RATIONAL DESIGN OF TUNNEL SUPPORTS: AN INTERACTIVE GRAPHICS BASED ANALYSIS OF THE SUPPORT REQUIREMENTS OF EXCAVATIONS IN JOINTED ROCK MASSES

by
Michael D. Voegele
Department of Civil and Mineral Engineering
University of Minnesota
Minneapolis, Minn. 55455

September 1979
Final Report
Approved For Public Release; Distribution Unlimited

US ARMY ENGINEER WATER WPERIMENT STATION
VICISBURG, MISSISSiPPI
Prepared for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314
Under Contract No. DACW 45-74-C-0066
Monitored by Geotechnical Laboratory
U. S. Army Engineer Waterways Experiment Station P. O. Box 63I, Vicksburg, Miss. 39180

Destroy this report when no longer needed. Do not return it to the originator.

> The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

This program is furnished by the Government and is accepted and used by the recipient with the express understanding that the United States Government makes no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof. The program belongs to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a Government program.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FO,
1. REPORT NUMBER Technical Report GL-79-15 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subitite) RATIONAL DESIGN OF TUMNEL SUPPORTS: AN INTERACPIVE GRAPHICS BASED ANALYSIS OF THE SUPPORT REQUIREMENTS OF EXCAVATIONS IN JOINTED ROCK MASSES	5. TYPE OF REPORT A PERIOD COVEREO Final report 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) Michael D. Voegele	8. CONTRACT OR GRANT NUMEER($)$ Contract No. DACN45-74-C-0066
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Civil and Mineral Engineering University of Minnesota Minneapolis, Minn. 55455	10. PRROGRAMELEMENT. PROJECT, TASK
11. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Washington, D. C. 20314	12. REPORT DATE September 1979
	13. NUMBER OF PAGES 525
14. MONITORING AGENCY NAME \& ADORESS(II dilterent from Controllina Oftico) U. S. Army Engineer Waterways Experiment Station Geotechnical Laboratory P. O. Box 631, Vicksburg, Miss. 39180	15. SECURITY CLASS. (of this roport) Unclassified
	15a. OECLASSIEICATION/OOWNGRADING SCHEOULE
16. DISTRIBUTION STATEMENT (of thio Roport) Approved for public release; distribution unlimited	

17. DISTRIBUTION STATEMENT (of the abatract antered In BIock 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverae side if necessary and Identify by block number)

Excavation
Interactive graphics
Jointed rock
Rock masses
Tunnel supports
20. ABSTAACT (Cantimue en reverve sifte II necessary end identify by block number)

The Distinct Element methods portray a rock mass as a two-dimensional assembly of discrete blocks. There are no restrictions of block shapes or magnitudes of displacements and rotations. In the configurations used in this report, the Distinct Element method is coupled to a graphics terminal so that movements of the blocks are visually available as the computer calculates them.

In Chapter II, a brief survey of the methods commonly used to analyze the behavior of jointed media is presented. Common to these methods surveyed is
(Continued)

Unclassified

sECURITY CLASSIFICATION OF THIS PAGE(Whion Data Entored)

20. ABSTRACT (Continued)

the realization that the observed behavior of a Jointed mass is different from the behavior of a continuum.

Chapter III is devoted to providing numerical verilication of the Distinct Element method. In particular, several comparisons to limit equilibrium solutions are presented. The comparisons are favorable.

The other chapters are concerned with the behavior of a Jointed rock mass when disturbed by an excavation. The discussion covers two broad topics: (a) excavations that are stable without external support, and (b) excavations that require external support. The behavior of the jointed mass is typically illustrated by means of contact force distributions within the mass and through the development of arching. For those excavations requiring support, computergenerated ground reaction curves are presented.

PREFACE

This is the final report of a study performed by the University of Minnesota, Minneapolis, Minnesota, under Contract No. DACW45-74-C-0066 with the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. This work was sponsored by the Office, Chief of Engineers, U. S. Army. This study, which was originally funded under the Civil Works Investigation Study (CWIS) Program, "Materials-Structures," by the Missouri River Division, Corps of Engineers, resulted in a report entitled "Rational Design of Tunnel Supports: A Computer Model for Rock Mass Behavior Using Interactive Graphics for the Input and Output of Geometrical Data." Following this preliminary study with its emphasis on rock mass behavior, the WES continued the contract under the CWIS Program, "Materials-Rock."

The study was conducted by Dr. M. D. Voegele, Department of Civil and Mineral Engineering, University of Minnesota, under the supervision of Professor Charles Fairhurst, Department Chairman. Technical contract monitor for the WES was Mr. J. B. Palmerton, Research Civil Engineer, Engineering Geology and Rock Mechanics Division (EGRRMD), WES. Dr. D. C. Banks, Chief, EG\&RMD, was the Contracting Officer's Representative.

During the period of this contract and preparation of the report, the Directors of the WES were COL J. L. Cannon, CE, and COL N. P. Conover, CE. Technical Director was Mr. F. R. Brown.

Page

PREFACE

Chapter

1 INTRODUCTION I-1

I1 THE ANALYSIS OF THE BEHAVIOR OF A ROCK II-1 MASS CONTAINING PLANES OF DISCONTINUITY

1. Introduction II-1
2. The Response Characteristics of a II-3
3. Direct Application of Soil Mechanics II-6 Theories
4. Elastic Theories Applied to Rock Masses II-8
5. Classical continuum elastic theories 11-8
6. Finite Element analyses 1I-9
7. Jointed Mass Behavior Models II-12
8. Physical models II-12
9. Photoelastic models 11-14
10. Observational models 11-15
11. Limit Equilibrium Analyses 11-18
12. An Evaluation of the Techniques Commonly II-21 Used in Jointed Mass Modeling
13. The Distinct Element Method II-24
14. Applications of the Distinct Element Method II-30
111 VERIFICATION OF THE ACCURACY OF PESULTS III-1 Calculated by the distinct element method
15. IntroductionIII-12. The Base Friction MethodIII-5
16. Limit Equilibrium of a Single Block III-12
17. Two Block Limiting Equilibrium Model III-18
18. Embankment Stability Utilizing III-24 Equilibrium of Slices
19. Multi-Block Limiting Equilibrium with III-29 Toppling
20. Pressure Distribution in a Jointed III-36 Foundation
21. Summary III-40
IV THE STABILITY OF UNDERGROUND EXCAVATIONS IV-1 IN JOINTED ROCK
22. Introduction IV-1
23. General Observations on Force Distribution IV-6 Around Excavations in Jointed Rock
24. A Model for the Behavior of Jointed IV-13 Mine Roofs
25. The basic model IV-13
26. The properties of the basic model IV-17
27. The Stability of Roofs in the Absence IV-22 of Arch Development
28. An Examination of the Stability of IV-26 Jointed Roofs
29. The Voussoir arch IV-26
30. Arching conditions in jointed roofs IV-37
31. The development of arching in IV-49 single layer models
32. Arching in multilayered models IV-56
33. Use of Results in Design IV-66
34. Summary IV-71
Chapter Page
V AN ANALYSIS OF THE SUPPORT REQUIREMENTS V-1
OF EXCAVATIONS IN JOINTED ROCK MASSES
35. Introduction V-1
36. The Estimation of Rock Loads for V-4 Support Design
37. The concept of a ground reaction curve V-4
38. Tunnel support design concepts V-7
39. Calculation of the potential ultimate V-19 roof loads in the jointed mass model
40. The use of displacement controlled V-28 fixed blocks to generate ground reaction curves
41. Support Requirements in the Absence of Arch Development V-33
42. An Investigation of Support Requirements V-43 in Jointed Roofs ,
43. Jointed mass behavior representation V-43 by means of ground reaction curves
44. The use of the Distinct Element V-59
method in the design of support systems for excavations in jointed masses
45. The Effect of Joint Interlocking on the V-75
Ground Reaction Curve
46. Summary V-85
VI SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR VI-1 FURTHER DEVELOPMENT In
REFERENCES R-1
Appendix
A THE DISTINCT ELEMENT METHOD A-1
B USERS MANUAL FOR THE DISTINCT ELEMENT PROGRAM B-1
C LISTING OF THE DISTINCT ELEMENT PROGRAM C-1

CHAPTER I

INTRODUCTION

The goal of engineering analysis is intelligent design. This is true for disciplines which are based upon theoretical concepts discovered literally centuries ago as well as for more recently recognized disciplines such as Rock Mechanics engineering. Whereas the researcher in most fields of engineering has at his disposal analytical techniques which have been proven through decades of use and sound analytical development, the Rock Mechanics researcher has a limited number of analytical techniques at his disposal. Many of the problems encountered in the field of Engineering Geology and Mining engineering require the specification of the response behavior characteristics of a jointed rock mass. Foundation design requires a knowledge of the stiffness of the rock mass so that settlements and forces can be predicted accurately. Highway cuts in rock must be designed so as to be completely safe from slope failures. Mines, shafts and tunnels must all be designed with a knowledge of the behavior of the rock mass. The economic design of open pit mines relies heavily on the pit slope angle; a change of only a few degrees in the slope angle has a significant effect on the stripping ratio and thus the economic success of the mining venture. The design of dam foundations or abutments is particularly sensitive to the behavior of the rock mass. Settlements which can be tolerated by dam foundations are quite small. The failure to consider all of the response characteristics of a rock mass in such situations has in the past led to catastropic failures and the attendant loss of life. In all of these problems the role of mass jointing can play a significant role
in the mass response, but all too frequently the exact behavior of the joints is poorly understood. Intelligent design requires an understanding of this behavior.

The analytic techniques at the disposal of the Rock Hechanics engineer upon which the design must be based are quite 1 imited, and typically have been borrowed from other fields. The principles of classical mechanics are often used as an aid in analysis but it is frequently observed that the behavior of a rock mass cannot be characterized by the assumptions inherent in these classical methods. The fundamental assumptions of a continuum characterization, homogeneity and 1 inearly elastic response, are often seen to be too limited in scope to characterize adequately the behavior of a rock mass. That group of materials which we classify as rock is typically non-homogeneous, anisotropic, and often discontinuous; of these characteristics the discontinuous nature of the rock mass is certainly the most influential in governing the ultimate behavior of the mass when subjected to some external stimulus. Constitutive relations can be generalized to include the effects of anisotropic structure; for example, a recent paper by Singh (1973) describes the development of an anisotropic continuum model in which the average influence of planar features can be taken into account.

Finite Element methods provide an accurate, approximate, method of solving problens in elasticity. The formulation of a "joint" element by Goodman et al. (1968) greatly increased the potential of the Finite Elenent methods in Rock Mechanics problens. However, Finite Elenent methods still strictly model a continum and thus
large displacements are not possible except through iteration with each new iteration utilizing parameters derived from the previous iteration.

To portray adequately the response of a jointed rock mass requires the correct modeling of the discontinuities present, that is, the joints must have both normal and shear stiffness, they must obey some type of failure law and, most important, the blocks defined by the joints must be free to undergo large displacements and rotations if conditions so dictate. A computer model which satisfies all of these criteria was presented by Cundall (1971b).

The computer model for simulating progressive large scale movements in blocky rock systems which has since become known as the Distinct Element method utilizes semi-rigid rock blocks to characterize the behavior of a discontinuous rock mass. The interaction between the blocks is governed by realistic friction laws and simple stiffness parameters. There are no arbitrary limits on the amount of displacement and rotation allowed to each block and any block is permitted to touch any other block. True progressive failure is thus modeled and the mode of failure is automatically selected by the program since the system fails by that mode with the lowest stability. The program allows individual study of the effects of joint geometry, joint parameters, loading conditions and excavation procedure.

The Distinct Element method portrays a rock mass as a two dimensional assemblage of discrete blocks. There are no restrictions on block shapes or magnitudes of displacements and rotations. In the configuration used in this dissertation, the program is interfaced
with a graphics terminal so that movements of the blocks can be observed as the computer calculates them.

The equation governing the behavior of the blocks is solved in an explicit rather than implicit manner. Because the jointed rock mass may fail in such a way that the movement of the blocks leads to a new equilibrium position, an adequate block model must take this into consideration. An implicit solution assumes path independence; that is, the final answer must be the same no matter how the blocks move to get there. It seems safe to assume that path dependent phenomena such as separation along joints, stick-slip behavior of joint surfaces and block interlocking could not be modeled adequately except by an iterative procedure using very small time increments. It should be recognized that by using this approach, one would simply be using an implicit solution to model the solution that would have been obtained directly by an explicit approach.

The major approximation inherent in the Distinct Element method is that deformations occur along the surfaces of the rock blocks. This is accomplished by modeling each block as being rigid with what amounts to a thin elastic region around the perimeter. A consequence of this is that the program should produce the best solutions in situations where deformation is governed by movement along joint surfaces. On the other hand, those situations where elastic deformations of the rock mass are of the same order of magnitude as the movement along the joint surfaces are perhaps best modeled by elastic solutions of the Finite Element type or by a continuum characterization.

Joint inclination and confining pressure play a significant role in the determination of the failure mode. The combination of the conditions of low confining pressures and favorable (or unfavorable dependent on viewpoint) joint orientation can lead to failure modes that are joint controlled. When viewed in terms of overall mass stiffness (i.e., deformation resulting from the application of external load), it can be seen intuitively that those failures in situations of low overall stiffness are probably joint controlled while the higher stiffness models exhibit failures that are essentially independent of jointing.

The research described in this dissertation has as its basis two main goals. First, owing to the relative newness of the Distinct Element method, a verification study has been undertaken to determine whether or not the Distinct Element method calculates solutions similar to other methods commonly used to analyze jointed rock masses. The second goal of the research is to apply the Distinct Element method to an engineering problem; in this particular case to the design of supports and the behavior of the rock mass surrounding an underground excavation. Underlying these two main research goals are several attendant yet equally important goals. One underlying theme concerns the application of computer interactive graphics to engineering analysis. Another underlying thene concerns the potential perspective of the Distinct Element method.

To introduce the investigations of the behavior of jointed rock masses performed with the Distinct Element method, a brief survey of the methods commonly used to analyze the behavior of jointed media is
presented. Common to those methods surveyed is the realization that the observed behavior of a jointed mass is different than the behavior of a continuum. Several of the methods adopt the approach that the behavior of the jointed mass is fundamentally similar to that of a continuum; the same basic equations are assumed to govern both models but the constitutive relations are modified for the jointed models to simulate the presence of jointing. Other methods typically propound the fact that the jointing governs the mass behavior and thus postulate governing equations based upon assumed or observed behavior. This introductory section concludes with a brief overview of the Distinct Element formulation and presents several examples illustrating applications of the Distinct Element program.

Confidence in the use of approximate numerical techniques such as the Distinct Element method can best be developed by comparing calculated results to known solutions. However, for the particular case of the behavior of a jointed rock mass, comprehensive analytical solutions do not exist. The second major portion of this dissertation summarizes the results of numerous analyses, the sole purpose of which was to demonstrate the validity of solutions calculated by the Distinct Element method. The models chosen for comparison are typically simple and care was exercised to ensure that the behavior of the chosen model was described adequately by its solution. Most of the models chosen for the comparisons were based upon Limit Equilibrium principles, and the Distinct Element calculated solutions were seen to agree quite well with the Limit Equilibrium solutions in all cases. This general theme of comparison to existing solutions is not limited to this portion of the dissertation,
however. Wherever possible in the later portions of the dissertation, every attempt is made to compare Distinct Element calculated solutions to other solutions.

The remainder of the dissertation is concerned with the behavior of a jointed mass when disturbed by an excavation. The discussion covers two broad topics: excavations which are stable without external support; and, excavations which depend upon externally applied support for stability. The interactive capabilities of the graphics tenninal are fully utilized in these studies, both to observe the behavior of the mass and to modify the model while the program is running.

Chapter 4 presents the results of analysis of stable excavations in jointed rock. The behavior is illustrated by means of contact force distributions within the mass and interpreted as being governed by the development of arches within the mass. The mechanisms responsible for the development of the arching behavior are investigated and an interpretation utilizing arching theories is presented.

Chapter 5 presents the results of analyses of excavations in jointed rock which are not stable unless an external support is provided. The behavior is described quantitatively by ground reaction curves, relating the deflection of the excavation roof to the magnitude of the required support force. These curves reflect the interaction between the rock mass and the support system in an attempt to guide the research along paths of investigation that are consistent with current thought regarding rational modeling of tunnel behavior. The results of these analyses are then compared to several methods, primarily of an observational nature, commonly used to design support
systems for excavations in jointed rock. The rationale governing these comparisons is an attempt to provide some manner of analytic support for these routinely used design schemes.

The dissertation concludes with a summary of pertinent results and a critical assessment of the potential of the method in engineering analyses and design. The assessment of the potential emphasizes the limitation of the model in its present configuration with particular reference to the mini-computer based configuration. Suggestions for further development of the model are also presented, outlining areas of potentially fruitful research.

CHAPTER II
THE ANALYSIS OF THE BEHAVIOR OF A ROCK MASS CONTAINING PLANES OF DISCONTINUITY

2.1 Introduction

Before introducing the concepts underlying the Distinct Element model, a brief, historical review of the methods of analysis commonly used when dealing with the behavior of a discontinuous rock mass is presented. An exhaustive bibliography on jointed rock has been avoided, since a significant portion of all publications dealing with Rock Mechanics would need to be included. Rather, this chapter presents an overview of the methods of analysis used when dealing with jointed rock, concentrating on those methods that are accepted by engineers involved in actual design. The overview is relatively complete, including examples of all methods recognized to be in use at the present time.

A general survey of the response characteristics of a jointed rock mass is presented first, to enumerate those behavior mechanisms which must be incorporated in any analysis of a jointed rock mass if it is to portray accurately the behavior of the mass.

An overview of the methods of analysis is then presented. The methods lend themselves nicely to categorization in the following groups:

1) Direct application of the principles of Soil Mechanics to the behavior of rock masses;
2) application of elastic theory, both in the classical
sense and by use of Finite Elements;
3) behavior models including direct physical modeling as well as models based on observed behavior; and,
4) methods of analysis utilizing Limit Equilibrium theories as developed in the fields of plasticity and soil mechanics.

