Summary

- Pass6
» status, changes from Pass5
> directions for Pass7
- IRF updates
> updated Pass5
» onward to Pass6
- OBF updates
> proposed changes in bit 17,21
- Bkg model
- Bkg model status
- Comparison with Pamela

$\mathfrak{P a s s 6}$ analysis

Pass6

Data Sets:

Muons: allMuon-GR-v13r9 (14- Jan-2008)
AG: allGamma-GR-v13r9 (14-Jan-2008)
BKG: backgnd-GR-v13r9 (15-Jan-2008)

Initial Pruning Cuts:

ObfGamStatus >=0
TkrNumTracks > 0
CalCsIRLn > 4
CTBCORE > . 1

Passed Onboard Filter
At least 1 track
Track intercepts CAL
Not unreasonable recon

CPF overall scheme

Schematic

What's new since Pass 5

> Using Ribbons as intended
> Usage of scaled ACD energies
$>$ Improved understanding of where self veto comes from

ACD: basic tile energy

Example 1 Cut:

Tkr1SSDVeto == 0 \&
AcdTkr1ActiveDist > 0 \&
AcdTkr1ActDistTileEnergy > 1 .

Example 2 Cut:

Tkr1SSDVeto < 5 \&
AcdTkr1ActiveDist > 0 \&
AcdTkr1ActDistTileEnergy > . 2

Note: This portion of the CPF Analysis was done with v13r7 since my v13r9 datasets all had the min. basics Active Dist. - Tile Energy cut applied in the Skimmer.

Self Veto Study

Self Veto Study

Plot the ratio of events in Low \& High energy bands as a function of the Tile Energy Cut.

Having jumped ahead to the end of the analysis, there is an appreciable leakage of high energy events that can be missed by this cut. This sets limits on how liberal one can be with the Active Distance and associated Tile Energy. The scaled ACD energies become less capable as the reconstructed event energy increase (ie. $>10 \mathrm{GeV}$). These suggest that the Active Dist. Min is -16 mm and Tile energy is .4 MeV . Fortunately the SSD req. is $==0$

ACD: Total tile energy cut

Scaled ACD Tile Energies

Scaling the ACD energies to the total reconstructed energy lessens the self veto effect dramatically. Two scale energy variables are considered:

AcdTileEventEnergyRatio $=$ AcdTkr1ActDistTileEnergy/CTBBestEnergy * 100
AcdTotalTileEventEnergyRatio = AcdTotalEnergy/CTBBestEnergy * 100

Advantages \& Disadvantages

> Scaled responses automatically increase amount in ACD require to Veto an event as E increases
> The dependence on Tracking (along with its $\sim 2 \%$ mis-tracking) is greatly reduced
> However as CTBBestEnergy increase, eventually even a MIP is passed...

First Cut

AcdTotalTileEventEnergyRatio > . 8

Note: something akin to this could be done onboard the LAT!

CPF: Pass 5 - Pass 6 comparison

Note: These plots use the v13r7 data - skimmed v13r9 data have Basic Cut applied
Conclusion: Pass 6 is an order of magnitude better the Pass 5 while retaining the same Gamma efficiency!

TKR overall scheme

What's new in Pass 6?

> Global IST Veto
> Global Heavies \& Range-outs Veto

A new bkg class: IST

Incoming e+ and e-can interact in the first few layers going to an all-neutral state. The resulting gammas can then pair convert particularly in the thick layers. (R. Johnson)

Examples using incident $\mathrm{e}+$ (from Robert)

Interrupted Shower Cut

AcdTileEventEnergyRatio > max(.003, (6-TkrUpstreamHC)* .006) \& AcdTileEventEnergyRatio > (-.015-.00002*AcdTkr1ActiveDistENorm) \& TkrUpstreamHC > 0

	ISVeto		
	Accepted	Vetoed	
Event.Type ${ }^{\text {BKG }}$	90.41	9.59	72999
GAM	98.02	1.98	153549
Totals	216506	10042	226548

Heavy ions and from below

Tracker ToTs give a dE/dX meas.
Plotting Tkr1ToTFirst vs CTBBestLogEnergy suggested that scaling the ToT to energy had merit:

