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A B S T R A C T   

Juvenile salmonids migrate hundreds of kilometers from their natal streams to mature in the ocean. Throughout 
this migration, they respond to environmental cues such as local water velocities and other stimuli to direct and 
modulate their movements, often through heavily modified riverine and estuarine habitats. Management stra
tegies in an uncertain future of climate change and altered land use regimes depend heavily on being able to 
reliably predict their ocean entry timings, route use, and survival rates through rivers and estuaries. We 
developed a spatially-explicit agent-based model of fish movement in response to hydrodynamic flows that uses 
movement dynamics gleaned from multi-dimensional tracking datasets of acoustically tagged juveniles moving 
through an urbanized, branched tidal estuary. We demonstrate how such models can be calibrated, and we apply 
it to the Sacramento-San Joaquin Delta in Central California. The quality of the out-of-sample validation of the 
model to predict juvenile salmon survival and route selection indicates that the model is versatile and flexible 
enough to be used in novel hydroclimatological conditions.   

1. Introduction 

The loss of estuarine habitat for iconic, endangered and economi
cally important marine organisms is extensive around the world, leaving 
decision makers with the difficult task of ensuring reliable water supply 
for human uses while maintaining ecosystem services. While much is 
known about how rearing and migrating anadromous fish use estuarine 
habitats, at present we have limited ability to make quantitative pre
dictions about how these fish are likely to respond to changes to their 
estuarine environment. Therefore, ecological models that provide sound 
understanding of the behaviors of aquatic species and contribute to 

realistic quantification of the population dynamics under altered 
hydroclimatologies are required for better understanding the resiliency 
of these species to changing landscapes, and for optimal water 
management. 

In this paper, we describe the development of the Enhanced Particle 
Tracking Model (ePTM), a data- and theory-driven agent-based model of 
anadromous juvenile salmonid migration through rivers and estuaries 
using the outputs of a system-scale hydrodynamic flow model. In this 
model, we develop behavior agencies that are consistent across multiple 
scales of motion (tens of meters over a few minutes to hundreds of ki
lometers over several days), and can be inferred from observations. To 
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demonstrate an application, we calibrate and validate this model for 
migrating juvenile Chinook salmon in the Sacramento-San Joaquin 
Delta (hereafter, the Delta) in Central California. 

Globally, salmonid species are widespread along temperate and 
subarctic coastlines and contributed nearly 15 billion dollars to the 
global fisheries in 2016 (Irarrazával and Bustos-Gallardo 2019). Many of 
the salmonid stocks are overexploited and a significant number of 
salmonid species are either threatened or critically endangered (Yeak
ley and Hughes 2014; Pauly 2018). Habitat stewardship is a common 
and significant component of freshwater and marine management plans 
for salmonids (Yeakley and Hughes 2014). 

In the Delta, facilitating successful salmonid migrations is a water 
management goal that often conflicts with other demands on the system, 
such as extracting water from the estuary for agricultural or municipal 
use (Delta Stewardship Council 2019). Every year, four seasonal runs 
(Fall, Late Fall, Winter and Spring) of juvenile Chinook salmon (John
son et al., 2017) and steelhead migrate to the Pacific Ocean through the 
Delta (MacFarlane and Norton 2002; Chapman et al., 2013), moving 
through diverse habitats, encountering predators, interacting with 
highly dynamic flows, and passing a multitude of human-made struc
tures. Survival of juvenile salmonids migrating through the Delta can be 
extremely low (e.g., Perry et al., 2010; Perry et al., 2014; Michel et al., 
2015; Perry et al., 2018; Buchanan and Skalski 2020). As a result, tools 
for predicting how water management actions will affect migrating 
salmonids are urgently needed (Delta Stewardship Council 2022). 

Historically, juvenile salmonid migration rates and survival through 
rivers and estuaries have been estimated using statistical models (e.g., 
Newman 2003; Perry et al., 2018; Hance et al., 2020) or phenomeno
logical models that represent net migration rates, overall dispersal and 
mortality through physically-inspired fate and transport models (e.g., 
Zabel and Anderson 1997; Zabel et al., 2008; Sridharan and Hein 2019). 
Statistical models only reliably describe patterns over the observed 
range of conditions, do not have emergent behaviors, and therefore have 
limited use in novel hydroclimatological and management conditions. 
At the other end of the spectrum are models that describe complex 
systems with dynamics that emerge due to the interactions of animal 
behavior in response to environmental stimuli. These include cognitive 
models of fish movement (e.g., Hein et al., 2018; Jhawar et al., 2020; 
Nadler et al., 2021) and fine-scale computational fluid dynamics and 
coupled biological random walk models (Goodwin et al., 2006; Gross 
et al., 2021) or simulated fish whose behavior is governed by machine 
learning (Arenas et al., 2015) or artificial intelligence (Olivetti et al., 
2021). However, these models are too computationally intensive and are 
either too abstract (Hein et al., 2018; Jhawar et al., 2020; Nadler et al., 
2021) or too domain-specific (Olivetti et al., 2021; Gross et al., 2021) to 
be useful as decision support tools. 

Agent-based models with realistic behaviors driven by system-scale 
flow models, such as the ePTM, can help bridge the gap between sim
ple models and highly refined models and have the potential to predict 
migration dynamics under novel conditions. Agent-based models have 
been developed for fish movement and migration in the past (e.g., 
Massoudieh et al., 2011; Bracis and Anderson 2012; Kimmerer and Rose 
2018; Gross et al., 2020; Morrice et al., 2020; Lai 2022), but have 
typically involved simple or ad-hoc animal behaviors. The behavioral 
complexity represented in the ePTM is based on tagged salmonid 
migration data and theoretical expectations from the literature. These 
behaviors allow us to capture the shifts in behavior of salmonids as they 
migrate through complex estuaries and to physically represent 
real-world systems. These features are likely limited in simpler models, 
or are abstracted from intuitive understanding in artificial 
intelligence-based models, and in the case of ad-hoc agent-based 
models, cannot be explained directly using the available data. 

We organize the paper as follows: In Section 2, we provide a brief 
background of the migration dynamics of juvenile anadromous salmo
nids. In Section 3, we use the insights gained from Section 2 to describe 
the structure of the ePTM. In Sections 4 and 5, we calibrate and validate 

the model for a specific system, and evaluating the sensitivity of the 
migration statistics to the model parameters. In Section 6, we present 
ways in which the model can be used as a numerical laboratory as well as 
a decision support tool for water management. 

2. Juvenile salmonid migration and survival dynamics 

In order to build our migration model, we (i) reviewed the literature 
on anadromous juvenile salmonid migration to identify common pat
terns in animal movement, (ii) engaged with local and regional stake
holders in Central California to incorporate anecdotal evidence about 
the natural history of salmonids, and (iii) performed our own analyses of 
datasets obtained in the Delta from acoustic telemetry arrays which 
provided system-wide coverage in the form of detection histories of fish 
at various points along the river system (Perry et al., 2010; San Joaquin 
River Group Authority 2013; Perry et al., 2018; Notch et al., 2020), and 
high-resolution planar two-dimensional fish tracks [AECOM et al. 2015; 
California Department of Water Resources (DWR) 2015; R.W. DWR 
2016] from two locations to quantify the key aspects of migration 
behavior directly from data (Raimondi et al., 2021). Using these data
sets, we identified five key behavioral elements of salmonid migration: 
(i) active swimming, (ii) orientation towards or away from the ocean, 
(iii) holding relative to the flow, (iv) routing at channel junctions, and 
(v) mortality due to predation. We subsequently discuss these elements 
as they apply to model design. 

2.1. Active swimming behavior 

While larval life-stages of some fish species passively drift with the 
flow (Nagel et al., 2021), migrating juvenile salmonids actively propel 
themselves relative to the flow. To describe fish movement in this paper, 
we define swimming velocity (directed) or speed (undirected) as the 
movement rate of the fish relative to the water over a short timescale (a 
few minutes), the overground movement velocity as the directed combined 
movement rate of the fish and the water over a short timescale, and the 
migration rate as the displacement per unit time of the fish through the 
river system over a long timescale (several days). Several studies have 
shown some common patterns in salmonid migration: (i) movement 
away from their natal streams (e.g., Sturrock et al., 2015), (ii) swimming 
velocities within individual fish that vary over time (e.g., Lehman et al., 
2017), and (iii) in regions of estuaries where the tidal flow reverses, 
migration rates that are faster when flow oceanward is faster, and slower 
when flow oceanward is slower (McCormick et al., 1998). These results 
indicate that salmonid swimming speeds vary both spatially and 
temporally throughout the system, and among individuals. 

2.2. Orientation toward or away from the ocean 

Orientation relative to the flow in tidal estuaries has received much 
attention in the acoustic tagging literature. Numerous studies have 
found that until they encounter a salinity threshold close to the point of 
ocean entry, fish swim actively with the direction of flow during the ebb 
or oceanward flow phase of the tide, and do not effectively move during 
the flood or landward flow phase of the tide (McCleave 1978; Solomon 
1978; Healey 1980; McCormick et al., 1998; Moore et al., 1998; Hedger 
et al., 2008). In the lower estuary close to the ocean downstream of this 
salinity threshold, fish mostly swim towards the ocean (Lacroix and 
McCurdy 1996; McCormick et al., 1998; Moore et al., 1998; Hedger 
et al., 2008). In tidally reversing regions, Kelly and Klimley (2012) re
ported that non-salmonid anadromous fish orient somewhat randomly 
during slackwater, or periods of low flows between tidal reversals. 
Acoustic telemetry studies in tidal parts of the Delta have also reported 
positive rheotaxis, or orientations against the flow in regions with 
strongly unidirectional oceanward flow, as well as fish tracks exhibiting 
back-and-forth lateral movements across the river during low freshwater 
flows (DWR 2015; R.W. DWR 2016). These results indicate a potential 
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shift in the behavior of salmonids in response to the transition from 
unidirectional river flows to bidirectional flows in the estuary. 

2.3. Holding relative to the flow 

In this paper, we define holding as a behavior that results in no net 
displacement over some short period (over a few minutes). Authors have 
reported two types of holding behaviors: (i) holding related to flow, and 
(ii) holding related to the day/night cycle. In general, holding is likely 
governed by proximity to the ocean. In regions where the tidal flow 
reverses, fish have been observed to hold against the flow or move 
slowly oceanward during the landward phase of the flow (Lacroix and 
McCurdy 1996; Miller and Sadro 2003; Lacroix et al., 2005). Some 
studies have reported a statistically significant preference among juve
nile salmonids to migrate oceanward at night in regions of the river 
system where the flow is non-reversing, and a more 
photo-period-agnostic migration pattern throughout the whole day as 
fish move closer to the ocean (Moser et al., 1991; Lacroix and McCurdy 

1996; Hedger et al., 2008; Chapman et al., 2013). 
Some of these behaviors were also corroborated by observations by 

domain experts (National Marine Fisheries Service 2021). In particular, 
selective holding of fish during the landward phase of the tide (Forward 
and Tankersley 2001; Verhelst et al., 2018), preferential nighttime 
migration in the non-reversing tidal regions of the Delta, and more 
uniform migration patterns throughout the day in the tidal parts of the 
system were observed by domain experts. 

2.4. Routing at river junctions 

In general, migratory fish do not move through channel junctions in 
river networks or branched tidal estuaries as neutrally buoyant sus
pended material (Steel et al., 2013; Ramόn et al. 2018). Recently, two 
models have represented route selection processes significantly better 
than models which allow fish to randomly select a migration route. The 
critical streakline [Perry et al., 2014, R.W. 2016 (see their Box 3 for a 
summary); Hance et al., 2020] and the bifurcating streamline 

Fig. 1. Model structure. Model inputs, outputs and decision points are shown respectively as parallelograms, rectangles and rhombuses. The five key biological 
processes are highlighted. The dashed boxes indicate the biological timestep and trajectory sub-timestep respectively. The key processes occur over each timestep to 
update a simulated particle’s position. Model computations stop when a particle either dies or exits the system. 
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(Sridharan et al., 2018a) models both allow fish to enter a channel 
depending on its position relative to the streamline that bifurcates the 
flow into downstream channels at a river junction. 

2.5. Mortality due to predation 

Past analyses suggest that mortality due to predation is important in 
estuaries such as the Delta, resulting in relatively low survival (Perry 
et al., 2018; Pope et al., 2021) that is spatially variable (Perry et al., 
2018; Hance et al., 2020; Michel et al., 2020; C.J. Michel et al. 2021; 
Notch et al., 2020). Anderson et al. (2005) proposed a mean-field theory 
of predation-driven mortality, the XT model, in which survival is a 
function of local predator density, the distance traveled by migrants 
through the predator field, X, the exposure time of migrants to preda
tors, T, and the random velocities of predators and prey. This model has 
been shown to be consistent with survival patterns of Chinook salmon 
migrating through the Snake and Columbia Rivers (Anderson et al., 
2005), and in the Sacramento River (Steel et al., 2020). 

3. Model structure 

The ePTM, written in modular object-oriented style in Java, is a 
three-dimensional coupled physical-biological Lagrangian particle 
tracking model that simulates the movements and mortality of juvenile 
salmonids through a river or estuary (Sridharan et al., 2021). The 
advantage of agent-based models such as the ePTM is the relative ease of 
specifying and modifying different behaviors one might wish simulated 
fish to follow. In the ePTM, the behaviors of simulated fish combine 
additively with the local water velocity (see also Olivetti et al., 2021), a 
feature that makes it easy to modify assumptions about physical forcing, 
the processes that determine locomotion, or both. Formally, this 
decomposition allows us to write the overground movement velocity of 
a given individual within a simulation timestep as 

u = uS + uH (1)  

where u > 0 is oceanward movement and u < 0 is landward movement, 
uS is an individual’s swimming velocity, and uH is the hydrodynamic 
velocity of the water in the individual’s vicinity. 

