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Abstract

Decades of work have elucidated cytokine signalling and transcriptional pathways that control 

T cell differentiation and have led the way to targeted biologic therapies that are effective in a 

range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity 

and metabolic disease can also influence the immune system1–7, although the mechanisms and 

effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic 

dermatitis, we show that lean and obese mice mount markedly different immune responses. 

Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with 

atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed 

divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean 

mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-

wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-

activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional 

ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response 

towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese 

mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked 

therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects 

of obesity on immunological disease and suggest a precision medicine approach to target the 

immune dysregulation caused by obesity.

Emerging clinical data of multiple immunological diseases including atopy and asthma 

indicate that obese patients have more severe disease and exhibit resistance to therapies that 

are effective in lean patients8–13, although the mechanisms underlying these observations 

remain unclear. To gain mechanistic insights into the immunopathological effects of 

obesity, we employed a well-characterized mouse model of atopic dermatitis14,15 (AD). 

We challenged obese mice fed high-fat diet (HFD) and lean controls with the vitamin 

D3 analogue MC903 to induce AD on the ear (Fig. 1a). The obese mice displayed a 

markedly increased inflammatory response, evidenced by an approximately twofold to 

fourfold increase in ear thickness relative to lean mice that received the same MC903 

treatment (Fig. 1b). The MC903-treated ears of the obese mice had more severe erythema 

and scale, hallmarks of dermal inflammation (Fig. 1c). Histological evaluation demonstrated 

greater expansions of the epidermal and dermal layers in obese mice, along with a marked 

increase in leukocytic infiltration (Fig. 1d, dashed line). Of note, studies modulating 

duration of the HFD (Extended Data Fig. 1a–d) and using monogenic models of obesity 

on normal or HFD (Extended data Fig. 1e–j) suggested that the increased ear thickness 

and inflammation seen in obesity was at least partially dependent on HFD. Further, we 

observed a persistent inflammatory effect of obesity, even after weight loss (Extended Data 
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Fig. 1k–m). Additionally, obesity increased disease severity, including after weight loss, in 

a second model of AD (Extended Data Fig. 2a–g), involving sensitization to ovalbumin 

(OVA) followed by serial tape-stripping and exposure to a mixture of OVA and papain 

(TOP). Finally, this increased inflammatory response was not limited to atopic diseases of 

the skin, as challenging lean and obese mice in an experimental model of allergic airway 

disease (ovalbumin sensitization and challenge) yielded increased cellular infiltration across 

multiple immune subsets in the bronchial–alveolar lavage fluid of obese mice and increased 

CD4+ and CD8+ T cells in the draining lymph node of obese mice (Extended Data Fig. 

2h–j). Together, these results show that obesity exacerbates multiple mouse models of atopic 

disease.

The marked difference in atopic disease severity between lean and obese mice prompted 

us to profile the infiltrating T cell populations in the AD lesions using flow cytometry. 

Numbers of conventional CD4+ T (Tconv) cells were significantly increased in the obese 

mice, with trending increases in the regulatory T (Treg) and CD8+ T cell populations, 

suggestive of an overall increased inflammatory response (Extended Data Fig. 2k). 

Intracellular staining for cytokine competence revealed trending approximately 3.9- and 

1.7-fold increases in CD4+ T cells from obese mice positive for the TH2 cytokines IL-4 and 

IL-13, respectively, in this cohort; however, we also observed an unexpected and prominent 

6.5- and 11.5-fold increase in CD4+ T cells positive for the TH17 cytokines IL-17A and 

IL-17F, respectively (Fig. 1e, Extended Data Fig. 3a, b). We observed similar increases in 

TH17 cytokines in obese mice relative to lean mice challenged with TOP (Extended Data 

Fig. 4a, b) and in a model of allergic airway disease (Extended Data Fig. 4c).

More prominent TH17 inflammation may also occur in obese humans with allergic 

disease. Using a previously collected dataset of targeted serum proteomes of patients 

with AD, we identified two markers of cutaneous TH17 inflammation16,17 that correlated 

positively with body mass index (BMI) (Extended Data Fig. 5a–c). Separately, an 

analysis of lean, overweight, obese and morbidly obese individuals with asthma from a 

large, longitudinal, multi-centre study (SARP)18 demonstrated a clear decrease in sputum 

eosinophil percentage, a defining marker of the TH2-high endotype19, as a function of BMI 

(Extended Data Fig. 5d, e).

Although previous studies have demonstrated increased disease severity in obesity in 

TH17-dependent disease models such as multiple sclerosis and colitis20,21, our findings 

were surprising as experimental AD is classically a TH2-driven model of cutaneous 

autoimmunity, and suggested that obesity may shift the TH-responsive landscape away 

from TH2-directed inflammation towards an aberrant TH17 or unfocused inflammatory 

response. To further characterize this shift, we systematically profiled the lesional Tconv cells 

using single-cell RNA-sequencing (scRNA-seq) (Fig. 1f). Analysis revealed four Tconv cell 

populations (annotated here as naive-like, TH1, TH2 and TH17) and a cluster of cycling 

cells along with associated RNA velocity22,23 transcriptional trajectories visualized with 

uniform manifold approximation and projection (UMAP)24,25 (Fig. 1f; Methods). The gene-

expression heatmaps of lineage-defining transcription factors (Gata3, Tbx21 and Rorc), 

lineage-defining effector cytokines and cytokine receptors (Il4, Il13, Ifng, Il17a, Il17f, Il22 
and Il23r) and other prominent markers of activation, quiescence and memory (Ccr7, S1pr1, 
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Sell, Klf2 and Bcl2) validated these population assignments (Fig. 1f, g, Extended Data Fig. 

6a–c). Cells from lean and obese mice showed marked differences in distribution across 

the cell populations (Fig. 1h). In particular, we observed clear differences in the degree of 

TH17 differentiation between lean and obese mice (Fig. 1h, i). A proportion of the Tconv 

cells from the lean mice were assigned to an ‘early’ position (expressing the TH17 lineage-

defining transcription factor Rorc, but not the effector cytokines Il17a, Il17f or Il22, or the 

cytokine receptor Il23r). By contrast, a majority of the TH17 cells from the obese mice were 

assigned to a ‘late’ position (expressing both Rorc, the effector cytokines and the cytokine 

receptor Il23r) (Fig. 1f–i). Of note, the emergence of these more-mature-appearing TH17 

cells in the inflamed skin of obese animals probably depended on egress of lymphocytes 

from secondary lymphoid organs, as blocking lymphocyte egress from secondary lymphoid 

organs with FTY720 (an agonist of the sphingosine 1-phosphate receptor) decreased disease 

severity in obese mice and caused a marked increase in CD4+ T cells expressing IL-17A 

and IL-17F in the draining lymph node (Extended Data Fig. 7a–c). Together, these findings 

demonstrate that obesity alters the TH-response in AD and asthma to include substantial 

TH17 inflammation in addition to the canonical TH2 inflammation found in lean mice.

