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This thesis treats nonlinear dispersive equations with random initial data. First, we study the de-

focusing energy-critical nonlinear wave equation on Euclidean space. We prove that the scattering

mechanism, which is well-understood for smooth initial data, is stable under rough and random

perturbations. The main ingredients are Bourgain’s bush argument, flux estimates, and a wave

packet decomposition of the random linear evolution. Second, we study the three-dimensional

wave equation with a Hartree nonlinearity. The main theorem proves the existence and invariance

of the Gibbs measure. The novelty lies in the singularity of the Gibbs measure with respect to the

Gaussian free field. The argument combines techniques from several areas of mathematics, such

as dispersive equations, harmonic analysis, and random matrix theory.
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CHAPTER 1

Introduction1

The research in this thesis lies at the intersection of nonlinear dispersive equations and probability

theory. Dispersive equations model physical systems in which waves of different frequencies propa-

gate through a medium at different velocities. For instance, dispersive equations are used as theo-

retical models in nonlinear optics [Abl11], quantum many-body systems [ESY07, ESY09, ESY10],

and water waves [TW12, Tot15]. The most illustrative consequence of dispersive effects is a rain-

bow, which occurs when light passes through rain droplets and is split up into different colors. In

addition to dispersive effects, many physical models contain disorder and randomness. In statisti-

cal mechanics, many central questions concern statistical equilibria, such as Gibbs measures. More

generally, randomness can be a consequence of microscopic fluctuations in densities or tempera-

tures. Physical models involving dispersion and randomness appear in plasma physics [LRS88]

and the study of water waves [MMQ19].

The mathematical interest in the interface of dispersive equations and probability theory is due

to its connections to several active areas of research. Far from just combining two areas of math-

ematics, recent advances also build on ideas from analytic number theory [BGH19], differential

geometry [KLS20], harmonic analysis [GKO18b, Bri20a], random matrix theory [Bou96, DNY20],

and quantum field theory [BG20b, BG20a]. In broad terms, the main question in the study of

1The first chapter of the thesis is partially based on the author’s research statement for postdoctoral research
positions, which is available on request.
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random dispersive equations can be phrased as follows:

Main question. How does randomness affect the flow of nonlinear dispersive equations?

In case the randomness of the physical system enters only through the initial data, the main

question concerns the push-forward of the initial distribution under the (nonlinear) data-to-solution

map. As stated here, however, the main question is far too general for a direct answer. It may

depend on

(1) the form of the dispersive equation,

(2) the distribution of the randomness,

(3) and which properties of the flow are under consideration.

Regarding (1), the answer or method of proof may depend on the spatial dimension, the linear

dispersive symbol, or the strength and structure of the nonlinearity. Regarding (2), the answer

differs for statistical equilibria, such as Gibbs measures, and out-of-equilibrium dynamics, as in

wave turbulence. Regarding (3), the answer may depend on whether randomness is measured at

a single time, multiple times, or in the large-time limit.

In the following two subsections, we briefly describe the two manifestations of our main questions

which are addressed in this thesis. A more detailed description of the relevant literature and our

arguments, however, is postponed until the introduction of the individual chapters.
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1.1 Random perturbations

In this section, we discuss the defocusing energy-critical nonlinear wave equation in dimension

d ¥ 3, which is given by $'&'%�Bttu�∆u � |u| 4
d�2u pt, xq P R� Rd ,

u|t�0 � u0, Btu|t�0 � u1 .

(1.1.1)

In this thesis, we restrict ourselves to spatial dimensions d � 3 or d � 4, in which (1.1.1) has

the polynomial nonlinearities u5 and u3, respectively. In higher dimensions, the low-regularity

of the nonlinearity F puq � |u| 4
d�2u can lead to technical obstructions and we refer the reader

to [BCL13, Vis07] for a more detailed discussion. The nonlinear wave equation (1.1.1) has the

conserved energy

Erusptq :�
»
Rd

|∇upt, xq|2
2

� pBtupt, xqq2
2

� d� 2

2d
|upt, xq| 2d

d�2 dx. (1.1.2)

By using the Sobolev embedding 9H1pRdq ãÑ L
2d
d�2 pRdq of the homogeneous Sobolev space, we

obtain that the energy is finite if and only if puptq, Btuptqq P 9H1pRdq�L2pRdq. The nonlinear wave

equation (1.1.1) is invariant under the scaling symmetry

upt, xq ÞÑ uλpt, xq :� λ
d�2
2 upλt, λxq. (1.1.3)

In addition to preserving the evolution equation, the scaling symmetry (1.1.3) also preserves the

energy of the solution. Thus, the energy is scaling-critical, which is the reason for calling (1.1.1)

energy-critical.

Our focus lies on the asymptotic behavior of solutions to (1.1.1). For initial data in the energy-

space 9H1pRdq�L2pRdq, this problem is now well-understood and we summarize the known results

in the next theorem.
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Theorem 1.1.1 (Global well-posedness and scattering [BG99, Gri90, Gri92, Rau81, SS93, SS94,

Str68, Str88, Tao06b]). Let 3 ¤ d ¤ 4 and let pu0, u1q P 9H1pRdq � L2pRdq. Then, there exists a

unique global solution of (1.1.1) satisfying

u P
�
C0
t

9H1
x

�
L
d�2
d�2

t L
2pd�2q
d�2

x

	
pR� Rdq and Btu P C0

t L
2
xpR� Rdq.

Furthermore, the solution u scatters. To be precise, there exist scattering states pu�0 , u�1 q P
9H1pRdq � L2pRdq s.t.

lim
tÑ�8

}puptq �W ptqpu�0 , u�1 q, Btuptq � BtW ptqpu�0 , u�1 qq} 9H1pRdq�L2pRdq � 0 .

Here, W ptqpu�0 , u�1 q denotes the solution to the linear wave equation with initial data pu�0 , u�1 q.

In fact, Theorem 1.1.1 has not only been proven for the energy-critical nonlinear wave equation

(1.1.1), but also serves as a blueprint for other defocusing dispersive equations at critical regularity.

In the case of the defocusing energy-critical nonlinear Schrödinger equation, which is given by$'&'%iBt �∆u � |u| 4
d�2u pt, xq P R� Rd ,

u|t�0 � u0,

(1.1.4)

similar results have been obtained in the seminal works [Bou99, CKS08, Vis07, RV07].

In the spirit of our main question, we now ask whether the scattering mechanism (as proven in

Theorem 1.1.1) is stable under rough and random perturbations. To define the random pertur-

bations, we first let J be a countable index set. Then, we let pPjqjPJ be a sequence of operators

(on certain Sobolev spaces) such that
°
jPJ Pj strongly converges to the identity. In the literature,

pPjqjPJ is chosen as a unit-scale decomposition in frequency space [BOP15b, LM14, Bri20b], phys-

ical space [Mur19], or, as in this work, phase space [Bri18]. We also let pXjqjPJ be a sequence of

independent (sub-)Gaussian random variables. For more details regarding the operators or random

4



Wave Schrödinger

radial
d � 4: [DLM20, DLM19].

d � 4: [KMV19, DLM19].
d=3: [Bri20b].

non-radial d � 4: [Bri18]. Open.

Figure 1.1: Almost sure scattering for defocusing energy-critical dispersive equations.

variables, we refer the reader to the introduction of Chapter 2. Finally, we let 0 ¤ s   1 and let

pf0, f1q P HspRdq �Hs�1pRdq be rough initial data. Then, the randomized initial data pfω0 , fω1 q is

defined as

fωi �
¸
jPJ

XjPjfi for i � 0, 1. (1.1.5)

In order to study the stability of the scattering mechanism under random perturbations, we con-

sider the random data Cauchy problem$'&'%�Bttu�∆u � |u| 4
d�2u pt, xq P R� Rd ,

u|t�0 � u0 � fω0 , Btu|t�0 � u1 � fω1 .

(1.1.6)

In recent years, there has been tremendous interest in (2.1.5) and related problems for the nonlinear

Schrödinger equations (1.1.4). While we provide a brief overview of the literature in Figure 1.1,

we postpone a more detailed discussion to Chapter 2. At this point, we only emphasize that there

is a significant difference between the radial and non-radial case.

The first main result of this thesis proves the analogue of Theorem 1.1.1, which holds for smooth

and deterministic initial data, for the random data Cauchy problem (1.1.6) in dimension d � 4.

Theorem 1.1.2 ([Bri18]). Let pf0, f1q P HspR4q � Hs�1pR4q, where s ¡ 11
12

, let pfω0 , fω1 q be the

microlocal randomization as in Definition 2.1.2, and let pu0, u1q P 9H1pR4q � L2pR4q. Then, there

5



exists a global solution u : R� R4 Ñ R of (1.1.6) such that

u P W ptqpfω0 , fω1 q �
�
C0
t

9H1
x

�
L3
tL

6
x

�pR� R4q and Btu P BtW ptqpfω0 , fω1 q � C0
t L

2
xpR� R4q .

Furthermore, the solution u scatters. To be precise, there exist scattering states pu�0 , u�1 q P
9H1pRdq � L2pRdq s.t.

lim
tÑ�8

}puptq �W ptqpu�0 � fω0 , u
�
1 � fω1 q, Btuptq � BtW ptqpu�0 � fω0 , u

�
1 � fω1 qq} 9H1�L2 � 0 .

In contrast to the earlier literature, Theorem 1.1.2 does not require the radial symmetry of pf0, f1q.
The main novelty in our argument lies in a wave packet decomposition of the linear evolution of

the random perturbation. Since a more detailed discussion of the main ideas requires additional

notation, we postpone it until Chapter 2.

1.2 Invariant Gibbs measures

In this subsection, we are interested in invariant measures for nonlinear dispersive equations. In

this invariant setting, the distribution of the initial data is preserved by the flow. From a physical

perspective, the most natural candidates for invariant measures are Gibbs measures.

The proof of the existence and invariance of Gibbs measures is one of the most classical problems

for dispersive equations. Once existence and invariance have been shown, the general theory of

dynamical systems yields interesting information about the flow of the dispersive equation under

consideration. For example, the Poincaré recurrence theorem proves that the evolution will return

infinitely often to states arbitrarily close to its initial state.

In the following, we restrict ourselves to results for defocusing semilinear wave and Schrödinger

equations with periodic boundary conditions, which are also displayed in Figure 1.2. In one

dimension, the existence and invariance of the Gibbs measure was proven by Bourgain [Bou94],
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Dimension & Nonlinearity Wave Schrödinger

d � 1 , |u|p�1u [Fri85, Zhi94] [Bou94]

d � 2, |u|2u
[OT20a]

[Bou96]

d � 2, |u|p�1u [DNY19]

d � 3, pVβ � |u|2qu
β ¡ 1: [OOT20]

β ¡ 0: [Bri20c, Bri20d]

β ¡ 2: [Bou97]

β ¡ 1� ε : [DNY21]

β ¡ 0: Open

d � 3, |u|2u Open Open

Figure 1.2: Invariant Gibbs measures2.

Friedlander [Fri85], and Zhidkov [Zhi94]. Bourgain [Bou96] also solved this problem for the two-

dimensional cubic nonlinear Schrödinger equation. For general power-type nonlinearities in two

dimensions, however, this problem was only solved recently by Oh and Thomann [OT20a] and

Deng, Nahmod, and Yue [DNY19] for wave and Schrödinger equations, respectively. Unfortunately,

the invariance of Gibbs measures is still open for many important dispersive equations in three

spatial dimensions. A more detailed discussion of both the earlier literature and remaining open

problems is contained in Chapter 4.

In this thesis, we focus on the three-dimensional wave equation with a Hartree nonlinearity given

by

� B2
t u� u�∆u � :pVβ � u2qu: pt, xq P R� T3. (1.2.1)

Here, T3 is the three-dimensional flat torus. Regarding the potential Vβ : T3 Ñ R, which depends

on a regularity parameter β P p0, 3q, we make the following assumption.

2Figure 1.2 is a modification of Figure 1 in [Bri20d], which also appears in Chapter 4 of this thesis.
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Assumptions. We assume that the interaction potential Vβ satisfies

(i) Vβpxq � cβ|x|�p3�βq for some cβ ¡ 0 and all x P T3 satisfying }x} ¤ 1{10,

(ii) Vβpxq Áβ 1 for all x P T3,

(iii) Vβpxq � Vβp�xq for all x P T3,

(iv) Vβ is smooth away from the origin.

Finally, the nonlinearity :pVβ � u2qu: in (1.2.1) is a renormalization of pVβ � u2qu, which is defined

in Definition 3.2.6.

Similar as in Section 1.1, the Hartree nonlinear wave equation (1.2.1) also obeys an energy con-

servation law. In order to emphasize the Hamiltonian structure of (1.2.1), however, the energy is

commonly referred to as the Hamiltonian and denoted by Hβ. It is given by

Hβru, Btusptq � 1

2

�
}upt, xq}2

L2
x
�}∇xupt, xq}2

L2
x
�}Btupt, xq}2

L2
x

	
� 1

4

»
T3

:pVβ �u2q u2 : pt, xqdx. (1.2.2)

The Gibbs measure µbβ , which is associated with the Hamiltonian Hβ and expected to be invariant

under (1.2.1), is formally given by

dµbβ pu, utq � Z�1 exp
�
�Hβru, Btus

	
dudut,

where Z is a normalization constant. The superscript b in µbβ emphasizes that the Gibbs measure

yields both a random initial position u and an initial velocity ut. In Chapter 3 and 4, we prove

the second main theorem of this thesis.

Theorem 1.2.1 ([Bri20c, Bri20d], Informal version). The Gibbs measure µβ exists and, for β P
p0, 1{2q, is singular with respect to the so-called Gaussian free field g. Furthermore, µβ is invariant

under the evolution of (1.2.1).
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For a more precise version of this theorem, we refer to Theorem 3.1.1 and Theorem 4.1.3 below.

The Gaussian free field, which appears in Theorem 1.2.1, is a central object in probability theory.

In our context, it is best understood as a random Fourier series with Gaussian coefficients, see

(3.1.7) and (4.1.15). In all previous results on invariant Gibbs measures for dispersive equations,

the Gibbs measure is absolutely continuous with respect to the Gaussian free field. In other words,

Theorem 1.2.1 is the only available result with a singular Gibbs measure. The proof of Theorem

1.2.1 naturally splits into a measure-theoretic and dynamical part, which form Chapter 3 and

Chapter 4, respectively.

The measure-theoretic part (Chapter 3) is based on ideas from stochastic quantization [Nel66,

PW81]. The rigorous mathematical treatment [AK20, HM18, MW17, GH19] relies on recent

advances in singular SPDEs, such as Hairer’s regularity structures [Hai14] and Gubinelli, Imkeller,

and Perkowski’s para-controlled calculus [GIP15]. Inspired by stochastic quantization, Barashkov

and Gubinelli [BG20b, BG20a] recently developed a new variational approach to the construction

of Gibbs measures, which is used in this thesis. The main differences between [BG20b, BG20a]

and Chapter 3 stem from the nonlocality of the Hartree nonlinearity. A more detailed discussion

of the literature and main ideas is contained in the introduction of Chapter 3.

The dynamical part (Chapter 4), which is more difficult than the measure-theoretic part, is further

split into a local and global theory. The local theory combines tools such as dispersive estimates,

lattice point estimates, para-product decompositions, random operator bounds, and Wiener chaos

estimates, which stem from different areas of mathematics. The global theory is based on an

adaption of Bourgain’s globalization argument [Bou94] to singular Gibbs measures. A detailed

description of the main ideas is contained in the introduction of Chapter 4.

9



CHAPTER 2

Almost sure scattering for the energy critical nonlinear

wave equation3

2.1 Introduction

We consider the defocusing cubic nonlinear wave equation in four space dimensions, that is,$'&'%�Bttu�∆u � u3 pt, xq P R� R4 ,

u|t�0 � u0 P 9HspR4q, Btu|t�0 � u1 P 9Hs�1pR4q .
(2.1.1)

If u is a regular solution of (2.1.1), then it conserves the energy

Erusptq :�
»
R4

|∇upt, xq|2
2

� pBtupt, xqq2
2

� upt, xq4
4

dx . (2.1.2)

From the Sobolev embedding 9H1pR4q ãÑ L4pR4q, it follows that the initial data has finite en-

ergy if and only if pu0, u1q P 9H1pR4q � L2pR4q. Thus, we also refer to 9H1pR4q � L2pR4q as the

energy space. In addition to the energy conservation law, (2.1.1) obeys the scaling symmetry

upt, xq ÞÑ uλpt, xq � λupλt, λxq. Since the scaling leaves the energy invariant, the equation is

called energy critical. Due to the positive sign in front of the potential term u4, we call (2.1.1)

defocusing. There also exists analogues of (2.1.1) with a power-type nonlinearity in any dimension

3Copyright ©2020 Johns Hopkins University Press. This article is to appear in the AMERICAN JOURNAL
OF MATHEMATICS, Accepted on 08/19/2020.
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d ¥ 3.

The Cauchy problem for (deterministic) initial data in the energy space is well-understood. We

summarize the relevant results in the following theorem.

Theorem 2.1.1 (Global well-posedness and scattering [BG99, Gri90, Gri92, Rau81, SS93, SS94,

Str68, Str88, Tao06b]). Let pu0, u1q P 9H1pR4q � L2pR4q. Then, there exists a maximal time in-

terval of existence I and a unique solution u : I � R4 Ñ R of (2.1.1) such that u P C0
t

9H1
xpI �

R4q � L3
t,locL

6
xpI � R4q and Btu P C0

t L
2
xpI � R4q. Furthermore, we have that

(i) u is global, i.e., I � R.

(ii) u obeys a global space-time bound of the form

}u}L3
tL

6
xpR�R4q ¤ CpEru0, u1sq .

(iii) u scatters to a solution of the linear wave equation. Thus, there exist scattering states

pu�0 , u�1 q P 9H1pR4q � L2pR4q s.t.

lim
tÑ�8

}puptq �W ptqpu�0 , u�1 q, Btuptq � BtW ptqpu�0 , u�1 qq} 9H1�L2 � 0 .

Here, W ptqpu�0 , u�1 q � cospt|∇|qu�0 �psinpt|∇|q{|∇|qu�1 denotes the solution to the linear wave

equation with initial data pu�0 , u�1 q.

Global well-posedness and scattering results such as Theorem 2.1.1 are known for many defocusing

dispersive partial differential equations, and hold for the energy critical nonlinear Schrödinger

equation [Bou99, CKS08, RV07, Vis07], the mass-critical nonlinear Schrödinger equation [Dod12,

Dod16a, Dod16b, KTV09, KVZ08], the mass-critical generalized KdV [Dod17], and the 9H
1
2 -critical

radial nonlinear wave equation [Dod18].
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Since Theorem 2.1.1 provides a complete description of the Cauchy problem with initial data in

the energy space, we now seek a similar result for initial data in a rough Sobolev space Hs
x�Hs�1

x ,

where s P r0, 1q. However, since this leads to a scaling super-critical problem, all of the above

properties can fail. In fact, [CCT03] proved that (2.1.1) exhibits norm inflation, which means that

arbitrarily small data in Hs�Hs�1 can grow arbitrarily fast. More precisely, we have for all ε ¡ 0

that there exists Schwartz initial data pu0, u1q and a time 0   tε   ε such that }pu0, u1q}Hs�Hs�1   ε

and }puptεq, Btuptεqq}Hs�Hs�1 ¡ ε�1. Using finite speed of propagation, one may then also construct

solutions whose Hs �Hs�1-norm blows up instantaneously.

2.1.1 The random data Cauchy problem

Many researchers in dispersive partial differential equations have recently examined whether blow-

up behaviour, such as the norm-inflation described above, occurs for generic or only exceptional

sets of rough initial data. To quantify this, one is quickly lead to random initial data. Indeed, one

natural form of rough initial data is pu0 � fω0 , u1 � fω1 q, where the functions pu0, u1q P 9H1 � L2

are regular and deterministic, while the functions pfω0 , fω1 q P Hs � Hs�1 are rough and random.

An analogue of Theorem 2.1.1 in this case would imply the stability of the scattering mechanism

under a perturbation by noise.

The literature on random dispersive partial differential equations is vast. We refer the interested

reader to the survey [BOP19b], and mention the related works [BOP15a, BOP19a, Bou94, Bou96,

BB14b, Bri20a, BT08a, BT08b, CCM20, LM14, LM16, NOR12, NPS13, Poc17]. In the following

discussion, we focus on the Wiener randomization [BOP15b, LM14] of a function f P HspRdq. Let

ϕ P C8pRdq be a smooth and symmetric function satisfying ϕ|r�3{8,3{8sd � 1, ϕ|Rdzr�5{8,5{8sd � 0,

and
°
kPZd ϕpξ � kq � 1 for all ξ P Rd. We then define the associated operator Pk by

yPkfpξq :� ϕpξ � kq pfpξq .
12



Since the translates tϕp� � kquk form a partition of unity, we have that

f �
¸
kPZd

Pkf , (2.1.3)

which is called the Wiener decomposition of f . The Wiener randomization is obtained by ran-

domizing the coefficients in (2.1.3). Let I � Zd by an index set such that Zd � I 9� t0u 9� p�Iq.
Let tXkukPIYt0u be a sequence of symmetric, independent, and uniformly sub-gaussian random

variables (see Definition 2.2.1). We set X�k :� Xk for all k P I, and assume that X0 is real-valued.

Then, the Wiener randomization fW is defined as

fW :�
¸
kPZd

Xk � Pkf . (2.1.4)

The reason for introducing the set I is to preserve the real-valuedness of f . The Wiener random-

ization fW is a random linear combination of functions with unit-scale frequency uncertainty, and

therefore resembles a random Fourier series. We then examine the random data Cauchy problem

$'&'%�Bttu�∆u � u3 pt, xq P R� R4

u|t�0 � u0 � fW0 , Btu|t�0 � u1 � fW1

. (2.1.5)

We now seek an almost sure version of Theorem 2.1.1 for (2.1.5). Before we summarize the recent

results, let us sketch the overall strategy, which was developed by Pocovnicu in [Poc17]. We let

F :� cospt|∇|qfW0 � psinpt|∇|q{|∇|qfW1 be the solution of the linear wave equation with the rough

and random initial data. We then define the nonlinear component v by v :� u � F , and obtain

the forced nonlinear wave equation$'&'%�Bttv �∆v � pv � F q3 pt, xq P R� R4 ,

v|t�0 � u0, Btv|t�0 � u1.

(2.1.6)
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At the cost of introducing a rough forcing term, we have therefore removed the rough part of

the initial data. This transformation is related to the Da Prato-Debussche trick [DD02]. Due to

the smoothing effect of the Duhamel integral, we hope to control the nonlinear component v in

the energy space. The local well-posedness of (2.1.6) follows readily from probabilistic Strichartz

estimates (cf. [BOP15b, LM14]) and a contraction mapping argument. Thus our main interest lies

in the global well-posedness and the long-time behaviour of the solution. Using the deterministic

well-posedness theorem and stability theory, it can be shown (cf. [DLM20, Poc17]) that the solution

to (2.1.6) exists as long as the energy of v remains bounded. Of course, due to the forcing term in

(2.1.6), the energy is no longer conserved. In addition, a global bound on the energy of v implies

a global bound on the L3
tL

6
x-norm, and hence also implies scattering. A short calculation shows

that
d

dt
Ervsptq �

»
R4

pv3 � pv � F q3qBtv dx � �3

»
R4

Fv2Btvdx . (2.1.7)

In the formula above, we have neglected terms that contain more than a single factor of F , since

they are simpler to estimate. Therefore, the remaining obstacle lies in the control of the right-hand

side of (2.1.7). With this overall strategy in mind, we summarize the recent literature.

In [Poc17], Pocovnicu proved the almost sure global existence of solutions for all s ¡ 0. Using a

Gronwall-type argument and a probabilistic Strichartz estimate, (2.1.7) leads (at top order) to the

growth estimate

ErvspT q À Ervsp0q exppC}F }L1
tL

8
x pr0,T s�R4qq À Ervsp0q exppCωT 1

2 q . (2.1.8)

Since this prevents the finite time blow-up of the energy, this yields an analogue of Theorem

2.1.1.(i). Similar theorems are also known in dimension five [Poc17], dimension three [OP16], and

for the high-dimensional energy critical nonlinear Schrödinger equation [OOP19].

The bound (2.1.8), however, is not sufficient to obtain global control on the energy of v, and hence
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does not prove almost sure scattering. Assuming the regularity condition s ¡ 1
2

and that the

(deterministic) data pf0, f1q is spherically symmetric, Dodson, Lührmann, and Mendelson proved

almost sure scattering in [DLM20]. In their argument, the energy increment is estimated by��� » T

0

»
R4

Fv2Btvdxdt
��� À }|x| 12F }L2

tL
8
x pr0,T s�R4q }|x|�

1
4v}2

L4
tL

4
xpr0,T s�R4q }Btv}L8t L2

xpR�R4q . (2.1.9)

The first factor is controlled using Khintchine’s inequality and a square-function estimate, and

heavily relies on the spherical symmetry of f0 and f1. The main novelty lies in the control of

the second factor, and involves a double bootstrap argument in the energy and a Morawetz term.

Under the bootstrap hypothesis, one can then control the second factor in (2.1.9) by the square-

root of the energy, and this eventually leads to a global bound.

The method of [DLM20] has since been used in several related works. In [DLM19], Dodson,

Lührmann, and Mendelson used local energy decay to improve the regularity condition to s ¡
0. After replacing the cubes in the Wiener randomization by thin annuli, the author proved

almost sure scattering for radial data in dimension three [Bri20b]. The main new ingredient is an

interaction flux estimate between the linear and nonlinear components of the solution. Finally,

the almost sure scattering for the radial energy critical nonlinear Schrödinger equation in four

dimensions has been obtained in [DLM19, KMV19].

2.1.2 Main result and ideas

The remaining open question is concerned with almost sure scattering for non-radial data. In

order to state the main result of this paper, we first need to introduce a microlocal randomization.

While the Wiener randomization is based on a unit-scale decomposition in frequency space, the

microlocal randomization is based on a unit-scale decomposition in phase space (see Figure 2.1).

Definition 2.1.2 (Microlocal randomization). Let tXk,lukPIYt0u,lPZd be a sequence of symmetric,

independent, and uniformly sub-gaussian random variables. We set X�k,l :� Xk,l for all k P I, and
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ξ

x

ξ

x

We display a partition of the phase space Rd � Rd into horizontal strips, which forms the basis of the

Wiener randomization, and a partition into cubes, which forms the basis of the microlocal randomization.

A similar figure has been used in the author’s previous work [Bri20b, Figure 1].

Figure 2.1: Partions of phase space

assume that X0,l is real-valued. For any f P HspRdq, we define its microlocal randomization fω by

fωpxq :�
¸
k,lPZd

Xk,lPkpϕp� � lqfqpxq . (2.1.10)

The microlocal randomization is inspired by [Mur19], which used a randomization in physical

space.

Theorem 2.1.3 (Almost sure scattering for the microlocal randomization). Let pu0, u1q P 9H1pR4q�
L2pR4q, and let pf0, f1q P HspR4q�Hs�1pR4q, where s ¡ 11

12
. Then, there exists a random maximal

time interval of existence I and a solution u : I � R4 Ñ R of (2.1.5) such that

u P W ptqpfω0 , fω1 q�
�
C0
t

9H1
xpI�R4q � L3

t,locL
6
xpI�R4q� and Btu P BtW ptqpfω0 , fω1 q�C0

t L
2
xpI�R4q .

Furthermore, we have that

(i) u is almost surely global, i.e., I � R.

16



(ii) u almost surely satisfies the global space-time bound }u}L3
tL

6
xpR�R4q   8 .

(iii) u almost surely scatters to a solution of the linear wave equation. Thus, there exist random

scattering states pu�0 , u�1 q P 9H1pR4q � L2pR4q s.t.

lim
tÑ�8

}puptq �W ptqpu�0 � fω0 , u
�
1 � fω1 q, Btuptq � BtW ptqpu�0 � fω0 , u

�
1 � fω1 qq} 9H1�L2 � 0 .

While Theorem 2.1.3 is only proven for the microlocal randomization, the majority of our argu-

ment directly applies to the Wiener randomization.

The main novelty in this paper lies in the application of a wave packet decomposition. To illus-

trate this idea, fix some k P Zd with }k}8 � N , and assume that pfkpξq � N�sϕpξ � kq. Then,

fk will essentially be unaffected by both the Wiener and microlocal randomizations, and hence

forms an important example. From the method of non-stationary phase, it follows for all times

t P r0, N s that the evolution expp�it|∇|qfk is concentrated in the ball |x � tk{}k}2| À 1, and has

amplitude � N�s. In space-time, we can therefore view the evolution as a tube, see Figure 2.2a.

For larger times, the dispersion of the evolution becomes significant, and the physical localization

deteriorates. The wave packet perspective also explains the effect of the frequency randomization

on the evolution. In Figure 2.2b, we display a bush (cf. [Bou91]), which is a collection of wave

packets intersecting at a single point. If all wave packets in the bush have comparable amplitudes

and the data is deterministic, one expects that the L8t L
8
x -norm is proportional to the number

of wave packets. For random data, however, the phases of the wave packets are all independent,

and the central limit theorem predicts that the L8t L
8
x -norm should instead be proportional to the

square-root of the number of wave packets.

The examples in Figure 2.2 also illustrates an important heuristic: The natural timescale for the

randomized evolution at frequency N is T � N . This differs from the natural timescale predicted

by the (deterministic) bump-function heuristic, which is T � N�1. We therefore decompose the
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(a) Single wave packet
(b) Bush

In (a), we display the evolution expp�it|∇|qfk on the time-interval r0, N s. The space-time support can

be viewed as a tube of length � N and width � 1. The spatial center travels in a fixed direction at the

speed of light, which has been normalized to 1. Furthermore, the amplitude of the evolution is given by

� N�s. In (b), we display a so-called bush, which is a collection of wave packets intersecting at a single

point.

Figure 2.2: Wave packet heuristic

positive time-interval as

r0,8q �
� tNθu¤
n�0

rnN, pn� 1qNq
	 � rN1�θ,8q , (2.1.11)

where θ ¡ 0 is a parameter. Our argument then splits into two separate parts.

On the long-time interval rN1�θ,8q, we use the additional decay obtained through the physical

randomization. The basic idea is that after such a long time, the linear evolution could only

be concentrated through constructive interference of a large portion of the initial data, which is

highly unlikely due to the physical randomness (see Figure 2.4). To make this rigorous, we prove
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an L1
tL

8
x prN1�θ,8q � R4q-bound on PNF , and this is sufficient to control the energy increment.

This part of the proof requires the condition s ¡ 1� θ{2.

The majority of this paper focusses on time intervals such as r0, Nq. This part of the argument

does not rely on the physical randomness, and therefore also applies to the Wiener randomization.

On this interval, we decompose the evolution into a family of wave packets, see Figure 2.3. As

can be seen from a single wave packet, we cannot (always) control the evolution in L1
tL

8
x . Instead,

we use the following dichotomy: Either F consists of only a few wave packets, in which case its

support lies on a few light-cones, or it consists of many wave packets, in which case the L8t L
8
x -norm

should be small.

We now present a heuristic and simplified version of the main argument. In order to illustrate

the ideas, let us first assume that all wave packets belong to a single frequency k P Zd. After a

dyadic decomposition, we may further assume that all wave packets have amplitudes comparable

to 2m. Using the same notation as in Section 2.4, we denote the number of wave packets with this

amplitude by #Am . Due to the L2-orthogonality of the wave packets, we have that 2mp#Amq 1
2 À

N�s.

In the case of only a few wave packets, we control the contribution on each tube separately. We

have that��� » N

0

FNv
2Btvdxdt

��� À p#AmqN 1
2 2m

�
sup

tubes T
}v}2

L4
tL

4
xpT q

�}Btv}L8t L2
xpr0,Nq�R4q À N

1
2 2m#Am sup

tPr0,Nq

Ervsptq .

The supremum ranges over all tubes of length � N , width � 1, and unit-speed direction inside

r0, Nq � R4. Using a flux estimate and a bootstrap argument, we controll this supremum by the

square-root of the energy.

In the case of many wave packets (with the same direction), we use that their supports are disjoint,
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and obtain that��� » N

0

FNv
2Btvdxdt

��� À N}FN}L8t L8x pr0,Nq�R4q}v}2
L8t L

4
xpr0,Nq�R4q}Btv}L8t L2

xpr0,Nq�R4q À N2m sup
tPr0,Nq

Ervsptq .

By combining both estimates, it follows that��� » N

0

FNv
2Btvdxdt

��� À minpN 1
2 2m#Am, N2mq sup

tPr0,Nq

Ervsptq ¤ N
3
4 2mp#Amq 1

2 sup
tPr0,Nq

Ervsptq .

We insert the bound 2mp#Amq 1
2 À N�s, sum over N θ intervals, and arrive at the condition

s ¡ 3{4� θ. In order to match the conditions from the intervals rnN, pn� 1qNq and the long-time

interval rN1�θ,8q, we choose θ � 1{6, and obtain the regularity condition s ¡ 11{12.

In order to remove the restriction to a single frequency, we need to consider both multiple direc-

tions and multiple scales. For this, we rely on techniques from the literature on the Kakeya and

restriction conjectures. In order to control multiple directions, we use Bourgain’s bush argument

[Bou91]. The basic idea is to distinguish points which lie in multiple tubes from points which lie

only in a few tubes. To this end, we group the wave packets into several bushes and a collection

of (almost) non-overlapping wave packets (see Figure 2.3). We then almost argue as for a single

frequency, but also use that each bush lies on the surface of a light-cone, which is crucial for the

flux estimate. In order to control multiple scales, we rely on Wolff’s induction on scales strategy

[Wol01]. To fix ideas, let us try to bound the energy increment ErvspNq � Ervsp0q. We have

already described the estimates for wave packets of length greater than or equal to N , but the

space-time region r0, N s � R4 also contains many shorter wave packets. By induction on scales,

we can already close the bootstrap argument at these shorter scales, which greatly reduces the

complexity of the proof. We postpone a more detailed discussion to the Sections 2.4 and 2.6.
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We illustrate the wave packet decomposition of the linear evolution. We partition the wave packets into

three groups: Two separate bushes (red and blue) and a collection of almost non-overlapping wave packets

(green).

Figure 2.3: Wave packet decomposition
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2.2 Notation and preliminaries

For the rest of this paper, the positive integer d denotes the dimension of physical space. In the

analysis of the nonlinear evolution, we will eventually specialize to d � 4. Furthermore, we also

fix positive absolute constants δ, θ, and η. The parameter δ will be used to deal with the spatial

tails of the wave packets and certain summability issues. The parameter θ is used in the division

of time (see (2.1.11)). We will eventually choose θ � 1{6, but prefer to keep θ as a free parameter

until the end of the argument. Finally, η describes the size of the frequency truncated data, see
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Proposition 2.4.8.

If A,B are positive quantities, we write A À B if and only if there exist a constant C � Cpδ, θq
such that A ¤ CB. Furthermore, most capital letters, such as N , M , and R, will denote dyadic

numbers greater than or equal to 1.

Finally, we define the Fourier transform pf of an integrable function f : Rd Ñ C by

pfpξq :� 1

p2πq d2
»
Rd

expp�ixξqfpxqdx .

We now summarize a few basic results from probability theory, harmonic analysis, and dispersive

partial differential equations.

2.2.1 Probability theory

We recall a few basic estimates for sub-gaussian random variables. For an accessible introduction,

we refer the reader to [Ver18].

Definition 2.2.1 (Sub-gaussian random variable). Let pΩ,F ,Pq be a probability space, and let

X : pΩ,Fq Ñ R be a random variable. We then define the sub-gaussian norm by

}X}Ψ2 :� sup
p¥1

pEr|X|psq 1
p

?
p

(2.2.1)

We call a random variable X sub-gaussian if and only if }X}Ψ2   8. Furthermore, we call a family

of random variables tXiuiPI uniformly sub-gaussian if and only if supiPI }Xi}Ψ2   8.

The relationship to the Gaussian distribution may not be obvious from (2.2.1). However, it follows

from [Ver18, Proposition 2.52] that (2.2.1) implies

Pp|X| ¡ xq ¤ 2 exp

�
�c x2

}X}2
Ψ2



@x ¡ 0 .

Many concentration inequalities for the sums of independent sub-gaussian random variables can

be found in the literature. In the following, we mainly rely on Khintchine’s inequality.
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Lemma 2.2.2 (Khintchine’s inequality, [Ver12, Corollary 5.12] or [Ver18, Proposition 2.6.1 and

Exercise 2.6.5]). Let pXjqj�1,...,J be a finite sequence of independent sub-gaussian random variables

with zero mean. Then, it holds for all deterministic sequences pajqj�1,...,J , and all p ¥ 1, that�
E
�
|
J̧

j�1

ajXj|p
�� 1

p

À ?
p

�
max
j�1,...,J

}Xj}Ψ2


�
J̧

j�1

|aj|2
� 1

2

(2.2.2)

In particular, the sum
°J
j�1 ajXj is sub-gaussian.

In this paper, Khintchine’s inequality will often be combined with Minkowski’s integral inequality,

which we recall below.

Lemma 2.2.3 (Minkowski’s integral inequality). Let pX,µq and pY, νq be two σ-finite measure

spaces, and let 1 ¤ p ¤ q ¤ 8. Then, we have for all measurable functions f : X � Y Ñ R that

}}fpx, yq}LppXq}LqpY q ¤ }}fpx, yq}LqpY q}LppXq .

The special case p � 1 is the standard Minkowski inequality, and it can be found in most real

analysis books (see e.g. [LL01, Theorem 2.4]). Since Lemma 2.2.3 is central to many arguments

in this paper, we prove the general statement from this special case.

Proof. Since q{p ¥ 1, we have that

}}fpx, yq}LppXq}LqpY q � }}fpx, yqp}L1pXq}
1
p

L
q
p pY q

¤ }}fpx, yqp}
L
q
p pY q

}
1
p

L1pXq � }}fpx, yq}LqpY q}LppXq .

We will also need a crude bound on the maximum of dependent sub-gaussian random variables
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Lemma 2.2.4 (Suprema of dependent sub-gaussian random variables [Ver18, Exercise 2.5.10]).

Assume that pXjqj�1,...,J are (possibly dependent) sub-gaussian random variables. Then,

E
�

max
j�1,...,J

|Xj|
�
À
a

logp2� Jq max
j�1,...,J

}Xj}Ψ2 . (2.2.3)

Proof. Let 1 ¤ p   8. Using Hölder’s inequality, we obtain that

E
�

max
j�1,...,J

|Xj|
�
¤
�
E
�

max
j�1,...,J

|Xj|p
�
 1

p

¤
�

J̧

j�1

E r|Xj|ps
� 1

p

¤ J
1
p
?
p max
j�1,...,J

}Xj}Ψ2 .

After choosing p � logp2� Jq, we arrive at (2.2.3).

2.2.2 Harmonic analysis

Let N P 2N0 and k P Zd. As in the introduction, we let ϕ P C8
c pRdq be a smooth and symmetric

function satisfying ϕ|r� 3
8
, 3
8
sd � 1, ϕ|Rdzr� 5

8
, 5
8
sd � 0, and

°
kPZd ϕp� � kq � 1. We also define ψpξq �

ϕpξq � ϕp2ξq. Then, the re-centered Littlewood-Paley operators are defined as

{PN ;kfpξq �

$'&'% ψ
�
ξ�k
N

� pfpξq if N ¡ 1

ϕpξ � kq pfpξq if N � 1

.

With this choice of ψ, it holds that PN ;kPM ;k � 0 if M ¥ 4N or N ¥ 4M . To simplify the

notation, we also set PN :� PN ;0 and Pk :� P1;k. Furthermore, we define the fattened Littlewood-

Paley operators rPN ;k :�
¸

2�10N¤M¤210N

PM ;k . (2.2.4)

Lemma 2.2.5 (Bernstein’s inequalities). Let N P 2N0 , k P Zd, and 1 ¤ p ¤ q ¤ 8. Then, we for
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all f P LpxpRdq that

}PN ;kf}LqxpRdq À Ndp 1
p
� 1
q
q}PN ;kf}LpxpRdq , (2.2.5)

}|∇|PN ;0f}LpxpRdq À N}PN ;0f}LpxpRdq . (2.2.6)

We emphasize that the constant in (2.2.5) is independent of k P Zd, since the phase exppikxq does

not affect the Lpx-norms.

We also record the following standard consequence of Bernstein’s inequality and the uncertainty

principle.

Lemma 2.2.6. Let N ¥ 1, let a, b P R, and assume that b ¥ a � 1{N . Then, we have for all

f P L2
xpRdq, all 1 ¤ q   8, and all 1 ¤ p ¤ 8, that

} expp�it|∇|qPNf}L8t Lpxpra,bs�Rdq À N
1
q } expp�it|∇|qPNf}LqtLpxpra,bs�Rdq .

The argument is essentially taken from [Bri20b].

Proof. Pick t0 P ra, bs, and let I be any interval such that t0 P I � ra, bs. For all t P I, it holds that

expp�it0|∇|qPNfω � expp�it|∇|qPNfω � i

» t0

t

|∇| expp�it1|∇|qPNfωdt1

From Bernstein’s inequality, we obtain that

} expp�it0|∇|qPNfω}LpxpRdq ¤ } expp�it|∇|qPNfω}LpxpRdq � |I|1� 1
q }|∇| expp�it|∇|qPNfω}LqtLpxpI�Rdq

À } expp�it|∇|qPNfω}LpxpRdq �N |I|1� 1
q } expp�it|∇|qPNfω}LqtLpxpI�Rdq

Taking the q-th power and averaging over all t P I, we obtain that

} expp�it0|∇|qPNfω}LpxpRdq À
�
|I|� 1

q �N |I|1� 1
q

	
} expp�it|∇|qPNfω}LqtLpxpI�Rdq .
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By choosing |I| � N�1, and taking the supremum over all t0 P ra, bs, it follows that

} expp�it|∇|qPNfω}L8t Lpxpra,bs�Rdq À N
1
q } expp�it|∇|qPNfω}LqtLpxpra,bs�Rdq.

The following estimate, which appeared in the almost sure scattering problem for the nonlinear

Schrödinger equation [KMV19], is useful in combination with Khintchine’s inequality.

Lemma 2.2.7 (Square function estimate [KMV19, Lemma 2.8]). Let f P L2
xpRdq and let ϕ be as

above. Then, it holds that ¸
kPZd

|Pkfpxq|2 À p|qϕ| � |f |2qpxq . (2.2.7)

In addition to the dyadic decomposition in frequency, we also need a dyadic decomposition in

physical space. To avoid confusion, we denote the cut-off function in physical space by χ. More

precisely, we set χ1pxq :� ϕpxq and χLpxq :� ψpx{Lq, where L ¥ 2.

Lemma 2.2.8 (Mismatch estimates). Let 1 ¤ p ¤ 8 and M,N,L ¥ 1. We further assume the

mismatch conditions maxpM{N,N{Mq ¥ 8 and L ¥ 8. Then, it holds for all absolute constants

D ¡ 0 that

}χ1PMχL}LpxÑLpx ÀD pMLq�D , (2.2.8)

}PNχ1PM}LpxÑLpx ÀD pNMq�D . (2.2.9)

Proof. The inequality (2.2.8) can be found in [DLM19, Lemma 5.10]. An inequality similar to

(2.2.9) can be found in [DLM19, Lemma 5.11], and we present a different argument.

Using duality and pPNχ1PMq� � PMχ1PN , we can assume that N ¥ M . From the mismatch

condition, it then follows that N ¥ 8M . Thus, we obtain for all f P LpxpRdq that

}PNpχ1PMfq}Lpx � }PNppP¥N{8χ1qPMfq}Lpx À }P¥N{8χ1}L8x }PMf}Lpx À N�2D}f}Lpx .
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The following auxiliary lemma will be helpful in the proof of probabilistic Strichartz estimates.

Lemma 2.2.9 (`2
k,l-estimate). Let s P R and let f P Hs

xpRdq. For any 2 ¤ p ¤ 8, we have that

}Pkpϕlfq}`2l `2kLp1x pZd�tkPZd : }k}8PpN{2,Nsu�Rdq À } rPNf}L2
xpRdq �N�s�10d}f}Hs

xpRdq (2.2.10)

Remark 2.2.10. The error term N�s�10d}f}Hs
xpRdq is a result of the non-compact support of pϕl,

but may essentially be ignored. On a heuristic level, each Pkpϕlfq is supported on a spatial region

of volume � 1, and thus (2.2.10) should follow from Hölder’s inequality. To make this argument

rigorous, we use the square-function estimate and the mismatch estimates above.

Proof. Let rPN be the fattened Littlewood-Paley operator as in (2.2.4). We write M � N if either

M   2�10N or M ¡ 210N . In the following, we implicitly assume that }k}8 P pN{2, N s. We then

estimate

}Pkpϕlfq}`2l `2kLp1x ¤ }Pkpϕl rPNfq}`2l `2kLp1x � ¸
M�N

}PkpϕlPMfq}`2l `2kLp1x . (2.2.11)

We begin by controlling the first summand in (2.2.11). Using Minkowski’s integral inequality and

the square-function estimate (Lemma 2.2.7), we obtain that

}Pkpϕl rPNfq}`2l `2kLp1x � }ϕl1Pkpϕl rPNfq}`2l `2k`1l1Lp1x À }ϕl1Pkpϕl rPNfq}`2l `2k`1l1L2
x
À }ϕl1Pkpϕl rPNfq}`2l `1l1L2

x`
2
k

�
���ϕl1 �|qϕ| � |ϕl rPNf |2	 1

2
���
`2l `

1
l1
L2
x

. (2.2.12)

Using simple support considerations, we have that���ϕl1 �|qϕ| � |ϕl rPNf |2	 1
2
���2

L2
x

¤
���ϕl1 �|qϕ| � |ϕl rPNf |2	 ���

L1
x

À xl1 � ly�10d}pϕl rPNfq2}L1
x

À xl1 � ly�10d}ϕl rPNf}2
L2
x
.
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Inserting this back into (2.2.12), we obtain that

}Pkpϕl rPNfq}`2l `2kLp1x À }xl1 � ly�5dϕl rPNf}`2l `1l1L2
x
À } rPNf}L2

x
.

Thus, this yields the first term in (2.2.10). We now control the second summand in (2.2.11). First,

note that Pk �
°

2�5N¤N 1¤25N PN 1Pk. Since there exist only � Nd frequencies of magnitude � N ,

we have that

}PkpϕlPMfq}`2k`2l Lp1x À N
d
2

¸
2�5N¤N 1¤25N

}PN 1pϕlPMfq}`2l Lp1x .

It now suffices to prove for all g P SpRdq, all M � N , and all absolute constants D ¡ 0 that

}PN 1pϕlPMgq}Lp1x ÀD pNMq�D}xx� ly�Dg}L2
x
. (2.2.13)

Using spatial translation invariance, we may set l � 0. Let tχLuL¥1 denote the dyadic decomposi-

tion in physical space. Using the mismatch estimates (Lemma 2.2.8), we obtain

}PN 1pϕ0PMgq}Lp1x ¤
¸
L¥1

}PN 1pϕ0PMχLgq}Lp1x ¤
¸
L¥1

}PN 1ϕ0PMχL}Lp1x ÑLp
1
x
}rχLg}Lp1x

À pNMq�D
¸
L¥1

L�2D}rχLg}Lp1x À pNMq�D}xxy�Dg}L2
x
.

As a direction consequence of (2.2.9), we also obtain the following estimate on the Hs-norm of the

microlocal randomization.

Lemma 2.2.11 (Hs
x-norm of fω). Let f P Hs

xpRdq and let fω be its microlocal randomization.

We further set

fω1 :�
¸
lPZd

X0,lP0pϕlfq and fωN :�
¸
k,lPZd

}k}8PpN{2,Ns

Xk,lPkpϕlfq , where N ¥ 2 . (2.2.14)

Then, we have for all 2 ¤ r   8 that

}fω}LrωHs
x
� }N sfωN}Lrω`2NL2

x
À ?

r}f}Hs
x
. (2.2.15)

28



Proof. The first equivalence in (2.2.15) is a direct consequence of the definition of the Hs
x-norm.

Now, we prove the bound in (2.2.15). From Minkowski’s integral inequality, Khintchine’s inequality,

and Lemma 2.2.9, we have for all N ¥ 2 that

}N sfωN}LrωL2
x
¤ }N s

¸
}k}8PpN{2,Ns

Xk,lPkpϕlfq}L2
xL

r
ω

¤ ?
rN s}Pkpϕlfq}L2

x`
2
k,lp}k}8PpN{2,Ns

À ?
r
�
N s} rPNf}L2

xpRdq �N�10d}f}Hs
xpRdq

	
The same argument also applies to N � 1. After taking the `2

N -norm, this completes the proof.

2.2.3 Strichartz estimates

The individual blocks in the microlocal randomization or the Wiener randomization have frequency

support inside a unit-sized cube (at a large distance from the origin). Since this rules out the Knapp

example, one expects a refined dispersive estimate. The following lemma is due to Klainerman

and Tataru [KT99], and it has first been used in the probabilistic context by [DLM20].

Lemma 2.2.12 (Refined dispersive estimate by Klainerman-Tataru [KT99]). Let f P L1pRdq, let

k P Zd satisfy }k}8 P pN{2, N s, and let M ¤ N . Then it holds for all t P R and 2 ¤ p ¤ 8 that

} expp�it|∇|qPM ;kf}LpxpRdq À
Mdp1� 2

p
q

p1� M2

N
|t|qpd�1qp 1

2
� 1
p
q
}f}

Lp
1
x pRdq

. (2.2.16)

As stated, the inequality (2.2.16) essentially follows from [KT99]. For the sake of completeness,

we present the modification below.

Proof. By interpolation against the energy estimate } expp�it|∇|qPM ;kf}L2
xpRdq ¤ }f}L2

xpRdq, it suf-

fices to prove (2.2.16) for p � 8. The inequality [KT99, (A.66)], where µ � M{N , and a scaling
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argument yield

} expp�it|∇|qPM ;kf}L8x pRdq À
MNd�1

p1�N |t|q d�1
2

}f}L1
xpRdq . (2.2.17)

We now distinguish two cases. If |t| À N{M2, then Bernstein’s inequality (Lemma 2.2.5) yields

that

} expp�it|∇|qPM ;kf}L8x pRdq ÀM
d
2 } expp�it|∇|qPM ;kf}L2

xpRdq �M
d
2 }PM ;kf}L2

xpRdq ÀMd}PM ;kf}L1
xpRdq .

If |t| À N{M2, then (2.2.17) yields that

} expp�it|∇|qPM ;kf}L8x pRdq À
MNd�1

pN |t|q d�1
2

}f}L1
xpRdq �

Md

pM2

N
tq d�1

2

}f}L1
xpRdq À

Md

p1� M2

N
tq d�1

2

}f}L1
xpRdq .

In this paper, we are mainly concerned with the case M � 1. Then, (2.2.16) describes the linear

evolution on short time intervals more accurately than (2.2.17). As a corollary of the refined

dispersive estimate, we obtain the following refined Strichartz estimate.

Let 2 ¤ q, p ¤ 8. We call the pair pq, pq wave-admissible if

1

q
� d� 1

2p
¤ d� 1

4
and pq, p, dq � p2,8, 3q .

Corollary 2.2.13 (Refined Strichartz estimates [KT99]). Let f P L2
xpRdq, let k P Zd satisfy

}k}8 P pN{2, N s, and let M ¤ N . Then, we have for all wave-admissible pairs pq, pq that

} expp�it|∇|qPM ;kf}LqtLpxpR�Rdq ÀM
d
2
� 2
q
� d
pN

1
q }PM ;kf}L2

xpRdq (2.2.18)

The derivation of the refined Strichartz estimate from Lemma 2.2.12 follows from a standard TT �-

argument, and we therefore omit the proof. For the endpoint p2, 2pd � 1q{pd � 3qq, we also refer

to [KT98]. Let us emphasize two special cases: If M � N , we obtain the usual scaling factor

N
d
2
� 1
q
� d
p , and if M � 1, we obtain the factor N

1
q , which does not depend on p.
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2.3 Probabilistic Strichartz estimates

In this section, we derive probabilistic Strichartz estimates (cf. [BOP15b, DLM20, LM14]) and

a probabilistic long-time decay estimate (cf. [Mur19]). To keep the exposition self-contained, we

include the (short) proofs. Recall from (2.2.14) that

fω1 :�
¸
lPZd

X0,lP0pϕlfq and fωN :�
¸
k,lPZd

}k}8PpN{2,Ns

Xk,lPkpϕlfq , where N ¥ 2 .

Lemma 2.3.1 (Probabilistic Strichartz estimate). Let f P Hs
xpRdq and let fω be its microlocal

randomization. Then, it holds for all N ¥ 1, all wave-admissible exponent pairs pq, pq, and all

1 ¤ r   8 that

} expp�it|∇|qfωN}LrωLqtLpxpΩ�R�Rdq À
?
rN

1
q
�s�}f}Hs

xpRdq . (2.3.1)

This estimate has previously appeared for the Wiener randomization in [DLM20].

Proof. In the following, we implicitly assume that k P Zd always satisfies }k}8 P pN{2, N s. First,

we assume that 2 ¤ p, q   8, and that maxpp, qq ¤ r   8. Using Minkowski’s integral inequality

(Lemma 2.2.3), Khintchine’s inequality (Lemma 2.2.2), and the refined dispersive estimate (Lemma

2.2.12), we have that

} expp�it|∇|qfωN}LrωLqtLpx ¤ } expp�it|∇|qfωN}LqtLpxLrω À
?
r} expp�it|∇|qPkpϕlfq}LqtLpx`2k,l

¤ ?
r} expp�it|∇|qPkpϕlfq}`2k,lLqtLpx À

?
rN

1
q }Pkpϕlfq}`2k,lL2

x
À ?

rN
1
q
�s}f}Hs

x
.

In the last inequality, we have also used Lemma 2.2.9. The estimate for 1 ¤ r ¤ maxpp, qq then

follows from Hölder’s inequality. Thus, it remains to treat the cases q � 8 and/or p � 8. This

is a know technical issue, see [Bri20b, Remark 3.8] for a discussion. Both cases can be reduced to

the previous estimate by using Lemma 2.2.6 and Bernstein’s inequality.
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Lemma 2.3.2 (Probabilistic long-time decay). Let f P L2
xpRdq and let fω be its microlocal ran-

domization. Furthermore, let 1 ¤ q   8 and 2 ¤ p ¤ 8 be such that

1

q
� d� 1

p
  d� 1

2
. (2.3.2)

Then, we have for all 1 ¤ r   8 that

} expp�it|∇|qfωN}LrωLqtLpxpΩ�rT,8q�Rdq Àq,p

?
rN

1
q
�s�

�
1� T

N


 1
q
� d�1

p
� d�1

2

}f}Hs
xpRdq. (2.3.3)

Lemma 2.3.2 has previously been used for a physical space randomization in [Mur19, Proposition

3.1]. In contrast to the standard Strichartz estimates, which are time-translation invariant, (2.3.3)

provides a quantitative decay rate. The motivation behind this estimate is illustrated in Figure

2.4. In this paper, we only require the following special case.

Corollary 2.3.3. Let f P L2
xpR4q and let fω be its microlocal randomization. Then, we have for

all θ ¡ 0 that

} expp�it|∇|qfωN}LrωL1
tL

8
x pΩ�rN

1�θ,8q�R4q À
?
rN1� θ

2
�}fN}L2

xpR4q . (2.3.4)

Remark 2.3.4. Due to (2.3.2), the L1
tL

8
x -estimate fails logarithmically in three dimensions.

Proof of Lemma 2.3.2. We essentially follow the argument in [Mur19]. Let us first assume that

2 ¤ q, p   8.

We further assume that r ¥ maxpq, pq, the corresponding estimate for 1 ¤ r   maxpq, pq then fol-

lows from Hölder’s inequality. Using Minkowski’s integral inequality (Lemma 2.2.3), Khintchine’s

inequality (Lemma 2.2.2), and the refined dispersive estimate (Lemma 2.2.12), we have that

} expp�it|∇|qfωN}LrωLqtLpxpΩ�rT,8q�Rdq

¤ } expp�it|∇|qfωN}LqtLpxLrωprT,8q�Rd�Ωq
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This figure illustrates the effect of the physical randomization on the linear evolution. At the point

pt0, x0q, the linear evolution depends on the initial data in a large region of space. Due to the physical

randomization, the initial data in different spatial regions cannot constructively interfere, and hence we

expect an improved decay.

Figure 2.4: Effect of physical randomization

À ?
r} expp�it|∇|qPkpϕlfq}LqtLpx`2k,lprT,8q�Rd�Zd�dq

À ?
r} expp�it|∇|qPkpϕlfq}`2k,lLqtLpxpZd�d�rT,8q�Rdq

À ?
r

�����1� |t|
N

	�pd�1qp 1
2
� 1
p
q

}Pkpϕlfq}Lp1x
����
`2k,lL

q
t pZd�d�rT,8qq

À ?
r

�����1� |t|
N

	�pd�1qp 1
2
� 1
p
q
����
Lqt prT,8qq

}Pkpϕlfq}`2k,lLp1x pZd�d�Rdq .

Using condition (2.3.2), we obtain�����1� |t|
N

	�pd�1qp 1
2
� 1
p
q
����
Lqt prT,8qq

À N
1
q

�
1� T

N


 1
q
� d�1

p
� d�1

2

Finally, from Lemma 2.2.9 we have that

}Pkpϕlfq}`2k,lLp1x pZd�d�Rdq À N�s}f}Hs
x
.
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This finishes the proof in the case 2 ¤ q, p   8. Using Bernstein’s inequality, we can reduce the

case p � 8 to p   8. Thus, it remains to treat the range 1 ¤ q   2. Using a dyadic decomposition

in time, we have for all T ¥ N that

} expp�it|∇|qfωN}LrωLqtLpxpΩ�rT,8q�Rdq

¤
8̧

m�0

} expp�it|∇|qfωN}LrωLqtLpxpΩ�r2mT,2m�1T q�Rdq

¤
8̧

m�0

p2mT q 1
q
� 1

2 } expp�it|∇|qfωN}LrωL2
tL

p
xpΩ�r2mT,2m�1T q�Rdq

À
8̧

m�0

p2mT q 1
q
� 1

2N
1
2
�s�

�
2mT

N


 1
2
� d�1

p
� d�1

2

}f}Hs
x

À N
1
q
�s�

�
T

N


 1
q
� d�1

p
� d�1

2

}f}Hs
x
.

In the second last line, we used condition (2.3.2). For T ¤ N , we also have that

} expp�it|∇|qfωN}LrωLqtLpxpΩ�rT,Nq�Rdq À N
1
q
� 1

2 } expp�it|∇|qfωN}LrωL2
tL

p
xpΩ�r0,Nq�Rdq À N

1
q
�s�}f}Hs

x
.

Definition 2.3.5 (Auxiliary norm). Let 0 ¤ s   1, let pf0, f1q P HspR4q � Hs�1pR4q, and let

N0 ¥ 1. We then define

}pf0, f1q}ZpN0q :�
¸

N¥N0

N s� θ
2
�1�δ

����cospt|∇|qf0,N � sinpt|∇|q
|∇| f1,N

����
L1
tL

8
x prN

1�θ,8q�R4q

�
¸

N¥N0

N s�δ

����cospt|∇|qf0,N � sinpt|∇|q
|∇| f1,N

����
L8t L

8
x pr0,8q�R4q

From Proposition 2.3.1 and Corollary 2.3.3, it follows that

}pfω0 , fω1 q}LrωZp1q À
?
r}pf0, f1q}Hs

x�H
s�1
x

.
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2.4 Wave packet decomposition

In this section, we use a wave packet decomposition to better understand the (random) linear

evolution.

This part of the argument does not rely on the additional randomization in physical space. We

therefore phrase all results in a way that applies to both the microlocal and the Wiener random-

ization, and hope that this facilitates future applications. With this in mind, we now rewrite the

microlocal randomization in a form that resembles the Wiener randomization.

Let the random variables tXk,luk,lPZd be as in Definition 2.1.2, let tεkukPIYt0u be a family of indepen-

dent random signs, and set ε�k � εk for all k P I. We can then define Yk,l :� εkXk,l. For a sequence

of multi-indices k, l1, . . . , lJ P Zd and any sequence of Borel-measurable sets A1, . . . , AJ � R, we

have that

Ppεk � 1, Yk,l1 P A1, . . . , Yk,lJ P AJq � Ppεk � 1, Xk,l1 P A1, . . . , Xk,lJ P AJq

� Ppεk � 1q
J¹
j�1

PpXk,lj P Ajq � Ppεk � 1q
J¹
j�1

PpYk,lj P Ajq .

In the last equality, we have used that the random variables Xk,l are symmetric. Therefore, for

a fixed k P Zd, the family tεku � tYk,lulPZd is independent. From this, it then easily follows that

the whole family tεkukPIYt0u � tYk,lukPIYt0u,lPZd is independent. We then rewrite the microlocal

randomization as

fω �
¸
k,lPZd

Xk,lPkpϕlfq �
¸
kPZd

εkfk, where fk :� Pkp
¸
lPZd

Yk,lϕlfq . (2.4.1)

Due to the independence properties discussed above, we can regard the functions tfku as deter-

ministic by conditioning on the random variables tYk,luk,l, and only utilize the randomness through

the random signs tεkuk. Note that (2.4.1) closely resembles the Wiener randomization.

To motivate the wave packet decomposition below, we now rewrite the linear evolution with ini-
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tial data pfω0 , fω1 q. Using the notation from (2.4.1), we first introduce the half-wave operators by

writing

cospt|∇|qfω0 �
sinpt|∇|q
|∇| fω1

�
¸
kPZd

εk

�
cospt|∇|qfω0;k �

sinpt|∇|q
|∇| fω1;k



�

¸
kPZd

εk

�
exppit|∇|q

�
f0;k � i|∇|�1f1;k

2



� expp�it|∇|q

�
f0;k � i|∇|�1f1;k

2


�
�:

¸
kPZd

εk
�
exppit|∇|qf�k � expp�it|∇|qf�k

�
.

(2.4.2)

As in (2.2.14), we also decompose dyadically in frequency space, and write

F�
N :�

¸
}k}8PpN{2,Ns

εk expp�it|∇|qf�k and FN :� F�
N � F�

N . (2.4.3)

Let k P Zd with }k}8 P pN{2, N s, and let l P Zd. We define the tubes T�
k,l by

T�
k,l :� tpt, xq P r0, N s � Rd : }x� pl 	 t � k{}k}2q}2 ¤ 1u . (2.4.4)

Here, the superscripts � are chosen so that the tubes correspond to the operators expp�it|∇|q.
The dimensions and the shape of the tubes are illustrated in the introduction, see Figure 2.2.

Motivated by the Doppler effect, the tubes T�
k,l are sometimes called red tubes, and the tubes T�

k,l

are sometimes called blue tubes.

Proposition 2.4.1 (Spatial wave packet decomposition). Let k P Zd with }k}8 P pN{2, N s. Let

fk P L2
xpRdq be a function such that supp pfk � k � r�1, 1sd. Then, there exists a decomposition

fk �
¸
lPZd

fk,l

such that

(i) supp xfk,l � k � r�4, 4sd for all l P Z,
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(ii) the family tfk,lulPZd satisfies the almost-orthogonality condition

¸
lPZd

}fk,l}2
L2
xpRdq

À }f}2
L2
xpRdq

, (2.4.5)

(iii) and for any D ¥ 1, any l P Zd, and all pt, xq P r0, N s � Rd, it holds that

| expp�it|∇|qfk,lpxq| ÀD p1� distppt, xq, T�
k,lqq�D}fk}L2

xpRdq . (2.4.6)

Wave packet decomposition as in Proposition 2.4.1 have been used extensively in the literature, see

e.g. [Bou91, Cor77, Fef73, Gut16, Wol01] and the survey [Tao04]. We present the details below,

but encourage the expert reader to skip ahead to the end of the proof.

Proof. We define the fattened projection

rPk :�
¸

}k1�k}8¤2

Pk1 .

Then, it holds that

f � rPkf � ¸
lPZd

rPkpϕlfq �:
¸
lPZd

fk,l .

The frequency support condition (i) directly follows from the definition of rPk. Furthermore, the

almost orthogonality (ii) follows from

¸
lPZd

}fk,l}2
L2
xpRdq

À
¸
lPZd

}ϕlfk}2
L2
xpRdq

À }fk}2
L2
xpRdq

.

Thus, it remains to prove the decay estimate (iii). We only treat the operator exppit|∇|q, since

the proof for expp�it|∇|q is similar. If N À 1, the estimate is trivial. Thus, we may assume that

N " 1. The argument is based on the method of non-stationary phase. For all t P r0, N s and
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x P Rd, we have that

exppit|∇|qfk,lpxq

� 1

p2πq d2
»
Rd

exppixξ � it|ξ|q rψpξ � kqppϕl � pfqpξqdξ
� 1

p2πqd
»
Rd

»
Rd

»
Rd

exppixξ � it|ξ|q rψpξ � kq expp�iypξ � ηqqϕpy � lq pfpηqdydηdξ

� 1

p2πqd exppixk � it|k|q
»
Rd
Kpη; t, xq expp�ilpk � ηqq pfpηqdη ,

where the kernel Kpη; t, xq is given by

Kpη; t, xq :�
»
Rd

»
Rd

exppipx� lqξ � itp|ξ � k| � |k|qq expp�iypξ � k � ηqq rψpξqϕpyqdξdy .
Since suppϕ � r�1, 1sd, the function apξ; y, ηq :� expp�iypξ � k � ηqq rψpξqϕpyq has uniformly

bounded derivatives in ξ, i.e, we have for all α P Nd
0 that |Bαξ apξ; y, ηq| Àα 1. Using the support

conditions in the variables y and η, it thus suffices to prove for all a P C8
c pr�2, 2sdq that����»

Rd
exppipx� lqξ � itp|ξ � k| � |k|qqapξqdξ

���� ÀM p1� |x� l � t � k{}k}2q�M . (2.4.7)

Due to the compact support of apξq, we restrict to |ξ| ¤ 2. The bound for |x� l � t � k{}k}2| À 1

is trivial. Thus, we may assume that |x� l � t � k{}k}2| " 1. We define the phase function

Φkpξq � Φkpξ; t, x, lq � ipx� lqξ � itp|ξ � k| � |k|q .

Then, we have that

∇ξΦkpξq � ∇ξ

�
px� lqξ � tp|ξ � k| � |k|q

	
� x� l � t

ξ � k

|ξ � k|
� x� l � t

k

|k| � t
� |k| � |ξ � k|

|ξ � k||k| k � ξ

|ξ � k|
	
.
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From the assumption |t| ¤ N , it follows that ∇ξΦk � x� l � tk{|k| �Op1q. We also write

∇ξΦkpξq � x� l � t
k

|k| � tΨk

� ξ
|k|

� k
|k| ,

where

Ψkpνq :� 1� |ν � k{|k||
|ν � k{|k|| � ν

|k{|k| � ν| .

From rotation invariance, it follows easily that |∇αΨkpνq| Àα 1 for all |ν| ¤ 1{10, uniformly in k.

This leads to

|∇αΦkpξq| Àα
|t|

|k||α|�1
À 1 for all |α| ¥ 2 .

We then rewrite the integral in (2.4.7) as»
Rd

exppipx� lqξ � itp|ξ � k| � |k|qqapξqdξ

�
»
Rd

��p�iq∇ξΦkpξq∇ξ

|∇Φkpξq|2

M

exppiΦkpξqq
�
� apξqdξ

�
»
Rd

exppiΦkpξqq
�
∇ξ � i∇ξΦkpξq

|∇Φkpξq|2

M

apξqdξ .

The inequality (2.4.7) then follows from the bounds on the phase function above.

The wave packet decomposition in Proposition 2.4.1 is valid on the time interval r0, N s, and the

physical localization deteriorates for larger times. When analyzing the linear evolution on an

interval of the form rt0, t0 � Nq, with t0 P NN0, we therefore use the wave packet decomposition

of expp�it0|∇|qfk. To state the result, we set

T�
k,l;t0

:� tpt, xq P rt0, t0 �N s � Rd : }x� pl 	 pt� t0q � k{}k}2q}2 ¤ 1u .

Corollary 2.4.2 (Time-translated spatial wave packet decomposition). Let k P Zd with }k}8 P
pN{2, N s, and let t0 P NN0. Let fk P L2

xpRdq be a function satisfying supp pfk � k�r�1, 1sd. Then,
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there exists a decomposition

expp�it0|∇|qfk �
¸
lPZd

f�k,l;t0

such that

(i) supp zf�k,l;t0 � k � r�2, 2sd for all l P Z,

(ii) the family tf�k,l;t0ulPZd satisfies the almost-orthogonality condition

¸
lPZd

}f�k,l;t0}2
L2
xpRdq

À }f}2
L2
xpRdq

, (2.4.8)

(iii) and for any D ¥ 1, any l P Zd, and all pt, xq P rt0, t0 �N s � Rd, it holds that

| expp�ipt� t0q|∇|qf�k,l;t0pxq| ÀD p1� distppt, xq, T�
k,l;t0

qq�D}fk}L2
xpRdq . (2.4.9)

Proof. We apply Proposition 2.4.1 to expp�it0|∇|qfk.

As discussed in the introduction, we now group the wave packets into bushes and a (nearly) non-

overlapping collection (see Figure 2.3). This argument is inspired by Bourgain’s bush argument

from [Bou91], and we also refer the reader to [Wol99, Proposition 2.2].

Before we state main proposition, we define the truncated and fattened `8-cone

rKN
t0,x0

:� tpt, xq P rt0, t0 �N s � R4 : }x� x0}8 ¤ 16N � |t� t0|u . (2.4.10)

The significance of rKN
t0,x0

will be explained in Section 2.5.2 and Section 2.6. For now, we encourage

the reader to treat rKN
t0,x0

as space-time cube of scale N .

Proposition 2.4.3 (Wave packet decomposition and bushes). Let tf�k uk � L2
xpRdq be a family of

functions, where }k}8 P pN{2, N s, and supp xf�k � k�r�1, 1sd. Let t0 P NN0, let x0 P NZd, and let
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the wave packets tf�k,l;t0u be as in Corollary 2.4.2. Furthermore, let QN
t0,x0

be a collection of disjoint

space-time cubes with sidelength � N δ covering rKN
t0,x0

. We group the wave packets according to

their amplitude by setting

Am � A
N,�
m,t0,x0 :� tpk, lq P Zd � Zd : }f�k,l;t0}L2

xpRdq P r2m, 2m�1s, }l � x0}8 ¤ 3Nu . (2.4.11)

Then, there exists a family of bushes tBj,muj � tBN,�
j,m,t0,x0

uj, where j � 1, . . . , JN,�m,t0,x0 , and a nearly

non-overlapping set Dm � D
N,�
m,t0,x0 , depending only on the set Am, so that the following holds:

(i) The sets form a partition of Am, i.e.,

Am � Dm


¤ �

�
j�1,...,JBj,m



(2.4.12)

(ii) We have the bound on the number of wave packets¸
x0PNZd

¸
mPZ

22m#A
N,�
m,t0,x0 À

¸
k

}fk}2
L2
xpRdq

. (2.4.13)

(iii) Each bush Bj,m contains at least µ � µpN,mq :� N� 1
2 #Am wave packets.

(iv) For each bush Bj,m, all corresponding wave packets intersect in the same region of space-time.

More precisely, there exists a cube Q P QN
t0,x0

s.t.

T�
k,l;t0

�
2Q � H @pk, lq P Bj,m . (2.4.14)

(v) At µ � N� 1
2 #Am wave packets in Dm overlap, i.e., we have for all cubes Q P QN

t0,x0
that

#tpk, lq P Dm : T�
k,l;t0

�
2Q � Hu   P . (2.4.15)

The choice of the number of packets/multiplicity µ � N� 1
2 #Am will be justified in the proof

of Proposition 2.6.1, see (2.6.1). The parameter µ corresponds to the multiplicity parameter in

Bourgain’s bush argument, see [Wol99, Proposition 2.2].
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Remark 2.4.4. We will later apply this proposition to a set of random functions tεkf�k uk. From

(2.4.11), it follows that the sets Am, and hence also Bj,m and Dm, do not depend on the random

signs tεku.

Proof. Let us first prove the inequality in (ii). From Corollary 2.4.2, it follows that

¸
x0PNZd

¸
mPZ

22m#A
N,�
m,t0,x0 À

¸
k,lPZd

}k}8PpN{2,Ns

}f�k,l;t0}2
L2
x
À

¸
kPZd

}k}8PpN{2,Ns

}f�k }2
L2
x
.

We now construct the sets B
N,�
j,m,t0,x0

and D
N,�
m,t0,x0 . To simplify the expressions, we drop the super-

and subscripts �, N, t0, and x0 from our notation. The basic idea is to form the bushes through a

greedy selection algorithm. For any Q P QN
t0,x0

, we define

TmpQq :� tpk, lq P Am : Tk,l
�
Q � Hu . (2.4.16)

We further set T
p1q
m pQq :� TmpQq. We then choose a cube Q1 P QN

t0,x0
such that

#Tp1q
m pQ1q � max

QPQNt0,x0
#Tp1q

m pQq ,

and define the first bush as B1,m :� T
p1q
m pQ1q. By setting

Tp2q
m pQq � Tp1q

m pQqzB1,m ,

we remove all of the wave packets in the first bush from the collection. We then iteratively define

Bj,m :� T
pjq
m pQjq, where

#Tpjq
m pQjq � max

QPQNt0,x0
#Tpjq

m pQq ,

and the collections T
pjq
m pQq are defined as T

pj�1q
m pQqzBj�1,m. Once T

pj�1q
m pQj�1q   µ, we no longer

create a new bush, and instead stop the algorithm. Since Am contains at most � N8 wave packets,

the greedy selection algorithm terminates after finitely many steps. From the construction, we see

42



that the sets Bj,m � Zd�Zd are disjoint (even though the corresponding tubes may still overlap).

Finally, we define the collection Dm by

Dm :� Amz
�J
j�1Bj,m .

The properties (i), (iii), (iv), and (v) then follow directly from the construction.

We now prove a probabilistic estimate for the wave packets with random coefficients.

Proposition 2.4.5 (Square-root cancellation for wave packets). Let tf�k uk � L2
xpRdq be a deter-

ministic family of functions, where k P Zd satisfies }k}8 P pN{2, N s, and assume that
°
k }f�k }2

L2
xpRdq

À
1. Let θ ¡ 0 be a parameter, and let Cd ¡ 0 be any large absolute constant. Then, we have for all

m P Z satisfying �Cd logpNq ¤ m ¤ Cd logpNq that

E

�
sup

t0�0,...tNθuN
x0PNZd

sup
j�1,...,JN,�m,tn,x0

���°pk,lqPBN,�j,m,t0,x0

εk expp�ipt� t0q|∇|qf�k,l;t0
���
L8t,xpR�Rdq

2mp#B
N,�
j,m,t0,x0

q 1
2

�
À N δd (2.4.17)

and

E

�
sup

t0�0,...tNθuN
x0PNZd

���°pk,lqPDN,�m,t0,x0

εk expp�ipt� t0q|∇|qf�k,l;t0
���
L8t L

8
x prt0,t0�Ns�Rdq

2mµ
1
2

�
À N δd . (2.4.18)

Here, µ � N� 1
2 #A

N,�
m,t0,x0 is as in Proposition 2.4.3. To be perfectly precise, we use the convention

0{0 :� 0 in (2.4.18).

The expressions in (2.4.17) and (2.4.18) may seem complicated. To make sense of them, recall that

the square function heuristic predicts that
°
k εkak is roughly of size � p°k a

2
kq

1
2 . Then, Proposition

2.4.5 simply states that the square function heuristic can be justified for all relevant amplitudes,

for all relevant times, all positions, all families of bushes, and all non-overlapping collections.
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For instance, let us heuristically motivate (2.4.18). By the definition of D
N,�
m,t0,x0 , any fixed point

in the space-time region rt0, t0 � N s � Rd is contained in the (moral) support of at most µ wave

packets. Since each of the wave packets has amplitude � 2m, and they all correspond to different

frequencies k P Zd, the square-function heuristic predicts a contribution of size � 2mµ
1
2 .

Proof. In this proof, we make extensive use of Lemma 2.2.4. First, we prove that the suprema

in (2.4.17) and (2.4.18) are over at most NOpCdq-many terms. From (2.4.13), it follows for all

m ¥ �Cd logpNq that

¸
x0PNZd

#A
N,�
m,t0,x0 À 2�2m

¸
k,l

}f�k,l}2
L2
xpRdq

À 2�2m
¸
k

}f�k }2
L2
xpRdq

À N2Cd .

Thus, this bounds the number of all wave packets with amplitude � 2m. Since each bush B
N,�
j,m,t0,x0

contains at least one wave packet, the supremum in (2.4.17) is over at most OpN2Cdq non-zero

terms. The same applies to the non-overlapping families D
N,�
m,t0,x0 in (2.4.18). From Lemma 2.2.4,

it then suffices to obtain uniform sub-gaussian bounds on each individual term in (2.4.17) and

(2.4.18).

We start with the contribution of the bushes. To simplify the notation, we write Bj,m � B
N,�
j,m,t0,x0

.

From Bernstein’s inequality and Lemma 2.2.6, we have for all 2 ¤ p   8 that��� ¸
pk,lqPBj,m

εk expp�ipt� t0q|∇|qf�k,l;t0
���
L8t L

8
x pR�Rdq

¤ N
d�1
p

��� ¸
pk,lqPBj,m

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LptL

p
xpR�Rdq

.

Before we utilize the randomness, we observe that for each k P Zd at most OpN δdq tubes T�
k,l;t0

can

intersect a space-time cube of sidelength � N δ. As a result, it follows from (2.4.14) that

#tl P Zd : pk, lq P Bj,mu À N δd .
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For all p ¤ r   8, we then obtain from Minkowski’s integral inequality, Khintchine’s inequality,

and the refined Strichartz estimate (Corollary 2.2.13) that��� ¸
pk,lqPBj,m

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LrωL

8
t L

8
x pΩ�R�Rdq

À N
d�1
p

��� ¸
pk,lqPBj,m

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LptL

p
xLrωpR�Rd�Ωq

À ?
rN

d�1
p

���� ¸
kPZd

� ¸
l : pk,lqPBj,m

expp�ipt� t0q|∇|qf�k,l;t0
	2

 1

2 ���
LptL

p
xpR�Rdq

À ?
rN

d�1
p
� δd

2

��� expp�ipt� t0q|∇|qf�k,l;t0
���
LptL

p
x`

2
k,lpR�Rd�Bj,mq

À ?
rN

d�1
p
� δd

2

��� expp�ipt� t0q|∇|qf�k,l;t0
���
`2k,lL

p
tL

p
xpBj,m�R�Rdq

À ?
rN

d�2
p
� δd

2

���f�k,l;t0���`2k,lL2
xpBj,m�Rdq

À ?
rN

d�2
p
� δd

2 2mp#Bj,mq 1
2 .

By taking p ¥ 2 to be sufficiently large, we then obtain the desired sub-gaussian bound. This

completes the proof of (2.4.17).

We now control the contribution of a single non-overlapping family Dm � D
N,�
m,t0,x0 . For the

technical aspects of this part, recall that the collection Qu
N from Proposition 2.4.3 covers rKN

t0,x0
,

but due the definition of Am in (2.4.11), all the tubes T�
k,l;t0

with indices in Dm are contained in

the region }x� x0}8 ¤ 6N . This gives us sufficient room for the following argument.

We let 2 ¤ p   8. As before, it follows from Bernstein’s inequality and Lemma 2.2.6 that��� ¸
pk,lqPDN,�m,t0,x0

εk expp�ipt� t0q|∇|qf�k,l;t0
���
L8t L

8
x prt0,t0�Ns�Rdq

À N
d�1
p

��� ¸
pk,lqPDN,�m,t0,x0

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LptL

p
xprt0,t0�Ns�Rdq
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For all p ¤ r   8, we then obtain from Minkowski’s integral inequality and Khintchine’s inequality

that ��� ¸
pk,lqPDm

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LrωL

8
t L

8
x pΩ�rt0,t0�Ns�Rdq

À N
d�1
p

��� ¸
pk,lqPDm

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LptL

p
xLrωprt0,t0�Ns�Rd�Ωq

À ?
rN

d�1
p

���� ¸
kPZd

� ¸
l : pk,lqPDm

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
LptL

p
xprt0,t0�Ns�Rdq

À ?
rN

d�1
p

���� ¸
kPZd

� ¸
l : pk,lqPDm

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
LptL

p
xp rKN

t0,x0
q

�?
rN

d�1
p

���� ¸
kPZd

� ¸
l : pk,lqPDm

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
LptL

p
xpprt0,t0�Ns�Rdqz rKN

t0,x0
q

Since µ � N� 1
2 #Am ¥ N� 1

2 , the bound on prt0, t0 �N s �Rdqz rKN
t0,x0

easily follows from the decay

estimate (2.4.9). Thus, we now control the contribution on rKN
t0,x0

. From Hölder’s inequality, we

have that ���� ¸
kPZd

� ¸
l : pk,lqPDm

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
LptL

p
xp rKN

t0,x0
q

À N
d�1
p

���� ¸
kPZd

� ¸
l : pk,lqPDm

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
L8t L

8
x p rKN

t0,x0
q

Now pick any cube Q P Qu
N . In analogy to (2.4.16), we define the collection of “remaining” tubes

by

Tr
mpQq :� tpk, lq P Dm : T�

k,l;t0

�
2Q � Hu .

From Proposition 2.4.3, it follows that #Tr
mpQq ¤ µ. As above, we have for each frequency k P Zd

the bound #tl P Zd : pk, lq P Tr
mpQqu À N δd. Using the decay estimate (2.4.16) to treat distant
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wave packets, we obtain���� ¸
kPZd

� ¸
l : pk,lqPDm

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
L8t L

8
x pQq

À
���� ¸

kPZd

� ¸
l : pk,lqPTrmpQq

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
L8t L

8
x pQq

�
���� ¸

kPZd

� ¸
l : pk,lqPDmzTrmpQq

expp�ipt� t0q|∇|qf�k,l;t0
�2


 1
2 ���
L8t L

8
x pQq

À N
δd
2

��� expp�ipt� t0q|∇|qf�k,l;t0
���
L8t L

8
x `

2
k,lpQ�TrmpQqq

�N�10Cd

À N
δd
2 2mp#Tr

mpQqq
1
2 �N�10Cd

À N
δd
2 2mµ

1
2 .

After taking the supremum over all cubes Q P Qu
N , we finally arrive at��� ¸

pk,lqPDm

εk expp�ipt� t0q|∇|qf�k,l;t0
���
LrωL

8
t L

8
x pΩ�rt0,t0�Ns�Rdq

À ?
rN2 d�2

p
� δd

2 2mµ
1
2 .

By choosing p ¥ 2 sufficiently large, we arrive at the desired sub-gaussian bound.

Definition 2.4.6 (Wave packet “norm”). Let pf0, f1q P HspRdq�Hs�1pRdq and let f�k be defined

as in (2.4.1) and (2.4.2). For any N0 ¥ 1, we then define the wave packet “norm” of the random

data pfω0 , fω1 q by

}pfω0 , fω1 q}WPpN0q :�

¸
N¥N0

|m|¤Cd logpNq

N�2δd sup
t0�0,...tNθuN
x0PNZd

sup
j�1,...,JN,�m,t0,x0

���°pk,lqPBN,�j,m,t0,x0

εk expp�ipt� t0q|∇|qf�k,l;t0
���
L8t L

8
x pR�Rdq

2mp#B
N,�
j,m,t0,x0

q 1
2

�
¸

N¥N0
|m|¤Cd logpNq

N�2δd sup
t0�0,...tNθuN
x0PNZd

���°pk,lqPDN,�m,t0,x0

εk expp�ipt� t0q|∇|qf�k,l;t0
���
L8t L

8
x prt0,t0�Ns�Rdq

2mµ
1
2

47



While the quantity }pfω0 , fω1 q}WPpN0q measures the size of the wave packets (over their expected

size), it is certainly far from being an actual norm.

Corollary 2.4.7. Let pf0, f1q P HspRdq�Hs�1pRdq and let f�k be defined as in (2.4.1) and (2.4.2).

Furthermore, we assume that N0 � N0ptYk,luq satisfies¸
}k}8¥N0{2

�
}f0;k}2

L2
xpRdq

� }f1;k}2
9H�1
x pRdq

	
À 1 .

Then, it holds that

Eε}pfω0 , fω1 q}WPpN0q   8 ,

where Eε denotes the expectation over the random signs tεku.

Proof. This follows directly from Proposition 2.4.5 and Definition 2.4.6.

For the bootstrap argument in Section 2.6, it will be convenient to create a small forcing term by

truncating to high frequencies. If Nhi � Nhipωq is a (possibly random) frequency parameter, we

set

Fhi :�
¸

N¥Nhi

�
cospt|∇|qfω0,N �

sinpt|∇|q
|∇| fω1,N



. (2.4.19)

Proposition 2.4.8 (Truncation to high frequencies). Let 0   η ¤ 1 be an absolute constant and

let s ¡ 1
3
. Let pf0, f1q P Hs

xpR4q �Hs�1
x pR4q, let pfω0 , fω1 q be their microlocal randomizations, and

let tf�k u be as in (2.4.1) and (2.4.2). Then, there exists a random frequency parameter Nhi ¥ η�1

such that

}pP¥Nhi{4f
ω
0 , P¥Nhi{4f

ω
1 q}Hs�Hs�1 ¤ η ,

}pfω0 , fω1 q}ZpNhiq ¤ η ,

}pfω0 , fω1 q}WPpNhiq ¤ η ,

}Fhi}L3
tL

6
xpR�R4q ¤ η .
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Proof. We only need to combine the previous estimates. From Lemma 2.2.11, it follows that¸
N¥2

¸
}k}8PpN{2,Ns

�
N2s}f0;k}2

L2
x
�N2ps�1q}f1;k}2

L2
x

	
  8 a.s.

From dominated convergence, it then follows that there exists some random frequency Nhi,1, de-

pending only on the random variables tYk,lu, satisfying¸
N¥Nhi,1

¸
}k}8PpN{2,Ns

�
N2s}f0;k}2

L2
x
�N2ps�1q}f1;k}2

L2
x

	
¤ η a.s.

From Corollary 2.4.7, it then follows that

Eε}pfω0 , fω1 q}WPpNhi,1q   8 .

From dominated convergence, it follows that there exists a random frequency Nhi,2, depending on

the random variables tεku and tYk,lu, which satisfies

}pfω0 , fω1 q}WPpNhi,2q ¤ η a.s.

By similar arguments, it also follows from Proposition 2.3.1 and Corollary 2.3.3 that there exists

random frequencies Nhi,3 and Nhi,4 such that

}pfω0 , fω1 q}ZpNhi,3q ¤ η and
¸

N¥Nhi,4

��� cospt|∇|qfω0,N �
sinpt|∇|q
|∇| fω1,N

���
L3
tL

6
xpR�R4q

¤ η

For the second inequality, we have used the condition s ¡ 1
3
.

By choosing Nhi :� maxp4Nhi,1, Nhi,2, Nhi,3, Nhi,4, η
�1q, we arrive at the desired conclusion.

2.5 Nonlinear evolution: Local well-posedness, stability theory, and

flux estimates

In this section, we first apply to Da Prato-Debussche trick [DD02] to the nonlinear wave equation

with random initial data. Then, we recall certain properties of the (forced) energy critical nonlinear
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wave equation. In our exposition of the local well-posedness and stability theory, we mainly rely on

[DLM20]. The flux estimate already played a major role in the author’s work on almost sure scat-

tering for the radial energy critical NLW [Bri20b], and we loosely follow parts of [Bri20b, Section 6].

Let Nhi be as in Proposition 2.4.8, and let F � Fhi be as in (2.4.19). We then decompose the

solution u of (2.1.5) by setting v :� u � F . Then, the nonlinear component v solves the forced

nonlinear wave equation $'&'%�Bttv �∆v � pv � F q3 pt, xq P R� R4 ,

v|t�0 � v0 P 9H1, Btv|t�0 � v1 P L2 ,

(2.5.1)

where v0 :� u0 � fω0, Nhi
and v1 :� u1 � fω1, Nhi

. The randomness in the initial data pv0, v1q is not

important, and we treat it as arbitrary data in the energy space. For the rest of this section, we

treat F as an arbitrary forcing term in L3
tL

6
xpR� R4q, since the finer properties of F will only be

relevant in Section 2.6.

2.5.1 Local well-posedness and stability theory

In this section, we recall the local well-posedness of (2.5.1). Using stability theory, we recall the

reduction of Theorem 2.1.3 to an a-priori energy bound. These results are well-known in the

literature, see e.g. [DLM20, Poc17].