There are four major assumptions in the ePTM: (i) very small-scale 
auto-correlated sensory responses at sub-second timescales are 
assumed to be represented by stochastic noise (Codling et al., 2008), (ii) 
there is only a one-way coupling between the flow and fish movement, i. 

e., fluid-structure interactions through which fish may alter the flow 
field are not modeled, (iii) all simulated individuals follow the same 
stochastic behavioral rules, and (iv) interactions among individuals are 
weak enough that a reasonable approximation of migration behavior 
can be achieved by simulating many non-interacting individuals (but see 
Berdahl et al., 2016). For timescales on the order of 15 min (the typical 
timestep size at which movement is represented in the ePTM), the 
modifications of the flow field by the fish will average out so that 
fluid-structure interactions (e.g., Filella et al., 2018) can be safely 
ignored. Sridharan and Hein (2019) showed that the application of a 
one-dimensional advection-dispersion model that is based on these as
sumptions is able to recover the distribution of travel times of migrating 
steelhead in the Delta. 

The structure of the ePTM is designed around five behavior modules 
to simulate the key processes related to juvenile salmonid migration 
discussed in Section 2 (Fig. 1). At each simulation timestep, simulated 
fish move through the water body where they are located, experience a 
probability of mortality due to predation, and, if they are in the vicinity 
of a river junction, move into one downstream water body or the other. 
By iterating this process over many timesteps, the ePTM produces pre
dictions about how populations of migrants move, and when and where 
mortality occurs. 

3.1. Model domain 

In order to explore the structure of a model as complex as the ePTM, 
we ground-truthed it in the Sacramento-San Joaquin Delta (Fig. 2). The 
Delta is an estuary that has been highly modified by diking, channeli
zation, water extraction, invasive species, and land reclamation, and is 
vulnerable to climate change, land subsidence, sea-level rise and salinity 
intrusion. Mortality of migrants is very high in the Delta, likely due to 
increased predation in highly channelized habitats with invasive aquatic 
plants (Moyle et al., 2010; Michel et al., 2020), alterations of natural 
flows by water operations (Kimmerer 2008), and favorable thermal 
tolerance regimes of native and invasive predators (C.J. Michel et al. 
2021). However, recent studies have shown that there is a positive 
relationship between freshwater inflow and survival of migrating sal
monids in the Delta (Perry et al., 2018; Buchanan and Skalski 2020; 
Hance et al., 2020; Michel et al., 2015; C.J. 2021), indicating that the 
high mortality might likely be alleviated by favorable flow conditions. 

The Delta is an inverted alluvial fan estuary at the confluence of the 
Sacramento and San Joaquin Rivers, with its oceanward end at San 

Fig. 2. Map of the San Francisco Bay-Delta system with regions over which the ePTM is calibrated. The inset map geolocates the Bay-Delta (box) within California 
(shaded orange) in the United States. 
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Francisco Bay. Both the Sacramento and San Joaquin Rivers are rain- 
and snow-fed and heavily regulated by dams, with flows typically 
ranging from 200 to 2000 m3/s in the Sacramento River and about 10 to 
20% of that in the San Joaquin River. California State and Federal 
pumping facilities in the South Delta withdraw 10 to 50% of the inflow 
of freshwater from the system (Fig. 2) by operating sluice gates in the 
North Delta at the Delta Cross Channel which feed pumps that supply a 
network of canals moving water south (Fig. 2). Sridharan et al. (2018b) 
discuss the hydrodynamics of this system in detail. 

3.2. Hydrodynamics and physical forcing on simulated fish 

We based the ePTM on the California Department of Water Re
sources’ (DWR) Delta Simulation Model II (DSM2) particle tracking 
module (DWR 1998). DSM2 is a one-dimensional subgrid shallow water 
equation solver that provides the mean along-stream water velocities at 
grid points spaced roughly 1–5Km apart, and is used to drive the be
haviors in the ePTM. In the ePTM, we disaggregate these mean velocities 
for both straight and curved channels (the lateral and vertical water 
velocity structures are parametrized as described in Appendix A) [DWR 
1998]. The ePTM uses numerical methods that ensure consistency with 
the underlying model assumptions (Sridharan et al., 2018a) and, most 
importantly, it incorporates data- and theory-driven models of juvenile 
salmonid behavior during migration. 

Although the positional variable of primary interest is the along- 
stream location of each individual, x(t), we also track the location of 
each individual at each time in the lateral, y(t), and vertical, z(t), di
mensions. y(t) is specified as positive from the channel centerline to the 
right bank looking downstream, and z(t) is specified as positive from the 
channel bottom to the free surface. Over a small time, Δt, positions are 
updated according to the following equations (Visser 1997): 

x(t + 1) = x(t) + [uH + uS]Δt

y(t + 1) = y(t) + Ry

̅̅̅̅̅̅̅̅̅̅̅̅̅
2εHΔt

√
+

dεH

dy
Δt

z(t + 1) = z(t) + Rz
̅̅̅̅̅̅̅̅̅̅̅̅
2εV Δt

√
+

dεV

dz
Δt

(2)  

Here, uH, uS, and the vertical gradient of the vertical eddy diffusivity, dεV
dz , 

are all evaluated at the point {x(t),y(t), z(t), t}, while the spatially var

iable vertical eddy diffusivity is evaluated at the point 
{

x(t),y(t),z(t) +

1
2

dεV
dz Δt, t

}
. εH, the spatially variable horizontal eddy diffusivity, is 

evaluated at the point 
{

x(t), y(t) + 1
2

dεH
dy Δt, z(t), t

}
. Ry and Rz are uni

formly distributed random numbers between –1 and 1. In the ePTM, we 
have included channel curvature, water velocity and turbulent mixing 
profiles with at least as much realism as a one-dimensional hydrody
namic model with a zeroth order turbulence closure will allow (Section 
A.1 in Appendix A). In order to represent particle trajectories realisti
cally and balance the requirements of fidelity and performance, we 
tuned several model settings (see Appendix A). The profiles of uH, εH and 
εV are obtained under the parametrizations in Appendix A. 

The rationale behind the formulation in the system of Equations (2) 
is that simulated fish are pushed laterally and vertically due to random 
turbulent fluctuations. In reality, fish also move actively laterally and 
vertically within the water column in ways that likely depend on the 
morphologies of specific areas within the domain (Olivetti et al., 2021; 
Gross et al., 2021). The net effect of the system of Equations (2) is that 
behavior is adopted in the streamwise direction, and passive 
particle-like movements are applied in the lateral and vertical di
rections. This compromise retains the generality of the model. 

3.3. Simulation timescales 

The ePTM model simulates processes with two distinct timesteps. 
The primary timestep (τ) is 15 min and the sub-timestep (Δt) is 20 s. At 
every timestep, the behavioral decisions of each individual are updated 
and mortality is evaluated, while at every sub-timestep, the positions of 
each individual are updated (see section A.2 in Appendix A). This finer 
time resolution helps resolve uncorrelated movements relative to flows 
and total path length during a 15-minute interval. We chose the 15-min
ute timestep to ensure scalability in multi-decadal water management 
scenario evaluations, in which millions of fish have to be simulated over 
long durations. Given the 15-minute timestep, simulated fish behaviors 
in the ePTM should be interpreted as temporally-coarsened representa
tions of cognitive responses to instantaneous local stimuli exhibited by 
migrants, which vary on spatial scales of a few meters and temporal 
scales of a few seconds (Olivetti et al., 2021). However, variability 
among individual migrants is maintained in the model. 

The outcome of behavioral decisions at each timestep is stochastic, 
and they are produced by a set of behavioral functions that result in 
actions based on the location of the animal within the system and the 
environmental conditions at that location. We selected the forms of 
these functions on the basis of a review of the literature on migrating 
salmonids, as well as empirical evidence from our analyses of salmonid 
migration behavior in the Delta (Section 2). These functions also 
represent a tradeoff with the simplifying assumptions that is necessary 
to ensure that parameters are statistically identifiable and that compu
tation times are tractable. 

3.4. Active swimming behavior 

Active swimming in the ePTM involves only along-stream move
ments induced by fish behavior. Locomotion in ePTM involves a 
sequence of behavioral choices each individual makes at each timestep. 
We represent these behaviors as a hierarchy of stochastic decisions to (i) 
first either hold position relative to the flow or swim, and (ii) subse
quently, if they decide to swim, then to select the swimming direction 
and the swimming speed. 

The swimming speeds of migratory salmonids vary over time, across 
environmental conditions, and in different regions of an estuary (Oli
vetti et al., 2021). To allow swimming speed to vary from one timestep 
to another and among individuals, we draw a random swimming speed 
for each individual that is not holding at each point in time. The 
swimming speed, |uS|, for each individual at each timestep is drawn from 
a log-normal distribution of the form 

Table 1 
Calibration parameters in the ePTM.  

Behavior 
element 

Description Parameter Prior 
bounds 

Units 

Active 
swimming 

Mean swimming speed |uS| [0,0.5] m/s  

Standard deviation of 
swimming speed 

σ|uS | [0,0.5] m/s 

Orientation Probability of memory 
persistence 

pM [0,1] –  

Complement of the 
probability of rheotaxis 

P̃Rheotaxis [0,1] –  

Half-saturation point of 
logistic function 

c [ − 10,10] –  

Slope of logistic function b [0,10] – 
Holding Landward holding threshold 

water velocity 
uF [0,1.5] m/s  

Holding probability above 
threshold 

pH [0,1] –  

Daytime swimming 
probability 

pDS [0,1] – 

Mortality Length-scale of survival 
decay 

λ [10,1000] m  

Time-dependence parameter ω [0,2] m/s  
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lnN(μ, σ) ∼ 1
|uS|σ

̅̅̅̅̅
2π

√ e
−

[

(ln|uS |− μ)2

2σ2

]

(3)  

where the parameters are given by 

μ = 2ln|uS| −
1
2

ln
(

σ2
|uS |

+ |uS|
2)

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln
(

σ2
|uS |

+ |uS|
2)

− 2ln|uS|

√ (4)  

in which the mean swimming speed and standard deviation in observed 
swimming speeds are respectively |uS| and σ2

|uS |
(Table 1). As salmonid 

swimming behavior could change over the course of migration with 
proximity to the ocean, we allow the parameters of the log-normal 
distribution to vary among different regions of the estuary as the 
simulated fish move through the system. To ensure that randomly drawn 
swimming speeds remain within the range of biologically plausible 
speeds, the log-normal distribution is truncated at the 95th percentile 
and rescaled appropriately. 

3.5. Orientation towards or away from the ocean 

The direction of along-stream swimming relative to flow varies 
across the system and over environmental conditions (Olivetti et al., 
2021). To allow this in the ePTM, we incorporate a probabilistic swim
ming direction rule that determines each individual’s swimming direc
tion at each timestep. The swimming direction is influenced by the 
individual’s previous swimming direction, as well as the flow it expe
riences. The structure of this rule is based on empirical patterns in the 
high-resolution fish tracks (AECOM et al. 2015; DWR 2015; R.W. 2016). 
While migrants regularly turn to direct locomotion landward, ocean
ward, or toward channel banks, they also exhibit a tendency to persist in 
a given swimming direction for long periods of time (Olivetti et al., 
2021). To capture this tendency to persist, an individual is allowed to 
continue moving along its previous swimming direction (either ocean
ward or landward) at each simulation timestep with probability pM 
(Table 1). The decision to persist is then determined by a Bernoulli trial 
with probability pM. 

If the Bernoulli draw to determine persistence results in a zero, the 
individual’s swimming direction is determined by a stochastic decision 
based on the flow it experiences during the current timestep. This is 
motivated by the observation that fish in different flow regimes exhibit 
different tendencies to swim with or against prevailing flow (Olivetti 
et al., 2021). A range of processes have been attributed to flow detection 
by fish (Liao 2007; Burke et al., 2014; Klimley et al., 2017; Oteiza et al., 
2017; Lohmann and Lohmann 2019; Miles et al., 2021). Regardless of 
the sensory mechanisms, strong flows are significantly easier to perceive 
compared to very weak flows. A simple way to represent this 
flow-strength-based perception is to model the probability of orienting 
in the direction of prevailing flow as a function of the dimensionless 
water velocity magnitude, 

ũ = |uH |/|uH | (5)  

where |uH| is the instantaneous water velocity magnitude at the mi
grant’s location and |uH| is the historical average water velocity in the 
system. The quantity |uH| serves simply to normalize ũ to a consistent 
range of values and any other constant could be used in its place without 
loss of generality (i.e., we are not assuming that fish have knowledge of 
the historical average water velocity). We assume water velocity 
magnitude is related to the individual’s probability of orienting in the 
direction of the prevailing flow according to the function: 

pSWF(t) = 0.5 + (P̃Rheotaxis − 0.5)
[

1
1 + e− (c+blogũ)

]

(6)  

where pSWF is the probability of orienting in the direction of flow, 
P̃Rheotaxis (read as the complement of the probability of rheotaxis) is a 
calibration parameter determined by where the migrant is located in the 
system, c is half-saturation point (the abscissa of the inflection point) 
and b is the slope of the steepest part of the curve (Table 1). If an indi
vidual is not holding, and not persisting in its previous movement di
rection, its direction relative to the flow is determined by a Bernoulli 
draw with probability given by pSWF(t) from Eq. (6). 

