COMFUTEK－AYOED FESEAFCH IN MACHENE TRANSLATION EIS9，A FAFSTEiG FmOKECURE FOF A VECTOR－SYMEOL FHRASE GKAMMAF CF RUSSIAN．
BY－MAF：INS，GAITY F．SMITH：STEVEN E． BUNKER－RA綡 CORF．，CAREGA FARK：CALIF． FEFOET RUMBER BRC－FR－12
fug date eec＊5 ECRE FREAE MF－鈳．28 HC－$\$ 3.96$ 90\％．
 ANALYSIS，SYNTAX，CONTEXT FREE GRAMMAF， DATE FEOCESSING，
 GRAKMAR，CAHOGA FAFK

A COMFUTER FROCECUKE IS SESCRIEES FOR FAESING RUSSIAN SENTENCES WITH A CONTEXT－FREE RECOGNITION GRA．WAR．THIS IS THE FIfST FFOJECT UNGER A FROGKAM FOR THE INVESTIGATION OF SEVEFAL ASEEGTS OF NATUEAL LANGUAGE DATA FROCESSENG BY FORMALIZEE METHOES TO DETERMENE THE USEFULNESS OF FORMALIZEC LINGUISTIC TECHNIGUES IN FRACTICAL LANGUAGE EATA FROCESSING AFPLICATIONS．EVERY HYFOTHESIS WAS TESTEC AS A fllezizng COWFUTATIONAL FFOKEDURE SEFORE ACCEFTANCE AS A WOKKINE FEINCIFLE．THE HAFDWAKE USEC INCLUDED A EUNKEF－FAMO NOOEL 133 （AN／YYK－i）COMFUTERE．THE FROGRAMING LANGUAEE WAS A VERSICN OF FOKTKAN IV．AN IMFORTANT CHANGE IN THE GRAMMAR AND ALGOKITHM Of THE SYSTEM HAS EEEN THE INTEOCUCTION OF＂GFAMAMTICAL VARIAELES＂AS COMFCNENTS OF GEAMMATICAL LABELS．THE TERM ＂עECTOR－SYMEOL FHRASE GEヒAMMAF＂IS USEC TO CISTINGUISH IT FFOM
 ALGORITHM AND THE FORM AND FUNCTICN OF THE GFABMATICAL vafiatles are eiscussec in detail．the fesults indicate that THE MOCIFICATION OF THE＂VECTOR－SYHEOL FHRASE GRAMMAR，＂WITH NOTE SUFFRESSION，MAKES IT FOSSIELE TO UNDEFTAKE WFITTENG A FHIASE STRUCTU合E GFAMMAE FOF WRITTEN FUSSIAN SUITABLE FOK CATA FROCESSING AFFLICATICNS．（KZ．）

PROGRESS REPORT NO. 12
Under GontractNSF-C372
With the National Science Foundation COMPUTER=AIDED RESEARCH IN MACHINE TRANSLATION B19.9
A PARSING PROCEDURE SOR A VECTORSYMBOI: PHRASE GRAMMAR OR RUSSIAN

Gary R. Martins and Steven B. Smith
U. S. DEPARTMENT OF HEALTH, EDUCATION AND WELFARE Office of Education
ithis document has teen reproduced exactily as recelved from the Desson or organization_originaüng it: Points of view or opinions stated do not necessarily represent official Office of Education position or policy.

December 1965

THE BUNKER-RAMO CORPORATION
8433: EALLLBROOK AVENUE
CANOGA PARK, CALIFORNLA 91304

ACKNOW LEDGMENT

The work described in this report was supported partly by funds from the National Science Foundation uncer Contract NSF-C372, monitöred for NSE by: Eugene Pronko and Richard Sise of the Information Systems Program, and managed for Bunker-Eamo by Gerhard Reitz. Additional support from corporate research and development funds is also acknowledged. The authors wish to thank Miss Christine Monegomery for her aid in she earliest days of this research program.
Mrs. Marguerite Mazur drafted the sentence dsagrams in Appendix $\mathrm{C}_{\text {, }}$, working from line printer outputs. All secretariai work was perfcrmed by Mrs. Joan Arias.

TABLE OF CONTENTS
\qquad

1.1 RESEARCH POLICY \because. 1

1. 2 THE RESEARCH COMPUTER
CENTER 2
2. INTRODUGTITON 1

CENTER • 2

1. 2.1 Herdware 2

1,2.ī Scitware 3
2. TKE CONTEXT-FREE
PARSING PROJECT 4
2.1 THEE CONTEXT-FREE
PARSING SYSTEM • 5
2.1.1 The Algorithm 6
2.1:2 The Vector-STymbol Phrase Graminar

29
3. CONCLUSIONS 34

Abstract

A compute procedure is described which performs bottom-to-top, direct-substitution paxsing from a vector-symbol phrase grammar, The characieristice of the particular vector-symbol phrase grammar develpyed under this research prograna are đescribed。 A grammar of this type for Russian is presented and the resuits of the application of the parsing procedure to Russian sentences are disclissed and hustrated. The procadure embodies a generalized method for the recognition and elimination of "trivially ambiguous" structures. Despite its implementation on a relatively small compuser, the procedure operates very efficrentiy.

i．INTRODUCTION

In January of 1965，a program was organized within the Lànguage Analysis and Translation Section of the Research Laboratory of The Bunker－Ramo Corporation for the investigation of several aspects of natural landage data processing by formalized methods．As originally cenceived，this program was to embrace a number of：separate but related projects，each devoted to a different ajpect of the overall problem．Eventually，the program was tc involve sentence analysis anc genezation by various methods baseé upon conteat－free，context－sensitive，£ree－rewrite，and transformational lingristic systems．

The firsi project under this program was dedicated to the development of a context－free zecognition grammas for Russian． Work on this project，which has already sesulited in a grammar of impressive scope and power，is still in progress；and since our interest in this project has to date precluded the development of other projects wnder this program，the remainder of this report will be concerned almost exclusively with the technique that has been developed for parsing Russian eentences with a context－free gxammax，and with the grammar itself．

1．1 RESEARCH POLICY

From the very inception of this program，it has been our policy $\{1$ subject ourselves to the rigorous discipline of operational demonstrability in all phases of the work in progress．That is to say，every hypothesis concerning the organization of the processing algorithms and the structure and context of the grammar has been tested as a running computational procedure before gaining full acceptance $2 s$ a working principle．This general policy has been observed with respect to ail levels of detail of the work，from the broadest to the most specific－involving at the lowest level the testing of individual grammar rules．

The adoption of this policy required that a very short research cycle (desiga, test, evaluate) be maintained, in which the temporal distance sepzrating the linguistic cesearch group from the computer center is minimized. The letter goal has been zchieved by caxrying out the greater part of the project work in the compuiter center, the linguistic fesearch personnel performing all of the required programming and equipment operation tskks themseaves (generaily duriag second and third shift periods). The uncommon luxury of such "hands-on" working conditions has been made possibly by the in-house availability of a corporate-utility mesearch computer facility. Many of the features of the liaguistic precessing system deve?oped under this project have been designed specirically to exploit this advantage to the fullest; in a batch-processing or production ervironment much of the input/output and peripheral usility programming would have taken on a markedly different form.
1.2 THERESEARCH COMPUTER CENTER
1.2.1 Hardware

Another source of program design constraints has been, quite naturally, the hardware available in the computer facility. This consists of the following:

- one Bunker-Ramo Model 130 (AN/UYK-1) computer; this is an 8 K , Frebit, parallel binary, stored micrologic machine with a basic read-generate cycle time of 6 usec.
- 8K cells of difectly-addressable extended memory

0 one 120-character line printer (BR.282)

- one magnetic tape controller (BR-192) and two trinsports (BR-170)
- one input/output controlier (BR-143), with associated typewriter, paper-tape reader $\because \quad$ and punch, and card reader

Many of the details of organization of the operating programsand even of the gxammar-have been chosen with this hardware system's limited memory and intermediate running speed (as a result of the micrologic programming feature) in mind.

1.2.2 Software

A chird influence on the present form of the algorithm and utility programs has been the availability of a version of the FORTRAN IV programming language in the computer center's software library. The experimental nature of the projects to be undertaken made it advisable to sacrifice the efficiency of machine-language programming, at the outset, in favor of the ease of programming and debugging with a procedure-orientedlanguage; while a symbol or string processing language (such as COMIT) might have been preferable for this purpose? the ready availability of FORTRAN, and the familiarity of the research group with its use, combined to bring about its adoption for the initial development of the language data processing algorithms and utility programs. As a consequence, some of the characteristics of these algorithms derive ultimately from their initial expression in an arithmetic-oriented programming language.

The reader will find many of the details of the exposition that follows easier to understand it these three sources of design limitations are taken into account.