The chapter concludes with a brief introduction to the Distinct Element method of calculating the behavior of a mass separated into distinct blocks by jointing or other discontinuity surfaces. The applicability of the model is discussed by way of a short presentation of worked examples. It is hoped that the examples selected give some insight into the scope and power of the method as well as demonstrating typical problems which can be analyzed by the method.

2.2 The Response Characteristics of a Rock Mass

The obvious trend in the past several decades has been to excavations, both in mining ventures and the construction of civil works projects, on a scale never before attempted. The mining of vein type deposits frequently takes place in poor quality rock; in the case of the civil works projects, the best sites in terms of rock quality have already been selected for previous construction. Since it was no longer possible to ignore the rock behavior, the traditional concept of the soundness and stability of a rock mass had to be re-evaluated. In recognition of this requirement, a study group, the International Study Group for Geomechanics, was founded in Salzburg, Austria in 1951. The goal of this study group was to develop relations among all workers dealing with construction in rock and to develop a practical approach to the mechanics of rock masses.

The findings of the study group, which was succeeded by the International Society of Rock Mechanics in 1962, were presented by John (1962), and the following few paragraphs, quoted directly from John's paper, attempt to summarize the philosophy of the Salzburg group.
"Because the particular properties of rock as foundation and construction material deviate, in many respects, from those of other foundation materials, rock mechanics is compelled to follow its own course. The continuity of soil masses resulted in methods for analyzing a continuum, thus defining the concept of soil mechanics. In situ rock, however, contrary to the wide spread assumption in foundation engineering, is rarely homogeneous; rarely without mechanical discontinuities. Therefore, rock mechanics is, in most cases, to be a study of a jointed structure, of a discontinuum."

The philosophy of the Salzburg group emphasizes the collaboration between civil and mineral engineers and geologists. The interrelation of engineers and geologists is readily apparent in the fundamental concepts of Rock Mechanics as outlined by John:

1) "For most engineering problems, the technical properties of a rock mass depend far more on the system of geological separations within the mass than on the strength of the rock material itself. Therefore, rock mechanics is to be a mechanics of a discontinuum, that is, a jointed medium"
2) "The strength of a rock mass is considered to be a residual strength that, together with its anisotropy, is governed by the interlocking bond of the unit rock blocks representing the rock mass"
3) "The deformability of a rock mass and its anisotropy result predominately from the internal displacements of the unit blocks within the structure of a rock mass."
C. Jaeger (1964) presented a similar philosophy to that of John and noted that engineering calculations should take a far more detailed view of the actual state of the rock mass. Recognizing the inadequacy of the (then) present state of the art, he outlined a program of suggested research, emphasizing model tests and investigations of stress distributions in jointed media.

Fairhurst (1967), in assessing the influence of defects and discontinuities on the behavior of a rock mass noted that failure in a rock mass always begins at some structural defect and that the analysis of the behavior of the mass must consider: the orientation and distribution as well as the magnitude of the applied forces; the distribution and orientation of structural defects with respect to the applied forces; and the energy available to cause continuing movement in the mass.

One final requirement of any method used to calculate the response of a jointed mass is that it should incorporate all of the kinematically possible failure modes. In addition to sliding on discontinuity planes, rotation of individual blocks about their centroids is also kinematically possible as reported in field exposures by Muller (1964) and DeFreitas and Watters (1973) and on a laboratory scale by Hoffman (1970). An analysis incorporating only force equilibrium and ignoring moment equilibrium could easily result in the neglect of an important response of the mass.

2.3 Direct Application of Soil Mechanics Theories

Recognizing that large displacements preclude the use of elastic theory, Seldenrath (1951) idealized the strata comprising European coal measures as masses of loose structure, and attempted to apply Soil Mechanics principles to the problems of calculating fracture planes due to subsidence and calculating loads on props at a working longwall face. To the extent that he assumed reasonable values for friction coefficients, he was able to generate results that were confirmed in practice.

Morrison and Coates (1955) presented a method for the estimation of stresses surrounding a circular vertical shaft by means of plastic flow relationships deduced from Mohr's circle of stress. They questioned the utility of their method for practical design and concluded that although the approach was better than a simple elastic analysis, the actual material behavior was still more complex.

Wilson (1959) applied general Soil Mechanics principles to the problem of slope stability in open pit mines. He concluded that failures of cut slopes in fractured and fissured rock were often the result of uplift pressures in the water behind the slope face. Observing that the strength of granular material appeared to be independent of particle size provided that a constant degree of compactness was maintained, Wilson extrapolated this result to the analysis of the behavior of broken and fissured rock. Since the scale of the jointing relative to the size of the pit was small, Wilson analyzed the stability of cut slopes using the principles
of Soil Mechanics.
Jaeger (1970) analyzed highly jointed and broken rock by regarding the jointing as random and applying the laws of Soil Mechanics to its behavior. His analysis suggested that values of Youngs' modulus measured by plate bearing tests on jointed material for which the plate covered several joints were in reasonable agreement with laboratory values measured on actual specimens of the material containing many joints.

2.4 Elastic Theories Applied to Rock Masses

Elastic analyses of discontinuous or jointed masses can be conveniently grouped into two classes although the difference between the methods is one of application rather than fundamental difference in the theory. The first class comprises methods of analysis which directly utilize classical elastic theory; frequently the input parameters are modified to reflect different behavior modes due to the presence of discontinuities. The second class comprises Finite Element type analyses wherein the continuum is discretized and a stiffness relationship is formulated for applied forces and nodal point displacements. This latter class is obviously well suited to the situation of varying material properties throughout the mass.

2.4.1 Classical continuum elastic theories

Obert, Duvall, and Merrill (1960) restricted their analysis of the design of underground openings to competent rock but included horizontally stratified rock provided that the bond between layers was weak.

Beam and Plate theory were used for the analysis but it was noted that requirements of an elastically perfect, homogeneous, isotropic mass precluded the possibility of any fracturing in the roof unless it was parallel to the span direction.

Barla (1970) presented constitutive relations for the nonlinear and time dependent behavior of rock masses but did not present relations for discontinuous masses.

Smart (1970) developed a continuum model consisting of rigid cubical blocks set in a clay matrix and found good agreement with field data.

Singh (1973a, 1973b) used strain energy principles to derive general constitutive equations for a rock mass containing an arbitrarily oriented set of orthogonal, discontinuous joints in terms of a "stress concentration factor" matrix (which he computed by Finite Element analysis). His model gave good results for regions of low stress gradient but was found to give poorer results in regions of high stress gradient.

2.4.2 Finite Element analyses

One particular type of elastic analysis has gained acceptance since its inception. The Finite Element analysis, particularly in light of the modifications described below, has become a routinely used tool in Rock Mechanics problems.

Zienkiewicz et al. (1968) noted that linear elastic solutions indicating regions of tension in a rock mass were probably unrealistic for the general case of a cracked and fissured mass. Using a Finite Element formulation with an included "stress transfer" iteration they were able to calculate a solution with no tension present in the mass. They also demonstrated that the solution provided a lower bound to the load at failure.

Goodman, Taylor, and Brekke (1968) succeeded in incorporating a zero thickness element with normal and shear stiffnesses within the Finite Element formulation. With this special "joint element" they modeled failure in tension and shear, rotation, arch develop-
ment and collapse patterns in jointed rock.
Hoffman (1970) compared the results of model tests with the results of Finite Element analyses and found that the large deformations and geometric changes in the jointed mass were not compatible with the assumptions inherent in the Finite Element method.

St. John (1972) analyzed the behavior of rock slopes in open pit mines using Finite Element models incorporating joint behavior. He concluded that the technique provided acceptable results provided small displacement theory was relevant but stressed the need for field data to verify the constitutive laws used in the program.

Chappell (1974 a; 1974 b), and Burman, Trollope, and Philp (1975) related the behavior of a jointed medium to rigid body displacements of block centroids. The modified Finite Element formulation replaced the elastic blocks with rigid ones and connected the block centroids with "joint" elements capable of modeling the combined block and joint responses of stress versus strain and moment versus rotation. Appropriate moduli were obtained by physical experiments.

Wang and Sun (1970 a, b) and Wang, Sun, and Ropchan (1972) used Finite Element analyses to determine stresses in gravity loaded open pit slopes. These stresses were then incorporated in a Limit Equilibrium analysis to determine the safety factor of the slope with respect to sliding on a preselected failure plane.

Manfredini, Martinetti, and Ribacchi (1975) used Finite Element analyses of slopes to demonstrate the inadequacy of Limit Equilibrium methods in design. One interesting, though not unexpected, conclusion from their study was that the intact properties of the rock mass played very little part in the behavior of the jointed medium.

2.5 Jointed Mass Behavior Models

The jointed mass behavior models have been arbitrarily separated into three groups. The first comprises true physical models including both those models where similitude requirements are met and those whose purpose is simply to demonstrate the kinematics of failure. The second group, photoelastic modeling, is a sub group of the first group but owing to the special type of information it yields, is considered separately. The third group comprises theories of behavior which are primarily based upon either empirical data and the results of model tests or postulated behavior mechanisms.

2.5.1 Physical models

Lang (1964) used physical models for assistance in understanding the behavior of underground power stations. The most significant result of this research was aid in visualizing deformation behavior of jointed media.

Krsmanovic and Milic (1964) undertook a comprehensive series of tests to determine pressure distribution in a discontinuum subjected to external loads. Their results demonstrated that the pressure distribution was most sensitive to the original state of stress of the mass.

Trollope (1966) examined the behavior of a trapezoidal opening in a jointed rock mass. His work indicated two zones above the opening: a triangular "suspended zone" above the opening and a stable region outside of the "suspended zone".

Goldstein et al. (1966) investigated the behavior of models of jointed slopes by using a centrifuge. The goal of their research was to investigate the different failure conditions of slopes cut in jointed rock.

Fumagalli (1968) outlined the general principles of mechanical similitude including the incorporation of discontinuity surfaces for the proper physical scale modeling of problems in rock.

Edwards (1968) constructed a model of an open pit slope with wooden blocks as an aid to the interpretation of deformation measurements obtained in the field. An important conclusion of his work was that even though the models were not truly scaled they reproduced the measured phenomena better than an elastic analysis.

Gaziev and Erlikman (1971) embedded strain gauges in plaster blocks and built models to examine pressure distributions in discontinuous masses. They concluded that the state of stress is characterized by two "streams" of stresses following the directions of the principal joint sets.

Erguvanli and Goodman (1972) stressed the importance of kinematic models to observe possible failure modes, as well as scale models which could more accurately predict true behavior patterns.

Goodman (1972) outlined the use of the base friction model to observe the kinematic behavior of rock masses containing discontinuities.

Barton (1974) examined the deformation of discontinuous models consisting of approximately 40,000 blocks. Cut slopes were
excavated in the model after consolidation. The outcome of the experiments was compared to Finite Element analyses and photoelastic studies reported in the literature at that time. In all cases the "reasonable" behavior as predicted by theory failed to materialize.

2.5.2 Photoelastic models

Lang (1961) used photoelastic models to study the effects of the presence of joints in the roof of an underground opening. He also presented some guidelines for rock bolting based upon patterns of stress transfer observed in bolted photoelastic models.

Maury (1970) examined the distribution of stresses in horizontally stratified masses by means of photoelastic models. He noted that the observed behavior was fundamentally different from that predicted by continuum theory.

Brcic and Nesovic (1970) analyzed detailed two dimensional models of dam foundations by photoelastic models. Their results suggested that the presence of discontinuities was a most significant parameter in the definition of the foundation bearing capacity.

Ergun (1970) performed a photoelastic analysis of a biaxially loaded plate with orthogonal joints and noted that the stress distribution was affected by: voids in the joints, the ratio of applied pressure, the joint inclination, and the stress history.

Chappell (1973) investigated the interactions of underground openings in jointed media photoelastically. His conclusion was that the mechanisms of slip, rotation, and interlock controlled
the load distribution. Furthermore, he noted that the interaction between a number of openings tended to accentuate these mechanisms.

2.5.3 Observational models

The observation of the behavior of discontinuous masses as well as the behavior of laboratory models has led to several theories of behavior which for lack of a better name are herein termed observational models. These observational models attempt to predict behavior in light of stress disruption/or redistribution across planes of discontinuity such as joints, or, in the case of soils, grain contact. They often utilize the information gained from model experiments or collected from real situations and extract response patterns which are postulated to hold for a large class of problems.

Terzaghi (1946) carried out tests in railroad tunnels in the eastern Alps by inserting wooden blocks of known strength properties in timber sets. On the basis of the results of these tests, he postulated the expected loads on tunnel supports as a function of the degree of jointing of the rock mass under consideration.

Trollope (1957, 1961) developed an arching theory of force distribution within granular masses by a statical equilibrium analysis of a mass consisting of systematically packed, smooth, rigid spheres. He applied this theory to block jointed models to deduce general design principles. The same approach was used by Trollope and Brown (1965) to develop general equations for the
distribution of pressure in a discontinuous mass beneath a strip loaded foundation.

Hyashi (1966) formulated an approach to determine the distribution of stresses in a fissured foundation in terms of the combined Pascal distribution. The effects of cohesion and frictional resistance were incorporated by means of an iterative application of Bousinesq's equation. His model recognizes a transient depth below which slip no longer occurs along joint planes. In the absence of cohesion or frictional resistance his model reduces to that postulated by Froelich (1933) who idealized the contact stresses in stacked cylinders as an assemblage of tiered, simple beams.

Lane (1961) and Lutton (1970) presented empirical charts relating slope height to inclination. Their data indicated trends, but they recognized that adverse geologic structure could invalidate the use of the charts.

Abel (1966) constructed a statistical model for the estimation of support loads in a tunnel from measured steel set loads, geologic and construction factors. He noted that although the principles of analysis were general, every tunnel must be considered as a separate problem.

Ross-Brown (1973) collected data concerning the stability of cut slopes in open pit mines throughout North America. He concluded that stability problems were too complex to be summarized by statistical relationships and that each mine needed to be considered as a separate entity in light of the experience obtained
in other mines.
More recently, Wickham, Tiedemann, and Skinner (1972), Bieniawski (1973), and Barton, Lien, and Lunde (1974) have presented empirically derived rock mass classification schemes for predicting loads on tunnel supports. The classification schemes result from the statistical manipulation of data collected during construction in rock and consider parameters such as joint spacing, orientation, infilling, and the presence of water.

2.6 Limit Equilibrium Analyses

The basic principles of Limit Equilibrium applied to jointed rock masses are basically not different from the principles of the analysis of soil slopes as advocated by Fellenius (1936) or Bishop (1955). Owing to the degree of indeterminacy in the problem, assumptions must be made regarding the magnitude of some forces as well as their point of application.

A large portion of the literature on the stability of rock slopes comprises work on the analysis of the sliding behavior of tetrahedral wedges of rock by means of stereographic projection (e.g. John, 1968). Although two dimensional problems can be handled by this method, the amount of work required in the calculation as opposed to a simple graphical solution hardly merits the effort. Limit Equilibrium of three dimensional wedges is not considered in this review.

John (1962) presented a graphical analysis of the stability of a wedge of rock defined by joint planes and a cut surface. To determine the magnitude of rock anchor forces, he utilized conditions of 1 imiting equilibrium by assuming that full frictional resistance would be developed along the plane of sliding effectively allowing him to specify the force polygon.

Bray (1966, 1967 a, b) substituted the equations for principle stress in the Mohr-Coulomb-Navier relation to develop the ratio of principle stresses at failure by sliding in a jointed mass as a function of the orientation of the principle stresses and the friction coefficient. An interesting outcome of this analysis
comes by superposing a system of multiple fractures; in this model the value of the stress ratio approaches that of the active pressure coefficient as used in soil mechanics.

Jennings (1970) noted that failure in rock slopes did not necessarily follow a single plane. Rather, the failure surface that developed was often stepped. Utilizing Limit principles, the equations he presented incorporated sliding on a discontinuity as well as failure through intact rock.

Calder (1970) used Limit principles to analyze the stability of slopes in jointed rock. His analysis demonstrated that contrary to the case of slope failure in soils, significant changes in cut slope angle in jointed masses often have no effect on the degree of stability.

Hoek (1970) presented design charts, based on Limit Equilibrium principles, for the rapid assessment of the stability of slopes excavated in jointed rock. The assumptions necessary to produce the charts are conceded to be severe but are common to all analyses of this type.

Rosengren (1971) presented the results of a comprehensive analysis of the stability of blocks and wedges formed by the joint systems. Whereas the factor of safety as used by most investigators relates total driving force to total resisting force, Rosengren's definition of factor of safety contains one term relating available friction to required friction and another term relating required cohesion to available cohesion.

Pentz (1971) investigated the situation where the failure criterion was not linear; a simple power law was used to relate normal stress to shear stress in place of the commonly used Mohr-Coulomb-Navier relationship.

Gaziev and Rechitski (1974) used Limit Equilibrium principles to analyze a rock slope with multiple slip modes possible. Their analysis located the layer with the minimum stability factor. The overall stability of the mass was then related to the individual layer stabilities.

Statistically based modifications of Limit Equilibrium methods have also been presented by several authors.

McMahon (1971) introduced design procedures that determine the probability that a rock slope will be undercut by joints that lie in unstable orientations. On the basis of these assumptions, and utilizing Limit Equilibrium principles, he arrived at curves relating probability of failure to slope angle.

Serrano and Castillo (1974) introduced probability density functions for the strength of discontinuities and the matrix as well as for block size and combined them with Limit Equilibrium principles to generate a stability curve for a rock slope in terms of probability of failure.

2.7 An Evaluation of the Techniques Commonly used in Jointed Mass Modeling

The preceding literature survey dealt with the numerous methods commonly used to predict the behavior of rock masses containing planes of weakness. It is of interest to present a brief summary of this survey that emphasizes what, in particular, advantages each of the methods offer.

The observational type methods are typically the first "analytical" method associated with engineering analyses. It is to the credit of men like Terzaghi that they recognized that the degree of jointing present in a rock mass could be the most significant factor to be considered in a design. However, most investigators pursuing this method noted that although the method usually worked quite well for a given problem, the information gained was generally not of use at other sites. Most recent investigators have tried to overcome this shortcoming by statistical manipulation of a large amount of data.

