
LJOCUMiT RESIAE

ED 0_1 975 LI 003

AUTE0 t Ral Ed,; A 11 ; Jdy

TITLE lin k.11. a ' t:ch

OomponerL. otudies. Fini1 Repor,.

'NSW UTION California Univ,e Berkel v Trist of Ljbrirv

Research.

SPON6 AGENCY Office of Education (WW) ., ,A/ shin

Research.

BUREATI NO BR-7-1063

PUB DATE Sep 71

GRANT 0EG-1-7-071083-5068

NOTE 317p.;(32 References)

Ed.

[3ureiu

EDRS PR]CE -$0.65 HC-$13.16
DESCRIPTORS *Bibliographic Citations; indexing; *Intorrnatior.

Retrieval; *Information Storage; *Information
systems; *On Line Systems; Program Design; Sed -h

Strategies

IDENTIFIvt: Berkeley; *University of California

ABSTRACT
Contained in this report are the results of the

second ph -.E! poly, 196'1 - June, 1970) of the File Organization

Project, directed toward the development of a facility in which the

many issues relating to the organization and search of bibliographic

records in online computer environments cou d be Thc paper,

in this volume deal specifically with issues and problems of

organizing and accessing large bibliographic files, and are entitled:

(1) An analysis of the search problem in files of object

descriptions; (2) The assignment of index toms; (3) Design of f le

structures for on-line bibliographic control systems; (4) The

analysis of bibliographic structures, using indexed sequential

organization; (5) First-stage model of the economic effects of

incorporating a data comprssion system into an on-line direct-access

storage and retrieval system; (6) Implementation of bibliographic

record compression; (7) Specification for format translation of the

santa Cruz file; (8) CRUNCH: the Santa Cruz file translation system;

(9) Prospects for automatic field recognition; and (10) Translation

from TUR proCeSSinq format to MARC II communications formats [Related
documents are LI 003610, LI 003611 and LI 003646 through LI 0036484]

(Author/8J)

DEPARTMENT OF HEALTH,
rrolop.Tinro p, tAFFI rolr
OFFICE OF EDuCATIDN

THIS DoCuMENT HAS FIESI-1 REERO-
CucED EXACTLY As REcriVED Rom
THE PERSON OH ORGANIZATION ORIU-
INATING IT poINTS OP \NEyv OR opIN
IONS STATED DO NOF NEcEssARILy
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION cEt policy

LC%

Cr%

17)

17=t+1

Lui

FINAL REPORT
Project No. 7-1083

Grant No. 0EG-1-7-071083-5068

THE ORGANIZATION AND SEARCH
OF BIBLIOGRAPHIC RECORDS:

COMPONENT STUDIES

Edited by

Ralph M. Shoffner
Jay L. Cunningham

Institute of Library Research
University of California

Berkeley, California 94y2o

September 1971

The research reported herein was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Education,
and Welfre. Contractors undertaking such projects under Govern-
ment sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office
of Education position or policy.

U.S. DEPARTMENT OF
UEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

TABLE OF CONTENTS

FacYe

I. AN ANALYSIS OF THE SEARCH PROBLEM IN FILES OF OBJEC
DESCRIPTIONS by Irene Travis

1.1 The Puipose and Scope of This Chapter 1
1.2 A General View of Object Description Files 1

1.2.1 Data Structure and Data Processing......... . 1
1.2.2 Object Descriptions - Entities, Attributes,

and Values 3

1.2.2.1 The Domain of Discourse 3
1.2.2.2 The Attribute Liqt 5

1.2.2.3 Attributes and Record Formats 6
1.2.2.4 Value Sets and Record Fields 7

1.3 Searching Direetories......,................... 8
1.3.1 The Query for a Directory Search 8
1.3.2 Retrieval Failures 9
1.3.3 Compensating for Formal Errors, Content Errors,

and Variants 10
1.4 Similarity Between Value Sets 11

1.4.1 Definition 11
1.4.2 The Three Types of Similarity between Value Sets. 13

1.4.2.1 Distributional Similarity 13
1.4.2.2 Functional Similarity 13
1.4.2.3 Elemental Similarity 16

1.5 Research 20
REFERENCES 21

2. THE ASSIGNMENT OF INDEX TERNS by Marcia Bates. . . .23

2.1 Summary of Study 23
2.2 Description of Study 23

2.2,1 The Hypotheses 23
2.2.2 Background 25
2.2.3 The Data Base 26
2.2.4 Tests on the Hypotheses 27

2.2.4.1 Basic Data on the File 27
2.2.4.2 The Minor Hypotheses 33
2.2.4.3 The Major Hypothesis 37

2.2.5 What Next? 42
2.3 Specific Tests and Data 43

2.3.1 1 ecise Description of Tests Made .43
2.3.1.1 Basic Data on the File 43
2.3.1.2 First Minor Hypothesis: Rate of

Addition of New Terms 46
2.3.1.3 Second Minor Hypothesis: Relative Ages

of Subject Fields 46
2.3.1.4 The Major Hypothesis 47

2.3.2 Raw Data from Tests 49
2.3.2.1 Basic Data on the File 49
2.3.2.2 First Minor Hypothesis: Rate of

Addition of New Terms 49

TABLE OF CO TENTS nt.)

2.32.3 Sucond Minor Hypothesis: Relative Ages of
Subject Fields., 49

2.3.2.4 Major Hypothesis 50

DESIGN OF FILE STRUCTURES FOR ON-LINE BIBLIOGRAPHIC CONTROL
SYSTEMS by Jorge Rodriguez 63

3.1 Introduction 63
3.1.1 Design R cuirements for Information Retrieval

SystPms 63
3.1.2 Objective of File Structures Analysis Task 64

3.2 General Model of a File Sysucm 64
3.2.1 Fundamental System Components............ 64

3.2.2.1 Storage Blocks
3.2.1.2 Information Linkage 67

3.2.2 Feasible Storage Blocks 69
3 3 Single Device File anization 70

3.3.1 Purpos-E., of Analysis 70
.3.2 Costs. 70

3.3.3 Assumptions 71

3.3.4 Analysis of Alternati-re Structure Concepts 72
3.3.4.1 Unfeasible Structures 72
3.3.4.2 Feasible Structures 75
3.3.4.3 Index File Segmentation Based on Index

Record Length 76
3.3.5 Evaluation of Mixed Structure 81

3.3.5.1 Case 1; N(M)<n-N(M). Largest Group of
Keys Less Than 50% of File

3.3.5.2 Case 2: N(M)<n-N(M). Largest Group of
Keys Greater Than 50% of File 82

3.3.6 Segmentation of Index Files Based on Key Length 83
3.3.6.1 Objective of Analysis 84
3.3.6.2 Storage Minimization 84
3.3.6.3 Processing Cost Minimization 85

3.3.6.3.1 Design of Optimization
Procedurx. 86

3.3.6.3.2 A3gorithm for Search Processing
Cost/Total Processing Time
Optimization 86

3.2.6.3.3 Parameters 87
3.3.7 Segmentation of Index Files Based on Usage

Frequency 94
3.4 Consideration of Request Utility as a Function of

Average Retrieval Time 96

APPENDIX: PARAMETER DEFINITIONS FOR FILE STRUCTURE ANALYSIS 98

TABLE CF CONTENTS (Cont.)

Page

4. THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES, USING
INDEXED SEQUENTIAL ORGANIZPT1ON by Jorge Hinojosa. . 101

4.1 Introduction .. 101
44.1.1 Object 101
44.1.2 Cost Relations ,.. 101
44.1.3 The Problem 103

44.2 Genera] System Structure 103
44.2.1 File Structures Selected for Analysis 103

4.2.1.1 Access Record Mapping 103
4.2.1.2 Connection with Previous Analysis 105
4.2.1.3 Record Format 108

44.2.2 Comparison of Structures 5 and 7 108
4.3 Division of an Index File Based on Key Len, hs 109

4.3.1 Cost of Storage 110
44.3.2 Cost of Time 111
44.3.3 Dynamic Programming Formalat on 112
4.3.4 Solution of the Problem 115
4.3.5 Sample Comeutations and Results 115

4.4 Division of an Index File Based on Usage Frequency 117
44.44.1 Assumptions 117
)].4.2 Condition for Feasibility 117
4.4.3 Reuuired Distribution 119
4.44 Growin-,-, Rate of Indexes 120

4.4.4.1 Small Files 120
4.4.44.2 Large Files 121

4.44.44.2.1 Case A 121
4.4.4 .2.2 Case B 121

4.4.5 Conclusions . 123
4.4.6 An Extension 124

4.5 Estimation of Overflow Areas for Index Files 12.1J

4.5.1 Overflew Records 124
4.5.2 Probabilistic Model 124

4.5.2.1 New Key Expected Inseiuion 125
4.5.2.2 Estimation of Overflow Areas 125

4.5.3 Alternative Estimation 126
11.6 Allocation of Non-Keyed Records to Storage Blocks 127

4.6.1 Mathematical Model 127
4.6.2 Inefficiency of Random Allocation 129
4.6.3 Computational Tool 129

4.7 Estimation of Overflow Areas for the Pointers File 130
44.7.1 Former Scheme 130
44.7.2 New Scheme 130
4.7.3 Differences 131
4.7.4 Stochastic Model 131

44.7.44.1 Assumptions 131
4.7.4.2 Proof of Stationarity 132
4.7.4.3 Distribution of Xij 133

4.7.5 Estimation of Overflow Space 135

TABLE OF CONTENTS (Cont.)

Faze.

4.8 Mul iple Device Systems 136
4.6.1 General 136
4.8.2 DASD Control Units 136

4.8.2.1 Device Combinations = 136
4.8.2.2 Device Selection 136

4.8.3 Cost Comparisons 137
4.8.4 Vertical Division of a File 137

4.8.4.1 Usage Frequency Distributions 140
4.8.4.2 Cost Equations 141
4.8.4.3 Equivalent Problems 142
4.8.4.4 Required Curulative Distribut ons 142
4.8.4.5 Program DUODEV 147
4.5.4.6 Some Results 147
4,8.4.7 An Extension 148

4.8.5 Conclusions 151

5. FIRST-STAGE MODEL OF THE ECONOMIC EFFECTS OF INCORPORATING A
DATA COMPRESSION SYSTEM INTO AN ON-LINE DIRECT-ACCESS STORAGE
AND RETRIEVAL SYSTEM by Kelley L. Cartwright 155

5.1 Introduction: Compression and Coding 155
5.1.1 The Adval +ages and Constraints of Compression 155
5.1.2 Coding Procedure .156

5.2 A Model of the Effect Upon System Costs of Incorporating a
Huffman Coding Scheme into a Storage and Retrieval System.157
5.2.1 General Effect Upon the System 157
5.2.2 General Evaluation Criteria 158
5.2.3 General Model............ 158
5.2.4 Analysis of Variables 159

5.2.4.1 Step 3: Machine Processing Prior to
Storage 159

5.2.4.2 Step 4: Storage on Disc 163
5.2.4.3 Amortization of Costs of Steps 3 and

4 (a) 164
5.2.4.4 Step 6: Retrieval of Citations......, 164
5.2.4.5 Step 7: Processing of Citations for

Output . 164
5.2.5 Huffman Codes 167

6. IMPLEMENTATION OF BIBLIOGRAPHIC RECORD COMPRESSION
by Vikas Sahasrabudhe and Ashok Kulkarni 171

6.1 Overview 171
62 Record Encoding 171
6.3 Table Structure 172

6.3.1 First Letter Tables 172
6.3.2 Second Letter Tables 174
6.3.3 Encoding Example 176

6.4 Record Decoding 181

TABLE OF CONTENTS (Cont.)

Page

6 4 1 Decoding Table Structure 181
6.4.2 Decoding Example 182

6.5 Frequency Analysis and Alphabet Selection 185
6.5.1 Exte_ision to Digrams 165
6.5.2 Extension to k-Grams _187

6 6 IBM 360 Implementation 167
6.6.1 Analysis P mgram 188

6.6.1.1 COUNT (TABLE1, TABLES, NUMBER, NARC,
MARKER, TAB2NM, TOTAL)....., 189

6.6.1.2 ADJUST 1914

66.1.3 HUFTRE 197
6.6.1.4 HUFCOD 199
6.6.1.5 IODISK TABLE', TABLES, TAB, TREE) 201

6,6.2 ENCODE 201
6.6.3 DECODE 202
6.6.4 Extension of Program for Inclusion of k-Grams

(k',3) 205
6.6.5 Program Operation and Results 206

6.7 Results 208
6.1.1 Initial Method 208
6.7.2 Second Method 208
6.7.3 Third Method 208
6.7.4 Effect of Var.1,-ing Source Alphabet Size 209

7. SPECIFICATION FOR FORMAT TRANSIATION OF THE SANTA CRUZ FILE..............by Jay L. Cunningham 213

7.1 Introduction 213
7.1.1 Translatior from Santa Cruz Original Format to

ILR Tnput 216
7.1.2 Translation from ILR Input to ILR Processing

Format 216
7.1.3 Translation from ILE Processing Format to

(Latest) MARC II 216
7.2 Translation from Santa Cruz Original Format to ILR

Input 217
7.2.1 Condition of Source File 217
7.2.2 Format Translation Tables to Achieve ILR

Input Format 217
7.2.3 Notes to Figure 67 217

8. CRUNCH: THE SANTA CRUZ FILE TRANSLATION SYSTEM
by John M. Reinke .

8.1 Introduction 235
8.1.1 Main Program: LAYOUT1 235
8.1.2 Subprogram: STRINGER 235

8.2 Subroutine E8200500 236
8.3 Subroutine ADDALG 236
8.4 Subroutine BIBLIO 237
8.5 Subroutine PPD 237
8.6 Subroutine PETSAUTH 239
8.7 Subroutine TITEALG 239

9.

1\BLE OF CONTENTS nt.)

PROSPECTS FOR AUTOMATIC FIELD RECOGNITION by John M. Reinke

9.1 Introducti
0.2 An Example of the Proposed Use of Pre-scanning in

Algoritnm Design
9.3 A Proposed System for AFR Algorithm Development
9.4 Advantages of the AFR Algorithm Development (AFRAD)

System
9.5 Remarks on Sampling
9.6 Pre-scanning and Mapping
9.7 Automatic Language Recog n

Page

249.

249

0
252

254
255
256
257

9.7.1 Subroutine #1 257
9.7.2 Subroutine #2 258

10. TRANSLATION FROM ILR PROCESSING FORMAT TO MARC II
COMMUNICATIONS FORMAT by Jay L. Cunningham 265

10.1 Introduction 265
10.1.1 Purpose 265
10_1.2 Scope 265
10.1.3 Conbents 265

10.2 Narrative Description of Overall Program Structure 265
10.2.1 Housekeeping 265
10.2.2 Read the Next IDP=OCAL Record to an Input Buffer 265
10.2.3 Shredout of INFOCAL Record Directory 265

10 2 3 1 Major Loop 265
10.2.3.2 Bookkeep$ng 266

10.2.4 Major Loop 266
10.2.5 Create Fixed Field 008 266
10.2.6 Create New Leader 266
10.2.7 Create New DirectorY 267
10.2.3 Write the Completed Record to Output Storage 267
10.2.9 End of File Check 267

10.3 Flowcharts 270
10.4 Summary of MARC II Rec rd Structure CommunicaLion

Format) 280
10.4.1 Modifica 'ons to Overall Record Structure to

Produce a Revised MARC II Record 280
10.4.1.1 Field Terminators 280
10.4.1.2 Subfield Delimiter Codes. 281
10.4.1.3 MARC II Indicators 1 and 2281

10.4.2 Modifications to Leader 282
10.4.2.1 Structure and Content of MARC II Leader 282
10.4.2.2 Changes in INFOCAL Leader - Translation

Table 283
10.4.3 Modifications to DirectorY 285

10.4.3.1 Structure and Content of MARC II
Directory 285

10.4.3.2 Changes in INFOCAL Directory 286
10.4.4 Modifications to Fixed Length Data Elements Field 291

TABLE OF CONTENTS (Cont.)

10.4.4.1 Structure and Content of MARC II Tag
005 Field 291

10.4.4.2 Changes in INFOCAL Fixed Length Data
Element Field - Translation Table = 293

10.4.5 Modifications to Variable Fields 295
10.5 Specifications for Building a Santa Cruz UC MARC File 298

10.5.3 Overall Record Structure 298
10.5.2 Leader 301
10.5.3 Fixed Length Data Elements Field - Tag 007

(UC MARC) 301
10.5.4 Variable Fields - Redefinition of Tag 090

(Local Headings) 302

Figure

LIST OF FIGURES

Title PElEe

CHAPTER 1: AN ANALYSIS OF THE SEARCH PROBLEM IN FILES OF
OBJECT DESCRIPTIONS

1. One Value Associated with Elements from 2wo Different
Sets of Entities 4

2. Two-by-Two Contingency Table 12

3. Functional Similarity 18

Elemental Similarity 19

CHAPTER 2: THE ASSIGNMENT OF INDEX TERMS

5. Distribution of Number of Applications (Tokens) of Unique
Headings (Types) 28

6. Distribution of Documents by Number of Subject Headings
Assigned 31

T. Characteristics of the File 32

8. Number of Documents Indexed and Subject Headings Introduced,
1880-1967 34

9. Blow-Up of Fig. 8 with Mean Number of Subject Headings
Assigned/Doc and Number of Documents and Subject Headings
(1912-1948). 36

10. Mean Co-Assignment for Differences betw en Mean Date and
Date of Individual Application 38

11. Mean Co-Assignment for Differences be ween Earliest Date
and Date of Individual Application (Sample BaseP20 Only), . . 41

CHAPTER 3: DESIGN OF FILE STRUCTURES FOR ON-LINE BIBLIOGRAPHIC
CONTROL SYSTEMS

12. Types of Storage Blocks (SB' 67

13. Types of Information Linkages 68

14. Unfeasible Blocks 69

7015. Processing Cost Curve

FI u

LIST OF FIGURES (Cont.)

Title
P!11.4

16

17.

18.

Unfeasible Structures.

Feasible Structures

Distribution of the Number of Records Associat d to Each
Key

74

77

79

19. Structure 6 ("Mixed") 80

20. Structi_ 7 ("Modified Mixed") 60

21. Distribution of Key and Record Lengths 84

22. Matrix for K 90

23. Total Cost/Total Processing Time 93

24 . Usage Frequency Distribution 94

25. Average Request /Average Retrieval Time 96

26. All Requests $/T P T. 97

CHAPTER 4: THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES,
USING INDEXED SEQUENTIAL ORGANIZATION

27. Operational Cost of a File 102

28A. Manping of Master Records into Access Records for
Structure I 104

28B. Mapping for Structure II 104

29A. Feasible St uctures: Structure 5a - Fixed-B ocked Ulait
Lists 105

29E. Structure 7 - "Modified Mixed" 205

30. Structure 7 - "Modified Mixed" with Two-Level Lists 107

31. Key Length Distribution 108

32. Pointers Distribution 108

33. Costs for a Divided File as a Function of the Set of
Division Points (Di) 111

LIST OF FIGURES (Cent.)

Figure Title Pa_fit

34. Flow Chart for Dynamic Programming Computations 114

11535. Parame rs and Cost Values Used

36. Cost per Request as a Function _f the Ratio System Volume-
File Size for Five Different Division Strategies 118

37. Required Cumulative Distribution . .. 119

38. Cumulative Required Distrlibution - Case A 122

39. Network Representation 128

40. Representation of Transition Probabilities 134

41. Total Search Cost per Request as a Function of the Ratio
System Volume-File Size, for Different Devices 138

42. Total Search Cost per Request as a Function of the Ratio
System Volume-File Size, for Different Devices 139

43. Usage Frequency Distributions 140

44. Normalized Usage Frequency Distribution 141

45. Cumulative-Required Distribution for a Two-Device
File (2314-2321) 143

46. Cumulative-Required Distribution for a Two-Device
File (2314-2321) 144

47. Cumulative-Required Distribution for a Two-Device
File (2314-2321) 145

48. Artificial Cumulative Usage Frequency Distribu ions 146

CHAPTER 5. FIRST-STAGE MODEL OF THE ECONOMIC EFFECTS OF
INCORPORATING A DATA COMPRESSION SYSTEM INTO
AN ON-LINE DIRECT-ACCESS STORAGE AND RETRIEVAL
SYSTEM

49. Index of Variable Names 161

50. Conbined Model . 166

51. Reduction of a Set of Probabilities 168

16852. Creation of a Compact Code .

LIST OF FIGURES (Cont.)

Fig,ure Title Page

53. Effect of Character Frequency on Number of Bits of
Compact Variable-Length Code for 6-Character Alphabet 169

54. Tree Structure for Computing Huffman Code Lengths 170

CHAPTER 6: IMPLEMENTATION OF BIBLIOGRAPHIC RECORD COMPRESSION

55. Examples of Termination Ent ies for Illustrative Huffman
Codes 173

56. List of Digrams for the Encoding Example. 176

57. Example of First- and Sec nd-Letter Tables 178

58. Con-vcrcion Table 179

59. Probabilities and Huffman Codes of Characters
c2, c3, c1c2, c2c3, and c4 183

60. Data Analysis CSECT Function and Parame _s 190

61. Layout of Count TableQ 192

62. Structure of Tree Array 197

63. Encoding Process 203

64. Compression Results 209

65. Huffman Coding Procedure Results 212

CHAPTER 7: SPECIFICATION FOR FORMAT TRANSLATION OF THE
SANTA CRUZ F:LE

66. Santa Cruz File Translation Run 215

67. Format Translation Table I-Field Segment. .. 218

68. Fixed-Length Publication Dates Logic. .. . 223

69. Logic for Type of Added Entry Code - Serie-s 225

70. Format Translation Table A-Field Segment 226

71. Data Element Patterns and Associated Coding Imprint Field . 230

72. Format Translation Table B-Field Segment. 231

12

LIST OF FIGURES (Cont.)

Titlo Page

73. Disposition of Shelf Key Data CT 000 - Shelf Key Card,
Santa Cruz 233

CHAPTER 8: CRUNCH: THE SANTA CRUZ FILE TRANSLATION SYSTEM

74. Flowchart of Sbrctirie ES200500 241

75. Flowchart of Internal Subroutine ADDALG 242

76. Flowchart of Internal Subrouti BINLIO 243

77. Subroutine PPD Flowchart 244

78. Flowchart of Subroutine PERSAUTH 247

79. Subroutine TITLEALG Flowchart . 248

CHAPTER 9: PROSPECTS FOR AUTOMATIC FIELD RECOGNITION

80. Unique Diatable Displacement Values 260

81. Short Words Commonly Found in Several Foreign Languages . . 261

82. Language Recognition Algorithm #2 Flowchart 263

CT-TATTER 10: TPPIWILATION FROM TLR PROCESSING FORMAT TO MARC
II COMMUNICATIONS FORMAT

83. Tag Translation Table 268

84. Dirt. tory Re-building Control Table 269

85. Format Translation Table Leader Segment 283

86. Indicator Revision. 286

87. Infocal Directory Entry Structure 287

88. Reorganization of Indicator Value.s 288

89. Format Translation Table Fixed Length Data Elements
Segment 293

90. Variable Field Tag Translation Table. . 299

Table

LIST OF TABLES

Title

CHAPTER 2: THE ASSIGNMENT OF INDEX TERMS

1. Rate of Addition
per Document ..

Rate of Addition
Earliest Date of

Relative Age of

of New Terms: Date and Mean Headinos...
of New Terms: Mean Publication Date and
Appearance

ubjeet Fields

IN

Major Hypothesis Data: Mean Date of Publication

5. Major Hypothesis Data: Earliest Date of Publication .

Page

.51

53

55

57

59

CHAPTER 4: THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES, USING
INDEXED SEQUENTIAL ORGANIZATION

6. Minimum Total Search Cost per Request (Dollars) : : 116

7. Percent of Records in Each Subfile 116

8 Cumulative Required Distribution, Case B 123

9. Comparison of Search Costs for Two Syr-ferns 143

10. Total Sear h Cost as a Function of la Volume for a
Two-Device File 149

11. Total Search Cost per Request as a Function of Systev Volume
for a Two-Device File 150

12A. Total Search Cost per Request for a Two-Device File, Based on
Usage Frequency Distribution and Key-Length Distribution , . 153

12B. Comparison of Total Search Cost per Request, for Three
Basic Structures

CHAPTER 6: IMPLEMENTATION OF BIBLIOGRAPHIC RECORD COIRESSION

154

13. Results for Huffman-coding Procedure for Characters and Digrams
in 200 LC MARC II Records 211

FOREWORD

This report contains the results of the second phase (July,
- June, 1970) of the File Organization Project, directed toward

the developmPnt of a facility in which the many issues relating to
the organiz,-,tion and search of bibliographic records in on-line com-
puter environmentE could be studied. This work was supported by a
grant (0EG-l-7-07 i83-5068) from the Bureau of Research of the
Office of Educaticn U.S. Department of Health, Education, and Welfare
and also by the Univ,±7sity of California. The principal investigator
was M.E. Maron, Professor of Librarianship and Associate Director,
Institute of Library Research; the project director and project manager
7,;ere, respectively, Ralph M. Shaffner and Allan J. Humphrey, In titute
of Library Research.

This report is being issued as seven separate volumes:

Shoffner, Ralph M., Jay L. Cunningham, and Allan J. Humphrey.
The Organization and_Search of Bibiipgraphio_Repords in On-
LinampEtfl-_Systems: _Project Summary.

Shorfner, _Ralph M. and Jay L. Cunningham, eds. The_OrgEtniza ion
and Search of_Bibliographic Records: Com onent Studies.

Aiyer, Arjun K. The CIMARON System: Modular Programs for the
Organization_and Search of_Large_ Files.

Silver, Steven S. INTX: Interactive Assembler Lanua.e
Inter reter Users' Manual.

Silver, Steven S. FMS:_ Users' Guide to the Format Mani ul-,ion
SyRt2E._yor Natural LanLuaLe Documents

Silver, Steven S. and Joseph C. Meredith. DISCUS Interactive
Sstem Use7s' Manual.

Smith, Stephen F. and William Harrelson. TMS: A Terminal Monitor
2x212m for Information Processing.

Because of the joint support provided by the Information Processing
Laboratory Project OEG 1-7-071085-428) for the development of DISCUS
and of TMS, the volumes concerned with these programs are included as
part of the final report for both projects. Also, the CIMARON system
(which was fully supported by the File Organization Project) has been
incorporated into the Laboratory operation and therefore, in order
to provide a balanced view of the total facility obtained, the volume
is included as part of the Laboratory project report. (See Maxon, M.E.
and Don Sherman, et al., An Information Processing Laboratpry for
Education and Research in Librarr Science: Phase 2. Institute of
Library Research, 1971.

-xiv-

Iia

ACKNOWLEDGEMENTS

This volume contains the results cf insti'..ute work dealing
specifically with issues and problems of organizing a_ld accessing
large bibliographic files. For the most part, each chapter was written
by the staff member actually conducting the study. We grateful r

acknowledge Irene Travis, Marcia Bates, Jorge Rodriguez, Jorge Hinojosa,
Kelley Cartrright, Vikas Sahasraboudhe, Ashok Kulkarni, Jay Cunningham,
and John Reinke.

In addition to the auhors, many Institute stuff members contributed
their special abilities tLward completion of the File Organization
Project. Because the study itself was broad in scope, there wer,_ varied
tasks requiring the talents of a wide spectrum of people. In particular,
much of our work involved considerable computer programming, without
which these particular studies could not have been accomplished.
Specifically, we wish to thank for their design and programming efforts
Ar,iun Aiyer, Dennis Fried, Bill Harrelson, Birdie Hodges, Steve Johnson,
INTareL Kripalani, John Reinke, and Steve Smith.

Finally, we wish to thank and to commend the work of those who
worked with special zest in the preparation of these pages: Carole Fender,
Linda Herold, S--ott Herold, Jan Kumataka, Pat Oyama, and Rhozalyn Perkins.

1. AN ANALYSIS OF THE SEARCH PROBLEM IN FILES
OF OBJECT DESCRIPTIONS

Ey Irene Travis

1.1 The Purpose and Scope of This Chapter

This chapter is intended as an initial exploration of "the
search problem" for the File Organization Project of the Institute
of Library Research at the University of California at Berkeley.
To avoid any misapprehension of its scope and purpose, it ser '-
appropriate to clarify immediately what is meant here by "the
search problem." As a topic in the literature of information
retrieval, "the search problem" refers, in fact, to a variety
of topics. Two of these will now be specifically excluded from
consideration. The first is the common definition of "the
search problem" as minimizing the time required to find an item
in a machine store. The other topic excluded is "the search
problem" as that of finding "relevant" documents, the point of
view of the literature searcher. The focus will be instead, on
record retrieval, on the problem of retrieving reco ds corres-
ponding to a searcher's query.

Bibliographic files will be used as examples, but the anal.sis
extends to a considerably larger class of systems, as will be
,lear in the course of the discussion. The aim of this chapter
is to obtain an overview of the problems of searching files
like bibliographic files without limiting -btention to any one
such set of records. In the course of this discussion, the
construction of files, the problems of sec.rcil:Ing them, and the
nature of the tools vhich a system might _icorporate to aid in
file search will be examined.

1.2 A General View of Object Description

1.2.1 Data Structure and Data Processing

The we,y- in which man stores his knowledge of ILla world in
his brain and nervous system, processes it, and convrts the
results to a form suitable for communication with ot_er men, is
little known at present. Since man learned to record his
communications in more or less permanent media, however, certain
types of information which we use have come more and more to be
stored externally; that is, stored in graphic, written, sound-
recorded, or other forms. Indeed, the amount of information
about the world which is now accumulated is far too vast and
particular for more than a minute part of it to be held in
human memories at any one moment.

Information, whether in the brain or in some external form,
is used and modified in many ways for many purposes. The type
of processing possible is clearly related to the nature of the
information and the way in which it is structured, but onr know-

ledge of these matters is as yet quite limited. The most complex
forms of storageiand processing are still those confined to the
human brain, despite the fact that for certain classes of data
and processes, the electronic computer is a far faster and more
reliable tool. In other words, the brain is still the only means
we have for storing certain daLa in ways such that, ceftain
classes of processes ca :c. be performed on them. The coalescing
and transfoimation of data involved in determining the meaning
of a sentence is an example of such a class of processes. Writiags
in natural language are processable only in very limited ways,
without transformation, either by machine or by the brain. Each
must transform it to other data structures before complex pro-
cessing can be done. In recent years as the amount of informa-
tion has increased, problems associated with organizing these
external stores in a fashion useful for machine processing, that is,
of discovering methods for the external processing of the exbernal
stores, have received even more attention.1'2

If we lool: at the kinds of data which have been successfully
used by machines to this point, we find that much of it can be
characterized as descriptions of objects or "entities": persons,
buildings, organizations, filing cabinets, books, etc. A large
sub-class of such data are those which are observations of
entities involved in systems which ,_an be adequately represented
by some mathematical -Dr statistical model, such as the struc-
tural aspect of a building. The rules for manipulating such
quantitative data are "formal": they are independent of the
particular datum. The machine can manipulate these data not
only as well as the human brain but with a speed and accuracy
many times greater than any person. Those descriptions, on
the other hand, which are not observations from a system which
can be adequately represented formally are frequently a mix-
ture of strings of words and some measurements. The kinds of
data contained in personnel records is a good example. It is
this latter type of data with which we will be concerned.

Apart from updating, matching, sorting, and counting of
reco ds are the most usual types of processing carried out on
such descriptions. Its purileE_I_R_usually one or a combination
of the following:

Pindin:infoation about individual ob'ects;

Allowing the generation of quantitative data about the
as a means of char-

acterizing the file or the group of objects described;

Creting a directory to the objects described.

Few of such data retrieval systems are used for any one of these
purposes exclusively.

- -2.-

18

The processes which support even these purposes in our pr_-ent
systems, although very fundamental and very useful, are still
quite limited. Such determinations as, for example, set member-
ship using non-numeric data may be difficult. Membership fre-
quently cannot be decided by any of the order relations such
as "less than" or "greater than" which are ver,r powerful for
numeric data, nor, sometimes, will the list of possible members
or non-rembers be enumerable and storable. An example of such
a difficult determination is the recognition of personal names;
another, the d3termination of the language of a string. This
tyre of knowledge does not have to be explicitl:y stored for the
human user of the library catalog, for instance, who recognizes
such distinctions with little difficulty, but the machine al-
gorithms for recognizing these accurately are as yet rudimentary
and troublesome to develop. In truth, the manner in which
humans make these inferL_ices is not formally understood, and
the developm nt of data structures for machines to allow the
simulation of such capabilities is still in its infancy. Our
present programs can use only a limited but important class of
formal clues, such as the punctuation of the string or the
occurrence of certain symbols.of words, although this approach is
sufficient for certain applications. It is the search problem
in files of observations of this class of largely non-quantified
object descriptions which we will now explore in this paper.

1.2.2 Object Descriptions - Entities, Attributes, and Values

1.2.2.1 The Domain of Discourse

The domain of discourse of a file is that set of objects
or entities which is described in that file. These descriptions
are the values ascertained for certain properties or attributes
of these entities. For example, if the objects are people, Iire
might wish the values of attributes "height," "weight," "vision"
or similar characteristics; in other cases we might be more
concerned with attributes such as "highest academic degree" or
"number of years experience as a supervisor." These attributes
would have values such as "150 lbs." or "20-40," or "M.A."
Values_, then, are the data in the file.

These values are each associated with an element of the
domain of discourse; however, given these data Or, in other
words, simply looking at a previously prepared description, there
are several alternative ways of associating these values with
entities. In other words, there is usually more than one pos-
sible kind of object in domain of discourse of the file. The
reason these alternative analyses can exist is that frequently
the value of -)ne attribute of an entity may itself refer to
another entity. For example, monographs have an attribute
"author" which frequently has as a value a name of a person.
The person, however, is also an entity with an attribute 'Tr
whose value is the same as that of "author." (See Fig. 1)

The discussion of the domain of discourse presented in "Analy-
tic Tnformation Retrieval" by L.E. Travis3 bears on this point.
If a file is a set of descriptions of some homogeneous class nf
objects, as is a file used primarily as a directory to that class
of objects, L.E. Travis calls this class the "primary members of
the domain of discours,!." The other entities to which the data
also refer are termed the "s condary members." The three types
of file use which might lead the system designer to consider
these secondary _r_embers and their relations to one another and
to the primory members are roughly parallel to the three general
uses described above. They are:

a. Retrievin data about the secondar entities themselves
e.g., finding the death date of an author from the
catalog entry of one of his books.

b. Counting the number of members of various sub-groups in
order to characterize a set of secondary members of the
domain of discourse. E.g., how many different publishers
are represented in the catalog of the University of
California library? Has the distribution of publishers
altered radically within the last ten years?

c. Utilizing information about the secondary entities to
discover which primary member in the directory might
be of use.

FIG. 1:

ONE VALUE ASSOCIATED WITH ELEMENTS FROM TWO
DIFFERENT SETS OF ENTITIES

Ob cts: Monograph

Attributes:

Pe son

Authors Name

Values: g Smith

I

C
+

(1
)

(F
ri

1-
11

)

p
H

 C
L

0
H

.
co

 1
0

hi
P

 0
 H

I)
 0

 0
 H

.
10

D
.;

C
L

c-
F

 5
 c

o
pi

H
. W
H

-&
p

H
cf

. p
0

C
D

 4
 It

 c
+

0
4

C
D

1P
c+

 H
. n

0
0

c+
H

.
c+

 M
 0

 c
o

H
p

0
0

P
-

M
c-

F

d
H

c+
11

t4
H

1-
1c

+
H

.
P

0.
 0

cr
t .

0
p

H
pc

i-
C

LH
H

H
14

g
P

 0
it

H
.

fD
1

c+
I

0
H

. 0
E

fD

01
:1

'

0
0

&
11

t0

P
 H

)
10

 0
 P

 H
 H

b
P

 P
c+

p
cy

'
m

nO
,

C
D

,0
1

fl)
E

fl
(1

)
L-

F
p

P
O

H
. (

+
0,

P
 1

0
0

I-
6

cF
cF

 0
 d

fD
H

. c
1.

10

0
11

 0
 1

1
0

/I
c+

 t4
1

c+
H

. c
+

6
11

tP
fD

00
0'

10
11

0
(D

c1
.

c+
c+

 1
11

 1
-4

)P
0p

.M
o

F
o.

 0
 H

0
co

 0
11

P
H

C
+

i
kJ

'
n

11
 0

d
p

c+
 C

D
It

11
 1

 0
 0

0
D

I
p

H
. M

 0
 1

1
F

d
M

O
H

P
H

fD
It

0
C

D
c+

 a
D

0
M

t1
H

. r
n

1,
y1

H
.

cf
r

g
0

H
. 0

c+
 H

-
C

.1
1

c+
0 (1

)

d
0

0
H

. 0
 0

C
C

i3

H
(1

)
D

l
P

I I
d

0
m

c+
p

M
ci

]

P
H

IL
P

00
M

H
.

ed
.

C
in

o
O

w
0

C
D

 0
 p

 c
+

11
 H

p
H

c-
s.

H
 5

1
0

C
D

11
c+

H
 H

. 0
 0

 H
.

N
c1

. 0

'7
1

C
+

 e
l7

0
P

1-
4

0-
H

 c
f H

..
0

H
.

P
0

c+
co

a)
-

c+
0"

0
0

0
0

m
4

11
g

11
H

)
01

C
D

th
H

in
D

11
1

P
0

H
M

H
E

n
@

0
rD

 0
 c

t
o

co
cf

n
c+

n
H

.
0

0
H

.
,,,

0
H

 H
.

R
L

I
(1

1:
1

D
I 0

c+
 0

1
IH

)
H

..
C

a
0

11
It

1H
 P

 1
1

c+
. M

i t
d

H
. P

 d
 p

0
,c

+
H

. H
. I

H
i 0

 0
 0

 fD
H

.
11

H
. 0

' 0
 l'

10
'

10
U

1
0

0
C

D
1-

1)
.0

 M
C

D
.

0
.4

 H
p

0
H

 0
\0

 I-
:'

P
)

5
IH

!*
 0

!P
4)

!
c"

"
5!

Il
:

00
0c

F
11

H
-0

0-
-q

0c
+

05
:c

+
O

P
: 0

 ,P
0'

 0
 C

D
d

0
d

0
0

11
'

...
.-

--
-.

p
H

..
co

'rl
o

0'
H

. 0
0

H
. 0

 0
.'

1
1
'

ID
,

H
0

In
!,0

I
p,

11
.

c_
,,,

H
 1

-/
ti

M
C

D
 M

 p
0

1-
.3

00
H

P
rD

'o
llc

io
n

H
m

..t
ri.

dF
'1

1)
.,

H
o

m
0

c+
 C

a
0

0
c+ 0

0
ti.

tn
,

'.
H

.,
H

.
!.-

-.
IH

'.
ct

 0
 0

 P
a

ci
-

0
H

pH
-0

0
ao

lu
ip

ul
op

0H
c-

l-
0.

' 1
0

0
C

i)
H

. 0
 c

+
 0

 p
)

(-
IE

. 0
IT

H
. 0

 C
D

 0
 H

.
0

c"
+

' 0
 '4

4
0

H
,.'

0
H

.
5

E
d

H
 E

 _
F

t d
 c

t
-

ro
,&

, a
.
0

p

c+
pi

 0
a-

p
I'd

i--
I

nr
)

.0
 0

 c
+

m
 p

 m
 1

-3
 c

F
.:

m
.

.c
F

. 1
c+

 '0
 0

M
.

0
2

11
,

IH
5

/I
0

P
)

1-
1

I-
4

C
D

d
d

11
cF

H
.

G
iti

.
1-

1,
 e

L4
1

H
. H

. ,
p"

!,.
1H

.
11

P
 c

a
pc

-F
nn

e
or

..p
00

H
.

H
.

0
fr

_l
el

H
. c

+
0

0'
'-,

',1
,

1-
3

V
 d

 0
 0

 0
11

 m
D

O
H

O
P

pH
-0

,7
F

.
0

H
..

M
It

1
P

 0
0

c-
,,.

 0
 c

+
1

H
.

1-
1

cr
 p

i,
fiD

a)
cF

.
4

o
H

.
0

4'
'

'..
1

H
. P

. 0
 0

'
0

M
g

'.
E

I'D

5
4'

'

H
C

I
F

t 6
 ,I

l
.1

.
'H

y
.

0
'

0
H

. M
 c

+
 0

 P
. 0

,
0

p
G

ill
H

.
C

T
'

ID
 5

H
I;

0
p

10
'

00
11

cF
P

00
0q

00
P

O
H

.0
,.

dM
0c

t.H
..0

0
I-

1-
' ,

F
it-

qi
-

1:
1 (-
4

1

si
:ji

f
1C

,
'1

31
-'

c+
'r°

c (1
.

f,Y
D

-

.5
s'

,
cc

;
l'-

D
O

C
a

H
.

1
0'

 0
1

0
0

p
C

a
m

I-
J.

0)
 0

 1
, H

c+
H

I c
f

c-
F

 0
 M

I
0,

lb
""

It
H

. 0
 H

 .h
t

p
c.

1-
o

0
co

0
0

H
.-

 Ii
cl

r
10

:
1F

d.
 P

 0
 P

. m
 m

 c
F

0
0-

'
ID

0
0

'0
M

0
0

0
H

. H
.

c+
 0

 0
 d

i.
c-

1-
.

0
00

 !-
I:

00
0P

00
0

It
0!

,c
+

. H
. I

-h
, c

+
 H

. H
.

H
.p

i 0
1-

.3
P

.,F
10

 (
D

oo
m

C
lia

 p
cF

0
H

-
0

0
o

m
ci

-
cE

 X
E

n
p,

 H
r

cp
 z

 a
p

P
 c

F
 0

 H
. 0

 0
 0

 '0
 .

0,
ca

hi
j

4
P

''.
1'

C
D

 o
 r

ro
H

.
M

 c
+

cF
 c

f
H

h,
 0

 H
.

M
C

I'
0

...
H

. e
f '

''
H

. 0
0

0
0

.

m
0

1.
0

M
:

0,
H

.
0'

 M
, 5

ril
,

H
i3

lr1
H

in
 m

 it
 0

0
H

. c
+

 4
0

(+
 0

P
c+

 p
a)

1.
t.

t4
H

 0
H

. U
ci

, 0
 0

 1
1

C
a

',-
.)

,.
C

n
1-

3
cF

I-
h

cF
 0

 H
.)

p
l
.

0

M

0'
 &

 c
f c

f.
M

 M
 0

 0
 X

:
0

0
W

.
0

p
"

0

H
.
'

M
ct

 p
.

11
.

0
M

'7
,1

,-
 H

 m
 m

11
17

6
W

 h
i

11
-1

4
M

 0
 0

 0
 p

 c
o

n
co

rt
5

co
m

. m
 n

 ,1
)

C
D

p
M

 C
O

C
D

,
.1

1
D

I!
H

. 0
.

11
1-

1
F

l
0'

 d
 t

in
 n

 m
 .0

',.
.0

n
.4

co
.c

+
co

H
..

0
.1

1L
2.

'
'8

"
e

r-
'5

.
E

 '
rD

''''
'C

r;
itV

 R
 ,J

1
IC

I
f2

_,
 2

 'I
I

c+
I-

15
,i

.'
;I

0m
m

c.
_k

,
H

m
H

..0
c-

1-
...

40
P

P
"'0

00
0e

0-
-.

"1
,

ch
 0

1
I(

i'l
0

(1
)

0
et

1
el

 F
d

1-
.3

 c
.4

0
.

0"
ro

. V
 m

m
 o

 0
"

11
.

pi
,

H
. 0

 M
p

ID
D

I
p

H
. &

 0
 0

_.
G

o
0.

, H
 0

 M
11

.
M

d'
 0

 ,c
+

M
 1

1
c+

 1
0

c+
 0

 0
 P

 H
.'

_,
_"

'
H

'
P

 C
D

R
I 0

 ,,
,'

P
 0

 ,F
1

P
C

+
0!

0
0

cf
r

C
a

0
P

 c
r

c1
.

P
o

F
_,

F
 P

 M
 0

,."
.'

H
5

La
H

-
4

11
.

0
1

D
f)

n
g

c+
 p

 0
...

J
0

0
0

,-
"'

0
0

H
)

C
a'

P
i &

0
al

 d
co

co
H

 c
o

0'
 im

 0
 c

+
 d

0
c+

 5
 c

F
 H

. 0
 .

m
H

.
11

 0
 F

d
01

H
.

0
M

 0
 P

0

I
-
1
)

&
m

FJ
m

0
.1

0
0

10
 0

cf
 1

11
 0

 4
1

0
I-

1
LO

 0
 N

i
1p

L
.

m
(I

V
 1

-1
)

H
h

0
0.

 0
 m

 m
n

H
 m

 ..
...

.c
h

I-
4

0
F

li
.

E
h

p,
a,

0

I
-
6

Z
'4

1
m

 0
01

 d
 '.

4
'.4

 0
H

. c
F

 1
1

0
0

C
I)

c+
H

. 0
1

H
0

O
h

to
H

,
cp

 H
 :p

.)
c+

 0
 .

0
cf

.
0

p
0'

 P
 1

,-
1-

'

cl
-

0"
.

1-
3

0.
 1

1
.

H
..

La
"-

a
_1

1

''.
11

'
cl

-
14

 5
g

p
g

2.
.;

Pl
.

''
g

e'
'L

l''
H

.
T

rj;
ci

..,
:-

';1
a)

1-
1

fD
H

.
H

.
IH

t
Fi

.
C

F
11

I
1)

r.
'

p
1

0
C

 0
E

N
II

4

'

01
.

C
D

 0

c+

p
11

0
0

H
. 0

0
10

C
F

-0
,

0
m

0!
P

 0
 n

0 0. m
 e

l-
0

p
;E

D
1-

1

o
H

.
0"

c+
.M

 3
 1

p
0

LI
1

H
. H

.,
cf

p
c+

 m
C

f
H

'
P

n-
11

+
I

co

0
0 0

cF
H

'H
. 0

 0
0

O
a

0
0

1
1-

1)
 m

 0
 c

+
c-

1-
H

.
0

H
 M

0"
' C

D
N

I
(.

1)

'

H
.

C
D

,
'

p
ID

0
c+

0
5

cf
 0

0
'

F
d

m
 0

' '
0

F
t

P
'

M
P

.
1

01
C

a
P

(.
3

H
. E

n
0

01
'

!

c+
 5

0.
0.

C
D

P
P

P
d

10
 V

P
i m

1
C

D

C
ID

H
.

C
D

0
C

a cF c+

1_
, H

H
)

0
10

0
H

.
0

11
1 0

' 0
C

D

c+

ID
)

H
p,

1E
1

H
:1

7'

IL II E
f1

,

P
b

7r
.r

ID C
D '0

H
. 0 cF
 I

1

C
D

0
0

cf 0" fD H
"

0 o e P .0 o P p lec 0 0 0 0 P
G Hb 0' H. 10 1 1 , 0 H H. 0 10'1E0
8 0 0: eh el- H p 0 0 u.1-0,
eF c+ ,I H 0 CD 4 c+ CD 10 ch. 0

H I 10-' 0 ,

1:3' (.1) ri P 1-' c-i 0 9 ca.'" G 0 el- 0 9
.IH

0, M 1 ED
Il

p Do

(1)

Ea 0, P7
g 'EaCD E)' ch. 0' 'En ED 0J1 el- 0

0 0 eh ri- HCDE CD .
0 = a H., 0 E a p j - - ; 1 1 0 0 0 0 0,
0, CD 0 H. "q 5 P 04 0' 0 P
Ca fa Da ci- Ft Ea rD 0 E-1. Ft H eh:
H.. HI Ea 'Ca col ch 0 ED En p 'ED H. Ft Z

Ft
at CD 0 1 PI 0"' 0 H g. eF c+. o 0
1 o at 0 0 0 cl- cf..

0 Ft 0'
Pi 0 P PA, eh. H. H. CD CD d. H 0 IIH:
. el- e1. rD 0' el- 0 0 DI 9 P Ea ta co

M ED c+ ED 0" 0. hil 0 CD
ZrIED PCH 01 0 0 kci 0

Ft 0
p H :i co :4. 19 4 eF. 1_1 1.4. 1

1

o p P p P 1 . m 0 0 p,,, '4 0 go
H 0 p eF

0- CD 0 c+ 19 P 0 ce P cl- En
el- al 0- Do 0' 0 H c-I. 0 'H.

0 p EY1 0 0. c+ g g 04 n 0 to
H o e - 4 p l P F H c+ ,--
Ft

0 ED 0 p 0 .0 H H. 0 Ea.9.pmEaH9 Et c+HO ci-
C le CD' p H-, p 0 0 0 p ch. 0: 0
H c-+ ,c1- 8-
0 19 11-4. H H ED c+ 0 H P 0 H

H. 0 CD 01

H. ce p el- 0 FP H. o ,. 'HF)

0 0 e.. m m g Ft Fl e+ e+ 0
ch. H. 1 4 d. & it or 1

c+ cD 0 0 0 !I-4 0 H p 0 CD P
0' .0. 0 p HI) eF. 11 D'I It IP 1.1 c+ 10
0 H 0" 0 ID 11:1 0 0 10 ,c+

ee Po 'ch. H. En H go 11

H,0pP..0 Ir,D0o :119, o
'HI Ili .m, to 0 pu 0 p ti P e
0 4) 0 e+ 0- 0 0 cf. 0 o 0 0

,h po. ,P, m Fil o H 4 1-1 0 11m 0 0 0 P
cl- 9, H. 0 10 I'd 0 I.t 0ii, 0 td er p, p 4 0 0 , it p 01 Hy 011,

0 HI 0' i-j. (D i-4 11-j at 0 H p
al to m co

g o' eF. to p, o I cf- til Efl cfr
II al IF-I- 0 0: pi p 4 0 p 'H 0
M 0 ip p H CD' 1-43 0' 0 H) fa

0 0 0 H P 11, & HI* H 0 'P.' I HI4 p 0, MI 1 'H 0 o 01 .I.D m
H. ch 0 0 4 0-Ht ft P
H 0 NJ' ef. 0 0 Ft 0 ,cf-. 0H I O C D P , M 9 H 0

fp ch II 0 4
0

Pi 0

et- e

o (D

CD

m 0 F-b
H 11-3

P HO 0' 0
En P

0 0
0 0 I-I) 0

H
p

0 DI Er 0
0 0 LI. 0ti 0 4
c+ 0 0

0 H'
0

(DCDP
cf,

e+ 5
O 90

co H oi
H Id M
O Pi c1-
O w.

c+ 0 0
0 0 0 0
Ft ID 0 Fc:1

CD CD 0 8

p ch Cfl

O 1
H 0 ch.

FE1PO

H.
p, 0 DEJ

c+ 0
G

H
ch H. H.

c+
4 H
H. Ea 0

(0 0
H

H. H
0'

ch P
En 0 En

1 .4 (1-
.0 0 0
i-to al .0 0
H

o
n
ch 0 eh
G I 0'

ci" cf- ci" & Ill 0 P co 0 1-1 p o F1J
cF H M ch 0 0MMED 0 001 H H 1-1 P N) Ph 41 CI' Fl

0 ri, Z P. Z DI . H. 0 CA 0 F71pi Itip .,. p ii H. CD Eirp Ic-) En 1)0, .41 ch ED 0 H CDO X H. 1 pi co c,0 c+ ch H3 H. 0" Pi m X
51 c+ c+ eF a, 4, 4,. g p o uo p. al 0 0 c+ p
P ED 0' p 0 0 11 eh. 0 Ft I-1) Ill 0 0H. 0 M 0 9 H H.J H CD el-10 P 4 tl
0 cF o 0 5 r" 1 0 H 4 4 cill :. F-I

p, 0 Ps, ce Et c+ cri H. 1 .0 0 0' 0 ED0 ci- 0 0 ''' H 0' 1-1'. o' Do
0 0 UR 11 eh P 0
H. FI En 0 c+ 0 ch c ED Eo En 0 0m p P. p Ft 0 0
C11:1 0 CD CIE1 ch. c+ 0 0 En c+ 1H c+ 4 ED

H. H. Ft En H c+ En 0' 0 c+ Hy
O 0 0 ch 0 5 En 1-1 H. CD
O i1 cin 0 1-4 1-4 I-4 0 M 000CDHP
0 0 0 0 Er 0 H 9

9 H 0 H a) 0 P Ft Ei' 0PpO 0 H-
O 0 1 r"- 0'. ED P., cl- ch H. l'', 0Ft P5145mme+10 H. 0 H. H a-' P 0
15 01 0 H. 001 0001 0 0 0 = 1-1
p C"Je 0 Ft 4 0 P 0 I ch Fo 0
c+ CD 0 0 Fl 0 EY 017:i 0 11 0 0 p inD 0,Ft0 ea) .,- p.0 elf 0 P 0 0

it 0 CD I-1) H cl- H. H 0 = M hi
H . H. c+ H F1 ED ch P Ft hi 0 H c+O chH)000 00 ID 0 CD 0'

ch 1 9 = 0
0 :: ED IH go 0' itio Ho 9 0
0 IH 0 ,r+ 0 OH 0 P 0 I D Q P 0
c+ 0 Ili p H H. H. 11 0 0

11 H 0 p 0 En P 0 H P
ch C rD c+ H. c+ H p ch :. or m
O e In c+ c+ 0' P 0-' eh c+ 0' m

0" c+H111L-10(-1-0 11 0' 0
0, m 1 0 P. 0 cF
O 0 n Er 1 PJ 11 Er 0- & G1.1 dr
Eci 0., c-iii o p g Hi. CD co 0 G 0 dr
O 0 0 DI eh oh & 0 0 P 0 c+ It 9511900H.0 00c+ ED 0 Po ch H.9 0 0 eh 9 ci- 0 n rr cr
ce H. m P n 0 0 4 0 p ri- H ch. 0 00 0 cl,- . ci- n m 0 1-1, ,-4 eF

o Cf" 11-4 ½cI-1 0 0)xo,h1 om10 o' o 0-' p. El
f-, ,h
H 1;-' ri) p Eil (")

m 1....1 0 p fr.
. H H '..,

PJ H 0 ED 0 Po P
0 P. H e FP F-1) H 1 eF o dr
er En al al 0' H. p, eF
c-. o P ,)4 0 0 ri- 0O 00H-H000 00 Fi ch. 0 11O 0 c+ 0 H 0., 0 H
& Fl F-t P 1.-, H P dr cD 11 H 0
En EEI 0 En 0 it el- H 0'' 0 Hi I-4)

H. (1) rif ,.,c r_ 0 cr ' H. m
rD 4 K

H ch 0 0, ati
0 H 0 11 I---, 0' Eil CD 0 0 P 11ca 9 0 m 0 0

rD p, 0
4 4 CD

I.

c+

o-
n)

7E1

0

0

0

La,

CD

0"
1-1

Ea

c+

H.
M

CD

H
cfl p

O c+
c+ H

hr) M FJ-
111) eh:

111 H'
0 c+ 0
11./ H. fy

0 14, 0'
P 0 00 0 H

I" (+
O 07' 11

CD 10
1-4 1,11

P.
H .. ID

Pi ti
P f)PHH-0 0

Ft En

,i-J Hi 0,

1-4,ihs 0 it
CD 0' 4
P
c+
(D F4 H.

H
H. el

ch. c+ "0

c+
0- 0"
cn1

Cf

0

I.

l.2.2.4 Value Sets and Record Fields

The proce3s of obtaining the values which appear as data in
the file has two stages: observation and recording. Each has
rules and procedures governing its performance. Although these
rules may not always be layed out consciously, in complex systems
such as library catalogs they are contained in extensive and
detailed codes. The reliability of the descriptions as guides
to the objects they represent is, of course, dependent upon the
quality of the rules and the consistency with which they are
applied. ' ar focus on file organization excludes the former
proble but we shall be interested in whether or not the rules
exist explicit13;, what they are, and, of course, whether they
were consistently applied in constructing the file. All this
information has direct bearing on the problems of record retrieval.

The devices used for the observation of the values, to consi-
der the first step, can ranE_ in complexity from a single glance
to the use of sophisticated mechanical, electronic, or statistical
tools. The rulec may range in exactness from the highly objec-
tive to the almost completely subjective (with resulting inconsis-
tencies).

When these ohservations are recorded, they frequently undergo
transformations. These changes are of two kinds: first, formal
structuring, such as punctuation or transliteration of foreign
alphabets; secondly, conversion to "legal" values; that is,
there may be a limited list of values of color, for example,
which may be used to describe the objects, and the describer must
"reduce" each Observation to one of these values. In mathematical
terms, th- change is a many-one mapping. A mapping takes one
set of values called the "domain" and supplies a rule or "function"
for transforming taem to another set of values called the "range"
of the mapping. IA all many-one mappings, la.e original - in this
case, the observed - values are not recoverable from the trans-
formed, or recorded., values. A simple example of a "recording
function" is the following rule:

"Round-off 'annual income' to the nearest $100.

This rule defines tie transformation. The range is given in-
directly; that is, a rule for calculating it is given. The
range consists of all integers whose last two digits are '00'.
If, moreover, the data gatherer knows "annual income" to the
penny, there will be 10,000 possible observed values for every
"legal" one. Here the rule is explicit, but the range must
be calculated. In ,tontrast, in library subject cataloging the
range is explicit in the sibject heading list, but, unfortunately,
the conversion and observation rules are totally unformalized.

The set of recorded values associated with a single elass
attribute, as, for example, a list of all the authors which occur

in the file, will be called a value set. Asociated with the set
of types (the va3ue e) fs a set of occurrences or tukens. Just
as the class attribu es correspond to attribute fields in the
file, this latter set may be regarded as being in one-to-one
correspondence with the actued data strings in the fields of
the logical records. The mapping between these two sets defines
the final stage in the process going from the "true" values to
their representation in the record: that is, from the "true"
values to the observed valuee: from the observed values to the
set of occurrences or token; and finally from the set of tokens
to a specific location in the record itself. One goes in the
last step from, say, the fifth occurrence of the twentieth value
of the terech attribute in the set of objects being described
to a record location; for example, the second repeat of the fifth
attribute fieed of the 410th logical record.

We have mow finished describing the creation of "object-
description fles." We lid,ve approached it essentially as a pro-
cess of selecting aud mapping data about the real world into a
file and record structure, delineating the many decision points
involved. This analysis has prepared the way for a discussion
of the problems of Searching such files. We will concentrate on
the problems raised by the use of such files as directories to
the objects described, since this case presents all the problems
raised by other uses and more.

1.3 Searching Dire-to ies

1.3.1 The Query for a Directory Search

The-Pe a-re close parallels between the process of constructing
the file of object descriptions and the process of using the file
as a directory; indeed, our interest in the former in a paper on
file search stems from this similarity. The primary distinc-
tion is that the searcher is in a state of uncertainty about the
file and its contents, in addition to any uncertainty he may
have about what sort of objects might fulfill his need. Our
interest will begin at the point at which the user's request is
to be translated into a search of a particular directory. This
search may be hampered by either lack of knowledge about the rules
and content of the file or uncertainty about the class of ob-
jects which is being searched for. This latter difficulty may
stem either from lack of adequate observation of the class of ob-
jects sought or because the class is only hypothetical, as in the
set of books about the psychological environment of public
libraries. In the first case the class is known to exist;
indeed, the searcher may even have observed its members. The
problem is to find the descriptions of the objects in this par-
ticular file in order to ascertain their inclusion in it,
their location, availability, or suitability to the searche 's
need. If the class is hypothetical, on the other hand, the
sear'ther must first ascertain the existence of such a class and

24

its membership, if any, or, worse problem, ascertain its non-
existence. In any case, however, the searcher muet select a
domain, a set of attributes and the set of values he thinks might
mosL, likely have been used to describe the set of objects he
seeks. He must rurther select t_lem in such a way that they
correspond to the file-constructor's practice at each of these
points if the searc is to be successful. The system, of coerse,
may provide some help by supplying him with the system construc-
tion rules and ceLtaih exLiei-eeeL_Leetia6 eoatihes. Clearly,
the more explicit and better defined the rules, the more help they
will be to the user. The type of aids which the system may
provide and their role will be considered next as we turn from
the uncertainties which cause problems in file search to the
sources of information,which can aid the searcher or the system
in making correct matches.

1.3.2 Retrieval Failures

Corresponding to the three sources of uncertainty mentioned
above, (1) lack of knowledge about the riles rules, (2) lack of
knowledge about the object or class of objects Lhe searcher is
describing, and (3) lack of knowledge aboilt the actual contents
of the file, we can describe three classes of system or "re-
trieval" failures which 'VIP will call formal errors 5 variants
and content errors. Let us first consider those retrieval
failures caused by formal errors. They are those differences
between the query and values in the record against which it Is
to be matched which result from one or both forms being in-
correct with respect to the system's construction rules or
"common knowledge" or language such as is available in a dic-
tionary, itself a set of rules. The importance of this class
is that these errors can be identified and corrected without
knowledge of the actual contents of the file or further observa-
tion of the objects. They are formal errors in the sense that
knowledge of the rules alone is sufficient to correct them.
These include, specifically, such mistakes as failure to put
the "main entry" in specified form in a library catalog, spelling
errors in common words, typographical errors which a user or
proofreader could reasonably correct from his own knowledge,
misplaced parentheses in Boolean search queries and other simi-
lar faults.

The second and third class of retrieval failures, those
caused hy content errors and variants, by contrast, can only be
detected through knowledge of the contents of the file itself or
by tracing back to other accurate descriptions of the objects,
if they are available Descriptions by the system and by the
searcher or an two describers which are completely "correct,"
bat which because of ambi ities in the rules or inexactness
in the methods of observation or differences in coml2teness
of information fail to match are here called "variants." An
exe le of a variant is the use of a man's full middle name in a

query and his initial only in the file. These can be detected
only by examining the file itself, not by exaTnining the objects
or the rules. Content errors are mistakes in the contents of
thryLortlj h result from fault information
about the object.. oliti_ie7-r-terrr..
Content errors include such things as a spelling of a name in
a query which is phonetically reasonable but not the actual
spelling; an inexact title (of a document); er an incorrect
date which is not obviously absurd. In theory, one could fre-
quently trace this faulty information back to a correct source
other than the file, but in practice that procedure would often
be impossible, and, moreover, as the ercor would not be detected
in the search process unless the correct record were in fact
retriesred, the cause of the failure might not be recognized.
The significance of variants and content error is that, if they
are to be detected and corrected at all, the system must do it
internally as part of the matching process; unlike formal errors,
these mistakes cannot be corrected practically from any other
source.

From this analysis of the possible sources of retrieval
failures, it follows thab the critei-Ia for deciding whether or
not to supply search aids is different epending on whether the
failure is due to formal error, content error, or variant. In
the first case the criterion is the level of participation
which the system wishes to require of its users; tne less the
demand, the more "formal error" detecting and correcting rou-
tines one needs to supply. In the case of content errors and
variants, it is rather the level and types of failure which the
system's designers and users are willing to accept. If the
system doesn't help, nothing can. In the following section we
will examine the nature of the possible retrieval aids.