For positive values of c and small values of b, simulated fish exhibit 
sluggish responses to flow signals, i.e., an individual will make decisions 
that are not random only at very strong water speeds. For negative 
values of c and large values of b, simulated fish exhibit very sharp re
sponses to small changes in the flow, i.e., decisions will be nonrandom 
even for weak flows. The P̃Rheotaxis parameter determines if the individ
ual is likely to orient with or against the flow. If P̃Rheotaxis ≈ 0, then as 
flows become stronger, individuals will have a tendency to orient 
against the flow, or perform positive rheotaxis. If P̃Rheotaxis ≈ 0.5, 
orientation decisions will be random. If P̃Rheotaxis ≈ 1, then as flows 
become stronger, individuals will have a tendency to orient with the 
flow, or perform negative rheotaxis. By allowing these parameters to 
vary in different regions of the system, spatial variation in responses to 
flows can be captured. 

3.6. Holding relative to the flow 

In the ePTM, whether an individual will hold or swim during a given 
simulation timestep is determined by two factors: the time of day, and 
the phase of the tide. These dependencies are implemented by the 
following equations 

P(Hold) =
{

pH ; uH < uF
It∈{D}(1 − pDS); uH ≥ uF

(7)  

where, pHis a probability that the individual holds, uF is a landward flow 
threshold above which simulated fish are assumed to hold, It∈{D} is an 
indicator function denoting whether it is day (1) or night (0), and pDS is 
the probability of swimming during the daytime (Chapman et al., 2013; 
Table 1). A migrant’s decision to hold is determined by a Bernoulli trial 
with probability P(Hold) at each timestep. This allows the model to 
capture different types of holding behavior observed in the system. 

3.7. Routing at river junctions 

In the ePTM, we allow simulated fish to move into downstream water 
bodies at junctions depending on their lateral position relative to the 
critical streakline or bifurcating streamline (Appendix A). When a 
migrant reaches the end of a river channel within a sub-timestep, the 
routing process is invoked, and it is moved into a downstream river or 
open water body (such as a flooded island or shallow lake). Subse
quently, the remaining trajectory computation is completed for that sub- 
timestep in the new channel beginning from a random cross-sectional 
position. If an individual enters an open water body, it waits for a 
random length of time smaller than one day and then leaves the open 
water body randomly into a connecting downstream water body. While 
it would be straightforward to implement stochastic routing decisions 
that depend on the flow, the individual’s lateral position, and other 
system- and species-specific attributes (see Steel et al., 2013; Hance 
et al., 2020), but we have not implemented this in the ePTM as we 
wanted to retain generality across species and flow conditions. 

Recently, nonphysical barriers and fish guidance mechanisms such 
as bubble curtains and strobe lights have been investigated to steer fish 
into favorable migration routes in the Delta (Perry et al., 2014; DWR 
2015; R.W. DWR 2016). These mechanisms work by directing fish away 
from a potentially deleterious route without altering the flow, and 
operate with some efficiency, η. We implement such mechanisms in the 
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model as a “synthetic barrier,” which restricts simulated fish from 
entering a specific water body during some fraction, η, of the time. Any 
number of barriers can be applied at any junction in the system domain 
with specified efficiencies. Over the duration of a simulation, such 
barriers will simply divert a fraction of simulated fish, η, into the next 
nearest downstream water body that does not have a barrier. While not 
fully realistic, the barrier mechanism nevertheless allows us to capture 
the leading order function of such barriers (see Section 5.3 below). 

3.8. Predation and mortality 

Survival in the ePTM is modeled using a modified version of the XT 
model developed in Anderson et al. (2005). The modification arises 
because we compute survival over the actual path of an individual in our 
model rather than over a fixed distance (see Appendix A). This modifi
cation follows from tracking simulated fish trajectories in the ePTM. 

The basic assumption of the XT model is that, on average, the risk 
that prey migrating through a field of resident predators will be eaten by 
predators within a region can be expressed as constant per-unit distance 
and per-unit time rates. Our model computes survival probability of 
each individual in each 15-minute timestep as a function of two quan
tities: the total distance traveled by that individual in the timestep, X, 
and the duration of the timestep as: 

P(Survival) = e−
̅̅̅̅̅̅̅̅̅̅̅
X2+ω2 t2

√

λ (8) 

In the model, t = τ. Here, the free parameters λ and ω respectively 
quantify how survival decays with distance traveled through a region, 
and represent stochasticity in the predator-prey encounters (Table 1). 
The difference between λ in Eq. (8) and in the Anderson et al. (2005) 
formulation is that in the former case, this parameter has to be inflated 
as a consequence of using the distance over migrant trajectories instead 
of river reach lengths (Appendix A). The difference in ω in the ePTM is 
that this parameter also captures the stochasticity in flow and fish tra
jectories (Appendix A). Thus, the parameter values in Eq. (8) will 
generally be much larger than in the conventional formulation of the XT 
model. 

Typically, smaller values of λ represent denser predator fields, while 
larger values represent sparse predator distributions. Small values of ω 
represent a smaller contribution of the random (undirected) components 
of predator and prey movements to the overall encounter rates. 
Conceptually, small values of ω may be thought of as representative of 
stationary predators, whereas large values as representative of roving 
predators. In the ePTM, as we allow these parameters to spatially vary, 
the home ranges of different types of predators can be potentially rep
resented in the model. 

In standard applications, if a random draw from a uniform distri
bution is smaller than the probability of survival, an individual con
tinues to move through the system. Otherwise, it is killed and the 
simulation terminates for that individual. An alternate mode is also 
available in the model wherein particles are not removed from the 
computation but rather continue to be simulated. Survival estimates can 
then be provided for each region, and compounded over the course of 
migration, using a fixed population of simulated migrants. 

3.9. ePTM behavior kinetics 

The functional responses of the behavior modules described in Sec
tions 3.4 to 3.6 and 3.8 to local environmental conditions observed by 
simulated fish (i.e., instantaneous water velocities) calibrated for sal
monids migrating through the Delta indicate the biological realism in 
the model. These responses are sketched in Fig. 3 (see Appendix B for 
details on how the responses were sketched). The parameter estimation 
process and optimal parameter values are reported below in Sections 4 
and 5. To simplify the subsequent discussion, we grouped areas in the 
Delta into three macro-regions based on the flow characteristics 
modeled using DSM2. These are the nonreversing flow, weakly reversing 
flow and strongly reversing flow macro-regions, which each have 
distinctive instantaneous water velocity histograms (Fig. 3A). In all 
subsequent rows of Fig. 3, we aggregated behavior responses within all 
regions constituting each macro-region. Mean migration rate relative to 
the flow, orientation, holding and mortality dynamics are illustrated in 
Figs. 3B, C, D and E by assuming that simulated fish experience constant 

Fig. 3. Functional responses of behavior modules in the ePTM calibrated for salmonid migration in the Sacramento-San Joaquin Delta in the three macro-regions 
delineated in the inset map (the nine calibration regions are also shown as polygons): A. Histograms of instantaneous water velocities in the Sacramento-San 
Joaquin Delta and, as a function of the local environmental conditions (water velocity) experienced by a simulated fish, B. mean migration rate relative to flow, 
C. the probability of orienting with flow over a period of five days, D. the probability of holding over a period of five days, and E. the survival rate due to predation 
mortality. See Appendix B for details on how these quantities are estimated. In B, the dashed lines indicate that the migration rate relative to flow is negligible. In C, D 
and E, the dashed lines indicate random chance. 
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water velocities in each bin of the histograms shown in Fig. 3A over a 
period of five days. 

By applying the swimming speed distribution in Eq. (2) and by using 
the orientation and holding probabilities from Eqs. (6) and (7), we 
obtain the mean relative migration rate as a function of water velocity in 
Fig. 3B (see Appendix B). From nonreversing to reversing macro-regions, 
the mean relative migration rate generally increases monotonically from 
slower to slightly faster than the water velocity. 

The probability of orienting with the flow estimated using Eq. (6) is 
typically much lower than random in the nonreversing and weakly 
reversing macro-regions, except during slack-water, indicating a ten
dency for positive rheotaxis in these regions. In the strongly reversing 
macro-region, this probability is close to random (Fig. 3C; see 
Appendix B). 

Very rarely do water velocities ever exceed the flood phase holding 
threshold under historic conditions. The combined probability of hold
ing due to strong flood phase landward flows and daylight estimated 
using Eq. (7), is typically about 0.75 without an appreciable trend 
through the domain (Fig. 3D; see Appendix B). 

Mortality due to predation, estimated using Eq. (8) and by assuming 
that simulated fish (i) drift passively towards the ocean with the uni
directional freshwater current in the nonreversing macro-region and (ii) 
experience tidal excursions and a net oceanward Stokes’ drift (Smythe 
2020) in the reversing macro-regions, is typically low in the non
reversing macro-region and significantly increases in the tidally 
reversing macro-regions (Fig. 3E; see Appendix B). This is due to the 
increased path lengths and travel times in the reversing macro-regions. 
Survival in the nonreversing macro-region dips near slack water because 
the travel time approaches infinity, whereas in the reversing 
macro-regions, survival increases near slack water as the distance 
traveled approaches its minimum value (Appendix 4B). 

Together, the mechanisms of these behavior modules interact to 
produce realistic and well-explained migration and survival dynamics. 
The model incorporates behavioral dynamics that have been observed in 
juvenile salmon across numerous systems; however, every module might 
not be observed in every system. Thus, the model can be simplified by 
“turning off” a module by setting parameters to specific values. This is a 
strength that allows the model enough flexibility to emulate observed 
behavior in a given system (Table B.1). 

4. Model calibration 

We applied the ePTM to study migration through the Delta of Sac
ramento River-juvenile Chinook salmon. We calibrated the model by 
comparing the distribution of travel times and survival obtained from 
releases of acoustically tagged fish into the system and ePTM model 

simulations with matched simulated fish releases. To calibrate the 
model, we searched for optimal parameter values using a customized 
search process. 

4.1. Calibration data 

To calibrate the ePTM for salmonid migration in the Delta, we used 
data from tagging studies of Late Fall-run Chinook salmon (2006–2010) 
released in the Sacramento River (Perry et al., 2010). In total, 1591 
tagged Late Fall-run juveniles were released in eight groups over the 
5-year period (Table 2). These fish were tagged with VEMCO V5 acoustic 
tags and were tracked across multiple hydroacoustic receiver arrays 
(Fig. 2). Multistate Mark Recapture (MMR) models were fit within a 
hierarchical Bayesian framework to concurrently estimate detection, 
routing and survival probabilities through the different regions (Perry 
et al., 2010; Perry et al., 2018). In addition to the regional survival es
timates, the data also included first detection times for each fish 
whenever it was detected at a receiver array. We fit the model param
eters to the observed travel time distributions and MMR-estimated sur
vival rates in each region. 

4.2. Generating ePTM predictions for model calibration 

In the ePTM, the model parameters can take different values in 
different parts of the domain. This allows us to capture spatial changes in 
behavior along simulated fish trajectories. To balance model parsimony 
with flexibility, we imposed the restriction that parameter values should 
be constant within each region. This does not preclude the possibility 
that some parameters may take on similar values across regions. In total, 
the 11 parameters in the ePTM (Table 1) can vary across the nine regions 
(Fig. 2), giving 99 model parameters that must be fit using the data. 

To produce predictions from the ePTM for fish in the calibration 
dataset, we identified the first detection times of each fish detected in 
both the upstream and downstream ends of a region in the calibration 
data. For each of these fish, we released 10 simulated fish in an ePTM 
simulation for which the DSM2 model was used to compute the flows 
over the migration period. The durations of these simulations were set to 
be ten days longer than the last initial detection time of fish at the 
downstream end of the region. For each tagged individual, the fate of 
each simulated migrant in the region as well as the travel time through 
the region was recorded. Simulated fish were introduced into the model 
domain at the same locations as the telemetry stations demarcating the 
upstream ends of the MMR regions. By performing such simulations over 
a large set of parameter values, a representation of the model goodness- 
of-fit to the data was obtained. This was used to estimate model 
parameters. 

4.3. Model parameter constraints 

Much data is available in the literature regarding animal swimming 
behaviors from which prior expectation can be set for the swimming 
parameters (Appendix C): |us|, and σ|uS | were restricted to a range of 0 to 
0.5 m/s, and uF to a range of 0 to 1.5 m/s (Table 1; Appendix C). We 
allowed pM, P̃Rheotaxis, pDS and pH to vary between 0 and 1 (Table 1). The 
values of c and b were bound between –10 and 10, and 0 and 10, 
respectively (Table 1; Appendix C). We set the lower and upper limits for 
uF to be 0 and 1.5 m/s, respectively (Appendix C). λ and ω were allowed 
to vary between 10 and 1,000Km, and 0 and 2 m/s respectively (Table 1; 
Appendix C). The survival parameter bounds were set based on the re
sults in Perry et al. (2018) and simulations using a “toy PTM” model, 
which involved a very fast random walk of simulated fish with behaviors 
identical to the ePTM over three coarsely defined Delta regions 
(Appendix C). 

Table 2 
Details of the late fall-run Chinook calibration dataset.  

S. 
No. 

Period Mean flow during 
Delta entry (m3/s) 

Number of fish 
Released 

Mean forklength 
of fish (mm) 

1 5–6 Dec. 
2006 

496.1 65 166 

2 17–18 Jan. 
2007 

492.0 81 163.9 

3 4–7 Dec. 
2007 

442.4 209 152.9 

4 15–18 Jan. 
2008 

750.2 212 154.7 

5 30 Nov.− 6 
Dec. 2008 

318.2 293 149.5 

6 13–19 Jan. 
2009 

358.6 293 153.7 

7 2–5 Dec. 
2009 

476.5 233 154.0 

8 16–19 Dec. 
2009 

584.1 205 155.1  
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4.4. Calibration process 

To calibrate the model parameters with the Late Fall-run Chinook 
salmon data, we applied a custom 4-stage process (see Appendix D for 
details). First, we deduced that the movement (swimming, orientation 
and holding) parameters could be fit independently of the survival pa
rameters (see below). Second, we performed a coarse grid search on a 
large number of movement parameter values to hone in on the best local 
optima defined within a multiobjective optimization framework 
(Appendix D). Third, we performed a fine grid search in the neighbor
hoods of the best local optima obtained from the coarse grid search to 
identify the global optimum movement parameter values using the same 
optimization framework. Fourth, we held the movement parameters at 
their optimum values and performed a grid search over the survival 
parameters to find the optimum values of these parameters. We decided 
to use this custom approach due to a host of practical considerations, 
which we discuss further in Section 6 below. 

