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Abstract

Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma
proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family
Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide
the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the
host’s nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium
Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like
S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex
polysaccharide degradation (.100). However, unlike S. degradans, which degrades a broad spectrum (.10 classes) of
complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of
terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large
proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T.
turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced
%G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense
against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont
whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights
into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms
relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.
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Introduction

Teredinibacter turnerae is a Gram-negative gamma proteobacter-

ium that has been isolated from the gills of a broad range of wood-

boring marine bivalves of the family Teredinidae (shipworms)

[1,2]. This species has been shown to coexist with other as yet

uncultivated bacteria as a component of an intracellular

endosymbiotic bacterial consortium within specialized cells

(bacteriocytes) of the gill epithelium [3,4]. It displays an unusual

combination of properties, being the only aerobic bacterium

known to grow with cellulose and dinitrogen, respectively, as its

sole carbon and nitrogen sources [2].

The cellulolytic and diazotrophic capabilities of T. turnerae

suggested two potential roles for this bacterium in the shipworm

symbiosis [1]. The first is to produce enzymes that may assist the

host in degrading carbohydrate components of woody plant

materials (cellulose, hemicellulose, and pectin). Shipworms are the

only marine animals known to grow and reproduce normally with

wood as their sole source of particulate food [5]. The second is to

provide a source of fixed nitrogen to supplement the host’s

nitrogen deficient diet of wood. The latter function of shipworm

symbionts was recently demonstrated experimentally [6].

The capacity to degrade woody plant materials is of interest

because these materials are extraordinarily abundant in nature

and serve as major reservoirs of carbon and energy [7]. Plant cell

walls are typically composed of a complex composite of cellulose, a

linear homopolymer of beta 1–4 linked glucose residues,

hemicellulose, a decorated heteropolymer of xylose units, and

lignins, heterogeneous polymers of aromatic residues. Pectin, a

heteropolymer containing alpha 1–4 linked galacturonic acid, is

also an important component of plant cell walls. The low solubility

of these compounds, and their tendency to form crystalline arrays

with complex interconnecting networks of ether and ester linkages,

make woody plant materials highly recalcitrant to enzymatic

degradation [8].

The complete degradation of woody plant materials requires

numerous enzymes, which in nature are often contributed by

multiple microorganisms acting in concert. Cellulose degradation

requires at least three types of hydrolytic activities: beta-1,4-

glucosidase [E.C. 3.2.1.21], cellobiohydrolase [E.C. 3.2.1.91] and

endoglucanase [E.C. 3.2.1.4] (Figure 1A). The depolymerization

of hemicellulose requires carbohydrases and esterases that serve to

break the xylan backbone and decouple side-chains that may bind

to the lignin components of wood (Figure 1B).

The majority of enzymes known to degrade complex polysac-

charides belong to a diverse functional category called glycoside

hydrolases (GH). GHs are assigned to 112 families (http://afmb.

cnrs-mrs.fr/CAZY/) based on nucleotide or amino acid sequence.

Many of these families are functionally heterogeneous, containing

members that differ in substrate specificities as well as sites and

modes of substrate cleavage. In addition to GH activities,

degradation of complex polysaccharides may also involve activity

of carbohydrate esterases (CE), polysaccharide lyases (PL), and

carbohydrate binding modules (CBMs). Moreover, these activities

are often found within modular proteins that may contain multiple

domains with differing catalytic and substrate binding properties,

separated by non-catalytic linker domains. Thus, the composition

and organization of polysaccharide degrading proteins may be

highly diverse and variable and so exploration of new systems is of

considerable interest.

The genome of T. turnerae is also of interest as an example of the

range of adaptations associated with intracellular endosymbionts

of eukaryotes. A characteristic suite of genomic modifications,

including reduced genome size, skewed %G+C, elevated mutation

rates and loss of genes of core metabolism, has been identified

through analysis of genomes of a number of obligate intracellular

symbionts [9]. However, this is not the case for T. turnerae, which

stands as an example of a bacterium that has been observed in

nature only as an endosymbiont, but that can be cultivated in vitro

in a simple defined medium without added vitamins or growth

factors. Its comparison to known obligate endosymbionts may

therefore be informative.

Here we report the complete genome sequence of the T. turnerae

strain T7901 (ATCC 39867) isolated from the shipworm Bankia

gouldi. We examine and discuss the composition and architecture

of the genome of this strain with emphasis on systems pertinent to

symbiosis and free-living existence.

Results and Discussions

Genome features and comparative genomics
General genome features. The genome of Teredinibacter

turnerae T7901 is a single circular molecule of length 5,192,641 bp

(50.8% G+C) (Table 1, Supporting Information: Figure S1). The

genome encodes 4,690 predicted protein-coding regions. Of these,

3,067 (65.4%) could be assigned a function based on inferred

homology, 1026 (21.9%) are hypothetical proteins (no inferred

homology to any previously identified proteins), 589 (12.2%) are

conserved hypothetical proteins (inferred homology to

hypothetical proteins encoded by other genomes), and the

remaining 26 (0.5%) appear to be homologues of experimentally

confirmed proteins of unknown function. The average ORF length

is 973 bp and the average intergenic region is 130 bp. No

extrachromosomal elements were detected.

Phylogenetic affiliations. Similar strains of T. turnerae have

been isolated from the gills of 23 species of teredinid bivalves

representing 9 host genera collected along the coasts of North and

South America, India, Australia and Hawaii [1,2]. All strains have

similar properties and five strains that have been examined by

small subunit (16S) ribosomal rRNA sequence analysis are nearly

identical with respect to this locus (.99.7% identity: Figure 2).

Phylogenetic analyses of 16S rRNA sequences help to identify

closely related bacteria for genomic comparison to T. turnerae

T7901. These indicate that T. turnerae is most closely related to

several as yet uncultivated bacterial endosymbionts that have been

identified in shipworm gill tissues using cultivation-independent

methods (Figure 2) [3,4]. The closest known free-living (and

presumably non-symbiotic) relative is Saccharophagus degradans str.

2–40 [10], a marine bacterium isolated from decaying sea grass

(Spartina alterniflora) in the Chesapeake Bay watershed. This

bacterium degrades an unusually broad spectrum of plant, algal,

and fungal cell wall components, including .10 classes of complex

polysaccharides. Also included within this clade is ‘‘Candidatus

Endobugula sertula’’ [11], the as yet uncultivated symbiont of the

bryozoan, Bugula neritina. This symbiont is known to contribute to

the chemical defenses of this host species during larval stages by

providing a polyketide secondary metabolite (bryostatin)

[12,13,14,15] that inhibits predation by fish and that is being

considered as a candidate drug for treatment of cancer and

dementia. This evokes an additional potential role for T. turnerae as

a source of secondary metabolites that may contribute to host

defenses or maintenance of the symbiotic association.

Comparative gene content. Recently, complete genome

sequences were determined for S. degradans str. 2–40 [10] and two

other bacterial strains that are closely related to T. turnerae T7901

based on 16S rRNA sequences. These are Cellvibrio japonicus

Ueda107 [16] and Hahella chejuensis KCTC 2396 [17]. The shared

evolutionary history of these bacterial strains is evidenced by the

Complete Genome of T. turnerae
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Table 1. Comparison of general genome features.

Features
Teredinibacter
turnerae

Saccharophagus
degradans 2–40

Pseudomonas
fluorescens Pf-5

Cellvibrio japonicus
Ueda107

DNA, total bp 5,192,641 5,057,531 7,074,893 4,576,573

% G+C 51 46 63 52

% Coding 86.5 86.7 88.7 90.5

No. rRNAs 9 6 15 9

No. tRNAs 40 41 71 48

No. ORFs 4690 4008 6144 3790

Mean ORF length 973 1083 1007 1092

doi:10.1371/journal.pone.0006085.t001

Figure 1. Enzymatic degradation of common components of woody plant materials. Enzymatic components required for the breakdown
of cellulose (A) and a hypothetical xylan (B) are shown along with the corresponding EC number designations. Enzymes and the corresponding side-
chains cleaved by them are presented in color while substrate backbones and the corresponding enzymes that cleave them are portrayed in black.
doi:10.1371/journal.pone.0006085.g001

Complete Genome of T. turnerae
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large number of homologues inferred among predicted open

reading frames (ORFs) (Figure 3A) and by the number of these

that have best or near best hits among these genomes in total

genome BLAST searches. Of the 3,502 predicted proteins in the

T. turnerae genome that had at least one BLASTP (E,1e-4) hit to a

protein encoded by another genome (Combo, DB, Wu et al.,

unpublished), 1,670 had a best hit to S. degradans 2–40, 265 to C.

japonicus Ueda107, and 85 to H. chejuensis KCTC 2396. All other

genomes had fewer best hits.

