SPEED LETTER.

TO FROM MARY JANE PEACHEY TODD CAFFOE MARK GREGOR NYS-DEC Avon DIVISION OF ENVIRONMENTAL CUMPTY CITY OF ROCHESTER BAUSCH & LOMB PROJECT SITE SUBJECT - FOLD ND. 9 or 10 MESSAGE AHACHED PLEASE FIND @ LABELLA'S SUMMARY REPORT ON THE ENVIRONMENTAL FINDINGS FOR THE BEL PROJECT SITE AND (2) OUR WORKFLAN FOR ACTIVITIES TAKING PLACE AT SPEEDY'S THIS WEEK - LET ME KNOW IF YOU FLAVE ANY QUESTIONS SIGNED Male Jugor 428-5978 DATE 12/7/93 REPLY RECEIVED DEC 0 8 1903 NYS DEPT. OF ENVIRONMENTAL CONSERVATION-REGION 8 - FOLD FOR NO. 9 DEC 8 1993 SWITCHBOARD - FOLD FOR NO. 10 10:45 q.m. NYS DEPT. OF ENVIRONMENTAL DATE SIGNED Wilson Jones - Carbon COMAS ERVATION-REGION 8 **RECIPIENT: RETAIN WHITE COPY, RETURN PINK COP** DOTO /DEM

WORK PLAN SOIL INVESTIGATION AT THE SPEEDY'S CLEANERS SITE

PREPARED FOR THE CITY OF ROCHESTER

DECEMBER 1993

1000010.0.000000

PREPARED BY SEELER ASSOCIATES

BACKGROUND

Based on the site visit and a review of the background data it is our understanding that the site has been active as a laundry since 1910. The surrounding area has also been active with both retail and commercial businesses such as, gasoline stations, an automobile dealership, a furniture manufacturing company, office buildings and parking lots. According to the La Bella Associates' Phase I Report, Speedy's Cleaners has occupied their present location since at least 1957.

LaBella Associates completed an audit of the area bounded by Court, Broad, Stone and Clinton Streets (the area) for the City in December of 1990. This initial audit identified several business operations in this area which could have potentially impacted the area. These business operations included Speedy's Cleaners, a former furniture manufacturing operation, a former automobile dealership, and several former gasoline station sites.

As a result of the initial audit, the City requested that LaBella conduct a Phase II investigation of the area which included the drilling of boreholes, the construction of monitoring wells, and the collection of soil and groundwater samples. In addition, samples of the subsurface soil were also collected from within the Speedy's building by both LaBella and Monroe Monitoring & Analysis (a consultant to Speedy's). The data collected outside of the Speedy's building suggests that the soil and groundwater have been affected by chemicals that are commonly associated with gasoline. The data collected from inside the Speedy's building suggests that the portions of the concrete floor and soil have been affected by perchloroethylene, methylene chloride, and chemicals commonly associated with Stoddard Solvent. It is reported by Speedy's that Stoddard Solvent is currently being used as a dry cleaning solvent. It is our understanding that Speedy's claims not to have used perchloroethylene or methylene chloride in their processes.

The City is concerned that the presence of perchloroethylene and, or methylene chloride may cause excavated soil and/or concrete to be classified as a hazardous waste (listed or characteristic). The classification of the soil or concrete as a hazardous waste would increase the cost of the building demolition and preparation of the site for construction of the new parking garage and potentially result in listing the property as an inactive hazardous waste site by New York State Department of Environmental Conservation (NYSDEC).

The City of Rochester has purchased the Speedy's property through Eminent Domain proceedings. A schedule has been developed for the construction of a new parking garage to serve the occupants of the new Bausch & Lomb building. Speedy's must vacate the property by February 15, 1994. To facilitate timely demolition of the Speedy's building and the excavation required for construction of the garage, the City desires to have a soil management plan in place at the time of demolition. Sampling of the soil beneath Speedy's is required before Speedy's vacates the property in order to have a plan in place. This work plan is designed to obtain the data required to characterize the soil and concrete for disposal and to facilitate preparation of a soil management plan.

WORK PLAN

Under this task Seeler Associates will collect soil samples from the site and coordinate sample analysis. In addition to the sampling of the soil and concrete, Seeler Associates will also attempt:

• To determine the volume of liquids contained in tanks located in the Speedy's building and to visually characterize the liquid to determine if special procedures will be required to remove and dispose of fluids and decommission the tanks.

To determine the consistency of the soil and the presence of volatile organic vapors behind the concrete block retaining wall located in the basement of the Speedy's building, a steel rod or similar device will be driven into the soil.

Sample Locations

The proposed locations for sampling are present on Figure 1. A total of 8 boreholes will be advanced for sampling. Table 1 was developed to identify the proposed depths of each borehole. These depths were based on the proposed depth of excavation and the need to determine if the soils are a hazardous waste. Boreholes to be advanced within the Speedy's building and basement will require unconventional sampling techniques, because of restricted access and ceiling height. Boreholes located in the building may not achieve their planned depth because of the restrictions imposed by the building.

Sampling Methods

Soil samples will be collected using a split barrel sampler. For samples collected at locations outside of the Speedy's building, the sampler will be driven into the ground by a 140 pound hammer following the ASTM Standard Penetration Test Method. The borehole will be advanced using hollow stem augering equipment. Sample locations within the Speedy's building will be sampled in the following manner; a concrete coring machine will core a hole through the floor slab, a split barrel soil sampler will then be driven two feet into the soil using an air driven hammer and retrieved. If the borehole remains open sampling will continue until the borehole collapses. If the borehole collapses, a steel casing will be driven to the top of the new sample interval and cleared prior to collecting the next sample. In order to collect the dirt and dust generated by the sampling inside the Speedy's building, a "dust" hood will be placed over the borehole. The hood will have a hole drilled in the center so the sampling tools can access the borehole. In addition, sheet plastic will be draped over cleaning equipment and any clothing in the area. At the completion of sampling, the floor in the work area will be swept. Our soil sampling is proposed to be conducted after 5:00 p.m. on weekdays to minimize the disruption of business operations.

Soil samples obtained for analysis will be taken from unsaturated soil within the limits of the proposed excavation. From this soil, samples will be collected based on depth, the presence of stained soil, and or field screening results. Field screening of soil will be conducted using an Hnu Systems PI-101.1 organic vapor analyzer with a photoionization detector (Hnu). Soil samples having volatile organic vapor readings of greater than 20 parts per million will be considered for analysis. Two soil samples from each borehole will be retained for analysis. If the soil samples do not contain measurable organic vapors, a sample(s) will be collected from the soil that is representative of the soil profile.

Two samples of concrete will be selected for analysis. One sample will be collected from the basement floor slab adjacent to the former solvent tanks. The other concrete sample will be potentially collected from the main floor of the Speedy's building adjacent to chemical storage area and dry cleaning machine area. Samples will be obtained by coring through the floor with a concrete coring machine.

Sample Analysis

After the borehole is completed, samples for analysis will be selected using the sample

selection criteria discussed above. A portion of each soil sample will be retrieved for volatile organic analyses. The remaining soil from that sample will be placed in a glass bottle or steel basin and composited for use in other analyses as identified on Table 1. Samples will be kept cool, at a temperature of approximately four degrees centigrade, until delivery to the analytical laboratory.

The anticipated analyses for characterization will be dependent on the sample location, past sampling data, and field judgement. Table 1 presents the proposed sampling and analysis schedule. Soil collected from locations B-3, B-6, and B-7, will be analyzed using the following analyses: volatile organic compounds (VOC's) USEPA Methods 8240, and the Toxicity Characteristic Leaching Procedure (TCLP) followed by volatile organic compounds using USEPA Methods 8240. Soil collected from the remaining boreholes will be analyzed for VOC's by USEPA Method 8240. One concrete sample will be obtained from each boring location, B-3 and B-6. The concrete will have a liquid sample extracted from it using TCLP, followed by an analysis of the liquid for VOC's using USEPA Method 8240. General Testing Corporation of Rochester will conduct these analyses using procedures found in New York State's Analytical Services Protocols (ASP).

Decontamination

Drilling equipment will be decontaminated outside after each borehole using steam produced by a steam jenny. Sampling equipment will be decontaminated using a detergent wash after each sample is collected. All fluids will be drummed and left on site for disposal by the City.

Field documentation

Documentation from the field sampling will include field notes, sample location sketches, boring and sampling logs, and chain of custody forms.

SCHEDULE

The project schedule for the program outlined above is included as Table 2. Seeler Associates understands that sampling may be delayed or expedited depending on access to the site property. For the purposes of the schedule presented below Seeler Associates assumed that only the City personnel would review the project report and that analytical services would provide a 21 day turnaround after receipt.

TABLE 1

CITY OF ROCHESTER SPEEDY'S CLEANERS PROPOSED SAMPLING SCHEDULE

Sample Location	Borehole Depth	Total No. of Samples	8240	TCLP 8240
B-1, Climax Alley, NW corner of Speedy's Bldg.	Approx. 28 ft. to bedrock.		W	
B-2, Climax Alley, outside center most backdoor.	Approx. 28 ft. to bedrock.		W	
B-3, Inside Speedy's bldg. adj. to dry cleaning area.	Approx. 28 ft. to bedrock.	3, 2 soil samples; 1 concrete sample (TCLP 8240 only)	W	W
B-4, Climax alley NE corner of Speedy's bldg.	Approx. 28 ft. to bedrock.	2	W	
B-5, East side of Speedy's bldg. approx. center line of bldg.	Approx. 28 ft. to bedrock.	2	W	
B-6, Speedy's bldg. basement adj. to solvent tanks.	Approx. 18 ft. to bedrock.	3, 2 soil samples, concrete sample (TCLP 8240 only)	W	W
B-7, SW corner of Speedy's basement	Approx. 18 ft. to bedrock.	2	W	
B-8, Inside Speedy's bldg. main floor above the backfilled basement space.	Approx. 28 ft. to bedrock.	2	W	W

ENVIRONMENTAL CONSULTANTS

PHASE II SITE CHARACTERIZATION REPORT

Prepared For:

CITY OF ROCHESTER DEPARTMENT OF ECONOMIC DEVELOPMENT

LaBella Project No. 92189 September, 1992

LaBella Associates, P.C. 300 State Street Rochester, New York 14614

PHASE II SITE CHARACTERIZATION REPORT

Prepared For:

CITY OF ROCHESTER DEPARTMENT OF ECONOMIC DEVELOPMENT

LaBella Project No. 92189 September, 1992

> LaBella Associates, P.C. 300 State Street Rochester, New York 14614

TABLE OF CONTENTS

Page

1.0	EXEC	CUTIVE SUMMARY	. 1
	1.1 1.2 1.3 1.4 1.5	Site Description/Location Previous Environmental Investigations Subsurface Investigation Results Groundwater Analytical Results Conclusions/Observations	1 1 1 2 2
	RECO	OMMENDATIONS	3
	DISC	LAIMER	3
2.0	OBJE	ECTIVE	4
3.0	SCOF	PE OF WORK	4
	3.1	Introduction	4
	3.2	 Subsurface Soil and Groundwater Investigation 3.2(a) Test Borings 3.2(b) Monitoring Well Installations 3.2(c) Groundwater Sampling and Analysis 	4 4 5 5
4.0	SITE	ASSESSMENT	6
	4.1	Site Geography	6
	4.2	Site Hydrogeology 4.2(a) Geology 4.2(b) Hydrology	6 6 6
	4.3	 Site Subsurface Conditions Assessment 4.3(a) Soils 4.3(b) Groundwater 4.3(c) Site Conditions Subsurface Assessment Summary 	6 6 8 8
5.0	RECO	OMMENDATIONS	9
	DISC	CLAIMER	9

FIGURES

APPENDIX A	BORING LOGS
APPENDIX B	GROUNDWATER SAMPLING FIELD LOGS
APPENDIX C	ANALYTICAL DATA

1.0 EXECUTIVE SUMMARY

1.1 SITE DESCRIPTION/LOCATION

The Site is located at Court Street between South Avenue and Stone Street in downtown Rochester, New York (FIGURE 1). The Site (Site A) consists of two parking lots and one vacant four-story brick building at 124 South Avenue. A schematic site sketch is included as FIGURE 2.

Site A is bordered by South Avenue, Rundell Library, and the Genesee River to the west, Court Street and offices to the south, Stone Street and Speedy's Dry Cleaners to the east, and a combined office/residential/retail building to the north.

1.2 PREVIOUS ENVIRONMENTAL INVESTIGATIONS

Prior to the current investigation, a limited Phase I Environmental Site Assessment (ESA) and a Preliminary Site Characterization were performed for the adjacent city block bounded by Stone/Court/Clinton/Broad Streets (Site B).

The ESA identified several areas of potential environmental concern that required further investigation including a long history of petroleum storage adjacent to the site (on Site A and on the south side of Court Street) as well as an eighty year old dry cleaning facility (Speedy's) located on Site B.

Four monitoring wells were installed as part of the previous preliminary site characterization. Analytical results of groundwater samples indicated the presence of petroleum hydrocarbons and xylene in one of the four monitoring wells (GW-2).

In July, 1992 a limited Phase I ESA of Site A. The ESA revealed that two of the parcels on Site A were operated as gas stations for over 30 years dating back to the 1930's. The final disposition of the underground storage tanks (UST's) at the site could not be determined under the scope of the ESA. It is possible that UST's are still buried on the site. Because of the potential environmental concerns identified during all of these assessments it was decided to seek additional information concerning the subsurface soils and groundwater adjacent to Site A.

A 1935 Platt Map is included as FIGURE 3. This map shows the location of the former gasoline stations in the vicinity of the Site.

1.3 SUBSURFACE INVESTIGATION RESULTS

The environmental investigation at Site A was coordinated with a preliminary geotechnical investigation that was planned for the Site. Five (5) test borings with continuous split spoon samples were drilled for this purpose in the right of way bordering the Site (FIGURE 4). The test borings were conducted in the right of way because access to the site was not available at this time.

Monitoring wells were installed in borings B-2 and B-4 in order to obtain groundwater samples as well as groundwater elevation data. Test borings and soil samples were screened for evidence of contamination using an Hnu photo ionization detector (PID).

Boring logs indicated an odor at 14 feet during the drilling and sampling of boring B2. No positive responses were recorded on field air monitoring instruments. As the monitoring well installed in B2 was screened in close proximity to the depths where the odor was encountered, and a groundwater sample would be taken from that location, (soil samples were not sent to the laboratory for analysis).

1.4 GROUNDWATER ANALYTICAL RESULTS

Location Analyte Group Method Concentration Constituents B-2 (GW-5) Volatile Organics **EPA 8240** 1400ug/L Toluene 1400ug/L Volatile Organics EPA 8240 Ethylbenzene Volatile Organics EPA 8240 6700ug/L Total Xylene Petroleum Hydro. DOH 310-13 610ug/L Gasoline B-4 (GW-6) Volatile Organics EPA 8240 Not Detected Petroleum Hydro. DOH 310-13 43ug/L N-dodecane

Analytical results for the groundwater samples obtained from the two wells are outlined below:

Note: ug/L is approximately equal to parts per billion (ppb). ND denotes non-detected.

The analytical results did indicate the presence of xylene, ethylbenzene, and toluene at GW-5 (B-2). Total petroleum hydrocarbon (TPH) analysis of this sample identified these constituents as being derived from gasoline. No volatiles were detected above laboratory limits in the sample at GW-6 (B-4), however, TPH analysis did reveal the presence of low levels of petroleum hydrocarbons. The laboratory noted that the mixture didn't allow for identification as a specific hydrocarbon. Therefore, the sample was calculated as n-Dodecane. No signs of free product were observed in groundwater during this investigation.

At this stage of the investigation, it is not possible to estimate costs associated with the handling of soils and groundwater with elevated levels of petroleum hydrocarbon materials which may be encountered during construction. These costs can vary based on concentrations encountered, availability of treatment capacity and/or disposal methods and current NYSDEC regulations and guidance documents.

1.5 <u>CONCLUSIONS/OBSERVATIONS</u>

The concentrations of xylene, ethylbenzene, and toluene all exceed the Drinking Water Standard of 50 ug/L established in Part 5 of Chapter I in the New York Sanitary Code for drinking water supplies. The NYSDEC generally uses a visible sheen as a remediation indicator.

The presence of petroleum hydrocarbons in the monitoring wells at Site A may be attributed to former gas stations on the Site near the corner of Stone and Court Streets, and near the corner of Court Street and South Avenue. The possibility of an off-site source cannot be precluded due to the historical presence of other petroleum storage facilities in close proximity to the Site.

Based on the groundwater elevations measured at all six monitoring wells at Sites A and B on September 4, 1992, horizontal groundwater flow at this time appears to flow towards the north. Groundwater elevation contours based on these data are illustrated in FIGURE 5. As this area's regional groundwater flow is generally towards the Genesee River, there appears to be a local influence on groundwater flow in the immediate vicinity of the Site. This influence may be explained by excavation for the recently completed Clinton Square building, and probable groundwater drainage or pumping at the Midtown Plaza underground parking garage and other nearby office buildings.

RECOMMENDATIONS

1. As Site A historically has had gasoline stations located within its boundaries, and signs of gasoline materials have been noted in groundwater samples from the Site's boundaries, it is recommended that a contingency plan be prepared prior to on-site excavation. This plan should be reviewed by appropriate State and local agencies.

The contingency plan should include the following items:

- A. Procedures for identifying and handling materials with elevated petroleum hydrocarbon levels, which may be encountered during construction/excavation.
- B. Procedures for removing underground storage tanks, which may be encountered during excavation.
- C. A site specific health and safety plan.
- D. Procedures for notifying the NYSDEC.
- E. An environmental technician to be present during all on-site excavations.
- 2. During construction, engineering controls such as ventilation systems should be considered in order to minimize the potential for petroleum hydrocarbon vapors to enter future buildings.
- 3. It is recommended that as the city gains access to the property, additional testing such as test borings and/or geotechnical surveys be performed to provide a better understanding of the conditions associated with both Site A and Site B.
- 4. It should also be noted that access to on-site buildings has not been allowed during these investigations. Relevant environmental issues such as asbestos and lead based paint should be evaluated prior to property transfer and building demolitions.

This report is a professional opinion and judgment, dependent upon LaBella's knowledge, information and data supplied by governmental agencies, and data generated in the field.

In addition, LaBella cannot provide guarantees, certification or warranties that the property is or is not free of environmental impairment. The subsurface investigation program, the data and samples from any given soil boring or monitoring well will indicate conditions that apply only at that particular location, and such conditions may not necessarily apply to the general site as a whole.

2.0 <u>OBJECTIVE</u>

This preliminary site characterization was conducted under contract to the City of Rochester. The objective of this site characterization was to determine if contamination is present in soils and groundwater in the vicinity of the site and to identify possible source and migration pathways of contaminants.

This investigation was designed to supplement existing data for the site. A limited Phase I Environmental Site Assessment and documentation review performed by LaBella Associates indicated several areas of potential environmental concern that required further investigation. These issues include a long history of petroleum storage on and adjacent to the site as well as an eighty year old dry-cleaning facility located adjacent to the site.

3.0 SCOPE OF WORK

3.1 INTRODUCTION

Prior to the current investigation LaBella Associates performed a limited Phase I Environmental Site Assessment (ESA) and a Preliminary Site Characterization for the adjacent city block bounded by Stone/Court/Clinton/Broad Streets (Site B). The ESA identified several areas of potential environmental concern that required further investigation including a long history of petroleum storage adjacent to the site (on Site A and on the south side of Court Street) as well as an eighty year old dry cleaning facility (Speedy's) located on Site B. Four monitoring wells were installed as part of the site characterization of Site B. Analytical results of groundwater samples indicated the presence of petroleum hydrocarbons and xylene in one of the four monitoring wells (GW-2).

In July, 1992 LaBella Associates performed a limited Phase I ESA of Site A. The ESA revealed that two of the parcels on Site A were operated as gas stations for over 30 years dating back to the 1930's. Because of the potential environmental concerns identified during all of these assessments it was decided to seek additional information concerning the subsurface soils and groundwater adjacent to Site A.

The environmental investigation at Site A was coordinated with a preliminary geotechnical investigation that was planned for the Site. Five (5) test borings with continuous split spoon samples were drilled for this purpose in the right of way bordering the Site (FIGURE 3). Monitoring wells were installed in borings B-2 and B-4 in order to obtain groundwater samples as well as groundwater elevation data. LaBella Associates personnel observed the test borings and screened the soil samples for evidence of contamination using an Hnu photo ionization detector (PID) and by sight and smell.

3.1(a) Exclusion

The actual presence of radon, lead based paint, and urea formaldehyde foam insulation at the Site can only be determined through sampling and analysis, which you have determined to be beyond the scope of this assessment.

It is understood that no further assessment will be required at this time pertaining to the presence of radon, lead based paint, and urea formaldehyde foam insulation at the Site.

3.2 SUBSURFACE SOIL AND GROUNDWATER INVESTIGATION

3.2(a) Test Borings

Empire Soils Investigations, Inc. completed five (5) test borings at Site A in August, 1992. Test borings were conducted for geotechnical purposes as well as to evaluate potential contamination of soils and groundwater underlying the site.

A utility stake-out was performed prior to the initiation of all subsurface work. All borings were conducted in the right of way at the perimeter of the site because access to the site was not available at this time. There are numerous underground utilities which restricted the options for placement of test borings.

All borings were advanced to bedrock with the possible exception of B-4 which may have been terminated on a large boulder rather than bedrock. Ten feet of bedrock core was obtained at borings B-1 and B-3 for geotechnical purposes. Boring logs are contained in APPENDIX A.

Test borings were drilled by advancing a 4 1/4 inch I.D. hollow-stem auger following the split spoon sample. Split spoon samples were taken continuously throughout the boring program. The Project Geologist visually identified the soil, collected samples, and then prepared boring logs describing the subsurface conditions encountered at each location. In addition, the headspace of each soil sample was monitored with a Hnu PID. No PID readings above background were noted, however, a slight odor was noted in samples at B-2 and B-4.

3.2(b) Monitoring Well Installation

The work plan specified the installation of monitoring wells in two of the five test borings. The monitoring well locations were selected based on the proximity to potential sources as well as to clarify groundwater flow direction.

Prior to commencement of drilling activities at B-2 and B-4, all drilling equipment including augers, rods, bits, casings, and well material were decontaminated using a high pressure steam cleaner. Split spoon samplers were put through a sequential decontamination wash between samples. The spoon parts were scrubbed with a trisodium phosphate detergent solution and then triple rinsed.

Empire Soils completed the monitoring wells at Site A in borings B-2 and B-4. The wells are screened in overburden soils directly above the bedrock. As previously stated, Boring B-4 may have been terminated on top of a large boulder rather than bedrock.

Monitoring wells consisted of 2-inch diameter, threaded, flush-joint PVC casing, and No. 10 slot PVC screens. A No. 3 QROK silica sand filter pack was placed around the screens to a depth of 2 feet above the screen. A two foot bentonite pellet seal was placed above the sand pack, and a cement/bentonite grout mixture was placed from the top of the bentonite to the ground surface. The wells were completed with a steel flush mount protective casing to protect the wells.

Both wells were developed by bailing using dedicated Teflon^R bailers. These wells were allowed to sit for 24 hours after final grouting was completed prior to development. Approximately 4 well volumes of water were removed from GW-5 (B-2) causing the well to go nearly dry. Slow recharge prevented further development at that time. A petroleum odor was noted in the well during development, however no product sheen was observed. Approximately 10 well volumes of water were removed from GW-6 (B-4). It was noted that this water was black in color, no odor or product sheen was noted during well development.

3.2(c) Groundwater Sampling and Analysis

Groundwater samples were collected from the two completed monitoring wells installed as part of this investigation in September, 1992. These samples were analyzed for volatile organic compounds using EPA method 8240, and for petroleum hydrocarbon concentrations using NYSDOH method 310-13.

Samples were collected using dedicated, decontaminated Teflon^R bailers and polypropylene line. Prior to sampling, groundwater-level and total-depth-of-well readings were obtained. A minimum of three standing well volumes was then calculated and purged. Analytical results are discussed in Section 4.3(b).

Groundwater monitoring field forms are included in APPENDIX B.

4.0 SITE ASSESSMENT

4.1 <u>SITE GEOGRAPHY</u>

The site is located a completely developed urban area. Most of the site and surrounding area contains buildings or is paved. The topography is relatively flat with a slight gradient to the west toward the nearby Genesee River.

4.2 SITE HYDROGEOLOGY

4.2(a) Geology

Subsurface soil and bedrock information obtained during this investigation (Appendix A) indicates that depth to bedrock at these sites ranges from approximately 22 to 30 feet. Fill material was encountered above native soils at all five test borings with depth of fill ranging from 2 to 15.5 feet. Native soils consisted predominantly of sand and silt.

Bedrock beneath the site is the Lockport Dolomite. Rock cores indicated that the top three feet of bedrock is heavily fractured before becoming more competent.

4.2(b) <u>Hydrology</u>

Test borings revealed that the overburden soils and bedrock are hydraulically connected due to the absence of any confining layer.

On September 4, 1992 water levels were recorded at each of the monitoring wells at Sites A and B. Water level data are presented in TABLE 1 and groundwater elevation contours are illustrated on the map in FIGURE 5.