2. THE CONTEXT-FREE PARSING PROJECT

The program for the study of formalized language data processing systemo began with the project for the parsing of Russian sentences with a context-free algorithm and grammar. Several motives contributed to the decision to initiate such a project. One of the strongest of these was the academic interest, on the part of some of the members of this department, in formal linguistic systems. Another, related to this but of a more utilitarian turn, was a desire to determine the usefulness of formalized techniques in practical language data processing applications such as machine translation, information retrieval, etc. Moreover, at the time of its inception, this project was relevant to departmental contractual obligations.

The second of these motives deserves further elaboration. There are several characteristics of formalized linguistic procedures which seemed, at least superficially, to offer substantial advaintages in practical language data processing operations. The much discussed separation of grammar and algorithm is one such characteristic which j/romised particular benefits for applications systems subject to continuing modification through research. Another apparent acivantage of formalized linguistic procedures which was of interest to the research group is the requirement of formal "homogeneity" in the grammatical specifications (or rules). A third such advantage is the relative simplicity of programs embodying the basic processing algorithms. The fundamental justification for our inception and continuation of this research program has been the testing of these (and other) apparent advantages for practical language data processing applications; some conclusions concerning these topics, derived from the context-free parsing project, are presented later in this report.

2.1 THE CONTEXT-FREE PARSING SYSTEM

From the beginning of this project to the time of this writing, the overall context-free parsing system has been undergoing a continuous évolutionary development. But for a need to save time, space, and the reader's patiences a historical description of the system would be the most natural kind of treatment. It will be more practical, however, to write only a few words about the system's humble beginnings and then to describe in limited detail its present state.

Originally, it was decided that t'ee relatively simple and efficient bottom-to-top direct-substitution procedure, working with binary phrase-structure rules, would serve our needs very well. The first task performed under this project was, accordingly, the programming, in FORTRAN, of such an algorithm and associated input/output subroutines. This first system was, in all respects, rather primitive. - It provideci for a grammar of quite modest proportions (250 rules, each of an ordered triple of integers ranging from 000 to 999) on which a crude sequential search was performed during look-up operations. A very limited kind of output was provided. Input capacity was restricted to short strings with a few grammar codes per item. Program flow was relatively inefficient, and it tended to run slowiy. These deficiencies have since.been remedied, one by one; and an efficient and quite powerful sentence analysis system has evolved.

In the course of this development, significant changes have been made in the grammar and algorithm of the system. The most important of these changes has been the introduction of grammatical variables as components of grammatical labels in order to enhance the discriminatory power of the system. In his latest publication on linguistic theory ${ }^{1}$, Noam Chomsky argues,

[^0]in effect, that this modification removes the system from the class of phrase-structure systems to the class of transformational syatems. Chomsky's zrgument on this point is not entirely convincing, however, particularly in view of the radical distinctions between the formal properties of this system (and others like it) and those of transformational systems as discussed in the rather ample literature on the subject. Nevertheless, to avoid the possibie accusation of abusing the term "phrase-structure", the present system will be referred to as a vector-symbol phrase grammar ${ }^{1}$ system; this name is suggested by the modified form Oi. the system's grammatical labels, which consist of ordered triples of symbols.

To simplify the presentation of the system's details, a full
schematic flowchart on pages 10 and 11.
This algorithm performs elementary list-processing operations on a group of four interrelated lines x arrays representing the developing tree structure(s) assigned to the input string. If these arrays are regarded as a single two-dimensional array, then we may say that each row of the array represents a single node of one or more of the trees; the columns of the array specify, for each row, (1) the position in the ineut string, counting from left, of the leftmost terminal dominated by the node corresponding to the row, (2) the grammatical label corresponding to the node, (3) the number of the row corresponding to the left-hand daughter of the node, (4) the number of the row corresponding to the right-hand daughter of the node. A set of counters are maintained as pointers during operations on the rows, while the columns are addressed by name. A compact table is kept of the row numbers of the earliest and latest nodes dominating substrings of a given length.

As the algorithm runs, rows corresponding to progressively longer well-formed substrings are added to the initial array. The procedure begins with attempts to combine, as left-hand and right-hand daughters of a single node, rows dominating substrings of length \ddagger (ine., single input items). Such a combination can be made if and only if the substrings dominated by the daughter-candidate sows are adjacent and the grammar contains one or more rules providing for the combining of the daughter-candidate rows' grammatical labels. If both conditions are met in a given instance, then a new row is added to the array for each applicable grammar ruie. When all the possibilities for forming substrings of length 2 (by combining substrings of length 1) are exhausted, a new series of attempts are made to form substrings of length 3 (combining, in both orders, substrings of length 1 with substrings of length 2). Next, the formation of substrings of length 4 is attempted-requiring exhaustive testing
of substrings of length 1 and 3,2 and 2 , and 3 and 1. And so on, until no further combinations are possible. Whes this condition is mes, the latest ruwf(5) entered in the basic array will represent the longest well-formed substrings in the input string; if:all has gone well, the latest row(s) will correspond to nodes dominating the entire input string and will carry the grammatical label "Sentence". The flowcharts and explanatory notes, on the next three pages, show the structure of the basic algorithm in scme detail.

This algorithm has recently been reprogrammed in machine language for the Bunleor-Ramo 130 computer, resulting in'a very substantial gain in operating speed over that obtained with the FORTRAN version. All input/output subroutines are séill expressed in FORTRAN, however, simply for the sake of convenience of modification if and when the need arises.

2.1.1.2 Flowcharts of the Basic
 Parsing Algorithm

2.1.1.2.1 Explanation of Symbols Used in Flowcharts on Following Pages. In the following basic system flow charts, the four parsing list arrays are referred to as follows:
INW_{i}. position in the input string, counting from the left, of the leftmost terminal dominated by the node corresponding to row i
\pm
$\mathrm{GL}_{\mathbf{i}} \quad$ grammatical label of the node corresponding to row i
LC_{i}. row number of the left daughter of the node corresponding to row i
RC_{i} row number of the right daughter of the node corresponding to row i

A number of counters and pointers (lower-case when subscriptel appear:

Other symbols are:
$I G L_{i}$ the i-th input grammatical label for a given input item

PL . phrase length; the length of substrings currently being formed

LSIZE the length of the left-hand component of the substring under test

RSIZE the length of the right-hand component of the substring under test

LENGTHi the length of the substring dominated by the node corresponding to row i

Components of grammar rules are referred to as A, B, B; it is absumed that the rulesthemselves are of the form $A+B \rightarrow C$. Two fiow diagrams are presented, the first shows how the input data are initiallyarranged in the parsing array. Box (3) of the INPGH diagrampiolves the reading of a single punched card, reppesenitg a gingle input word, having i distinct grammatical 1abels. She second diagram describeb the entire basic parsing strategy which commences when the input operations are terminated.

2.1.1.3 Modification of the Algorithm

As has been mentioned, substantial modifications have been intoduced inte the syitem. The two most important of these are described in this section. The first, which restricts the strong generative capacity of the system, was motivated by the observation that a context-free phrase-3tructure system whose grammar contains labele that are both left and right recursive will produce practically irrelevant ambigaous steuctural descriptions. The second, and more fundamental, of these modifications introdeced vector-symbols into the grammar 28 ptsase markers and required a corresponding supplemertation of the algorithm to manipulate them. The first modification affected only the algorithm; the second, since it has affected both grammar and algorithm, is discussed below with respect to its effects on the parsing strategy and in a later section (2.1.2) with respect to its effects on the grammà itself.
2.1.1.3.1 The Node Suppression Option. The first of these special features, the node suppression option, has been adopted to deal with the tendency of context-free parsing systems of the present kind to derive trivially different structural descriptions for even relatively simple input strings under certain conditions. This may occur only when a particular grammatical label is both left and right recursive in the grammar. ${ }^{l}$ Let us congider four ways in which this condition may occur:

1. A single recursive rule of the form $A+A \rightarrow$ A makes the grammatical label A both left and right recursive. Strings of the form $A+A+A+\ldots+A$ will be analyzed ambiguously with this rule.