Elastic solutions, and in particular, modified elastic solutions are recognized as having shortcomings, but are usually conceded to be fairly accurate in those cases where the jointing is homogeneous throughout the rock mass. The modified solutions usually attempt to account for the jointing by anisotropic mass behavior. It is interesting to note that one of the leading proponents of this method of solution "... has now abandoned his earlier view ... that an 'equivalent orthotropic medium' can be constructed to fairly represent the deformability of regularly
jointed rock ..." (Goodman, 1974). Goodman makes this statement on the basis of dilatancy and stress dependent behavior of the joints and suggests that the more influential discontinuities should be treated as individual rock mass components.

The application of soil mechanics theories to the analysis of the behavior of jointed rock masses has been successful in those cases where the scale of the jointing relative to the problem was sufficiently small. However, if detailed analysis, on the scale of the jointing, is required, the method lacks validity.

The use of Limit Equilibrium principles holds much promise if it is possible to reduce the intricacies of the problem to the point where a "handleable" number of equilibrium equations can be written, and if the joint behavior may be represented as simply as is done in Limit Equilibrium methods. The main problem with this type of approach is that the necessary assumptions often tend to oversimplify the problem - if too many assumptions need to be made to reduce the indeterminacy, then the model may no longer be representative of the problem to be solved.

Physical modeling seems to offer the best solution to modeling the behavior of jointed rock masses, since the behavior is exactly modeled if similitude requirements are met. However, it is virtually impossible to set up the identical physical models which are necessary for parametric variation, and the cost of a detailed model can be prohibitive.

The Distinct Element method offers a combination of the capabilities required to predict the behavior of jointed rock
masses. The joints are modeled as the most significant components of the problem. There is no need to oversimplify the problem and the data structures can be stored permitting a given geometry to be analyzed as many times as desired.

It is in the context of a reproducible "physical" model that the Distinct Element method is used in this dissertation.

2.8 The Distinct Element Method

The Distinct Element method introduced by Cundall (1971 a, b) is a computer based analysis that simulates the behavior of a system of discrete, semi-rigid rock blocks. Block interactions are governed by realistic friction and stiffness laws. Each block may undergo unlimited displacement and rotation while progressive failure is modeled. In its present formulation the program is run in an interactive mode on a dedicated mini-computer coupled to a cathode ray tube (CRT) graphic output device. The CRT is used both for the input of geometric and material information as well as for the output data which consists of drawing the movements of the blocks as a function of time. The description presented follows Cundall (1971 b).

The program calculation cycle comprises force-displacement relations for the block contacts and laws of motion for the block centroids. Very simple relationships are used to relate normal force to normal displacement and shear force to shear displacement.

The normal force-displacement relationship owes its simplicity to the assumption that the normal stiffness of a joint plays a very small role in the failure process of the rock mass and that shear force does not affect normal force. Thus normal force is assumed proportional to the overlap between two blocks. Diagramatically,

where constant of proportionality K_{n} is the joint normal stiffness and the resultant force acts upon both blocks. In the more likely case where two faces together form a joint, equilibrium is maintained by two point contacts, thus:

Cundall argues for the validity of representing a joint by two point contacts by noting that owing to irregularities present on a real joint, contact will occur only at discrete points, quite possibly only two.

The shear force-displacement relationship cannot be described by such a simple formulation because the shear force depends upon the past history of movement of the blocks as well as the amount of normal force. To account for this, the shear force must be calculated incrementally with the incremental amount of shearing force assumed proportional to the relative movement of a block corner along another block face. The incremental shear force is then added, noting the sense of movement, to the shear force already existing between the two blocks. Diagramatically:

where the proportionality constant K_{S} is the joint shear stiffness. Although not strictly necessary from a physical standpoint, the normal force is also calculated incrementally in the program
so that all forces are derived from incremental displacements.
This formulation does, however, simplify the task of incorporating nonl inear phenome:a, such as dilatation, associated with the normal stress.

Two failure laws are incorporated in the program. Since it is probably unrealistic to have tensional resistance across a joint, a "no tension" criterion is adopted at each time step, by simply setting normal forces that become negative to zero. The criterion governing shear failure is the Mohr-Coulomb-Navier law. At every time step, the shear force at each contact point is tested and limited to a maximum force, which is dependent upon the normal force.

The force-displacement relations are thus used to calculate the set of forces acting on each block solely due to the geometric position of each block relative to its neighbors. The forces acting on each block may be resolved into an equivalent force vector and a moment acting on the block centroid. If a law of motion is now implemented (in this case Newtons second law) the linear acceleration vector can be calculated as the quotient of the resultant force and the mass of the block. Similarly, the rotational acceleration is the quotient of the resultant moment and the rotational moment of inertia of the block. By choosing a suitable time step, these accelerations may be numerically integrated twice to give the displacement of the block. For example, in the x direction:

$$
\begin{array}{ll}
v_{x}^{\text {new }}=v_{x}^{\text {old }}+\frac{F_{x}}{m} \cdot \Delta t & v=\text { velocity } \\
u_{x}^{\text {new }}=u_{x}^{\text {old }}+v_{x}^{\text {new }} \cdot \Delta t & m=\text { displacement } \\
& F_{x}=\text { Force on block in } x \text { dir }
\end{array}
$$

with similar equations for the y direction and rotation. The time step cannot be made arbitrarily large, or rapid geometric changes would not be modeled accurately. However, a more subtle reason for the limit on the time step is that owing to numerical instabilities in the solution of the equations, there is a limit to the maximum time step. This is discussed in more detail by Cundall (1971 a) along with the damping requirements of the equations.

The complete calculation cycle can be summarized as:

In addition to the main calculation cycle, routines are needed to keep track of the coordinates of contacts; the use of arbitrarily large displacements and the attendant large number of possible contact points requires the implementation of a dynamic memory
allocation scheme. This scheme is discussed in Appendix B along with a more complete listing of the equations comprising the main calculation cycle. A complete discussion of the fundamental algorithm of the program is given by Cundall (1974).

2.9 Applications of the Distinct Element Method

As a conclusion to this chapter, several examples illustrating the application of the Distinct Element method to problems involving the response behavior of jointed rock masses are presented. The problems range in complexity from modeling a rock slope as a single block bounded by a joint plane and a tension crack at the crest, to examining the behavior, as failure progresses, of a jointed mass being mined by caving techniques. The examples chosen illustrate most of the salient features and capabilities of the Distinct Element method; however, the potential of the method extends much farther. Particular examples of extended applications could include true blasting analysis, coupled fluid flow behavior and incorporation of elastic stresses and strains.

The problem of the correctness of the solutions obtained by the Distinct Element method will be addressed in the next chapter; for the present time the correctness of the solutions should be accepted. Alternatively, the examples can be viewed in light of kinematics only with calculated displacement modes and forces interpreted in light of experience and intuition.

Example 1 - Stabilization of a Failing Rock Slope

The rock slope illustrated in Figure 2.1(a) consists of a single block bounded by a joint plane dipping approximately 25° out of the face of the slope and a vertical tension crack at the crest of the slope. The friction coefficient of the joint plane is .15 ,

Figure 2.1 Stabilization of a Failing Rock Slope
corresponding to an angle of 8.5°; thus the block should be unstable and is seen to move on the screen as illustrated in Figure 2.1(b). Note that the block centroids are identified by a dot and that an "F" at a centroid means that the block is fixed in space, that is, not free to move.

To investigate the affect of inclination of an applied stabilizing force, a small block is placed on the slope and forces are applied at various angles. As can be seen in Figures 2.1(c) and (d), the smallest force required to stabilize the slope corresponds to an angle of inclination equal to the dip of the joint. Also, the required stabilization force increases as the bolt inclination becomes perpendicular to the joint plane. However, the length of bolt or cable required for stabilization is a minimum when this length is normal to the joint. By assuming a simple relationship governing bolting costs, it is possible to determine the optimum inclination for installation of stabilizing forces. A simple, yet reasonable estimate of relative cost is obtained by assuming that cost increases linearly with length and force relative to some base cost (in this case the horizontal bolt was chosen), this can be expressed as:

$$
\operatorname{cost}_{i}=\operatorname{cost} H\left(\frac{1_{i}}{T_{H}} \cdot \frac{F_{i}}{F_{H}}\right)
$$

Assigning an arbitrary figure of 1 to the cost of the horizontal bolt, Figure 2.1(e) which relates the bolt cost to inclination, can be plotted. From this figure it can be seen that based upon the
assumed cost relationship, the optimum angle of inclination of the stabilizing force is approximately 30°.

Realistic cost data can be used to refine the cost relationship and much more complicated slope geometries can be modeled with the Distinct Element method.

Example 2 - Horizontally Stratified Mine Roof

Figure 2.2 illustrates a horizontally stratified mine roof; there are no joints exposed within the span of the roof. The only information that can be obtained by using the Distinct Element method in a problem such as this is the weight distribution on the pillars which in this case could readily have been obtained by inspection. The Distinct Element method in its present formulation does not incorporate elastic behavior of the elements; all deformations occur on joint surfaces. For problems where elastic deformations are important an elastic analysis such as Finite Element analysis should be used. For this particular problem however, beam theory could have been used to determine the bending moments and deflections (see, for example, Obert, Duvall, and Merrill 1960).

[^0]
Example 3 - A Gravity Retaining Wall

Illustrated in Figure 2.3(a) is a retaining structure which is required to prevent movement of the jointed mass to its left.
Three friction coefficients are involved in a problem such as this: ϕ, the friction angle of the joints within the mass; ϕ_{b}, the friction angle for sliding on the base of the wall; and, ϕ_{w}, the friction angle for sliding of the rock mass along the wall. By selectively varying these parameters it is possible to illustrate several aspects of the behavior of the wall in response to loading. Figure 2.3(b) illustrates the behavior of the wall when $\phi=26^{\circ}$ and $\phi_{\mathrm{b}}=\phi_{\mathrm{W}}=45^{\circ}$; as the blocks begin to move outward, the wall cannot slide along its base and thus begins to rotate as evidenced by the single contact vector at the lower right hand corner of the wall. The lower left hand corner of the retaining wall is actually lifted off the plane of sliding. The situation is, however, stable.

In Figure 2.3(c) another stable situation is illustrated. In this case, $\phi=\phi_{\mathrm{b}}=19^{\circ}$ while $\phi_{\mathrm{w}}=45^{\circ}$. The " 9 " printed on a surface indicates that that surface is assigned the friction behavior specified for material type 9. This analysis indicated that as the rock mass moved outward the base of the retaining wall moved until sufficient frictional resistance to maintain stability was generated along the base. Some rotation of the retaining wall has occurred and is indicated by the differing lengths of the contact vectors along the base of the retaining wall.

As a final variation of this example, illustrated in Figure 2.3(d), an analysis with $\phi_{\mathrm{W}}=\phi_{\mathrm{b}}=\phi=19^{\circ}$ is presented. This

Figure 2.3. A gravity retaining wall
case is not stable - note the settlement of the mass and the gap at the lower left hand corner of the wall. Failure has occurred because sufficient resistance could not be developed along the base of the retaining wall. Also, the reduction of the frictional resistance between the mass and the wall reduced the overturning moment on the wall which in the previous cases had acted to increase the shearing resistance along the base of the wall. This is easily understood in terms of a simple analogy - trying to move the retaining wall by a single force acting through its centroid.

The two sketches represent the extremes in terms of orientation of contact forces along the wall. In the first sketch, representing the case $\phi_{W}=0$, the force exerted by the mass on the retaining wall, F_{W}, has no vertical component while in the second sketch, representing the case $\phi_{W}=45^{\circ}$, the force exerted by the mass on the retaining wall, F_{w}, has a vertical component. The vertical
component of F_{W} acts to increase the normal force on the base of the retaining wall, thus increasing resistance to sliding movement. The effect of increasing the coefficient of friction ϕ_{w} is thus to stabilize the retaining wall against translational sliding.

Example 4 - A Rock Slope Which Fails by Toppling

The assessment of the stability of a cut slope in light of translational kinematics often makes use of the fact that if the major joint set dips into the slope, failure by sliding is not possible. Although this statement is true, the fact that a rock mass meets this criterion does not automatically ensure the stability of the cut slope as this example illustrates.

Presented in Figure 2.4 are several stages of the progressive failure of a cut slope where the major joint set dips into the slope face. Figure 2.4(a) represents the case before running the program while Figure 2.4(b) illustrates the situation just as failure begins; as can be seen from the figure, the toe block must move before the mass can fail. Thus the toe block represents a "keystone" and in the absence of fracturing, the behavior of the entire mass depends upon the behavior of this block. Any remedial action designed for a cut such as this must be based upon knowledge of which blocks or sections of the slope act as keystones. With the Distinct Element method it is a simple matter to determine which blocks can best be utilized to stabilize the mass.

Figure 2.4(d) illustrates another physically observed feature which is accurately modeled by the Distinct Element method. After

Figure 2.4 A rock slope which fails by toppling
a significant amount of movement has occurred, stable equilibrium of the mass is reached. (Blocks which moved away from the mass were erased as the program progressed).

Example 5 - Anchoring a Large Force in Rock Mass

This example presents a comparison of the failure loads calculated when a large external force, such as an anchorage force for a transmission tower, is applied to a jointed mass in two different directions. The rock mass in question and the two loading directions are illustrated in Figures 2.5(a) and 2.5(c). The force vectors which cause failure, drawn to a common scale, are also illustrated; the deformed geometries are illustrated in Figures $2.5(b)$ and $2.5(\mathrm{~d})$.

If the scale of the problem is such that the bedding planes are spaced at three feet, the visible jointing is spaced at six feet, the jointing parallel to the plane of projection is spaced at five feet, and the mass density is 160 pcf; then the failure loads are approximately 160 kips for the case where loading parallels the jointing, and 230 kips for the case where loading crosses the jointing.

The modes of failure are also markedly different in the two cases. In the case where the loading parallels the jointing, failure of the mass occurs essentially by slip along the joints. However, in the situation where the loading crosses the jointing, failure encompasses a larger volume of the rock mass and is more of a rotational failure than a slippage failure.

Example 6 - A Pressure Tunnel Near a Free Surface

This example examines a hypothetical situation where a pressure tunnel is located near a free surface. A situation such as this could be encountered, for example, in a diversion tunnel for a dam.

The failure of the rock mass in this particular case depends upon the penetration of water into the joints at fairly high pressures. Hopefully, in a real situation, water pressure testing would have been performed to assess the permeability of the mass and appropriate remedial action such as grouting and lining undertaken to prevent water loss. Nevertheless, the example is instructive and is presented in spite of its lack of realism.

Figure 2.6(a) illustrates the tunnel under consideration; the diameter of the tunnel is 20 feet and the internal pressure, which is assumed to penetrate all joints intersecting the tunnel, is 100 psi . The initial failure with the friction angle equal to 22 degrees on the joint planes is illustrated in Figure 2.6(b). In this type of problem the water pressure does not decrease as the joints open, for there is a practically unlimited supply of water to move out into the joints as they open.

Figure 2.6 (c) shows a later stage of the progressive failure while Figure 2.6(d) illustrates the pressure distribution in the joints as indicated by an asterisk on those joints where water pressure is applied. The water pressure units illustrated are internal computer units and are seen to follow a parabolic trend, decreasing in intensity from the tunnel to the free surfaces. The

(b)
(a)

Figure 2.6 A pressure tunnel near a free surface

Figure 2.6 Continued
chosen pressure distribution has led to an unexpected displacement field as evidenced by the open joint one block away from the tunnel in the first row of blocks. Evidently, the effects of the free surface and the water pressure were sufficient to cause movement of the two righthand blocks in the first row of strata but, owing to the increased overburden load, the block nearest the tunnel remained stable.

Example 7 - A Shear Zone in a Tunnel Roof

Example 7 is concerned with a problem of roof stability in a tunnel intersected by a plane of weakness having a noticeably lower friction coefficient than the rest of the mass and dipping at a less favorable orientation than the main joint set. In addition, the plane directly above the main failure plane was also assigned a low friction coefficient to better model a shear zone.

The tunnel under consideration has a width of 24 feet and is illustrated in Figure 2.7(a); the planes considered as the boundaries of the shear zone are assigned friction type $5\left(\phi=5^{\circ}\right)$ as indicated in Figure 2.7(d). The mode of failure, which can be compared to squeezing material into the excavation by movement along the planes defining the shear zone, is illustrated in Figure 2.7(b) and 2.7 (c). The disruption of the integrity of the roof defines a volume of rock which must be restrained by the support system. At a unit weight of rock of 160 pcf , the weight of this volume of rock is approximately 100 kips per foot of tunnel length.

Figure 2.7 A shear zone in a tunnel roof

Figure 2.7 Continued

Recognizing that the block exposed in the upper right hand corner of the tunnel acts as a keystone upon which the behavior of the roof depends, the force necessary to stabilize this block (and thus the entire system) was determined. By placing a small block in contact with the desired block and applying various forces it is possible to determine the force that will maintain equilibrium of the mass. The forces could equally have been applied at the centroid of one of the failing blocks, but by utilizing a small block acting along the edge of one of the failing blocks the effects of rotation due to eccentric loading are better modeled. One such force is shown in Figure 2.7(d). This force, which has a magnitude of approximately 20 kips per foot of tunnel length demonstrates that it is possible to keep masses in equilibrium with forces that are small when compared to the weight of the mass which is failing.

Example 8 - Behavior of a Jointed Mass During Mining by Caving
The final example presented in this section illustrates the movements of blocks and the forces developed during these movements as progressive failure occurs in a large, jointed mass being mined by caving techniques. The block configurations as mining progresses are illustrated sequentially in Figures 2.8(a) through $2.8(j)$. The figures present the situation beginning some time after mining had commenced; in addition, as soon as individual blocks had moved sufficiently far from the mass so that they no longer influenced the behavior of the mass, they were erased. In
other words, the problem of jamming or arching at the draw point was not considered.

After the first two introductory illustrations (Figures 2.8(a) and 2.8(b)) alternate illustrations show only the contact forces, for the block outlines would only make the drawing more difficult to interpret.