Horizontal groundwater flow at the time of water level measurement appeared to be to the north. As regional groundwater flow in this area is westerly toward the Genesee River, it can be logically assumed that local groundwater flow is being influenced by man-made conditions (i.e. basements, underground parking garages) in the immediate vicinity of the site.

4.3 SITE SUBSURFACE CONDITION ASSESSMENT

4.3(a) <u>Soils</u>

Fill material was encountered at all five test borings at Site A, consisting mostly of sand and gravel, but also containing some construction debris such as brick. Fill depth ranged from 2 to 15.5 feet below grade.

No visual or odoriferous signs of contamination were encountered at borings B-1, B-3, and B-5. No readings above background were detected with the Hnu PID during headspace screening of the soil samples.

A petroleum odor was noted in soil samples at the 12-14 foot level at boring B-2. No staining or visible signs of petroleum were observed at this location.

Soil samples at boring B-4 revealed a wet black sandy material at the 13 -15 foot level. A slight petroleum odor was noted in this sample. Sample volumes recovered were not sufficient to send to the laboratory for analysis.

TABLE 1 WATER LEVEL DATA

WELL #	DATE MEASURED	ELEVATION OF STEEL CASING	GRADE ELEVATION	WATER LEVEL (FEET FROM T.O.C.)*	WATER LEVEL (FEET ABOVE MSL)
GW-1	9/4/92	534.29	534.29	18.38	515.91
GW-2	9/4/92	530.75	530.75	11.46	519.29
GW-3	9/4/92	531.36	531.36	10.74	520.62
GW-4	9/4/92	530.74	530.74	18.41	512.33
GW-5	9/4/92	529.9	529.9	10.46	519.44
GW-6	9/4/92	527.3	527.3	12.26	515.04

T.O.C. = TOP OF STEEL CASING

NOTE: Grade elevations were established from a USGS monument at the southeast corner of Court Street and South Avenue and are established as Feet above MSL

R2122DPA

4.3(b) Groundwater

Groundwater samples were collected on September 4, 1992 from the two monitoring wells that were installed for this assessment. These samples were analyzed for volatile organic compounds using EPA method 8240, and for petroleum hydrocarbon concentrations using NYSDOH method 310-13.

Preliminary laboratory results indicate that volatile organics and petroleum hydrocarbons were observed above laboratory detection limits in GW-5 (B-2), and petroleum hydrocarbons were present in GW-6 (B-4).

Analytical results for the groundwater samples obtained from the two wells are outlined below:

Location	Analyte Group	Method	Concentration	Constituents
B-2 (GW-5)	Volatile Organics	EPA 8240	1400ug/L	Toluene
	Volatile Organics	EPA 8240 EPA 8240	1400ug/L 6700ug/L	Total Xylene
	Petroleum Hydro.	DOH 310-13	610ug/L	Gasoline
B-4 (GW-6)	Volatile Organics	8240	Not Detected	
	Petroleum Hydro.	DOH 310-13	43ug/L	N-dodecane

Note: ug/L is approximately equal to parts per billion (ppb). ND denotes non-detected.

No free product or sheen was observed at any time during well development or sampling, however, the water in GW-6 (B-4) was black in color.

4.3(c) Subsurface Conditions Assessment Summary

The boring logs indicate that the top 10 to 15 feet of soils at the site are fill material above native soils. The majority of this material is sand and gravel, but bricks were also noted at B-4 and B-5 at the 12 to 15 foot depth. Petroleum odors were noted in soil samples at B-2 (GW-5).

Analytical results from two groundwater monitoring wells installed during this investigation did not reveal the presence of tetrachloroethylene (a solvent used in dry cleaning) or dissolved breakdown products associated with the same. These results did indicate the presence of xylene, ethylbenzene, and toluene at GW-5 (B-2). Total petroleum hydrocarbon (TPH) analysis of this sample identified these constituents as being derived from gasoline. No volatiles were detected above laboratory detection limits in the sample at GW-6 (B-4), however, TPH analysis did reveal the presence of low levels of petroleum hydrocarbons. The laboratory noted that the mixture didn't allow for identification as a specific hydrocarbon. Therefore the sample was calculated as n-Dodecane. No signs of free product were observed in groundwater during this investigation.

The concentrations of xylene, ethylbenzene, and toluene all exceed the Drinking Water Standard of 50 ug/L established in Part 5 of Chapter I in the New York Sanitary Code for drinking water supplies. The NYSDEC generally uses a visible sheen as a remediation indicator.

The presence of petroleum hydrocarbons in the monitoring wells at Site A may be attributed to former gas stations on the Site near the corner of Stone and Court Streets, and near the corner of Court Street and South Avenue. The possibility of an off-site source cannot be precluded due to the historical presence of other petroleum storage facilities in close proximity to the Site.

Based on the groundwater elevations measured at all six monitoring wells at Sites A and B on September 4, 1992, horizontal groundwater flow at this time appears to flow towards the north. Groundwater elevation contours based on these data are illustrated in FIGURE 5. As this area's regional groundwater flow is generally towards the Genesee River, there appears to be a local influence on groundwater flow in the immediate vicinity of the Site. This influence may be explained by excavation for the recently completed Clinton Square building, and probable groundwater drainage or pumping at the Midtown Plaza underground parking garage and other nearby office buildings.

At this stage of the investigation, it is not possible to estimate costs associated with the handling of soils and groundwater with elevated levels of petroleum hydrocarbon materials which may be encountered during construction. These costs can vary based on concentrations encountered, availability of treatment capacity and/or disposal methods and current NYSDEC regulations and guidance documents.

5.0 <u>RECOMMENDATIONS</u>

1. As Site A historically has had gasoline stations located within its boundaries, and signs of gasoline materials have been noted in groundwater samples from the Site's boundaries, it is recommended that a contingency plan be prepared prior to on-site excavation. This plan should be reviewed by appropriate State and local agencies.

The contingency plan should include the following items:

- A. Procedures for identifying and handling materials with elevated petroleum hydrocarbon levels, which may be encountered during construction/excavation.
- B. Procedures for removing underground storage tanks, which may be encountered during excavation.
- C. A site specific health and safety plan.
- D. Procedures for notifying the NYSDEC.
- E. An environmental technician to be present during all on-site excavations.
- F. Prior to excavation, access to the procedures for additional testing such as test borings and/or geotechnical surveys to be performed prior to excavation to provide a better understanding of the conditions associated with both Site A and Site B.
- 2. During construction, engineering controls such as ventilation systems should be considered in order to minimize the potential for petroleum hydrocarbon vapors to enter future buildings.
- It should also be noted that access to on-site buildings has not been allowed during these investigations. Relevant environmental issues such as asbestos and lead based paint should be evaluated prior to building demolitions.

This report is a professional opinion and judgment, dependent upon LaBella's knowledge, information and data dupplied by governmental agencies, and data generated in the field.

In addition, LaBella cannot provide guarantees, certification or warranties that the property is or is not free of environmental impairment. The subsurface investigation program, the data and samples from any given soil boring or monitoring well will indicate conditions that apply only at that particular location, and such conditions may not necessarily apply to the general site as a whole.

R2I17DP1

1.1.14

10 City of Rochester Department of Economic Development Phase II-Preliminary Site characterization Report Project #92189

FIGURES

in the second of the second second and the second

-----Photos Bio rano.

The second second second second

200 . L. 19 4.

and the starter

J.C.T.

A LANDARY CONTRACTOR

and the second second

Provent and an and a series

----many and make sparter and

T I PRIME THE COME the sector 1.1.1.1

Stall 2: 36 A Tracting the

the are a light from the

LIST OF FIGURES

- FIGURE 1 Location Map (USGS)
- FIGURE 2 Site Sketch
- FIGURE 3 Site Sketch 1935 Platt Map
- FIGURE 4 Test Boring Locations
- FIGURE 5 Groundwater Contour Map

÷.

 \mathbb{N}

APPENDIX A

siney.

BORING LOGS

......

AT AT AT AT A

Total and

A DE

To Sand States and States

A Same

N. 8.

stanty" when a work the stanty of the

AB 300	ELLA STAT	ASSC E STF	CIATES, REET, RO	P.C. CHESTER, NNEERING	NEW YORI	K	PRO CITY OF STONE/C	NECT ROCHEST OURT/SOU	ER TH			BORING # SHEET JOB # 9218 CHKD. BY	B-1 1 OF 2 9 DP	
CON	TRAC	CTOR			EMPIRE SC	DILS	BORING	OCATION	Stone		dewalk)			-
DRI	LLER				Joe Jenson		GROUND	SURFACE	ELEVA	TION 53	1.67			
AB	FLIA	REPE	ESENTA	TIVE	Dennis Peci		START D	ATE 8/20/9	2 END	DATE 8/2	1/92			
									WAT	ER LEVEL	DATA			
	-	0811	RIC			Asker Co	Hav	DATE	THE	WATER	CASING	BEMARKS		
ITE	EUF					ACASE SU		Unic		march	Choirte	T		
100	EH S	IZEA	NU ITPE			4 - 1/4 WK	I LU. NSA		-					
DVE	RBU	RDEN	SAMPLIN	IG METHO	0	1-3/8 Inc	1.D. Sput spoon							
100	CKDR	RILLIN	G METHO	D					-			1		
									EQ	UIPMENT				1
E			5	SAMPLE			SAMPLE DESCRIP	TION						C
PL									INST	ALLATION				1
TE	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1								1
H	/6*		(FT.)	/ROD(%)	(INCHES)					LOG			HNU	1
1						Concrete	sidewalk							
,t														
1	11	S.1	1.2	7	£	Brown fr	e to coarse SAND **	Ca Gravel					BC	
t		3-1	1-3		0	limia Olio	maint (Ell 1)					Boring book	filed with a ma	
4	4	-				THUE SHL						- outing oach		.A.e
H	3	-				-						and ground	w sunace	1
3	4					-	ALL ALL						-	
	32	S-2	3-3.9	100/0.4	2	som	Cobbles						BC	
4	100/4	-												
L		1												
5											-			
ſ	17	S-3	5-7	120	14	and	dark gray rock fragme	nte					BC	
6	40					1								
T	80	1				1								
7	35	1				1								
1	23	54	7.9	12	10	1							BC	
.t	23	34	1-3	16	10	1								1
"	0					+	•							
ł	6					-								
9	6	-				+								
+	64	S-5	9-9.9	100/0.4	5	trace	brick						ВС	à
0	100/4	1				-								
						1								
1	_					-								
		-				-								
2														
	100/6	15-6	12-12.5	100/0.6	5	Brown, fi	ne, very dense SAND	and Silt					BC	3
3						little coar	se Sand, little Gravel,	moist						
1														
4	-													
T	35	S-7	14-15.5	165	12	wet							BC	3
5	65					1								
	100	-				1								
at		İ				1								
1		1-				1								
-+	-	-				1								
1		1	LEOFUE			NOTES			Personal		1			
			LEGEND			NOTES				law				
	S - SP	UTS	POON SO	IL SAMPLE			1. Bu denotes back	ground read	ang on I	unu				
1	U - UN	DIST	URBED S	OIL SAMPL	E									
1	C - AC	DCK C	ORE SAN	IPLE		1					_			
E	NERA	LNOT	TES:											
,		1) ST	TRATIFIC	ATION LINE	ES REPRES	SENT APP	ROXIMATE BOUNDA	RY BETWE	EN SO	L TYPES,	TRANSIT	TONS MAY E	E GRADUAL	
		2) W	ATER LEY	EL READI	NGS HAVE	BEEN MA	DE AT TIMES AND	INDER COM	NDITION	IS STATE	D, FLUCT	UATIONS O	FGROUNDWA	TER
				MAYO	CCUR DUE	TOOTHE	R FACTORS THAN	THOSE PRE	SENT	AT THE TI	ME MEAS	UREMENTS	WERE MADE	
BA												E	ORING # B-1	

O STAT	E STF	AL ENGIN	CHESTER,			TTY OF ROCHES	UTH			SHEET 1 OF 2 JOB # 92189 CHKD, BY DP		
ONTRA	CTOR		ALC: NILC	EMPIRE SO	ILS BC	RING LOCATION	Cour	t Street (si	dewalk)			
RILLER	oron			D. Panelli	GF	OUND SURFAC	EELEVA	TION 529	.91			
BELLA	REPR	ESENTAT	IVE	Stave Wilse	/Greg Senecal ST	ART DATE 8/24	92 END	DATE 8/2	5/92			
							WAT	ER LEVEL	DATA			
PEOF	DRILL	RIG			Acker AD II	DATE	TIME	WATER	CASING	REMARKS		
JGER S	IZE A	ND TYPE		•	4 - 1/4 inch I.D. HSA							
VERBU	RDEN	SAMPLIN	G METHO	0	1-3/8 Inch I.D. Split spo	on		1				
OCK DE	RILLING	G METHO	D									
							EC	UIPMENT				1
		s	AMPLE		SAMPLE DE	SCRIPTION						0
							INST	TALLATION	4			1
BLOW	NO.	DEPTH	N-VALUE	RECOVERY								1
/6"		(FT.)	/RQD(%)	(INCHES)				LOG			HNU	1
13	S-1	0-2	19	4	6" concrete sidewalk					Flush mount curb box	BG	1
1 15					Brown SAND and gray	ROCK fragments				, protective casing		
4					little brick, moist, FILL							
3		•										
3	5-2	2-4	26	12	Brown medium dense fi	ine SAND and Sil	L,				BG	
3 9					trace coarse Sand, moi	st						
17										and the second second		
21										2 inch I.D. schedule 10		
7	5-3	4-6	43	16	trace Gravel					PVC riser (0.0 - 14 feet)	BG	
18	1											
25	-											
5 33												
35	54	6-8	67	22	4					Cement grout	BG	
32	-									(0.0 - 10.0 leet)		
35												
8 38					-						80	
9	5-5	8-10	83	18	-						- DG	
33												
30	1											
15	100	10.12	117	20							BG	
1 33	100	10-12	113		-					Bentonite pellet seal		1
80	1				1		語			(10.0 - 12.0 feet)		
2 80					1		50					
27	5-7	12-13.4	100/4	12	gray-brown						BG	
3 80												
100/4										#2 QROK sandpack		
										(12.0 - 27.3 feet)		
41	5-8	14-14.8	100/3								BG	
100/3												
										2 inch I.D. schedule 10		
5					-	-				PVC screen (14.0 - 27.0	feet)	•
150/6	5-9	16-16.6	150/6	0	no recovery						BG	
1									1			
		LEGEND		-	NOTES:		-	Mari				
S-SI	PLITS	POON SO	IL SAMPL	E	1. BG denot	les background re	ading on	Hou				
0-0	NDIST	URBED S	UIL SAMP	LE	2. Driller not	tes water encount	erec at 1	2				
C-R	JCK C	ORE SAN	IFLE		3. Peroieun	n or solvent odor	loted				-	-
ENEHA	NOT	ES:	ATIONI		ENT ADDOONNATE D		VEEN ST	TYPE	TRANSIT	TONS MAY BE GRADUAL		
	1) 5	PATIFIC.	ATION LIN	ES NEFRES	APPROXIMATE B	CUNUART DEIT	The state	HE ITES		IS IS MAT DE GRADUAL		

SAMPLE SAMPLE DESCRIPTION COUPMENT INSTALLATION 00 (FT) PROPY LOG NU 01 15185 1506 1 LOG NU 02 16185 1506 1 LOG NU 03 1 1506 1 1 BG 03 1 1 1 1 BG 1 BG 03 1 1 1 1 1 BG 1 BG BG <th>BELLA AS: D STATE S</th> <th>SOCIATES, TREET RC</th> <th>P.C. CHESTER</th> <th>NEW YOR</th> <th>K CITY OF ROCHE STONE/COURT/CLIN</th> <th></th> <th>BORING # B-2 SHEET 2 of 2 JOB # 92189 CHKD, BY</th> <th></th>	BELLA AS: D STATE S	SOCIATES, TREET RC	P.C. CHESTER	NEW YOR	K CITY OF ROCHE STONE/COURT/CLIN		BORING # B-2 SHEET 2 of 2 JOB # 92189 CHKD, BY	
CM MG. DEPTH N-VAULE RECOVERY IO i IO </th <th></th> <th></th> <th>SAMPLE</th> <th></th> <th>SAMPLE DESCRIPTION</th> <th>EQUIPMENT</th> <th></th> <th></th>			SAMPLE		SAMPLE DESCRIPTION	EQUIPMENT		
B (F1) 7/40(%) (IVCHES) 1100 Sore (5-10) 18-18.5 150/6 3	BLOW NO	DEPTH	N-VALUE	RECOVERY	1	100		HNU
Scele 10 18-18.5 1506 3 sandstone fragment BG 25 5-11 20-22 180 2 Hard Gray-brown Sil, T, little fire Sand. BG 25 5-11 20-22 180 2 Hard Gray-brown Sil, T, little fire Sand. BG 26 5-13 22-22.6 100/1 3 red sandstone fragment (12.0 - 27.0 feet) BG 26 5-13 2-2.5 150/6 5 red sandstone fragment PVC screen (14.0 - 27.0 feet) BG 506 5-14 25-25 150/6 5 no recovery BG 506 5-14 25-26.5 150/6 5 no recovery BG 506 5-14 25-26.5 150/6 5 no recovery BG 507 5-15 0 no recovery BG no recovery BG 101 1-14 1-14 1-14 no recovery BG no recovery BG 102 1-14 1-14 1-14 1-14 no recovery no recovery BG 103 1-14 1-14 1-14 1-14 no recovery no recovery no recovery no recovery <td>/6"</td> <td>(+1.)</td> <td>/HQD(%)</td> <td>(INCHES)</td> <td></td> <td></td> <td></td> <td></td>	/6"	(+1.)	/HQD(%)	(INCHES)				
Sole 5:10 18-18.5 150/6 3 sandstone fragment BG 25 511 20-22 180 2 Hard Gray-brown SiLT, little fine Sand, race Gravel, moist BG 100								
Legend Notes: Notes: Notes: <td< td=""><td>150/6 S-1</td><td>0 18-18.5</td><td>150/6</td><td>3</td><td> sandstone tragment</td><td></td><td></td><td>BG</td></td<>	150/6 S-1	0 18-18.5	150/6	3	sandstone tragment			BG
25 5-11 20-22 180 2 Hard Gray-brown SULT, little fine Sand, trace Gravel, moist ### display ### displ								
25 5-11 20-22 180 2 Hard Gray-brown Sill, T, liftle fine Sand. -								
00 Irace Gravel, molst 00 Irace Gravel, molst 00 Irace Gravel, molst 456 Irace Gravel, molst 1 Irace Gravel, molst 466 Irace Gravel, molst 1 Irace Gravel, molst 40 5-13 24 Irace Gravel, molst 266 Irace Gravel, molst 1 Irace Gravel, molst 266 Irace Gravel, molst 21 Irace Gravel, molst 22 Irace Gravel, molst 23 Irace Gravel, molst 24	25 S-	1 20-22	180	2	Hard Gray-brown SILT, little fine Sand.			BG
80	100				trace Gravel, moist			
100	80							
45/6 (S-12) 22.22.6 1001 3	100						#2 QROK sandpack	-
LEGEND NOTES: LEGEND NOTES: LEGEND NOTES: LEGEND NOTES: LINDISTURBED SOIL SAMPLE - NOTES:	145/6 S-	12 22-22.6	100/1	3	red sandstone tragment		(12.0 - 27.0 leet)	BG
40 S-13 24-25 145/6 10 45/6 10 10 PVC screen (14.0 - 27.0 left) BG 50/6 S-14 26-26.5 150/6 5 BG 50/7 S-14 26-26.5 150/6 5 BG 10 10 10 10 BG BG 10 10 10 10 BG BG 10 10 10 10 10 BG BG 10 10 10 10 10 10 10 10 10 10		-	1		-			
40 S-13 24-25 145/6 10 45/6 - - - - - BG 50/6 S-14 26-26.5 150/6 5 - - BG 50/6 S-15 0 - - - BG BG 1 1 - - - - - BG BG 1 1 - - - - - - - - - - - - - - - - <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td>2 inch I.D. schedule 10</td><td>,</td></td<>		-					2 inch I.D. schedule 10	,
456	40 S-	13 24-25	145/6	10			PVC screen (14.0 - 27	.0 teet)
SOG S-14 26-26.5 1506 5 no recovery BG SOG	145/6				-			BG
Sovie S-14 26-26.5 150/6 5 no recovery BG Sovie S-15 0 no recovery BG BG Sovie S-16 0 no recovery BG Sovie S-16 no recovery BG BG Sovie S-16 no recovery Bottom of boring at 27.3' with auger refusal BG Sovie S-16 no recovery no recovery BG Sovie S-16 no recovery no recovery BG Sovie S-16 no recovery no recovery BG Sovie S-16 no recovery no recovery <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Subs 5-14 20-26-20 150/0 3	-			E	4			BG
Bottom of boring at 27.3' with auger refusal Bottom of boring at 27.3' with auger refu	100/1 5-	14 20-20.5	150/6	0	no recovery			BG
					Bottom of boring at 27.3' with auger refusa	1		
Image:					-			
LEGEND NOTES: S-SPLIT SPOON SOIL SAMPLE NOTES: J. J					-			
LEGEND NOTES: LEGEND NOTES: S-SPLIT SPOON SOIL SAMPLE NOTES: JUNDISTURBED SOIL SAMPLE NOTES: S-SPLIT SPOON SOIL SAMPLE SOIL SAMPLE JUNDISTURBED SOIL SAMPLE SOIL SAMPLE JUNDI					1			
Image:					1			
Image:								
Image:					_	-		
LEGEND NOTES:					-			
LEGEND NOTES:								
LEGEND NOTES:								
LEGEND NOTES: S- SPLIT SPOON SOIL SAMPLE NOTES: J. J								
LEGEND NOTES: - SPLIT SPOON SOIL SAMPLE NOTES: - OUNDISTURBED SOIL SAMPLE NOTES: - ROCK CORE SAMPLE Image: Context of the second se					-			
LEGEND NOTES: Image: Second Solid Sample N		-			-			
LEGEND NOTES: S- SPLIT SPOON SOIL SAMPLE NOTES: J- UNDISTURBED SOIL SAMPLE NOTES: S- ROCK CORE SAMPLE NOTES: IERAL NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE			1					
LEGEND - SPLIT SPOON SOIL SAMPLE - UNDISTURBED SOIL SAMPLE - ROCK CORE SAMPLE - RO								
LEGEND NOTES: S- SPLIT SPOON SOIL SAMPLE								
SPLIT SPOON SOIL SAMPLE UNDISTURBED SOIL SAMPLE SPLIT SPOON SPILE SPLIT SPOON SPILE SPLIT SPOON SPLIT SPOON SPILE		LEGEN	2		NOTES:			
 C. ROCK CORE SAMPLE ERAL NOTES: STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE 	S - SPLIT	SPOON S	DIL SAMPL	E				
IERAL NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE	C - ROCH	CORE SA	MPLE					
 STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE 	NERAL N	OTES:			aleman and the second	***		
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE	1)	STRATIFIC	CATION LIN	IES REPRE	SENT APPROXIMATE BOUNDARY BETWE	EEN SOIL TYPES, TRA	NSITIONS MAY BE GRADU	AL.
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE	2)	WATER LE	EVEL READ	DINGS HAVE	BEEN MADE AT TIMES AND UNDER CO	NDITIONS STATED, F	LUCTUATIONS OF GROUN	OWATER
		MAY OCCI	UR DUE TO	O OTHER FA	ACTORS THAN THOSE PRESENT AT THE	TIME MEASUREMEN	IS WERE MADE	

LBA

R2122DPC

ABEL	LA	ASSO E STR	CIATES, I EET, ROO	P.C. CHESTER,			PROJI CITY OF F	ECT OCHESTE URT/SOUT	ER TH			BORING # B- SHEET 1 JOB # 92189 CHKD, BY DF	3 OF 2	
ONT	RAC	TOR	AL ENGIN	NECHING	EMPIRE SO	ILS	BORINGLO	CATION	Court	Street (sid	iewaik)			
RILL	ER				Joe Jenson		GROUNDS	URFACE	ELEVAI	ION 528.	5/07			
ABEL	LA	REPR	ESENTAT	IVE	Greg Senec	ଣ	START DAT	E 0/24/32	WATE	DIEVEL	DATA			
	~~					Askas Call May		DATE	TIME	WATER	CASING	REMARKS		
TPE	DE	TE AN	ID TYPE			A . 1/4 loch I D H	SA							
VER	AUF	DEN	SAMPLIN	G METHO	D	1-3/8 inch I.D. Sp	lit spoon							
оск	DR	ILLING	S METHO	D										
								•	EQI	JIPMENT				N
			s	AMPLE		SAMPL	LE DESCRIPTI	NC						0
									INST	ALLATION				T
BL	ow	NO.	DEPTH	N-VALUE	RECOVERY	1								E
1/6	5"		(FT.)	/RQD(%)	(INCHES)				1000000	LOG	1		HNU	S
-		-				6" concrete sidew	raik		-		1			
1	-							Cille					86	
1	13	5-1	1-3	22	18	Brown fine to coa	T and Group	Sut					00	1
	12		-			FILL						Boring backfill	ed with cuttings	
3	10					1						and grouted to	surface	
	8	S-2	3-5	10	16	Tan fine to coarse	SAND and SI	LT					BG	
4	5					trace Gravel								
	5			-		FILL								
5	5							_						
·	8	S-3	5-7	10	20	Brown fine to coa	irse SAND and	SILT					BG	
6	5		-12 -			little Gravel, mois	it							
L	5					(possible FILL)								1
7	6					-							86	
	7	5-4		14	20	-								I
°-	7					1								
9	7					1								
	4	S-5	9-11	7	20]							BG	1
0	4			-				•						:
	3													-
1	3								-122	15 9				
-	16	S-6	11-13	60	20	Very dense Gray	-brown f-c SAN	D and					BG	
2	30	-				GRAVEL, some	Sill, moist				-			1
3	40		· · ·			-								
F	10				1	1								
4	1]					100			
														1
5														
L	17	S-7	15-16.5	84	16	layers of fine	SAND and SIL	.т					BG	
6	34					-								
-	50		-		1	-								
			LEGEND	1	1	NOTES	New Contract		Tapas		1			-
s U	- SP	LIT SI	POON SC URBED S	OIL SAMPL	E LE	1. BG	i denotes backg	round-read	ting on I	Hnu				
C	- RC	DCK C	ORE SAN	APLE		1								
ENE	ERA	LNOT	ES:	ATIONIE		SENT APPROVIN	ATE BOUNDAS	Y RETWO	EN SO	L TYPES	TRANSI	TIONS MAY BE	GRADUAL	
		1) 5	ATER	VEL DEAD	INGS HAVE	BEEN MADE AT	TIMES AND IN	NDER CO	NDITION	NS STATE	D. FLUC	TUATIONS OF	GROUNDWATE	R
		2) W	AICHLE	VEL MEAU	ACCUE DU	TO OTHER SAC	TORS THAN T	HOSE PRI	SENT	AT THE T	MEMEA	SUREMENTS V	VERE MADE	
				MAT		- TO OTHER PAC								-

