MSW, INDUSTRIAL OR ASH LANDFILL ANNUAL/QUARTERLY REPORT

Submit the Annual Report no later than March 1, 2019.

A. This annual/quarterly r	eport is f	or the year	of operation from <u>Janua</u>	ry 01.	<u>2018</u> to	<u>Dec</u>	ember 31, 2018
B. Quarterly Report for:	Quarte	r 1Quar	ter 2 Quarter 3 🕒 Q	uarter	4		
	SECTIO	N 1 – FAC	CILITY INFORMATIO	N			
		FACILITY	INFORMATION				
FACILITY NAME: Delaware County Sol	id Wa	ste Mar	nagement Cent	er -	C&E	L	andfill
FACILITY LOCATION ADDRESS:		FACILITY	CITY:		STAT	ΓE:	ZIP CODE:
32230 State Hwy	10	Walto			NY		13856
FACILITY TOWN:		FACILITY	COUNTY:	FAC	ILITY P	HON	E NUMBER:
Walton		Delaw	vare	60	7-86	35-	5805
FACILITY NYS PLANNING UNIT: (this report). Delaware County	A list of N	IYS Plannin	g Units can be found at	the er	nd of		SDEC SION #: 4
360 PERMIT #:	DATE IS	SUED:	DATE EXPIRES:				ITY CODE OR
4-1256-00040/00004	10 Jur	ne 2014	1 June 2019	REG 13-D-		ION	NUMBER:
FACILITY CONTACT:		public public	CONTACT PHONE		CONTA	CT F	FAX NUMBER:
Tyson Robb		□ private	NUMBER: 607-832-5800		607-	74	6-7212
CONTACT EMAIL ADDRESS: tyso	n.robb@	co.delaware	e.ny.us	·			
		OWNER	INFORMATION				
OWNER NAME:		1	HONE NUMBER:	1			IMBER:
Delaware County 607-832-5800 607-746-7212 owner address: owner city: state: zip code:							
PO Box 311 Delhi NY 13753							
OWNER CONTACT:		1					
Tyson Robb		tyson.r	obb@co.delawa	are.r	าy.us	5	
OPERATOR INFORMATION							
OPERATOR NAME: □ same as owner □ public Andrew Tompkins □ private							
Due formed address to making accuracy			ERENCES			duoo	
Preferred address to receive correspond Other (provide):	oonaence:	□ Fa	acility location address	U ()	wner ad	aress	S
Preferred email address: Cother (provide):		☐ Fa	acility Contact	• 0	wner Co	ontac	t
Preferred individual to receive corre Other (provide):	spondenc	e: 🗖 Fa	acility Contact	• 0	wner Co	ontac	t
	Complete		Sections 1 and 22. If you waste management acti				

Waste Management Facility or Activity Notification Form" located at: http://www.dec.ny.gov/chemical/52706.html.

SECTION 2 - SITE LIFE

	a.	What is the estimated landfill capacity that was utilized during the re 23255.4	
	b.	What is the estimated in-situ waste density for the reporting year? 1.05	Please do not rep units as pounds p cubic yard.
			_
2.		naining Constructed Capacity	
	a.	What is the remaining capacity of the landfill that is already construct 87253.6	
	b.	What is the estimated remaining life of the constructed capacity? 2 Years 2.2 Months at 40548.12 Tons/Year. Please note that this tonnage rate must include all materials placed cover, alternative daily covers, etc.	d in the landfill, i.e., waste, soil,
	C.	The tonnage rate reported under 2.b. is based on (select one): X The amount of materials placed in the landfill in the reported in the landfill in the landfill in the reported in the landfill in the landfill in the landfi	
3.	Perr	nitted Capacity Still to be Constructed	
	a.	What is the remaining but not yet constructed landfill capacity that is permit? O Cubic Yards of Airspace	s authorized by a Part 360
	b.	What is the projected life of capacity reported in 3.a? O Years O Months at O Tons/Year. Please note that this tonnage rate must include all materials disposes soil and alternative daily covers.	sed in the landfill, i.e., waste, and
	C.	The tonnage rate reported under 3.b. is based on (select one): The amount of materials placed in the landfill in the reported in the landfill in the landfill in the landfill in the reported in the landfill in the l	orting year

4.	Capacity Proposed in a Part 360	Permit Application
		nsion proposed in a Part 360 permit application that has it but not authorized by a permit as of the end of the
	0	Cubic Yards of Airspace
5.	Estimated Potential Future Capac	city Not Permitted or in an Application (optional)
		any potential future expansion at the facility that is not posed in a Part 360 permit application that has been
	1,000,000	Cubic Yards of Airspace
	SECTION 3	- PRIMARY LEACHATE
Name	e of off-site leachate treatment facility	ys utilized: Three
		and a leachate collection system?YesNo
treatm Note	nent, and recirculated each month, a	and the corresponding Acreage, by Cell: Id not include the volume of leachate tion and removal systems.)
		For each cell, please report the acreage and the primary leachate amount.

		PRIMARY L	PRIMARY LEACHATE COLLECTED (GAI	OLLECTED	(GALLONS)		PRI	MARY LEAC	HATE TRE	PRIMARY LEACHATE TREATED OFF SITE (GALLONS)	TE (GALLON	IS)
	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
	6.5 Acres	4.6 Acres	7.1 Acres	7.9 Acres	9.7 Acres	3.5 Acres	6.5 Acres	4.6 Acres	7.1 Acres	Z:9 Acres	9.7 Acres	3.5 Acres
January	na	0	24,237	44,346	144,597	67,530	na	0	24,237	44,346	144,597	67,530
February	na	0	18,553	61,888	139,229	64,094	na	0	18,553	61,888	139,229	64,094
March	na	0	18,220	61,620	173,085	68,073	na	0	18,220	61,620	173,085	68,073
April	na	0	18,950	42,630	182,073	62,872	na	0	18,950	42,630	182,073	62,872
Мау	na	0	17,929	22,542	160,548	76,804	na	0	17,929	22,542	160,548	76,804
June	na	0	17,887	12,432	136,532	64,654	na	0	17,887	12,432	136,532	64,654
July	na	0	21,553	35,150	269,987	123,476	na	0	21,553	35,150	269,987	123,476
August	na	0	19,402	108,712	96,233	121,832	na	0	19,402	108,712	96,233	131,832
September	na	0	25,477	39,618	17,319	102,376	na	0	25,477	39,618	17,319	102,376
October	na	0	24,763	68,962	15,123	117,839	na	0	24,763	68,962	15,123	117,839
November	na	0	23,705	50,466	11,366	129,746	na	0	23,705	50,466	11,366	129,746
December	na	0	25,196	26,688	5,492	114,445	na	0	25,196	26,688	5,492	114,445
ANNUAL	na	0	255,873	575,024	1,351,586	1,113,742	na	0	255,873	575,024	1,351,586	1,113,742

	Ā	RIMARY LEA	ACHATE RE	PRIMARY LEACHATE RECIRCULATED (GALLONS)	(GALLONS		PR	IMARY LEA	SHATE TRE	PRIMARY LEACHATE TREATED ON SITE (GALLONS)	TE (GALLON	S)
	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres
January												
February												
March												
April												
Мау												
June												
July												
August												
September												
October												
November												
December												
ANNUAL												

Submit (attached to this form a copy of the maintenance logs which document compliance with the Operation and Maintenance Manual's schedule for the routine annual flushing and inspection of the primary leachate collection and removal system. List required submissions that have been attached to this form or the reason for not attaching a required piece of information:
see attached copies of annual work reports for leachate line clearing and inspection
Submit (attached to this form a tabulated compilation of the semi-annual primary leachate quality data collected throughout the year including a summary comparing this year's data with the previous year's data and a summary discussion of results. This list should identify sample location(s and method of analysis. List required submissions that have been attached to this form or the reason for not attaching a required piece of information:
See attached leachate and groundwater monitoring EMSAP reports
SECTION 4 - SECONDARY LEACHATE
Does landfill have a double liner system with a secondary leachate collection and removal system?YesNo
Submit (attached to this form a tabulated compilation of the semi-annual secondary leachate quality data collected throughout the year including a summary comparing this year's data with all previous years' data and a summary discussion of results. This list should identify sample location(s and methods of analysis. List required submissions that have been attached to this form or the reason for not attaching a required piece of information:
See attached leachate and groundwater monitoring EMSAP reports
Please report total cost for the year, not cost/gal.
Leachate Cost: (including transportation if appropriate) during the calendar year for leachate treatment: \$\sum_{181,796.89}\$ Total quantity treated: \(\frac{5,420,411}{2} \) gal
Enter the quantity of secondary leachate that was collected, removed for on-site and off-site treatment, and recirculated each month, and the corresponding Acreage, by Cell: For each cell, please report the acreage and the secondary leachate amount.

	S	SECONDARY	LEACHATE	COLLECTE	SECONDARY LEACHATE COLLECTED (GALLONS)	(6	SEC	SECONDARY LEACHATE TREATED OFF SITE (GALLONS)	ACHATE TR	EATED OFF	SITE (GALL	ONS)
	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	9 IIəO	Cell 1	Cell 2	Cell 3	Cell 4	S II S	Cell 6
	6.5 Acres	4.6 Acres	Z1_Acres	Z.9_Acres	9.7_Acres	3.5 Acres	6.5 Acres	4.6 Acres	Z1_Acres	Z.9_Acres	9.7_Acres	3.5 Acres
January	na	na	1,155	0	304	270	na	na	1,155	0	304	270
February	na	na	912	424	210	767	na	na	912	424	210	292
March	na	na	662	0	506	140	na	na	299	0	907	140
April	na	na	1,977	0	198	253	na	na	1,977	0	198	253
Мау	na	na	2,231	0	155	28	na	na	2,231	0	155	28
June	na	na	<i>1</i> 98	0	241	48	na	na	857	0	241	48
July	na	na	1,594	116	1,621	539	na	na	1,594	116	1,621	239
August	na	na	2,234	0	912	25	na	na	2,234	0	912	52
September	na	na	1,897	0	513	848	na	na	1,897	0	513	848
October	na	na	4,318	712	733	602	na	na	4,318	712	233	602
November	na	na	4,737	0	1,309	252	na	na	4,737	0	1,309	252
December	na	na	1,610	0	20	191	na	na	1,610	0	20	161
ANNOAL	na	na	24,321	828	5,108	2,261	na	na	24,321	828	5,108	2,261

	SEC	SONDARY L	EACHATE R	SECONDARY LEACHATE RECIRCULATED (GALLONS)	ED (GALLON	1S)	SEC	ONDARY LE	ACHATE TR	SECONDARY LEACHATE TREATED ON SITE (GALLONS)	ITE (GALLO	(SN
	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres
January												
February												
March												
April												
Мау												
June												
July												
August												
September												
October												
November												
December												
ANNUAL												

SECTION 5 - BENEFICIAL USE DETERMINATION MATERIALS AND ALTERNATIVE OPERATING COVER MATERIALS

For each type of waste material that the Department has approved for use as alternative operating cover (AOC), intermediate cover, or other landfill material, provide the annual weight in tons, use (i.e., operating cover, intermediate cover, etc.), and source of material. (If material is from a solid waste facility also provide facility name, address, NYS Planning Unit, County/ Province, and State/Country.) Refer to the list of NYS Planning Units that can be found at the end of this report.

			NYS Planning	3	300	
Type of Solid Waste	weignt (tons/year)	Use	(See Attached List of NYS Planning Units)	County or Province	State of Country	Source (Facility and Address)
Aggregate/Concrete						
Contaminated Soil	503.12	AOC	Delaware County	Delaware Cour NY	NY	Delaware County Solid Waste Management Center, Walton NY
Foundry Sand						
Glass	433.85	AOC	Delaware County	Delaware Cour NY	NY	Delaware County Solid Waste Management Center, Walton NY
Industrial Waste (specify)						
MSW Ash						
Wood Ash	112.62	AOC	Delaware County	Delaware Cour	NY	Delaware County Solid Waste Management Center, Walton NY
Paper Mill Sludge						
Processed C&D						
Waste Tire-Derived Aggregate /						
Waste Tires						
Other (specify)						
Net in house soil/C&D blend	6,118.39	AOC	Delaware County	Delaware Cour	NY	Delaware County Solid Waste Management Center, Walton NY
Total AOC						
Total Beneficial Use Determination Materials						

Percent Alternative Operating Cover (AOC) Calculation

AOC Calculations: Total Tons AOC/Total Tons Waste Disposed \times 100 = 34%

Please note the calculation is: Tons AOC (from table above)/Tons Solid Waste (from table in Section 6) x 100 and Not: Tons AOC / (Tons Solid Waste + AOC) x 100

SECTION 6 - SOLID WASTE DISPOSED

Provide the tonnages of solid waste disposed. Exclude Beneficial Use Material amounts reported in Section 5 and Recyclable Material amounts reported in Section 8. Specify the methods used to measure the quantities disposed and the percentages measured by each method:

_% Other (Specify: _% Estimated 100 % Scale Weight _% Truck Count

Type of Solid Waste	January (tons)	February (tons)	March (tons)	April (tons)	May (tons)	June (tons)	July (tons)
Asbestos	0	0	0	5.513	5.513	5.513	0.153
Ash (Coal)	0	0	0	0	0	0	0
Ash (MSW Energy Recovery)	17.82	17.82	17.82	0	0	0	0
Construction & Demolition Debris (mixed)	0	0	0	0	0	0	0
Industrial Waste (Including Industrial Process Sludges)	0	0	0	0	0	0	0
Mixed Municipal Solid Waste (Residential, Institutional & Commercial)	72.9	72.9	72.9	127.7	127.7	127.7	152.55
Oil/Gas Drilling Waste	0	0	0	0	0	0	0
Petroleum Contaminated Soil	8.32	8.32	8.32	36.9	36.9	36.9	5.38
Sewage Treatment Plant Sludge	164.82	164.82	164.82	202.32	202.32	202.32	138.14
Treated Regulated Medical Waste	0	0	0	0	0	0	0
Emergency Authorization Waste (Storm Debris)	0	0	0	0	0	0	0
Other (specitWhey	181.91	181.91	181.91	188.76	188.76	188.16	147.48
compost & MRF residuals	881.99	881.99	881.9	1019.41	1019.41	1019.41	1147.06
Total Tons Disposed	1327.76	1327.76	1327.76	1580.60	1580.60	1580.60	1590.76

SECTION 6 - SOLID WASTE DISPOSED (continued)

Type of Solid Waste	Tip Fee (\$/Ton)	August (tons)	September (tons)	October (tons)	November (tons)	December (tons)	Total Year (tons)	Daily Avg. (tons)
Asbestos	200	0.153	0.153	0	0	0	17.00	90.0
Ash (Coal)	na	0	0	0	0	0	0	0
Ash (MSW Energy Recovery)	22	0	0	19.72	19.72	19.72	112.62	0.43
Construction & Demolition Debris (mixed)	na	0	0	0	0	0	0	0
Industrial Waste (Including Industrial Process Sludges)	na	0	0	0	0	0	0	0
Mixed Municipal Solid Waste (Residential, Institutional & Commercial)	0	152.55	152.55	460.44	460.44	460.44	2440.97	11.16
Oil/Gas Drilling Waste	na	0	0	0	0	0	0	0
Petroleum Contaminated Soil	30	5.38	5.38	117.12	117.12	117.12 503.12 1.91	503.12	1.91
Sewage Treatment Plant Sludge	varies	138.14	~	323.97	323.97	38.14 323.97 323.97 323.97 2487.75 9.42	2487.75	9.42
Treated Regulated Medical Waste	na	0	0	0	0	0	0	0
Emergency Authorization Waste (Storm Debris)	na	0	0	0	0	0	0	0
Other WMMBy	0	147.48	147.48	64.85	64.85	64.85	1749.03	6.63
compost & MRF residuals	0	1147.06	1147.06	790.90	790.90	790.90	11518.10	43.63
Total Tons Disposed		1,590.75	1,590.75	1,777.0	1,777.0	590.75 1,777.0 1,777.0 1,777.0 18,828.59 73.24	18,828.59	73.24

SECTION 7 – SERVICE AREA OF SOLID WASTE RECEIVED

Please identify where the waste is coming from. The total tons received reported below should equal the total tons received in Section 6 Solid Waste Disposed). DO NOT REPORT IN CUBIC YARDS!