[^1]2. The two recursive rules (i) $A+B \rightarrow A$, aña (2) $C+A \rightarrow$ make the label A left recursive and right recursive respectively, Strings of the form $\underline{C}+\underline{C}+\underline{C}+\ldots+\underline{C}+\underline{A}+\underline{B}+$ $B+B+\cdots+B$ will be snalyzed ambiguously with these two rules.
3. The left and right recursive condition may derive from the combination of a recursive rule and a cycle of rules (of indefinite Ieng,th). For example, the three rules (3) $A+B \rightarrow B$, (4) $\underline{C}+\underline{A} \rightarrow B_{\text {r }}$ and (5) $\underline{X}+Y \rightarrow \underline{C}$ will provide ambiguous analyses for strings of the form $\underline{A}+\underline{X}+\underline{Y}+\underline{A}+X+\underline{Y}+\ldots \ldots+\underline{A}$. In this case, the label A is left recursive by virtue of the cycle consisting of rules (3) and (4).
4. A set of non-recursive rules may fulfill the left and right recursive condition through cycles. For example, the nonrecursive rules (6) $\underline{B}+\underline{C} \rightarrow \underline{A}$, (7) $\underline{A}+\underline{X} \rightarrow \underline{B}$ (8) $\underline{Y}+\mathbb{A} \rightarrow \underline{C}$ provide the label A with both left and right recuraiveness through two cycles consisting of the rules (6) and (7), and (6) and (8). In this case, strings of the form $\underline{A}+\underline{X}+\underline{Y}+\underline{A}+\underline{X}+\underline{Y}+\ldots+\underline{A}$ will be ambiguously analyzed by the given rules.

Other sets of conditions are possible, of course, but these four examples are sufficiently varied to facilitate a brief discussion which aan easily be generalized. In our present operations, ambiguous structural descriptions resulting from conditions such as those in 1., 2., and 3., above are considered trivially different. More specifically, alternative structures resulting from the application to a given string of the same set of rules, but in a different order are considered trivially different only when the label dominating the string is both left and right recursive in the applied rule set and is recursive in a recursive rule in the applied rule set.

In 4. above, it will be seen that these conditions are not met inasmuch as the rules given are all non-recursive. ${ }^{l}$ It is an empirically based judgment of ours that alternative structural descriptions occurring under these conditions are potentially more interesting for purposes of grammatical research than those covered by the formulation in the preceding paragraph. There is a formal correlative to this judgment which is illustrated by the contrast between situations 3. and 4. above. Note that, in both cases; the sample string for which alternative descriptions are provided by the rules is the same, namely $A+\underline{X}+\underline{Y}+\ldots+A$, etc. This string type may be described as a repetition of the recursive label with a fixed substring interposed between the sepetitions. Now, in 3., the fixed interposed substring. (i.e., $\underline{X}+\underline{Y}$) is reducible by itself to a single structure (i.e., C). . This same substring in 4. , however, is not reducible to a single structure and consequently its relationship with the recursive label will be more complicated and, quite possibly, more interesting.

Practical considerations have forced the adoption of some means to keep these trivially different alternative structures out of the parsing lists. On the one hand, their explosive combinatorial growth as a function of string length is disastrous for both available memory space and program running time; on the other, they result in the production of reams of uninformative printout and would constitute a serious obstacle to grammatical research.

Several solutions to this kind of problem are available. It could be bolved by eliminating recursive labels from the grammar altogether, or by eliminating all labels which are both right and left recsisive from the grammar. We regard these solutions as

[^2]both practically and theoretically undesiratle, because the former solution, by eliminating recursivemess altogether., leaves a grammar of finite generative capacity, while the latte: would require the addition to the grammar of a great many rules to maintain its weak generative capacity: Another kind of solution would involve the imposition of some order on the applicability of the rules in the grammar; we have avoided this in order to maintain the independence of grammar rules from one another as an aid to experimentation. Finally; because of the unusuaily stringent constraints on memory utilization, all solutions requiring the maintenance of supplementary lists during parsing operations were ruled out.

Instead, a toggle-switched optional subroutine was added to the basic algorithm which recognizes trivial ambiguities in the making and discards them. This optional node suppression subroutine fits into the flow chart on page 11 between boxes (26) and (27). It ascertains, first of all, whether the grammar rule to be applied is of the recursive type (i.e, , in the terminology of the flow chart, whether A or B is identical with C); if it is not, processing continues (to box (27)) as usual. If the rule is iecursive, then a check of all parsing list entries of length PL is made to determine whether any.one of these has the same entries in the INW and GL columns as would the potential new entry. If this condition is mé, the potertial new entry is discarded, and an exit is made to box (2,9) ; if this condition is not met, processing continues as usual. This subroutine may be represented thus: ${ }^{1}$

[^3]
2.1.1.3.2. Vector-Symbol Phrase Markers. A second, and more interesting, modification of the basic algorithm was adopted to deal with a problem which is particularly severe when dealing with highly inflected languages such as Russian. The problem is essentially that a contexi-free phrase structure grammar for such a language will contain many subsets of rules, dealing mainly with agreement and government situations, which closely resemble the paradigms of case, number, and gender presented in clasical grammars. For instance, to link up an adjective with a following noun in a sentence from such a länguage, an
imposing drray of rules, having the foliowing general form, are required:

$A_{m a s c ., p l ., n o m . ~} \mathrm{~N}_{\text {masc., pl., nom. }} \quad-\mathrm{NP}_{\text {masc. }, \text { pl., nom. }}$

Afem., sg., nom. . $+\mathrm{N}_{\text {fem., sg., nom. }} \quad-\mathrm{NP}_{\text {fem., ig., nom. }}$ and so on.

There is something inelegant about such collections of rules and, more importantly from a practical point of view, they consume a. tremendous ainount of storage space. Moreover, these sets of rules constitute an impediment to the kind of research in which we have been engaged-elementary modifications to the grammar would often involve the rewriting of entire sets of such rules. The solution finally adopted was suggested by the label + subscript notation employed in the illustration above; it consists of splitting each component of a grarrmar rule into two parts-a fixed part, denoting a major grammatical category, and a variable part, denoting sublcasses within the major category.
2.1.1.3.2.1 Numerical Format. Some preliminary explanation is necessary before the details of this vector-symbol (VS) arrangement can be presented. It has been mentioned that the word length of the BR- 130 compuier is 15 bits, and that the basic algorithm was initially programmed in FORTRAN, using integer arithmetic. There was therefore available a range of non-negative numbers from zero through 16,383) ${ }_{10}{ }^{1}$ for the representation of grammatical labels. In deciding how to implement a more compact arrangement of grammar rules of the kind mentioned, the question of how to accomplish the task within these numerical constraints arose. For a variety of reasons, we finally decided to employ the units and tens positions of the numerical grammatical labels for the expression of "paradigmatic variations", and to employ the three most significant digits as fixed major category tags. To permit full utilization of the variable digits, it was; of course, necessary then to restrict ourselves to the range 00000 through 16299 for the expression of grammatical labels. The fixed major category tags would then vary from 000 through 162, while the variable or "suffix" tags could range from 00 through 99.

Tinally, in order to achieve maximum flexibility in the overall arrangement, the two variable or "'suffix" digits were effectively split off from one another, so that they might be manipulated independently. This gave the result that each component of a grammar rule consisted of three segments: (1) a major grammatical category tag, represented by a nonnegative integer from 000 through 162, (2) a suffix variable, ranging from 0 through 9 ; (3) a second suffix variable, ranging from 0 through 9. The grammatical label 12374 could thus be

[^4]thought of as consisting of the segments 123-7-4. The convenience of such a convention is that it permits one of the suffix variables, when attached (for example) to the major tag for Noun, to represent gender and number, while the other suffix tag might represent case.
2.1.1.3.2.2 A Formalism Governing the Application of Grammatical Variables. In order to take advantage of this schema to render more compact the list of grammar rules, a formalism was required which would permit the replacement of a paradigmatic subset of rules by a single "cover" rule. To iilustrate the full set of conventions finally adopted, the following notation will be used:
A. Grammar rules will be represented as
$\underline{A V}_{a_{1}} V_{\mathrm{a}_{2}}+\underline{B} V_{b_{1}} V_{b_{2}} \rightarrow \underset{C}{C} V_{c_{1}} V_{c_{2}}$,
where A, B, and C represent major category tags, :and the multiply-subscripted V 's represent the suffix variables appended to them.
B. To represent grammatical labels of neighboring nodes (candidates for rewriting), the same arrangement will be used, except that "A", "B", and "C" replace their underlined counterparts, and the symbol "T", with subscripts as above, will be used instead of "V"; thus, $A T_{z_{1}} T_{a_{2}}+\operatorname{Br}_{\mathrm{F}_{1}} \mathrm{~T}_{\mathrm{b}_{2}}$ will represent a pair of adjacent nodes for which an appropriate grammar rule is being sought; $\mathrm{CT}_{\mathbf{c}_{1}} \mathrm{~T}_{\mathbf{c}_{\mathbf{2}}}$ will represent the grammatical label derived from the application of a rule to the foregoing pair.
 range over 1,2. The formalism has two parts: the first governs the testing of the applicability of a given rule to a given candidate-pair:
I. If $A=\underline{A}$ and $B=\underline{B}$, the rule applies, except that,
I. à $\quad 0<V_{x_{i}}<9$
requires that $T_{x_{i}}=V_{X_{i}}$
I.b. $\quad \mathrm{v}_{\mathrm{a}_{\mathrm{i}}}=\mathrm{V}_{\mathrm{b}_{\mathrm{i}}}=0$
requires that $T_{a_{i}}=T_{b_{i}}$

