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Abstract
Hyperoxaluria can cause not only nephrolithiasis and 
nephrocalcinosis, but also renal parenchymal disease 
histologically characterized by deposition of calcium 
oxalate crystals throughout the renal parenchyma, pro-
found tubular damage and interstitial inflammation and 
fibrosis. Hyperoxaluric nephropathy presents clinically as 
acute or chronic renal failure that may progress to end-
stage renal disease (ESRD). This sequence of events, 
well recognized in the past in primary and enteric hyp-
eroxalurias, has also been documented in a few cases 
of dietary hyperoxaluria. Estimates of oxalate intake in 
patients with chronic dietary hyperoxaluria who devel-
oped chronic kidney disease or ESRD were comparable 
to the reported average oxalate content of the diets of 
certain populations worldwide, thus raising the ques-
tion whether dietary hyperoxaluria is a primary cause 
of ESRD in these regions. Studies addressing this ques-
tion have the potential of improving population health 
and should be undertaken, alongside ongoing studies 
which are yielding fresh insights into the mechanisms of 
intestinal absorption and renal excretion of oxalate, and 
into the mechanisms of development of oxalate-induced 
renal parenchymal disease. Novel preventive and thera-
peutic strategies for treating all types of hyperoxaluria 
are expected to develop from these studies.
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Core tip: Chronic nephropathy secondary to dietary 
hyperoxaluria has been reported in a limited number of 
patients. Dietary oxalate intake in these patients was 
lower than the average intake in certain parts of the 
world. This raises the question whether dietary hyper-
oxaluria has been a neglected cause of chronic kidney 
disease. This question along with recent findings elu-
cidating the pathogenesis of oxalate nephropathy calls 
for further research in epidemiology, prevention and 
treatment of hyperoxaluria. 
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INTRODUCTION
Oxaluria has been extensively studied in the context of  
nephrolithiasis[1-15]. While hyperoxaluria from various 
causes represents a definitive risk for calcium oxalate 
nephrolithiasis[1,2], lacking is convincing epidemiologi-
cal evidence that oxaluria is a risk factor for idiopathic 
renal stone formation[9,10]. In addition to nephrolithiasis, 
hyperoxaluria can also cause nephrocalcinosis involving 
the renal cortex, the renal medulla, or both[16-21], acute 
kidney injury (AKI) and chronic kidney disease (CKD). 
Oxaluria has two sources: oxalate formed endogenously 
from metabolism of  its precursors and oxalate absorbed 
from the gastrointestinal tract. Increased rate of  forma-
tion or increased rate of  absorption of  oxalate can lead 
to hyperoxaluria. The principal aim of  this review is to 
address various aspects of  hyperoxaluric AKI and CKD 
with emphasis on nephropathy secondary to high dietary 
intake of  oxalate. This topic was selected because of  its 
potential epidemiologic importance. In addition, interest 
to the topic is enhanced by important recent develop-
ments in the pathogenesis of  hyperoxaluric CKD and 
the relative paucity of  published information on renal 
parenchymal disease from dietary hyperoxaluria. 

This review will analyze in sequence the biochemistry 
of  oxalate and oxalate stones, the pathways of  hepatic 
synthesis of  oxalate, the gastrointestinal absorption and 
renal excretion of  oxalate, the various types of  hyper-
oxaluria with emphasis on the dietary variety, and the 
histologic types of  oxalate nephropathy and their patho-
genesis. The final section focuses on future research av-
enues that may illuminate the topic of  dietary hyperox-
aluria. The potential benefit from this research could be 
a reduction of  the incidence of  end-stage renal disease 
(ESRD)[22].

CHEMISTRY AND PROPERTIES OF OX-
ALIC ACID AND OXALATE STONES 
Oxalic acid is a two-carbon dicarboxylic acid (HOOC-
COOH). For a long time it was thought that oxalate 
stones were comprised of  mono- and di-hydrates of  cal-
cium oxalate, with some contribution from trihydrates. 
However, recent studies have led to a picture in which 
some non-oxalate preformed particle such as a crystal of  
uric acid, phosphate salts, drugs or drug metabolite act 
as the heterogeneous nucleus for formation of  the oxa-
late calculus[23]. 

Oxalic acid is a moderately strong acid with pKa 
values of  1.23 and 4.19. In its full ionic form it is called 
oxalate. Whereas oxalic acid is relatively soluble in water 
(8700 mg/dL; pH 7, 20 ℃), calcium oxalate is three to 
four orders of  magnitude less soluble (0.67 mg/dL; pH 
7.0, 20 ℃) and crystallizes readily. By way of  compari-
son, calcium urate is about 400-fold more soluble than 
calcium oxalate[24]. Oxalate also forms crystals with other 
polyvalent ions, including magnesium, ferrous iron and 
zinc. The water solubility (expressed as mg/dL) of  these 
complexes at 18 ℃ to 20 ℃ is as follows: magnesium 
oxalate 70.0, ferrous oxalate 22.0 and zinc oxalate 0.79, 
respectively. The solubility of  calcium oxalate increases 
slightly with increasing pH; however, hydrogen ion 
changes in the physiological range have only a small ef-
fect on calcium oxalate solubility. 

Oxalic acid is a toxic substance. It is not known 
whether oxalic acid and oxalate are themselves toxic 
before they react with calcium to form calcium oxalate. 
Under normal circumstances the concentration of  oxa-
late in the blood and urine depends on the content of  
oxalic acid in foods and on metabolic conversion of  
endogenous oxalate precursors largely by oxidative reac-
tions. Furthermore, dietary factors and substances other 
than oxalic acid per se can influence the tendency for 
oxalate crystals to form; these factors include: the amino 
acids 4-hydroxyproline, serine and glycine, calcium, and 
possibly ascorbic acid and fructose.

EXOGENOUS SOURCES OF OXALIC ACID 
In Nature oxalic acid occurs in the free form but more 
commonly as the salt of  sodium, potassium, calcium, 
magnesium or iron. The oxalate content of  dietary 
items consumed by several populations has been ana-
lyzed[6,25-31]. Widely consumed foods that are rich in pre-
formed oxalic acid include vegetables, nuts, cocoa, tea, 
and fruits high in vitamin C. Red meats, fish, poultry, 
eggs and dairy products contain relatively small amounts 
of  oxalic acid. Items in Western diets that significantly 
increase urinary oxalate excretion include spinach, 
rhubarb, beets, nuts, chocolate, tea, wheat bran, and 
strawberries[6]. The bioavailability of  ingested oxalate is 
influenced by other ingested items[32]. Oxalate content of  
various diets, its relation to nephrolithiasis, and guide-
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lines for oxalate intake have been reported[13-15,33-37]. One 
set of  guidelines for prevention of  nephrolithiasis pro-
posed a maximal daily oxalate intake of  200 mg daily[33]. 
We found no epidemiological reports relating dietary 
oxalate intake to oxalate nephropathy and no guidelines 
for prevention of  this nephropathy.

Table 1 shows estimates of  dietary oxalate intake 
in six countries[13,35,36,38-42]. Oxalate intake varies greatly 
between countries and regions of  the same country. For 
example, daily oxalate intake in Western diets ranges be-
tween 44 and 930 mg[13]. The seasonal variation of  oxa-
late intake in a rural population in India is extreme (Table 
1). Very high consumption of  oxalate in the context of  
dietary intake can be comparable to some reported lethal 
doses of  the compound. Although the average lethal 
dose (LD50) of  oxalate was estimated at 375 mg/kg[43], 
or 26.3 g for a 70 kg person, much lower doses of  oxa-
late can be lethal. An intravenous dose of  1.2 g of  so-
dium oxalate, which is equivalent to 0.8 g of  oxalate, was 
lethal in one reported case[44]. Of  note also is that most 
studies cited in Table 1[13,35,36,39,40,42] as well as other large 
epidemiological studies[45] analyzed dietary oxalate intake 
to evaluate the risk of  nephrolithiasis and no study ad-
dressed the risk of  CKD from dietary hyperoxaluria. 