The factors that influence the behavior of the mass include a relatively low friction angle on the joint planes ($\phi=17^{\circ}$) and rigid boundaries. The four independent, intersecting joint sets are not claimed to be representative of conditions at a particular mine site. Rather, they were selected solely to give the mass more freedom to move, as two intersecting joint sets were found to have a tendency to lock and stabilize as the individual blocks moved.

Examination of Figures 2.8(a), 2.8(b), and 2.8(c) illustrate the expected movement of the lower unconfined blocks. Figure 2.8(d) illustrates that two separate arches have developed, indicating that the blocks in the lower part of the mass are failing as a unit and, judging from the magnitude of the forces in the upper part of the mass, providing enough resistance to keep the upper part of the mass stable.

This conclusion is reinforced by Figure 2.8(e) where it can be seen that the lower blocks are separating significantly from the mass. Figure $2.8(f)$ shows the continued development of two separate arches. The thrusts developed in the lower arch are not of sufficient magnitude to stabilize the mass, as evidenced by the progression of raveling up into the mass as illustrated in

Figure $2.8(\mathrm{~g})$ and the collapse of the lower arch as shown in Figure 2.8(h). Figure 2.8(i) illustrates the continued movement of the mass toward the draw point. The uppermost layer is still maintaining its integrity due to the slight confining effect at the arch abutments. The lower arch has completely failed as can be seen in Figure 2.8(j). Although not illustrated, the upper arch eventually collapsed when a sufficient movement of the lower mass blocks caused a loosening at the arch abutments.

(a)

(b)

Figure 2.8 Behavior of a jointed mass during mining by caving

Figure 2.8 Continued

Figure 2.8 Continued

Figure 2.8 Continued

Figure 2.8 Continued

CHAPTER III

VERIFICATION OF THE ACCURACY OF RESULTS CALCULATED

BY THE DISTINCT ELEMENT METHOD

3.1 Introduction

As the Distinct Element method is, in fact, an approximate method to obtain the response behavior of a block jointed system, an attempt must be made to verify that the calculations performed in the method yield results that are acceptable. What is required of a solution to a problem involving the inclusion of joints in a rock mass is that it incorporate and assign most influence to the significant parameters affecting the behavior of the mass. If in doing so, some small elastic strain is overlooked, the solution cannot be classified as exact but, needless to say, if the important responses of the block system are modeled correctly, the solution certainly must be classified as acceptable.

Confidence in the use of an approximate numerical technique such as the Distinct Element method can best be developed through comparison to existing solutions to problems which include the significant parameters which the numerical technique models. A high degree of confidence is obtained if the numerical model duplicates the results of proven analytical solutions. Somewhat less confidence in the model is developed if the comparisons are made to approximate solutions, although the degree of confidence in the approximate solutions, as evidenced by their level of acceptance by practicing engineers and designers, obviously must
be considered in the comparisons.
The problem of verifying the accuracy of solutions calculated by the Distinct Element method is compounded by the lack of analytical solutions that describe the behavior of a jointed rock mass. Instead, when dealing with the behavior of a jointed mass, most analytical solutions invoke approximations which draw upon empirically observed behavior models, soil mechanics theories and classical elastic solutions with the elastic parameters modified to reflect joint behavior. These types of models are severely limited in their applicability; for example, the elastic analyses are probably most valid for the case of very close jointing and the case of a very regular degree of jointing that can be characterized as an anisotropy. More general models for calculating the behavior of a jointed mass typically attack the problem by assuming simplified relationships between the parameters selected to typify the behavior. This type of model suffers in that the full implications of the roles these parameters play in the behavior of the mass are not yet fully understood.

What is needed then to perform a truly accurate comparison unfortunately does not exist. Rather, the very nature of the problem dictates that a choice be made between approximate techniques of analysis which often contain vastly simplified, empirically adjusted assumptions regarding the overall mass behavior which could possibly only be valid for a distinctly limited range of material properties.

One group of approximate techniques, which is 1 imited in its
scope to geometrically ideal problems, is acceptable for a comparison of this type. Limit Equilibrium solutions are concerned with the static equilibrium of bodies at the point of failure. Under this assumption, the frictional forces are assumed to be fully developed and thus force diagrams can be drawn and equilibrium equations written. This method requires the knowledge of the location of the failure surface and a minimal number of interacting blocks. Provided that the geometry of the mass can be represented simply, Limit Equilibirum principles are routinely used to calculate the response of a jointed mass.

In the sections that follow, five simple approximate models for the behavior of jointed masses are presented and the calculated responses are compared to that generated by the Distinct Element method. Included in these models are Limit Equilibrium analyses of: one block on an inclined plane with sliding and rotation possible; two interacting blocks, one in an active state, the other in a passive state; and, multiple interacting blocks both with and without the possibility of rotation. Also included are comparisons to physical models examined with a base friction apparatus, presented primarily for qualitative observations on the kinematics of large displacements, as well as a simple pressure distribution in a jointed mass where simplifying assumptions regarding material behavior have reduced the problem to an application of the principles of static equilibrium.

Common to the models chosen for comparison to the Distinct Element model are simple geometric properties and minimal
assumptions regarding material behavior. As a result of this the models possess the additional feature that an intuitive insight into the ultimate response behavior is often possible. If it is possible to demonstrate that the simple models give the correct response, then it is much more meaningful if the Distinct Element model gives the same response.

3.2 The Base Friction Method

The base friction or base shear modeling technique is a physical, scale model ing technique described by Goodman (1972) that developed from the suggestion that the effect of gravity on a jointed rock slope could be simulated by shear forces on the base of the model as it was pushed over a plane surface.

Alternatively, as in demonstrations attributed to Dr. E. Hoek (Goodman, 1976) the base may be moved while the model is restrained. The advantage of a horizontal assemblage of blocks lies in the fact that complex, unstable models may be constructed and failure observed as gravity is suddenly "switched on". Disadvantages arise due to the fact that accurate model ing of a real situation requires that a model material having the exact frictional properties of the real material must be found. In practice, exotic mixtures of flour, sand, salt and cooking oil are used to make a cuttable, semi-rigid modeling material. A material of this type has the advantage that discontinuities may be cut into it at arbitrary orientations; for the purposes of this investigation, however, as rigidity was of prime importance, 1 cm cubes of commercially available plexiglass were used to construct the models. The inability to orient discontinuities at arbitrary angles was not considered a severe liability in this investigation as the end result was simply to demonstrate qualitatively that the Distinct Element method would reproduce the expected modes of failure in several models where the failure modes were obvious.

Figure 3.1 illustrates the small base friction apparatus used to study the behavior of the jointed models.

Figure 3.1 $\begin{aligned} & \text { Diagramatic sketch of base friction apparatus used } \\ & \text { in comparison }\end{aligned}$

Modeling techniques such as base shear are typically kinematic in that they reproduce the geometric features of the geologic structure and the excavation to a sufficient degree to establish possible modes of failure. However, they are not exactly scaled dynamically. For example, the base shear method does not give the correct response when a moving body acquires lateral momentum since in the base friction model, real accelerations are proportional to the driving belt velocity (Goodman 1976).

The implication of this is that in the absence of block to block contact, the only accelerations permitted in the model would be in the direction of the belt velocity as indicated in Figure 3.2. The Distinct Element model of this situation is included to demonstrate that momentum is indeed properly modeled.

However, several qualitative observations of a kinematic nature can be made: blocks which receive no supporting resistance must move downward under the effect of gravity; unconfined, geometrically unstable blocks must rotate and topple; and confined, geometrically unstable blocks must induce sliding in neighboring blocks as they rotate and topple. These three behavioral features of jointed systems can readily be simulated on a base shear apparatus by a laterally unsupported mine roof, an overhanging cliff and a cut slope in a jointed mass, respectively. These three failure models were chosen because, due to their simplicity, the kinematics of the failure are obvious. This makes them ideal for comparison with the Distinct Element method for it demonstrates that the Distinct Element method can calculate the proper failure mode for several situations for which the failure modes can be envisioned.

Figures 3.3, 3.4, and 3.5 illustrate a comparison of each of the three above mentioned failure modes by the base shear technique and the Distinct Element method. Little, if any, comment appears necessary other than to point out the similarity of the developing failure in all three cases.

Figure 3.2 Dissimilarity of base friction model and Distinct Element method and real situation where momentum is
not negligible.
(3)

(1)

Figure 3.3 Comparison of base friction analysis and Distinct Element method for case of unrestricted, gravity induced block displacement.

Figure 3.4 Comparison of base friction analysis and Distinct Element method for case of unconfined geometrically
unstable blocks.

Base Friction

Figure 3.5 Comparison of base friction analysis and Distinct Element method for case of confined, geometrically unstable blocks.

3.3 Limit Equilibrium of a Single Block

The simplest and most obvious quantitative test of the validity of the Distinct Element method is whether or not it can adequately model the behavior of a single block on an inclined surface. The laws of static equilibrium furnish two important aspects of the behavior of such a block: first, it will not slide unless the angle of friction is less than the angle of inclination of the surface upon which it rests; and second, when the direction of the weight vector falls outside of the base of the block, overturning of the block must occur. This toppling stability is related to the geometry of the block as illustrated in Figure 3.6. When the ratio of the width of the base to the height of the block is less than the tangent of the angle of inclination, overturning of the block occurs.

Thus, the limiting stability condition of a single block on an inclined plane is a function of the angle of friction (ϕ), the shape (ratio h / b) and the inclination of the sliding plane (ψ). The interrelationship of these parameters has been presented graphically by Hoek and Bray (1974) and is reproduced in Figure 3.6. This diagram del ineates the four behavioral characteristics of a single block on an inclined plane: stable, sliding, toppling, and a combination of sliding and toppling. Note that the line $\phi=\psi$ is not fixed on the diagram - it is moved laterally to specify the boundary for a given ϕ situation.

The line $\phi=\psi$ and the line $h / b=\cot \psi$, representing 1 imiting conditions for any specific block under consideration, suggest an

Figure 3.6 Conditions for sliding and toppling of a block on an inclined plane (from Hoek and Bray, 1974).
alternate method of plotting this data. For a given base plane inclination ψ, the geometric ratio (h / b) and the friction angle (ϕ) are plotted as the ordinate and abscissa respectively. The line $h / b=\cot \psi$ separates the plot into two regions in which toppling will or will not occur; the line $\psi=\phi$ similarly divides the plot with respect to sliding. The only advantage of such a plot, an example of which can be seen in Figure 3.7, is that the four regions are more nearly equal in area than on the Hoek and Bray plot. It suffers from the disadvantage that two lines must be drawn for each specific case whereas the Hoek and Bray diagram only requires that one line be redrawn.

As a test of the ability of the Distinct Element method to calculate the proper response of a single block on an inclined plane, paired values of ϕ and h / b were randomly generated for several different values of the base plan inclination (ψ) and the observed behavior of the block plotted on the described diagram. The results for two values of ψ are presented in Figure 3.7. In addition, several limit values were plotted whenever possible. For example, in the case $\psi=26.6^{\circ}$ the value of ϕ at which sliding just began was also noted. Also in the case $\psi=26.6^{\circ}$, as the limiting condition for toppling was $h / b=2.0$, limit conditions at which toppling just began were investigated.

The results presented in Figure 3.7 show that the Distinct Element method is capable of accurately predicting the behavior of a single block on an inclined surface with respect to sliding or toppling failures. However, close examination of the left side,

Notes

1) $\psi=\phi$ represents 1 imit equilibrium for sliding
2) $H=B \cot \psi$ represents limit equilibrium for toppling

Figure 3.7 Limit Equilibrium conditions for a single block on a plane surface: $\phi, H / B$ pairs randomly generated for constant ψ.
uppermost quadrant, indicates that most failures in this region were of a sliding nature rather than a combination of sliding and toppling. The reason for this is easily understood in light of the true meaning of the diagram.

The behavior of a sliding block is indeterminate except at conditions of limiting equilibrium; that is, the theory that has been used to predict the behavior of a block is only valid along the line $h / b=\cot \psi$ and along the line $\phi=\psi$. In three of the quadrants, the fact that either one or both of the failure criteria are not met still allows the determination of the behavior. Consider, as an example, the right side, uppermost quadrant: if a block cannot slide, rotational behavior can be deduced from moment equilibrium.

In the lefthand, uppermost quadrant however, neither of these stability criteria is met and the problem is highly statically indeterminate. Intuitively, it must be true that a block sliding on a frictionless surface cannot topple due to the inability of the system to develop an overturning couple. On the other hand, a block sliding on a plane inclined at an angle slightly greater than the friction angle experiences an overturning couple due to the frictional resistance acting on the sliding surface. If, additionally, the block geometry is conducive to toppling, then intuitively, the fact that the block is sliding should introduce an additional toppling moment. An analysis as simple as that illustrated in Figure 3.6 cannot predict the dynamic behavior just described as it is only concerned with limiting cases.

Examination of the plots in Figure 3.7 indicates that combined toppling and sliding was infrequently observed and only occurred near the limiting conditions. The line that delineates that area of the graph corresponding to simultaneous sliding and toppling behavior is not deducible from a simple Limit Equilibrium analysis. The fact that this coupled behavior is not determinable does not detract from the comparison in the least for the true test of the Distinct Element method lies in its ability to produce accurate results along the lines $\psi=\phi$ and $\mathrm{h} / \mathrm{b}=\cot \psi$ which, as Figure 3.7 indicates, it has done.

3.4 Two Block Limiting Equil ibrium Model

Goodman (1976) presents a method by which a Limit Equilibrium analysis of two interacting blocks can be performed with the aid of a stereonet. Figure 3.8 illustrates the general nature of the problem; a rock slide consists of two free blocks, one of which is in an active or loading state, the other is in a passive or resisting state. Sliding of the passive wedge is initiated by load transfer from the active wedge which, by definition cannot be sustained by friction alone along its base planes; moment equilibrium is not considered.

The procedure consists of three steps:

1. analyze active block with plane 3 as a free face: find F_{p} required
2. analyze passive block with plane 3 as a free face, and with load - F_{p}
3. system is safe if resultant or passive block falls within the friction cone to the normal to plane 2 Note that if the angle that the resultant on plane 2 makes with the normal to plane 2 is taken as the friction angle on plane 2, then limiting equilibrium conditions exist throughout the mass.

Several different geometries were analyzed by this method for comparison with the Distinct Element method. Care was taken to ensure that the geometries chosen for analysis would fail with a minimal amount of rotation and with full frictional resistance developing on all planes in accordance with the basic theory. The results of several of the test cases are presented in Table 3.1,
some of the geometries and the associated stereographic projections are presented if Figure 3.8.

The difference in the friction coefficient for stability on Plane 2 as calculated by two block Limit Equilibrium as compared to that calculated by the Distinct Element method was found typically to be on the order of one percent.

	Limit Equilibrium		Distinct Element		Relative Difference	
Case	ϕ	μ	ϕ	μ	in μ	
1	23.0°	0.425	23.3°	0.430	1.2%	
2	25.5°	0.477	25.7°	0.482	1.0%	
3	30.6°	0.591	30.8°	0.597	1.0%	
4	33.0°	0.649	33.7°	0.652	0.5%	
5	37.6°	0.770	37.5°	0.767	-0.4%	

$\begin{array}{ll}\text { Table 3.1 } & \begin{array}{l}\text { Comparison of the coefficient of friction required for } \\ \text { stability as calculated by Limit Equilibrium and by the } \\ \text { Distinct Element method. }\end{array}\end{array}$

Other geometries, in which rotation played a major part in the failure, were analyzed and compared by the two methods. A typical geometry investigated is illustrated in Figure 3.10. The friction coefficient calculated by two block Limit Equilibrium for this geometry was found to be 0.554; the friction coefficient calculated by the Distinct Element method was found to be 0.490 . The resulting difference in the friction coefficient was thus eleven percent. If, however, a Limit Equilibrium analysis

Figure 3.8 Parameters for two dimensional, two block Limit Equilibrium analysis (from Goodman, 1976)
incorporating rotation is performed, the friction coefficient for stability of the passive block is found to be 0.477 with a resulting difference in the friction coefficient of 2.7%. The geometry, stereographic solution and idealized force distribution are shown in Figure 3.10.

Figure 3.9 Geometries, force polygons and stereographic solutions for representative two block cases analyzed by Limit Equilibrium.

Figure 3.10 (a) (b) (c) Limit Equilibrium analysis of a two block model where toppling is an expected failure mode; (d) Alternative force distribution for consideration of moment equilibrium.

An interesting test of the ability of the Distinct Element method to calculate a comparable solution arises in a comparison to the method of slices approach commonly used to assess the stability of a soil slope. Although the intent of the method of slices approach is to model a soil slope as failing plastically at all points simultaneously, equilibrium is calculated for a number of vertical slices whose behavior can best be described as that of a rigid block. There are a number of approaches to the solution of this problem, but they all have in common the fact that an idealization is made in the true force distribution on a slice to make the solution statically determinate. Examples of idealizations which can be solved by hand calculations are the Fellenius and simplified Bishop techniques (Lambe and Whitman, 1969) which assume zero force resultant in the direction normal to the failure arc and zero force resultant in the vertical direction, respectively. More complex lateral force distribution schemes exist, and are typified by the method of Morganstern and Price (1965), which assumes the lateral force distribution parallels an originally unknown but determinable function, and the method of Spencer (1967, 1973), which assumes that the lateral forces are inclined at a constant and determinable yet originally unknown angle. The solution of these more complex schemes is typically highly iterative and best handled by a computer.

To keep a proper perspective it must be noted that Fellenius chose to ignore the side forces in his method since the error introduced was on the order of five percent and that Beichmann in

1937 used 13 different and reasonable assumptions about the side forces to demonstrate that the maximum difference among the methods was only four percent (Golder, 1972). In addition, Spencer (1967, 1973) was able to demonstrate the insensitivity of the moment equation to the slope of the interslice forces. The inclusion of a constant side force inclination led to a significant reduction in required computational time as there was no longer any need to calculate the thrust position function as in the method of Morganstern and Price.