1.3.3 Compensating for Formal Errors Content Errors, and Variants

A common characteristic of formal errors, content errors,
and variants is that the values to be matched are "close" to
each other in some sense. The problem for the sys,tem in com-
pensating for them lies in the fact that not only will the
concept of closeness between values vary from field to field,
but also within a field it may be differently defined for
different types of mismatches. A query which has a formal
error in it may be "close" in different ways from one which has
a content error or variant, and even different types of content
,rrors and variants may not necessarily be compensated for
easily by the same device. Consider, for example, a name
string, "Smythe, John Dolan," and the following possible
query strings:

Smith, John D.

John Smthe

The first contains a content error (Thalith for Smythe) and a
variant (D for Dolan) but is close to "Smythe, John Dolan" in that
it is a reasonsb.le transcription of the same or phonetic string
in English. The variant use of only the middle initial is
acceptable under many descriptive rules. The second query con-
tains a keying error and a violation of the order rules for
entering names, both formal errors under our definition. This
query is also "close" because, on the one hand, a letter was
"just" omitted and on the other, the inversion was not made. The
same algorithm which compensates for "Smythe" and "Smith" or
"Dolan" and the use of the initial might also by chance match
Smythe and Smthe, but the inversion would surely have to be
corrected either externally or, if internally, by a different
algorithm.

Formal errors, then, may be corrected inside or outside the
system with the help of the rules. On the other hand, content
errors often behave like variants, particularly for fields such
as title, but it is probably hard to generalize about them.
More research here would not be amiss. Variants may be corrected
only by providing a means ef expanding the search to "close"
values. Therefore, in solving "the search problem," one im-
portant field of interest must be definitions or rules for
similarity within value ses or similarity among values of the
same value set. As we have indicated, these may vary widely
for different fields and may be complicated to construct. Most
bibliographic systems already have some at least rudimentary
tools of this type. Common examples are subject indexing the-
sauri, authority lists for names, and, in some experimental sy-tems,
their formally constructed semi-equivalents.

1.4 Similarity Between Value Sets

1.4.1 Definition

In section 1.2.2.4 we defined the value set of a file of
object descriptions as the set of value types associated with
each attribute of the class of objeccs in the file, such as the
set of all the different authors' names in a file. Closeness be-
tween pairs of values within a single valne set, such as index
tags in a file of bibliographic descriptions or similarity
within value sets, was seen to be an essential concept behind
different types of error compensating devices in file search.
We will now extend this concept of closeness to similarity
between value sets.

In the discussion of value sets in section 1.2, it was
suggested that values within value sets might be close in a
number of different ways. Two written names, for instance, might
be similar either because they were "correct" English trans-
criptions of the same spoken string or because there was "only"
one letter at variance because of a keying error. As the basis

for our extrapolation, although others may also be useful, we
will vse only one sort of "clooeness," statistical association.
The measures of this class, whict: are derived from data about
the co-occurrence of pairs al values of an attribute in object
descriptions, are now used in experimeatal bibliographic
systems for such purposes as elaboratiag or expanding searches
by subject tag when the origine2 search has failed to satisfy
the user. Many such measures have been investigated in a limi-
ted way (5,6,8,9) but at the present time much research remains
to be done on their properties and the conditions which may work
to the advantage of one rather than another. The entries in the
two-by-two contingency tables (see Fig. 2) which provide the
data for these measures contain for a pair of values the number
of records in which both values occur, each value occurs separ-
ately, and neither occurs.

FIG. 2: TWO-BY-7,10 CONTINEGENCY TABLE

Not V

and V V1 and Not V

Not V
1_

Not V and1 V Not V and Not
1

V2

One possible interpretation of the intuitive idea behind such
measurements is that two values are similar if they ara associ-
ated with, or isolate highly overlapping sets of records in a
file. An extension of such an idea to entire sets would suggest
the following rough definition:

Two value sets are similar if they are able, as
established by computation or operational data,
to isolate highly overlapping sets of records.

That is to say that if one thinks of each value set as the keys
of an index, and if one knows the proper key or combination of
keys, the two indexes are similar if one can isolate roughly
the same group of records through either index. Measures of
value set similarity are therefore potentially one eomponent
of index similarity which could be considered in making de-
sign decisions about system structure, as we shall see presently.

1.4.2 The Three Types of Similarity Between Value Sets

Having in mind this intuitive idea of similarity b
value sets, let us examine the concept in more detail.
cally, we distinguish the following three types of such
ity between value sets: (1) distributional similarity;
tional similaritz; and (3) elemental

1.4. .1 Distributional Similarity

tween
Specifi-
similar-
(2) func-

Two values sets are distributionally_similar when they have
similar sLIstical distributions in the file. For the present
we suggest determining distributional resemblance by exam=uing
the followThg parameters:

a. The number of records containing non-null valu s of
each set;

b. The number of occurrences of values of each set in the
file;

The variance and expected value of the number
per value (discrimination) (e.g., the average
documents by the same author); and

The expected value and v,,riance of the number of values
from the one value set per record, (e.g., tha average
number of index terms per document).

of records
number of

The expected value and variance of the number of values of an
attribute per record (d) is a figure frequently of interest for
researcher, but probably of less direct interest to users. The
other three typel of data, however, supply the necessary raw
statistics for determining the relative size of the ranges of
the two attributes and their discriminatory capabilities. We
use such information intuitively in searching. For example,
suppose we know the title of a book (when the title seems dis-
tinctive) and the subject heading assigned to it, and we want
to know the call number. We might selrch by title rather than
subject heading expecting to retrieve many fewer unwanted records
by using the former.

1.4.2.2 Functional Similarity

Two value sets are functIonally similar if, by virtue of the
distribution patterns of their tokens in the file, one could
isolate the same sets of records using either index. For example,
suppose that a system designer wished to know whether it was
worthwhile to provide an index by classification numbers to a
set of document records in addition to an existing subject
heading index. If he finds that, for most sets of records
retrieved by searching through the subject index, the same
set or a highly overlapping one could be isolated by retrieving
the records associated with the union of the class numbers occur-

ring in the first set, he might consider the second index to a lai
extent redundant. Let us label these sets as follows:

S t A = the records retrieved by a subject heading,
i.e., through a value in the first value
set or index.

Set B = the records retrieved by the records associ-
ated with the union of the class numbers
co-occurring with the subject heading;
i.e., the union of the values of the second
attribute co-occurring with the value from
the first attribute.

If A and B tend to be the same through mary observations, then the
designer mighb consider providing only a "translator" from class
number to subject heading rather than a second index. The
translator from subject heading to class number would presum-
ably be cheaper to maintain than a second index if the composition
of the two value sets and the associations between them were fair-
ly stable. This sta:.,ility does not seem an unreasonable hypothesis.
The translator might range in accuracy and complexity from an
index to all values co-occurring with the values of the first index
to Boolean functions of values of the second set for more exact
approximations. The cost of c-Impiling and maintaining an elaborate
translator, however, might eat up anything saved by not maintaining
an index, but it, seems worthy of consideration for some uses.
Figures on the comparative use of the two value sets as search
keys as well as the cost constraints of the system and the user
would be factors influencing his decision.

An additional reason to find measures of functional simi-
larity is to provide search aids. A searcher who has retrieved
a Set A in response to his original query might wish to know
whether it is Tworthl:hile" for him to expand his search by re-
trieving the records associated with the union of the class
numb-cr .:. no had found in Set A, that is, Set B. Consitently
large overlap between A and B would suggest that this extension
would not likely be very productive of new references. For
purposes of search expansion, "worthwhileness" would depend on
the user's being able to expect several additional references in B.
The most obvious statistic to aid him in his decision would be
the number of records in B but not in (A AND B); that is, the
size of the complement of the intersection of (A AND B) in B.
The distribution of this statistic might be a reasonable basis
for a measure of similarity.

Functional similarity is dependent on distributional simi-
larity in important ways. For instance, so long as the value set
of Set B is distributed with only one value per record,
the union of those values is the only Boolean function

which can be used to define Set B. Intersection and complementa-
tion of the values of that set cannot occur unless there is more
than one value of that set per record. As soon as more than one
value per record occurs, however, intersection and complementa-
tion of Iralues of the second set can produce a closer match to A.
More generally, let us call the degree to which any set of
records may be specified by the value set of a field that field's
degree of flexibility. For example, the records for two books
with different authors cannot be specified as a set; that is,
those and only those records, using the values of the author
field alone unless it happens that each author only wrote one
'ook. It is sufficient for a field to be fully flexible that
within the field each record contains a string which is unique
to that record. At worst, in this case, one can specify any
possible group of records in the file simply by listing these
unique strings. Record identification numbers are an example
of a completely flexible field, whereas in bibliographic records
the author field is not. Shallowly subject-indexed files, such
as those created by the Library of Congress, do not have com-
pletely flexible subject fields, but as more and more index
terms are added to a record, the number of records for which
the index terms as a set constitute a unique string will ap-
proach the whole file. How quickly the field becomes fully
flexible is, thus, a function of the distributional character-
istics of the value set; i.e., its size, the number of values
per record, and Lhe number of records per value. The allowable
indexing and _Letrieval grammars also play a part. The addition
of full Boolean logic or links or roles, for example, should
increase the number of unique strings for the same size vocabu-
lary and the same indexing depth.. The distributional character-
istics of the field, then, have a great role in determining the
ability of one field to function, in our limited sense, like
another.

An additional facet of this ability must be high correlations
between values of the different value sets, the less flexii/le
the field being compared, the more two-way correlation is neces-
sary for this field to duplicate the retrieval behavior of the
first one. It may in fact be that a good measure of the simi-
larity between values within a single value set. This process
would have three steps.

a. Calculate the association values using some
appropriate measure between all co-occurring
pairs of values where one value is from the
first set and the other from the one being
compared to it.

b. Average or otherwise summarize for each value
in the first set the association value it has
with each value in the set being compared to
it which co-occurs with it. In other words,
for every A, average its associations with
the elements of B.

c. Average these averages for all values in the
first set; i.e.,

J.

1 1 -

I 7-)-i.1 1,3=1

where aij is the association value of the ith
value in the first set with the jt- co-70ccurrin
term in the second.

Another poss5ble measure is the mean of the distribution of
(B-(A AND B)), as suggested above. There are, then, at least
two alternative approaches to developing measures.

It seems doubtful if the measures as such will be very use-
ful as .-earch expansion aids, as opposed to serving as criteria
for system design decisions. It seems probable that too much
information is lost in the summarization pocess; therefore,
either the size of' (B-(A AND B)) for a particular A or the average
of the associations of the terms in B co-occurring with A, i.e.,

j'
a---ij

j=1

would be more informative indicators. We have used A here as a
single term, but the same techniques could be extended to A's
which were Boolean expressions.

The proposed types of measures make sei-se only so long as
the set being compared is not completely flexi3e. In this
latter case, we know it is possible to duplicate exactly any
A using the second set; indeed, that is what the standard
search '-ey-to-rc-c ur l_cation indc: is. The question
now becomes, how difficult is it to do? Ai-Ghough developing
measures for this case seems an interesting problem, it has not
been pursued any further to this time.

1.4.2.3 Elemental Similarity

Elemental similarity can occur when two or more fields of
a record have value sets whose values have common "meaningful
elements." Examples of "meaningful elements" are such strings
as dates and keywords in subject heading and title fields.
Functionally these are the elements which would serve as the
basis of a common index to the two (or wore) fields. Since
there is no clear theory of what constitutes a meaningful ele-
ment, the clarification of this rather fuzzy definition will
not be attempted here. In some cases, even characters might be
of interest to the user, but more casually one assumes a larger
unit. We will call a set of such strings for one field its

Elemental Se (ES) and the intersection of two such sets for dif-
ferent value sets a Common Elemental Set (CES). In our present
situation let us assume that the user's information can be trans-
lated into more than one value set, because the user can ex-
press his needs in terms of the CES. For example, the user may
know a group of keywords associated with a topic of interest.
If these kewords are in the CES, they may be translated by
some matching algorithms into, for instance, either a set of
subject headings or a set of titles. Let us call these two
sets of documents thus retrieved C and CT. F-re there are two
levels in the search and, thus, two aspects in determining the
similarity of the two value sets. The first is size of the CES
relative to the two elemental sets, and the overlap of each of
these individually with the user's set of elements. The second
is the similarity over many observations of C id C'. Note that
C and C' are selected, not because of the co-occurrence of
values as is the case in A and B, but because of the occurrence
of elements. Thus search expansion using functional similarity
and search expansion using elemental similarity might frequently
yield quite different results. (See Fig. 3 and Fig. 4.) The
criteria for using one approach as opposed to another when both
are possible as --tween title and subject fields, is one of the
facets of the problem which needs to be investigated.

The basic data needed to measure elementn1 similarity with
regard to the Elemental Sets is the same as that described in
observing functional similarity; that is, the size of each of the
elemental sets and the size of their intersection. The useful
data concerning C and C should be the same as that needed
about A and B. The primary complicating factor in the use of
elemental similarity is, of course, that fields must be indexed
and that queries using the index must then be translated back
to the 1,alue sets. The nature of this matching function clearly
can influence the values selected and thus the record sets
C and C'.

SUBJECT
HEAUING

FIG. 3:
FUNCTIONAL SIMILARITY

MAP TER
FILE OF
CITATIONS

RETRIEVED
SUB-SET

A

SET
OF
ALL
LC
CLASS
NOS .
IN
A

RETRIE1MD
SUB-SET

LC
CLASS .
INDEX

-18-

Element
Index

(e.g., terms)

FIC. 4:

ELEMENTAL 3IMILARITY

Value
Set

e.g., Subject
Headings)

Value
Set II

g., titles)
Retrieved
Set C'

1.5 Research

The following areas are suggested for re_ arch:

a. Measures for distributional, functional, and ele ental
sirnilarit

The relationship of distrbutional and functional simi-
larity and the correlation between functional similarity
and elemental similarity;

c. The relationship between functional similarity and inter-
value set correlations between pairs or subsets of values

d. Ine use of statistics on condition or set overlap as
search aids.

REFERENCES

1, Minsky, Marvin, ed., Semantic Informaticn Processing, CaMbridge,
Mass,: MIT Press,T777

2. Simmons, Robert F. "Natural Language Question-Answe_ ig Systems,
CACM (13, January 1970), 15-30.

3. Tra-.-is, L.E., "Analytic Information Retrieval," In: Paul L.
Garvin, (Ed.), Natural LE.Ezuage and the Computer, New York:
McGraw-Hill, 1963, pp. 310-353.

4. Maron, M.E. and J.L. Kuhns, On Relevanc, Probabilistic Ind x ng,
and Information Retrieval," JApm 7, July 1960), 2l6.2LlJ4.

5. Stiles, H.F., "The Association Factor in Information Retriev
JACM (8, April 1961), 271-279.

_

Kuhns, J.L., "The Continuum of Coeffiients of Association," In:
Statistical Association Methods for Mechanized Documentation,
Washington, D.C.: National Bureau of Ctandards, INational
Bureau of Standards Miscellaneous Publications 269), 196
pn. 33-39.

6

7. Salton, Gerard, Automatic InformatioaC2Eganization and Retrieval,
New York: McGraw-Hill, 1968.

8. Mignon, Edmond and Irene L. Travis, LABSEARCH: ILR Associative
Search System Terminal Users' Manua), Berkeley: institute of
Library Research, University of California, 1972.

THE ASSIGNMENT OF INDEX TERMS'
By Marcia Bates

2.1 Summary of Study

A 60,000 document file consisting of the first cataloging done for
the library of the new University of California campus at Santa Cruz
was analyzed by computer to gather data about the basic characteristics
of the file, and to test two minor and one major hypothesis about the
behavior of subject headings in the file.

The first minor hypothesis was that during the depression period
catalogers gave more subject headings per document but did not add more
tha the usual number of new headings to tho thesaurus. We fuund that
more new subject headings were added to the thesaurus relative to the
number of documents indexed during that period, but the conjectured causes
were equivocal.

The second minor hypothesis stated that the mean date of pub'_ication
to whicn a given subject heading is applied is indicative of the rela-
tive age of the subject field described by the heading (relative to
other sublu_t fields described by other headings). A random selection
of headings and their mean dates was produced and a visual inspection
gave one little sense of the progress of time.

The major hypothesis stated that documents with 9. high number of
terms assignea reprr_sent new areas of activity where the vocabulary is
not yet well developed (hence confusion on the part of indexers and a
tendency to assign more headings). Two major tests were made on this
hypothesis. In the first test the mean date of publicamloil over all the
applications of that term (or "heading") was computed, and this mean
date was subtracted from the publication date of each individual applica-
tion of that heading. This was done for all headings in the file. Then
the mean number of Lerms assigned along with a given term was computed
over all term applications (regardless of term) which had the same differ-
ence between mean date and date of publication of individual application.
The second test did the same except the difference computed wa3 that
between the earliest date ef application of a term and the date of indi-
vidual application rather than the mean.

The first test appeared to confirm the hypothesis. However, there
were several faults in the test and the second, less faulty test was
then conducted. It produced negative results, i.e., yielded nothing to
confirm the hypothesis. Finally, it appears that the critical test has
not yet been performed. Therefore, some improvements on the current
tests are discussed.

2.2 Description of Study

2.2.1 The Hypotheses

One would expect that when confUsion exists over the naming of a
subject field or sub-section of a subject field, this confusion would

be reflected in the aesigning of index terms to documents on that sub-
ject. One might further expect that this confusion would he demonstrated
in that indexers would tend to give more terms to documents on such a
subject. In other words, where there was no single .enerally ..greedeupon
term, indexers would use several terms to be sure they had covered all
the likely access terms to be used hy index users.

While this problem might occur in any field or sub-section at any
time, we would expect it to be especially acute in newly developing
fields. So the hypothesis: Documents with a high number of terms as-
signed represent new areas of activity where the vocabulary is not yet
well developed.

The hypothesis and the expected results it posits are, of course,
independent of guesses made as to the cause of the results. The reason
given above, that indexers feel they must assign several terms to cover
all the likely access terms to be used, may not be the cause, or it may
be one among several causes for the results. Here are two other possible
explanations:

1. When working with a limited vocabulary, i.e., out of a thesaurus,
there may not have been any apt term incorporated into the thesaurus yet
to describe the new field. Among the terms in the thesaurus, there may
be severs] each of which only partially describes the field. The indexer
then may feel it necessary to use most or all of these to adequately
describe a document's subject.

2. The first explanation, proposed above in presenting the hypothe-
sis, presumed general terminology confusion in the field, with the con-
sequence that the ialexer must provide for all the possible access terms.
However, even after opinion has largely consolidated around a particular
term or set of terms to describe a field among the practitioners in a
field, confusion may linger among non-specialist indexers. With some
thesalai, such as the Lrbrary of Congress List of Subject Headings...
there may be a relatively long lag before new terms are introduced to
the list. Such terms will likely be new to the indexers and they may
feel hesitant at first in dropping all at once the several terms for-
merly used in favor of the new term or set of terms, especially if they
feel uncertain about how the new terms should be used. Their solution
(conscious or unconscious) may be to retain some of the older terms, along
with the new ones, in their indexing of the new field for a while.

John Tinker, writing in American Documenta:Qion, has some ideas
related to the above. His views will be discussed in the next section.

In the process of developing tests for the above hypothesis, several
other minor hypotheses were developed. There was time to carry out work
on two of the three principal ones and they will be described here. The
other will be discussed under future work in section 2.2.5.

1. A basic analysis of the data base revealed that the average
number of subject headings assigned per document was significantly higher
between 1930 and 19045 than either before or after. A question which

then arises is, is this solely because peopJe had more time and fewer
-ooks then because of the_ depression, and so assigned more headings, or
did they alFo add more than the usual number of new unique headings to
the thesaurus during this period? Rather than speculating on the why's
of this phenomenon now, let us simply state an hypothesis and see if it
is confirkied. During the depression period catalogers gave more subject
headings per document but did not add more than the usual number of new
headings to the thesaurus.

2. A new book can be writter about an old subject but an old took
cannot have been written about a new subject. So the hypothesis here
is that the mean date of publication of books indexed under a term is
indicative of the relative age of the subject field Note that it is
relative agebecause old fields can have new books written about them.

2.2.2 Background

A quite thorough literature search produced only three articles
even reasonably related to the topic of this study. Two were purely
statistical studies to determine basic characteristics of large files,
and not made to test any hypotheses about the character of literature
or indexing. The data these studies produced will be discussed in
connection with _he corresponding data from this study later on.

The third study, by John Tinker (4), relates to the hypothesis
of this paper. (This is the first of a two-part series of articles.
However, the second (3) branches 5nto other areas and holds nothing of
i-terest to us here.) His chief eoncern is with indexer inconsistency.
To quote the abstract: "Indexers, in choosing or assigning all words
strongly associated with concepts of a document, assert that the docu-
ment means the word; therefore, consistency of indexing measures the
precision with which meaning is understood by the indexers." (p. 96)

He defines highly precise use of a term as application of that
term to any one document by all the indexers in a study. (Such a tern'.
may be applied elsewhere inconsistently.) He found in a test using
9 indexers, 100 descriptors, and 50 abstracts to be indexed, that 19
descriptors were used highly precisely according to the above definition.
Analysis of these descriptors revealed this: "Of the 100 descriptors,
15 describe concepts that were unknown only a few years ago. Five of
these new words, or 33% of them, were among the 19 most precise descrip-
tors, while only 16% of the older words were used precisely. It would
be interesting to know if new concepts are understood more precisely
than older ones as suggested by these data." (pp. 99-100) This is con-
trary to one of the possible causes offered above for confirming results
on the hypothesis of this paper (no. 2), namely, that meaning of new
terms is poorly understood at first by indexers. Whatever the cause of
results confirming the hypothesis, it seems unlikely (though, as ever,
not impossible) that these results would be due to a more precise under-
standing of the new terms (than of old term) on the part of indexers.

Strangely, Tinker says elsewh _e: "The differerce in usage of new

words and the tendency to use words less prEAsely than old words
fail to appear in Part III..." (p. 100) (emphasis mine). This is a
direct contradiction of what he says earlier and in the abstract to
the paper. As the "more precisely" statement appears in two places,
it is probably the intended one.

One more, philosophical, comment with regard to Tinker's study:
He states in various ways throughout his article views to the effect
that low precision in use of words is due to lack of full understanding
of the meaning of a term on the part of individual indexers (see par-
ticularly p. 101). It seems likely, however, that eiza_...1 confusion
or lack of agreement in a fic d can exist, that no one can be said to
know the one correct definition of a term (because there is no single
agreed upon definition yet). For example, Tinker states, "If a given
term is applied to a specific abstract by a large number of indexers,
it is fair to say that those who do not apply the term do not fully
understand its meaning." (p. 101)

But it may be that those who did apply it were just as unsure as
those who did not. And maybe, in the matter of new terms, out of their
insecurity, they applied more than the usual number of older terms along
with them (cf. the third cause again). Indeed, Tinker notes elsewhere:
"Twelve of the 100 descriptors on the list were used in 34% of the de-
scriptor-abstract pairs. Of these often-used descriptors only 1 was
new. The other 11 descriptors, or 13%* of the total, were older words.
This suggests that descriptors for older concepts tend to be used more
f.cequehtly." (p. 100). They would irldeed if Uney were used along wiLh
new terms to describe new subjects as well as old subjects.

2.2.3 The Data Base

The data base used was the cataloging data for the basic collection
of the newly-founded Santa Cruz campus of the University of California.
This data had been converted to machine-readable form and recorded on
magnetic tape. It was received by the Institute about a year before the
beginning of this study. The original base consisted of roughly 80,000
main entrie , composed of two large sub-files. The first, comprising
rough1V 35,000 items, were entries for cataloging done under the New
Campuses Program. This program is described in detail in the article
by Voigt and Treyz (5). The purpose of this program was to select,
collect, and catalog basic undergraduate collections fer the three new
campuses of the University, San Diego, Irvine, and Santa Cruz. "The
remaining entries were for cataloging done el- Santa Cruz on material
collected independently by that campus. The cutoff publication date
for the NCP collection is 1964, whereas there are some Santa Cruz titles
for as recent as 1967.

*These percentages do not appear to relate to anything in Tinker's paper.

-26-,

41

For the purposes of this study, only the way the two projects handled
subject headings is of interest. Both used current subject headings from
the LC List of Sub-ect Headin s... If LC cr-'s were bought, they were
amended to current usage.* 5, p. 2207) Ov__ two-thil-de of the NCP books
were in print and LC catalog cards were used for these. LC cataloging
was also used for out-of-print books when available. In contrast, most
of the cataloging done at Santa Cruz was Driginal.

The only other major difference between the two portions of the file
is that Mr. Black sa:;'s he encouraged his catalogers to add subject headings
of their own to the authority list, especially in science, where they felt
the LC headings were nez adequate. There is no way of knowing how many of
the headings in the data base are of this sort.

The exact number of entries in these two portions (NCP and Santa Cruz)
is not known, nor is there ally easy way to tell which came from where.
However, it is not necessary to know this anyway; the value of this infor-
mation on the two portions is to give an idea of the general character of
the file.

When the file was first received by the Institute, there were a number
of problems in reading and processing the file and about 5% of the original
entries were eliminated by formal methods on a computer (eliminating those
with improper field lengths, etc.). This left a f-1 e of 74,732 entries.
Of these, 14,571 were documents to which no subject headings had been as-
signed. This left a basic file of 60,161 doclments, each of which had at
least one subject heading assigned to it. Will Schieber, of the Institute,
had created a new file off this basic one, which was composed only of each
subject heading application, that is, each logical record in the file
gave a subject heading, the number of the document to which it was assigned
aha some other data. A particular subject heading was repeated as many
times as there were documents to which it was assigned and a particular
document number appeared as many times as there were subject headings a -
signed to it. There were 103,038 such application records.

2.2.4 Tests on the Hypotheses

2.2.4.1 Basic Data on the File

Computer programs were run on the file on the IBM 360/40 and the CDC
64o0 computers at the Computer Center of the University of California at
Berkeley. Programming was done in the FORTRAN Language.

The purpose of the first computer program was simply to gather sane
basic data about the characteristics of the file, particularly with re-
gard to the distribution of the number of subject headings applied to
documents.

*Information on the Santa Cruz cataloging practices was obtained in a
telephone conversation with Mr. Donald Black, who was Head of Technical
Processes at the UCSC Library from October, 1964 to February, 1967.

The total number of nnique headings (types, as opposed to applica-
tionstokens) in the file is 39,537 and the total number of applications
is 102,614. This makes for a mean of 2.595 applications per term. (This
-ount was made after the date duds had been removed from the file and a
few other records had been eliminated in the process of -writing new tapes
off the original, so the total number of applications is smaller than
previously.) The significant portic,n of the distribution of the number
of unique headtngs applied X times and proportions of the totba number
of headings are given in Figure 5. The highest number of times any one
term was applied was 194.

FIG. 5: DISTRIBUTION OF NUMBERS OF APPLICATIONS (TOKENS)
OF UNIQUE HEADINGS (TYPES)

Number of 1Vix1rther of

applications Ealaue headinu..

1 26508

2 5336

3 2247

1277

5 827

6 588

7 430

8 367

9 252

10 209

11 169

12 139

13 115

14 99

15 7o

16 73

17 78

18 61

19 61

20 55

21)45

Proportion of all
unique headings

.6705

.1350

.0568

.0322

.0209

.0149

.0109

.0093

.0064

.0053

.0043

.0035

.0029

.0025

.0018

.0018

.0020

.0015

.0015

.0014

.0011

(All succeeding values are be10w .001.)

In a similar study made at the Library of Congress (2) the mea
number of applications per unique heading was found to be 17.5. The
highest number of times any one heading was applied was 1,20/1 (p. 102).
The study was made on a sample of 442 headings rather than or the whole
fil as in this case. They found that 83.5 per cent of the headings had
fewer than 11 entries (or applications) (p. 101). The comparable figure
in this study is 96.2 per cent.

Froli_ their write-up it would appear that there is a serious weakness
in their sampling procedure. Dubester, the author, says that the same
sampling procedure was used for subject headings as for authors. The
selection method for authors was as follows: "In every twenty-second
drawer of the catalog, the first author entry that was 2 inches from
the front of the card tray was selected for the sample." (p. 100) The
use of such a sw,Ipling prsaedure would have the result that those head-
ings which had many entries under them would have a higher probability
of being selected because they take up more space in the drawer. Yet
each heading should have an equal chance or being selected. The result
is that the sample is biased toward headings with more entries.

The same mistake was made on a similar catalog tray sample of
headings done 'y the Institute a couple of years ago. When the mistake
was discovered and the sample retaken properly, the mean rate of entries
per heading went dawn markedly. If the sampling at LC wes done in ex-
actly the manner described, then the sample is biased to neadings with
many entries. Actually, the biasing may not be as bad in this case as
it was in ours, because the sampling was done in the main catalog.
There, all types of entries are mixed. If a non-subject added entry
was hit first and one then advanced to the first subject heading one
came upon, then this is no longer a function of the bulk of cards taken
up by a heading. If a subject added entry is hit immediately, however_
the above biasing weakness applies. Thus, Dubester's sample is probably
biased toward large headings about half as badly as ours was. A change
to the proper sampling procedure would bring the mean number of ena,ries
dawn and would raise the percent of headings with fewer than 11 entries--
which in turn would bring the results closer in line with those gotten
on this study. Considering the great difference in size and character
of the two libraries, such closeness would actually be surprising.*

Means, mediana and standard deviations of date of publication,
number of pages, and number of subject headings assigned per docuemnt
were computed. (Detailed descrip.ions of how these were computed are
given in Section 2.3.1) In the original keypunching the data had not been
verified so a series of formal tests were made first on the date and
page figures for each document to eliminate duds. For example, pages
were flagged if alphabetic characters other than V (for Volume) appeared
in the page columns.

*See Section 2.3.2 for mention of another cause of difZerence between
Dubester's and this study.

Incidentally, as it would be difficult to make a guess at alrerage
number of pages per volume, documents whose pagination was in volumes
were flagged separately and not included in the calculations. As it
happened, among the variol-s tests for page duds, the test for the pre-
sence of a V came second, so there may be a few of the "regular" duds
which are also items with pagination in volumes. The results were as
follows:

Date duds:

Page duds:

Pagination

262

1127

in volumes: 2618 (out

There were 33 overlaps, that is, 33
and page duds, It is interesting to note
overlaps, if the two error functions were
about 5.

of 60,161 documents)

documents which had both date
that the expected number of
purely independent, would be

The statistical calculations on pages and dates are based on that
section of the file which is error free for that aspect. In other
words, a document with a dud date and a valid page number is not in-
cluded in the date calculations but is included in the page calculations.
No tests were made on the number of subject headings because this was
computed simply by counting records for that document. (Remember, there
is a record for each subject heading application, not just for each
document.) However, as the mean subject headings were calculated in re-
lation to date blocks (see below) the sample base for this figure is
identical to that for the date figures, i.e., It includes no dud dates.

First, figures for the whole file:

Mean Number of documents

Date: 1953.76

2ofas: 309.83
No. of Sublesdiag: 1.713

59895

56412

59895

Next, various calculations were made for dates and number of pages
for each subject heading level. A document at subject heading level 2
is one which has had two subject headings assigned to it. Listed in
Figure 2 are ihe number of documents at each subject heading level in
the file before duds were weeded. Along with it, for purpose of com-
parison, are ie coiaesponding figures from a study made by Avram et
al. (1) at the Library of Congress on a sample of entries from cards
issued between 1950 and 1964. (Note that this is cards issued, the dates
rf publication are not restricted to this period, but probably do fall
almost wholly in this range.) Their sample was restricted to the "re-
gular series." To quote the authors: "This includes both monograph
and sex-18,i mal;erial but excludes special-format materials, materials
in oriental languages, and cards for words not cataloged by the Library."
(p. 181) This would make It fairly similar to the Santa Cruz file.

No. per
Document

0

1

3

It

5

6

1

8

9

etc_

_ DISTRIBUTION OF DOCUMENTS BY NUMBER
OF SUBJECT HEADINGS ASSIGNED

Santa Cruz, Fil Librof Sample

Frequency Per cent Frequency Per cent

111,571 19.5 319 14.3

31,456 42.1 1,192 53.6

18,371 24,6 551 24.8

7,353 9.8 127 5.7

2,160 2.9 29 1.3

791 1.1 6 0.3

26 0.03 0 0.0

2 0.003 0 0.0

0.003 0 0,0

o 0.0 0 0.0

74.732 100.0 2,224 100.0

Figure 6 gives all the remaining basic calculations made on the
file and requires explanation. Means, medians, and standard deviations
were computed at the first 6 subject heading levels. As 7 and 8 had
only two documents in each_ they were not included. The number of snb-
ject headings was computed for each of four date blocks, that is, the
number of subject headings applied to all documents whose date of publi-
cation fell within the date block's range became the basis of computation
for that block. This is the converse process from the compul2tion for
mean date at each subject heading level.

Finally, normal distributions were assumed for each of these three
sets of data and calculations were made to determine whether differences
be4ween means were significant.* For example, mean dates at subject

*Using this theorem: If x and y are normally and independently distributed,
- -

thenx-YismormalYd-istributedwithmeanp___=-p-and standalx-y Px
Y

deviation 6 = }/3-27n-- . The null hypothesis was then testedx-y x x Y Y
0) using the standard conversion so that a standard normal tablex-y

could be consulted: t = R - yr - 1.1, 77 Values of t greater than the
x:LE

R-Tr

table values meant the null h othesis was disproven, i.e. the difference

between means was significant.

46

LE

-

edl2fl S i gni fi canoe*

date .9

1960

1960

1959

1957

1951

1948

edian Significance'

o. of .95 .99

a

0-279

0-279

0-279

0-319

0-319

0-299

edian

o, of

adings

Significance'

.95 .99

ot

mput-

be- !

one

ii

ghest

of

adings

low)

heading Igels i and 2, 2 and 3, 3 and 4, etc, are tested, As there is

no r pri. reason to aSSU2e that the moan date at any particular sub-

ject heading level vill alwap tend in one direction, (for example, that

higher subject heading level will have earlier dates), a two-tailed test

IA used. his goes for the nean number of subject headings as well.

However, ve would expet that if mean numbers of pages differ, they will

differ in that documents with more pages will have more subject headings.

Hence, a one-tailed test was used here. Results o to significance are

listed on the table for the .95 and .99 levels,

2,2,4.2 The Minor Hyvanoeree

A very important pig should first e noted and kept in mind through-

out the discussion of te hypotheses. It is obvious that we are not

studying the entir pro hing and lib-!^ary field. What ve see here is

only a reflectioh of thai wider field in a very small library collection

with its on idiosperatie nature. It is an undergraduate collection,

overwhelmingly coxpsed of recent imprints, and is a "basic" collection

of important l)er:45, rather than a research collection.

Hoever, these books were not selected IT the number of subject

headings they vnuld requirr nor by the date. vhich are the two major

bases upon which these tests were made, IL other words, no conscious

human bias affects the variables used as the basis for this study. Books

were of course selected for recency, but they were not selected by date

in the sense of trying to get a balance so that all the years are evenly

represented or any such thing. Instead, selection was done on the basis

of content; here is where the conscious human effort comes in.

Now let us examine the first minor hypothesis. Ihe signiftcant

difference in the mean nunber of subject headings assigned per document

between the various date blocks has been noted previously. The issue to

be tested here is whether more tian the usual number of new headings were

added to the thesaurus during the period of the high rate of subject

headings assigned per document.

Figure 8 graphs (on a logarithmic scale) the number of documents

and number of new subject headings for the period 1880-1967. %Umber of

documents" is the nuMber of documents whose date of publication is in the

given year. "New subject headings" is the number of subject headings

whose earliest date of application in the file is in the given year--in

other words, the earliest date of publication over all the appl'cations

of a given heading. For purposes of the experiment these earl st dates

of applLcation are being assumed to be the date of addition of the head-

Lig to the thesaurus, which of course, they are not. In many instances

the heading may first appear in the Santa Cruz file long after it has

been added to the LC List, But here too, as with books being written

about old and new subjects, a heading cannot be used before it is in-

vented, so the results should be at least a blurred replica of the true

profile.

It is to be expected that there will be relatively more new

headings earlier than later, because of the particular nature of OUT

M I. IMMEEMMil
NAM. 11111

. 11111 111111 1
NMI MIMI MINIM MEI

, Mi. al IMMEMEMOMBEW ii ME
111111111.111 11111111111111,1 IIIiii Mili MI II

i i

, MI MI MOM WM
IMIMIMMMIIMMIMIMMINIT

MIA
_ maramigNiMMMtMEM= _ 1111111EME

1111111M
, Lairmntia 'wan

M U EFANCIE 1111 mmo

M lif MEE
111111=10 EINEM

iMMMWM
I I MI

omethiOmeMp. prEtimimmiffrimilhimmeinniiMifiniiiiri
is IIIIMMIIMMULA 1111ANIMMII1MII1 "UM MUMII MEOW MUNE REIM

0111111111111N MIMI MEIN 111E111 III

"Ei RIME
EllE" III
RIMNM=

IT

II

"new" hendings. As these are the earliest date lf applipation of R
heading in the file, chances are that more recent documents will have
subject headis whose earliest date of application is earlier than the
dat- of the recent documents-- o these subject headings will appear
earlier on the subject heading curve. This can be seen on the graph.
Tt .?. document curve moves below the subject heading curve at first,
moves up to pace it, and then moves above it.

The area of our prime interest is in the thirties, however. This
section is blown up in Figure 9 (on ordinary graph paper). Here, mean
number of subject headings assigned in each year is graphed as well,
on a different scale. While the two curves had been neck and neck for
a while, and ol.e would expect the document curve soon o rise above the
subject beading curve, instead it dips in the late twenties and thir-
ties with a marked lowering between 1931 and 19,4. So it would appear
that more new subject headings were added during the depression relative
to the number of books than in other periods.

Perhaps librarians had a lot of time on their hands and invented
new headings. Cr, perhaps because of the economic squeeze, fewer books
were published, and those that were pub]iehed were the best, the most
original of an ordinary year's crop. This would mean that just as many
subject headings were created in those gears as would be expected, given
the previous shape of t-e curve, but the squeeze lowered the book pub-
lishing rate. In other words, the cause of the flip in the curve could
be either that number of subject headings rose, or the number of books
published fell; the data do not tell us.

At first glance, it would appeal bhau Lne opposite process occurred
during World War II: more books but less time to bother about creating
new subject headings. But referring back to Figure 7 again, we see that
this is just the beginning of the general rise of the document curve
above the subject heading curve. Whether it rises precociously in the
forties, we cannot tell.

The second hypothesis, that the mean date of publication of books
indexed under a subject heading is indicative of the relative age of the
subject field, was to be tested simply by inspection of representative
neadings. A section of the file, ordered by mean date, was printed out,
and then 100 headings were randomly selected from these. A detailed
description of the method of selection is given in Section 2.3 and the
list of 100 headings and their mean dates are given in Section 2.3.2.

The results indicate that a test of this sort is of little value
on a group of subject headings of this nature. The hypothesis would
be mosu sharply revealed with a collection that was largely scientific.
The great majority of the 100 headings are geographical, personal, and
historical. One gets very little sense of the progress of time in
reading them over.

5-

FIG. 9: BLOW-UP OF FIG. 8 WITH MEAN NENBER OF SUBJECT HADNGS
ASSIGNED/DOC AND NUMBEN OF DOCUMENTS AND SUBJECT HEADINGS (1912-1948)

7.20

Too

68o

66o

640

62o

600

580

960

4c)

520

500

480

46o

,FID 44o

8 420

400

2,40 _-,80

(Y) Z:.36 360

8 2.32 340

2.28 320

nd 2.24 300

to 2.20 280
.H
11 2.16 260
W 2.12 240

w 2.08 220

-P 2.04 200

2.00 le!)

E .96 16.

O 1.92 i4o

O 1.88 120

5 i.84

1.80 80

1.76 60

MEMM 1M Ju
I.

IMMO

m
m

MENEM' :7117177-1

ENEM EMMEN
:n Mean number of s.h.'s

assi _ed/document that
year.

= Number of r-h.'s intro-
duced that year.

ME ME
minMEMMEM

E MMEN.

MEIJI
M MEMLEM_

M IMM M MEmEEMEn AO EMU=
m ME MME_EE=MUM I.

MUM ME _EMEMEMM MEM
MINUM MIMME
EMMEN i-ll EMMEN MME
EMMEMEMMullmeME m 4MOm_
UM' E UME=MUM' momE MEM i MME EM 4

ME E M
F.

EEMENiumMw44 MEMEMMEEIMMEMM MUM= MEEIMMEME -14 NMIM MMMIIREMM MUM ME-M
MEM MmEMEI HEMMER' ME EMIUEMI UMW HOW= EmMMEM

MI W4M10 Mammm mom
mm mwm.A ma ielum

E WE
MEOW

EMM
ANN E At UM M MEM=C ORVIOMRME W E EMEN

I
HEM MAUMEE .1 MEM=mum. ummwmamm he mum mm

MMWE IIM2 EVE
A ME =VIM ME RE

ARM ME W MMUMEIM d° itMir NM I MEM Nazi11, Mf W IMM1_

111,

:11111 1.1.
E aitiAMA MIME M

1 1111
UWE nmmimimmom

mm
'xiriw MEV ME
Mr I EP E
RA I L 1111

H HM M 01 MHH H H
a cm

er,

Year

mi

FOO EMMEN MM IM EMU MEM
II
EMMEN
M EM

EMMEMEMMEM
MMWEEMEMEREM

ME WVIIIMMEEME mmommmmmm_
m EovEMEMEME
MEM mmmk=mEMEMEMMMEMMEMEMMEM NUMMI=MEM EMEMMRE ME=EMMA inMO IIMMEMMEMOM
M MOMMEMMEWM1.111MMal= um MEMKEmmEM

(11 çr N.0
(e)

03. CD
.-r

IN

01

CO

2.2.11.3 The Major Hypothesis

The first approach taken on the hypothesis was to array the co-assign-
ment and date of publication in a two-dimeneional array. (Co-assignment,
as used here, is the nutber of other headings assigned along with a given
heading to a nocument. Looking at it in terms of documents, the co-assign-
ment is always one less than the total number of headings assigned to a
document.) With the array (x,y) all unique subject headings (types) whose
mean date of publication fell in the date range x and whose mean co-assign-
ment rate fell in the range y would be added to that array element. It
was expected that the mean rate of cc-assignment on headings -,rith re:ent
'ilean dates -would be higher. This is a mistaken approach because the new
heading phenomenon is going on constantly. A certain segment of the hed-
ing population in 1920 was new, just as a segment of the 1967 heading
population is new. So over all the mean dates of subject headings the
mean co-assignment should be roughly the same.

On the suggestion of Ralph Shoffner, a more sensitive approach was
taken. The idea was to take the difference between the mean date of
publication of a heading over ail the applications of that 1-_eading, and
the date of tublication of the individual subject heading application.
For example, the sul,,;ect heading entries on the t:7pe that was created to
do this would look like this:

(subject heading)
(no. of (date of

co-as'd. terms) (mean date) appl.) (cliff.)

Aesthetics 0 1960.0 1965 -5
Aesthetics 2 1960.0 1955 >

Aesthetics 1 1960.0 1960 0
Asps 1 1 t8.2 1950 -2

The tape was then sorted by difference, so the,, all entries with a given
difference were together on the tape. Then the mean co-assignment rate
over all those entries with a given difference was computed. The value
of this method was that it blocked all headings applications by the distance
from their mean date. This made it ielependent of date in the chrono-
logical sense; all those heading applications five years from their mear
wolld be together, regardless of when in time the mean was. Tie results
of This test are graphed in Figure 10.

-20 means that the eate of the Individual application is 20 years
earlier than the mean. At first sight, this graph is quite fmpressive;
however, on closer examination, Mr. Shaffner and I fou'd several fa,Its
with this aenroach- (This apiarently simple study was sneakier than it
first appeared, especially as the hypothesis and the assumptions behind
it were not as clearly formulated at first.)

First, _Lc was noted earlier that the mean number of subject headings
assigned to documents varied over the years, with a rate notably higher
during the thirties and early forties than during the periods before or
after. (Sec Section 2.3.2 for the mean ratu year by year.) Through 1929
it wae 1.86, 1930-45 it was 2.05, and 1946-67 it was 1.67. With a mean

I II I A I

U.
P _I, 1.111.11111110111 _ _ _ I 7 4-1 -0 I EIE RCM

NM =IT EV ...N--... _ i...... . -.......... _ ... U.mum..1. 11111111111N M= NM I. M = MEM= NIIIMM
Mmommuril

n om E MIMI 11 NE -. .i a - 8 MEM MI

MOM E EMMEN MOW 11.1. E MEM El=ME MN Mill MILTI NM= MMEN MEM MM MEMU. ENNIIMIN E ENEM MI= m
et; MMUMMIA 1111 _ _ EMEIN

MIME= III =WNW M 10111 IIIIIIr LIE: 11

MEI III IIIIIIMMI NM mi I= lkmita IL IM
MEM I III Mil 1111 In 11111 MEM ENEIN 10111111111.1111111

1111161.U. mi IN ME I IMII= ME EINEM= MI MIEN.NMI II IMINEE =MIMI= MN ENIE ME MINIM=
11111NMEIENTIIIION III MEMIMMENIINIEM EMI IIM _.

111.11110.111111M11====.11.11ME =1=1191211111r=1 _IIIIIIII 11111 PriNIMMIIMEME =111 ME MI1111111111111=1111 MOW MENEM ME INN I EMEI IMENIMMEMEW/HEIMENTENIMMIIMIEN. 0111.1==111111171=111111. 111II IINEM IIIIMMIEN 1 IMII .11111 INEIE 1111111111 11M
111.1 IA a - . a MN

min iMM. 11111EIVEMmill Make ME

; 11..- OM I
111111 E. MEM IIIIIIIIIIIIMIIIMH

EMMEN. MME I
ME MEMMOM . ME MEM =MOM= 1 _ I U._-N. -smoommommomm _Emmammu imm men= 1 MENE l II A NUM...MEM NEM IM =EMMEN EM

E MI I IN I , OM 111.11MM NMME I I ON NIIMEN =111.111 11111. EN
MI 11.11 EIN 11111111111=111. I ME 11 NEI IEEEMENNIEENNIM111 1111111111111M rig
E EENIEEHEI I EEEEEEEEETEENE Ei 1 Elm EENEEEEEEmy a !MIMI ll MEIN NI IMMIEN El IME =EMMEN. =NNW.. 11111 NImonialiniu mu% Irmo mo _ummumn MIIIMMUM El IIN=IIII EMI wijugghmelliill EMI RIEMENEEMEEM1111=111.1111111Mil EN

UMW_ _ agwwwm
N MI". NUMMI MEM =MI IMMEM IMMEMEI M=III 1111.111111111 MIMI INEMIRIMMt MENIMMIENEINI 1..1 1111 mi.,.
mom 'EN EEEEENE EREEENEEE mum NEEEEENEENENEEE E mom E mu
noel= EEBIEENEE Emus= ENEIENEEEEEEEEEEEEEEEEEE NEE[um smusigEmE NMI I EIMIIMIENEMIEMNIEMEN MI IIII ___ Ill ME

IIMINIE

1111111EMEM =MEM 1111111MMIIII EN Mil MI NEMIIIIIIIIIIMIE =MEE 'NEI IIMEMIEMMEMIMMEIMEM MEE E.I INT__EN ME
S IMI IMMIEMISIMENE EMMEN= 1111111 111111aqui mom EMINEMEIMMEM IEIN EMI INENIIMEN E II OM111.11 EINIEEINIMMEINNOMIll 1111.111=IIIIIMILAIIIRTAIME I Ilmmum

EaIIIIIMMIIIMMNIMI 1 NMI IIIIIMEMEIMMEMMMI INEMI MILNE II MEN
E NIINENEMEUENEINNM 111111111111.110111111111111IM
NEI MIMI INN II MI INNENNEMMIIIMMEI MIMI wiliniElnuENNEN MEM 1111111111111111M I I IMMENNEMEMME I IMI IMIIIIIMI II INN

EMIIIIIIIMEN 111. =1111111111. IIIIII II IIIIIIIMMEM MI INIM IIII INIIIIMINMEMNIIIIIIIIIMMI 111111 I INK IIN M111.111IIIIIIIIIMINIMEMEM _ME MUNNNENIIINIMIMINIENNEI IME MI I_ _V EN VIIN 11111111111NE 11111.
IIIIMMINEEMIONNE11.1111 MI MI El .1111111 110111. I IMO mownME I IEEE EmIENI 11111111 11111111 ITAREIMIIIIE MINIM.ONIMEMMINIMEMMIIIIMMEMEINEME. IIMM IMMEMIIII IME _II II IMIIIIIMMIIIIMIMMIIIIIIIINIMINE.11.11_ IVAIIININIMMINIE li El klIIIIIIII. =I MI li AIMMEMEMEMI IMIMENINI UM MI 1=111 MEM II III II11ME11.1111111 MI INIV Ell 1111111111111M II111111111ENNEMMEMIN 1 IMMI I EE 1111.

EIMMEMEN EMENEMENEEMIEMENNO MENEM. NEMIllEMENEN111.11IN111M11111111MMINIEMMIIMILMIMIIMM MIIIMMEIM MI IMII MEM 111 VIE
MENNIEMIIIIIIMINEMMIIIIMEMIVINIENIMEI MI 1111=1 IMMIll I II I IN=11MMEIMENIEEM 11 MEM MI IMMO I II.

MEMIIMMEMEE EMI IMMIIMMIEMEINMENNEMEIMENE_ EMI I MIMEO= ME IMO
1111.11 111111111.111 11111MMIE 111111=M__11111 MEM NE MI I 11111111 MEM
E N EME MEIN OMMEIMENIII NE MENNEN IIIIMII MIME EMMEN. MEM

IMMENEMEINENIIMEN 11111 EMMEN IIMEN
MEM EME.11 11.1M1111111. 1111111... IIII .11 MN N..

MEMENEIMMIIMEN =NM NIMMEINIMENEM ..11111 NENMEI= MMM-

z I z

publication date of l953.8 over all the documents in the file, it is
evident that the vast majority of the collection is of recent datE- So
we can expect most subject headings to have a recent mean date as well.
Thus the graph describes the behavior of recent books and their subject
headings for the most part, simply because most of the collection is
recent. So while th': graph is technically independent c- chrnnoleE aal
date, in fact, most of the indi7-idual subject heading applications whicl,
are ten years ecLrlier than their mean date (-10) are in the forties,
ten years earlier than the date of the bulk of the file. So if we look
at the range of highest mean co-assignment, -11 through -27, this would
put us back right into the period where, asa general rule, the most
abject headings were assigned to documents, hence the fall in the curve.
We might then expect that the true curve, say, normalized by mean number
of subject heading assigned per year, wouV give something closer to a
zero-slope curve.

Secondly, there were two fundamental weaknesses with this logicall.
For one, 'cy gmlphing eath subject beading by years, we are usi_ag a car-
dinal, or interval, approach for an ordinal pLoblem. Ia othe_ words, in
using this approach, we are assuming that one year (or ten years or what-
ever) has the same effect on , very subject heading. Yet the rate of de-
cay of various headings, and the resultant curves, may vary sharply from
one to anolher.

The second logical fault may be even more serious. Here, the problem
is in using the mean. Suppose on Subect Heading A, the mean is 5 years
more recent than the earliest date of use of the heading, while for B
the mean is 30 ;Tears from the carliest date of use of B. Suppose we then
look at all sub3ect heading applications which are Jne year earlier and
one year later than the mean of Subject Headings A and B, i.e., -1 and +1 .

mean
rate
of

co-assn.

6(+1)

meant
\NN, rate I

of
co-assn.

0 5 (P)

earliest date of use

Subject heading A

30 (P)

earliest date of use

Subject heading B

Whatever the nature of the curves for the two subject headings (rate
of decay), chances are that the -1 and +1 mean rates of cc-assignment
are going to hit at very different points on the eurve-`z. Yet th-
approach, by averaging together all co-assignments for Subject Headings
A and B will blend these together and produce rather blurred curve,
that is, one would expect a curve such as in Figure 10 to have less of
a fall in it than there really is.

One way of resolving this is to Lake the diffel.ence between date
of publication of tne individual subject heading and the earliest date
that subject heading appears in the file. We then have the time from
first use so that all values with a difference of 20 are 20 years more
recent from their first appearance, which would then put all these
values on roughly the same point in the decay curve of each subject
heading. Thjs eliminates the seccr:d problem, using the mean, but still
does not sol-2 t' e interval problem. Because of different decay rates,
+20 may still bo a different roint on an individual hr-=-A.ing's c-rve.
There is also the problem that first use in the Santa Cruz file does not
mean first use altogetner--we may not get the heading until years after
the initial confusion has died down at the Library of Congress. However,
this problem is with us whatever approach is taken as long as we are using
'he Santa Cruz file and not the Library of Congress file! And anyway, we
would expect a trend to be evident here too, because you cannot assign a
heading whicn has not been invented yet.

There is a way of getting around this interval problem too. However,
there was not enough time to perform that test--so it will be discussed
in the nexu Section, 2.2.5. Because of Une very similar processing in-
volved, there was enough time to do the intermediate experiment, (which
eliminates the second problem but not the first), the one using the ear-
liest date instead of the mean. The results of this test are granhed in
Figure 11. A +20 means that the date of application of the individual
heading is 20 y-ars more recent than the earliest date of application of
the heading. A glance inaLcates that the hypothesis is not at all con-
firmed in this test. The averages bounce around so that the lfaes of the
gralh were not evenly drawn in. The rates disperse more at the right
hand of the graph simply because the sample bases were becoming very small
there (from tbout 40,000 on the left to 20 on the right.)*

The jnterval problem still remains, but unless decay curves are
radica71L different from heading to heading, it seems that there is no
reason to believe 'le hypothesis to be correct. The impressive fnll in
the curve on the first approach is probably whrlly due to the factors
conjectured earlier.

*The number of heading applications at 0 were very high on both the mean
and earliest date studies. This is because the great majority of the
headings are applied only once, qo the mean and earliest date pre equal
to the date of individual subject heading application. Plus 1 on th,:
mea study drops to about lam and on the earliest date study to 2000.

MEMNON...NM MEMMEMEMENNMEMEN NAMMEMEMMMEM -MINEMENNEMMENMENNEMENMENNMEMENEMM 'III EMENNIMMUMMIN :IMMENNOMMiMMEMMMEMENMEMMIIMMEMEMMEMMME MUM ENNEEMENNEMER UWE ENMUMMMIIIMMEmMEM mMEMEMM EMMOMmom mmEMMEMMMmmemmumm M II
M

WaniamMmEnrimillanniMar IFICERIMMEEnnaluangliMUM EN
WM M111111111111111111101111111111811111111111111111111111 M-M
MENU EN mmmmmmmmmmmmmMmmmmmmmmmMMmmMMmM NNE MOMMMMEMEMME M M MNNM MMEMMINIMMENMEMENNMENMENMEMMENNEMENNMEN MEMMOMMOMMENNM ME MNME MEMMEMEMMMEMMEMEMMUMMENUMMUNNEMMENNENN EMMENNMMEMMM=M OINEN OMMMEMMIIIIIMMEMMMEM M MEMENNEEE M MEE EMENNIMM MEM

MENEMMERMME
MUMMER.. &MEMEMMEMEN=

M
I'

MENEM MEMMENMENEMMEMMENMMONNEMMM MENNEMEMMMIN MENNMEMMINNIN
MINNEMM NMENNMNEMMEMMEN MENNE M N

11111111111111111111111111 MIIIIIIIIIMIMIIIIIIIIIIIIIII11111111111MENEM NEMEMMEMMEMMEMENNM
MMMEMENNIMMENEMMNIM _MIIIIINLMINNEN-MMONNMIIIIIMILIMMIIMM=IMENMEMN
IIIIIIIIIIIIIIIIIIIIIMMMEMIIIIIIIMMN IIIMMENNIMEMENNEM MINIMMMINNEMENNEMMENNENNEMMIN MMEWNMENNON MEM MONNUMEMMMENENTIIMENEMMENMMENUMMENEMMUMMENEMNEMEMEMMEN MENNMENNMENNOMMUMN MMOMMEMEMMEMMMEMMIMMEMNEMEEMMEMENNEMMINNCENWEMENKNEMENNMEMMMMEM
MMMEMENEMEMMEMINMMOMMEMMEMMEM MEMENNNIMMENNMENNEMEMNWENN M ENEM

mmmmm
M mommummmommummommmommommEm _211MMMMMMINIEM

ilmommommarnmMimmommommmmmUmmumummommommummemmmummlaIIMMEMMON MNUMMNIMMENAKA MMEMMENMEMMENNMEMMMENNMENEMINOMMENMENMENE
MMOMMEMMUMONEMENENCEMM_MOMMUNIAMMINNANNMNIWNOMMENNMEMMINMENNEMEU

N MN MINMEMMIIPMNIMNLMMEMMEigenniiMME MireMammmmommommammummoNNW EMMnammmimrimismmmmummommummomm Emmummmommommommmommmomm
MUM MMNIMMEMENMEMENME M BM M MN M M KIfluINiIii.........UII.UIMENEMEMENNEMENMEMMMMENOMINNMOR MMENNOIMMEM nEENKNENNEMMENNEMMONMOEMMENNUMENEMEMMEMMMMMENSMNKMMEMMENMINNOM-MMEMENMEMMEMMEMMMEWOMMENNMN

MMEMMENOMENENNMENEMEMMEMMMENEMMEMENNO MENNMENMMEMMMENNEROMMNIM MMEMMNNENNMENEMENNNMNNMENNMEMMMEMM M MENMENEMMEMEMMMEMOMMUMMEMMEMMINMMENMENMEMEMMUMMEMENNEMENMEMMILAMEMEMMENNMMMONEMMEMEMMMEM
MMINEMINMENMENNMEMNMENEMMMEMENEMMEMMMMINENNAMMMANNEMEMMUNIMMMOMMINN

mmommommommOMMEMEMEmmumMEMMMEMEmmummummommommmmwmmormmillOmmumM
mummommummommommommommmmommummmommmommMumMEMmmadimmommammomm

MMOIMMIMMIIMMMrnmmimMIMmammommmmmsmmuiammommmummemmmoMmmmummumMEMMEMMEMmmmmmMUMmmommmmommmommmommommummmilliralmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmMmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmM
mMMMMmmmmmmMMMmMmmmmmmMmmmmMmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmMmmmmm

E U MIME= MUM= MINIMMENNMENNME MUMMMOMMNNEMMEMMENEMEMMEmuMMMEMEMmuMmmmmommemmmmm
mmm mmmommmm. -mmummEMME MMOIMMUMmmummmummummmmummommummommomMEM
MOMmEMMMMMmummmummimmlimommummmummUmMEMMmommmummommmommommmommmmmmmilimmumammmuMmMommummmommummummommommummommmummommuMmmommm

Mum= NMENNEMEMMONNEMEMMEMENMMENN MEMENNMENNEMMOMMUNNMENNMENMEN
IMMEMIIMmommEMMMummmmummommommom MMMMENNMENNMENNMENNEMEMEEMMMENE

mommom mmmommmmommmmommummmmommommummommimmummommummmmEmmmmmommmmmmmommmummommummommommmummommmommmIMMMEMmEmmummummmommmmumm
MMINEMMEMMEMMEME mmommmommimmmMmmmmrnmmmummmoMMMEMEMMEMMmommEEMNEMNIN mmimmommmMmmmumommmmommmomommmommmmmmommormmom
OMMEMMEMIRMEM lmmmmmmmmmmMmmmMmmmmmmmmMMMMMMMMMMmmmmmmmmommmommmmum mmomommommummmimm MENMNNMNNMENNENIMMENNNEMMINNMEMMMILMEMMEMMEMENEM MENON MMEN= mmmmmmmmmmmMOmmommommom Emmommommummmmmm mom_ MMMEO mmommMOmmomMMEMMENEMMMIN NMENNMEMMMEMMOMMM M EMMEN MMENMMENEMMENOMMMEMMEMNANEMEMENEMMIIMMM _MEMMENMMEMEMMENEM M mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmM

d r.
a

Some comments on the nature of the file and its relationaship to
the tests made are in order here. The Santa Cruz file was used because
it constituted a large mass of data in easily manipulable form. Yet it,
by its nature, WAS not likely to be very revealing of tha trends expected.
First, it was indexed under the Library of Congress system and the number
of terms assigned per document under that system is generally very low,
thus allowing little leeway on the part of catalogers, and requiring us
to descriminate very mall differences on results. Also, as it is an
implicitly hierarchicr:l svEtem, the solution resorted to when it appeared
that many headings would be needed may have been to assign a single head-
ing higher in the hierarchy. This is a common practice and a part of
library students' instruction. A non-hierarchical system may evince the
pattern hypothesized.

There are two other characteristics of this particular file which
may make it unsuited for our purposes. First, it was mentioned earlier
that subject headings previously assigned were revised to current usage.
This could have had the effect of cancelling the confusion-resulting-in-
more-headings f-r all periods except the present one. Secondly, the
effect of Mr. Black's encouragement of his catalogers to uue more head-
ings where needed is unpredictable. This, in effect, results in a system
which is neither purely Library of Congress nor a non-hierachical system.

Still and all, one persists in the feeling that were the trends
there, they would have shown up. The approach suggested in the next
section for future work should still be carried out, as it would eliminate
both the fundamental weaknesses mentioned earljer and therefore provide
more conclusive results. But aside from this it appears to this writer
that the next best approach is to shift to bodies of literature which
are indexed under non-hierarchical systems. The effects of such indexing
systems are so different that they may well provide very different
results.

2.2.5 WhPt Next?

The following approach, mentioned earlier, was suggested by Ralph Shoffner
to get around the interval problem. Order all the applications of each
term by date of publication associated with that application, from earlier
to later dates. Then go down the list for each subject heading and compare
each pair of applications, 1 and 2, 2 and 3, etc. Look at the number of
co-assigned terms in each pair. If the number of co-assigned terms on
the first item of the pair is greater than the number for the sedond item,
let us call that a yes; if less, a no. If thE hypothesis is correct, then
the percentage of all such pairs which are yes': should be s43nificantly
higher than the percentage of no's, i.e., higher co-assignment as a rule
early in the life of the subject heading.

Another much more laborious approach would be to examine successive
LC subject heading lists and supplements for new headings and use the date
of the LC list as the earliest date. This would give us the true date of
birt] of the subject heading, but here the interval problem is back again.
The results would probably not be much more interesting than the earliest-
date-in-the-file approach already used.

It was mentioned earlier that several minor hypotheses were developed
in the course of the work. Two have already been tested and discussed.
The only other important one, which there was no time to test, is the
following one. Where no new subject headings had been introduced to the
thesaurus yet for a newly developing field, it is to be expected that in-
dexers will use several older terms, each only partially descriptive of
the field, to cover the subject adequately. Taking all the terms used in
the file in pairs, we would expect that some pairs would be co-assigned
a different definition here, namely, both assigned to the same document)

very frequently to describe newly developing fields for which single
apt terms had not yet been introduced to the thesaurus., (There is nothing
magical about pairs; threesomes may frequently be co-assigned as well.
However, even examining all the pair co-assignments in the file becomes
quite a bulky job.) ThP number of times pairs are co-assigned can be
counted and pairs wit1, nigh co-assignment printed out and compared to
pairs randomly select d. Given the current rapidity of scientific develop-
ment, most of the hi -co-assignment pairs, representing new fields,
should be in science.