- If the waste WAS received from another solid waste management facility, please write in the name and address of the facility along with the appropriate state, county and planning unit/municipality.
- If the waste WAS NOT received from another solid waste management facility, please write in "Direct Haul" along with the appropriate state, county and planning unit/municipality where the waste was generated.

Speci

	% Other specify:
ste transported by each:	% Water
specify transport method and percentages of total waste	
specify transport method	100_% Road

Explain which waste types and service areas below are included in these transport methods All

	SERVICE AREA OF SOLID WASTE RECEIVED	WASTE REC	EIVED		
TYPE OF SOLID WASTE	SOLID WASTE MANAGEMENT FACILITY FROM WHICH IT WAS RECEIVED (Name & Address) OR "Direct Haul"	SERVICE AREA STATE OR COUNTRY	SERVICE AREA COUNTY OR PROVINCE	SERVICE AREA NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECEIVED
Asbestos	Direct Haul	N	Delaware County	Delaware County	17.00
Ash (Coal)					
,					
Ash (MSW Energy	Direct Haul	N≺	Delaware County	Delaware County	112.62
Recovery)					
Construction &					
Demolition Debris					
10/10/					

	SERVICE AREA OF SOLID WASTE RECEIVED	WASTE REC	EIVED		
TYPE OF SOLID WASTE	SOLID WASTE MANAGEMENT FACILITY FROM WHICH IT WAS RECEIVED (Name & Address) OR "Direct Haul"	SERVICE AREA STATE OR COUNTRY	SERVICE AREA COUNTY OR PROVINCE	SERVICE AREA NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECEIVED
Industrial Waste (Including Industrial Process Sludges)					
Mixed Municipal	Direct Haul	≻ Z	Delaware County	Delaware County	2440.97
(Residential, Institutional & Commercial)					
Oil/Gas Drilling					
Waste					
Petroleum	Direct Haul	λ	Delaware County	Delaware County	503.12
Contaminated Soil					
Sewage Treatment	Direct Haul	Σ	Delaware County	Delaware County	2487.75
Treated Regulated					
Medical Waste (TRMW)*					
Emergency Authorization Waste					
(Storm Debris)					
Other (specify)	Direct Haul - Whey	NY	Delaware County	Delaware County	1749.03
Compost & MRF Residuals	Direct Haul	ΝΥ	Delaware County	Delaware County	11518.10
			CF	TOTAL RECEIVED (fons):	. 18,828.59
					1

List generators that provide you Certificates of Treatment forms and quantities of TRMW from each na

SECTION 8 -LANDFILL RECYCLABLE & RECOVERED MATERIALS

Is your facility also a permitted or registered Recyclables Handling & Recovery Facility?

- Yes; Complete Section 9 for material recovered from the mixed solid waste stream. Complete a Recyclables Handling Recovery Facility (RHRF) form for material received as source separated. The RHRF form is located at: http://www.dec.ny.gov/chemical/52706.html.
- □ No; Complete Section 9 for material recovered from the mixed solid waste stream and for material received as source separated.

A. Service Area of Recyclable Material Received Please identify where the recyclable materials are coming from. DO NOT REPORT IN CUBIC YARDS!

- If the materials **WERE** received from another solid waste management facility, please write in the name and <u>address</u> of the facility along with the appropriate state, county and planning unit/municipality.
- If the materials **WERE NOT** received from another solid waste management facility, please write in "**Direct Haul**" along with the appropriate state, county and planning unit/municipality where the recyclables were generated.

Specify transport method, list type of material s	and percentages of total waste transported by each:
100 % Road: Waste Type(s: All	% Rail: Waste Type(s :

	SERVICE AREA OF RECYCLABL	E MATERIAL	RECEIVED		0.7
MATERIAL	SOLID WASTE MANAGEMENT FACILITY FROM WHICH IT WAS RECEIVED (Name & Address) OR "Direct Haul"	SERVICE AREA STATE OR COUNTRY	SERVICE AREA COUNTY OR PROVINCE	SERVICE AREA NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECEIVED
Commingled Containers (metal, glass, plastic)	Direct Haul	NY	Delaware County	Delaware County	1901.80
Commingled Paper (all grades)	Direct Haul	NY	Delaware County	Delaware County	1321.84
Single Stream (total)			_	-	
Brush, Branches, Trees, & Stumps	Direct Haul	NY	Delaware County	Delaware County	69.38
Food Scraps			- .	_	
Yard Waste (curbside)				-	
Other (MSWittp) compost	Direct Haul	NY	Delaware County	Delaware County	19,509.74
WWTP to compost	Direct Haul	NY	Delaware County	Delaware County	3,565.15
			TOTAL	RECEIVED (tons): 2	6367.91

Š	SOS	
ing	ÄR	
au	\sim	
	B	
<u>></u>	ರ	
Je.	≝	
е, #	N.	
inc	EP(
õ	2	
Ϋ́F	Ō	
), In	ō	
Š	Ω.	
the	ort	
tr,	rep	
nno	λis	
Š	¥ =	
tate	b	
g	er	
di	the	
por	at	
res	nr	
S	ō	
the	pe	
iť,	gan	
acil	at	
ur f	s th	
Š	nits	
was sent from your facility, the corresponding State/Country, the County/Province, the NYS Planning Ur	S Planning Units that can be found at the end of this report. DO NOT REPORT IN CUBIC YARDS	
nt fi	nin	
Se	an	
vas	回	
rial \	ž	
ţ	o	
Ë	ist	
ch the ma	Je l	
ich	0 #	
×	orted. Refer to the list of NYS	
\ د	Ref	
ination facility to w	-	
ā	orte	
ţi	sbc	
tina	īan	
Jesi	<u>a</u>	
Je c	ater	
fy the name of the	fma	
ne	it oi	
nar	our	
the	am	
ify	the	
Jent	and the amount of material tra	
$\overline{}$	Œ	

and the amount of material t	and the amount of material transported. Refer to the list of NYS Planning Units that can be found at the end of this report. DO NOT REPORT IN CUBIC YARDS!	hat can be found at th	at the end of this report.	ort. DO NOT REPORT I	RT IN CUBIC YARDS!
Specify transport method an 100 Road	Specify transport method and percentages of total material transported by each: 100 % Road % Rail % Other	: % Other (specify:			
Explain which materials and	Explain which materials and destinations below are included in these transport methods				
	PAPER RECOVERED	OVERED			
RECOVERED	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Commingled Paper (all grades)	Delaware County Solid Waste Management Center - Recycling Center	×	Delaware County	Delaware County	1321.84
Corrugated Cardboard	Delaware County Solid Waste Management Center - Recycling Center NY	×	Delaware County	Delaware County	600.71
Junk Mail					
Magazines					
Newspaper					
Office Paper					
Paperboard / Boxboard					
Other Paper (specify)					
			TOTAL PAPER	TOTAL PAPER RECOVERED (tons):	1922.55

<u>5</u>

	GLASS RECOVERED	COVERED			
RECOVERED	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Container Glass	Delaware County Solid Waste Management Center - Recycling Center	≻N	Delaware County	Delaware County	433.85
Industrial Scrap Glass					
Other Glass (specify)					
		-	TOTAL GLASS RI	TOTAL GLASS RECOVERED (tons): 43	433.85
	METAL RECOVERED	COVERED			
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Aluminum Foil / Trays					
Bulk Metal (from MSW)	Delaware County Solid Waste Management Center - Recycling Center	Ž	Delaware County	Delaware County	953.06
Bulk Metal (from CD debris)					
Enameled Appliances / White Goods	Delaware County Solid Waste Management Center - Recycling Center	∑	Delaware County	Delaware County	13.7
Industrial Scrap Metal					
Tin & Aluminum Containers	Delaware County Solid Waste Management Center - Recycling Center	N	Delaware County	Delaware County	98.99
Other Metal (specify)					
			TOTAL METAL R	TOTAL METAL RECOVERED (tons): 10	1065.8

	PLASTIC RECOVERED	COVERED			
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	NYS PLANNING NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Mixed Plastic (#1 - #7)	Delaware County Solid Waste Management Center - Recycling Center	N≺	Delaware County	Delaware County	197.48
PET (plastic #1)	Delaware County Solid Waste Management Center - Recycling Center	λN	Delaware County	Delaware County	74.57
HDPE (plastic #2)	Delaware County Solid Waste Management Center - Recycling Center	λN	Delaware County	Delaware County	91.39
Other Rigid Plastics (#3 - #7)	Delaware County Solid Waste Management Center - Recycling Center	λN	Delaware County	Delaware County	21.26
Industrial Scrap Plastic					
Plastic Film & Bags	Delaware County Solid Waste Management Center - Recycling Center	NY	Delaware County	Delaware County	17.43
Other Plastics (specify)					
		Ĭ	OTAL PLASTIC RI	TOTAL PLASTIC RECOVERED (tons): 402.13	.02.13

	MIXED MATERI	MIXED MATERIAL RECOVERED			
RECOVERED	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Commingled Containers (metal, glass, plastic)					
Commingled Paper & Containers					
Single Stream (total)					
Other (specify)					
		TOTAL	MIXED MATERIA	TOTAL MIXED MATERIAL RECOVERED (tons):	

	MISCELLANEOUS MATERIAL RECOVERED	TERIAL RECOVE	RED		
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Electronics	Delaware County Solid Waste Management Center - Recycling Center	λN	Delaware County	Delaware County	167.73
Textiles	Delaware County Solid Waste Management Center - Recycling Center	λN	Delaware County	Delaware County	6.85
Brush, Branches, Trees, & Stumps	Delaware County Solid Waste Management Center - Compost Facility	NY	Delaware County	Delaware County	69.38
Food Scraps					
Yard Waste (curbside)					
Other (specify)					
MSW to compost	Delaware County Solid Waste Management Center - Compost Facility	Ν	Delaware County	Delaware County	19,509.74
WWTP biosolids to compost	WWTP biosolids to compost Delaware County Solid Waste Management Center - Compost Facility	Ν	Delaware County	Delaware County	3,565.15
	TO	JTAL MISCELLAR	NEOUS MATERIA	TOTAL MISCELLANEOUS MATERIAL RECOVERED (tons):):

VOLUME TO WEIGHT CONVERSION FACTORS

MATERIAL	EQUIVALENT	LENT	MATERIAL	EQUIVALENT	ENT	MATERIAL	EQUIVALENT	LENT
GLASS – whole bottles	1 cubic yard	0.35 tons	1 cubic yard 0.35 tons GLASS - crushed mechanically 1 cubic yard 0.88 tons ALUMINUM - cans - whole	1 cubic yard	0.88 tons	ALUMINUM – cans – whole	1 cubic yard 0.03 tons	0.03 tons
GLASS - semi crushed	1 cubic yard	0.70 tons	1 cubic yard 0.70 tons GLASS - uncrushed manually 55 gallon drum 0.16 tons ALUMINUM - cans - flattened	55 gallon drum	0.16 tons		1 cubic yard 0.125 tons).125 tons
PAPER - high grade loose 1 cubic yard 0.18 tons PLASTIC - PET - whole	1 cubic yard	0.18 tons	PLASTIC - PET - whole	1 cubic yard	0.015 tons			
PAPER - high grade baled 1 cubic yard 0.36 tons PLASTIC - PET - flattened	1 cubic yard	0.36 tons	PLASTIC – PET – flattened	1 cubic yard	0.04 tons			
PAPER - mixed loose	1 cubic yard	0.15 tons	1 cubic yard 0.15 tons PLASTIC – PET – baled	1 cubic yard	0.38 tons	0.38 tons WHITE GOODS - uncompacted 1 cubic yard 0.10 tons	1 cubic yard	0.10 tons
NEWSPRINT - loose	1 cubic yard	0.29 tons	1 cubic yard 0.29 tons PLASTIC – styrofoam	1 cubic yard	0.02 tons	0.02 tons WHITE GOODS - compacted	1 cubic yard 0.5 tons	0.5 tons
NEWSPRINT - compacted 1 cubic yard 0.43 tons PLASTIC - HDPE - whole	1 cubic yard	0.43 tons	PLASTIC – HDPE – whole	1 cubic yard	0.012 tons			
CORRUGATED - loose	1 cubic yard 0.015 tons PLASTIC – H	0.015 tons	PLASTIC - HDPE - flattened 1 1 cubic yard		0.03 tons			
CORRUGATED - baled	1 cubic yard	0.55 tons	1 cubic yard 0.55 tons PLASTIC – HDPE – baled	1 cubic yard	0.38 tons	0.38 tons FERROUS METAL - cans whole 1 cubic yard 0.08 tons	1 cubic yard	0.08 tons
			PLASTIC - mixed (grocery bags 45 gallon bag 0.01 tons FERROUS METAL - cans	45 gallon bag	0.01 tons		1 cubic yard 0.43 tons	0.43 tons

Has unauthorized solid waste been received at the facility during the reporting period?