BELL O STA	A ASS	TREET RO	P.C. CHESTER	NEW YOR	PROJECT CITY OF ROCHES STONE/COURT/CLIN	STER TON/BROAD	BORING # B-3 SHEET 2 of 2 JOB # 92189 CHKD. BY	_
		s	SAMPLE		SAMPLE DESCRIPTION	EQUIPMENT		N C T
BLC	DN NO	DEPTH	N-VALUE	RECOVERY		100	HNU	6
16.		(FT.)	/RQD(%)	(INCHES)		LOG	nito -	+
							Boring backlilled with cuttings	
	_						and grouted to surface	
30	0 5-1	3 20-21.5	160		-			1
6	0				-			1
10	0			17.64	Ladrad DOL OMITE bouider		BG	
-		1 21.7-24		4/.079	LOCKDON DOLOMINE DOLINA		-	
-								
-			1					
7	2 5-	9 24-25	1 100		Very dense brown m-c SAND, some Grave	4	BG	1
10	00				trace SILT, wet			
4	7 S-1	0 25-26	100				BG	
10	00				trace Gravel			
					Bedrock encountered at 27.2'	_		
	C	2 27.2-29	66.7%	100%	Gray hard unweathered bedded Lockport		BG	
		-			DOLOMITE, Styolitic, horizontal wavy			
-	-				fractures except as noted, silt coaled			
-					heavily fractured zones 29.8-30.3, 30.7-30	.9	BG	
-	C	3 29-32	16.7%	63.3%	silt coated high angle tracture 29-29-29.2,			
"					Sin coaled inactives 25.0, 25.0, 25.0, and			
-			1					-
' -			1		- ·			
			1					
-	C	4 32-37.2	100%	100%	1		BG	1
3								
4			-	2				
L					-			
5					-			
-					-			
5					-			
				-	Bottom of boring at 37.2"			
s. U.	- SPLIT	LEGENI SPOON S STURBED	2 OIL SAMPI SOIL SAMI	LE PLE	NOTES: 2. Completed drilling to 22' on t	3/24/92, on the followin	g morning water at 13' in augers	
C	- HOCH	OTES.	MPLE		1			
ENE	:HAL N 1) 2)	STRATIFIC	CATION LI	NES REPRE	SENT APPROXIMATE BOUNDARY BETWI E BEEN MADE AT TIMES AND UNDER CO	EEN SOIL TYPES, TRANDITIONS STATED, F	ANSITIONS MAY BE GRADUAL. LUCTUATIONS OF GROUNDWAT	EF
		MAY OCC	UR DUE TO	O OTHER F	ACTORS THAN THOSE PRESENT AT THE	TIME MEASUREMEN	TS WERE MADE	_
AF							BORING # B-3	

ABE	ELLA A	ASSO E STR	CIATES, I EET, ROO	P.C. CHESTER, NNEERING	NEW YOR		PROJECT TY OF ROCHESTE DNE/COURT/SOUT	R H			BORING # B-4 (MW-6) SHEET 1 OF 2 JOB # 92189 CHKD. BY DP	
ON	TRAC	TOR	2		EMPIRE SO	ILS BOF	RING LOCATION	South	Avenue			
RIL	LER			•	Joe Jenson	GRO	OUND SURFACE E	LEVAT	10N 527	.28'		
ABE	LLA	REPR	ESENTAT	IVE	Greg Senec	ai STA	AT DATE 8/24/92	END	DATE 8/2	4/92		
								WATE	R LEVEL	DATA		
YPE	OF	ORILL	RIG			Acker Soil Max	DATE	TIME	WATER	CASING	REMARKS	
UG	ER SI	ZE A	ND TYPE			4 - 1/4 inch I.D. HSA						
VE	RBUF	DEN	SAMPLIN	G METHO	D	1-3/8 inch I.D. Split spoo	n					
oc	KDR	ILLING	S METHO	D								
T								EQU	JIPMENT			1
			9	AMPLE		SAMPLE DES	CRIPTION					0
								INST	ALLATION			-
	LOW	NO.	DEPTH	N-VALUE	RECOVERY							1
1	6"		(FT.)	(ROD(%)	(INCHES)				LOG		HNU	1
Ť	-					Concrete sidewalk					Flush mount curb box	T
1								7			protective casing	
1	10	S-1	1-3	24	10	Brown 1-c SAND, little G	ravel, trace Silt				BG	
2	11					moist, FILL						
T	13											
3	10											
F	8	S-2	3-5	17	8	little Silt					2 inch I.D. schedule BG	
4	9										PVC riser (0.0 - 10.2 feet)	
Г	6											
5	6										Cement grout	
F	7	5-3	5-7	14	12	little brick					(0.0 - 7.5 feet) BG	
5	7											1
F	5					•						
7	5			1		1						
T	6	54	7-9	8	16	1					BG	
8	4							1				
Г	4								2.0		Bentonite pellet seal	
9	2										(7.5 - 9.5 feet)	1
	8	S-5	9-11	8	2	BRICK					BG	
0	4								1. 19			
	4	1										i
1	7											1
	8	S-6	11-13	8	3	wet, trace fine Sand	1	1			BG	
2	4							1.45				
-	4					-		1		2		
3	4	-										
+	4	5-7	13-15	12	2	Black tine SAND and SI	LI, petroleum odor	1.45	-		BG BG	
4	5	-				wet,		100				
-+	7	1						C.C.			1 40 SCIENT (1015 - 2212 1991	"
2	6	0.0	15 15 5	1000	10	Vary dance any house	fine SAND and SIL	T			BG	
F	11	5-8	15-16.3	100/3	12	trace mas Sand block of	taining wat	1.3		3	#2 OBOK Sandpack	
-	40			-		Save III's warra, bialdy a			12	:	(9.5 - 22.2 (eet)	
7	100/3	-		1				· ··· A		~		
-		1	LEGEND	1	·····	NOTES:			d			
-	S-SP	IT S	POON SC	DIL SAMPL	E	1. BG denote	s background readi	ng on H	inu			
1	J - UN	DIST	URBED S	OIL SAMP	LE	2. Driller note	es water encounter	ed at 13	r.			
	0 - RC	DCK C	ORE SAN	APLE								
SEN	IERA	LNO	TES:									
		1) 5	TRATIFIC	ATION LIN	ES REPRES	SENT APPROXIMATE BO	OUNDARY BETWE	EN SO	IL TYPES	TRANSIT	TIONS MAY BE GRADUAL.	
		21 14	ATERIE	VEL READ	INGS HAVE	BEEN MADE AT TIMES	AND UNDER CON		S STATE	ED, FLUCT	TUATIONS OF GROUNDWAT	EP

BORING # B-4(MW-6)

LBA

O STA	TE STR	EET ROO	HESTER.	NEW YOR	K ANTS	CITY OF ROCK		SHEET 2 of 2 JOB # 92189 CHKD. BY
		S	AMPLE			SAMPLE DESCRIPTION		
BLOV	NO.	DEPTH	N-VALUE	RECOVER	1		103	HNU
/6*	0	(FT.)	/HQD(%)	(INCHES)	trace	Gravel		
10	2-3	1/-19	20					
10								2 inch I.D. No. 10 slot
100/3	3				1			PVC screen (10.2 - 22.2 feet)
]			
						•		
10	S-10	20-21.5	30		4			#2 QROK Sandpack
10								(9.5 - 22.2 (991)
20					-			
-					Battom	f boring at 22.2' with solit spoor		
-					and auge	r refusal		
-	1							
]			
	-							
-					-			
					-			
					1			
-	1				1			
7					1.			
3					4			
-					4			
9				-	-			
					-			
	1				1			
	1				1			
2								
					_			
3					_			
-					-			
4				1	-			
5			1		-			
-	-		1	-				
6								
						and the second s		
7				1				
S-5 U-1 C-1	SPLIT S UNDIST	LEGEND POON SO TURBED S	DIL SAMPL	.E A.E	NOTES	5:		
ENER	IL NO	TES:		NES REPRE	SENT API	PROXIMATE BOUNDARY BET	WEEN SOIL TYPES, TR	ANSITIONS MAY BE GRADUAL.

LBA

BORING # B-4 (MW-6)
LABELLA ASSOCIATES, P.C. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINNEERING CONSULTANTS				PROJEC CITY OF RO STONE/COU	CT CHESTE RT/SOUT	ER TH			BORING # 8-5 SHEET 1 OF 2 JOB # 92189 CHKD. BY DP				
co	TRA	TOR			EMPIRE SC	DILS	BORINGLOC	ATION	South	Avenue			
00	ILED				D. Reenall		GROUND SU	REACE	EL EVAT	TON 528	17		
	LLEN		FORMER		C. Parnieu		GROUND SU		ENID	DATE DE	400		
LAC	SELLA	REPT	AESENTA	TIVE	Steve wilse	y	START DATE	0/24/32	ENDI	DATE OZ	DATA		
									WATE	RLEVEL	DATA	1	
TYP	PEOF	DAIL	LAIG			Acker AD II		DATE	TIME	WATER	CASING	IREMARKS	
AU	GER S	IZE A	ND TYPE			4 - 1/4 inch	I.D. HSA						
ov	ERBUI	RDEN	SAMPLIN	IG METHO	D	1-3/8 inch	.D. Split spoon					5	
RO	CK DF	ILLIN	G METHO	D									
D									EQU	JIPMENT			N
E			5	SAMPLE		5	SAMPLE DESCRIPTION	N					0
P	BLOW NO. DEPTH N-VALUERECOVER						INSTA	ALLATION			T		
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY		4						E
-	16"		(FT)	(POD(%))	(INCHES)					IOG		HNU	S
			(11)	11100(14)	(interice)	Consistence	idowalk						+
						CULCIELE S	Con walk		-				
			1.0	-									
	11	5-1	1-3	24	6	I-C SAND, I	SHICK, moist					BG	1
2	11					-	-11.1						
	13			-		4							1
3	13					-							
	19	5-2	3-5	23	5	concre	te fragments					BG	
4	12				_		4						
	11										-		
5	8											BG	
	2	S-3	5-6.5	9	6]						Boring backfilled with cuttings	
6	5					1					-	and grouted to surface	
	4					1							
7	1	54	6.5-8	12	6	1	•					BG	
	5					1							
8	7												
	6	5.5	8-10	10	5	1						80	
0	9	0.0	0-10			1							
3	2												
10	-					1							
10	0	0.0		DEE	-	-							
	12	3-0	10-11.1	HEF	2							BG	
11	13					-							
	100/1		-			-							
12	-					-			-				
	8	5-7	12-14	19	10	Black f-c S.	AND, trace brick, moist					BG	
13	9					-							
	10						-11.L						
14	32				-				-			S 1 1 1 1 2	
	29	5-8	14-15.4	REF		Very dense	brown fine SAND and	SILT				BG	
15	59					trace m-c S	Sand, moist						
	100/4										_		
16													
	100/4	S-9	16-16.4	REF		some \$	Silt, wet					BG	
17	-					9							
			LEGEND	-		NOTES:							
	S - SP	LIT S	POON SO	IL SAMPLE	1	1	. BG denotes backgro	und read	ing on H	inu			
	U - UN	DIST	URBED S	OIL SAMPL	E								
	C - RC	ск с	ORE SAN	IPLE									
GE	NERAL	NOT	ES:		-								
		1) 51	TRATIFIC	ATION LINI	S REPRES	ENT APPR	XIMATE BOUNDARY	BETWE	EN SOI	TYPES.	TRANSIT	IONS MAY BE GRADUAL.	
		2) W	ATERLE	VEL READ	NGS HAVE	BEEN MAD	E AT TIMES AND UND	ER CON	DITION	S STATE	D. FLUCT	UATIONS OF GROUNDWATE	R
				MAYO	CCUB DUE	TO OTHER	FACTORS THAN THO	SE PRE	SENT A	T THE TI	MEMEAS	UREMENTS WERE MADE	

BORING # B-5

LBA

STAT	E STR	AL ENGIN	CHESTER.	NEW YORK	ANTS	CITY OF ROCHE STONE/COURT/CLIN	STER TON/BROAD	SHEET 2 of 2 JOB # 92189 CHKD. BY
		S	AMPLE			SAMPLE DESCRIPTION		
BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1		100	LINET
/6*		(FT.)	/RQD(%)	(INCHES)			LOG	HNU
					-			
	6 10	10 10 4	DEE		and S	и т .		BG
06	5-10	10-13.4	ner					
100/4					1			
10014					1	w.		
28	S-11	20-20.9	REF	8	becon	nes gray-brown		BG
00/4								
					1			
00/4	S-12	22-22.4	REF	3	Gray-brow	n SILT and fine SAND,		BG
					trace Grav	el, moist		Boring backfilled with cutting
								and grouted to surface
_					-			
57	S-13	24-24.9	REF	10				BG
00/4					-			
					-			
								. PG
00/0	IS-14	26	REF	0	Bottom of	boring at 25.3" with auger refusa		ba
		-					•	
					+			
					1			
	-				1			
	1				1			
		1			1			
				5				
					1			
	-				-			
-					-			
					-			
					-			
	-				-			
	1							
	1							
	1							
		LEGEND			NOTES:			
S - SF	PUTS	POON SC	IL SAMPLE	E				
U - UI	NDIST	URBED S	OIL SAMPL	E				
C - R	OCK C	ORE SAN	APLE		1	a and a second		
NERA	LNOT	TES:			CALT ADD		EN SOIL TYPES TO	NSITIONS MAY BE GRADUAL
	1) 5	THATIFIC	ATION LIN	ES REPRES	DEENT APPE	DE AT TIMER AND UNDER OO	NOITIONS STATED D	UCTUATIONS OF GROUNDWAT
			VEL READ	INCO HAVE	BEEN MA	UE AT TIMES AND UNDER CO	NULLIUNS STATED, FL	UCIUATIONS OF GROUNDWAT

R-1122DPF

APPENDIX B

the state is a set of the set

1.7

GROUNDWATER SAMPLING FIELD LOGS

States of the second

GROUNDWATER MONITORING FIELD FORM

Site Location: Count 54	Site Number:
Weather: Hanne Humid 77°	Date: 8/38/92
well ID/	well Development
PURCE INFORMATION	
Purge Method. Bailer: (] PVC [] Teflon] St. Steel []	Other
· Pump: [] Paristaltic [] Submergible [] Or	ther
- Volume Calculation -	-Groundwater Elevation Calculation-
well Depth (ft) 27.27 BTC	Well Elevation (ft) MSL
Static Water Level (It) 10.18 BTC	Static Water Level (ft)
Depth of Water Column (ft)7.09	Groundwater Eley. MSLft 7
K. Well Constant (gal/ft) X = 16	
Volume Standing in Well 2.7 vailons	
× 10	
Vell Constants (X): 27 gallons	· · · · · · · · · · · · · · · · · · ·
0 16 gai/ft = 2" OD weil: . 0 65 gai/ft = 4" OD weil. Calc to Det	termine Constant:}
Constant X • 0 7854 x (casing diameter in inches) 2 x 12	1
urge Time 4 ant 105° Stop 11 - 5+mt 13/3 stop 13	10 2.5 gal bailed dry Purging Observation Measurements
otal Volume Purged	Brown Very Farlied
of Volume Casings purged	Bailed earthous almost her The
	let recharge for 15 minutes
ampling information: Sample Method. Bailer. [] PVC [] Teflon [] St. Steel [] Other
Pump: () Pansta	the [] Submergible [] Other
ime:	
Number of Bottles Taken: Field Preservet	ion (Y or N):
eld Filtered (Y or N). Date/Time/ Filtering	Method
get of 2	
26.92	
35	
27.27	· · · · ·

1.44

GROUNDWATER MONITORING FIELD FORM

Site Location: South / Court	Site Number:
Weather: Hanne Humid 80-	Date: 8/20/92
Well IDA B-4" (MW-6	
PURCE INFORMATION	
Purge Method. Bailer: [] PVC [] Teflon [] St. Steet [] Ott	
Pump: [] Paristaltic [] Submergible [] Other	
- Volume Calculation -	-Groundwater Elevation Calculation-
Well Depth (11) 2 2.49	Well Elevation (ft) MSL
Static Water Level (ft) 12.34BTC	Static Water Level (It)
Depth of Water Column (ft)	Groundwater Elev. MSLft
X. Well Constant (gal/ft) X = 16	
Volume Standing in Well/. 6 & gallons	
¥ 10	
Well Constants (X) - 16,2 pall	
[0 16 gai/ft = -2" OD weil: _0 65 gal/ft = 4" OD weil. Cale to Determ	nine Constant:]
[Constant X = 0.7854 x (casing diameter in inches) 2 x 12]	
IT MI	
Purge Time. <u>431110</u>	Purging Observation Measurements
Total Volume Purged /7 gallons	Black, - the no odor
of Volume Casings purged 10+	Verytunted tid not clean
Sampling Information - Sample Method. Bailer. [] PVC []	Teflon [] St. Steel [] Other
Pump: [] Paristaltic	[] Submergible [] Other
Time:	
Number of Bottles Taken: Field Preservation ((Y or N):
Field Filtered (Y or N). Date/Time// Filtering Meth	hod
Sample Appearance:	
Page 1 of 2	
22.14	•
33	

4

	6	line
GROUNDWATER MONIT	ORING FIELD FORM	npuig
succession Count-54	Site Number:	9
Weather:	Date: 9/2/92	
Well IDA R-2 (MIN/5)		
PURCE INFORMATION		
Purge Method. Bailer: [] PVC Teflon [] St. Steel [] Othe	u	
Pump: [] Paristaltic [] Submergible [] Other		
- Volume Calculation -	-Groundwater Elevation Calculation-	_
Well Depth (ft) 27.27'	Well Elevation (ft) MSL	
Static Water Level (It) 10,42	Static Water Level (ft)	de la
Depth of Water Column (ft) 16.85	Groundwater Eley. MSL ft	. w
X Well Constant (gal/ft) X . 16		
		1-
Well Constants (X) ~ gallons for.	S Volumes	T.
[0 16 gai/ft + 2" OD weil: . 0 65 gai/ft + 4" OD weil. Calc to Determ	ine Constant:)	
Constant X = 0.7854 x (casing diameter in inches) = x 12	Detroleumedor	- opena
Purge Time 25 Mim	Purging Observation \Measurements	
Total Volume Purged	light Brown moderate	the tarlin
I of Volume Casings purged -3	Bailed uppl almost dry.	ESEA DI
	millet recharge helore a	mating
Sampling Information Sample Method. Bailer. PVE 14	Teflon () SL Steel () Other	-A. 7.
Pump:-() Paristaltic	[] Submergible [] Other	
Time: 1605 Water level at	20.45'BTC strine of sampling Th	unge
4		
Field Filtered (Y & N) Des Time	HEL-IN VOA-3-	
Sample Appearance		
Page 1 of 2	and the second se	an a
set		

GROUNDWATER MONITO	DRING FIELD FORM
Site Location: South + Count	Site Number:
Weather: Morthy Simmy 75°	Bate: 9/2/62
weil IDA B-4 YMW-G	
PURCE INFORMATION	
Purge Method. Bailer: [] PC [X Teflon []] St. Steel [] Other	
Pump: [] Paristaltic [] Submergible [] Other_	· · · · · · · · · · · · · · · · · · ·
- Volume Calculation -	-Groundwater Elevation Calculation-
Well Depth (ft) 22.49 RTC	Well Elevation (It) MSL
Static Water Levei (ft) 12.32 BTC	Static Water Level (ft)
Depth of Water Column (ft)	Groundwater Elev. MSLft
X. Weil Constant (gai/ft) X =, 16	
Volume Standing in Well ~1.6 gailons	
Well Constants (X)	National States
[0 16 gal/ft • 2" OD weil: . 0 65 gal/ft • 4" OD weil. Calc to Determin	e Constant:)
[Constant X = 0.7854 x (casing diameter in inches) 2 x 12 -]	12.72 atten pu
711	
Purse Time - 15 Min	BTC
Purge Time - 15 Min	Purging Observation Measurements
Purge Time - 15 Min Total Volume Purged: 5- gailons A of Volume Casings purged 3+	Purging Observation Measurements 15 Valer Clear Black of Wottom Black of the third
231. Purge Time - 15 Min Total Volume Purged	Purging Observation Measurements 1st Valley clear Black of Wottom Black after that von Farhid
231. Purge Time - 15 Min Total Volume Purged	BTC Purging Observation Measurements <u>1strailer clear Black of thettom</u> <u>Black after that vou farhid</u> non) I St. Steel (] Other
231. Purge Time	Purging Observation Measurements <u>Isthalen clean Black of Vottom</u> <u>Black after that von Farhid</u> flon) J St. Steel (J Other
231. Purge Time - 15Min Total Volume Purged	Purging Observation Measurements <u>Isthaler clear Black of Vottom</u> <u>Black after that vou tarkid</u> non) I SL Steel (] Other <u>Tsubmergible () Other</u> <u>A</u> - <u>A</u>
231. Purge Time - 15 Min Total Volume Purged	Purging Observation Measurements <u>Istrailer clear Black of trottom</u> <u>Black after that vow Farbid</u> non) I SL Steel () Other T Submergible () Other T Submergible () Other T Submergible () Other T Submergible () Other HCL in bottles from labello
231. Purge Time <u>15Min</u> Total Volume Purged <u>5</u> gailons and Volume Casings purged <u>34</u> <u>Sampling information</u> Sample Method. Bailer. [] PVC(<u>M</u> Te <u>Pump</u> : Paristance Time: <u>15:45</u> <u>QC 5:72</u> <u>3VOA 2 POTH</u> <u>1-105</u> <u>4</u> Number of Bottles Taken: <u>Field Preservation</u> (<u>V</u> Field Filtered (<u>Y or N</u>). Pate/Time <u></u> Filtering Method	Purging Observation Measurements <u>Isthaler clear Black of Votion</u> <u>Black after that vou Farhid</u> non) I SL Steel (] Other T Submergible () Other T Submergible () Other <u>T Submergible () Other</u> <u>HCL in bottles from labelie</u>
231. Purge Time	Purging Observation Measurements <u>Isthalen clean Black of Notition</u> <u>Black after that von tarkid</u> non) I SL Steel [] Other Tsubmergible [] Other <u>Submergible [] Other</u> <u>Mon] -4 liten</u> <u>Mon] -4 liten] -4 </u>
Purge Time	Purging Observation Measurements <u>Isthalen clean Alack at thettom</u> <u>Black after that vou tarkid</u> non)] St. Steel (] Other Tsubmergible () Other Tsubmergible () Other <u>TSubmergible () Other</u> <u>HCL in bottles from labeles</u>
231. Purge Time <u>15 Mim</u> Total Volume Purged <u>5</u> gallons a of Volume Casings purged <u>34</u> Sampling Information: Sample Method. Bailer. [] PVC (A Te Pump:] Paristance Time: <u>15:45</u> QC 5:42 Work 2 for Hydroech 3 VOR 2 for Hydroech 3 VOR 2 for Hydroech 5 Field Preservation (Y Field Filtered (Y (N). Pate/Time Filtering Method Sample Appearance: <u>Black</u> , Very turkind Page 1 of 2	Purging Observation Measurements <u>Istbalen clean Black at Thettom</u> <u>Black after that vou farhid</u> non) I St. Steel () Other Tsubmergible () Other man 1-4 liten <u>LCP</u> Liten bottles from labello
Purge Time. <u>15 Min</u> Total Volume Purged <u>5</u> gallons a of Volume Casings purged <u>34</u> <u>Sampling Information</u> Sample Method. Bailer. [] PVC [A Te Pumg: Paristaine to Rec Site Number of Bottles Taken: <u>Field Preservation</u> (N) Field Filtered (Y (N) Pate/Time <u>Filtering Method</u> Sample Appearance: <u>Black</u> , Very turking Page 1 of 2	Purging Observation Measurements <u>Isthalen clean Black at Wottom</u> <u>Black after that very Farbid</u> non! I St. Steel (] Other Tsubmergible () Other man 1-4 loten <u>D</u> ICE in bottles from lab (Vo <u>D</u> ICE in bottles from lab (Vo
Purge Time -/5Mim Total Volume Purged 5 gailons 3+ of Volume Casings purged 3+ Sampling information: Sample Method. Bailer. [] PVC [A] Te Pump: Paristance: Time: 15:45 QOR 240.14 Subscription: Subscription: Subscription: Subscription: Subscription: Subscription: Pump: Paristance: Subscription: Subscription: Subscription: Subscription:	Purging Observation Measurements <u>Istrailer clean Alack at the thom</u> <u>Alack after that vor tarkid</u> non) I St. Steel (] Other T Submergible () Other T Submergible () Other <u>T Submergible () Other</u> <u>T C HCL in bottles from lab (US</u> <u>A</u>

APPENDIX C

ANALYTICAL DATA

the internet

SEPT 15 1992

Mr. Dennis Peck Labella Associates 300 State Street Rochester, NY 14614

Re: Monitoring Wells

Dear Mr. Dennis Peck

Enclosed are the results of the analysis requested. • All data has been reviewed prior to report submission. Should you have any questions please contact me at 454-3760.

