UNIVERSITY OF CALIFORNIA
Los Angeles

Probabilistic perspectives on

dispersive partial differential equations

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Mathematics

by

Bjoern Bringmann

2021



© Copyright by
Bjoern Bringmann

2021



ABSTRACT OF THE DISSERTATION
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by

Bjoern Bringmann
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2021
Professor Terence Chi-Shen Tao, Chair

This thesis treats nonlinear dispersive equations with random initial data. First, we study the de-
focusing energy-critical nonlinear wave equation on Euclidean space. We prove that the scattering
mechanism, which is well-understood for smooth initial data, is stable under rough and random
perturbations. The main ingredients are Bourgain’s bush argument, flux estimates, and a wave
packet decomposition of the random linear evolution. Second, we study the three-dimensional
wave equation with a Hartree nonlinearity. The main theorem proves the existence and invariance
of the Gibbs measure. The novelty lies in the singularity of the Gibbs measure with respect to the
Gaussian free field. The argument combines techniques from several areas of mathematics, such

as dispersive equations, harmonic analysis, and random matrix theory.

1



The dissertation of Bjoern Bringmann is approved.
Georg Menz
Rowan Brett Killip
Monica Visan

Terence Chi-Shen Tao, Committee Chair

University of California, Los Angeles

2021

1l



TABLE OF CONTENTS

[2.1.1 The random data Cauchy problem| . . . . . .. ... ... .. ... .. ...

[2.2  Notation and preliminaries| . . . . . . . . . . . . ...

[2.2.1 Probability theory| . . . . . . . . . ..o

[2.2.2  Harmonic analysis| . . . . ... .. ... ... o

2.4 Wave packet decomposition| . . . . . . . ... oo

[2.5  Nonlinear evolution: Local well-posedness, stability theory, and flux estimates|

[2.5.1 Local well-posedness and stability theory| . . . . . . .. ... ... ... ...

v



[3 Invariant (Gibbs measures for the three-dimensional wave equation with a Hartree |

nonlinearity I: Measures| . . . . . . . . . .. ... 68
3.1 Introduction| . . . . . . . . . 68
[3.1.1  Main results and methodsl . . . . . ... ..o oo 75
B.1.2 Overviewl . . . . . . . 81
B.1.3  Notationl . . . . . . . . . . 82

[3.2  Stochastic objects| . . . . . . . . 84
[3.2.1 Stochastic control perspectivel . . . . . . . . ... 84
[3.2.2  Stochastic objects and renormalization| . . . . . . . . ... ... 88

(3.3 Construction of the Gibbs measurel . . . . . . .. .. ..o 109
[3.3.1 The variational problem, uniform bounds, and their consequences| . . . . . . 110
[3.3.2 Visan's estimate and the cubic termsl . . . . . . . ... .00 o000 113
[3.3.3 A random matrix estimate and the quadratic terms| . . . . . . . .. ... .. 116
[3.3.4  Proof of Proposition [3.3.1] and Corollary|3.3.4] . . . . . ... ... ... ... 122

(3.4 The reference and drift measuresl . . . . . . . .. ..o Lo 127
B.41 Construction of the drift measurel . . . . . . .. ... ... o000 127
[3.4.2  Absolutely continuity with respect to the drift measure] . . . . . . . . . . .. 137
3.4.3  The reference measurel . . . . . . . . ... oL 143

[3.5 Singularity|. . . . . ... 144
[3.6 Appendixl . . . .. L e 158
[3.6.1  Probability Theory| . . . . . . . . .. 158




[3.6.2  Auxiliary analytic estimates| . . . . . . . .. ..o 161

[3.6.3  Uniqueness of weak subsequential limits| . . . . . ... ... ... ... ... 165

[4  Invariant Gibbs measures for the three-dimensional wave equation with a Hartree |

pnonlinearity 1I: Dynamics| . . . . . . . . . ... oo 170
M1 Introductionl . . . . . . . . 170
[4.1.1  Main results and methodsl . . . . . . . ... oo 182
412  Overviewl . . . . . . . . 192
413 Notationl. . . . . . . . .. 194

[4.2  Local theoryl. . . . . . . . . . 197
4.2.1 Para-controlled ansatz] . . . . . .. ... oo 198
4.2.2  Multi-linear master estimatel . . . . . .. ... o000 207
[4.2.3  Local well-posedness| . . . . . . . . .. ... 213
[4.2.4  Stability theory| . . . . . . ... o 219

(4.3 Global theory] . . . . . . . . . 225
[4.3.1 Global well-posedness|. . . . . . .. .. ... ... ... ... . 226
432 Invariancel . . . . ... ..o 234
[4.3.3  Structure and stability theory| . . . . . . ... ..o o000 235

[4.4 Ingredients, tools, and methods| . . . . . . . . ... ... 0L 249
[4.4.1 Bourgain spaces and transfterence principles| . . . . . . ... .. ... .. .. 250
[4.4.2  Continuity argument| . . . . . . . . . . ... 258
443 Sine-cancellation lemmal . . . . . . . ... o000 259

vi



[4.4.4  Counting estimates| . . . . . . . . . . .. 262
[4.4.5 Gaussian processes| . . . . ... 281
[4.4.6  Multiple stochastic integrals| . . . . . . . .. ... ... 000 283
[4.4.7  Gaussian hypercontractivity and the moment method| . . . . . . . . . .. .. 292
[4.5 Explicit stochastic objects| . . . . . . . . . .o 296
[4.5.1 Cubic stochastic objects] . . . . . . .. ... ... oo 297
[4.5.2  Quartic stochastic objects| . . . . . . . .. ..o 301
[4.5.3  Quintic stochastic objects| . . . . . ... .o Lo 307
[4.5.4  Septic stochastic objects| . . . . . . ..o oo 316
[4.6 Random matrix theory estimates| . . . . . . . . .. ... ... ... ... ... ... 319
M7 Para-controlled estimates|. . . . . . . . . ..o 325
[4.7.1 Quadratic para-controlled estimate] . . . . . . ... .. ... 330
[4.7.2  Cubic para-controlled estimate|. . . . . . . . . .. ... ... 334
[4.8  Physical-space methods|. . . . . . . ... o oo 339
4.8.1 Klamerman-Tataru-Strichartz estimates) . . . ... .. ... ... ... ... 340
[4.8.2  Physical terms| . . . . .. .. 342
[4.8.3  Hybrid physical-RMT terms| . . . . . . . .. ... ... ... 350
1.9 From free to Gibbsian random structures . . . . . . ... ..o 00000 355
[4.9.1 'The Gibbsian cubic stochastic object| . . . . . . . . .. ... .. ... .... 356
[4.9.2  Comparing random structures in Gibbsian and Gaussian initial datal. . . . . 360
4.9.5  Multi-linear master estimate for Gibbsian initial datal . . . . . . . .. .. .. 366

vil



[4.10 Appendix: Proofs of counting estimates| . . . . . . . . . . . ... ... 371

[4.10.1 Cubic counting estimate| . . . . . . . . . ... ... 371
[4.10.2 Cubic sup-counting estimates| . . . . . . . . . . ... ... 375
[4.10.3 Para-controlled cubic counting estimates| . . . . . . . . ... ... ... ... 376
[4.10.4 Quartic counting estimate] . . . . . . . ... ..o 377
[4.10.5 Quintic counting estimates| . . . . . . . . . ... ... 379
[4.10.6 Septic counting estimates| . . . . . . . . ... 382
References . . . . . . ... ... ... 385

viil



LIST OF FIGURES

1.1 Almost sure scattering for defocusing energy-critical dispersive equations. . . . . . . . . 5
(1.2 Invariant Gibbs measures . . . . . . . . ..o 7
[2.1 Partions of phase space|. . . . . . . . . ... 16
[2.2  Wave packet heuristic] . . . . . . .. ... 18
[2.3  Wave packet decomposition| . . . . . . .. ..o 21
[2.4  Effect of physical randomization|. . . . . . . . ... ..o 33
[2.5  Decomposition of the £*-cone| . . . . . . . . ... 53
4.1 Invariant GGibbs measures for defocusing nonlinear wave and Schrodinger equations.| . . 171
4.2 Overview of relevant regularities.| . . . . . . . ... ... ... .. L. 175
4.3  Dependencies between the different sections.| . . . . . . . . . ... ... ... ... 193
[4.4  Relationship between the different types.| . . . . . . .. . . ... ... 361
[4.5 Case distinction in the proot of Proposition|4.4.20 . . . . . . .. ... ... ... ... 375

1X



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Terence Tao for his constant encour-
agement and support. Under his guidance, I not only learned mathematics but how to be a
mathematician. I am also very grateful to Rowan Killip and Monica Visan, who taught me much
during their lectures, our discussions, and our joint work. I would like to thank Angela Stevens

for sending me on the road towards partial differential equations.

I would like to thank the dispersive PDE community for several interesting discussions during
conferences and seminars. A special thank you goes to Yu Deng, Ben Dodson, Justin Forlano, Zaher
Hani, Herbert Koch, Jonas Lithrmann, Dana Mendelson, Andrea Nahmod, Tadahiro Oh, Gigliola
Staffilani, Daniel Tataru, Leonardo Tolomeo, Nikolay Tzvetkov, and Haitian Yue. Furthermore, I
want to thank Nikolay Barashkov, Massimiliano Gubinelli, Martin Hairer, Felix Otto, and Nikolas

Perkowski for helpful discussions on singular SPDEs.

I would like to thank my friends and colleagues at UCLA, including Adam Azzam, Laura Cladek,
Mitia Duerinckx, John Garnett, Michael Hitrik, Asgar Jamneshan, Siting Liu, Georg Menz, Maria
Ntekoume, Yuejiao Sun, and Blaine Talbut, for creating a stimulating environment. My special
thanks go to my friends Gyu Eun Lee, Zane Li, and Redmond McNamara from the “harmonic

analysis reading group”.

I wish to thank my parents and sister for letting me move to the other end of the world to pursue
my dream. Finally, I want to thank Fei Feng for all the happiness she brings into me life. Without

her support, I would not be where I am today.



VITA

2014 B.Sc. (Mathematics), University of Muenster

2016 M.Sc. (Mathematics), Technical University of Munich

2018 Ernst Adolf Marum Fellowship, University of California, Los Angeles

2020 Dissertation Year Fellowship, University of California, Los Angeles
PUBLICATIONS

Bjoern Bringmann, Dana Mendelson, An eigensystem approach to Anderson localization for multi-

particle systems, To appear in Ann. Henri Poincaré (A Journal of Theoretical and Mathematical

Physics)

Bjoern Bringmann, Invariant Gibbs measures for the three-dimensional wave equation with a

Hartree nonlinearity II: Dynamics, Preprint (September 2020), arXiv:2009.04609.

Bjoern Bringmann, Invariant Gibbs measures for the three-dimensional wave equation with a

Hartree nonlinearity I: Measures, To appear in Stoch. Partial Differ. Equ. Anal. Comput.

x1



Bjoern Bringmann, Stable blowup for the focusing energy critical nonlinear wave equation under

random perturbations. To appear in Commun. Partial. Differ. Equ.

Bjoern Bringmann, Rowan Killip, Monica Visan, Global well-posedness for the fifth-order KdV
equation in H*(R), Preprint (December 2019), arXiv:1912.01536.

Bjoern Bringmann, Almost sure scattering for the energy critical nonlinear wave equation, To

appear in Amer. J. Math.

Bjoern Bringmann, Almost sure local well-posedness for a derivative nonlinear wave equation, To

appear in Int. Math. Res. Not. IMRN

Bjoern Bringmann, Almost sure scattering for the radial energy critical nonlinear wave equation

in three dimensions, Anal. PDE, Vol. 13 (2020), No. 4, p. 1011-1050

Bjoern Bringmann, Daniel Cremers, Felix Krahmer, Michael Moeller, The homotopy method revis-
ited: Computing solution paths of {1-reqularized problems, Mathematics of Computation, Volume

81 (2018), p. 23432364

Bjoern Bringmann, Lorenzo Giacomelli, Hans Kniipfer, Felix Otto, Corrigendum to ”Smooth zero-
contact-angle solutions to a thin-film equation around the steady state”, Journal of Differential

FEquations, Volume 261 (2016), p. 1622-1635

xii



CHAPTER 1

Introductionl!

The research in this thesis lies at the intersection of nonlinear dispersive equations and probability
theory. Dispersive equations model physical systems in which waves of different frequencies propa-
gate through a medium at different velocities. For instance, dispersive equations are used as theo-
retical models in nonlinear optics [AbI11], quantum many-body systems [ESYQ7, [ESY09, [ESY10],
and water waves [TW12| [Tot15]. The most illustrative consequence of dispersive effects is a rain-
bow, which occurs when light passes through rain droplets and is split up into different colors. In
addition to dispersive effects, many physical models contain disorder and randomness. In statisti-
cal mechanics, many central questions concern statistical equilibria, such as Gibbs measures. More
generally, randomness can be a consequence of microscopic fluctuations in densities or tempera-
tures. Physical models involving dispersion and randomness appear in plasma physics [LRS88]

and the study of water waves [MMQ19].

The mathematical interest in the interface of dispersive equations and probability theory is due
to its connections to several active areas of research. Far from just combining two areas of math-
ematics, recent advances also build on ideas from analytic number theory [BGHI19|, differential
geometry [KLS20], harmonic analysis [GKO18b| Bri20a], random matrix theory [Bou96, DNY20],

and quantum field theory [BG20bl [BG20a]. In broad terms, the main question in the study of

IThe first chapter of the thesis is partially based on the author’s research statement for postdoctoral research
positions, which is available on request.



random dispersive equations can be phrased as follows:

Main question. How does randomness affect the flow of nonlinear dispersive equations?

In case the randomness of the physical system enters only through the initial data, the main
question concerns the push-forward of the initial distribution under the (nonlinear) data-to-solution
map. As stated here, however, the main question is far too general for a direct answer. It may

depend on

(1) the form of the dispersive equation,
(2) the distribution of the randomness,

(3) and which properties of the flow are under consideration.

Regarding (1), the answer or method of proof may depend on the spatial dimension, the linear
dispersive symbol, or the strength and structure of the nonlinearity. Regarding (2), the answer
differs for statistical equilibria, such as Gibbs measures, and out-of-equilibrium dynamics, as in
wave turbulence. Regarding (3), the answer may depend on whether randomness is measured at

a single time, multiple times, or in the large-time limit.

In the following two subsections, we briefly describe the two manifestations of our main questions
which are addressed in this thesis. A more detailed description of the relevant literature and our

arguments, however, is postponed until the introduction of the individual chapters.



1.1 Random perturbations

In this section, we discuss the defocusing energy-critical nonlinear wave equation in dimension
d = 3, which is given by

—Ouu+ Au = u|77u (t,z) e R x RY
(1.1.1)

ul—o = o, Opufi=o = w1 .
In this thesis, we restrict ourselves to spatial dimensions d = 3 or d = 4, in which (1.1.1)) has
the polynomial nonlinearities u® and u?, respectively. In higher dimensions, the low-regularity
of the nonlinearity F(u) = |u|ﬁu can lead to technical obstructions and we refer the reader
to [BCLI3| Vis07] for a more detailed discussion. The nonlinear wave equation (|1.1.1)) has the

conserved energy

Eu](t) = fRd 'V“(;’f”” +(at“(;"”)) +d2_d2|u(t,x)|d2—d2dx. (1.1.2)

By using the Sobolev embedding H'(R?) — L%(Rd) of the homogeneous Sobolev space, we
obtain that the energy is finite if and only if (u(t), dyu(t)) € H'(R%) x L*(R%). The nonlinear wave
equation (1.1.1]) is invariant under the scaling symmetry

u(t, ) — up(t, x) := A%u()\t, AT). (1.1.3)

In addition to preserving the evolution equation, the scaling symmetry (1.1.3) also preserves the
energy of the solution. Thus, the energy is scaling-critical, which is the reason for calling (1.1.1])

energy-critical.

Our focus lies on the asymptotic behavior of solutions to ((1.1.1)). For initial data in the energy-
space H*(R?) x L2(R%), this problem is now well-understood and we summarize the known results

in the next theorem.



Theorem 1.1.1 (Global well-posedness and scattering [BG99, [Gri90, |Gri92, Rau81l, [SS93, [SS94]
Str68, [Str88, Taol6h]). Let 3 < d < 4 and let (ug, u) € HY(R?) x L2(R%). Then, there exists a
unique global solution of (1.1.1]) satisfying

d+2  2(d+2)

we (CEH; N L L, )(R «RY  and  due C'LA(R x RY).

Furthermore, the solution u scatters. To be precise, there exist scattering states (uj,uj) €

HY(RY) x L2(RY) s.t.

lim | (u(t) = W (t)(ug , ui), deu(t) — W (1) (ug, i) mayx raay = 0 -

t—+o00

Here, W (t)(uf,u}) denotes the solution to the linear wave equation with initial data (uf, u}).

In fact, Theorem has not only been proven for the energy-critical nonlinear wave equation
(1.1.1)), but also serves as a blueprint for other defocusing dispersive equations at critical regularity.
In the case of the defocusing energy-critical nonlinear Schrodinger equation, which is given by

i0,+ Au = |u|=2u  (t,z) e R x R,
(1.1.4)

U|t:0 = Uo,

similar results have been obtained in the seminal works [Bou99, [CKS08|, Vis07, RV07].

In the spirit of our main question, we now ask whether the scattering mechanism (as proven in
Theorem is stable under rough and random perturbations. To define the random pertur-
bations, we first let J be a countable index set. Then, we let (P;);cs be a sequence of operators
(on certain Sobolev spaces) such that )| e by strongly converges to the identity. In the literature,
(P})jes is chosen as a unit-scale decomposition in frequency space [BOP15bl [LM14] Bri20b], phys-
ical space [Murl9], or, as in this work, phase space [Bril8]. We also let (X,);es be a sequence of

independent (sub-)Gaussian random variables. For more details regarding the operators or random
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Wave Schrodinger

d = 4: [DLN20, DLMT].
radial d = 4: [KMV19, DLMI9].
d=3: [Bri20b].

non-radial d = 4: |Brilg]. Open.

Figure 1.1: Almost sure scattering for defocusing energy-critical dispersive equations.

variables, we refer the reader to the introduction of Chapter [2| Finally, we let 0 < s < 1 and let
(fo, f1) € H*(RY) x H* '(R?) be rough initial data. Then, the randomized initial data (fy, f¥) is
defined as

fE=>.X;Pf;  fori=0,1. (1.1.5)
jedg
In order to study the stability of the scattering mechanism under random perturbations, we con-

sider the random data Cauchy problem

—Opu+ Au = |u|u (tz)eR xR,
(1.1.6)

uli—o = uo + f5',  Oufi—o = w1 + f7.
In recent years, there has been tremendous interest in (2.1.5)) and related problems for the nonlinear

Schrodinger equations (I.1.4). While we provide a brief overview of the literature in Figure [1.1]
we postpone a more detailed discussion to Chapter 2] At this point, we only emphasize that there

is a significant difference between the radial and non-radial case.
The first main result of this thesis proves the analogue of Theorem [1.1.1}, which holds for smooth

and deterministic initial data, for the random data Cauchy problem (|1.1.6)) in dimension d = 4.

Theorem 1.1.2 ([Bril8]). Let (fo, f1) € H*(RY) x H*'(R*), where s > 1L let (f¢, f¢) be the

129
microlocal randomization as in Definition m, and let (ug,u1) € HY(R*) x L2(R%). Then, there

5



exists a global solution u: R x R* — R of (1.1.6)) such that
we W) (fs, f7) + (CPH} (| LILS) (R x RY) and dyue oW ()(f5, f7) + CPLI(R x RY) .

Furthermore, the solution u scatters. To be precise, there exist scattering states (ug,ui) €

HY(RY) x L*(R%) s.t.

lim [ (u(t) = W(t)(uy + fg',ui + f1'), Geult) — W (1) (ug + f5,ui + i)l g =0

t—=+00

In contrast to the earlier literature, Theorem does not require the radial symmetry of (fo, f1).
The main novelty in our argument lies in a wave packet decomposition of the linear evolution of
the random perturbation. Since a more detailed discussion of the main ideas requires additional

notation, we postpone it until Chapter [2|

1.2 Invariant Gibbs measures

In this subsection, we are interested in invariant measures for nonlinear dispersive equations. In
this invariant setting, the distribution of the initial data is preserved by the flow. From a physical

perspective, the most natural candidates for invariant measures are Gibbs measures.

The proof of the existence and invariance of Gibbs measures is one of the most classical problems
for dispersive equations. Once existence and invariance have been shown, the general theory of
dynamical systems yields interesting information about the flow of the dispersive equation under
consideration. For example, the Poincaré recurrence theorem proves that the evolution will return

infinitely often to states arbitrarily close to its initial state.

In the following, we restrict ourselves to results for defocusing semilinear wave and Schrodinger
equations with periodic boundary conditions, which are also displayed in Figure [1.2 In one

dimension, the existence and invariance of the Gibbs measure was proven by Bourgain [Bou94],

6



Dimension & Nonlinearity Wave Schrodinger

d=1, |uPtu [Eri85) [Zhi94] [Bou94]
d=2, |ulu [Bou96]
[OT20a]
d=2, |[uP~tu [DNYT9)
B> 2: [Bou97|

) g>1: [OOT20]
d=3, (Vg=ul*)u B>1—e: [DNY2]]
£ > 0: [Bri20d, Bri20d]

B > 0: Open

d=3, |ul*u Open Open

Figure 1.2: Invariant Gibbs measure.

Friedlander [Fri85], and Zhidkov [Zhi94]. Bourgain [Bou96|] also solved this problem for the two-
dimensional cubic nonlinear Schrédinger equation. For general power-type nonlinearities in two
dimensions, however, this problem was only solved recently by Oh and Thomann [OT20a] and
Deng, Nahmod, and Yue [DNY19] for wave and Schrodinger equations, respectively. Unfortunately,
the invariance of Gibbs measures is still open for many important dispersive equations in three
spatial dimensions. A more detailed discussion of both the earlier literature and remaining open

problems is contained in Chapter
In this thesis, we focus on the three-dimensional wave equation with a Hartree nonlinearity given
by

— fu—u+ Au = (V= u®)u: (t,r) e R x T?. (1.2.1)
Here, T? is the three-dimensional flat torus. Regarding the potential V3: T® — R, which depends

on a regularity parameter /3 € (0,3), we make the following assumption.

2Figure is a modification of Figure 1 in [Bri20d], which also appears in Chapter |4 of this thesis.



Assumptions. We assume that the interaction potential Vi satisfies

(i) Vs(z) = calz|~C) for some cs > 0 and all x € T® satisfying |x| < 1/10,
(ii) Vg(z) 25 1 for all z € T?,
(iii) Vg(z) = Va(—z) for all z € T?,

(iv) Vi is smooth away from the origin.

Finally, the nonlinearity : (V3 = u?)u: in is a renormalization of (V3 * u?)u, which is defined
in Definition 3.2.6]

Similar as in Section , the Hartree nonlinear wave equation ([1.2.1]) also obeys an energy con-
servation law. In order to emphasize the Hamiltonian structure of , however, the energy is

commonly referred to as the Hamiltonian and denoted by Hpg. It is given by
1 1
Holu l(t) = 5 (It ) + 19t 2) 3y +l0t, )3y )+ [ Vo) s (1o (122

The Gibbs measure M%, which is associated with the Hamiltonian Hg and expected to be invariant

under (|1.2.1)), is formally given by
dp (u, ) = 2 'exp ( — Hplu, ﬁtu]) duduy,

where Z is a normalization constant. The superscript ® in u% emphasizes that the Gibbs measure
yields both a random initial position u and an initial velocity u;. In Chapter 3] and 4] we prove

the second main theorem of this thesis.

Theorem 1.2.1 ([Bri20c, Bri20d|, Informal version). The Gibbs measure ug exists and, for 5 €

(0,1/2), is singular with respect to the so-called Gaussian free field g. Furthermore, pg is invariant

under the evolution of ([1.2.1]).



For a more precise version of this theorem, we refer to Theorem and Theorem below.
The Gaussian free field, which appears in Theorem [1.2.1] is a central object in probability theory.
In our context, it is best understood as a random Fourier series with Gaussian coefficients, see
and (4.1.15). In all previous results on invariant Gibbs measures for dispersive equations,
the Gibbs measure is absolutely continuous with respect to the Gaussian free field. In other words,
Theorem [1.2.1] is the only available result with a singular Gibbs measure. The proof of Theorem
naturally splits into a measure-theoretic and dynamical part, which form Chapter [3| and

Chapter [4], respectively.

The measure-theoretic part (Chapter [3]) is based on ideas from stochastic quantization [Nel66),
PWRI]. The rigorous mathematical treatment [AK20, [HMI8, MWIT7, (GHI9] relies on recent
advances in singular SPDEs, such as Hairer’s regularity structures [Hail4] and Gubinelli, Imkeller,
and Perkowski’s para-controlled calculus [GIP15]. Inspired by stochastic quantization, Barashkov
and Gubinelli [BG20bl, BG20a] recently developed a new variational approach to the construction
of Gibbs measures, which is used in this thesis. The main differences between [BG20b, BG20a]
and Chapter 3| stem from the nonlocality of the Hartree nonlinearity. A more detailed discussion

of the literature and main ideas is contained in the introduction of Chapter [3

The dynamical part (Chapter [4)), which is more difficult than the measure-theoretic part, is further
split into a local and global theory. The local theory combines tools such as dispersive estimates,
lattice point estimates, para-product decompositions, random operator bounds, and Wiener chaos
estimates, which stem from different areas of mathematics. The global theory is based on an
adaption of Bourgain’s globalization argument [Bou94] to singular Gibbs measures. A detailed

description of the main ideas is contained in the introduction of Chapter



CHAPTER 2

Almost sure scattering for the energy critical nonlinear

wave equation’|

2.1 Introduction

We consider the defocusing cubic nonlinear wave equation in four space dimensions, that is,

—Opu + Au = u? (t,z) e R x R* |

(2.1.1)
U|t:0 = Ugy € HS(R4), 8tu|t:0 = Uy € HS_I(R4) .
If u is a regular solution of (2.1.1)), then it conserves the energy
Vu(t,z)[*  (Gu(t,z))? t,x)t
E[u](t) := f | “(2 oF ! t“(2’ D), f) de . (2.1.2)
R4

From the Sobolev embedding H'(R*) < L*(R?), it follows that the initial data has finite en-
ergy if and only if (ug,u;) € H'(R*) x L2(R*). Thus, we also refer to H*(R*) x L2(R*) as the
energy space. In addition to the energy conservation law, obeys the scaling symmetry
u(t,z) — up(t,z) = Au(At,A\x). Since the scaling leaves the energy invariant, the equation is
called energy critical. Due to the positive sign in front of the potential term u?, we call

defocusing. There also exists analogues of (2.1.1)) with a power-type nonlinearity in any dimension

3Copyright (©)2020 Johns Hopkins University Press. This article is to appear in the AMERICAN JOURNAL
OF MATHEMATICS, Accepted on 08/19/2020.
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The Cauchy problem for (deterministic) initial data in the energy space is well-understood. We

summarize the relevant results in the following theorem.

Theorem 2.1.1 (Global well-posedness and scattering [BG99, |Gri90, |Gri92, Rau81l, [SS93, [SS94,
Str68| [Str88, Mac06h]). Let (ug,u1) € H'(R*) x L2(R*). Then, there exists a maximal time in-
terval of existence I and a unique solution u: I x R* — R of such that u € COHY(I x
RYY N L3, LS(I x RY) and du € CPL2(I x R*). Furthermore, we have that

tJoc~x
(i) w is global, i.e., I =R.

(ii) u obeys a global space-time bound of the form
|l 38 mxray < C(Eluo, ui]) -

(ili) u scatters to a solution of the linear wave equation. Thus, there exist scattering states

(uF, uf) € HY(RY) x L2(R?) s.t.

lim | (u(t) — W () (ui, ur), dru(t) — 0 () (ug, ui))l e = 0 -

t—+oo

Here, W (t)(ug, ui) = cos(t|V|)ug + (sin(t|V])/|V|)ui denotes the solution to the linear wave

equation with initial data (uf,u}).

Global well-posedness and scattering results such as Theorem [2.1.1] are known for many defocusing
dispersive partial differential equations, and hold for the energy critical nonlinear Schrodinger
equation [Bou99, [CKS08, RV0T7, [Vis07], the mass-critical nonlinear Schrédinger equation [Dod12]
Dod16al, Dod16bl [ KTV09, KVZ0§|, the mass-critical generalized KdV [Dod17], and the H3-critical

radial nonlinear wave equation [Dod18].
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Since Theorem provides a complete description of the Cauchy problem with initial data in
the energy space, we now seek a similar result for initial data in a rough Sobolev space H? x H5™1,
where s € [0,1). However, since this leads to a scaling super-critical problem, all of the above
properties can fail. In fact, [CCT03] proved that exhibits norm inflation, which means that

arbitrarily small data in H* x H*~! can grow arbitrarily fast. More precisely, we have for all € > 0

that there exists Schwartz initial data (ug, u;) and a time 0 < t. < € such that ||(ug, u1)|

and [|(u(te), dru(t.))|

Hsx Hs—1 < €

s xms—1 > € 1. Using finite speed of propagation, one may then also construct

solutions whose H* x H* '-norm blows up instantaneously.

2.1.1 The random data Cauchy problem

Many researchers in dispersive partial differential equations have recently examined whether blow-
up behaviour, such as the norm-inflation described above, occurs for generic or only exceptional
sets of rough initial data. To quantify this, one is quickly lead to random initial data. Indeed, one
natural form of rough initial data is (ug + f&,u1 + f¥), where the functions (ug,u;) € H' x L2
are regular and deterministic, while the functions (f§, f#) € H® x H*! are rough and random.
An analogue of Theorem in this case would imply the stability of the scattering mechanism
under a perturbation by noise.

The literature on random dispersive partial differential equations is vast. We refer the interested
reader to the survey [BOP19b], and mention the related works [BOP15al [BOP19al [Bou94, [Bou96,
BB14bl, Bri20a, BT08a, BT08bl (CCM20|, LM14, LM16, NORI12, INPS13, [Pocl7]. In the following
discussion, we focus on the Wiener randomization [BOP15b, [LM14] of a function f € H*(R?). Let
¢ € CP(R?) be a smooth and symmetric function satisfying ¢|_s/s3/s1¢ = 1, @lray—s/s5/80¢ = 0,
and Y, ;4 (€ — k) =1 for all £ € R%. We then define the associated operator Py, by

Pof(€) i= (€ — k) F(€) .

12



Since the translates {¢(- — &)}, form a partition of unity, we have that

f=> Bf, (2.1.3)

kezd
which is called the Wiener decomposition of f. The Wiener randomization is obtained by ran-
domizing the coefficients in ([2.1.3). Let I < Z* by an index set such that Z% = I U {0} U (—1).
Let {Xk}reroqop be a sequence of symmetric, independent, and uniformly sub-gaussian random
variables (see Definition . We set X_j, := X, for all k € I, and assume that X is real-valued.

Then, the Wiener randomization f" is defined as
Vo= X Pt (2.1.4)

kezd

The reason for introducing the set I is to preserve the real-valuedness of f. The Wiener random-
ization f" is a random linear combination of functions with unit-scale frequency uncertainty, and

therefore resembles a random Fourier series. We then examine the random data Cauchy problem

—Opu+Au=1v®  (t,z)e R x R?
(2.1.5)

Ulimg = ug + f(YV, Ortt|t=o = w1 + f1W

We now seek an almost sure version of Theorem [2.1.1{for (2.1.5)). Before we summarize the recent

results, let us sketch the overall strategy, which was developed by Pocovnicu in [Pocl7]. We let
F = cos(t|V|) f3¥ + (sin(¢[V])/IV]) f{V be the solution of the linear wave equation with the rough
and random initial data. We then define the nonlinear component v by v := v — F', and obtain
the forced nonlinear wave equation

—Opv+Av=(v+ F)3 (t,7) e R x R* |
(2.1.6)

U|t:0 = Uo, atv|t:0 = Uj.

13



At the cost of introducing a rough forcing term, we have therefore removed the rough part of
the initial data. This transformation is related to the Da Prato-Debussche trick [DD02]. Due to
the smoothing effect of the Duhamel integral, we hope to control the nonlinear component v in
the energy space. The local well-posedness of follows readily from probabilistic Strichartz
estimates (cf. [BOP15b] [LM14]) and a contraction mapping argument. Thus our main interest lies
in the global well-posedness and the long-time behaviour of the solution. Using the deterministic
well-posedness theorem and stability theory, it can be shown (cf. [DLM20, [Poc17]) that the solution
to exists as long as the energy of v remains bounded. Of course, due to the forcing term in
, the energy is no longer conserved. In addition, a global bound on the energy of v implies
a global bound on the L?LS-norm, and hence also implies scattering. A short calculation shows
that

%E[v](t) = Jth (v* — (v + F)*)ov do ~ =3 JW Fov?6vdx . (2.1.7)

In the formula above, we have neglected terms that contain more than a single factor of F', since
they are simpler to estimate. Therefore, the remaining obstacle lies in the control of the right-hand

side of (2.1.7). With this overall strategy in mind, we summarize the recent literature.

In [Pocl7], Pocovnicu proved the almost sure global existence of solutions for all s > 0. Using a
Gronwall-type argument and a probabilistic Strichartz estimate, (2.1.7)) leads (at top order) to the

growth estimate
EI(T) < E1(0) exp(ClFly 1 uirpensy) < E01(0) exp(CLT?) | (2.18)

Since this prevents the finite time blow-up of the energy, this yields an analogue of Theorem
2.1.1)[({)l Similar theorems are also known in dimension five [Poc17], dimension three [OP16], and
for the high-dimensional energy critical nonlinear Schrédinger equation [OOP19).

The bound ([2.1.8]), however, is not sufficient to obtain global control on the energy of v, and hence

14



does not prove almost sure scattering. Assuming the regularity condition s > % and that the
(deterministic) data (fy, f1) is spherically symmetric, Dodson, Lithrmann, and Mendelson proved

almost sure scattering in [DLM20]. In their argument, the energy increment is estimated by

T
1 1
‘J J4FU25tUd$dt < 22 Fll 2z oryxrey ] 4U||i§Lg([o,T]xR4) |0l Ly 12 Ry - (2.1.9)
0o Jr

The first factor is controlled using Khintchine’s inequality and a square-function estimate, and
heavily relies on the spherical symmetry of fy and f;. The main novelty lies in the control of
the second factor, and involves a double bootstrap argument in the energy and a Morawetz term.
Under the bootstrap hypothesis, one can then control the second factor in by the square-
root of the energy, and this eventually leads to a global bound.

The method of [DLM20] has since been used in several related works. In [DLMI19], Dodson,
Lithrmann, and Mendelson used local energy decay to improve the regularity condition to s >
0. After replacing the cubes in the Wiener randomization by thin annuli, the author proved
almost sure scattering for radial data in dimension three [Bri20b]. The main new ingredient is an
interaction flux estimate between the linear and nonlinear components of the solution. Finally,
the almost sure scattering for the radial energy critical nonlinear Schrodinger equation in four

dimensions has been obtained in [DLM19, KMV19].

2.1.2 Main result and ideas

The remaining open question is concerned with almost sure scattering for non-radial data. In
order to state the main result of this paper, we first need to introduce a microlocal randomization.
While the Wiener randomization is based on a unit-scale decomposition in frequency space, the

microlocal randomization is based on a unit-scale decomposition in phase space (see Figure [2.1)).

Definition 2.1.2 (Microlocal randomization). Let {Xp}rerofoez¢ be a sequence of symmetric,

independent, and uniformly sub-gaussian random variables. We set X_;; := Xj; for all k € I, and
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We display a partition of the phase space R? x R% into horizontal strips, which forms the basis of the
Wiener randomization, and a partition into cubes, which forms the basis of the microlocal randomization.

A similar figure has been used in the author’s previous work [Bri20bl Figure 1].

Figure 2.1: Partions of phase space

assume that Xo; is real-valued. For any f € H*(R?), we define its microlocal randomization f“ by

fe(x) = Z XiaPr(p(- = 1) f)(z) - (2.1.10)

ez
The microlocal randomization is inspired by [Murl9], which used a randomization in physical

space.

Theorem 2.1.3 (Almost sure scattering for the microlocal randomization). Let (ug, u;) € H! (R*) x
L*(RY), and let (fo, f1) € H*(R*) x H*"'(R*), where s > 13. Then, there exists a random maximal

time interval of existence I and a solution u: I x R* — R of ([2.1.5]) such that

ue WH(fs, )+ (CEH;(J xRY) () L{ 1o Lo(I xRY)) and du e W ()(f, f) + CPLA(I x RY) .

t,loc

Furthermore, we have that

(i) w is almost surely global, i.e., I = R.
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(ii) w almost surely satisfies the global space-time bound |ul| 1316 rxrs) < 00 .

(iii) u almost surely scatters to a solution of the linear wave equation. Thus, there exist random

scattering states (ui,ut) e H'(R*) x LA(RY) s.t.

lim [ (u(t) = W(t)(uy + fg',ui + f1'), Geu(t) — W (1) (ug + f5,ui + fi))l gz =0 -

t—+o0

While Theorem [2.1.3] is only proven for the microlocal randomization, the majority of our argu-
ment directly applies to the Wiener randomization.

The main novelty in this paper lies in the application of a wave packet decomposition. To illus-
trate this idea, fix some k € Z? with |k, ~ N, and assume that fp(¢) = N=5¢(¢ — k). Then,
fr will essentially be unaffected by both the Wiener and microlocal randomizations, and hence
forms an important example. From the method of non-stationary phase, it follows for all times
t € [0, N| that the evolution exp(=£it|V|)fx is concentrated in the ball |z £ tk/|k|2| < 1, and has
amplitude ~ N~%. In space-time, we can therefore view the evolution as a tube, see Figure m.
For larger times, the dispersion of the evolution becomes significant, and the physical localization
deteriorates. The wave packet perspective also explains the effect of the frequency randomization
on the evolution. In Figure 2.2b] we display a bush (cf. [Bou91]), which is a collection of wave
packets intersecting at a single point. If all wave packets in the bush have comparable amplitudes
and the data is deterministic, one expects that the L;°L-norm is proportional to the number
of wave packets. For random data, however, the phases of the wave packets are all independent,
and the central limit theorem predicts that the L{°L’-norm should instead be proportional to the

square-root of the number of wave packets.

The examples in Figure also illustrates an important heuristic: The natural timescale for the
randomized evolution at frequency N is T' = N. This differs from the natural timescale predicted

by the (deterministic) bump-function heuristic, which is 7' = N~1. We therefore decompose the
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(a) Single wave packet (b) Bush

In (a), we display the evolution exp(=+it|V|) fr on the time-interval [0, N]. The space-time support can
be viewed as a tube of length ~ N and width ~ 1. The spatial center travels in a fixed direction at the
speed of light, which has been normalized to 1. Furthermore, the amplitude of the evolution is given by
~ N7% In (b), we display a so-called bush, which is a collection of wave packets intersecting at a single

point.

Figure 2.2: Wave packet heuristic

positive time-interval as

IV

[0,50) = ( [N, (n + 1)N)) U [N, o) | (2.1.11)

n=0

where 6 > 0 is a parameter. Our argument then splits into two separate parts.

On the long-time interval [N'*? o0), we use the additional decay obtained through the physical
randomization. The basic idea is that after such a long time, the linear evolution could only
be concentrated through constructive interference of a large portion of the initial data, which is

highly unlikely due to the physical randomness (see Figure . To make this rigorous, we prove
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an LIL®([N't% «0) x R*)-bound on Py F, and this is sufficient to control the energy increment.

This part of the proof requires the condition s > 1 — /2.

The majority of this paper focusses on time intervals such as [0, V). This part of the argument
does not rely on the physical randomness, and therefore also applies to the Wiener randomization.
On this interval, we decompose the evolution into a family of wave packets, see Figure 2.3] As
can be seen from a single wave packet, we cannot (always) control the evolution in L; L®. Instead,
we use the following dichotomy: Either F' consists of only a few wave packets, in which case its

support lies on a few light-cones, or it consists of many wave packets, in which case the L L%-norm

should be small.

We now present a heuristic and simplified version of the main argument. In order to illustrate
the ideas, let us first assume that all wave packets belong to a single frequency k € Z9. After a
dyadic decomposition, we may further assume that all wave packets have amplitudes comparable
to 2™. Using the same notation as in Section we denote the number of wave packets with this
amplitude by #dl,, . Due to the L2-orthogonality of the wave packets, we have that 2m(#gﬂm)% <
N—s.
In the case of only a few wave packets, we control the contribution on each tube separately. We
have that

N 2 Lom 2 Lom
UO Fyv owdzdt| < ()N 22 (tlilifT [olZa s ) 100l o n2 o,y ety S N 227 #el, t;&%)E[U](t) :
The supremum ranges over all tubes of length ~ N, width ~ 1, and unit-speed direction inside
[0, N) x R*. Using a flux estimate and a bootstrap argument, we controll this supremum by the
square-root of the energy.

In the case of many wave packets (with the same direction), we use that their supports are disjoint,
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and obtain that

N
‘ f FNU2ﬁtUdZL’dt‘ S N”FNHL‘}‘L;“([O,N)XR‘l)Hv”%ng([O,N)xR‘l)||6tUHL‘;"“L%([O,N)><R4) S No™ s[up) E[U] (t) .
0 te[0,N

By combining both estimates, it follows that

N
‘J FNUdevdxdt‘ < min(N%2m#sﬂm,N2m) sup E[v](t) < N%QM(#Qﬂm)% sup E[v](t) .
0

te[0,N) te[0,N)
We insert the bound 2m(#&1m)% < N—*, sum over N? intervals, and arrive at the condition
s > 3/4+ 6. In order to match the conditions from the intervals [nN, (n + 1) N) and the long-time

interval [N'*% c0), we choose § = 1/6, and obtain the regularity condition s > 11/12.

In order to remove the restriction to a single frequency, we need to consider both multiple direc-
tions and multiple scales. For this, we rely on techniques from the literature on the Kakeya and
restriction conjectures. In order to control multiple directions, we use Bourgain’s bush argument
[Bou91]. The basic idea is to distinguish points which lie in multiple tubes from points which lie
only in a few tubes. To this end, we group the wave packets into several bushes and a collection
of (almost) non-overlapping wave packets (see Figure [2.3). We then almost argue as for a single
frequency, but also use that each bush lies on the surface of a light-cone, which is crucial for the
flux estimate. In order to control multiple scales, we rely on Wolft’s induction on scales strategy
[Wol01]. To fix ideas, let us try to bound the energy increment E[v](N) — E[v](0). We have
already described the estimates for wave packets of length greater than or equal to N, but the
space-time region [0, N] x R* also contains many shorter wave packets. By induction on scales,
we can already close the bootstrap argument at these shorter scales, which greatly reduces the

complexity of the proof. We postpone a more detailed discussion to the Sections [2.4] and [2.6]
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We illustrate the wave packet decomposition of the linear evolution. We partition the wave packets into

three groups: Two separate bushes (red and blue) and a collection of almost non-overlapping wave packets

(green).

Figure 2.3: Wave packet decomposition

he proposed the greedy selection algorithm in Section [2.4] Furthermore, I want to thank Rowan
Killip and Monica Visan for several interesting discussions. The figures in this paper have been

created using TikZ and GeoGebra.

2.2 Notation and preliminaries

For the rest of this paper, the positive integer d denotes the dimension of physical space. In the
analysis of the nonlinear evolution, we will eventually specialize to d = 4. Furthermore, we also
fix positive absolute constants 9,6, and n. The parameter § will be used to deal with the spatial
tails of the wave packets and certain summability issues. The parameter 6 is used in the division
of time (see ) We will eventually choose 6 = 1/6, but prefer to keep 6 as a free parameter

until the end of the argument. Finally, n describes the size of the frequency truncated data, see

21



Proposition [2.4.8|

If A, B are positive quantities, we write A < B if and only if there exist a constant C' = C(9, 6)
such that A < C'B. Furthermore, most capital letters, such as N, M, and R, will denote dyadic
numbers greater than or equal to 1.

Finally, we define the Fourier transform f of an integrable function f: R? — C by

~ 1
f©) = oo

We now summarize a few basic results from probability theory, harmonic analysis, and dispersive

fRd exp(—iz€) f(z)dz .

partial differential equations.

2.2.1 Probability theory

We recall a few basic estimates for sub-gaussian random variables. For an accessible introduction,

we refer the reader to [Verl§].

Definition 2.2.1 (Sub-gaussian random variable). Let (2, F,P) be a probability space, and let
X: (2, F) — R be a random variable. We then define the sub-gaussian norm by
1
(E[X])
VP

We call a random variable X sub-gaussian if and only if | Xy, < co. Furthermore, we call a family

X, := sup (2.2.1)
p=

of random variables {X;};c; uniformly sub-gaussian if and only if sup,; | X;|w, < 0.

The relationship to the Gaussian distribution may not be obvious from ({2.2.1]). However, it follows
from [Verl8, Proposition 2.52] that (2.2.1]) implies

2
P(|X| > x) < 2exp <—cx—2) Vo >0.
1XT3,

Many concentration inequalities for the sums of independent sub-gaussian random variables can

be found in the literature. In the following, we mainly rely on Khintchine’s inequality.
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Lemma 2.2.2 (Khintchine’s inequality, [Ver12, Corollary 5.12] or [Verl8, Proposition 2.6.1 and

Exercise 2.6.5]). Let (X;);-1,..s be a finite sequence of independent sub-gaussian random variables

.....

7, and all p > 1, that

=1,...

< Vo (o, 11, ) (Z W) (2.22)

-----

P

(o)

. J . .
In particular, the sum »] =1 45X 1s sub-gaussian.

In this paper, Khintchine’s inequality will often be combined with Minkowski’s integral inequality,

which we recall below.

Lemma 2.2.3 (Minkowski’s integral inequality). Let (X, ) and (Y, v) be two o-finite measure

spaces, and let 1 < p < ¢ < oo. Then, we have for all measurable functions f: X x Y — R that

ILf (z, ) oy | Layy < (2, 9) | Loy llze(x)

The special case p = 1 is the standard Minkowski inequality, and it can be found in most real
analysis books (see e.g. [LLO1, Theorem 2.4]). Since Lemma is central to many arguments

in this paper, we prove the general statement from this special case.

Proof. Since q/p = 1, we have that

1
117G ) e agry = 11 (2, 9)” ||L1<X>IIL 2y S @9V 3 0 ey = @ W) 0oy oy -

We will also need a crude bound on the maximum of dependent sub-gaussian random variables
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Lemma 2.2.4 (Suprema of dependent sub-gaussian random variables [VerI8 Exercise 2.5.10]).

Assume that (X;);-1,. s are (possibly dependent) sub-gaussian random variables. Then,

.....

E [.H%axj |X]|] log(2 + J) max 1 X w, - (2.2.3)
P

777777777

...............

1 J »
E[ max | X; |] (]E[ max _|X; |p]> <Z [1X; |p> < Jp\f max |1X]lw, -
J= =Ty

After choosing p = log(2 + J), we arrive at ([2.2.3)). O

2.2.2 Harmonic analysis

Let N € 2% and k € Z¢. As in the introduction, we let ¢ € C*(R?) be a smooth and symmetric
function satisfying || 820 = L, §0|Rd\[_g’g]d =0, and Y0 (- — k) = 1. We also define ¥ (&) =
©(&) — ¢(2¢). Then, the re-centered Littlewood-Paley operators are defined as

(§HFE N1

P& —R)F(©) N =1
With this choice of 9, it holds that PyyPuyy = 0if M = 4N or N = 4M. To simplify the

Py f(€) =

notation, we also set Py := Py, and Py := Py.,. Furthermore, we define the fattened Littlewood-
Paley operators

ﬁ]\[;k = Z PM;k . (224)

210 NKM<210N

Lemma 2.2.5 (Bernstein’s inequalities). Let N € 2% ke Z? and 1 < p < ¢ < 0. Then, we for
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all f e LP(R?) that

11
| Py flrarey < N0 | Pa fll r ey (2.2.5)

IV Pofllzemey € N Pyof| e - (2.2.6)

We emphasize that the constant in (2.2.5) is independent of k € Z4, since the phase exp(ikx) does

not affect the L2-norms.

We also record the following standard consequence of Bernstein’s inequality and the uncertainty

principle.

Lemma 2.2.6. Let N > 1, let a,b € R, and assume that b = a + 1/N. Then, we have for all

fel?(RY),all<qg<oo, andall 1 <p< oo, that

) 1 .
lexp(£it| V) Px flloe o apixrey S N el exp(£it|V|) Py fll o 12 (o517 -

The argument is essentially taken from [Bri20b].

Proof. Pick ty € |a,b], and let I be any interval such that ¢y € I < [a,b]. For all ¢ € I, it holds that

to
exp(ito| V]) Py f* — exp(it|V]) Py f* + zf V| exp(&it|V]) Py fdt
t

From Bernstein’s inequality, we obtain that

. w . " _1 . w
| exp(Eito| V) Pr S| zay < || exp(Fit| V) Pr [« zggay + '~V | exp(xit| V) P £ g 207 cma)

< | exp(+it|V)) Py f| pay + NI o] exp(Fit| V) Py f) o)
Taking the g-th power and averaging over all ¢ € I, we obtain that
lexp(itol V1) Pl oy < (1117 + NITI'5) | exp(&itV]) Py S |sgiarces, -
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By choosing |I| = N7!, and taking the supremum over all ¢, € [a, b], it follows that
| exp(£it|V) Py f“l e aonxrey S Nallexp(Eit|[V]) Py f< 1 02((a5)<ra)-

O

The following estimate, which appeared in the almost sure scattering problem for the nonlinear

Schrodinger equation [KMV19)], is useful in combination with Khintchine’s inequality.

Lemma 2.2.7 (Square function estimate [KMV19, Lemma 2.8]). Let f € L2(R%) and let ¢ be as
above. Then, it holds that

2 [Bf@P < (2] 1P () - (2.2.7)

kezd

In addition to the dyadic decomposition in frequency, we also need a dyadic decomposition in
physical space. To avoid confusion, we denote the cut-off function in physical space by y. More

precisely, we set x1(z) := p(z) and x.(z) := ¢(x/L), where L > 2.

Lemma 2.2.8 (Mismatch estimates). Let 1 < p < o0 and M, N, L > 1. We further assume the
mismatch conditions max(M /N, N/M) = 8 and L > 8. Then, it holds for all absolute constants
D > 0 that

Ix1Pruxrlpe—re <p (ML) P, (2.2.8)

| PxxaPulpere <p (NM)™P . (2.2.9)

Proof. The inequality (2.2.8) can be found in [DLM19, Lemma 5.10]. An inequality similar to
(2.2.9) can be found in [DLM19, Lemma 5.11], and we present a different argument.
Using duality and (Pyx1Py)* = PuxiPy, we can assume that N > M. From the mismatch
condition, it then follows that N > 8M. Thus, we obtain for all f € LE(R?) that

|Pv O Pa )z = | Pu((Pongsx ) Parf)l oz < [ Pongsxallez [Parfln < N7 flee -
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The following auxiliary lemma will be helpful in the proof of probabilistic Strichartz estimates.

Lemma 2.2.9 ({7 -estimate). Let s € R and let f e H3(R?). For any 2 < p < o0, we have that

Hpk(solf)”Z?éﬁLﬁl(de{keZd: ||| e €(N/2,N]} xR<) S [Py fllez@s + N1 ] Hs(R4) (2.2.10)

Remark 2.2.10. The error term N 57107 f|

ms(rdy 18 a result of the non-compact support of ¢,
but may essentially be ignored. On a heuristic level, each Py(ip,f) is supported on a spatial region
of volume ~ 1, and thus (2.2.10]) should follow from Hoélder’s inequality. To make this argument

rigorous, we use the square-function estimate and the mismatch estimates above.

Proof. Let Py be the fattened Littlewood-Paley operator as in ([2.2.4)). We write M « N if either
M <27 N or M > 2!°N. In the following, we implicitly assume that |[k|. € (N/2, N]. We then

estimate

HPIC((plf)Hngg%Lg' < HPk(golef)”g%giLg’ + Z ”Pk(gplPMf)”@?giLg' : (2211>

M#AN
We begin by controlling the first summand in (2.2.11)). Using Minkowski’s integral inequality and

the square-function estimate (Lemma [2.2.7)), we obtain that

|P(oPn Pl o = H%Oz'Pk(@lPNf)H,glz@i,gllng' < lovPe(@iPn ) eee 2 < lovPuloiPn )l e, rz2e

k= Ly

= Hw (IsBI . |90lj5Nf|2) ’ (2.2.12)

Gz
Using simple support considerations, we have that
1
~ ~ 2
HW (|80| * |901PNf|2)

<{'- l>710dH90113Nf||%3 :

2 ~
< |ev (121 +leuPu 1)
LE

=D PPy
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Inserting this back into (2.2.12]), we obtain that

IPi(oiPr )l gy < I =D ouPrflge s < 1Py fles -

Ly
Thus, this yields the first term in (2.2.10)). We now control the second summand in (2.2.11)). First,
note that Py = >y s y<nr<osy PP Since there exist only ~ N 4 frequencies of magnitude ~ IV,
we have that

d
”Pk(SOZPMf)”%@lng’ < N>z Z ”PN’(QOZPMf)”g?Lg’ .

2" NKN/<2°N

It now suffices to prove for all g € S(R9), all M % N, and all absolute constants D > 0 that

| Pxr(orPug) |y <o (NM)™P|Ke = 7 Pg|rz - (2.2.13)

Using spatial translation invariance, we may set [ = 0. Let {x1}7>1 denote the dyadic decomposi-

tion in physical space. Using the mismatch estimates (Lemma [2.2.8)), we obtain

| Pve (poPrg) < 2 1P (o Prrxeg)l < Z | PrepoPrxcl o IXLYlp
L=1 L=1

< (NM)™P ) L7 Regl < (NM) 7Py Pyllre -

L>=1

]

As a direction consequence of (2.2.9)), we also obtain the following estimate on the H*-norm of the

microlocal randomization.

Lemma 2.2.11 (H:-norm of f*). Let f € H:(R?) and let f“ be its microlocal randomization.

We further set

= Z XO,ZPO(Qle) and fju\)[ = Z XkJPk(gOlf) s where N = 2. (2214)
lezd k,lez?
I%ll-c€(N/2,N]

Then, we have for all 2 < r < oo that

1Ny = [N*flre 2 < (2.2.15)

s -
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Proof. The first equivalence in is a direct consequence of the definition of the H?-norm.
Now, we prove the bound in . From Minkowski’s integral inequality, Khintchine’s inequality,
and Lemma [2.2.9] we have for all N > 2 that
IN®fllgez < IN® D XeaPeloif) 2y
Ikl e(N/2,N]
< VN Pleif)ize i e

< VT (NP S lraguey + N7 f

Hs(Rd))

The same argument also applies to N = 1. After taking the {3-norm, this completes the proof. [J

2.2.3 Strichartz estimates

The individual blocks in the microlocal randomization or the Wiener randomization have frequency
support inside a unit-sized cube (at a large distance from the origin). Since this rules out the Knapp
example, one expects a refined dispersive estimate. The following lemma is due to Klainerman

and Tataru [KT99], and it has first been used in the probabilistic context by [DLM20].

Lemma 2.2.12 (Refined dispersive estimate by Klainerman-Tataru [KT99]). Let f € L}(R%), let
k € 74 satisty |k|w € (N/2, N], and let M < N. Then it holds for all t € R and 2 < p < oo that
Md(lfg)

i 2.2.16
(1+ 3 .

| exp(£it|V]) Py f | o sy < o e -
P

As stated, the inequality (2.2.16)) essentially follows from [KT99]. For the sake of completeness,
we present the modification below.

Proof. By interpolation against the energy estimate | exp(+it|V|) Parr f| r2me) < || f]22(ray, it suf-
fices to prove (2.2.16)) for p = co. The inequality [KT99, (A.66)], where u = M /N, and a scaling
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argument yield

_ MNdfl
lexp(£it[V]) Prrpef | e (may < WHJCHL}C(R% : (2:2.17)

We now distinguish two cases. If |[t| < N/M? then Bernstein’s inequality (Lemma [2.2.5)) yields
that

. d . a
lexp(£it|V|) Parp fll g ey < M2 | exp(£it|V]) Pare f | r2rey = M2 | Prrgef | 2 mey < Md”PM;kaL;(Rd) :

If [t] < N/M?, then (2.2.17) yields that

) MNdfl Md Md
I eXp(i’ltWDPM;kf”ng(Rd) < W”JCHL;(M = WHJCHL}C(R% < m”f”L;(Rd) .
N N

]

In this paper, we are mainly concerned with the case M = 1. Then, (2.2.16]) describes the linear
evolution on short time intervals more accurately than (2.2.17). As a corollary of the refined
dispersive estimate, we obtain the following refined Strichartz estimate.

Let 2 < ¢,p < oo. We call the pair (¢, p) wave-admissible if

1 d—1 d—1
-t — << — d D, d 2,00,3) .
q+ o 1 an (q,p,d) # (2,0, 3)

Corollary 2.2.13 (Refined Strichartz estimates [KT99]). Let f € L2(R%), let k € Z% satisfy
|kl € (N/2, N], and let M < N. Then, we have for all wave-admissible pairs (¢, p) that

d_2_d

=N s e g2 _d 1
I exp(£it V1) Pas flsgrzqusnny S METT 5N Par f lragae (22.18)

The derivation of the refined Strichartz estimate from Lemma [2.2.12] follows from a standard T'T*-
argument, and we therefore omit the proof. For the endpoint (2,2(d — 1)/(d — 3)), we also refer
to [KT98|. Let us emphasize two special cases: If M = N, we obtain the usual scaling factor

d_ 1

NTT%, and if M = 1, we obtain the factor Né, which does not depend on p.
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2.3 Probabilistic Strichartz estimates

In this section, we derive probabilistic Strichartz estimates (cf. [BOP15b, [DLM20|, [LM14]) and
a probabilistic long-time decay estimate (cf. [Murl9]). To keep the exposition self-contained, we

include the (short) proofs. Recall from (2.2.14)) that

fi = Z XouPolpif) and fr= Z Xi1Pi(orf), where N > 2.
leZ k,lez?
|kllce(N/2,N]

Lemma 2.3.1 (Probabilistic Strichartz estimate). Let f € H(R?) and let f* be its microlocal
randomization. Then, it holds for all N > 1, all wave-admissible exponent pairs (¢, p), and all

1 <7 < oo that

. 1) l—s
H eXp(iZﬂv|)fN||LZ,L§L§(Q><R><]Rd) < \/;Nq +Hf||HfC(Rd) . (231)

This estimate has previously appeared for the Wiener randomization in [DLM20].

Proof. In the following, we implicitly assume that k € Z¢ always satisfies k|, € (N/2, N]. First,
we assume that 2 < p, ¢ < o0, and that max(p, q) < r < . Using Minkowski’s integral inequality
(Lemma2.2.3)), Khintchine’s inequality (Lemma[2.2.2)), and the refined dispersive estimate (Lemma
2.2.12|), we have that

lexp(£it| V) ¥l roen < [ exp(£it|VI) f¥llcarzr, < Vol exp(it| V) Pi(eorf) | cze

. 1 1
< Vrlexp(£it| V) Pi(of) ez rarz < VN[ Poloif)e rz <€ VrNa | f]

Hs -

In the last inequality, we have also used Lemma [2.2.9] The estimate for 1 < r < max(p, ¢) then
follows from Hélder’s inequality. Thus, it remains to treat the cases ¢ = oo and/or p = oo. This
is a know technical issue, see [Bri20b, Remark 3.8] for a discussion. Both cases can be reduced to

the previous estimate by using Lemma and Bernstein’s inequality. m
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Lemma 2.3.2 (Probabilistic long-time decay). Let f € L2(R%) and let f* be its microlocal ran-
domization. Furthermore, let 1 < ¢ < o0 and 2 < p < o be such that

1 d—1 d-1
1od=1_d=1 (2.3.2)

Then, we have for all 1 < r < oo that

1
. y 1, T\ r T
| exp(it|V[) ¥ 1z Loz (0x im0 xRty Sqp VINTT <1—|—N> | flases.  (2:3.3)

Lemma has previously been used for a physical space randomization in [Murl9, Proposition
3.1]. In contrast to the standard Strichartz estimates, which are time-translation invariant, (2.3.3)
provides a quantitative decay rate. The motivation behind this estimate is illustrated in Figure

2.4] In this paper, we only require the following special case.

Corollary 2.3.3. Let f € L2(R*) and let f“ be its microlocal randomization. Then, we have for

all & > 0 that

. " )
|l exp(£it| V) [l o i x(vieo myxray S VN 27| fv] 2 grsy - (2.3.4)

Remark 2.3.4. Due to (2.3.2)), the L] L®-estimate fails logarithmically in three dimensions.

Proof of Lemma[2.3.3. We essentially follow the argument in [Murl9]. Let us first assume that
2<q,p < 0.

We further assume that r > max(q, p), the corresponding estimate for 1 < r < max(q, p) then fol-
lows from Holder’s inequality. Using Minkowski’s integral inequality (Lemma , Khintchine’s
inequality (Lemma , and the refined dispersive estimate (Lemma , we have that

lexp(Eit|V|) ¥z Lo 12 @x[1,00) xR

< [lexp(Eit| V) ¥ | Lare r (17,00) xREx )
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This figure illustrates the effect of the physical randomization on the linear evolution. At the point
(to, xo), the linear evolution depends on the initial data in a large region of space. Due to the physical
randomization, the initial data in different spatial regions cannot constructively interfere, and hence we

expect an improved decay.

Figure 2.4: Effect of physical randomization

<V eXp(iit|v|)Pk(S0lf)”LgLﬂi’l([T,oo)dede+d)
<V eXp(iiﬂVDPk((plf)”Z%)lLfL’;(Z‘de[T,oo)de)

£\ ~@-DG-
<o (1 Y

N

L[\ —(-D(5-5
1+ %)
( N

Using condition ((2.3.2), we obtain

RGN
! )
‘( N

€3 L (Z9+4X[T,00))

<A

HPIC(SOIf)||gi,ng'(Zd+ded) .

L{([T,0))

< Ni (1 + %)
LY(T,0))

Finally, from Lemma [2.2.9| we have that

1P 1 gy < N7l
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This finishes the proof in the case 2

q,p < oo. Using Bernstein’s inequality, we can reduce the
case p = o to p < co. Thus, it remains to treat the range 1 <

q < 2. Using a dyadic decomposition
in time, we have for all T > N that

lexp(Eit|V|) ¥ Lo L2 @x[1,00) xR

8

< Z I exp(iiﬂva]u\)T”LngLg(Qx [2mT,2m+1T)xRd)

@ 1 1
Z (2™T)a 2| exp(it|V]) f¥ HL;L%LP(QX [2mT,2m+1T) xRd)

m=0

N e 1 1 om\ 2T T
N e N
m=0

7\ Srest -5t
l—s q p
< v (§) 11 -

In the second last line, we used condition ((2.3.2)). For ' < N, we also have that

11 . w
I eXP(+Zt|V|)fﬁHL;Lng(Qx[T,N)de) < Na 2| exp(ilﬂvbeHLTLQLP(QX[O N)xRd) = N

q

[
Definition 2.3.5 (Auxiliary norm). Let 0

<s < 1 let (fo, fr) € H*(RY)
Ny = 1. We then define

x H*71(R*), and let

o 1
1(fo, f1)lzvo) = Z Notg-1-0

sin(t|V
cos(t V] fow + VD 1
NN Vi LILE ([N1+0 00) < R4)
o sin(t|V
b % N feos(e V) o + T
N=Ng

L L ([0,00) xR*)
From Proposition and Corollary [2.3.3] it follows that

15 f)lenzay < VPl Cfos Sl -
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2.4 Wave packet decomposition

In this section, we use a wave packet decomposition to better understand the (random) linear
evolution.

This part of the argument does not rely on the additional randomization in physical space. We
therefore phrase all results in a way that applies to both the microlocal and the Wiener random-
ization, and hope that this facilitates future applications. With this in mind, we now rewrite the
microlocal randomization in a form that resembles the Wiener randomization.

Let the random variables { X} ;}4 jeze be as in Deﬁnition let {€x}reruiop be a family of indepen-
dent random signs, and set e_;, = ¢, for all £ € I. We can then define Y}, ; := €, X} ;. For a sequence
of multi-indices k,l;,...,l; € Z% and any sequence of Borel-measurable sets A;,..., A; € R, we

have that
]P)(Ekz 17Yk,l1 EAl,... YliEAJ) ZP(Ek =1 Xkl1 EAl,... XliEAJ)

J J
k—lHPXkZEA k—lnPYkZEA
Jj=1 j=1

In the last equality, we have used that the random variables X} ; are symmetric. Therefore, for
a fixed k € Z¢, the family {ex} U {Yri}ieze is independent. From this, it then easily follows that
the whole family {ex}rerofoy U {Yaitrerofopieze is independent. We then rewrite the microlocal
randomization as

= > XuiPelof) = ) efr,  where fi = Pe( > Yisprf) - (2.4.1)

k,leZd kezd lezd

Due to the independence properties discussed above, we can regard the functions {fx} as deter-
ministic by conditioning on the random variables {Y} ;}x,;, and only utilize the randomness through
the random signs {¢;},. Note that closely resembles the Wiener randomization.

To motivate the wave packet decomposition below, we now rewrite the linear evolution with ini-
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tial data (fy, fi’). Using the notation from (2.4.1)), we first introduce the half-wave operators by

writing
sin(t|V
cos(t ) i+ SV g
V|
sin(t|V
= ¥ (costivhie + g
kezd |V| (2 42)
. . V -1 . o . v -1 . = N
= 3 e [osptintw (2 HIIEIY g (= V1
kezd
= ) e [exp(it| V) £ + exp(=it|V]) f] -
kezZ
As in ([2.2.14]), we also decompose dyadically in frequency space, and write
Fy= > eexp(+it|V))ff and  Fy:=Fy+Fy . (2.4.3)
|kl ce(N/2,N]
Let k € Z* with |[k]o € (N/2, N], and let [ € Z¢. We define the tubes T}, by
T, = {(t,x) e [0, N] x RE: o — (I Ft-k/|k2)]|s < 1} . (2.4.4)

Here, the superscripts £ are chosen so that the tubes correspond to the operators exp(+it|V|).
The dimensions and the shape of the tubes are illustrated in the introduction, see Figure [2.2]
Motivated by the Doppler effect, the tubes T}/, are sometimes called red tubes, and the tubes T}

are sometimes called blue tubes.

Proposition 2.4.1 (Spatial wave packet decomposition). Let k € Z¢ with [|k||, € (N/2, N]. Let

fr € L2(R%) be a function such that supp fk C k + [~1,1]% Then, there exists a decomposition

fo=> fra

lezd

such that

(i) supp fay < k + [—4,4]" for all [ € Z,
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(ii) the family {fi,}eze satisfies the almost-orthogonality condition

3 el < 15122 @) - (2.4.5)

lezd

(iii) and for any D > 1, any [ € Z%, and all (t,2) € [0, N] x R?, it holds that

| exp(+it| V) fra(@)] <p (1 +dist((t, 2), T)) ™| full sz o) - (2.4.6)

Wave packet decomposition as in Proposition have been used extensively in the literature, see
e.g. [Bou9ll [Cor77, Fefr3, [Gut16, Wol01] and the survey [Tao04]. We present the details below,

but encourage the expert reader to skip ahead to the end of the proof.

Proof. We define the fattened projection
ﬁk = Z Pk/ .
Ik k] <2
Then, it holds that
f=Df= > Pu(pif) =: >

lezd lezd

The frequency support condition |(i)| directly follows from the definition of P Furthermore, the
almost orthogonality follows from

Z | frall 22 ey S Z lerfillzamay < Iful7zay -

lezd lez4
Thus, it remains to prove the decay estimate [(iii)l We only treat the operator exp(it|V|), since
the proof for exp(—it|V]) is similar. If N < 1, the estimate is trivial. Thus, we may assume that

N » 1. The argument is based on the method of non-stationary phase. For all ¢ € [0, N]| and
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z € R?, we have that

exp(it|V|) fra(x)
_ 1df exp(i + itle )€ — k)@ » D)
) f(n)dydndée

2

2
oy L[] [ esvting e e — 1y esp-inte oty -0

- exp(izk + it|k|) J K(n;t,x)exp(—il(k —n))f(n)dn ,

- (2 )
where the kernel K(n;t, ) is given by
Kimtia) = [ | explite — €+ t(lg + = k) exp(-iy(€ + b~ n)3(Oe(u)dedy
R JRd
~ , _

1) =
Since suppp < [—1,1]%, the function a(&;y,n) = exp(—iy(€ + k — 1)) (€)p(y) has uniformly
< 1. Usi

bounded derivatives in £, i.e, we have for all @ € N& that [0%a(&;y,n)| <o 1. Using the support
9 97d
(2.4.7)

conditions in the variables y and 7, it thus suffices to prove for all a € CP([-2,2]%) that
M
2 .

fRd exp(i(z — )& + it(|€ + k[ = [k])a()dE] s (1 + [z =L+ - k/]k]2)
2. The bound for |z — [+ ¢ - k/||kl2] <1

Due to the compact support of a(§), we restrict to [¢|
is trivial. Thus, we may assume that |z — [ +¢ - k/|k|2| » 1. We define the phase function
iz = DE+at(|§ + k[ — [k]) .

(€)= Bulity, 1) =
Then, we have that
Veu(§) = Ve((w = 0§ +1( + k| - [k))
zx—l—i—téill;
~o-teig (e )

38



From the assumption |t| < N, it follows that V@), = x — [ + tk/|k| + O(1). We also write

k €k
ng)k({) =x—1 + tm + tmk(m)m s
where
1—|v—Ek/|k|| v
s = .
)= =T T R

From rotation invariance, it follows easily that |VW(v)| <, 1 for all |v| < 1/10, uniformly in k.
This leads to

i
- <
eflel 1 = 1 for all |a] = 2.

[VE@L(§)] <a

We then rewrite the integral in (2.4.7]) as

. explite =D+ it + k1 = [ED)ale)ae

(G R e
VePi()
Ver(E)?

The inequality (2.4.7)) then follows from the bounds on the phase function above.

_ fRd exp (i (€) <vE - ) "o

[]

The wave packet decomposition in Proposition is valid on the time interval [0, N], and the
physical localization deteriorates for larger times. When analyzing the linear evolution on an
interval of the form [to, %o + IV), with tg € NNy, we therefore use the wave packet decomposition

of exp(=+ity|V|) fr. To state the result, we set
Tty = {(2) € losfo+ N] x R o — (1F (¢ — 1) - K/Jbl)la < 1}

Corollary 2.4.2 (Time-translated spatial wave packet decomposition). Let k € Z? with |||« €
(N/2, N, and let t, € NNy. Let f;, € L2(R%) be a function satisfying supp fi < k+[—1, 1] Then,
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there exists a decomposition

exp(tito|V]) fr = Z flz_tl;to

lezd
such that

(i) suppjgifl;\tO S k+[-2,2]forallleZ,

(i) the family { f,;i:l;to}lezd satisfies the almost-orthogonality condition

Z | Fiaieo 72 ey < 1F 172 Ray (2.4.8)
lezd

(iii) and for any D > 1, any [ € Z%, and all (¢,z) € [to,to + N] x R?, it holds that

| exp(Fi(t — t0)[V) i ()] €p (1 + dist((t, ), T )" Il ey - (2.4.9)
Proof. We apply Proposition to exp(=£ito|V|) fx. O

As discussed in the introduction, we now group the wave packets into bushes and a (nearly) non-
overlapping collection (see Figure . This argument is inspired by Bourgain’s bush argument
from [Bou91], and we also refer the reader to [Wol99, Proposition 2.2].

Before we state main proposition, we define the truncated and fattened ¢*-cone

>N
Ktowo

= {(t,x) € [to,to + N} x R*: |z — 200 < 16N — |t — o]} . (2.4.10)

The significance of [?tjgxo will be explained in Section [2.5.2{and Section . For now, we encourage

the reader to treat KN

io.zo @S Space-time cube of scale N.

Proposition 2.4.3 (Wave packet decomposition and bushes). Let {f;}x S L2(R?) be a family of
functions, where || k||, € (N/2, N], and suppfkE S k+[—1,1]% Let ty € NNy, let o € NZ%, and let

40



the wave packets { f,fl,to} be as in Corollary [2.4.2] Furthermore, let Qig}xo be a collection of disjoint
space-time cubes with sidelength ~ N° covering Iw(t](\)’mo We group the wave packets according to

their amplitude by setting

Ay = iy o= {(k,1) € Z% x Z%: || ff, 2 qray € [27, 2771, 1 — o]0 < 3N} . (2.4.11)

m,to,zo

Then, there exists a family of bushes {%;,,}; = {%ﬁito’wo }j, wherej =1,..., Jﬁ}’;—g,xo, and a nearly

non-overlapping set 9,, = £ depending only on the set d,,, so that the following holds:

mato,z0
(i) The sets form a partition of d,,, i.e.,

o = Dy, U (szl _____ J@,jym> (2.4.12)
(ii) We have the bound on the number of wave packets

DOyl < Y filR ey - (2.4.13)
k

onNZd meZ

(iii) Each bush %;,, contains at least = u(N,m) := N~ 24, wave packets.

(iv) For each bush 9, ,,, all corresponding wave packets intersect in the same region of space-time.

More precisely, there exists a cube @) € Ql{g zp S
Th., N2Q#a  V(k1)eBjnm . (2.4.14)
(V) At p = N_%#&qm wave packets in 9, overlap, i.e., we have for all cubes () € Qg}xo that

#{(k, 1) € D Tihy, N2Q # T} < P (2.4.15)

The choice of the number of packets/multiplicity p = N ’%#sﬁm will be justified in the proof

of Proposition [2.6.1} see (2.6.1). The parameter p corresponds to the multiplicity parameter in

Bourgain’s bush argument, see [Wol99, Proposition 2.2].
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Remark 2.4.4. We will later apply this proposition to a set of random functions {ex fi }x. From

(2.4.11)), it follows that the sets o,,, and hence also %B;,, and P,,, do not depend on the random

signs {ex}.

Proof. Let us first prove the inequality in From Corollary it follows that

> 2. S ) Miwlizs ) IfEIE

z0ENZE meZ k,lezd kezZd
[klc€(N/2,N] [E]c€(N/2,N]
N+ . . .
We now construct the sets B+ and & To simplify the expressions, we drop the super-
7,m,to,x0 m,to,To " )

and subscripts +, N, ¢y, and zy from our notation. The basic idea is to form the bushes through a

greedy selection algorithm. For any Q € Qf o> We define

In(Q) :={(k,)ed,: Tr, [ Q # T} . (2.4.16)

We further set G‘,,(ll)(Q) = In(Q). We then choose a cube Q1 € QpY , such that
#T,0(Q1) = max #7,0(Q)

and define the first bush as % ,,, 1= %(ll)(Ql). By setting

T2(Q) = TV (Q)\ B

we remove all of the wave packets in the first bush from the collection. We then iteratively define
RBjm =9 (7(])(62]) where
#7,9(Q;) = max #T7(Q)

Qe Qto z0
and the collections F,5(Q) are defined as T (Q)\B,_1m. Once T (Q,11) < 1, we no longer
create a new bush, and instead stop the algorithm. Since o, contains at most ~ N® wave packets,

the greedy selection algorithm terminates after finitely many steps. From the construction, we see
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that the sets 9B;,, © Z? x Z? are disjoint (even though the corresponding tubes may still overlap).

Finally, we define the collection &, by
J
%m = 'ﬂm\szl%j,m .
The properties , , , and then follow directly from the construction. O

We now prove a probabilistic estimate for the wave packets with random coefficients.