■ No If yes, give information below for each incident (attach additional sheets if necessary : □Yes

Date Received	Type Received	Date Disposed	Disposal Method & Location

Radiation Monitoring

loes your facility use a fixed radiation monitor? Yes No	Yes No	
dentify Manufacturer	and Model	of fixed unit.
loes your facility use a portable radiation monitor?	YesNo	
dentify Manufacturer	and Model	of portable unit.

If the radiation monitors have been triggered give information below for each incident:

Removed	Time		
Rem	Date		
Disposal	Status		
Reading			
Truck	Number		
	Origin		
	Hauler		
ived	Time		
Received	Date		
Incident	Number		

SECTION 10 - WASTE IN PLACE

Summary by Waste Type and Year

Include all active and inactive sections of the landfill. Report waste disposed annually by type, if known, in tons per year. Report total waste disposed, if breakdown of types the quantities for a range of years. If you include amounts from old, closed landfills then clearly identify them on the table and explain below. In each row, report quantities disposed each year (or group of years if individual years unknown for each waste type. Report cumulative WIP at bottom (sum of annual quantities disposed). Add is not available. In the case where more than one landfill section operated in a given year identify each separately, if known. If the annual amount is not available, report additional sheets as necessary.

Year	MSW (tons)	Asbestos Waste (tons)	Ash (tons)	C&D Debris (tons)	Industrial Waste (tons)	Petroleum Contaminated Soil (tons)	Sewage Treatment Plant Sludge (tons)	Other (tons)	Year(s) Total (tons)	Identify Landfill Section(s) Used
2007 to 2018 14,557.30	14,557.30	108.74	112.62	0	1.88	0	_	7	236,364	Cell 6
2000 to 2007	175426	4	21661	0	19	17156	33757	0	248023	Cell 5
1993 to 2000									180000	Cell 4/4e
1987 to 1993									189000	Cell 3
1983 to 1987									94200	Cell 2
1977 to 1983									133000	Cell 1
WIP Cumulative Total										

	on site truck scale records and survey data
cubic yards	
Overall in place volume 255,746	Method for determining waste composition, if known.

Explain if closed landfills are included above Cells 1, 2, 3, 4/4e are permanently closed, Cell 5 in interim closure, only Cell 6 is active at present

Provide waste in place information for all landfill sections.

Number of landfill sections: 6

to 1983 Original* section used (wears from 1977

acres Section Footprint 6.5

å Capped with approved final cover system Yes

Tons 380000 Waste in Place: 133000 Percent capped 100

Cubic Yards, if known

to 1987 Next*section used (years from 1983 acres Section Footprint 4.6

å Capped with approved final cover system Yes Percent capped 100

Tons 270000

Waste in Place: 94500

Cubic Yards, if known

If there are additional landfill sections, phases or cells, please provide the same waste in place information on additional sheets and attach to form.

SECTION 11 - LANDFILL GAS

If Yes: Active ■ Passive

Does the landfill have a landfill gas collection c ontrol system?
Yes ■ No ____

Number of gas wells: 12

Total landfill footprint acreage 42.9

Total landfill acreage from which gas is collected $\frac{24.7}{}$

Landfill sections from which gas is collected 3, 4/4e, 5

Landfill acreage from which gas is collected for energy recovery $\overline{0}$

Measured Methane Generation Rate*, k $\frac{0.04}{1}$

m³/Mg Measured Potential Methane Generation Capacity , L $_{
m o}$ $\frac{43}{4}$

NMOC Concentration* 600

ppmv as hexane

Name of Landfill Gas Recovery (gas to energy or other use) Facility: DCEC Waste to Energy (decommissioned) 2 Does the landfill require a Title V Permit? Yes _

Note: If Concentration NMOC, Lo and k are not known or included, default values will be used to calculate the NMOCs emissions from the Landfill

20

<u>Flare</u>

Number of Flares: 1	
Type of Flare: Opened Flare Enclosed Flare	Please report units in cubic feet
Quantity of Gas Collected and Flared Annually 676200 cubic fellows of Operation per Year 112.7 hours/year Methane Percentage in Landfill Gas before flaring 50 % Methane Destruction efficiency %	eet
Candlestick Flares: Number of Candlestick Flares cubic feet Estimate of Gas Flared Candlestick Flare cubic feet	
Gas To Energy	Please report units
Number of Internal Combustion Engines:	in cubic feet
Quantity of Gas collected for Internal Combustion Engine Annually Methane Destruction efficiency % Methane Percentage in Landfill Gas before combustion % Utility Company Receiving Electricity	cubic feet
Gas Processed for Use (Other than gas to electricity)	
Quantity of Gas Collected for Processing cubic feet Methane Percentage in Landfill Gas before processing % On-site or Off-site User of Gas	
Landfill Gas Recovery Facility/Landfill Data	
Facility Contact Tyson Robb Phone # (607)832 - 58	300
Contact e-mail address tyson.robb@co.delaware.ny.us Fax # (607)746 _ 72	212
Operation and maintenance cost for calendar year: \$_{0.05/kwh}_{\text{wh}}_{\text{calendar}}\$	
Does the LGRF experience shut downs:YesNo	
If yes, indicate reasons for shut downs. List required submissions that have been attached to the reasons for not attaching a required piece of information:	his form or
Landfill gas recovery facility was decommissioned in 2012 due to insufficient methane v	volumes
Year landfill opened: 1977 Anticipated landfill closure date: 2060 Reprinted 12/18)	

Results of Condensate Sampling

Submit (attached to this form condensate quality monitoring results accomplished in accordance with condensate sampling. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:

see attached leachate and groundwater monitoring EMSAP reports

Landfill Gas Utilized For Energy Recovery

Provide the following information for the landfill gas recovered for energy. **DO NOT INCLUDE THE GAS FLARED!**

	Landfill Gas Collected for Energy Recovery Cubic Feet)	Steam Generated (Cubic Feet	Total Electricity Generated for onsite and offsite use K.W.H.)	Total Gas Processed for use other than electricity generation Cubic Feet)	Condensate Generated Gallons	Facility Operation (Hours)
January February						
March						
April						
May						
June						
July						
August						
September						
October						
November						
December						
ANNUAL TOTAL						

Provide where applicable.

Normal Weekdays of Operation	Normal Hours of Operation				
Electricity Generated and used/marketed offsite	eKWH				
Electricity Generated and used onsite	KWH				
Gas Processed and used/marketed offsite	cubic feet				
Gas Processed and used onsite	cubic feet				
Describe the collection, storage, treatment and	disposal techniques used in managing the condensate:				
Reprinted 12/18)					

SECTION 12 - COST ESTIMATES AND FINANCIAL ASSURANCE DOCUMENTS								
Are there required cost estimates and financial assurance documents for closure and post-closure care?								
☐ Yes ■ No If yes, attach additional sheets reflecting annual adjustments for inflation and any changes to the Closure Plan?								
SECTION 13 – PROBLEMS Were any problems encountered during the reporting period (e.g., specific occurrences which have led to changes in facility procedures?								
☐ Yes ■ No If yes, attach additional sheets identifying each problem and the methods for resolution of the problem.								
SECTION 14 – CHANGES Were there any changes from approved reports, plans, specifications, and permit conditions?								
☐ Yes ■ No If yes, attach additional sheets identifying changes with a justification for each change.								
SECTION 15 - ANALYTICAL RESULTS								
Submit (attached to this form tables showing the sample collection date, the analytical results [including all peaks even if below the Method Detection Limits (MDL)], designation of upgradient wells and location number for each environmental monitoring point sampled, applicable water quality standards, and groundwater protection standards if established, MDL's, and Chemical Abstracts Service (CAS numbers on all parameters. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:								
see attached leachate and groundwater monitoring EMSAP reports								
SECTION 16 - COMPARING DATA								
Submit (attached to this form tables or graphical representations comparing current water quality with existing water quality and with upgradient water quality. These comparisons may include Piper diagrams, Stiff diagrams, tables, or other analyses. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:								
see attached leachate and groundwater monitoring EMSAP reports								

Reprinted 12/18)

SECTION 17 - DISCUSSION OF RESULTS

Submit (attached to this form a summary of any contraventions of State water quality standards, significant increases in concentrations above existing water quality, any exceedances of groundwater protection standards, and discussion of results, and any proposed modifications to the sampling and analysis schedule necessary to meet the Existing, Operational and Contingency water quality monitoring requirements. List submissions required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:

see attached leachate and groundwater monitoring EMSAP reports **SECTION 18 - DATA QUALITY ASSESSMENT** Submit (attached to this form, any required data quality assessment reports. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information: see attached leachate and groundwater monitoring EMSAP reports **SECTION 19 - SUMMARIES OF MONITORING DATA** Submit (attached to this form a summary of the water quality information presented in Sections 16 and 17 for the year of operation for which the Annual Report is made, noting any changes in water quality which have occurred throughout the year. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information: see attached leachate and groundwater monitoring EMSAP reports **SECTION 20 - SURFACE IMPOUNDMENTS** Does this landfill have a surface impoundment? ☐ Yes If yes, repeat Sections 15 through 18 above for Quarterly Reports and Section 19 above for Annual report. Attach additional submissions required by this section. SECTION 21 - PERMIT/CONSENT ORDER REPORTING REQUIREMENTS Are there any additional permit/consent order reporting requirements not covered by the previous sections of this form? ☐ Yes If yes, attach additional sheets identifying the reporting requirements with their ■ No respective responses.

Reprinted 12/18)

SECTION 22 - SIGNATURE AND DATE BY OWNER OR OPERATOR

Owner or Operator must sign, date and submit one completed form to the appropriate Regional Office (See attachment for Regional Office addresses, email addresses and Materials Management Contacts).

The Owner or Operator must also submit one copy by email, fax or mail to:

New York State Department of Environmental Conservation
Division of Materials Management
Bureau of Solid Waste Management
625 Broadway
Albany, New York 12233-7260
Fax 518-402-9041

Email address: SWMFannualreport@dec.ny.gov

I certify, under penalty of law, that the data and other information identified in this report have been prepared under my direction and supervision in compliance with a system designed to ensure that qualified personnel properly and accurately gather and evaluate this information. I am aware that any false statement I make in such report is punishable pursuant to section 71-2703(2) of the Environmental Conservation Law and section 210.45 of the Penal Law.

Tyson Robb	2/25/18
Signature	Date
Tyson Robb	Solid Waste Coordinator
Name (Print or Type	Title (Print or Type
tyson.robb@co.delav	ware.ny.us
Email (Print or	Туре
PO Box 311	Delhi
Address	City
NY 13753	607 832 5800
State and Zip	Phone Number
ATTACHMENTS: _ • YES NO Please check appropriate line)	

Reprinted 12/18)

DELAWARE COUNTY SOLID WASTE MANAGEMENT CENTER & COMPOST FACILITY

NEW YORK STATE ROUTE 10
TOWN OF WALTON DELAWARE COUNTY

1st, 2nd, 3RD, & 4TH QUARTERLY REPORT 2018 FINAL REPORT

FOR DELAWARE COUNTY SOLID WASTE MANAGEMENT CENTER INCLUDING:

C&D FACILITY
COMPOST FACILITY
LFG EXTRACTION
MSW LANDFILL
RECYCLING (MRF) CENTER
SITE ANALYTICAL & ENVIRONMENTAL MONITORING

TOWN TRANSFER STATIONS

FOR THE PERIOD FROM

1 January – 31 March 2018 1 April – 30 June 2018 1 July – 30 September 2018 1 October – 31 December 2018

Prepared By:

DELAWARE COUNTY DEPARTMENT OF PUBLIC WORKS SOLID WASTE DIVISION

Page Avenue, PO Box 311 Delhi, NY 13753

Susan McIntyre, QEP, Commissioner Tyson Robb, Solid Waste Coordinator

FEBRUARY 2019

DELAWARE COUNTY DEPARTMENT OF PUBLIC WORKS

PO BOX 311 DELHI, NY 13753

Susan McIntyre, QEP COMMISSIONER OF PUBLIC WORKS SUPERINTENDENT OF HIGHWAYS Main office and Yard Page Avenue, Delhi Tel: 607-832-5800 FAX: 607-746-7212

Dt: February 2019

To: Dawn Mirabile, DEC Central Office

Vicky Schmitt, NYSDEC, DSW Region 4 Martha Bellinger, NYSDEC, DEP, Region 4

Brenda Drake, NYCDEP Sally Rowland, NYSDEC

Fr: Tyson Robb

Delaware County Solid Waste Coordinator

Re: Quarterly Report / Annual Report

Landfill Facility No. 13/-S-18 DEC ID# 4-1256-00008/00007-1

C&D Facility No. 13-D-01 DEC ID# 4-1256-0040/00004-0

Compost Facility No. 13-C-01 DEC ID# 4-1256-00008/00011

Delaware County Solid Waste Management Center

Delaware County Compost Facility

1 January 2018 to 31 December 2018

Attached, please find a copy of the Quarterly Reports and Environmental Monitoring Report for the above identified facility for the period.

Please note that the quarterly groundwater analytical results provided by Microbac Laboratories New York are incorporated into the Environmental Monitoring Section. Submission of the standalone groundwater monitoring data is submitted with the file attachments.