The second part of the formalism specifies the composition of the grammatical label derived from the application of a rule under the above conditions:

requires that $T_{c_{i}}=V_{c_{i}}$
requires that $T_{c_{i}}=T_{X_{i}}$, otherwise
requires that $T_{c_{i}}=T_{x_{j}}(i \neq j)$
2.1.1.3.2.3 Explanation of the Formalism. The net result of these conventions can be roughly summarized in plain English as follows:

1) When any digit other than "0" or "9" appears in a suffix-variable position of a grammar ruie component, on the left of the rewrite sign, a match is required between that digit and the corresponding digit of the appropriate candidate node label.
2) When the digit ingit used in a suffix-variable position of a grammar rule component, on the left of the rewrite sign, then no matching at all is required in that position.
3.) When the digit " 0 " is used in corresponding suffix variable locations in BOTH grammar rule components on the left of the rewrite sign; then the corresponding two digits in the candidate nodes must be identical: otherwise the effect of a variable suffix " 0 " is the same as that of a "g".
3) When the digit " 0 " is used as a suffix variable in the output component of a grammar rule (i.e., on the right of the rewrite sign\}, then it indicates that suffix information is to be carried upward from either or both of the candidate nodes to the new parent node; the location(s) of one or more zeros, in suffix positions to the left of the rewrite sign, indicate where the information carried upward is to be taken from. The existence of " 0 " in a suffix position of the output component of a rule always requires that there be at least one " 0 " in a suffix position on the left of the rewrite sign of the same rule.
: 2.1.1.3.2.4 Examples. To illustrate the usefulness and clarify the mechanics of these conventions, let us consider two hypothetical cases.

Suppose we need to write a rule covering the government of a noun ($001-$) by a preposition (025-). It will be necessary to determine that the noun is of the proper case. This could be accomplished by writing a series of rules, one for each case, gender, and number situation-this was, in fact, required before the algorithm was modified. But, if we allow the first suffix variable with nounsto represent gender and number, and the
second to represent case, and allow the second suffix variable for prepositions to represent case also, then a angle rule: $02590+00100 \rightarrow 03700$, suffices for all instances. A ssuming that a neighboring pair of nodes with labels 02563 and 00173 are encountered, we can test the applicability of the above rule and, if applicable, determine the composition of the new parent node by referring to the formalism given on page 19. To make this Easier, the components of the rule and of the node labels can be. segmented and juxtaposed:

GRAMMAR RULE:			
NODE LABELS:	$025-9-0$		
$025-6-3$		$+$	$001-0-0$
:---			
$001-7-3$	\rightarrow	$037-0-0$	
:---			
$037-7-3$			

Referring to rule I. of the formalism, we test whether the major grammatical tags in the rule are identical with those of the node labels; since they are, we go on to rule I.a., which is seen to be inapplicable, Rule I.b. applies for $i=2$, requiring that the second suffix variables of the node labels be identical; this is seen to be the case (both are "3"). This last test amounts to a test for "agreement" between the case specification of the preposition and that of the noun; at this point, since no more test conditions are listed, the rule is found to be applicable.

To determine the composition of the resultant parent node, we refer first to rule II.a. of the formalism; this enables us to obtain 037~ as the major grammatical tag of the parent nodr. Rule II. b. 1. is seen to be inapplicable, Rule II.b. 2a. applies for $x=b$ and $i=1$, enabling us to fill out the resultant label to 0377- : Rule II. b. 2a also applies for $i=2$ and $x=(a$ or b), enabling us to determine the final digit of the resultant label, giving 03773; as the final result. Rule II. b. 2 b . is not consulted, since the task is already complete.

[^5]It win be noted that, were the noun in the above example (not of the proper case (e.g. if it caried the label 00176), then the rule could not have been applied because of the condition expressed by rule I.b. of the formalism. Observe alss that the first suffix viriable in the preposition's label (i.e., "6") is ignored altogether because of the " 9 " in the corresponding position in the grammar rule. Similarly, the gender-number suffix variable in the noun's label (i.e., "7") is not considered in testing the applicability of the rule-the reason for this is given in 3) of the notes on page 20 .

Let us consider one more illustrative example of the mechanics of the modified algorithm. Suppose we have a grammar rule: $01205+11604 \longrightarrow 06313$, and a neighboring pair of nodes in the developing tree structure with labeis: 01265, 11664. Rule I. of the formalism is gatisfied. Rule I.a. holds for $x=a, i=2$ and also for $x=b, i=2$; in both cases, it is satisfied. Rule I. b. holds for $i=1$, and $i t$, too, is satisfied. The rule is therefore said to be appicable to the candidate-pair. Rule II. a. tells us that the resultant parent node label will begin 063-. Rule II. b. 1 applies for $i=1$ and also for $i=2$, yielding 2 final resulting node label 06313. In this instance, "agreement" was required between the candidate node labels in the first suffix position only; no suffix information is carried upward to the parent node label.

2.1.1.3.2.5 Remarks. As comple: as the formalism,

 the informal explanation, and the examples may make this modification to the algorithm appear, in practice it becomes simple in the extreme; and its adoption has resulted in a grammar that is both greatily reduced in size and considerably more elegant than it could otherwise be. A benericial side effect of this techinique has been to greatiy enhance the mnemonic walue of individual grammar rules, which eases the interpretationof experimental results for the research linguists. This is aue to the similarity between the VS fermat of the grammatical labels and the familiar stom suffix structure of inflected Russian forms, a similatity that has been heavily exploited in the assignment of graminatical labele;

In relating this modification of the algoxithm to the flowchart on page 11, the subroutines corresponding to rule I of the formalism should be included in box (26), while those corresponding to rule II belong to box (28) .

One rather different approach to dealing with the problem of inefficiency inherent in context-free phrase-structure grammar rules is known to the authors. ${ }^{1}$. Briefly, it involyes the use of grammatical variabies whose status is tested against stored tables of conditions which are chained together in a highly flexible manner. We have not adopted this interesting technique, because its implementation would tax the memory capacity of the hardware system at our disposal, and also because it seemed preferable for our purposes to express the entire significance of each grammar rule in a single formula-this enhances the mnemonic value of the rules and imposes a somewhat tighter structure on the grammar itself.

2.1.1.4 Input/Output Conventions

2.1.1.4.1 Grammar Rules, Input and Output. The ruies of the grammar are punched, one rule per card, on standard 80 -column data cards. Each component of a rule is punched as a 5-digit decimal number, with preceding zeros where required. The resulting 15 digits occupy columns 7 through 21 of the card, the remainder of the card being irrelevant (i, e., it is ignored by the input subprogram). The grammar rule $03165+12102 \rightarrow 00321$ would be punched 013651210200321 , beginning in columin 7 of the grammar rule card.

[^6]The cardis containing the grammar rules are assembled mantualy into adeck which is in numerical ascending order. In the ordering, only the majur grammatical category tags of the first two components are considered; these are treated as though they formed a single continous number from the left. For parposes of orderiag the rule deck, therefores the card containing the sample rule above worid have a value of 013121 . Consequentiy, it would appear nearer the top of the deck than a card bèaring the rule $02513+16299 \rightarrow 16100$ (whose "ordering value" is 0̌̌5162).

A special card is placed on the bottom of the deck as a signal to 钻e input subroutine that it has finished its task. When this card is read, input operations terminate and a special subroutine is called which performs two functions: (1) it ascertains shat there are no errors in ordering of the rules, and (2) it marks the boundesies of "families" of grammar rules by converting the leftmost component of the last-received rule of each family from a positive to the corresponding negative integer (see examples is Appendix D.

It is well known that, for lists longer than a fairly small threshold size, search operations can be most efficiently accomplished by the binary search technique. This technique requires that the list to be searched be numerically orderedit is for this reason that the grammar rule deck is ordered in the fashion described above. (Bor (25) of the flow diagram on page 10 indicates the place of the binary grammar search ini the parsing algorithm.) Because of tine method of ordering the grammer rules; it is possible that several rules will have the same "ordering value"; such a group of rules constitutes a "family" of rules (within which the ordering is entirely arbitrary). It will be noted that a group of rules constituting a family share the property that if, in a given instance, any one of them satisfies rule I. of the formalism (page. 20), all of them will satisfy it.

For this reason, rules 2 re checked for applicability in family groups (see box (26) of the parsing flow diagram, page 11). The purpose of the binary search, then, is to locate appropriate families of rules.

Since the ordering of rules within a family is arbitrary, a simple procedure is required which will guarantee that none of its members is overlooked in testing. In other words, it is necessary to be able to identify the boundaries of family groups in the rule list. By marking these boundaries in the manner described above, this is accomplished with an irreducibly minimal expenditure of running time.