ScaledToT = Tkr1FirstTot * 2.5 / CTBBestLogEnergy

ScaledToT

Heavies \& Range Out Cut

Tkr1ToTFirst < . 2 \& CTBBestEnergy < 25000) |
Tkr1ToTFirst * 2.5/CTBBestLogEnergy > 6.5

	HRVeto		Totals
	Accepted	Vetoed	
Event.Type ${ }^{\text {BKG }}$	75.62	24.38	72999
Totals	98.68	1.32	153549

CAL overall scheme

The data use for this required the CPF
PreFilters (CPFGamProb > 0)

What New in Pass 6?

>Pass 5 PreFilters
Recycled
> Attempt to limit CAL Back \& Side entering Events

Backside entering

Pick up signal in last layers of CAL. Cross correlate Layers 6 \& 7

Rotate: Take sum and difference

Event classes

```
Pass 6 Transient Class
CPFGamProb > . 2 \& CALSeal > 0 \& ((TKRGamProb < 0 \& CALGamProb > .1) | (TKRGamProb > . 1 \& CALGamProb < 0) | (TKRGamProb+CALGamProb > .5))
```


Pass 6 Source Class

Transient+
(CTBTKRISVeto > 0 \& CTBTKRHRVeto > 0) CT with CalTkrComboCut

Pass 6 Diffuse Class

Transient+
AllProb>. 4

Results: Bkg. Left $=29226$-or- 2.02 Hz
Bkg. Above $100 \mathrm{MeV}=14676$-or- 1.02 Hz

$$
.4 \text { Hz - AllProb > . } 10 \text { (!) }
$$

Leaves: All = 1860 (. 13 Hz)

$$
\mathrm{E}>100 \mathrm{MeV}=1627(.11 \mathrm{~Hz})
$$

Pass6 summary

On Axis Aeff by Class

Aeff \times FoV by Class

Summary

> Pass 6 improves on Pass 5
> The basics for optimize Event Class definitions are available
> Improvements needed to compensate for mis-tracking at high energy
> Pass 6 also includes the Neutral Energy Analysis presented at NRL last November
> Already in GlastRelease (since v13r9p4)

Directions for Pass7

IRFs

Pass5: new irfs, reflecting GlastRelease v13r9 Currently in ScienceTools LATEST: P5_v13_0_(trans,source,diff)

Smoothing Edisp, psf-like

Edisp is currently expressed in terms of $\frac{E_{C T B}-E_{M C}}{E_{M C}}$
Edisp shape varies quite a lot in the allGamma phase-space (logE vs cos(th))
This means that the parameters defining the Edisp in the irf representation vary quite a bit This leads to systematics
A more smooth behavior is desirable
Let's see how wide is the energy RMS - use allGamma_v11-562G reprocessed p5
To have an idea of how the "energy resolution" varies let's have a look at P5_v0_transient

Edisp cont. front

Scale function

$f_{\text {scale }}=a_{0} \cdot \log (E)^{2}+b_{0} \cdot \cos (\theta)^{2}+a_{1} \cdot \log (E)+b_{1} \cdot \cos (\theta)+c x \cdot \log (E) \cdot \cos (\theta)+d_{\text {off }}$
Parameters (separate for front/back) are. $\mathrm{a} 0[\mathrm{]}=\{0.021,0.0215\}$; b0[]=\{0.058,0.0507\};
a1[]=\{-0.207,-0.22\};
b1[]=\{-0.213,-0.243\};
cx[]=\{0.042,0.065\}; doff[]=\{0.564,0.584\};

Lets rescale edisp by f: McScaledDeltaE $=\frac{1}{f_{\text {scale }}} \cdot \frac{E_{\text {CTB }}-E_{M C}}{E_{\text {MC }}}$
At this point the rms varies by a few \%, except for extreme energies, one could work on this with cuts, CTs:

Scaled deviation

(CTBBestEnergy-McEnergy)/McEnergy

This is the usual plot we've seen thousands of times
Mind the shoulder on the left All events at once, front+back