Proposition 2.4.5 (Square-root cancellation for wave packets). Let {f;}x S L2(R?) be a deter-
ministic family of functions, where k € Z? satisfies ||k]., € (N /2, N], and assume that Y, | fi ||%% (®d) S
1. Let # > 0 be a parameter, and let Cy > 0 be any large absolute constant. Then, we have for all

m € Z satisfying —Cylog(N) < m < Cylog(N) that

; +
| Soeas, ., ol — VDA, 1
E sup sup T T ’ < N°% (2.4.17)

t0=0,...|N?|N j:l,...,]ﬁ’i 0 Qm(#%]};nito,wo)2

20eNZ? o

and
| Sppeans cxexp(Eitt— o)V fE,|

E sup m,tg,TQ : LELE([toto+N]xR9) < N(;d . (2418)

to=0,...|N|N 2m 2

A

Here, u = N i #dNF s asin Proposition [2.4.3, To be perfectly precise, we use the convention
H y

m,to,xo

0/0 := 0 in ([2.4.18).

The expressions in (2.4.17) and (2.4.18]) may seem complicated. To make sense of them, recall that
the square function heuristic predicts that Y, exay is roughly of size ~ (3, a}) 2. Then, Proposition
simply states that the square function heuristic can be justified for all relevant amplitudes,

for all relevant times, all positions, all families of bushes, and all non-overlapping collections.
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For instance, let us heuristically motivate (2.4.18)). By the definition of N any fixed point

m to x0)
in the space-time region [to,to + N] x R? is contained in the (moral) support of at most u wave
packets. Since each of the wave packets has amplitude ~ 2™, and they all correspond to different

frequencies k € Z¢, the square-function heuristic predicts a contribution of size ~ 2m/ﬁ.

Proof. In this proof, we make extensive use of Lemma [2.2.4] First, we prove that the suprema
in (2.4.17) and ([2.4.18) are over at most NC@-many terms. From (2.4.13)), it follows for all
—Cylog(N) that

Z #mmto,wo <27 2m2 ||fleL2(Rd) 27 2m2 ”fk HLQ(Rd) N2Cd .

IoENZd

Thus, this bounds the number of all wave packets with amplitude ~ 2. Since each bush By i to 0

contains at least one wave packet, the supremum in is over at most O(N?¢?) non-zero
terms. The same applies to the non-overlapping families @,,¢ , in ([2.4.18). From Lemma m,
it then suffices to obtain uniform sub-gaussian bounds on each individual term in and
(2.4.18).

We start with the contribution of the bushes. To simplify the notation, we write %, ,,, = %;VJ to.z0"

From Bernstein’s inequality and Lemma [2.2.6] we have for all 2 < p < oo that

| Y sen(ilt — )] VD i,
(k,l)E%j’m

dt1
<N

LPLF (RxR9)

Z ex exp(Li(t —t0)|V|) fis,

(kvl)egj,m

LPLE(RxRd)

Before we utilize the randomness, we observe that for each k € Z¢ at most O(N°?) tubes T,fl.to can

intersect a space-time cube of sidelength ~ N°. As a result, it follows from (2.4.14)) that

#{1eZ (k1) e Bjmt < N .
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For all p <

and the refined Strichartz estimate (Corollary [2.2.13]) that

By taking p >

Y aep(ilt— W)V,

(k,1)EB; m L7, L LE (YxRxR9)
M .
<N» Z €k exp(il(t—to)|V|)f,:l;t0 e
(k’l)E%]’,m t—T w( X X )
1
atl _ 2\ 2
SVrN v (Z < Z eXp(iZ(t—tONVDfI:l;to) ) 1P LB (RR)
t Lk X

kezd (k,D)EB; m

d+1 , &d .
<\rN% +% exp(il(t—t0)|v|)fl::l;to

LyL36; ((RXRIXB; 1)

d+1 .
<IN exp(iZ(t — t0)|v|)f1:z;to
< \/;N%—F% fl::l%to

<\de++

6 LY L (B, m xRxRY)

03 L2(%B,m xRY)

£ (#B )2

r < oo, we then obtain from Minkowski’s integral inequality, Khintchine’s inequality,

2 to be sufficiently large, we then obtain the desired sub-gaussian bound. This

completes the proof of (2.4.17)).

We now control the contribution of a single non-overlapping family @,, = @~

mto xo*

technical aspects of this part, recall that the collection Q% from Proposition [2.4.3

For the

covers Kto .

but due the definition of o, in (2.4.11]), all the tubes T kit With indices in 9, are contained in

the region ||z — xql|o

< 6N. This gives us sufficient room for the following argument.

We let 2 < p < o0. As before, it follows from Bernstein’s inequality and Lemma, that

Y aen(Eit - 6)V) S,

N,+
(DEDNE oo

LELE ([to,to+N]xR%)

d+1

<SN%

D e~ 01V,

(ke

Lng([to,to-&-N] XRd)
m tO zQ
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For all p < r < oo, we then obtain from Minkowski’s integral inequality and Khintchine’s inequality

that

> eweplilt — IV i,

L7, LY LEF (2 x[to,to+ N xR%)

(k,)EDm
d+1
$NTH er exp(Fi(t —to)|V|) 2.
(k,l)zegbm ) exp(£i( 0)] |)fk,z,to LPLELE ([to 0+ N]x REX0)

sV (S (Y ewsit-wDhi,)")

kezd 1: (k1)eEDm

Lng([to,t0+N] XRd)

v (S (Y entsit-wiDhi,)")

kezd i (k)EDm

(Z ( Z exp(ii(t_t0)|v|)f1:z;t0)2>§

keZd 1 (k1)EDm

LYLE(KE 2p)

d+1

+/TN 7

LPLE(([to o+ NI RINRY , )

Since = N™2#dl,, = N~2, the bound on ([to, to + N] x RONKY _  easily follows from the decay

0,Z0

estimate (2.4.9). Thus, we now control the contribution on lw(tj(\)]zo From Holder’s inequality, we

have that

S

(ZC X ewtsit-wIvhi)’)

LPLR(KN
kezd  1: (k,1)EDm t L

to,mo)

1

(Z 3 exp(ii(t_t0)|v|)f$,l;t0)2>2

kezd  1: (k,1)EDm

< N7

~

LELE(RY 40)

Now pick any cube @) € Q%,. In analogy to , we define the collection of “remaining” tubes
by

Tn(Q) = {(k,1) € Do T, 1 2Q # T}
From Proposition m, it follows that #9(Q) < u. As above, we have for each frequency k € Z¢
the bound #{l € Z%: (k,1) € F7(Q)} < N°?. Using the decay estimate to treat distant
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wave packets, we obtain

\(Z< > expw(t—to>|V|>fl;z¢0>2)é

kezZd 1: (k,1)EDm

< H( D expw(t—to>|V|>f;l;to)2)%

kezd 1: (k,DeTr (Q)

i ‘( Z ( Z exp(Li(t — t0)|v|)fki,l;to)2)

LFLE(Q)

LELZE(Q)

NI

keZd  1: (k1EDm\TH(Q) LELP(Q)
sd , .
< N> eXp(iZ(t—t0)|V|)f,;—fl;tO L (@) N-10C
t Hx Tk, m
< N2 (#T0(Q))? + N 10
< N% Qm;ﬁ

After taking the supremum over all cubes @) € QY% we finally arrive at

. d+2 4 6d 01
D1 ewexp(Li(t — )| V) fif, < VN TR

(k€D

L7, LY LF (2x[to,to+ N]xR%)
By choosing p > 2 sufficiently large, we arrive at the desired sub-gaussian bound. O

Definition 2.4.6 (Wave packet “norm”). Let (fy, fi) € H*(R?) x H*"}(R?) and let f;f be defined
as in (2.4.1) and (2.4.2). For any Ny > 1, we then define the wave packet “norm” of the random

data (', /i) by

105, £l =

H Z(k,l)e%“i . e exp(Li(t — t0)|v|)fki,z;t0

_ 3,m,tg,® LPLL(RxRE
Z N=24  gup sup - i e L2( )
m T 5
Nz=No tO:O?"'[NjJNj:11~--7J»,]7\17:ti(—)710 2 (#%j,m,to,xo) 2
|m|<Cylog(N) ToENZ

[Speans  evexp(xilt— o) V) i,

LELE([toto+N]xR4)

+ Z N=%4  gqup -
N=Ng to=0,...|N?|N 2mu2
|m|<Cylog(N) zoeNZ4
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While the quantity ||(f§, fi')|wp(v,) measures the size of the wave packets (over their expected

size), it is certainly far from being an actual norm.

Corollary 2.4.7. Let (fo, f1) € H*(R%) x H*~1(R?) and let ;- be defined as in (2.4.1)) and (2.4.2).

Furthermore, we assume that Ny = No({Y},}) satisfies

Z (”fo;k”%g(u%d) + Hfl;kleﬁlx—l(Rd)) <1.

Ikllo0 =No/2

Then, it holds that

Ec|[(f6" [17) [weivgy < o0,

where E, denotes the expectation over the random signs {e;}.

Proof. This follows directly from Proposition [2.4.5] and Definition [2.4.6 O

For the bootstrap argument in Section [2.6} it will be convenient to create a small forcing term by
truncating to high frequencies. If Ny; = Nyi(w) is a (possibly random) frequency parameter, we
set

Fy= ) (cos(t|V|) fon + w fij) . (2.4.19)

N=Ny;

Proposition 2.4.8 (Truncation to high frequencies). Let 0 < 7 < 1 be an absolute constant and
let s > . Let (fo, f1) € Hi(RY) x H:H(R*), let (fg, f') be their microlocal randomizations, and
let { f,;i} be as in and . Then, there exists a random frequency parameter Ny; = n~!

such that

| (Ponuijafo's Poma ) e xirs— <
|‘(f607ff)||Z(Nhl) <7,
”(f(‘)U? fiU)HWP(Nhi) <7,

1 Fhill 23 Lo Rty < 77 -
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Proof. We only need to combine the previous estimates. From Lemma [2.2.11] it follows that
>0 (N ol + NNl ) <0 s
N=2 |k]|c€(N/2,N]

From dominated convergence, it then follows that there exists some random frequency Ny, de-

pending only on the random variables {Y},}, satisfying

S (Lol + NV fu

NZ=Npi k]| €(N/2,N]

From Corollary [2.4.7] it then follows that

2
L%) S| a.s.

EeH(f(;ua fid)”WP(Nhi,l) < .

From dominated convergence, it follows that there exists a random frequency Ny; 2, depending on

the random variables {€;} and {Y};}, which satisfies

ICfo fiy)HWP(th) <N a.s.

By similar arguments, it also follows from Proposition and Corollary that there exists
random frequencies Ny 3 and Ny; 4 such that

» sin(t|V]) ..,
I3 £z < and 3 [eoselwDfiy + VD )

<7
N2Z=Nj 4 |v|

L3LS (RxR4)

For the second inequality, we have used the condition s > %

By choosing Np; := max(4Nui 1, Nni2, Nhi3s Vhias n~'), we arrive at the desired conclusion. O

2.5 Nonlinear evolution: Local well-posedness, stability theory, and

flux estimates

In this section, we first apply to Da Prato-Debussche trick [DD02] to the nonlinear wave equation

with random initial data. Then, we recall certain properties of the (forced) energy critical nonlinear
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wave equation. In our exposition of the local well-posedness and stability theory, we mainly rely on
[DLM20]. The flux estimate already played a major role in the author’s work on almost sure scat-

tering for the radial energy critical NLW [Bri20b], and we loosely follow parts of [Bri20bl Section 6].

Let NVy; be as in Proposition and let F' = Fj; be as in (2.4.19). We then decompose the
solution u of ([2.1.5)) by setting v := u — F. Then, the nonlinear component v solves the forced
nonlinear wave equation

—Opv+ Av=(v+F)? (t,zr)e RxR*,
(2.5.1)

71 2
V|gmo = vo € HY,  Ovlimg = vy € L* |

where vg := ug + fi'_y,. and v; :=u; + f’_y . The randomness in the initial data (v, v:) is not
important, and we treat it as arbitrary data in the energy space. For the rest of this section, we
treat F as an arbitrary forcing term in L?LS(R x R*), since the finer properties of F will only be

relevant in Section 2.6l

2.5.1 Local well-posedness and stability theory

In this section, we recall the local well-posedness of (2.5.1). Using stability theory, we recall the
reduction of Theorem to an a-priori energy bound. These results are well-known in the
literature, see e.g. [DLM20, [Poc1T].

Lemma 2.5.1 (Local well-posedness [DLM20, Lemma 3.1]). Let (v, v1) € H'(R*) x L2(R*) and
F e L3L5(J0,00) x RY). Then, there exists a time 7' > 0 and a unique solution v: [0,7) x R* - R

satisfying

ve COHN[0,T) x RY) M LILE([0,T) x RY)  and  dwe CL2([0,T) x RY) .
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Using stability theory, [DLM20] proved the following proposition.

Proposition 2.5.2 (Reduction to an a-priori energy bound [DLM20, Theorem 1.3]). Let (vg,v1) €
HY(R*) x L*(R*) and F € L3LS(R x R*). Let v be a solution of (2.5.1)), and let T, > 0 be its

maximal time of existence. Furthermore, assume the a-priori energy bound

sup E[v](t) < .
tE[U,T+)

Then, v is a global solution and satisfies the global space-time bound [v]| 36 ([0,c0)xre) < 0. As a

result, there exist a scattering states (v, v ) € HY(R*) x L2(R*) such that

lim [[(v(t) = W (t)(vg, v1), 0w (t) — W () (05 07 Dl grwge = 0 -

t——+0o0

Using Lemma and Proposition [2.5.2] we have reduced the proof of Theorem to an

a-priori bound on the energy of v.

2.5.2 Flux estimates

As before, we let v: I x R* — R be a solution to the forced equation (2.5.1). Recall that the

(symmetric) energy-momentum tensor for the energy critical nonlinear wave equation is given by

1 1
TOO = TOO[U] = 5((6{0)2 + |V7J|2) + ZU4 5
T = TP[v] := =0 - 0y,v

T = TI[v] 1= 0,000 — %(—(%t + A)(v?) + %v‘l :

The component T% is the energy density, the component 779 is the j-th momentum/energy flux,
and the components T7% are called the momentum flux. If v solves the energy critical nonlinear

wave equation ([2.1.1)), then the energy-momentum tensor is divergence free. This fails for solutions
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to the forced equation ([2.5.1]); however, one can still expect that the error terms have lower order.

Setting N' = (v + F)® — v3, a short computation shows that

T + 0, T% = —Now , (2.5.2)

As in earlier work on almost sure scattering for radial data [Bri20b, [DLM20L [DLMT9 [KMV19],
the main goal of this paper is to bound the energy of v. In terms of the energy-momentum tensor,
the (total) energy can be written as
Elo](t) = f T, 2)dx |
R4

For future use, we record the following consequence of ([2.5.2)).

Lemma 2.5.3 (Total energy increment). Let v: I x R* — R be a solution of (2.5.1)), and let
a,be I with a < b. Then, we have that

b b b

E(b) — E(a) = —J Nowdadt < 6[ J |F||v]?|0pv]dadt + 3[ J |F]*|ow|dadt . (2.5.4)
a JR* a JR* a JR*

We will later see that the second summand on the right-hand side of (2.5.4)) can be bounded directly

using Holder’s inequality and probabilistic Strichartz estimates. In contrast, no such estimate is

available for the first summand, and we need the wave packet decomposition to control this term.

Once we employ the wave packet decomposition, it will be natural to study the energy on a time

and length scale ~ N > 1. We fix t, € NNy and xp € NZ*, and define the local energy

BN, [o](t) = j T, 2)dz,  where t€ [fo fo+ N].  (25.5)
|lz—a0]on <2N—[t—to|
Thus, this definition is adapted to the truncated ¢*-cone Kt](\)[,ac ,» Which is given by
Kt](\;mo = {(t,x) € [to,to + Nl x R*: |z — 2¢)e0 < 2N — |t — 10|} . (2.5.6)
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In this figure, we illustrate the truncated £*-cone, and its decomposition into smaller cones. The blue
lines are the edges of a large /*-cone. The red and green squares are the tops of smaller truncated cones.
In the lower left corner, we have drawn a single one of these smaller cones. As can be seen from this

figure, no smaller cone has to exit the large cone.

Figure 2.5: Decomposition of the ¢*-cone

It might be more appropriate to call K¥

to,T0

a pyramid (see Figure ; unfortunately, the letter
P is already heavily used in our notation, so that we decided to use the letter K. Our reason for
using the /*-norm, instead of the more common ¢?-norm, lies in the induction on scales argument
(Proposition. Then, it will be an advantage to write K tjgm , as the union of finitely overlapping

smaller cones K  which are contained in K Using finite speed of propagation and the

70,40’ to,xo”
inequality | - [go(re) < || - [e2(r4), one can still meaningfully restrict the nonlinear wave equation to

N
to,zo"

Lemma 2.5.4 (Local energy increment). Let v be a solution to the forced equation (2.5.1)), let
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N =1, let ty € NNy, and let 2y € NZ*. Then, we have that

sup B, [0](t) < B, [v](to) + 6] y |F||v]?|6;v|dadt + 3J N |F|*|owldadt . (2.5.7)

tE[to,t0+N] tg,zo Kt()ﬂm()
Proof. Using (2.5.2)), we have that
d
&Egm [v](t) = — J T"do(z) + J 0, T"dx
lz—zollo lz—zolloo
=2N—|t—to| <2N—|t—to|
- J (=T + T%v;)do(z) J Nowdz
=00 lz—zoll
=2N—‘t—t0‘ <2N—|t—t0|

Here, v is the outward unit normal to the cube. From Cauchy-Schwarz, it follows that [T%v;| <

||| Vlle < TP, After integrating in time, this completes the proof. O

To simplify the notation, we now write

Eg,mo[v] = sup ngo[ 1(¢) . (2.5.8)

te[to,to+N]

In the following, we want to deduce a flux estimate for the solution v of the forced NLW ([2.5.1]).

Here, we encounter a minor technical problem. Let (¢,z) € K}

to.zo D€ @ point in the truncated

(®-cone. We then want to control the potential |v|* on the truncated light-cone

C{Xx, = {(t,x) € [to,to + N] x R*: |t — | = ||z — 2')2} .

Unfortunately, Ct, , may not be contained in K}V

to,zo?
solely by &N

to,zo

and hence we cannot expect to bound this
[v]. Since the flux estimate is derived through a monotonicity formula for the local
energy, this issue persists even if we are only interested in the portion of C’t],\{ » intersecting Ktj(\f .

To solve this problem, while still keeping the same energy increment as in (2.5.7)), we introduce

the notion of a locally forced solution.
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Definition 2.5.5 (Locally forced solution). Let ty € NNy and xp € NZ*. We call w: R x R* - R
a K, -locally forced solution if it solves

—Opw + Aw = (1xgny  F+w)®  (L,z) e RxR?
1070 : (2.5.9)

Wiy = wo € HYRY), Owli_y, = wy € LA(RY)
We also require that the functions (wp, w;) agree with (v(to), 6;v(tg)) on the cube ||z — zg|0 < 2N.

Remark 2.5.6. From finite speed of propagation, it follows that w| KN, = V| KN . -
0:%0 0:%0

For the same reasons as described in the last paragraph, we also use the energy on a slightly larger

region. To this end, we define

to, o

EN _w](t) := J Tw](t, x)dx, where t € [to,to + N] .
lz—o|le <16 N—|t—to|

Thus, this definition is adapted to the fattened cone kgg’zo, which is defined in ([2.4.10). We also
set

[w]:==  sup E}, [w](t) . (2.5.10)

Lemma 2.5.7 (Local flux estimate). Let ¢y € NNy, let 2o € NZ*, and let w be a K}

to,x

,-locally

forced solution. Then, we have that

4

sup v do(t,z) < 4&?10 + 12 f |F|(Jw| + |F|)?|ow|dzdt . (2.5.11)
t'€[to,to+N] 4 ’
|2’ —zo] 0 <8N llz—a'[2=[t—t'| Ky 2

te[to,to+N]

We emphasize that, even though the energy EN is measured on a truncated {®-cone, the flux

to,xo
is still controlled on a light cone. The estimate (2.5.11]), however, only controls w on a lower-
dimensional surface in space-time, and thus cannot directly be used to bound the energy increment.

In our main argument, we rely on the following averaged version.
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Lemma 2.5.8 (Averaged local flux estimate). Let N > Ny, let to € NNy, let 2o € NZ*, and let

w be a Kt];f’xo—locally forced solution. Then, we have that

4
~ w
Fiomo = SUp J - dadt (2.5.12)
t'G[to,to+N]
2/ 0| <AN [lo—a’|o—|t—¥|| <N193
te[to,t()-i—N]

<N EN 4 J |F|(jw| + |F|)?|0sw|dzdt
KN
tg,zQo

The appeareance of N'® is for technical reasons only, and the reader is encouraged to mentally

replaced it by 1. This will later help us to deal with the spatial tails of the wave packets.
Proof of Lemma[2.5.7. For the duration of this proof, we define

e(t) = J T(t, z)dx
lz—a"|2<t—t'|

From finite speed of propagation, we expect e(t) to be (nearly) non-increasing on [tg, t'] and non-

decreasing on [t',to + N]. From the assumptions above, it follows that |z — 2’|y < |t — #/| implies
|z — 2olloo < ||z — 2'|oo + |2 — zo|loo < & — 2|2 + 8N < |t — /| + 8N < 10N — |t — to] .

Thus, we obtain that e(t) < EN_ for all t € [to, to+N]. Using (2.5.2)), we obtain for all € [t/, to+N]

to,xo
that
d
—e(t) = f o, T (t, z)dx + J T%(t, z)do(z)
d lo—a'|2< [t Jo—a/ 2=t/
= — J Nowdr — J O, T%d + f T(t, x)do ()
z—a/|l2< [t —t'| [z—a'{|l2<[t—¢'] [z—a'||l2=[t—t']
= — J Nowdx + J (T(t, 2) + T%v)do(z)
Jo—o/2<t—t| [P
4
> —6] |FI(|F| + |v|)2|ﬁtv|dx+f Uzda(x) )
[z—a'||l2<[t—t'] |z—a'||2=[t—t'|
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Integrating this inequality in time, we obtain the result on [t/,ty + N]. The bound on [tg,#'] is

similar. O

Proof of Lemma[2.5.8 Since N = Ny; = n~!, we have that N'%° « N. We then simply integrate
([2.5.11)) over a spatial ball of radius ~ N'% around z'. O

2.6 The energy increment and induction on scales

We are now ready to finally bound the energy increment of the nonlinear component v. The

argument roughly splits into two parts: A single scale analysis and induction on scales.

For technical reasons, we define a flux-term involving a thinner neighborhood of the cone. More

precisely, we let

wh
Fol o [w] = sup f — dadt
(t' a)elto,to+ N]x R4 4
|2’ —zoll 0 <4N  |lz—a'[2—|t—t'|| <N®?
te[to,to+N]

Recall that the light-cone in ]é](\)’mo [w], as defined in (2.5.12)), has width N1

Proposition 2.6.1 (Single-scale energy increment). Let N > 1. Let ¢ty € NNy, where 0 < t,/N <
|NY], and let 2y € NZ*. Furthermore, let wy, wy € L LA(R x R*) and w3 € LPL2(R x R*). Then,

JN | Fivg ||wy||wa | |ws|dadt

Kto YT

3_ 1 1
YN s+85(||w1||if‘L§(RxR4) + Fiao [wl])“(szHi;‘“Lé(RxRﬂ + Fig o [w2]) ¥ sz L2y -

We have two separate reasons for introducing the auxiliary functions wy, wsy, and ws. First, it
emphasizes that the proof does not depend on the evolution equation of the nonlinear component.

Second, it allows us to pass to smaller spatial scales than N with minimal notational effort, see

Corollary [2.6.2]

o7



Proof. If 1 < N < Ny, there is nothing to show. Thus, we may assume that N > Ny;.

Step 1: Wave packet decomposition. Recall from (2.4.2)) and (2.4.3)) that

Fy = Zek exp(it|V|]) fi —i—ZEkeXp(_iﬂval; :
. k

We only control the contribution of Y, e; exp(it|V|)f,", the other estimate is nearly identical.
Then, we may also drop the superscript + from our notation. We now apply Proposition and
Proposition to the family {ejfi}x, and let the sets d,,,, B, m, and D, be as in Proposition
2.4.3] As before, we implicitly restrict to |k € (N/2, N]. We also write fr; = fri,-

Step 2: Distant wave packets and extreme amplitudes. On a heuristic level, the wave packets whose
tubes T},; do not intersect K{X’mo should not contribute to the integral. We now make this precise

using the decay estimate (2.4.9). Indeed,

LN D anexp(i(t —to)|VI) fi

to,zo | (k,1)eZ* xZ4:
[l—z0|xn>3N

SN Y eexpift — )| V) i
(k,)eZ4 x74:
li—zo||-0>3N

|wy ||we||ws|dadt

le HL;@L‘;(RXW) sz HL}“Lg(RxR‘*) ||w3 HL;‘Lg(RxRﬂ

LELE(RY o)

< N( D0 N0 [ - l||z)’1°°ka||La<R4>) lwilzp 2 xrs [w2l Ly s mray Jws ]y 2 @xray
(k,1)eZ* x 22
I—zo]le>3N

1
< N—99+2( Z ||ka%%(R4)) 2||w1||L;nL§C(RXR4)Hw2||L£f“‘L§%(RxR4)Hw?,HL‘,?“L%(RxRAL)
kez4

3_
<nN1 8||w1||L}‘L§(R><R4)HUJQHL‘}‘L‘;(RXR‘l)HZUBHL?Lg(Rx]R‘l) .
Thus, this contribution is acceptable. It remains to control the wave packets with indices in

Umez8m. We now use crude estimates to reduce to ~ log(N) amplitude scales. Let m <

—201log(N). Since #dl,, < N® we have that

f ‘ S e exp(i(t — to)|V]) fia|lwn | Jws][ws|ded
K

N
to,xg  (k)Edm

o8



< N( Z | exp(i(t — to)|V|)fk,lHLg’JLg‘(RxR4)> ”wl”Lf‘Lg(RxR“)HIUQHL}‘L‘é(RxR‘l)HwBHLt@Lg(RxR‘l)
(k,D)edm

< N2"#dy w1 | Ly ramxrs) w1y 2 @xre) w3 L £2 (R xR
S 27N lwi |z pamcrn) w2l oo | wsl L2 ey -

Summing this inequality over all m < —201log(V), we obtain that

JN Y Y aenlilt— )V i jwnlwalus|drds
K

to,zg  m<—20log(N) (k,l)ed
< N_llleHL?“Lg(RxR‘l)||w2HL;"L§(]R><R4)”wS”L;"L%(RxR‘l)
3_
<nN1 usl“Lg(»“Lg(RxR‘l)||w2HL;‘L§(R><R4)||w3||L;[L§(RXR4) :

Finally, if of,,, # ¢, then #d,, = 1. This implies that

1
Qm(#gq 5 <Z ||fle2(R4)> < 77N78 .

For a sufficiently small absolute constant n > 0, this implies that m < 0. This completes the crude

part of the argument. Step 3: Bushes. First, we define the fattened tubes by
fk,l = {(t,z) € [to,to + N] x R¥: |z — (I =t - k/|k|2)| < N*°} .
Furthermore, we define the collection of fattened tubes corresponding to a bush by

T(Bjm) = U(k,l)e%]

With these definitions in hand, we now write
J

3 ekexp(i(t—t0)|V|)fk,l‘|w1||w2||w3|dxdt

N ,
Kig o 5=1 (k,))eBj,m

J
< ZJ~ ‘ Z e exp(i (t—t0)|V|)fkl‘|w1||w2||w3|dxdt
G=1YT(Bjm) " (k,1)eB;
J

+Zf

Z e exp(i(t — t0)|V|)fk7l‘|w1||w2||w3|dxdt
K o \T(;, m) (k,)EB,m

29



Using that all tubes in 9;,, pass through the same space-time cube of size ~ N % we obtain from

Proposition that

2.,

3 ekexp(@'(t—t0)|V|)fk,,‘|w1||w2||w3|dxdt

m) " (k,1)EB;,m

N3

N

EM& r

Z e exp(i(t —t0)|V]) frs

(kvl)eg‘)’j.,m
J

< nzv%%zm(Z(#ggJ SSED K (7 R (%l P s

LE, (RxRY) lwrlps @, lw2lles e, o lws iz sz

J
1 1 1
< nNﬁ%zm(Z )RR L A oy [wa] s r2cmy

1 m 1
< N2 (el "2 T w15 F  [wa]# [ws | e 1 ey -

Here, p denotes the minimum number of packets inside a single bush, see Proposition [2.4.3] Using

the decay estimate (2.4.9), we control the contributions outside the T(%; ) by

ZJ Z e exp(i(t — t0)|v|)fk,l‘|w1||w2||w3|dxdt

t() “‘O Bj,m) (k,1)ERB; m

NZH > cwexplilt— o)V fur|

J=1" (k,D)EBj m

ta (K to, zO\T( j.m))

X ||w1HL‘}‘Lg(RxR4)||w2||L;f~L;1(RxR4)||w3||L;f~‘Lg(RxR4)

J
< NINTHm ( > #%j,m) lwill e paurs w2 sy [ws] L 2R xre)
j=1

3_
<nN1 uslHL}‘L‘;(RXR‘l)HUJQHL‘Z‘Lg(RxR‘l)”U)BHL;‘L%(RXR‘l) .

In the last line, we have used that 2m(#sﬂm)% <n and #d,, < N8

Step 4: Disjoint wave packets. We now control the contribution of the almost disjoint family &

If u < 1, then 9,, is empty, and there is nothing to prove. If ;> 1, it follows from Proposition
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2.4.8 that

J S cexpilt — 1)V i fu sl sl

K 2 (k1)eDm

$N‘ Z erXP(i(t—toﬂvak,l 1 (KN)Hw1||L;f‘Lg(RxR4)szHLg@Lg(RxM)stHL}“Lg(RxR‘l)
(k,))EDm, te o

1
< pNT82™ 2 |, |z ra@xre) |Wa| L2 Laxray [Ws | L L2 (R xRA)-

Step 5: Finishing the proof.
In total, we have shown that

JN | Far|ws ||we||ws]dadt

t0,zo
3_ m L 1o _1 1 2.6.1
<N (N34 N2 NE (et ) E ) (lnlg sy + oo lon )t (26D
1
) (||w2||4L;ﬂ‘L§(RxR4) + E]Xxo [wa])* HUJSHL;“‘L%(]RXR‘Q
Due to our choice p := N ’%#&ﬂm in Proposition , this completes the proof. O

Corollary 2.6.2 (Coarse-scale energy increment). Let N > 1. Let ¢ty € NNy, with 0 < to/N <
|N?|, and let 2o € NZ* Let w be a KY

to,zo

-locally forced solution. Then, we have for all M > N

that

[NIES

| IPlPloalad < gAY, fult (&), ful + ZY o) (2:6.2)

tp,zo

We refer to Corollary as a coarse scale estimate since the wave packets in F); are atleast as

long as the length of K

fo.me (D time).

Proof. As before, we may take M > Nyp;. We distinguish two different cases. If M > N %, we
obtain from Proposition that

§7 ~
FullwPlaaldedt < N| Pyl e el e ey Vsl < 1M 08N [w].

Kto )
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Next, we let M < Ns. Then, there exist 7o € MNy and yo € MZ*s.t. KN < KM

0.0 o0 Furthermore,

since to/N < |N?|, it holds that 7o/M < |M?]. Set wy = wy := 1jov w and w3 := 1~  w. Since
tO,:L‘O to,zo
M < N%, we have that
F polwi] = F [ws] < Fl 4 [w]

70,40 70,Y0
Using the single-scale energy increment (Proposition [2.6.1)), we obtain that

f | P[] ] dadt
N

to,zQ

:J | Fag ] s ws|dzdt
M

T0,Y0

3 1 1
< nMs S+§(”w1Hj§;"L§.(RxR4) + f%yo [w:])3 (Hw2H%;"L§,(RxR4) + ]:i\f,yo [wa]) | wsllzy r2®xra)

1
3_gi5 s T 2
< ME Y, [l (8N fw] + B fw])
O

Due to Proposition and Corollary [2.6.2] we understand the energy increment at a single scale.
Unfortunately, the cone K

io.zo AY contain many wave packets on smaller scales. Similar problems

are often encountered in restriction theory, and can sometimes be solved using Wolff’s induction
on scales strategy [Wol01]. The following argument can be seen as a (simple) implementation of

this idea.

Proposition 2.6.3 (Induction on scales). Let s > max(1 —60/2,3/4 4+ 0). Let R = 1 be a dyadic
integer, and let F' be as in Proposition [2.4.8, Let ¢ty € RNy, with to/R < |R’|, 1o € RZ*, let w be

a Kg’mo—locally forced solution. For a large absolute constant C; = 1, we have that
EL oo lw] < 2B, oo1<16r[w] (o) + Cl||FH§,§L2(K%@O) (2.6.3)
and
FE o Jw] < CLR™ (E\z_mgm[w] (to) + HFlling(Kg%)) : (2.6.4)
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Proof. We use induction on the dyadic integers R > 1

Step 1: Base case R = 1. We have that

Etlo’mo[ | < Epsoi<as[w](to) + C’j |F||w|?|6,w|dzdt + C’J |F|?|0,w|dadt

zo e to z0
< E\x—xo|<16[w] (to) + O”F”L;LL;{»‘(RXR‘l)”wH%g@L‘é(K,} ”575“)“127!22 (K4 20)
+ CHF”LBLG(Kl )Hatw”LfLQ( tO IO)
~ 1
< E‘x7m0|<16[w] (to) + gtlo LL‘()[ ] + CHFHLBLG Kl Io)gtloyx() [w]2

< E\x7x0|<16[w] (tO) + gtlo mo[ ] + OHFHL3L6 I(1 ) '
Insert this bound into Lemma [2.5.8] we obtain that

F aolw] < & o [w ]+Jl |F||w|2|6tw|dxdt+Cfl | F*|yw]dzdt

to,zQ Kto ,ZQ

5t10,x0 [ ]

< E\x—zoKlG[ ](to) + ”F’”L‘;L(’(K1 o)

By choosing ('} sufficiently large, we obtain ({2 and (2.6.4)). This already determines our choice

of C'1, which we now regard as a fixed constant. Let R = 2 be an arbitrary dyadic integer. Using

the induction hypothesis, we can rely on the inequalities (2.6.3)) and (2.6.4)) for all scales N < R/2.

Step 2: Splitting the energy increment. From Lemma [2.5.4] we have that

Sf;xo[ | < Ejp—sj<a6r[w](to) +CJ | F||w]? |6tw|da:dt+6’f |F)*|0w|dzdt . (2.6.5)

to zQ to zQ

The main term is the second summand in (2.6.5). We use a Littlewood-Paley type decomposition
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of the linear evolution and write

f |F|[w[2|6yw|dadt
R

td,mo

< Z JR | Fiv||w]?|6yw|dadt + Z JR | x| |w]?|6pw]|dadt .

N>R YEy o N<R/2 VEij,z0

Step 3: High frequencies. The high frequencies can be controlled using the single-scale estimate

from Proposition Indeed, we have that

> | Fye||w]?|0w]|dadt
N>RYEL o
1
3_g N 1 [~ ~ 3
SnZAM+@ﬁMM%%MM+E$Mﬂ (2.6.6)

NZzR

S nR%*S“rSagR

to, o

] + Z2 )"

Step 4: Low frequencies. For 7,, = Nn € NNy and y; = Nj € NZ* | we write

mﬁ(?{

to,xo

JRIHWﬁ@MM&

t0,T(

|N?]
= ( | |FN||w|2|atw|dxdt) ; | [l |6 |dd

"0 [rnta + NIXRONKE (IN'+,00) xRONKE
IN)
- Z | En||w|?|daw|dedt + J | Ey||w|?|daw|dadt .
. N
" I, T (IN+0 o) xRONKR

™,Yj tg,zQ
In the last line, we have used that
R N
to,xo KTnvyj .
(n,j)ENO xZ4

We first control the contributions on the time intervals [7,, 7, + N]. To this end, we define w7

as the K iV 7yj-locally forced solution with data
w(N’"’j)(Tn) = w(7,) and 8tw(N’”’j)(Tn) = Gyw(Ty,) -
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Using finite speed of propagation, w and w®™™7) coincide on Kﬁi o5 Applying Proposition m

and the induction hypothesis to w™™7) it follows that

| En|w]?|0pw]dadt

N
KTn;yj

= |FN||w(N’”’j)|2|5tw(N’"’j)|dxdt

N
Kanyj

SnN‘l s+865N [ (N,n,j)]% <§N [w(N,nJ ]%—i-.FN [ (N,n,j)])z

Tn,Yj Tn,Yj n,Yj
yj )

)
1
2

=

D=

3_g T
< pN17s80 (2E\xfyj‘<16N[w(N7 M) + CIHFHLSLG
. 08 <01E|m,yj|<161v (w7 D](7,) + Cy | F ||§§L2<K£L,yj>>
3_, n.d
< N0 (E‘x,yﬂglw[w(“ DN (7,) + HFllig)Lgmghyj))

5
< pNi sty (E\x_yj\ng[w] (7a) + ||FH6L§L§C(K;YM,J.)) .

As a consequence, we obtain that

Z Z f . | F||w|?|0,w|dxdt

j€Z4 K"’n g

N R
Krn 1/] Kto zQ

< iy Z Y (Bl + 1P 1Sy )
jezt ’
K71'\’VIL 1/] Kg?) )
[N?)
3_s
<pNaOc Y (E\a:—zo|<16R—\t—to\[w](Tn) N E D 6 ((prn s M ) 1 KE IO))
n=max(0,to/N)
< pNEHO-stO o SR N s+60501HF”L3L6(KR 3 (2.6.7)

to,To
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Using the long-time decay estimate, we can control the contribution on the interval [N1*? o0) by

| Ey||w|?|dpw|dadt

(IN'*,0)xRYNK S
< ”FNHL%L;‘([NH",OO)XR‘*)”wHing(thz,zo)||6thL‘t7v‘L§(Kt}g7zo)

$ an—g—S-ﬁ-(S&Jimo . (268)
Combining (2.6.7) and (2.6.8)), it follows that

3 J | Fy|[w]|fyeo|dadt
KR

NgR/2 to,zo
3 [ N 3
< nCy Z (NZ+9—5+56 + N1—§—S> 5t1§,x0 + 77( Z NZ_3+55) ClHFHGLng(Kﬁ R (2.6.9)
N<R/2 N<R/2 0:%0

S 10 Erg g + 1O F g pgien -

Here, we have used that s > max(1 — £,3 + 6), and that 6 = §(s,6) > 0 is sufficiently small.

Step 5: Finishing the proof. At this point, we have proven all the necessary estimates on w. It only
remains to put them together, and use a “kick back” argument. From the energy increment ([2.6.5),

the high frequency estimate (2.6.6|), the low-frequency estimate (2.6.9), and Holder’s inequality, it
follows that

~ ~ ERIY
Sfj,zo [w] < Ejg—go|<i6r[w](to) + 770155;”@0 [w] + nR1 +86]:£,x0 [w] + nclHFHing(Kgg%) (2.6.10)
Inserting the same bound for the energy increment into (2.5.8)), we also have that
ﬁ-R

to,o

[w] < R406 (gR

to,xo

3_ o185 3
] + 0B S 0] + 0O F Iy ren ) (26.11)
If the absolute constant n = n(C4, ) > 0 is chosen sufficiently small, then (2.6.11]) implies that
ﬁ-R

to,xo

(0] < R (5;;960[@0] +n01\\F||gng(K%%)) . (2.6.12)
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Inserting this into (2.6.10)), we obtain (2.6.3). Finally, (2.6.3) and (2.6.12)) imply (2.6.4). This

completes the proof of the induction step.

Using Proposition we now provide a short proof of the main result.

Proof of Theorem[2.1.5 Assume that the statements in Proposition hold for w € Q. From
Lemma [2.5.1] it follows that there exists a local solution to (2.5.1). From Proposition [2.6.3] it
follows for all R > 1 that
sup f T](t, x)dx < 2E[vy, v1] + C; .
te[0,R] J|z|<2R—t
By letting R — oo, we obtain the a-priori energy bound
sup E[v](t) < 2E[vg, v1] + C1 .
te[0,00)
From Proposition [2.5.2} this implies the global space-time bound ||v| 135 (j0,m)xrt) < °© and the
existence of scattering states (vl v;) € H'(R*) x L2(R*). Since u = F + v, we obtain the global
space-time bound [ w136 ((0,x)xrey < 00 and the scattering states (ug,u;) = (vg — fon, v —
JT< Nhi)' This completes the proof for positive times. By time-reflection symmetry, we obtain the

same result for negative times. ]
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CHAPTER 3

Invariant Gibbs measures for the three-dimensional wave

equation with a Hartree nonlinearity I: Measured]

3.1 Introduction

In this chapter, we rigorously construct and study the Gibbs measure u®. We recall from (1.2.2))

that the Hamiltonian is given by

1 1
Hlon 1) = 5 (160l + IVl + l6ally) + 7 [ (Vo 6B) 65 o

Since the Hamiltonian H|[¢g, ¢1] splits into a sum of functions in ¢y and ¢;, we can rewrite the

Gibbs measure u® as

d:u®(¢07¢1)
—zexp (~ 5 [ V2 @) do— Slnlis — 5IV6lE) doy © 2 exp (= lnl3) do
=<9 p 4 ) 0/Po* ollPolize = 5 ollz2 0 1 p o 1P1liz2 1

The construction and properties of the second factor are elementary (as will be explained below),
and we now focus on the first factor. As a result, we are interested in the rigorous construction of

a measure 4 which is formally given by

1 1 1
du(¢) = Z™ exp (— 1 _[TS H(V +6%)9*: du — §||¢||%2(1r3) - §||V¢||%2(T3)) do. (3.1.1)

4The content of this chapter has been published online in Stochastics and Partial Differential Equations: Analysis
and Computations [Bri20d].
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Our Gibbs measure p is closely related to the ®4-models, which replace the three-dimensional
torus T3 by the more general d-dimensional torus T and replace the integrand :(V « ¢*)¢?: by the

renormalized quartic power :¢*:. Thus, the ®4-model is formally given by

1 1
404(0) = 2 texp (= [ 10% do = Sl — 5IV0 1) do. (312)

Aside from their connection to Hamiltonian PDEs, such as nonlinear wave and Schrodinger equa-
tions, the ®4-models are of independent interest in quantum field theory (cf. [Fol08]). In most
rigorous constructions of measures such p or the ®4-models, the first step consists of a regular-
ization. For instance, one may insert a frequency-truncation in the nonlinearity or replace the
continuous spatial domain by a discrete lattice. In a second step, one then proves the convergence
of the regularized measures as the regularization is removed, either by direct estimates or com-

pactness arguments.

With a particular focus on ®3-models, the question of convergence of the regularized measures
has been extensively studied over several decades. The first proof of convergence was a major
success of the constructive field theory program, which thrived during the 1970s and 1980s. We
refer the reader to the excellent introduction of [GHI9| for a detailed overview and the original
works [BCGTS8, BFS83|, [FO76, (GJ’7, MS76l Par77, [Sim74, Wat89].

In the 1990s, Bourgain [Bou94), Bou96] revisited the ®4-model in dimension d = 1,2 using tools
from harmonic analysis and introduced these problems into the dispersive PDE community. Bour-
gain’s works [Bou94) [Bou96] also contain important dynamical insights, which will be utilized in
the second part of this series.

Based on the method of stochastic quantization, which was introduced by Nelson [Nel66, [Nel67]
and Parisi-Wu [PW&I], the construction and properties of the ®4-models have also been studied

over the last twenty years in the stochastic PDE community. The main idea behind stochas-
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tic quantization is that the ®%-measure is formally invariant under the stochastic nonlinear heat
equation

S+ u— Au = — ud: /2 (t,r) e R x T% (3.1.3)

where ¢ is space-time white noise. After prescribing simple initial data, such as u(0) = 0, one hopes
to obtain the ®%-measure as the limit of the law of u(t) as ¢t — co. In spatial dimensions d = 1,2,
this approach was carried out by Iwata [[wa87] and Da Prato-Debussche [DDO03], respectively. In
spatial dimension d = 3, however, is highly singular and the local well-posedness theory
of is beyond classical methods in stochastic partial differential equations. In groundbreak-
ing work [Hail4], Hairer introduced regularity structures, which provide a detailed description of
the local dynamics of . Alternatively, the local well-posedness of was also obtained
by Catellier and Chouk in [CCI§|, which is based on the para-controlled calculus of Gubinelli,
Imkeller, and Perkowski [GIP15]. In order to construct the ®3-model using , however, local
control over the solution is not sufficient, and one needs a global well-posedness theory. The global
theory has been addressed very recently in [AK20, (GH19, [HM18| MW17], which combine regularity
structures or para-controlled calculus with further PDE arguments, such as the energy method.
Using similar tools, Barashkov and Gubinelli [BG20b, [BG20a] recently developed a variational
approach to the ®3-model, which does not directly rely on the stochastic heat equation (3.1.3)).

Their work forms the basis of this paper and will be discussed in more detail below.

After this broad overview of the relevant literature, we now begin a more detailed discussion of the
previous methods. Throughout this discussion we encourage the reader to think of the nonlinear
wave equation as a Hamiltonian system of ordinary differential equations in Fourier space. We
begin with the construction of the Gaussian free field. Then, we discuss the construction of the ®%
and ®3-models using harmonic analysis, similar as in Bourgain’s works [Bou94, [Bou96], and the

construction of the ®3-model using the variational approach of Barashkov and Gubinelli [BG20b].
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Given a function ¢: T¢ — R, its Fourier expansion is given by
= > dn)e . (3.1.4)
nezd
Due to the real-valuedness of ¢, the sequence (Q/Z;(n))nezd satisfies the symmetry condition Z(n) =
é(—n). In order to respect this symmetry, we let A € Z4 be such that Z¢ = {0} | A [ (—A),
where |4 denotes the disjoint union. For n € A, we denote by dngﬁ(n) the Lebesgue measure on C,
and for n = 0, we denote by dgg(O) the Lebesgue measure on R. We can then formally identify the

d-dimensional Gaussian free field

_ 1 1
dga(¢) = Z7 exp ( - §H¢H%2(Td) - QHVQSHi?(W)) do (3.1.5)
as the push-forward under the Fourier transform of

zep(— 5 DA +RPIB@P) @ ddn

neZd ne{O}uA
1 ~ ~
= oo (— 5130 )ad( (® O ( — o)) ad(m)),
where (n)> = 1+ |n|%2. While (3.1.5) is entirely formal, the right-hand side of (3.1.6) is a well-
defined product measure. Under the measure in (3.1.6)), (E(O) is a standard real-valued Gaussian

(3.1.6)

and ((E(n))ne A is a sequence of independent complex Gaussians satisfying ]E|gg(n)|2 = {(n)~2. Turn-
ing this formal discussion around, we let (€2, F,P) be an ambient probability space containing a
sequence of independent complex-valued standard Gaussians (¢, )nen and a standard real-valued

Gaussian gg. Then, we can rigorously define the Gaussian free field g4 by

dga(é (Z o z<”>)# , (3.1.7)

where the subscript # denotes the pushforward. Using the representation (3.1.7)), we see that a
typical sample of g4 almost surely lies in H*(T%) for all s < 1 — d/2 but not in Hy “*(T4).
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We now turn to the construction of the ®} and ®3-models. Based on our formal expression of the

d1-model in (3.1.2)), we would like to define

AP (¢) ¥ Z Texp ( — i L¢4(w)dm) dg1(o). (3.1.8)

Using either Sobolev embedding or Khintchine’s inequality, we obtain g;-almost surely that 0 <
o]l za¢ry < co. This implies that the density d®}/dg; is well-defined, almost surely positive, and
lies in L9(g;) for all 1 < ¢ < oo. In particular, the ®]-model is absolutely continuous with respect
to the Gaussian free field g;. We emphasize that the potential energy in does not require

a renormalization. Furthermore, we can define truncated ®i-models by

10L5(0) ™ 25 exp (= | (Pexo)! (o)) g (0),

where N is a dyadic integer and P<y a Littlewood-Paley projection. As was shown in [Bou94],
direct estimates yield the convergence of d®j,y/dg; in Li(g1) for all 1 < ¢ < o0 and hence @7,

converges to @7 in total variation as N tends to infinity.

In two spatial dimensions, however, we encounter a new difficulty. Since gi-almost surely ||¢[|z2z =
oo, the potential energy |¢||7, is almost surely infinite. As a result, the potential energy requires

a renormalization. A direct calculation using the definition of Pcy in (3.1.14]) below yields

lo o]
o2 = f A (8)| Pan | agms) ~ log(N).

We then replace the monomial (P<y¢)* by the Hermite polynomial
((Peyo)*:= (P<y®)* — 603 (P<yo)® + 305

This leads to the truncated ®3-model given by

def 1

A05(0) " 2 e (= | (Pend)!s (2)de)dga(o).
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After this renormalization, one can show (cf. [OTIS]) that the densities d®3.y/dg, converge in
Li(gs) for all 1 < ¢ < o and we can define 3 as the limit (in total-variation) of 5y as N — 0.
As in one spatial dimension, the ®3-model is absolutely continuous with respect to the Gaussian
free field go. Using similar tools as for the ®3-model, Bourgain [Bou97] constructed the Gibbs
measure 4 for the Hamiltonian with a Hartree interaction for § > 2, which corresponds to a rela-
tively smooth interaction potential V. The key point of this paragraph is that the ®}-model, the
®J-model, and the Gibbs measure y for a smooth interaction potential can be constructed through
“hard” analysis. As a result, one obtains strong modes of convergence and absolute continuity

with respect to Gaussian free field.

The construction of the ®3-model, however, is much more complicated. As will be described below,
several of the “hard” conclusions, such as convergence in total-variation or absolute continuity with
respect to the Gaussian free field, are either unavailable or fail. As a result, we have to (partially)
replace hard estimates by softer compactness arguments. We now give a short overview of the
variational approach in [BG20b, [BG20al, which forms the basis of this paper.

In order to use techniques from stochastic control theory, we introduce a family of Gaussian pro-
cesses (Wi(z))i=0 on an ambient probability space (2, F,P) satisfying Lawp(Wy) = g3, which will
be defined in Section [3.2.1] We view t as a stochastic time-variable which serves as a regularization

parameter. Using this terminology, we obtain a truncated ®i-model by setting

A3, (6) = (W) (AP5.1(0))

and

—4 _ 1
d(I)3;T(¢) = ZT1 €xp ( - =

I Wi(z) — arWi(z) — bpdz)dP.
T3

We emphasize already that the <I>§;T-measure does not correspond to a truncated Hamiltonian,

which will be discussed in full detail in Section [3.2.1} In order to construct the ®i-model, the main
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step is to prove the tightness of the <I>§;T—measures. Using Prokhorov’s theorem, this implies the
weak convergence of a subsequence of CDQL;T and we can define the ®i-measure as the weak limit. To

prove tightness, Barashkov and Gubinelli obtain uniform bounds in 7" on the Laplace transform
feCEt (M)R) - [ddl(e) e 1.

The main ingredients for the uniform bounds are the Boué-Dupuis formula (Theorem and
the para-controlled calculus of Gubinelli, Imkeller, and Perkowski [GIP15], which has also been
used in the stochastic quantization approach to the ®3-model (cf. [GHI9)).

While the variational approach yields the existence of the ®3-measure, it only yields limited
information regarding its properties. In spatial dimensions d = 1,2, the ®}-model is abso-
lutely continuous with respect to the Gaussian free field g4, and hence the samples of ®% for
many purposes behave like a random Fourier series with independent coefficients. This is an
essential ingredient in almost all invariance arguments for random dispersive equations (see e.g.
[Bou97, Bou96, DNYT19, NORI2]). Unfortunately, the ®i-measure is singular with respect to the
Gaussian free field g3. This fact seems to be part of the folklore in mathematical physics, but it
is surprisingly difficult to find a detailed reference. In an unpublished note available to the author
[Hai], Martin Hairer proved the singularity using the stochastic quantization approach and regular-
ity structures. Using the Girsanov-transformation, Barashkov and Gubinelli [BG20a] constructed
a reference measure v; for the ®3-model, which serves a similar purpose as the Gaussian free field
for ®} and ®3. The samples of v4 are given by an explicit Gaussian chaos and ®3 is absolutely

4. Furthermore, Barashkov and Gubinelli proved that the reference

continuous with respect to v.
measure v4 and the Gaussian free field g3 are mutually singular, which yields a self-contained

proof of the singularity of ®3 with respect to the Gaussian free field g3.
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3.1.1 Main results and methods

In the following, we simply write g = g3 for the three-dimensional Gaussian free field. Let N > 1

be a dyadic integer and define the renormalized potential energy by

3VJ/\\1(¢)5d:ef 2 Lm ((V # ¢°)9° — 2an9® — A4 Mpyd)d + ‘A/(O)ai, + 2bN> dz + ). (3.1.9)

The coupling constant A > 0 is introduced for illustrative purposes, but the reader may simply
set A = 1 as in all previous discussions. The renormalization constants ay, by, and ¢} are as in
Definition [3.2.8 and Proposition [3.3.2] and the renormalization multiplier M is as in Definition
. We emphasize that the renormalization in goes beyond the usual Wick-ordering,
which is only based on the mass |P<y|%.. The additional renormalization is contained in the
renormalization constant ¢y, which is related to the mutual singularity of 4® and ¢ (for 0 < 8 <

1/2). The truncated and renormalized Hamiltonian Hy is given by

def 1

Hu[oo, 01 % 5 (Iul32 + [V eula + ol ) + VA (Pand): | (3.1.10)

where we omit the dependence on A\ > 0 from our notation. We emphasize that only the quartic
term contains a frequency-truncation and renormalization, whereas the quadratic terms remain
unchanged. As described in the beginning of the introduction, we focus on the first factor of the
truncated Gibbs measure ;$, which is given by
1 A
Au(9) = Zr o (= WA(Pand): )dg(0). (3.111)
Before we state our main result, we recall the assumptions on the interaction potential V: T2 — R

from the introduction to the thesis. In these assumptions, 0 < < 3 is a parameter.
Assumptions A. We assume that the interaction potential V satisfies

(i) V(x) = cglz|=®P for some cg > 0 and all x € T? satisfying ||| < 1/10,

5



(ii) V(z) 25 1 for all x € T3,
(iii) V(z) = V(=) for all x € T3,
(iv) V is smooth away from the origin.

We now state the conclusions of this paper which will be needed in the Chapter {4| of this thesis.
A more comprehensive version of our results will then be stated in Theorem [3.1.3] Theorem [3.1.4],
and Theorem below. The additional results may be useful in further applications, such as

invariant measures for a Schrodinger equation with a Hartree nonlinearity.

Theorem 3.1.1 (The Gibbs measure). Let k > 0 be a fixed positive parameter, let 0 < § <
3 be a parameter, and let the interaction potential V' be as in the Assumptions [A] Then, the
sequence of truncated Gibbs measures (uy)ny=1 converges weakly to a probability measure pio, on
CQC_I/Q_"C(’]I‘?’)7 which is called the Gibbs measure. If in addition 0 < 8 < 1/2, the Gibbs measure
It and the Gaussian free field g are mutually singular. Furthermore, there exists a sequence of
reference measures (vy)n=1 on Cy Y *7*(T3) and an ambient probability space (Q, F,P) satisfying

the following properties:

(i) (Absolute continuity and L?bounds) The truncated Gibbs measures uy are absolutely con-
tinuous with respect to the reference measures vy. More quantitatively, there exists a pa-

rameter ¢ > 1 and a constant C' > 1, depending only on 3, such that
_1
pn(A) < Cy(A)'
for all Borel sets A < Cy /*7%(T3).

(i) (Representation of vy) Let v = min(1/2 4+ /,1). There exists a large integer k = k() and
two random functions G, Ry : (Q, F) — C; /> 7*(T3) satisfying for all p = 2 that

k
2

vy = Lawp (Q + RN), g = Lawp (g), and ||RN||Lgcg*“(QxT3) < pe2.
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Remark 3.1.2. After the completion of the series [Bri20c, [Bri20d], the author learned of indepen-
dent work by Oh, Okamoto, and Tolomeo [OOT20], which discusses the focusing and defocusing
three-dimensional (stochastic) nonlinear wave equation with a Hartree nonlinearity. In the focus-
ing case, the authors provide a complete picture of the construction and properties of the focusing
Gibbs measures, which distinguishes the three regimes 8 > 2, f = 2, and § < 2 (cf. [OOT20]). In
the defocusing case, the authors construct the Gibbs measures for 8 > 0 and prove the singularity
for 0 < 8 < 1/2, which includes the endpoint 8 = 1/2. The reference measures are briefly discussed
in [OOT20, Appendix C], but only play a minor role in their analysis. The L-bound in Theorem
[B-1.1, which will be essential in the second part of this series [Bri20e], is not proven in [OOT20).

In the first version of the paper [Bri20c|, we proved the tightness of the truncated Gibbs measures
(1n) N=1, which only implies that a subsequence of (ux)n=1. In [OOT20], the authors proved the
uniqueness of weak subsequential limits, which lead to the convergence of the full sequence. A
version of the uniqueness argument from [OOT20], which has been modified to match our notation,

has now been included in Appendix [3.6.3]

While the measure-theoretic part of [OOT20] treats all § > 0, the dynamical results are restricted
to > 1. In particular, the singular regime 0 < 8 < 1/2 is not covered, which is the main object

of the series [Bri20c, Bri20d].

In addition to the singular regime 0 < § < 1/2, the most interesting cases in Theorem are
the Newtonian potential |x| 2 (corresponding to 8 = 1) and the Coulomb potential |z|~! (corre-
sponding to § = 2). As mentioned earlier in the introduction, Bourgain [Bou97] proved a version
of Theorem in the limited range 8 > 2, which corresponds to a relatively smooth interaction

potential.

We now split the main theorem (Theorem [3.1.1)) into three parts:
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e the tightness and weak convergence of the truncated Gibbs measures py,
e the construction and properties of the reference measures vy,
e the mutual singularity of the Gibbs measure and the Gaussian free field.

Theorem 3.1.3 (Tightness and convergence). The truncated Gibbs measures (uy)ns1 are tight

on C; Y 7F(T3). Furthermore, the sequence (uy)y=1 weakly converges to a limiting measure ji.

The overall strategy of the proof of Theorem [3.1.3] is the same as in the variational approach of
Barashkov and Gubinelli [BG20b]. In comparison with [BG20b], the terms in this paper often
have a more complicated algebraic structure but obey better analytical estimates. As any reader
familiar with regularity structures or para-controlled calculus may certify, the algebraic structure
of most stochastic objects is already quite complicated, so this trade-off is not always favorable. In
addition, the non-locality of the nonlinearity requires different analytical estimates and we mention

the two most important examples:

(i) The coercive term |f|74 in the variational problem for the ®3-model is replaced by the

potential energy
| e
T3
We emphasize that the coercive term in the variational problem does not contain a renor-
malization, which is a result of the binomial formula in Lemma [3.2.11] In order to use the

potential energy in our estimates, we rely on a fractional derivative estimate of Visan [Vis07,

(5.17)].

(ii) In the variational problem, we encounter mixed terms of the form

J3 [(V # (PanWo - Pan f1) - PanWeo - Pan fo — (MNpsNﬁ)Pngz]d%
T
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where (W)= is the Gaussian process from the introduction. Based on the literature on
random dispersive equations [Bou97, Bou96, DNY19, DNY20(, (GKO18al, it is tempting to
bound this mixed term through Fourier-analytic and random matrix techniques. We instead

develop a simpler and elegant physical-space approach.

The next theorem gives a more detailed description of the reference measures in Theorem [3.1.1]

To simplify the notation, we allow the truncation parameter N to take the value co.

Theorem 3.1.4 (Reference measures). There exists a family of reference measures (vn)1<ny<w

and an ambient probability space (2, F,P) satisfying the following properties:

(i) Absolute continuity and L?-bounds: The truncated Gibbs measures py are absolutely contin-
uous with respect to the reference measures vy. More quantitatively, there exists a parameter

g > 1 and a constant C' > 1, depending only on (3, such that
px(A) < Cun(A)
for all Borel sets A = Cy /*7"(T3).
(ii) Representation of vy: We have that
vy = Lawp (g“) + QJ(\:,)’) + QJ(\T,L)).

Here, n = n(f) is a large integer and the linear, cubic, and n-th order Gaussian chaoses are
explicitly given by
g(l) = WOO7

o0
¥ = —)\PéNJ Jf( H(V # (P<nW,)?) P<n W )ds’

0

= Po [ @R (@ EP" )ds,
0
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where we refer the reader to Section [3.2.1] and Definition for the definitions of J, and

the renormalizations.

We emphasize that the representation of vy in Theorem is much more detailed than stated
in Theorem [3.1.1] This additional information is not required in our proof of global well-posedness
and invariance in the Chapter [l However, we believe that the more detailed representation
way be relevant for the Schrodinger equation with a Hartree nonlinearity. The reason lies in
low xlow x high-interactions, which are more difficult in Schrodinger equations than in wave equa-
tions. In the last two years, we have seen new and intricate methods dealing with these interactions
[Bri20a, DNY19, DNY20], but all of these papers heavily rely on the independence of the Fourier
coefficients. In fact, overcoming this obstruction is mentioned as an open problem in [DNY20),
Section 9.1].

The proof of Theorem [3.1.4]is based on the Girsanov-approach of Barashkov and Gubinelli [BG20al.
As mentioned earlier, however, we cannot use the same approximate Gibbs measures as in [BG20a],
since they do not correspond to a frequency-truncated Hamiltonian. In Chapter {4} the frequency-
truncated Hamiltonians are an essential ingredient in the proof of global well-posedness and in-
variance. This difference will be discussed in detail in Section [3.2.1} For now, we simply mention

that there is a trade-off between desirable properties from a PDE or probabilistic perspective.

Our last theorem describes the relationship between the Gibbs measure p, and the Gaussian free

field g .

Theorem 3.1.5 (Singularity). If 0 < 8 < 1/2, then the Gibbs measure puq and the Gaussian free
field g are mutually singular. If § > 1/2, then the Gibbs measure is absolutely continuous with

respect to the Gaussian free field g.

Theorem determines the exact threshold between absolute continuity and singularity of pe,
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with respect to g. As mentioned in Remark the singularity at the endpoint 5 = 1/2 has been
obtained in independent work by Oh, Okamoto, and Tolomeo [OOT20]. The absolute continuity
for 5 > 1/2 already follows from the variational estimates in our construction of ji,. The main step
is the mutual singularity of ue and g for 0 < f < 1/2. We provide an explicit event witnessing

this singularity, which is based on the behaviour of the frequency-truncated potential energy

ng (Vo (Peyd)?)(Pend)?: da

under the different measures.

Acknowledgements: The author thanks his advisor Terence Tao for his patience and invaluable
guidance. The author also thanks Nikolay Barashkov, Martin Hairer, Redmond McNamara, Dana
Mendelson, Tadahiro Oh, and Felix Otto for helpful discussions.

3.1.2 Overview

To orient the reader, let us review the rest of this paper. In Section|3.2.1] we introduce the stochas-
tic control perspective and recall the Boué-Dupuis formula. In Section [3.2.2] we estimate several
stochastic objects, such as the renormalized nonlinearity : (V «W2)W,:. Our main tools will be [t6’s
formula and Gaussian hypercontractivity. In Section [3.3] we prove the tightness of the truncated
Gibbs measures uy and construct the limiting measure .. Using the Laplace transform and
the Boué-Dupuis formula, the proof of tightness reduces to estimates for a variational problem,
which occupy most of this section. In Section [3.4, we first construct the reference measures vy
and then examine their properties. The main ingredients are Girsanov’s transformation and our
earlier variational estimates. Finally, in Section 3.5 we prove the singularity of the Gibbs measure

loo With respect to the Gaussian free field g for all 0 < g < 1/2.
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3.1.3 Notation

In the rest of the paper, we use ' instead of := for definitions. The reason is that the colon in
:= may be confused with our notation for renormalized powers in Definition below. With

a slight abuse of notation, we write da for the normalized Lebesgue measure on T?. That is, we

J 1dz = 1.
’]I‘S

We define the Fourier transform of a function f: T3 — C by

implicitly normalize

f(n) def . f(z)e ™ dx.

For any k € N and nq,...,n; € Z3, we define

k
nio.. k d:efznj. (3112)
j=1

For instance, nis = nq + no and nqo3 = ny + ny + ng3.

We now introduce our frequency-truncation operators. We let p: R.y — [0, 1] be a smooth, non-
increasing function satisfying p(y) = 1 for all 0 < y < 1/4 and p(y) = 0 for all y > 4. We also
assume that min(p(y), —p'(y)) = 1 for all 1/2 < y < 2. For any ¢ = 0 and n € Z*, we also define

mmﬁgﬂgg)

In particular, it holds that ¢ — p;(£) is non-decreasing. In order to break up the frequency

truncation, we also set
d 1
amng(—mm»3 (3.1.13)
dt
This continuous approach instead of the usual discrete decomposition will be essential in the

stochastic control approach (Section [3.2.1). Nevertheless, we will sometimes use the usual dyadic
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Littlewood-Paley operators. For any dyadic N > 1, we define P<y by

Ponf(n) = pn(n) f(n). (3.1.14)
We further set
P f=P,f and Pyf =Pocnf—Penpf foral N> 2.
The corresponding Fourier multipliers are denoted by
x1(n) = p1(n) and xn(n) = pn(n) — pnp(n) forall N = 2. (3.1.15)
For any s € R, the C:(T?)-norm is defined as

If

car) = sup N P £z vs)- (3.1.16)
N>1
We then define the corresponding space C:(T?) by

s def . s
Co(T) = {f: T > R [£le; <0, lim N

Due to the additional constraint as N — oo, the space C:(T?) is separable. This allows us to later

use Prokhorov’s theorem for families of measures on C:(T?). We also define

coe ([0, 0] = T°)
s , (3.1.18)
{f:10,00) x T* > R Supllf( )

Cs(T3) < 0, hm f(t,-) exists in C3(T%)}.

Similar as above, the additional restriction as t — oo makes CYC3([0, 00] x T?) separable.

As a measure of tightness in CPC:([0,00] x T?), we define for any 0 < a < 1 and 1 > 0 the norm

cy(r?) + sup (mm(<t> )" ”f() 1 C;(Tg))' (3.1.19)

0<t,t' <00 At =1t

For 1 < r < oo, we also define the Sobolev space W#"(T?) as the completion of C®(T?) with

def
| flleanes o.c1xmsy = [£(0)

respect to
| flwsr = IN*Px flles, -

We hope that the subscript « prevents any confusion with the stochastic objects in Section [3.2.2]
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3.2 Stochastic objects

In this section, we introduce the stochastic control framework and describe several stochastic
objects. While the reader with a background in singular SPDE and advanced stochastic calculus
can think of this section as standard, much of this section may be new to a reader with a primary
background in dispersive PDE. As a result, we include full details for most standard arguments

but encourage the expert to skip the proofs.

3.2.1 Stochastic control perspective

We let (B}')nezs\(o; be a sequence of standard complex Brownian motions such that B;" = By
and B, B" are independent for n # +m. We let BY be a standard real-valued Brownian motion
independent of (B}'),ezs\jo;. Furthermore, we let B;(-) be the Gaussian process with Fourier
coefficients (B'),ez3, i.e.,

Byx) € Y emopy, (3.2.1)
nez3

For every t > 0, the Gaussian process formally satisfies E[B;(z)B:(y)] = t - §(x — y) and hence
By () is a scalar multiple of spatial white noise. We also let (F;);=0 be the filtration corresponding
to the family of Gaussian processes (Bj');=o. For future use, we denote the ambient probability

space by (92, F,P).

The Gaussian free field g, however, has covariance (1 — A)~!. To this end, we now introduce the

Gaussian process W;(z). For o,(x) as in (3.1.13) and any n € Z3, we define

ndet [F0s(n)
W, —L D dB" . (3.2.2)

We note that W} is a complex Gaussian random variable with variance p?(n)/{n)?. We finally set

W(z) € Y7 elmap, (3.2.3)

nez3
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It is easy to see for any x > 0 that W € CC, Y >77(]0, 0] x T?) almost surely. With a slight abuse
of notation, we write dP(W) for the integration with respect to the law of W under P, i.e., we
omit the pushforward by W, and we write I for the canonical process on CYCy Y 2770, 0] x T3).
Comparing W; and B;, we have changed the covariance from t1Id to p,(V)?(I — A)~'. For any
fixed T' = 0, we have that

Lawp(Wr) = Lawp(pr(V)Wy). (3.2.4)

We already emphasize, however, that the processes t — W; and t — p,(V)W, have different laws,
since only the first process has independent increments. This difference will be important in the
definition of iz below. To simplify the notation, we also introduce the Fourier multiplier .J;, which

is defined by

) %) fo), (3.2.5)

Using this notation, we can represent the Gaussian process W, through the stochastic integral
t
W, = f Js dBs.
0
In a similar spirit, we define for any u: [0,0) x T* — R the integral I;[u] by

t
Li[u] dzeff Jsusds. (3.2.6)
0
We now recall the Boué-Dupuis formula [BD98], where our formulation closely follows [BG20b,

BG20a]. We let H, be the space of F;-progressively measurable processes u: Q2 x [0,00) x T3 — R
which P-almost surely belong to L7, ([0,00) x T?).

Theorem 3.2.1 (Boué-Dupuis formula). Let 0 < T < oo, let F : C([0,T],C*(T?)) > R be a

Borel measurable function, and let 1 < p, ¢ < co. Assume that

o=l B[P0V <o, and Bl V] <on, (3:2.7)
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where we regard T as an element of Cy([0,T], CX(T?)). Then,

1 T
_log]EP[e*F(W)] — inf EP[F(W 1) + 5 L ||usui2(T3)ds]. (3.2.8)

ueH,

Remark 3.2.2. The optimization problem in (3.2.8) and, more generally, the change of perspective
from W, to the whole process t — W, is reminiscent of stochastic control theory.

Due to the frequency projection in the definition of .J;, we have that Wy, I;[u] € Cy([0, T], CX(T?)).
In our arguments below, the smoothness can be used to verify through soft methods. Of
course, a soft method cannot yield uniform bounds in 7', which are one of the main goals of this

section.

In the introduction, we discussed the Gibbs measure py corresponding to the truncated dynamics
induced by Hy, which has been defined in (3.1.10]). In the spirit of the stochastic control approach,
we now change our notation and use the parameter 7' to denote the truncation. Since the law of

Wy under PP is the same as the Gaussian free field g and P<; = pr(V), we obtain that

dpr(e)

= o (— VP 0r(V)0): ) (W) 4P) (0). (3.2.9)

The renormalized potential energy V™ is as in (3.3.2)). We view pr as a measure on the space

¢/ 2_5(T3) for any fixed k > 0. In order to utilize the Boué-Dupuis formula, we lift pus to a

measure on C?C;l/Q_K([O, o] x T3).

Definition 3.2.3. We define the measure iz on C°Cx *7"([0, o] x T3) by

djip (W) % ZlT exp (= V™ (pr(V)Wao): ) dB(W). (3.2.10)

The content of the next lemma explains the relationship between fir and pp.
Lemma 3.2.4. The Gibbs measure pr is the pushforward of fir under Wy, i.e.,

Hr = (Woo)#ﬁT- (3211)
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Due to its central importance to the rest of the paper, we prove this basic identity.

1,
Proof. For any measurable function f: C; 2 " (T3) — R, we have that

| r@ramio) - Zlm [ 1@ e v @090V B )

j F(Wie) exp(— V™ (pr (V) Wig) ) AB(W)

ZT)\
- j (W) dfir (W)

= [ 1@V i) o).

This proves the desired identity (3.2.4)). O

In [BG20b, BG20a)], Barashkov and Gubinelli work with the lifted measure

dur(W) = exp (— V"N (Wy): ) dP(W). (3.2.12)

ZT A

While Wz and pr(V)W, have the same distribution, the measures fir and fir do not coincide.
Since this is an important difference between this paper and the earlier works [BG20bl, BG20al, let
us explain our motivation for working with fir instead of fi7. From a probabilistic stand-point, the
measure fir has better properties than fir. This is related to the independent increments of the
process t — W; and we provide further comments in Remark below. From a PDE perspective,
however, j17 behaves much worse than fir. For the proof of global well-posedness and invariance in
the second part of this series, it is essential that pur = (Wy,)gfir is invariant under the Hamiltonian
flow of . In contrast, the author is not aware of an explicit expression for the pushforward
of i under W,. In particular, (Wy,)jir is not directly related to i and not necessarily invariant
under the Hamiltonian flow of Hy. Alternatively, we could work with the pushforward of 7 under
Wr. A similar calculation as in the proof of Lemma shows that (Wr)gpr = (pr(V))gpr.

Unfortunately, (pr(V))xpr also does not seem to be invariant under a truncation of the nonlinear
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wave equation. To summarize, while the measure i1 has useful probabilistic properties, it lacks a
direct relationship to the truncated dynamics and is ill-suited for our globalization and invariance

arguments.

Since we rely on pr(V)W,, in the definition of fir, the Gaussian process t — pr(V)W; will play
an important role in the rest of this paper. As a result, we now deal with both values T" and ¢
simultaneously. In most arguments, 7" will remain fixed while we use [t0’s formula and martingale

properties in t. To simplify the notation, we now write
W€ pr (MW, and WY pr(n)Wr (3.2.13)

Since this will be convenient below, we also define

def

pt(n) = pr(n) - pu(n), ol ) = pr(m)or(n),  and I = pr(V) (3.2.14)
Furthermore, we define the integral operator I by
t
I'u] = pr(V)ILi[u] = f J:usds. (3.2.15)
0

3.2.2 Stochastic objects and renormalization

We now proceed with the construction and renormalization of several stochastic objects. Similar
constructions are standard in the probability theory literature and a comprehensive and well-
written introduction can be found in |[GP18 MWZXIT7, [(OT20b]. In order to make this section
accessible to readers with a primary background in dispersive PDEs, however, we include full
details. In a similar spirit, we follow a hands-on approach and mainly rely on It6 calculus. In
Lemma[3.2.20] however, this approach becomes computationally infeasible and we also use multiple
stochastic integrals (see [NuaO6] or Section [3.6.1.2)).
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Lemma 3.2.5. Let Sy be the symmetric group on {1,..., N} and let W,”" be as in (3.2.13).

Then, we have for all nq, ny, n3, ny € Z> that

t
W J awrm (3.2.16)
0
Tn Tn Lt TNy (2) T\Ny(1) P?(nl)Q
Wi = ) J f AW, " @AW" 4 6, gm0 D (3.2.17)
nes, V0 JO (n1)
bt 2 Tn T,n Tn
WtT,thT,nzm/tTms _ Z J J J thB» ‘rr(3)th27 w(z)thlz m(1) (3‘2'18)
nesSy v0 JO JO
1 L (r(1)* - 1inns
+ = 5n,r +n, :0—W i ),
2 ;13 WO ()
btz ts Tn TN (s Tn Tn
WtT,n1WtT,TL2WtT,TL3WtT,TL4 — Z J f J J th4v 7r(4)th37 W(d)thzz 77(2)th17 (1) (3219)
nes, v0 JO JO 0
1 ptT(nfr(l))2 Tn Tn
+ - 5n n —g————— W, 7T(S)I/V ()

~iys _ A FACT
8 PO @@ TN (132 ()

7r65'4

The integrals in (3.2.16])-(3.2.19)) are iterated It6 integrals. This lemma is related to the product

formula for multiple stochastic integrals, see e.g. [Nua06, Proposition 1.1.3].