The grammar rule list is output via the line printer in the form shown in Appendix D.
2.1.1.4.2 Sentence Input and Output. Sentences to be parsed are keypunched, one "word" per card, on standard 80-column data cards. Coiumns 1 through 24 of the card contain an alphanumeric transliteration of the Russian "word" (see Progress Report No. 6, page A-14). Columns 25 and 26 contain a two-digit decimal number, with preceding zero where necessary, specifying the number of distinct grammatical labels assigned the input item; this number may range from 01 through 20 (it corresponds to the subscript h in box (3) of the input flow diagram). Column 27 is left blank. The remaining colunanis, from 28 through 72, in fields of 5 columns, contain up to nine distinct grammatical labels, If the "word" has been assigned more than 9 such labels, the remainder are punched on a second card, in fields of 5 columns, from column 7 through column 61. A typical input "word" card appears as follows:

An input "word" need not necesisarily correspond, it must be pointed out, to an ordinary Russian text word, as in the above example. Wie have defined the notion "input word" to include anything which (1) can be determined by purely mechanical means from the Russian text, and (2) is most conveniently handled in the grammar as a separate entity. This definition has, in the course of our research; inciuded such things as ordinary text words, punctuation marks (comma, feriod, dash), initials and names ("USA", "N", "S", Khrushchev, etc.), and artificial elements ("sentence-begin", "comma-follower', etc.) such as are discussed in section 2.1.2 of this report.

The individual input cards for a sentence are assembled into a sentence input deck in natural text order. A special "end-of-input" card is added to this deck $t=$ trigger the transfer from the input subroutine to the parsing algorithm proper (see box (4) of the input flow diagram). As each input card is read into the computer, the grammatical labels it contains are arranged (as shown in diagram 2.1.1.2.2) in the initial parsing array. At the same time, the input iterns are numbered and printed via the line printer in the form shown in Appendix B. The alphanumeric transliterations are also stored where they can be later recalled for use in printing out the results of the parsing operations. Needless to say, these transliterations play no part whatsoever in the parsing proceduresthey merely represent data upon which a dictionary-search subprogram might act in an operational environment; and they serve to render the parsing system' β output more readable.

2.1.1.4.3 Output of Parsing Results. Several hinds of

 displays of parsing results can be sslected by means of toggieswitch settings. One of these is a line priater display of the initial parsing axiay as prepared by the input subprogram (diagram 2.1.1.2. 2). Appendix B, pages B-2and B-3, shows. a line printer display of the final parsing array afier the parsing algorithim has terminated: It is from this final parsing arrey, along with the stored alphanumeric transcriptions of the input text, that the remaining displays axe derived.Appendix B shows a sample of a line printex display which depicts a tree structure derived from the input. For each nonterminal node in the tree, she parsing array row number and the grammatical label are printed at the left; at the right, the row numbers, labels, and corresponding substrings of the daughter nodes:are given. To illustrate, the following tree, labeled "ê", would be represented as in diagram " $\mathrm{B}^{\prime \prime}$ below:

(A)

E	F	T_{1}
		$\mathrm{~T}_{2}$
	G	T_{3}
		$\mathrm{~T}_{4}$
F	H	T_{1}
	I	T_{2}
G	J	T_{3}
	K	$\mathrm{~T}_{4}$

(B)

It is also possible to obtain a line printer display of welíformed sưbstrings derived from the input. Normally, the subroutine which prepares this display prints out in succession all well-formed sub̄tringe of progressively increasing length, beginning with twoWord phrases and exhausting all entires in the parsing array. By appoppiate typewriter-input commands, however", selective displays can be generated on the baisis of phrase length or phrase label or both.

2.1.2 The Vector-Symbol Phrase Grammar

The gramnaticai labels are given in Appendix A. They represent both the basic grammar codes the results of the pseudo-dictionary lookup), as well as the higher-level labels assigned as the result of applying the rules to the basic grammar codes îe.g., pasticipial phrase, sentence, etc,). The same iabels in many cases may refer either to basic grammar codes or to higher level constructs (e.g., a noun by itself may constitute a noun phrase).

The variables, A and B, as shown on the first page of Appendix A, are used to indicate number/gender/person or case. The valuez for each of the digits which may be used in the variable positions are given (recalling that 9 and 0 are special symbols used in the rules, but never assigned as grammatical labels). The subscripts "a" and "g" indicate whether the variable illustrates a government or agreement relationship.

The method of dealing with so-called "homographs" within this system cannot be stressed enough. Hornographs are marked by more than one grammar code, the maximum number of codes being twenty. From the codes provided, it can be seen that some morphological types which very regularly take on a number of different syntactic functicns are no less homographs for the purposes of this grammar than are many "accidental" homographs. Thus, for example, "ces" (third singular past of "sit" and genisive plural of "village") is not more a homograph (indeed less so) than "новой " (feminine genitive, dative, instrumental and prepositional of "nev"). These alternatives can either be incorporated into viable structures accounting for the entire sensence or they cannot; if more than one of the grammar codes can be incorporated (or the same code incorporated in more than one significantly different way), the sentence is grammatically ambiguous; if only one of the grammar codes of a given word
\qquad
may be employed in a construct leading to a sentence derivation, its homography miay be said to have been resolved, Homographs are thus not to be looked upon as "special cases", but simply as the normal material unon which the parsing algorithm operates.

Oí course, it is always possible to reduce the number oí aiternate grammar codes at the cost of increasing the number of rules. Thus, for example, each unique combination of grammar codes assignable to some class of Russian words (including classes of oniy one member) could be given a unique grammar code. This would, however, greatly reduce the generality of the grammar and make grammar writing a prodigious task. No attempt has therefore been made to "telescope" the entries having multiple grammar codes except in a few sases.

The grammar codes given herein are not complete nor even necessarily definitive insofar as they go. They do not, for example, account for some cases of dual government (e.g., a short form passive participle taking two instrumental objects) nor are nouns taking nominal complements other than genitive considered. The grammar codes thus far created are adequate for the coding of the vast majority of the Russian sentences we encounter. One of the major advantages of such a system is the ability to create new grammar codes pro re nata and immediately incorporate them in rules in the grammar.

The Rules
Appendix D gives the 318 rules currently in use. They are, generally, quite readily interpretable though some patience may be required.

A few matters, however, deserve further attention. In general, a sentence is recognized as: sentence begir symbol, legal sentence tree, sentence terminating symbol. Of course, since the algorithm is binary, the recognition of these components must be done in two steps. The reason for incorporating a symbol
to indicate the beginning of a sentence is that some Russian structures occur only at the beginning of sentences or after commas (e.g., gerund clauses). If the beginning of the sentence were not indicated, the rules would have to be formulated in such a way as to accept such structures whether or not they were preceded by a symbol indicating their left boundary (since they might occur sentence initial) which could lead to undesirable results.
in connection with this, another problem arises-that of the dual functioning of Russian punctuation. There are many Russian constructions which are obligatorily marked $2 s$ to their beginning and ending (e.g., gerund and relative clauses). Unfortunately, one mark of punctuation may serve to both end one construction and initiate another or to end two such constructions simultaneously. Consider, for example, a relative clause occurring at the end of a. sentence and obligatorily surrounded by punctuation indicating its beginning and end. In this case, however, the period that marks the end of the relative clause also marks the end of the sentence.

Several alternatives come to mind for the solution of such difficulties; three will be discussed below.
first, the rules may be so formulated as to accept such structures whether they are preceded and/or followed by overt boundary markers or not. Thus, boundary markers serving to delimit two or more structures simultaneously could unambiguously be assigned to one or the other in the course of a sentence derivation (caution must, of course, be exercised in framing the rules to insure that multipl. syntactic interpretations hinging sclely on which structures the multi-functioning boundary markers are assigned to, are not derived).

An immediate objection to such expedient is thet there is no way of knowing in advance whether, under certain specified circumstances, ignoring a boundary marker (which is the effect
of framing the rules in this manner) will resuat in multiple analyses, some of which could have been avoided by taking the boundary indicator in question into consideration. In an eazely version of the grammar, this.. in fact, occurred when an incorrect derivation was assigned to one of the test sentences as a result of ignoring a comma ending a relative clause.

In general, it is undesirable for a parsing grammar to rely on the non-occurrence of certain (presumably) ill-formed strings. Aside from weakening the grammar's ability to recognize ill-formed input, presumptions about ill-formedness are often ill-conceived, since rarely are all the ramifications of such a decision apparent from the cutset.