Biologic treatments blocking the signalling of the TH2 effector cytokines IL-4 and IL-13 

have proved remarkably successful in managing TH2-driven severe allergic diseases such 

as asthma, sinusitis and AD26–29. Owing to the aberrant TH17 inflammation in AD in 

obese mice, we questioned to what extent neutralizing IL-4 and IL-13 would limit AD in 

these animals. We treated lean and obese mice with anti-IL-4 and anti-IL-13 neutralizing 

antibodies (anti-IL-4/IL-13) while eliciting experimental AD. As expected, anti-IL-4/IL-13 

treatment strongly protected lean mice from AD (Fig. 1j–l). Notably, anti-IL-4/IL-13 

treatment was not just ineffective in obese mice, it also worsened disease in both MC903-

induced AD (Fig. 1j–l) and the TOP AD model (Extended Data Fig. 8a–d). Additionally, 

anti-IL-4/IL-13 treatment of obese mice with MC903-induced AD resulted in the emergence 

of small pustules, consistent with severe AD (Fig. 1m, arrows). Flow cytometric analyses 

of cytokine-competence demonstrated decreased IL-13-positive and IFNγ-positive CD4+ T 

cells after anti-IL-4/IL-13 treatment in lean but not obese mice (Fig. 1n). Whereas the small 

numbers of IL-7A-positive and IL-17F-positive CD4+ T cells tended to be even further 

decreased in lean mice after anti-IL-4/IL-13 treatment, the numbers of IL-17F-positive 

cells were increased in obese mice (with the IL-17A-positive and IFNγ-positive cells also 

trending higher in this cohort), suggesting that anti-IL-4/IL-13 TH2 blockade exacerbates 

non-TH2 inflammation in the obese animals and worsens disease.

The nature of a TH host response to a given immune challenge can shape the course of 

disease. Our observation of increased TH17 inflammation in the more severe manifestation 

of AD in obese mice led us to hypothesize that this immunological misfiring in obesity 

was an important causal step in disease pathophysiology and the negative response to 

anti-IL-4/IL-13 treatment. We aimed to identify a factor in vivo whose function was to 

protect the dominant TH2 response to experimental AD in lean mice. Such a factor likely 

would be expressed in TH2 cells and have dysregulated or decreased activity in obesity, 

and its T cell-specific ablation in lean mice might enable the emergence of non-TH2 

inflammation in AD and lead to worsened disease upon anti-IL-4/IL-13 treatment. We 

focused on the nuclear hormone receptor (NHR) superfamily, a class of transcription 
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factors that can be sensitive to systemic changes in physiologic and metabolic state. 

Among TH1, TH2 and TH17 cells, PPARγ30–33 (and its heterodimeric partner RXRα) 

stood out among NHRs as highly and differentially expressed in TH2 cells relative to 

TH1 and TH17 cells (Extended Data Fig. 9a–e). PPARγ is a transcription factor that 

was recently demonstrated to be important for regulating transcriptional networks in 

TH2 cells34. However, its physiological, in vivo relevance and functional role are not 

well understood35–41, with different studies demonstrating seemingly contradictory results 

regarding the effect of PPARγ activation or repression on TH2-associated diseases. Of note, 

one study demonstrated a role for PPARγ agonists in blunting the TH17 response and 

protecting mice against experimental autoimmune encephalomyelitis, a mouse model of 

multiple sclerosis, even though expression of Pparg in TH17 cells was not demonstrated42 

(Extended Data Fig. 9a–e).

We assessed how obesity affects gene expression downstream of PPARγ in T cells. We 

performed chromatin immunoprecipitation with sequencing (ChIP–seq) of PPARγ in TH2 

cells to identify its genome-wide binding sites (Extended Data Fig. 9f, g, Supplementary 

Information Table 1). We then interrogated our scRNA-seq dataset to determine whether the 

expression of the genes composing this PPARγ cistrome was altered in the lesional T cell 

subsets of lean and obese mice. In lean mice, genes in the PPARγ cistrome were most highly 

expressed in TH2 cells, as expected (Fig. 2a, b). However, expression of these genes in obese 

mice was decreased in TH2 cells and the related naive-like cells (and to a lesser degree in 

TH1 cells) compared with the corresponding subsets from lean mice (Fig. 2b), suggesting 

decreased PPARγ activity in T cells in obesity. By contrast, there was no change in PPARγ 
cistrome gene expression in TH17 and cycling cells between lean and obese mice. Together, 

these findings suggest that PPARγ activity is impaired in T cells in obesity. We hypothesized 

that PPARγ may act to preserve TH2 inflammatory predominance and that in vivo PPARγ 
deficiency could unfocus TH2 responses in favour of other TH cell responses.

We tested this hypothesis by generating T cell-specific PPARγ-deficient mice 

(Cd4crePpargfl/fl (PPARγ TKO)). T cell-specific loss of PPARγ did not elicit overt systemic 

inflammation associated with spontaneous T cell dysregulation; PPARγ-TKO mice had 

normally sized spleens and lymph nodes (Extended Data Fig. 10a, b) and equivalent 

splenic and lymph node Treg (CD25+FOXP3+) and activated (CD62LloCD44hi) CD4+ T 

cell populations compared with controls (Cd4crePparg+/+) (Extended Data Fig. 10c, d). 

Additionally, PPARγ-TKO mice exhibited normal thymic T cell development, as measured 

by CD4 and CD8 expression of thymic T cells (Extended Data Fig. 10e). When challenged 

with experimental MC903 AD, the PPARγ-TKO lean mice developed more severe disease, 

similar but less extreme to that observed in wild-type obese mice (approximately 80% 

increase in change in ear thickness compared with control mice) (Fig. 2c, d). Histological 

examination in PPARγ-TKO mice also recapitulated many features of AD in obese Pparg-

sufficient mice including the most distinctive histologic feature—leukocytic expansion of 

the dermis (Fig. 2e, dashed line). Flow cytometric analyses of cytokine competence revealed 

that the PPARγ-TKO mice had an increase in IL-17A-and IL-17F-positive CD4+ T cells 

while additionally demonstrating an increase in IL-13-positive CD4+ T cells and a trending 

increase in IL-4-and IFNγ-positive CD4+ T cells in this cohort (Fig. 2f). Supplementing 

the flow cytometry data with single-cell RNA-seq of lesional Tconv cells provided a 
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more holistic picture, revealing that PPARγ-TKO mice exhibited a generally increased 

inflammatory response across all TH subtypes with a clear loss of TH2 selectivity (Fig. 

2g). The Tconv cells from control mice largely overlapped with the TH2 cluster (Fig. 2g, 

merge), whereas cells from the PPARγ-TKO mice were more distributed among the naive-

like, TH1 and TH17 clusters, and comparatively diminished in the TH2 cluster. Similar to 

what we observed in obese relative to lean Pparg-sufficient mice, the TH17 cells from the 

PPARγ-TKO mice were also further along their differentiation trajectory compared with the 

relatively few TH17 cells from control mice (Fig. 2g, h).

Given that T cell-specific ablation of PPARγ was associated with the emergence of non-TH2 

inflammation and more severe disease in AD, we next investigated whether treatment with 

anti-IL-4/IL-13 would worsen AD in PPARγ-TKO mice. Indeed, anti-IL-4/IL-13 treatment 

exacerbated AD (Fig. 2i–k), with the emergence of small pustules (Fig. 2l, arrows) along 

with trending increases in IL-17A, IL-17F and IFNγ-positive lesional CD4+ T cells in 

treated PPARγ-TKO mice in this cohort (Fig. 2m). Of note, Treg cell-specific ablation of 

PPARγ43 (Foxp3crePpargfl/fl) did not lead to a significant difference in AD development 

and severity relative to controls (Foxp3crePparg+/+, Extended Data Fig. 10f–j). Together, 

these results strongly support the role of PPARγ as a focusing factor crucial to the in vivo 

TH2 response, serving to maintain TH2 responses against competing TH programs during 

an inflammatory challenge – a role not previously identified by in vitro investigations of 

PPARγ in TH2 cells (Fig. 2n).