Gene organization. The genomes of T. turnerae, S. degradans

and C. japonicus share similar chromosomal content and

organization and display a considerable degree of synteny when

protein-coding regions are aligned (Figure 3B). An unusual shared

similarity is also observed in the organization of ribosomal genes in

T. turnerae and S. degradans. The ribosomal operons of most bacteria

are composed of a 16S rRNA gene (rrs) followed by an internal

transcribed spacer (ITS1), a 23S rRNA gene (rrl), a second internal

transcribed spacer (ITS2) and finally a 5S rRNA gene (rrf). In

addition to ribosomal operons with this canonical organization,

the genomes of T. turnerae and S. degradans each contain a single

occurrence of rrs and rrl genes that are separated by putative

protein coding sequences (Figure 4) rather than a typical ITS1.

The ITS1 region of most known gamma-proteobacteria ranges

from ,250–1,000 nucleotides in length and encodes one or two

tRNA genes but does not contain protein-coding genes [18]. In

contrast, S. degradans contains two putative protein-coding

sequences within this region while the comparable region in T.

turnerae encodes eight.

Figure 2. Phylogenetic relationships among T. turnerae and selected gamma-proteobacteria. A maximum likelihood (ML) tree based on
comparative analysis of 16S rDNA (1,389 aligned characters) inferred using PHYML [99] as implemented in Geneious 3.8.5 (Biomatters Ltd.) is shown
for 23 related Pseudomonadaceae. Genbank accession numbers are indicated. Not shown but used in the analysis are 16S sequences from Escherichia
coli (AE014075 and U00096) and Salmonella typhimurium (AE006468 and CP000026). Sequences were aligned manually using MacGDE 2.3 [Linton E:
MacGDE: Genetic Data Environment for MacOSX [http://www.msu.edu/,lintone/macgde/] taking into consideration secondary structural information
[100]. Bootstrap proportions greater than 70% are expressed to the left of each node as a percentage of 1,000 replicates. The ML tree topology is
identical to the consensus tree generated with the same alignment using Mr. Bayes 3.0 (not shown) [101]. Bold taxon labels signify that a complete
genome sequence has been determined and is publicly available; asterisks denote symbionts of invertebrates and ‘‘M’’ denotes isolation from marine
environments.
doi:10.1371/journal.pone.0006085.g002

Complete Genome of T. turnerae
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In both genomes, the intervening ORFs most proximal to the rrl

are homologous putative heptosyltransferase genes. Moreover, the

remaining seven ORFs embedded in the ITS1 of T. turnerae also

have homologues elsewhere in the S. degradans genome, five of

which are syntenic in both genomes. This gene organization

strongly suggests that a common ancestral insertion resulted in the

proximity of rrl and heptosyltransferase genes in both genomes and

that this event was likely followed by at least four rearrangement

events (Figure 4) to arrive at the extant gene orders. The large size

of these insertions and alternating orientation of the contained

Figure 3. Genomic comparison of T. turnerae, S. degradans, H. chejuensis and C. japonicus. (A) Venn diagram portraying occurrence of
predicted protein coding genes of homologous origin shared among the genomes of T. turnerae, S. degradans, H. chejuensis and C. japonicus. (B)
Synteny of predicted protein coding genes among the genomes of T. turnerae (x-axis, top and bottom) and S. degradans (y-axis, top) and C. japonicus
(y-axis, bottom) inferred using PROmer (PROtein MUMmer)[102]. Circular chromosomes are depicted linearly with the origins of replication at map
coordinates (0,0). Dots depict location of homologous proteins relative to the origins with red and blue representing homology on the same or
opposite strand, respectively.
doi:10.1371/journal.pone.0006085.g003

Figure 4. Anomalous organization of ribosomal operon A (rrnA) in T. turnerae and S. degradans. One of three ribosomal RNA operons
(rrnA) in the T. turnerae genome displays unusual organization. In this operon, the small (rrs) and large (rrl) subunit ribosomal RNA genes are
separated by protein coding genes in both T. turnerae and S. degradans rather than by internal transcribed spacers (ITS) as in most bacteria. All
intervening genes have homologues in both genomes. The common location of homologous heptosyltransferase genes in both genomes suggests
at least one common ancestral insertion. Ribosomal rRNA genes are depicted in blue. Open reading frames (red, green, orange, and light blue) have
been colored to distinguish homologous genes. Dotted lines mark indel boundaries. Chromosomal locus coordinates are indicated to the right of
each depicted genome region and unique locus tag numbers are indicated beneath each locus without the preceding GenBank prefixes (TERTU_ for
T.turnerae or Sde_ for S. degradans, respectively).
doi:10.1371/journal.pone.0006085.g004

Complete Genome of T. turnerae
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ORFs suggest that these rrs and rrl genes are no longer contained

within a single transcriptional unit in either genome.

Polysaccharide degradation systems of Teredinibacter
turnerae

Wood specialization. Like that of its closest known relative,

S. degradans, the T. turnerae genome is notable for containing an

unusually large number of protein domains involved in the

degradation of complex polysaccharides, including glycoside

hydrolases (GH), carbohydrate esterases (CE), pectin lyases (PL),

and carbohydrate binding modules (CBM). However, in contrast

to S. degradans, which is a generalist capable of degrading more

than 10 types of plant, algal, animal and fungal polysaccharides

[19,20,21], the T. turnerae genome lacks enzyme systems for

degradation of common marine polysaccharides including agar,

alginate, and fucoidan and has only comparatively sparse

representation of chitinase (two vs. seven in S. degradans) and

laminarinase (six vs. ten in S. degradans) genes. Enzymes for

degradation of the fungal polysaccharide pullulan are also absent

in T. turnerae. Instead, the gene content of the T. turnerae genome

suggests a high degree of specialization for degrading

polysaccharides associated with woody plant materials, including

cellulose, xylan, mannan, galactorhamnan and pectin.

The T. turnerae genome encodes a total of 123 ORFs dedicated

to processing complex polysaccharides. Of these ORFs, 95 encode

GH domains, 4 encode PL domains, 18 encode CE domains, and

4 encode both GH and CE domains (Supporting Information:

Tables S1, S2, and S3). The total number of GH domains in T.

turnerae is similar to that of S. degradans [10] and C. japonicus [16],

which places T. turnerae among the top 5% of over 750 bacteria

with sequenced genomes (BH & PMC, unpublished). Notably, T.

turnerae possesses a high number of CE domains per single genome

among these organisms (see Table 2), suggesting a considerable

investment in capacity for degrading hemicelluloses.

The diversity of GH domain families represented in the T.

turnerae genome is also comparable to those of the other cellulolytic

bacteria. The T. turnerae genome encodes catalytic domains

representing 38 different GH families. This compares to 38 in S.

degradans, 42 in C. japonicus, and 44 in a recently characterized

metagenome derived from a community containing over a

thousand bacterial types in the hindgut of the termite Nasutitermes

sp [22]. (Figure 5).

Although the absolute number and diversity of GH domains is

similar, the proportion of GH domains predicted to have activity

against components of woody plant materials (cellulose, xylan,

mannan, and rhamnogalactans) in the T. turnerae genome (Figure 5)

is 53%, nearly twice that of S. degradans (29%), C. japonicus (29%) or

the Nasutitermes sp. hindgut community (27%). Indeed, seven GH

families (GH6, GH9, GH10, GH11, GH44, GH45, and GH62)

are represented by at least twofold more domains in T. turnerae

than in C. japonicus or S. degradans. Each of these has predicted

activity against cellulose or xylan.