SOURCES OF OXALIC ACID IN THE BODY
The body burden of  oxalic acid has two sources, endog-
enous production in the liver and absorption from the 

gastrointestinal tract. The pathways of  hepatic produc-
tion and gastrointestinal absorption of  oxalic acid are 
discussed below.

Hepatic production of oxalic acid
Oxalate is synthesized in the liver but is not metabolized 
further in humans. Oxalic acid produced by catabolism 
of  ingested oxalate precursors by means of  normal 
metabolic pathways contributes significantly to the body’
s burden of  oxalate. Earlier reports estimated that only 
10% of  the urinary oxalate was derived from dietary 
oxalate, while the remaining 90% was derived equally 
from metabolism of  other oxalate precursors, including 
ascorbic acid[46]. 

Figure 1 shows the metabolism of  oxalate, with em-
phasis on the pathways of  primary hyperoxaluria and of  
metabolism of  ethylene glycol, which is a major cause 
of  acute oxalate intoxication. The major precursors of  
oxalate under normal circumstances appear to be the 
amino acids hydroxyproline, glycine and serine (Figure 
1). Glycine and serine are present in all food proteins. 
Oxalate is also the end-product of  the metabolism of  
ingested ethylene glycol, the main component of  an-
tifreeze, which is encountered usually in the setting of  
attempted suicide. In order to facilitate understanding 
of  the these endogenous pathways, it may be helpful to 
consult Figure 1 which relates the major two-and three-
carbon compounds that are relevant to this discussion. 
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Figure 1  Biosynthesis of calcium oxalate. Glyoxylate is the main precursor of oxalate which combines spontaneously with calcium ions to form calcium oxalate. 
Names of enzymes: 1, serine hydroxymethyltransferase; 2, D-amino acid oxidase; 3, alanine:glyoxylate aminotransferase (AGT); 4, glyoxylate reductase-hydroxypy-
ruvate reductase (GRHPR); 5, glycolate oxidase; 6, alcohol dehydrogenase; 7, aldehyde dehydrogenase; 8, lactate dehydrogenase; and 9, five enzyme-catalyzed 
reactions. PH1 results from mutations in AGT which is a hepatic peroxisomal enzyme. PH2 results from mutations in GRHPR which is a cytosolic enzyme found in 
several tissues, but primarily the liver. PH3 results from defects in the hepatic mitochondrial enzyme 4-hydroxy-2-oxoglutarate (HOG) aldolase which converts HOG 
and glyoxylate to pyruvate (reaction not shown), the last step in hydroxyproline catabolism. The reason why a deficiency of HOG aldolase activity increases oxalate 
production is obscure. 
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The key player in this story is glyoxylate: it is the nexus 
of  pathways that lead to and away from oxalate.

Hydroxyproline is one of  the most abundant amino 
acids in collagen. It is present in collagen-containing 
meat products, including gelatin, and is one of  the most 
abundant proteins in the human body. In fact, collagen 
accounts for about 30% of  total animal proteins and 
contains about 13% hydroxyproline[47]. Glyoxylate is the 
two-carbon end-product of  hydroxyproline catabolism 
(pyruvate is the other product). The conversion of  gly-
oxylate to oxalate is catalyzed by lactate dehydrogenase. 
Each day the human body turns over 2-3 g of  collagen. 
In the process 240-420 mg of  hydroxyproline are re-
leased with the concomitant production of  140-240 mg 
of  glyoxylate[48].

Knight et al[48] demonstrated using healthy volunteers 
that daily ingestion of  30 g of  collagen for three days 
increased glycolate and oxalate excretion by 43% and 
5.3-fold, respectively. Glycolate is produced when gly-
oxylate is acted on by glyoxylate reductase which in the 
literature is also identified as hydroxypyruvate reductase 
and D-glycerate dehydrogenase. However, only 5% of  
the ingested hydroxyproline was recovered as glyoxylate 
plus oxalate, thereby indicating that most of  the glyoxyl-
ate resulting from hydroxyproline catabolism was prob-
ably diverted to glycine synthesis in the reaction cata-
lyzed by alanine:glyoxylate aminotransferase (AGT). The 
means of  directing glyoxylate away from oxalate syn-
thesis is the glyoxylate reductase reaction that converts 
glyoxylate into glycolate. Since oxalate is not oxidized to 
carbon dioxide and water or otherwise metabolized by 

humans, its only route of  disposal is urinary excretion. 
Quantitatively, transamination of  glycine and oxidation 
of  glycine by D-amino acid oxidase are much less im-
portant than catabolism of  hydroxyproline as sources of  
oxalate. 

Since the metabolism of  serine and glycine are so 
intimately linked in humans and because they are inter-
convertible, it is reasonable to expect that if  one of  these 
amino acids is metabolized to glyoxylate, the other too 
should be a precursor of  glyoxylate, and that both should 
be sources of  oxalate. Such is the case. The enzyme that 
catalyzes the serine-glycine interconversion is folate-
dependent serine hydroxymethyl transferase. Another en-
zyme, namely D- amino acid oxidase, also converts glycine 
to glyoxylate. 

Although the underlying metabolic link between 
ascorbic acid and oxalic acid is obscure, there is evi-
dence that a high oral or intravenous intake of  ascorbic 
acid can result in a moderate increase in urinary oxalic 
acid[8,39,49,50]. With regard to parenteral feeding, Robitaille 
et al[51] found that, on average, 80 mg of  a 105 g infused 
dose of  ascorbic acid was recovered as urinary oxalic 
acid in elderly adults with normal kidney function. Fur-
thermore, intravenous ascorbic acid administration in-
creased urinary oxalic acid excretion in a dose-dependent 
manner. These authors cautioned against high-dose infu-
sions of  ascorbic acid for individuals already at high risk 
of  oxalate stones.

Epidemiologic studies that have addressed the re-
lation between fructose intake and increased risk for 
oxalate stones have yielded conflicting results: however, 
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Table 1  Daily dietary oxalate intake in various countries and regions

Country-region Subjects Subject number Oxalate intake (mg/24-h) Ref.

Brazil, Sao Paolo +Stones 70 (M:42, F:28)   98 ± 1373 [13]
Healthy controls 41 (M:14, F:27) 108 ± 1333

England Hospital diet Not reported 118 [38]
Germany +Stones, ↑oxaluria 93 (M:73, F:20) 130 ± 1813 [39]

+Stones, →oxaluria 93 (M:73, F:20) 101 ± 1453

India, Rajasthan Rural “common” diet Not reported 78 [40]
Rural rainy season Not reported 2045
Urban, upper income Not reported 606
Urban, lower income Not reported 169
Hospital diet Not reported 139

India, Pune Boys, upper income 100 193 (116-309)4 [41]
Boys, lower income 100 169 (102-354)4

Girls, upper income 100 168 (115-209)4

Girls, lower income 100 133 (87-209)4

Italy Normal subjects1 12 (M:8, F:4) 335 [42]
Normal subjects2 12 (M:8, F:4) 18

United States, South F, 50-79 yr, +Stones 1.179 330 ± 1613 [35]
F, 50-79 yr. –Stones 1.179 345 ± 1663

United States M, +Stones 1.627 214 ± 1173 [36]
M, -Stones 44.358 214 ± 1213

F, older, +Stones 1.414 184 ± 1093

F, older, -Stones 91.358 185 ± 1123

F, younger, +Stones 1.564 179 ± 1213

F, younger, -Stones 100.260 183 ± 1213

1Diet containing fruits and vegetables; 2Diet without fruits and vegetables; 3Mean ± SD; 4Mean (25th-75th percentile). +Stones: History of urinary stones; 
-Stones: Absence of history of urinary stones; M: Male; F: Female. 
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a large epidemiological study found a significant associa-
tion between high consumption of  fructose and risk of  
kidney stones[52]. On the other hand, studies of  urinary 
oxalate excretion in humans administered high amounts 
of  fructose orally[53] or intravenously[54] have produced 
equivalent results. A 2010 investigation of  the relation-
ship between fructose consumption and urinary oxalate 
in healthy subjects found that urinary excretion of  oxa-
late and glyoxylate, which is a marker of  oxalate syn-
thesis, did not change when the fructose content of  the 
diet was raised as high as 21% of  calories[55]. A possible 
effect of  fructose on the absorption of  dietary oxalate 
or calcium excretion was not assessed in that study. Fur-
thermore, lacking is evidence that humans metabolize 
fructose to oxalate. However, fructose could affect the 
serum oxalate level indirectly by affecting events in the 
gastrointestinal tract. For example, hyperabsorption of  
oxalate caused by a low intake of  calcium for complex-
ation with oxalate in the GI tract can exacerbate hyper-
oxaluria[39]. 