Thiazolidinediones (TZDs) are an FDA-approved class of potent PPARγ agonists that are 

used as insulin-sensitizing medications to manage type 2 diabetes. Having observed that 

T cell-specific ablation of Pparg causes the aberrant emergence of non-TH2 inflammation 

and conversion of anti-IL-4/IL-13 treatment from therapy to anti-therapy, we hypothesized 

that pharmacological enforcement of PPARγ action via TZD treatment in obese mice may 

promote TH2 selective responses and suppress TH17 inflammation, reduce disease severity 

and perhaps even restore the therapeutic efficacy of anti-IL-4/IL-13 treatment. We treated 

obese control or PPARγ-TKO mice with rosiglitazone (the archetypal TZD) or DMSO 

and challenged the obese mice with AD. Rosiglitazone treatment significantly reduced AD 

severity in obese control mice, as measured by an approximately 40% reduction in the 

ear thickness increase (Fig. 3a) and a marked reduction in leukocytic infiltration (Fig. 3b, 

dashed line). These effects were dependent on T cell-specific PPARγ expression. In the 

PPARγ-TKO mice, rosiglitazone modestly increased disease severity (Fig. 3a, b), possibly 

related to T cell-extrinsic mechanisms of PPARγ action. Of note, although rosiglitazone 

treatment did not protect PPARγ-TKO mice from AD, its insulin-sensitizing effects were 

intact (Extended Data Fig. 11a–d), which argues for distinct therapeutic mechanisms of 

action for rosiglitazone in restoring organismal insulin sensitivity and protection from AD in 

obesity.

Next, we investigated the effect of rosiglitazone treatment on the TH response profile in 

AD. We performed scRNA-seq to analyse the distribution of lesional Tconv cell states 

from obese control or PPARγ-TKO mice, with or without rosiglitazone treatment (Fig. 3c, 

Extended Data Fig. 12a–c). We observed that Tconv cells from obese control mice were 

distributed across the naive-like, TH1, TH2 and TH17 populations. Rosiglitazone treatment 
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of obese control mice seemed to collapse their CD4+ T cell compartment to the TH2 

cluster, a finding that was partially observed in the obese PPARγ-TKO mice (Fig. 3d). 

Further, rosiglitazone treatment strongly reduced the TH17 population in the obese control 

mice (Fig. 3d), although the rare TH17 cells present were somewhat more differentiated 

along the TH17 pathway relative to the TH17 cells from mice treated with DMSO (Fig. 

3e). Additionally, PPARγ activity as measured by collective expression of the PPARγ T 

cell cistrome was increased by rosiglitazone in the TH2 and, to a lesser extent, TH17 cells 

(Fig. 3f, g, Supplementary Information Table 1), suggesting that rosiglitazone may activate 

PPARγ in TH2 and TH17 cells in vivo in concert with the consequent suppression of TH17 

differentiation. Notably, the rosiglitazone-induced increase in PPARγ cistromic activity 

required PPARγ expression in T cells, and rosiglitazone treatment did not affect the degree 

of differentiation along the TH17 pathway among the TH17 cells in PPARγ-TKO mice (Fig. 

3e–g). Finally, we hypothesized that if rosiglitazone treatment decreases immunological 

misfiring in obesity, enforcing a TH2-predominant immune response in AD, then it may be 

able to restore the efficacy of anti-IL-4/IL-13 treatment. Using regimens of rosiglitazone 

treatments in obese mice that did not on their own reduce AD severity, rosiglitazone indeed 

improved the outcomes of anti-IL-4/IL-13 for treatment of AD in obese mice (Fig. 3h–k, 

Extended Data Fig. 13a–c).

Obesity is a systemic pathophysiological state that is increasing in prevalence and incidence 

worldwide44–46, yet how obesity changes the architecture of immune responses is not well 

understood. Here, by studying the pathology of allergic inflammation in lean and obese 

mice with matched genetic backgrounds, we demonstrate that obese mice develop more 

severe disease associated with immunological ‘misfiring’47, converting an effective, targeted 

immunological therapy to an anti-therapy (Fig. 3l). Our demonstration that a PPARγ agonist 

can help to enforce an ‘on-target’ immunological response and restore efficacy for a targeted 

immunological therapy that would otherwise be harmful in this setting suggests a new 

strategy for precision immunotherapies to overcome altered pathology resulting from high-

fat diet and obesity.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41586-022-04536-0.

Methods

Mice

Mouse studies were conducted at two separate academic research institutions: The Salk 

Institute for Biological Studies, USA and University of California, San Francisco (UCSF), 

USA. Mice were housed in specific pathogen-free facilities. When required, mice were 

purchased from The Jackson Laboratory. By default, mice within The Salk Institute for 

Biological Studies were fed with autoclaved normal chow (MI laboratory rodent diet 5001, 

Harlan Teklad) whereas mice fed at UCSF were given irradiated PicoLab Rodent Diet 20 
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5053. For experiments requiring the use of special diets, at the Salk Institute for Biological 

Studies and UCSF, diets were irradiated and purchased from Research Diets. The HFD 

used was 60 kcal% fat (D12492), the control normal diet was 10 kcal% fat (D12450J). 

Rosiglitazone was provided at 15 mg kg−1 of food. Unless specified, mice treated with 

rosiglitazone began treatment at the introduction of high-fat diet feeding. Mice designated 

as obese in this study were fed high-fat diet for at least 9 weeks, starting at an age of 

6–7 weeks, and weighed at least 38 g (as an average within a cage). During the high-fat 

withdrawal studies, the high-fat diet (Research Diets, D12492) was replaced with control 

normal diet (D12450J), and the always obese and always lean control groups were fed with 

the corresponding high-fat diet or control normal diet from Research Diets. To definitively 

identify Tconv cells for FACS analyses, we used the Foxp3Thy1.1 (ref. 48) reporter mice. 

PPARγ-TKO mice were generated by crossing Cd4cre (ref. 49) transgenic mice and Pparg 
fl/fl (ref. 50) mice. PPARγ Treg cKO mice were generated by crossing Foxp3cre (Foxp3-

Ires-YFP-cre)51 and Pparg fl/fl mice. All mice used for studies were male. All procedures 

involving animals were performed in accordance with protocols approved by the respective 

Institutional Animal Care and Use Committee (IACUC) of the Salk Institute for Biological 

Studies and UCSF.

MC903-induced experimental atopic dermatitis

Mice were anaesthetized with isoflurane and MC903 solution (0.1 mM in ethanol, 10 μl 

per ear, R&D Systems) was applied to mouse ears daily for 9–13 days. Ear thickness was 

assessed with a micrometer (Mitutoyo, 227–211). After collection, ears were dissected from 

the mice and prepared for histological analyses or flow cytometry.