For an 11-dimensional parameter space in each region of the model 
domain, space-filling algorithms provide an efficient way of sampling 
with significantly fewer points than a random selection of points which 
could fall on lower-dimensional manifolds. To select the optimal space- 
filling algorithm, we compared ten algorithms using the R package 
DiceEval (Dupuy et al., 2015). Using the maximum separation method 
with a minimum separation criterion of 0.244 produced the best per
formance out of all the approaches across four performance metrics 
(Appendix D). We compared the minimum separation criterion across 
500, 5000 and 50,000 sets of parameter value combinations, or design 
points, and found that the criterion value was indistinguishable between 
5000 and 50,000 design points. We then generated 5000 design points 
by sampling a standardized value of each parameter (by subtracting the 
mean of the parameter range and dividing by its range) from within the 
permissible range of values for that parameter using a maximum sepa
ration criterion-based space filling algorithm in the R package DiceDesign 
(Dupuy et al., 2015). The calibration dataset contained eight release 
groups, and survival and travel times could be computed reliably from 
these data for the nine regions. This yielded a total of 5,000 × 8 × 9 =
360,000 ePTM model calls. 

As MMR analysis had been performed for each region, we could fit 

the 11 model parameters for each region independently of the other 
regions. But within each region, to further reduce the complexity of 
fitting the 11-dimensional parameter set, we used the toy PTM model to 
identify whether any parameter simplification or decoupling was 
possible. To do this, we applied the Morris method of elementary effects 
analysis (Iooss and Lemaitre 2015) using the global optimization 
toolbox developed by Pianosi and Wagener (2015) to study the re
lationships between the model parameters and the distribution of travel 
times and survival rates in the three regions (Appendix E). The Morris 
method is an efficient screening algorithm to study parameter in
teractions for high-dimensional models, which allowed us to identify 
parameter interactions with just 3400 toy PTM model calls (Appendix E). 
Based on this analysis, we decoupled the model fitting process for the 
ePTM to first fit the nine movement parameters, and then fit the two 
survival parameters holding the movement parameters at their optimal 
values. 

5. Results 

Results of the ePTM calibrated for Chinook salmon migrating 
through the Delta show strong agreement with many of the major pat
terns evident in the acoustic telemetry data (see Appendix D for a 
detailed presentation). Moreover, parameter estimates reflect the 
behavioral patterns evident in our empirical analyses of data. These 
agreements between model and data suggest that (i) the ePTM is capable 
of capturing the salient features of salmonid migration through the Delta 
to make accurate predictions, and (ii) the module structures, assump
tions, and interpretation of parameters are consistent with empirically 
observed behaviors of migrating fish in the system. 

Except for σ|uS |, uF, pDS, and λ, the spread in the top twenty best 
performing parameter sets is very tight (Fig. D.2). The parameters with 
wide spreads were difficult to constrain as well as estimate from the 
data. In the case of the other parameters, the widest spread in the top 
performing parameter sets was observed in region 6 for b and pM, where 
the flow is strong, but regularly reverses. So, it is not unreasonable that 
the parameters associated with the swimming orientation should be 
sensitive to the timing of fish releases in this region. Our λ and ω pa
rameters are significantly larger than those typically reported in the 
literature (see Section 3.8). For example, while Steel et al. (2020) report 
λ
′

≈ 100Km and ω′

≈ 0.05m/s, by applying Equations (A.6) and (A.8) 
with typical values of variance in water velocities in the Delta, we get 
equivalent values of λ ≈ 700Km and ω = 0.2m/s. These values are of 
comparable magnitude with our calibrated optima. 

5.1. Calibration results 

The calibrated model accurately predicts travel time distributions 
and survival observed in the Late Fall-run Chinook salmon dataset. We 
show regional deviations of ePTM-predicted survival estimates relative 
to MMR-estimates in Fig. 4A, obtained by applying Eq. (8) to each 
simulated fish. Some regions show considerable variability in deviations 
between ePTM-predicted and MMR-estimated survival within-region 
(the regions of the Mainstem Sacramento River and the Sutter and 
Steamboat Sloughs in which the flow reverses tidally), whereas others 
are more consistent (the nonreversing regions of the Sacramento River 
and the Interior Delta). Nevertheless, in most regions, parameter esti
mates only vary by a factor of two to three (Fig. 4A). In general, pre
dicted survival estimates are within ±0.2 of MMR-modeled survivals 
throughout the Delta, indicating that the model can capture survival 
patterns across the diverse habitat and hydrologic conditions present in 
different regions of the Delta. 

A second variable that can be predicted by ePTM is the distribution of 
migrant travel times. In Fig. 4B, we show the distributions across release 
group of biases between observed and predicted travel time distribution 
means, standard deviations, skewness and kurtosis coefficients in the 

Fig. 4. Calibration performance: A. Deviation of predicted survival from 
observed survival measured as MMR-modeled – ePTM predicted survival. The 
boxplots include estimates of survivals for all release group using the best 
performing twenty survival parameter sets in each region. B. Biases between 
observed and ePTM simulated travel time distribution statistics for late-Fall run 
Chinook. Rows indicate release groups and columns indicate regions. In all the 
panels, a value of zero indicates a perfect match between observation and 
prediction. Dashed lines in A indicate deviation limits within which 95% of the 
model results fall. Dashed lines in B indicate the generally acceptable bias 
ranges within which the observed and modeled travel time distributions may be 
considered indistinguishable. 
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different regions. The model predictions show strong agreement with 
travel time distributions for nearly all release by region combinations. 
Typically, the bias between mean travel times predicted by the model 
and the mean observed travel times is less than two days, except in re
gions 7 and 9, where only few tagged fish were left. However, simulated 
fish in the ePTM travel systematically slower than equivalent tagged 
fish. This is because of the 1591 fish used to calibrate the model 1028 
were released during the four lowest flow periods in the calibration 
dataset. This imbalance in the data has likely biased the model to predict 
smaller movement parameters, as the larger number of fish would have 
skewed the goodness-of-fit measures, particularly in regions away from 
the mainstem Sacramento River. The variation of the predicted standard 
deviation in travel times and the actual standard deviation in travel 
times is typically less than two days. For migrations through regions that 
typically take a few days, these deviations are quite small. The biases in 
skewness and kurtoses generally fall within ±1 and ±3 respectively, 
indicating that the observed and modeled travel time distributions are 
not significantly dissimilar in shape from each other. However, in re
gions 1, 5, 6 and 9, the model failed to reproduce multimodalities in the 
travel time distribution. This pattern may be due to differences between 
individual fish that the model does not attempt to capture. Nevertheless, 
on the whole, the model is able to simulate survival and movement 

dynamics through the Delta. 

5.2. Out-of-sample validation 

To validate the model, we selected fourteen releases of hatchery- 
reared Juvenile Salmon Acoustic Telemetry System (JSATS)-tagged 
Fall-, Late Fall- and Winter-run Chinook salmon between 2012 and 2017 
(J. Notch et al. 2021; Pope et al., 2021) in which 2052 fish entered Delta 
at Sacramento (Table 3). These data were obtained from the California 
enhanced acoustic tagging project, which provides arrival data and 
MMR survival estimates (Notch et al., 2020; J. 2021). We used data from 
release groups that met two criteria: (i) at least 100 fish were released, 
and (ii) the fish were observed at least at the telemetry stations at the 
landward and oceanward (Chipps Island) ends of the Delta. The vali
dation dataset comprises of different runs of Chinook salmon than the 
calibration dataset, as well as encompasses different flow regimes 
(260–2150 m3/s versus 360–760m3/s in the calibration dataset), and 
different fish forklengths (84–168 mm versus 150–166 mm in the cali
bration dataset). 

Survival predictions along different migratory routes for out-of- 
sample releases were produced by releasing 50 simulated fish at DSM2 
nodes within each migratory route (inset map in Fig. 5A), applying Eq. 

Fig. 5. Comparison between ePTM predictions and observed survival in out- 
of-sample data: A. along different migratory routes (indicated in the inset 
map) as reported Pope et al. (2021), and B. between Sacramento and Chipps 
Island. C. Distribution of travel times between Sacramento and Chipps Island 
for the datapoints and model results in B. Red squares and black circles 
respectively represent model predictions and MMR estimates fit to the data. 
Open symbols indicate Fall- and closed symbols indicate Late Fall- or 
Winter-run releases. For each release, flows were estimated as the mean flow 
in the Sacramento River at Freeport over the duration between the first fish 
passage and the last fish passage through this location. The dashed red line 

(S = e
− X

258Km

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+(1,225m3/s)2

Q2

√

) and black solid line (S = e
− X

624Km

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+(4,472m3/s)2

Q2

√

) repre
sent an XT model fit to the model results and the MMR-reported survivals 
(functions indicated). Red and gray shaded areas represent 95% confidence 
intervals reported in Pope et al. (2021) and generated by bootstrapping 1000 
replicate survivals in A., and generated by applying the same XT model fit to 
1000 replicates of these points chosen at random with replacement in B. The 
overlap of these confidence intervals indicates that the model precision is up 
to data precision. The lower survivals in B. and longer travel times in C. 
predicted by ePTM can be attributed to the significantly faster migration rates 
relative to water velocity by the much smaller Fall- and Winter-run Chinook 
with which the model was validated compared to the larger and 
slower-moving Late Fall-run Chinook with which the model was calibrated 
(inset boxplot in C). In A, the route-specific MMR-reported survivals of Late 
Fall-run Chinook are compared with ePTM predictions. In B and C, the overall 
MMR-reported survivals and observed travel time distributions of Fall- and 
Winter-run Chinook are compared with ePTM predictions.   
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(8) to each individual, averaging across all individuals released in each 
migratory route, and subsequently averaging across the three releases 
reported in Pope et al. (2021) weighted by the number of fish in each 
release (Table 3). Overall survival predictions from Sacramento to 
Chipps Island for each release were obtained by releasing ten simulated 
fish for each real fish released, applying Eq. (8) to each individual, and 
averaging across all individuals released. In these validation studies, the 
model parameters in each region were set to their optimal values. 

The route-dependent survival estimated by the ePTM captures the 
general trend of higher survival along the Mainstem Sacramento River 
and North-Delta Sloughs, and reduced survival in the Interior Delta 
(Fig. 5A). 95% confidence intervals on the survivals reported in Pope 
et al. (2021) and those predicted by the ePTM overlap one another, 
indicating that the model precision is comparable to that of the MMR 
estimates. 

In Fig. 5B, we show MMR-estimated and predicted survival of Chi
nook salmon passing through the Delta as a function of mean flow in the 
Sacramento River. The flow-survival relationship is a crucial tool that 

aids in overall management of water resources as it gives decision 
makers an understanding of what levels of flow must be maintained for 
providing essential ecosystem services. So, a reliable decision support 
model should be able to reproduce this relationship. We fit a Delta-wide 
XT model to the MMR-estimated and predicted survivals (see 
Appendix D) to evaluate whether ePTM is able to reliably represent this 
relationship. The model follows from Eq. (8) as 

P(Survival) = e
− X

λ

̅̅̅̅̅̅̅̅̅̅̅
1+(Aω)2

Q2

√

(9)  

Here, λ and Aω are fitting parameters which represent a Delta-wide 
lengthscale of survival decay and a flow scale respectively, X =

99.2 Km is the distance between Sacramento and Chipps Island along 
the Sacramento River, and Q is the mean river flow during Delta entry by 
fish. The fitting parameters we obtained were λ = 258Km and Aω = 1,
225m3/s for the MMR-based survival estimates, and λ = 624Km and 
Aω = 4, 427m3/s for the survivals predicted by the ePTM. The discrep
ancies in these parameters may be attributed to systematic biases in the 
MMR estimation process and biological mechanisms not represented in 
ePTM. However, both parameter sets have the same orders of magnitude 
and result in similar shapes for the flow versus survival relationship. 

ePTM predictions capture the major patterns evident in data. Firstly, 
through-Delta survival predictions of the model (red squares in Fig. 5B) 
are similar to MMR estimates from data (black circles in Fig. 5B). In most 
cases, the survival prediction is within 0.2 of the observed survival, 
although there is a bias towards lower survival when flows are low. This 
is likely because the Late Fall-run Chinook datasets used to calibrate the 
model were based on larger and slower moving fish than the smaller and 
faster moving Fall- and Winter-run Chinook datasets used for validation 
(Tables 2 and 3 and inset boxplot in Fig. 5C), resulting in slower mi
grations in the ePTM than in the data (boxplots in Fig. 5C). This could 
also be because of the mean-field treatment of mortality using the XT 
model. When flows are low, the water column is generally clearer, and 
so migrants might be able to see predators earlier and avoid being eaten 
(Martin et al., 2021). As the XT model within the ePTM has been cali
brated using typical flow conditions, such nuances will not be repre
sented in the model. Overall, the model reproduced the shape and scale 
of the observed relationship between survival and mean river flow 
through the Sacramento during migration through the Delta (lines and 
confidence intervals in Fig. 5B). 