Dawn Mirabile NYSDEC
Division of Materials Management
Bureau of Permitting & Planning
625 Broadway - 9th Floor
Albany, NY 12233-7253

Vickie Schmitt & John Weidman NYSDEC Region 4 Regional Solid Waste Engineer 1150 North Westcott Road Schenectady, NY 12306-2014

Martha Bellinger NYSDEC Region 4 Stamford Office Division of Environmental Permits 65561 State Hwy 10, Suite 1 Stamford, NY 12167-9503

Brenda K. Drake, P.E. NYCDEP - Bureau of Water Supply 71 Smith Avenue Kingston, NY 12401

Sally Rowland NYSDEC Bureau of Waste Reduction and Recycling - Annual Report 625 Broadway - 9th Floor Albany, NY 12233-7253

TABLE OF CONTENTS

Section 1	Facility Information Signature and Date Background
Section 2	Quantities
Section 3	Unauthorized Waste
Section 4	Site Life
Section 5	Material Recovered
Section 6	Primary Leachate
Section 7	Secondary Leachate
Section 8	Tip Fee and Leachate Treatment Costs
Section 9	Financial Assurance
Section 10	Changes - Operations and Deviations and Highlights
Section 11-15	Ground Water Quality and Analysis
Section 16	Surface Impoundments
Section 17	Permit/Consent Order Reporting Requirement
Section 18	Landfill Gas and Greenhouse Gas Monitoring
Exhibit A	Construction and Demolition Cell
Exhibit B	Water Quality Data / Environmental Monitoring Report
Exhibit C	Compost Facility

ATTACHMENTS

ACTIVE LANDFILL

Division of Solid Waste New York State Department of Environmental Conversation

ACTIVE (SANITARY, INDUSTRIAL, OR ASH) LANDFILL (Subject to 6 NYCRR Part 360, Solid Waste Management Facilities, 6 NYCRR Part 360-2, Solid Waste Landfills - Effective Date: November 26, 1996 6 NYCRR Part 360-1, General Provisions - Effective Date: May 12, 2006)

QUARTERLY REPORT

A.	. Annual Report for the year of operation from 1 January to 31 December 2018.							
В.	Quarterly Report for:	X Quarter 1 X Quarte	r 2 <u>X</u>	Quarter 3XQuarter 4				
		Section Owner/Facility		ion				
		DEC Region 4, T	own of Wa	alton				
D D F F	Facility Name Solid Waste Management Center Compost Facility DEC Facility Code # 13-S-18 13-C-01 DEC Permit # 4-1256-00008/00007-1 4-1256-00008/00011 DEC Permit Expiration 4 June 2019 24 April 2022 Facility Phone # 607.865.5805 x 216 607.865.4046 x 201 Facility Address 32230 State Hwy 10, Walton, NY 13856 32230 State Hwy 10, Walton, NY 13856 Facility Chief Operator Andrew Tompkins Andy Zuk							
	Signature and Date							
Ov	vner or operator must sig	n, date and submit one complete	d form with	h an original signature to:				
	New York State Department of Environmental Conservation Bureau of Solid Waste & Land Management Division of Solid & Hazardous Materials 625 Broadway 9th Floor Albany, NY 12233-7258							
an	d one copy with an origir	nal signature to the appropriate Ro	egional Sol	olid Waste Engineer (RSWE).				
	I hereby swear or affirm that information provided on this form and attached statements and exhibits is true to the best of my knowledge and belief.							
So PC	lid Waste Coordinator Box 311			Date: February 2018				
De	lhi, NY 13753			Tel: (607) 832-5800				

Fax: (607)746-7212

DELAWARE COUNTY SOLID WASTE MANAGEMENT CENTER NEW YORK STATE ROUTE 10 TOWN OF WALTON DELAWARE COUNTY

QUARTERLY REPORT

BACKGROUND

This Report has been prepared in accordance with 6 NYCRR Part 360-1.4(c); 360-1.8 (e)(1)(ii); 360-1.14(e)(2), (i)(1); 360-2.9(j)(3); 360-2.11(c)(5)(iv), (d)(5), (d)(6); 360-2.14(a)(2)(vi); 360-2.17(a), (t); 360-2.19(b)(1)(ii), (c)(1)(ii), (d)(1)(i) and 360-6.5(d). Part 360-8.1 does not pertain to Delaware County since Delaware County is not located on Long Island.

This Report also references the Environmental Monitoring Report and all other reporting requirements as specified by Operational Permit Condition No. 3 of the current Operating Permit dated June 4, 2014 and expiring on June 4, 2019. Groundwater quality monitoring data as required by the Site Analytical/Environmental Monitoring Plan is included under separate cover. A summary from this groundwater data is included in this Report. Sections 1 through 18 of the standard State form have been reproduced within this report. Sections 2 through 11 are not required for a quarterly report. Sections 11 through 15 are included within "Water Quality Data" and the Environmental Monitoring Report.

Section 2 - Quantity of Solid Waste Received: Table A.

Type of Solid Waste	1 able	2nd QT	3rd QT	4th QT	YTD	Daily Avg
		(tons)	(tons)	(tons)		(tons)
-2018-					(tons)	
Days Open to Public	65	129	194	264	264	
LANDFILL WASTE INPUTS - CELL 6						
Mixed MSW to Landfill (Residential & ICI) (01)	218.83	383.15	457.65	1,381.34	2,440.97	11.16
C & D Debris (buried as waste)	0	0	0	0	0	0.00
Friable Asbestos Waste (10)	0	16.54	0.46	0	17.00	0.06
Industrial Waste (Inc'l sludges)	0	0	0	0	0	0.00
Whey (16)	545.74	566.29	442.45	194.55	1,749.03	6.63
Compost Facility Residuals (001)	2,645.08	3,049.58	3,400.82	2,335.20	11,430.68	43.30
WWTP Sludge & Grit (4A)(14B)(21)	494.47	606.96	414.41	971.91	2,487.75	9.42
MRF Residuals (19)	0.9	8.66	40.35	37.51	87.42	0.33
Landfill Waste Tons - Cell 6	3,905.02	4,631.18	4,756.14	4,920.51	18,212.85	68.99
LANDFILL ADCs						
Mixed Glass Aggregate (AOC) (2BC)	111.45	93.9	107.39	121.11	433.85	1.64
Contaminated Soil (AOC) (8)	24.95	110.7	16.15	351.32	503.12	1.91
DCRRA Ash (AOC) (17)	53.46	0	0	59.16	112.62	0.43
AOC Ton Received	189.86	204.6	123.54	531.59	1,049.59	3.98
In-House Soil/C&D Blend AOC (17B)	1,768.14	1,680.05	527.36	2,142.84	6,118.39	23.18
AOC Tons Used - Cell 6	1,768.14	1,680.05	527.36	2,142.84	6,118.39	23.18
COMPOST INPUTS						
WWTP Sludge to Compost (4B)	1,012.53	1027.93	880.54	644.15	3,565.15	13.50
Mixed MSW to Compost (1)(010)	4,574.11	5,102.95	5,750.18	4,082.50	19,509.74	73.90
MRF Residuals (MSW to compost #s)	0	0	0	0	0	(
Solids Amendment- Wood (5) (17A) (005)(05)	17.87	68.47	30.52	17.79	134.65	0.51
Industrial Liquids Amendment	0	0	0	0	0	C
Gross Compost Inputs Received	5,604.51	6,199.35	6,661.24	4,744.44	23,209.54	87.91
Net Compost Outputs	2,959.43	3,149.77	3,260.42	2,409.24	11,778.86	44.62
CONSTRUCTION AND DEMOLITION DEBRIS (see al	so Exhibit A - Sec	ction 2)				
Total C&D Receipts (6)(06)	777.26	1,659.43	1,570.09	1,587.10	5,593.88	21.19
RECYCLABLE MATERIALS (see also Section 5)						
Total Conventional Recyclables	734.30	973.52	1224.85	980.27	3,912.94	14.82
Total Tons - SW Program	8,565.87	10,618.50	10,935.04	10,428.71	40,548.12	153.59
Lbs/Capita/Day - Total Tons - SW Program (47	7,980 population, o	perational days/	yr)		6.40	0
Lbs/Capita/Day - Landfill Waste Inputs - Cell 6	(47,980 populati	on, operational d	lays/yr)		2.88	8

Notes: Labeling errors incorrectly reported the Lbs/Capita/Day as based upon 365 days. Labels have been corrected to reflect the Lbs/Capita/Day rate based upon **operational** days.

Quantity of Solid Waste Received

Cell 6 was put into operation with first waste placement 27 December 2007. Initial waste placement is the select waste layer which is uncompacted waste. Cell 5 stopped waste receipts on 26 December 2007.

Service Area

The service area includes the entire County of Delaware and the northern one half of the Town of Hardenburgh in Ulster County, State of New York. The population of Delaware County is 47,980 per the 2010 census with the population of the portion of the Town of Hardenburgh we serve being 125. Delaware County consists of 19 townships and covers an area of 1460 square miles.

The Solid Waste Management Center (SWMC) is located 4 miles east of the Village of Walton along NYS Route 10 in the Town of Walton. There are seven transfer stations within the service area which serve nine towns. Hauling from the transfer stations to the SWMC is done by the County. These figures are based on actual MSW tonnages hauled on county trucks.

-2018- Transfer Station Quantities Table B.									
TRANSFER STATION	MSV	V & BULK	Y ITEMS (to	ons)	RECYCLABLES (tons)				
	1 QT	2 QT	3 QT	4 QT	1 QT	2 QT	3 QT	4 QT	% REC
ANDES	73.54	112.51	135.31	116.75	25.90	31.66	55.99	30.75	24.78%
COLCHESTER	173.38	266.05	305.76	251.06	44.65	52.24	72.35	118.72	22.42%
DAVENPORT	290.88	402.91	346.73	332.63	30.93	65.70	63.34	41.25	12.78%
HANCOCK	360.52	544.14	730.97	401.14	34.52	58.23	66.49	44.82	9.11%
HARPERSFIELD	464.85	606.91	635.09	595.78	97.10	126.68	107.92	105.78	15.97%
MIDDLETOWN	178.54	233.81	348.66	212.83	78.57	102.54	109.08	90.61	28.11%
ROXBURY	309.25	456.93	487.57	389.28	28.12	64.00	84.24	55.02	12.34%

The County supports several paper recycling drop-off boxes throughout the area, and a seasonal convenience station is also located in the Town of Bovina utilizing a private hauler to collect waste and recyclables. Tonnages for these facilities are follows:

-2018-	Seasonal Convenience Station							Table	
MSW & BULKY ITEMS (tons) RECYCLA						CLABLES	(tons)		
LOCATION	1 QT	2 QT	3 QT	4 QT	QT 1 QT 2QT 3 QT 4QT 9				
BOVINA	27.35	40.43	43.77	29.69	25.61	20.41	11.47	14.97	33.91%

-2018-	Recycling Boxes Table						
D.							
LOCATION	RECYCLABLES (tons)						
	1 QT 2 QT 3 QT 4 QT						
DELHI (paper only)	15.72 8.92 16.95 14.63						

Section 3 Unauthorized Solid Waste

Has unauthorized waste ever been received at the landfill? Yes <u>x</u>No

Section 4 Landfill Airspace Capacity and Projected Site Life

	Cell 6	
Original Design Volume (Cell 6) Volume Used This Period (2018) Volume Used as of period survey Volume Used as Surveyed from Base Layer Volume Remaining as of 1 January 2019	343,000 23,255 255,746 255,746 87,254	CY Airspace CY Airspace (period survey volume) CY Airspace (cumulative all previous) CY Airspace (survey volume - base) CY Airspace (net design cumulative)
Remaining life of the existing constructed landfill - Cell 6	2 Years At 40,000	2.2 Months CY/Year
Remaining life of the existing constructed landfill - Cell 6	4 Years At 20,000	4.4 Months CY/Year
Projected life of entitled undeveloped landfill capacity. Cell 7 Capacity	12 Years At 40,000 487,000	2.1 Months CY/Year CY of Airspace
Projected life of entitled undeveloped landfill capacity. Cell 7 Capacity	24 Years At 20,000 487,000	4.2 Months CY/Year CY of Airspace
 Estimated landfill capacity of any potential expansion area not authorized under a permit (Cell 7). 	487,000	CY of Airspace
Actual landfill capacity utilized for the year.	23,255	CY of Airspace Cell 6

-2018 - FOR COMPARISON PURPOSES ONLY - UNOFFICIAL Table E									
IN-PLACE WASTE DENSITY CELL 6	1qt	2qt	3qt	4qt	YTD				
Waste Compaction Rate (lbs/cy)	1,492 1,638			1,565					
Waste & ADC Compaction Rate (lbs/cy)	2	2,095	2,090		2,093				
Landfill Waste Tons - Cell 6	3,905	4,631	4,756	4,921	18,213				
ADC Tons - Cell 6	1,768	1,680	527	2,143	6,118				
Capacity Used For Period (cy)	11,440		11,815		23,255				
CY/Capita/Yr - Capacity Used (47,980 popula	ation)	365 days	-	0.48					

Waste In Place

-2018											
	LANDFILL CELLS DESCRIPTIVE SUMMARY										
CELL	DATES OF OPERATION	CAP	CLOSURE STATUS	NYSDEC PERMIT NUMBER	TOTAL CAPACITY (cy)	CURRENT WASTE IN PLACE (cy)	LINER ACRES				
1	1977 to 1983	soil	approved	800	380,000	380,000	6.5				
2	1983 to 1987	VLDPE	approved	916	270,000	270,000	4.6				
3	1987 to 1993	VLDPE	approved	41-87-0171	420,000	420,000	7.1				
'4/4e	1993 to 2000	LLDPE	approved	approved 4-1256-00008/00002-1 and 4-1256-00008/00004-1		400,000	7.9				
5	2000 to present	na	interim	4-1256-00008/00007-1	329,000	325,541* (27 June 2016)	9.7				
C&D	1991 to present	na	active	4-1256-00040/00004-1	69,950	55,696 (8 Jan 2014)	1.9				
6	2008 to present	na	active	4-1256-00008/00007-1	343,000	255,746 (4 Jan 2019)	3.5				
7	to be developed	na	na	na	487,000	na	na				

*Note - Cell 5 survey of 27 June 2016 revealed 31,673.4 cy reduction of waste -in-place volume associated with consolidation over time.