Gastrointestinal absorption of oxalate
The contribution of  oxalate absorbed from the gastroin-
testinal tract to the total body burden of  oxalate depends 
on the oxalate content of  the diet. Recently, in a study 
of  normal volunteers consuming diets with varying 
oxalate content, Holmes and associates[56] showed that 
oxalate excretion in urine depends significantly on the 
dietary oxalate intake. Dietary oxalate intake accounted 
for 24.4% of  the urinary oxalate excretion when the diet 
contained 10 mg of  oxalate per 2500 kcal. Urinary oxa-
late excretion and the percent of  urinary oxalate derived 
from dietary oxalate increased progressively with pro-
gressive rises in dietary oxalate content, reached a value 
of  41.5% of  the urine oxalate when the diet contained 
250 mg of  oxalate per 2500 kcal, and increased further 
to 52.6% of  the urine oxalate when the diet contained 
both 250 mg of  oxalate per 2500 kcal and a low calcium 
intake. In the same study, although urinary excretion of  
oxalate increased substantially with increasing oxalate in-
take, estimated fractional absorption of  oxalate from the 
gastrointestinal tract decreased from 55.4% at the low-
est oxalate intake to 5.8% at the highest intake and then 
increased to 9.7% at the highest oxalate intake combined 
with low calcium intake[56]. These findings are important 
in the context of  dietary hyperoxaluria. 

The functions involved in the disposition of  dietary 
oxalate are exclusively absorption from the intestines and 
renal excretion[57]. In the intestines, oxalate is absorbed 
passively by means of  a paracellular pathway. Whereas 
unbound oxalate is absorbable, oxalate salts of  divalent 
cations such as calcium and magnesium are insoluble in 
water and therefore not absorbable. Oxalate transport-
ers in the enteric[58,59] and renal epithelial cells have been 
identified and are discussed in some detail in the follow-
ing subsection. 

The magnitude of  oxalate absorption is affected by 
various dietary substances and the gastrointestinal mi-

lieu. Dietary oxalate content is an important determinant 
of  oxalate absorption that is particularly relevant to this 
review. The fact that urinary oxalate is derived from two 
sources, absorption of  dietary oxalate and endogenously 
produced oxalate, complicates the study of  oxalate ab-
sorption in the gastrointestinal tract. A reliable method 
for estimating oxalate absorption is by labelling oxalate 
with a stable carbon isotope (13C), ingesting a known 
quantity of  labelled oxalate, and measuring the fractional 
(or percent) excretion of  the labelled oxalate in the 
urine[60,61]. The method assumes that absorbed oxalate is 
excreted exclusively in the urine. In one study conducted 
in normal subjects, oxalate absorption was evaluated by 
this method when total dietary intake of  oxalate was low 
(63 mg daily) and high (600 mg daily). Mean daily urine 
oxalate was 25 mg at the low oxalate intake and 43 mg at 
the high intake, while the percent absorption of  ingested 
oxalate increased from 7.9% at the lower intake to 14.7% 
at the higher oxalate intake[62].

The dietary content of  certain divalent cations has 
clinically important effects on oxalate absorption. High 
dietary contents of  calcium[63-65] and magnesium[66] in-
hibit oxalate absorption. The mechanism of  this inhibi-
tion is formation of  insoluble and poorly absorbable 
oxalate salts of  these two divalent cations when they are 
in abundance in the enteric lumen. Fatty acids have an 
opposite effect from divalent cations on oxalate absorp-
tion. High intake of  the 20-carbon polyunsaturated fatty 
acid arachidonic acid was shown to be associated with 
increased urinary excretion of  oxalate[67]. Fatty acids bind 
bivalent cations, thereby decreasing the latter’s availability 
for binding oxalate in the intestinal lumen. This effect of  
fatty acids on oxalate absorption also has clinical impli-
cations (see below). 

Several anaerobic bacteria, including Oxalobacter for-
migenes, Eubacterium lentum, Enterococcus faecalis and Lacto-
bacillus acidofilus, metabolize oxalate in the gut[68]. Admin-
istration of  probiotics containing one or more of  these 
bacteria to healthy subjects and, particularly, subjects 
with high baseline levels of  oxalate absorption, decreases 
oxalate absorption[68,69]. Conditions that are known to af-
fect oxalate absorption include the pH of  the intestinal 
fluids and intestinal transit time[62]. Whether these condi-
tions have clinical significance or not is unclear. 

RENAL EXCRETION OF OXALATE
Oxalate is eliminated almost exclusively by the kidneys. 
In two studies involving subjects with normal renal 
function, more than 90% of  injected radiolabelled oxa-
late was recovered in the urine[70,71]. Circulating oxalate is 
almost 100% ultrafilterable and it is filtered in the glom-
eruli[72] and excreted in the proximal tubules[73,74]. The 
basolateral membrane of  proximal tubular cells contains 
a transporter, SLC26A1 that exchanges oxalate for bicar-
bonate or sulfate[75]. Exchangers of  the SLC26 family, in-
cluding SLC26A6, SLC26A7, SLC26A8, and SLC26A9, 
have been identified on the plasma membrane of  cells 
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that transport oxalate[76,77]. The SLC26A6 transporter 
has also been localized to the brush border of  proximal 
tubular cells[78]. Holmes and Assimos hypothesized that 
increases in plasma concentration of  oxalate activate the 
basolateral SLC26A1 transporter which facilitates entry 
of  oxalate into proximal tubular cells, which is then fol-
lowed by oxalate efflux into the tubular lumen[79]. Tubu-
lar secretion of  oxalate may have clinical significance. 
One study found enhanced tubular secretion of  oxalate 
in hyperoxaluric patients compared to controls with nor-
mal oxalate excretion[4]. 

Oxalate transfer in the enteric epithelial cells gut is 
similar to that in the renal tubular cells. Oxalate transfer 
through the enteric tight junction is driven by a lumen-to 
blood concentration gradient and by water absorption. 
Soluble oxalate is secreted back into the enteric lumen 
through SLC26A1 and SLC26A6. SLC26A1 is located 
in the basolateral membrane and transfers oxalate from 
the paracellular space to the intracellular compartment. 
SLC26A6 is located in the apical membrane and returns 
oxalate to the enteric lumen. The transfer of  oxalate 
through the anion transporters back into the enteric 
lumen modulates the absorption of  this toxic com-
pound[59]. 