For purposes of comparison to the Distinct Element method, four commonly encountered method-of-slices analysis were used. The friction circle technique, Taylor (1937), although not a slice type analysis, was also used. With the normal stress concentrated at a single point, this equilibrium solution establishes a lower bound safety factor for all method-of-slices solutions which satisfy statics. The Fellenius and simplified Bishop methods (Lambe and Whitman, 1969) were used because of their simplicity and tendency to bracket the other methods (Whitman and Moore, 1963). Wright's modification of Spencer's method (Major, et al., 1976) was chosen as representative of the methods that include lateral forces, primarily due to its superiority in computational speed.

The results of the comparisons for two slope configurations are presented in Figure 3.11; the significant difference between the cases is that case B is more nearly planar owing to the larger radius of the failure surface. Inspection of the figure illustrates several interesting points as outlined in the following

- Fellenius
O Spencer - Wright
A Simplified Bishop
日 Distinct Element

Figure 3.11 Stability analysis by method-of-slices techniques and Distinct Element method.
paragraph.
Firstly, the variation in the friction coefficient required for Limit Equilibrium conditions is a function of the number of slices; the fact that Spencer's method, which utilizes lateral forces, is less sensitive to this parameter probably indicates the reason for this. As the blocks get thinner, they become rotationally unstable and lateral forces are required to maintain equilibrium. On the other hand as the number of slices becomes smaller, the system begins to act as an active/passive block system and once again, lateral forces are required for equilibrium to be reached. In practice, it is recognized that these problems are avoided if the number of slices is in the range of from ten to twenty. Within this range the friction coefficient as calculated by the Distinct Element method is within two percent of the method incorporating side forces (Spencer-Wright) and typically within five to seven percent of that given by either Fellenius or Bishop. Secondly, the friction coefficient calculated by the Distinct Element method diverges from that calculated by the other methods for a small number of slices. This is probably due to the fact that the Distinct Element method approximates the circular failure arc by a series of straight line segments and the possibility that any given segment could have an unwarranted influence on the sliding behavior. A given line segment could lower the inclination of the failure surface at any point along the slope with a corresponding decrease in the resultant friction coefficient required for stability. In contrast to this is the case where the
failure arc is approximated by a larger number of slices; in this case the average slope of the failure arc is correctly represented. These two cases are illustrated in Figure 3.12.

Figure 3.12 Possible mechanism (exagerated view) for divergence of Distinct Element method from slice methods as slice thickness increases. Note that in case A, sliding can occur on a line segment which has a higher inclination than the average for that section of the arc while this does not occur in case B.

3.6 Multi-Block Limiting Equilibrium with Toppling

Goodman and Bray (1976) demonstrated that block toppling can easily be analyzed by Limit Equilibrium methods for the special case of blocks resting on a positively stepped base as shown in Figure 3.13(a). Sliding and toppling modes of failure are analyzed for each block according to the failing configurations illustrated in Figure 3.13(b). The indeterminacy in the equilibrium equation for each block is resolved by assuming that full frictional resistance develops at each contact point. The other major assumption in the method is the position of the points of contact.

Beginning with the uppermost block, the force to prevent toppling and the force to prevent sliding are calculated. The larger of these two numbers dictates whether toppling or sliding will occur; however, if both forces are negative, the block is stable. For the analysis of the next block down the slope, the larger of the two forces (or zero if the block is stable) is applied to the downslope block and the stability of that block determined. The method continues down the slope until the toe block is reached. The force required to maintain equilibrium of the toe block is the cable force required to stabilize the entire slope since all excess driving forces have been transferred to the toe block by the calculation method. The method is general enough to handle any location and orientation of the cable force.

Two of the geometries chosen for analysis are illustrated in Figure 3.14; although similar in appearance, they differ in that the toe block will fail by sliding in one case and by toppling in the other case.

Figure 3.13 Conditions for toppling and for sliding of a given block under limiting conditions (after Goodman and
Bray, 1976).

One additional point must be considered when the mode of failure is dominated by toppling. Whereas the stability of a system of sliding blocks may be analyzed with the Distinct Element method by beginning with a condition that is stable with respect to frictional sliding and reducing the friction coefficient until failure occurs, the situation that exists when toppling modes of failure are present is more complex. On the one hand, frictional resistance on the sides of the block and at the corner about which rotation is occurring cannot be fully developed unless rotation induced lateral movement has been allowed to occur between blocks. But on the other hand, once some rotation has occurred, the geometric configuration of the blocks is such that a higher force is required to maintain stability with respect to toppling.

In a comparison of the Distinct Element method and the Goodman and Bray Limit Equilibrium method, this fact must be taken into consideration. Since the significant coordinates are always available during the running of the Distinct Element program, the amount of rotation of an individual block can always be calculated at any time during the running of the program. In addition, a sensitivity analysis relating cable force to base plane inclination was performed using the Goodman and Bray Limit Equilibrium method.

The variation of the step inclination illustrated in the figure does not represent an actual change in the geometry of the model but reflects the actual displacement of the blocks due to rotational movements in the Distinct Element model. The value of the cable
force determined by the Distinct Element method for several values of block rotation is illustrated. The corresponding values as determined by Goodman and Bray's method are also plotted for equivalent rotations. By comparing the data in this manner, there is assurance that the difference in calculated values is not due to a failure to compare equivalent models.

The results of the two comparisons are presented in Figure 3.14; part A illustrates the case of the toe block toppling and part B illustrates the case of the toe block sliding. Inspection of Figure 3.14 shows that the response of the Distinct Element model is similar to that of the Goodman and Bray Limit Equilibrium model; the cable force calculated is also similar for both models.

The relative difference in the calculated cable forces is approximately ten percent for the case of toe block sliding and approximately twenty percent for the case involving toe block rotation. Examination of Figure 3.15 illustrates several discrepancies between the contact force distribution assumed by Goodman and Bray and that calculated by the Distinct Element model. These discrepancies all have a direct bearing on the magnitude of the required cable force and help to explain the difference in the value of the cable force as calculated by the two methods.

The contact forces indicated by the number 1 in the figure indicate "elastic" compression of the block system due to the applied bolt force and result in an increased value of the bolt force required for stability. The contact force indicated by the

Figure 3.14 Comparison of Distinct Element calculated response of multi-block Limit Equilibrium and response as calculated by the method of Goodman and Bray (1976).
number 2 also reflects the tendency of the cable force to compact the system; as rotation begins, shearing resistance develops. This force however, acts to stabilize the block and thus, indirectly, reduce the required value of the cable force. The contact forces indicated by the number 3 directly contradict the basic assumption of Goodman and Bray - the development of full frictional resistance at all sliding contacts. Forces of this type acting at less than full frictional development increase the rotational moment on a block and thus increase the required value of the cable force.

In spite of these discrepancies, agreement of the models is still quite good indicating that the effect of the additional contact forces and the failure to mobilize full frictional resistance at all sliding contacts is slight. Additionally, rotational failure is very unstable and dynamic as opposed to simple frictional sliding which is essentially static. In light of this it is felt that the agreement between the Goodman and Bray model and the Distinct Element model is quite good.

Figure 3.15 Observed discrepancies in the contact force distribution assumed by Goodman and Bray (1976).

3.7 Pressure Distribution in a Jointed Foundation

Several authors, notably Krsmanovic and Milic (1964), Trollope and Brown (1965), and Hayashi (1966) have investigated the distribution of pressure in a fissured or jointed mass loaded by a strip footing. Krsmanovic and Milic used physical, scale models incorporating pressure measuring transducers to examine behavior beneath the foundation, while Trollope and Brown and Hayashi deduced geometrically progressing load transfer factors that were used to predict the pressure distribution within the jointed mass. Of the three models, Hayashi's was used in a comparison with the Distinct Element method because the tests Krsmanovic and Milic performed were limited in scope and involved rupture of the blocks while Trollope and Brown's model relied upon the development of arching in the load transfer and was judged to be more applicable to the analysis of the behavior of a jointed mass on a settling foundation than to a strip loaded foundation (Trollope, 1968). Hayashi presents three approximations, each successively more complex in computational effort, to the distribution of pressures in a jointed, strip loaded foundation. The first approximation, which actually appears earlier in Froehlich (1933), approximates the jointed mass as a tiered assemblage of point loaded simple beams; the resultant pressure distribution for the case of no cohesion or frictional resistance reduces to the combined Pascal distribution as illustrated in Figure 3.16. The second approximation determines the elasticplastic boundary below which slip no longer occurs by means of the

Note:
Vertical load acting on block is determined by combined Pascal distribution factor (indicated within block) miltiplied by one-half of total load acting on strip (0.5 Tq)

Figure 3.16 Hayashi's first approximation to the vertical, normal stress distribution in a fissured foundation combined Pascal distribution.

Boussinesq equations and the third approximation attempts to correct for the conversion of strain energy to heat as slipping occurs. As the second and third approximations introduce additional simplifying assumptions concerning the material behavior, the first approximation was chosen for the comparison with the Distinct Element method.

One of the resulting comparison plots is illustrated in Figure 3.17. Even plotted to an exagerated scale, the similarity is obvious. The maximum discrepancy in the two methods, relative to the total load, is seen to be only four percent. The dissimilarity in the two methods arises in Hayashi's failure to include rotational terms in his analysis. Examining the first row of blocks beneath the strip load shown in Figure 3.16 suggests that the central block, owing to a larger load, will undergo a slightly larger deflection than will the blocks on either side. This will result in an inward rotation of the two side blocks and a corresponding increase of load in the region beneath the central blocks. Following this line of reasoning it is easy to see that had Hayashi considered rotations in his model, the resulting pressure distribution would have been, from a qualitative viewpoint, slightly higher in the central region and lower on the sides bringing it more in line with the pressure distribution calculated by the Distinct Element method.

Figure 3.17 Vertical stress on a horizontal plane in a fissured foundation by the Distinct Element method and Hayashi's (1966) method.

It seems appropriate to conclude with a brief summary of the comparisons just presented, for the credibility of the remainder of this dissertation depends in part upon the acceptance of the validity of the Distinct Element method on the basis of the simple comparisons presented. Using a base shear apparatus, it was demonstrated qualitatively that the Distinct Element method calculated kinematically correct responses for several classes of complex problems where intuitive projections of the resultant mass deformational response were possible. For those Limit Equilibrium analyses of block models which represented essentially static situations, agreement was typically within one or two percent; even for the more dynamic situation involving multiblock rotations, agreement was on the order of ten percent. Finally, for that situation where it was possible to duplicate all of the assumptions regarding mass behavior, the Distinct Element method was observed to calculate a pressure distribution beneath a strip loaded foundation that was essentially similar to that calculated by Hayashi's (1966) theory.

Confidence in the method depends upon extending this credibility in the Distinct Element obtained solutions to problems where analytical solutions are not possible and where intuitive observations pertain to the mass deformational response are often not practical owing to the complex nature of the jointing.

There are no readily apparent reasons why extending the Distinct Element method to models which are more complicated
geometrically should result in answers that are any less acceptable than those generated for the preceeding comparisons. The Distinct Element formulation contains no underlying requirements to dictate where failure surfaces should develop nor does it require that the failure mode must somehow be reducible to idealized mechanisms of arching, toppling, or sliding. No mass elastic response equations with empirically modified parameters are incorporated in the model; no "joint elements" need be formulated. In fact, owing to the explicit nature of the formulation there is not even a need to form a stiffness matrix relating block deformations to interblock loads.

The Distinct Element formulation is oriented toward the behavior of each block as an individual mass. The kinematic behavior of each block is independently calculated using Newton's law of motion; each block senses the blocks surrounding it only as boundary conditions. If the movement of a block leads to penetration or relative movement along the surface of another block then the normal and shear stiffness will lead to interblock contact forces by a simple application of Hooke's law with an upper limit to the forces set by the Mohr-Coulomb relation. These forces are simply treated as boundary conditions for the first block. When a contact is broken by a relative displacement between the two blocks involved, there is no longer a need to consider the effect that these blocks have upon each other.

In light of this single block orientation of the Distinct Element formulation there is no readily apparent reason why the only difference between a problem involving only a few blocks and
one involving tens or hundreds of blocks should be anything more than the extended time required to perform the calculations.

It should be noted, however, that the time step used in the calculation cycle is sensitive to the number of contact points a single block experiences at a given time. An increasing number of contact points can lead to numerical instabilities; this simply necessitates a reduction in the time step and is not an indication that the Distinct Element formulation is incapable of solving problems where single blocks simultaneously experience multiple contact points. In the present configuration, the equations are stable up to a maximum of eight points per block.

Additional verification comparisons of Distinct Element calculated responses are presented in the remaining chapters whenever it is possible to express quantitatively the behavior of the block jointed mass under consideration. The high degree of correlation exhibited by the comparisons presented in this chapter is also found to be true for the comparisons presented in the later chapters.

THE STABILITY OF UNDERGROUND EXCAVATIONS IN JOINTED ROCK

4.1 Introduction

The first step in a rational support design method must logically be to predict whether or not a need for support actually exists. Rather than categorically stating that an excavation will or will not be stable if unsupported, it is more realistic to analyze a given situation by varying the values of the input parameters to determine those parameters to which the given excavation will be most sensitive. Using realistic values of the design parameters it can be determined if the excavation can be expected to stand unsupported or if support will be required. This type of investigation is typically found to be very sensitive to the input parameters, particularly those such as joint orientation and spacing, and the magnitude of the pre-existing stress field. Within the context of the expected variation of the parameters in the real situation it is then possible to make a qualitative statement about the stability of the excavation. This typically could be expressed in one of three ways: (1) within the expected variation of the input parameters the proposed excavation should be stable; (2) the expected variation in the input parameters indicates that the excavation may or may not be stable, suggesting a possible need for light supports; or (3), realistic variation of the input parameters indicates that the excavation will not stand unsupported, suggesting the need for heavier supports.

This chapter presents the results of numerous analyses of the
behavior of excavations in jointed rock in an attempt to determine which parameters had the greatest effect on the stability of the excavation. The models chosen for analyses are characterized by simple joint configurations and the behavior examined through the contact forces that exist between the blocks. This behavior is then interpreted in light of arching theory.

The term arch usually conveys the concept of a vaulted opening so that arching seems to describe the process by which the vaulted opening is formed. As used by Woodruff (1966), the term arching refers to the natural process by which a fractured material acquires a certain ability to support itself through the resolution of the vertical component of its weight into diagonal thrust. Arching theories examine the processes by which this stress transfer is accomplished.

Arching theories are based upon an analysis of beam behavior such as that presented by Woodruff (1966) which is illustrated in Figure 4.1(a). The analysis indicates that zones of tension and compression exist in the strata above the opening. In recognition of the fact that rock is relatively weak in tension, the lower row of the strata above the excavation is represented as being comprised of two independent blocks. The compressive forces which act to maintain the stability of the two blocks above the excavation are illustrated in Figure 4.1(b). The similarity of this force distribution to that of a three hinged structural arch is obvious; an analysis of excavation roofs in this manner is often termed linear arch analysis. As noted in Figure 4.1(b) no vertical force transmittal to the two roof blocks is assumed to occur. Thus
linear arch analysis, in this simple form at least, is an analysis of the lower row of strata only.

A significant portion of the results of this chapter are based upon the recognition of arching patterns in the Distinct Element calculated contact force distributions in the jointed rock surrounding an excavation. It is worthwhile then to briefly describe the origin of the contact forces and the manner in which the arches are recognized.

The contact forces represent the interaction between the blocks. A simple illustration is presented in Figure 4.1(c) where one block is shown on top of another; it is the upper block that is of interest. The weight of the block, shown as w in the figure is the force tending to cause movement. The interaction with the lower block leads to two contact forces which equilibrate the upper block weight. The contact forces are calculated from the overlap or interpenetration of the blocks as described in Chapter 2.8 and represent an equilibrium condition. The contact forces in more complex models are calculated exactly the same way.

The recognition of arching in the contact force distributions is based upon two observations. First, the arching phenomenon is indicated by the presence of relatively high magnitude contact forces. Arching involves diagonal thrust, but the vertical component of this thrust must be at least equal to the weight of the blocks being supported by the arch action. Since the arch thrusts typically form at low angles, the horizontal component of the thrust is usually large. The recognition of arching also is based upon the necessary

$T=$ Tension
$C=$ Compression

Contact Points

Figure 4.1 (a) General distribution of stress in a beam over an opening; (b) self supporting linear arch model; and (c) contact forces due to weight of block.
continuity of the force distributions. In particular, a block which is in equilibrium can have no unbalanced forces acting on it. Thus, the occurance of high contact forces in a region of low contact forces can only be possible if some mechanism is acting to transfer these forces to a high stressed region.

The analyses presented in this chapter indicate interactions exist within the mass which are typically neglected by arching theory. The analyses also indicate trends suggesting which input parameters have the most effect on the stability of an excavation in jointed rock.
4.2 General Observations on Force Distribution Around Excavations in Jointed Rock

An elastic analysis of the behavior of the rock surrounding an excavation invariably leads to the conclusion that the vertical stress component is transferred to the rock on either side of the excavation resulting in a region of relatively low stress immediately above the excavation. This fact has been demonstrated many times in the past by using photo elastic models and recently by using Finite Element analysis. A typical plot of stresses surrounding an opening in an elastic medium is presented in Figure 4.2(a). Note that a zone of tension exists at the crown. The Distinct Element method can be used to study the redistribution of stress due to an excavation in a jointed medium. As an example, consider the model of the roof of an excavation presented in Figure 4.2(b). Owing to the discontinuous nature of the vertical jointing, only blocks in the lower four rows are able, from a kinematic standpoint, to move into the excavation. The weights of all of the blocks, drawn to a common scale, are illustrated in Figure 4.2(c). All of the contact vector distributions for the jointed models illustrated in Figure 4.2 utilize the same force scale. Figure 4.2(d) illustrates the redistribution of forces that occurs as the room is excavated. Analogous to the elastic model, the bulk of the stress is transferred to the material on either side of the excavation and a destressed, triangular zone is seen directly above the opening. The lower portion of the

(a)

(b)

Figure 4.2 (a) stress distribution in roof of opening in elastic medium; (b) model for behavior of jointed roof.

(d)

Figure 4.2 (continued): (c) block weights for jointed roof model; (d) force distribution in roof following excavation (overburden due solely to block weight).

Figure 4.2 (continued: (e) force distribution in roof due to block weight and additional load to simulate greater depth: (f) stress distribution in triangular wedge supported at lower corners.