Multidomain and multicatalytic enzymes. The T. turnerae

genome is also unusual in the number of multicatalytic enzymes

(single proteins with multiple catalytic domains, each with distinct

predicted catalytic activities) that it encodes and in the domain

composition of these enzymes. While multidomain carbohydrases

are common, most are composed of a single catalytic domain plus

Table 2. Summary of carbohydrate binding and catalytic domains found per genome or metagenome.

Teredinibacter. turnerae Saccharophagus degradans Ccllvibrio japonicus Nasutitermes Community

Glycoside hydrolases (GHs) 101 130 122 704

Polysaccharide lyases (PLs) 5 33 14 10

Carbohydrate esterases (CEs) 22 15 19 n/d

Carbohydrate binding modules (CBMs) 117 136 93 10

doi:10.1371/journal.pone.0006085.t002

Figure 5. Prevalence of GH domains as a function of substrate specificity. The genome of T. turnerae contains a larger proportion of
glycoside hydrolase (GH) domains with specificity for major wood components (cellulose, xylan, mannans, and rhamnogalactans) than do other
compared genomes and metagenomes. GH domains are sorted by known substrate specificity and presented as a fraction of the total number of GH
domains per genome. Substrate specificities are coded as follows: green = cellulose/xylan, (GH families 5, 6, 8, 9, 10, 11, 12, 44, 45, 51, 52, 62, and 74),
dark green = agarose (GH families 50 and 86), light green = chitin (GH families 18, 19, and 20), light grey = peptidoglycan (GH families 28 and 105),
dark grey = laminarin (GH families 16 and 81), black = pectin (GH families 28 and 105), purple = other woody plant cell wall polysaccharides (GH
families 26, 53, and 67) and blue = GH domains with other specificities or specificities not uniquely predicted by family designation. Proportions are
expressed as a fraction of the total number of GH domains found in the genomes of Teredinibacter turnerae (101), Saccharophagus degradans (130),
Cellvibrio japonicus (122), and Nasutitermes termite hindgut metagenome community (704) respectively. The fraction of total GH domains with
specificity toward cellulose and xylan is indicated below each species name.
doi:10.1371/journal.pone.0006085.g005

Complete Genome of T. turnerae
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one or more carbohydrate-binding modules or other small

domains of unknown function. It is relatively unusual for such

enzymes to include multiple catalytic domains and still less

common for those domains to differ in substrate specificity (BH &

PMC, unpublished). A small number of such multifunctional,

multidomain glycosidases have been characterized experimentally,

including a cellulase (CelAB) from T. turnerae [23], a cellulase

(Cel5A) and a chitinase (ChiB) from S. degradans [21,24], and an

endoglycosidase from Enterococcus faecalis [25]. The T. turnerae

genome encodes seven such multicatalytic enzymes (Figure 6).

The advantages of co-localizing distinct catalytic domains

within a single protein are unknown, but may reflect the special

problems encountered by organisms that depend on extracellular

degradation of complex insoluble substrates like wood. For

example, cellulose, a major constituent of wood, requires both

endoglucanase and cellobiohydrolase activities to convert the

insoluble polymer efficiently into soluble sugars that can be

transported across the cell envelope. Combining endoglucanase

and cellobiohydrolase activity along with carbohydrate binding

modules in a single molecule may ensure proximity of these

complementary catalytic domains, and therefore enhanced

activity, while also preventing diffusion of these proteins away

from their insoluble substrates.

The complete hydrolysis of hemicellulose also requires a

combination of hydrolytic activities, including glycoside hydrolases

and esterases. Hemicellulose in softwoods and hardwoods are

predominantly composed of O-acetyl-(4-O-methylglucurono)xylan

[26]. In contrast, arabinoxylan is the major heteroxylan in grasses.

Consistent with its proposed specificity for degrading woody plant

materials, T. turnerae encodes four multicatalytic hemicellulases, each

of which is predicted to be bifunctional. Three encode both xylanase

and acetylxylan esterase domains (TERTU_3603, TERTU_1680,

and TERTU_1678), and a fourth encodes xylanase and methylglu-

curonoyl esterase domains (TERTU_3447). Although a few

multicatalytic enzymes with the former combination of specificities

have been described previously, e.g. [27,28], this is the first report of

the latter combination.

Another proposed advantage of such multicatalytic proteins is

that they may promote intramolecular synergism [23]. For

example, endoglucanases and cellobiohydrolases are thought to

display synergism because the former produces substrate (reducing

ends) that can be degraded by the latter. Indeed, such synergism

has been observed between naturally co-occurring endoglucanases

and exoglucanases or accessory enzymes such as cellodextrinases

and cellobiases in Fibrobacter [29], Clostridium [30], Cellulomonas [31]

and fungi [32]. Moreover, cellulases and cellulase complexes

(synthetic cellulosomes) engineered to contain multiple enzymatic

specificities also display synergistic activity against cellulose [33]

and complex plant substrates [34,35].

The co-localization of multiple activities within a single protein

may also have advantages specific to symbiosis. It is thought that

enzymes produced by shipworm symbionts are transported by an

as yet unknown mechanism from the shipworm’s gills, where the

symbionts are found, to the digestive system where lignocellulose

degradation is thought to occur [36]. Therefore, combining

multiple specificities within a single protein may simplify the task

of protein transport.

Carbohydrate binding modules. In addition to a diversity

of carbohydrate-active catalytic domains, the T. turnerae genome

also contains 117 domains predicted to bind carbohydrates,

second only to S. degradans. Most abundant are those predicted to

bind crystalline cellulose (CBM2 and CBM10), which account for

nearly 50% of all CBMs in the genome. These are also the most

abundant CBM types in S. degradans and C. japonicus. However,

relative to these other genomes, T. turnerae is enriched in the xylan

binding CBM family 22 (seven in T. turnerae, one in S. degradan,s

Figure 6. Multicatalytic carbohydrate-active enzymes. The genome of T. turnerae encodes seven multicatalytic enzymes (enzymes containing
multiple catalytic domains with distinct predicted substrate specificities). Domain architecture is depicted in schematic form. Key: glycoside
hydrolases (GH), carbohydrate esterases (CE), polysaccharide lyases (PL), catalytic domains (white rounded rectangles), carbohydrate binding modules
(grey squares), secretion signals (dark circles), and polyserine linker regions (‘‘SS’’). Numbers specify domain families (http://afmb.cnrs-mrs.fr/CAZY/).
doi:10.1371/journal.pone.0006085.g006

Complete Genome of T. turnerae
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and none in C. japonicus), consistent with a specialization for

degradation of hemicellulose or heteroxylan components of wood.

Interestingly, seventeen ORFs in the T. turnerae genome contain

CBMs that either lack associated catalytic domains or lack

domains with putative carbohydrase activity (GH, CE, or PL

enzyme functions, Supporting Information: Table S4). Indeed two

of these link CBMs to domains predicted to function as serine

proteases. The functions of these unassociated CBMs and unusual

hybrids are unknown, but may involve modification of the surface

of insoluble woody substrates, or modification of other proteins/

enzymes bound to these surfaces.

Polyserine linker domains. The linker regions that join

carbohydrase domains and CBMs in T. turnerae are also unusual,

being uncharacteristically long and comprised nearly entirely of

serine residues. Linkers found in other carbohydrases commonly

consist of repeating proline, threonine and glycine residues. While

the functional significance of polyserine linkers (PSLs) is unknown,

they appear to be characteristic of the carbohydrases of T. turnerae

and its closest relatives C. japonicus and S. degradans [37,38].

The S. degradans genome encodes 46 carbohydrate active

proteins that contain PSLs. On average, these are composed of

80% serine residues and are 39 residues in length [38]. Similarly,

T. turnerae encodes 42 carbohydrate active proteins containing

PSLs with an average serine content of 83% and average length of

44 residues. Approximately one-third of GH and CE domain-

containing proteins are linked by PSLs to one or more CBMs, as

are most (75%) PL domains. Of the multidomain glycoside

hydrolases, .80% of these also exhibit polyserine linker regions

while all of the multidomain carbohydrate esterases and

polysaccharide lyases contain PSLs.