2.3 Specific Tests and Data

2.3.1 Precise Description of Tests Made

The following is a precise description of the various ca]culations
and tests made during the study. The descriptions are broken down in
the same way as in Section 2. As the particular variables used in each
test vary considerably, i.e., the same variables do not appear repeatedly
in test after test, no attempt has been made to ensure that variables,
when they are used again, have the same letter name.

.3.1.1 Basic Data on the File

Distribution of Number of Applications over the File.

h = a unique heading (type).

a = an application of a unique heading (token).

t = total number of applications a of a unique heading h.

tt = total number of unique headings h which are applied t times.

th = total tumber of unique headings h.

FirLd the above totals over the whole file. Produce frequency distribution:

tt tt/th (percentage)

Find:

Distribution_of Documents al_B,,c12,9111_2jg_c_tI-_a_lied..ng_trna.1.

d. = a document with i subject headings assigned to it.

Find the total number of documents with i subject headings assigned for
each value of i i = 1, n, and array the totals.

Means, Medi

a.

Pi

d Standard Deviations of Dates, Pages and Subject Headings.

date of publication of a (valid-date*) document i.

= number of pages of a (valid-page*) document i.

n = number of documents with valid dates.

m = number of documents with valid pages.

a . mean date of publication over whole file.

= mean number of pages over the whole file.

p = 1=1

nuMber of headings assigned to a document

date of publication of a document i with
to it.

total number of documents with j headings

j headings assigned

assigned (valid-date).

mean date of publication of documents with j headings.

number of pages of a document i with j headings assigned to

total nuMber of documents with j subject headings assigned
(valid-page).

mean number of pages of documents with j headings.

date block, b = 1,...,4, = thru 1929, 2 = 193G-45
4 = 1960-67.

number of headings assigned to a document i in date

= total number of documents in date block b.

it.

= 1946-59,

block b.

= mean nuMber of headings of documents in date block b.

*Invalid dates and pages to be elimi ated before calculation.

Find: n.

y,3 d for'values of j = 10...

1=1

m,

P ., for values of j j

1.=1

rib

1=1

for values of b, b = 1,

Also find: median date at each heading level j and median nuMber of
pages at each heading level j.

standard deviation of date of publication at heading level j.

s = standard deviation of number of pages at heading level j.

s
j_

= standard deviation of nuMber of headings

Find: n.

L JL
i=1

date block b.

, for values of j, j

, for values of j, j = 1,...,_

for values of b, b = 1,...,4.

*There were only two documents each for the values j = 7 and j =
so means were considered useless here.

2.3.1.2 First Minor Hypothesis: Rate of Addition of New Terms

Fiad earliest date of publication associated with each unique subject
heading in the file.

h = a unique heading.

y. = a year of publication.

th =

d =

td =

number of unique headings h first appearing during given
year y, i.e., that year is earliest date of publication
associated with that heading in the file.

a document.

number of documents d whose date of publication falls in a
given year y.

Graph frequency distributions of the above on the same graph, the num-
ber of unique headings and the number of documents on they axis, the
date on the x axis.

2.3.1.3 Second Minor Hypothesis: Relative Ages of Subject Fields

a unique subject heading.

date of publication of a document i to which h has been
assigned.

nh = total number of documents to which h has been assigned.

total number of unique headings in t-e file.)

n = total number of heading applications in the file
total number of documents i.e.,

n =
J.'

not

Find average date of publication of documents indexed under h, for
each h.

__-
Then rank dh values:

dh
m.

rfa

1=1 -i
nh

Selection of subject headings for examination:

As the entire file is extremely lengthy, only portions of the sub-
ject headings whose mean date was a given year were printed out. If
there were 20 or less in a given year, all headings were output. If
there were more than 20, only the first 20 were output. Exactly how
random this procedure is, is not known. The tape used, which was sorted
by mean date, had been created off another tape which had been sorted
alpllabetically by subject heading. The sort routine was a packaged pro-
gram and how the sorting was done, and what headings would tend to be
among the first twenty is not known. Perhaps headings near the beginning
of the alphabet tend to be more frequent. However, for purposes of our
visual examination, any tendencies toward non-randomness which do exist
are probably not significant. This output program plduced approximately
2000 headings. Of these, the 100 headings reproduce, Ln Appendix 2
were selected by a purely random process--in the usual way with a ran-
dom numbers table.

2.3.1.4 The Major Hypothesis

First Approach--By Mean Date o Publication.
_ _ _

h = a unique heading.

a date of publication a. of a given unique heading h.

total number of applications of unique heading h.

Find mean date of publication for that heading over all applications of
that heading.

dh.
dh = 1=1

Do this f r all unique headings h in the file.

Find difference of mean date of heading and date of individual application

df = dh - dh

for all applications in the file.

ch
d

= nunber of headings co-assigned (other headings assigned to the
fi same document) with a heading application i, which has a

given difference df between the mean date of publication of
the individual subject heading application.

= total nunber of heading applications with a given difference
value df.

Find mean

767
7 eh

df.= -=

for each value of df.

Graph me-n:* on the y axis, values of df on the x axis.

Second Approach--By Earliest Date.

eh = earliest date of publi ation over all the applications of
a unique heading h.

61.11.=date of publication of an application i of a given unique
heading h.

= total number of heading applications with a given dif erence
value df.

Find earliest date of application eh for each unique heading in the file.
Find difference of earliest date of heading and date of individual
application

df = dh.
i.

for all applications in the file.

Now, similarly to first approach, find mean number of headings co-assigned
over all heading applications which have a given value of df.

chdf.

chdf J.' i

Graph means on the y axis, values of df on the x axis.

2.3.2 Raw Data From Tests

On the following pages are listed those raw data from various tests
which are not given elsewhere in the report. Due to the difficulties
of xeroxing computer output paper, there is some overlap from page to
page; please disregard all material above and below the horizontal lines
drawn in.

2 3 2.1 Basic Data on the File

All pertinent data on this portion of the study have already been
given.

2.3.2.2 First Minor Hypothesis= Rate of Addition of New Terms

The data are given in two separate tables. In the first, Table 1,
the date, the mean number of subject headings assigned per document in
that year, and the number of documents with that date of publication are
listed. In the second, Table 2, the nunber of subject headings whose
mean date of publication over all applications of the heading fall in the
given year, and the number of headings whose earliest date falls in the
given year are listed. The former, the mean, did not play a part in this
test, but is left in here in case it is of interest.* Only the years
graphed, 1880-1967 are listed.

2.3.2.3 Second Minor Hypoth sis- Relative Ages of Subject Fields

Listed in Table 3, are the 100 headings selected more or less ran-
domly from the whole file (see Section 2.3.1 for description of selection
Procedure) and ordered by mean date of publication.

Due to the lack of verification on the keypunching, and due to different
practices with regard to punctuation between Santa Cruz and NOP, all blanks
and punctuation marks were removed so that headings vhich were truly the
same would sort together and tally correctly. The headings are reproduced
in this compressed form.

There was not enough time to get an estimate of how many errors
remained, i.e., how many "true" unique headings were considered as more than one
heading by the program because errors in spelling caused divergence. It
should be noted, however, that error in number-of-unique-heading counts
will show up in figures which are more than the t_me number.

*In this calculation, by mistaken analogy with the usual practice of
rounding numbers, mean date§ were rounded in this-manner: e.g 1950 =
1949.5-1950.499...In the calculations for the major hypothesis this
practice was dropped and 1950 = 1950.0-1950.99...,which is our
usual way of thinking about dates.

2.3.2.4 Major Hypothesis

The difference, the mean number of co-assigned headings, and the
number of applications which go into the calculation of the means axe
listed. Table 4 gives the data for the first approach, by mean date
of publication and Table 5 gives the data for the second approach, by
earliest date. Because of the sort program used, the positive and
negative numbers are intermixed for the mean date data. Also, because
of the way the subtraction was done, the signs on the original output
were the opposite from the way graphed. So the signs have been changed
to conform with the way graphed (bat the data have not been altered!)

Table 1:
Rate of Addition of New Terms: Date and Mean Headings per Document

Date

Mean No.
of Headings
per Document
in that Year

No. of Docu-
ments with

that Date of
Publication

1880
1881
1882
1883
1884

1.72222114
1.8125000
1.4814806
1.5204113
1.8571424

18
16
27
17
21

1885 1.6190472 21
1886 1.8799992 25
1887 1.8095236 21
1888 1.6071424 28
1889 2.0270262 37
1890 1.5882349 34
1891 1.6999998 20
1892 1.7631578 38
1893 1.8135586 59
1894 1.8378372 37
1985 1.4117641 34
1896 1.8983049 59
1897 1.7948713 39
1898 1.6130347 57
1899 1.7291660 48
1900 1.6607141 56
1901 1.8409090 44
1902 1.6964203 56
1903 1.7272720 55
1904 1.8548384 62
1905 1.5806446 62
1906 1.8289471 76
1907 1.7142849 84
1908 1.6842098 76
1909 1.7402592 Tr
1910 1.9647055 85
1911 1.6451607 93
1912 1.8631573 95
1913 2.0000000 89
1914 2.0341824 115
1915 1.8048773 82
1916 2.0888882 90
1917 1.7999992 75
1918 1.7500000 72
1919 1.7653055 98
1920 1.8108101 ill
1921 1.8518515 108

Table 1:
Rate of Addition of New Terms: Date and Mean Headings per Document (cont.)

Date

Mean No.
of Headings
per Document
in that Year

No. of Docu-
ments with
that Date of
Publication

1922 1.8773003 163
1923 1.9371424 175
1924 1.7621355 206
1929 1.7932692 208
1926 1.9252329 214
1927 1.9090900 275
1928 2.0551462 272
1929 1.9359426 281
1930 1.9405937 303
1931 2.2068958 261
1932 2.1865072 252
1933 2.2850876 228
1934 2.4157295 267
1935 2.1733332 300

1936 2.1111107 306
1937 2.0340557 323
1938 2.0408163 392
1939 2.0494785 384
1940 2.1560097 391
1941 1.9049997 400
1942 1.9085712 350
1943 1.8953485 344
1944 1.8964577 367
1945 1.8868351 433
1946 1.8330307 551
1947 1.7430553 720
1948 1.7072010 847
1949 1.6902456 933
1950 1.6379309 1044
1951 1.7144'17 1131
1952 1.6797066 1227
1953 1.6355925 1180
1954 1.6150303 1304
1955 1.6604118 1599
1956 1.6534491 1841
1957 1.6688023 2029
1958 1.6435642 2323
1959 1.6903124 2622
1960 1.6631041 3369
1961 1.6634102 3993
1962 1.6197491 4071
1963 1.6787481 14028

1964 1.6432428 5180
1965 1.6781263 5701
1966 1.6821985 4056
1967 1.7189188 185

Tdble 2:
Rate of Addition of New Terms:

Mean Publication Date and Earliest Date of kopearance

Date

No. of
Headings
with that
Mean Date

No. of
Headings
with that

Earliest Date

1880 8 26
1881 7 19
1882 16 36
188'A 9 14
1884 12 26
1885 10 28
1886 11 32
1887 8 30
1888 23 4o
1889 22 48
1890 18 36
1891 12 25
1892 23 4
1893 38 87
1894 22 51
1895 15 37
1896 24 76
1897 27 50
1898 27 66
1899 23 57
1900 30 61
1901 22 59
1902 27 72
1903 32 66
1904 28 66-
1905 37 69
1906 28 98
1907 51 95
1908 28 84
1909 41 88
1910 56r 112
1911 54 100
1912. 55 11';

1913 59 '28
1914 65 '54
1915 51 95
1916 47 121
1917 44 88
1918 43 67
1919 42 88
1920 67 118
1921: 60 108
1922 89 157
1923 114 192
19214 1014 176

Table 2:
Rate of Addition of New Terms:

mean Publication Date and Earliest Date of Appearance (cont.)

Date

No. of
Headings
with that
Mean Date

No. of
Headings
with that

Earliest Da e

1925 103 198

1926 121 208

1927 139 274
1928 156 279

1929 166 300

1930 204 309

1931 180 302

1932 188 289

1933 190 256

1934 216 313

1935 224 303

1936 258 313

1937 279 329

1938 285 363
1939 290 384

1940 324 356
1941 303 351
1942 300 298
1943 308 279
1944 364 298
1945 352 316

1946 383 379
1947 541 511

1948 611 567
1949 675 640
1950 696 671
1951 805 767
1952 881 842
1953 911 753

1954 956 869

1955 1137 998
1956 1271 1156
1957 1430 1215

1958 1613 1333
1959 1747 1458
1960 2181 1920
1961 2411 2203

1962 2500 2079
1963 2589 2153
1964 3269 2908
1965 3591 3382
1966 2393 2246
1967 119 110

Table 3:
Relative Age of Subject Fields

Heading

GTBRITCOLONIESAFRICAWEST
NATURALHISTORYOCEANICA
LEE9O0Dl784
NEWSOUTHWALESAUSTCOMMERCE
AFRICASOUTHDISCEXPLOR
CHABSONDEGESTECOLLECTIONS
DEBTSPUBLISUS
COMNERCEPERIOD
LOUISXVIIOFFRANCEFICTION
ROMANCELANGUAGESETYMOLOGY
CHARITIESUSCONGRESSES
NEWGUINEADISCEXPLOR
SCIENTIFICSOCIETIESBIBL
POETRYOFPLACESYOSEMITEVALLEY
SINDBADDTHEPHILOSOPHER
MANUSCRIPTSENGLISHCATALOGS
TASMANIADESCRTRAV
RIVERSRIGHTOFNAVIGATIONOF
FOLKLOREHUNGARIAN
PUNICWARS
SCOTCHINAMERICA
SANLUISORISPOCOCALIFBIOG
MIRABEAUHONORECGABRIELRIQUETTICOMTEDE17491791
PACIFICCOAST
STMARTHOLOMEWSDAYMASSACREOF1572FICTION
GRESSETJEANBAPTTSTELOUIS17091777
BERKSHIRECONASSDESCRTRAV
SANTACLARACOCALIF
OREGONHISTFICTION
MINNESOTADESCRTRAV
SPECTRUMANALYSISBIBL
ETCHING
NETHERLS16481714FICTION
LONDONROYALACADENYOFARTS
HAECKELERNSTHEINRICHPHILIPPAUGUST18341919DIE
POLITICALSCIENCEDICTIONARIES
WHITMANWALT18190l892SERIESAMERICANMENOFLET
TOLEDOSPAINDESCR
LEARNEDINSTITUTIONSSOCIETIES
BASKETMAKING
MINIATUREPAINTINGHIST
ESPERANTOGRAMMER
GIOTTODIBONDONEI12661337
WEBERKARLMARIAFRIEDRICHERNSTFREIHERRVON17861
ARNOULDSOPHIEDRAMA
WATERCOLORSBRITISHEXHIBITIONS
FOLKLOREENGL
EPICPOETRYFRENCH

-55--

Mean Date
of Publication

1805.000
1811.0m
1822.000
1823.000
1836.0m
1859.000
1865.000
1866.000
1867.000
1870.000
1874.mo
1876.000
1879.000
1880.000
1882.000
1884.mo
1885.667
1886.000
1889.000
1889.000
1889.000
1891.0m
1891.000
1891.5oo
1893.000
1894.mo
1895.000
1S95.000
1900.000
1901.000
1902.000
1902.000
1902.000
1904.000
1905.000
1906.000
1906.000
1907.000
1908.mo
1914.000
1917.0.00
1917.000
1917.000
1918.000
1919.000
1919.0m
1919.000
1919.000

Table 3:
Relative Age of Subject Fields (cont.)

Heading

EUROPEANWAR19141918REGIMENTALHISTORIESUS103D
FOLKLOREPHILIPPINEISLS
MASSEST01800VOCALSCORES
CHILDRENASMUSICIANS
ARCHIVESWESTINDIESBRITISH
TRAVELMEDIEVAL
FOUNDINGKINGSCOLLEGE
PHILOSOPHYENGLISH13THCENTURY
SPANISHAMERICILRELATIONSGENERALWITHSPAIN
SPANISHAMERICACOMM
R0SSETTIGABRIELEPASQUALEGIUSEPPE17831854
PASSIONMUSCIT01800VOCALSCORES
FRENCHDRAMAMEDIEVALHISTCRIT
GERMANLITERATUREMIDDLEHIGBGERNA_NBIOBIBL
EUROPEANWAR19141918AFRICAGERMANSOUTHWEST
NATIONALWUSICHISTCRIT
FRANCERELATIONSGENERALWITHITALY
FRONTIERPIONEERLIFENKWZEALOTAGO
FRONTIERPIONEERLIFEILLINOISPIKECO
NEWHEBRIDESHIST
CALIFORNIAUNIVERSITYVIEWS
BRAJLANGUAGEGRAMMAR
BLACKHAWKWAR1832FICTION
JOHNSONMARTINELMER18841937
BEHAVIORISMPSYCHOLOGY
THYWESTECONCONDIT
LOWELLJA1ESRUSSELL18191891
PAINTERSCANADIAN
HUAHINESOCLIFECUST
USHISTWARWITHMEXIC018451848NAVALOPER
UNITEDNATIONSPALESTINE
REUTHERWALTERPHILIP1907
AMERICANLITERATURECALIFORNIAHISTCRIT
CRIMINALLAWCALIFORNIACASES
ENGLRELATIONSGENERALWITHGENEVA
EUGENICSHIST
ARGENTINEFICTIONCOLLECTIONS
FLAGELLANTSFLAGELLATION
FERMIENRIC01901
MINASVELHASBRAZIL
EDUCATIONINDIA
ENGLISHLITERATURETRANSLATIOMIEOMSPANISH
ENGELBREKTENGELBREKT3S0ND1436DRAMA
ENGLISHLANGUAGEDICTIONARIESCZECH
EGYPTIANLANGUAGEDICTIONARIES
USRELATIONSGENERALWITHITALY
PORTUALCOLONTESNATIVERACES
POWERMECHANICS
FOUNTAINALBERTJANNINGS18381895
FERGUSSONROBERT17501774
RESEARCHEUROPEEASTERNDIRECT

Mean Date
of Publication

1920.000
1921.000
1923.000
1925.000
1926.000
1926.000
1929.000
1930.000
1931.000
1931.000
1932.000
1932.000
1933.000
1933.000
1933.000
1934.000
1936.000
1936.000
1936.000
1937.000
1937.000
1938.000
1938.000
1940.000
1943.000
1943.000
1944.000
1945.000
1946.000
1947.000
1947.000
1949.000
1950.000
1951.000
1952.000
1952.000
1953.000
1954.000
1954.000
1956.000
1957.000
1957.000
1959.000
1959.000
1960.000
1961.000
1963.000
1963.000
1965.000
1965.000
1967.000

Table 4:
Major Rypothesis Data: Mean Date of Publication

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE

0 1.19130 31824
_1 1.12394 3905
-2 1.12912 3067
-3 1.15666 2464
-4 1.13944 1922
-5 1.18301 1683
-6 1.20145 1375
_7 1.30424 1180
_8 1.36639 1089
_9 1.36182 901
+1 1.10988 4441
+2 1.07346 4152
+3 1.11256 3767
+4 1.11108 3466
+5 1.11015 3132
+6 1.11578 2902
+7 1.15568 2640
+8 1.15684 2289
+9 1.13304 2067

-10 1,40069 871
-11 1.45317 726
-12 1.56250 656
-13 1.53795 606
-14 1.58667 525
-15 1.70054 551
-16 1.70588 544
-17 1.64795 463
-18 1.67483 449
-19 1.62763 427
-20 1.68462 390
-21 1.60382 366
-22 1.59249 346
-23 1.56949 295
-24 1.57382 298
-25 1.56800 250
-26 1.70089 224
=27 1.45411 207
-28 1.29167 192
-29 1.473140 188
-30 1.47273 165
-31 1.32749 171
-32 1.34848 132
-33 1.49565 115
-34 1.25424 118
-35 1.34210 114
-36 1.27103 107
-37 1.36274 102

Table 4:

Major Hypothesis Dat

DIFtERENCE

Mean Date of Publication (cont.)

MEAN CO-ASSN. SAMPLE_BASE

-87 2.25000 4
-88 0.40000 5
-89 1.00000 4

-90 1.30000 10
-91 0.66667 6
-92 1.00000
-93 2.00000 3
-94 1.42857 7
-95 0.0
-96 1.50000 4

-97 2.25000 4
-98 0.66667 3

-99 1.80000 5
+10 1.10910 1769
+11 1.18155 1691
+12 1.15949 1486
+13 1.18402 1239
+14 1.15019 1072
+15 1.14379 918
+16 1.14578 782
+17 1.11755 621
+18 1.19669 544
+19 1.25000 416
+20 1.23876 356
+21 1.20323 310
+22 1.27197 239
+23 1.20895 201
+24 1.04348 161
+25 1.35404 161
+26 1.02655 113

1.13861 101
+28 1.14912 114
+29 1.27586 87
+30 1.18518 81
+31 1.23077 78
+32 1.05660 53
+33 1.15517 5
+34 0.92308 39
+35 1.18421 38
+36 1.19444 36
+37 1.00000 30
+38 1.31818 22
+39 1.41379 29
+40 1.24000 25
+41 1.16667 18
+42 1.25000 20
+43 1.07143 14
+44 0.90476 21
+45 0.90909 11
+46 0.93333 15
+47 1.54545 11
+48 1.25000 16
+49 1.35714 14
+5 _i 80001a_ 10

+51 1=53846 p!, 13
t cA- w

Table 5:
Major lypothesis Data: Earliest Date of Publication

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE

o 1.23421 40988
1 1.23338 2031
2 1.15814 1897
3 1.14080 1875
4 1.15283 1819
5 1.16871 1713
6 1.15042 1549
7 1.14637 1462
8 1.19341 1427
9 1.25236 1379

10 1.18805 1372
11 1.13033 1289
12 1.16247 1231
13 1.05792 1174
14 1.14748 1173
15 1.16229 1029
16 1.18431 1020
17 1.16438 949
18 1.17534 941
19 1.23853 872
20 1.15643 863
21 1.28740 849
22 1.17150 828
23 1.18396 848
24 1.10270 925
25 1.16122 887
26 1.22161 907
27 1.27042 869
28 1.23114 822
29 1.22294 776
30 1.25196 766
31 1.17728 801
32 1.16809 821
33 1.17245 835
34 1.20187 748
35 1.23119 731
36 1.20341 762
37 1.24512 718
38 1.16227 721
39 1.24337 641
40 1.15916 622
41 1.26263 594
42 1.17647 561
43 1.14689 531

Table 5:

Major Hypothesis Data: Mean Date of Publication (Cont.)

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE

44 1.15258 485
45 1.22336 488
46 1.24286 490
47 1.17474 475
48 1.12076 472
lo 1.18610 446
50 1.24314 510
51 1.22993 461
52 1.18619 478
53 1.04728 423
54 1.22857 420
55 1.09850 467
56 1.21542 441
57 1.19775 445
58 1.21469 354
59 1.15168 356
60 1.09315 365
61 1.20414 338
62 1.19079 304
63 1.08191 293
64 1.09718 319
65 1.10239 293
66 1.08896 276
67 1.07807 269
68 1.11409 298
69 1.05556 270
70 1.21901 242
71 1.10849 212
72 1.15347 202
73 1.11940 201
74 1.23171 164
75 1.28492 179
76 1.14197 162
77 1.33793 145
78 1.11333 150
79 1.02069 145
80 1.29286 140
81 1.06803 147
82 1.07018 114
83 1.35000 120
84 1.13158 114
85 1.21428 112
86 0.96364 110
87 1.13483 89
88 1.29885 87

Table 5:

Major Hywthesis Data: Mean Date of Publication (cont.)

DIFFERENCE MEAN CO-ASSN. SAMPLE BASE

89 1.20690 87

90 1.13402 97
91 1.26596 94
92 1.17391 92
93 1.08036 112
94 1.34375 96
95 0.95455 88
96 0.99123 114
97 1.22785 79
98 1.19000 100
99 1.21428 98
100 1.17857 84
101 1.49123 114
102 1.08140 86
103 1.43678 87
104 1.11224 98
105 1.13483 89
106 1.35632 87
107 1.12500 64
108 1.41791 67
109 1.15873 63
110 0.93182 44
111 0.98333 60
112 1.29091 55
113 1.10417 48
114 0.96000 50
115 0.76190 42
116 0.88889 45
117 1.19512 41
118 0.92683 41
119 0.82759 29
120 1.05556 36
121 1.37143 35
122 1.21428 28
123 0.94444 18
124 0.93103 29
125 1.00000 25
126 1.28000 25
127 1.27273 22
128 0.57143 28
129 0.87879 33
130 0.96296 27
131 0.94444 18
132 0.47619 21
133 1.20000 20
134 1.11111 9

REFERENCES

1. Avram, Henriette D., et al., "Fields of Information on Library of
Congress Catalog Cards: Analysis of a Random Sample, 1950-1964,"
The Librarj (XXXVIII, April 1967), 180-192.

2. Dubester, Henry J., "Stuides Related to Catalog Problems," In: Ruth
F. Strout (Ed.), Library Catalo s: Changing Dimensions, Chicago:
University of Chicago Press, 19 4.

3. Tinker, John F., "Imprecision in IndexingPart II," American
Documentation, (XIX, July 1968), 322-330.

Tinker, John F., "Imprecision in Meaning Measured by Inconsistency
of Indexing," American Documentation, (XVII, April 1966), 96-102.

5. Voigt, Melyln J., and Joseph H. Treyz, "The New Campuses Program,"
Librai-y Journal,-(XC, May 15, 1965), 2204-2208.

DESIGN OF FILE STRUCTURES FOR ON-LINE BIBLIOGRAPHIC CONTROL SYSTEMS
by Jorge Rodriguez

3.1 Introduction

3.1.1 Design Requirements for Information Retrieval Systems

Designing an information retrieval system for a library is a difficult
task. The intricate complexity of the decisions and the large dimension
of the system that is required contribute to the present inability of
performing a unified and simultaneous analysis of all its components.
Furthermore, the design of such a system requires the effort of specialists
who are qualified to solve specific problems related to only certain aspects
of the total project.

In general, we can group the design requirements of an information
retrieval system as follows:

a. Provide the Most Useful and Necessarv_Services related to the use
of libraries. More specifically, to facilitate search of information rele-
vant to library users, and to expand the kinds of library services into
areas which are projected as necessary for the future.

b. Minimize Retrieval Time. A good measure of the usefulness of any
retrieval system is the time saving that can be provided to the users. Also,
if the retrieval time in the machine system is larger than the time required
to locate a specific record using index cards, then the retrieval system
becomes unfeasible. Consequently, this parameter is most important for our
specific system.

c. Minimize Stora e Re uirements. Decisions that directly or indi-
rectly affect the structure or organization of the files will affect the
amount of storage needed. Associated with the storage requirements are
many costs which should be minimized wherever possible.

d. Provide_for Efficient File_ppdating. Two of these processes are
of importance in bibliographic application.

(1) ,11-" 1.-a. This represents an important process in library
systems clve to the high rate of new publica%ions that can be expected.

(2) Changes. This is mainly concerned with corrections of
errors in stof.Sd records, which are impbssible to eliminate:completely.

e. Maximize File Security. It is desirable to minimize the possibil-
ities of destroying any information in the files due to malfunctioning of
the system or erroneous updating procedures.

Any infrIrmatiOn search and retrieval system will contain the'follawing
phases:

a. InpNI_amlj.fication Phase. In our system thib process will be
performed at some kind of tertinal where the requests will be Specified
and placed by the file users.

Execution Phase. This phase has three sub-parts:

(1) Compilation: the transformation of the request topic into
machine language readily usable by the central processing, unit.

(2) Retrieval Phase: includes the search for the requested
records and the retrieval of the lists of master records, if any, to the
central processing unit.

(3) Analytical Phase: information derived from the content of
the files is processed for logical conditions in order to present only
that information which the user has requested. Also, this information is
transformed into a language understandable to the user.

c. Outpnt Phase. Finally, the information requested is sequenced,
formatted, and presented at some kind of display terminal.

The time required to input, compile, analyze, and output will not be
affected by the structure and organization of the files. For this reason,
the present analy-sis is limited to the Retrieval Phase only.

3.1.2 Objective of File Structures Analysis Task

Of the general objectives mentioned, only b and c (minimization of
retrievnl time and storage) are related to parameters that can be expressed
readily in mathematical form. Hence, this task will be concerned mainly
with the optimization of the Retrieval Phase, using the criteria of mini-
mizing costs associated with both auxiliary (secondary) storage and total
processing time.

3.2 General Model of a File System

This part will be directed to the design of a generalized model of a
bibliographic file management system which Will be useful in the analyses
to follow.

This model can also be adopted for simulation purposes because some
of the essential features desirable for simulation are present.

This study will be mainly analytical and specialized on structures
determined by the type of storage devices under consideration and the
characteristics of bibliographic catalog data. However, the concept of
the general model will always be implicit in each structure. Also, this
model will prove -useful as an analytical tool in the event that new_devices
and organizations appear worth considering in the future.

3.2.1 Fundamental SystemiComponents

In general, we CAA atate that sal retrieval SySteMs are comPosed,of
two types of components Which will he.:referred to' aSStorage Blocks-'and
Information Linkages.

The storage blocks are associated with a physical storage unit. The
content of these blocks can differ considerably; however, all the possible
kinds of blocks are formed by a combination of only four different types
of data.

The information linkages are associated with flow of information that
is controlled by a central processing unit. H nce, considerable simpli-
fications are al_so achieved by a proper classi ication of these linkages.

3.2.1.1 Storage Blocks

A Storage Block (SB) is a structural entity which is operationally
defined as the basic logical design unit of a file. It should not be
confused with blocking as an IOCS programming concept synonymous with
"physical records," or with bucket, a term for an addressable location
in storage having a specified capacity in terms of data records which
can be stored at the location or its extensions, e.g., a cylinder or a
track in a disk pack.

The four different forms of content that can singly or in combination
form a storage block are: a) device address, b) keys, c) stored information
such as catalog records, and d) pointers (or links). Both a and b can be
regarded as Access Points and c and d as Data.

Under certain circumstances the content of an SB may be identical to
more than one of the above forms. For instance, it is possible to structure
a file such that a list of author names (an index file) could serve as
both search keys and information elements. The authors would not be re-
peated in the master record for the file with which they were associated
but would be linked back by a pointer to the index file. In another case,
the author names might be treated as both keys and addresses. The internal
representation of the name information could serve as the input to some
algorithm which transfornm it to a storage address. In a further case the
record number (primary key) could serve as the file address ("key-as-address"
techniques). This overlapping of forms does not present any difficulty
for our analysis, however.

The reason for defining storage block In the way we have is to provide
for analytically fruitful manipulations of the structure of a file.

These operations involve alternative techniques of record and file
segmentation - splitting logical records or logical files into multiple
physical files or regrouping records into useful sub-files by attributes
such as publication date.

The most tmportant feature of a Direct Access Storage Device DASD) is
its addressability to any track and information within the track by
pointing directly (non-serially) to its location. This means that a unit
of information possesses a ythysical address just by being stored, by acti n
of the system. The 2314 Direct Access Storage Facility disk, for example
contains in each track a field called the Home Address which defines the
physical location of the start of the usable storage area to facilitate
operation of the access mechanism. Because storage blocks, no matter what

their form of content (keys, information records, or pointers) are inherently
thus addressable, we will not include the address in describing the alter-
native block forms which will be postulated, in order to eliminate confusion.
All blocks are assumed to be addressable, either directly by actual device
address or indirectly by various kinds of relative address. Actual addresses
will not be considered in the File Organization Project since they have the
disadvantage of rendering the data set unmovable. A further reason for eli-
minating the address from che analysis is that it simplifies the storage
allocation space (except when explicitly recorded as data, i.e., an index
reference, called a pointer in this analysis).

There are a large number of conceivable combinations of forms in storage
blocks. We have selected a limited number of these for examination as
feasible alternatives. After enumerating the blocks which seem most per-
tinent for analysis, we will describe the concept of information linkages
briefly and then pass to a review of the block structure alternatives to see
which ones are feasible for extended analysis.

There are six possible combinations of blocks which could be used to
build a direct access file. These are listed in Figure 12.

FIG. 12:
TYPES OF STORAGE BLOCKS (SB's)

Folmn A i iiii :

f

. .

I. Information -

I Information Pointer(s) -

III. Pointer(s) -

IV. Key* Fointer(s) -

V. Key Information -

Key Information Fointer(s)

Note that the access path to a block aDways connects at Form A
in any given type of block. Content type (a), address, is always
implicit as the location of the block. That is, Form A is the part
that is addressable from outside the block. It is necessary again
to point out that the storage block concept is distinguishable from
blocking factor. A storage block might be co-extensive with a physical
record made up of many logical records. In that regard, an SE can
be said to exhibit the property of having a "blocking factor." However,
as a logical entity, a single SB may extend across multiple physical
records, or there could be several SB's in a single physical record.
And a logical record might span multiple linked storage blocks,
stored on different types of devices, as in a horizontally segmented
file. "Blocking factor" is restricted to the programming sense of
a unit physical record on a storage medium, consisting of one or
more logical records, separated by inter-block gaps on tape. It has an
operational meaning that is important to remenber; that is, as the
unit of data transmitted between main storage and an I/0 device by
the manufacturer supported operating system data management facilities,
when the direct access method is used.

3.2.1.2 Information Linkages

Important to a file system where the structure is complicated by
efforts to optimize such parameters as inquiry response time is the notion
of information linkages. When a file segmentation is undertaken in order
to improve retrieval time, as when the expected volume of search or
update activity is unevenly distributed across file records, the
transfers of earch requests, intermediate information, and output
products to the requester may involve complex paths to and from the CPU and
secondary storage, and within the secondary unit. To account for costs of
such transfer paths, the concept of information linkages mss devised. Such
linkages are associated with the flaw of information to and from users and

*'Key' in Form A does not exclude the possibility of placing more than
one attribute in a keyed record in what is called a combined secondary
index file. An-example would be a key conbining author plus some portion
of title fields.

files, which may be in the form of input requests for searches,
requests for I/0 operations on data sets issued by the search
program in the CPU to the peripheral file unit, and retrieved
information being sent for display to the requesting individual.
Using these types of flows, the linkages can be grouped into three
general categories to determine their effect on file organization.
Fig. 13 shows these categories and the possible sub-types of
linkages under each category.

FIG. 13:
TYPES OF INFORMATION LINKAGES

Linkage Type Origin Destination

I. Message Block to
P_t_nrAze_Biack

Input Message
Key (SB Types IV,
V, or IT:Vja_

Key
II. Storage Block to

Storage Block

Pointer (Form A
Bor C*)
Pointer (Form A,
_8112_2L_E!1__

Key

Information (Form
A* SB's onW__

Output Message
III. Storage Block to

Message Block Information Output Message

The forms of content which can be included in the various Message
Blocks - an Input Block, e.g., a command language repertory,
search arguments involving a file attribute code set, such as
'AU' for Author index file and a key value such as the name 'SMITH',
and an Output Block, e.g., the message repertory and action options
displayed on a visual terminal to the requester, are beyond the
scope of the present effort and will be dealt with in other sections
of the report.

Since these linkages all imp :hardware and Software actions
(seeks, reads,, etc.-) there are definite time penalties implied
in file structures involving numerous transfers among message
blocks and linkage segmentS (storage blocks). These tiMing fa tots
will be examined in detail in subSequeht discussion.

* See Fig.

3.2.2 Feasible Storage Blocks

Continuing the analysis, we now introduce the characteristics
of bioliographic records and the types of devices and I/0 techniques
that are presently available, the effect of which is to limit the
number of feasible storage blocks. The present annlysis will include
only IBM direct access storage devices. As a result, the following
storage blocks previously defined are not feasible for secondary
key access:

FIG. 14:
UNFEASIBLE BLOCKS

SB Type Forms in Block

Key Information

VI Key Information Pointers

These are ruled out because of the requirement for multiple
secondary key access to bibliographic files - authors, titles, sub-
jects, etc. In the blocks containing index structures, one would not
wish, therefore, to repeat the bibliographic master record data
(the "information" form). The argument could be made for using
Blocks V or VI for at least the primary key (record number), and
indeed this should be considered.* For alphanumeric keys, however, the
Direct Organization, which supports variable length records, does not
possess the part-key feature which is manufacturer-supported in the
indexed sequential access method software. And the ISAM software
available to the ILR facility does not currently support variable-
length records. Hence, the storage blocks that will be considered
in the reme4nder of the analysis are types I-1V, shown in Fig. 12.
The list of possible linkages remains as in Fig. 13.

*The master file recorcinuMbers -in the ILR-facilitY_ have been
_ ,

stored in a "finder file" of master record link adOesses because
the links once computed are used frequently in the index file-

s. ort
,

building proces A sh, fixed length le of these pointers
.

fi
. .

was desired for efficiency.

3.3 Single-Device File Or anization

13.1 Purpose of Analysis

The present analysis is intended to optimize the organization
of bibliographic records within one direct access storage facility
of a given type (which may contain multiple storage units, e.g.,
disk packs), under two criteria:

a. MinimuM AVerage Retrieval Time, as the principal measure
of the retrieval response time distribution, and

b. Minimum Cost Associated with Auxiliary Storage and Processing
Time. Future work will extend the analysis to organizations using
multiple facilities of different types .g., disk facility and data
cell facility).

3.3.2 Costs

The following costs will e assumed given:

a. Cost of Auxilit.milart_12 This refers to the cost
of DASD space which is assumed to vary linearly with respect to the
nunber of bytes stored.

b. Cost of Processing Time (PT). This represents the cost of
using the central processing unit (CPU), and it is expe ted to be
a concave, non-decreasing function as shown in Fig. 15.

Cost per
CPU-CORE
UNIT per
unit time

FIG. 15:
PROCESSING COST CURVE

Processing Time Per Unit Tine (PT)

Generally, the cost of processing time of a central processing
unit depends also on the amount of main storage that is used. For
this reason the cost is shawn per core unit, which represents the
amount of core used in the processing of a request. For this analysis
it will be assumed that the central processing unit is used for
costing purposes all the time during the search and retrieval stage

3.3.3 Assumptions

The following assumptions are also adopted in this analysis.

Assumption 1: All the unkeyed files are assumed to be blocked
to full track capacity where possible.

Assumption 2: The seek time is independent of the record length
and its location. This is justified considering that the bibliographic
records are shorter than the track length of the first DAS facility
to be considered. Therefore, the probability of a record being split
into two tracks is low.

Assum tion 3: For an indexed file of fixed number of index
levels,* the amount of storage required is assumed proportional to the
number of keys. In a blocked unkeyed file, the storage requirements
are equal to the total sum of the records' lengths, but in an index
file the storage requirement is more than the total lengths of the
records due to the overhead storage needed for cylinder indexes and
track indexes (ISAM). Then, this assumption states that the extra
amount of storage needed is proportional to the number of keys. A
useful implication of this assumption is that for a given keyed
file, we can obtain the cost of storage per keyed record in a given
device.

Assumpion 4: The requests are served on a first-coma-first-
served (FIFO) basis, and the requests of each record are randomly
distributed in time. This implies that the system cannot expect
more than one request of a record at a given time.

Assumption 5: The structure and organization of the file is
to be regarded as having no effect on the user's behavior. This
implies that the cost and retrieval time variations will not affect
the usage frequency of any record.

The catalog structure that will be studied contains several
index files; i.e., author, title, subject, eto.-, and the correspondence
of the keys and records is not unitary (one-to-one).

These different types of indexed files axe assumed to be the
only types of on-line accesses to the files. Non-indexed on-line
access to the content of master records is a separate analytic issue
outside the s ope of the present report.

Sone usefUl performance analyses of the manufacturer-supported indexed
sequential access method software are naw becoming available. For
example, in regard to trade-offs involved in going to a master-level
index, and other aspects of ISAM, see Lum, V.Y., H. Ling, and
M.E. Senko, "Analysis of a Complex Data Management Access Method by
Simulation Modelling, In AFIPS Conf. Proc., Vol. 37, (Fall Joint Comp.
Conf., 1970), Montvale, N.J.: AFIFS Press, 1970, 211-222.

Assumpti 6: The number of records associated with a key is
independent of its usage frequency.

Assunption 7: The index key field length is a fixed value. (It
is selected as a file parameter at load time, up to a maximum
specified in the manufacturer-supported software.)

More assumptions will be adopted at later stages of the analysis.

3.3.4 Analysis of Alternative Structure Concepts

The present problem represents a special case of file structure
which limits the alternatives to only a few cases. For this reason,
each organization will be described and a method to select the best
one will be provided.

The type of index file that will be considered for this system
is the Index Sequential Organization for DASD, -Thich represents the
most attractive organization method because of the key prefix
retrieval capability in the manufacturer-supported access method.
This feature permits any number of characters to be submitted in
the search key to be matched against the index key. This is called
the "part-key" facility.

/
3.3.4.1 Unfeasible Structures

We begin the discussion of alternative structures comprised of
Type I-IV Storage Blocks with a review of file structures which can
be rejected on various grounds.

Most of the possible structures will be ruled out due to the
particular characteristics of bibliographic catalogs and to the
timing characteristics of DAS devices. The following is a di-russion
of the unfeasibility of the structures shown in Fig. 16. In -

course of this discussion, we will point out other factors relatod
to the trnanics of the files.

a. Threaded List Master Records. Structure 1 represents a
conventional linked list. The key "directory" is placed in a
separate index file. The master records associated with an index
key are retrieved in a sequential pattern, where each record con-
tains a link address or pointer to the next associated master
record to be retrieved. However, each of the various keys asso-
ciated with a given master record is not necessarily associated with
the same group of master records. This will thus require in each
master record a large, nunber of pointers associated with different
keys and records, whidh will be extremely difficult to maintain.
Also, it rules out tbe possibility of blocking the master file to
full track capacity because storage has to be provided for additions
to the chains. Furthermore, its average retrieval time will probably

*When mUltiple secondary'key access is required, as in bibliographi6
systems, this structure is called a multiple threaded list, or Multi-
List Structure.

be higher than that of more feasible structures to be discussed.* For
this reabon, we now consider various, forma of inverted list structure;
that is, where the'links'to naster'recOrds are PhySicalIy removed'
from the master file.

b. Segmented Master File. In connection with this struc-
ture, it is appropriate to review the role of file and record seg-
mentation in this analysis. Structure 2 has two possible refinements,
based on activity of the file. One is called "horizontal segmentation,
and the other "vertical segmentation." In horizontal segmentation,
the most frequently used parts of each of the master records are
placed in the first or primary segment, the one which is linked by
pointer from the access (index) file, and the remainder of the record
is placed in segment 2. The two physical segments (files) form one
logical master file. A pointer links the record segments in each of
the two sub-files.

In vertical segmentation, some variations are possible. Here,
whole records are separated into relative high use vs. law use groups
and allocated to segment 1 and segment 2 accordingly. Two possible
linkage arrangements are possible: the first is to use two sets of
pointers in the index file, one set pointing to the high use segments
and the other set pointing to the associated low use records. The
other possibility is to connect the segment 2 group of master records
by a pointer from the trailing record in segment 1 of the master file,
as shown in Fig. 16. This is a variation on Structure 1, and has the
same disadvantages.

These structures can be improved by employing multiple devices
where feasible. For example, the high use segment could be allocated
to a fast but expensive DASD, while the lower use records are stored
on a slower but cheaper device, thus bringing optimization from the
viewpoint of access time in relation to expected file activity.

Combinations can be visualized. For example, vertical seg-
menting could be performed first on the master file, then secondary
horizontal segmenting on the resultant high use (segment 1) group,
in addition. This would leave only the high use sub-record portions
of the high use group of records to be stored on the faster DASD, if
that were found to be an effective scheme. Moreover, the sane seg-
menting strategies can be performed on the index file. We turn our
attention to that issue in the next section on "Feasible Structures.

*For comparative performance analyses of threaded list structures vs.
inverted lists, see: Lefkovitz, David, File Structures for On-Line
Systems, New York: Spartan, 1961; Lowe, Thomas C., Design Principles
for an On-Line Information Retrieval System, (Moore School Report No.
67-14), Philadelphia: Moore School of Elec. Engr., Univ. of Penn.,
Dec. 1966, or the same author's "The Influence of Data-Base Charac-
teristics and Usage on Direct-Access File Organization," JAam (15,,
October, 1968), 535-548; and Martin, Lawrence David, A Model for File
Structure Determination for Large On-rine Data Files, Pullman: Systems
Div., Washington State Univ 1968.

Keyed File

KEY POINTER_a

FIG. 16:
UNFEASIBLE STRUCTURES

STRUCTURE 1 - THREADED LISTS

Master File N -keyed

key
length

\
index record length

INFORMATION POINTER2

INFORMATION

STRUCTURE 2 - MAMER FILE SEGMENTS

Keyed File

[

KEY POINTERS 1

Keyed Files

Master Segment I
SELECTED
INFORMATION POINTER

POINTER
r

STRUCTURE 3 - CIRCULAR LINKED LISTS

KEY 1 POINTER

KEY 2 POINIER

next record

Master Segment 2
REMAINDER OF
INFORMATION

Pointers Files Master File

POINUERS

POINTERS

INFORMATION
NOT USED
AS KEYS

POINTERS
(BACK TO
KEYED
FILES)

Structure 2 may be justified, as will be shown later, when
some costs can be reduced by storing information of infrequent use
in slower, more inexpensive devices, or when the retrieval time
is affected considerably by the length of the information to "se
read. Acceptance of Assumption 2 eliminates that time factor for
the present stage of analysis.

c. Linked Lists Non-Re eated Ke s Structure 3
is an attempt to save some space by excluding from the master file
the fields or terms that are used as keys; this would be useful if
these terns were of fixed length. However, this is not the case with
bibliographic data. The keyed terms are originally of variable length
but are truncated into fixed length fields in the index record.
During this process, sone information is lost, and in some cases this
key is of little value when the keyed terms themselves constitute the
information requested by the searcher. Moreover, even if variable-
length key fields for index records were supported in the software,
there is often a representation problem. For example, a key value
such as an author nano which would be stored in upper and lower
case in the master record, may have to be stored in upper case, with
diacritics, etc., removed, in the index key for convenience in
searching.

Moreover, there is a further space penalty in chaining from
each key value instance in a master record back to the index file.
A retrieval and presentation problem also lies in the method used
to link the key values and master record for display purposes.

3.3.4.2 Feasible Structures

a. lny_ert.egtJ4ats_(Iteueate_d_ffeir. Nn-Segmented Master File).
The only types of structures that are considered currently feasible
are shown diagramatically in Fig. 17. These are special cases of
inverted lists. Separate analyses will discuss the possibilities of
segmenting a single keyed file into linked physical files according
to criteria such as key length. That analysis is independent of
the kind of structure to be selected, for it is performed for each
keyed file individually. The present analysis is also performed for
each type of key individually because the different keyed files
function independently.

b. Structur 4 -
Structure 4 represents a linked-pointer index concept intended to
overcome a system limitation in the access file, which must be fixed
record length format. It includes a field for the key and a field
for a single pointer, whicl- points to the head of a list stored in
an intermediate file called the Pointers File or Address File. The
pointers in the Address File are link addresses of master records
associated with the key value.

c. 2,1xuaIure 5 __Pnit Liets. Structure 5 also involVes
keys which are Copied out of., the master file. It can'be inplemented
witheither, fixed or,varidble length index.records, and the inter
mediate file is not used. 5a places the key and'all master file

pointers together in a fixed length record. Structure 5b represents
the more conventional inverted list structure. 5b is a relaxed form
of Structure 4 in that variable length records are permitted in the
access file, thereby obviating the necessity for a Pointers File. The
key field must still be fixed length.

At the time of this writing, only Structure 4 and Structure 5a
or slight modifications could actually be given trial implementation
in the ILR facility, due to software limitations. In fact, the
difference between the storage requirements of Structure 4 and Structure
5a is due to a (temporary) constraint on implementation 'which requires
fixed length records in keyed files.* This imposes the condition in
Structure 5a of setting the record length to a specified maximum value
at load time for the file. That value must therefore correspond to
the sum of the maximum desired index key field length plus the length
of the field containing the pointers. The pointers field must be
long enough to contain all the pointers for that key instance which is
associated with the largest number of master records. As a consequence,
most of the index records will contain unused space. (The key field
length must also be set at some predetermined fixed length by the file
designer.)

3.3.4. 3 Index File Segmentation Based on Index Record Length

To overcome this waste of storage, the records of an index file in
Structure 5a can be grouped according to their total record length,
or equivalently according to the number of master records, i.e.,
pointers, associated with their keys. This is to be distinguished from
segmenting the file on the basis of key field length. Using structure
5a as a basis, in the following section we will analyze the effect
of dividing the access file according to record length. The segmented
Structure 5a will require the same amount of storage as that of
Structure 4, which has no storage wasted for pointers. However, each
division of the 5a index file represents an increase in retrieval
time due to the time to transfer the search from one sub-file to another.

The segmented structure 5a requires less access time than that
. .

of Structure 4 because of the absence of the intermediate pointers
file, but the -Storage reqpirements are longer due' te- the allowance

. , ,

for the' key having the greatest' nuMber of pointers. The tiMes "which
are of importance 14 the procest of search and retrieval are:

a. Non-Direct Access Device Timing, Factors. Time required by
the machine to interpret- the conmiands and prepare and transfer
the instructions to the control unit (Cu) of the DASD. It in-
cludes search program processing time, access method processing

A limitation entirely attributable to the fact that variable length
format records are not supported by IBM for the Indexed Sequential
Access Method in Releases of OS up to Release 17.

FIG. 17:
FEASIBLE STRUCTURES

STRUCTURE 4 - TWO LEVEL LISTS (REPEATED KEYS)

Fixed Record Length Variable Length (Non-Keyed)
Keyed Files

Key I POINTER

Pointers File Master File

KEY 2 POINTER

KEY 3 POINTER

POINTERS

POINTERS

[-
POINTERS

STRUCTURE 5 -

5a. Fixed Record Length Index Record

5b. Variable Record Length Index Record

IMY I POINTERS

INFORMATION

aster File

KEY 2 POINTERS

KEY 3 POINTERS 1kt

INFORMATION

time and operating system superVisor time. It is-valid. to asSume thiS
time as constant for a given'type of file.' Hende,.thebe:Will be
represented by Tk for a keyed file and Tunk for an unkeyed' file,
where TdTunk.

b. Seek Time (T Also called Access Motion Time. This
is the time required o reach any location of the DASD. As mentioned
before, this is a constant for these types of devices. For our analyses,
it includes two other parameters, rotational delay (latency) and
data transfer time, which are constants.

c. Search Time in a File (K). The average search tim
in a keyed file under Index Sequential Organization can be estimated
by adding the times to go from one index level to another, and tae
average times required to search each index level sequentially. Before
estimgting this time, the number of index levels in a given index
file and their respective lengths should be obtained.

Hence, the average search time K in an indexed file is given by:

K = T (NIL-1) + [MT1 + MT2 + M-23 + CT + TI + 1] (1)
2

where MT1 = min [NTM, Ml] (1.a)

MT2 = min [NTM, M21 (1.b)

(1.c)

(1.d)

MT3 = min [NTM, M3]

CT = ma [NTM, cIT]

NIL = number of index levels (system created)
ROT = time required to read a track (equal to one full rotation in

a disk type of DASD). Includes Transfer Time.
M1 = number of tracks in first master-level index
Y2 = number of tracks in second master-level index
M3 = number of tracks in third master-level index (if required)
CIT = number of Cylinder Index tracks
TI = number of Track Index tracks
NTM = minimum number of tracks in an Index level that will justify

a higher level.

For this analysis, the distribution of Fig. 18 is a sumed given:

FIG. 18:
DISTRIBUTION OF THE NUMBER OF RECORDS

ASSOCIATED TO EACH KEY

Number of keys
N associated
with m master
records. N(m)

N 2

N 1

N

N(3

1 2

Also, for each keyed file, the following data is assumed given:

n = total number of keys
Sk = total number of requests per unit time, which is equal to

the number of key searches.
Sp = total number of successful searches; this is equal to the

number of accesses to the Pointers File, under structure 4.
Sm = total nuMber of records retrieved; this is equal to the

number of accesses to the master file.

With this information given, the total processing time can be
evaluated for each structure.

For structure 4, we have:

Index File:

'Tindex = Sk(Tk + T_ + K)

Pointers File:

Tpoin _ = Sp(Tunk + TB)

Master File:

Tmaster = Sm(Tunk + TB)

Therefore, the total time for structure 4 :

Tst 4 = Sk(Tk + TB + K) + Sm (TUnk +-TB

(.2)

(4)

The nudber of groups (m) of the distribution shown in Fig. 18
will be fairly large for the bibliographic catalog under consideration;
consequently, the adoption of the segmented Structure 5a will require
much larger processing time than that of Structu-e 4, and no storage
savings can be accomplished. For this reason a more 1.40=ful analysis
will now be directed to the effects of using a mixed structure,
called Structure 6, wherein some groups of index records are organized
together under each of Structures 4 and 5a. Two discrete files,
each organized under Index Sequential, are necessary. A diagram of
a mixed structure is shown ia Fig. 19. This is designated Structure 6
and is the form used for analysis in the remainder of the paper.

Keyed Files

FIG. 19:
STRUCTURE 6 ("MIXED")

Pointers File

POINTERS

Master File

POINWERS

INFORMATION

In a preliminary analysis of the Santa Cruz data base, it was
determined that the second largest group constituted approximately
6% of the index records for the author names file. Index records in
this group had only 1 pointer, i.e., were associated with only one mas er
record). These unitary keyed records constitute a special case of
Structure 5a. When this occurs, a variant of Structure 6 can
be implemented immediately prior to further analysis of the key/
master record ratios, for division by record length. The single-
pointer index records can be retained in the Index Sequential File
for Structure 4, using the same record length as for Structure 4.
The structure in this case is as follows:

str.

FIG. 20:
STRUCTURE 7 ("MODIFIED MIXED")

Ke ed Fi es

KEY POINTER POINTERS

Str. 5a ("Singles")

[KEY I POINTER

Str 5a ("Multiples")

LICEY
POINTERS

Ma

INFORMATION

The group of Structure 4 index records (not in the M=1 portion
of segment 1) is, of course, still subject to division according to
the procedures suggested for creating a mixed structure based on
index record length. The "singles", being already of minimum
record length, would thus be excluded from candidacy for segment 2.
If singles constitute the largest group, the division procedure can
proceed with the next largest group, depending on the conditions.

3 3.5 Evaluation of Mixed Structure

The problem now is to determine the conditions that will justify
the organization of a given group of index records under Structure 5a,
aS part of a mixed structure. The mixed structure (Structure 6)
will be the subject of the remainder of this analysis.

From the distribution of Fig. 18, select the largest group.
Let this be N(M) and organize it as an ISAM file using the minimum
record length for M pointers under structure 5a. The remaining records
are organized under Structure 4, using a record length for one pointer
(to the Pointers File). The next step is to evaluate the total pro-
cessing time for the mixed structure.

Because of Assumption 6, the total number of requests to each
index file depends only on the number of records in each file. Also,
the time to transfer from one index file segment to another will be
relatively large. Consequently, it is more efficient to search the
largest file segment first.

On this basis, the Total Processing Time will be evaluated for
two cases of Structure 6 (Mixed Structure):

3.3.5.1 Case 1: N(M)n-N(M). Largest Group of Keys Less Than 50% of File

Processing time for the first segment of the inz2x file:
(Structure 4) (Largest File)

Tindex 1 = Sk(Tk 4- TB Kl)

For the second segment of the index file:
(Structure 5)

Tindex 2 = [.Sk Tk T K2)
-h

For the 'Pointe S.Ftle:

ITpointer = Sp(
n-,N(M).

tTunk TB)

and, for the master file, the same as (5) Hen e, the to al time
for this case is:'

(6)

Tmixed str. . case 1 = Sk (Tk+TB-1-_

[5p(1-11iIiL Sm] Tunk T_)
n

44Sk-Sp(121-LIIL))

(9)

Tk+T

where Kl is the average deardh time for the keyed file Segkent left
under Structure 4, and K2 for the one Under Structure 5.

Now it will be proven, as might be expected intuitively, that
use of the mixed structure, when Case 1 obtains, is not justified
for any value of N(M) in the designated range. It will be proven
that the following is true:

Tmixed Str. Case 1>TST4 or Tmixed Str. Case 1 - TSTI[0 (10)

After substituting (5) and (9) into (10) and simplifying get:

N(M)
(Tmixed Str. Case 1 - TST4) = 5p(1- n

(Tk+TB
+K

2
) + Sk(Tk+TB)

N(M) Sp(T +Tunk) + Sk(K
1
+K

2
-K) (11)

The first term is clearly positive because
is larger than the third one because Sp<Sk
last term is also positive, for the
more than linearly as the nunber of

(10) holds.dition

3.3.5.2
of File

N(M) <1, the second term
and Tunk<Tk, and the

search time does not decrease
records decreases. Hence, con-

Case 2: N(M)>n-N(M) Largest Group of Keys Greater Than 50%

For the first segment of the index file: (Structure 4

Tindex 1 = Sk (Tk + TB + Kl)

For the second. index file: (Structure 5) (Largest file)

Tindex 2 = [Sk-Sp(111 (Tk T K)
B -2

The times for the pointers file and the master file will be the
as those for Case 1.

Hence, the total processing time for this case is:

Tmixed Str. Case 2 = Sk(Tk+TB 2
+K

1- -
-K)-Sp(ELE1n

(Tk + 2TB + K1 +

Next, it will be
ustified for certain

simplifying, we get:

Tmixed Str. Case

MITK)

shown that a mixed structure of
values of N(NO. Using equations

T
ST4 = Sk(Tk+TB

+

(Tk + 2T
B + K

1
+ TUNIC)

Expression (15) will be negative and the mixed structure of Case 2
is justified when the following is true:

(14)

Case 2 is
(5) snd (14) and

..-K)-Sp6EDIL
n

(15)

N(M) Sk (Tk+TB+11 +K2-K)

Sp(Tk+2T
B
+K

1
+.TUNK)

That is, the largest group N(M) which is the one placed in Structure 5a,
and is searched first, must be a high enough proportion of the keys
which are matches to the search requests of the system, in order to
reduce sufficiently the search effort (time) spent on requests put
to the group remaining under Structure 4. If the latter is too high,
the mixed structure for this ease will be inefficient.

This analysis has considered the effects on the retrieval time
only, assuming that the storage requirements for the mixed structure
are essentially the same as that for Structure 4.

The exact difference in stor ge can be e timated easily using
the following form:

Smixed ST -
STIL

= (NT1 NT2 NT)ITC

where NT = total number of tracks needed for the index file under
Structure 4.

NT1 = total number of tracks needed for the index file under
Structure 4 in the mixed structure.

NT2 = total number of tracks needed for the index file under
Structure 5 in the mixed structure.

ITC = track capacity in bytes.

(16)

NT, NT1 and NT2 are given by program STOCAP* that was used to
obtain the necessary parameters to estimate Kl, K2, and.K.

In the event that a mixed structure of Case 2 is favored, a
similar analysis to the one just described can be performed to-de-
termine whether further subdivisions are jumtified. This analysis is
performed using only the records that were left under Structure 4 after
the first group's segment has been removed.

3.3.6 Segmentation of Index Files Based on Key Length

Now the possibility of splitting the files by key length, to
achieve improved storage allocation, will be analyzed. As mentioned
before, the terms in the records that are used as keys have to be
transformed into fixed length fields not changeable after load time.
In order to maintain a reasonable level of uniqueness in the key
search, the key field length of a keyed file is usually set by a
relatively small set of records having long keyed terms. As a re-
sult, many of the index records will contain a keyed field longer
than necessary. The possibility of dividing the index file into
groups having different key field lengths thus is plausible.

A Fortran routine written to provide-
the model.

omputationel support in analyzing

3.3.6.1 Objective of Analysis

At this point the following additional assumption will be adopted:

Assumption 7; The minimum key length required for an index record
is independent of the key usage frequency and of the nunber of master
records associated with it.

This assumption makes the analysis independent of the previous
one. It can be performed independently on each keyed file deter-
mined by the previous analysis.

In this case the Changes in storage requirement and processing
time have to be considered simultaneously because both factors will
dhange when a file is segmented. Furthermore, the effects of the
partitions on these parameters are different.

Hence, the present analysis will not attempt to obtain an optimum,
but to express in a useful way the effects of these divisions. In
particular, this analysis will yield a graph of the minimum storage
requirements versus the total processing time.

3.3.6.2 Storage Minimization

The following assumption will be m de on the distribution of the
key lengths: .

Assumption 8: The minimum lengths that are requirqd to make
key values unique in any ordered index are uniformly diStributed.

Corrected Key Lengpi. Assumption 8 and Assumption:3 together imPlY
that a "corrected key length" can be obtained for each key length, the
use of which in the model will absorb the extra storage required for
all the different index levels within an access file. These corrected
key lengths are also uniformly distributed. Let these corrected key
lengths be designated by Li, and the total index record lengths by LR.
In Fig. 21 a hypothetical aistribution of these lengths is shown.
Also shown in dotted line are the "actual" minimum key lengths Lu required
to achieve uniqueness of keys.

Record and
key lengths
required
(in bytes

min.

FTG. 21:
DISTRIBUTI)N OF KEY AND RECORD LENGTHS

The minimum storage requirements for a given number of groups
are achieved when the groups are all of the same size, and this minimum
decreases as the number of groups increases. Hence, to obtain the
graph of the minimum storage requirement versus total processing time,
it is sufficient to evaluate these two parameters when the file is
divided into different numbers of equal size groups.

The minimum storage required when the number of groups is h, is
given by:

n(h+1)
Min. storage - n(min LR 2h

- min LR

where n = total number of records in the index file.
h = number of groups

min L = minimum record length (See Fig. 21)
max LR = maximum record length (See Fig. 21)

And the time is given by:
k=h

Processing time = 1 [Sk - p -1)] (Kk+Tki-TB (18)
k=1

where K = average search time of the k
th

keyed file which is estimated
using program STOCAP and Expression (1).

k' p '
S T

k' -B
and T

are as defined in the previous analysis.

Depending upon the severity of the increase in search time as
the key length increases, it is clear that the files with shortest
keys should be searched first, if the effect of usage frequency is
not considered.

When the search is done sequentialy, groupby-grovp a increasing
key lengths, then by Assumption 13 the key length of the 1- group is
given by:

max L - min LL k)=
ki

mn L
k

i k
h

(19)

Again, the exact value for the storage can be estimated from-the
output of the program STOCAP using the form:

i=h
S = ITC y NT(i) (20)

1=1

where NT(i) is the !limber of tracks needed to store the .th
i index file

and ITC the number of bytes per track.

3.3.6.3 Processing Cost Minimization

Equations (17), (18), (19), and (20) give the value of the parameters
using the criteria of minimum amount of storage. This, however, may not
be a reasonable objective when cost of processing time varies significantly
with dhanges in total processing time. For this last case a more represen-
tative graph will be that of_Elnimum Total Cost vs. Total Processing Time.