Cell 6 Waste-In-Place Cumulative Total Tons Beginning of 4th Quarter 2007 to End of 4th Quarter 2018

TABLE G.									
WASTES TO CELL 6	CUMULATIVE								
Mixed MSW to Landfill	14,557.30								
C & D Debris (buried as waste)	0.00								
Asbestos Waste	108.74								
Industrial Waste (Inc'l sludges)	1.88								
Whey	21,304.21								
MRF Residuals	1,700.27								
Compost Residuals	128,794.03								
WWTP Sludge	21,048.16								
In-House AOC Blend	48,849.09								

C&D Landfill Waste-In-Place Cumulative Total Tons

From 1 October 1991 to End of 2nd Quarter 2012: C&D Debris in-place (Oct 1991 to Dec 2001 @ 1,100 lbs/cy) C&D Debris in-place (Jan 2002 to Nov 2011 @ 1,750 lbs/cy) Total C&D Debris in-place Net Balance Remaining Capacity (1,750 lbs/cy)

28,991 tons 52,711 cy 2,612 tons 2,985 cy 31,603 tons 55,696 cy 12,472 tons 14,254 cy

Section 5 Material Recovered & Marketed

Type of Recyclables Marketed	141		ecovered		ieu	Table H.		
-2018-	1 QT	2 QT	з QТ	4 QT	YTD	Final Destination		
Tubs & Lids	20.77	21.55	19.12	136.04	197.48	Park Polymers		
Mixed Glass	111.45	93.90	107.39	121.11	433.85	Aggregate (Table G ADC)		
Ferrous Metal Cans	17.43	22.13	21.23	21.83	82.62	Conti Group, Kelman		
Aluminum Cans	4.70	3.69	3.79	4.19	16.37	Rt 206 Redemption		
Plastic, Natural HDPE	10.39	6.81	9.35	0.00	26.55	TABB, Empire Recyc, Hershmann		
Plastic, Mixed Color HDPE	10.39	13.56	40.89	0.00	64.84	Ensley, Graham		
UBCs	0.47	2.02	8.23	3.05	13.77	Rt 206 Redemption		
Ag/Film Plastic	17.43	0.00	0.00	0.00	17.43	Versatile Recycling		
High Molecular Weight HDPE	0.00	21.26	0.00	0.00	21.26	QRS		
Plastic, PETE	18.43	18.53	18.87	18.74	74.57	TABB, Conti Group, Graham		
Paper, OCC	124.17	149.46	198.62	128.46	600.71	RockTenn, Fox Run, Cascade		
Magazines, Junk, Office, ONP Mix	137.84	207.45	231.00	144.84	721.13	Cascade		
Electronics, CRTs, TVs	44.05	67.20	56.48	0.00	167.73	ERI		
Bulk Metal	117.69	205.58	379.57	250.22	953.06	Weitsman, Sims, Otsego Auto		
Antifreeze	1.08	1.27	0.98	1.89	5.22	Covanta REC Oil, eco-maxx,MXI		
Used Oil	3.06	2.49	5.08	2.59	13.21	Covanta REC Oil, eco-maxx, MXI		
Lead Acid Batteries	0.00	3.08	0.00	0.34	3.42	NAPA, Interstate		
Household Batteries	1.92	0.00	0.00	2.02	3.94	ALR, Call 2, RFI		
Clothing, Textiles, Accessories	1.20	3.00	1.70	0.95	6.85	Rock Solid Church		
Other HHW, AGP, & CESQG	0.00	0.00	0.00	55.38	55.38	MXI Env'l, CLEAN SWEEP		
Tires	90.01	124.51	119.35	85.98	419.85	Casings		
Freon Containing Items	1.83	6.03	3.20	2.65	13.70	JGS Recycling & Hauling		
Net Compost Output	2959.43	3149.77	3260.42	2409.24	11778.86	NatureCycle, DPW, Public		
Alternate Daily Cover Utilized	1768.14	1680.05	527.36	2142.84	6118.39	Ground C&D, PCS, AOC		
MRF Dual & Single Stream Materials	456.04	560.36	658.49	578.26	2253.15	Cans, Plastic, Glass, OCC		
Total Conventional Items	734.30	973.52	1224.85	980.27	3912.94			
(exc's: Compost, AOC)						Recycling rates are calculated as the		
Total All Materials	5461.87	5803.34	5012.63	5532.35	21810.19	TONNAGE OF RECYCLABLES divided by		
Recycle Rate Conventional Items (exc's: Compost, ADC)	8.57%	9.17%	11.20%	9.40%	9.65%	the TOTAL TONS MANAGED BY THE SOLID WASTE PROGRAM.		
Recycle Rate All Materials 63.76% 54.65% 45.84%				53.05%	53.79%			
UBC's estimated at 3 oz. per container.					lead acid ba	tteries recycled at 40 lbs/battery.		
Based on antifreeze at 0.0049 tons/gallon.					Car tire equals 20 lbs., light truck tire equals 40 lbs., tractor			
Based on waste oil at 0.0035 tons/gallon.					s 75 lbs.			
Freon containing units at 50 lb. each								

Section 6 Total Leachate

Monthly quantities (gallons) are indicated on the chart below:

- 2018 -	TOTAL LEACHATE			TABLE I.			
LEACHATE	JAN	FEB	MAR	APR	MAY	JUNE	TOTAL
COLLECTED	369,638	381,282	430,983	402,533	355,158	285,124	2,224,719
SHIPPED	468,244	349,074	396,958	479,467	351,266	316,198	2,361,207
DELHI	107,312	87,302	80,962	108,360	67,799	58,068	1,851,404
SIDNEY	0	0	0	0	0	0	0
WALTON	360932	261772	315996	371107	283467	258130	1,851,404

LEACHATE	JUL	AUG	SEP	ост	NOV	DEC	TOTAL
COLLECTED	571,682	512,930	270,346	370,311	397,406	312,613	2,435,287
SHIPPED	414,925	784,188	446,925	399,880	574,478	438,808	3,059,204
DELHI	84,360	481,484	123,281	142,199	146,946	95,427	1,073,697
SIDNEY	0	0	0	0	0	0	0
WALTON	330565	302704	323644	257681	427532	343381	1,985,507

Note: correction of values are shown in BOLD.

Offsite leachate treatment facilities utilized are as follows:

Village of Walton WWTP, South Street, Walton, NY 13856 Village of Delhi WWTP, NY Rt 10, Delhi, NY 13753 Village of Sidney WWTP, River St., Sidney, NY 13838

The county maintains a Part 364 hauling permit No. 4A-246 and hauled all of the leachate with DPW forces.

The facility has a constructed liner and leachate collection system. Total area of lined area from leachate collected is 34.7 acres (C&D landfill has 1.9 acres, Cell 2 has 4.6 acres of liner, Cell 3 has 7.1 acres, Cell 4/4e has 7.9 acres, Cell with 5 has 9.7 acres, and Cell 6 has 3.5 acres). A compilation of primary leachate quality data collected throughout the year including a summary comparing the data and a summary discussion of the results has been enclosed under separate cover with the **Environmental Monitoring Report**.

Primary leachate from the C&D cell is serviced by Pump Station #4. Primary leachate from Cell 2 is serviced by Pump Station #5. Primary and secondary leachate from Cell 3 is serviced by Pump Station #6 primary and secondary side riser pumping system. During January and February of 2001, Cell 5 primary leachate was pumped into a clean out serviced by Pump Station #3. Starting in March, 2001 Cell 5 primary leachate was pumped into Pump Station #7. Cell 5 secondary leachate is pumped directly through Pump Station #7. Cell 6 primary and secondary leachate is serviced by Pump Station #8.

Section 7 Secondary Leachate

Cell 3 has a double liner system with a secondary leachate collection and removal system; Cell 4 & 4E have double composite liner systems with a secondary leachate collection and removal system. Cell 5 has a double composite liner system with a secondary leachate collection and removal system. Cell 6 has a double composite FML/GCL and FML/clay liner and primary and secondary leachate collection and removal system.

The monitoring system for Action Leakage Rate serves as the vehicle to determine secondary leachate volumes for Cell 3, Cell 4 & 4E, Cell 5, and Cell 6. Secondary leachate from Cell 4 & 4E is mixed with primary leachate in pump station 3 and conveyed to the tank storage farm from there. Cell 5 secondary leachate is mixed with Cell 5 primary leachate and is handled through Pump Station #7. Pump Station #1 was removed and replaced with Pump Station #6 to collect and convey primary and secondary leach leachate from Cell 3 to the tank storage farm. Cell 6 secondary leachate is serviced by Pump Station #8. Secondary leachate is mixed with primary leachate prior to shipment and treatment. The following chart only depicts the amount of secondary leachate collected.

2018	5	SECONDARY LEACHATE COLLECTED					E J.	
	(gallons)							
	JAN	FEB	MAR	APR	MAY	JUN	TOTAL	
CELL 3	1155	912	799	1,977	2231	857	7,931	
CELL 4	0	454	0	0	0	0	454	
CELL 5	304	210	206	198	155	241	1,314	
CELL 6	270	292	140	253	28	48	1,031	
	JUL	AUG	SEPT	ост	NOV	DEC	TOTAL	
CELL 3	1594	2234	1897	4318	4737	1610	16,390	
CELL 4	116	0	0	712	0	0	828	
CELL 5	1621	912	513	733	1309	20	5,108	
CELL 6	239	52	848	709	252	161	2,261	

Acreage of the lined area from which secondary leachate is collected is 28.2 acres. Cell 3 encompasses 7.1 acres, Cell 4/4e has 7.9 acres, Cell 5 with 9.7 acres, and Cell 6 with 3.5 acres that combined total 28.2 acres of double lined area. The construction of Cell 6 included a direct joining of the primary and secondary liner systems for Cell 6 and adjacent Cell 5. Monitoring of the leachate quantity and quality in both Cells 5 & 6 indicate that the secondary leachate from Cell 5 is wicking into the Cell 6 secondary leachate collection system. Accordingly, ALRs reported for individual Cell 5 and Cell 6 is believed to under estimate Cell 5 secondary leachate and overestimate Cell 6 secondary leachate. Accordingly, the ALRs are also reported for the combined liner acreage of Cell 5 & Cell 6.

A compilation of any secondary leachate quality data collected throughout the year including a summary comparing data and a summary discussion of results has been enclosed under this same cover with the **Environmental Monitoring Report**. Action Leakage Rate data and a compilation of leachate generation from the various sources is included in with the Leachate System Data.

Section 8 Tipping Fee/Leachate Treatment Cost

The following depicts tipping fees for special wastes, effective date 1 July 2010:

MSW Tipping Fee:	\$0 per ton
Contaminated Soils	\$30.00 per ton
Construction & Demolition Debris	\$87.00 per ton
NYC Upgrade Sludge	\$80.00 per ton
Clean Wood & Brush	\$25.00 per ton
Friable Asbestos	\$200.00 per ton

Cost of leachate disposal fees and contractor transportation fees for the year to date as recorded in Departmental budgetary audits.

Section 9 Cost Estimates and Financial Assurance Documents

Required cost estimates and financial assurance documents for closure, post-closure care, and applicable corrective measures, all reflecting adjustments for inflation to indicated updated dollars for the current year of operation have been submitted to the NYSDEC Region 4 office.

Financial assurance for this liability is provided through a combination of a dedicated percentage of the sales tax income for the County and municipal guarantees as accepted under the Local Government Financial Test and Guarantee provisions of the federal rule (40 CFR Part 258) and as accepted by the NYSDEC in March 1998 letter from John Cahill, Acting Commissioner of NYSDEC. Delaware County is in sound fiscal position to provide the financial guarantees required by the state.

The most recent annual financial assurance report will be submitted immediately after audit services completed by the County's contracted auditors.

Section 10 Changes

This section will also be used to offer narrative on the daily operation of the SWMC (items 1 - 8).

- 1. Roadways are in good condition and suitable for all traffic. Directional signs are in necessary areas.
- 2. A drop off station for residential waste brought in by residential users is in operation and is monitored during landfill operating hours by a gate attendant. An area is also provided for recyclable material, with separate closed rolloff containers being provided for ONP and for electronic items. Magazines & junk mail, and office paper are placed in hoppers in the three sided structure near the attendant's station. Receptacles for used motor oil, antifreeze, oil filters, and lead acid batteries are located adjacent to the paper drop off area.
- 3. Commingled recyclables are tipped in the Material Recovery Facility by our commercial haulers. Commercial haulers also tip their OCC in the MRF. Residential users use the convenience area. Recyclables are separated by container type, are balled or otherwise consolidated for shipment to various markets.
- 4. White goods and metals, tires, MSW, wood and C&D debris are currently placed in rolloff containers located in the convenience area for the self-haulers. Wood and C&D are transported by SWMC personnel to the appropriate area of the site. White goods and bulk metal are transported to Weitsman & Son, Inc. in Owego, NY and Sims Metal Management in Middletown, NY. Utilizing a USEPA Certified Refrigeration Recovery Technician, refrigerators are purged at the SWMC under contract services, collecting refrigerant from white goods prior to scrap disposal.
- Wastewater treatment plant sludges and food processing filter wastes are composted with MSW.

- 6. Incoming tires are placed in van trailers supplied by contract companies. They are chipped and marketed as TDF tire derived fuel and TDA tire derived aggregate.
- 7. Operation of the landfill cell proceeded in an orderly manner. Noise, odors and blowing papers were properly controlled as necessary.
- 8. Stockpiled clean C&D is periodically shredded and used as alternate daily cover on the landfill. Excess C&D debris is exported under contract to alternate landfill.
- Consistent with NYS producer responsibility laws, electronic wastes are mandated for recycling (landfill ban applies). Electronics are actively collected for recycling at the SWMC and all eight of the municipal transfer stations serviced by the SWMC. Electronics recycling is provided at zero tip fee.
- 10. Landfill gas in destroyed via utility flare serviced by the active gas extraction system. SWMC landfill GHG emissions are below the EPA annual reporting threshold of 25,000 MTCO2eq as verified thru modeling using EPA LandGEM 3.02.

Highlights

- 6. Truck scales were certified by Weights and Measures on August 23, 2018.
- 7. We utilized Precision Industrial Services to perform an inline camera inspection of our leachate collection system.
- 8. Applied for permit modification allowing moderate lateral expansion lending to substantial vertical gains.
- 9. We hired a new operator Andrew Tompkins replacing Tony Vespro.
- 10. Although rain fall levels were quite high this year leachate levels were relatively low. This speaks to the ability of geomembrane rain cover stormwater diversions to limit the effects of weather on leachate collection systems.

Sections 11, 12, 13 14 and 15 Ground Water Quality and Analysis

Information requested in these sections is included with the "Water Quality Data" and also submitted under this same cover with the **Environmental Monitoring Report**.

Section 16 Surface Impoundments

Monitoring wells 1-S, 1-D, 5, 6-S and 6-D are sufficient to meet the requirements of 6 NYCRR Part 360-6.5(d), (1996). Ground water quality requirements are included with the, "Water Quality Data", and also submitted under this same cover with the **Environmental Monitoring Report**. An additional impoundment exists in the form of a lined containment area for the tank farm where leachate is currently managed.