In renal failure, oxalate excretion decreases roughly in 
proportion to the decrease in renal function and serum 
oxalate concentration increases[80]. As a compensatory 
mechanism, elimination of  oxalate through the gastroin-
testinal tract is increased in renal failure[81,82]. A study by 
Hatch and colleagues provided evidence that the increased 
intestinal excretion of  oxalate in renal failure is mediated, 
at least in part, by angiotensin Ⅱ[83]. Renal failure, there-
fore, is one condition in which oxalate is not eliminated 
in its entirety by the kidneys. Diuresis and body size are 
two factors that affect urinary oxalate excretion. In nor-
mal subjects, oxalate elimination in the urine increases in 
parallel to urinary flow rate[84,85]. The clinical significance 
of  this finding is obscure because urinary oxalate concen-
tration decreases in parallel as urinary flow increases[85]. 
Large body size is associated with a high urinary oxalate 
excretion rate[86,87]. This finding is clinically relevant be-
cause obesity is a risk factor for nephrolithiasis[88]. Finally, 
urinary oxalate excretion shows seasonal variations[89] that 
can have clinical importance. 

CLINICAL TYPES OF HYPEROXALURIA
Hyperoxaluria can result from excessive endogenous 
production of  oxalate, excessive absorption of  dietary 
oxalate, excessive dietary or parenteral intake of  oxalate, 
or a combination of  these processes. Four main catego-
ries of  hyperoxaluria are recognized: primary hyperox-
aluria, absorptive or intestinal hyperoxaluria, idiopathic 
mild hyperoxaluria and dietary hyperoxaluria.

Primary hyperoxaluria 
Primary hyperoxaluria (PH) consists of  a family of  auto-
somal recessive inherited disorders characterized by en-

dogenous overproduction of  oxalate[90-94]. Mutations in 
three enzymes involved in oxalate synthesis lead to three 
distinct PH subtypes, PH1[95], PH2[96,97] and PH3[98-100]. 

PH1 accounts for about 80% of  all PH cases. PH1 
results from mutations in the hepatic peroxisomal enzyme 
AGT[93-95]. The gene encoding AGT (AGTX) is located on 
chromosome 2q37.3[91]. AGT is pyridoxal-5-phosphate de-
pendent[93,94] and catalyzes the transamination of  glyoxylate 
to glycine[94,95]. PH1 mutations result in in accumulation of  
glyoxylate and excessive production of  oxalate and glyco-
late[94]. Figure 1 illustrates these relationships. 

As of  2013, 178 different AGT mutations had been 
discovered[94]. Phenotypes vary from nephrocalcinosis, 
failure to thrive and advanced renal failure in early child-
hood to recurrent or even occasional nephrolithiasis in 
adulthood[96,97]. As renal failure progresses, high plasma 
levels of  oxalate result in supersaturation and precipita-
tion of  calcium oxalate crystals in various organs (oxalo-
sis). Blood vessel walls, bones, joints, retinae, skin, bone 
marrow, cardiac tissue and the nervous system are sites 
affected in oxalosis[90-95]. Life-threatening clinical mani-
festations accompany the deposition of  oxalate crystals 
in vital organs[97].

The diagnosis of  PH1 is assisted by finding elevated 
levels of  oxalate and glycolate in the urine. It should 
be noted, however, that approximately one quarter of  
subjects with PH1 do not have elevated glycolate levels 
in the urine[95]. Renal failure consistently decreases uri-
nary oxalate excretion which can cause diagnostic prob-
lems[90]. In the past, liver biopsy for assessment of  AGT 
activity was required for the diagnosis of  PH1. Nowa-
days, however, the diagnosis relies on molecular genetic 
testing including DNA sequencing, deletion/duplication 
analysis and targeted mutation analysis[95].

The management of  PH1 follows some of  the same 
principles of  management of  urinary stones in general. 
Fluid intake to ensure large urinary volumes is recom-
mended for patients without advanced renal failure. Cal-
cium supplements and other measures to reduce gastro-
intestinal absorption of  oxalate have limited effectiveness 
in treating PH. Potassium citrate or, in cases of  advanced 
renal failure, sodium citrate may reduce the tendency to 
form stones[95]. Pyridoxine administration reduces oxalate 
formation in 10% to 30% of  the patients with PH1[91]. 
Effectiveness of  pyridoxine has been linked to the AGT 
genotypes Gly170R and Phe152lle, which are associated 
with some residual activity of  the enzyme[91,94]. Combined 
liver-kidney transplantation is the method of  choice for 
PH1 patients with advanced renal failure[95].

PH2 is found in about 10% of  the PH cases. PH2 
results from mutations of  the cytosolic enzyme glyoxyl-
ate reductase/hydroxypyruvate reductase (GRHPR)[94,96]. 
The gene for GRHPR is located on in chromosome 
9p13.2[94]. GRHPR is present in tissues throughout the 
body and catalyzes the conversion of  glyoxylate to gly-
colate and hydroxypyruvate to D-glycerate[94]. Reduced 
or absent GRHPR activity leads to increased availability 
of  lactate and hydroxypyruvate for conversion to oxa-
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late and L-glycerate. Urinary excretion of  high levels of  
L-glycerate is a characteristic of  PH2[96]. Nephrolithiasis, 
nephrocalcinosis, end-stage renal failure and oxalosis 
in advanced renal failure are the clinical hallmarks of  
PH2[92,96]. The severity of  these manifestations is less 
than in PH1: nephrocalcinosis is rare and end-stage 
renal failure develops later in life[92]. The diagnosis can 
be made by assay of  GRHPR in blood mononuclear 
cells[97]. The treatment of  PH2 is similar to that of  PH1, 
with two exceptions: pyridoxine is not effective in PH2; 
and renal transplantation has been used for treatment 
of  end-stage renal failure, while combined liver-kidney 
transplantation has not been used in PH2[96]. 

PH3 accounts for 2.5% of  PH cases. PH3 results 
from mutation of  the hepatic mitochondrial enzyme 
4-hydroxy-2-oxoglutarate aldolase (HOGA1)[98,99]. 
HOGA1 catalyzes the last step in the conversion of  hy-
droxyproline to oxalate. The chromosomal location of  
the gene responsible for PH3 is in 10q242[94]. The mech-
anism by which non-functioning mutations of  HOGA1 
lead to hyperoxaluria is an enigma. Intuitively, decreased 
HOGA1 activity should lead to decreased production 
of  oxalate through the hydroxyproline pathway. A hy-
pothesis for the pathogenesis of  hyperoxaluria in PH3 
was recently proposed by Belostotsky and associates[100]. 
These investigators identified a cytosolic 4-hydroxy-
2-oxoglutarate aldolase distinct from mitochondrial 
HOGA1 in human hepatocytes. They speculated that in-
dividuals with PH3 accumulate 4-hydroxy-2-oxoglutarate 
in mitochondria and that following transfer of  this com-
pound into the cytosol it is converted to glyoxylate by 
the cytosolic aldolase[100]. Oxaluria is less marked in PH3 
than in PH1 or PH2 and the clinical manifestations are 
less severe. Urolithiasis is the main clinical manifestation 
in PH3. Furthermore, nephrocalcinosis and renal failure 
are uncommon, and oxalosis has not been described in 
PH3[94].

Surveys of  primary hyperoxaluria in various coun-
tries[101-105] have identified prolonged delays in the diag-
nosis of  PH. Delays in the diagnosis have been observed 
also in enteric hyperoxaluria and could be present also in 
dietary hyperoxaluria (see Figure 2 below).

Enteric hyperoxaluria
Table 2 lists some of  the conditions and surgical inter-
ventions in the gastrointestinal tract, including medical 
diseases of  the gastrointestinal tract, medical or surgical 
conditions outside the gastrointestinal tract, and medica-

tions, that are associated with hyperoxaluria secondary to 
excessive intestinal absorption of  oxalate[106-132]. A com-
mon characteristic of  the conditions listed in Table 2 is 
the presence of  steatorrhea with excessive amounts of  
fatty acids in the enteric lumen which bind divalent cat-
ions, especially calcium, thereby increasing the availabil-
ity of  the unbound oxalate for absorption[109]. In certain 
morbid conditions, such as cystic fibrosis, solid organ 
transplants or octreotide administration, frequent use of  
antibiotics causing alterations in the intestinal flora and 
lack of  colonization by oxalate-consuming bacteria in-
creases the availability of  oxalate for absorption[109,122-129]. 
In recipients of  organ transplants, use of  anti-rejection 
drugs (e.g., mycofenolate) that cause diarrhea and steat-
orrhea can contribute to hyperoxaluria[127]. 