Another aspect of out-of-sample validation is model performance in 
predicting migration routing. To study how the model performs in 
predicting out-of-sample route use by salmon through the system, we 
selected those releases (2014 and 2015) of the JSATS program in which 
the endangered Winter-run Chinook salmon passages were recorded 
through two key junctions along the Sacramento River: the mainstem 
Sacramento River with Sutter and Steamboat Sloughs, and Georgiana 
Slough. A fish guidance structure was in place in 2014 at the head of 
Georgiana Slough with an overall passage efficiency of η = 0.777 (R.W. 
DWR 2016). This was represented in the model as a synthetic barrier 
with the same efficiency. Results are shown in Fig. 6, which shows 
observed and predicted salmon detected along different possible routes 
at the two junctions. To see if the model is able to reproduce routing 
during different phases of the tide, we stratified this comparison by 
phase of the tide, defined at the junction with Sutter and Steamboat 
Sloughs with respect to the flow reversal in Steamboat Slough, and at the 
junction at Georgiana Slough with respect to the flow reversal in 
Georgiana Slough. In both years, the model is able to predict the qual
itative patterns in the data correctly, and quantitative routing proba
bilities to within ±20% from the observed values, which is notable, 
given that observed routing is not used to calibrate the model. 

5.3. Behavioral implications of optimal parameter values 

Estimates of model parameters are shown for each Delta region in 

Table 3 
Details of the validation dataset.  

S. 
No. 

Validation 
test 

Run Period of 
Delta 
entry 

Mean 
flow 
during 
Delta 
entry 
(m3/s) 

Number 
of fish at 
Delta 
entry 

Mean 
forklength 
of fish 
(mm) 

1 Through- 
Delta 
survival 

Fall 24 Apr.–8 
May 2012 

705.1 18 84.9 

2 Through- 
Delta 
survival 

Fall 15 Apr.–6 
May 2013 

264.4 49 84.2 

3 Through- 
Delta 
survival 

Fall 12 
Apr.–10 
May 2016 

408.3 54 84.0 

4 Through- 
Delta 
survival 

Fall 9 Apr.–6 
May 2017 

1989.9 118 82.4 

5 Through- 
Delta 
survival 

Fall 15–19 
May 2016 

348.1 220 89 

6 Through- 
Delta 
survival 

Fall 25 May–4 
Jun 2017 

1084.9 204 85.6 

7 Through- 
Delta 
survival 

Winter 3 Mar.–1 
Apr. 2013 

381.1 10 98.6 

8 Through- 
Delta 
survival 

Winter 19 
Feb.–23 
Mar. 
2014 

408.4 121 96.1 

9 Through- 
Delta 
survival 

Winter 9 Feb.–16 
Mar. 
2015 

443.5 157 101.7 

10 Through- 
Delta 
survival 

Winter 22 
Feb.–22 
Mar. 
2016 

1151.2 278 96.4 

11 Through- 
Delta 
survival 

Winter 10 
Mar.–7 
Apr. 2017 

1776.3 106 95.1 

12 Survival by 
migratory 
route 

Late 
Fall 

11 
Mar.− 12 
Mar. 
2016 

1849.9 240 167.2 

13 Survival by 
migratory 
route 

Late 
Fall 

15 
Mar.–16 
Mar. 
2016 

2147.6 240 166.1 

14 Survival by 
migratory 
route 

Late 
Fall 

17 
Mar.–18 
Mar. 
2016 

1996.0 237 168.9  
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Fig. D.2. In Fig. D.3, we show how the optimal parameter values for each 
process within the ePTM evolve through a simplified schematic network 
representation of the Delta. The combinations of these parameter values 
in the ePTM’s behavioral modules results in migration patterns that are 
consistent with the data collected in the Delta (Fig. D.4). 

For the active swimming component of the model, the values of |uS|

decrease from 0.44 m/s in the nonreversing macro-region to 0.36 m/s in 
the tidally reversing macro-regions, and σ|uS | increase from 0.85 m/s to 
0.97 m/s. The large values of |uS| combined with small values of 
P̃Rheotaxis, and large pMs in the nonreversing macro-region result in 
simulated fish actively swimming against strong nonreversing flows. In 

Fig. 6. Comparison between ePTM predictions 
and observed route use in out-of-sample data. 
A. and D. indicate routes studied. B. and E., and 
C. and F. indicate comparisons respectively in 
2014 and 2015. Green bars indicate fraction of 
total Chinook passing through telemetry sta
tions in the different routes. Blue bars indicate 
ePTM predictions of fraction of particles passing 
through equivalent nodes on the DSM2 grid. 
Passage fractions are aggregated over different 
phases of the tide at two key junctions that are 
important to overall survival in the Delta: the 
Mainstem Sacramento River with diversions to 
Sutter and Steamboat Sloughs on the left, and 
the Mainstem Sacramento River and Georgiana 
Slough on the right. In both out-of-sample 
years, the patterns of route use observed in 
the data are predicted reasonably well by the 
model. In E, in 2014, a floating fish guidance 
structure was in place upstream of Georgiana 
Slough, and this has been represented in the 
model with a barrier efficiency of 77.7% re
ported in R.W. DWR (2016).   

Fig. 7. Global sensitivity analysis of the toy PTM using first order and total order Sobol indices. A.-C. Sobol indices with respect to the mean travel time. D.-F. Sobol 
indices with respect to the survival rates. The size of the bars indicates the contribution to the variance in the model results, while the error bars indicate confidence 
intervals about the estimates of the Sobol indices. Region numbers correspond to those shown in the inset map. 
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the more tidally reversing macro-regions, decreasing |uS|, increasing 
P̃Rheotaxis (typically exceeding 0.5) and reduced pM result in simulated 
fish executing either movements that are directed weakly with or against 
the flow (Fig. 3C). σ2

|uS |
generally increases with proximity to the ocean. 

Together, these parameters result in actions by the simulated fish that 
increase migration rate and dispersion with proximity to the ocean, as 
we observed in the acoustic telemetry datasets (Figs. 3B and E.4). 

The orientation and holding parameters allow simulated fish to hold 
against the flow, and even swim against the flow during the landward 
flood phase of the tide (Fig. 3D). The trends in c and b are both 
decreasing through the Delta. In the nonreversing macro-region, the net 
effect of these parameters in combination with the small values of 
P̃Rheotaxis is to orient simulated fish against the flow much more often 
than with the flow. In the parts of the system where the flow reverses 
tidally, these parameters allow the logistic response to be small when 
flows are weak, and thereby result in simulated fish orientations that 
may switch between with and against the flow. In the reversing macro- 
regions, when flows are strong and oceanward, the combination of c, b 

and P̃Rheotaxis allows simulated fish to be oriented more often with the 
flow. During strongly landward flow reversals, which are quite rare 
under historic conditions (Fig. 3A), uF and values pH > 0.5, result in 
simulated fish approximately maintaining position. pDS is around 0.5, 
with no appreciable trend through the system, which is consistent with 
the values between 0.34 and 0.75 obtained in this region from acoustic 
telemetry experiments reported in Chapman et al. (2013). Together, 
these holding mechanisms contribute to fish typically holding about 
75% of the time throughout the system (Fig. 3D). 

λ generally increases through the system, while ω decreases. In the 
Delta, predators are distributed largely in the fresh Sacramento and San 
Joaquin River waters than in the saltier Western part of the system 
(Michel et al., 2020). The spatial distribution of the λ and ω parameters 
thus represent a lower likelihood of predation in the Western Delta than 
in the Eastern Delta. These patterns in λ and ω result in an overall 
increasing per-timestep likelihood of survival through the tidally 
reversing macro-regions. However, it typically takes significantly longer 
to move through these reversing flows, and so the overall survival 
through these macro-regions is lower than through the nonreversing 

Table B.1 
Behavior models with simpler model formulations.  

Behavior 
module 

ePTM Simpler functional form Constant value Off 

Active 
swimming 

Migration rate and dispersion vary across 
space. 

Coupled migration rates 
and dispersion. 

No variability in swimming speeds 
within and between individuals. 

Passive particles drifting with the flow. 

Orientation Shifts in movement mechanisms with 
proximity to the ocean. 

Reduced sensitivity to flow 
conditions. 

No shifts in movement mechanisms 
with proximity to the ocean. 

Dispersal attributed to unexplained 
dispersion. 

Holding Observed patterns of holding during the day 
time and against the incoming flood tide. 

No spatial variability in 
migration behavior. 

No holding as a function of flow or 
day/night cycle 

Migration rates and dispersal attributed 
to unexplained fitting parameters. 

Mortality Spatial patterns in survival. Single predatory type. No spatial heterogeneity in mortality. No mortality. 
Routing Realistic route use. Flow-based randomized 

routing. 
Fixed route use. Individual routes modeled separately.  

Fig. A.1. Lateral profiles of the streamwise water velocity obtained by Gandhi et al. (2016) in flume experiments. A. fitted parameter values as a function of bend 
angle. B. Normalized water velocity profiles for various bend angles. 
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macro-region (Fig. 3E). 

5.4. Sensitivity analysis 

To evaluate the sensitivity of model predictions to parameter values, 
we performed a Global Sensitivity Analysis (GSA) with a quasi-Monte 
Carlo Analysis Of Variance (ANOVA; Owen 2013) decomposition of 
the variance in mean travel time and survival using the R package 
Sensitivity (Iooss 2021). Briefly, the ANOVA decomposition allows the 
variance in the model results to be expressed as a sum of the contribution 
of the conditional variance associated with each parameter (or the first 
order effect of that parameter) and the conditional variance of two-, 
three-, and up to n-way parameter interactions. This decomposition can 
be rewritten efficiently for each parameter into its first order effect, and 

the sum of the variance of all its interactions with other parameters (its 
total effect). For the ANOVA decomposition, we used Sobol indices. 
Sobol indices are the first and total order effects estimated using 
K⋅(n+2) model calls at sequentially perturbed parameter values (Bau
din et al., 2016; Appendix E). 

To evaluate the sensitivity of the model to parameters in a compu
tationally tractable manner, we used the reduced-complexity toy PTM. 
Since the structure of the two models is identical and they are both 
driven by real flows, with the only difference being the simplification of 
the toy PTM’s model grid, we expect the sensitivity of either model to the 
parameters to be very similar. We performed 
1, 000 × [3×(11+2)] = 39,000 model calls independently over the 
three regions to compute the Sobol indices in Fig. 7. 

We observe that in the regions upstream of Georgiana Slough where 
the flow does not usually reverse (Fig. 7A corresponding to region 1 in 
the toy PTM), the modeled travel times are likely most sensitive to pDS, c, 
P̃Rheotaxis, and |uS| (the parameters with the strongest first order effects). 
The model is relatively insensitive to b and σ|uS |, here owing to the strong 
oceanward currents and low observed dispersal of fish in this region. 

In Georgiana Slough, the Delta Cross Channel and the Interior Delta 
(Fig. 7B corresponding to region 2 in the toy PTM), we observe that the 
interactions of all the parameters contribute significantly to the sensi
tivity of the travel time simulation. This is because of the tidally 
reversing flows and complex topology in this region that cause emergent 
behaviors that vary in response to flow and behavioral memory. The 
sensitivity to b in this region indicates that the shape of the logistic 
function, which dictates the rapidity of the response to changing flows is 
important here. The dependence of the mean travel time to the survival 
parameters in this region only occurs through the interaction of these 
parameters with the movement parameters, and the total effects asso
ciated with these parameters are the lowest amongst all the parameters. 
Thus, our decision to decouple the movement and survival parameters 
during model calibration based on the elementary effects analysis of the 
results of the toy PTM is justified. 

In the Southwestern region of the mainstem Sacramento River 
(Fig. 7C corresponding to region 3 in the toy PTM), the travel time 
simulations are most sensitive to uF, pH, c, |uS| and P̃Rheotaxis. In this re
gion, the dispersion of fish in the acoustic tagging data is large, and 
therefore the model is insensitive to values of σ|uS |. However, as the flow 
strongly reverses here, simulated fish behaviors will be highly sensitive 
to assumptions about the holding and rheotaxis. 

Fig. A.2. Schematic routing of simulated fish (pink dots and arrows) through a 
channel junction depending on their lateral position [driven by the water ve
locity profile, uH(y) (red arrows)] relative to the critical streakline at distance 
Wc from the left bank looking from the upstream end (dotted orange line) in the 
inflow channel of width 2W. The flows entering and exiting the junction dictate 
the location of the critical streakline. The location of the inflow channel 
centerline is also shown for completeness. 

Fig. C.1. Schematic of channel structure and associated MMR model parameters for the toy PTM. The idealized grid in B corresponds to the regions in the map in A. 
Region 4 is used solely to provide detection stations within each route, and no particles are simulated there. 
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In all the regions, the modeled survivals are primarily sensitive only 
to λ and ω (Fig. 7D–F). Thus, the patterns revealed in the GSA indicates 
that the algorithms in the ePTM result in behaviors that were anticipated 
from the system-wide acoustic telemetry and high-resolution fish 
tracking data. 

6. Discussion and conclusions 

We have developed a data- and theory-driven agent-based model of 
juvenile salmonid migration through rivers and estuaries that in
corporates behaviors observed in the literature and in field studies. This 
model allows simulated fish to move as a function of local flows and 
behavioral responses to environmental cues and memory of past actions. 
When calibrated for the Delta, the model accurately reproduces the 
survival and routing patterns of multiple runs of Chinook salmon, as well 
as the flow-versus-survival relationships. The flow-versus-survival 
relationship is a key water management metric used to plan opera
tions such as pulsed dam releases for salmonid outmigration and di
versions for agriculture, industrial and municipal use. 