Bioinformatics evidence for secretion system gene
clusters

In Gram-negative bacteria, several secretion systems are

available to catalyze the extracellular translocation of proteins

and genetic material. For some secretion systems, (e.g. the type II

secretion system, or T2SS), proteins must first be exported across

the inner membrane to the periplasm using the so-called

‘‘conventional’’ or ‘‘broad-specificity’’ Sec pathway before trans-

location across the outer membrane. Other secretion systems use

complex multi-component protein assemblies that bypass the Sec

pathway requirement and directly translocate proteins from the

cytoplasm to the extracellular milieu. Specialized secretion

systems, such as types III, IV, and VI (T3SS, T4SS, and T6SS)

are often hallmarks of intracellular bacterial pathogens and

symbionts [39], and many of the secretion system substrates,

termed ‘‘effectors,’’ have been shown to modify or disrupt host cell

function [40,41,42].

Type 2 secretion systems. Genome sequence suggests that

both Sec and Sec-independent (twin-arginine, Tat) pathways

contribute to protein translocation across the inner member in T.

turnerae (for reviews, see [43,44,45]). All essential components of the

Sec translocase encoded by secA, secY, secE, and secG, as well as gene

products of secD, secF, yajC and yidC that are peripherally associated

with the translocase have been identified. Both the co-

translational/SRP pathway (involving the Ffh/SRP54

riboprotein and the FtsY receptor) and the postranslational

pathway (involving the SecB chaperone) of translocase targeting

appear to be present. Over 20% of the predicted proteins in the T.

turnerae genome were identified with N-terminal signal peptides by

SignalP 3.0 [46] and are predicted to be Sec pathway substrates.

Proteins deposited in the periplasm by the Sec and Tat pathways

may be translocated through the outer membrane by the T2SS,

also known as the general secretory pathway. All known essential

components of T2S are arranged in a single large operon

(gspCDEFGHIJKLMN) in the T. turnerae genome, as was

previously observed in S. degradans.

Type 3 and type 4 secretion systems. Secretion pathways

are an important means by which intracellular symbiotic and

pathogenic bacteria modulate interactions with their hosts. Two of

these, the T3 and T4 secretion systems, are known to play

important roles in many plant and animal symbionts and

pathogens [47]. For example, T3 and T4 pathways are involved

in the establishment of symbiosis by the tsetse fly endosymbiont

Sodalis glossinidius and the plant endosymbiont Mesorhizobium loti

[48,49], respectively. Surprisingly, elements encoding T3 or

T4SSs are absent from the genome of T. turnerae.

Type 6 secretion systems. Interestingly, however, elements

of the T6SS, a Sec-independent secretion system only recently

described in Gram-negative bacteria [50,51], were identified in the

genome of T. turnerae (TERTU_1668-TERTU_1639). Reports

indicate that T6S can perform a myriad of functions including

promoting biofilm formation, and attenuating or enhancing

virulence [50,52,53,54,55]. A protein secreted from Vibrio cholerae

in a T6SS-dependent manner can crosslink actin in macrophages

[56], thereby indicating that T6SSs are likely to directly

translocate protein(s) into host cells. The fact that T. turnerae

resides inside host cells as an endosymbiont and lacks T3 and T4

secretion suggests that T6S might be a central mechanism for the

initiation and maintenance of the symbiotic interaction. Indeed, it

has been demonstrated that T6S is a determining factor for host-

specificity in the symbiont Rhizobium leguminosarum [57,58].

In order to gain greater insight into the potential function of

T6S in T. turnerae, we compared its T6SS locus structure and gene

content to that of P. aeruginosa HSI-I, a well-characterized T6S

locus, and to the T6S locus of its close relative, S. degradans

(Figure 7). The T6S gene cluster in T. turnerae appears to encode all

known essential proteins of the secretory apparatus (E value: ,1e-

10) (Figure 7A). Among these are genes encoding proteins with

homology to IcmF (TssM) and an AAA+-family ATPase (TssH),

which are hallmarks of the T6SS [59]. The T6SS generally

translocates at least two proteins: haemolysin-coregulated protein

(Hcp) and the valine-glycine repeat protein G (VgrG)

[60,61,62,63]. Genes encoding these apparent substrates of the

system are present in the T6SS cluster of T. turnerae, and

furthermore, two other putative vgrG genes (TERTU_3731 and

TERTU_2226) are located outside of the unit.

Overall, these loci are highly similar, with 17 and 19 of the 22 P.

aeruginosa HSI-I genes conserved in T. turnerae and S. degradans,

respectively. Surprisingly, our analyses indicated that the overlap

in T6S gene between these organisms is not restricted to those

genes that are widely conserved in other T6SSs. Moreover,

detailed comparisons of the proteins putatively involved in T6S

activation in T. turnerae with those of P. aeruginosa, provided

evidence that not only are essential proteins of this pathway

conserved and likely to be functional, but also, that the mechanism

of initiation and signal propagation may be as well. Sequence

alignment of Fha1 with TERTU_1647 (fha) showed that the site of

Fha1 phosphorylation (Thr362) is conserved in the T. turnerae

protein (Figure 7B). Likewise, similar to PpkA, a C-terminal

periplasmic extension was observed in its T. turnerae ortholog

(TERTU_1640). As is typical in T6S kinases, there is no significant

sequence similarity of this region between the species (data not

shown).

Secretion and localization of carbohydrate-active

proteins. As observed previously in C. japonicus and S.

degradans, the majority of carbohydrate active enzymes encoded

by T. turnerae appear to be substrates of the type II secretion system
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(T2SS). Of the 99 GH and the 22 CE genes, 73 and 14 proteins

respectively are predicted to have an N-terminal signal peptide for

secretion. Notably, four out of five candidate beta-glucosidases do

not have T2SS consensus signal peptides, suggesting that

cellobiose and/or larger polymers may be targeted by a

phosphotransferase transport system for further degradative

processing in the cytoplasm. Consistent with this notion, a

candidate cellobiose phosphotransferase gene (TERTU_3237),

and three candidate cellobiose phosphorylase genes

(TERTU_2767, TERTU_2762, and TERTU_0851) have been

identified in T. turnerae.

Over 180 proteins encoded by the Teredinibacter genome are

predicted to be lipoproteins (LipoP 1.0 program [64]) and so are

likely to become anchored to the outer face of the outer

membrane. Of these, 23 are associated with polysaccharide

degradation. Localization of lignocellulose active proteins to the

outer membrane may provide some of the functional advantages

to Gram-negative bacteria that cellulosomes provide for Gram-

positive bacteria.

Experimental analysis of the T. turnerae secretome. A

total of 123 proteins were identified under the assayed growth

conditions (Figure 8). Based on sequence data, most were

predicted to be secreted proteins or lipoproteins, although a

small proportion had no predicted N-terminal signal peptides and

were presumed to be cytoplasmic proteins released by cell lysis.

The number of proteins detected in spent medium after growth on

SigmaCell (72 proteins), was more than three times greater than

that observed after growth on carboxymethyl cellulose (25

proteins) or sucrose (23 proteins), possibly reflecting the greater

demands of degrading insoluble polysaccharides. Two proteins, a

predicted cellodextrinase (TERTU_0427) and a xylose isomerase

(TERTU_4666), were expressed under all conditions tested.

Several carbohydrases, including three endoglucanases

(TERTU_2893, TERTU_3565, and TERTU_4054), were

detected only with SigmaCell as the sole carbon source (Table 3).

Detection of cellodextrinase and xylose isomerase under all growth

conditions suggests that, as in other woody biomass-degrading

microorganisms, expression of certain enzymatic activities

required for cellulose and xylan metabolism may be linked. This

may be resolved by further transcriptomic and/or proteomic

analyses of T. turnerae grown on purified cellulose and

hemicellulose components. It should be noted that the methods

used here target secreted proteins and may not efficiently detect

cytoplasmic or periplasmic proteins, or proteins that bind

irreversibly to insoluble substrates.

