_____ blanks.)
b _la —
1
2 8 Field Lengil: [+ 16-bit nunber
giving the charact=~ length of
the variable field, inciviiag
Indicators 6 and T.)
2 10 Starting Character Position (A
- 16-bit number giving the sosi-
: tion of the first character of
» the varisble field. Currently
. the first character will slways
. contain Indicator 6. This posi-

tion is relative to the first
character of the fixed length
dsta elements field.)

Directory Entry n

L=

[End of Directory]

The total length of the directory entry is 12 characters. The
total length of the directory is 12 x the number of directory entries.

for this transformation is dependent on the tag number and the value
detected., Only values found in the SC tapes are described here.

FIG. 88:
REORGANIZATION OF INDICATOR VALUES

[DISPOSITION IN MARC IT
PLACE PLACE
TAG¥* INTOCAL IND., 1 VALUE IN INDIC. 1 IN INDIC, 2
003 0 = Single or Multi- 0 = Multi-T.ang. ¥
Lang. (varisble
field present
only if more
than 1 lang.
code)
1l = Translation 1 = Translation
100 1l = Single Surname, 1 0
Not Subject
5 = Single Surname 1 1
- Is Subject
110 2 = Name (Direct Order),|2 0
Not Subject
6 = Name (Direct Drder), 2 1
Is Subject
130 0 = Not Subject B 0
200 1 = Will be Printed on |1 ¥
LC Cards .
210 1l = Make Yitle Added 1 ¥
Entry
2kho 0 = No Title Added 0 ¥
Entry
1l = Make Title Added 1 ¥
Entry ’
261 _ 0 = Pub. Not Main Entry |O ’ ¥
Lio 2 = Name (Direct Order), |2
Series Author Not
Main Entry

¥INFOCAL tag numbers are used in this table. For revised tag nunbers
to which these are to be changed, see Fig. 90.

ERIC Y 7

Arirrox: prova c L

. j TL,‘".‘

FIG. 88 (Cont.)
REORGANIZATION OF INDICATOR VALUES

*'"’ T " [___ DISPOSITION IN MARC IT
PLACE PLACE
TAG _INFOCAL IND. 1 VALUE _ IN INDIC. 1 TN INDIC. 2
490 0 = Series Not Traced 0 ¥
1 = Series Traced Diff.] 1 ¥
520 Not Used (set to ¥) 0% ¥
500 1 = Single Surname 1 - O®
650 Not Used (set to ¥) Q¥ % Q%%
700 a = Single Surname, 1 0
Alternative
e = Single Surname, 1 1
Secondary
710 b = Name (Direct Order)| 2 0
Alternative ’
Tho 1 = Title Added Entry, | ¥ 1
Traced Diff.;
Secondary
810 2 = Name (Direct Order)| 2 ¥

#¥The new MARC II tag for contents note has values for Indicator 1
that show characteristics of the contents note. The "0". value, for
"Contents" type of contents note will be used as the default value.

#*¥The 0" value indicates Library of Congress Subject Headings List
as the source of the subject heading in this field. This is a default
setting. :

%#%¥%¥The new MARC II definition for the Tag 650 field has an Indicator 1
value for whether the heading starts with a place name. The value "O"
meaning "not entered under place" will be used as the default setting.

2

047299 303

c. Summary of Recomputations Required. The following computation
must be undertaken to revise the velue of the logical record length field
in c.p. O=4 of the leader, in each record output from the INFOCAL program
run on Santa Cruz: ,

TRL L+ D+ CF + VF

where

TRL = Total Record Length (Logical Record)
length of Leader
= length of Directory

2
}I\

CF = length of Control Fields
length of Variasble Fields

3

Az part of this recomputation of the value that will be present in
the INFOCAL output record, the following fields must also bz recomputed,
either becuase of the insertion of new fields of data, or due to
insertion of new codes such as field terminators, to achieve MARC II
compatibility:

Base Address of Data (c.p. 12-16 in revised record leader)

Field Length of each control field and varisgble field
(Note that these fields do not have indicators in
c.p. 1 and 2)

Starting Character Pogsition of each control and variable field

The following computation will yield the revised value for base
address, when spplied to each Banta Cruz record, after processing by
INFOCAL:

Length of Léader = 24 characters

Length of Directory = 12%n, where
n is the number of directory entries

Directory Field Terminator = 1

Base Address = 2L + (12¥n) + 1

The following computations must be made to. revise the field
lengths and starting character position values of each entry in the
record directory. Also convert from 16-bit binary to EBCDIC mode.