Proof. The first equation (3.2.16]) follows from the definition of the Ito derivative dW,".
The second equation (3.2.17)) follows from Ito’s product formula. Indeed, we have that

t t t
WtT,nl WtTJLz — J WST,TLQ dWST’nl + J WST,TL1 dWST,nQ + J d<wT,n1’ WT,ng >s
0 0 0

Lol(n)?

_ L t ( f 8 dWTT’”?)dWST’”I + Lt ( L 8 dev”l)de‘v”z + im0 | TS

0
t rt1 T 2
Tnr(2) Tynr(1) pt (nl)
= Z J\ J th2 thl + 6n1+n2:0n—.
0 JO

TES2

ds

The third equation (3.2.18)) follows from It6’s formula and the second equation (3.2.17). Using
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It6’s formula, we have that

|G 7

f T"Tr(3) WQ)dW Mo (1) + = ZJ 7r(3)d<[/[/'Tn7r(2) WT"r(1)>

71'653 77653
The easiest way to keep track of the pre-factors throughout the proof is to compare the number
of terms of each type and the cardinality of the symmetric group. In the formula above, we have

three terms of each type and the cardinality #S3 = 6, so we need the pre-factor 1/2. By inserting

the second equation (3.2.17)) and our expression for the cross-variation, we obtain

WT,HJwT,TLQwT,TLg
T (3) 1777 (2) nr(1) " Py (Na2)? Tr(1)
J J f AW, O AW @ QU 4 2 Z Orty 311 )0 o dw =
WESB 7T€Sg nﬂ'(2
tO'T(nﬂ(D)Q —_
+ = On 1) 4+7m 2y =0 S W, s
3 3 Branenao |, TS
Z Jv J J thT nﬂ,(3)dWT nﬂ-(g)dWT Mog(1)
3
7r€S3

! UT(nﬂ(l)) Tr(3) P?( 7r(1) TN (3)
T3 Z On N (1) Fm(2) = OJ ( <n7r 1)> A ds + <n7r > AW )

(@) g7 T @) g T P ((1)? )
2 th AW, @ a4 2 Zénﬁ(lﬁw):o W,

TES3 7!'653 <7’Lﬂ-(1)>2

7r€S3

For the second equality, we also used the permutation invariance of any sum over m € S3. This
completes the proof of the third equation (3.2.18]).
We now prove the fourth and final equation (3.2.19). The argument differs from the proof of

the third equation only in its notational complexity. Using It0’s formula and the third equation
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(3.2.18)), we obtain that
WT,n1 WT,TLQ WT,TLg WT,n4

_ = Z J WT M (4) WT Mo (3) WT nﬂ(z)dWT Mr(1) + = Z J WT M (4) WT nﬁ(B)d<WT M (2) WT nﬂ(1)>

7r634 7T€»94
TNy TNy TNy TNy
= > f J f f AW, " dw, @ AW, O Wy
71'654

t
1S 2 ”“)*””(2 = J PL ()W O AW 4 S ZJ L (na(ny)*We "W ds
TI'GS <7L7r > 0 7r€S

Z J Jv Jv J thivnﬂ(4)th§7n7r(3)dW W(Q)dWT M(1) i Z [M

TESY TESy <n7"(1)>2
f <0_ (nﬂ-(l)) WT nTr(4)W 71'(3)ds 4 ps (nﬂ-(l)) W 7r(4)dW N7 (3) + p;"(nﬂ-(l))QWsT,’nﬂ-(3)dWsT,n-;r(él)>:|
0
Using It0’s formula, we obtain that

t
J (UST (Mr())*Ws "W O ds + pL (e We ™ O AW 4 pI (nrqry) W O AW, n”“))
0
t T 2
T 211, 51 (3) 17T M (4) T 295 (nﬂ(3))
= T W, 1% - 5n n = T ———ds.
i (1)) "Wy ; (3T OL Py (Nr(1)) Gne?

The total contribution of the second summand is

t
E ﬂ(1)+nﬂ(2):nﬂ(3)+nw<4>:0 f T 9 T
4 Ps (nw ) (TLW 3 ) ds
<”7r(1>>2<n7r(3>>2 M ®)

7r€S4 0

t

Ny +Nng =Ng(3)+Nx =0

-1 eSS || (oo )+ o7 1 ) s
7T€S4 i i

B Z 5 N (na1))? pf (Na(z))?
- o N (1) TN (2)=Nr(3) TN (4) = .
3 = W F @) =@ T =0T S gy

This completes the proof of the fourth equation (3.2.19)). O

Definition 3.2.6 (Renormalization). We define the renormalization constants a;, b; € R and the

multiplier MJ: L?(T?) — LQ(T?’) by

r def Pt 7 def V(1 + na)pf (n1)pf (n2)?
2 WE (YR ngy?

nez3 nl,n2€Z3

91



and

M) & (3 P+ m) 20 f,

meZ3
Using this notation, we set
2 g (3.2.20)
de %5 T
(Ve A f (Ve A —alV(0)f —2M] T, (3.2.21)

(Vo Y (Ve 22— alV e 2= alV(0) f2 — 4MTS)f + (a)PV(0) + 257, (3.2.22)

Remark 3.2.7. As is clear from the definition, the renormalized powers in (3.2.20)), (3.2.21]), and

(13.2.22) depend on the regularization parameter ¢t. This dependence will always be clear from

context and we thus do not reflect it in our notation.

Definition 3.2.8 (Renormalization of the dynamics). For any N > 1, we define
any €al =a2, by LY =02, and My E MY = ME. (3.2.23)

Throughout most of the paper, we will only work with the renormalization constants from Defini-
tion [3.2.6] which contain two finite parameters. The renormalization constants in Definition [3.2.§

will be more important in the second part of this series.

Proposition 3.2.9 (Stochastic integral representation of renormalized powers). With ni, 103,

and nq934 defined as in (3.1.12)), we have that

(W)=2 ), elmen J f AW, 2w ™ (3.2.24)
ni, TLQEZ3
(Ve (W)W o= ) V (Nr(ay + Mgz <128 $>J f J AW dWo AW, ™ (3.2.25)
ni,nz, ngEZ3
71'653
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:(V * (WtT)Q)(WtT)QZ = Z l‘?(nﬂ(l) + nﬂ(g))ei@m?""@ (3.2.26)

n1,n2,n3,n4€Z>
TEDY

S
t i1 to i3
S i awzar |
0o Jo Jo Jo ’

Furthermore, it holds that

L3 (Vs (W) (WE?: da = 4f: Lﬁ (Ve (WHHWE: dW?. (3.2.27)

Remark 3.2.10. The ”lower-order” terms in Definition [3.2.6] were chosen precisely to obtain the
result in Proposition [3.2.9] The renormalized powers of W/ can be represented solely using iter-

ated stochastic integrals, which have many desirable properties.

Proposition |3.2.9| essentially follows from Lemma [3.2.5] Definition [3.2.6 and a tedious calculation.

For the sake of completeness, however, we provide full details.

Proof. We first prove (3.2.24]). Using (3.2.17)), we have that

(Wi = ), emimmw e

nl,ngeZ?’

’ o pr(ni)?
_ Z Z €z<n1+n2,m>JJ thT,nﬂ(z)me,nﬁ(l)_i_ Z 5n1+n2_0 t 1 €z<n1+n2,ac>
2 1 =
0 JO

2
. . n
weS2 ny ,no€Z3 n1,n2€Z3 < 1>

t rt1
_ ni+no,x T7n7r(2) Tvnrr(l) T
= E E eXmitne >f j dW,, dW,, +a,.
0 JO

m€S2 ny ,no€Z3

By subtracting a; from both sides and symmetrizing, this leads to the desired identity.
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We now turn to the proof of (3.2.25)). From (3.2.18)), we obtain that

Vo« WT 2 WT = ‘7 ni + no 6i<n123’x>WtT’n1 WtT,HQWtT,ns
t t

TL1,TL2,TL3EZS

55 . t rt1 to
= Z Z V(nl + n2)€Z<n123’x>J J J dmz,nw(g)dwtz,nﬂ@)th?nﬂ(l)
0 JO 0

m€S3 ny,no,nz€Z3

1 > i<n123 J3> pg (nﬂ—(l))2 T7n7r(3)
+ 3 Z Z V(ni + ng)e . 5nw(1)+nw(2)=0WWt )
TES3 ny,ng,n3€L3 7(1)

- . t t1 to
= Z Z V(nl + ,n/2)€Z<n123,113>Jv j Jv thz’nﬂ'@)th€7nw(2)thf’n”(1)
0 JO 0

weS3 ny,no,n3€Z3
2

~ T (ny)? ~ , T (n1)
V 0 i{ng, ) pt (nl) T,n3 2 V + i(ns,T)y pt 1 WT’nS
+ Eezg (0)e oy W™+ E (ny + ng)e e Ve
ni,n3

~ ) t pt1 pta
- Z Z V(i + n2)62<”123’“>f J f dWZ;v”w(s) thj;nW(Q) thzl*,nﬂ(l)
0oJo Jo

meS3 nl,ng,ng,EZ?’

n1,n3€Z3

+ al V(OYW] + 2MTW].

After symmetrizing and comparing with Definition [3.2.6] this leads to the desired identity. Next,

we prove the identity (3.2.26)). Using (3.2.19)), we have that

(V o+ (W) (W)?
— Z ‘7(”1 + n2)ei<n1234,x>WtT,n1 WtTJLQ WtT,ng WtT,n4

n1,n2,n3,n4€Z3

t 11 to t3
5 1 Ty TNy TNy TNy
— Z V(m +n2)ez<n1234,z>f J J J d”7t4 (4)d”rt3 (3)th2 (g)thl (1)
0 JO 0 0

n1,n2,n3,n4€Z>

71'654

1 O ; H Ny 2 n n

+7 > Vim+ ng)e“”mﬁlv%nw(l)+nﬂ2)zouwf’ @y (3.2.28)
n1,n2,n3,n4€Z3 <n”(1)>
7T€S4

1 o : 7 (N=))? P (Nr(3))?
-3 V(m + n2)ez<n1234,z>5nﬂ N (2)=Np(3) N7 (4)=0 . (3229)

8 n17n27n2&n4ez3 (1) (2) (3) (4) <7’Lﬂ-(1)>2 <nﬂ_(3)>2

7T€S4
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It remains to simplify (3.2.28) and (3.2.29)). Regarding (3.2.28)), we have that

1 ~ . ptT(nﬂ(l))Q Tn. - ™n
s 3T (3) ST (4)
4 Z Vi(n + ”2)31@1234 x>5nw<1)+nw(2>zowwt W,
n1,n2,n3,M4€Z3 (1)
7I'ES4

= Z V(n1 + n2) <7§ >2) i{n1+na, x)WT nlWT n2

+4 Z V(nl +n )pt ( ) z<n1+n3 x}WT n1WT ns

2
ni,ng, ngEZS < 2>

+ Z V(O) Pt (nl) z<n3+n4,z>WtT,n3 WtTﬂM

2
ni,n3, n4€ZS <n1>

= af Vs (W) + 4(MIW YW, + af V(0) (W),

ni,nz, TLSEZS

Regarding (3.2.29)), we note that

N 4 P7 (ay)? pT (Nr(3))?
- V ni+n €Z<n1234,$>5n n —n n _
Z > (n1 + na) O T T =0T (82 ()2

7r€S4 ni,n2,n3,n4€ZL3

_ Pt (n1)p} (n3)? _ n1 + n2)pf (n1)?)pf (n2)?
B n nzglezrvv (n1)*(nz)® ’ Z (n1)*(ny)?

= —V(0)(al)? — 20T

ni, TLQEZS

After symmetrizing, this completes the proof of ([3.2.26]).

Finally, it remains to prove (3.2.27). Since V is real-valued and even, we have that V (n) = V(n) =
‘A/(—n) As long as nj934 = 0, this implies
Z V(nﬁ(l) + nﬁ(g)) =4 Z \A/(nw(l) + nﬁ(g)). (3.2.30)

7T€S4 7T€Sg

Using (3.2.30)), (3.2.27) follows after inserting (3.2.25)) and ([3.2.26)) into the two sides of the identity.

[]

Like the monomials and Hermite polynomials (further discussed below), the generalized and renor-

malized powers in Definition satisfy a binomial formula.
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Lemma 3.2.11 (Binomial formula). For any f € H!(T?), we have the binomial formulas

(Vo (W + )W+ f):
= (V= (WO YW +(Ve : (W) f 4 2[(V = (W)W — M f] (3.2.31)
+2(V e (WD +(Vr WS + (Vs f2)f

and
| e o+ v + g aa

- ﬁm (V= (WD (W) da + 4f

T3

(Vs (WORWE: fda +2 J (Ve : (W) f2de (3.2.32)

T3

4 LB (v e Wz Wi = (M ) e + 4L3(V IR + LSW . 1) fde.

Remark 3.2.12. Overall, the terms in (3.2.32)) obey better analytical estimates than their coun-
terparts for the ®3-model in [BG20a]. However, their algebraic structure is more complicated. The

most challenging term is
| [0 ovrmwis - i psfas,

which requires a delicate random matrix estimate (Section [3.3.3]).

Proof of Lemma|3.2.11: This follows from Definition and the classical binomial formula. For
the quartic binomial formula (3.2.32)), we also used the self-adjointness of the convolution with V'

and the multiplier M7 . O

While this is not reflected in our notation, it is clear from Definition that the multiplier
M7 depends linearly on the interaction potential V. In the proof of the random matrix estimate
(Proposition , we will need to further decompose M7, both with respect to the interac-
tion potential V' and dyadic frequency blocks. We introduce the notation corresponding to this

decomposition in the next definition.
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Definition 3.2.13. We let M7 [V; N1, N3] be the Fourier multiplier corresponding to the symbol

w3 D (e (0 (52,39

In the next definition, we define our last renormalization of a stochastic object.

Definition 3.2.14. We define the correlation function on T? by

LN, Ne](y) & X, (k X2N2 ) o1 ()2, (3.2.34)
keZ3 <k>
We further define
(7 P, W) Py W () € (1, Py, W) () Py W () — €T [N1, No] (). (3.2.35)

Here, 7, denotes the translation operator 7, f(z) = f(xz —y).

The next lemma relates the multiplier and correlation function from Definition|3.2.13|and Definition
3.2.14) respectively.

Lemma 3.2.15 (Physical space representation of M7T). For any f € CX(T?), we have that

MV Ny, Nolf = (€] [Ny, NoJV) = f. (3.2.36)

Proof. By definition of the multiplier M7 [V'; Ny, Ny] and since
1
ko WXNl(/f)XNQ(k)PtT(k)Q (3.2.37)

is even, the symbol in (3.2.33) is the convolution of V with (13.2.37). As a result, the sequence
n— MJ|V; Ny, No](n) has the inverse Fourier transform is given by

(Z ol <k>><2N S5 g (12 V() = € TN, No] () V ().
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In Lemma [3.2.5 Proposition [3.2.9, Lemma [3.2.11, and Lemma [3.2.15, we have dealt with the
algebraic structure of stochastic objects. We now move from algebraic aspects towards analytic
estimates. In the following lemmas, we show that several stochastic objects are well-defined and

study their regularities.

Lemma 3.2.16 (Stochastic objects I). For every p = 1, € > 0, and every 0 < v < min(f3, 1), we

have that
sup (B[]0 [y |)” 5 0 (3:2:38)
t=0 z -
N
sup (E[HV* T . ) <p, (3.2.39)
t=0 x i
a8 L
sup (B[ :(vV e WOHW Py, ])" < vt (3.2.40)
t=0 C. 277(T8)

Furthermore, as ¢ — oo and/or T" — o0, the stochastic objects : (W[)%:, Vs : (W[)?:, and

(V o« (WHHWT: converge in their respective spaces indicated by ([3.2.38))-(3.2.40]).
t t

Remark 3.2.17. The statement and proof of Lemma [3.2.16| are standard and the respective
regularities can be deduced by simple “power-counting”. Nevertheless, we present the proof to

familiarize the reader with our set-up and as a warm-up for Lemma [3.2.20| below.

Proof. The first step in the proofs of (3.2.38)-([3.2.40)) is a reduction to an estimate in L*(Q x T?)
using Gaussian hypercontractivity. We provide the full details of this step for (3.2.3§]), but will

omit similar details in the remaining estimates (3.2.39))-(3.2.40)).

Let N > 1 and let ¢ = g(€) = 1 be sufficiently large. By using Holder’s inequality in w € €, it
suffices to prove the estimates for p > ¢q. Using Bernstein’s inequality and Minkowski’s integral

inequality, we obtain
[Py (W) ipesimcanrsy S N3Py (W) [nnsqarsy < N3P c(WE)?: | Lase s ay-
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By Gaussian hypercontractivity (Lemma [3.6.1), we obtain that
N3 | Py o(W))2: lzaze(rsxa) < N~'op| Py (W) ez (3 x0)-

Since the distribution of : (W;)?: is translation invariant, the function z — | : (W[)?: |2(q) is

constant. We can then replace L(T?) by L2(T?) and obtain

N=73p|| Py (W2 gz moxe) S N 772D P (W2 |23 (s xe)

S Nizp” :<WtT)2: ||L2 Hz_l_ZeI(QXr]Ig)'

In order to prove (3.2.38)), it therefore remains to show uniformly in 7',¢ > 0 that

| (W2 <1. (3.2.41)

2.

HL2H_1 (QxT3) ~
Using Proposition [3.2.9] the orthogonality of the iterated stochastic integrals, and It0’s isometry,
we have that

(X f J dwgnzdwfl”l)]

n1,no€Z3:
n1+n2 n

” (WT)2 ||L2H_1 e =4 Z <n>2+2e

nezs3

2 2

Z <n>2+26<n1>2<n >2pt( 1)°pi (n2)
n,ni, no€Z3
ni+ng=n

1
Z (ny + ng)?+2:(n1H2(ny)? =

n1,n2€Z3

This completes the proof of (3.2.38). The estimate (3.2.39) can be deduced from the smoothing
properties of V' or by repeating the exact same argument. It remains to prove (3.2.40|), which can

be reduced using hypercontractivity (and the room in 7) to the estimate

| (Ve WOHW Py S 1
L2 H,
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Using Proposition [3.2.9] the orthogonality of the iterated stochastic integrals, and It0’s isometry,

we have that

~ t pt1 pto )
— Z <7L>3 2y [( Z 2 V(nw(l) +nw(2))LJ;) L thz,ngthz,ndetil‘,nl) :|

mES3 ni,ne, n5€Z3:
n1+n2+n3=n

1 1 1
D) T+ 113+ 13057 iy + 1) ()2

nl,nz,n36Z3

By first summing in ng, using that 3 — 2y > 1, and then in n; and ns, using v < 8, we obtain

1 1 1
Z g+ ng 4+ n3)? 2 (ny + 19y (ngH2(ng 2 ns)?

ni,n2,n3EZ3

1
< L
Z (ny +n2>2+2(5 N (ny Y ng)? ~

ni TLQEZs

]

We also record the following refinement of (3.2.40) in Lemma |3.2.16 which will be needed in the
proof of Lemma [3.2.20] below.

Corollary 3.2.18. For every 0 < v < min(1,3) and any n € Z3, we can control the Fourier

coefficients of :(V = (W[)?)W[: by

sup ]EP‘]-“( (V « (W))W )(n)‘2 < (). (3.2.42)

T,t=0

Proof. Arguing as in the proof of Lemma [3.2.16] it suffices to prove that

1 1
Z (n12)?(n1)*(na)*(n3)? < {ny>’ (3.2.43)

ni,ng ,7L3€Z3 :
ni23=n
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Indeed, after parametrizing the sum by n; and ng, (3.2.43|) follows from

Z 1 Z 1
3. (n12)?P{n1)*(n2)*(ns)? - 3 (n —ng)?P{ny)*(n — ny — nz)?(nz)?
n1,n2,N3EZL": ni,n3EL
ni23=n

S Z (n —n3>1+25<n3>2

n3€Z3

<{n) .
[l

Lemma 3.2.19 (Stochastic objects II). For any sufficiently small § > 0 and any N;, Ny > 1, it
holds that
1

sup (E[Sup | : (1y Pn, W) Pn, W ||C_1 5 T?’)D ’ < max(Ny, Ng)’%p. (3.2.44)
T,t=0 yeT3

Proof. Arguing as in the proof of (3.2.38)) in Lemma [3.2.16, we have that

z s
sup (E[“ (7, P, W) P, W, ||C_1 5 T3)D < max(Ny, No) " 2p. (3.2.45)
yeT

It only remains to move the supremum in y € T? into the expectation. From a crude estimate, we

have for all y,y’ € T3 that

1

(B[ +(ry P Wi P W s = (g P, W) P W i | ) (N1, N2y —

By Kolmogorov’s continuity theorem (cf. [Strlll Theorem 4.3.2]), we obtain for any 0 < a < 1

that
| (7, Pry W) Py W — (1 P, W) Py W 016 gy NPT 7
(El ers ( — 2 ly —yy’“l 2 — )) D So max(N, Na)'p
yy'e
Combining this with (3.2.45|) leads to the desired estimate. O
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The next lemma is similar to Lemma [3.2.16] but is concerned with more complicated stochastic
objects. In order to shorten the argument, we will no longer use It6’s formula to express products
of stochastic integrals. Instead, we will utilize the product formula for multiple stochastic integrals
from [Nua06l Proposition 1.1.3]. Before we state the lemma, we follow [BG20b, BG20a] and define
wre & J t(J§)2 (Vs (WHHWE: ds. (3.2.46)

0
We emphasize that W™ contains the interaction potential V' even though this is not reflected in

our notation.

Lemma 3.2.20 (Stochastic objects III). For every p = 1, € > 0, and every 0 < v < min(f, 1), we

have that

sup (B[|wie,|)" <ot (3.2.47)

T t=0 c277(T3)

- 1
P 5

sup (E[|(Ve (W2 W ) <0, (3.2.48)

T,t=0 z i
Sup (E[H (Ve WWEE)) W — MEWH Hzcj;lﬂ(qrs)i ) " <ph (3.2.49)

T,t=0

Remark 3.2.21. The analog of (Vs :(W7)2: )W, for the ®3-model in [BG20D] requires a further
logarithmic renormalization. In our case, however, the additional smoothing from the interaction

potential V' eliminates the responsible logarithmic divergence.

Proof. We first prove ([3.2.47)), which is (by far) the easiest estimate. As in the proof of Lemma
3.2.16], we can use Gaussian hypercontractivity (Lemma [3.6.1)) to reduce (3.2.48) to the estimate

<1. (3.2.50)

T,[3] 2
2 (LA P

The rest of the argument follows from Corollary|3.2.18/and a deterministic estimate. More precisely,
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it follows from |02 = 1 that

LT | RS BRI R AT
=2 L oL ()2 F (V)3 (Vs (W)W )(mdsr
23 f 2| F (O 3 (v e (W )(n)rds,

For a small § > 0, we obtain from Corollary [3.2.18 (with « replaced by 7 + ) that

E[W ., ] < Zf W] [7(@) t e avnp Yoo fas

< 3 [otr s

nez3

We now turn to the proof of (3.2.48]). Using the same reductions based on Gaussian hypercontrac-

tivity as before, it suffices to prove that

E[ (Ve : (W)W gy | <1 (3:2.51)

(T3)

We first rewrite (Vs : (W7)2:)(x)W; P! (2) as a product of multiple stochastic integrals instead
of iterated stochastic integrals. This allows us to use the product formula from Lemma [3.6.4],
which leads to a (relatively) simple expression. To simplify the notation below, we define the

symmetrization of V(n; + ny) by

Vs(ni,ng,ng) = Z V (1r1) + nin2))-

7r653

From Proposition [3.2.9} (3.2.46)), and the stochastic Fubini theorem (see [DZ92, Theorem 4.33]),
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we have that
LA

‘A/ ) . ¢ s pt1 plo
= Z (n O n (2)) €l<n123’x> f 0': (n123)2 ( f f f thz,HSthz,% thTI’nl) ds
0 0 JO 0

<n123>2

nl,ng,n3EZ3
TESS3

f/ ' t pt1 pto t
= Z M€Z<nl23’w>J J J (J UST (n123)2ds) thI;,ns thz,ndetTl,m
<n123> 0 JoO 0 max(t1,t2,t3)

nl,nz,n3EZ3

We define the symmetric function f by

Vi(n1, na, t '
f(t1,my,ta, no, ts, ng; t, x) def M(J Uz(n123)2d5) €l<n123’$>1{0 <ty by, by < T}
6<n123>2 max(t1,t2,t3)

where we view both t € R.g and z € T? as fixed parameters. Using the language from Section

3.6.1.2| and Lemma |3.6.2 we obtain that
Wi ) = Ty[f (5, 2)], (3.2.52)
where 73 is a multiple stochastic integral. After defining
g(ty,ny, ts, ns; t, ) o ‘A/(n4 + n5) P10 <ty ts <t

a similar but easier calculation leads to

(Ve :(W)*1) () = To[g(1t,2)]- (3.2.53)
By combining and , we obtain that

(Ve o (W )2 ) (@)W P (@) = T f (1, 2)) T2lg (5 8, 7))
By using the product formula for multiple stochastic integrals (Lemma , we obtain that
(Ve o (W) ()W ()

=I5[f(';t,l‘)g(-;t,$)] + 6 IS[f(?tvx) X1 g(';t7$)] +3 Il[f(,t,%) X g(7t’x)]
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Inserting the definitions of f and g, this leads to
(Ve :(WDH2) ()W 2) = Gs(t, 2) + Gs(t, ) + Gi(t, x), (3.2.54)
where the Gaussian chaoses G5, G3, and G are given by

i 0 t
g5 (t, 33') — Z Mei@tus%,z) J[O | ( f O.Z (n123)d3) this“,ns) o thf,m’
t

<n123>2 maX(tl,t27t3)

‘A/s(m o ng)f/(n45) ;
= Oppe — P2 n124,z)
g3 (t7 .I') Z [ 35=0 <n123>2<n3>2 €
o
07

J J O—td (n3) (n123) detg) d‘/‘/ti’n4dl1ft€7n2 thil",nl:| ,
t max t1 tz,tg)
1 V(m No n3)V(n45) ,
t = — 671 n U 9 Z<n1,m>
Gi(t, ) 2 Z [ 24=n35=0 IR ERCIA e

J f J f Utg 712) O't3(ng)ZU:(TLng)zdetgdtQ)thT;’nl]
0,] max(t1,t2,t3)

Using the L*- )y < 1, we
obtain that
B[ (Ve (W2 W2 s |
S E[1a1210n | + B[1G12 o100 | + B[ 161210
5
S > {12345y nasy "V () PIV (nas) [ | [<ni) ™, (3.2.55)
ni,n2,n3,n4,n5€Z3 Jj=1
> (s zm( N Cazg) X ng) 2|V (n1, na ) ||V (nas ) [T m>?  (3256)
n1,n27n4623 ngEZS ] 1,24
2
£ 2 (N (o) 2V, o mg)| |V (nas) )2 ns) %) (3.2.57)
n1€Z3 na, n3€Z3

The estimates of the sums (3.2.55)-(3.2.57)) follow from standard arguments. We present the details
for (3.2.55) and (]3.2.57)), but omit the details for the intermediate term (3.2.56)).
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We start with the estimate of (3.2.55)). The interaction with ny, ns, ng at low frequency scales and
ng, ns at high frequency scales is worse than all other contributions, so there is a lot of room in

several steps below. Using Lemma [3.6.10| for the sum in nj, which requires v < min(1, 3), and

summing in n4, we obtain for a small § > 0 that

> (nzsas) 2 nas) |V (ma) PV (nas) 2 n<n3> ?

n1,n2,n3,n4,n5€ZL3

Y (magy Mg ¥ ( n<”j>72) ( D, (masa 4 n5) 2 ng + ns) <n5>72)

nl,ng,ng,n4€Z3 j:]- TL5€Z3

< % oy o ([ o)) (X (o 4 ) ?)

n1,n2,n3€Z3 Jj=1 n4€Z3

A

Y <”123>74<n12>726H<”j>72-

n1,n2,n3€Z3
Summing in ng, no, and ny, we obtain that
D1 (nagsy Knagy ™ n<n]> D ey Ty XKy < Yy s L
n1,m9,n3€73 n1,mo€Z3 n1 €73
We now turn to (3.2.57)), which corresponds to double probabilistic resonance. We emphasize that
this term would be unbounded without smoothing effect of the potential V', which is the reason
for the additional renormalization in the ®3-model, see e.g. [BG20D, Lemma 24]. Using Lemma

3.6.10| for the sum in ng, we obtain that

Sy (X sy ATl ma, ) [V ey X))

ni€Z3 ng,ngEZS
2
< 2 (N iz Knas) Fna) g 2)
n1€Z3 ng,n3€Z3
2
< (X (G + )
n1€Z3 no€Z3
g Z <n1>_4—i_27 § 17
n1€Z3
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provided that v < 1/2. This completes the proof of (3.2.48]).

We now turn to the proof of (3.2.49)). This stochastic object has a more complicated algebraic
structure than the stochastic object in (3.2.48)), but a similar analytic behavior. From the definition
of M7, we obtain that

(Vs (WIWEED) ()W) (2) — MW P ()

~ , —— m m L (m
- Z V(m14)el<m1457x>WtT,[d] (ml) (VVtT7 4{/V75T7 P - 6m45:0 & ( 42) )
ml,m4,m5eZ3 <m4>
1 > > i<m14 x)% T,m4 T,ms5 p’tr (m4)2
= 5 Z (V(m14) + V(m15))e 5 Wt’ (ml) <Wt ’ Wt ’ — 5m45ow>.
ml,m4,m5EZ3

Using the variable names mq, my, ms € Z3 instead of my, ma, ms € Z2 is convenient once we insert

an expression for W;®'. A minor modification of the derivation of (3.2.52) shows that

W (my) = Z[f (58, m)], (3.2.58)

where the symmetric function f(-;¢,m;) is given by

f(tb ny, t27 ns, t3a ns; t7 ml)

1 =R t
= 1{71,123 = ml}WVg(nl,nQ,ng)(f 0:(n123)2d5)1{0 < tl,t27t3 < t}

max(tl,tg,tg)

Using Lemma [3.2.5| and Lemma |3.6.2] we obtain that

™m T,m ptT(m4)2 .
VVt 4Wt 5 — 5m45:0W = Ig[g(', t, My, m5)], (3259)

where the symmetric function g(-;t, my, ms) is given by

gty na, s, n5) %(1{(714,715) = (ma,ms)} + 1 (na,n5) = (m5,m4)})1{0 <tats <t).
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The author believes that inserting indicators such as 1{(n4,n5) = (mg4, ms)} is notationally un-
pleasant, but it allows us to use the multiple stochastic integrals from [NuaO6] without having to

“reinvent the wheel”. With this notation, we obtain that

(Vs (WWEED) ()W (2) — MW P ()

M e (V(myg) + V(mas)) - Ts[f (6, ma)] - Talg(st,ma, ms)].

TTll,'rT7,4,7‘r‘L5€Z3

N | —

Using Lemma |3.6.4, we obtain that
(V s« (WIWPE) (2) W] () — MIWPP(2) = Gs(t, x) + Ga(t, ) + Gi(t, x), (3.2.60)

where the Gaussian chaoses are defined as

A~ ~ ;

o B V(n12)V(11234) in1050.2 J J
g5(t,l') o Z <TL123>2 ‘ [0,t]° (

max(t1,t2,t3)

O'ST (nlgg)dS) th?ns ce thjlﬂ’nl,

~

5 . 1 ‘A/s(nhnmn?,) - #n124,2)
Gs(t,x) = 5 Z [5n350 (i) )2 (V(n12) + V(n1234))e

t pt
) J ( J f O-th (n3)20'§ (n123)2d5dt3) thivn‘l thTQ“,nz thﬂl“,nl:| :
[0,¢]3 0 Jmax(t1,t2,t3)

~

le (t, x) = }l Z [5 ‘/S(nl, no, n3) (‘7(77,12) + ‘7(”13)) ein1,z)

nanan 0 <"123>2<n2>2<n3>2

This concludes the algebraic aspects of the proof of (3.2.49). Starting from (|3.2.60|), the analytic
estimates are essentially as in the proof of the earlier estimate (3.2.48)) and we omit the details.

This completes the proof of the lemma. O

In the construction of the drift measure (Section , we need a renormalization of ((V)~12W[)".
The term (V)~Y2W has regularity 0— and hence the n-th power is almost defined. While we could
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use iterated stochastic integrals to define the renormalized power, it is notationally convenient to
use an equivalent definition through Hermite polynomials. This definition is also closer to the
earlier literature in dispersive PDE. We recall that the Hermite polynomials {H,(x,0?)},=0 are

defined through the generating function

e
x—fo'2t2 Z

Definition 3.2.22. We define the renormalized n-th power by

3|”5

n def _1
S (f, BT ). (3.2.61)
We list two basic properties of the renormalized power in the next lemma.

Lemma 3.2.23 (Stochastic objects IV). We have for all n > 1, p > 1, and € > 0 that

sup (E[H (Y E W) [P (TS]):’ <ne PR (3.2.62)

Furthermore, we have for all f € H!(T®) the binomial formula

n

(YW 4 )" 2() (T Wk (V) (3.2.63)

Since the proof is standard, we omit the details. For similar arguments, we refer the reader to

[OT200).

3.3 Construction of the Gibbs measure

The goal of this section is to prove Theorem|3.1.3. The main ingredient is the Boué-Dupuis formula,
which yields a variational formulation of the Laplace transform of fip. Our argument follows earlier
work of Barashkov and Gubinelli [BG20b|, but the convolution inside the nonlinearity requires

additional ingredients (see Section and Section [3.3.3)).
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3.3.1 The variational problem, uniform bounds, and their consequences

Due to the singularity of the Gibbs measure for 0 < § < 1/2, which is the main statement in The-
orem [3.1.5 the construction will require one final renormalization. We recall that A > 0 denotes
the coupling constant in the nonlinearity and we let ¢™* be a real-valued constant which remains

to be chosen.

For the rest of this section, we let ¢: C?C;l/zfﬁ([(), o] x R) — R be a functional with at most

linear growth. We denote the (non-renormalized) potential energy by

YN | (Ve @R = | V(- )P dedy (3.1
T3 T3 x T3
We denote the renormalized version of V(f) by
() A f (Vs 2)f2 da 4 ¢, (3.3.2)
1)

where : (V = f2)f?: is as in Definition To further simplify the notation, we denote for any

u: [0,00) x T®> — R the space-time L?>-norm by
det [
(S}
ol = | 3o . (33.3)
0
With this notation, we can now state the main estimate of this section.

Proposition 3.3.1 (Main estimate for the variational problem). If the renormalization constants

c¢™* are chosen appropriately, we have that

1
Be o0V + T+ VA0V + 2+l |

\ ) (3.3.4)
= EP[\W(W, Iu]) + 7 V(L (w)) + §||ZT[u]%gz],
where
Tu] 2wy + NIT (Vo (W)W (3.3.5)



and

WO, T[]} < Qr (Wi, X) + 3 (VR 0) + Sl ). (3:3.6)

Here, Qr(W, p, \) satisfies for all p > 1 the estimate E[Qr(W, ¢, A\)P] <, 1, where the implicit

constant is uniform in 7" > 1.

The argument of ¢ in (3.3.4) is not regularized, that is, we are working with W instead of W7.

This is important to obtain control over pr, which is the pushforward of i under W..

Remark 3.3.2. This is a close analog of [BG20b, Theorem 1]|. Due to the smoothing effect of the
interaction potential V', however, the shifted drift {"[u] is simpler. In contrast to the ®3i-model,

the difference I*(u) — u does not depend on u. As is evident from the proof, we have that
V(W I u]) = (W + Iu]) + W°(W, Iu]). (3.3.7)
This observation will only be needed in Proposition below.

We first record the following proposition, which is a direct consequence of Proposition and

the Boué-Dupuis formula.

Proposition 3.3.3. The measures fir satisfy the following properties:

(i) The normalization constants Z™* satisfy Z™* ~, 1, i.e., they are bounded away from zero

and infinity uniformly in 7.

(i) If the functional ¢: CtOCx_l/Q_K([O, o] x T?) — R has at most linear growth, then

sngEﬁT[exp (- so(W))] <, L.

(iii) The family of measures (fir)rso is tight on C2C, 2 " ([0, o] x T?).
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Proof of Proposition[3.5.3: We first prove ({i). From the definition of ur, we have that
ZT = ]Ep[exp(— VMW )]
Using the Boué-Dupuis formula and Proposition [3.3.1, we have that

1
—log(£") = inf Be| V™ (W3 + [oful): +3lul?, |

ueH,

ueH,

A 1
- int Be VPOV ITu]) + U0 + T |
From ({3.3.6)), we directly obtain that

—log(Z™) = =C\. (3.3.8)

By choosing u; & —AJT (V= (W))W, which is equivalent to requiring I][u] = 0 and implies

IF[u] = W™ we obtain from Lemma [3.2.20| that
“10g(Z7) <x 1+ Ep [V(AWZ 7[31)] < 1L (3.3.9)

By combining (3.3.8)) and (3.3.9), we obtain that Z™* ~, 1.

We now turn to (iil), which controls the Laplace transform of jir. Using the Boué-Dupuis formula

and Proposition |3.3.1] we obtain that

— log (Eg | exp (= p(W)) |) = log(2™) + inf EP[WMW, ) + V() + %HZT[U]%%]-

The first summand log(Z™*) has already been controlled. The second summand can be controlled
using exactly the same estimates.

We finally prove . Let a,n7 > 0 be sufficiently small depending on k. Since the embedding
C"Cy RN CPCr g compact (see for the definition), it suffices to estimate the Laplace

transform evaluated at

(W) =—=|W| . 1. (3.3.10)

ctaﬂ?cz 2
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1
While this is not a functional on CC, 2 " we can proceed using a minor modification of the

previous estimates. Using Proposition [3.3.1] and ([3.3.7)), it suffices to prove

Es[[W] 1] <1 and [ L[ul|

C?J}cz 2

_1ge S lullzz, - (3.3.11)

cene,

The first estimate follows from Kolmogorov’s continuity theorem (cf. [Strlll Theorem 4.3.2]). The

second estimate is deterministic and follows from Sobolev embedding and Lemma |3.6.8| [
Using Proposition we easily obtain Theorem [3.1.3

Proof of Theorem[3.1.3: The tightness is included in Proposition [3.3.3] The weak convergence
of the sequence (uy)y=1 follows from tightness and the uniqueness of weak subsequential limits

(Proposition [3.6.12)). ]

We also record the following consequence of the proof of Proposition [3.3.1, which will play an

important role in Section [3.5] The proof of this result will be postponed until Section (3.3.4]

Corollary 3.3.4 (Behavior of ¢™*). If 5 > 1/2, then we have for all A > 0 that

sup |¢™* < 1. (3.3.12)
T=1

Proposition |3.3.1] is the most challenging part in the construction of the measure and the proof

will be distributed over the remainder of this subsection.

3.3.2 Visan’s estimate and the cubic terms

In the variational problem, the potential energy V(I |u]) appears with a favorable sign. This is
crucial to control the terms in : V" (WL + I7 [u]): which are cubic in I [u] and hence cannot be

controlled by the quadratic terms |u]2, or [[I7(u)|%.. In the ®3-model, the potential energy term
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I7Z[u]]4 is both stronger and easier to handle. While we cannot change the strength of V(IZ[u]),
Lemma solves the algebraic difficulties.

Due to the assumed lower-bound on V', we first note that

sy = 1Py < [ Vi@ =)@ FlePdady = V(P

T3 x T3

Since at high-frequencies the kernel of (V)™ essentially behaves like |2 — y|~=%) we also obtain
that

KO3 L sy = SV F2), Dz < f V(z —y)f(y)*f(2)*dedy = V(f). (3.3.13)

T3 xT3

Unfortunately, the square of f is inside the integral operator <V>_§, which makes it difficult to

use this estimate. The next lemma yields a much more useful lower bound on V(f).

Lemma 3.3.5 (Visan’s estimate). Let 0 < 8 < 3 and f € C*(T?). Then, it holds that

V)5 flamsy < V(). (3.3.14)

This estimate is a minor modification of [Vis07, (5.17)] and we omit the details. We now turn to

the primary application of Visan’s estimate in this work.

Lemma 3.3.6 (Cubic estimate). For any small 6 > 0 and any 1+T26 < 0 <1, it holds that

KO ((v e o))

1yl
< V(f)> Hf||};g?1r3)||f“i1;(1r3)- (3.3.15)

LL(T8)
Proof. We use a Littlewood-Paley decomposition to write

(Vs f2)f = Z Py (V = f%) - Py, f.

M,Nj
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We first estimate the contribution for N3 = M. We have that

> (Pu (Ve ) Prt ),

M,N3: N3=M
346
s 2 NPV s ) Pz
M,N3: N3z M
lvs B 8 _
<X NTMEN )Y E Pl A1
M,N3: N3zM

_B _
SEIQOREF il 121 Vi el v 178

Due to (3.3.13]), this contribution is acceptable. Next, we estimate the contribution of N3 < M.

~

We further decompose

fP=2 Pwf- Pt

N1,N2
Then, the total contribution can be bounded using Holder’s inequality and Fourier support con-

siderations by

Z H<V>%+6(PM(V?(PN1JCPsz)) 'PN3f)
N1,N2,N3,M:
N3<M<max(N1,N2)

s 3 MRV Prh)l g 1Pl
Ni,N2,N3,M: x
N3<M<max(N1,N2)

1582 _8

< Z M2+6 /BN34 ||PN1f'PN2f||L% ||PN3<V> 4fHL%

Ny, No, M :
N3§M<max(N1,N2)

1,588 g 8 _B _
(X METENNOIY PRSI 1
N1,No,M:
N1>=M,No

_B8 —
< KV ILa A1 1 V-

L

In the last line, it is simplest to first perform the sum in Ny, then in Ny, and finally in M. O
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3.3.3 A random matrix estimate and the quadratic terms

In the proof of Proposition [3.3.1) we will encounter expressions such as

[ (v oty @ws 0 - M@ . 330)

This term no longer involves an explicit stochastic object, such as : (W/[)?: (), at a single point
r € T3. By expanding the convolution, we can capture stochastic cancellations in terms of two
spatial variables z € T? and y € T?, which has already been studied in Lemma [3.2.19) The most
natural way to capture stochastic cancellations in , however, is through random operator

bounds. This is the object of the next lemma.

Proposition 3.3.7 (Random matrix estimate). Let v > max(1 — /3,1/2) and let 1 <r < c0. We
define

OpT(v.r) % sup [ [ veaveny we e | (Mffl)fgdx].
f17f2: T3 ']TS
HleW;vT(TZS)gL

. <1
2l s,

Then, we have for all 1 < p < oo that

sup | Opy (v, )| 0y < p. (3.3.17)
T,t=0

Remark 3.3.8. Aside from Fourier support considerations, the proof below mainly proceeds in
physical space. If r = 2, an alternative approach is to view Op; (7, 2) as the operator norm of a
random matrix acting on the Fourier coefficients. Using a non-trivial amount of combinatorics, one
can then bound Op{ (v,2) using the moment method (see also [DNY20, Proposition 2.8]). This
alternative approach is closer to the methods in the literature on random dispersive equations but
more complicated. The estimate for r # 2, which is not needed in this paper, is useful in the study

of the stochastic heat equation with Hartree nonlinearity.
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Proof. Since this will be important in the proof, we now indicate the dependence of the multiplier
on the interaction potential by writing MY[V]. We use a Littlewood-Paley decomposition of
W[, fi, and f;. We then have that
[ veovsy winde- [ (M) e
T3 T3

- Z [f V*(PletTPKlfl) PNQWtTPKzdex_JV
T3

K1,K2,N1,N2 T3

(ME[V; N, NQ]PK1f1)PK2f2dx] .

To control this sum, we first define a frequency-localized version of Op! (7, r) by
Opy (r; K1, K, N1, No)

de

= sup [ Vo« (PletT PK1f1) PNQWtTPKQdeLL’ - J
f1,f2: T3 T

Ifullzr <1,

12l <1

(MtT[V§ Ny, N2]PK1f1)PK2f2dI].

We emphasize the change from W7 (T?) to L7(T®), which simplifies the notation below. By

proving the estimate for a slightly smaller ~, (3.3.17)) reduces to

sup || Opf (r; K1, Ko, Nv, Na)| 1) S p(N1N2) ™ (K1 K3)7. (3.3.18)
T,t=0
By using Lemma [3.2.16| and Lemma [3.2.19] it suffices to prove for a small § > 0 that
Op; (r; K1, K3, N1, N3) < (N1 N2) 7 (K1 K>)"
) (3.3.19)
(L IWEIE s+ sup sup | (7 P, W P W s ).
Cz 2 yETS Nl,NZ ‘
By interpolation, we can further reduce to r = 1 or r = oco. Using the self-adjointness of the
convolution with V' and the multiplier MY[V; N1, No|, it suffices to take r = 1. We now separate

the cases N; ~ Ny and Ny # Ns.

Case 1: Ny # N,. This is the easier (but slightly tedious) case and it does not contain any

probabilistic resonances. We note that MY [V; N1, N5| = 0 and hence we only need to control the
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convolution term. From Fourier support considerations, we also see that this term vanishes unless
max (K7, K3) = max(Ny, No). While our conditions on f; and f; are not completely symmetric
and we already used the self-adjointness to restrict to » = 1, we only treat the case K| = Kj.
Since our proof only relies on Holder’s inequality and Young’s inequality, the case K; < K5 can

be treated similarly. We now estimate

fs Vs (PletT PK1f1) PNQVVtTPKzdex
T

< J PL<V*(PN1WtTPK1fl)) 15L<PN2WtTPK2f2>dIE
LK, |3
< 2 1BV s (PaWI Prcc 1) |y [P (P W Prc o)
L<K:
SIEAUA TS |PLV 12| PL(Pr, W Py fo) |,
L<K:
546 PR
S N UIWE -3 YL IBHPL(PN2WtTPK2f2)‘LZP
° L<Kq N

We now split the last sum into the cases L « Ny and No < L < K. If L « N5, we only obtain a

non-zero contribution when Ny ~ Ky. Thus, the corresponding contribution is bounded by

lis _ ~
WG ~ NofNE W s 35 1P| PP Prc

e 2 i

146 _
< H{Ks ~ Nop NP ”WtTHC—%—&( YL ﬂ) | folloze [ Pro Wi e
’ L<N
1is 140
S Ky ~ Nop NP N3 ”WtTsz—%—a

< (NN2) TR WPy e
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In the last line, we also used Ny < K; and v > 1/2. If L = N,, we simply estimate

l_;’_(s - ~
‘]\[12 HWtT”Cf%fé Z L BHPL(pNQWtTpKLfQ)

‘ No<L<Ky

0 —
w0 Y 1)

N2SL<SKy

L¥

[P, Wi | | Prcy fo

1
< N2°

les 1-pis
SP A | s
< (NuNo) KT WP

provided that v > max(1 — 3,1/2). This completes the estimate in Case 1, i.e., Ny # Ns.

Case 2: N; ~ Ny. This is the more difficult case. Guided by the uncertainty principle, we
decompose the interaction potential by writing V' = P.n,V + P>y, V. Using the linearity of the
multiplier MY [V; N1, Na] in V| we decompose

J3 Vo (PletT PKlfl) PNQWtTPKzdex - J (MtT[Va Nla N2]PK1fl)PK2f2dx
T

’]TS

= [ (P V)« (P W} P ) PuaWi Prsfude = | (M7 [Pex, Vi No, NalPr i) Pr
§

T3

+ J (Peny V) = (P, W Pre, f1) Pn,W,' Pr, fodx — J (M{[Pzn,V; Ny, No] P, f1) Prc, foduz.
T3 T3
We now split the proof into two subcases corresponding to the contributions of P¢y,V and Pxp, V.

Case 2.a: Ny ~ Ny, contribution of Pn,V . Similar as in Case 1, we do not rely on any cancellation

between the convolution term and its renormalization. As a result, we estimates both terms

separately.

We first estimate the convolution term. Due to the convolution with Py, V', we only obtain a
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non-zero contribution if Ny ~ K. Using N; ~ N, in the second inequality below, we obtain that

‘ Ls(P«NlV) « (Py W) Py, f1) Py,W Pr, fod

< YN ~ K} [(PanyV) = (P, WY Pry f2) 13 | Py (P, Wi Prcy fo) 2

< UNy ~ K H{Ny ~ Ko }|| Py, Wil | full oo | Py Wi e | foll

S UM ~ K} 1Ny ~ KQ}(NlNQ)%MHW@THi—%—a

< (NlNz)ié(KlK2)7HW15T||2_%_5-
Second, we turn to the multiplier term. From the definition of M7 [Py, V; N1, Na] (see Definition
, we see that the corresponding symbol is supported on frequencies |n| ~ N;. As a result, we

only obtain a non-zero contribution if K; ~ Ky ~ N;. Using Lemma (3.2.15] Holder’s inequality,

Young’s inequality, and the trivial estimate |€] [Ny, Nao]|rz < Ny, we obtain
[ IV N Nl 1) Pr ]
T3

— 1K, ~ Ky ~ Nl}” ((@Z[Nl, No]Pen, V) # PK1f1>PK2f2dx‘
T3

< YKy ~ Ky ~ Ni}H(€T [Ny, No] Py V) # Pre, fillin | Py foll 22
< YKy ~ Ko ~ N} €[Ny, NolPen, Vol fill e | f2 e
< YKy ~ Ky ~ N} €T [Ny, No |z |V | 1

<Ky ~ Ky~ Ni}N; < (NlNz)fé(Kle)T

This completes the estimate of the contribution from Py, V.

Case 2.b: N1 ~ Ny, contribution of Pyn,V. The estimate for this case relies on the cancellation
between the convolution and multiplier term, i.e., the renormalization. One important ingredient

lies in the estimate ||Psn, V|1 < N # which yields an important gain.
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Using the translation operator 7,, we rewrite the convolution term as
Lg(PzNIV) # (Pv, Wy Pr, f1) Py, Wy P, foda
~ [ 2oV [ Psito = 0P e P = ) P07 ey
= qus P>y, V(y) [ L3 (7yPr, 1 Prey f2) (2) (7 P, W[ P, W) (x)dx] dy.
Using Lemma we obtain that
LS (M7 PN,V N1, No| Pk, f1) P, foda
= JTB ((QﬁtT[Nl, No| Py, V) # PKlfl) (2) Pr, fo(z)dx
- [ 2V [ P P ) @ 1 Nl )]y
By recalling Definition and combining both identities, we obtain that
LS(PzNIV)  (Py W' Py, f1) Pn,W Pr, foda — Ls (M7 [Py, V; N1, No) Py, f1) Pr, foda
= L‘S Pyn,V(y) [ Lg (TyPK1 f1 Pk, fg) (z) (1, Pn, WtT)PNQWtT:(:E)da:] dy.

Using that : (7, Pn, W,") Px, W/ : () is supported on frequencies < Ny, we obtain that

j P>>N1V(y) lj (TyPKlfl PK2f2) (ZE) Z(TyPletT)PNZWtTZ(JJ)dI] dy‘
T3 T3

< 1P V)ley sup (D L59IP (7P 1) Prc o) a2 ) sup | = (P W) Py W 104

y€T3 L<N, yETS

SN (N L) Al fol e sup | < P W) P W g
LSN1 yeTB
L<max(K1,K2)

< (N1Ny) " max(K,, Ko)Y sup | : (7, Py, W) Py, W/ lo=1-s.

yeT3
This completes the estimate of the contribution from Py, V' and hence the proof of the proposition.

O
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3.3.4 Proof of Proposition and Corollary

In this subsection, we reap the benefits of our previous work and prove the main results of this

section.

Proof of Proposition[3.3.1]: In this proof, we treat Qr = Q7 (W, ¢, A) like an implicit constant and
omit the dependence on W, ¢, and A. In particular, its precise definition may change throughout
the proof.

From the quartic binomial formula (Lemma [3.2.11)), it follows that

1
(W + I(u)+ V™ (W + I (w)): +5 ull:

) j (Vo (W2P)W5): Iofuldr + f W e U+

+2 L (V  (WEPWE): o+ ¢ 4 (W + T(w) + LS(V* (W) [u])Pde

+A JTS[(V # (WL [ul)) Wil [u] - (Mffé[u])fgg[u]]dx +A Lgv s (17 [u])?) 15 [u]WEda,

We have grouped the terms according to their importance and their degree in I7[u]. The first

line consists of the main terms, whereas the second and third line consist of less important terms

of increasing degree in I7[u]. We will split them further in (3.3.23)-(3.3.26) below and introduce

notation for the individual terms.

Since :(V « (WZ)?)WL: has regularity min(—3 + 8, —3)— and I [u] has regularity 1, the term
)\J (Vs (WDHWE: 1L [u]de
T3

is potentially unbounded as 7' — 0. As in [BG20b], we absorb it into the quadratic term 1 [ul/2..

To this end, we want to remove the integral in IZ[u] and obtain an expression in the drift . From
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It6’s formula, it holds that
)\f (Vs (WDHWE: IZ[u]dz
= )\f f « (WHHW: Jrudadt + )\f f u] dC:(V « (WDHHW).
T3

The second term is a martingale (in the upper limit of integration) and therefore has expectation

equal to zero. Together with the self-adjointness of J;, it follows that

T T T 1
B[ LJ V*(WOO)Q)WOO:[Oo[u]dx—Ir—HuH%z]
E

— f . JT : WHHWT: )utdxdt—i-—HuHLg}
— e [3rp]” - ﬁ JT( e )

where ["u] is as in (3.3.5). To simplify the notation, we write
we ] = g + AJtT( (Vs (WT)2)W ) (3.3.20)
With W; ™ as in (3.2.46)), it follows that
IF[w] = I [u] + AW P (3.3.21)
By inserting this back into the quartic binomial formula, we obtain that
Ee (W + T(u)+ V™ (V5 + I5[ul): +5lul?, ]

) (3.3.22)
(V + (Tp[w)?)(T5[w)*dz + 5wl |

= Ep[go + CT’A] + Ep[gl + 52 + 83] + Ep[% f

T3
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where the “error” terms &;, with j = 0,1, 2,3, are given by

€ )\ T T 2 T T T 2
&= f (Ve W)Y Weo)™s da = | JE (Ve (WOIWE ), (3:3.23)
T3 Lth
3
5| Ve (W) da
2 s
+ X8 f (Ve (WEIWEWEWEE — (MEWEWE ) de,
T3
&= (W + I[u]) — Vf (Ve o (Wo)? ) WP I [w]dar (3.3.24)
T3
o | (Ve v WL - M) I [l
T3
& %\ f ((V+ Wa L [wl)WhTL[w] = (ML I [w]) 15 [w] ) da (3:3.25)
T3
A
MR
T3
&SN | (Ve U] = WWEP)) (T ] ~ AW ds (3.3.26)
T3

Since & does not depend on w, we can define
™ E_Bp[&). (3.3.27)

The behavior of ¢™* as T — o0 is irrelevant for the rest of the proof. However, it determines

whether the Gibbs measure is singular or absolutely continuous with respect to the Gaussian free

field (see Section [3.5)). From the estimates (3.6.10) and (3.6.11)), it is easy to see that
A

A 1 1 A 1
~Qr+ 5 (VL) + gl ) < TVUELD + Sllwl?s < @ +2(SVUEL) + Sl ).
4 2 ta 4 2 b 4 2 b
Thus, it suffices to bound the terms in &, &, and &3 pointwise by

Qr + 5 (GVUElu) + 5lul?; ).
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We treat the individual summands separately.

Contribution of £ : For the first summand in &, the linear growth of ¢, Sobolev embedding, a
minor modification of (3.2.47)), and Lemma imply that

{7 .

T/( . 2 .
oW + T[]} < W), g+ [TLF (O VW],

t YT t~T

1 (3.3.28)
< Qr + [ I[w]|em < SQT + 5Hw||i§z.

For the second summand in &£, we have from Lemma that
)\‘ L (Ve ;(W;)Q:)W;mf;[w]dx\ S (Ve (W))W o [ T [w] [ < %QT +0lw|; -
For the third summand in &;, we have from Lemma and Lemma that
A2 L ((V e (WEWL)) WL — M;WQSJ) 17 [w]de
SNV + (WEWEEWe = MEWER oo [ [w] |y %QT +owlzz -

Contribution of E: For the first summand in &, the random matrix estimate (Proposition |3.3.7))

implies for every 0 < v < min(f3, 3) that
A f CWEIL WD) Walfw) = (ME LD Ifw])de| < Qe 2wl
T T 1 T T
< gQT + (ML [w]lze + [T[wllin) < 5Qr + 0V [w]) + [1e[w]lZy)-

The second summand in & can easily be controlled using Lemma [3.2.16|

Contribution of E5: We estimate the first summand in & by
)\” — AW (17 [w] — Awg@])w;dx‘
T3

s A”Wé”cﬁf&H<V>é”((V * (L5[w] = XWE)?) (I [w] = XWE))

Ly
In the second factor, we bound the contribution of (V = IZ[w]*)I%[w] using Lemma [3.3.6, In
contrast, the terms containing at least one factor of W, can be controlled using Lemma, [3.2.20]
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(3.6.10) and (3.6.11f). This leads to
EO((V s () = AW (I ] = AW )

< 2Qu (1+ VU [l Rl V2wl + 2] .0

<O+ 5(AV(1§O[w]) + HwHQL?’x)'

T
W2l s

Ll

T

The second summand in & can be controlled using the same (or simpler) arguments. ]

Based on the proof of Proposition [3.3.1, we can also determine the behavior as T — oo of the

renormalization constants ¢™*. In particular, we obtain a short proof of Corollary |3.3.4.

Proof of Corollary[3.5.4: Welet 8 > 1/2 and choose any 1/2 < v < min(f, 1). Using the definition
of ¢™ in (3.3.27)), it remains to control the expectation of &, which is defined in (3.3.23). We
treat the four terms in &, separately.

The first term has zero expectation by Proposition [3.2.9. For the second term, we obtain from

Corollary [3.2.18| that

For the third term, we obtain from Lemma |3.2.16| and Lemma [3.2.20] that

T (V= (WHW,

L2L2] §3 J <n>2 <n>27 Z <n>2+27 <

nez3

< B[V (W) o IWERIG | < 1.

| [ 0 sovmnzyias

ez

For the fourth term, we obtain from Lemma |3.2.20[ and the random matrix estimate (Proposition

3.3.7) that

Ep [ L3 (V #* (W;;WQ[SJ)W(;WQ[S] _ (M;Wg[s])wgm)dx]

< Bs| OpL (3, 2)WEOI, | < 1
This completes the argument. O
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3.4 The reference and drift measures

In this section, we prove Theorem |3.1.4] which contains information regarding the reference mea-
sures. In this paper, we will use the reference measure v, to prove the singularity of the Gibbs
measure (Theorem [3.1.5). In the second part of this series, the reference measures will play an

essential role in the probabilistic local well-posedness theory.

As in previous sections, we replace the truncation parameter N by 7. Due to its central impor-
tance, let us provide an informal description of the terms in the representation of vp. The first
summand follows the distribution of the Gaussian free field, which has independent Fourier co-
efficients and regularity —1/2—. The second summand is a cubic Gaussian chaos with regularity

min(1/2 + ,1)—. Finally, the third summand is a Gaussian chaos of order n with regularity 5/2—.

The statement of Theorem is concerned with measures on Cy "/ 2_”('11‘3). At this point, it
should not be surprising to the reader that the proof mostly uses the lifted measures fir and fie.
We will construct a reference measure QY. for fir, and the reference measure vy will be given by
the pushforward of Q% under W,. Since the main tool in the construction of Q% is Girsanov’s
theorem, we call Q% the drift measure. This section is a modification of the arguments in Barashkov
and Gubinelli’s paper [BG20a]. Since ["[u] in Proposition is simpler than in the ®3-model,
however, we obtain slightly stronger results. For instance, we prove L%-bounds for the density D

in (3.4.23)), whereas the analogous density in [BG20a] only satisfies “local” Li-bounds.

3.4.1 Construction of the drift measure

We define the forcing term

def

=T (W), —)\JtT( (Vs (WOHWE ) + VYR (VY WY, (3.4.1)
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where n is a large odd integer depending on 3. The first summand in is the main term. The
second summand in yields necessary coercivity in the proof of Lemma and Proposition
3.4.7 but can be safely ignored for most of the argument. We define the drift «” through the
integral equation

up == (W =1"[u"]),

n

= A (V5 0 = I D)W = I [ ]):) + T 5 (0 (0 = 17 [u"]))
(3.4.2)

We also define the drift u, which does not contain any regularization in the interaction, by
s = —AJt< (Vs (Wh = L[u)?) (W — L[u]): ) + (VY ;(<v>—% (W, — It[u])) L (34.3)

Using the binomial formulas (Lemma and Lemma , we see that the integral equation
has smooth coefficients on every compact subset of [0,00) x T3. As a result, it can be solved locally
in time using standard ODE-theory. Due to the polynomial nonlinearity, however, we will need to
rule out finite-time blowup. To this end, we introduce the blow-up time Te.,[u”] € (0, 00], which
we will later show to be infinite almost surely with respect to both P and Q. The reason is that
the highest-degree term in (3.4.2)), which is given by —J/{V)~"Y2((V)=V2IT[u"])", is defocusing.

We also introduce the stopping time
def !
Ton inf{t e [0, 0): f [uf|2.ds = N}. (3.4.4)
0

From the integral equation, it is clear that u] (-) is supported in frequency space on the finite set
{n € Z |n|| <<} As a result, the L?L2-norm can be used as a blow-up criterion and the
solution u] exists for all times ¢ < 7y, i.e., Texp[t”] > 71 y. We then define the truncated solution
by

WPV < bl (3.4.5)
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From the definition of 7, v, it follows that

0
| pisas < v

Thus, u™" satisfies Novikov’s condition and we can define the shifted probability measure Q7. - by

dQ%,N ” T,N 1 ([ T,N |2
B - P (L LS uyNdBg — §L | HL2d8>. (3.4.6)

Here, the L2-pairing in the integral {;° § , uZ¥dB; is implicit, i.e.,

e} 0
f J uTNdB, = J Wi, dBoypamsy = Y, J ¥(ny)dB=.
0 T3 0

ni ngGZS
ni1+n2=0

We emphasize that the stochastic integral Sgo Sw ul"dB; only depends on the Brownian process
B through the Gaussian process IW. This is important in order to view Qf y as a measure
on C°C,*7"([0, 0] x T3) without changing the expression for the density. To make this direct
dependence on W clear, we note that u” and hence 7, y are functions of W*, and hence W, directly
from their definition. By using the definition of u”, the self-adjointness of J;, and dW] = JI'dB;,

we obtain that

0
f f uy N d By
0 Jrs

= LOO LS (— A(Vos (W] — Ig[uT])2)(WtT — I[|u"]): +<V>_2 ~(<v>—f( — I"[u ]))n )dWST

The expression on the right-hand side clearly is a function of W7 and hence W. With a slight

abuse of notation, we will keep writing the integral with respect to dBs, since it is more compact.

By Girsanov’s theorem, the process

t
B L, — f uTNds (3.4.7)
0
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is a cylindrical Brownian motion under Qf y. In particular, the law of B*"" under Q% v coincides
with the law of B; under P. As a consequence, the process
TN def !
Wtu - Wt — f Jsuf’NdS = Wt — [t[UT’N] (348)
0

satisfies

Lawgy (W) = Lawp(W). (3.4.9)

To avoid confusion, let us remark on a technical detail. In the definition , the drift «" is
supported on frequencies |n| < (T). The right-hand side of (3.4.8)), however, does not contain a
further frequency projection. In particular, W and hence W*"" contain arbitrarily high frequencies.
This is related to the definition of the truncated Gibbs measure ur, where the density only depends
on frequencies < (T"), but whose samples contain arbitrarily high frequencies. Put differently, we
regularize the interaction but not the samples themselves. To make notational matters even worse,

while W*"" contains all frequencies, we will often work with pp(V)W*

frequencies < (T"). Similar as in Section 3.2.1|, we define the truncated process W, by

, which only contains

T,N

W (VYW (3.4.10)

Due to the integral equation (3.4.2)), we have that
W = 14t < TT,N}[ — )\JtT( (Vs (W 2y ) F VYR (V) ) ] (3.4.11)

We intend to use Q% 5 (and the limit as N — o0) as a reference measure for fiz. Due to (3.4.9),
the law of W™ under Q% x does not depend on N. In our estimates of u; " through the integral
equation, it is therefore natural to view WtT’“T’N as given. Under this perspective, the right-hand
side of no longer depends on u” and yields an explicit expression for u”. For comparison,
the corresponding equation in the ®3-model (cf. [BG20al, (14)]) is a linear integral equation. We

now start to estimate the drift «7.
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Lemma 3.4.1. Forall 1 < M < N, all S >0, and all 0 < v < min(1, /3), it holds that

T]yj/\s

Bog, [ | Iuflfads] < max(s'=2. 1) (3.412)

In particular, it holds that
max(S'77, 1)

Q%N (TT,M < S) < Vi (3413)
Proof. We recall from the definition of the drift measure that
Lawgy (W"") =Lawp(W)  and  Lawgy (W) = Lawp(IW")
As a result, we obtain that
TM AS 9
Bop| | IuflEads
0
s 2
<B| | (e auipwzs) w20 oytwn)s | as)
0
s 9 s ) ) 9
< A?Ep” Pz (v s vz as) + E” oy twn) | as]
0 0

For the first summand, we obtain from the definition of J; and Lemma [3.2.16) that
S 9 s )
EP” HAJST( AV« (W)W )H ds] < ( J <t>*2'ydt> Sup B[ | :(V « (W)W 2 5]
0 L2 0 =0
< max(S'7%,1).
For the second summand, we obtain from Lemma |3.2.23| that

E”OS

This yields the desired estimate. [l

Ty 2 (V)

2 5 —4+2¢ —3 n. |2
‘Lst] < (L (&t dt) igEE[H (V) 2w ] S 1

Lemma 3.4.2. Forall 1 < M < N, 1< p< o, and v < min(1/2, 8), it holds that

1
sup (Bay  [IL[117y, 1) <1

Tt20 c2 (1)

131



Furthermore, we have that for any 0 < o < 1 and 0 < 7 < 1/2 that

S =
—_

Sup (E@%,N[HI[“T’M]Hgfv”cg([o,oo]xm)]) Sp 1 (3.4.14)

T=0

where the C;""C%-norm is as in (3.1.19).

The proof of Lemma is easier than its counterpart [BG20al (16)] in the ®3-model, which
requires a Gronwall argument. The second estimate (3.4.14]) is needed for technical reasons related

to tightness, and we encourage the reader to skip its proof on first reading.

Proof. The argument is similar to the proof of Lemma [3.4.1] From the definition of «™* and u™",
we have that

uz,M _ 1{5 < TT,M}UZ’N' (3.4.15)

Thus, we obtain that

tATT, M t
T,M T,N T,N
g < [ 0¥ s < [y (3.4.16
z 0 £ 0

T

Using the integral equation (3.4.2) again, we obtain that

t
L Y L LR e

1
|3+
(3

t (3.4.17)
_1 _1 WTN\T
o LA (L oo i B

Using that
Lawgy  (W"") = Lawp(W),
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we obtain from Lemma [3.2.20] and Lemma [3.2.23] that

(EQ%‘,N I:“]t[UT’M]Z%‘*'W]) P
t

t 1 1 1 n
SN[ ez (v o (I Pas k| (Bl () W)

0 0 z

1
)pds
t ) t
SPJ<S>—1+'y—m1n(1/2,5)+5d8+J<S>—3+7+5d8
0 0

<, 1.

This completes the proof of the first estimate. The second estimate (3.4.14]) follows from a minor
modification of the proof. To simplify the notation, we set

def

Als) E T (Vo W)W o | LTI T2 (V)2 W) e

For any K > 1, we have from a similar argument as in (3.4.17)) that

L[u™) — Lo [u™M)|| 10 1 ¢
sup e [u"™] — Ty [u™" ]| s < sup —J A(s)ds
o<t'<t: LA Jt—t] o<v<t: LA t=1]* )y
'~ t~K

< J Al ( LK Afs)wds) o

Proceeding as in the first estimate, this implies that

LTu™™] = Lo [u™M]] o \ P &
(EQu [( sup [ i[u™] — Ip[u ]Lw) DPSK_%_V'
T,N o<t/ <t: 1A |t—t/|a
tt'~K

The desired estimate of the C;""C%-norm then follows by summing over dyadic scales and using a

telescoping series if the times are not comparable. O]

In Lemma and Lemma|3.4.2, we controlled the process u” with respect to the measures Qf y.
Unfortunately, the proof of Proposition below also requires the absence of finite-time blowup

for u” with respect P. This is the subject of the next lemma.
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Lemma 3.4.3. For any 7" > 1, it holds that Tyy,[u"] = oo P-almost surely.

The proof of the analogue for the ®3-model (cf. [BG20a, Lemma 5]) extends verbatim to our
situation and we omit the minor modifications. To ease the reader’s mind, let us briefly explain
why the same argument applies here. In most of this section, the most important term in the
integral equation is the first summand. It has the lowest regularity and is closely tied to
the interactions in the Hamiltonian. The result of Lemma however, is essentially a soft
statement. If we fix a time S > 1 and only want to rule out Tiy,[u"] < S, the low regularity is
inessential and only leads to a loss in powers of S. The main term is then given by the (auxiliary)

second summand, which is defocusing and exactly the same as in the ®3-model.

The next proposition eliminates the stopping time from our drift measures.

Proposition 3.4.4. The family of measures (Q% y)rn=0 is tight on coc; > ([0, 0] x T3). For
any fixed T' > 0, the sequence of measures (QF ) n=o weakly converges to a measure Qf as N — co.

For any S = 0, the limiting measure QY satisfies
dOu S 1 S
Qilrs _ o ( J J u'dB, — - J Hu?H%st). (3.4.18)
dP|.7:s 0 JT3 2 0

Our argument differs from the proof of [BG20al, Lemma 7], which is the analog for the ®3-model.

The argument in [BG20a] relies on Kolmogorov’s extension theorem, whereas we rely on tightness
and Prokhorov’s theorem. This is important in the proof of Corollary below, since the
measures QY are not (completely) consistent. We also believe that this clarifies the mode of

convergence. Before we begin with the proof, we state the following corollary.

Corollary 3.4.5. The measures Q% weakly convergence to a measure Q% on C°Cx *7*([0, o0] x T?)
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as T'— oo. For any S > 0, it holds that

dQ% | 7 ( J ° J 1 f S
=ex u,dBg — — Usg ds), 3.4.19
= (] ] 5 ), il (34.19)

where ug is as in (3.4.3)).

Proof of Proposition[3.4.4: We first prove that the family of measures (Q% y)rns0, viewed as
measures for W, are tight on C°C, /> "([0, 0] x T?). From (3.4.8), we have that

W=w"" 4+ ITu™]. (3.4.20)

Since the law of W*"" under QF v agrees with the law of W under PP, an application of Kolmogorov’s
continuity theorem (cf. [Str1ll, Theorem 4.3.2]) yields for any p > 1, 0 < o < 3, and 0 < 7 < /2
that

Egpy [0 P = Be[IW 1B wrmre] o 1
Together with (3.4.20)) and Lemma this implies
Egpy [IW By errinre| S5 1
Since the embedding C*"Cy /% < cle, 2= is compact, this implies the tightness of the family

of measures (Q% v )7,n>0-

By Prokhorov’s theorem, a subsequence of (Qf y)n weakly converges to a measure Qf. Once
we proved , this can be upgraded to weak convergence of the full sequence, since
uniquely identifies the limit. With a slight abuse of notation, we therefore ignore this distinction
between a subsequence and the full sequence.

Let S = 0 and let f: CtOC;l/Z_H([O, S] x T?) — R be continuous, bounded, and nonnegative. We
write f(W) for f(Wlj,s)). Using the weak convergence of Qf y to Qf, we have that

By [F(W)] = lim Egy [fW)] = lim (Egy [Wrrs > SH )]+ gy [1{rr < SLFW)]).

N-—o N—o
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Using Lemma [3.4.2] the second term is controlled by

max(S'7, 1)

EQ%’:’N[l{TT,N < SH W] < fleQF n(Trnv < 5) S [ fllo N ;

which converges to zero as N — oo. Together with the definition of Q7 y and the martingale

property of the Girsanov density, this implies

Eoy [f(W)] = lim Eqy [H{rry = S}f(W)]

N—oo

. TN > 1 (TN .
= lim Ee] f(W)1{ren > S)oxp ( f "B, - f o ||L2ds)]
= lim B[ F(V) 1y > S}exp(f W'dB, — f fu7 720) |

Using monotone convergence and Lemma we obtain
s 1 (S
Jim Ex[ (W)1{rry > S} exp ( J WTdB, — & f Ju?[32ds)
—00 0

= B[ f VLT lu”] > S} exp ( J W' dB, — f Ju? 32d1s)
S 1

— el sovyesp ([ uram L [ iias) |
0 0

[]

Proof of Corollary[3.4.5: Due to Proposition the family of measures (Q%)7=o is tight. By
Prokhorov’s theorem, it follows that a subsequence weakly converges to a measure Q%. Once
is proven, it uniquely identifies the limit Q. With a slight abuse of notation, we therefore
assume as before that the whole sequence QY converges weakly to Q% .

Since W[ = Wy and I = I, for all 0 < ¢t < T'/4 (by our choice of p), it follows from the integral
equation that u? = u, for all 0 < s < T/4. Using (3.4.18), it follows for all S < T'/4 that

d
Qi |z = exp J J usdBy — f Hu5||L2ds (3.4.21)
dP|-7:s T3
The corresponding identity ((3.4.19) for Q% then follows by taking 7" — co. O
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Corollary 3.4.6. For any T'> 1, S > 1, and any 0 < 7 < min(f3, 1/2), the measure QY. satisfies

the two estimates
s
Boy [ | Iuflfads] < max(s . 1)
° 1
p

sup (Egs [| 0711y, 1) 5, 1.
The corollary directly follows from Lemma [3.4.1], Lemma [3.4.2] and Proposition [3.4.4]

3.4.2 Absolutely continuity with respect to the drift measure

We recall the definition of the measure jiz from (3.2.10]), which states that

dp 1
% = Zm P (— VIANWE): ) (3.4.22)

Using Proposition we obtain that

e d,lNLT dﬁT dP 1 0 1 [
Dy & = = (— VAW E): — J f TdB; + = f th) 4.23
T dQ. dP dQw 2™ exXp ViAW) o I uy dby + 2 ), JufllZ (3 )

Since dB, = dB*" + uldt, we also obtain that

1 T\ T * T ul I T2
T o /T t t 5 t L2 : SE.
S OXP VA WL): ) T3u dB 2], g |7 2dt (3.4.24)

Proposition 3.4.7 (L-bounds). If n € N in the definition of u” is odd and sufficiently large,

Dy =

there exists a ¢ > 1 such that

sup E@%[ DTﬂ <ng L. (3.4.25)

T=0

Remark 3.4.8. We point out two important differences between Proposition [3.4.7 and the cor-
responding result for the ®3-model in [BG20a, Lemma 9]. The first difference is a consequence

of working with fir instead of jiz as described in Section Barashkov and Gubinelli define
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and bound the density Dy with respect to the same measure Q% for all 7> 1. In contrast, our
density is defined with respect to QY and we make no statements about the behavior of Dy with
respect to Q% for any S # T'. Since the increments of T'+— pp(V)Wy, are not independent, such
a statement would be especially difficult if S and T are close. The second difference is a result of
the smoothing effect of the interaction potential V. While the Hartree-nonlinearity allows us to
prove the full L9-bound , the corresponding result in the ®3-model requires the localizing

factor exp(—||WooHZ_1/2_s)-

The rest of this subsection is dedicated to the proof of the L?-bounds (Proposition [3.4.7). Since
we intend to apply the Boué-Dupuis formula to bound the density Dy in L%(QY.), we first study
the effect of shifts in B*" on the integral equation (3.4.2). For any w € H,, we define

u W+ w),

S

= XV (W LRV I w]): )9O L)
Using the cubic binomial formula (Lemma [3.2.11])), we obtain that

ul = = NJI (Ve (W)W e, (3.4.26)

S S

T,w

where the remainder 7]

is given by

rie = AT (VW) ] ) = 202 ((V o« (W T [w)) WS = METw])
=202 (Vo W2 EE )] ) = A2 (Vo QWS ) = A2 ((V + L w]P) )
+ TV (V)W I w])"

We also define h™* = w + u™". We further decompose

Pl = R+ ST (V)T (W 4 I Tw])

Before we begin the main argument, we prove the following auxiliary lemma.
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Lemma 3.4.9 (Estimate of 7). Let ¢, > 0 be small absolute constants and let n = n(d, 3) be

sufficiently large. Then, we have for all £ > 0 that

<t>1 +0 H ~T w

L2 Nn ,0,8,A C Qt(WTu ) <||[T nt{ a1 J stHLz dS (3427)

Remark 3.4.10. We emphasize that the implicit constant does not depend on €. In the application

of Lemma |3.4.9 we will choose € > 0 sufficiently small depending on 9, n, 3, A

Proof. In the following argument, the implicit constants are allowed to depend on n,d, 5, and A
but not on €. We estimate the five terms in 7, separately and do not require any new ingredients.
We only rely on Lemma [3.2.16], Proposition [3.3.7, Holder’s inequality, and Bernstein’s inequality.
For the first term, we have from the definition of J; and Lemma that

2

(Ve 2 )

<@ (W)
<O 0| Ve (W2 ‘;Hzélll} [w]lF1-s

2
—1— T _
SOV |y el

T

SO PCQUV) + O (Tl + 1 Tl By ).

x

L3

For the second term, we have from duality and Proposition for all 0 <y < min(/,1) that

(Ve VB W = M [w]) [,

<O (VT )W = M [w] ) o
SO TQUWT ) Tl

SO POV + 0 (Tl L+ I Tl )-

x

139



For the third term, we estimate

||JtT((V * (WtT’“Tff[w]))ftT[w]) 72 < &IV e (W I [w]) |24 17 ] 2
SO W 1T [w] 2

SO, I Tl

C. 2
< O P+ ey I ][
~ Ue t 071 s t L4

53—
x

< Ca)yPQUV™ ) + ey P (1T + Tl

In the last line, we use [BG20a, Lemma 20].