(g)

Figure 4.2 (continued): (g) stress distribution in jointed roof
by Finite Element analysis.
triangular zone is seen to be in tension in the elastic case, whereas in the jointed model the absence of contact forces at the center of the bottom row of blocks indicates that the response of the jointed model is characterized by opening of joints.

Furthermore, the pattern of compressional contact forces in the lower portion of the traingular zone indicates that an arch is forming and supporting the weight of the blocks within the triangular zone. The formation of this arch is discussed in section 4.3.3.

To investigate the effects of greater depth of the excavation, a uniform force was applied to the upper row of blocks in the model. Figure $4.2(\mathrm{e})$ is a plot of the stress distribution for the case where the applied forces correspond to a depth of excavation approximately ten times that illustrated in Figure 4.2(b). The same relaxed triangular zone characteristic of the low stress problem can be seen in Figure 4.2(e).

Comparison of the force distributions in the jointed models with that for the elastic case indicates that although arches are developing in both cases the support afforded by the formation of the arch is fundamentally different in the two cases. In the elastic case a single arch forms relatively high in the roof and the weight of the material in the destressed zone is supported through the development of tensional forces. The jointed models on the other hand develop two arches, one relatively high in the roof which delineates the destressed zone; and one that acts to support the lower strata.

This observation indicates a significant difference between the behavior predicted by elastic analyses and by the Distinct Element method. To determine to what extent the elastic behavior depended upon the continuity of the mass, several idealized models of roof behavior were analyzed, two of which are described here.

Figure $4.2(f)$ presents the results of a typical elastic analysis wherein the destressed zone was analyzed independently of the surrounding rock mass. The arch is still seen to form in the upper portion of the wedge of material and the material in the lower part of the wedge is in tension. This is in direct contrast to the behavior of the jointed masses analyzed by the Distinct Element method.

Figure $4.2(\mathrm{~g})$ presents the results of a Finite Element analysis where the destressed zone was bounded approximately by a series of joint elements. Once again, the resultant behavior is characterized by a high arch and tensional forces; no evidence of arching action in the lower portion of the destressed zone is seen.

The behavior of the roof above an excavation in an elastic medium is thus seen to be fundamentally different than the behavior of a similar excavation in a jointed medium. The next portion of this chapter presents the results of an investigation to determine the causes of this fundamental difference.

4.3 A Model for the Behavior of Jointed Mine Roofs

The analyses discussed in this chapter deal with the behavior of the roofs of excavations in a medium where jointing is vertical and horizontal. The models have been kept simple deliberately so as to gain insight into relationships among the various parameters. As the overall goal of this study is to demonstrate the usefulness of the Distinct Element method in the analysis of excavation in jointed rock, more effort has been expended on demonstrating the effect of varying the significant parameters than on developing a single, all encompassing equation purported to describe the behavior of mine roofs.

The majority of the analyses to be discussed utilize similar jointed models, but although the chosen models are realistic the limitations were not imposed by the Distinct Element method as such; the techniques presented in this chapter are equally applicable to any model configuration. Although outside the scope of this study it is easy to envision an eventual compendium of various model geometries that portrays graphically the differences in the behavior of models.

4.3.1 The basic model

The basic model used for analysis consists of a rectangular opening in a rock mass with continuous horizontal jointing and discontinuous jointing in the vertical direction as shown in Figure 4.3. This model does not consider the effect of joint inclination but does allow for variation of the span, aspect ratio of the blocks and friction angle of the joint surfaces.

Figure 4.3 Jointed model upon which analysis was based. (0 is span width, w is block width, t is block thickness and h is height of the triangular wedge.

Figure 4.4 Diagramatic section of a roof fall (After Jones and Davies, 1929).

As justification for the use of the model a brief summary is given of four previous studies comprising theoretical calculations, laboratory as well as field observations and measurements, which utilized a similar model or support the model.

1) Behavior of Coal Mine Roofs

Jones and Davies (1929) presented a summary of their observations of roof behavior in British coal mines. They found that roof falls were invariably limited in height, the majority of the falls extending from 3 to 10 feet upward; falls exceeding 15 feet in height were considered exceptional. Judging from their description of the mining methods, the drifts were from 12 to 18 feet wide. They also concluded that the canopy of the fall was typically stepped along the sides "in the manner of a stairway viewed from below". A diagramatic section from their paper is reproduced in Figure 4.4.
2) Loads on Tunnel Supports

On the basis of observations and measurements of timber crushing in railway tunnels, Terzaghi (1946) proposed a classification scheme for the estimation of the maximum probable load on tunnel supports. Figure 4.5 presents one of the models used by Terzaghi to illustrate his concept that in relatively thin strata with many joints a peaked roof will develop. According to Terzaghi a constant load with a height equal to the height of the peaked roof acts to load the tunnel supports.
3) Laboratory Investigation of Arching

Trollope (1966) utilized a physical model with continuous joints parallel to the roof and discontinuous jointing in the
perpendicular direction to demonstrate the behavior of an excavation roof. Like Terzaghi he concluded that in general, two zones may be identified within the immediate roof.

Figure 4.5 Maximum probable overbreak if no support furnished (Terzaghi, 1946)

Figure 4.6 Trollope's Block Jointed Model (Trollope, 1966)

The first is inherently stable; the other zone which he referred to as the suspended zone, corresponds roughly with Terzaghi's triangular zone. Whereas Terzaghi concluded that the material within the zone would load the tunnel supports, Trollope was more concerned with the development of arching and stability within the suspended zone. Trollope's model is shown diagramatically in Figure 4.6.
4) Theoretical Stability Analysis of Underground Openings Wang, Panek and Sun (1971) utilized Finite Element analysis techniques to determine the stress distribution surrounding excavations in a homogeneous medium. The maximum shearing stresses so calculated were then utilized in a Limit Equilibrium analysis to determine potential fracture surfaces. If the potential fracture surfaces were found to be unstable, they were termed critical. Although not directly applicable to problems of jointed rock, their results nevertheless indicate that the critical fracture surfaces define triangular wedges above the excavation. Possible and critical fracture surfaces calculated by their method for square and rectangular openings are illustrated in Figure 4.7. These plots indicate an expected maximum height of the triangular wedge of from 0.15 to 0.5 times the excavation width depending upon Poisson's ratio and the coefficient of internal friction.

4.3.2 Properties of the basic model

Referring once again to Figure 4.3 it can be seen that, by kinematic considerations, a triangular wedge of material is free to

$H / V=$ ratio of horizontal to vertical stress
$\mu=$ coefficient of internal friction

Figure 4.7 Possible and critical fracture surfaces for square and rectangular openings. (Wang, Panek and Sun, 1971)
move into the excavation. The height of this triangular wedge (referred to by Terzaghi as overbreak and by Trollope as the height of the suspended zone) is easily calculated in terms of the excavation span and the thickness and width of the blocks defined by the jointing pattern.

The number of blocks (b) in the bottom row of the roof strata is given by:

$$
b=0 / w
$$

0 is the true span of the excavation
w is the block width
(Note that span is defined as illustrated in Figure 4.3)
Restricting the analyses to the case where all blocks are identical, it is easily verified that the height of the triangular wedge is given by:

$$
h=b \cdot t
$$

where: t is the block thickness
In terms of the aspect ratio of the blocks ($A=t / w$)

$$
h=0 . A
$$

Equation 4.2 is plotted in Figure 4.8 as a family of curves representing the wedge height as a function of span for various aspect ratios; the block shapes are also illustrated for several values of the aspect ratio. The curves represent kinematic considerations only and indicate that increasing the aspect ratio of the blocks has the effect of increasing the height of the traingular wedge and thus, for a constant block width, the volume of material that tends to move into
the excavation. The curve corresponding to an aspect ratio of 0.5 is plotted more boldly since this is the equation for the height of the arch in stratified rock according to Terzaghi.

The graph is presented without units since the axes are consistent; that is, if the span is measured in meters, then the height of the wedge will be in meters.

Figure 4.8 Relationship between span width (0), and height of suspended zone (h) for various values of the aspect ratio (t / w) of the model illustrated in Figure 4.3. The aspect ratio of the blocks is graphically portrayed.

4.4 The Stability of Roofs in the Absence of Arch Development

The simplest model of roof behavior considered comprises excavations where the roof strata form a monolithic block and resistance to downward movement of the roof strata is provided only by frictional resistance acting along the vertical sides of the block. Owing to the complete absence of flexural deformation in this model, arching behavior is unable to develop. Typical geometries of the roof block are illustrated in Figure 4.9.

In models of this type, Limit Equilibrium principles are often used to develop the governing equation (see for instance, Szechy, 1970). The idealized force distributions shown in Figure 4.9 were used to derive a relationship between the horizontal thrust (H), the total weight of the roof block (W) and the friction angle (ϕ). In order to derive this relationship, an assumption regarding the relative magnitudes of the frictional reaction (R_{1}, etc.) must be made. To make the models illustrated in Figure 4.9 statically determinate two assumptions must be made: first, it is assumed that full frictional resistance is mobilized at all points of contact; and, second, it is assumed that the frictional resistance vectors are symmetric about the block. Under these assumptions, equilibrium principles can be used to derive the equation relating horizontal force to block weight and friction angle. This relationship is:

$$
\begin{equation*}
H=1 / 2 W \cot \phi \tag{4.}
\end{equation*}
$$

A number of monolithic roof geometries were analyzed by the Distinct Element method for purposes of comparison to equation 4.3. The results of these analyses are presented in Figure 4.10 where the joint plane angle of friction required for stability is plotted as

Figure 4.9 Limit Equilibrium models for roof behavior under frictional suspension.

Figure 4.10 Friction angle ($\mathcal{D})$ required for stability as a function of horizontal force (H) and roof weight (W) in a non arching model.
a function of the applied horizontal force and the roof weight. The family of curves plotted in Figure 4.10 was generated using equation 4.3; it is readily apparent upon inspection of the figure that there is a high degree of correllation between the horizontal force required for stability as calculated by equation 4.3 and that calculated by the Distinct Element method.

In the derivation of equation 4.3 it was assumed that full frictional resistance was developed at sliding contacts and that the frictional resistance developed symmetrically. Figure 4.11 illustrates that this is indeed the case; the three representative geometries presented in the figure have fully developed frictional resistances and the symmetry is obvious. The reason that some of the contact forces point away from the sliding block and that some point toward it is due to the plotting convention of the Distinct Element program. Since each contact point comprises two blocks, there must be a force acting on each block. The convention adopted is to plot the force corresponding to the edge upon which sliding is occuring.

Figure 4.11 Frictional resistance developed in no-arching models at onset of sliding failure.

4.5 An Examination of the Stability of Jointed Roofs

4.5.1 The Voussoir arch

The concept of an arch is of fundamental importance in the study of the way in which loads are transfered to the sides of an opening. Relatively large, unsupported spans in jointed rock can only be obtained if the major portion of the load due to the overlying strata is carried to the abutments through arches forming in the jointed rock immediately above an excavation. As an aid in visualizing the way in which an arch develops in jointed media, it is instructive to examine a particular type of masonry structure which utilizes arch principles to transfer gravity loads to abutments. This structure is known as the Voussoir arch and examples of this type of arch can be seen in the ancient Roman aquiducts and in the vaulted ceilings of European cathedrals. The Voussoir arch is still in common use today for purposes such as relieving the loads on a lintel over a window or for bridging the span of a road.

Despite the widespread usage of the Voussoir arch in masonry construction, the first rational attempts to quantify the behavior of the Voussoir arch did not appear until Pippard, Tranter and Chitty (1936) and Pippard and Ashby (1938) published the results of an extensive experimental study of the mechanics of the Voussoir arch. A significant outcome of their research was the observation that a Voussoir arch could be analyzed as a three hinged, and thus statically determinate, arch.

The analyses performed by Pippard, Tranter and Chitty and Pippard and Ashby are significant to this present study for at least three
reasons:

1) the analysis was an attempt to quantify the behavior of a jointed medium;
2) the results of the theoretical studies were compared to physical models; and
3) the method of analysis introduces the general calculation techniques of linear arch analysis.

It would seem worthwhile, therefore, to devote some detail to the above mentioned work.

Figure 4.12 illustrates a Voussoir arch as it might occur as a structural element of a small bridge. Descriptive terminology for the various components of the arch is identified in the figure. The wedge shaped blocks which comprise the arch are individually known as voussoirs; they are usually disposed symmetrically about a central voussoir known as the keystone. Pippard and Baker (1948) summarized the earlier work of Pippard, Tranter and Chitty (1936) and Pippard and Ashby (1938) and noted that no single voussoir is more important structurally than any other and that a keystone is not an essential feature of the arch. The keystone is an aesthetic and traditional feature rather than a structural requirement; thus a Voussoir arch can be stable even with a central joint present.

As previously mentioned, the research of Pippard and his coworkers indicated that the force distribution in a Voussoir arch would be statically determinate, in the absence of fixity at the abutments, owing to the development of three hinges. For a symmetrically loaded Voussoir arch two of the hinges were seen to be loacted at the

Figure 4.12 A typical Voussoir arch application with component parts identified.

Figure 4.13 Nomenclature used in analysis of a non-symmetrically loaded Voussoir arch. For a description of identified variables see the text.
abutments with the third hinge at midspan if a central joint existed or on one of the faces of the keystone if it were present. For the case of non-symmetrical point loading the two abutment hinges developed as in the symmetrical case, but the position of the third hinge was initially variable, typically located somewhere on the extrados between midspan and the loaded voussoir. Increased load or abutment movement caused the position of the variable hinge to move closer to the loaded voussoir; when the hinge reached the joint next to the loaded voussoir on the midspan side, it did not change its position again until failure had occured.

The observations concerning the formation of hinges, coupled with the results of the other analytical and experimental studies performed by Pippard and his co-workers provide good data for checking the accuracy of the Distinct Element method as well as introducing the techniques of linear arch analysis which will be used extensively in this chapter.

The idealized model used in the present study is illustrated in Figure 4.13. The model arch is circular in shape and the abutments subtend an angle of 2θ. Hinges are assumed to develop at the abutments and at the extrados of the joint nearest the point of application of the external load W on the side nearest the crown. Each individual voussoir subtends an angle of 2δ and has a weight w. The voussoirs are numbered consecutively from 1 at the keystone to m at the abutment; thus the total number of voussoirs in the arch is $2 \mathrm{~m}-1$. In addition to the external load, the arch is also loaded by
its self weight. With respect to the non-abutment hinge, self weights of magnitude aw and bw act on the shorter and longer spans respectively, as illustrated in Figure 4.13. The points of application of the loads are located as follows: the external load W is applied at the centroid of voussoir number n; the longer span load is located at an angle ξ clockwise from the vertical; the shorter span load is located at an angle n counter clockwise from the hinge which in turn is located at an angle ϕ counter clockwise from the vertical. It is easily shown that for an odd number of voussoirs;

$$
\begin{align*}
& n=\xi=(m-n+1) \delta ; \\
& \phi=(2 n-3) \delta ; \\
& \theta=(2 m-1) \delta ; \\
& a=m-n+1 ; \text { and } \\
& b=m+n-2
\end{align*}
$$

For a Voussoir arch with an even number of voussoirs a slight modification must be introduced; the voussouirs are numbered consecutively from the crown joint starting with 1 and ending with m . Thus, these are 2 m voussoirs in the arch. The corresponding parameters are given by:

$$
\begin{align*}
& n=\xi=(m-n+1) \delta ; \\
& \phi=2(n-1) \delta ; \\
& \theta=2 m \delta ; \\
& a=m-n+1 ; \text { and } \\
& b=m+n-2
\end{align*}
$$

The analytical approach used by Pippard, Tranter and Chitty (1937) involved the determination of strain energies and application of Castigliano's theorems. This approach was necessary because they
were interested in displacements as well as forces and because they analyzed indeterminate as well as determinate arches. Since the present study is limited to three hinged arches which are statically determinate, a simpler analytical method has been adopted.

Equilibrium principles provide the means to determine the force distribution in a statically determinate structure and have been used to derive the following equations.

The horizontal force H induced by a point load of magnitude W applied at the centroid of voussoir n subject to the development of hinges in the manner previously described is found by the superposition of the horizontal force H_{W} due to the external load and the horizontal force H_{s} due to the self load. These horizontal forces are calculated by taking moments about the midspan hinge and using an equation expressing vertical equilibrium.

The horizontal thrust due to the self weight of the arch is given by:
$H_{S}=\left((\sin \theta-\sin \phi) L_{S}-\right.$ aw $\left.(\sin (\phi+n)-\sin \phi)\right) \frac{1}{\cos \phi-\cos \theta}$
The quantity L_{s} represents the vertical abutment reaction on the shorter span due to the self weight of the arch and is given by:

$$
L_{s}=((\sin \phi+\sin (\theta+n)) a w+(\sin \theta-\sin n) b w) \frac{1}{2 \sin \theta}
$$

The horizontal thrust due the applied point load is given by:

$$
H_{w}=\left(L_{W}(\sin \theta-\sin (\phi+\delta)-W(\sin (\phi+\delta)-\sin \phi)) \frac{1}{\cos \phi-\cos \theta}\right.
$$

The quantity L_{w} represents the vertical abutment reaction on the shorter span due to the point load and is given by:

$$
L_{w}=\frac{w}{2}\left(1+\frac{\sin (\phi+\delta)}{\sin \theta}\right)
$$

To demonstrate the validity of the above equations, several data points from Pippard and Baker (1948) are plotted in Figure 4.14a with the plotted curve representing the ratio of horizontal force to applied load, neglecting the self weight of the arch, given by equations 4.7 and 4.8. Since Pippard and Baker did not present their analytical expressions for the ratio of horizontal thrust to applied load, the parameters used in equations 4.7 and 4.8 were scaled from drawings in their paper. In light of this limitation, the fit of the data points to the theoretical expression can be described as quite good.

The Distinct Element method was used to analyze several Voussoir arches. The results of one of these series of tests are presented in Figure 4.14b. The theoretical curve presented in the figure represents the horizontal force due to an applied point load, incorporating the horizontal force due to the self weight of the arch, as given by equations 4.5 through 4.8. In this case, as in other Voussoir arches analyzed by the Distinct Element method, the test points fit the theoretical curve quite well, and suggest that the Distinct Element method is capable of reproducing the results of the physical model tests performed by Pippard and his co-workers.