Lemma 2.5.1 (Local well-posedness [DLM20, Lemma 3.1]). Let pv0, v1q P 9H1pR4q � L2pR4q and

F P L3
tL

6
xpr0,8q�R4q. Then, there exists a time T ¡ 0 and a unique solution v : r0, T q �R4 Ñ R

satisfying

v P C0
t

9H1
xpr0, T q � R4q � L3

tL
6
xpr0, T q � R4q and Btv P C0

t L
2
xpr0, T q � R4q .
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Using stability theory, [DLM20] proved the following proposition.

Proposition 2.5.2 (Reduction to an a-priori energy bound [DLM20, Theorem 1.3]). Let pv0, v1q P
9H1pR4q � L2pR4q and F P L3

tL
6
xpR � R4q. Let v be a solution of (2.5.1), and let T� ¡ 0 be its

maximal time of existence. Furthermore, assume the a-priori energy bound

sup
tPr0,T�q

Ervsptq   8 .

Then, v is a global solution and satisfies the global space-time bound }v}L3
tL

6
xpr0,8q�R4q   8. As a

result, there exist a scattering states pv�0 , v�1 q P 9H1pR4q � L2pR4q such that

lim
tÑ�8

}pvptq �W ptqpv�0 , v�1 q, Btvptq � BtW ptqpv�0 , v�1 qq} 9H1�L2 � 0 .

Using Lemma 2.5.1 and Proposition 2.5.2, we have reduced the proof of Theorem 2.1.3 to an

a-priori bound on the energy of v.

2.5.2 Flux estimates

As before, we let v : I � R4 Ñ R be a solution to the forced equation (2.5.1). Recall that the

(symmetric) energy-momentum tensor for the energy critical nonlinear wave equation is given by

T 00 � T 00rvs :� 1

2

�pBtvq2 � |∇v|2�� 1

4
v4 ,

T j0 � T j0rvs :� �Btv � Bxjv ,

T jk � T jkrvs :� BxjvBxkv �
δjk
4
p�Btt �∆qpv2q � δjk

2
v4 .

The component T 00 is the energy density, the component T j0 is the j-th momentum/energy flux,

and the components T jk are called the momentum flux. If v solves the energy critical nonlinear

wave equation (2.1.1), then the energy-momentum tensor is divergence free. This fails for solutions
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to the forced equation (2.5.1); however, one can still expect that the error terms have lower order.

Setting N � pv � F q3 � v3, a short computation shows that

BtT 00 � BxkT 0k � �N Btv , (2.5.2)

BtT j0 � BxkT jk � N Bxjv �
1

2
BxjpN vq . (2.5.3)

As in earlier work on almost sure scattering for radial data [Bri20b, DLM20, DLM19, KMV19],

the main goal of this paper is to bound the energy of v. In terms of the energy-momentum tensor,

the (total) energy can be written as

Ervsptq :�
»
R4

T 00pt, xqdx .

For future use, we record the following consequence of (2.5.2).

Lemma 2.5.3 (Total energy increment). Let v : I � R4 Ñ R be a solution of (2.5.1), and let

a, b P I with a ¤ b. Then, we have that

Epbq � Epaq � �
» b

a

»
R4

N Btvdxdt ¤ 6

» b

a

»
R4

|F ||v|2|Btv|dxdt� 3

» b

a

»
R4

|F |3|Btv|dxdt . (2.5.4)

We will later see that the second summand on the right-hand side of (2.5.4) can be bounded directly

using Hölder’s inequality and probabilistic Strichartz estimates. In contrast, no such estimate is

available for the first summand, and we need the wave packet decomposition to control this term.

Once we employ the wave packet decomposition, it will be natural to study the energy on a time

and length scale � N ¥ 1. We fix t0 P NN0 and x0 P NZ4, and define the local energy

EN
t0,x0

rvsptq :�
»
}x�x0}8¤2N�|t�t0|

T 00pt, xqdx, where t P rt0, t0 �N s . (2.5.5)

Thus, this definition is adapted to the truncated `8-cone KN
t0,x0

, which is given by

KN
t0,x0

:� tpt, xq P rt0, t0 �N s � R4 : }x� x0}8 ¤ 2N � |t� t0|u . (2.5.6)
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In this figure, we illustrate the truncated `8-cone, and its decomposition into smaller cones. The blue

lines are the edges of a large `8-cone. The red and green squares are the tops of smaller truncated cones.

In the lower left corner, we have drawn a single one of these smaller cones. As can be seen from this

figure, no smaller cone has to exit the large cone.

Figure 2.5: Decomposition of the `8-cone

It might be more appropriate to call KN
t0,x0

a pyramid (see Figure 2.5); unfortunately, the letter

P is already heavily used in our notation, so that we decided to use the letter K. Our reason for

using the `8-norm, instead of the more common `2-norm, lies in the induction on scales argument

(Proposition 2.5.4). Then, it will be an advantage to write KN
t0,x0

as the union of finitely overlapping

smaller cones KM
τ0,y0

, which are contained in KN
t0,x0

. Using finite speed of propagation and the

inequality } � }`8pR4q ¤ } � }`2pR4q, one can still meaningfully restrict the nonlinear wave equation to

KN
t0,x0

.

Lemma 2.5.4 (Local energy increment). Let v be a solution to the forced equation (2.5.1), let
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N ¥ 1, let t0 P NN0, and let x0 P NZ4. Then, we have that

sup
tPrt0,t0�Ns

EN
t0,x0

rvsptq ¤ EN
t0,x0

rvspt0q � 6

»
KN
t0,x0

|F ||v|2|Btv|dxdt� 3

»
KN
t0,x0

|F |3|Btv|dxdt . (2.5.7)

Proof. Using (2.5.2), we have that

d

dt
EN
t0,x0

rvsptq � �
»

}x�x0}8
�2N�|t�t0|

T 00dσpxq �
»

}x�x0}8
¤2N�|t�t0|

BtT 00dx

�
»

}x�x0}8
�2N�|t�t0|

p�T 00 � T 0jνjqdσpxq �
»

}x�x0}8
¤2N�|t�t0|

N Btvdx

Here, ν is the outward unit normal to the cube. From Cauchy-Schwarz, it follows that |T 0jνj| ¤
|Btv|}∇v}2 ¤ T 00. After integrating in time, this completes the proof.

To simplify the notation, we now write

ENt0,x0rvs :� sup
tPrt0,t0�Ns

EN
t0,x0

rvsptq . (2.5.8)

In the following, we want to deduce a flux estimate for the solution v of the forced NLW (2.5.1).

Here, we encounter a minor technical problem. Let pt1, x1q P KN
t0,x0

be a point in the truncated

`8-cone. We then want to control the potential |v|4 on the truncated light-cone

CN
t1,x1 :� tpt, xq P rt0, t0 �N s � R4 : |t� t1| � }x� x1}2u .

Unfortunately, CN
t1,x1 may not be contained in KN

t0,x0
, and hence we cannot expect to bound this

solely by ENt0,x0rvs. Since the flux estimate is derived through a monotonicity formula for the local

energy, this issue persists even if we are only interested in the portion of CN
t1,x1 intersecting KN

t0,x0
.

To solve this problem, while still keeping the same energy increment as in (2.5.7), we introduce

the notion of a locally forced solution.
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Definition 2.5.5 (Locally forced solution). Let t0 P NN0 and x0 P NZ4. We call w : R�R4 Ñ R

a KN
t0,x0

-locally forced solution if it solves$'&'%�Bttw �∆w � p1KN
t0,x0

F � wq3 pt, xq P R� R4

w|t�t0 � w0 P 9H1pR4q, Btw|t�t0 � w1 P L2pR4q
. (2.5.9)

We also require that the functions pw0, w1q agree with pvpt0q, Btvpt0qq on the cube }x�x0}8 ¤ 2N .

Remark 2.5.6. From finite speed of propagation, it follows that w|KN
t0,x0

� v|KN
t0,x0

.

For the same reasons as described in the last paragraph, we also use the energy on a slightly larger

region. To this end, we define

rEN
t0,x0

rwsptq :�
»
}x�x0}8¤16N�|t�t0|

T 00rwspt, xqdx, where t P rt0, t0 �N s .

Thus, this definition is adapted to the fattened cone rKN
t0,x0

, which is defined in (2.4.10). We also

set rENt0,x0rws :� sup
tPrt0,t0�Ns

rEN
t0,x0

rwsptq . (2.5.10)

Lemma 2.5.7 (Local flux estimate). Let t0 P NN0, let x0 P NZ4, and let w be a KN
t0,x0

-locally

forced solution. Then, we have that

sup
t1Prt0,t0�Ns

}x1�x0}`8¤8N

»
}x�x1}2�|t�t1|
tPrt0,t0�Ns

w4

4
dσpt, xq ¤ 4rENt0,x0 � 12

»
KN
t0,x0

|F |p|w| � |F |q2|Btw|dxdt . (2.5.11)

We emphasize that, even though the energy rENt0,x0 is measured on a truncated `8-cone, the flux

is still controlled on a light cone. The estimate (2.5.11), however, only controls w on a lower-

dimensional surface in space-time, and thus cannot directly be used to bound the energy increment.

In our main argument, we rely on the following averaged version.
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Lemma 2.5.8 (Averaged local flux estimate). Let N ¥ Nhi, let t0 P NN0, let x0 P NZ4, and let

w be a KN
t0,x0

-locally forced solution. Then, we have that

rFN
t0,x0

:� sup
t1Prt0,t0�Ns
}x1�x0}8¤4N

»
|}x�x1}2�|t�t1||¤N10δ

tPrt0,t0�Ns

w4

4
dxdt (2.5.12)

À N40δ

���rENt0,x0 � »
KN
t0,x0

|F |p|w| � |F |q2|Btw|dxdt

��
 .

The appeareance of N10δ is for technical reasons only, and the reader is encouraged to mentally

replaced it by 1. This will later help us to deal with the spatial tails of the wave packets.

Proof of Lemma 2.5.7. For the duration of this proof, we define

eptq :�
»
}x�x1}2¤|t�t1|

T 00pt, xqdx

From finite speed of propagation, we expect eptq to be (nearly) non-increasing on rt0, t1s and non-

decreasing on rt1, t0 �N s. From the assumptions above, it follows that }x� x1}2 ¤ |t� t1| implies

}x� x0}8 ¤ }x� x1}8 � }x1 � x0}8 ¤ }x� x1}2 � 8N ¤ |t� t1| � 8N ¤ 10N � |t� t0| .

Thus, we obtain that eptq ¤ rENt0,x0 for all t P rt0, t0�N s. Using (2.5.2), we obtain for all t P rt1, t0�N s
that

d

dt
eptq �

»
}x�x1}2¤|t�t1|

BtT 00pt, xqdx�
»
}x�x1}2�|t�t1|

T 00pt, xqdσpxq

� �
»
}x�x1}2¤|t�t1|

N Btvdx�
»
}x�x1}2¤|t�t1|

BxkT 0kdx�
»
}x�x1}2�|t�t1|

T 00pt, xqdσpxq

� �
»
}x�x1}2¤|t�t1|

N Btvdx�
»
}x�x1}2�|t�t1|

pT 00pt, xq � T 0kνkqdσpxq

¥ �6

»
}x�x1}2¤|t�t1|

|F |p|F | � |v|q2|Btv|dx�
»
}x�x1}2�|t�t1|

v4

4
dσpxq .
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Integrating this inequality in time, we obtain the result on rt1, t0 � N s. The bound on rt0, t1s is

similar.

Proof of Lemma 2.5.8. Since N ¥ Nhi ¥ η�1, we have that N10δ ! N . We then simply integrate

(2.5.11) over a spatial ball of radius � N10δ around x1.

2.6 The energy increment and induction on scales

We are now ready to finally bound the energy increment of the nonlinear component v. The

argument roughly splits into two parts: A single scale analysis and induction on scales.

For technical reasons, we define a flux-term involving a thinner neighborhood of the cone. More

precisely, we let

FN
t0,x0

rws :� sup
pt1,x1qPrt0,t0�Ns�R4

}x1�x0}8¤4N

»
|}x�x1}2�|t�t1||¤N5δ

tPrt0,t0�Ns

w4

4
dxdt

Recall that the light-cone in rFN
t0,x0

rws, as defined in (2.5.12), has width N10δ.

Proposition 2.6.1 (Single-scale energy increment). Let N ¥ 1. Let t0 P NN0, where 0 ¤ t0{N ¤
tN θu, and let x0 P NZ4. Furthermore, let w1, w2 P L8t L4

xpR� R4q and w3 P L8t L2
xpR� R4q. Then,»

KN
t0,x0

|FM ||w1||w2||w3|dxdt

À ηN
3
4
�s�8δp}w1}4

L8t L
4
xpR�R4q � FN

t0,x0
rw1sq 1

4 p}w2}4
L8t L

4
xpR�R4q � FN

t0,x0
rw2sq 1

4 }w3}L8t L2
xpR�R4q .

We have two separate reasons for introducing the auxiliary functions w1, w2, and w3. First, it

emphasizes that the proof does not depend on the evolution equation of the nonlinear component.

Second, it allows us to pass to smaller spatial scales than N with minimal notational effort, see

Corollary 2.6.2.
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Proof. If 1 ¤ N   Nhi, there is nothing to show. Thus, we may assume that N ¥ Nhi.

Step 1: Wave packet decomposition. Recall from (2.4.2) and (2.4.3) that

F ω
N �

¸
k

εk exppit|∇|qf�k �
¸
k

εk expp�it|∇|qf�k .

We only control the contribution of
°
k εk exppit|∇|qf�k , the other estimate is nearly identical.

Then, we may also drop the superscript � from our notation. We now apply Proposition 2.4.1 and

Proposition 2.4.3 to the family tεkfkuk, and let the sets Am,Bj,m, and Dm be as in Proposition

2.4.3. As before, we implicitly restrict to }k}8 P pN{2, N s. We also write fk,l � fk,l;t0 .

Step 2: Distant wave packets and extreme amplitudes. On a heuristic level, the wave packets whose

tubes Tk,l do not intersect KN
t0,x0

should not contribute to the integral. We now make this precise

using the decay estimate (2.4.9). Indeed,»
KN
t0,x0

���� ¸
pk,lqPZ4�Z4:
}l�x0}8¡3N

εk exppipt� t0q|∇|qfk,l
����|w1||w2||w3|dxdt

À N
��� ¸
pk,lqPZ4�Z4:
}l�x0}8¡3N

εk exppipt� t0q|∇|qfk,l
���
L8t L

8
x pK

N
t0,x0

q
}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q

À N
� ¸
pk,lqPZ4�Z4:
}l�x0}8¡3N

N�100p1� }x0 � l}2q�100}fk}L2
xpR4q

	
}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q

À N�99�2
� ¸
kPZ4

}fk}2
L2
xpR4q

	 1
2 }w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q

À ηN
3
4
�s}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q .

Thus, this contribution is acceptable. It remains to control the wave packets with indices in

�
mPZAm. We now use crude estimates to reduce to � logpNq amplitude scales. Let m ¤
�20 logpNq. Since #Am À N8, we have that»

KN
t0,x0

��� ¸
pk,lqPAm

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt
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À N
� ¸
pk,lqPAm

} exppipt� t0q|∇|qfk,l}L8t L8x pR�R4q

	
}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q

À N2m#Am}w1}L8t L4
xpR�R4q}w2}L8t L4

xpR�R4q}w3}L8t L2
xpR�R4q

À 2mN9}w1}L8t L4
xpR�R4q}w2}L8t L4

xpR�R4q}w3}L8t L2
xpR�R4q .

Summing this inequality over all m ¤ �20 logpNq, we obtain that»
KN
t0,x0

��� ¸
m¤�20 logpNq

¸
pk,lqPAm

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt

À N�11}w1}L8t L4
xpR�R4q}w2}L8t L4

xpR�R4q}w3}L8t L2
xpR�R4q

À ηN
3
4
�s}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q .

Finally, if Am � H, then #Am ¥ 1. This implies that

2m ¤ 2mp#Amq 1
2 À

�¸
k,l

}fk,l}2
L2pR4q

� 1
2

À ηN�s .

For a sufficiently small absolute constant η ¡ 0, this implies that m ¤ 0. This completes the crude

part of the argument. Step 3: Bushes. First, we define the fattened tubes by

rTk,l :� tpt, xq P rt0, t0 �N s � Rd : |x� pl � t � k{}k}2q| ¤ N2δu .

Furthermore, we define the collection of fattened tubes corresponding to a bush by

rT pBj,mq :� �
pk,lqPBj,m

rTk,l .
With these definitions in hand, we now write»

KN
t0,x0

��� J̧

j�1

¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt

¤
J̧

j�1

»
rT pBj,mq

��� ¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt

�
J̧

j�1

»
KN
t0,x0

z rT pBj,mq

��� ¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt
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Using that all tubes in Bj,m pass through the same space-time cube of size � N δ, we obtain from

Proposition 2.4.8 that

J̧

j�1

»
rT pBj,mq

��� ¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt

À
J̧

j�1

N
1
2

��� ¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���
L8t,xpR�R4q

}w1}L4
t,xp

rT pBj,mqq}w2}L4
t,xp

rT pBj,mqq}w3}L8t L2
xpR�R4q

À ηN
1
2
�8δ2m

� J̧

j�1

p#Bj,mq 1
2

	
FN
t0,x0

rw1s 14FN
t0,x0

rw2s 14 }w3}L8t L2
xpR�R4q

À ηN
1
2
�8δ2m

� J̧

j�1

Bj,m

	
µ�

1
2FN

t0,x0
rw1s 14FN

t0,x0
rw2s 14 }w3}L8t L2

xpR�R4q

À ηN
1
2
�8δ2mp#Amqµ� 1

2FN
t0,x0

rw1s 14FN
t0,x0

rw2s 14 }w3}L8t L2
xpR�R4q .

Here, µ denotes the minimum number of packets inside a single bush, see Proposition 2.4.3. Using

the decay estimate (2.4.9), we control the contributions outside the rT pBj,mq by

J̧

j�1

»
KN
t0,x0

z rT pBj,mq

��� ¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt

À N
J̧

j�1

��� ¸
pk,lqPBj,m

εk exppipt� t0q|∇|qfk,l
���
L8t,xpK

N
t0,x0

z rT pBj,mqq

� }w1}L8t L4
xpR�R4q}w2}L8t L4

xpR�R4q}w3}L8t L2
xpR�R4q

À N1N�1002m
� J̧

j�1

#Bj,m

	
}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q

À ηN
3
4
�s}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q .

In the last line, we have used that 2mp#Amq 1
2 À η and #Am À N8.

Step 4: Disjoint wave packets. We now control the contribution of the almost disjoint family Dm.

If µ   1, then Dm is empty, and there is nothing to prove. If µ ¥ 1, it follows from Proposition

60



2.4.8 that»
KN
t0,x0

��� ¸
pk,lqPDm

εk exppipt� t0q|∇|qfk,l
���|w1||w2||w3|dxdt

À N
��� ¸
pk,lqPDm

εk exppipt� t0q|∇|qfk,l
���
L8t,xpK

N
x0
q
}w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q

À ηN1�8δ2mµ
1
2 }w1}L8t L4

xpR�R4q}w2}L8t L4
xpR�R4q}w3}L8t L2

xpR�R4q.

Step 5: Finishing the proof.

In total, we have shown that»
KN
t0,x0

|FM ||w1||w2||w3|dxdt

À ηN8δ
�
N

3
4
�s �N2mµ

1
2 �N

1
2 2mp#Amqµ� 1

2

	
p}w1}4

L8t L
4
xpR�R4q � FN

t0,x0
rw1sq 1

4

� p}w2}4
L8t L

4
xpR�R4q � FN

t0,x0
rw2sq 1

4 }w3}L8t L2
xpR�R4q .

(2.6.1)

Due to our choice µ :� N� 1
2 #Am in Proposition 2.4.3, this completes the proof.

Corollary 2.6.2 (Coarse-scale energy increment). Let N ¥ 1. Let t0 P NN0, with 0 ¤ t0{N ¤
tN θu, and let x0 P NZ4. Let w be a KN

t0,x0
-locally forced solution. Then, we have for all M ¥ N

that »
KN
t0,x0

|FM ||w|2|Btw|dxdt À ηM
3
4
�s�8δ rENt0,x0rws 12 �rENt0,x0rws � rFN

t0,x0
rws

	 1
2
. (2.6.2)

We refer to Corollary 2.6.2 as a coarse scale estimate since the wave packets in FM are atleast as

long as the length of KN
t0,x0

(in time).

Proof. As before, we may take M ¥ Nhi. We distinguish two different cases. If M ¥ N
4
3 , we

obtain from Proposition 2.4.8 that»
KN
t0,x0

|FM ||w|2|Btw|dxdt ¤ N}FM}L8t L8x pR�R4q}w}2
L8t L

4
xpK

N
t0,x0

q}Btw}L8t L2
xpK

N
t0,x0

q À ηM
3
4
�s�δ rENt0,x0rws.
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Next, we let M ¤ N
4
3 . Then, there exist τ0 PMN0 and y0 PMZ4 s.t. KN

t0,x0
� KM

τ0,y0
. Furthermore,

since t0{N ¤ tN θu, it holds that τ0{M ¤ tM θu. Set w1 � w2 :� 1KN
t0,x0

w and w3 :� 1KN
t0,x0

w. Since

M ¤ N
4
3 , we have that

FM
τ0,y0

rw1s � FM
τ0,y0

rw2s ¤ rFN
t0,x0

rws

Using the single-scale energy increment (Proposition 2.6.1), we obtain that»
KN
t0,x0

|FM ||w|2|Btw|dxdt

�
»
KM
τ0,y0

|FM ||w1||w2||w3|dxdt

À ηM
3
4
�s�δp}w1}4

L8t L
4
xpR�R4q � FM

τ0,y0
rw1sq 1

4 p}w2}4
L8t L

4
xpR�R4q � FM

τ0,y0
rw2sq 1

4 }w3}L8t L2
xpR�R4q

À ηM
3
4
�s�δ rENt0,x0rws 12 �rENt0,x0rws � rFN

t0,x0
rws

	 1
2
.

Due to Proposition 2.6.1 and Corollary 2.6.2, we understand the energy increment at a single scale.

Unfortunately, the cone KN
t0,x0

may contain many wave packets on smaller scales. Similar problems

are often encountered in restriction theory, and can sometimes be solved using Wolff’s induction

on scales strategy [Wol01]. The following argument can be seen as a (simple) implementation of

this idea.

Proposition 2.6.3 (Induction on scales). Let s ¡ maxp1 � θ{2, 3{4 � θq. Let R ¥ 1 be a dyadic

integer, and let F be as in Proposition 2.4.8. Let t0 P RN0, with t0{R ¤ tRθu, x0 P RZ4, let w be

a KR
t0,x0

-locally forced solution. For a large absolute constant C1 ¥ 1, we have that

rERt0,x0rws ¤ 2E|x�x0|¤16Rrwspt0q � C1}F }6
L3
tL

6
xpK

R
t0,x0

q (2.6.3)

and rFR
t0,x0

rws ¤ C1R
50δ

�
E|x�x0|¤16Rrwspt0q � }F }6

L3
tL

6
xpK

R
t0,x0

q

	
. (2.6.4)
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Proof. We use induction on the dyadic integers R ¥ 1.

Step 1: Base case R � 1. We have that

rE1
t0,x0

rws ¤ E|x�x0|¤16rwspt0q � C

»
K1
t0,x0

|F ||w|2|Btw|dxdt� C

»
K1
t0,x0

|F |3|Btw|dxdt

¤ E|x�x0|¤16rwspt0q � C}F }L8t L8x pR�R4q}w}2
L8t L

4
xpK

1
t0,x0

q}Btw}L8t L2
xpK

1
t0,x0

q

� C}F }3
L3
tL

6
xpK

1
t0,x0

q}Btw}L8t L2
xpK

1
t0,x0

q

¤ E|x�x0|¤16rwspt0q � 1

4
rE1
t0,x0

rws � C}F }3
L3
tL

6
xpK

1
t0,x0

q
rE1
t0,x0

rws 12

¤ E|x�x0|¤16rwspt0q � 1

2
rE1
t0,x0

rws � C}F }6
L3
tL

6
xpK

1
t0,x0

q .

Insert this bound into Lemma 2.5.8, we obtain that

rF1
t0,x0

rws À rE1
t0,x0

rws �
»
K1
t0,x0

|F ||w|2|Btw|dxdt� C

»
K1
t0,x0

|F |3|Btw|dxdt

À rE1
t0,x0

rws
À E|x�x0|¤16rwspt0q � }F }6

L3
tL

6
xpK

1
t0,x0

q .

By choosing C1 sufficiently large, we obtain (2.6.3) and (2.6.4). This already determines our choice

of C1, which we now regard as a fixed constant. Let R ¥ 2 be an arbitrary dyadic integer. Using

the induction hypothesis, we can rely on the inequalities (2.6.3) and (2.6.4) for all scales N ¤ R{2.

Step 2: Splitting the energy increment. From Lemma 2.5.4, we have that

rERt0,x0rws ¤ E|x�x0|¤16Rrwspt0q � C

»
KR
t0,x0

|F ||w|2|Btw|dxdt� C

»
KR
t0,x0

|F |3|Btw|dxdt . (2.6.5)

The main term is the second summand in (2.6.5). We use a Littlewood-Paley type decomposition
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of the linear evolution and write»
KR
t0,x0

|F ||w|2|Btw|dxdt

¤
¸
N¥R

»
KR
t0,x0

|FN ||w|2|Btw|dxdt�
¸

N¤R{2

»
KR
t0,x0

|FN ||w|2|Btw|dxdt .

Step 3: High frequencies. The high frequencies can be controlled using the single-scale estimate

from Proposition 2.6.1. Indeed, we have that¸
N¥R

»
KR
t0,x0

|FN ||w|2|Btw|dxdt

À η
¸
N¥R

N
3
4
�s�8δ rERt0,x0rws 12 �rERt0,x0rws � rFR

t0,x0
rws

	 1
2

(2.6.6)

À ηR
3
4
�s�8δ rERt0,x0rws 12 �rERt0,x0rws � rFR

t0,x0
rws

	 1
2
.

Step 4: Low frequencies. For τn � Nn P NN0 and yj � Nj P NZ4 , we write»
KR
t0,x0

|FN ||w|2|Btw|dxdt

�
tNθ u̧

n�0

� »
prτn,τn�Ns�R4q

�
KR
t0,x0

|FN ||w|2|Btw|dxdt



�

»
prN1�θ,8q�R4q

�
KR
t0,x0

|FN ||w|2|Btw|dxdt

�
tNθ u̧

n�0

¸
jPZ4

KN
τn,yj

�KR
t0,x0

»
KN
τn,yj

|FN ||w|2|Btw|dxdt�
»

prN1�θ,8q�R4q
�
KR
t0,x0

|FN ||w|2|Btw|dxdt .

In the last line, we have used that

KR
t0,x0

�
¤

pn,jqPN0�Z4

KN
τn,yj

�KR
t0,x0

KN
τn,yj

.

We first control the contributions on the time intervals rτn, τn�N s. To this end, we define wpN,n,jq

as the KN
τn,yj

-locally forced solution with data

wpN,n,jqpτnq � wpτnq and BtwpN,n,jqpτnq � Btwpτnq .
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Using finite speed of propagation, w and wpN,n,jq coincide on KN
τn,yj

. Applying Proposition 2.6.1

and the induction hypothesis to wpN,n,jq, it follows that

»
KN
τn,yj

|FN ||w|2|Btw|dxdt

�
»
KN
τn,yj

|FN ||wpN,n,jq|2|BtwpN,n,jq|dxdt

À ηN
3
4
�s�8δ rENτn,yj rwpN,n,jqs 12

�rENτn,yj rwpN,n,jqs 12 � rFN
τn,yj

rwpN,n,jqs
	 1

2

À ηN
3
4
�s�8δ

�
2E|x�yj |¤16N rwpN,n,jqspτnq � C1}F }6

L3
tL

6
xpK

N
τn,yj

q

	 1
2

�N50δ
�
C1E|x�yj |¤16N rwpN,n,jqspτnq � C1}F }6

L3
tL

6
xpK

N
τn,yj

q

	 1
2

À ηN
3
4
�s�60δC1

�
E|x�yj |¤16N rwpN,n,jqspτnq � }F }6

L3
tL

6
xpK

N
τn,yj

q

	
À ηN

3
4
�s�60δC1

�
E|x�yj |¤16N rwspτnq � }F }6

L3
tL

6
xpK

N
τn,yj

q

	
.

As a consequence, we obtain that

tNθ u̧

n�0

¸
jPZ4

KN
τn,yj

�KR
t0,x0

»
KN
τn,yj

|FN ||w|2|Btw|dxdt

À ηN
3
4
�s�60δC1

tNθ u̧

n�0

¸
jPZ4

KN
τn,yj

�KR
t0,x0

�
E|x�yj |¤16N rwspτnq � }F }6

L3
tL

6
xpK

N
τn,yj

q

	

À ηN
3
4
�s�60δC1

tNθ u̧

n�maxp0,t0{Nq

�
E|x�x0|¤16R�|t�t0|rwspτnq � }F }6

L3
tL

6
xpprτn,τn�Ns�R4q

�
KR
t0,x0

q

	
À ηN

3
4
�θ�s�60δC1

rERt0,x0 � ηN
3
4
�s�60δC1}F }6

L3
tL

6
xpK

R
t0,x0

q . (2.6.7)
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Using the long-time decay estimate, we can control the contribution on the interval rN1�θ,8q by»
prN1�θ,8q�R4q

�
KR
t0,x0

|FN ||w|2|Btw|dxdt

À }FN}L1
tL

8
x prN

1�θ,8q�R4q}w}2
L8t L

4
xpK

R
t0,x0

q}Btw}L8t L2
xpK

R
t0,x0

q

À ηN1� θ
2
�s�δ rERt0,x0 . (2.6.8)

Combining (2.6.7) and (2.6.8), it follows that¸
N¤R{2

»
KR
t0,x0

|FN ||w|2|Btw|dxdt

À ηC1

¸
N¤R{2

�
N

3
4
�θ�s�5δ �N1� θ

2
�s
	 rERt0,x0 � η

� ¸
N¤R{2

N
3
4
�s�5δ

	
C1}F }6

L3
tL

6
xpK

R
t0,x0

q (2.6.9)

À ηC1
rERt0,x0 � ηC1}F }6

L3
tL

6
xpK

R
t0,x0

q .

Here, we have used that s ¡ maxp1� θ
2
, 3

4
� θq, and that δ � δps, θq ¡ 0 is sufficiently small.

Step 5: Finishing the proof. At this point, we have proven all the necessary estimates on w. It only

remains to put them together, and use a “kick back” argument. From the energy increment (2.6.5),

the high frequency estimate (2.6.6), the low-frequency estimate (2.6.9), and Hölder’s inequality, it

follows that

rERt0,x0rws ¤ E|x�x0|¤16Rrwspt0q � ηC1
rERt0,x0rws � ηR

3
4
�s�8δ rFR

t0,x0
rws � ηC1}F }6

L3
tL

6
xpK

R
t0,x0

q (2.6.10)

Inserting the same bound for the energy increment into (2.5.8), we also have that

rFR
t0,x0

rws À R40δ
�rERt0,x0rws � ηR

3
4
�s�8δ rFR

t0,x0
rws � ηC1}F }6

L3
tL

6
xpK

R
t0,x0

q

	
(2.6.11)

If the absolute constant η � ηpC1, δq ¡ 0 is chosen sufficiently small, then (2.6.11) implies that

rFR
t0,x0

rws À R40δ
�rERt0,x0rws � ηC1}F }6

L3
tL

6
xpK

R
t0,x0

q

	
. (2.6.12)
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Inserting this into (2.6.10), we obtain (2.6.3). Finally, (2.6.3) and (2.6.12) imply (2.6.4). This

completes the proof of the induction step.

Using Proposition 2.6.3, we now provide a short proof of the main result.

Proof of Theorem 2.1.3. Assume that the statements in Proposition 2.4.8 hold for ω P Ω. From

Lemma 2.5.1, it follows that there exists a local solution to (2.5.1). From Proposition 2.6.3, it

follows for all R ¥ 1 that

sup
tPr0,Rs

»
|x|¤2R�t

T 00rvspt, xqdx ¤ 2Erv0, v1s � C1 .

By letting RÑ 8, we obtain the a-priori energy bound

sup
tPr0,8q

Ervsptq ¤ 2Erv0, v1s � C1 .

From Proposition 2.5.2, this implies the global space-time bound }v}L3
tL

6
xpr0,8q�R4q   8 and the

existence of scattering states pv�0 , v�1 q P 9H1pR4q � L2pR4q. Since u � F � v, we obtain the global

space-time bound }u}L3
tL

6
xpr0,8q�R4q   8 and the scattering states pu�0 , u�1 q � pv�0 � fω0, Nhi

, v�1 �
fω1, Nhi

q. This completes the proof for positive times. By time-reflection symmetry, we obtain the

same result for negative times.
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CHAPTER 3

Invariant Gibbs measures for the three-dimensional wave

equation with a Hartree nonlinearity I: Measures4

3.1 Introduction

In this chapter, we rigorously construct and study the Gibbs measure µb. We recall from (1.2.2)

that the Hamiltonian is given by

Hβrφ0, φ1s � 1

2

�
}φ0}2

L2
x
� }∇xφ0}2

L2
x
� }φ1}2

L2
x

	
� 1

4

»
T3

:pVβ � φ2
0q φ2

0 : dx.

Since the Hamiltonian Hrφ0, φ1s splits into a sum of functions in φ0 and φ1, we can rewrite the

Gibbs measure µb as

dµbpφ0, φ1q

�Z�1
0 exp

�
� 1

4

»
T3

:pV � φ2
0qφ2

0 : dx� 1

2
}φ0}2

L2 � 1

2
}∇φ0}2

L2

	
dφ0 b Z�1

1 exp
�
� 1

2
}φ1}2

L2

	
dφ1.

The construction and properties of the second factor are elementary (as will be explained below),

and we now focus on the first factor. As a result, we are interested in the rigorous construction of

a measure µ which is formally given by

dµpφq � Z�1 exp
�
� 1

4

»
T3

:pV � φ2qφ2 : dx� 1

2
}φ}2

L2pT3q �
1

2
}∇φ}2

L2pT3q

	
dφ. (3.1.1)

4The content of this chapter has been published online in Stochastics and Partial Differential Equations: Analysis
and Computations [Bri20c].
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Our Gibbs measure µ is closely related to the Φ4
d-models, which replace the three-dimensional

torus T3 by the more general d-dimensional torus Td and replace the integrand :pV �φ2qφ2 : by the

renormalized quartic power :φ4 :. Thus, the Φ4
d-model is formally given by

dΦ4
dpφq � Z�1 exp

�
� 1

4

»
Td

:φ4 : dx� 1

2
}φ}2

L2pTdq �
1

2
}∇φ}2

L2pTdq

	
dφ. (3.1.2)

Aside from their connection to Hamiltonian PDEs, such as nonlinear wave and Schrödinger equa-

tions, the Φ4
d-models are of independent interest in quantum field theory (cf. [Fol08]). In most

rigorous constructions of measures such µ or the Φ4
d-models, the first step consists of a regular-

ization. For instance, one may insert a frequency-truncation in the nonlinearity or replace the

continuous spatial domain by a discrete lattice. In a second step, one then proves the convergence

of the regularized measures as the regularization is removed, either by direct estimates or com-

pactness arguments.

With a particular focus on Φ4
d-models, the question of convergence of the regularized measures

has been extensively studied over several decades. The first proof of convergence was a major

success of the constructive field theory program, which thrived during the 1970s and 1980s. We

refer the reader to the excellent introduction of [GH19] for a detailed overview and the original

works [BCG78, BFS83, FO76, GJ87, MS76, Par77, Sim74, Wat89].

In the 1990s, Bourgain [Bou94, Bou96] revisited the Φ4
d-model in dimension d � 1, 2 using tools

from harmonic analysis and introduced these problems into the dispersive PDE community. Bour-

gain’s works [Bou94, Bou96] also contain important dynamical insights, which will be utilized in

the second part of this series.

Based on the method of stochastic quantization, which was introduced by Nelson [Nel66, Nel67]

and Parisi-Wu [PW81], the construction and properties of the Φ4
d-models have also been studied

over the last twenty years in the stochastic PDE community. The main idea behind stochas-

69



tic quantization is that the Φ4
d-measure is formally invariant under the stochastic nonlinear heat

equation

Btu� u�∆u � � :u3 : �
?

2ξ pt, xq P R� Td, (3.1.3)

where ξ is space-time white noise. After prescribing simple initial data, such as up0q � 0, one hopes

to obtain the Φ4
d-measure as the limit of the law of uptq as tÑ 8. In spatial dimensions d � 1, 2,

this approach was carried out by Iwata [Iwa87] and Da Prato-Debussche [DD03], respectively. In

spatial dimension d � 3, however, (3.1.3) is highly singular and the local well-posedness theory

of (3.1.3) is beyond classical methods in stochastic partial differential equations. In groundbreak-

ing work [Hai14], Hairer introduced regularity structures, which provide a detailed description of

the local dynamics of (3.1.3). Alternatively, the local well-posedness of (3.1.3) was also obtained

by Catellier and Chouk in [CC18], which is based on the para-controlled calculus of Gubinelli,

Imkeller, and Perkowski [GIP15]. In order to construct the Φ4
3-model using (3.1.3), however, local

control over the solution is not sufficient, and one needs a global well-posedness theory. The global

theory has been addressed very recently in [AK20, GH19, HM18, MW17], which combine regularity

structures or para-controlled calculus with further PDE arguments, such as the energy method.

Using similar tools, Barashkov and Gubinelli [BG20b, BG20a] recently developed a variational

approach to the Φ4
3-model, which does not directly rely on the stochastic heat equation (3.1.3).

Their work forms the basis of this paper and will be discussed in more detail below.

After this broad overview of the relevant literature, we now begin a more detailed discussion of the

previous methods. Throughout this discussion we encourage the reader to think of the nonlinear

wave equation as a Hamiltonian system of ordinary differential equations in Fourier space. We

begin with the construction of the Gaussian free field. Then, we discuss the construction of the Φ4
1

and Φ4
2-models using harmonic analysis, similar as in Bourgain’s works [Bou94, Bou96], and the

construction of the Φ4
3-model using the variational approach of Barashkov and Gubinelli [BG20b].
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Given a function φ : Td Ñ R, its Fourier expansion is given by

φpxq �
¸
nPZd

pφpnqeixn,xy. (3.1.4)

Due to the real-valuedness of φ, the sequence ppφpnqqnPZd satisfies the symmetry condition pφpnq �pφp�nq. In order to respect this symmetry, we let Λ � Zd be such that Zd � t0u � Λ
� p�Λq,

where
�

denotes the disjoint union. For n P Λ, we denote by dpφpnq the Lebesgue measure on C,

and for n � 0, we denote by dpφp0q the Lebesgue measure on R. We can then formally identify the

d-dimensional Gaussian free field

dgdpφq � Z�1 exp
�
� 1

2
}φ}2

L2pTdq �
1

2
}∇φ}2

L2pTdq

	
dφ (3.1.5)

as the push-forward under the Fourier transform of

Z�1 exp
�
� 1

2

¸
nPZd

p1� |n|2q|pφpnq|2	 â
nPt0uYΛ

dpφpnq
� 1

2π
exp

�
� 1

2
|pφp0q|2	dpφp0q b �â

nPΛ

1

πxny2
exp

�
� xny2|pφpnq|2	dpφpnq	, (3.1.6)

where xny2 � 1 � |n|2. While (3.1.5) is entirely formal, the right-hand side of (3.1.6) is a well-

defined product measure. Under the measure in (3.1.6), pφp0q is a standard real-valued Gaussian

and ppφpnqqnPΛ is a sequence of independent complex Gaussians satisfying E|pφpnq|2 � xny�2. Turn-

ing this formal discussion around, we let pΩ,F ,Pq be an ambient probability space containing a

sequence of independent complex-valued standard Gaussians pgnqnPΛ and a standard real-valued

Gaussian g0. Then, we can rigorously define the Gaussian free field gd by

dgdpφq �
� ¸
nPZd

gn
xnye

ixn,xy
	

#
P, (3.1.7)

where the subscript # denotes the pushforward. Using the representation (3.1.7), we see that a

typical sample of gd almost surely lies in Hs
xpTdq for all s   1� d{2 but not in H

1�d{2
x pTdq.
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We now turn to the construction of the Φ4
1 and Φ4

2-models. Based on our formal expression of the

Φ4
1-model in (3.1.2), we would like to define

dΦ4
1pφq def� Z�1 exp

�
� 1

4

»
T
φ4pxqdx

	
dg1pφq. (3.1.8)

Using either Sobolev embedding or Khintchine’s inequality, we obtain g1-almost surely that 0  
}φ}L4pTq   8. This implies that the density dΦ4

1{dg1 is well-defined, almost surely positive, and

lies in Lqpg1q for all 1 ¤ q ¤ 8. In particular, the Φ4
1-model is absolutely continuous with respect

to the Gaussian free field g1. We emphasize that the potential energy in (3.1.8) does not require

a renormalization. Furthermore, we can define truncated Φ4
1-models by

dΦ4
1;Npφq def� Z�1

N exp
�
� 1

4

»
T
pP¤Nφq4pxqdx

	
dg1pφq,

where N is a dyadic integer and P¤N a Littlewood-Paley projection. As was shown in [Bou94],

direct estimates yield the convergence of dΦ4
1;N{dg1 in Lqpg1q for all 1 ¤ q   8 and hence Φ4

1;N

converges to Φ4
1 in total variation as N tends to infinity.

In two spatial dimensions, however, we encounter a new difficulty. Since g1-almost surely }φ}L2 �
8, the potential energy }φ}4

L4 is almost surely infinite. As a result, the potential energy requires

a renormalization. A direct calculation using the definition of P¤N in (3.1.14) below yields

σ2
N �

» 8

0

dg2pφq}P¤Nφ}2
L2pT2q � logpNq.

We then replace the monomial pP¤Nφq4 by the Hermite polynomial

:pP¤Nφq4 :� pP¤Nφq4 � 6σ2
NpP¤Nφq2 � 3σ4

N .

This leads to the truncated Φ4
2-model given by

dΦ4
2;Npφq def� Z�1

N exp
�
� 1

4

»
T2

:pP¤Nφq4 : pxqdx
	

dg2pφq.
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After this renormalization, one can show (cf. [OT18]) that the densities dΦ4
2;N{dg2 converge in

Lqpg2q for all 1 ¤ q   8 and we can define Φ4
2 as the limit (in total-variation) of Φ4

2;N as N Ñ 8.

As in one spatial dimension, the Φ4
2-model is absolutely continuous with respect to the Gaussian

free field g2. Using similar tools as for the Φ4
2-model, Bourgain [Bou97] constructed the Gibbs

measure µ for the Hamiltonian with a Hartree interaction for β ¡ 2, which corresponds to a rela-

tively smooth interaction potential V . The key point of this paragraph is that the Φ4
1-model, the

Φ4
2-model, and the Gibbs measure µ for a smooth interaction potential can be constructed through

“hard” analysis. As a result, one obtains strong modes of convergence and absolute continuity

with respect to Gaussian free field.

The construction of the Φ4
3-model, however, is much more complicated. As will be described below,

several of the “hard” conclusions, such as convergence in total-variation or absolute continuity with

respect to the Gaussian free field, are either unavailable or fail. As a result, we have to (partially)

replace hard estimates by softer compactness arguments. We now give a short overview of the

variational approach in [BG20b, BG20a], which forms the basis of this paper.

In order to use techniques from stochastic control theory, we introduce a family of Gaussian pro-

cesses pWtpxqqt¥0 on an ambient probability space pΩ,F ,Pq satisfying LawPpW8q � g3, which will

be defined in Section 3.2.1. We view t as a stochastic time-variable which serves as a regularization

parameter. Using this terminology, we obtain a truncated Φ4
3-model by setting

dΦ4
3;T pφq � pW8q#

�
dΦ

4

3;T pφq
�

and

dΦ
4

3;T pφq � Z�1
T exp

�� 1

4

»
T3

W 4
T pxq � aTW

2
T pxq � bTdx

�
dP.

We emphasize already that the Φ4
3;T -measure does not correspond to a truncated Hamiltonian,

which will be discussed in full detail in Section 3.2.1. In order to construct the Φ4
3-model, the main
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step is to prove the tightness of the Φ4
3;T -measures. Using Prokhorov’s theorem, this implies the

weak convergence of a subsequence of Φ4
3;T and we can define the Φ4

3-measure as the weak limit. To

prove tightness, Barashkov and Gubinelli obtain uniform bounds in T on the Laplace transform

f P CpC�
1
2
�

x pT3q;Rq Ñ
»

dΦ4
3;T pφq e�fpφq.

The main ingredients for the uniform bounds are the Boué-Dupuis formula (Theorem 3.2.1) and

the para-controlled calculus of Gubinelli, Imkeller, and Perkowski [GIP15], which has also been

used in the stochastic quantization approach to the Φ4
3-model (cf. [GH19]).

While the variational approach yields the existence of the Φ4
3-measure, it only yields limited

information regarding its properties. In spatial dimensions d � 1, 2, the Φ4
d-model is abso-

lutely continuous with respect to the Gaussian free field gd, and hence the samples of Φ4
d for

many purposes behave like a random Fourier series with independent coefficients. This is an

essential ingredient in almost all invariance arguments for random dispersive equations (see e.g.

[Bou97, Bou96, DNY19, NOR12]). Unfortunately, the Φ4
3-measure is singular with respect to the

Gaussian free field g3. This fact seems to be part of the folklore in mathematical physics, but it

is surprisingly difficult to find a detailed reference. In an unpublished note available to the author

[Hai], Martin Hairer proved the singularity using the stochastic quantization approach and regular-

ity structures. Using the Girsanov-transformation, Barashkov and Gubinelli [BG20a] constructed

a reference measure ν4
3 for the Φ4

3-model, which serves a similar purpose as the Gaussian free field

for Φ4
1 and Φ4

2. The samples of ν4
3 are given by an explicit Gaussian chaos and Φ4

3 is absolutely

continuous with respect to ν4
3 . Furthermore, Barashkov and Gubinelli proved that the reference

measure ν4
3 and the Gaussian free field g3 are mutually singular, which yields a self-contained

proof of the singularity of Φ4
3 with respect to the Gaussian free field g3.
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3.1.1 Main results and methods

In the following, we simply write g � g3 for the three-dimensional Gaussian free field. Let N ¥ 1

be a dyadic integer and define the renormalized potential energy by

:VλNpφq:def� λ

4

»
T3

�
pV � φ2qφ2 � 2aNφ

2 � 4pMNφqφ� pV p0qa2
N � 2bN

	
dx� cλN . (3.1.9)

The coupling constant λ ¡ 0 is introduced for illustrative purposes, but the reader may simply

set λ � 1 as in all previous discussions. The renormalization constants aN , bN , and cλN are as in

Definition 3.2.8 and Proposition 3.3.2 and the renormalization multiplier MN is as in Definition

3.2.8. We emphasize that the renormalization in (3.1.9) goes beyond the usual Wick-ordering,

which is only based on the mass }P¤Nφ}2
L2 . The additional renormalization is contained in the

renormalization constant cλN , which is related to the mutual singularity of µb and g (for 0   β  
1{2). The truncated and renormalized Hamiltonian HN is given by

HN rφ0, φ1s def� 1

2

�
}φ0}2

L2 � }∇φ0}2
L2 � }φ1}2

L2

	
� :VλNpP¤Nφ0q: , (3.1.10)

where we omit the dependence on λ ¡ 0 from our notation. We emphasize that only the quartic

term contains a frequency-truncation and renormalization, whereas the quadratic terms remain

unchanged. As described in the beginning of the introduction, we focus on the first factor of the

truncated Gibbs measure µbN , which is given by

dµNpφq � 1

Zλ
N

exp
�
� :VλNpP¤Nφq:

	
dgpφq. (3.1.11)

Before we state our main result, we recall the assumptions on the interaction potential V : T3 Ñ R

from the introduction to the thesis. In these assumptions, 0   β   3 is a parameter.

Assumptions A. We assume that the interaction potential V satisfies

(i) V pxq � cβ|x|�p3�βq for some cβ ¡ 0 and all x P T3 satisfying }x} ¤ 1{10,
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(ii) V pxq Áβ 1 for all x P T3,

(iii) V pxq � V p�xq for all x P T3,

(iv) V is smooth away from the origin.

We now state the conclusions of this paper which will be needed in the Chapter 4 of this thesis.

A more comprehensive version of our results will then be stated in Theorem 3.1.3, Theorem 3.1.4,

and Theorem 3.1.5 below. The additional results may be useful in further applications, such as

invariant measures for a Schrödinger equation with a Hartree nonlinearity.

Theorem 3.1.1 (The Gibbs measure). Let κ ¡ 0 be a fixed positive parameter, let 0   β  
3 be a parameter, and let the interaction potential V be as in the Assumptions A. Then, the

sequence of truncated Gibbs measures pµNqN¥1 converges weakly to a probability measure µ8 on

C�1{2�κ
x pT3q, which is called the Gibbs measure. If in addition 0   β   1{2, the Gibbs measure

µ8 and the Gaussian free field g are mutually singular. Furthermore, there exists a sequence of

reference measures pνNqN¥1 on C�1{2�κ
x pT3q and an ambient probability space pΩ,F ,Pq satisfying

the following properties:

(i) (Absolute continuity and Lq-bounds) The truncated Gibbs measures µN are absolutely con-

tinuous with respect to the reference measures νN . More quantitatively, there exists a pa-

rameter q ¡ 1 and a constant C ¥ 1, depending only on β, such that

µNpAq ¤ CνNpAq1�
1
q

for all Borel sets A � C�1{2�κ
x pT3q.

(ii) (Representation of νN) Let γ � minp1{2 � β, 1q. There exists a large integer k � kpβq and

two random functions G,RN : pΩ,Fq Ñ C�1{2�κ
x pT3q satisfying for all p ¥ 2 that

νN � LawP
�
G �RN

�
, g � LawP

�
G
�
, and }RN}LpωCγ�κx pΩ�T3q ¤ p

k
2 .
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Remark 3.1.2. After the completion of the series [Bri20c, Bri20d], the author learned of indepen-

dent work by Oh, Okamoto, and Tolomeo [OOT20], which discusses the focusing and defocusing

three-dimensional (stochastic) nonlinear wave equation with a Hartree nonlinearity. In the focus-

ing case, the authors provide a complete picture of the construction and properties of the focusing

Gibbs measures, which distinguishes the three regimes β ¡ 2, β � 2, and β   2 (cf. [OOT20]). In

the defocusing case, the authors construct the Gibbs measures for β ¡ 0 and prove the singularity

for 0   β ¤ 1{2, which includes the endpoint β � 1{2. The reference measures are briefly discussed

in [OOT20, Appendix C], but only play a minor role in their analysis. The Lq-bound in Theorem

3.1.1, which will be essential in the second part of this series [Bri20e], is not proven in [OOT20].

In the first version of the paper [Bri20c], we proved the tightness of the truncated Gibbs measures

pµNqN¥1, which only implies that a subsequence of pµNqN¥1. In [OOT20], the authors proved the

uniqueness of weak subsequential limits, which lead to the convergence of the full sequence. A

version of the uniqueness argument from [OOT20], which has been modified to match our notation,

has now been included in Appendix 3.6.3.

While the measure-theoretic part of [OOT20] treats all β ¡ 0, the dynamical results are restricted

to β ¡ 1. In particular, the singular regime 0   β   1{2 is not covered, which is the main object

of the series [Bri20c, Bri20d].

In addition to the singular regime 0   β   1{2, the most interesting cases in Theorem 3.1.1 are

the Newtonian potential |x|�2 (corresponding to β � 1) and the Coulomb potential |x|�1 (corre-

sponding to β � 2). As mentioned earlier in the introduction, Bourgain [Bou97] proved a version

of Theorem 3.1.1 in the limited range β ¡ 2, which corresponds to a relatively smooth interaction

potential.

We now split the main theorem (Theorem 3.1.1) into three parts:
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 the tightness and weak convergence of the truncated Gibbs measures µN ,


 the construction and properties of the reference measures νN ,


 the mutual singularity of the Gibbs measure and the Gaussian free field.

Theorem 3.1.3 (Tightness and convergence). The truncated Gibbs measures pµNqN¥1 are tight

on C�1{2�κ
x pT3q. Furthermore, the sequence pµNqN¥1 weakly converges to a limiting measure µ8.

The overall strategy of the proof of Theorem 3.1.3 is the same as in the variational approach of

Barashkov and Gubinelli [BG20b]. In comparison with [BG20b], the terms in this paper often

have a more complicated algebraic structure but obey better analytical estimates. As any reader

familiar with regularity structures or para-controlled calculus may certify, the algebraic structure

of most stochastic objects is already quite complicated, so this trade-off is not always favorable. In

addition, the non-locality of the nonlinearity requires different analytical estimates and we mention

the two most important examples:

(i) The coercive term }f}4
L4 in the variational problem for the Φ4

3-model is replaced by the

potential energy »
T3

pV � f 2qf 2dx.

We emphasize that the coercive term in the variational problem does not contain a renor-

malization, which is a result of the binomial formula in Lemma 3.2.11. In order to use the

potential energy in our estimates, we rely on a fractional derivative estimate of Visan [Vis07,

(5.17)].

(ii) In the variational problem, we encounter mixed terms of the form»
T3

��
V � pP¤NW8 � P¤Nf1q � P¤NW8 � P¤Nf2 �

�
MNP¤Nf1

�
P¤Nf2

�
dx,
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where pWtqt¥0 is the Gaussian process from the introduction. Based on the literature on

random dispersive equations [Bou97, Bou96, DNY19, DNY20, GKO18a], it is tempting to

bound this mixed term through Fourier-analytic and random matrix techniques. We instead

develop a simpler and elegant physical-space approach.

The next theorem gives a more detailed description of the reference measures in Theorem 3.1.1.

To simplify the notation, we allow the truncation parameter N to take the value 8.

Theorem 3.1.4 (Reference measures). There exists a family of reference measures pνNq1¤N¤8
and an ambient probability space pΩ,F ,Pq satisfying the following properties:

(i) Absolute continuity and Lq-bounds: The truncated Gibbs measures µN are absolutely contin-

uous with respect to the reference measures νN . More quantitatively, there exists a parameter

q ¡ 1 and a constant C ¥ 1, depending only on β, such that

µNpAq ¤ CνNpAq1�
1
q

for all Borel sets A � C�1{2�κ
x pT3q.

(ii) Representation of νN : We have that

νN � LawP
�
Gp1q � Gp3qN � GpnqN

�
.

Here, n � npβq is a large integer and the linear, cubic, and n-th order Gaussian chaoses are

explicitly given by

Gp1q � W8,

Gp3qN � �λP¤N
» 8

0

J2
s

�
:pV � pP¤NWsq2qP¤NWs :

	
ds,

GpnqN � P¤N

» 8

0

x∇y� 1
2J2

s

�
:px∇y� 1

2P¤NWsqn :
	

ds,
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where we refer the reader to Section 3.2.1 and Definition 3.2.6 for the definitions of Js and

the renormalizations.

We emphasize that the representation of νN in Theorem 3.1.4 is much more detailed than stated

in Theorem 3.1.1. This additional information is not required in our proof of global well-posedness

and invariance in the Chapter 4. However, we believe that the more detailed representation

way be relevant for the Schrödinger equation with a Hartree nonlinearity. The reason lies in

low�low�high-interactions, which are more difficult in Schrödinger equations than in wave equa-

tions. In the last two years, we have seen new and intricate methods dealing with these interactions

[Bri20a, DNY19, DNY20], but all of these papers heavily rely on the independence of the Fourier

coefficients. In fact, overcoming this obstruction is mentioned as an open problem in [DNY20,

Section 9.1].

The proof of Theorem 3.1.4 is based on the Girsanov-approach of Barashkov and Gubinelli [BG20a].

As mentioned earlier, however, we cannot use the same approximate Gibbs measures as in [BG20a],

since they do not correspond to a frequency-truncated Hamiltonian. In Chapter 4, the frequency-

truncated Hamiltonians are an essential ingredient in the proof of global well-posedness and in-

variance. This difference will be discussed in detail in Section 3.2.1. For now, we simply mention

that there is a trade-off between desirable properties from a PDE or probabilistic perspective.

Our last theorem describes the relationship between the Gibbs measure µ8 and the Gaussian free

field g.

Theorem 3.1.5 (Singularity). If 0   β   1{2, then the Gibbs measure µ8 and the Gaussian free

field g are mutually singular. If β ¡ 1{2, then the Gibbs measure is absolutely continuous with

respect to the Gaussian free field g.

Theorem 3.1.5 determines the exact threshold between absolute continuity and singularity of µ8
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with respect to g. As mentioned in Remark 3.1.2, the singularity at the endpoint β � 1{2 has been

obtained in independent work by Oh, Okamoto, and Tolomeo [OOT20]. The absolute continuity

for β ¡ 1{2 already follows from the variational estimates in our construction of µ8. The main step

is the mutual singularity of µ8 and g for 0   β   1{2. We provide an explicit event witnessing

this singularity, which is based on the behaviour of the frequency-truncated potential energy»
T3

:pV � pP¤Nφq2qpP¤Nφq2 : dx

under the different measures.

Acknowledgements: The author thanks his advisor Terence Tao for his patience and invaluable

guidance. The author also thanks Nikolay Barashkov, Martin Hairer, Redmond McNamara, Dana

Mendelson, Tadahiro Oh, and Felix Otto for helpful discussions.

3.1.2 Overview

To orient the reader, let us review the rest of this paper. In Section 3.2.1, we introduce the stochas-

tic control perspective and recall the Boué-Dupuis formula. In Section 3.2.2, we estimate several

stochastic objects, such as the renormalized nonlinearity :pV �W 2
t qWt :. Our main tools will be Itô’s

formula and Gaussian hypercontractivity. In Section 3.3, we prove the tightness of the truncated

Gibbs measures µN and construct the limiting measure µ8. Using the Laplace transform and

the Boué-Dupuis formula, the proof of tightness reduces to estimates for a variational problem,

which occupy most of this section. In Section 3.4, we first construct the reference measures νN

and then examine their properties. The main ingredients are Girsanov’s transformation and our

earlier variational estimates. Finally, in Section 3.5, we prove the singularity of the Gibbs measure

µ8 with respect to the Gaussian free field g for all 0   β   1{2.
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3.1.3 Notation

In the rest of the paper, we use
def� instead of :� for definitions. The reason is that the colon in

:� may be confused with our notation for renormalized powers in Definition 3.2.6 below. With

a slight abuse of notation, we write dx for the normalized Lebesgue measure on T3. That is, we

implicitly normalize »
T3

1dx � 1.

We define the Fourier transform of a function f : T3 Ñ C by

pfpnq def�
»
T3

fpxqe�inxdx.

For any k P N and n1, . . . , nk P Z3, we define

n12...k
def�

ķ

j�1

nj. (3.1.12)

For instance, n12 � n1 � n2 and n123 � n1 � n2 � n3.

We now introduce our frequency-truncation operators. We let ρ : R¡0 Ñ r0, 1s be a smooth, non-

increasing function satisfying ρpyq � 1 for all 0 ¤ y ¤ 1{4 and ρpyq � 0 for all y ¥ 4. We also

assume that minpρpyq,�ρ1pyqq Á 1 for all 1{2 ¤ y ¤ 2. For any t ¥ 0 and n P Z3, we also define

ρtpnq def� ρ
�}n}2

xty
	
.

In particular, it holds that t ÞÑ ρtpξq is non-decreasing. In order to break up the frequency

truncation, we also set

σtpnq def�
� d

dt
ρtpnq

	 1
2
. (3.1.13)

This continuous approach instead of the usual discrete decomposition will be essential in the

stochastic control approach (Section 3.2.1). Nevertheless, we will sometimes use the usual dyadic
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Littlewood-Paley operators. For any dyadic N ¥ 1, we define P¤N by

{P¤Nfpnq � ρNpnq pfpnq. (3.1.14)

We further set

P1f � P¤1f and PNf � P¤Nf � P¤N{2f for all N ¥ 2.

The corresponding Fourier multipliers are denoted by

χ1pnq � ρ1pnq and χNpnq � ρNpnq � ρN{2pnq for all N ¥ 2. (3.1.15)

For any s P R, the CsxpT3q-norm is defined as

}f}CsxpT3q
def� sup

N¥1
N s}PNf}L8x pT3q. (3.1.16)

We then define the corresponding space CsxpT3q by

CsxpT3q def�  
f : T3 Ñ R| }f}Csx   8, lim

NÑ8
N s}PNf}L8x pT3q � 0

(
. (3.1.17)

Due to the additional constraint as N Ñ 8, the space CsxpT3q is separable. This allows us to later

use Prokhorov’s theorem for families of measures on CsxpT3q. We also define

C0
t Csxpr0,8s � T3q

def�  
f : r0,8q � T3 Ñ R| sup

t¥0
}fpt, �q}CsxpT3q   8, lim

tÑ8
fpt, �q exists in CsxpT3q(. (3.1.18)

Similar as above, the additional restriction as tÑ 8 makes C0
t Csxpr0,8s � T3q separable.

As a measure of tightness in C0
t Csxpr0,8s � T3q, we define for any 0   α   1 and η ¡ 0 the norm

}f}Cα,ηt Csxpr0,8s�T3q
def� }fp0q}CsxpT3q � sup

0¤t,t1¤8

�
minpxty, xt1yqη }fptq � fpt1q}CsxpT3q

1^ |t� t1|α


. (3.1.19)

For 1 ¤ r ¤ 8, we also define the Sobolev space Ws,r
x pT3q as the completion of C8

x pT3q with

respect to

}f}Ws,r
x
� }N sPNf}`rNLrx .

We hope that the subscript x prevents any confusion with the stochastic objects in Section 3.2.2.
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3.2 Stochastic objects

In this section, we introduce the stochastic control framework and describe several stochastic

objects. While the reader with a background in singular SPDE and advanced stochastic calculus

can think of this section as standard, much of this section may be new to a reader with a primary

background in dispersive PDE. As a result, we include full details for most standard arguments

but encourage the expert to skip the proofs.

3.2.1 Stochastic control perspective

We let pBn
t qnPZ3zt0u be a sequence of standard complex Brownian motions such that B�n

t � Bn
t

and Bn
t , B

m
t are independent for n � �m. We let B0

t be a standard real-valued Brownian motion

independent of pBn
t qnPZ3zt0u. Furthermore, we let Btp�q be the Gaussian process with Fourier

coefficients pBn
t qnPZ3 , i.e.,

Btpxq def�
¸
nPZ3

eixn,xyBn
t . (3.2.1)

For every t ¥ 0, the Gaussian process formally satisfies ErBtpxqBtpyqs � t � δpx � yq and hence

Btp�q is a scalar multiple of spatial white noise. We also let pFtqt¥0 be the filtration corresponding

to the family of Gaussian processes pBn
t qt¥0. For future use, we denote the ambient probability

space by pΩ,F ,Pq.

The Gaussian free field g, however, has covariance p1�∆q�1. To this end, we now introduce the

Gaussian process Wtpxq. For σtpxq as in (3.1.13) and any n P Z3, we define

W n
t

def�
» t

0

σspnq
xny dBn

s . (3.2.2)

We note that W n
t is a complex Gaussian random variable with variance ρ2

t pnq{xny2. We finally set

Wtpxq def�
¸
nPZ3

eixn,xyW n
t . (3.2.3)

84



It is easy to see for any κ ¡ 0 that W P C0
t C

�1{2�κ
x pr0,8s�T3q almost surely. With a slight abuse

of notation, we write dPpW q for the integration with respect to the law of W under P, i.e., we

omit the pushforward by W , and we write W for the canonical process on C0
t C

�1{2�κ
x pr0,8s�T3q.

Comparing Wt and Bt, we have changed the covariance from t Id to ρtp∇q2pI � ∆q�1. For any

fixed T ¥ 0, we have that

LawPpWT q � LawPpρT p∇qW8q. (3.2.4)

We already emphasize, however, that the processes t ÞÑ Wt and t ÞÑ ρtp∇qW8 have different laws,

since only the first process has independent increments. This difference will be important in the

definition of rµT below. To simplify the notation, we also introduce the Fourier multiplier Jt, which

is defined by xJtfpnq def� σtpnq
xny

pfpnq, (3.2.5)

Using this notation, we can represent the Gaussian process Wt through the stochastic integral

Wt �
» t

0

Js dBs.

In a similar spirit, we define for any u : r0,8q � T3 Ñ R the integral Itrus by

Itrus def�
» t

0

Jsusds. (3.2.6)

We now recall the Boué-Dupuis formula [BD98], where our formulation closely follows [BG20b,

BG20a]. We let Ha be the space of Ft-progressively measurable processes u : Ω� r0,8q�T3 Ñ R

which P-almost surely belong to L2
t,xpr0,8q � T3q.

Theorem 3.2.1 (Boué-Dupuis formula). Let 0   T   8, let F : Ctpr0, T s, C8
x pT3qq Ñ R be a

Borel measurable function, and let 1   p, q   8. Assume that

1

p
� 1

q
� 1, EP

�|F pW q|p�   8, and EP
�
e�qF pW q

�   8, (3.2.7)
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where we regard W as an element of Ctpr0, T s, C8
x pT3qq. Then,

� logEP

�
e�F pW q

�
� inf

uPHa
EP

�
F pW � Ipuqq � 1

2

» T

0

}us}2
L2pT3qds

�
. (3.2.8)

Remark 3.2.2. The optimization problem in (3.2.8) and, more generally, the change of perspective

from W8 to the whole process t ÞÑ Wt, is reminiscent of stochastic control theory.

Due to the frequency projection in the definition of Jt, we have that Wt, Itrus P Ctpr0, T s, C8
x pT3qq.

In our arguments below, the smoothness can be used to verify (3.2.7) through soft methods. Of

course, a soft method cannot yield uniform bounds in T , which are one of the main goals of this

section.

In the introduction, we discussed the Gibbs measure µN corresponding to the truncated dynamics

induced by HN , which has been defined in (3.1.10). In the spirit of the stochastic control approach,

we now change our notation and use the parameter T to denote the truncation. Since the law of

W8 under P is the same as the Gaussian free field g and P¤T � ρT p∇q, we obtain that

dµT pφq � 1

ZT,λ
exp

�
� :VT,λpρT p∇qφq:

	
d
�pW8q#P

�pφq. (3.2.9)

The renormalized potential energy VT,λ is as in (3.3.2). We view µT as a measure on the space

C�1{2�κ
x pT3q for any fixed κ ¡ 0. In order to utilize the Boué-Dupuis formula, we lift µT to a

measure on C0
t C

�1{2�κ
x pr0,8s � T3q.

Definition 3.2.3. We define the measure rµT on C0
t C

�1{2�κ
x pr0,8s � T3q by

drµT pW q def� 1

ZT,λ
exp

�� :VT,λpρT p∇qW8q:
�

dPpW q. (3.2.10)

The content of the next lemma explains the relationship between rµT and µT .

Lemma 3.2.4. The Gibbs measure µT is the pushforward of rµT under W8, i.e.,

µT � pW8q#rµT . (3.2.11)
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Due to its central importance to the rest of the paper, we prove this basic identity.

Proof. For any measurable function f : C�
1
2
�κ

x pT3q Ñ R, we have that»
fpφqdµT pφq � 1

ZT,λ

»
fpφq expp� :VT,λpρT p∇qφq:qd

�pW8q#P
�pφq

� 1

ZT,λ

»
fpW8q expp� :VT,λpρT p∇qW8q:qdPpW q

�
»
fpW8qdrµT pW q

�
»
fpφqd�pW8q#rµT �pφq.

This proves the desired identity (3.2.4).

In [BG20b, BG20a], Barashkov and Gubinelli work with the lifted measure

dsµT pW q � 1

ZT,λ
exp

�� :VT,λpWT q:
�

dPpW q. (3.2.12)

While WT and ρT p∇qW8 have the same distribution, the measures rµT and sµT do not coincide.

Since this is an important difference between this paper and the earlier works [BG20b, BG20a], let

us explain our motivation for working with rµT instead of sµT . From a probabilistic stand-point, the

measure sµT has better properties than rµT . This is related to the independent increments of the

process t ÞÑ Wt and we provide further comments in Remark 3.4.8 below. From a PDE perspective,

however, sµT behaves much worse than rµT . For the proof of global well-posedness and invariance in

the second part of this series, it is essential that µT � pW8q#rµT is invariant under the Hamiltonian

flow of (3.1.10). In contrast, the author is not aware of an explicit expression for the pushforward

of sµT under W8. In particular, pW8q#sµT is not directly related to µT and not necessarily invariant

under the Hamiltonian flow of HN . Alternatively, we could work with the pushforward of sµT under

WT . A similar calculation as in the proof of Lemma 3.2.4 shows that pWT q#sµT � pρT p∇qq#µT .

Unfortunately, pρT p∇qq#µT also does not seem to be invariant under a truncation of the nonlinear
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wave equation. To summarize, while the measure sµT has useful probabilistic properties, it lacks a

direct relationship to the truncated dynamics and is ill-suited for our globalization and invariance

arguments.

Since we rely on ρT p∇qW8 in the definition of rµT , the Gaussian process t ÞÑ ρT p∇qWt will play

an important role in the rest of this paper. As a result, we now deal with both values T and t

simultaneously. In most arguments, T will remain fixed while we use Itô’s formula and martingale

properties in t. To simplify the notation, we now write

W T

t
def� ρT p∇qWt and W T ,n

t
def� ρT pnqW n

t . (3.2.13)

Since this will be convenient below, we also define

ρTt pnq def� ρT pnq � ρtpnq, σTt pnq def� ρT pnqσtpnq, and JTt
def� ρT p∇qJt. (3.2.14)

Furthermore, we define the integral operator ITt by

ITt rus � ρT p∇qItrus �
» t

0

JTs usds. (3.2.15)

3.2.2 Stochastic objects and renormalization

We now proceed with the construction and renormalization of several stochastic objects. Similar

constructions are standard in the probability theory literature and a comprehensive and well-

written introduction can be found in [GP18, MWX17, OT20b]. In order to make this section

accessible to readers with a primary background in dispersive PDEs, however, we include full

details. In a similar spirit, we follow a hands-on approach and mainly rely on Itô calculus. In

Lemma 3.2.20, however, this approach becomes computationally infeasible and we also use multiple

stochastic integrals (see [Nua06] or Section 3.6.1.2).
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Lemma 3.2.5. Let SN be the symmetric group on t1, . . . , Nu and let W T ,n
t be as in (3.2.13).

Then, we have for all n1, n2, n3, n4 P Z3 that

W T ,n1
t �

» t

0

dW T ,n1
t1 (3.2.16)

W T ,n1
t W T ,n2

t �
¸
πPS2

» t

0

» t1

0

dW
T ,nπp2q
t2 dW

T ,nπp1q
t1 � δn1�n2�0

ρTt pn1q2
xn1y2

, (3.2.17)

W T ,n1
t W T ,n2

t W T ,n3
t �

¸
πPS3

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1 (3.2.18)

� 1

2

¸
πPS3

δnπp1q�nπp2q�0

ρTt pnπp1qq2
xnπp1qy2

W
T ,nπp3q
t ,

W T ,n1
t W T ,n2

t W T ,n3
t W T ,n4

t �
¸
πPS4

» t

0

» t1

0

» t2

0

» t3

0

dW
T ,nπp4q
t4 dW

T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1 (3.2.19)

� 1

4

¸
πPS4

δnπp1q�nπp2q�0

ρTt pnπp1qq2
xnπp1qy2

W
T ,nπp3q
t W

T ,nπp4q
t

� 1

8

¸
πPS4

δnπp1q�nπp2q�nπp3q�nπp4q�0

ρTt pnπp1qq2
xnπp1qy2

ρTt pnπp3qq2
xnπp3qy2

.

The integrals in (3.2.16)-(3.2.19) are iterated Itô integrals. This lemma is related to the product

formula for multiple stochastic integrals, see e.g. [Nua06, Proposition 1.1.3].

Proof. The first equation (3.2.16) follows from the definition of the Itô derivative dW n
t .

The second equation (3.2.17) follows from Itô’s product formula. Indeed, we have that

W T ,n1
t W T ,n2

t �
» t

0

W T ,n2
s dW T ,n1

s �
» t

0

W T ,n1
s dW T ,n2

s �
» t

0

dxW T ,n1 ,W T ,n2ys

�
» t

0

� » s

0

dW T ,n2
τ

	
dW T ,n1

s �
» t

0

� » s

0

dW T ,n1
τ

	
dW T ,n2

s � δn1�n2�0

» t

0

σTs pn1q2
xn1y2

ds

�
¸
πPS2

» t

0

» t1

0

dW
T ,nπp2q
t2 dW

T ,nπp1q
t1 � δn1�n2�0

ρTt pn1q2
xn1y2

.

The third equation (3.2.18) follows from Itô’s formula and the second equation (3.2.17). Using
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Itô’s formula, we have that

W T ,n1
t W T ,n2

t W T ,n3
t

� 1

2

¸
πPS3

» t

0

W
T ,nπp3q
s W

T ,nπp2q
s dW

T ,nπp1q
s � 1

2

¸
πPS3

» t

0

W
T ,nπp3q
s dxW T ,nπp2q ,W T ,nπp1qys.

The easiest way to keep track of the pre-factors throughout the proof is to compare the number

of terms of each type and the cardinality of the symmetric group. In the formula above, we have

three terms of each type and the cardinality #S3 � 6, so we need the pre-factor 1{2. By inserting

the second equation (3.2.17) and our expression for the cross-variation, we obtain

W T ,n1
t W T ,n2

t W T ,n3
t

�
¸
πPS3

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1 � 1

2

¸
πPS3

δnπp3q�nπp2q�0

» t

0

ρTs pnπp2qq2
xnπp2qy2

dW
T ,nπp1q
s

� 1

2

¸
πPS3

δnπp1q�nπp2q�0

» t

0

σTs pnπp1qq2
xnπp1qy2

W
T ,nπp3q
s ds

�
¸
πPS3

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1

� 1

2

¸
πPS3

δnπp1q�nπp2q�0

» t

0

�
σTs pnπp1qq2
xnπp1qy2

W
T ,nπp3q
s ds� ρTs pnπp1qq2

xnπp1qy2
dW

T ,nπp3q
s



�

¸
πPS3

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1 � 1

2

¸
πPS3

δnπp1q�nπp2q�0

ρTt pnπp1qq2
xnπp1qy2

W
T ,nπp3q
t .

For the second equality, we also used the permutation invariance of any sum over π P S3. This

completes the proof of the third equation (3.2.18).

We now prove the fourth and final equation (3.2.19). The argument differs from the proof of

the third equation only in its notational complexity. Using Itô’s formula and the third equation
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(3.2.18), we obtain that

W T ,n1
t W T ,n2

t W T ,n3
t W T ,n4

t

� 1

6

¸
πPS4

» t

0

W
T ,nπp4q
s W

T ,nπp3q
s W

T ,nπp2q
s dW

T ,nπp1q
s � 1

4

¸
πPS4

» t

0

W
T ,nπp4q
s W

T ,nπp3q
s dxW T ,nπp2q ,W T ,nπp1qys

�
¸
πPS4

» t

0

» t1

0

» t2

0

» t3

0

dW
T ,nπp4q
t4 dW

T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1

� 1

2

¸
πPS4

δnπp1q�nπp2q�0

xnπp1qy2

» t

0

ρTs pnπp1qq2W T ,nπp4q
s dW

T ,nπp3q
s � 1

4

¸
πPS4

» t

0

σTs pnπp1qq2W T ,nπp4q
s W

T ,nπp3q
s ds

�
¸
πPS4

» t

0

» t1

0

» t2

0

» t3

0

dW
T ,nπp4q
t4 dW

T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1 � 1

4

¸
πPS4

�
δnπp1q�nπp2q�0

xnπp1qy2
�» t

0

�
σTs pnπp1qq2W T ,nπp4q

s W
T ,nπp3q
s ds� ρTs pnπp1qq2W T ,nπp4q

s dW
T ,nπp3q
s � ρTs pnπp1qq2W T ,nπp3q

s dW
T ,nπp4q
s


�
.

Using Itô’s formula, we obtain that» t

0

�
σTs pnπp1qq2W T ,nπp4q

s W
T ,nπp3q
s ds� ρTs pnπp1qq2W T ,nπp4q

s dW
T ,nπp3q
s � ρTs pnπp1qq2W T ,nπp3q

s dW
T ,nπp4q
s



� ρTt pnπp1qq2W T ,nπp3q

t W
T ,nπp4q
t � δnπp3q�nπp4q�0

» t

0

ρTs pnπp1qq2
σTs pnπp3qq2
xnπp3qy2

ds.

The total contribution of the second summand is

� 1

4

¸
πPS4

δnπp1q�nπp2q�nπp3q�nπp4q�0

xnπp1qy2xnπp3qy2

» t

0

ρTs pnπp1qq2σTs pnπp3qq2ds

� �1

8

¸
πPS4

δnπp1q�nπp2q�nπp3q�nπp4q�0

xnπp1qy2xnπp3qy2

» t

0

�
ρTs pnπp1qq2σTs pnπp3qq2 � σTs pnπp1qq2ρTs pnπp3qq2

	
ds

� �1

8

¸
πPS4

δnπp1q�nπp2q�nπp3q�nπp4q�0

ρTt pnπp1qq2
xnπp1qy2

ρTt pnπp3qq2
xnπp3qy2

.

This completes the proof of the fourth equation (3.2.19).

Definition 3.2.6 (Renormalization). We define the renormalization constants aTt , b
T
t P R and the

multiplier MT
t : L2pT3q Ñ L2pT3q by

aTt
def�

¸
nPZ3

ρTt pnq2
xny2

, bTt
def�

¸
n1,n2PZ3

pV pn1 � n2qρTt pn1q2ρTt pn2q2
xn1y2xn2y2

91



and zMT
t fpnq def�

� ¸
mPZ3

pV pn�mqρ
T
t pmq2
xmy2

	 pfpnq.
Using this notation, we set

:f 2 :
def� f 2 � aTt , (3.2.20)

:pV � f 2qf :
def� pV � f 2qf � aTt

pV p0qf � 2MT

t f, (3.2.21)

:pV � f 2qf 2 :
def� pV � f 2qf 2 � aTt V � f 2 � aTt

pV p0qf 2 � 4pMT

t fqf � paTt q2pV p0q � 2bTt . (3.2.22)

Remark 3.2.7. As is clear from the definition, the renormalized powers in (3.2.20), (3.2.21), and

(3.2.22) depend on the regularization parameter t. This dependence will always be clear from

context and we thus do not reflect it in our notation.

Definition 3.2.8 (Renormalization of the dynamics). For any N ¥ 1, we define

aN
def� aN8 � a8N , bN

def� bN8 � b8N , and MN
def� MN

8 �M8
N . (3.2.23)

Throughout most of the paper, we will only work with the renormalization constants from Defini-

tion 3.2.6, which contain two finite parameters. The renormalization constants in Definition 3.2.8

will be more important in the second part of this series.

Proposition 3.2.9 (Stochastic integral representation of renormalized powers). With n12, n123,

and n1234 defined as in (3.1.12), we have that

:pW T

t q2 : � 2
¸

n1,n2PZ3

eixn12,xy

» t

0

» t1

0

dW T ,n2
t2 dW T ,n1

t1 (3.2.24)

:pV � pW T

t q2qW T

t : �
¸

n1,n2,n3PZ3

πPS3

pV pnπp1q � nπp2qqeixn123,xy

» t

0

» t1

0

» t2

0

dW T ,n3
t3 dW T ,n2

t2 dW T ,n1
t1 (3.2.25)
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:pV � pW T

t q2qpW T

t q2 : �
¸

n1,n2,n3,n4PZ3

πPS4

�pV pnπp1q � nπp2qqeixn1234,xy (3.2.26)

�
» t

0

» t1

0

» t2

0

» t3

0

dW T ,n4
t4 dW T ,n3

t3 dW T ,n2
t2 dW T ,n1

t1

�
.

Furthermore, it holds that»
T3

:pV � pW T

t q2qpW T

t q2 : dx � 4

» t

0

»
T3

:pV � pW T

s q2qW T

s : dW T

s . (3.2.27)

Remark 3.2.10. The ”lower-order” terms in Definition 3.2.6 were chosen precisely to obtain the

result in Proposition 3.2.9. The renormalized powers of W T
t can be represented solely using iter-

ated stochastic integrals, which have many desirable properties.

Proposition 3.2.9 essentially follows from Lemma 3.2.5, Definition 3.2.6, and a tedious calculation.

For the sake of completeness, however, we provide full details.

Proof. We first prove (3.2.24). Using (3.2.17), we have that

pW T

t q2 �
¸

n1,n2PZ3

eixn1�n2,xyW T ,n1
t W T ,n2

t

�
¸
πPS2

¸
n1,n2PZ3

eixn1�n2,xy

» t

0

» t1

0

dW
T ,nπp2q
t2 dW

T ,nπp1q
t1 �

¸
n1,n2PZ3

δn1�n2�0
ρTt pn1q2
xn1y2

eixn1�n2,xy

�
¸
πPS2

¸
n1,n2PZ3

eixn1�n2,xy

» t

0

» t1

0

dW
T ,nπp2q
t2 dW

T ,nπp1q
t1 � aTt .

By subtracting aTt from both sides and symmetrizing, this leads to the desired identity.
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We now turn to the proof of (3.2.25). From (3.2.18), we obtain that

pV � pW T

t q2qW T

t �
¸

n1,n2,n3PZ3

pV pn1 � n2qeixn123,xyW T ,n1
t W T ,n2

t W T ,n3
t

�
¸
πPS3

¸
n1,n2,n3PZ3

pV pn1 � n2qeixn123,xy

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1

� 1

2

¸
πPS3

¸
n1,n2,n3PZ3

pV pn1 � n2qeixn123,xyδnπp1q�nπp2q�0

ρTt pnπp1qq2
xnπp1qy2

W
T ,nπp3q
t ,

�
¸
πPS3

¸
n1,n2,n3PZ3

pV pn1 � n2qeixn123,xy

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1

�
¸

n1,n3PZ3

pV p0qeixn3,xy
ρTt pn1q2
xn1y2

W T ,n3
t � 2

¸
n1,n3PZ3

pV pn1 � n3qeixn3,xy
ρTt pn1q2
xn1y2

W T ,n3
t

�
¸
πPS3

¸
n1,n2,n3PZ3

pV pn1 � n2qeixn123,xy

» t

0

» t1

0

» t2

0

dW
T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1

� aTt
pV p0qW T

t � 2MT

tW
T

t .

After symmetrizing and comparing with Definition 3.2.6, this leads to the desired identity. Next,

we prove the identity (3.2.26). Using (3.2.19), we have that

pV � pW T

t q2qpW T

t q2

�
¸

n1,n2,n3,n4PZ3

pV pn1 � n2qeixn1234,xyW T ,n1
t W T ,n2

t W T ,n3
t W T ,n4

t

�
¸

n1,n2,n3,n4PZ3

πPS4

pV pn1 � n2qeixn1234,xy

» t

0

» t1

0

» t2

0

» t3

0

dW
T ,nπp4q
t4 dW

T ,nπp3q
t3 dW

T ,nπp2q
t2 dW

T ,nπp1q
t1

� 1

4

¸
n1,n2,n3,n4PZ3

πPS4

pV pn1 � n2qeixn1234,xyδnπp1q�nπp2q�0

ρTt pnπp1qq2
xnπp1qy2

W
T ,nπp3q
t W

T ,nπp4q
t (3.2.28)

� 1

8

¸
n1,n2,n3,n4PZ3

πPS4

pV pn1 � n2qeixn1234,xyδnπp1q�nπp2q�nπp3q�nπp4q�0

ρTt pnπp1qq2
xnπp1qy2

ρTt pnπp3qq2
xnπp3qy2

. (3.2.29)
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It remains to simplify (3.2.28) and (3.2.29). Regarding (3.2.28), we have that

1

4

¸
n1,n2,n3,n4PZ3

πPS4

pV pn1 � n2qeixn1234,xyδnπp1q�nπp2q�0

ρTt pnπp1qq2
xnπp1qy2

W
T ,nπp3q
t W

T ,nπp4q
t

�
¸

n1,n2,n3PZ3

pV pn1 � n2qρ
T
t pn3q2
xn3y2

eixn1�n2,xyW T ,n1
t W T ,n2

t

� 4
¸

n1,n2,n3PZ3

pV pn1 � n2qρ
T
t pn2q2
xn2y2

eixn1�n3,xyW T ,n1
t W T ,n3

t

�
¸

n1,n3,n4PZ3

pV p0qρTt pn1q2
xn1y2

eixn3�n4,xyW T ,n3
t W T ,n4

t

� aTt V � pW T

t q2 � 4pMT

tW
T

t qW T

t � aTt
pV p0qpW T

t q2.

Regarding (3.2.29), we note that

� 1

8

¸
πPS4

¸
n1,n2,n3,n4PZ3

pV pn1 � n2qeixn1234,xyδnπp1q�nπp2q�nπp3q�nπp4q�0

ρTt pnπp1qq2
xnπp1qy2

ρTt pnπp3qq2
xnπp3qy2

� �
¸

n1,n3PZ3

pV p0qρTt pn1q2ρTt pn3q2
xn1y2xn3y2

� 2
¸

n1,n2PZ3

pV pn1 � n2qρTt pn1q2qρTt pn2q2
xn1y2xn2y2

� �pV p0qpaTt q2 � 2bTt .

After symmetrizing, this completes the proof of (3.2.26).

Finally, it remains to prove (3.2.27). Since V is real-valued and even, we have that pV pnq � pV pnq �pV p�nq. As long as n1234 � 0, this implies¸
πPS4

pV pnπp1q � nπp2qq � 4
¸
πPS3

pV pnπp1q � nπp2qq. (3.2.30)

Using (3.2.30), (3.2.27) follows after inserting (3.2.25) and (3.2.26) into the two sides of the identity.

Like the monomials and Hermite polynomials (further discussed below), the generalized and renor-

malized powers in Definition 3.2.6 satisfy a binomial formula.
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Lemma 3.2.11 (Binomial formula). For any f P H1pT3q, we have the binomial formulas

:pV � pW T

t � fq2qpW T

t � fq:
�:pV � pW T

t q2qW T

t : �pV � :pW T

t q2 :qf � 2
�pV � pW T

t fqqW T

t �MT

t f
�

� 2pV � pW T

t fqqf � pV � f 2qW T

t � pV � f 2qf

(3.2.31)

and»
T3

:pV � pW T

t � fq2qpW T

t � fq2 : dx

�
»
T3

:pV � pW T

t q2qpW T

t q2 : dx� 4

»
T3

:pV � pW T

t q2qW T

t : fdx� 2

»
T3

pV � :pW T

t q2 :qf 2dx

� 4

»
T3

�
pV � pW T

t fqqW T

t f � pMT

t fqf
�
dx� 4

»
T3

pV � f 2qf W T

t dx�
»
T3

pV � f 2qf 2dx.

(3.2.32)

Remark 3.2.12. Overall, the terms in (3.2.32) obey better analytical estimates than their coun-

terparts for the Φ4
3-model in [BG20a]. However, their algebraic structure is more complicated. The

most challenging term is »
T3

�
pV � pW T

t fqqW T

t f � pMT

t fqf
�
dx,

which requires a delicate random matrix estimate (Section 3.3.3).

Proof of Lemma 3.2.11: This follows from Definition 3.2.6 and the classical binomial formula. For

the quartic binomial formula (3.2.32), we also used the self-adjointness of the convolution with V

and the multiplier MT
t .

While this is not reflected in our notation, it is clear from Definition 3.2.6 that the multiplier

MT
t depends linearly on the interaction potential V . In the proof of the random matrix estimate

(Proposition 3.3.7), we will need to further decompose MT
t , both with respect to the interac-

tion potential V and dyadic frequency blocks. We introduce the notation corresponding to this

decomposition in the next definition.
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Definition 3.2.13. We let MT
t rV ;N1, N2s be the Fourier multiplier corresponding to the symbol

n ÞÑ
¸
kPZ3

pV pn� kq
xky2

χN1pkqχN2pkqρTt pkq2. (3.2.33)

In the next definition, we define our last renormalization of a stochastic object.

Definition 3.2.14. We define the correlation function on T3 by

CTt rN1, N2spyq def�
¸
kPZ3

χN1pkqχN2pkq
xky2

ρTt pkq2eixk,yy. (3.2.34)

We further define

:pτyPN1W
T

t qPN2W
T

t : pxq def� pτyPN1W
T

t qpxqPN2W
T

t pxq � CTt rN1, N2spyq. (3.2.35)

Here, τy denotes the translation operator τyfpxq � fpx� yq.

The next lemma relates the multiplier and correlation function from Definition 3.2.13 and Definition

3.2.14, respectively.