The fourth term can be estimated exactly like the third term. To estimate the fifth term, we only
rely on Holder’s inequality, Bernstein’s inequality, and the Fourier support condition of I [w]. We
have that

HJtT((V If[w]Z)ItT[w]) 122 < &IV = L wP) I w]lZ; < O Twllze < <t>‘3+g||ff[w]l|ii

6+4
T

_349 — —
<O ) o 1 [wllh < < 3+25||ff[w]||§_5%,%Hlf[w]H?{f

4
o1

T

S Oy 4 ety M (w1 ],

1
—5,n+1
W, 2

In the second last inequality, we used that ||I}][w]|m < 2| I [w] This completes the

vy

estimate of all five terms in 7, and hence the proof. O
Equipped with Lemma [3.4.9, we can now prove the L%-bound for Dy.

Proof of Proposition[3.4.7]: The proof splits into two steps.
Step 1: Formulation as a variational problem. In order to prove the desired estimate (3.4.25)), it
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suffices to obtain a lower bound on —logEqu [D7]. Using the Boué-Dupuis formula, we obtain

—log Eqy [D7] — qlog(Z™)

—logE@%[eXp( ( VINWI + IZ[u J J uf dB J o det)>]
0 JT3 0

0¢]
= inf E[ ( VIANWE 4 17 [w] + I5[u™]): + J uldBY J f uy wydadt
T T3

weH, 0
1 * T, w ]' * 2
+ o | et ) + 2 | JwFedt ]
2 Jo 2 Jo

Since T +— S;F STg uf’de;‘T is a martingale, its expectation vanishes. We now insert the change of

T, w — hT,w

variables u — w into the formula above, and obtain that

—log Eqy [D7] — qlog(Z™)

T, A T,uT T, Tow L[~ w2 L[~ 2 L[~ 2
— inf Boy|q( VU OVET + IG5 | I edt = 5 | funfadt) + 5 | Jwnledt
2 0 0 2 0

weL2

T 1 (® —1
— inf EQul (:VT’A(WOQ“ + IR 45 J ||h;vH§2dt) - |wt|L2dt]
0

weH, 2
Since we want to obtain a lower bound, the most dangerous term in the expression above is
— 2L (% |we|2.dt.  Using our previous information about the variational problem (Proposition

3.3.1| and Proposition [3.3.3]) and the nonnegativity of V(IZ[h"*]), we obtain that

1 (™ g—1 (“
0 0

wea

Recalling the definition of I] (k™) from Proposition [3.3.1] and (3.4.26]), we obtain that

LA™Y = B+ I (Vo (W))W
= (™ + w) + S (Vo (W)W
= (1" + wy).

Together with our previous estimate, this leads to

q . 1 (” Tyw |2 q— 1 (% 2
—logEqy[D7] 2 —C + inf Equ [+ | llwe +ry*[Ldt = ——— [ [wi]z2dt].
weH, 4 0 2 0
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By choosing ¢ sufficiently close to one, it only remains to establish

o8] o0
E f lwyZadt < 1+ E J e + 1 25t (3.4.29)
0 0

This bound is proven via a Gronwall-type argument.

Step 2: Gronwall-type argument. This step crucially relies on the smoother term in the definition
of the drift (3.4.2). We essentially follow the proof of [BG20a, Lemma 11]. As in [BG20a], we

introduce the auxiliary process
Ay (W7 ) = 3 ( )<V>2JT( (Y WY () [ ). (3.4.30)

With this notation, it holds that 7™ = 77 + Aux(W7™*" w). We then expand

w? = 2(w, + 7 — dwrt —2(rT)? — w?

) (3.4.31)
= 2(w, + rI)? — 4w T = 2(rY)? — w? — 4 Aux (W™ w).

Using It0’s integration by parts formula, we have for all s < ¢ that

¢
4f J Aux, (W™ w)w,dzds
T3

=3 () [ [, e by oy by (9 A

2= () [ L ety ey bt s

=1y (1) [ syt @yl

Z=On—l-l—z

n

_4ZW< >J T3 <V>_§]T[ b Zd( (<V>_§W“) )

Due to the martingale property, the second summand has zero expectation. After setting

Z,Zon—l-l—z

Aw (W™ w) d:efZ;'(?)L (VYT EWEYE (VY I [w]) e, (3.4.32)
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we obtain from (3.4.31)) that
t
E[J lws|22ds + 4Aux, (W™, w)]
° t
-E| f (2w + 132 = 4wy, 72 = oy 3 = 223 ) ds | (3.4.33)
0

t T
<E[2 [ Ju+rv s 44 | 177 ads],
0 0

We perform the Gronwall-type argument based on the quantity ®(¢), which is defined by

! (3.4.34)

i
1 .
—5,n+1
W, 2

t
B(0) LB | Ju. s+ |1 o)
By [BG20al, Lemma 12] and ([3.4.33)), we have that
t - t t
() <1+ E[J |lws|32ds + Aux, (W™ ,w)] <1+ ]E[J lrT 4w, 2.ds + J ||7“”’8T”“%2d8].
0 0 0
From Lemma [3.4.9 we obtain for €,§ > 0 that
t t t
B(f) <51+ El J [F7 4 wy|2ads + G, J (s 0Qu (W, )\)ds] te f (510 (s)ds
0 0 0
t
<5 Ce + Elj |ra + ws||2L2ds] + € sup P(s).
0 0<s<t
By choosing € > 0 sufficiently small depending on ¢, this implies the desired estimate. O

3.4.3 The reference measure

Using our construction of the drift measures QY., we now provide a short proof of Theorem [3.1.4]

As in the rest of this section, we use the truncation parameter 7'

Proof of Theorem|[3.1.4: For any 1 < T < oo, we define the reference measure vy as

vr o (WOO)#Q%
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By using the L-bound (Proposition , we have that for all Borel sets A < C, "/ >7"(T3) that
1 1 1
pr(A) = fig(We € A) = Equ [1{W, € A} Dy < (EQZ} [Dgfp]) QLW e A a Sup(A)a.

This proves the first part of Theorem [3.1.4] Regarding the representation of vy, which forms the
second part of Theorem we have that

vr
= LaW@% (Woo)
= Lawgu (Wg + In[u’])

o0 Q0
~ Lawg (W2 - ApT(V)f T2V & (WP ds + pr(V) J (VY2 (V)W) )
0 0

= Lawp (WOO — Mpr(V) LOO J2 (Vs (WHHWT: ds + pr(V) LOO<V>—%J3 (VYW ds).

This completes the proof. O

3.5 Singularity

In this section, we prove Theorem [3.1.5] The majority of this section deals with the singularity
for 0 < 8 < 1/2. The absolute continuity for 5 > 1/2 will be deduced from Corollary and
requires no new ingredients. Theorem [3.1.5is important for the motivation of this series of papers,
since we provide the first proof of invariance for a Gibbs measure which is singular with respect to
the corresponding Gaussian free field. The methods of this section, however, will not be used in

the rest of this two-paper series.

We prove the singularity of the Gibbs measure puo, and the Gaussian free field g through the
explicit event in Proposition [3.5.1]
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Proposition 3.5.1 (Singularity). Let 0 < 3 < § and let § > 0 be sufficiently small. Then, there

exists a (deterministic) sequence (S,,)%_; € R.q converging to infinity such that

m=1 —
B s [0 (s (D) ps (TP dr =0 geas 3:51)
and
1
fin s [ (s (D8, (D0 o = 0 s (352)

Here, g is the Gaussian free field, /i, is the Gibbs measure, and ¢ € C; > " (T?) denotes the random

element.

Remark 3.5.2. In the statement of the proposition, the reader may wish to replace ¢ by Wy,
g by P, and e by fie. We choose the notation ¢ to emphasize that this is a property of g and
[t only and does not rely on the stochastic control perspective. Of course, the stochastic control

perspective is heavily used in the proof.

To simplify the notation, we define

W SV« (WOWE: and WSS (V s (W) (W) (3.5.3)

S

We note that the dependence on the interaction potential V' is not reflected in this notation. We
first study the behavior of the integral of W2* with respect to P. This is the easier part of the
proof and the statement (3.5.1]) follows from the following lemma.

Lemma 3.5.3 (Quartic power under the Gaussian free field). Let 0 < 8 < 1/2. Then, we have
that

1 2
sup]EP[(l— Wf{fdx) ] <1 (3.5.4)
S=1 S278 Js
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Proof. From Proposition [3.2.9] we obtain that

Lawggdxz > (va@ﬁnﬂ @) J f J f AWEmdWE s dWEm2dW s,

ny,n2,n3,n4€Z3: TESY
n1234=0

Since the iterated stochastic integrals are uncorrelated, we obtain that

Ep[( Lﬁ W;4dx)2]
s Y (X Vo ”w(2)))2 ﬁ p:%f

nl,n27n3,n4EZ3: TEeSy j=1
n1234=0

n1,n2,n3,na€L3:
n1234=0

S D (may) )" wnps ]>2 '

nl,ng,n3€Z3 =

It now only remains to estimate the sum. Provided that f < 1/2, we first sum in ng, then ny, and

finally n; to obtain

28 Ps n] 1-28 Ps nj IOs n1 1-28
Z (n1a3)” <n12> <n \2 < Z (naz)~ <n V2 n%g (n )22 ~ <5

nl,ng,ngeZS nl,n26Z3

]

We now begin our study of the integral {, W5'dz under Q%. Naturally, we would like to replace
(most) occurrences of W¥ by W% since the law of W%* under QY is explicit. This is the objective

of our first (algebraic) lemma.
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Lemma 3.5.4. For any S > 1, it holds that

o8]
LB Wstde = — 4 J fT?,(Jjo’“’S) C JWe3dads (3.5.5)
+ 4f J (JEWS=*)dBY — 4)\ZJ f ASi[u] - J W 3dads (3.5.6)
T3

+ 42 f:o LB ASI[u]dBY + 4 L L w3 (10) 4 (V) B duds, (35.7)

where
A ) I (Ve WP I ] ) + 208 (Vs WS T ] - W = MEE[u]), (35.8)
Az () = I (Vs (ELal)We) + 278 (v« (WL [u]) ). (3.5.9)
AS3[y] = Jj((V*IS[ 1) I5[u ]) (3.5.10)

Proof. Using (]3.2.27)) from Proposition together with the integral equation for u, i.e. (3.4.3)),
we obtain that

loe]
Widz —4 f WSS

T3 0 T3

lo0] e 0]
4 f WE*S(qus)dxderélf Weadryss
0 T3 0 T3
o0 e8]
_ f f (TSWS)(J, W) dads + 4 f f (JEWST)d B (3.5.11)
T3 0 T3
loe]
+4f J (JSWS) (JLVY™2 :((VY 2 W)™ dzds
0 T3

From the cubic binomial formula (3.2.31]) and the definition of A$”, it follows that

3
T = W+ 3 Al

j=1
Inserting this into (3.5.11]) leads to the desired identity. n
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We begin by studying the right-hand side of (3.5.5]), which is the main term. Our first lemma

controls the expectation, which will be upgraded to a pointwise estimate later.

Lemma 3.5.5. If 0 < 8 < 1/2 and S > 1 is sufficiently large, then

o8]
Boo [ [ [ 5wy awsasds] 2 5. (35.12)
0 T3

Proof. Since the law of W" under Q% coincides with the law of W under P, it holds that
o0} 0}
Eq U J (JSWg?) - JSWZ’3dxds] = EP[J J (JEWS2) . szidxds] (3.5.13)
0 T3 0 T3

The rest of the proof consists of a tedious but direct calculation. Using the real-valuedness of W

and the stochastic integral representation (3.2.25)), we have that
f (JSWES) . LWeda
T3
f (JSWS3) - JsWidx

_ Z <n>2 Z [( Z V( (Nr(1) + N2 )( Z V( (mray + mf(z)))

nez3 n1,n2,n3€Z3, mES3 TES3
m1,m2,mgeZ3
Nn123=M123=n

° ° * S,n S,n S,n ° o o2 T,s T,s T,s
« ( AW SEms QWS d s )( dWm33dWm22dWm11) .
0 JO 0 : : ! 0 JO 0

Taking expectations, we only obtain a non-trivial contribution for (ny,ns,n3) = (my, ms, ms), and
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it follows that
EP[J (JSWS2) . szgdx]
’]I‘3

R e ]

)
ni,n2,n3eZL3 TESy <n]>

JJ J USJ (ny)os (j)))d53d32d31]

Jj=

1

:émmgéem[Ug(nifl);igm) (2 Pl + "w<2>>)2(ﬁ o) (H [[ o 1o (m)ass) |

71'653

By recalling that of = pg - 05, integrating in s, using Lemma [3.6.5, and symmetry considerations,
we obtain that

o0
Ep[ (JSWS2) . JSW‘:’dwds]
0 ']I‘B S S

1
) fg& (3 Ve +nncy )

N
N
II w
Q
\6
\_/
%
8
Q
V)
—~
3
=
)
W@
SN—
N
o
& w
)
W
—~
3
<
SN—
N
N——
o,
V2)

nl,nz,ngez3 T€eS3 0
ps(niaz) 1 ps(n;) JOO )
= Cnl - nBEZ3 <n123>2 <n12>25 <n >2 o Us n123 pS (n]) S

3

—C Z ps(nia3) (H

n1,n2,n3€L (n123)” <n12>1+2ﬁ i

where ¢, C' > 0 are small and large constants depending only on V. The only difference between

the two terms lies in the power of (nj3). The minor term can easily be estimated from above by

nl,ng,an€Z3 pzl(lzg;) <n12§1+2ﬁ ( Qif?}) J os(n123) (Hps n;) )
1
S D T R K ey

<1

~
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Using Lemma [3.6.9] the main term can be estimated from below by

D ] S A

nl,ng,n3€Z3

1
D VI vz T

nl,ng,n3€Z3 :
|nj—Se;|<S/20

2 STEEH{ (1, mg,mg) € (Z°): |ny — Sejl < /20 for j =1,2,3}

This completes the proof of the lemma. n

Before we can upgrade Lemma [3.5.5] we need the following estimate of the A®7.

Lemma 3.5.6. Let 0 < < 1/2, let 6 > 0 sufficiently small, and let & > 1 be sufficiently large

depending on 3. For any v: Rog x T?> — R and any j = 1,2, 3, it then holds that

A3l < (7720 (QuEW™) + | TIE 4 5 + 1Tl ). (3.5.14)

Remark 3.5.7. As is clear from the proof, this estimate can be slightly refined. Ignoring d-losses,
the worst power (s)~17%% only occurs with HISS[U]H?{%,B instead of || I5[v]]%,. However, (3.5.14) is

sufficient for our purposes.

Proof. We treat the estimates for j = 1,2, 3 separately. We first estimate A", which consists of
two terms. For the first summand, we have that

(e[

L3

O E (TR DTN )

2
‘Hz”ﬁz‘;
< <8>_1—26+4(5HV* :(Wss,u)Q: HE;HB—BHI;S[U]”?{;_‘?

STV (W |2 s | I Lol | T
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Provided that k& = 37!, the desired statement follows from Young’s inequality. The estimate for
the second summand is similar, except that in the second inequality above we use the random
matrix estimate (Proposition instead of Holder’s inequality.

Next, we estimate A?. Let n > 0 remain to be chosen. Using from Lemma [3.6.7, we can
control the first term in A3* by

2

HCETATISIAI

< (o P Hewy B (e )|

L2

SO 2+4‘SHWS“I|2,,,5||IS[ G PR | et

s [v]HQ_%_AIff[v]IIfq;

2 2—
gl A )y S PR [

x .I
4(2+n)

—y-s HILT G + ||1§[v]||?1;).

< <S>—2+125+8n (|

8
b
After choosing n = 10k~!, the desired estimate follows provided that k¥ = (1/2 — 8)~!. The only
difference in the estimate of the second term in A?? is that we use instead of (3.6.13).

We now turn to the estimate of A®. Arguing exactly as in our estimate for AS?, we obtain that

Using Young’s inequality, this contribution is acceptable. O]

I (v (EEDDER) |, < OS]

We are now ready to upgrade our bound on the expectation from Lemma [3.5.5 into a pointwise

statement. The main tool will be the Boué-Dupuis formula.

0

~_, converging to infinity such that

Lemma 3.5.8. For any § > 0, there exists a sequence (S,,)

Sm Sm, U3 u,3 _ u
Jim (J LB (Jemwsmed) (W) deds =00 Qiras. (3.5.15)
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Proof. Let k = 1 remain to be chosen. We define the auxiliary function

(e ) X )
Cs = giams L L (Jewzen?) (W) dads + sup W . (3.5.16)

0<s< c;27°(m)

We will now show that

S}%EQU[ s] —0, (3.5.17)
which implies the desired result. We could switch from (W* Q%) to (W,P), which we have done
several times above. Since the A37 in — are defined in terms of W*, however, we
decided not to change the measure.
We define A7 similar as in —, but with J? replaced by Js, I7 replaced by I, and W*"
replaced by W*. Since all our estimates for A%/ were uniform in S > 1, they also hold for A7.

Using the Boué-Dupuis formula (Theorem |3.2.1)) and the cubic binomial formula, we have that

—log Eqy [e*GS]
= ingf E@ulSI g J | (JS (Vo (W5 4 BV + L)) )

veH,,

u u u 1
xJS(:(V* (W + L[v])?) (W} —i—[s[v]):))d:cds—i— sup ||W; +IS[U]H27%76 +§||U%§L%]

0<s<
_]EQJ |:Sl 28—6 J J;:; JS . WS u) )WSS,U: )JS( (V * (Wg)Q)W: )dl’d$:| (3518)
+ mf EQ% sup HW + [ [ ]” 71—6 + = ”vSHLQdS (3519)
"] 0<s<o Cy 2 2 0 z

+ S 52] f (JSWS*) Al [v]dzds + SEE 52] f (J, W) AS9[v]dzds  (3.5.20)

51 G1-23-5 Z f f Al'lv dxds] (3.5.21)

7,7=1

The main term is given by (3.5.18)). By Lemma [3.5.5] we see that (3.5.18)) converges to infinity as

S — 0. Thus, it remains to obtain a lower bound on the variational problem in (3.5.19)-(3.5.21]).

The terms in (3.5.19)) are nonnegative and help with the lower bound. In contrast, the terms in
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(3.5.20) and (3.5.21]) are viewed as errors and will be estimated in absolute value.
Regarding (13.5.19)), we briefly note that

u 1
o | sup W7+ LRIy | > 5Eer | swp LI, -c.

0<{s<o0 z 0<ts<o0 z

In the estimates below, we will often use that A7[v] = 0 for all s » S. We begin with the first

term in (3.5.20). We have that

1 * ST S,u,3 7
| 51_25_5L JW(JSWS JAl[v]dadt

1 % -1 u,3 1 1 j
< g L Ls < ST Fads + o5 L 1{s < S}(s)? | Ad[v] 2ads.  (3.5.22)

For the first term in (3.5.22)), we obtain from Lemma |3.2.20| that

1 (= 71 )
Bay | grmgams [ e = 8Ky HWE s

1 @ 1
<= | s < SKs)y 2 P PEq | W |? d
SIM‘SL {8 }<$> 2 Q [H s ”HI—§+6—5] S (3'5'23>

1 ®© 1
< S1-26-0 J 1{s < SY(s) 2 2*%qs
0

< 1

~

For the second term in ([3.5.22)), we obtain from Lemma that

1 ®© 1,
oy | g [ Ls = SHO A as|

0

1 @ 1
< WL s 5 S))™ 4 Eqy [Qu(1)|as

1

+ Giass Bor [ f RIEE Sy (I o+ |fs[v]||z%)ds] (3.5.24)

Sl—i—S‘smaX(S_é,Sw—l)Ele sup (L[l + ||JS[U]||§I;)]

0<s<

<1+58° max(S*%, 5251)1@@&[ sup HIS[U]HIZ_%_‘S + ||U||%3Lg]

0<s<o x
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In the last line, we also Lemma [3.6.8, Since S — oo, this contribution can be absorbed in the

coercive term (3.5.22)). The estimate of the second summand in (3.5.20)) is exactly the same.

Regarding the error terms in (3.5.21]), we have that

1 5 r@ , 4
1253 A v]Alv]dads
s 20 |, [ A bladasa
1 O | |
S e Zfo 1fs < S} (| A3 [0 132 + | ALlv] 33 ) dads.
j=1

The right-hand side can now be controlled using the same (or simpler) estimates as for the second

summand in (3.5.22). This completes the proof. O]

Essentially the same estimates as in the previous proof can also be used to control the minor terms

in (3.5.6) and (3.5.7). We record them in the following lemma.

Lemma 3.5.9. Let 0 < 8 < 1/2,let 6 > 0 and let j = 1,2,3. Then, it holds that

: 1 * ST/ S,u,3 u 4]

lim Egu ! ) A [u] - J,W P dads | - 0 (3.5.26)

Gsan max(S13+0 1) | Jo Jps ° ss | ’ e

1 © 2T

lim Equ : J f A u dij) =0, 3.5.27

S0 le(max(szww,l) 0 Jrs L] ] ( )
1 © 1 1 i

lim Egs | J f (JSWS) (VY (V) 3 )dds| | = 0. (3.5.28)
soo S0 Jo U |

Proof. We begin with the proof of (3.5.25)). Using It0’s isometry, we have that

T 2 P
N STA/S,u,3 u _ - . ST17S 1,32
]EQu |: (Sé_ﬁ‘i‘& J;) J:IF?’ Js WS st ) :| - 51725+25 J;) EQ% |:||JS Ws ||L%:| ds.
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Arguing essentially as in (3.5.23]), we obtain that
L TRy, [swsespz,Jas £ — [ 1gs < SKs)-2+0ds < 57
S1-26+25 | Qi | s s L3 ~ §1-26+2 | ~ ~ ’

which yields ((3.5.25]).

We now turn to (3.5.26)). Using Lemma and Corollary [3.4.6] we have for all € > 0 that

EQ% I:”A?J[U]H%%} § <8>*1725+206(1 + (<S>17(%+5)+e)2) $ <S>746+406. (3529>

Using Lemma [3.2.16| and (3.5.29)), we obtain that

|

<Eq [ [ 1= S}<3>_6||JSWZ’3%gdS] + oy [ [ s = sy [u]||2gcds]

o0
< f 1{s < Ss)=3+10d < S~ max(1, S1-30+0).
0

o0
E@’;[ J J A u] - J W dxds
“LiJo Jr3
0

Next, we prove (3.5.26[). Using [t0’s isometry and (|3.5.29)), we have that

oo 2 o0
oy | ([ [ asvtaane ) | < 5o | "1t < spa 1) 0]

< f 1{s < S}(s)10+10e g
0

<570 maX(S%_wM, 1)%.

Finally, we turn to (3.5.28]), which is the most regular term. We first recall the algebraic identity
JEWSS = JEWses + 377 | AS9[u]. Then, Lemma [3.2.16{and (3:5.29) yield

Eqy | |J5WS*|3; | < ()72 (3.5.30)
From Lemma [3.2.23] we have that
Eqy | 1967y : (V) 300" 3| < (o) v (3.5.31)
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By combining (3.5.30) and ((3.5.31]), we obtain
e 0]
E@%[ [ [ omweowr :<<v>-%ws>“:>dxds]
0 T3
w0 _ ®© _1 _1 u\"™
< E@%[ [ s 1J5W§3||igds] +E@%[ [ @ty ||igds]
0

0

< JOO (<S>71726+26 n <S>—3+e) ds < 1.

0

O
We are now ready to prove the main result of this section.
Proof of Proposition[3.5.1: We recall from Lemma that
L wsrde = -2 (T sweey s wetdeds + RS (W 3.5.32
gz |, e 4= g | T3(5 30 - JWtdads + R (W, u), (3.5.32)

where the remainder R(W*" u) contains the terms from (3.5.6) and (3.5.7)) with an additional
S~1+26+9 By Lemma [3.5.8] there exists a deterministic sequence S, such that the first summand

n (3.5.32)) converges to —oo almost surely with respect to Q% . Since 0 < 5 < 1/2, we have that
1 1
1—2ﬁ>max<§—5,1—35,§—25,0).

Using Lemma this implies that the remainder R*(W", u) converges to zero in L'(Q%). By
passing to a subsequence if necessary, we can assume that RS (W", u) converges to zero almost

surely with respect to Q% . Using ([3.5.32)), this implies that

Sm 4
Wlllir(l)o S ‘SJ Wortde = —o0 Q5,-a.s.

Using 8 < 1/2 and Lemma m the integral S~12010 {  WSidz converges to zero in L?(P). By
passing to another subsequence if necessary, we obtain that

1
nl,l—rgo WJ Wf.om’4d$ =0 P-a.s.

156



Since pg is absolutely continuous with respect to vy, = (Wy)xQY and g = Lawp(Wy), this

implies (3.5.1]) and (3.5.2). H

Equipped with Corollary and Proposition [3.5.1) we now provide a short proof of Theorem
0. 1.0l

Proof of Theorem [3.1.5: 1f 0 < 8 < 1/2, then the mutual singularity of the Gibbs measure jo, and
the Gaussian free field g directly follows from Proposition [3.5.1]
If B> 1/2, we claim that for all p > 1 that

dir e (g) (3.5.33)

dg

with uniform bounds in 7" > 1. Since pur converges weakly to i, this implies the absolute
continuity e <€ g.

In order to prove the claim, we recall that ur = (Wy)xfir and g = (Wy)xP. Furthermore, we
see from that the density dfip/dP is a function of Wy,. As a result, we obtain for all p > 1

that
dﬁT)P J dpr\?
RN P = (—) d
J ( P dg ) %
Thus, it suffices to bound the density dfir/dP in LP(P). From the definition of fiy (Definition
3.2.3)) and the definition of the renormalized potential energy in (3.3.2)), we have that

(@)p B exp ( —p:VNWV): )

dP (ZT,A)IJ
1 \p
- (ZT”\)p exXp ( T LS (Ve (WEHWI: do — pCT,)\>
ZTpA 1

= —(ZT’A)p eXp(c;A — pc™) - Zan OXP (— VTN )
The first two factors are uniformly bounded in 7' by Proposition and Corollary [3.3.4 The

last factor is uniformly bounded in L'(P) for all T > 1 since we only replaced the coupling constant

A by pA. This completes the proof of the claim (3.5.33)).
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3.6 Appendix

3.6.1 Probability Theory

In this section we recall two concepts from probability theory, namely, Gaussian hypercontractivity

and multiple stochastic integrals.

3.6.1.1 Gaussian hypercontractivity

In several places of this paper, we reduced probabilistic LP-bounds to probabilistic L?-bounds
using Gaussian hypercontractivity, which is closely related to logarithmic Sobolev embeddings.
In the dispersive PDE community, among others, the resulting estimates are known as Wiener
chaos estimates. A version of the following lemma can be found in [Sim74, Theorem 1.22], [NuaQg,

Theorem 1.4.1], and most papers on random dispersive PDE.

Lemma 3.6.1. Let k > 1 and let f: (R~ x Z?)* — C be deterministic, bounded, and measurable.

For any t = 0, define the random variable

t t—1
Xt = Z J;) J;) e L f(tl, n17 e ,tk, nk)thdeWt’Zli_ll P thle. (3.6.1)
nl,...,nkeZ3

Then, it holds for all p > 2 that

k
X ooy < (= DX 220 (3.6.2)
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3.6.1.2 Multiple stochastic integrals

This section is based on [NuaO6, Section 1.1] and we refer the reader to this excellent book for
more details. Of particular importance to us is [Nua06l Example 1.1.2], which discuss the specific

case of a d-dimensional Brownian motion.

We identify W7 with a Gaussian process on H = L?(R-q x Z3,dt ® dn), where dt is the Lebesgue

measure and dn is the counting measure. For any h € H, we define

ZJ (t,n)dW, " (3.6.3)

nezZ3

For any h, h' € H, we have that

E[WT[ ZJ (e, —m) T g (3.6.4)

nezs3 <77,>2

Since we did not include a complex conjugate in the left-hand side of , we note that this
does not yield a positive-definite bilinear form. We also did not include the weight pJ(n)?/{n)? in
the definition of H. Thus, the “covariance” in does not coincide with the inner product on
‘H and instead is only dominated by it. As is clear from [NuaO6, Section 1.1], this only requires

minor modifications in both the arguments and formulas.

For any k = 1 and any function f € H;, = L?((Rxq x Z3)F, @le(dt(@dn)), the multiple stochastic
integral

L= ), f fftl,m,.. iy g ) AW, AW (3.6.5)

ni,...,nL€Z3

can be defined as in [Nua06l, Section 1.1.2]. If f is symmetric in the pairs (¢1, n1), (ta, n2), . . ., (tx, nk),

we can relate the multiple stochastic integral to an iterated stochastic integral.
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Lemma 3.6.2. Let £ > 1 and let f € H; be symmetric. Then, it holds that

0 tr—1
Ik[f] = k! Z J f .. J f(tl, ny, ... ,tk, nk)thi’n’“ c. th?nl, (366)
0

where the right-hand side is understood as an iterated Ito integral.

This lemma follows from [Nua06l (1.27)] and the discussion below it. The primary reason for
working with multiple stochastic integrals instead of iterated stochastic integrals is the simpler
representation of their products. In order to state the product formula in Lemma below, we

need one further definition.

Definition 3.6.3 (Contraction). Let k,l > 1 and let f € Hy and g € ‘H; be symmetric. For any

0 < r < min(k, 1), we define the contraction of r indices by

(f®rg)(tr, 1, tesi2r Npi—2r)
J J |: tla”l?'"atkfrankf’mslaml?"'787‘7mr)
..... m,€Z3
k T 2
X (ka1 M1y« + s Lo — 20y Mti—2ry S15 —T1 5« -+, Sy n >2 ] ds, ...ds;.
=1 ]

The reader should note the relationship to the covariance (3.6.4)). If f, g € H = H;, then
E[W LWLl = f @10
A slight modification of [Nua06l, Proposition 1.1.3] then yields the following result.

Lemma 3.6.4 (Product formula). For any k,! > 1 and any symmetric f € H; and g € H,, it
holds that

500 5" () (Yoatre. b0
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3.6.2 Auxiliary analytic estimates

In this section, we record several auxiliary results, which have been placed here to not interrupt

the flow of the argument.

Harmonic analysis

We record a non-stationary phase argument and several standard trilinear product estimates.

Lemma 3.6.5 (Asymptotics of V). There exists a constant ¢ = ¢z € R such that

~ c 1
‘/(n)——<n§6 S Gy (3.6.8)

Remark 3.6.6. On the Euclidean space R3, instead of the periodic torus T2, the Fourier transform
of |x[°=3 is given exactly by csl¢|™?. At high frequencies, the Fourier transform V is determined
by the singularities of V', and hence the difference between R? and T® should not be essential. In
fact, a more precise description of the asymptotics of V is given by csln]P1{n # 0} + O ((ny=M),
but it is easier to work with ([3.6.8).

Proof. We denote by Fgs the Fourier transform on R? given by

Feef(©) = | f(a)e 4P dz.

Let {xn}ny=1 be as in (3.1.15), which we naturally extend from Z3 to R3. Because we require

additional room, we define for any x € T? and N > 1 the function

v () = v (100z). (3.6.9)
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Let n € Z3\{0}. Using the assumptions on the interaction potential V', we obtain that
V(n) = J V(z)e D dg
T3

= ﬁra V(z)x1 (a:)e’i<"’“’>dx + f V(z)(1-Xx3 (x))e’“”’@d:c

T3
= f |x|_(3_6)§(’1 (Q;)e—i<n,x>dx -+ f V(gj)(l — yl(m))e—z(n,x)dx
R3 3
= Fps [|x|’(3 Z J |;1;| )e—i<n,x>dx + J V(z)(1—X; (x))efl(n,x)dm'
N=2 T3

The first summand is given exactly by ¢z|n|;”. A non-stationary phase argument for the second

and third term shows that they are bounded by Oy ((n) ) for all M > 1. This implies that
V(n) = cslnlly"1{n # 0} + On((ny ™).

Since |n|;” = (n)~f + O((n)~1-P), this leads to (3.6.8). O

The following estimates are used in the paper to control several minor error terms.

Lemma 3.6.7 (Trilinear estimates). For any sufficiently small 6 > 0, we have for all f,g,h €

C®(T?) the estimates

H<V>%+5(<V* (FoOR)|,, < 151, geallol] goasl] g oo (3.6.10)
KD (Ve Fa)h) |, < Ul gl yoasll, g (36.11)
(2 (e o), S 1 gs (Il s-olblgess + gl ys) — (8:6.12)
|2V e (oD )|, € (1 -slolzs + 17l gesslol oms ) U] oms (3.6.13)

These estimates are essentially an easier version of the fractional product formula. They can
be proven using a paraproduct decomposition and Holder’s inequality and we omit the details.
We always included d-loss on the right-hand side of (3.6.10]), so we can avoid all summability or

endpoint issues. We also never rely on the smoothing effect of the interaction potential V.
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The integral operator and truncations

We now record two properties related to the integral operator I; and the associated frequency

truncations p and o.

Lemma 3.6.8 ([BG20b, Lemma 2]). For any space-time function u: [0,00) x T® — R and any
0 > 0, it holds that

sup 117 [ul s g 2oy (3.6.14)
T.t>0
and
sup |7 [u] = ]|y 50y < minGs, ) P min(L ¢ = sDulspzompumsy  (3:615)

T,t,s=0

Proof. The first estimate (3.6.14)) follows directly from [BG20b, Lemma 2]. Since I} [u] — I[[u] is

supported on frequencies = min(s,t), we have that
|75 Tu] = 17 Tull 2 sy < min(t, )= |15 [u] = I7 [ul | s rs)-
The rest of the statement then again follows from [BG20b, Lemma 2. O

The result in [BG20b] is only stated for [, instead of I}, but the same argument applies.

Lemma 3.6.9 (Well-behaved truncations). If S > 1 and ny,ng, n3 € Z? satisfy |n; — Se;|2 < S/20

for all j =1,2,3, where ¢; is the j-th canonical basis vector, then

ps(ni23) ( ﬁ ps(nj)> LOO os(n193)? ( ﬁ ps(nj)Z)ds > 1. (3.6.16)

While the proof is a bit technical and depends on the precise regions in the definition of p, this

lemma should not be taken too seriously.
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Proof. We recall the lower bound min(p(y), —p'(y)) = 1 for all 1/2 < y < 2 from the definition of

p. From the assumptions, we directly obtain that
3
|[n123]2 — V35| < 2—5

In particular, we obtain that 3/2 -5 < |njas)2 < 19/20 - S. Since 19/20 - S < |n;ll2 < 21/20- S for
all j =1,2,3, it follows that

Tl123 (E[ )

We estimate the integral by

JOO os(n123) ( ﬁ ps(n )

0

> fo <s>11{% < |naas| < 2<3>}(ﬁ 1{Hn]||2 2<S>})

_ * ol
251 ( | 1fg max(iml eal. sl mal) < 5 < 2 s 2)
0
3
=57 (§||”123H2 - 2)

2 1,

where we used that S > 1. O

A basic counting estimate

The following estimate has been used to control stochastic objects (see Lemma [3.2.20)).

Lemma 3.6.10. Let v,w € Z2 and let o, B > 0 satisfy 1 < o + 3 < 3. Then,

Z {n + v>a<n + w)b(ny? =~ < min((v), (w))' 7. (3.6.17)

nez3
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Remark 3.6.11. The estimate (3.6.17)) is not sharp if v and w have different magnitudes. For
our purposes, however, (13.6.17) will be sufficient.

Proof of Lemma (: Using Young’s inequality, we have that

1 1 1
< + :
n+vyn+w)? ~ {n+vyth  (n+wyts

Using this inequality, the estimate (3.6.17|) reduces to

(3.6.18)

oY B,
Z {n+ v>a+5<n>2 <<

nezs3

This can easily be proven by decomposing the sum into the regions |n| < |v|, |n| ~ |v| and

In| > |v]. O

3.6.3 Uniqueness of weak subsequential limits

In this section, we sketch the proof of the uniqueness of weak subsequential limits of ()71, which
has been obtained in [OOT20, Proposition 6.6]. For the convenience of the reader, we present the

argument from [OOT20] in our notation.

Proposition 3.6.12. The limit

lim | dyur (@) exp(—f(9)) (3.6.19)

T—o0
exists for all Lipschitz functions f: Cy "/ >7*(T3) — R. In particular, weak subsequential limits of

(ur)r=1 are unique.

Remark 3.6.13. The only reason why Proposition [3.6.12] does not (immediately) yield the weak
convergence of (u7)r=1 is that we do not prove that the limit in (3.6.19)) corresponds to the Laplace
transform of a limiting measure. As described in the proof of Theorem [3.1.3] this part follows from

Prokhorov’s theorem.
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As was observed in [OOT20], Proposition [3.6.12 follows essentially from the same estimates as in
the proof of uniform bounds on the variational problem (Proposition [3.3.1)).

Proof. We recall from (3.2.9) that

dper(8) = s exp (= V™ (pr(V)6): ) A((War)4P) (@), (3.6.20)

ZT,)\

We now split the proof into two steps.

Step 1: Reduction. Let k > 1 be a large integer. In this step, we reduce the existence of the limit
in (3.6.19)) to the existence of the limit

Jim B exp (= F(We)= VAW —e W) | (36.21)
for all Lipschitz functions f: C;l/Q_H(Tij’) — R and all € > 0. To this end, we first note that
1 — exp(—ez®) < ex® < kleexp(x)

for all z > 0. Using Proposition [3.3.3] this implies

Ep| exp (= (W)= V™ (WE): ) | - Ep[exp (= sWe)= VW) —elWooliin ) ||

= B[ (1= exp (= eWallnnr)) ox (= FWe)= V™ (or(9)War): )|

e Bl oxp (||Woo||quh — (W)= V™ (or (V)W) ) |

Sk f €

Thus, the existence of the limit in (3.6.21]) implies the existence of the limit

lim Ep[exp ( — f(We)— VN W): )} (3.6.22)

T—w
for all Lipschitz functions f: C;l/%“(']l‘?’) — R. By setting f =0, we see that (3.6.22)) implies the
convergence of the normalization constants Z7* as T" — co. Since (3.6.19)) and (3.6.22)) only differ
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by a factor of Z™*  we obtain that the limit in (3.6.19) exists.
Step 2: Ezistence of the reqularized limit (3.6.21]). Using the Boué-Dupuis formula (Theorem [3.2.1))
and arguing as in the derivation of (3.3.22)), we have that

—log (EP[eXp ( — fWe)= VW) _EHWOOHE;W*“)D

: T T T )\ T 1
— inf &l [w] + & [w] + &5 [w] + VL)) + Sy + el Lolw] + W v |

weH,

(3.6.23)

Here, V is as in (3.3.1) and & [w], & [w], and & [w] are as in (3.3.24)-(3.3.26)), but the term
(W + I[u]) in (3.3.24)) is replaced by

FWoo + Lo [Jf (Vs (W))W + Lo [w]).

In contrast to (3.3.24)-(3.3.26)), we also reflect the dependence on T and w in our notation. To

avoid confusion, we also recall that the term Ep [50 + CT’*] in (3.3.22) vanishes due to our choice
of ¢™*. Our estimates in the proof of Proposition m show that the infimum in (3.6.23)) can be

take over w € H, satisfying the additional bound

A 1
Ee [ VUEIw]) + Gluly + el -] $2 1

In order to conclude the existence of the limit (3.6.21]), it therefore suffices to prove for all T, S > 1

the estimate

i@%mm&wﬂﬂmM&mwwgmm
7= (3.6.24)

. _ 1
ﬁmmmaﬂnﬁ+mbwmnﬂmmwﬂHD,
where 1 > 0 is sufficiently small. We only present the estimate (3.6.24) for & [w] — & [w] and

V(IZ[w]) — V(15 [w]), since the remaing estimates are similar.
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Step 2.a: Estimate of £ |w] — E7[w]. For the convenience of the reader, we recall that

ENTw] = F(Wao + Lo[J7 (Vo (W)P)W] + Lo [uw]) — A2J (Ve o (Wog)? ) Wl I [w] dae

T3
—2\? J ((V # (W;WQSJ))W; — MOTOW;[S])[OTO [w]d.
T3
(3.6.25)
We estimate the contributions of the three terms separately. For the first summand in (3.6.25|),

we have that

|f(Weo + Lo [JF (V= (W))W ]+ Lo[w]) = f (Weo + L[ T (V5 (W) )W) + Lo [w])

< Lip(f)| Lol T+ (V + (W)W ] = L[ T (Vo (W)W | oo

The desired estimate then follows from a minor modification of ((3.2.47)).
We now turn to the second summand in (3.6.25)). First, we note for any v > 0 that

|15 [w] = I [w]l g1 = (o2 (V) = ps(V) Leo[w] | = < min(S, T) 7 | Lo[w] |- (3.6.26)
Now, we let 0 < v <" <min(1/2,8). Using (3.6.26), we obtain that
‘ LS(V* (WD )WZET [w]dx — LS(V* (WE2)WER S [w]da
<

(Ve s (W))W — (Ve s (W))W I [w] g

-1
cz 't

o CHUABYES

JR 14 1 R A 1 [

min(S,T) | (Vi s (W))W

< (Jovmowzpare - @ gvzgms

CZHH/)

The desired estimate then follows from a minor modification of (3.2.47) and Lemma [3.6.8, The
estimate of the third term in (3.6.25)) is similar and we omit the details.

—1 !
Cx +

* oo w]] -
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Step 2.b: Estimate of V(IL[w]) — V(I5[w]). Using Holder’s inequality and interpolation, it holds

that
2(1— n)
lollacrsy < Jl] 3*{‘}5 — ;ﬁ‘*i 1y (3.6.27)

Using Holder’s inequality, (3.6.27), and I = pr(V)I;, we obtain that

VUL L]) = V(I [w])]

3
< (Hoolwllizs + 1 lw] | za) I 22 [w] — 25 [w] | s
2(1—k) 1+ 146k

4. 1+6k
S Moo w]] 375 ool ]HH‘"’””HIT[ w] — I [w]] %

(14+6k)K 4.2(1 K) 146K

Smin(S,T) 3+dr H] [ ]| 7?72&2 H[ [ ]HH3+4KI

Since 4(1+6k)/(3+4k) < 2, the desired estimate follows from Lemma and Young’s inequality.
0

Remark 3.6.14. As seen in the proof of Proposition |3.6.12 the regularizing factor exp( —

EHWOOH(";,W,K) in (3.6.21)) is needed to estimate V(1L [w]) — V(IS |w]).
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CHAPTER 4

Invariant Gibbs measures for the three-dimensional wave

equation with a Hartree nonlinearity II: Dynamics’]

4.1 Introduction

In this chapter we deal with the dynamical aspects of Theorem As a result, it is inspired
by recent advances in random dispersive equations. The interest in random dispersive equations
stems from their connections to several areas of research, such as analytic number theory, harmonic
analysis, random matrix theory, and stochastic partial differential equations (cf. [Nahl6]). In fact,
much of the recent progress have been fueled through similar advances in singular stochastic par-
tial differential equations, such as Hairer’s regularity structures [Hail4] or Gubinelli, Imkeller, and

Perkowski’s para-controlled calculus [GIP15].

The most classical problem in random dispersive equations is the construction of invariant measures
for (periodic and defocusing) nonlinear wave and Schrodinger equations. This has been an active
area of research since the 1990s, and we refer the reader to Figure for an overview of some of

the most important contributions.

The first results in this direction were obtained in one-spatial dimension by Friedlander [Fri85],

®The contents of this chapter have been posted as a research article on ArXiv [Bri20d].
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Dimension & Nonlinearity Wave Schrodinger

d=1, |ulP'u [Eri85) [Zhio4] [Bou94]

d=2, |ulu [Bou9o]
[0T200]

d=2, |ulftu [DNYT9)

g >2: [Bou97
, ) B>1: [0OT0]
d=3, (lz D« u’) u 2>p3>1—¢ [DNY2I].
B >0: This thesis.
1—e=fF>0: Open.

d=3, |ulu Open Open
Figure 4.1: Invariant Gibbs measures for defocusing nonlinear wave and Schrodinger equations.

Zhidkov [Zhi94] and Bourgain [Bou94]. Friedlander [Fri85] and Zhidkov [Zhi94] proved the invari-
ance of the Gibbs measure for the one-dimensional nonlinear wave equation. Inspired by earlier
work of Lebowitz, Rose, and Speer [LRS8§|, Bourgain [Bou94|] proved the invariance of the Gibbs

measure for the one-dimensional nonlinear Schrodinger equations
i0u + 02u = |uP 1, (t,z) e R x T.

In this seminal paper, Bourgain introduced his famous globalization argument, which will be de-
scribed in detail below. Even though Friedlander [Fri85], Zhidkov [Zhi94] and Bourgain [Bou94]
consider random initial data (drawn from the Gibbs measure), the local theory is entirely deter-
ministic. The reason is that the Gibbs measure is supported at spatial regularity 1/2—, which is

(cf. [CCTO03]) and sqer =

above the (deterministic) critical regularities sqe; = s — p%l for the

T =

1
2

~—

one-dimensional wave and Schrodinger equations (in H*®), respectively.

The first result in two spatial dimensions was obtained by Bourgain in [Bou96]. He proved the

invariance of the Gibbs measure for the renormalized cubic nonlinear Schrodinger equation
i0u + Au =:|ul*u: (t,x) e R x T?. (4.1.1)
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Here, : |u[?u: denotes the Wick-ordered cubic nonlinearity. In contrast to the one-dimensional
setting, the Gibbs measure is supported at spatial regularity 0—, which is just below the (de-
terministic) critical regularity s, = 0. To overcome this obstruction, the local theory in [Bou96]
exhibits probabilistic cancellations in several multi-linear estimates. Very recently, Fan, Ou, Staffi-

lani, and Wang [FOS21] extended Bourgain’s result from the square torus T? to irrational tori.

The situation for two-dimensional nonlinear wave equations is easier than for two-dimensional
nonlinear Schrodinger equations. While the Gibbs measure is still supported at spatial regularity
0—, this is partially compensated by the smoothing effect of the Duhamel integral. In [OT20b],

Oh and Thomann prove the invariance of the Gibbs measure for
—0fu —u + Au =:uP: (t,r) e R x T?

where p > 3 is an odd integer. We emphasize that their argument for the cubic (p = 3) and
higher-order (p = 5) nonlinearity is essentially identical. Due to its clear and detailed exposition,
we highly recommend [OT20b] as a starting point for any beginning researcher in random dispersive

equations.

In a recent work [DNY19], Deng, Nahmod, and Yue proved the invariance of the Gibbs measure

for the nonlinear Schrédinger equations
i0u + Au =:|[ulP " u: (t,z) e R x T? (4.1.2)

where p = 5 is an odd integer. In contrast to the situation for the two-dimensional nonlinear
wave equations, this result is much harder than its counterpart for the cubic nonlinear Schrodinger
equation . The main difficulty is that all highxlowx ... xlow-interactions between the
random initial data with itself or smoother remainders only have spatial regularity 1/2—, which is
strictly below the (deterministic) critical regularity sge; = 1—1%. To overcome this difficulty, Deng,

Nahmod, and Yue worked with random averaging operators, which are related to the adapted linear
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evolutions in [Bri20a]. Their framework was recently generalized through the theory of random

tensors [DNY20], which will be further discussed below.

Unfortunately, much less is known in three spatial dimensions. The reason is that the Gibbs
measure is supported at spatial regularity —1/2—, which is far below the deterministic critical
regularity Sqet = % — 1%' In fact, the invariance of the Gibbs measure for both the cubic non-
linear wave and Schrodinger equation are famous open problems. Previous research has instead
focused on simpler models, which are obtained either through additional symmetry assumptions
or a mollification of the nonlinearity. In the radially-symmetric setting, the invariance of the
Gibbs measure for the three-dimensional cubic wave and Schrédinger equation has been proven in
[BB14b, Suzlll, Xuld] and [BB14al, respectively. The radially-symmetry setting was also studied
in earlier work on the two-dimensional nonlinear Schrédinger equation [Denl2, [Tzv06l Tzv08].

In [Bou97], Bourgain studied the defocusing and focusing three-dimensional Schrédinger equation

with a Hartree nonlinearity given by
i+ Au =+ (V= [ul*)u: (t,r) e R x T3, (4.1.3)

where the interaction potential V' behaves like +|z|~~%). He proved the invariance of the Gibbs
measure for § > 2, which corresponds to a relatively smooth interaction potential. In the focusing
case, this is optimal (up to the endpoint § = 2), since the Gibbs measure is not normalizable
for p < 2 (cf. [OOT20]). From a physical perspective, the most relevant cases are the Coulomb
potential |x|~! (corresponding to 8 = 2) and the Newtonian potential || 2 (corresponding to
S = 1). Since the cubic nonlinear Schrodinger equation formally corresponds to with the
interaction potential V' given by the Dirac-measure, it is also interesting (and challenging) to take
f close to zero. Very recently, Deng, Nahmod, and Yue [DNY21] used random averaging operators
(as in [DNYT9]) to cover the regime 8 > 1 — € in the defocusing case, where € > 0 is a small

unspecified constant. As discussed in [DNY21], it is likely possible to use the more sophisticated

173



theory of random tensors from [DNY20] to cover the regime § > 1/2. Below the threshold § = 1/2,
the Gibbs measure becomes singular with respect to the Gaussian free field (see Theorem [4.1.1)).
Since the theory in [DNY20] is developed for Gaussian initial data, it cannot yet be used in the
regime 0 < § < 1/2. In fact, this is mentioned as an open problem in [DNY20, Section 9.1].

After the completion of the series [Bri20c, [Bri20d], the author learned of independent work by Oh,
Okamoto, and Tolomeo [OOT20]. The authors study (the stochastic analogue of) the focusing and

defocusing three-dimensional nonlinear wave equation with a Hartree nonlinearity given by
—Pu—u+ Au= £ :(V «u?)u: (t,x) e R x T?,

where A > 0. The main focus of [OOT20] lies on the construction and properties of the Gibbs
measures, which are discussed in Chapter . Regarding the dynamical results of [OOT20], the

authors prove the invariance of the Gibbs measure in the following cases:

(i) focusing (—): [ > 2 or =2 in the weakly nonlinear regime.

(ii) defocusing (+): 8> 1.

In light of the non-normalizability of the focusing Gibbs measure for § < 2 and f = 2 in the
strongly nonlinear regime (cf. [OOT20]), the result is optimal in the focusing case. In the defo-
cusing case, however, the restriction 5 > 1 excludes all Gibbs measures which are singular with
respect to the Gaussian free field. In contrast, Theorem below covers the complete range
£ > 0, which includes singular Gibbs measures. In fact, this is the main motivation behind the

two-paper series [Bri20c, Bri20d].

In the preceding discussion, we have seen several examples of invariant Gibbs measures supported at

regularities even below the deterministic critical regularity. In [DNY19, [DNY20], Deng, Nahmod,
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Dimension Wave Schrodinger
& Nonlinearity sq Sprob Sdet sq Sprob Sdet

— p—1 1_ _1 1_ 1 1_ _ 1 12
d=1, [uf"lu 2 2p 27 p 2 p1 2 p1

— p—1 _ _3 _ 2 _ _ 1 _ 2
d=2, |ulf'u 0 5 1— % 0 ) 1--%

_ 1o [2 _1 (248 3 1-28 1 (148 1-28
d=3, (Vxu]) u 3 min(=3~,5) max(—5=-,0) 5 min(=5>,1) max(—>,0)

— 2 1 _2 1 1 1 1
d=3, |ul*u 5 3 3 2 2 2

Relevant spatial regularities for the invariance of the Gibbs measure: sg (support of the Gibbs measure),
Sprob (probabilistic scaling), sqer (deterministic scaling). The value of sy for power-type nonlinearities
can be found in [DNYT9]. The probabilistic critical regularity sprop for the wave equation with a Hartree
nonlinearity is a result of high x high xhigh—low and (high xhigh—low) xhigh—high-interactions. For the
Schrédinger equation with a Hartree nonlinearity, sprop is a result of (high xhigh—high) xhigh—high and

(high x high—low) x high—high-interactions.

Figure 4.2: Overview of relevant regularities.

and Yue describe a probabilistic scaling heuristic, which takes into account the expected proba-
bilistic cancellations. We denote the critical regularity with respect to the probabilistic scaling
by Sprob and the spatial regularity of the support of the Gibbs measure s¢. Based on the proba-
bilistic scaling heuristic, we then expect probabilistic local well-posedness as long as sq¢ > Sprob.
We record the relevant quantities for nonlinear wave and Schrodinger equations in Figure [4.2] For
comparison, we also include the deterministic critical regularity sqe. The probabilistic scaling
heuristic, however, does not address any obstructions related to the global theory, renormaliza-
tions, or measure-theoretic aspects. As a result, it does not capture some of the difficulties for
dispersive equations with singular Gibbs measures, such as the cubic nonlinear wave equation in

three dimensions.
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Our discussion so far has been restricted to invariant Gibbs measures for nonlinear wave and
Schrodinger equations. While this is the most classical problem in random dispersive equations,
there exist many more active directions of research. Since a full overview of the field is well-beyond
the scope of the introduction, we only mention a few directions and refer to the given references

for more details.

(i) Invariance of white noise [KMV20, [Oh09, [QV08§],

(ii) Invariant measures (at high regularity) for completely integrable equations [TVI14] [TVI5]
DTVIS),

(i) Quasi-invariant Gaussian measures for non-integrable equations [GOTIS, [0OT20al Tzv15],

(iv) Non-invariance methods related to scattering, solitons, and blow-up [Bril8| [Bri20¢, [DLM20,
KM19, Pocl7],

(v) Wave turbulence [BGH19, [CG19, [CG20, DHT9],

(vi) Stochastic dispersive equations [BD99, BD03, DW18|, I(GKO18al IGKO18b].

After this overview of the relevant literature, we now turn to a more detailed description of the
most relevant methods. Our discussion will be split into two parts separating the local and global
aspects. As a teaser for the reader, we already mention that our contributions to the local theory
will be of an intricate but technical nature, while our contributions to the global theory will be

conceptual.

As mentioned above, the first local well-posedness result for dispersive equations relying on proba-

bilistic methods was proven by Bourgain [Bou96]. He considered the renormalized cubic nonlinear
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Schrodinger equation

10— u + Au =:|ul?u: (t,r) e R x T?,
(4.1.4)

u|t:0 =¢
The additional —u-term has been introduced for convenience, but can be easily removed through a
gauge transformation. The random initial data ¢ is drawn from the corresponding Gibbs measure,
which coincides with the (complex) ®3-model. Since the ®3-model is absolutely continuous with
respect to the Gaussian free field and the local theory does not rely on the invariance of the Gibbs

measure, we can represent ¢ through the random Fourier series

_ N In itnay 4.15
¢ ZZ] 0% (4.1.5)

Here, {(n) o A1+ [n2 and (gn)nezz is a sequence of independent and standard complex-valued
Gaussians. The independence of the Fourier coefficients, and more generally the simple structure
of , is an essential ingredient for many arguments in [Bou96]. A direct calculation yields
almost surely that ¢ € H*(T?)\L?(T?) for all s < 0. Since is mass-critical, ¢ lives below
the (deterministic) critical regularity. To overcome this obstruction, Bourgain decomposed the
solution by writing
u(t) = et 4u(t).

This decomposition is commonly referred to as Bourgain’s trick, but is also known in the stochastic
PDE literature as the Da Prato-Debussche trick [DDO03|. Using this decomposition, we see that

the nonlinear remainder v satisfies the evolution equation
10w — v+ Av =: [ G 42T g g (t,r) e R x T

Through a combination of probabilistic and PDE arguments, Bourgain proved that the Duhamel

integral

I[ [eIHA) p it —1+8) ]
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lives at spatial regularity 1/2— (see also [CLS21]). This opens the door to a contraction argument
for v at a positive (and hence sub-critical) regularity. The contraction argument requires further
ingredients from random matrix theory to handle mixed terms, but can in fact be closed. We
emphasize that the nonlinear remainder v is treated purely deterministically and is not shown to

exhibit any random structure.

We now discuss the more recent work of Gubinelli, Koch, and Oh [GKO18a], which covers the

stochastic wave equation
—Pu—u+ Au=u*+{  (t,z) e R x T,
u[0] = 0.

Here, ¢ denotes space-time white noise. Inspired by a (higher-order version of) Bourgain’s trick,

we decompose

u=$+OYO—I-U.

Here, the linear stochastic object § solves the forced wave equation
(—0F —1+A)¥=¢.

The black dot represents the stochastic noise £ and the arrow represents the Duhamel integral. An
elementary arguments shows that § has spatial regularity —1/2—. The quadratic stochastic object

OYO is the solution of the forced wave equation

(—0? -1 —i—A)OYO::(?)?: :

Based on similar arguments for stochastic heat equations, one may expect that OYO has spatial

regularity 2 - (—1/2—) + 1 = 0—, where the gain of one spatial derivative comes from the Fourier
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multiplier (V)™! in the Duhamel integral. Using multilinear dispersive estimates, however, Gu-
binelli, Koch, and Oh proved that OYO has spatial regularity 1/2—. Using the definition of our

stochastic objects, we obtain the evolution equation

(—63—1+A)v=2(c‘ro+v) -+ (OYOJFU)Q

for the nonlinear remainder v. In the following discussion, we let & and & be the low xhigh
and high xhigh-paraproducts from Definition . Due to low xhigh-interactions such as v©3%,
we expect v to have spatial regularity at most (—1/2—) + 1 = 1/2—. We emphasize that, unlike
high x high-interactions, the lowxhigh-interactions are not affected by multi-linear dispersive ef-
fects. However, this implies that the spatial regularities of v and § do not add up to a positive
number, which means that the highxhigh-term v &% cannot even be defined (without additional
information on v). This problem cannot be removed through a direct higher-order expansion of
u and persists through all orders of the Picard iteration scheme. Instead, Gubinelli, Koch, and
Oh [GKO18a] utilize ideas from the para-controlled calculus for singular stochastic PDEs [GIP15].
We write v = X + Y, where X and Y solve

(~F =1+ 8)X =2(%+ X +V) @F

and
2
(=7 —1+A)Y = 2(OY'O+X+Y) ®F+ (OYO+X+Y) :
The para-controlled component X only has spatial regularity 1/2—, but exhibits a random struc-
ture. In the analysis of the high x high-interactions X &%, this random structure can be exploited
through the double Duhamel trick. In contrast, Y lives at a higher spatial regularity and can be

controlled through deterministic arguments. The local theory in this paper will follow a similar

approach, but relies on more intricate estimates, which will be further discussed below.
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After this discussion of the local theory, we now turn to the global theory. We discuss Bourgain’s
globalization argument [Bou94], which uses the invariance of the truncated Gibbs measures as a
substitute for a conservation law. We first recall the definition of the different modes of convergence

for a sequence of probability measures, which will be needed below.

Definition (Convergence of measures). Let # be a Hilbert space and let B(%) be the Borel o-

algebra on . Furthermore, let (un)n=1 and p be Borel probability measures on ¥ . Then, we say

that

(i) un converges in total variation to p if

lim sup [u(A) - py(A)] =0,
N—®0 AcB(%)

(11) un converges strongly to p if

lim pn(A) = p(A) for all Ae B(%),

N—>w

(111) N converges weakly to p if

lim py(A) = p(A) for all A e B(#) satisfying pu(0A) = 0.

N—00

To isolate the key features of the argument, we switch to an abstract setting. Let # be a Hilbert
space and let @ : Rx# — # be a sequence of jointly continuous flow maps. Let ux be a sequence
of Borel probability measures on #. Most importantly, we assume that py is invariant under ® 5
for all N, i.e.,

pn (Py(t)rA) = un(A) for all te R and A e B(%).

In our setting, &5 will be the flow for a frequency-truncated nonlinear wave equation and

will be the corresponding truncated Gibbs measure. Our main interest lies in the removal of the
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truncation, i.e., the limit of the dynamics ® and measure puy as N tends to infinity. Let u
be a limit of the sequence iy, where the mode of convergence will be specified below. In order
to construct the limiting dynamics on the support of u, we need uniform bounds on ®y on the

support of u. At the very least, we require an estimate of the form

limsup,u( sup | Py (t)d)se < 6_1) > 1—o0.(1), (4.1.6)

N—w te[0,1]
where 0 < € < 1 and o is the small Landau symbol. Bourgain’s globalization argument [Bou94]

proves (4.1.6]) in two steps.

In a first measure-theoretic part, we use that

i sup |@n (0l < ) = o sup [ (ol <€)< sup [pu(A) — p(A)]

te[0,1] te[0,1] AeB(%)

As long as uy converges in total variation to u, we can reduce (4.1.6]) to

lim supuN< sup |Pn(t)d|e < 6_1> > 1—o0.(1), (4.1.7)

N—o te[0,1]
In a second dynamical part, we use the invariance of py under @, and the probabilistic local

well-posedness. Let J > 1 be a large integer and define the step-size 7 = J~!. Then,

MN( sup |y (t)o)s > e—l) Z MN( sup [ On ()¢l > e‘l)

te[0,1] te[jT,(j+1)7]
J—1
= > i (sup [ @x()@N ()0 > € 1)
j=0 tE[OT

Using the invariance of py under ®y(j7), we obtain that

o sup [ @ (Dl > 7)< 77w sup [@(t)o] > ). (4.1.8)

te[0,1] te[0,7]

The right-hand side of (4.1.8) can then be controlled through an appropriate choice of 7 and the

local theory (as well as tail estimates for py).
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In (this sketch of) Bourgain’s globalization argument, the convergence in total variation played
an essential role. In all previous results on the invariance of (defocusing) Gibbs measures [Bou94,
Bou96l, Bou97, [DNY19, [OOT20, [OT20b, [Zhi94], the truncated Gibbs measures converge in total
variation, so that this assumption does not pose any problems. In our case, however, the truncated
Gibbs measures py only converge weakly to the Gibbs measure y. The weak mode of convergence
is related to the singularity of the Gibbs measure i with respect to the Gaussian free field g,
which requires softer arguments in the construction of y. Using the weak convergence of uy to p,
we can only reduce (4.1.6)) to

lim sup [lim sup HM( sup] DN (t)plloe < €_1>] > 1—o.(1), (4.1.9)

N—ow M—o te[0,1

In , we will typically have M > N, and hence we cannot (directly) use the invariance of the
truncated Gibbs measures.

In [NOR12], Nahmod, Oh, Rey-Bellet, and Staffilani prove the invariance of a Wiener measure
for the periodic derivative nonlinear Schrodinger equation. The truncated Wiener measures in
INOR12] are defined using a frequency-truncation not only in the interaction but also in the
Gaussian free field (cf. [NORI2 (5.13)]. As a consequence, the truncated Wiener measures only
converge weakly (cf. [NORIZ, Proposition 5.13]). In order to prove (4.1.9)), the authors rely on the
(quantitative) mutual absolute continuity of the (truncated) Wiener measure with respect to the
(truncated) Gaussian free field (cf. [NORI12, (6.7)]). Unfortunately, the singularity of the Gibbs

measure in this work (as stated in Theorem [4.1.1)) prevents us from using a similar approach.

4.1.1 Main results and methods

Before we can state our main results, we need to define the renormalized and frequency-truncated

Hamiltonians, wave equations, and Gibbs measures. For any dyadic N > 1, we define the renor-
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malized and frequency-truncated potential energy by

1

Z_l Lg :(V ¥ (P<N¢)2)(P<N¢)2: dz

ef 1 ~

d:fé_l J [(V # (Pen9)?)(Pen9)? — 2an(P<ng)® — 4(MyPng)P<y¢ + V(0)ai + QbN] dz +cn.
T3

Here, the renormalization constants ay, by, ¢y are as in Definition [3.2.6], Definition and

Proposition in Chapter [3] but their precise values are not needed in this paper. The renor-

malization multiplier My is defined by

~

My f(n) & ( 3 %pﬂkﬁ) ), (4.1.10)

where py is a truncation to frequencies of size < N. The Hamiltonian Hy is then defined as

def 1

Hlon 011 & 5 (I6vlls + KD)oulEs + 101132) + 1 |V + (Perd)(Paye)sdo. - (@111)

The renormalized and frequency-truncated nonlinear wave equation corresponding to H is given
by
(=0 =1+ A)u= PgN( (V # (Peyu)?) P<yu: ) (t,r) e R x T3,

(4.1.12)
U|t=0 = ¢o, 5tu|t=0 = ¢,
where the renormalized nonlinearity is given by
(V5 (Peyt)?) Peyuw: X (V s (Peyt)?) Py — an'V (0) Peyu — 2My Py, (4.1.13)

For a fixed N > 1, the coercivity of Hy implies the global well-posedness of (4.1.12)). We also

define the renormalized square

((Peyu)®:E (Poyu)? — ay, (4.1.14)

which will simplify the notation below. The Gibbs measure u$ corresponding to Hy is given

by 15 = uny @ ((V))ug, where uy is as in Chapter [3| and ((V))4g is the pushforward of the
N # #
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three-dimensional Gaussian field under (V). For future use, we also define
def
9= 9@ (V))sg. (4.1.15)

Before we state the properties of the truncated Gibbs measures %, we recall the assumptions on

the interaction potential from Chapter [B] In these assumptions, 0 < 3 < 3 is a fixed parameter.

Assumptions A. We assume that the interaction potential V satisfies

(i) V(x) = cg|lz|~#) for some cg > 0 and all x € T? satisfying ||| < 1/10,
(ii) V(x) 25 1 for all x € T?,
(1ii) V(z) = V(=) for all x € T3,

(iv) V is smooth away from the origin.

The following properties of the Gibbs measures u§ are a direct consequence of which is
phrased in terms of uy. For notational reasons related to the weak convergence instead of conver-
gence in total variation, we use a second parameter M for the frequency-truncation. Our notation

for the random variables, which is based on dots, will be discussed below the theorem.

Theorem 4.1.1 (Gibbs measures). Let k > 0 be a fixed positive parameter, let 0 < 8 < 3 be a
parameter, and let the interaction potential V' be as in the Assumptions [A] Then, the truncated
Gibbs measures (u5))y=1 weakly converge to a limiting measure & on #, Y >7F(T3), which is
called the Gibbs measure. If in addition 0 < 8 < %, then the Gibbs measure 12 is singular with
respect to the Gaussian free field g®.

Furthermore, there exists a sequence of reference measures (V) =1 on %, Y *7*(T?) and an am-

bient probability space (€2, F,P) satisfying the following two properties:
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(i) (Absolute continuity and L¢-bounds) The truncated Gibbs measure 5, is absolutely contin-
uous with respect to the reference measure 15, More quantitatively, there exists a parameter

g > 1 and a constant C' = 1 independent of M such that

for all Borel sets A < %, /> "(T3).

(ii) (Representation of ;) Let v = min(1/2 + 8,1). Then, there exist two random variables
o on (. F) — {1/2_K(']I‘3) and a large integer k = k() = 1 satisfying for all p > 2 that

VJ\% — Law[p(° + om )7 g® = LaWP('), and (EPH °M H;g_“(jl‘3)) ’ SP

k
2 .
Remark 4.1.2. After the completion of the series [Bri20c, [Bri20d], the author learned of indepen-
dent work by Oh, Okamoto, and Tolomeo [OOT20], which yields an analogue of Theorem (4.1.1]

We refer to Remark in Chapter |3| for a more detailed comparison.

We will require that the ambient probability space (€2, F,P) is rich enough to contain a family
of independent Brownian motions, which is clear from the definition of (2, F,P) in [Bri20c] and

detailed in Section [4.4.5]

Let us further explain the notation in Theorem [4.1.1 We use dots to represent the random data,
since they can be used as building blocks in more complicated stochastic objects. We already saw
this graphical notation in our discussion of [GKO18a] and we refer the reader to [MWXI17] for
a detailed discussion of similar diagrams. We use the blue dot e for the Gaussian random data,
since it lives at low spatial regularities and is primarily viewed as a high-frequency term. We use
the red dot ©y to denote the more regular component of the random data, since we primarily
view it as a low-frequency term. Furthermore, the blue dot e is filled while the red dot oy is
not filled. The reason is that the manuscript should be accessible to colorblind readers and also

readable as a black and white copy.
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In the following, we often write ¢ for a generic element ¢ € #, Y 27“('1[’3). The purple diamond

will be used as a building block for further stochastic objects. When working with the reference

measure /5, we have that
LaWV%(‘) = LaWﬂm(' + °Mm )

Naturally, we chose the color purple since it is a mixture of blue and red. The change in shape, i.e.,
from a dot to a diamond, is primarily made for colorblind readers. We also only use diamonds for
intrinsic objects in 7, Y 27”(’]1"3), while dots are used for objects defined on the ambient probability

space (2, F,P). The significance of this distinction will be discussed in Sections and

While Theorem already contains the measure-theoretic results of the series [Bri20c, [Bri20d],

we now state the dynamical results.

Theorem 4.1.3 (Global well-posedness & invariance). There exists a Borel-measurable set S <

1275 (T3) satisfying 42 (S) = 1 and such that the following two properties hold:

(i) (Global well-posedness) Let &y be the flow of the renormalized and frequency-truncated

wave equation (4.1.12). Then, the limit

Do[t]* Y lim dy[t]e
N—w

exists in #~Y/27%(T3) for all te R and * € S.
(ii) (Invariance) The Gibbs measure & is invariant under @, i.e., it holds for all ¢ € R that
oot i = 115,

Remark 4.1.4. In the proof of Theorem [4.1.3] we restrict ourselves to the case € (0,1/2). The
purpose of this restriction is purely notational. The same argument also works for 5 € [1/2,3), as

long as /3 in each estimate is replaced by min(g, 1/2).
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Remark 4.1.5. While Theorem [4.1.3]shows that the limiting dynamics ®[¢] are well-defined, we
do not obtain that ®[t] satisfies the group property. The author believes that the estimates in
this paper (from Sections are strong enough to prove the group property, but the stability
theory (Section and Section would need to be modified. Instead of working with a single
flow ®y[t], one needs similar statements for the mixed flows @y, [t1]Pn,[t2]. We refer the reader
to [ST20] for a more detailed discussion of the group property and its relation to the recurrence

properties of the flow.

We now describe individual aspects of our argument. As in our discussion of the previous litera-
ture, we separate the local and global aspects. As mentioned above, our contributions to the local
theory are of an intricate but technical nature, whereas our contributions to the global theory are

conceptual.

In the local theory, we use the absolute continuity u$, « 1§, and the representation of , from
Theorem As aresult, the reference measure v/, serves the same purposes as the Gaussian free

field in earlier results on invariant Gibbs measures. We then follow the para-controlled approach

of [GKO18a] and decompose the solution uy(t) of (4.1.12) as
UN=T+\K +XN+YN7 (4116)

where the stochastic objects T and N4 , the para-controlled component Xy, and the smoother
nonlinear remainder Yy are defined in Section . The smoother component ©y; in the represen-
tation of v/, will be placed inside Yy. In comparison to [GKO18a], however, there is an increase in
the complexity of the evolution equation for Yy. We split the terms into four different categories,

which correspond to the methods used in their estimates.
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e Stochastic objects: These terms are explicit and include

In contrast to the previous literature, we use multiple stochastic integrals for the non-
resonant /resonant-decompositions, which significantly decreases the algebraic complexities.

We also use counting estimates related to the dispersive symbol of the wave equation.

e Random matriz terms: The terms include

(v Y )PgNYN.

They will be controlled through a recent random matrix estimates of Deng, Nahmod, and

Yue [DNY20, Proposition 2.8|, which is based on the moment method.

o Contributions of para-controlled terms: These terms include
Vo (P<NT®P<NXN) P nYn.

We use the double Duhamel trick to exploit stochastic cancellations between { and Xy. In
our definition of Xy, we use the paradifferential operators & and introduced in
Section [4.2] which form a technical novelty.

e Physical terms: These terms include
Vo« (PgNT'PgNYN)PgN\k: and (V*(PgNYN)Q)PgNYN-

The first term should be viewed as a random operator in Yy, but is mainly treated through
physical-space arguments. We believe that our approach is of independent interest, since it
provides an alternative to the more Fourier-analytic estimates in [Bou96, [GKO18a, [DNY19,
DNY20]. The second term is treated deterministically and we rely on the refined Strichartz-

estimates of Klainerman and Tataru [KT99).
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As we mentioned before, all stochastic objects have been based on ¢ and the smoother component
oy is simply placed inside Yy. This approach yields the convergence of the flows ®5 on the
support of 4& for a short time interval (see Corollary [£.2.12). The structural information in the
decomposition , however, cannot (directly) be carried over to the support of u%, since ®
is only defined on the ambient probability space (€2, F,P). This defect will be addressed below,

since the structural information is required for the global theory.

Remark 4.1.6. As was already mentioned in our overview of the literature, Deng, Nahmod, and
Yue recently developed a theory of random tensors [DNY20], which forms a comprehensive frame-
work for the local theory of random dispersive equations. The theory of random tensors (and
its precursor [DNY19]) rely more intricately on the independence of the Fourier coefficients than
the para-controlled approach. Even under the reference measure v§;, however, the random data
¢ = e 4 oy has dependent Fourier coefficient. This presents a challenge for the theory of random
tensors, which was already mentioned in [DNY20, Section 9.1]. In addition, there are further
technical problems related to the switch from Schrodinger to wave equations, which are described
in Section [£.4.4] As a result, the author views the extension of the theory of random tensors to a
local theory even for singular Gibbs measures and/or nonlinear wave equations as an interesting

open problem.