Nitrogen metabolism
Nitrogen fixation. Wood is a carbon-rich but nitrogen-poor

substrate. Therefore, organisms that utilize wood as food may

benefit from alternate sources of nitrogen nutrition such as

nitrogen fixation. The genome of T. turnerae revealed a complete

set of nitrogen fixation genes (nif) organized in three main clusters

that span nearly 60,000 bp, or 1% of the genome. The first cluster

contains nitrogenase accessory and regulatory genes including

nifQ, nifBAL, and the electron transport complex genes

rnfABCDGE. The second cluster contains the structural

nitrogenase genes encoded by the nifHDKT operon. The third

cluster contains genes nifENX whose gene products function to

synthesize nitrogenase molydenum-iron cofactors, as well as

nifUSVPWZM whose gene products also function in nitrogen

fixation. The organization of the later gene cluster is particularly

similar to the nif gene arrangement in strains of Azotobacter,

diazotrophic Gram-negative gamma-proteobacteria related to

Pseudomonads. Consistent with this observation, sequence

Figure 7. Type 6 secretion system (T6SS) gene clusters. (A) Schematic representation of T6SS clusters of T. turnerae, P. aeruginosa and S.
degradans. The T6SS units are arranged so that the fha ortholog of each species is central. Genes are identified by locus tag numbers (below) and
according to the standardized nomenclature for T6SS proposed by Shalom et al. [103] (above): tss; core components in all T6SS units; tag: tss-
associated genes which are present in T6SS clusters in more than one bacterial species. Genes highlighted in color are discussed in the text and
homologous genes are represented by the same color. Genes indicated with light grey have not been clearly linked to T6S function or are not widely
conserved in T6S loci. T6SS core genes [104] are indicated in bold type. (B) Partial sequence alignment of the FHA domain-containing proteins
involved in posttranslational regulation of T6S in T. turnerae and P. aeruginosa. The critical phosphorylation site (Thr362) is conserved in the T.
turnerae protein.
doi:10.1371/journal.pone.0006085.g007
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analysis of the T. turnerae NifH protein revealed that the closest

related sequence is the nifH gene from Pseudomonas stutzeri. These

data, along with the absence of nif genes in S. degradans, H. chejuensis,

and C. japonicus, are consistent with the notion that the nif cluster in

T. turnerae was acquired via horizontal gene transfer from a

Pseudomonas-like bacterium, as has been proposed for nif genes in

other microbes [65].

Nitrogen assimilation. In addition to genes involved in

nitrogen fixation, about 40 genes in the genome of T. turnerae are

predicted to function in nitrogen assimilation. The majority of

these are dedicated to urea metabolism and transport. Specifically,

an operon containing urease and accessory genes (ureABCEFG) is

flanked by two operons (urtABCDE) dedicated to the energy-

dependent transport of urea. Urease and urea transporter genes

are also found in the genome of S. degradans and Hahella chejuensis,

suggesting that urea metabolism may be common to this lineage of

marine bacteria.

The T. turnerae genome also encodes eight genes (TERTU_3348,

TERTU_0619, TERTU_4234, TERTU_3878, TERTU_3828,

TERTU_2171, TERTU_1871, and TERTU_1053) predicted to

encode carbon-nitrogen (C-N) hydrolases. This prediction is

supported by the presence in each of these genes of a diagnostic

triad of conserved amino acid residues (Glu-Lys-Cys) required for

attack on cyano- or carbonyl carbon substrates. C-N hydrolases are

members of a protein superfamily containing 13 families, one of

which is responsible for nitrilase activity [66]. A putative nitrilase

function was assigned to a T. turnerae C-N hydrolase gene,

TERTU_4234 based on protein identity (81%) to a functionally

characterized nitrilase (AAR97393) [67]. TERTU_4234 is part of a

seven-gene operon named Nit1C (Supporting Information: Figure

S2) that is evolutionarily conserved from cyanobacteria through

myxobacteria. It has been proposed that Nit1C genes may be

involved in detoxification of xenobiotic compounds from plants and

microbes [67] and in the production of a PKS/NRPS hybrid

antibiotic cystothiazole A (Feng et al., 2005). Nitrilases are

commercially important in the production of acrylamide and other

fine chemicals [68,69].

Figure 8. Secretome of T. turnerae. Venn diagram depicting proteins
expressed during growth with indicated carbon sources. Numbers in
non-overlapping regions enumerate proteins that were uniquely
expressed and secreted under the indicated condition. Numbers in
overlapping regions enumerate proteins expressed and secreted under
multiple growth conditions.
doi:10.1371/journal.pone.0006085.g008

Table 3. Examples of T. turnerae secreted carbohydrate active enzymes and associated proteins*.

ORF Predicted Function Domain Architecture AA MW (kD) LOC SUC CMC SIG

TERTU_2703 carbohydrate esterase CE3-CBM10-CBM2 486 49 S 2 2 +

TERTU_0645 endoglucanase GH9-CBM10-CBM2 876 91 S + 2 +

TERTU_0607 endoglucanase GH9 580 63 S, L 2 + 2

TERTU_0427 cellodextrinase CBM5-CBM10-GH5 699 75 S + + +

TERTU_0046 chitin/cellulose binding protein CBM33-CBM10 332 35 S 2 + +

TERTU_4506 xylanase GH8 436 49 S, L 2 + +

TERTU_4054 endoglucanase GH44 556 63 S 2 2 +

TERTU_3603 acetylxylan esterase-xylanase CE6-CBM5-CBM10-GH10 952 100 S 2 2 +

TERTU_3565 endoglucanse CBM2-GH5 628 68 S 2 2 +

TERTU_2893 endoglucanse GH9-CBM3-CBM5-CBM10 875 93 S 2 2 +

TERTU_2567 carbohydrate binding protein CBM10-CBM5 1324 432 S 2 2 +

TERTU_2546 xylanase CBM2-CBM10-GH10 629 66 S 2 2 +

TERTU_1675 beta-1,3-glucanase GH16-CBM6 338 37 S 2 2 +

TERTU_1599 xylanase GH10-CBM6-CBM22-CBM22 955 103 S + 2 +

TERTU_1498 alpha-glycosidase GH31 977 110 S, L 2 2 +

TERTU_0768 alpha-L-arabinofuranosidase GH51 515 58 S 2 2 +

TERTU_0766 carbohydrate binding protein CBM13-NPP1 392 43 S + 2 +

TERTU_2895 endo- and exoglucanase GH5-CBM5-CBM10-GH6 1010 106 S + + 2

*As determined by 2-D LC MS/MS on spent culture medium (see methods). Abbreviations: number of amino acid residues (AA), molecular weight (MW), predicted
protein localization (LOC), secreted (S), lipoprotein (L), sucrose (SUC), carboxymethycellulose (CMC), and SigmaCell (SIG).

doi:10.1371/journal.pone.0006085.t003
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Quorum sensing
Many symbiotic proteobacteria rely on quorum sensing, a

mechanism of bacterial population density-dependent gene

regulation, to structure their host-associated microbial communi-

ties. The genome of Teredinibacter does not appear to encode

homologues of known LuxI or LuxM-type AHL synthases, which

are commonly required for the synthesis of N-acyl homoserine

lactone quorum sensing signals. However, it is worth noting that

Nitrosomonas europea produces three AHLs, even though the genome

of N. europea does not contain a canonical luxI or luxM [70]. A

LuxR-type protein (TERTU_2802), weakly homologous to known

AHL receptors, is encoded within the Teredinibacter genome. It is

not yet known whether this ‘‘orphan’’ LuxR protein may function

as a receptor for AHLs produced by other bacteria. Some gamma-

proteobacteria (Salmonella, E. coli, Klebsiella) do not produce AHLs

themselves, but have functional AHL receptors that detect AHLs

produced by other bacteria within a microbial community [71].

The AHL receptor gene (sdiA) in these bacteria is considered to be

a horizontal acquisition that followed a loss of the conserved luxI-

luxR cluster [71]. The genome also does not appear to encode a

homologue of LuxS, a synthase of a furanone AI-2 signal [72].

In addition to AHL- or AI-2- mediated quorum sensing, social

behaviors in all gamma-proteobacteria are mediated by the

orthologues of the GacS/GacA two-component system [73,74].