Lemma 3.2.15 (Physical space representation of MT
t ). For any f P C8

x pT3q, we have that

MT

t rV ;N1, N2sf �
�
CTt rN1, N2sV

� � f. (3.2.36)

Proof. By definition of the multiplier MT
t rV ;N1, N2s and since

k ÞÑ 1

xky2
χN1pkqχN2pkqρTt pkq2 (3.2.37)

is even, the symbol in (3.2.33) is the convolution of pV with (3.2.37). As a result, the sequence

n ÞÑMT
t rV ;N1, N2spnq has the inverse Fourier transform is given by� ¸

kPZ3

χN1pkqχN2pkq
xky2

ρTt pkq2eixk,xy
	
V pxq � CTt rN1, N2spxqV pxq.
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In Lemma 3.2.5, Proposition 3.2.9, Lemma 3.2.11, and Lemma 3.2.15, we have dealt with the

algebraic structure of stochastic objects. We now move from algebraic aspects towards analytic

estimates. In the following lemmas, we show that several stochastic objects are well-defined and

study their regularities.

Lemma 3.2.16 (Stochastic objects I). For every p ¥ 1, ε ¡ 0, and every 0   γ   minpβ, 1q, we

have that

sup
t¥0

�
E
�
} :pW T

t q2 : }pC�1�ε
x pT3q

�	 1
p À p, (3.2.38)

sup
t¥0

�
E
�
}V � :pW T

t q2 : }p
C�1�β�ε
x pT3q

�	 1
p À p, (3.2.39)

sup
t¥0

�
E
�
} :pV � pW T

t q2qW T

t : }p
C
� 3

2�γ
x pT3q

�	 1
p À p

3
2 . (3.2.40)

Furthermore, as t Ñ 8 and/or T Ñ 8, the stochastic objects : pW T
t q2 :, V � : pW T

t q2 :, and

:pV � pW T
t q2qW T

t : converge in their respective spaces indicated by (3.2.38)-(3.2.40).

Remark 3.2.17. The statement and proof of Lemma 3.2.16 are standard and the respective

regularities can be deduced by simple “power-counting”. Nevertheless, we present the proof to

familiarize the reader with our set-up and as a warm-up for Lemma 3.2.20 below.

Proof. The first step in the proofs of (3.2.38)-(3.2.40) is a reduction to an estimate in L2pΩ� T3q
using Gaussian hypercontractivity. We provide the full details of this step for (3.2.38), but will

omit similar details in the remaining estimates (3.2.39)-(3.2.40).

Let N ¥ 1 and let q � qpεq ¥ 1 be sufficiently large. By using Hölder’s inequality in ω P Ω, it

suffices to prove the estimates for p ¥ q. Using Bernstein’s inequality and Minkowski’s integral

inequality, we obtain

}PN :pW T

t q2 : }LpωC�1�ε
x pΩ�T3q À N�1� ε

2 }PN :pW T

t q2 : }LpωLqxpΩ�T3q ¤ N�1� ε
2 }PN :pW T

t q2 : }LqxLpωpT3�Ωq.
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By Gaussian hypercontractivity (Lemma 3.6.1), we obtain that

N�1� ε
2 }PN :pW T

t q2 : }LqxLpωpT3�Ωq À N�1� ε
2p}PN :pW T

t q2 : }LqxL2
ωpT3�Ωq.

Since the distribution of : pW T
t q2 : is translation invariant, the function x ÞÑ } : pW T

t q2 : }L2
ωpΩq is

constant. We can then replace LqxpT3q by L2
xpT3q and obtain

N�1� ε
2p}PN :pW T

t q2 : }LqxL2
ωpT3�Ωq À N�1� ε

2p}PN :pW T

t q2 : }L2
xL

2
ωpT3�Ωq

À N� ε
4p} :pW T

t q2 : }
L2
ωH

�1� ε4
x pΩ�T3q

.

In order to prove (3.2.38), it therefore remains to show uniformly in T, t ¥ 0 that

} :pW T

t q2 : }2
L2
ωH

�1�ε
x pΩ�T3q

À 1. (3.2.41)

Using Proposition 3.2.9, the orthogonality of the iterated stochastic integrals, and Itô’s isometry,

we have that

} :pW T

t q2 : }2
L2
ωH

�1�ε
x

� 4
¸
nPZ3

1

xny2�2ε
E
�� ¸

n1,n2PZ3 :
n1�n2�n

» t

0

» t1

0

dW T ,n2
t2 dW T ,n1

t1

	2�

À
¸

n,n1,n2PZ3

n1�n2�n

1

xny2�2εxn1y2xn2y2
ρTt pn1q2ρTt pn2q2

À
¸

n1,n2PZ3

1

xn1 � n2y2�2εxn1y2xn2y2
À 1.

This completes the proof of (3.2.38). The estimate (3.2.39) can be deduced from the smoothing

properties of V or by repeating the exact same argument. It remains to prove (3.2.40), which can

be reduced using hypercontractivity (and the room in γ) to the estimate

} :pV � pW T

t q2qW T

t : }2

L2
ωH

� 3
2�γ

x

À 1.
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Using Proposition 3.2.9, the orthogonality of the iterated stochastic integrals, and Itô’s isometry,

we have that

} :pV � pW T

t q2qW T

t : }2

L2
ωH

� 3
2�γ

x

�
¸
nPZ3

1

xny3�2γ
E
�� ¸

πPS3

¸
n1,n2,n3PZ3 :
n1�n2�n3�n

pV pnπp1q � nπp2qq
» t

0

» t1

0

» t2

0

dW T ,n3
t3 dW T ,n2

t2 dW T ,n1
t1

	2�

À
¸

n1,n2,n3PZ3

1

xn1 � n2 � n3y3�2γ

1

xn1 � n2y2β

1

xn1y2xn2y2xn3y2
.

By first summing in n3, using that 3� 2γ ¡ 1, and then in n1 and n2, using γ   β, we obtain

¸
n1,n2,n3PZ3

1

xn1 � n2 � n3y3�2γ

1

xn1 � n2y2β

1

xn1y2xn2y2xn3y2

À
¸

n1,n2PZ3

1

xn1 � n2y2�2pβ�γq

1

xn1y2xn2y2
À 1.

We also record the following refinement of (3.2.40) in Lemma 3.2.16, which will be needed in the

proof of Lemma 3.2.20 below.

Corollary 3.2.18. For every 0   γ   minp1, βq and any n P Z3, we can control the Fourier

coefficients of :pV � pW T
t q2qW T

t : by

sup
T,t¥0

EP

���F�
:pV � pW T

t q2qW T

t :
	
pnq

���2 À xny�2γ. (3.2.42)

Proof. Arguing as in the proof of Lemma 3.2.16, it suffices to prove that

¸
n1,n2,n3PZ3 :

n123�n

1

xn12y2βxn1y2xn2y2xn3y2
À 1

xny2γ
. (3.2.43)
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Indeed, after parametrizing the sum by n1 and n3, (3.2.43) follows from

¸
n1,n2,n3PZ3 :

n123�n

1

xn12y2βxn1y2xn2y2xn3y2
�

¸
n1,n3PZ3

1

xn� n3y2βxn1y2xn� n1 � n3y2xn3y2

À
¸
n3PZ3

1

xn� n3y1�2βxn3y2

À xny�2γ.

Lemma 3.2.19 (Stochastic objects II). For any sufficiently small δ ¡ 0 and any N1, N2 ¥ 1, it

holds that

sup
T,t¥0

�
E
�

sup
yPT3

} :pτyPN1W
T

t qPN2W
T

t : }p
C�1�δ
x pT3q

�	 1
p À maxpN1, N2q� δ

10p. (3.2.44)

Proof. Arguing as in the proof of (3.2.38) in Lemma 3.2.16, we have that

sup
yPT3

�
E
�
} :pτyPN1W

T

t qPN2W
T

t : }p
C�1�δ
x pT3q

�	 1
p À maxpN1, N2q� δ

2p. (3.2.45)

It only remains to move the supremum in y P T3 into the expectation. From a crude estimate, we

have for all y, y1 P T3 that�
E
�
} :pτyPN1W

T

t qPN2W
T

t : � :pτy1PN1W
T

t qPN2W
T

t : }p
C�1�δ
x pT3q

�	 1
p À maxpN1, N2q3}y � y1} p.

By Kolmogorov’s continuity theorem (cf. [Str11, Theorem 4.3.2]), we obtain for any 0   α   1

that�
E
�

sup
y,y1PT3

�} :pτyPN1W
T
t qPN2W

T
t : � :pτy1PN1W

T
t qPN2W

T
t : }C�1�δ

x pT3q

}y � y1}α

p�
 1

p

Àα maxpN1, N2q3p.

Combining this with (3.2.45) leads to the desired estimate.
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The next lemma is similar to Lemma 3.2.16, but is concerned with more complicated stochastic

objects. In order to shorten the argument, we will no longer use Itô’s formula to express products

of stochastic integrals. Instead, we will utilize the product formula for multiple stochastic integrals

from [Nua06, Proposition 1.1.3]. Before we state the lemma, we follow [BG20b, BG20a] and define

WT,r3s

t
def�

» t

0

pJTs q2 :pV � pW T

s q2qW T

s : ds. (3.2.46)

We emphasize that WT,r3s

t contains the interaction potential V even though this is not reflected in

our notation.

Lemma 3.2.20 (Stochastic objects III). For every p ¥ 1, ε ¡ 0, and every 0   γ   minpβ, 1
2
q, we

have that

sup
T,t¥0

�
E
�
}WT,r3s

t }p
C

1
2�γ
x pT3q

�	 1
p À p

3
2 , (3.2.47)

sup
T,t¥0

�
E
�
}pV � :pW T

t q2 :qWT,r3s

t }p
C�1�γ
x pT3q

�	 1
p À p

5
2 , (3.2.48)

sup
T,t¥0

�
E
����V � pW T

t W
T,r3s

t q�W T

t �MT

tW
T,r3s

t

��p
C�1�γ
x pT3q

�	 1
p À p

5
2 . (3.2.49)

Remark 3.2.21. The analog of pV � :pW T
t q2 :qWT,r3s

t for the Φ4
3-model in [BG20b] requires a further

logarithmic renormalization. In our case, however, the additional smoothing from the interaction

potential V eliminates the responsible logarithmic divergence.

Proof. We first prove (3.2.47), which is (by far) the easiest estimate. As in the proof of Lemma

3.2.16, we can use Gaussian hypercontractivity (Lemma 3.6.1) to reduce (3.2.48) to the estimate

E
�
}WT,r3s

t }2

H
1
2�γ
x pT3q

�
À 1. (3.2.50)

The rest of the argument follows from Corollary 3.2.18 and a deterministic estimate. More precisely,
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it follows from }σTs }L2
s
� 1 that

}WT,r3s

t }2

H
1
2�γ
x pT3q

�
��� » t

0

σTs p∇q2x∇y�
3
2
�γ :pV � pW T

s q2qW T

s : ds
���2

L2
x

�
¸
nPZ3

��� » t

0

σTs pnq2F
�
x∇y� 3

2
�γ :pV � pW T

s q2qW T

s :
	
pnqds

���2
¤

¸
nPZ3

» t

0

σTs pnq2
���F�

x∇y� 3
2
�γ :pV � pW T

s q2qW T

s :
	
pnq

���2ds.

For a small δ ¡ 0, we obtain from Corollary 3.2.18 (with γ replaced by γ � δ) that

E
�
}WT,r3s

t }2

H
1
2�γ
x pT3q

�
¤

¸
nPZ3

» t

0

σTs pnq2E
����F�

x∇y� 3
2
�γ :pV � pW T

s q2qW T

s :
	
pnq

���2�ds

À
¸
nPZ3

» t

0

σTs pnq2
1

xny3�δ
ds À 1.

We now turn to the proof of (3.2.48). Using the same reductions based on Gaussian hypercontrac-

tivity as before, it suffices to prove that

E
�
}pV � :pW T

t q2 :qWT,r3s

t }2
H�1�γ
x pT3q

�
À 1. (3.2.51)

We first rewrite pV � : pW T
t q2 :qpxqWT,r3s

t pxq as a product of multiple stochastic integrals instead

of iterated stochastic integrals. This allows us to use the product formula from Lemma 3.6.4,

which leads to a (relatively) simple expression. To simplify the notation below, we define the

symmetrization of pV pn1 � n2q by

pVSpn1, n2, n3q � 1

6

¸
πPS3

pV pnπp1q � nπp2qq.

From Proposition 3.2.9, (3.2.46), and the stochastic Fubini theorem (see [DZ92, Theorem 4.33]),
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we have that

WT,r3s

t pxq

�
¸

n1,n2,n3PZ3

πPS3

pV pnπp1q � nπp2qq
xn123y2

eixn123,xy

» t

0

σTs pn123q2
� » s

0

» t1

0

» t2

0

dW T ,n3
t3 dW T ,n2

t2 dW T ,n1
t1

	
ds

�
¸

n1,n2,n3PZ3

pVSpn1, n2, n3q
xn123y2

eixn123,xy

» t

0

» t1

0

» t2

0

� » t

maxpt1,t2,t3q

σTs pn123q2ds
	

dW T ,n3
t3 dW T ,n2

t2 dW T ,n1
t1

We define the symmetric function f by

fpt1, n1, t2, n2, t3, n3; t, xq def�
pVspn1, n2, n3q

6xn123y2

� » t

maxpt1,t2,t3q

σTs pn123q2ds
	
eixn123,xy1t0 ¤ t1, t2, t3 ¤ tu.

where we view both t P R¡0 and x P T3 as fixed parameters. Using the language from Section

3.6.1.2 and Lemma 3.6.2, we obtain that

WT,r3s

t pxq � I3rfp�; t, xqs, (3.2.52)

where I3 is a multiple stochastic integral. After defining

gpt4, n4, t5, n5; t, xq def� pV pn4 � n5qeixn45,xy1t0 ¤ t4, t5 ¤ tu,

a similar but easier calculation leads to

pV � :pW T

t q2 :qpxq � I2rgp�; t, xqs. (3.2.53)

By combining (3.2.52) and (3.2.53), we obtain that

pV � :pW T

t q2 :qpxqWT,r3s

t pxq � I3rfp�; t, xqsI2rgp�; t, xqs.

By using the product formula for multiple stochastic integrals (Lemma 3.6.4), we obtain that

pV � :pW T

t q2 :qpxqWT,r3s

t pxq
�I5rfp�; t, xqgp�; t, xqs � 6 � I3rfp�; t, xq b1 gp�; t, xqs � 3 � I1rfp�; t, xq b2 gp�; t, xqs.
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Inserting the definitions of f and g, this leads to

pV � :pW T

t q2 :qpxqWT,r3s

t pxq � G5pt, xq � G3pt, xq � G1pt, xq, (3.2.54)

where the Gaussian chaoses G5,G3, and G1 are given by

G5pt, xq �
¸

n1,...,n5PZ3

pV pn12qpV pn45q
xn123y2

eixn12345,xy

»
r0,ts5

� » t

maxpt1,t2,t3q

σTs pn123qds
	

dW T ,n5
t5 . . . dW T ,n1

t1 ,

G3pt, xq �
¸

n1,...,n5PZ3

�
δn35�0

pVspn1, n2, n3qpV pn45q
xn123y2xn3y2

eixn124,xy

�
»
r0,ts3

� » t

0

» t

maxpt1,t2,t3q

σTt3pn3q2σTs pn123q2dsdt3

	
dW T ,n4

t4 dW T ,n2
t2 dW T ,n1

t1

�
,

G1pt, xq � 1

2

¸
n1,...,n5PZ3

�
δn24�n35�0

pVspn1, n2, n3qpV pn45q
xn123y2xn2y2xn3y2

eixn1,xy

�
»
r0,ts

� » t

0

» t

0

» t

maxpt1,t2,t3q

σTt2pn2q2σTt3pn3q2σTs pn123q2dsdt3dt2

	
dW T ,n1

t1

�
Using the L2-orthogonality of the multiple stochastic integrals together with }σTs }L2

spR¡0q ¤ 1, we

obtain that

E
�
}pV � :pW T

t q2 :qWT,r3s

t }2
H�1�γ
x

�
À E

�
}G5}2

H�1�γ
x

�
� E

�
}G3}2

H�1�γ
x

�
� E

�
}G1}2

H�1�γ
x

�
À

¸
n1,n2,n3,n4,n5PZ3

xn12345y�2�2γxn123y�4|pV pn12q|2|pV pn45q|2
5¹
j�1

xnjy�2, (3.2.55)

�
¸

n1,n2,n4PZ3

xn124y�2�2γ
� ¸
n3PZ3

xn123y�2xn3y�2|pVspn1, n2, n3q||pV pn34q|
	2 ¹

j�1,2,4

xnjy�2 (3.2.56)

�
¸
n1PZ3

xn1y�4�2γ
� ¸
n2,n3PZ3

xn123y�2|pVspn1, n2, n3q||pV pn23q|xn2y�2xn3y�2
	2

. (3.2.57)

The estimates of the sums (3.2.55)-(3.2.57) follow from standard arguments. We present the details

for (3.2.55) and (3.2.57), but omit the details for the intermediate term (3.2.56).
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We start with the estimate of (3.2.55). The interaction with n1, n2, n3 at low frequency scales and

n4, n5 at high frequency scales is worse than all other contributions, so there is a lot of room in

several steps below. Using Lemma 3.6.10 for the sum in n5, which requires γ   minp1, βq, and

summing in n4, we obtain for a small δ ¡ 0 that¸
n1,n2,n3,n4,n5PZ3

xn12345y�2�2γxn123y�4|pV pn12q|2|pV pn45q|2
5¹
j�1

xnjy�2

À
¸

n1,n2,n3,n4PZ3

xn123y�4xn12y�2β
� 4¹
j�1

xnjy�2
	� ¸

n5PZ3

xn1234 � n5y�2�2γxn4 � n5y�2βxn5y�2
	

À
¸

n1,n2,n3PZ3

xn123y�4xn12y�2β
� 3¹
j�1

xnjy�2
	� ¸

n4PZ3

�xn1234y�1�δ � xn4y�1�δ
�xn4y�2

	
À

¸
n1,n2,n3PZ3

xn123y�4xn12y�2β
3¹
j�1

xnjy�2.

Summing in n3, n2, and n1, we obtain that¸
n1,n2,n3PZ3

xn123y�4xn12y�2β
3¹
j�1

xnjy�2 À
¸

n1,n2PZ3

xn12y�3�2βxn1y�2xn2y�2 À
¸
n1PZ3

xn1y�4 À 1.

We now turn to (3.2.57), which corresponds to double probabilistic resonance. We emphasize that

this term would be unbounded without smoothing effect of the potential V , which is the reason

for the additional renormalization in the Φ4
3-model, see e.g. [BG20b, Lemma 24]. Using Lemma

3.6.10 for the sum in n3, we obtain that¸
n1PZ3

xn1y�4�2γ
� ¸
n2,n3PZ3

xn123y�2|pVspn1, n2, n3q||pV pn23q|xn2y�2xn3y�2
	2

À
¸
n1PZ3

xn1y�4�2γ
� ¸
n2,n3PZ3

xn123y�2xn23y�βxn2y�2xn3y�2
	2

À
¸
n1PZ3

xn1y�4�2γ
� ¸
n2PZ3

�xn12y�1�β � xn2y�1�β
�xn2y�2

	2

À
¸
n1PZ3

xn1y�4�2γ À 1,
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provided that γ   1{2. This completes the proof of (3.2.48).

We now turn to the proof of (3.2.49). This stochastic object has a more complicated algebraic

structure than the stochastic object in (3.2.48), but a similar analytic behavior. From the definition

of MT
t , we obtain that

�
V � pW T

t W
T,r3s

t q�pxqW T

t pxq �MT

tW
T,r3s

t pxq

�
¸

m1,m4,m5PZ3

pV pm14qeixm145,xy{WT,r3s

t pm1q
�
W T ,m4
t W T ,m5

t � δm45�0
ρTt pm4q2
xm4y2

	
� 1

2

¸
m1,m4,m5PZ3

�pV pm14q � pV pm15q
�
eixm145,xy{WT,r3s

t pm1q
�
W T ,m4
t W T ,m5

t � δm45�0
ρTt pm4q2
xm4y2

	
.

Using the variable names m1,m4,m5 P Z3 instead of m1,m2,m3 P Z3 is convenient once we insert

an expression for WT,r3s

t . A minor modification of the derivation of (3.2.52) shows that

{WT,r3s

t pm1q � Irfp�; t,m1qs, (3.2.58)

where the symmetric function fp�; t,m1q is given by

fpt1, n1, t2, n3, t3, n3; t,m1q

� 1tn123 � m1u 1

xn123y2
pVSpn1, n2, n3q

� » t

maxpt1,t2,t3q

σTs pn123q2ds
	

1t0 ¤ t1, t2, t3 ¤ tu.

Using Lemma 3.2.5 and Lemma 3.6.2, we obtain that

W T ,m4
t W T ,m5

t � δm45�0
ρTt pm4q2
xm4y2

� I2rgp�; t,m4,m5qs, (3.2.59)

where the symmetric function gp�; t,m4,m5q is given by

gpt4, n4, t5, n5q def� 1

2

�
1tpn4, n5q � pm4,m5qu � 1tpn4, n5q � pm5,m4qu

	
1t0 ¤ t4, t5 ¤ tu.
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The author believes that inserting indicators such as 1tpn4, n5q � pm4,m5qu is notationally un-

pleasant, but it allows us to use the multiple stochastic integrals from [Nua06] without having to

“reinvent the wheel”. With this notation, we obtain that

�
V � pW T

t W
T,r3s

t q�pxqW T

t pxq �MT

tW
T,r3s

t pxq

� 1

2

¸
m1,m4,m5PZ3

eixm145,xy
�pV pm14q � pV pm15q

� � I3rfp�; t,m1qs � I2rgp�; t,m4,m5qs.

Using Lemma 3.6.4, we obtain that

�
V � pW T

t W
T,r3s

t q�pxqW T

t pxq �MT

tW
T,r3s

t pxq � rG5pt, xq � rG3pt, xq � rG1pt, xq, (3.2.60)

where the Gaussian chaoses are defined as

rG5pt, xq �
¸

n1,...,n5PZ3

pV pn12qpV pn1234q
xn123y2

eixn12345,xy

»
r0,ts5

� » t

maxpt1,t2,t3q

σTs pn123qds
	

dW T ,n5
t5 . . . dW T ,n1

t1 ,

rG3pt, xq � 1

2

¸
n1,...,n5PZ3

�
δn35�0

pVspn1, n2, n3q
xn123y2xn3y2

�pV pn12q � pV pn1234q
	
eixn124,xy

�
»
r0,ts3

� » t

0

» t

maxpt1,t2,t3q

σTt3pn3q2σTs pn123q2dsdt3

	
dW T ,n4

t4 dW T ,n2
t2 dW T ,n1

t1

�
,

rG1pt, xq � 1

4

¸
n1,...,n5PZ3

�
δn24�n35�0

pVspn1, n2, n3q
xn123y2xn2y2xn3y2

�pV pn12q � pV pn13q
	
eixn1,xy

�
»
r0,ts

� » t

0

» t

0

» t

maxpt1,t2,t3q

σTt2pn2q2σTt3pn3q2σTs pn123q2dsdt3dt2

	
dW T ,n1

t1

�
.

This concludes the algebraic aspects of the proof of (3.2.49). Starting from (3.2.60), the analytic

estimates are essentially as in the proof of the earlier estimate (3.2.48) and we omit the details.

This completes the proof of the lemma.

In the construction of the drift measure (Section 3.4), we need a renormalization of px∇y�1{2W T
t qn.

The term x∇y�1{2W T
t has regularity 0� and hence the n-th power is almost defined. While we could
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use iterated stochastic integrals to define the renormalized power, it is notationally convenient to

use an equivalent definition through Hermite polynomials. This definition is also closer to the

earlier literature in dispersive PDE. We recall that the Hermite polynomials tHnpx, σ2qun¥0 are

defined through the generating function

etx�
1
2
σ2t2 �

8̧

n�0

tn

n!
Hnpx, σ2q.

Definition 3.2.22. We define the renormalized n-th power by

:fn :
def� Hn

�
f, E}x∇y� 1

2W T

t }2
L2
x

	
. (3.2.61)

We list two basic properties of the renormalized power in the next lemma.

Lemma 3.2.23 (Stochastic objects IV). We have for all n ¥ 1, p ¥ 1, and ε ¡ 0 that

sup
T¥0

�
E
�
} :px∇y� 1

2W T

t qn : }p
C�ε
x pT3q

�	 1
p Àn,ε p

n
2 . (3.2.62)

Furthermore, we have for all f P H1
xpT3q the binomial formula

:px∇y� 1
2 pW T

t � fqqn :�
ņ

k�0

�
n

k



:px∇y� 1

2W T

t qk : px∇y� 1
2fqn�k. (3.2.63)

Since the proof is standard, we omit the details. For similar arguments, we refer the reader to

[OT20b].

3.3 Construction of the Gibbs measure

The goal of this section is to prove Theorem 3.1.3. The main ingredient is the Boué-Dupuis formula,

which yields a variational formulation of the Laplace transform of rµT . Our argument follows earlier

work of Barashkov and Gubinelli [BG20b], but the convolution inside the nonlinearity requires

additional ingredients (see Section 3.3.2 and Section 3.3.3).
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3.3.1 The variational problem, uniform bounds, and their consequences

Due to the singularity of the Gibbs measure for 0   β   1{2, which is the main statement in The-

orem 3.1.5, the construction will require one final renormalization. We recall that λ ¡ 0 denotes

the coupling constant in the nonlinearity and we let cT,λ be a real-valued constant which remains

to be chosen.

For the rest of this section, we let ϕ : C0
t C

�1{2�κ
x pr0,8s � Rq Ñ R be a functional with at most

linear growth. We denote the (non-renormalized) potential energy by

Vpfq def�
»
T3

pV � f 2qpxqf 2pxqdx �
»
T3�T3

V px� yqfpyq2fpxq2dxdy. (3.3.1)

We denote the renormalized version of Vpfq by

:VT,λpfq:def� λ

4
�
»
T3

:pV � f 2qf 2 : dx� cT,λ, (3.3.2)

where : pV � f 2qf 2 : is as in Definition 3.2.6. To further simplify the notation, we denote for any

u : r0,8q � T3 Ñ R the space-time L2-norm by

}u}2
L2
t,x

def�
» 8

0

}ut}2
L2
xpT3q dt. (3.3.3)

With this notation, we can now state the main estimate of this section.

Proposition 3.3.1 (Main estimate for the variational problem). If the renormalization constants

cT,λ are chosen appropriately, we have that

EP

�
ϕpW � Irusq� :VT,λpW T

8 � IT8rusq: �
1

2
}u}2

L2
t,x

�
� EP

�
ΨT,ϕ

λ pW, Irusq � λ

4
VpIT8puqq �

1

2
}lT rus}2

L2
t,x

�
,

(3.3.4)

where

lTt rus def� ut � λJTt :pV � pW T

t q2qW T

t : (3.3.5)
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and

|ΨT,ϕ

λ pW, Irusq| ¤ QT pW,ϕ, λq � 1

2

�λ
4
VpIT8puqq �

1

2
}lT rus}2

L2
t,x

	
. (3.3.6)

Here, QT pW,ϕ, λq satisfies for all p ¥ 1 the estimate ErQT pW,ϕ, λqps Àp 1, where the implicit

constant is uniform in T ¥ 1.

The argument of ϕ in (3.3.4) is not regularized, that is, we are working with W instead of W T .

This is important to obtain control over µT , which is the pushforward of rµT under W8.

Remark 3.3.2. This is a close analog of [BG20b, Theorem 1]. Due to the smoothing effect of the

interaction potential V , however, the shifted drift lT rus is simpler. In contrast to the Φ4
3-model,

the difference lT puq � u does not depend on u. As is evident from the proof, we have that

ΨT,ϕ

λ pW, Irusq � ϕpW � Irusq �ΨT,0

λ pW, Irusq. (3.3.7)

This observation will only be needed in Proposition 3.3.3 below.

We first record the following proposition, which is a direct consequence of Proposition 3.3.1 and

the Boué-Dupuis formula.

Proposition 3.3.3. The measures rµT satisfy the following properties:

(i) The normalization constants ZT,λ satisfy ZT,λ �λ 1, i.e., they are bounded away from zero

and infinity uniformly in T .

(ii) If the functional ϕ : C0
t C

�1{2�κ
x pr0,8s � T3q Ñ R has at most linear growth, then

sup
T¥0

ErµT
�

exp
�� ϕpW q�� Àϕ 1.

(iii) The family of measures prµT qT¥0 is tight on C0
t C

� 1
2
�κ

x pr0,8s � T3q.
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Proof of Proposition 3.3.3: We first prove (i). From the definition of µT , we have that

ZT,λ � EP

�
expp� :VT,λpW T

8q:q
�
.

Using the Boué-Dupuis formula and Proposition 3.3.1, we have that

� logpZT,λq � inf
uPHa

EP

�
:VT,λpW T

8 � IT8rusq: �
1

2
}u}2

L2
t,x

�
� inf

uPHa
EP

�
ΨT,0

λ pW, Irusq � λ

4
VpIT8puqq �

1

2
}lT rus}2

L2
t,x

�
.

From (3.3.6), we directly obtain that

� logpZT,λq ¥ �Cλ. (3.3.8)

By choosing ut
def� �λJTt :pV � pW T

t q2qW T
t :, which is equivalent to requiring lTt rus � 0 and implies

ITt rus �WT,r3s

t , we obtain from Lemma 3.2.20 that

� logpZT,λq Àλ 1� EP

�
VpλWT,r3s

t q
�
Àλ 1. (3.3.9)

By combining (3.3.8) and (3.3.9), we obtain that ZT,λ �λ 1.

We now turn to (ii), which controls the Laplace transform of rµT . Using the Boué-Dupuis formula

and Proposition 3.3.1, we obtain that

� log
�
ErµT

�
exp

�� ϕpW q��	 � logpZT,λq � inf
uPHa

EP

�
ΨT,ϕ

λ pW, Irusq � λ

4
VpIT8puqq �

1

2
}lT rus}2

L2
t,x

�
.

The first summand logpZT,λq has already been controlled. The second summand can be controlled

using exactly the same estimates.

We finally prove (iii). Let α, η ¡ 0 be sufficiently small depending on κ. Since the embedding

Cα,ηt C�
1�κ
2

x ãÑ C0
t C

� 1
2
�κ

x is compact (see (3.1.19) for the definition), it suffices to estimate the Laplace

transform evaluated at

ϕpW q � �}W }
Cα,ηt C

� 1�κ
2

x

. (3.3.10)
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While this is not a functional on C0
t C

� 1
2
�κ

x , we can proceed using a minor modification of the

previous estimates. Using Proposition 3.3.1 and (3.3.7), it suffices to prove

EP
�}W }

Cα,ηt C
� 1�κ

2
x

� À 1 and }Itrus}
Cα,ηt C

� 1�κ
2

x

À }u}L2
t,x
. (3.3.11)

The first estimate follows from Kolmogorov’s continuity theorem (cf. [Str11, Theorem 4.3.2]). The

second estimate is deterministic and follows from Sobolev embedding and Lemma 3.6.8.

Using Proposition 3.3.3, we easily obtain Theorem 3.1.3.

Proof of Theorem 3.1.3: The tightness is included in Proposition 3.3.3. The weak convergence

of the sequence pµNqN¥1 follows from tightness and the uniqueness of weak subsequential limits

(Proposition 3.6.12).

We also record the following consequence of the proof of Proposition 3.3.1, which will play an

important role in Section 3.5. The proof of this result will be postponed until Section 3.3.4.

Corollary 3.3.4 (Behavior of cT,λ). If β ¡ 1{2, then we have for all λ ¡ 0 that

sup
T¥1

|cT,λ| Àλ 1. (3.3.12)

Proposition 3.3.1 is the most challenging part in the construction of the measure and the proof

will be distributed over the remainder of this subsection.

3.3.2 Visan’s estimate and the cubic terms

In the variational problem, the potential energy VpIT8rusq appears with a favorable sign. This is

crucial to control the terms in :VT,λpW T
8 � IT8rusq: which are cubic in IT8rus and hence cannot be

controlled by the quadratic terms }u}2
L2 or }lT puq}2

L2 . In the Φ4
3-model, the potential energy term
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}IT8rus}4
L4 is both stronger and easier to handle. While we cannot change the strength of VpIT8rusq,

Lemma 3.3.5 solves the algebraic difficulties.

Due to the assumed lower-bound on V , we first note that

}f}4
L2
xpT3q � }f 2}2

L1
xpT3q À

»
T3�T3

V px� yqfpyq2fpxq2dxdy � Vpfq.

Since at high-frequencies the kernel of x∇y�β essentially behaves like |x� y|�p3�βq, we also obtain

that

}x∇y�β
2 rf 2s}2

L2pT3q � x�x∇y�βf 2
�
, f 2yL2

xpT3q À
»
T3�T3

V px� yqfpyq2fpxq2dxdy � Vpfq. (3.3.13)

Unfortunately, the square of f is inside the integral operator x∇y�β
2 , which makes it difficult to

use this estimate. The next lemma yields a much more useful lower bound on Vpfq.

Lemma 3.3.5 (Visan’s estimate). Let 0   β   3 and f P C8pT3q. Then, it holds that

}x∇y�β
4 f}4

L4
xpT3q À Vpfq. (3.3.14)

This estimate is a minor modification of [Vis07, (5.17)] and we omit the details. We now turn to

the primary application of Visan’s estimate in this work.

Lemma 3.3.6 (Cubic estimate). For any small δ ¡ 0 and any 1�2δ
2

  θ ¤ 1, it holds that���x∇y 1
2
�δ
�
pV � f 2qf

	���
L1
xpT3q

À Vpfq 1
2 }f}1�θ

L2
xpT3q}f}θH1

xpT3q. (3.3.15)

Proof. We use a Littlewood-Paley decomposition to write

pV � f 2qf �
¸
M,N3

PM
�
V � f 2

� � PN3f.
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We first estimate the contribution for N3 ÁM . We have that

¸
M,N3 : N3ÁM

��x∇y 1
2
�δ
�
PM

�
V � f 2

� � PN3f
	��

L1
x

À
¸

M,N3 : N3ÁM

N
1
2
�δ

3 }PMpV � f 2q}L2
x
}PN3f}L2

x

À
� ¸
M,N3 : N3ÁM

N
1
2
�δ

3 M�β
2N�θ

3

	
}x∇y�β

2 f 2}L2
x
}f}1�θ

L2
x
}f}θH1

x

À }x∇y�β
2 f 2}L2

x
}f}1�θ

L2
x
}f}θH1

x
.

Due to (3.3.13), this contribution is acceptable. Next, we estimate the contribution of N3 À M .

We further decompose

f 2 �
¸
N1,N2

PN1f � PN2f.

Then, the total contribution can be bounded using Hölder’s inequality and Fourier support con-

siderations by

¸
N1,N2,N3,M :

N3ÀM¤maxpN1,N2q

���x∇y 1
2
�δ
�
PM

�
V � pPN1f � PN2fq

� � PN3f
	���

L1
x

À
¸

N1,N2,N3,M :
N3ÀM¤maxpN1,N2q

M
1
2
�δ}PM

�
V � pPN1f � PN2fq

�}
L

4
3
x

}PN3f}L4
x

À
¸

N1,N2,M :
N3ÀM¤maxpN1,N2q

M
1
2
�δ�βN

β
4

3 }PN1f � PN2f}
L

4
3
x

}PN3x∇y�
β
4 f}L4

x

À
� ¸
N1,N2,M :
N1¥M,N2

M
1
2
�δ� 3β

4 N�θ
1 N

β
4

2

	
}x∇y�β

4 f}2
L4
x
}f}1�θ

L2
x
}f}θH1

x

À }x∇y�β
4 f}2

L4
x
}f}1�θ

L2
x
}f}θH1

x
.

In the last line, it is simplest to first perform the sum in N2, then in N1, and finally in M .
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3.3.3 A random matrix estimate and the quadratic terms

In the proof of Proposition 3.3.1, we will encounter expressions such as»
T3

��
V � pW T

t I
T

t rusq
�pxqW T

t pxqITt ruspxq � pMT

t I
T

t rusqpxqITt ruspxq



dx. (3.3.16)

This term no longer involves an explicit stochastic object, such as : pW T
t q2 : pxq, at a single point

x P T3. By expanding the convolution, we can capture stochastic cancellations in terms of two

spatial variables x P T3 and y P T3, which has already been studied in Lemma 3.2.19. The most

natural way to capture stochastic cancellations in (3.3.16), however, is through random operator

bounds. This is the object of the next lemma.

Proposition 3.3.7 (Random matrix estimate). Let γ ¡ maxp1� β, 1{2q and let 1 ¤ r ¤ 8. We

define

OpTt pγ, rq def� sup
f1,f2 :

}f1}Wγ,rx pT3q¤1,

}f2}
Wγ,r

1
x pT3q

¤1.

� »
T3

V � pW T

t f1q W T

t f2dx�
»
T3

�
MT

t f1

�
f2dx

�
.

Then, we have for all 1 ¤ p   8 that

sup
T,t¥0

}OpTt pγ, rq}LpωpΩq À p. (3.3.17)

Remark 3.3.8. Aside from Fourier support considerations, the proof below mainly proceeds in

physical space. If r � 2, an alternative approach is to view OpTt pγ, 2q as the operator norm of a

random matrix acting on the Fourier coefficients. Using a non-trivial amount of combinatorics, one

can then bound OpTt pγ, 2q using the moment method (see also [DNY20, Proposition 2.8]). This

alternative approach is closer to the methods in the literature on random dispersive equations but

more complicated. The estimate for r � 2, which is not needed in this paper, is useful in the study

of the stochastic heat equation with Hartree nonlinearity.
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Proof. Since this will be important in the proof, we now indicate the dependence of the multiplier

on the interaction potential by writing MT
t rV s. We use a Littlewood-Paley decomposition of

W T
t , f1, and f2. We then have that»
T3

V � pW T

t f1q W T

t f2dx�
»
T3

�
MT

t rV sf1

�
f2dx

�
¸

K1,K2,N1,N2

� »
T3

V � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx�
»
T3

�
MT

t rV ;N1, N2sPK1f1

�
PK2f2dx

�
.

To control this sum, we first define a frequency-localized version of OpTt pγ, rq by

OpTt pr;K1, K2, N1, N2q
def� sup

f1,f2 :
}f1}Lrx¤1,

}f2}
Lr

1
x
¤1

� »
T3

V � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx�
»
T3

�
MT

t rV ;N1, N2sPK1f1

�
PK2f2dx

�
.

We emphasize the change from Wγ,r
x pT3q to LrxpT3q, which simplifies the notation below. By

proving the estimate for a slightly smaller γ, (3.3.17) reduces to

sup
T,t¥0

}OpTt pr;K1, K2, N1, N2q}LpωpΩq À ppN1N2q�δpK1K2qγ. (3.3.18)

By using Lemma 3.2.16 and Lemma 3.2.19, it suffices to prove for a small δ ¡ 0 that

OpTt pr;K1, K2, N1, N2q À pN1N2q�δpK1K2qγ

�
�

1� }W T

t }2

C
� 1

2�δ
x

� sup
yPT3

sup
N1,N2

} :pτyPN1W
T

t qPN2W
T

t : }C�1�δ
x

	
.

(3.3.19)

By interpolation, we can further reduce to r � 1 or r � 8. Using the self-adjointness of the

convolution with V and the multiplier MT
t rV ;N1, N2s, it suffices to take r � 1. We now separate

the cases N1 � N2 and N1 � N2.

Case 1: N1 � N2. This is the easier (but slightly tedious) case and it does not contain any

probabilistic resonances. We note that MT
t rV ;N1, N2s � 0 and hence we only need to control the
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convolution term. From Fourier support considerations, we also see that this term vanishes unless

maxpK1, K2q Á maxpN1, N2q. While our conditions on f1 and f2 are not completely symmetric

and we already used the self-adjointness to restrict to r � 1, we only treat the case K1 Á K2.

Since our proof only relies on Hölder’s inequality and Young’s inequality, the case K1 À K2 can

be treated similarly. We now estimate���� »
T3

V � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx

����
À

¸
LÀK1

���� »
T3

PL

�
V � pPN1W

T

t PK1f1q
	 rPL�PN2W

T

t PK2f2

	
dx

����
À

¸
LÀK1

��pPLV q � pPN1W
T

t PK1f1q
��
L1
x

�� rPLpPN2W
T

t PK2f2q
��
L8x

À }PN1W
T

t }L8x }f1}L1
x

¸
LÀK1

}PLV }L1
x

�� rPLpPN2W
T

t PK2f2q
��
L8x

À N
1
2
�δ

1 }W T

t }C� 1
2�δ

x

¸
LÀK1

L�β
�� rPLpPN2W

T

t PK2f2q
��
L8x
.

We now split the last sum into the cases L ! N2 and N2 À L À K1. If L ! N2, we only obtain a

non-zero contribution when N2 � K2. Thus, the corresponding contribution is bounded by

1tK2 � N2uN
1
2
�δ

1 }W T

t }C� 1
2�δ

x

¸
LÀN2

L�β
�� rPLpPN2W

T

t PK2f2q
��
L8x

À 1tK2 � N2uN
1
2
�δ

1 }W T

t }C� 1
2�δ

x

� ¸
LÀN2

L�β
	
}f2}L8x }PN2W

T

t }L8x

À 1tK2 � N2uN
1
2
�δ

1 N
1
2
�δ

2 }W T

t }2

C
� 1

2�δ
x

À pN1N2q�δKγ
1K

γ
2 }W T

t }2

C
� 1

2�δ
x

.

118



In the last line, we also used N1 À K1 and γ ¡ 1{2. If L Á N2, we simply estimate

N
1
2
�δ

1 }W T

t }C� 1
2�δ

x

¸
N2ÀLÀK1

L�β
�� rPLpPN2W

T

t PK2f2q
��
L8x

À N
1
2
�δ

1 }W T

t }C� 1
2�δ

x

� ¸
N2ÀLÀK1

L�β
	
}PN2W

T

t }L8x }PK2f2}L8x

À N
1
2
�δ

1 N
1
2
�β�δ

2 }W T

t }2

C
� 1

2�δ
x

À pN1N2q�δKγ
1 }W T

t }2

C
� 1

2�δ
x

,

provided that γ ¡ maxp1� β, 1{2q. This completes the estimate in Case 1, i.e., N1 � N2.

Case 2: N1 � N2. This is the more difficult case. Guided by the uncertainty principle, we

decompose the interaction potential by writing V � P!N1V � PÁN1V . Using the linearity of the

multiplier MT
t rV ;N1, N2s in V , we decompose»

T3

V � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx�
»
T3

�
MT

t rV ;N1, N2sPK1f1

�
PK2f2dx

�
»
T3

pP!N1V q � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx�
»
T3

�
MT

t rP!N1V ;N1, N2sPK1f1

�
PK2f2dx

�
»
T3

pPÁN1V q � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx�
»
T3

�
MT

t rPÁN1V ;N1, N2sPK1f1

�
PK2f2dx.

We now split the proof into two subcases corresponding to the contributions of P!N1V and PÁN1V .

Case 2.a: N1 � N2, contribution of P!N1V . Similar as in Case 1, we do not rely on any cancellation

between the convolution term and its renormalization. As a result, we estimates both terms

separately.

We first estimate the convolution term. Due to the convolution with P!N1V , we only obtain a
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non-zero contribution if N1 � K1. Using N1 � N2 in the second inequality below, we obtain that��� »
T3

pP!N1V q � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx
���

À 1tN1 � K1u}pP!N1V q � pPN1W
T

t PK1f1q}L1
x
} rP!N1pPN2W

T

t PK2f2q}L8x
À 1tN1 � K1u1tN2 � K2u}PN1W

T

t }L8x }f1}L1
x
}PN2W

T

t }L8x }f2}L8x
À 1tN1 � K1u1tN2 � K2upN1N2q 1

2
�δ}W T

t }2

C
� 1

2�δ
x

À pN1N2q�δpK1K2qγ}W T

t }2

C
� 1

2�δ
x

.

Second, we turn to the multiplier term. From the definition of MT
t rP!N1V ;N1, N2s (see Definition

3.2.13), we see that the corresponding symbol is supported on frequencies |n| � N1. As a result, we

only obtain a non-zero contribution if K1 � K2 � N1. Using Lemma 3.2.15, Hölder’s inequality,

Young’s inequality, and the trivial estimate }CTt rN1, N2s}L8x À N1, we obtain��� »
T3

�
MT

t rP!N1V ;N1, N2sPK1f1

�
PK2f2dx

���
� 1tK1 � K2 � N1u

��� »
T3

�
pCTt rN1, N2sP!N1V q � PK1f1

	
PK2f2dx

���
À 1tK1 � K2 � N1u}pCTt rN1, N2sP!N1V q � PK1f1}L1

x
}PK2f2}L8x

À 1tK1 � K2 � N1u}CTt rN1, N2sP!N1V }L1
x
}f1}L1

x
}f2}L8x

À 1tK1 � K2 � N1u}CTt rN1, N2s}L8x }V }L1
x

À 1tK1 � K2 � N1uN1 À pN1N2q�δpK1K2qγ.

This completes the estimate of the contribution from P!N1V .

Case 2.b: N1 � N2, contribution of P"N1V . The estimate for this case relies on the cancellation

between the convolution and multiplier term, i.e., the renormalization. One important ingredient

lies in the estimate }P"N1V }L1
x
À N�β

1 , which yields an important gain.
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Using the translation operator τy, we rewrite the convolution term as»
T3

pPÁN1V q � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx

�
»
T3

PÁN1V pyq
� »

T3

PK1f1px� yqPK2f2pxqPN1W
T

t px� yqPN2W
T

t pxqdx
�

dy

�
»
T3

PÁN1V pyq
� »

T3

�
τyPK1f1 PK2f2

�pxq�τyPN1W
T

t PN2W
T

t

�pxqdx�dy.

Using Lemma 3.2.15, we obtain that»
T3

�
MT

t rPÁN1V ;N1, N2sPK1f1

�
PK2f2dx

�
»
T3

��
CTt rN1, N2sP"N1V

� � PK1f1

	
pxqPK2f2pxqdx

�
»
T3

P"N1V pyq
� »

T3

�
τyPK1f1 PK2f2

�pxqCTt rN1, N2spyqdx
�

dy.

By recalling Definition 3.2.14 and combining both identities, we obtain that»
T3

pPÁN1V q � pPN1W
T

t PK1f1q PN2W
T

t PK2f2dx�
»
T3

�
MT

t rPÁN1V ;N1, N2sPK1f1

�
PK2f2dx

�
»
T3

P"N1V pyq
� »

T3

�
τyPK1f1 PK2f2

�pxq :pτyPN1W
T

t qPN2W
T

t :pxqdx
�

dy.

Using that :pτyPN1W
T
t qPN2W

T
t :pxq is supported on frequencies À N1, we obtain that���� »

T3

P"N1V pyq
� »

T3

�
τyPK1f1 PK2f2

�pxq :pτyPN1W
T

t qPN2W
T

t :pxqdx
�

dy

����
À }PÁN1V pyq}L1

y
sup
yPT3

� ¸
LÀN1

L1�δ}PL
�pτyPK1f1qPK2f2

�}L1
x

	
sup
yPT3

} :pτyPN1W
T

t qPN2W
T

t : }C�1�δ
x

À N�β
1

� ¸
LÀN1

LÀmaxpK1,K2q

L1�δ
	
}f1}L1

x
}f2}L8x sup

yPT3

} :pτyPN1W
T

t qPN2W
T

t : }C�1�δ
x

À pN1N2q�δ maxpK1, K2qγ sup
yPT3

} :pτyPN1W
T

t qPN2W
T

t : }C�1�δ
x

.

This completes the estimate of the contribution from P"N1V and hence the proof of the proposition.
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3.3.4 Proof of Proposition 3.3.1 and Corollary 3.3.4

In this subsection, we reap the benefits of our previous work and prove the main results of this

section.

Proof of Proposition 3.3.1: In this proof, we treat QT � QT pW,ϕ, λq like an implicit constant and

omit the dependence on W,ϕ, and λ. In particular, its precise definition may change throughout

the proof.

From the quartic binomial formula (Lemma 3.2.11), it follows that

ϕpW � Ipuqq� :VT,λpW T

8 � IT8puqq: �
1

2
}u}2

L2

� λ

»
T3

:pV � pW T

8q2qpW T

8q: IT8rusdx�
λ

4

»
T3

pV � pIT8rusq2qpIT8rusq2dx� 1

2
}u}2

L2

� λ

4

»
T3

:pV � pW T

8q2qpW T

8q2 : dx� cT,λ � ϕpW � Ipuqq � λ

2

»
T3

pV � :pW T

8q2 :qpIT8rusq2dx

� λ

»
T3

�
pV � pW T

8I
T

8rusqqW T

8I
T

8rus � pMT

t I
T

8rusqIT8rus
�
dx� λ

»
T3

pV � pIT8rusq2qIT8rusW T

8dx.

We have grouped the terms according to their importance and their degree in IT8rus. The first

line consists of the main terms, whereas the second and third line consist of less important terms

of increasing degree in IT8rus. We will split them further in (3.3.23)-(3.3.26) below and introduce

notation for the individual terms.

Since :pV � pW T
8q2qW T

8 : has regularity minp�3
2
� β,�1

2
q� and IT8rus has regularity 1, the term

λ

»
T3

:pV � pW T

8q2qW T

8 : IT8rusdx

is potentially unbounded as T Ñ 8. As in [BG20b], we absorb it into the quadratic term 1
2
}u}2

L2 .

To this end, we want to remove the integral in IT8rus and obtain an expression in the drift u. From
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Itô’s formula, it holds that

λ

»
T3

:pV � pW T

8q2qW T

8 : IT8rusdx

� λ

» T

0

»
T3

:pV � pW T

t q2qW T

t : JTt utdxdt� λ

» T

0

»
T3

ITt rus dp:pV � pW T

t q2qW T

t :q.

The second term is a martingale (in the upper limit of integration) and therefore has expectation

equal to zero. Together with the self-adjointness of Jt, it follows that

EP

�
λ

»
T3

:pV � pW T

8q2qW T

8 : IT8rusdx�
1

2
}u}2

L2

�
� EP

�
λ

» T

0

»
T3

JTt

�
:pV � pW T

t q2qW T

t :
	
utdxdt� 1

2
}u}2

L2

�
� EP

�1

2

���lT rus���2

L2
� λ2

2

���JTt � :pV � pW T

t qqW T

t :
	���2

L2

�
,

where lT rus is as in (3.3.5). To simplify the notation, we write

wt
def� lTt rus � ut � λJTt

�
:pV � pW T

t q2qW T

t :
	
. (3.3.20)

With WT,r3s

t as in (3.2.46), it follows that

ITt rws � ITt rus � λWT,r3s

t . (3.3.21)

By inserting this back into the quartic binomial formula, we obtain that

EP
�
ϕpW � Ipuqq� :VT,λpW T

8 � IT8rusq: �
1

2
}u}2

L2
t,x

�
� EP

�
E0 � cT,λ

�� EP
�
E1 � E2 � E3

�� EP

�λ
4

»
T3

pV � pIT8rwsq2qpIT8rwsq2dx� 1

2
}w}2

L2
t,x

�
.

(3.3.22)
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where the “error” terms Ej, with j � 0, 1, 2, 3, are given by

E0
def� λ

4

»
T3

:pV � pW T

8q2qpW T

8q2 : dx� λ2

2

���JTt � :pV � pW T

t q2qW T

t :
����2

L2
tL

2
x

(3.3.23)

� λ3

2

»
T3

pV � :pW T

8q2 :qpWT,r3s

8 q2dx

� λ3

»
T3

�
V � pW T

8WT,r3s

8 qW T

8WT,r3s

8 � pMT

8WT,r3s

8 qWT,r3s

8

	
dx,

E1
def� ϕpW � Irusq � λ2

»
T3

pV � :pW T

8q2 :qWT,r3s

8 IT8rwsdx (3.3.24)

� 2λ2

»
T3

��
V � pW T

8WT,r3s

8 q�W T

8 �MT

8WT,r3s

8

	
IT8rwsdx,

E2
def� λ

»
T3

��
V � pW T

8I
T

8rwsq
�
W T

8I
T

8rws � pMT

8I
T

8rwsqIT8rws
	

dx (3.3.25)

� λ

2

»
T3

pV � :pW T

8q2 :qpIT8rwsq2dx,

E3
def� λ

»
T3

�
V � pIT8rws � λWT,r3s

8 q2�pIT8rws � λWT,r3s

8 qW T

8dx (3.3.26)

� λ

4

»
T3

�
pV � pIT8rws � λWT,r3s

8 q2qpIT8rws � λWT,r3s

8 q2 � pV � pIT8rwsq2qpIT8rwsq2q
	

dx.

Since E0 does not depend on w, we can define

cT,λ
def� �EP

�
E0

�
. (3.3.27)

The behavior of cT,λ as T Ñ 8 is irrelevant for the rest of the proof. However, it determines

whether the Gibbs measure is singular or absolutely continuous with respect to the Gaussian free

field (see Section 3.5). From the estimates (3.6.10) and (3.6.11), it is easy to see that

�QT � 1

2

�λ
4
VpIT8rusq �

1

2
}w}2

L2
t,x

	
¤ λ

4
VpIT8rwsq �

1

2
}w}2

L2
t,x
¤ QT � 2

�λ
4
VpIT8rusq �

1

2
}w}2

L2
t,x

	
.

Thus, it suffices to bound the terms in E1, E2, and E3 pointwise by

QT � 1

8

�λ
4
VpIT8rwsq �

1

2
}w}2

L2
t,x

	
.
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We treat the individual summands separately.

Contribution of E1: For the first summand in E1, the linear growth of ϕ, Sobolev embedding, a

minor modification of (3.2.47), and Lemma 3.6.8 imply that

|ϕpW � Irusq| À }W }
C0
t C

� 1
2�κ

x

� }IrJTt
�

:pV � pW T

t q2qW T

t :
�s}

C0
t C

� 1
2�κ

x

� }Irws}
C0
t C

� 1
2�κ

x

À QT � }Irws}CtH1
x
À 1

δ
QT � δ}w}2

L2
t,x
.

(3.3.28)

For the second summand in E1, we have from Lemma 3.2.20 that

λ
��� »

T3

pV � :pW T

8q2 :qWT,r3s

8 IT8rwsdx
��� À λ}pV � :pW T

8q2 :qWT,r3s

8 }C�1
x
}IT8rws}H1

x
À 1

δ
QT � δ}w}2

L2
t,x
.

For the third summand in E1, we have from Lemma 3.2.20 and Lemma 3.6.8 that

λ2

»
T3

��
V � pW T

8WT,r3s

8 q�W T

8 �MT

8WT,r3s

8

	
IT8rwsdx

À λ2}�V � pW T

8WT,r3s

8 q�W T

8 �MT

8WT,r3s

8 }C�1
x
}IT8rws}H1

x
À 1

δ
QT � δ}w}2

L2
t,x
.

Contribution of E2: For the first summand in E2, the random matrix estimate (Proposition 3.3.7)

implies for every 0   γ   minpβ, 1
2
q that

λ
��� »

T3

��
V � pW T

8I
T

8rwsq
�
W T

8I
T

8rws � pMT

8I
T

8rwsqIT8rws
	

dx
��� À QT }IT8rws}2

H1�γ
x

À 1

δ
QT � δ

�
λ}IT8rws}4

L2
x
� }IT8rws}2

H1
x

� À 1

δ
QT � δ

�
λVpIT8rwsq � }IT8rws}2

H1
x

�
.

The second summand in E2 can easily be controlled using Lemma 3.2.16.

Contribution of E3: We estimate the first summand in E3 by

λ
��� »

T3

�
V � pIT8rws � λWT,r3s

8 q2�pIT8rws � λWT,r3s

8 qW T

8dx
���

À λ}W T

8}
C
� 1

2�δ
x

���x∇y 1
2
�δ
��
V � pIT8rws � λWT,r3s

8 q2�pIT8rws � λWT,r3s

8 q
	���

L1
x

.

In the second factor, we bound the contribution of pV � IT8rws2qIT8rws using Lemma 3.3.6. In

contrast, the terms containing at least one factor of WT,r3s

t can be controlled using Lemma 3.2.20,
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(3.6.10) and (3.6.11). This leads to

}W T

8}
C
� 1

2�ε
x

���x∇y 1
2
�δ
��
V � pIT8rws � λWT,r3s

8 q2�pIT8rws � λWT,r3s

8 q
	���

L1
x

À λQT

�
1� VpIT8rwssq

1
2 }IT8rws}1�θ

L2 }IT8rws}θH1
x
� }IT8rws}2

H
1
2�2δ

	
À QT � δ

�
λVpIT8rwsq � }w}2

L2
t,x

	
.

The second summand in E3 can be controlled using the same (or simpler) arguments.

Based on the proof of Proposition 3.3.1, we can also determine the behavior as T Ñ 8 of the

renormalization constants cT,λ. In particular, we obtain a short proof of Corollary 3.3.4.

Proof of Corollary 3.3.4: We let β ¡ 1{2 and choose any 1{2   γ   minpβ, 1q. Using the definition

of cT,λ in (3.3.27), it remains to control the expectation of E0, which is defined in (3.3.23). We

treat the four terms in E0 separately.

The first term has zero expectation by Proposition 3.2.9. For the second term, we obtain from

Corollary 3.2.18 that

EP

����JTt � :pV � pW T

t q2qW T

t :
����2

L2
tL

2
x

�
À

¸
nPZ3

» 8

0

σTt pnq2
xny2

1

xny2γ
dt À

¸
nPZ3

1

xny2�2γ
À 1.

For the third term, we obtain from Lemma 3.2.16 and Lemma 3.2.20 that����EP

� »
T3

pV � :pW T

8q2 :qpWT,r3s

8 q2dx

����� À EP

�
}V � :pW T

8q2}C�1{2
x

}WT,r3s

8 }2
Cγx

�
À 1.

For the fourth term, we obtain from Lemma 3.2.20 and the random matrix estimate (Proposition

3.3.7) that����EP

� »
T3

�
V � pW T

8WT,r3s

8 qW T

8WT,r3s

8 � pMT

8WT,r3s

8 qWT,r3s

8

	
dx

����� À EP

�
OpT8pγ, 2q}WT,r3s

8 }2
Hγ
x

�
À 1.

This completes the argument.
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3.4 The reference and drift measures

In this section, we prove Theorem 3.1.4, which contains information regarding the reference mea-

sures. In this paper, we will use the reference measure ν8 to prove the singularity of the Gibbs

measure (Theorem 3.1.5). In the second part of this series, the reference measures will play an

essential role in the probabilistic local well-posedness theory.

As in previous sections, we replace the truncation parameter N by T . Due to its central impor-

tance, let us provide an informal description of the terms in the representation of νT . The first

summand follows the distribution of the Gaussian free field, which has independent Fourier co-

efficients and regularity �1{2�. The second summand is a cubic Gaussian chaos with regularity

minp1{2� β, 1q�. Finally, the third summand is a Gaussian chaos of order n with regularity 5{2�.

The statement of Theorem 3.1.4 is concerned with measures on C�1{2�κ
x pT3q. At this point, it

should not be surprising to the reader that the proof mostly uses the lifted measures rµT and rµ8.

We will construct a reference measure Qu
T for rµT , and the reference measure νT will be given by

the pushforward of Qu
T under W8. Since the main tool in the construction of Qu

T is Girsanov’s

theorem, we call Qu
T the drift measure. This section is a modification of the arguments in Barashkov

and Gubinelli’s paper [BG20a]. Since lT rus in Proposition 3.3.1 is simpler than in the Φ4
3-model,

however, we obtain slightly stronger results. For instance, we prove Lq-bounds for the density DT

in (3.4.23), whereas the analogous density in [BG20a] only satisfies “local” Lq-bounds.

3.4.1 Construction of the drift measure

We define the forcing term

ΞT pW T qt def� �λJTt
�

:pV � pW T

t q2qW T

t :
	
� JTt x∇y�

1
2 :px∇y� 1

2W T

t qn :, (3.4.1)
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where n is a large odd integer depending on β. The first summand in (3.4.1) is the main term. The

second summand in (3.4.1) yields necessary coercivity in the proof of Lemma 3.4.3 and Proposition

3.4.7, but can be safely ignored for most of the argument. We define the drift uT through the

integral equation

uTt � ΞT pW T � IT ruT sqt
� �λJTt

�
:pV � pW T

t � ITt ruT sq2qpW T

t � ITt ruT sq:
	
�JTt x∇y�

1
2 :
�
x∇y� 1

2

�
W T

t � ITt ruT s
�	n

: .

(3.4.2)

We also define the drift u, which does not contain any regularization in the interaction, by

ut � �λJt
�

:pV � pWt � Itrusq2qpWt � Itrusq:
	
� Jtx∇y� 1

2 :
�
x∇y� 1

2

�
Wt � Itrus

�	n
: . (3.4.3)

Using the binomial formulas (Lemma 3.2.11 and Lemma 3.2.23), we see that the integral equation

has smooth coefficients on every compact subset of r0,8q�T3. As a result, it can be solved locally

in time using standard ODE-theory. Due to the polynomial nonlinearity, however, we will need to

rule out finite-time blowup. To this end, we introduce the blow-up time TexpruT s P p0,8s, which

we will later show to be infinite almost surely with respect to both P and Qu
T . The reason is that

the highest-degree term in (3.4.2), which is given by �JTt x∇y�1{2px∇y�1{2ITt ruT sqn, is defocusing.

We also introduce the stopping time

τT,N
def� inf

!
t P r0,8q :

» t

0

}uTs }2
L2
x
ds � N

)
. (3.4.4)

From the integral equation, it is clear that uTt p�q is supported in frequency space on the finite set

tn P Z3 : }n} À xtyu. As a result, the L2
tL

2
x-norm can be used as a blow-up criterion and the

solution uTt exists for all times t ¤ τT,N , i.e., TexpruT s ¡ τT,N . We then define the truncated solution

by

uT,Nt
def� 1tt ¤ τT,NuuTt . (3.4.5)
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From the definition of τT,N , it follows that» 8

0

}uT,Ns }2
L2
x
ds ¤ N.

Thus, uT,N satisfies Novikov’s condition and we can define the shifted probability measure Qu
T,N by

dQu
T,N

dP
� exp

� » 8

0

»
T3

uT,Ns dBs � 1

2

» 8

0

}uT,Ns }2
L2ds

	
. (3.4.6)

Here, the L2
x-pairing in the integral

³8
0

³
T3 u

T,N
s dBs is implicit, i.e.,» 8

0

»
T3

uT,Ns dBs �
» 8

0

xuT,Ns , dBsyL2
xpT3q �

¸
n1,n2PZ3 :
n1�n2�0

» 8

0

yuT,Ns pn1q dBn2
s .

We emphasize that the stochastic integral
³8
0

³
T3 u

T,N
s dBs only depends on the Brownian process

B through the Gaussian process W . This is important in order to view Qu
T,N as a measure

on C0
t C

�1{2�κ
x pr0,8s � T3q without changing the expression for the density. To make this direct

dependence on W clear, we note that uT and hence τT,N are functions of W T , and hence W , directly

from their definition. By using the definition of uT , the self-adjointness of JTt , and dW T
s � JTs dBs,

we obtain that» 8

0

»
T3

uT,Ns dBs

�
» 8

0

»
T3

�
� λ :pV � pW T

t � ITt ruT sq2qpW T

t � ITt ruT sq: �x∇y�
1
2 :

�x∇y� 1
2 pW T

t � ITt ruT sq
�n

:
	

dW T

s .

The expression on the right-hand side clearly is a function of W T and hence W . With a slight

abuse of notation, we will keep writing the integral with respect to dBs, since it is more compact.

By Girsanov’s theorem, the process

BuT,N

t
def� Bt �

» t

0

uT,Ns ds (3.4.7)
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is a cylindrical Brownian motion under Qu
T,N . In particular, the law of BuT,N

t under Qu
T,N coincides

with the law of Bt under P. As a consequence, the process

W uT,N

t
def� Wt �

» t

0

Jsu
T,N

s ds � Wt � ItruT,Ns (3.4.8)

satisfies

LawQuT,N pW uT,N

t q � LawPpW q. (3.4.9)

To avoid confusion, let us remark on a technical detail. In the definition (3.4.8), the drift uT,Ns is

supported on frequencies |n| À xT y. The right-hand side of (3.4.8), however, does not contain a

further frequency projection. In particular, W and henceW uT,N contain arbitrarily high frequencies.

This is related to the definition of the truncated Gibbs measure µT , where the density only depends

on frequencies À xT y, but whose samples contain arbitrarily high frequencies. Put differently, we

regularize the interaction but not the samples themselves. To make notational matters even worse,

while W uT,N contains all frequencies, we will often work with ρT p∇qW uT,N , which only contains

frequencies À xT y. Similar as in Section 3.2.1, we define the truncated process W T,uT,N

t by

W T,uT,N

t
def� ρT p∇qW uT,N

t . (3.4.10)

Due to the integral equation (3.4.2), we have that

uT,Nt � 1tt ¤ τT,Nu
�
� λJTt

�
:pV � pW T,uT,N

t q2qW T,uT,N

t :
	
� JTt x∇y�

1
2 :

�x∇y� 1
2W T,uT,N

t

�n
:
�
. (3.4.11)

We intend to use Qu
T,N (and the limit as N Ñ 8) as a reference measure for rµT . Due to (3.4.9),

the law of W T,uT,N

t under Qu
T,N does not depend on N . In our estimates of uT,Nt through the integral

equation, it is therefore natural to view W T,uT,N

t as given. Under this perspective, the right-hand

side of (3.4.11) no longer depends on uT and yields an explicit expression for uT . For comparison,

the corresponding equation in the Φ4
3-model (cf. [BG20a, (14)]) is a linear integral equation. We

now start to estimate the drift uT .
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Lemma 3.4.1. For all 1 ¤M ¤ N , all S ¥ 0, and all 0   γ   minp1, βq, it holds that

EQuT,N

� » τM^S

0

}uTs }2
L2ds

�
À maxpS1�2γ, 1q. (3.4.12)

In particular, it holds that

Qu
T,N

�
τT,M ¤ S

� À maxpS1�2γ, 1q
M

. (3.4.13)

Proof. We recall from the definition of the drift measure that

LawQuT,N pW uT,N q � LawPpW q and LawQuT,N pW T,uT,N q � LawPpW T q

As a result, we obtain that

EQuT,N

� » τM^S

0

}uTs }2
L2ds

�
¤ EP

� » S

0

���λJTs � :pV � pW T

s q2qW T

s :
�� JTs x∇y�

1
2 :

�x∇y� 1
2W T

s

�n
:
���2

L2
ds
�

À λ2EP

� » S

0

���λJTs � :pV � pW T

s q2qW T

s :
����2

L2
ds
�
� E

� » S

0

���JTs x∇y� 1
2 :

�x∇y� 1
2W T

s

�n
:
���2

L2
ds
�
.

For the first summand, we obtain from the definition of JTs and Lemma 3.2.16 that

EP

� » S

0

���λJTs � :pV � pW T

s q2qW T

s :
����2

L2
ds
�
À
� » S

0

xty�2γdt
	

sup
t¥0

E
��� :pV � pW T

t q2qW T

t :
��2

H� 3
2�γ

�
À maxpS1�2γ, 1q.

For the second summand, we obtain from Lemma 3.2.23 that

E
� » S

0

���JTs x∇y� 1
2 :

�x∇y� 1
2W T

s

�n
:
���2

L2
ds
�
À
� » S

0

xty�4�2εdt
	

sup
t¥0

E
��� :px∇y� 1

2Wtqn :
��2

H�ε

� À 1.

This yields the desired estimate.

Lemma 3.4.2. For all 1 ¤M ¤ N , 1 ¤ p   8, and γ   minp1{2, βq, it holds that

sup
T,t¥0

�
EQuT,N

�}ItruT,Ms}p
C

1
2�γ
x pT3q

�	 1
p Àp 1.
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Furthermore, we have that for any 0   α   1 and 0   η   1{2 that

sup
T¥0

�
EQuT,N

�}IruT,Ms}pCα,ηt C0
xpr0,8s�T3q

�	 1
p Àp 1, (3.4.14)

where the Cα,ηt C0
x-norm is as in (3.1.19).

The proof of Lemma 3.4.2 is easier than its counterpart [BG20a, (16)] in the Φ4
3-model, which

requires a Gronwall argument. The second estimate (3.4.14) is needed for technical reasons related

to tightness, and we encourage the reader to skip its proof on first reading.

Proof. The argument is similar to the proof of Lemma 3.4.1. From the definition of uT,M and uT,N ,

we have that

uT,Ms � 1ts ¤ τT,MuuT,Ns . (3.4.15)

Thus, we obtain that

}ItruT,Ms}
C

1
2�γ
x

¤
» t^τT,M

0

}JsuT,Ns }
C

1
2�γ
x

ds ¤
» t

0

}JsuT,Ns }
C

1
2�γ
x

. (3.4.16)

Using the integral equation (3.4.2) again, we obtain that

}ItruT,Ms}
C

1
2�γ
x

¤ λ

» t

0

}JsJTs :pV � pW T,uT,N

s q2qW T,uT,N

s : }
C

1
2�γ
x

ds

�
» t

0

}JsJTs x∇y�
1
2 :

�x∇y� 1
2W T,uT,N

s

�n
: }

C
1
2�γ
x

ds.

(3.4.17)

Using that

LawQuT,N pW uT,N q � LawPpW q,
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we obtain from Lemma 3.2.20 and Lemma 3.2.23 that�
EQuT,N

�}ItruT,Ms}p
C

1
2�γ
x

�	 1
p

À λ

» t

0

�
EP}JsJTs :pV � pW T

s q2qW T

s : }p
C

1
2�γ
x

� 1
pds�

» t

0

�
EP}JsJTs x∇y�

1
2 :

�x∇y� 1
2W T

s

�n
: }p

C
1
2�γ
x

� 1
pds

Àp

» t

0

xsy�1�γ�minp1{2,βq�δds�
» t

0

xsy�3�γ�δds

Àp 1.

This completes the proof of the first estimate. The second estimate (3.4.14) follows from a minor

modification of the proof. To simplify the notation, we set

Apsq def� }JsJTs :pV � pW T,uT,N

s q2qW T,uT,N

s : }L8x � }JsJTs x∇y�
1
2 :

�x∇y� 1
2W T,uT,N

s

�n
: }L8x

For any K ¥ 1, we have from a similar argument as in (3.4.17) that

sup
0¤t1¤t :
t,t1�K

}ItruT,Ms � It1ruT,Ms}L8x
1^ |t� t1|α À sup

0¤t1¤t :
t,t1�K

1

1^ |t� t1|α
» t

t1
Apsqds

À
»
s�K

Apsqds�
� »

s�K

Apsq 1
1�αds

	1�α

.

Proceeding as in the first estimate, this implies that�
EQuT,N

��
sup

0¤t1¤t :
t,t1�K

}ItruT,Ms � It1ruT,Ms}L8x
1^ |t� t1|α

	p�	 1
p À K� 1

2
�γ.

The desired estimate of the Cα,ηt C0
x-norm then follows by summing over dyadic scales and using a

telescoping series if the times are not comparable.

In Lemma 3.4.1 and Lemma 3.4.2, we controlled the process uT with respect to the measures Qu
T,N .

Unfortunately, the proof of Proposition 3.4.4 below also requires the absence of finite-time blowup

for uT with respect P. This is the subject of the next lemma.
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Lemma 3.4.3. For any T ¥ 1, it holds that TexpruT s � 8 P-almost surely.

The proof of the analogue for the Φ4
3-model (cf. [BG20a, Lemma 5]) extends verbatim to our

situation and we omit the minor modifications. To ease the reader’s mind, let us briefly explain

why the same argument applies here. In most of this section, the most important term in the

integral equation (3.4.2) is the first summand. It has the lowest regularity and is closely tied to

the interactions in the Hamiltonian. The result of Lemma 3.4.3, however, is essentially a soft

statement. If we fix a time S ¥ 1 and only want to rule out TexpruT s ¤ S, the low regularity is

inessential and only leads to a loss in powers of S. The main term is then given by the (auxiliary)

second summand, which is defocusing and exactly the same as in the Φ4
3-model.

The next proposition eliminates the stopping time from our drift measures.

Proposition 3.4.4. The family of measures pQu
T,NqT,N¥0 is tight on C0

t C
�1{2�κ
x pr0,8s � T3q. For

any fixed T ¥ 0, the sequence of measures pQu
T,NqN¥0 weakly converges to a measure Qu

T as N Ñ 8.

For any S ¥ 0, the limiting measure Qu
T satisfies

dQu
T |FS

dP|FS
� exp

� » S

0

»
T3

uTsdBs � 1

2

» S

0

}uTs }2
L2ds

	
. (3.4.18)

Our argument differs from the proof of [BG20a, Lemma 7], which is the analog for the Φ4
3-model.

The argument in [BG20a] relies on Kolmogorov’s extension theorem, whereas we rely on tightness

and Prokhorov’s theorem. This is important in the proof of Corollary 3.4.5 below, since the

measures Qu
T are not (completely) consistent. We also believe that this clarifies the mode of

convergence. Before we begin with the proof, we state the following corollary.

Corollary 3.4.5. The measures Qu
T weakly convergence to a measure Qu

8 on C0
t C

�1{2�κ
x pr0,8s�T3q
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as T Ñ 8. For any S ¥ 0, it holds that

dQu
8|FS

dP|FS
� exp

� » S

0

»
T3

usdBs � 1

2

» S

0

}us}2
L2ds

	
, (3.4.19)

where us is as in (3.4.3).

Proof of Proposition 3.4.4: We first prove that the family of measures pQu
T,NqT,N¥0, viewed as

measures for W , are tight on C0
t C

�1{2�κ
x pr0,8s � T3q. From (3.4.8), we have that

W � W uT,N � IruT,Ns. (3.4.20)

Since the law ofW uT,N under Qu
T,N agrees with the law ofW under P, an application of Kolmogorov’s

continuity theorem (cf. [Str11, Theorem 4.3.2]) yields for any p ¥ 1, 0   α   1
2
, and 0   η   κ{2

that

EQuT,N

�
}W uT,N }p

Cα,ηt C�p1�κq{2x

�
� EP

�
}W }p

Cα,ηt C�p1�κq{2x

�
Àp 1.

Together with (3.4.20) and Lemma 3.4.2, this implies

EQuT,N

�
}W }p

Cα,ηt C�p1�κq{2x

�
Àp 1

Since the embedding Cα,ηt C�p1�κq{2x ãÑ C0
t C

�1{2�κ
x is compact, this implies the tightness of the family

of measures pQu
T,NqT,N¥0.

By Prokhorov’s theorem, a subsequence of pQu
T,NqN weakly converges to a measure Qu

T . Once

we proved (3.4.18), this can be upgraded to weak convergence of the full sequence, since (3.4.18)

uniquely identifies the limit. With a slight abuse of notation, we therefore ignore this distinction

between a subsequence and the full sequence.

Let S ¥ 0 and let f : C0
t C

�1{2�κ
x pr0, Ss � T3q Ñ R be continuous, bounded, and nonnegative. We

write fpW q for fpW |r0,Ssq. Using the weak convergence of Qu
T,N to Qu

T , we have that

EQuT rfpW qs � lim
NÑ8

EQuT,N rfpW qs � lim
NÑ8

�
EQuT,N r1tτT,N ¥ SufpW qs � EQuT,N r1tτT,N   SufpW qs

	
.
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Using Lemma 3.4.2, the second term is controlled by

EQuT,N r1tτT,N   SufpW qs ¤ }f}8Qu
T,NpτT,N   Sq À }f}8maxpS1�2γ, 1q

N
,

which converges to zero as N Ñ 8. Together with the definition of Qu
T,N and the martingale

property of the Girsanov density, this implies

EQuT rfpW qs � lim
NÑ8

EQuT,N r1tτT,N ¥ SufpW qs

� lim
NÑ8

EP

�
fpW q1tτT,N ¥ Su exp

� » τT,N

0

uTsdBs � 1

2

» τT,N

0

}uTs }2
L2ds

	�
� lim

NÑ8
EP

�
fpW q1tτT,N ¥ Su exp

� » S

0

uTsdBs � 1

2

» S

0

}uTs }2
L2ds

	�
.

Using monotone convergence and Lemma 3.4.3, we obtain

lim
NÑ8

EP

�
fpW q1tτT,N ¥ Su exp

� » S

0

uTsdBs � 1

2

» S

0

}uTs }2
L2ds

	�
� EP

�
fpW q1tTexpruT s ¡ Su exp

� » S

0

uTsdBs � 1

2

» S

0

}uTs }2
L2ds

	�
� EP

�
fpW q exp

� » S

0

uTsdBs � 1

2

» S

0

}uTs }2
L2ds

	�
.

Proof of Corollary 3.4.5: Due to Proposition 3.4.4, the family of measures pQu
T qT¥0 is tight. By

Prokhorov’s theorem, it follows that a subsequence weakly converges to a measure Qu
8. Once

(3.4.19) is proven, it uniquely identifies the limit Qu
8. With a slight abuse of notation, we therefore

assume as before that the whole sequence Qu
T converges weakly to Qu

8.

Since W T
t � Wt and ITt � It for all 0 ¤ t ¤ T {4 (by our choice of ρ), it follows from the integral

equation (3.4.2) that uTs � us for all 0 ¤ s ¤ T {4. Using (3.4.18), it follows for all S ¤ T {4 that

dQu
T |FS

dP|FS
� exp

� » S

0

»
T3

usdBs � 1

2

» S

0

}us}2
L2ds

	
. (3.4.21)

The corresponding identity (3.4.19) for Qu
8 then follows by taking T Ñ 8.
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Corollary 3.4.6. For any T ¥ 1, S ¥ 1, and any 0   γ   minpβ, 1{2q, the measure Qu
T satisfies

the two estimates

EQuT

� » S

0

}uTs }2
L2ds

�
À maxpS1�2γ, 1q,

sup
t¥0

�
EQuT

�}ItruT s}p
C

1
2�γ
x

�	 1
p Àp 1.

The corollary directly follows from Lemma 3.4.1, Lemma 3.4.2, and Proposition 3.4.4.

3.4.2 Absolutely continuity with respect to the drift measure

We recall the definition of the measure rµT from (3.2.10), which states that

drµT
dP

� 1

ZT,λ
exp

�
� :VT,λpW T

8q:
	
. (3.4.22)

Using Proposition 3.4.4, we obtain that

DT
def� drµT

dQu
T

� drµT
dP

dP
dQu

T

� 1

ZT,λ
exp

�
� :VT,λpW T

8q: �
» 8

0

»
T3

uTt dBt � 1

2

» 8

0

}uTt }2
L2dt

	
. (3.4.23)

Since dBt � dBuT

t � uTt dt, we also obtain that

DT � 1

ZT,λ
exp

�
� :VT,λpW T

8q: �
» 8

0

»
T3

uTt dBuT

t � 1

2

» 8

0

}uTt }2
L2dt

	
. (3.4.24)

Proposition 3.4.7 (Lq-bounds). If n P N in the definition of uT is odd and sufficiently large,

there exists a q ¡ 1 such that

sup
T¥0

EQuT

�
|DT |q

�
Àn,q 1. (3.4.25)

Remark 3.4.8. We point out two important differences between Proposition 3.4.7 and the cor-

responding result for the Φ4
3-model in [BG20a, Lemma 9]. The first difference is a consequence

of working with rµT instead of sµT as described in Section 3.2.1. Barashkov and Gubinelli define
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and bound the density DT with respect to the same measure Qu
8 for all T ¥ 1. In contrast, our

density is defined with respect to Qu
T and we make no statements about the behavior of DT with

respect to Qu
S for any S � T . Since the increments of T ÞÑ ρT p∇qW8 are not independent, such

a statement would be especially difficult if S and T are close. The second difference is a result of

the smoothing effect of the interaction potential V . While the Hartree-nonlinearity allows us to

prove the full Lq-bound (3.4.25), the corresponding result in the Φ4
3-model requires the localizing

factor expp�}W8}nC�1{2�ε
x

q.

The rest of this subsection is dedicated to the proof of the Lq-bounds (Proposition 3.4.7). Since

we intend to apply the Boué-Dupuis formula to bound the density DT in LqpQu
T q, we first study

the effect of shifts in BuT on the integral equation (3.4.2). For any w P Ha, we define

uT,ws
def� ΞpW T,uT � wqs
� �λ :pV � pW T,uT

s � ITs rwsq2qpW T,uT

s � ITs rwsq: �JTs x∇y�
1
2 :px∇y� 1

2 pW T,uT

s � ITs rwsqqn : .

Using the cubic binomial formula (Lemma 3.2.11), we obtain that

uT,ws � �λJTs :pV � pW T,uT

s q2qW T,uT

s : �rT,ws , (3.4.26)

where the remainder rT,ws is given by

rT,ws � �λJTs
�
pV � :pW T,uT

s q2 :qITs rws
	
� 2λJTs

�
pV � pW T,uT

s ITs rwsqqW T,uT

s �MT

s I
T

s rws
	

� 2λJTs

�
pV � pW T,uT

s ITs rwsqqITs rws
	
� λJTs

�
pV � ITs rws2qW T,uT

s

	
� λJTs

�
pV � ITs rws2qITs rws

	
� JTs x∇y�

1
2 :px∇y� 1

2 pW T,uT

s � ITs rwsqqn : .

We also define hT,w � w � uT,w. We further decompose

rT,ws � rrT,ws � JTs x∇y�
1
2 :px∇y� 1

2 pW T,uT

s � ITs rwsqqn : .

Before we begin the main argument, we prove the following auxiliary lemma.
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Lemma 3.4.9 (Estimate of rrT,wt ). Let ε, δ ¡ 0 be small absolute constants and let n ¥ npδ, βq be

sufficiently large. Then, we have for all t ¥ 0 that

xty1�δ}rrT,wt }2
L2
x
Àn,δ,β,λ CεQtpW T,uT q � ε

�
}ITt rws}n�1

W
� 1

2 ,n�1
x

�
» t

0

}ws}2
L2
x
ds
	
. (3.4.27)

Remark 3.4.10. We emphasize that the implicit constant does not depend on ε. In the application

of Lemma 3.4.9, we will choose ε ¡ 0 sufficiently small depending on δ, n, β, λ.

Proof. In the following argument, the implicit constants are allowed to depend on n, δ, β, and λ

but not on ε. We estimate the five terms in rrT,wt separately and do not require any new ingredients.

We only rely on Lemma 3.2.16, Proposition 3.3.7, Hölder’s inequality, and Bernstein’s inequality.

For the first term, we have from the definition of JTt and Lemma 3.2.16 that���JTt �pV � :pW T,uT

t q2 :qITt rws
	���2

L2
x

À xty�1�2δ
����pV � :pW T,uT

t q2 :qITt rws
	���2

H�1�δ
x

À xty�1�2δ
���V � :pW T,uT

t q2 :
���2

C�1�2δ
x

}ITt rws}2
H1�δ
x

À xty�1�2δ
���V � :pW T,uT

t q2 :
���2

C�1�2δ
x

}ITt rws}2δ

W
� 1

2 ,n�1
x

}ITt rws}2�δ
H1
x

À xty�1�2δCεQtpW T,uT q � xty�1�2δε
�
}ITt rws}n�1

W
� 1

2 ,n�1
x

� }ITt rws}2
H1
x

	
.

For the second term, we have from duality and Proposition 3.3.7 for all 0   γ   minpβ, 1q that

��Jt�pV � pW T,uT

t ITt rwsqqW T,uT

t �MT

t I
T

t rws
	��2

L2
x

¤ xty�1�2γ}JTt
�
pV � pW T,uT

t ITt rwsqqW T,uT

t �MT

t I
T

t rws
	��2

H
�p1�γq
x

À xty�1�2γQtpW T,uT q}ITt rws}2
H1�γ
x

À xty�1�2γCεQtpW T,uT q � xty�1�2γε
�
}ITt rws}n�1

W
� 1

2 ,n�1
x

� }ITt rws}2
H1
x

	
.
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For the third term, we estimate

}JTt
�
pV � pW T,uT

t ITt rwsqqITt rws
	
}2
L2
x
À xty�3}V � pW T,uT

t ITt rwsq}2
L4
x
}ITt rws}2

L4
x

À xty�3}W T,uT

t }2
L8x
}ITt rws}4

L4
x

À xty�3�1�2δ}W T,uT

t }2

C
� 1

2�δ
x

}ITt rws}4
L4
x

À Cεxty�2�2δ }W T,uT

t }2 4�δ
δ

C
� 1

2�δ
x

� εxty�2�2δ}ITt rws}4�δ
L4
x

À Cεxty�2�2δQtpW T,uT q � εxty�2�2δ
�
}ITt rws}n�1

W
� 1

2 ,n�1
x

� }ITt rwss}2
H1
x

	
.

In the last line, we use [BG20a, Lemma 20].

The fourth term can be estimated exactly like the third term. To estimate the fifth term, we only

rely on Hölder’s inequality, Bernstein’s inequality, and the Fourier support condition of ITt rws. We

have that

}JTt
�
pV � ITt rws2qITt rws

	
}2
L2
x
À xty�3}pV � ITt rws2qITt rws}2

L2
x
À xty�3}ITt rws}6

L6
x
À xty�3� δ

2 }ITt rws}6

L
6

6�δ
x

À xty�3� δ
2 }ITt rws}4

W
� 1

2 ,
4
δ

x

}ITt rws}2
H1
x
À xty�3�2δ}ITt rws}4�δ

W
� 1

2 ,
4
δ

x

}ITt rws}2�δ
H1
x

À Cεxty�3�2δ � εxty�3�2δ
�
}ITt rws}n�1

W
� 1

2 ,n�1
x

� }ITt rws}2
H1
x

	
.

In the second last inequality, we used that }ITt rws}H1
x
À xty 3

2 }ITt rws}H�1{2
x

. This completes the

estimate of all five terms in rrT,wt and hence the proof.

Equipped with Lemma 3.4.9, we can now prove the Lq-bound for DT .

Proof of Proposition 3.4.7: The proof splits into two steps.

Step 1: Formulation as a variational problem. In order to prove the desired estimate (3.4.25), it
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suffices to obtain a lower bound on � logEQuT rDq
T s. Using the Boué-Dupuis formula, we obtain

� logEQuT rDq
T s � q logpZT,λq

� � logEQuT

�
exp

�
� q

�
:VT,λpW T,uT

8 � IT8rusq: �
» 8

0

»
T3

uTt dBuT

t � 1

2

» 8

0

}uTt }2
L2dt

	
�
� inf

wPHa
E
�
q

�
:VT,λpW T,uT

8 � IT8rws � IT8ruT,wsq: �
» 8

0

»
T3

uT,wt dBuT

t �
» 8

0

»
T3

uT,wt wtdxdt

� 1

2

» 8

0

}uT,wt }2
L2dt



� 1

2

» 8

0

}wt}2
L2dt

�
.

Since T ÞÑ ³T
0

³
T3 u

T,w

t dBuT

t is a martingale, its expectation vanishes. We now insert the change of

variables uT,w � hT,w � w into the formula above, and obtain that

� logEQuT rDq
T s � q logpZT,λq

� inf
wPL2

t,xa

EQuT

�
q
�

:VT,λpW T,uT

8 � IT8rhT,wsq: �
1

2

» 8

0

}hwt }2
L2dt� 1

2

» 8

0

}wt}2
L2dt

	
� 1

2

» 8

0

}wt}2
L2dt

�
� inf

wPHa
EQuT

�
q
�

:VT,λpW T,uT

8 � IT8rhT,wsq: �
1

2

» 8

0

}hwt }2
L2dt

	
� q � 1

2

» 8

0

}wt}2
L2dt

�
.

Since we want to obtain a lower bound, the most dangerous term in the expression above is

� q�1
2

³8
0
}wt}2

L2dt. Using our previous information about the variational problem (Proposition

3.3.1 and Proposition 3.3.3) and the nonnegativity of VpIT8rhT,wsq, we obtain that

� logEQuT rDq
T s ¥ �C � inf

wPHa
EQuT

�
1

4

» 8

0

}lTt phT,wq}2
L2dt� q � 1

2

» 8

0

}wt}2
L2dt

�
. (3.4.28)

Recalling the definition of lTt phT,wq from Proposition 3.3.1 and (3.4.26), we obtain that

lTt phT,wq � hT,wt � λJTt :pV � pW T,uT

t q2qW T,uT

t :

� puT,wt � wtq � JTt :pV � pW T,uT

t q2qW T,uT

t :

� prT,wt � wtq.

Together with our previous estimate, this leads to

� logEQuT rDq
T s ¥ �C � inf

wPHa
EQuT

�
1

4

» 8

0

}wt � rT,wt }2
L2dt� q � 1

2

» 8

0

}wt}2
L2dt

�
.
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By choosing q sufficiently close to one, it only remains to establish

E
» 8

0

}wt}2
L2dt À 1� E

» 8

0

}wt � rT,wt }2
L2dt. (3.4.29)

This bound is proven via a Gronwall-type argument.