Studies conducted more than 30 years ago docu-
mented that the colon was the primary site of  oxalate 
absorption and suggested that an intact colon is neces-
sary for the development of  enteric hyperoxaluria[133,134]. 
However, enteric hyperoxaluria has also been noted in 
patients with partial colon resection[119]. In patients with 
enteric hyperoxaluria, diarrhea causes volume depletion 
and metabolic acidosis leading to low urinary pH and 
hypocitraturia. In conjunction with hyperoxaluria, these 
conditions facilitate precipitation of  calcium oxalate 
in renal tissues and promote the development of  renal 
stones, nephrocalcinosis and oxalate nephropathy[109]. In 
patients with primary hyperoxaluria, the renal failure that 
follows the development of  nephrolithiasis, hydrone-
phrosis, nephrocalcinosis and particularly parenchymal 
oxalate nephropathy is chronic. Enteric hyperoxaluria 
can cause new-onset acute renal failure (acute oxalate 
nephropathy)[121,124-126,129,130,132,135-140], acute renal failure su-
perimposed on pre-existing chronic kidney disease[116,118], 

or chronic oxalate nephropathy[110,113,119,120,128]. 

Idiopathic (mild) hyperoxaluria
Idiopathic hyperoxaluria is a condition characterized 
by hyperoxaluria that is much less severe than primary 
on enteric hyperoxaluria and recurrent calcium oxalate 
stone formation[5,141,142]. This entity is encountered in 
subjects without any of  the known types of  enteric or 
primary hyperoxaluria. Increased synthesis, increased 
gastrointestinal absorption, or increased renal tubular 
secretion of  oxalate are the only known mechanisms of  
hyperoxaluria. All three mechanisms have been impli-
cated in idiopathic hyperoxaluria. Increased absorption 
of  oxalate by patients with idiopathic hyperoxaluria, es-
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Table 2  Surgical procedures and medical conditions associated with enteric hyperoxaluria

Surgical conditions Medical gastrointestinal conditions Other medical/surgical conditions Drugs

Jejunoileal bypass[106,108,110] Crohn’s disease[109,119] Morbid obesity[112] Orlistat[130,131]

Roux-en-y gastric bypass[111,113] Diabetic gastroenteropathy[115,116] Cystic fibrosis[122,123] Octreotide[132]

Small bowel resection[108,109] Sprue[117] Organ transplants[124-129]

Partial gastrectomy[108] Primary biliary cirrhosis[109]

Pancreatectomy[109] Chronic pancreatitis[118]

External biliary drainage[114] Intestinal lymphangiectasia[120]

Clostridium difficile colitis[121]
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pecially when the dietary content of  calcium is low, has 
been reported[143-145]. In other studies in patients with the 
same entity, reduction of  hyperoxaluria by large doses 
of  pyridoxine was noted, suggesting that these subjects 
had excessive production of  oxalate[146,147]. In another set 
of  studies subjects with idiopathic hyperoxaluria devel-
oped higher levels of  oxaluria than control subjects after 
ascorbate loads[148] or following meat ingestion[12,149]. This 
set of  studies also pointed towards increased endog-
enous production of  oxalate as the source of  idiopathic 
hyperoxaluria. Finally, another study found enhanced tu-
bular secretion in idiopathic hyperoxaluria[4]. Therefore, 

it is unclear whether idiopathic hyperoxaluria represents 
one or more types of  hyperoxaluria. Further research is 
needed to clarify the mechanism(s) of  hyperoxaluria in 
this particular condition.

Dietary hyperoxaluria
This section addresses dietary hyperoxaluria and hyp-
eroxaluria secondary to medications or overdoses. The 
clinical and histological manifestations of  these three 
categories of  hyperoxaluria are similar. The reports of  
nephropathy from dietary hyperoxaluria, especially its 
chronic variety, are few and contain, in many instances, 
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Figure 2  Sequential imaging studies of a not yet reported patient with chronic kidney disease from dietary hyperoxaluria. Axial computed tomography (CT) 
images obtained two years before the hyperoxaluria diagnosis show (A) mild left hydronephrosis (arrowheads) caused by (B) a left distal ureteral calculus (arrow). 
Axial CT image obtained around the time of the hyperoxaluria diagnosis shows (C) bilateral nephrolithiasis (arrows). Nuclear medicine gallium-67 citrate scan images 
were also obtained around the time of diagnosis, including (D) 4-, (E) 24-, and (F) 48 h after administration. These show abnormal, persistent bilateral renal activity at 
all time points, indicative of interstitial nephritis. Gallium scanning has classically been used to distinguish acute interstitial nephritis from acute tubular necrosis and 
other causes of acute renal failure[216-218]. In this patient chronic interstitial nephritis associated with hyperoxaluria led to this positive scan. The patient’s diet for several 
years was based on nuts with estimated oxalate consumption ≥ 800 mg daily. During high oxalate intake, urine oxalate excretion was > 200 mg/24-h in several mea-
surements obtained at serum creatinine levels > 3.5 mg/dL. After resumption of a diet low in oxalate and improvement of renal function to serum creatinine levels < 3.0 
mg/dL, urine oxalate excretion decreased to normal levels.
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incomplete information. Clinical and histological find-
ings associated with the last two categories complete the 
picture of  nephropathy in dietary hyperoxaluria. 

Dietary hyperoxaluria should be differentiated from 
the other three categories of  hyperoxaluria, since its 
treatment, which consists of  reducing the dietary oxa-
late, is relatively simple. Elimination of  the diagnostic 
option of  primary hyperoxaluria may require genetic 
testing, but this is usually not required. A careful history 
should eliminate the possibility of  enteric hyperoxaluria. 
Routine laboratory findings, such as normal serum albu-
min and electrolyte levels, may assist in eliminating this 
diagnosis. Differentiating between dietary and idiopathic 
hyperoxaluria can be difficult. Features establishing the 
diagnosis of  dietary hyperoxaluria include: absence of  
primary or enteric hyperoxaluria; ingestion of  large 
amounts of  oxalate, usually found after the patient’s 
oxalate-induced end organ damage has become manifest; 
documented hyperoxaluria associated with a high oxalate 
diet; and reduction of  the oxaluria to within normal lev-
els after normalization of  the dietary oxalate. The evalu-
ation of  oxaluria is complicated in patients with impaired 
renal function, which, as noted earlier, decreases urinary 
oxalate excretion. 

Dietary hyperoxaluria can cause renal disease and sys-
temic oxalosis. Earlier studies focused mainly on the as-
sociation between dietary hyperoxaluria and nephrolithi-
asis. A study by Neuhaus et al[11] established this associa-
tion. More recently, several case reports of  renal paren-
chymal disease manifested as either AKI or CKD[150-158] 
and oxalosis with primary neurological manifestations 

from dietary hyperoxaluria[159-163] have been published. 
Identified causes of  dietary hyperoxaluria include in-
gestion of  large amounts of  the following: peanuts[150]; 
rhubarb[151]; Chaga mushroom powder[152]; Irumban puli 
(Averrhoa bilimbi), which is a fruit in the same family as 
star fruit[153]; juice made of  celery, carrots, parsley, beets 
with greens, and spinach[154]; and, ingestion of  star fruit 
(Averrhoa carambola), which has a very high content of  
oxalate[155-163]. Star fruit-induced oxalate nephropathy has 
also been investigated in experimental animals[164,165].