Here, the size of the groups will not be the same, and the analysis
has to yield not only the minimum cost and total processing time, but
also the size of each group, for a given nunber of groups.

The introduction of the processing cost eliminates the possibility
of analyzing each index file independently. This is due to the non-
linearity of the graph in Fig. 15 and the fact that this cost is for
the total processing time of the system and not for each file. Hence,
this time is the sum of the processing times in each file, both index
and master. The implication here is that the optimal partition of
one file varies for different values of the total processing time,
and because this time is a function of the structures of the other
files, the overall dependence is established.

Consequently, any re sonable analysis will have to consider all
the files simultaneously. To achieve this, an algorithm has been de-
vised which generates the minimum cost vs. total processing time curve.

3.3.6.3.1 Design of Optimization Procedure

This algorithm describes an iterative procedure which starts with
all the index files unsegmented, obtains the change in costs resulting
by different divisions of each index file independently, selects the
most advantageous change among all the files and possible parti-
tions, changes the structure and repeats the process. Recall that the
group which is removed from the basic corpus, by virtue of the division
procedure, is formatted into Structure 5a (Unit Lists) and must have
a fixed key length and a fixed record length specified at load time.

The total processing time is expected to increase as the nunber
of partitions in each file increases.. This is due to the time
required to transfer the search from one segment to the next.

From the results already available on the distribution of the
key length of the authors index file, it seens that in certain
cases Assumption 8 is not justified. The algorithm will be essen-
tially the same when Assumption 8 holds and when it does not. How-
ever, the process of evaluation of certain values will differ in each
step. These differences will be pointed out when each step is
discussed in detail.

3.3.6.3.2 Algorithm for Search Processing Cost/Total Processing Time
Optimization

Step 1 - Estimate the storage requirements, total processing time,
and total cost for the whole system, without partitioning any index
file with respect to key length, and plot their corresponding values
in the minimum cost versus total processing time graph.

Step 2 - Obtain the optimal (minimum cost) group sizes for each
index file when they are independently divided into h,
h-MH groups, with respect to their key lengths, where h is the nunber
of partitions of that file in the present structure.

Step 3 - Estimate the total cost when each of the index files is
partitioned into h, groUp, without partitioning the others.

Step 4 - Select the bebt.change of structure from the possibilities
evaluated in step 3.

Ste_ 5 - Plot the corresponding values of the structure selected
by step 4 in the minimum total cost versus total processing time
graph, and let this structure be the present solution for the next
iteration.

Step_6 - Repeat step 2, 3, 4, and 5 recursively, until the
minimum cost versus processing time graph achieves a trend where
both parameters increase simultaneously.

3.3.6.3.3 Parameters

The following data are assumed given:

For the Key d (Index)_Files:

N(J) = number of records in the Jth keyed file

min Lk(J) = minimum key length for the Jth file

max Lk(J) = maxi um key length for the Jth file

min L
R (J) = minimum record length for the J

_th
file

max jthLR (J) - maxi _um record length for the

Sk(J) = total nutber of requests which are searched in
the Jth keyed file per unit time

For the Pointe-__ File:

thP(J) = total number of pointers in the J file

LP = length of the pointers in bytes

:SP(J) = total number of accesses to the pointers Pile asso-
ciated with the Jth index file., per unit time.

For the Master_File:

NMR = total nuAber of Master Records

LMR = average length of the Master Records

= total nuAber of records retri ved in the rater file
per unit time

Also assumed given are all the Characteristics of the device,
including its timings and costs described in the previous analysis.
With the previous information, the search time for each index file

can be obtained using the program STOCAP and Equation (1). The
desired factors will be designated by:

th
KU) = search time of the J index file when this is

not partitioned and is organized as an Index
Sequential File.

The following notations will be

n(J,h,I) = nuMber of records in
Jth index file, when
h groups (I h)

ST(J)

T(J)

K(J,h,I)

ed for the other variables;

the Ith partition of the
this is partitioned into

storage requirements for the J
th

index file

= total processing time of the Jth keyed file

th th
= search time for the I group of the J index

file, when this is partitioned into h groups
and each group is organized as an Index Se-
quential File.

An asterisk
expressions when

L "I(J h)

will be added to these values to designate their
at optimality (minimuM cost); n*(J,h,I).

= record length of the Ith group of the Jth index
file, when this is partitioned into h groups.

,h,I) = key length of -the Ith greup of the 'Uth index
rile, whet this is partitioned into 4 groups

These two last variables will be used for I<I1 onl4y, because
Lk(J,h,h) = maxLk(J) and LR(J,h,h) = MAX I,(J).

Sk(J,h I) = number of requests of the Ith partition of the
Jth file when this is divided into h groups.

.6.3.4 Procedure Description

Now, a detailed description
be presented.

each step f the iteration will

Step 1: The .storage requirements for each in
ob ained by program STOCAP. Let this be STk.

The storage needed for the Pointer File can be expressed a-
s= of all the number of pointers times the length of these
pointers, or:

file car

the

For the Master File:

STm = NMR LMR

The total storage, then, can be represented by:

ST = STk + STp ± STm

(22)

(23)

If the cost of auxiliary storage is linear, then this cost
can be expressed as:

STC = Cs ST (24)

If not linear, then STC is evaluated using the corresponding
function. The processing times can be obtained as follows:

For the Keyed Files:

Tk =E Sk(J) (Tk + T
B

+ K(J)) (25)

And for the Unkeyed Files:

Tp + Tm = (TUNK TB)E Sp(J) Sm(TUNK 4- TB) (26)

where SP(J) is the total nunher of requests for the existing pointer
file or equivalently, the total number of successful searches in
files organized under'Structure 4.

Then the Total Processing Time is given by:

TPT = Tk Tp kTm (27)

and its cost can be obtained from Figure 15. Having the total cost
and processing time, these can be plotted in the corresponding graph.

Step_ 2: he process for obtaining the group sizes when
Assumption 8 holds, varies considerably compared to the ease when
it does not hold. Under Assumption 8, a good approximation of the
optimal group sizes, when the file is divded into h groups, is
obtained using the following expressions:

1N*(J,h) = E [K(h)] [D(J,h)] (28)

where
n*(J,h,l)

N*(J,h) =

n*(J,h,h)

(29)

and

D(J,h)=.

where Q

n(J
Q(.1) (Tk

Q(J) K2

Q(J) K

Q(q)

=
CT Sp

(30)

(31)
Cs(max LR -min L)

NOM: When index file J is of Structure 5a,i.e., without a separate
Pointer File, then SP(J) is taken as the total number of successful
searches in that file.

K(h)

K(2)

is a matrix that can be obtained from Fig. 22.

FIG. 22:
MATRIX FOR K

1 I
1 -1 -1

3 2 1

K(3) 0 -1 1

1 6 3 2 1

ic(4) = 1 2 -1 2 1

1 -1 -2 1

1 6 -1 -2 3

1 10 I. 3 2 1

1 5 1 3 2 1

K(5) = 1 0 -1 -2 2 1

1 5 -1 -2 3 1

1 10 1 -2 .-3 4

K(6) =

1

1

1

[-

1

1

1

18

12

6

-6

-12

-18

5

-1

-1

-1

-1

-1

4

4

-2

-2

-2

-2

3

3

3

-3

-3

-3

2

2

2

2

-4

-4

1

1

1

1

1

-5

When Assumption 8 is not valid, then the optimal group sizes will be
determined by Program OPT PART, which is designed to accept any given
distribution of key lengths.

Selecting the Optimal Number of Grou 5. Due to the lack ef con-
vexity of the processing cost versus total processing time curves
for each file and the total system, we cannot assume that the next
best structure is found when each file is successively partitioned
into a number of segmented groups, each structure being one group
larger than the present structure. For this reason, at each iteration,
we need to investigate the possibility of partitioning each group
independently into 11+1, h+2,...h+AH.groups, where h is the number of
partitions in the present solution, and Ali is a parameter that indicates
the maximum extra number of partitions that will be considered for each
file in every iteration. A suggested value of AR is 3,because when
the number of -partitions is more than 4 for a file, the changes in
time and storage are expected to decrease and will not yield more
significant changes in total cost than the partitions with a smaller
number of groups.

Determinin the 0 timal Grout Sizes. In order to determine the
optimal group sizes, whether under Assumption 8 or not, the value of
CT (the slope of the cost of total processing time curve, evaluated
at the total processing time corresponding to the present solution)
is required. This value may be only a poor approximation for evalu-
ating the optimal group sizes when the partitions are h +AR. For
this reason, it will be better to re-evaluate CT prior to every
evaluation of the optimal group sizes. This can be achieved as
follows for each file:

a. Evaluate the optimal group sizes fr)r h 1,
using the value of CT when the file Was divided into h groups.

b. With the groups obtained, calculate the change
in processing time from h to h 1.

c. Get the corresponding CT when the change calcu-
lated in (b) is added to the total processing time.

d. Evaluate the optimal group sizes for
the value of CT obtained in (c), etc.

Step 3: Having the optimal sizes for the partitions that will
be considered for each file, the storage capacities and processing
time can be obtained using program STOCAF and relation (a).

using

Before using program STOCAP, the record lengths and key lengths
for each group haVe to be evaluated.

When Assumption 8 holds, these values are given by:
=I

ax n*(J,h,I) (32)L (J-h = min L (J)
m LII(J)-min LII(J)

R

h,I = min Lk (J
n(J)-

max L_ (J)-

k=1
n*(J,h,I

When Assumption 8 is not valid, then the key and record length can
be Obtained using their corresponding distributions and uhe n*(J,h 1)
obtained in Step 2.

The Total Storage requirement for each partitioned index file
is obtained by:

1=J
ST (J) = ST*(J,h,i)

1=1

th
where ST*(J,h,1) is the storage requirement for the optimal I-
group of the J th file when this is partitioned into h groups.

(3)4)

The Total Storage requirement for the system is then given by:

TST = EST*(J) STp + STm

where o_ly one of the ST*(J) differ from the present structure.

(35)

The Total Processing Time for a segmented index file is given by:

kh
T(= [Sk(J) -

k=1

i=k-1
n*(J,h,I)] (Tk _1-T +K*(J,h.,k)) (36)

1=1

Then, the Total Processing Time for the System becomes:

TPT = E T(J) + Tp Tm

where Tp + Tm is the same as that obtained by expression (26).

Having the total processing time and storage values for each
structure under consideration in ,the present iteration, then their
corresponding costs can be Obtained.

-40

(37)

Step 4 The proper selection of the change to be adopted cannot
be selected on the criterion of Minimum Cost change. Some large files
may yield a large reduction in cost, but at the same time a large
change in Total Processing Time. This could skip some important point
in the graph.

To illustrate the problem, suppose that the points corresponding
to the previous structure and the ones corresponding to changes in
different lales are those shown in Fig. 23.

minimum
total cost
per unit
time

FIG, 23:
TOTAL COST/TOTAL PROCESSING TIME

previous
structure

changing
File 1

C)= changing
File 2

T.P.T./UNIT TIME

It is clear that the change of File 1 yields an important point
that is missed when the criterion of Minimum Cost change is used.

ConsequeAtly, the criterion of minimUm slope has been adopted
AC

(min). In this case, it is clear that the change of file 1 of
AT

the example will be selected.

Hence, for each of,the new structures that are being considered
AC using the expression:
AT

in the iteration, we evaluate

A =
C - C

AC NS PS
NS AT T T

NS PS

where CIT and Twm have
are theotal etTgt and
solution and have been

Steps 5 and 6 are
special formulas.

(38)

been evaluated by Step 4 and C and Tps
processing time corresponding -o the present
plotted already by Step 5 (or Step 1).

self-explanatory and do not require any

1.8

3.3.7 Segmentation of Index Files Based on Usage Frequency

Up to now, the file activity of the individual records has not
been considered. This distribution was not necessary for the previous
analyses because of Assumptions 6 and 7= Next we will explore the
possibility of dividing an index file when a different usage frequency
for the file occurs.

The reordering of records within an index file is not possible
because the index Sequential Organization uses the concept of High
or Equal Key, which underlines the need of a lexicographic ordering.
Moreover, even if reordering were possible, the search in an index
file has to go through each index level (see Equation 1), and the time
to go from one index file to another (TB), which represents the more
time consuming process, will always be present; therefore, no sig-
nificant reduction in processing time can be achieved.

Another alternative, however, seems plausible for certain cases:
a partition of an index file into two separate files, each organized
under Index Sequential. One will contain the records of high usage
frequency which will be searched first and the other, the records
of low usage frequency.

The total storage requirements will be assumed to remain essen-
tially the same. This implies that the storage requirement for an
index file varies linearly with the number of records.

Hence, we need only to compare the search times to determine
whether this alternative is convenient or not.

(Comment: Program STOCAP wes run for different nnuber of
records of constant key and data length, and the results confirmed
this assumption).

For this analysis, we also assumed as given the usage fre-
quency of the records of each index file. When the records are ordered
in decreasing usage rate, we obtain a distribution as shown in Fig.

Number of
Requests
per unit
time

FIG. 24:
USAGE FREQUENCY DISTRIBUTION

Records

When the Jth index file is divided into two groups, then its pro-
cessing time given by:

T2=Sk(J) [Tk+TB+K(J,2,1)] + [SK(J)-Sp(J,2,1)] [TK+TBK(J,2,2)] (39)

where p(J,h,I) = /umber of successful searches in the Ith group of
the J index file, when this is divided into h groups. K(J,2,1)
and K(J,2,2) are the average search times for the first and second
group of the Jth index file when this is divided in 2 groups.
These searched tines are evaluated as before using Equation (1)
and program STOCAP for a given partition.

The processing time for the Jth index file when this is not parti-
tioned, is given by (2),which is equivalent to (40) with new notation:

T
1

= SK(J) [TK+TB+K(J)]

It will be advantageous to partition when the following
condition holds:

get:

T
1 -2
T_ or T

1
- T

2
>0

After substituting (40) and (41) in (42) and rearranging, we

S- _+T.+K(J_,1)+K(J,_2)-K (J)
TK+TB+K(J 2)

For any given usage distribution of the records, we can start
increasing the size of the first group from C to n, where n is the
total nuMber of records, and test for condition (42) at each small
increase. For each group size, the search times have to be re-
evaluated using Equation (1) and program STOCAP.

(40)

(141)

(42)

Note also that the distribution shown in Fig. 24 refers to the
number of requests of the existing records; therefore, the area under
the curve is equal to Sp(J), and when this is divided into two groups,
Sp(J,2,1) is the area under the curve from 0 to the number of records
in the first group.

If Condition (42) is satisfied for some partitions, the optimal
size value of this partition is the one that yields the largest
difference between the two sides of inequality (42).

This analysis can be performed independently from the other
analyses discussed in this section. ThiS is justified by Assumptions
6 and 7.

It may be convenient to perform first the analysis considering
the index record length, i.e., the' nuMber of pointers (Structure 4
versus "mixed" structure); then the usage analysis just described;
and lastly, the iterative procedure to select the index segments
with respect to the key lengths.

Before each of these analyses is performed, each of the
partitions that are organized as index sequential should be taken
as an independent index file. For this, the proper SK(J), SK(J,h,I
Sp(J), and Sp(J,h,I) of each index file have to be carefully-determined.

3.4 Consideration of Request Utility as a Function of Average
Retrieval Time

It is generally agreed that the utility of file information
decreases in some, fashion as its retrieval time increases. This is
probably true in the case of many users of the bibliographic type of
system. And it is especially meaningful when there is available
another type of storage system that could provide the information
requested. In other words, as the time savings that are achieved
using the computer system over a card catalog decrease, the value
of former system decreases for the users.

It is possible, then, to obtain some kind of a curve that will
represent the value of a request versus the length of its average
retrieval time. Transforming this subjective value into some kind of
cost equivalent, this curve can be related to the previous analysis.

Suppose that the value of an average request versus its average
retrieval time is expressed as in Fig. 25.

Value of
average
request in
dollars $

FIG. 25:
AVERAGE REQUEST $/AVERAGE RETRIEVAL TINE

Average Retrieval Time

Then, by multiplying each coordinate by the total number of re.quests
per unit time, we obtain another curve as shown in Fig. 26.

Value of al-
requests
per unit
time in
dollars

FIG. 26:
ALL BEQUESTS VT.P.T.

Total Processing Time per Unit Time

The negative of these values can be interpreted as a cost assigned
to each value of the processing time; therefore, we can absorb this
curve in the previous analyses by subtracting the curve of Fig. 26
from Ule cost curve of Fig. 15, and using the resulting curve as the
cost of total processing time.

In the previous analyses, there were no assumptions made on the
actual shape of the cost curve of Fig. 15; therefore, no alterations
are needed when this alternate cost curve is used.

Symbol

BI

CIT

CNS

PS

cs

T

IBN

IBT

IDL

IEN

IOTC

IFTDC

IRB

IT

ITC'

ITPC

IZ

K1,

K
1

-2

APPENDIX

PARAMETER DEFINITIONS FOR FILE STRUCTURE ANALYSIS

Definition

Block Length (ISAM; with Overhead)

Number of Cylinders

NuMber of Tracks in Cylinder Index

Total Search Cost of Next Solution

Total Search Cost of Present Solution

Cost of Auxiliary Storage

Cost of Total Processing Time

Number of Groups into which Index File is Divided

Block Length of Last Block With Overhead)

Blocks Per Track

Data Field Length (ISAM)

Logical Reco d Length of Last Index Record

Number of Overflow Tracks Per Cylinder

Number of Prime Data Tracks Per CylLnder (ISAM)

Number of Logical Records Per Block

Number of Track Index Entries Per Track

Tr ck Capacity (Bytes)

Number of Tracks Per Cylinder

Const nt (Last Record, Keyed)

Average Search Time in ISAM File

Key Length

Average Search Time, Index File Segment ST4

Time, Index File Segment ST
5

Average Search

LBLK Block Length (Data Only)

L
k

.Corrected Key Length

LMR Average Record Length, Master Records

LP RecOrd Length -of Pointer Record (Bytes)

LR Total Index Record Length (Includes all levels)

Lu Actual Minimum Key Length for Uniqueness

Number of Master Records

See "RM", below

Total Numcer of Discrete Key Values

NB Number of Blocks Per Track

NIL Number of Index Levels (ISAM)

N(J) Number of Records in Index File Segment J

N(M) NuMber of Keys Associated with M Master
Records (Largest Group)

NT Total Number of Tracks, Structure 4 Index File

NTM

NT1

NT2

PDT

P(J)

Minimum Number Tracks at Given Level That Will
Justify a Higher Index Level

Total Number of Tracks Needed for Structure 4
Segment of Index File Organized in "Mixed" Form

Total Number of Tracks Needed for Structure 5
Segment of Index File Organized in 'Nixed" Form

Number of Prime Data Tracks

Total Number of Pointers in the Jth File

RM1 Number of Tracks in First Master Index (ISAM)

RM2 Number of Tracks in Second Master Index (ISAM)

RM3 Nureber of Tracks in ThIrd. Master Index (ISAM)

RNT

ROT

RT

Sk

Sm

Sp

Total Storage Required (Tracks)

Time Required to Read 1 Track (One Full Rota-
tion in a Disk DASD)

Records Per Track

Total.NuMber of Requests Per Unit Time
(Number of Key Searches)

Total Number. of Records,Re7orieved (NuMber
of Accesses to the'Msster File)

Total Numberof Successful Searches (Number of
Accesses-to Pointers File under Structure 4)

t_

SP(J)

STC

STk Storage Required for Index File

sTID Storage Required for Pointers File

Total NuMber of Accesses to Pointers File Asso-
ciated with Jth Index File,.Per Unit of Time

Total Cost of- Auxiliary Storage

TB Seek Time

TI

Tk

TIn

Tns

Tp

Tps

TPT

Tunk

Number of Tracks in Track Index

Non-DASD Timing Factors, Keyed File Constant)

Non-DASD Timing Factors, Master File

Total Search Processing Time of Next Solution

Non-DASD Timing Factors, Pointers File

Total Search Pr cessing Time of Present Solution

Total Search Processing Time

Non-DASD Timing Facto s Non-Keyed File Constant)

Device Constant

Device Constant

4. THE ANALYSIS OF BIBLIOGRAPHIC FILE STRUCTURES, USING
INDEXED SEQUENTIAL ORGANIZATION

By Jorge Hinojosa

4.1 Introduction

Different file structures can be used in an information retrieval
system. The choice of a specific type of hardware and the operational
goals or the system determine the feasibility or unfeasibility of such
structures.

The present study is concerned with an information retrieval system
for bibliographic catalogs using direct access storage devices. The
system is formed of different index sequential files organized under
some feasible structure which may be the same for all files. The index
files provide access to a master file composed of MARC-structure records.

A measure of retrieval performance of the system
main properties. First, it would express the ability
accomplish the goals for which it was created, or its
Second, it would consider factors related to cost
We are concerned with the second property.

4.l.l Objer:t

would have two
of the system to
"effectiveness."
n efficiency. n

The objective of the project is to maximize the efficiency of the
system, or what is equivalent, to minimize its operational cost.
The specific criterion is to obtain a minimum cost per request put to
the system by a person searching the computer data base.

4.1.2 Cost Relations

Two main costs are considered:

a. Cost of Auxilia Stora e (Cs). This is the cost of the Direct
Accc-ss Storage Device (DASD) spar:e used and is assumed to vary linearly
with the amount of information stored.

b. Cost of Processing Time (Ct). This represents the cost of
using the central processing unit (CPU). In general, this cost is
calculated as follows:

COST
CPU
ALPHA
PP
F (CR, LP,

= Rate (CPUALPHA=PP) F(CR, LP, CP) where
= Central processing tiwe (minutes)
= A function of central memory used
= Peripheral processor time (minutes)
= A functlon or the number or input cards

lines printed and cards punched.

We are not concerned with F(OR,LP,CP), and we assume that the amount
of central memory used and peripheral processor time are not affected
by dhanges in the file structure. Ne also assume that the central
processing unit is usee4 all the time during the search and retrieval
stage of system operation. Under these assumptions, the cost of total
processing time varies linearly with respect to retrieval time.

FIG. 27:
OPERATIONAL COST OF A FILE

No. Requests m nth

A. TOTAL COST AS A FUNCTION OF REQUEST VOLUME

TC = total cost
CT = cost of time
CS = cost of storage

ACS

No. Requests/month

B. AVERAGE COST AS A FUNCTION OF REQUEST VOLUME

ATC = average total cost
ACT = average cost of time
ACS = average cost of storage

_JD

If the system consists of J files, the total operational cost of
the system for a given period of time is given by:

TCS = C y S. c, X T,sj=, j -j=1

For each of the files, both storage (S) and time (T) are a function
of the file structure, and so is the operational cost (C) of the file.
Hence, TOS is better expressed ast

where

TOS -O = Q(E.
j=1

TC = Operational cost of file
i

TC = Q(E.)
i

E = Structure of file j

(1)

Because of the assumptions that cost per byte of storage for a given
device and cost per minute of processing time are constant, it is clear
that minimum operational cost of the system is equal to the sum of the
minimum operational cost of the individual files.

->
Min TOS = X MinQ

j=1
(2)

It is important to emphasize that TCS is total cost per period of
time and NOT total cost per request. This is because it is unlikely
that all the files would be used with the same intensity. Furthermore,
the optimal structure Ej that yields Min TO is conditioned to the
expected usage frequency of the file j.

Fig. 27, A and B, illustrates the behavior of cost for a given
file. Each different structure defines a set of curves.

4.1.3 The Problem

Given the expected usage frequency per period of time, the file
size, and the data characteristics, find an optimal structure that
yields minimum operational cost for the file, or equivalent1y, minimum
cost per request.

4.2 General System Structure

4.2.1 File Structures Selected for Ana1ysis

4.2.1.1 Access Record Mapping

Let M = fim I be the set of bibliographio records. (ThiS set

8304

constitutes the Master File.) Let A = fad be the set of inverted access
records that comprise an index file. Thetle may be several index files
in the system. If the subset of master records Mi = {IL} j=1,...,k are
indexed under the same index record ai, we say that MjeMi maps into ai.
This mapping, shown in Fig. 28A, constitutes one of the feasible
structures, say I. The elements of Mi mapping into Ai are not contiguous
in M in a physical sense and might just as well map into an element of
another access file. Hence, ai needs to contain all addresses (pointers
pointing to nieMi.

FIG. 28A:
NAPPYwG OF MASIER RECORDS INTO ACCESS RECORDS FOR

STRUCTURE I

a. EA

If we define a set of addresses (or pointers) P = fpjl, such that there
is a one-to-one correspondence of mj to pj (mj-0.pj) and the pielpi;
Pi = fpj; mj_a.pj,,imjeMil are contiguous in P in a physical sense, then
al needs to contain only the address of the first pjePi. If only one
mj maps into a given ai, we assume a direct mapping mj--4-a1. This
conbination constitutes structure II and is presented in Fig. 28B.

FIG. 28B:
MAPPING FOR STRUCTURE II

4.2.1.2 Connection with Previous Analysis

To provide continuity with a previous analysis, the reader may
note that Structure I in the present paper corresponds in part to
Structure 5a in the prior chapter by Rodriguez and Structure II
corresponds in part to Rodriguez' Structure 7. In that analysis,
division of an index file into segments was proposed using either index
record total length or key length as a basis. The diagrams for the
previously defined Structure 5a and Structure 7 follow Fig. 29).
(The hachured areas are waste space in index record.)

FIG. 29A:
FEASIBLE STRUCTURES

STRUCTURE 5a - FIXED-BLOCKED UNIT LISTS

Index Files (Fixed Reco d Length) Master File

FIG. 29B:
STRUCTURE 7 - "MODIFIED MIXED"

Illustrating Segmentation Based on Index Record Length

1----- - - - - - = - - - - - -- - - - - - -
IiFile Segment 1 (Structures Pointers File 1

j_ILansiLLA
, IKEY 1 Ipr Pl I P2 I P3
i

i'...___---v------1

i Record Length 111
I

I
...---____"_____\

I

I I

i KEY 2
i I

File Segment 2
(Structure 5a)

Record Length L2
File Segment 3
(Structure 5a)

KEY n,..

Record Length L

INFORMATION
(MASTER
RECORDS, M)

Note that Structure II in Fig. 28B is identical to the structure in
File Segment 1 of Structure 7 (Fig. 29B) prior to division into a second, etc.,
file segment based on index record length., which was the basis for the
original study. To avoid confusion, we shall continue to use the previous-
ly established structure designations.

It is also important to note that the access records (index file)
in Structures 5a and 7 must be of fixed length, and must be pre-set
at file load time. In Structure 5a, this imposes a space penalty: record
length must be set to that of the longest record. That is, the maximum
record length corresponds to the key field length plus the number of
pointers corresponding to the key ai associated with the largest number
of master records Mi. The existence of a dispersed, asymmetric distribution
of key-lengths implies a consequent Inefficient use of storage.

As an example of segmentation by some criterion using index record
length, suppose the largest group of keys N(M) was associated with four
master records, that is M=4. This group is extracted from File Segment 1,
"Non-Singles", which is the initial file, and placed in File Segment 2
using Structure 5. (See Fig. 29B.) The process is then repeated recursfvely,
as the model prescribes.

A variant of Structure 7 which provides the maximum flexibility, since
it frees the analysis from need to attend to the ratio of the number of keys
N associated with m master records, employs the distIfibution of key lengths
solely as the basis of division. This structure is illustrated in Fig.30.
It is this version of Scructure 7 which supplies the basis of the remainder
of this paper, since it is the form of access file that can be tested unc_ar
software currently available to the ILR facility. Moreover, it permits
future experimentation with optime-L indexed sequential files using variable-
blocked inde:,- record support now becoming available (IBM OS Release 18).
At that time, it will be possible to eliminate the Pointers File (Addresses
list).

-10b-

E

FIG. 30:
STRUCTURE 7 - "MODIFIED MIXED" WITH TWO-LEVEL LISTS

Illustrating Segmentation Based on Key Field Length

Pointers File_
File Seornent 1 (Structures 4

Access File

KEY 1
and 5a)

Key Length L1

KEY 2 P
s

Master File

File Segment 2 (Structure 4)
IFKEY

Key Length L2

File Segment Structure 4)

KEY n,...

P1
:'2

P1L

Key Len*gth L3

INFORMATION

4 2.1.3 Record Format

We shall assume that all Index records are blocked. For keyed
files, both key areas and data areas are fixed length; that is, the
index record is fixed length.

4.2.2 Comparison of Structures 5 and 7

There are tro factors th t determine storage efficiency for
index files: 1) distribution of key lengths (Fig. 3-); and 2 master
records mapping into an access record (Fig. 32).

FIG. 31:
KEY LENGTH DISTRIBUTION

Key Length

FIG. 32:
POINTERS DISTRIBUTION

of Master Records

Because of the restrictions on Indexed Sequential keyed records,
it is clear that for Structure 5 there is a waste of storage in both key
area and data area. For Structrre 7, it occurs only in the key area
(Fig. 29B and 30). Using Structure 5, all the information needed to
retrieve the subset of related master records is reached with one
search. Using Structure 7, we need an additional seek if the Pointers
File has to be accessed. There are many other considerations to be
taken into account before deciding which structure is better. Therefore,
each one should be analyzed individually to determine how it can be
improved.

Since the analysis by Rodriguez (Chapter 3) concluded that Structure 5,
used alone, was inefficient for segmentation by record length due to the
much larger required processing time (to transfer the search from
segment to segment), we riii concentrate our analysis on the "Mixed
Structure," Structure f, to see how it can be improved. Later
analyses will be directed at comparing the two structures for suitability

to a given file.*

4.3 Division of an Index File Based on Key Lengths

One way to avoid the waste or storage in the key area of the access
file is to divide or segment the file into several groups based on key
lengths. Records with short keys might be in one group, medium-length
keys in another, and so on. However, the search time for some records
would increase because we may need to look for those records in each of
several files. Hence, a division would be feasible only ir the total
search cost per request for the divided tile is less than the total
cost per request for the undivided file.

The operational cost of a file using Structure 7 ma- be improved
by a better utilization of the storage, minimization of search time,
and by more efficient allocation of both overflow records and non-
keyed (pointer) records. In what follows, we present different schemes
for analyzing and improving the index and pointer files. The following
assumptions are used in the analysis.

a. A discrete distribution of key lengths for the file under
consideration is available.

b. The usage frequency for a group of records with a given key
length is independent of the key length.

d.

The usage frequency for a group of records is proportional to
the nuMber of records in the group. This assumption can be
interpreted in two ways: a) each record is equally likely to
be requested, b) each group of records has the same usage
frequency distribution. Obviously, the second interpretation
is stronger.

Search is done sequentially,** beginning with the access group
or Tile segment having the largest nuMber of index zecords.
This follows from assumption 3.

* The index record must be of fixed length in the currently available
version of the manufacturer-supported Indexed Sequential Organization.
A future release prondses to support variable-length records (although
key field must still be fixed length). This means that when implemented,
Structure 5 would probably supplant Structure 7 in efficiency,
because the need for a separate Pointers File would be Obviated. The
efficiency oT the software implementation is, of course, another issue
for testing to zesolve.

**That is, groups placed in files fl, f2, f3..., rti must be searched
successively to respond to a search reque ;, particularly in light of the
part-key (i.e., key prefix) capability of the Indexed Se4uential Access
Method. For this reason, attention must be given to the need for both
explicit stopping signals prior to the last file segment, and to algorithmic
stopping rules for multi-group Searches, to minimize retrieval time.

If the file requires master index levels, the highest of these
is stored in core, if possible.

f. The cost per unit of storage and cost per unit of time are
constant for a given period of time.

4.3.1 Cost of Storage

Let F denote the undivided index file, containing a set K of
records with key lengths ki which have a density function g(14-i) and
a distribution function G(kj). If we divide F in n subfiles or segments,
Fi, the index i is increasing us the key length Increases.

The storage requirement 'T(K) of file F is proportional to the
longest key (kx) and the number of records in the index file.

ST(K) = C-k G.(k), where C is a proportionality factor that takesxinto account the different index levels. We assume that C is constant
for all sUbfiles. Then,

ST(n,K,

Where Di =
if kI>ki.1

X ST(K!
i=1

= C X k.[G(k.
1=1 1

the set of division points such that DiDj

(3)

We shall prove that for a given n, the total storage and, therefore,
the storage cost of a file F divided in n subfiles is a unlmodal function,
and its central part behaves as a convex function of the set of division
points Di.

Let's assume that n = 2, and ki,
points for two different sets D. and D.

0

Ckx [G(kx)

Ck 0-elk)x x

ST(2,K,Di) = CkiG(ki) +

ST(2,K,D.) = Ck.G(k.) +
0

Then,ifk=Ak.+(l-A)and 0_s).5.7 the
1

ki
if:

are the corresponding division
such th t k.>k.. We have that,

j

G(ki)] (4)

GOc.)] (5)
0

function ST(2,K,D) is convex

AST(2,K,D1) + (1-X)ST(2,K,Di) > ST(2,K,D1)

Using (4) and (5) we reach the conclusion that (6) is true if:

k
x
-k \

k -k.xiJG (k.) G(k.
holds.

(6)

It is obvious that for the central values of the distribution
function G(x), the first parenthesis in (7) is almost equal to A, and
the second parenthesis is always lelss than one. Therefore, (7) holds.
This implies that there exists only one set of division poinL1 for
which the storage cost of the divided file is minimum.

Subtracting (5) from (4) and eliminating common terms, we obtain
the expression,

ST(D1) - ST(D) = G(k) (kx-k j
- G(k.1)(k -It.1) (8)

J x

We can see that for small values of kj and ki, the expression
dbove Is positive and for very large valueb of kj and ki, (8) is
negative, which is the property of the unimodal functions.

4.3.2 Cost of Time

By assumptions (3) and (4), search time is also a function of the
set of division points Di, and its value is increasing as the number
of records per subset becomes equal. Hence, the shape of the search-
time cost as a function of division points Di is a positive unimodal
function.

Furthermore, we notice that for a given structure, the cost of storage
per request is proportional to l/NR* while the cost of search time per
request is constant. We conclude that a minimization of the combined
cost per request cannot be achieved independently of request volume.
However, we can find an optimal set of division points Di that minimizes
TC = CS 4- 7T for a given File size-Request Volute relation a.

In Fig. 32, TC denotes total cost, CS denotes cost of storage, and
CT, the cost of time. The bar dbove denotes average cost per request.
a = NR/N, where Nil is the expected nuMber of requests, and N is the total
nutber of records in the index file.

CS

FIG. 33:
COSTS FOR A DIVIDED FILE AS A FUNCTION OF THE

SET OF DIVISION POINTS (Di)

Di
COST OF STORAGE

*NR = number of requests.

CT

Di
COST OF TIME PER RE UEST

From Fig. 33 it is possible to see that the combined cost function
TC is not a "well behaved" function and that it might contain local
minima. Therefore, to find the global minimum and be sure of its
uniqueness, we have to consider the set of all possible division points Di,
at which the first division occurs. For a set (F,G(k), n) in which the key-
length distribution G(k) has a maximum number of points NK, we have to
consider all the different combinations. The number of combinations can be
expressed as:

NK!
n! NK

4.3.3 Dynamic Programming Formulation

We state the problem as follows: given a file F, containing a
set K of records with key lengths distributed as G(kj), find the set of
(n-1) division points (n=2,3,...) that minimizes the total search cost
per request TC(n,K). The total storage requirements of the file
divided into n subfiles is,

ST(n,K)
i=1

where 2t(i,K1) is the storage requirement for the 1
th

subfile containing
a.svbset KI of records.

The combined search time per request under assumptions 3 and 4 is
given,by:

T(n,K) = ti
h=2 1

h-1
1 N(j))th

j=

where N(j) is the size of the Jth subfile and th is the search time per
request for the hth subfile. The subscript i in equation (9) makes
reference to position of the subfile within the key length distribution
G(k). The subscripts j and h, make reference to the size of the file.

The total search cost per request is given by:

TC (n,K) = ST(n,K)-CSTR/NR T(n,K)-CTM

where CSTR = cost or storage In dollars per track,
CTM = cost of computer time in dollars per millisecond.

The principle of optimality of Dynamic Programming states that
II an optimal policy has the property that whatever the initial state and
decision are, the remaining decisions must constitute am optimal policy
with regard to the state resulting from the first decision."

In applying this principle, let f(2,K') be the minimum total cost

9

(10)

per request obtained by dividing a file containing a subset K'
records into TWO SUBFILBS,

then

f(20 - Min C[Giki + - G. k]/NR + t-1 N1/N)t2

(klki<kx)

O<K' K

where t1 = search time for the first subfile

t
2
= search time for the second slibfile.

Let's define the first subfile as the subset of records K4 containing
all records with keys greater than or equal to the first Tey and smaller
than or equal to ki. Once we have found the key length ki that yields f(2,k)
we can add the storage requirements of both subfiles and store it as
one value which we call S(2,K'). The same optimization is carried out
for all possible subfile sizes K'.

The minimum total cost for a file divided in THREE SUBFILES is
Obtained in a similar way.

3 h-1
1 r

7= [G.k. + S(2,K - ')]/NR + t
1

+ 1 (1 - 7.7 L NJ
i 1 A

h=2 j=1

(klkikx)

O<K'K

And in general

1-

= Min [CGiki + S(n - 1, K - Kili/NR
i

+ t
h=2 =1

It should be noticed that the search-time cost cannot be stored as one
value because the safiles' size is continuously changing. However,
defining g(1,Ki) as the cost apportioned to the first subfile containing
a subset K1 of records, it is possible to obtain a more general
recursive relation, namely:

f(,K)

CWC!K'
1-

(7)<K'K

(13)

(15)

FIG. 34:

FLOW CHART FOR DYNAMIC PROGRAMMING COMPUTATIONS

COMPUTE g(1,Kj

g(2,Kj),f(1,K-Kj)

j

=L3

j=j+1

= number of subfiles

= points of domain of
Cost Function

COMPUTE

FO.+1,1C-K1 = Min[g(2

= Ndn[g(1,9) f(i,K-9)]

YES
/SAVE

f(i+1,1C-Ki

f(i+1,10

4.3.4 Solution of the Problem

The recursive relation presented above suggests the use of a
general numerical procedure similar to the one described in the flow-
chart of Fig. 34. However, there exist some difficulties due to the
use of assumptions 3 and 4 in the computation of search time for file
F, when divided into n subfiles. The optimal values f(i, K-K3) cannot
be stored as cost, but rather as the coMbined storage requirement for
the group of subfiles F'i in (K-Kj), and the individual search times
for each F'i. This is because the size of each subfile is changing, an
we need to know at each step of the optimal value computation [f(i+1,K
g(1,Ki)-Ff(i,K-K1)] what is the ordering according to stze of the (i+1)
subfiles.

Therefore, as i increases, the number of values (which we have to
store and later compare) also increases, making it difficult to use
the same loop to evaluate the optimal values for different nutbers of
divisions.*

4.3.5 Sample Computations and Re3ults

Using a key-length distribution obtained from "Author File" and
the characteristics of the IBM 2314 DASD (as given in Fig. 36), we
divided a file in h = 23,4,5 subfiles for eight different file size/
request volume relations. (Division was recursive.)

FIG. 35:
PARAMETERS AND COST VALUES USED

VAPiakTER
Access Motion Time 75.0 msec.

I

Data Transfer Time 1 25.0 msec.

ROT: Rotational Delay Time I 25.0 msec.
1

Unit of Time A month

Cost of Computer Tine 1$80.00/hr. (IBM 360 Model 40,108K
Core Partition).Cost of Auxiliary Storage

1$.00002142/byte-month,.or .15625/
track-month (2314 DASD)

*In our subroutine DYNPART, coded to test the proposed solution, we do not
use the outmost loop shown in the flow chart. Storage requirements are
calculated using subroutine STOCAP; search times are calculated using sub-
routine TIENFO. To appreciate the computational power of DYNPART, we
compare the nuMber of calculations and computer time. When using direct
enumeration methods, we needed to call subroutines STOCAP and TIEMPO
approximately five million times, to divide a file in 1, 2, 3, 4, and 5
parts. The average computational tine was 1.5 minutes. DYNPART uses sub-
routines STOCAP and TIENPO only 1,200 times for doing the same job and takes
an average tine of three seconds.

The following results were obtained:

Table 6: Min. Total Search Cost per Request (Dollars)

UMBER OF SUBFILES SEGMENT
o Division)
1 2 3 4 5

.01 .200135 .14276 .13074 .12776 .12554

.02 .10245 .07408 .06914 .06794 .06762

.05 .04384 .03288 .03203 .03184 .031768

. 10 .024307 .01915 .01894 .018908

. 20 .01454 .01222 .01217

. 50 .008677 .007989 .00797

. 70 .007561 .007147 .0071.4

1.00 .006724 .006509 .006505

From the results presented above, we deduce an effect of increase in volume
of searches, viz., that as the relation NR/N increases, the number of
possible divisions decreases. This is due to the greater importance of
search time cost over total cost. For NR/N = .01, .02, .05, we observe
that the marginal total cost improvement decreases as we divide the file
in several subfiles; this is because at each step the possible storage
saving decreases (see Fig. 36).

Thus, within this range, it seems to be always possible to divide the
file into 2 and 3 subfiles, but we point out some facts that could lead
to a different conclusion at the decision-making Ivel. As the ratio NR/N
increases, the first subfile tends to increase in size, as is shown in
Table 7. This is because the critical variable is key length of the first
group. Storage cost per request decreases inversely to request volume.
And minimum total cost per request depends heavily on not having to search
the second subfile as request volume grows, which means more of the records
are economically pulled into the first group, K1, as ki varies. (See eq. 13.)

Table 7: Percent of Records in Each Subfile

NR/N TWO GROUP DIVISION

14.5

14.5

14.5

14.5

11.0

7.6

6.4

94.1 5.9

0.01

0.02

0.05

0.10

0.20

0.50

0.70

1.00

85.5

85.5

85.5

85.5

89.0

92.4

93.6

THREE GROUP DIVISION

59.0

63.6

80.6

85.5

89.0

92.4

93.6

31.0 10.0

27.5 8.9

13.3 6.1

10.1 4.4

10.7 0.3

7.599 0.00041

6.399 .00041

5.899 .00041

We can see that for NR/N larger than 0.2, the percentage of records in
the third group is so small that for some files it might not be feasible
to divide it in three parts. Besides, from Table 6, we find out that
the improvement from 2 to 3 divisions for similar NR/N is very small.
This result is shown graphically in Fig. 37, which gives the average
cost per search as a function of search volume and of the number of
files.

4.4 Division of an Index File Based on Usage Frequency

A second consideration in improving the efficiency of an indexed
sequential file is the division of the file into two subfiles F'(1),
F'(2), one containing the records of high usage free--ncy, which will
be searched first, and the other the records of low age frequency.
Both subfiles are to be stored in the same type of device.

4.4.1 Assumptions

As in the previous analysis, we assune that if the file is large
enough to require one or more master index levels, the highest is
stored in core. We also assume sequential search beginning in the fir t
subfile, which implies the ability to recognize if a given request has
been satisfied in the first file. If this is the case, the search
ends; otherwise, we search the second snbfile. The following notation
is used:

TU = total search time for the undivided file

TD = total search time for a divided file

NR = total nutber of requests per unit of time

N = total number of records in a file

TB = access motion time

NIL = nunber of required index levels

TK = data transfer time

K = seek time

Sub cript (1) makes reference to the first sUbfile (2) to the second
subfile.

4.4.2 Condition for Feasibiliti

The total storage requirement is essentially the same, hence only
search time will be taken into account.* A division of file F into
subfiles F'(1), F'(2) is convenient if TU>TD, or

*Assume all file segments are to have equal key length and record len- ts
at this stage of analysis

s

-
I

0

S

NR[TB+TK+K]>NR[TB (1)+TK+K(1)] = (NR-NR1) [TB 2 +TK+K(2)] (16)

After some algeb-

NR1 K(1) + TB(1 + K(2) + TK + TB(2) - TB - K
NR > TB(2) 17-11--r-'1c+1re72

or

NR1 K(1) + TB(1) - TB - K_+1 = a
NR

where NR1
0 ,5 11,7r 1

Therefore, if a>l, we have a contradiction and no division is possible.
We say that a division is feasible if NR1>a, and a<1.

NR
Because the value of a is only a function of the sUbfile size N1 and

the device's characteristics, we can dbtain a one-to-one correspondence
between Nl/N and a. Then, a necessary condition for dividing a file F
into subfiles F'(1), F'(2) is that subfile F'(1) must satisfy a percentage
of requests (NR1/NR) larger than a.

4.4.3 Required Distribution

Using the ideas presented above it is possible to obtain a
"Required Cumulative Distrfbution" L(x), X = Nl/N = 1 as presented
in Fig. 37. Assuming we have an actual usage frequency distribution
with cumulative function G(x), the optimal division point for a given
file F corresponds to an X, for which G(x) - L(x) = Maximum.

FIG. 37:
REQUIRED CUMULATIVE DISTRIBUTION

N1
x

Observing equation (17), we notics that a<1 if (TB+K)>[TB(1) + K(1)]. To
restate this in prose: a<1 if the access motion time plus data transfer
time corresponding to the undivided file is larger than the sum of
those corresponding to the first subfile. The seek time is given by:

K = TB(NIL-1) = ROT(MT2 + MTI + CT + TI + 1)/2

where

ROT = Rotational delay time for a given device latency)

MT2 = 1, if RM3 0 0
0, if RM3 = 0

MT1 = 1, if RM2 0, RM3 0 or RM3 = 0
0, if RM2 = 0

CT r. 1, if RM(i) 0 0, i = 1,...,3
C1T, if RM(i) =,0 for all i

TI = Constant = Track index tracks

CIT = Cylinder index tracks

RM(i) = Master index tracks, i = 1,2,3

From equation (18) we see that seek time K depends on the number and
size of the different index levels. Before continuing our analysis,
we point out some observations of the growing rate of index levels.

4.4 4 Growing Rate of Indexes

linder Index size (CIT) increases linearly with respect to file
size. Using subroutine STOCAP, keyed records with total length of 80
bytes and different N, we obtained the following equation:

CIT = 0.0303 + (0.1891).10
-4

.N

(18)

(19)

If we create a master index when the gylinder index exceeds 4 trac
the growing rate for the first master index is given by:

-
BM1 + .00384 + (0.6) .10

6
.N for N 250,000 records (20)

From equations (19) and (20) we observe that, while we need a file of
250,000 records to create the first entries of master index I, 2 million
records are required for filling up the first track and beginning the
second track of the master index. Let's consider the following cases.

4.4.4.1 Small Files

F does not need a ma ter inde N<250,000 for RL = 80)
Then: TB = TB(1)

NIL = 2

0.(a<4, O<CT(1)<CT

NT2 = 0, MT1 = 0 for F and F'(1)

Then recalling the condition, [ct<1 if TB + K>TB (1)
it becomes CT>OT(1) from equation (18). (22)

(21)a,b

By relations (21)a,b relation (22) is true. Therefore for small files,

such that NIL = 2, a<1.

4.4.4.2 Large Files

5
F requires a master index (2.5x10 <N<7x10

First subfile size Nl<250,000.

4.4.4.2.1 Case A:

TB = 0, TB(1) 0, implies the condition K>TB(1) + K(1 for a<1 from
equation (3), eliminating all constants, and noticing that

MT2 = 0; NT1 = 0 for F and F'(1)

CT = 1; CT(1) = CIT(1)

NIL = 3 for F, NIL = 2 for F'(1), we have that,

2.TB + ROT(1 + 1)/2>TB(1) + TB + ROT(CT(1) + 1)12

EOT>ROT(CT(1) + 1)/2

where

then

O<CT(1)<4

a<1 for 0< (CT(1) + 1)<1, or a<1 for CT(1)<1
2

To restate in prose, a<1 only if the first safile F'(1) is so small
that it requires less than one full track of cylinder index.

4.4.4.2.2 Case B:

First subfile size N1>250,000.

TB = TB(1) = 0

NIL = 3 for F and F'(1)

MT2 = 0; NT1 = 0; CT = 1 for F and F'(1)

then for a<1 we need:

TB + K>TB(1) + K(1

K>K(1), but

2TB + ROT(1 + TI + 1)12 + 2TB(1) + ROT(1 + TI + 1)/2

and K = K(1)

Therefore, a=1, and no division is possible. The results presented above
were found consistent with numerical calculations. Using subroutine
TSPO, we obtained "Required Cumulative Distributions" for both cases, A
and B. Results for case A are presented in Fig. 38 and for case B in
Table 8.

1.

FIG. 38:
CUMULATIVE REQUIRED DISTRIBUTION - CASE A

. 84

0

.1

X = Ni/N

Table 8: Cumulative Required Distribution, Case B

N1/N C.R.D.

.02 .9545

.04 .9655

.06 .9765

.08 .9875

.10 .s'986

.12 1.0096

.14 1.0206

.4o 1.1638

.42 1.00

.44 1.00

.98 1.00

1.00 1.00

Record Length: 80 bytes. N = 500 000 R.

4.4.5 Conclusions

The analysis presented for cases A and B above covers a wide range
of file sizes, and the results can be shown to be exact and consistent
under the assumptions used. We have no data about real usage frequency
distributions presently available, and no reasonable estimation can be
made until an experimental system is installed and testing can begin.
However, the concept of "required distribution" does enable us to rule
out "not possible" cases. Case A (for small files) presents an interest-
ing distribution. (See Fig. 39). We cannot talk of "feasible division
points," but it is not unrealistic to say that 70% of the records in a
file are used or are required more than 93% of the time. In case B
(for large files) we obtain a contradiction for N1/N>0.1 or NJ>50,000,
and no division is possible. For N1<50,000 or N1/N<0.1, m<1, but it is
unrealistic to assume that 8% (or less) of the records in a file axe
required more than 95% of the time.

4.4.6 An Extension

A combination of the two kinds of segmentation may be viewed as
follows. Suppose a file F which is expected to be used heavily is given
and that the set of most frequently requested records is known. Assum-
ing that any subset of the records in the file has a similar key
length distribution, F may be divided as follows:

Segment 1. A first subfile containing the records most frequently
used. This stibfile will probably have a high "VollTie of request - file
size" ratio, (a>1), and no division recording to key lengths will be
possible, in this segment. (See Section 4.3.)

Segment 2. The rest of the records (F-Fi), which will be larger
than FI' and will have a low volume of requests (the ideal condition for
a division based on key length).

Therefore, even if the usage frequency distribution for the file F does
not meet the "required cumulative distribution," the savings in storage
cost of the set of less frequently used records may make the division
feasible. (See Section 4.8 for further analysis and interim results Of
simulation.)

4.5 Estimation of Overflow Areas for Index Files

At this point we turn our attention to one of the maintenance aspects
of the index file - updating. In general, the efficiency of ISAM file
operation decreases as it is subject to updatings. This is due to the
use of overflow areas, "cylinder" or "independent", or both, where the
new records are stored. Links have to be established to maintain the
logical relationship between old and new records, with corresponding
increase in retrieval time. We shall attempt to anayze the problem and
make suggestions which hopefully will lead to better performance.

4.5.1 Overflow Reco ds

Under indexed sequential organization, records are stored in
lexicographic order on vertically adjacent tracks which form a cylinder.
When a new record arrives, it is written in its proper sequential location
on the corresponding prime track. The rest of the records are moved up
one location, the bumped record is written in the first available location
in the overflow area, and the track index entries are properly changed.
If the overflow area is located in the same cylinder, no additional seek
time is required to retrieve overflow records. The question remains how
to distribute the overflow tracks among the cylinders such that the
probability of exceeding the overflow area is equal for all the cylinders.

4.5.2 Probabilistic Model

William S. Jewell* has solved a similar prob em using order
statistics concepts.

*Jewell, W.S. "A Filing Problem,"
210-14.

anagement Sci nce, (8, 1962),

4.5.2.1 New Key Expected Insertion

Let fkil be the sequence of keys attached to the access records in
the file and fj1 be the set of prime area cylinders. If kt is the lowest
key in cylinder j and kt+m is the highest, the probability of a new
record being inserted in cylinder j is,

P(j) P(kt<kiskt+m) (23)

If N = Total nuMber of new records to be added.,

F(k
t
) = Probability of a new key less than k

-t,

F(kt+m
)= Probability of a key less than

n = NuMber of existent records in the file

thenP(C.)=F(kt+m)-F(k
t

) (24)

GuMbel* shows that the joint density distribution of the
(kt+m)th ordered values is

Qn(kt,kt+m = CF
t
t-1

+m-Ft
ft+m (25)

-1
-(1-Ft+-

k) th
t

Where C
n!

t-1)! m-1)!(n-t-)!
(26)

Then the probability that, on the average, x new keys are inserted between
the tth and (t+m) th keys, is,

w(n,m,N,x) = I fen (kt,

0<k <ID 5=
t t+m-

)P(N,m,x1k k
t+ =+m

which Jewell shows is equal .o the di4trihution of exceedan

w n,m,N,x

with a mean value of, Te(n,m,N,x

(Nz+ln) (N+n-1
kx+m-1)

(n-14) NN

4.5.2.2 Estimatioq of Overflow Areas

es

(27)

(28)

From (27) and (28) it is clear that w depends only on the original
nunber of records in the file n, on the iaerval m betwean the lowest and
highest key in the cylinder, and on the number of new records N. The
probability that the overflow area of cylinder j, (S), is exceeded is
given by:

N,.) (29)
x=S+1

The probability that the overflow area of cylinder j is not exceeded is

*Gumbel, E.C., Statistics of Extremes, New York: Columbia University
Press, 1958, p. 57-7

V S YS w(n, N = 1-W(S.)
x=0

(30)

Let A - -be the event that the overflow area of cylinder j is exceeded and
Aj

CL CL CL

1,1F).1.(UA.)=11,gsj _)- y w(s
j=1J j=1 j=1

(31)

is the probability that an independent overflow area is used. CL is the
total number of cylinders. Recalling that

P(A) with

CL CL
then V(F) = p(.) =HITS

j=1 j=1

CL

j=1

CL

= n
j

(32)

is the probability that none of the cylinder overflow areas is exceeded.
From (27), w (.) is equal for similar intervals m. Hence, if m is the same
for all cylinders, equations (31) and (32) can be expressed as

iTCF)=C1-J.INT(S.)- [IsT(S.)]CL

V(F) = [1./(S .)]Cra

If the ratio N/(n+N) converges to a value g, in equation (27) can b
approximated by

(34)

111- 3E ni-11+x)
(35m-1

If Q is the cylinder capacity, then CL = n/(Q-S), and m = -S, where Q
and S are expressed as records per cylinder. If we know N, equations
(29), (30), (33), and (34) depend on the value of 5, and V(F) in equation
(34) can be used as a tolerance limit. As S increases, v(s) and V(F)
increase, and we ean find a cylinder overflow capacity S that yields a
probability a = (F) that no independent overflow area is needed. Thus, it
has been proved that the best policy to follow in the allocation of cylinder
overflow areas is that of assigning the same number of ovel-flow tracks to
each cylinder.

4.5.3 Alternative Estimation

Another kind of tolerance limit can be achieved by using a value of.N
Obtained by testing a null hypothesis on its true value. Thia is justified
by the fact that N will certainly behave as a random variable. Then if N*
is a number such that,

P(NN*) = a, the cylinder overflow area S i6 given bY1

Q.111(N ORT.r)
NRT (overflow records per cylinder)

or, expressed as overflow tracks per cylinder IOTC,

IOTC = N'TPC/(N
ORT

-where, Q = cylinder capacity
ORT = overflow records per track
NRT = normal records per track
TPC = number of tracks per cylinder

4.6 Allocation of Non-Keyed Records to Storage Blocks

So far we have presented two methods of improving the performance of
the index file and suggested a way of combining both. In what follows,
we introduce a general procedure to allocate non-keyed records to blocks,
that may be applied either to the pointers file, or to the master file
of variable-length records. The next section deals with the estimation
of overflow areas for the pointers file, which we show is a different
case from that of the index file.

A non-keyed file using the direct (random) organization is not
systemcontrolled and allows the user almost complete freedom of design.
In general, non-keyed master records are variable length and blocked to
full track size (FTB). If the records are allocated to the blocks at
random, it is likely that often the last record in the block is split
between two consecutive blocks.* When retrieving such a record, it is
necessary to read both blocks (tracks) and when the file is heavily used,
its overall performance will be affected. Therefore, it is desirable
that all records fit exactly in the blocks such that no record is split
across track boundaries.

4.6.1 Mathematical Model

Let R be the set of all records r, and Ri be the subset of records
of R with identical length I. Obviously, all Ri are disjoint and R =
I Ri.

Let B be the set of blocks bj, j = i,...,NB, We assume that all
blocks have equal length, for otherwise there would be no problem. NB
is calculated using the average record length.

If we consider each subset Ri as a node i called a source, having
a capacity equal to the number of records which belong to the subset, say
Ci, and each blocit bj as a node j called sink with capacity t, and if
we let S = be the set of sources and T = fj1 be the set of sinks, we
can formulate the problem as a flow problem with gains. (See Fig. 40.)
The concept of "gains" is related to the fact that if we allocate X
records ri to a block j, the capacity of source i is now (Ci - X), while
the capacity of block j is (t i.x). The X records from source i are
multiplied by (i). Hence, we define multipliers 71 = I. We state the
problem as follows:

Let G = (S,T,A,) be a bipartite graph, where S = UI is a

*Splitting of Pointer File records can easily be precluded. They are short,
fixed length and should be blocked to a blocksize which itself is evenly
divisible into disposable track cap%

sources, T = fj1 the set of sinks and A =
connecting soa-ces and sinks.

Maximize E Xij
ij

Subject to i =

Xij,O;

ieS

tj, j = ,NE

= (i), for all i

FIG. 39:
NETWORK REPRESENTATION

)1 the set of arcs

j eT

Each node (i) in the figure corresponds to a different record size (i),
its capacity Ci corresponds to the nuMber of records with size i; each
node j corresponds to a different block j. We say that the flow in arc
(i,J) is larger than zero (Xij>0) is one or more records of size i are
allocated to block .1. Then it is ob-VJ_ous that if we find a set of Xij's
which satisfy (37) and (38) with tbe equality sign, we have allocated all
existent records to the different blocks in such a way that no space is
wasted. Moreover, we can show that is (37) and (38) are expressed in
equality form, and

(36)

(37)

(38)

Eni Ci = E tj holds, the problem alwqys has a solution.(39)
4

f-ct, assume ve have found a set of Xij that satisfies

Xijri = tj for all tj then

jltj = Xijni= Eini I xi Eini Ci
I

Therefore, EXij = Ci for all

/0Aproofbeginningwith.Xij = Ci follows a similar argument.

Q. E.D.

by 40)

4.6.2 Inefficiency of Random Allocation

Let us estimate the probability of failing to obtain an optimal
packing if the records are allocated to the blocks at random. The
problem given by (37) and (38) is a linear programming problem of the type

AX=b (41)

where A is an (ND + NT) x (ND.NT) matrix. Because of the multipliers wi,
the rank of A is (ND + NT). The set of solutions X to (41) are contained
in a ND.NT) - dimensional vector space. A feasible solution X to (41)
forms a convex polyhedral cone C spanned by (ND + NT) independent vectors.
Therefore, the number of feasible solutions X to (41) is equal to the number
of ways we can choose (ND + NT) vectors out of (ND.NT), namely,

.(ND.NT)
ND+NT

(42)

Let us now calculate the total nunber of possible allocations of records
to tracks. Assume that all blocks are placed one after the other forming
a big block MB divided in NT parts, by NT - 1 division lines. By equation
(40) the length of MB is

LMB = X bj = Yn. Ci (43)

and X Ci = K, the total nunber of records.

The packing is optimal if no record intercepts any division line. We can
see that the total number of ways K records can be allocated to MB is K!
Therefore, the probability of obtaining an optimal random packing is:

(ND.NTP*

= ND+NT
)

K!

For a s all example with K = 75, ND = 11, NT = 5, we have

P* 55! 1.26)1075

(44)

39! 16! 75! 2.09)1013 (2.03)10 2.4)10109

It is clear that P* is indeed very small.

4.6.3 Computational Tool

Subroutine BLOCKING (MD, LSD, ND, KM, NT) has been developed to solve
the allocation problem. The inputs are:

MD = A (ND x 2) matrix, such that MED (i,l) is the record le gth, and
MD (i,2) the number of records with the same length

NUL = Block capacity

ND = Number of different record lengths

KM = A large nunberw500

NT = etc.

The elements of matrix ND are Ordered (beginning with the smallest), and
all the records are assigned a number .(beginning with the largest).
The output consists of an enumeration of records allocated to each block.

4 7 Estimation of Overflow Areas for the Pointers File

Let Pi be the sUbset of pointers pj mapping into an access record_
ai. A subset Pi may be considered as a.logical record because all pjcPi
are contiguous in the pointers file in a physical sense. To simplify
notation, let ri = Pi. The set of address records fril has a distribu-
tion G(i), which we assume remains constant over time. When new master
records are added to the master file, two things can happen to the
pointers file: a) a new record ri is added, or b) a new pointer pj is
added to an existing record, ri. The first case does not uresent
difficulties and the new ri is located at the end of the pointers file.
It implies the addition of a new access record.

4.7.1 Former Scheme

In the second case the following procedure has been suggested:

Given ri = ipj;j = 1,...,k1 and ph + 1

a. Move ph from its original location and write it together
with pk + 1 on an overflow area

Write the new address of pk on its original location

Change the count field of the access record ai to indicate
the addition of ph + 1.

Two difficulties are evident. First, if new pointers are added to a
record, the total storage used is (n + 1) times the pointer's length.
Second, the retrieval time for a record with additions increases by
at least a rotational time (when the new pointers are located on a
cylinder overflow area) or by an access motion time plus rotational time
(when the new pointers are written in an independent overflow area).

4.7.2 NeW Scheme

If, instead of using cylinder overflow areas, we,define track
overflow areas when a new pointer is added to any of the records in the
track, it can be written contiguous to the proper record with the other
records being moved one place toward the end of the track. In this
form, the retrieval time of the record is not increased, and no additional
link is used. There still remains the problem of estimating the size of
track overflow areas. Also, if at any of the tracks of a given cylinder,
the overflow area is exceeded, a cylinder overflow area becomes necessary.

It should be noticed that the first sche e mentiOned above is similar
to that used for the index file. We allocate some overfloW tracks to
each 'cylinder, and if one or more are exceeded, an independent overflow

area is used. In the second case, the cylinder overflow area plays the
same role as the independent overflow area. The better efficiency, of
the second method is obvious.

4.7.3 Differences

Let us point out the differences between the pointers file and index
file cases. We say that an address re-ord is in "state i" if it consists
of (i) pointers. If such a record receives an addition we say that it
changes to state (i + 1). We shall use consecutive letters to denote
consecutive states.

a. Index records ai have equal length L. Hence, the total,ztorage
required is LEal. Address records in state (i) have length
(i) and the total storage required is Iinit, where nit
represents the nutber of records in state i.

c

An addition to the index file is a record ai which is inserted
in its proper sequential location with respect to the existing
aiTs. Additions to the pointers file are pointers pi which
change the state of the corresponding records in such a way
that the resulting set of [re] have the same distribution. If
the records ri were in order, after a set of additions, the
order is destroyed.