Section 17 Permit/Consent Order Reporting Requirements Air Emissions

Operational records verifying actual emissions, in accordance with 6 NYCRR Part 201-4.1(5) and Section 201-2.1(b)(2) are maintained at the central archive for Delaware County DPW-Solid Waste Division, DPW Main Office, One Page Avenue, Delhi, NY. The operational records address air emissions from the three emission points covered under the County's Air Facility Registration. These emission points are: one (2) landfill gas flare, and one (1) compost facility biofilter. The combined Potential To Emit (PTE) for these four sources is below the 50% Cap By Rule threshold and accordingly are not subject to the Cap By Rule standards and are fully compliant with the standards as Minor Air Emission sources. Hours of operation, maintenance records, and modification records are maintained for these registered air emission sources.

A separate single gas-to-energy generator, owned and operated under separate permit by the Delaware County Electric Coop, has been taken out of service and is no longer on-site. Registration and records for the generator were maintained by the registered DCEC. The applicable registration has been discontinued with the removal of the generator in 2012.

Section 18 Landfill Gas

Does the landfill have a landfill gas collection & control system?

Yes - active landfill gas collection network installed during 2008 that provides gas extraction from landfill cells 2, 3, 4, 4e, and 5. Landfill gas extraction system is permitted under the site wide NYSDEC facility permit, as per permit modification date May 5, 2008.

Number of flares: 1 – active Type of flare: open utility flare

Number of internal combustion engines: none Quantity of gas collected and treated annually: see Table V.

Does the landfill require a Title V permit?

No - facility qualifies under Minor Facility Registration

Delaware County SWMC - Landfill Gas Recovery System.

Descriptive Overview:

The County retains ownership of the landfill gas recovery network and stationary flare. The existing LFG network at the SWMC was expanded with the installation of ten (10) new vertical wells, tying into a new lateral and manifold system. The existing large LFG flare was relocated to a site adjacent to the DCEC power island. With the removal of the DCEC owned landfill gas generator and discontinuation of the DCEC air registration, the County assumed ownership of the LFG recovery network ends and the remaining assets of the power island. Currently, all actively collected landfill gas is destroyed by the stationary flare.

Greenhouse Gas Monitoring Plan

SWMC landfill GHG emissions are below the EPA annual reporting threshold of 25,000 MTCO2eq (equivalent to 1000 Mg CH4) as verified thru modeling using EPA LandGEM 3.02, and additionally field validated. Pursuant to requirements of the Code of Federal Regulations (CFR), Title 40, Part 98.3(g)(5), a Greenhouse Gas Monitoring Plan has been prepared and is available from the DPW Main Office, Delhi, NY.

Landfill gas generation continues to steadily decline, as demonstrated by the inability of the current flare system to sustain continuous vacuum and flame. Recorded annual cumulative CF of current landfill gas production is a small fraction of total annual cumulative CF for 2010. Landfill Cell 6 is the burial site for compost residuals and by-pass material. As a function of MSW and biosolids being composted, the remaining MSW and compost residual fraction has insufficient organic content to generate significant quantities of methane and other landfill gases necessary to support a flame. Accordingly, the landfill gas collection network has not been extended into Cell 6 at this time.

				TABLE I.		
LFG Extraction Network Fl	are Station A	ctivity - 2018				
- 2017 -	1 ST QT	2 ND QT	3 RD QT	4 [™] QT		
Total Period Hours	2160	2184	2208	2208		
Blower Operational Hours	44	32.7	28.2	7.8		
Cumulative CF	264.000	106 200	160 200	46,000		
(average 100 cfm x flare operational hrs x 60)	264,000	196,200	169,200	46,800		
Condensate Gallons	4,998	4,116	12,348	16,168		
CH4 Destruction (Mg) (cf x 0.0000192 x 50%CH4)	2.5344	1.88352	1.62432	0.44928		
CH4 Destruction (Mg CO2 eq) (Mg CH4 x 25)	63.36	47.088	40.608	11.232		
GWP (Greenhouse Warming Potential) conversion for CH4 = 21 (previous standard)						
GWP (Greenhouse Warming Potential) conversion for CH4 = 25 (current standard)						

EXHIBIT A CONSTRUCTION & DEMOLITION DEBRIS CELL

Division of Solid Waste

New York State Department of Environmental Conservation

(Subject to 6 NYCRR Part 360-7, Construction and Demolition Debris Facilities, Effective Date: November 24, 1999) ACTIVE CONSTRUCTION & DEMOLITION DEBRIS LANDFILL QUARTERLY REPORT

.>
Annual
Report :
for the y
ear (
nual Report for the year of operation from 1 Januar
from
1 January to 31
A. Annual Report for the year of operation from 1 January to 31 December 2018

	'n
	Quarterly Report for:
	×
	_Quarter 1
	×
Section 1	Quarter 2_
	×
	Quarter 3
	×
	Quarter 4

Owner/Facility Information

Mailing Address - PO Box 311, Page Avenue, Delhi, NY 13753
Operator Name – Andrew Tompkins, Phone Number - (607) 865-5805
Mailing Address - PO Box 311, Page Avenue, Delhi, NY 13753 DEC Registration # 13R22 (Construction and Demolition Debris Transfer Station) Phone Number - (607) 746-2128 FAX - (607) 746-7212 Facility Name - Delaware County Solid Waste Management Center Date of Issue - 10 June 1999 County of Delaware DEC Facility Code # 13-D-01 Part 360 Permit Date of Permit Expiration - 1 June 2019 DEC Region IV 4-1256-00040/00004 Town of Walton

Section 17 Signature and Date by Owner or Operator

Owner or operator must sign, date and submit one completed form with an original signature to:

New York State Department of Environmental Conservation Bureau of Solid Waste & Land Management

reau of Solid Waste & Land Manageme Division of Solid & Hazardous Materials 625 Broadway 9th Floor Albany, NY 12233-7258

and one copy with an original signature to the appropriate Regional Solid Waste Engineer (RSWE).

I hereby swear or affirm that information provided on this form and attached statements and exhibits is true to the best of my knowledge and belief.

Tyson Robb ____ Solid Waste Coordinator PO Box 31 Delhi, NY13753

Date: February 2018 Tel: (607) 832-5800 Fax: (607)746-7212

Section 2 Quantity of C & D Debris Received

Report the tonnages of solid waste re	ceived.				
Tonnages were obtained by:	X Scale Weight	Truck Count _	Estimated	Other:	

-2018-	Table A.
Construction & Demolition (C&D) Debris Receipts	Weight (tons)
Quarter 1	777.26
Quarter 2	1,659.43
Quarter 3	1,570.09
Quarter 4	1,587.10
Year to Date Total Received	5,593.88

Has the landfill received pulverized C&D debris?	Yes	<u>_X</u> No
If yes, what is the percentage of pulverized C&D debris received?		%
What is the percentage of remaining approved design volume?		%

Original Design Volume

Volume Used from 1 Oct 1991 to 8 July 2013

Volume Remaining

14,254 CY

Estimated Remaining Life of Cell, 9,000 CY/Year 1 years 6 months

					Table B.
- 2018-	1 ST	2 ND	3 RD	4 th	YTD Total
Quarterly C&D Receipts	777.26	1659.43	1570.09	1587.10	5,593.88
In-House Soil/C&D Blend AOC - Cell 6	1768.14	1680.05	527.36	2142.84	6,118.39
C&D buried in Cell 6	0.00	0.00	0.00	0.00	0
C&D buried in C&D landfill	0.00	0.00	0.00	0.00	0
C&D exported by Tweedie Enterprises to IESI Seneca Meadows, Canadaigua, NY	0.00	0.00	0.00	0.00	0
C&D exported by Tweedie Enterprises to Hakes Landfill, Painted Post, NY	0.00	0.00	19.61	0.00	19.61
Casella Waste Management of NY Ontario County Landfill, Seneca, NY	330.71	328.82	559.57	674.06	1,893.16
Casella Waste Management of NY	0.00	0.00	0.00	0.00	0
Hakes Landfill, Painted Post, NY					0
C&D temporarily stockpiled on C&D landfill	-1321.59	-349.44	463.55	-1229.80	-2,437.28
Quarterly Total Managed	777.26	1659.43	1570.09	1587.10	5,593.88
Total Export Tonnage	330.71	328.82	579.18	674.06	1,912.77

Note: Tonnages reported for C&D receipts are from the Delaware County Solid Waste Management Center truck scale records. Tonnages of C&D exports are from truck scale records of the other facilities. Slight deviations in from weight records reported from exports and by the receiving landfills may occur. Tonnages for C&D associated with FEMA related activities are excluded from this figures.

Section 3 Unauthorized Solid Waste

No unauthorized solid waste has ever been received at the C & D landfill.

Section 4 Material Recovered

Information on any materials recovered is reported in Section 5 of the main text.

Section 5 Leachate

All leachate collected in the C&D debris landfill cell is conveyed to the same storage facility as all leachates from all other sources at the site. These quantities are combined and are included in the totals as reported in Section 6 of the main text. Generation figures are reported below for the C&D debris cell:

-2018- TABLE C.						C&D L	EACHATE
(gallons)							
	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
C&D (gallons)	17,970	25,560	27,990	18,750	11,520	3,870	105,660

C&D LEACHATE TABLE D.							
(gallons)							
	JUL	AUG	SEPT	ОСТ	NOV	DEC	TOTAL
C&D (gallons)	16,050	59,070	29,040	57,120	73,830	58,410	293,520

This is a 1.9 acre cell that has a constructed clay liner and leachate collection system.

Additional leachate data is included in Section 6 of the main text and the Environmental Monitoring Report.

Section 6 Tipping Fee

Tipping fees for C&D debris are as follows: C&D Debris

C&D Debris \$87.00 per ton Clean Wood \$25.00 per ton

Section 7 Cost Estimates and Financial Assurance Documents

This information is reported in Section 9 of the main text.

Section 8 Problems

Details are reported in Section 10 of the Main Text. No operational problems currently exist at the C&D cell.

Section 9 Changes

This section is reported in Section 10 of the main text.

Sections 10, 11, 12, 13, & 14 Water Quality Monitoring

This data can be found with the, "Water Quality Data" in the Environmental Monitoring Report.

Section 15 Surface Impoundments

There are no surface impoundments at this site.

Section 16
Permit/Consent Order Reporting Requirements

There are no Permit/Consent Order reporting requirements.

EXHIBIT B WATER QUALITY DATA / ENVIRONMENTAL MONITORING REPORT

Leachate System Data
Groundwater Elevations for Monitoring Wells
Executive Summary: Groundwater Pollutant Overlimit Parameters

WATER QUALITY MONITORING

DELAWARE COUNTY SOLID WASTE MANAGEMENT CENTER

Water Quality Data reports for the previous 1st, 2nd, 3rd, and 4th quarters are compiled from Microbac Laboratories, Inc., Cortland, NY, and submitted attached to this report.

All testing and analyses are performed in accordance to the guidelines and requirements of 6 NYCRR Part 360-2.11 and as outlined in the *Environmental Monitoring & Site Analytical Plan for the Delaware County Solid Waste Management Center, revised January 2014*, and any special conditions as required by the Regional Office.

All hydrogeologic data is currently on file in the Regional Office.

ENVIRONMENTAL MONITORING REPORT DELAWARE COUNTY SOLID WASTE MANAGEMENT CENTER

Leachate Collection System

See Section 10 of the main text for details. Daily recorded leachate generation data are attached.

Leachate Generation and Rain Water

Year to date, a total of 4,660,006 gallons of leachate were handled the leachate collection system. During this same time period, there was an estimated 57,693,587.87 gallons of rain water falling on the total of 34.7 acres handled by the leachate collection system. In 2018 rainfall amounts were up 37% over the year and up 78.6% in the 3rd quarter compared to the NOAA 20-year average from 1981 to 2010. The monthly average throughout this year of overall rain water becoming leachate ranges from a low of 4% in September 2018 to a high of 12% in March 2018.

Use of long term temporary geomembrane rain covers and diversion dams has demonstrated a measurable decrease in leachate generation. November 2016 was the installation date for the rain cover placed on the north west end of Cell 6. As reported in the 2015 annual report, the SWMC experienced a 28% decrease in leachate generation over 2014 comparable weather condition year. Comparing the ratio of leachate generation to rainfall annually from 2012 to 2014, the SWMC experienced a 45% decrease in leachate generation in 2016, attributable to rain diversion. October 2017 the original diversion storm water along the northern side liner of Cell 6 has been fully removed. New diversion dam upstream located on Cell 5 northern waste edge was installed at that time. The relative volume of rainwater diversion is anticipated to lessen with this work. Comparison of the ratio of leachate generation to rainfall from 2016 to 2017 for Cell 5 and Cell 6 showed a 10-point decrease in rainwater to leachate generation. Further evidence of the significant value in long term temporary geomembrane rain covers. Savings to Delaware County associated with leachate prevention from rainwater diversion are estimated at 2,000,000 gallons at a \$60,000 direct disposal cost savings and an additional \$60,000 in labor and trucking annually.

Leachate generation and rainfall data, including data for each pump station, is shown in the attachment titled LEACHATE GENERATION: RAINFALL.

Action Leakage Rates- Operational Cells

The 30-day average ALR for Cell 6 for the year ranged from a low of 0.27 g/a/d in May 2017 to a high of 8.08 g/a/d in September 2018. The 30-day average ALR for Cell 5 for the period ranged from a low of 0.07 g/a/d in December 2018 to a high of 5.57 g/a/d in July 2017. Previous analytical comparative testing of secondary leachate for Cell 5 and Cell 6 suggest that the respectively joined liner systems for the two cells is allowing flow of leachate from Cell 5 secondary system in Cell 6 secondary system. Combined Cell 5 & Cell 6 ALRs range from a low of 0.80 g/a/d in March of 2018 to a high of 9.84 g/a/d in September 2017.

Ground Water Monitoring

Groundwater continues to be monitored on a quarterly basis as is the quality of the upgradient wells in comparison to the down gradient wells. Sampling events occur consistent with annual scheduling identified in the facility Environmental Monitoring & Site Analytical Plan 2014.