Alternative 2 requires the inputting of a "dummy" word following each potential boundary marker. This dumsny element receives the same frammatical classification as the potential marker (and thus, of course, is a potential boundary marker itself). Rules are included for combining dummy elements and boundary markers to produce a single boundary indicator to handle those cases in which such elements (e. g., comma, period) do not serve multiple functions.

This option was, in fact, exercised for a while with generaliy gratifying results. It is easy enough to see, however, that when the number of structures obligatorily inisiated or concluded by a single mark of punctuation reaches three, the technique is inadequate and would have to be augmented by the method to be described subsequently (i.e., that of "carrying up" grammatical information to higher level structures). While few sentences having punctuation serving the functions described have been encounsered, they must nevertheless be taken into account. The technique was therefore abandoned for the one described below.

The third alternative is to formulate the rules in such a way that information about the termination of lower leves structures is carried upward to be used in determining whether the same

纷undary marker may also indicate the termination of a bigher level structure,

Consider the parsing for the sentence illustratec on pages C-22 and C-23 in Appendix C. The sentences ends with a participial phrase which requires a mark of punctuation to terminate it. In this case, the period terminates both the participizl. phrase and the sentence. As can be seen from the tree structure, the sentence end inforrnation was carried up to the noun phrase object, the verb phrase, and ultimately the sentence. This solurion, though altogether adequate and now functioning reasonably reliably, is not so elegant as one might wish, since it requirea the creation of nodes for both sentence terminating and nen-sentence terminating noun phrases, verb phrases, etc. The problem can be solved in a general and somewhat simpler way by increasing the number of variables or by allowing contert sensitive rules. In is anticipated that in some of orir future experiments either or both of these poseibilities will be explored.

3. CONCLUSIONS

Our primary concern has been the creation of a formalized sentence analysis system capable of describing Russian sentences adequately for machine translation, information retrieval, and related data processing operations. Our initial experiments were based upon a binary, context-free, phrase-structure grammar, chosen because of the simplicity of the companion algorithm and of the form of the grammar itself. We did not, of course, believe that such a system would be adequate to our main task; rather, we felt it would be useful to explore its weaknesses in some detail as a preliminary to the design of a more suitable system. These weaknesses are much discussed in the literature from a general linguistic point of view. Our exploratory study was undertalen to develop empirical results that would help to sharpen the relevance of such general discussions for our own rather limited data processing applications.

The two most serious deficiencies we encountered were, predictably, the multiplicity of grammar rules required to account for agreement and government situations, and the proliferation of trivially different structural descriptions assigned to even simple input strings. Both of these problems might be dealt with up to a point-at least for our purposes-by allowing the grammar to grow to the very limits of practicality. But a solution of this kind is not only uninteresting, it is quite hopeless as well, in view of the burden it places on the research grammarian and the computer's internal storage capacity.

To overcome these difficulties, the vector-symbol phrase grarnmar, with node suppression, was designed and incorporated in the parsing system. The "abbreviative" conventions for collapsing large sets of PS rules into small sets of VS rules have made it possible to undertake seriously the writing of a phrase
grammar for written Russian suitable for our data processing
applications. In our opinion, the practical potential of this type
of grammar-whose appeal lies in its basic simplicity and in the
straightforwardness of its implementation-has not been sufficientiy
explored or expioited. The rapidity with which it has been possible
to develop the grammar described in this repsit is felt to be one
justification of this position. The grammar is far from "complete",
except as measured against most other operating formal grammars

GRAMMATICAZ LABELS ${ }^{1}$

Significance of Variables

R: Nuraber/geader or person

1. Maccuizne
2. Eexinine
3. Neuser
4. Pluxal
5. First person mingular
6. Second person singalar
7. First gersor plurai
8. Second person plusal
9. Case
10. Nominative
11. Genitive
12. Dative
13. Accusative
14. Instrumental
15. Prepositional
16. Accusative animate

Subscripts
a. Agreement
g. Government

[^7]
RREDICATIVES

Finite, transifive, personal
Verb plsase with object
Finite, intransitive, personal
Impersonal
Shori form acjecitive
Future form of BYTw (ta be)
Past form of BYT* (to be)
Short form comparative adjective
Short form participle
Short form, infinitive government
Verb phrase with a period
Fast participle with nominal clause subject
Impersonal verb with infinifive subject
Fersonal verb with nominal clause direct object
Personal verb with infinitive direct object
Personal veirb with dative object and object
in another case (as specified by the variable)
Model auxiliary

NOMINALS

Values for variable:s
4th octal digit Number/gender or person
5th octal digit Case

1) 001A a_{a}
2) 021A. B_{a}
3) $031 \mathrm{~A}_{a} \mathrm{~B}_{a}$
4) $051 \mathrm{~A}_{a} \mathrm{~B}_{2}$
5) $061 \mathrm{~A}_{a} \mathrm{~B}_{a}$
6) $\quad 0068 \mathrm{~B}$
7) 00676

Noun taking adjectives and a. genitive nominal complement
Surname
Title (e.g., GENERAL)
Coordinated noun phrase
"SETTO" (as nominal)
Cocrdinated conjunction plus nominal
Name of month in genitive sirgular
7) 071A a_{a}
Unmodifiable nominal (e.ge, proneuns)
8) $091 \cdot A_{a} B_{a}$
Noun phrase with a geriod

INFINITTVES

1) $0048 B_{\mathrm{g}}$. Infinitive taking one object
2) 00488
3) $004 \mathrm{~B}_{\mathrm{g}} \mathrm{B}_{\mathrm{g}}$

Infinitive phrase with object(s) (or intransitive)
Infinitive taking two objects

GERUND

1) 00588 Gerund phrase with object(s) (or intransitive)
2) 00588

Gerund taking one object
3) $00<\mathrm{B}_{\mathrm{g}} \mathrm{B}_{\mathrm{g}}$

Gerund taking two objects
4) 00578

Gerund phrase plus comma

ADVERBS AND SPECIAL WORDS, PHRASES

1) 00711
2) 00712
3) $0063 A_{a} B_{a}$
4) 00777
5) 01711
6) 01811
7) 00733

Aảverb of manner
Adverb of time
Relative pronoun
Subjunctive particle "BY"
Single capitalized Cyriliic character
Capitalized character plus period Negative "NET"

PREPOSITIONAL PHRASES

1) $0088 \mathrm{~B}_{\mathrm{g}}$
2) $0188 \mathrm{~B}_{\mathrm{a}}^{\mathrm{g}}$
3) 01888
4) 02883_{a}
5) $0788 \mathrm{~B}_{\mathrm{a}}$
6) $063 \mathrm{~A}_{a} \mathrm{~B}_{a}$
7) $064 \mathrm{~A}_{a} 8$
8) $074 \mathrm{~A} a^{8}$
9) $055 \mathrm{~A}_{a} 8$
10) $063 \mathrm{~A}_{\mathrm{a}} 8$
11) $084 \mathrm{~A}_{a} 8$

RELATIVE CLAUSES

Relative pronoun
Relative pronoun and verb phrase (relative clauses)
Relative clause plus period
Relative clause plus comma
Comma plus relative clause plus comma
Comma plus relative clause plus period

PUNCTUATION

Comma

Coordinate conjunction
Period
Exclamation point
Sentence begin symbol

Coordinating conjunction (or comma)
plus noun phrase
"SHTO" (as conjunction)
Dash
Dash plus noun phrase
Dash plus nominative noun phrase
Left quote
Right quote
Left quote plus nominal

CLAUSES AND SENTENCES

1) 12345
2) 9988
3) 9987
4) 9888
5) 9887
6) 985 B
7) $986 \mathrm{~B}_{\mathrm{g}}$
8) 00854
9) 00855
10) 00753

Sentence begin symbol + sentence + period
Regular sentence (subject Predicate) + period
Inverted sentence (predicate subject) + period
Regular sentence (see 2)
Inverted sentence (sé 3)
Transitive verb (without object) \div subject
Subject + transitive veirb (without object)
"SHTO" clause plus period
Comma plus "SHTO" clause plus period "SHTO" (introduces nominal clauses)

ADJECTIVES AND PARTICIPLES

Values for variables; as for nominals

1) $003 \mathrm{~A}_{a} \mathrm{~B}_{a}$
2) $023 \mathrm{~A}_{a} \mathrm{~B}_{a}$
3) $033 \mathrm{~A}_{a} \mathrm{~B}_{a}$
4) $043 \mathrm{~A}_{\mathrm{a}} \mathrm{B}_{a}$
5) $053 \mathrm{~A}_{a} \mathrm{~B}_{a}$
6) $073 \mathrm{~A}_{\mathrm{a}} \mathrm{B}_{\mathrm{a}}$
7) $083 \mathrm{~A}_{a} \mathrm{~B}_{a}$
8) $037 \mathrm{~A}_{a} \mathrm{~B}_{a}$
9) $038 \mathrm{~A}_{\mathrm{a}} \mathrm{B}_{\mathrm{a}}$
10) $093 \mathrm{~A}_{\mathrm{a}} \mathrm{B}_{\mathrm{a}}$
11) $0965 \mathrm{~B}_{\mathrm{a}}$
12) 00672
13) 00675

Adjective

Participle, genitive government
Participle, dative governinent
Participle, accusative government
Participle, instrumental government
Participle, accusative animate
Participle, intransitive or transitive participle plus object
Unmodifiable adjective (e.g., NA)IJ)
Comma + participial phrase
Comma + participial phrase + period
Comma + participial phrase + comma
Numeral requiring genitive plural nominal
Numeral less than 31 (combines with months to form adverbiais of time)

2) | 651 |
| ---: |
| KROME |
| 882 |

31

4 ?