For the index file, the overflow area needed is proportional
to the size of the subset of records already stored in a
cylinder. For the pointers file the overflow area is
proportional to the number of records which are likely to
change of state.

4.7,4 Stochastic Model

4.7.4.1 Assumptions

We assume that the pointers file constitutes a system governed
by a Markov process defined by a finite set of states and a matrix of
transition probabilities. Furthermore, we assume that the process is
stationary and the state of largest value is persistent over a
reasonable period of time.

The matrix of transition probabilities is a stochastic matrix
such that,

qija0 for ji
=0 for icj

= 1

q = 1; n = largest state.

n
t

isLet n
t be the total number of recordi in the file at time t.

distributed as G(i), and 4 = g(i)nt is the number of records in

state i at time t. The total nuMber of pointers in the file is pt =
ljn. The total number of new pointers to be added to the file at the
endjof period t is N. We assume that,

Nt
as

pt Nt =.
P +N

4.7.4.2 Proof of Stationarity

We shall show that for a simplified case in which the probability
of two or more simultaneous additions is zero, the process is indeed
stationary under the assumption of constant distribution i).

t+1 t t
P = P + N

by 1, N- = C P
t

1-C
The average record length L, is constant for all periods t.

L X j-g(j) = Xi 14
Pt

I nt n
t

combining (46) and (48) ve obtain,

t+1 t N t
(n = n

t
n

1
14

t+1
J

(45)

(46)

(48)

(49)

(50)

Recalling that the eNpected value of the number of exceedances is given
by, X = N-M/(n+1), we can say that the expected nuMber of records in
state at period t+1 is equal to the nuMber of records in state j at
period t plus the expected nuMber of new records in state A,

t_tt+1 t njR
nj = n

t
n +1

where Rt =nt kC
1-C

t+1 t
Nt t

Then, n = n 1
j

Pt nt+1

is the number of new records.

Hence, the results dbtained in equation (50) are equal to thobe:given by
(51) for nt large enough, such that

n
t

n
t
+1

(52)

This implies, as may be expected, that the'behaVior of the number of
records in state j as a function of time, follows the order statistics
concepts presented before. If 31.7k is the nuMber of records in state
j= that change to state k at the ghd of period t, then equation (53) is
the probability that a record in state j will change to state k at the
end of period t.

X
gjk

(53)

Using

n.

t
501,

g jk

t 1
(1-c) x.+

1
ok

n.
J

t+1 t . _t
It is obvious that q = q if X

jk
Xjk= (1-C)
t+1

.

-jk -jk'

We shall prove this recursively, beginning with the largest state n.
By the assumption of persistency,

t Xt
gmn

= mn
_....
tnm

and t+1
= n -

n
n
t.

Using equations (50) and (55) we obtain,

t 1 nt
= n

nt
1-C

t+1 Xt
and X- = mn

inn 17-7

(54)

(55)

(56)

t+1 t t
Proceeding backwards, nm = nm + Xlm - X

mn' (57)

(58)by (50), Xlm = nm (C) + X-
mn'

1-C+1
= nt+1 (C) ,+xlm ra

.

1-C mn'
,t

And using equations (50) and (56), P-1=lm 17u

Equation (57) is general enough to conclude that equation (58) holds
for ahy consecutive pair of indices (ij).

4.7.4.3 Distribution of Xij

Let um give _ore attention to equation 5 Replacing C for Its

value, we obtain:

_t+1
X._ =
ij

1 + N

P

)

which is similar to (50) and suggests that the number of transitions
(ij) at time t + 1, is equal to the number of transitions (ij) at
time t plus the expected number of new transitions (ij). Under the
assumption of one step transition for which (58) was obtained, we
find that

This leads to the conclusion that X.4 has an unknown distribution F(ij).
Then, it is possible to predict theltkalue of n3+1 and if F(ij) is
known, also the value of 4I1. However, the first element alone is not
enDugh to estimate the required overflow areas, and if, as is expected
in a real case, the transition probabilities for more than one step are
not equal to zero, it may be impractical to estimate F(ij). In order
to appreciate the complexity of the pointers file behavior, we introduce
a simple example.

FIG. 4o:
REPRESENTATION OF TRANSITION PROBABILITIES

stochastic matrix may be expressed as a graph. The nodes
represent the states of the system and the arrows the possible transitions.
For instance, any element in state 2 has a probability p23 of going to
state 3, and a probability p24 of going to state 4. We notice that this
case is more general than the case used to prove the stationarity of the
transition probabilities. Let us assume that the graph in Fig. 40
represents the pointers file and at tine t, all the records in state 2
and 3 are stored in the same track. After updating at the end of the
period t, the amount of storage used in the track is given by,

t t
' =

29-22n2 q
23

n
2
) + 4

g24n2 g34

We may be tempted to say that.similarly to the index file, the amount of
overflow area used in a track depends only on the numberof.records
already present in the track. If this VAS true, by equation (51) and

assuming that n
t

is large, the amount of storage used in the track would
be,

_2
S =

S
2

=

Then

2n (1 + nNt) +
t

(1 +'N) = 2nt+1
2

pt Pt

2(4224 4. 412111

S given by (59)

n
t

+ q_-n_ + q_
t

-33 3 a3 1 23
n
2

is equal to S
2

only if,

t t t t

4 (424n2 4303 ''435n3

0_

-412n1
nt

'413 1.

(6o)

(61)

Equation (61) introduces a condition on either the distribution G(i),
or the stochastic matrix, or both. Moreover, it is possible to visualize
that condition (61) depends on the specific physical allocation of the
records to the tracks. Therefore, we conclude that in general (61)
is not true, and the expected overflow area is not properly estimated
by equations similar to (6)

4.7.5 Estimation of Overflow Space

The proposed method for estimating the overflow is the following.
Equation (59) can be expressed also as,

S = 2 n_ +
tatat4

2 (a nt + q
1 t

3 1- n2 + -34n3 -24 2 35 3

S
1

= n
t

(2
t

2 + 423 + 2424) + n3 " -4314 + 2c135),

and in general, if at time t a given track contains records in states,
k,...,n.,. The expected storage used at time t + 1 is given by,

s E n (i + j
i=k J=1

i+j
)

62)

(63)

The expression in parentheses may be regarded as a multiplier that can
be estimated using the stOchastic matrix Q. An .easier method to estimate
this multiplier is to use only qj for all possible states, and an average
"transition step" T. Then,

(614)

Once the set of multipliers are evaluated, the records can be allocated
to the pointers file using a modified sUbroutine BLOCKING that accepts_
real multipliers as well as integers

4.8 Multiple Device Systems

4.8.1 General

The operational characteristics of a multiple device system are
determined by a set of factors, among whioh one finds the following:

a. File size, sysicm volume, average record length and average
nunber of master records mapping into an index record.

b. Device capacity, access motion, rotational delay and data
transfer tines.

c. Control unit used.

It is difficult to state in general which of the factors are more impor-
tant than others and how they interact. Any priority relationship will
probably change for different cases. However, under sone assunptions
one may be able to analyze the alternatives and draw sone conclusions.

4.8.2 DASD Control Units

4.8.2.1 Device Combinations

There are three control units for the different devices. The
2314 storage facility has its self-contained control unit which handles
up to eight disk packs or access mechanisms. The 2301 drum uses the
2820 control unit which controls up to four 2301's. The control unit
for the other four devices is the 2841 Storage Control which in theory
can control up to eight access mechanisms in any conbination, but it is
actually subject to certain restrictions. These restrictions may be
stated as follows:

a. If no 2303 is attached, any combination of 2311's 2321's and
2302's, up to eight may be attached.

b. If one 2303 is installed, a madmum of three 2311's may be
attached.

c. If two 2303 (makimui) are attached, no.2311's may be attached.

In cases b and c any coMbination of 2321's and 2302's4 such,that the
total nunber of access mechanisms is eight is perndtted.

4.8.2.2 Device Selection

When considering a multi-device system, it is important to exploit
the opportunities of parallel operation. From the brief description of
the control units presented tibove, it follows that sone devices present
more advantages than others. The 2314 is the best suited for this kind
of operation, especially for medium and large files where the eata is
likely to fill up many or all eight of the di k packs.

The 2301 drum presents the disadvantage that it can be used only

with the 2820 control unit and therefore, if less than four 2301's
are needed, the operational cost will increase. The 2302 disk and
the 2311 disk have sone features similar to the 2314, but cannot
compete with its operationa1 characteristics. Thus, we shall consider
three devices as possible candidates for a multi-device system: the
2314 disk drive, 2303 drum, and 2321 data cell. The latter two would
be attached to the same 2841 control unit. The 2321 data cell is a very
slow device with a huge storage capacity, but considering that a large
percentage of records in a file are seldom used, one may expect that
the overall system performance won't be affected.

Using the same approach as in the previous parts of this report
(one-device system), we shall consider the division of a file in two
or more subfiles, each of them stored in different devices, under the
assumption that only one request is processed at a time. Later we
shall present some ideas on parallel operations.

4.8.3 Cost Comparisons

In order to give an idea of the operational ranges for the three
devices mentioned above, we present a set of cost.curves defined over
a wide range of the ratio "volume of requeots/file size" (NR/N). These
curves are presented in Figs. 41 and 42.

As may be expected, for low values of NR/N, the 2321 data cell
presents lower costs than the 2314. The break-even point for these
two devices was found at NR/N = 0.05. This figure should be interpreted
only as a rough estimate of the true break-even point. On one hand,
it has been assumed that the CPU-time cost is charged for the whole
search time (clock time) and on the other, no parallel operation has been
assumed. The second consideration places the 2314 storage facility in
a less favordble position. The reason for this statement is the following.
The 2321 data cell has a storage capacity which is dbout 13.T times
larger than a 2314 2221; for each 2314 pack, there is an access mechanism
and thus for the sane file size, if possible, one could use more than
one 2314 access mechanism (a.m.) while still having only one 2321 a.m.
Therefore, if parallel operation were to be considered, the break-
even point for the 2321, 2314 would shift to the left.

The 2303 drum presents very high cost all along the range of NR/N
covered by the graphs. The break-even point for the 2303 and the 2321
is shown at NP/N = 2.1. Even for the ratio NR/N = 10, the 2303 drum pre-
sents a higher search cost per request than the 2314 storage facility.
This means that an economic operation of the 2303 drum is only possible
for a range of very high NR/N ratios.

4.8.4 Vertical Division of a File

Vertical segmentation of a file is the division of it into two or
more siibfiles, the first of which contains the set of records most
frequently requested. The idea is similar to that of 71Division of an
Index File Based on Usage Frequency" presented in Sec. 4.4 above,

FIG. 41:
TOTAL SEARCH COST PER REQUEST AS A FUNCTION OF THE RATIO

SYSTEM VOLUME-FILE SIZE, FOR DIFFERENT DEVICES

;-1

H .
0

cs]

°arc O7

4-3

. 0 5

c.)

. 0
-0

E-1

. 02

. 01

FIG. 42;
TOTAL SEARCH COST PER REQUEST AS A FUNCTION OF THE RATIO SYSTEM

VOLUME-FILE SIZE, FOR DIFFERENT DEVICES

2303 Drum

2321 Data Ce11

. 007

.005

.00l+

.5'

requests/Oile_iii'ze(# req./# recdrds
.

but unlike that case, two devices are considered here and the different
storage costs and other factors have to be taken into account.

4.8.4.1 Usage Frequency Distributions

When considering vertical segmentation of. a file, we are assuming
implicitly the existence and knowledge of a usage frequency distribution
Such a distribution can be expressed in different forms.

Let us assume that during a time period of a month, one has observed
the distribution of requests over the set of records. A histogram or.
frequency distribution may be constructed by taking as class marks the
nuMber of requests and as frequencies the number of records which have
received the same nutber of requests during the month.

FIG. 43:
USAGE FREQUENCY DISTRIBUTIONS

1 2 3

No. of Reques

loo

60

40

20

1 2 3 14 5

No of Requests

Fig. 43 shows such a histogram and one can observe that both
frequency and cumulative distributions haVe the same range, and the
moments of the distribution can be calculated from them.

The original data can be classified as follow .

Xi 1 2 3 4 5

fi 40 30 15 10 5

60 45 40 25
Efi = T = 100 EXifi = n = 210

(No. of requests)
(No of records)
(Total no of requests)

If we re-order fi from smallest to largest and define Z(i) =
Z(1-1) and Y(i) = Xifijn+Y(i-1) where Xifi has also been re-ordered aa
the corresponding fi, we obtain the following table.

Zi 0.05 0 15 0.30 0.60 1.0
Yi .119 .309 .525 .810 1.0
Zi = cumulative percent of records
Yi = cumulative percent of requests

The graph of Zi vs. Yi constitutes a "normalized usage frequency
distribution" and is presented in Fig. 14i.

Hereafter it is assumed that any frequency distribution is
expressed as a normalized cumulative distribution.

FIG. 44:
NORKALIZED USAGE FREQUENCY DISIIRIBUTION

.2 .4 .6 .8
Per-Cent Records

1. 0

14.. 8. 4. 2 Cost Equations

The total search cost per request for a two-device file is given
by equation (65), and for an undivided file by equation (66) where

Si = storage used by the ith subfile
Ci = cost of storage for the ith subfile
Ti = search time per request for the ith sUbfile
CT = cost of time
ST =

Tu =
storage used. by the undivided file
search timetreqUest for the undivided file
= percentage _of total requests satisfied in

records stored in the first subfile.
fraction Xj

CD = (S
1
C
1 2

S
2
)/NR+CT(T

1
+(l-F(X

CU = STC
1
/NRA-TuCT

4.8.4.3 Equivalent Problems

As in the case of one-device systems, one can say that it is
convenient to divide the file if the search cost per request for the
divided file is less than the cost for the undivided file using the
faster device, i.e.

CU>CD.

(65)

(66)

(67)

Noticing that CU is a constant for a given set of data, this is
equivalent to finding the optimum first subfile size X1 for which CD is
a minimum.

Using the first approach, the problem is to find the , -timum Xl, such
that the positive difference (CU - CD) is a maximum.

Replacing equations (65) and (66) in (67), vre wint to obtain,

Max ,.(3.C1)

[

k T
1
1-11

2
-TU) - 1

T2CT r (ST
NR

(68)

4.8.4.4 Required Cumulative Distributions

The function F(C
1
) in equation (68) is given by a cumulative usage

frequency distribution, live data for which at the present time are
unknown. However, calling the expression within the first square
brackets G(X1, NR), it is possible to generate "required cumulative
distributions" (ROD) for different values of system request volume Nil.
The meaning of these RCD's is the same as for the one-device cac- i.e.,
a file is divided only if F(X1) - G(X1, NR),-0, and the optimal -1.sion

point is given by

Max (x1) G(X
1. NR

Figures 46, 47, and 48 present sets of RCD's for different large
index file sizes: 250K, 500K, and 750K records, respectively. The
curves at Figures 47 and 48 have points at which their slopes are
negative. Those points correspond to first-file sizes at which the
first master index level is created.

1. 0

FIG. 45:
CUMULATIVE - REQUIRED DISTRIBUTION FOR A

TWO-DEVICE FILE (23114-2321)

N = 250000
(1) NR = 25000
(2) = 50000
(3) = 75000
(4) 100000
(5) 125000
(6) 150000

0

f:4

I. 0

FIG. 146;

CUMULATIW = REQUIRED DISTRIBUTION FOR A
TWO-DEVICE FILE (2314-2321

N = 500000
(1) : NR = 0. IN
(2) = . 2N

(3) . 3N

04) . 4N
(5) . 5N

F74

f:4

0

FIG. 47:
CUMULATIVE - REQUIRED DISTRIBUTION FOR A

TWO-DEVICE FILE (231)4-2321)

FIG. 48:
ARTIFICIAL CUMULATIVE USAGE

FREQUENCY DISTRIBUTIONS

4.8.4.5 Program DUODEV

Under the assumption that a usage frequency distribution is known, the
calculation of optimal division points for two-device files is carried out
by program DUODEV. The logic steps followed by this program are:

a. Input the file size and characteristics for the two devices under
consideration.

b. Compute a set of ten "cumulative required distributions" (G(X))
and store them in a matrix.

c. Input usage frequency distribution.

d. Compare each of the ten RCD's with the usage frequency distribution,
and find the point X16 (if it exists) at which F(X') - G(X1) is
maximum.

e. Calculate requireu storage, search time and total sestrch cost per
request for the divided file corresponding to each Xl.

To test these ideas in advance of the availability of " eal-world" data,
we used exponential functions to develop "artificial" u age frequency
distributions which are plotted in Fig. 48.

4.8.4.6 Some Results

Using program DUODEV, we calculated optimal division points for
three different file sizes and a range of ratios NR/N from 0.01 to 0.9.
The results are presented in tables 10 and 11, from which one can notice
the following:

a. In general, the cost values corresponding to usage frequency
#1 are lower than those for usage frequency #2. It is obvions
that the larger the parameter of the negative exponential
function in this case .8), the more advantageous the divisim.

For file sizes N=500K and N=750K the division points do not
coincide for every NR/N value, and the costs are not equal. On
the contrary, we found that the results of the division oI a
file based on key-lengths were 0/1145r a function of the ratio
NR/N. Figures 45 and 46 may sxPlain this behavior; the set of
cumulative required distribution curves changes as file size N
does.

It is interesting to compare the res-,11ts obtained for the divl fon of a
file based on key-lengths, and the two-device files based on usage
frequency (Table 9). We can Bee that for usage frequency distribution
#1 only the last two costs based on "key-length division are lower than
those based on "usage frequency" division. However, we can not reasonably
extend this result to the real case because usage frequency distributions
for the system under consideration are presently unknown. We can say, however,
that only a very "fast decaying" usage' frequency distribution could yield
better results than the alvision based bn keY lengths. Tilers mAY exist, of
course, other considerations which, when taken into account, 'would end up
Vying a more favorable score to the two-dr;!vice system.

Table 9: Comparison of Search Costs for Two Systeus

N N ONE DEVICE TWO DEVICES

I II III IV

0.02 0.0926 0.0649 0.0569 0 0599

0.05 .0399 .0292 .0288 .0309

0.10 .0223 .0172 .0181 .0191

0.20 .01355 .01126 .0118 .0125

0.50 .0083 .00759 .00782 .0082

1.00 .00653 .00631 .00634 .0065

Notes: I = undivided file

II = one division based on key-lengths

III = two devices for u.f.d. (1)

IV = two devices for u.f.d. (2)

4.8.4.7 An Extension

The following scheme constitutes a natural extension of the ve,
segmentation of a file based on usage frequency distribution and
employing two devices.

ical

The ,first division is based on usage frequency distribution as
before.

b. The first subfile is stored in the faster device, and is
searched first, as before.

c. The remaining set of records which do not belong to the first
subfile is divided into two slibfiles according to key-length
distribution.

d. Subfiles 2 and 3 are then stored in a slower device.

Program MIXPART has been devised to handle this case. This is a variation
of program DUODEV with the additional use of subroutine OPTWO.

MIXPART calculates the necessary "cumulative r quired distributions"
(ORD), compares them with the given usage frequency distribution (U.F.D.)
and finds the first division point. Then, assuming that any subset of
records has the same key-length distribution, the program uses subroutine
OPTWO to find the second division point. Storage requirements for the
three subfiles are calculated, and search time per request Is computed
based on the assumption that for thp:41Cond and third subfiles the volume
of requests is proportionate t bfile size .

t)

Table 10: Total Search Cost as a Function of System
Volume for a Two-Device File**

Usage Frequency Distribution 1

NIVN N = 250K N = 500K N = 750K

DP COST - DP* COST DP* COST

.01 .10 .09757 .10 .09821 .10 .09832

.02 .15 .05636 .15 .05688 .15 .05706.

.03 .20 .04126 .20 .04172 .20 .04196

.04 .25 .03325 .25 .03370 .25 .03399

.05 .25 .02832 .25 .02877 .35 .02869

.06 .30 .02485- .30 .02531 .35 .02501

.07 .30 .02236 .30 .02282 .35 .02237

.08 .35 .02047 .30 .02095 .35 .02039

.09 .35 .01893 .35 .01901 .35 .01885

.1 .61769 .35 .01810 .35 .01762

.2 .45 .01194 .50 .01175 .45 .011711

.3 .45 .00989 .55 70096 .50 .00960

.4 .50 .00883 .55 ..00850 .55 .00849

.5 .50 .00818 .55 .00782 .55 .00782,

.6 .55 .00774 .60 .00735 .60 .007356

.7 .80 .00701 .60 .00702

.8 .65 .0o676 .65- .1106744

.9 .65 .00855 .70 .00657

Division point as percentage of records in the first file.
** First sUbfile in 2314 DASF, second subfile in 2321 data cell.

Table 11: Total Search Cost per Request as a Function
of System Volume for a Two-Device File**

Usage Frequency Distribution 2

NR/N N = 250K N=500K N = 750K,

DP* COST DP* COST DP* COST

.01 .05 .09964 .05 .10055 .05 .10061

.02 .15 705931 .15 .05995 .15 .06012

.03 .25 .o4390 .25 .04445 .25 .04474

.04 .30 .03563 .30 .03617 .35 .03599

.05 .30 .03040 .30 .03094 .35 .03046

.06 .35 .02677 .35 .02732 .35 .02676

.07 .35 .02413 .50 .02460 :40 . .02406.

.08 .4o .02208 .50 .02229 .40 .02197

.09 .40 .02046 .50 ..02050 .45 .02034

.10 40 .01915 .50 .01906 .45 .01897

.20 .55 '01288 .55 .01250 .55 .01254

.30 .60 .01062 .60 .0101.8 .65 ..01020

.40 .65 .00096 .70 .0096

.50 .70 .008194 .70 008194

.60 .75 .007674 .75 00767

.70 .75 .007294 .75 .00729:

.80 .80 . .00700 .80 .00700

.90 .80 .00677 .80 -.00677

Division poin s as a percentage of records in first file.
First subfile in 2314 DASF, second subfile in 2321 data cell.

Some results obtained using UFD #1 are tabulated.in Table 12.
An overall dbservation of this table Shows'that the resUlts obtained
are better than those presented in Table 10 and even better than the
results for the two divisions based on key-length distribution.

4.8.5 Conclusions

It seems reasonable to state that the order of efficiency for
the different structures considered in this study is the following:

1. Two-device system: first division based on usage frequency
distribution; second division based on key-length distribution.
Devices used: 2314 and 2321 (Program: MIXPART).

2. One-device system using the 2314 storage facility: division
based on key-length distribution (Program: DYNPART).

Two-device system: Only one division, to be based on usage
frequency distribution. Devices: 2314 and 2321 (Program:
DUODEV).

However, before generalizing these conclusions, the following remarks
should be kept in mind:

-- No parallel operation has been considered.

No real usage frequency distrfbution is known.

As was stated before, these two factors might change the outcome.

It should be noted that both programs DUODEV and MIXPART may be
used for a one-device system as well. This is achieved by using as
input the same set of data.

If the three basic structures are compared on the basis of search cost
per request alone (see Table 13), the two-device, triple segmentation approach
(MIXPART) yields the lowest cost for any given value of request volume/file
size (NR/N), followed by the two-device, dual segment alternative (DUODEV),
and finally the single-device dual segment technique using key length (DYNPART).
As request volume rises for a given file size, the nmatiple-device, triple
segmentation approach begins to have payoffs if looked at in terms of gross
search cost per month. For example, at NR/N=0.10 the total search cost per
month for 50,000 requests, for the structures would be:

MIXPART: Two-device, 3 segments $805.50 (.01611 x 50k)

DUODEV: Two-device, 2 segments 905.00 (.0181 x 50k)

DYNPART: One-device, 2 segments 957.50 (.01915 x 50k)

This analysis does not include.file naintenance costs and other imple-
mentation considerations, nor does it consider other device combinations which
more likely might be available in a practical sense e.g. multiple 2314's).

However, we have aimed at laying out a provisional framework to guide
designers of large inverted file systems when they know or can estimate the
following:

a. size of the master file;

b. number of index records linked to master file and average index
record length;

c. average number of master records mapping into an index record;

d. key length distributions of the indexes;

e. system search request volume;

usage frequency distributions of indexes and ma.,ter records;

and either decisi ns must be made on efficient use of storage within one
available storage device, or opportunities for operational minimization by
use of available multiple types of devices must be exploited to maximum
advantage. And a decision must be reached either tJ use a single available
storage device to best cost advantage, or to try to exploit multiple types
of devices to reach the lowest possible cost.

Table 12A: Total Search Cost per ReqUest for a Two,Device File,
Based on Usage Frequency Distribution and Key-Length Distribution-

NR/N N = 250K N = 500K N ' 750K

.01

DP COST DP COST DP COST

.15 .08699 .15 .08717 .15 08734

.02 .25 .05175 .25 .05205 .20 .06229

.03 .30 .03821 .25 .03854 .25 .03884

.04 .30 .03085 .30 .03120 .35 .03089

.05 .35 .02626 .35 .02667 .35 .02611

.06 .35 .02307 .35 .02348 .35 .02293

.07 .40 .02076 .35 .02120 .40 ..02056

.08 .40 .01892 .50 .01927 .4o .01872

.09 .4o .01749 .50 . .01764 .40 .01729

.10 .40 .01635 .50 .01634 .45 .01612

.20 .50 .01075 .50 .01047 .50 .01047

.30 .55 .00875 .55 .00841 ..55 .00841

.40 .55 ._00771 .60 .00733 .60 .907329

.50 .6o .0o7o6 .65 .00666. _65 .006662

.60 .65 .00620 .65 .006198

.70 ._65 .00507 -65 -.005866

.80 7*() .00560. ..70 :.005606

.90 .75 .00535 .70 .00540

*First division based on U.F.D. No. 1, and is stored in. 2314
DASF. The second subfile As divided according to keY lengths.
Both second and third sUbfiles are stored in 2321 data cell.

Table 12B: Comparison of Total Search Cost per Request,
for Three Basic Structures

NR/N DUODEV
2314 & 2321 DASF
_Tt.to SUbfiles

MIXPART
2314 & 2321 DASF
Three Subfiles

DYNPART
2314 DASF

Two Subfile

.01 .09821 .8541 .14276

.02 .05688 .05053 .07408

.03 .04172 .03728

04 .03370 .03018

.05 .02877 .02567 .03288

06 .02531 .02260

07 .02282 .02034

.08 .02095 .01858

.09 .01901 .01720

.10 .01810 .01611 .01915

.20 .01175 .01045 .01222

.30 .0096 -.00824

.40 .0085 .00713

.50 .00782 .00647 .00799

.60 .00735 .00602

.70 .00701 .00570 .00715

.80 .00676 .00541

.90 00655 .00521 -066

DUODEV: Division is based on UFD #1 only.

leXPART: First Divisfon based on UFD #1; Second Division based on
Key Length Distribution (KLD).

DYNPART: Division based on KLD only.

N = 500K, for all three programs.

FIRST-STAGE MODEL OF THE ECONOMIC EFELCTS OF INCORPORATING
A DATA COMPRESSION SYSTEM INTO AN ON-LINE DIRECT-ACCESS

STORAGE AND RETRIEVAL SYSTEM
By Kelley L. Cartwright

5.1 Introduction: Compression and Coding

5.1.1 The Advantages and Constraints of Compression

The amount of bibliographic information available in machine-readable
form is constantly growing, and can be expected to increase rapidly in
the coming years. Eventually, much of this information will be stored
in random-access devices, where it will be available in very brief times
through on-line consoles. A very significant element of the costs of
such systems will be the cost of storing the data in random-access
devices. For example, the cost of storing a bibliographic citation on
disc is presently about 60 cents per year, so that to store a million of
these would cost approximately $600,000 per year. Even a 10% reduction
in such costs would represent an appreciable saving. If anything, a
reduction of this amount seems conservative, since natural language is
highly redundant; thus we would expect bibliographic records to be
redundant also. Redundancy means that the number of symbols used to
express a given amount of information is usually far greater than the
number that would actually be required if the symbols were used with
maximum efficiency. Shannon* has developed an expression that allows
us to estimate the amount of redundancy in messages. This is the famous
entropy formula:

Hb = -X Pi gb
i=1

0 P hence log P.<0' hence the minus sign in the above expression, toi b
give Hb a positive value.)

Hb is the entropy of a message; it is the mean number of individual
symbols (out of a total of b available symbols) that would be required
to express the sane amount of information as does a message in a given
set of r symbols, if all redundancy were removed from the message, and

the
message. (The sum of the Pi, of course, is 1.)

The two alphabets may be the sane (i.e. b = r); thus we could
calculate H26 in letters for messages in the English alphabet (if we
ignored blanks, punctuation, capitalization, all of which could, of course,
be included in the alphabet).

For any message and any given value of b, Hb decreases as r increases.

Shannon, Claude E. and Warren Weaver, The Mathematical_Theory of
Communication, Uebana: University of Illinois Press, 1949.

For example, in natural languages Hb decreases as the "alphabet" is
changed from one that consists only of single letters to one that
includes digrams, trigrams, etc., then words, sentences, and larger
bodies of text. This is because the creation of a message in natural
language is a Markov process; the occurrence of a given character or
string of dharacters influences the probability of occurrence of
succeeding characters. (Example: "Probabilit" may be followed by "y"
or "ies", but not, in English, by any other letter or letters. Thua
the normal letter frequencies of English do not hold at this point,
when the preceding letters are taken into consideration.)*

Before proceeding, it should be noted that we accept as a constraint
the assumption that the amount of information in bibliographic citations
is properly determined by the catalogers and indexers who create them.
Therefore, whatever the information content of a record, this content
must not be altered by the storage and retrieval system. The system may,
however, alter the internal physical format of the information in apy
way desired. More succinctly, the system must be able to output exactly
what was input. What happens in between is the system's business.

5.1.2 Coding Procedure

The process of converting a string of symbols in an alphabet of r
symbols to their equivalent in an alphabet of b symbols is called coding.
We are specifically concerned here with converting the natural-language
texts of bibliographic records into their equivalents in the binary
alphabet of 2 symbols. Shannon's formula tells us that redundancy would
be eliminated if each symbol were translated into H bits. Unfortunately,
H turns out to be an integer in only very special cases; what is usually
done, therefore, is to translate eadh original symbol into some integral
number of bits. In the coding schemes of most computers, this is a
fixed nunber which is the same for all symbols. Greater efficiency can
be achieved by assigning a variable number of bits to the original
symbols, assigning the smallest number to the most frequently occurring
symbol. The mean number of bits per symbol into which the symbols in
the original array are translated can then be calculated as follows:

L. is the length
symbol i.

P. is as Eil3ove.

= X L.

1=1

bits of the b nary representation of

*As a result, the entropy of English text has been estimated in the range
of one to two bits per character. No comparable estimation of the entropy
of bibliographic records has been made. For example, see Shannon, Claude
E. "Prediction and Entropy of Printed English," Bell System Technical
Journal, (Jan. 1951), 50-64; and Miller, George A- and Elisabeth A.
Friedman, "The Reconstruction of Mutilated English Texts," Information
and Control (1 1957), 38-55.

,Jnfortunately, it is possible only in special cases e.g. when P1 = P2 =
P3 = Pr, and r = 2k, and k is an integer) to have.L' = H; hence
we have an illustration of the-problem stated by Warren Weaver.*

The statistical nature of messages is entirely determined
by the Character of the source. But the statistical character
of the signal as actually transmitted by a channel...is
determined both by what one attempts to feed into the channel
and by the capabilities of the channel to handle different
signal situations. For example, in telegraphy, there have
to be spaces between dots and dots, between dots and dashes,
and between dashes and dashes, or the dots and dashes would not
be recognizable. [Italics Weaver's]

Huffman** has devised a method of variable-length binary encoding
which, given all the requirements such a code must meet, results in
the minimum possible value of L' for a given series of symbols with
known probabilities. It has been decided to use this procedure in the
present project.

5.2 A Model of the Effect Upon System Costs of Incorporating a Huffman
Coding Scheme into a Storage and Retrieval System

5.2.1 General Effect Upon the System

The following is a very general schemmtic drawing of the processes
involved in mechanized information storage and retrieval:

1
Creation of
citations
(indexing,
cataloging)

2
Conversion
to machine-
readable
form

3 4
Machine I

Storage
--7---7106of citations

--

processing

I

5 6 _4-- 7
CtuerY Retrieval
analysis and

11

of citations---0.processing

Machine
processing
citations

OutpUt

Steps :1, 2, 5, and 6 will be the same regardless of whether compression
is used. (It is assumed that in Step 5 indexes are conerlated-by the
computer--and that this process yields . the-disc addresses of a number
of records. Then, in Step 6, these are found and transferred to the CPU.)

* Shannon and Weaver, 2k. cit., R. 108.
**Huffman, D.A., "AMethod for the,construction of Alanimum Fedundancy
Codes," ProC. IRE, (40, Sept. 1952) , 1098-1101 Also in Willis Jackson,
Ed;, Communication Theory, New York: Academic-Press, 1953.,

bd
 *

ci
+

\.n
0

IH
M

1
an

P
 H

. 0
 C

a
fa

ca
 0

c+
 0

 H
 0

0
ci

-
cl

-
0

u1
""

t1
c-

i 4
 p

 M
I

0'
0

(D
 0

 H
.

H
. 0

 fD
 N

 IA
fD

c+
 0

0
II

c+
 (

D
11

 0
 0

' 0
II

0
F

i
F

i
D

4
C

D
D

.3
1

c+
4

0
c+

0
fD

fa
r\

)
C

D

IH
 0

 H
. c

f-
fp

(D
 e

n
ef

 c
+

 0
 (

+
 D

I W
 1

1
4

c+
 5

 H
 4

c+
0

co

tl
H

 C
a

IH
)

%
IN

li
cc

1:
13

f

n
1'

10

H
.I4

 j

0
u

i
01-

6
H

(1
a1

H
H

40
5

O
le

n&
 0

0
ro

p
H

02
1

2
8

11
1H

4
4

4
0

c+
c+

11
 0

 0
c+

C
D

C
F

I

0
1.

0"
 M

 C
D

0
H

. 0
0

H
i W

 C
D

P
i c

+
H

 H
 0

 l'
i

It
01

1
0

0
H

. w
ce

4
0

H
. 1

!'
c+

0
0

LA
an

c+
 c

+
 0

0.
C

D

II
C

D
C

D
H

 H
H

. p
e+

 0
 p

 0
c*

.
go

c+
0

to
C

A
c+

P
'.4

Ilt
C

IA
F

1
H

 ii
 c

1-
0

0
cf

-
0

0
0

0
tt

It
to

00
+

1(
D

0
rk

)
cl

"
0

Ir
D

cl
-

C
D

H
.

0
.4

ID
 0

4n
po

pr
o

il,
II

2
g

(T
; P

t
C

i-
It

I-
13

C
D

 0
ft

er
F

4
0

o'
 4

 0
 p

p
_

40
0O

cI
-0

1
11

O
 c

p
4

a>
0

°
m

l 0
2

g
r,

ag
 m

,,,
,g

',I
.

ili
P`

i
2

II;
;r

ip
'

0
O

r
ok

9j
cf

g
c+

 4
0P

00
P

O
c+

c+
00

4
P

4*
to

 m
4

P
.,

.0
I

4
0'

 0
-'

H
. 0

1-
1

P
0'

 K
it

n
H

 0
'

0
0

4
P

 0
' 1

-'
0

0
et

-
A

1
(D

P
T

A
0C

D
C

D
O

P
C

)
"4

H
e

E
+

3
00

01
0'

01
C

oH
.0

1
05

P
11

.
0"

 1
1

4
0

0
tt

4
0

0
5

4
P

 H
P

 H
 H

. c
+

 0
 1

-id
c+

P
0

-
0

E
d

tn
co

an
c+

.1
,

H
e

E
n

4
0

fa
0

P
J

tl
IC

I 4
0

11
-1

00
'P

g0
"p

c+
04

00
0

cF
p'

.4
H

 C
D

p
H

c+
H

.P
0

ni
l

C
D

E
l

(1
)

0
(D

I
I'D

al
 H

 c
+

 C
D

 W
i'D

11
C

D
0

W
0

C
o

0
iii

H
11

-1

P
fD

0
H

C
D

04
H

.
09

0
P

M
on

 p
0

0
co

c+
 t+

 5
g

0
10

 to
 0

to
ci

-
ci

o
0

It
0

C
D

G
A

 H
I I

t H
e

P
 0

 0
H

.
0

ID
O

U
I

H
0

c-
I-

0
D

10
00

0
0

C
D

11
-J

.

Ic
il'

 9
4

L0
a1

E
4

lU
rc

H
Q

I-

N
;''

.
IP

LI
H

. c
r)

4
''''

°
IP

.
H

N
ro

H
.

ci
-

I
0

C
A

0
H

. 0
C

D
0

C
A

 g
ci

-
0

0
0'

ti
O

D
ID

0W
0

IH
A

D
H

-0
c+

0
t+

 0
1

C
D

C
ID

ci
-

0
D

I 0
0

O
 0

 It
iii

it
cl

-
C

A
N

ci
-

c+
w

i
to

.
cI

-
(D

I-
ii

c+
 C

D
c+

 t0H
e

O
 C

D
 0

P
*

0
0

(D
C

A
C

11
F

1
F

1
11

 0
 P

 il
,..

f.
p

H
.

C
)

0
O

A
11

it
.,.

cl
-

Q
0.

'
11

n
0

to

0-
, 0

 0
in

11
0

c+
 0

 0
a'

H
4

14
1.

 g
"

fl
V

'1
°

''
2,

`,
-D

 R
 8

P
0

0'
 4

 0
4

4
er

 1
1

1-
13

e"
 C

D
0

_1
0.

.9

cf
-

gi
 4

1-
1

IH
.

0
ci

-
0

F
-1

. H
. 0

1
H

i
c+

0
0

0.
il

p
0P

0
np

 p
c+

0
0

0
H

. 0
 0

 0
ro

0
c+

 0
 0

 d
-

0
ti

C
D

H
.

c+
 H

i.
C

A
C

D
0

0
0

0
to

H
.

H
 H

. 1
1

-
O

 0
 C

D
p

to
0

on
.

c+
 c

+
 0

 0
0

on
1-

1)
0

0"
 0

fD
1

P
M

C
D

P
O

P
P

:II
I

H
.

,
P

J
M

 C
a

H
10

0.
0P

0I
n

00
H

.
0

D
i4

ID
0

0
0

H
.

P
C

D
H

.

0
c+

al
 0

C
D

IF
C

I
H

b
IV

p
1

m
15

 0
 P

4
p

1-
b

0
c+

fa
 0

 n
 1

c1
c+

 0
co

l
H

e
H

 1
1-

cl
0

W
 c

i-
cu

 fa
 (

xi
C

D
 0

 W
P

C
f

H
.

0
0

H
o

H
w

l
itl

 0
F

t
fa

 i'
d

ft,
 4

4
4

0
4

it
0

0
0

H
.

oi
l'i

e
E

n
II

It
5

H
 4

 e
+

ce
I'D

 O
 a

l
c1

"

5*
0

ic
-'1

.1
2

co
+

 0
0

4
4

on
4

0
c+

ro
 o

7.
 H

I-
i.

0
Id

ca
'

0
ro

ro
H

.
0

H
. .

 0
 c

+
 /1

III
10

1

0,
i i

 i
0

i .
C

 A
 fD

H
 H

0
W

 C
A

 ..
H

.
pi

 tr
i

11
0

0
0

1-
b

o
11

0
W

P
H

i H
.

0
E

a
ca

 0
 0

ai
H

. P
 0

 H
 P

i
C

A
 H

0
4

H
.

,.
cr

a
o

0
0

ct
-

u
C

D
 0

W
0

0
F

c:
1

(D
 0

to
 o

14
4.

ci
i-

11
1

0
C

IC
Ifl

O

c+
le

,
c+

r,
m

r:
cy

. H
0

,,,
R

c+
0

1-
8

0
p

p
4

0
0

0
6-

 0
H

. O
r

0'
g-

 r
i r

D
.+

1'
'4

 4
1

I
rli

H
.

Z
0

di
-

w
 0

1
H

 C
a

0
C

D
ca

H
.

P
 4 : C

D

C
O

IP
4

c+
0

H
. 0

1
0

C
D

cf
"

11
P

LI
 H

 P
D

cl
-

0
H

 C
D

 0
H

.
p

11
c+

 P
a

C
a

0
ca

11
 fl

H
 0

 H
.

0,
N

 0
 H

. t
o

0
10

 ta
tA

 0
 c

i-
p

0
0"

0
0

gi
61

1.
 r

i
e+

 4
 H

0
11

 0
P

 0
i

H
 c

+
 0

. c
y

P
L1

IF
D

0
0

c4
 I.

4
0

0
0

E
n

I-
6

p
.

0
el

-
15

ul
to

 in
 c

+
H

 0
 c

o
0

5
0

H
 0

1
0

P
&

0
0

0
0

0
0

C
 D

O
 P

H
 1

-b
lit

 0
H

H
. 4

cr
'

01
11

:1
0

14
P

0E
01

4
04

1.
0,

o0
04

1
5

0
H

.
0

'''
01

1
0°

rp
11

1:
e 0

C
D

iii
P

 ft
i

H
 C

D
 0

 P
cl

-
4

P
 a

l
In

ro
r'

0
P

el
-

on
cf

-
e+

 0
H

 c
t I

N
H

j--
,,P

0c
1-

pr
e0

.0
po

lm
0

00
4H

4
w

 e
l-

P
 0

"
0

0
0

0
0

10
,4

0
P

0
g

0
0

4
on

 0
0

C
D

il
(D

0
iH

b
il

1.
1

ci
-

re
, C

D
 0

C
D

c+
 E

A
pi

 p
.,

oi
 0

 4
F

. 0
 0

 H
fa

P
 0

'
H

. 0
' u

m
 0

D
I

0
0

0
C

D
cl

-
0

0
iil

rD
 0

0
i'D

II'
D0
O

D
11

0
E

n
O

 (
D

g
pi

4
0

P
on

 p
 m

c+
 0

' d
i`

0
C

D
01

It
0

H
. 0

0
H

5
et

i d
i

ci
-

la
i c

ir
c+

 H
. 0

0
0

C
D

 P
0

N
J

it
C

D
 V

 It
H

I
C

D
1.

43
 H

 4
 0

id
 0

p
. 0

 '
H

.
I -

 1
 3

0
C

 D
 0

I
fD

0
41

 H
 e

 l
0

P
0

0
0

0
P

eF
it

11
 4

0
C

F
C

D
c+

ro
0'

 4
 H

.
0

n
ID

p
0

01
H

.
c+

 0
H

.
.1

 0
C

D
 0

0
0

Ili
a

P
11

10
1t

1P
li,

C
D

O
W

H
.

c1
-0

1
0

0'
0

LI
 C

P
I

cF
 1

1
oo

H
.0

.
01

01
00

00
tD

I'd
H

. 1
1

M
0

H
.

0
04

10
"1

1-
'

10
11

0"
C

D
ID

IP
,P

c+
P

L4
O

C
A

0
(+

0
cl

-
it

0
0

c+
H

' I
'D

!"
:1

;"
m

;4
'

° -
l'h

l.
6

5.
 Ir

.
H

.
E

g
2

21
'c

je
ll

c+
0'

1
c+

1X
4c

+
,6

D
[1

 fj
4

til
F

a
11

-4
 H

.
I'D

0
p-

n0
el

f.
04

O
po

np
00

1
a,

 H
. 0

pl
00

,

O
lD

H
5

4
0

m
 0

 d
r

an
 0

0
p

0
P

04
 c

+
 4

I
0

4
g

H
 0

 ti
l

C
D

o

5
H

dr
4

al
m

a)

r.
0

.,+
.0

so
)

0 ill

4
0

o
4

ro
H

 0
ic

+
D

I
c+

 H
.

p
el

-
O

ta
 0

t4
C

A
co

II
C

D
C

O

H
. +

1
0

0
0

cl
i.

(0
0

C
D

 0
n

0
5

H
)

0
or

ca
 1

d
4

4
w

o
4

0
pi

, c
n

4
co

l
w

b
fD

 H
0

LA
a+

H
. c

+
(D

t0
lit

..
C

D
H

 C
D

0
0

1H
P

.
C

A

F
id

H
cl

-
C

D
01

01
 H

 C
1)

,
0

Li
i

ci
ti(

D

P
.'

0
n

0
(D

,..
--

-.
. r

D
0

P
 M

I
cl

-
C

ri
H

.
E

a
0!

 0
0

0
H

b
11

C
F

1

0
H

.
c+

 0
 H

i
4

1H
.

0
P

0'
 C

D
IC

A
0

C
A

P
i P

ro
P

H
. 0

 I-
J

to
40

co
la

0
I

o
e+

0
0

p
0

o
"V

 0
 0

P
. t

o
c+

 0
 i-

b
(+

11

ti
c+

0
0

fa
 o

 c
i-

q
.

0
P

 0
'

O
0

a
H

4
P

J
pH

...
. I

 0
1

IH
.

H
11

01
0

11
,

a+
C

D
(D

0
0

p
0

H
4

c+
O

 P
i

0
0

'H
li

0
P

g
0

la
 0

rD
0

4
ci

-
0

ci
-

C
D

ci
-

0 C
D

IA
O

 0
1

0
0

IL
+

0
0

H
 P

n
c+

 4
f'D T

A
H

.
0

0
p,

to
 0

11
c+

 0
I'D

0
0

H
. 0

E
D

H
I

0
M

D
I

H
co

0
c+

O
4

fD
I-

i.
H

b
0

H
. k

id
c+

 0
0

F
1

ii
01

a
--

el
-

0
...

r,
1

0 +
0

P
c

el
-

/1
I D

 H
H

.
C

O
0

C
D

0
0

4
E

A
ci

-
0

E
A

ci
-

O
 0

...
01

 0
ki

ci
-

11
e'

 /1
0.

(D
(1

)

/1
0

0
40

P
P

 C
A

0
D

I
0

01
0

01
(D

I
0

4
0

It
P

ai
l

1-
4

1-
1

fj)
4

c+
H

to

systems that are identical in everY way except that one incorporates
a_data compression_system and the other does not. Let us call the
difference in the cost of these two systemS D; and, since it is
expected that the difference will favor the system incorporating
compression, we will need a model in the form

D = C

This equation introduces a convention on variable naming which is
used in the balance of this paper. Cost components will be nameO in
terms of the steps in the general schematic diagram (Section 5.2.1) in
which they are incurred. Thus the variable $3 will represent the costs
incurred in Step 3; specifically, it will represent those costs in Step 3
which vary depending upon whether the system incorporates data compression.
When we discuss Step 3, this step will be broken down into steps (a)
through (g), and it will be asserted that only steps (e), (f), and (g)
will vary depending upon whether the system incorporates data compression;
hence, we will discuss the variables S3e, S3f, and S3e-. S3f, it will
be shown, has thre components; hence,we will discuss the variables
S3f1, S3f2, aad S3f3. It should be clear, then, that any variable
beginning with "S" r,epresents the sum of all longer variables beginning
with the same charac%ers. Thus, for example, $3 = S3e + 63f + S3g,
and S3f = S3f1 + S3f S3f3.

Further, any varible name that begins with S refers to the cost
of a step without regari to whether the system incorporates data
compression. If we are iscussing one of the variables as it applies
in a system with data compression, then I will substitute "C" for
in the variable name; if we are discussing an "S" variable as it applies
in a system without data compression, then 1 will substitute "U" for "S".

\Thus "S4a" refers to the co anlt, in either system, of trsferring a
record to disc; "C4a" refers to this cost in a system with compression;
"U4a" refers to this cost in a system without compression.

\

On this basis, it can be seen that the above equation "D = U -
is a simplification of the following:

D = (U3 + u4 + u6 + ura (03 + c4 + c6 + ct)

I regret imposing variable names like "S3f2" upon the reader, but
this procedure saves much complex subscripting and has the advantage
that the name gives a clue to where it is discussed. And these w:.11
be dropped in the final composite model. There are other variable names
not relating to specific steps which are listed in Fig. 49, Index of
Variable Names.

5.2.4 Analysis of Variables

5.2.4.1 Step 3: Machine Processing Prior to Storage

The input to this step will be a citation in machine-readable form;
the output will be a citation resAy for storage on disc. The proCessing

steps include principally (a) machine editing, (b) conversion of the
input format to the prescribed storage format, (c) creation of new
index entries and updating of existing ones, (d) assignment of disc
addresses to each new record (e) determination of whether the record
is to be compressed, (f) compression of those records that are to
receive it, and (g) movement of the recoI to an output area from
which it can be transferred to disc.

The steps in this process which will vary depending upon whether
compression is incorporated are (e), (f), and (g). TheSe will now
be. considered in turn.

Step 3(0. The process of. examining a record to determine whether
it is to be compressed should be a straightforward one, involving
logical operations upon such characteristics of each citation as its
date of pliblication, language, and subject area. When statistics on
these characteristics are available, and the algorithm has been
developed, a mean cost per record for this step can be determined.

Cost component of Step 3(e):

S3e: mean cost per period of determining for every citation
newly entered in the sy3tem whether it is to be compressed.

Methods of determinin values-

U3e 0

C3e dR

Step 3(f). An Encoding Dictionary will be used to convert natural
language records Into Huffman-encoded records. It is assumed that this
dictionary will itself be stored on 04 c and brought into main memory
whenever encoding is to take place. It is further assumed that this
transfer process involves moving the dictionary to an Input area and
then to a work area. (Note that it may be desirable to store the
dictionary on tape, depending upon how often encoding takes place.)

The average cost of applying the encoding algorithm to a record is the
sum of the number of encodable single dharacters times the cost of
applying the algorithm to a single character, plus the number of encod-
able digrams times the cost of encoding a digram, etc. An "encodable"
symbol is one for which a Huffman code has been provided. Mean number
of encodable symbols of lengths 1, 2, n par record will have been
estimated carefully at the time that the encoding dictionary was estab-
lished, and the amount of tine required to encode a symbol of length i
can be predicted after the encoding algorithm has been flowcharted.

FIG. 49:
INDEX OF VARIABLE NAMES

Variables representing th ". cost of applying algorithms

a

b

d

The cost of checking a record retrieved from disc to
determine whether it is in compressed or uncompressed form.

Mean cost per record to be compressed, of applying the
encoding algorithm.

Mean cost per application of applying the decompression
algorithm to a compressed record.

Mean cost per record of analyzing a record to determine
whether it should be compressed.

Variables representing equipment costs

1.

t

u

Cost of maintaining a byte on disc for one period. This
is an equipment cost only; It is simply the rental (or
depreciated purchase) cost of the disc and its interface
equipment per period, divided by the nnmber of bytes that
can actually be stored on the disc. (The latter number is
usually somewhat less than the disc's capacity.)

Cost of transferring a byte from disc to an Input area of
core storage, or from an output area of core storage to disc.

Cost of positioning the read/write mechanism of a disc
drive at a specified address on the disc.

Cost of moving one byte from one position in storage to
another. .

Variables representing system characteristics

A

B

Mean length (in bytes) of uncompressed records in storage
formmt.

Mean percentage reduction of record size achieved through
data compression.

FIG. 49 (Cont.)

Variables representing system Characteristics cont.)

Number of times per period that the encoding dictionary
is transferred from disc. If input is done on line, then
it may be desirdble to encode each record as it is input,
if it is to be encoded. In this case, we will have
E = PR.

Length (in bytes) of the encoding dictionary.

Number of times per period that the decoding dictionary
is brought into main storage. If this is done each time a
record is to be decompressed, then G = Y; or if it is done,
for example, n times per working day, then G = n times the
numller of working days per period.

Lengtn bytes) of the decoding dictionary.

The percentage of R which receive compression (0 < P < 1
P = I only if no records are stored in uncompressed form

The nuMber of citations added to the file per period.

X The number of uncompressed records retrieved from disc per
period.

The number of compressed records retrieved from disc per
period.

-162-

Cost components of Stey 3(f):

63f1: Cost per period of storing the encoding dictionary.
S3f2: Cost per period of bringing the encoding dictionary into

core storage each time it is needed.
53f3: Cost per period of applying the encoding algorithm.
S324: Cost per period of moving new records from a work area in

storage to an output area.

Methods of determining values:

U3f1 0
U3f2 0
U3f3 0

U3f4 RAu

C3f1 qF
C3f2 E(t + rF + uF)
C3f3 bPR
C3f4 u(RA[1 P] + RAP[1 - B])

5.2.4.2 Step 4: StoragP on Disc

Two cost components involved here are (a) the transfer of records
from the output area of the CPU to the disc, and (0) their storage on
the disc during the stated period. It is assumed that the new records
will enter the system at a constant rate during the period; hence,
the average time that records will be resident on the disc during their
first period of inclusion in the system will be one-half period.

Cost components to Ste 4:

64a: Cost per period of transferring newly entered records from
core storage to disc.

54b: Cost in the nth period of maintaining on disc the records
entered during the 1st through nth periods.

Methods of determining values:

ulta RAr

U4b
n-1

R.A + .5R
n
A

i=1 1

C4a RAr(1 - P) + RArP(1 B)

C4B
n-1

q [I [R_A(1 - P) PR.A(1 - B)] + .5[R A(1 - P) + PR
nA(1 - B)]i1i 1 n=

Note that the above assumes the values of P and B remain constant over
tine. Actually, the expression for C4b will need to be modified because
some records originally stored in uncompressed form will later be stored
in compressed form. Also, t is not a variable in U4a and C4a because

R will not vary depending upon whether compres ion is used. Hence tR
will be the cost in both systems per period of finding the specified
addresses of records ready to be stored on disc.

5. 4.3. Amortization of Costs of Steps 3 and 4 (a)

The costs of S3e, 33f, 53g, and S4a are all one-time costs whose
benefits will be realized over time; it seem- xeasonable, therefore, to
amortize them over a number of periods. These four cost components may
be collectively characterized as "initial processing costs." Let us
assume that it has been decided to amortize these costs over m periods,
and that we are in the nth period. Then we will assign to each period,
in place of the costs S3e, S3f, S3g, and S4a, a cost equal to the follow-
ing sum:

(S3_. S4a.

Note: j =n-m+ 1

(Actually, S3f1 will be a conStant value from period to period, so
that we could more properly write a more complex expression to take
account of this fact.)

5.2.4.4 Step 6: Retrieval of Citations

The input to this step is the disc address of a record. At the
end of it we will have in the input area of main memory a record in
exactly the form in which it w&,-i stored on disc. The steps involved
are (a) go to the specified address on the disc; and (b) transfer the
record found at that address to main memory. The only cost component
that will vary depending upon whether data compression is employed is
Step 6(b).

Cost component:

S6b: Cost per period of transferring retrieved records from disc
to core storage.

Method of calculatin- values:

U6b XAr

C6b XAr YA(1 B)

5.2.4.5 Step 7: Processing of Citations for Output

The input to this step is a record (compressed or uncompressed)
located in the input area; the output must be a record ready to be
displayed on an output device. The major steps are the following:
(a) the record is moved from the input area to a work area; (b) the
record is checked to determine whether it is compressed; (c) if it is
compressed, it is de ompressed; (d) the record is converted from storage

179

format to output format; (e) the record is moved to the output area.
Steps (a), (b), and (c) are the steps that will vary depending upon
whether the system incorporates data compression. Step 7(b) will be
a very straightforward operation, probably involving no more than
checking the first bit in the record. Step 7(c) will take place in two
steps--(1) a decoding dictionary must be brought in from disc; and
(2) the record must be decoded. Thus we are confronted here, as in Step
3(f), with a continuing dictionary storage cost. We are also confronted,
as in several other areas, with the cost of applying an algorithm to a
record--a cost that can be estimated carefully only on the basis of detail-
ed flowcharts that have not yet been developed.

Cost components:

S7a: Cost per period to move retrieved records from the input
area to the work area.

S7b: Cost per period of checking records retrieved from disc to
determine whether they are compressed or uncompressed.

S7c1: Cost per period of storing the decoding dictionary on disc.

S7c2: Cost per period of transferring the decoding dictionary from
disc to core storage.

S7c3: Cost per period of decoding retrieved compressed records.

Methods of determining values:

U7a uAX
117101 0
U7c1 0
U7'72 0
U7 3 0

C7a u(AX KY[l B])
C7b a(X + Y)
C7c1 qH
C7c2 G(t H UH)
C7c3 cY

5.2.5 The Detailed Model

Fig. 50 presents the combined values of U and C, and their combina
tion, via the general model "D = U - C," into a formula for D. The
formula has the form one would expect - an expression representing the
savings in record storage and transmisison costs minus a number of costs
representing the stcmage of the encoding and decoding dictionaries and
the compression and decompression routines.

FIG. 50:
COMBINED MODEL

GEWERAI MODEL: D = U - C

C = A[q(1 - PB)(N + .5Rn) (u + r)(Y - YB)]

+ (1/m)lind + bP + A(u + r)(1 - PB)]

+ E[t + F(11 + r)] + G[t + H(u + r)]

+ q(F +H) + cY + (X + y)

u = A[(i/m)(u + r)M + q(N + 5Rn) +

n-_-1

1 R. M = 1 R.
1=n-m+11 1=1 1

m = the n-urnber of periods over which initial processing
costs are amortized.

D = A[PBq(N + .5Rn) + Cx - Y - YB)(u + r)]

- (1/m)M[d + bP + _(u + r)(1 - PB)]

- E[t + F(u + r)] -G[t + H(u + r)]

- q(F + H) - cY - a(X + Y)

The most important use of this model is as an aid in determining
whether to incorporate a data compression system into a storage and
retrieval system. In particular, one wants to estimate he effect of
the values of P and B upon the value of C, and consequently upon the
value of D. The reason that it is assumed that P < 1 is that there would
appear to be some number n such that if the number of times that a given
record is retrieved during a given period is greater than or equal to n,
then the total cost of compressing the record, storing it in compressed
form, and decompressing it each time it is retrieved will exceed the cost
of simply storing it in uncompressed form. An exact model of this
relationship needs to be worked out.

The latter model will allow us to predict the value of P, with the
characteristics of the records known. This is clearly a crucial variable
in the expression shown for D in Fig. 50. More crucial is the value of
B, which itself partially determines the value of P as well as affecting
the values of b, c, F, R, X, and Y. Hence the most important next step
is to determine how these vary in relation to B. which must be done on
the basis of data not yet available.

5.3 Huffman Codes

A method of constructing compact binary codes was developed by D.A.
Huffman.* The method is the following. A source alphabet of n symbols
has associated with it a set of n symbol prdbabilities (V-

l'

[o
n
1 P. = 1]

i=1 1

First rearrange and renumber these probabilities so that
Form the sum of the two smallest probabilities (Vn + Vn-l). We now Tave
a set of (n-1) probabilities. Rearrange and renumber the set so that

rl 2 V2 k a --a 1111-1- Again add the two smallest probabilities
Wn-2 Vn_lJ to form a set of (n-2) probabilities. Continue this process,
each time forming an ordered set of probabilities that is one probability
shorter than the preceding set. Let us call these sets of probabilities
An, An_1, An_2, etc. When the set A2 is formed (101 reducing A), the
process stops. Fig. 51 illustrates the process.

*Huffman, D.A., 211.. cit.

A6

FIG. 51:
REDUCTION OF A SET OF PROBABILITIES

A5 A A3 A
2

.40 .40 .40 .40 .60

712
.30 .30 .30 .30- .40

V3 .15 .15 30.151-

114
.07 .087.p. .10

V5 .05- .07-

.03

Note that in any set Aj (except An), one of the probabilities is the
sum of two of the probabilities of A1+1.

The first step in constructing a code on the basis of this reduction
process is to assign the codes 0 and 1 to V' and V2 in A2. Now let V
be the probability in A2 which is the sum of 112 and V3 of A3. The coäes
for V2 and V3 of A3 are formed by putting a one and a zero on the end
of the code for VA. Thus if the code for Vj is "1", the codes for V2
and V3 of 13 are "10" and "11".

This process is now repeated to form codes for A4, A5,...,An. In
each case the code associated with the probability Vj of AI which is the
sum of the prObabilities Vi and Vi-1 of Ai+1 is converted io the codes
for these two probabilities by putting a '0" and a "1" on the end of the
code associated with Vi and Ai. This process is illustrated in Fig. 52.

FIG. 52:
CREATION OF A COMPACT CODE

A Code A
-3

Code A
4

dCoe A Code A
-6

Code

.60 *o

.40 1
.40 1
.30 oo
.30 *01

.40 1

.30 oo

.15 010

.15 *011

.40 a

.30 oo

.15 010

.08 *0110 .

.07 0111

.4o 1

.30 00.

,15 010
-.07 0111
.05 01100 .

.03 01101.

Based on Fig. 51.
Codes marked with an asterisk
be decomposed (by having a "0"
new codes.

are,those which, at the next stage, will
"1" added to them) to produce two

The code shown in the rikhthost column of Fig. 52 satisfies all of
the criteria we haVe established for an optimal binary code. Its mean
symbol length is the following:

= P.L.
1

i=1

= .44-(2x.3)+(3x.15)+(4x.07)+(5x.05)+t5x.03)

= 2.13 bits per symbol

This code satisfies all the criteria we have established. It is
not the only code which will do so, owever. For example, the following
are acceptable alternatives to the above code:

0 1 0

10 01 11

110 001 100

1110 0001 1010

11110 00001 10110

11111 00000 10111

These codes are equivalent and any might be determined by the
Huffman method; their leuths satisfy the criterion of compactness. We
may therefore use a somewhat simplified version (Fig. 53) of the
procedures shown in Fig. 52. Now when we retrace our steps through the
reduction process we do not actually synthesize codes, but calculate
their lengths. From Fig. 53 we see that a compact variable-length
code for a 6-character alphabet having these symbol probabilities will
have a 1-bit code for the most frequent character, a 2-bit code for the
second most frequent, etc.

FIG. 53: EFFECT OF CHARACTER FREQUENCY ON NUMBER OF BITS IN COMPACT
VARIABLE-LENGTH CODE FOR 6-CHARACTER ALPHABET

A
2

L.1 3
1 L.
] 1

A
6

L.
1

*.60 1 .4o 1 .4o 1 .4o 1 .4o 1

.4o 1 .30 2 .30 2 .30 2 .30 2

.30 2 .15 3 .15 3 .15 3

.15 3 .08 4 .07 4

.07 4 .05 5

.03 5

This example may tempt the reader to suppose that given n
probabilities, with yi a V2 ...> 1ln, the corresponding code lengths
will be 1, 2,...,n-1, n-1 bits. This is not the case. Nor is it true
that the Huffman code for the most frequent source symbol will have
length one. The characteristics of a Huffman code we can predict, given
Vi 2 V2 ,...2 VII, are that Li s L2 S... L1_2 s Ln_l

Another method of computing symbol lengths for Huffman codes
derives from the rule that the length of the code associated with each
probability in the origthal set will be one greater than the number of
times that it or another probability which is a sum that includes it wam
combined to form a sum. Thus, in Fig. 51, 154 (.15) was first used to
form V3 (.30) in A , this .30 was used to form (.60) in A2. Hence
L4 should be 1+2=3 this is indeed the length shown in Fig. 53.