Step 2: Gronwall-type argument. This step crucially relies on the smoother term in the definition

of the drift (3.4.2). We essentially follow the proof of [BG20a, Lemma 11]. As in [BG20a], we

introduce the auxiliary process

AuxspW T,uT , wq �
ņ

i�0

�
n

i



x∇y� 1

2JTs

�
:px∇y� 1

2W T,uT

s qi : px∇y� 1
2 ITs rwsqn�i

	
. (3.4.30)

With this notation, it holds that rT,w � rrT,w � AuxpW T,uT , wq. We then expand

w2
s � 2pws � rT,ws q2 � 4wsr

T,w

s � 2prT,ws q2 � w2
s

� 2pws � rT,ws q2 � 4wsrrT,ws � 2prws q2 � w2
s � 4 AuxspW T,uT , wq.

(3.4.31)

Using Itô’s integration by parts formula, we have for all s ¤ t that

4

» t

0

»
T3

AuxspW T,uT , wqwsdxds

� 4
ņ

i�0

�
n

i


» t

0

»
T3

:px∇y� 1
2W T,uT

s qi : px∇y� 1
2 ITs rwsqn�i px∇y�

1
2JTs wsqdxds

� 4
ņ

i�0

1

n� 1� i

�
n

i


» t

0

»
T3

:px∇y� 1
2W T,uT

s qi : B
Bspx∇y

� 1
2 ITs rwsqn�1�idxds

� 4
ņ

i�0

1

n� 1� i

�
n

i


»
T3

:px∇y� 1
2W T,uT

t qi : px∇y� 1
2 ITt rwsqn�1�idx

� 4
ņ

i�0

1

n� 1� i

�
n

i


» t

0

»
T3

px∇y� 1
2 ITs rwsqn�1�id

�
:px∇y� 1

2W T,uT

s qi : �.
Due to the martingale property, the second summand has zero expectation. After setting

AuxtpW T,uT , wq def�
ņ

i�0

1

n� 1� i

�
n

i


»
T3

:px∇y� 1
2W T,uT

t qi : px∇y� 1
2 ITt rwsqn�1�idx, (3.4.32)
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we obtain from (3.4.31) that

E
� » t

0

}ws}2
L2ds� 4AuxtpW T,uT , wq

�
� E

� » t

0

�
2}ws � rT,ws }2

L2 � 4xws, rrT,ws y � }ws}2
L2 � 2}rT,ws }2

L2

�
ds
�

¤ E
�
2

» t

0

}ws � rT,ws }2
L2ds� 4

» T

0

}rrT,ws }2
L2ds

�
.

(3.4.33)

We perform the Gronwall-type argument based on the quantity Φptq, which is defined by

Φptq def� E
» t

0

}ws}2
L2ds� }ITt rws}n�1

W
� 1

2 ,n�1
x

. (3.4.34)

By [BG20a, Lemma 12] and (3.4.33), we have that

Φptq À 1� E
� » t

0

}ws}2
L2ds� AuxtpW T,uT , wq

�
À 1� E

� » t

0

}rT,ws � ws}2
L2ds�

» t

0

}rrT,ws }2
L2ds

�
.

From Lemma 3.4.9, we obtain for ε, δ ¡ 0 that

Φptq Àδ 1� E
� » t

0

}rT,ws � ws}2
L2ds� Cε

» t

0

xsy�1�δQspW, λqds
�
� ε

» t

0

xsy�1�δΦpsqds

Àδ Cε � E
� » t

0

}rT,ws � ws}2
L2ds

�
� ε sup

0¤s¤t
Φpsq.

By choosing ε ¡ 0 sufficiently small depending on δ, this implies the desired estimate.

3.4.3 The reference measure

Using our construction of the drift measures Qu
T , we now provide a short proof of Theorem 3.1.4.

As in the rest of this section, we use the truncation parameter T .

Proof of Theorem 3.1.4: For any 1 ¤ T ¤ 8, we define the reference measure νT as

νT
def� pW8q#Qu

T .
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By using the Lq-bound (Proposition 3.4.7), we have that for all Borel sets A � C�1{2�κ
x pT3q that

µT pAq � rµT pW8 P Aq � EQuT

�
1
 
W8 P A(DT

� ¤ �
EQuT

�
Dq
T

�	 1
qQu

T pW8 P Aq1� 1
q À νT pAq1�

1
q .

This proves the first part of Theorem 3.1.4. Regarding the representation of νT , which forms the

second part of Theorem 3.1.4, we have that

νT

�LawQuT pW8q
�LawQuT pW u

8 � I8ruT sq

�LawQuT

�
W u

8 � λρT p∇q
» 8

0

J2
s :pV � pW T,u

s q2qW T,u

s :ds� ρT p∇q
» 8

0

x∇y� 1
2J2

s :
�x∇y� 1

2W T,u

s

�n
:ds

	
�LawP

�
W8 � λρT p∇q

» 8

0

J2
s :pV � pW T

s q2qW T

s : ds� ρT p∇q
» 8

0

x∇y� 1
2J2

s :
�x∇y� 1

2W T

s

�n
: ds

	
.

This completes the proof.

3.5 Singularity

In this section, we prove Theorem 3.1.5. The majority of this section deals with the singularity

for 0   β   1{2. The absolute continuity for β ¡ 1{2 will be deduced from Corollary 3.3.4 and

requires no new ingredients. Theorem 3.1.5 is important for the motivation of this series of papers,

since we provide the first proof of invariance for a Gibbs measure which is singular with respect to

the corresponding Gaussian free field. The methods of this section, however, will not be used in

the rest of this two-paper series.

We prove the singularity of the Gibbs measure µ8 and the Gaussian free field g through the

explicit event in Proposition 3.5.1.
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Proposition 3.5.1 (Singularity). Let 0   β   1
2

and let δ ¡ 0 be sufficiently small. Then, there

exists a (deterministic) sequence pSmq8m�1 � R¡0 converging to infinity such that

lim
mÑ8

1

S1�2β�δ
m

»
T3

:pV � pρSmp∇qφq2qpρSmp∇qφq2 : dx � 0 g-a.s. (3.5.1)

and

lim
mÑ8

1

S1�2β�δ
m

»
T3

:pV � pρSmp∇qφq2qpρSmp∇qφq2 : dx � �8 µ8-a.s. (3.5.2)

Here, g is the Gaussian free field, µ8 is the Gibbs measure, and φ P C�
1
2
�κ

x pT3q denotes the random

element.

Remark 3.5.2. In the statement of the proposition, the reader may wish to replace φ by W8,

g by P, and µ8 by rµ8. We choose the notation φ to emphasize that this is a property of g and

µ8 only and does not rely on the stochastic control perspective. Of course, the stochastic control

perspective is heavily used in the proof.

To simplify the notation, we define

WS,3

s
def� :pV � pW S

s q2qW S

s : and WS,4

s
def� :pV � pW S

s q2qpW S

s q2 : . (3.5.3)

We note that the dependence on the interaction potential V is not reflected in this notation. We

first study the behavior of the integral of W S,4
8 with respect to P. This is the easier part of the

proof and the statement (3.5.1) follows from the following lemma.

Lemma 3.5.3 (Quartic power under the Gaussian free field). Let 0   β   1{2. Then, we have

that

sup
S¥1

EP

�� 1

S
1
2
�β

»
T3

WS,4

8 dx
	2
�
À 1. (3.5.4)

145



Proof. From Proposition 3.2.9, we obtain that»
T3

WS,4

8 dx �
¸

n1,n2,n3,n4PZ3 :
n1234�0

� ¸
πPS4

pV pnπp1q � nπp2qq
	 » 8

0

» s1

0

» s2

0

» s3

0

dW S,n4
s4

dW S,n3
s3

dW S,n2
s2

dW S,n1
s1

.

Since the iterated stochastic integrals are uncorrelated, we obtain that

EP

�� »
T3

WS,4

8 dx
	2
�

À
¸

n1,n2,n3,n4PZ3 :
n1234�0

� ¸
πPS4

pV pnπp1q � nπp2qq
	2 4¹

j�1

ρSs pnjq2
xnjy2

À
¸

n1,n2,n3,n4PZ3 :
n1234�0

xn12y�2β
4¹
j�1

ρSs pnjq2
xnjy2

À
¸

n1,n2,n3PZ3

xn123y�2xn12y�2β
3¹
j�1

ρSs pnjq2
xnjy2

.

It now only remains to estimate the sum. Provided that β   1{2, we first sum in n3, then n2, and

finally n1 to obtain

¸
n1,n2,n3PZ3

xn123y�2xn12y�2β
3¹
j�1

ρSs pnjq2
xnjy2

À
¸

n1,n2PZ3

xn12y�1�2β
2¹
j�1

ρSs pnjq2
xnjy2

À
¸
n1PZ3

ρSs pn1q2
xn1y2�2β

À S1�2β.

We now begin our study of the integral
³
T3 WS,4

8 dx under Qu
8. Naturally, we would like to replace

(most) occurrences of W S by W S,u, since the law of W S,u under Qu
8 is explicit. This is the objective

of our first (algebraic) lemma.
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Lemma 3.5.4. For any S ¥ 1, it holds that»
T3

WS,4

8 dx �� 4λ

» 8

0

»
T3

pJSsWS,u,3

s q � JsWu,3
s dxds (3.5.5)

� 4

» 8

0

»
T3

pJSsWS,u,3

s qdBu
s � 4λ

3̧

j�1

» 8

0

»
T3

AS,j

s rus � JsWu,3
s dxds (3.5.6)

� 4
3̧

j�1

» 8

0

»
T3

AS,j

s rusdBu
s � 4

» 8

0

»
T3

WS,3

s

�
Jsx∇y� 1

2 :
�x∇y� 1

2W u
s

�n
:
	

dxds, (3.5.7)

where

AS,1

s rus def� JSs

�
pV � :pW S,u

s q2 :qISs rus
	
� 2JSs

�
V � pW S,u

s ISs rusq �W S,u
s �MS

sI
S

s rus
	
, (3.5.8)

AS,2

s rus � JSs

�
pV � pISs rusq2qW S,u

s

	
� 2JSs

�
pV � pW S,u

s ISs rusqqISs rus
	
, (3.5.9)

AS,3

s rus � JSs

�
pV � ISs rus2qISs rus

	
. (3.5.10)

Proof. Using (3.2.27) from Proposition 3.2.9 together with the integral equation for u, i.e. (3.4.3),

we obtain that»
T3

WS,4

8 dx �4

» 8

0

»
T3

WS,3

s dW S

s

�4

» 8

0

»
T3

WS,3

s pJSs usqdxds� 4

» 8

0

»
T3

WS,3

s dW S,u
s

�� 4λ

» 8

0

»
T3

pJSsWS,3

s qpJsWu,3
s qdxds� 4

» 8

0

»
T3

pJSsWS,3

s qdBu
s (3.5.11)

�4

» 8

0

»
T3

pJSsWS,3

s qpJsx∇y�
1
2 :px∇y� 1

2W u
s qn : dxds

From the cubic binomial formula (3.2.31) and the definition of AS,j
s , it follows that

JSsWS,3

s � JSsWS,u,3

s �
3̧

j�1

AS,j

s rus.

Inserting this into (3.5.11) leads to the desired identity.
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We begin by studying the right-hand side of (3.5.5), which is the main term. Our first lemma

controls the expectation, which will be upgraded to a pointwise estimate later.

Lemma 3.5.5. If 0   β   1{2 and S ¥ 1 is sufficiently large, then

EQu8

� » 8

0

»
T3

pJSsWS,u,3

s q � JsWu,3
s dxds

�
Á S1�2β. (3.5.12)

Proof. Since the law of W u under Qu
8 coincides with the law of W under P, it holds that

EQu8

� » 8

0

»
T3

pJSsWS,u,3

s q � JsWu,3
s dxds

�
� EP

� » 8

0

»
T3

pJSsWS,3

s q � JsW3
sdxds

�
. (3.5.13)

The rest of the proof consists of a tedious but direct calculation. Using the real-valuedness of W

and the stochastic integral representation (3.2.25), we have that»
T3

pJSsWS,3

s q � JsW3
sdx

�
»
T3

pJSsWS,3

s q � JsW3
sdx

�
¸
nPZ3

σSs pnqσspnq
xny2

¸
n1,n2,n3PZ3,
m1,m2,m3PZ3

n123�m123�n

�� ¸
πPS3

pV pnπp1q � nπp2qq
	� ¸

τPS3

pV pmτp1q �mτp2qq
	

�
� » s

0

» s1

0

» s2

0

dW S,n3
s3

dW S,n2
s2

dW S,n1
s1

	� » s

0

» s1

0

» s2

0

dW T,s3
m3 dW T,s2

m2 dW T,s1
m1

	�
.

Taking expectations, we only obtain a non-trivial contribution for pn1, n2, n3q � pm1,m2,m3q, and
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it follows that

EP

� »
T3

pJSsWS,3

s q � JsW3
sdx

�
�

¸
n1,n2,n3PZ3

�
σSs pn123qσspn123q

xn123y2

� ¸
πPS3

pV pnπp1q � nπp2qq
	2� 3¹

j�1

1

xnjy2

	
�
» s

0

» s1

0

» s2

0

� 3¹
j�1

�
σsjpnjqσSsjpnjq

�	
ds3ds2ds1

�

�1

6

¸
n1,n2,n3PZ3

�
σSs pn123qσspn123q

xn123y2

� ¸
πPS3

pV pnπp1q � nπp2qq
	2� 3¹

j�1

1

xnjy2

	� 3¹
j�1

» s

0

σsjpnjqσSsjpnjqdsj
	�
.

By recalling that σSs � ρS � σs, integrating in s, using Lemma 3.6.5, and symmetry considerations,

we obtain that

EP

� » 8

0

»
T3

pJSsWS,3

s q � JsW3
sdxds

�
� 1

6

¸
n1,n2,n3PZ3

ρSpn123q
xn123y2

� ¸
πPS3

pV pnπp1q � nπp2qq
	2� 3¹

j�1

ρSpnjq
xnjy2

	 » 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds

¥ c
¸

n1,n2,n3PZ3

ρSpn123q
xn123y2

1

xn12y2β

� 3¹
j�1

ρSpnjq
xnjy2

	 » 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds

� C
¸

n1,n2,n3PZ3

ρSpn123q
xn123y2

1

xn12y1�2β

� 3¹
j�1

ρSpnjq
xnjy2

	 » 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds,

where c, C ¡ 0 are small and large constants depending only on V . The only difference between

the two terms lies in the power of xn12y. The minor term can easily be estimated from above by

¸
n1,n2,n3PZ3

ρSpn123q
xn123y2

1

xn12y1�2β

� 3¹
j�1

ρSpnjq
xnjy2

	 » 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds

À
¸

n1,n2,n3PZ3

1

xn123y2xn12y1�2βxn1y2xn2y2xn3y2

À 1.
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Using Lemma 3.6.9, the main term can be estimated from below by¸
n1,n2,n3PZ3

ρSpn123q
xn123y2

1

xn12y2β

� 3¹
j�1

ρSpnjq
xnjy2

	 » 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds

Á
¸

n1,n2,n3PZ3 :
|nj�Sej |¤S{20

1

xn123y2xn12y2βxn1y2xn2y2xn3y2

Á S�8�2β#tpn1, n2, n3q P pZ3q3 : |nj � Sej| ¤ S{20 for j � 1, 2, 3u
Á S1�2β.

This completes the proof of the lemma.

Before we can upgrade Lemma 3.5.5, we need the following estimate of the AS,j.

Lemma 3.5.6. Let 0   β   1{2, let δ ¡ 0 sufficiently small, and let k ¥ 1 be sufficiently large

depending on β. For any v : R¡0 � T3 Ñ R and any j � 1, 2, 3, it then holds that

}AS,j

s rvs}2
L2
x
À xsy�1�2β�20δ

�
QspWuq � }ISs rvs}k

C
� 1

2�δ
x

� }ISs rvs}2
H1
x

	
. (3.5.14)

Remark 3.5.7. As is clear from the proof, this estimate can be slightly refined. Ignoring δ-losses,

the worst power xsy�1�2β only occurs with }ISs rvs}2

H1�β
x

instead of }ISs rvs}2
H1
x
. However, (3.5.14) is

sufficient for our purposes.

Proof. We treat the estimates for j � 1, 2, 3 separately. We first estimate AS,1
s , which consists of

two terms. For the first summand, we have that���JSs �pV � :pW S,u
s q2 :qISs rvs

	���2

L2
x

À xsy�1�2β�4δ
����pV � :pW S,u

s q2 :qISs rvs
	���2

H�1�β�2δ
x

À xsy�1�2β�4δ}V � :pW S,u
s q2 : }2

C�1�β�δ
x

}ISs rvs}2

H1�β
x

À xsy�1�2β�4δ}V � :pW S,u
s q2 : }2

C�1�β�δ
x

}ISs rvs}βH�1
x
}ISs rvs}2�β

H1
x
.
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Provided that k Á β�1, the desired statement follows from Young’s inequality. The estimate for

the second summand is similar, except that in the second inequality above we use the random

matrix estimate (Proposition 3.3.7) instead of Hölder’s inequality.

Next, we estimate AS,2
s . Let η ¡ 0 remain to be chosen. Using (3.6.13) from Lemma 3.6.7, we can

control the first term in AS,2
s by���JSs �pV � pISs rvsq2qW S,u

s

	���2

L2
x

À xsy�2�4δ
���x∇y� 1

2
�2δ

�
pV � pISs rvsq2qW S,u

s

	���2

L2
x

À xsy�2�4δ}W S,u
s }2

C
� 1

2�δ
x

}ISs rvs}2

C
� 1

2�δ
x

}ISs rvs}2
H1�4δ
x

À xsy�2�12δ}W S,u
s }2

C
� 1

2�δ
x

}ISs rvs}2

C
� 1

2�δ
x

}ISs rvs}2
H1
x

À xsy�2�12δ�8η}W S,u
s }2

C
� 1

2�δ
x

}ISs rvs}2�η

C
� 1

2�δ
x

}ISs rvs}2�η
H1
x

À xsy�2�12δ�8η
�
}W S,u

s }
8
η

C
� 1

2�δ
x

� }ISs rvs}
4p2�ηq
η

C
� 1

2�δ
x

� }ISs rvs}2
H1
x

	
.

After choosing η � 10k�1, the desired estimate follows provided that k Á p1{2 � βq�1. The only

difference in the estimate of the second term in AS,2
s is that we use (3.6.12) instead of (3.6.13).

We now turn to the estimate of AS,3
s . Arguing exactly as in our estimate for AS,2

s , we obtain that���JSs �pV � pISs rvsq2qISs rvs
	���2

L2
x

À xsy�2�12δ�8η}ISs rvs}4�η

C
� 1

2�δ
x

}ISs rvs}2�η
H1
x
.

Using Young’s inequality, this contribution is acceptable.

We are now ready to upgrade our bound on the expectation from Lemma 3.5.5 into a pointwise

statement. The main tool will be the Boué-Dupuis formula.

Lemma 3.5.8. For any δ ¡ 0, there exists a sequence pSmq8m�1 converging to infinity such that

lim
mÑ8

1

S1�2β�δ
m

» 8

0

»
T3

�
JSms W Sm,u,3

s

	�
JsW

u,3
s

	
dxds � 8 Qu

8-a.s. (3.5.15)
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Proof. Let k ¥ 1 remain to be chosen. We define the auxiliary function

GS � 1

S1�2β�δ

» 8

0

»
T3

�
JSsW

S,u,3
s

	�
JsW

u,3
s

	
dxds� sup

0¤s 8
}W u

s }k
C
� 1

2�δ
x pT3q

. (3.5.16)

We will now show that

lim
SÑ8

EQu8

�
e�GS

�
� 0, (3.5.17)

which implies the desired result. We could switch from pW u,Qu
8q to pW,Pq, which we have done

several times above. Since the AS,j
s in (3.5.8)-(3.5.10) are defined in terms of W u, however, we

decided not to change the measure.

We define Ajs similar as in (3.5.8)-(3.5.10), but with JSs replaced by Js, I
S
s replaced by Is, and W S,u

replaced by W u. Since all our estimates for AS,j were uniform in S ¥ 1, they also hold for Aj.

Using the Boué-Dupuis formula (Theorem 3.2.1) and the cubic binomial formula, we have that

� logEQu8

�
e�GS

�
� inf

vPHa
EQu

�
1

S1�2β�δ

» 8

0

»
T3

�
JSs

�
:pV � pW S,u

s � ISs rvsq2qpW S,u
s � ISs rvsq:

	
�Js

�
:pV � pW u

s � Isrvsq2qpW u
s � Isrvsq:

	

dxds� sup

0¤s 8
}W u

s � Isrvs}k
C
� 1

2�δ
x

� 1

2
}v}2

L2
sL

2
x

�
�EQu8

�
1

S1�2β�δ

» 8

0

»
T 3

JSs

�
:pV � pW S,u

s q2qW S,u
s :

	
Js

�
:pV � pW u

s q2qW u
s :

	
dxds

�
(3.5.18)

� inf
vPHa

EQu8

�
sup

0¤s 8
}W u

s � Isrvs}k
C
� 1

2�δ
x

� 1

2

» 8

0

}vs}2
L2
x
ds (3.5.19)

� 1

S1�2β�δ

3̧

j�1

» 8

0

»
T3

pJSsWS,u,3

s qAjsrvsdxds� 1

S1�2β�δ

3̧

j�1

» 8

0

»
T3

pJsWu,3
s qAS,j

s rvsdxds (3.5.20)

� 1

S1�2β�δ

3̧

i,j�1

» 8

0

»
T3

AS,i

s rvsAjsrvsdxds

�
. (3.5.21)

The main term is given by (3.5.18). By Lemma 3.5.5, we see that (3.5.18) converges to infinity as

S Ñ 8. Thus, it remains to obtain a lower bound on the variational problem in (3.5.19)-(3.5.21).

The terms in (3.5.19) are nonnegative and help with the lower bound. In contrast, the terms in

152



(3.5.20) and (3.5.21) are viewed as errors and will be estimated in absolute value.

Regarding (3.5.19), we briefly note that

EQu

�
sup

0¤s 8
}W u

s � Isrvs}k
C
� 1

2�δ
x

�
¥ 1

2
EQu8

�
sup

0¤s 8
}Isrvs}k

C
� 1

2�δ
x

�
� C.

In the estimates below, we will often use that AS,j
s rvs � 0 for all s " S. We begin with the first

term in (3.5.20). We have that��� 1

S1�2β�δ

» 8

0

»
T3

pJSsWS,u,3

s qAjsrvsdxdt
���

¤ 1

S1�2β�δ

» 8

0

1ts À Suxsy� 1
2 }JSsWS,u,3

s }2
L2ds� 1

S1�2β�δ

» 8

0

1ts À Suxsy 1
2 }Ajsrvs}2

L2ds. (3.5.22)

For the first term in (3.5.22), we obtain from Lemma 3.2.20 that

EQu8

�
1

S1�2β�δ

» 8

0

1ts À Suxsy� 1
2 }JSsWS,u,3

s }2
L2ds

�
À 1

S1�2β�δ

» 8

0

1ts À Suxsy� 1
2
�2β�2δEQu

�
}WS,u,3

s }2

H
� 3

2�β�δ
x

�
ds

À 1

S1�2β�δ

» 8

0

1ts À Suxsy� 1
2
�2β�2δds

À 1.

(3.5.23)

For the second term in (3.5.22), we obtain from Lemma 3.5.6 that

EQu8

�
1

S1�2β�δ

» 8

0

1ts À Suxsy 1
2 }Ajsrvs}2

L2ds

�
À 1

S1�2β�δ

» 8

0

1ts À Suxsy� 1
2
�2βEQu8

�
QspW uq

�
ds

� 1

S1�2β�δ
EQu

� » 8

0

1ts À Suxsy� 1
2
�2β

�
}Isrvs}k

C
� 1

2�δ
x

� }Isrvs}2
H1
x

	
ds

�
À 1� Sδ maxpS� 1

2 , S2β�1qEQu8

�
sup

0¤s 8

�
}Isrvs}k

C
� 1

2�δ
x

� }Isrvs}2
H1
x

	�
À 1� Sδ maxpS� 1

2 , S2β�1qEQu8

�
sup

0¤s 8
}Isrvs}k

C
� 1

2�δ
x

� }v}2
L2
sL

2
x

�
.

(3.5.24)
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In the last line, we also Lemma 3.6.8. Since S Ñ 8, this contribution can be absorbed in the

coercive term (3.5.22). The estimate of the second summand in (3.5.20) is exactly the same.

Regarding the error terms in (3.5.21), we have that

��� 1

S1�2β�δ

3̧

i,j�1

» 8

0

»
T3

AS,i

s rvsAjsrvsdxds
���

À 1

S1�2β�δ

3̧

j�1

» 8

0

1ts À Su
�
}AS,i

s rvs}2
L2
x
� }Ajsrvs}2

L2
x

	
dxds.

The right-hand side can now be controlled using the same (or simpler) estimates as for the second

summand in (3.5.22). This completes the proof.

Essentially the same estimates as in the previous proof can also be used to control the minor terms

in (3.5.6) and (3.5.7). We record them in the following lemma.

Lemma 3.5.9. Let 0   β   1{2, let δ ¡ 0 and let j � 1, 2, 3. Then, it holds that

lim
SÑ8

EQu8

��
1

S
1
2
�β�δ

» 8

0

»
T3

JSsW
S,u,3
s dBu

s


2�
� 0, (3.5.25)

lim
SÑ8

EQu8

�
1

maxpS1�3β�δ, 1q
���� » 8

0

»
T3

AS,j

s rus � JsWu,3
s dxds

����� � 0, (3.5.26)

lim
SÑ8

EQu8

��
1

maxpS 1
2
�2β�δ, 1q

» 8

0

»
T3

AS,j

s rusdBu
s


2�
� 0, (3.5.27)

lim
SÑ8

EQu8

�
1

Sδ

���� » 8

0

»
T3

pJSsWS,3

s qpJsx∇y�
1
2 :px∇y� 1

2W u
s qn :qdxds

����� � 0. (3.5.28)

Proof. We begin with the proof of (3.5.25). Using Itô’s isometry, we have that

EQu

��
1

S
1
2
�β�δ

» 8

0

»
T3

JSsW
S,u,3
s dBu

s


2�
� 1

S1�2β�2δ

» 8

0

EQu8

�
}JSsW S,u,3

s }2
L2
x

�
ds.
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Arguing essentially as in (3.5.23), we obtain that

1

S1�2β�2δ

» 8

0

EQu8

�
}JSsW S,u,3

s }2
L2
x

�
ds À 1

S1�2β�2δ

» 8

0

1ts À Suxsy�2β�δds À S�δ,

which yields (3.5.25).

We now turn to (3.5.26). Using Lemma 3.5.6 and Corollary 3.4.6, we have for all ε ¡ 0 that

EQu8

�
}AS,j

s rus}2
L2
x

�
À xsy�1�2β�20εp1� �xsy1�p 1

2
�βq�ε

�2q À xsy�4β�40ε. (3.5.29)

Using Lemma 3.2.16 and (3.5.29), we obtain that

EQu8

����� » 8

0

»
T3

AS,j

s rus � JsWu,3
s dxds

�����
À EQu8

� » 8

0

1ts À Suxsy�β}JsWu,3
s }2

L2
x
ds

�
� EQu8

� » 8

0

1ts À Suxsyβ}AS,j

s rus}2
L2
x
ds

�
À
» 8

0

1ts À Suxsy�3β�40εds À S�
δ
2 maxp1, S1�3β�δq.

Next, we prove (3.5.26). Using Itô’s isometry and (3.5.29), we have that

EQu8

��» 8

0

»
T3

AS,j

s rusdBu
s


2�
À EQu8

� » 8

0

1ts À Su}AS,j

s rus}2
L2
x
ds

�
À
» 8

0

1ts À Suxsy�4β�40εds

À S�δ maxpS 1
2
�2β�δ, 1q2.

Finally, we turn to (3.5.28), which is the most regular term. We first recall the algebraic identity

JSsWS,3
s � JSWS,u,3

s �°3
j�1A

S,j
s rus. Then, Lemma 3.2.16 and (3.5.29) yield

EQu8

�
}JSsWS,3

s }2
L2
x

�
À xsy�2β�2ε. (3.5.30)

From Lemma 3.2.23, we have that

EQu8

�
}Jsx∇y� 1

2 :
�x∇y� 1

2W u
s

�n
: }2

L2
x

�
À xsy�4�2ε. (3.5.31)
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By combining (3.5.30) and (3.5.31), we obtain

EQu8

����� » 8

0

»
T3

pJSsWS,3

s qpJsx∇y�
1
2 :px∇y� 1

2W u
s qn :qdxds

�����
À EQu8

� » 8

0

1ts À Suxsy�1}JSsWS,3

s }2
L2
x
ds

�
� EQu8

� » 8

0

xsy}Jsx∇y� 1
2 :

�x∇y� 1
2W u

s

�n
: }2

L2
x
ds

�
À
» 8

0

�
xsy�1�2β�2ε � xsy�3�ε

	
ds À 1.

We are now ready to prove the main result of this section.

Proof of Proposition 3.5.1: We recall from Lemma 3.5.4 that

1

S1�2β�δ

»
T3

WS,4

8 dx � � 4λ

S1�2β�δ

» 8

0

»
T3

pJSsWS,u,3

s q � JsWu,3
s dxds�RSpWu, uq, (3.5.32)

where the remainder RpWu, uq contains the terms from (3.5.6) and (3.5.7) with an additional

S�1�2β�δ. By Lemma 3.5.8, there exists a deterministic sequence Sm such that the first summand

in (3.5.32) converges to �8 almost surely with respect to Qu
8. Since 0   β   1{2, we have that

1� 2β ¡ max
�1

2
� β, 1� 3β,

1

2
� 2β, 0

	
.

Using Lemma 3.5.9, this implies that the remainder RSpWu, uq converges to zero in L1pQu
8q. By

passing to a subsequence if necessary, we can assume that RSmpWu, uq converges to zero almost

surely with respect to Qu
8. Using (3.5.32), this implies that

lim
mÑ8

1

S1�2β�δ
m

»
T3

WSm,4

8 dx � �8 Qu
8-a.s.

Using β   1{2 and Lemma 3.5.3, the integral S�1�2β�δ
³
T3 WS,4

8 dx converges to zero in L2pPq. By

passing to another subsequence if necessary, we obtain that

lim
mÑ8

1

S1�2β�δ
m

»
T3

WSm,4

8 dx � 0 P-a.s.
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Since µ8 is absolutely continuous with respect to ν8 � pW8q#Qu
8 and g � LawPpW8q, this

implies (3.5.1) and (3.5.2).

Equipped with Corollary 3.3.4 and Proposition 3.5.1, we now provide a short proof of Theorem

3.1.5.

Proof of Theorem 3.1.5: If 0   β   1{2, then the mutual singularity of the Gibbs measure µ8 and

the Gaussian free field g directly follows from Proposition 3.5.1.

If β ¡ 1{2, we claim that for all p ¥ 1 that

dµT
dg

P Lppgq (3.5.33)

with uniform bounds in T ¥ 1. Since µT converges weakly to µ8, this implies the absolute

continuity µ8 ! g.

In order to prove the claim, we recall that µT � pW8q#rµT and g � pW8q#P. Furthermore, we

see from (3.2.10) that the density drµT {dP is a function of W8. As a result, we obtain for all p ¥ 1

that » �drµT
dP

	p
dP �

» �dµT
dg

	p
dg

Thus, it suffices to bound the density drµT {dP in LppPq. From the definition of rµT (Definition

3.2.3) and the definition of the renormalized potential energy in (3.3.2), we have that�drµT
dP

	p
� 1�

ZT,λ
�p exp

�
� p :VT,λpW T

8q:
	

� 1�
ZT,λ

�p exp
�
� λp

4

»
T3

:pV � pW T

8q2qpW T

8q2 : dx� pcT,λ
	

� ZT,pλ�
ZT,λ

�p exppcTpλ � pcT,λq � 1

ZT,pλ
exp

�
� :VT,pλpW T

8q:
	
.

The first two factors are uniformly bounded in T by Proposition 3.3.3 and Corollary 3.3.4. The

last factor is uniformly bounded in L1pPq for all T ¥ 1 since we only replaced the coupling constant

λ by pλ. This completes the proof of the claim (3.5.33).
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3.6 Appendix

3.6.1 Probability Theory

In this section we recall two concepts from probability theory, namely, Gaussian hypercontractivity

and multiple stochastic integrals.

3.6.1.1 Gaussian hypercontractivity

In several places of this paper, we reduced probabilistic Lp-bounds to probabilistic L2-bounds

using Gaussian hypercontractivity, which is closely related to logarithmic Sobolev embeddings.

In the dispersive PDE community, among others, the resulting estimates are known as Wiener

chaos estimates. A version of the following lemma can be found in [Sim74, Theorem I.22], [Nua06,

Theorem 1.4.1], and most papers on random dispersive PDE.

Lemma 3.6.1. Let k ¥ 1 and let f : pR¡0�Z3qk Ñ C be deterministic, bounded, and measurable.

For any t ¥ 0, define the random variable

Xt �
¸

n1,...,nkPZ3

» t

0

» t1

0

. . .

» tk�1

0

fpt1, n1, . . . , tk, nkqdW nk
tk

dW
nk�1

tk�1
. . . dW n1

t1 . (3.6.1)

Then, it holds for all p ¥ 2 that

}Xt}LppΩq ¤ pp� 1q k2 }Xt}L2pΩq. (3.6.2)
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3.6.1.2 Multiple stochastic integrals

This section is based on [Nua06, Section 1.1] and we refer the reader to this excellent book for

more details. Of particular importance to us is [Nua06, Example 1.1.2], which discuss the specific

case of a d-dimensional Brownian motion.

We identify W T with a Gaussian process on H � L2pR¡0 �Z3, dtb dnq, where dt is the Lebesgue

measure and dn is the counting measure. For any h P H, we define

W T rhs �
¸
nPZ3

» 8

0

hpt, nqdW T ,n
t . (3.6.3)

For any h, h1 P H, we have that

E
�
W T rhsW T rh1s

�
�

¸
nPZ3

» 8

0

hpt, nqh1pt,�nqσ
T
t pnq2
xny2

dt. (3.6.4)

Since we did not include a complex conjugate in the left-hand side of (3.6.4), we note that this

does not yield a positive-definite bilinear form. We also did not include the weight ρTt pnq2{xny2 in

the definition of H. Thus, the “covariance” in (3.6.4) does not coincide with the inner product on

H and instead is only dominated by it. As is clear from [Nua06, Section 1.1], this only requires

minor modifications in both the arguments and formulas.

For any k ¥ 1 and any function f P Hk � L2
�pR¡0�Z3qk,Âk

j�1pdtbdnq�, the multiple stochastic

integral

Ikrf s �
¸

n1,...,nkPZ3

» 8

0

. . .

» 8

0

fpt1, n1, . . . , tk, nkqdW T ,nk
tk

. . . dW T ,n1
t1 (3.6.5)

can be defined as in [Nua06, Section 1.1.2]. If f is symmetric in the pairs pt1, n1q, pt2, n2q, . . . , ptk, nkq,
we can relate the multiple stochastic integral to an iterated stochastic integral.
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Lemma 3.6.2. Let k ¥ 1 and let f P Hk be symmetric. Then, it holds that

Ikrf s � k!
¸

n1,...,nkPZ3

» 8

0

» t1

0

. . .

» tk�1

0

fpt1, n1, . . . , tk, nkqdW T ,nk
tk

. . . dW T ,n1
t1 , (3.6.6)

where the right-hand side is understood as an iterated Itô integral.

This lemma follows from [Nua06, (1.27)] and the discussion below it. The primary reason for

working with multiple stochastic integrals instead of iterated stochastic integrals is the simpler

representation of their products. In order to state the product formula in Lemma 3.6.4 below, we

need one further definition.

Definition 3.6.3 (Contraction). Let k, l ¥ 1 and let f P Hk and g P Hl be symmetric. For any

0 ¤ r ¤ minpk, lq, we define the contraction of r indices by

pf br gqpt1, n1, . . . , tk�l�2r, nk�l�2rq
def�

¸
m1,...,mrPZ3

» 8

0

. . .

» 8

0

�
fpt1, n1, . . . , tk�r, nk�r, s1,m1, . . . , sr,mrq

� gptk�1�r, nk�1�r, . . . , tk�l�2r, nk�l�2r, s1,�m1, . . . , sr,�mrq
k¹
j�1

σTsjpmjq2
xmjy2

�
dsr . . . ds1.

The reader should note the relationship to the covariance (3.6.4). If f, g P H � H1, then

E
�
W T rf sW T rgs

�
� f b1 g.

A slight modification of [Nua06, Proposition 1.1.3] then yields the following result.

Lemma 3.6.4 (Product formula). For any k, l ¥ 1 and any symmetric f P Hk and g P Hl, it

holds that

Ikrf s � Ilrgs �
minpk,lq¸
r�0

r!

�
k

r


�
l

r



Ik�l�2rrf br gs. (3.6.7)
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3.6.2 Auxiliary analytic estimates

In this section, we record several auxiliary results, which have been placed here to not interrupt

the flow of the argument.

Harmonic analysis

We record a non-stationary phase argument and several standard trilinear product estimates.

Lemma 3.6.5 (Asymptotics of pV ). There exists a constant c � cβ P R such that���pV pnq � cβ
xnyβ

��� À 1

xnyβ�1
. (3.6.8)

Remark 3.6.6. On the Euclidean space R3, instead of the periodic torus T3, the Fourier transform

of |x|β�3 is given exactly by cβ|ξ|�β. At high frequencies, the Fourier transform pV is determined

by the singularities of V , and hence the difference between R3 and T3 should not be essential. In

fact, a more precise description of the asymptotics of pV is given by cβ|n|�β1tn � 0u�OMpxny�Mq,
but it is easier to work with (3.6.8).

Proof. We denote by FR3 the Fourier transform on R3 given by

FR3fpξq �
»
R3

fpxqe�ixξ,xydx.

Let tχNuN¥1 be as in (3.1.15), which we naturally extend from Z3 to R3. Because we require

additional room, we define for any x P T3 and N ¥ 1 the function

rχNpxq def� χNp100xq. (3.6.9)
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Let n P Z3zt0u. Using the assumptions on the interaction potential V , we obtain that

pV pnq � »
T3

V pxqe�ixn,xydx

�
»
T3

V pxqrχ1pxqe�ixn,xydx�
»
T3

V pxqp1� rχ1pxqqe�ixn,xydx

�
»
R3

|x|�p3�βqrχ1pxqe�ixn,xydx�
»
T3

V pxqp1� rχ1pxqqe�ixn,xydx

� FR3

�|x|�p3�βq�pξq � ¸
N¥2

»
R3

|x|�p3�βqrχNpxqe�ixn,xydx� »
T3

V pxqp1� rχ1pxqqe�ixn,xydx.

The first summand is given exactly by cβ}n}�β2 . A non-stationary phase argument for the second

and third term shows that they are bounded by OMpxny�Mq for all M ¥ 1. This implies that

pV pnq � cβ}n}�β2 1tn � 0u �OMpxny�Mq.

Since }n}�β2 � xny�β �Opxny�1�βq, this leads to (3.6.8).

The following estimates are used in the paper to control several minor error terms.

Lemma 3.6.7 (Trilinear estimates). For any sufficiently small δ ¡ 0, we have for all f, g, h P
C8
x pT3q the estimates���x∇y 1

2
�δ
�
pV � pfgqqh

	���
L1
x

À }f}
H

1
2�2δ
x

}g}
H

1
2�2δ
x

}h}
C

1
2�2δ
x

, (3.6.10)���x∇y 1
2
�δ
�
pV � pfgqqh

	���
L1
x

À }f}
C

1
2�2δ
x

}g}
H

1
2�2δ
x

}h}
H

1
2�2δ
x

, (3.6.11)���x∇y� 1
2
�2δ

�
pV � pfgqqh

	���
L2
x

À }f}
C
� 1

2�δ
x

�
}g}

C
� 1

2�δ
x

}h}H1�4δ
x

� }g}H1�4δ
x

}h}
C
� 1

2�δ
x

	
(3.6.12)���x∇y� 1

2
�2δ

�
pV � pfgqqh

	���
L2
x

À
�
}f}

C
� 1

2�δ
x

}g}H1�4δ
x

� }f}H1�4δ
x

}g}
C
� 1

2�δ
x

	
}h}

C
� 1

2�δ
x

. (3.6.13)

These estimates are essentially an easier version of the fractional product formula. They can

be proven using a paraproduct decomposition and Hölder’s inequality and we omit the details.

We always included δ-loss on the right-hand side of (3.6.10), so we can avoid all summability or

endpoint issues. We also never rely on the smoothing effect of the interaction potential V .
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The integral operator and truncations

We now record two properties related to the integral operator It and the associated frequency

truncations ρ and σ.

Lemma 3.6.8 ([BG20b, Lemma 2]). For any space-time function u : r0,8q � T3 Ñ R and any

δ ¡ 0, it holds that

sup
T,t¥0

}ITt rus}H1
xpT3q À }u}L2

tL
2
xpr0,8q�T3q (3.6.14)

and

sup
T,t,s¥0

}ITs rus � ITt rus}2
H1�δ
x pT3q

À minps, tq�2δ minp1, |t� s|q}u}2
L2
tL

2
xpr0,8q�T3q. (3.6.15)

Proof. The first estimate (3.6.14) follows directly from [BG20b, Lemma 2]. Since ITs rus � ITt rus is

supported on frequencies Á minps, tq, we have that

}ITs rus � ITt rus}H1�δ
x pT3q À minpt, sq�δ}ITs rus � ITt rus}H1

xpT3q.

The rest of the statement then again follows from [BG20b, Lemma 2].

The result in [BG20b] is only stated for It instead of ITt , but the same argument applies.

Lemma 3.6.9 (Well-behaved truncations). If S ¥ 1 and n1, n2, n3 P Z3 satisfy }nj�Sej}2 ¤ S{20

for all j � 1, 2, 3, where ej is the j-th canonical basis vector, then

ρSpn123q
� 3¹
j�1

ρSpnjq
	 » 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds Á 1. (3.6.16)

While the proof is a bit technical and depends on the precise regions in the definition of ρ, this

lemma should not be taken too seriously.
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Proof. We recall the lower bound minpρpyq,�ρ1pyqq Á 1 for all 1{2 ¤ y ¤ 2 from the definition of

ρ. From the assumptions, we directly obtain that

|}n123}2 �
?

3S| ¤ 3

20
S.

In particular, we obtain that 3{2 � S ¤ }n123}2 ¤ 19{20 � S. Since 19{20 � S ¤ }nj}2 ¤ 21{20 � S for

all j � 1, 2, 3, it follows that

ρSpn123q
� 3¹
j�1

ρSpnjq
	
Á 1.

We estimate the integral by» 8

0

σspn123q2
� 3¹
j�1

ρspnjq2
	

ds

Á
» 8

0

xsy�11
!xsy

2
¤ }n123} ¤ 2xsy

)� 3¹
j�1

1
!
}nj}2 ¤ 2xsy

)	
ds

Á S�1
� » 8

0

1
!1

2
maxp}n1}, }n2}, }n3}, }n123}q ¤ s ¤ 2}n123}

)
ds� 2

	
� S�1

�3

2
}n123}2 � 2

	
Á 1,

where we used that S ¥ 1.

A basic counting estimate

The following estimate has been used to control stochastic objects (see Lemma 3.2.20).

Lemma 3.6.10. Let v, w P Z3 and let α, β ¡ 0 satisfy 1   α � β   3. Then,

¸
nPZ3

1

xn� vyαxn� wyβxny2
À minpxvy, xwyq1�α�β. (3.6.17)
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Remark 3.6.11. The estimate (3.6.17) is not sharp if v and w have different magnitudes. For

our purposes, however, (3.6.17) will be sufficient.

Proof of Lemma 3.6.10: Using Young’s inequality, we have that

1

xn� vyαxn� wyβ À
1

xn� vyα�β �
1

xn� wyα�β . (3.6.18)

Using this inequality, the estimate (3.6.17) reduces to¸
nPZ3

1

xn� vyα�βxny2
À xvy1�α�β.

This can easily be proven by decomposing the sum into the regions |n| ! |v|, |n| � |v| and

|n| " |v|.

3.6.3 Uniqueness of weak subsequential limits

In this section, we sketch the proof of the uniqueness of weak subsequential limits of pµT qT¥1, which

has been obtained in [OOT20, Proposition 6.6]. For the convenience of the reader, we present the

argument from [OOT20] in our notation.

Proposition 3.6.12. The limit

lim
TÑ8

»
dµT pφq expp�fpφqq (3.6.19)

exists for all Lipschitz functions f : C�1{2�κ
x pT3q Ñ R. In particular, weak subsequential limits of

pµT qT¥1 are unique.

Remark 3.6.13. The only reason why Proposition 3.6.12 does not (immediately) yield the weak

convergence of pµT qT¥1 is that we do not prove that the limit in (3.6.19) corresponds to the Laplace

transform of a limiting measure. As described in the proof of Theorem 3.1.3, this part follows from

Prokhorov’s theorem.
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As was observed in [OOT20], Proposition 3.6.12 follows essentially from the same estimates as in

the proof of uniform bounds on the variational problem (Proposition 3.3.1).

Proof. We recall from (3.2.9) that

dµT pφq � 1

ZT,λ
exp

�
� :VT,λpρT p∇qφq:

	
d
�pW8q#P

�pφq. (3.6.20)

We now split the proof into two steps.

Step 1: Reduction. Let k ¥ 1 be a large integer. In this step, we reduce the existence of the limit

in (3.6.19) to the existence of the limit

lim
TÑ8

EP

�
exp

�
� fpW8q� :VT,λpW T

8q: �ε}W8}kC�1{2�κ
x

	�
(3.6.21)

for all Lipschitz functions f : C�1{2�κ
x pT3q Ñ R and all ε ¡ 0. To this end, we first note that

1� expp�εxkq ¤ εxk ¤ k!ε exppxq

for all x ¥ 0. Using Proposition 3.3.3, this implies���EP

�
exp

�
� fpW8q� :VT,λpW T

8q:
	�

� EP

�
exp

�
� fpW8q� :VT,λpW T

8q: �ε}W8}kC�1{2�κ
x

	����
� EP

��
1� exp

�
� ε}W8}kC�1{2�κ

x

		
exp

�
� fpW8q� :VT,λpρT p∇qW8q:

	�
Àk ε � EP

�
exp

�
}W8}C�1{2�ε

x
� fpW8q� :VT,λpρT p∇qW8q:

	�
Àk,λ,f ε.

Thus, the existence of the limit in (3.6.21) implies the existence of the limit

lim
TÑ8

EP

�
exp

�
� fpW8q� :VT,λpW T

8q:
	�

(3.6.22)

for all Lipschitz functions f : C�1{2�κ
x pT3q Ñ R. By setting f � 0, we see that (3.6.22) implies the

convergence of the normalization constants ZT,λ as T Ñ 8. Since (3.6.19) and (3.6.22) only differ
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by a factor of ZT,λ, we obtain that the limit in (3.6.19) exists.

Step 2: Existence of the regularized limit (3.6.21). Using the Boué-Dupuis formula (Theorem 3.2.1)

and arguing as in the derivation of (3.3.22), we have that

� log
�
EP

�
exp

�
� fpW8q� :VT,λpW T

8q: �ε}W8}kC�1{2�κ
x

	�	
� inf

wPHa
EP

�
ET1 rws � ET2 rws � ET3 rws �

λ

4
VpIT8rwsq �

1

2
}w}2

L2
t,x
� ε}I8rws �W8}kC�1{2�κ

x

�
.

(3.6.23)

Here, V is as in (3.3.1) and ET1 rws, ET2 rws, and ET3 rws are as in (3.3.24)-(3.3.26), but the term

ϕpW � Irusq in (3.3.24) is replaced by

fpW8 � I8rJTt :pV � pW T

t q2qW T

t :s � I8rwsq.

In contrast to (3.3.24)-(3.3.26), we also reflect the dependence on T and w in our notation. To

avoid confusion, we also recall that the term EP
�
E0 � cT,λ

�
in (3.3.22) vanishes due to our choice

of cT,λ. Our estimates in the proof of Proposition 3.3.3 show that the infimum in (3.6.23) can be

take over w P Ha satisfying the additional bound

EP

�λ
4
VpIT8rwsq �

1

2
}w}2

L2
t,x
� ε}I8rws}kC�1{2�κ

x

�
Àλ 1.

In order to conclude the existence of the limit (3.6.21), it therefore suffices to prove for all T, S ¥ 1

the estimate
3̧

j�1

���EP

�
ETj rws � ESj rws

����� ���EP

�
VpIT8rwsq � VpIS8rwsq

����
Àλ,ε,k minpS, T q�η

�
1� EP

�1

2
}w}2

L2
t,x
� ε}I8rws}kC�1{2�κ

x

�

,

(3.6.24)

where η ¡ 0 is sufficiently small. We only present the estimate (3.6.24) for ET1 rws � ES1 rws and

VpIT8rwsq � VpIS8rwsq, since the remaing estimates are similar.
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Step 2.a: Estimate of ET1 rws � ES1 rws. For the convenience of the reader, we recall that

ET1 rws def� fpW8 � I8rJTt :pV � pW T

t q2qW T

t :s � I8rwsq � λ2

»
T3

pV � :pW T

8q2 :qWT,r3s

8 IT8rwsdx

� 2λ2

»
T3

��
V � pW T

8WT,r3s

8 q�W T

8 �MT

8WT,r3s

8

	
IT8rwsdx.

(3.6.25)

We estimate the contributions of the three terms separately. For the first summand in (3.6.25),

we have that

��fpW8 � I8rJTt :pV � pW T

t q2qW T

t :s � I8rwsq � fpW8 � I8rJSt :pV � pW S

t q2qW S

t :s � I8rwsq
��

¤ Lippfq��I8rJTt :pV � pW T

t q2qW T

t :s � I8rJSt :pV � pW S

t q2qW S

t :s��C�1{2�κ
x

.

The desired estimate then follows from a minor modification of (3.2.47).

We now turn to the second summand in (3.6.25). First, we note for any γ ¡ 0 that

}IT8rws � IS8rws}H1�γ
x

� }pρT p∇q � ρSp∇qqI8rws}H1�γ À minpS, T q�γ}I8rws}H1
x
. (3.6.26)

Now, we let 0   γ   γ1   minp1{2, βq. Using (3.6.26), we obtain that��� »
T3

pV � :pW T

8q2 :qWT,r3s

8 IT8rwsdx�
»
T3

pV � :pW S

8q2 :qWS,r3s

8 IS8rwsdx
���

À
���pV � :pW T

8q2 :qWT,r3s

8 � pV � :pW S
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8

���
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}IT8rws}H1�γ
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�
���pV � :pW S
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���
C�1�γ1
x

}IT8rws � IS8rws}H1�γ
x

À
����pV � :pW T

8q2 :qWT,r3s

8 � pV � :pW S

8q2 :qWS,r3s
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���
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�minpS, T q�γ
���pV � :pW S

8q2 :qWS,r3s
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���
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x



� }I8rws}H1

x
.

The desired estimate then follows from a minor modification of (3.2.47) and Lemma 3.6.8. The

estimate of the third term in (3.6.25) is similar and we omit the details.
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Step 2.b: Estimate of VpIT8rwsq � VpIS8rwsq. Using Hölder’s inequality and interpolation, it holds

that

}ϕ}L4
xpT3q À }ϕ}

2p1�κq
3�4κ

C�1{2�κ
x pT3q

}ϕ}
1�6κ
3�4κ

H1�κ
x pT3q

. (3.6.27)

Using Hölder’s inequality, (3.6.27), and ITt � ρT p∇qIt, we obtain that���VpIT8rwsq � VpIS8rwsq
���

À �}IT8rws}L4
x
� }IS8rws}L4

x

�3}IT8rws � IS8rws}L4
x

À }I8rws}4� 2p1�κq
3�4κ

C�1{2�κ
x

}I8rws}3� 1�6κ
3�4κ

H1
x

}IT8rws � IS8rws}
1�6κ
3�4κ

H1�κ
x

À minpS, T q� p1�6κqκ
3�4κ }I8rws}4� 2p1�κq

3�4κ

C�1{2�κ
x

}I8rws}4� 1�6κ
3�4κ

H1
x

.

Since 4p1�6κq{p3�4κq   2, the desired estimate follows from Lemma 3.6.8 and Young’s inequality.

Remark 3.6.14. As seen in the proof of Proposition 3.6.12, the regularizing factor exp
� �

ε}W8}kC�1{2�κ
x

�
in (3.6.21) is needed to estimate VpIT8rwsq � VpIS8rwsq.
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CHAPTER 4

Invariant Gibbs measures for the three-dimensional wave

equation with a Hartree nonlinearity II: Dynamics5

4.1 Introduction

In this chapter we deal with the dynamical aspects of Theorem 1.2.1. As a result, it is inspired

by recent advances in random dispersive equations. The interest in random dispersive equations

stems from their connections to several areas of research, such as analytic number theory, harmonic

analysis, random matrix theory, and stochastic partial differential equations (cf. [Nah16]). In fact,

much of the recent progress have been fueled through similar advances in singular stochastic par-

tial differential equations, such as Hairer’s regularity structures [Hai14] or Gubinelli, Imkeller, and

Perkowski’s para-controlled calculus [GIP15].

The most classical problem in random dispersive equations is the construction of invariant measures

for (periodic and defocusing) nonlinear wave and Schrödinger equations. This has been an active

area of research since the 1990s, and we refer the reader to Figure 4.1 for an overview of some of

the most important contributions.

The first results in this direction were obtained in one-spatial dimension by Friedlander [Fri85],

5The contents of this chapter have been posted as a research article on ArXiv [Bri20d].

170



Dimension & Nonlinearity Wave Schrödinger

d � 1 , |u|p�1u [Fri85, Zhi94] [Bou94]

d � 2, |u|2u
[OT20b]

[Bou96]

d � 2, |u|p�1u [DNY19]

d � 3, p|x|�p3�βq � |u|2q � u β ¡ 1 : [OOT20]

β ¡ 0 : This thesis.

β ¡ 2: [Bou97]

2 ¥ β ¡ 1� ε : [DNY21].

1� ε ¥ β ¡ 0: Open.

d � 3, |u|2u Open Open

Figure 4.1: Invariant Gibbs measures for defocusing nonlinear wave and Schrödinger equations.

Zhidkov [Zhi94] and Bourgain [Bou94]. Friedlander [Fri85] and Zhidkov [Zhi94] proved the invari-

ance of the Gibbs measure for the one-dimensional nonlinear wave equation. Inspired by earlier

work of Lebowitz, Rose, and Speer [LRS88], Bourgain [Bou94] proved the invariance of the Gibbs

measure for the one-dimensional nonlinear Schrödinger equations

iBtu� B2
xu � |u|p�1u, pt, xq P R� T.

In this seminal paper, Bourgain introduced his famous globalization argument, which will be de-

scribed in detail below. Even though Friedlander [Fri85], Zhidkov [Zhi94] and Bourgain [Bou94]

consider random initial data (drawn from the Gibbs measure), the local theory is entirely deter-

ministic. The reason is that the Gibbs measure is supported at spatial regularity 1{2�, which is

above the (deterministic) critical regularities sdet � 1
2
� 1

p
(cf. [CCT03]) and sdet � 1

2
� 2

p�1
for the

one-dimensional wave and Schrödinger equations (in Hs), respectively.

The first result in two spatial dimensions was obtained by Bourgain in [Bou96]. He proved the

invariance of the Gibbs measure for the renormalized cubic nonlinear Schrödinger equation

iBtu�∆u �:|u|2u: pt, xq P R� T2. (4.1.1)
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Here, : |u|2u : denotes the Wick-ordered cubic nonlinearity. In contrast to the one-dimensional

setting, the Gibbs measure is supported at spatial regularity 0�, which is just below the (de-

terministic) critical regularity sc � 0. To overcome this obstruction, the local theory in [Bou96]

exhibits probabilistic cancellations in several multi-linear estimates. Very recently, Fan, Ou, Staffi-

lani, and Wang [FOS21] extended Bourgain’s result from the square torus T2 to irrational tori.

The situation for two-dimensional nonlinear wave equations is easier than for two-dimensional

nonlinear Schrödinger equations. While the Gibbs measure is still supported at spatial regularity

0�, this is partially compensated by the smoothing effect of the Duhamel integral. In [OT20b],

Oh and Thomann prove the invariance of the Gibbs measure for

�B2
t u� u�∆u �:up : pt, xq P R� T2,

where p ¥ 3 is an odd integer. We emphasize that their argument for the cubic (p � 3) and

higher-order (p ¥ 5) nonlinearity is essentially identical. Due to its clear and detailed exposition,

we highly recommend [OT20b] as a starting point for any beginning researcher in random dispersive

equations.

In a recent work [DNY19], Deng, Nahmod, and Yue proved the invariance of the Gibbs measure

for the nonlinear Schrödinger equations

iBtu�∆u �:|u|p�1u: pt, xq P R� T2, (4.1.2)

where p ¥ 5 is an odd integer. In contrast to the situation for the two-dimensional nonlinear

wave equations, this result is much harder than its counterpart for the cubic nonlinear Schrödinger

equation (4.1.1). The main difficulty is that all high�low� . . . �low-interactions between the

random initial data with itself or smoother remainders only have spatial regularity 1{2�, which is

strictly below the (deterministic) critical regularity sdet � 1� 2
p�1

. To overcome this difficulty, Deng,

Nahmod, and Yue worked with random averaging operators, which are related to the adapted linear
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evolutions in [Bri20a]. Their framework was recently generalized through the theory of random

tensors [DNY20], which will be further discussed below.

Unfortunately, much less is known in three spatial dimensions. The reason is that the Gibbs

measure is supported at spatial regularity �1{2�, which is far below the deterministic critical

regularity sdet � 3
2
� 2

p�1
. In fact, the invariance of the Gibbs measure for both the cubic non-

linear wave and Schrödinger equation are famous open problems. Previous research has instead

focused on simpler models, which are obtained either through additional symmetry assumptions

or a mollification of the nonlinearity. In the radially-symmetric setting, the invariance of the

Gibbs measure for the three-dimensional cubic wave and Schrödinger equation has been proven in

[BB14b, Suz11, Xu14] and [BB14a], respectively. The radially-symmetry setting was also studied

in earlier work on the two-dimensional nonlinear Schrödinger equation [Den12, Tzv06, Tzv08].

In [Bou97], Bourgain studied the defocusing and focusing three-dimensional Schrödinger equation

with a Hartree nonlinearity given by

iBtu�∆u � � :pV � |u|2qu: pt, xq P R� T3, (4.1.3)

where the interaction potential V behaves like �|x|�p3�βq. He proved the invariance of the Gibbs

measure for β ¡ 2, which corresponds to a relatively smooth interaction potential. In the focusing

case, this is optimal (up to the endpoint β � 2), since the Gibbs measure is not normalizable

for β   2 (cf. [OOT20]). From a physical perspective, the most relevant cases are the Coulomb

potential |x|�1 (corresponding to β � 2) and the Newtonian potential |x|�2 (corresponding to

β � 1). Since the cubic nonlinear Schrödinger equation formally corresponds to (4.1.3) with the

interaction potential V given by the Dirac-measure, it is also interesting (and challenging) to take

β close to zero. Very recently, Deng, Nahmod, and Yue [DNY21] used random averaging operators

(as in [DNY19]) to cover the regime β ¡ 1 � ε in the defocusing case, where ε ¡ 0 is a small

unspecified constant. As discussed in [DNY21], it is likely possible to use the more sophisticated
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theory of random tensors from [DNY20] to cover the regime β ¡ 1{2. Below the threshold β � 1{2,

the Gibbs measure becomes singular with respect to the Gaussian free field (see Theorem 4.1.1).

Since the theory in [DNY20] is developed for Gaussian initial data, it cannot yet be used in the

regime 0   β   1{2. In fact, this is mentioned as an open problem in [DNY20, Section 9.1].

After the completion of the series [Bri20c, Bri20d], the author learned of independent work by Oh,

Okamoto, and Tolomeo [OOT20]. The authors study (the stochastic analogue of) the focusing and

defocusing three-dimensional nonlinear wave equation with a Hartree nonlinearity given by

�B2
t u� u�∆u � �λ :pV � u2qu: pt, xq P R� T3,

where λ ¡ 0. The main focus of [OOT20] lies on the construction and properties of the Gibbs

measures, which are discussed in Chapter 3. Regarding the dynamical results of [OOT20], the

authors prove the invariance of the Gibbs measure in the following cases:

(i) focusing (�): β ¡ 2 or β � 2 in the weakly nonlinear regime.

(ii) defocusing (�): β ¡ 1.

In light of the non-normalizability of the focusing Gibbs measure for β   2 and β � 2 in the

strongly nonlinear regime (cf. [OOT20]), the result is optimal in the focusing case. In the defo-

cusing case, however, the restriction β ¡ 1 excludes all Gibbs measures which are singular with

respect to the Gaussian free field. In contrast, Theorem 4.1.3 below covers the complete range

β ¡ 0, which includes singular Gibbs measures. In fact, this is the main motivation behind the

two-paper series [Bri20c, Bri20d].

In the preceding discussion, we have seen several examples of invariant Gibbs measures supported at

regularities even below the deterministic critical regularity. In [DNY19, DNY20], Deng, Nahmod,
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Dimension Wave Schrödinger

& Nonlinearity sG sprob sdet sG sprob sdet

d � 1 , |u|p�1u 1
2
- � 1

2p
1
2
� 1

p
1
2
- � 1

p�1
1
2
� 2

p�1

d � 2, |u|p�1u 0- � 3
2p

1� 2
p�1

0- � 1
p�1

1� 2
p�1

d � 3, pV � |u|2q � u �1
2
- �minp2�β

3
, 3

2
q maxp1�2β

2
, 0q �1

2
- �minp1�β

2
, 1q maxp1�2β

2
, 0q

d � 3, |u|2u �1
2
- �2

3
1
2

�1
2
- �1

2
1
2

Relevant spatial regularities for the invariance of the Gibbs measure: sG (support of the Gibbs measure),

sprob (probabilistic scaling), sdet (deterministic scaling). The value of sprob for power-type nonlinearities

can be found in [DNY19]. The probabilistic critical regularity sprob for the wave equation with a Hartree

nonlinearity is a result of high�high�highÑlow and (high�highÑlow)�highÑhigh-interactions. For the

Schrödinger equation with a Hartree nonlinearity, sprob is a result of (high�highÑhigh)�highÑhigh and

(high�highÑlow)�highÑhigh-interactions.

Figure 4.2: Overview of relevant regularities.

and Yue describe a probabilistic scaling heuristic, which takes into account the expected proba-

bilistic cancellations. We denote the critical regularity with respect to the probabilistic scaling

by sprob and the spatial regularity of the support of the Gibbs measure sG. Based on the proba-

bilistic scaling heuristic, we then expect probabilistic local well-posedness as long as sG ¡ sprob.

We record the relevant quantities for nonlinear wave and Schrödinger equations in Figure 4.2. For

comparison, we also include the deterministic critical regularity sdet. The probabilistic scaling

heuristic, however, does not address any obstructions related to the global theory, renormaliza-

tions, or measure-theoretic aspects. As a result, it does not capture some of the difficulties for

dispersive equations with singular Gibbs measures, such as the cubic nonlinear wave equation in

three dimensions.

175



Our discussion so far has been restricted to invariant Gibbs measures for nonlinear wave and

Schrödinger equations. While this is the most classical problem in random dispersive equations,

there exist many more active directions of research. Since a full overview of the field is well-beyond

the scope of the introduction, we only mention a few directions and refer to the given references

for more details.

(i) Invariance of white noise [KMV20, Oh09, QV08],

(ii) Invariant measures (at high regularity) for completely integrable equations [TV14, TV15,

DTV15],

(iii) Quasi-invariant Gaussian measures for non-integrable equations [GOT18, OT20a, Tzv15],

(iv) Non-invariance methods related to scattering, solitons, and blow-up [Bri18, Bri20e, DLM20,

KM19, Poc17],

(v) Wave turbulence [BGH19, CG19, CG20, DH19],

(vi) Stochastic dispersive equations [BD99, BD03, DW18, GKO18a, GKO18b].

After this overview of the relevant literature, we now turn to a more detailed description of the

most relevant methods. Our discussion will be split into two parts separating the local and global

aspects. As a teaser for the reader, we already mention that our contributions to the local theory

will be of an intricate but technical nature, while our contributions to the global theory will be

conceptual.

As mentioned above, the first local well-posedness result for dispersive equations relying on proba-

bilistic methods was proven by Bourgain [Bou96]. He considered the renormalized cubic nonlinear
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Schrödinger equation $'&'%iBtu� u�∆u �:|u|2u: pt, xq P R� T2,

u|t�0 � φ

(4.1.4)

The additional �u-term has been introduced for convenience, but can be easily removed through a

gauge transformation. The random initial data φ is drawn from the corresponding Gibbs measure,

which coincides with the (complex) Φ4
2-model. Since the Φ4

2-model is absolutely continuous with

respect to the Gaussian free field and the local theory does not rely on the invariance of the Gibbs

measure, we can represent φ through the random Fourier series

φ �
¸
nPZ2

gn
xnye

ixn,xy. (4.1.5)

Here, xny def� a
1� |n|2 and pgnqnPZ2 is a sequence of independent and standard complex-valued

Gaussians. The independence of the Fourier coefficients, and more generally the simple structure

of (4.1.5), is an essential ingredient for many arguments in [Bou96]. A direct calculation yields

almost surely that φ P HspT2qzL2pT3q for all s   0. Since (4.1.4) is mass-critical, φ lives below

the (deterministic) critical regularity. To overcome this obstruction, Bourgain decomposed the

solution by writing

uptq � eitp�1�∆qφ� vptq.

This decomposition is commonly referred to as Bourgain’s trick, but is also known in the stochastic

PDE literature as the Da Prato-Debussche trick [DD03]. Using this decomposition, we see that

the nonlinear remainder v satisfies the evolution equation

iBtv � v �∆v �:|eitp�1�∆qφ� v|2peitp�1�∆qφ� vq: pt, xq P R� T2.

Through a combination of probabilistic and PDE arguments, Bourgain proved that the Duhamel

integral

I
�

:|eitp�1�∆qφ|2eitp�1�∆qφ:
�
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lives at spatial regularity 1{2� (see also [CLS21]). This opens the door to a contraction argument

for v at a positive (and hence sub-critical) regularity. The contraction argument requires further

ingredients from random matrix theory to handle mixed terms, but can in fact be closed. We

emphasize that the nonlinear remainder v is treated purely deterministically and is not shown to

exhibit any random structure.

We now discuss the more recent work of Gubinelli, Koch, and Oh [GKO18a], which covers the

stochastic wave equation$'&'%�B
2
t u� u�∆u �:u2 : �ξ pt, xq P R� T3,

ur0s � 0.

Here, ξ denotes space-time white noise. Inspired by a (higher-order version of) Bourgain’s trick,

we decompose

u � � � v.

Here, the linear stochastic object solves the forced wave equation

p�B2
t � 1�∆q � ξ.

The black dot represents the stochastic noise ξ and the arrow represents the Duhamel integral. An

elementary arguments shows that has spatial regularity �1{2�. The quadratic stochastic object

is the solution of the forced wave equation

p�B2
t � 1�∆q �:

� �2
: .

Based on similar arguments for stochastic heat equations, one may expect that has spatial

regularity 2 � p�1{2�q � 1 � 0�, where the gain of one spatial derivative comes from the Fourier
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multiplier x∇y�1 in the Duhamel integral. Using multilinear dispersive estimates, however, Gu-

binelli, Koch, and Oh proved that has spatial regularity 1{2�. Using the definition of our

stochastic objects, we obtain the evolution equation

p�B2
t � 1�∆q v � 2

�
� v

	
� �

�
� v

	2

for the nonlinear remainder v. In the following discussion, we let ! and � be the low�high

and high�high-paraproducts from Definition 4.2.1. Due to low�high-interactions such as v ! ,

we expect v to have spatial regularity at most p�1{2�q � 1 � 1{2�. We emphasize that, unlike

high�high-interactions, the low�high-interactions are not affected by multi-linear dispersive ef-

fects. However, this implies that the spatial regularities of v and do not add up to a positive

number, which means that the high�high-term v � cannot even be defined (without additional

information on v). This problem cannot be removed through a direct higher-order expansion of

u and persists through all orders of the Picard iteration scheme. Instead, Gubinelli, Koch, and

Oh [GKO18a] utilize ideas from the para-controlled calculus for singular stochastic PDEs [GIP15].

We write v � X � Y , where X and Y solve

p�B2
t � 1�∆qX � 2

�
�X � Y

	
!

and

p�B2
t � 1�∆qY � 2

�
�X � Y

	
¥ �

�
�X � Y

	2

.

The para-controlled component X only has spatial regularity 1{2�, but exhibits a random struc-

ture. In the analysis of the high�high-interactions X � , this random structure can be exploited

through the double Duhamel trick. In contrast, Y lives at a higher spatial regularity and can be

controlled through deterministic arguments. The local theory in this paper will follow a similar

approach, but relies on more intricate estimates, which will be further discussed below.
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After this discussion of the local theory, we now turn to the global theory. We discuss Bourgain’s

globalization argument [Bou94], which uses the invariance of the truncated Gibbs measures as a

substitute for a conservation law. We first recall the definition of the different modes of convergence

for a sequence of probability measures, which will be needed below.

Definition (Convergence of measures). Let H be a Hilbert space and let BpHq be the Borel σ-

algebra on H. Furthermore, let pµNqN¥1 and µ be Borel probability measures on H. Then, we say

that

(i) µN converges in total variation to µ if

lim
NÑ8

sup
APBpHq

|µpAq � µNpAq| � 0,

(ii) µN converges strongly to µ if

lim
NÑ8

µNpAq � µpAq for all A P BpHq,

(iii) µN converges weakly to µ if

lim
NÑ8

µNpAq � µpAq for all A P BpHq satisfying µpBAq � 0.

To isolate the key features of the argument, we switch to an abstract setting. Let H be a Hilbert

space and let ΦN : R�HÑ Hbe a sequence of jointly continuous flow maps. Let µN be a sequence

of Borel probability measures on H. Most importantly, we assume that µN is invariant under ΦN

for all N , i.e.,

µNpΦNptq�1Aq � µNpAq for all t P R and A P BpHq.

In our setting, ΦN will be the flow for a frequency-truncated nonlinear wave equation and µN

will be the corresponding truncated Gibbs measure. Our main interest lies in the removal of the
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truncation, i.e., the limit of the dynamics ΦN and measure µN as N tends to infinity. Let µ

be a limit of the sequence µN , where the mode of convergence will be specified below. In order

to construct the limiting dynamics on the support of µ, we need uniform bounds on ΦN on the

support of µ. At the very least, we require an estimate of the form

lim sup
NÑ8

µ
�

sup
tPr0,1s

}ΦNptqφ}H ¤ ε�1
	
¥ 1� oεp1q, (4.1.6)

where 0   ε   1 and o is the small Landau symbol. Bourgain’s globalization argument [Bou94]

proves (4.1.6) in two steps.

In a first measure-theoretic part, we use that���µ� sup
tPr0,1s

}ΦNptqφ}H ¤ ε�1
	
� µN

�
sup
tPr0,1s

}ΦNptqφ}H ¤ ε�1
	��� ¤ sup

APBpHq

|µpAq � µNpAq|.

As long as µN converges in total variation to µ, we can reduce (4.1.6) to

lim sup
NÑ8

µN

�
sup
tPr0,1s

}ΦNptqφ}H ¤ ε�1
	
¥ 1� oεp1q, (4.1.7)

In a second dynamical part, we use the invariance of µN under ΦN and the probabilistic local

well-posedness. Let J ¥ 1 be a large integer and define the step-size τ � J�1. Then,

µN

�
sup
tPr0,1s

}ΦNptqφ}H ¡ ε�1
	
¤

J�1̧

j�0

µN

�
sup

tPrjτ,pj�1qτ s

}ΦNptqφ}H ¡ ε�1
	

�
J�1̧

j�0

µN

�
sup
tPr0,τ s

}ΦNptqΦNpjτqφ}H ¡ ε�1
	
.

Using the invariance of µN under ΦNpjτq, we obtain that

µN

�
sup
tPr0,1s

}ΦNptqφ}H ¡ ε�1
	
¤ τ�1µN

�
sup
tPr0,τ s

}ΦNptqφ}H ¡ ε�1
	
. (4.1.8)

The right-hand side of (4.1.8) can then be controlled through an appropriate choice of τ and the

local theory (as well as tail estimates for µN).

181



In (this sketch of) Bourgain’s globalization argument, the convergence in total variation played

an essential role. In all previous results on the invariance of (defocusing) Gibbs measures [Bou94,

Bou96, Bou97, DNY19, OOT20, OT20b, Zhi94], the truncated Gibbs measures converge in total

variation, so that this assumption does not pose any problems. In our case, however, the truncated

Gibbs measures µN only converge weakly to the Gibbs measure µ. The weak mode of convergence

is related to the singularity of the Gibbs measure µ with respect to the Gaussian free field g,

which requires softer arguments in the construction of µ. Using the weak convergence of µN to µ,

we can only reduce (4.1.6) to

lim sup
NÑ8

�
lim sup
MÑ8

µM

�
sup
tPr0,1s

}ΦNptqφ}H ¤ ε�1
	�

¥ 1� oεp1q, (4.1.9)

In (4.1.9), we will typically have M ¡ N , and hence we cannot (directly) use the invariance of the

truncated Gibbs measures.

In [NOR12], Nahmod, Oh, Rey-Bellet, and Staffilani prove the invariance of a Wiener measure

for the periodic derivative nonlinear Schrödinger equation. The truncated Wiener measures in

[NOR12] are defined using a frequency-truncation not only in the interaction but also in the

Gaussian free field (cf. [NOR12, (5.13)]. As a consequence, the truncated Wiener measures only

converge weakly (cf. [NOR12, Proposition 5.13]). In order to prove (4.1.9), the authors rely on the

(quantitative) mutual absolute continuity of the (truncated) Wiener measure with respect to the

(truncated) Gaussian free field (cf. [NOR12, (6.7)]). Unfortunately, the singularity of the Gibbs

measure in this work (as stated in Theorem 4.1.1) prevents us from using a similar approach.

4.1.1 Main results and methods

Before we can state our main results, we need to define the renormalized and frequency-truncated

Hamiltonians, wave equations, and Gibbs measures. For any dyadic N ¥ 1, we define the renor-
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malized and frequency-truncated potential energy by

1

4

»
T3

:pV � pP¤Nφq2qpP¤Nφq2 : dx

def� 1

4

»
T3

�
pV � pP¤Nφq2qpP¤Nφq2 � 2aNpP¤Nφq2 � 4pMNP¤NφqP¤Nφ� pV p0qa2

N � 2bN

�
dx� cN .

Here, the renormalization constants aN , bN , cN are as in Definition 3.2.6, Definition 3.2.8, and

Proposition 3.3.1 in Chapter 3, but their precise values are not needed in this paper. The renor-

malization multiplier MN is defined by

{MNfpnq def�
� ¸
kPZ3

pV pn� kq
xky2

ρNpkq2
	 pfpnq, (4.1.10)

where ρN is a truncation to frequencies of size À N . The Hamiltonian HN is then defined as

HN rφ0, φ1s def� 1

2

�
}φ0}2

L2 � }x∇yφ0}2
L2 � }φ1}2

L2

	
� 1

4

»
T3

:pV � pP¤Nφq2qpP¤Nφq2 : dx. (4.1.11)

The renormalized and frequency-truncated nonlinear wave equation corresponding to HN is given

by $'&'%p�B
2
t � 1�∆qu � P¤N

�
:pV � pP¤Nuq2qP¤Nu:

	
pt, xq P R� T3,

u|t�0 � φ0, Btu|t�0 � φ1,

(4.1.12)

where the renormalized nonlinearity is given by

:pV � pP¤Nuq2qP¤Nu:
def� pV � pP¤Nuq2qP¤Nu� aN pV p0qP¤Nu� 2MNP¤Nu. (4.1.13)

For a fixed N ¥ 1, the coercivity of HN implies the global well-posedness of (4.1.12). We also

define the renormalized square

:pP¤Nuq2 :
def� pP¤Nuq2 � aN , (4.1.14)

which will simplify the notation below. The Gibbs measure µbN corresponding to HN is given

by µbN � µN b px∇yq#g, where µN is as in Chapter 3 and px∇yq#g is the pushforward of the
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three-dimensional Gaussian field under x∇y. For future use, we also define

gb def� gb px∇yq#g. (4.1.15)

Before we state the properties of the truncated Gibbs measures µbN , we recall the assumptions on

the interaction potential from Chapter 3. In these assumptions, 0   β   3 is a fixed parameter.

Assumptions A. We assume that the interaction potential V satisfies

(i) V pxq � cβ|x|�p3�βq for some cβ ¡ 0 and all x P T3 satisfying }x} ¤ 1{10,

(ii) V pxq Áβ 1 for all x P T3,

(iii) V pxq � V p�xq for all x P T3,

(iv) V is smooth away from the origin.

The following properties of the Gibbs measures µbN are a direct consequence of 3.1.1, which is

phrased in terms of µN . For notational reasons related to the weak convergence instead of conver-

gence in total variation, we use a second parameter M for the frequency-truncation. Our notation

for the random variables, which is based on dots, will be discussed below the theorem.

Theorem 4.1.1 (Gibbs measures). Let κ ¡ 0 be a fixed positive parameter, let 0   β   3 be a

parameter, and let the interaction potential V be as in the Assumptions A. Then, the truncated

Gibbs measures pµbMqM¥1 weakly converge to a limiting measure µb8 on H
�1{2�κ
x pT3q, which is

called the Gibbs measure. If in addition 0   β   1
2
, then the Gibbs measure µb8 is singular with

respect to the Gaussian free field gb.

Furthermore, there exists a sequence of reference measures pνbMqM¥1 on H
�1{2�κ
x pT3q and an am-

bient probability space pΩ,F ,Pq satisfying the following two properties:
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(i) (Absolute continuity and Lq-bounds) The truncated Gibbs measure µbM is absolutely contin-

uous with respect to the reference measure νbM . More quantitatively, there exists a parameter

q ¡ 1 and a constant C ¥ 1 independent of M such that

µbMpAq ¤ CνbMpAq1�
1
q

for all Borel sets A � H
�1{2�κ
x pT3q.

(ii) (Representation of νbM) Let γ � minp1{2 � β, 1q. Then, there exist two random variables

, M : pΩ,Fq Ñ H
�1{2�κ
x pT3q and a large integer k � kpβq ¥ 1 satisfying for all p ¥ 2 that

νbM � LawPp � M q, gb � LawPp q, and
�
EP} M }p

H
γ�κ
x pT3q

	 1
p ¤ p

k
2 .

Remark 4.1.2. After the completion of the series [Bri20c, Bri20d], the author learned of indepen-

dent work by Oh, Okamoto, and Tolomeo [OOT20], which yields an analogue of Theorem 4.1.1.

We refer to Remark 3.1.2 in Chapter 3 for a more detailed comparison.

We will require that the ambient probability space pΩ,F ,Pq is rich enough to contain a family

of independent Brownian motions, which is clear from the definition of pΩ,F ,Pq in [Bri20c] and

detailed in Section 4.4.5.

Let us further explain the notation in Theorem 4.1.1. We use dots to represent the random data,

since they can be used as building blocks in more complicated stochastic objects. We already saw

this graphical notation in our discussion of [GKO18a] and we refer the reader to [MWX17] for

a detailed discussion of similar diagrams. We use the blue dot for the Gaussian random data,

since it lives at low spatial regularities and is primarily viewed as a high-frequency term. We use

the red dot M to denote the more regular component of the random data, since we primarily

view it as a low-frequency term. Furthermore, the blue dot is filled while the red dot M is

not filled. The reason is that the manuscript should be accessible to colorblind readers and also

readable as a black and white copy.

185



In the following, we often write for a generic element φ P H
�1{2�κ
x pT3q. The purple diamond

will be used as a building block for further stochastic objects. When working with the reference

measure νbM , we have that

LawνbM p q � LawPp � M q.

Naturally, we chose the color purple since it is a mixture of blue and red. The change in shape, i.e.,

from a dot to a diamond, is primarily made for colorblind readers. We also only use diamonds for

intrinsic objects in H
�1{2�κ
x pT3q, while dots are used for objects defined on the ambient probability

space pΩ,F ,Pq. The significance of this distinction will be discussed in Sections 4.2 and 4.3.

While Theorem 4.1.1 already contains the measure-theoretic results of the series [Bri20c, Bri20d],

we now state the dynamical results.

Theorem 4.1.3 (Global well-posedness & invariance). There exists a Borel-measurable set S �
H�1{2�κpT3q satisfying µb8pSq � 1 and such that the following two properties hold:

(i) (Global well-posedness) Let ΦN be the flow of the renormalized and frequency-truncated

wave equation (4.1.12). Then, the limit

Φ8rts def� lim
NÑ8

ΦN rts

exists in H�1{2�κpT3q for all t P R and P S.

(ii) (Invariance) The Gibbs measure µb8 is invariant under Φ8, i.e., it holds for all t P R that

Φ8rts#µb8 � µb8

Remark 4.1.4. In the proof of Theorem 4.1.3, we restrict ourselves to the case β P p0, 1{2q. The

purpose of this restriction is purely notational. The same argument also works for β P r1{2, 3q, as

long as β in each estimate is replaced by minpβ, 1{2q.
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Remark 4.1.5. While Theorem 4.1.3 shows that the limiting dynamics Φ8rts are well-defined, we

do not obtain that Φ8rts satisfies the group property. The author believes that the estimates in

this paper (from Sections 4.5-4.8) are strong enough to prove the group property, but the stability

theory (Section 4.2.4 and Section 4.3.3) would need to be modified. Instead of working with a single

flow ΦN rts, one needs similar statements for the mixed flows ΦN1rt1sΦN2rt2s. We refer the reader

to [ST20] for a more detailed discussion of the group property and its relation to the recurrence

properties of the flow.

We now describe individual aspects of our argument. As in our discussion of the previous litera-

ture, we separate the local and global aspects. As mentioned above, our contributions to the local

theory are of an intricate but technical nature, whereas our contributions to the global theory are

conceptual.

In the local theory, we use the absolute continuity µbM ! νbM and the representation of νbM from

Theorem 4.1.1. As a result, the reference measure νbM serves the same purposes as the Gaussian free

field in earlier results on invariant Gibbs measures. We then follow the para-controlled approach

of [GKO18a] and decompose the solution uNptq of (4.1.12) as

uN � � �
N �XN � YN , (4.1.16)

where the stochastic objects and
�

N , the para-controlled component XN , and the smoother

nonlinear remainder YN are defined in Section 4.2. The smoother component M in the represen-

tation of νbM will be placed inside YN . In comparison to [GKO18a], however, there is an increase in

the complexity of the evolution equation for YN . We split the terms into four different categories,

which correspond to the methods used in their estimates.
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 Stochastic objects: These terms are explicit and include

�
N�
N

and
�

N
�

N
�

N
.

In contrast to the previous literature, we use multiple stochastic integrals for the non-

resonant/resonant-decompositions, which significantly decreases the algebraic complexities.

We also use counting estimates related to the dispersive symbol of the wave equation.


 Random matrix terms: The terms include�
V �

N

	
P¤NYN .

They will be controlled through a recent random matrix estimates of Deng, Nahmod, and

Yue [DNY20, Proposition 2.8], which is based on the moment method.


 Contributions of para-controlled terms: These terms include

V �
�
P¤N � P¤NXN

	
P¤NYN .

We use the double Duhamel trick to exploit stochastic cancellations between and XN . In

our definition of XN , we use the paradifferential operators Ì and Ì Ì& introduced in

Section 4.2, which form a technical novelty.


 Physical terms: These terms include

V �
�
P¤N � P¤NYN

	
P¤N

�
N and

�
V � pP¤NYNq2

	
P¤NYN .

The first term should be viewed as a random operator in YN , but is mainly treated through

physical-space arguments. We believe that our approach is of independent interest, since it

provides an alternative to the more Fourier-analytic estimates in [Bou96, GKO18a, DNY19,

DNY20]. The second term is treated deterministically and we rely on the refined Strichartz-

estimates of Klainerman and Tataru [KT99].
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As we mentioned before, all stochastic objects have been based on and the smoother component

M is simply placed inside YN . This approach yields the convergence of the flows ΦN on the

support of µb8 for a short time interval (see Corollary 4.2.12). The structural information in the

decomposition (4.1.16), however, cannot (directly) be carried over to the support of µb8, since

is only defined on the ambient probability space pΩ,F ,Pq. This defect will be addressed below,

since the structural information is required for the global theory.

Remark 4.1.6. As was already mentioned in our overview of the literature, Deng, Nahmod, and

Yue recently developed a theory of random tensors [DNY20], which forms a comprehensive frame-

work for the local theory of random dispersive equations. The theory of random tensors (and

its precursor [DNY19]) rely more intricately on the independence of the Fourier coefficients than

the para-controlled approach. Even under the reference measure νbM , however, the random data

� � M has dependent Fourier coefficient. This presents a challenge for the theory of random

tensors, which was already mentioned in [DNY20, Section 9.1]. In addition, there are further

technical problems related to the switch from Schrödinger to wave equations, which are described

in Section 4.4.4. As a result, the author views the extension of the theory of random tensors to a

local theory even for singular Gibbs measures and/or nonlinear wave equations as an interesting

open problem.

After this discussion of the local theory, we turn to the global dynamics on the support of the

Gibbs measure µb8. As we have seen in our earlier discussion of Bourgain’s globalization argument,

its original version requires the convergence of the truncated Gibbs measures in total variation.

Unfortunately, Theorem 4.1.1 only yields the weak convergence of the truncated Gibbs measures

µbM to µb8. We now give an informal description of our new globalization argument, but postpone

a rigorous discussion until Section 4.3.
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We let T ¥ 1 be a large time, B ¥ 1 be a large parameter describing the size of the evolution,

K ¥ 1 be a large frequency scale, and τ ¡ 0 be a small step-size. For any j ¥ 1, we let

EKpB, jτq � H�1{2�κpT3q be the set of initial data satisfying for all t P r0, jτ s and N ¥ K that

ΦNptq � ptq � �
N ptq � wNptq, (4.1.17)

where wN has size at most B in “structured high-regularity” norms. In our rigorous argument,

B will depend on j, but we ignore this during our informal discussion. We also omit a smallness

condition for the difference of ΦNptq and ΦKptq . The goal is to prove by induction over j ¤ T {τ
that

lim sup
MÑ8

µbMp P EKpB, jτqq

is close to one as long as B, K, and τ are chosen appropriately. The proof relies on four separate

ingredients:

(i) (Structured local well-posedness) This is the base case j � 1. Using our local theory, we

only have to convert the stochastic objects in (4.1.16), which are based on , into stochastic

objects based on .

(ii) (Structure and time-translation) Using the induction hypothesis, we now assume that the

probability µbMp P EKpB, pj � 1qτqq is close to one. In order to increase the time-interval,

we let
def� ΦM rτ s . Using the invariance of µbM under ΦM , we obtain that

µbMp P EKpB, pj � 1qτqq � µbMpΦM rτ s P EKpB, pj � 1qτqq � µbMp P EKpB, pj � 1qτqq,

which is close to one. After unpacking the definitions, we obtain information on the mixed

flow ΦN rt � τ sΦM rτ s for t P rτ, jτ s. It therefore remains to analyze the difference between

ΦN rt� τ sΦM rτ s and ΦN rt� τ sΦN rτ s .
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(iii) (Structure and the cubic stochastic object) The lowest regularity term in ΦNpτq �ΦMpτq is

given by a portion of the cubic stochastic object. In this step, we add the linear evolution of

this portion to the mixed flow ΦN rt�τ sΦM rτ s , which yields a function ruN . It is then shown

that ruNptq is an approximate solution of the nonlinear wave equation (4.1.12) for t P rτ, jτ s.

(iv) (Stability theory) We develop a para-controlled stability theory and construct a solution

uN close to the approximate solution ruN , which also accounts for the remaining portion of

ΦNpτq �ΦMpτq . Since our stability theory preserves the structure of ruN , this yields (4.1.17)

on the time-interval rτ, jτ s. Since the base case already yields the desired structure on r0, τ s,
this completes the induction step.

As is evident from this sketch, the proof of global well-posedness is much more involved than

in Bourgain’s original setting [Bou94, Bou96]. While not perfectly accurate, the author finds

the following comparison with the deterministic global theory of dispersive equations illustrative.