The genome of T. turnerae encodes a GacS orthologue

(TERTU_1191) and a GacA orthologue (TERTU_2408). The

predicted periplasmic loop of GacS and its cytoplasmic linker

domain (responsible for the interactions with the yet unknown

signal) [75] appear to be the least conserved in this family of

orthologues. It is, therefore, not yet clear whether GacST.t.

responds to the same self-produced signal that was initially

characterized in pseudomonas [75]. Similar to other orthologues,

GacST.t. contains H302, D720 and H878, predicted to function in

autophosphorylation and phosphotransfer to GacA. The GacA is

most likely functional since it contains D54 (a predicted

phosphorylation site) and the highly conserved amino acid residues

(D8-D9, P58-I61, T82-D86) that are predicted to interact with

D54. The GacS/GacA-mediated signal transduction in gamma-

proteobacteria requires an RNA binding protein CsrA ( = RsmA),

which interacts with the small regulatory RNAs controlled by

GacS/GacA. The genome of T. turnerae is unusual in that it

appears to contain two CsrA homologues (TERTU_2809 and

TERTU_2436). TERTU_2809 was most similar to the annotated

csrA (rsmA) from Saccharophagus degradans, Cellvibrio japonicus, and

Pseudomonas mendocina. TERTU_2436 does not appear to have

orthologues in these related bacteria and is most similar to

TERTU_2809. The GacS/GacA-Csr system also contributes to

the regulation of genes involved in utilization of various carbon

sources and secondary metabolism [75].

Secondary metabolism
The T. turnerae genome contains nine gene clusters predicted to

encode secondary metabolite pathways, including multifunctional

and modular polyketide synthase (PKS) and non-ribosomal

peptide synthase (NRPS) enzymes, which are typically involved

in the production of bioactive molecules (Figure 9). Clusters were

delimited as groups of genes with homologues among secondary

metabolite pathways. The clusters range in size from 8 Kb

(Region 9) to 74 Kb (Regions 3 and 4) and contain many large

ORFs, such as TERTU_2858, a remarkable ,22 Kb in length

(Figure 9). Modular PKS and NRPS are enzymes that devote

separate modules, consisting of groups of catalytic domains, to

each elongation step of the growing molecular chain. Thus, size of

these enzymes is correlated to the size of the metabolites. The size

and complexity of some of the clusters suggests that large, complex

metabolites are likely to be produced by T. turnerae. The combined

putative secondary metabolite pathways account for approximate-

ly 380 Kb, or nearly 7% of the T. turnerae genome. Thus, the

fraction of the genome devoted to secondary metabolism in T.

turnerae is comparable to that found in several Streptomyces species

considered to be secondary metabolism specialists [76,77].

A detailed analysis of the secondary metabolome of T. turnerae

T7901 is beyond the scope of this work and will be presented in a

separate manuscript; an overview is presented here. Three of the

clusters, 4, 6 and 7, are NRPS clusters, without PKS elements.

Region 7 contains genes homologous to biosynthesis of a

enterobactin-like catecholate siderophore, including a Dhb/Ent-

F-like NRPS (TERTU_4067) and a entCEBA-like operon required

for production (through conversion of the aromatic amino acid

chorismate) and activation of DHBA (TERTU_4059–4062)

(Figure 9, Region 7 ORFs in green) [78]. This region, predicted

to be responsible for siderophore biosynthesis and iron transport, is

the only one among the 9 detected clusters for which prediction of

the compound class was possible based on BLAST analysis of

ORFs. Completing the T. turnerae secondary metabolome are one

small (Region 9) and two large (Region 2 and 6) modular PKS

gene clusters. Regions 1, 3 and 8 are mixed clusters, containing

genes homologous to both NRPS and modular PKS functions

(Figure 9).

The large number and high complexity of NRPS and PKS

clusters observed in T. turnerae is in sharp contrast to that seen in

the sequenced genome of S. degradans. In an analysis of S. degradans

2–40 genomic database (http://genome.jgi-psf.org/finished_mic-

robes/micde/micde.home.html), we detected 5 loci containing

ORFs coding for hypothetical PKS/NRPS enzymes. These

regions, which total ,73 Kb in size, represent 1.43% of the S.

degradans 2–40 genome. Only 3 of the putative enzymes (Sde_0688,

Sde_0689 & Sde_3725) exceed 2000aa in length and only one

(Sde_3725) is structurally more complex than a mono-modular

type I PKS. The predicted siderophore biosynthesis cluster in S.

degradans is smaller (17,690 bp) than its T. turnerae (32,073 bp)

counterpart. It remains to be determined whether the greater

complexity of these genes in T. turnerae is correlated with host

association.

Comparative analyses suggest that the NRPS and PKS clusters

of T. turnerae may have phylogentic origins distinct those of S.

degradans. As previously mentioned nearly half of all ORFs in the T.

turnerae genome with significant BLAST hits to another sequenced

genome have best hits to homologues in S. degradans. This is not the

case for PKS/NRPS clusters. For example, regions 1 and 2 are

PKS and/or NRPS enzymes with significant similarities (45–50%)

to recently characterized enzymes of Bacillus amyloliquefaciens from

the difficidin (Dfn), bacillaene (Bae), and bacillomycin D (Bmy)

biosynthesis pathways. These observations may suggest that some,

or possibly all, of the T. turnerae secondary metabolite regions may

have originated from lateral gene transfer events.

Bacteriophage, restriction-modification and mobile-DNA
The intracellular environment of T. turnerae is thought to

provide it limited exposure to mobile genetic elements. Nonethe-

less, the genome of T. turnerae indicates a history of exposure to

foreign genetic material, including bacteriophage (Supporting

Information: Table S5) and transposable elements. Two gene

clusters in the T. turnerae genome, cas/csd and cmr, are predicted to

function in generating and maintaining clusters of regularly

interspaced short palindromic repeats (CRISPRs) (Supporting

Information: Figure S3A). CRISPR and associated genes provide

bacteria with acquired immunity against infection by bacterio-
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phage, and possibly other extrachromosomal elements [80], via an

incompletely understood mechanism involving incorporation of

short non-coding and non-repetitive spacer sequences derived

from phage during viral challenge [81].

Based on the arrangement, orientation and sequence of

CRISPR-associated genes, including Cas5 (TERTU_3118), it is

likely that T. turnerae encodes the Dvulg subtype of the Cas guild

[82]. Thirty-one units of direct repeats, each 32 bp in length, were

identified downstream of the cas2 gene. Each of these CRISPR

repeats is capable of forming a hairpin structure when transcribed,

consisting of a 7 base-pair stem and a loop of 5 nucleotides

(Supporting Information: Figure S3B). As has been described for

other CRISPR bacterial systems, the terminal repeat sequence is a

variant of other repeats in the unit [81]. Additionally, the

secondary structure of the T. turnerae repeats is consistent with

the cluster 3 type of CRISPRs, which are also associated with

Dvulg Cas genes [83]. CRISPR and associated genes have been

identified in the C. japonicus genome [16] but not in S. degradans.

The T. turnerae genome encodes 30 CRISPR spacers with a

mean length of 34 nucleotides. Two of these spacers closely

matched (20 of 22 base pairs) regions of the Vibrio phage VHML

encoding a putative baseplate spike protein (orf30) and the

Ralstonia phage phiRSA1 encoding an endonuclease subunit

(ORF9) respectively, however, exact cognate bacteriophage

sequences were not identified in public databases.

DNA restriction-modification (R-M) systems have also been

proposed as a mechanism of bacteriophage immunity. While it

remains challenging to identify endonuclease (R) genes bioinfor-

matically, nucleic acid methylase (M) genes are well conserved.

There are at least two R-M systems in the T. turnerae genome

anchored by methylase genes TERTU_3913 and TERTU_2390.

Both are predicted to be type I R-M systems, and as such are

associated with genes that encode specificity (S) subunits. In

comparison, two type I R-M systems and two type III methylases

were identified in C. japonicus (data not shown). No R-M associated

methylase genes were identified in S. degradans.

Conclusion
Detailed genomic information is available for comparatively few

intracellular endosymbionts. Therefore, a central question with

regard to each of these genomes is to what extent does genome

content and organization reflect adaptation to this ecologically

important niche. Unlike most intracellular symbionts examined to

date, T. turnerae is capable of growth in vitro under simple defined

conditions. However, despite considerable effort, this bacterium

has never been isolated from any environment other than the gill

tissue of teredinid bivalves. Thus, although T. turnerae appears to be

capable of independent existence, the extent to which this

bacterium may grow and/or reproduce outside of its host in

nature remains unknown.