DDeltaE

Same plot after rescaling "Symmetric" around zero Here one can try to cut tails ${ }^{10}$

This is now in units of "core rms"

Tweak IM

Change the way GoodEnergy probability is assessed Right now (P5_v0): Current definition of good energy recon (

- GoodEnergy = ifelse((BestDeltaEoE > NSigmaHi*EnergyResModel | BestDeltaEoE < NSigmaLow*EnergyResModel) , "BadEnergy", "GoodEnergy")
- EnResModel = .02+.6/(McLogEnergy)2.5 + .005*(McLogEnergy-2.)2
$-\mathrm{NSigmaHi}=1$.
- NSigmaLow = 2.

Substitute each simple CT with a series of two:

- First, BEP2 is probability that abs(McScaledDeltaE)<2
- Second, BEP3 is probability that abs(McScaledDeltaE)<3

For the moment being BestEnergyProb=sqrt(BEP2*BEP3) in each pathway: 1) ALL
2) Profile
3) Likelihood
4) Parametric

Power

Examples

CTBBestEnergyProb(Old) >0.35
(CTBBestEnergyPath==1 \&\&
CTBBestEnergyProb>0.25) ||
(CTBBestEnergyPath==2 \&\&
CTBBestEnergyProb>0.2) ||
(CTBBestEnergyPath==3 \&\&
CTBBestEnergyProb>0.25) ||
(CTBBestEnergyPath==4 \&\&
CTBBestEnergyProb>0.3)

Performances

Aeff - normal incidence

-BestEnergyProbNew>0

Here:
"precut" means Trigger + Obf + CTBClassLevel>0 + CTBCORE>0.1 that is, P5 Transient without the cut on BestEnergyProb

Performances 2

Edisp 68\% - normal incidence

Here:
"precut" means Trigger + Obf + CTBClassLevel>0 + CTBCORE>0.1, that is P5 Transient without the cut on BestEnergyProb

Summary

Pass5 irfs up to date with GlastRelease
Pass6 ready to include modifications to BestEnergyProbability This improves (marginally at the moment) the cutting power on tails Nowhere near the theoretical limit

Onboard Filter

> As shown at Nov. collaboration meeting:
> Have studied a number of Filter parameter settings
> Enabling/disabling filters can have large impact
> Filter threshold allow us some finer adjustments

VETO17:

Designed to remove upward going cosmics that interact in CAL and create gammas. The gammas convert after traveresing a few layers of the TKR.

Activated if:

- No evidence of a track (only one projection)
- Energy > Tkr_ZeroTkrEmin
- Default value of threshold is 250 MeV

Threshold lowered to 0 MeV

VETO21:
Intended to remove low energy background like albedo.

Activated if:
No evidence of a track pointing to the cal (no hits in 4 of the bottom 6 silicon planes)

- Energy > Zbottom_Emin
- Default value of threshold is 100 MeV

Threshold lowered to 0 MeV

Veto 17: change

Ratio efficiency

Numerator is the sample with veto 17 modified Denominator is sample with original filter settings

Bins affected seem to be along low energy and large angles
Errors are very large though

Veto 21: change

Ratio efficiency

Numerator is the sample with veto 21 modified Denominator is sample with original filter settings

Bins affected seem to be along low energy and large angles
Errors are very large though

Background model

-The flux model will be updated frequently in early operation. We need to know what is implemented and what's not, but no single document can tell about this.
-Therefore, we prepared a confluence page
-http://confluence.slac.stanford.edu/display/SCIGRPS/Background
+Flux+Model+in+Gleam
-The page is not so friendly (no images...). This talk is intended to give an overview of the current model.
-Protons - primaries and secondaries
-Electrons - primaries and secondaries
-Positrons - primaries and secondaries
-Alphas - primaries
-Neutrons - secondaries
-Heavy lons
-Trapped particles
-Earth(albedo) gammas
-Long efforts by Pat, Toby, Eric, Tune, Masanobu, Benoit, Jonathan, Markus, T.M. and others!