Table 3 shows estimates of  oxalate intake and uri-
nary excretion, type of  clinical renal syndrome induced 
by oxalate (AKI vs CKD), peak serum creatinine con-
centration, whether dialysis was performed or not, and 
outcomes of  patients with dietary hyperoxaluria-induced 
deterioration of  renal function. The estimates of  oxa-
late intake are approximations because estimates of  
the oxalate content of  the same dietary item often vary 
widely[27,166-168]. We recorded in Table 3 either the oxalate 
intake reported in a study, or, if  this intake was not re-
ported directly, an estimate calculated from the amount 
of  the dietary item consumed and the average oxalate 
content of  this item. 

Data regarding urinary oxalate excretion were miss-
ing from the majority of  the published cases presented 
in Table 3. Even when urine oxalate excretion was re-
ported, the findings were complicated by the presence of  
advanced renal failure, which, as noted above, decreases 
urinary oxalate excretion, or by the fact that oxalate ex-
cretion was measured in the recovery period after oxalate 
intake had been reduced. An elevation of  urinary oxalate 
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Table 3  Reports of parenchymal renal disease induced by dietary hyperoxaluria

Ref. Daily oxalate intake (mg), duration Urine oxalate (mg/24 per hour) Peak SCr (mg/dL) Clinical diagnosis, course, outcome, final SCr (mg/dL)

150 310, many mo 16.61 1.8 CKD with SCr 1.7-1.8
151 1880, 4 wk 34.22 AKI on diabetic CKD. Progression to ESRD
152 2240-2800, 6 mo -   8.08 CKD. Progression to ESRD
153a 9000, 4 d 603 6.4 AKI, HDx10 days. SCr 0.9 in 6 wk
153b 4500, 5 d - 9.3 AKI, HDx6 times. SCr 1.3 in 5 wk
153c 3600, NS - 6 AKI, No HD. SCr 1.0 in 4 wk
153d 1800, NS - 5.5 AKI, No HD. SCr 0.8 in 2 wk
153e 5400-6300, NS - 12.3 AKI, HD. SCr 2.1 in 4 wk
153f 6300-7200, NS. - 6.7 AKI, no HD. SCr 1.1 in 6 wk
153g 4500-5400, NS - 9.8 AKI, HD. SCr 1.2 in 6 wk
153h 6300, NS - 6.6 AKI, HD. SCr 1.1 in 4 wk
153i 2700-3600, NS - 5.2 AKI, HD. SCr 0.8 in 2 wk
153j 7200 NS - 10.4 AKI, HD. SCr 1.5 in 6 wk
154 1260, 6 wk - 7.9 CKD on CKD from HTN. SCr 1.9 in 4 mo
155a 13120, once 74 12 AKI, HDx2 times. SCr 1.3 in 1 yr
155b 9240, once 74 11.7 AKI, no HD. SCr 1.3 in 4 mo
156 450-660, > 3 yr - 6.9 CKD on other CKD, no HD. SCr 3.4 in 3 mo
157a 3725, once - - AKI, no HD. Final SCr 1.1
157b 4360, once - 6.3 AKI, no HD. Final SCr 1.1 NS
157c 7545, once - 6.1 AKI, no HD. Final SCr 1.2
157d 1300, once - 5.7 AKI, no HD. Final SCr 1.0
157e 2170, once - 4.5 AKI, no HD. Final SCr 1.1
158 6830, once - 16.4 AKI, no HD. SCr 0.9 mg/dL in 1 mo

1During recovery. SCr approximately 1.7-1.8 mg/dL; 2Post-ingestion. SCr approximately 3.6 mg/dL; 3During AKI. SCr approximately 6.4 mg/dL; 4Post recovery. 
a,b,c,d,e,f,g,h,i,j,k in Ref. 153 and a,b,c,d,e in Ref. 157 represent the numerical sequence of the patients in these references (1st, 2nd, etc). SCr 1.3 mg/dL. SCr: Serum 
creatinine; AKI: Acute kidney injury; CKD: Chronic kidney disease; ESRD: End-stage renal disease; HD: Hemodialysis; NS: Not specified duration of intake. 
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excretion rate was reported only in one patient, who also 
had advanced renal failure[153]. Urinalysis findings var-
ied: Proteinuria was absent in a few patients, modest in 
most patients, and as high as 3.7 gm/24 h in one patient 
who also had diabetes mellitus[151]. Hematuria and sterile 
pyuria were reported in several patients. Crystaluria was 
absent in several patients. 

Oxalate nephropathy in subjects who briefly con-
sumed food items containing very large amounts of  oxa-
late tended to present as AKI, which was severe enough 
to require hemodialysis in some cases, but appeared to 
be reversible in all of  them (Table 3). A few patients 
with chronic intake of  oxalate at levels substantially 
lower than those causing AKI did develop CKD; their 
kidney function improved but did not normalize after 
reducing their dietary intake of  oxalate[150,154,156].

The paucity of  reported cases of  chronic nephropa-
thy secondary to dietary hyperoxaluria and of  measure-
ment of  urinary oxalate in those cases led us to inves-
tigate other clinical states of  temporary hyperoxaluria 
caused by excessive intake or formation of  oxalate. 
These states include intake of  ascorbic acid, drugs con-
taining oxalate and intoxication with ethylene glycol. 

As in dietary hyperoxaluria, excessive intake of  
ascorbate was initially linked to an increased risk of  
nephrolithiasis[169,170]. Recently, renal parenchymal disease 
from oxalate nephropathy causing AKI or CKD has 
been reported in patients with excessive oral[171-178] or 
parenteral[179-183] intake of  ascorbate. An elevated urinary 
oxalate excretion rate at the time of  ingestion of  large 
amounts of  ascorbate and decrease in oxaluria to within 
or close to its normal range was reported in several 
cases[171,172,175,179]. Severe AKI was present in most cas-
es[171,173,174,179-183]. Several of  these patients required hemo-
dialysis for various periods of  time and recovery of  renal 
function was complete[171,174,179-183] or partial[173]. CKD was 
noted in four patients[175-178]. These patients were ingest-
ing ascorbate chronically but usually in quantities sub-
stantially lower than the amounts of  ascorbate that cause 
AKI. Two of  these patients developed ESRD[176, 178] and 
one of  them died[178]. 

Many cases of  severe AKI after accidental or suicidal 
ingestion of  oxalate[184,185] or ethylene glycol[186-198] have 
been reported. AKI had a protracted course in many 
of  these patients and in most instances dialysis was re-
quired. Patients with severe ethylene glycol poisoning 
had significant mortality, especially in decades past[186]. 
Renal function did not return in several patients with 
AKI, although some did recover completely. Hyperox-
aluria and calcium oxalate nephrolithiasis[199] or oxalate 
nephropathy with AKI or CKD were reported with the 
use of  two medications used as vasodilators, namely 
pyridoxilate[200,201] and Praxilene[202-204]. Pyridoxilate is a 
combination of  glyoxylate with pyridoxine. Pyridoxine 
was intended to redirect glycine formation away from 
glyoxylate. Nevertheless, at least a portion of  the admin-
istered glyoxylate was still metabolized to oxalate. Prax-
ilene’s common name is naftidrofyryl oxalate. When this 

salt dissociates in the body oxalate is released. Finally, hy-
peroxaluria and oxalate nephropathy has been seen with 
the use of  the anesthetic agent, methoxyfluorane[205]. The 
clinical and histologic features of  drug-induced hyperox-
aluria have been studied more extensively than those of  
dietary hyperoxaluria. 