TOP-induced experimental atopic dermatitis

Mice were injected intraperitoneally with an OVA-Imject Alum mixture (OVA (Sigma-

Aldrich); Imject Alum Adjuvant (Thermo Fisher); mixture made per manufacturer 

instructions) on day −7. Seven days later, on day 0, mice were subjected to a treatment 

of tape-stripping (Shurtape, HP-500, 3 tape strips on both sides of the ear) and application 

of OVA–papain in PBS (250 μg OVA and 125 μg papain (Sigma-Aldrich, P3375) per 25 

μl per mouse), which was repeated on days 2, 4 and 6. Ear thickness was assessed with a 

micrometer (Mitutoyo, 227–211). Upon collection on day 8, ears were dissected from the 

mice and prepared for histological analyses or flow cytometry.

Reanalyses of atopic dermatitis patient cohort

Peripheral blood serum from patients with moderate-to-severe AD (n = 59) were 

previously analysed by Olink Proseek multiplex assay using inflammation I, cardiovascular 

disease/CVD II, and CVD III multiplex panels. The proteins that were identified previously 

as differentially expressed genes from non-lesional keratinocytes treated with IL-13 or 

IL-17A were then correlated with patient BMI. Correlations between BMI and protein 

expression levels were assessed using Spearman correlation coefficients, and data are 

presented in scatter plots.
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OVA-induced acute asthma

Mice were sensitized on days 0, 7 and 14 by intraperitoneal injection of 50 μg of OVA 

(Sigma-Aldrich) emulsified in 1 mg of aluminium potassium sulfate. One week after the 

last sensitization, mice were intranasally challenged on 3 consecutive days with 100 μg 

OVA in 40 μl saline. Twenty-four hours after the last OVA challenge, mice were sacrificed 

for downstream analyses including cell counting of bronchoalveolar lavage fluid and flow 

cytometric analyses of the lung-draining lymph nodes.

Reanalyses of asthma patient cohort

Clinical data were originally collected as part of the NHLBI Severe Asthma Research 

Program52 and reanalysed for correlation with patient BMI. One-way ordinary ANOVA 

followed by a test of linear trend was used to determine statistical significance.

FTY720 treatments

Mice were injected intraperitoneally, daily with FTY720 (1 mg kg−1) or water starting one 

day before initiation of the MC903 challenge through conclusion of challenge.

Antibody treatments

The following antibodies were used: anti-mouse IL-4 (BioXCell, 11B11), anti-mouse IL-13 

(InvivoGen, 8H8), and isotype control (IgG1, BioXCell, MOPC-21). The antibodies were 

injected intraperitoneally at days 0, 3, 6, and 8 of the MC903-induced AD challenge at a 

dose of 0.25 mg per mouse for anti-IL-4, 0.1 mg per mouse for anti-IL-13, and 0.35 mg 

per mouse for isotype control (IgG1). For the TOP–AD model, the antibodies were injected 

intraperitoneally at days 0, 2, 4 and 6 with the same dosage as for the MC903-AD model. 

Injection volumes never exceeded 150 μl.

Single-cell suspension of ear-infiltrating immune cells

Dissected ears were minced into fine pieces (1–2 mm3), and digested in a stromal vascular 

isolation buffer (HBSS with calcium and magnesium, 20 mg ml−1 BSA, 20 mg ml−1 

penicillin, 20 mg ml−1 streptomycin) containing 2 mg ml−1 Collagenase D (Roche) at 37 °C 

with intermittent shaking for 2 h. The suspension was then passed through a 100-μm mesh 

to remove undigested clumps and debris. The flow-through was centrifuged at 400 RCF for 

10 min. The pellet containing the stromal vascular fraction was washed once in 10 ml RPMI, 

and the resultant isolated cells were prepared for FACS analysis directly or first stimulated 

with PMA and ionomycin in the presence of brefeldin A (GolgiPlug; BD) for 5 h at 37 °C 

for subsequent intracellular cytokine staining and then prepared for FACS analysis.

Histological analyses

Sections (5 μm) of fixed tissues were stained with haematoxylin and eosin according to 

standard procedures. Histopathological analyses were conducted on blinded samples for 

severity and extent of inflammation and morphological changes by a pathologist.
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Flow cytometry

The following antibodies were used. Biolegend: CD3 (145-2C11), CD4 (RM4-5), CD8 

(53–6.7), CD25 (7D4), CD44 (IM7), CD45.2 (104), CD62L (MEL-14), CD90.1 (Thy1.1, 

OX-7) and IFN-γ (XMG1.2), IL-17F (9D3.1C8), TCRγ/δ (GL3); eBioscience: FOXP3 

(FJK-16s), IL-4 (11B11), IL-13 (eBio13A), IL-17A (eBio17B7). We used the eBioscience 

Fixable Viability Dye eFluor780 or DAPI to distinguish live from dying or dead cells. 

For intracellular staining, cells were treated with fixation and permeabilization reagents 

from eBioscience and labeled with appropriate antibodies before being analysed. Data were 

analysed using a LSRII, LSRFortessa, or FACSAria instrument (Becton Dickinson) and 

FlowJo software (FlowJo LLC). Cells were sorted on a BD FACSAria cell sorter.

scRNA-seq

scRNA-seq was performed in two batches on separate samples with the Chromium 

Single Cell 3′ Reagent Kit, v3 chemistry (10x Genomics, PN-1000092) following 

the manufacturer’s protocol. The same procedure was followed for both Chromium 

runs unless otherwise specified. In brief, cells were sorted by FACS (sorting on live, 

CD45.2+TCRγδ−CD4+ cells on a BD FACS Aria cell sorter), resuspended at 500–900 

cells per μl in PBS + 1% FBS, and loaded into the Chromium Controller (10x Genomics, 

PN-1000202) for an anticipated targeted recovery of 3,000–6,000 cells depending on sample 

recovery from FACS. We performed 11 cycles of PCR for cDNA amplification after 

GEM recovery, and 25% of each cDNA sample was carried into transcriptome library 

preparation. We performed 13 cycles of PCR to introduce Chromium i7 multiplex indices 

(10x Genomics, PN-120262). cDNA was diluted 1:5 in buffer EB and quantified by 

Bioanalyzer DNA High Sensitivity (Agilent, 5067–4626) and Qubit dsDNA High Sensitivity 

(Thermo Fisher, Q32854) reagents. Samples were pooled equally and sequenced on a HiSeq 

4000 (Illumina) using read parameters 28 × 8 × 98.

Raw fastq files were mapped to the mouse transcriptome (‘refdata-cellranger-mm10-3.0.0’) 

using Cell Ranger (10x Genomics, version 3.0.2) and ‘filtered_feature_bc_matrix.h5’ files 

were loaded into Scanpy (version 1.6.0)53 for processing. For batch 1 (lean, obese, Cd4cre 

and PPARγ TKO), 2,500–4,500 cell barcodes were recovered per sample, totalling 12,597 

cells before filtering. For batch 2 (control-DMSO, control-Rosi, PPARγ TKO-DMSO 

and PPARγ TKO-Rosi), 3,100–5,500 cell barcodes were recovered per sample, totalling 

15,867 cells before filtering. Cells with fewer than 200 detected genes, more than 6,000 

detected genes, and/or mitochondrial read fraction higher than 25% were removed from 

the complete dataset. After filtering, 12,034 and 15,658 cells from batches 1 and 2, 

respectively, were carried through for subsequent analyses. Counts were log normalized 

and scaled before regressing out total UMI counts and mitochondrial fraction per cell. 