Given the complexity of behaviors observed in salmonids migrating 
through estuaries, the ePTM is a reasonably parsimonious model. The 
combination of the optimized spatially variable set of behavior modules 
produces environment-dependent behavioral responses that shift be
tween the nonreversing and reversing flow macro-regions of the Delta 
(Fig. 3), resulting in migration and survival patterns that reproduce 
observations in both in-sample (Fig. 4) and out-of-sample (Figs. 5 and 6) 
datasets. The runs of Chinook and the seasons and flows that correspond 
to the calibration and out-of-sample validation are different for the 
calibration and validation. The validation, thus indicates that the 
mechanisms in the ePTM are indeed simulating salmonid migratory 
movements with high fidelity. 

In the ePTM, the relative importance of parameters can vary spatially 
as the mechanisms underlying the physical movement of fish change. 
Both the Morris screening analysis (Fig. E.1) and the Sobol indices-based 
GSA with the toy PTM (Fig. 7) revealed similar parameter dependencies. 
These analyses qualitatively confirm that the model is able to represent 

the mechanisms of fish movement outlined in Section 2. Animal move
ments predicted by the model are most sensitive to swimming, memory, 
and local flow-based response parameters and their interactions in the 
nonreversing regions, and to more complex interactions of parameters in 
the tidally reversing regions in the Delta. Mortality is most sensitive to 
the interaction between the survival parameters. The interaction of the 
active swimming, orientation, holding, routing, and mortality elements 
thus produce emergent spatial patterns in the behavior that were not 
explicitly assigned a priori. 

Calibrating the model exposed many challenges in optimizing com
plex stochastic agent-based models. We considered several established 
calibration methods before developing the pipeline used here. These 
included particle swarm optimization (Poli et al., 2007), emulation of 
the model predictions in conjunction with a Monte Carlo Markov Chain 
(MCMC) approach (Dancik et al., 2010), and sequential Monte Carlo 
with approximate Bayesian Computations (Scranton et al., 2014). Based 
on simulations using the toy PTM, we estimated that particle swarm 
optimization and approximate Bayesian methods would require twenty 
to thirty million model calls to converge. MCMC approaches would also 
require multiple chains of millions of model calls, necessitating the use 
of an emulator, The high dimensionality of the model made emulator 
construction challenging. The workflow we have developed here is 
comparatively tractable, and allowed us to arrive at the vicinity of the 
global optimum of parameter values with fewer than one million model 
calls. We could not compute empirical confidence bounds about the 
optimal parameter values, as this would have required at least one order 
of magnitude more model calls. The corroboration between the spatial 
trends in the model parameters (Figure E.3), functional responses of the 
behavior modules to flow (Fig. 3) and observed statistics of migration 
(Figure E.4), and the biologically plausible interactions among model 
parameters indicated in the GSA (Fig. 7), together help build confidence 
in our estimates of the parameter values. 

There are two difficulties in the model calibration which we could 
not overcome. Together, these likely result in increasing modeled travel 
times and decreasing modeled survival compared to the data. The first is 
that the calibration data was skewed disproportionately towards a 
greater number of fish released during lower flows (Table 1). This meant 
that a greater number of fish also survived to the Interior Delta during 
these low-flow periods. Thus, the parameter space searched was also 
influenced by these low flow conditions. Second, the fish that the model 
was calibrated with were significantly larger than the fish that it was 
validated against (Tables 1 and 2 and inset in Fig. 5). In the Delta, the 
smaller fish migrate much faster relative to flow than larger fish (inset in 
Fig. 5). Together, these two factors resulted in smaller movement 
parameter values than real fish are likely exhibiting, longer travel times, 
and hence reduced survivals. At the time of model development, the Late 
Fall-run Chinook salmon datasets were the only ones available to us. In 
future iterations of the model, this imbalance in the calibration will be 
addressed. 

There are some limitations in the biological component of ePTM 
which should be addressed in the future. Scaling arguments have been 
proposed for optimal and maximum cruising speeds of migratory 
aquatic animals that are theoretically limited by their body sizes and 
environmental conditions (e.g., Videler and Nolet 1990; Floryan et al., 
2018). These bioenergetic constraints are not currently incorporated in 
the model explicitly. From Fig. 5C, it is evident that size-based move
ment speeds are likely to play an important role in improving travel-time 
distribution fits and hence, survival predictions. The lateral movements 
of fish are very likely independent of the turbulent motions in the flow, 
making the zeroth order turbulence closure model used in the ePTM to 
stochastically move simulated fish laterally unrealistic. For example, 
Kjelson et al. (1982) reported that juvenile Chinook in the Delta are 
typically found near the shore during the day and offshore at night. More 
recently, Goodwin et al., rev.) have reported that some Chinook salmon 
migrating in the Sacramento River exhibit zig-zagging trajectories which 
move from one bank to the other, while others move relatively quickly 

Fig. D.1. Selection criteria for candidate space-filling approaches. The values 
of mesh ratio (higher is better), minimum separation (higher is better) and 
coverage (lower is better). All selected candidate algorithms produced 11- 
dimensional points with satisfactory clumpiness. The maximum separation 
criterion was selected (shaded box) based on its overall performance across the 
four volume occupancy measures. 
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along the stream centerline. These types of studies indicate that indi
vidual migrants are heterogeneous. It is also possible for different in
dividuals to school and interact. Such inter-individual heterogeneity and 
interactions, if captured in models like the ePTM, may result in superior 
model performance than the ergodic assumption that all individuals are 
alike and differences in behavior are purely aleatory. However, care 
must be taken in constructing a generalizable biological random walk 
model for lateral and vertical movements, owing to considerable am
biguity in the literature regarding the vertical placement of salmon 
within the water column (Azevedo and Parkhurst 1957; Mains and 
Smith 1964; Brett 1971; Smith 1974; Borthwick and Corwin 2001; 
Rundio et al., 2017), and lack of adequate vertical resolution in the 
acoustic telemetry studies. 

Our application of the XT model of predation has some limitations. 
First, for fish that enter open water bodies, mortality is not estimated 
during the time they are in such areas. In places such as the Interior 
Delta, where there are many submerged islands with a few entry points 
due to breaks in levees, these open water areas may represent predation 
hotspots which are not represented in the ePTM. This could be the cause 
for the large deviation between modeled and observed survival in the 
Georgiana Slough route (Fig. 5A). Second, while migrants are actively 
attempting to avoid predators, predators are also trying to optimize their 

positioning within the water column and are responding to prey 
movements to maximize their likelihood of catching their prey. These 
dynamic interactions are not represented in the model and can be 
implemented in the future via a game theoretic formulation in which the 
ω parameter could be optimized by minimizing the differences between 
the outcomes of games played between archetypical predators and prey 
and observed survival rates in different parts of the system. 

The three-dimensional water velocity and mixing profiles described 
in Section 3.2 allow for the general application of the model. However, 
for targeted applications to specific river and estuary systems, we 
recommend developing lookup tables using measured acoustic Doppler 
current profiler velocity and turbulent stress profiles to replace the 
laboratory-derived profiles of Gandhi et al. (2016). Similarly, the lateral 
stochastic turbulent movement rules can be readily modified to include 
more realistic biological random walks or nonparametric models (e.g., 
Olivetti et al., 2021; Gross et al., 2021). As long as the hydrodynamic 
model outputs are produced in a format readable by the ePTM, the 
model can be coupled with more sophisticated two- and 
three-dimensional flow models. 

The ePTM is both a scientific tool and decision support model. As 
behaviors can interact with flow within the modular code environment, 
it is relatively straightforward to interchange behavior modules and 

Fig. D.2. Spread in the top 20 best performing model parameter values in each region. For the swimming, orientation and holding parameters, the best performing 
model parameters for each of the three goodness-of-fit measures is shown using the lines. For the mortality parameters, the best performing model parameters in each 
region is shown using the solid lines. Region numbers correspond to those shown in the inset map. 

V.K. Sridharan et al.                                                                                                                                                                                                                           



Ecological Modelling 482 (2023) 110393

17

hydrodynamic routines. For example, apart from the behaviors elabo
rated in Section 3, we also tested a suite of other behaviors, such as 
requiring simulated fish to (i) always swim towards the ocean, (ii) al
ways swim near the water surface, (iii) swim only during the oceanward 

ebb phase of the tide, and (iv) swim in the direction of the positive 
salinity gradient. Thus, the model can serve as a numerical test bed for 
evaluating alternative hypothesis of animal movement. 

It is also possible to turn the behavior model off completely, or assign 

Fig. D.3. Parameter estimates across Delta regions. Schematic graphs of the Delta regions are color coded by the optimal parameter values. Region numbers 
correspond to those shown in the inset map. 

Fig. D.4. Data on salmonid migration through the Sacramento-San Joaquin Delta. For different salmonids observed in the high-resolution fish tracks, A. distributions 
of along-stream swimming speeds relative to flow, and B. autocorrelation timescales. For different salmonids observed in the large-scale acoustic telemetry studies, C. 
migration rate relative to mean flow changes from being directed against the flow to being directed with the flow as fish move oceanward and the strength of the 
mean current relative to the tidal fluctuations decreases, D. overall dispersal in fish increases as fish move oceanward, and E. fish arrivals significantly more 
frequently during ebb tides than during flood tides, indicating holding and movement against the incoming tide. 
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more rudimentary circadian behaviors, so that other organisms in the 
food web relevant to salmonids could be simulated, and salmonid 
movements can be modeled to forage for food (see Table B.1). The 
DSM2, salinity, water temperature, and turbidity modules can be 
invoked to produce ecohydraulic simulations so that individuals can be 
instructed to search for optimal habitat (e.g., Dudley 2019). These latter 
advances would allow us to simulate both rearing and migrating juve
niles. In a similar vein, there are no restrictions on the model structure to 
limit its application to salmonid migration only. The behaviors can be 
modified to simulate the movements of other species of fish, provided 
the three key assumptions of one-way coupling between the flow and 
fish movements, ergodicity of individuals, and non-interacting in
dividuals hold. 

Models like the ePTM are critical to both planning water operations, 
and in also bridging the gap between fundamental aquatic biology and 
water management. As water operations in multipurpose surface water 
systems are planned over long periods under the influence of climate 
change and projected water demand and can involve hundreds or even 
thousands of alternative management scenarios, decision support tools 
that simulate the effects of flows and water operations on the aquatic 
ecosystem health over time must be fast. The ePTM is easily paralleliz
able, resulting in linear performance gain with the number of computing 
cores and high scalability. Under changing landscapes, sea level rise and 
climate change, models which are not data- and theory-driven will likely 
be unreliable outside of their calibration range. As we have demon
strated, the ePTM can perform reliably even outside its calibration range. 
Finally, the temporal scale of the behaviors represented in the model are 
sufficiently fine to resolve biological responses to tidal and daily vari
ability in environmental conditions, but coarse enough so that auto
correlated movements that are difficult to observe in the field can be 
averaged over. Thus, the ePTM is able to represent behaviors which can 
be supported by the data, and thereby justified to both scientists and 

managers. The properties of the ePTM outlined here constitute the key 
ingredients in the recipe of a model that can be used to both discover 
new science about animal movement as well as serve as management 
tools, viz., (i) high performance, (ii) mechanistic with strong basis in the 
data and migration theory, and (iii) operating at an intermediate scale of 
motion. 
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The ePTM model source code and all the data that was used to cali
brate and validate the model are hosted in a GitHub repository at 
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Fig. E.1. Elementary Effects (EE) analysis for the three toy PTM regions. A.-C. EEs with respect to the mean travel time. D.-F. EEs with respect to the survival rates. 
For the pointwise gradient of the model results, each circle and box around it respectively indicates its mean of the absolute value with respect to a parameter on the 
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itself. Large standard deviation and small mean values indicate that a parameter is not important by itself, but only becomes important when it interacts with other 
parameters. Large mean and standard deviation values indicate that a parameter is important both by itself and in interactions with other parameters. Regions 
correspond to those show in the inset map. 
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Appendix A. Structure of the ePTM 

A.1. Hydrodynamic profiles and tuning parameters 

In Section 3.2, we indicated that both straight and curved channels are implemented in the ePTM. We determine channel curvature with a sta
tistical estimation procedure in which we fit both a Theil-Sen robust linear regressor (Gilbert 1987), and a Chernov-Lesort robust circular regressor 
(Chernov, 2010) to a densely up-sampled set of centerline coordinates of the channel. If the Pearson correlation coefficient value of the linear fit 
exceeds that of the circular fit, or if the estimated radius of curvature exceeds 10Km, the channel is deemed straight. We then determine the angle of 
the channel bend as the ratio of the total distance along the river and the radius of curvature. Here, only the most significant curvature feature can be 
represented. A straightforward way to represent smaller-scale meanders is to refine the model grid as needed. 