Urinary oxalate excretion rates differ between ox-
aluric states and can provide clues for the differential 
diagnosis between these states[95]. Table 4 summarizes re-
ported daily rates of  urinary excretion of  oxalate in vari-
ous clinical states. The table includes only representative 
studies for all types of  hyperoxaluria, except dietary hyp-
eroxaluria. For this last category of  hyperoxaluria, we in-
cluded in Table 4 all the reports providing measurements 
of  oxalate excretion in patients with oxalate nephropathy 
that we could find. The degree of  renal function has a 
major impact on urinary oxalate excretion. Primary hyp-
eroxaluria, particularly PH1, is associated with very high 
rates of  urine oxalate excretion[90,95,98,99]. However, even 
in primary hyperoxaluria, the renal oxalate excretion rate 
was within the normal range in patients with advanced 
renal failure[90,99]. Oxalate excretion rates in enteric hy-
peroxaluria depend on dietary oxalate content; the rate 
is generally less than in the primary variety, but can be 
within the range seen in primary hyperoxalurias[1,109,118,206]. 

Reported excretion rates of  oxalate are comparable 
in idiopathic[35,39,95,206] and dietary[95,150,151,153] hyperoxaluria 
and substantially lower than in the primary varieties of  
hyperoxaluria. However, the degree of  renal failure dif-
fers greatly between the reports of  idiopathic and those 
of  dietary hyperoxaluria. Determination of  oxaluria in 
subjects with the dietary variety was usually performed 
in patients with AKI or advanced CKD whereas idio-
pathic hyperoxaluria was studied in the context of  neph-
rolithiasis. The urinary oxalate excretion rate of  patients 
with dietary hyperoxaluria may be in the range of  sub-
jects with the idiopathic variety (see the legend of  Figure 
2). Daily urinary oxalate excretion rates exceeding 90 mg 
(1 mmol) were considered primary or enteric hyperox-
aluria[95]. We suggest that dietary hyperoxaluria can also 
cause oxalate excretion rates similar to those observed in 
primary hyperoxaluria. 

RENAL PATHOLOGY AND PATHOPHYSI-
OLOGY IN HYPEROXALURIA
The chronic histologic lesions in the kidneys are indistin-
guishable between all categories of  hyperoxaluria. His-
tologic lesions are also indistinguishable between AKI 
cases of  enteric hyperoxaluria[115,121,125,126] and AKI cases 
of  hyperoxaluria that have dietary, toxic or pharmaco-
logic causes. Hyperoxaluric renal parenchymal disease 
is classified as a crystalline nephropathy[207], because it is 
widely acknowledged that oxalate injury to renal tissues 
begins with the deposition of  abundant calcium oxalate 
crystals[208] in the lumen of  renal tubules, the renal inter-
stitium, and the walls of  the renal vessels in all categories 
of  hyperoxaluria[90,209-211].
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Although finding calcium oxalate crystals in kidney 
biopsy specimens is necessary for the diagnosis of  oxa-
late nephropathy, it is not a specific finding. Oxalate 
crystals are found in the kidneys in all conditions that 
elevate the plasma oxalate level. Principal among these 
conditions are all types of  acute and chronic renal fail-
ure[212]. 

Extensive tubular damage with epithelial necrosis 
and tubular dilatation is the second cardinal character-
istic of  both acute and chronic oxalate nephropathy, 
while the involvement of  glomeruli is inconsistent. The 
histologic features of  renal tubules in hyperoxaluric 
AKI have the characteristics of  acute tubular necro-
sis[115,121,151,153,158,159,164,171,174,195,213]. Changes in the renal inter-
stitium are the other histologic characteristic of  oxalate 
nephropathy. Profound interstitial fibrosis is present in 
chronic cases of  oxalate nephropathy[90]. Tubulointersti-
tial nephritis with interstitial collection of  mononuclear 
cells is a prominent characteristic of  both chronic[90] and 
acute[175] cases of  oxalate nephropathy. In some instances, 
interstitial nephritis takes the form of  granuloma[150,214]. 
Oxalate-induced AKI may[157,164] or may not[153,155] exhibit 
interstitial nephritis in addition to acute tubular necrosis. 
Features of  acute tubular injury, namely tubular simplifi-
cation, flattening of  tubular epithelial cells and dilatation 
of  the tubular lumen are the earliest histological changes 
observed in kidneys of  animals with experimental dietary 
acute oxalate nephropathy[165]. In addition to the kidneys, 
calcium oxalate crystals can be found in bone, skin, ves-
sels and joints in patients with oxalosis[215]. Radiological 
and histologic features of  nephropathy in a patient with 
dietary hyperoxaluria are shown in Figures 2 and 3 respec-
tively. 

The initial event in the development of  oxalate ne-
phropathy is the formation of  calcium oxalate crystals in 
the lumen of  proximal tubules[219]. Details of  the mecha-

nism of  crystal formation, which have been reviewed ex-
tensively in the literature on stone formation, are outside 
the scope of  this report. Randall’s plaque (apatite collec-
tions in the interstitium of  the papillae) was noticed in 
abundance in several hyperoxaluric states and may play a 
role in stone formation[220]. 

Adhesion of  calcium oxalate crystals to the surface of  
tubular epithelial cells follows formation of  the crystals. 
The mechanisms of  adhesion have been extensively stud-
ied recently[221-227]. Coating with urine proteins, facilitated 
by low urinary pH, was shown to reduce the attachment 
of  calcium oxalate crystals to renal inner medullary epi-
thelial cells[221]. Calcium oxalate binding proteins that 
promote oxalate nephropathy have also been identified. 
Calcium oxalate monohydrate binding protein, one of  
these promoters, was shown to be upregulated by oxalate-
induced oxidative stress[223]. A dual role was suggested 
for osteopontin, which inhibits calcium oxalate crystal 
formation and tubular retention[222], but also increases 
adhesion of  these crystals to carboxylate ions that would 
promote oxalate-induced renal disease[225]. Prostaglandin 
E2 inhibits binding of  calcium oxalate crystals to renal 
epithelial cells[224,226]. In a recent report, 26 oxalate-binding 
proteins were identified the kidney[227]. Further studies 
are needed to clarify the role of  each of  these proteins in 
oxalate-induced renal disease.

Evidence of  the direct toxicity of  supraphysiologic con-
centrations of  oxalate to renal tubular cells was found 
in studies using cultured cells[228]. Both inhibition of  
cell proliferation and apoptosis have been identified as 
mechanisms of  this nephrotoxicity. Studies in epithelial, 
endothelial and interstitial renal cell cultures found that 
exposure to sodium oxalate leads to reduced cell survival 
through inhibition of  cell proliferation[229]. Evidence of  
oxalate-induced toxicity to renal cells was provided by 
finding increased levels of  protein and mRNA of  kid-
ney injury molecule-1 in both human cell cultures and 
experimental animals[230]. In experimental animals hyper-
oxaluria increased production of  TNF-α, FAS and FAS 
ligand, and apoptosis[231]. 

Research involving the mechanisms of  innate im-
munity has shed considerable light on the molecular 
mediators and histologic features of  oxalate nephropa-
thy[232-243]. A role for toll-like receptors, NOD-like recep-
tors and inflammasomes in AKI secondary to ischemia 
and sepsis has been documented[232]. A growing body of  
evidence has given inflammasomes a central place in our 
understanding of  complex diseases (e.g., metabolic syn-
dromes, carcinogenesis) and physiological processes (e.g., 
regulation of  intestinal microbiome) and has identified 
them as important players of  the intracellular surveil-
lance system. Recent emphasis was also placed on the 
role of  inflammasomes in various renal disease catego-
ries, including crystalline nephropathies[233]. 