Upgradient Water Quality

Seven wells are regularly monitored for upgradient water quality. For the 2, 3, and 4 quarter 2018 sampling of upgradient water quality continues to be characterized by elevated sodium levels, low pH values, along with intermittently elevated iron, and manganese levels. The 3rd and 4th quarters showed the most activity with elevated levels of COD, phenols, and turbidity. This is consistent with historic upgradient water quality at the site. The 2nd, 3rd, and 4th quarters show elevated REDOX values. All other parameters tested below state and the Site EWQV Trigger levels.

Operational Water Quality Downgradient of Cell 6 (Operational in 4th Quarter 2007)

Four wells monitor downgradient of active Cell 6. For the 3rd, and 4th quarters 2017 monitoring wells 7, 7i, and 17i showed the most activity with elevated levels of sodium, iron, phenols, alkalinity, REDOX, COD, and turbidity levels as well as low pH values. Consistent with the upgradient water sampling results. the 2nd and 3rd quarters showed activity with elevated levels of chromium, nickel, and aluminum. All other parameters tested below state and the Site EWQV Trigger levels.

Operational Water Quality Downgradient - Cell 5 (Intermediate Closure)

Five wells monitor downgradient of active Cell 5. For the 3rd, and 4th quarters 2018 monitoring wells 6i and 6s showed the most activity with elevated levels of turbidity, iron, phenols, REDOX, sodium and alkalinity levels, and low pH values. Consistent with the upgradient water sampling result. The 3rd and 4th quarters showed the most activity with elevated levels of sodium, chromium, nickel, TOC, and alkalinity. All other parameters tested below state and the Site EWQV Trigger levels.

Closed Cell Downgradient - Cell 4/4e

Three wells monitor downgradient of closed Cell 4/4e, they are analyzed once a year. For the 2018 monitoring well 10 showed the most activity with elevated levels of iron, sodium, manganese, COD, and low pH values. Also, monitoring well 11 showed elevated levels of alkalinity and low pH values. These values are consistent with the upgradient water sampling result. Monitoring well 10 also showed elevated levels of lead and acetone. All other parameters tested below state and the Site EWQV Trigger levels.

Closed Cell Downgradient - Cell 1, 2, 3

Five wells monitor downgradient of closed Cell 1, 2, & 3. Monitoring well number 5 was not sampled due to the baler breaking. Monitoring wells 4s and 5i showed activity with elevated sodium, REDOX, iron, magnesium, and low pH. These values are consistent with the upgradient water sampling result. These wells also showed elevated levels of potassium, alkalinity, ammonia, arsenic, acitone, benzene, barium, chlorobenzene, 1,1 Dichloroethene, and cis-1,2-Dichloroethene. All other parameters tested below state and the Site EWQV Trigger levels. As elevated levels could be due to the elevated rainfall amounts we are looking forward to the next monitoring report scheduled for the 2nd quarter of 2019.

Downgradient of Future Airspace

For the year of 2018 monitoring well 8 showed one instance of exceedance with a low pH in the 4th quarter. All other parameters are within both the NYS Groundwater Effluent Standard and the EWQV trigger.

Surface Water Monitoring

For the 3rd, and 4th quarters 2018 both the River Upstream and River Downstream monitoring points showed elevated REDOX levels. In the 4th quarter Upstream samples showed elevated phenols and Downstream showed elevated turbidity. All other parameters for both the downstream and the upstream portions are within both the NYS Groundwater Effluent Standard and the EWQV trigger.

	OVERLIMIT PA	ARAMETERS - ROUT	TINE ANALYSIS			TABLE A	
1st Qua	rter 2018	2nd Qua	rter 2018	3rd Quar	ter 2018	4th Quarter 2018	
NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger Surface	NYS Ground Water Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger
does not exceed	does not exceed	do es not exceed	do es not exceed	do es not exceed	REDOX = 325.8 mV	pheno ls = 0.00377 ppm	does not exceed
does not exceed	does not exceed	does not exceed	do es not exceed	does not exceed	REDOX = 329.3 mV	Turbidity = 6.23 NTU	REDOX = 325.8 m\
			Up gradie	ent Wells			
sample on	ly as needed	sample on	ly as needed	sample only	as needed	sample only	as needed
	COD = 16.1 ppm	pH = 6.38	COD = 30.1ppm	pH = 5.89		pH = 6.28	COD = 21.9 ppm
Na = 87.6 ppm		Na = 89.3 ppm	REDOX = 207.2 mV	Na = 110 ppm	REDOX = 240 mV	Fe = 1.07 ppm Turbidity = 24.5 NTU Na = 94.3 ppm	Turbidity = 24.5 NT
pH = 6.2 M n = 2.22 ppm	M n = 2.22 ppm	pH = 6.27 M n = 2.54 ppm	REDOX = 220.1mV Mn = 2.54 ppm	pH = 6.04 Fe = 0.858 ppm	REDOX = 214 mV Ni = 0.0063	pH = 5.95 Turbidity = 6.21NTU M n = 3.18 ppm	M n = 3.18 ppm
Na = 56.9 ppm		Na = 48.6 ppm		Na = 49.1ppm		Na = 44.4 ppm	
Na = 62.7 ppm	COD = 16.1 ppm	pH = 6.26 Na = 54.1ppm	REDOX = 220.4 mV	pH = 6.24 Na = 51.1ppm	REDOX = 232 mV	Turbidity = 19.6 NTU	COD = 54.1ppm Turbidity = 19.6 NTL
Na = 79.6 ppm	do es no t exceed	pH = 6.47 Na = 54.9 ppm	do es not exceed	pH = 6.35 Na = 53.0 ppm	does not exceed	pH = 6.38 Na = 46.3 ppm	REDOX = 239 mV
Na = 53.3 ppm	does not exceed	Turbidity = 195.4 NTU Na = 52.6 ppm	Turbidity = 195.4 NTU	pH = 6.43 Na = 43.8 ppm	does not exceed	pH = 6.42 Turbidity = 7.38 NTU Na = 62.2 ppm	does not exceed
Na = 94.2 ppm	COD = 18.5 ppm	pH = 6.23 Na = 93.2 ppm	does not exceed	Phenols = 0.064 ppm pH = 6.21 Na = 818 ppm	does not exceed	Turbidity = 212 NTU Na = 88.7 ppm	Turbidity = 212 NTU COD = 20.1ppm REDOX = 220 mV
Na = 112 ppm	does not exceed	Na = 93.7 ppm	do es not exceed	pH = 5.85 Na = 118 ppm	REDOX = 213 mV	pH = 6.24 Na = 93.5 ppm	do es not exceed
FF	-	- FF.	Down gradient of			T. C. P.	-
does not exceed	does not exceed	does not exceed	do es not exceed	_	does not exceed	pH = 6.36	do es not exceed
	NYS Ground Water does not exceed does not exceed sample on Na = 87.6 ppm PH = 6.2 Mn = 2.22 ppm Na = 56.9 ppm Na = 79.6 ppm Na = 79.6 ppm Na = 79.6 ppm Na = 112 ppm Na = 112 ppm	1st Quarter 2018 NYS Ground Water Site EWQV Triqger does not exceed does not exceed does not exceed Sample ont exceed COD = 16.1ppm Na = 87.6 ppm Mn = 2.22 ppm Na = 56.9 ppm COD = 16.1ppm Na = 62.7 ppm does not exceed Na = 79.6 ppm does not exceed Na = 53.3 ppm COD = 18.5 ppm Na = 94.2 ppm does not exceed Na = 112 ppm does not exceed	1st Quarter 2018 2nd Quarter 2018 NYS Ground Water Site EWQV Trigger NYS Ground Water does not exceed does not exceed does not exceed does not exceed does not exceed does not exceed sample only as needed sample on pH = 6.38 Na = 87.6 ppm Na = 89.3 ppm pH = 6.2 pH = 6.27 Mn = 2.22 ppm Mn = 2.54 ppm Na = 56.9 ppm Na = 48.6 ppm Na = 62.7 ppm pH = 6.26 Na = 54.1 ppm pH = 6.47 Na = 79.6 ppm does not exceed Na = 79.6 ppm Turbidity = 195.4 NTU Na = 53.3 ppm COD = 18.5 ppm Na = 94.2 ppm pH = 6.23 Na = 93.2 ppm does not exceed	NYS Ground Water	1st Quarter 2018	1st Quarter 2018	1st Quarter 2018 2nd Quarter 2018 3rd Quarter 2018 4th Quarter 2018 Ath Quarter 2018 <t< td=""></t<>

OVERLIMIT PARAMETERS - ROUTINE ANALYSIS						TABLE B		
	4		Down	gradient of Cell 5	(intermediate clos	ure)		
	1st Quart	er 2018	2nd Qua	rter 2018	3rd Quar	ter 2018	4th Quarter 2018	
Well	NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger
H	Turbidity = 5.54 NTU	does not exceed		does not exceed		Cr = 0.0034 ppm	turbidity = 40.3 NTU	does not exceed
5 xi			Fe = 2.00		Fe = 3.01ppm		Fe = 1.69 ppm	
						Ni = 0.0051ppm	phenols = 0.330 ppm	
	does not exceed	does not exceed	pH = 6.39	does not exceed	pH = 6.41	does not exceed	pH = 6.4	Alkalinity = 138 ppm
5xs							turbidity = 6.33 NTU	
							PhenoIs = 0.046 ppm	
6d	sampled only	as needed	sampled only as needed		sampled only as needed		sampled only as needed	
100	pH = 6.41	does not exceed	pH = 6.28	does not exceed	pH = 6.30	does not exceed	pH = 6.48	COD = 26.6 ppm
Ш	Fe = 1.43 ppm			11 7 11				REDOX = 226 mV
6i	Na = 33.9 ppm		Na = 38.8 ppm	44	Na = 39.6 ppm		Na = 47.2 ppm	
	Turbidity = 6.86 NTU		Turbidity = 5.15 NTU		Turbidity = 5.37 NTU		turbidity = 17.6 NTU	Turbidity = 17.6 NTU
	pH = 6.30	COD =18.5 ppm	pH = 6.2	REDOX = 213.3 mV	pH = 6.25	REDOX = 227 mV	pH = 6.46	COD = 26.9 ppm
				Alkalinity = 126 ppm	AI = 2.24 ppm	Alkalinity = 134 ppm		Alkalinity = 143 ppm
6s					Fe = 3.71ppm	Cr = 0.0036 ppm	Fe = 1.71ppm	
						Ni = 0.0058 ppm	Turbidity = 12.1NTU	Turbidity = 12.1NTU
	Na = 40.0 ppm	4	Na = 47.8 ppm		Na = 44.2 ppm	TOC = 5.12 ppm	Na = 46.4 ppm	1

Down gradient of Cell 6 (operational 4th QT 2007)

	1st Quarter 2018		1st Quarter 2018 2nd Quarter 2018		3rd Quar	ter 2018	4th Quar	ter 2018
Well	NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger	NYS Ground Water	Site EWQV Trigger
er.		COD = 20.8 ppm	pH = 6.47	REDOX = 218.6	pH = 6.32	REDOX = 238 mV	pH = 6.48	Redox = 237.0 mV
7	Na = 36.8 ppm	Ni = 0.0114 ppm	Na = 32.2 ppm	166 44	Na = 39.3 ppm	Ni = 0.0053 ppm	Na = 43.9 ppm	COD = 37.4 ppm
	Fe = 9.14 ppm	Fe = 9.14 ppm	Fe = 0.796 ppm		Fe = 1.1ppm	Alkalinity = 124 ppm		Alkalinity = 119 ppm
-	AI = 6.79 ppm	AI = 6.79 ppm	Turbidity = 6.93 ppm	Pb = 0.0223 ppm	Turbidity = 9.65 NTU	4		
	pH = 6.49	do es not exceed	pH = 6.36	REDOX = 209.7 mV	pH = 6.37	REDOX = 233 mV	pH = 6.38	Redox = 268 mV
					Fe = 0.716 ppm		Fe = 1.32 ppm	
7i					PhenoIs = 0.67 ppm		PhenoIs = 0.036 ppm	
				11.1			Na = 24.8 ppm	
		4			Turbidity = 11.6 NTU		Turbidity = 14.3 NTU	Turbidity = 14.3 NTU
			Turbidity = 36.3 NTU	Turbidity = 36.3 NTU	turbidity = 965 NTU		turbidity = 547 NTU	turbidity = 547 NTU
						REDOX = 278 mV	pH = 6.32	REDOX = 223 mV
17 i		COD =18.5 ppm				Ni = 0.0159 ppm		COD = 37.8 ppm
.,,	AI = 5.33 ppm				AI = 7.61ppm	AI = 7.61ppm	AI = 8.37 ppm	AI = 8.37 ppm
		Ni = 0.0105 ppm				Cr = 0.01ppm	PhenoIs = 0.078 ppm	Cr = 0.00897 ppm
-	Fe = 9.26 ppm	Fe = 9.26 ppm	Fe = 3.07 ppm		Fe = 12.6 ppm	Fe = 12.6 ppm	Fe = 13.0 ppm	Fe = 13.0 ppm
			pH = 6.48	h de	pH = 6.43	REDOX = 258 mV		REDOX = 208 mV
17 s				10.00	turbidity = 8.83 NTU		turbidity = 24.3 NTU	turbidity = 24.3 NTU
	does not exceed	do es not exceed	J	does not exceed	Fe = 0.662 ppm		Fe = 1.14 ppm	

-	OVERLIMIT PARAMETERS - I	MODIFIED ANALYSIS	TABLE C			
1	1st Qu	2nd, 3rd, 4th Quarters 2018				
Vell	NYS Ground Water	Site EWQV Trigger	NYS Ground Water Site EWQV Trigge			
ь	Down gradient of	Down gradient of Closed Cells 1, 2, 3				
4d	sample only as needed	sample only as needed				
4i	pH = 6.46 turbidity = 6.06 Fe = 0.98	do es not exceed				
	pH = 6.33	K = 11.6 ppm				
	Na = 24.6 ppm	Ammonia = 16.3 ppm				
	Redox = -34.7 mV	Alkalinity = 350 ppm				
		COD = 63.1				
	Fe = 51.6 ppm	Fe = 51.6 ppm	1			
	M n = 21.9 ppm	M n = 21.9 ppm	1			
4s	As = 0.0631ppm	As = 0.0631 ppm				
	A cetone = 3.59 ppb	Acetone = 3.59 ppb	No samples were scheduled for the remainde the year.			
	Benzene = 1.54 ppb	Benzene = 1.54 ppb				
	Chlorobenzene = 0.79 ppb	Chlorobenzene = 0.79 ppb				
	1,1Dichloro ethane = 0.541ppb	1,1 Dichloro ethane = 0.541ppb				
	cis-1,2-Dichloro ethene = 0.615 ppb	cis-1,2-Dichloro ethene = 0.615 ppb				
5	Due to technical difficulties no sample	e was received (bailer broke).				
100	Fe = 5.36 ppm	COD = 32.6 ppm				
	Na = 27.5 ppm	Ba = 0.208				
		A lkalinity = 238 ppm				
5i	M n = 16.1 ppm	M n = 16.1ppm				
	1,1Dichlorethane = 1.52 ppb	1,1 Dichlorethane = 1.52 ppb				
	cis-1,2-Dichloro ethene = 1.29 ppb	cis-1,2-Dichloro ethene = 1.29 ppb				
Щ	As = 0.223 ppb	As = 0.223 ppb				
-		Down gradient of Closed Cell	4/4e			
	pH = 6.18 ppm	COD = 122 ppm				
	AI = 3.24 ppm	Lead = 0.0181ppm				
10	Fe = 5.9 ppm					
	A cetone = 26.8 ppb	A cetone = 26.8 ppb	No samples were scheduled for the remainder of			
11	pH = 6.25	Alkalinity = 144 ppm	the year.			
Ħ	M n = 1.01ppm	M n = 1.01ppm				
	pH = 6.44	Alkalinity = 128 ppm				
16	Fe = 0.97 ppm					

EXHIBIT C COMPOST FACILITY REPORT

Organic Inputs Data
Finished Product Quality Analyses
Operational Performance Achievements

Division of Solid Waste

New York State Department of Environmental Conservation

ACTIVE MIXED WASTE COMPOST FACILITY

(Pursuant to 6 NYCRR Part 360-5, Compost Facilities,

Effective Date: March 10, 2003)

QUARTERLY REPORT

₽
Annual
Report for the
ıe yeaı
r of op
e year of operation from 1 Janua
rom 1
January
ary to 31 I
December 2018.
2018.