After this discussion of the local theory, we turn to the global dynamics on the support of the
Gibbs measure 2. As we have seen in our earlier discussion of Bourgain’s globalization argument,
its original version requires the convergence of the truncated Gibbs measures in total variation.
Unfortunately, Theorem only yields the weak convergence of the truncated Gibbs measures
1S, to . We now give an informal description of our new globalization argument, but postpone

a rigorous discussion until Section [4.3]
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We let T = 1 be a large time, B > 1 be a large parameter describing the size of the evolution,
K > 1 be a large frequency scale, and 7 > 0 be a small step-size. For any 7 > 1, we let

Ex (B, jT) € H~Y>7%(T?) be the set of initial data  satisfying for all ¢ € [0, j7] and N > K that

Oy (1) e =1(t) + ‘\I/‘ (t) + wn (1), (4.1.17)

where wy has size at most B in “structured high-regularity” norms. In our rigorous argument,
B will depend on j, but we ignore this during our informal discussion. We also omit a smallness
condition for the difference of ®y(t) ¢ and @ (t)*. The goal is to prove by induction over j < T/
that

limsup p$;(* € Ex (B, 57))

M —o0

is close to one as long as B, K, and 7 are chosen appropriately. The proof relies on four separate

ingredients:

(1) (Structured local well-posedness) This is the base case j = 1. Using our local theory, we
only have to convert the stochastic objects in (4.1.16[), which are based on e, into stochastic

objects based on *.

(ii) (Structure and time-translation) Using the induction hypothesis, we now assume that the
probability u (€ Ex(B,(j —1)7)) is close to one. In order to increase the time-interval,

we let © &' @ m[7]*. Using the invariance of 1§, under ®,;, we obtain that

pir (o€ Ex(B, (7 — 1)7)) = iy (Pulr]e € Ex(B, (j — 1)7)) = iy (+ € Ex (B, (7 — 1)7)),

which is close to one. After unpacking the definitions, we obtain information on the mixed
flow ®n[t — 7|DPps[7] @ for ¢ € |7, j7]. It therefore remains to analyze the difference between

(I)N[t — T](I)M[T]’ and (I)N[t — T](I)N[T] ..
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(iii) (Structure and the cubic stochastic object) The lowest regularity term in @ (7)¢— Py (7) ¢ is
given by a portion of the cubic stochastic object. In this step, we add the linear evolution of
this portion to the mixed flow ®x [t —7]|Py/[7] ¢, which yields a function %y. It is then shown

that @y (t) is an approximate solution of the nonlinear wave equation (4.1.12)) for t € [7, j7].

(iv) (Stability theory) We develop a para-controlled stability theory and construct a solution
uy close to the approximate solution @y, which also accounts for the remaining portion of
O (1) ¢—P )y (7)+. Since our stability theory preserves the structure of Uy, this yields
on the time-interval [7, j7]. Since the base case already yields the desired structure on [0, 7],

this completes the induction step.

As is evident from this sketch, the proof of global well-posedness is much more involved than
in Bourgain’s original setting [Bou94, Bou96]. While not perfectly accurate, the author finds
the following comparison with the deterministic global theory of dispersive equations illustrative.
Bourgain’s globalization argument [Bou94l [Bou96] is the probabilistic version of a deterministic
global theory using a (sub-critical) conservation law. The conservation law is replaced by the
invariance, which implies that ¢t — un(®Pn(t)¢ € £) is constant. In both cases, the global well-
posedness is obtained by iterating the local well-posedness, but the estimates used in the local
theory are no longer needed. In contrast, the new globalization argument is the probabilistic
version of a deterministic global theory using almost conservation laws (cf. [CKS02]). The place
of the almost conserved quantities is taken by the functions t — (P ()¢ € £), which should be
close to a constant function. In addition, the proof of global well-posedness often intertwines the
local estimates and the choice of the almost conserved quantities. For entirely different reasons, the
similarity with almost conserved quantities also appears in the globalization argument of [NOR12],
which proves the invariance of a Wiener measure for the periodic derivative nonlinear Schrodinger

equation. The truncated dynamics in [NORI2, (3.1)] only approximately conserve the energy
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(cf. [NORI12, Theorem 4.2]). Even with the same truncation parameter in the measure and the
dynamics, the truncated Wiener measure is then only almost invariant (cf. [NORI2, Proof of

Lemma 6.1]).

Our globalization argument for the nonlinear wave equation also differs from the globalization
argument for the parabolic stochastic quantization equation as in [HMI§]. While the invariant
measure is singular in both situations, the dependence on the initial data in the parabolic setting
is continuous even at spatial singularity —1/2—. The continuous dependence drastically simplifies

the stability theory, which forms the most difficult part of our globalization argument.

Once the global well-posedness has been proven, the proof of invariance is essentially the same as
in [Bou94].

Remark 4.1.7. An argument of this length creates both mathematical challenges and different
options for the exposition. The author does not claim to have found the perfect solutions or made
the best expository choice in every single instance. While we postpone a more detailed discussion
to Remark [4.1.6], Remark [4.2.3, Remark Remark [4.4.43] Remark [£.8.2] and Remark [4.9.11]
the author wanted to make this point in a central location of the paper. The author hopes that

this encourages the reader to think more about our result and related open problems.

Acknowledgements: The author thanks his advisor Terence Tao for his patience and invalu-
able guidance. The author also thanks Nikolay Barashkov, Yu Deng, Martin Hairer, Redmond
McNamara, Dana Mendelson, Andrea Nahmod, Tadahiro Oh, Felix Otto, Nikolay Tzvetkov, and

Haitian Yue for helpful discussions.

4.1.2 Overview

Due to the excessive length of this chapter, we include a few suggestions for the reader. We also

display the (main) relationship between the sections in Figure .
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Theorem 4.1.3:

Global well-posedness and invariance

Local Theory Global Theory

Section 3.1:

Section 2.1:

Para-controlled ansatz Global well-posedness

Section 2.2:

Multi-linear master

Invariance

estimate
Section 3.3:
Section 2.3:
Structure and stability

Local well-posedness

theory

Section 2.4:

Stability theory

— Structural change
Section 4: Section 9:
Tools From free to Gibbsian

random structures

Section 5:

Stochastic objects

Section 6:

Random matrix theory

Section 7:

Para-controlled estimates

Section 8:

Physical-space methods

This figure illustrates the main dependencies between the different sections. The heart of the paper lies in
the local and global theory (Section and [4.3)), which, as long as the reader believes certain estimates,
can be read independently from the rest of the paper. A few minor dependencies between the different

sections are not included in this illustration. For instance, basic properties of X *’-spaces, which are
recalled in Section will also be used in Section and

Figure 4.3: Dependencies between the different sections.
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The local and global theory are described in Section [£.2] and [4.3] respectively. These sections
contain the main novelties of this paper and should be interesting to most readers. As long as the
reader believes several estimates, these sections are also self-contained. We therefore encourage

the expert to focus on these sections.

Section [£.4] contains a collection of tools from dispersive equations, harmonic analysis, and proba-
bility theory. The reader should be familiar with the content of each subsection before moving on,

but the expert should be able to only skim most content.

The Sections 4.514.8 contain the main technical aspects of this paper. They are concerned with
separate terms in the evolution equation and rely on different methods. As a result, they can

(essentially) be read independently.

In Section[4.9] we extend the multi-linear estimates from Sections 4.8 which have been phrased
in terms of the Gaussian initial data ¢, to random initial data ¢ drawn from the Gibbs measure.
Each proof consists of a concatenation of previous results, and hence this section can safely be

skipped on first reading.

4.1.3 Notation

We recall and introduce notation that will be used throughout the rest of the paper.

Dyadic numbers: Throughout this paper, we denote dyadic integers by K, L, M, and N. In limits

or sums, such as lim;_, or >, we implicitly restrict ourselves to dyadic integers.

Parameters: We first introduce several parameters which are used in our function spaces, in the
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paradifferential operators, and our estimates. We fix
e>0, 65,00>0, >0, n,n >0 and b, >b>1/2>b_ > 0. (4.1.18)

We use € > 0 in our para-differential operators, x > 0 to capture small losses in probabilistic
estimates, n,7" > 0 to capture gains in the highest frequency-scale, and d1,0,b,,b,b_ in the

definition of our function spaces. We impose the condition
1/2—b_ «b—1/2«by =12« « <K Koy € eIy (4.1.19)

In (4.1.19), the implicit constant in each “«” is allowed to depend on all parameters appearing to
its right. We also define
1 1

8125—51 and 82:§+(52.

In several statements of this paper, we will also use 0 < ( < 1 and C > 1 as parameters. However,

they may change their values between different lines and are allowed to depend on all parameters

in (£.1.18).

Wave equation and flows: We denote the solution of the nonlinear wave equation (4.1.12)) by uy(t).

We also write
def

unlt] (ux(t), G (1))
which is standard in the literature on nonlinear wave equations. If ¢ € %, Y 27”(']1'3), we also write

Oy (t)* and Oy[t]* for the solution with initial data ¢. When working with the flows ®x|t] and

the Gibbs measures $;, we write ®x[t]xu$; for the pushforward of u$, under ®y|[t].

Furthermore, we denote the Duhamel integral operator of the wave equation by I. More precisely,

we define

I [F] (t) d:ef Lt Sln((t<_vt>l)<v>) F(t,)dt/
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Fourier transform: With a slight abuse of notation, we write dz for the normalized Lebesgue

measure on T3 = R3/(277Z)3, i.e., we require that

f 1dz = 1.
']1‘3

We then define the Fourier transform of a function f: T® — C by
F) € f@)e ™da. (4.1.20)
T3

For any k € N and any ni,ns,...,n, € Z3, we define

k

def
N2k = an-

j=1

For example, nio = nq + ny and nis3 = nq + no + ns.

Interaction potential: For a given interaction potential V' satisfying the Assumptions [A] we define

~ w1« A
Vs(ny,ng, ns) of G Z V(na, +ng,).

7T€S3
Truncations and Littlewood-Paley operators: For each t > 0, we let p;: Z* — [0,1] be the same

truncation to frequencies n € Z3 satisfying |n| < {t) as in [Bri20c, Section 1.3]. For each dyadic

N =1, we define the Littlewood-Paley multiplier P<y by

Py f(n) = px(n) f(n).
We further set
P f=Pqf and Pyf = Pcnf—Penpf forall N = 2.

The corresponding Fourier multipliers are denoted by

x(n) = x1(n) = pi1(n) and xn(n) = pn(n) — pnjpa(n) forall N = 2.



We also define fattened Littlewood-Paley multipliers by
Py= >  Px
N/16<K<16K

Function spaces:

For any s € R, the C5(T?)-norm is defined as

de

f S
[ flezrsy = sup N*[Pyfllog (rs). (4.1.21)
N=1

We then define the corresponding space C:(T?) by

CAT) € {f: T > R| | f

¢y < o0, lim N°||Py f| e sy = 0}. (4.1.22)

We let H2(T?) be the usual L*-based Sobolev space. more precisely, for any f: T2 — C, we define

the corresponding norm by

G(Z3)-

def st
| flmzcrsy = 1<) f(n)
Furthermore, we define 7*(T?) 'y $(T3) x H:71(T?). In this paper, we will also use the Bourgain

spaces L*°(J) and the low-frequency modulation space LA(J), which are defined in Definition
and Definition [4.7.1] respectively.

4.2 Local theory

In this section, we show that the truncated and renormalized nonlinear wave equations
(—ﬁtz -1+ A)UN = P<N< (V * (PgNUN)2)P<NUNI )

un[0] = ¢

(4.2.1)

are locally well-posed on the support of the Gibbs measures u$; uniformly in M. It is important
in the definition of the limiting dynamics and the globalization argument that the truncation pa-

rameter N in the dynamics and the truncation parameter M in the Gibbs measure $; are allowed
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to be different.

Due to the truncation, a soft argument based on the coercivity of the Hamiltonian shows that
(4.2.1) is globally well-posed for a fixed truncation parameter N. We denote the corresponding
flow by ®n(1).

4.2.1 Para-controlled ansatz

We now introduce our para-controlled approach. As discussed in the introduction, we will use
a graphical notation for the several stochastic objects appearing in this paper. We denote the
random initial data by *. In the local theory, we can work with the reference measure 1§, and,

more precisely, the representation of v/, with respect to the ambient measure P.

Based on Theorem , we have that 1§, = Lawp(*+ oy ), where © is the Gaussian low-regularity
component and ©y is has regularity min(1/2 + 5, 1)—. Naturally, we chose the color purple for
the random initial data ¢ since it is a mixture of the blue and red random initial data. We em-
phasize that e and oy, are probabilistically dependent! Fortunately, this does not introduce any
major difficulties in our treatment of the wave equation with a Hartree nonlinearity. We believe,
however, that the proof of the invariance of the Gibbs measure for both the cubic wave equation
and the three-dimensional Schrodinger equation with cubic or Hartree nonlinearity will require a

more detailed understanding of the relationship between ¢ and ©y; . This additional information is

provided in Chapter [3]

Before we introduce our stochastic and para-controlled objects, we discuss the following question:
Should we define our stochastic objects based on e or based on ¢? Due to the independence

of the Fourier coefficient under PP and its simple structure, it is much more convenient to work
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with e. However, the decomposition ¢ = ¢ + o\ of the samples of 1§ is based on the ambient
measure P. It cannot be performed intrinsically on the samples of v§, and has no meaning for
the Gibbs measure x$;. In particular, if we want to examine the probability of an event under
1§y, we must phrase the event in terms of the full initial data ¢. Fortunately, there is a conve-
nient solution to our conundrum: We first carry out most of our (local) analysis in terms of ® and
with respect to the ambient measure P. Once all the estimates in terms of e are available, we
can convert the stochastic objects and para-controlled structures from ® into ¢ (see Section .
Then, the absolute continuity of x5, with respect to the reference measure 15, allows us to obtain

the same stochastic objects and para-controlled structures on the support of the Gibbs measure 5.

We now begin with the construction of the stochastic objects and para-controlled structures, which
were briefly discussed in the introduction. We define Y as the linear evolution of the random initial

data . More precisely, ! solves the evolution equation
(=2 =14+ A)1=0, 10]=-. (4.2.2)

The black line in the stochastic object reflects the linear propagator of the wave equation. For

future use, we define the frequency-truncated and renormalized square of T by

V(P (4.2.3)

The multiplication is reflected by the joining of the two lines and the frequency-truncation is

reflected in the subscript N. We then define the renormalized nonlinearity <3/ by

N2 E P (2(V + (Pa))(PeaD): ). (1.2.4)

The orange asterisk reflects the convolution with the interaction potential. The color orange has

no significance and we only chose it for aesthetic reasons. As before, the nonlinearity is reflected
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in the joining of the three lines and the truncation parameter N in the nonlinearity appears as a

subscript. Finally, we define the Duhamel integral of X2 by

(=02 —1+ A)\I/ =37, \I/' [0] = 0. (4.2.5)

The line with an arrow reflects the integration in the Duhamel operator. In contrast to !, we note
that the distribution of .\I/N is not stationary in time. Naively, one may expect that .\I/N' has
spatial regularity —1/2 + S—. Namely, one would expect spatial regularity 3 - (—1/2)— from the
cube of the random initial data e, a gain of one spatial derivative from the multiplier (V)™! in the

Duhamel operator, and a gain of g derivatives from the convolution with the interaction potential.

In Proposition 4.5.1, however, we will see that \I/N actually has spatial regularity S—, which is

half of a derivative better. The additional gain is a result of multi-linear dispersive effects. We

now decompose our solution uy by writing

uy =T+ \I/ +wy. (4.2.6)

The remainder wy has initial data wx[0] = oy and solves the forced nonlinear wave equation
(=07 — 1+ A)wy
:PgN[ :(V . (PgN(T + '\I/N + wN))2)P<N(T + '\I/N +wy): —\T/N']
[2 (v : (PgNT Poy(NA + wN)) Pyt = My Poy (N + wN)) (4.2.7)

+ (Ve (P (Y + wN))Q) Pyt (4.2.8)
+2V s (Pt Pay (N + ) ) P (NP2 4+ ) (4.2.9)
+ (Va2 )P (Y + ) (4.2.10)

+ (V . (PgN(\I/; +wN)>2)p<N(\I/N. —|—wN)]. (4.2.11)
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If we intend to construct (or control) wy via a “direct” contraction argument, we would need the

following conditions on the regularity of wy (uniformly in N):

(i) Due to the highxhigh—low-interactions in factors such as P<y'- P<ywy, the regularity of

wy needs to be greater than 1/2.

(ii) Due to “deterministic” nonlinear terms such as (V = (P<ywy)?) P<ywy, the regularity of wy

needs to be greater than or equal to the deterministic critical regularity, which is given by

1/2 — 8.

Clearly, the first regularity condition is more restrictive. Unfortunately, the contribution of the first
two summands and has regularity at most 1/2—. The low xlow xhigh-interaction
gains one derivative from the multiplier (V)~! in the Duhamel operator, but does not experience
any multi-linear dispersive effects. Thus, we are “e-away” from a working contraction argument.
As was observed in [GIP15, [(GKO18al, the term responsible for the low-regularity exhibits a para-
controlled structure. Even though P.yT- Poywy is not well-defined for a general wy at spatial
regularity 1/2—, we will see in Proposition below that it is well-defined for a para-controlled
wy at the same regularity! We therefore decompose the solution wy into two components: A
para-controlled component Xy at regularity 1/2— and a smoother nonlinear remainder Yy at a

regularity greater than 1/2.

Before we can define the decomposition, we need to introduce our para-product operators.

Definition 4.2.1 (Para-product operators). Let ¢ > 0 be the fixed parameter from Section m
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and let f,qg,h: T? — R. We define the lowxhigh, highxhigh, and high xlow-paraproducts by

[@g= Z Pn, f - Pn,g,

N1<N2/8
def
fOg= Z Pn, f - Pn,g,
N2/4<N1<4N2
def
f@g= D, Puf Py
N1=8N2

We also define

fOgE fOg+fOg and [fO¢E Qg+ fOy.
In most of this paper, it will be convenient to replace “low” frequencies by “very low” frequencies.
To this end, we define the bilinear operator

F@gE > PyfPug (4.2.12)

Ni1,Na:
]\/v1<]\726

and the trilinear operator

(V : (fg)h> = Z Vs (Ple ’ PNQQ)PN:sh' (4213)

N;1,N2,N3:
N1,N2< N3

Furthermore, we define the negations of ® and by

FO@) g¥ fg—1@g ad  (CEEE) (Ve (fo)h) LV« (Fo)h~[BEE(V + (Fo)h).

Remark 4.2.2. The notation “<” is seldom used in the mathematical literature, which is precisely
the reason why we use it in Definition [£.2.1] Its meaning would otherwise easily be confused with
projections to Ny < Ny, N < Ny, or N « Ny, which are again more common, but less suitable
in our situation than N; < N§. Comparing our notation for the operators & and (@&E), it may

seem more natural to write
Vi (f9)@cEh
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instead of (4.2.13). We found, however, that the notation in (4.2.13) is much cleaner once it is
combined with the stochastic objects. We also point out that the negation of @ is not &.

We are now ready to define Xy and Y. We define the para-controlled component Xy by Xx[0] = 0

and
(=07 —1+A) Xy

— Py lZ (V * (PgNT ' PgN(\K " XN))PgNT)
+ 2(V " (P<NT ' P<N(YN)) @PgNT)

+ (v . (PgN('\I/N + wN))Z) @PSNT].

Remark 4.2.3. As far as the author is aware, the operator has not been used in previous

(4.2.14)

work on random dispersive equations. The reason for introducing the operator lies in the first
term in , which contains P<y!- P<yXy. In order to define this term (uniformly in N), the
spatial regularity of Xy alone is not sufficient. It is also difficult to use the structure of Xy, since
this term appears in the evolution equation for Xy (and not for Yy ), and hence one (may) run into
a circular argument. By using [@&&), however, this problem does not occur, since we can borrow
a small amount of regularity from the third argument in (V % (P<nT- P<nXn) P<yT). We
mention, however, that using has a small drawback, which is explained in Remark .

We also did not include any component of My P<xnYy in the second term of (4.2.14). It turns
out that the contribution coming from the (& -portion of the renormalization can be controlled at

regularities bigger than 1/2 and is therefore placed in the evolution equation for Yy below.
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As determined by our choice of X, the nonlinear remainder Yy satisfies Yy [0] = oy and

(=02 —1+A)Yy

- 2P<N[<(ﬁ)<V* (PgNT-PgN('\I/N +XN)>P<NT> —MNPgN(\I/N' +XN)>]

(4.2.15)

+ Pey [2 (V . (szvT : PsN(YN)) (@) P<NT> = MNPgN(YN)) (4.2.16)
* (V ) (P<N(\K + wN)>2) (@) Pt (4.2.17)

LV (PgNT Pox (N wN))PgN(\K + wy) (4.2.18)
+ (Ve 2P (Y +ww) (4.2.19)

* (V ’ (P<N(\K +wN))2)P<N(\K +7~UN)]‘ (4.2.20)

To facilitate the analysis in the body of this paper, we further organize the terms in the evolution

equation for Yy. We write
(=07 — 14 A)Yy = So+ CPara + RMT + Phy, (4.2.21)

where the stochastic objects So, the contributions of the para-controlled terms CPara, the

random-matrix terms RMT, and the physical terms Phy are defined as follows:
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We define the individual stochastic objects by

(Vo (Pant Pax(NP2) ) Pert) = My P (NP2, (4.2.22)
L (CEEE) (v« (Pant P (Y)) Pet) = MuPax(NP2)), (4.2:23)
\Lq%' (Ve ) Pt g (4.2.24)
gty (P P - Peat) Pon P2 (4.2.25)
AT e (v (parg) ) et 1220
A%

(@) &

We then define

So = Soy & PgN[z (C@«a) % +\L{% + (@) % = 2%] (4.2.28)

In works on singular SPDEs, such as [MWX17], the para-differential operators are usually placed

» ey, (PgN o )2 (—Q) Pt (4.2.27)

at the joints of the different lines. The advantage is that it works for arbitrary “trees” and can
accommodate multiple para-differential operators. Since this level of generality will not be needed

here, we prefer our notation, since it is slightly easier to read.

We define
CPara = CParay(Xy,wy)

of 2P<Nl((_|) (V * (PgNT : PgNXN> PsNT) — MNpgNXN)]

(4.2.29)
+ 2Py [V * <P<NT@P<NXN) PstN]

+ 2Py [V * (PsNT@PgNXN) PsN\I/N. ]
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In our analysis of CPara, we will use the double Duhamel-trick, i.e., we will replace Xy by the
Duhamel-integral of the right-hand side in (4.2.14)).

The random matrix term is defined as

RMT = RMTN(YN, U)N)
o P<N[(V AV )PgNwN] (4.2.30)

+ 2P<N[(V . (péNT . péN(YN)) (—®) PgNT) — MNP<N(YN))]. (4.2.31)

Our reason for calling (4.2.30) the random matrix term lies in the method used in its estimate.
We will view the summands as random operators in wy and Yy, respectively, and estimate the
operator norm using the moment method (as in [DNY20, Proposition 2.8]).

Finally, we define the physical term by

Phy =Phy (Xy, Vi, wy)

*fp_y [21/ (PgNT - PgN\K)PgNwN (4.2.32)
n 2(v " (PgN‘\I/N' -PgNwN) (@) Pyt (4.2.33)
+2V + (Pant@ Payuny ) Py Y (4.2.34)
4oV (P<N7®P<NYN) Py (4.2.35)
OV (PgNT@waN) Poywy (4.2.36)
LoV (P ®P<NYN) Peywy (4.2.37)
+ (v (Poy ) ) (@) Pyt (4.2.38)

(v
# (Ve (Pav (N o+ ) )Pan (Y + wN)]. (4.2.39)



Similar as for RMT, we call Phy the physical term due to the methods used in its estimate. We
point out, however, that (4.2.33]) and (4.2.34)) are “hybrid” terms and their estimates rely on both
random matrix techniques and physical methods. In the estimates of the other terms in Phy, we

also make use of the refined Strichartz estimates by Klainerman-Tataru [KT99)].

4.2.2 Multi-linear master estimate

In this subsection, we combine all multi-linear estimates from Section |4.514.8| into a single propo-
sition, which we refer to as the multi-linear master estimate (Proposition . In particular, the
multi-linear master estimate will include estimates of So, CPara, RMT, and Phy, even though
the proofs of the individual estimates are quite different. Before we can state the multi-linear
master estimate, however, we require additional notation. For the definition of the function spaces

X and LA, we refer to Definition and Definition m

Definition 4.2.4 (Types). Let J < [0,90) be a bounded interval and let ¢: J x T3 — R. We say

that ¢ is of type

\I/.ing:'\I/N for some N > 1,

w if ”()OHEXSI”’(]) < 1and ZL1~L2 ||PL1T ’ PszHLgH;“‘SI(JXTS) <1,

X if o = Peyl [1JO PCtrl(H, PgNT)] for a dyadic integer N > 1, a sub-interval Jy € J,
and a function H € LM (Ty) satisfying | H |wu(z) < 1,

YA @lgsenry < 1.
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Let @1, 99, ¢03: J x T> > R and T{, 73, T3 € {T, \I/,w,X,Y}. We write
(p1,02) "2 (T1, o)

if either o is of type 77 and 9 is of type T3 or ¢y is of type 75 and 5 is of type T;. Furthermore,

we write

(01, 02; 03) "2 (T1, T2; T5)

if (1, p2) pe (T1,7T2) and 3 is of type Ts.
Remark 4.2.5. The types w, X, and Y are designed for the functions wy, Xy, and Yy from
Section [4.2.1] Our notation for the type of (41, 2; p3) respects the symmetry in the first two

arguments of the nonlinearity (V = (¢1¢2))¢3. We also mention that the types w and X implicitly

depend on e. In Section 4.9} we will therefore refer to the types w and X as w® and X*®, respectively.

In the next lemma, we show that functions of type X and Y are multiples of functions of type w.

This allows us to prove several estimates for functions of type X and Y simultaneously.

Lemma 4.2.6. Let A > 1, T > 1, and let ¢ = ((€, $1, 82, K,1,1,b1,b) > 0 be sufficiently small.
Then, there exists a Borel set Oype(A,T) S #, > (T?) satisfying

P(s € O0c(A, 7)) = 1 — (" exp(—CA)

and such that the following holds for all « € O3PS(A, T): If p: J x T® — R is of type X or Y,

then T=*A~1y is of type w.

Proof. We treat the types X and Y separately. First, we assume that ¢ is of type X, and hence
there exists a dyadic integer N > 1, a sub-interval Jy € J, and a function H € LA (T) satisfying
|H |2m(z) < 1 such that ¢ = PeyI[lg PCtrl(H, P<y?)|. Using the inhomogeneous Strichartz
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estimate (Lemma [4.4.9) and Lemma 4.7.3 we have that

| P<nX|

worig) S 1 PCUI(H, Pan®)| ooy poy
< THH”SLWL(J)” T HL?H;rlJrse(jXTg))

< TH . H%;l/Q*"(W)'

This is bounded by T'A on a set of acceptable probability. Using Proposition [4.7.8] we obtain on
a set, of acceptable probability that
IRIAR Pro@l 2151 sy S T*A|H |z < T*A.
Li~Lo

By combining both estimates, we see that T—*A~'y is of type w.
¥ y

Second, we assume that ¢ is of type Y. Then, we have that |¢| go20(7) < 1. This

w1ty < [l

implies

1 —
Z HPLIT ’ PL2(70||L§H;461(jx’H‘3) <T> Z L’f 52||PL1T HLfcz_l/Q_“(jx'ﬂ‘S)||PL2(;0||L;‘H;2(L’7><T3)
L1~L2 L1NL2

1
< T2 ! HLg‘c;W’“(Jng)

As above, this is bounded by T3 A on a set of acceptable probability. By combining both estimates,
we see that T_%A71g0 is of type w. O

In order to state the multi-linear master estimate, we need to introduce a multi-linear version of

the renormalization in (4.1.13)).

Definition 4.2.7 (Renormalization). Let J be a compact interval, let ¢1, 2, 3 be as in Definition

4.2.4] and let N = 1. Furthermore, assume that

type

(1, 02:08) # (1.1, 1).

209



Then, we define the renormalized and frequency-truncated nonlinearity by

:Vx (P<npr - Panga) Panis:

( (V*'\/N)P@,% if (o1, 00) 27 (1, 1),

¢ (Pert- Pangn) Pen1= MxPengs it (01,05 "2 (1,7), (4.2.40)

V

Ve (Panr - Pan?) Pax T = MuPangr i (0. 0) "2 (1,1),
Vo« (PgNgol . PgNSOQ)PgNSOg else.

\

type

If (¢1,92) # (7, 1), we define the action of the paradifferential operators @ and on the

renormalized and frequency-truncated nonlinearity by

Vs (Panipr - Pangs) @ Pangps: = V s (Panipr - Paniga) @ Peneps,

( :V x (Penr - Penga) Panes: ) « (V + (P<npr - P<N902)P<N903)7
which does not involve a renormalization. We also define the negated paradifferential operators by
:V # (Pangpr - Panigz) (TQ®) Penes:
EA (P<N901 : P<N902)P<N9033 — V= (P<N901 : P<N802) @ Peneps:,
TE=E) ( :V # (Penpr - Penipa) Penegs: )
& V o« (P<N901 'P<N902)P<N9033 —( Vo (P<N901 'P<N902)P<N9033 )7
which contains the full renormalization.

Equipped with our notion of types and the renormalization, we can now state and prove the

multi-linear master estimate.
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Proposition 4.2.8 (Multi-linear master estimate). Let ¢ = ((e, s1, S2, &k, 1,1, by, b) > 0 be suffi-
ciently small, let A > 1, and let T > 1. Then, there exists a Borel set O (A, T) < %, /> *(T?)
satisfying

P(e € O, (A,7)) > 1— ¢ Lexp(—CAY) (12.41)
and such that for all e ©p (A, T) the following estimates hold:

Let J < [0,T] be an interval and let N > 1. Let o1, @9, p3: J x T2 — R be as in Definition m
and let

type

(1 02503) # (1,1 1), (Tows 1).
(i) If (o1, p2; 3) e (1, \I/.;T), (1,X; 1), then

H QEHS) (:V* (PgNsal-PgNsoz)PgNsosr) L <TYA
ors2— 404 (J)
e type e
(i) TF (01, 02 03) 2 (1,Y; 1) or 1,00, # Tand 3 21, then
. —/ . 30
H 1V # (Penpr - Penz) (T®) Poneps: o 1) < T7A.

(iii) In all other cases,

<TA,

H Vx (Pengr - Pana) Panps: gs2=Lbe=1(7)

Remark 4.2.9. The frequency-localized versions of each estimate in Proposition gain an

n'-power in the maximal frequency-scale. Furthermore, functions of the type \I/ can be replaced

by \I/ as defined in (4.3.4]). For more details on these minor modifications, we refer the reader
T
to the proof of the individual main estimates (Section [4.5H4.8)).

Proof. It suffices to prove the estimates with A on the right-hand side replaced by C'AY, where
C = C(s1,89,b,b,,€). Then, the desired estimate follows by replacing A with a small power of
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itself and adjusting the constant (. In the following, we freely restrict to events with acceptable

probabilities.

Proof of .' If (o1, p2; @3) has type

. (T,\I/; 1), we use Proposition {4.5.7]

e (1.X;1), we use Proposition.

Proof of ({): If (¢1, a3 ¢3) Rl (1,Y, 1), this follows from Proposition |4.6.3] Using Lemma |4.2.6]

we may assume in all remaining cases that ¢, and @5 have type \I/ or w, as long as we obtain

the estimate with T'® instead of T30. If (1, @o; 3) has type

3 ('\I/'7 \I/; T), we use Lemma [4.7.4f and Proposition |4.5.10}

o (w, \I/ ; T), we use Lemma [4.7.6{ and Proposition 4.8.12],

e (w,w; 1), we use Lemma and Proposition m

Proof of : Using Lemma [4.2.6] we may assume that all functions ¢; are of type T, \I/ ,

or w, as long as we prove the estimate with 7% instead of 7%, If no factor is of type ?, the
desired estimate follows from Proposition and Proposition [1.8.10] The remaining cases can

be estimated as follows: If (1, p9; ¢3) has type

e (7, T;\I/), we use Proposition [4.5.8]

e (1, 1;w), we use Proposition m

. (T,\I/; \I/), we use Proposition [4.5.10}

. (T,\I/; w), we use Proposition [4.8.12]
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o (T w; \I/ ), we use Lemma 4.8.8 and Proposition |4.8.12

o (T,w; w), we use Proposition and Lemma .

4.2.3 Local well-posedness

In this subsection, we obtain our first local well-posedness result. It is phrased in terms of the

ambient measure P and the random structure is based on the Gaussian initial data e.

Proposition 4.2.10 (Structured local well-posedness w.r.t. the ambient measure). Let M > 1,
let A>1,1et 0 <7 <1, and let { = ((, s1, S2, Kk, n, 7', by, b) > 0 be sufficiently small. Denote by

L£3mP( A 1) the event in the ambient space (2, F) defined by the following conditions:

(i) For any N > 1, the solution of (4.2.1]) with initial data ¢ = e+ oy exists on [0, 7].

(i) For all N > 1, there exist wy € L**°([0,7]), Hy € LAM([0,7]), and Yy € X*2°([0,7]) such
that

On(t)e =T1t) + '\1/' (t) + wn(t) and wy(t) = P<yI[PCtrl(Hy, P<y1)](t) + Yn(t)

for all ¢ € [0, 7]. Furthermore, we have the bounds

|wn llaes1 oo,y [N |aero,mys Yo g2 o) < A and

2 1P T Prywnll g oimn gems) < A.

Li~Lo

(iii) It holds for all N, K > 1 that
[On[t]® = @rclt]® | rges—rfo,ryxmey < Amin(N, K)™.
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We further require that

|Hn = Hiclagorns [Yn = Yic ooy < Amin(N, K) ™7

If A7%+~% < 1, then £37®(A, 7) has a high probability and it holds that

P(LYP(A, 7)) = 1 — ¢ texp(—CAS). (4.2.42)

Remark 4.2.11. The superscript “amb” in £3PP(A, 7) emphasizes that the event lives in the
ambient probability space. The first item is only stated for expository purposes. Indeed,
since is a soft statement and does not contain any uniformity in the frequency-truncation
parameter, it follows from the global well-posedness of (which is also not uniform in N).
The interesting portions of the proposition are included in and , which contain uniform

structural information about the solution and allow us to locally define the limiting dynamics.

By combining Theorem and Proposition [£.2.10] we easily obtain the local well-posedness of

the renormalized nonlinear wave equation on the support of the Gibbs measure.

Corollary 4.2.12 (Local well-posedness for Gibbsian initial data). Let 0 < 7 < 1 and let { =
C(e, 81, 82, k,m, 7', b, b) > 0 be sufficiently small. Then, there exists a Borel set £(7) < 76’{1/27“(’11‘3)
such that ®y[t]* converges in CO%, /> ([0, 7] x T3) as N — oo and such that

HE(L(T)) = 1= exp(—¢T70). (4.2.43)

Corollary [4.2.12{ shows that the limiting dynamics ®(¢)* = limy_, ®x(t) ¢ are locally well-defined
on the support of the Gibbs measure. However, it does not contain any structural information
about the solution, which will be essential in the globalization argument (Section . The main

difficulty, which was described in detail in Section [4.2.1] is that the free component of the initial
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data e is only defined on the ambient space. Nevertheless, in Proposition below, we obtain

a structured local well-posedness theorem in terms of .

We first use the structured local well-posedness result for the ambient measure (Proposition {4.2.10))
to prove the unstructured local well-posedness for Gibbsian random data (Corollary 4.2.12)). Then,
we present the proof of Proposition [4.2.10]

Proof of Corollary[{.2.19: Let M > 1 and let A satisfy Ar°t" < 1. We define a closed set

~

1. ~
L(A,7) S %, * "(T?) by requiring that ¢ € £(A, ) if and only if
(a) For any N = 1, the solution of (4.2.1)) with initial data * exists on [0, 7].

(b) It holds for all N, K > 1 that
H(I)N(t) *- q)K(t) ‘”L;[Wf_ﬂ([oﬂ']x'ﬂﬁ) < Amin(N7 K)in,-

It is clear from the definition that £(7) < £(A, 7). We emphasize that £(A, 7) is defined intrinsi-
cally through * and does not refer to the ambient probability space (2, F,P). From the definition
of L31P(A, 7) in Proposition 4.2.10} it follows that

L3P(A,7) € {o+om € L(A, 7))}
By using Theorem , we have that Lawp(e + oy ) = 15, This yields
VS (L(A, 7)) = P(e+ on € L(A, 7)) = P(LI(A,7)) = 1 — (T exp(—CAS).

By using the quantitative version of the absolute continuity u§, « ) in Theorem [4.1.1] we obtain
that

5 TONE(A, 7)) < 0§y (TNE(A, )0 < ¢ hesp (= (1 - g 1) AS).
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After adjusting the value of ¢, this yields the desired estimate (4.2.43)) with & replaced by u$;.
Since £(A, 7) is closed in %, Y >"(T3) and a subsequence of &, weakly converges to &, we obtain

the same probabilistic estimate for the limiting measure 2. O

Proof of Proposition|[{.2.10: As discussed in Remark [4.2.11} (i) follows from a soft argument. We
now turn to the proof of , which is the heart of the proposition. We let B = cA¢, where

¢ = c(e, s1,82,by,b) is a sufficiently small constant.
Using Theorem Lemma [4.2.6) Proposition [£.2.§ and Proposition [1.5.1] we may restrict to
the event

{~com.(s )} n{-eoimm.n}n{

N {s

We now define a map

PO 0] S B}

LyCZ™"([0.1]xT?) S B} N {H °M H%Zl,m*ﬁ*'i(rrs) < B}

(4.2.44)

Ty = Py, Tvy) s L20([0, 71) x 220([0, 7]) — 2 *([0, 71) x ([0, 7])
by
L (X, Vo) Pat 2@ (1 + (Pax P (R + X)) P
+2(V o (Part Pan(v)) @ Pert) + (Vo (Pen (Y +uw)) ) @ PgNT]
and

Cyy(Xn, Yn)

d:ef T +1 [SON + CParaN(I‘MX(XN, YN), U)N) + RMTN(YN, UJN) + PhyN(XN,YN, UJN)],

where wy = Xy + Yy. We emphasize our use of the double Duhamel trick, which is manifested in

the argument I'y x(Xx, Yy) of CParay. Our goal is to show that I'y is a contraction on a ball
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in L1°([0, 7]) x L*2°([0, 7]), where the radius remains to be chosen.

Using Lemma and Lemma [4.7.6] it follows that there exists a (canonical) Hy = Hy(Xy, Yy)

satisfying the identity

FN,X(XNayN) = PgNI [PCtI‘l(HN,PgNT)]

and the estimate

|Hn | 2uqo) < B® + | Xn

2
%52,17([077.])- (4245)
Using the energy estimate (Lemma [4.4.8)), the inhomogeneous Strichartz estimate (Lemma [4.4.9)),
Lemma [4.7.3] and s; — 1 + 8¢ < —1/2 — k, we obtain that

HFN,X(XN7 Yn)

wevt(o.y + YN

| PCtrl(Hy, P<n?)

w10l

< | PCtl(Hu, Pen®)| g

%51*175*1([0,7-])
([0,7]xT3)

< 72 | PCul(Hy, Pen?)| gy (4.2.46)

([0,7]xT3)
1
< 73| Hylzaqorn| T L -1+ go s

<75 B(B? + | Xy

2 2
wevr(ory) + VNG 00.)-

Using the multi-linear estimates from Proposition [£.2.8] which are available due to our restriction

to the event , and the time-localization lemma (Lemma , we similarly obtain
ITny (XN, Yn)
< |7
< B+ 7"7"|So + CPara+ RMT + Phy

xe2:([0,7])

, + [ 8o+ CPara+RMT + Phy

2 ([0r 2101 ([0.7])

(4.2.47)

o021+ ([0,])

< B+ (B A+ | XN e qony + 1YV ks g0.07))
By combining (4.2.46)) and (4.2.47)), we obtain for a constant C' = C'(e, s1, S, b4, b) that

TN (X, Yy)

by—b
o1t < CB+HOT (B + [ X w510y + 1YV G2 o) (4:2:48)

217



Since C4r+~*B2? < 1/100, which follows from 7°+7°A < 1 and our choice of B, we see that I'y
maps the ball in ([0, 7]) x X*2*([0,7]) of radius 2CB to itself. A minor modification of the
above argument also yields that I'y is a contraction, which implies the existence of a unique fixed

point (X, Yy) of I'y satisfying

| Xn]

%sl,b([oﬂ_]), ||YN| %sz,b([oﬂ.]) < QCB (4249)

Using (4.2.45)), we obtain that Xy = P<y [ PCtrl(Hy, P<n1)| with Hy satisfying | Hx |zago.r)) <
B2. Finally, using the triangle inequality and the condition e € ©JP¢(B, 1) from (4.2.44), we obtain

that wy = Xy + Yy satisfies

wore(or) <ACB  and D 1Pt Prywnllpay s o) < B (4.2.50)

Li~Lo

Using that B = cA¢, (4.2.49) and (4.2.50)) yield the desired estimates in .

|lwy

We now turn to ({iiil). This is a notationally extremely tedious but mathematically minor modifi-
cation of the arguments leading to . Similar modifications are usually omitted in the literature
and we only outline the argument. In the frequency-localized versions of our estimates leading to

(i), we always had an additional decaying factor N7, where Ny was the maximal frequency-

max’

scale (see Remark and Sections 4.5H4.8)). So far, this was only used to sum over all dyadic
scales, but it also yields the smallness conditions in . Indeed, one only has to apply the same

estimates as above to the difference equation

(Xny — Xk, Y — Yi) =Ty (Xy, Yy) — T (Xk, Yi).
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4.2.4 Stability theory

In this subsection, we prove a stability estimate (Proposition on large time-intervals.
Strictly speaking, the stability estimate is part of the global instead of the local theory, but
the argument is closely related to the proof of local well-posedness (Proposition . While
the stability estimate in this section is phrased in terms of e, it can be used to obtain a similar
estimate in terms of ¢ (Proposition . This second stability estimate will then be used in the

globalization argument.

In order to state the stability result, we introduce the function space Z, which captures the

admissible perturbations of the initial data.

Definition 4.2.13 (Structured perturbations). Let T > 1, ty € [0,T], N = 1, and K > 1. For
any *€ J 27" (T?) and Z[to] € 5 (T?), we define

1 Z[to]l= 0.7, 10,3, 1)

= inf max (||ZD[t0]|

O
oo 2ere)s 27 [k

22(T3)> Z HPLlT ) PL2Z||L%H;461([O,T]XT3)7

Lyi~Lso

|-V« (Pent PanZ°) (TQ) Pant: llgearov-101y)0

| C@L@) (V + (Pant- Pan2®) Puyt: )

9632’1’b+’1([07T])> )

where the infimum is taken over all Z%[ty] € #21(T?) and Z°[t] € #:2(T?) satisfying the identity
Z[to] = Z°[to] + Z°[te] and the Fourier support condition suppé\m[to](n) c {neZ:jn| <
8max(N, K)}. Furthermore, we wrote Z, Z°, and Z for the corresponding solutions to the linear

wave equation.
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The notation Zy and Zy is motivated by the paradifferential operators used in their treatment.

The contributions of Zg and Zjy are estimated using @ and [@&&), respectively.

It is clear that, for a fixed parameters T, %y, N, and K, the maximum is jointly continuous in
Z°[to] € F21(T?3) (satisfying the frequency-support condition), Z"[to] € #22(T?), and » € %
This is the primary reason for including the frequency support condition, since the sum in L; and
Ly would otherwise not be continuous in Z°[to]. In particular, the norm ||Z[to] (o711 .40.5.x) 1

Borel-measurable in Z[t] € #2(T?) and * € g2

Proposition 4.2.14 (Stability estimate). Let T' > 1,let A > 1, and let ((e, s1, s2, &, 1,1, b, b) > 0
be sufficiently small. There exists a constant C' = C(e, s1, s9,b.,b_) and a Borel set ©5%>(A T)
Ft; /2 7"(T3) satisfying
P(e€ Ofne(A, T)) = 1 — (" Hexp(—CAY)
such that the following holds for all e € Ot (A T):
def

Let N > 1, B>1,0<6 < 1, J < [0,T] be a compact interval, and t, = minJ. Let
ly: J x T? - R be an approximate solution of (4.2.1)) satisfying the following assumptions.

(A1) Structure: We have the decomposition

iy =1+ i/N + Wy

(A2) Global bounds: It holds that

|@x gy <B and 1Pt Pl gy 001 ooy < B-

Li~Lsy

(A3) Approximate solution: There exists Hy € LM (T) and Fy € X527 5+~1(7) satisfying the

identity
(=07 =1+ A)liy = Pey :(V # (Paniin)?) Peniin: —Pey PCtrl(Hy, PonT) — Fiy
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and the estimates

HHN”%”/L(j) < 9 al’ld ||FN %5271,b+71(k7) < 9

Furthermore, let Zy[to] € H:'(T?) be a perturbation satisfying the following assumption.
(A4) Structured perturbation: There exists a K > 1 such that
1Z[to]llz (7, 15t0,8.5) < 6
Finally, assume that
(A5) Parameter condition: C'exp (C(A + B)ﬁT"%”)Q < 1.

Then, there exists a solution uy: J x T®> — R of (4.2.1)) satisfying the initial value condition

unlto] = anl[to] + Zn|[to] and the following conclusions.

(C1) Preserved structure: We have the decomposition

uNzT—i— \I/N + wy.

(C2) Closeness: The difference uy — Uy = wy — Wy satisfies

~

HUN —Un

2 40
DPLY Pry(uy — )| 2 =151 yepsy < Cexp (C(A+ B)* P T 7).
Li~Lo

2 a0
gorv(y) < Cexp (C’(A + B)brbTbrb)g’

(C3) Preserved global bounds: It holds that

|lwn |gs10(7) < Bs  and Z |Pr,T- PszN||L?H£461(JxT3) < B,

Li~Lo
2 40
where By d:ef B + Cexp (C(A + B) b+7bTb+7b)9.
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As mentioned above, the proof of Proposition [4.2.14] is close to the proof of local well-posedness.
The most important additional ingredient is a Gronwall-type argument in X*’-spaces, which is

slightly technical due to their non-local nature in the time-variable.

Proof. Let N, B,0,J,to, tin, Wn, Hy, Fx, Zn, Zy, and Zy be as in the statement of the proposition
and assume that (A1)-(A5) are satisfied. We make the Ansatz

uN(t) = ﬁN(Tf) + UN(t) + ZN(t),

where the nonlinear component vy (t) will be decomposed into a para-controlled and a smoother
component below. Based on the condition uy[to] = tn[to] + Zn[to], we require that vy[te] = 0.
Using the assumption (A3) and that Zy solves the linear wave equation, we obtain the evolution
equation
(=07 =1+ A)yuy =Pey :(V * (Pen(liy + vy + Zn)?) ) Pen(liy + vy + Zy):
— Poy o(V # (P<niin)®) Penliy:

+ PgN PCtI‘l(HN, PgNT) + FN-
Inserting the structural assumption (Al) and using the binomial formula, we obtain that
(_5152 — 1+ Ay :PsN[Q Vs (PgN(T + \I/N. + wN) 'PgN(UN + ZN)) Pyt

+V ((PgN(vN + ZN))Q) Pyt
+ PCtrl(Hy, Pn?)

+2V & (PgN(TJr\I/N‘ +wN) -P<N(UN+ZN>) P<N<\K +wN)

+ PgN(V * ( Py (n + oy + ZN)21 ))PgN(UN + ZN)] + Fy.

We then decompose vy = Xy + Yy, where Xy is the para-controlled component and Yy is the

smoother component. Since vy[tg] = 0, we impose the initial value conditions Xy[tg] = 0 and
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Yn(to] = 0. Similar as in Section we define Xy and Yy through the evolution equations
(=62 — 14+ A) Xy =Pey [2 (v (Pen? P (X + 25) ) Pen)
+2V « (Pay? P (Y + 25) ) @ Pan

oV (P (N ) P (Ka e s 2)) @Rl
(

Vo (Pexlow + 24))") @ Peat + PCtl(t, PoaD)|

and

(=@ — 1+ A)Yy =Poy lz —Ee@) ( Vo (PgNT - Pey (XN n Zf,)) Pyl )

+2:V e (Peyt Pax (Yo + 23) ) (C®) Pant:

LoV (p< (\I/' + wN) : (UN + ZN)) (7©) Pant (4.2.52)
(P\N('UN + ZN))2> (TQ) Pt

+2V « (P\N(T+\K +wN) 'P<N(“N+ZN)) P<N<\K +wN)

+ (V # ( :PgN(ﬂN + vy + ZN)QZ ))PgN(UN + ZN):| + FN.

Since the nonlinearity in (4.2.51)) and (4.2.52)) is frequency-truncated, a soft argument yields the

local existence and uniqueness of Xy and Yy in CY%#2 and CP%32, respectively. Since X*°(J)

x 7

embeds into CY#:(J x T3) for all s € R, the solutions exist as long as the restricted L** and

X*>P-norms stay bounded.

In order to prove that Xy and Yy exist on the full interval J and satisfy the desired bounds,
we let T, be the maximal time of existence of Xy and Yy on J. We now proceed through a

Gronwall-type argument in L **-spaces. We first define

fai[to, T7) =10, 0), = | Xn|

aworb(fro.]) YN o2 (gro.17)-
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We emphasize that we neither rely on nor prove the continuity of fy. Using Lemma 4.4.4] and

Lemma [4.4.8 there exists an implicit constant Cg, = Cgy(S1, S2,b) such that

gn ()defCEn(H tot 62—1+A)XN

gs1—Lb—1(R +H tot a _1+AYN‘

%sz—l,b—l(R))
satisfies fy(t) < gn(t) for all t € [ty, Ti). Due to Lemma|.4.4) gn(t) is continuous. Now, let 7 > 0
be a step-size which remains to be chosen and assume that ¢,t' € [to, T}) satisfy t < ¢/ <t + 7.

Using Lemma [4.4.3] we obtain that for an implicit constant C' = C(sy, 2, b, b, ) that

gn(t)

CEn ]-[tot 6 - ]. + A)XN

+ [ Lo (=07 — 1+ A)Yy

%sl—l,b—l(R 3‘32—1,b—1(R))

gn(t) + CT P (|(=0] — 1+ A) Xy
gn (t)

Similar as in the proof of local well-posedness (Proposition [£.2.10]), we can use Lemma [4.2.6]
Proposition [4.2.8 and Proposition to restrict to the event

{reemAn} n{seomA D)} N {|IM, e < A

4 {Sﬁp IV Lo etronursy < T4}

By combining the assumption (A2), (A3), (A4), and the multi-linear master estimate, a similar

+ Cn |1ty (=07 — 1+ A) Xy

gs1—LO=1(R) H]-(t t'] 52 -1+ A)YN

352—1,1;—1(]1{))
+ (=07 =1+ A)Yy

382_1’b+_1((t,t’]))

Qs1— 1b+ 1 (ttl

+ O (|(-0 — 1+ A) Xy (=07 — 1+ A)Yy

Lo+ ([t ) H %32_1’b+_1([t0,t’]))'

(4.2.53)

argument as in the proof of Proposition [4.2.10| yields

b (| (=02 — 1+ A)Xy

-1+ A)Yy

os1—Lby— l(t 1) H %5271’b+71([t07t,])>

S T2 ((A + B)? + fn(t)A) (0 + fa(t)).
All together, we have proven for all ¢,t' € [ty, T}) satisfying ¢t < ' < ¢ + 7 the estimate

ft) < gt) < g(t) + CT+7P((A + B)* + fn(t)*) (0 + fn(t)).
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Using ¢g(to) = 0, using a continuity argument (Lemma [4.4.13), iterating the resulting bounds, and

assuming the conditions
C(A+ B)270<1/2 and 20T+ *((A+ B)? +6) < 1/4, (4.2.54)

we obtain that

sup f(t) < sup g(t) < C(A+ B)%er0. (4.2.55)

te[to,T*) te[to,T*)

Using the case of equality in the second condition in (4.2.54)) as a definition for 7, the first condition

follows from our assumption (A5). Recalling the definition of f, we obtain that

2 a0
sup (HXN %52,b([t0’t])) < Cexp (C’(A + B) b+7bTb+7b)

o1 b(fto]) T YN
te[to,T*)

This estimate rules out finite-time blowup on 7 and implies that T, = sup J. Together with a soft
argument, which is based on the integral equation for X and Yy as well as the time-localization

lemma (Lemma [4.4.3), we obtain that
2 a0
HXN”%SLI)(J) + HYN”%SQ’I)(J) < CeXp (O(A + B) b+7bTb+7b). (4256)

With this uniform estimates in hand, we now easily obtain the desired conclusions (C1), (C2), and

(C3). In order to obtain (C1), we (are forced to) choose
wy = Wn + Xy + Yy + Zy.

The conclusions (C2) and (C3) follow from (A4), ([#.2.56)), and the condition ® € ©3P°(A, T') in our
event (4.2.53)). O

4.3 Global theory

In this section, we prove the global well-posedness of the renormalized nonlinear wave equation

and the invariance of the Gibbs measure. As mentioned in the introduction, the heart of this
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section is a new form of Bourgain’s globalization argument. In Section 4.3.1] we prove the global
well-posedness for Gibbsian initial data. We focus on the overall strategy and postpone several
individual steps to Section below. In Section [4.3.2] we prove the invariance of the Gibbs
measure. Using the global well-posedness from Section {.3.1], the proof of invariance is similar as

in Bourgain’s seminal paper [Bou94].

4.3.1 Global well-posedness

We now prove the (quantitative) global well-posedness of the renormalized nonlinear wave equation

for Gibbsian initial data. In particular, we show that the structure

@Nmozr+*%§+wN

from the local theory (see Proposition [4.3.3)) is preserved by the global theory. Here, the stochastic
objects are defined exactly as in (4.2.2)) and (4.2.5)), but with e replaced by *.

Proposition 4.3.1 (Global well-posedness). Let A > 1,1let T' > 1, let C' = C(e, s1, S92, k,1, 1", b4, b)
be sufficiently large, and let ¢ = ((¢, s1, 2, %, 1,7, by, b) > 0 be sufficiently small. We assume that
B, D > 1 satisfy

B=B(AT)Y Cexp(C(A+T)°) and D = D(A,T)% Cexplexp(C(A +T)9)). (4.3.1)
Furthermore, let K > 1 satisfy the condition

Cexp(C(A+B+T))K™ < 1. (4.3.2)
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Then, the Borel set

Ex(B,D,T) = ﬂ <{0 € %;1/2’”(’]1"3)‘ wy(t) = On(t)e— T - ‘\I/N‘ satisfies

N=zK

Jwnllgeroqory < B and Y, 1PL T Pratonl ppsemtor o 1ymsy < B}

Li~Lsy

N {. e %, 2 (T [0 [t — Dxclt] *l comepr qorpxrsy < Dan})

satisfies the estimate

inf 4 (Ex(B,D,T)) =1—T¢ " exp(—CAS). (4.3.3)

M=K

In the proof below, we need two modifications of the cubic stochastic object. We define

WEea0N2]  and K E {1 (02 - <82)]. (4.3.4)

Proof of Proposition[4.53.1: We encourage the reader to review the informal discussion of the ar-
gument in the introduction before diving into the details of this proof.

Let 7 € (0,1) be such that 1/2 < A7%+7° < 1 and J o T/t e N. We let B}, D;, where 1 < j < J,
be increasing sequences which remain to be chosen. We will prove below that our choice satisfies
B; < Band D; <D for all 1 <j < J. We then have that

Ex(By. Dy, im) = ) ({.e%;I/Q—H(T%\ wn(t) = By (t)s — 1= Y satisfies

NzK

ervaqogryy < By and 3 1P Prownl g gy emey < B

Li~Lo

ﬂ {0 c %;1/2—&(T3)‘||CI)N[25] . — @K[t] 0”0?%57,«“([07].7_])(,]1‘3) < DjK‘ﬁ’}) .

|lwy

We now claim for all M > K that, under certain constraints on the sequences B; and D; detailed

below,

18, (SK(Bl, D, 7)) >1— ¢ Lexp(CA) (4.3.5)
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and
15y (EK(Bj7 DjaJ'T)) > iy (5K(Bj71> Dj 1, (j - 1)T)> — ¢ texp(CA9). (4.3.6)

We refer to (4.3.5]) as the base case and to (4.3.6) as the induction step. We split the rest of the

argument into several steps.

Step 1: The base case (4.3.5). We set B; ©Aand D; € A If L(A,T) is as in Proposition 4.3.3]
we obtain that £L(A,7) € Ex (B, D1, 7). This implies

s (Ex(Br, D7) ) = 15 (£(A, 7)) = 1= ¢ exp(CA9).
Step 2: The induction step . We first restrict to the event
SEP(A, T, 7) o LA, T)NL(A,2T) NST™ (A, T, 1) N SP(A, T, 7) NS (A, T, 7). (4.3.7)

Using Proposition [4.3.3, Proposition |4.3.5] Proposition 4.3.7, and Proposition [4.3.8, which also
contain the definitions of the sets in (4.3.7)), we obtain that

Hi (S (A, T, 7)) = 1= ¢ exp(CAY).
Using the invariance of ;$; under ®,;, we also obtain that
7 (q’M[T]*ng (Bj-1, Dj1,(j — 1)7)) = 1§y <5K(Bj—1= Dj_1,(j — 1)7))-
In order to obtain the probabilistic estimate , it therefore suffices to prove the inclusion
SEP(A, T, 7) N Py[7) " Ex (Bj1, D1, (j — 1)7) < Ex (B}, D, j). (4.3.8)

For the rest of this proof, we assume that * € S&"P(A, T,7) N ®u[7] 'Ex (Bj-1, Dj—1, (j — 1)7)

and N, M > K. To clarify the structure of the proof, we divide our argument into further substeps.
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Step 2.1: Time-translation. We rephrase the condition ¢ = ®y[7]* € Ex(Bj_1,D;_1,(j —1)7) in

terms of .

Since ¢ € Ex(Bj_1,Dj—1,(j —1)7), we obtain for all ¢ € [, j7] that

Bu(t = )Pulr]e = Dn(t = 7)o = T(t —7) + & (¢ = 7) + Wiyt = 1),

where wi'y,: [0, (j — 1)7] x T> — R satisfies

Hw]g\;f}w 51:2([0,(j—-1)7]) < ijl and Z ||PL1? ’ PLngm ||L2H 01([0,(j—1)r] xT3) < ijl'

Li~Lo
The superscript “grn” emphasizes that wgm appears in the structure involving ¢. Furthermore,

we also have that
| PNt — T]Dps[T]® — Px[t — T]Pas[7] ’HCEWE_”([TJT]XW) < D; K77, (4.3.9)
Since * € S'"°(A, T, 1) (as in Proposition 4.3.5), it follows for all ¢ € [r, j7] that

Dy (t — )Py [7] +\1/‘ \1/‘ ) + war(t), (4.3.10)

where wy ar: [7, 7] x T? — R satisfies

||UJN7M L51:8([r,57]) Z HPLlT PL?wN7M||L%H;451([ AxT8) S T AB (4311)

Li~Lo

Our next goal is to replace ®/[7] in m by ®n|7], which is done in Step 2.2 and Step 2.3.

Step 2.2: The cubic stochastic object. In this step, we correct the structure of @y (t — 7)Pp/[7]*,
as stated in (4.3.10]), by adding the “partial” cubic stochastic object.

We define iy : [7,57] x T®> - R by

229



While %y depends on M, this is not reflected in our notation. The reason is that, as will be shown
below, Uy is a close approximation of uy(t) = ®y(t)*, which does not directly depend on M. In

order to match the notation of uy, we also define Wy = wy s, which leads to

=10+ P 1) + ax ()

Using * € S®P(A, T, 7) (as in Proposition 4.3.7), it follows that there exist Hy € LM ([7,j7]) and

Fy € X527 10+=Y([7, j7]) satisfying the identity
(=07 =1+ A)iy — Pey :(V # (Penlin)®) Penlin:
(4.3.13)
= —PgN PCtI‘l(HN, PéNT) -

and the estimate

||HN||$/%([TJT])’ (1N w527+ =1 ([r j7]) < T4aA4B?—1K_n . (4.3.14)
Thus, Uy is an approximate solution to the nonlinear wave equation on [7, j7] x T?. Furthermore,
it holds that

lun[t] — PNt — TP [7] OHC?%E_H([WT]XT?,) < T4O‘A4B§’_1K_’7 ) (4.3.15)
Step 2.3: Stability estimate. In this step, we turn the approximate solution #y into an honest
solution and fully correct the initial data at ¢t = 7.

We now verify the assumptions (A1)-(A5) in Proposition [4.3.8 where we replace B by T*AB;_,
and set § = T**A*B? | K=" The first assumption (A1) holds with @y = wy, due to ([{3.12).
The second assumption (A2) coincides with the bounds (4.3.11). The third assumption (A3)

coincides with (4.3.13)) and (4.3.14).

For the fourth assumption (A4), we rely on ¢ € L£(A,7) (as in Proposition [4.3.3)). First, we have
that

aN[T]Zq)M[T]’—F NM + 1 NM ]+U)M + I +wM
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Second, we have that

Dy +'\I/' +wy[r

Using in Proposition 4.3.3 this implies that Zy[r] %< ®y[r] — fiy[7] satisfies

”ZN [T] Hf{([O,T],T;T,N,M) < ATQK*n,’ (4316)

which yields (A4). Finally, as long as B; < B, the fifth assumption (A5) follows from the pa-
rameter condition (4.3.2)). Thus, the assumptions (A1l)-(A5) in Proposition hold. Since
+ € 8P(A T, 1), we obtain for all ¢ € [r, j7] that

Dy ) + ‘\I/‘ +wn(t (4.3.17)

where the nonlinear component wy satisfies

lwonlaasrimrsy, 25 1Pl Prownal y=so (s < T*ABj1 + 1 < 2T*ABj. (4.3.18)
Li~Loy
Furthermore,
|Pn [t % = Tl comes = (r jrg sy < C exp(C(A + Byy + T) )K" (4.3.19)

By combining (4.3.9), (4.3.15)), and (4.3.19), we obtain

|On[t]* — Pxc[t — T]Pur[T] *] coger—rfr g
e ) (4.3.20)

< (Dj1 +T*A'B} | + Cexp(C(A+B; 1+ 1)) K.

By combining the general case N > K in (4.3.20]) with the special case N = K, using the triangle

inequality, and increasing C' if necessary, we also obtain that

| [t]® = Prclt] *l coges—r 7 jrpxrey

(4.3.21)
< (2Dj_1 + Cexp(C(A+ Bj_1 + T)°)) K.
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Step 2.4: Gluing. In this step, we “glue” together our information on [0,27] (from local well-

posedness) and [, j7]| (from the previous step).

Since * € L(A,27) (as in Proposition [4.3.3)), the function wy uniquely determined by

Oy(t)e =11t) + ‘\1/‘ (t) + wy(t)

satisfies

L51:0([0,27]x T3) s Z HPLlT'PszN”L?H;“‘”([0,2T]x1r3) <4
Li~Lo

|lwy

Furthermore,

||¢)N[t] ¢ — (I)K [t] ’HCE%E’”([O,%]X’N) < AK_"],.

Together with (4.3.18)), (4.3.21)), and the gluing lemma (Lemma [4.4.5)), which is only needed for

the frequency-based X **-space, we obtain that

lwn L0 ([0,57]xT3)> Z HPLlT ’ PszN||L§H;451([o,jT]xqrif) < CT%ibTaAijl' (4.3.22)
Li~Ls
and
|@n[t] = Prc[t] * om0 jrpxrsy < (2Dj-1 + Cexp(C(A + By + TN K. (4.3.23)
Step 2.5: Choosing B; and D;. Based on and , we now define
B, ¥ CriT*AB;_; and D; € 2D, | + Cexp(C(A+ B;_, + T)).

1
Step 3: Finishing up. We recall that 1/2 < Ar*+° <1, J=T/r ~TA™"? B, = A and D, = A.

After increasing C' if necessary, we obtain that
By <Cexp(C(A+T)°)<B and D;<Cexp(C(A+ B;+T)°) < D. (4.3.24)

This implies E(By, Dy, J7) € Ex(B, D, T). By iterating (4.3.6) and using the base case (4.3.5)),

we obtain (after decreasing () that
15 (Ex (B, D,T)) = 1§ (Ex(By, Dy, J7)) = 1 —T¢ ™ exp(—CAS).
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This completes the proof. n

In Proposition 4.3.1] we obtained a quantitative global well-posedness result. In particular, we
obtained (almost) explicit bounds on the growth of wy, which are of independent interest. In the

proof of Theorem {4.1.3] however, a softer statement is sufficient, which we isolate in Corollary
[4.3.2 below.

Corollary 4.3.2. Let T'> 1,let # > 0, and K > 1. Then, we define a closed subset of %{1/2_“(']?3)
by

Sk(T,0) Y {0 e 2T sup Py, [t] e — Pa,lt] *flcoses—r (_rapers) < 0} (4.3.25)
N1,Noz=K L ’
Furthermore, we define the event

SE N U sx(o. (4.3.26)

TeN 0eQso K=1
Then, it holds that
lim pS(Sk(T,0) =1 and  pS(S)=1. (4.3.27)
K,M—x©

Proof. We first prove the identity limg ys o0 1S (Sk (T, 0)) = 1. Using the time-reflection symme-

try, it suffices to prove the statement with Sk (7T, 0) replaced by

Sk (T, 0) « {’ € %;;1/2%(’]1‘3)3 sup @y, [t] ¢ — Py [t] ’”cg%’f‘“([o,T]xW) S ‘9}'
N1,No=K

For any fixed T', A, B, D > 1 satisfying (4.3.1)) and 6 > 0, we have for all sufficiently large K, L > 1
satisfying K > L that
Si(T,0) 2 EL(B,D,T),

where £(B, D, T) is as in Proposition [4.3.1} Thus,

lim pS(Sk(T.6)) > liminf i§ (£4(B. D, T)) > 1 — ¢ ' Texp(CAY).
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After letting A — oo, this yields the first identity in (4.3.27)).
Using Theorem we have that uf, converges weakly to u&. Since Sk (T,60) is closed, this

implies
L= lim p§(Sk(T.6)) < liminf u3(Sx(7.6)) < M?O(KLJI Sk(T.0)).
This yields the second identity in (4.3.27)). O

4.3.2 Invariance

In this subsection, we complete the proof of Theorem [4.1.3] The global well-posedness follows from
Corollary and it remains to prove the invariance. Our argument closely resembles the proof
of invariance for the one-dimensional nonlinear Schrédinger equation by Bourgain [Bou94]. The
only difference is that we work with the expectation of test functions instead of probabilities of

sets, since they are more convenient for weakly convergent measures.

Proof of Theorem[{.1.5: The global well-posedness follows directly from Corollary [£.3.2] Thus, it

remains to prove the invariance of the Gibbs measure u%.

Let t € R be arbitrary. In order to prove that ®o[t]xu8 = u&, it suffices to prove for all bounded
Lipschitz functions f: %, *7%(T3) — R that

Eo[f(@x[t]*)] = E,o[f(+)]. (4.3.28)

We first rewrite the left-hand side of (4.3.28). Using the global well-posedness and dominated

convergence, we have that

E,o[f(@wlt]*)] = lim E,o[f(@xt]*)].

0 N—>w Ho

Using the weak convergence of %, to u& (from Theorem [4.1.1)) and the continuity of ®y[t] (for a
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fixed N), we have that

lim Eo[f(y[t]*)] = lim ( lim E e [f(cpN[t]o)]).

Noow Hx NS5 \ Moo HM

We now turn to the right-hand side of (#.3.28)). Using the weak convergence of 1§, to u2 and the

invariance of 1§, under ®,/[t], we obtain that

Eolf(+)] = lim Ee[f(*)] = lim Ee[f(Pult]*)].

Moo M Moo M

Combining the last three identities, we can reduce (4.3.28]) to

limsup B, [/(@x[i]*)] ~ Ee [ f(cpM[t]o)]‘ ~0. (4.3.29)

N,M—o0
We now let 7" > 1 be such that ¢t € [-T,T], let > 0, and let K > 1. We also let Sk (7, 6) be as
in Corollary [4.3.2] Then, we have that

limsup |E e [f(CDN[t] )] - E.e [f(@t] ’)]‘

N,M—o0

< sup IEM%[f(ch[t]o)]_EM%[f(@M[t]O)]‘

N,M>K

< s By [1{ e Su(T. 9)}‘f(<1>zv[t] )= f@ult]*)|

+ sup E@[l{ ¢SKT9}‘JC Dnft]*) — f(Parlt]*)

NM=zK

<Lip(f) -0 + 2] f]0 sup Wy (7,2 \Sk (T, 0)).

]

In the last line, Lip(f) is the Lipschitz-constant of f and |f|, is the supremum of f. Using
Corollary we obtain the estimate (4.3.29) by first letting K — oo and then letting 6 — 0. [J

4.3.3 Structure and stability theory

In this subsection, we provide the ingredients used in the proof of global well-posedness (Proposition

4.3.1)). As described in the introduction, we will further split this subsection into four parts.
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4.3.3.1 Structured local well-posedness

In Proposition 4.2.10] we obtained a structured local well-posedness result in terms of ¢ and P.
In Corollary [4.2.12 we already used Proposition to prove the local existence of the limiting
dynamics on the support of the Gibbs measure x2, but did not obtain any structural information
on the solution. We now remedy this defect and obtain a structured local well-posedness result

even on the support of the Gibbs measure.

The statement of the proposition differs slightly from the earlier Proposition for two rea-
sons: First, we formulate the result closer to the assumptions in the stability theory (Proposition
and Proposition , which is useful in the globalization argument. Second, using the
organization of this paper, it would be cumbersome to define the para-controlled component of

v (t)  intrinsically through #, i.e., without relying on the ambient objects.

Proposition 4.3.3 (Structured local well-posedness w.r.t. the Gibbs measure). Let A > 1, let
0 <7 <1, let @ > 0 be a sufficiently large absolute constant, and let { = ((e, s1, s2, &, 1,1, by, b) >
0 be sufficiently small. We denote by * a generic element of %, "/ >7*(T3) and by L(A,7) the Borel
subset of %, /> *(T3) defined by the following conditions:

(I) For any N > 1, the solution of (4.2.1)) with initial data ¢ exists on [—7, T].

(IT) For all N > 1, there exist (a unique) wy € X°([0, 7]) such that

Dat) e = 106 + P2 (1) + ww (1)

Furthermore, we have the bounds

ao(os]) S A and Z |Pr, T PszNHLgH;“l([o,T]xTS) <4
Li~Lo

[
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(IIT) It holds for all N, K > 1 that
[lt]+ = @clt]* |-+ rpers) < Amin(N, ).
(IV) It holds for all N, K > 1 and T > 1 that

||wK[T]Hz([o,T],T;r,N,K) < AT®

and

lwnTr] = wiclr s o,y timnme) < AT® min(N, K) 7.
If A7%+~% < 1, then L£(A,7) has high probability under 4§, for all M > 1 and it holds that

pS(L(A, 7)) =1 — (" texp(—CAS). (4.3.30)

Remark 4.3.4. Since we prove multilinear estimates for ¢ instead of ® in Section a different
incarnation of this paper may omit Proposition and instead proof Proposition directly.
The author believes that our approach illustrates an interesting conceptual point: The singularity
of the Gibbs measure does not enter heavily into the construction of the local limiting dynamics
(see Corollary , but does affect the global theory. We believe, however, that this would be
different for the cubic nonlinear wave equation. The reason is an additional renormalization in the

construction of the ®3-model (see e.g. [BG20D, Lemma 5: Step 3]).
We recall that the £-norm appearing in (IV) is defined in Definition 4.2.13]

Proof of Proposition [{.3.3: By using Theorem and adjusting the value of (, it suffices to
prove the probabilistic estimate (#.3.30) with the Gibbs measure u$, replaced by the reference
measure /5. Using the representation of the reference measure from Theorem [4.1.1] it holds that

V5, = Lawp (' + °m )
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By applying this identity to the Borel set L(A, T), we obtain that
V%(ﬁ(A, 7')) = ]P(' + °Mm € E(A, 7'))

Let B = cA° < A, where ¢ = c(¢, 51, 89, k, 1,1, by, b) > 0 is sufficiently small. Let £3"*(B, 1) €
be as in Proposition 4.2.10. We now show that

P({' +om ¢ L(A, 7’)} N L37(B, 7')) < %C_l exp(—CA°). (4.3.31)

The property in Proposition 4.2.10| directly implies its counterpart. The main part of the
argument lies in proving . Instead of , we currently only have the property

(ii): For all N = 1, there exist w) € X*%([0,7]), Hy € LA ([0,7]), and Y, € X2°([0, 7]), such
that for all t € [0, 7]

Dy ) + \1/ +wi(t) and wi(t) = Pay L[ PCtrl(Hly, P<aD](t) + Y3 (1)

Furthermore, we have the bounds

lwivllacsro o [ Hulzacorn: [Yalaszeqo-g) < B and
>pLt PL2w§V||L%H;451 (o) < B-
Li~Lo

Comparing ({ii)) and . this forces us to take

wN=T—T+'\K —‘\I/N‘ + Wy (4.3.32)

We now have to prove that the right-hand side of (4.3.32)) satisfies the estimates in . Due to

the decomposition ¢ = ¢4 oy we have that
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Using Theorem [4.1.1| we have outside a set of probability < exp(—cB %) under P that

< B.

we2b((0,r])

|7

Using Proposition we have outside an event with probability < (! exp(—¢B¢) under P that
V=K I[PCtrl(HY, PoyN] + VP, (4.3.33)
where H € 2at([0,7]) and Y € X=24([0,7]) satisfy

|HD |ewqory B and Y

we2t(or]) < B

To ease the reader’s mind, we mention that the proof of Proposition is based on the algebraic

identity

DR GG GRS
which uses mixed cubic stochastic objects. Finally, we have that

wy = Pey I[PCul(Hy, Pen D] + Yy

= Py 1| PCtrl(Hy, P<y 1)| = P<y 1| PCtrl(Hy, P<n 1)] + Y3
Using the inhomogeneous Strichartz estimate (Lemma 4.4.9) and Lemma 4.7.3] we have that

| P<y T[ PCtrl(HYy, P<n?)]

xs2, b 0 T ) ~ H PCtrl(HN, P<N?)HL;["H;Q_l([O,T]XTS)
S HHE\[”gﬂ([O’T])” T HL;)OH;271+86([0’T]><T3) § 32

Thus,
wy = Poy 1| PCtrl(Hy, P<nt)] + Yu, (4.3.34)

where
Hy=Hy+HY  and Yy =Y} -7 +YY - Poy1[PCtrl(Hy, P<yT)]

239



satisfy |Hy |za(o,r), |Ynlas2b(op) S B Using Lemma §4.9.8, we also obtain that

lwy ooy < B° and > et Prywn |l 2 y=161 go 1pepsy < B
Li~Lo

Inserting our choice of B, this completes the proof of .

The statement directly follows from in Proposition . It now remains to prove
. We emphasize that T' > 1 is arbitrary, which will be useful in the stability theory below.
We focus on the estimate for the difference, since the proof of the estimate for wg[7] is easier
(but similar). Using Lemma we may restrict to e € O} (B,T) and € ©%,(B,T). Then,
we can replace the estimates in ([0, T], t;t9, N, K) by estimates in E([0,T], 1;t9, N, K). After

rearranging (4.3.34)), we have that
wy = Py L[ PCtl(Hy + HY, Pay D] + Y = T+ Y + Pay I[PCUl(HY, Pox?)].