Thank you for letting us provide this service.

Sincerely,

GENERAL TESTING CORPORATION

1:2 with the in

Marshall Shannon Customer Service Director

Enc.

710 Exchange Street • Rochester, NY 14608 • Tele: (716) 454-3760 • Fax: (716) 454-1245 85 Trinity Place • Hackensack, NJ 07601 • Tele: (201) 488-5242 • Fax: (201) 488-6386 435 Lawrence Bell Drive • Amherst, NY 14608 • Tele: (716) 634-0454 • Fax: (716) 634-9019

Effective 10/1/91

GTC LIST OF OUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

 U - Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.

- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits.
 (Flag the entire batch Inorganic analytes only)
- Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

COMPANY: LABELLA ASSOCIATES Monitoring Wells JOB #: R92/03834

PETROLEUM HYDROCARBONS

Labella water samples were analyzed for Petroleum Hydrocarbons using NYSDOH method 310-13.

The Petroleum Hydrocarbons detected in the sample R92/03834-001 did not match the "fingerprint" of any of the standard analyzed, therefore the sample was quantitated as n-Dodecane as per methodology. In addition there were other later eluting peaks present in this sample that were not quantitated by this method.

The matrix spike(MS) and matrix spike duplicate(MSD) were both outside recommended QC limits on sample R92/03834-001, however the reference spike recovery and precision data were acceptable. This was probably caused by matrix interferences in the sample.

No other analytical or QC problems were encountered with this analysis.

LABORATORY REPORT

Job No: R92/03834 Date: SEPT 15 1992

Client:

Received

Mr. Dennis Peck Labella Associates 300 State Street Rochester, NY 14614 Sample(s) Reference

Monitoring Wells

: 09/02/92

P.O. #:

Sample:	1 -001	-002
Location:	8-4	B-2
Date Collectoria	100/02/02	109/02/92
Time Collected:	115:45	16:05
Date Analyzed:	9/10/92	9/10/92
Dilution:	11	150
Chloromethane	1 15.0 U	1 250 U
Bromomethane	15.0 U	250 U
Vinyl Chloride	15.0 U	250 U
Chloroethane	15.0 U	250 U
Methylene Chloride	15.0 U	250 U
Acetone	110 U	500 U
Carbon Disulfide	10 U	1 500 U
Vinyl Acetate	110 U	500 U
1,1-Dichloroethene	15.0 U ·	250 U
1,1-Dichloroethane	15.0 U	250 U
trans-1,2-Dichloroethene	15.0 U	250 U
cis-1,2-Dichloroethene	15.0 U	250 U
Chloroform	15.0 U	250 U
2-Butanone (MEK)	110 U	1 500 U
1,2-Dichloroethane	15.0 U	250 U
1,1.1-Trichloroethane	15.0 U	1 250 U
Carbon Tetrachloride	15.0 U	1 250 U
Bromodichloromethane	15.0 U	1 250 U
1,2-Dichloropropane	15.0 U	250 U
1,3-Dichloropropene (Trans)	15.0 U	250 U
Trichloroethene	15.0 U	250 U
Dibromochloromethane	15.0 U	250 U
1,1,2-Trichloroethane	15.0 U	250 U
Benzene	15.0 U	250 U
1,3-Dichloropropene(Cis)	15.0 U	250 U
Bromoform	15.0 U	250 U
4-Methyl-2-pentanone(MIBK)	110 U	500 U
2-Hexanone	110 U	1 500 U
Tetrachloroethene	15.0 U	250 U
1,1,2,2-Tetrachloroethane	15.0 U	250 U
Toluene	15.0 U	1 1400
Chlocobenzene	15.0.11	1 250 11

LABORATORY REPORT

Job No: R92/03834

Date: SEPT 15 1992

Client:

Mr. Dennis Peck Labella Associates 300 State Street Rochester, NY 14614 Sample(s) Reference

Monitoring Wells

Received	:	09/02/92	P.O. #:	
HSL VOLATILES	5 BY EPA	METHOD 8240*	ANALYTICAL RESUL	LTS - ug/l
Sample:	-001	-002	1 1 1	1 1
Location:	B-4	B-2		
Date Collected:	09/02/92	09/02/92		
Time Collected:	15:45	16:05		
Date Analyzed:	9/10/92	9/10/92]	
Dilution:	11	50		
Ethylbenzene	1 5.0 U	1400	i i i	
Styrene	5.0 U	250 U	i i i	
Total Xylene (o,m,p)	5.0 U	6700 		
Surrogate Standard Recoveries				

1,2-Dichloroethane-d4 (Acceptance limits: 76-114%)	96	99		
Toluene d8 (Acceptance limits: 88-110%)	97	99		
4-Bromofluorobenzene (Acceptance limits: 86-115%)	107	104		
	Î.	i in in	1 1 1	ii

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

Thele K. K.

Laboratory Director

LABORATORY REPORT

Job No: R92/03834

: 09/02/92

Date: SEPT 15 1992

Sample(s) Reference:

Monitoring Wells

P.O. #:

Client: Mr. Dennis Peck Labella Associates 300 State Street Rochester, NY 14614

Received

Sample: -001 -002 Location: B-4 B-2 Date Collected: 09/02/92 09/02/92	
Location: B-4 B-2 I <	
Date Collected: 09/02/92 09/02/92 1 1 1 1	
Time Collected: 15:45 16:05 1 1 1	
Petroleum Hydrocarbons, GC	
Date Extracted: 09/03/92 09/03/92	
Date Analyzed: 09/10/92 09/10/92	
Gasoline 610	
Kerosene	
Fuel Oil #2	
Fuel Oil #6	
as n-Dodecane 43	
Diesel Fuel	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Plan A 1

Laboratory Director

HSL VOLATILE ORGANICS - AQUEOUS SAMPLE WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY Lab Name: General Testing Corp. Matrix Spike - Sample No. : R92/03834 -001

COMPOUND	SPIKE ADDED (ug/1)	SAMPLE CONCENTRATION (ug/l)	MS CONCENT. (ug/1)	MS % REC #	QC LIMITS REC.
1.1-Dichloroethene	50	0.0	48	96	D-234
Trichloroethene	50	0.0	51	102	71-157
Benzene	50	0.0	50	100	37-151
Toluene	50	0.0	53	106	47-150
Chlorobenzene	50	0.0	51	102	37-160
					l

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. -(ug/1)	MSD % REC #	% RPD #	QC RPD	LIMITS
1.1-Dichloroethene	50	47	94	2	30	D-234
Trichloroethene	50	48	96	6	30	71-157
Benzene	50	47	94	6	30	37-151
Toluene	50	52	104	2	30	47-150
Chlorobenzene	50	50	100	2	30	37-160

Columns to be used to flag recovery and RPD values with *.
* = Values outside of QC limits
MS QC Limits = EPA Acceptance Criteria
RPD Limits = Internal Acceptance Criteria

PPD: 0 out of 5 outside limits pike Recovery: 0 out of 10 outside limits

COMMENTS:

page 1 of 1

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENT.	%	LIMITS
	(ug/L)	(ug/l)	(ug/L)	REC #	REC.
Fuel Oil #2	20 U	20 U	3100	31 *	62-140

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENT. (ug/l)	MSD % REC #	% RPD #	QC RPD	LIMITS REC. ======
Fuel Oil #2	20 U	3200	32 *	3	. 30.	62-140

Columns to be used to flag recovery and RPD values with an asterik

- * Values outside of QC limits
- +* No Limits Currently Established

```
RPD: 0 out of 1 outside limits
Spike Recovery: 0 out of 2 outside limits
```

COMMENTS:

page 1 of 1

FORM III VOA-1 NYSDEC B-85

A Full Service Environmental Laboratory LABORATORY REPORT

Client:

Mr. Dennis Peck Labella Associates 300 State Street Rochester, NY 14614 Job No: R92/03834 Date: 15 SEPT, 1992

ii	REFEREN	ICE CHECK	
Petroleum Hydrocarbons, GC	TRUE VALUE	% RECOVERY	ACCEPTANCE LIMITS (%)
Date Extracted: 09/03/92			
Date Analyzed: 09/10/92		1	1
Gasoline			1 *+
Kerosene			*+
Fuel Oil #2	10000100	98	62 - 140
· as n-Dodecane	1 - 30		*+
11			
11			
11			
			1
il		i i	1
11			

*+Limits currently not established

Lab Director

	GI	ENERAL TESTING	COR	PORAT	ION/CI	HAIN-O	F-CUST	ODY RE	CORD	1	с. ¹ . м
	710 Exchange S Rochester, NY 1	4608 Hackensack.	ce NJ 07	4. 601 A	mherst,	NY 1422	1-7077	Client P	roject N	0	_
	Sample Originatio	on & Shipping Information	wit	5+							-
	Address		-								_
		Street	4	Lity 1			State	7.	1.7	D/Zip	
	Collector_	DENNIS	2 7	2CK				Imm	10/1/	1de	-
		Print 2		~ ~			T.		gnature		
	Bottles Pre	pared by	Te.	27	Re	c'd by	4: L:	2nt			-
	Bottles Ship	pped to Client via	111		Se	al/Shipp	ung #				- '
	Samples Sh	nipped via	CLI	Chit	Se	al (Shipp	ing #				
	Sample(s) Reling	uished by:	~	1	Rece	ived by:			Da	te/Time	
	1. Sign	Tanno. Mt	Til	2	1. Sig	n Tr	m H	asters	0191	1 192	-
	for /	LaBella			for		GTC		- 10	: 33	
	2. Sign				2. Sig	ŋn			1 1		
	for		_		for						
	3. Sign				3. Si	<u>jn</u>					
	for				101	1.7					
	Sample(s) Receiv	ed in Laboratory by	1	in	- <u>_</u> .	ta.24	"hyper		112 1-1	201	<u>(*:)</u>
	Client I D.#	Sample Location	1.		Analyte or		Sampi	e Prep	Bot	tle Set(s)	i
	Lab#	Date/Time	*	Analyte (Group(s) H low for add	itional)	Y N	Y N	(Se	e below)	
			1	TPI	H by. G	2					1
	001	R-4	W	VOA	- 5740				8	3 11	3/
1	092 3824		T	- Von	- 0.67-						-
		91219215.45									Stark 1
-			1	TPH	1 by GC	-				, ,	
	002	R-2	W	UDA	- 824				11,	3,5	
2	207 28741	Da			sap				1		
	Mar and and	912 192 16:05						•			
-			1	1							
3			1								
*	-	/ / :									
-			1	T		-					1220
4											
		/ / :								-	
			1	1							
5			1								
		/ /= :		-							
	Lise Bottle No. fo	r indicating type bottles	used	in each b	ottle set a	nd fill in	box with #	of bottle	s used fo	r each typ	e.
		in maiotaning type bottled					1 7	0	0	10	1 1 1
	Bottle No.	1 2	3	4	5	16.07	0	Gal	Steni	10	

Bottle NO.		6	0	-						
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	QL Pl.	Gal. PTGL	Steni. Pl.	
# of each	2		1							

Additional Analytes

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

* Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(X), ____(Y).

APPENDIX B

Current de

Analytical Results Sample B-507

ALFRED TECHNICAL & ANALYTICAL LABORATORY SCIENCE & ENGINEERING TECHNOLOGY INTERNATIONAL

	11014E#(007)367-8377/9444	FAX#(607)587-9652/9535	P 200 P	O Box 848 Main St
			Alfred.	NY 14802
REPORT	ON 13277			
Name: Address	LaBella Associates : 300 State Street			
	Rochester, NY 14614			
Date SA	MPLE RECEIVED: May 14, 19	93 Date REPORTED:	Jun 10, 1	.993
Sample	Name: Court/Stone			
Samplin	g address: Sta No. 001.			
Samplin	g POINT: B507 (14 - 1	16')		
Collect	ed By: Dennis M. Peck	ON: May 1	3, 1993	AT
2:40 pm Sample	Charactoristics			
pambre	DHASE LAVEDS (1 bila	towned fi multilemen		
	· FIRDE LATERO [] DITA)	rered [] multilayer	ed 🛛 non	8-
B	PHYSICAL STATE at 7000	Licolid [1]ionid [1	abbas	
B	• PHYSICAL STATE at 70°F • DH RANGE [1>2 [12-4	[]solid []liquid []	other	
B C	. PHYSICAL STATE at 70°F . PH RANGE []>2 []2-4	[3] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10	other []10-12 []	<12
B C TEST DE	• PHYSICAL STATE at 70°F • PH RANGE []>2 []2-4 SIRED: Volatile Organic	[3]solid []liquid [] []4-6 []6-8 []8-10	other []10-12 []	<12
B C TEST DE CONFIRM	• PHYSICAL STATE at 70°F • pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY:	[]solid []liquid [] []4-6 []6-8 []8-10 cs	other []10-12 []	<12
B C TEST DE CONFIRM	. PHYSICAL STATE at 70°F . pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY:	[A]solid []liquid [] []4-6 []6-8 []8-10 cs method	other []10-12 []	<12
B C TEST DE CONFIRM <u>CAS#</u>	. PHYSICAL STATE at 70°F . pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u>	[3]solid []liquid [] []4-6 []6-8 []8-10 cs <u>method</u> <u>code MDL</u>	other []10-12 [] <u>result</u>	<12
B C TEST DE CONFIRM <u>CAS#</u> 71-43-	<pre>• PHYSICAL STATE at 70°F • pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene</pre>	[A]solid []liquid [] []4-6 []6-8 []8-10 cs <u>method</u> <u>code</u> <u>MDL</u> EPA8260 10	other []10-12 [] <u>result</u>	unit
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 	[A]solid []liquid [] []4-6 []6-8 []8-10 cs <u>method</u> <u>code MDL</u> EPA8260 10 EPA8260 10	other []10-12 [] <u>result</u> 46 <10	<12 unit ug/Ke
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10 cs <u>method</u> <u>code</u> <u>MDL</u> EPA8260 10 EPA8260 10 EPA8260 10	other []10-12 [] <u>result</u> 46 <10 <10	<12 unit ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10 cs <u>method</u> <u>code</u> <u>MDL</u> EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10	other []10-12 [] <u>result</u> 46 <10 <10	<12 unit ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 2 Bromoform 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10 cs <u>method</u> <u>code</u> <u>MDL</u> EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10	other []10-12 [] <u>result</u> 46 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 2 Bromoform 9 Bromomethane 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 2 Bromoform 9 Bromomethane 8 n-Butylbenzene 	[]solid []liquid [] []4-6 []6-8 []8-10 code MDL EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51- 135-98-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 2 Bromoform 9 Bromomethane 8 n-Butylbenzene 8 Sec-Butylbenzene 	[]solid []liquid [] []4-6 []6-8 []8-10 code MDL EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10 EPA8260 10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51- 135-98- 98-06-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 4 Bromodichloromethane 2 Bromoform 9 Bromomethane 8 n-Butylbenzene 8 sec-Butylbenzene 6 tert-Butylbenzene 	[]solid []liquid [] []4-6 []6-8 []8-10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51- 135-98- 98-06- 56-22-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 4 Bromodichloromethane 2 Bromoform 9 Bromomethane 8 n-Butylbenzene 8 sec-Butylbenzene 6 tert-Butylbenzene 6 Carbop Motrocollorical 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51- 135-98- 98-06- 56-23-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<12 unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51- 135-98- 98-06- 56-23- 108-90-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: <u>analyte</u> 2 Benzene 1 Bromobenzene 5 Bromochloromethane 4 Bromodichloromethane 4 Bromodichloromethane 2 Bromoform 9 Bromomethane 8 n-Butylbenzene 8 sec-Butylbenzene 6 tert-Butylbenzene 5 Carbon Tetrachloride 7 Chlorobenzene 	[] solid [] liquid [] [] 4-6 [] 6-8 [] 8-10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko
B C TEST DE CONFIRM <u>CAS#</u> 71-43- 108-86- 74-97- 75-27- 75-25- 74-83- 104-51- 135-98- 98-06- 56-23- 108-90- 75-00-	 PHYSICAL STATE at 70°F pH RANGE []>2 []2-4 SIRED: Volatile Organic ATORY: analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane sec-Butylbenzene sec-Butylbenzene carbon Tetrachloride Chlorobenzene Chloroethane 	[]solid []liquid [] []4-6 []6-8 []8-10	other []10-12 [] <u>result</u> 46 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<12 unit ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko ug/Ko

EPA8260

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

10

10

10

10

10

10

10

10

10

10

ug/Kg

Continued on next page

74-87-3

95-49-8

106-43-4

124-48-1

106-93-4

74-95-3

95-50-1

541-73-1

106-46-7

96-12-8

Chloromethane

propane

2-Chlorotoluene

4-Chlorotoluene

1,2-Dibromoethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Dibromomethane

Dibromochloromethane

1,2-Dibromo-3-chloro-

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory in any form may not be used in any circumstance in advertising to the general public without the prior written approval from the laboratory director. The results apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Limitations of Liability-Due diligence was used in approving the release of professional results, but in an instance where it should fail, the liability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consequential damages, claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale : Laboratory Director

ALFRED TECHNICAL & ANALYTICAL LABORATORY SCIENCE & ENGINEERING TECHNOLOGY INTERNATIONAL

NYSDOH# 11299

PHONE#(607)587-8377/9444

FAX#(607)587-9652/9535

PO Box 848 200 N. Main St. Alfred, NY 14802

.....Continuation of Sample #13277

75-71-8	Dichlorodifluoromethane	EPA8260	10	<10	na/Ka
75-34-3	1,1-Dichloroethane	EPA8260	10	<10	ug/Kg
107-06-2	1.2-Dichloroethane	EPA8260	10	<10	ug/Kg
75-35-4	1.1-Dichloroethylene	EPA8260	10	<10	ug/Kg
156-59-2	cis-1.2-Dichloroethylene	EPA8260	10	<10	ug/Kg
156-60-5	trans-1.2-Dichloroethylene	EPA8260	10	<10	ug/Kg
78-87-5	1.2-Dichloropropane	EPA8260	10	<10	ug/Kg
142-28-9	1.3-Dichloropropane	EPA8260	10	<10	ug/Kg
594-20-7	2.2-Dichloropropane	EPA8260	10	<10	ug/kg
563-58-6	1 1-Dichloropropene	FDA9260	10	<10	ug/kg
100-41-4	Ffhylbenzene	FD18260	10	<10	ug/kg
87-68-3	Hevachlorobutadiene	EPA0200	10	<10	ug/kg
98-82-8	Tsopropylbepzepe	EPA0200	10	<10	ug/Kg
90-97-6	n-Isopropyidenzene	EPA0200	10	<10	ug/kg
75-09-2	Methylene chloride	EPA0200	10	<10	ug/kg
01-20-2	Naphthalono	EPA6200	10	<10	ug/kg
102-65-1		EPA8200	10	<10	ug/Kg
103-03-1	MetropyIDenzene Metrophiereethulene	EPA8260	10	80	ug/Kg
127-10-4	<i>Cturene</i>	EPA8260	10	<10	ug/Kg
100-42-5	Styrene	EPA8260	10	<10	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	EPA8260	10	<10	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	EPA8260	10	<10	ug/Kg
108-88-3	Toluene	EPA8260	10	1670	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	EPA8260	10	<10	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	EPA8260	10	<10	ug/Kg
71-55-6	1,1,1-Trichloroethane	EPA8260	10	<10	ug/Kg
79-00-5	1,1,2-Trichloroethane	EPA8260	10	<10	ug/Kg
79-01-6	Trichloroethylene	EPA8260	10	<10	ug/Kg
75-69-4	Trichlorofluoromethane	EPA8260	10	<10	ug/Kg
96-18-4	1,2,3-Trichloropropane	EPA8260	10	<10	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	EPA8260	10	<10	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	EPA8260	10	164	ug/Kg
75-01-4	Vinyl chloride	EPA8260	10	<10	ug/Kg
	Xylene (total)	EPA8260	10	1409	ug/Kg

Date analyzed: Remarks: USEPA methods

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory in any form may not be used in any circumstance in advertising to the general public without the prior written approval from the laboratory director. The results apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Limitations of Liability-Due diligence was used in approving the release of professional results, but in an instance where it should fail, the liability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consequential damages, claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale : Laboratory Directon

APPENDIX C

Monroe Monitoring and Analysis Report on Limited Soil Gas Survey 2/12/93

PHASE II ENVIRONMENTAL AUDIT REPORT

LIMITED SOIL GAS SURVEY

190 COURT STREET ROCHESTER NEW YORK

Prepared for

Mitchell T. Williams, Esq.

Prepared by

Richard J. Bianchi Environmental Auditor

Monroe Monitoring & Analysis, Inc.

Monroe Monitoring & Analysis, Inc. 1425 Mt. Read Blvd. Rochester, New York 14606

PHASE II ENVIRONMENTAL AUDIT REPORT

Client:	Mitchell T. Williams, Esg.
Contact:	Mr. Tom McEwen
Project:	Soil Gas Survey - Speedy Dry Cleaners
Location:	190 Court Street
Date:	February 12, 1993
Project No .:	932-20
Author:	Richard J. Bianchi
Technicians:	Richard J. Bianchi and John T. Yaeger

Purpose

This site, a parcel of land approximately 7,000 square feet in size, is under review for demolition by the City of Rochester. Currently, a dry cleaning facility occupies the site.

Based on an interview with Tom McEwen representing Speedy Cleaners, a potential environmental concern was expressed which required additional investigation beyond a Phase I study. The concern expressed during the preliminary investigation is the potential problem involving two storage tanks buried in the basement at the Northwest of the property. Hazardous materials (dry cleaning solvent and fuel oil) were historically stored in these tanks and may have spilled, overflowed or leaked over the period of use. Primary concerns for such a site would be the presence of petroleum based solvents and fuels. Mr. McEwen stated that the two tanks were used to hold fuel oil and dry cleaning solvent and were used until water was found in the stored materials. At this time, the tanks were drained and taken out of service.

Tanks were also observed holding dry cleaning solvent on the main floor in the washroom area of the facility and in the basement. These tanks present a potential concern due to spillage in the area of the tanks. In the event of spillage, these volatile materials could escape into the soil beneath the building, presenting a potential concern for demolition workers and the future occupants of the site and building. To address these concerns, a limited soil gas survey was

recommended to determine if in fact, volatile organics are present.

Methods

-

9.4

-

A limited soil gas survey of the site was conducted using a stainless steel soil gas probe and hammer attachment in conjunction with a Thermo-Environmental 580B Organic Vapor Meter. The 580B was calibrated by challenge to a calibration gas of known concentration prior to field use. An automatic Data Logger was used to store information which was later down loaded into the a personal computer and printed (see appendix for results).

The stainless steel soil gas probe was driven into the area of the buried tanks from the basement of the building to a depth of approximately 2' or until the probe tip made contact with a tank, utilizing a manual hammer attachment. Boreholes reaching a depth of approximately 1 foot were also made into the concrete slab in the washroom area. When the target depth was reached at each site, a Teflon tube was inserted into the probe and passed down to the probe tip. This tube was then attached to the Thermo-Environmental Organic Vapor Meter (OVM), and a sample of soil gas withdrawn by the OVM internal pump.

The survey was conducted on a day with significant precipitation in the form of snow with an outdoor air temperature of approximately 24 degrees Fahrenheit. Subsurface conditions were dry in all areas of soil gas testing. The survey was conducted by Mr. Richard Bianchi and Mr. John T. Yaeger, both environmental field technicians with Monroe Monitoring & Analysis, Inc.. Mr. Bianchi and Mr. Yaeger are experienced in the collection of environmental samples for analysis of trace concentrations of organic and inorganic chemicals, and the use of soil gas probes and direct reading instrumentation.

Sample Location Selection

Based on the size and shape of the areas, four sites were selected to adequately represent subsurface conditions in the area of the decommissioned tanks in the basement tank vault area. Two sampling points were selected in the area of the dry cleaning washroom where dry cleaning solvents are currently stored. A drill was used to penetrate through a cinder block wall in the tank vault area and through the concrete slab floor in the washroom area.