INFOCAL LENGTH COMPUTATION REVISED LENGTH COMPUTATION
Indicator 6 = 1 position Indicator 1 = 1 position

S04

Indicator T =1 Indicator 2 = 1
Data = n, including subfield Data = n, including subfield
delimiters delimiters

Field Terminator = 1

The effect of this is to require the addition of a count of one to the
field length computations output by INFOCAL, to take care of the added
field terminators. This should be done in coordination with or sub-
sequent to the actual insertion of the field terminators into the
INFOCAL output record.

The starting character position is also a 16-bit binary number.
The first directory entry output by INFOCAL will be Tag 000 (= Tag 008)
i.e., the fixed length data elements field, and will have a s.c.p. of
binary zero which should be converted to 00000. Each successive entry
will then be incremented according to the formula

SCP.,.4.p = S5C%Pyyq + r

Starting Character Position value
in the directory entry

scp

the ordinal position of the directory
entry, i.e., the 1lst D/E, the 2nd D/E,
... rth D/E

H
[}

The parameter in the subscript is "r+1" in the equation, because
the s.c.p. of the very first variable field in the record will always
be "00000". Each subsequent field is incremented by one position.

If a new field is inserted in a position between the directory
and Field 008, the fixed length data elements field, then a different
value will have to be used to recompute the s.c.p.'s of the second and
all succeeding variable fields. If The newly-inserced field has a
length of i, then the equation will be
S€P.,q = SCP.,q * (r+i)

10.4.4 Modifications to Fixed Length Data Elements Fielid
10.L4.4.1 Structure and Content of MARC II Tag 008 Field

In MARC, the fixed length data elements field is included in =a
section of the record generically designated "control fields."

Qutline of a Control Field

Data Element 1 Data Element ~ Data Element 3 Eg» /T

-201- 309

F/T = Field Terminator

The control fields (Tags @@l -~ $¢¥9) do not use
indicators and subfield codes. Data elements in
these fields begin in a fixed location relative to

the first character position in the field. All
control fields end with a field terminstor code

Control Field Tags

001 Control number (Will not be used
for Santa Cruz machine file)

nofs] Fixed length data elements

Content of Tag 008 Field

FIXED LENGTH DATA ELEMENTS

Name of Data) Number of Cheracter Positions
Element ‘ Characters in Field]
1. Date Entered on File 6 @-5
2., Type of Publication Date Code é6

3. Date 1) T-1¢
4. Date 2 Y 11-1k
5. Country of Publication Code 3 15-17
6. Illustration Codes L 18-21
T. Intellectual Level Code 1 22

8. TForm of Reproduction Code 1 23

9. TForm of Content Codes 4 2h-27
10. Government Publication Indicator 1 28
11. Conference or Meeting Indicator 1 29
12. Festschrift Indicator 1 3¢
13. Index Indiestor 1 31
1k, Main Entry in Body of Entry

Indicator 1 32

15. Fiction Indicator 1 33
16. Biography Code 1 34
17. Language Code 3 35-37
18. Modified Record Indicator 1 38
19. Cataloging Source Code 1 39

m‘

-292- 30

10.4.4.2 Changes in INFOCAL Fixed Length Data Element Field-Translation Table

INFOCAI: TAG
MARC IL TAG

FORMAT TRANSLATION TABLE FIYXED LENGTH DATA ELEMENTS SEGMENT

000
008

FIG. 89:

ELEMENT NAME

OLD
POsS.

ACTION

o =
‘myg
| 02 }

CONTENTS, REMARKS, ETC.

Date Entered
on File

MOVE FROM LEADER

10.‘
N

"mmddyy". Formerly in
LEADER ¢.p. 50-55

2. Type of Publ.| O | CHANGE POSITION |6 | Transfer contents
Date Code
3. Date 1 1-4 | CHANGE POSITION |7-10 | Trensfer contents B
4. Date 2 5-8 | CHANGE POSITION |11-14| Transfer contents if
present
5., Country of 19-21| CHANGE POSITION |15-17| Set to blanks
Publ. T0 HERE (DEFERRED STATUS)
6. Illus. Codes | 22-25| CHANGE POSITION |18-21| Transfer conmtents
TO HERE
T. Intell. Level| -- |ADD ez Set to blank (DEFERRED)
8. Form of 9 CHANGE POSITION |23 Set to blank (DEFERRED)
Reprod.
9. Form of 10-13| CHANGE POSITION |24-27| Trensfer contents
- Content
10. Govt. Publ. 14 | CHANGE POSITTON |28 | Set to blank (DEFERRED)
Indjcator
11. Conference 15 |CHANGE POSTTION |29 Set o blenk (DEFERRED)
12. Testschrift - |aDpD 30 | Set to blank (DEFERRED)
13, Index ~- |ADD 31 Set to blank (DEFERRED)