Figure 9. Secondary metabolism gene clusters of T. turnerae. Predicted secondary metabolite gene clusters in the genome of T. turnerae
T7901. Regions are shown in order of distance from the origin of replication. Sequence coordinates of each region are indicated beneath the region
number. NRPS: nonribosomal peptide synthetase, PKS, polyketide synthase.
doi:10.1371/journal.pone.0006085.g009
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Genome content and organization may provide evidence of the

extent to which T. turnerae is restricted to the intracellular

environment. Considerable attention has been paid to intracellular

pathogens and endosymbionts of animals and the broad syndrome

of genomic modifications associated with increasing dependence

on intracellular existence. Such modifications may include

reduction in genome size, decreased %G+C, increased fixation

of harmful mutations, loss of genes of core metabolism including

DNA repair, formation of pseudogenes, transitory proliferation of

insertion elements, and reduction in number of ribosomal operons

and tRNA genes [9,47,84].

Contrary to observations on the genomes of other bacteria that

form stable, long-term, intracellular associations with animals, the

circular genome of T. turnerae is comparatively large. In fact, it is

larger and contains significantly more predicted open reading

frames than has been reported for its closest known free-living

relative, S. degradans (Table 1). Also, unlike other intracellular

symbionts, the genome of T. turnerae shows no reduction in %G+C

compared to its closest free-living relative but is in fact 5% greater.

It contains a greater number of ribosomal RNA genes and a

comparable number of tRNA genes. Moreover, T. turnerae

maintains a complete complement of genes involved in virtually

all core metabolic functions including DNA repair and contains

only three predicted pseudogenes as compared to nine in S.

degradans. Although the number of insertion elements detected in

T. turnerae significantly exceeds that of S. degradans, this number is

consistent with the profiles of pathogens, such as Listeria

monocytogenes [85], and is far less than that determined for recently

examined facultative endosymbionts [86]. Also contrary to

expectations for an intracellular endosymbiont, the genome of T.

turnerae suggests a recent history of exposure to bacteriophage. The

T. turnerae genome encodes and maintains a phage defense arsenal

that includes CRISPR and at least two restriction modification

systems and contains a number of phage elements similar to that of

its free-living relative, S. degradans.

Another interesting feature of the T. turnerae genome is the

magnitude of its secondary metabolic potential. A proposed

function of secondary metabolites is to act as antimicrobials to

suppress competition from other bacteria. This again could suggest

recent or current competition with free-living bacteria. However,

secondary metabolites might also play a role in symbiosis. It should

be noted that T. turnerae is closely related to Candidatus Endobugula

sertula, a bacterial symbiont of bryozoans. This symbiont is

proposed to be responsible for the biosynthesis of bryostatins,

polyketides that protect the bryozoan larvae from predation. The

metabolites of T. turnerae may play a similar role in the shipworm

symbiosis. Alternatively, they could suppress microbial competitors

for infection of the host tissues or digestive system, defend the host

against pathogens, or play a role in communication with the host.

Finally, shipworm gills typically contain several related bacterial

species in addition to T. turnerae. Thus secondary metabolites may

be important in community assembly within the gill tissue by

regulating competing populations of coexisting endosymbionts.

In summary, the genome of T. turnerae suggests that of a

facultative endosymbiont that either maintains a significant

ecological niche outside of its host, or of a bacterium that has

only recently become restricted to the intracellular environment.

We can identify no feature, or combination of features, of its

genome content or organization that uniquely identifies T. turnerae

as a symbiotic bacterium. Nor can we identify, based on

bioinformatics, any gene that can uniquely be identified as a

‘‘symbiosis gene’’, although there is some indication that such

genes may exist. Given the widespread occurrence and prevalence

of T. turnerae among phylogenetically and biogeographically

diverse shipworm taxa, and the long fossil history of these host

groups, we favor the hypothesis that T. turnerae has maintained a

long history of relatively independent facultative association with

shipworms. It remains unclear why the evolutionary trajectory of

this symbiosis has not lead to evidence of greater host dependence.

Additional, comparative genomic analysis of cultivated and as yet

uncultivated shipworm symbiont strains and species may lead to a

better understanding of this elusive question.

Materials and Methods

Provenance of the sequenced strain
The sequenced strain T. turnerae T7901 was isolated by John

Waterbury, Woods Hole Oceanographic Institution from a

specimen of the shipworm Bankia gouldi collected from the Newport

River Estuary, Beaufort North Carolina in 1979. This strain, and

53 similar strains of T. turnerae isolated from a variety of shipworm

species by Waterbury et al. [1,2] between 1979 and 1986, have

been deposited to the Ocean Genome Resource, (OGR accession

number I00002) a public biorepository operated by Ocean

Genome Legacy, Inc. The sequenced strain has also been

deposited to the American Type Culture Collection (accession

number 39867).

Cultivation of Teredinibacter turnerae
Strains were grown in liquid batch culture in shipworm basal

medium (SBM) as previously described [1]. SBM was supple-

mented with sucrose (final concentration 0.5%) and ammonium

chloride (final concentration 5 mM). Difco agar (1%) was added

for plate cultures. For genomic DNA extractions, a single colony of

T. turnerae was used to inoculate 100 ml aliquots of SBM. Cultures

were incubated with mild agitation (100 rpm) at 30uC until optical

densities between 0.08 and 0.10 OD600 units were achieved. The

resulting cell pellet was harvested by centrifugation at 12,000 rpm

for 15 minutes.

Genomic DNA preparation
A cell pellet of approximately 125 ml in volume was resuspended

in 4.75 ml of TE 8.0 buffer (10 mM Tris, pH 8.0, 1 mM EDTA).

After addition of 1.25 ml of 10% SDS and 12.5 ml of Proteinase K

(20%), the suspension was mixed by inversion and incubated at

37uC for 60 minutes. To this suspension was added 600 ml of NaCl

(5 M) and 375 ml CTAB (10% in 0.7 M NaCl) prewarmed to

65uC. After incubation at 65uC for 20 min., the suspension was

allowed to cool to room temperature, 6 ml of dichloromethane

was added. The suspension was then mixed by inversion, phases

were separated by centrifugations (80006g, 15 min), and the

aqueous phase was retained and subjected to 2 additional rounds

of extraction with dichloromethane. Nucleic acids were precipi-

tated from the solution by addition of 0.65 volumes of isopropanol,

spooled on a glass rod, washed by submersion in EtOH (100%),

dissolved in 500 ml of TE 8.0 buffer containing 1 ml RNase

(100 mg/ml), and incubated at 37uC for 60 min. After addition of

NaOAc (0.3 M final concentration), two volumes of EtOH

(100%), were added and the DNA was spooled onto a glass rod,

washed with EtOH (100%) and dissolved in 500 ml of TE 8.0

buffer. Genomic DNA was subsequently purified using DNeasy

mini spin columns (Qiagen) according to the manufacturer’s

recommended protocol.

Genome sequencing and assembly
The complete genome sequence was determined using a

combination of Sanger [87] and Roche-454 GS20 [88] technol-

ogies as described in [89]. Three libraries were made – a small
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insert library of 3 to 4 Kb, a medium insert library of 8 to 10 Kb,

and a fosmid library with inserts of 33–39 Kb. A total of 6144

Sanger reads were performed for each library. A single plate of

454 GS20 sequencing (158,697 reads) was then performed to

supplement the Sanger sequence. The Celera Assembler [90] and

JCVI’s in-house hybrid assembly method were used to assemble

the combined Sanger/454 data, resulting in three sequence

scaffolds containing 28 intra-scaffold gaps. The total number of

sequence gaps was reduced to 13 using JCVI’s automated closure

procedure (Hostetler et al., unpublished) which analyzes assembly

results, identifies finishing targets, designs primers, selects clones,

and chooses and performs sequencing reactions in an automated

pipeline. The remaining sequence gaps and low sequence coverage

areas were resolved manually using a combination of primer

walking, PCR and transposon-mediated sequencing. The jump-

start feature of the Celera Assembler was used for final sequence

assembly achieving a final coverage of 21.2X.