Results

ALC: NO

a subler

A Course of

-

Contraction of

Contractor of

A NUMBER

A DESCRIPTION OF

A second

Of the six sites selected, the two sites on the main floor yielded greatly elevated levels of organic vapor (see data sheets). The remaining sites, all in the basement in the area of the buried tanks, yielded levels of organic vapors typical of background levels or less (see data sheet). Background levels in the basement area were typically in the range of 12 to 16 ppm. The sample readings typically reached a peak reading and dropped off slightly.

The two sites located above on the main floor (S-5 and S-6) produced a significant response from the OVM, indicating the presence of volatile organic vapors significantly above background levels. Background levels in this area were in the range of 65 to 80 ppm. Samples were collected about 1 foot into the concrete slab at locations S-5 and S-6 and indicated organic vapor levels of 175 ppm and 1585 ppm respectively. It should be noted that these readings were obtained in the concrete slab and do not necessarily represent conditions in the soil below the slab.

A site plan, indicating survey locations is attached.

In conjunction with the soil gas survey, a direct reading was collected in the Machine Pin Trap which is an open system. This area produced an average reading of about 2400 ppm. The results of this monitoring indicated significant quantities of organic vapor being released to the building air from this point.

Conclusions and Recommendations

Survey results indicate significant quantities of volatile organic solvents or petroleum hydrocarbons within sections of concrete slab floor at a depth of approximately 1 foot in the current solvent storage area of the dry cleaning washroom. The sample locations in the basement did not indicate environmental problems associated with the abandoned tanks, however subsurface conditions could vary.

In summary, our survey indicates that parts of the foundation slab are saturated with organic solvents used in the dry cleaning process. It is our conclusion that portions of the foundation and possibly the soil below may need to be removed and disposed of as contaminated material prior to any new construction on the property. Laboratory testing of the excavated material would be necessary to determine the disposition of this material.

Additional investigation/sampling of the underlying soil and the surrounding areas may be warranted to determine the extent of the solvent migration beyond the confines of the building foundation. It is our recommendation however, that screening of soil and debris be considered during the demolition/excavation process.

SOIL GAS SURVEY LOCATION MAP

Bibliote and Bibliote a

:

Reibutsh

421454

And and

Autoria a

(Sauges)

122211221

1

With Station of Stations of Station of Stations N STATE -5.3-Speedy CLEANERS 190 Court Street 2 TANK 5-2-JAULT Z Linder block Wall 5-1-. Share BASEMENT 5-4 2 \bigcirc Series Ser 1 ELEVATOR 3 3 · ma http://www.second.com 1634 5-6-2.0 INAS' ROOM ARED 334

FIELD DATA SHEET

-

e tratte

FREE

L'and - -

the second

. Bennera

- -

]____

-

Without a

HGers

Pital a

Theread

-

Baca a

PHAN

Persona P

Carrier and an

The state

Monroe Monitoring & Analysis, Inc.

DIRECT READING INSTRUMENTS DATA SHEETS

CLIENT :	Soeed	2. Clea	iners	1.200 Mar 1
LOCATION : ·	190	Court	Street	
DATE :	2-12-93			

TIME	LOCATION	HNU	OVAM Ppm	H2S	02	LEL	DETECTOR	OTHER Peak	
1154	5-1 NorthWall East		6.7					8.7	
1201	5-2 Northiball Center		12.6						
1210	5-3 No: th wall west		8.6					10.6	
1217	5-4 North Wall East		09					2.9	8-1.2 ppm
1238	5-5 Dry Cleanina Washroo		175					334	
1235	5-6 Druilleanny Washroom		1585					1635	
	5 5								
								4 1 4	1
								1	
				20					1
			-						
			1.11						

WEATHER A.M. 25° snowing 1-2" per hour P.M.

COMMENTS:

5-5 1228 > peak at 334 ppm (direct reading in hole 1st floor Andrient range from 65-80 ppm Machine Pin Trap Sample 2405 ppm

DATALOGGER INFORMATION

* * *

.7

. . .

.

•

580	VER. 1.	5		
102/12/9	3 1115 ENT #	000000		
SER I.	D. #	000000	0	
OPERATI	NG MODE	: CONC. ME	TER	
1		LOC.	PPM	STATUS
/12/93	1115	000003	08.7	
52/12/93	1116	000004	06.7	
12/12/93	1118	000005	10.6	
/12/93	1119	000007	26.1	ALARM
12/12/93	1120	000008	32.0	ALARM
r'12/93	1121	000009	06.7	
12/93	1122	000010	08.7	
2/12/93	1123	000011	04.8	
2/12/93	1124	000012	02.9	
12/93	1125	000013	02.9	
2/12/93	1127	000015	02.9	
1 '12/93	1128	000016	00.9	
1/12/93	1129	000017	02.9	
2/12/93	1130	000018	00.9	
1/12/93	1132	000019	02.9	
12/93	1133	000020	02.9	
2/12/93	1135	000021	02.9	
1/12/93	1136	000023	02.9	
1.'12/93	1137	000024	02.9	
2/12/93	1138	000025	02.9	
12/93	1139	000026	02.9	
7/12/93	1140	000027	02.9	
2/12/93	1141	000028	02.9	
12/93	1143	000029	04.8	
1/12/93	1144	000031	12.6	
2/12/93	1145	000032	12.6	
12/93	1146	000033	20.3	
12/93	1147	000034	14.5	
2/12/93	1148	000035	10.6	
12/93	1149	000036	22.3	
2/12/93	1151	000037	20.3	
2/12/93	1152	000039	14.5	
1 12/93	1153	000040	10.6	
12/93	1154	000041	04.8	
2/12/93	1155	000042	12.6	
/12/93	1156	000043	10.6	
3/12/93	1150	000044	12.6	
12/93	1159	000045	02.9	
12/93	1200	000047	18.4	
1/12,'93	1201	000048	18.4	
7/12/93	1202	000049	12.6	
12/93	1203	000050	14.5	
1/12/93	1204	000051	08.7	
12/93	1205	000052	08.7	
12/93	1200	000053	08 7	
1/12/93	1208	000055	06.7	•
12/93	1209	000056	10.6	

3

12/93 12/93	1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236	000057 000058 000059 000060 000061 000062 000063 000064 000065 000066 000067 000068 000069 000070 000070 000071 000072 000073 000075 000075 000075 000075 000075 000075 000075	10.6 08.7 08.7 12.6 12.6 12.6 10.6 00.9 10.6 06.7 04.8 02.9 12.6 08.7 12.6 61.1 63.0 96.0 0334 84.4 0152 0158 1236 1652 0119 0982	ALARM ALARM ALARM ALARM ALARM ALARM ALARM ALARM ALARM ALARM
1 /93 1 /93	1236 1237	000083 000084	0982 2098	ALARM OVER RANGE
12/93	1238	000085	82.4	OVER RANGE
1 /93	1239.	000087	24.2	OVER RANGE

PHASE II SITE CHARACTERIZATION SUPPLEMENTAL REPORT

Location:

SOUTH / STONE / COURT / CLINTON / BROAD STREETS ROCHESTER, NEW YORK

Prepared For:

CITY OF ROCHESTER

LaBella Project No. 92189

October, 1993

LaBella Associates, P.C. 300 State Street Rochester, New York 14614
PHASE II SITE CHARACTERIZATION REPORT SUPPLEMENTAL REPORT

Location:

SOUTH / STONE / COURT / CLINTON / BROAD STREETS ROCHESTER, NEW YORK

Prepared For:

CITY OF ROCHESTER

LaBella Project No. 92189

October, 1993

LaBella Associates, P.C. 300 State Street Rochester, New York 14614

TABLE OF CONTENTS

Pa	ge

FINDINGS		
1.	Geophysical Survey	
2.	Soil Boring Program	
3.	Climax Alley Soil Boring	
4.	Speedy's Building Samples Obtained by LaBella	
5.	Additional Speedy's Building Sampling by MMA	
6.	Water Level Measurements for Monitoring Wells	
CONCLUSI	ONS	5
RECOMME	INDATIONS	5

FIGURES APPENDICES

INTRODUCTION

Prior to the current investigation, limited Phase I Environmental Site Assessments (ESA's) and Preliminary Site Characterizations were performed for the area bounded by South/Stone/Court/Clinton/Broad Streets. The findings of these investigations are discussed in a Draft Preliminary Site Characterization Report dated September, 1992 (included in APPENDIX A). Prior to the acquisition of the site by the City of Rochester, several phases of field work were completed in the public right of way. Access to the main portions of the site was not available at the time of the investigations. Several areas of potential environmental concern were identified including a long history of petroleum storage on and adjacent to the site, as well as the existence of an eighty year old dry cleaning facility known to have used solvents on the site. A site location map and a site sketch are included as Figures 1 and 2.

SCOPE OF WORK

The following tasks were completed during this investigation:

- 1. A surface geophysical survey (using a proton magnetometer) was performed in the parking lots on Court Street, between South Avenue and Stone Street. This survey was performed in an effort to locate potentially abandoned underground storage tanks (UST's).
- 2. Soil borings performed for geotechnical purposes by Huntingdon-Empire were observed by a LaBella Associates geologist. The geologist was present to observe the soil borings, to monitor the head space of the soil samples collected using a HNu photoionization detector (PID), and to collect samples for laboratory analysis if deemed appropriate. Soil boring locations are identified on Figure 3.
- 3. An additional boring was added to the Huntingdon-Empire drilling program in Climax Alley behind Speedy's and observed by a LaBella geologist.
- 4. Soil samples were collected from beneath the concrete floors inside the Speedy's building. Samples S-1 and S-2 were obtained from beneath the concrete slab on the main floor and sample BSMT-1 was obtained from beneath the floor in the basement. Sample BSMT-1 was analyzed for volatile organic compounds (VOC's) and total petroleum hydrocarbons (TPH). Sample locations are identified on a floor plan sketch of the Speedy's building included as Figure 4.
- A sampling program was developed by Speedy's and their consultant, Monroe Monitoring and Analysis (MMA), in conjunction with LaBella Associates for additional sampling inside the Speedy's building.
- 6. Additional sampling of soils beneath the slab of the Speedy's building performed by Monroe Monitoring and Analysis (MMA) on behalf of Speedy's was observed by a LaBella Associates geologist. This sampling took place in August, 1993 after results of the initial sampling had been reviewed.
- 7. Analytical results of the MMA sampling were interpreted by LaBella and verbally reported to the City of Rochester.

- 8. A report produced by MIMA relating to the additional sampling inside the Speedy's building was reviewed by LaBella Associates.
- 9. An Opinion of Probable Cost was prepared for the potential disposal costs associated with soil at the site.
- 10. Water levels for the existing monitoring wells at the site were measured and recorded on a regular basis.
- 11. A final report was prepared summarizing the findings of the investigation.

FINDINGS

1. Geophysical Survey

Grid systems were set up in the parking lots owned by All-Right Parking and Farash Corporation on Court Street between South Avenue and Stone Street. Results of the magnetometer survey for the All-Right lot were inconclusive, most likely due to the prevalence of buried electric cables and other utilities in close proximity to the site. There were no obvious signs of tanks at either location. A survey was not completed in the Farash Corporation lot due to the difficulty in coordinating the removal of all vehicles from the lot, the inconclusive results obtained at the adjacent lot, and the fact that Huntingdon-Empire had already drilled a boring at the location with the highest likelihood of encountering a buried tank.

2. Soil Boring Program

Evidence of fill material (bricks, concrete, etc.) was encountered at most locations. Soils with a black stain and petroleum type odor were observed at 15.5 feet below grade at boring B-507 in the Farash lot. PID readings of 3 parts per million (ppm) were noted. A sample of the soil was collected and analyzed for volatile organic compounds (VOC's). Compounds identified in the sample are noted below:

Analyte	Concentration
Benzene	46 ug/Kg
n-Propylbenzene	80 ug/Kg
Toluene	1,670 ug/Kg
1,3,5 Trimethylbenzene	164 ug/Kg
Xylene (total)	1,409 ug/Kg

All of the materials observed are petroleum hydrocarbons.

Boring B-507 was the only test boring location where positive PID responses, stained soils, and odors were encountered. A copy of the analytical results is included in APPENDIX B.

3. Climax Alley Soil Boring

Boring B-510 was drilled to a depth of 25 feet below grade in Climax Alley behind Speedy's Cleaners. No positive PID responses, stained soils, or odors were encountered. Because of the compact nature of the soils at this location, the drilling rate was very slow. Only minor amounts of ground water were noted at this boring. Due to the slow drilling rate and the fact that no evidence of contamination was encountered to a depth of 25 feet, the boring was terminated before bedrock was reached.

4. Speedy's Building Samples Obtained by LaBella

A site walk-through was conducted by Mr. Tom McEwen (representing Speedy's) prior to commencing sampling activities. At that time it was learned that there are several storage tanks in the building. Two tanks are located behind a wall in a crawl space in the northwest corner of the building. Fuel oil and dry cleaning solvent were historically stored in these tanks until the tanks were taken out of service. Four other solvent storage tanks are located in the basement and one solvent tank is located on the main floor in the washroom area. Puddles of cleaning solvent were observed adjacent to the dry cleaning machines in the main floor washroom area during the walk-through.

Mr. McEwen stated that a limited soil gas survey was performed on behalf of Speedy's by Monroe Monitoring and Analysis, Inc. in February, 1992. This study concluded that significant quantities of VOC's are present in the concrete slab on the main floor of the building. A copy of this report is included as APPENDIX C.

A total of three holes were cored through the concrete floor inside the Speedy's building by LaBella Associates (see Figure 4). Soil samples were collected using an AG penetrometer, and their head space monitored using a PID. Two holes (S-1 and S-2) were cored adjacent to the dry cleaning machines on the first floor at street grade. This portion of the building does not have a basement under it. The third hole (BSMT-1) was cored in the basement.

No elevated PID readings or odors were noted at the two borings on the first floor. For this reason these samples were not sent for chemical analysis. The sample recovered consisted of bits of brick, cinders, and dry soil.

Peak PID readings of 50 ppm, gray/black oily soil, and a petroleum type odor were noted at the third boring located in the basement. The soils under the basement floor were wet as compared to the ASTM Criteria for Describing Soils. A soil sample from this location was collected and analyzed for VOC's and total petroleum hydrocarbons. Compounds identified in the sample are noted below:

Analyte	Concentration
tert-Butylbenzene	1,822 ug/Kg
Ethylbenzene	279 ug/Kg
Isopropylbenzene	3,234 ug/Kg
Naphthalene	25 ug/Kg
1,2,4 Trimethylbenzene	3,880 ug/Kg
1,3,5 Trimethylbenzene	2,117 ug/Kg
Xylene (total)	12,466 ug/Kg

A copy of the analytical results is included in APPENDIX D.

LABELLA

All of these materials are petroleum hydrocarbons and/or distillates. Napthalene, 1,2,4 and 1,3,5 trimethylbenzene are common components of Stoddard solvent. Stoddard solvents are common degreasing compounds and have been used at the Speedy's facility.

5. Additional Speedy's Building Sampling by MMA

Samples were collected by MMA from several areas of the Speedy's building in an effort to more accurately determine the type and extent of contamination beneath the building. Sampling points and analytical methods were suggested by LaBella Associates.

All samples were analyzed for volatile organics by EPA method 8240. Selected samples were analyzed for TCLP (Toxicity Characteristic Leaching Procedure) for metals and volatiles. The samples were also tested for ignitability (40 CFR 261.21). Sample locations are identified on Figure 5. APPENDIX E contains a copy of the MMA report which includes analytical results.

Holes were cored through the concrete floor at six locations (see Figure 5). Samples were obtained using a stainless steel auger at depths ranging from 1' to 4' below the surface. Sample locations are identified in the table below:

Sample #	Location
BS-2B	Center of basement
BS-3	Southwest corner of basement
BS-4	Basement storage room (SE)
DC-1	Dry cleaning room (First Floor)
DC-2	Dry cleaning room (First Floor)
BR-1	Boiler Room

A PID was utilized during sampling activities to monitor the headspace of soil samples as well as soil gas exiting the borehole. A table of PID readings is included in the MMA report. PID readings were highest in the basement at locations BS-2 and BS-3. Peak readings of over 300 parts per million (ppm) were noted at location BS-2. Soil samples at these locations exhibited a distinct petroleum or solvent type odor. Positive analytical results are summarized in the table below:

Analyte	BS-2B(S)	BW-2B(w)	BS-3	BS-4	DC-1	DC-2	BR-1
Methylene chloride	9700		7800	3J	4J	5000	3J
Toluene	3200J						
Ethylbenzene	9200		8800				
Chloroform		950 ug/l					
m+p xylenes	15000	1300J ug/l	17000				
ortho-xylene	28000	2200J ug/l	28000				
Tetrachloroethene					23		

all units in ug/Kg unless otherwise noted J denotes and estimated value

The majority of the materials observed are petroleum hydrocarbons.

City of Rochester Phase II Site Characterization Supplemental Report South/Stone/Court/Broad Streets LaBella Project No. 92189

Δ

Tetrachloroethene (also known as perchloroethene or "perc") is a commonly used dry cleaning solvent and is used by Speedy's in their process. This material has the potential to be classified as a hazardous waste.

The presence of methylene chloride in the samples would not be expected at the site based on the types of materials used at Speedy's. Methylene Chloride is a common laboratory contaminant and its presence may be due to error. However, the laboratory did not note any problem with the analysis.

The analytical library search run for the samples also indicated the presence of stoddard solvent

6. Water Level Measurements for Monitoring Wells

Water levels for the existing monitoring wells at the site were measured and recorded on a regular basis and are presented in APPENDIX F.

CONCLUSIONS

Based on the results of the investigation to date, the following conclusions can be made:

- 1. Petroleum hydrocarbons have been detected in ground water samples from monitoring wells GW-3, GW-5, and GW-6 at levels exceeding New York State Drinking Water Standards.
- 2. Fill material (bricks, concrete, etc.) ranging in thickness from 0 to 15 feet was encountered at most subsurface testing locations. Several of these areas may be basements of former buildings that were filled with demolition debris.
- 3. Soils with elevated levels of petroleum hydrocarbons were encountered at approximately 15 feet below grade at several locations (B-507, GW-3, GW-5, and GW-6).
- 4. It is unknown if petroleum storage tanks known to exist in the past at the All-Right parking lot and the Farash Corporation lot are still in place.
- 5. There are several petroleum and solvent storage tanks inside the Speedy's facility, at least two of which are inaccessible due to their location behind a wall in basement. The two inaccessible tanks were reported to have historically stored fuel oil and dry cleaning solvent.
- 6. Soils beneath the concrete slab floor of the basement at Speedy's contained significant concentrations of volatile organic compounds. It is likely that portions of the slab floor, building foundation, and underlying soils will need to be disposed of as special or hazardous waste.

RECOMMENDATIONS

1. Additional sampling and investigation is not recommended at this time as the building will be demolished and underlying soils will be excavated. During excavation soils should be monitored for elevated levels of VOC's and/or visual staining.

As the Site has historically had gasoline stations and a dry cleaning facility located within its boundaries and VOC's have been noted in ground water samples from the Site's boundaries, it is recommended that a contingency plan be prepared prior to on-site excavation. This plan should be reviewed by appropriate State and local agencies.

The contingency plan should include the following items:

- a. Procedures for identifying and handling materials with elevated volatile organic compound levels, which may be encountered during construction/excavation.
- b. Procedures for removing underground storage tanks, which may be encountered during excavation.
- c. A site specific health and safety plan.
- d. Procedures for notifying the NYSDEC.
- e. An environmental technician to be present during all on-site excavations.
- 3. During construction, engineering controls such as ventilation systems should be considered in order to minimize the potential for petroleum hydrocarbon vapors to enter future buildings.
- 4. The ground water monitoring wells at the site should be properly decommissioned when it is deemed that they are no longer necessary.

This report is a professional opinion and judgment, dependent upon LaBella's knowledge, information and data supplied by governmental agencies, other environmental consultants, laboratories, and data generated in the field.

In addition, LaBella cannot provide guarantees, certification or warranties that the property is or is not free of environmental impairment. The subsurface investigation program, the data and samples from any given soil boring or monitoring well will indicate conditions that apply only at that particular location, and such conditions may not necessarily apply to the general site as a whole.

R3J05DP1

2.

APPENDIX A

Draft Preliminary Site Characterization Report

5

APPENDIX D

- 35

Standard Har

and a sold

Kashinghar all ...

Analytical Results Sample BS MT - 1

2

ALFRED TECHNICAL & ANALYTICAL LABORATORY SCIENCE & ENGINEERING TECHNOLOGY INTERNATIONAL

NYSDOH# 11299

PHONE#(607)587-8377/9444

FAX#(607)587-9652/9535

PO Box 848 200 N. Main St. Alfred, NY 14802

REPORT ON 13529

Client Name: LaBella Associates, P.C. Phone: (716)454-6110 Address: 300 State Street RochesterNY 14614 Date SAMPLE RECEIVED: Jun 11, 1993 Date REPOR Sample Information; Name: Speedy Address: BSMT-1 Collection Point: Basement at Speedy's Collected By: Dennis Peck ON: Date REPORTED: Jul 7, 1993 ON: Jun 10, 1993 AT: 3:30 pm Sample Characteristics; A. PHASE LAYERS [] bilayered [] multilayered [] none B. PHYSICAL STATE at 70F [] solid [] liquid [] other.... C. pH RANGE []<2 []2-4 []4-6 []6-8 []8-10 []10-12 []>12 DESIRED: []Metals []Inorganics []Organics TEST DESIRED: CONFIRMATORY: method method CAS# detection result analyte code unit limit

TCL VOAEPA8260s.a.s.T.Petroleum H.EPA418.15<5</td>

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory in any form may not be used in any circumstance in advertising to the general public without the prior written approval from the laboratory director. The results apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Limitations of Liability-Due diligence was used in approving the release of professional results, but in an instance where it should fail, the liability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consequential damages, claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale Laboratory Director

ALFRED TECHNICAL & ANALYTICAL LABORATORY SCIENCE & ENGINEERING TECHNOLOGY INTERNATIONAL

NYSDOH# 11299 PHONE#(607)587-8377/9444 FAX#(607)587-9652/9535 PO Box 848 200 N. Main St. Alfred, NY 14802 REPORT ON 13529 LaBella Associates, P.C. Name: Address: 300 State Street NY 14614 Rochester, Date SAMPLE RECEIVED: Jun 11, 1993 Date REPORTED: Jul 7, 1993 Sample Name: Speedy.... Sampling address: BSMT-1.... Sampling POINT: Basement at Speedy's.... ON: Jun 10, 1993 AT: 3:30 pm Collected By: Dennis Peck Sample Characteristics; A. PHASE LAYERS [] bilayered [] multilayered [] none. B. PHYSICAL STATE at 70°F []solid []liquid []other..... []>2 []2-4 []4-6 []6-8 []8-10 []10-12 []<12 C. DH RANGE TEST DESIRED: Volatile Organics CONFIRMATORY: method CAS# analyte code MDL result unit 71-43-2 Benzene EPA8260 10 <10 ug/Kg 108-86-1 Bromobenzene EPA8260 10 <10 ug/Kg 74-97-5 Bromochloromethane EPA8260 10 <10 ug/Kg 75-27-4 Bromodichloromethane EPA8260 10 110 12001200

10 61 4	Di omogi oni ol ome chane	111110200	10	110	uging
75-25-2	Bromoform	EPA8260	10	<10	ug/Kg
74-83-9	Bromomethane	EPA8260	10	<10	ug/Kg
104-51-8	n-Butylbenzene	EPA8260	10	<10	ug/Kg
135-98-8	sec-Butylbenzene	EPA8260	10	<10	ug/Kg
98-06-6	tert-Butylbenzene	EPA8260	10	1822	ug/Kg
56-23-5	Carbon Tetrachloride	EPA8260	10	<10	ug/Kg
108-90-7	Chlorobenzene	EPA8260	10	<10	ug/Kg
75-00-3	Chloroethane	EPA8260	10	<10	ug/Kg
67-66-3	Chloroform	EPA8260	10	<10	ug/Kg
74-87-3	Chloromethane	EPA8260	10	<10	ug/Kg
95-49-8	2-Chlorotoluene	EPA8260	10	<10	ug/Kg
106-43-4	4-Chlorotoluene	EPA8260	10	<10	ug/Kg
124-48-1	Dibromochloromethane	EPA8260	10	<10	ug/Kg
96-12-8	1,2-Dibromo-3-chloro-				
	propane	EPA8260	10	<10	ug/Kg
106-93-4	1,2-Dibromoethane	EPA8260	10	<10	ug/Kg
74-95-3	Dibromomethane	EPA8260	10	<10	ug/Kg
95-50-1	1,2-Dichlorobenzene	EPA8260	10	<10	ug/Kg
541-73-1	1,3-Dichlorobenzene	EPA8260	10	<10	ug/Kg
106-46-7	1,4-Dichlorobenzene	EPA8260	10	<10	ug/Kg

Continued on next page . . .