Primary protons - spectrum

$\operatorname{Primary}(\boldsymbol{E})=\operatorname{Unmod}(\boldsymbol{E}+\boldsymbol{Z} \boldsymbol{e} \Phi) \times \frac{(\boldsymbol{E})^{2}-\left(\boldsymbol{M c}^{2}\right)^{2}}{(\boldsymbol{E}+\boldsymbol{Z} \boldsymbol{e} \Phi)^{2}-\left(\boldsymbol{M c}^{2}\right)^{2}} \times 11\left(1+\left(\frac{\boldsymbol{R}}{\boldsymbol{R}_{\text {cutoff }}}\right)^{-12.0}\right)$
force-field approx. (Gleeson\&Axford 1968)
geomag cutoff to reproduce AMS data
Energy Spectrum

Primary protons - angular distribution

- No zenith angle dependence above the Earth rim $(\cos \theta>-0.4)$.

-EW effect was approximately implemented
$>$ generate particles uniformly above the Earth rim
$>$ calculate Rc and the flux for (θ, ϕ)
$>$ reject the event by the ratio of the flux to that form west

Toward East North West

Secondary protons

-We refer to AMS data above 100 MeV
-Low energy data by NINA-2:
>spectrum is saturated or even decreased below 100 MeV .
(cf. Alcaraz et al. 2000 and Bidoli et al. 2002. AMS is zenith pointing and NINA-2 is zenith or Sun pointing)
-Calculated ang. distr. from L=1.01 to 2.09 (bottom to top). We approximate this by $1+a^{*} \sin ^{2} \theta$. EW effect not implemented (yet).

Zuccon et al. 2003

Leptons in equatorial region

-We refer to AMS data (Alcaraz et al. 2000) and MARIA-2 data (Voronov et al. 1991; Mikhailov et al. 2002)
$>$ Model formula for primary leptons is similar to that for primary protons. Angular distribution is the same.
$>$ Large positron fraction of secondary due to EW effect.
$>\mathrm{e} / \mathrm{e}^{+}$ratio below 100 MeV is close to $\mathbf{1}$ (since gyroradius is small and particles do not drift in geomeg. field)

Leptons at high latitude

$\cdot{ }^{+}+l e$ ratio is close to 1 , since the EW effect for primary protons is small. -Steep spectrum gives high flux below 100 MeV .

Alpha particles

-The same formula as that of proton primaries, but $\mathrm{Z}=2$. The same angular distribution as that of proton primaries
-Secondary not modeled. (We assume they are negligible)

Neutrons

NB Vertical flux here is defined as $J_{2 \pi}=\int_{0}^{2 \pi} d \psi \int_{0}^{\pi / 2} \phi \cos \theta \sin \theta d \theta$, where ϕ is the angular flux.
-Rigidity dependence of $e^{-0.152 R c}$, as measured by COMPTE (Morris et al. 1995). Implemented.
-HE neutrons are predicted to come from Earth rim (Selesnik et al. 2007). No yet implemented.

Earth gamma

-Developed by D. Petry using EGRET data -Modeled in 10 MeV -10 GeV w/ EW effect.
-They contribute to the residual BG and GLAST is supposed to provide data with higher statistics and resolution. Somebody has to update the code. TM?

Orbit average comparison

Pamela data: red curve is for GLAST altitude, black for all altitudes
blue is GLAST bkg model

Pamela data vs GLAST model

- GCR flux above cutoff agrees very well (as expected).
- PAMELA measures a higher primary and albedo flux below cutoff especially at high geomagnetic latitudes (red curve).
- Low energy fluxes are above our model $<300 \mathrm{MeV}$ (blue and green).
- Sub cutoff excesses seen in Pamela data (black circle).

Background model summary

- PAMELA data (proton flux) is compared with GLAST model.
- Thanks to Marco and PAMELA team!
- Good agreement (a few \% level) in primary flux.
- Higher primary flux below cutoff in high latitude region.
- Higher secondary flux below 300 MeV and at high latitude.
- Difference by a factor of 2 around 100 MeV .
- End of both Pamela and AMS energy ranges
- Due to small solar activity? (probably not)
- We could double the normalization of proton albedo to make it sure that the trigger rate is adequately simulated.
- We look forward to further Pamela data!

Summary