The latter fact leads to the idea of using a tree structure to
compute code lengths. The probabilities are arranged in descending
order, as before, and the tree structure created by repeatedly joining
together the two least probabilities that have not already been joined.
The process is shown in Fig. 54. The lengths of the Huffman codes are
deterndned by tracing a path through the tree from 1.0 to each original
probability. The number of branches one is required to take is the
length of the Huffman code for the probability in question.

FIG. 54:
TREE STRUCTURE FOR COMPUTING HUFFMAN CODE LENGTHS

6. IMPLEMENTATION OF BIBLIOGRAPHIC RECORD COMPRESSION
By Vikas Sdhasrabudhe and Ashok Kulkarni

6.1 Overview

The first step in exploring the general model of the effects of
bibliographic compression is to develop a set of programs for analyzing
the records, and for encoding them into the compressed representation
and for decoding them to restore the original representation when pro-
cessing or display is required. Initial exploratory work was carried
out which led to the development of programs for the CDC 64a) (written
in the assembly language COMPASS). Following the brief results obtained
from the LC MARC test tape, a modified design was established which
was coded in assembly language for the IBM 360 so that it could be in-
corporated in the ILE file organization system, CIMARON.

These programs have parameter controls which allow varying degrees
of compression to be obtained through control of the size and compo-
sition of the encoding "alphabet". However, additional study and
analysis has revealed soTne errors in the design which need to be cor-
rected. These modifications are identified in the report. As a result
of the changes needed, these routines have not been incorporated into
CIMARON. Finally, the results obtained thus far indicate that there is
indeed practical value to be derived from the incorporation of compres-
sion techniques as part of on-line bibliographic systems.

6.2 Record Encoding

The discussion of encoding and decoding presupposes that an "alphabet"
of source symbols, consisting of single characters, digrams, trigrams,
and longer polygrams each will have individual Huffman codes assigned to
them. The encoding program will scan the record from left to right, and
at each successive point in this scanning will encode the longest possib7-!
st-ing with a single Huffman code. It will then proceed to the first
character beyond this string and repeat the process.

For example, suppose that the system is being operated on a machine
with a 6-bit byte, so that 26, or 64, individual characters must be in-
cluded in the source symbol alphabet. Let us call these cl, c2, e5.
Suppose further that the digrams c1c2 and c2c3 have been included in
the alphabet, as has the trigram cic2c3. The digram c1c1 and the quadri-
gram c1c2c3c1 have not been included. Then the message cicic2c3c1c2
would receive 3 Huffman codes - the first for cl alone, the second for
c1c2c3, and the third for c1c2.

Three major problems arise in implementing uch a scheme. The first
is that of devising an encoding algorithm, the second is that of devising
a decoding algorithm, and the third is the determination of the series
of symbols of which the "alphabet" is to be composed. The first two
problems are dealt with in this section, and the third in Section 6.5.

6.3 Table Structure

The encoding algorithm is based upon the use of a dictionary. A
method of dictionary construction and use developed by Lamb et al.* for
use in mechanical translation work has been adapted for the present pur-
pose. This dictionary consists of a "first-letter table," which will
have a number position corresponding to each character in the computer's
particular character set which is also a member of the source alphabet.
These are backed up by "second-letter-tables," "third-letter-tables,"
etc., depending upon the maximum length of a polygram included in the
source alphabet.

6.3.1 First Letter Tables

Each position in this table which eorresponds to a source alphabet
character will contain one of tTdo kinds of entry--either a "termination
entry" or a "continuation entry." The former will be present if no
programs beginning with the character in question have been included in
the source symbol alphabet; otherwise, the continuation entry will be
present. Both forms of entry will begin with a single bit that indicates
their type - e.g., a "0" may indicate a continuation entry and a "1"
a termination entry.

Following the bit which indicates entry type will be a string of
N+1 bits, where N is the nuMber of bits in the longest Huffman code
that must be stored in the first-letter table. A single extra bit (the
"1" in the above sum) will be a demarcating. bit. Its function will be
clear after the complete structure of the termination entry is given
in detail. For that purpose let us let N=19; then each entry in the
first-letter table must be 19 bits + 1 indicater bit + 1 demarcating
bit = 21 bits long. Let us assume that in the computer in question it
is reasonable to make each entry 24 bits long (3 bytes on the IBM 360,
4 on the CDC 640(3). The last three bits will be filled with anything
(let us say O's for illustration). Let us also assume that the demar-
cating bit will be a "1". Finally, let n be the length in bits of an
individual Huffman code. n will range in value from some minimum to
N. Then an entry in the first-lettki7 table will have the following
structure:

Length 1 bit

Contents

Descrip-
tion

in the above

Figure 55

m bits 1 bit

Indicator
bit

00...00 I

Filler Demarcat-
ing bit

n bits 3 bits

...xx] 000 I

FillerHuffMan
code

illustration is a number so chosen that m + n + 2 = N +

presents two specific examples of termination entries for the

*LaMb, Sydney M. and W. H. Jacobsen, Jr., "A High-Speed Large-Capacity
Dictionary System," Mechanical Translation, (6, 1961), 76-107.

illustrations Huffman codes. The second of these illustrates that if
m = N, then m = O.

FIG. 55:
EXAMPLES OF 1hRMINATION ENTRIES FOR ILLUSTRATIVE HUFFMAN CODES

1. Huffman code: 000111000 (n = 9)

Termination entry: 70oommo 000111000000

Filler
Huffman code

L3 FilleDemarcating
bit

r
4Indicator bit

2. Huffman code: 1111000011110000111 (n = 19 =

Termination entry: 1 11110000111100001111000

Huffman code
Demarcating bit

-)andicator bit

Filler

The algorithm to extract the Huffman code from these entries would scan the
termination entry from left to right (after determining that the first bit
is a "1"), and the next "1" encountered would indicate that the balance of
the entry (except the last three bits) is the Huffman code. It would then
be inserted into the coded record.

(The demarcating "1" is not of course, a part of the Huffman code. The
demarcating bit would be unneccessary if the code were so designed that all
Huffman codes entered in the first-letter table actually began with the sable
bit.)

Every character that is the initial character of one or more poly-
grams that are included in the source "alphabet" will have a continuation
entry in the first-letter table. Each such entry will have two parts -
(1) the indicator bit that identifies the entry as of the continuation type,
and (2) the address of the first position of the second-letter table which
contains entries for characters that may be the second character of poly-
grams that are included in the symbol alphabet and 'which begin with the
character corresponding to the position in the first-letter table-in which
the continuation entry was found. Note that if the indicator bit is the
leftmost bit in the entry, and is a zero, and if the rest of the entry is
simply the binary representation of the proper address, then the entry can
be used directly for addressing, without the necessity of manipulating it
in any way.

Note that the length of each entry in the first-letter table will be
determined by the length of the longest Huffman code that must be stored
in it, or by the nuMber of bits required to store the address of the second-
letter table with the highest address - whichever is longer.

6.3.2 Second-Letter Tables

The structure and use of the second-letter tables can best be made
clear with an example. Suppose that a separate Huffman code has been pro-
vided for the digram "de" (and, for the moment, suppose that no longer
polygrams beginning with "de" have been given separate Huffman cedes
Then, when a "d" is encountered in a bibliographic record, the continuation
entry in the first-letter-table position corresponding to "d" would give the
address of the second-letter table corresponding to "a". We would now in-
spect the next character in the bibliographic record and, if it is an 'ie",
we would go to the "e" position in the "d" second-letter table. Here we would
find a termination entry giving us the Huffman code for the digram "de."
(Alternatively, if we had provided Huffman codes for some longer polygramn
beginning with "de," we would find a continuation entry.)

A not insignificant problem is imbedded in the above description. There
it is specified that we must "go to the 'e' position in the 'd' second-
letter table." The problem is how to determdne the address of this "e"
position. One way would be to calculate it on the basis of the numeric va-
lue of "e" in the computer's fixed-length coding scheme. This, however,
could lead to very long second-letter tables, many positions of which would
not be used. Each such table would have to be as long as the highest
numeric value of a character included in that table, times the length of
each position in the table.

Another method that would result in considerably smaller tables would
involve translating the code for each second letter to a value equal to
its position in the second-letter table. That is, when a continuation entry
is found in the first-letter table, the code for the next character in the
record would be converted to a value which, when added to the address found
in the first-letter table, would be the address of the desired position of
the second-letter tables. The values to which the codes were converted
would be such that there would be no empty positions in the table caused by
gaps between the numeric values of the characters.

There will be a second-letter table for each character in the first-
letter table which begins one or more polygrams for which HuffMan codes
have been provided. The suggested method of addressing these tables sug-
gests that they should be of the same length, and that the nth position in
each such table should correspond to the same second character. Thus each
position in a second-letter table will refer to a unique digram--the one
composed of the character whose entry in the first-letter table contained
the base address of the second-letter table in question, plus the character
which corresponds to a specific position in that second-letter table.

Let us assume that the code-conversion method of addressing the second-
letter tables is adopted, that all second-letter tables are of the same
length. Let ci be a character for which a second-letter table has been

provided and let c be one of the characters for which an entry is provided
in each second-leter tab7-1. Then when the string cicj is encountered in
a record, three conditions may apply:

1. A Huffman code has been created for c j 9-c but no Huffman codes1
hav e been assigned to polygrams of length greater than 2 which begin with
cicj.

2. One or more polygrams of length greater than 2, and beginning with
c.cj have been provided with individual Huffman codes; ciej also has been
provided with a Huffman code.

3. cic has not been provided with an individual Huffman code, and no
polygrams of length longer than 2 characters have been provided with indi-
vidus,1 Huffman codes.

The following actions are desired when each of the abave conditions
applies:

1. The Huffman code for cici is entered into the encoded record, and
the character following cj is looked up in the first-letter table.

2. The character ck following cicj must be tested to determine whether
cicjck is a trigram for which a Huffman code has been provided.

3. The Huffman code for ci must be entered into the encoded record,
and cj looked up in the first-letter table.

To deal with these three conditions, then, three kinds of entries are
provided:

1. Termination entry. Identical to a first-letter-table termination
entry, except that (because there are 3 types of entries) the indicator is
2 bits long. The Huffman code is that for ciej.

2. Continuation entry. Identical to a first-letter-table termiaation
entry, with the above exception, and with the further exception that the
address supplied is that of a third-letter table.

3. Reti4ce entry.. This will be structured exactly like a termination
entry; but the Huffman code it contains will be the code for the single
character ci.

Oodeconvaraion.Again,lete.and c. be conservative characters
the unencoded record. Suppose that ci has a continuation entry in the
first-letter table. Then the action required is that the computer's code
for c- be converted to another code. If ci is a character for which a
position has been provided in each second-Yetter table, then it will be
converted to a code whose numeric value, x, satisfies the condition
0 < x- < n-1, where n is the number of positions in each second-letter
table. If zd is the-loase address of the second-letter table for character
i then xi 4- yj will be that address in the second-letter table for

character i which corresponds to the second letter 1.

6.3.3 Encoding Example

The discussion up to this point will perhaps be clarified if an
example is given. Suppose that we have source records written in an
alphabet of 8 characters, c1,c2,...,c8. Suppose further that we have
decided to provide Huffman codes for these 8 characters, plus the 14
digrams composed as shown in Figure 56.

Fig. 56: LIST OF DIGRAMS FOR THE ENCODING EXAMPLE

digram components

c
2
c
3
*

d
2

c c *
2 4

C
2
C
5

4
c
2
c
7

5
c3c3

d
-6

C
3
C
4

d
7

C
3
C
5
*

d e4c3

9
d
10

c4c5

c
4

*
21 7

d12
c6C4

13
c6

di4 c6c7

C4C4*

Suppose further that Huffman codes have been provided for certain poly-
grams of length greater than 2 which begin with the components marked
with an asterisk in Figure 56.

Each individual charar!ter is represented in a 5-bit computer code,
with the characters having the following values in that code:

char cter value

e
1

4

c
2

5

c3 6

e4 8

c5 10

°6
14

c7 18

a 20

Because c2, c3, c4, and c6 can begin polygrams for which Huffman codes
have been provided, we will need four second-letter tables; and because
only c3, c4, c6, and c7 are used as the second character of such poly-
grsms, each second-letter table will contain 4 positions. Let us assume
that our first-letter table begins at address 100; since it can end at
position 120 (the maximum numeric value of a source-alphabet character
is 20), the second-letter tables can begin at address 121. Our first
and second letter-tables, then, will be as shown in Figure 57.

"T*" in Figure 57 indicates that a termination entry code would be
found at that address; a* asterisk c means that at a*, a continuation
entry table would be found. (Continuation entries in the first-letter
table are followed by the address they contain); XXX means that the con-
tents are irrelevant; and Rg stands for "Retrace code." Let us discuss
how these tables would be used to encode a record. Let us assume we
have the message c2c3c1c4c3c5 to encode.

Step 1. c2 (= decimal 5) is used as a displacement in the first-
letter table.

Step 2. At 105 in the first-letter table, we find a continuation
entry and the address 121.

FIG. 57: EXAMPLE OF FIRST- AND SECOND- LETTER TABLES

Address

100

104

105

106

107

108

109

110

114

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Contents

T*

C: 121

C: 125

XXX

C: 129

XXX

T*

*6.
C: 133

6 6 6

T*

XXX

T*

T*

Rg

T*

C:

TO

0:

RC

TC

TC

TC

TO

T*

R5

Rg

First-letter table

Second-letter table

corre p nding to c2

2D-letter table

corresponding to c

2D-letter table

corresponding to c4

2D-letter table

corresponding to c6

Step 3. We now convert the code for c3 (the second character of the
message we are encoding) according to the conversion table shown in Figure 58.

FIG. 58: CONVERSION TABLE

Character Old Value New Value

cl 4 4

2 5 5

c3 6 0

ch. 8 1

c5 10 2

c6
14 6

c7 18 3

c8 20 7

Step 4. We now inspect the contents of the storage location whose ad-
dress is: 121 (the number found in Step 2) + 0 (the new value of c3).

Step 5. At location 121 we discover a termination entry. We therefore
extract the Huffman code for c2c3 from this entry, and it becomes Ghe first
element of the encoded string.

Stnp 6. We now use the numeric value (4) of the next character (c1)
in the message as a displacement in the first-letter table.

Step 7. At location 104 we find a termination entry; we therefore ex-
tract the Huffman code for cl from the entry and place it in the encoded
nessage, following the code just placed there.

Step 8. The numeric value (8) of the next ch racter (c4) of the
message is used as a displacement in the first-letter table.

Step 9. At position 108 we find a continuation entry containing the
address 129.

Step 10. The code for c3 (the next character in our message) is
converted (by the above table) to O.

Step 11. At position 129 (= 129 4- 0), we find a termination entry;
we therefore place the Huffman code for c4r in the encoded message.

Step 12. The next (and final) charaAer of the message (c5) is used
as a displacement in the first-letter table; a termination entry is found:
the Huffman code is placed in the encoded message; and the encoding process
is now complete.

1941

It is now interesting to dbserve what would have occurred had we
encountered, for example, the sequence c225. By the assumptions of our
example, no Huffman code is provided for this digram; yet if this sequence
had occurred either as the first two characters in the record or immediately
following a character which had yielded a termination entry, then the follow-
ing would have happened:

1. c2 would have caused the program to go to locti n 105 (in the
first-letter table), where 121 would have been fouud.

2. cs would have been converted to 2, and at location 123 we find
(Figure 57) a "retrace code." Here we would find the Huffman code for c2.
It would be inserted into the encoded record, and cs (its original code)
would then be used as a displacement in the first-letter table.

6.4 Record Decoding

This section will discuss a method of decoding a string of bits,
when the string is a series of variable-length Huffman codes. The
decoding method described herein is based uppn the use of That we may
call the Decoding Dictionary (DD). Its maximum length (in bytes) will
be the following:

D

ri
2 b+ X x.2 + i(

i=2 1 i=1

r
1

= the set of Huffman code lengths

x. = the number of Huffman codes of length ri

= the number of separate Huffman code lengths

= the length (in characters) of the longest polygram for
which a separate Huffman code is provided

n. the number of source symbols of length i

= the number of bytes required to encode the number4D
(the actua not the maximum as calculated vbove_ _ _ _ _ _

The above formula represents a maximum value, rather than an actual
value, for reasons which will be evident after considering the decoding
example given later. In most cases, the actual value ofdEDD will be
considerably less than this maximum.

6.4.1 Decoding Table Structure

The Decoding Dictionary, DD, may be conceived as having two parts.
The first part, which we mny call the Code String Segmentation (CSS)
portion, in effect inspects the string of bits constituting the Huffman-
encoded record, determines when a particular segment of the string con-
stitutes a complete code, and supplies the address at which the source-
alphabet equivalent of this code is to be found. The second part of DD
may be called the Code Translation (CT) section. It supplies the source-
alphabet equivalent of each Huffman code.

The method of constructing DD will be clear after the method of
using it for decompression is described. Suppose that a group of source
symbols consisting of single characters, digrams, and trigrams has been
encoded in a Huffman code. The length of the shortest Huffman code used
will be known. A nuMber, n, or bits equal to this length is extracted
from the left side of the coded stream. These bits are regarded as a
number and added to the address of the first position of DD. At the
address thus determined, a number will be found. If this number is less
than or equal to the length (in bytes) of the CSS portion of DD, this
means that the n leftmost bits of the Huffman-encoded stream do not
constitute a complete Huffman code.. Therefore, the next bit to the

right in the stream is added to the number just found in CBS; this sum
is added to the address of the first position of DD, and the number at
this address (which will be somewhere in CBS) is inspected. As before,
this number is tested to determine whether it is less than or equal to
the length of CBS. If it is, the above process is repeated - the sum
of the number just found, plus the next bit in the encoded stream, plus
the address of the first position in DD, is formed; at this address a
number is found; it is tested for "less than or equal to the length of
CBS"; etc.

At some point (on the average, this will occur after the above process
has been executed a number of times that is equal to the mean number of
bits per source symbol, minus the length ofLthe shortest code) a number
will be found in CBS that is greater than the length of CBS. This will
indicate that the end of the Huffman code has been reached; the number
found in CSS is the address of the first byte of the source-alphabet
equivalent of the Huffman code. However, since this equivalent may be
a digram, trigram, etc., it will be necessary to know how many bytes are
to be taken as the source equivalent. This-is done as follows: Let
n=the displacement of the first position in DO following CBS from the
first position in DD. Then bytes n, n+l, n+2,..., n+q-1 will each house
a single character for which a Huffman code has been provided; the pairs
of bytes beginning at n+q, n+q+2, n+q+4,...,m+q+x, will each house a digram
for which a Huffman code has been provided; the triplets of bytes beginning
at n+q+2, n+q+x+5, etc., will each house a trigram. Let us assume that no
source symbols longer than a trigram have been provided with a separate
Huffman code; and let the last trigram be stored in the three bytes beginning
at n+q+x+y. [n+q+x+y+2 then equals the length of DD.]

Now let r be the number (greater than the length of CSS) found in CSS.
The following table indicates the length of the source symbol in bytes:

Condition Length
-

() r < n+q 1

n+q< r < n+q+x 2

n+q+x< r < n+q+x+y 3

(Again, the values n+q+x and n+q+x+y are defined at their maXimum Value.
That these values will be considerably less than these maxima will be
apparent below.)

6.4.2 Decoding Example

Let us assume a source alphabet of six Symbols, composed of the four
individual characters c1,c2,c3, and clo and the two digrams c1c2 and c2c3.
Let these six symbols have the probabilities shown in Fig-. 59, and have
assigned to them the Huffman codes shown there.

157

-182r

FIG. 59:
PROBABILITIES AND HUFFMAN CODES OF

CHARACTERS c c_c c c and c
l' 2' 3' 1 2' 2 3' 4

source
symbol

character
equivalent zp.ility.

Huffman
code

s_
1

54

5
5

s
6

c
1

c
2

c3

c
1

c_c
2-3

c4

4o

.30

.15

.07

.05

.03

1

00

010

0131

01100

01101

Let us assume that the DD array begins in byte 100. Its contents are
the following:

byte no.

contents

byte no.

contents

100 101 102 103 104 105 106 107 108

02 10 11 04 12 06 08 14 15

109 1 110 111 112 113 114 115 116

13 c
1

c
2 c4 cl c2 c3

(This example illustrates why the formula given above was for the
maximus value ofDDJE Note that the two digrams c1c2and c2c3require
only three bytes (114-116) of storage, since the method described herein
prescribes a first byte and a length. Hence, for example, the trigrams
"the" and "her" could be stored in four bytes; these two and "ern" in
five; these three and "new" in seven; etc.)

Now suppose that the message 000111101101 (the Huffman code for
c2c1c2c1c)4) is to be decoded. Let the 12 bits of this message be B1
through B12, and let D1 through D5 be the five bytes of the decoded message.
The decoding procedure is as follows:

1. B1=0; the sum 100:-0 is formed

2. At byte 100, 02 is found (02<10).

3. The sum 100+02+B2 -=102 is formed,

4. At byte 102, 11 is found (11>10).

5. Since 111<114, byte 111 (c2) becomes Di.

6. B =0; the sum 100+0 is formed.

7. At byte 100, 02 is found (02<10).

The sum 100+02+B
4
=103 is formed.

9. At byte 103, 04 is found (04<10).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

The sum 100+04+B =105 Is formed.

At byte. 105, 06 is found (06<10).

The sum 100+06+B
6
=107 is formed.

At byte 107, 14 is found (14>10).

Since 11=114, the two byte 114 (c1) and 115
D2 and D3.

B=1; the sum 100+1 is formed.

At byte 101, 10 is found (10=10).

Since 110<114, byte 110 (c1) becomes D4.

B=0; the sum 100+0 is formed.

At byte 100, 02 is found (02<10).

The sum 100+02+B
9
=103 is formed.

At byte 103, 04 is found (04<10).

The sum 100+04+B
10

i=105 s formed.

At byte 105, 06 is found (06<10).

The sum 100+06+9 =106 is formed.
11

At byte 106, 08 is found (08<10).

The sum 100+ 084-B12=109 is formed.

At byte 109, 13 is found 13 10).

Since 113<114, byte 113 (c4) becomes D5.

(c2) becomes

The process terminates at this point; the assumption is that the
record began with a length counter, and that the value of this counter
was 12.

Is

6.5 Frequency Analysis and Alphabet Selection

The key element in the compression system is the selection of the

symbol list which will be used in the source alphabet, each element of

which will be replaced by a unique Huffman code. If the probability of

occurrence of the characters of the alphabet (a,b,...z,0,1...9, etc.)

at a given point were independent of the occurrence of the characters

at other points in the record, then the maximum compression could be
obtained through the use of a symbol list containing all and only the

single rharacters. However, since this condition is violated in normal
text (and, we assume, in bibliographic records as well) the inclusion of
multiple character strings in the symbol list can lead to increased

compression. The reason for this is that the frequency of the character
string is not the product of the individual frequencies as would be in-

dicated by independence. Thus, if the frequency of the string is higher
than predicted, the Huffman code will be shorter than the sum of the
individual character codes; and if lower, it will be longer.

But, at the same time, each increase in the size of the alphabet will
increase the encoding and decoding efforts as well. Therefore, it appears
desirable to investigate initially small increases in the size of the
source alphabet by including a few two-character strings in the symbol

list in addition to the basic single character set. In this way it will
not be necessary to maintain a source alphabet of all digrams regardless
of whether they appear. Because it is no longer a prefix code, encoding
is no longer unique. This in turn can lead to an investigation of optimal
encoding strategies. For the present, however, we are restricting our
attention to the linear scan, maximum length character string procedure
described earlier.

Thus, the procedure for selecting the symbol list is as follows.
Initially the symbol list is set to contain only single characters, and
the frequency of this occurrence is computed. From these frequencies
the Huffman codes for the encoding alphabet can be computed.

6.5.1 Extension to Digrams

Next, the digrams (two-character strings) to be included are selected.
To do this the single characters are arranged with descending frequencies:
c1,c2,c3,...,c64 with ci being the most frequent character, c2 being the

second most and so on. The n2 digrams which can be obtained from the pair-
wise permutations are then inrludes in the symbol list. If the characters

are arranged in a matrix form as shwn below, then the digrams to be
selected are in the upper left square. Some of the digrams will have
zero frequency because the count is obtained from a finite sample.

200

Ordered List of Characters

ci

CI 0101 c102

02 c201 0202

c3 c3c1 c3c2

cn CnC1

C3

C1C3

0203

C3C3

on

eic

C64

cic64

o2cn 02064

c3cn C3C64

0 00
en02 CrIC3 onen enc64

064 06401 c64c2 c64c3 c64c64

Before proceeding with the process of generating the Huffman code
for this symbol list, it is necessary to adjust the frequencies of the
first n-characters because some of the occurrences of these characters
will be encoded as digrams.

Consider a digram cici with frequency f. If this digram is to be
included in the symbol list, we have to reduce the frequency of ci and cj
by an amount equal to the expected number of times characters ci and cj
will be encoded as a digram cicj. The string of characters before each
occurrence of cicj is arbitrary. Hence, in the process of encoding, we
will assume that we may end up in position 1 or 2 with equal probability.*

---------- lc.2c
j

ci and cj will be encoded as a digram only if previous encoding ends
in position 1, which has a probability of 1/2. Therefore, the expected
number of times c and c will be encoded as a digram is f/2. Hence, the
frequency of ci and cj is reduced by f12.

Varying n from 0 to 15, different symbol lists were obtained. Huffman
code was generated for these lists and the average number of bits per
character was calculated. The following shows the results of these codes.

Av. No. of Bits Reducticn Remarks

0 4.T96 20.6%

5 4.446 25.9%

10 4 364 27.3%

15 4.343 27.6%

Only characters

*This assumptiOn is inappropriate, especially where small numbers of
'multi-character strings are included in the symbol list.

The results clearly show that increasing n increases the reduction,
but this increase is very small after n=10. On the other hand, as n
increases, the number of symbols in the symbol list increases approxi-
mately in a square proportion. The computer time required for generating
the code also increases more than linearly with the size of the symbol
list. Hence, if only characters and digrams are to be included in the
symbol list, it is not advisable to increase n beyond 15 or 20.

6.5.2 Extension to k-Grams

The following method of obtaining the symbol list and generating
the code may be used to extend this idea to k-grams. It appears that
the digrams may follow the same frequency order as that of the characters,
so far as raw frequencies are concerned. This leads us to assume that
trigrams, 4-grams, etc. will also follow the same order. Hen , the

symbol list can be made to consist of all characters, n2 digraL.e, n3

trigrams,..., nk k-grams, if we want to restrict ourselves to k-grams,
where all these digrams, trigrams, etc. consist of the first n characters
in the ordered list of characters. n will be made to vary from 1 to a
certain feasible number.

This introduces the problem of adjusting the frequencies of single
characters, digrams,..., (k-1) grams, if k-grams are to be included in
the symbol list. Consider a case when only digrams and trigrams are to
be included. One point should be noted at the outset: all the digrams
that go to make all the n3 trigrams are the n2 digrams to be included in
the list.

We start off with single characters being included in the symbol
list. Next the n2 digrams are included, for a certain value of n. In
doing so, the frequencies of the constituent characters are adjusted in
a manner explained above. When trigrams have to be included in the
symbol list, for example a trigram cicek, it is obvious that digrams
cicj and cjck already will be present in the symbol list. Hence the
occurrence of the characters ci, ci and ck is already taken care of while
including the digrams cicj and c;ck. Now it is necessary to adjust the
frequencies of the digrams cici and cick only. This can be done in the
same way as was done for digrams and characters. 'The difference is that
if f is the frequency of c.c.ck then f/3 is subtracted from the frequencies

j '

of c.c and c c
k'

The coefficient 1/3 was obtained with the same con-
1

siderations as were used with digrams. (In the case of trigrams, the re-
quired probability is 1/3.)

In general, the inclusion of k-grams is to be achieved step by step.
First characters are included, then digrams, then trigrams,..., (k-1) grams.
If k-grams having a frequency f are to be included, it is done by reducing
the frequency of the constituent (k-1) grams by fk/k. After completing
these adjustments, Huffman code can be generated for the new symbol list.

6.6 IBM 360 Implementation

The design of the compression system-was then encoded for operation
on the IBM 360140. It was planned that the decoding routine would be
established-initially as a batch routine for debugging purposes and then

02
"

established as an on-line component of the CIMARON system. The remain-
ing routines for analysis and encoding would remain as batch oriented
routines available for file building purposes. As yet, debugging of
these routines has not been completed.

6.6.1 Analysis Frog am

The mialysis program consists of a Fortran mail_ program, ASMFOR,
which calls a series of assembly language routines (CSECTS) to analyse
the input data and establish the Huffman codes. These codes are then
used by two other assembly language routines, ENCODE and DECODE, to
encode and decode the source data and to record the times required and
the compression obtained.

The main program, AMSFOR, calls the following assembly language
CSECTS: PACK; COUNT; ADJUST; HUFTRE; HUFC0D; and IODISK. The function
performed by each of the CSECTS and the parameters passed to them from
the Fortran program are given in Fig. 60. The input parameters to these
routines (as specified in ASMFOR) are:

a. the number of digrams to be included in the source alphabet
set = D1NUM (see Fortran listing);

b. the number of trigrams to be included in the source alphabet
set = TRINUM;

the number of sample records from which the Huffman code is
to be derived. This number = S, is specified as the number
of times the DO loop 4 in ASMFOR is to be .executed.

The output of the six CSECTS are four tables (arrays) called TABLE 1,
TABLES, TAB and TREE, which contain the Huffman code for all source
alphabetS selected, and the binary tree (TREE) that will be used during
decoding. These arrays have been stored on the disk ILR04 and given
the DSNAMES ASHTABE1, ASHTABE2, ASHTABD1 and A3HTABD2, respectively.

The description of all the parameters is listed below:

TABLE1 - starting address of the table which stores all information
concerning 1-grams.

TABLES - starting address of the table which stores all information
concerning digrams and trigrams.

TAB - starting address of the array which contains all the
1-grams, digrams and trigrams included in the source
alphabet.

TREE - starting address of the binary tree that is used for code
generation and decoding.

NARC starting address of a MARC record read in from tape.

TOTAL - number of bytes in MARC record read into core.

MARKER - used as a flag when COUNT is called. Its value is zero
when COUNT is called the first time (first sample record),

and subsequently it is non-zero.

TAB2NM - denotes the number of half words used up by "table 2," viz.,

thp first portion of TABLES which contain information on all
digrams. The latter part of TABLES has trigram information
in it. The division of TABLES into "table 2" and "table 3"
takes place when COUNT is called the first time.

NUMBER - number of "table 3" entries, which is initially set to 6000,

but increases until TABLES is filled up. NUMBER is increased
every time that COUNT is called, since new trigrams are un-
covered in the sample records.

DINUM number of digrams to be included in the source alphabet set.

TR1NUM - number of trigrams to be included in the source alphabet set.

TOTNUM - total number of alphabets (1-grams, digrams and trigrams)
in the source alphabet set.

TRETOP - index of the cell within TREE which constitutes the top of
the binary tree.

6.6.1.1 COUNT (TABLE1, TABLES, NUMBER, NARC, MARKER, TAB2NM, TOTAL)

COUNT is called by the Fortran program, ASMFOR, for each MARC record
that is to be sampled for the frequency of occurrence of 1-grams, digrams
and trigrams. The array NARC contains the record; TOTAL gives the length
of the record (in bytes). TOTAL is returned by the subroutine PACK; ASMFOR
then calls COUNT.

COUNT then samples the first 1000 bytes* of this record and divides
the array TABLES into "table 2" and "table 3." TA3LE1 stores the 1-gram
count, TABLE2 the digram count, and TABLE3 the trigram count. The layout
of the tables is shown in Fig. 61. Note that "TABLE2" and "TABLE3" are
contiguous in core and constitute TABLES.

COUNT samples the first 1000 bytes of the first sample record for
1-grams and fill up TABLES accordingly. The COUNT field in TABLE1 stores
the count for the particular 1-gram (alphabet), while the last byte of
each entry stores the alphabet (using the internal code for alphabets).
The POINTER field points to the head of a group of entries in TABLE2 where
the digram counts for digrams starting with this alphabet would be stored.
Thus, if the first sample (1000 bytes) containing alal occurred ni times,
ala2 occurred n2 times, and if no other digram starting with al was en-
countered, then COUNT would take the following action. In the first scan
of the sample text (scan for 1-grams only) al may have been foutd to occur
n3 times. Then COUNT assumes that at most n3 distinct digrams could have

*This limit was established to limit the total core requirement during the
initial study. For regular operation it would be expanded to be consistent
with the record size limitation of the rest of the CIMARON system. [ed.]

404

FIG. 60: DATA ANALYSIS CSECT FUNCTION AND PARAMETERS

DSNAME

ILR DEVOMOD
(PHASE D)

CSECT

PACK

PARANETER$ DESCRIPTION

NAEC, TOTAL Reads in a MARC record
from tape, extracts its
length from the first few
bytes and passes the length
and starting address as
parameters to COUNT using
NARC and TOTAL.

ILR DEVOMOD
(PHASE 1)

COUNT TABLE1, TABLES,
NUMBERS, NARC,
MARKER, TAB2NM,
TOTAL

Counts the occurrence of
all 1-grams, digrams and
trigrams in each sample re-
cord that is given as an
input to it. It is respon-
sible for partitioning TABLES
into "table 2" and "table 3."
The number of distinct di-
grams and trigrams sampled
is fixed by the size of the
TABLES array.

ILE DEVOMOD
(PHASE 2)

ADJUST TABLE1, TABLES,
NUMBER, TREE, TAB,
TAB2NM, D1NU1,
TRINUM

Takes as input the tables
that have been filled in by
COUNT. It adjusts the
counts for digrams to
account for the fact that
certain trigrams with that di-
gram as prefix or postfix
have been included as separ-
ate entities (source alpha-
bets). Similarly, it adjusts
the 1-gram counts to account
for the digrams (containing
the 1-gram) which have been
included in the alphabet
set. ADJUST is also responsi-
ble for selecting the DINUM
most frequently occurring di-
grams and TRINUM most fre-
quently occurring trigrams in
the records sampled. Ul
other digram and trigram en-
tries in TABLES are cleared
to zero. TAB is filled up
with the 256 1-grams, DINUM
digrams and TRINUM trigrams
selected, along with their
adjusted and weighed count,
on the basis of whicn the
binary tree will be generated.

FIG. DATA ANALYSIS CSECT FUNCTION AND PARAMETERS (cont.)

DSNAME CSECT PARAAETERS DESCRIPTI

ILR.DEVOMOD
(PHASE 3)

HUFTRE TAB, TREE, TRETOP,
TOTNUM, TABLES

Takes as input the TAB arrpy
with the weighted counts
(weighing factor = I for 1-
grams, 2 for digrams, and 3
for trigrams), and construct !
a binary tree (TREE). The
method for constructiLg the
tree is given in the detail-
ed description of this CSECT
The index of the top cell
of the tree is stored in
TRETOP.

ILR.DEVOMOD
(PHASE h)

HUFCOD TABLE1, TABLES,
NUMBER, TAB, TREE,
TAB2NM, TOTNUM

It takes as input the tree
generated by HUFTRE, traces
the path from each leaf of
the tree to the top of the
tree and thus derives the
Huffman code for each source
alphabet. Information con-
cerning the number cf bits
in the code, and the code
itself, are stored in TABLE1
and TABLES for all source
alphabets.

ILR.DEVOMOD
(PHASE Y)

TODISK TABLE1, TABLES,
TAB, TREE

Writes out the four arrays
on disk (ILR04) as data
sets with names ASHTABE1,
ASHTABE2, ASHTABD1 and
ASHTABD2. The first two
will be used by the encod-
ing routine, the latter two
by the decoding routine.
TRETOP is stored in the
first half word of TREE,
and TAB2NM in the first half
word of TABLES. These two
parameters are also re-
quired by ENCODE and DECODE.

FIG. 61: LAYOUT OF COUNT TABLES

TABLE1

2 bytes
1-gram
COUNT

2 bytes
TABLE2
POINTER

2 bytes
1st alphabet

00

--

,

11-(with zero
left fill)

Note: the first entry in TABLES
is not used for storing a digram.
Instead, its first two bytes are
used to store the position (with-
in TABLES) at which TABLE3 starts.
This information is required by
ENCODE.

"TABLE2"

17/

"TABLE3"

207

TABLES

2 b tes 2 b tes 2 b tes
Digram
COUNT

TABLES
POINTER

2nd
alphabet

Trigram
COUNT

POINTER 3rd
alphabet

,

occurred with al as the first alphabet since n3 entries are reserved
in TABLE2 for digrams starting with al. The TABLES count field would
show n3, byte 6 would have al, and the pointer field would point to the
head of a group of n3 words in TABLE2 (see Fig. 61).

In the second scan of the sample text, all the digrams are
counted and their count stored in TABLE2. After the second scan, the
TABLE2 entry pointed to by the al entry would have nl in the "count"
field, and bl in the "alphabet" field. The next entry would have n2
and b2 respectively in the above fields. Since the other entries in
this TABLE2 group are empty, they may be used for storing new digrams
encountered in other sample records.

After scan 2 (scan for digrams) 1000 entries in TABLE2 would have
been reserved (by pointer in TABLE1 entries), though many of them would
be empty since digrams would have repeated in the text. However, if a pa---
ticular character did not occur in the sample of 1000 bytes, the TABLE1
"count" field for it would be zero and no TABLE2 entries would be reserved
for digrams. What happens if this character occurs in another sample
record? To solve this problem, we reserve five entries for each of the
characters that did not occur in the first sample, and the "pointer" field
in TABLE1 set appropriately.

Thus, if N of the 250 1-grams did not occur in the first sample, the
length of TABLE2 would be (1000 5N) entries. This quantity is stored
in TAB2NM, and TABLES assumed to start immediately after this as shown
in the figure.

In the third scan (for trigrams) the procedure for setting up pointers
in TABLE2 is similar to that used for TABLE1, and the number o5-' entries
in TABLE3 reserved for trigrams starting with a1b1 equals the "count" for
a1b1 as shown by the "count" field in its TABLE2 entry. It is apparent
that 1000 TABLE3 entries would have been reserved after scan 3 of COUNT.
Since there may still be space in TABLES to store more trigrams, NUMBER
is used to store the current size of TABLE3. COUNT then returns control
to ASMFOR.

MARKER is set to a non-zero nuMber so that in subsequent calls to COUNT
this subroutine observes that the first sample has been taken and that
TABLES 2 and 3 have been carried out of TABLES.

In any other call to COUNT after the first one, the text is scanned
twice as before, with this difference: if any digram occurs in the text
which was not encountered in earlier samples, there would be no TABLE
entry for it. If albi had not occurred before, then none of the entries
in the group of n3 reserved in TABU2 would contain bi in the "a]phabet"
field. If, however, there is space in this group for more digrams, bi
is entered in the appropriate field, and the count is set to 1. It is
necessary to reserve some space in TABLE3 for trigrams starting with aibi.
NUMBER indicates the current size of TABLE3. Hence, five TABLE3 entries
in the available space in TABLES are reserved and "pointers" set to point
to the start of this group. NUMBER is also increased by 5 (or 30 bytes)
to show the increase in TABLE3 size. If all space in TABLES is used up,
it follows that trigrams with any digram (as-prefix) not encountered in

-

previous samples cannot be counted, and these are discarded. Similarly,
since there can be 2562 digrams and 2563 trigrams (distinct), it is
possible that within any group of entries reserved we may run out of
space. These digrams or trigrams are discarded. With the size of TABLES
equal to 24000 bytes, a maximum of 4000 distinct digrams and trigrams
can be sampled and their counts stored.

6.6.1.2 ADJUST

This program is used to adjust the counts entered in TABLEI and TABLE2
for I-grams and 2-grams. Thus if al occurs 1)1 times in the text, and if,
of the n2 digrams selected, the total number of times that al occurs in
them is qi, then the count for al must be changed to (pl-q1). Similarly,
the digram count must be adjusted to account for the count of those trigrams
which include the digram as part of its body (prefix or postfix).

The first step is to select the n3 trigrams which occur most frequently
in the text. As mentioned earlier, TABLE3 contains the trigram count and
is divided into groups whose pointer is stored in TABLE2 with the digram
that is a common prefix of all the trigrams in this group.

group

ptrs. of
TABLE1

TP3LE2

2 b tes 2 b tes

TABLE3

2 b tes 2 bts 2 bts 2 btes-
count

,

pointer 2nd
alphabet

pointer
------,.._

000

pointer.

000
-------------------Z.

pointer

000

000

000

The program sorts out TABLE3 in a particular manner by sorting each group
within TABLE3 in descending order of "counts" entries in TABLE3. Then it
is necessary to select the highest n3 trigrams. This is done as follows:

256
entrie-

2 bytes

Pci

Pc2

Pc3

Pc256

COMPAR

Each group in TABLE3 may be looked upon as a stack the highest item
being on top of each stack. Thus, if all the tops of all the stacks are
compared, the highest member can be found. Now that stack in which the
selected trigram occurred is popped up so that its second member comes
on top.

Once again the top members of all stacks are compared to select the
second most frequently occurring trigram, etc., until n3 items have been
selected. The 2-byte array CONFAB is used to store the pointers to the
current tops of all the stacks, viz., the items that are to be compared
to select the next trigram. Note that the pointers in TABLE2 still point
at the hiahest items of each group in TABLE3. Thus, starting with the
CONFAB pointers identical to the pointers in TABLE2, the CONFAB pointers
for the selected stack (whose member was the highest) are incremented by
one. When n3 items have been selected, all non-selected entries in TABLE3
are cleared to zero. This is done in the following manner. The items in
group 1 in TABLE3 between the pointer in TABLT12 and Pc1 in the COMPAR
array are to be retained and those between Pc1 and Pc2 (viz., the pointer
to the start of the second group) are to be "zeroed." Similarly, those
between Pc2 and P3 (including Pc2), Pc2 and Pc6, etc. are all cleared to
zero.

The next step is to find out those groups in TABLE:3 which have all
zero entries. The corresponding pointer for that group stored in TABLE2
is also cleared to zero.

Next the counts for some of the digrams in TABLE2 have to be adjusted
to account for the inclusion of the trigrams which have that digram as a
RE2LLE or postfix, e.g., if alas is counted d1 times in the text, then the
Pc2 in TABLE2 points to the group of trigrams starting with alas, so the
counts for all the non-zero trigrams in that group are added, divided by
2,* and subtracted from the count for the digram. This is repeated for
all entries in TA3LE2. Adjustment is necessary only for those digrams
whose pointers are non-zero. Next, it is necessary to look for trigrams

*If alas occurred d1 times, then for each occurrence of it a trigram aialas
and another alasai must have beencounted. Thus Xalas= Y[laiala5+Talasa1]
and, hence, when adjusting for the digram count, the trigram count must be
divided by 2.

of the form a1a1a5 since the count for these must also be subtracted
from the count for a1a5. This task is less methodical to execute since
the TABLES were ordered according to prefixes rather than postfixes.
Postfix adjustment is done in the following manner: TABLE2 is searched
for all entries having its "alphabet" portion equol to al. These are
the entries for all digrams of the form ajal. Next, the "pointers" in
all these entries are used to locate the group of trigrams of the form
ajalak. These entries are searched for entries having "alphabet" equal
to a5. All these "counts" in TABLE3 are added, divided by 2, and sub-
tracted from the count for a1a5. This procedure is repeated for all
TABLE2 entries.

Now the single character (TABLE1) entries are adjusted similarly to
account for all 1-gram counts which are contained in the digram selected.
N2 digrams are selected from TABLE2 in an identical manner to the selection
procedure for N3 trigrams, the remaining entries being cleared to zero.

Now if the count for a7 is p7, and if a7 occurs in digrams of the form
a7ai or aka7 in TABLE2 p7 times, the adjusted count is (p7 - The same
procedure is followed. All digrams having a7 as prefix are giouped to-
gether and their counts are added and subtracted from p7. Next TABLE2
is searched for all entries with "alphabet" equal to a7; their counts are
added, divided by 2, and subtracted from p7.

Next, all the counts in TABLE1, TABLE2 and TABLE3 are multiplied
by their appropriate weighing factor, 1 for 1-grams, 2 for digrams and
3 for trigrams.

Next, it is necessary to identify all 1-, 2- and 3-grams to be in-
cluded in the source alphabets and to sort their counts in increasing
order to facilitate the setting up of a binary tree from which the Huffman
code will be derived. This is done by setting up an array of TAB whose
format is shown below.

256
N2

+ N3
entries

1 byte

TAB

3 bytes 2 bytes

IND alphabets Count

al - - P1

al a2 1

2

IND indicates number of alphabets in the source alphabet, viz., whether it
is a 1-, 2- or 3-gram. The alphabet (k-gram) itself is stored in the next
3 bytes, and its count in the last 2 bytes. This array TAB is filled up
using the non-zero entries in TABLES 1, 2 and 3. Then the TAB array is
sorted in increasing order of counts. The TAB array will be used to con-
struct the three and source a1 habet (1- 2- or tri.rani is identified
in the tree TREE b its location in the sorted TAB Table which later will

be used to enter the Huffman code into TABLES 1, 2, and 3; i.e., if the r
digram ai% occurs in the 21st location in the sorted TAB array.when working
with the binary tree, TREE, a.a

j
will be known by the number 21, called the

TAB index.

Note: to conserve space, the array TREE is used.to store the pointers
used during sorting, instead of having a separate array - COMPAR. TREE
will be used by HUFT.LIE and, hence, it is cleared to zero after exiting
from ADJUST back to ASMFOR.

6.6.1.3 HUFTRE

This program constructs the binary tree using an array TREE (see Fig. 62)
from which the Huffman code for each source alphabet will be derived in the
subsequent program phase.

NT
entries

NT
entries

2 by

FIG. 62: STRUCTURE OF TREE

2 bytes 2 bytes

RAY

2 b
77=Fina to
identify al-
phabet, e.g.,
a_) .a. by 21

Count
Up

Pointer Link

Left
Pointer Unused Up

Pointer
Right
Pointer__--

leaves of
tree

nodes of
tree

The contents of all sections of the TREE entries will be clear from a pic-
ture of the TREE that is set up, the linkages of the TREE being provided
by the UP, LEFT, and RIGHT pointers. The purpose of LINK will be explained
when the mechanism of the program is explained.

. -197 -,

-4 -

Assume that there are eight elements.in the source alphabet (an
element may be 1-, 2- or 3-gram) and their counts may be as follows:

rt:$

AlphabetsABCDEFGH
Count 10 20 32 47 55 72 75 100

Left Pointer Right Pointer

Up
inters

Leaves
of tree

Left Right
Po'nter Poin e

Count Tab Index to
Identify Alphabet

The manner in which HUFTRE sets up this tree will now be described.
Let NT be the total number of source alphabets = ni + n2 + n3 (where ni is
always 256). First, the counts for all NT source alphabets and the appro-
priate TAB index to identify each source alphabet are copied into the top
NT entries of TREE using the TAB array set up in the last phase. All UP,
LEFT and RIGHT pointers are "zeroed." All the NT entries in the TREE are
linked into a long list using the LINK field (see TREE format for top NT
words). Thus the first item on the list has the'least count, and the bottom
item the largest count. The LINK of the last item is cleared to zero.

The next NT words of TREE will be used as nodes in the tree (see
figure). Now we need an indicator to show how many cells in the lower
NT group are available for use when a new node is being formed. Hence a
pointer AVSPAC (available space) is used to point to the first available
cell in TREE, and when a node is formed, the AVSPAC is incremented by
one. Another pointer called TOP is used to point to the top of the first
NT words which are linked as a list. TOP points at the current least count
item. This item may be a single source alphabet or a set of two alphabets,
etc. This is explained below.

The program proceeds as follows: TOP is used to obtain the least
count alphabet (source) and using its link, the second lowest (i.e.,
second in the list) source alphabet. Their counts are added and stored in
the second item. The top word is deleted from the list. Then TOP is made
to point to the second item. Next, one cell is plucked off the lower NT
words, i.e., the top-most available cell, AVSPAC, is plucked off, and its
left and right pointers are made to point at the top two cells as shown
in the figure of the tree, the UP pointer in these two cells being directed
toward the node cell (that was plucked off). AVSPAC is updated to point
to the next available cell. Now the second cell which holds a count equal
to the sum of the least two counts is treated as a single item. This count
may not be the lowest in the list any longer, so the list is searched and
a pair of links in these cells changed and the TOP made to point to a new
cell which has the lowest count. Note that the location of the cells them-
selves in the TREE array are not changed, but only the LINKS adjusted.

Now the same procedure is repeated and a new node created with its
LEFT and RIGHT pointers pointing to two nodes (or leaves) to ics left and
right (left denotes the cell with the lower count). In this way the entire
tree is constructed. AVSPAC finally points to the topmost cell in the TREE.
This tree can now be used to derive the Huffman code for all the source
alphabets in the next phase, HUFCOD.

Note: The index of the top cell of the binary tree (header) is stored
in the first half of the array TREE.

6.6.1.4 HUFCOD

This program phase, as the- ame suggests, is used to derive the Huffman
code for the NT source alphabets 1-, 2- and 3-grams) using the TREE con-
structed in the HUFTRE phase.

The TAB array is ordered in increasing order of count. Assume that
=ththe i alphabet in TAB (say ai) is being encoded into Huffman code. Then

the ith entry in the tree contains information about this alphabet and is
actually a leaf of the tree from which we must climb up the tree to the
header, TRETOP. The item to the left is denoted by a 0, the one at the
right by 1. The UP pointer of the leaf is used to get the node cell. The
LEFT pointer of this is compared with the leaf address, and if they coincide,
the leaf was to the left so the last digit for the code is 0; otherwise it
is 1. Then; using the UP pointer of the node celI,'we go one level higher
up in the tree, and again the same test is carried on, the code is shifted
in a pair of registers using the SRDL instruction, and each time the level
is increased by one, a count is-kept which denotes the number of bits in the

214

Huffman code for that source alphabet. When the header is reached, the
register contains the H-code and another contains the levels in the tree
traversed, i.e., the number of bits in the Huffman code.

When the Huffman code has been generated for a particular source
alphabet, TAB is checked to see whether it is a 1-, 2- or 3-gram. If
it is a 1-gram, say ai, then the ith entry in TABLE1 is fetched and its
format changed to contain the Huffman code and number of bits of the code
for ai.

This new format for TABLES 1, 2 and 3 (from Fig. 61) is given below.

TABLE1 TABLE2

1 1 2 2 1 1 2 2
b t b te tea b tes byte T;lrtet_bytes bytes,
1st Length Huff- Point h2nd Lengt HuffJ Point.-
alpha-of H- man er alpha-of H- man er
et code code bet_ code code

TABLE3

2
b te b te t tes b es
3rd
alpha-of
bet

ILengtA
H-

pode

Huff-
man
code

Point
er

1

There are 256 1-grams, N2 digrams, and N3 trigrams in the source alphabet.
As each Huffmar code is derived, the appropriate TAB entry is looked up
to find out if it is a 1-gram, 2-gram or 3-gram. If it is a 1-gram, say
ai, then the Huffman code A number of bits in it are stored in the ith
entry in TABLE1 as shown. above. If it is a digram, say aiai, then the ith
entry in TABLE1 is inspected for its pointer, which gives tEe start of the
group within TABLE2 holding the digrams starting with ai. The entry, viz.,
H-code, and number of bits are entered at the place where the "alphabet"
entry matches the digram's second alphabet aj.

For trigrams, a search in TABLE2 for a match with the second alpha-
bet is necessary. Using its pointer, TABLE3 is entered, and a search is
made for a match with the third alphabet. The code is then inserted appro-
priately there.

6.6.1.5 IODISK (TABLE1, TABLES, TAB, TREE)

This subroutine is responsible for putting the tables created by
HUFTRE and HUFCOD, viz., TABLE1, TABLES, TAB and TREE, on a disk for
subsequent use by the ENCODE and DECODE routines. The sizes of these
tables and their DSNAMEs are given below.

TABLE NAME SIZE (bytes) DSNAME USED BY

TABLE1 1536 ASMTABE1 ENCODE

TABLES 24000 ASMTABE2 ENCODE

TAB 61300 ASMTABD1 DECODE

TREE 6000 ASMTABD2 DECODE

Note that the size of "TABLE2" within TABLES is stored in the first
half word of TABLES, and the index of the header of the binary tree is
stored in the first'half word of TREE. These two pieces of information are
needed by ENCODE and DECODE.

6.6.2. ENCODE

This pxogram will be used as a batch processing job to take as input
variable lenEth alphanumeric records, encode them using the Huffman code
derived for the-chosen alphabet set (consisting of 1-grams, digrams and
trigrams) and store the coMpressed records in an output file.

ENCODE makes use of TABLE1 and TABLES, which were put on disk as data
sets,with DSNAMEs, ASMTABE1, and ASMTABE2, respectively. BeiOre processing
the inpUt tape (ALPREC), the routine does two GETMAINs and reads in the two
tables from disk. An internal array, OUTBUF, of 2048 words is used to store
the encoded record before tranaferring it to the output tape (HUFREC).

For each record from ALPREC, the following process is executed. The

216

record is read into a core area reserved by a GETMA1N construction. The
first word of the record gives the length of the record in bytes. The
characters in the input stream are inspected from "left to right." Suppose
the first three alphabets are ajakae. First, the jth entry in TABLE is
inspected. If the "pointer" filled is zero, it follows that no digram or
trigram starting with aj is included in the alphabeb set. Hence, only
a- can be encoded. The Huffman code (and number of bits) are extracted
from TABLE1 and inserted in a register. Encoding starts again at ak and
proceeds as before. Suppose the pointer in the jth TABLE1 entry is non-zero.
We then enter TABLE2 (using the pointer) and search the group of entries
to seek a match between al, and the alphabet field. If no match exists,
only aj can be encoded ana ak is the new starting point for encoding.
If the match succeeds, and the number of the Huffman code byte (i.e.,
byte #2) is zero, it follows that though a k-a is not Huffman-coded, aj
trigram beginning with ajak is present. Using the pointer, we enter
TABLE3 and seek a match with ak. If it succeeds, ajakae can be encoded,
and the code is present in TABLE3. Encoding begins beyond this trigram.
If the match fails, only aj can be encoded, and encoding starts next with
ak as the first input character. If byte 2 of TABLE2 was non-zero, ajak
is a legal digram. This fact is noted, and next we seek to find a trigram
beginning with it. If the pointer field is zero, or if a match in TABLE3
for ae fails, then ajak is encoded from the code stored in TABLE2, and ae
becomes the start of the input stream. If the match with ae succeeds,
ajakae is encoded (using Huffman code stored in TABLE3). This process is
repeated until the entire ALPREC text is encoded.

During the encoding process, the Huffman code is stored in a register
and packed 0.6 each alphabet is encoded. When the register is filled,
it is stored in OUTBUF. The first four bytes of OUTBUF are kept empty,
and when the record has been encoded, the number of bytes in the total
record (encoded record), including the first four bytes, is stored in
binary format in the first four bytes as shown below.

1 bytes 2O48

1
:W7 r77/7//

ncoded text Huffman,/,

//////////// 2////f/_
code)

This array in then put on the output tape MUFREC. The next alphanaming
record is read in and the same process repeated until every tape is encoded
and stored in a compressed form on MUFREC. The encoding process is summarized
in the flow chart below. The input stream is: ajakaeam ... etc.

6.6.3 DECODE

This program will be called by a larger program and eventually will be
called with two parameters. Register 0 will contain the length of the
Huffman-coded record to be decoded, register 1, the starting address of
the record in core. After DECODE is executed, it will return two parama-
meters via the same registers, register 0 containing the length of the
decoded record (in bytes), register 1, the starting address of the area

Is
point NO

eld of t
en y in LEI

FIG. 63: ENCODING PROCESS

t encoding
at aj

NO

Encode a- fro
TABLE1 infor-
mation. Star
encoding at a

yte #2
of TABLE2

entr

Encode aiak
from TABLE2'
information.
Start encodin

YES NO Encode ajakae
from TABLE3
information.
Start encodin
at aisti

218

in core where the e_ecoded record is stored.

However, this subroutine was tested as an independent unit. It read
the tape, HUFREC, which contained the Huffman-coded record produced by
ENCODE, and the encoded text for the first fifty records was printed out.
The input records were loaded into a core area reserved by GETMAIN. The
length of the record is stored in binary in the first four bytes and is
used to detect the end of the decoding process. The decoded record is
stored in another core area obtained by a GETMAIN.

DECODE requires two tables, TAB and TREE, stored on disk as ASMTABD1
and ASMTABD2, respectively. These are loaded into two areas also obtained
by GETMAINs.

The process of decoding will be described now. Recall that the rou-
tine HUFTRE stored the index of the header of the binary tree in the first
half word of TREE. The dividing of an input stream of bits begins from
the header. When a 1 is encountered, we move to the right to the lower
level node, and if a 0 is detected, we move-to the left using the left
pointer of the TREE entry. The TREE is traced until we reach a leaf of
the TREE (detected by zero in last two bytes). The first two bytes of the
leaf of the tree contains the index of a TAB entry. This entry is scanned.
It may contain a 1-gram, digram or trigram. This k-gram is inserted into
the area reserved for the decoded text. The decoding process is repeated
using the bit of the input record following the point when the last decoding
process concluded. The decoding starts at the top of the binary tree once
again. The process is repeated until the input record is completed decoded.
The decoded record is printed out as a file with DDNAME = PRINTOUT.

Space Condensation: The sizes of TAB and TREE are 6000 bytes each.
However, the actual non-zero entries in these two tables would be a function
of the number of source alphabets (i.e., the number of 1-grams, digrams and
trigrams included). Thus, if N = number of source alphabets, the actual
size of TAB would be 6N bytes, and the size of TREE = 8N (i.e., number
of leaves of tree) + 8N (i.e., number of nodes in the tree) + 8 (top all
used as pointer to the top of the tree).

Hence, if the value of N is also passed to DECODE, the GETMAINs above
for TAB and TREE may be adjusted to accomodate only the non-zero portions
of these tables. In this way a considerable saving in core area used by
DECODE can be effected.

6.6.4 Extension of Program for Inclusion of k-grams (k>3)

It may be found necessary to extend the source alphabet set to include
4-grams, 5-grams, etc. A scheme is suggested for including up to 9-grams
in the alphabet set. However, for any k-gram (IC>3) the count, Huffman code,
etc are stored in a table, called TABLEK. It can contain anything fram
a 4-gram up to a 9-gram. Prior to the COUNT phase, the kegram(s), which
seem to occur often in the text, would have to know, or suppose we know,
that "WILEY" occurs very frequently in a record set. We then may want to
count its occurrence in a sample text and include it in the source set.
Note that the ADJUST phase would not select from among these k-grams but
include all of them in the source alphabet.

After COUNT had worked on the first sample record of 1000 ytes,
TABLE1 and TABLE3 would have been initialized, and the latter split up
into "table 2" and "table 3." Now the k-grams that we desire to be in-
cluded could be read into an array, GRAMS, within the Fortran program,
ASMFOR, via data cards. The k-grams would, of course, vary in size.
Then an assembly language routine called KAGRAM would insert these k-grams
into TABLEK, creating entries in TABLE1 and TABLES, if necessary, and
setting the TABLES (actually "table 3") pointer to point into TABLEK.
An AVSPAC (available space) indicator would be kept to indicate the first
available entry in TABLEK while this insertion process is going on. The
k-grams having the same first three alphabets would have entries in TABLEK
linked together using the "link" field. The link of the last entry in any
chain would be zero. The format of a TABLEK entry prior to ADJUST is
shown below.

2 b tes 1 6

ount 4 a a5 a6 - link

#9 alphabets unused
in this entry

Last portion of the
k-gram a1a2a3a4a5a6a7

12 bytes

points to
another
TABLEK
entry

The routine KAGRAM would insert the k-gram a1a2a3a4a6a6a7 in the follow-
ing manner. It would look at entry for al in TABLE1 and, using the pointer,
enter TABLE2. If a match for a2 then failed, it would create a new entry
and set up its pointer to a group of five entries available in TABLE3, as
indicated by NUMBER, insert as in the topmost entry, and set the TABLE3
pointer to point at AVSPAC in TABLEK. It would insert the last six characters
as shown above. If the a2 pointer field were non-zero, it would enter TABLE3
and search for a match with a3. If present, it would examine its pointer
field. If zero, it would create a TABLEK entry, and if non-zero, it would
enter TABLEK and then use the link field to go down the chain. It would
set the link of the last entry to point at AVSPAC, enter the k-gram in AVSPAC
and update AVSPAC. If the match for a3 failed in TABLE3, it would create
an as entry and a TABLEK entry as explained above.

After the k-grams were inserted, COUNT would be called S times,,where
S = number of sample records. The only difference in the execution of COUNT
for any sample would be that if, while scanning for trigroms, the trigram's
TABLE3 entry had a non-zero pointer, we would look for k-grams in the input
stream and increment the "count" field of the TABLEK entry. The routine
ADJUST remains unaltered, and, as far as it is concerned, TABLEK does not
exist k-grams are not sorted or "count adjusted." However, when the
time comes to fill up TAB with the 1-grams, digrams and trigrams selected,
ADJUST must go a step further and also look for non-zero TABLEK. entries.
These k-grams are also inserted into TAB. For anY k-gram, two TAB
entries are used and the format is shown below. TAB entry for k-gram
(k>3

220

1 byte 5 bytes

number of alpha-
bets in k-gram

i

I

, al a2
i

a3

1

1

I al+

'

as

a6 1

1

a7 - 1

1

r weighted count
t

I 2 bytes

6 bytes

The weighted count = count in TABLEK X k. When sorting TAB, care must be
taken to recognize an entry for a kgram so that both entries are treated
as one. The TAB entries in the leaf of TREE for this k-gram points to the
first byte of the first word of this TAB entry.

After MUFLOD has given abd the code, a TABLEK entry looks like the
following:

1 1 2

12 bytes
6 2

of alpha- # of bits Huffman
bets in k- in Huff- code for
gram man code k-gram

alphabets link

ENCODE would remain unchanged except for the following alteration if,
while encoding an input stream, we enter TABLE3, we also seek a match with
k-grams of the pointer if the TABLE3 entry is non-zero. We go down the chain
of TABLEK entries pointed to by the TABLE3 entry, and if the match succeeds
for any of the k-grams, that k-gram is encoded using the Huffman code in
that TABLEK entry, and encoding starts again beyond the kth alphabet in the
input stream.

6.6.5 Program Operation and Results

The usefulness of Huffman coding can be measured best by noting the
tradeoff between encoding and decoding time and the space compression achieved.
The variables in this program are:

N
s

= number of source alphabets, 1-grams, digrams and trigrams

N = number of digrama selected

N
t

= nuMber of trigrams selected

N
s = Nd N 256 (number of lgrams = 256)

= number of sample records on which the Huffman code for the Ns alpha-
bets is derived.

azi
-206-

C = average compression obtained per record
av

alphanumeric text length - Huffman coded record length)

I alphanumeric text length

-E
= average encoding time per alphanumeric ch _acter ., byte)

TR = average decoding time per byte

L
av

= average number of bits per source alphabet

Ns

= Li/Ns, where L1 = number of bits in Huffman code for ith source
1=1 alphabet

= maximum number of bits in Huffman code for a source alphabet =
max number of bits in least frequently occurring source alphabet

L . = :minimum number of bits in a source alphabet = number of bf.ts in
min the most frequently occurring source alphabet.