Sequence annotation
An initial set of predicted protein-coding regions was identified

using GLIMMER [91,92]. Those shorter than 30 amino acids and

those with overlaps of higher scoring regions were eliminated. The

likely origin of replication was identified and base pair 1 was

designated adjacent to the dnaA gene [93]. Putative protein

functions were assigned using JCVI’s AutoAnnotate pipeline

which searches against an in-house non-redundant protein

database using BLASTP [94] then extends the BLASTP results

using the BLAST-Extend-Repraze (BER) method to improve

identification of gene boundaries. Putative proteins were also

compared to two sets of hidden Markov models (HMMs): Pfam

HMMs [95], and TIGRFAMs [96] using the HMMER package

[97]. HMMs were built from highly curated multiple alignments of

proteins thought to share the same function or to be members of

the same protein family. Approximately 70% of putative proteins

whose functions were predicted by auto-annotation were subjected

to individual manual inspection and ‘‘expert’’ annotation by the

authors. The complete genome sequence has submitted to

GenBank (accession # CP001614).

Secretome analysis
Protein expression/secretion was examined in T. turnerae grown

with three different carbon sources. After two days of growth in

liquid medium containing either sucrose, carboxymethylcellulose

(CMC, a soluble form of cellulose), or SigmaCell (SMC, insoluble

cellulose powder) as the sole carbon source, spent Teredinibacter

turnerae fermentation medium was cleared of cells by centrifugation

and used for proteomic analysis. An 800 mL aliquot of each

cleared fermentation medium was injected onto an 1100/1200

Series Liquid Chromatography System (Agilent Technologies) and

separated on a PLRP-S reversed-phase column (1 mm6150 mm;

Higgins Analytical, Inc.) using a 45 min 15–60% TB gradient

(TA = 0.1% trifluoroacetic acid, TB = CH3CN, 0.1% trifluoroa-

cetic acid) at a flow rate of 100 mL min21. Fractions containing

protein were identified by UV (214 nm) and the intensity of

absorbance at this wavelength was used to determine the protein

concentration in each fraction. Fractions were individually dried to

completion under vacuum. Proteins from each dried fraction were

resuspended in 30 mL Trypsin reaction buffer (50 mM Tris-HCl,

20 mM CaCl2, pH 8) and digested overnight at 37uC with 100 ng

of Trypsin (New England Biolabs, Inc.). Eight mL of each digested

fraction was injected into a HPLC-Chip Cube system and

separated on a Protein ID chip comprised of a 40 nL enrichment

column, a 75 mm6150 mm separation column packed with

Zorbax 300SB-C18 5 mm material, and a spray emitter with a

15 mm flow path (Agilent Technologies). Peptides were separated

using a 40 min 5–45% FB linear gradient (FA = 0.1% formic acid,

FB = CH3CN, 0.1% formic acid) at a flow rate of 0.4 mL min21

and analyzed online by a 6330 Ion Trap Mass Spectrometer with

a Nano-Electrospray (nanoESI) ionization source (Agilent Tech-

nologies). A capillary voltage of 1700–1900 V (optimized on a per-

chip basis) was used and the skimmer voltage was held at 30 V.

Data were acquired at 25,000 m/z?sec21 with a SmartTarget

value of 500,000 and Maximum Accumulation Time of 200 ms.

The MS acquisition range was from 300 to 1800 m/z. Default

parameters for Auto MS2 were used. Ions were selected for

fragmentation based on their intensity, with the number of

precursor ions set to 5. The MS/MS Fragmentation Amplitude

was set to 1.30 V with SmartFrag Start and End Amplitude values

set to 30 and 200%, respectively. The MS/MS acquisition range

was from 50 to 2200 m/z. Data acquisition was coordinated with

the start of the LC separation and was stopped after 60 min.

Protein separation, digestion and peptide analysis were repeated in

triplicate.

The ESI-MS/MS data were analyzed using both Spectrum Mill

(Agilent Technologies) and Mascot (Version 2.2, Matrix Science

Ltd.) search engines [98]. For the Spectrum Mill analysis, the raw

data were processed by Spectrum Mill MS Proteomics Workbench

(Rev A.03.02.060b). The default settings in Data Extractor were

used to prepare MS/MS data files for Spectrum Mill processing.

Processed data were then subjected to an MS/MS Search using a

T. turnerae database. The search criteria were set to allow two

missed cleavages by trypsin with no protein modifications. The

precursor mass tolerance and product mass tolerance were set

to62.5 and60.7 Da, respectively. Peptides were filtered by a

Score .7 and a % SPI.60 and only proteins scoring better than

20 were considered valid identifications. For the Mascot analysis,

raw data were converted to .mgf files by DataAnalysis (Version

6.1, Agilent Technologies). Compounds were detected using the

following method parameters: S/N threshold set to 2, Intensity

threshold set to 100 for both positive and negative, and a

maximum number of 8000 compounds with a retention time

window of 0.05 min. The .mgf files were uploaded to Mascot and

searched against a T. turnerae database. The search criteria were set

to allow two missed cleavages by a semi-trypsin digest with no

protein modifications. The tolerances for peptide and MS/MS

were set to 1.2 and 0.6 Da, respectively. Peptide charges of 1+, 2+
and 3+ were selected with MudPIT scoring and an ‘‘ion score or

expect cut-off’’ value of 20. Proteins identified with a Probability

Based Mowse score of 67 or better were considered valid

identifications (p,0.05).

Supporting Information

Table S1 Glycoside hydrolases of T. turnerae (99 ORFs total; 101

domains total).

Found at: doi:10.1371/journal.pone.0006085.s001 (0.15 MB

DOC)

Table S2 Polysaccharide lyases of T. turnerae (4 ORFs total; 5

domains total).

Found at: doi:10.1371/journal.pone.0006085.s002 (0.04 MB

DOC)

Table S3 Carbohydrate esterases of T. turnerae (22 ORFs total;

22 domains total).

Found at: doi:10.1371/journal.pone.0006085.s003 (0.06 MB

DOC)

Table S4 Carbohydrate binding domain encoding ORFs not

associated with GH, PL and CE domains in T. turnerae (17 ORFs
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total, 24 domains total). PFAM-A abbreviations are used for non-

CBM domains.

Found at: doi:10.1371/journal.pone.0006085.s004 (0.05 MB

DOC)

Table S5 Prophage associated genes in T. turnerae.

Found at: doi:10.1371/journal.pone.0006085.s005 (0.04 MB

DOC)

Figure S1 Circular representation of the chromosome of T.

turnerae T7901. Circular plots in order from outermost to

innermost rings: 1) and 2) predicted protein coding regions (blue),

tRNA genes (red), and rRNA genes (pink) in the forward and

reverse strands respectively, 3) local G+C content of the genome

(black), with high and low G+C regions represented by peaks

facing away from or toward the center of the figure respectively, 4)

GC-skew (positive values in green, negative in pink), and 5)

distance in base pairs from the predicted origin of replication.

Note that changes in the sign of GC skew correspond with and

support the predicted origin and terminus of replication.

Found at: doi:10.1371/journal.pone.0006085.s006 (2.15 MB TIF)

Figure S2 Nit1C gene cluster organization. The genomic

context of the T. turnerae nitrilase gene (TERTU_04234) is shown

along with similar nitrilase operons (Nit1C) from other bacterial

genomes. Other proteins encoded by genes commonly found in

Nit1C clusters include 2 hypothetical proteins (hyp1 and hyp2), a

radical SAM superfamily protein (SAM, Pfam 04055), GCN-5

related acetyltransferse (GNAT, Pfam 00583), 59-phosphorybosyl-

5-aminoimidazole synthase-related proteins (AIRS, Pfam 00586),

and a putative flavoprotein (Flavo).

Found at: doi:10.1371/journal.pone.0006085.s007 (0.29 MB TIF)

Figure S3 CRISPR associated genetic loci in Teredinibacter

turnerae. The CRISPR associated cas/csd and cmr loci are shown

(A). Genes belonging to different gene families are distinguished by

color (blue, cas; red, csd; purple, cmr). The predicted CRISPR

repeat RNA hairpin structure is shown (green) with the variant

terminal repeat (orange). Hairpin sequences are oriented with

respect to the cas operon, which is antisense to the genome.

Found at: doi:10.1371/journal.pone.0006085.s008 (0.19 MB TIF)
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