Principal component analysis (PCA) was performed on highly variable genes, and the 

first 20 PCA components were used to construct a UMAP24,25. Cell clustering was 

performed using the Leiden algorithm54 (version 0.7.0, resolution 0.9). Two (batch 1) or 

three (batch 2) small clusters identified as contaminating antigen presenting cells were 

excluded from downstream analyses. Additionally, Foxp3-expressing cells were excluded 

from analyses in this study. We performed Gaussian kernel density estimation (Scanpy 

‘embedding_density’) to visualize the distribution of samples in UMAP space. Continuous 
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probability density curves were generated using Seaborn (version 0.10.0) kdeplot function 

with ‘common_norm=False’ to account for differences in sample number. Mann–Whitney 

U statistics were calculated using Scipy.stats (version 1.4.1) mannwhitneyu function. The 

PPARγ activity score was calculated with the score_genes function (Scanpy) using filtered 

genes associated with the top 50% of peaks annotated by HOMER (see ‘ChIP–seq library 

generation’) compared against a random, size-matched control gene set.

RNA velocity

Cellranger bam files were processed with Velocyto (version 0.17.17) using the default Cell 

Ranger mm10 gtf reference file (version 3.0.0) with repeat masking (UCSC). Output files 

were loaded into scVelo (version 0.2.2) (https://scvelo.readthedocs.io) and merged with the 

gene-expression anndata object from Scanpy. Low abundance genes (less than 30 total 

counts) were filtered from the merged dataset. Cell moments were calculated considering 

30 nearest neighbors and 30 principal components and used to estimate RNA velocities 

using default settings. The ‘TH17-ness’ metric was inferred from (1) the directionality of 

RNA Velocity vectors along the UMAP1 coordinate (x-axis) and (2) a composite TH17 

score calculated from Il17a, Il17f, Il22 and Il23r expression using the score_genes function 

(Scanpy).

In vitro CD4+ T cell differentiation

CD4+ T cells were isolated from the spleen and lymph nodes using the EasySep Mouse CD4 

Positive Selection Kit II (Stemcell Technologies). Naive (CD25−CD44hiCD62Llo) CD4+ T 

cells were sorted by flow cytometry from the bead purified CD4+ T cells. The naive CD4+ 

T cells were resuspended in Click’s medium (Irvine Scientific) at 1 million cells per ml, and 

then plated on day 0 in 24 well plates coated with goat anti-hamster IgG antibody (200 ng 

ml−1; MP Biomedicals) with the addition of soluble anti-CD3 (1 μg ml−1; 145-2C11) and 

anti-CD28 (1 μg ml−1; 37.51) from Bio X Cell. Polarizing conditions for different T helper 

subsets are as following: TH1: human IL-2 (100 U ml−1; PeproTech), mouse IL-12 (20 ng 

ml−1; PeproTech) and anti-IL-4 (5 μg ml−1; Bio X Cell); TH2: human IL-2 (100 U ml−1; 

PeproTech), mouse IL-4 (20 ng ml−1; Biolegend), anti-IFN-γ and anti-IL-12 (5 μg ml−1; Bio 

X Cell); TH17: mouse IL-6 (20 ng ml−1; Biolegend), human TGF-β (2 ng ml−1; PeproTech), 

anti-IFN-γ and anti-IL-12 (5 μg ml−1; Bio X Cell).

RNA-seq library generation and sequencing analysis

Total RNA was extracted from TH1, TH2 and TH17 cells approximately 96 h after initiation 

of in vitro differentiation. RNA-sequencing libraries were prepared from 100 ng total 

RNA (TrueSeq v2, Illumina) and single-end sequencing was performed on the Illumina 

HiSeq 2500, using bar-coded multiplexing and a 100 bp read length, yielding a median 

of 34.1 million reads per sample. Read alignment and junction finding was accomplished 

using STAR55 and differential gene expression with Cuffdiff 2 (ref. 56), utilizing UCSC 

mm10 as the reference sequence. Transcript expression was calculated as gene-level relative 

abundance in fragments per kilobase of transcript per million mapped fragments and 

employed correction for transcript abundance bias57.
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Primers for quantitative PCR.—Pparg: forward, CACAATGCCATCAGGTTTGGG; 

reverse: GAAATGCTTTGCCAGGGCTC. Gata3: forward, 

CTTCCCACCCAGCAGCCTGC, reverse: CGGTACCATCTCGCCGCCAC. Tbx21: 

forward, GTCGCGCTCAGCAACCACCT, reverse: CGGCCACGGTGAAGGACAGG. 

Rorc: forward, CCGGACATCTCGGGAGCTGC, reverse: 

CGGCGGAAGAAGCCCTTGCA. Hprt: forward, GTCATGCCGACCCGCAGTCC, 

reverse: GGCCACAATGTGATGGCCTCCC.

Antibodies for western blot

Rabbit anti-PPARγ mAb (81B8, Cell Signaling), mouse anti-tubulin (DM1A, Sigma).

ChIP–seq library generation

Naive CD4+ T cells were activated and polarized in TH2 conditions. On days 1 and 2, 

T cells were transduced with a retroviral vector expressing TY1-tagged Pparg. On day 4, 

transduced T cells were collected for ChIP as described previously58 using a TY1 antibody 

(Sigma, SAB4800032). ChIP–seq libraries were constructed and sequenced (100 bp single 

end reads) as described previously13. Short DNA reads were demultiplexed using Illumina 

CASAVA v1.8.2. Reads were aligned against the mouse mm10 reference genome using the 

Bowtie2 aligner with standard parameters that allow up to 2 mismatches per read. Peak 

calling, motif analyses, and other data analysis were performed using HOMER, a software 

suite for ChIP–seq analysis as described previously58. Visualization of ChIP–seq results was 

achieved by uploading custom tracks onto the UCSC genome browser.

Glucose tolerance test

Fasting was induced for 6 h. Glucose (1.5 g kg−1, intraperitoneally) was injected and serum 

was collected for glucose and insulin measurements. Blood glucose was monitored using 

a Nova Max Plus glucometer. Serum insulin levels (Ultra Sensitive Insulin, Crystal Chem) 

were measured by ELISAs.

Statistical analyses

Statistical analyses were performed with Prism 9 (GraphPad). P values were calculated 

using Welch’s t-test unless otherwise noted. Mice cohort size was designed to be sufficient 

to enable statistical significance to be accurately determined. When applicable, mice were 

randomly assigned to treatment or control groups. Experimental data was not excluded from 

the statistical analyses, except for exclusions due to technical errors or loss of confidence 

in appropriate controls. The investigators were not blinded in the studies unless otherwise 

stated. Appropriate statistical analyses were applied, assuming a normal sample distribution, 

unless otherwise specified. No estimate of variance was made between each group. All in 

vivo experiments were conducted with at least two independent cohorts unless otherwise 

specified. All in vitro TH differentiation experiments were conducted at least three times. 

Unless otherwise noted, data from one instance of the repeated experiments are represented 

in this manuscript. Bulk and single-cell RNA-seq experiments and ChIP–seq experiments 

were conducted once using multiple biological samples per group (as indicated in figure 

legends).
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Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.