Body

CHANGE POSITION

Traisfer contents

ié. Lit. Group 17 DELETE -) o
16. Cancel Title |18 |DELETE —
Added Entry

oL

f:)

Y

FIG. 89 (Cont.)
FORMAT TRANSLATION TABLE FIXED LENGTH DATA ELEMENTS SEGMENT

OLD NEW
ELEMENT NAME POE. ACTION POS. CONTENTS, REMARXS, ETC.

17. TFiction —— | ADD ' 33 Set to blank (DEFERRED)

18, Biography — | apD 3k ‘Set to blank (DEFERRED)

19, Language - EXTRACT FROM 35=-37
Code VARIABLE FIELD The first and/or only
TAG 003 3—~character code is
placed here.

20. Modified —— | ADD 38 Set to blank (DEFERRED)
Record

21. Cataloging | -- | ADD 39 ¥ = LC (default)
Source

g08

nalh_

10.4.5 Modifications to Varisble Fields

1. Structure of MARC IT variable Field

Outline of Variable Fields

21 &

2129 Dats e Data ‘

o (4 6| Element 1 | &4 © Elsment 2 é r/T
“ | 9o Q o

L= = =

k= 49] [

= o _ _

a. Indicators

Each variable field will begin with two characters
which provide descriptive information about the
field. The contents of the indicators are
specified for the fields in which they are used
(see Fig. 88). If the indicators are not used with
a particular field, they will contain blanks.

b. Subhfield Codes

Varisble fields are made up of a single data element
or a group of data elements. The subfield code

precedes each data element in a field and identifies
the date element. The subfield code consists of two
characters: a delimiter (1F1¢) followed by a lower
case alphsbetic character. Subfield codes are

specified for each variable field in Section 10.5.k.

¢, Data Elements

A1l data elements in the variable fields may have
variable lengths.

d. Field Terminator
The field terminator code is 1316‘

The list in Fig. 90 contains the variable field tags used in
Santa Cruz file output by INFOCAL. These tags will be sequenced in the
record directory by the first digit of the tag. Within a block of 100
numbers, however, (e.g., the 600's, subjJect tracings) the tags will
appear in the order in which they appeared in the Santa Cruz file when it
was in its original format. The order of fields has not been changed

by processing through the INFOCAL program.

2. Reorganizaton of Tagged Fields

a. Reorgenization of Language Codes. The language code(s)

- m295 309

are stored in a variable field, Tag 003, in the INFOCAL record.
This must be altered to the revised MARC II specifications,
as follows:

(1) There will always be at least one 3-character language
code in each MARC II record. It will be stored in Tag 008,
fixed length datsa elements field, c.p. 35-37. If there is
only one code, there will be no variable field.

(2) If the work involves multiple languages or is a
translation, there will also be a variable field, Tag OLl,
to hold the entire language code string. Since the Santa
Cruz record in original format may have up to five languages
coded, it is possible that this feature will have to be
handled in the file translation process. The following
action will be taken:

Source Condition
(INFOCAL record) | Action

Test for presence of Tag 003 in
directory. If present, test
length of contents of

variable field:

(a) EQ 3 characters Move the 3-character code to Tag
008 fixed length data elements
field, c.p. 35-37. Purge the
directory entry for Tag 003.
Purge the variable field.

(b) GT 3 characters Retain the variable field codes
as they appear. Copy the first
3-character code into Tag 008
(but leave it in its original place
in the variable field also).
Change tag number from 003 to 0Ll
in directory entry. Restructure
directory entry as specified in
Section 10.4.3. Insert delimiter
"1F;ga" in c.p. 3-U4 at head of
variable field. Insert "O" in
Indicator 1 position in place of
INFOCAL wvalue, if necessary, as
specified in Fig. 88.

(e) NO Tag 003 present ERROR Routine: Insert "eng"
lower case) in Tag 008, c.p.
35-37. This is a default value.

| - .
ERIC - ~296- 210

b. Reorganization of Imprint Datsa Elements. The subfield code

jdentifies the constituent data elements of a variable field.
For example, the imprint field, Tag 260, mey have the following
three data elements with their respective subfield codes:

Place - "1F16a"
Publisher - "1Fgb"
Date - "1Fygc"

These data elements have been coded as tagged fields in
the INFOCAL version of MARC II. The coding must now be changed
to reflect the latest MARC II specification.