$5\}$
6?

81

9)

40)
41)
42)
43)

$$
44
$$

45)
46)
47)

TOGO 371237327112
NAS 71477146
VOZMUWALA
$224 \quad 227$
OSUHESTVL=EMA= 5321
PRAVITEL*STVOM
135
S) A $\begin{array}{lllll}141 & 142 & 143 & 144 & 145\end{array}$
SISTEMA
121
PEREXVATA 112
I
62.1

DE) IFROVANI = 132. 141144

SEKRETNYX 342346347
SOOBWENIJ
142
syoix
$3742 \quad 3746 \quad 3747$
SOGZNIKOV
14 ? 147
631

END OF SENTENCE

PAIRS $=506$ FULES TESTED $=443$
LEFT MATCHES $=275$ FULL MATCHES $=\mathbf{~} 55$ HIGHEST STRUCTURE $=99 . /$ 1) $/ 12345$

Besides
that (Furthermore)
us
revolted
practices
(by) governmeat
USA
System
(of) interception
and
decoding
(of) secret
messages
(0í) its
allies.

FINAL PARSING LIST

1.	1	651	1	0
2.	2	882	2	0
3.	3	3712	3	0
4.	3	3732	4	0
5.	3	7112	5	0
6.	4	7147	6	0
7.	4	7146	7	0
8.	5	224	8	0
G).	5	227	9	0
10.	6	5321	10	0
11.	7	135	11	0
12.	8	141	12	0
1.3 .	8	142	13	0
14.	8	143	18	0
15.	δ	144	15	0
16.	8	145	16	0
17.	8	146	17	0
18.	9	121	18	0
19.	10	112	19	0
20.	11	621	20	0
21.	12	132	21.	0
22.	12	141	22	0
23.	12	144	23	0
24.	13	342	24	0
25.	13	346	25	0
26.	13	347	26	0
27.	14	142	27	0
28.	15	3742	28	0
29.	15	3746	29	0
30.	15	3747	30	0
31.	16	142	31	0
32.	16	147	32	0
33.	17	$6 \dot{31}$	33	0
34.	2	1882	2	5
35.	4	228	. 6	9
36.	6	8321	10	11
37.	7	135	11	13
38.	9	121	18	1.9
39.	11	682	20	21
40.	11	681	20	22
41.	11	684	¢ 0	23
42.	13.	¢42	24	27
43.	15	7142	28	31
44.	15	7147	30	32
45.	1	1888	1	3.4
46.	6	8321	20	37
47.	10	5142	19	39
48.	12	132	21	42
49.	12	141	22	42
C.	12	144	23	42
1.	14	142	27	43
2.	9	121	18	47
3.	11	682	20	48
4.	11	681	20	49
55.	11	684	20	50

34． 1882

97． 9887
2.

5． 7112
35.
92.
6.

9 。

46． 8321
8%.
121
227

92． 121

46． 8321
10

37
135

121
18.

121

SISTEMA
PRAVITEL\＃STVOM（by）government

USA

System
that（Furthermore？ that
Besides
us
revolted
practiced
（by）government USA
System
（of）interception
and
decoding
（oí）secret
messages
（of）its allies
us
revolted

OSUWESTVL＝EMA＝practiced PRAVITEL\＃STVOM S）A
（by）government USA

System ，
（oí）interception and
decoding
（of）secret messages
（of）its
allies

OSUWESTVL＝EMA＝practiced S）A

54, \& 142
27.
$43 .: 7142$
28.

3742

142
SOQZNIKOV
allies

END OF STRUETARE

651
712
3721
121
611
3711
3714
7111
7114
311
314
111
114
611
321
121
124
112
244
134
131
141
144
122
722
121
723
715
312
332
112
312
332
112
322
323
325
1221
681
684
111
114
10321
121
121
123
126
141
144
312
332
112
631

cCmponents / label / fhrase

HIRA:
OTME (AQT
50.'LETIE gazety (1 PRAVDA):
boevogo
ORGANA
CENTRAL*NOGO KOMITETA KOMMUNISTICESKOJ Partil
SOVETSKOGO SOQZA
(of) world mark
50 th annivereazy (of) newspaper:
"Pravda"-
fighting
organ
(of) Central Committee (off Commanist Party (of) Soviet Unịon.
45. - 635

176
988
134
152.

248
NA) A
0 Cr PARTI $=$

VES*
SOVETSKIJ NAROD

Soviet people,
PRCERESIYNA= OBWESTVENNOST* MIRA
progressive
society
(ofi) worid
mark
OTME (AQT
50'Letie gazety
(6
PRAVDA
))
-
buevogo
ORGANA CENTRAL"NOGO
KOMITETA
50 th anniver:sary (of) newspaper

KOMMUNiSTILESKOJ PARTII SOVETSKOgO SOQZA
"Pravda"-
ghting
organ
(of) Central
Committee
(of) Communist Party (of) Soviet Union
NA)A
PARTI $=$
VESA
SOVETSKIJ
NAROD
our party,
all
Soviet people,

68. 7111

115:	112	31.	112	ORGARA :	crgan
$108 .$	\square	108.	122	$\begin{aligned} & \text { CENTRALFNDGO. } \\ & \text { ROAITETA } \\ & \text { KOMMUNISTITESKOJ } \\ & \text { PARTII } \\ & \text { SOVETSKOGO } \\ & \text { SOQZA. } \end{aligned}$	(os) Gentral Committee (of) Communist Party (of) Soviet Union
	112	32.	312	CEMTRAL*NOGO	(of) Central
		$304 .$	132	komiteta KOMAUNISTI(ESKOJ partil SOUETSKOgO SOQZA	Committee (0f) Communist Party (of) Soviet Union
104.	. 112	34.	:12	KOMITETA	Committee
		95.	122	$\begin{aligned} & \text { ROMMUNISTICESKUJ } \\ & \text { PARTII } \\ & \text { SOVETSKOGO } \\ & \text { SOQZA } \end{aligned}$	(of) Communist Party (of) Soviet Union
95.	122	35.	322	KOMMUNISTI(ESKOJ	(of) Communist
		76.	122	FARTII SOVETSKOGO SOQZA	Party (of) Soviet Union
76.	122	38.	122	PARTII	Party
		66.	112	$\begin{aligned} & \text { SOVETSKOLO } \\ & \text { SOQZA } \end{aligned}$	(of) Soviet Uraion
66.	112	43.	312	SOVETSKOGO	(0f) Soviet
		45.	112	SOQZA	Union

害
堛
G

鞰
筑

1

B
I
 C13

Q
展:

1
1
I
II
II
左

GRAMAAR RULES

56.	448	104	488
57.	438	105	488
58.	428	102	488
59.	-400.	190	408
613.	-580	100	588
6i.	-580	611	578
02.	-580	711	580
03.	-578	9900	9900
64.	672	102	131
65.	672	102	134
660,	621	100	6811
67.	-611	100	680
68.	611	300	10300
69.	-621	300	10300
70.	-675	676	712
71.	611	757	758
72.	671	71.2	671
73.	653	712	651
74.	-6i1	755	756
75.	-611	854	855
76.	-651	1880	1888
77.	-611	6508	6308
78.	621	7100	680
79.	-611	7100	680
80.	-611	7408	8408
81.	-611	8308	3800
82.	-611	9687	9688
83.	621	9800	1511
84.	-671	9880	678
85.	-6b1	9900	12345
86.	722	100	4100
87.	722	101	1722
88.	715	101	716
89.	733	102	9888
90.	-715	100	770
91.	777	202	202
92.	777	203	$\underline{203}$
93.	777	204	204
94.	777	205	205
95.	711	201	201
96.	711	202	202
97.	711	203	203
98.	711	204	204
99.	711	205	20.5
100.	711	207	207
101.	-712	208	208
102.	754	631	757
103.	754	611	755
104.	-717	621	7.17
105.	-778	779	712
106.	-753	1880	753
107.	-715	2101	9888
108.	711	2200	2200
109.	712	2202	2202
110.	712	2203	2203
111.	712	2204	2204
112.	712	2205	2205
113.	-712	2207	2207
114.	-711	2300	2300
D-3			