Some of the functional relationships between these parameters are of
interest as they focus attention on the space-time tradeoff in Huffman
code compression techniques. These relationships could be obtained by
varying certain parameters in the program, while keeping others fixed.

L - (N)av
,

C
av

(N9, Nd, Nt, S)

TR =f (N Cav)

T
o

= t
4 s

(N
,

Cav

= f (N)max 5 -s'

f
Lmin 6

Among these parameters the input program parameters which can be varied)
are:

Ns = TOTNUM (see ASUFOR)

= DINUM (see ASMFOR)

= TRINUM (see ASMFOR)

= Index of DO loop 4 in ASMFOR.

222

6.7 Results

6.7.1 Initial Method

Prototype programs for frequency analysis and for encoding were then
written in the assembly language for the CDC 6400, COMPASS.* The method
just discussed was used to obtain the source-symbol-alphabet and also
the corresponding frequency of occurrence of each symbol. Huffman code
was generated for the source-symbol-alphabet using the first method de-
scribed before, and 200 records from the Library of Congress MARC II test
tape were encoded in that code. The results of the actual encoding are
shown in Fig. 64.

Two more methods were tried to select the source-symbol-alphabet and
the corresponding frequency distribution. Both these methods are described
below.

6.7.2 Second Method

As was explained, the probability of the previous encoding ending at
position 1 or 2 of a digram cici was assumed equal. Hence, if the digram

has frequency f, then the expected number of times the characters ci
and. c -w- ill be encoded asa digram is f/2. Therefore, the frequencies
of the constituting characters were reduced by f/2, but the frequency of
the digram was left unchanged at f. But the same argument suggests that
the digram frequencies should also be reduced to 1/2. Also by the same
reasoning, the trigram frequencies should be reduced to 1/3 of their origi-
nal frequencies. This additional feature was incorporated in this second
method to obtain the frequency distribution for the source-symbol-alphabet.
The result of this method is shown in Fig. 64. It clearly indicates that
this method gives slightly greater reduction than the first method.

6.7.3 Third Method

This method is to skip all these arguments about probabilities and
instead scan the records to get the actual count. The first drawback of
this method is that each time a new source alphabet is tried, the records
have to be scanned to obtain the actual frequency distribution. In
addition to that, the reduction obtained by this method for any particular
source alphabet was found to be less than that obtained by the first or
the second method for the same source-symbol-alphabet.

Observing the results of these three methods given in Fig. 64, it is
clear that the second method gives the maximum reduction. It also has
another advantage in that the frequencies of all digrams and other poly-
grams can be obtained once for a given type of data, and these values
can be used to select the optimal source-symbol-alphabet

* The analytic error was found after these runs were made. -However, the
results are included as indicative of the Potential of bibliographic com-
pression, since correction of the error will improve the results. [ed.]

Method No.

FIG. 64: COMPRESSION RESULTS*

Rxra22 of Bits per Char. Reduction

For N = 10

1 4.675

2 4.658

3 5.029

For N = 5

1 4.80o

2 4.732

3 4.831

6.7.4 Effect of Varying Source Alphabet Size

22.1%

22.4%

16.2%

20 %

21.1%

19.5%

Although the second method is the most effective, a separate analysis
had been run with the first method to determine the effect of varying the
size of the source alphabet. Thirteen different source alphabets were
created by varying the value of N from 0 to 60 in steps of 5. The results
are given in Table 13. The following explains the significance of each
column in Table 13.

1. N is the number of the highest frequency single characters
used to obtain digrams (pairs) to be represented in the source
alphabets.

2. BLAST gives the resultant number of symbols in the source alpha-
bet. Sincm there are always 64 single character symbols in the
source alphabet, NLAST - 64 gives the number of digrams actually
used in the source alphabet.

3. The expected count for each symbol In one record.

The variance Obtained from the count for each symbol.

5. Time taken in seconds to generate Huffman code, given the Count
for each -symbol.

6. Minimum code length ob ained in bits.

7. Maximum code length obtained in bits.

8. Ave age code length in bits per source character.

*Source-symbol-alphabet consi ts of charac ers digram

9. Compression obtained using that source alphabet.

10. Average time in _alliseconds taken to en, one record.

11. Average time in milliseconds taken to decvue an encoded
record.

An interesting result that we did not anticipate is that the decoding
time appears to decrease slightly with increases in the size of the source
alphabet. Similarly, encoding times did not increase as anticipated.
In future work it would be interesting to determine whether there is
indeed a structural reason for this behavior. It should also be noted
that the final two rows in the table have the same results. This is be-
cause increasing the value of N from 55 to 60 did not increase the number
of digrams which are actually present in the 200 MARC 11 records which were

processed. Finally, it should be noted that the frequency of occurrence
of the symbols was computed using the same records which were subsequently
encoded utilizing the codes obtained. Thus the compression obtained might
be interpreted as a best possible compression ratio for a larger body of
bibliographic records.

The two plots shown in Fig. 65 have been established using the data
from Table 13. They show both the effect on the average number of bits
required in the encoded representation for each character in the source
string and the overall compression that is obtained utilizing this repre-
sentation. These are shown as functions of the number of single letters
whose pairs were considered for incorporation in the source alphabet.
While much work remains to be performed, these results are most encouraging.

T
a
b
l
e

1
3
:

R
e
s
u
l
t
s

f
o
r

H
u
f
f
m
a
n
-
c
o
d
i
n
g

P
r
o
c
e
d
u
r
e

f
o
r

C
h
a
r
a
c
t
e
r
s

a
n
d

D
i
g
r
a
m
s

i
n

2
0
0

L
C

M
A
R
C

I
I

R
e

o
r
d
s

N
N
L
A
S
T

I

E
x
p
.

V
a
r
.

5

T
i
m
e

t
o

'
I
e
l
l
:
e
r
c
:
t
d
:

s
e
c
.

6

n
'

,-
--

--
,

7
8

A
v
g
.

b
i

ch
ar

.

9

C
o
m
p
r
e
s

-

ed
s
i
o
n

7
0

1

1
0

A
v
g
.

t
i
m
e

'
A
v
g
.

to
e
n
c
o
d
e

m
se

c.
1

1
1 t
i
m
e

to
 d

ec
od

e
m

se
c.

6
4

8
B
9
0
6

2
1
0
.
4
0
9
9

0
.
1
0
4

3
1
7

4
.
8
5
2

1
9
.
1
3

3
1

3
6

5
8
5

5
.
9
9
7
9

5
5
.
8
5
9
2

0
.
1
2
4

4
1
8

4
.
8
1
8

1
9
.
7

3
2

3
1

1
0

13
14

3
55

11
1

2
9

1
8
7
2

0
.
2
9
4

4
1
7

4
.
7
2
2

2
1
.
3

3
2

,

1
5

2
1
3

2
.
0
6
6
9

1
1
4
.
7
9
3
1

0
.
7
1
8

14
1
7

4
.
6
2
9

2
2
.
8
5

3
1

3
1

3
3
1

1.
19

14
14

6.
14

18
5

1.
75

4
4

17
4.

52
5

21
4.

58
31

31

5
14

53
0

78
23

1
3
.
1
7
8
1

2
.
9
6
3

4
1
7

1
4
.
3
8
9

,

2
6
.
8
5

30
31

30
61

9
0
.
5
2
7
0

1.
89

99
5.

70
1

14
16

1
4
.
3
0
2

2
8
.
3

3
0

, ,,

3
0

3
5

7
8
2

0

3
8
8
6

1
3
0
3
7

8
.
5
1
1

4
1
7

4
.
2
0
9

1

2
9
.
8
5

2
9

30
,

1
4
0

9
0
0

0
.
3
7
7
7

1
.
1
1
2
1

1
1
.
0
2
2

1
4

,

1
6

4
.
1
5
0

3
1
0
.
8
3

29
3
0

4
5

9
7
5

J,
--

--
1

10
45

'
0
.
2
9
8
7

1 1
0
.
2
7
7
0

1
.
0
2
7
7

0
.
9
6
3
7

1
3

2
5
3

I
1
4
.
7
4
4

4 14

1
6

1
6

4
.
1
2
4

4
.
1
0
6

3
1
.
2
7

1
31

.5
75

1

2
9

2
8

3
0

3
0

0

5
5

10
65

1
0
.
2
7
1
5

0

9
4
7
0
1
1
5
.
4
8
0

14
1
7

1
4
.
0
9
9

3
1
.
6
8
1

2
9

3
0

6
0

1
0
6
5
*

1
0
.
2
7
1
5

0.
94

70
,
1
5
.
4
8
0

1
7

1
1
-
.
0
9
9

3
1
.
6
8

2
9

3
0

*
N
o

m
o
r
e

d
i
g
r
a
m
s

i
n

t
h
e

2
0
0

r
e
c
o
r
d
s

/10

35

30

25

20

15

10

5

FIG. 65: HUFFMAN CODING PROCEDURE RESULTS

OM II ElNM EU
1111111111111mts

NIMIT

5 10 15 20

Compression % v/s N

N = 0 * All characters

25 30 35 4o 45 50 55 60

31.68

Avg. Bits per Char. v/s N

N = 0 * All characters

IiiiM11111111111....111111

a.

SPECIFICATION FOR FORMAT TRANSLATION OF THE SANTA CRUZ FILE
By Jay L. Cunningham

7.1 Introduction

In the Spring of 1968, a joint task of the File Organization Project
and the Operations Task Force Project* was begun. Its objective was
to investigate the possibility of translation by computer program of
the record format of the UC-Santa Cruz Library's machine catalog file
into the prototype LC MARC II format then available. This file was
originally created beginning in 1965 and conversion has continued since
then. The size of the file is estimated to be in excess of 120,000 master
records. The file is in a record format that was designed prior to
the advent of the MARC I format established by the Library of Congress
in 1966; however, the level of identification is similar.

Since then, the LC MARC project has grown in scope and momentum,
and the MARC II format has been revised and accepted as the USA standard
for bibliographic data in machine form. The MARC II format is intended
as a "communications format" for the exchange of machine files among
libraries and other agencies, and it has been adopted by the University
of California as the exchange standard for library records. In addition,
it is being used in augmented form, as the common processing format for
the computer-based library systems of the University and for the
University's Union Catalog Supplement. The latter format is called
"UC MARC." As a result, the processing format of the File Organization
Project was changed to the UC MARC format, and the objective of the
automatic translation task became that of achieving this format. It
was expected that the resultant file would be compatible with MARC II
in structure, and the content would be a close approximation to exact
MARC II tagging and other identifying conventions. Because of the
volatile nature of the record standards during this effort, there are
a number of intermediate programs and record formats which are used
which would be dispensed with if a comparable effort were to be initiated
at this time. However, the same functions would need to be performed
if one is attempting an automatic translation of bibliographic records into
a higher level of explicit content definition than is available in
the source records. Therefore, the logic of this specific translation
effort may be of general intere t.

As an example of haw "close" is "close": all personal name main
entries and added entries will be identified and given the proper MARC II
tag. However, the recognition algorithms at this time do not identify
the sub-type of name. Each such name is therefore assigned the "single
surname" indicator code, as a default. It is hoped that the deeper
identification of this and numerous other imbedded data elements can
take place in a later stage. Meanwhile, the file at the level of
detailed identification attained in the routines specified herein should
be adequate for book catalog production, search experimentation, and

*This project is funded by the University of California.

other uses not depending heavily on a "perfectly clean" data base at
Level 1 MARC II. This file as described in thia, specification will
have encoding at somewhere between Level 2 and Level 2 MARC.*

The specification has three sections: instructions for translating
the Santa Cruz original format to ILR Input Format, instructions for
updating the resulting ILR Processing Format into 'the latest MARC II
features, and lastly, some brief instructions on how to set up a
UC-MARC record as an augmentation of the current IARC II.

When the translation study was initiated, the development of an
input format and a program for translating this input into the ILR
processing format had been completed. Therefore the translation
objective was identified as that of producing translated records in
the ILR Input Format in order to avoid duplicating the logic of the
existing program. When the decision was made to change the processing
record format, another sub-task was added to translate this format
into the UC MARC format.

The following paragraphs cite the relation of the present specifi-
cation to other documentation, for which no attempt to duplicate is made
herein.

A diagram of the overall translation run is presented in Fig. 66.

*See: RECON :Working Task Force, Conversion of Retros e tive Catalo
Records to Machine-readable Form: A Study of the Feasibility of a
National Bibliegraphic Service, Washingtoni D G.: Library of Congress,
1969, Appendix F.

FIG. 66:
SANTA CRUZ FILE TRANSLATION RUN

Santa
Cruz
File

CRUNCH

(ILR Input F

Original Format)

ceasing
ete MARC

Routines
to Translate
to Latest
MARC II
!Comm-
IFormat

!Routines
wo Build
UC MARC Il
Processing
& Communic.
Format

OMMon(Tic

7 1.1 Tram:lation from Santa Cruz Original Format to ILE Input

The most complete specification of the Santa. Cruz
format is contained in the Ke- Punch Manual, Universit of California,
Santa Cruz Library, July 1,, 1965, rev. July 1, 19 6.

original record

The Santa Cruz original format is the source record format which
constitutes the input to the CRUNCH program. The object record format
is that which is produced as the output of the same program. This
object record format is the ILR input record format.

The specification for the ILR input record format is contained in
Appendix V, Part 2 of: Cunningham, Jay L., W.D. Schieber, and R.M.
Shoffner. A Stu- of the Or anization and Search of Bibliora.hic
Holdings Records in On-Line Computer Systems: Phase I. Final Report.
Berkeley, Institute of Library Research, University of California,
March 1969.

The documentation of the equivalences produced by CRUNCH is
contained in Section 7.2, below. For information on the meanings of
the codes and the overall framework into which they fit, refer to the
above-cited reports.

7.1.2 Translation from ILR Input to ILR Processing Format

From ILR Input Format the Santa Cruz records will be processed
through the INFOCAL program written by ILR in May 1968. The output of
this run will be records in ILR Processing Format, which is a modified
MARC II format as of that date. (It is therefore obsolete in several
respects.) See Appendix V-2 and Appendix IV of the above-cited Final
Report of the File Organization Project.

7.1.3 Translation from ILR Processing Format t (Latest) MARC II

The specification of the MARC II Communications Format with which
this translation program will comply is contained in: Subscriker's
Guide to the MARC Distribution Service; Specifications for Magnetic
Ta es Containin Mono ra hic Catalo Records in the MARC II Format.
Third Edition. Washington, Information Systems Office, Library of
Congress,- March 1969. '76 p.

Further modifications to the resulting file will be made by routines
which adapt the,MARC II Communications Format, as specified in Section
7.4, to the UC MARC Format, which ia a comMon prodessing and communications_
format. The specification for UC-MARC maY 'be found In: Sherman, Don.

.
.

Universit of California MARC ForMat. (Tecpnical'Paper No. 2) '.Berkeley,
Institute of Library Research,- June` 15 '1969. 11 p..

Special instructiona- for building the.UC MARC file
MARC II INFOCAL-output.Tile are contained in Section 5-
Paper.

7.2 Translation from Santa Cruz Original Format to ILR Input Format

7.2.1 Condition of Source File

Each logical record in the Santa CrUz original format is comprised
of N tab cards. With the addition of the 8-character ILR-assigned
record number ("Shoffner number"), the physical source (card image)
record is now 88 characters in length. The object record--that which
is to be input to INFOCAL--must be comprised of from one to fifteen 80-
character images, in continuous string. The same record number (6 digits)
plus card number (2 digits) is to be preserved from the original file.

Each record has an SC Accession Number which is to be preserved and
placed in the special "*U" Shelf Key ("SK") field which is to be placed
at the end of the record. It will be placed at the head of the field
in character positions 1-6. (The SK field is fixed length--12 character
prefix 4-26 characters. There is no $a delimiter at the begifining of the
field; the number starts in character position one. This number is not
used as the record number because it is not always unique over the
whole file.

7.2.2 Format Translation Tables to Achieve ILR Input Format

Detailed equivalences for translation of Santa Cruz encoding to
ILR input encoding follow in Figures 67-73. The emphasis in these
figures is on the data elements and codes involved in the translation,
rather than the program algorithms. For details on the program
routines, see documentation for the TRANSCOF program in the following-
chapter.

7.2.3 Notes to Figure 67

1. This holdings code was defined prior to the advent of UC MARC.
Since INFOCAL requires at least one'JA-field to be input, and the
routine has been written in the translate program, this field will
appear as an 090 tag in the output record. The contents of the field
should be purged in the program to revise Santa Cruz-INFOCAL, and replaced
by a string corresponding to the revised UC MARC definition of a holdings
field.

2. Due to an inadvertent programming error. in INFOCAL, INFOCAL
interprets the input code "RA" to mean "make title added entry" rather
than "don't make title added entry," as originally intended. Therefore,
for the purposes of the Santa Cruz conversion, "RA" will be supplied in
the translated record when the symbol "L" is present in CT 200, Col. 69
of the source record. Do NOT insert "RA" if there is no CT 1XX card,
however. The latter condition indicates a Title Main Entry, for which
there is no such thing as a title added entry In the same form, by
definition. A code "UB" will be inserted in clear cases of title main
entry (absence of a CT 1)X card), to set the MARC indicator to "1", for
"make title entry from Short Title." This will assure uniformity of
encoding for title fields whether main or added.

232

FIG. 67:
FORMAT TRANSLATION TABLE I-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE IN
1LR INPUT FORMAT

1.

(Tables are in log-
ical sequence ac-
cording to ILR In-
put data stream
prescribed for
INFOCAL)

Master Record No.
(MEN)

Col, 1-6 = ILR machine- Col, 1- = logical rec.
assigned record no.
("Shoffner number"
same in each card in log.
rec.
Col. 7-8 = physical

no. same as source rec.)

Co]1-3= physicn1
record no. (within log-
ical record), in ascend-
ing sequence from Card
01.

record no., in ascend-
ing sequence (same as
source rec., for as
many cards as needed

2. Publication Date 1,
Publication Date 2,
& Type of Date Key

CT (Card Type) 000,
Col. 31-34 contains Yea
of Publication in Fixed
Field format. (Card
Type always appears in
Col. 78-80 of the card
image.)

CT 300, variable posi-
tion, contains variable
date information, when
condition is other than
single date of publica-
tion. If record con-
tains only one date, it
appears only in CT 000.

(See Fig. 68)

Build continuous string
of codes beginning in
character position 9
of card 01.

Bibliographic
Level

CT 000, Col. 45:
Other than 1 = Book
1 = Serial

DM (Monograph)
DS (Serial

4. Content Form CT 500:
Scan for key word

BB (Bibliographies)

5. Holdings(1)+ None (a dummy string
is inserted)

3A/M90% (Santa Cruz,
stacks). TO BE REPLACED
IN REVISION FOR UC MARC.

FIG. 67 (Cont.
FORMAT TRANSLATION TABLE I-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE
ILR INPUT FORMAT)

Main Entry in Body
Indicator

Use same logic as for
detecting presence of
"C" Sub-field in Title
(Rem. of Title Page
Transcr.)

NA

Title Added Entry
Indicator

CT 1XX is present;
CT 200, Col. 69:
Blank = make no title
added ent. for title in
this form
L = make title added
entry for this form of
the title

No action - no title
traced same

(2)*
RA

SEE ALSO TYPE OF ADDED ENTRY CODES (W-CODES)
AND "*Q" CODE IN B-FIELDS, FOR HANDLING OF
PARTIAL TITLE ADDED ENTRIES.

Language Code CT 000, Col. 46-50:
Blank = English (def.)
For other codes, see
p. 10 of Key Punch
Manual, UCSC

SAccn% (For list of 3-
character codes, see
p. 183, Vol. 2 of The
MARC Manuals. If blank,
no action: INFOCAL
default is "eng"

Translation
Indicator

CT IXX, Col. 69:
T = Translator and
other than Blank in
Col. 46
Indicates likelihood
that work is a trans-
lation. ALSO: must
be two languages coded,
at least, incl. "eng"
as the default.

TA+

+NOIE: It is not known
whether the language
codes will be recorded
in the order prescribed
by MARC.

10. Type of Main Entry
Code

If CT 1XX card present:
Test first CT 1X0 000:
CT 100 = Personal

CT 110 = Corporate

If NO CT 1XX card is
present, this record
has Title Main Entry:

UAP1 (Single Surname
as default)
UAC2 (Namk- dip, order
as default)

*See Section 7.2.3 234

FIG. 67 (Cont.):
FORMAT TRANSLATION TABLE I-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OFJECT FORMAT CODE (IN
ILR INPUT FORMAT

*According to the Santa
"L" in Col. 69 if there
main entry. There will
entries. This means that
may be impossible to identify
In cases of ambiguity,
entry will be followed.
there is no assurance that
consistently aver the whole
translation purposes.
the MARC indicator to "1"

CT 200, Col. 69 ; (1st)
or lank*

NOTE: There may be
both a CT D200 and a
OT L200 or V200, in a
single record. The "D"
is usually first. If
it is preceded by a CT
1XX, it is a supplied
title (see Fig. 70). If
it is NOT preceded by
a CT 1XX, then assume
Uniform Title Main
Entry.

Cruz Keypunch Manual, p.
are apy added entries on
be no "L" on such a card

in the case of cards having
the fact that the

the rule that the first CT
The condition is left ambiguous
Santa Cruz followed the
file. The "L" is really

A "UB" code should be inserted
i.e., "make title entry."

UATO (Title Main Entry;
Set MARC Indic. to "1"
UAUO (Uniform Title Main
Entry Heading; Not
Subject)

ALSO: insert "UB" code
in string next; when
"UATO" occurs.

Do NOT insert "RA' code
ir there is no CT 1)O
card present.

17, there will be an
a card having title
if it has no added

added entries, it
title main entry exists.
1XX card is the main

above since
keypunch conventions

superfluous for
in order to set

11. Main Entry is Sub-
ject

Test first CT 1XX cp.
to first 6xx CT for
exact match on initial
n characters, if date
Ts 630C.

UB

12. Type of Added
Entry Codes:

a. Other added
c-ntries

For each CT IXX card
beyond the first 1XX
card in the record:

String comprised of 2-
character codes preceded
by letter "W":

CT 100 = Pers nal:
Col. 69 = J RA (Single Surname;

Alternative

FIG. 67 (Cont.)4
FORMAT TRANSLATION TABLE I-FIELD SEGMENT

NAME OF FIELD
OF SUB-FIELn_

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT

b. Series Added
Entries

c. Subject Added
Entries

. Subject Sub-
divisions

=C

=E

.0

.I

=p

.T

.F

CT 110 = Corporate
Col. 69:
P = Publisher

NOTE: NO W-CODE is required
ame Added Entries ("L"
function is taken care of
the card is NOT title main

N.B.: Problem on personal
110's.

For Title-Traced-Diff.
Added Entries, W-CODE
logic is: CT 200,
Col. 69: P = Partial
Title (added entry)

PA

PA

PA

PE

PA

PE

PE

CB (Name in direct
order; Alternative)
110 (Unif. Title Added
Ent.)

for Title-Traced-
in Col. 69). This
by the "RA" code when
entry.

names coded as

Tl (Secondary Title
added entry) (default)

CT 200, Col. 69:

S = Series Tracing
and, when present:
CT 500 containing
a Series Note

S e Fig. 69)

CT 600-604: Scan for
dates in string. If
present: Personal
Name Heading

Else:

PI Single Surname)

00 (Topical) (default)

CT 600-604:
Scan for single hyphen

236

FIG. 67 (Cont.):
FORMAT TRANSLATION TABLE I-FIELD SEGMENT

NANE OF FIELD
OF SUB-FIELD

SOURCE FORMAN CODE OF
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT

preceded by space 50 (General Subj.
Subdiv.) (default)

SEE ALSO FIG. 70 FOR DISPOSITION OF VARIABLE FIELD
INFORMATION ASSOCIATED WITH EACH OF THESE TYPES OF
ADDED ENTRIES.

SPECIAL NOTE:

ORDER OF CODES IN W-CODES
strings for Series Traced
Subject Added Entries,
Entries, 4) all 2-character
Within each sub-group.
corresponding to order

STRING: W followed by
Same, 2) all 2-character

3) all 2-character strings
strings for Series Traced

2-character strings should
in source record.

1) alI 2-character
strings for
for Other Added

Differently.
be in same order

FIG. 68:
FIXED-LENGTH PU13LICATION DATES LOGIC

SOURCE CONDITION
COMMINATIONS

DISPOSITION - ILR 1NPUR FORMAT

MOVE DATE TO
COL. - 12

MOVE DA1E TO
COL. 13 - 16

CODE
FOR KEY*

CT 000 date present

CT 300 date prese t -
"C" for copr. (use
first 4 digits after
vr ert)

X

X
BC

CT 000 date present

CT 300 date(e) present
- multiple date
span: (2 patterns)
dddd-dddd

dddd-dd

BMX (1st group
of 4 digits)

X

X (2nd group
of 4 digits)

X (same as
above but
expand to 4
digits)

CT 000 date present

CT 300 date(s) present
- "open" entry:
(2nd group of 4
digits missing)
dddd- EMX

omit hyphen
No action -
omit (INFOCAL
will insert
"9999")

CT 000 date riot
present

No action No action BN

CT 300 de:Le not
present No action No action

CT 000 date present-
dig.,ts missing:
196-
19--

INSERT NORMALIZED SPAN
X(1960) x(1968)
x(1900) X(1968) EQ

CT 300 not present

*Insert in next sequential two charac er positions a
digits of date element,,

last four

FIG. 68 (Cont.):
FIXED-LENGTH PUBLICATION DA.VhS. LOGIC

SOURCE CONDITION
CONBINATIONS

DISPOSITION - ILR INPUT FORMAT

MOVE DATE TO
COL. 9 - 12

MOVE pATE TO
COL. 1 - 16

CODE
FOR KEY

CT 000 date present -
digits missing

CT 300 present (dt.
of repro. or such)

INSERT NORMALIZED
(as above)

SPAN
BQ

Disregard dates
_or Dates 1 &

in CT 300
2 purposes)

CT 000 date present -
(orig. date of pub.)

CT 300 date present
(dt. of reprint)

X

X

BR

CT 000 date present

CT 300 date not present

SEE ALSO PAGE 19 FOR
VARIABLE FIELDS.

X
BS

INDISPOSITION OF

Omit

PUBLICATION DATES

FIG. 69:
OGIC FOR TYPE OF ADDED ENTRY CODE - SERIES'

SOURCE CONDITION DISPOSITION - ILR INPUT FORMAT

ACTION W-CODES; REMARKS

CT 5200 is present;
the first CT 500
present has string
bounded by paren's.
in initial portion
of field.

(NO1E: CT 5200 Is
the series tracing

Compare length of
string in CT 5200:
length of string
inside (Ps in CT
500.

Set codes according
to
belay:

Lengths EQUAL: Scan
for intervening
period in CT 3200.
Period = evidence
of Corporate Series
Traced Same in CT
3200. No Period =
evidence of Title-
Only Series Traced
Same in CT S200.

C2 (Corp. in direct
order; author not in
main entry) (*A)
NO W-CODE B)

_

If present; string
in CT 500 is the
series note.)

FLengths UNEQUAL:
CT 3200 = Corporate
Series Tracing,
Traced Differently
CT 500 = Corporate
Series Note, Traced
Differently in form
in CT S200.

02 (Corp. in direct
order) (*R)

NO W.-CODE (*D)

First CT 500 has string
in (), but there is no
CT 5200 card.

None NO W-CODE (*C)
(Series note not
traced)

NO CT S200 card present;
NO CT 500 card-with ()

SEE ALSO FIG. 72 FOR
ASSOCIATED WITH THESE

None

DISPOSITION OF VARIABLE
TYPES OF ADDED ENTRIES

NO series note in this
record

FIELD INFORMATION

FIG. 70:
FORMAT TRANSLATION TABLE A-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT)

-.-,----

1. Local Call Number
-

CT 000, Col. 1-30:
Scan right to left fr.
Col. 30 for 1st non-
blank

Concatenate with end of
W-CODES: Insert 1st "1"
followed by call number

2. Main Entry Head-
ing

Personal Name

CT1XX present (first
1XX card).

CT 1XX not present

Insert 2nd "/" after end
of call number, followed
by author string.

Insert 2nd "/ followed
by 3rd "1" in next
sequential character
position. Proceed to
logic for CT 2XX.

(i.e., title main
entry).

CT 10G, Col. 1-60:
Scan left to right,
test for numerals;
test for 3 consecu-
tive blanks, etc.

Insert "1F16A" in next
sequential character
position following 2nd

' ", followed by author
surname.

Sub-fields:

. Personal Name

b. Titles of honor

c. Dates of birth,
etc.

Scan for key word. Insert "1F16C" in charac-
ter position preceding
title of honor. Re-
position element as
needed.

Scan for digits not
Immediately
succeeded by non-
blanks.

Insert "1F16D" in charac-
ter position preceding
date element, following
punctuation, if any.

d. Relator CT 100 Col. 69:

J
C
E
G
I
P

Insert "1F16E" followed
by indicated abbrevia-
tion:

t
j . author
comp.
ed.

_

joint ed.
illus..
publ.

FIG. 70 (Cont.):
FORMAT TRANSLATION TABLE A-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE IN
ILR INPUT FORMAT)

tr.
ed./tr.
Concatenate after dates.
This code and element
should be preceded by
a comma.

. Sort Key Author
Field

CT 1XX, Col. 69:

= Sort Key Version
of Author Name

Disregard. Field not
carried to object record.

4. Uniform Title
(Supplied)

(THIS FIELD NORMALLY
WHICH WILL BE CODED
CODES AEE INDEPENDENT.)

I

(IF TH.ERE ARE 2 OR
SUCCEEDING FIELDS
"*Q". THEN MOVE STRING(S)

CT 200, Col. 69:

D = Standard Title
AND at least one CT
1XX

PRECEDES THE CT 2)CX FOR
"L" OR "BLANK" IN COL.

MORE SUPPLIED TITLES--CODE
WILL BE GIVEN W-CODE "U2'

TO B-FIELD REGION.)

After end of 2nd "/"
(for Main Entry), insert
one "$" followed by the
uniform title string.

TITLE STATEMENT,
69. THESE TITLE

1

"D"--ALL
AND B-FIELD TAG

5. Title tatement:

a. Short Title sub-
field

. Remainder of Ti 1

. Remainder of
Title Page
Transcrip.

CT 200, Col. 69:
or "BLANK"

t

CT 200, Col. 1-60
(may be con in.)

Insert 3rd "/" at head
of title string beginning
in character position 1.

Algorithmic test for
end of Short Title,

Insert 4th "/" between
end of Short Title and
beginning of Remainder
of Title string. "/"
goes after punctuation
mark, if any, at end of
Short Title (4th "/"
mist always be present)

Algorithmic test for
end of Title P ge
Transcrip

Insert "1F16C" followed
by string. This de-
limiter is present only

.PIG. 70 Cont.):
FORMAT TRANSLATION TABLE A-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT

when data is present.
Edition field in this
position is not regarded
as part of this sub-field
Coding is independent.

6 Series Tracing

(THIS FIELD NORMALY
WHICH WILL BE CODED

CT 200, Col. 69:

S = Series Tracing

FOLLOWS THE CT 2)0C FOR
"L" OR "BLANK" IN COL.

(See Fig. 72 for dis-
position of this field)

TITLE STATEMENT s

69.)

7. Added Entry for
Partial Title

CT 20X, Col. 69:

P = Partial Title

Insert " at head of
string and move entire
string to end of B-Fields
after last CT 6xx card.
Note also W-CODE needed.
This "P" code is indepen-
dent of whether or not
main title card has "L"
(for "make title added
entry" in Col. 69).

8. Translit rated
Title

CT 20X, Col. 69

T = Transliterated
Title

Insert "!Q," at head of
field and move entire
string to end of B-Fields
after last "*Q," or "R"
field.

9. Edition State=
ment

CT,20X: Scan for
digit/key word occur-
ring,after end of
Short Title and prior
to start of CT 300.

Insert "iP in one of three
Positions- (1) after 4th
V", (2) arter end of
Rem. of Title string, (3)
after end of Rem. or.
Title Page Transcr. Code
is then followed by
Edition string.

10. Imprint:

a. Place CT 300 = Publisher
or Source

Insert 5th at head of
string beginning in
oharaoter'Position 1 If
data Is "NP" change tO9

FIG. 70 (Cont.):
FORMAT TRANSLATION TABLE A-FIELD SEGMENT

NAI1E OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT

b. Publisher

c. Date of
Publication

"N.P." This field is
always present.

CT 300: Scan for punc-
tuation (comma)

Insert 6th "/" after
punctuation and prior to
first character in pub-
lisher name.

CT 300: Scan for punc-
tuation and digits.
If record contains
more than one date, it

Insert 7th "/" after
punctuation and prior to
first character in date
(mey be an alpha such as
"C"). This field Is
always present. If data
Is "ND", change to "N.D."

(See Fig. 71 for complex
patterns)

will appear here in
variable length format.
Use as is for 7th "/".

If record contains
on3,y one date, it will
appear only in CT 000,
Col. 31-34. Move from
that position and
concatenate with 7th

ttip

11. Collation State-
ment:

CT 000, Col. 51-55:
(left justified)
IF REPEATED IN CT
WO, IGNORE CT 000
DATA

Preface with 8th "1"
and concatenate at end
of data Por 7th "P.

. Pagination

b. Illustrative
Matter

. Size

CT 400 Insert 9th "/" at head of
illus. matter string
beginning in character
position 1, and conca-
tenate with end of pag.
data moved from CT 000.

CT 400 (This data may
not have been input
to the source record)

Insert 10th "/" after end
of illus. matter data
string, even if no "size"
information -is present.

244

FIG. 71:
DATA ELEMENT PATTERNS AND ASSOCIATED CODING IMPRINT FIELD

/PLACE,/PUBLISHER,/DATE.

/PLACE1,$PLACE,/PUBLISHER,/DATE.

/PLACE1,/PUBLISHER1,$PLACE2,$PUBLISHER2,/DATE.

/PLACE,//DATE.

(The absence of a publisher is not signified in the data.

/PLACE,/PUBLISHER,/DATE DATE.

(Two contiguous dates, separated by either a comma or a
hyphen indicating a spen, are not regarded as separate
values of the data element for coding purposes. The
two values are coded as one, in the variable field. See
also I-Fields, b-codes, for fixed format dates.)

/PLACE
1
,/PUBLISHER

l'
1F

16
C DATE -$FLACE2,1)PUBLISHER2,/DATE

2'

(Note the use of the MARC II delimiter pi-eceding the
first date in the example immediately above. This pattern
was not foreseen in INFOCAL. The non-contiguous dates of
publication are treated as repeated occurrences of the sUb-
field and are explicitly delimited accordingly. The slash
preceding the secolid date currently translates to a Tag
262, and will have to be re-translated to "1F16C" in the
revision of INFOCAL.)

Note that PLACE is always present: the absence of PLACE is signified
by n.p." which is to be regarded as a value of the element. Likewise,
the absence of a data of publication is signified by "n.d." which is to be
regarded as a value of the element.

Note also the use of the $" to signifyrepeated values of PLACE and,
PUBLISHER only. The translation of these "$"is ordinally dependent on
whether they follow the 5th "/" or the 6th "/". If the "$" follows the
5th "/", it translates to Tag 260 If the "$" follows the 6th "/", the
"$" must appear in multiples of two. The first "$" transTates to Tag
260, the second to Tag 261.

FIG. 72:
FORMAT TRANSLATION TABLE B-FIELD SEGMENT

NANE OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE 01:
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT)

Bibliographic
Notes:

a. Series Note

(1) Traced Same
(Author 4-
Title)

(2) Traced Same
(Title Only)

(3) Traced Diff.

(4) Not Traced

CT 500: Scan for "(" in
character position 1,
to detect Series Note.
Series string present:

See logic for Type of
Added Entry Codes for
Series (Fig. 68).

CT 8200 = CT 500,
Period detected

Insert "*A" prior to
string in CT 6200 and
concatenate with end of
10th A-Field "/" string.
Contents of CT 500 in)

not carried to Object
record.

CT 8200 = CT 500
NO Period detected

Insert "*B" and proceed
as above. ,

CT 8200 0 CT 500 Insert "*D" prior to
string in CT 500 and
concatenate with end of
10th A-Field string.

Insert "*R" prior to
string in CT 6200 and
concatenate after end of
data from last 6XX card.

CT 500 Series string
present, but no CT
8200 present

Insert "*C" prior to
string in CT 500 and
oncatenate with end of

10th A-Field string.

SEE ALSO FIG. 69 FOR TYPE OF ADDED ENTRY CODES (W-CODES)
TO BE ASSOCIATED WITH THE ABOVE SERIES NOTE PATTERNS

b. Other Special
Notes

Bibliography
Note

Data to right of ")"
(close of Series Note)
in CT 500 is to be
scanned for key words:

"BIBLIOG" Insert "*F" at head of
string (after right
paren. of Series Note,
if Any) and scan to end
of sentence. (May be on
continuation card.)

FIG. 72 (Cont):
FORMAT TRANSLATION TABLE B-FIELD SEGMENT

NAME OF FIELD
OR SUB-FIELD

SOURCE FORMAT CODE OR
CONDITION

OBJECT FORMAT CODE (IN
ILR INPUT FORMAT)

Contents Note

c. General Notes

ICONTEN"

Else:

Insert at head of
string.

All other strings in CT
500 cards will be coded

as the default.

2. Subject Tracings CT 6xx, Main Headings:
(1 heading = I card)

Insert "*M" at head of
each card in character
position 1.

Subjct Subdivisions:
Scan for blank +
hyphen as evidence of
subdivision.

Expand to 2 hyphens in
each case found.

3. Other Added
Entries (Authors,
etc.)

Each CT 1XX card beyond
the first in a record;
preceding card must not
contain continuation
sign (a minus "-" in
Col. 68)

(See Fig. 70, paragraph
added entries in (T 2XX

Insert "*Q" at head of
each string in character
position 1. Note that
string may extend to
more than one card.

7 for disposition of title
cards.)

. Shelf Key Data
(for purposes of
internal revision
of records by
Santa Cruz.)

(i.e., Local
System Number,
Tag 035 in MARC
II)

CT 000, Col. 39-64
47-50, 8)4-88

Insert "Li" at head of
string, followed by the
SC Accession Number in
character positions 1-6,
right justified with
zero left fill, followed
by Accession Date in c.p.
7-10, then letters "SK";
and move entire string
intact to end of B-Fields.
Concatenate with end of
last "*Q", "*R" or "!Q"
field in the record.

(See Fig. 73)

* Optional

FIG. 73:
DISPOSITION OF SHELF KEY DATA CT 000 -

SHELF KEY CARD, SANTA CRUZ

00645001 Q L752. S55 1961 0566 184 000 08614

SHELF KEY
VARIABTE FIELD
IN INFOCAL
INPUT FORMAT

39 47 64

0566 0 184

Card
Type

88

End-of-
Record Mark

The first ten Characters in'the reformatted shelf key field may be
used to build an index file to the master file, using the old SC accession
nuMber and the accession date as the key.

The remainder of the field, if not needed, may be dropped. Informa-
tion will be extracted from Col. 39-64 to set other MARC codes, via
other routines. However, it may be advisable to preserve the entire
string from Col. 39-64 due to unanticipated encoding patterns in the
original SC records. It is often possible to reconstruct how an error
was made if the original data is easily accessible.

248

CRUNCH: THE SANTA CRUZ FILE TRANSLATION SYSTEM
By John M. Reinke

8.1 Introduction

This chapter describes the general functioning of the Santa:Cruz
file translation program, CRUNCH, with emphasis on the operation of
the subroutines, which delimit certain types of data through the appli-
cation of automatic field recognition techniques.

The
coded in
which is
content,
means of

purpose of this program is to accept library catalog card data
the UC Santa Cruz format and convert it to the ILR input format,
considerably more complex. While there is no change of textual
the knowledge of the nature of the content is increased by
AFR analysis and the explicit identification which is added.

8.1.1 Main Program. LAYOUT1

The main program, called LAYOUT1, reads the set of card images
(which have been punched to represent the data on a single catalog card)
for a given catalog card from tape and lays out the data in core. It
does some checking of the data for completeness and correctness. Parti-
cularly, it checks to insure that at least the following are included:
a type 000 card (containing call number and some other information), a
type 100 or type 110 card (personal or corporate author name) and a type
200 card (title). If these are not present, the data is rejected. The
main program checks to see which types of data are present and which are
not, and accordingly sets a series of switches or gates, which will inform
the subprogram how to proceed with the proceing. The subprogram
STRINGER is then called. It returns the completed output string to the
main program, which then writes the string out on tape, and proceeds to
read in a new set of cards, etc.

8.1.2 Subprogram: STRINGER

The subprogram, called STRINGER, uses the switching information pro-
vided by the main program to set a series of gates which will insure
that the data is processed in the correct manner and order, and that
nothing will be erroneously excluded from or included in the final output
string.

The subroutines TITLEALG and PPD will be called. Subroutines
ES200500 and PERSAUTH may or may not be called, depending on the data.
The subroutine TITLFALG processes the title. PPD processes the place,
publisher, and date data. PERSAUTH processes the personal author data,
if present. STRINGER processes the subject heading information, if pre ent
and generates the I-field codes which correspond to this B-field infor-
mation. After the data has been processed, it is all assembled into a
final output string, and control is returned to the main program.

The structures of LAYOUT1 and STRINGER are large and fairly complex
and are peculiar to the Santa Cruz data. The remaining subroutines
may be of more general interest, since they are concerned directly with

the translation functions.

Note that although the flowchart. may not represent entirely faith-
fully the actual coding ef the subroutines, f-ley do give a generalized
outline of the logic involved, for purposes G2 clarity. It is expected
that the comments supplied in the actual code, with the aid of the flowcharts,
will permit anyone who is interested to understand the actual logic ef the
subroutines.

8.2 Subroutine ES200500

This subroutine compares the type 500 (comment) cards (if present)
with the type 5200 (serials title) cards (if also present), in order to
determine the type of serials title, and to determine if the comment cards
mention the.presence of a bibliography, contents note, etc. An S200
card always appears together with a 500 card, but a 500 card may appear
by itself. If a series title is present in ale 500 data it appears at
the beginning of the string and is enclosed in parentheses. The flowchart
is given in Fig. 74.

First the subroutine checks to see if there is any 5200 data present.
If not, the subroutine checks the 500 string for left and right parentheses,
which enclose the serials title if it is present. The title always appears
at the start of the string. If the title is present, the parentheses are
deleted and an "c" is prefixed to the title. The remainder of the 500
string (if any) is processed by internal subroutine BIBLIO. If the title
is net present, the 500 string is processed by subroutine BIBLIO to deter-
mine and delimit E-field categories.

If both 5200 and 500 data are present, the length of the title in the
500 string is obtained, and the parentheses surrounding it are deleted.
The lengths of the 500 title and the 5200 title are compared. If they
are of equal length, the titles are assumed to be identical and the 8200
title is now superfluous. The title is new known to be either type "*a"
(series note - traced same (author 4- title)) or type "b" (series note -
traced same (title only)). Internal subroutine ADDALG is then called
te ascertain which type the title is, and to delimit it if it is type

Prior to the determination ef the lengths of the title, the remainder
of the 500 string (following the title) is processed by subroutine BIBLIO
to delimit the E-field categories.

If the title lengths (as compared above) are of unequal lengths, the
titles are considered te be different. The 500 title is taken as the main
title and the code "led" (series note - traced differently) is prefixed to
it. The 8200 title has prefixed to it the cede "*r" title. The remainder
of the 500 string (after the title) is processed by subroutine BIBLIO in
order to determine and delimit the B-:field categories.

8.3 Subroutine ADDALG

This subroutine procesSes title string (See Fig. 75). The sub-
routine scans left to right for a period followed by two blanks. If this

condition is not encountered, no delimiting is done and the title is assigned
code "b" (unless it is known in advance to be type "r"). In either
event, the delimiter "xb" is inserted after the period. The scan is con-
tinued in order to locate the last period in the string (the first period
may be ,he last also). The portion of the title which follows the last
period is now scanned for the abbreviations "v.", "vol." (for volume), and
"no." (for nnmber), and for numerals (as in "3rd" or "2nd"). If any one
of these is found, the code "1F16v" is inserted in front of it. Control
is then returned to E6200500.

8.4 Subroutine BIBLIO

This subroutine deals with the remainder of the 500 string which may
follow (or appear without) the 500 title (see Fig. 76). A default code of
"k" (all other notes (general)) is initially installed at the start of
the string. This may be overwritten. A left to right scan is made for
the terms "biblio" (for bibliography), "includes bib" and "contents."
If none of these is encountered, the default code remains and control is
returned to E8200500.

If either "biblio" or "includes bib" is detected, the code "f" is
prefixed to it. The address where an "*k" should now be reinserted follow-
ing the words "bibliography" or "includes bibliography" is now calculated,
and that address is saved. The scan now continues from that point for the
word "contents." If it is not detected, an "xk" is inserted at the address
just calculated. If "contents" is detected, the code "xi" is inserted
in front of the word "contents." Control is then returned to E8200500.

8.5 Subroutine PFD

This subroutine deals with the place, publisher and date data which
is found on type 300 and 000 cards. The flowchart is given in Fig. 77.

The subroutine first determines if there is any PPD data. If there
is no data, dummy delimiters are created for what could have been the
place and publisher fields. A check is made to see if there is a date
on the type 000 card. If there is none, the I-field code "bn" (date not
known) is assigned. If there is a date, it is examined to see whether it
has four or fewer digits (as described below) and is appended to the dummy
PPD string.

If there is PPD data a left to right scan for a comma is performed
on the data. If no comma is found, place only is assumed to be present.
Delimiters are then inserted, and control is returned to the main routine.

If a comma is located, the routine tests to see whether it is followed
immediately by a date. If it is, a delimiter (1) is inserted after the
comma and before the date. This separates the place and/or publisher from
the date. If the comma is not followed immediately by a date, the routine
continues to scan for another comma, which is then tested for a following

*In the event that the word "contents" was detected- during the first scan
abOve, the code "i" is inserted in front of it, and control is returned
to ES200500.

251

date, and so on. If a date finally is encountered after a series of comm
the delimiter is inserted before the date, as described above. The comma
which is the next to last comma is assumed to separate the place from the
publisher. Therefore, a delimiter is inserted after this next to 1st

comma. If there is no next to last comma, an additional delimiter is
inserted between the place and/or publisher and the date. The place and/or
publisher field is now considered by default to be the place field.

If no date is encountered after one or more commas, the last comma en-
countered is considered to separate the place from the publisher, and a
delimiter is inserted after it. If no comma is found, place only is assumed
to be present.

The subroutine has now to consider the relation of the date in the
PPD string (from the type 300 card) with the date which may appear on the
type 000 card. Also yet to be determined is whether there are two dates
in the PPD string.

The subroutine determines whether the (first) date in the PPD string
has "c" in front of it, indicating a copyright date. If there is a
a note is made of this fact. The subroutine next determines whether the
PPD string contains a second date. If there is a second date, any date
which may be present on the 000 card is ignored. If the second date has
only two digits, (as in 1943-47), it is expanded to four digits by insert-
ing the appropriate century digits. If the first date was a copyright
date, it is placed second in the output string and the dates are given
the I-field designation "bc" (two dates - 2d is copyright). If the first
date was not a copyright date, the two dates are given the I-field desig-
nation "bm" (two dates - 2d is terminal).

If there is no second date in the PPD string, the date from the PPD
string is compared with the date on the type 000 card. If the PPD date
is earlier than the type 000 card dete, the I-field code "br" (reprod./
reprint - no digits out) is assigned.

If the PPD (type 300) date is later than the type 000 date, the I-field
code is "bm" (two dates - 2d is terminal). In either case, a comma is
placed at the end of the PPD string, and the type 000 date is appended to
it. (Both dates will also appear in the I-field.)

If the type 300 and type 000 dates are identical, one will be examined
to see if it has four digits. If it does, the I-field code "bs" (single
date - no digits out) is assigned. If digits are missing, the I-field
code "be (digits missing) is assigned, and the digits are expanded (e.g.,
186- becomes two dates: 1860-1869). This date will be printed as part
of the I-field code, but the original form of the PPD date will appear
as such in the A-field.

In the event that there is no date, in the PPD (type 300) string,
but there is a date on the type 000 card, then this date will be appended
to the PPD string for printing in the A-field. The date will be expanded to
four digits if need be (as described above), and in this event it will

tSZ

be assigned I-field code bq". Otherwise, it will be given code "bs"
(single date - no digits out).

8.6 Subroutine PERSAUTH

This subroutine deals with type 100 data (personal author names) and
type 600 data (subject headings) which have been identified as personal
names (see Fig. 78), Column 69 of the type 100 cards may contain a code
indicating whether the person named is co-author, editor, etc.

The string is scanned left to right for the appearance of the word
"Sir" (the most common -Litle of honor) in the string. If it is present,
it is removed from the string, and a note made of this fact. The string
then is scanned for the presence of a date. If a date is found, the de-
limiter "$b" is inserted in front of it. The delimiter "$a" is inserted
at the head of the string. If the word "sir" was previously encountered,
it is inserted back into the string, after the name and before the date.
The delimiter "$c" is inserted in front of the word "sir." If no date
was encountered, the word "sir" with its delimiter will still be appended
to the end of the name.

The code in column 69 of the type 100 card is examined. If the code
is present, the appropriate abbreviation with the delimiter "$e" is attached
to the end of the type 100 string. For instance, the code "c" in column 69
stands for "compiler." Therefore, when this code is detected, the substring
" ecomp." will be appended to the name string.

8.7 Subroutine TITLEALG

'This subroutine delimits the subfields of the monograph title, which
appears on the SC type 200 cards (see Fig. 79).

a. The subfields which may be present are (in order): (1) short
title (always present); (2) long title; (3) author statement and
additional information; (4) edition statement; (5) remainder of
edition statement. The short title is the third A-field, accord-
ing to the ILR input format. Subfields (2) through (5), above,
constitute when present) the fourth A-field.

b. The title string is scanned initially for the following: (1) a
question mark or period followed by two blanks, which would be
taken as end of sentence indicators; (2) a colon or semi-colon,
which would be taken as end of short title indicators; (3) the
word "by," (either standing alone or enclosed in brackets), which
would be taken as an end of short title indicator.

c. If a question mark or period followed by two blanks is encountered,
everyLhing preceding this punctuation symbol is taken as belong-
ing to the short title subfield. If there is no further data,
control is returned to the subprogram STRINGER.

d. The routine next tests to determine if the remainder of the string
begins with a numeral or the characters "Rev" (for "Revised" or

"Rev.") The presence of any of these is taken to indicate the

253

start of the fourth subfield, the edition statement.

e. The second and third subfields are considered absent. The
appropriate delimiters are inserted, and this remainder string
is then scanned for the word "by." If "by" is present, it is
assumed to mark the beginning of the fifth subfield (the remainder
of the edition statement), and is so marked. Control is returned
to the subprogram.

If the remainder of the string does not start with numerals or
"Rev," it is considered to constitute only the third subfield
(author statement and additional information). It is so marked
(unless it already has been marked; see H. below), and control
is returned to the subprogram.

If, during the initial scan (B.), a colon or semi-colon is en-
countered, this is taken to indicate the end of the short title.
What follows immediately is considered to be the long title (or
title elaboration - second subfield). This remainder is then
scanned for a period followed by two blanks or the word "by"
(or "[by]").

h. The word "by" or ("[by]") is taken to delimit the start of the
third subfield, and the appropriate delimiter is inserted if
it is encountered. In the event it is encountered, the remainder
of the string is scanned for a period followed by two blanks. If
no period is found, the remainder of the string thus scanned is
considered to be a continuation of the third subfield and no
further delimiters are inserted; control is returned to the sub-
program. If a period followed by two blanks is found, control
(for scanning remainder of string) is transferred to that portion
of the program outlined in paragraphs D. to F.

i. If, during the second scan (described in paragraph G.), a period
followed by two blanks is encountered, the period is considered
to signal the end of the second subfield (long title or title
elaboration). Control (for scanning the remainder of the string)
is transferred to that portion of the program outlined in r;-ra-
graphs D. to F.

If, during the initial scan (described in paragraph B.), the
word "by" or ("[by]") is found, it is taken to delimit the first
and third subfields, with the second subfield considered to be
absent. The remainder of the string is scanned for a period
followed by two blanks. If none is found, the remainder is con-
sidered to belong entirely to the third subfield, and control is
returned to the subprogram. If a period followed by two blanks
is found, control (for scanning the remainder of the string) is
transferred to that portion of the program outlined in paragraphs
D. to F.

k. lf, during the initial scan (described.in paragraph B.), none
of the scat characters or words is found, the title is conSidered
to consist only of the short title. Delimiters are ac ordingly
inserted and control is returned to the subprogram.

54

FIG. 74: FLOWCHART OF SUBROUTINE ES200500

This subroutine compares the SC type 500 (comment) cards (if present)
with the SC type 5200 (serials title) cards (if also present), in order
to determine the type of serials title, and to determine if the comment
cards mention the presence of a bibliography, contents note, etc. An
5200 card always appears together with a 500 card, but a 500 card may
appear by itself. If a series title is present in the 500 data, it
appears at the beginning of the string and is enclosed in parentheses.

Titles are ass
ed identical.
Branch to sub
ADDALG to det
mine ;f-' ptlet
,type * or

Is
there
any S200
data?

NO

a

oe
00 stri
in with a
"- ind'
itl

ing

Call Subrou-
tine BIBLIO
to process
string

Obtain the
length of the
500-title by
scanning for
ri ht paren.
ne ete pnrprrtblesis

ranch to sub-
outine BIBLIO
or delimitin
f the remain
f the 500

he 500
d S200 tit
of equal
lengt

500 ti le is
taken as
title and "Id"
is prefixed to
it. p200 title is

niate
co e

l
r

It

Branch to sub-
routine ADDALG
in order to de
limit the "*r"
(S200) title

Call subrou-
tine BIBLIO t
process remai
der of 500
str.#1g (if
Any)

255

o

FIG. 75: FLOWCHART OF INTERNAL SUBROUTINE ADDALG

This subroutine (internal to subroutine ES200500) det rmines whether
a title is of type "*a" (series note traced same (author title)) or of
type "b" (series note traced same (title only)). A code will be returned
to ES200500 to indicate which type the title is. This will be disregarded
in the event that ES200500 has determined previously that the title is
type "r". If the title is type "a", it will be delimited.

Store zero in
R7. This is
default code
indicating
title is *b

Scan left to
right for a
period

Insert delimi-
ter "1-b" after
the period

Store address
of period. Co
tinue scan le
to right for
another perio

Was
a period

,encountered

Insert "1F16_
in the string
after the laS
period encoun
ed in the str

Scan left to

_I

fr ight for "v",
"vol.", "no."

1

or numerals

er-
g

Were
none of
hese en,o
tered?

'NO

Insert "iFlu'
in front of
characters
found

FIG. 76: FLOWCHART OF INTERNAL SUBROUTINE BIBLIO

This subroutine internal to subroutine ES200500) assigns the B-field
category indicator k" to those portions of the commentary data which
cannot be identified as serial title, bibliographic information (code "*f
or contents information code "*i").

Store zero in
k olace.Inser
"*a" at start
of effective
s n *,using

Open gai

Scan left to
right for the
woras ''contents"
or -biblio , or
"Includes biblio"

none of
these de-

cted?

NO

YES

Gate
Open

Gate
Closed

NO

-ted?

" NO here a
-on-zero ad

kplac

YES YES YES
V

nsert -*f" in
ront of de-
-ected word(s)
his may erase
:he "*k" code

Insert "*I" in
front of
"contents"

--0

Insert "*k"
this address

Calculate addr.
for relinsertion
of "*k , Store
in Kplace.
Close gate.

gs7

FIG. 77: SUBROUTINE PPD FLOWCHART

This flowchart shows the conceptual logic by which subroutine PPD
handles the place, publisher, and date data which is found on SC card types
300 and 000 (date only).

Aim: (1) to create the I-field date and to ascertain the I-field date
type; and (2) to create the A-fields for place, publisher and date by de-
limiting the 300 string and making use of the date supplied en the 000 card.

Is
there

arkt
oFt
-ata

NO

Insert dumm,
delimiters
separating
place, publi h-
er and pub.

YES

Ret_rn

A
YES

Is there
a comma?

NO

YES

YES

Insert date
after

delimiters

Place only is
assumed to be
mresent in th
300 string.
Insert delimit-
ers accordingly

Store address
f this comma
an left to

right for
other comma

Insert a de-
limiter after
he comma.Thi
separates place

, (and/or pub.)]
Wrom date

Insert a 2ndl
delimiter be-I
fore date.Place
is assumed pre-
sent before date

YES

NO Insert a de-
limiter after

evious commaz_
_is is taken

as demarce on
loetw. pl. & pub.

2.55

FIG. 77: FLOWCHART OF SUBROUTINE PPD (Cont.)

The last com
in the 300
string is ass
ed to separat
the place &
ubler.fields

Insert delimit
after last
comma and at
end of string

NO
Assign I-fiel
code "bn"
Date is not
known)

YES
Attach the 00
date to the
end of tte 30
string. Assign
1-field code I

"b

Turn on copy
right indi-
cator

Is
there a
2nd date?

YES

Save 1st date
for later use
in I-field

Save 2nd date
for later use
in I-field

NO

,I-field code
is "bm" (2
dates - 2nd,
is terminal).

Create 4 digit
date by copyin
century digits
from 1st date.
Save for later
use in 1-field

I-field code
"bc"(2 dates-
2nd is copyright).
Reverse pos. of
dates 111.300 *tring,
so copyright (tate
is 2nd!

FIG. 77: FLOWCHART OF SUBROUTINE PPD (0/mt.)

Compare date
in 300 string
with date on
000 card

Is
300 date
earlier?

Expand date t
make it: XXOOXX99
e.g., 18- be-i--
comes 16001b99)
land
L___

saVe for i-fieid

Add a comma at
thu end of the
300 string &
attach the
000 date

Save the 2
dates, but in
reverse order,
for later in-
clusion in I-

Save date for
later printing
in I-field in
expanded Corm
(e.g., 186-be-
comes _1_110.4.9

Date has 4
digits. I-fiel
code is "bs"
(single date -
Ino digits out)

This
100) and
"1F16d"

"editor"

FIG. 78: FLOWCHART OF SUBROUTINE PERSAUTR

subroutine scans the personal author data string (SC card type
delimits the name subfield ("1F16a"), together with the date
title of honor i.e., "sir" - "1F16e"), and.relator .g.,

- "ulle") if any or all of these is present.

Is
word "si

imbedded in
string?

It

YES

Delete
from string
and set
SIRFLAG = 1

Scan for numer-
als not follow-
ed by alpha-
betics

If this situa-
tion occurs, the
r'irst numeral
will be conaiLered
tne start or tne
date_fi id

Does
situation

occur?
NO

Date field is
assumed not
resent. IRse
elimiter 1F

in front of
afte f' 2

t

6aT

YES

Insert delimi er
in front of
name field"iFi6e.
Insert delimiter
in front of date
field "11'16e1

Does
SIRFLAG=1?

YES
sert the wor

'sir"_preceded
y dea4miter
1F16c back
ntO string a

2

Check col. 6
of the orig. in-
put card for ire-
sence of a coue
which indicates
:30141,t_tb4_41,2=szn
is an ed trans-

lator, etc.
Iv

[If code is -pre-
sent, attacH apprc-
pTiate abbrev.
ith delimiter

at end of exist-
ing string

FIG. 79: SUBROUTINE T1TLEALG FLOWCHART

Given: Complete monograph title.
To be determined: (1) short title, (2) long title, (3) author statement
and additional information, (4) edition statement, (5) remainder of edition
statement.

Start

Left to right
scan for any
of the
following:

Period, Colon, "by" or
"[by]"question semi-

mark colon

NO

YES

Period sig-
nals end of

No fur-
ther fie
are
present

YES 3rd cha
fter period

a blank?

NO

Indicates
the start
of

YES NO

Left to
right sca
for "by"

If "by" i
present,
separates
from®

it
This is
either the
begin. or
cont. of

_end o
rig

out

Colon or
semi-colo
se-arates

from

-PP
If none
present,

only
is prese-

'by se -
ates

from
when
not pres

Left to righ
scan for:

Period

or
"Poxj"
"by" --13
tes 110

ollowe
y 2 blanks'?

YES
eriod
signals
end of

If neithe
only

are
esent

Left to
right

liPscan for
period

ollowe
by- 2-blanks

_ES

. no per-
od, last
ection

9. PROSPECTS FOR AUTOMATIC FIELD RECOGNITION
By John M. Reinke

9.1 Introduction

At present, automatic field recognition (APR) is an "art," not a
"science." The development of algorithms seems to depend on the int- itive
recognition of patterns of content-structure associations in the data by
the analyst. Hence, the success of the algorithms hinges on the presence or
absence of certain punctuition keys and a few keywords, such as "by, ft

"edited," etc. Algorithms are developed by an initial "eyebaling" of a
sample of the data base. Output is then checked against a hand-corrected
set of the same data, a feedback process then ensues through which the al-
gorithms are further refined, and more marginal data cases subsequently are
correctly processed. This process increases the complexity of the algorithm
and usually results in some sacrifice of speed for greater accuracy.

Existing algorithms make relativDly little use of pre-scanning or
"look-ahead" techniques, but chargcm tYrough the data-strings head-on, after
the fashion of a python swallowing a cow. Consequently, existing algorithms
take a shotgun approach to the data, being designed very generally to handle
any extreme data case of the type under consideration. In contrast to an
approach of matching the rifle calibre to the type of game being hunted, this
approach presupposes that the type of game being stalked has been more or
less successfully identified in advance.

Fwever, it seems entirely possible to create a standardized and
systematic approach to algorithm design, through a careful analysis of what
actually transpires (in the analyst's mind) in the current "subjective"
approach and through the introduction of new analytic techniques, such as
pre-scanning.

It is possible to foresee the development of a computer language
which will both facilitate algorithm design and enable the analyst quickly
to classify and quantify his data in such ways as to make explicit the
patterns which are implicit in the data. Constraint parameters for speed
and accuracy, together with optional methods of attack will be available
to the user. Newly developing data compression and indexing schemes,
coupled wlth the steady increase in available computational power (and
decrease in cost) will make possible any des-red degree of algorithmic
accuracy, through a change in the content-to-structure mix of the input
data. That is, it will be possible by explicit enumeration to treat former
content matter (such as given words and phrases) as structure. (The idea
of structure vs. content needs to be clarified. It has to do with the
computer's ability to make pattern recognitions but not associative
recognitions.)

In the short run, an analysis by which analysts conceive and execute
algorithms should result in some "algorithms" which will not only facilitate
the teaching of algorithm desig, to others, but also speed up the process
and increase the accuracy of the end product. As we learn more about the process,
we will be able to produce programs to aid the algorithm design process by

applying classification and pattern-emergence techniques to the sample
data bases under consideration. At this stage the algorithm design
process will have been partially automated, wi1;11 the transference of
lower levels: of data analysis from the analyst to the computer.