 Inflammasomes are part of  the innate immune sys-
tem. As their name suggests, inflammasomes represent 
large multimolecular cytosolic complexes that assemble 
into a platform for the activation of  pro-inflammatory 
caspase 1[234-236]. Inflammasomes are important mediators 
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Table 4  Daily urinary oxalate excretion in various hyperoxal-
uric states

Oxaluric state           Urinary oxalate, mg/24-h

Normal range < 45, < 301

PH1 > 90[95], > 63[94], 25-492[90], 26-530[99]

PH2 > 42[95], 44-520[99]

PH3 80-194[98], 35-120[99]

Enteric > 90[95], 30-110[1]1, 63 ± 13[2], 130[109], 52-92[118], 
77 ± 44[123], 48-90[206]

Oral ascorbic acid 98[171], 37[172], 84[175]

Parenteral ascorbic acid 76[179], 100[180], 176[181], 88[182]

Ethylene glycol 29[190], 10[195]

Methoxyfluorane 96-480[205]

Idiopathic < 63[95], 56 ± 15[39], 38-50[206], 48[207]

Dietary < 54[95], 16.6[150], 34.2[151], 60[153]

Oxalate excretion is presented as a single number representing the mean 
or median of the study (not specified in several studies), range (inter-
quartile range in reference 120), or mean ± SD. For patients with two or 
more sequential measurements of urinary oxalate excretion rate, the Table 
reports the highest oxalate excretion. 1Pediatric values. PH1: Primary 
hyperoxaluria, type 1; PH2: Primary hyperoxaluria type 2; PH3: Primary 
hyperoxaluria type 3. 
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of  apoptosis, interstitial inflammation and fibrosis in 
various types of  renal disease[237,238]. Of  great importance 
in the context of  oxalate nephropathy is the nucleotide-
binding domain, leucine-rich repeat inflammasome 
(NALP3 or NLRP3). When activated, NALP3 proteins 
oligomerize and form a protein complex with caspase-1. 
This process activates caspase 1 which cleaves the inac-
tive precursors of  IL-1b and IL-18 to generate active 
cytokines that promote inflammation. The NALP3 in-
flammasome has been implicated in the molecular mech-
anism of  nephropathy caused by urate crystals[239]. More 
recent studies detail the functional significance of  the 
inflammasome and the IL-1b/IL-18 axis as an important 
factor in interstitial inflammation and fibrosis, as well as 
progression of  renal failure, in oxalate nephropathy[240-242] 
and other kidney diseases[243]. In experimental models, 
genetic deletions of  antagonists of  the NALP3 inflam-
masome pathway have decreased the severity of  oxalate 
nephropathy[240-242]. 

MANAGEMENT OF NEPHROPATHY IN 
ACQUIRED HYPEROXALURIAS
The general principles of  management of  oxalate-related 
nephropathies are the same in all categories of  acquired 
hyperoxaluric nephropathy and include a diet low in oxa-
late and relatively high in calcium, fluid intake exceeding 
1.5 L per m2 body surface area per day, treatment with 

probiotics containing oxalate degrading bacteria, and 
medications to increase urinary solubility of  crystals (e.g., 
potassium citrate)[244]. Studies on the effect of  probiot-
ics on oxaluria have produced conflicting results. Intake 
of  probiotics led to significant reduction of  oxaluria in 
some studies[245,246], but had no effect on oxaluria in sev-
eral other studies[247-249]. 

Specific measures targeted to the mechanism of  hy-
percalciuria can be effective in patients with enteric hyper-
calciuria[244,250]. It is possible that probiotics may be useful 
in certain categories of  patients with enteric hyperoxaluria, 
in particular, those who have altered enteric flora because 
of  protracted courses of  antibiotics, but this will require 
further study. A study by Toblli et al[251] reported that the 
angiotensin-converting enzyme inhibitor enalapril had a 
protective effect on the formation of  tubulointerstitial le-
sions in rats fed ethylene glycol. Studies in humans with 
hyperoxaluria are needed to determine the effectiveness 
of  this drug. Further studies are also needed to objectively 
assess the effectiveness of  traditional herbal medications 
used for prevention or treatment of  renal stones[252,253]. 

FUTURE RESEARCH
Our main reason for undertaking this review was to un-
derscore the need for epidemiologic, biochemical and 
histologic studies of  the effects of  dietary hyperoxaluria 
on the development of  CKD and end-stage renal disease 
(ESRD) across the globe. Occasional intake of  nutrition-
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Figure 3  Renal histology in the patient depicted in Figure 2. A: Low power view of kidney showing two complete glomeruli and expansion of the interstitium by 
lymphocytes and edema. Periodic acid-Schiff (PAS) stain highlights the basement membranes of the tubules and Bowman’s capsule. PAS stain; B: Low power view of 
renal parenchyma showing tubulointerstitial nephritis (solid arrow) and oxalate crystal within tubule (open arrow). H and E stain; C: High power view showing intersti-
tium expanded by lymphocytic infiltrates and tubular atrophy. PAS stain; D: High power view of calcium oxalate crystal under polarized light. H and E stain.
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al foods high in oxalate has been advocated[254]. While 
doing so may have merit, neither the highest “safe” dose 
of  oxalate nor whether this dose differs between individ-
uals has been determined. However, the main concern is 
not with brief  ingestion of  a relatively high dose of  oxa-
late, but instead with the effects of  chronic ingestion of  
high doses of  oxalate on renal function, which is com-
mon in several parts of  the world (Table 1). Interestingly, 
several patients with documented CKD due to chronic 
dietary hyperoxaluria had ingested amounts of  oxalate 
comparable to or even lower than the average values 
reported in certain parts of  the world (Tables 1 and 3). 
Difficulties and delays with the recognition of  hyperox-
aluria as the cause of  CKD and ESRD have been docu-
mented, even for the primary hyperoxalurias[101,103,105,255], 
where early appearance of  symptoms and renal failure, 
oxalosis and a family history of  recurrent nephrolithiasis, 
renal failure and oxalosis should lead one to the diagno-
sis. That retention of  oxalate in patients with CKD from 
any etiology may result in renal deposition of  calcium 
oxalate, secondary deterioration of  the renal function 
and systemic toxicities has been recognized[256]. However, 
in a recent comprehensive review excessive dietary oxa-
late intake was not listed among the primary risk factors 
for CKD[257]. Appropriate studies in populations with 
high dietary oxalate intake have the potential to reduce 
the rates of  CKD and ESRD by simple dietetic interven-
tions (e.g., fluid intake, leaching of  oxalate by soaking). 
Such studies should be encouraged. 

Related to the need of  studying the effects of  oxa-
late intake on the development of  CKD in various areas 
of  the globe is the need to continue performing studies 
on genetic influences on oxalate absorption and excre-
tion. Clinical and epidemiologic studies suggested that 
genetic influences can affect oxalate absorption and excre-
tion[254,258-261]. Ongoing studies of  genetic differences in in-
testinal and renal oxalate transporters[262-266] and of  factors 
related to calcium metabolism[267] have the potential of  
leading to novel preventive and therapeutic modalities. 

Future research should also include enzymologic and 
protein-structure studies aimed at identifying potential 
drugs that would either promote reductive metabolism 
of  glyoxylate, the immediate precursor of  oxalate, or in-
hibit oxidative enzyme-catalyzed reactions that increase 
oxalate production, for example the LDH reaction. In-
hibiting LDH activity would reduce oxalate production 
and increase the levels of  calcium glyoxylate and calcium 
glycolate which are 3 to 4 orders of  magnitude more 
soluble in water than calcium oxalate. This approach is 
analogous to the treatment of  gout where allopurinol 
inhibits xanthine oxidase activity, thereby reducing uric 
acid production and increasing the levels of  much more 
water soluble xanthine oxidase substrates (e.g., hypoxan-
thine). The inflammasome NLP3 is an emerging poten-
tial target for new drug development NLP3[268].

CONCLUSION
Hyperoxaluria, regardless of  its mechanism, can cause 

not only nephrolithiasis and nephrocalcinosis, but also 
AKI, CKD and ESRD. Research to verify or reject the 
hypothesis that chronic dietary hyperoxaluria is under-
recognized as a cause of  CKD and ESRD, particularly 
in global areas with high dietary oxalate consumption, 
has the potential of  improving health, well-being and 
economy in these areas. This research should be com-
bined with research on the genetics of  oxalate transport, 
oxalate-induced mechanisms of  disease and develop-
ment of  medications affecting these processes. 
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