Thus, we obtain that

wy[T] —wi[r] = Zy k7] + Z§ k7],
where

Zn k7] € Pan 1 PCtl(Hy + HY, Pax D][7] — Pexe L[ PCtl(H) + HYY, P D][7].

and

Za kT €Y = Vi + V) =V 4+ Poy 1[PCl(HY, PonD)] — Pexc 1[ PCuI(HY | PoicT)].

The desired estimate then follows from the frequency-localized version of the multi-linear master

estimate (Prop [4.2.8)), in Proposition 4.2.10, and Proposition m m
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4.3.3.2 Structure and time-translation

In the globalization argument, we use the invariance of the truncated Gibbs measures under the
truncated flows to transform our bounds from the time-interval [0, (j — 1)7] to the time-interval
[7,77]. As the reader saw in the proof of Proposition , however, the structural bounds are
now phrased in terms of ¢ = ®,,[7]*. The next proposition translates the structural bounds back

nto .

Proposition 4.3.5 (Structure and time-translation). Let A > 1, let 7" > 1, let 0 < 7 < 1,
let 7 € N satisfy j7 < T, let « > 0 be a sufficiently large absolute constant, and let { =
C(e, 81,89, k,m,1',b., b) > 0 be sufficiently small. There exists a Borel set S"¢(A, T, 1) < L(A,T)
satisfying

P (ST (A, T, 7)) = 1 — (" exp(—CAS) (4.3.35)
for all M > 1 and such that the following holds for all * € S"™¢(A, T, 7):

Let N,K > 1, let B > 1, and define © = ®g[r]*. Let w}’y € L*°([0, (j — 1)7]) satisfy

(A1) Global structured bounds in ©:

b ([0,(j—1)r]) S B and Z ||PL1? ) Psz}g\ﬁKHLgH*‘*‘Sl([O,(]’q)T]xTS) < B.

(O :
Li~Lo

Define wy i : [7,77] x T*> — R through the identity

t—1)+ O\If (t = 7) +wilie(t = 7) =10 + X (1) = R (8) + wne (1), (4.3.36)

Then, we obtain the following conclusion regarding wy k.

(C1) Incomplete structured global bounds in *:

worv((rgey S TOAB and Y|Pt Prawn il i g, ey < TOAB.
Li~Lo

|lwn k|
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Remark 4.3.6. The superscript “grn” in wy'y stands for “green”, which is motivated by the

identity (4.3.36)). We refer in the conclusion to “incomplete structured global bounds” since the
right-hand side in (4.3.36)) does not yet have the desired form. The partial cubic stochastic object

1 N\K
T

is subtracted from it and hence we regard the structure as incomplete.

Proof. Before we turn to the analytical and probabilistic estimates, we discuss the definition and
Borel measurability of S"™¢(A, T, 7). We let S'"™¢(A, T, 7) be the intersection of L(A,7) with the
set of » € ¥, /27" satisfying the implication (A1)—(C1) for all N, K, B, and w]g\;f}{. For fixed
parameters and a fixed function w}'y, the set of + € #; V278 satistying (A1) and/or (C1) is closed
and hence Borel measurable. Using a separability argument, it suffices to require the implication

A1)—(C1) for countably many w% '}, which yields the measurability of S"™¢(A, T, 7).
N,K

We now turn to the analytical and probabilistic estimates. If ¢ € L(A, 1), it follows from and

from Proposition that
]+ NE ]+ Zlr

where the remainder Zy[7] satisfies

1Zx 7)o, 1im 3, < AT

By applying the linear propagator to ¢, we obtain for all ¢ > 7 that

(t—7) = +‘\1/‘ + Zge(t (4.3.37)

where we recall from (4.3.4]) that

Y20 = 110502 @)



Regarding the cubic stochastic object, we have that

Yt =7 =11 82 (=) | @)

= 1 02 | ) + 1| 1y (S92 (=7 =02 () | ®
Combining the algebraic identity
104502 |0 + 115002 |0 = K 0 - Ko )

with (4.3.37) and (4.3.38)), it follows that

wn () = w§k(0) + Zic(t) + 110 (S92 (= 1) =02 () | 0. (4.3.39)
Equipped with the identity (4.3.39)) for wy g, it remains to prove the conclusion (C1) on an event

satisfying (4.3.35)). The second and third summand in (4.3.39)) can be treated using Lemma m,
Proposition |4.9.12| (combined with (4.3.37))), and Lemma [4.9.13] Thus, it remains to prove (C1)

for the first summand in (4.3.39)). Using (4.3.37)), we have that

2 1P - Prowile(t = )l 2 psss gy ey

(4.3.38)

Li~Lo

< LZL [P, (8) - Prawflie ) 51 o, 1yegemsy (4.3.40)

+ LZL ”PLI\I/‘; (8) - Prawiy e (t =) g1 gy (4.3.41)

+ LZL 1P, Zic(8) - Prawie(t = 1) 201 ey (4.3.42)
The first term (4.3.40) can be bounded using assumption (Al). The second term (4.3.41)) is
bounded by Corollary [4.9.3] and the third term (4.3.42) is bounded by Lemma [4.8.8| O

4.3.3.3 Structure and the cubic stochastic object

In Proposition above, the right-hand side of (4.3.36)) does not have the desired structure. In

the next proposition, we will show that adding the “partial” cubic stochastic object NAx only
T
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leads to a small error in the nonlinear wave equation.

Proposition 4.3.7 (Structure and the cubic stochastic object:). Let T > 1, let A > 1, let 0 <
7 < 1, let @ > 0 be a sufficiently large absolute constant, and let { = ((e, s1, $2,k,7, 7', by, b) > 0
be sufficiently small. Then, there exists a Borel set ST (A, T, 7) € %, /> 7"(T?) satisfying

RUS™ (AT, 7)) 2 1= ¢ exp(—CAY)

for all M > 1 and such that the following holds for all ¢ € S“*(A, T, 7):
Let NK = 1,1let B > 1, let j € N, let J = [r,j7] < [0,T], and let uxg: J x T3> — R.

Furthermore, we make the following assumptions:

(A1) Incomplete structure: There exists a wy g (t) € L°(J) satisfying all ¢ € J the identity

un (¢ +\1/‘ \1/‘ ) + Wy k (1).

(A2) Incomplete structured global bounds:

HwN,KH%sl,b(j) < B and Z | Pr, T - PngN,KHLgH;“‘Sl(ijB) < B.
Li~Lo

We define a function @iy: J x T2 — R by

ﬂN(t) = UN7K(t) + N\K (t)

T

Then, uy satisfies the following three properties.
(C1) Structure: For all t € J, it holds that

1)+ 92 (1) + dwt

where Wn = wy k.
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(C2) Approximate solution: There exist Hy € LA (T) and Fy € L2710+71(7) satisfying

= (—(9? -1+ A)UJ]\LK — PgN (V * (PgNuN,K)2)P<NuN7K:

— PgNPCtI'I(HN,PgNT) — FN

and

||HN||$/%(J)7 ||FN g2~ bbb 1) <T*“AB? min(N, K)_n"

(C3) Closeness: It holds that

[nTt] = un i [ coggi—r 7wy < T*AB3 min(N, K)™".
095 (T xT)

Proof. We simply choose S®P(A, T, 7) as the set of all # € %, /*7" where the implication (A1),(A2)
—(C1),(C2),(C3) holds for all N, K, B, j, and wy x. Similar as in the proof of Proposition [4.3.5]

a separability argument yields the Borel measurability of S“P(A, T, 7).

We now show that SP(A, T, 1) satisfies the desired probabilistic estimate. The first conclusion

(C1) follows directly from the definition of @y. We now turn to the second conclusion, which is

the main part of the argument. First, we recall that A« solves the linear wave equation on

T

J = |7, j7]. Together with the definition of %, this implies

— ((—@2 — 1+ A)uyx — Pey o (V # (Penunk)?) Pentun i )

2
:PgN:(V*(PgNUN,K‘i‘PgN 1\7151() )PgN(UNJ{‘i‘ Il\;K):

— Pey (V5 (Penun,i)?) Pentn s -
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We emphasize that in the cubic stochastic object s the linear evolution T enters at a frequency
2 min(N, K) in at least one of the arguments. Using the frequency-localized version of the multi-
linear master estimate for Gibbsian initial data (Proposition [.9.12)), we obtain the conclusion
(C2).

Finally, (C3) directly follows from the frequency-localized version of Proposition O

4.3.3.4 Stability theory

The last ingredient for the globalization argument is a stability estimate. The proof will rely on
our previous stability estimate for Gaussian random data from Proposition [4.2.14. As a result, the

argument closely resembles a similar step in the local theory, where we proved Proposition |4.3.3
through Proposition [4.2.10}
Proposition 4.3.8 (Stability estimate). Let T > 1, let A > 1, let 0 < 7 < 1, and let ¢ =
C(e, 81,892, K,m,1,b,b) > 0 be sufficiently small. There exists a constant C' = C/(e, s1, 82,by,b_)
and a Borel set S**P(A, T, 7) < %, /*7"(T3) satisfying

H3r(* € Shine (A, T, 7)) = 1= (Hexp(—CAY) (4.3.43)
such that the following holds for all ¢ € SS*#P(A T, 7):
Let N > 1, B> 1, 0<0< 1, and let J = [to,tl] - [O,T’]7 where to, 11 e 77. Let ﬂN: JxT® >R

be an approximate solution of satisfying the following assumptions.
(A1) Structure: We have the decomposition

iy =1+ +aw.
(A2) Global bounds: It holds that

H@N“Exsl,b(j) < B and Z ||PL1T 'PszNHLgH;Ml(ijS) < B.
Li~Lo
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(A3) Approximate solution: There exists Hy € LM (T) and Fy € X2~ 1+71(7) satisfying the
identity

(=07 =1+ Ay = Pey :(V # (Penlin)®) Penlin: —P<y PCtrl(Hy, P<y1) — Fiy
and the estimates
|Hn|eury <0  and | [ gpsa-t0s -1y < 0.

Furthermore, let Zy[to] € H:'(T?) be a perturbation satisfying the following assumption.
(A4) Structured perturbation: There exists a K > 1 such that

| ZTtolllz (7. 1:t0,3.20) < 0.
Finally, assume that
(A5) Parameter condition: C'exp (C’(A + B + T)C>6’ < 1L

Then, there exists a solution uy: J x T3> — R of (4.2.1) satisfying the initial value condition

un|to] = anl[to] + Zn|[to] and the following conclusions.

(C1) Preserved structure: We have the decomposition

UN:T+ %N + Wy -

(C2) Closeness: The difference uy — iy = wy — Wy satisfies

lun — Gin g1y < Cexp (C(A+ B+ T))0,

D0 1Pt Pry(un = @) =151 sy < Cexp (C(A+ B +T)€)8.

Li~Lo
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(C3) Preserved global bounds: It holds that

HwNHEXSLb(j) < By and Z | P, T PszNHLgHg“‘Sl(ij) < By,
Li~Lo

where By &' B + Cexp (C(A+B+T)9)6.

Proof. Similar as in the proof of Proposition 4.3.7, we can define S***P(A, T, 7) through the impli-
cations (A1)-(A5) — (C1)-(C3) and prove its measurability using a separability argument.

It remains to prove the probabilistic estimate (4.3.43). Using Theorem it suffices to prove
that
P(e+ om € S™P(A,T,7)) = 1—( "exp(CA°).

Using Lemma [£.2.6] Corollary [£.9.3 Proposition [£.2.14] Lemma [4.2.6] and Lemma [£.9.9] which

also contain the definitions of the sites below, we may restrict to the event

{+ € B4, T) N OFR(A, T) NOFE(A, T) N OF,.(4,T)}
(4.3.44)

N{en € O (A, T) NOR(AT)}.

Our goal is to use Proposition [4.2.14] (with slightly adjusted parameters). To this end, we need to
convert the assumptions (A1)-(A5) involving ¢ into similar statements based on ». We let D > 0
be a large implicit (but absolute) constant, which may change its value between different lines. We

now let N, B,0, J,tun, Wy, Hy, Fy, and Zy[to] be as in (A1)-(A5). We then define wy[* — ¢] by

T+ N =1+ +wwls— ),

which implies

ﬂNZT-i- \IN +U)N[‘—>']+w]v.
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Using Corollary and Lemma {4.9.7] we obtain that

@l < B and 3 [Pt Pryiin| gy g ey < TAPB
Li~Ls

as well as

[nle = oy < TOA” and 35 [PLY - Prywnle = ol - ey < TOAP.

Li~Lo
Thus, (A2) in Proposition is satisfied with B’ = 2T*APB. A similar argument based on
Lemma and Lemma [4.9.9)also yields (A3) and (A4) in Proposition with ' = 2T AP B.
Furthermore, the stronger assumption (A5) in this proposition implies (as long as C'is sufficiently
large) that

40

C exp (C(A 4 B')ﬁTW)Q' <1.

Thus, Proposition implies that

2 a0
lun = Tin|lgsro(ry < Cexp (C(A+ B+ TH)0,
2 a0
Z |1PL,Y - Pr,(un — ﬁN)HLfH;“l(ijS) < Cexp (C(A+ B)=2T47)0.
Li~Ls

Arguing similarly as above to replace ! by 1, this proves the conclusion (C2). The conclusion (C3)

then follows from the triangle inequality and assumption (A2). O

4.4 Ingredients, tools, and methods

In this section we provide tools that will be used throughout the rest of this paper. In order to
make this section accessible to readers with a primary background in either dispersive or stochastic
partial differential equations, our exposition will be detailed. We encourage the reader to skip

sections covering areas of his or her expertise.
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In Section , we cover XL*P-spaces, which are also called Bourgain spaces. The X*'-spaces
will allow us to utilize multi-linear dispersive effects. In Section [4.4.2] we present a continuity
argument. In Section [4.4.3] we prove an oscillatory sum estimate for a series involving the sine-
function. While the proof is standard, its relevance to dispersive equations is surprising and the
cancellation was first used by Gubinelli, Koch, and Oh in [GKOI8a]. In Section [4.4.4] we state
several counting estimates related to the dispersive symbol of the wave equation. The counting
estimate play an important role in the estimates of our stochastic objects. In Section [4.4.5, we
recall elementary properties of Gaussian processes, which have been heavily used in the first part of
the series [Bri20c|. In Section , we provide background regarding multiple stochastic integrals.
This section has an algebraic flavor and the multiple stochastic integrals will be used to separate
the non-resonant and resonant components of our stochastic object. In Section [£.4.7] we discuss

Gaussian hypercontractivity and its implications for random matrices.

4.4.1 Bourgain spaces and transference principles

In this subsection, we recall the definitions and elementary properties of X*?-spaces, which are
often also called Bourgain spaces. Heuristically, *°-spaces contain space-time functions u which
behave like solutions to the linear wave equation. This principle will be made more precise through
the transference principles below. We refer the reader to [Tao06al, Section 2.6] and [ET16], Section

3.3] for a more detailed introduction.

Definition 4.4.1 (X*%-spaces). For any s,be R and u: R x T? — R, we define the L**-norm by

def s ~
aer = [ (A = (mp)Pa(A, ”)HLgeEL(RxZS)- (4.4.1)

]

If 7 < R is any interval, we define the restricted norm by

def .
aeb(g) = nf{[v]

|l gsb: V(t, )| 7 = u}. (4.4.2)
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We denote the corresponding function spaces by L* and X*°(7), respectively.

In (4.4.1]), we could have used the symbol {|\| — |n|) instead of {|A| —(n)). Since (n) = |n|+ O(1),
this would yield an equivalent definition. Our first lemma shows the connection between the

X *-spaces and the half-wave operators.

Lemma 4.4.2 (Characterization of £*%). Let s,b€ R and let u: R x T®> — R. Then, it holds that
[ullaso@y < min [(V)* exp(Fi(V))ull L2 mpers xmy- (4.4.3)
Furthermore, we have the equivalence

Julivosey ~ min i (V) exp(FICT)) s |izmpcrs iy (1.4.4)
uy u_€XSP(R):  *
U=U4 +U_—

Proof. Using Plancherel’s identity, it holds that

(V) exp(FitV ) ull 2 mpers xmy = I<n)*CEA = ) AN, 1) | 133 (mxz)-

The first estimate (4.4.3)) then follows from [|A] — (n)| < | £ A — (n)|. The inequality “<” in the
identity (4.4.4) follows from the triangle inequality and (4.4.3). The inequality “X” follows by
defining u, as

(A n) =1{ £\ =0} -a(\n).
O
Our next lemma plays an important role in the local theory. It yields the required smallness of
the nonlinearity on a small time-interval.

Lemma 4.4.3 (Time-localization lemma). Let —1/2 < b; < by < 1/2 and let 1/2 < b < 1. Let
¥ € S(R) be a Schwartz-function and let 0 < 7 < 1. Then, it holds for all F' € £*2(R) that

%s,bl (R) S Tb2_b1||F

[t/ F|

os:b2 (R) and HF a1 ([0,7]) § Tb2_b1HF xs:b2(0,7])" (445)
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Furthermore, we have for all u € X*°(R) that

a5:0(R) < T%_()Hu

[ (t/m)u

a‘s,b(R). (446)

A proof of Lemma [4.4.3| or a similar result can be found in many textbooks on dispersive PDE,
such as [Tao06al, Section 2.6] or [ET16, Section 3.3]. Since the second estimate (4.4.6|) is not usually

found in the literature, we present a self-contained proof.

Proof. By using duality and a composition, we may assume that 0 < by < by < 1/2. Let F,, F €
L*2(R) satisfying F = Fy + F_. Using Lemma [4.4.2] we obtain that

lo@t/m)F

xob1(R) S max Hw(t/T)<V> exp(+zt<V>)F+HL2Hb1 (T3xR)" (4.4.7)

Using interpolation between the by = 0 and b; = by as well as the fractional product rule (or a

simple para-product estimate), one has for all f € H (R) the estimate
1@/ T) oy < 7727 1 e - (4.4.8)

Combining (4.4.7) and (4.4.8]) yields the first estimate in (4.4.5). The second estimate in (4.4.7))

then follows from the first estimate and the definition of the restricted norms. Finally, the second

estimate (4.4.8) follows from the same argument, except that (4.4.8)) is replaced by

1
H%U(t/T)f”Hf(R) < W(t/T)||H§7(R)||fHH§(R) S b”fHth(R), (4.4.9)
which follows from the algebra property of H?(R). O

Lemma 4.4.4 (Restricted norms and continuity). Let s € R and let —1/2 < ¥ < 1/2. Then, we
have for any interval J € R and any F € XY (R) that

117 F

gt (r) S |F

%va,(R)‘ (4410)
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Furthermore, if G € £*Y(7), then

|G

a‘s,b’(J) ~ Hle %s,b’(R) (4411)

Finally, if ¢ ©finf J, then the map

teJ — “1[t07t]G

%S’b’(R) (4.4.12)

1s continuous.

Proof. We begin with the proof of . By using a similar reduction as in the proof of Lemma
[4.4.3], it suffices to prove that

1179 sy ) < 19 |5 () (4.4.13)
By writing 17 as a superposition of different indicator functions, it suffices to prove the estimate
for (—o0,a) and (a, ), where a € R, instead of 7. Using the time-reflection and time-translation
symmetry of H”(R), it suffices to prove the estimate for J replaced by (0,oc). Thus, it remains

to prove

||1(0,00)9(t)H7(tb’(R) S ||9(t)||%f’(R)~ (4.4.14)
This follows from (a modification of) the fractional product rule or a simple paraproduct estimate.
We now turn to the proof of . By the definition of the restricted norms, we clearly have the
et (r)- Now, let G € X (R) satisfies G| = G. Using (t.4.10),

upper-bound ||G|ger iy < [15G

we obtain that

1,G

L (R) — ItsG gt (R) <& L=t (R)
After taking the infimum in CNJ, this yields the other lower-bound in (4.4.11)).
Finally, we prove the continuity of (£.4.12). By a density argument, it suffices to take G' € L>/?(R).

For any 0 < § < 1/2 — b and any t,t; € J, we obtain from Lemma that

‘Hl[tmh]G

gt (ry S [t — e

x5t (R) Lit0,62G %S*b’(R)‘ < L) G X 12 (R)
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This implies the Holder-continuity. O]

The next gluing lemma will be used to combine L*°-bounds on different intervals. While such a
result is trivial for purely physical function spaces, such as L{LP, it is slightly more complicated

x?

for the L **-spaces, since they rely on the time-frequency variable.

Lemma 4.4.5 (Gluing lemma). Let s € R, let —1/2 <V’ < 1/2,let 1/2 < b < 1, and let J, J1, Jo
be bounded intervals satisfying J; | Jo # . Then, we have for all F': (J; U J2) x T?> — R that

||FH§‘x5:b’(j1UJQ) S ||F gxs,b’(jl) + ||F gxs,b’(j2)- (4415)

Furthermore, let 7 def |71 N Jz|. Then, it holds for all u: (J; U Jo) x T2 — R that

1_
ol < T2 ([ullessizy + [ullessam))- (4.4.16)

|l

Proof. We begin with the proof of (4.4.15)). Using Lemma we have that

|F

L (UTe) < HLﬁUJzF I (R)
g |‘1‘71F||%S’b/(R) + ||1J2\j1F||%s,b’(R)

< |F]

s () I E les ()

< | F]

Leb' (1) + HF‘ Lt (Fa)

The proof of the second estimate (4.4.16]) is similar. Instead of working with an actual indicator

function, we use a smooth cut-off function on the spatial scale ~ 7 and a variant of (4.4.9)) instead

of ([F4.14). O

Our last two lemmas where concerned with the behavior of L**-spaces over small or overlapping
time-intervals. In this respect, the L*’-spaces are more complicated than purely physical function
spaces. We now turn to transference principles, which do not have a direct analog in purely physical

function spaces.
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Lemma 4.4.6 (Linear transference principle (cf. [Tao06al Lemma 2.9])). Let b > 1/2, let s € R,

and assume that the norm | - ||y satisfies

iateiit<v>

le uolly < Cluol s (4.4.17)
for all « € R and all ug € H:. Then, it holds for all u € X*° that

[ully < Clu

%s,b. (4418)

The linear transference principle allows us to reduce linear estimates for functions in X*’-spaces

to estimates for the half-wave operators.

Corollary 4.4.7. For any b > 1/2, s € R, any 4 < p < oo, any compact interval J € R, and any

w: J x T?® — C, we have that

||u[t]HC?%§(J><’]1‘3) < sy, (4.4.19)

erd_3
KTy 5 3 u®) gz nrsy < (1 + L)Y fuliancs, (4.4.20)

H<V>3_1_U(t)||L§L§(Jx1r3) < L+ [T)2u Lo () (4.4.21)

The corollary follows directly from the linear transference principle (Lemmal4.4.6)) and the Strichartz

estimates for the linear wave equation.

The next lemma is the most basic ingredient for any contraction argument based on X *°-spaces.

Lemma 4.4.8 (Energy-estimate (cf. [Tao06al, Lemma 2.12] and [ET16, Lemma 3.2])). Let 1/2 <

b<1,let se R, let J < R be acompact interval, let {5 € 7, and let
(=07 —1+Au=F (4.4.22)
Then, it holds that

woniry < (L4707 (Julto]]

| s+ | Fllogs—10-107))- (4.4.23)
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The statement of Lemma in [ET16, Tao06al] only includes intervals of size ~ 1. The more
general version follows by using the triangle inequality, iterating the bound on unit intervals, and
(4.4.19). The square in the pre-factor can likely be improved but is inessential in our argument,

since the stability theory already loses exponential factors in the final time 7'

The most important terms in the nonlinearity can only be estimated through multi-linear disper-
sive effects and hence require a direct analysis of the X*~1*~!-norm. However, several more minor
terms can be estimated more easily through physical methods. In order to pass back from the
frequency-based X*~1*~l-space into purely physical spaces, we provide the following inhomoge-

neous Strichartz estimate.

Lemma 4.4.9 (Inhomogeneous Strichartz estimate in X*%-spaces). Let 1/2 <b < 1, let s € R, let

J < R be a compact interval, and let F': J x T? — R. Then, we have the two estimates

|1

%sfl,bfl(j) $ HFHL%bHi—l(JXTg)7 (4424)

1, 2b—1

wemrimi(gy € (L [TNIVY 55 F ] s oy (4.4.25)

|1

Remark 4.4.10. For 0 < s < 1, we will often simplify the right-hand side of (4.4.24) by using

that
2b—1
s <4(b—1/2).
Proof. We first prove (4.4.24]). Using (4.4.19)) and duality, we have that

|

Ls=1=b(T) < HF”L%H;*l(ijIG)'

By Plancherel, we also have that

|

as-10(7) S | F| 12 a1 (g xmsy-

Using interpolation, this implies (4.4.24]). The proof of the second estimate (4.4.25)) is similar and
relies on duality, (4.4.20]), Plancherel, and interpolation. O
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When utilizing multilinear dispersive effects, we will often use the following lemma to estimate the

L5~ 10-—1 norm.
Lemma 4.4.11. Let s € R and let T > 1. Let A be a finite index set and let (ng)eea S Z3,

(00)aes € R, and (cq)aea € C. Define

F(t,z) < Z Co €xp(i{ng, ) + itl,). (4.4.26)
acA

Then, it holds that

|

()

< T'max H</\>b—’1<n>5’1 ; 1{n = na} caR (TN T (n) — 60,)) ey (4.4.27)
Proof. For any G: R x T? — C, we have that
|Glgps—ro -1y = [K[A] = <n>>b:1<n>s_lé()\an)HLieg(RxZS)
< max KA + ()=~ T GO ) 132 )
= mac [0y TGO F () g
We then apply this inequality to G(t,z) = x(t/T)F(t, ). O

Finally, we present an estimate for the Fourier-transform of a (localized) time-integral.

Lemma 4.4.12. Let T > 1 and let A\, \{, A\s € R. Then, it holds that

t

7 (/T espling |

0

exp (z')\Qt’)dt’) (/\)‘ < T (</\ A= AT /\1>‘10)</\2>‘1. (4.4.28)

Furthermore, if 7 < [0,T] is an interval, then

t

Fo(x(t/T) explinit) f

() e (@'AQt')dt') (/\)‘

(4.4.29)
<77 <<)\ M AT O )\1>*1><)\2>*1.
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Proof. We first prove (4.4.28]). A direct calculation yields

t

exp (Mzt/)dy) (\) = % (Q(T(A A= A) = R(TO - )\1))>. (4.4.30)

7 (/) explin) |

0
For |A2| 2 1, the estimate follows from the decay of Y. For |As| < 1, the estimate follows from
the fundamental theorem of calculus and the decay of X’. We also used T > 1, which implies that
(TH10 < ()10,

We now turn to . Since the restriction to J only appears in the integral, we can replace
J by its closure. We now let J = [t_,¢,]| € [0,T]. By integrating the exponential, we have that

t 1
L 17(t') exp (idot')dt’ = E(exp(i)\Q(t Aty)) —exp(ida(t A to))),

where x A y denotes the minimum of  and y. This implies

t

Fo(x(t/T) explinit) f 1 (t) exp (ot ) (3

~ N RX(zf/T) exp(i(A + A)t) (exp(ida(t A t4)) — exp(ida(t A t_)))dt.

The estimate then follows by distinguishing the cases |A1| < 1, [\ » 1 = [A2|, and |Aq], | A2 » 1,

together with the triangle inequality and a simple integration by parts. O]

4.4.2 Continuity argument

In this short subsection, we present a modification of the standard continuity argument. The

modification is a result of the possibile discontinuity of ¢ € [0,T] + |lullocss(jo,), Where u €

([0, T]) and b > 1/2. As a replacement, we will rely on the continuity statement in Lemma
4.4.4 A different approach to this problem was obtained in [Tao01, Theorem 3], which yields the

quasi-continuity, and may even yield the continuity (see the discussion in [Tao01l Section 12]).
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Lemma 4.4.13 (Continuity argument). Let J = [to,%1), let f: J — [0,00) be a nonnegative
function, and let g: J — [0,00) be a continuous, nonnegative function. Let A > 1,0 < 6,6 < 1,

and assume that
ft) < g(t) < glto) + 6(A* + (1)) (f(t) + 0) (4.4.31)

for all ¢ € [to, t1). Furthermore, assume that
g(te) +0%°A0 <1 and (A% +6)<1/4. (4.4.32)

Then, it holds that
f(t) < g(t) < 2(g(to) + 5A%0)

for all t € [to, tl)

Proof. The estimate (4.4.31)) implies that
g(t) < g(to) + 3(A* + g(1)*)(g(t) +0)
for all t € [to, ;). Using the condition (4.4.32)), we also have that

g(to) + 6(A% +4(g(ty) + 6A%0)H)(g(ty) + 6A%0 +0) <

[\CR V]

(9(to) + 6A%0).

w

Using the standard continuity method (see e.g. [Tao06al Section 1.3]), this implies
g(t) < 2(g(to) + 6A%0)

for all t € [to, t1). O

4.4.3 Sine-cancellation lemma

In this subsection, we prove an oscillatory sum estimate which critically relies on the fact that the
sine-function is odd. The same cancellation was exploited in earlier work of Gubinelli-Koch-Oh

[GKO18al Section 4] and we present a slight generalization of their argument.
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Lemma 4.4.14. Let f: Rx R xZ> > C,aeZ? T > 1, let J < [0,T] be an interval, and let
A, N = 1. Assume that |a| £ A « N. Furthermore, assume that f satisfies for all |¢[, [t'| < T that

1f(t, ' )| < A2 |f(t,t,n) — f(t,t',—n) < An)™*  and |0y f(t,t',n)| < Aln)~*
Then, it holds that
sup sup Z xn(n) f 17(t") sin((t — t'){a + n)) cos((t — t'){n)) exp(iXt') f (¢, ', n)dt’

AR |t]<T | 2=y 0 (4.4.33)

<T?Alog(2 + N)N~'.

The dependence on A is not essential and can likely be improved. In all our applications of this
lemma, A is negligible compared to N. We emphasize that the estimate fails if we only assume
that |f(¢,¢,n)| < A(n)73. Indeed, after removing the truncation x, the corresponding sum could

diverge logarithmically.

Proof. Using trigonometric identities, we have that

t

2 Z xn(n) f 17(t") sin((t — t'){a + n)) cos((t — t'){n)) exp(it') f (¢, t', n)dt’

nez3 0

— Z xn(n) L 17(t)sin ((¢ — t')({a + n)y — (n))) exp(ixt’) f (¢, ', n)dt’ (4.4.34)

+ Z XN(n)J L) sin ((¢ — t')({a + n) + {n))) exp(iXt’) f (¢, ', n)dt'. (4.4.35)

0

We estimate the terms (4.4.34) and (4.4.35) separately. We begin with (4.4.34)), which is the more

difficult term. Since [{a +n)—{(n)| < A, we do not expect to gain in N through the integration in

t'. Instead, we utilize a pointwise cancellation. By using the symmetry n <> —n in the summation,
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we obtain

2| 37 () sin (£ = ¢)(Ca + ) = () £t ')

% xvlm) (sin (¢ = )+ @y = () F(E2',m) + sin (= #)((n = @) = ) S (1, ¢, —n) )
< 3 ()| sin (¢ = )+ a) = () +sin (¢ = ¢)(n = a) = )| - [F (&, ¢ )
+ > xwvm)|f (.t n) = f(t ', —n)|.

Using the assumptions on f, the second summand is easily bounded by AN~!. We now concentrate

on the first summand. Using a Taylor expansion, we have that

n-a
tay—{(ny=+— +O(A°N ). 4.4.36
(o)== £+ 04N ) (4.4.36)
Using that the sine-function is odd, we obtain that

[sin (¢ = ¢)(¢n 4+ a) = () =+ sin (£ = #)((n — @) = (o))

= |sin ((t = #)(Cn + @y = ) = sin (= (¢ = #)((n — ay = )|

< T‘<n +ay—{(ny+{n—ay— <n>‘

<TA’N.
Putting both estimates together and integrating in ¢, we see that the first term (4.4.34)) is bounded
by T?A3N~!, which is acceptable.

We now turn to the estimate of (4.4.35)). Since (n + a)+<{(n) = N, we expect to gain a factor of
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N through integration by parts. We have that

‘ Z xn(n) J 17(')sin ((¢ — ') ({a + n) + {n))) exp(it’) f (¢, ', n)dt’

nezs3 0

< miax‘ 3 xw(n) L B () exp (m' +it'(a+ n) + <n>)) F(t. ¢, n)dt’

nezs

1
< t,t',n)|+T ovf(t,t, )
i 3 X e Gy 2] (R, MO+ T s (3.8 )

1
<TAN? :
~ mfxnégm(”)u a+my+ (ny £ |

In order to finish the estimate, it only remains to prove that

1
<log(2 + N)N2,
ZZ: WO T Ty T < e+ )

Since the function  — (x) is 1-Lipschitz, we can estimate the sum by an integral and obtain that
3 o) : < [ e~ : de
L+ [a+ny+{ny£ A 7 Jps L+ [ +ay+& £ A

nez3

Due to the rotation invariance of the Lebesgue measure, we can then reduce to a = (0,0, |a|). To
estimate the integral, we first switch into polar coordinates (1,6, ). Since A « N, we have for
fixed angles 6 and ¢ that r — (£ + a) + {£) is bi-Lipschitz on r ~ N. After a further change of

variables, this yields

1 9 © 1 9
JR31{|§|~N}1+|<€+a>+<€>i>\|d§$]\fL U ~ Ny S N los2 + ).

4.4.4 Counting estimates

In this subsection, we record several counting estimates. The counting estimates are the most
technical part of our treatment of So, CPara, and RMT. Fortunately, they can be used as a

black-box, and we encourage the reader to only skim this section during first reading.
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Before we state our counting estimates, we discuss the main ingredients and the differences between
the nonlinear wave and Schrodinger equations. In contrast to the counting estimates for the
nonlinear Schrodinger equation, the counting estimates for the wave equation require no analytic
number theory. The reason is that the mapping n — (n) is globally 1-Lipschitz, whereas the
Lipschitz constant of n +— |n|? grows linearly. This allows us to reduce all (discrete) counting
estimates to estimates of the volume of (continuous) sets. More specifically, we will use that the

intersection of (most) thin annuli has a smaller volume than the individual annuli.

Another difference between the wave and Schrodinger equation is related to the symmetries of the
equation. The Schrodinger equation enjoys the Galilean symmetry, which is useful in obtaining
“shifted” versions of several estimates. For instance, it yields that frequency-localized Strichartz
estimates for the Schrodinger equation are the same for cubes centered either at or away from the

origin. On the frequency-side, it is related to the Galilean transform
(n,\) = (n—a, A\ —2a-n + |al?),

which preserves the discrete paraboloid and plays an important role in decoupling theory (cf.
[Dem20, Section 4]). It often allows us to replace conditions such as |n| ~ N in counting es-
timates by the more general restriction |n — a| ~ N for some fixed a € Z*. In contrast, the
Lorentzian symmetry of the wave equation on Euclidean space does not even preserve the period-
icity of u: R x T®> — R. As illustrated by the Klainerman-Tataru-Strichartz estimates (cf. [KT99)
and Lemma , the frequency-shifted Strichartz estimates are more complicated for the wave
equation than for the Schrodinger equation. As will be clear from this section, similar difficulties
arise in the counting estimates.

The last difference between the Schrodinger and wave equation we mention here is a result of the
multiplier (V)™! in the Duhamel integral for the wave equation. Together with multilinear dis-

persive effects, we therefore obtain two separate smoothing effects in the nonlinear wave equation,
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which are related to the elliptic symbol (n) and the dispersive symbol {|A\| — |n|). In contrast, the
Schrodinger only exhibits a single smoothing effect related to the dispersive symbol A — |n|?. In
most situations, we expect that the combined smoothing effects in the wave equation are stronger
than the single smoothing effect in the Schrodinger equation. However, it may be more difficult
to capture the combined smoothing effect in a single proposition, as has been done in [DNY20,

Proposition 4.9] for the Schrodinger equation.

In Section [.4.4.1 we prove basic counting estimates which form the foundation of the rest of this

section. In Section 4.4.4.244.4.4.7 we state several cubic, quartic, quintic, and septic counting esti-

mates. In order to not interrupt the flow of the main argument, we placed their (standard) proofs
in the appendix. In Section [4.4.4.8] we present estimates for the operator norm of (determinis-
tic) tensors. The tensor estimates are not (yet) standard in the literature on random dispersive

equations, so we include their proofs in the body of the paper.

4.4.4.1 Basic counting estimates

Lemma 4.4.15 (Basic counting lemma). Let a € Z3, let A, N > 1, and assume that |a| ~ A.

Then, it holds that

sup#{n e Z’: [n| ~ N,|{a+n) £ {n) —m| < 1} < min(A4, N)""'N°. (4.4.37)

meZ

We emphasize that the upper bound in (4.4.37) cannot be improved to N2. The reason is that
[{a +n)y—<{n)| £ A, which implies that

sup#{neZ’: |n| ~ N,|{a +n)y—(ny—m| <1} 2 A7'N°.

mEeZ

As already mentioned above, the main step in the proof converts the discrete estimate (4.4.37)) into

a continuous analogue. After this reduction, the estimate boils down to multi-variable calculus.
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Proof. Since (¢) = |£| + O(1), we may replace {-) in (4.4.37)) by | - | after increasing the implicit
constant. Furthermore, since £ — ({+a)=£{§) is globally Lipschitz, we see that the 1-neighborhood
of the set on the left-hand side of (4.4.37)) is contained in

{€eR%: ¢ ~ N, [la+ & £ ¢ —m| <1}

Since the integer vectors are 1-separated, it follows that

#{neZ® |n|~N,|la+n|£n|—m| <1} < Leb ({§ER3: €] ~ N, [Ja+ €] + €] —m]| < 1}).

We now decompose

Leb ({€ € R?: [¢] ~ N, |Ja + €] £ |¢] - m| < 1})

< Y Leb({EeR g~ Nofa+ ¢l =my+O(1), [¢] = mo+ O(1)})

m1,mo€Z:
|mq+ma—m|<1

<N sup Leb<{§ER3:|§|~N,|a+£|=m1+0(1),|§|=m2+(9(1)}).

ml,mQEZ

In the last line, we used that there are at most ~ N non-trivial choices of my. Once my is fixed,
the condition |m; + mo — m| < 1 implies that there are at most ~ 1 non-trivial choices for m;.

Thus, it remains to prove for |m;| < max(A, N) and |msy| ~ N that

Leb ({5 eR®: ¢ ~ N, Ja+¢&| =my +O(1),[¢] = may + 0(1)}) < min(A, N)"'N2.  (4.4.38)

Using the rotation invariance of the Lebesgue measure, we may assume that a = |a|es, i.e., a points

in the direction of the z-axis. By switching into polar coordinates, we obtain that

Leb ({€ € RY: [¢] ~ N, Ja+ €| = mi + O(1), [¢] = my + O(1)})

<N f [ 14 = ma + OV I+ 2rlalcos(®) + 17 = -+ O(1)}sin(6)a0 .
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The condition 4/|al? + 2r|a| cos(f) + 2 = m; + O(1) together with |m;| < max(A, N) implies that

(lal +r)*  mi

2|al|r 2|al|r

cos(f) =1 — + O(max(A, N)AT'N). (4.4.39)

For a fixed r, this shows that cos(f) is contained in an interval of size ~ min(A4, N)™'. After a

change of variables, this yields

N® JOOO Lﬂ Hr=ms+ (9(1)}1{\/|a|2 + 2rlal cos(0) + 2 = my + O(1) } sin(F)df dr
< min(A4, N) 7' N? Jool{r = My —I—O(l)}dr (4.4.40)

< min(A, N) 'N2.

O

Remark 4.4.16. Our proof of the basic counting lemma (Lemma easily generalizes to
spatial dimensions d > 3. In two spatial dimensions, however, only weaker estimates are available.
The reason lies in the absence of the sine-function in the area element for polar coordinates,
which breaks . From a PDE perspective, the parallel interactions in two-dimensional
wave equations are stronger than the planar interactions in three-dimensional wave equations.
Ultimately, this requires a modification in the probabilistic scaling heuristic and we encourage the

reader to compare [DNY19, Section 1.3.2] and [OO19, Proposition 1.5].

We now present a minor modification of the basic counting lemma (Lemma|4.4.15)). The condition
In| ~ N is augmented by |n + a| ~ B. We emphasize that the vector a € Z* in this constraint is

the same vector as in the dispersive symbol.

Lemma 4.4.17 (“Two-ball” basic counting lemma). Let N, A, B > 1. Let a € Z? satisfy |a| ~ A.
Then, it holds that

sup#{n € Z’: [n| ~ N,|n+a|] ~ B,|[{a + n)y £ (n) — m| < 1} < min(A, B, N)"" min(B, N)®.
MEL
(4.4.41)
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Proof. Using the basic counting lemma (Lemma |4.4.15)), we have that

sup#{n € Z’: [n| ~ N,|n+a| ~ B,|[{a + ny + (n) — m| < 1}

MEZL
<sup#{neZ: |n| ~ N,[{a+n)+ (n) —m| <1}
MEZL
< min(A, N) 'N?.
After using a change of variables b L a, we obtain similarly that

sup #{n €Z’: |n| ~N,n+a|l~B,[{a+n)+{n)—m|< 1} < min(A, B) 'B?.
meZ

By combining both estimates we obtain (4.4.41)). O

4.4.4.2 Cubic counting estimate

As mentioned in the beginning of this section, we only discuss and state the remaining counting

estimates, but postpone the proofs until the appendix.

The cubic counting estimates play an important role in our analysis of the nonlinearity 3/ .
In the following, we use max, med, and min for the maximum, median, and minimum of three

frequency-scales.

Proposition 4.4.18 (Main cubic counting estimate). Let +123, +1, +2, £3 € {+, —} and define the

phase
def
@(n1,m2,n3) = F123(n123) F1 (1) F9 (Na) £3 (n3).
Let Ny, No, N3, Nio, N1o3 = 1 and let m € Z. Then, we have the following counting estimates:
(i) In the variables ni, ny, and ngz, we have that
#{(n1,n2,n3): |n1| ~ Ny, [ng| ~ No, [ng] ~ N3, | —m| < 1}

§ med(N17 N27 N3)_1(N1N2N3)3’

267



(ii) In the variables nja3,n1, and ny, we have that

#{(n123,n1,n2)2 |n123| ~ Nias, |n1| ~ Ny, |n2| ~ No, |<P - m| < 1}

< med(Nyaz, N1, No) 7' (N1ag Ny N ).
(iii) In the variables njs3,n12, and ny, we have that

#{(n123,n12,n1)3 |n123| ~ Nias, |n12| ~ Nya, |n1| ~ Ny, |90 - m| < 1}

< min (N12, max (N3, Nl))il(lelele)g-

(iv) In the variables nis,ny, and n3, we have that

#{(n12,n1,n3): |n12| ~ Nig,|n1| ~ Ny, |ns| ~ N3, | —m| < 1}

< min (Nyg, max(Ny, Ny)) ' (N1o Ny Ny)®.

Remark 4.4.19. The four estimates in Proposition are sharp. In our analysis of the cubic
nonlinearity, the frequencies nq, n9, and ng represent the frequencies of the three individual factors.
The frequency njo appears through the convolution with the interaction potential V. Finally, the
frequency ny23, which is the frequency of the full nonlinearity, appears through the multiplier (V)1

in the Duhamel integral and in estimates of the HS and X*’-norms.

Since we postpone the proof, let us ease the reader’s mind with the heuristic argument behind .
Without the restriction due to the phase ¢, the combined frequency variables (nq,ns,n3) live in
a set of cardinality (N;NoN3)®. As long as the level sets of ¢ have comparable cardinalities, we
expect to gain a factor corresponding to the possible values of ¢ on the set {(ny,n2,n3): |n1| ~
Ny, |na| ~ Na,|ns| ~ N3}. Since ¢ is globally Lipschitz, one may ideally hope for a gain of the

form max (N7, Ny, N3). Unfortunately, since

|<n123> - <7’Ll> + <TL2> + <7’Lg>| S maX(Ng, Ng), (4442)
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the high xlow xlow-interactions rule out a gain in max(Ny, N, N3). As it turns out, however, our

basic counting estimates allows us to obtain a gain of the form med(Ny, Ny, N3), which is consistent

with (4.4.42).

Proposition 4.4.20 (Cubic sum estimate). Let 0 < s < 1/2,0 < v < s+1/2, and let N1, Ny, N3 >

1. Let the signs t123, +1, £2, 3 € {+, —} be given and define the phase

o(n1,ng,n3) o +193(n123) £1 (n1) +2 (na) 3 (n3). (4.4.43)

Then, it holds that

sup ) [( ﬁ XN, (nj)) (naas)?* D (i)™ ( ﬁ[<nj>_2> 1{Jp —m| < 1}]

MEZL
7’L1,’n2,7’Lg€Z3

(4.4.44)
< max(Ny, N, Ng)Q(S_W) + max(Ny, No)'=* max(Ny, Ny, N3)*~t,

Remark 4.4.21. Proposition [4.4.20| plays an essential role in proving that \I/N has regularity

£—. In that argument, we will simply set v = .

4.4.4.3 Cubic sup-counting estimates

We now present cubic counting estimates involving suprema, which will be used in the proof of
the tensor estimates in Section [4.4.4.8] In turn, the tensor estimates will then be used to prove

the random matrix estimates in Section [4.6

Lemma 4.4.22 (Cubic sup-counting estimates). Let Njgz, N1, No, N3 = 1 and m € Z. Let the

signs 193, +1, t2, 3 € {+, —} be given and define the phase

P(n1,m2,m3) = L123(n1s) £1 (1) £ (na) £5 (ns).
Then, the following estimates hold:
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(i) Taking the supremum in n and counting ny, ng, n3, we have

sup #{(nlan27n3): |TL1| ~ Nla |7”L2| ~ N27 |TL3| ~ N?nn = TN123, |90 _m| < 1}

nezs3

$ med(Nl, NQ, N3)3 min(Nl, NQ, N3)2.
(ii) Taking the supremum in ny and counting n, nq, n3, we have
sup #{(”,nhns)i [n| ~ Nigs, [n1| ~ Nu, [ns| ~ N3, n = nyas, [ —m| < 1}

n2€Z3

< med(Ni23, N1, N3)® min(Niaz, Ny, N3)2.
(iii) Taking the supremum in n and counting nq,ni2, ng, we have

Sug #{(7112,”2,7”&3)1 |7”b12| ~ N2, |n2| ~ No, |n3| ~ N3, n = nqas, |<P - m| < 1}
neZ

S min(ng, Nl)il(leNQ)g.
(iv) Taking the supremum in ng and counting n, nis, ny, we have

SUI; #{(nﬂhzﬂh)i |n| ~ Nias, |n12| ~ Nig, |n2| ~ Na,n = nqas, |<P - m| < 1}
nez

< min(Nyz, Np) 7 (N2 No)®.

4.4.4.4 Para-controlled cubic counting estimate

We now present our final cubic counting estimate. It will be used to control

TE«E) 3(V * (P<NT'P<NXN>P<NT)1 :

which appears in CPara.
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Lemma 4.4.23 (Para-controlled cubic sum estimate). Let Njo3, Ny, No, N3 > 1 and m € Z. Let

the signs 4193, +1, +2, £3 € {+, —} be given and define the phase

©(n1,n2,n3) « +193(N123) 1 {N1) £2 (N2) 3 (n3).
Then, it holds that for all 0 <y < [ that
sup > ( [T Hnsl ~ Nj})<”123>2(52_1)<”12>_26<”1>_2<n3>_2 Wl —m| <1}
|~ Np MLAEEST=13 (4.4.45)

< max(Ny, Na, N3)?2 N2 NJ.

4.4.4.5 Quartic counting estimates

Our expansion of the solution uy and So only contain cubic, quintic, and septic stochastic object.

The quartic counting estimates will be used to control products such as

P<NT'P<N\K,

which occur as factors in the physical term Phy. We present two estimates which control the

non-resonant (Lemma [4.4.24)) and resonant portions (Lemma [4.4.26|) of the product, respectively.

On our way to the resonant estimate, we also prove the basic resonance estimate (Lemma |4.4.25)).

Lemma 4.4.24 (Non-resonant quartic sum estimate). Let s < —1/2—n and let Ny, Ny, N3, Ny > 1.

Let the signs +193, £1, 22, £3 € {+, —} be given and define

def
w(ny,ng,ng) = t123(n123) £1 (1) +2 {na) 3 (n3).

Then, it holds that

4

sip 3 (TT sl ~ N3} ) mizsa® Gz Vs, ”3)|2(ﬁ<nj>_2)1{|90 <1

meZ .
n1,n2,n3,na€L3  j=1

< max(Ny, Ny, Ng)~ 2N 20,
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Lemma 4.4.25 (Basic resonance estimate). Let ni, ny € Z3 be arbitrary, let N3 > 1, let the signs

+193, +1, 9, 3 € {+, —} be given, and define

o(n1,ng,n3) o +193(n123) £1 (n1) +2 {(na) 3 (n3).

Then, it holds that

DD (my 1 {Ing| ~ N3}lnaasy (ns) *1{|@ — m| < 1} <log(2 + N3)(nia) ™', (4.4.46)

MEZ n3eZ3

Lemma 4.4.26 (Resonant quartic sum estimate). Let Ny, No, N3 = 1 and let —1/2 < s < 0. Let

the signs +193, £1, £2, +3 € {4+, —} be given and define

o(n1,ng,n3) = +193(n123) £1 {(n1) +2 (na) 3 (n3).

Then, it holds that

2 [(ﬁ H{|nj| ~ Nj o)™ (na)y *(napy

ni,ng €Z3 j:]-

. (Z Z <m>711{|”3| ~ N3}<n123>71<n3>’21{|g0 —m| < 1})2]

meZ n3eZ3
< 10g(2 + N3)2 maX(Nl, NQ)QS.
4.4.4.6 Quintic counting estimates

In order to estimate the quintic stochastic objects

\I;{I%‘ and w: ,

we require quintic sum estimates. Even at the quintic level, we need to make full use of dispersive

effects. This is in contrast to the septic counting effects, which only rely on dispersive effects for

272



cubic sub-objects but do not require dispersive effects at the full septic level.

We present three separate quintic sum estimates, which correspond to zero, one, or two probabilistic

resonances.

Lemma 4.4.27 (Non-resonant quintic sum estimate). Let s < 1/2—2n and Ny, Ny, N3, Ny, N5 >

Furthermore, we define three phase-functions by

(ng, na,ns) E taus(nass) 3 (nsd +4 (nyd +5 (ns),

def
o(n1,...,n5) = d19345(N19345) T345 (N3as5) £1 (N o (na),
5

F12345(N12345) F3a5 (N3as) + Z )<
7j=1

~ def
P(ny,...,n5) =

Then, it holds that

sup Y. [<1_[1{|n]| ~ N} (n2sas ) nusas )X nsas) " (ngay” 2ﬁ<n<na> )

m’mlez‘nl,,..,nseﬁ Jj=1
< 1{|—m| <1} <l{|g0 m| 1}+1{|g5—m'|<1})]

< max(Ny, Ny, Ny, N5) =241 N2,

Lemma 4.4.28 (Single-resonance quintic sum estimate). Let ny,ns € Z3, Ny5 > 1, and |nys| ~

Nys5. Furthermore, let +3 € {+,—} . Then, it holds that

sup Z [1{|n3| N3 }(nzasy " (ng)*1{{nsus) +3 (ng)y € [m,m + 1)}]

mezZ3 ns €73

< NG

After renaming the variables, Lemma [4.4.28]is essentially the same as Lemma [4.4.25] Our reason
for restating Lemma [4.4.28|is to make it easier for the reader to refer back to this section.
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Lemma 4.4.29 (Double-resonance quintic sum estimate). Let N3, Ny, N5 = 1 and let +3, +4, £5 €

{+,—}. Then, it holds that

sup sup Z [(ﬁ 1{|n;| ~ Nj})<”345>_1<"45>_5<n3>_2<n4>_2

m€Z3 "n5|~N5 n37n4€Z3 ]=3

x 1{{nsasy 5 {nsy 4 (nad £ sy € [m,m + 1)}] (4.4.47)

< max(Ny, N5) 77+,

4.4.4.7 Septic counting estimates

In order to state our septic counting estimates, we need to introduce pairings, and our definition
is motivated by a similar notion in [DNY19, Section 1.9]. The pairings are designed to capture the

resonances in the septic stochastic objects

’%L\T)JAM and .é%: .

N

Definition 4.4.30 (Pairings). Let J = 1. We call a relation & < {1,...,J}* a pairing if
(i) P is anti-reflexive, i.e, (j,j) ¢ P forall 1 < j < J,
(i) 9 is symmetric, i.e., (i,7) € P if and only if (j,7) € P,
(iii) & is univalent, i.e., for each 1 <i < J, (4,) € P for at most one 1 < j < J.
If (i,7) € P, the tuple (i, ) is called a pair (or P-pair). If 1 < 7 < J is contained in a pair, we call

j paired (or P-paired). With a slight abuse of notation, we also write j € P if j is paired. If j is

not paired, we also say that j is unpaired and write j ¢ P.

Furthermore, let A = (A;);—1, 1 be a partition of {1,...,J}. We say that P respects Aif i,j € A
for some 1 <[ < L implies that (i,j) ¢ . In other words, P does not pair elements of the same

set inside the partition.
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Finally, we call a vector (ny,...,ny) € (Z3)7 of frequencies admissible (or -admissible) if (i, j) € P

implies that n; = —n;.

Using Definition 4.4.30] we can now state the septic sum estimate.

Lemma 4.4.31 (Septlc sum estimate) Let 1/2 < s <1 and let N1234567, N1234, N567, Ny, = 1. For
any +1, 9, t3 € {4+, —}, we define the phase

p(nj, 5 1< j < 3)E (nigg) £1 () 2 (no) £3 (ny).

Furthermore, we define

B(ni,no,ng) =y 1 m)~ Vis(na, o, ) [Cnnas)~ <n<na> )1{|90—m|<1}-

+1,+2,£3 meZ
Finally, let 2 be a pairing of {1, ..., 7} which respects the partition {1, 2, 3}, {4}, {5, 6, 7} and define
the non-resonant frequency ny, € Z* by
Nnr d:ef Z n;.
Jj¢P
Then, it holds that

*

Z(n et 1)( Z 1{|n123as67] ~ Niasaser 1{|n123a| ~ Niosa }1{|ns67| ~ Nsez }1{|na| ~ Nu}

(nj)jgo (nj)jew
R 2
o |7 (a250) [ (11, g, ma) s~ B, nG,m))
2(s—1) . —2(8— 2(1—s -2
< log(2 + Ny)? <N12345267N567(ﬂ " N123g1567 n)) N123’i,

where >¥ | denotes the sum over admissible frequencies.
(1)) jeo

While the septic sum estimate (Lemma {4.4.31]) may appear complicated, its proof is much easier
than the cubic sum estimate (Lemma [4.4.20)) or the quintic sum estimate (Lemma [4.4.27). The
reason is that we do not rely on dispersive effects at the (full) septic level, and only use the

dispersive effects in the cubic stochastic sub-objects.
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4.4.4.8 Tensor estimates

The counting estimates from Section [4.4.4.2H4.4.4.7| will be combined with Wiener chaos estimates

to control stochastic objects such as K32 . The estimates of the random matrix terms will follow a
similar spirit. However, the Wiener chaos estimates will be replaced by the moment method (see
Proposition and the counting estimates will be replaced by deterministic tensor estimates.
The tensor estimates, which partially rely on the counting estimates, are the main goal of this

subsection.

We first recall the tensor notation from [DNY20, Section 2.1].

Definition 4.4.32 (Tensors and tensor norms). Let J < Ny be a finite set. A tensor h = h,,, is
a function from (Z3)Y! into C, where the input variables are given by ns. A partition of 7 is a
pair of sets (A, B) such that AU B = J and AN B = . For any partition (A, B), we define the

tensor norm

112 s = 500 { 23| D o2

ng nA

2
3 znal? = 1}‘ (4.4.48)
na
For example, if h = hpnyngng, then

||hH72’L1n2n3—>n = sup{ Z ‘ Z Py nans Znanans Z |Zn1n2n3|2 = 1}'

neZ3 ni,no,n3€Z3 ni,n2,n3€”>

2

Lemma 4.4.33 (First deterministic tensor estimate). Let s < 1/243—20;—61, N1, No, N3, N12, N1z =

1, meZ, and £1, +9, £3, 123 € {+, —}. Define the phase-function ¢ by

o(n1,ng,n3) & t193(n123) £1 (N1) +2 (na) £3 (n3).

and the truncated tensor h by

e

1 pn(ng)xn; (1 )) (4.4.49)

1{n = mas}1{lp — m| < 1K™V (maz) ()™ (o)™ (ng) ™

def
hnn1n2n3 =X Ni23 (N123)XN12 (n12) (

<.
Il
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Then, we have the estimate

max (”hHmmn:s—m? Hh”n:;—mnmzv ”hHmna—mm? Hh”mng—mm) < maX(N17 N27 N3)—77‘ (4450)

Remark 4.4.34. The first deterministic tensor estimate (Lemma [4.4.33)) is the main ingredient

in the estimate of
wy — (V Vs )PgNwNa
which is the first term in RMT. In contrast to the second tensor estimate below, we only impose

s < 1/2 + B instead of s < 1/2 (up to small corrections). The reason is that both instances of !

are part of the convolution with V.

Proof. The main ingredients are Schur’s test and the sup-counting estimate (Lemma 4.4.22)).

Step 1: ||h]lnynyns—n- Due to the symmetry ny <> ng, we may assume that Ny > Ny. Using Schur’s

test, we have that

Al

ninan3z—n

2(s—1) A7—28 AT—2 AT—2 AT—2
$N123 le Nl N2 N3 .
3

X sup Z (n1{|n]| ~ Nk})1{|n12| ~ N12|}1{|n| ~ leg}l{n = n123}1{|<p —m| < 1}

3 .
nez 7’L1,7L2,’rL3€Z3 j=1

X sup Z (ﬁ1{|n]| ~ Nk})1{|n12| ~ N12|}1{|n| ~ leg}l{n = n123}1{|g0 —m| < 1}

ni,n2,n3€Z%  cys i
Since n is uniquely determined by nq, ny, and ng, the last factor can easily be bounded by one. By
using in Lemma {4.4.22| and max(Ni2, No) < max(Ny, No) = Ny, we obtain that
2 2(s—1) A\7—28 A7—2 AT—2 A2 2 772
1P oy —n S Niss 'Npy Ny “Ny *Ny = max(Nig, No) Nj, N5
< Ny NG NN

2(s—1) A71—2B+2n A7—27 AT—251
S N123 N12 Nl N3 :
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Furthermore, we have that Nio < max(NVq23, N3) < Nigg- N3. Inserting this into the last inequality
yields

1B o S Nig 27 PIND2ING T2 727520 < (N Ng) =20,

Step 2: |hlns—ningn.- The argument follow Step 1 nearly verbatim, except that we use in

Lemma 4.4.22| instead of .

Step 3: ||h|lnyns—snen- In this step, we ignore the dispersive effects, i.e., we simply bound
o ml< 1)<t

By increasing s if necessary, we may assume s > 1/2. Using Schur’s test and a simple volume

argument, we have that

177
ning—nan

< N NRINTENG NG

x sup ) (ﬁlﬂnﬂ ~ Nk})1{|”12| ~ Niz|}1{[n] ~ Niog}1{n = iz}

3 .
M€l | nsezd =1

3

X sup Z (H1{|n3| ~ Nk})1{|n12| ~ Nio|}1{|n| ~ Nios}1{n = nias}

ni,n3€Z3 nomeZ3  j=1
2(s—1) AT—2B A7—2 AT -2 \T—251 1. 3. . 3
§ N123 le Nl N2 N3 1m1n(N1,N12,N3) Hlln(NQ,le,ngg)
2(s—1) A7—28 A7—2 AT—2 AT—281 A72—21 ATL14+4n—251 A7251—2n A72—2n A725—1+2n A72(s—1)
SNIQS N12 Nl N2 NS Nl N12 N3 N2 N12 N123

< N12§—1—25+251+677(N1N2N3)—2n‘

In the second last inequality, we used s > 1/2. Since 2s — 1 — 23 + 24, + 61 < 0, this is acceptable.

Step 4: |h|lngns—snin- Due to the symmetry ny <> ng, the estimate follows from Step 3. O
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We now turn to the second tensor estimate.

Lemma 4.4.35 (Second deterministic tensor estimate). Let s < 1/2—mn, Ny, Ny, N3, N1a, Njo3 > 1,

m € Z, and +1, 9, +3, £123 € {+, —}. Define the phase-function ¢ by

ef
o(n1,ng, n3) & +193(n123) £1 (1) +2 {(nay £3 (n3)

and the truncated tensor h by

e

def
h’nnln2n3 =X N123 <N123)XN12 (n12) < p<N(nj)XNj (n]))

1

<.
I

H{n = mizg}1{Je — m| < Ly 'V (ma)(ni)na) gy

Then, we have the estimate

max (HthmznaHn» 1llny s s [Pl ngng —>nm Hh”mnzﬂnns) < Nlaﬁ max(Ny, No, N3) .

Remark 4.4.36. Lemma [4.4.35]is the main ingredient in the estimate of
Yy —:V (PgNT : PSN(YN)) Q) PgNT) -

which is the second term in RMT.

Proof. The argument is similar to the proof of Lemma 4.4.33|

Step 1: |h|lnyngns—n- Using Schur’s test, we have that

< Nigg UNRYNEN, PN

2
||h||n1ngn3~>n ~

3

X sup Z (H1{|n]| ~ Nk}>1{n = no3} 1{|p —m| < 1}

nI~N123 1) g mgezs =1

X sup Z <ﬁ1{|n3| ~ Nk}>1{n = nio3 1{|p —m| < 1}.

L€73 :
n1,m2,M3€L° | ems N =]
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The last factor is easily bounded by one, since n is uniquely determined by ni,no, and n3. By

using () in Lemma [4.4.22) and s, < 1, we obtain that

”th1n2n3—>n < N122(§ 1)N 2 med(Nla N27 NS)d min(Nb N2a N3)2N172N2_282N372

< NSNS max(Ny, Ny, N3) ™22 med(Ny, No, N3)*~2 min(Ny, Ny, Ny)>~2

< NETYUNSY max(Ny, Ny, N3)' =22,

This is acceptable since s < 1 and 1 « ds.

Step 2: |h|ng—>ninsn- This argument is similar to Step 1, but the roles of ny and n are reversed.

Using Schur’s test, we obtain that

NEETYNDP NN 22 N2

LIRS

X sup Z (n1{|nj| ~ Ni} )1{|n| Nios}1{n = nias}1{|p — m| < 1}

n2|~N2 ni,n3,nEZ3

X sup Z (ﬁ1{|n3| ~ Nk})1{|n| ~ Nigs}1{n = nias}1{|p — m| < 1}.

3 ,
ni,ng,nel> 73 =1

As before, the last factor is easily bounded by one. By using (ii)) in Lemmal4.4.22/and 2(s—1) > —2,

we obtain that

< N122(§ I)N_QB med(ngg, Nl, N3)3 min(N123, Nl, N3)2N1_2N2_282N3_2

[ ER——
$ N17226N2_282 maX(N123, N17 N3)2871

< N2 Ny 252 max(Ny, Ny, N3) 2"

In the last line, we used that s <1/2 —1n

Step 3: ||hlnyny—nsn- In this step, we ignore the dispersive effects; i.e., we simply bound
Hlp—m| <1} <1
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Using Schur’s test and a simple volume bound, we obtain that

< N UNRINTENG NG

<o 3 (1M~ N} 1l ~ Vst = )

3 .
ng,nGZ n17n2623 ]:1

3

X sup 2 (H {|n;] ~ Nk})1{|n| ~ Nigg}1{n = niss}

3 .
n1,n2€%Z n3,neZd  j=1

< Nisy VNG Ny 2N %2 Ny 2 min (N, No)® min(Ns, Nygg)?

2
(LT ——

2(s—1) A7—2B A7—=2 AT—252 NT—2 A72—21 AT1+20 AT2—2n AT1+27
S‘ZV123 N12 Nl N2 N3N1 N2 N3 N123

< N max(Ny, Ny, N3)~27.

Step 4: |hllngns—nin Arguing exactly as in Step 3, we obtain that

< N122(§71)N17225N172N2_282N372 min(NQ, N3)3 min(Nl, N123)3

2
||h‘Hn2n3—>n1n ~

< N2” max(Ny, Ny, N3)~27.

4.4.5 Gaussian processes

We briefly review the notation from the stochastic control perspective of Chapter [3, which was
used in the proof of Theorem [4.1.1] In comparison with the first part of this series, however, we
change the notation for the stochastic time variable. We use 4, which is a calligraphic “s”, to
denote the time-variable in the stochastic control perspective. While the chosen font in 3 may be
slightly unusual, we hope that this prevents any confusion with the time-variable ¢ in the nonlinear

wave equation.

We let (B]')nezs\fo; be a sequence of standard complex Brownian motions such that B = Br

and B!, B™ are independent for n # +m. We let B? be a standard real-valued Brownian motion
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independent of (B}')nezs\fo;. Furthermore, we let B,(-) be the Gaussian process with Fourier
coefficients (B]")ezs, i.€.,

By(z) € Y e<mopy,
nezs3

For every » > 0, the Gaussian process formally satisfies E[B,(z)B,(y)] = 3 - 6(z — y) and hence
B, (-) is a scalar multiple of spatial white noise. We also let (F,),>o be the filtration corresponding

to the family of Gaussian processes (B]'),=o.

The Gaussian free field g, however, has covariance (1 — A)~!. To this end, we now introduce the
Gaussian process W,(z). We let 0,(§) = (%pi(f))l/ ? where p, is the frequency-truncation from

Section 4.1.3] For any n € Z3, we then define

" oy(n)

o (m

We note that W is a complex Gaussian random variable with variance p2(n)/{n)?. We finally set

n def
W=

dB" . (4.4.53)

W) € Y emmpr, (4.4.54)

nez3

Since the Gaussian random data ® € %, 7 *7*(T3) in Theorem is a tuple of the initial data
and initial velocity, we now let (B W) and (B, W*") be two independent copies of (B, W).

Using this notation, we then take
. (Wg)s(x)’ <V>W£n(x)) ' (4.4.55)
Using ([4.4.55]), we can represent the linear evolution as
1(t) = cos((V)) W™ + sin(((V)) W™,

which also motivates our notation.
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4.4.6 Multiple stochastic integrals

In this section, we recall several definitions and results related to multiple stochastic integrals. A
similar but shorter section already appeared in the appendix of the first paper of this series [Bri20c].
A more detailed introduction can be found in the excellent textbook [Nua06]. The usefulness of

this section is best illustrated by Proposition [4.4.44] below.

We define a Borel measure A on R x Z? by

o;(n)

RO

where ds is the Lebesgue measure and dn is the counting measure on Z*. We define the corre-

dA(s,n) dadn,

sponding inner product by

o;(n)

ny?

9= f f(5,n)9(,n) ds. (4.4.56)

nezs

For any f € L*(Rso x Z3,d)\), we define

Wi = 3 [ ey

nez3

The inner integral can be understood as an Ito-integral. Then, we can identify W with the family

of complex-valued Gaussian random variables
W ={W[f]: f e L*(Rxo x Z°,dN)}.
For any f € L*(Rso x Z3,d\), we define the reflection operator R by
Rf(o,n) = flo,—n).

Clearly, R is a real-linear isometry. Using It6’s isometry, a short calculation yields that

E[W[fIW]g]] = {f.g> and E[W[fIW[g]] = {f. Rg).
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Since this will be important below, we note that the second identity reads

E[W] }%J f(,n)g 3-40<g)m (4.4.57)

To emphasize the integral character of W[f], we now write

In this notation, it becomes evident that we have been working with single-variable stochastic
calculus. In order to express the resonances in our stochastic objects, it is more natural to work

with multi-variable stochastic calculus. For k > 1, we define the measure \, on (Rsq x Z*)¥ by

def

AR ... QA

To simplify the notation, we set Hj, < L2((R x Z3)¥, d\y,). For any f € H,, the multiple stochastic
integral Z,|f] can then be constructed as in [Nua06, Section 1.1.2]. We only recall the basic

ingredients and refer to [Nua06| for more details.

We denote by & the set of elementary functions of the form

L
fB1,n1, . k1) = Z all,...,lklAllx...xAlk (31,11, -, 0%, ),
Iyl =1
where Ay, ..., A are pairwise disjoint sets with finite measure under \; and a;, . ; vanishes if
the indices [y, ..., are not pairwise distinct. For an elementary function, we define the multiple
stochastic integral by
L k
def
LU= D) an.u | [WIALL (4.4.58)
U eolp=1 j=1
Furthermore, we define the symmetrization of f by
fGLn, .3, ng) Z FBr(ys Mr(1ys - - > D) s o)) - (4.4.59)

. 7T€Sk

284



Lemma 4.4.37 (Basic properties). For any k,l > 1, f € &, and g € &, it holds that:

(1) Zy is linear.

(ii) The integral is invariant under symmetrization, i.e., Zy[ f] = Zx[ f]-

(iii) We have the It6-isometry formula
E[Z[f] - Ti[g]] = duk! Jf@ .

(iv) We have the formula for the expectation

© - i Uf.(”j)
:6klk! Z f f(él,nl,...,ék,nk)-g(él,—nl,...,ék,—nk)(n <;’L>2 )dék...df)l.
i J

Proof. Except for a minor extension from the real-valued to the complex-valued setting, the proof

can be found on [Nua06l p.9]. O

Using the density argument from [Nua06, p.10], we can extend Zj from elementary functions to
Hy,. In particular, for any fixed my, ..., ms € Z3, we have that

5nj =m; € Hk:

k
=1

J

and we can write

k
f[ o A | TTonmm, | (4.4.60)
,00 j=1

We vehemently emphasize that the stochastic integral (4.4.60)) does not coincide with the product

]_[?:1 We?. Instead, as will be clear from the product formula (Lemma [4.4.40)) below, the stochas-

tic integral (4.4.60)) only contains the non-resonant portion of this product.
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If f= f(ny,...,ng) does not depend on the stochastic-time variables 1, ...,3, the linearity of

the multiple stochastic integral Z; and (4.4.60) naturally imply that
L= S fo.. ,nk)f AW AW (4.4.61)
P [0,00)k
Using in Lemma [4.4.37}, it follows that

E[( f[ e awp) - ( J[ LA )|

m o2 (n;
= 1{n is a permutation of m}f oJ( i)
[0.0)m j

m <nj>2

= 1{n is a permutation of m} H<nj>’2.
=1

Up to permutations, the family of multiple stochastic integrals (4.4.60|) is therefore orthogonal.

da ... dog

Naturally, a similar formula holds without the complex conjugate. More generally, if f depends

on the stochastic time-variables 34, ...,3;, we have that
Llfl= f FOULML ) AW AW (4.4.62)
MY yeeny nk€Z3 [O’Oo)k

Here, the summands on the right-hand side are understood as multiple stochastic integrals with
fixed ny,...,n; (by inserting an indicator as in (4.4.60])). As is shown in the next lemma, this

notation is consistent with iterated Ito-integrals.

Lemma 4.4.38. Let k£ > 1 and let f € H; be symmetric. Then, it holds that

W M1 dk—1
Llfl=k )] LLL FOLRL, o)AV AW, (4.4.63)

n1,...,NEZL3

where the right-hand side is understood as an iterated Ito integral.

This follows from the discussion of [Nua06, (1.27)]. As a consequence of this lemma, we could

also work with iterated Ito-integrals instead of multiple stochastic integrals. While the iterated
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[to-integrals are more natural whenever martingale properties are utilized, the multiple stochastic

integrals have a much simpler product formula, which simplifies many of our computations.
Before we can state the product formula, we need to define the contraction.

Definition 4.4.39 (Contraction). Let k,l > 1, let f € Hy, and let g € H;. For any 0 < r <

min(k, ), we define the contraction of r indices by

(f®ryg 017711, . 3k+l 2y Mks1—2r)
def
= Z 517”17‘“751677“777’/677’71}17777/17“'7VT7mT)

.\ MyEZ3
koo (my)
J
X g(ékJrlfra N 1—rs - oy Okl —2rs k127, V1, =T, - - o, ¥y, _mr) 2 dVr B d7/(1-
i my)

We note that even if f € Hy and let g € H; are both symmetric, the contraction f ®, g may not
be symmetric. The reader should note the similarity of the contraction with the formula for the

expectation in of Lemma [4.4.37, which is no coincidence. If f, g € #;, then

E|Zl/]-Tilg)| = f@r g (4.4.64)

Thus, f® g describes the (full) resonance portion of the product Z; [ f]-Z;[g]. The product formula

is a (major) generalization of this simple fact.

Lemma 4.4.40 (Product formula for multiple stochastic integrals (cf. [Nua06, Prop 1.1.3])). Let
k,l =1 and let f € Hy and g € ‘H; be symmetric. Then, it holds that

Tl Zz(] ( )( )IW 2f ®r 9] (4.4.65)

Using the product formula (Lemma [4.4.40]), we can compute the non-resonant, partially resonant,

and fully resonant portions of products such as

(P<wN)(t,2) - (P<a)(t, ) and L (1 2) - N2 (¢, ).
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Once the Duhamel operator occurs in the expression, however, we also need to consider two

different physical times ¢ and ¢'. For instance, in our estimate of the quintic stochastic object

whe

N

we need to control

(Vo2 ) - (Peasin((t = )N (02 (#.0))

In order to consider two different physical times ¢ and ¢, we need to consider multiple stochastic
integrals with respect to two different (correlated) Gaussian processes, which we abstractly denote
by W4 and WP We will assume that Lawp(W?) = Lawp(W?®) = Lawp(W). Regarding the
relationship between the different Gaussian processes W* and W°, we assume that W™ and W™
are independent for m # +n. Furthermore, let €: Z3> — [—1,1] be an even function. We assume

that

a),n m 1A% 02 n

ds (4.4.66)

and
51 Ad2 0_2 (n)

]E[W:)(la),nwé(zb),m] b e(n)fo <5n>2

Thus, € is the (appropriately normalized) correlation of W and W®. We can then set up the theory

ds (4.4.67)

of multiple stochastic integrals with respect to a mixture of W® and W? as before. In order to fit
this theory into the same framework as in [Nua(6], one only has to replace R x Z* by R x Z> x {a, b}.
A short calculation shows for any bounded and compactly supported f,g: R x Z* x {a,b} — C
that

E[< 3y Loof(s,n,b)dm@’")( Dy Loog(s,n,L)dwp,n)]

t=a,b neZ3 t=a,b neZ3

| N  7n)
— Z Z (1{L:L}+¢(n)1{L¢L})L f(é,n,b).g(b,—n,b)<n>2 da.

1,/ =a,b neZ3

(4.4.68)
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and

(X 3 [ enoar®) (X5 [ s6naamon)]

t=a,b neZ3 t=a,b neZ3

- Z Z (1{L =} + ()1 # L'}) Loof(é,n, t)-9(,n, L’)O"?(n)da.

2
L, =a,b nez3 <7’L>

The sesquilinear form in (4.4.69)), viewed as a function in f and g, is no longer positive definite.

For instance, if W(® = —W® and hence € = —1, f = g, and f(3,n,a) = f(5,n,b) for all 3 € R5,

(4.4.69)

and n € Z?, it vanishes identically. Nevertheless, due to the condition |€| < 1 imposed on the

correlation function €, it is bounded by (a scalar multiple of) the inner product

22 LOO fGn,0)-g0,n, L)Mdo.

2
t=a,bneZ3 <n>

After defining a measure X on R x Z3 x {a,b} by dx = d\de, where d¢ is the integration with
respect to the counting measure on {a, b}, this allows us to construct multiple stochastic integrals

for functions in

L*((R x Z3 x {a,b})*, Xp).