9.2 An Example of the Propos-d Use of Pre-scanning in Algorithm Design

Assume that the input data is the imprint field of a catalog card.
It is desired to design an algorithm which will identify the place,
publisher, and date elements within this field.

These elements can appear in at least the following combinations:

Class nM1
PLAeE, PUBLISHER, DATE.

2 PLACE1, PLACE2, PUBLISHER, DATE.

3 continuation of PLACE PUBLISHER, DATE.PLACE1,
1,

)4 PLACE1, PUBLISHER
1

PLACE
2'

PUBLISHER
2'

DATE.

5 PLACE, DATE.

6 PLACE, PUBLISHER, DATE, DATE.

7 PLACE1, PUBLISHER1, DATE]) PLACE2, PUBLISHER2', DATE2.

8 PLACE, PUBLISHER.

It is not necessary to have decided beforehand what the various
combinations are or may be. However, it is necessary to make an initial
decision as to which structural elements will delimit or identify the
content elements in the imprint field. Suppose that the key struc-
tural elementc are taken to be the comma, period, and semi-colon (,.

We now can write a pre-scan routine which will process some reason-
able samples of imprint fields and produce a characteristic "key" for
each imprint field. The type classes of imprint fields listed above
would have the following keys:

Type_Claaa Kev

1 I 1
V 9

2 I
2 2 5

3 1 , , I

4 I 22,2 I

5
I

6 ,
3 9 3

7

8

Key Class

1

2

2

3

2

5

4

Note that only five unique keys have been produced using the given
structural element set. If the ten digits are added to the existing
structural element set, the following keys will be generated:

Type Class Key Key Class

1

2

3

5

6

7

8 1

2,99"

1,99.

I

999,91
,9.

Q99r 2r e

,,9;"9.1

2*

1

2

2

3

4

5

6

7 where 9 stands
for any digit

(The possibilities now become apparent fer the development of
efficiency equations for a given structural element set.) The keys are
composed of various members of the structural element set. Observe that
there are now seven unique keys for the eight type classes.

The pre-scan routine will operate in the following manner: after the
analyst decides upon the structural element set, to be input to the program,
the program scans an input imprint field and produces its characteristic
key. It then compares that key with unique key patterns which have been
stored already, and either assigns the input imprint field a number corre-
sponding to the key on which a match was obtained, or if it is unique, adds
the current key to the table and assigns the corresponding number to the
input imprint field. The input field with its newly assigned number will
then be written out on tape.

After all input data has been processed, the table of unique keys
will be dumped, and the output tape will be sorted so that the imprint
fields will be grouped according to their characteristic key patterns.
These will then be printed.

The output of this program will enable the analyst to ascertain quickly
both the most common type class (or classes) of data in the imprint field,
and the degree of consistency (the presen-: of more than one type class
within a given key class) within a given key class for a given structural
element set. Output from different structural element sets can be compared.

This data will provide the analyst with a much clearer picture of
the accuracy he can expect than he could obtain merely from "eyeballing"
the data before designing an algorithm.

In fact, it will now be possible for the analyst to design several
algorithms, oerhaps one for each characteristic key. During actual
processing, pre-scanning can be used to produce a key which will then

265

route the imprint field to the specific algorithmic subroutine designed
for it. Hence, what formerly would have been tackled by one subroutine
will now be accomplished instead by a whole family of subroutines.

9.3 A Proposed System for AFR Algorithm Development

It is possible to establish an interactive system for the devel-
opment and modification of algorithmic field recognition routines
-(to achieve optimum data transformation) through a continual moni-
toring of the data during retrospecti-ve conversion of large files.
The proposed system will operate in the following way:

b.

An analyst seated at a CRT terminal will ask for a relatively
small random sample n (of the data for which an AFR algorithm
is to be developed) to be flashed on the screen from files
stored on disk or tape.

The analyst will choose an initial set of keys on the basis of
his (brief) analysis of the data.

c. These keys,will be input to the pre-scan program (the nature
of which will be described below) which will be run against
another random sample m (>n) of a suitable size.

d. The results of this program will be flashed on the screen for
further analysis (if necessary) by the analyst. The results
will be of the following sort:

1. A list of the k key classes generated from the
sample m.

2. The elements of sample m will be sorted into k
groups according to the key class to which they belong,
and the various frequencies (F1 to Fk) of the elements
of m belonging to the k key classes will be calcu-
lated. (These will be calculated as percentages.
Example: suppose m = 100 and k = 5. If 25 elements
of m belong to the second key class, then F2 = 25%.

e. The analyst will examine the k groups of the elements of
the sample m for internal consistency (i.e., is there more
thou one type class within a given key class?), depending
on their associated frequencies. For example, if a given
group ki has a frequency Fi < 2%, the analyst may not wish
to determine the internal consistency of the group, because
it appears (for his purposes) so rarely.

The analyst also will determine whether the original
set of keys generate an inordinate number of spurious key
classes (the case of a single type class generating a
number of key classes).

-252-

f. On the basis of this analysis, the analyst will-have at
least four options:

1. The analyst may decide that the set of keys has
produced key classes of such consistency and favor-
able frequency that no further pre-scanning or modifi-
cation of the key set is necessary. As an example,
suppose a key set has generated 5 key classes with
frequencies F1 = 25%, F2 - 20%, F3 = 15%, F4 = 38%,

F5 = 2%. The analyst has determined that key classes
ki to k4 are internally consistent, but that k5 is
very inconsistent. He may decide in this
case that the 2% of cases represented by k5 are
negligible.

2 The analyst may decide to delete or add to the set
of keys and repeat steps C-F in order to generate
new key classes, which hopefully will be more
internally consistent than the old key classes.
Efficiency functions can be developed which will
give the analyst another criterion for deciding
which of two keys to employ in creating his algorithms.
For example, suppose that one set of three keys
generates 6 key classes with a net inconsistency
of 3%, while another set of 5 keys generates 12
key classes with a net inconsistency of 2-1/2%. Ef-
ficiency functions will help the analyst decide
which set to use.

The analyst may decide upon a secondary set of keys
which will be used to reprocess those original
(primary) key classes which have exhibited internal
inconsistency. The hope is that the secondary key
classes thus produced will be internally consistent.
The analyst will then repeat steps C-F. This
approach is an alternative to step F2. Again, it
will be possible to develop criteria for determining
whether approach F2 or F3 is superior in a given
situation.

The analyst may decide that the results of the pre-
scan are conditionally acceptable. For example,

he may find that 90% of the members of sample
m belong to key classes which are internally consis-
tent. The other 10% may belong to a key class ki
which contains two type classes. Suppose thal, 70%
of the members of key class ki belong to one
type class and that the other 30% of the members
belong to the other type class. The analyst may
find it acceptable to specify a default algorithm
for the 70% and an alternate algorithm for the 30%.
The use of the alternate algorithm may occur either
during post-editing or during actual processing.
Its Implementation will be discussed below.

267

If the analyst has decided on either step F1 or _ FL, ne
may wish to check the generality of his finding by applying
his chosen key set (s) against one or two other random samples
drawn from the data fil

h. Assuming the successful completion of step C the analyst
is ready to write some algorithmic sentences which will
be translated (probably by a SNOBOL-type program) into
a series of logical operators (notat5on for which must
be developed or borrowed from somewhere).

These operators together with some output from the
pre-scan program (such as the final key set, key classes
and some mapping tables to be explained later) will be
input to another program (languagr- to be determined)
which will generate either assemb_Ly language or machine
language code. This final code will be used actually to
process the data.

As an example, the following could be the sort of algorith-
mic statement which might be written to generate the appropriate
code for sub-fielding type class 1, which has the form: "PLACE,
PUBLISHER, DATE." and which has the key class:',.' "Key class 1:
insert "1" after the first comma and '$c after the second
comma.

i. With this type of system, it is reasonable to expect that in
many cases an analyst will be able to produce executable code
(for a given class of data) in a morning or day's time.

9.4 Advantages of the AFR Algorithm Development (AFRAD) System

a. It will produce results much more rapidly than they can be
obtained with existing methods.

b. It will produce a family of simple (default and alternate)
algorithms to replace the single complex algorithm produced
at present. Since the algorithms are simpler, they will be
much easier to write or modify. Due to their simplicity,
they may be written by persons who are relatively unfamiliar
with algorithmic techniqi,es.

This method potentially is more accurate than the current
method.

During the processing of large files, this approach will
make possible the maintenance of a running statistical check
of the frequency with which certain (key) classes are appearin
It will then be possible (if necessary) to modify certain
algorithms using cumulative occurrence data to improve on the
design originally formulated on the basis of limited sample data.

2CE1

Since the algorithms are produced by writing algorjthmic state-
ments, anyone who wishes to understand the functioning of a given
algorithm can do so by reading the algorithmic statements.
In effect, the algorithmic statements provide flow charts of
the functioning of the algorithms.

It will be possible during processing to tag, for post-editing,
thoce (key) classes of data which the AFRAD system has indicated

will be most inconsistent.

9.5 Re arks on Sampling

The algorithms to be developed in the AFRAD system will be based

on patterns which occur in the random sample(s) drawn from the data

file. It is well to remember that the frequencies obtained from the

sample are only estimates of the true population frequencies. It

will be impossible to predict whether the actual frequencies will be

more favorable or less favorable to the correct conversion of the data.

This is important to recall in connection with those key classes which
exhibit some degree of internal inconsistency: they may comprise a
larger section of the file than the sample would lead you to believe.
Some key classes may be so rare as not to appear in the sample at all.

However, the processing program will be able to detect them.
These can be dealt with during processing by saving the numbers of the
records in which they appear, and saving the actual examples until
some specifien number has been accumulated. These will then be read

out. An analyst ean write an algorithm to handle them which will be
incorporated into the processing program. Those records already pro-
cessed can be re-processed also.

A "ruh" is a phenomenon of some interest in probability theory.
An example of a "run" could be having a tossed coin come up heads 50

times in a row. We might call a "near run" the case where the coin

comes up heads 45 times in a total of 50 times. These phenomena may

have some bearing on our_work.

Suppose we had a million marbles, 70% of which were black and
30% white. Assume that the:r were mixed about (integrated) and then

lined up in a single row (or string). According to probability theory,
it is highly unlikely that the white marbles would everywhere be
regularly distributed among the black marbles. There probably would
be a fair amount of "clumping" of both the white marbles and the black

marbles. That is, it would be Possible to pick out some segments of
the string which were compossd of all, or nearly all white marbles,
even though the predeminant color is black. Using a continuous left-
to-right sampling technique, taking every nth marble, we could probably
predict with a reasonable degree of accuracy when a given segment
(of length m marbles) of the string contained a percentage of black

marbles equal to p (some arbitrarily chosen percentage) or greater.

The application to our work is as follows: Suppose that a certain
key class comprises 35% of a given class of data. Suppose also that the

key class contains two type classes (analogous to the black and white
marbles) which cannot be distinguished readily from each other by

269

punctuation keyword lists, or the like. It would be possible during processing
to use the sampling technique described to determinc (with some reasonable
degree of accuracy) whether a, given section of the data contained mostly
one type class or the other. Based on this, the appropriate default or
alternate algorithm could be invoked. The problem is that sample taking
and analysis is likely to be much slower than the speed of the program
processing the data, because some farm of human intervention will be required
to determine the type class.

If this problem should prove insurmountable, it might be better to
apply this technique at the post-editing stage (or maybe forget about it
altogether). The advantage of this approach (if implementable) is that it
produces a file with a lower absolute amount of error. The disadvantage
is that now, instead of one type of error (some A's should be B's), there are
two types of errors (some A's should be B's, and some B's should be A's).
This approach will be most successful where the type classes (within a key
class) are nearly equal to each other, because such relatively equal fre-
quencies are most likely to exhibit clumping.

An alternative to this approach would be to 'process the entire file
according to a default algorithm and then step the entire file through a
CRT terminal where an analyst would make a judgment as to the appropriate-
ness of the default algorithm to the individual members of the file. If the
analyst decided that the applied algorithm were wrong, he would do a
reverse purge (restore the data to its original form) and apply the default
algorithm to the data, all with the press of a button. Data which were still
incorrect could be corrected manually.

9.6 Pre-scanni g and Mapping

The aim of the pre-scan should be to obtain from the data string
readily extractable information which is highly relevant to the tasks to
be performed by the algorithms. It should be very fast, as all data must
undergo pre-scanning, and should "map" the string in order to obviate
further re-scanning as much as possible. The map of a string will be a
table which stores the locations (in the string) of the key characters
(and keywords, etc.) encountered during the pre-scan, together with said
key characters and keywords, etc.).

Such maps will enable the translation of algorithmic sentences into
object code. The algorithmic sentence compiler will have the job of
properly linking to the maps the algorithmic operators which were derived
from the sentences.

Experimentation will be required to determine what the optimal
capabilities of the pre-scan should be. Although it is easy to write a
pre-scan which detects only individual characters, the detection of strings
of characters (dates, keywords) beComes a little bit more complicated and
slower.

Should-the pre-scan also be able to detect discontiguous patterns as
single conditions? (E.g., a comma followed by a date to be considered
as a unit; a semi-colon not followed by a word "edited" to be con-
sidered as a unit.) Such capabilities require more programming effort,
slow down the pre-scan, and permit the pre-scan to take on some of

e0-256-

the characteristics of the complex algorithms we are trying to replace.
However, it may be decided that the utility of such capabilities may
outweigh their disadvantages.

9.7 Automatic Language Recognition

Though it was not possible to simulate the performance of the AFRAD
system in any exact sense, the quantitative approach was used in the
development of algorithms for the recognition of language. First, some
statistics were gathered from a test file. Then, algorithns based upon
these statistics were developed, tested, and refined. The following

general data was obtained:

a. Of the first 551 titles in the test file, 59% were English titles.

b. In a sample of the first 228 foreign Tanguage titles of the file,
78% had special symbols or diacritics in title and place,
publisher, date string.

Based on the first 200 English titles of the file, the most f
quent 1, 2, and 3 letter worde (in decreasing frequency) are:

the, and, in, a, of, by , an, to, for.

"A" is also found in Spanish, Portuguese, and Italian.

e. "In also are found in German.

Figure 81 gives short words (1-3 characters) commonly found in several

foreign languages.

9.7.1 Subroutine #1

This subroutine, scanning a given string of data until it hits a
diacritic or special character, is very short and very fast. If the
diacritic or special character is unique to a particular language, the
code for that language is assigned to the string. If the diacritic or
special character is found in two or more languages, the code for that
language (of the given set) which is most frequent in the file is assigned

as the default code. If no diacritic or specisl character is encountered in

the string, the code for English is assigned as the default code. This

subroutine has not yet been timed.

Based on a sample of the first 1000 records on the AFR MARC tape,

this algorithm has an overall accuracy of about 81%. 98% of the English

titles were identified as such. 72% of all foreign titles were recognized
as being foreign language, and 15% of the foreign titles were mistakenly
classified as English titles.

Of the titles, 619 are English, 381 are foreign. Of the 381 foreign
titles, 220 were identified correctly as to actual language. Foreign
languages correctly identified were: German, French, Spanish, Portuguese,
and Czech. Potentially, with a few minor modifications to the
tables in 7.ome cases, the following languages are recognizable: Danish,
Swedish, Latvian, Polish, Hungarian, Turkish, and Indonesian.

-257- 271

9.7.2 Subroutine #2

This subroutine is very complicated and much slower relative to sub-
routine #1. The flow chart is given in Figure 82. The heart of the program
is a table called DIATABLE, containing 86 fullwords (see Figure 80). Each
fullword corresponds to a special character. Bit positions 2-24 correspond
to 23 languages which may occur in the file. For example, German is assigned
bit positjon 2, French is assigned bit position 3, and so forth all the way
down to Albanian, which is assigned bit position 24. These languages are
arranged in order of their presumed frequency in the AFR MARC File, with the
more frequent languages oeing ahead of the less frequent ones. This order
is important because it determines which language will be the default
language in a given situation.

For the fullword in DIATABLE corresponding to a given diacritic-
alphabetic combination or a given special character, the corresponding
bit position is turned on for each language in which the given diacriti
alphabetic combination or special character may occur. For example, the
eleventh word of DIATABLE is for the Diacritic-alphabetic combination A-GRAVE.
This combination is found in the following languages: French, Italian,
Portuguese, Catalan, Tagalog, and Latvian. The bit positions corresponding
to these languages are turned on (i.e., made 1). All other bits ar turned
off. This results in a fullword whose hexadecimal representation is:
2COC7000.

Bit position 1 is turned on only wnen the particular diacritic-
alphabetic combination or special character is unique to one language. Some
of the words in DIATABLE are dummies, having the 1st and 31st bits turned
on. Special characters which are usually found in non-Roman alphabets are
routed to the 86th word, whose 1st and 32nd bits are turned on. Bit
positions 25-30 are not used currently. Six additional languages, therefore,
can be implemented in these positions.

The program operates in the following manner:

Step 1: A left-to-right scan is made of the data string. If a
special character or diacritic-alphabetic combination is encountered, it is
tested to see that it is legitimate. Illegitimate characters or coMbina-
tions will generate a BAD DATA message, and the scan terminates.

Step 2: If legitimate, the corresponding fulIword from DIATABLE will
anded" with register 8, which initially contains all ones.

Step 3: The first bit of the fullword from DIATABLE is then tested to
see if it is a one. If so, that special character or diacritic-alphabetic
combination is unique to one language. The string is therefore scanned for
English keywords. If one is found, ENG is assigned as the code. If not,
the code for the unique language is assigned to the string.

Step 4: If the bit tested at step 3 was zero, the scan continues for
additional diacritics and special characters. Proceed as in steps (1)-(3)
until the end of string is encountered or one of the exception conditions
above occurs.

72
-2

Step 5: At the end of a complete scan of the string, if any dia-
critics or special characters have been encountered, then R8 will contain
a one bit for each language in which the particular combination found in
this string could possibly occur.

Step 6: Register 8 is then tested to see if it is zero. If so, then

the string contains contradictory discritics or special characters. A

message to this effect is generated, and processing terminates. This could

occur, for example, if a string somehow contained an acute accent and an

angstrom. There is no language which uses both the acute and the angstrom.

As a result, the fullwords corresponding to the acute and angstrom, when
"anded" into R8, would produce a zero result in R8.

Step 7: If, after testing, R8 is, found not to be zero, the routine

proceeds to link together a corresponding language block for each one bit

in R8. In this manner, from one to 23 language blocks may be linked. Each
language block contains up to 4 each of 1-, 2-, and 3-letter words commonly
used in the particular language and usually unique to it. Please note that
no words at all have yet been inserted in some of the language blocks (for
example, Rumanian). This needs to be done. The language of the first block
linked is assigned as the default code.

Step 8:
words, which
match occurs
taken as the
is assigned.

The input string is now s anned for 1-, 2-, and 3-letter
are compared against the words in the linked blocks. If a
, the language of the block in which the match occurred is
language of the string. If no match occurs, the default code

Step 9: If the scan of the string in step 1 encountered no dia-
critics or special characters, then the string is scanned for English key
words. If one is found, the string is considered to be English. If none
are found, the fullword located at FIVELANG is loaded into R8. This
fullword can be set to any combination of oncs and zeros. Control then
passes to step 7, where all of the language blocks corresponding to the one
bits in FIVELANG will be linked, and the string again scanned for 1-, 2-,
and 3-letter words as described above.

This routine has not been timed yet. Hopefully, it is apparent to the
reader that several modifications can be made to the algorithm to increase
or decrease its accurary and speed. In general, greater accuracy means
lower speed, although nothing is known about the quantitative relation
between the two.

FIG. 80: UNIQUE DIATABLE DISPLACEMENT VALUF3

(for the current 23 Roman alphabet foreign languages used in Subroutine 2)

e I ucgn s y 1 g t d

ACUTE

GRAVE 0

---4

4

_DIERESIS

BREVE
CIRCU14-
FLEX 0 12 3

CIRCLE

_4

CEDILLA
LEFT
HOOK

I

I

1

6

RIGHT
HOOK

HECEK 5_ 6

TILDE
SUPERIOR
DOT

0 1 2_

FIG. 81- SHORT WORDS COMMONLY FOUND IN SEVERAIJ FOhEIGN LANGUAGES

Lantua e 3-Letter Words 2-Letter Wo ds 1-Letter Words

GER die, das der, von, und:
den, dem, ein

fu Nr;

FRE 1 s, par, une, des du, le
la

de,

SPA las, los: uno, una, por al, el un, la,
en

de,

y:a

ITA dal, gli, per, un' da, di, il, lo:
le, l'

in,

FOR aos, lima: por as, do, os, um:
ao, da

em, :a,

PUT een, met, van

af, et, eu, og: de

Hun

SWE

PLS i,w: k

CHE :na v: a, k

CRO nad, pod, prd, rad do, sa, za:od, po

SLV : od, po, za

TAG ang, kay at, ni

ICE hin, hit: ein, til ag:af :i

FIN

Notes:

bi

Words preceding colon are "keywords" for the given language.
Words following a colon are not unique to the given language. They
may sometimes be used as keywords in another language of the same
family which is considered to be more frequent in the file, but
which is not the default (most frequent) language of the family.
For example, Danish is the most frequent of the Scandinavian

275

languages. Yet the word "i" is used as a keyword for Swedish
because Swedish is considered to be much more frequent than the
other Scandinavian language which uses this word, which is
Icelandic.

c. Keywords have not yet been obtained for the following languages:
Indonesian, Rumanian, Turkish, Catalan, Latvian, Afrikaans, and
Albanian.

d. Addimional keywords are needed for most of the languages listed
in the table. The second version of the language recognition
subroutine is designed to contain up to four 3-letter words,
four 2-letter words, and four 1-letLer words for each languagE.

1

2

FIG. 82:
LANGUAGE RECOGNITION ALGORITHM #2 FLOW CHART

Initialize
Load shift by
with zero

Load R8 with

Scan L to R
for diacrits
and special

chars.

HIT?

es

pecial
character?

No

11

Yes

Must be a
diacritic. Back

up to look at preceding
character

_AD DATA
e.g.-an

acute precede
a d"-MESSAGE

P-

Is
character
he diacr'

"ti1

eceding
lc a
one?

Yes

Obtain shift
amount for

this diacrit
or spec. char.

Is
is diacrl
spec.
ue

Yes

r.
one

lang?

Store code for
this particular
language as the

default code

Scan the
string

or key Englis
words

Language
as

English

t amt.
iously sav

t am

Replace
old amt.
with new

amt.

Language is
given by

default code

d" the fullwo/id
from dia able which co-tains one
bit fo each languag_ which

could ha e the diacritc or spec.
char. with R8

277

addi

ontinue the LI.B
can of string for
tional diacrl iCS or
pecial charact_ra

Yes

R8
for each language to

the particular comb. of
or spec. chars. in the s

poL-sib' bcleng

FIG. 82 Cont.

now has a one sit
which
diacritics
tring could

8=0
.-no bi

turned on?

String contai
critics and
chars. which b
to mutually e
lang. groups.
punching erro
be indicated.

-ME5SAGE---

Link the corresponding
language block for each one

bit in R8 lang. code of first block
to be linked is taken as default code

Each language block
contains up to 4 each of
1, 2 and 3 letter words
common in the larguage

ring
is assigned

default
language

Scan string L to
R for 1, 2 and 3

letter words

HIT?

Yes

word
in lin

oes
tch any wo

langu
blo

Yes

No

Lang. code asoigned
is that for ne
language block in
which match occurred.

Scan LTOR
for English
keywords

dia-
special
long

clu
Key-
may

Assign
English as
language

code

flllword at
Load R8 with

labdi
'FIVELANG." This

fullword may be set with
any no.,mmel-cosibnne bits.

et default
code to
English

78

10. TRANSLATION FROM ILR PROCESSING FORMAT TO MARC II
COMMUNICATIONS FORMAT
by Jay L. Cunningham

10.1 Introduction

10.1.1 Purpose

A program, named LURCH, was designed to convert files of bibliographic
data records from an obsolete version of the MARC 11 format to a very
close approximation of the latest, full MARC II format. The obsolete
records were created by the ILR program named "INFOCAL." The files created
by INFOCAL will serve as input to LURCH. The output of LURCH will be
files of records, one-for-one, in the UC MARC format.

10.1.2 Scope

LURCH, as presently desjgned, is intended for use with two particular

files: the San Diego Biomedical Library book catalog source file, and

the Santa Cruz holdings records file. However, any file output from
INFOCAL can be processed by the program.

10.1.3 Contents

This description proceeds from a general narrative overview of the
program, to a set of intermediate level flow charts, to a detailed
definition of the modifications to be accomplished.

10.2 Narrative Description of Overall Program Structure

10.2.1 Housekeeping

Initialize buffers and tables for input record area, output record
area, for old and new record directories, and for receiving new indicator
values. Set up Tag Translation. (See Fig. 83 for table content and
structure.)

10.2.2 Read the next INFOCAL Record to an input Buffer

10.2.3 Shredout of INFOCAL Record Directory

First extract current record's length, base address, source agency
(Santa Cruz or San Diego), and number of directory entries, for use in
subsequent routines.

10.2.3.1 Major Loop

Extract each tag after the first, which will always be "000" (fixed
fields). In sequence, tag by tag, and using the tag as the index to the
Tag Translation Table, do a look-up to determine the identity and
disposition of each field (i.e. keep same tag number, or replace with
new tag number, or delete the tag, or delete both tag and field). Also,

279

for each tag, find new indicator values, using old tag and old Indicator
1 (in INFOCAI directory) as arguments. Extract old field length and old
starting character position from directory entry. Compute right-end
address for later use in moving the fields. The old tag and old Indicator
I are posted incidentally to a table but this is not strictly necessary,
once thelr look-up functions have been performed. See Fig. 84 for the
format of this table (used in the Fortran version of the program).
In the same major loop, a call or a branch is next made to a subroutine or
program segment, depending upon tha outcome of the look-up of the current
tag in the Tag Translation Table. For each tag in the table, a flag or
signal controls the program flow depending upon the tag's identity. For
example, in the simplest case (default), nothing is done; the old tag
number is copied to the new directory table, preparatory to copying it to
the new directory area in the output buffer. At this tine there are ten of
these segments. At the end of the logic for each tag, the new field length
and new starting character position are computed, the new tag number is
copied to the new directory table, and the new indicator values likewise
are copied to a table preparatory to being copied to the proper variable
fields in the output buffer. This ends this major loop, when all tags in
the current input record's directory have been processed. (At this point
no data have been moved.)

10.2.3.2 Bookkeeping

Prior to moving anything, the new directory table must be systematically
adjusted to reflect the outcomes of the changes found to be needed in the
previous loop. For example, the field length of data items which were
previously tag fields but are now subfields, must be added to the length
of the new "parent" field.

10.2.4 Major Loop

Move variable fields data from input buffer to auti,ut buffer. An
output buffer pointer is computed as a result of knowing now the length
of the new directory, which was computed in the previous major loop.
Depending upon the file (San Diego or Santa Cruz) and the tag number,
the loop proceeds through the new directory table, tag by tag, copying
the new values for Indicators 1 and 2 into the positions formerly
occupied by INFOCAL Indicators 6 and 7, inserts the $a, transfers the
variable field data for the new field, and inserts the field terminator.
The last field terminator in the current record is replaced by a record
terminator.

10.2.5 Create Fixed Field 008

This field is comprised of elements extracted and slightly re-
arranged from the 000 Fixed Field in the input record.

10.2.6 Create New Leader

This field is comprised of elements extracted from the leader and
000 Fixed Fields in the input record.

10.2.7 Create New Directory

The new directory entries are copied to this area of the output

buffer from the new- directory table.

10.2.8 Write the Completed Record to Output Storage

Return to read the next record (10.2.2).

10.2.9 End of File Check

Stop.

281

FIG. 83:
TAG TRANSLATION TABLE

Action Code Pattern #
Position New Tag for Special Indicator
(Implied NuMber Processing Key

(3)* (3) (2) (2)

000 008

oo3 ota ol ol

090 o_

100 03 02

899

*Number of Character positions in column of table.

FIG. 84:
DIRECTORY RE-BUILDING CONTROL TABLE

Shredout of Old Record Directory

Old Directory and Indicators

Creation of
New Directory and Indicators

New Directory and Indicators

Tag md 1
Field
Length

Starting
Character
Position

Right
Address Tag

Field
Length SCP Ind. 1 Ind. 2

000 V 26 00 25 007 0026 0000 V

003 0 05 26 30 008 41 26 V V

090 V 28 31 58 V* V V V V

100 1 18 59 76 090 24 67 ju V

240 0 90 77 166 100 21 91 1 0

245 93 112 1 V

660 V 17 281 297 .

664 V 09 298 306 660 729 331 V V

. 999* 409]** 0 V

means "delete both the tag and the variable field data" (currently
applies only to langtiage code). "999" means "delete tag only"; data
becomes a sUbfield under most recent preceding "parent° tag.

**FL value is added to preceding "parent" FL.

10.3 Flowcharts

Tag table
data

1.1

PROGRAM "LURCH"

V

Housekeeping
and

itialization

Set up ta-
:indicator
translate
tables

Read file
to I/0 area

"GET"
Read 1 logical
record to
input buffer

Error
checks

Santa
now in
proces

San Die
file in
process

-az file,
NFOCAL
ng format

o Biomed
INFOCAL
ng format

Handle bad
record by

gkipping, but
log record no.
if possible

ac. 4

buffe
base a
number

2.1

a

act from in
old record

d:ress, source
entries in

cce s old di
Copy old tag
directory tab
Indicator 1

NEWTAG
Find id
of curr

an act
branchi

n ity and d
nt old tag
on code to

ngth,
agency,
rectorY

ectory;
o old
; old

Names

position
d return
control
segment

First extract Ifield
length and st rting
character posi4tion,
and right adthjes s of
eId fcr cuent tag

Pointers

L number of total old tags
1,2= number of total new tags
la= input buffer pointer
(Starts at c.p. 69after
Tag 000 in directory.)

rcharacter po

Extract old
tag's field
length and

startin

Copy to Input
Field Length
table and

Input SCP table

V

ition

Comprate field's r4ht-
enl address for phe

current tag and pos to
current fild in Input R A. table

Now re
old ta
return

up in T
Ta

ady to process
ge with status
ad from look-
ag Translation
lc

4.0

110* .150*
Tag 003 Tag 090

Special proc Special proc.

350*: Tag 655, 661
400 Tag 657, 662
450 : Tag 656, 663
500 . Tag 664

*Statement Number in
Fortran Simulator
Version of the Program.

(-iag;2)-"No

Problem":
o change in
r simple rep ce-
_oant of tag ber

200*
Tag XX8
ecial proc.

287

7.0

250, 260*
Tags 261, 26
,pecial proc

Source
Agency

Santa Cruz

800

Add only "1" t
_ew field leng
Reinke already
serted the "$-

550

imple replac
ent: Copy ne
ag to new Di

701/703
No change:
copy old tag

to new Dir. table

0
th.
in-

n.

6.o

Com ute and post
fie d length to r

Dire tory tdble. (f elds
that were not deie ed)

Advance the
new tag

nuMber point-r

11'

Post returned n
indicator value

if any, to Il and
tables, for this f

12
eld

289

Ad-Tance total ta
pointer, input buf e-
pointer, and new tg

counter tag not d leted)

Loop to add deleted
tags' field lengths to
their corresponding new

MARC II tags' field lengths

Compute all
new starting
character

position values

Compute value
of output

buffer pointer
(0.B.P.)

Advance the 0.B.P. past
the two fixed fields 007 and 008

to c.p. IT and 67 (17 is
start of 007's data)

V
Set 1i pointers

I

IVAR = new variable field (output
buffer) pointer

KMARK = new directory table pointer
JI = old directory table pointer

INPUT = old variable field (input
buffer) pointer

ir

Ready to move
variable fields from

input buffer
to output buffer

lr
Insert new Indicator
1 in first character

posLtion of new fLeld
in output buffer

_A!
Insert Indicato

2 in second
c.p of new fiel

Insert "$a delimiter in c.p. 3 and 4
of eah field if no-5 Tag
100, 600, 700, 800, and

not Santa Cruz source hgency

Move data from IBtF to
OBUF for each old ield

whose da-;a is not to be deleted,
undr control of new directory

tablc ,ointct

291

Insert
re-ord termlnator

Move
r constructed

leader to
OBUF

Move new
directory dal
o OBUF direct

(startin
f."

F/T on
direc' ry

Insert
field term.;

get next
field

Include: Recomputed
record length
and base address

10

F XFLD

2

Prepare and
nsert fields

007/008
/

ite ompleted
record from
utput buffer to

new file

Get next
record 1.1

293

10.4 Summary of MARC II Record Structure Communication Format)

1.

Leader Record Directory
Control
Fields

Variable
Fields

1. LEADER--The leader is fixed in length for all records
and contains 24 characters.

2. RECORD DIRECTORY--The record directory is made up of a
series of fixed-length entries (twelve characters
each) which contain the identification tag, the length,
and the starting character position in the record
of each of the variable fields. The record directory
will end with a field terminator code (iF16)-

3. CONTROL FIELDS--The control fields contain alphameric
data elements, many of which have a fixed length.
These fields end with a field terminator code.
Each control field is identified by a 3-character
numeric tag in the record directory, and these
tags will not be repeated in a logical record.

4. VARIABLE FIELDS--The vari_ble fields are made up of
variable length alphameric data, and all fields
end with a field terminator code except the last
variable field in a logical record which replaces
the field terminator with an end-of-record code
(1D16). Each variable field is identified by a 3-
dharacter numeric tag in the record:directory,
and tags may be repeated as required in a logical
record.

10.4.1 Modifications to Overall Record Structure to Produce a Revised
MARC II Record

10.4.1.1 Field Terminators

To bring the Santa Cruz file into conformity with MARC II,
after it has been run through the INFOCAL program, the following
actions should be taken to update the structure of eadh record:

a. Insert a field terminator code (1E16) at the end of
the record directory.

b. Insert a field terminator code at the end of.each of the Control
fields (Tag 008 in MARC II; and Tag 007 in addition, if used).

c. Insert a field terminator code at the end of each variable
field, except the last variable -1d in a logical record which
will contain an end-of-record coae in place of the field terminator
code. The end-of-record code is "1D16.

10.11.1.2 Subfield Delimiter Codes

In some cases, sUbfield delimiter codes have been inserted in
the proper positions by the TRANSCOF program. However, as a final
cleanup of the translated Santa Cruz file to conform to the latast
MARC II the following actions should be taken:

a. Insert, by a test on presence of the code in c.p. 3-4 of
each variable field except those listed below, the delimiter "lF
in c.p. 3-4 of each variable field, if it is not already there,

Exceptions:

11

(1) Tag 007 and Tag 008, the fixed length data elements fields.
These fields do not have indicator:, or subfield delimiters.

(2) Tag 091, the revised field for Santa Cruz shelf key data.

This field will not use the subfield delimiters.

b. Comply with such other instructions as to subfield coding
as below specified, including those in Section 10.5 governing the
coding of the Tag 090 holdings field for UC MARC.

Fields in which delimiters other than the first sUbfield ("1FI6a
have been inserted by the TRANSCOF program are listed in the tables
in Section 10.2.

No further action on subfields is necessary in this phase of the
file translation. Further subfield identification will be deferred
until AFR development has progressed far enough to enable recognition
of presently non-identified elerents in the SC file.

10.4.1.3 MARC _I Indicators 1 and 2

It will not be necessary to place space in the record for
Indicators 1 and 2. Two spaces are alreaay created by INFOCAL at the
head of each variable field for this purpose. The two spaces now
contain zeros in the INFOCAL record. The appropriate values for the
indicators that apply to any given field must be sought in the "old"
Indicator 1 position in the INFOCAL directory entry, and the value found
must be translated and moved to the appropriate position, either in
Indicator 1 ("new") or Indicator 2 ("new") in the variable fields.
The logic for this translation is contained in Fig. 88.

10.4.2 ModificationS to Leader

10.4.2.1 Structure and Content of MARC II Leader

Outline of Leader

4 5 6 7 8 9 10 11 12 17 23
r-

Record
Length

-I-
03

4-2
M

ci
om

c1-1

o
W
PA

E-i

.-1

w
o
..-1 o
1-1 i-q

ro W

Po -p
t 0
y o

ref

-1-3

, g
H 0
w LI

. 1-1

rC, 'T:S

Base Address
of Data Blanks

NOTE:

Element
Nutber

Name of Leader
Data Element

Number of
Characters

Character Position
in Record

1. Logical Record Length 5 0- 4
2. Record Status 1 5

3. Legend
a. Type of Record 1 6
b. Bibliographic Level 1 7
c. Blanks 2 8-9

4. Indicator Count 1 10
5= Slibfield Code Count 1 11
6. Base Address of Data 5 12-16
7. Blanks 7 17-23

ase Addrasla of Data: a number which is the starting character
position of the first control field. That is, it is equal to
the length of the leader and the record directory (including the
record directory field terminator).* The starting character
position for each field entered in the record is relative to the
first dharacter of the first control field (not the beginning of the
record). The base address of data gives the base from which each
field is addressed. The number is right justified with leading
zeros.

*The record character position count starts at position zero. Therefore
if there are 50 characters in the leader and directory, the address of
the first position of the first control field (data for Tag 007 in UC
MEC) will be "50".

2$6

10.4.2.2 Changes in INFOCAL Leader - Translation Table

FIG. 85:
FORMAT TRANSLATION TABLE LEADER SEGMENT

FIELD NAME
OLD
POS. ACTION

NEW
POS. CONTENTS, REMARKS, ETC.

Record Length 0-4 NC* 0-4 5 EBCDIC digits

Status Date 5-10 DELETE

Record Status 11 CHANGE
CONTENTS
& POSITION

5

Legend
Extension

12 DELETE

Re ord rpe 13 CHANGE
POSITION

6 a = language material
(printed)

Bibliographic
Level

14-16 CHANGE
LENGTH
& POSITIO

7 m = monograph OR
s = serial

(Blanks) -- ADD 8-9

Indicator
Count

17 CHANGE
CONTENTS
& POSITION

10 Count = 2

Subfield
Code Count

-- ADD 11 Count = 2

Base Address
of Varidble
Fields

18-19 RECOMPUTE
& CHANGE
POSITION

12-1 5 PACDIC digits

ILR Master
Record
Nwilller

39-45 CHANGE
POSITION
TO HERE

17-23 See old c.p. 39-45
7 EBCDIC digits, right
just./left zeros

Origin of
Record

20-22 DELETE

Processor
Date

23-28 DELETE

Processor of
Record

29-31 DELETE

*NC = No Change

FIG. 85 (Cont.):
FORMAT TRANSLATION TABLE LEADER SEGMENT

FIELD NAME
OLD
POS. ACTION

NEW
POS. CONTENTS REMARKS ETC.

Source Type
of Catalog
Card

32 DELETE

Agency of
Source Type

33- 5 DELETE

Adapter of
Catalog Card

36-38 DELETE

Master Record
Nunber (ILE-
assigned)

39-45 CHANGE
POSITION
FROM HERE

17-23 7 EBCDIC digits in
new c.p. 17-23

Check Sum on
Record Number

46 DELETE

Number Entries
in Directory

47-49 DELETE

Date Entered
on Master
File

50-55 MOVE TO FIXED
LENGTH DATA
ELPNENTS
FIELD

See Fig. 89.

10.4.3 Modifications to Directory

lp.4.3.1 Structure and Content of MARC II Directory

Outline of Record Directory Entries

D E 1 11.1D/E 2

Tag Length
Starting

Character
Position

Element
Number

F/T - Field Terminator (1E16

Name of Record Directory
Data_Element

Number of Character Positions
Characters in Directory Entries

Tag 3

Field Length 4
Starting Character Position 5

Contents_of Record Direc-

0-2
3-6

1. Tag--a 3-character numeri symbol which identifies the field.

2. Field Length--the number of characters in the field identified
by the tag. This count includes indicators, subfield codes,
data, and field terminator. The number is right justified
with leading zeros.

3. Starting Character Position--five numeric characters which give
the character position in the record of the first Character
of the field. The character position is relative to a base
which begins with the first character of the first field
(i.e., for monographs the first character of the control
number field). The first record directory entry will contain
the starting character position. Subsequent record directory
entries will have starting character positions incremented
by the field length of the previous entry.

L. Mode--All data in a directory entry will be in EBCDIC.

Example:

Entry 1 001 0011-4:10000-9q

EntrY 2 I 008 0047 _100014

Entry 3 rioøi 0058 100061

It should be noted that in a variable field (as opposed to a
control field) the first actual data character Is the'fifth character,
i.e., the starting character position plus four. -The starting character
position nuMber is right justified with leading zeros.

10.4.3.2 Changes in INFOCAL Directory

a. Structureof Directory. The record directory produced by
INFOCAL will require extensive revision to bring it into consonance
with LC MARC II.

In INFOCAL there were a total of seven indicator positions allocated.
See Fig. 87. Five of these were placed in the directory entry. The
r=aining two were placed at the beginning of the variable field
(filled with blanks if not applicable to any given field). The revision
of the indicator structure is as follows:

FIG. 86:
INDICATOR REVISION

New
Indicator No.

Old
Indicator No. Position Disposition

None 1 Directory Change contents according
to Fig. 88 logic, and
place transformed contents
in new Indicators 1 and 2
at head of variable field,
as needed.

it 2 Directory DELETE.

it 3-5 Directory DELETE.

1 6 Var. Field Place contents resulting
from transformation of
old Indicator 1, according
to logic in Fig. 88.

2 7 Var. Field Same as 6.

The field length and starting character positions in the individual
directory entry will have to be recomputed as a result of a dhange in
the len6th of the fixed length data element field (the first variable
field in every record), and the addition of field terminators and
record terminator to every record. The formula for recomputation is
given as part "c" of Section 10.4.3.2.

b. Content of INFOCAL Indicator 1 (In Directoa.). Each directorY
entry must be processed to change its structure. Am part of this
revision, the values resident in Indicator 1 (c.p. 3 in INFOCAL-produced

300
-286-

Directory Entry 1

Directory Entry n

[End of Directory]

FIG. 87:
INFOCAL DIRECTORY ENTRY STRUCTURE

Length Char. Pos.

1

1

1

2

Content

0 Tag (3 EBCDIC digits)

Indicator 1 (EBCDIC character.
If not used, blank.)

4 Indicator 2 (Repeatable tag
number, applicable to those
tags which can appear mere
than once in a given record.
If tag is not currently repeat-
able, indicator will be set to
binary zero. An 8-bit binary
digit.)

5 indicators 3, 4, 5 (Character
positions provided for future
expansion. Currently set to
blanks.)

8 Field Lengtii C. l6-bit number
giving the charalr length of
the varidble field, int-ling
Indicators 6 and 7.)

10 Starting Character Position (A
16-bit number giving the ,osi-
tion of the first character of
the variable field. Currently
the first character will always
contain Indicator 6. This posi-
tion is relative to the first
character of the fixed length
data elements field.)

The total length of the directory entry is 12 characters. The
total length of the directory is 12 x the number of directory entries.

directory entries) must be moved to the variable field. The logic
for this transformation is dependent on the tag. number and the value
detected. Only values found in the SC tapes are described here.

FIG. 88:
REORGANIZATION OF INDICATOR VALUES

TAG* INFOCAL IND. 1 VALUE

DISPOSITION IN MARC II
PLACE
IN INDIC. 1

PLACE
IN INDIC. 2

003 0 = Single or Multi- 0 = Multi-Lang. V
Lang. (variable

field present
only if more
than 1 lang.
code)

1 = Translation 1 = Translation

100 1 = Single Surname,
Not Subject

1 0

5 = Single Surname 1 1
Is Subject

110 2 = Nanne (Direct Order),
Not Subject

2 0

6 . Name Direct Order 1
Is Subject

130 0 = Not Subject 0

200 1 = Will be Printed on 1 V
LC Cards

210 1 = Make Title Added
Entry

240 0 = No Title Added 0 V
Entry

1 = Make Title Added 1 Y
Entry

261 0 Pub. Not Main Entry

410 2 = Name (Direct Order),
Series Author Not
Main Entry

*INFOCAL tag numbers aTe used in this tall . For revised tag nuiithers

to which these are to be changed see Fig. 90.
N14

FIG. 88 (Cont.)
REORGANIZATION OF INDICATOR VALUES

TAG INFOCAL IND. 1 VALUE

DISPOSITION IN MARC II
PLACE
IN INDIC. 1

PLACE
IN INDIC. 2

490 = Series Not Traced 0 V

1 = Series Traced Diff. I V

520 Not Used (set to -0) 0* V

600 1 = Single Surname 1 0**

650 Not Used (set to 1$) 0*** 0**

700 a = Single Surname,
Alternative

1 0

e = Single Surname,
Secondary

1 1

710 b = Name (Direct Order) 2 0

Alternative

740 1 = Title Added Entry,
Traced Diff.;

1

Secondary

810 2 = Name (Direct Order)

*The new NARC II tag for contents note has values for Indicator 1
that show characteristics of the contents no.6e. The "0" value, for
"Contents" type of contents note will be used as the default value.
**The "0" value indicates Library of Congress Subject Headings List

as the source of the subject heading in this field. This is a aefault

setting.
***The new MARC II definition for the Tag 650 field has an Indicator I
value for whether the heading starts with a place name. The value "0"
meaning "not entered under place" will be used as the default setting.

-289_ 303

c. Summary of Recomputations Required. The following computation
must be undertaken to revise the value of the logical record length field
in c.p. 0-4 of the leader, in each record output from the INFOCAL program
run on Santa Cruz:

where

TRL = L + D OF + VF

TRL = Total Record Length (Logical Record)

L = length of Leader

D = length of Directory

CF = length of Control Fields

VF = length of Variable Fields

As part of this recomputation of the value that will be present in
the INFOCAL output record, the following fields must also be recomputed,
either becuase of the insertion of new fields of data, or due to
insertion of new codes such as field terminators, to achieve MARC II
compatibility:

Base Address of D ta p. 12-16 in revised record leader

Field Length of each control field and variable field
(Note that these fields do not have indicators in
c.p. 1 and 2)

Starting Character Position of each control and variable field

The following computation will yield the revised value for base
address, when applied to each Santa Cruz record, after processing by
INFOCAL:

Length of Leader = 24 dharacters

Length of Directory = 12*n, where
n is the nutber of directory entries

Directory Field Terminator = 1

Base Address = 24 + (12*n) + 1

The following computations must be made to. revise the field
lengths and starting character position values of each entry in the
record directory. Also convert from 16-bit binary to EBCDIC mode.

INFOCAL LENGTH COMPUTATION REVISED LENGTH COMPUTATION

Indicator 6 = 1 position Indicator 1 = 1 position

Indicator 7 = 1 Indicator 2 = 1

Data = n, including subfield Data = n, including subfield

delimiters delimiters

Field Terminator = 1

The effect of this is to require the addition of a count of one to the

field length computations output by INFOCAL, to take care of the added

field terminators. This should be done in coordination -with or sub-

sequent to the actual insertion of the field terminators into the
INFOCAL output record.

The starting character position is also a 16-bit binary number.
The first directory entry output by INFOCAL will be Tag 000 (= Tag 008)

i.e., the fixed length data elements fdeld, and will have a s.c.p. of
binary zero which should be converted to 00000. Each successive entry

will then be incremented according to the formula

where

scpr+1 = scp
r+1

+ r

scp = Starting Character Position value
in the directory entry

r = the ordinal position of the directory
entry, i.e., the 1st DIE, the 2nd D/E,

rth DIE

The parameter in the subscript is "r+1" in the equation, because
the s.c.p. of the very first variable field in the record will always

be "00000". Each subsequent field is incremented by one position.

If a new field is inserted in a position between the directory
and Field 008, the fixed length data elements field, then a different
value will have to be used to recompute the s.c.p.'s of the second and

all succeeding variable fields. If -che newly-inserted field has a
length of i, then the equation will be

s cpr+1 scp1 + (r+i)

10.4.4 Modifications to Fixed Length Data Elements Field

10.4.4.1 Structure and Content of MARC II Tag 008 Field

In MARC, the fixed length data elements field is included in a

section of the record generically designated "control fields."

Outline of a Control Field

7291-

Data Element 3

305

FIT = Field Terminator

The control fields (Tags 001 009) do not use
indicators and subfield codes. Data elements in
these fields begin in a fixed location relative to
the first character position in the field. All
control fields end with a field terminator code
(1E

16
)

Control Field Tags

001 Control number Will not be us-d
for Santa Cruz madhine file)

008 Fixed length data elements

Coritentof Tp2s 008 Field

FIXED LENGTH DATA ELEMENTS

Name of Data
Element

Number of
Characters

Character Positions
in Field

1. Date Entered on File 6 0-5
2. Type of Publication Date Code 1 6

3. Date 1 4 7-10
4. Date 2 4 11_14
5. Country of Publication Code 3 15-17
6. Illustration Codes 4 18-21
7. Intellectual Level Code 1 22
8. Form of Reproduction Code 1 23
9. Form of Content Codes 4 24-27

10. Government Publication Indicator 1 28
11. Conference or Meeting Indicator 1 29
12. Festschrift Indicator 1 30
13. Index Indicator 1 31
14. Main Entry in Body of Entry

Indicator 1 32
15. Fiction Indicator 1 33
16. Biography Code 1 34
17. Language Code 3 35-37
18. Modified Record Indicator 1 38
19. Cataloging Source Code 1 39

10.4.4.2 Changes in INFOCAL Fixed Length Data Element Field-Translation Table

FIG. 89:
FORMAT TRANSLATION TABU', FIXED LENGTH DATA ELEMENTS SEGMENT

INFOCAL TAG = 000
MARC II TAG = do8

ELEMENT NAME
OLD
POS. ACTION

NEW
POS. CONTENTS REMARKS ETC.

1. Date Entered
on File

MOVE FROM LEADER 0-5 "mmddyy". Formerly in
LEADER c.p. 50=55

2. Type of Publ.
Date Code

0 CHANGE POSITION 6 Transfer contents

3. Date 1 1-4 CHANGE POSITION 7-10 Transfer contents

Date 2 5-8 CHANGE POSITION 11-14 Transfer contents if
present

5. Country of
Publ.

19-21 CHANGE POSITION
TO HERE

15-17 Set to blanks
(DEFERRED STATUS)

6. Illus. Codes 22-25 CHANGE PO ITION
TO HERE

18-21 Transfer contents

7. Intell. Level -- ADD 22 Set to blank (DEFERRED)

8. Form of
Reprod.

9 CHANGE POSITION 23 Set to blank (DEFERRED)

9. Form of
Content

10-13 CHANGE POSITION 24-27 Transfer contents

10. Govt. Publ.
Indicator

14 CHANGE POSITION 28 Set to bl DEFERRED)

11., Conference 15 CHANGE POSITION 29 Set -6o blank DEFERRED)

12. Festschrift -- ADD 30 Set to blank DEFERRED)

13. Index -- ADD 31 Set to blank DEFERRED)

14. Main Entry in
Body

16 CHANGE POSITION 32 Tralisfer contents

Lit. Group 17 DELETE --

16. Cancel Title
Added Entry

18 DELETE --

1.1G. 89 (Cont.)
FORMAT TRANSLATION TABLE FIXED LENGTH DATA ELEMEITS SEGMENT

ELEMENT NAME
OLD
POS. ACTION

NEW
POS. CONTENTS, REMARKS, ETC.

17. Fiction -- ADD 33 Set to blank (DEFERRED

18. Biography -- ADD 34 Set to blank (DEFERRED)

19. Language
Code

-- EXTRACT FEOM
VARIABLE FIELD
TAG 003

35- 7
The first and/or only
3-character code is
placed here.

20. Modified
Record

-- ADD 38 S t to blank (DEFERRED)

21. Cataloging
Source

ADD 39 = LC (default)

10.4.5 Modifications to Variable Fields

1. Structure of MARC II -8.riable Field

Outline_ _Variable Fields

En
P.I
o

4-)
cd
oHrd
Z

rdH
cy w
.H n:J
ci-i o
,0 0
0
cn

Data
Element 1

rd
H
CD CD

tf-e o
,CI C.)0
Cri

Data
Element 2

Indicators

Each variable field will begin with two characters
which provide descriptive information about the
field. The contents of the indicators are
specified for the fields in which they are used
(see Fig. 88). If the indicators are not used with
a particular field, they will contain blanks.

Subfield Codes

Variable fields are made up of a single data element

or a group of data elements. The subfield code
precedes each data element in a field and identifies
the data element. The subfield code consists of two
characters: a delimiter (1F16) followed by a lower

case alphabetic character. Subfield codes are
specified for each variable field in Section 10.5.4.

Data Elements

All data elements in the variable fields may have
variable lengths.

d. Field Terminator

The field terminator code is 1E16.

The list in Fig. 90 contains the variable field tags used in
Santa Cruz file output by INFOCAL. These tags will be sequenced in the
record directory by the first digit of the tag. Within a block of 100
numbers, however, (e.g., the 600s, subject tracings) the tags will
appear in the order in which they appeared in the Santa Cruz file when it

was in its original format. The order of fields has not been changed
by processing through the INFOCAL program.

2. Reor anizaton of Tagg4 Fields

Reorganization of Languae _Codes. The language code(s)

are stored in a variable field, Tag 003, in the INFOCAL record.
This must be altered to the revised NARC II specifications,
as follows:

(1) There will always be at least one 3-character language
code in each NARC II record. It will be stored in Tag 008,
fixed length data elements field, c.p. 35-37. If there is
only one code, there will be no variable field.

(2) If the work involves multiple languages or is a
translation, there will also be a variable field, Tag 041,
to hold the entire language code string. Since the Santa
Cruz record in original format may have up to five languages
coded, it is possible that this feature will have to be
handled in the file translation process. The following
action will be taken:

Source Condition
(INFOCAL record)

Test for presence of Tag 003 in
directory. If present, test
length of contents of
variable field:

(a) EQ 3 characters

(b) GT 3 characte-

NO Tag 003 present

Action

Move the 3-character code to Tag
008 fixed length data elements
field, c.p. 35-37. Purge the
directory entry for Tag 003.
Purge the variable field.

Retain the variable field codes
as they appear. Copy the first
3-character code into Tag 008
(but leave it in its original place
in the variable field also).
Change tag number from 003 to 041
in directory entry. Restructure
directory entry as specified in
Section 10.4.3. Insert delimiter
"1F16a" in c.p. 3-4 at head of
variable field. Insert "0" in
Indicator 1 position in place of
INFOCAL value, if necessary, as
specified in Fig. 88.

ERROR Routine: Insert "eng"
(lower case) in Tag 008, c.p.
35-37. This is a default value.

b. Reo -ization of Ii.rint Data Elements. The subfield code
identifies the constituent data elements of a variable field.

For example, the imprint field, Tag. 260, may have the following

three data elements with their respective subfield codes:

Place - "1F16a"
PUblisher "1F16b"
Date "1F16c"

These data elements have been coded as tagged fields in

the INFOCAL version of NARC II. The coding must now be Changed

to reflect the latest NARC II specification.

The changes are:

Tag Disposition

260 Place No change to tag nuMber. Directory entry must
be changed to MARC II format and the value
for field length of the reorganized imprint
field recomputed to reflect the addition of

publisher and place elements.

261 Publisher Tag number is obsolete and is deleted. The
field is dropped as a directory entry and its
length is added to that for place in the re-
computation of imprint directory entry values.
Insert delimiter "1F16b" at head of data
element. Concatenate with place. Delete

extra two spaces for indicators at c.p. 1

and 2 of the obsolete field.

262 Date of Tag number is obsolete and is deleted. Same

Publication treatment as the old 261, except delimiter
"1F16c" is inserted at head of data element.

Note that as part of the general structural reorganization of

the file, a delimiter of "lF16a" must be inserted at the head of

the variable field for imprint. In this case, it identifies

"place."

This will be accomplished by the routines to update INFOCAL

if they have not been.inserted by the TRANSCOF algorithms done by

John Reinke.

c. Reorganization of Subject Subdivisions. The subject sub-
divisions are stored in variable fields, tagged as follows,
in the INFOCAL record:

Tag Type of Subject Subdivision

655 General subject subdivisions
656 Period subject subdivisions
657 Place subject subdivisions

-297- 311

Only the Tag 655 ("General") has been used in the TRANSCOF
program. However, it must be altered as follows, to conform to
the re-v-ised MARC II specification for the LC subject heading

Tag Disposition

655 Delete directory entry. Insert 1F16x" at
head of subject subdivision string. Purge
excess spaces at head of field. Concatenate
with preceding subject heading field, which
will be either a Tag 600 or 650.

600 650 If affected by above subject subdivision,
recompute field length of subject heading now
including its delimited subdivision.

All of the above special cases will affect the general re-
organization action on the directory, and the recomputation of
logical record length, etc., specified in part "c" of Section
10.4.3.2.

10.5 Specifications for Building a Santa Cruz - UC MARC File

10.5.1 Overall Record Structure

a. Tape Structure. Two modifications are adopted for SC: character
set and record blocking. The remainder of the MARC conventions volume
and file leaders) are accepted.

b. Character Set._ The translated Santa Cruz file will be stored and
maintained in standard 8-bit EBCDIC. See Appendix I to ILR Tech Paper
No. 2 for LC ASCII-EBCDIC conventions, to which this SC file will comply.

c. Record Blocking. Record blocking will be utilized to prmote greater
tape processing efficiency. In order to allow records to be blocked on
magnetic tape, four bytes will be added at the beginning of each record.
The first two of these bytes will contain the record length in binary for
i.e., the MARC record length (character positions 0-4) plus four. The
second two bytes will contain blanks.

n n Vs

- 4

Record
Length

Start of
Logical
Record in MARC II

nn = total record length in binary form

.Reco d Leader

-298

FIG. 90:
VARIABLE FIELD TAG TRANSLATION TABLE

FIELD NANE INFOCAL TAG NARC 11 TAG

1. Fixed Length Data Elements 000 008

2. Local System Number
(INFOCAL Tag "*U" = Tag
091, was used in TRANSCOF
program because 035 was
not implemented. 'his
is to contain the Shelf
Key Data from Santa Cruz
CT 000)

091 035

3. Languages (a variable
field used only when the work
is multi-language or a
translation)

003 041

Local Call Number
(Santa Cruz)

090 NC*

5. Main Entry IXX NC

6. Uniform Title
(Supplied)

200 240

7. Romanized or Trans-
literated Title

210 241

8. Title Statement 240 245

9. Edition 250 NC

10. Imprint - Place 260 NC

11. Imprint - Publisher 261 Delimiter: b1F16

12. Imprint - Date 262 Delimiter: 1F c
16

13. Collation 300 NC

14. Series Notes 4XX NC

15. General Note 550 500

16. Bibliography Note 500 504

FIG. 90 (Cont.)
VARIABLE FIELD TAG TRANSLATION TABLE

FIELD NAME INFOCAL TAG MARC II TAG

17. Contents Note 520 505

18. Subject Added Entries 6' NC

19. Other Added Entries 7XX NC

20. Series Added Entries 8XX NC

The IBM Operating System will handle blocking and deblocking functions
automatically, with the following conventions:

1. Each block carries four initial characters in the fo
expressing block size.

2. Logical records are not split '-atween physical blocks.

3. Maximum block size is 3600 characters. Records larger than
3600 characters are unacceptable.

4. Blocks are variable length.

VV,

10.5.2 Leader

Record and campus ID codes will be added. Each addition is discussed
separately telow.

Status (position 5). To comply with UCUCS requirements, inse
EBCDIC 1 to indicate first supplement.

Campus Code (position 8). Used to identify the single source of a
record. The following code will be used for the SC translation:

c - Santa Cruz Main University Library

For Local Use (osition 9-11). No change from that specified in Fig.
5. The standard MAliC Il definition will apply to these positions.

Record ID Number (position 17-23). This is the accession nunber of the
record, and it will be used as a basic bibliographic record ID number.
The number is carried in EBCDIC representation and is right justified
with leading zeros.

No dhange from that specified in Fig. 85. NuMber is machine-assigned
by ILB program to prepare file for input to TRANSCOF translation program.

10.5.3 Fixed Length Data Elements Field - Tag 007 (UC M.)

A new control Field, 007, will be added. In the MARC record, a
40-character field (008) contains fixed record descriptors. To avoid
redefinition of 008, a new 25-character control field will be defined.
It will consist of two areas: common and local.

The common area is defined as follows:

Date (position 0-3). This is defined the same as Date 1 in Field 008*
see Subscriber's Guide, p. 33-34.

Language (position 4-6). This is a 3-character code, identicea to
that used in position 35-37 of Field 008.

Ulke able Data Indicator (position 7). 0 indicates no unkeyable
data in record; 1 indicates presence of unkeyable data in input
record. Set "0" in SC file.

"By" Indicator (position 8). 0,1 used to indicate presence/absence of
'hy' statement in body of card; see position 32 in Field 008.

The local area consists of positions 9-24 and is available for local
campus use. Not used in SC file produced from this Eecification. Fill
with blanks. Note that the Santa Cruz file will contain both Fields 007
and 008 in the UC MARC format.

Field 007 will be constructed from data available in Field 008
except where specified above.

10.5.4 Variable Fields - Redefinition of Tag 090 (Local Holdings)

090_Local Holdings. Two basic iters of information are to be stored in
this field: location and call number. The field consists of Indicator 1
and three sUbfields.

Indicator 1 - Used to carry campus code, as in position 8 of leader.
Insert "c" in Indicator I position, for Santa Cruz.

Indicator 2 - Insert a blank for Santa Cruz file.

Subfield Delimiters:

"iF
6

- Consists of fixed and variable portion. Fixed portion
is 4-characters of the form XX00, where XX is branch
code aad 00 is number of copies at the branch. Example:
"biO4" = biology library, 4 copies. The remainder of
the $a subfield is variable and consists of the class
portion of call number.

In each Santa Cruz record, the fixed portion will be set
to N-V01". Later, if codes are established for branches
at Santa Cruz, it may be possible to extract codes from
the original format information stored in c.p. 43-45 of
the shelf key card (now Field 091 in the translated file
This code could then be translated into the proper code
defined for storage in the UC MARC 090 field, fixed
portion.

It is assumed that there will be only one copy of the book,
in each case. Again, this may be updated by subsequent
processing from the Santa Cruz shelflist information,
manual source if not available in the machine file.
The call number as found in the INFOCAL recOrd, Tag 090
will then be concatenated to the above fixed portion.
All data and coding appended to the INFOCAL field will
then be purged. This data portion to be purged begins
with a "%" in the INFOCAL record (set by default,by
INFOCAL).

- Book NuMber. Thia element will not be identified at
thib time. The delimiter will not be.present.

- Other Information. Thia element will not be identified
1F16°

at this time. The delimiter will not be present. (The
data will be present as part of the call nutber for both
these last two elements.)

The format of the 090 holdings field as set by default in the INFOCAL
program is:

)OCdOi%79Ox%011

All data and coding to be purged are to the right of the arrow, above.
leftmost lir is also to be purged.

The revised field will look as follows:

IMOCX10000d F/TI

Call LuMber

uMber of copies at branch

ranch code

irst subfield delimiter code

dicator 2

_I dicator 1

317