Data availability

The bulk RNA-sequencing and ChIP–seq data can be accessed in the NCBI Sequence Read 

Archive under the accession PRJNA553761. Additionally, the ChIP–seq data that support 

the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under 

the accession code GSE189216. The single cell-RNA sequencing data used in this study 

are deposited in the GEO under the accession code GSE189476. Other relevant data are 

available from the corresponding authors upon reasonable request. Source data are provided 

with this paper.

Code availability

Code used in this manuscript can be provided by reasonable request to the corresponding 

authors.
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Extended Data

Extended Data Fig. 1 |. Diet-induced and monogenic models of obesity provoke increased disease 
severity upon MC903-AD challenge.
a, Scheme of MC903-induced atopic dermatitis disease model where animals are fed either 

high fat diet (HFD) or normal diet (ND) for two weeks before initiating MC903 treatments. 

Black arrows indicate MC903 or EtOH administration to ear. b, Change in ear thickness 

during AD development as in (a). c, Representative H&E ear histology, Day 11. Scale bars, 

100 μm. Dashed line, leukocytic expansion of the dermis. d, Total Tconv, Treg, and CD8+ T 
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cell number from whole ear, Day 11. e–h, Body mass (e), change in ear thickness during 

AD challenge (f), representative images at Day 10 of challenge (g), and representative H&E 

ear histology, Day 10 (h) of ND-fed mice, HFD-fed obese mice, or ND-fed ob/ob or db/db 
mice. i, j, Body mass at Day 0 (i) and change in ear thickness upon AD challenge (j) of 

9 week old ob/ob mice fed ND or HFD for three weeks. k–m, Timeline of body mass (k), 

change in ear thickness (l), and representative images at Day 10 of challenge (m) of always 

obese (AO), once obese/now lean (OO), and never obese (NO) mice. Red arrow (k) indicates 

replacement of HFD with control lean diet for OO mice. n = 5 for all groups in (b–m) except 

4 never obese (NO) mice were used in (l) and (m). Data are mean ± s.e.m. Peak values 

were tested with Welch’s t-test in (b, j) and ordinary one-way ANOVA with all groups 

tested against ND in (f). Ordinary one-way ANOVA with all groups tested against ND in 

(e) and with all groups tested against all groups in (l). P values were adjusted for multiple 

comparisons in (d) using Holm-Šídák method and Šídák’s multiple comparisons test in (e, f, 
l). ns – not significant, #P < 0.07, *P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 2 |. Increased inflammation in obesity in multiple models of allergic 
inflammatory disease.
a, Scheme of TOP (Tape stripping followed by Ova-Papain exposure)-induced atopic 

dermatitis disease model with either high fat diet (HFD) or normal diet (ND). Black 

arrows indicate tape stripping followed by OVA-papain administration. b, Change in ear 

thickness during AD development. c, Representative pictures of ears at Day 8 of challenge. 

d, Representative H&E ear histology, Day 8. Scale bars, 100 μm. e–g, Timeline of body 

mass (e), change in ear thickness (f), and representative pictures of ears (g) at Day 8 of 
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challenge of always obese (AO), once obese/now lean (OO), and never obese (NO) mice. 

Red arrow (e) indicates replacement of HFD with control lean diet for OO mice. h, Scheme 

of OVA-Alum allergic asthma model. Purple arrows indicate OVA-Alum i.p. injection. i, 
Total immune cell numbers from bronchoalveolar lavage fluid upon sacrifice on Day 24. j, 
Total CD4+ and CD8+ T cell numbers from lung draining lymph node, Day 24. k, Total 

Tconv, Treg, and CD8+ T cell numbers from whole ear of lean and obese mice challenged 

with MC903-AD, Day 11. Asthma model was conducted once. Macro, macrophages; Eos, 

eosinophils; Lymph, lymphocytes; PMNs, polymorphonuclear leukocytes; n = 5 for (b–g); n 

= 10 for Lean-OVA and Obese-OVA, n = 5 for Lean-Control, and n = 4 for Obese-Control 

in (i); n = 10 for Lean-OVA, n = 6 for Obese-OVA, n = 4 for Lean-Control, and n = 3 

for Obese-Control in (j). n = 5 for all groups in (k). Data are mean ± s.e.m. Peak values 

were tested with Welch’s t-test in (b) and ordinary one-way ANOVA with preselected 

followup tests as indicated in (f). P values were adjusted for multiple comparisons using 

Šídák’s multiple comparisons test in (f) and the Holm-Šídák method in (i–k) where only the 

Lean-OVA and Obese-OVA groups were compared in (i, j). #P < 0.12, *P < 0.05, **P < 

0.01.

Extended Data Fig. 3 |. Selected flow cytometry gating strategies for evaluating cytokine-
competence.
a, b, Different T cell subsets were identified through the use of distinct antibody cocktails. 

Here, using obese mice, we show how the skin-resident/infiltrating hematopoietic cells 

can be analyzed by flow cytometry to identify CD4+ T cells (a) and selected cytokine 

competence of those CD4+ T cells (b).
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Extended Data Fig. 4 |. Multiple models of allergic inflammatory disease demonstrate increased 
TH17-driven inflammation in obesity.
a, b, Total IL4+, IL13+, IFNγ+, IL17A+, and IL17F+ cell numbers of CD4+ T cells from 

whole ear (a) or ear skin draining lymph node (b) at Day 8 of mice challenged with 

TOP-induced AD. c, Total IL4+, IL13+, IFNγ+, IL17A+, and IL17F+ cell numbers of CD4+ 

T cells from bronchoalveolar lavage fluid upon sacrifice on Day 24 of mice challenged with 

experimental allergic airway disease (ovalbumin sensitization and challenge). n = 5 for all 

groups in (a, b); n = 10 for Lean and n = 6 for Obese in (c). Mann-Whitney tests were 

conducted in (a, b) and P values were adjusted for multiple comparisons using Holm-Šídák 

method in (a–c). *P < 0.05, **P < 0.01.
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Extended Data Fig. 5 |. Evidence of increased TH17 inflammation or decreased TH2-associated 
pathology in obese patients with allergic disease.
a, Scheme demonstrating workflow and integration of human AD patient serum proteomics 

with cytokine-induced gene expression studies of human keratinocytes (KCs) correlated 

with patient BMI. b, c, Scatterplots depicting the serum protein levels from AD patients of 

genes specifically induced by IL17A (b) or IL13 (c) in human KCs versus patient BMI. n = 

59 moderate-to-severe AD patients for scatter plots in (b, c). r and p values for scatter plots 

in (b, c) were obtained using Spearman rank correlation. d, e, Sputum eosinophil percentage 

from human severe asthma patients across a range of BMIs, on their first clinical baseline 

visit as part of SARP, represented irrespective of age of onset (d) or broken down by age 

of onset (e). n = 272, 211, and 95 for patients with BMI <30, 30–40, and >40, respectively 

in (d). n = 113, 83, and 52 (pediatric-onset patients) and n = 70, 66, and 23 (adult-onset 

patients) with BMI <30, 30–40, and >40, respectively in (e). P value from test of linear trend 