For straight channels, the quantities in the system of Equations (2) are evaluated from the following theoretical profile expressions (DWR, 1998): 

uH = UfV fH

fL = A + B
(

2y
W

)2

+ C
(

2y
W

)4

fV= {

1 +

(
0.1
κ

)[
1 + ln

( z
H

)]
;

z
H

≥ 0.01

0;
z
H

< 0.01

(A.1)  

where W and H are respectively the cross-sectional width and depth, U is the mean streamwise water velocity, {A,B,C} are constants specific to the 
river system, κ = 0.41 is von Karman’s constant, fL and fV are the lateral and vertical dimensionless water velocity profiles, and 

εH = CT Hu∗

εV = κ
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(A.2) 
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where CT ≈ 0.6 is a constant, and u∗ is the friction velocity. 
To represent flow profiles in curved channels, we use the results of Gandhi et al. (2016) of turbulent open rectangular channel flow in bends of 

varying curvature up to 90o. For angles beyond 90o, we assume that the flow adjustment will not be significantly different (Blanckaert and De Vriend, 
2004), and so we use the distribution at 90o. We use the best-fit regression of Gandhi et al. (2016) to their results to generate the flow profiles shown in 
Figure A.1: 

u(y) =
log
[
m1k1

( y+1
2

)]
+ log

[
m2k2

( 1− y
2

)]
+ g1

g2g3

[( y+1
2

)(α− 1)( 1− y
2

)(β− 1)
]

∫ 1
0 u(ξ)dξ

(A.3)  

where m1, k1, m2, k2, g1, g2, g3, α and β are fitting parameters (Figure A.1A), and ξ is the variable of lateral integration. 
Using the force balance between the turbulent eddy diffusivity and the shear stress by assuming a linear decay of the shear stress from its peak value 

at the channel banks to zero at the lateral position of peak flow defined from the left bank, yMax (and similarly for the right bank), 

εH
du
dy

= u∗2
(

1 −
y

yMax

)

(A.4)  

where du
dy is obtained from the data, and smoothing the resulting profile of εH to remove spurious discontinuities, we get profiles of the flow and mixing 

terms. 
Per the recommendations in Ross and Sharples (2004), we implemented a mixed layer near the channel banks to eliminate the problem of profile 

discontinuity. We tested a variety of mixed-layer thicknesses to evaluate the stability constraints in this approach. Based on this analysis, we found that 
a near-bank and near channel bottom and free surface mixed layer thickness of 20% of the channel width produces only 10% deviation from a 
uniformly well-mixed concentration profile for passive particles that are initially well mixed laterally. 

A.2. Optimal timestep size 

To select the optimal value of Δt reported in Section 3.2, we used the absolute value of the deviation of the location of the center of mass from the 
channel center of an initially uniformly distributed mass of passive particles after two days. We found that a timestep of 20 s produces an optimal 
tradeoff between runtimes and model consistency. 

A.3. Critical streakline estimation 

Here, we outline how we estimate the position of the critical streakline introduced in Section 3.7. We compute the position of the critical streakline 
from the right bank (by convention) as the location till which the flow sums to the outflow nearest to the left bank: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UHW
∑

(
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)

i

y
W

= − 1

ui = Q1; Inflowing channel directed oceanward

UHW
∑

(
y
W

)

i

y
W

= − 1

ui = Q2; Inflowing channel directed landward

(A.5) 

When an individual reaches a channel junction, it is assigned to one channel or the other based on its lateral location, y(t) (Fig. A.2). When there are 
junctions with more than three channels, we implement a tree-search algorithm in which the junction is dynamically deconstructed into a sequence of 
bifurcations with two downstream channels emanating from the channel through which the individual enters the junction. 

A.4. XT model formulation in the ePTM 

In Section 3.8, we claimed that the parameters of the standard XT model as presented in Anderson et al. (2005) are slightly different from those in 
the ePTM. For a fish travelling back and forth a total distance X over n timesteps of size Δt (such that t = nΔt) through a river reach of length X′ with 

along-stream overground velocities of ui;i=1,2,3,⋯,n, we must have X′

= ut and X = |u|t, where u =

∑n
i=1

uiΔt
t and |u| =

∑n
i=1

|ui |Δt
t . We can write 

Var[|u|] = Var
[ ̅̅̅̅̅

u2
√ ]

= E
[
u2] − (E[|u|])2

= E
[
u2] − |u|

2

⇒|u|
2
= E

[
u2] − Var[|u|]

⇒|u|
2
= u2 + (Var[u] − Var[|u|])

Clearly, X ≥ X′ , so that we must have |u|
2
≥ u2, or Var[u] − Var[|u|] ≥ 0. 

To account for the dispersion due to random overground movements that includes the effects of biological and hydrodynamic fluctuations over the 
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distance 

X − X ′

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Var[u] − Var[|u|])

√
t  

in our XT model formulation, in addition to the random predator-prey encounters speed defined in Anderson et al. (2005), we must also have an 
additional term equal to (Var[u] − Var[|u|])t2. So, the value of ω in our formulation will be inflated as 

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω′ 2
+ (Var[u] − Var[|u|])

√

(A.6)  

over the Anderson et al. (2005) value of ω′ . 
Now, with survival defined as in Eq. (8), we can establish the equivalence between our and the Anderson et al. formulations by taking the logarithm 

of the probability of survival as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
X′ 2

+ ω′ 2t2
√

λ′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
X2 + ω2t2

√

λ
(A.7)  

where λ′ is the mean free path-length between predator encounters. For Equation (A.7) to hold, since 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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and 
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Thus, in our formulation, the ω parameter is inflated by variance due to stochasticity of overground motions in addition to the random encounter 
speeds of predator-prey interactions, and consequently, the λ parameter is inflated to recover the actual survival rates. 

Appendix B. Description of ePTM behavior modules 

In Section 3, we described the active swimming, orientation, holding and mortality modules in the ePTM. We also showed the outcomes for each 
module as a function of the instantaneous water velocity by holding all the parameters at their calibrated values and looking at the response of the 
specific module in Fig. 3. Here, we describe the construction of Fig. 3. For these calculations, we first obtained the lengths, X′ , of each region from 
Google Earth as the shortest along-river distance from the upstream end to the downstream end of the region. 

For the period of 1990 to 2016, we collected water velocities estimated within each DSM2 channel in each Delta region (Fig. 2) and constructed 
histograms of water velocities (Fig. 3A). We then classified the regions into three macro-regions: (i) nonreversing macro-region comprising of regions 
1 and 2, weakly reversing macro-region comprising of regions 3 to 6, and strongly reversing macro-region comprising of regions 7, 8 and 9 based on 
the ratio of subtidal low-pass filtered water velocities to root mean squared variability in water velocities. In all subsequent parts of Fig. 3, we used the 
optimal parameter values in each macro-region to compute the response over a period of five days (or 480 15-minute timesteps) of each behavior 
module for a single simulated fish to the water velocity bins in each macro-region. We did this by averaging the response in each region within a 
macro-region weighted by the total along-stream length of the regions. We then smoothed the behavior responses as a function of water velocity using 
a 6-hour (or 25-point) Savitsky-Golay filter to highlight the signals in Fig. 3. 

In Fig. 3B, we used the optimal values of |uS| and σ|uS | to estimate the probability density function of log-normally distributed swimming speeds 
according to Eq. (3). For each macro-region, we developed a lognormal mixture distribution 

lnN(μ, σ) =
∑n

i=1
χilnN(μi, σi) (B.1)  

where χi =
X′

i∑n
i=1

X′

i 
is the relative length of region i. For each water velocity bin (bin centers of the water velocity histogram), we then drew 480 

swimming speeds from the weighted distributions in each macro-region and performed Bernoulli draws to determine fish orientation and holding 
relative to flow for each of these draws from the estimates in Figs. 3C and 3D below. 

In Fig. 3C, we estimated what the likelihood of orienting with the flow. We set an initial orientation with flow, and then ran a MATLAB simulation 
over 480 timesteps in which at each timestep, first a Bernoulli trial using the optimal value of pM for the region determined if the orientation persists. If 
the orientation needed to be changed, then we used the optimal values of P̃Rheotaxis, c and b (Section 3.5) with the specified water velocity to find the 
probability of orienting with the flow. We then performed a second Bernoulli trial using this probability to decide if the orientation remains the same 
or changes. At each timestep, we kept track of the orientation. We then repeated these steps with an initial orientation against the flow. We then 
obtained the overall probability of orienting with the flow over a five-day period as the ratio of the total number of timesteps that the simulated fish 
was oriented with the flow from both starting conditions, and 960. 

In Fig. 3D, we estimated what the likelihood of holding is as follows. We started a MATLAB simulation with one individual from day one at 00:00 h 
to day four at 23:45 h, in which daylight hours were set from 07:00 h to 19:00 h. At each timestep, an individual would hold position if the water 
velocity was lower than the optimal uF for the region and if a Bernoulli trial with the optimal value of pH was successful, or if the timestep fell during 
the day and a Bernoulli trial with the optimal value of pDS was unsuccessful. We then obtained the overall probability of holding over a five-day period 
as the ratio of the total number of timesteps that the simulated fish was holding, and 480. 

In Fig. 3E, we estimated what the survival probability is for a passive drifter near the water surface. In the nonreversing macro-region, the distance 
traveled by the individual, X ≈ X′ , and the travel time in the to traverse this distance is nominally 
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t =
X′

uH
(B.2) 

Then, we apply Eq. (8) to estimate the survival. In the reversing macro-regions, we estimated the travel time required to traverse one tidal 
excursion, EX, as 

tX =
EX

uH
(B.3) 

However, over one tidal excursion, the actual displacement of the individual after substitution of Equation (B.3) for tX is only 

XtX = uStX =
uS

uH
EX (B.4)  

where uS ≈ 1.1429̅̅
2

√
η0
Hu′ is the Stokes’ drift velocity near the water surface for shallow water tidal waves (Sridharan 2018b), g = 9.81m/s2 is the ac

celeration due to gravity, η0 is the amplitude of the tide, H is the average depth of the water column, and u′ is the high-frequency tidal fluctuations 
about the subtidal water velocity. η0, H and u′ were obtained from DSM2 as respectively, twice the standard deviation of water depths, the average 
water depth and twice the standard deviation of water velocities in all the channels comprising of the region. Then, the total travel time after sub
stitution of Equations (B.3) and (B.4) respectively, for tX and XtX is 

t = tX
X ′

XtX
= 1.24

H
η0

X ′

uS
(B.5)  

and the total distance traveled by the individual, after substitution of Equations (B.3) and (B.5) respectively, for tX and t is 

X =
t
tX

EX = 1.24
H
η0

uH

uS
X ′ (B.6) 

Then, we apply Eq. (8) to estimate the survival. Two interesting feature of Equations (B.2) and (B.6) are that in the nonreversing macro-region, as 
lim

uH→0
t→∞, so that survival dips, whereas in the reversing macro-regions, as lim

uH→0
X→min(X), so that survival peaks. 

In Table B.1, we show conceptually how relaxing various hypothesized model structures will lead to simpler model formulations and behavior 
implications. This demonstrates how flexible the ePTM is in capturing a wide suite of fish behaviors. 

Appendix C. Rationale for constrains on model parameters 

Here, we discuss the choice of constraints set on the ePTM parameters outlined in Section 4.3. 
We surveyed the literature on sustained swimming speeds of Chinook smolts (Dougan 1993; Anglea et al., 2004; Brown et al., 2006; Walker et al., 

2016; Lehman et al., 2017) to set the constraints on |uS| and σ|uS |. All of these studies report a maximum sustained swimming speed of about 5 body 
lengths per second (blps). Based on these studies, we assumed an average fork length of approximately 100 mm, which produces a maximum value of 
this parameter of 0.5 m/s (Table 1). Setting the maximum σ|uS | also to 0.5 m/s (Table 1) results in more than 95% of the draws rarely exceeding a speed 
of 10blps for a 100 mm smolt, which is the maximum instantaneous swimming speed observed in the high-resolution fish tracks in the Delta (Lehmann 
et al. 2017). 

Assigning constraints on the orientation parameters was more subjective. For c and b, there are no analogues in the literature. We set these ranges 
to allow the logistic curve to take on a variety of shapes from linear growth to exponentially saturating within 95% of the range of DSM2-modeled 
water velocities within the Delta between 1962 and 2017. 

While there is some background in the literature on diel holding patterns, this is not directly translatable into the holding parameters in the model. 
For California Central Valley Chinook, Chapman et al. (2013) reported that the proportion of fish detected during the daytime versus the nighttime 
varied as a function of where they were in the system from 10% to 75%. So, we set the bounds on pDS to encompass these fractions. The tidally-driven 
holding parameters are more difficult to constrain based on the literature. We therefore computed the peak tidal water velocity modeled in the Delta 
between 1962 and 2017 using DSM2 to be 1.5m/s and set this value as the upper limit for uF. The lower limit for uF was set at 0 m/s, which would 
indicate a propensity for individuals to hold even during slack water (Table 1). It is reasonable to expect that not every individual would hold at all 
times during opposing flow, but pH could not be directly estimated. We therefore allowed it to vary between 0 and 1 (Table 1). 

The bounds on the survival parameters were estimated using a set of toy PTM simulations over three regions representing the Delta in a coarse 
manner (Section C.1). In the simulations, these parameters were allowed to vary over a range of values that produced aggregated survival estimates 
spanning the range of values reported in the MMR estimates in Perry et al. (2018). The range of these values was then used to bracket the survival 
parameters in the ePTM calibration. 

C.1. Toy PTM for initial analysis and screening 

In Section 4.3, we referenced a simplified random walk model, the toy PTM. This was implemented in the R programming language to screen model 
parameter interactions and determine the parameter value bounds for optimizing some model parameters. This was implemented as a three-region, 
one-junction, highly simplified representation of the Delta (Fig. C.1). The toy PTM simulates fish movement, routing, and survival through the three 
regions. An additional region was included within each route solely for the purposes of providing two detection stations within each route, which was 
required for separately estimating survival in regions 2 and 3 from acoustic telemetry detection data. For this last region, survival is set to one. The 
movement of individuals from region 1 into regions 2 or 3 is by random chance based on routing probabilities, Ψ for region 2 and 1 − Ψ for region 3 
(which are equal to the ratios of flows through the regions and the flow in region 1). The XT model formulation of Anderson et al. (2005) was adopted 
to model survival through the regions. The behavior model in the toy PTM is identical to that in the ePTM. All behavioral and mortality parameters are 
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region-specific. 
The toy PTM uses water velocities from the Sacramento River from October 2018 to March 2019 to drive the random walk of simulated fish. Region 

1 uses water velocities from the Sacramento River at Freeport, Region 2 uses velocities from Sacramento River below the Delta Cross Channel, and 
Region 3 uses velocities from the Sacramento River at Rio Vista (Fig. 2). We performed multiple runs of the toy PTM with 500 simulated fish each time. 