115.	-711	3200	3200
116.	-711	3300	3300
117.	-711	4300	4300
118.	-717	5141	9887
119.	-711	5300	5300
120.	-711	7300	7300
121.	-715	9100	9770
122.	753	9887	754
123.	-753	9888	754
124.	-753	9980	854
125.	-880	100	1880
126.	-880	2100	1880
127.	-880	5100	1880
128.	-880	6300	6800
129.	-880	7100	1880
130.	-880	9100	2880
131.	-1208	101	9887
132.	-1208	1889	1208
133.	-1208	2101	9887
134.	-1208	2890	9208
135.	-1288	7101	9887
136.	-1208	9101	9987
137.	-1300	100	7100
138.	-1300	7100	7100
139.	-1711	631	1811.
140.	-1722	723	1723
141.	-1711	885	885
142.	-1880	715	7880
143.	-1811	2100	2100
144.	-1888	9900	12345
145.	-1888	12208	12208
146.	-2100	192	2100
147.	2101	200	9780
148.	2101	208	9888
149.	-2140	200	1208
150.	-2101	716	9888
151.	-2101	1208	9888
152.	-2100	1839	2100
153.	2190	2200	1208
154.	2101	2200	9780
155.	-2101	2200	9888
156.	2101	2308	9888
157.	-2190	2300	2308
158.	-2161	3208	9888
159.	-2100	6308	2100
160.	-2100	9300	2100
161.	-2190	9780	9888
162.	2200	101	9770
163.	2200	101	9887
164.	-2200	190	208
165.	2204	758	208
165.	-2200	711	2200
167.	-2200	1889	2200
168.	2200	2101	9887
169.	-2200	2101	9770
170.	2200	7190	1208
171.	2200	7101	9770
172.	-2200	7101	9887
173.	-2204	9688	2208

174.	2300	100	100
175.	-2306	192	8300
176.	-2300	5192	8300
177.	-2300	7192	8300
178.	3100	100	100
179.	-3100	192	3100
180.	3100	2100	2100
181.	-3100	2192	3100
182.	-3100	7192	3100
183 。	3208	-101	9887
184.	3208	100	9887
185.	-3200	190	3208
186.	-3200	711	3200
187.	-3200	1889	3200
188.	$32 \cup 8$	2101	9888
189.	3208	210\%	9887
190.	-3200	2190	3208
191.	-3208	4200	3208
192.	3218	5259	3258
193.	3208	5209	3248
194.	3228	5259	5258
195.	3248	5289	3288
196.	3248	5279	3278
197.	3218	5269	3268
196.	-3228	5269	3268
193.	3208	7101	9888
200.	3208	7101	9887
201.	-3200	7190	3208
202.	3300	- 100	100
203.	-3300	193	8300
204.	-3500	5193	8300
205.	-3300	7193	8300
206.	-3700	100	7100
207.	- 5700	7100	7100
208.	3800	611	9650
209.	-3800	631	9300
210.	-4100	723	100
211.	-4208	100	9887
212.	-4200	488	4208
213.	-42u1	3208	3208
214.	-4208	7101	9887
215.	4300	100	100
21.6.	-43u0	194	8300
217.	-4300	5194	8300
218.	-4300	7194	8300
219.	5140	200	208
220.	-5141	248	9888
221.	5141	641	9988
222.	-5140	680	5140
223.	-5141	. 716	9888
224.	-5141	1208	9888
225:	51.41	2200	$9888{ }^{\circ}$
226.	-5140	2200	208
227.	5140	3200	3200
226.	-5141	3248	9888
229	-5101	4208	9888
230	-5100.	6308	5100
231:	-5100:	8.408 -	9100
$232 \cdot \cdots$	-5141.	9248	9988

233.	-5100	9300	5100
234.	3209	3218	3268
235.	5249	3248	3246
236.	5259	3218	3258
237.	5259	3228	3259
238.	5269	3228	3268
239.	E279	3248	3278
240.	-5289	3248	3288
241.	-5209	10200	10200
242.	5300	100	100
243.	-5300	195	8300
244.	-5300	5195	8300
245.	-5300	7195	8300
246.	0201	208	9677
247.	-6190	200	9608
248.	-6100	1889	6100
289.	-6100	9860	9677
250.	-6301	208	6408
251.	-6300	712	6300
252.	-6301	1208	6408
253.	-6301	2200	6408
254 .	-6301	3200.	6408
255.	-6301	9208	7408
256.	-6300	9980	6408
257.	-6301	15208	6408
258.	6408	631	7408
259.	-6408	611	6508
260.	-6888	100	100
261.	6888	202	202
262.	6388	203	203
263.	6888	204	204
264.	6888	205	205
265.	-6888	207	207
266.	-6888	1208	1208
267.	-6888	2100	2100
268.	-6888	2200	2200
269.	-6888	3200	3200
270.	-6888	4299	4299
271:	-6888	7100	7100
272.	6800	9988	6408
273.	-6800	9987	64035
274.	7101	208	9888
275.	7190	200	208
276.	-7101	200	9860
277.	-7100	480	488
278.	-7160	680	5140
279.	-7101	1208	9888
280.	-7100	1889	7100
281.	7101	2200	9888
282.	-7190	2200	1208
283.	7190	2300	2308
284.	-7101	2308	9888
285.	-7101	3208	9888
286.	-7.201	4208	9888
287.	-710\%	6308	100
288.	-7101	9208	9938
289.	-7100	9300	7100
290.	7100	9770	9100
291.	-7190	9780	9888

	292.	-7141	13208	9888
	293.	-7141	15208	9888
	294.	7300	100	100
	295.	-7.340	197	8300
T	296.	-7500	5197.	8300
	297.	-7300	7197	8300
	298.	-7400	7197	8400
	299.	-7880	1889	1880
	300.	-8300	100	100
	301.	-8300	1899	8300
	302.	-8400	48.8	8300
	303.	-9190	190	5140
	304.	-91.90	7190	5140
	305.	-9608	101	9677
]	306.	-967.7	631	9.687
	307.	-9608	7101	9677
	308.	-9770	2100	9887
	309.	-9770	7100.	9887
	310.	-9850	100	9887
	311.	-9880	631	9980
	312.	-9800	1511	9800
7	313.	-10200	756	9887
	314.	-1.0238	855	9987
	315.	-12208	758	208
	316.	-12208	855	9208
	317.	-1.3200	488	13208
	318.	-15200	488	15208

[^0]: See Aspects of the Theory of Syntax, M.I. T. Press, Cambridge, 1965 , pp. $67,89,90,210,211$, and 215., For purposes of consistency, our use of the term "phrase-structure"! in this report has been limited to accord with Chomsky's interpretation of it.

[^1]: This discussion is limited in application to systems with binary grammars; space does not permit the development of the fully generalized case. Specifically excluded from this discussion is the case of the ambiguous grammar (i.e., a grammar containing more than one rule for rewriting a given pair of candidate labels).

[^2]: In the present grammar, there are no labels which are both left and right recursive solely by virtue of cycles of non-recursive rules.

[^3]: It may be of interest to note that this technique achieves precisely the same economies in parsing list reduction as does that proposed by Jane Robinson of the RAND Corpo:sation (in Endocentric Constructions and The Cocke Parsing Logic, presented to the International Conierencio on Linguistics, New York, May 1965), but without the overt marking and arrangement of recursive rules.

[^4]: ${ }^{1}$ Unless explicit mention is made to the contrary y_{i} all numbers in the remainder of this report will be in decimal notation.

[^5]: It may be of interest to the reader to note that it has not been found necestary or Gesimble as yet to include, in the C-F grammai for Rusian, rules of form that would require the application of rule 14.26 of the formalisme this nule has nonetheles seen embodied in the algorithm for reasons of programing eymmetry and because it seemed inadyisable to preclude the ube of Gif tuleoif needed

[^6]: This is due to Martin Kay of: the RAND Corp. Economical schemes have been developed, also at RAND, for categorial and dependency grammars, but these deal with a rather distinct set of problems and are not relevant to this discussion. The system: proposed by G. H. Harman (in "Generative Grammare Without Transformational Rulest A Defense of Phrase Structurell, Language, 39, pp. $597-616$) is very similar to a VSPG as described here except that (l) employs discontinuous structures, and (2) the grammatical variables are not ordered.

[^7]: TWe are indebted to Wirren Joseph Plath's Harvard doctoral thesis for several of our syatactic classes. (Mathernatic Linguistics and Automatic T ranslation, Report No. NSF- 12 to the National Science Foundation, Anthony G. Oettinger, Principal Investigator, Cambridge, Massochusetts, June, 1963.\}