(post-test after statistically significant ordinary one-way ANOVA) in (d, e).
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Extended Data Fig. 6 |. Gene heatmaps from scRNA-Seq data used in Fig. 1 and Fig. 2.
Heatmaps of transcription factors (a), cytokines (b), and markers of activation, quiescence, 

and memory (c) overlain on UMAP plot from Fig. 1f to assign names to clusters. Grayscale 

indicates gene expression, with the highest expressing cells in black.
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Extended Data Fig. 7 |. Blocking lymphocyte egress from secondary lymphoid organs during AD 
challenge reduces disease severity and TH17 inflammation in the lesions of obese mice.
a, Change in ear thickness during development of MC903-AD of lean or obese mice treated 

with vehicle (water) or FTY720. b, Representative pictures of ears at Day 10 of challenge. 

c, Total IL4+, IL13+, IFNγ+, IL17A+, and IL17F+ CD4+ T cell numbers assessed by flow 

cytometry from draining lymph node of lean (left) and obese (right) mice treated with 

vehicle or FTY720. n = 5 for all groups in (a–c). Data are mean ± s.e.m. Peak values were 

tested with Welch’s t-test in (a). P values were adjusted for multiple comparisons using 

Holm-Šídák method in (c). *P < 0.05, **P < 0.01, ****P < 0.0001.
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Extended Data Fig. 8 |. Targeted anti-IL-4/IL-13 blockade is ineffective in obese mice challenged 
with TOP.
a, Change in ear thickness during development of TOP-AD of lean or obese mice treated 

with anti-IL-4/IL-13 or IgG1 isotype control. b, Representative pictures of ears at Day 8 of 

challenge. c, Representative images of H&E-stained histology of ears at Day 8. Scale bars, 

100 μm. d, Lesional number of CD4+ T cells with the indicated cytokine competence as 

measured by intracellular cytokine staining via flow cytometry from lean and obese mice 

treated with anti-IL-4/IL-13 or isotype control. n = 5 for all groups in (a–d). Data are mean 

± s.e.m. Peak values were tested with Welch’s t-test in (a). P values were adjusted for 

multiple comparisons using Holm-Šídák method in (d). #P < 0.06, *P < 0.05, **P < 0.01.
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Extended Data Fig. 9 |. PPARγ is differentially expressed in in vitro differentiated TH2 cells.
a, Fragments per kilobase of transcripts per million mapped reads (FPKM) values of nuclear 

hormone receptor (NHR) superfamily genes differentially expressed in in vitro differentiated 

TH1, TH2, and TH17 cells. NHR genes that are differentially expressed in TH2 cells are 

encircled (cells pooled from 4 mice before inducing differentiation in triplicate, same data 

set used in (e)). b, c, Relative expression (using Hprt expression as housekeeping gene) of 

indicated genes in in vitro differentiated TH1, TH2, and TH17 cells (cells pooled from 4 mice 

before inducing differentiation in triplicate). b, Gene expression determined at Hour 120 

post induction of differentiation. c, Time course of gene expression from Hours 0–96 post 

induction of differentiation. d, Western blot of PPARγ and tubulin at Hours 72 and 96 in 
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in vitro differentiated TH1, TH2, and TH17 cells (cells pooled from 3 mice before inducing 

differentiation). e, FPKM values of genes that are differentially expressed in TH2 cells and 

involved in transcriptional regulation. Position of Pparg is marked with a red dot. f, Top 

scoring DNA motif of PPARγ ChIP-Seq peaks in in vitro differentiated TH2 cells via de 
novo analysis (cells pooled from 4 mice). g, Visualization of PPARγ ChIP-Seq experiment 

utilizing UCSC genome browser across following genomic loci: Pdk4, Cpt1a, Plin2. Data 

are mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001, Student’s t-test.

Extended Data Fig. 10 |. PPARγ TKO mice display neither overt systemic inflammation nor 
altered T cell development, and PPARγ Treg cKO (Foxp3Cre Ppargfl/fl) mice do not display an 
overt difference in AD severity relative to controls.
a–e, Comparison between PPARγ TKO and Control (Cd4Cre Pparg+/+) mice. a, Picture 

of control and PPARγ TKO spleens and lymph nodes. b, Spleen mass. c, d, Treg (c) 

and activated Tconv (d) cell frequency in spleen and LN. e, Developing T cell subsets in 

thymus. f–j, Comparison between PPARγ Treg cKO and Control (Foxp3Cre Pparg+/+) mice. 

f, Change in ear thickness during development of atopic dermatitis. g, Representative images 
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of H&E-stained histology of ears at Day 10. Scale bars, 100μm. Dashed line, leukocytic 

expansion of the dermis. h, Absolute lesional leukocyte number assessed by flow cytometry 

at Day 13. i, Lesional activated Tconv cells as a percentage of Tconv cells assessed by flow 

cytometry at Day 13. j, Lesional Treg cells as a percentage of CD4+ T cells assessed by flow 

cytometry at Day 13. Control, Foxp3Cre Pparg+/+. LN, lymph node. For (a–e), n = 3 mice 

per group. For (f–i), n = 4 mice per group. Data are mean ± s.e.m.

Extended Data Fig. 11 |. PPARγ in T cells is dispensable for the insulin-sensitizing action of 
TZDs.
a–d, Glucose tolerance tests (GTTs) of Control (a, b) or PPARγ TKO (c, d) mice that 

have been treated with or without Rosi. Glucose and insulin traces (a, c) and corresponding 

area under the curves (AUCs) (b, d) are presented. Control, Cd4Cre; PPARγ TKO, Cd4Cre 

Ppargfl/fl; For (a–d) n = 10 for all Control mice with exception in (a, b) where n = 9 for 

the glucose measurements for mice treated with Rosi; n = 8 for PPARγ TKO mice with 

exception in (c, d) where n = 7 for the PPARγ TKO Rosi-treated mice that were sampled 

for the serum glucose measurements and n = 5 for the PPARγ TKO Rosi-treated mice 

that were sampled for the serum insulin measurements. Gluc., Glucose; Ins., Insulin; Rosi, 
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Rosiglitazone. This experiment was conducted once with a weight- and age-matched cohort. 

Data are mean ± s.e.m. *P < 0.05, **P < 0.01.

Extended Data Fig. 12 |. Gene heatmaps from scRNA-Seq data used in Fig. 3.
Heatmaps of transcription factors (a), cytokines/cytokine receptors (b), and markers of 

activation, quiescence, and memory (c) overlain on UMAP plot from Fig. 3c to assign names 

to clusters. Grayscale indicates gene expression, with the highest expressing cells in black.
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Extended Data Fig. 13 |. Pictures of the ears of obese DMSO- or Rosi-HFD fed mice challenged 
with AD while treated with anti-IL-4/IL-13 or IgG1 isotype control (a), and initiating Rosi 
treatment at AD-challenge onset prevents worsening of disease upon treatment with anti-IL-4/
IL-13 in obese mice (b, c).
a, Representative pictures of ears at Day 10. b, Change in ear thickness during development 

of MC903-AD of obese mice treated with Rosi or DMSO with anti-IL-4/IL-13 or IgG1 

isotype control. c, Representative images of H&E-stained histology of ears at Day 10. Scale 

bars, 100 μm. n = 5 for all groups in (a–c). Rosi-mixed HFD introduced four weeks prior to 

initiation of experimental AD in (a) and upon AD-challenge onset in (b, c). Data are mean ± 

s.e.m. Peak values were tested with Welch’s t-test in (b). *P < 0.05.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Obesity converts a classically TH2-driven inflammatory disease to a more severe TH17-
driven disease that is worsened upon anti-TH2 antibody treatment.
a, MC903-induced AD model with either high-fat diet (HFD) or normal diet (ND). b, 

Change in ear thickness during development of AD. c, Representative images of ears of 

mice treated with ethanol (EtOH) or MC903, on day 11. d, Representative haematoxylin 

and eosin (H&E) ear histology on day 11. Dashed line, leukocytic expansion of dermis. 