Appendix D. Details of the calibration and validation 

As we outlined in Section 4.4, we applied a 4-stage calibration process. First, we deduced that the movement (swimming, orientation and holding) 
parameters could be fit independently of the survival parameters (see below) using the Morris method elementary effects analysis. 

Second, to identify the movement parameter set that produced predictions that best aligned with data, we used several methods for evaluating 
model goodness-of-fit in a 2-level multiobjective optimization refinement. The 2-level refinement was necessary because the goodness-of-fit surfaces 
contain many local optima. We used three goodness-of-fit measures based on three perspectives in the multiobjective optimization framework. These 
were the earthmover’s distance (an information theoretic measure) between observed and modeled travel times (Levina and Bickel 2001), the log 
likelihood (a maximum likelihood measure) of observed travel times conditional on ePTM parameters (Section D.1), and the intersection over union of 
the observed and predicted travel time distributions, or the Jaccard index (a visual comparison) (Chung et al., 2019). For each region in the dataset, we 
defined the overall goodness-of-fit by the sum of the goodness-of-fit measure over all release groups observed in that region. While this results in an 
exact mathematic value for the log-likelihood, it is only approximately correct in the case of the earthmover’s distance and the Jaccard Index. To 
calculate the earthmover’s distance, we used the MATLAB toolbox developed by Yilmaz (2021). We first selected 5000 design points (parameter value 
sets) using the maximum separation space-filling approach to perform a grid search over. In the three-dimensional space of the three goodness-of-fit 
measures, we identified the top 10 design points along the Pareto front of performance and selected the top ten of these design points. This Pareto front 
is the set of design points with the lowest negative log-likelihood, the maximum Jaccard index and the minimum earthmover’s distance summed over 
all releases. 

After identifying these candidate optima, we then performed a third step in which we selected 500 new design points each in the vicinity of each 
candidate optimum using the maximum separation space-filling approach as before to obtain a revised candidate set of 5000 design points. We then 
repeated the multiobjective analysis as before to identify the top 10% of design points along the new Pareto front within the neighborhoods of the 
optima from the first iteration. The top performing set of parameter values as defined by the earthmover’s index was then chosen as the global 
optimum for each region. We chose to use the earthmover’s distance for selecting the global optima because of its robustness to a small number of fish 
(<100) within most MMR regions. 

Fourth, to fit λ and ω, we used optimal values of all the other parameters, and selected 625 design points, each defined by a pair of values for λ and 
ω. The goodness-of-fit measure was defined as the sum of the absolute differences between modeled and MMR-predicted survivals for all the releases 
within a region. The goodness-of-fit surface for the λ and ω parameters is well behaved and has a well-resolved peak, so that a single stage optimization 
sufficed. 

D.1. Log-likelihood goodness-of-fit measure for travel time distributions 

In Section 4.4, we outlined the model calibration process, in which one of the goodness-of-fit measures was a log-likelihood of travel time dis
tributions. Here, we show how this is estimated. There are X releases in Y regions, with Nij fish released in the ith release in the jth region. Of the 
released fish, the number that arrive at the downstream end of the region are N′

ij. These arrive at ordered times T ij = {tij,1, tij,2,⋯, tij,k,⋯, tij,N′

ij
}. For 

release i and region j, and for a given design ePTM parameter set, there are M replicates for each of the Nij fish. For the kth fish, let there be M′

k replicate 
simulated arrivals at ordered times τijk,1,τijk,2,⋯,τijk,M′

k
. From this set of ordered times, we produce an arrival time distribution fijks(t) for the kth fish over 

all the M replicate fish. 
Then, the probability of the travel time of the kth individual being tij,k is 

P
(
tij,k
⃒
⃒θs
)
= fijks

(
τ= tij,k

⃒
⃒θs
)
⋅dτ 

Then, the likelihood of the observed travel time distribution for region i and release j is 

Lij

(
tij,1, tij,2,⋯, tij,N′

ij

⃒
⃒
⃒θs

)
=
∏
N′

ij

k=1
P
(
tij,k
⃒
⃒θs
)
= dτN′

ij
∏
N′

ij

k=1
fijks
(
τ= tij,k

⃒
⃒θs
)

so that the log-likelihood is 

logLij

(
tij,1, tij,2,⋯, tij,N′

ij

⃒
⃒
⃒θs

)
= N ′

ijlogdτ +
∑

N′

ij

k=1
logfijks

(
τ= tij,k

⃒
⃒θs
)

(D.1) 

Now, the log-likelihood across all releases within a given region for θs is 

logLj

(⋃X

i=1,j
T ij
⃒
⃒θs

)
=

(
∑X

i=1
N ′

ij

)

logdτ +
∑X

i=1

∑
N′

ij

k=1
logfijks

(
τ= tij,k

⃒
⃒θs
)

(D.2) 

Let the set θOptimal
j be the set of values of θs that maximizes logLj(

⋃X
i=1,jT ij

⃒
⃒θs). 

Now, the overall log-likelihood of the data is to be maximized given different parameter combinations in the various regions and releases is 

logL
(⋃X,Y

i=1,j=1
T ij
⃒
⃒θj

)
=
∑Y

j=1
logLj

(⋃X

i=1,j
T ij
⃒
⃒θj

)
(D.3) 
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Clearly, the θOptimal
j s will also maximize the overall log-likelihood of the data. 

D.2. Evaluation of space-filling algorithms for initial parameter selection 

To select the optimal space-filling algorithm in Section 4.4, we compared 11 algorithms using the R package DiceEval (Dupuy et al., 2015): random 
selection, naïve and maximin Latin hypercube sampling, Halton, Sobol, Sobol-Owen, Sobol-Faure-Tesuka, and Sobol-Owen-Faure-Tezuka filters, 
maximum separation criterion, and WSP and Strauss methods. We performed an initial screening with 20 2D points and compared two measures of 
volume occupancy: (i) the Greenwood statistic, which measures how clumped points are when projected onto a line slicing the 2D plane at various 
angles, and (ii) the distribution of points along the direction in which the points are most clumped together. Based on this initial assessment, we 
selected the random selection, maximin Latin hypercube sampling, maximum separation criterion, WSP and Strauss methods as promising candidates 
for a full evaluation with the 5000 design points. 

We subsequently used four measures of volume occupancy: (i) the mesh ratio, which measures the closeness of the designated points to a uniform 
n-dimensional mesh, (ii) the minimum multidimensional Euclidean separation between points which goes from 0 to 1, (iii) the coverage which 
measures the deviation of minimum multidimensional separation between points to the mean separation between points, and (iv) the clumpiness of 
points in all possible two-dimensional projections of the multidimensional points. Using the maximum separation method with a minimum separation 
criterion of 0.244 produced the best overall performance (Fig. D.1). 

D.3. Calibration results 

We present the detailed calibration parameter values alluded to in Section 5.1 here in Figs. D.2, D.3 and D.4. Estimates of model parameters are 
shown for each Delta region in Fig. D.2. In Fig. D.3, we show how the optimal parameter values for each process within the ePTM evolve through a 
simplified schematic network representation of the Delta. The combinations of these parameter values in the ePTM’s behavioral modules results in 
migration patterns that are consistent with the data collected in the Delta (Fig. D.4). We motivate the subsequent discussion using the spatial patterns 
in Fig. D.3 and the information in Fig. D.4 for various Delta salmonids. In Figure D.4A, we show the distribution of observed swimming speeds. In 
Figure D.4B, we show that observed fish movements relative to the flow in the high-resolution tracking data are autocorrelated for long periods of 
time. In Figure D.4C, we show how the migration rate changes as a function of flow. In Figure D.4D, we show how the dispersal of fish changes as a 
function of flow. In Figure D.4E, we show how fish arrivals vary as a function of the tide phase. 

Our analysis of the high-resolution fish tracks in the Delta indicated that there is a large distribution typically between 0 and 10blps in swimming 
speeds of fish relative to the flow (Figure D.4A). Moreover, we also found that juvenile salmonid movements are temporally autocorrelated for a few 
minutes on average, with several fish exhibiting long term autocorrelation patterns as well (Figure D.4B). The patterns of large-scale migration rate 
relative to the mean flow indicate a shift from migration rates that are slower than mean flow, to rates that exceed mean flow as fish move from 
nonreversing to more tidally reversing conditions (Figure D.4C). We also observed that the dispersal of fish increases as the animals move closer to the 
ocean (Figure D.4D). These findings indicate a shift in behavior of salmonids with spatial proximity to the ocean. In the tidally reversing macro- 
regions, there is strong evidence that both steelhead and Chinook salmon move oceanward preferentially during the ebb tide (Figure D.4E). 

D.4. Delta-wide XT model 

In Section 5.2, to evaluate the flow-survival relationship predicted by ePTM, we developed a “Delta-wide” XT model as follows. We rewrote the X in 

Eq. (8) as ut and simplified the resulting expression to P(Survival) = e−
t
̅̅̅̅̅̅̅̅̅
u2

+ω2
√

λ . Here, u is the mean overground movement rate between Delta entry and 
Chipps Island, λ is the Delta-wide lengthscale of survival decay, and X = 99.2 Km is the distance between Sacramento and Chipps Island along the 
Sacramento River. Multiplying and dividing the term within the exponentiation by u and taking the denominator within the square root, we get 

P(Survival) = e
− X

λ

̅̅̅̅̅̅̅̅
1+ω2

u2

√

. A reasonable expectation over the entire scale of the migration distance is that u should be proportional to the river flow, Q, 
and should be a monotonically increasing function of Q. If we assume the simplest possible relationship, i.e., u = Q

A
, for some Delta-wide average cross- 

sectional area A, then, after simplifying, we get 

P(Survival) = e
− X

λ

̅̅̅̅̅̅̅̅̅̅̅
1+(Aω)2

Q2

√

(D.4) 

We fit this model by treating λ and Aω as tuning parameters. 

Appendix E. Global sensitivity analysis for the ePTM 

In Sections 4.4 and 5.4, we applied two GSA approaches outlined below. 

E.1. Morris Method 

The Morris method starts at a random set of model parameters and cycles through parameter sets by perturbing the value of each parameter a 
preset number of times while holding the values of the other parameters fixed, until all the parameter values have been perturbed. This process is 
repeated for a number of trajectories. So, for 33 parameters in the three-region toy PTM, we began at 100 randomly chosen parameter value sets within 
specified bounds (Section 4.4) and ran the toy PTM 100 × (33+1) = 3, 400 times. In each run, ten simulated fish were release every two hours over 13 
days for a total of 1560 individuals and the simulations were carried out for three months. 

To screen the parameters contributing to the travel time distributions and survival, we used the mean travel time and survival predicted in each 
region by the toy PTM respectively. The Morris method allows us to simultaneously evaluate the importance of each parameter and its interaction with 
every other parameter as follows. If the mean of the gradient in the model results with respect to a parameter (called the elementary effect) over all the 
trajectories is small, then this parameter is unimportant on its own. If it is large, then it is important on its own. If the standard deviation in the 
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elementary effect over all the trajectories is small, i.e., the gradient with respect to this parameter does not change by much when the other parameters 
change, then this parameter does not interact with other parameters. A large standard deviation likely means that this parameter interacts with other 
parameters. By performing this analysis with the toy PTM, we discovered that travel times are insensitive to the survival parameters and survival is 
largely sensitive only to the mortality parameters (Fig. E.1). 

E.2. Sobol indices 

We introduced Sobol indices in the context of ANOVA in Section 5.4. Sobol indices are the first and total order effects estimated using K⋅(n+2)
model calls (for an n-parameter model) at sequentially perturbed parameter values (Baudin et al., 2016). The sequential perturbation of model pa
rameters differentiates this approach from true Monte Carlo sampling. K depends on n, but is typically chosen to be 1,000. These model calls result in 
three matrices of model results at the set of perturbed values for the ith parameter: (i) two matrices, A and B, containing model results corresponding to 
independent perturbations of the parameters, and (ii) a matrix A(i)

B , in which the ith column of A is replaced by the ith column of B. Then, the first order 
effect of the ith parameter can be computed by summing the variance in B and A(i)

B , which results in (Saltelli et al., 2010) 

Si =
1
K
∑K

j=1

[
f
(
Bj
)
⋅f
(
Bj
)]

i

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Variance due to ith parameter

+
1
K
∑K

j=1

[
f
(
Bj
)
⋅f
(

A(i)
B

)]

∼i
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Square of
quasi Monte Carlo model mean

− f 2
0⏟⏞⏞⏟

Square of
model mean

(E.1) 

The last two terms cancel as lim
K→∞

. The total order effect can be computed by summing the variance in results of the matrices, A and A(i)
B , which 

results in (Saltelli et al., 2010) 

STi =
1
K
∑K

j=1

[
f
(
Aj
)
⋅f
(
Bj
)]

i

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Square of

quasi Monte Carlo model mean

+
1
K
∑K

j=1

[
f
(
Aj
)
⋅f
(

A(i)
B

)]

∼i
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Variance due to ith parameter
interacting with other parameters

− f 2
0⏟⏞⏞⏟

Square of
model mean

(E.2) 

Again, the last two terms cancel. There are many approaches to estimating the first order and total order Sobol indices. Here, we used the Martinez 
estimator which uses the sum of correlation coefficients between the sets B and AB, and between the sets A and AB subtracted from 1 respectively, to 
estimate the first order and total order Sobol indices for each of the parameters. This is a stable and robust estimator of the Sobol indices which does 
not suffer from ill-conditioning in many competing approaches (Baudin et al., 2016). 
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