œ
Quarterly Report for:_
×
Quarter 1
×
Quarter 2
rter 2 X
Quarter 3
×
_Quarter 4

Owner/Facility Information

Mailing Address - PO Box 311, Page Avenue, Delhi, NY 13753 Operator Name - Andy Zuk, Phone Number - (607) 865-4046 x201 Mailing Address - PO Box 311, Page Avenue, Delhi, NY 13753 County of Delaware Part 360 Permit _ 4-1256-00008 /00011

Date of Issue - 15 August 2016 Date of Permit Expiration - 24 April 2022

Phone Number - (607) 832-5800 FAX - (607) 746-7212 Facility Name - Delaware County Solid Waste Management Center DEC Facility Code # 13-C-01 DEC Region IV Town of Walton Town of Walton

Signature and Date by Owner or Operator

Office and one copy with an original signature to the appropriate Regional Solid Waste Engineer (RSWE). Owner or operator must sign, date and submit one completed form with an original signature to NYSDEC Central

New York State Department of Environmental Conservation

Bureau of Solid Waste & Land Management Division of Solid & Hazardous Materials 625 Broadway - 9th Floor Albany, NY 12233-7258

that false statements made herein are punishable pursuant to section 210.45 of the penal law the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware I certify, under penalty of law, that the information that will be used to determine compliance with the requirements in Subpart 361-3 of 6 NYCRR Part 361 has been prepared under my direction and supervision in accordance with

best of my knowledge and belief I hereby swear or affirm that information provided on this form and attached statements and exhibits is true to the

⁼ax: (607)746-7212

Date: February 2018 Tel: (607) 832-5800

Facility Overview Description

The compost facility is a two stage composting configuration, with aggressive mechanical screening for both input and finished product, and with oversized retention and storage / curing capacity. The first stage consists of an invessel bioreactor rotating drum receiving select MSW and providing for three days aerated and moisture controlled gentle tumbling of material within a biologically active area.

Pre-compost material generated in this first stage routinely achieves temperatures in excess of 131 degrees F and thus achieves some pathogen destruction. Temperatures are measured continuously with analogue display probes permanently mounted in the bioreactor drum wall.

Upon discharge from the bioreactor, the MSW pre-compost from this first stage is screened of oversized materials to produce a 1" minus pre-compost bulking agent that is conveyed to the front-end of the second stage maturation area.

In stage two, the MSW pre-compost is combined with dewatered biosolids and conveyed into aerated turned windrows of an IPS/Siemens automated system. Material has a minimum 56-day retention time in the maturation area, being turned every three days, with sufficient water and aeration additions to maintain optimal composting conditions.

Temperatures within the windrows are monitored both manually and automatically. Temperature probes within the concrete windrow walls provide continuous digital readout. Further, manual probe readings are recorded to insure proper operation and calibration of the automatic temperature monitoring systems. Temperatures routinely rise to 131 degrees F and are maintained for a minimum of three consecutive days to achieve pathogen destruction consistent with NYSDEC and USEPA regulatory standards. Elevated temperatures are maintained throughout the 56-day retention time in the windrows.

Following the 56-day maturation period, compost is again screened to remove remaining metal, glass, plastics, sharps, and oversized particles before being conveyed into the storage / curing area. Upon satisfactory analytical test results for metals and pathogen content, compost is considered "finished" at this point and storage and curing is provided for enhanced compost product marketability rather than regulatory compliance.

Section 2 Compost Inputs - Quantity of Materials Received & Marketed

Report the tonnages of solid waste re-	ceivea.				
Tonnages were obtained by:	X Scale Weight	Truck Count	Estimated	Other:	

2011 Wet Tons				Ta	able A.	
Type of Solid Waste (Wet Weight Tons)	1st QT (tons)	2nd QT (tons)	3rd QT (tons)	4th QT (tons)	YTD (tons)	Daily Avg (tons)
Operational Days (365 days/year processing time)	90	181	273	365	365	
COMPOST INPUTS - Wet Tons						
WWTP Sludge to Compost (sub-total all sources)	1012.53	1027.93	880.54	644.15	3,565.15	9.77
Andes	0	0	0	0	0	0.00
Delhi	314.23	217.81	280.89	190.97	1,003.90	2.75
Deposit	26.93	42.37	19.31	10.2	98.81	0.27
Hancock	0	0	0	0	0	0.00
Hobart	10.17	15.08	21.29	14.69	61.23	0.17
Margaretville	0	63.86	14.73	0	78.59	0.22
Sidney	10.46	0	0	0	10.46	0.03
Stamford	98.9	121.29	71.81	40.86	332.86	0.9
Walton	551.84	567.52	472.51	387.43	1,979.30	5.42
Mixed MSW to Compost	4,574.11	5,102.95	5,750.18	4,082.50	19,509.74	53.45
Amendments - Solids (SubTotal All Sources)	17.87	68.47	30.52	17.79	134.65	0.37
MRF Residuals	0	0	0	0	0	(
Woodchips	17.87	68.47	30.52	17.79	134.65	0.37
Amendments - Liquids (SubTotal All Sources)	0	0	0	0	0	0.00
Compost Facility Residuals	2,645.08	3,049.58	3,400.82	2,335.20	11,430.68	31.32
GROSS COMPOST INPUTS	5,604.51	6,199.35	6,661.24	4,744.44	23,209.54	63.59
NET COMPOST OUTPUTS *	2,959.43	3,149.77	3,260.42	2,409.24	11,778.86	32.27
COMPOST MARKETED (CY) ~	65	1,320	805	65	2,255	6.18

^{*} Note: net output figures based upon gross inputs less residuals. No adjustment made for loss of mass, or evaporation due to composting.

[~] Compost marketed quantities include in-house project as reported in cubic yards.

Section 3 Biosolids Analysis & MSW Pre-Compost Analysis

Copies of original laboratory results are attached. All results, except for pH and total solids, are reported on a dry weight basis.

Section 4 Finished Compost Analyses

Copies of original laboratory results are attached. All results, except for pH and total solids, are reported on a dry weight basis.

Section 5 Pathogen Reductions / Vector Attraction Reduction

Pathogen reduction methods include: Windrow Composting In-Vessel Composting

Vector attraction reduction methods include: Aerobic process for minimum of 14 days, at 45 deg C average

Section 6 Sample Management

<u>Source Inputs</u> - Sampling is required for both input materials and finished compost. Suppliers of biosolids and select solid and/or liquid amendments are required to provide analytical testing consistent with NYCRR Part 360-5.5 requirements.

<u>MSW Inputs</u> - MSW pre-compost generated within the Compost Facility. Material tested is that MSW pre-compost that has been through the in-vessel bioreactor for the 3-day retention time, primary trommel screening, and magnetic metal removal. Grab samples are taken from the 601 conveyor, immediately downstream of the magnetic head pulley. Testing is at the same frequency and for the same parameters as required for other inputs.

<u>Finished Compost</u> - Compost grab samples are taken from 800 stockpile, immediately after contaminant removal through the secondary screening process. Testing is at the same frequency and for the same parameters as required by NYCRR Part 360-5.5.

Process Detention Time	Detention time is 56 days within the maturation area. Compost is retained an additional 90 days within the storage area, providing for moisture controlled and aerated curing. Final compost product finishing with outside storage is provided as market demands require. Outside storage does not exceed 24 months, as specified under NYCRR Part 360-5 regulation.
------------------------	---

Section 7 Annual Compost Production

2018 COMPOST INPUTS - Dry To	ons				Та	ble B.
WWTP Biosolids	% Solids	Quantity (Dry Tons)				YTD Total
		1 st QT	2 nd QT	3 rd QT	4 th QT	(Dry Tons)
Operational Days		90	91	92	92	365
Andes	30%	0	0	0	0	0
Delhi	11%	34.57	23.96	30.90	21.01	110.43
Deposit	15%	2.96	4.66	2.12	1.12	10.87
Hancock	50%	0.00	0.00	0.00	0.00	0.00
Hobart	22%	1.12	1.66	2.34	1.62	6.74
Margaretville	50%	0.00	7.02	1.62	0.00	8.64
Sidney	27%	1.15	0.00	0.00	0.00	1.15
Stamford	15%	10.88	13.34	7.90	4.49	36.61
Walton	12%	60.70	62.43	51.98	42.62	217.72
Mixed MSW Organics (Net Output)	50%	2,287.06	2,551.48	2,875.09	2,041.25	9754.87
Amendments - Solids						
MRF Residuals	50%	0	0	0	0	0
Wood	65%	11.62	44.51	19.84	11.56	87.52
Amendments - Liquid						
		0	0	0	0	0
		0	0	0	0	0
COMPOST PRODUCTION - (Total of	all net inputs	s)				
Dry Tons Compost Produced (Total Dry Tons w/o Loss of Mass	tons	2,410	2,709	2,992	2,124	10,235
Factor)	ton/day	27	30	33	23	28
CY Compost Produced (field measured density = 32 lb/cf) [1]	cy/yr	5,579	6,271	6,925	4,916	23,691
(Without Loss of Mass Factor)	cy/day	62	69	75	53	65
CY COMPOST PRODUCED (Factoring 40% Loss of Mass During	LOM cy/y	3,347	3,763	4,155	2,950	14,215
Composting & Curing[2])	LOM cyd	37	41	45	32	39

Compost Distribution and Marketing

With every load of compost distributed to market, the Department distributes an informational flyer that includes the source of organics, the analytical average data for the finished compost, recommendations for compost use, and activities for which the compost product is not intended.

Compost Distribution & Marketing	Quantity (32 lbs/cf)	Table D		
Compost User (YTD - 4 th QT 2018)	YTD Cum. Total CY	Actual Use of Compost		
Delaware County DPW (CY)	0	Landscaping / FEMA		
Private Sale Direct (CY)	752	Landscaping		
Brokered Sale (CY)	2,255	Landscaping / Soil Blending		
Delaware County SWMC (CY)	0			
Subtotal Compost Marketed (CY)	3,007			
Compost currently stockpiled on site (CY)	11,208	Curing and Storage		
Age of oldest compost stockpiled (CY)	18 months	Material being aged for unrestricted use applications		

Section 11 Unauthorized Solid Waste

No unauthorized solid waste has ever been received at the Compost Facility.

Material Recovered

Information on any materials recovered is reported in Section 5 of the main text.

Tipping Fee

Tipping fees for the Compost Facility are as the same as the Solid Waste Management Center generally. See main text.

Cost Estimates and Financial Assurance Documents

This information is reported in Section 9 of the main text.

Changes

This section is reported in Section 10 of the main text.

Input and Product Quality Monitoring

Attached with this report are sludge analyses provided by individual waste water treatment facilities. Test results for both interim and finished compost are also included. A summary of compost test data is presented in the attachments to this document.

Operational Performance Records

Temperature and holding time data are provided in demonstration of compliance with operational standards to achieve pathogen reduction. Compost test data is presented in the attachments to this document. The compost process at the facility has a combined minimum retention time of 59 days from the day of acceptance of input material in the receiving pit to completion of secondary refining prior to in-house storage. The storage / curing period is variable, with an anticipated minimum average retention of 3 additional months. Additional storage / curing retention time is possible when the plant operates at less than maximum capacity. Time and temperature data collected for the period is presented in the attachment tables.

Permit/Consent Order Reporting Requirements

There are no Permit/Consent Order reporting requirements.

SWMC & COMPOST FACILITY ATTACHMENTS:

Leachate and Rainfall Reports

Leachate Line Cleaning and Inspection Work Reports

Groundwater Analysis Environmental Monitoring:

Microbac Report – 1st QT 2018

Microbac Report - 2nd QT 2018

Microbac Report - 3rd QT 2018

Microbac Report - 4th QT 2018

Cell 6 Volume Survey - Cross Sections and Plan View (2nd and 4th quarters only)

Compost Inputs Analytical Test Data

Finished Compost Analytical Test Data

Compost Facility Operational Temperature Data

Financial Assurance Worksheet

ANNUAL REPORTING DOCUMENTS:

Beneficial Use Determination Annual Reports BUD No. 1312-4-13

Electronics Recycling Report - 2018

Planning Unit Annual Recycling Report - 2018

New NYSDEC Facility Reporting Forms

TOWN TRANSFER STATION ANNUAL REPORTS - 2018

Andes

Bovina

Colchester

Davenport

Hancock

Harpersfield

Middletown

Roxbury