The changes are:

Tag

260 Place

261 Publisher

262 Date of
Publication

Disposition

No change to tag number. Directory entry must
be changed to MARC II format and the value

for field length of the reorganized imprint
field recomputed to reflect the addition of
publisher and place elements.

Tag number is obsolete and is deleted. The
field is dropped as a directory entry and its
length is sdded to that for place in the re-
computation of imprint directory entry values.
Insert delimiter "1F¢b" at head of data
element. Concatenste with place. Delete
extra two spaces for indicators at c.p. 1

and 2 of the cbsoclete field.

Tag number is obsolete and is deleted. Same
treatment as the old 261, except delimiter
"1Fgc" is inserted at head of dats element.

Note that as part of the general structural reorganization of
the file, a delimiter of "1Fj6a" must be inserted at the head of
the verisble field for imprint. In this case, it identifies

"place."

This will be accomplished by the routines to update INFOCAL
if they have not been inserted by the TRANSCOF algorithms done by

John Reinke.

c. Reorganization of Subject Subdivisions. The subject sub-

divisions are stored in varisble fields, tagged as follows,
in the INFOCAL record:

Tag
655
656
657

Type of Subject Subdivision

General subject subdivisions
Period subject subdivisions
Place subject subdivisions

=297 311

Only the Tag 655 ("General') has been used in the TRANSCOF
program. However, it must be altered as follows, to conform to
the revised MARC II specification for the LC subject heading
fielc.:

Tag Disposition
655 Delete directory emtry. Insert "1Figx" at

head of subject subdivision string. Purge
excess spaces at head of field. Concatenate
with preceding subject heading field, which
will be either a Tag 600 or 650,

600 /650 If affected by above subject subdivision,
recompute field length of subject heading now
including its delimited subdivieion.

All of the gbove special cases will affect the general re-
organization action on the directory, and the recomputation of
logical record length, etc., specified in part "e¢" of Section
10.4.3.2.

10.5 BSpecifications for Building a Santa Cruz - UC MARC File
10.5.1 Overall Record Structure
a. Tape Structure. Two modifications are adopted for SC: character

set and record blocking. The remainder of the MARC conventions (volume
and file leaders) are accepted.

b. Character Set. The translated Santa Cruz file will be stored and
maintained in standard 8-bit EBCDIC. See Appendix I to ILR Tech Paper
No. 2 for LC ASCII-EBCDIC conventions, to which this SC file will comply.

¢. Record Blocking. Record blocking will be utilized to gromote greater
tape processing efficiency. In order to allow records to be blocked on
magnetic tape, four bytes will be added at the beginning of each record.
The first two of these bytes will contain the record length in binary form;
i.e., the MARC record length (character positions @-4) plus four. The
second two bytes will contain blanks.

, g -k - R 23 ,
, 4 | Record
nnl ¥ ¥ pength - ;
Start of . Record Leader _
Logical
Record in MARC II
nn = total record length in binary form -

-298-_

FIG. 90:
VARTABLE FIELD TAG TRANSLATION TABLE
FIELD NAME INFOCAL TAG MARC 1I TAG
1. TFixed Length Data Elements 000 008
2. Local System Number 091 035
(INFOCAL Tag "¥U" = Tag
091, was used in TRANSCOF
program because 035 was
not implemented. This
is to contain the Shelf
Key Data from Santa Cruz
CT 000)
3. Lénguages (a varisble 003 okl
field used only when the work
is multi-language or a
translation)
4. Loeal Call Number] 090 | NC*
(santa Cruz)
5. Main Entry 1XX ~ NC
6. Uniform Title -) 200 oho
(Supplied)
7. Romanized or Trans-) 210 ek
literated Title
8. Title Statement - 240 i 245
9. Edition 250 Ne
10. TImprint - Place)) 260 NC
11. Imprint - Publisher 261 Delimiter: 1F (b
12, Imprint - Date] 262 Delimiter: 1F cc
13. Collation B 300 . Ne B
1L4. Series Notes 1 ouxx o
15. General Note - 550 500
16. Bibliography Note 500 504

313

FIG. 90 (Cont.):

VARIABLE FIELD TAG TRANSLATION TABLE

FIELD NAME INFOCAL TAG MARC II TAG

j—?i

Contents Note

520

505

18.

Subject Added Entries

6XX

19.