Similar as in (4.4.60)), this allows us to define mixed multiple stochastic integrals such as
f dw i aw e aw . (4.4.70)
[0,00)

Unfortunately, the general theory now becomes notationally cumbersome. We therefore decided

to only state the much simpler special case of the product formula needed in this paper.

Lemma 4.4.41 (Quadratic-Cubic product formula). Let f: (Z3)?> — C and let g: (Z*)®> — C. We
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assume that ¢ is symmetric but do not require any symmetry of f. Then, it holds that

( Z f(nl, 712) f dm(ga),HQ dWA(la)’nl> % ( Z g(ng, na, n5) f dWA(sb),nsdm(zlb),m;dm(sb)ms)

2 3
TLl,?’LQEZg [O,CD) TL3,TL4,TL5’,EZ3 [O’OO)

= Z f(nl, ng)g(ng, Ny, n5) f dWQ(Sb)’nSdWi,(f)’mldWQ(gb)deWé(Qa)’nQ dm(la)ml

) 5
n1,n2,n3,n4,n5€L [0,0)

&(n ns n a),n
+3 Z ( Z f(nl, ng)g(—nl, Ny, 7%)%) J r de,(:)’ odWégb), 4de,(2 )m2
no,n4,N5EZ3  ni1€Z3 1 [0,00)3
<(n n n a),n
+3 Z ( Z f(nl, ng)g(—nz, Ny, n@%) f de,(E)b)’ 5dW5ELb)’ 4dW3,(1 )m1
n1,n4,n5€23  ng€Zd 2 [0,00)3
C(n)€m2)\ [ ;i
+ 6 f(n17n2)g(_n17_n2an5)— f dWw,.” 5.
HES <n1,nzglez3 (n1)*(ny)? ) 0 »

Remark 4.4.42. Instead of working with the product f(ni,n2)g(ns,n4,ns), the formula has a

natural extension to functions h(ny,...,ns) which are symmetric in ng, ny, and ns. To this end,

one only has to decompose

h(n17n27n37n47n5) = Z 1{(”17”2) = (m17m2)} ) h(mlam27n37n47n5)‘

m1,mo€Z3

We can then apply Lemma |4.4.41| to the individual summands.

Remark 4.4.43. While the formula in Lemma [4.4.41] is complicated, it is still an order of mag-
nitude easier than working with products of Gaussians directly. If the reader is not convinced, we
encourage him to work out (by hand) the corresponding resonant/non-resonant decomposition of

(3 rmm)(ci)- 62 - 250))

n17n2623

X ( Z g(n3, ng,ns) (Gg;) . GS;) NelONs Ongi=0 Qo) _ Ongs =0 a® _ Onas=0 G(b)))’

n e ns <n3>2 ns <n3>2 ng <n4>2 ns

where GO = W for , = a,b are (correlated) families of Gaussian random variables.
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After establishing the important definitions and properties of multiple stochastic integrals, it only

sin),n

remains to connect them with our stochastic objects. Let W 9" and W be the Gaussian

processes defined in Section [4.4.5, We recall that the linear evolution of the random initial data e

is given by

(t) = 3 (cos(tm)WE™" + sin(t(m)) WE™") explicn. )
o . (4.4.71)
- Z (L d( Cos(t<n>)Wg(cos)’n + sin(t<n>)Wfsm)7”)) exp(i(n, ).

nez3

In order to obtain a similar expression for the stochastic objects 8/2 and <3/, we define for any

k=1 and ny,...,n, € Z3 the multiple stochastic integral

Tt na, .o ] def f d( Cos(t<nk>)Wé(;°S)’”’“ i Sin(t<n>)Wd(:in),nk) -
e (4.4.72)
A cos(Km)WES™ 4 sin(tn ) WS ™).

In the proof of multi-linear dispersive estimates, it is essential to separate the time-variable ¢ from

the randomness. To this end, we define the Gaussian processes
Wé(i),n def 5(cos)m + VVj(sin),n‘ (4473)

Similar as in (4.4.72), we define for any k > 1, any +4,...,+; € {+,—}, and any ny,...,n;, € Z3

the multiple stochastic integral

Talny; 4 1<j<k] J[ . aw iR gyt (4.4.74)
,00

It then follows that there exists coefficients c¢: {+, —}* — C depending only on the signs such that

k
Tilton, ..o = Y C(il,...,ik)(Hexp(ijit<nj>)>zk[nj;ij:1<j<k‘]. (4.4.75)

ti,tk
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For convenience, we also define the normalized multiple stochastic integrals by

k

Tlngi+,:1<j<k]= (H<nj>) Tyl +;: 1< j <kl (4.4.76)
j=1

We close this subsection with the following stochastic representation, which expresses the quadratic

and cubic stochastic objects through multiple stochastic integrals.

Proposition 4.4.44. Let t € R and N > 1. Then, we have for all ny,ny € Z2 that
1

(n12)*

~

T(t,na) -t ) — Onio=0 = Lo[t,n1, no]. (4.4.77)

Furthermore, it holds that

\/N (t,r) = Z (HPN(nj)) Lo[t, n1, nal, (4.4.78)

n1,n2€Z3

o)=Y (]_[ pN(nj)) V (n12) T[t, n1, na, ns). (4.4.79)
n1,n2,n3€ZS jil
Proof. This follows from [Bri20c, Lemma 2.5 and Proposition 2.9], Lemma |4.4.38| and that the
distribution of

(3,n) — cos(t<n>)W§C°S)’n + sin(t<n>)m(51n)’”

is the same for all ¢ € R. O

4.4.7 Gaussian hypercontractivity and the moment method

In this section, we first review Gaussian hypercontractivity and its consequences. To help the
reader with a primary background in dispersive equations, let us first illustrate this phenomenon
through a basic example. Let Z, be a Gaussian random variable with mean zero and variance o2

Using the exact formula for the moments of a Gaussian, we have for all m > 1 that

o (2m)!
E[Z}] = o° and E[Z"] = CTwE

2m
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A simple estimate now yields that

(E[Zf,m]);" < (%)m o= \/%(E[Zf,])é.

Using Holder’s inequality, we obtain for all p > 2 that

| Zo|zr, < v/DllZo |12 - (4.4.80)

)

Thus, higher LP-norms of Gaussians can be controlled through the lower L?-norm. The “hyper’
in Gaussian hypercontractivity refers exactly to this gain of integrability. While is not
too interesting by itself, its significance lies in its generalizations to polynomials in infinitely many
Gaussians! Furthermore, Gaussian hypercontractivity has connections to many different inequali-

ties in analysis and probability theory, such as logarithmic Sobolev inequalities.

Our first proposition is also known as a Wiener chaos estimate. A version of this proposition can

be found in [Sim74, Theorem 1.22] or [Nua06, Theorem 1.4.1].

Proposition 4.4.45 (Gaussian hypercontractivity). Let k = 1, let 1, ..., € {4+, —}, and let
a: (Z*)% — C be a discrete function with finite support. Define the k-th order Gaussian chaos €;
by

©, < Z a(na,...,ng)L[£;,n;: 1 < j <kl (4.4.81)

n1,...,NEEL3

Then, it holds for all p > 2 that
k
Gkl ey < P26k L2 @) (4.4.82)

Proposition [4.4.45| will play an important role in the estimates of stochastic objects such as X3/° .

N

While Proposition bounds the moments of the Gaussian chaos, the reader may prefer or be
more familiar with a bound on probabilistic tails. As the next lemma shows, the two viewpoints

are equivalent.
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Lemma 4.4.46 (Moments and tails). Let Z be a random variable and let v > 0. Then, the
following properties are equivalent, where the parameter K, Ky > 0 appearing below differ from

each other by at most a constant factor depending only on ~.

(i) The tails of Z satisfy for all A > 0 the inequality

P(1Z] = X) < 2exp ( — (V/K1)?).

(ii) The moments of Z satisfy for all p > 2 the inequality

1
| Z]Lr < Kap™.

The lemma is an easy generalization of [Verl8, Proposition 2.5.2 or Proposition 2.7.1]. As we have
seen above, a Gaussian random variable corresponds to v = 2. It is convenient to capture the size

of K5 in Lemma {4.4.46| (and hence K;) through a norm.

Definition 4.4.47. Let v > 0 and let Z be a random variable. We define
_1
| Z|w, = supp™~ [ Z]|z.
p=2

For more information regarding the ¥.-norms, we refer the reader to the excellent textbook [Ver1§].
The next lemma shows that the ¥,-norm is well-behaved under taking maxima of several random

variables.

Lemma 4.4.48 (Maxima and the ¥.,-norm). Let v > 0, let J € N, and let Z3,...,Z; be random

variables on the same probability space. Then, it holds that

1
|max(Zy,...,2Z;)|w, <elog(2+J)~ jil%f?)i} 1Z;]w., -

While this is only a minor generalization of [Verl8, Exercise 2.5.10], we include the short proof.
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Proof. Let p = 2. For any r > p, it follows from the embedding ¢; — ¢}° and Holder’s inequality
that

11
| max(Zy,. Z) |y < 1 Zillener < 125l < 125l < Jrro max [ Z;]w,.

geeey

Then, we choose r = log(2 + J)p, which yields the desired estimate. O

We now turn to a combination of Gaussian hypercontractivity and the moment method, which
will be essential to our treatment of the random matrix terms RMT. The following proposition,
which is easy-to-use, general, and essentially sharp, was recently obtained by Deng, Nahmod, and
Yue in [DNY20, Proposition 2.8]. Before we state the estimate, we need the following definition,
which relies on the tensor notation from Definition 4.4.32

Definition 4.4.49 (Contracted random tensor). Let J < Ny, let (£;);es be given, and let Nyax =

1. Let h = hy,, be a tensor and assume that all vectors in the support of h satisfy |ns| < Nmax.

Let S € J and define k et #S. We then define the contracted random tensor h. = (he)n s by

he(nizig S)E Y. hng) Z[t;,n;: je 8], (4.4.83)

(nj)jes

where the normalized multiple stochastic integrals are as in (4.4.76)).

In the next proposition, we use the tensor norms from Definition [4.4.32]

Proposition 4.4.50 ([DNY20, Proposition 2.8, Proposition 4.14]). Let J,S, Nmax, I, he, and k
be as in Definition 4.4.49, Let A, B be a partition of {1,..., J}\S. Then, we have for all p > 2
and 6 > 0 that

k
el sms 1261 S0 N (10205 [l -ony ) 5. (4.4:84)
where the maximum is taken over all sets X', ) which satisfy A € X', B € ), and form a partition

of J.
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In [DNY20], the proposition is stated in terms of non-resonant products of Gaussians instead of
multiple stochastic integrals. Furthermore, the probabilistic estimate is stated in terms of the
tail-behavior instead of the moment growth. Both of these modifications can be obtained easily
by replacing the large deviation estimate [DNY20, Lemma 4.4] in the proof by Proposition [4.4.45]
We often simply refer to Proposition as the moment method, since it is the main ingredient
of the proof (cf. [DNY20]). While the full generality of Proposition is needed in [DNY20],

we will only rely on the following special case.

Example 4.4.51. Let +1,+5 € {+,—}, let h = h(n,n;,na,n3) be a tensor and assume that
[(n,n1,n2,m3)| < Nmax on the support of h. Define the contracted random tensor h. by

hc(n,ng) dZE.f Z h(n,nl,ng,ng) 'Ig[ij,nji ] = 1,2] (4485)

nl,nQEZS

Then, we have for all p > 2 and 6 > 0 that

<0 Nglax max (Hth1n27L3—>n7 ”h”ng—mmma ||th1n3—>nn2> Hh”ngns—mm) P

[ clngn)

w

4.5 Explicit stochastic objects

In this section, we estimate the stochastic objects appearing in the expansion of uy and in the
evolution equations for Xy and Yy. The analysis of explicit stochastic objects is necessary for
both dispersive and parabolic equations. We refer the interested reader to the treatment of the
cubic stochastic heat equation in [CCI8|, [Hail6] and the quadratic stochastic wave equation in
[GKO18a] for illustrative examples. While the algebraic aspects are similar in dispersive and
parabolic settings, the analytic aspects are quite different. In the parabolic setting, the regularity
of stochastic objects can be determined through simple “power-counting”. In contrast, the optimal
estimates in the dispersive setting require more complicated multi-linear dispersive estimates. We

remind the reader that, as explained in Remark [4.1.4] we restrict ourselves to 0 < 8 < 1/2.
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4.5.1 Cubic stochastic objects

In this subsection, we analyze the cubic stochastic object K32 and the corresponding solution to

the forced wave equation \I/N . Ignoring the smoother component ©y; of the initial data, they
correspond to the first Picard iterate of (4.2.1)).

Proposition 4.5.1 (Cubic stochastic objects). Let 7' > 1 and let s <  —n. Then, it holds that

9 3
H sup o (L)) (R (4.5.1)
Furthermore, we have that
\I/'N (10T x < T?p2. 4.5.2
H ]Svug I ”C‘?CI([O,T] T3) 2 P ( )

In the frequency-localized version of (4.5.1)) and (4.5.2)), which is detailed in the proof, we gain an 7'-
power of the maximal frequency-scale. Furthermore, we can replace i/N by Y& =1 [1[077]‘\]’/; ]
T

Remark 4.5.2. We recall that the parameter 7' is important for the globalization argument, but
does not enter into the local well-posedness theory. In order to achieve smallness on a short interval,

we will instead use the time-localization lemma (Lemma 4.4.3)) and b, > b.

Proof. We first prove (4.5.1)), which forms the main part of the argument. In the end, we follow
a standard and short argument to show that (4.5.1)), Gaussian hypercontractivity, and translation
invariance imply (4.5.2). To simplify the notation, we set Ny.x = max(Ny, N, N3). In this

argument, we rely on multiple stochastic integrals. Recalling the multiple stochastic integrals from
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(4.4.72)) and the stochastic representation formula (Proposition |4.4.44)), we have that

.\T/N. (t,l’) = Z pN(nlgg)(HpN(nj))f/(nlg) exXp (i<n123,x>)13[t,n1,n2,n3]

nl,ng,n3EZB

= Z Z [C(iji l<y< 3)(ﬁpN(nj)>‘A/(n12) exp (i(n123, 7))

+1 2 T3 ni,m2 ’IlgEZ‘5

(n (£;it{n;)) )Ig[+]7nj 1<j< 3]]7

where ¢(+,: 1 < j < 3) are deterministic coefficients. Using a Littlewood-Paley decomposition,

we obtain that

where

3
O N1 < <3t E ) le n1s3 (szv nj)XN, nj))f/(nu)

nl,ng,n3€Z3 j=1

X exp (i<n123,$>) (nexp(ijit<nj>))1'3[ij,nj: 1 <] < 3] .
j=1
We estimate each dyadic block separately. We first prove the desired estimate for b_ instead

of b, and then later upgrade the estimate. Using Minkowski’s integral inequality and Gaussian

hypercontractivity (Proposition |4.4.45)), we obtain that

HH'\T/;[ijaNj: 1<j<3

()

Fuar (XTI [, Ny 1< < 3](8,2) ) (A Frzs 0, ) 21268 oy

Fow (X/T)NU2 [, Ny 1< < 3](6,2) ) (A Fazs 0 |12 sz ey (45.3)

L

< max
_ 123

< p2 max
1123

For a fixed sign 4153, we define the phase ¢ by

def
o(n1,ne,n3) = F193{n123) £1 N1y £2 (na) £3 (n3).
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Using the definition of ¢, we can write the space-time Fourier transform of a dyadic piece in the

cubic stochastic object x(t/T)%3/ as
JT';&,J: (X(t/T).\T/N. [ijv Nj: 1<y < 3](t’ :L‘)) (/\ +123 <n>7 TL)
3
=T ), [1{” = 123} (N123) (HPN n;)Xw; ng)>‘7(”12) (4.5.4)

n1,no,n3€Z3 Jj=1
3]] |

Using the orthogonality of the multiple stochastic integrals and the decay of Y, we obtain that

N

x (TN = p(n1,n2,m3))) L[+, 1 < j

HIM( (t/T)Q2 [+, N;: 1< 5 < 3](¢, ))()\+123<n> )

L2L262 (xR XT3)

3
D Y [ EC) KOl

n1,n2,n3€Z3 Jj=1

<[ v - so(nl,m,m)))ﬁ]

STPNPN, PN ) (HXN n; )<n123>2< NV (n12) | (nr, na, ms)y?=—Y

ni,ng, ngEZS 1= 1

< T?N72N;2N;?2 sup

meZ3

'/:]\“

5 (n; ><n123>25 DV (n2)P1{[p — m| < 1},

’n1,n2,’n3€Z3 j=1

Combining this with (4.5.3) and using the cubic sum estimate (Proposition |4.4.20]), we obtain that

<Tp2Ns B

max °

ez V1< <3

frs_l’b*_l([o,T]) LP

Since there are at most < log(10 + Nyax) non-trivial choices for N, we obtain from Lemma [4.4.48

that
H sup H'\T/N' [+;, N;: 1<j<3]

NZ=1

g Lo——1o, e (4.5.5)

S TlOg log(lO + Nmax) ‘]\]rfw,xp2
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After summing over the dyadic scales, almost implies except that b_ needs to be re-
placed by b, . To achieve this, we utilize the room of the estimate in the maximal frequency
scale. Using Plancherel’s theorem, Minkowski’s integral inequality, and Gaussian hypercontractiv-
ity, we have that

sup [N [, N5 1< < 3]
Nz1

200([o,T I1LE,

< 10g10g(10 + Nuww)sup [ 1{0 < ¢ < TYN2 [, N 1< < 8| sz
N
3 1
< THoglog(10+ Nowa)?p? (> [ (o (i) )

ni,n2,n3€Z3 j=1

3

3
< T2 loglog(10 + Nypax)2 Naxp? .
By interpolating this estimate with (4.5.5)), we obtain that

HwﬂthMNf1<j<ﬂ
Nz=1

A (N L7
< T'loglog(10 + Nmax)2N;;§+4(b+—b7)p% (4.5.6)

S TNS—ﬁ-‘rS(b_'.—b_)p% .

max

After summing over the dyadic scales, this finally yields (4.5.1)). We prove the second estimate
(4.5.2) using the (frequency-localized version of the) first estimate. We present the details of

the (standard) argument, but skip similar steps in subsequent proofs. Using the energy estimate

(Lemma [4.4.8) and the (frequency-localized version of the) first estimate (4.5.1)), we obtain that

< (14 TN 500203 (4.5.7)

max

H&WH%NHme1<j<ﬂ

Nz1 LY HZILE

For any 2 < ¢ < p, we have from Sobolev embedding (in space-time), Minkowski’s integral in-

300



equality, and Gaussian hypercontractivity that

~ £ 1<y <

H i [, Ny 1< j < 3] LLLyCs

<V>8 iN [ij,NjZ 1 <] < 3]
s N + i < <

O <<,

<V>S\I/N. [+, N;: 1 <5 <3]

4
< Nrfax

LALILY

4
< Nimax

4 3
< Nr%axp 2

(4.5.8)

LILAL2’

For a fixed ¢t € R, the distribution of (V)* \I/N [+;,N;: 1 < j < 3](t,z) is translation invariant.
Thus, we can replace the L4-norm in ([4.5.8)) by the L2-norm. Using Minkowski’s integral inequality

and (4.5.7)) then yields
< Nn%axp%

NAORVIEEY W e

1 s—B+5(br—b_)+2% 3
< T1+quax QPQ'

O (£, N, 1< < 3]

LEL{L;

By choosing ¢ = ¢q(b,,b_) sufficiently large and then summing over dyadic scales, this proves

(4.5.2) for p 24, 5 1. The smaller values of p can be handled by using Hélder’s inequality in w.

Finally, the statement for '\K replaced by .\IA: follows from the boundedness of 1 .1(f) on
T
95210+ which was proven in Lemma [4.4.4] O

4.5.2 Quartic stochastic objects

The expansion uy = 1+ \I/N + wy or the explicit stochastic objects in So only contain linear,
cubic, quintic, or septic stochastic objects. However, the physical terms Phy contain terms such

as

Vo <P<NT : PsN\I/N )PgNwN or Vo« (PsNT@PstN) PsN\I/; .
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Since we treat wy € L*1 using deterministic methods, they can be viewed as quartic expressions
in the random initial data ®. Furthermore, due to the convolution with the interaction potential V'
in the second term, we also have to understand the product of T and \I/N at two different spatial

points.

Proposition 4.5.3. Let Nis3, Ny = 1. Then, we have for all s < —1/2 —n and all T' > 1 that

Pras Pax™ Y (6,2 = 1)) - P, Pt
| N1 yers (P Pex™J (2 =) - PrcPan(t ) cves(forxm) |z @) (4.5.9)
$ T3p2 maX(N123, N4)_ng
If Nig3 ~ Ny, we have for all s < —1/2 + 8 — 27 that
sup sup | { Py, P< \I/N t,x — )-P Pyt o
H N)Iiye’ll‘pL” ( Miza T < ( y) i <N( ) CPC([0,7]xT3) I LE () (45_10)
< T3pNY.
Finally, without the shift in y € T3, we have for s < —1/2 — 7 that
Pr Pen™ Y2 )-PP ¢,
| N (PriaPer ™ (1.2)) - PPttt cves (o117 L) (4.5.11)

< T°p® max(Nya3, N4)_% .

Remark 4.5.4. In the fully frequency-localized version of Proposition 4.5.3 which is detailed in

the proof, we gain an n’-power of the maximal frequency-scale. As in Proposition 4.5.1, we may
1 1 N b N == I 1 T .
also replace \I/ v \I/T [ (RVA ]

Remark 4.5.5. We recall that 1 is much smaller than x and hence the right-hand sides of (4.5.9)
and (4.5.10) diverge as Ny — oo. The third estimate (4.5.11]) is quite delicate and requires the

sine-cancellation lemma. A similar estimate is not available for the partially shifted process and it

is likely that at least a logarithmic loss is necessary in (4.5.9)) and (4.5.10)) as N, tends to infinity.
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Proof. We prove (4.5.9) and (4.5.10) simultaneously. The third estimate (4.5.11)) will mainly

utilize the same estimates, but also requires the sine-cancellation lemma (Lemma [4.4.14)). Using
the representation based on multiple stochastic integrals (Proposition |4.4.44]), we have that

<PN123P<N\I/1: (th - y)) ) PN4P<NT(t7 x)

4
= Z Z p?V(n123)XN123 (12123) ( H /)N(nj)XNj (nj)) Vs(ni,na, n3)
N1,N2,N3=1 nq,no,ng,na€Z3 J=1
t
X <n123>*1 exp <i<n1234, iL'> — i<n123, y>) < J Sln((t — t')<n123>) Ig [tl, ni, Ng, ng] : Il [t, n4] dtl) .
0

Using the product formula for multiple stochastic integrals, we obtain that

(PN123P<N.\K (t7 xr — y)) ’ PN4P<NT(ta I)

= >, Wy N+ ) (e N,

N1,N2,N3=1 N1,N2,N3=1
where the dependence on Njo3, N1, No, N3, Ny is indicated by N, and the quartic and quadratic

Gaussian chaoses are given by
§O(t,z,y; N

= Z Z [C(J_rj: 1 < j < 4)p%(n123) v (na) X vyos (P123)

ti1,4t2,%3,%4 nl,ng,ng,n4eZ3

X (n p<n(nj)Xn, (”j))‘A/S(”h na,n3){n123)”" exp (i<n1234, ) — (N2, y>)

j=1

x exp(£4it{ny)) (L sin((t — t')<n123>)(n exp(+;it'(n;))) dt')I4(ij, nj:1<j< 4)]
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and

€O(t,z,y; N,)

=3 Z Z lc( (ﬁ w(n;)xw, ( )) exp (i<n12,x>)

i17i2 n17n2€Z3

X ( > |:p?\/(n123)p?\7(n3)XN123(n123)XN3(n3)XN4(n3)<n123>_1<n3>_2‘75(n17n27n3)

n3€Z3

X exp ( — i{n123, y>) L sin((t — t"){(ny23)) cos((t — t'){(n3)) n exp(£;it'{n;))) dt’])

j=1
X Ig(ij, ’I’Lji j = 1, 2):|
The quartic Gaussian chaos €® and quadratic Gaussian chaoses € contain the resonant and

non-resonant terms of the product, respectively. We estimate both terms separately.

The non-resonant term €™ : We first let s < —1/2 — 7. Using Gaussian hypercontractivity and
standard reductions (see e.g. the proof of Proposition [4.5.1)), it suffices to estimate the L{® L2 H?-
norm instead of the L? L°C;-norm. Let the phase-function ¢ be as in (4.4.43). Using the orthog-

onality of the multiple stochastic integrals, we have for a fixed t € [0, T] that
199 (¢, 2,y N

2
D

DYDY [XN123<n123>(ﬁmn»)Ws(nhn2,n3>|2<n1234>28<m23>—2(f[<nj>—2)

j=1
2]
/

<(1+7) Z Z Z [<m> X N2 (M123) (ﬁ >|V5 n1,ng, 13)[*(N1gza)™

ti1,%2,%3 ni,n2,n3, n4€Z3 meZ

+1,%2,%£3 n1,n92,n3,n4€7Z3

| fo sin((t — ¢ )ma) (] | expl5it )

x <n123>‘2(f[<nj>‘2)1{|s0 —m| < 1}]
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W~

< T?sup Z Z |:XN123 (n123) ( H XN; (n])) |‘75(n1, na, n3) [*(ni1sza )

meZ t1,t2,%3 nl,nz,ng,n4eZS j=1

4
<Gy ([ T 2)1{lo -l < 1|
j=1
Using the non-resonant quartic sum estimate (Lemma [4.4.24)); it follows that

< T? max(Ny, Ny, Ng) 28+ N 21,

Hcg(ll)(zf7 2,Y; N1as, N1, No, N3, N4))HigHg ~

This yields (4.5.9) for the non-resonant component. If Njp3 ~ Ny, then max(Ny, Na, N3) = Ny,
and hence we can raise the value of s by § —n. Thus, we also obtain (4.5.10)) for the non-resonant
component. Even when y # 0, our estimate for the non-resonant component does not exhibit any

growth in Ny, and hence it also yields (4.5.11]) for the non-resonant component.

The resonant term €2 : This term exhibits a higher spatial regularity and we let —1/2 < s < 0.
Using Gaussian hypercontractivity and standard reductions (see e.g. the proof of Proposition
4.5.1)), it suffices to estimate the L°L2 H*-norm instead of the LP L¥Cs-norm. Using the orthogo-

nality of the multiple stochastic integrals, we have that

62 (12,5 N 2,

<y ¥ [(f[XNJ.<nj>)<nm>28<n1>—2<nz>—2

t1,4+2 nq,noeZ3

~ 4.5.12
x| 2 [P?V(HIZS)P?V(”S)XM% (n123) X vy (1) X v, (n3) (aag) ™ (ng) Vs (n, ma, mis) ( )
x exp ( — i{n123,Y)) L sin((t — t'){n123)) cos((t — t'){nz)) n exp(£;it’{n;))) dt’] ]

J=1

We now present two estimates of (4.5.12]). The first estimate will yield (4.5.9) and (4.5.10). The

second estimate is restricted to the case y = 0 and yields, combined with the first estimate, (4.5.11]).
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After computing the integral in ¢ and decomposing according to the dispersive symbol, we obtain

from Cauchy-Schwarz that

E51D) < TN ~ Ny} [(f{ v, (nj))<n12>23<n1>*2<n2>*2

nl,nzeZ3

(33 o Py 1l i <11 |

MEZ n3eZs3

Using the resonant quartic sum estimate (Lemma [4.4.26]), this implies that
(15.12) < T?1{Ns ~ Ny}log(2 + Ny)* max(Ny, No)**

This clearly implies and . Except for the logarithmic divergence in Ny (and hence
N3), it also implies . We now need to restrict to y = 0 and we may assume that Ny, Ny «
Ns. For fixed ny,ny € Z3, we can apply the sine-cancellation lemma (Lemma [4.4.14) with A =
max(Ny, Ny) and

f(t,t' n3)
L3 (m123) 9% (13) X ¥y (n123) Xovs (1) X v, (n3) (s () 2 Vs (i, ma, neXP (£5it'(n;)))

This yields

(512

2
< T'1{N; ~ Ny} max(Ny, No)*N;? > <n12>25<]_[ {|n;| ~ Nj}<nj>_2)
nl,nzeZ3 j=1

< T*max(Ny, No) N3 2.

By combining our two estimates of (4.5.12)) ‘yzO we arrive at (4.5.11)).
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Remark 4.5.6. As we have seen in the proof of Proposition [4.5.3| the (probabilistic) resonant
portion of Pcy \I/N - P ' has spatial regularity 0—, which is better than the sum of the individual
spatial regularities. As a result, the probabilistic resonances between linear and cubic stochastic

objects in Section [4.5.4] are relatively harmless.

4.5.3 Quintic stochastic objects

In this subsection, we control the quintic stochastic objects in So, i.e.,

CE@) G wa e

Since So is part of the evolution equation for the smoother nonlinear remainder Yy, the quintic

stochastic objects have to be controlled at regularity s, — 1.

Proposition 4.5.7 (First quintic stochastic object). For any 7' > 1 and any p > 2, it holds that

< T2p3. 4513
@ p ( )

el €

N=1 a2~ 10+~ 1([0,17)

Proposition 4.5.8 (Second quintic stochastic object). For any 7' > 1 and any p > 2, it holds

o

Nz1

that
< T2 5 4.5.14
LE(Q) P ( )

N|C

210+ ([0,T])

Remark 4.5.9. In the frequency-localized versions of Proposition [4.5.7 and Proposition [4.5.8]
which are detailed in the proof, we gain an n’-power of the maximal frequency-scale. As in Propo-

sition [4.5.1, we may also replace %N by \I/N =1 [1[O,T]M]. We will not further comment on
T

these minor modifications.

Proof of Proposition[{.5.7]: Throughout the proof, we ignore the supremum in N > 1 and only

prove a uniform estimate for a fixed N. Using the frequency-localized estimates below and the
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same argument as in the proof of Proposition 4.5.1] we can insert the supremum in N at the end
of the proof.

We first obtain a representation of the quintic stochastic object using multiple stochastic integral.

Using (4.2.23]) and Proposition 4.4.44] we have that
@) S (t.0)

~

= Z Z [P?v(n345)XN345 (12345) < ﬁ PN (nj) XN, (n])) ‘7(711345)‘/5(713, N4, M)

N345,N1,...;N5:  mq,..,n5€Z3
max(N1 N345)>N

x (ngasy” " exp (i{ni2sas, 1)) o[t, n1, no] ( Lt sin (£ — t'){n123)) Zs[t', g, na, nddt’)].

Using the product formula for mixed multiple stochastic integrals (Proposition 4.4.44| and Lemma
4.4.41]), we obtain that

(e«Q) w: (t,z) = > (’\3(5) +6% 1+ €O 4 ‘iﬁ(l)) (t,z; N,), (4.5.15)

N345,N1,...,N5:
max(N1,N345)>N§

where the dependence on N3us5, Ny,..., N5 is indicated by N, and the quintic, cubic, and linear

Gaussian chaoses are defined as follows. The quintic chaos is given by
GO (t, ; N,)

N (i1 <5) ) lp?v(n345)XN345(”345>(ﬁpN(nj)XN"(nj))f/(nl?’%)

+1,00, io MY yenny ’I’L5€ZS
N 2
X Vs(n3, Ny, n5)<n345>*1 exp (z’<n12345, Z‘>) (1_[ exXp ( ij zt<nj>))
j=1
t 5
X (J sin ((t — t){n123)) Hexp +; it’<nj>)dt')l'5[ij,nj: 1<j< 5]]
0 =3
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The two cubic Gaussian chaoses are given by
€O (t,2; N,)

def ~ ]

= ) o(fatats) D [( [T on(njxn, (nj))V(n45) exp (i{nass, 7))
i2,i47i5 ng,n4,n5€Z3 j:27475

)

n3€Z3

(P?v(TlS)/)?v("345)XN345 (n345) X vy (13) X v (113) Vis (113, 1, 15) (s y ™ gy~ exp (£2it(ny))

) sin (£ — t'){naasy) cos ((t — t'){(ns)) n exp (% it'(n;))dt’
and

)I3{ij7nj: Jj=2,4, 5]]
€O(t, x; N,)

def

il,%:,is T Z [<

H pN(nj)XNj(nj)) exp (i{nss, 7)) Z

(p?v (n3)
n36Z3
% P3¢ (M345) X Naas (1345) X vy (13) X (13) Vs (g, 124, 115) V (nas ) nsas )™ (ng) ™2 exp (£1it(n1))
0

X J sin (£ — t'){naas)) cos ((t — t'){(ns)) n exp (% it'(n)dt’

TL1,n4,’n5EZS

j=4,5
Finally, the linear Gaussian chaos (or simply Gaussian) is given by

)Ig[ij,nji j = 1,4,5]:|
S (t,z; N,)
d:ef

+5

(£5) Z p (15) x5 (1) exp (ins, ) Z

[P?v (n345)f)?v (n3)P?v (”4)XN345 (”345)
n3,n4eZ4
X XNy (3) X5 (3) X v, (1) X v, (714)‘75(”37 Ny, n5)‘A/(n45)<n345>_1<n3>_2<”4>_2
0

X f sin (£ — ¢'){naas)) cos ((t — t'){nz)) cos ((t — t'){na)) exp ( 5 it'{ns)) dt’] T %5, n5].

ideas and ingredients.

Each of the frequency-localized Gaussian chaoses in (4.5.15)) is now estimated separately. We en-
courage the reader to concentrate on the estimates for €®) and €, which already contain all
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The non-resonant term €4 :

Let s = 1/2 —n. We will first estimate the X* %*-~lnorm of a dyadic piece and then use the
condition max(Ny, Nas5) > NS to increase the value of s. Using Gaussian hypercontractivity

(Proposition [4.4.45)), the orthogonality of multiple stochastic integrals, and Lemma 4.4.12] we

obtain that

L

H ||g(5) (t’ I7 N*) %sfl,b_fl([O’T])

2

LE

< max | [O0P 1) F (X (/TS (E 5 N2)) (3 Fazsas () )3z

L2

w

2
[0~y Foe (/TG (t, 25 N2) ) (A Faasas (). 1) 122 2 xzs)

< p5 max
t12345

t12345,1345, 3
t1,..,45  1M1,...,n5€Z

5
ST°p | max 2. [XN345 (n3as) ( [ s j))<n12345>2(5_1)<”345>_2

< |V (ragas )P Vs (g ma ) P (T T357) (1 4+ | s Cnaas) s Cna) G s sl

J=1

X JR<>\>2(b‘1) (1 + min (P\ — (F12345(n12345) F345 (N3as) 1 (1) 2 (n2))

A — (F12305(n12345) Faas (Naasy + i(ijxn j>D ) _zd A] ‘ (4.5.16)

To break down this long formula, we define the phase-functions

P(ng, na, ns) df t345(N345) F3 (N3) F4 () £5 (n5),

f
o(ny,...,ns) e +19345¢N12345) F345 (Nzas) T1 (N1 2 (Na),
5

~ def —
P(n1,...,n5) = F12305{N12345) Faas (Mzasy + Z(ij)<nj>
j=1
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Integrating in A and decomposing according to the value of the phases, we obtain that

(4.5.16) < T?p°log(2 + max(N,...,N5)) max  sup Z lXNM (n3as)

+12345,1345,
m,m/'€Z
t1,...,%5 ni,...,n5€Z3

(HXN U] )<n12345>( )<n345> | (n1345)| |VS N3, N4, M) | (n<ng> )

< e —m| <1} (1l —m'| <1} + 1{F - m'| < 1})].
Using the non-resonant quintic sum estimate (Lemma [4.4.27)), we finally obtain that

I8 (1,2 V)

T P Tp? max(Ny, N, Ny, N5)“PH1N; ™. (4.5.17)

Due to the operator (_') , we have that
max (N1, N3, Na, N5) = max(Ny, Na, N3, Ny, N5)“.

Thus, (4.5.17)) implies

H “@(5) (t, X, N*)‘ < Tp% max(Nb NQ’ Ng, N47 N5)62+37775/8’

%82—1,})7—1 O,T
(CRa]

which is acceptable.

Single-resonance term € :

This term only yields a non-trivial contribution if Ny ~ N3. In particular, max(Ny, N3g5) > NS
implies that max (N3, Ny, N5) = N§. Using the inhomogeneous Strichartz estimate (Lemma [4.4.9)

and Gaussian hypercontractivity, we have that

[I5 ¢, 2; 3

< It 25 N s s

o2 1= 1([0,7)

([0.11x1%) | 1p
1
< T2 169 2 N oo oy |, (4.5.18)
< Tp> sup HHCg (t,x; N, M 22~ sy,
te[0,17] LZ
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Using the orthogonality of the multiple stochastic integrals, we have that

sup |99 (t, 23 N,)
te[0,T7]

2

-1
H;Q (TS) La

(4.5.19)
SN4—525N2—2N4—2N5—2 Z XN45(”45)< 1_[ XNj( j))<n245>2(82—1)8(n2,n4,n5;t,N*)Q’

n27n4,n5€Z3 j:274’5

where

S(”Z) N4, Ns5; t? N*)

2

ef - _ _
< [P?\/ (na)/ﬁv(”m)xzvm (n345)XN1 (n3)XN3 (”3)‘/8(”37 Ny, ”5)<n345> 1<”3> 2
n3€Z3

x exp ( t it{ns)) L sin ((t — ¢'){naasy) cos ((t — t'){ns)) n exp ( £; it'{n;)) dt']

j=4,5
Define the phase-function ¢ by

©(n3,n4,15) &« (ngas) +3 {3y 4 (nay 5 (ns). (4.5.20)

By performing the integral, using the triangle-inequality, expanding the square, and using Lemma

4.4.25| we obtain that

S(n27 N4, N5, t? N*)2

meZ n3eZ3

ST max ( D0 2 my T x (ns)nsas)y T (na) P 1{ | — m| < 1})

max sup

X Sub Z X s (13){nas) ) 21{|p —m| < 1})
(Lo, 33 0 ) ) 1l -l <13)

< T?log(2 + max(Ns, Ny, N5))(

MEZ n3zeZ3
< T?log(2 + max(Ns, Ny, N5)){nys) !

x i?ﬂ%}fn Z Z (M)~ x g (n3)<n345>_1<n3>_21{|%0 —m| < 1}‘

meZ n:;GZ:”
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By inserting this into (4.5.19) and summing in n, € Z3 first, we obtain

2
sup H||‘§( )(t, x; N, Ny
te[0,17]

1
g2 (']I‘3) LZ,

5
< T?log(2 + max(Ns, Ny, Ny)) ( 11 N*Z)

J
j=2

RS > 2 [<m> l(ﬁXNJ (ny )<n245>2( > Dngssy™ nasy™ " 1{|p —m| < }]

MEZ np,n3,ng,ns€L3 Jj=2

5
< T?log(2 + max(N, Ny, Ng)) N2~ 1(]_[ )

co 3% o (T 1l - ml < )]
THEhES MEZ n3,ng,n5€ZL3 j=3
< T?log(2 + max(Ns, Ny, N5))N3*2~ ' max(Ny, N5)~2°

In the last line, we have used the cubic sum estimate (Proposition 4.4.20]). In total, this yields

1
< Tlog(2 + max(Ns, Ny, N5))N,~ 2 max(Ny, N5) 7. (4.5.21)

sup HH@ (t,x; N, Ny
te[0,11]

52 1(,]T3)

Recalling that max(N3, Ny, N5) > NS, we are only missing decay in N3. By using the sine-

cancellation lemma (Lemma |4.4.14)) to estimate S(ng, ny, ns;t, N,), we easily obtain that

sup HH@(?’ (t,x; Ny)

te[0,T]

_1
< T%N,” "2 max(Ny, N5)° N, L. (4.5.22)

-

After combining (4.5.21)), (4.5.22), and the condition max(Ns, Ny, N5) > N5, we obtain an accept-

able estimate.

Single-resonance term ©®): This term can be controlled through similar (or simpler) arguments

than €® and we omit the details.
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Double-resonance term €M) :
This term only yields a non-trivial contribution when N; ~ N3 and Ny ~ N;. We note that the
sum in n3 € Z* may appear to diverge logarithmically (once the dyadic localization is removed).

However, the sine-function in the Duhamel integral yields additional cancellation, which was first

observed by Gubinelli, Koch, and Oh in |[GKOI18a|] and generalized slightly in Lemma [4.4.14]

Using the inhomogeneous Strichartz estimate (Lemma [4.4.9), it follows that

|6 (¢, 25 V)

a2=10-=1([0,17) < Hc'g(l) (t, €, N*) ||Lt2b+ H;2*1([0,T]><'11'3)

1
<712 ||@(1)(t, x; N*)HLijTl([O,T]xTS)‘
Using Gaussian hypercontractivity (Proposition|4.4.45|) and the orthogonality of multiple stochastic
integrals, we obtain that

T|Ig (@ N,

)HLfH:Tl([o,T]xT?’)

L%
1 .
< Tp | 19902 N oz o), (4.5.23)
STp sup Y Xy (ns)(ns)**2 28 (ns3 1, N, )
te [O,T] 7’L5EZ3

where

S(ns;t, N,) &

> [P?v (7345) P (113) P (M) X5 (M305) X v, (23) Xov (123) X v, (124) Xov, (724)

TL3,7L4€Z4

x Vs (ng, ng, n5)V (nas){naasy " (ng) =X (ngy ™

X L sin (£ — ¢'){naas)) cos ((t — t'){n3z)) cos ((t — t'){na)) exp ( £5 it'{ns)) dt']

We now present two different estimates of 8(ns;t, N.). The first (and main) estimates almost

yields control over €™, but exhibits a logarithmic divergence in N3. The second estimates ex-

hibits polynomial growth in Ny and N5, but yields the desired decay in Nj.
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Using that [V (n4s)| < (ngs)™" and the crude estimate |Vs(ns, ng, ns)| < 1, we obtain that

S(ns;t, Ny) < NygsNy >N, 2 2 l1{|n3| ~ N3, [na| ~ Ny, [naas| ~ Naas Jnasy”

ng,m;EZS

X ‘ L sin (£ — ¢'){naas)) cos ((t — t'){nz)) cos ((t — t'){na)) exp ( £5 it'{(ns)) dt"]
< T'log(2 + max (N3, Ny, N5))Nizs Ny >N

t3,14,%5 ez

X max sup [1{|”3| ~ N3, [na| ~ Ny, [naas| ~ N345}<n45>_61{|90 —m| < 1}]7

n3,n4€Z3

where the phase-function ¢ is given by
def
©(n3,n4,m5) = (Naas) T3 (n3) L4 (na) £5 (ns).
Using the counting estimate from Lemma [4.4.29] it follows that

S(ns;t, N,) < Tlog(2 4+ max(Ns, Ny, Ns)) max(N,, N5) 7. (4.5.24)

Alternatively, it follows from the sine-cancellation lemma (Lemma |4.4.14) with A = NZNZ2, say,
that
S(ns;t, No) < T?N; 'NJNZ. (4.5.25)

By combining (4.5.23), (4.5.24)), and (4.5.25)), it follows that

Tz |6V (¢, x; N,)

|2 o) 7
< T3 log(2 + max(Ny, Ny, Ng))N22"2 min (N7, N5 7, Ny NG
< T3NS (N, Ny, Ng) ™"

< Tp2 max (N3, Ny, N5)~".

This contribution is acceptable.
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Proof of Proposition[4.5.8: This estimate is similar (but easier) than Proposition and we
therefore omit the details. Instead of gaining additional regularity through the para-differential

operator as in Proposition we simply use interaction potential V' and the crude inequality

<n12>72f8 < <7”012>727 < <7”L12345>72’Y<7’L345>27

for 0 < v < p. O

4.5.4 Septic stochastic objects

The next proposition controls the third and fourth term in So, i.e., in (4.2.2§]).

Proposition 4.5.10 (Septic stochastic objects). Let T' > 1 and p = 1. Then, it holds that

aly e < T, (45.26)

Ul oy ez ce)

(T ) % < T2, (4.5.27)

* et qomy ey

sup
Nz1

sup
Nz1

Remark 4.5.11. In the frequency-localized version of Proposition [4.5.10 we gain an n’-power

of the maximal frequency-scale. As in Proposition 4.5.1] we may also replace \I/N by \I/l; =

I [1[0,T].\T/1::|‘ We will not further comment on these minor modifications.

Proof. We only prove (4.5.26). The second estimate (4.5.27) follows from similar (but slightly

simpler) arguments. To simplify the notation, we formally set N = oo. The same argument
also yields the estimate for the supremum over N. Using the inhomogeneous Strichartz estimate

(Lemma [4.4.9) and Gaussian hypercontractivity (Proposition [4.4.45)), it suffices to prove that

=l

< TP (4.5.28)
L2(P)

sup
t€[0,T7]

H22 ' (T8)
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Using a Littlewood-Paley decomposition, we write

< = Z wx I[N1234567> Nigsa, Ny, N567],

N1234567,N1234,N4,N567

where

'\T)' [N12345677 N1234a N4: N567] o PN1234567 [(PN1234‘7) # ( l : PN4T> PN567 l ] (4529>

We now present two separate estimates of (4.5.29). The first estimate, which is the main part
of the argument, almost yields (4.5.28]), but contains a logarithmic divergence in N,. The second
(short) estimate exhibits polynomial decay in Ny, and is only used to remove this logarithmic

divergence.

Main estimate: Using the stochastic representation of the cubic nonlinearity (Proposition 4.4.44)
and (4.4.76)), we obtain that

'\T/“ [N1234567> N12347 N4> N567]

= Z Z [XN1234567 (11234567) X N1zaa (1234) XV, (714) X Va7 (567) V (R11234)
M7€L3 £1,0.,E7 (4.5.30)

X (ID(t,nj, iji 1 <] < 3) Fitna) - >(I)(t T, i Hh < j 7) exp ('<n1234567,x>)
4

~

X Ig[nj, ijf 1 <] < 3].%1[714, i4]1'3[7’lj, iji 5 <] < 7]:|
Here, the amplitude ® is given by

@(t,nj,ij: 1 <] <3)
3

def (Nyas)” Vg (ny,n2,n3 (n<n3> )(J sin ((t—t <n123>nexp —i— it <n]>)dt>

7j=1
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Comparing with ®(ny,ns,n3) as in Lemma [4.4.31], we have that
sup |®(t,nj, £;: 1 < j < 3)| < TP(ng,ng,ng3). (4.5.31)
te[0,T]
We now rely on the notation from Definition and Lemma[4.4.31] Using the product formula
for multiple stochastic integrals twice (Lemma [4.4.40)), the orthogonality of multiple stochastic

integrals, and (4.5.31]), we obtain that

& [N12345677 N12347 N47 N567]

*

< T4Z Z <nnr>2(521)( Z 1{|n123a567) ~ Niagaser }1{|n1234] ~ Ni2sa}1{|ns67| ~ Nse7}
P

(nj)j¢o (nj)jeo

2

sup
te[0,T7]

L2 H2 1 (QxT3)

2
X 1{|n4| ~ N4}|V(n1234)|(13(n1,ng,n3)<n4>_1®(n5,n6,n7)> .

The sum in 9 is taken over all pairings which respect the partition {1, 2,3}, {4},{5,6,7}. For a
similar argument, we refer the reader to [DNY19, Lemma 4.1]. Using Lemma [4.4.31] it follows

KT; *[ N1234567, N1234, Na, Nsgr]
L2 H;?™ (X T3) (4.5.32)

(s3-3) rr—(5— C(—sam)\ Ar—
< T?log(2 + Ny) (N12§45267N56(75 "4 N12§5456$ 77)) N12§4-

that

sup
te[0,T]

Since Nigsaser < max(Nigsa, Nsgr) and Nisgaser ~ Nsgr if Nigss « Nsgr, we obtain that

' IKT/' *[ N1234567, N1234;, Na, Nsgr]
L2 H22 1 (QxT3) (4.5.33)

< T%1og(2 + Ny) max(Niszsser, Ni2sa, Nsgr) ~717%).

sup
te[0,T7]

Removing the logarithmic divergence in Ny: Using Proposition 4.5.1{and (4.5.11)) from Proposition
4.5.3 we obtain that
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sup

W [ N1234567, N1234, Na, Nser]
te[0,T]
< HPN1234[ I ’ PN4T]

< T5N1234N4;%-
By combing (4.5.33)) and (4.5.34)), we obtain that

¢ '\"ﬂ' *[ N1234567, N1234, Ny, Nser]
L2 H2H(QxT3)

_n2 _(B—p—
< T°N, " max(Nio34567, N1234, Nser) (B=n=262),

L2 H2H(QxT3)

PN567\I/.

LLLE L2(Qx[0,T]xT3)

sup
te[0,T]

After summing over the dyadic scales, this yields (4.5.26]).

4.6 Random matrix theory estimates

LLLF L (Qx[0,T]xT3)

(4.5.34)

(4.5.35)

In this section, we control the random matrix terms RMT. Techniques from random matrix theory,

such as the moment method, were first applied to dispersive equations in Bourgain’s seminal paper

[Bou96]. Over the last decade, they have become an indispensable tool in the study of dispersive

PDE and we refer the interested reader to [Bou97, [CG19, [DH19, DNY19, [FOS21l, [GKO18al, Ric16].

Very recently, Deng, Nahmod, and Yue [DNY20, Proposition 2.8] obtained an easy-to-use, general,

and essentially sharp random matrix estimate, which is proved using the moment method. We

have previously recalled their estimate in Proposition [4.4.50, The proofs of Proposition [4.6.1] and

Proposition [4.6.3] combine their random matrix estimate with the counting estimates in Section

444

Proposition 4.6.1 (First RMT estimate). Let 7' > 1 and let p > 1. Then, it holds that

(VL) - Penvw

H sup sup sup

N=17<[0,T] Juw] a2 b () ILE (P)

?}fsl*b(‘])gl
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Remark 4.6.2. This proposition controls the first term in RMT, i.e., in (4.2.30f). In the frequency-
localized version of (4.6.1)), which is detailed in the proof, we gain an n’-power in the maximal

frequency-scale.

Proof. The arguments splits into two steps: First, we bring (4.6.1]) into a random matrix form.
Then, we prove a random matrix estimate using the moment method (Proposition {4.4.50)).

Step 1: The random matrix form. By definition of the restricted norms, it holds that

sup sup
TE[0T] wlgsy,b( 7y <1

< swpX@/DV e\ Pavw

fle]

(V+2) - Pavu

%32—1,b+—1(\7)
(4.6.2)

Exs271,b+71(R)

o1 ()<
We bound the right-hand side of with b, replaced by b_. Using the frequency-localized
estimate in the arguments below and a similar reduction as in the proof of Proposition 4.5.1] we
can then upgrade the value from b_ to b,. Let w € X*1°(R) satisfy ||Jw|
wy € L0 (R) by

goromry < 1. We define

Wy(A,n) = 1{+ =0} n).

Then, it holds that w = w, + w_ and

lw Lob(R) ™ mfx H<”>sl<)‘>b@i(/\ + {n), n)”Lizﬁ(Rxwy

Using this decomposition of w and the stochastic representation of the renormalized square, we
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obtain that the nonlinearity is given by
(Vo\2) - Payw

-y N > [c(il, i2)<ﬁpN(nj)XNj (nj))f/(nlz)fz[ijv”ji j=12]

t1,%2,£3 N1,N2,N3 ny,no,n3eZs

X ( exp ( +; zt<n]>)) ,(t,n3) exp (Z<”123, $>)]

j=1

||::]m

3
= Z Z f d)\g l (n TLJ XN nj )V(nlg)Ig[ij,nj: j = 1,2]
1,t2,%t3 N1,N2,N3 ni,na, ngeZ3 j=1
x exp (itAs) ( H exp ( 4 it<nj>)) Wy (A3 £3 (n3), m3) exp (i(naos, x>)] :
j=1

To simplify the notation, we define the phase-function ¢: (Z3)® — R by

©(n1,m2,n3) = t123(N123) +1 (N1) £2 (N2) 3 {n3). (4.6.3)

The space-time Fourier transform of the time-truncated nonlinearity is therefore given by
F(XC/TYV #82) - Panw) (A 12 (), m)

=T Z Z J dAs [c(il, +9)1{n = n123 } X (T(A — A3 — (1, n2, n3)))

+1,%x2,£3 N1,N2,N3 n1n2n3625

To simplify the following notation, we emphasize the dependence on the frequency-scales Ny, Ny, N3

(4.6.4)

::]w

~ ()X, ( )‘7(”12)IQ[+]77’L] Jj =1,2]04, (A3 £3{(n3), n3)]

by writing N, and omit the dependence on +193, 1, +9, 3, and T" from our notation. We define
the tensor h(n,ni,ng, n3; A, A3, N,) by

defr (41, +2) 1{n—n123} ( (A=X3 — (nl,nz,ng)))

“(Il

h(n7 Ny, N2, N3; )\7 )\37 N )
(4.6.5)

:]w

(g, () ¥ (i) ()=~ ™ )™ ()™
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Furthermore, we define the contracted random tensor h.(n, ns; A, A\3) by

hc(n,n;;;)\,)\g,N*) = Z h(n,nl,nz,ng;)\, )\3,N*) -i'g[ij,nj: ] = 1,2] (466)
nl,TLQEZS

By combining our previous expression of the nonlinearity (4.6.4) with the definition (4.6.6)), we
obtain that

F(XC/TYV +AL) - Peyo ) O 12 (), m)
= <n>_(52_1) Z Z JR d)\g Z hc(n, ns; )\, )\3, N*)<n3>81@i3 ()\3 ig <n3>, ’flg).

+1,+2,£3 N1,N2,N3 ngz€Z3

We estimate each combination of signs and each dyadic block separately. Using the tensor norms

from Definition |4.4.32] the contribution to the X*2~1*-~lnorm is bounded by

‘<>\>b_1f dA; Z he(n, m; A, Az, Nu)(ng)™ W, (Az 3 (n3), n3)
R

ngEZ3

S O P [N U P Y W A

L3202 (RxT3)

w

,(RxR) LHR):

272
L/\LA

In order to control the operator norm in (4.6.2)), it therefore remains to prove that

< Tmax(Ny, Ny, N3)“2p. (4.6.7)

MO 0|k, s A Az, Vo) lngon
([ 0%y o, mgi A g, N e

L33 (RxR)

Step 2: Proof of the random matrixz estimate (4.6.7). Using Minkowski’s integral inequality, we
have that

H H<)\>b_71<>\3>7thc(na ns; )\7 )\37 N*) H’ng%’ﬂ

L313, (RxR) L2 (P)

< [V Ihe(, 795 2, As, Nl o

5P 11313, (RxR)

L2212 (RxR " 3o
by >\3( xR) A A3€R

< [0y

‘”hc(nw ns; )\7 /\37 N*)Hngﬁn

L, (P)

< sup
A A3€ER

‘HhC(TLJ ns; )‘7 )‘37 N*)Hng—»n

@)’
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We emphasize that the supremum over A\, A3 € R is outside of the LP (P)-norm. Using the moment

method (Proposition [4.4.50)), it holds that

su hc nan‘;)U)\aN* nz—n
s [l s A X, Nl
S maX(vaN%Ni’))g sSup max (Hh(';)‘7>\37N*)Hn1n2ngana Hh(a)\v )\37N*)||ngann1n27

A A3€R
B30 5, N s [ A Ay N o )

In order to estimate the tensor norms of h(-; A, Az, N,), we further decompose it according to the
value of the phase-function . For any m € Z, we define

5 def,

h(n7n17n2an3;m7N*) :Tl{n = n123}1{|80(n17n2an3)) - m| < 1}( pN(n])XNJ (nj))

<.
Il w
—

X [V (mi2)[Kny> ™ )™ gy~ gy~
Using the definition of A in (4.6.5)) and the decay of Y, we obtain that

|h‘(n7nlan27n3; Av >\37 N*)|

< Z |2(T()\ - >\3 - 90(77/1,712, n3)))| 1{|90(n17n27 n3) - m| < 1}71’(77’777'17”27 ng;m, N*)

meZ

< Z<)\3 — X =m) 2 h(n,n1,ns, nz;m, N,).
meZ

Using the triangle inequality for the tensor norms and the first deterministic tensor estimate

(Lemma [4.4.33)), it follows that

maX(Nb N27 N3)g )\S;IPR max (”h(7 >‘7 )‘37 N*)”nlnznsﬁna ”h(? )‘7 )‘37 N*)Hnsﬂnmnzu
,A3E

I3 0 X, Nl -anns 15 A Ay No s )

s ma‘X(N17 N27 ]\73)g Sup max (H%(? m7 N*)||n1n2n3—>n7 ||,];(7 m7 N*)Hng—mnﬂLw

meZ

G\ RS TETI |

< Tmax(Ny, Ny, N3) 2.
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Proposition 4.6.3 (Second RMT estimate). Let 7> 1 and let p > 1. Then, it holds that

Vs (Pen- PenY) (T®) Popt: <Tp. (4.6.8)

LE ()

H sup sup sup

N=1g<[0,T] Y] a2 1b+ =1 )

mSva(j)gl

Remark 4.6.4. This proposition controls the second term in RMT, i.e., in (4.2.30). In the
frequency-localized version of (4.6.8]), which is detailed in the proof, we gain an n’-power in the

maximal frequency-scale.

Proof. Due to the operator (_'@) , the renormalization M P<yY does not just cancel the prob-

abilistic resonances between the two factors of T in
Vs (Pl PoyY) (TQ@) Pyt

As a result, we need to decompose My = MJC\? + ./\/l;@, where the symbols corresponding to the

multipliers are given by

def Vin+k)
m®(n) & vYin+ k)
G

~

my® (n) & ¥ %xm B (B) ).

xr(n + k)xw(k)px (k),

The random operator

can then be controlled using the same argument as in the proof of Proposition [4.6.1], except that
we use Lemma instead of Lemma [£.4.33] Thus, it only remains to show that

M PoyY

%szfl,b_'_fl(j) S THY %SQ,b(j). (469)
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The estimate (4.6.9) has a lot of room and can be established through the following simple argu-
ment. On the support of the summand in the definition of m ]S,@ , it holds that |n+ k| < |k|¢. Using
only that Vis bounded, this implies that
my ()] < > DK n+ kS K} < Y K<L
K21 kez? K>1

Thus, the symbol mﬁ,@ (n) is uniformly bounded and hence the corresponding multiplier MJC\?
is bounded on each Sobolev-space H:(T?). Using the Strichartz estimates (Corollary and
Lemma , we obtain that

M PoyY

®
g2~ Lb+—1(7) < ”MN PgNyHLfb'*'H?_l(jXTS)

S U ITDIY 1 gmsy S (L TDIY Tgonary

4.7 Para-controlled estimates

The main goal of this section is to estimate the terms in CPara. We remind the reader that the
para-controlled approach to stochastic partial differential equations was introduced in the seminal
paper of Gubinelli, Imkeller, and Perkowski |[GIP15] and first applied to dispersive equations by
Gubinelli, Koch, and Oh in [GKO18a].

The following definitions of the low-frequency modulation space LAl and the para-controlled struc-

ture PCtrl are following similar ideas as the framework in [GKO18a].

Definition 4.7.1 (Low-frequency modulation space). Let H = {H(t,x; K)}k>1} be a family of

space-time functions from R x T? into C satisfying
supp(H(t,z; K)) < {k € Z°: |k| < 8K*}. (4.7.1)
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We define the low-frequency modulation norm by
H iz = sup KO I g 1y v (4.7.2)
We define the corresponding low-frequency modulation space LAL(R) by
LAR) = {H: |H]gae < o). (47.3)

Furthermore, let 7 < R be a time-interval and let H = {H (¢, z; K)}k>1} be a family of space-time
functions from J x T? into R satisfying (4.7.1). Similar as in the definition of X*’-spaces, we

define the restricted norm by

| H | %u(7y = inf {||H’||5M(R): H'(t) = H(t) forallte j}. (4.7.4)
The corresponding time-restricted low-frequency modulation space LA (T) can then be defined
as in after replacing the norm.
Definition 4.7.2 (Para-controlled). Let J < R be an interval, let ¢: JxT? — C be a distribution,

and let H be as in Definition [4.7.1] Then, we define

PCtrl(H, ¢)(t,x) = > H(t,z; K)(Px¢)(t, x). (4.7.5)

K=1

If H e 2U(R), we have that

PCtrl(H, ¢)(t, z)

-y ¥ del (M, s )(exp (iMt) S X (k) (E, kz) exp (z’<k12,x>)>.

K>1kez3 ko€Z3

The expression (4.7.6) will be used in all of our estimates involving PCtrl. The sum in k&, the

(4.7.6)

integral in A;, and the pre-factor H (A1, k1; K) will be inessential. The main step will consist of

estimates for

eXp z)\l Z Xk (ko) tkg)exp (z<k12,m>)

k2€Z3
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which essentially behaves like Pro(t,x). For most purposes, the reader may simply think of
PCtrl(H, ¢) as ¢.

Lemma 4.7.3 (Basic mapping properties of PCtrl). For any s € R, any interval J < R, any
pe LPHS(T x T?), and any H € LJM(T), we have

| PCU(H, ) prz-se sy < VH iz |8 s (4.7.7)

Proof. We treat each dyadic piece in PCtrl separately. Using the Fourier support condition (4.7.1)),

we have that

”H(t’x; K)(PK¢)(t7$)|

-5z = H S w ko) H(t, ks K)O(E, ko) exp (idkna, x)) ‘

kl,kgeZ3

HE~8¢(T3)

< ) @ RE| Y Xkt ko) exp ik, 2))|

k1 €73 kQEZS

S K=Y 1A ki K)ot

k1 €73

HE8¢(T3)

HE(T?)

< K™ H| 2| o(t)]

H(T3)-
The desired estimate follows after summing in K. O]

In the next two lemmas, we show that the terms appearing in the evolution equation (4.2.14]) for

Xy fit into our para-controlled framework.

Lemma 4.7.4. Let J < R be an interval and let f,g € £ 1°(J). Then, there exists a (canonical)
H e LM(T) satisfying
(V+(F9)0) = PCtrl(H, 0) (4.7.8)

for all space-time distributions ¢: J x T® — C. Furthermore, it holds that

| Hlzaca) S 1fla-roay - l9la-10)- (4.7.9)
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Remark 4.7.5. Due to the overlaps in the support of the Littlewood-Paley multipliers x g, the
low-frequency modulation H € ZLJA(JT) is not quite unique. As will be clear from the proof,

however, there is a canonical choice. This canonical choice is also bilinear in f and g.

Proof. Using the definition of the restricted norms, it suffices to treat the case J = R. We have
that

(V= (r9)9)(t.)
= DD xmm)xm ()X (R)V (n2) F (£, m1)G(E n2) Bt k) exp (i€nia + k, 7))

N1,No2,K: nl,ng,kGZS
N1,Na<K€

= PCtrl(H, ¢)(t, x),

where

~

H(t by K)y= ) Yo X (m) X (n2) V(1) F (£, n0)§(t, n2) (4.7.10)

N1,N2a:  nq ngeZ3:
Ni,Na<K*€ nis=ki

It therefore remains to show H € LAL(R) and the estimate (4.7.9)). The Fourier support condition
(4.7.1)) is a consequence of the multiplier xn, (n1)xn,(n2) in (4.7.10). To see the estimate (4.7.9),

we first note that

~

Ak K) = % 2 o))V () (Flmn) « 5, m2) ) (V).

Ni,Na: TL1,TL2€Z3:
N1,Na<K*© nio=ky
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Using Young’s convolution inequality and Cauchy-Schwarz, we obtain that

IH (A, ks K) | 21 gy

Y DT ()X m2) V() [ F O 1) |y 9N 72) 11 sy

Ni,N2:  nq noeZ3:
N17N2<Ke niz=ki

< Dy Himlinal < KA = )’ FOLm) 2y A = 20§ ) |z ey

ni ,n26Z3 :
niz2=k1

-

< (3 timl < KHIN — mp Fm) Bae)”

TL1€Z3

x (02 HInal < KYKIN = )50 ma)l s )

no€Z3

1
2

< KN f o) - lgla-1o0y.
The desired estimate (4.7.9) now follows after taking the supremum in K > 1 and k; € Z3. O

Lemma 4.7.6. Let J < R be an interval, let s € [—1,1], let f € X *%(J), and let g € X*°. Then,

there exists a (canonical) H € LJMl(T) satisfying
Vs (fg)@¢ =PCtrl(H, ¢) (4.7.11)

for all space-time distributions ¢: J x T? — C. Furthermore, it holds that

I Hllzacry S | fllx-sy - 19llxspcr)- (4.7.12)

Remark 4.7.7. We emphasize that Lemma fails if we replace the assumptions by f,g €
X () as in Lemma |4.7.4] The reason is that the product f - g inside the convolution with the

interaction potential V' is not even well-defined.
Proof. The argument is similar to the proof of Lemma[4.7.4. As before, it suffices to treat the case
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J = R. A direct calculation yields the identity (4.7.11]) with

Ht ks K) = Y xe(k)V(R) Y Ft.m)gt,na). (4.7.13)
Ki<Ke n1,n2€%3:
ni2=~r1

Using Young’s convolution inequality and Cauchy-Schwarz, we obtain that

IH (A, ks K) | 21 gy

< D IOl 3O no)lse)

nl,nQEZ?’:
nia=ky
1
< (2 oy I = ) FOm)Esgey) (20 (= kIO — a5 ma) )
’n1€Z3 n2€Z3
Using that (ny — k1) < (k1) + (nay < Kny), we obtain the estimate (4.7.12)). O

4.7.1 Quadratic para-controlled estimate

In this subsection, we show that PoyXy® P<y'is well-defined uniformly in N even though the
sum of the individual spatial regularities is negative. Together with Lemma this will control

the second and third term in Phy, i.e.,

Vo (PgNXN®P<NT) Py and Vs (PgNXN®P<NT) - Poywy.

Proposition 4.7.8 (Quadratic para-controlled object). Let T" > 1. For any s < —2n — 10e and
p = 2, we have that

Z L UH sup sup sup
Li~Lo N=1 jC[O T] HHHyﬁ/L(J)él

(P, Pax 1) |17 PCtII(H, Poyl)| - Pr?

L C3([0,T)xT3) | L, (P)

< T,
where the supremum in J is taken only over intervals.
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Proof. The supremum in N can be handled through the decay in the frequency-localized version
below and we omit it throughout the proof. Using the definition of the LAl(J)-norm, we may take
the supremum over H € LM (R) with norm bounded by one. By inserting the expansion (4.7.6)),

we obtain that
(Pp,PnT) [1 5 PCtrl(H, PgNT)] (t,2) - PNt @)

IO RENCESIDY [mm+n1>xL1(n1+k1>pN<n1)xN1<n1>xL2(n2>

X f(t, ny) (L 17(t) sin((t <_k1t/—)|—<fz11>—i_ ) exp (i)\lt’)f(t’, nl)dt’> exp (i{n12 + ki, a:>)]

Due to the definition of LA, we only obtain a non-trivial contribution if Ny ~ Ly ~ Ly. Using

the triangle inequality, it follows that

sup sup
JE[0,T] | H|pur)<1

(Pp,Pen1) [1 5 PCtrl(H, PgNT)] Pt

LCz([0,T]xT3)

> [ﬂN(kl +n1)xz, (n + k1) pn () xv, (n1) Xz, (n2)

sZNfG sup  sup sup

Ny Jelo,1] |kI;€11|E<Z;Nf AER n1,n2€Z3
~ t in((t —t"){k °
X exp (i<n12 + ]{?1, ZL’>)T(t, ng) (J 1J(t/) Sln(( )< 1+ n1>) exp (i)\1tl)T(tl, n1)dtl>:| )
0 (k1 + na) L7 C3(0.7]xT?)

To obtain the desired estimate, it suffices to prove for all Ny ~ L1 ~ Ly that

Z [pN(k‘1 + nl)XLl(nl + kl)

ni,n€7Z3

sup sup sup
JC[0,T] k1eZ3: MeR
‘k1|<8N16

~

X pv (n1) X, (M) X2, (n2) exp (i€naz + Ky, 2)) (¢, n2) (4.7.14)

([ 1ot 1) i )|

LE(9Q)

LFC3([0.TxT9)

S T3 Nl—Zn—Qe ]
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We claim that instead of (4.7.14]), it suffices to prove the simpler estimate

sup sup sup sup
te[0,7]1 J<[0,T] k1eZ3: M€R
|k1|<8N§

Z [PN(kl +n1)Xr, (N1 + k1)

’n1,n2€Z3

~

x piv (n1) X, (n1) X1, (n2) exp (inag + Ky, 2))1(t, n2)

« (Jot 1 j(t’)sm((t{]gf/fill; ") oo (Mlt’)f(t’,nl)dt’)]

<72 N1—2n—105p.

(4.7.15)

L2 H3

The reduction of (4.7.14) to (4.7.15)) is standard and we only sketch the argument. The supremum

in ky can easily be moved outside the moment by using Lemma and accepting a logarithmic
loss in N;. To deal with the supremum in \; € R, we treat two separate cases. Using the Lipschitz
estimate |exp(i\t) — exp(int)| < |¢/]]A1 — A1, the supremum over |A;| < N1° can easily be
replaced by the supremum over a grid on [—N{° N{°] with mesh size ~ N;'°. The discrete supre-
mum can then be moved outside the probabilistic moment using Lemma . For [\| = NJ°,
a simple integration by parts gains a factor of [A\;|7! and we can proceed using crude estimates.
The supremum over ¢t € [0,7] and J < [0,T], which is parametrized by its two endpoints, can

be moved outside of the probabilistic moment using the first part of the argument for A\;. Finally,

Gaussian hypercontractivity allows us to replace LP.CS by L2 H:.

We now turn to the proof of the simpler estimate (4.7.15|). Using the product formula for multiple
stochastic integrals, we have that

> lﬂN(/ﬁ +n1)xz, (n1 + k1) on ()X, (n1) XL, (n2) exp (i€mas + ki, 2))

TLl,TLQEZS

([ 1010700 )

=€9(t,2) + €9, 2),
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where the Gaussian chaoses € and € are given by

(2) def Z Z [ +o)pn (k1 + n1)xr, (n1 + k1) pn(na)xw, (n1)xz, (n2)

+1,%2 ny,no€Z3

% (J;) 1j(t,) Sin((t<_k:f/_)i_<l;;11;_ n1>> exp (i)\lt/ +, it'<n1> +, it<n2>)dt'>
exp (i{n12 + k1, 2)) Do[+;,n;: j = 1, 2]],

Cg(o)(t,x) (i:efexp(z'</€1,l‘>) Z [pN(kl + n1)xz, (n1 + k1) pnv (na) X, (71) X 2o (n1><n1 i 131><n1>2

n1€Z3

X (f 17(t) sin((t — t"){ky + ny)) cos((t — t'){ny)) exp (z’)\lt’)dt’) ] .

0

The quadratic Gaussian chaos €® is the non-resonant part and the constant “Gaussian chaos”

€ is the resonant part. We now treat both components separately.

Contribution of the quadratic Gaussian chaos € : Using the orthogonality of the multiple stochas-

tic integrals and taking absolute values inside the #-integral, we have that

6@ (¢, x) H%gJH;(QxT?))

ST Y X ()X, (o) + mao)* ey + na) *(ny)y Xng) 2

nl,n26Z3

STANT® Y X (n)XL, (n2)Chy + ny2)™

n1€Z3

—4n—20
< T2N; 20

which is acceptable.

Contribution of the constant “Gaussian chaos” €9 : Using the sine-cancellation lemma (Lemma
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4.4.14)), we have that

1€ (t,2)

H;(T%)
<| X [onth st + Bt (e ()
ny€Z3 <n1 + k1><n1>2

t
X (f 17(t") sin((t — t'){k1 + n1)) cos((t — t'){n1)) exp (i/\lt’)dt')] ‘

0
§ N1_1+36,

which is also acceptable. ]

4.7.2 Cubic para-controlled estimate

In this subsection, we control the cubic para-controlled object, i.e., the first summand in the

definition of CPara in (4.2.29).
Proposition 4.7.9. Let T > 1. For any interval J < [0,T], any ¢: [0,T] x T®> — C, and

H e 2LM(T), we define

PCtrlY (H, ¢; 7)

& (—@e@) (V . ((PgNI) [1 5 PCtrl(H, ¢)] -¢) -¢) — MyP2y1 [1 5 PCtrl(H, ¢)].
Then, it holds that for all p > 2 that

< Tp>

PCtrl¥ (H, Pyt ) .

H sup sup sup
Nz1 7<[0,T] |H ] gu(r) <1

() ’

where the supremum in J is only taken over intervals.

Remark 4.7.10. The notation PCtrly (H, PyT; 7) will only be used in Proposition and its
proof. The frequency-localized version of Proposition also gains an n’-power in the maximal

frequency-scale.
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Proof. As before, we ignore the supremum in N, which can be easily handled through the decay
in the frequency-localized version below. Using the decay in the frequency-localized version and
a crude estimate, we can also replace the X*2*+~!-norm by the X*>*-~'-norm. Using the defi-
nition of the restricted norms, it suffices to consider H € LM (R) with |H|¢qm) < 1. In order
to use a Littlewood-Paley decomposition, we need to break up the multiplier Mpy. We define

My [Ny, Ny, N3] as the multiplier with the symbol

~

e N M) = 3 CEE R B v (0 (0710

We note that M y[Ny, No, N3] is only non-zero when N7 ~ N3, and hence, in particular, when
N; > Ns. We now face a notational nuisance; namely, that both PCtrl and contain
frequency-projections. To this end, we use Ny and N for the respective frequency-scales, but

encourage the reader to mentally set No = NJ. It then follows that
PCul (H, Pen; 7)

N1,N},N3:
max(N1,Nj)>N§

(4.7.17)

— My[Ny, N}, N3] P2y 1 [1 5 PCtrl(H, PgNT)]].

Using the stochastic representation formula (4.4.77)) in Proposition 4.4.44]and the expansion (4.7.6]),
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we obtain that
PCtlY (H, Pyt J)(t, x)

- Y X[ ef0akiy % [k k

Nl,NQ,Né,Ngt k2€Z3
max(Nl,Né)>N3,

n1,n2,n3€L3

< (T owtn o ) Pt + ko) [ 1500000 0D o i 1, o

X exp (i<n123 + ko, $>)IQ[t7 ny, n3]]

Using the product formula for multiple stochastic integrals, we can decompose the inner sum in

ni,ng, and ng as

~ (1) XN, (n; )‘7(77,12 + ko)Zy[t, n1, ng]

Il:w

Z [P (n2 + k2)XN’ ng + ko) (

ni,ne ,ngEZS

y (L 1j(t,)sin((t<;2t/l<z>—i— k2)) .

= Cg(g)(t,ﬂi;)\%k‘g,j, N*) + g(l)(t7I;>\2,k2,j7N*) + %(1)(t,$;>\2,k2,j, N*)7

Xp (it’)\Q)Il [t” ng]dt’) exp (i<n123 + ]{32, (L’>):|

where the cubic and linear Gaussian chaoses are given by

COt,x)= > e(d;:1<5<3) ), [,o?v(na + ko) x vy (12 + ka)(]_[pzv(nj)xm(nj))

t1,%2,%3 ny,n2,n3e”> Jj=1

X ‘A/(nm + ko) (L 1(#) sin((¢ <_n;§/l<:i;>+ k2))

x exp(d1it(ny ) +3 it(ns)) exp (i{nias + ko, 2)) I3[+, n;: 1 < j < 3]],

exp (it' As +2 it'<n2>)dt'>

SO (t,x) = > pv(ns)xw,(ns)exp ((ns + ka,2)) > [P?v(nz + ko) Xy (n2 + ko) i (n2)

TL3€Z3 ni eZ3
t

<o (m) v o) |

) 17(t") sin((t — ¢'){ng + kq)) cos((t — t'){nq)) exp (z’t'/\g)dt’)

x V(ks){no + k2>1<n2>2] T [t; ns],
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%(1)(t,$) = Z pn(n1)xN, (1) exp (<n1 + ko, x>) Z [p?v(ng + k2)x g (n2 + ko) pa (n2)

7L1€Z3 ni eZ3
t

<o) na) (|

) 17 (") sin((t — t'){ng + ko)) cos((t — t'){nq)) exp (it')\g)dt’>

X ‘7(7112 + ]{32)<n2 + k‘2>_1<n2>_2] Il [t; nl].