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory in any form may not be used in any circumstance in advertising to the general public without the prior written approval from the laboratory director. The results apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Limitations of Liability-Due diligence was used in approving the release of professional results, but in an instance where it should fail, the liability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consequential damages, claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale (Laboratory Director

ALFRED TECHNICAL & ANALYTICAL LABORATORY SCIENCE & ENGINEERING TECHNOLOGY INTERNATIONAL

NYSDOH# 11299	PHONE#(607)587-8377/9444	FAX#(607)587-9652/9535		PO 200 N.	Box 848 Main St.
				Alfred, N	TY 14802
••	Continuation of Sample	#13529			
75-71-8	Dichlorodifluoromethane	EPA8260	10	<10	ug/Kg
75-34-3	1,1-Dichloroethane	EPA8260	10	<10	ug/Ko
107-06-2	1,2-Dichloroethane	EPA8260	10	<10	ug/Ko
75-35-4	1,1-Dichloroethylene	EPA8260	10	<10	ug/Kg
156-59-2	cis-1,2-Dichloroethylene	EPA8260	10	<10	ug/Kg
156-60-5	trans-1,2-Dichloroethyler	e EPA8260	10	<10	ug/Ko
78-87-5	1,2-Dichloropropane	EPA8260	10	<10	ug/Ko
142-28-9	1,3-Dichloropropane	EPA8260	10	<10	ug/Kg
594-20-7	2,2-Dichloropropane	EPA8260	10	<10	ug/Ko
563-58-6	1,1-Dichloropropene	EPA8260	10	<10	ug/Ko
100-41-4	Ethylbenzene	EPA8260	10	279	ug/Ko
87-68-3	Hexachlorobutadiene	EPA8260	10	<10	ug/Ko
98-82-8	Isopropylbenzene	EPA8260	10	3234	ug/Ko
99-87-6	p-Isopropyltolune	EPA8260	10	<10	ug/Ko
75-09-2	Methylene chloride	EPA8260	10	<10	ug/Ko
91-20-3	Naphthalene	EPA8260	10	25	ug/Ko
103-65-1	n-Propylbenzene	EPA8260	10	<10	ug/Ko
127-18-4	Tetrachloroethylene	EPA8260	10	<10	ug/Ko
100-42-5	Styrene	EPA8260	10	<10	ug/Ko
630-20-6	1,1,1,2-Tetrachloroethane	EPA8260	10	<10	ug/Ko
79-34-5	1,1,2,2-Tetrachloroethane	EPA8260	10	<10	ug/Ko
108-88-3	Toluene	EPA8260	10	<10	ug/Ko
87-61-6	1,2,3-Trichlorobenzene	EPA8260	10	<10	ug/Ka
120-82-1	1,2,4-Trichlorobenzene	EPA8260	10	<10	ug/Ko
71-55-6	1,1,1-Trichloroethane	EPA8260	10	<10	ug/Ko
79-00-5	1,1,2-Trichloroethane	EPA8260	10	<10	ug/Ke
79-01-6	Trichloroethylene	EPA8260	10	<10	ug/Ka
75-69-4	Trichlorofluoromethane	EPA8260	10	<10	ug/Ka
96-18-4	1.2.3-Trichloropropane	EPA8260	10	<10	ug/Ka
95-63-6	1,2,4-Trimethylbenzene	EPA8260	10	3880	ug/Ka
108-67-8	1,3,5-Trimethylbenzene	EPA8260	10	2117	ug/Ka
75-01-4	Vinyl chloride	EPA8260	10	<10	ug/Ka
	Xylene (total)	EPA8260	10	12466	ug/Ke

Date analyzed: Jun 28, 1993 Remarks: USEPA methods

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory in any form may not be used in any circumstance in advertising to the general public without the prior written approval from the laboratory director. The results apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Limitations of Liability--Due diligence was used in approving the release of professional results, but in an instance where it should fail, the liability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consequential damages, claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale Laboratory Director

SCIEN	TECHNICAL & A	NALYTIC	CAL LA	BORAT	ORY
DOH# 11299	PHONE#(607)587-8377/9444	= Post-II" brand i	lax transmittal	memo 7671 #0	103000
		Jotene Can	. 06.11	IFrom O	pages p
		Co. Pal in	Maden	Aick	2022
DEROPE		Dem	.a.	Co. SETI	1
REPORT	ON 13529	meter.		Phone # 507	
Namo	Tapalla Inne to	Fart TIG 40	-14 5. A.	Fare	587-8
Address	300 State Street Rochester, NY 14614		30 66	<u>607 5</u>	87 965
Date SAM	PLE RECEIVED: Jun 11, 1	993 Date 1	REPORTED	: Jul 7. 1	1002
Sampling Sampling Collecte Sample C A. B. C.	Address: BSMT-1 POINT: Basement at By: Dennis Peck O baracteristics; PHASE LAYERS [] bila PHYSICAL STATE at 70°F PH RANGE []>2 []2-4	Speedy's N: Jun 10, 1 yered [] mu []solid []] []4-6 []6-8	1993 As altilayes Liquid [] 8 []8-10	F: 3:30 pm red [] nc]other []10-12 [ne.
CONFIRMAT	IRED: Volatile Organi	CS			
CAS#	analyte	sethod code	NDT.	regult	
CAS#	analyte	<u>sethod</u> <u>code</u>	MDL	result	_ unit
71-43-2	analyte Benzene	EPA8260	<u>MDL</u> 10	result <10	_ unit
CAB# 71-43-2 108-86-1	analyte Benzene Bromobenzene	EPA8260 EPA8260	<u>MDL</u> 10 10	<10 <10 <10	_ unit ug/k ug/k
C <u>AE#</u> 71-43-2 108-86-1 74-97-5 75-27-4	analyte Benzene Bromobenzene Bromochloromethane	<u>method</u> <u>code</u> EPA8260 EPA8260 EPA8260	<u>MDL</u> 10 10 10	<pre>result <10 <10 <10 <10 <10</pre>	_ unit ug/H ug/H ug/K
C <u>AB#</u> 71-43-2 108-86-1 74-97-5 75-27-4 75-27-4	analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	<u>NDL</u> 10 10 10 10	<pre>result <10 <</pre>	unit ug/H ug/H ug/M ug/M
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-92-2	analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	<u>NDL</u> 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/K ug/R ug/R ug/R
Ch8# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9	analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10	<pre> result <10 <</pre>	_ unit ug/H ug/H ug/H ug/H ug/H
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8	analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10	<pre> result <10 <</pre>	_ unit ug/H ug/H ug/H ug/H ug/H ug/H
Ch8# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8	analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10	<pre> result <10 <</pre>	unit ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K
Ch8# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5	analyte Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Matmablenia	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	unit ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 08-90-7	<u>analyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/H ug/H
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 08-90-7 75-00-3	<u>analyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorobenzene	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre>result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10 10	<pre>result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	unit ug/H ug/H ug/H ug/H ug/H ug/H ug/H ug/H
ChB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-2	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorothane Chloroform Chloromethane	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K
Ch8# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-9	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorothane Chloroform Chloromethane	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K
ChB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorothane Chloroform Chloromethane 2-Chlorotoluene	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K ug/K
ChB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 06-43-4 24-4-1	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane 2-Chlorotoluene 4-Chlorotoluene	EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K ug/K
$\begin{array}{c} 71 - 43 - 2\\ 108 - 86 - 1\\ 74 - 97 - 5\\ 75 - 27 - 4\\ 75 - 25 - 2\\ 74 - 83 - 9\\ 104 - 51 - 8\\ 135 - 98 - 8\\ 98 - 06 - 6\\ 56 - 23 - 5\\ 108 - 90 - 7\\ 75 - 00 - 3\\ 67 - 66 - 3\\ 74 - 87 - 3\\ 95 - 49 - 8\\ 124 - 48 - 1\\ 96 - 12 - 8\end{array}$	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chlorotothane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromo-3-chloro- Drobane	Bethod code EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K ug/K
Che# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 06-43-4 24-48-1 96-12-8 06-93-4	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chlorotothane 2-Chlorotoluene A-Chlorotoluene Dibromochloromethane 1,2-Dibromo-3-chloro- propane	Bethod code EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 06-43-4 24-48-1 96-12-8 06-93-4 74-95-3	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chlorotothane 2-Chlorotoluene A-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane Dibromoethane	method code EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/H ug/H ug/H ug/H ug/H ug/H ug/K ug/K ug/K ug/K ug/K ug/K ug/K ug/K
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 06-43-4 24-48-1 96-12-8 06-93-4 74-95-3 95-50-1	<u>snalyte</u> Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorotohane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dibromoethane	Bethod code EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/k ug/k ug/k ug/k ug/k ug/k ug/k ug/k
CAB# 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 106-43-4 124-48-1 96-12-8 106-93-4 74-95-3 95-50-1 541-73-1	<u>snalyte</u> <u>Benzene</u> <u>Bromobenzene</u> <u>Bromochloromethane</u> <u>Bromodichloromethane</u> <u>Bromodichloromethane</u> <u>Bromomethane</u> <u>n-Butylbenzene</u> <u>sec-Butylbenzene</u> <u>sec-Butylbenzene</u> <u>tert-Butylbenzene</u> <u>carbon Tetrachloride</u> <u>Chlorobenzene</u> <u>Chlorotoluene</u> <u>bloromethane</u> <u>1,2-Dibromoethane</u> <u>1,2-Dibromoethane</u> <u>1,2-Dibromoethane</u> <u>1,2-Dibromoethane</u> <u>1,2-Dichlorobenzene</u> <u>1,3-Dichlorobenzene</u>	method code EPA8260 EPA8260	NDL 10 10 10 10 10 10 10 10 10 10	<pre> result <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	ug/k ug/k ug/k ug/k ug/k ug/k ug/k ug/k

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory is asy form may not be used in any circumstance is advertising to the general public without the prior written approval from the laboratory circumstance and Analytical apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Unitations of Liability -- Due dilivence was used in approving the release of protessional results, but in an instance where it should fail, the hability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consequential damages; claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale (Laboratory Director 0

SET International.

6075879652

ALFRED TECHNICAL & ANALYTICAL LABORATORY SCIENCE & ENGINEERING TECHNOLOGY INTERNATIONAL

NYSDOH# 11299	PHONE#(607)587-8377/9444	FAX#(607)587-9652/95	35	PC 200 N	Box 848
				Alfred, 1	NY 14802
	Continuation of Sample	#13529 °	,		
75-71-8	Dichlorodifluoromethane	EPA8260	10	<10	Dor/Ke
75-34-3	1,1-Dichloroethane	EPA8260	10	<10	nalv
107-06-2	1,2-Dichloroethane	EPA8260	10	<10	ug/Re
75-35-4	1,1-Dichloroethylene	EPA8260	10	<10	ng/K
1.56-59-2	cis-1,2-Dichloroethylene	EPA8260	10	<10	UG/K
156-60-5	trans-1,2-Dichloroethylen	EPA8260	10	<10	ug/K
78-87-5	1,2-Dichloropropane	EPA8250	10	<10	ug/R
142-28-9	1,3-Dichloropropane	EPA8260	10	<10	49/14
594-20-7	2.2-Dichloropropane	EPA8260	10	<10	uy/A
563-58-6	1.1-Dichloropropene	EP48260	10	<10	ug/K
100-41-4	Ethvlhenzene	FD10260	10	10	ug/K
87-68-3	Hexachlorobutadiene	ED10260	10	219	ug/K
98-82-8	Tsonropylbenzene	EPA0200	10	<10	ug/K
99-87-6	p-Isopropyltolupe	FDADOGO	10	3234	ug/K
75-09-2	Methylene chloride	PDADOCO	10	<10	ug/Kg
91-20-3	Naphthalene	FDADACO	10	<10	ug/Kg
103-65-1	n-Pronvibenzene	EDA0200	10	25	ug/Ka
127-18-4	Tetrachloroethylopo	EPHO200	10	<10	ug/Ka
100-42-5	Styrene	EPA8260	10	<10	ug/Kg
630-20-6	1 1 1 2-Motrochlowesthese	EPA8260	10	<1.0	ug/Ko
79-34-5	1 1 2 2-Motrachloroethane	EPA8260	10	<10	ug/Ko
108-88-2	Toluono	EPA8260	10	<10	ug/Ro
87-61-6	2 2 3 Endehlandhan	EPA8260	10	<10	ug/Ro
120-82-1	1,2,3-Trichlorobenzene	EPA8260	10	<10	ug/Ko
77-55-6	1,2,4-Trichlorobenzene	EPA8260	10	<10	ug/Ko
70-00-5	1, 1, 1-Trichloroethane	EPA8260	10	<10	ug/Ko
70-07-6	T, 1, 2-Tricnioroethane	EPA8260	10	<10	ug/Ka
75-60-4	mi - h] - m f]	EPA8260	10	<10	ug/Ko
06-10-4	121Chlorofluoromethane	EPA8260	10	<10	ug/Ko
95-1874	1,2,3-Trichioropropane	EPA8260	10	<10	ug/Ko
100-67-0	1,2,4-Trimethylbenzene	EPA8260	10	3880	ug/Ko
100-0/48	1,3,5-Trimethylbenzene	EPA8260	10	2117	ug/Ko
15-01-4	vinyi chioride	EPA8260	10	<10	ug/Ko
1	Aylene (total)	EPA8260	10	12466	.ug/Kg

Date analyzed: Jun 28, 1993 Remarks: USEPA methods

The provided results are for the exclusive use of the client to whom they are addressed. The provided results and the name of Alfred Technical and Analytical Laboratory in any form may not be used in any circumstance in advertising to the general public without the prior written approval from the laboratory director. The results apply specifically to the sample being tested and are not necessarily indicative of the qualities of apparently identical or similar products.

Limitations of Liability -Due diligence was used in approving the release of professional results, but in an instance where it should fail, the liability will be to the extent of that particular fee. By acceptance of this report, the client agrees to hold harmless and release the Alfred Technical and Analytical Laboratory from and against all liability, consecuential damages, claims, and demands of any kind which have any relation with the performance of the work referred to herein.

Roland D. Hale Laboratory Director

P. 02

AL	FREDT	ECHNI	CAL & AN	ALYTIC	AL LABOI	RATORY
NYSDOH	# 11299	& ENGIN	EERING TE	CHNOLOG	Y INTERNAT	IONAL
		PHONE#(607)5	87-8377/9444	FAX#(607))\$87-9652/9535	PO Box 848 200 N. Main St
						Alfred, NY 14802
					•	
PORT ON	13529					
ient Name Idress	e: LaBella 300 St	a Associat ate Street	tes, P.C.	Phon Roche	e: (716)454- sterNY 1461	6110 4
te SAMPLI mple Info	E RECEIVED): Jun 11, Name: Address:	1993 D Speedy BSMT-1	ate REPORTE	D: Jul 7, 19	93
mple Char Al PI	Collectio Colle racterist	on Point: ected By: lcs;	Basement at Dennis Peck	Speedy's ON: Ju	n 10, 1993	AT: 3:30 p
B PI C PI ST DESIRI NEIRMATOR	IYSICAL ST I RANGE ED: []] RY:	TATE at 70 $[] < 2$ [letals	Inorganie	[] liquid [] liquid [] [] [] [] [] [] [] [] [] [] [] [] [] [d [] none [] other]8-10 []10- anics	12 []>12
S≉	analyte		method code	method detectio limit	n result	unit
	TCL VOA	um H	EPA8260	-	s.a.s.	
	da ner					1
	4					
	ray and branch					
Labaratory id any for	rided results are for the	exclusive use of the	client to whom they are add	ressed. The provided resu	its and the same of a time m	
Limitatio Cutent of that particul all liability, consequen	the sample being (ester one of Liability-Due d lar for. By acceptance much damages, claims,	I and are not access iligence was used in an of this report, the clo and demands of any	averaging to the general public rily indicative of the qualitie oproving the release of profi- ent agrees to hold harmless.	lic without the prior writte s of apparently identical e extional results, but in an ir and release the Alfred Tec	n approval from the laborato or similar products. Istance where it should fail, th hnical and Atial view 1 a boo	e liability will be to the
	and a line of a	, and	Roland D. J Laboratory D	Hale	the work referred to herein.	mory icom and against
* * * * *	2			g		

APPENDIX E

Monroe Monitoring and Analysis Phase II Environmental Investigation Report 8/5/1993

MAN Monroe Monitoring & Analysis, Inc.

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

-

SPEEDY'S CLEANERS

190 COURT STREET ROCHESTER, NEW YORK

AUGUST 5, 1993

The Destation of the state of the set of the

PREPARED BY

An and the state of the second state of the se

Monroe Monitoring & Analysis, Inc. 1425 Mt. Read Blvd. Rochester, New York 14606 PHASE II ENVIRONMENTAL INVESTIGATION REPORT

SPEEDY'S CLEANERS

190 COURT STREET ROCHESTER, NEW YORK

MM&A PROJECT # 938-14

PREPARED AUGUST 31, 1993

PREPARED BY

Wilfiam A. Sandvik

Project Manager

Monroe Monitoring & Analysis, Inc. 1425 Mt. Read Blvd. Rochester, New York 14606

Monroe Monitoring & Analysis, Inc. 1425 Mt. Read Blvd. Rochester, New York 14606

PHASE II ENVIRONMENTAL AUDIT REPORT

Client:	Speedy Cleaners
Contact:	Mr. Tom McEwen
Project:	Sampling of soil and water beneath concrete slab floors
Location:	190 Court Street Rochester, New York
Project Date:	August 5, 1993
Report Date:	August 31, 1993
Project No .:	938-14
Technician:	Richard Bianchi
Author:	William Sandvik

Purpose

This site, currently a dry cleaners, is in the process of being acquired by the City of Rochester for future redevelopment. As part of the acquisition process, environmental investigations were performed by LaBella Associates, (representing the City) 1,2,3,4,5,6.

This current sampling program was implemented to more accurately define the extent, nature and source of any contamination.

Specific aspects of the sampling program were verbally requested by Steven Campbell of LaBella Associates, including minimum analysis as follows:

- o EPA 8240 Volatile Organics Analysis
- o Ignitablity
- o TCLP (Toxicity Characteristic Leaching Procedure) analysis for Metals and Volatiles.

In addition, LaBella Associates identified the desired minimum number of sample locations and the specific minimum analytical parameters for each sample location, from those listed above. Beyond these minimum analyses, MM&A requested a library search for each 8240 analysis. A library search is an identification of all peaks found during the analysis. The search encompasses a library of approximately 40,000 organic compounds. This request was made to assure that the components of stoddard solvent and any other possible contaminants (either resulting from dry cleaning operations or other sources) would be identified.

Precise sample locations and sample depths were determined jointly by MM&A and LaBella's on-site representative (Dennis Peck) based on field conditions.

Sample locations are plotted on the attached floor plan of the site.

Methods

A concrete drill was used to drill 4" diameter holes through the concrete slab floor to soil. Care was taken at each site to prevent contamination of the bore hole with materials from the surface of the floor. Where brick and debris were encountered below the slab, the decision was made to move to an adjoining area and drill a new hole.

Sampling was conducted using a stainless steel soil auger to collect soil samples at a depth ranging from approximately 1' to 4' below the surface. Samples were collected and placed in glass sample bottles with teflon caps, provided by the Eagle-Pitcher company and certified as pre-cleaned according to EPA recommendations. All samples were labelled to represent sample location, date and time.

Immediately upon collection, samples were placed in a refrigerated cooler and maintained under refrigeration and Chain-of-Custody procedures until analysis. Analysis of samples was performed by Laboratory Resources, Inc. an independent laboratory, Certified by New York State to conduct the required analytical procedures.

Field cleaning of the soil auger was performed following each sample collection. The procedure for this cleaning was as follows:

- Soap and water rinse to remove gross particulate matter.
- o Tap water rinse.
- Dilute nitric acid rinse to remove trace metal contamination.
- o Distilled water rinse.
- o Methanol rinse to remove trace organics.
- o Final distilled water rinse.

All cleaning solutions were captured and properly disposed of.

Sampling was conducted by Mr. Richard Bianchi, an Environmental Field Supervisor with Monroe Monitoring & Analysis, Inc. Mr. Bianchi is experienced in the collection of environmental samples for analysis of trace concentrations of organic and inorganic chemicals, and has received 40 hours of health & safety training and 8 hours of supervisor training as required by OSHA for hazardous waste site workers and investigation personnel.

Sample locations were screened by a Photo-ionization detector during the sampling process. Results of screening are documented on the attached data sheets (Appendix A).

Results

The analytical report for the above soil samples is attached to this report and is found in Appendix B.

Trace levels (micrograms/kilogram) of organics were found in several samples, with significant levels (milligrams /kilogram) found in three samples. These three samples are roughly in a line, with the highest concentrations at the Southwest corner of the building and the lowest concentrations (of the three) at the North center of the building.

Matrix interference (interference resulting from other compounds) required the laboratory to perform dilutions of several samples prior to analysis. As a result, the detection limit (minimum detection level) for these samples is higher than would otherwise be possible.

Conclusions

 Contamination detected was limited to the center foundation area (approximately 45'x40' area). The contaminants identified by this sampling program are consistent with the constituents of gasoline, with three exceptions, Methylene Chloride, Chloroform and Tetrachloroethene.

With the exception of Tetrachloroethene, these compounds are inconsistent with dry cleaning operations 1,7.

Tetrachloroethene was found in only one sample, at a level of $23\mu g/Kg$. This low level of Tetrachloroethene may be the result of airborne or equipment contamination during drilling and sample collection, since the odor of Tetrachloroethene is noticeable in the air within the building.

In addition to gasoline constituents, samples in the same areas contained significant amounts of Methylene Chloride, an industrial solvent, not known for use as a dry cleaning agent ^{8,9,10}. This may be a result of laboratory contamination, however an alternate source is proposed in conclusion 3, below.

2. Groundwater sampling conducted by LaBella Associates upgradient (Southwest) of the site identified the same primary contaminants (Toluene, Xylenes and Ethylbenzene). as found in this study ⁴,⁵. LaBella concluded that the possible source of these contaminants was a former gasoline station near the corner of Court and Stone Streets ⁴.

Based on this study, it appears likely that these same contaminants have been carried from the site of this gasoline station (South and West of Speedy's) to 190 Court Street by groundwater (determined by LaBella to flow to the Northeast in this area ⁴), and/or the apparent abandoned sewer described in conclusion 4, below.

- 3. The corner of Stone and Court streets formerly housed the Sargent and Greenleaf Lock Factory 1,2,3. A manufacturing facility of this nature would undoubtedly use significant quantities of degreasing chemicals such as Methylene Chloride and Tetrachloroethene, both of which were found in the various samples collected by MM&A and LaBella.
- 4. During drilling in the center of the basement, what appeared to be an abandoned brick lined sanitary sewer was intercepted. Upon removing the drill bit, water rapidly filled the hole as quickly as it could be drawn off by a shop vac. It was noted by all present that the water had a distinct septic odor.

It is possible that this sewer has acted as a conduit to deliver contaminants to this area of the basement from a source beyond the property boundaries. It should be noted that this immediate area was found to contain significant levels of the full range of contaminants detected by LaBella and MM&A sampling. A water sample collected directly from this assumed sewer was found upon analysis to contain Chloroform and Xylenes, by the 8240 analysis and a range of gasoline components in significant concentrations which were found by the library search. No dry cleaning components were detected.

5. Results of soil sampling in Speedy's basement performed by LaBella, as reported in a letter report ⁶ to the City (dated 7/15/93) describe analytical results reported by the laboratory in micrograms per kilogram (μ g/Kg) as parts per billion (PPB). While these terms can be loosely interchanged, % moisture must be taken into account. The laboratory report attached to the letter does not indicate % moisture found, therefore, PPB values cannot be acurately derived and may vary significantly from the PPB values reported.

This correction would not change the overall conclusion of the report, however, it is worth noting. It should also be noted that these stated guidelines are in fact guidance values which are subject to negotiation. As reported by LaBella ⁵, NYSDEC typically determines the need for remedial measures by the appearance of a visible sheen; a condition not observed by MM&A or reported by LaBella during any of the sampling episodes.

- 6. The contaminants identified by MM&A, included up to 9700 µg/Kg of Methylene Chloride, 23 µg/Kg of Tetrachloroethene (Perc) in soil samples and 950 µg/L of Chloroform in one water sample. No other chlorinated compounds were detected. Along with these chlorinated compounds, numerous gasoline constituents were found in these same sample locations in ranges up to hundreds of mg/Kg. These contaminants are all highly volatile materials which should respond well to soil venting techniques.
- 7. Based on the TCLP data generated by this sampling program, excavated soil from this site would be characterized as non-hazardous, and therefore, excavation for the sole purpose of remediation is not recommeded. The volatile nature of the materials found suggests that the process of demolition and excavation may enhance the release these materials (which are currently trapped beneath concrete slabs) from the soil, reducing levels further, possibly below established remedial quidelines.
- 8. Based on the results of this investigation and related work conducted by LaBella Associates, it is the contention of Monroe Monitoring & Analysis that the potentially responsible parties for the identified contamination are the current and past owners of the properties at 160-178 Court Street (former gasoline station, auto dealership and lock company), and/or 181 and 195 Court Street (gasoline stations), as identified by LaBella Associates and MM&A Phase I studies of the area 1,2.

Recommendations

- 1. The off-site source(s) of the contamination detected by this sampling program should be fully determined and remediated.
- 2. A soil venting program should be implemented at 190 Court Street, once demolition of the current structures has been completed.