Other Added Entries

TXX

20,

Series Added Entries

8XX

A

The IBM Operating System will handle blocking and deblocking functions
automatiecally, with the following conventions:

1. Each block carries four initial characters in the form nn BY,
expressing block size.
Logical records are not split ~ »tween physical blocks.

3. Maximum block size is 3600 characters. Records larger than
3600 characters are unacceptable.

L, Blocks are varisble length.
10.5.2 Leader

Record and cempus ID codes will be added. Each addition is discussed
separately telow.

Statusr(;osipiqn 5); To comply with UCUCS requirements, insert an
BCL 1" to indicate first supplement.

Campus Code (position 8). Used to identify the single source of =a

record. The following code will be used for the 8SC translation:

¢ - Santa Cruz Main University Library

For Local Use (position 9-11). No change from thet specified in Fig.
85. The standard MARC II definition will apply to these positions.

Record ID Number (position 17-23). This is the accession number of the
record, and it will be used as a basic bibliographic record ID number.
The number is carried in EBCDIC representation and is right Justified
with leading zeros.

No change from that specified in Fig. 85. Number is machine-assigned
by ILR program to prepare file for input to TRANSCOF translation program.

10.5.3 Fixed Length Dats Elements Field - Tag 007 (UC M.)

A new control Field, 007, will be added. In the MARC record, a
ho-character field (008) contains fixed record descriptors. To avoid
redefinition of 008, a new 25-character control field will be defined.
It will consist of two areas: common and local.

The common area is defined as follows:

Date (position 0-3). This is defined the same as Date 1 in Field 008;
see Subscriber's Guide, p. 33-3k.

Language (position 4-6). This is a 3~character code, identiced to
that used in position 35-37 of Field 008.

Uikeyable Data Indicator (position 7). @ indicates no unkeysble
data in record; L indicates presence of unkeyable data in input
record. Set "D" in 8C file.

315

"By" Iandieator (position 8). @,1 used to iﬁdlcate presence/absence of
"by" statement in body of card; se

The local area consists of positions 9-24 and is available for local
campus use. Not used in SC file produced from this & recifiecation. Fill
with blanks. Note that the Santa Cruz file will contain both Fields 007
and 008 in the UC MARC format.

. Tield 007 will be constructed from data awvailable in Field 008
except where specified shove.

10.5.4 Variable Fields - Redefinition of Tag 090 (Local Holdings)

090 Local Holdings. Two basic items of information are to be stored in
this field: loeation and call number. The field consists of Indicator 1
and three gsubfields.

Indicator 1 ~ Used to carry campus code, &3 in position 8 of leader.
Insert "e¢" in Indicator 1 position, for Santa Cruz.

Indicator 2 - Insert a blank for Santa Cruz file.
Subfield Delimiters:

"lFlSa" - Consists of fixed and variable portion. Fixed portion
is b-characters of the form XX@@, where XX is branch
code and @@ is number of copies at the branch. Example:
"biOL4" = biology library, U4 copies. The remainder of
the $a subfield is variable and consists of the class

portion of call number.

In each Santa Cruz record, the fixed portion will be set
to "B¥O01l". Later, if codes are established for branches
at Santa Cruz, it may be possible to extract codes from
the original format information stored in c.p. 43-L45 of
the shelf key card (now Field 091 in the treanslated file).
This code ¢ould then be translated into the proper code
defined for storage in the UC MARC 090 field, fixed
portion.

It is assumed that there will be only one copy of the book,
in each case. Again, Uhis may be updated by subsequent
processing Ifrom the Santa Cruz shelflist information,
manual source if not availsble in the machine file.

The call number as found in the INFOCAL record, Tag 090
will then be concatenated to the above fixed portion.
All data and coding appended to the INFOCAL field will
then be purged. This data portion to be purged begins
with a "%" in ‘the INFOCAL record (set by default.by
INFOCAL). .

S16

"1F16b“ ~ Book Number. This element will not be identified at

this time. The delimiter will not be present..

" _ Other Information. This element will not be identified
at this time. The delimiter will not be present. (The
data will be present as part of the call number for both
these last two elements.)

13 - .
:LF:LGC

The format of the 090 holdings Ffield as set by default in the INFCCAL
program is:

iXxxxxxxxxzxxxxdic1%790x%01I

All data and coding to be purged are to the right of the arrow, sbove. The
leftmost "%" is also to be purged.

The revised field will lock as follows:

Call r.umber
unmber of copies at branch

_Branch code

| First subfield delimiter code

L _TIndjcator 2

L Tndicator 1

317

"