Bourgain’s globalization argument [Bou94, Bou96] is the probabilistic version of a deterministic

global theory using a (sub-critical) conservation law. The conservation law is replaced by the

invariance, which implies that t ÞÑ µNpΦNptqφ P Eq is constant. In both cases, the global well-

posedness is obtained by iterating the local well-posedness, but the estimates used in the local

theory are no longer needed. In contrast, the new globalization argument is the probabilistic

version of a deterministic global theory using almost conservation laws (cf. [CKS02]). The place

of the almost conserved quantities is taken by the functions t ÞÑ µMpΦNptqφ P Eq, which should be

close to a constant function. In addition, the proof of global well-posedness often intertwines the

local estimates and the choice of the almost conserved quantities. For entirely different reasons, the

similarity with almost conserved quantities also appears in the globalization argument of [NOR12],

which proves the invariance of a Wiener measure for the periodic derivative nonlinear Schrödinger

equation. The truncated dynamics in [NOR12, (3.1)] only approximately conserve the energy
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(cf. [NOR12, Theorem 4.2]). Even with the same truncation parameter in the measure and the

dynamics, the truncated Wiener measure is then only almost invariant (cf. [NOR12, Proof of

Lemma 6.1]).

Our globalization argument for the nonlinear wave equation also differs from the globalization

argument for the parabolic stochastic quantization equation as in [HM18]. While the invariant

measure is singular in both situations, the dependence on the initial data in the parabolic setting

is continuous even at spatial singularity �1{2�. The continuous dependence drastically simplifies

the stability theory, which forms the most difficult part of our globalization argument.

Once the global well-posedness has been proven, the proof of invariance is essentially the same as

in [Bou94].

Remark 4.1.7. An argument of this length creates both mathematical challenges and different

options for the exposition. The author does not claim to have found the perfect solutions or made

the best expository choice in every single instance. While we postpone a more detailed discussion

to Remark 4.1.6, Remark 4.2.3, Remark 4.3.4, Remark 4.4.43, Remark 4.8.2, and Remark 4.9.11,

the author wanted to make this point in a central location of the paper. The author hopes that

this encourages the reader to think more about our result and related open problems.

Acknowledgements: The author thanks his advisor Terence Tao for his patience and invalu-

able guidance. The author also thanks Nikolay Barashkov, Yu Deng, Martin Hairer, Redmond

McNamara, Dana Mendelson, Andrea Nahmod, Tadahiro Oh, Felix Otto, Nikolay Tzvetkov, and

Haitian Yue for helpful discussions.

4.1.2 Overview

Due to the excessive length of this chapter, we include a few suggestions for the reader. We also

display the (main) relationship between the sections in Figure 4.3.
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Theorem 4.1.3:

Global well-posedness and invariance

Local Theory

Section 2.1:

Para-controlled ansatz

Section 2.2:

Multi-linear master

estimate

Section 2.3:

Local well-posedness

Section 2.4:

Stability theory

Global Theory

Section 3.1:

Global well-posedness

Section 3.2:

Invariance

Section 3.3:

Structure and stability

theory

Main estimates

Section 4:

Tools

Section 5:

Stochastic objects

Section 6:

Random matrix theory

Section 7:

Para-controlled estimates

Section 8:

Physical-space methods

Structural change

Section 9:

From free to Gibbsian

random structures

This figure illustrates the main dependencies between the different sections. The heart of the paper lies in

the local and global theory (Section 4.2 and 4.3), which, as long as the reader believes certain estimates,

can be read independently from the rest of the paper. A few minor dependencies between the different

sections are not included in this illustration. For instance, basic properties of Xs,b-spaces, which are

recalled in Section 4.4, will also be used in Section 4.2 and 4.3.

Figure 4.3: Dependencies between the different sections.
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The local and global theory are described in Section 4.2 and 4.3, respectively. These sections

contain the main novelties of this paper and should be interesting to most readers. As long as the

reader believes several estimates, these sections are also self-contained. We therefore encourage

the expert to focus on these sections.

Section 4.4 contains a collection of tools from dispersive equations, harmonic analysis, and proba-

bility theory. The reader should be familiar with the content of each subsection before moving on,

but the expert should be able to only skim most content.

The Sections 4.5-4.8 contain the main technical aspects of this paper. They are concerned with

separate terms in the evolution equation and rely on different methods. As a result, they can

(essentially) be read independently.

In Section 4.9, we extend the multi-linear estimates from Sections 4.5-4.8, which have been phrased

in terms of the Gaussian initial data , to random initial data drawn from the Gibbs measure.

Each proof consists of a concatenation of previous results, and hence this section can safely be

skipped on first reading.

4.1.3 Notation

We recall and introduce notation that will be used throughout the rest of the paper.

Dyadic numbers: Throughout this paper, we denote dyadic integers by K,L,M , and N . In limits

or sums, such as limMÑ8 or
°
N , we implicitly restrict ourselves to dyadic integers.

Parameters: We first introduce several parameters which are used in our function spaces, in the
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paradifferential operators, and our estimates. We fix

ε ¡ 0, δ1, δ2 ¡ 0, κ ¡ 0, η, η1 ¡ 0, and b� ¡ b ¡ 1{2 ¡ b� ¡ 0. (4.1.18)

We use ε ¡ 0 in our para-differential operators, κ ¡ 0 to capture small losses in probabilistic

estimates, η, η1 ¡ 0 to capture gains in the highest frequency-scale, and δ1, δ2, b�, b, b� in the

definition of our function spaces. We impose the condition

1{2� b� ! b� 1{2 ! b� � 1{2 ! η1 ! η ! κ ! δ2 ! ε ! δ1. (4.1.19)

In (4.1.19), the implicit constant in each “!” is allowed to depend on all parameters appearing to

its right. We also define

s1 � 1

2
� δ1 and s2 � 1

2
� δ2.

In several statements of this paper, we will also use 0   ζ   1 and C ¥ 1 as parameters. However,

they may change their values between different lines and are allowed to depend on all parameters

in (4.1.18).

Wave equation and flows: We denote the solution of the nonlinear wave equation (4.1.12) by uNptq.
We also write

uN rts def�
�
uNptq, BtuNptq

	
,

which is standard in the literature on nonlinear wave equations. If P H
�1{2�κ
x pT3q, we also write

ΦNptq and ΦN rts for the solution with initial data . When working with the flows ΦN rts and

the Gibbs measures µbM , we write ΦN rts#µbM for the pushforward of µbM under ΦN rts.

Furthermore, we denote the Duhamel integral operator of the wave equation by I. More precisely,

we define

I
�
F
�ptq def�

» t

0

sinppt� t1qx∇yq
x∇y F pt1qdt1.
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Fourier transform: With a slight abuse of notation, we write dx for the normalized Lebesgue

measure on T3 � R3{p2πZq3, i.e., we require that»
T3

1dx � 1.

We then define the Fourier transform of a function f : T3 Ñ C by

pfpnq def�
»
T3

fpxqe�inxdx. (4.1.20)

For any k P N and any n1, n2, . . . , nk P Z3, we define

n12...k
def�

ķ

j�1

nj.

For example, n12 � n1 � n2 and n123 � n1 � n2 � n3.

Interaction potential: For a given interaction potential V satisfying the Assumptions A, we define

pVSpn1, n2, n3q def� 1

6

¸
πPS3

pV pnπ1 � nπ2q.

Truncations and Littlewood-Paley operators: For each t ¥ 0, we let ρt : Z3 Ñ r0, 1s be the same

truncation to frequencies n P Z3 satisfying |n| À xty as in [Bri20c, Section 1.3]. For each dyadic

N ¥ 1, we define the Littlewood-Paley multiplier P¤N by

{P¤Nfpnq � ρNpnq pfpnq.
We further set

P1f � P¤1f and PNf � P¤Nf � P¤N{2f for all N ¥ 2.

The corresponding Fourier multipliers are denoted by

χpnq � χ1pnq � ρ1pnq and χNpnq � ρNpnq � ρN{2pnq for all N ¥ 2.
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We also define fattened Littlewood-Paley multipliers by

rPN �
¸

N{16¤K¤16K

PK .

Function spaces:

For any s P R, the CsxpT3q-norm is defined as

}f}CsxpT3q
def� sup

N¥1
N s}PNf}L8x pT3q. (4.1.21)

We then define the corresponding space CsxpT3q by

CsxpT3q def�  
f : T3 Ñ R| }f}Csx   8, lim

NÑ8
N s}PNf}L8x pT3q � 0

(
. (4.1.22)

We let Hs
xpT3q be the usual L2-based Sobolev space. more precisely, for any f : T3 Ñ C, we define

the corresponding norm by

}f}Hs
xpT3q

def� }xnys pfpnq}`2npZ3q.

Furthermore, we define Hs
xpT3q def� Hs

xpT3q�Hs�1
x pT3q. In this paper, we will also use the Bourgain

spaces Xs,bpJ q and the low-frequency modulation space LMpJ q, which are defined in Definition

4.4.1 and Definition 4.7.1, respectively.

4.2 Local theory

In this section, we show that the truncated and renormalized nonlinear wave equations$'&'%p�B
2
t � 1�∆quN � P¤N

�
:pV � pP¤NuNq2qP¤NuN :

	
uN r0s � φ

(4.2.1)

are locally well-posed on the support of the Gibbs measures µbM uniformly in M . It is important

in the definition of the limiting dynamics and the globalization argument that the truncation pa-

rameter N in the dynamics and the truncation parameter M in the Gibbs measure µbM are allowed
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to be different.

Due to the truncation, a soft argument based on the coercivity of the Hamiltonian shows that

(4.2.1) is globally well-posed for a fixed truncation parameter N . We denote the corresponding

flow by ΦNptq.

4.2.1 Para-controlled ansatz

We now introduce our para-controlled approach. As discussed in the introduction, we will use

a graphical notation for the several stochastic objects appearing in this paper. We denote the

random initial data by . In the local theory, we can work with the reference measure νbM and,

more precisely, the representation of νbM with respect to the ambient measure P.

Based on Theorem 4.1.1, we have that νbM � LawPp � M q, where is the Gaussian low-regularity

component and M is has regularity minp1{2 � β, 1q�. Naturally, we chose the color purple for

the random initial data since it is a mixture of the blue and red random initial data. We em-

phasize that and M are probabilistically dependent! Fortunately, this does not introduce any

major difficulties in our treatment of the wave equation with a Hartree nonlinearity. We believe,

however, that the proof of the invariance of the Gibbs measure for both the cubic wave equation

and the three-dimensional Schrödinger equation with cubic or Hartree nonlinearity will require a

more detailed understanding of the relationship between and M . This additional information is

provided in Chapter 3.

Before we introduce our stochastic and para-controlled objects, we discuss the following question:

Should we define our stochastic objects based on or based on ? Due to the independence

of the Fourier coefficient under P and its simple structure, it is much more convenient to work
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with . However, the decomposition � � M of the samples of νbM is based on the ambient

measure P. It cannot be performed intrinsically on the samples of νbM and has no meaning for

the Gibbs measure µbM . In particular, if we want to examine the probability of an event under

µbM , we must phrase the event in terms of the full initial data . Fortunately, there is a conve-

nient solution to our conundrum: We first carry out most of our (local) analysis in terms of and

with respect to the ambient measure P. Once all the estimates in terms of are available, we

can convert the stochastic objects and para-controlled structures from into (see Section 4.9).

Then, the absolute continuity of µbM with respect to the reference measure νbM allows us to obtain

the same stochastic objects and para-controlled structures on the support of the Gibbs measure µbM .

We now begin with the construction of the stochastic objects and para-controlled structures, which

were briefly discussed in the introduction. We define as the linear evolution of the random initial

data . More precisely, solves the evolution equation

p�B2
t � 1�∆q � 0, r0s � . (4.2.2)

The black line in the stochastic object reflects the linear propagator of the wave equation. For

future use, we define the frequency-truncated and renormalized square of by

N

def� :pP¤N q2 : . (4.2.3)

The multiplication is reflected by the joining of the two lines and the frequency-truncation is

reflected in the subscript N . We then define the renormalized nonlinearity �
N

by

�
N

def� P¤N

�
:pV � pP¤N q2qpP¤N q:

	
. (4.2.4)

The orange asterisk reflects the convolution with the interaction potential. The color orange has

no significance and we only chose it for aesthetic reasons. As before, the nonlinearity is reflected
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in the joining of the three lines and the truncation parameter N in the nonlinearity appears as a

subscript. Finally, we define the Duhamel integral of �
N

by

p�B2
t � 1�∆q � N � �

N
,

�
N r0s � 0. (4.2.5)

The line with an arrow reflects the integration in the Duhamel operator. In contrast to , we note

that the distribution of
�

N is not stationary in time. Naively, one may expect that
�

N has

spatial regularity �1{2 � β�. Namely, one would expect spatial regularity 3 � p�1{2q� from the

cube of the random initial data , a gain of one spatial derivative from the multiplier x∇y�1 in the

Duhamel operator, and a gain of β derivatives from the convolution with the interaction potential.

In Proposition 4.5.1, however, we will see that
�

N actually has spatial regularity β�, which is

half of a derivative better. The additional gain is a result of multi-linear dispersive effects. We

now decompose our solution uN by writing

uN � � �
N � wN . (4.2.6)

The remainder wN has initial data wN r0s � M and solves the forced nonlinear wave equation

p�B2
t � 1�∆qwN

�P¤N
�

:
�
V �

�
P¤N

� � �
N � wN

�	2	
P¤N

� � �
N � wN

�
: � �

N

�
�P¤N

�
2
�
V �

�
P¤N � P¤N

� �
N � wN

�	
P¤N �MNP¤N

� �
N � wN

�	
(4.2.7)

�
�
V �

�
P¤N

� �
N � wN

�	2	
P¤N (4.2.8)

� 2V �
�
P¤N � P¤N

� �
N � wN

�	
P¤N

� �
N � wN

�
(4.2.9)

�
�
V �

N

	
P¤N

� �
N � wN

�
(4.2.10)

�
�
V �

�
P¤N

� �
N � wN

�	2	
P¤N

� �
N � wN

��
. (4.2.11)
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If we intend to construct (or control) wN via a “direct” contraction argument, we would need the

following conditions on the regularity of wN (uniformly in N):

(i) Due to the high�highÑlow-interactions in factors such as P¤N � P¤NwN , the regularity of

wN needs to be greater than 1{2.

(ii) Due to “deterministic” nonlinear terms such as pV � pP¤NwNq2qP¤NwN , the regularity of wN

needs to be greater than or equal to the deterministic critical regularity, which is given by

1{2� β.

Clearly, the first regularity condition is more restrictive. Unfortunately, the contribution of the first

two summands (4.2.7) and (4.2.8) has regularity at most 1{2�. The low�low�high-interaction

gains one derivative from the multiplier x∇y�1 in the Duhamel operator, but does not experience

any multi-linear dispersive effects. Thus, we are “ε-away” from a working contraction argument.

As was observed in [GIP15, GKO18a], the term responsible for the low-regularity exhibits a para-

controlled structure. Even though P¤N � P¤NwN is not well-defined for a general wN at spatial

regularity 1{2�, we will see in Proposition 4.7.8 below that it is well-defined for a para-controlled

wN at the same regularity! We therefore decompose the solution wN into two components: A

para-controlled component XN at regularity 1{2� and a smoother nonlinear remainder YN at a

regularity greater than 1{2.

Before we can define the decomposition, we need to introduce our para-product operators.

Definition 4.2.1 (Para-product operators). Let ε ¡ 0 be the fixed parameter from Section 4.1.3
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and let f, g, h : T3 Ñ R. We define the low�high, high�high, and high�low-paraproducts by

f   g
def�

¸
N1¤N2{8

PN1f � PN2g,

f � g
def�

¸
N2{4¤N1¤4N2

PN1f � PN2g,

f ¡ g
def�

¸
N1¥8N2

PN1f � PN2g.

We also define

f ¥ g
def� f ¡ g � f � g and f ¤ g

def� f   g � f � g.

In most of this paper, it will be convenient to replace “low” frequencies by “very low” frequencies.

To this end, we define the bilinear operator

f Ì g
def�

¸
N1,N2 :
N1¤Nε

2

PN1f � PN2g (4.2.12)

and the trilinear operator

Ì Ì&

�
V � pfgqh

	
def�

¸
N1,N2,N3 :
N1,N2¤Nε

3

V � �PN1f � PN2g
�
PN3h. (4.2.13)

Furthermore, we define the negations of Ì and Ì Ì& by

f Ì 

� �
g

def� fg � f Ì g and Ì Ì& 

� � �
V � pfgqh

	
def� V � pfgqh� Ì Ì&

�
V � pfgqh

	
.

Remark 4.2.2. The notation “Ì” is seldom used in the mathematical literature, which is precisely

the reason why we use it in Definition 4.2.1. Its meaning would otherwise easily be confused with

projections to N1 ¤ N2, N1 À N2, or N1 ! N2, which are again more common, but less suitable

in our situation than N1 ¤ N ε
2. Comparing our notation for the operators Ì and Ì Ì& , it may

seem more natural to write

V � pfgq Ì Ì& h
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instead of (4.2.13). We found, however, that the notation in (4.2.13) is much cleaner once it is

combined with the stochastic objects. We also point out that the negation of Ì is not Í .

We are now ready to defineXN and YN . We define the para-controlled componentXN byXN r0s � 0

and

p�B2
t � 1�∆qXN

� P¤N

�
2 Ì Ì&

�
V �

�
P¤N � P¤N

� �
N �XN

�	
P¤N

	
� 2

�
V �

�
P¤N � P¤N

�
YN

�	
Ì P¤N

	
�
�
V �

�
P¤N

� �
N � wN

�	2	
Ì P¤N

�
.

(4.2.14)

Remark 4.2.3. As far as the author is aware, the operator Ì Ì& has not been used in previous

work on random dispersive equations. The reason for introducing the operator lies in the first

term in (4.2.14), which contains P¤N �P¤NXN . In order to define this term (uniformly in N), the

spatial regularity of XN alone is not sufficient. It is also difficult to use the structure of XN , since

this term appears in the evolution equation for XN (and not for YN), and hence one (may) run into

a circular argument. By using Ì Ì& , however, this problem does not occur, since we can borrow

a small amount of regularity from the third argument in Ì Ì&
�
V � pP¤N � P¤NXNqP¤N

�
. We

mention, however, that using Ì Ì& has a small drawback, which is explained in Remark 4.9.11.

We also did not include any component of MNP¤NYN in the second term of (4.2.14). It turns

out that the contribution coming from the Ì -portion of the renormalization can be controlled at

regularities bigger than 1{2 and is therefore placed in the evolution equation for YN below.
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As determined by our choice of XN , the nonlinear remainder YN satisfies YN r0s � M and

p�B2
t � 1�∆qYN

� 2P¤N

��
Ì Ì& 

� ��
V �

�
P¤N � P¤N

� �
N �XN

�	
P¤N

	
�MNP¤N

� �
N �XN

�	�
(4.2.15)

� P¤N

�
2
�
V �

�
P¤N � P¤N

�
YN

�	
Ì 

� �
P¤N

	
�MNP¤N

�
YN

�	
(4.2.16)

�
�
V �

�
P¤N

� �
N � wN

�	2	
Ì 

� �
P¤N (4.2.17)

� 2V �
�
P¤N � P¤N

� �
N � wN

�	
P¤N

� �
N � wN

�
(4.2.18)

�
�
V �

N

	
P¤N

� �
N � wN

�
(4.2.19)

�
�
V �

�
P¤N

� �
N � wN

�	2	
P¤N

� �
N � wN

��
. (4.2.20)

To facilitate the analysis in the body of this paper, we further organize the terms in the evolution

equation for YN . We write

p�B2
t � 1�∆qYN � So�CPara�RMT�Phy, (4.2.21)

where the stochastic objects So, the contributions of the para-controlled terms CPara, the

random-matrix terms RMT, and the physical terms Phy are defined as follows:
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We define the individual stochastic objects by

�
N�
N

def�
�
V �

�
P¤N � P¤N

� �
N

�	
P¤N

	
�MNP¤N

� �
N

�	
, (4.2.22)

Ì Ì& 

� � �
N�
N

def� Ì Ì& 

� � �
V �

�
P¤N � P¤N

� �
N

�	
P¤N

	
�MNP¤N

� �
N

�	
, (4.2.23)

�
N�

N

def�
�
V �

N

	
P¤N

�
N , (4.2.24)

�
N

�
N
�

N

def� V �
�
P¤N

�
N � P¤N

	
P¤N

�
N , (4.2.25)

�

N

�
N

�
N

def�
�
V �

�
P¤N

�
N

	2	
P¤N , (4.2.26)

Ì 

� �
�

N

�
N

�
N

def� V �
�
P¤N

�
N

	2
Ì 

� �
P¤N . (4.2.27)

We then define

So � SoN
def� P¤N

�
2 Ì Ì& 

� � �
N�
N
�

�
N�

N
� Ì 

� �
�

N

�
N

�
N
� 2

�
N

�
N
�

N

�
. (4.2.28)

In works on singular SPDEs, such as [MWX17], the para-differential operators are usually placed

at the joints of the different lines. The advantage is that it works for arbitrary “trees” and can

accommodate multiple para-differential operators. Since this level of generality will not be needed

here, we prefer our notation, since it is slightly easier to read.

We define

CPara � CParaNpXN , wNq
def� 2P¤N

��
Ì Ì& 

� ��
V �

�
P¤N � P¤NXN

	
P¤N

	
�MNP¤NXN

	�

� 2P¤N

�
V �

�
P¤N � P¤NXN

	
P¤NwN

�
� 2P¤N

�
V �

�
P¤N � P¤NXN

	
P¤N

�
N

�
.

(4.2.29)
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In our analysis of CPara, we will use the double Duhamel-trick, i.e., we will replace XN by the

Duhamel-integral of the right-hand side in (4.2.14).

The random matrix term is defined as

RMT � RMTNpYN , wNq

def� P¤N

��
V �

N

	
P¤NwN

�
(4.2.30)

� 2P¤N

��
V �

�
P¤N � P¤N

�
YN

�	
Ì 

� �
P¤N

	
�MNP¤N

�
YN

�	�
. (4.2.31)

Our reason for calling (4.2.30) the random matrix term lies in the method used in its estimate.

We will view the summands as random operators in wN and YN , respectively, and estimate the

operator norm using the moment method (as in [DNY20, Proposition 2.8]).

Finally, we define the physical term by

Phy �PhyNpXN , YN , wNq
def� P¤N

�
2V �

�
P¤N � P¤N �

N

	
P¤NwN (4.2.32)

� 2
�
V �

�
P¤N

�
N � P¤NwN

	
Ì 

� �
P¤N (4.2.33)

� 2V �
�
P¤N � P¤NwN

	
P¤N

�
N (4.2.34)

� 2V �
�
P¤N � P¤NYN

	
P¤N

�
N (4.2.35)

� 2V �
�
P¤N � P¤NwN

	
P¤NwN (4.2.36)

� 2V �
�
P¤N � P¤NYN

	
P¤NwN (4.2.37)

�
�
V �

�
P¤NwN

	2	
Ì 

� �
P¤N (4.2.38)

�
�
V �

�
P¤N

� �
N � wN

�	2	
P¤N

� �
N � wN

��
. (4.2.39)
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Similar as for RMT, we call Phy the physical term due to the methods used in its estimate. We

point out, however, that (4.2.33) and (4.2.34) are “hybrid” terms and their estimates rely on both

random matrix techniques and physical methods. In the estimates of the other terms in Phy, we

also make use of the refined Strichartz estimates by Klainerman-Tataru [KT99].

4.2.2 Multi-linear master estimate

In this subsection, we combine all multi-linear estimates from Section 4.5-4.8 into a single propo-

sition, which we refer to as the multi-linear master estimate (Proposition 4.2.8). In particular, the

multi-linear master estimate will include estimates of So, CPara, RMT, and Phy, even though

the proofs of the individual estimates are quite different. Before we can state the multi-linear

master estimate, however, we require additional notation. For the definition of the function spaces

Xs,b and LM, we refer to Definition 4.4.1 and Definition 4.7.1.

Definition 4.2.4 (Types). Let J � r0,8q be a bounded interval and let ϕ : J �T3 Ñ R. We say

that ϕ is of type


 if ϕ � ,


 �
if ϕ � �

N for some N ¥ 1,


 w if }ϕ}Xs1,bpJ q ¤ 1 and
°
L1�L2

}PL1 � PL2w}L2
tH

�4δ1
x pJ�T3q

¤ 1,


 X if ϕ � P¤N I
�
1J0 PCtrlpH,P¤N q� for a dyadic integer N ¥ 1, a sub-interval J0 � J ,

and a function H P LMpJ0q satisfying }H}LMpJ0q ¤ 1,


 Y if }ϕ}Xs2,bpJ q ¤ 1.
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Let ϕ1, ϕ2, ϕ3 : J � T3 Ñ R and T1, T2, T3 P
!
,
�

, w,X, Y
)

. We write

pϕ1, ϕ2q type� pT1, T2q

if either ϕ1 is of type T1 and ϕ2 is of type T2 or ϕ1 is of type T2 and ϕ2 is of type T1. Furthermore,

we write

pϕ1, ϕ2;ϕ3q type� pT1, T2; T3q

if pϕ1, ϕ2q type� pT1, T2q and ϕ3 is of type T3.

Remark 4.2.5. The types w, X, and Y are designed for the functions wN , XN , and YN from

Section 4.2.1. Our notation for the type of pϕ1, ϕ2;ϕ3q respects the symmetry in the first two

arguments of the nonlinearity
�
V � pϕ1ϕ2q

�
ϕ3. We also mention that the types w and X implicitly

depend on . In Section 4.9, we will therefore refer to the types w and X as w and X , respectively.

In the next lemma, we show that functions of type X and Y are multiples of functions of type w.

This allows us to prove several estimates for functions of type X and Y simultaneously.

Lemma 4.2.6. Let A ¥ 1, T ¥ 1, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently small.

Then, there exists a Borel set ΘtypepA, T q � H
� 1

2
�κ

x pT3q satisfying

Pp P Θtype
bluepA, T qq ¥ 1� ζ�1 expp�ζAζq

and such that the following holds for all P Θtype
bluepA, T q: If ϕ : J � T3 Ñ R is of type X or Y ,

then T�4A�1ϕ is of type w.

Proof. We treat the types X and Y separately. First, we assume that ϕ is of type X, and hence

there exists a dyadic integer N ¥ 1, a sub-interval J0 � J , and a function H P LMpJ0q satisfying

}H}LMpJ0q ¤ 1 such that ϕ � P¤N I
�
1J0 PCtrlpH,P¤N q�. Using the inhomogeneous Strichartz
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estimate (Lemma 4.4.9) and Lemma 4.7.3, we have that

}P¤NX}Xs1,bpJ q À }1J0 PCtrlpH, P¤N q}
L2b
t H

s1�1
x pJ�T3q

À T }H}LMpJ q} }
L8t H

s1�1�8ε
x pJ�T3q

À T } }
H
�1{2�κ
x pT3q

.

This is bounded by TA on a set of acceptable probability. Using Proposition 4.7.8, we obtain on

a set of acceptable probability that¸
L1�L2

}PL1 � PL2ϕ}L2
tH

�4δ1
x pJ�T3q

¤ T 4A}H}LMpJ0q ¤ T 4A.

By combining both estimates, we see that T�4A�1ϕ is of type w.

Second, we assume that ϕ is of type Y . Then, we have that }ϕ}Xs1,bpJ q ¤ }ϕ}Xs2,bpJ q ¤ 1. This

implies¸
L1�L2

}PL1 � PL2ϕ}L2
tH

�4δ1
x pJ�T3q

À T
1
2

¸
L1�L2

Lκ�δ21 }PL1 }
L8t C�1{2�κ

x pJ�T3q
}PL2ϕ}L8t Hs2

x pJ�T3q

À T
1
2 } }

L8t C�1{2�κ
x pJ�T3q

As above, this is bounded by T
1
2A on a set of acceptable probability. By combining both estimates,

we see that T� 1
2A�1ϕ is of type w.

In order to state the multi-linear master estimate, we need to introduce a multi-linear version of

the renormalization in (4.1.13).

Definition 4.2.7 (Renormalization). Let J be a compact interval, let ϕ1, ϕ2, ϕ3 be as in Definition

4.2.4, and let N ¥ 1. Furthermore, assume that

pϕ1, ϕ2;ϕ3q
type� �

, ,
�
.
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Then, we define the renormalized and frequency-truncated nonlinearity by

:V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

def�

$'''''''''&'''''''''%

�
V �

N

	
P¤Nϕ3 if pϕ1, ϕ2q type� �

,
�
,

V � �P¤N � P¤Nϕ2

	
P¤N �MNP¤Nϕ2 if pϕ1, ϕ3q type� �

,
�
,

V � �P¤Nϕ1 � P¤N
	
P¤N �MNP¤Nϕ1 if pϕ2, ϕ3q type� �

,
�
,

V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 else.

(4.2.40)

If pϕ1, ϕ2q
type� �

,
�
, we define the action of the paradifferential operators Ì and Ì Ì& on the

renormalized and frequency-truncated nonlinearity by

:V � �P¤Nϕ1 � P¤Nϕ2

�
Ì P¤Nϕ3 :

def� V � �P¤Nϕ1 � P¤Nϕ2

�
Ì P¤Nϕ3,

Ì Ì&

�
:V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

	
def� Ì Ì&

�
V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3

	
,

which does not involve a renormalization. We also define the negated paradifferential operators by

:V � �P¤Nϕ1 � P¤Nϕ2

�
Ì 

� �
P¤Nϕ3 :

def� :V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 : � :V � �P¤Nϕ1 � P¤Nϕ2

�
Ì P¤Nϕ3 :,

Ì Ì& 

� � �
:V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

	
def� V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 : � Ì Ì&

�
:V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

	
,

which contains the full renormalization.

Equipped with our notion of types and the renormalization, we can now state and prove the

multi-linear master estimate.
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Proposition 4.2.8 (Multi-linear master estimate). Let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be suffi-

ciently small, let A ¥ 1, and let T ¥ 1. Then, there exists a Borel set Θms
bluepA, T q � H

�1{2�κ
x pT3q

satisfying

Pp P Θms
bluepA, T qq ¥ 1� ζ�1 expp�ζAζq (4.2.41)

and such that for all P Θms
bluepA, T q the following estimates hold:

Let J � r0, T s be an interval and let N ¥ 1. Let ϕ1, ϕ2, ϕ3 : J �T3 Ñ R be as in Definition 4.2.4

and let

pϕ1, ϕ2;ϕ3q
type� �

, ;
�
,
�
, w;

�
.

(i) If pϕ1, ϕ2;ϕ3q type� �
,
�

;
�
,
�
, X;

�
, then��� Ì Ì& 

� � �
:V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

	���
Xs2�1,b��1pJ q

¤ T 30A.

(ii) If pϕ1, ϕ2;ϕ3q type� �
, Y ;

�
or ϕ1, ϕ2

type� and ϕ3
type� , then��� :V � �P¤Nϕ1 � P¤Nϕ2

�
Ì 

� �
P¤Nϕ3 :

���
Xs2�1,b��1pJ q

¤ T 30A.

(iii) In all other cases, ��� :V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

���
Xs2�1,b��1pJ q

¤ T 30A.

Remark 4.2.9. The frequency-localized versions of each estimate in Proposition 4.2.8 gain an

η1-power in the maximal frequency-scale. Furthermore, functions of the type
�

can be replaced

by
�

τ
as defined in (4.3.4). For more details on these minor modifications, we refer the reader

to the proof of the individual main estimates (Section 4.5-4.8).

Proof. It suffices to prove the estimates with A on the right-hand side replaced by CAC , where

C � Cps1, s2, b, b�, εq. Then, the desired estimate follows by replacing A with a small power of
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itself and adjusting the constant ζ. In the following, we freely restrict to events with acceptable

probabilities.

Proof of (i): If pϕ1, ϕ2;ϕ3q has type


 �
,
�

;
�
, we use Proposition 4.5.7,


 �
, X;

�
, we use Proposition 4.7.9 .

Proof of (ii): If pϕ1, ϕ2;ϕ3q type� �
, Y,

�
, this follows from Proposition 4.6.3. Using Lemma 4.2.6,

we may assume in all remaining cases that ϕ1 and ϕ2 have type
�

or w, as long as we obtain

the estimate with T 18 instead of T 30. If pϕ1, ϕ2;ϕ3q has type


 � �
,
�

;
�
, we use Lemma 4.7.4 and Proposition 4.5.10,


 �
w,

�
;

�
, we use Lemma 4.7.6 and Proposition 4.8.12,


 �
w,w;

�
, we use Lemma 4.7.6 and Proposition 4.8.6.

Proof of (iii): Using Lemma 4.2.6, we may assume that all functions ϕj are of type ,
�

,

or w, as long as we prove the estimate with T 18 instead of T 30. If no factor is of type , the

desired estimate follows from Proposition 4.5.1 and Proposition 4.8.10. The remaining cases can

be estimated as follows: If pϕ1, ϕ2;ϕ3q has type


 �
, ;

� �
, we use Proposition 4.5.8,


 �
, ;w

�
, we use Proposition 4.6.1,


 �
,
�

;
� �

, we use Proposition 4.5.10,


 �
,
�

;w
�
, we use Proposition 4.8.12,
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 �
, w;

� �
, we use Lemma 4.8.8 and Proposition 4.8.12,


 �
, w;w

�
, we use Proposition 4.8.7 and Lemma 4.8.8.

4.2.3 Local well-posedness

In this subsection, we obtain our first local well-posedness result. It is phrased in terms of the

ambient measure P and the random structure is based on the Gaussian initial data .

Proposition 4.2.10 (Structured local well-posedness w.r.t. the ambient measure). Let M ¥ 1,

let A ¥ 1, let 0   τ ¤ 1, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently small. Denote by

Lamb
M pA, τq the event in the ambient space pΩ,Fq defined by the following conditions:

(i) For any N ¥ 1, the solution of (4.2.1) with initial data � � M exists on r0, τ s.

(ii) For all N ¥ 1, there exist wN P Xs1,bpr0, τ sq, HN P LMpr0, τ sq, and YN P Xs2,bpr0, τ sq such

that

ΦNptq � ptq � �
N ptq � wNptq and wNptq � P¤N I

�
PCtrlpHN , P¤N q�ptq � YNptq

for all t P r0, τ s. Furthermore, we have the bounds

}wN}Xs1,bpr0,τ sq, }HN}LMpr0,τ sq, }YN}Xs2,bpr0,τ sq ¤ A and¸
L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,τ s�T3q

¤ A.

(iii) It holds for all N,K ¥ 1 that

}ΦN rts � ΦKrts }L8t H
β�κ
x pr0,τ s�T3q ¤ AminpN,Kq�η1 .
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We further require that

}HN �HK}LMpr0,τ sq, }YN � YK}Xs2,bpr0,τ sq ¤ AminpN,Kq�η1 .

If Aτ b��b ¤ 1, then Lamb
M pA, τq has a high probability and it holds that

PpLamb
M pA, τqq ¥ 1� ζ�1 expp�ζAζq. (4.2.42)

Remark 4.2.11. The superscript “amb” in Lamb
M pA, τq emphasizes that the event lives in the

ambient probability space. The first item (i) is only stated for expository purposes. Indeed,

since (i) is a soft statement and does not contain any uniformity in the frequency-truncation

parameter, it follows from the global well-posedness of (4.2.1) (which is also not uniform in N).

The interesting portions of the proposition are included in (ii) and (iii), which contain uniform

structural information about the solution and allow us to locally define the limiting dynamics.

By combining Theorem 4.1.1 and Proposition 4.2.10, we easily obtain the local well-posedness of

the renormalized nonlinear wave equation on the support of the Gibbs measure.

Corollary 4.2.12 (Local well-posedness for Gibbsian initial data). Let 0   τ   1 and let ζ �
ζpε, s1, s2, κ, η, η

1, b�, bq ¡ 0 be sufficiently small. Then, there exists a Borel set Lpτq � H
�1{2�κ
x pT3q

such that ΦN rts converges in C0
t H

�1{2�κ
x pr0, τ s � T3q as N Ñ 8 and such that

µb8pLpτqq ¥ 1� ζ�1 expp�ζτ�ζq. (4.2.43)

Corollary 4.2.12 shows that the limiting dynamics Φptq � limNÑ8 ΦNptq are locally well-defined

on the support of the Gibbs measure. However, it does not contain any structural information

about the solution, which will be essential in the globalization argument (Section 4.3). The main

difficulty, which was described in detail in Section 4.2.1, is that the free component of the initial
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data is only defined on the ambient space. Nevertheless, in Proposition 4.3.3 below, we obtain

a structured local well-posedness theorem in terms of .

We first use the structured local well-posedness result for the ambient measure (Proposition 4.2.10)

to prove the unstructured local well-posedness for Gibbsian random data (Corollary 4.2.12). Then,

we present the proof of Proposition 4.2.10.

Proof of Corollary 4.2.12: Let M ¥ 1 and let A satisfy Aτ b��b ¤ 1. We define a closed setrLpA, τq � H
� 1

2
�κ

x pT3q by requiring that P rLpA, τq if and only if

(a) For any N ¥ 1, the solution of (4.2.1) with initial data exists on r0, τ s.

(b) It holds for all N,K ¥ 1 that

}ΦNptq � ΦKptq }L8t H
β�κ
x pr0,τ s�T3q ¤ AminpN,Kq�η1 .

It is clear from the definition that Lpτq � rLpA, τq. We emphasize that rLpA, τq is defined intrinsi-

cally through and does not refer to the ambient probability space pΩ,F ,Pq. From the definition

of Lamb
M pA, τq in Proposition 4.2.10, it follows that

Lamb
M pA, τq � t � M P rLpA, τqu.

By using Theorem 4.1.1, we have that LawPp � M q � νbM . This yields

νbMp rLpA, τqq � Pp � M P rLpA, τqq ¥ PpLamb
M pA, τqq ¥ 1� ζ�1 expp�ζAζq.

By using the quantitative version of the absolute continuity µbM ! νbM in Theorem 4.1.1, we obtain

that

µbMpH� 1
2
�κ

x pT3qz rLpA, τqq À νbMpH� 1
2
�κ

x pT3qz rLpA, τqq1� 1
q À ζ�1 exp

�� ζ
�
1� q�1

�
Aζ

�
.
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After adjusting the value of ζ, this yields the desired estimate (4.2.43) with µb8 replaced by µbM .

Since rLpA, τq is closed in H
�1{2�κ
x pT3q and a subsequence of µbM weakly converges to µb8, we obtain

the same probabilistic estimate for the limiting measure µb8.

Proof of Proposition 4.2.10: As discussed in Remark 4.2.11, (i) follows from a soft argument. We

now turn to the proof of (ii), which is the heart of the proposition. We let B � cAc, where

c � cpε, s1, s2, b�, bq is a sufficiently small constant.

Using Theorem 4.1.1, Lemma 4.2.6, Proposition 4.2.8, and Proposition 4.5.1, we may restrict to

the event !
P Θms

bluepB, 1q
) � !

P Θtype
bluepB, 1q

) � !�� ��
L8t C�1{2�κ

x pr0,1s�T3q
¤ B

)
� !

sup
N

�� �
N

��
L8t Cβ�κx pr0,1s�T3q

¤ B
) � !��

M

��
H

1{2�β�κ
x pT3q

¤ B
)
.

(4.2.44)

We now define a map

ΓN � pΓN,X ,ΓN,Y q : Xs1,bpr0, τ sq �Xs2,bpr0, τ sq Ñ Xs1,bpr0, τ sq �Xs2,bpr0, τ sq

by

ΓN,XpXN , YNq def� P¤N I

�
2 Ì Ì&

�
V �

�
P¤N � P¤N

� �
N �XN

�	
P¤N

	
� 2

�
V �

�
P¤N � P¤N

�
YN

�	
Ì P¤N

	
�
�
V �

�
P¤N

� �
N � wN

�	2	
Ì P¤N

�
and

ΓN,Y pXN , YNq
def� � I

�
SoN �CParaNpΓN,XpXN , YNq, wNq �RMTNpYN , wNq �PhyNpXN , YN , wNq

�
,

where wN � XN �YN . We emphasize our use of the double Duhamel trick, which is manifested in

the argument ΓN,XpXN , YNq of CParaN . Our goal is to show that ΓN is a contraction on a ball
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in Xs1,bpr0, τ sq �Xs2,bpr0, τ sq, where the radius remains to be chosen.

Using Lemma 4.7.4 and Lemma 4.7.6, it follows that there exists a (canonical) HN � HNpXN , YNq
satisfying the identity

ΓN,XpXN , YNq � P¤N I
�

PCtrlpHN , P¤N q�
and the estimate

}HN}LMpr0,τ sq À B2 � }XN}2
Xs1,bpr0,τ sq � }YN}2

Xs2,bpr0,τ sq. (4.2.45)

Using the energy estimate (Lemma 4.4.8), the inhomogeneous Strichartz estimate (Lemma 4.4.9),

Lemma 4.7.3, and s1 � 1� 8ε   �1{2� κ, we obtain that��ΓN,XpXN , YNq
��
Xs1,bpr0,τ sq

À ��PCtrlpHN , P¤N q��
Xs1�1,b�1pr0,τ sq

À ��PCtrlpHN , P¤N q��
L2b
t H

s1�1
x pr0,τ s�T3q

À τ
1
2b

��PCtrlpHN , P¤N q��
L8t H

s1�1
x pr0,τ s�T3q

À τ
1
2b }HN}LMpr0,τ sq

�� ��
L8t H

s1�1�8ε
x pr0,τ s�T3q

À τ
1
2bB

�
B2 � }XN}2

Xs1,bpr0,τ sq � }YN}2
Xs2,bpr0,τ sq

�
.

(4.2.46)

Using the multi-linear estimates from Proposition 4.2.8, which are available due to our restriction

to the event (4.2.44), and the time-localization lemma (Lemma 4.4.3), we similarly obtain��ΓN,Y pXN , YNq
��
Xs2,bpr0,τ sq

À �� ��
Xs2,bpr0,τ sq

� ��So�CPara�RMT�Phy
��
Xs2�1,b�1pr0,τ sq

À B � τ b��b
��So�CPara�RMT�Phy

��
Xs2�1,b��1pr0,τ sq

À B � τ b��b
�
B3 � }XN}3

Xs1,bpr0,τ sq � }YN}3
Xs2,bpr0,τ sq

�
(4.2.47)

By combining (4.2.46) and (4.2.47), we obtain for a constant C � Cpε, s1, s2, b�, bq that��ΓNpXN , YNq
��
Xs1,bpr0,τ sq�Xs2,bpr0,τ sq

¤ CB �Cτ b��b�B3 � }XN}3
Xs1,bpr0,τ sq � }YN}3

Xs2,bpr0,τ sq

�
. (4.2.48)

217



Since C4τ b��bB2 ¤ 1{100, which follows from τ b��bA ¤ 1 and our choice of B, we see that ΓN

maps the ball in Xs1,bpr0, τ sq � Xs2,bpr0, τ sq of radius 2CB to itself. A minor modification of the

above argument also yields that ΓN is a contraction, which implies the existence of a unique fixed

point pXN , YNq of ΓN satisfying

}XN}Xs1,bpr0,τ sq, }YN}Xs2,bpr0,τ sq ¤ 2CB. (4.2.49)

Using (4.2.45), we obtain that XN � P¤N I
�

PCtrlpHN , P¤N q� with HN satisfying }HN}LMpr0,τ sq À
B2. Finally, using the triangle inequality and the condition P Θtype

bluepB, 1q from (4.2.44), we obtain

that wN � XN � YN satisfies

}wN}Xs1,bpr0,τ sq ¤ 4CB and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,τ sq

À B2. (4.2.50)

Using that B � cAc, (4.2.49) and (4.2.50) yield the desired estimates in (ii).

We now turn to (iii). This is a notationally extremely tedious but mathematically minor modifi-

cation of the arguments leading to (ii). Similar modifications are usually omitted in the literature

and we only outline the argument. In the frequency-localized versions of our estimates leading to

(ii), we always had an additional decaying factor N�η1

max, where Nmax was the maximal frequency-

scale (see Remark 4.2.9 and Sections 4.5-4.8). So far, this was only used to sum over all dyadic

scales, but it also yields the smallness conditions in (iii). Indeed, one only has to apply the same

estimates as above to the difference equation

pXN �XK , YN � YKq � ΓNpXN , YNq � ΓKpXK , YKq.

218



4.2.4 Stability theory

In this subsection, we prove a stability estimate (Proposition 4.2.14) on large time-intervals.

Strictly speaking, the stability estimate is part of the global instead of the local theory, but

the argument is closely related to the proof of local well-posedness (Proposition 4.2.10). While

the stability estimate in this section is phrased in terms of , it can be used to obtain a similar

estimate in terms of (Proposition 4.3.8). This second stability estimate will then be used in the

globalization argument.

In order to state the stability result, we introduce the function space Z, which captures the

admissible perturbations of the initial data.

Definition 4.2.13 (Structured perturbations). Let T ¥ 1, t0 P r0, T s, N ¥ 1, and K ¥ 1. For

any P H
�1{2�κ
x pT3q and Zrt0s P Hs1

x pT3q, we define

}Zrt0s}Zpr0,T s, ;t0,N,Kq

� inf
Z�,Z�

max
�
}Z�rt0s}Hs1

x pT3q, }Z�rt0s}Hs2
x pT3q,

¸
L1�L2

}PL1 � PL2Z}L2
tH

�4δ1
x pr0,T s�T3q

,

} :V � �P¤N � P¤NZ�
�

Ì 

� �
P¤N : }Xs2�1,b��1pr0,T sq,

} Ì Ì& 

� � �
:V � �P¤N � P¤NZ��P¤N :

	
}Xs2�1,b��1pr0,T sq

	
,

where the infimum is taken over all Z�rt0s P Hs1
x pT3q and Z�rt0s P Hs2

x pT3q satisfying the identity

Zrt0s � Z�rt0s � Z�rt0s and the Fourier support condition supp xZ�rt0spnq � tn P Z3 : |n| ¤
8 maxpN,Kqu. Furthermore, we wrote Z�, Z�, and Z for the corresponding solutions to the linear

wave equation.
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The notation Z�N and Z�
N is motivated by the paradifferential operators used in their treatment.

The contributions of Z�N and Z�
N are estimated using Ì and Ì Ì& , respectively.

It is clear that, for a fixed parameters T, t0, N , and K, the maximum is jointly continuous in

Z�rt0s P Hs1
x pT3q (satisfying the frequency-support condition), Z�rt0s P Hs2

x pT3q, and P H
�1{2�κ
x .

This is the primary reason for including the frequency support condition, since the sum in L1 and

L2 would otherwise not be continuous in Z�rt0s. In particular, the norm }Zrt0s}Zpr0,T s, ;t0,N,Kq is

Borel-measurable in Zrt0s P Hs2
x pT3q and P H

�1{2�κ
x .

Proposition 4.2.14 (Stability estimate). Let T ¥ 1, let A ¥ 1, and let ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0

be sufficiently small. There exists a constant C � Cpε, s1, s2, b�, b�q and a Borel set Θstab
bluepA, T q �

H
�1{2�κ
x pT3q satisfying

Pp P Θstab
bluepA, T qq ¥ 1� ζ�1 expp�ζAζq

such that the following holds for all P Θstab
bluepA, T q:

Let N ¥ 1, B ¥ 1, 0   θ   1, J � r0, T s be a compact interval, and t0
def� minJ . LetruN : J � T3 Ñ R be an approximate solution of (4.2.1) satisfying the following assumptions.

(A1) Structure: We have the decomposition

ruN � � �
N � rwN .

(A2) Global bounds: It holds that

} rwN}Xs1,bpJq ¤ B and
¸

L1�L2

}PL1 � PL2 rwN}L2
tH

�4δ1
x pJ�T3q

¤ B.

(A3) Approximate solution: There exists HN P LMpJ q and FN P Xs2�1,b��1pJ q satisfying the

identity

p�B2
t � 1�∆qruN � P¤N :

�
V � pP¤NruNq2�P¤NruN : �P¤N PCtrlpHN , P¤N q � FN
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and the estimates

}HN}LMpJ q ¤ θ and }FN}Xs2�1,b��1pJ q ¤ θ.

Furthermore, let ZN rt0s P Hs1
x pT3q be a perturbation satisfying the following assumption.

(A4) Structured perturbation: There exists a K ¥ 1 such that

}Zrt0s}ZpJ , ;t0,N,Kq ¤ θ.

Finally, assume that

(A5) Parameter condition: C exp
�
CpA�Bq 2

b��bT
40

b��b

	
θ ¤ 1.

Then, there exists a solution uN : J � T3 Ñ R of (4.2.1) satisfying the initial value condition

uN rt0s � ruN rt0s � ZN rt0s and the following conclusions.

(C1) Preserved structure: We have the decomposition

uN � � �
N � wN .

(C2) Closeness: The difference uN � ruN � wN � rwN satisfies

}uN � ruN}Xs1,bpJ q ¤ C exp
�
CpA�Bq 2

b��bT
40

b��b
�
θ,¸

L1�L2

}PL1 � PL2puN � ruNq}L2
tH

�4δ1
x pJ�T3q

¤ C exp
�
CpA�Bq 2

b��bT
40

b��b
�
θ.

(C3) Preserved global bounds: It holds that

}wN}Xs1,bpJ q ¤ Bθ and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pJ�T3q

¤ Bθ,

where Bθ
def� B � C exp

�
CpA�Bq 2

b��bT
40

b��b
�
θ.
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As mentioned above, the proof of Proposition 4.2.14 is close to the proof of local well-posedness.

The most important additional ingredient is a Gronwall-type argument in Xs,b-spaces, which is

slightly technical due to their non-local nature in the time-variable.

Proof. Let N,B, θ,J , t0, ruN , rwN , HN , FN , ZN , Z
�
N , and Z�N be as in the statement of the proposition

and assume that (A1)-(A5) are satisfied. We make the Ansatz

uNptq � ruNptq � vNptq � ZNptq,

where the nonlinear component vNptq will be decomposed into a para-controlled and a smoother

component below. Based on the condition uN rt0s � ruN rt0s � ZN rt0s, we require that vN rt0s � 0.

Using the assumption (A3) and that ZN solves the linear wave equation, we obtain the evolution

equation

p�B2
t � 1�∆qvN �P¤N :

�
V � �P¤NpruN � vN � ZNq2

��
P¤NpruN � vN � ZNq:

� P¤N :
�
V � pP¤NruNq2�P¤NruN :

� P¤N PCtrlpHN , P¤N q � FN .

Inserting the structural assumption (A1) and using the binomial formula, we obtain that

p�B2
t � 1�∆qvN �P¤N

�
2 :V �

�
P¤N

�
� �

N � wN

	
� P¤N

�
vN � ZN

		
P¤N :

� V �
��
P¤N

�
vN � ZN

�	2	
P¤N

� PCtrlpHN , P¤N q
� 2V �

�
P¤N

�
� �

N � wN

	
� P¤N

�
vN � ZN

		
P¤N

�
�

N � wN

	
� P¤N

�
V � � :P¤NpruN � vN � ZNq2 :

��
P¤NpvN � ZNq

�
� FN .

We then decompose vN � XN � YN , where XN is the para-controlled component and YN is the

smoother component. Since vN rt0s � 0, we impose the initial value conditions XN rt0s � 0 and
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YN rt0s � 0. Similar as in Section 4.2.1, we define XN and YN through the evolution equations

p�B2
t � 1�∆qXN �P¤N

�
2 Ì Ì&

�
V �

�
P¤N � P¤N

�
XN � Z�

N

		
P¤N

	
� 2V �

�
P¤N � P¤N

�
YN � Z�N

		
Ì P¤N

� 2V �
�
P¤N

�
�

N � wN

	
� P¤N

�
XN � YN � ZN

		
Ì P¤N

� V �
��
P¤N

�
vN � ZN

�	2	
Ì P¤N � PCtrlpHN , P¤N q

�
(4.2.51)

and

p�B2
t � 1�∆qYN �P¤N

�
2 Ì Ì& 

� � �
:V �

�
P¤N � P¤N

�
XN � Z�

N

		
P¤N :

	
� 2 :V �

�
P¤N � P¤N

�
YN � Z�N

		
Ì 

� �
P¤N :

� 2V �
�
P¤N

�
�

N � wN

	
� P¤N

�
vN � ZN

		
Ì 

� �
P¤N

� V �
��
P¤N

�
vN � ZN

�	2	
Ì 

� �
P¤N

� 2V �
�
P¤N

�
� �

N � wN

	
� P¤N

�
vN � ZN

		
P¤N

�
�

N � wN

	
� �

V � � :P¤NpruN � vN � ZNq2 :
��
P¤NpvN � ZNq

�
� FN .

(4.2.52)

Since the nonlinearity in (4.2.51) and (4.2.52) is frequency-truncated, a soft argument yields the

local existence and uniqueness of XN and YN in C0
t H

s1
x and C0

t H
s2
x , respectively. Since Xs,bpJ q

embeds into C0
t H

s
xpJ � T3q for all s P R, the solutions exist as long as the restricted Xs1,b and

Xs2,b-norms stay bounded.

In order to prove that XN and YN exist on the full interval J and satisfy the desired bounds,

we let T� be the maximal time of existence of XN and YN on J . We now proceed through a

Gronwall-type argument in Xs,b-spaces. We first define

fN : rt0, T �q Ñ r0,8q, t ÞÑ }XN}Xs1,bprt0,tsq � }YN}Xs2,bprt0,tsq.
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We emphasize that we neither rely on nor prove the continuity of fN . Using Lemma 4.4.4 and

Lemma 4.4.8, there exists an implicit constant CEn � CEnps1, s2, bq such that

gNptq def� CEn

���1rt0,tsp�B2
t � 1�∆qXN

��
Xs1�1,b�1pRq �

��1rt0,tsp�B2
t � 1�∆qYN

��
Xs2�1,b�1pRq

	
satisfies fNptq ¤ gNptq for all t P rt0, T�q. Due to Lemma 4.4.4, gNptq is continuous. Now, let τ ¡ 0

be a step-size which remains to be chosen and assume that t, t1 P rt0, T�q satisfy t ¤ t1 ¤ t � τ .

Using Lemma 4.4.3, we obtain that for an implicit constant C � Cps1, s2, b, b�q that

gNpt1q
¤ CEn

���1rt0,tsp�B2
t � 1�∆qXN

��
Xs1�1,b�1pRq �

��1rt0,tsp�B2
t � 1�∆qYN

��
Xs2�1,b�1pRq

	
� CEn

���1pt,t1sp�B2
t � 1�∆qXN

��
Xs1�1,b�1pRq �

��1pt,t1sp�B2
t � 1�∆qYN

��
Xs2�1,b�1pRq

	
¤ gNptq � Cτ b��b

���p�B2
t � 1�∆qXN

��
Xs1�1,b��1ppt,t1sq

� ��p�B2
t � 1�∆qYN

��
Xs2�1,b��1ppt,t1sq

�
¤ gNptq � Cτ b��b

���p�B2
t � 1�∆qXN

��
Xs1�1,b��1prt0,t1sq

� ��p�B2
t � 1�∆qYN

��
Xs2�1,b��1prt0,t1sq

�
.

Similar as in the proof of local well-posedness (Proposition 4.2.10), we can use Lemma 4.2.6,

Proposition 4.2.8, and Proposition 4.5.1 to restrict to the event!
P Θms

bluepA, T q
) � !

P Θtype
bluepA, T q

) � !�� ��
L8t C�1{2�κ

x pr0,1s�T3q
¤ A

)
� !

sup
N

�� �
N

��
L8t Cβ�κx pr0,1s�T3q

¤ T 3A
)
.

(4.2.53)

By combining the assumption (A2), (A3), (A4), and the multi-linear master estimate, a similar

argument as in the proof of Proposition 4.2.10 yields

τ b��b
���p�B2

t � 1�∆qXN

��
Xs1�1,b��1prt0,t1sq

� ��p�B2
t � 1�∆qYN

��
Xs2�1,b��1prt0,t1sq

�
À T 30τ b��bppA�Bq2 � fNpt1q2qpθ � fNpt1qq.

All together, we have proven for all t, t1 P rt0, T�q satisfying t ¤ t1 ¤ t� τ the estimate

fpt1q ¤ gpt1q ¤ gptq � CT 30τ b��bppA�Bq2 � fNpt1q2qpθ � fNpt1qq.
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Using gpt0q � 0, using a continuity argument (Lemma 4.4.13), iterating the resulting bounds, and

assuming the conditions

CpA�Bq2eTτ θ ¤ 1{2 and 2CT 30τ b��bppA�Bq2 � 6q ¤ 1{4, (4.2.54)

we obtain that

sup
tPrt0,T�q

fptq ¤ sup
tPrt0,T�q

gptq ¤ CpA�Bq2eTτ θ. (4.2.55)

Using the case of equality in the second condition in (4.2.54) as a definition for τ , the first condition

follows from our assumption (A5). Recalling the definition of f , we obtain that

sup
tPrt0,T�q

�
}XN}Xs1,bprt0,tsq � }YN}Xs2,bprt0,tsq

	
¤ C exp

�
CpA�Bq 2

b��bT
40

b��b
�

This estimate rules out finite-time blowup on J and implies that T� � supJ . Together with a soft

argument, which is based on the integral equation for XN and YN as well as the time-localization

lemma (Lemma 4.4.3), we obtain that

}XN}Xs1,bpJ q � }YN}Xs2,bpJ q ¤ C exp
�
CpA�Bq 2

b��bT
40

b��b
�
. (4.2.56)

With this uniform estimates in hand, we now easily obtain the desired conclusions (C1), (C2), and

(C3). In order to obtain (C1), we (are forced to) choose

wN � rwN �XN � YN � ZN .

The conclusions (C2) and (C3) follow from (A4), (4.2.56), and the condition P Θtype
bluepA, T q in our

event (4.2.53).

4.3 Global theory

In this section, we prove the global well-posedness of the renormalized nonlinear wave equation

and the invariance of the Gibbs measure. As mentioned in the introduction, the heart of this
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section is a new form of Bourgain’s globalization argument. In Section 4.3.1, we prove the global

well-posedness for Gibbsian initial data. We focus on the overall strategy and postpone several

individual steps to Section 4.3.3 below. In Section 4.3.2, we prove the invariance of the Gibbs

measure. Using the global well-posedness from Section 4.3.1, the proof of invariance is similar as

in Bourgain’s seminal paper [Bou94].

4.3.1 Global well-posedness

We now prove the (quantitative) global well-posedness of the renormalized nonlinear wave equation

for Gibbsian initial data. In particular, we show that the structure

ΦN rts � � �
N � wN

from the local theory (see Proposition 4.3.3) is preserved by the global theory. Here, the stochastic

objects are defined exactly as in (4.2.2) and (4.2.5), but with replaced by .

Proposition 4.3.1 (Global well-posedness). Let A ¥ 1, let T ¥ 1, let C � Cpε, s1, s2, κ, η, η
1, b�, bq

be sufficiently large, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently small. We assume that

B,D ¥ 1 satisfy

B ¥ BpA, T q def� C exppCpA� T qCq and D ¥ DpA, T q def� C exppexppCpA� T qCqq. (4.3.1)

Furthermore, let K ¥ 1 satisfy the condition

C exppCpA�B � T qCqK�η1 ¤ 1. (4.3.2)
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Then, the Borel set

EKpB,D, T q �
£
N¥K

�!
P H�1{2�κ

x pT3q�� wNptq � ΦNptq � � �
N satisfies

}wN}Xs1,bpr0,T sq ¤ B and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,T s�T3q

¤ B
)

� !
P H�1{2�κ

x pT3q��}ΦN rts � ΦKrts }C0
t H

β�κ
x pr0,T s�T3q ¤ DK�η1

)

satisfies the estimate

inf
M¥K

µbMpEKpB,D, T qq ¥ 1� Tζ�1 expp�ζAζq. (4.3.3)

In the proof below, we need two modifications of the cubic stochastic object. We define

�
N

τ

def� I
�
1r0,τ sptq � N

�
and

�
NzM
τ

def� I
�
1r0,τ sptq

�
�

N
� �

M

��
. (4.3.4)

Proof of Proposition 4.3.1: We encourage the reader to review the informal discussion of the ar-

gument in the introduction before diving into the details of this proof.

Let τ P p0, 1q be such that 1{2 ¤ Aτ b��b ¤ 1 and J
def� T {τ P N. We let Bj, Dj, where 1 ¤ j ¤ J ,

be increasing sequences which remain to be chosen. We will prove below that our choice satisfies

Bj ¤ B and Dj ¤ D for all 1 ¤ j ¤ J . We then have that

EKpBj, Dj, jτq �
£
N¥K

�!
P H�1{2�κ

x pT3q�� wNptq � ΦNptq � � �
N satisfies

}wN}Xs1,bpr0,jτ sq ¤ Bj and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,jτ s�T3q

¤ Bj

)
� !

P H�1{2�κ
x pT3q��}ΦN rts � ΦKrts }C0

t H
β�κ
x pr0,jτ s�T3q ¤ DjK

�η1
)


.

We now claim for all M ¥ K that, under certain constraints on the sequences Bj and Dj detailed

below,

µbM
�
EKpB1, D1, τq

	
¥ 1� ζ�1 exppζAζq (4.3.5)
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and

µbM
�
EKpBj, Dj, jτq

	
¥ µbM

�
EKpBj�1, Dj�1, pj � 1qτq

	
� ζ�1 exppζAζq. (4.3.6)

We refer to (4.3.5) as the base case and to (4.3.6) as the induction step. We split the rest of the

argument into several steps.

Step 1: The base case (4.3.5). We set B1
def� A and D1

def� A. If LpA, τq is as in Proposition 4.3.3,

we obtain that LpA, τq � EKpB1, D1, τq. This implies

µbM
�
EKpB1, D1, τq

	
¥ µbM

�
LpA, τq

	
¥ 1� ζ�1 exppζAζq.

Step 2: The induction step (4.3.6). We first restrict to the event

SgwppA, T, τq def� LpA, τq � LpA, 2τq � StimepA, T, τq � ScubpA, T, τq � SstabpA, T, τq. (4.3.7)

Using Proposition 4.3.3, Proposition 4.3.5, Proposition 4.3.7, and Proposition 4.3.8, which also

contain the definitions of the sets in (4.3.7), we obtain that

µbMpSgwppA, T, τqq ¥ 1� ζ�1 exppζAζq.

Using the invariance of µbM under ΦM , we also obtain that

µbM
�

ΦM rτ s�1EK
�
Bj�1, Dj�1, pj � 1qτ�	 � µbM

�
EK

�
Bj�1, Dj�1, pj � 1qτ�	.

In order to obtain the probabilistic estimate (4.3.6), it therefore suffices to prove the inclusion

SgwppA, T, τq � ΦM rτ s�1EK
�
Bj�1, Dj�1, pj � 1qτ� � EKpBj, Dj, jτq. (4.3.8)

For the rest of this proof, we assume that P SgwppA, T, τq � ΦM rτ s�1EK
�
Bj�1, Dj�1, pj � 1qτ�

and N,M ¥ K. To clarify the structure of the proof, we divide our argument into further substeps.
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Step 2.1: Time-translation. We rephrase the condition � ΦM rτ s P EKpBj�1, Dj�1, pj � 1qτq in

terms of .

Since P EKpBj�1, Dj�1, pj � 1qτq, we obtain for all t P rτ, jτ s that

ΦNpt� τqΦM rτ s � ΦNpt� τq � pt� τq � �
N pt� τq � wgrn

N,Mpt� τq,

where wgrn
N,M : r0, pj � 1qτ s � T3 Ñ R satisfies

}wgrn
N,M}Xs1,bpr0,pj�1qτ sq ¤ Bj�1 and

¸
L1�L2

}PL1 � PL2w
grn
N,M}L2

tH
�4δ1
x pr0,pj�1qτ s�T3q

¤ Bj�1.

The superscript “grn” emphasizes that wgrn
N,M appears in the structure involving . Furthermore,

we also have that

}ΦN rt� τ sΦM rτ s � ΦKrt� τ sΦM rτ s }C0
t H

β�κ
x prτ,jτ s�T3q ¤ Dj�1K

�η1 . (4.3.9)

Since P StimepA, T, τq (as in Proposition 4.3.5), it follows for all t P rτ, jτ s that

ΦNpt� τqΦM rτ s � ptq � �
N ptq � �

NzM
τ
ptq � wN,Mptq, (4.3.10)

where wN,M : rτ, jτ s � T3 Ñ R satisfies

}wN,M}Xs1,bprτ,jτ sq,
¸

L1�L2

}PL1 � PL2wN,M}L2
tH

�4δ1
x prτ,jτ s�T3q

¤ TαABj�1. (4.3.11)

Our next goal is to replace ΦM rτ s in (4.3.10) by ΦN rτ s, which is done in Step 2.2 and Step 2.3.

Step 2.2: The cubic stochastic object. In this step, we correct the structure of ΦNpt � τqΦM rτ s ,

as stated in (4.3.10), by adding the “partial” cubic stochastic object.

We define ruN : rτ, jτ s � T3 Ñ R by

ruNptq � ΦNpt� τqΦM rτ s � �
NzM
τ
ptq � ptq � �

N ptq � wN,Mptq. (4.3.12)
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While ruN depends on M , this is not reflected in our notation. The reason is that, as will be shown

below, ruN is a close approximation of uNptq � ΦNptq , which does not directly depend on M . In

order to match the notation of ruN , we also define rwN � wN,M , which leads to

ruNptq � ptq � �
N ptq � rwNptq.

Using P ScubpA, T, τq (as in Proposition 4.3.7), it follows that there exist HN P LMprτ, jτ sq and

FN P Xs2�1,b��1prτ, jτ sq satisfying the identity

p�B2
t � 1�∆qruN � P¤N :

�
V � pP¤NruNq2�P¤NruN :

� �P¤N PCtrlpHN , P¤N q � FN

(4.3.13)

and the estimate

}HN}LMprτ,jτ sq, }FN}Xs2�1,b��1prτ,jτ sq ¤ T 4αA4B3
j�1K

�η1 . (4.3.14)

Thus, ruN is an approximate solution to the nonlinear wave equation on rτ, jτ s �T3. Furthermore,

it holds that

}ruN rts � ΦN rt� τ sΦM rτ s }C0
t H

β�κ
x prτ,jτ s�T3q ¤ T 4αA4B3

j�1K
�η1 . (4.3.15)

Step 2.3: Stability estimate. In this step, we turn the approximate solution ruN into an honest

solution and fully correct the initial data at t � τ .

We now verify the assumptions (A1)-(A5) in Proposition 4.3.8, where we replace B by TαABj�1

and set θ � T 4αA4B3
j�1K

�η1 . The first assumption (A1) holds with rwN � wN,M due to (4.3.12).

The second assumption (A2) coincides with the bounds (4.3.11). The third assumption (A3)

coincides with (4.3.13) and (4.3.14).

For the fourth assumption (A4), we rely on P LpA, τq (as in Proposition 4.3.3). First, we have

that

ruN rτ s � ΦM rτ s � �
NzM
τ
rτ s � rτ s � �

M rτ s � �
NzM
τ
rτ s � wM rτ s � rτ s � �

N rτ s � wM rτ s.
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Second, we have that

ΦN rτ s � rτ s � �
N rτ s � wN rτ s.

Using (IV) in Proposition 4.3.3, this implies that ZN rτ s def� ΦN rτ s � ruN rτ s satisfies

}ZN rτ s}Zpr0,T s, ;τ,N,Mq ¤ ATαK�η1 , (4.3.16)

which yields (A4). Finally, as long as Bj ¤ B, the fifth assumption (A5) follows from the pa-

rameter condition (4.3.2). Thus, the assumptions (A1)-(A5) in Proposition 4.3.8 hold. Since

P SstabpA, T, τq, we obtain for all t P rτ, jτ s that

ΦNptq � ptq � �
N ptq � wNptq, (4.3.17)

where the nonlinear component wN satisfies

}wN}Xs1,bprτ,jτ s�T3q,
¸

L1�L2

}PL1 �PL2wN,M}L2
tH

�4δ1
x prτ,jτ s�T3q

¤ TαABj�1 � 1 ¤ 2TαABj�1. (4.3.18)

Furthermore,

}ΦN rts � ruN rts}C0
t H

β�κ
x prτ,jτ s�T3q ¤ C exppCpA�Bj�1 � T qCqK�η1 . (4.3.19)

By combining (4.3.9), (4.3.15), and (4.3.19), we obtain

}ΦN rts � ΦKrt� τ sΦM rτ s }C0
t H

β�κ
x prτ,jτ s�T3q

¤ �
Dj�1 � T 4αA4B3

j�1 � C exppCpA�Bj�1 � T qCq�K�η1 .
(4.3.20)

By combining the general case N ¥ K in (4.3.20) with the special case N � K, using the triangle

inequality, and increasing C if necessary, we also obtain that

}ΦN rts � ΦKrts }C0
t H

β�κ
x prτ,jτ s�T3q

¤ �
2Dj�1 � C exppCpA�Bj�1 � T qCq�K�η1 .

(4.3.21)
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Step 2.4: Gluing. In this step, we “glue” together our information on r0, 2τ s (from local well-

posedness) and rτ, jτ s (from the previous step).

Since P LpA, 2τq (as in Proposition 4.3.3), the function wN uniquely determined by

ΦNptq � ptq � �
N ptq � wNptq

satisfies

}wN}Xs1,bpr0,2τ s�T3q,
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,2τ s�T3q

¤ A.

Furthermore,

}ΦN rts � ΦKrts }C0
t H

β�κ
x pr0,2τ s�T3q ¤ AK�η1 .

Together with (4.3.18), (4.3.21), and the gluing lemma (Lemma 4.4.5), which is only needed for

the frequency-based Xs1,b-space, we obtain that

}wN}Xs1,bpr0,jτ s�T3q,
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,jτ s�T3q

¤ Cτ
1
2
�bTαABj�1. (4.3.22)

and

}ΦN rts � ΦKrts }C0
t H

β�κ
x pr0,jτ s�T3q ¤

�
2Dj�1 � C exppCpA�Bj�1 � T qCq�K�η1 . (4.3.23)

Step 2.5: Choosing Bj and Dj. Based on (4.3.22) and (4.3.23), we now define

Bj
def� Cτ

1
2
�bTαABj�1 and Dj

def� 2Dj�1 � C exppCpA�Bj�1 � T qCq.

Step 3: Finishing up. We recall that 1{2 ¤ Aτ b��b ¤ 1, J � T {τ � TA
1

b��b , B1 � A, and D1 � A.

After increasing C if necessary, we obtain that

BJ ¤ C exppCpA� T qCq ¤ B and DJ ¤ C exppCpA�BJ � T qCq ¤ D. (4.3.24)

This implies EpBJ , DJ , Jτq � EKpB,D, T q. By iterating (4.3.6) and using the base case (4.3.5),

we obtain (after decreasing ζ) that

µbMpEKpB,D, T qq ¥ µbMpEKpBJ , DJ , Jτqq ¥ 1� Tζ�1 expp�ζAζq.
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This completes the proof.

In Proposition 4.3.1, we obtained a quantitative global well-posedness result. In particular, we

obtained (almost) explicit bounds on the growth of wN , which are of independent interest. In the

proof of Theorem 4.1.3, however, a softer statement is sufficient, which we isolate in Corollary

4.3.2 below.

Corollary 4.3.2. Let T ¥ 1, let θ ¡ 0, and K ¥ 1. Then, we define a closed subset of H
�1{2�κ
x pT3q

by

SKpT, θq def�
!

P H�1{2�κ
x pT3q : sup

N1,N2¥K
}ΦN1rts � ΦN2rts }C0

t H
β�κ
x pr�T,T s�T3q ¤ θ

)
(4.3.25)

Furthermore, we define the event

S def�
£
TPN

£
θPQ¡0

¤
K¥1

SKpT, θq. (4.3.26)

Then, it holds that

lim
K,MÑ8

µbMpSKpT, θqq � 1 and µb8pSq � 1. (4.3.27)

Proof. We first prove the identity limK,MÑ8 µ
b
MpSKpT, θqq � 1. Using the time-reflection symme-

try, it suffices to prove the statement with SKpT, θq replaced by

S�
KpT, θq def�

!
P H�1{2�κ

x pT3q : sup
N1,N2¥K

}ΦN1rts � ΦN2rts }C0
t H

β�κ
x pr0,T s�T3q ¤ θ

)
.

For any fixed T,A,B,D ¥ 1 satisfying (4.3.1) and θ ¡ 0, we have for all sufficiently large K,L ¥ 1

satisfying K ¥ L that

S�
KpT, θq � ELpB,D, T q,

where ELpB,D, T q is as in Proposition 4.3.1. Thus,

lim
K,MÑ8

µbMpSKpT, θqq ¥ lim inf
MÑ8

µbMpELpB,D, T qq ¥ 1� ζ�1T exppζAζq.
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After letting AÑ 8, this yields the first identity in (4.3.27).

Using Theorem 4.1.1, we have that µbM converges weakly to µb8. Since SKpT, θq is closed, this

implies

1 � lim
K,MÑ8

µbMpSKpT, θqq ¤ lim inf
KÑ8

µb8pSKpT, θqq ¤ µb8
� ¤
K¥1

SKpT, θq
	
.

This yields the second identity in (4.3.27).

4.3.2 Invariance

In this subsection, we complete the proof of Theorem 4.1.3. The global well-posedness follows from

Corollary 4.3.2 and it remains to prove the invariance. Our argument closely resembles the proof

of invariance for the one-dimensional nonlinear Schrödinger equation by Bourgain [Bou94]. The

only difference is that we work with the expectation of test functions instead of probabilities of

sets, since they are more convenient for weakly convergent measures.

Proof of Theorem 4.1.3: The global well-posedness follows directly from Corollary 4.3.2. Thus, it

remains to prove the invariance of the Gibbs measure µb8.

Let t P R be arbitrary. In order to prove that Φ8rts#µb8 � µb8, it suffices to prove for all bounded

Lipschitz functions f : H
�1{2�κ
x pT3q Ñ R that

Eµb8
�
fpΦ8rts q� � Eµb8

�
fp q�. (4.3.28)

We first rewrite the left-hand side of (4.3.28). Using the global well-posedness and dominated

convergence, we have that

Eµb8
�
fpΦ8rts q� � lim

NÑ8
Eµb8

�
fpΦN rts q�.

Using the weak convergence of µbM to µb8 (from Theorem 4.1.1) and the continuity of ΦN rts (for a
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fixed N), we have that

lim
NÑ8

Eµb8
�
fpΦN rts q� � lim

NÑ8

�
lim
MÑ8

EµbM
�
fpΦN rts q�	.

We now turn to the right-hand side of (4.3.28). Using the weak convergence of µbM to µb8 and the

invariance of µbM under ΦM rts, we obtain that

Eµb8
�
fp q� � lim

MÑ8
EµbM

�
fp q� � lim

MÑ8
EµbM

�
fpΦM rts q�.

Combining the last three identities, we can reduce (4.3.28) to

lim sup
N,MÑ8

���EµbM �fpΦN rts q�� EµbM
�
fpΦM rts q���� � 0. (4.3.29)

We now let T ¥ 1 be such that t P r�T, T s, let θ ¡ 0, and let K ¥ 1. We also let SKpT, θq be as

in Corollary 4.3.2. Then, we have that

lim sup
N,MÑ8

���EµbM �fpΦN rts q�� EµbM
�
fpΦM rts q����

¤ sup
N,M¥K

���EµbM �fpΦN rts q�� EµbM
�
fpΦM rts q����

¤ sup
N,M¥K

EµbM
�
1
 P SKpT, θq

(���fpΦN rts q � fpΦM rts q
����

� sup
N,M¥K

EµbM
�
1
 R SKpT, θq

(���fpΦN rts q � fpΦM rts q
����

¤Lippfq � θ � 2}f}8 sup
M¥K

µbMpH�1{2�κ
x zSKpT, θqq.

In the last line, Lippfq is the Lipschitz-constant of f and }f}8 is the supremum of f . Using

Corollary 4.3.2, we obtain the estimate (4.3.29) by first letting K Ñ 8 and then letting θ Ñ 0.

4.3.3 Structure and stability theory

In this subsection, we provide the ingredients used in the proof of global well-posedness (Proposition

4.3.1). As described in the introduction, we will further split this subsection into four parts.
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4.3.3.1 Structured local well-posedness

In Proposition 4.2.10, we obtained a structured local well-posedness result in terms of and P.

In Corollary 4.2.12, we already used Proposition 4.2.10 to prove the local existence of the limiting

dynamics on the support of the Gibbs measure µb8, but did not obtain any structural information

on the solution. We now remedy this defect and obtain a structured local well-posedness result

even on the support of the Gibbs measure.

The statement of the proposition differs slightly from the earlier Proposition 4.2.10 for two rea-

sons: First, we formulate the result closer to the assumptions in the stability theory (Proposition

4.2.14 and Proposition 4.3.8), which is useful in the globalization argument. Second, using the

organization of this paper, it would be cumbersome to define the para-controlled component of

ΦNptq intrinsically through , i.e., without relying on the ambient objects.

Proposition 4.3.3 (Structured local well-posedness w.r.t. the Gibbs measure). Let A ¥ 1, let

0   τ   1, let α ¡ 0 be a sufficiently large absolute constant, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡

0 be sufficiently small. We denote by a generic element of H
�1{2�κ
x pT3q and by LpA, τq the Borel

subset of H
�1{2�κ
x pT3q defined by the following conditions:

(I) For any N ¥ 1, the solution of (4.2.1) with initial data exists on r�τ, τ s.

(II) For all N ¥ 1, there exist (a unique) wN P Xs1,bpr0, τ sq such that

ΦNptq � ptq � �
N ptq � wNptq.

Furthermore, we have the bounds

}wN}Xs1,bpr0,τ sq ¤ A and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,τ s�T3q

¤ A.
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(III) It holds for all N,K ¥ 1 that

}ΦN rts � ΦKrts }C0
t H

β�κ
x pr0,τ s�T3q ¤ AminpN,Kq�η1 .

(IV) It holds for all N,K ¥ 1 and T ¥ 1 that

}wKrτ s}Zpr0,T s, ;τ,N,Kq ¤ ATα

and

}wN rτ s � wKrτ s}Zpr0,T s, ;τ,N,Kq ¤ ATα minpN,Kq�η1 .

If Aτ b��b ¤ 1, then LpA, τq has high probability under µbM for all M ¥ 1 and it holds that

µbMpLpA, τqq ¥ 1� ζ�1 expp�ζAζq. (4.3.30)

Remark 4.3.4. Since we prove multilinear estimates for instead of in Section 4.9, a different

incarnation of this paper may omit Proposition 4.2.10 and instead proof Proposition 4.3.3 directly.

The author believes that our approach illustrates an interesting conceptual point: The singularity

of the Gibbs measure does not enter heavily into the construction of the local limiting dynamics

(see Corollary 4.2.12), but does affect the global theory. We believe, however, that this would be

different for the cubic nonlinear wave equation. The reason is an additional renormalization in the

construction of the Φ4
3-model (see e.g. [BG20b, Lemma 5: Step 3]).

We recall that the Z-norm appearing in (IV) is defined in Definition 4.2.13.

Proof of Proposition 4.3.3: By using Theorem 4.1.1 and adjusting the value of ζ, it suffices to

prove the probabilistic estimate (4.3.30) with the Gibbs measure µbM replaced by the reference

measure νbM . Using the representation of the reference measure from Theorem 4.1.1, it holds that

νbM � LawP
� � M

�
.
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By applying this identity to the Borel set LpA, τq, we obtain that

νbMpLpA, τqq � Pp � M P LpA, τqq.

Let B � cAc ¤ A, where c � cpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 is sufficiently small. Let Lamb

M pB, τq � Ω

be as in Proposition 4.2.10. We now show that

P
� � M R LpA, τq( �

Lamb
M pB, τq

	
¤ 1

2
ζ�1 expp�ζAζq. (4.3.31)

The property (i) in Proposition 4.2.10 directly implies its counterpart. The main part of the

argument lies in proving (II). Instead of (II), we currently only have the property

(ii): For all N ¥ 1, there exist w1
N P Xs1,bpr0, τ sq, H 1

N P LMpr0, τ sq, and Y 1
N P Xs2,bpr0, τ sq, such

that for all t P r0, τ s

ΦNptq � ptq � �
N ptq � w1

Nptq and w1
Nptq � P¤N I

�
PCtrlpH 1

N , P¤N q�ptq � Y 1
Nptq.

Furthermore, we have the bounds

}w1
N}Xs1,bpr0,τ sq, }H 1

N}LMpr0,τ sq, }Y 1
N}Xs2,bpr0,τ sq ¤ B and¸

L1�L2

}PL1 � PL2w
1
N}L2

tH
�4δ1
x pr0,τ s�T3q

¤ B.

Comparing (ii) and (II), this forces us to take

wN � � � �
N � �

N � w1
N . (4.3.32)

We now have to prove that the right-hand side of (4.3.32) satisfies the estimates in (II). Due to

the decomposition � � M , we have that

� � � .
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Using Theorem 4.1.1, we have outside a set of probability À expp�cB 2
k q under P that�� ��

Xs2,bpr0,τ sq
À B.

Using Proposition 4.9.1, we have outside an event with probability ¤ ζ�1 expp�ζBζq under P that

�
N � �

N � IrPCtrlpHp3q
N , P¤N qs � Y

p3q
N , (4.3.33)

where H
p3q
N P LMpr0, τ sq and Y

p3q
N P Xs2,bpr0, τ sq satisfy

}Hp3q
N }LMpr0,τ sq ¤ B and }Y p3q

N }Xs2,bpr0,τ sq ¤ B.

To ease the reader’s mind, we mention that the proof of Proposition 4.9.1 is based on the algebraic

identity

�
N � �

N � 2
�

N � �
N � �

N � 2
�

N � �
N ,

which uses mixed cubic stochastic objects. Finally, we have that

w1
N � P¤N I

�
PCtrlpH 1

N , P¤N q�� Y 1
N

� P¤N I
�

PCtrlpH 1
N , P¤N q�� P¤N I

�
PCtrlpH 1

N , P¤N q�� Y 1
N .

Using the inhomogeneous Strichartz estimate (Lemma 4.4.9) and Lemma 4.7.3, we have that

}P¤N I
�

PCtrlpH 1
N , P¤N q�}Xs2,bpr0,τ sq À }PCtrlpH 1

N , P¤N q}
L8t H

s2�1
x pr0,τ s�T3q

À }H 1
N}LMpr0,τ sq} }

L8t H
s2�1�8ε
x pr0,τ s�T3q

À B2.

Thus,

wN � P¤N I
�

PCtrlpHN , P¤N q�� YN , (4.3.34)

where

HN � H 1
N �H

p3q
N and YN � Y 1

N � � Y
p3q
N � P¤N I

�
PCtrlpH 1

N , P¤N q�
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satisfy }HN}LMpr0,τ sq, }YN}Xs2,bpr0,τ sq À B2. Using Lemma 4.9.8, we also obtain that

}wN}Xs1,bpr0,τ sq À B5 and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pr0,τ s�T3q

À B5.

Inserting our choice of B, this completes the proof of (II).

The statement (III) directly follows from (iii) in Proposition 4.2.10. It now remains to prove

(IV). We emphasize that T ¥ 1 is arbitrary, which will be useful in the stability theory below.

We focus on the estimate for the difference, since the proof of the estimate for wKrτ s is easier

(but similar). Using Lemma 4.9.9, we may restrict to P Θsp
bluepB, T q and P Θsp

redpB, T q. Then,

we can replace the estimates in Zpr0, T s, ; t0, N,Kq by estimates in Zpr0, T s, ; t0, N,Kq. After

rearranging (4.3.34), we have that

wN � P¤N I
�

PCtrlpH 1
N �H

p3q
N , P¤N q�� Y 1

N � � Y
p3q
N � P¤N I

�
PCtrlpHp3q

N , P¤N q�.
Thus, we obtain that

wN rτ s � wKrτ s � Z�
N,Krτ s � Z�N,Krτ s,

where

Z�
N,Krτ s def� P¤N I

�
PCtrlpH 1

N �H
p3q
N , P¤N q�rτ s � P¤K I

�
PCtrlpH 1

K �H
p3q
K , P¤K q�rτ s.

and

Z�N,Krτ s def� Y 1
N � Y 1

K � Y
p3q
N � Y

p3q
K � P¤N I

�
PCtrlpHp3q

N , P¤N q�� P¤K I
�

PCtrlpHp3q
K , P¤K q�.

The desired estimate then follows from the frequency-localized version of the multi-linear master

estimate (Prop 4.2.8), (iii) in Proposition 4.2.10, and Proposition 4.9.1.
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4.3.3.2 Structure and time-translation

In the globalization argument, we use the invariance of the truncated Gibbs measures under the

truncated flows to transform our bounds from the time-interval r0, pj � 1qτ s to the time-interval

rτ, jτ s. As the reader saw in the proof of Proposition 4.3.1, however, the structural bounds are

now phrased in terms of � ΦM rτ s . The next proposition translates the structural bounds back

into .

Proposition 4.3.5 (Structure and time-translation). Let A ¥ 1, let T ¥ 1, let 0   τ ¤ 1,

let j P N satisfy jτ ¤ T , let α ¡ 0 be a sufficiently large absolute constant, and let ζ �
ζpε, s1, s2, κ, η, η

1, b�, bq ¡ 0 be sufficiently small. There exists a Borel set StimepA, T, τq � LpA, τq
satisfying

µbMpStimepA, T, τqq ¥ 1� ζ�1 expp�ζAζq (4.3.35)

for all M ¥ 1 and such that the following holds for all P StimepA, T, τq:

Let N,K ¥ 1, let B ¥ 1, and define � ΦKrτ s . Let wgrn
N,K P Xs1,bpr0, pj � 1qτ sq satisfy

(A1) Global structured bounds in :

}wgrn
N,K}Xs1,bpr0,pj�1qτ sq ¤ B and

¸
L1�L2

}PL1 � PL2w
grn
N,K}L2

tH
�4δ1
x pr0,pj�1qτ s�T3q

¤ B.

Define wN,K : rτ, jτ s � T3 Ñ R through the identity

pt� τq � �
N pt� τq � wgrn

N,Kpt� τq � ptq � �
N ptq � �

NzK
τ
ptq � wN,Kptq. (4.3.36)

Then, we obtain the following conclusion regarding wN,K .

(C1) Incomplete structured global bounds in :

}wN,K}Xs1,bprτ,jτ sq ¤ TαAB and
¸

L1�L2

}PL1 � PL2wN,K}L2
tH

�4δ1
x prτ,jτ s�T3q

¤ TαAB.
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Remark 4.3.6. The superscript “grn” in wgrn
N,K stands for “green”, which is motivated by the

identity (4.3.36). We refer in the conclusion to “incomplete structured global bounds” since the

right-hand side in (4.3.36) does not yet have the desired form. The partial cubic stochastic object

�
NzK
τ

is subtracted from it and hence we regard the structure as incomplete.

Proof. Before we turn to the analytical and probabilistic estimates, we discuss the definition and

Borel measurability of StimepA, T, τq. We let StimepA, T, τq be the intersection of LpA, τq with the

set of P H
�1{2�κ
x satisfying the implication (A1)Ñ(C1) for all N,K,B, and wgrn

N,K . For fixed

parameters and a fixed function wgrn
N,K , the set of P H

�1{2�κ
x satisfying (A1) and/or (C1) is closed

and hence Borel measurable. Using a separability argument, it suffices to require the implication

(A1)Ñ(C1) for countably many wgrn
N,K , which yields the measurability of StimepA, T, τq.

We now turn to the analytical and probabilistic estimates. If P LpA, τq, it follows from (II) and

(IV) from Proposition 4.3.3 that

� rτ s � �
K rτ s � ZKrτ s,

where the remainder ZKrτ s satisfies

}ZKrτ s}Zpr0,T s, ;τ,N,Kq ¤ ATα.

By applying the linear propagator to , we obtain for all t ¥ τ that

pt� τq � ptq � �
K

τ
ptq � ZKptq, (4.3.37)

where we recall from (4.3.4) that

�
K

τ
ptq � I

�
1r0,τ s � K

�
ptq
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Regarding the cubic stochastic object, we have that

�
N pt� τq � I

�
1rτ,8q � N

p� � τq
�
ptq

� I
�
1rτ,8q � N

�
ptq � I

�
1rτ,8q

�
�

N
p� � τq � �

N
p�q
	�
ptq

(4.3.38)

Combining the algebraic identity

I
�
1r0,τ s � K

�
ptq � I

�
1rτ,8q � N

�
ptq � �

N ptq � �
NzK
τ
ptq

with (4.3.37) and (4.3.38), it follows that

wN,Kptq � wgrn
N,Kptq � ZKptq � I

�
1rτ,8q

�
�

N
p� � τq � �

N
p�q
	�
ptq. (4.3.39)

Equipped with the identity (4.3.39) for wN,K , it remains to prove the conclusion (C1) on an event

satisfying (4.3.35). The second and third summand in (4.3.39) can be treated using Lemma 4.9.8,

Proposition 4.9.12 (combined with (4.3.37)), and Lemma 4.9.13. Thus, it remains to prove (C1)

for the first summand in (4.3.39). Using (4.3.37), we have that¸
L1�L2

}PL1 ptq � PL2w
grn
N,Kpt� τq}

L2
tH

�4δ1
x prτ,jτ s�T3q

¤
¸

L1�L2

}PL1 ptq � PL2w
grn
N,Kptq}L2

tH
�4δ1
x pr0,pj�1qτ s�T3q

(4.3.40)

�
¸

L1�L2

}PL1

�
K

τ
ptq � PL2w

grn
N,Kpt� τq}

L2
tH

�4δ1
x prτ,jτ s�T3q

(4.3.41)

�
¸

L1�L2

}PL1ZKptq � PL2w
grn
N,Kpt� τq}

L2
tH

�4δ1
x prτ,jτ s�T3q

. (4.3.42)

The first term (4.3.40) can be bounded using assumption (A1). The second term (4.3.41) is

bounded by Corollary 4.9.3, and the third term (4.3.42) is bounded by Lemma 4.8.8.