REFERENCES

- Phase I Environmental Audit Report for 190 Court Street, prepared by Monroe Monitoring & Analysis, Inc. (March 1992)
- Phase I Environmental Site Assessment for Broad/Court/Clinton/Stone Streets, prepared by LaBella Associates, P.C. (December 1990)
- 3. Facility Assessment & Documentation Review for Court Street between South Avenue and Stone Street, prepared by LaBella Associates, P.C. (July 1993)
- 4. Phase II Preliminary Site Characterization Report for Stone/Court/Clinton/Broad Streets, prepared by LaBella Associates, P.C. (April 1992)
- 5. Phase II Site Characterization Report for Court Street between South Avenue and Stone Street, prepared by LaBella Associates, P.C. (September 1992)
- Letter report from Osterberg (LaBella) to Hubbard (City Of Rochester) dated July 15, 1993, RE: Site Characterization of Speedy's Cleaners.
- 7. Components of Stoddard Solvent Personal communication with Tracy Hurtz of Laboratory Resources, Inc.
- 8. <u>Hazardous Materials Toxicology</u>, Sullivan and Krieger, 1992.
- 9. <u>Hawley's Condensed Chemical Dictionary</u>, Sax and Lewis, 1987.

1.14

10. <u>Hazardous Substance Fact Sheet - Methylene Chloride</u>, New Jersey Department of Health, 1987.

APPENDIX A PHOTO-IONIZATION DETECTOR

READINGS

M

Monroe Monitoring & Analysis, Inc.

DIRECT READING INSTRUMENTS DATA SHEETS

CLIENT :	Speedy Cla	aners		
LOCATION :	190 Court	Street	Roch.	N.Y.
DATE :	8-5-93		, , ,	

		ppm	opm						
TIME	LOCATION	oum	HNU	H2S	02	LE.	DETECTOR TUBES	OTHER Peaks	
0840	Outside - Ambin +	1-1.5						-	
0841	Main Entrance - Antimt	7-8						-	
0843	1ST Floor - Boiler Rm.	2-3-2-6				-		-	
0946	Groundlevel - Builter Run	3.7-4-6						-	
.0903	Soil Gas - BR-1-hole 4	10.5					6.5	13.5	
0912	1. " - " hole #2	Back	rou-d					4-6	
0940	Basemont - Ambiont	2.5						-	
0956	soil Screen- 65-2	25-40						63	
0954	soil Screen-BS-2	300						314	1'depth
1045	Ambient - Basement	5-6						-	
1100	soil gas sceen B5-3		90-100					100	
1103	10 10 10 10 10 10 10 10 10 10 10 10 10 1		75					-	
1108	11 11 11 11		190						
1116	Soil Gas screen BS-4		Backgr	und					

63°F Parthy Cloudy - low Minidaly A.M. WEATHER P.M.

COMMENTS:

own malfunctioned - Began HNU Montormy at = 1100

MM

Monroe Monitoring & Analysis, Inc.

DIRECT READING INSTRUMENTS DATA SHEETS

CLIENT :	Speedy Cleaner	- 5	
LOCATION :	190 Court St.	Pach. N.Y.	
DATE :	8-5-93		

		ppm	ppm					
TIME	LOCATION	<u>.</u>	HNU	H2S	02	LEL.	DETECTOR TUBES	OTHER
1119	Soil Gas Screen BS-4		Backgr	mid				
1135	soil Gas - B-2A area		50					-
1200	1. 1.		Backgro	and				
1325	Soil Gas- B-2Baren		30					
1330	Soil Screen - B - 2Baim		12		-			
	2							
	· · · · · · · · · · · · · · · · · · ·							
-						1		
	1							

WEATHER A.M.

P.M. 76°F Mostly Sunny - moderate humidity.

COMMENTS:

CALIBRATION

DIRECT READING INSTRUMENTS

	PRE-SAMPLING CALIBRATION		POST	T-SAMPLING CALIBRATION
INSTRUMENT ITYPE LIFE MODEL NO. SHI Theres Environmental OVM 580 B /		LOS DOM	36. CALIBRATION SOURCE	34. AESULTS
MM+A 1425 ML	2. CALIBRATION SOURCE 98 ppm Cond O.I. TSO UN hur		37. LOCATION	
IMITIALS RITR	0. DATE/TIME 9 - 5 - 93 / 0800		SE INITIALS	39. DATE/TIME
INSTRUMENT (TYPE, MFG, MO	DEL NO.,SNI	4 RESULTS	SOURCE	36. RESULTS
LOCATION/TEEP	1. CALIERATION SOURCE		37. LOCATION	
INITIALS	6. DATE/TIME	-	JE. INITIALS	38. DATE/TIME
, INSTRUMENT (TYPE,MFG, MC	DOEL NOSNI	4 RESULTS	35. CALIBRATION SOURCE	36 RESULTS
LOCATION/TASP	3. CALIERATION SOURCE		37 LOCATION	1
			38. INITIALS	39 DATE/TIME

Hand- A

.
Project No. 938-14 Author: William Sandvik

APPENDIX B ANALYTICAL DATA

Laboratory Resources, Inc. New Jersey Division

100 Hollister Road Telephone: 201-288-3700 Fax: 201-288-5311

ANALYTICAL DATA REPORT

Report Number: T308118 Project: Speedy Cleaners

prepared for:

Monroe Monitoring & Analysis, 1425 Mt Reid Blvd

Rochester, NY 14606

Attention: Mr William Sandvik

Receive Date: 08/06/93 Report Date: 08/31/93

M. Amoro

Mohammad R. Amirsoleymani Quality Assurance Manager

Paul Ioannides General Manager

NJDEPE Certification No. 02046 PADER Certification No. 68-420 NYDOH/ASP Certification No. 11321

ORGANIC NON-CONFORMANCE SUMMARY

GC/MS VOLATILES

1. The quantitation limits are elevated due to matrix interference for samples (T308118-02 and 06).

2. The quantitation limits are elevated due to the dilution required for sample (T308118-01).

ORGANIC FLAGS USED IN RESULT SHEET

1

- B = Found in Method blank and sample
- J = Under Method Detection limit

.

E = Exceeds Calibration Range D = Dilution performed U = Analyzed for but not detected

the Part of the Pa	Client Sample ID No.
Lab Name: LRI	1
Lab Sample ID: T308118-01	IBS-2B
Matrix: [soil/water] SOIL	Lab File ID: >H1595
Sample wt/vol: 4.0 [g/mL]	G Run Type: VOA-8240
Level: [low/med] MED	Date Received: 08/06/93
% Moisture: 18.0	Date Analyzed : 08/19/93
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 10.0
Soil Extract Volume: 10000 (uL)	Soil Aliquot Volume: 10.0(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: UG/KG Q

			1
1 74-87-3Chloromethane	150001	U	1
1 74-83-9Bromomethane I	150001	U	1
1 75-01-4Vinyl Chloride	150001	U	1
1 75-00-3Chloroethane	150001	U	1
1 75-09-2Methylene Chloride	9700 1		1
1 67-64-1Acetone	150001	U	1
75-15-0Carbon Disulfide	76001	U	1
1 75-35-41.1-Dichloroethene	76001	U	1
1 75-34-31.1-Dichloroethane	76001	U	1
156-60-5Trans-1.2-Dichloroethene	76001	U	1
1 67-66-3Chloroform	76001	U	1
1 107-06-21,2-Dichloroethane	76001	U	1
1 78-93-32-Butanone I	150001	U	1
1 71-55-61,1,1-Trichloroethane	76001	U	I
1 56-23-5Carbon Tetrachloride	76001	U	1
1 108-05-4Vinyl Acetate	150001	U	1
1 75-27-4Bromodichloromethane	76001	U	1
1 78-87-51.2-Dichloropropane	76001	U	1
110061-01-5Cis-1.3-Dichloropropene	76001	U	1
1 79-01-6Trichloroethene	76001	U	1
1 124-48-1Chlorodibromomethane	76001	U	1
1 110-75-82-Chloroethyl vinyl ether	76001	U	1
1 79-00-51,1,2-Trichloroethane 1	76001	U	1
1 71-43-2Benzene I	76001	U	1
110061-02-6Trans-1,3-Dichloropropene	76001	U	1
1 75-25-2Bromoform 1	76001	U	1
1 591-78-62-Hexanone 1	150001	U	1
1 108-10-14-Methyl-2-Pentanone	150001	U	1
127-18-4Tetrachloroethene	76001	U	1
1 79-34-51,1,2,2-Tetrachloroethane	76001	U	ł
1 108-88-3Toluene 1	3200 1	J	1
1 108-90-7Chlorobenzene	76001	U	1
1 100-41-4Ethylbenzene	9200 1		1
1 100-42-5Styrene	76001	U	1
1	1		1

Page 1 of 2

	Client Sample ID No.
Lab Name: LRI	1
Lab Sample ID: T308118-01	IBS-2B
Matrix: [soil/water] SOIL	Lab File ID: >H1595
Sample wt/vol: 4.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] MED	Date Received: 08/06/93
% Moisture: 18.0	Date Analyzed : 08/19/93
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 10.0
Soil Extract Volume: 10000 (uL)	Soil Aliquot Volume: 10.0(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: UG/KG Q
108-38-3meta + para-Xulenes	I I I I 15000 I I
95-47-6ortho-Xylene	I 28000 I I

1

LABORATORY RESOURCES

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

1

T308118-0
BS-2B
>H1595
1524.39
Soil
VOA

Total Hit(s): 15

I CAS I Numb	6 Der Compound Name	 RT. 	Est. Concenc. UG/KG
I 11 21 31 41 51 61 71 81 91 101 11 91 101 11 91 11 91 11 91 11 91 11 91 11 91 11 91 11 121 131 41 51 1 <td>I IUnknown Alkane IUnknown cycloalkane IUnknown cycloalkane IUnknown Alkane IUnknown Alkane IUnknown Alkane IUnknown Alkane ITrimethyl Benzene isomer 28828 Benzene, (1-methylethyl)- IAromatic Hydrocarbon IAlkyl Benzene IDimethyl Ethyl Benzene isomer</td> <td>I I</td> <td>180000 120000 90000 99000 100000 120000 130000 150000 290000 150000 88000 120000 120000</td>	I IUnknown Alkane IUnknown cycloalkane IUnknown cycloalkane IUnknown Alkane IUnknown Alkane IUnknown Alkane IUnknown Alkane ITrimethyl Benzene isomer 28828 Benzene, (1-methylethyl)- IAromatic Hydrocarbon IAlkyl Benzene IDimethyl Ethyl Benzene isomer	I I	180000 120000 90000 99000 100000 120000 130000 150000 290000 150000 88000 120000 120000

B - Compound detected in blank

ABORATORY ESOURCES INC.

LAB JOB NO. T308118

ANALYTICAL RESULTS: TOXICITY CHARACTERISTIC LEACHATE PROCEDURE

ab. Sample ID: T308118-01 TCLP lient Designation: 85-28 ista File: >E2589 Lalculation Factor: 20.00 QC Blank Data File: >E2579 ample Loaded (mL): .25

'stal Hit(s): 4

		Results		Regulatory
PARAMETER				Limits
		(MG/L)		(MG/L)
inyl Chloride	<	.200		0.20
,1-Dichloroethene	<	.100		0.70
(loroform	<	.100		6.00
1,2-Dichloroethane	<	.100		0.50
hrbon Tetrachloride	<	.100		0.50
·ichloroethene	<	.100		0.50
benzene	<	.100		0.50
-Butanone	<	.200		200.00
strachloroethene	<	.100		0.70
Lalorobenzene	<	.100		100.00
Tthylbenzene		.093	J	
sta + para-Xylenes		.390		
c tho-Xylene		.380		
Toluene		.120		

L.L. Martin L.D.L		Client Sample ID No.
Lab Name: LKI		
Lab Sample ID:	T308118-2	IBW-2B
Matrix: [soil/u	Water] WATER	Lab File ID: >H1510
Sample wt/vol:	0.01 [g/mL] ML	Run Type: VOA-8240
Level: [low/n	med] LOW	Date Received: 08/06/93
% Moisture: NA	9	Date Analyzed : 08/13/93
GC Column : 0	CAP. ID: 0.53 (mm)	Dilution Factor: 500.0
	00	NCENTRATION UNITS:
CAS NO.	COMPOUND	
I		1
1 74-87-3	Chloromethane	I 50001 U I
74-83-9	Bromomethane	1 50001 U I
1 75-01-4	Vinyl Chloride	I 50001 U I
1 75-00-3	Chloroethane	I 50001 U I
1 75-09-2	Methylene Chloride	1 25001 U I
67-64-1	Acetone	I 50001 U I
75-15-0	Carbon Disulfide	I 2500IUI
1 75-35-4	1,1-Dichloroethene	I 2500IU I
1 75-34-31,1-Dichloroethane		I 2500IUI
1 156-60-5Trans-1,2-Dichloroethene		I 2500IU I
67-66-3Chloroform		1 950 I J I
107-06-2	1,2-Dichloroethane	I 2500IUI
1 78-93-3		I 5000IU I
71-55-6	1,1,1-Trichloroethane	1 2500IUI
1 56-23-5	Carbon Tetrachloride	I 2500IU I
1 108-05-4	Vinyl Acetate	1 50001 U I
1 75-27-4	Bromodichloromethane	1 25001 U I
1 78-87-5	1,2-Dichloropropane	1 25001 U 1
10061-01-5	Cis-1,3-Dichloropropene	
/9-01-6	Irichloroethene	
	Chlorodibromomethane	1 25001 0 1
	1 1 2 Trichlangethans	
	Panzana	
	Tappe 1 3 Dichlonoppopp	
75-25-2		
591-79-4		50001 0
108-10-1	4-Methul-2-Pentanone	50001 11 1
127-18-4	Tetrachloroethene	25001 11 1
79-34-5	1.1.2.2-Tetrachloroethan	e 1 25001 U 1
108-88-3	Toluene	25001 11 1
108-90-7	Chlorobenzene	25001 1
100-41-4	Ethylbenzene	25001. 4
100-42-5	Styrene	25001 U

	Client Sample ID No.
Lab Name: LRI	
Lab Sample ID: T308118-2	I BW-2B
Matrix: [soil/water] WATER	Lab File ID: >H1510
Sample wt/vol: 0.01 [g/mL] ML	Run Type: VOA-8240
Level: [low/med] LOW	Date Received: 08/06/93
% Moisture: NA	Date Analyzed : 08/13/93
GC Column : CAP. ID: 0.53 (mm)	Dilution Factor: 500.0
CAS NO. COMPOUND	NCENTRATION UNITS:
108-38-3meta + para-Xylenes 95-47-6ortho-Xylene	 1300 J 2200 J

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

Lab ID	Number	:	T308118-2
Client	ID Number	:	BW-2B
Data Fi	le	:	>H1510
Calcula	tion Factor	:	500.00
Matrix		:	Water
Fraction	n	:	VOA

Total Hit(s): 15

 	CAS Number	I Compound Name	 RT. 	Est. Concenc. UG/ L
	1074551	Image: Composing Hame Image: Composing Hame <td< td=""><td>I I I</td><td>UG/ L 27000 18000 16000 21000 30000 85000 38000 30000 24000 17000 12000 8500 31000</td></td<>	I I I	UG/ L 27000 18000 16000 21000 30000 85000 38000 30000 24000 17000 12000 8500 31000

8 - Compound detected in blank

	Client Sample ID No.
Lab Name: LRI	
Lab Sample ID: T308118-03	18S-3
Matrix: [soil/water] SOIL	Lab File ID: >H1601
Sample wt/vol: 4.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] MED	Date Received: 08/06/93
% Moisture: 13.0	Date Analyzed : 08/19/93
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 10.0
Soil Extract Volume: 10000 (uL)	Soil Aliquot Volume: 10.0(uL)
CO	NCENTRATION UNITS:
CAS NO. COMPOUND	UG/KG Q
I	1 1 1
1 74-87-3Chloromethane	1 140001 U I
74-83-9Bromomethane	1 140001 U 1
1 75-01-4Vinyl Chloride	1. 140001 U
1 75-00-3Chloroethane	140001 U
1 75-09-2Methylene Chloride	1 7800 1 1
1 67-64-1Acetone	
1 75-15-0Carbon Disulfide	
1 75-35-41,1-Dichloroethene	
1 75-34-31,1-Dichloroethane	
156-60-5Trans-1,2-Dichloroethene	
67-66-3Chloroform	
10/-06-21,2-Dichloroethane	
78-93-32-Butanone	
71-55-61,1,1-1richloroethane	
1 56-23-5Larbon letrachioride	
108-05-4Vinyl Acetate	
1 28-8/-21,2-Dichloropropane	
70 01 4 Trichlangethang	
1 124 49 1 Chlorodibromomethane	
1 110-75-92-Chlonoethul uinul ethe	72001 U
79 00 51 1 2-Trichloroethane	72001 U
71_43_2Benzene	1 72001 U I
1 10041-02-6Trans-1 3-Dichloropropen	e 1 72001 U I
75-25-2Bromoform	72001 U I
591-78-62-Hexanone	I 140001 U I
108-10-14-Methyl-2-Pentanone	I 14000IU I
1 127-18-4Tetrachloroethene	I 72001 U I
79-34-51,1,2,2-Tetrachloroethan	e I 72001 U I
108-88-3Toluene	I 72001 U I
108-90-7Chlorobenzene	I 72001 U I
1 100-41-4Ethylbenzene	I 8800 I I
100-42-5Styrene	1 72001 U 1

			Client Samp	le ID No.
Lab Name: LRI				
Lab Sample ID:	T308118-03		IBS-3	1
Matrix: [soil/wa	ter] SOIL		Lab File ID: >H160	1
Sample wt/vol:	4.0	[g/mL] G	Run Type: VOA-8240	
Level: [low/me	d] MED		Date Received: 08/0	6/93
% Moisture: 13.	0		Date Analyzed : 08/	19/93
GC Column: CAF	PI ID: 0.	5 (mm).	Dilution Factor:	10.0
Soil Extract Vol	ume: 10000	(uL) .	So'il Aliquot Volume:	10.0(uL)
			CONCENTRATION UNITS:	
CAS NO.	COMPOUND		UG/KG	Q
108-38-3 95-47-6	-meta + para -ortho-Xylen	-Xylenes e	 17000 28000	

LABORATORY RESOURCES

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

Lab ID Number	-	T308118-03
Client ID Number	:	BS-3
Data File	:	>H1601
Calculation Factor	• :	1436.78
Matrix	:	Soil
Fraction	:	VOA

Total Hit(s): 15 -----

CAS Number 	l I Compound Name	 RT. 	Est. Concenc. UG/KG
1 2 3 4 5 6 7 8 9 101 11 121 131 10744 141 151 1	IUnknown Alkane IUnknown cycloalkane IUnknown IUnknown Alkane IEthyl Methyl Benzene ITrimethyl Benzene isomer IUnknown Alkane ITrimethyl Benzene isomer IUnknown Alkane ITrimethyl Benzene isomer IUnknown Alkane ITrimethyl Benzene isomer IDimethyl Ethyl Benzene IAromatic Hydrocarbon 37 IBenzene, 1-methyl-3-propyl- IDimethyl Ethyl Benzene isomer IDimethyl Ethyl Benzene isomer IDimethyl Ethyl Benzene isomer IDimethyl Ethyl Benzene isomer	119.39 120.76 121.28 121.28 121.93 122.21 123.03 123.271 123.68 124.57 124.57 124.57 125.14 125.57 125.57 125.57 125.57 125.57	200000 140000 120000 120000 140000 130000 170000 170000 10000 170000 140000 140000 140000 140000 140000 140000

B - Compound detected in blank
** - Nontarget compound quantitated from calibration response factor

and the second	Client Sample ID No.
Lab Name: LRI	the state of the s
Lab Sample ID: T308118-4	IBS-4
Matrix: [soil/water] SOIL	Lab File ID: >F6491
Sample wt/vol: 5.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] LOW	Date Received: 08/06/93
% Moisture: 11.0	Date Analyzed : 08/12/93
GC Column: PACK ID: 2.0 (mm)	Dilution Factor: 1.0
CONC	CENTRATION UNITS:
CAS NO. COMPOUND	UG/KG Q
1 74-83-9Bromomethane	
75-01-4Vinul Chloride	1 111 U I
75-00-3Chloroethane	1 11 U I
75-09-2Methylene Chloride	1 3 I J I
67-64-1Acetone	I 11 U I
1 75-15-0Carbon Disulfide	1 61 0 1
1 75-35-41,1-Dichloroethene	61 U 1
1 75-34-31,1-Dichloroethane	I 61 U 1
1 540-59-01,2-Dichloroethene (total)	61 1
1 67-66-3Chloroform	I 61 U 1
107-06-21,2-Dichloroethane	I 61 U I
78-93-32-Butanone	111 U I
1 /1-55-61,1,1-irichloroethane	6 0 1
1 56-25-5Larbon letrachioride	
I 108-09-4Vinyi Acetate	
1 76-67-7	
79-01-6Trichloroethene	61 11
124-48-1Dibromochloromethane	1 61 U 1
110-75-82-Chloroethyl vinyl ether	I 61 U I
79-00-51,1,2-Trichloroethane	1 61 U I
71-43-2Benzene	1 6IU I
10061-02-6trans-1,3-Dichloropropene	I 61 U 1
75-25-2Bromoform	61 0 1
591-78-62-Hexanone	1 111 U 1
108-10-14-Methyl-2-Pentanone	111 U I
1 12/-18-4ietrachloroethene	61 U 1
108-88-3Toluene	
100-41-4Ethylbenzene	
100-42-5Styrene	1 6IU I
	1

Page 1 of 2

	Client Sample ID No.
Lab Name: LRI	
Lab Sample ID: T308118-4	IBS-4
Matrix: [soil/water] SOIL	Lab File ID: >F6491
Sample wt/vol: 5.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] LOW	Date Received: 08/06/93
% Moisture: 11.0	Date Analyzed : 08/12/93
GC Column: PACK ID: 2.0 (mm)	Dilution Factor: 1.0
CAS NO. COMPOUND	CONCENTRATION UNITS: UG/KG Q
108-38-3meta-Xylene 95-47-6ortho- + para-Xylenes	

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

:	T308118-4
:	BS-4
:	>F6491
r:	1.12
:	Soil
:	VOA
	: : : :

Total Hit(s): 2

CAS Number 	I Compound Name	 RT. 	Est. Concenc. UG/KG
 593759 	I IMethane, isocyano- (9CI) IUnknown I	1 1 3.88 128.40	15 8
1 1			

8 - Compound detected in blank

	Client Sample ID No.
Lab Name: LRI	1
Lab Sample ID: T308118-5	IDC-1
Matrix: [soil/water] SOIL	Lab File ID: >F6492
Sample wt/vol: 5.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] LOW	Date Received: 08/06/93
% Moisture: 23.0	Date Analyzed : 08/12/93
GC Column: PACK ID: 2.0 (mm)	Dilution Factor: 1.0
CAS NO. COMPOUND	CENTRATION UNITS: UG/KG Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chloride 67-64-1Carbon Disulfide 75-15-0Carbon Disulfide 75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethene 75-34-31,2-Dichloroethane 75-34-31,2-Dichloroethane 76-66-3Chloroform 107-06-21,2-Dichloroethane 78-93-3Carbon Tetrachloride 108-05-4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 1 of 2

			Client Sample ID No.
Lab Name: LI	RI		
Lab Sample II	D: T308118-5		IDC-1
Matrix: [soi	l/water] SOIL		Lab File ID: >F6492
Sample wt/vo	1: 5.0	[g/mL] G	Run Type: VO <mark>A-8240</mark>
Level: [lo	w/med] LOW		Date Received: 08/06/93
% Moisture:	23.0		Date Analyzed : 08/12/93
GC Column:	PACK ID:	2.0 (mm)	Dilution Factor: 1.0
CAS NO.	COMPOUND		CONCENTRATION UNITS: UG/KG Q
108-38-3 95-47-6	meta-Xyl ortho- +	ene para-Xylenes	

LABORATORY RESOURCES

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

Lab ID Number : T308118-5 Client ID Number : DC-1 Data File : >F6492 Calculation Factor: 1.30 Matrix : Soil Fraction : VUA

fotal Hit(s): 2

- -	CAS Number	 Compound Name 	 RT. 	Est. Concenc. UG/KG
1	593759	 Methane, isocyano- (9CI) Unknown 	3.88 3.88 28.40	17 18

8 - Compound detected in blank

LABORATORY RESOURCES INC.