Figure 4.14(a) Horizontal thrust developed due to an applied point load neglecting the self weight of the arch.

Figure 4.14(b) Horizontal thrust due to an applied point load incorporating the self weight of the arch.

To complete the discussion on Voussoir arches it is instructive to examine the force distribution in the arches for several cases as calculated by the Distinct Element method. The geometry of the arch and two force distributions for different positions of the applied point load are presented in Figure 4.15; also shown in the figure is the geometry of the arch at failure in response to increased load. Immediately apparent in both force distributions is the formation of the midspan hinge as evidenced by absence of contact force on one corner of the loaded block. Pippard and Ashby (1938) concluded that the position of this hinge was invariable once finite displacement of the abutments or sufficient loading had occured. As previously noted, the hinge always formed on the extrados of the arch on the midspan side of the block to which the point load had been applied; in all of the arches analyzed by the Distinct Element method the midspan hinge was seen to develop in the manner described by Pippard and Ashby.

The force distribution in the arch is also indicative of the way in which the failure of the arch ultimately occurs in response to increased loading. Examination of the force distributions in Figure 4.15 (b) and (c) show that in both cases the longer span is experiencing far less compressive force on the extrados than on the intrados. As the externally applied load is increased to induce failure, the geometry shown in Figure 4.15(d) develops. The increased load leads to the development of a fourth hinge on the arch at which point the arch collapses. The position of the fourth

Figure 4.15 Variation in force distribution with the position of the applied load, and the ultimate collapse of a
Voussoir Arch.
hinge is not as predictable as the other three, and is complicated by the fact that slippage may occur along the sides of the voussoirs. The method of calculation of the critical external load, which involves trial and error procedures and is beyond the scope of this brief introduction to Voussoir arches, is discussed by Pippard and Baker (1948).

4.5.2 Arching conditions in jointed roofs

As early as 1885 (Jones and Davies, 1929) Fayol demonstrated that an arching action could occur in bedded roofs and would act to shield the immediate roof from the full weight of the overlaying material. The fact that the height of the dome formed when a mine roof failed was limited was taken by Jones and Davies as further evidence that arching action was occurring and acting to transfer the bulk of the vertical load to the adjacent pillars. At a later date, Evans (1941) proposed that arching was also occurring within the immediate roof in the manner of a Voussoir Arch.

Evans characterized the behavior of the lower strata in a mine roof as a jointed beam within which the stresses were distributed in the manner of a modified three hinged arch. As downward displacement of the beam occurs, the central joint opens in response to "bending" induced tension and the compressive forces are increased at the upper contact. The analogy to a three hinged arch is clearly seen in the postulated pressure distribution which is illustrated in Figure 4.1. Because the manner in which the forces are distributed
resembles the classical Voussoir arch, this type of analysis is often referred to as Voussoir beam analysis.

Evans' research, and that which followed, was concerned with the stress state and subsequent fracture of the strata within the immediate roof above the excavation and is not directly applicable to the present study. The concept of two separate pressure arches in the roof strata is, however, of interest.

In the discussions that follow, the pressure arch that carries the weight of the superincumbent strata to the sides of the excavation will be termed the ground arch; the lower arch that forms within the wedge of failing material will be termed the roof arch.

The analyses that form the basis for the discussion presented in this chapter indicate clearly that the stability of the roof of an excavation in jointed material is dependent upon the formation of the roof arch. In fact, the general pattern of force distribution in the basic model of this study is that illustrated in Figure $4.2(\mathrm{~d})$. Most of the weight due to the overlaying strata is transferred to the abutments through the ground arch; the stability of the resulting destressed zone is maintained through the development of the roof arch in the lower strata. Specific departures from this general pattern were observed in those instances where the horizontal stress field was greater than that required for stability and in those instances where the block thicknesses exceeded some critical thickness. Both of these occurrences inhibit block rotations and thus the development of arching.

Although it may be argued that the geometry of the basic model forces the development of the ground arch in the manner of a corbel, the following examples demonstrate the formation of both arches even in those cases where the geometry of the blocks does not act to aid the formation of the ground arch.

Before proceeding with the discussion it is appropriate to mention a factor common to all of the Distinct Element models presented in this chapter. The horizontal stress field is modeled by means of loads applied at the centroids of the outermost blocks. Additionally, these blocks are modeled as having no frictional resistance to lateral movement. The result of this approach is that the horizontal stress thus has the characteristics of a "following load"; the horizontal stress field always remains constant and is independent of lateral displacement. This simplification was necessary because the rigid blocks of the Distinct Element formulation do not allow blocks peripheral to the excavation to accomodate movement through elastic strain. If this approximation is not made, the modeled geometries are so stiff that failure does not occur. The analyses therefore cannot model the effects of varying the joint stiffness or of the dilatant properties of real joints. The analyses do, however, closely approximate the conditions modeled by linear arch analysis and are considered to be valid, though rudimentary, approaches to model ing the behavior of excavation roofs.

Figure 4.16(a) illustrates an example of the basic model; if complete failure were to take place, blocks from the lower six

Figure 4.16 Formation of the ground and roof arches in a vertically discontinuous jointed model.

Figure 4.17 Roof and ground arch development inhibited due to high horizontal forces.
rows would move into the excavation. However, sufficient horizontal pressure is present so that the configuration is just stable. The distribution of contact forces is as illustrated in Figure 4.16(b). Although examination of Figure 4.16(b) indicates that the middle joint in the lowest row of blocks has opened at its lower contact, the configuration of blocks is, nevertheless stable. The mechanism that is responsible for this stability is the development of the roof arch. The relaxed or suspended zone can be seen to extend upward roughly four-fifths of the span distance.

The magnitude of the horizontal force has a significant effect upon the behavior of the blocks in the lower roof. Figure 4.17 illustrates the same geometry as Figure 4.16(a) but in this case the horizontal force has a greater magnitude. The force distribution indicates that full contact is maintained across the central joint of the immediate roof and that stability of the roof is due solely to frictional support at the abutments in the manner of a monolithic roof.

Significant arching has not developed in this model but the amount of horizontal force necessary to prevent arch formation and thus support the roof by frictional resistance alone is approximately twice as large as that required for stability under conditions where the roof arch develops. It should be noted that if the lower roof comprised a single block, the amount of force required to stabilize the configuration by frictional resistance would be less than the case where arching develops.

Two examples where the jointing pattern does not involve
corbelling are included in this section. These examples demonstrate the development of both the roof and ground arch in two instances where the geometry of the rock mass does not necessarily act to force the development of two arches. Figure 4.18(a) illustrates a model with continuous jointing in the horizontal and vertical directions subjected to a horizontal force just sufficient to maintain equilibrium. The resulting force distribution is illustrated in Figure 4.18(b); the behavior of the roof is again characterized by a relaxed zone extending upwards roughly two-thirds the width of the span. This zone is supported by the roof arch. The ground arch is clearly developed but not to the same degree as would be expected in the previous model, where the geometry of the model aids the development of the ground arch.

Figure 4.19(a) illustrates a model geometry with continuous vertical jointing but discontinuous jointing horizontally; as with the model shown in Figure 4.18, the continuity of the vertical jointing was expected to inhibit the formation of the ground arch and allow the mass to fail monolithically. The force distribution, however, indicates that once again, both the ground arch and the pressure arch have formed and led to the characteristic relaxed zone, although in this case the height of the relaxed zone extends only one-third of the span upwards into the roof.

The block movements that lead to the development of arches are primarily of a rotational nature. The rotations arise as the unequal forces on opposite sides of a block, which arise as the blocks move,

Figure $4.18 \begin{aligned} & \text { Formation of ground and roof arches in a continuously } \\ & \text { jointed model. }\end{aligned}$

Figure 4.19 Formation of the ground and roof arches in a horizontally discontinuous jointed model.
cause a moment imbalance about the centroid of the block. In the case of a stable configuration, equilibrium is maintained through horizontal thrust whereas in an unstable configuration, the rotation can continue since sufficient equilibrating forces cannot be developed. Figure 4.20 illustrates a block geometry (a), the contact force distribution (b) and the block rotations (c) corresponding to the contact force distribution. Comparison of (b) and (c) indicates that: all significant rotation is occurring within the suspended zone; the magnitude of the rotational movement decreases with depth into the roof; and, contact forces within the suspended zone are primarily normal to joint surfaces even though this is where the most significant rotation has occurred. The development of the ground arch as seen in Figure 4.20(b) indicates that the suspended zone extends approximately four rows of blocks into the roof. The development of the roof arch can also be seen. Considering the relative magnitudes of the rotations of the blocks maintaining these arches, it is interesting to note that larger forces are developed in the ground arch even though the rotations are smaller. This is probably a reflection of the higher degree of confinement of the blocks maintaining the ground arch. The blocks adjacent to the excavation are free to rotate somewhat into the excavation. The next row of blocks upward thus has the freedom to rotate toward the excavation although not as much as the lower row. Successively less rotation is permitted until at the limit of the suspended zone, minimal rotation is occurring.

Figure 4.20 Contact forces and corresponding block rotations.

Figure 4.21 Development of block rotation as failure initiates.

As failure conditions develop, further rotation occurs as can be seen in Figure 4.21. The most significant change in rotation occurs in the lowermost row where the magnitude of the rotations of the inner two blocks of the lower row remain constant but those of the outer two blocks increase to a value greater than that of the inner blocks. This deflection then allows the blocks in the next row upward to deflect and rotate, effectively moving the loosened or suspended zone upward.

4.5.3 The development of arching in single layer models

The development of arches in mine roofs is often explained by recourse to simple models from linear arch theory (e.g. Woodruff, 1966) such as those illustrated in Figure 4.23. The force distribution in this type of model is that of a three hinged arch and can be readily deduced as the model is statically determinate. Consider the left hand side of the symmetric model as illustrated in Figure 4.22, vertical equilibrium shows $V=W$, and moment equilibrium about point a shows:

$$
H=\frac{W O}{4 t}
$$

Figure 4.22. The Linear Arch Model

(b)

Figure 4.23 Typical block models for 1 inear arching study.

This force distribution represents a limiting condition; as vertical deflection of the beam causes the contact at the lower face to be broken, the value of the lever arm t decreases and thus an increasing value of H is required for stability.

Analyses by the Distinct Element method of several linear arch models is summarized in Table 4.1 and indicates that Equation 4.9 may be used to predict the horizontal thrust required for stability in certain instances. These data show that equation 4.9 is correct for low aspect ratios of the blocks but loses validity as block thicknesses increase and friction coefficients of the joints decrease. For larger block thicknesses and lower friction coefficients, the horizontal thrust required for stability is found accurately by equation 4.3 which is repeated here for convenience:

$$
H=W / 2 \cot \phi
$$

Analysis of the force distribution at failure provides insight into this discrepancy. Figure 4.24 illustrates the force distribution at failure in models C, A and D. Figure 4.23(a) illustrates conditions at failure for model C with $\mu=0.5$. Full frictional resistance is mobilized on the abutment joints and compression is transmitted across the lower contact of the mid span joint. Although arching is developing, failure is by sliding along the abutment joints. Figure $4.24(\mathrm{~b})$ illustrates the force distribution for model A with $\mu=1.0$. Arching is fully developed as evidenced by the absence of force transmittal at the lower mid span joint contact. An important distinction in this case is the fact that frictional resistance is

Table 4.1 Surmary of Linear Arch Models

Model	Friction Coefficient μ	Predicted Failure Loads		Observed Side Load at Failure	Observed Failure Mode
		Arching ${ }^{4}$	Sliding		
A 1	. 25	500	280	$500{ }^{2}$	Arching
	. 5	500	140	500	Arching
	1.0	500	70	500	Arching
B	. 25	500	550	$550{ }^{3}$	Sliding
	. 5	500	280	500	Arching
	1.0	500	140	500	Arching
C	. 25	500	1120	1110	Sliding
	. 5	500	560	550	Sliding
	1.0	500	280	490	Arching
D	. 25	500	2580	2550	Sliding
	. 5	500	650	650	Sliding

Notes: 1 Geometry of models
Model A $\mathrm{t}=25,0=700,2$ block 1 inear arch model
Model B $\mathrm{t}=50, \mathrm{O}=700,2$ block linear arch model
Model C $\mathrm{t}=100,0=700,2$ block linear arch model
Nodel D $t=225,0=700,8$ block, voussior beam
2 Difference in calculated side load for arching models is typically less than 2%.

3 Difference in calculated load for sliding models is typically less than 1%.

4 Equation 4.1 may be revritten by recognizing that U is a function of t and $0\left(\mathrm{~W}=t * \frac{0}{2} * d\right)$; substitution leads to (density, $d=1$) $H=\frac{0^{2}}{8}$ and thrust is thus independent of block thickness.

Figure 4.24 Force distributions in linear arch model (force scale from Figure 4.23).
not fully developed along the abutment joints. The vertical component of the abutment reaction is equal to the weight of the roof block while the horizontal component is equal to the horizontal thrust required to maintain stability against arching (equation 4.9).

This fact permits the calculation of the critical friction coefficient that delineates arching failure from frictional sliding in the linear arch model. Consider an opening of span 0 , with the roof blocks having thickness t, and weight W per block. From linear arch theory, the thrust developed during arching is:

$$
H=\frac{W 0}{4 t}
$$

The critical friction angle (ϕ crit) is the inverse tangent of the ratio of the block weight and the thrust force:

$$
\phi \text { crit }=\tan ^{-1}\left(\frac{4 t}{0}\right)
$$

If the friction angle of the joints is greater than this critical value, sliding cannot occur and failure, if it occurs, will be by true arching. On the other hand, if the friction coefficient on the joints is less than this critical value, sufficient frictional resistance cannot be developed and failure occurs by sliding.

Equation 4.10 is plotted in Figure 4.25; this figure may be used to determine if, for a given span and block thickness, failure will be by true arching or by slippage with only partial development of arching conditions. The equation has been found to be correct for all linear arch models analyzed.
crit.

Figure 4.25 Critical friction angle as a function of excavation span and block thickness (span and thickness must be in consistent units).

4.5.4 Arching in multilayered models

In the preceeding section relationships were developed that were found to predict accurately the horizontal thrust required for stability and the failure mode for the single layer, linear arch or Voussoir beam model. The application of these relationships to multilayered models has not been as successful. Figure 4.26 illustrates a summary of stability conditions for a number of tests of the basic model geometry. Whereas in the linear arch model, comprising a single layer of blocks, errors in the predicted failure load were less than 2% for arching failure and less than 1% for sliding failure, the corresponding errors for the multilayer cases were as much as 40% for arching cases but still less than 1% for sliding cases. Pertinent data of the multilayer tests are summarized in Table 4.2.

It is prudent at this time to digress momentarily to discuss the origin of the data presented in Table 4.2. In a typical stress analysis the relationship between the parameters can be expressed as an equation and a unique answer obtained by some solution technique (viz. inverting the stiffness matrix in a Finite Element analysis). In the Distinct Element method, as in other nonlinear explicit methods, the problem geometry is defined, the boundary conditions are specified and subsequent motion of the blocks is observed; equilibrium occurs as the force distribution converges to a situation where the relative accelerations of the blocks approaches zero. In terms of the problem at hand this means that a set of

Table 4.2

Summary of Multilayer Arching Tests

				Predicted side Loads (H) at Failure ${ }^{2}$					Observed Side toads (H) at Faflure ${ }^{4}$					Observed 5 Failure Mode \qquad
0^{1}	t	b	W	Arching	1.1 .0	$\mu=0.5$	$\mu=0.3$	$\mu=0.25$	$2 \mathrm{Crlt}^{3}$	$\underline{\mu} 1.0$	$\underline{H}=0.5$	$\underline{\mu}=0.3$	$\mu=0.25$	
700	20	1	106	460	53	106	176	-	0.11	55	105	175	-	5,5,5
700	20	2	106	460	53	106	-	212	0.11	385	425	-	465	A, A, A
700	20	3	110	480	55	110	185	-	0.11	440	470	515	-	A, A, A
700	20	4	110	480	-	110	193	-	0.11	-	540	650	-	$-, A, A$
750	20	6	120	560	60	120	-	240	0.11	650	725	-	800	A, A, A
700	40	2	230	500	115	230	-	460	0.23	300	315	-	415	A, A, A
700	50	4	290	420	-	290	-	-	0.29	-	575	-	-	-, $A,-$
700	50	2	285	500	143	285	-	570	0.29	475	560	-	600	A, A, A
600	50	2	230	345	115	230	-	-	0.33	300	350	-	-	$A_{1},{ }_{\text {a }}$ -
600	40	4	196	360	-	196	-	-	0.25	-	300	-	-	-, $A_{2}-$
500	50	2	180	225	90	180	-	-	0.40	200	225	-	-	A, A, -
450	25	4	85	190	43	85	-	170	0.22	150	175	-	200	A, A, A
800	100	2	610	570	305	610	-	1220	0.50	325	625	-	1225	S, S, S
800	100	1	610	570	305	600	-	1220	0.50	305	615	0	1210	S, 5, 5

Notes: 10 is the true span, t is block thickness, b is number of blocks in lower row of strata and W is total weight of blocks in lower row. All dinensions are consistent computer units.

2 Predicted side loads (H): Arching faflure load from equation 4.9, sliding faflure loads, for various values of friction coefficient u from equation 4.6 .

3 Critical friction angle delineating sliding and arching, equation 4.10.
4 Load (H) observed at faflure in Distinct Element model for several tests of same geometry.
5 Observed mode of failure (5 - sliding, A - arching) for each of the tests of same geometry. Columns correspond to high, mediun and low value of joint friction coefficient. "-" indicates no test data for that value of μ.

Figure $4.26 \begin{aligned} & \text { Summary of multilayer arching tests (all dimensions } \\ & \text { in computer units). }\end{aligned}$
boundary conditions is applied and the program allowed to run until it is determined that the geometry is stable. The boundary conditions are then incrementally modified and again the program is allowed to run. This iteration is then continued until failure occurs. Thus, each data point on Figure 4.26 represents a limiting condition deduced by a minimum of four or five computer runs.