Original magnification, ×200. e, Total cytokine-competent CD4+ T cell numbers from whole 

ear, on day 11. f, RNA velocity visualization of transcriptional trajectories in UMAP space 

with Leiden clustering of scRNA-seq of Tconv cells from AD-challenged ears on day 10. g, 

Gene-expression heat maps of Rorc, Il17a, Il17f, Il22 and Il23r, with the highest-expressing 

cells in black. h, Distribution of Tconv cells in UMAP space (from f) from lean and obese 

mice after AD challenge. Contour lines are set at identical thresholds. Borders of TH2 and 

TH17 late clusters are outlined. TH17 late contour outlines cells in the top 50th percentile of 

Il17a, Il17f, Il22 and Il23r expression. i, TH17 cluster continuous probability density curves, 

scaled by sample. j–l, Change in ear thickness (j), with representative images from day 

10 (k) and representative H&E ear histology from day 11 (l; original magnification, ×100) 

of lean or obese mice with induced AD treated with anti-IL-4/IL-13 or isotype control. 

m, Representative epidermal pustules (arrows) in obese mice with induced AD and treated 

with anti-IL-4/IL-13. Original magnification, ×400. n, Number of lesional CD4+ T cells 

with indicated cytokine competence (detected by intracellular cytokine staining and flow 

cytometry) from lean and obese mice treated with anti-IL-4/IL-13 or isotype control. Scale 
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bars, 100 μm. n = 5 (b–e) except n = 4 for IL-17A and IL-17F CD4+ T cell measurements 

(e); n = 1 (pooled from 5 mice per group) for scRNA-seq in f–i; n = 5 (j–m) except n = 4 

for lean mice with isotype control (j); n = 3 (pooled from 1–2 mice per sample) (n). Data 

are mean ± s.e.m. Peak values were tested with Welch’s t-test (b, j). P values adjusted for 

multiple comparisons using Holm-Šídák method (e); Mann–Whitney U test (i). #P < 0.06, 

*P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 2 |. Mice with T cell-specific PPARγ deficiency largely phenocopy obese PPARγ-sufficient 
mice upon experimental AD challenge.
a, Heat map of PPARγ activity (ChIP–seq cistrome expression) using UMAP visualization 

of scRNA-seq data of Tconv cells from Fig. 1f. b, Violin plots representing T cell-PPARγ 
cistrome expression across distinct Leiden clusters from lean and obese mice. c, Change 

in ear thickness during MC903-induced AD development of PPARγ-TKO or control mice. 

d, Representative images of ears of mice as in c on day 10. e, Representative H&E ear 

histology of mice as in c on day 10. Dashed line highlights leukocytic expansion of dermis. 

Original magnification, ×200. f, Total cytokine-competent CD4+ T cell numbers assessed 

by flow cytometry from whole ear of mice as described in c on day 11. g, Distribution 

of Tconv cells in UMAP space (Fig. 1f) from lean control and PPARγ-TKO mice after 

AD challenge. Contour lines are set at identical thresholds. Borders of TH2 and TH17 late 

clusters are outlined. TH17 late contour defined as in Fig 1h. h, TH17 cluster continuous 

probability density curves of control and PPARγ TKO, scaled by sample. i–k, Change in ear 

thickness (i), representative images from day 10 (j), and representative H&E ear histology 

from day 11 (k; original magnification, ×100), of control or PPARγ-TKO mice with induced 

AD and treated with anti-IL-4/IL-13 or isotype control. l, Representative epidermal pustules 

(arrows) of PPARγ-TKO mice with induced AD and treated with anti-IL-4/IL-13. Original 

magnification, ×400. m, Lesional CD4+ T cell numbers with indicated cytokine competence. 

n, Proposed PPARγ function as focusing factor for TH2 responses in vivo. Control, Cd4cre; 

PPARγ TKO, Cd4crePpargfl/fl. Scale bars, 100 μm. n = 5 (c–e); n = 7 (f) except n = 4 

for IL-17A/F-competent T cells; n = 1 (pooled from 5 mice per group) for scRNA-seq (g, 

h), run with Fig. 1 samples (batch 1 in Methods, ‘scRNA-seq’); n = 6 (i–l) except n = 5 
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for PPARγ TKO + isotype control; n = 3 (each pooled from 2 mice) (m). Data are mean 

± s.e.m. Only peak values were tested with Welch’s t-test in (c, i). P values adjusted for 

multiple comparisons using Holm-Šídák method (f). Mann–Whitney U test (h). #P < 0.07, 

*P < 0.05, ***P < 0.001.
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Fig. 3 |. Treatment with PPARγ agonist reduces TH17-inflammation and restores efficacy of 
anti-TH2 antibody treatment in obese mice challenged with AD.
a, Change in ear thickness during AD development of obese PPARγ-TKO or control mice 

treated with rosiglitazone (Rosi) or DMSO. b, Representative H&E ear histology on day 

10 of cells treated as in a. c, RNA velocity visualization of transcriptional trajectories in 

UMAP space with Leiden clustering of scRNA-seq data of Tconv cells from AD-challenged 

ears on day 10. d, Distribution of Tconv cells in UMAP space from c isolated from obese 

control or PPARγ-TKO mice treated with DMSO or rosiglitazone after AD challenge. 

Contour lines set at identical thresholds. Borders of TH2 and TH17 clusters are outlined. 

e, TH17 cluster continuous probability density curves of obese control and PPARγ-TKO 

mice fed with DMSO or rosiglitazone-mixed HFD, scaled by sample. f, g, Violin plots 

representing T cell-PPARγ activity (ChIP–seq cistrome expression) in TH2 (f) and TH17 

(g) cells from obese control or PPARγ-TKO mice treated with rosiglitazone or DMSO, 

using scRNA-seq data from c. h, i, Change in ear thickness (h) and representative H&E 

ear histology on day 10 (i; original magnification, ×100) of obese mice with induced AD 

fed DMSO- or rosiglitazone-mixed HFD, treated with anti-IL-4/IL-13 or isotype control. 

j, Representative epidermal pustules (arrows) of obese Bl6 mice with induced AD fed 

with DMSO-mixed HFD and treated with anti-IL-4/IL-13. Original magnification, ×400). 

k, Lesional CD4+ T cell number with indicated cytokine competence. l, Model of PPARγ 
agonists as immunopathological modifiers in obese mice to enable targeted therapy against a 
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classically TH2-driven disease. Control, Cd4cre (except for scRNA-seq, when wild-type Bl6 

mice co-housed with the PPARγ-TKO mice were used). Scale bars, 100 μm. Rosiglitazone-

mixed HFD was introduced four weeks before initiation of experimental AD (h–k). n = 5 

(a, b, h–j); n = 1 (pooled from 5 mice per group) for scRNA-seq (d, e); n = 3 (each pooled 

from 2 mice) (k). Data are mean ± s.e.m. Peak values tested with Welch’s t-test (a, h). 

Mann–Whitney U test (e). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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