LAB JOB NO. T308118

ANALYTICAL RESULTS: TOXICITY CHARACTERISTIC LEACHATE PROCEDURE

Lab. Sample ID: T308118-05 TCLP lient Designation: DC-1 ata File: >E2590 calculation Factor: 20.00 Sample Loaded (mL): .25

QC Blank Data File: >E2579

otal Hit(s): 0

PARAMETER	Results (MG/L)		Regulatory Limits
			(MG/L)
C			
Jinyl Chloride	<	.200	0.20
,1-Dichloroethene	<	.100	0.70
hloroform	<	.100	6.00
1.2-Dichloroethane	<	.100	0.50
arbon Tetrachloride	<	.100	0.50
richloroethene	<	.100	0.50
benzene	<	.100	0.50
2-Butanone	<	.200	200.00
etrachloroethene	<	.100	0.70
hlorobenzene	<	.100	100.00
Ethylbenzene	<	.100	
eta + para-Xulenes	<	.100	
ctho-Xulene	<	.100	
Toluene	<	.100	

and the second se	Client Sample ID No.
Lab Name: LRI	1
Lab Sample ID: T308118-06	IDC-2
Matrix: [soil/water] SOIL	Lab File ID: >H1596
Sample wt/vol: 4.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] MED	Date Received: 08/06/93
% Moisture: 14.0	Date Analyzed : 08/19/93
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 4.0
Soil Extract Volume: 10000 (uL)	Soil Aliquot Volume: 25.0(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: UG/KG Q

1 74-87-3Chloromethane	58001	U	1
1 74-83-9Bromomethane	58001	U	1
1 75-01-4Vinyl Chloride	58001	U	1
1 75-00-3Chloroethane 1	58001	U	1
1 75-09-2Methylene Chloride	5000 1		1
67-64-1Acetone	58001	U	1
1 75-15-0Carbon Disulfide	29001	U	1
1 75-35-41.1-Dichloroethene	29001	U	1
1 75-34-31.1-Dichloroethane	29001	U	1
156-60-5Trans-1,2-Dichloroethene	29001	U	1
1 67-66-3Chloroform	29001	U	1
107-06-21,2-Dichloroethane	29001	U	1
1 78-93-32-Butanone	58001	U	1
1 71-55-61,1,1-Trichloroethane	29001	U	1
1 56-23-5Carbon Tetrachloride	29001	U	1
108-05-4Vinyl Acetate	58001	U	1
1 75-27-4Bromodichloromethane	29001	U	1
78-87-51,2-Dichloropropane	29001	U	1
110061-01-5Cis-1,3-Dichloropropene	29001	U	1
1 79-01-6Trichloroethene I	29001	U	1
1 124-48-1Chlorodibromomethane	29001	U	1
1 110-75-82-Chloroethyl vinyl ether 1	29001	U	1
1 79-00-51,1,2-Trichloroethane	29001	U	1
1 71-43-2Benzene 1	29001	U	1
110061-02-6Trans-1,3-Dichloropropene	29001	U	1
1 75-25-2Bromoform 1	29001	U	1
591-78-62-Hexanone	58001	U	1
108-10-14-Methyl-2-Pentanone	58001	U	1
127-18-4Tetrachloroethene	29001	U	1
1 79-34-51,1,2,2-Tetrachloroethane	29001	U	1
1 108-88-3Toluene	29001	U	1
1 108-90-7Chlorobenzene 1	29001	U	1
1 100-41-4Ethylbenzene	29001	U	1
1 100-42-5Styrene	29001	U	1
1	1		1

	Client Sample ID No.
Lab Name: LRI	
Lab Sample ID: T308118-06	IDC-2
Matrix: [soil/water] SOIL	Lab File ID: >H1596
Sample wt/vol: 4.0 [g/mL]	G Run Type: VOA-8240
Level: [low/med] MED	Date Received: 08/06/93
% Moisture: 14.0	Date Analyzed : 08/19/93
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 4.0
Soil Extract Volume: 10000 (uL)	Soil Aliquot Volume: 25.0(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: UG/KG Q
108-38-3meta + para-Xylenes 95-47-6ortho-Xylene	1 29001 U 1 1 29001 U 1 1 29001 U 1

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

nber : T308118-06
Number : DC-2
: >H1596
on Factor: 581.40
: Soil
: VOA
on Factor: 581.40 : Soil : VOA

Total Hit(s): 15 -----

I CAS I Number I	I Compound Name	RT.	Est. Concenc. UG/KG
1 2 3 4 5 6 7 8 99876 9 10 11 2 3 4 488233 5 4 488233 5 1 1 1 1 1 1 1 1	ITrimethyl Benzene isomer Unknown Alkane IEthyl Methyl Benzene IUnknown IAlkyl Benzene IDimethyl Ethyl Benzene isomer IAlkyl Benzene IBenzene, 1-methyl-4-(1-methylethyl)- IDimethyl Ethyl Benzene isomer IUnknown IUnknown IUnknown IAlkyl Benzene IDimethyl Ethyl Benzene isomer IBenzene, 1,2,3,4-tetramethyl- IAromatic Hydrocarbon	1 123.251 123.661 124.701 124.981 125.131 125.261 125.261 125.261 125.721 125.721 125.921 126.151 126.221 126.261 126.651 126.26.761 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48000 48000 76000 76000 52000 56000 48000 93000 52000 64000 58000 37000 64000 70000 54000

B - Compound detected in blank
 ** - Nontarget compound quantitated from calibration response factor

	Client Sample ID No.
Lab Name: LRI	
Lab Sample ID: T308118-7	IBR-1
Matrix: [soil/water] SOIL	Lab File ID: >F6493
Sample wt/vol: 5.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] LOW	Date Received: 08/06/93
% Moisture: 20.0	Date Analyzed : 08/12/93
GC Column: PACK ID: 2.0 (mm)	Dilution Factor: 1.0
CON	CENTRATION UNITS:
CAS NO. COMPOUND	UG/KG Q
1	
1 74-87-3Chloromethane	131 U I
1 74-83-9Bromomethane	I 13 I U I
1 75-01-4Vinyl Chloride	13101
1 75-00-3Chloroethane	131 U I
75-09-2Methylene Chloride	1 <u>3</u> 1 J 1
67-64-1Acetone	131 U I
1 75-15-0Carbon Disulfide	1 6IU I
1 75-35-41,1-Dichloroethene	I 61 U I
1 75-34-31,1-Dichloroethane	1 61 U I
1 540-59-01,2-Dichloroethene (total)) [6] U [
67-66-3Chloroform	· I 61 U I
1 107-06-21,2-Dichloroethane	1 6IU I
1 78-93-32-Butanone	13101
1 71-55-61,1,1-Trichloroethane	1 61 0 1
56-23-5Carbon Tetrachloride	I 61 U 1
1 108-05-4Vinyl Acetate	131 U I
1 75-27-4Bromodichloromethane	1 61 0 1
78-87-51,2-Dichloropropane	1 61 0 1
110061-01-5cis-1,3-Dichloropropene	1 61 0 1
79-01-6Trichloroethene	61 0 1
124-48-1Dibromochloromethane	6101
110-75-82-Chloroethyl vinyl ether	6101
79-00-51,1,2-Trichloroethane	
/1-43-2Benzene	
TIUU61-U2-6trans-1,>-Dichloropropene	
79-29-2Bromotorm	
108-10-1	
127-18-4Tetrachloroethere	61 11 1
79-34-51 1 2 2-Tetrachloroethane	61 11 1
108-88-3Toluepe	61 11 1
108-90-7Chlorobenzene	61 11
100-41-4Ethylbenzene	61 0 1
100-42-5Styrene	61 U
	l

Page 1 of 2

			•	Client Sample ID No	
Lab Name: L	RI		1		-
Lab Sample I	D: T308118-	7		IBR-1	1
Matrix: [soi	1/water] SOII			Lab File ID: >F6493	-
Sample wt/vo	1: 5.0	[g/mL]	G	Run Type: VOA-8240	
Level: [lo	w/med] LOW			Date Received: 08/06/93	
% Moisture:	20.0			Date Analyzed : 08/12/93	
GC Column:	PACK ID:	2.0 (mm)		Dilution Factor: 1.0	
			CON	CENTRATION UNITS:	
CAS NO.	COMPOUN	0		UG/KG Q	
100 20 2		lene			
95-47-6	ortho-	+ para-Xyler	es	i 6i U i	

[]:

LABORATORY RESOURCES

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

Lab ID Number :	T308118-2
Client ID Number :	BR-1
Data File :	>+6493
Calculation Factor:	1.25
Matrix :	Soil
Fraction :	VÜA

fotal Hit(s): 2

I L'AS I Number I	I Compound Name	 RT. 	Est. Concenc. UG/KG
1 1 593759 1 1	l IMethane, isocyano- (9CI) IUnknown I	 3.97 28.42 	20 10
1			

B - Compound detected in blank

	METHOD BLANK
Lab Name: LRI	1
Lab Sample ID: VBLK-QF0812	
Matrix: [soil/water] SOIL	Lab File ID: >F6487
Sample wt/vol: 5.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] LOW	Date Received:
% Moisture: NA	Date Analyzed : 08/12/93
GC Column: PACK ID: 2.0 (mm)	Dilution Factor: 1.0
CAS NO. COMPOUND	CENTRATION UNITS: UG/KG Q
 74-87-3Chloromethane 74-83-9Bromomethane	
75-01-4Vinyl Chloride 75-00-3Chloroethane	
75-09-2Methylene Chloride 67-64-1Acetone 75-15-0Carbon Disulfide	
75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethane	1 51 U I 1 51 U I
540-59-01,2-Dichloroethene (total 67-66-3Chloroform 107-06-2	
78-93-32-Butanone 71-55-61,1,1-Trichloroethane	1 101 U 1 1 51 U 1
56-23-5Carbon Tetrachloride 108-05-4Vinyl Acetate	
78-87-51,2-Dichloropropane 10061-01-5cis-1,3-Dichloropropene	1 51 U 1 1 51 U 1
79-01-6Trichloroethene 124-48-1Dibromochloromethane	
110-75-82-Chloroethyl vinyl ether 79-00-51,1,2-Trichloroethane 71-43-2Benzene	
10061-02-6trans-1,3-Dichloropropene 75-25-2Bromoform	1 51 U 1 1 51 U 1
591-78-62-Hexanone 108-10-14-Methyl-2-Pentanone 127-18-4Tetrachloroethene	
79-34-51,1,2,2-Tetrachloroethane 108-88-3Toluene	
108-90-7Chlorobenzene 100-41-4Ethylbenzene 100-42-5Sturene	
auto de la constructione	

	METHOD BLANK
Lab Name: LRI	1
Lab Sample ID: VBLK-QF0812	IVBLK-QF0812
Matrix: [soil/water] SOIL	Lab File ID: >F6487
Sample wt/vol: 5.0 [g/mL] G	Run Type: VOA-8240
Level: [low/med] LOW	Date Received:
% Moisture: NA	Date Analyzed : 08/12/93
GC Column: PACK ID: 2.0 (mm)	Dilution Factor: 1.0
CON	CENTRATION UNITS:
CAS NO. COMPOUND	UG/KG Q
108-38-3meta-Xylene	1 I I 1 51 U I
95-47-6ortho- + para-Xylenes	5101

-

LABORATORY RESOURCES

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

Lab ID Number : VBLK-QF0812 Client ID Number : VBLK-QF0812 Data File : >F6487 Calculation Factor: 1.00 Matrix : Soil Fraction : VDA

Total Hit(s): 2

I CAS I Number	I Compound Name	 P.T. 	Est. 1 Concenc. 1 UG/KG 1
1 1 1	l I Unknown I Unknown I	 4.04 28.42 	
1 1 1			
· · · · · · · · · · · · · · · · · · · ·			

B - Compound detected in blank

	METHOD BLANK
Lab Name: LRI	1
Lab Sample ID: VBLK-QH0813	IVBLK-QH0813
Matrix: [soil/water] WATER	Lab File ID: >H1506
Sample wt/vol: 5.0 [g/mL] ML	Run Type: VOA-8240
Level: [low/med] LOW	Date Received:
% Moisture: NA	Date Analyzed : 08/13/93
GC Column : CAP. ID: 0.53 (mm)	Dilution Factor: 1.0
COM	NCENTRATION UNITS:
CAS NO. COMPOUND	UG/L Q
	1
1 74-87-3Chloromethane	1 101 U 1
1 74-83-9Bromomethane	1 101 U 1
1 75-01-4Vinyl Chloride	1 101 U 1
1 75-00-3Chloroethane	1 101 U 1
75-09-2Methylene Chloride	5101
67-64-1Acetone	1 8 1 3 1
75-15-0Carbon Disulfide	1 51 U 1
75-35-41,1-Dichloroethene	1 51 U I
1 75-34-31,1-Dichloroethane	1 51 U I
1 156-60-5Trans-1,2-Dichloroethene	1 51 0 1
67-66-3Chloroform	1 51 U 1
107-06-21,2-Dichloroethane	5101
78-93-32-Butanone	10101
71-55-61,1,1-Trichloroethane	5101
56-23-5Carbon Tetrachloride	5101
108-05-4Vinyl Acetate	1 101 0 1
75-27-4Bromodichloromethane	
/8-8/-b1,2-Dichloropropane	
10061-01-5Cis-1,5-Dichloropropene	
110 75 0 2 Chlassathul wisul attac	
75-25-2Bromoform	
591-78-6	10111
108-10-14-Methul-2-Pentanone	1 101 11 1
127-18-4Tetrachloroethene	51 11 1
79-34-51,1,2,2-Tetrachloroethane	5111
108-88-3Toluene	1 51 11 1
108-90-7Chlorobenzene	1 51 11 1
100-41-4Ethylbenzene	51 11 1
100-42-5Styrene	51 U

	METHOD BLANK
Lab Name: LRI	
Lab Sample ID: VBLK-QH0813	IVBLK-QH0813
Matrix: [soil/water] WATER	Lab File ID: >H1506
Sample wt/vol: 5.0 [g/mL] ML	Run Type: VOA-8240
Level: [low/med] LOW	Date Received:
% Moisture: NA	Date Analyzed : 08/13/93
GC Column : CAP. ID: 0.53 (mm)	Dilution Factor: 1.0
CAS NO. COMPOUND	UG/L Q
108-38-3meta + para-Xylenes 95-47-6ortho-Xylene	

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

Lab ID Number	:	VBLK-QH0813
Client ID Number	:	VBLK-QH0813
Data File	:	>H1506
Calculation Factor	:	1.00
Matrix	:	Water
Fraction	:	VOA

Total Hit(s): 0

I CAS I Number I	 Compound Name 	 RT. 	Est. Concenc. UG/ L
 	I NO NON-TARGET COMPOUNDS FOUND	 	
		_ll _ll	
 		_ l l _ l l _ l l	

B - Compound detected in blank

and the second sec	METHOD BLANK		
Lab Name: LRI			
Lab Sample ID: VBLK-QH0819	IVBLK-QH0819		
Matrix: [soil/water] SOIL	Lab File ID: >H1592		
Sample wt/vol: 4.0 [g/mL] G	Run Type: VOA-8240		
Level: [low/med] MED	Date Received:		
% Moisture: NA	Date Analyzed : 08/19/93		
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 1.0		
Soil Extract Volume: 10000 (uL) S	oil Aliquot Volume: 100.0(uL)		
CON	CENTRATION UNITS:		
CAS NO. COMPOUND	UG/KG Q		
I	1		
1 74-87-3Chloromethane	1 13001 U I		
1 74-83-9Bromomethane			
75-01-4Vinyl Chloride			
75-00-3Chloroethane			
/ // UV-2Methylene Unioride	1 13001 11 1		
6/-64-IHoetone			
77-17-0Carbon Disulfice	4301 11 1		
75-34-31,1-Dichloroethane			
156-60-5Trans-1.2-Dichloroethene	6301 U		
67-66-3Chloroform	6301 U		
1 107-06-21.2-Dichloroethane	I 6301 U I		
78-93-32-Butanone	I 1300IUI		
71-55-61,1,1-Trichloroethane	1 6301 U I		
56-23-5Carbon Tetrachloride	I 630IU I		
1 108-05-4Vinyl Acetate	I 1300IU I		
75-27-4Bromodichloromethane	I 630IU I		
1 78-87-51,2-Dichloropropane	I 6301 U I		
110061-01-5Cis-1,3-Dichloropropene	6301 U		
1 79-01-6Trichloroethene	1 6301 U 1		
1 124-48-1Chlorodibromomethane	6301 0 1		
1 110-/5-82-Chloroethyl Vinyl ether			
79-00-91,1,2-Trichlordethane			
1 /1-43-2Benzene			
75-25-2	6301 11 1		
591-78-62-Hexanone	1 13001 U		
108-10-14-Methul-2-Pentanone	13001 U I		
127-18-4Tetrachloroethene	1 6301 U I		
79-34-51,1,2,2-Tetrachloroethane	1 6301 U I		
108-88-3Toluene	I 6301 U I		
108-90-7Chlorobenzene	1 6301 U I		
100-41-4Ethylbenzene	I 6301 U I		
100-42-5Styrene			

	METHOD BLANK	
Lab Name: LRI	· · · · · · · · · · · · · · · · · · ·	
Lab Sample ID: VBLK-QH0819	IVBLK-QH0819	
Matrix: [soil/water] SOIL	Lab File ID: >H1592	
Sample wt/vol: 4.0 [g/mL] G	Run Type: VOA-8240	
Level: [low/med] MED	Date Received:	
% Moisture: NA	Date Analyzed : 08/19/93	
GC Column: CAPI ID: 0.5 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: 10000 (uL)	Soil Aliquot Volume: 100.0(uL)	
CAS NO. COMPOUND	CONCENTRATION UNITS: UG/KG Q	
108-38-3meta + para-Xylenes 95-47-6ortho-Xylene	1 6301 U 1 6301 U 1	

LABORATORY RESOURCES

ANALYTICAL RESULTS: TENTATIVELY IDENTIFIED COMPOUNDS

: VBLK-QH081	9
r : UBLK-QH081	9
: >H1592	
tor: 125.00	
: Soil	
: VOA	
	: VBLK-QH081 : VBLK-QH081 : >H1592 tor: 125.00 : Soil : VOA

Total Hit(s): 1

CAS Number 	I I Compound Name	I RT.	Est. Concenc. UG/KG
	l IUnknown _l	 29.46 	 1
			I
			I
1			
1		1	

B - Compound detected in blank
LABORATORY I ESOURCES INC.

ANALYTICAL REPORT FOR BLANK

ANALYTICAL RESULTS: TOXICITY CHARACTERISTIC LEACHATE PROCEDURE

b. Sample	ID	:	VBLK-QE0821
1 ta File		:	>E2579
Calculation	Factor	:	1.000000
mple Loade	d (mL)	:	5.000000

		QUANTITATION
PARAMETER	RESULTS	LIMIT
	MG/ L	MG/ L
nyl Chloride	ND	.010
1 1-Dichloroethene	ND	.005
Chloroform	ND	.005
2-Dichloroethane	ND	.005
. rbon Tetrachloride	ND	.005
lrichloroethene	ND	.005
[enzene	ND	.005
Butanone	ND	.010
ltrachloroethene	ND	.005
Chlorobenzene	ND	.005
hylbenzene	. ND	.005
<pre>ta + para-Xylenes</pre>	ND	.005
ortho-Xylene	ND	.005
luene	ND	.005

METALS ANALYSIS DATA SHEET

Laboratory: Laboratory Resources, Inc. Division: New Jersey LRI Order No: T308118 LRI Sample No: 1 Client: Monroe Monitoring & Analysis, Location: NJ Project: Speedy Cleaners Sample Description: BS-2B

Date Collected: 08/05/93 Date Received: 08/06/93 Matrix: Soil Percent Moisture: 18.3%

				Start	Started		Completed	
Parameter	Result	QL	Units	Date	By	Date	By	Dilution
Mercury by Cold Va	por by 7470, TCLP							
Mercury	0.0050 U	0.0050	mg/L	08/19/93	BD	08/20/93	BD	
Metals by ICP by 60	10, TCLP							
Arsenic	1.0 U	1	mg/L	08/18/93	JB	08/19/93	MP	
Barium	1.0 U	1	mg/L	08/18/93	JB	08/19/93	MP	
Cadmium	0.050 U	.05	mg/L	08/18/93	JB	08/19/93	MP	
Chromium	0.10 U	.1	mg/L	08/18/93	JB	08/19/93	MP	
Lead	1.7	.3	mg/L	08/18/93	JB	08/19/93	MP	
Selenium	0.50 U	.5	mg/L	08/18/93	JB	08/19/93	MP	
Silver	0.050 U	.05	mg/L	08/18/93	JB	08/19/93	MP	

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Laboratory: Laboratory Resources, Inc.Division:New JerseyLRI Report No:T308118LRI Sample No:1

Date Collected: 08/05/93 Date Received: 08/06/93 Customer: Monroe Monitoring & Analysis, Location: NJ Project: Speedy Cleaners Sample Description: BS-2B

Matrix: Soil Percent Moisture: 18.3% Units in Dry Weight

			Units	Started		Completed		
Parameter	Result	QL		Date	By	Date	By	Dilution
Ignitability by SW-8	346 1010		1.					1000
Ignitability	145	70	°F			08/23/93	JC	
(Flashpoint)								

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Laboratory: Laboratory Resources, Inc. Division: New Jersey LRI Report No: T308118 LRI Sample No: 3

Date Collected: 08/05/93 Date Received: 08/06/93 Customer: Monroe Monitoring & Analysis, Location: NJ Project: Speedy Cleaners Sample Description: BS-3

Matrix: Soil Percent Moisture: 11.4% Units in Dry Weight

				Start	ed	Comple	ted	
Parameter	Result	QL	Units	Date	By	Date	By	Dilution
Ignitability by SW-84	6 1010							
Ignitability	115	70	°F			08/23/93	JC	
(Flashpoint)								

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Laboratory: Laboratory Resources, Inc. Division: New Jersey LRI Report No: T308118 LRI Sample No: 4

Date Collected: 08/05/93 Date Received: 08/06/93 Customer: Monroe Monitoring & Analysis, Location: NJ Project: Speedy Cleaners Sample Description: BS-4

Matrix: Soil Percent Moisture: 11.3% Units in Dry Weight

			Units	Started		Completed		
Parameter	Result	QL		Date	By	Date	By	Dilution
Ignitability by SW-8	346 1010	1	1					
Ignitability	>160	70	°F			08/23/93	JC	
(Flashpoint)								

NA		nitoring			- 1			יויייכ' אביריי
M	& A	nalysis, Inc.						
PRO	JECT NAME: PLER'S SIGNA		Lenne.	ns l	CCC LESE	NTAINER CLASSIFIC	CATION RESIDENCE	JOB CODE: 938-14
DATE	TIME	SAMPLE IDENTIFICATION	GRAT CC	SAMPLE TYPE	UHPP HIL	HS HC HAUNAL	NAL TO	PARAMETERS/REMARKS
8/5/9	13 14:00	135-28	×	SOIL	X		1	EPA 8240-LIBRARY SCAN
	14:05	B5-2B	×	Soil			1	EPA TCLP - VOLATHEST METALS
	14:10	B5-2B	X	SOIL			1	IGNITA BILITY
	14:12	BW-2B	X	WATER		14	2 2	EPA 8240- LIBRARY SCAN
	14:14	B5-3	X	SOIL			1	EPA 8240 - LIBRARY SCAN
	14:18	B5-3	X	SOIL			1	DUPLICATE (IF NEEDOD)
	14:20	B5-3	X	SOIL			1	IGAN TABILITY
	14:25	B5-4	X	Soil			1	FOA 8240 - LIBRARY SCAN
	14:27	B5-4	X	SOIL			1	DUPLICATE (IF NGTOD)
	14:36	BS-4	X	SOIL			1	16 41 174 311154
	15:00	DC-1	X	SOIL			,	EPA 8240- LIBRARY SCAN
	15:05	DC-1	X	SPIL			1	FPA TCLP-VOLATIES ONLY
-	15:30	DC-2	X	5016			1	FOA 8340 - 113 RADY CCAN
	15:33	DC-2	X	5016			1	PUPINATE (IENEGRA)
V	16:32	TBR-1	X	SOIL	V		1	FPA 8242-LIBRARY SCAN
				т	OTAL NUMB	ER OF CONTAINERS	16	

1. RELINQUISHED BY:	DATE 8/5/93	TIME 17:45	RECEIVED BY:
2. RELINQUISHED BY:	DATE	TIME	RECEIVED BY:
3. RELINQUISHED BY:	DATE	TIME	RECEIVED BY:

M	Mon Mon & A	itoring nalysis, Inc.		• Annual Annual Part	UH.		STODY RECORD
PROJEC SAMPLE DATE	T NAME: R'S SIGNA TIME	SAMPLE IDENTIFICATIO	N GRAD CO	SAMPLE TYPE	CO	HAINER CLASSIFICATIO	JOB CODE: 938-14
8-5 93		BR-1	×	<u>Sail</u>			Hold for instructions
				Ţ	OTAL NUMBE	R OF CONTAINERS	
1. RELIN 2. RELIN		11. B . 1	,	DATE 8-5-93 DATE	тіме 1745 тіме	RECEIVED BY:	anhil
J. ACLIN	UNSHED BY			DATE	TIME	RECEIVED BY:	

1425 Mt. Read Blvd. • Rochester, NY 14606 • (716) 458-8920 • Fax (716) 458-2160

Project No. 938-14 Author: William Sandvik

APPENDIX C SAMPLE LOCATION MAP

APPENDIX F

Water Level Data

WATER LEVEL DATA

WELL #	<u>2/12/92</u>	<u>4/7/92</u>	<u>9/4/92</u>	<u>11/19/92</u>	<u>12/29/92</u>	<u>1/22/93</u>	<u>4/20/93</u>	<u>5/26/93</u>	<u>8/30/93</u>
GW-1 (TC=534.29')	515.13	515.81	515.91	514.03	514.65	514.83	516.75	515.62	514.17
GW-2 (TC=530.75')	518.23	520.22	519.29	518.30	518.96		519.77	518.51	517.37
GW-3 (TC=531.36')		520.83	520.62	519.67	520.56	520.81	521.61	520.78	518.94
GW-4 (TC=530.74')		512.84	512.33	509.57	512.06	511.98	513.82	512.94	509.24
GW-5 (TC=529.9')				519.14	519.30	519.70	519.73	518.64	517.61
GW-6 (TC=527.3')				514.99	515.00	514.90	515.13	514.87	513.90

WATER LEVEL DATA