We refer to €3 as the non-resonant term and to € and €1 as the resonant terms. Using the

triangle inequality and | H |«u®) < 1, we obtain that

H PCtrlg\?)(H, Pyt \7)‘

%5271,1)_'_71(‘7)

< Z NJ¢ sup sup (||°§(3)(-;)\2,kg,j,N*)\%SQ_Lb,_l([QT])

Ag€R 3.

N1,N2,N},N3: 2€ ﬁszNe

max(N1,N5)>N3, 2~
Na~N}

+ ||@(1)(7 )\27 k27\77 N*)|

%‘62—1,!)7—1([07/11]) + ||%(1)(7 )\27 k27 j? N*)‘

%SZ_Lbf_l([O’T])) .

We now use Gaussian hypercontractivity and a similar reduction as in the proof of Proposition
to move the supremum outside the probabilistic moments. Then, it remains to show for all
frequency scales Ny, No, and Nj satisfying max(Ny, Ny) > N§ that

sup sup |65 da, ko, T, )|
A2€R k:QGZSI
|k2| N3

+ 6N (5 Mg, ko, T, N psa=10- =1 g0

%sgfl,b_fl([O’T]) + Hcg(l)(7 )\27 kQu j? N*)|

o2 1= 1([0.7)

L

< T? max(Ny, Ny, N3)™".

We treat the estimates for the non-resonant and resonant components separately.

Contribution of the non-resonant terms: To estimate the X*2~1*-~1_norm, we calculate the space-
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time Fourier transform of x(t/T)€® (t,x; Ay, k2, J, N,). We have that

™
B
N

X/ TYED (¢, 25 Mg, ko, T N*)) (A F (nd,n)

3
= C(iji 1< j < 3) Z [1{n = Nio3 + k’g}p?\,(ng + k’g) ( 1_[ pN(nj)XNj (’I’L]))
t1,t2,%3 TL1,n2,’rL3€Z3 7j=1

~

X XNé(Tm + kQ)V(nlg + kQ)Ig[ij7nj; 1 <] < 3]

x Fy ( exp(t1it(ny) t3 it{ns)) Lt 17(t) sin((t &5152; k2)) exp (it'As +2 it'<n2>)dt') (AT <n>)]

Using the orthogonality of the multiple stochastic integrals and Lemma [4.4.12 to estimate the

Fourier transform of the time-integral, we obtain that

JIe®

2
ae2-to--1(0.1m) | 12

< max Oy F (/TS (15 Mo, b, T, No) ) A F (), ) iz e .

3
4 2b_—1 2s2—1 —2
ST, max | max JR A=Yy [(H v, (1) ) Gz + k)22 D + k)™

n1,n2,n3€Z3 Jj=1

X <n1>—2<n2>—4<n3>—2 (1 + ‘)\ — )\3 - ( i <’I’L123 + k2> il <TL1> ig <TL2> + L2<TLQ + k'2> ig <TL3>‘) 2:|

< TAN; 15 [nax - sup  sup Z [( H XN; (nj))<n123>2(sz—1)<n12>_26<n1>_2<n3>_2
+,%1,43 |n2€‘2jv meZ3 j=1,3
n2|~iIva

X 1{ + (nig3) £1(n1) +3{(ns) € [m, m + 1)}]

nl,ngeZ3

< T max(Ny, Ny, N3)202 N2 Ny e,

In the last line, we used Lemma [4.4.23| with v = €. Since max(Ny, N2) > N§ and 0y is much smaller

than €2, this contribution is acceptable.

Contribution of the resonant terms: We only estimate €. Due to the factor ‘A/(nlg + ko), a

simpler but similar argument also controls XA08

338



Using the inhomogeneous Strichartz estimate (Lemma [4.4.9)), we have that

||

1 Lie
wr ooy < |9 )||L?b+H;2‘1<[o,Tm3> S T8 ez o vy

Using Fubini’s theorem and the sin-cancellation lemma (Lemma [4.4.14)), this yields

H Hg(l) Hacsz—wf—l([o,T]) Hig

<T? sup H||@(1)\H;2*1(1r3)uiz
te[0,T] “

ST Y o (n3)(ng + k)2~ Dng)y™

n3€Z3

x (ng + ko)~ Ung) 2 (J

0

D7 0hi(na + k) pe(n2) v, (n2) v, (m2) g (mz + k)

n2€Z3

17 (") sin((t — ¢"){ng + ko) cos((t — t'){na)) exp (z’t')\g)dt’>

t 2

<7t 1{N1 - NQ}NJ2+66<]€2>2(1752) Z XN3(7”L3)<713>2(8271)<713>72

ngEZS

< T4 1{N1 N NQ}N{2+8€N§62-

Since max(Ny, Na) = N§ and 09 is much smaller than e, this contribution is acceptable.

4.8 Physical-space methods

In this section, we estimate the terms in Phy. The main ingredients are para-product decomposi-
tions and Strichartz estimates. In Section [4.8.1] we recall the refined Strichartz estimates for the
wave equation by Klainerman and Tataru [KT99]. In Section [4.8.2] we use the Klainerman-Tataru-
Strichartz estimate to control several terms in Phy. The remaining terms in Phy are estimated

in Section which also requires estimates on the quartic stochastic object from Section [4.5.2]
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4.8.1 Klainerman-Tataru-Strichartz estimates

We first recall the refined (linear) Strichartz estimate from [KT99, (A.59)].

Lemma 4.8.1 (Klainerman-Tataru-Strichartz estimates). Let J be a compact interval. Let @
be a box of sidelength ~ M at a distance ~ N from the origin. Let Py be the corresponding
Fourier truncation operator and let 2 < p,q < oo satisfy the sharp wave-admissibility condition

1/¢+ 1/p = 1/2. Then,

1
|Pauligizgrems < 0+ 1707 (5) T N33 Paulns, (48.1)
Remark 4.8.2. The factor N2 s » is the same as in the standard deterministic Strichartz es-
timate. The gain from the stronger localization in frequency space is described by the factor
(M/N)%_%. Naturally, there is no gain when p = 2.

We emphasize that has a more complicated dependence on M and N than the corresponding
result for the Schrodinger equation. In the Schrodinger setting, the frequency-localized Strichartz
estimates for the operator P and the standard Littlewood-Paley operators P<j, are equivalent,
which follows from the Galilean symmetry. This difference between the Schrodinger and wave

equation already played a role in our counting estimates (Section [4.4.4]).

Corollary 4.8.3. Let J be a compact interval. Let () be a box of sidelength ~ M at a distance
~ N from the origin. Let Py be the corresponding Fourier truncation operator and let ¢ > 4.

Then, it holds that

13 5 1
| Poulrsracxmsy < (L4 TN M= Na| Poullgor(s). (4.8.2)

Proof. This follows by combining Lemma (with ¢ = p = 4) and the Bernstein inequality

3
| PoullLy Lz axms) < M2 | Poulgosg).
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]

We now state a bilinear version of the Klainerman-Tataru-Strichartz estimate, which is a conse-
quence of Lemma [£.8.1] (cf. [KT99, Theorem 4 and 5]). However, since we only require a special

case, we provide a self-contained proof.

Lemma 4.8.4 (Bilinear Klainerman-Tataru-Strichartz estimate). Let T > 1, ¢ = 4, let v <

3 —10/q and let Ny, Ny = 1. Then, it holds that

2 9, 8_
KV (Pr, f - Pryg) | < T max(Ny, No)* 0 7| £

x51:2([0,T7]) H9| as1:0([0,T])

g 9
L2 Lz ([0,T]xT3)

In particular,

1
Z HPle ) PN29HL§H;451([07T]XT3) <7T: Hf| sxsw([o,T])||9H96$1«b([0,T])'

N1,N2

Furthermore, if N5 > 1, then

|[(Pry, V) # (Ple ' PNQQ) HL%L%([O,T]X?W)

1_ 3
< TENG 7 max(Ny, Np) 39| f]

aLs1:4([0,77) lg] xe1:2([0,77)-

Remark 4.8.5. Bilinear Strichartz estimates are also important in the random data theory for
nonlinear Schrodinger equations in [BOP15al BOP19al. In the proof of Proposition [4.8.10| below,

we will only require the case ¢ = 4+ and the reader may simply think of ¢ as four.

Proof. We begin with the first estimate, which is the main part of the argument. Using the

definition of the restricted X *’-spaces, we may replace || f

aoro(fo,r)) a0d [ glaer ooy BY [f lasr oy

and |g]oqs1.6(r), respectively. The proof relies on the linear Klainerman-Tataru-Strichartz estimate

(Corollary [4.8.3) and box localization. We decompose

||<V>*’y (PN1f ) PN2g) ” < Z N172’YHP]\712 (Ple ’ PNzg) H

Nia:
Ni2<max(N1,N2)

q g 9 g .
L2LZ([0,T]xT3) LZLZ([0,T]xT3)
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If N7 # Ny, then Njo ~ max (N7, N3) and the desired estimate follows from Holder’s inequality and
the L Li-estimate from Corollary with M ~ N. Thus, it remains to treat the case N; ~ Na.
Let Q@ = Q(Ny, N12) be a cover of the dyadic annulus at distance ~ N; by finitely overlapping

cubes of diameter ~ Ny5. From Fourier support considerations and Lemma [4.8.1} it follows that

||PN12 (PN1f ) PN2g) ||L§L§([0,T]><T3)
< X2 PaPwf PPy

Q1,Q2€Q:
d(Q1,Q2)<N12

q q
LZ L2 ([0,T]xT3)

< Z HPQ1PN1fHLfL3([O,T]><’JI‘3)”PQQPNgg”Lng([O,T]><'J1‘3)

Q1,Q2€Q:
d(Q1,Q2)<N12
2 310 2 94
< TNy, Ny D 1P Pr, ooy Pos Pro gl oy
Q1,Q2€Q:
d(Q1,Q2)<SN12
2 3_% %—251 2 % 2 %
5 TquQ Nl Z ||PQ1PN1f| gsub(R)) ( Z ||PQ2PN29|%51717(]R)>
Q1,Q2€Q: Q1,Q2€Q:
d(Q1,Q2)<SN12 d(Q1,Q2)<SN12
2 3*E 27281
S TaNy * Ny | f] SrSlvb(R)H9| L1:b(R)-

The desired result then follows by using the upper bound v < 3 — % and summing in Nys.

We now turn to the second estimate. After estimating

1 _p—25 1
| (Pn,V) # (Pn, f - Pn,g) lz2r2 o) xm3) < Nis vy et (Pn,f - PNQQ)HL?L%([O,T]XW),

the result follows from the first estimate. O]

4.8.2 Physical terms

In this subsection, we use the Klainerman-Tataru-Strichartz estimate and a para-product decom-

position to control several terms in Phy.
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Proposition 4.8.6. Let J be a bounded interval and let f,g € X**(7). Then, it holds that

Vo (P<Nf : P<Ng) (_'@) Pyt

sup

N>1 %5271,b+71(j)

< @+1TD2IS

L51:5(7) ||g X51:2(7) H T HLfcz—l/Q_“(Jx’Jlﬁ)

and

sup
Nz1

(_') (V* (Png'PgNg) P<NT)

%32—1,b+—1(j)

< @+1TDNS

%Slvb(J) Hg Ex‘sl,b(j) || T ||L£[,C;1/27m(j><’]1‘3)

In the frequency-localized versions of the two estimates, which are detailed in the proof, we gain

an n'-power in the maximal frequency-scale.

Proof. After using a Littlewood-Paley decomposition, we obtain

Vo (Paxt - Peng) (C@) Pyt

%5271,b+71(j)

+H (TE«E) (V* (Penf - Peng) PgNT)

%8271’17‘*'71(,_7)

< Z H(PN12V)*(PéNPle'PéNPNgg)PéNPN:aT

N1,N2,N3,Ni2:
max(N1,N2)Z Ng

%sgfl,b_*_fl(:])’

where we also used that N2 < max(Ny, Ny). We estimate each dyadic piece separately and dis-

tinguish two cases:

Case 1: N5 # N3. Using the inhomogeneous Strichartz estimate (Lemmal[4.4.9) and Lemmal[4.8.4]
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we obtain that

H(PNuV) # (P<nPn, [ - P<nPn,g) P<nPn,!

%32—1,b+—1(j)

< H(PNmV) ¢ (P<nPy, f - P<nPn,g) P<n Pyt

L2 H2 T (T xT3)

< (1+ 71} max(Nig, No)* ™| (P, V) # (Pen P f - PenPrg)

L2L3(TXT3)

X HPgNPN:,’T

LELE(TXT?)

1_ 1.,
< (1 + 7)) max(Nia, N3) NG 7 max(Ny, Np) -2+ Nz ©

x|f

L51:(T) lg %Sl»"(J)H ! HLg@c;l/Q_“(JxW)'

Since max(Ny, Na) = N§, we can bound the pre-factor by
1 1k
max(Nia, N3)* INZ 7 max(Vy, Na) 29 N2 < max(Ny, Ny) #1601 o2 tw

< maX(Nl, NQ, Ng)_2n.

Case 2: Nis ~ N3. By symmetry, we can assume that N; > N,. Furthermore, we have that

N3 ~ Nis < N;. Using the inhomogeneous Strichartz estimate (Lemma [4.4.9)), we obtain that

H(Pva) # (P<nPn, [ - P<nPn,g) P<yPn,!

%5271,b+71(j)

< (L4 [N 340D (P V) » (PanPu, f -+ PexPrg) Pen Pt )

4 4
LIL3(T=T3)
3 52— 5 +4(bs—5) B
< (1+|TDEN 20 HP P ,
A+ TD*0s e a9 ansrem % N ey
- 1 L4y -pris
< (1 + |j|)2N1 S1N22 81N382 2 +73 2 “Hf %Sl’b(J)”g Sx‘sl,b(j)HT”L;ﬁCI—I/Z—n(JXT:a).

Since N5, N3 > 1, the pre-factor can be bounded by

1 1 1 1 1 1 1
51 AT 51 ArS2— 5 H4(by—5)—B+5+~K 1-2s1+s2—5+4(b1—5)—B+r _ ;201+02+4(b1—5)+r—p
Ny N3 Ny <M =N )

which is acceptable. O
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Proposition 4.8.7. Let T > 1, let J < [0,7] be an interval, and let f,g: J x T3 — R. Then, it
holds that

sup HV x (PSNT@Png) PgNg‘

Nz1

S AT M oot mn [ v 9 oo )

%32—1,b+—1(j)

In the frequency-localized version of this estimate, which is detailed in the proof, we gain an

n’-power in the maximal frequency-scale.

Proof. By using a Littlewood-Paley decomposition and the definitions of &, we have that

Vs (P<NT@P<Nf)P<N9 = Z Vs (PgNPNlT ' P<NPN2f)P<NPN39-

N1,N2,N3:
N1#N2

We treat each dyadic block separately and distinguish two cases.

Case 1: N1 » N, N3. Using the inhomogeneous Strichartz estimate (Lemma [4.4.9)), we have that

[V (PexPr? - PewPrf ) PePrag

%5271,b+71(j)

< HV* (PgNPNlT : PsNPN2f>P<NPN3g

L2 H2 N (g% T3)
1 _1—
S (14 |TNeNE2T Pyt |z L (7 x13) | Pay fll Lo x| Pva g a7 <ms)
1gal 1 1
S+ [TNNTTITETNETENE T

L;ﬁc;%_“(jx,rg)||f||%slvb(j)||g||§rsl,b(j).

Since N,, N3 « Ny, the pre-factor can be bounded by

s2—1=ft5+K N1 551 551 201+62+K—8

9

which is acceptable.

Case 2.a: Ny <« No, N3 < Ny. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9)), we
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have that

HV* <P<NPN1T 'P<NPN2f>P<NPN3g

%8271’17‘*'71(;7)

< U]y 0DV s (PayPyt - PaxPoof ) PenPrag)

4 4
L3L3(TxT3)

—liaby-1
< (L +|TDN 2N (Poy Pt - PenPro f) 122207 wmy | Pen Prll s (e

sp—3+4(by—1)—B
< A+ |TDN, 1M 22 (7 ms) | Prvs fll 222 (7 xr) | Pas 9l 1 (7 x5

0 ArE R A 50— A d(by—1)—B—s51 (151
S (L+[TD°Ne TN, I L e S 1) ) [ s

The pre-factor can now be bounded as before.

Case 2.b: N7 « Ny, Ny « N3. Using the inhomogeneous Strichartz estimate (Lemma {4.4.9)), we
have that

Vo (PPt - Pax P, f ) PexPrg

%32—1,b+—1(‘7)
< (1+ TNy 90D (Vs (Pen Pl - PenPuf ) Pex Prag)

_B ArS2— 2 +4(bp—1)
< (1 + T max(Ny, No) P N" 20 1z 7 wrsy) | Pove f | o pa 7 wrsy | Pva 9l 202 (009

4 4
L3L3(TxT3)

827%4*4(1)4.71)781

< (1+|T1)? max(Ny, No) *NZ NG N, il

1f lags10 () |G llags1:0( 7y

L‘fc;%’”(jxqr?))
The pre-factor can now be bounded by

1 1 1 1 1
— 5+K A;5—S s2—5+4(by—1)—s s+k—p0 —5+01+52+4(by—1 2 —
max(Ny, Np) NN N2 T o N g e e ) o e

which is acceptable.

]

Lemma 4.8.8 (Bilinear physical estimate). Let J < R be a bounded interval. If ¥, f: J x T3 —
C, then

[(V=w)f

3 .
gox e 1y S (U ITD W oot sy min (1 s m sy L)
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In the frequency-localized version of this estimate we also gain an 7’-power in the maximal

frequency-scale.

Lemma can be combined with our bound on & wy in the stability theory (see Section [4.3.3)).

In the local theory, its primary application is isolated in the following corollary.

Corollary 4.8.9. Let J < R be a bounded interval and let w,Y: J x T? — R. Then, we have

uniformly in N > 1 that

2
S ATV gon g g [V T |
HV # (P<NT@P<NY> Peyw

LrCE (T xT3)

%5271.})_‘_71(\7)

< @+ 17D b gepmy ||

L¥C, T xT3)

oo b( ) [W]laer ()

Proof of Corollary[4.8.9: We have that

HPgNT@-PéNYHL?H;MI T xT3) |\7| ||T||
<|J71217]

a0 ‘c;%_ﬁwxw)||YHL;LH;2(ij3)

RN |

Together with Lemma [4.8.9] this implies the corollary. O

Proof of Lemmal[{.8.8: Let 0 < 6 « /3 remain to be chosen. Using the inhomogeneous Strichartz

estimate and (a weaker version of) the fractional product rule, we have that

TUZS)V] P—
S (L [TDKy= 21D (V=) f)] 4 4

L3L3(TxT3)

1+ \V4 32—7-‘,-4 ) VW 4 \V4 82—5""4 by — )
( |j|)H< > ( )HL?LJ?EG(jXT:i)‘K > fHL4L1+G(j T3)
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Using Sobolev embedding, the first factor is bounded by

(w22t 4= (Vo w) | < (W O DTG )

L2L279 (7 xT3)
S H\IJHL%H;Ml (T xT3)"
Thus, it remains to present two different estimates of the second factor. By simply choosing 6 = 0,
we see that
VY250 =) fl g ersy S (L4 ITDIF | emr arsy:
which yields the first term in the minimum. Using Holder’s inequality in time and Strichartz

estimates, we also have that

[(w)artte=2) ] S U+ ITDIRTY DS Ly g

_4 _4
LALITO (T xT3) Lit9(TxT3)

< (1+1TD3|f]

Le10(7);

provided that

1 1 3 1-6 146
——4+4by — <)+ = — — < 55,
So 9 + (b+ 2) + 5 4 3 4 S1
The last condition can be satisfied by choosing 6 = 46;, which also satisfies 6 « (. O]

Proposition 4.8.10. Let J < R be a bounded interval and let f,g,h: J x T®. Then, it holds

that

sup |V = (Png : P<N9> P.nh

N=1

%3271,b+71(J)
< +17D* TT min (19lcr-r(gemy 9]
e=f.9,h

In the frequency-localized version of this estimate we also gain an 7/-power in the maximal

(4.8.3)

stlvb(j)) .

frequency-scale.

Remark 4.8.11. In applications of Lemma |4.8.10, we will choose f, g, and h as either N/~ , which

is contained in LCP~*, or wy, which is contained in 1.
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Proof. Since the proof is relatively standard, we only present the argument when all functions f, g,
and h are placed in the same space. The intermediate cases follow from a combination of our

arguments below.

Estimate for L¥CP~*: Using the inhomogeneous Strichartz estimate (Lemma |4.4.9) and s, < 1,

we have that

‘v + (Pexf - Pag) Panh

< HV * (Pst : PgNg)PgNh

2b
g2 Lbe=1( 7) L, TL2(JxT3)

SA+1TD) ] leleprzgxms £ QA+1TD TT 10liees s

w=Ff,g;h w=f,g,h

Estimate for X*1°(J): Let 0 < § « 1 remain to be chosen. Using the inhomogeneous Strichartz

estimate (Lemma [4.4.9), we have that

Vs (Penf - Peng) Pexh

%32—1,b+—1(J)

< (U T[540 (Vs (Pef - Pexg) Penh)

4 4
LEL3(TxT3)

< (4 |ID[oyem 3D (Vo (Pans - Peng) )

4 4
L2270 (gxT3)

LI L0 (gxT3)

s T

Using Lemma [4.8.4) the first term is bounded by (1 + |j|)QT_9 | f

o1ty 97y as long as

1
26, + 62 + 4(by — 5) +6 < B. (4.8.4)
Using Holder’s inequality in the time-variable and the linear Strichartz estimate, we have that

61 1 0 o1 _1
[(v)sea it Q)hHLQ%LﬁG(JxW) S @+ TPHfCwpm e Q)hHL}%L;ie(JW@

146

S (L+[T) Al

LT
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provided that

0 1
In order to satisfy both conditions (4.8.4]) and (4.8.5)), we can choose 6 = 44;. O

4.8.3 Hybrid physical-RMT terms

In this subsection, we estimate the remaining terms in Phy. Our estimates will be phrased as
bounds on the operator norm of certain random operators. In contrast to Proposition and
Proposition [4.6.3| however, we will not need the moment method (from [DNY20]). Instead, we
will rely on Strichartz estimates and the estimates for the quartic stochastic object from Section

4.5.2)

Proposition 4.8.12. Let 7' > 1 and p > 1. Then, we have the following three estimates:

sup sup sup V o« (P\NT - Pen \I/N )P\Nw < T3p2, 4.8.6
N>=1 Jg[O’T] Hwstlyb(J)gl < < < %52—1,b+71(J) Lg(ﬁp) ( )
sup sup sup Vo« (P\NT@P\Nw) P_y \I/N < T3, 4.8.7
N=17<[0,T] Hw“%sl,b(j)él < < < %32_1’b+_1(s7) LE(P) ( )
sup su su Vo« (P \I/N - P, w) Q) P ‘ 4.8.8
N>pl J§[£T] Jw] ’ = wxw) (7O) Pt o2 b () I LE(P) ( )

%sl,b(j)él

< Tp2.

~

Remark 4.8.13. In the frequency-localized versions of (4.8.6)), (4.8.7]), and (4.8.8]), we also gain
an 7/-power of the maximal frequency-scale. Similar as in Proposition [4.5.3] and Remark we

may also replace \K by .\I/l;' )

Proof. We first prove (4.8.6]), which is the easiest part. Using the inhomogeneous Strichartz esti-

350



mate (Lemma 4.4.9), s, — 1 < —s1, and the (dual of) the fractional product rule, we have that
(ot Yo
<[V (P
<V (P
< 7|V (Pt Py )
<n? <N\I/ LECe T ([0T]xT?)

Using (4.5.11)) in Proposition [4.5.3} this implies (4.8.6)).

LT )

2b —s
Ly THZHT)

”wHLinl (T xT3)

We now turn to (4.8.7)) and (4.8.8)), which are more difficult. The main step consists of the following
estimate: For any My, Ny, K1, K5 > 1, we have that

sup sup sup ‘ J Vo« (PMlpgN\K : PKlpng) Py, Pent- PKgpgNngE‘
T3

N=Le[0.T] 1] o1 lal yor <1

LE(®) (4.8.9)
Lik—s
<73 maX(Kl,Kg,Nl,Mﬂ*n(l + 1{]\71 ~ K2}M;B+K/+TIK;31+T7N12+ 1>p2,

For notational convenience, we now omit the multiplier P<y. As will be evident from the proof,
the same argument applies (uniformly in N) with the multiplier. The proof of (4.8.9)) splits into
two cases. The impatient reader may wish to skim ahead to Case 2.b, which contains the most

interesting part of the argument.

Case 1: My # N;. From Fourier support considerations, it follows that max(K;, Ks) = max(Ny, My).
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Then, we estimate the integral in (4.8.9) by

‘f le PK1 )PNlT'PKQQd.T‘
T3

< | L (PV) e (PN P f) - Pu(PiT- Prg)da]

L<maX(N1
< > PV PMl\K - Py, Pr.(Px.!- P,g)da s

L<max(N1,K3) * v

> PPl P, g)dx‘L%. (4.8.10)

L<max(N1,K2)

< A{r5+ﬁl<;ﬂ

ci—=x

We now further split the argument into two subcases.

Case 1.a: My # Ny, Ky # Ni. Then, we only obtain a non-trivial contribution if L ~ max(NVy, K5).
Using max (K7, Ks) 2 max(M;, N1) = Ni, we obtain that

N

"

(E810) < M K* max(Ky, N\) P K; 5 N2 ™"

N

The pre-factor is bounded by (M;K;K,N;)~", which is acceptable.

CE—KHTHC;%*”

1
- — — 5t+R+N—p—s
SMl ﬁ+f€K1 ﬁK2 77N12 n—B—s1

_1_ ..
ch—l e 2"

Case 1.b: My » Ny, Ky ~ Nj. In this case, the worst case corresponds to L ~ 1. Using only

Holder’s inequality, we obtain that

(4.8.10) < 14Ky ~ Ny MoPR syt
1 1 1

N

(.

o

This case is responsible for the second summand in (4.8.9)).

Case 2: My ~ N;. This case is more delicate and requires the estimates on the quartic stochastic
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objects from Section [4.5.2] Inspired by the uncertainty principle, we decompose

‘J PM1 PK1 )PNlT'PKggd-I"

T3

< J (Pen, V) # (PMl\I/N - P, f)Pn, 1 P, gdx‘
T3

+ ‘LS(Ple‘/) * (PMl\kl: . PKlf)PNlT' PKQQdI“

We estimate both terms separately and hence divide the argument into two subcases.

Case 2.a: My ~ Ny, contribution of P<y,V . For this term, we only obtain a non-trivial contribu-
tion if K ~ Ky ~ N;. Using Holder’s inequality and Young’s convolution inequality, we obtain

that

| Py (PuNZ - P f) Pt Progi]
T

S 1{K1 ~ Ky ~ M, ~ N1}||P<<N1V||L; P,

2, NPl

1

5-&-2}{, B—2s1

< H{K; ~ Ky ~ My ~ Ny} Ny

N _1_ ..
cg—rl e 2™

The pre-factor is easily bounded by (and generally much smaller than) (M; K, KoNp)™"

Case 2.b: My ~ Ny, contribution of P>n,V. By expanding the convolution with the interaction

potential, we obtain that
‘Lrg P>N1 P]\/[1 {/N 'PKlf)PNlT'PKzngJ‘

< LS |P2N1V(?J)|‘ f (PKlf($ —y)- PKQQ(x)) : (PMl\I/N (t,x—y) - PNlT(tvm))dx

< |Pem V) Iy - sup (V)2 772 (P, f(x = ) - Prcyg(@)) 14

yeT3

dy

C—%#ﬂ—n

xT

X sup
yeT3

PM1.\K (tw’t - y) ' PNlT(t7x)
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< N7PKTK;" sup

yeT3

PMl\I/; (t,x —y) - Py, x)

CI—%‘F[}—H ‘

Using Proposition m, this contribution is acceptable. We note that the pre-factor N, f is essen-

tial, since Proposition is not uniformly bounded over all frequency scales.

By combining Case 1 and Case 2, we have finished the proof of (4.8.9)). It remains to show that

(4.8.9) implies (4.8.7) and (4.8.8). To simplify the notation, we denote the expression inside the
LP-norm in (4.8.9) by

A(Kl,KQ,Ml,Nl) d:ef sup sup ‘f V o« (PMI\I/N : PK1f)PN1T : PK2gd$ . (4811)
T3

€[0,7] £l 1 Dol o1 <1

To see (4.8.7)), we use the self-adjointness of V', duality, and s; < 1 — sy, which leads to
sg—1

v on) e,
< Y K # NP (Ve (Pl Pow) PN )

K1,K2,M1,Ny

(02 K 2 NJAK, Ko, My W)

K1,K2,M1,Ny

—1
H2

s
Hzl .

After using the inhomogeneous Strichartz estimate and (4.8.9)), this completes the argument.

Finally, we turn to (4.8.8]). Using duality, we have that

e (¥ ) CONY

< Z 1{maX(M1,K1) > Nf}HPKQ(V* (PMl.\I/l: 'PKlw)PN1T>)

K1,K2,M1,Ny

-1
H2

g2t
< Y 1{max(M1,K1)>N;}K51+82*1HPK2(V*(PMl‘\IA'-PKlw)PNlT)\
K1,K3,M1,Ny

< > Y max(M;, Ky) = NP2 AR, Ko, My, Ny Jw] g
K1,K2,M1,N1

‘H;Sl
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We now note that max(M;, Ky) > Nf implies

1{]\]1 ~ K2}M;5+n+nK;s1+nK§1+52—1N1%+n—31 < Nl—emin(ﬁfnfn,l/Zfélfn)Nf_q_gQ <1

~ ~

In the last inequality, we used the parameter conditions (4.1.19)). We also emphasize that the factor
K35'T5271 ig essential for this inequality. Using inhomogeneous Strichartz estimate and ([4.8.9)), we

then obtain the desired estimate. O

4.9 From free to Gibbsian random structures

In the previous four sections, we proved several estimates for stochastic objects, random matrices,
and para-controlled structures based on . In Section [£.2] these estimates were used to prove the
local convergence of the truncated dynamics as NV tends to infinity. Unfortunately, the object e
only exists on the ambient probability space and the global theory requires (intrinsic) estimates
for « with respect to the Gibbs measure. If the desired estimate does not rely on the invariance
of 1§, under the nonlinear flow, however, we can use Theorem to replace the Gibbs measure
1§, by the reference measure v§;. In particular, this works for stochastic objects only depending
on the linear evolution of ¢, such as ! or 2. Once we are working with the reference measure

V), we can then use that

vy = Lawp (4 oum ).

Since oy has spatial regularity 1/2 + f—, we expect that our estimates for ® will imply the same
estimates for ¢. As a result, this section contains no inherently new estimates and only combines

our previous bounds.
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4.9.1 The Gibbsian cubic stochastic object

This subsection should be seen as a warm-up for Section below. We explore the relationship

between the two cubic stochastic objects

‘\I/N‘ and \I/'

This is already sufficient for the structured local well-posedness in Proposition [4.3.3]on the support
of the Gibbs measure. It will also be needed in the proof of several propositions and lemmas in

Section [4.9.3 below.

Proposition 4.9.1. Let A > 1, let T > 1, and let { = ((e, s1, S2, K, 1,1, by, b) > 0 be sufficiently
small. There exist two Borel sets %P (A4, T), 0 (A, T) < %, /> *(T?) satisfying

P(*€ Of(A,T) and on O (A,T)) > 1= ¢ P exp(CAY)

for all M > 1 and such that the following holds for all ® € O%P (A, T) and oy OSP(A, T): For all
N = 1, there exist Hy[* — |, Hy[* — *] € LU([0,T]) and Yy[* — o], Y[* — ¢] € L2°([0,T])
satisfying the identities

Y=+ Py I | PCul (Hy[+ o], Pant) | + Vil = 4],

W=+ Py [Pcm (HN[- S, PgNT)] + Y[ — o).
and the estimates

| Hn[* — ]|y, Hn[* = olllwaqom < T2A

and

|Yn[e— ]

weaoo, 1) [YN[® = ooy < T°A.

Furthermore, in the frequency-localized version of this estimate, we gain an n’-power of the maximal

frequency-scale.
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Remark 4.9.2. The results in Proposition 4.9.1| do not yield a bound on \I/N in LPCP~* since

X*2® does not embed into LC2* and we do not state any additional information on Y. However,
such an estimate is possible and only requires the translation invariance of the law of (', oy ), which

is a consequence of [Bri20d, Theorem 1.4].

Before we start with the proof of Proposition [4.9.1] we record and prove the following corollary.

Corollary 4.9.3. Let A > 1, let T = 1, let @ > 0 be a large absolute constant, and let ( =

C(e, 81,89, k,m,1,b.,b) > 0 be sufficiently small. Then, there exists a Borel set @gﬂr(A,T) c
I, 27" (T3) satisfying
5 (O (A, 1)), 15 (OF(A,T)) = 1= ¢ exp(CAC) (4.9.1)
for all M > 1 and such that the following holds for all « € ©2% (A4, T):
For all intervals J < [0,T] and w € L*(J), it holds that
> 1P P iy, < T Alless) (4.9.2)

Ly,L2

Proof of Corollary[{.9.3: We simply define O (A, T') as set the of initial data ¢ € %{1/27”(’11‘3)

pur

where (4.9.2) holds for a countable but dense subset of X*"*(R), which is Borel measurable, and it
remains to prove the probabilistic estimate (4.9.1). Using Theorem m, it suffices to prove that

P(++om € OPL(AT)) > 1— (" exp(CAY).
This follows directly from Proposition Lemma [4.8.4] and Proposition 4.9.1} O

We now turn to the proof of Proposition [4.9.1] The argument relies on the multi-linearity of the
stochastic objects in the initial data. In order to use the decomposition of ¢, we define mixed

cubic stochastic objects. In Section [4.3.1] we defined stochastic objects in # instead of ¢, which had
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the exact same renormalization constants and multipliers. In the proof of Proposition 4.9.1] we
also work with stochastic objects that contain a mixture of both ® and © = oy . In this case, only

factors of ® require a renormalization. The renormalized mixed stochastic objects are then defined

by

A P |V (PgNT'PgN?) - Pont — My PonT|,

NS d:efpgN_(V*\/N) 'PéNT]v

A4 L py|Ve (PéN?'PéN?)

PSNT?

Ve Ep |V (PéNT'PéN?)

PéN??

N, = Pen V*(P<N?'P<N?)'P<N? :

Furthermore, we define the solution to the nonlinear wave equation with forcing term g/ by

(-@3—1+A)'\i/ =92, ‘\14[0]:0.

The solutions for the other forcing terms above are defined similarly. Using these definitions, we

obtain that identity

DR RO G N R (4.9.3)

Using this identity, the proof of Proposition is now split into two lemmas.

Lemma 4.9.4. Let A > 1,let T > 1, and let { = ((€, s1, S2, k, 1,1, by, b) > 0 be sufficiently small.
Then, there exists two Borel sets O (A, T), 0> W(A, T) < %, /> " (T?) satisfying
cub,(1) cub,(1) =1 ¢
Plec O, (AT)and oy €O ;"7 (A,T)) =1— (" exp(CA%) (4.9.4)
for all M > 1 and such that the following holds for all e € @Cub’(l)(A, T) and oy € @CUb’(l)(A, T):

blue red
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For all N > 1, there exists a Hy € ZJAL([0,T]) satisfying the identity

2 (@)\I/N' + (@)KI/N' = Py I[PCtrl(Hy, P<nT)] (4.9.5)

and the estimate

| Hnllgaqo.ry < T2A.

Furthermore, the difference Hy — Hy gains an n'-power of min(N, K).

Proof. From Lemma [£.7.6] it follows that there exists a (canonical) random variable Hy: Q —
LA([0,T]) such that

2 (@)\%‘ + (@)‘\I/N' = Py I[PCtrl(Hy, P<x1)]

and

Enlatom < (1T le-snqoap + ¥ lx—raoorp ) 1T leraoqoy

ST (1 * s 2y + ° bzzeny) < 1

o2 (T3)

The estimate for Hy then follows from elementary properties of ® and the high-regularity bound

for © in Theorem [L.1.1] O

Lemma 4.9.5. Let A > 1, let T > 1, and let { = ((e, s1, S2, &, 1,1, by, b) > 0 be sufficiently small.
Then, there exists two Borel sets O7">® (4, T), 0">3)(A, T) = 96, > "(T?) satisfying

]p(- e 0™ (A T) and oy € O>P(4, T)) >1— ¢ exp(CAS) (4.9.6)
for all M = 1 and such that the following holds for all ® € O™ (A T) and oy € O™ (A, T):

For all N > 1, we have that
max (\ ) L, oom | O K
¥ o) <7

9652*1’([O,T])’H IN %SZ’Z’([O,T])" iN

os2:5([0,T1)

2=2:4([0,17)
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Furthermore, the difference of the cubic stochastic objects with two parameters N and K gains an

n'-power of min(N, K).

Proof. This follows from our previous estimates for ¢ from Section and the high-regularity
bound for © in Theorem |4.1.1, More precisely, we estimate the LP X*2*-norm of

. (_'@) \i/N. by T2p¥ through Proposition [4.6.3]

e (M) \i/N by T3p*%" through Proposition [4.8.6]

. \I/N by T2p°%" through Proposition 4.6.1]

. \%N by T%p* %" through Proposition [4.8.7 and Corollary [4.8.9]

o \I/N by Tp% through Proposition [4.8.10

O

Proof of Proposition[4.9.1: The first algebraic identity and related estimates follow directly from

(4.9.3), Lemma and Lemma m By using 1 —1 = { and the high regularity bound for o, we
obtain the second identity and the related estimates from the first identity. O]

4.9.2 Comparing random structures in Gibbsian and Gaussian initial data

In Definition we introduced the types of functions occurring in our multi-linear master
estimate for ¢ (Proposition . The types w and X in Definition implicitly depend on
e and, as already mentioned in Remark [4.2.5] we now refer to type w and X as type w® and X°,
respectively. We now introduce a similar notation for the generic initial data ¢. In order to orient

the reader, we include an overview of the different types and their relationship in Figure [4.4
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Thm. E1.1]

Prop. [:97]

-/ —
S )
. Lem. £.9.7 .
w w

~—

—

We display the relationship between the different types of functions used in this paper. The equivalence
“” means that both types agree modulo scalar multiples and/or terms further down in the hierarchy.

The implication “—” means that, up to scalar multiples, the left type forms a sub-class of the right type.

Figure 4.4: Relationship between the different types.

Definition 4.9.6 (Purple types). Let J < [0,0) be a bounded interval and let ¢: J x T3 — R.

We say that ¢ is of type
o Tifp=T,

o \I/if@:\%‘ for some N > 1,

qaery < land 3, [Pt 'PL2wHL§H;451(ij3) < 1forall N >1,

o w*if gl

o X*if p = PoyI[ly PCtrl(H, P<y )] for a dyadic integer N > 1, a subinterval Jy < 7,
and a function H € LM (Ty) satisfying | H |¢ucz) < 1.
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Since the type Y in Definition does not depend on the stochastic object, its meaning remains

unchanged. In Proposition |4.9.1) we have already seen that the types \I/ and \I/ only differ by

functions of type X® and Y (or X* and V). In the next lemma, we clarify the relationship between

the types w® and w* as well as X® and X°.

Lemma 4.9.7 (The equivalences w® < w*® and X* « X*). Let A > 1, let T > 1, and let
¢ = (e, 51,89, k,m,1', by, b) > 0 be sufficiently small. Then, there exists a Borel set O°(A, T) <
F; /27"(T?) such that

P(om € O (A, T)) =1 — ¢ Pexp(—CAY)

and such that the following holds for ¢ = e 4 oy, :

e The types w® and w*® are equivalent up to multiplication by a scalar A € R., satisfying

ML TPA.

e The types X® and X* are equivalent up to addition/subtraction of a function in X*** with

norm < TA.

Proof. We will prove the desired statement on the event

O (AT) = {6 TP T [0l yu < A}

where ¢ = ¢(¢, s1, 2, b) is a small constant. Based on Theorem [4.1.1} this event has an acceptable

probability.

We start with the statement regarding the types w® and w®. Let ¢ € X*°(J) satisty [@]ga 7y <

1, which holds for ¢ of type either w® or w*. For any L > 1, we have that

‘ Z ||PL1T ) PLQSOHL%H;Ml(jXT;%) - Z ||PL1T ’ PLQSDHL%H;MI(:]XTS)‘

Li~Lo Li~Lo

< Z HPLl? : PL290||L?H;461(J><T3)

Li~Lso
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Using Lemma [4.8.4] it follows that

N)\»—t

Z ||PL1? PLQ(IDHLQH 1 7%T3) T
Li~Lo

3—s1— +,37n —2
(2 L R TV P B
1

E] 3
STH 0w | g n g Iollenon) < 3THAllanscsy
This yields the stated equivalence of the types w® and w®.

We now turn to the statement regarding the types X® and X*. For any H € LA (T), it holds that

||P<NI [1j0 PCtrl(H, PgNT)] — PgNI [1j0 Pthl(H, PgNT)]Ha‘SQ,b(J)

< |Pen {1y PCtrl(H, PeyT)]

%SQ,IJ(J).

Using Lemma [4.4.8, Lemma [4.4.9, and Lemma |4.7.3| we have that

|P<n 1|14 PCtrl(H, P<y7)] lqs2(y < T|PCtri(H, P.nT

~—

||L;LH;2*1(J0x1r3)

TA.

N | —

< T“H||gm(j0)||?HL;(,‘H;2—1+86(‘7XT3 T| om || 3= " (19) <

This yields the desired estimate. [

Lemma 4.9.8 (The implication X*, Y — w*). Let ¢ = ((¢, 51, 82, %,1,7', b1, b) > 0 be sufficiently
small, let A > 1, and let T > 1. Then, there exists a Borel set ©%P¢(A, T) < %, '/ " (T?) satisfying

pur

(@type(A T)) (@type(A T)) >1— ¢ Lexp(CAS) (4.9.7)

pur pur

for all M > 1 and such that the following holds for all + € ©WPe(A T): If ¢ is of type X* or Y,

pur

the scalar multiple 7-"A~1y is of type w*.

Proof. Using a separability argument, we can define ©}YP°(A, T') through countably many bounds
of the same form as in the definition of the type w®. We first note that, after adjusting ¢, we can

replace A~! in the conclusion by A=3. Using Theorem [4.1.1] it suffices to prove that

pur

P(e+ oy € OUPC(A, T)) > 1 — ¢ exp(CAS).
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Thus, we may restrict both e and ©\ to sets with acceptable probabilities under P. After these

preparations, we now start with the main part of the argument.

First, we let w be of type Y. Using Lemma [4.2.6] it follows that T *Ayp is of type w®. Using
Lemma m, it follows that T-°A~2y is of type w*.

Now, let ¢ be of type X*. Using Lemma and the first step in this proof, we can assume that
¢ is of type X°. Using Lemma T-*A 1y is of type w®. Finally, using Lemma again,
we obtain that T-%A42¢ is of type w®. O

In Definition [4.2.13| above, we introduced the function £-norms, which are used to quantify struc-
tured perturbations of the initial data. We now prove the equivalence of the E([0,T], t;to, NV, K)
and Z([0,T], 1;to, N, K)-norms, which is similar to the statements in Lemma and Lemma
1938

Lemma 4.9.9 (Equivalence of the blue and purple structured perturbations). Let A > 1,let a > 0
be a sufficiently large absolute constant, and let { = ((¢, s1, $2, k,71,7’,b4,b) > 0 be sufficiently
small. Then, there exist Borel sets O (A), O (A) < %, /*7"(T?) satisfying

IF)(. € @Sbrl)ue(A)ﬂ °m € @iSd(A)) =1- C_l eXp(_CAC) (498>
and such that the following holds on this event:

Forall T > 1, t, € [0,T], N,K > 1, and Z[to] € #:*(T?), we have that

T AN Z[to]lx 0.1, 100,50 < N Z1Eo)l 20,11, 100810 < T A Z[to] |2 o1 100550 (4:9.9)

Proof. 1t suffices to prove the estimate (4.9.9)) for events O} (A, T) and ©,(A, T) satisfying the
probabilistic estimate (4.9.8)), as long as the lower bound in (4.9.8) does not depend on 7. We can
then simply take the intersection of O} (T - A, T) and ©2,(T - A, T) over all integer times and

increase a by one.
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After using Lemma to compare the highxhigh-interaction terms (involving L; ~ Lg), it

remains to prove that

| (CEEE) (Vs (Pel- PenZE) Pan: a0y

— | (_|) ( Vo (PgNT'PgNZE) Pyt )

%Sz*vbvl([o,ﬂ)) ‘

< T A2l + 3 1Pt - PraZlpmsis oy
Li~Lo

and

13V« (Pent PenZ) (F@) Put:

a2~ 1+ ([0,7])
— Vs (PsNT ) PgNZ](\),) (_'@) PsNT¢ ||Ex52_1’b+_1([0,T])

< T°A 2%t 2.

Regarding the first estimate, we have that

‘H —[@«q)]) ( (PgNT.pgNZJQ)PgNT:>

o2 ([0,1])

—| Vo« (Pen?- PenZy )PgNT:)

o211 (0.7

B3 (:
<| CE=E) (V* (Ponf- Py 25 )P<N7>\

210+ ([0,T])

()

_|_H @&@ (V* P<NT P<NZN) P<N?)
Eeg) (

+| (CEeE]) (V+ (PnT PnZy )P<N?)Hw—l’bvl([o,T])'

We can then control
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e (4.9.10) through Proposition m
o (4.9.11) through Proposition and Lemma [1.8.8]
e (4.9.11)) through Proposition [4.8.10]

The proof of the second estimate is similar, except that we use Corollary instead of Lemma
4.8.5.

4.9.3 Multi-linear master estimate for Gibbsian initial data

In this subsection, we prove a version of the multi-linear master estimate for Gaussian data (Propo-

sition |4.2.8)) for the purple types (Definition|4.9.6)) instead of the blue types (Definition[4.2.4)). Since
we will only need this estimate in Proposition and Proposition [£.3.7] which do not involve

contraction or continuity arguments, we can be less precise than in the multi-linear master estimate

for Gaussian data and simply capture the size of the forcing term in the following norm.

Definition 4.9.10. Let N > 1, let 7 < R be a compact interval, and let R, ¢: J x T? — R.

Then, we define

”R”MN(J,S@) d:EEf inf {HHHQJ%(JD + ||F‘%52—1,b+—1(J)1 R = PgN PCtI‘l[H, PgNgD] + F on j X T3}

Remark 4.9.11 (Drawback of [Q&&)]). As mentioned above, the N% y(.J, p)-norm is less precise
than our estimates in Section [4.2.1] since it does not give an explicit description of the low-frequency
modulation H. This allows us to circumvent a technical problem which the author was unable to

resolve. In Proposition |4.5.7, we proved that
(_') ( Vo (PgNT'PgN\%) Pyt )
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lives in A*2~1%+~1 One may therefore expect that

(_') (3‘/* (PéNT'PéN‘\k:) P<NT3)

also lives in X*2~1*+~1 However, after using Proposition [4.9.1] we would need an estimate for

(_') (:V* (P<NT'P<NYN) P<NT3)

in *2-1*+~1 Unfortunately, this is not covered by Proposition m In fact, without any
additional assumptions on Yy other than bounds in X*?*, the highxhigh—low-interactions in

P_nT- P<nYy rule out this estimate.

Equipped with the ¥Z-norm, we now turn to the master estimate for Gibbsian initial data.

Proposition 4.9.12 (Multi-linear master estimate for Gibbsian initial data). Let A > 1, let
T =1, let @ > 0 be a sufficiently large absolute constant, and let { = ((e, s1, s2, £, 1,1, b1, b) > 0
be sufficiently small. Then, there exists a Borel set O (A, T) < %, Y27 satisfying

pur

pS (€ O (A T)) = 1— (" exp(—CA°) (4.9.13)

pur

for all M > 1 and such that the following estimates hold for all ¢ € @™ (A, T):

pur

Let J < [0,T] be an interval and let N > 1. Let @1, 92, ¢3: J x T® — R be as in Definition [4.9.6]
and let

(Prmes) 2 (1,11, (1wt ).

(i) If @3 "2 ¢ then

(ii) In all other cases,

< THA.

P<N< Vo (P<N901 'P<N¢2)P<N(p3: )‘A/&PN (J,P<NT)

< T*A.
%5271’17‘*'71(,_7) =~

H Vs (P<N<p1 . P<N902)P<N9033
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Proof. While the proof requires no new ingredients, it relies on several earlier results. For the

advantage of the reader, we break up the proof into several steps.

Step 1: Definition of ©™5 (A, T) and its Borel measurability. Using the definition of the time-

pur

restricted norms, we see that the statement for all intervals J < [0, T] is equivalent to the statement

for only J = [0,T]. Thus, we may simply choose ©2% (A, T') as the set where ({i)) and hold for

pur

all N > 1. To see that this leads to a Borel measurable set, we note that both LA([0,T]) and

L2°([0,T1]) are separable. For a fixed N > 1, we also have that the functions

(1, P2, 3) ‘PsN( Vs (Pengr - Pangz) Penips: )

. (7P 1)

and

(1, P2, p3) = H Vo« (Pengr - Panga) Pans: o161 ()

are continuous w.r.t. the CY H, Y >7%([0, T] x T*)-norm. Thus, we can represent O (A, T) through

countably many constraints of the same form as in (fif) and , and hence as a countable intersec-

tion of closed sets. In particular, ©0 (A, T) is Borel measurable.

Step 2: Reductions. It therefore remains to show the probabilistic estimate (4.9.13]). Using the
absolute continuity and representation of the reference measures from Theorem [£.1.1], it suffices to
prove that

P(‘ + oy € O™

pur

(A, 7)) =1~ (" exp(—CA°)

for all M > 1. Furthermore, we can replace the upper bound T%A in (i) and by CT*A®, where
C = C(e, 51,82, k,m,m', by, b) = 1. After the estimate has been proven, this can then be repaired

by adjusting A and (. Using Lemma {4.2.6, Proposition 4.2.8, Corollary [4.9.3] Lemma 4.9.7, and
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Lemma 4.9.8, we may restrict to the event
{+€ Om (AT NOIAT) NOFEA T} N {on € O (A, T) N O (A, )}
N{e+on eOirAa M}
Step 3: Multi-linear estimates. The estimates for s ty;ze ? follow directly from the multi-linear
master estimate for ¢ and the equivalence of the types in Corollary[4.9.3] Lemma[4.9.7, and Lemma

. It then remains to treat the case (3 ype 1. We further separate the proof of the estimates

into two cases.

type
Step 3.1: ¢1,p2 # 1. We first remind the reader that in this case the nonlinearity does not

require a renormalization. We then decompose
Pen (V # (Panir - P<N802)P<NT)

=Py (V * (P<N<p1 . P<N<P2) @PéNT)

—i—PgN (V * (PgNQOl : PgNSOZ) (_'@) P<NT>

+Pcy (V * (P<N<P1 : P<N902) (_'@) P<N?>-

Using Lemmam the first term is of the form Py PCtrl(Hy, Pen 1) with | Hx|lgaqory) < T*A%
The second and third term can be controlled through the multi-linear master estimate for Gaussian

random data.

e type . . .
Step 3.2: @1, 3 v 1, ©o ?ﬁ ?. Using the equivalence of types (as in Corollary |4.9.3] and Lemma
4.9.7) together with the previous cases, it suffices to treat

¥1,¥3 tge T7 ¥2 t}ge l ’ X.a Y.
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We decompose the nonlinearity

Vo (P<NT : P<N<P2) P<NT

using if ¢ "pe \I/ , X® and using @ if ey Then, the bound follows from the

multi-linear master estimate for Gaussian initial data, Lemma [4.7.4], and Lemma [4.7.06] O

In Definition [4.2.13, we also introduced a structured perturbation of the initial data, which we
briefly examined in Lemma[4.9.9/above. While the multi-linear estimate does not apply to the type
(T,w’; T), we now obtain a multi-linear estimate if the second argument is a linear evolution with
initial data as in Definition Since the definition has been tailored towards this estimate,

the prove will be easy and short.

Lemma 4.9.13 (Multi-linear estimate for the structured perturbation). Let A > 1, let T > 1,
let @ > 0 be a sufficiently large absolute constant, and let { = ((e, s1, s2,x,m,1,b,,b) > 0 be
sufficiently small. Then, there exists a Borel set O (A, T) < %, /> " satisfying

pur

P (+€ ©F (AT)) =1— ¢ exp(—CA°) (4.9.14)

pur

for all M > 1 and such that the following estimates hold for all e ©% (A, T):

Let N, K =1, let to € [0,T], let Z[to] € %{1/2_“('11‘3), and let Z(t) be the corresponding solution

to the linear wave equation. Then, it holds that

PsN[ :Vox (Pent - PanZ) Pent: ] ) < TA| Z[toll % o.11,1 20,8, 50)-

‘/vseN (lo1, Pen' t
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Proof. Let Z"[ty] and Z°[ty] be as in Definition . Then, we can decompose
P<N[ Vo (P<nt- PayZ) Pyt ]
—@&@ (P<N[ P<NT P.nZ )PéNT])
@&@ ( [ P<NT PnZ )PgNTib

+P<N[ Vs (Peyt PayZ%) @ Poyt: ]
+P<n [V ¢ (Pen?- PoyZ°) (TQ) PsNT]-

The estimate then directly follows from Definition 4.2.13, Lemma [4.7.4] and Lemma |4.7.6|

4.10 Appendix: Proofs of counting estimates

4.10.1 Cubic counting estimate
We start with the proof of the cubic counting estimate.

Proof of Proposition[[.4.18: We separately prove the four counting estimates (f)-(iv]).

Proof of .' By symmetry, we can assume that Ny = Ny > N3. Using the basic counting estimate

to perform the sum in ny € Z3, we obtain that

#{(n17n27n3): |n1| ~ Nla |’I"L2| ~ N27 |n3| ~ N37 |90 - m| < 1}

Z ( n 1{|n;| ~ Nj}) min ({n13), N2)71N23

ni,n3€Z3 j=1,3
273 AT3 3 a2 nT3
< NYNyN3 + NYNyNg

< Ny (N1 Ny Ng)?,
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which is acceptable.
Proof of : We emphasize that nis3 is viewed as a free variable. In the variables (ni23,n1,n2),
the phase takes the form

@ = F123(n123) +1 (1) T2 (N2) 3 (N12g — Ny — Ng).
After changing (ni,ns) — (—nq, —ng), we obtain the same form as in (i) and hence the desired
estimate.

Proof of .' In the variables (nj23,n12,n1), the phase takes the form

© = t193{n123) £1 (1) 2 {n12 — nyy +3 (N1ag — N1a).

By first summing in n; and using the basic counting lemma, we gain a factor of min(Ny, Nis).
Alternatively, by first summing in njs3 and using the basic counting lemma, we gain a factor of

min(Nya3, NV12). By combining both estimates, we gain a factor of
max (min(Ny, Ny2), min(Nia3, Ni2)) = min (Nyo, max(Ni23, N1)).
While not part of the proof, we also remark that
‘<n123> + (1) — {1z — n1) — (Naaz — na)| S N

This shows that we cannot gain a factor of the form med(Nia3, N1, N7).

Proof of (iv)): In the variables (nis,n1,n3), the phase takes the form

© = t193(n12 + n3y 1 (1) F2 (N1g — ny) £3 (N3).
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By first summing in n; and using the basic counting lemma, we gain a factor of min(Nya, N7).
Alternatively, by first summing in n3 and using the basic counting lemma, we gain a factor of
min(Nya, N3). By combining both estimates, this completes the argument. The same obstruction

as described in shows that the estimate is sharp. O]
We now use the cubic counting estimate to prove the cubic sum estimate.

Proof of Proposition[4.4.20: Due to the symmetry n; < ng, we may assume that Ny = Np. To
simplify the notation, we set
C(m) = C(Nh N27 N3a N127 N123) m)
= {(7117”2,”3) € (Z°)%: Inj| ~ N;,1 < j < 3,|n1a| ~ Niz, [n12s] ~ Nias, | —m| < 1}.

We then have that

Z l( ﬁ XN; (nj)) (N1a3)2 ¢ DV (nyo )2 ( ﬁ<nj>2) {|g —m| < 1}]

nl,ng,n3€Z3 j:1

3
< 2 NN (T 2)weim).
j=1

Ni23,N12

(4.10.1)

To obtain the optimal estimate, we unfortunately need to distinguish five cases, which we listed
in Figure [4.5] Case 1 and 2 distinguish between the highxhigh and high xlow-interactions in the
first two factors. This distinction is necessary to utilize the gain in Ni5. The subcases mostly deal

with the relation between Ny, and N3, which is important to use the gain in Nyo3.

Case 1.a: Ni ~ Ny, N; « Nj. In this case, Nio3 ~ N3. Using (fiv) in Proposition [4.4.18| the

contribution is bounded by

D, N INDINPTHC(m) < )0 N TINDINGTE S N NG

Nio: Nia:
N12§N1 N12§N1
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which is acceptable. In performing the sum, we used that v < 1.

Case 1.b.i: Ny ~ Ny, N1 = N3, N3 <« Nis. In this case, Nis3 ~ Nig. Using in Proposition
[4.4.18| the contribution is bounded by
O NETTONTINT#Cm) £ 3 NpTONTINg £ YL NN S MO,
N1 Ny Nia:

2 2
N3« N12<Ny N3« N12<N1 N12<M

which is acceptable. In performing the sum, we used that v < s + 1/2.

Case 1.b.i: N1 ~ Ng, N1 = Ng, N3 Z ng. We note that N123 s maX(ng,Ng) S Ng. USiIlg

~

in Proposition [£.4.18] the contribution is bounded by

D ONEPNGINTINGS#C(m) < ). min(Nigs, Nig) ™ Nigi ' NY5 2 NN

N12,N123: Ni2,N123:
Ni2,N123<N3 Ni2,N123<N3

< lelN32872'y+l < N12(sffy)
which is acceptable. In the last inequality, we used again that v < s + 1/2.
Case 2.a: N1 > NQ, N1 * Ng. In this case, N12 ~ N1 and N123 ~ maX(N17N3). Using in
Proposition [4.4.18] the contribution is bounded by

max(Ny, N3)2 2N, > 2 Ny 2Ny 2#C(m) < max(Ny, N3)** =2 min(Ny, N3) N}~ Ny Ns

< max(Ny, N3)* 2 min(N;, N3) 7PNy 27Ny = max(Ny, N3)*7'N] 27

The restriction s < 1/2 is not strictly necessary for the statement of the proposition, but ensures

that the first factor does not grow in Ny or N3, which is essential in applications.
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Case | Ny < Ny | Ny & N3 | N3 < Ny | Basic counting estimate
l.a Ny ~ Ny | Ny « N3 (iiv)
1.bi | Ny~ Ny | Ny 2 N3 | N3 & Ny (iiv)
1.bii | Ny~ Ny | Ny 2 N3 | N3 = Ny (fiil)
2.a N; » Ny | Ny # Nj ()
2.b Ny >» Ny | Ni ~ N (i)

Figure 4.5: Case distinction in the proof of Proposition |4.4.20|

Case 2.a: N; » Ny, N7 ~ N3. In this case, N5 ~ N;. Using in Proposition [4.4.18, the

contribution is bounded by

SONESENTINHC(m) €Y. NEN TN, < NP

Nio3: Ni23:
Ni23 <Ny Ni23<N1
which is acceptable. In performing the sum, we used that s > 0. O

4.10.2 Cubic sup-counting estimates

Proof of Lemma[{.4.29: We prove the four estimates separately.
Proof of : By symmetry, we can assume without loss of generality that N; > Ny > N3. Using
the basic counting estimate in ny € Z3, we have that

#{(711,”2,”3)3 In1| ~ Ni, [na| ~ No, [ns| ~ N3, n = nyas, | —m| < 1}

5 #{(”% ng): [ng| ~ Na, |ng| ~ Ns, | 2123 (n) 1 {n — na3) t9 (ngpy +3(n3) —m| < 1}

< Z 1{|ns| ~ N3} min ((n — ns), Nz)ilNz3

ngEZ3

< NJNZ.
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Proof of (il): The proof is essentially the same as the proof of () and we omit the details.

Proof of (iil): Using the basic counting estimate in n, € Z*, we have that

#{(nlz,n2,n3)i [n12| ~ N1z, [ne| ~ N, |ns| ~ N3,n = njas, |p —m| < 1}
< #{(Tblg, ng): [nia] ~ Nig, [na| ~ Na, | 2123 (n) 1 (nyg — noy 2 (noy 3 {(n — nja) — m| < 1}

< Z 1{|n12| ~ ng}min(Nu,NQ)_lNg

n12€Z3

< min(Nyg, No) " N3, N3,

Proof of : The proof is essentially the same as the proof of and we omit the details.

4.10.3 Para-controlled cubic counting estimates

Proof of Lemmal[{.4.23: To simplify the notation, we set Nyax = max(Ny, No, N3). For 0 <~ < £,
we have that

(nig)y # < {mo)y ' < (na) Mng)?.
Together with from Lemma [4.4.22] this yields

> ( [T 1{In| ~ Nj})<”123>2(82_1)<”12>_2B<”1>_2<”3>_2 {lp —m| < 1}

nl,n3€Z3 j:173

<N P NGINGE DT NGV (nms) Inaas| ~ Niss, [na| ~ Ny, [ng| ~ N, @ —m| < 1}

Ni23
—o— _ s9— 3. 2
SN ’ 2WN22WN3 ? Z N122(32 Y med (N123, Ny, N3) min (N123, Nl,N?,) .

Nigz:
|N123‘SNmax
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USiIlg that med (N123, N17 N3)3 min (N123, Nl, N3)2 $ N123N12N32, we obtain that

NCETENDNG? Y Nt Y med (Nigs, Vi, Ny)” min (Nysg, Ny, Ns)®

=27 n\72v 2591 205 NT—27 AT2Y
< NN} > NGRS NN TN

max
Nyo3:
| N123| < Nmax

4.10.4 Quartic counting estimate

Proof of Lemma[[.4.24 Using the upper bound on s, we can first sum in ny € Z* and obtain that

2, (ﬁ1{|na|~ a}><"1234> () 2| Vs (nu, nz, ns))| (H<n3> )1{|90—m|<1}

ni,n2,n3,n€Z3 j=1
3

< N4*277 Z <n1{|n]| ~ ]})<n123> |VS ny, Ny, n3)| (ﬁ<”j>2)1{|‘ﬂ —m| < 1}'

ning,mz€Z?  j=1
The remaining sum in nq, ny, and nz can then be estimated using Proposition [£.4.20] which yields

the desired estimate. O

After the proof of the non-resonant quartic sum estimate (Lemma [4.4.24)); we now turn to the
resonant quartic sum estimate. We begin with the basic resonance estimate (Lemma [4.4.25)),

which forms the main part of the proof.

Proof of Lemma[[.4.25: Since ny,ny € Z? are fixed and the phase ¢ is globally Lipschitz, there are
at most ~ Ny non-trivial choices of m € Z. Due to the log-factor in (4.4.46), it suffices to prove

sup Z 1{|ns| ~ N3}(niasy " (nsy *1{|¢ — m| < 1} < (n1a)™"

meZ nseZ?
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By inserting an additional dyadic localization, we obtain that

D7 Hlnal ~ NaJnaos) Hng)y *1{jp —m| < 1}

ns €Z3

< N2 Z Nios Z 1{|n123] ~ Nias}1{|ns| ~ N3}1{|p —m| < 1}.

Ni23=1 nz€Z3

(4.10.2)

To simplify the notation, we write Ny, for the dyadic scale of ny; € Z®. Using Lemma [4.4.17, we
have that

N N5~ Z 1{|n12s] ~ Nizg}1{|ns| ~ N3}1{j¢ —m| < 1}

n3€Z3

§ Nl_Q%SNg_Q Il’liIl(N1237 N12, Ng)_l IIliIl(ngg, N3)3.

We now separate the contributions of the three cases Nias3 < N3, Niaz3 ~ N3, Nia3 » Ns. In the
following, we implicitly restrict the sum over Njo3 to values which are consistent with |nia3| ~ Nya3,

|n12| ~ Nio, and |n3| ~ N3 for some ny, ny, ng € Z3.

If N123 < N3, then N12 ~ Ng. ThUS,

Z N5y Ny 2 min(Nygg, Nig, N3) ™' min(Nye3, N3)* < 1{N12 ~ Ng} Z NipsN3? < Nt
N123<<N3 N123<<N3

If N123 ~ Ng, then N12 S N123 ~ Ng. ThUS,

Z NI_Q%))N?)_2 min(ngg, ng, Ng)_l min(ngg, N3)3 ~ N1_21
Ni23~N3

Finally, if N123 > Ng, then N123 ~ N12 > Ng. ThUS,

> NNy min(Nias, Nig, N3) ™ min(Nigs, N3)* = Np' Ny 2Ny ' N ~ N
N123» N3

This completes the proof. O

The resonant quartic sum estimate (Lemma [4.4.26)) is now an easy consequence of the basic reso-
nance estimate (Lemma [4.4.25)).
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Proof of Lemma[{.4.26: Using Lemma [4.4.25 we have that

2 [(ﬁ H|nj ~ Nj o)™ (na)y *(napy

. (Z 23<m>11{|”3| ~ N3}<n123>71<n3>’21{|g0 —m| < 1})2]
< log(2 + N3)? Z ) l(ﬁ 1{|n;| ~ Nj}<n12>282<n1>2<n2>2]

< 10g(2 + N3)2 maX(Nl, NQ)QS.

4.10.5 Quintic counting estimates

Before we turn to the proof of the non-resonant quintic counting estimate, we isolate a helpful

auxiliary lemma.

Lemma 4.10.1 (Frequency-scale estimate). Let Ny, Na, Nigs5, Niosas be frequency scales which

can be achieved by frequencies ny,...,ns € Z?, i.e., satisfying

{|ni] ~ N1} - 1{|na] ~ No} - 1{|n1345| ~ Nizas} - 1{|n12345| ~ Ni2sas} # 0.

Then, it holds that
min(Ns, Ni2sas)? min(Ny, Nizss)
min(Ni2sa5, N13as, Vo)

< Ny - Nigass.

Proof. By using the properties of min and max, we have that

min(Na, Nyg3a5) min(Ny, Nizas) < min(Na, Niza5) Nizas
min(N93a5, Ni3as, No) ™ min(Niazas, Nigas, No)

Since N1345 S Il'l&X(NQ, N12345), this ylelds

min(Na, Ni2sa5)? min(Ny, Nisss)
min(N12sa5, Ni3as, No)

< max (min(Ny, Nigsas), Nisas)-

< min(Ny, Niagss) - max(Na, Niosas) = NaNiogas.

379



]

Proof of Lemmal{.4.27: Let m,m’ € Z be arbitrary. We introduce Njazs5 and Nizgs to further
decompose according to the size of njo345 and ni345. Using the two-ball basic counting lemma

(Lemma [4.4.17)) for the sum in ny € Z* and summing in n; € Z? directly, we obtain that

5
Z [(n ]-{|nj| ~ Nj})1{|n12345| ~ N12345}1{|n1345| ~ N1345}

j=1

x (N12345)° " (M1gas) " ngasy " (nga) ™ ( ﬁ<nj>_2)

U —m| <1} (1l —m'| < 1+ {3 - m'| < 1})]

5
2(s—1) A7—28 - 3 2
< N12345 N1345 m1n(N12345,N1345,N2) min N27N12345 HN
Jj=1

X Z ( H {|nj| ~ Nj})1{|n1345| ~ Nizas Fnsas) (nsa) >’ 1{| —m| < 1}

ni,n3,na,n5€Z3  j=1,3,4,5

::]m

2(s—1) n7—28 - -1 3
< N12345 N1345 m1n(N12345,N1345,N2) mln(N27N12345) min N1,N1345

<) (]‘[ 1{|n,| ~ Nj})<n345>—2<n34>—2/31{|¢ —m| <1},

n3,n4,ns€Z3  j=3
Using Proposition 4.4.20| with s = 0 and 7 = 8 to bound the remaining sum in ns, ny4, and ns, we
obtain a bound of the total contribution by

o Min(No, Nigza5)® min(Ni, Nigas)®

12345 ( 1N2)~ min(Nia345, N13as, No)

(N1345 max (N3, Ny, Ns))fw

Aslong as the contribution is non-trivial, it holds that Ny345 max (N3, Ny, N5) = max(Ny, N3, Ny, N5).

Thus, it remains to prove that

2(s—1
NS (NiN)

_omin(Ny, Nigzss)® min(Ny, Nizgs)® < Ny
min(Nia3a5, Nisas, Na) - 7
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which follows from a short calculation. Indeed, using Lemma [4.10.1] we can estimate the left-hand

side by
N122(?8,Z51) (N1 Ny) ™2 min(Ng., Nizya5)* min(Ny, Nigas)”
m1n(N12345, Nizys, N2)
< Niszes min(Ny, Nigzas) min(Ny, Nyzs)* Ny 2Ny
< Nigas Ny
Due to our condition on s, this is acceptable. O]

We now prove the double-resonance quintic counting estimate.

Proof of Lemma[{.4.29: We also use a dyadic localization to |nsss| ~ Nass and |ngs| ~ Ngs. By
paying a factor of log(2+max(Ny, N5))?, it suffices to estimate the maximum over Nays5, Ny5 instead
of the sum. We do not require a logarithmic loss in N3, since N3 » Ny, N5 implies that there are
only ~ 1 non-trivial choices for Nss5. We first sum in ns € Z3 using the two-ball basic counting
lemma (Lemma . We then sum in ny € Z2 using only the dyadic constraint. This yields

1
N; 2N, % sup sup Z l(H 1{|n;] ~ Nj})1{|n345| ~ Nz }1{|nas| ~ Nus }(naasy (nasy ™’

meZ? |ns|~Ns n3,nq€Z3 Jj=3

x 1{(nass) +3 (n3y +4 (ngy +5 (nsy € [m,m + 1)}]

< min(Nags, Nus, N3) " min(Nj, N345)3N3;éN;5ﬁN52N[2 Z 1{|n4| ~ N4}1{|n345| ~ N345}
n4€Z3
S Il’liIl(N345, N45, Ng)il IIliIl(Ng, N345)3 I'IliIl(N4, N45)3N:;1%—)N4;5'BN:;2N;2
Using a minor variant of Lemma [4.10.1} this contribution is bounded by

N4*55N3*1N[;2 miH(Ng, N345) Il’liIl(N4, N45)2 S HlaX(N4, N45)76 S maX(N4, N5)76.

381



4.10.6 Septic counting estimates

Proof of Lemmal[4.4.31: Using the decay of V, it suffices to prove

*

Z (N Y51 Z 1{|n1234567| ~ Ni2saser } 1{|nse7| ~ Nsor}1{|na| ~ Nu}

(nj)i¢o (nj)jes

2
4.10.3
x ®(ny,ng, n3){nsy~ ' ®(ns, ng, n7)) ( )

2 (( Ar2(s—3) Ar—2(8— —2(1—s+
< log(2 + Ny) (N12345267N567( "+ Nisisor n)).
The argument relies on two of our previous estimates. Using the cubic sum estimate (Proposition

4.4.20)), we have that for all Ni93 > 1 that

3
Z 1{|n123| ~ N123} ( H<nj>g) @2(721, Nno, TL3) $ N1—2§(5—77)' (4104)
j=1

ni,n2,n3EZ3

Using the basic resonance estimate (Lemma 4.4.25)), we have for all N3 > 1 that

Z ]_{|’I’L3| ~ N3}<n3>_1<1>(n1, ng,ng) S 10g(2 + N3)<n12>_1<n1>_1<n2>_1. (4105)

ns €73

Using the symmetry of ®, it remains to consider the following three cases.

Case 1: j = 4 1s unpaired. By first using Cauchy-Schwarz, summing in n,, and then using (4.10.4)),

we obtain that

*®

2 (Mpy?™D Z 1{|n12sas67| ~ Niasaser }1{|nse7| ~ Nsor }1{|na| ~ Nu}
(nj)jgo (nj)jeo
2
< B, 1)) (s, )

*®

< Z [1{|nnr|~N1234567}<nnr>2(s_1)<n4>_2( Z ¢(n1’n2’n3)2)

(ny)jeo (nj)jes

X ( Z*: 1{nser ~ N567}‘I>(n5,n6,n7)2)]

(nj)jeo
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* *

SN122(§;5§6)7 Z ( Z ®(n1, n2,13) )( Z 1{”567~N567}(I)(n5,n6,n7)2)]

(nj)j¢p njza  (i)jeo (nj)jeo
2(s—3
= N12(3456)7( Z P(nq, 712,”3)2) ( Z 1{nse7 ~ Nser }®(ns, 16, n7)2>]
ni,n2,n3EZ3 ns,ne,nrEZL3

2(s 2) _2
< N1234567N567(B 77)

This contribution is acceptable.

Case 2: (3,4) € P. We let P’ be the pairing on {1,2,5,6, 7} obtained by removing the pair (3,4)
from %P. We also understand the condition j ¢ %’ as a subset of {1,2,5,6,7}. By first using
(4.10.5) and then Cauchy-Schwarz, we have that

*

Z <nnr>2(5_1)< Z 1{|n12sas67| ~ Niasaser } 1{|nse7| ~ Nsor }1{|na| ~ Nu}

(nj)jgo (n) e
2
x ®(ny,ng, n3)<n4>’1®(n5, ng, n7))

2(s—1
< log(2 + N4)2N12§3456J;n)

Z <nnr>_2n( Z 1{|n567|"“N567}<n12>_1<n1>_1<n2>_1(I)(n5>nﬁan?))2

(nj)jgé@’ (n; )je.‘ﬂ"

< log(2 + N)*Nifiues” > [( 3 ey Ty Yoy ny™?)

(") jgopr (") jeqr jeP’

X < i 1{|nse7| ~ N567}( n<nj>g)<b(n5,n6,n7)2)].

(") jeg jeF’
We then use a direct calculation to bound the first inner factor and to estimate the sum in ns, ng,
and ny. The total contribution is bounded by log(2 + Ny)2Niss et Noc2®= which is bounded
by log(2 + Ni)2Nissit™ and hence is acceptable.
Case 3: (4,5) € P. We let P’ be the pairing on {1, 2, 3,6, 7} obtained by removing the pair (4, 5)
from %P. We also understand the condition j ¢ %’ as a subset of {1,2,3,6,7}. By first using
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(4.10.5) and then Cauchy-Schwarz, we have that

*

Z My Z 1{|n123a567| ~ Niasaser }1{|ns67| ~ Nser }1{|na| ~ Nu}

(nj)j¢o (nj)jew

2
X @(n1,n27n3)<n4>1@(715,7167”7))

2
< log(2+ N)*Niier” D) ey (Y @, na,m)(nery ey Mna) 1)

(n; )j¢9' (ny )je@’

Arguing similarly as in Case 2, we obtain an upper bound by log(2 + Ny)2N7ime™ . While this

bound does not contain the gain in Nsg7, it is still acceptable. O
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