4.3.3.3 Structure and the cubic stochastic object

In Proposition 4.3.5 above, the right-hand side of (4.3.36) does not have the desired structure. In

the next proposition, we will show that adding the “partial” cubic stochastic object
�

NzK
τ

only
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leads to a small error in the nonlinear wave equation.

Proposition 4.3.7 (Structure and the cubic stochastic object:). Let T ¥ 1, let A ¥ 1, let 0  
τ   1, let α ¡ 0 be a sufficiently large absolute constant, and let ζ � ζpε, s1, s2, κ, η, η

1, b�, bq ¡ 0

be sufficiently small. Then, there exists a Borel set ScubpA, T, τq � H
�1{2�κ
x pT3q satisfying

µbMpScubpA, T, τqq ¥ 1� ζ�1 expp�ζAζq

for all M ¥ 1 and such that the following holds for all P ScubpA, T, τq:
Let N,K ¥ 1, let B ¥ 1, let j P N, let J � rτ, jτ s � r0, T s, and let uN,K : J � T3 Ñ R.

Furthermore, we make the following assumptions:

(A1) Incomplete structure: There exists a wN,Kptq P Xs1,bpJ q satisfying all t P J the identity

uN,Kptq � ptq � �
N ptq � �

NzK
τ
ptq � wN,Kptq.

(A2) Incomplete structured global bounds:

}wN,K}Xs1,bpJ q ¤ B and
¸

L1�L2

}PL1 � PL2wN,K}L2
tH

�4δ1
x pJ�T3q

¤ B.

We define a function ruN : J � T3 Ñ R by

ruNptq � uN,Kptq � �
NzK
τ
ptq.

Then, ruN satisfies the following three properties.

(C1) Structure: For all t P J , it holds that

ruNptq � ptq � �
N ptq � rwNptq,

where rwN � wN,K .
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(C2) Approximate solution: There exist HN P LMpJ q and FN P Xs2�1,b��1pJ q satisfying

p�B2
t � 1�∆qruN � P¤N :

�
V � pP¤NruNq2�P¤NruN :

� p�B2
t � 1�∆quN,K � P¤N :

�
V � pP¤NuN,Kq2

�
P¤NuN,K :

� P¤N PCtrlpHN , P¤N q � FN

and

}HN}LMpJ q, }FN}Xs2�1,b��1pJ q   TαAB3 minpN,Kq�η1 .

(C3) Closeness: It holds that

}ruN rts � uN,Krts}C0
t H

β�κ
x pJ�T3q   TαAB3 minpN,Kq�η1 .

Proof. We simply choose ScubpA, T, τq as the set of all P H
�1{2�κ
x where the implication (A1),(A2)

Ñ(C1),(C2),(C3) holds for all N,K,B, j, and wN,K . Similar as in the proof of Proposition 4.3.5,

a separability argument yields the Borel measurability of ScubpA, T, τq.
We now show that ScubpA, T, τq satisfies the desired probabilistic estimate. The first conclusion

(C1) follows directly from the definition of ruN . We now turn to the second conclusion, which is

the main part of the argument. First, we recall that
�

NzK
τ

solves the linear wave equation on

J � rτ, jτ s. Together with the definition of ruN , this implies

p�B2
t � 1�∆qruN � P¤N :

�
V � pP¤NruNq2�P¤NruN :

�
�
p�B2

t � 1�∆quN,K � P¤N :
�
V � pP¤NuN,Kq2

�
P¤NuN,K :

	
� P¤N :

�
V �

�
P¤NuN,K � P¤N

�
NzK
τ

	2	
P¤N

�
uN,K � �

NzK
τ

	
:

� P¤N :
�
V � pP¤NuN,Kq2

�
P¤NuN,K : .
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We emphasize that in the cubic stochastic object
�

NzK
τ

, the linear evolution enters at a frequency

Á minpN,Kq in at least one of the arguments. Using the frequency-localized version of the multi-

linear master estimate for Gibbsian initial data (Proposition 4.9.12), we obtain the conclusion

(C2).

Finally, (C3) directly follows from the frequency-localized version of Proposition 4.9.1.

4.3.3.4 Stability theory

The last ingredient for the globalization argument is a stability estimate. The proof will rely on

our previous stability estimate for Gaussian random data from Proposition 4.2.14. As a result, the

argument closely resembles a similar step in the local theory, where we proved Proposition 4.3.3

through Proposition 4.2.10.

Proposition 4.3.8 (Stability estimate). Let T ¥ 1, let A ¥ 1, let 0   τ ¤ 1, and let ζ �
ζpε, s1, s2, κ, η, η

1, b�, bq ¡ 0 be sufficiently small. There exists a constant C � Cpε, s1, s2, b�, b�q
and a Borel set SstabpA, T, τq � H

�1{2�κ
x pT3q satisfying

µbMp P Sstab
blue pA, T, τqq ¥ 1� ζ�1 expp�ζAζq (4.3.43)

such that the following holds for all P SstabpA, T, τq:
Let N ¥ 1, B ¥ 1, 0   θ   1, and let J � rt0, t1s � r0, T s, where t0, t1 P τZ. Let ruN : J �T3 Ñ R

be an approximate solution of (4.2.1) satisfying the following assumptions.

(A1) Structure: We have the decomposition

ruN � � �
N � rwN .

(A2) Global bounds: It holds that

} rwN}Xs1,bpJ q ¤ B and
¸

L1�L2

}PL1 � PL2 rwN}L2
tH

�4δ1
x pJ�T3q

¤ B.
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(A3) Approximate solution: There exists HN P LMpJ q and FN P Xs2�1,b��1pJ q satisfying the

identity

p�B2
t � 1�∆qruN � P¤N :

�
V � pP¤NruNq2�P¤NruN : �P¤N PCtrlpHN , P¤N q � FN

and the estimates

}HN}LMpJ q   θ and }FN}Xs2�1,b��1pJ q   θ.

Furthermore, let ZN rt0s P Hs1
x pT3q be a perturbation satisfying the following assumption.

(A4) Structured perturbation: There exists a K ¥ 1 such that

}Zrt0s}ZpJ , ;t0,N,Kq ¤ θ.

Finally, assume that

(A5) Parameter condition: C exp
�
CpA�B � T qC

	
θ ¤ 1.

Then, there exists a solution uN : J � T3 Ñ R of (4.2.1) satisfying the initial value condition

uN rt0s � ruN rt0s � ZN rt0s and the following conclusions.

(C1) Preserved structure: We have the decomposition

uN � � �
N � wN .

(C2) Closeness: The difference uN � ruN � wN � rwN satisfies

}uN � ruN}Xs1,bpJ q ¤ C exp
�
CpA�B � T qC�θ,¸

L1�L2

}PL1 � PL2puN � ruNq}L2
tH

�4δ1
x pJ�T3q

¤ C exp
�
CpA�B � T qC�θ.
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(C3) Preserved global bounds: It holds that

}wN}Xs1,bpJ q ¤ Bθ and
¸

L1�L2

}PL1 � PL2wN}L2
tH

�4δ1
x pJ�T3q

¤ Bθ,

where Bθ
def� B � C exp

�
CpA�B � T qC�θ.

Proof. Similar as in the proof of Proposition 4.3.7, we can define SstabpA, T, τq through the impli-

cations (A1)-(A5) Ñ (C1)-(C3) and prove its measurability using a separability argument.

It remains to prove the probabilistic estimate (4.3.43). Using Theorem 4.1.1, it suffices to prove

that

P
� � M P SstabpA, T, τq� ¥ 1� ζ�1 exppζAζq.

Using Lemma 4.2.6, Corollary 4.9.3, Proposition 4.2.14, Lemma 4.2.6, and Lemma 4.9.9, which

also contain the definitions of the sites below, we may restrict to the event!
P Θtype

bluepA, T q
�

Θstab
bluepA, T q

�
Θcub

bluepA, T q
�

Θsp
bluepA, T q

)
� !

M P Θtype
red pA, T q

�
Θsp

redpA, T q
)
.

(4.3.44)

Our goal is to use Proposition 4.2.14 (with slightly adjusted parameters). To this end, we need to

convert the assumptions (A1)-(A5) involving into similar statements based on . We let D ¡ 0

be a large implicit (but absolute) constant, which may change its value between different lines. We

now let N,B, θ,J , ruN , rwN , HN , FN , and ZN rt0s be as in (A1)-(A5). We then define wN r Ñ s by

� �
N � � �

N � wN r Ñ s,

which implies ruN � � �
N � wN r Ñ s � rwN .
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Using Corollary 4.9.3 and Lemma 4.9.7, we obtain that

} rwN}Xs1,bpJ q ¤ B and
¸

L1�L2

}PL1 � PL2 rwN}L2
tH

�4δ1
x pJ�T3q

¤ TαADB

as well as

}wN r Ñ s}Xs1,bpJ q ¤ TαAD and
¸

L1�L2

}PL1 � PL2wN r Ñ s}
L2
tH

�4δ1
x pJ�T3q

¤ TαAD.

Thus, (A2) in Proposition 4.2.14 is satisfied with B1 � 2TαADB. A similar argument based on

Lemma 4.9.7 and Lemma 4.9.9 also yields (A3) and (A4) in Proposition 4.2.14 with θ1 � 2TαADB.

Furthermore, the stronger assumption (A5) in this proposition implies (as long as C is sufficiently

large) that

C exp
�
CpA�B1q 2

b��bT
40

b��b

	
θ1 ¤ 1.

Thus, Proposition 4.2.14 implies that

}uN � ruN}Xs1,bpJ q ¤ C exp
�
CpA�B1q 2

b��bT
40

b��b
�
θ1,¸

L1�L2

}PL1 � PL2puN � ruNq}L2
tH

�4δ1
x pJ�T3q

¤ C exp
�
CpA�B1q 2

b��bT
40

b��b
�
θ1.

Arguing similarly as above to replace by , this proves the conclusion (C2). The conclusion (C3)

then follows from the triangle inequality and assumption (A2).

4.4 Ingredients, tools, and methods

In this section we provide tools that will be used throughout the rest of this paper. In order to

make this section accessible to readers with a primary background in either dispersive or stochastic

partial differential equations, our exposition will be detailed. We encourage the reader to skip

sections covering areas of his or her expertise.
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In Section 4.4.1, we cover Xs,b-spaces, which are also called Bourgain spaces. The Xs,b-spaces

will allow us to utilize multi-linear dispersive effects. In Section 4.4.2, we present a continuity

argument. In Section 4.4.3, we prove an oscillatory sum estimate for a series involving the sine-

function. While the proof is standard, its relevance to dispersive equations is surprising and the

cancellation was first used by Gubinelli, Koch, and Oh in [GKO18a]. In Section 4.4.4, we state

several counting estimates related to the dispersive symbol of the wave equation. The counting

estimate play an important role in the estimates of our stochastic objects. In Section 4.4.5, we

recall elementary properties of Gaussian processes, which have been heavily used in the first part of

the series [Bri20c]. In Section 4.4.6, we provide background regarding multiple stochastic integrals.

This section has an algebraic flavor and the multiple stochastic integrals will be used to separate

the non-resonant and resonant components of our stochastic object. In Section 4.4.7, we discuss

Gaussian hypercontractivity and its implications for random matrices.

4.4.1 Bourgain spaces and transference principles

In this subsection, we recall the definitions and elementary properties of Xs,b-spaces, which are

often also called Bourgain spaces. Heuristically, Xs,b-spaces contain space-time functions u which

behave like solutions to the linear wave equation. This principle will be made more precise through

the transference principles below. We refer the reader to [Tao06a, Section 2.6] and [ET16, Section

3.3] for a more detailed introduction.

Definition 4.4.1 (Xs,b-spaces). For any s, b P R and u : R� T3 Ñ R, we define the Xs,b-norm by

}u}Xs,b def� }xnysx|λ| � xnyybpupλ, nq}L2
λ`

2
npR�Z3q. (4.4.1)

If J � R is any interval, we define the restricted norm by

}u}Xs,bpJ q def� inft}v}Xs,b : vpt, xq|J � uu. (4.4.2)
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We denote the corresponding function spaces by Xs,b and Xs,bpJ q, respectively.

In (4.4.1), we could have used the symbol x|λ| � |n|y instead of x|λ| � xnyy. Since xny � |n| �Op1q,
this would yield an equivalent definition. Our first lemma shows the connection between the

Xs,b-spaces and the half-wave operators.

Lemma 4.4.2 (Characterization of Xs,b). Let s, b P R and let u : R�T3 Ñ R. Then, it holds that

}u}Xs,bpRq À min
�
}x∇ys expp	itx∇yqu}L2

xH
b
t pT3�Rq. (4.4.3)

Furthermore, we have the equivalence

}u}Xs,bpRq � min
u�,u�PXs,bpRq :

u�u��u�

max
�

}x∇ys expp	itx∇yqu�}L2
xH

b
t pT3�Rq. (4.4.4)

Proof. Using Plancherel’s identity, it holds that

}x∇ys expp	itx∇yqu}L2
xH

b
t pT3�Rq � }xnysx�λ� xnyybpupλ, nq}L2

λ`
2
npR�Z3q.

The first estimate (4.4.3) then follows from ||λ| � xny| ¤ | � λ � xny|. The inequality “À” in the

identity (4.4.4) follows from the triangle inequality and (4.4.3). The inequality “Á” follows by

defining u� as pupλ, nq � 1
 � λ ¥ 0

( � pupλ, nq.

Our next lemma plays an important role in the local theory. It yields the required smallness of

the nonlinearity on a small time-interval.

Lemma 4.4.3 (Time-localization lemma). Let �1{2   b1 ¤ b2   1{2 and let 1{2   b   1. Let

ψ P SpRq be a Schwartz-function and let 0   τ ¤ 1. Then, it holds for all F P Xs,b2pRq that��ψpt{τqF ��
Xs,b1 pRq À τ b2�b1}F }Xs,b2 pRq and }F }Xs,b1 pr0,τ sq À τ b2�b1}F }Xs,b2 pr0,τ sq. (4.4.5)
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Furthermore, we have for all u P Xs,bpRq that

}ψpt{τqu}Xs,bpRq À τ
1
2
�b}u}Xs,bpRq. (4.4.6)

A proof of Lemma 4.4.3 or a similar result can be found in many textbooks on dispersive PDE,

such as [Tao06a, Section 2.6] or [ET16, Section 3.3]. Since the second estimate (4.4.6) is not usually

found in the literature, we present a self-contained proof.

Proof. By using duality and a composition, we may assume that 0 ¤ b1 ¤ b2   1{2. Let F�, F� P
Xs,b2pRq satisfying F � F� � F�. Using Lemma 4.4.2, we obtain that

}ψpt{τqF }Xs,b1 pRq À max
�

}ψpt{τqx∇ys expp	itx∇yqF�}L2
xH

b1
t pT3�Rq. (4.4.7)

Using interpolation between the b1 � 0 and b1 � b2 as well as the fractional product rule (or a

simple para-product estimate), one has for all f P Hb2
t pRq the estimate

}ψpt{τqf}
H
b1
t pRq À τ b2�b1}f}

H
b2
t pRq. (4.4.8)

Combining (4.4.7) and (4.4.8) yields the first estimate in (4.4.5). The second estimate in (4.4.7)

then follows from the first estimate and the definition of the restricted norms. Finally, the second

estimate (4.4.8) follows from the same argument, except that (4.4.8) is replaced by

}ψpt{τqf}Hb
t pRq À }ψpt{τq}Hb

t pRq}f}Hb
t pRq À τ

1
2
�b}f}Hb

t pRq, (4.4.9)

which follows from the algebra property of Hb
t pRq.

Lemma 4.4.4 (Restricted norms and continuity). Let s P R and let �1{2   b1   1{2. Then, we

have for any interval J � R and any F P Xs,b1pRq that

}1JF }Xs,b1 pRq À }F }Xs,b1 pRq. (4.4.10)
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Furthermore, if G P Xs,b1pJ q, then

}G}Xs,b1 pJ q � }1JG}Xs,b1 pRq (4.4.11)

Finally, if t0
def� inf J , then the map

t P J ÞÑ }1rt0,tsG}Xs,b1 pRq (4.4.12)

is continuous.

Proof. We begin with the proof of (4.4.10). By using a similar reduction as in the proof of Lemma

4.4.3, it suffices to prove that

}1J gptq}Hb1t pRq À }gptq}
Hb

1
t pRq

. (4.4.13)

By writing 1J as a superposition of different indicator functions, it suffices to prove the estimate

for p�8, aq and pa,8q, where a P R, instead of J . Using the time-reflection and time-translation

symmetry of Hb1

t pRq, it suffices to prove the estimate for J replaced by p0,8q. Thus, it remains

to prove

}1p0,8qgptq}Hb1t pRq À }gptq}
Hb

1
t pRq

. (4.4.14)

This follows from (a modification of) the fractional product rule or a simple paraproduct estimate.

We now turn to the proof of (4.4.11). By the definition of the restricted norms, we clearly have the

upper-bound }G}Xs,b1 pJ q À }1JG}Xs,b1 pRq. Now, let rG P Xs,bpRq satisfies rG|J � G. Using (4.4.10),

we obtain that

}1JG}Xs,b1 pRq � }1J rG}Xs,b1 pRq À } rG}Xs,b1 pRq.
After taking the infimum in rG, this yields the other lower-bound in (4.4.11).

Finally, we prove the continuity of (4.4.12). By a density argument, it suffices to take G P Xs,1{2pRq.
For any 0   δ   1{2� b and any t1, t2 P J , we obtain from Lemma 4.4.3 that��}1rt0,t1sG}Xs,b1 pRq � }1rt0,t2sG}Xs,b1 pRq

�� ¤ }1pt1,t2sG}Xs,b1 pRq À |t1 � t2|δ}G}Xs,1{2pRq.
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This implies the Hölder-continuity.

The next gluing lemma will be used to combine Xs,b-bounds on different intervals. While such a

result is trivial for purely physical function spaces, such as LqtL
p
x, it is slightly more complicated

for the Xs,b-spaces, since they rely on the time-frequency variable.

Lemma 4.4.5 (Gluing lemma). Let s P R, let �1{2   b1   1{2, let 1{2   b   1, and let J ,J1,J2

be bounded intervals satisfying J1
�
J2 �� H. Then, we have for all F : pJ1

�
J2q � T3 Ñ R that

}F }Xs,b1 pJ1

�
J2q

À }F }Xs,b1 pJ1q
� }F }Xs,b1 pJ2q

. (4.4.15)

Furthermore, let τ
def� |J1

�
J2|. Then, it holds for all u : pJ1

�
J2q � T3 Ñ R that

}u}Xs,bpJ1

�
J2q À τ

1
2
�b
�}u}Xs,bpJ1q � }u}Xs,bpJ2q

�
. (4.4.16)

Proof. We begin with the proof of (4.4.15). Using Lemma 4.4.4, we have that

}F }Xs,b1 pJ1

�
J2q

À }1J1

�
J2
F }Xs,b1 pRq

À }1J1F }Xs,b1 pRq � }1J2zJ1F }Xs,b1 pRq
À }F }Xs,b1 pJ1q

� }F }Xs,b1 pJ2zJ1q

À }F }Xs,b1 pJ1q
� }F }Xs,b1 pJ2q

.

The proof of the second estimate (4.4.16) is similar. Instead of working with an actual indicator

function, we use a smooth cut-off function on the spatial scale � τ and a variant of (4.4.9) instead

of (4.4.14).

Our last two lemmas where concerned with the behavior of Xs,b-spaces over small or overlapping

time-intervals. In this respect, the Xs,b-spaces are more complicated than purely physical function

spaces. We now turn to transference principles, which do not have a direct analog in purely physical

function spaces.
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Lemma 4.4.6 (Linear transference principle (cf. [Tao06a, Lemma 2.9])). Let b ¡ 1{2, let s P R,

and assume that the norm } � }Y satisfies

}eiαte�itx∇yu0}Y ¤ C}u0}Hs
x

(4.4.17)

for all α P R and all u0 P Hs
x. Then, it holds for all u P Xs,b that

}u}Y À C}u}Xs,b . (4.4.18)

The linear transference principle allows us to reduce linear estimates for functions in Xs,b-spaces

to estimates for the half-wave operators.

Corollary 4.4.7. For any b ¡ 1{2, s P R, any 4 ¤ p ¤ 8, any compact interval J � R, and any

u : J � T3 Ñ C, we have that

}urts}C0
t H

s
xpJ�T3q À }u}Xs,bpJq, (4.4.19)

}x∇ys� 4
p
� 3

2uptq}LptLpxpJ�T3q À p1� |J |q1{p}u}Xs,bpJq, (4.4.20)

}x∇ys�1�uptq}L2
tL

8
x pJ�T3q À p1� |J |q1{2}u}Xs,bpJq. (4.4.21)

The corollary follows directly from the linear transference principle (Lemma 4.4.6) and the Strichartz

estimates for the linear wave equation.

The next lemma is the most basic ingredient for any contraction argument based on Xs,b-spaces.

Lemma 4.4.8 (Energy-estimate (cf. [Tao06a, Lemma 2.12] and [ET16, Lemma 3.2])). Let 1{2  
b   1, let s P R, let J � R be a compact interval, let t0 P J , and let

p�B2
t � 1�∆qu � F. (4.4.22)

Then, it holds that

}u}Xs,bpJ q À
�
1� |J |�2�}urt0s}Hs

x
� }F }Xs�1,b�1pJ q

�
. (4.4.23)
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The statement of Lemma 4.4.8 in [ET16, Tao06a] only includes intervals of size � 1. The more

general version follows by using the triangle inequality, iterating the bound on unit intervals, and

(4.4.19). The square in the pre-factor can likely be improved but is inessential in our argument,

since the stability theory already loses exponential factors in the final time T .

The most important terms in the nonlinearity can only be estimated through multi-linear disper-

sive effects and hence require a direct analysis of the Xs�1,b�1-norm. However, several more minor

terms can be estimated more easily through physical methods. In order to pass back from the

frequency-based Xs�1,b�1-space into purely physical spaces, we provide the following inhomoge-

neous Strichartz estimate.

Lemma 4.4.9 (Inhomogeneous Strichartz estimate in Xs,b-spaces). Let 1{2   b   1, let s P R, let

J � R be a compact interval, and let F : J � T3 Ñ R. Then, we have the two estimates

}F }Xs�1,b�1pJ q À }F }L2b
t H

s�1
x pJ�T3q, (4.4.24)

}F }Xs�1,b�1pJ q À p1� |J |q}x∇ys� 1
2
� 2b�1

b
sF }

L
4{3
t L

4{3
x pJ�T3q

. (4.4.25)

Remark 4.4.10. For 0 ¤ s ¤ 1, we will often simplify the right-hand side of (4.4.24) by using

that
2b� 1

b
s ¤ 4pb� 1{2q.

Proof. We first prove (4.4.24). Using (4.4.19) and duality, we have that

}F }Xs�1,�bpJ q À }F }L1
tH

s�1
x pJ�T3q.

By Plancherel, we also have that

}F }Xs�1,0pJ q À }F }L2
tH

s�1
x pJ�T3q.

Using interpolation, this implies (4.4.24). The proof of the second estimate (4.4.25) is similar and

relies on duality, (4.4.20), Plancherel, and interpolation.
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When utilizing multilinear dispersive effects, we will often use the following lemma to estimate the

Xs�1,b��1-norm.

Lemma 4.4.11. Let s P R and let T ¥ 1. Let A be a finite index set and let pnαqαPA � Z3,

pθαqαPA � R, and pcαqαPA � C. Define

F pt, xq def�
¸
αPA

cα exppixnα, xy � itθαq. (4.4.26)

Then, it holds that

}F }Xs�1,b��1pr0,T sq

À T max
�

���xλyb��1xnys�1
¸
αPA

1
 
n � nα

(
cαpχ�T pλ	 xny � θαq

����
L2
λ`

2
npR�Z3q

.
(4.4.27)

Proof. For any G : R� T3 Ñ C, we have that

}G}Xs�1,b��1pRq � }x|λ| � xnyyb��1xnys�1 pGpλ, nq}L2
λ`

2
npR�Z3q

À max
�

}xλ� xnyyb��1xnys�1 pGpλ, nq}L2
λ`

2
npR�Z3q

� max
�

}xλyb��1xnys�1 pGpλ	 xny, nq}L2
λ`

2
npR�Z3q.

We then apply this inequality to Gpt, xq � χpt{T qF pt, xq.

Finally, we present an estimate for the Fourier-transform of a (localized) time-integral.

Lemma 4.4.12. Let T ¥ 1 and let λ, λ1, λ2 P R. Then, it holds that���Ft

�
χpt{T q exppiλ1tq

» t

0

exp
�
iλ2t

1qdt1
	
pλq

��� À T 2
�
xλ� λ1 � λ2y�10 � xλ� λ1y�10

	
xλ2y�1. (4.4.28)

Furthermore, if J � r0, T s is an interval, then���Ft

�
χpt{T q exppiλ1tq

» t

0

1J pt1q exp
�
iλ2t

1qdt1
	
pλq

���
À T 2

�
xλ� λ1 � λ2y�1 � xλ� λ1y�1

	
xλ2y�1.

(4.4.29)
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Proof. We first prove (4.4.28). A direct calculation yields

Ft

�
χpt{T q exppiλ1tq

» t

0

exp
�
iλ2t

1qdt1
	
pλq � T

iλ2

�pχ�T pλ� λ1 � λ2q
�� pχ�T pλ� λ1q

�	
. (4.4.30)

For |λ2| Á 1, the estimate follows from the decay of pχ. For |λ2| À 1, the estimate follows from

the fundamental theorem of calculus and the decay of pχ1. We also used T ¥ 1, which implies that

xT �y�10 À x�y�10.

We now turn to (4.4.29). Since the restriction to J only appears in the integral, we can replace

J by its closure. We now let J � rt�, t�s � r0, T s. By integrating the exponential, we have that» t

0

1J pt1q exp
�
iλ2t

1qdt1 � 1

iλ2

�
exppiλ2pt^ t�qq � exppiλ2pt^ t�qq

�
,

where x^ y denotes the minimum of x and y. This implies

Ft

�
χpt{T q exppiλ1tq

» t

0

1J pt1q exp
�
iλ2t

1qdt1
	
pλq

� 1

iλ2

»
R
χpt{T q exppipλ� λ1qtq

�
exppiλ2pt^ t�qq � exppiλ2pt^ t�qq

�
dt.

The estimate then follows by distinguishing the cases |λ1| À 1, |λ1| " 1 Á |λ2|, and |λ1|, |λ2| " 1,

together with the triangle inequality and a simple integration by parts.

4.4.2 Continuity argument

In this short subsection, we present a modification of the standard continuity argument. The

modification is a result of the possibile discontinuity of t P r0, T s ÞÑ }u}Xs,bpr0,tsq, where u P
Xs,bpr0, T sq and b ¡ 1{2. As a replacement, we will rely on the continuity statement in Lemma

4.4.4. A different approach to this problem was obtained in [Tao01, Theorem 3], which yields the

quasi-continuity, and may even yield the continuity (see the discussion in [Tao01, Section 12]).
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Lemma 4.4.13 (Continuity argument). Let J � rt0, t1q, let f : J Ñ r0,8q be a nonnegative

function, and let g : J Ñ r0,8q be a continuous, nonnegative function. Let A ¥ 1, 0   θ, δ   1,

and assume that

fptq ¤ gptq ¤ gpt0q � δpA2 � fptq2qpfptq � θq (4.4.31)

for all t P rt0, t1q. Furthermore, assume that

gpt0q � δ2Aθ ¤ 1 and δpA2 � 6q ¤ 1{4. (4.4.32)

Then, it holds that

fptq ¤ gptq ¤ 2pgpt0q � δA2θq

for all t P rt0, t1q.

Proof. The estimate (4.4.31) implies that

gptq ¤ gpt0q � δpA2 � gptq2qpgptq � θq

for all t P rt0, t1q. Using the condition (4.4.32), we also have that

gpt0q � δpA2 � 4pgpt0q � δA2θq2qpgpt0q � δA2θ � θq ¤ 3

2
pgpt0q � δA2θq.

Using the standard continuity method (see e.g. [Tao06a, Section 1.3]), this implies

gptq ¤ 2pgpt0q � δA2θq

for all t P rt0, t1q.

4.4.3 Sine-cancellation lemma

In this subsection, we prove an oscillatory sum estimate which critically relies on the fact that the

sine-function is odd. The same cancellation was exploited in earlier work of Gubinelli-Koch-Oh

[GKO18a, Section 4] and we present a slight generalization of their argument.
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Lemma 4.4.14. Let f : R � R � Z3 Ñ C, a P Z3, T ¥ 1, let J � r0, T s be an interval, and let

A,N ¥ 1. Assume that |a| À A ! N . Furthermore, assume that f satisfies for all |t|, |t1| ¤ T that

|fpt, t1, nq| ¤ Axny�3, |fpt, t1, nq � fpt, t1,�nq| ¤ Axny�4, and |Bt1fpt, t1, nq| ¤ Axny�4.

Then, it holds that

sup
λPR

sup
|t|¤T

��� ¸
nPZ3

χNpnq
» t

0

1J pt1q sinppt� t1qxa� nyq cosppt� t1qxnyq exppiλt1qfpt, t1, nqdt1
���

À T 2A3 logp2�NqN�1.

(4.4.33)

The dependence on A is not essential and can likely be improved. In all our applications of this

lemma, A is negligible compared to N . We emphasize that the estimate fails if we only assume

that |fpt, t1, nq| ¤ Axny�3. Indeed, after removing the truncation χN , the corresponding sum could

diverge logarithmically.

Proof. Using trigonometric identities, we have that

2
¸
nPZ3

χNpnq
» t

0

1J pt1q sinppt� t1qxa� nyq cosppt� t1qxnyq exppiλt1qfpt, t1, nqdt1

�
¸
nPZ3

χNpnq
» t

0

1J pt1q sin
�pt� t1qpxa� ny � xnyq� exppiλt1qfpt, t1, nqdt1 (4.4.34)

�
¸
nPZ3

χNpnq
» t

0

1J pt1q sin
�pt� t1qpxa� ny � xnyq� exppiλt1qfpt, t1, nqdt1. (4.4.35)

We estimate the terms (4.4.34) and (4.4.35) separately. We begin with (4.4.34), which is the more

difficult term. Since |xa�ny� xny| À A, we do not expect to gain in N through the integration in

t1. Instead, we utilize a pointwise cancellation. By using the symmetry nØ �n in the summation,
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we obtain

2
��� ¸
nPZ3

χNpnq sin
�pt� t1qpxa� ny � xnyq�fpt, t1, nq���

�
��� ¸
nPZ3

χNpnq
�

sin
�pt� t1qpxn� ay � xnyq�fpt, t1, nq � sin

�pt� t1qpxn� ay � xnyq�fpt, t1,�nq	���
À

¸
nPZ3

χNpnq
��� sin �pt� t1qpxn� ay � xnyq�� sin

�pt� t1qpxn� ay � xnyq���� � |fpt, t1, nq|
�

¸
nPZ3

χNpnq|fpt, t1, nq � fpt, t1,�nq|.

Using the assumptions on f , the second summand is easily bounded by AN�1. We now concentrate

on the first summand. Using a Taylor expansion, we have that

xn� ay � xny � �n � axny �O
�
A2N�1

	
. (4.4.36)

Using that the sine-function is odd, we obtain that��� sin �pt� t1qpxn� ay � xnyq�� sin
�pt� t1qpxn� ay � xnyq

���
�
��� sin �pt� t1qpxn� ay � xnyq�� sin

�� pt� t1qpxn� ay � xnyq
���

¤ T
���xn� ay � xny � xn� ay � xny

���
À TA2N�1.

Putting both estimates together and integrating in t1, we see that the first term (4.4.34) is bounded

by T 2A3N�1, which is acceptable.

We now turn to the estimate of (4.4.35). Since xn � ay � xny Á N , we expect to gain a factor of
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N through integration by parts. We have that��� ¸
nPZ3

χNpnq
» t

0

1J pt1q sin
�pt� t1qpxa� ny � xnyq� exppiλt1qfpt, t1, nqdt1

���
À max

�

��� ¸
nPZ3

χNpnq
» t

0

1J pt1q exp
�
iλt1 � it1pxa� ny � xnyq

	
fpt, t1, nqdt1

���
À max

�

¸
nPZ3

χNpnq 1

1� |xa� ny � xny � λ|
�

sup
0¤t1¤t

��fpt, t1, nq��� T sup
0¤t1¤t

��Bt1fpt, t1, nq��	
À TAN�3 max

�

¸
nPZ3

χNpnq 1

1� |xa� ny � xny � λ| .

In order to finish the estimate, it only remains to prove that¸
nPZ3

χNpnq 1

1� |xa� ny � xny � λ| À logp2�NqN2.

Since the function x ÞÑ xxy is 1-Lipschitz, we can estimate the sum by an integral and obtain that¸
nPZ3

χNpnq 1

1� |xa� ny � xny � λ| À
»
R3

1t|ξ| � Nu 1

1� |xξ � ay � xξy � λ|dξ.

Due to the rotation invariance of the Lebesgue measure, we can then reduce to a � p0, 0, |a|q. To

estimate the integral, we first switch into polar coordinates pr, θ, ϕq. Since A ! N , we have for

fixed angles θ and ϕ that r ÞÑ xξ � ay � xξy is bi-Lipschitz on r � N . After a further change of

variables, this yields»
R3

1t|ξ| � Nu 1

1� |xξ � ay � xξy � λ|dξ À N2

» 8

0

1tr � Nu 1

1� |r � λ|dr À N2 logp2�Nq.

4.4.4 Counting estimates

In this subsection, we record several counting estimates. The counting estimates are the most

technical part of our treatment of So, CPara, and RMT. Fortunately, they can be used as a

black-box, and we encourage the reader to only skim this section during first reading.
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Before we state our counting estimates, we discuss the main ingredients and the differences between

the nonlinear wave and Schrödinger equations. In contrast to the counting estimates for the

nonlinear Schrödinger equation, the counting estimates for the wave equation require no analytic

number theory. The reason is that the mapping n ÞÑ xny is globally 1-Lipschitz, whereas the

Lipschitz constant of n ÞÑ |n|2 grows linearly. This allows us to reduce all (discrete) counting

estimates to estimates of the volume of (continuous) sets. More specifically, we will use that the

intersection of (most) thin annuli has a smaller volume than the individual annuli.

Another difference between the wave and Schrödinger equation is related to the symmetries of the

equation. The Schrödinger equation enjoys the Galilean symmetry, which is useful in obtaining

“shifted” versions of several estimates. For instance, it yields that frequency-localized Strichartz

estimates for the Schrödinger equation are the same for cubes centered either at or away from the

origin. On the frequency-side, it is related to the Galilean transform

pn, λq ÞÑ pn� a, λ� 2a � n� |a|2q,

which preserves the discrete paraboloid and plays an important role in decoupling theory (cf.

[Dem20, Section 4]). It often allows us to replace conditions such as |n| � N in counting es-

timates by the more general restriction |n � a| � N for some fixed a P Z3. In contrast, the

Lorentzian symmetry of the wave equation on Euclidean space does not even preserve the period-

icity of u : R�T3 Ñ R. As illustrated by the Klainerman-Tataru-Strichartz estimates (cf. [KT99]

and Lemma 4.8.1), the frequency-shifted Strichartz estimates are more complicated for the wave

equation than for the Schrödinger equation. As will be clear from this section, similar difficulties

arise in the counting estimates.

The last difference between the Schrödinger and wave equation we mention here is a result of the

multiplier x∇y�1 in the Duhamel integral for the wave equation. Together with multilinear dis-

persive effects, we therefore obtain two separate smoothing effects in the nonlinear wave equation,
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which are related to the elliptic symbol xny and the dispersive symbol x|λ| � |n|y. In contrast, the

Schrödinger only exhibits a single smoothing effect related to the dispersive symbol λ � |n|2. In

most situations, we expect that the combined smoothing effects in the wave equation are stronger

than the single smoothing effect in the Schrödinger equation. However, it may be more difficult

to capture the combined smoothing effect in a single proposition, as has been done in [DNY20,

Proposition 4.9] for the Schrödinger equation.

In Section 4.4.4.1, we prove basic counting estimates which form the foundation of the rest of this

section. In Section 4.4.4.2-4.4.4.7, we state several cubic, quartic, quintic, and septic counting esti-

mates. In order to not interrupt the flow of the main argument, we placed their (standard) proofs

in the appendix. In Section 4.4.4.8, we present estimates for the operator norm of (determinis-

tic) tensors. The tensor estimates are not (yet) standard in the literature on random dispersive

equations, so we include their proofs in the body of the paper.

4.4.4.1 Basic counting estimates

Lemma 4.4.15 (Basic counting lemma). Let a P Z3, let A,N ¥ 1, and assume that |a| � A.

Then, it holds that

sup
mPZ

#
 
n P Z3 : |n| � N, |xa� ny � xny �m| À 1

( À minpA,Nq�1N3. (4.4.37)

We emphasize that the upper bound in (4.4.37) cannot be improved to N2. The reason is that

|xa� ny � xny| À A, which implies that

sup
mPZ

#
 
n P Z3 : |n| � N, |xa� ny � xny �m| À 1

( Á A�1N3.

As already mentioned above, the main step in the proof converts the discrete estimate (4.4.37) into

a continuous analogue. After this reduction, the estimate boils down to multi-variable calculus.
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Proof. Since xξy � |ξ| � Op1q, we may replace x�y in (4.4.37) by | � | after increasing the implicit

constant. Furthermore, since ξ ÞÑ xξ�ay�xξy is globally Lipschitz, we see that the 1-neighborhood

of the set on the left-hand side of (4.4.37) is contained in

 
ξ P R3 : |ξ| � N, ||a� ξ| � |ξ| �m| À 1

(
.

Since the integer vectors are 1-separated, it follows that

#
 
n P Z3 : |n| � N, ||a� n| � |n| �m| À 1

( À Leb
� 
ξ P R3 : |ξ| � N, ||a� ξ| � |ξ| �m| À 1

(	
.

We now decompose

Leb
� 
ξ P R3 : |ξ| � N, ||a� ξ| � |ξ| �m| À 1

(	
À

¸
m1,m2PZ :

|m1�m2�m|À1

Leb
� 
ξ P R3 : |ξ| � N, |a� ξ| � m1 �Op1q, |ξ| � m2 �Op1q(	

À N sup
m1,m2PZ

Leb
� 
ξ P R3 : |ξ| � N, |a� ξ| � m1 �Op1q, |ξ| � m2 �Op1q(	.

In the last line, we used that there are at most � N non-trivial choices of m2. Once m2 is fixed,

the condition |m1 � m2 � m| À 1 implies that there are at most � 1 non-trivial choices for m1.

Thus, it remains to prove for |m1| À maxpA,Nq and |m2| � N that

Leb
� 
ξ P R3 : |ξ| � N, |a� ξ| � m1 �Op1q, |ξ| � m2 �Op1q(	 À minpA,Nq�1N2. (4.4.38)

Using the rotation invariance of the Lebesgue measure, we may assume that a � |a|e3, i.e., a points

in the direction of the z-axis. By switching into polar coordinates, we obtain that

Leb
� 
ξ P R3 : |ξ| � N, |a� ξ| � m1 �Op1q, |ξ| � m2 �Op1q(	

À N2

» 8

0

» π

0

1
 
r � m2 �Op1q(1

 a|a|2 � 2r|a| cospθq � r2 � m1 �Op1q( sinpθqdθ dr.
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The condition
a|a|2 � 2r|a| cospθq � r2 � m1�Op1q together with |m1| À maxpA,Nq implies that

cospθq � 1� p|a| � rq2
2|a|r � m2

1

2|a|r �O
�

maxpA,NqA�1N�1
�
. (4.4.39)

For a fixed r, this shows that cospθq is contained in an interval of size � minpA,Nq�1. After a

change of variables, this yields

N2

» 8

0

» π

0

1
 
r � m2 �Op1q(1

 a|a|2 � 2r|a| cospθq � r2 � m1 �Op1q( sinpθqdθ dr

À minpA,Nq�1N2

» 8

0

1
 
r � m2 �Op1q(dr

À minpA,Nq�1N2.

(4.4.40)

Remark 4.4.16. Our proof of the basic counting lemma (Lemma 4.4.15) easily generalizes to

spatial dimensions d ¥ 3. In two spatial dimensions, however, only weaker estimates are available.

The reason lies in the absence of the sine-function in the area element for polar coordinates,

which breaks (4.4.40). From a PDE perspective, the parallel interactions in two-dimensional

wave equations are stronger than the planar interactions in three-dimensional wave equations.

Ultimately, this requires a modification in the probabilistic scaling heuristic and we encourage the

reader to compare [DNY19, Section 1.3.2] and [OO19, Proposition 1.5].

We now present a minor modification of the basic counting lemma (Lemma 4.4.15). The condition

|n| � N is augmented by |n � a| � B. We emphasize that the vector a P Z3 in this constraint is

the same vector as in the dispersive symbol.

Lemma 4.4.17 (“Two-ball” basic counting lemma). Let N,A,B ¥ 1. Let a P Z3 satisfy |a| � A.

Then, it holds that

sup
mPZ

#
 
n P Z3 : |n| � N, |n� a| � B, |xa� ny � xny �m| À 1

( À minpA,B,Nq�1 minpB,Nq3.
(4.4.41)
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Proof. Using the basic counting lemma (Lemma 4.4.15), we have that

sup
mPZ

#
 
n P Z3 : |n| � N, |n� a| � B, |xa� ny � xny �m| À 1

(
¤ sup

mPZ
#
 
n P Z3 : |n| � N, |xa� ny � xny �m| À 1

(
À minpA,Nq�1N3.

After using a change of variables b
def� n� a, we obtain similarly that

sup
mPZ

#
 
n P Z3 : |n| � N, |n� a| � B, |xa� ny � xny �m| À 1

( À minpA,Bq�1B3.

By combining both estimates we obtain (4.4.41).

4.4.4.2 Cubic counting estimate

As mentioned in the beginning of this section, we only discuss and state the remaining counting

estimates, but postpone the proofs until the appendix.

The cubic counting estimates play an important role in our analysis of the nonlinearity �
N

.

In the following, we use max, med, and min for the maximum, median, and minimum of three

frequency-scales.

Proposition 4.4.18 (Main cubic counting estimate). Let �123,�1,�2,�3 P t�,�u and define the

phase

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

Let N1, N2, N3, N12, N123 ¥ 1 and let m P Z. Then, we have the following counting estimates:

(i) In the variables n1, n2, and n3, we have that

#tpn1, n2, n3q : |n1| � N1, |n2| � N2, |n3| � N3, |ϕ�m| ¤ 1u
À medpN1, N2, N3q�1pN1N2N3q3,
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(ii) In the variables n123, n1, and n2, we have that

#tpn123, n1, n2q : |n123| � N123, |n1| � N1, |n2| � N2, |ϕ�m| ¤ 1u
À medpN123, N1, N2q�1pN123N1N2q3.

(iii) In the variables n123, n12, and n1, we have that

#tpn123, n12, n1q : |n123| � N123, |n12| � N12, |n1| � N1, |ϕ�m| ¤ 1u
À min

�
N12,maxpN123, N1q

��1pN123N12N1q3.

(iv) In the variables n12, n1, and n3, we have that

#tpn12, n1, n3q : |n12| � N12, |n1| � N1, |n3| � N3, |ϕ�m| ¤ 1u
À min

�
N12,maxpN1, N3q

��1pN12N1N3q3.

Remark 4.4.19. The four estimates in Proposition 4.4.18 are sharp. In our analysis of the cubic

nonlinearity, the frequencies n1, n2, and n3 represent the frequencies of the three individual factors.

The frequency n12 appears through the convolution with the interaction potential V . Finally, the

frequency n123, which is the frequency of the full nonlinearity, appears through the multiplier x∇y�1

in the Duhamel integral and in estimates of the Hs
x and Xs,b-norms.

Since we postpone the proof, let us ease the reader’s mind with the heuristic argument behind (i).

Without the restriction due to the phase ϕ, the combined frequency variables pn1, n2, n3q live in

a set of cardinality pN1N2N3q3. As long as the level sets of ϕ have comparable cardinalities, we

expect to gain a factor corresponding to the possible values of ϕ on the set tpn1, n2, n3q : |n1| �
N1, |n2| � N2, |n3| � N3u. Since ϕ is globally Lipschitz, one may ideally hope for a gain of the

form maxpN1, N2, N3q. Unfortunately, since

|xn123y � xn1y � xn2y � xn3y| À maxpN2, N3q, (4.4.42)
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the high�low�low-interactions rule out a gain in maxpN1, N2, N3q. As it turns out, however, our

basic counting estimates allows us to obtain a gain of the form medpN1, N2, N3q, which is consistent

with (4.4.42).

Proposition 4.4.20 (Cubic sum estimate). Let 0   s ¤ 1{2, 0 ¤ γ   s�1{2, and let N1, N2, N3 ¥
1. Let the signs �123,�1,�2,�3 P t�,�u be given and define the phase

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y. (4.4.43)

Then, it holds that

sup
mPZ

¸
n1,n2,n3PZ3

�� 3¹
j�1

χNjpnjq
	
xn123y2ps�1qxn12y�2γ

� 3¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(�
À maxpN1, N2, N3q2ps�γq �maxpN1, N2q1�2γ maxpN1, N2, N3q2s�1.

(4.4.44)

Remark 4.4.21. Proposition 4.4.20 plays an essential role in proving that
�

N has regularity

β�. In that argument, we will simply set γ � β.

4.4.4.3 Cubic sup-counting estimates

We now present cubic counting estimates involving suprema, which will be used in the proof of

the tensor estimates in Section 4.4.4.8. In turn, the tensor estimates will then be used to prove

the random matrix estimates in Section 4.6.

Lemma 4.4.22 (Cubic sup-counting estimates). Let N123, N1, N2, N3 ¥ 1 and m P Z. Let the

signs �123,�1,�2,�3 P t�,�u be given and define the phase

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

Then, the following estimates hold:
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(i) Taking the supremum in n and counting n1, n2, n3, we have

sup
nPZ3

#
!
pn1, n2, n3q : |n1| � N1, |n2| � N2, |n3| � N3, n � n123, |ϕ�m| ¤ 1

)
À medpN1, N2, N3q3 minpN1, N2, N3q2.

(ii) Taking the supremum in n2 and counting n, n1, n3, we have

sup
n2PZ3

#
!
pn, n1, n3q : |n| � N123, |n1| � N1, |n3| � N3, n � n123, |ϕ�m| ¤ 1

)
À medpN123, N1, N3q3 minpN123, N1, N3q2.

(iii) Taking the supremum in n and counting n1, n12, n3, we have

sup
nPZ3

#
!
pn12, n2, n3q : |n12| � N12, |n2| � N2, |n3| � N3, n � n123, |ϕ�m| ¤ 1

)
À minpN12, N1q�1pN12N2q3.

(iv) Taking the supremum in n3 and counting n, n12, n2, we have

sup
nPZ3

#
!
pn, n12, n2q : |n| � N123, |n12| � N12, |n2| � N2, n � n123, |ϕ�m| ¤ 1

)
À minpN12, N1q�1pN12N2q3.

4.4.4.4 Para-controlled cubic counting estimate

We now present our final cubic counting estimate. It will be used to control

Ì Ì& 

� �
:
�
V �

�
P¤N � P¤NXN

	
P¤N

	
: ,

which appears in CPara.
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Lemma 4.4.23 (Para-controlled cubic sum estimate). Let N123, N1, N2, N3 ¥ 1 and m P Z. Let

the signs �123,�1,�2,�3 P t�,�u be given and define the phase

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

Then, it holds that for all 0   γ   β that

sup
n2PZ3 :
|n2|�N2

¸
n1,n3PZ3

� ¹
j�1,3

1
 |nj| � Nj

(	xn123y2ps2�1qxn12y�2βxn1y�2xn3y�2 1
 |ϕ�m| ¤ 1

(
À maxpN1, N2, N3q2δ2N�2γ

1 N2γ
2 .

(4.4.45)

4.4.4.5 Quartic counting estimates

Our expansion of the solution uN and So only contain cubic, quintic, and septic stochastic object.

The quartic counting estimates will be used to control products such as

P¤N � P¤N �
N ,

which occur as factors in the physical term Phy. We present two estimates which control the

non-resonant (Lemma 4.4.24) and resonant portions (Lemma 4.4.26) of the product, respectively.

On our way to the resonant estimate, we also prove the basic resonance estimate (Lemma 4.4.25).

Lemma 4.4.24 (Non-resonant quartic sum estimate). Let s   �1{2�η and let N1, N2, N3, N4 ¥ 1.

Let the signs �123,�1,�2,�3 P t�,�u be given and define

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

Then, it holds that

sup
mPZ

¸
n1,n2,n3,n4PZ3

� 4¹
j�1

1
 |nj| � Nj

(	xn1234y2sxn123y�2|pVSpn1, n2, n3q|2
� 4¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(
À maxpN1, N2, N3q�2β�2ηN�2η

4 .
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Lemma 4.4.25 (Basic resonance estimate). Let n1, n2 P Z3 be arbitrary, let N3 ¥ 1, let the signs

�123,�1,�2,�3 P t�,�u be given, and define

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

Then, it holds that

¸
mPZ

¸
n3PZ3

xmy�11
 |n3| � N3

(xn123y�1xn3y�21
 |ϕ�m| ¤ 1

( À logp2�N3qxn12y�1. (4.4.46)

Lemma 4.4.26 (Resonant quartic sum estimate). Let N1, N2, N3 ¥ 1 and let �1{2   s   0. Let

the signs �123,�1,�2,�3 P t�,�u be given and define

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

Then, it holds that

¸
n1,n2PZ3

�� 2¹
j�1

1
 |nj| � Nj

(xn12y2sxn1y�2xn2y�2

�
� ¸
mPZ

¸
n3PZ3

xmy�11
 |n3| � N3

(xn123y�1xn3y�21
 |ϕ�m| ¤ 1

(	2
�

À logp2�N3q2 maxpN1, N2q2s.

4.4.4.6 Quintic counting estimates

In order to estimate the quintic stochastic objects

�
N�

N
and

�
N�
N
,

we require quintic sum estimates. Even at the quintic level, we need to make full use of dispersive

effects. This is in contrast to the septic counting effects, which only rely on dispersive effects for
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cubic sub-objects but do not require dispersive effects at the full septic level.

We present three separate quintic sum estimates, which correspond to zero, one, or two probabilistic

resonances.

Lemma 4.4.27 (Non-resonant quintic sum estimate). Let s ¤ 1{2�2η and N1, N2, N3, N4, N5 ¥ 1.

Furthermore, we define three phase-functions by

ψpn3, n4, n5q def� �345xn345y �3 xn3y �4 xn4y �5 xn5y,
ϕpn1, . . . , n5q def� �12345xn12345y �345 xn345y �1 xn1y �2 xn2y,

rϕpn1, . . . , n5q def� �12345xn12345y 	345 xn345y �
5̧

j�1

p�jqxnjy.

Then, it holds that

sup
m,m1PZ

¸
n1,...,n5PZ3

�� 5¹
j�1

1
 |nj| � Nju

�xn12345y2ps�1qxn1345y�2βxn345y�2xn34y�2β
� 5¹
j�1

xnjy�2
	

� 1
 |ψ �m| ¤ 1

( � �1
 |ϕ�m1| ¤ 1u � 1

 |rϕ�m1| ¤ 1u
	�

À maxpN1, N3, N4, N5q�2β�4ηN�2η
2 .

Lemma 4.4.28 (Single-resonance quintic sum estimate). Let n4, n5 P Z3, N45 ¥ 1, and |n45| �
N45. Furthermore, let �3 P t�,�u . Then, it holds that

sup
mPZ3

¸
n3PZ3

�
1
 |n3| � N3

(xn345y�1xn3y�21
 xn345y �3 xn3y P rm,m� 1q(�

À N�1
45 .

After renaming the variables, Lemma 4.4.28 is essentially the same as Lemma 4.4.25. Our reason

for restating Lemma 4.4.28 is to make it easier for the reader to refer back to this section.
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Lemma 4.4.29 (Double-resonance quintic sum estimate). Let N3, N4, N5 ¥ 1 and let �3,�4,�5 P
t�,�u. Then, it holds that

sup
mPZ3

sup
|n5|�N5

¸
n3,n4PZ3

�� 4¹
j�3

1
 |nj| � Nj

(	xn345y�1xn45y�βxn3y�2xn4y�2

� 1
 xn345y �3 xn3y �4 xn4y �5 xn5y P rm,m� 1q(�

À maxpN4, N5q�β�η.

(4.4.47)

4.4.4.7 Septic counting estimates

In order to state our septic counting estimates, we need to introduce pairings, and our definition

is motivated by a similar notion in [DNY19, Section 1.9]. The pairings are designed to capture the

resonances in the septic stochastic objects

�
N

�
N
�

N
and �

N

�
N

�
N
.

Definition 4.4.30 (Pairings). Let J ¥ 1. We call a relation P� t1, . . . , Ju2 a pairing if

(i) P is anti-reflexive, i.e, pj, jq R P for all 1 ¤ j ¤ J ,

(ii) P is symmetric, i.e., pi, jq P P if and only if pj, iq P P,

(iii) P is univalent, i.e., for each 1 ¤ i ¤ J , pi, jq P P for at most one 1 ¤ j ¤ J .

If pi, jq P P, the tuple pi, jq is called a pair (or P-pair). If 1 ¤ j ¤ J is contained in a pair, we call

j paired (or P-paired). With a slight abuse of notation, we also write j P P if j is paired. If j is

not paired, we also say that j is unpaired and write j R P.

Furthermore, let A � pAlql�1,...,L be a partition of t1, . . . , Ju. We say that P respects A if i, j P Al

for some 1 ¤ l ¤ L implies that pi, jq R P. In other words, P does not pair elements of the same

set inside the partition.
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Finally, we call a vector pn1, . . . , nJq P pZ3qJ of frequencies admissible (or P-admissible) if pi, jq P P

implies that ni � �nj.

Using Definition 4.4.30, we can now state the septic sum estimate.

Lemma 4.4.31 (Septic sum estimate). Let 1{2   s   1 and let N1234567, N1234, N567, N4 ¥ 1. For

any �1,�2,�3 P t�,�u, we define the phase

ϕpnj,�j : 1 ¤ j ¤ 3q def� xn123y �1 xn1y �2 xn2y �3 xn3y.

Furthermore, we define

Φpn1, n2, n3q �
¸

�1,�2,�3

¸
mPZ

xmy�1|pVSpn1, n2, n3q|xn123y�1
� 3¹
j�1

xnjy�1
	

1
 |ϕ�m| ¤ 1

(
.

Finally, let P be a pairing of t1, . . . , 7u which respects the partition t1, 2, 3u, t4u, t5, 6, 7u and define

the non-resonant frequency nnr P Z3 by

nnr
def�

¸
jRP

nj.

Then, it holds that¸
pnjqjRP

xnnry2ps�1q

� �̧

pnjqjPP

1
 |n1234567| � N1234567

(
1
 |n1234| � N1234

(
1
 |n567| � N567

(
1
 |n4| � N4

(
� |pV pn1234q|Φpn1, n2, n3qxn4y�1Φpn5, n6, n7q


2

À logp2�N4q2
�
N

2ps� 1
2
q

1234567N
�2pβ�ηq
567 �N

�2p1�s�ηq
1234567

	
N�2β

1234,

where
°�

pnjqjPP
denotes the sum over admissible frequencies.

While the septic sum estimate (Lemma 4.4.31) may appear complicated, its proof is much easier

than the cubic sum estimate (Lemma 4.4.20) or the quintic sum estimate (Lemma 4.4.27). The

reason is that we do not rely on dispersive effects at the (full) septic level, and only use the

dispersive effects in the cubic stochastic sub-objects.
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4.4.4.8 Tensor estimates

The counting estimates from Section 4.4.4.2-4.4.4.7 will be combined with Wiener chaos estimates

to control stochastic objects such as �
N

. The estimates of the random matrix terms will follow a

similar spirit. However, the Wiener chaos estimates will be replaced by the moment method (see

Proposition 4.4.50) and the counting estimates will be replaced by deterministic tensor estimates.

The tensor estimates, which partially rely on the counting estimates, are the main goal of this

subsection.

We first recall the tensor notation from [DNY20, Section 2.1].

Definition 4.4.32 (Tensors and tensor norms). Let J � N0 be a finite set. A tensor h � hnJ is

a function from pZ3q|J | into C, where the input variables are given by nJ . A partition of J is a

pair of sets pA,Bq such that A
�
B � J and A

�
B � H. For any partition pA,Bq, we define the

tensor norm

}h}2
nAÑnB

� sup
!¸
nB

���¸
nA

hnJ znA

���2 :
¸
nA

|znA |2 � 1
)
. (4.4.48)

For example, if h � hnn1n2n3 , then

}h}2
n1n2n3Ñn � sup

! ¸
nPZ3

��� ¸
n1,n2,n3PZ3

hnn1n2n3zn1n2n3

���2 :
¸

n1,n2,n3PZ3

|zn1n2n3 |2 � 1
)
.

Lemma 4.4.33 (First deterministic tensor estimate). Let s   1{2�β�2δ1�6η, N1, N2, N3, N12, N123 ¥
1, m P Z, and �1,�2,�3,�123 P t�,�u. Define the phase-function ϕ by

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.

and the truncated tensor h by

hnn1n2n3

def�χN123pN123qχN12pn12q
� 3¹
j�1

ρ¤NpnjqχNjpnjq
	

1
 
n � n123

(
1t|ϕ�m| ¤ 1uxnys�1pV pn12qxn1y�1xn2y�1xn3y�s1 .

(4.4.49)
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Then, we have the estimate

max
�}h}n1n2n3Ñn, }h}n3Ñnn1n2 , }h}n1n3Ñnn2 , }h}n2n3Ñnn1

� À maxpN1, N2, N3q�η. (4.4.50)

Remark 4.4.34. The first deterministic tensor estimate (Lemma 4.4.33) is the main ingredient

in the estimate of

wN ÞÑ
�
V �

N

	
P¤NwN ,

which is the first term in RMT. In contrast to the second tensor estimate below, we only impose

s   1{2 � β instead of s   1{2 (up to small corrections). The reason is that both instances of

are part of the convolution with V .

Proof. The main ingredients are Schur’s test and the sup-counting estimate (Lemma 4.4.22).

Step 1: }h}n1n2n3Ñn. Due to the symmetry n1 Ø n2, we may assume that N1 ¥ N2. Using Schur’s

test, we have that

}h}2
n1n2n3Ñn

À N
2ps�1q
123 N�2β

12 N�2
1 N�2

2 N�2s1
3

� sup
nPZ3

¸
n1,n2,n3PZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n12| � N12|

(
1
 |n| � N123

(
1
 
n � n123

(
1
 |ϕ�m| ¤ 1

(
� sup

n1,n2,n3PZ3

¸
nPZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n12| � N12|

(
1
 |n| � N123

(
1
 
n � n123

(
1
 |ϕ�m| ¤ 1

(
Since n is uniquely determined by n1, n2, and n3, the last factor can easily be bounded by one. By

using (iii) in Lemma 4.4.22 and maxpN12, N2q À maxpN1, N2q � N1, we obtain that

}h}2
n1n2n3Ñn À N

2ps�1q
123 N�2β

12 N�2
1 N�2

2 N�2s1
3 maxpN12, N2qN2

12N
2
2

À N
2ps�1q
123 N2�2β

12 N�1
1 N�2s1

3

À N
2ps�1q
123 N1�2β�2η

12 N�2η
1 N�2s1

3 .
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Furthermore, we have that N12 À maxpN123, N3q À N123 �N3. Inserting this into the last inequality

yields

}h}2
n1n2n3Ñn À N2s�1�2β�2η

123 N�2η
1 N1�2s1�2β�2η

3 À pN1N3q�2η.

Step 2: }h}n3Ñn1n2n. The argument follow Step 1 nearly verbatim, except that we use (iv) in

Lemma 4.4.22 instead of (iii).

Step 3: }h}n1n3Ñn2n. In this step, we ignore the dispersive effects, i.e., we simply bound

1
 |ϕ�m| ¤ 1

( ¤ 1.

By increasing s if necessary, we may assume s ¥ 1{2. Using Schur’s test and a simple volume

argument, we have that

}h}2
n1n3Ñn2n

À N
2ps�1q
123 N�2β

12 N�2
1 N�2

2 N�2s1
3

� sup
n,n2PZ3

¸
n1,n3PZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n12| � N12|

(
1
 |n| � N123

(
1
 
n � n123

(
� sup

n1,n3PZ3

¸
n2,nPZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n12| � N12|

(
1
 |n| � N123

(
1
 
n � n123

(
À N

2ps�1q
123 N�2β

12 N�2
1 N�2

2 N�2s1
3 minpN1, N12, N3q3 minpN2, N12, N123q3

À N
2ps�1q
123 N�2β

12 N�2
1 N�2

2 N�2s1
3 N2�2η

1 N1�4η�2s1
12 N2s1�2η

3 N2�2η
2 N2s�1�2η

12 N
2ps�1q
123

À N2s�1�2β�2δ1�6η
12 pN1N2N3q�2η.

In the second last inequality, we used s ¥ 1{2. Since 2s� 1� 2β� 2δ1� 6η ¤ 0, this is acceptable.

Step 4: }h}n2n3Ñn1n. Due to the symmetry n1 Ø n2, the estimate follows from Step 3.
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We now turn to the second tensor estimate.

Lemma 4.4.35 (Second deterministic tensor estimate). Let s   1{2�η, N1, N2, N3, N12, N123 ¥ 1,

m P Z, and �1,�2,�3,�123 P t�,�u. Define the phase-function ϕ by

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y

and the truncated tensor h by

hnn1n2n3

def�χN123pN123qχN12pn12q
� 3¹
j�1

ρ¤NpnjqχNjpnjq
	

1
 
n � n123

(
1t|ϕ�m| ¤ 1uxnys�1pV pn12qxn1y�1xn2y�s2xn3y�1.

(4.4.51)

Then, we have the estimate

max
�}h}n1n2n3Ñn, }h}n2Ñnn1n3 , }h}n2n3Ñnn1 , }h}n1n2Ñnn3

� À N�β
12 maxpN1, N2, N3q�η. (4.4.52)

Remark 4.4.36. Lemma 4.4.35 is the main ingredient in the estimate of

YN ÞÑ:V �
�
P¤N � P¤N

�
YN

�	
Ì 

� �
P¤N

	
: ,

which is the second term in RMT.

Proof. The argument is similar to the proof of Lemma 4.4.33.

Step 1: }h}n1n2n3Ñn. Using Schur’s test, we have that

}h}2
n1n2n3Ñn À N

2ps�1q
123 N�2β

12 N�2
1 N�2s2

2 N�2
3

� sup
|n|�N123

¸
n1,n2,n3PZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 
n � n123

(
1
 |ϕ�m| ¤ 1

(
� sup

n1,n2,n3PZ3

¸
nPZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 
n � n123

(
1
 |ϕ�m| ¤ 1

(
.
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The last factor is easily bounded by one, since n is uniquely determined by n1, n2, and n3. By

using (i) in Lemma 4.4.22 and s2 ¤ 1, we obtain that

}h}2
n1n2n3Ñn À N

2ps�1q
123 N�2β

12 medpN1, N2, N3q3 minpN1, N2, N3q2N�2
1 N�2s2

2 N�2
3

À N
2ps�1q
123 N�2β

12 maxpN1, N2, N3q�2s2 medpN1, N2, N3q3�2 minpN1, N2, N3q2�2

À N
2ps�1q
123 N�2β

12 maxpN1, N2, N3q1�2s2 .

This is acceptable since s ¤ 1 and η ! δ2.

Step 2: }h}n2Ñn1n3n. This argument is similar to Step 1, but the roles of n2 and n are reversed.

Using Schur’s test, we obtain that

}h}2
n2Ñn1n3n

À N
2ps�1q
123 N�2β

12 N�2
1 N�2s2

2 N�2
3

� sup
|n2|�N2

¸
n1,n3,nPZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n| � N123

(
1
 
n � n123

(
1
 |ϕ�m| ¤ 1

(
� sup

n1,n3,nPZ3

¸
n2PZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n| � N123

(
1
 
n � n123

(
1
 |ϕ�m| ¤ 1

(
.

As before, the last factor is easily bounded by one. By using (ii) in Lemma 4.4.22 and 2ps�1q ¥ �2,

we obtain that

}h}2
n2Ñn1n3n

À N
2ps�1q
123 N�2β

12 medpN123, N1, N3q3 minpN123, N1, N3q2N�2
1 N�2s2

2 N�2
3

À N�2β
12 N�2s2

2 maxpN123, N1, N3q2s�1

À N�2β
12 N�2s2

2 maxpN1, N2, N3q�2η.

In the last line, we used that s   1{2� η.

Step 3: }h}n1n2Ñn3n. In this step, we ignore the dispersive effects, i.e., we simply bound

1
 |ϕ�m| ¤ 1

( ¤ 1.

280



Using Schur’s test and a simple volume bound, we obtain that

}h}2
n1n2Ñn3n

À N
2ps�1q
123 N�2β

12 N�2
1 N�2s2

2 N�2
3

� sup
n3,nPZ3

¸
n1,n2PZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n| � N123

(
1
 
n � n123

(
� sup

n1,n2PZ3

¸
n3,nPZ3

� 3¹
j�1

1
 |nj| � Nk

(	
1
 |n| � N123

(
1
 
n � n123

(
À N

2ps�1q
123 N�2β

12 N�2
1 N�2s2

2 N�2
3 minpN1, N2q3 minpN3, N123q3

À N
2ps�1q
123 N�2β

12 N�2
1 N�2s2

2 N�2
3 N2�2η

1 N1�2η
2 N2�2η

3 N1�2η
123

À N�2β
12 maxpN1, N2, N3q�2η.

Step 4: }h}n2n3Ñn1n Arguing exactly as in Step 3, we obtain that

}h}2
n2n3Ñn1n

À N
2ps�1q
123 N�2β

12 N�2
1 N�2s2

2 N�2
3 minpN2, N3q3 minpN1, N123q3

À N�2β
12 maxpN1, N2, N3q�2η.

4.4.5 Gaussian processes

We briefly review the notation from the stochastic control perspective of Chapter 3, which was

used in the proof of Theorem 4.1.1. In comparison with the first part of this series, however, we

change the notation for the stochastic time variable. We use s, which is a calligraphic “s”, to

denote the time-variable in the stochastic control perspective. While the chosen font in s may be

slightly unusual, we hope that this prevents any confusion with the time-variable t in the nonlinear

wave equation.

We let pBn
s qnPZ3zt0u be a sequence of standard complex Brownian motions such that B�n

s � Bn
s

and Bn
s , B

m
s are independent for n � �m. We let B0

s be a standard real-valued Brownian motion
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independent of pBn
s qnPZ3zt0u. Furthermore, we let Bsp�q be the Gaussian process with Fourier

coefficients pBn
s qnPZ3 , i.e.,

Bspxq def�
¸
nPZ3

eixn,xyBn
s .

For every s ¥ 0, the Gaussian process formally satisfies ErBspxqBspyqs � s � δpx � yq and hence

Bsp�q is a scalar multiple of spatial white noise. We also let pFsqs¥0 be the filtration corresponding

to the family of Gaussian processes pBn
s qs¥0.

The Gaussian free field g, however, has covariance p1�∆q�1. To this end, we now introduce the

Gaussian process Wspxq. We let σspξq �
�

d
ds
ρ2
spξq

�1{2
, where ρs is the frequency-truncation from

Section 4.1.3. For any n P Z3, we then define

W n
s

def�
» s

0

σs1pnq
xny dBn

s1 . (4.4.53)

We note that W n
s is a complex Gaussian random variable with variance ρ2

spnq{xny2. We finally set

Wspxq def�
¸
nPZ3

eixn,xyW n
s . (4.4.54)

Since the Gaussian random data P H
�1{2�κ
x pT3q in Theorem 4.1.1 is a tuple of the initial data

and initial velocity, we now let pBcos,W cosq and pBsin,W sinq be two independent copies of pB,W q.
Using this notation, we then take

�
�
W cos

8 pxq, x∇yW sin
8 pxq

	
. (4.4.55)

Using (4.4.55), we can represent the linear evolution as

ptq � cosptx∇yqW cos
8 � sinptx∇yqW sin

8 ,

which also motivates our notation.
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4.4.6 Multiple stochastic integrals

In this section, we recall several definitions and results related to multiple stochastic integrals. A

similar but shorter section already appeared in the appendix of the first paper of this series [Bri20c].

A more detailed introduction can be found in the excellent textbook [Nua06]. The usefulness of

this section is best illustrated by Proposition 4.4.44 below.

We define a Borel measure λ on R¥0 � Z3 by

dλps, nq � σ2
spnq
xny2

dsdn,

where ds is the Lebesgue measure and dn is the counting measure on Z3. We define the corre-

sponding inner product by

xf, gy �
¸
nPZ3

» 8

0

fps, nqgps, nqσ
2
spnq
xny2

ds. (4.4.56)

For any f P L2pR¥0 � Z3, dλq, we define

W rf s �
¸
nPZ3

» 8

0

fps, nqdW n
s .

The inner integral can be understood as an Itô-integral. Then, we can identify W with the family

of complex-valued Gaussian random variables

W � tW rf s : f P L2pR¥0 � Z3, dλqu.

For any f P L2pR¥0 � Z3, dλq, we define the reflection operator R by

Rfps, nq def� fps,�nq.

Clearly, R is a real-linear isometry. Using Itô’s isometry, a short calculation yields that

E
�
W rf sW rgs� � xf, gy and E

�
W rf sW rgs� � xf,Rgy.
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Since this will be important below, we note that the second identity reads

E
�
W rf sW rgs� � ¸

nPZ3

» 8

0

fps, nqgps,�nqσ
2
spnq
xny2

ds. (4.4.57)

To emphasize the integral character of W rf s, we now write

I1rf s def� W rf s.

In this notation, it becomes evident that we have been working with single-variable stochastic

calculus. In order to express the resonances in our stochastic objects, it is more natural to work

with multi-variable stochastic calculus. For k ¥ 1, we define the measure λk on pR¥0 � Z3qk by

λk
def� λb . . .b λ.

To simplify the notation, we set Hk
def� L2ppR�Z3qk, dλkq. For any f P Hk, the multiple stochastic

integral Ikrf s can then be constructed as in [Nua06, Section 1.1.2]. We only recall the basic

ingredients and refer to [Nua06] for more details.

We denote by Ek the set of elementary functions of the form

fps1, n1, . . . ,sk, nkq �
Ļ

l1,...,lk�1

al1,...,lk1Al1�...�Alk ps1, n1, . . . ,sk, nkq,

where A1, . . . , AL are pairwise disjoint sets with finite measure under λk and al1,...,lk vanishes if

the indices l1, . . . , lk are not pairwise distinct. For an elementary function, we define the multiple

stochastic integral by

Ikrf s def�
Ļ

l1,...,lk�1

al1,...,lk

k¹
j�1

W rAlj s. (4.4.58)

Furthermore, we define the symmetrization of f by

rfps1, n1, . . . ,sk, nkq � 1

k!

¸
πPSk

fpsπp1q, nπp1q, . . . ,sπpkq, nπpkqq. (4.4.59)
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Lemma 4.4.37 (Basic properties). For any k, l ¥ 1, f P Ek, and g P El, it holds that:

(i) Ik is linear.

(ii) The integral is invariant under symmetrization, i.e., Ikrf s � Ikr rf s.
(iii) We have the Itô-isometry formula

E
�
Ikrf s � Ilrgs

� � δklk!

» rf rg dλk.

(iv) We have the formula for the expectation

E
�
Ikrf s � Ilrgs

�
� δklk!

¸
n1,...,nk

» 8

0

. . .

» 8

0

rfps1, n1, . . . ,sk, nkq � rgps1,�n1, . . . ,sk,�nkq
� k¹
j�1

σ2
sj
pnjq

xnjy2

	
dsk . . . ds1.

Proof. Except for a minor extension from the real-valued to the complex-valued setting, the proof

can be found on [Nua06, p.9].

Using the density argument from [Nua06, p.10], we can extend Ik from elementary functions to

Hk. In particular, for any fixed m1, . . . ,mk P Z3, we have that

k¹
j�1

δnj�mj P Hk

and we can write »
r0,8qk

dWmk
sk

. . . dWm1
s1

def� Ik
� k¹
j�1

δnj�mj

�
. (4.4.60)

We vehemently emphasize that the stochastic integral (4.4.60) does not coincide with the product±k
j�1W

mj
8 . Instead, as will be clear from the product formula (Lemma 4.4.40) below, the stochas-

tic integral (4.4.60) only contains the non-resonant portion of this product.
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If f � fpn1, . . . , nkq does not depend on the stochastic-time variables s1, . . . ,sk, the linearity of

the multiple stochastic integral Ik and (4.4.60) naturally imply that

Ikrf s �
¸

n1,...,nkPZ3

fpn1, . . . , nkq
»
r0,8qk

dW nk
sk
. . . dW n1

s1
. (4.4.61)

Using (iii) in Lemma 4.4.37, it follows that

E
�� »

r0,8qm
dW nk

sk
. . . dW n1

s1

	
�
� »

r0,8qk
dWmk

sk . . . dWm1
s1

	�
� 1

 
n is a permutation of mu

»
r0,8qm

m¹
j�1

σ2
sj
pnjq

xnjy2
dsk . . . ds1

� 1
 
n is a permutation of mu

m¹
j�1

xnjy�2.

Up to permutations, the family of multiple stochastic integrals (4.4.60) is therefore orthogonal.

Naturally, a similar formula holds without the complex conjugate. More generally, if f depends

on the stochastic time-variables s1, . . . ,sk, we have that

Ikrf s �
¸

n1,...,nkPZ3

»
r0,8qk

fps1, n1, . . . ,sk, nkqdW nk
sk
. . . dW n1

s1
. (4.4.62)

Here, the summands on the right-hand side are understood as multiple stochastic integrals with

fixed n1, . . . , nk (by inserting an indicator as in (4.4.60)). As is shown in the next lemma, this

notation is consistent with iterated Itô-integrals.

Lemma 4.4.38. Let k ¥ 1 and let f P Hk be symmetric. Then, it holds that

Ikrf s � k!
¸

n1,...,nkPZ3

» 8

0

» s1

0

. . .

» sk�1

0

fps1, n1, . . . ,sk, nkqdW nk
sk
. . . dW n1

s1
, (4.4.63)

where the right-hand side is understood as an iterated Itô integral.

This follows from the discussion of [Nua06, (1.27)]. As a consequence of this lemma, we could

also work with iterated Itô-integrals instead of multiple stochastic integrals. While the iterated
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Itô-integrals are more natural whenever martingale properties are utilized, the multiple stochastic

integrals have a much simpler product formula, which simplifies many of our computations.

Before we can state the product formula, we need to define the contraction.

Definition 4.4.39 (Contraction). Let k, l ¥ 1, let f P Hk, and let g P Hl. For any 0 ¤ r ¤
minpk, lq, we define the contraction of r indices by

pf br gqps1, n1, . . . ,sk�l�2r, nk�l�2rq
def�

¸
m1,...,mrPZ3

» 8

0

. . .

» 8

0

�
fps1, n1, . . . ,sk�r, nk�r, r1,m1, . . . , rr,mrq

� gpsk�1�r, nk�1�r, . . . ,sk�l�2r, nk�l�2r, r1,�m1, . . . , rr,�mrq
k¹
j�1

σ2
rj
pmjq

xmjy2

�
drr . . . dr1.

We note that even if f P Hk and let g P Hl are both symmetric, the contraction f br g may not

be symmetric. The reader should note the similarity of the contraction with the formula for the

expectation in (iv) of Lemma 4.4.37, which is no coincidence. If f, g P H1, then

E
�
I1rf s � I1rgs

�
� f b1 g. (4.4.64)

Thus, fb1g describes the (full) resonance portion of the product I1rf s�I1rgs. The product formula

is a (major) generalization of this simple fact.

Lemma 4.4.40 (Product formula for multiple stochastic integrals (cf. [Nua06, Prop 1.1.3])). Let

k, l ¥ 1 and let f P Hk and g P Hl be symmetric. Then, it holds that

Ikrf s � Ilrgs �
minpk,lq¸
r�0

r!

�
k

r


�
l

r



Ik�l�2rrf br gs. (4.4.65)

Using the product formula (Lemma 4.4.40), we can compute the non-resonant, partially resonant,

and fully resonant portions of products such as

pP¤N qpt, xq � pP¤N qpt, xq and
N
pt, xq � �

N
pt, xq.
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Once the Duhamel operator occurs in the expression, however, we also need to consider two

different physical times t and t1. For instance, in our estimate of the quintic stochastic object

�
N�

N
,

we need to control �
V �

N
pt, xq

	
�
�
P¤N sinppt� t1qx∇yqx∇y�1

	�
�

N
pt1, xq

	
In order to consider two different physical times t and t1, we need to consider multiple stochastic

integrals with respect to two different (correlated) Gaussian processes, which we abstractly denote

by W a and W b. We will assume that LawPpW aq � LawPpW bq � LawPpW q. Regarding the

relationship between the different Gaussian processes W a and W b, we assume that W a,n and W b,m

are independent for m � �n. Furthermore, let C : Z3 Ñ r�1, 1s be an even function. We assume

that

E
�
W

paq,n
s1 W

pbq,m
s2

�
� δn��m Cpnq

» s1^s2

0

σ2
spnq
xny2

ds (4.4.66)

and

E
�
W

paq,n
s1 W

pbq,m
s2

�
� δn�m Cpnq

» s1^s2

0

σ2
spnq
xny2

ds (4.4.67)

Thus, C is the (appropriately normalized) correlation of W a and W b. We can then set up the theory

of multiple stochastic integrals with respect to a mixture of W a and W b as before. In order to fit

this theory into the same framework as in [Nua06], one only has to replace R�Z3 by R�Z3�ta, bu.
A short calculation shows for any bounded and compactly supported f, g : R � Z3 � ta, bu Ñ C

that

E
�� ¸

ι�a,b

¸
nPZ3

» 8

0

fps, n, ιqdW pιq,n
s

	� ¸
ι�a,b

¸
nPZ3

» 8

0

gps, n, ιqdW pιq,n
s

	�
�

¸
ι,ι1�a,b

¸
nPZ3

�
1
 
ι � ι1

(� Cpnq1 ι � ι1
(	 » 8

0

fps, n, ιq � gps,�n, ι1qσ
2
spnq
xny2

ds.

(4.4.68)
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and

E
�� ¸

ι�a,b

¸
nPZ3

» 8

0

fps, n, ιqdW pιq,n
s

	� ¸
ι�a,b

¸
nPZ3

» 8

0

gps, n, ιqdW pιq,n
s

	�
�

¸
ι,ι1�a,b

¸
nPZ3

�
1
 
ι � ι1

(� Cpnq1 ι � ι1
(	 » 8

0

fps, n, ιq � gps, n, ι1qσ
2
spnq
xny2

ds.

(4.4.69)

The sesquilinear form in (4.4.69), viewed as a function in f and g, is no longer positive definite.

For instance, if W paq � �W pbq, and hence C � �1, f � g, and fps, n, aq � fps, n, bq for all s P R¥0

and n P Z3, it vanishes identically. Nevertheless, due to the condition |C| ¤ 1 imposed on the

correlation function C, it is bounded by (a scalar multiple of) the inner product

¸
ι�a,b

¸
nPZ3

» 8

0

fps, n, ιq � gps, n, ιqσ
2
spnq
xny2

ds.

After defining a measure rλ on R � Z3 � ta, bu by drλ � dλdι, where dι is the integration with

respect to the counting measure on ta, bu, this allows us to construct multiple stochastic integrals

for functions in

L2ppR� Z3 � ta, buqk, rλkq.
Similar as in (4.4.60), this allows us to define mixed multiple stochastic integrals such as»

r0,8q3
dW

paq,n3
s3 dW

paq,n2
s2 dW

pbq,n1
s1 . (4.4.70)

Unfortunately, the general theory now becomes notationally cumbersome. We therefore decided

to only state the much simpler special case of the product formula needed in this paper.

Lemma 4.4.41 (Quadratic-Cubic product formula). Let f : pZ3q2 Ñ C and let g : pZ3q3 Ñ C. We
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assume that g is symmetric but do not require any symmetry of f . Then, it holds that� ¸
n1,n2PZ3

fpn1, n2q
»
r0,8q2

dW
paq,n2
s2 dW

paq,n1
s1

	
�
� ¸
n3,n4,n5PZ3

gpn3, n4, n5q
»
r0,8q3

dW
pbq,n5
s5 dW

pbq,n4
s4 dW

pbq,n3
s3

	
�

¸
n1,n2,n3,n4,n5PZ3

fpn1, n2qgpn3, n4, n5q
»
r0,8q5

dW
pbq,n5
s5 dW

pbq,n4
s4 dW

pbq,n3
s3 dW

paq,n2
s2 dW

paq,n1
s1

� 3
¸

n2,n4,n5PZ3

� ¸
n1PZ3

fpn1, n2qgp�n1, n4, n5qCpn1q
xn1y2

	 »
r0,8q3

dW
pbq,n5
s5 dW

pbq,n4
s4 dW

paq,n2
s2

� 3
¸

n1,n4,n5PZ3

� ¸
n2PZ3

fpn1, n2qgp�n2, n4, n5qCpn2q
xn2y2

	 »
r0,8q3

dW
pbq,n5
s5 dW

pbq,n4
s4 dW

paq,n1
s1

� 6
¸
n5PZ3

� ¸
n1,n2PZ3

fpn1, n2qgp�n1,�n2, n5qCpn1qCpn2q
xn1y2xn2y2

	 » 8

0

dW
pbq,n5
s5 .

Remark 4.4.42. Instead of working with the product fpn1, n2qgpn3, n4, n5q, the formula has a

natural extension to functions hpn1, . . . , n5q which are symmetric in n3, n4, and n5. To this end,

one only has to decompose

hpn1, n2, n3, n4, n5q �
¸

m1,m2PZ3

1
 pn1, n2q � pm1,m2q

( � hpm1,m2, n3, n4, n5q.

We can then apply Lemma 4.4.41 to the individual summands.

Remark 4.4.43. While the formula in Lemma 4.4.41 is complicated, it is still an order of mag-

nitude easier than working with products of Gaussians directly. If the reader is not convinced, we

encourage him to work out (by hand) the corresponding resonant/non-resonant decomposition of� ¸
n1,n2PZ3

fpn1, n2q
�
Gpaq
n1
�Gpaq

n2
� δn12�0

xn1y2

	
q
	

�
� ¸
n3,n4,n5PZ3

gpn3, n4, n5q
�
Gpbq
n3
�Gpbq

n4
�Gpbq

n5
� δn34�0

xn3y2
Gpbq
n5
� δn35�0

xn3y2
Gpbq
n4
� δn45�0

xn4y2
Gpbq
n3

		
,

where Gpιq � W
pιq
8 for ι � a, b are (correlated) families of Gaussian random variables.
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After establishing the important definitions and properties of multiple stochastic integrals, it only

remains to connect them with our stochastic objects. Let W
pcosq,n
s and W

psinq,n
s be the Gaussian

processes defined in Section 4.4.5. We recall that the linear evolution of the random initial data

is given by

ptq �
¸
nPZ3

�
cosptxnyqW pcosq,n

8 � sinptxnyqW psinq,n
8

�
exppixn, xyq

�
¸
nPZ3

� » 8

0

d
�

cosptxnyqW pcosq,n
s � sinptxnyqW psinq,n

s

�	
exppixn, xyq.

(4.4.71)

In order to obtain a similar expression for the stochastic objects
N

and �
N

, we define for any

k ¥ 1 and n1, . . . , nk P Z3 the multiple stochastic integral

Ikrt, n1, . . . , nks def�
»
r0,8qk

d
�

cosptxnkyqW pcosq,nk
sk � sinptxnyqW psinq,nk

sk

�
. . .

d
�

cosptxn1yqW pcosq,n1
s1 � sinptxn1yqW psinq,n1

s1

�
.

(4.4.72)

In the proof of multi-linear dispersive estimates, it is essential to separate the time-variable t from

the randomness. To this end, we define the Gaussian processes

W
p�q,n
s

def� W
pcosq,n
s �W

psinq,n
s . (4.4.73)

Similar as in (4.4.72), we define for any k ¥ 1, any �1, . . . ,�k P t�,�u, and any n1, . . . , nk P Z3

the multiple stochastic integral

Ikrnj;�j : 1 ¤ j ¤ ks def�
»
r0,8qk

dW
p�kq,nk
sk . . . dW

p�1q,n1
s1 . (4.4.74)

It then follows that there exists coefficients c : t�,�uk Ñ C depending only on the signs such that

Ikrt, n1, . . . , nks �
¸

�1,...,�k

cp�1, . . . ,�kq
� k¹
j�1

expp�jitxnjyq
	
Ikrnj;�j : 1 ¤ j ¤ ks. (4.4.75)
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For convenience, we also define the normalized multiple stochastic integrals by

rIkrnj;�j : 1 ¤ j ¤ ks �
� k¹
j�1

xnjy
	
� Ikrnj;�j : 1 ¤ j ¤ ks (4.4.76)

We close this subsection with the following stochastic representation, which expresses the quadratic

and cubic stochastic objects through multiple stochastic integrals.

Proposition 4.4.44. Let t P R and N ¥ 1. Then, we have for all n1, n2 P Z3 that

ppt, n1q �ppt, n2q � 1

xn12y2
δn12�0 � I2rt, n1, n2s. (4.4.77)

Furthermore, it holds that

N
pt, xq �

¸
n1,n2PZ3

� 2¹
j�1

ρNpnjq
	
I2rt, n1, n2s, (4.4.78)

�
N
pt, xq �

¸
n1,n2,n3PZ3

� 3¹
j�1

ρNpnjq
	 pV pn12q I3rt, n1, n2, n3s. (4.4.79)

Proof. This follows from [Bri20c, Lemma 2.5 and Proposition 2.9], Lemma 4.4.38, and that the

distribution of

ps, nq ÞÑ cosptxnyqW pcosq,n
s � sinptxnyqW psinq,n

s

is the same for all t P R.

4.4.7 Gaussian hypercontractivity and the moment method

In this section, we first review Gaussian hypercontractivity and its consequences. To help the

reader with a primary background in dispersive equations, let us first illustrate this phenomenon

through a basic example. Let Zσ be a Gaussian random variable with mean zero and variance σ2.

Using the exact formula for the moments of a Gaussian, we have for all m ¥ 1 that

E
�
Z2
σ

� � σ2 and E
�
Z2m
σ

� � p2mq!
2mm!

� σ2m.
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A simple estimate now yields that�
E
�
Z2m
σ

�	 1
2m ¤

� p2mq2m
2mpm{eqm

	 1
2m � σ �

?
2em

�
E
�
Z2
σ

�	 1
2
.

Using Hölder’s inequality, we obtain for all p ¥ 2 that

}Zσ}Lpω À
?
p}Zσ}L2

ω
. (4.4.80)

Thus, higher Lpω-norms of Gaussians can be controlled through the lower L2
ω-norm. The “hyper”

in Gaussian hypercontractivity refers exactly to this gain of integrability. While (4.4.80) is not

too interesting by itself, its significance lies in its generalizations to polynomials in infinitely many

Gaussians! Furthermore, Gaussian hypercontractivity has connections to many different inequali-

ties in analysis and probability theory, such as logarithmic Sobolev inequalities.

Our first proposition is also known as a Wiener chaos estimate. A version of this proposition can

be found in [Sim74, Theorem I.22] or [Nua06, Theorem 1.4.1].

Proposition 4.4.45 (Gaussian hypercontractivity). Let k ¥ 1, let �1, . . . ,�k P t�,�u, and let

a : pZ3qk Ñ C be a discrete function with finite support. Define the k-th order Gaussian chaos Gk

by

Gk
def�

¸
n1,...,nkPZ3

apn1, . . . , nkqIkr�j, nj : 1 ¤ j ¤ ks. (4.4.81)

Then, it holds for all p ¥ 2 that

}Gk}LpωpPq À p
k
2 }Gk}L2

ωpPq. (4.4.82)

Proposition 4.4.45 will play an important role in the estimates of stochastic objects such as �
N

.

While Proposition 4.4.45 bounds the moments of the Gaussian chaos, the reader may prefer or be

more familiar with a bound on probabilistic tails. As the next lemma shows, the two viewpoints

are equivalent.

293



Lemma 4.4.46 (Moments and tails). Let Z be a random variable and let γ ¡ 0. Then, the

following properties are equivalent, where the parameter K1, K2 ¡ 0 appearing below differ from

each other by at most a constant factor depending only on γ.

(i) The tails of Z satisfy for all λ ¥ 0 the inequality

Pp|Z| ¥ λq ¤ 2 exp
�� pλ{K1qγ

�
.

(ii) The moments of Z satisfy for all p ¥ 2 the inequality

}Z}Lp ¤ K2p
1
γ .

The lemma is an easy generalization of [Ver18, Proposition 2.5.2 or Proposition 2.7.1]. As we have

seen above, a Gaussian random variable corresponds to γ � 2. It is convenient to capture the size

of K2 in Lemma 4.4.46 (and hence K1) through a norm.

Definition 4.4.47. Let γ ¡ 0 and let Z be a random variable. We define

}Z}Ψγ � sup
p¥2

p�
1
γ }Z}Lpω .

For more information regarding the Ψγ-norms, we refer the reader to the excellent textbook [Ver18].

The next lemma shows that the Ψγ-norm is well-behaved under taking maxima of several random

variables.

Lemma 4.4.48 (Maxima and the Ψγ-norm). Let γ ¡ 0, let J P N, and let Z1, . . . , ZJ be random

variables on the same probability space. Then, it holds that

}maxpZ1, . . . , ZJq}Ψγ ¤ e logp2� Jq 1
γ max
j�1,...,J

}Zj}Ψγ .

While this is only a minor generalization of [Ver18, Exercise 2.5.10], we include the short proof.
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Proof. Let p ¥ 2. For any r ¥ p, it follows from the embedding `rj ãÑ `8j and Hölder’s inequality

that

}maxpZ1, . . . , ZJq}Lpω ¤ }Zj}Lpω`8j ¤ }Zj}Lpω`rj ¤ }Zj}Lrω`rj ¤ J
1
r r

1
γ max
j�1,...,J

}Zj}Ψγ .

Then, we choose r � logp2� Jqp, which yields the desired estimate.

We now turn to a combination of Gaussian hypercontractivity and the moment method, which

will be essential to our treatment of the random matrix terms RMT. The following proposition,

which is easy-to-use, general, and essentially sharp, was recently obtained by Deng, Nahmod, and

Yue in [DNY20, Proposition 2.8]. Before we state the estimate, we need the following definition,

which relies on the tensor notation from Definition 4.4.32.

Definition 4.4.49 (Contracted random tensor). Let J � N0, let p�jqjPJ be given, and let Nmax ¥
1. Let h � hnJ be a tensor and assume that all vectors in the support of h satisfy }nJ } ¤ Nmax.

Let S � J and define k
def� #S. We then define the contracted random tensor hc � phcqnJ zS by

hcpni : i R Sq def�
¸

pnjqjPS

hpnJ q � rIkr�j, nj : j P Ss, (4.4.83)

where the normalized multiple stochastic integrals are as in (4.4.76).

In the next proposition, we use the tensor norms from Definition 4.4.32.

Proposition 4.4.50 ([DNY20, Proposition 2.8, Proposition 4.14]). Let J ,S, Nmax, h, hc, and k

be as in Definition 4.4.49. Let A,B be a partition of t1, . . . , JuzS. Then, we have for all p ¥ 2

and θ ¡ 0 that

}}hc}nAÑnB}LpωpPq Àθ N
θ
max

�
max
X ,Y

}h}nXÑnY

	
p
k
2 , (4.4.84)

where the maximum is taken over all sets X ,Y which satisfy A � X , B � Y , and form a partition

of J .
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In [DNY20], the proposition is stated in terms of non-resonant products of Gaussians instead of

multiple stochastic integrals. Furthermore, the probabilistic estimate is stated in terms of the

tail-behavior instead of the moment growth. Both of these modifications can be obtained easily

by replacing the large deviation estimate [DNY20, Lemma 4.4] in the proof by Proposition 4.4.45.

We often simply refer to Proposition 4.4.50 as the moment method, since it is the main ingredient

of the proof (cf. [DNY20]). While the full generality of Proposition 4.4.50 is needed in [DNY20],

we will only rely on the following special case.

Example 4.4.51. Let �1,�2 P t�,�u, let h � hpn, n1, n2, n3q be a tensor and assume that

}pn, n1, n2, n3q} À Nmax on the support of h. Define the contracted random tensor hc by

hcpn, n3q def�
¸

n1,n2PZ3

hpn, n1, n2, n3q � I2r�j, nj : j � 1, 2s. (4.4.85)

Then, we have for all p ¥ 2 and θ ¡ 0 that���}hc}n3Ñn

���
Lpω
Àθ N

θ
max max

�}h}n1n2n3Ñn, }h}n3Ñnn1n2 , }h}n1n3Ñnn2 , }h}n2n3Ñnn1

� � p.
4.5 Explicit stochastic objects

In this section, we estimate the stochastic objects appearing in the expansion of uN and in the

evolution equations for XN and YN . The analysis of explicit stochastic objects is necessary for

both dispersive and parabolic equations. We refer the interested reader to the treatment of the

cubic stochastic heat equation in [CC18, Hai16] and the quadratic stochastic wave equation in

[GKO18a] for illustrative examples. While the algebraic aspects are similar in dispersive and

parabolic settings, the analytic aspects are quite different. In the parabolic setting, the regularity

of stochastic objects can be determined through simple “power-counting”. In contrast, the optimal

estimates in the dispersive setting require more complicated multi-linear dispersive estimates. We

remind the reader that, as explained in Remark 4.1.4, we restrict ourselves to 0   β   1{2.
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4.5.1 Cubic stochastic objects

In this subsection, we analyze the cubic stochastic object �
N

and the corresponding solution to

the forced wave equation
�

N . Ignoring the smoother component M of the initial data, they

correspond to the first Picard iterate of (4.2.1).

Proposition 4.5.1 (Cubic stochastic objects). Let T ¥ 1 and let s   β � η. Then, it holds that��� sup
N¥1

} �
N
}Xs�1,b��1pr0,T sq

���
LpωpPq

À T 2p
3
2 . (4.5.1)

Furthermore, we have that ��� sup
N¥1

} � N }C0
t Csxpr0,T s�T3q

���
LpωpPq

À T 2p
3
2 . (4.5.2)

In the frequency-localized version of (4.5.1) and (4.5.2), which is detailed in the proof, we gain an η1-

power of the maximal frequency-scale. Furthermore, we can replace
�

N by
�

N

τ
� I

�
1r0,τ s � N

�
.

Remark 4.5.2. We recall that the parameter T is important for the globalization argument, but

does not enter into the local well-posedness theory. In order to achieve smallness on a short interval,

we will instead use the time-localization lemma (Lemma 4.4.3) and b� ¡ b.

Proof. We first prove (4.5.1), which forms the main part of the argument. In the end, we follow

a standard and short argument to show that (4.5.1), Gaussian hypercontractivity, and translation

invariance imply (4.5.2). To simplify the notation, we set Nmax � maxpN1, N2, N3q. In this

argument, we rely on multiple stochastic integrals. Recalling the multiple stochastic integrals from
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(4.4.72) and the stochastic representation formula (Proposition 4.4.44), we have that

�
N
pt, xq �

¸
n1,n2,n3PZ3

ρNpn123q
� 3¹
j�1

ρNpnjq
	pV pn12q exp

�
ixn123, xy

�
I3rt, n1, n2, n3s

�
¸

�1,�2,�3

¸
n1,n2,n3PZ3

�
cp�j : 1 ¤ j ¤ 3q

� 3¹
j�1

ρNpnjq
	pV pn12q exp

�
ixn123, xy

�
�
� 3¹
j�1

expp�jitxnjyq
	
I3r�j, nj : 1 ¤ j ¤ 3s

�
,

where cp�j : 1 ¤ j ¤ 3q are deterministic coefficients. Using a Littlewood-Paley decomposition,

we obtain that

�
N
�

¸
�1,�2,�3

¸
N1,N2,N3¥1

cp�j : 1 ¤ j ¤ 3q �
N
r�j, Nj : 1 ¤ j ¤ 3s,

where

�
N
r�j, Nj : 1 ¤ j ¤ 3spt, xq def�

¸
n1,n2,n3PZ3

�
ρNpn123q

� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12q

� exp
�
ixn123, xy

�� 3¹
j�1

expp�jitxnjyq
	
I3r�j, nj : 1 ¤ j ¤ 3s

�
.

We estimate each dyadic block separately. We first prove the desired estimate for b� instead

of b� and then later upgrade the estimate. Using Minkowski’s integral inequality and Gaussian

hypercontractivity (Proposition 4.4.45), we obtain that������ �
N
r�j, Nj : 1 ¤ j ¤ 3s

���
Xs�1,b��1pr0,T sq

���
Lpω

À max
�123

���Ft,x

�
χpt{T q �

N
r�j, Nj : 1 ¤ j ¤ 3spt, xq

	
pλ	123 xny, nq}LpωL2

λ`
2
npΩ�R�T3q

À p
3
2 max
�123

���Ft,x

�
χpt{T q �

N
r�j, Nj : 1 ¤ j ¤ 3spt, xq

	
pλ	123 xny, nq}L2

ωL
2
λ`

2
npΩ�R�T3q. (4.5.3)

For a fixed sign �123, we define the phase ϕ by

ϕpn1, n2, n3q def� �123xn123y �1 xn1y �2 xn2y �3 xn3y.
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Using the definition of ϕ, we can write the space-time Fourier transform of a dyadic piece in the

cubic stochastic object χpt{T q �
N

as

Ft,x

�
χpt{T q �

N
r�j, Nj : 1 ¤ j ¤ 3spt, xq

	
pλ	123 xny, nq

� T
¸

n1,n2,n3PZ3

�
1
 
n � n123

(
ρNpn123q

� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12q

� pχ�T pλ� ϕpn1, n2, n3qq
�
I3r�j, nj : 1 ¤ j ¤ 3s

�
.

(4.5.4)

Using the orthogonality of the multiple stochastic integrals and the decay of pχ, we obtain that���Ft,x

�
χpt{T q �

N
r�j, Nj : 1 ¤ j ¤ 3spt, xq

	
pλ	123 xny, nq

���2

L2
ωL

2
λ`

2
npΩ�R�T3q

À T 2N�2
1 N�2

2 N�2
3

¸
n1,n2,n3PZ3

�� 3¹
j�1

χNjpnjq
	
xn123y2ps�1q|pV pn12q|2

�
»
R

dλ xλy2pb��1q|pχ�T pλ� ϕpn1, n2, n3qq
�|2�

À T 2N�2
1 N�2

2 N�2
3

¸
n1,n2,n3PZ3

� 3¹
j�1

χNjpnjq
	
xn123y2ps�1q|pV pn12q|2xϕpn1, n2, n3qy2pb��1q

À T 2N�2
1 N�2

2 N�2
3 sup

mPZ3

¸
n1,n2,n3PZ3

� 3¹
j�1

χNjpnjq
	
xn123y2ps�1q|pV pn12q|21

 |ϕ�m| ¤ 1
(
.

Combining this with (4.5.3) and using the cubic sum estimate (Proposition 4.4.20), we obtain that������ �
N
r�j, Nj : 1 ¤ j ¤ 3s

���
Xs�1,b��1pr0,T sq

���
Lpω
À Tp

3
2N s�β

max .

Since there are at most À logp10�Nmaxq non-trivial choices for N , we obtain from Lemma 4.4.48

that ��� sup
N¥1

��� �
N
r�j, Nj : 1 ¤ j ¤ 3s

���
Xs�1,b��1pr0,T sq

���
Lpω

À T log logp10�Nmaxq2N s�β
maxp

3
2 .

(4.5.5)
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After summing over the dyadic scales, (4.5.5) almost implies (4.5.1) except that b� needs to be re-

placed by b�. To achieve this, we utilize the room of the estimate (4.5.5) in the maximal frequency

scale. Using Plancherel’s theorem, Minkowski’s integral inequality, and Gaussian hypercontractiv-

ity, we have that��� sup
N¥1

��� �
N
r�j, Nj : 1 ¤ j ¤ 3s

���
X0,0pr0,T sq

���
Lpω

À log logp10�Nmaxq2 sup
N

���1 0 ¤ t ¤ T
(
�

N
r�j, Nj : 1 ¤ j ¤ 3s}LpωL2

tL
2
x

À T
1
2 log logp10�Nmaxq2p 3

2

� ¸
n1,n2,n3PZ3

3¹
j�1

�
χNjpnjqxnjy�2

�	 1
2

À T
1
2 log logp10�Nmaxq2N

3
2

maxp
3
2 .

By interpolating this estimate with (4.5.5), we obtain that��� sup
N¥1

��� �
N
r�j, Nj : 1 ¤ j ¤ 3s

���
Xs�1,b��1pr0,T sq

���
Lpω

À T log logp10�Nmaxq2N s�β�4pb��b�q
max p

3
2

À TN s�β�5pb��b�q
max p

3
2 .

(4.5.6)

After summing over the dyadic scales, this finally yields (4.5.1). We prove the second estimate

(4.5.2) using the (frequency-localized version of the) first estimate. We present the details of

the (standard) argument, but skip similar steps in subsequent proofs. Using the energy estimate

(Lemma 4.4.8) and the (frequency-localized version of the) first estimate (4.5.1), we obtain that��� sup
N¥1

��� � N r�j, Nj : 1 ¤ j ¤ 3s
���
L8t H

s
x

���
Lpω
À p1� T qN s�β�5pb��b�q

max p
3
2 . (4.5.7)

For any 2 ¤ q ¤ p, we have from Sobolev embedding (in space-time), Minkowski’s integral in-
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equality, and Gaussian hypercontractivity that��� � N r�j, Nj : 1 ¤ j ¤ 3s
���
LpωL

8
t Csx

À N
4
q

max

���x∇ys � N r�j, Nj : 1 ¤ j ¤ 3s
���
LpωL

q
tL

q
x

À N
4
q

max

���x∇ys � N r�j, Nj : 1 ¤ j ¤ 3s
���
LqtL

q
xL

p
ω

À N
4
q

maxp
3
2

���x∇ys � N r�j, Nj : 1 ¤ j ¤ 3s
���
LqtL

q
xL2

ω

. (4.5.8)

For a fixed t P R, the distribution of x∇ys � N r�j, Nj : 1 ¤ j ¤ 3spt, xq is translation invariant.

Thus, we can replace the Lqx-norm in (4.5.8) by the L2
x-norm. Using Minkowski’s integral inequality

and (4.5.7) then yields��� � N r�j, Nj : 1 ¤ j ¤ 3s
���
LpωL

8
t Csx

À N
4
q

maxp
3
2

���x∇ys � N r�j, Nj : 1 ¤ j ¤ 3s
���
L2
ωL

q
tL

2
x

À T 1� 1
qN

s�β�5pb��b�q�
4
q

max p
3
2 .

By choosing q � qpb�, b�q sufficiently large and then summing over dyadic scales, this proves

(4.5.2) for p Áb�,b� 1. The smaller values of p can be handled by using Hölder’s inequality in ω.

Finally, the statement for
�

N replaced by
�

N

τ
follows from the boundedness of 1r0,τ sptq on

Xs2�1,b��1, which was proven in Lemma 4.4.4.

4.5.2 Quartic stochastic objects

The expansion uN � � �
N � wN or the explicit stochastic objects in So only contain linear,

cubic, quintic, or septic stochastic objects. However, the physical terms Phy contain terms such

as

V �
�
P¤N � P¤N �

N

	
P¤NwN or V �

�
P¤N � P¤NwN

	
P¤N

�
N .
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Since we treat wN P Xs1,b using deterministic methods, they can be viewed as quartic expressions

in the random initial data . Furthermore, due to the convolution with the interaction potential V

in the second term, we also have to understand the product of and
�

N at two different spatial

points.

Proposition 4.5.3. Let N123, N4 ¥ 1. Then, we have for all s   �1{2� η and all T ¥ 1 that��� sup
N¥1

sup
yPT3

����PN123P¤N
�

N pt, x� yq
	
� PN4P¤N pt, xq

���
C0
t Csxpr0,T s�T3q

���
LpωpPq

À T 3p2 maxpN123, N4q�
η
2Nκ

4 .

(4.5.9)

If N123 � N4, we have for all s   �1{2� β � 2η that��� sup
N¥1

sup
yPT3

����PN123P¤N
�

N pt, x� yq
	
� PN4P¤N pt, xq

���
C0
t Csxpr0,T s�T3q

���
LpωpPq

À T 3p2Nκ
4 .

(4.5.10)

Finally, without the shift in y P T3, we have for s   �1{2� η that��� sup
N¥1

����PN123P¤N
�

N pt, xq
	
� PN4P¤N pt, xq

���
C0
t Csxpr0,T s�T3q

���
LpωpPq

À T 3p2 maxpN123, N4q�
η
10 .

(4.5.11)

Remark 4.5.4. In the fully frequency-localized version of Proposition 4.5.3, which is detailed in

the proof, we gain an η1-power of the maximal frequency-scale. As in Proposition 4.5.1, we may

also replace
�

N by
�

N

τ
� I

�
1r0,τ s � N

�
.

Remark 4.5.5. We recall that η is much smaller than κ and hence the right-hand sides of (4.5.9)

and (4.5.10) diverge as N4 Ñ 8. The third estimate (4.5.11) is quite delicate and requires the

sine-cancellation lemma. A similar estimate is not available for the partially shifted process and it

is likely that at least a logarithmic loss is necessary in (4.5.9) and (4.5.10) as N4 tends to infinity.
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Proof. We prove (4.5.9) and (4.5.10) simultaneously. The third estimate (4.5.11) will mainly

utilize the same estimates, but also requires the sine-cancellation lemma (Lemma 4.4.14). Using

the representation based on multiple stochastic integrals (Proposition 4.4.44), we have that�
PN123P¤N

�
N pt, x� yq

	
� PN4P¤N pt, xq

�
¸

N1,N2,N3¥1

¸
n1,n2,n3,n4PZ3

ρ2
Npn123qχN123pn123q

� 4¹
j�1

ρNpnjqχNjpnjq
	pVSpn1, n2, n3q

� xn123y�1 exp
�
ixn1234, xy � ixn123, yy

	� » t

0

sinppt� t1qxn123yq I3rt1;n1, n2, n3s � I1rt;n4s dt1
	
.

Using the product formula for multiple stochastic integrals, we obtain that�
PN123P¤N

�
N pt, x� yq

	
� PN4P¤N pt, xq

�
¸

N1,N2,N3¥1

Gp4qpt, x, y;N�q �
¸

N1,N2,N3¥1

Gp2qpt, x, y;N�q,

where the dependence on N123, N1, N2, N3, N4 is indicated by N� and the quartic and quadratic

Gaussian chaoses are given by

Gp4qpt, x, y;N�q

�
¸

�1,�2,�3,�4

¸
n1,n2,n3,n4PZ3

�
cp�j : 1 ¤ j ¤ 4qρ2

Npn123qρNpn4qχN123pn123q

� � 4¹
j�1

ρ¤NpnjqχNjpnjq
�pVSpn1, n2, n3qxn123y�1 exp

�
ixn1234, xy � ixn123, yy

	
� expp�4itxn4yq

� » t

0

sinppt� t1qxn123yq
� 3¹
j�1

expp�jit
1xnjyq

�
dt1

	
I4p�j, nj : 1 ¤ j ¤ 4q

�

303



and

Gp2qpt, x, y;N�q

� 3
¸

�1,�2

¸
n1,n2PZ3

�
cp�1,�2q

� 2¹
j�1

ρNpnjqχNjpnjq
	

exp
�
ixn12, xy

	
�
� ¸
n3PZ3

�
ρ2
Npn123qρ2

Npn3qχN123pn123qχN3pn3qχN4pn3qxn123y�1xn3y�2pVSpn1, n2, n3q

� exp
�� ixn123, yy

� » t

0

sinppt� t1qxn123yq cosppt� t1qxn3yq
2¹
j�1

expp�jit
1xnjyyq dt1

�

� I2p�j, nj : j � 1, 2q

�
.

The quartic Gaussian chaos Gp4q and quadratic Gaussian chaoses Gp2q contain the resonant and

non-resonant terms of the product, respectively. We estimate both terms separately.

The non-resonant term Gp4q: We first let s   �1{2 � η. Using Gaussian hypercontractivity and

standard reductions (see e.g. the proof of Proposition 4.5.1), it suffices to estimate the L8t L
2
ωH

s
x-

norm instead of the LpωL
8
t Csx-norm. Let the phase-function ϕ be as in (4.4.43). Using the orthog-

onality of the multiple stochastic integrals, we have for a fixed t P r0, T s that��Gp4qpt, x, y;N�qq
��2

L2
ωH

s
x

À
¸

�1,�2,�3

¸
n1,n2,n3,n4PZ3

�
χN123pn123q

� 4¹
j�1

χNjpnjq
	
|pVSpn1, n2, n3q|2xn1234y2sxn123y�2

� 4¹
j�1

xnjy�2
	

�
��� » t

0

sinppt� t1qxn123yq
� 3¹
j�1

expp�jit
1xnjyq

�
dt1

���2�

À p1� T q2
¸

�1,�2,�3

¸
n1,n2,n3,n4PZ3

¸
mPZ

�
xmy�2χN123pn123q

� 4¹
j�1

χNjpnjq
	
|pVSpn1, n2, n3q|2xn1234y2s

� xn123y�2
� 4¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(�

304



À T 2 sup
mPZ

¸
�1,�2,�3

¸
n1,n2,n3,n4PZ3

�
χN123pn123q

� 4¹
j�1

χNjpnjq
	
|pVSpn1, n2, n3q|2xn1234y2s

� xn123y�2
� 4¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(�
.

Using the non-resonant quartic sum estimate (Lemma 4.4.24), it follows that

��Gp4qpt, x, y;N123, N1, N2, N3, N4qq
��2

L2
ωH

s
x
À T 2 maxpN1, N2, N3q�2β�2ηN�2η

4 .

This yields (4.5.9) for the non-resonant component. If N123 � N4, then maxpN1, N2, N3q Á N4,

and hence we can raise the value of s by β � η. Thus, we also obtain (4.5.10) for the non-resonant

component. Even when y � 0, our estimate for the non-resonant component does not exhibit any

growth in N4, and hence it also yields (4.5.11) for the non-resonant component.

The resonant term Gp2q: This term exhibits a higher spatial regularity and we let �1{2   s   0.

Using Gaussian hypercontractivity and standard reductions (see e.g. the proof of Proposition

4.5.1), it suffices to estimate the L8t L
2
ωH

s
x-norm instead of the LpωL

8
t Csx-norm. Using the orthogo-

nality of the multiple stochastic integrals, we have that��Gp2qpt, x, y;N�q
��2

L2
ωH

s
x

À
¸

�1,�2

¸
n1,n2PZ3

�� 2¹
j�1

χNjpnjq
	
xn12y2sxn1y�2xn2y�2

�
���� ¸
n3PZ3

�
ρ2
Npn123qρ2

Npn3qχN123pn123qχN3pn3qχN4pn3qxn123y�1xn3y�2pVSpn1, n2, n3q

� exp
�� ixn123, yy

� » t

0

sinppt� t1qxn123yq cosppt� t1qxn3yq
2¹
j�1

expp�jit
1xnjyyq dt1

�����2�.
(4.5.12)

We now present two estimates of (4.5.12). The first estimate will yield (4.5.9) and (4.5.10). The

second estimate is restricted to the case y � 0 and yields, combined with the first estimate, (4.5.11).
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After computing the integral in t1 and decomposing according to the dispersive symbol, we obtain

from Cauchy-Schwarz that

(4.5.12) À T 21
 
N3 � N4

( ¸
n1,n2PZ3

�� 2¹
j�1

χNjpnjq
	
xn12y2sxn1y�2xn2y�2

�
� ¸
mPZ

¸
n3PZ3

xmy�1χN3pn3q|pV pn1, n2, n3q|xn123y�1xn3y�21
 |ϕ�m| ¤ 1

(
2�
.

Using the resonant quartic sum estimate (Lemma 4.4.26), this implies that

(4.5.12) À T 21
 
N3 � N4

(
logp2�N4q2 maxpN1, N2q2s.

This clearly implies (4.5.9) and (4.5.10). Except for the logarithmic divergence in N4 (and hence

N3), it also implies (4.5.11). We now need to restrict to y � 0 and we may assume that N1, N2 !
N3. For fixed n1, n2 P Z3, we can apply the sine-cancellation lemma (Lemma 4.4.14) with A �
maxpN1, N2q and

fpt, t1, n3q
def� ρ2

Npn123qρ2
Npn3qχN123pn123qχN3pn3qχN4pn3qxn123y�1xn3y�2pVSpn1, n2, n3q

2¹
j�1

expp�jit
1xnjyyq

This yields

(4.5.12)
��
y�0

À T 41
 
N3 � N4

(
maxpN1, N2q8N�2

3

¸
n1,n2PZ3

xn12y2s
� 2¹
j�1

1
 |nj| � Nj

(xnjy�2
	

À T 4 maxpN1, N2q10N�2
3 .

By combining our two estimates of (4.5.12)
��
y�0

we arrive at (4.5.11).
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Remark 4.5.6. As we have seen in the proof of Proposition 4.5.3, the (probabilistic) resonant

portion of P¤N
�

N �P¤N has spatial regularity 0�, which is better than the sum of the individual

spatial regularities. As a result, the probabilistic resonances between linear and cubic stochastic

objects in Section 4.5.4 are relatively harmless.

4.5.3 Quintic stochastic objects

In this subsection, we control the quintic stochastic objects in So, i.e.,

Ì Ì& 

� � �
N�
N

and
�

N�
N

.

Since So is part of the evolution equation for the smoother nonlinear remainder YN , the quintic

stochastic objects have to be controlled at regularity s2 � 1.

Proposition 4.5.7 (First quintic stochastic object). For any T ¥ 1 and any p ¥ 2, it holds that��� sup
N¥1

��� Ì Ì& 

� � �
N�
N

���
Xs2�1,b��1pr0,T sq

���
LpωpΩq

À T 2p
5
2 . (4.5.13)

Proposition 4.5.8 (Second quintic stochastic object). For any T ¥ 1 and any p ¥ 2, it holds

that ��� sup
N¥1

��� �
N�

N

���
Xs2�1,b��1pr0,T sq

���
LpωpΩq

À T 2p
5
2 . (4.5.14)

Remark 4.5.9. In the frequency-localized versions of Proposition 4.5.7 and Proposition 4.5.8,

which are detailed in the proof, we gain an η1-power of the maximal frequency-scale. As in Propo-

sition 4.5.1, we may also replace
�

N by
�

N

τ
� I

�
1r0,τ s � N

�
. We will not further comment on

these minor modifications.

Proof of Proposition 4.5.7: Throughout the proof, we ignore the supremum in N ¥ 1 and only

prove a uniform estimate for a fixed N . Using the frequency-localized estimates below and the
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same argument as in the proof of Proposition 4.5.1, we can insert the supremum in N at the end

of the proof.

We first obtain a representation of the quintic stochastic object using multiple stochastic integral.

Using (4.2.23) and Proposition 4.4.44, we have that

Ì Ì& 

� � �
N�
N
pt, xq

�
¸

N345,N1,...,N5 :
maxpN1,N345q¡Nε

2

¸
n1,...,n5PZ3

�
ρ2
Npn345qχN345pn345q

� 5¹
j�1

ρNpnjqχNjpnjq
	pV pn1345qpVSpn3, n4, n5q

� xn345y�1 exp
�
ixn12345, xy

�
I2rt, n1, n2s

� » t

0

sin
�pt� t1qxn123y

�
I3rt1, n3, n4, n5sdt1

	�
.

Using the product formula for mixed multiple stochastic integrals (Proposition 4.4.44 and Lemma

4.4.41), we obtain that

Ì Ì& 

� � �
N�
N
pt, xq �

¸
N345,N1,...,N5 :

maxpN1,N345q¡Nε
2

�
Gp5q � Gp3q � rGp3q � Gp1q

	
pt, x;N�q, (4.5.15)

where the dependence on N345, N1, . . . , N5 is indicated by N� and the quintic, cubic, and linear

Gaussian chaoses are defined as follows. The quintic chaos is given by

Gp5qpt, x;N�q
def�

¸
�1,...,�5

cp�j : 1 ¤ j ¤ 5q
¸

n1,...,n5PZ3

�
ρ2
Npn345qχN345pn345q

� 5¹
j�1

ρNpnjqχNjpnjq
	pV pn1345q

� pVSpn3, n4, n5qxn345y�1 exp
�
ixn12345, xy

�� 2¹
j�1

exp
��j itxnjy

�	
�
� » t

0

sin
�pt� t1qxn123y

� 5¹
j�3

exp
��j it

1xnjy
�
dt1

	
I5r�j, nj : 1 ¤ j ¤ 5s

�
.
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The two cubic Gaussian chaoses are given by

Gp3qpt, x;N�q
def�

¸
�2,�4,�5

cp�2,�4,�5q
¸

n2,n4,n5PZ3

�� ¹
j�2,4,5

ρNpnjqχNjpnjq
	pV pn45q exp

�
ixn245, xy

�
�

¸
n3PZ3

�
ρ2
Npn3qρ2

Npn345qχN345pn345qχN1pn3qχN3pn3qpVSpn3, n4, n5qxn345y�1xn3y�2 exp
��2 itxn2y

�
�
» t

0

sin
�pt� t1qxn345yq cos

�pt� t1qxn3yq
¹
j�4,5

exp
��j it

1xnjy
�
dt1



I3r�j, nj : j � 2, 4, 5s

�
and

rGp3qpt, x;N�q
def�

¸
�1,�4,�5

cp�1,�4,�5q
¸

n1,n4,n5PZ3

�� ¹
j�1,4,5

ρNpnjqχNjpnjq
	

exp
�
ixn145, xy

� ¸
n3PZ3

�
ρ2
Npn3q

� ρ2
Npn345qχN345pn345qχN1pn3qχN3pn3qpVSpn3, n4, n5qpV pn1345qxn345y�1xn3y�2 exp

��1 itxn1y
�

�
» t

0

sin
�pt� t1qxn345yq cos

�pt� t1qxn3yq
¹
j�4,5

exp
��j it

1xnjy
�
dt1



I3r�j, nj : j � 1, 4, 5s

�
.

Finally, the linear Gaussian chaos (or simply Gaussian) is given by

Gp1qpt, x;N�q
def�

¸
�5

cp�5q
¸
n5PZ3

ρNpn5qχN5pn5q exp
�
ixn5, xy

� ¸
n3,n4PZ4

�
ρ2
Npn345qρ2

Npn3qρ2
Npn4qχN345pn345q

� χN1pn3qχN3pn3qχN2pn4qχN4pn4qpVSpn3, n4, n5qpV pn45qxn345y�1xn3y�2xn4y�2

�
» t

0

sin
�pt� t1qxn345y

�
cos

�pt� t1qxn3y
�

cos
�pt� t1qxn4y

�
exp

��5 it
1xn5y

�
dt1

�
I1r�5, n5s.

Each of the frequency-localized Gaussian chaoses in (4.5.15) is now estimated separately. We en-

courage the reader to concentrate on the estimates for Gp5q and Gp1q, which already contain all

ideas and ingredients.
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The non-resonant term Gp5q:

Let s � 1{2 � η. We will first estimate the Xs�1,b��1-norm of a dyadic piece and then use the

condition maxpN1, N345q ¡ N ε
2 to increase the value of s. Using Gaussian hypercontractivity

(Proposition 4.4.45), the orthogonality of multiple stochastic integrals, and Lemma 4.4.12, we

obtain that���}Gp5qpt, x;N�q}Xs�1,b��1pr0,T sq

���2

Lpω

À max
�12345

���}xλyb��1xnys�1Ft,x

�
χpt{T qGp5qpt, x;N�q

�pλ	12345 xny, nq}L2
λ`

2
npR�Z3q

���2

Lpω

À p5 max
�12345

���}xλyb��1xnys�1Ft,x

�
χpt{T qGp5qpt, x;N�q

�pλ	12345 xny, nq}L2
λ`

2
npR�Z3q

���2

L2
ω

À T 2p5 max
�12345,�345,
�1,...,�5

¸
n1,...,n5PZ3

�
χN345pn345q

� 5¹
j�1

χNjpnjq
	
xn12345y2ps�1qxn345y�2

� |pV pn1345q|2|pVSpn3, n4, n5q|2
� 5¹
j�1

xnjy�2
	�

1� | �345 xn345y �3 xn3y �4 xn4y �5 xn5y|
��2

�
»
R
xλy2pb��1q

�
1�min

���λ� p�12345xn12345y �345 xn345y �1 xn1y �2 xn2yq
��,

��λ� p�12345xn12345y 	345 xn345y �
5̧

j�1

p�jqxnjy
��	
�2

dλ

�
. (4.5.16)

To break down this long formula, we define the phase-functions

ψpn3, n4, n5q def� �345xn345y �3 xn3y �4 xn4y �5 xn5y,
ϕpn1, . . . , n5q def� �12345xn12345y �345 xn345y �1 xn1y �2 xn2y,

rϕpn1, . . . , n5q def� �12345xn12345y 	345 xn345y �
5̧

j�1

p�jqxnjy.
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Integrating in λ and decomposing according to the value of the phases, we obtain that

(4.5.16) À T 2p5 logp2�maxpN1, . . . , N5qq max
�12345,�345,
�1,...,�5

sup
m,m1PZ

¸
n1,...,n5PZ3

�
χN345pn345q

�
� 5¹
j�1

χNjpnjq
	
xn12345y2ps�1qxn345y�2|pV pn1345q|2|pVSpn3, n4, n5q|2

� 5¹
j�1

xnjy�2
	

� 1
 |ψ �m| ¤ 1

(�
1
 |ϕ�m1| ¤ 1

(� 1
 |rϕ�m1| ¤ 1

(	�
.

Using the non-resonant quintic sum estimate (Lemma 4.4.27), we finally obtain that���}Gp5qpt, x;N�q}Xs�1,b��1pr0,T sq

���
Lpω
À Tp

5
2 maxpN1, N3, N4, N5q�β�ηN�η

2 . (4.5.17)

Due to the operator Ì Ì& 

� �
, we have that

maxpN1, N3, N4, N5q Á maxpN1, N2, N3, N4, N5qε.

Thus, (4.5.17) implies���}Gp5qpt, x;N�q}Xs2�1,b��1pr0,T sq

���
Lpω
À Tp

5
2 maxpN1, N2, N3, N4, N5qδ2�3η�εβ,

which is acceptable.

Single-resonance term Gp3q:

This term only yields a non-trivial contribution if N1 � N3. In particular, maxpN1, N345q ¡ N ε
2

implies that maxpN3, N4, N5q Á N ε
2. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9)

and Gaussian hypercontractivity, we have that���}Gp3qpt, x;N�q}Xs2�1,b��1pr0,T sq

���
Lpω
À
���}Gp3qpt, x;N�q}L2b�

t H
s2�1
x pr0,T s�T3q

���
Lpω

À T
1
2

���}Gp3qpt, x;N�q}L2
tH

s2�1
x pr0,T s�T3q

���
Lpω

À Tp
3
2 sup
tPr0,T s

���}Gp3qpt, x;N�q}Hs2�1
x pT3q

���
L2
ω

.

(4.5.18)
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Using the orthogonality of the multiple stochastic integrals, we have that

sup
tPr0,T s

���}Gp3qpt, x;N�q}Hs2�1
x pT3q

���2

L2
ω

À N�2β
45 N�2

2 N�2
4 N�2

5

¸
n2,n4,n5PZ3

χN45pn45q
� ¹
j�2,4,5

χNjpnjq
	
xn245y2ps2�1qSpn2, n4, n5; t, N�q2,

(4.5.19)

where

Spn2, n4, n5; t, N�q
def�

���� ¸
n3PZ3

�
ρ2
Npn3qρ2

Npn345qχN345pn345qχN1pn3qχN3pn3qpVSpn3, n4, n5qxn345y�1xn3y�2

� exp
��2 itxn2y

� » t

0

sin
�pt� t1qxn345yq cos

�pt� t1qxn3yq
¹
j�4,5

exp
��j it

1xnjy
�
dt1

�����.
Define the phase-function ϕ by

ϕpn3, n4, n5q def� xn345y �3 xn3y �4 xn4y �5 xn5y. (4.5.20)

By performing the integral, using the triangle-inequality, expanding the square, and using Lemma

4.4.25, we obtain that

Spn2, n4, n5; t, N�q2

À T 2 max
�3,�4,�5

� ¸
mPZ

¸
n3PZ3

xmy�1χN3pn3qxn345y�1xn3y�21
 |ϕ�m| ¤ 1

(
2

À T 2 logp2�maxpN3, N4, N5qq
�

max
�3,�4,�5

sup
mPZ

¸
n3PZ3

χN3pn3qxn345y�1xn3y�21
 |ϕ�m| ¤ 1

(

�
�

max
�3,�4,�5

¸
mPZ

¸
n3PZ3

xmy�1χN3pn3qxn345y�1xn3y�21
 |ϕ�m| ¤ 1

(

À T 2 logp2�maxpN3, N4, N5qqxn45y�1

� max
�3,�4,�5

¸
mPZ

¸
n3PZ3

xmy�1χN3pn3qxn345y�1xn3y�21
 |ϕ�m| ¤ 1

(
.

312



By inserting this into (4.5.19) and summing in n2 P Z3 first, we obtain

sup
tPr0,T s

���}Gp3qpt, x;N�q}Hs2�1
x pT3q

���2

L2
ω

À T 2 logp2�maxpN3, N4, N5qq
� 5¹
j�2

N�2
j

	
� max

�3,�4,�5

¸
mPZ

¸
n2,n3,n4,n5PZ3

�
xmy�1

� 5¹
j�2

χNjpnjq
	
xn245y2ps2�1qxn345y�1xn45y�1�2β1

 |ϕ�m| ¤ 1
(�

À T 2 logp2�maxpN3, N4, N5qqN2s2�1
2

� 5¹
j�3

N�2
j

	
� max

�3,�4,�5

¸
mPZ

¸
n3,n4,n5PZ3

�
xmy�1

� 5¹
j�3

χNjpnjq
	
xn345y�1xn45y�1�2β1

 |ϕ�m| ¤ 1
(�

À T 2 logp2�maxpN3, N4, N5qqN2s2�1
2 maxpN4, N5q�2β.

In the last line, we have used the cubic sum estimate (Proposition 4.4.20). In total, this yields

sup
tPr0,T s

���}Gp3qpt, x;N�q}Hs2�1
x pT3q

���
L2
ω

À T logp2�maxpN3, N4, N5qqN s2�
1
2

2 maxpN4, N5q�β. (4.5.21)

Recalling that maxpN3, N4, N5q ¡ N ε
2, we are only missing decay in N3. By using the sine-

cancellation lemma (Lemma 4.4.14) to estimate Spn2, n4, n5; t, N�q, we easily obtain that

sup
tPr0,T s

���}Gp3qpt, x;N�q}Hs2�1
x pT3q

���
L2
ω

À T 2N
s2�

1
2

2 maxpN4, N5q5N�1
3 . (4.5.22)

After combining (4.5.21), (4.5.22), and the condition maxpN3, N4, N5q ¡ N ε
2, we obtain an accept-

able estimate.

Single-resonance term rGp3q: This term can be controlled through similar (or simpler) arguments

than Gp3q and we omit the details.
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Double-resonance term Gp1q:

This term only yields a non-trivial contribution when N1 � N3 and N2 � N4. We note that the

sum in n3 P Z3 may appear to diverge logarithmically (once the dyadic localization is removed).

However, the sine-function in the Duhamel integral yields additional cancellation, which was first

observed by Gubinelli, Koch, and Oh in [GKO18a] and generalized slightly in Lemma 4.4.14.

Using the inhomogeneous Strichartz estimate (Lemma 4.4.9), it follows that

}Gp1qpt, x;N�q}Xs2�1,b��1pr0,T sq À }Gp1qpt, x;N�q}L2b�
t H

s2�1
x pr0,T s�T3q

À T
1
2 }Gp1qpt, x;N�q}L2

tH
s2�1
x pr0,T s�T3q

.

Using Gaussian hypercontractivity (Proposition 4.4.45) and the orthogonality of multiple stochastic

integrals, we obtain that

T
���}Gp1qpt, x;N�q}L2

tH
s2�1
x pr0,T s�T3q

���2

Lpω

À Tp
���}Gp1qpt, x;N�q}L2

tH
s2�1
x pr0,T s�T3q

���2

L2
ω

À T 2p sup
tPr0,T s

¸
n5PZ3

χN5pn5qxn5y2ps2�1q�2Spn5; t, N�q2
(4.5.23)

where

Spn5; t, N�q def�
���� ¸
n3,n4PZ4

�
ρ2
Npn345qρ2

Npn3qρ2
Npn4qχN345pn345qχN1pn3qχN3pn3qχN2pn4qχN4pn4q

� pVSpn3, n4, n5qpV pn45qxn345y�1xn3y�2xn4y�2

�
» t

0

sin
�pt� t1qxn345y

�
cos

�pt� t1qxn3y
�

cos
�pt� t1qxn4y

�
exp

��5 it
1xn5y

�
dt1

�����.
We now present two different estimates of Spn5; t, N�q. The first (and main) estimates almost

yields control over Gp1q, but exhibits a logarithmic divergence in N3. The second estimates ex-

hibits polynomial growth in N4 and N5, but yields the desired decay in N3.
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Using that |pV pn45q| À xn45y�β and the crude estimate |pVSpn3, n4, n5q| À 1, we obtain that

Spn5; t, N�q À N�1
345N

�2
3 N�2

4

¸
n3,n4PZ3

�
1
 |n3| � N3, |n4| � N4, |n345| � N345

(xn45y�β

�
��� » t

0

sin
�pt� t1qxn345y

�
cos

�pt� t1qxn3y
�

cos
�pt� t1qxn4y

�
exp

��5 it
1xn5y

�
dt1

����
À T logp2�maxpN3, N4, N5qqN�1

345N
�2
3 N�2

4

� max
�3,�4,�5

sup
mPZ

¸
n3,n4PZ3

�
1
 |n3| � N3, |n4| � N4, |n345| � N345

(xn45y�β1
 |ϕ�m| ¤ 1

(�
,

where the phase-function ϕ is given by

ϕpn3, n4, n5q def� xn345y �3 xn3y �4 xn4y �5 xn5y.

Using the counting estimate from Lemma 4.4.29, it follows that

Spn5; t, N�q À T logp2�maxpN3, N4, N5qqmaxpN4, N5q�β�η. (4.5.24)

Alternatively, it follows from the sine-cancellation lemma (Lemma 4.4.14) with A � N2
4N

2
5 , say,

that

Spn5; t, N�q À T 2N�1
3 N5

4N
2
5 . (4.5.25)

By combining (4.5.23), (4.5.24), and (4.5.25), it follows that

T
1
2

���}Gp1qpt, x;N�q}L2
tH

s2�1
x pr0,T s�T3q

���
Lpω

À T 3p
1
2 logp2�maxpN3, N4, N5qqN s2�

1
2

5 min
�
N�β

4 , N�β
5 , N�1

3 N5
4N

5
5

	
À T 3p

1
2N

s2�
1
2
�β�20η

5 maxpN3, N4, N5q�η

À T 3p
1
2 maxpN3, N4, N5q�η.

This contribution is acceptable.
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Proof of Proposition 4.5.8: This estimate is similar (but easier) than Proposition 4.5.7 and we

therefore omit the details. Instead of gaining additional regularity through the para-differential

operator as in Proposition 4.5.8, we simply use interaction potential V and the crude inequality

xn12y�2β À xn12y�2γ À xn12345y�2γxn345y2γ

for 0   γ   β.

4.5.4 Septic stochastic objects

The next proposition controls the third and fourth term in So, i.e., in (4.2.28).

Proposition 4.5.10 (Septic stochastic objects). Let T ¥ 1 and p ¥ 1. Then, it holds that���� sup
N¥1

���� �
N

�
N
�

N

����
Xs2�1,b��1pr0,T sq

����
LpωpPq

À T 4p7{2, (4.5.26)

���� sup
N¥1

���� Ì 

� �
�

N

�
N

�
N

����
Xs2�1,b��1pr0,T sq

����
LpωpPq

À T 4p7{2. (4.5.27)

Remark 4.5.11. In the frequency-localized version of Proposition 4.5.10, we gain an η1-power

of the maximal frequency-scale. As in Proposition 4.5.1, we may also replace
�

N by
�

N

τ
�

I
�
1r0,τ s � N

�
. We will not further comment on these minor modifications.

Proof. We only prove (4.5.26). The second estimate (4.5.27) follows from similar (but slightly

simpler) arguments. To simplify the notation, we formally set N � 8. The same argument

also yields the estimate for the supremum over N . Using the inhomogeneous Strichartz estimate

(Lemma 4.4.9) and Gaussian hypercontractivity (Proposition 4.4.45), it suffices to prove that

sup
tPr0,T s

�������� �
� �

����
H
s2�1
x pT3q

����
L2
ωpPq

À T 3. (4.5.28)
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Using a Littlewood-Paley decomposition, we write

�
� � �

¸
N1234567,N1234,N4,N567

�
� � rN1234567, N1234, N4, N567s,

where

�
� � rN1234567, N1234, N4, N567s def� PN1234567

�
pPN1234

pV q � � � � PN4

	
PN567

�
�
. (4.5.29)

We now present two separate estimates of (4.5.29). The first estimate, which is the main part

of the argument, almost yields (4.5.28), but contains a logarithmic divergence in N4. The second

(short) estimate exhibits polynomial decay in N4, and is only used to remove this logarithmic

divergence.

Main estimate: Using the stochastic representation of the cubic nonlinearity (Proposition 4.4.44)

and (4.4.76), we obtain that

�
� � rN1234567, N1234, N4, N567s

�
¸

n1,...,n7PZ3

¸
�1,...,�7

�
χN1234567pn1234567qχN1234pn1234qχN4pn4qχN567pn567qpV pn1234q

� Φpt, nj,�j : 1 ¤ j ¤ 3qe�itxn4y
1

xn4yΦpt, nj,�j : 5 ¤ j ¤ 7q exp
�
ixn1234567, xy

�
� rI3rnj,�j : 1 ¤ j ¤ 3srI1rn4,�4srI3rnj,�j : 5 ¤ j ¤ 7s

�
.

(4.5.30)

Here, the amplitude Φ is given by

Φpt, nj,�j : 1 ¤ j ¤ 3q
def� xn123y�1pVSpn1, n2, n3q

� 3¹
j�1

xnjy�1
	� » t

0

sin
�pt� t1qxn123y

3¹
j�1

exp
��j it

1xnjy
�
dt1

	
.

317



Comparing with Φpn1, n2, n3q as in Lemma 4.4.31, we have that

sup
tPr0,T s

|Φpt, nj,�j : 1 ¤ j ¤ 3q| À TΦpn1, n2, n3q. (4.5.31)

We now rely on the notation from Definition 4.4.30 and Lemma 4.4.31. Using the product formula

for multiple stochastic integrals twice (Lemma 4.4.40), the orthogonality of multiple stochastic

integrals, and (4.5.31), we obtain that

sup
tPr0,T s

���� �
� � rN1234567, N1234, N4, N567s

����2

L2
ωH

s2�1
x pΩ�T3q

À T 4
¸
P

¸
pnjqjRP

xnnry2ps2�1q

� �̧

pnjqjPP

1
 |n1234567| � N1234567

(
1
 |n1234| � N1234

(
1
 |n567| � N567

(
� 1

 |n4| � N4

(|pV pn1234q|Φpn1, n2, n3qxn4y�1Φpn5, n6, n7q

2

.

The sum in P is taken over all pairings which respect the partition t1, 2, 3u, t4u, t5, 6, 7u. For a

similar argument, we refer the reader to [DNY19, Lemma 4.1]. Using Lemma 4.4.31, it follows

that

sup
tPr0,T s

���� �
� � rN1234567, N1234, N4, N567s

����
L2
ωH

s2�1
x pΩ�T3q

À T 2 logp2�N4q
�
N

ps2�
1
2
q

1234567N
�pβ�ηq
567 �N

�p1�s2�ηq
1234567

	
N�β

1234.

(4.5.32)

Since N1234567 À maxpN1234, N567q and N1234567 � N567 if N1234 ! N567, we obtain that

sup
tPr0,T s

���� �
� � rN1234567, N1234, N4, N567s

����
L2
ωH

s2�1
x pΩ�T3q

À T 2 logp2�N4qmaxpN1234567, N1234, N567q�pβ�η�δ2q.
(4.5.33)

Removing the logarithmic divergence in N4: Using Proposition 4.5.1 and (4.5.11) from Proposition

4.5.3, we obtain that
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sup
tPr0,T s

���� �
� � rN1234567, N1234, N4, N567s

����
L2
ωH

s2�1
x pΩ�T3q

À
���PN1234

�
� � PN4

����
L4
ωL

8
t L

2
xpΩ�r0,T s�T3q

���PN567

�
���
L4
ωL

8
t L

8
x pΩ�r0,T s�T3q

À T 5N1234N
� η

10
4 .

(4.5.34)

By combing (4.5.33) and (4.5.34), we obtain that

sup
tPr0,T s

���� �
� � rN1234567, N1234, N4, N567s

����
L2
ωH

s2�1
x pΩ�T3q

À T 3N�η2

4 maxpN1234567, N1234, N567q�pβ�η�2δ2q.

(4.5.35)

After summing over the dyadic scales, this yields (4.5.26).

4.6 Random matrix theory estimates

In this section, we control the random matrix terms RMT. Techniques from random matrix theory,

such as the moment method, were first applied to dispersive equations in Bourgain’s seminal paper

[Bou96]. Over the last decade, they have become an indispensable tool in the study of dispersive

PDE and we refer the interested reader to [Bou97, CG19, DH19, DNY19, FOS21, GKO18a, Ric16].

Very recently, Deng, Nahmod, and Yue [DNY20, Proposition 2.8] obtained an easy-to-use, general,

and essentially sharp random matrix estimate, which is proved using the moment method. We

have previously recalled their estimate in Proposition 4.4.50. The proofs of Proposition 4.6.1 and

Proposition 4.6.3 combine their random matrix estimate with the counting estimates in Section

4.4.4.

Proposition 4.6.1 (First RMT estimate). Let T ¥ 1 and let p ¥ 1. Then, it holds that��� sup
N¥1

sup
J�r0,T s

sup
}w}

Xs1,bpJ q
¤1

���pV �
N
q � P¤Nw

���
Xs2�1,b��1pJ q

���
LpωpPq

À Tp. (4.6.1)
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Remark 4.6.2. This proposition controls the first term in RMT, i.e., in (4.2.30). In the frequency-

localized version of (4.6.1), which is detailed in the proof, we gain an η1-power in the maximal

frequency-scale.

Proof. The arguments splits into two steps: First, we bring (4.6.1) into a random matrix form.

Then, we prove a random matrix estimate using the moment method (Proposition 4.4.50).

Step 1: The random matrix form. By definition of the restricted norms, it holds that

sup
J�r0,T s

sup
}w}

Xs1,bpJ q
¤1

���pV �
N
q � P¤Nw

���
Xs2�1,b��1pJ q

¤ sup
}w}

Xs1,bpRq¤1

���χpt{T qpV �
N
q � P¤Nw

���
Xs2�1,b��1pRq

.
(4.6.2)

We bound the right-hand side of (4.6.2) with b� replaced by b�. Using the frequency-localized

estimate in the arguments below and a similar reduction as in the proof of Proposition 4.5.1, we

can then upgrade the value from b� to b�. Let w P Xs1,bpRq satisfy }w}Xs1,bpRq ¤ 1. We define

w� P Xs1,bpRq by pw�pλ, nq def� 1
 � λ ¥ 0

( pwpλ, nq.
Then, it holds that w � w� � w� and

}w}Xs1,bpRq � max
�

}xnys1xλyb pw�pλ� xny, nq}L2
λ`

2
npR�T3q.

Using this decomposition of w and the stochastic representation of the renormalized square, we
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obtain that the nonlinearity is given by

pV �
N
q � P¤Nw

�
¸

�1,�2,�3

¸
N1,N2,N3

¸
n1,n2,n3PZ3

�
cp�1,�2q

� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12qI2r�j, nj : j � 1, 2s

�
� 2¹
j�1

exp
��j itxnjy

�	 pw�3pt, n3q exp
�
ixn123, xy

��

�
¸

�1,�2,�3

¸
N1,N2,N3

»
R

dλ3

¸
n1,n2,n3PZ3

�
cp�1,�2q

� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12qI2r�j, nj : j � 1, 2s

� exp
�
itλ3

�� 3¹
j�1

exp
��j itxnjy

�	 pw�3pλ3 �3 xn3y, n3q exp
�
ixn123, xy

��
.

To simplify the notation, we define the phase-function ϕ : pZ3q3 Ñ R by

ϕpn1, n2, n3q � �123xn123y �1 xn1y �2 xn2y �3 xn3y. (4.6.3)

The space-time Fourier transform of the time-truncated nonlinearity is therefore given by

F
�
χp�{T qpV �

N
q � P¤Nw

	
pλ�123 xny, nq

� T
¸

�1,�2,�3

¸
N1,N2,N3

»
R

dλ3

¸
n1,n2,n3PZ3

�
cp�1,�2q1

 
n � n123

(pχ�T pλ� λ3 � ϕpn1, n2, n3qq
�

�
� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12qI2r�j, nj : j � 1, 2s pw�3pλ3 �3 xn3y, n3q

�
.

(4.6.4)

To simplify the following notation, we emphasize the dependence on the frequency-scales N1, N2, N3

by writing N� and omit the dependence on �123,�1,�2,�3, and T from our notation. We define

the tensor hpn, n1, n2, n3;λ, λ3, N�q by

hpn, n1, n2, n3;λ, λ3, N�q def�Tcp�1,�2q1
 
n � n123

(pχ�T pλ� λ3 � ϕpn1, n2, n3qq
�

�
� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12qxnys2�1xn1y�1xn2y�1xn3y�s1 .

(4.6.5)
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Furthermore, we define the contracted random tensor hcpn, n3;λ, λ3q by

hcpn, n3;λ, λ3, N�q �
¸

n1,n2PZ3

hpn, n1, n2, n3;λ, λ3, N�q � rI2r�j, nj : j � 1, 2s. (4.6.6)

By combining our previous expression of the nonlinearity (4.6.4) with the definition (4.6.6), we

obtain that

F
�
χp�{T qpV �

N
q � P¤Nw

	
pλ�123 xny, nq

� xny�ps2�1q
¸

�1,�2,�3

¸
N1,N2,N3

»
R

dλ3

¸
n3PZ3

hcpn, n3;λ, λ3, N�qxn3ys1 pw�3pλ3 �3 xn3y, n3q.

We estimate each combination of signs and each dyadic block separately. Using the tensor norms

from Definition 4.4.32, the contribution to the Xs2�1,b��1-norm is bounded by���xλyb��1

»
R

dλ3

¸
n3PZ3

hcpn, n3;λ, λ3, N�qxn3ys1 pw�3pλ3 �3 xn3y, n3q
���
L2
λ`

2
npR�T3q

À
���xλyb��1xλ3y�b}hcpn, n3;λ, λ3, N�q}n3Ñn

���
L2
λL

2
λ3
pR�Rq

� }w}Xs1,bpRq.

In order to control the operator norm in (4.6.2), it therefore remains to prove that������xλyb��1xλ3y�b}hcpn, n3;λ, λ3, N�q}n3Ñn

���
L2
λL

2
λ3
pR�Rq

���
LpωpPq

À T maxpN1, N2, N3q�
η
2 p. (4.6.7)

Step 2: Proof of the random matrix estimate (4.6.7). Using Minkowski’s integral inequality, we

have that ������xλyb��1xλ3y�b}hcpn, n3;λ, λ3, N�q}n3Ñn

���
L2
λL

2
λ3
pR�Rq

���
LpωpPq

¤
���xλyb��1xλ3y�b

���}hcpn, n3;λ, λ3, N�q}n3Ñn

���
LpωpPq

���
L2
λL

2
λ3
pR�Rq

¤
���xλyb��1xλ3y�b

���
L2
λL

2
λ3
pR�Rq

� sup
λ,λ3PR

���}hcpn, n3;λ, λ3, N�q}n3Ñn

���
LpωpPq

À sup
λ,λ3PR

���}hcpn, n3;λ, λ3, N�q}n3Ñn

���
LpωpPq

.
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We emphasize that the supremum over λ, λ3 P R is outside of the LpωpPq-norm. Using the moment

method (Proposition 4.4.50), it holds that

sup
λ,λ3PR

���}hcpn, n3;λ, λ3, N�q}n3Ñn

���
LpωpPq

À maxpN1, N2, N3q
η
2 sup
λ,λ3PR

max
�
}hp�;λ, λ3, N�q}n1n2n3Ñn, }hp�;λ, λ3, N�q}n3Ñnn1n2 ,

}hp�;λ, λ3, N�q}n1n3Ñnn2 , }hp�;λ, λ3, N�q}n2n3Ñnn1

	
p.

In order to estimate the tensor norms of hp�;λ, λ3, N�q, we further decompose it according to the

value of the phase-function ϕ. For any m P Z, we define

rhpn, n1, n2, n3;m,N�q def�T1
 
n � n123

(
1
 |ϕpn1, n2, n3qq �m| ¤ 1

(� 3¹
j�1

ρNpnjqχNjpnjq
	

� |pV pn12q|xnys2�1xn1y�1xn2y�1xn3y�s1 .
Using the definition of h in (4.6.5) and the decay of pχ, we obtain that

|hpn, n1, n2, n3;λ, λ3, N�q|
À

¸
mPZ

|pχ�T pλ� λ3 � ϕpn1, n2, n3qq
�| 1 |ϕpn1, n2, n3q �m| ¤ 1

(rhpn, n1, n2, n3;m,N�q

À
¸
mPZ

xλ3 � λ�my�2 rhpn, n1, n2, n3;m,N�q.

Using the triangle inequality for the tensor norms and the first deterministic tensor estimate

(Lemma 4.4.33), it follows that

maxpN1, N2, N3q
η
2 sup
λ,λ3PR

max
�
}hp�;λ, λ3, N�q}n1n2n3Ñn, }hp�;λ, λ3, N�q}n3Ñnn1n2 ,

}hp�;λ, λ3, N�q}n1n3Ñnn2 , }hp�;λ, λ3, N�q}n2n3Ñnn1

	
À maxpN1, N2, N3q

η
2 sup
mPZ

max
�
}rhp�;m,N�q}n1n2n3Ñn, }rhp�;m,N�q}n3Ñnn1n2 ,

}rhp�;m,N�q}n1n3Ñnn2 , }rhp�;m,N�q}n2n3Ñnn1

	
À T maxpN1, N2, N3q�

η
2 .
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Proposition 4.6.3 (Second RMT estimate). Let T ¥ 1 and let p ¥ 1. Then, it holds that��� sup
N¥1

sup
J�r0,T s

sup
}Y }

Xs2,bpJ q
¤1

��� :V � �P¤N � P¤NY
�

Ì 

� �
P¤N :

���
Xs2�1,b��1pJ q

���
LpωpPq

À Tp. (4.6.8)

Remark 4.6.4. This proposition controls the second term in RMT, i.e., in (4.2.30). In the

frequency-localized version of (4.6.8), which is detailed in the proof, we gain an η1-power in the

maximal frequency-scale.

Proof. Due to the operator Ì 

� �
, the renormalization MNP¤NY does not just cancel the prob-

abilistic resonances between the two factors of in

V � �P¤N � P¤NY
�

Ì 

� �
P¤N .

As a result, we need to decompose MN �M Ì

N �M Ì 

N , where the symbols corresponding to the

multipliers are given by

m
Ì

N pnq def�
¸

L,K : L¤Kε

pV pn� kq
xky2

χLpn� kqχKpkqρ2
Npkq,

m
Ì 

N pnq def�
¸

L,K : L¡Kε

pV pn� kq
xky2

χLpn� kqχKpkqρ2
Npkq.

The random operator

V � �P¤N � P¤NY
�

Ì 

� �
P¤N �M Ì 

N P¤NY

can then be controlled using the same argument as in the proof of Proposition 4.6.1, except that

we use Lemma 4.4.35 instead of Lemma 4.4.33. Thus, it only remains to show that

}M Ì

N P¤NY }Xs2�1,b��1pJ q À T }Y }Xs2,bpJ q. (4.6.9)
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The estimate (4.6.9) has a lot of room and can be established through the following simple argu-

ment. On the support of the summand in the definition of m
Ì

N , it holds that |n�k| À |k|ε. Using

only that pV is bounded, this implies that

|m Ì

N pnq| À
¸
K¥1

¸
kPZ3

K�21
 |n� k| À Kε

( À ¸
K¥1

K�2�3ε À 1.

Thus, the symbol m
Ì

N pnq is uniformly bounded and hence the corresponding multiplier M Ì

N

is bounded on each Sobolev-space Hs
xpT3q. Using the Strichartz estimates (Corollary 4.4.7 and

Lemma 4.4.9), we obtain that

}M Ì

N P¤NY }Xs2�1,b��1pJ q À }M Ì

N P¤NY }L2b�
t H

s2�1
x pJ�T3q

À p1� |J |q}Y }
L8t H

s2�1
x pJ�T3q

À p1� |J |q}Y }Xs2,bpJ q.

4.7 Para-controlled estimates

The main goal of this section is to estimate the terms in CPara. We remind the reader that the

para-controlled approach to stochastic partial differential equations was introduced in the seminal

paper of Gubinelli, Imkeller, and Perkowski [GIP15] and first applied to dispersive equations by

Gubinelli, Koch, and Oh in [GKO18a].

The following definitions of the low-frequency modulation space LM and the para-controlled struc-

ture PCtrl are following similar ideas as the framework in [GKO18a].

Definition 4.7.1 (Low-frequency modulation space). Let H � tHpt, x;KquK¥1u be a family of

space-time functions from R� T3 into C satisfying

suppp pHpt, x;Kqq � tk P Z3 : |k| ¤ 8Kεu. (4.7.1)
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We define the low-frequency modulation norm by

}H}LMpRq
def� sup

K¥1
K�4ε} pHpλ, k;Kq}`8k L1

λpZ3�Rq. (4.7.2)

We define the corresponding low-frequency modulation space LMpRq by

LMpRq �  
H : }H}LMpRq   8(

. (4.7.3)

Furthermore, let J � R be a time-interval and let H � tHpt, x;KquK¥1u be a family of space-time

functions from J � T3 into R satisfying (4.7.1). Similar as in the definition of Xs,b-spaces, we

define the restricted norm by

}H}LMpJ q � inf
 }H 1}LMpRq : H

1ptq � Hptq for all t P J
(
. (4.7.4)

The corresponding time-restricted low-frequency modulation space LMpJ q can then be defined

as in (4.7.2) after replacing the norm.

Definition 4.7.2 (Para-controlled). Let J � R be an interval, let φ : J�T3 Ñ C be a distribution,

and let H be as in Definition 4.7.1. Then, we define

PCtrlpH,φqpt, xq �
¸
K¥1

Hpt, x;KqpPKφqpt, xq. (4.7.5)

If H P LMpRq, we have that

PCtrlpH,φqpt, xq

�
¸
K¥1

¸
k1PZ3

»
R

dλ1
pHpλ1, k1;Kq

�
exp

�
iλ1t

� ¸
k2PZ3

χKpk2qpφpt, k2q exp
�
ixk12, xy

�	
.

(4.7.6)

The expression (4.7.6) will be used in all of our estimates involving PCtrl. The sum in k1, the

integral in λ1, and the pre-factor pHpλ1, k1;Kq will be inessential. The main step will consist of

estimates for

exp
�
iλ1t

� ¸
k2PZ3

χKpk2qpφpt, k2q exp
�
ixk12, xy

�
,
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which essentially behaves like PKφpt, xq. For most purposes, the reader may simply think of

PCtrlpH,φq as φ.

Lemma 4.7.3 (Basic mapping properties of PCtrl). For any s P R, any interval J � R, any

φ P L8t Hs
xpJ � T3q, and any H P LMpJ q, we have

}PCtrlpH,φq}L8t Hs�8ε
x pJ�T3q À }H}LMpJ q}φ}L8t Hs

xpJ�T3q. (4.7.7)

Proof. We treat each dyadic piece in PCtrl separately. Using the Fourier support condition (4.7.1),

we have that

}Hpt, x;KqpPKφqpt, xq}Hs�8ε
x pT3q �

��� ¸
k1,k2PZ3

χKpk2q pHpt, k1;Kqpφpt, k2q exp
�
ixk12, xy

����
Hs�8ε
x pT3q

À
¸
k1PZ3

| pHpt, k1;Kq|
��� ¸
k2PZ3

χKpk2qpφpt, k2q exp
�
ixk12, xy

����
Hs�8ε
x pT3q

À K�8ε
� ¸
k1PZ3

| pHpt, k1;Kq|
	
}φptq}Hs

xpT3q

À K�ε}H}LMpJ q}φptq}Hs
xpT3q.

The desired estimate follows after summing in K.

In the next two lemmas, we show that the terms appearing in the evolution equation (4.2.14) for

XN fit into our para-controlled framework.

Lemma 4.7.4. Let J � R be an interval and let f, g P X�1,bpJ q. Then, there exists a (canonical)

H P LMpJ q satisfying

Ì Ì&

�
V � pf gqφ

	
� PCtrlpH,φq (4.7.8)

for all space-time distributions φ : J � T3 Ñ C. Furthermore, it holds that

}H}LMpJ q À }f}X�1,bpJ q � }g}X�1,bpJ q. (4.7.9)
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Remark 4.7.5. Due to the overlaps in the support of the Littlewood-Paley multipliers χK , the

low-frequency modulation H P LMpJ q is not quite unique. As will be clear from the proof,

however, there is a canonical choice. This canonical choice is also bilinear in f and g.

Proof. Using the definition of the restricted norms, it suffices to treat the case J � R. We have

that

Ì Ì&

�
V � pf gqφ

	
pt, xq

�
¸

N1,N2,K :
N1,N2¤Kε

¸
n1,n2,kPZ3

χN1pn1qχN2pn2qχKpkqpV pn12q pfpt, n1qpgpt, n2qpφpt, kq exp
�
ixn12 � k, xy�

� PCtrlpH,φqpt, xq,

where pHpt, k1;Kq �
¸

N1,N2 :
N1,N2¤Kε

¸
n1,n2PZ3 :
n12�k1

χN1pn1qχN2pn2qpV pn12q pfpt, n1qpgpt, n2q (4.7.10)

It therefore remains to show H P LMpRq and the estimate (4.7.9). The Fourier support condition

(4.7.1) is a consequence of the multiplier χN1pn1qχN2pn2q in (4.7.10). To see the estimate (4.7.9),

we first note that

pHpλ, k1;Kq �
¸

N1,N2 :
N1,N2¤Kε

¸
n1,n2PZ3 :
n12�k1

χN1pn1qχN2pn2qpV pn12q
� pfp�, n1q � pgp�, n2q

	
pλq.
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Using Young’s convolution inequality and Cauchy-Schwarz, we obtain that

} pHpλ, k1;Kq}L1
λpRq

À
¸

N1,N2 :
N1,N2¤Kε

¸
n1,n2PZ3 :
n12�k1

χN1pn1qχN2pn2q|pV pn12q|} pfpλ, n1q}L1
λpRq}pgpλ, n2q}L1

λpRq

À
¸

n1,n2PZ3 :
n12�k1

1
 |n1|, |n2| À Kε

(}x|λ| � xn1yyb pfpλ, n1q}L2
λpRq}x|λ| � xn2yybpgpλ, n2q}L2

λpRq

À
� ¸
n1PZ3

1
 |n1| À Kε

(}x|λ| � xn1yyb pfpλ, n1q}2
L2
λpRq

	 1
2

�
� ¸
n2PZ3

1
 |n2| À Kε

(}x|λ| � xn2yybpgpλ, n2q}2
L2
λpRq

	 1
2

À K�2ε}f}X�1,bpJ q � }g}X�1,bpJ q.

The desired estimate (4.7.9) now follows after taking the supremum in K ¥ 1 and k1 P Z3.

Lemma 4.7.6. Let J � R be an interval, let s P r�1, 1s, let f P X�s,bpJ q, and let g P Xs,b. Then,

there exists a (canonical) H P LMpJ q satisfying

V � pf gq Ì φ � PCtrlpH,φq (4.7.11)

for all space-time distributions φ : J � T3 Ñ C. Furthermore, it holds that

}H}LMpJ q À }f}X�s,bpJ q � }g}Xs,bpJ q. (4.7.12)

Remark 4.7.7. We emphasize that Lemma 4.7.6 fails if we replace the assumptions by f, g P
X�1,bpJ q as in Lemma 4.7.4. The reason is that the product f � g inside the convolution with the

interaction potential V is not even well-defined.

Proof. The argument is similar to the proof of Lemma 4.7.4. As before, it suffices to treat the case
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J � R. A direct calculation yields the identity (4.7.11) with

Hpt, k1;Kq �
¸

K1¤Kε

χK1pk1qpV pk1q
¸

n1,n2PZ3 :
n12�k1

pfpt, n1qpgpt, n2q. (4.7.13)

Using Young’s convolution inequality and Cauchy-Schwarz, we obtain that

} pHpλ, k1;Kq}L1
λpRq

À
¸

n1,n2PZ3 :
n12�k1

} pfpλ, n1q}L1
λpRq}pgpλ, n2q}L1

λpRq

À
� ¸
n1PZ3

xn1y�2s}x|λ| � xn1yyb pfpλ, n1q}2
L2
λpRq

	 1
2
� ¸
n2PZ3

xn2 � k1y2s}x|λ| � xn2yybpgpλ, n2q}2
L2
λpRq

	 1
2
.

Using that xn2 � k1y À xk1y � xn2y À Kεxn2y, we obtain the estimate (4.7.12).

4.7.1 Quadratic para-controlled estimate

In this subsection, we show that P¤NXN � P¤N is well-defined uniformly in N even though the

sum of the individual spatial regularities is negative. Together with Lemma 4.8.8, this will control

the second and third term in Phy, i.e.,

V �
�
P¤NXN � P¤N

	
� P¤N �

N and V �
�
P¤NXN � P¤N

	
� P¤NwN .

Proposition 4.7.8 (Quadratic para-controlled object). Let T ¥ 1. For any s   �2η � 10ε and

p ¥ 2, we have that

¸
L1�L2

L2η
1

��� sup
N¥1

sup
J�r0,T s

sup
}H}LMpJ q¤1

����PL1P¤N I
��

1J PCtrlpH,P¤N q
�
� PL2

���
L8t Csxpr0,T s�T3q

���
LpωpPq

À T 3p,

where the supremum in J is taken only over intervals.
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Proof. The supremum in N can be handled through the decay in the frequency-localized version

below and we omit it throughout the proof. Using the definition of the LMpJ q-norm, we may take

the supremum over H P LMpRq with norm bounded by one. By inserting the expansion (4.7.6),

we obtain that

�
PL1P¤N I

��
1J PCtrlpH,P¤N q

�
pt, xq � PL2 pt, xq

�
¸
N1

¸
k1PZ3

»
R

dλ1
pHpλ1, k1;N1q

¸
n1,n2PZ3

�
ρNpk1 � n1qχL1pn1 � k1qρNpn1qχN1pn1qχL2pn2q

�ppt, n2q
�» t

0

1J pt1qsinppt� t1qxk1 � n1yq
xk1 � n1y exp

�
iλ1t

1
�ppt1, n1qdt1



exp

�
ixn12 � k1, xy

��
.

Due to the definition of LM, we only obtain a non-trivial contribution if N1 � L1 � L2. Using

the triangle inequality, it follows that

sup
J�r0,T s

sup
}H}LMpRq¤1

����PL1P¤N I
��

1J PCtrlpH,P¤N q
�
� PL2

���
L8t Csxpr0,T s�T3q

À
¸
N1

N7ε
1 sup

J�r0,T s
sup
k1PZ3 :
|k1|¤8Nε

1

sup
λ1PR

���� ¸
n1,n2PZ3

�
ρNpk1 � n1qχL1pn1 � k1qρNpn1qχN1pn1qχL2pn2q

� exp
�
ixn12 � k1, xy

�ppt, n2q
�» t

0

1J pt1qsinppt� t1qxk1 � n1yq
xk1 � n1y exp

�
iλ1t

1
�ppt1, n1qdt1


�����
L8t Csxpr0,T s�T3q

.

To obtain the desired estimate, it suffices to prove for all N1 � L1 � L2 that���� sup
J�r0,T s

sup
k1PZ3 :
|k1|¤8Nε

1

sup
λ1PR

���� ¸
n1,n2PZ3

�
ρNpk1 � n1qχL1pn1 � k1q

� ρNpn1qχN1pn1qχL2pn2q exp
�
ixn12 � k1, xy

�ppt, n2q

�
�» t

0

1J pt1qsinppt� t1qxk1 � n1yq
xk1 � n1y exp

�
iλ1t

1
�ppt1, n1qdt1


�����
L8t Csxpr0,T s�T3q

����
LpωpΩq

À T 3N�2η�9ε
1 .

(4.7.14)
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We claim that instead of (4.7.14), it suffices to prove the simpler estimate

sup
tPr0,T s

sup
J�r0,T s

sup
k1PZ3 :
|k1|¤8Nε

1

sup
λ1PR

���� ¸
n1,n2PZ3

�
ρNpk1 � n1qχL1pn1 � k1q

� ρNpn1qχN1pn1qχL2pn2q exp
�
ixn12 � k1, xy

�ppt, n2q

�
�» t

0

1J pt1qsinppt� t1qxk1 � n1yq
xk1 � n1y exp

�
iλ1t

1
�ppt1, n1qdt1


�����
L2
ωH

s
x

À T 2N�2η�10ε
1 p.

(4.7.15)

The reduction of (4.7.14) to (4.7.15) is standard and we only sketch the argument. The supremum

in k1 can easily be moved outside the moment by using Lemma 4.4.48 and accepting a logarithmic

loss in N1. To deal with the supremum in λ1 P R, we treat two separate cases. Using the Lipschitz

estimate | exppiλ1t
1q � exppirλ1t

1q| À |t1||λ1 � rλ1|, the supremum over |λ1| À N10
1 can easily be

replaced by the supremum over a grid on r�N10
1 , N10

1 s with mesh size � N�10
1 . The discrete supre-

mum can then be moved outside the probabilistic moment using Lemma 4.4.48. For |λ1| Á N10
1 ,

a simple integration by parts gains a factor of |λ1|�1 and we can proceed using crude estimates.

The supremum over t P r0, T s and J � r0, T s, which is parametrized by its two endpoints, can

be moved outside of the probabilistic moment using the first part of the argument for λ1. Finally,

Gaussian hypercontractivity allows us to replace LpωCsx by L2
ωH

s
x.

We now turn to the proof of the simpler estimate (4.7.15). Using the product formula for multiple

stochastic integrals, we have that¸
n1,n2PZ3

�
ρNpk1 � n1qχL1pn1 � k1qρNpn1qχN1pn1qχL2pn2q exp

�
ixn12 � k1, xy

�
�ppt, n2q

�» t

0

1J pt1qsinppt� t1qxk1 � n1yq
xk1 � n1y exp

�
iλ1t

1
�ppt1, n1qdt1


�
� Gp2qpt, xq � Gp0qpt, xq,
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where the Gaussian chaoses Gp2q and Gp0q are given by

Gp2qpt, xq def�
¸

�1,�2

¸
n1,n2PZ3

�
cp�1,�2qρNpk1 � n1qχL1pn1 � k1qρNpn1qχN1pn1qχL2pn2q

�
�» t

0

1J pt1qsinppt� t1qxk1 � n1yq
xk1 � n1y exp

�
iλ1t

1 �1 it
1xn1y �2 itxn2y

�
dt1



exp

�
ixn12 � k1, xy

�
I2r�j, nj : j � 1, 2s

�
,

Gp0qpt, xq def� exppixk1, xyq
¸
n1PZ3

�
ρNpk1 � n1qχL1pn1 � k1qρNpn1qχN1pn1qχL2pn1q 1

xn1 � k1yxn1y2

�
�» t

0

1J pt1q sinppt� t1qxk1 � n1yq cosppt� t1qxn1yq exp
�
iλ1t

1
�
dt1


�
.

The quadratic Gaussian chaos Gp2q is the non-resonant part and the constant “Gaussian chaos”

Gp0q is the resonant part. We now treat both components separately.

Contribution of the quadratic Gaussian chaos Gp2q: Using the orthogonality of the multiple stochas-

tic integrals and taking absolute values inside the t1-integral, we have that

}Gp2qpt, xq}2
L2
ωH

s
xpΩ�T3q

À T 2
¸

n1,n2PZ3

χN1pn1qχL2pn2qxk1 � n12y2sxk1 � n1y�2xn1y�2xn2y�2

À T 2N�6
1

¸
n1PZ3

χN1pn1qχL2pn2qxk1 � n12y2s

À T 2N�4η�20ε
1 ,

which is acceptable.

Contribution of the constant “Gaussian chaos” Gp0q: Using the sine-cancellation lemma (Lemma
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4.4.14), we have that

}Gp0qpt, xq}Hs
xpT3q

À
���� ¸
n1PZ3

�
ρNpk1 � n1qχL1pn1 � k1qρNpn1qχN1pn1qχL2pn1q 1

xn1 � k1yxn1y2

�
�» t

0

1J pt1q sinppt� t1qxk1 � n1yq cosppt� t1qxn1yq exp
�
iλ1t

1
�
dt1


�����
À N�1�3ε

1 ,

which is also acceptable.

4.7.2 Cubic para-controlled estimate

In this subsection, we control the cubic para-controlled object, i.e., the first summand in the

definition of CPara in (4.2.29).

Proposition 4.7.9. Let T ¥ 1. For any interval J � r0, T s, any φ : r0, T s � T3 Ñ C, and

H P LMpJ q, we define

PCtrl
p3q
N pH,φ;J q

def� Ì Ì& 

� � �
V �

��
P 2
¤N I

��
1J PCtrlpH,φq

�
� φ

	
� φ

	
�MNP

2
¤N I

�
1J PCtrlpH,φq

�
.

Then, it holds that for all p ¥ 2 that��� sup
N¥1

sup
J�r0,T s

sup
}H}LMpJ q¤1

���PCtrl
p3q
N pH,P¤N ;J q

���
Xs2�1,b��1pr0,T sq

���
LpωpPq

À T 3p
3
2 ,

where the supremum in J is only taken over intervals.

Remark 4.7.10. The notation PCtrl
p3q
N pH,P¤N ;J q will only be used in Proposition 4.7.9 and its

proof. The frequency-localized version of Proposition 4.7.9 also gains an η1-power in the maximal

frequency-scale.
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Proof. As before, we ignore the supremum in N , which can be easily handled through the decay

in the frequency-localized version below. Using the decay in the frequency-localized version and

a crude estimate, we can also replace the Xs2,b��1-norm by the Xs2,b��1-norm. Using the defi-

nition of the restricted norms, it suffices to consider H P LMpRq with }H}LMpRq ¤ 1. In order

to use a Littlewood-Paley decomposition, we need to break up the multiplier MN . We define

MN rN1, N2, N3s as the multiplier with the symbol

mN rN1, N2, N3spn2q �
¸
kPZ3

pV pk � n2q
xky2

ρ2
NpkqχN1pkqχN2pn2qχN3pkq. (4.7.16)

We note that MN rN1, N2, N3s is only non-zero when N1 � N3, and hence, in particular, when

N1 ¡ N ε
3. We now face a notational nuisance; namely, that both PCtrl and Ì Ì& contain

frequency-projections. To this end, we use N2 and N 1
2 for the respective frequency-scales, but

encourage the reader to mentally set N2 � N 1
2. It then follows that

PCtrl
p3q
N pH,P¤N ;J q

�
¸

N1,N 1
2,N3 :

maxpN1,N 1
2q¡N

ε
3

�
V �

�
PN1P¤N � PN 1

2
P 2
¤N I

�
1J PCtrlpH,P¤N q

�	
� PN3P¤N

�MN rN1, N
1
2, N3sP 2

¤N I
�
1J PCtrlpH,P¤N q

��
.

(4.7.17)

Using the stochastic representation formula (4.4.77) in Proposition 4.4.44 and the expansion (4.7.6),
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we obtain that

PCtrl
p3q
N pH,P¤N ;J qpt, xq

�
¸

N1,N2,N 1
2,N3 :

maxpN1,N 1
2q¡N3,

N2�N 1
2

¸
k2PZ3

»
R

dλ2
pHpλ2, k2;N2q

¸
n1,n2,n3PZ3

�
ρ2
Npn2 � k2qχN 1

2
pn2 � k2q

�
� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12 � k2q

� » t

0

1J pt1qsinppt� t1qxn2 � k2yq
xn2 � k2y exp

�
it1λ2qI1rt1, n2sdt1

	
� exp

�
ixn123 � k2, xy

�
I2rt, n1, n3s

�
.

Using the product formula for multiple stochastic integrals, we can decompose the inner sum in

n1, n2, and n3 as¸
n1,n2,n3PZ3

�
ρ2
Npn2 � k2qχN 1

2
pn2 � k2q

� 3¹
j�1

ρNpnjqχNjpnjq
	pV pn12 � k2qI2rt, n1, n3s

�
� » t

0

1J pt1qsinppt� t1qxn2 � k2yq
xn2 � k2y exp

�
it1λ2qI1rt1, n2sdt1

	
exp

�
ixn123 � k2, xy

��
� Gp3qpt, x;λ2, k2,J , N�q � Gp1qpt, x;λ2, k2,J , N�q � rGp1qpt, x;λ2, k2,J , N�q,

where the cubic and linear Gaussian chaoses are given by

Gp3qpt, xq �
¸

�1,�2,�3

cp�j : 1 ¤ j ¤ 3q
¸

n1,n2,n3PZ3

�
ρ2
Npn2 � k2qχN 1

2
pn2 � k2q

� 3¹
j�1

ρNpnjqχNjpnjq
	

� pV pn12 � k2q
� » t

0

1J pt1qsinppt� t1qxn2 � k2yq
xn2 � k2y exp

�
it1λ2 �2 it

1xn2yqdt1
	

� expp�1itxn1y �3 itxn3yq exp
�
ixn123 � k2, xy

�
I3r�j, nj : 1 ¤ j ¤ 3s

�
,

Gp1qpt, xq �
¸
n3PZ3

ρNpn3qχN3pn3q exp
�xn3 � k2, xy

� ¸
n1PZ3

�
ρ2
Npn2 � k2qχN 1

2
pn2 � k2qρ2

Npn2q

� χN1pn2qχN2pn2q
� » t

0

1J pt1q sinppt� t1qxn2 � k2yq cosppt� t1qxn2yq exp
�
it1λ2qdt1

	
� pV pk2qxn2 � k2y�1xn2y�2

�
I1rt;n3s,
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rGp1qpt, xq � ¸
n1PZ3

ρNpn1qχN1pn1q exp
�xn1 � k2, xy

� ¸
n1PZ3

�
ρ2
Npn2 � k2qχN 1

2
pn2 � k2qρ2

Npn2q

� χN2pn2qχN3pn2q
� » t

0

1J pt1q sinppt� t1qxn2 � k2yq cosppt� t1qxn2yq exp
�
it1λ2qdt1

	
� pV pn12 � k2qxn2 � k2y�1xn2y�2

�
I1rt;n1s.

We refer to Gp3q as the non-resonant term and to Gp1q and rGp1q as the resonant terms. Using the

triangle inequality and }H}LMpRq ¤ 1, we obtain that���PCtrl
p3q
N pH,P¤N ;J q

���
Xs2�1,b��1pJ q

À
¸

N1,N2,N 1
2,N3 :

maxpN1,N 1
2q¡N3,

N2�N 1
2

N7ε
2 sup

λ2PR
sup
k2PZ3 :
|k2|ÀNε

2

�
}Gp3qp�;λ2, k2,J , N�q}Xs2�1,b��1pr0,T sq

� }Gp1qp�;λ2, k2,J , N�q}Xs2�1,b��1pr0,T sq � }rGp1qp�;λ2, k2,J , N�q}Xs2�1,b��1pr0,T sq

	
.

We now use Gaussian hypercontractivity and a similar reduction as in the proof of Proposition

4.7.8 to move the supremum outside the probabilistic moments. Then, it remains to show for all

frequency scales N1, N2, and N3 satisfying maxpN1, N2q ¡ N ε
3 that

sup
λ2PR

sup
k2PZ3 :
|k2|ÀNε

2

���}Gp3qp�;λ2, k2,J , N�q}Xs2�1,b��1pr0,T sq � }Gp1qp�;λ2, k2,J , N�q}Xs2�1,b��1pr0,T sq

� }rGp1qp�;λ2, k2,J , N�q}Xs2�1,b��1pr0,T sq

���
L2
ω

À T 2 maxpN1, N2, N3q�η.

We treat the estimates for the non-resonant and resonant components separately.

Contribution of the non-resonant terms: To estimate the Xs2�1,b��1-norm, we calculate the space-
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time Fourier transform of χpt{T qGp3qpt, x;λ2, k2,J , N�q. We have that

Ft,x

�
χpt{T qGp3qpt, x;λ2, k2,J , N�q

	
pλ	 xny, nq

�
¸

�1,�2,�3

cp�j : 1 ¤ j ¤ 3q
¸

n1,n2,n3PZ3

�
1
 
n � n123 � k2

(
ρ2
Npn2 � k2q

� 3¹
j�1

ρNpnjqχNjpnjq
	

� χN 1
2
pn2 � k2qpV pn12 � k2qI3r�j, nj : 1 ¤ j ¤ 3s

� Ft

�
expp�1itxn1y �3 itxn3yq

» t

0

1J pt1qsinppt� t1qxn2 � k2yq
xn2 � k2y exp

�
it1λ2 �2 it

1xn2yqdt1


pλ	 xnyq

�
.

Using the orthogonality of the multiple stochastic integrals and Lemma 4.4.12 to estimate the

Fourier transform of the time-integral, we obtain that��}Gp3q}Xs2�1,b��1pr0,T sq

��2

L2
ω

À max
�

��xλyb��1xnys2�1Ft,x

�
χpt{T qGp3qpt, x;λ2, k2,J , N�q

	
pλ	 xny, nq}L2

λ`
2
npR�Z3q

��2

L2
ω

À T 4 max
�,�1,�2,�3

max
ι2��1,0,1

»
R

dλ xλy2pb��1q
¸

n1,n2,n3PZ3

�� 3¹
j�1

χNjpnjq
	
xn123 � k2y2ps2�1qxn12 � k2y�2β

� xn1y�2xn2y�4xn3y�2
�

1� ��λ� λ3 �
�� xn123 � k2y �1 xn1y �2 xn2y � ι2xn2 � k2y �3 xn3y

��	�2
�

À T 4N�1�5ε
2 max

�,�1,�3

sup
n2PZ3 :
|n2|�N2

sup
mPZ3

¸
n1,n3PZ3

�� ¹
j�1,3

χNjpnjq
	
xn123y2ps2�1qxn12y�2βxn1y�2xn3y�2

� 1
 � xn123y �1 xn1y �3 xn3y P rm,m� 1q(�

À T 4 maxpN1, N2, N3q2δ2N�2ε
1 N�1�7ε

2 .

In the last line, we used Lemma 4.4.23 with γ � ε. Since maxpN1, N2q ¡ N ε
3 and δ2 is much smaller

than ε2, this contribution is acceptable.

Contribution of the resonant terms: We only estimate Gp1q. Due to the factor pV pn12 � k2q, a

simpler but similar argument also controls rGp1q.
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Using the inhomogeneous Strichartz estimate (Lemma 4.4.9), we have that

}Gp1q}Xs2�1,b��1pr0,T sq À }Gp1q}
L
2b�
t H

s2�1
x pr0,T s�T3q

À T
1
2 }Gp1q}

L2
tH

s2�1
x pr0,T s�T3q

.

Using Fubini’s theorem and the sin-cancellation lemma (Lemma 4.4.14), this yields

��}Gp1q}Xs2�1,b��1pr0,T sq

��2

L2
ω

À T 2 sup
tPr0,T s

��}Gp1q}
H
s2�1
x pT3q

��2

L2
ω

À T 2
¸
n3PZ3

χN3pn3qxn3 � k2y2ps2�1qxn3y�2

���� ¸
n2PZ3

ρ2
Npn2 � k2qρ2

Npn2qχN1pn2qχN2pn2qχN 1
2
pn2 � k2q

� xn2 � k2y�1xn2y�2
� » t

0

1J pt1q sinppt� t1qxn2 � k2yq cosppt� t1qxn2yq exp
�
it1λ2qdt1

	����2
À T 4 1

 
N1 � N2

(
N�2�6ε

1 xk2y2p1�s2q
¸
n3PZ3

χN3pn3qxn3y2ps2�1qxn3y�2

À T 4 1
 
N1 � N2

(
N�2�8ε

1 N2δ2
3 .

Since maxpN1, N2q Á N ε
3 and δ2 is much smaller than ε, this contribution is acceptable.

4.8 Physical-space methods

In this section, we estimate the terms in Phy. The main ingredients are para-product decomposi-

tions and Strichartz estimates. In Section 4.8.1, we recall the refined Strichartz estimates for the

wave equation by Klainerman and Tataru [KT99]. In Section 4.8.2, we use the Klainerman-Tataru-

Strichartz estimate to control several terms in Phy. The remaining terms in Phy are estimated

in Section 4.8.3, which also requires estimates on the quartic stochastic object from Section 4.5.2.
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4.8.1 Klainerman-Tataru-Strichartz estimates

We first recall the refined (linear) Strichartz estimate from [KT99, (A.59)].

Lemma 4.8.1 (Klainerman-Tataru-Strichartz estimates). Let J be a compact interval. Let Q

be a box of sidelength � M at a distance � N from the origin. Let PQ be the corresponding

Fourier truncation operator and let 2 ¤ p, q   8 satisfy the sharp wave-admissibility condition

1{q � 1{p � 1{2. Then,

}PQu}LqtLpxpJ�T3q À p1� |J |q 1
q

�M
N

	 1
2
� 1
p
N

3
2
� 1
q
� 3
p }PQu}X0,bpJ q. (4.8.1)

Remark 4.8.2. The factor N
3
2
� 1
q
� 3
p is the same as in the standard deterministic Strichartz es-

timate. The gain from the stronger localization in frequency space is described by the factor

pM{Nq 1
2
� 1
p . Naturally, there is no gain when p � 2.

We emphasize that (4.8.1) has a more complicated dependence on M and N than the corresponding

result for the Schrödinger equation. In the Schrödinger setting, the frequency-localized Strichartz

estimates for the operator PQ and the standard Littlewood-Paley operators P¤M are equivalent,

which follows from the Galilean symmetry. This difference between the Schrödinger and wave

equation already played a role in our counting estimates (Section 4.4.4).

Corollary 4.8.3. Let J be a compact interval. Let Q be a box of sidelength � M at a distance

� N from the origin. Let PQ be the corresponding Fourier truncation operator and let q ¥ 4.

Then, it holds that

}PQu}LqtLqxpJ�T3q À p1� |J |q 1
qM

3
2
� 5
qN

1
q }PQu}X0,bpJ q. (4.8.2)

Proof. This follows by combining Lemma 4.8.1 (with q � p � 4) and the Bernstein inequality

}PQu}L8t L8x pJ�T3q ÀM
3
2 }PQu}X0,bpJ q.
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We now state a bilinear version of the Klainerman-Tataru-Strichartz estimate, which is a conse-

quence of Lemma 4.8.1 (cf. [KT99, Theorem 4 and 5]). However, since we only require a special

case, we provide a self-contained proof.

Lemma 4.8.4 (Bilinear Klainerman-Tataru-Strichartz estimate). Let T ¥ 1, q ¥ 4, let γ  
3� 10{q and let N1, N2 ¥ 1. Then, it holds that

}x∇y�γ�PN1f � PN2g
�}
L
q
2
t L

q
2
x pr0,T s�T3q

À T
2
q maxpN1, N2q3�2s1�

8
q
�γ}f}Xs1,bpr0,T sq}g}Xs1,bpr0,T sq.

In particular, ¸
N1,N2

}PN1f � PN2g}L2
tH

�4δ1
x pr0,T s�T3q

À T
1
2 }f}Xs1,bpr0,T sq}g}Xs1,bpr0,T sq.

Furthermore, if N12 ¥ 1, then

}pPN12V q �
�
PN1f � PN2g

�}L2
tL

2
xpr0,T s�T3q

À T
1
2N

1
2
�β�2δ1

12 maxpN1, N2q� 1
2
�4δ1}f}Xs1,bpr0,T sq}g}Xs1,bpr0,T sq.

Remark 4.8.5. Bilinear Strichartz estimates are also important in the random data theory for

nonlinear Schrödinger equations in [BOP15a, BOP19a]. In the proof of Proposition 4.8.10 below,

we will only require the case q � 4� and the reader may simply think of q as four.

Proof. We begin with the first estimate, which is the main part of the argument. Using the

definition of the restricted Xs,b-spaces, we may replace }f}Xs1,bpr0,T sq and }g}Xs1,bpr0,T sq by }f}Xs1,bpRq
and }g}Xs1,bpRq, respectively. The proof relies on the linear Klainerman-Tataru-Strichartz estimate

(Corollary 4.8.3) and box localization. We decompose

}x∇y�γ�PN1f � PN2g
�}
L
q
2
t L

q
2
x pr0,T s�T3q

À
¸
N12 :

N12ÀmaxpN1,N2q

N�γ
12 }PN12

�
PN1f � PN2g

�}
L
q
2
t L

q
2
x pr0,T s�T3q

.
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If N1 � N2, then N12 � maxpN1, N2q and the desired estimate follows from Hölder’s inequality and

the LqtL
q
x-estimate from Corollary 4.8.3 with M � N . Thus, it remains to treat the case N1 � N2.

Let Q � QpN1, N12q be a cover of the dyadic annulus at distance � N1 by finitely overlapping

cubes of diameter � N12. From Fourier support considerations and Lemma 4.8.1, it follows that

}PN12

�
PN1f � PN2g

�}
L
q
2
t L

q
2
x pr0,T s�T3q

À
¸

Q1,Q2PQ :
dpQ1,Q2qÀN12

}PQ1PN1f � PQ2PN2g}
L
q
2
t L

q
2
x pr0,T s�T3q

À
¸

Q1,Q2PQ :
dpQ1,Q2qÀN12

}PQ1PN1f}LqtLqxpr0,T s�T3q}PQ2PN2g}LqtLqxpr0,T s�T3q

À T
2
qN

3� 10
q

12 N
2
q
�2s1

1

¸
Q1,Q2PQ :

dpQ1,Q2qÀN12

}PQ1PN1f}Xs1,bpRq}PQ2PN2g}Xs1,bpRq

À T
2
qN

3� 10
q

12 N
2
q
�2s1

1

� ¸
Q1,Q2PQ :

dpQ1,Q2qÀN12

}PQ1PN1f}2
Xs1,bpRq

	 1
2
� ¸

Q1,Q2PQ :
dpQ1,Q2qÀN12

}PQ2PN2g}2
Xs1,bpRq

	 1
2

À T
2
qN

3� 10
q

12 N
2
q
�2s1

1 }f}Xs1,bpRq}g}Xs1,bpRq.

The desired result then follows by using the upper bound γ   3� 10
q

and summing in N12.

We now turn to the second estimate. After estimating

}pPN12V q �
�
PN1f � PN2g

�}L2
tL

2
xpr0,T s�T3q À N

1
2
�β�2δ1

12 }x∇y� 1
2
�2δ1

�
PN1f � PN2g

�}L2
tL

2
xpr0,T s�T3q,

the result follows from the first estimate.

4.8.2 Physical terms

In this subsection, we use the Klainerman-Tataru-Strichartz estimate and a para-product decom-

position to control several terms in Phy.
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Proposition 4.8.6. Let J be a bounded interval and let f, g P Xs1,bpJ q. Then, it holds that

sup
N¥1

���V � �P¤Nf � P¤Ng� Ì 

� �
P¤N

���
Xs2�1,b��1pJ q

À p1� |J |q2}f}Xs1,bpJ q}g}Xs1,bpJ q} }
L8t C�1{2�κ

x pJ�T3q

and

sup
N¥1

��� Ì Ì& 

� � �
V � �P¤Nf � P¤Ng� P¤N 	���

Xs2�1,b��1pJ q

À p1� |J |q2}f}Xs1,bpJ q}g}Xs1,bpJ q} }
L8t C�1{2�κ

x pJ�T3q

In the frequency-localized versions of the two estimates, which are detailed in the proof, we gain

an η1-power in the maximal frequency-scale.

Proof. After using a Littlewood-Paley decomposition, we obtain

���V � �P¤Nf � P¤Ng� Ì 

� �
P¤N

���
Xs2�1,b��1pJ q

�
��� Ì Ì& 

� � �
V � �P¤Nf � P¤Ng� P¤N 	���

Xs2�1,b��1pJ q

À
¸

N1,N2,N3,N12 :
maxpN1,N2qÁNε

3

���pPN12V q �
�
P¤NPN1f � P¤NPN2g

�
P¤NPN3

���
Xs2�1,b��1pJ q

,

where we also used that N12 À maxpN1, N2q. We estimate each dyadic piece separately and dis-

tinguish two cases:

Case 1: N12 � N3. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9) and Lemma 4.8.4,
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we obtain that���pPN12V q �
�
P¤NPN1f � P¤NPN2g

�
P¤NPN3

���
Xs2�1,b��1pJ q

À
���pPN12V q �

�
P¤NPN1f � P¤NPN2g

�
P¤NPN3

���
L
2b�
t H

s2�1
x pJ�T3q

À p1� |J |q 1
2 maxpN12, N3qs2�1

���pPN12V q �
�
P¤NPN1f � P¤NPN2g

����
L2
tL

2
xpJ�T3q

�
���P¤NPN3

���
L8t L

8
x pJ�T3q

À p1� |J |qmaxpN12, N3qs2�1N
1
2
�β�2δ1

12 maxpN1, N2q� 1
2
�4δ1N

1
2
�κ

3

� }f}Xs1,bpJ q}g}Xs1,bpJ q} }
L8t C�1{2�κ

x pJ�T3q
.

Since maxpN1, N2q ¥ N ε
3, we can bound the pre-factor by

maxpN12, N3qs2�1N
1
2
�β�2δ1

12 maxpN1, N2q� 1
2
�4δ1N

1
2
�κ

3 À maxpN1, N2q�β�6δ1N δ2�κ
3

À maxpN1, N2, N3q�2η.

Case 2: N12 � N3. By symmetry, we can assume that N1 ¥ N2. Furthermore, we have that

N3 � N12 À N1. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9), we obtain that���pPN12V q �
�
P¤NPN1f � P¤NPN2g

�
P¤NPN3

���
Xs2�1,b��1pJ q

À p1� |J |q
���x∇ys2� 1

2
�4pb��

1
2
q
�
pPN12V q �

�
P¤NPN1f � P¤NPN2g

�
P¤NPN3

	���
L

4
3
t L

4
3
x pJ�T3q

À p1� |J |q 3
2N

s2�
1
2
�4pb��

1
2
q�β

3

���PN1f
���
L8t L

2
xpJ�T3q

���PN2g
���
L4
tL

4
xpJ�T3q

���PN3

���
L8t L

8
x pJ�T3q

À p1� |J |q2N�s1
1 N

1
2
�s1

2 N
s2�

1
2
�4pb��

1
2
q�β� 1

2
�κ

3 }f}Xs1,bpJ q}g}Xs1,bpJ q} }
L8t C�1{2�κ

x pJ�T3q
.

Since N2, N3 ¥ 1, the pre-factor can be bounded by

N�s1
1 N

1
2
�s1

2 N
s2�

1
2
�4pb��

1
2
q�β� 1

2
�κ

3 À N
1�2s1�s2�

1
2
�4pb��

1
2
q�β�κ

1 � N
2δ1�δ2�4pb��

1
2
q�κ�β

1 ,

which is acceptable.
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Proposition 4.8.7. Let T ¥ 1, let J � r0, T s be an interval, and let f, g : J � T3 Ñ R. Then, it

holds that

sup
N¥1

���V �
�
P¤N � P¤Nf

	
P¤Ng

���
Xs2�1,b��1pJ q

À p1� |J |q2} }
L8t C�

1
2�κpJ�T3q

}f}Xs1,bpJ q}g}Xs1,bpJ q.

In the frequency-localized version of this estimate, which is detailed in the proof, we gain an

η1-power in the maximal frequency-scale.

Proof. By using a Littlewood-Paley decomposition and the definitions of � , we have that

V �
�
P¤N � P¤Nf

	
P¤Ng �

¸
N1,N2,N3 :
N1�N2

V �
�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g.

We treat each dyadic block separately and distinguish two cases.

Case 1: N1 " N2, N3. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9), we have that���V �
�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g

���
Xs2�1,b��1pJ q

À
���V �

�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g

���
L
2b�
t H

s2�1
x pJ�T3q

À p1� |J |q 1
2N s2�1�β

1 }PN1 }L8t L8x pJ�T3q}PN1f}L4
tL

4
xpJ�T3q}PN2g}L4

tL
4
xpJ�T3q

À p1� |J |qN s2�1�β� 1
2
�κ

1 N
1
2
�s1

2 N
1
2
�s1

3 } }
L8t C

� 1
2�κ

x pJ�T3q
}f}Xs1,bpJ q}g}Xs1,bpJ q.

Since N2, N3 ! N1, the pre-factor can be bounded by

N
s2�1�β� 1

2
�κ

1 N
1
2
�s1

2 N
1
2
�s1

3 À N2δ1�δ2�κ�β
1 ,

which is acceptable.

Case 2.a: N1 ! N2, N3 À N2. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9), we
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have that���V �
�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g

���
Xs2�1,b��1pJ q

À p1� |J |q
���x∇ys2� 1

2
�4pb��1q

�
V �

�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g

	���
L

4
3
t L

4
3
x pJ�T3q

À p1� |J |qN s2�
1
2
�4pb��1q

2 }V � �P¤NPN1 � P¤NPN2f
�}L2

tL
2
xpJ�T3q}P¤NPN3g}L4

tL
4
xpJ�T3q

À p1� |J |qN s2�
1
2
�4pb��1q�β

2 } }L8t L8x pJ�T3q}PN2f}L2
tL

2
xpJ�T3q}PN3g}L4

tL
4
xpJ�T3q

À p1� |J |q2N
1
2
�κ

1 N
s2�

1
2
�4pb��1q�β�s1

2 N
1
2
�s1

3 } }
L8t C

� 1
2�κ

x pJ�T3q
}f}Xs1,bpJ q}g}Xs1,bpJ q.

The pre-factor can now be bounded as before.

Case 2.b: N1 ! N2, N2 ! N3. Using the inhomogeneous Strichartz estimate (Lemma 4.4.9), we

have that���V �
�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g

���
Xs2�1,b��1pJ q

À p1� |J |q
���x∇ys2� 1

2
�4pb��1q

�
V �

�
P¤NPN1 � P¤NPN2f

	
P¤NPN3g

	���
L

4
3
t L

4
3
x pJ�T3q

À p1� |J |qmaxpN1, N2q�βN s2�
1
2
�4pb��1q

3 } }L8t L8x pJ�T3q}PN2f}L4
tL

4
xpJ�T3q}PN3g}L2

tL
2
xpJ�T3q

À p1� |J |q2 maxpN1, N2q�βN
1
2
�κ

1 N
1
2
�s1

2 N
s2�

1
2
�4pb��1q�s1

3 } }
L8t C

� 1
2�κ

x pJ�T3q
}f}Xs1,bpJ q}g}Xs1,bpJ q.

The pre-factor can now be bounded by

maxpN1, N2q�βN
1
2
�κ

1 N
1
2
�s1

2 N
s2�

1
2
�4pb��1q�s1

3 À N
1
2
�κ�β

1 N δ1
2 N

� 1
2
�δ1�δ2�4pb��1q

3 À N2δ1�δ2�κ�β
3 ,

which is acceptable.

Lemma 4.8.8 (Bilinear physical estimate). Let J � R be a bounded interval. If Ψ, f : J �T3 Ñ
C, then

}�V �Ψ
�
f}Xs2�1,b��1pJ�T3q À p1� |J |q 3

2 }Ψ}
L2
tH

�4δ1
x pJ�T3q

min
�}f}L8t Cβ�κx pJ�T3q, }f}Xs1,bpJ q

�
.
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In the frequency-localized version of this estimate we also gain an η1-power in the maximal

frequency-scale.

Lemma 4.8.8 can be combined with our bound on � wN in the stability theory (see Section 4.3.3).

In the local theory, its primary application is isolated in the following corollary.

Corollary 4.8.9. Let J � R be a bounded interval and let w, Y : J � T3 Ñ R. Then, we have

uniformly in N ¥ 1 that���V �
�
P¤N � P¤NY

	
P¤N

�
N

���
Xs2�1,b��1pJ q

À p1� |J |q2} }
L8t C

� 1
2�κ

x pJ�T3q
}Y }Xs2,bpJ q

��� � N

���
L8t Cβ�κx pJ�T3q

,���V �
�
P¤N � P¤NY

	
P¤Nw

���
Xs2�1,b��1pJ q

À p1� |J |q2} }
L8t C

� 1
2�κ

x pJ�T3q
}Y }Xs2,bpJ q}w}Xs1,bpJ q.

Proof of Corollary 4.8.9: We have that

}P¤N � P¤NY }L2
tH

�4δ1
x pJ�T3q

À |J | 12 } }
L8t C

� 1
2�κ

x pJ�T3q
}Y }L8t Hs2

x pJ�T3q

À |J | 12 } }
L8t C

� 1
2�κ

x pJ�T3q
}Y }Xs2,bpJ q.

Together with Lemma 4.8.9, this implies the corollary.

Proof of Lemma 4.8.8: Let 0 ¤ θ ! β remain to be chosen. Using the inhomogeneous Strichartz

estimate and (a weaker version of) the fractional product rule, we have that

}�V �Ψ
�
f}Xs2�1,b��1pJ�T3q

À p1� |J |q}x∇ys2� 1
2
�4pb��

1
2
q
��
V �Ψ

�
f
�}
L

4
3
t L

4
3
x pJ�T3q

À p1� |J |q}x∇ys2� 1
2
�4pb��

1
2
q
�
V �Ψ

�}
L2
tL

4
2�θ
x pJ�T3q

}x∇ys2� 1
2
�4pb��

1
2
qf}

L4
tL

4
1�θ
x pJ�T3q

.
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Using Sobolev embedding, the first factor is bounded by

}x∇ys2� 1
2
�4pb��

1
2
q
�
V �Ψ

�}
L2
tL

4
2�θ
x pJ�T3q

À }x∇ys2� 1
2
�4pb��

1
2
q� 3θ

4
�βΨ}L2

tL
2
xpJ�T3q

À }Ψ}
L2
tH

�4δ1
x pJ�T3q

.

Thus, it remains to present two different estimates of the second factor. By simply choosing θ � 0,

we see that

}x∇ys2� 1
2
�4pb��

1
2
qf}L4

tL
4
xpJ�T3q À p1� |J |q 1

4 }f}L8t Cβ�κx pJ�T3q,

which yields the first term in the minimum. Using Hölder’s inequality in time and Strichartz

estimates, we also have that

}x∇ys2� 1
2
�4pb��

1
2
qf}

L4
tL

4
1�θ
x pJ�T3q

À p1� |J |q θ4 }x∇ys2� 1
2
�4pb��

1
2
qf}

L
4

1�θ
t L

4
1�θ
x pJ�T3q

À p1� |J |q 1
4 }f}Xs1,bpJ q,

provided that

s2 � 1

2
� 4pb� � 1

2
q � 3

2
� 1� θ

4
� 3

1� θ

4
¤ s1.

The last condition can be satisfied by choosing θ � 4δ1, which also satisfies θ ! β.

Proposition 4.8.10. Let J � R be a bounded interval and let f, g, h : J � T3. Then, it holds

that

sup
N¥1

����V �
�
P¤Nf � P¤Ng

	
P¤Nh

����
Xs2�1,b��1pJ q

À p1� |J |q2
¹

ϕ�f,g,h

min
�
}ϕ}L8t Cβ�κx pJ�T3q, }ϕ}Xs1,bpJ q

	
.

(4.8.3)

In the frequency-localized version of this estimate we also gain an η1-power in the maximal

frequency-scale.

Remark 4.8.11. In applications of Lemma 4.8.10, we will choose f, g, and h as either
�

N , which

is contained in L8t Cβ�κx , or wN , which is contained in Xs1,b.
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Proof. Since the proof is relatively standard, we only present the argument when all functions f, g,

and h are placed in the same space. The intermediate cases follow from a combination of our

arguments below.

Estimate for L8t Cβ�κx : Using the inhomogeneous Strichartz estimate (Lemma 4.4.9) and s2 ¤ 1,

we have that����V �
�
P¤Nf � P¤Ng

	
P¤Nh

����
Xs2�1,b��1pJ q

À
���V �

�
P¤Nf � P¤Ng

	
P¤Nh

���
L
2b�
t L2

xpJ�T3q

À p1� |J |q
¹

ϕ�f,g,h

}ϕ}L8t L8x pJ�T3q À p1� |J |q
¹

ϕ�f,g,h

}ϕ}L8t Cβ�κx pJ�T3q.

Estimate for Xs1,bpJ q: Let 0   θ ! 1 remain to be chosen. Using the inhomogeneous Strichartz

estimate (Lemma 4.4.9), we have that���V �
�
P¤Nf � P¤Ng

	
P¤Nh

���
Xs2�1,b��1pJ q

À p1� |J |q
���x∇ys2� 1

2
�4pb��

1
2
q
�
V �

�
P¤Nf � P¤Ng

	
P¤Nh

	 ���
L

4
3
t L

4
3
x pJ�T3q

À p1� |J |q
���x∇ys2� 1

2
�4pb��

1
2
q
�
V �

�
P¤Nf � P¤Ng

		���
L

4
2�θ
t L

4
2�θ
x pJ�T3q

� ��x∇ys2� 1
2
�4pb��

1
2
qh
��
L

4
1�θ
t L

4
1�θ
x pJ�T3q

.

Using Lemma 4.8.4, the first term is bounded by p1� |J |q 2�θ
4 }f}Xs1,bpJ q}g}Xs1,bpJ q as long as

2δ1 � δ2 � 4
�
b� � 1

2

�� θ   β. (4.8.4)

Using Hölder’s inequality in the time-variable and the linear Strichartz estimate, we have that

��x∇ys2� 1
2
�4pb��

1
2
qh
��
L

4
1�θ
t L

4
1�θ
x pJ�T3q

À p1� |J |q θ2 ��x∇ys2� 1
2
�4pb��

1
2
qh
��
L

4
1�θ
t L

4
1�θ
x pJ�T3q

À p1� |J |q 1�θ
4 }h}Xs1,bpJ q,
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provided that
θ

2
¡ δ1 � δ2 � 4

�
b� � 1

2

�
. (4.8.5)

In order to satisfy both conditions (4.8.4) and (4.8.5), we can choose θ � 4δ1.

4.8.3 Hybrid physical-RMT terms

In this subsection, we estimate the remaining terms in Phy. Our estimates will be phrased as

bounds on the operator norm of certain random operators. In contrast to Proposition 4.6.1 and

Proposition 4.6.3, however, we will not need the moment method (from [DNY20]). Instead, we

will rely on Strichartz estimates and the estimates for the quartic stochastic object from Section

4.5.2.

Proposition 4.8.12. Let T ¥ 1 and p ¥ 1. Then, we have the following three estimates:

��� sup
N¥1

sup
J�r0,T s

sup
}w}

Xs1,bpJ q
¤1

���V �
�
P¤N � P¤N �

N

	
P¤Nw

���
Xs2�1,b��1pJ q

���
LpωpPq

À T 3p2, (4.8.6)

��� sup
N¥1

sup
J�r0,T s

sup
}w}

Xs1,bpJ q
¤1

���V �
�
P¤N � P¤Nw

	
P¤N

�
N

���
Xs2�1,b��1pJ q

���
LpωpPq

À T 3p2, (4.8.7)

��� sup
N¥1

sup
J�r0,T s

sup
}w}

Xs1,bpJ q
¤1

���V �
�
P¤N

�
N � P¤Nw

	
Ì 

� �
P¤N

���
Xs2�1,b��1pJ q

���
LpωpPq

(4.8.8)

À Tp2.

Remark 4.8.13. In the frequency-localized versions of (4.8.6), (4.8.7), and (4.8.8), we also gain

an η1-power of the maximal frequency-scale. Similar as in Proposition 4.5.3 and Remark 4.5.4, we

may also replace
�

N by
�

N

τ
.

Proof. We first prove (4.8.6), which is the easiest part. Using the inhomogeneous Strichartz esti-
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mate (Lemma 4.4.9), s2 � 1   �s1, and the (dual of) the fractional product rule, we have that���V �
�
P¤N � P¤N �

N

	
P¤Nw

���
Xs2�1,b��1pJ q

À
���V �

�
P¤N � P¤N �

N

	
P¤Nw

���
L
2b�
t H

s2�1
x pJ q

À
���V �

�
P¤N � P¤N �

N

	
P¤Nw

���
L
2b�
t H

�s1
x pJ q

À T
���V �

�
P¤N � P¤N �

N

	���
L8t C�s1�ηx pr0,T s�T3q

}w}L8t Hs1
x pJ�T3q.

Using (4.5.11) in Proposition 4.5.3, this implies (4.8.6).

We now turn to (4.8.7) and (4.8.8), which are more difficult. The main step consists of the following

estimate: For any M1, N1, K1, K2 ¥ 1, we have that���� sup
N¥1

sup
tPr0,T s

sup
}f}

H
s1
x
,}g}

H
s1
x
¤1

��� »
T3

V � �PM1P¤N
�

N � PK1P¤Nf
�
PN1P¤N � PK2P¤Ngdx

�������
LpωpPq

À T 3 maxpK1, K2, N1,M1q�η
�

1� 1
 
N1 � K2

(
M�β�κ�η

1 K�s1�η
1 N

1
2
�κ�s1

1

	
p2.

(4.8.9)

For notational convenience, we now omit the multiplier P¤N . As will be evident from the proof,

the same argument applies (uniformly in N) with the multiplier. The proof of (4.8.9) splits into

two cases. The impatient reader may wish to skim ahead to Case 2.b, which contains the most

interesting part of the argument.

Case 1: M1 � N1. From Fourier support considerations, it follows that maxpK1, K2q Á maxpN1,M1q.
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Then, we estimate the integral in (4.8.9) by��� »
T3

V � �PM1

�
N � PK1f

�
PN1 � PK2gdx

���
À

¸
LÀmaxpN1,K2q

��� »
T3

pPLV q �
�
PM1

�
N � PK1f

� � rPL�PN1 � PK2g
�
dx

���
À

¸
LÀmaxpN1,K2q

}PLV }L1
x

���PM1

�
N � PK1f

���
L2
x

��� rPL�PN1 � PK2g
�
dx

���
L2
x

ÀM�β�κ
1 K�s1

1

��� � N

���
Cβ�κx

¸
LÀmaxpN1,K2q

L�β
��� rPL�PN1 � PK2g

�
dx

���
L2
x

. (4.8.10)

We now further split the argument into two subcases.

Case 1.a: M1 � N1, K2 � N1. Then, we only obtain a non-trivial contribution if L � maxpN1, K2q.
Using maxpK1, K2q Á maxpM1, N1q ¥ N1, we obtain that

(4.8.10) ÀM�β�κ
1 K�s1

1 maxpK2, N1q�βK�s1
2 N

1
2
�κ

1

��� � N

���
Cβ�κx

�� ��
C
� 1

2�κ
x

ÀM�β�κ
1 K�η

1 K�η
2 N

1
2
�κ�η�β�s1

1

��� � N

���
Cβ�κx

�� ��
C
� 1

2�κ
x

.

The pre-factor is bounded by pM1K1K2N1q�η, which is acceptable.

Case 1.b: M1 � N1, K2 � N1. In this case, the worst case corresponds to L � 1. Using only

Hölder’s inequality, we obtain that

(4.8.10) À 1
 
K2 � N1

(
M�β�κ

1 K�s1
1 N

1
2
�κ�s1

1

��� � N

���
Cβ�κx

�� ��
C
� 1

2�κ
x

.

This case is responsible for the second summand in (4.8.9).

Case 2: M1 � N1. This case is more delicate and requires the estimates on the quartic stochastic

352



objects from Section 4.5.2. Inspired by the uncertainty principle, we decompose��� »
T3

V � �PM1

�
N � PK1f

�
PN1 � PK2gdx

���
¤
��� »

T3

pP!N1V q �
�
PM1

�
N � PK1f

�
PN1 � PK2gdx

���
�
��� »

T3

pPÁN1V q �
�
PM1

�
N � PK1f

�
PN1 � PK2gdx

���.
We estimate both terms separately and hence divide the argument into two subcases.

Case 2.a: M1 � N1, contribution of P!N1V . For this term, we only obtain a non-trivial contribu-

tion if K1 � K2 � N1. Using Hölder’s inequality and Young’s convolution inequality, we obtain

that ��� »
T3

pP!N1V q �
�
PM1

�
N � PK1f

�
PN1 � PK2gdx

���
À 1

 
K1 � K2 �M1 � N1

(}P!N1V }L1
x

���PM1

�
N

���
L8x

}PK1f}L2
x

��PN1

��
L8x
}PK2g}L2

x

À 1
 
K1 � K2 �M1 � N1

(
N

1
2
�2κ�β�2s1

1

��� � N

���
Cβ�κx

�� ��
C
� 1

2�κ
x

.

The pre-factor is easily bounded by (and generally much smaller than) pM1K1K2N1q�η.

Case 2.b: M1 � N1, contribution of PÁN1V . By expanding the convolution with the interaction

potential, we obtain that��� »
T3

pPÁN1V q �
�
PM1

�
N � PK1f

�
PN1 � PK2gdx

���
¤
»
T3

|PÁN1V pyq|
���� »

T3

�
PK1fpx� yq � PK2gpxq

� � �PM1

�
N pt, x� yq � PN1 pt, xq

	
dx

����dy
À }PÁN1V pyq}L1

y
� sup
yPT3

}x∇xy 1
2
�β�2κ

�
PK1fpx� yq � PK2gpxq

�}L1
x

� sup
yPT3

���PM1

�
N pt, x� yq � PN1 pt, xq

���
C
� 1

2�β�κ
x
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À N�β
1 K�η

1 K�η
2 sup

yPT3

���PM1

�
N pt, x� yq � PN1 pt, xq

���
C
� 1

2�β�κ
x

.

Using Proposition 4.5.3, this contribution is acceptable. We note that the pre-factor N�β
1 is essen-

tial, since Proposition 4.5.3 is not uniformly bounded over all frequency scales.

By combining Case 1 and Case 2, we have finished the proof of (4.8.9). It remains to show that

(4.8.9) implies (4.8.7) and (4.8.8). To simplify the notation, we denote the expression inside the

Lpω-norm in (4.8.9) by

ApK1, K2,M1, N1q def� sup
tPr0,T s

sup
}f}

H
s1
x
,}g}

H
s1
x
¤1

��� »
T3

V � �PM1

�
N � PK1f

�
PN1 � PK2gdx

���. (4.8.11)

To see (4.8.7), we use the self-adjointness of V , duality, and s1   1� s2, which leads to���V �
�

� w
	
�

N

���
H
s2�1
x

¤
¸

K1,K2,M1,N1

1
 
K2 � N1

(���PK1

�
V � �PN1 � PK2w

�
PM1

�
N

	���
H
s2�1
x

À
� ¸
K1,K2,M1,N1

1
 
K2 � N1

(
ApK1, K2,M1, N1q

	
}w}Hs1

x
.

After using the inhomogeneous Strichartz estimate and (4.8.9), this completes the argument.

Finally, we turn to (4.8.8). Using duality, we have that���V �
�
�

N � w
	

Ì 

� � ���
H
s2�1
x

¤
¸

K1,K2,M1,N1

1
 

maxpM1, K1q ¥ N ε
1

(���PK2

�
V �

�
PM1

�
N � PK1w

	
PN1

	���
H
s2�1
x

À
¸

K1,K2,M1,N1

1
 

maxpM1, K1q ¥ N ε
1

(
Ks1�s2�1

2

���PK2

�
V �

�
PM1

�
N � PK1w

	
PN1

	���
H
�s1
x

À
¸

K1,K2,M1,N1

1
 

maxpM1, K1q ¥ N ε
1

(
Ks1�s2�1

2 ApK1, K2,M1, N1q}w}Hs1
x
.
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We now note that maxpM1, K1q ¥ N ε
1 implies

1
 
N1 � K2

(
M�β�κ�η

1 K�s1�η
1 Ks1�s2�1

2 N
1
2
�κ�s1

1 À N
�εminpβ�κ�η,1{2�δ1�ηq
1 Nκ�δ2

1 À 1.

In the last inequality, we used the parameter conditions (4.1.19). We also emphasize that the factor

Ks1�s2�1
2 is essential for this inequality. Using inhomogeneous Strichartz estimate and (4.8.9), we

then obtain the desired estimate.

4.9 From free to Gibbsian random structures

In the previous four sections, we proved several estimates for stochastic objects, random matrices,

and para-controlled structures based on . In Section 4.2, these estimates were used to prove the

local convergence of the truncated dynamics as N tends to infinity. Unfortunately, the object

only exists on the ambient probability space and the global theory requires (intrinsic) estimates

for with respect to the Gibbs measure. If the desired estimate does not rely on the invariance

of µbM under the nonlinear flow, however, we can use Theorem 4.1.1 to replace the Gibbs measure

µbM by the reference measure νbM . In particular, this works for stochastic objects only depending

on the linear evolution of , such as or �
N

. Once we are working with the reference measure

νbM , we can then use that

νbM � LawP
� � M

�
.

Since M has spatial regularity 1{2� β�, we expect that our estimates for will imply the same

estimates for . As a result, this section contains no inherently new estimates and only combines

our previous bounds.
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4.9.1 The Gibbsian cubic stochastic object

This subsection should be seen as a warm-up for Section 4.9.2 below. We explore the relationship

between the two cubic stochastic objects

�
N and

�
N .

This is already sufficient for the structured local well-posedness in Proposition 4.3.3 on the support

of the Gibbs measure. It will also be needed in the proof of several propositions and lemmas in

Section 4.9.3 below.

Proposition 4.9.1. Let A ¥ 1, let T ¥ 1, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently

small. There exist two Borel sets Θcub
bluepA, T q,Θcub

red pA, T q � H
�1{2�κ
x pT3q satisfying

P
�

P Θcub
bluepA, T q and M Θcub

red pA, T q
	
¥ 1� ζ�1 exppζAζq

for all M ¥ 1 and such that the following holds for all P Θcub
bluepA, T q and M Θcub

red pA, T q: For all

N ¥ 1, there exist HN r Ñ s, HN r Ñ s P LMpr0, T sq and YN r Ñ s, YN r Ñ s P Xs2,bpr0, T sq
satisfying the identities

�
N � �

N � P¤N I
�

PCtrl
�
HN r Ñ s, P¤N

	�
� YN r Ñ s,

�
N � �

N � P¤N I
�

PCtrl
�
HN r Ñ s, P¤N

	�
� YN r Ñ s.

and the estimates

}HN r Ñ s}LMpr0,T sq, }HN r Ñ s}LMpr0,T sq ¤ T 2A

and

}YN r Ñ s}Xs2,bpr0,T sq, }YN r Ñ s}Xs2,bpr0,T sq ¤ T 3A.

Furthermore, in the frequency-localized version of this estimate, we gain an η1-power of the maximal

frequency-scale.
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Remark 4.9.2. The results in Proposition 4.9.1 do not yield a bound on
�

N in L8t Cβ�κx , since

Xs2,b does not embed into L8t Cβ�κx and we do not state any additional information on YN . However,

such an estimate is possible and only requires the translation invariance of the law of p , M q, which

is a consequence of [Bri20c, Theorem 1.4].

Before we start with the proof of Proposition 4.9.1, we record and prove the following corollary.

Corollary 4.9.3. Let A ¥ 1, let T ¥ 1, let α ¡ 0 be a large absolute constant, and let ζ �
ζpε, s1, s2, κ, η, η

1, b�, bq ¡ 0 be sufficiently small. Then, there exists a Borel set Θbil
purpA, T q �

H
�1{2�κ
x pT3q satisfying

µbM
�

Θbil
purpA, T q

	
, νbM

�
Θbil

purpA, T q
	
¥ 1� ζ�1 exppζAζq (4.9.1)

for all M ¥ 1 and such that the following holds for all P Θbil
purpA, T q:

For all intervals J � r0, T s and w P Xs1,bpJ q, it holds that¸
L1,L2

���PL1

�
N � PL2w

���
L2
tH

�4δ1
x pJ�T3q

¤ TαA}w}Xs1,bpJ q. (4.9.2)

Proof of Corollary 4.9.3: We simply define Θbil
purpA, T q as set the of initial data P H

�1{2�κ
x pT3q

where (4.9.2) holds for a countable but dense subset of Xs1,bpRq, which is Borel measurable, and it

remains to prove the probabilistic estimate (4.9.1). Using Theorem 4.1.1, it suffices to prove that

Pp � M P Θbil
purpA, T q

	
¥ 1� ζ�1 exppζAζq.

This follows directly from Proposition 4.5.1, Lemma 4.8.4, and Proposition 4.9.1.

We now turn to the proof of Proposition 4.9.1. The argument relies on the multi-linearity of the

stochastic objects in the initial data. In order to use the decomposition of , we define mixed

cubic stochastic objects. In Section 4.3.1, we defined stochastic objects in instead of , which had
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the exact same renormalization constants and multipliers. In the proof of Proposition 4.9.1, we

also work with stochastic objects that contain a mixture of both and � M . In this case, only

factors of require a renormalization. The renormalized mixed stochastic objects are then defined

by

�
N

def� P¤N

�
V �

�
P¤N � P¤N

	
� P¤N �MNP¤N

�
,

�
N

def� P¤N

��
V �

N

	
� P¤N

�
,

�
N

def� P¤N

�
V �

�
P¤N � P¤N

	
� P¤N

�
,

�
N

def� P¤N

�
V �

�
P¤N � P¤N

	
� P¤N

�
,

�
N

def� P¤N

�
V �

�
P¤N � P¤N

	
� P¤N

�
.

Furthermore, we define the solution to the nonlinear wave equation with forcing term �
N

by

p�B2
t � 1�∆q � N � �

N
,

�
N r0s � 0.

The solutions for the other forcing terms above are defined similarly. Using these definitions, we

obtain that identity

�
N � �

N � 2
�

N � �
N � �

N � 2
�

N � �
N . (4.9.3)

Using this identity, the proof of Proposition 4.9.1 is now split into two lemmas.

Lemma 4.9.4. Let A ¥ 1, let T ¥ 1, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently small.

Then, there exists two Borel sets Θ
cub,p1q
blue pA, T q,Θcub,p1q

red pA, T q � H
�1{2�κ
x pT3q satisfying

P
�

P Θ
cub,p1q
blue pA, T q and M P Θ

cub,p1q
red pA, T q

	
¥ 1� ζ�1 exppζAζq (4.9.4)

for all M ¥ 1 and such that the following holds for all P Θ
cub,p1q
blue pA, T q and M P Θ

cub,p1q
red pA, T q:
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For all N ¥ 1, there exists a HN P LMpr0, T sq satisfying the identity

2 p Ì q � N � p Ì q � N � P¤N IrPCtrlpHN , P¤N qs (4.9.5)

and the estimate

}HN}LMpr0,T sq ¤ T 2A.

Furthermore, the difference HN �HK gains an η1-power of minpN,Kq.

Proof. From Lemma 4.7.6, it follows that there exists a (canonical) random variable HN : Ω Ñ
LMpr0, T sq such that

2 p Ì q � N � p Ì q � N � P¤N IrPCtrlpHN , P¤N qs

and

}HN}LMr0,T s À
�
} }X�s2,bpr0,T sq � } }X�s2,bpr0,T sq

	
} }Xs2,bpr0,T sq

À T 2
�
} }

H
�s2
x pT3q

� } }Hs2x pT3q

	
� } }Hs2x pT3q

The estimate for HN then follows from elementary properties of and the high-regularity bound

for in Theorem 4.1.1.

Lemma 4.9.5. Let A ¥ 1, let T ¥ 1, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently small.

Then, there exists two Borel sets Θ
cub,p2q
blue pA, T q,Θcub,p2q

red pA, T q � H
�1{2�κ
x pT3q satisfying

P
�

P Θ
cub,p2q
blue pA, T q and M P Θ

cub,p2q
red pA, T q

	
¥ 1� ζ�1 exppζAζq (4.9.6)

for all M ¥ 1 and such that the following holds for all P Θ
cub,p2q
blue pA, T q and M P Θ

cub,p2q
red pA, T q:

For all N ¥ 1, we have that

max

���� Ì 

� � �
N

���
Xs2,bpr0,T sq

,
��� Ì 

� � �
N

���
Xs2,bpr0,T sq

,
��� � N

���
Xs2,bpr0,T sq

,
��� � N

���
Xs2,bpr0,T sq

,��� � N

���
Xs2,bpr0,T sq



¤ T 3A.
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Furthermore, the difference of the cubic stochastic objects with two parameters N and K gains an

η1-power of minpN,Kq.

Proof. This follows from our previous estimates for from Section 4.5-4.8 and the high-regularity

bound for in Theorem 4.1.1. More precisely, we estimate the LpωX
s2,b-norm of


 Ì 

� � �
N by T 2p

2�k
2 through Proposition 4.6.3,


 Ì 

� � �
N by T 3p

1�2k
2 through Proposition 4.8.6,


 �
N by T 2p

2�k
2 through Proposition 4.6.1,


 �
N by T 3p

1�2k
2 through Proposition 4.8.7 and Corollary 4.8.9,


 �
N by Tp

3k
2 through Proposition 4.8.10

Proof of Proposition 4.9.1: The first algebraic identity and related estimates follow directly from

(4.9.3), Lemma 4.9.4 and Lemma 4.9.5. By using � � and the high regularity bound for , we

obtain the second identity and the related estimates from the first identity.

4.9.2 Comparing random structures in Gibbsian and Gaussian initial data

In Definition 4.2.4, we introduced the types of functions occurring in our multi-linear master

estimate for (Proposition 4.2.8). The types w and X in Definition 4.2.4 implicitly depend on

and, as already mentioned in Remark 4.2.5, we now refer to type w and X as type w and X ,

respectively. We now introduce a similar notation for the generic initial data . In order to orient

the reader, we include an overview of the different types and their relationship in Figure 4.4.
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� �

w w

X XY

Thm. 4.1.1

Prop. 4.9.1

Lem. 4.9.7

Lem. 4.9.7

Lem. 4.9.8Lem. 4.2.6

We display the relationship between the different types of functions used in this paper. The equivalence

“Ø” means that both types agree modulo scalar multiples and/or terms further down in the hierarchy.

The implication “Ñ” means that, up to scalar multiples, the left type forms a sub-class of the right type.

Figure 4.4: Relationship between the different types.

Definition 4.9.6 (Purple types). Let J � r0,8q be a bounded interval and let ϕ : J � T3 Ñ R.

We say that ϕ is of type


 if ϕ � ,


 �
if ϕ � �

N for some N ¥ 1,


 w if }ϕ}Xs1,bpJ q ¤ 1 and
°
L1�L2

}PL1 � PL2w}L2
tH

�4δ1
x pJ�T3q

¤ 1 for all N ¥ 1,


 X if ϕ � P¤N I
�
1J0 PCtrlpH,P¤N q� for a dyadic integer N ¥ 1, a subinterval J0 � J ,

and a function H P LMpJ0q satisfying }H}LMpJ0q ¤ 1.
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Since the type Y in Definition 4.2.4 does not depend on the stochastic object, its meaning remains

unchanged. In Proposition 4.9.1, we have already seen that the types
�

and
�

only differ by

functions of type X and Y (or X and Y ). In the next lemma, we clarify the relationship between

the types w and w as well as X and X .

Lemma 4.9.7 (The equivalences w Ø w and X Ø X ). Let A ¥ 1, let T ¥ 1, and let

ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently small. Then, there exists a Borel set Θtype

red pA, T q �
H

�1{2�κ
x pT3q such that

Pp M P Θtype
red pA, T qq ¥ 1� ζ�1 expp�ζAζq

and such that the following holds for � � M :


 The types w and w are equivalent up to multiplication by a scalar λ P R¡0 satisfying

λ, λ�1 ¤ T 2A.


 The types X and X are equivalent up to addition/subtraction of a function in Xs2,b with

norm ¤ TA.

Proof. We will prove the desired statement on the event

Θtype
red pA, T q �

 
φ P H�1{2�κ

x pT3q : }φ}
H

1
2�β�κ
x pT3q

¤ cA
(
,

where c � cpε, s1, s2, bq is a small constant. Based on Theorem 4.1.1, this event has an acceptable

probability.

We start with the statement regarding the types w and w . Let ϕ P Xs1,bpJ q satisfy }ϕ}Xs1,bpJ q ¤
1, which holds for ϕ of type either w or w . For any L ¥ 1, we have that�� ¸

L1�L2

}PL1 � PL2ϕ}L2
tH

�4δ1
x pJ�T3q

�
¸

L1�L2

}PL1 � PL2ϕ}L2
tH

�4δ1
x pJ�T3q

��
¤

¸
L1�L2

}PL1 � PL2ϕ}L2
tH

�4δ1
x pJ�T3q
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Using Lemma 4.8.4, it follows that¸
L1�L2

}PL1 � PL2ϕ}L2
tH

�4δ1
x pJ�T3q

À T
1
2

�¸
L1

L
3�s1�

�
1
2
�β�κ

�
�2

1

	
} }

X
1
2�β�κ,bpJ q

}ϕ}Xs1,bpJ q

À T
3
2 } M }

H
1
2�β�κ
x pT3q

}ϕ}Xs1,bpJ q ¤
1

2
T

3
2A}ϕ}Xs1,bpJ q.

This yields the stated equivalence of the types w and w .

We now turn to the statement regarding the types X and X . For any H P LMpJ q, it holds that

}P¤N I
�
1J0 PCtrlpH,P¤N q�� P¤N I

�
1J0 PCtrlpH,P¤N q�}Xs2,bpJ q

À }P¤N I
�
1J0 PCtrlpH,P¤N q�}Xs2,bpJ q.

Using Lemma 4.4.8, Lemma 4.4.9, and Lemma 4.7.3, we have that

}P¤N I
�
1J0 PCtrlpH,P¤N q�}Xs2,bpJ q À T }PCtrlpH,P¤N q}

L8t H
s2�1
x pJ0�T3q

À T }H}LMpJ0q} }
L8t H

s2�1�8ε
x pJ�T3q

À T } M }
H

1
2�β�κ
x pT3q

¤ 1

2
TA.

This yields the desired estimate.

Lemma 4.9.8 (The implication X , Y Ñ w ). Let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently

small, let A ¥ 1, and let T ¥ 1. Then, there exists a Borel set Θtype
pur pA, T q � H

�1{2�κ
x pT3q satisfying

µbM
�

Θtype
pur pA, T q

	
, νbM

�
Θtype

pur pA, T q
	
¥ 1� ζ�1 exppζAζq (4.9.7)

for all M ¥ 1 and such that the following holds for all P Θtype
pur pA, T q: If ϕ is of type X or Y ,

the scalar multiple T�7A�1ϕ is of type w .

Proof. Using a separability argument, we can define Θtype
pur pA, T q through countably many bounds

of the same form as in the definition of the type w . We first note that, after adjusting ζ, we can

replace A�1 in the conclusion by A�3. Using Theorem 4.1.1, it suffices to prove that

Pp � M P Θtype
pur pA, T q

	
¥ 1� ζ�1 exppζAζq.
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Thus, we may restrict both and M to sets with acceptable probabilities under P. After these

preparations, we now start with the main part of the argument.

First, we let w be of type Y . Using Lemma 4.2.6, it follows that T�4Aϕ is of type w . Using

Lemma 4.9.7, it follows that T�6A�2ϕ is of type w .

Now, let ϕ be of type X . Using Lemma 4.9.7 and the first step in this proof, we can assume that

ϕ is of type X . Using Lemma 4.2.6, T�4A�1ϕ is of type w . Finally, using Lemma 4.9.7 again,

we obtain that T�6A�2ϕ is of type w .

In Definition 4.2.13 above, we introduced the function Z-norms, which are used to quantify struc-

tured perturbations of the initial data. We now prove the equivalence of the Zpr0, T s, ; t0, N,Kq
and Zpr0, T s, ; t0, N,Kq-norms, which is similar to the statements in Lemma 4.9.7 and Lemma

4.9.8.

Lemma 4.9.9 (Equivalence of the blue and purple structured perturbations). Let A ¥ 1, let α ¡ 0

be a sufficiently large absolute constant, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be sufficiently

small. Then, there exist Borel sets Θsp
bluepAq,Θsp

redpAq � H
�1{2�κ
x pT3q satisfying

P
� P Θsp

bluepAq, M P Θsp
redpAq

� ¥ 1� ζ�1 expp�ζAζq. (4.9.8)

and such that the following holds on this event:

For all T ¥ 1, t0 P r0, T s, N,K ¥ 1, and Zrt0s P Hs1
x pT3q, we have that

T�αA�1}Zrt0s}Zpr0,T s, ;t0,N,Kq ¤ }Zrt0s}Zpr0,T s, ;t0,N,Kq ¤ TαA}Zrt0s}Zpr0,T s, ;t0,N,Kq (4.9.9)

Proof. It suffices to prove the estimate (4.9.9) for events Θsp
bluepA, T q and Θsp

redpA, T q satisfying the

probabilistic estimate (4.9.8), as long as the lower bound in (4.9.8) does not depend on T . We can

then simply take the intersection of Θsp
bluepT � A, T q and Θsp

redpT � A, T q over all integer times and

increase α by one.
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After using Lemma 4.9.7 to compare the high�high-interaction terms (involving L1 � L2), it

remains to prove that���} Ì Ì& 

� � �
:V � �P¤N � P¤NZ�

N

�
P¤N : }Xs2�1,b��1pr0,T sq

	
� } Ì Ì& 

� � �
:V � �P¤N � P¤NZ�

N

�
P¤N :

	
}Xs2�1,b��1pr0,T sq

	���
À TαA

�
}}Z�rt0s}Hs1x �

¸
L1�L2

}PL1 � PL2Z}L2
tH

�4δ1
x pr0,T s�T3q

	
and ���} :V � �P¤N � P¤NZ�N

�
Ì 

� �
P¤N : }Xs2�1,b��1pr0,T sq

� } :V � �P¤N � P¤NZ�N
�

Ì 

� �
P¤N : }Xs2�1,b��1pr0,T sq

���
À TαA}Z�rt0s}Hs2x .

Regarding the first estimate, we have that

���} Ì Ì& 

� � �
:V � �P¤N � P¤NZ�

N

�
P¤N :

	
}Xs2�1,b��1pr0,T sq

� } Ì Ì& 

� � �
:V � �P¤N � P¤NZ�

N

�
P¤N :

	
}Xs2�1,b��1pr0,T sq

���
À } Ì Ì& 

� � �
V � �P¤N � P¤NZ�

N

�
P¤N

	
}Xs2�1,b��1pr0,T sq (4.9.10)

� } Ì Ì& 

� � �
V � �P¤N � P¤NZ�

N

�
P¤N

	
}Xs2�1,b��1pr0,T sq (4.9.11)

� } Ì Ì& 

� � �
V � �P¤N � P¤NZ�

N

�
P¤N

	
}Xs2�1,b��1pr0,T sq. (4.9.12)

We can then control
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 (4.9.10) through Proposition 4.8.6,


 (4.9.11) through Proposition 4.8.7 and Lemma 4.8.8,


 (4.9.11) through Proposition 4.8.10.

The proof of the second estimate is similar, except that we use Corollary 4.8.9 instead of Lemma

4.8.8.

4.9.3 Multi-linear master estimate for Gibbsian initial data

In this subsection, we prove a version of the multi-linear master estimate for Gaussian data (Propo-

sition 4.2.8) for the purple types (Definition 4.9.6) instead of the blue types (Definition 4.2.4). Since

we will only need this estimate in Proposition 4.3.5 and Proposition 4.3.7, which do not involve

contraction or continuity arguments, we can be less precise than in the multi-linear master estimate

for Gaussian data and simply capture the size of the forcing term in the following norm.

Definition 4.9.10. Let N ¥ 1, let J � R be a compact interval, and let R,ϕ : J � T3 Ñ R.

Then, we define

}R}NLN pJ,ϕq def� inf
!
}H}LMpJ q � }F }Xs2�1,b��1pJ q : R � P¤N PCtrlrH,P¤Nϕs � F on J � T3

)
.

Remark 4.9.11 (Drawback of Ì Ì& ). As mentioned above, the NLNpJ, ϕq-norm is less precise

than our estimates in Section 4.2.1, since it does not give an explicit description of the low-frequency

modulation H. This allows us to circumvent a technical problem which the author was unable to

resolve. In Proposition 4.5.7, we proved that

Ì Ì& 

� � �
:V �

�
P¤N � P¤N �

N

	
P¤N :

	
366



lives in Xs2�1,b��1. One may therefore expect that

Ì Ì& 

� � �
:V �

�
P¤N � P¤N �

N

	
P¤N :

	
also lives in Xs2�1,b��1. However, after using Proposition 4.9.1, we would need an estimate for

Ì Ì& 

� � �
:V �

�
P¤N � P¤NYN

	
P¤N :

	
in Xs2�1,b��1. Unfortunately, this is not covered by Proposition 4.6.3. In fact, without any

additional assumptions on YN other than bounds in Xs2,b, the high�highÑlow-interactions in

P¤N � P¤NYN rule out this estimate.

Equipped with the NL-norm, we now turn to the master estimate for Gibbsian initial data.

Proposition 4.9.12 (Multi-linear master estimate for Gibbsian initial data). Let A ¥ 1, let

T ¥ 1, let α ¡ 0 be a sufficiently large absolute constant, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0

be sufficiently small. Then, there exists a Borel set Θms
purpA, T q � H

�1{2�κ
x satisfying

µbMp P Θms
purpA, T qq ¥ 1� ζ�1 expp�ζAζq (4.9.13)

for all M ¥ 1 and such that the following estimates hold for all P Θms
purpA, T q:

Let J � r0, T s be an interval and let N ¥ 1. Let ϕ1, ϕ2, ϕ3 : J �T3 Ñ R be as in Definition 4.9.6

and let

pϕ1, ϕ2;ϕ3q
type� �

, ;
�
,
�
, w ;

�
.

(i) If ϕ3
type� , then���P¤N� :V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

	���
NLN

�
J , P¤N

� ¤ TαA.

(ii) In all other cases, ��� :V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

���
Xs2�1,b��1pJ q

¤ TαA.
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Proof. While the proof requires no new ingredients, it relies on several earlier results. For the

advantage of the reader, we break up the proof into several steps.

Step 1: Definition of Θms
purpA, T q and its Borel measurability. Using the definition of the time-

restricted norms, we see that the statement for all intervals J � r0, T s is equivalent to the statement

for only J � r0, T s. Thus, we may simply choose Θms
purpA, T q as the set where (i) and (ii) hold for

all N ¥ 1. To see that this leads to a Borel measurable set, we note that both LMpr0, T sq and

Xs2,bpr0, T sq are separable. For a fixed N ¥ 1, we also have that the functions

pϕ1, ϕ2, ϕ3q ÞÑ
���P¤N� :V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

	���
NLN

�
J , P¤N

�
and

pϕ1, ϕ2, ϕ3q ÞÑ
��� :V � �P¤Nϕ1 � P¤Nϕ2

�
P¤Nϕ3 :

���
Xs2�1,b��1pJ q

are continuous w.r.t. the C0
tH

�1{2�κ
x pr0, T s�T3q-norm. Thus, we can represent Θms

purpA, T q through

countably many constraints of the same form as in (i) and (ii), and hence as a countable intersec-

tion of closed sets. In particular, Θms
purpA, T q is Borel measurable.

Step 2: Reductions. It therefore remains to show the probabilistic estimate (4.9.13). Using the

absolute continuity and representation of the reference measures from Theorem 4.1.1, it suffices to

prove that

Pp � M P Θms
purpA, T qq ¥ 1� ζ�1 expp�ζAζq

for all M ¥ 1. Furthermore, we can replace the upper bound TαA in (i) and (ii) by CTαAC , where

C � Cpε, s1, s2, κ, η, η
1, b�, bq ¥ 1. After the estimate has been proven, this can then be repaired

by adjusting A and ζ. Using Lemma 4.2.6, Proposition 4.2.8, Corollary 4.9.3, Lemma 4.9.7, and
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Lemma 4.9.8, we may restrict to the event!
P Θms

bluepA, T q
�

Θtype
bluepA, T q

�
Θcub

bluepA, T q
) � !

M P Θtype
red pA, T q

�
Θcub

red pA, T q
)

� !
� M P Θtype

pur pA, T q
)
.

Step 3: Multi-linear estimates. The estimates for ϕ3

type� follow directly from the multi-linear

master estimate for and the equivalence of the types in Corollary 4.9.3, Lemma 4.9.7, and Lemma

4.9.8. It then remains to treat the case ϕ3
type� . We further separate the proof of the estimates

into two cases.

Step 3.1: ϕ1, ϕ2

type� . We first remind the reader that in this case the nonlinearity does not

require a renormalization. We then decompose

P¤N

�
V � �P¤Nϕ1 � P¤Nϕ2

�
P¤N

	
�P¤N

�
V � �P¤Nϕ1 � P¤Nϕ2

�
Ì P¤N

	
�P¤N

�
V � �P¤Nϕ1 � P¤Nϕ2

�
Ì 

� �
P¤N

	
�P¤N

�
V � �P¤Nϕ1 � P¤Nϕ2

�
Ì 

� �
P¤N

	
.

Using Lemma 4.7.6, the first term is of the form P¤N PCtrlpHN , P¤N q with }HN}LMpr0,T sq À TαA2.

The second and third term can be controlled through the multi-linear master estimate for Gaussian

random data.

Step 3.2: ϕ1, ϕ3
type� , ϕ2

type� . Using the equivalence of types (as in Corollary 4.9.3 and Lemma

4.9.7) together with the previous cases, it suffices to treat

ϕ1, ϕ3
type� , ϕ2

type� �
, X , Y.
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We decompose the nonlinearity

V � �P¤N � P¤Nϕ2

�
P¤N

using Ì Ì& if ϕ2
type� �

, X and using Ì if ϕ2
type� Y . Then, the bound follows from the

multi-linear master estimate for Gaussian initial data, Lemma 4.7.4, and Lemma 4.7.6.

In Definition 4.2.13, we also introduced a structured perturbation of the initial data, which we

briefly examined in Lemma 4.9.9 above. While the multi-linear estimate does not apply to the type�
, w ;

�
, we now obtain a multi-linear estimate if the second argument is a linear evolution with

initial data as in Definition 4.2.13. Since the definition has been tailored towards this estimate,

the prove will be easy and short.

Lemma 4.9.13 (Multi-linear estimate for the structured perturbation). Let A ¥ 1, let T ¥ 1,

let α ¡ 0 be a sufficiently large absolute constant, and let ζ � ζpε, s1, s2, κ, η, η
1, b�, bq ¡ 0 be

sufficiently small. Then, there exists a Borel set Θsp
purpA, T q � H

�1{2�κ
x satisfying

µbMp P Θsp
purpA, T qq ¥ 1� ζ�1 expp�ζAζq (4.9.14)

for all M ¥ 1 and such that the following estimates hold for all P Θsp
purpA, T q:

Let N,K ¥ 1, let t0 P r0, T s, let Zrt0s P H
�1{2�κ
x pT3q, and let Zptq be the corresponding solution

to the linear wave equation. Then, it holds that���P¤N� :V � �P¤N � P¤NZ
�
P¤N :

����
NLN

�
r0,T s, P¤N

� ¤ TαA}Zrt0s}Zpr0,T s, ;t0,N,Kq.
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Proof. Let Z�rt0s and Z�rt0s be as in Definition 4.2.13. Then, we can decompose

P¤N

�
:V � �P¤N � P¤NZ

�
P¤N :

�
� Ì Ì&

�
P¤N

�
V � �P¤N � P¤NZ��P¤N �	

� Ì Ì& 

� � �
P¤N

�
:V � �P¤N � P¤NZ��P¤N :

�	
�P¤N

�
:V � �P¤N � P¤NZ�

�
Ì P¤N :

�
�P¤N

�
V � �P¤N � P¤NZ�

�
Ì 

� �
P¤N

�
.

The estimate then directly follows from Definition 4.2.13, Lemma 4.7.4, and Lemma 4.7.6.

4.10 Appendix: Proofs of counting estimates

4.10.1 Cubic counting estimate

We start with the proof of the cubic counting estimate.

Proof of Proposition 4.4.18: We separately prove the four counting estimates (i)-(iv).

Proof of (i): By symmetry, we can assume that N1 ¥ N2 ¥ N3. Using the basic counting estimate

to perform the sum in n2 P Z3, we obtain that

#tpn1, n2, n3q : |n1| � N1, |n2| � N2, |n3| � N3, |ϕ�m| ¤ 1u
À

¸
n1,n3PZ3

� ¹
j�1,3

1
 |nj| � Nj

(	
min

�xn13y, N2

��1
N3

2

À N2
1N

3
2N

3
3 �N3

1N
2
2N

3
3

À N�1
2 pN1N2N3q3,
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which is acceptable.

Proof of (ii): We emphasize that n123 is viewed as a free variable. In the variables pn123, n1, n2q,
the phase takes the form

ϕ � �123xn123y �1 xn1y �2 xn2y �3 xn123 � n1 � n2y.

After changing pn1, n2q Ñ p�n1,�n2q, we obtain the same form as in (i) and hence the desired

estimate.

Proof of (iii): In the variables pn123, n12, n1q, the phase takes the form

ϕ � �123xn123y �1 xn1y �2 xn12 � n1y �3 xn123 � n12y.

By first summing in n1 and using the basic counting lemma, we gain a factor of minpN1, N12q.
Alternatively, by first summing in n123 and using the basic counting lemma, we gain a factor of

minpN123, N12q. By combining both estimates, we gain a factor of

max
�

minpN1, N12q,minpN123, N12q
� � min

�
N12,maxpN123, N1q

�
.

While not part of the proof, we also remark that���xn123y � xn1y � xn12 � n1y � xn123 � n12y| À N12.

This shows that we cannot gain a factor of the form medpN123, N12, N1q.

Proof of (iv): In the variables pn12, n1, n3q, the phase takes the form

ϕ � �123xn12 � n3y �1 xn1y �2 xn12 � n1y �3 xn3y.
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By first summing in n1 and using the basic counting lemma, we gain a factor of minpN12, N1q.
Alternatively, by first summing in n3 and using the basic counting lemma, we gain a factor of

minpN12, N3q. By combining both estimates, this completes the argument. The same obstruction

as described in (iii) shows that the estimate is sharp.

We now use the cubic counting estimate to prove the cubic sum estimate.

Proof of Proposition 4.4.20: Due to the symmetry n1 Ø n2, we may assume that N1 ¥ N2. To

simplify the notation, we set

Cpmq � CpN1, N2, N3, N12, N123,mq
�
!
pn1, n2, n3q P pZ3q3 : |nj| � Nj, 1 ¤ j ¤ 3, |n12| � N12, |n123| � N123, |ϕ�m| ¤ 1

)
.

We then have that¸
n1,n2,n3PZ3

�� 3¹
j�1

χNjpnjq
	
xn123y2ps�1qxn12y�2γ

� 3¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(�

À
¸

N123,N12

N
2ps�1q
123 N�2γ

12

� 3¹
j�1

N�2
j

	
#Cpmq.

(4.10.1)

To obtain the optimal estimate, we unfortunately need to distinguish five cases, which we listed

in Figure 4.5. Case 1 and 2 distinguish between the high�high and high�low-interactions in the

first two factors. This distinction is necessary to utilize the gain in N12. The subcases mostly deal

with the relation between N12 and N3, which is important to use the gain in N123.

Case 1.a: N1 � N2, N1 ! N3. In this case, N123 � N3. Using (iv) in Proposition 4.4.18, the

contribution is bounded by¸
N12 :

N12ÀN1

N�2γ
12 N�4

1 N2s�4
3 #Cpmq À

¸
N12 :

N12ÀN1

N2�2γ
12 N�1

1 N2s�1
3 À N1�2γ

1 N2s�1
3 ,
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which is acceptable. In performing the sum, we used that γ   1.

Case 1.b.i: N1 � N2, N1 Á N3, N3 ! N12. In this case, N123 � N12. Using (iv) in Proposition

4.4.18, the contribution is bounded by

¸
N12 :

N3!N12ÀN1

N2s�2�2γ
12 N�4

1 N�2
3 #Cpmq À

¸
N12 :

N3!N12ÀN1

N2s�2γ
12 N�1

1 N3 À
¸
N12 :

N12ÀN1

N2s�2γ�1
12 N�1

1 À N
2ps�γq
1 ,

which is acceptable. In performing the sum, we used that γ   s� 1{2.

Case 1.b.i: N1 � N2, N1 Á N3, N3 Á N12. We note that N123 À maxpN12, N3q À N3. Using (iii)

in Proposition 4.4.18, the contribution is bounded by

¸
N12,N123 :

N12,N123ÀN3

N2s�2
123 N�2γ

12 N�4
1 N�2

3 #Cpmq À
¸

N12,N123 :
N12,N123ÀN3

minpN123, N12q�1N2s�1
123 N3�2γ

12 N�1
1 N�2

3

À N�1
1 N2s�2γ�1

3 À N
2ps�γq
1 ,

which is acceptable. In the last inequality, we used again that γ   s� 1{2.

Case 2.a: N1 " N2, N1 � N3. In this case, N12 � N1 and N123 � maxpN1, N3q. Using (i) in

Proposition 4.4.18, the contribution is bounded by

maxpN1, N3q2s�2N�2�2γ
1 N�2

2 N�2
3 #Cpmq À maxpN1, N3q2s�2 minpN1, N3q�1N1�2γ

1 N2N3

À maxpN1, N3q2s�2 minpN1, N3q�1N2�2γ
1 N3 � maxpN1, N3q2s�1N1�2γ

1 .

The restriction s ¤ 1{2 is not strictly necessary for the statement of the proposition, but ensures

that the first factor does not grow in N1 or N3, which is essential in applications.
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Case N1 Ø N2 N1 Ø N3 N3 Ø N12 Basic counting estimate

1.a N1 � N2 N1 ! N3 (iv)

1.b.i N1 � N2 N1 Á N3 N3 ! N12 (iv)

1.b.ii N1 � N2 N1 Á N3 N3 Á N12 (iii)

2.a N1 " N2 N1 � N3 (i)

2.b N1 " N2 N1 � N3 (ii)

Figure 4.5: Case distinction in the proof of Proposition 4.4.20.

Case 2.a: N1 " N2, N1 � N3. In this case, N12 � N1. Using (ii) in Proposition 4.4.18, the

contribution is bounded by¸
N123 :

N123ÀN1

N2s�2
123 N�4�2γ

1 N�2
2 #Cpmq À

¸
N123 :

N123ÀN1

N2s
123N

�1�2γ
1 N2 À N2s�2γ

1 ,

which is acceptable. In performing the sum, we used that s ¡ 0.

4.10.2 Cubic sup-counting estimates

Proof of Lemma 4.4.22: We prove the four estimates separately.

Proof of (i): By symmetry, we can assume without loss of generality that N1 ¥ N2 ¥ N3. Using

the basic counting estimate in n2 P Z3, we have that

#
!
pn1, n2, n3q : |n1| � N1, |n2| � N2, |n3| � N3, n � n123, |ϕ�m| ¤ 1

)
À #

!
pn2, n3q : |n2| � N2, |n3| � N3, | �123 xny �1 xn� n23y �2 xn2y �3 xn3y �m| ¤ 1

)
À

¸
n3PZ3

1
 |n3| � N3

(
min

�xn� n3y, N2

��1
N3

2

À N3
2N

2
3 .
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Proof of (ii): The proof is essentially the same as the proof of (i) and we omit the details.

Proof of (iii): Using the basic counting estimate in n2 P Z3, we have that

#
!
pn12, n2, n3q : |n12| � N12, |n2| � N2, |n3| � N3, n � n123, |ϕ�m| ¤ 1

)
À #

!
pn12, n2q : |n12| � N12, |n2| � N2, | �123 xny �1 xn12 � n2y �2 xn2y �3 xn� n12y �m| ¤ 1

)
À

¸
n12PZ3

1
 |n12| � N12

(
minpN12, N2q�1N3

2

À minpN12, N2q�1N3
12N

3
2 .

Proof of (iv): The proof is essentially the same as the proof of (iii) and we omit the details.

4.10.3 Para-controlled cubic counting estimates

Proof of Lemma 4.4.23: To simplify the notation, we set Nmax � maxpN1, N2, N3q. For 0   γ   β,

we have that

xn12y�2β À xn12y�2γ À xn1y�2γxn2y2γ.

Together with (ii) from Lemma 4.4.22, this yields

¸
n1,n3PZ3

� ¹
j�1,3

1
 |nj| � Nj

(	xn123y2ps2�1qxn12y�2βxn1y�2xn3y�2 1
 |ϕ�m| ¤ 1

(
À N�2�2γ

1 N2γ
2 N�2

3

¸
N123

N
2ps2�1q
123 #

 pn1, n3q : |n123| � N123, |n1| � N1, |n3| � N3, |ϕ�m| ¤ 1
(

À N�2�2γ
1 N2γ

2 N�2
3

¸
N123 :

|N123|ÀNmax

N
2ps2�1q
123 med

�
N123, N1, N3

�3
min

�
N123, N1, N3

�2
.
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Using that med
�
N123, N1, N3

�3
min

�
N123, N1, N3

�2 À N123N
2
1N

2
3 , we obtain that

N�2�2γ
1 N2γ

2 N�2
3

¸
N123 :

|N123|ÀNmax

N
2ps2�1q
123 med

�
N123, N1, N3

�3
min

�
N123, N1, N3

�2

À N�2γ
1 N2γ

2

¸
N123 :

|N123|ÀNmax

N2s2�1
123 À N2δ2

maxN
�2γ
1 N2γ

2 .

4.10.4 Quartic counting estimate

Proof of Lemma 4.4.24: Using the upper bound on s, we can first sum in n4 P Z3 and obtain that

¸
n1,n2,n3,n4PZ3

� 4¹
j�1

1
 |nj| � Nj

(	xn1234y2sxn123y�2|pVSpn1, n2, n3q|2
� 4¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(
À N�2η

4

¸
n1,n2,n3PZ3

� 3¹
j�1

1
 |nj| � Nj

(	xn123y�2|pVSpn1, n2, n3q|2
� 3¹
j�1

xnjy�2
	

1
 |ϕ�m| ¤ 1

(
.

The remaining sum in n1, n2, and n3 can then be estimated using Proposition 4.4.20, which yields

the desired estimate.

After the proof of the non-resonant quartic sum estimate (Lemma 4.4.24), we now turn to the

resonant quartic sum estimate. We begin with the basic resonance estimate (Lemma 4.4.25),

which forms the main part of the proof.

Proof of Lemma 4.4.25: Since n1, n2 P Z3 are fixed and the phase ϕ is globally Lipschitz, there are

at most � N1 non-trivial choices of m P Z. Due to the log-factor in (4.4.46), it suffices to prove

sup
mPZ

¸
n3PZ3

1
 |n3| � N3

(xn123y�1xn3y�21
 |ϕ�m| ¤ 1

( À xn12y�1.
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By inserting an additional dyadic localization, we obtain that¸
n3PZ3

1
 |n3| � N3

(xn123y�1xn3y�21
 |ϕ�m| ¤ 1

(
¤ N�2

3

¸
N123¥1

N�1
123

¸
n3PZ3

1
 |n123| � N123

(
1
 |n3| � N3

(
1
 |ϕ�m| ¤ 1

(
.

(4.10.2)

To simplify the notation, we write N12 for the dyadic scale of n12 P Z3. Using Lemma 4.4.17, we

have that

N�1
123N

�2
3

¸
n3PZ3

1
 |n123| � N123

(
1
 |n3| � N3

(
1
 |ϕ�m| ¤ 1

(
À N�1

123N
�2
3 minpN123, N12, N3q�1 minpN123, N3q3.

We now separate the contributions of the three cases N123 ! N3, N123 � N3, N123 " N3. In the

following, we implicitly restrict the sum over N123 to values which are consistent with |n123| � N123,

|n12| � N12, and |n3| � N3 for some n1, n2, n3 P Z3.

If N123 ! N3, then N12 � N3. Thus,¸
N123!N3

N�1
123N

�2
3 minpN123, N12, N3q�1 minpN123, N3q3 À 1

 
N12 � N3

( ¸
N123!N3

N123N
�2
3 À N�1

12 .

If N123 � N3, then N12 À N123 � N3. Thus,¸
N123�N3

N�1
123N

�2
3 minpN123, N12, N3q�1 minpN123, N3q3 � N�1

12 .

Finally, if N123 " N3, then N123 � N12 " N3. Thus,¸
N123"N3

N�1
123N

�2
3 minpN123, N12, N3q�1 minpN123, N3q3 � N�1

12 N
�2
3 N�1

3 N3
3 � N�1

12 .

This completes the proof.

The resonant quartic sum estimate (Lemma 4.4.26) is now an easy consequence of the basic reso-

nance estimate (Lemma 4.4.25).
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Proof of Lemma 4.4.26: Using Lemma 4.4.25, we have that¸
n1,n2PZ3

�� 2¹
j�1

1
 |nj| � Nj

(xn12y2sxn1y�2xn2y�2

�
� ¸
mPZ

¸
n3PZ3

xmy�11
 |n3| � N3

(xn123y�1xn3y�21
 |ϕ�m| ¤ 1

(	2
�

À logp2�N3q2
¸

n1,n2PZ3

�� 2¹
j�1

1
 |nj| � Nj

(xn12y2s�2xn1y�2xn2y�2

�
À logp2�N3q2 maxpN1, N2q2s.

4.10.5 Quintic counting estimates

Before we turn to the proof of the non-resonant quintic counting estimate, we isolate a helpful

auxiliary lemma.

Lemma 4.10.1 (Frequency-scale estimate). Let N1, N2, N1345, N12345 be frequency scales which

can be achieved by frequencies n1, . . . , n5 P Z3, i.e., satisfying

1
 |n1| � N1

( � 1 |n2| � N2

( � 1 |n1345| � N1345

( � 1 |n12345| � N12345

( � 0.

Then, it holds that
minpN2, N12345q2 minpN1, N1345q

minpN12345, N1345, N2q À N2 �N12345.

Proof. By using the properties of min and max, we have that

minpN2, N12345qminpN1, N1345q
minpN12345, N1345, N2q À minpN2, N12345qN1345

minpN12345, N1345, N2q À max
�

minpN2, N12345q, N1345

�
.

Since N1345 À maxpN2, N12345q, this yields

minpN2, N12345q2 minpN1, N1345q
minpN12345, N1345, N2q À minpN2, N12345q �maxpN2, N12345q � N2N12345.
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Proof of Lemma 4.4.27: Let m,m1 P Z be arbitrary. We introduce N12345 and N1345 to further

decompose according to the size of n12345 and n1345. Using the two-ball basic counting lemma

(Lemma 4.4.17) for the sum in n2 P Z3 and summing in n1 P Z3 directly, we obtain that

¸
n1,...,n5PZ3

�� 5¹
j�1

1
 |nj| � Nju

�
1
 |n12345| � N12345

(
1
 |n1345| � N1345

(
� xn12345y2ps�1qxn1345y�2βxn345y�2xn34y�2β

� 5¹
j�1

xnjy�2
	

� 1
 |ψ �m| ¤ 1

( � �1
 |ϕ�m1| ¤ 1u � 1

 |rϕ�m1| ¤ 1u
	�

À N
2ps�1q
12345 N�2β

1345 minpN12345, N1345, N2q�1 minpN2, N12345q3
5¹
j�1

N�2
j

�
¸

n1,n3,n4,n5PZ3

� ¹
j�1,3,4,5

1
 |nj| � Nju

	
1
 |n1345| � N1345

(xn345y�2xn34y�2β1
 |ψ �m| ¤ 1

(
À N

2ps�1q
12345 N�2β

1345 minpN12345, N1345, N2q�1 minpN2, N12345q3 minpN1, N1345q3
5¹
j�1

N�2
j

�
¸

n3,n4,n5PZ3

� 5¹
j�3

1
 |nj| � Nju

	
xn345y�2xn34y�2β1

 |ψ �m| ¤ 1
(
.

Using Proposition 4.4.20 with s � 0 and γ � β to bound the remaining sum in n3, n4, and n5, we

obtain a bound of the total contribution by

N
2ps�1q
12345 pN1N2q�2 minpN2, N12345q3 minpN1, N1345q3

minpN12345, N1345, N2q pN1345 maxpN3, N4, N5qq�2β.

As long as the contribution is non-trivial, it holds thatN1345 maxpN3, N4, N5q Á maxpN1, N3, N4, N5q.
Thus, it remains to prove that

N
2ps�1q
12345 pN1N2q�2 minpN2, N12345q3 minpN1, N1345q3

minpN12345, N1345, N2q À N�2η
2 ,

380



which follows from a short calculation. Indeed, using Lemma 4.10.1, we can estimate the left-hand

side by

N
2ps�1q
12345 pN1N2q�2 minpN2, N12345q3 minpN1, N1345q3

minpN12345, N1345, N2q
À N2s�1

12345 minpN2, N12345qminpN1, N1345q2N�2
1 N�1

2

À N2s�1�2η
12345 N�2η

2 .

Due to our condition on s, this is acceptable.

We now prove the double-resonance quintic counting estimate.

Proof of Lemma 4.4.29: We also use a dyadic localization to |n345| � N345 and |n45| � N45. By

paying a factor of logp2�maxpN4, N5qq2, it suffices to estimate the maximum over N345, N45 instead

of the sum. We do not require a logarithmic loss in N3, since N3 " N4, N5 implies that there are

only � 1 non-trivial choices for N345. We first sum in n3 P Z3 using the two-ball basic counting

lemma (Lemma 4.4.17). We then sum in n4 P Z3 using only the dyadic constraint. This yields

N�2
3 N�2

4 sup
mPZ3

sup
|n5|�N5

¸
n3,n4PZ3

�� 4¹
j�3

1
 |nj| � Nj

(	
1
 |n345| � N345

(
1
 |n45| � N45

(xn345y�1xn45y�β

� 1
 xn345y �3 xn3y �4 xn4y �5 xn5y P rm,m� 1q(�

À minpN345, N45, N3q�1 minpN3, N345q3N�1
345N

�β
45 N

�2
3 N�2

4

¸
n4PZ3

1
 |n4| � N4

(
1
 |n345| � N345

(
À minpN345, N45, N3q�1 minpN3, N345q3 minpN4, N45q3N�1

345N
�β
45 N

�2
3 N�2

4 .

Using a minor variant of Lemma 4.10.1, this contribution is bounded by

N�β
45 N

�1
3 N�2

4 minpN3, N345qminpN4, N45q2 À maxpN4, N45q�β À maxpN4, N5q�β.
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4.10.6 Septic counting estimates

Proof of Lemma 4.4.31: Using the decay of pV , it suffices to prove¸
pnjqjRP

xnnry2ps�1q

� �̧

pnjqjPP

1
 |n1234567| � N1234567

(
1
 |n567| � N567

(
1
 |n4| � N4

(
� Φpn1, n2, n3qxn4y�1Φpn5, n6, n7q


2

À logp2�N4q2
�
N

2ps� 1
2
q

1234567N
�2pβ�ηq
567 �N

�2p1�s�ηq
1234567

	
.

(4.10.3)

The argument relies on two of our previous estimates. Using the cubic sum estimate (Proposition

4.4.20), we have that for all N123 ¥ 1 that

¸
n1,n2,n3PZ3

1
 |n123| � N123

(� 3¹
j�1

xnjy
η
3

	
Φ2pn1, n2, n3q À N

�2pβ�ηq
123 . (4.10.4)

Using the basic resonance estimate (Lemma 4.4.25), we have for all N3 ¥ 1 that¸
n3PZ3

1
 |n3| � N3

(xn3y�1Φpn1, n2, n3q À logp2�N3qxn12y�1xn1y�1xn2y�1. (4.10.5)

Using the symmetry of Φ, it remains to consider the following three cases.

Case 1: j � 4 is unpaired. By first using Cauchy-Schwarz, summing in n4, and then using (4.10.4),

we obtain that¸
pnjqjRP

xnnry2ps�1q

� �̧

pnjqjPP

1
 |n1234567| � N1234567

(
1
 |n567| � N567

(
1
 |n4| � N4

(
� Φpn1, n2, n3qxn4y�1Φpn5, n6, n7q


2

À
¸

pnjqjRP

�
1
 |nnr| � N1234567

(xnnry2ps�1qxn4y�2
� �̧

pnjqjPP

Φpn1, n2, n3q2
	

�
� �̧

pnjqjPP

1
 
n567 � N567

(
Φpn5, n6, n7q2

	�
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À N
2ps� 1

2
q

1234567

¸
pnjqjRP^j�4

� �̧

pnjqjPP

Φpn1, n2, n3q2
	� �̧

pnjqjPP

1
 
n567 � N567

(
Φpn5, n6, n7q2

	�

� N
2ps� 1

2
q

1234567

� ¸
n1,n2,n3PZ3

Φpn1, n2, n3q2
	� ¸

n5,n6,n7PZ3

1
 
n567 � N567

(
Φpn5, n6, n7q2

	�
À N

2ps� 1
2
q

1234567N
�2pβ�ηq
567 .

This contribution is acceptable.

Case 2: p3, 4q P P. We let P1 be the pairing on t1, 2, 5, 6, 7u obtained by removing the pair p3, 4q
from P. We also understand the condition j R P1 as a subset of t1, 2, 5, 6, 7u. By first using

(4.10.5) and then Cauchy-Schwarz, we have that

¸
pnjqjRP

xnnry2ps�1q

� �̧

pnjqjPP

1
 |n1234567| � N1234567

(
1
 |n567| � N567

(
1
 |n4| � N4

(
� Φpn1, n2, n3qxn4y�1Φpn5, n6, n7q


2

À logp2�N4q2N2ps�1�ηq
1234567

�
¸

pnjqjRP1

xnnry�2η
� �̧

pnjqjPP1

1
 |n567| � N567

(xn12y�1xn1y�1xn2y�1Φpn5, n6, n7q
	2

À logp2�N4q2N2ps�1�ηq
1234567

¸
pnjqjRP1

�� �̧

pnjqjPP1

xnnry�2η
� ¹
jPP1

xnjy�
η
6

	
xn12y�2xn1y�2xn2y�2

	
�
� �̧

pnjqjPP1

1
 |n567| � N567

(� ¹
jPP1

xnjy
η
6

	
Φpn5, n6, n7q2

	�
.

We then use a direct calculation to bound the first inner factor and to estimate the sum in n5, n6,

and n7. The total contribution is bounded by logp2 � N4q2N2ps�1�ηq
1234567 N

�2pβ�ηq
567 , which is bounded

by logp2�N4q2N2ps�1�ηq
1234567 and hence is acceptable.

Case 3: p4, 5q P P. We let P1 be the pairing on t1, 2, 3, 6, 7u obtained by removing the pair p4, 5q
from P. We also understand the condition j R P1 as a subset of t1, 2, 3, 6, 7u. By first using
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(4.10.5) and then Cauchy-Schwarz, we have that

¸
pnjqjRP

xnnry2ps�1q

� �̧

pnjqjPP

1
 |n1234567| � N1234567

(
1
 |n567| � N567

(
1
 |n4| � N4

(
� Φpn1, n2, n3qxn4y�1Φpn5, n6, n7q


2

À logp2�N4q2N2ps�1�ηq
1234567

¸
pnjqjRP1

xnnry�2η
� �̧

pnjqjPP1

Φpn1, n2, n3qxn67y�1xn6y�1xn7y�1
	2

.

Arguing similarly as in Case 2, we obtain an upper bound by logp2 � N4q2N2ps�1�ηq
1234567 . While this

bound does not contain the gain in N567, it is still acceptable.
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[BFS83] David C. Brydges, Jürg Fröhlich, and Alan D. Sokal. “A new proof of the existence
and nontriviality of the continuum ϕ4

2 and ϕ4
3 quantum field theories.” Comm. Math.

Phys., 91(2):141–186, 1983.

[BG99] Hajer Bahouri and Patrick Gérard. “High frequency approximation of solutions to
critical nonlinear wave equations.” Amer. J. Math., 121(1):131–175, 1999.

[BG20a] N. Barashkov and M. Gubinelli. “The Φ4
3 measure via Girsanov’s theorem.”

arXiv:2004.01513, April 2020.

385



[BG20b] N. Barashkov and M. Gubinelli. “A variational method for Φ4
3.” Duke Math. J.,

169(17):3339–3415, 2020.

[BGH19] T. Buckmaster, P. Germain, Z. Hani, and J. Shatah. “Onset of the wave turbu-
lence description of the longtime behavior of the nonlinear Schrödinger equation.”
arXiv:1907.03667, July 2019.
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[BOP19a] Árpád Bényi, Tadahiro Oh, and Oana Pocovnicu. “Higher order expansions for the
probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on R3.”
Trans. Amer. Math. Soc. Ser. B, 6:114–160, 2019.
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[CLS21] Erin Compaan, Renato Lucà, and Gigliola Staffilani. “Pointwise convergence of the
Schrödinger flow.” Int. Math. Res. Not. IMRN, (1):599–650, 2021.

[Cor77] Antonio Cordoba. “The Kakeya maximal function and the spherical summation mul-
tipliers.” Amer. J. Math., 99(1):1–22, 1977.

[DD02] Giuseppe Da Prato and Arnaud Debussche. “Two-dimensional Navier-Stokes equations
driven by a space-time white noise.” J. Funct. Anal., 196(1):180–210, 2002.

[DD03] G. Da Prato and A. Debussche. “Strong solutions to the stochastic quantization equa-
tions.” Ann. Probab., 31(4):1900–1916, 2003.

[Dem20] C. Demeter. Fourier restriction, decoupling, and applications, volume 184 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2020.

[Den12] Y. Deng. “Two-dimensional nonlinear Schrödinger equation with random radial data.”
Anal. PDE, 5(5):913–960, 2012.

[DH19] Y. Deng and Z. Hani. “On the derivation of the wave kinetic equation for NLS.”
arXiv:1912.09518, December 2019.

[DLM19] Benjamin Dodson, Jonas Lührmann, and Dana Mendelson. “Almost sure local well-
posedness and scattering for the 4D cubic nonlinear Schrödinger equation.” Adv. Math.,
347:619–676, 2019.

[DLM20] Benjamin Dodson, Jonas Lührmann, and Dana Mendelson. “Almost sure scattering
for the 4D energy-critical defocusing nonlinear wave equation with radial data.” Amer.
J. Math., 142(2):475–504, 2020.

[DNY19] Y. Deng, A. R. Nahmod, and H. Yue. “Invariant Gibbs measures and global strong
solutions for nonlinear Schrödinger equations in dimension two.” arXiv:1910.08492,
October 2019.

[DNY20] Y. Deng, A. R. Nahmod, and H. Yue. “Random tensors, propagation of randomness,
and nonlinear dispersive equations.” arXiv:2006.09285, June 2020.

[DNY21] Yu Deng, Andrea R. Nahmod, and Haitian Yue. “Invariant Gibbs measure and global
strong solutions for the Hartree NLS equation in dimension three.” J. Math. Phys.,
62(3):031514, 39, 2021.

388



[Dod12] Benjamin Dodson. “Global well-posedness and scattering for the defocusing, L2-critical
nonlinear Schrödinger equation when d ¥ 3.” J. Amer. Math. Soc., 25(2):429–463,
2012.

[Dod16a] Benjamin Dodson. “Global well-posedness and scattering for the defocusing, L2 critical,
nonlinear Schrödinger equation when d � 1.” Amer. J. Math., 138(2):531–569, 2016.

[Dod16b] Benjamin Dodson. “Global well-posedness and scattering for the defocusing, L2-critical,
nonlinear Schrödinger equation when d � 2.” Duke Math. J., 165(18):3435–3516, 2016.

[Dod17] Benjamin Dodson. “Global well-posedness and scattering for the defocusing, mass-
critical generalized KdV equation.” Ann. PDE, 3(1):Art. 5, 35, 2017.

[Dod18] Benjamin Dodson. “Global well-posedness and scattering for the radial, defocusing,
cubic nonlinear wave equation.”, September 2018.

[DTV15] Y. Deng, N. Tzvetkov, and N. Visciglia. “Invariant measures and long time behaviour
for the Benjamin-Ono equation III.” Comm. Math. Phys., 339(3):815–857, 2015.

[DW18] A. Debussche and H. Weber. “The Schrödinger equation with spatial white noise
potential.” Electron. J. Probab., 23:Paper No. 28, 16, 2018.

[DZ92] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44
of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1992.
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