The problem of determining equilibrium conditions is discussed further in Appendix B.

Tabulated in Table 4.2 are predicted side loads for stability obtained by Equation 4.9 for arching conditions and by Equation 4.6 for sliding conditions. The observed loads at failure are also tabulated and comparison indicates a general divergence from the predicted values. Nine of the tests developed sliding failure modes and are indicated by a circular symbol in the plot of Figure 4.26; the remainder of the tests developed full arching failure modes and the data points are seen to follow the general trend of the linear arch model as represented on Figure 4.26 by the square symbols.

In those tests where failure was by frictional slippage, the side loads were typically within 2% of the value predicted by Equation 4.6; the indication being that in those cases where full arching does not develop, Equation 4.6 may be used to assess the stability of a mine roof. For those tests where stability is dependent upon full development of the roof arch however, the error relative to the predicted side loads ranges from about 5% to 40% with the average error equal to approximately 17%. The only consistent trends in the errors are that the error increases with
the number of blocks in the lower row and that for a fixed geometry the error either increases or moves from negative to positive as the friction angle increases.

Analysis of the linear arch, single row models led to the calculation of a critical friction angle (Equation 4.10) that was found to predict accurately the dividing line between failure by arching and failure by sliding along the abutment joints. The tangent of the critical friction angle for each of the multilayered block tests is also tabulated in Table 4.2; several instances can be found in the table which illustrate discrepancies between actual and predicted failure modes with arching failure modes developing in several instances where the critical friction angle concept predicted a sliding failure mode.

Examination of the data indicates that failure by full development of the roof arch is more likely to occur than failure by sliding along the abutment joints. Exceptions to this observation were found only in those instances where the development of the arch was somehow constrained. Specific conditions that lead to failure by slippage were the expected case where the main roof was monolithic and arching could not develop, and cases where the block thickness was relatively large and the main roof comprised only two blocks. In these instances the horizontal load at failure could be predicted accurately in terms of the block weights by the use of Equation 4.3:

$$
\begin{equation*}
H=1 / 2 W \cot \phi \tag{4.}
\end{equation*}
$$

The most noticeable departure from the observed behavior of the single layer linear arch models was concerned with contact force distribution along the lower row of blocks. In the single layer models, failure always initiated as the central contact along the lower face opened; as noted earlier, this was the expected behavior since the deflection of the blocks reduced the moment arm of the horizontal stabilizing force resulting in increasingly unstable conditions. This phenomonon is, however, not indicative of the behavior of the multilayer models.

The conditions preceeding failure in the multilayer models are characterized by two common features. First, loss of force transmittal across the lower contact of the midspan joint is not indicative of failure. Frequently, significant horizontal force reduction after the joint opens is required before failure occurs. The second general behavior pattern that was recognized concerns the distribution of contact forces in the immediate roof. Figure 4.27 presents a typical multilayer model and a section of its contact force distribution. The blocks are in equilibrium but a reduction in the horizontal thrust of approximately 10% would lead to failure; this is a typical force distribution of a multilayer model at stress conditions slightly greater than those at which failure occurs. Three characteristics of the force distribution in multilayer models have been noted in all models tested and are indicated in Figure 4.27 by the letters A, B, and C. The characteristics are:
A) absence of force transmittal across the lower contact of the mid span joint
B) minimal vertical transmittal within the suspended zone, especially to the lower row of blocks
C) the development of an additional contact force where the blocks adjacent to the abutment rotate into the next upward level of blocks

The second characteristic is to be expected in light of the model; the corbelling effect of the blocks outside of the suspended zone acts to lessen the span over which the next row of blocks must be supported. In this particular case, the span is decreased by 25%, the weight to be supported is decreased by 25% and the required horizontal force to just maintain equilibrium is 45% of that which is actually being applied. This simple calculation neglects the vertical force transmittal which is occuring to the second row of blocks, but the fact that the thrust applied to the second row of blocks is almost twice that required for stability indicates why the deflection of the second row is small compared to that of the lower row and thus why no vertical force transmittal occurs to the lower row.

The other two observations, A and C, are closely related and provide a reasonable explanation as to why the behavior of the multilayer models depart from the linear arch model. Figure 4.28 is a schematic representation of the two blocks on the left hand side of the lower row of blocks in Figure 4.27(a) based on the contact force distribution of Figure 4.27 (b). The linear arch model is based upon the contact force distribution illustrated in Figure 4.22; comparison of these two figures indicates that the model used

(a)

(b)

Figure 4.27 Contact force distribution in lower rows of multilayer model.
for the development of the linear arch equation is not valid for the multilayer cases. As the lower row of the multilayer model deflects some rotation of the blocks occurs and leads to the development of a shearing resistance along the top of the block. The same phenomenon was observed in the Goodman and Bray Limit Equilibrium Model of toppling behavior of rock slopes (section 3.6). In the Goodman and Bray model the corresponding force was taken as zero; although this may be valid for the low degree of confinement that exists in near surface problems, the stress conditions surrounding an underground excavation dictate an elastic interaction of the blocks. Two blocks cannot just "sit" next to each other but must act to transmit relatively high forces across their boundaries. Thus, as the block attempts to rotate it is resisted not only by the mid span contact force but by an additional shearing resistance as well. This observation explains the reason for the inability of the linear arch model to predict accurately the horizontal load at failure: the linear arch model simply does not consider all of the forces present. The presence of an additional shearing resistance also explains how stable conditions can be maintained even though the lower contact of the mid span joint is broken. In section 4.3.5 it was noted that in the linear arch model, once this contact opened, the governing equation dictated that failure must occur. The presence of the additional force acting on the block tends to maintain equilibrium in a manner not accounted for by the linear arch model.

Unlike the linear arch model, the force distribution presented
in Figure 4.28 is statically indeterminate. To develop an equation relating span, block thickness, joint spacing, block weights and friction coefficient would require that two assumptions be made concerning the forces. The logical assumptions would be to assume the development of full frictional resistance of the two contacts experiencing shear. However, in the majority of tests run, full frictional resistance was not seen to develop at either contact. Rather, the Distinct Element method can be used to study each model on an individual basis and develop relationships not subject to arbitrary assumptions regarding the force distributions.

Figure 4.28 Force distribution observed during arching in multilayer models.

4.6 Use of Results in Design

The results from the previous Distinct Element runs can be expressed in a way that may be useful for design purposes. The two examples presented below utilize the data of Table 4.2 to derive empirical relationship between parameters. These relationships are characterized by errors in the order of 4% rather than the 40% error experienced when using linear arch theory to predict the horizontal thrust.

The first example derives a relationship between the horizontal force required for stability, the number of blocks in the bottom row, (a factor which is analogous to joint spacing) and the friction angle of the joints, in models similar to those shown in Figure 4.3. The excavation width and the block thickness are constant in this analysis. The data points, which represent the failure conditions for 11 test models, and the associated linear trends are plotted in Figure 4.29. The linear trends in the figure are members of a family of curves represented by the equation

$$
H=314.3-59.5 \tan \phi+(87.3-19.3 \tan \phi) b
$$

with all dimensions expressed in consistent computer units. Also included in the figure is a horizontal dashed line which represents the value of horizontal force necessary to maintain roof stability as calculated by linear arch theory. The data points corresponding to a monolithic lower roof $(b=1)$ are included on the plot and are seen to deviate from the trend of Equation 4.11; the frictional resistance relationship (Equation 4.6) predicts these values

Figure 4.29 Linear relationship between horizontal force, number of blocks in the lower row and joint friction angle (constant span and block thickness).

For a constant span and block thickness, linear arch theory predicts that the value of horizontal thrust should be a constant and does not consider the effect of friction. The actual data indicate that a linear relationship exists between horizontal thrust, joint spacing in the roof and friction angle of the joints.

The data values indicate that the side force required for stability increases both as the joint spacing decreases and as the friction coefficient of the joints decreases.

The second example illustrates a relationship between the horizontal force required for equilibrium, the joint friction coefficient and the excavation span for models of the type illustrated in Figure 4.3. In this example the models have a constant block thickness and are characterized by a single midspan joint. The linear nature of the relationship can be observed in Figure 4.30. The linear trends plotted in the figure are members of a family of curves represented by the equation:

$$
H=190 \tan \phi-540+(1.59-0.48 \tan \phi) 0
$$

and fit the data with a maximum error of approximately 2%. All dimensioned quantities are in consistent computer units.

The dashed line included in the figure is the value of side load predicted by linear arch theory. The required horizontal force for stability is seen to increase with span as predicted by linear arch theory but the linear arch theory does not take account of the fact that an increase in the joint friction angle reduces the horizontal

A $\mu=0.25$
(1) $\mu=0.50$
(1) $\mu=0.99$

Figure 4.30 Linear relationship between span, horizontal force and joint friction angle (constant block thickness and one midspan joint; all dimensions in computer units).
load required for stability. This reduction is due primarily to the additional shearing resistance provided by the layer interactions.

4.7 Summary

The stability of excavations in jointed rock was seen to be governed by mechanisms of stress transfer which resulted in a zone of relatively destressed material above the excavation. This destressed zone was observed in the analyses of openings in elastic material as well in the analyses of openings in jointed masses, but the fundamental behavior was different. The elastic analyses indicated that a ground arch formed and transfered the overburden load to the abutments, but that the destressed zone was simply "hanging" on the rock comprising the arch and thus experiencing tensile stresses. The analyses of the behavior of the jointed masses indicated the formation of the ground arch as in the elastic case, but suggested that the stability of an excavation in jointed media was attained through the development of a second arch, the roof arch, in the strata immediately above the excavation. The roof arch was observed in all stable geometric configurations except for those cases involving high horizontal stresses and those cases involving large block thicknesses. In the first case the high horizontal stresses prevented the block rotations necessary to form the arches and stability was maintained by frictional suspension of the mass along the vertical joints. In the second case, the block thickness, relative to the excavation span, reached a point at which the arch development was constrained and failure of the mass was by sliding along the joints. It was found that the transition between arching and sliding behavior could be predicted accurately.

The Distinct Element obtained solutions for single layer, self loaded, jointed beams were compared to a linear arch theory neglecting the compressive strength of the rock and the lateral stiffness of the abutments; agreement of the data with theory was quite good. When the single layer, linear arch theory was compared to multiple layered models, however, agreement of the data and theory was poor. The discrepancy was seen to be due to layer interactions, not accounted for in the single layer model, acting in a manner that increased the horizontal thrust on the abutments.

A Limit Equilibrium solution for the observed contact force distribution was calculated, but discarded since the contact vectors were seldom observed to be at fully developed frictional resistance. Instead, the data was examined in order that the significant parameters and the relationships between them could be isolated. Two main conclusions could be drawn from the data. First, there is a linear relationship between the span and the horizontal thrust required for stability of the mass. However, in contrast to linear arch theory, the models examined by the Distinct Element method indicated that this relationship involved the joint friction coefficient. This was observed to be due to interactions between the lower two layers and not a resultant of slipping along the vertical joints at the abutments.

The second identified relationship indicated that the horizontal thrust was a function of the joint spacing, expressed as the number of blocks in the lower row of strata, and the joint friction coefficient. The significance of this observation lies in the fact that linear arch theory does not account for an effect due to joint
spacing. The data indicate that as the number of blocks in the lower row of strata increases from two to six, the horizontal stress required for stability almost doubles; linear arch theory, on the other hand, predicts that this horizontal stress should be a constant value.

To keep a proper perspective, it must be noted that the analyses described in this chapter were performed with a restricted behavior model possessing infinite strength and regular jointing. More sophisticated linear arch theories account for load transfer between layers and the compressive strength of the material. The real situation in bedded roofs involves crushing of the rock which can change the length of the moment arm used to calculate the horizontal thrust in the linear arch theory. It must be concluded that it may be invalid to criticize linear arch theory or the basis of the analyses just described. The analyses do indicate, however, that mechanisms act in jointed rock that perhaps should be implemented in a comprehensive linear arch theory.

CHAPTER V

AN ANALYSIS OF SUPPORT REQUIREMENTS OF EXCAVATIONS
IN JOINTED ROCK MASSES

5.1 Introduction

In a historical review of tunnel construction, Szechy (1970) states that the oldest known tunnel other than those associated with mines is, according to present knowledge, over 4000 years old. This tunnel was constructed in Babalonia during the reign of Queen Semiramis to underpass the River Euphrates. The length of this tunnel was over 1 km and it had a cross-section of 3.6 m by 4.5 m . Although built by cut and cover methods, elements of the structure demonstrated (viz. a vaulted arch for the roof) that the Babylonians possessed considerable skill in tunnel construction, most likely gained from experience in previous tunneling ventures. To fully emphasize the significance of this undertaking, Szechy notes that it wasn't until 1843 that the next subaqueous tunnel, that crossing the River Thames in London, was opened, almost 4000 years later.

Significant increases in the magnitude of the scale of projects typically undertaken in underground excavation have not been accompanied by, or for that matter, preceeded by analytical techniques capable of explaining the complex behavior of the structural system comprising the rock mass and the support system. The design of tunnel or excavation support systems are routinely guided by empirical and observational rock load prediction schemes. It is universally acknowledged that the use of these schemes results in
an overdesign, but the majority of research undertaken today seems not to be directed toward understanding the mechanisms responsible for the behavior of an excavation but toward somehow strengthening the position of the empirical methods through the acquisition of additional data. This approach has helped to identify the parameters to which support design is most sensitive, but the fact that excavation support design is highly site dependent does not obviate the need for rational methods for the prediction of support pressures.

This chapter presents the results of analyses of jointed rock masses which utilize the Distinct Element method to characterize the interaction of a jointed rock mass with a support system. The vehicle chosen to quantitatively express this interaction is a ground reaction curve. A ground reaction curve is simply a plot of the support force necessary to maintain the stability of a rock mass as a function of displacement of the rock mass. The utility of the ground reaction curve in support design is that it typically yields information about the optimum time of support emplacement as well as the magnitude of the force the supports must resist.

Previously, ground reaction curves have only been calculated by continuum based methods; the rock was assumed to be broken but the representation of the behavior was by a plastic or elasticplastic constitutive relationship.

The Distinct Element formulation provides the research tool necessary to investigate load-deflection relationships in a medium where the deformation is controlled solely by the jointing. The ground reaction curves presented in this chapter indicate a
relationship between required support force and the geometric parameters defined by the excavation dimensions and the joint spacings. This data was also compared to predictions made by several of the empirical methods in an attempt to determine if any correlation could be found.

5.2 The Estimation of Rock Loads for Support Design

5.2.1 The concept of a ground reaction curve

As an introduction to the discussion of the various methods commonly in use to design reinforcement schemes in tunnels it is prudent to discuss a theoretical concept which provides a means to quantitatively describe the behavior of the rock mass as it is disturbed by an excavation. This concept is concerned with the interaction of the material surrounding the excavation and the support system emplaced to ensure stability. The behavior of the material is described by a ground reaction curve relating the force required to stabilize the mass to the deformation of the edge of the excavation. As an illustration of the concept, an example (Deere et al., 1969) describing a ground reaction curve for a soil mass is presented.

The basis for establishing the stress for which a tunnel lining should be designed is illustrated in Figure 5.1 where the average radial stress on a circular tunnel lining is plotted as a function of the average inward radial deformation of the tunnel wall. The point A illustrated in the figure represents the average radial stress before excavation occurs.

If the radius of the tunnel lining were steadily decreased, the load on the tunnel lining would decrease in accordance with a relationship describing the stress-strain-time characteristics of the soil. If the soil were elastic the relationship would be linear as shown in the figure by the dashed line $A E$; for the more likely case that the material is inelastic, the relationship could
resemble the curve AD. This relationship is termed the ground reaction curve. The form of the ground reaction curve cannot be calculated exactly but may be approximated in several instances of practical importance on the basis of field observations coupled with theoretical investigations.

As the tunnel excavation approaches a given cross-section, the soil deforms radially toward the tunnel and axially toward the working face. By the time the working face has reached the crosssection an average radial deformation, of magnitude u_{1} has already occurred. If the tunnel lining was placed in contact with the soil at this point in time and was capable of preventing any further deformation of the soil mass, the average stress in the lining would be B as indicated in the figure. If further inward deformation of the tunnel walls occurred before the lining was placed, say of magnitude u_{2} illustrated in the figure, the radial stress would be C.

In reality, the tunnel lining will itself undergo a radial deformation of small magnitude before stability is obtained. The effect of deflection of the lining may be estimated by a curve of its force-displacement behavior, which can be called a support reaction curve, such as the curve F in the figure. The final load on the tunnel lining is given by the intersection of the ground reaction curve and the support reaction curve taking cognizance of the fact that a certain amount of deformation of the tunnel walls has occurred before the installation of the tunnel lining. The
final stress in the tunnel lining is thus \dot{C} and the deflection of the lining is u_{ℓ}. Note that the deflection of the tunnel wall is actually given by the sum $u_{1}+u_{2}+u_{\ell}$.

Figure 5.1 Interaction of soil and tunnel lining (after Deere et al., 1969).

The dimensioning of tunnel supports, as with any structure, requires a fairly accurate knowledge of the magnitude of the loads to be resisted by the supports. From an economics viewpoint, it is preferable to be able to estimate support requirements on the basis of exploratory drilling footage but it is certainly acceptable to be able to modify the support design based upon observations at the working face. The fact that tunnel designers have been unsuccessful in using the first method probably explains the present trend toward instrumentation of underground construction.

This is not meant to imply that there has been a lack of proposed analytic models to explain observed rock pressure and displacement; rather the major problem with the analytic models is that they lack portability. A truly general design method would have to include all possible factors such as, mass condition, material type, construction method and type of reinforcement. Since the full implications of the many factors involved, and particularly their interactions, are not presently understood, analytical techniques are typically confined to examination of a single one of the factors. This is precisely why there are no comprehensive tunnel design-load specifications anywhere in the world and why they are compiled for each particular project on the basis of prevalent conditions.

The particular factor which is of interest in this study is the rock load for which the tunnel supports should be designed. The methods commonly in use at the present time to determine the
rock pressure in the vicinity of underground excavations typically possess the characteristics of one of three categories: approximate methods based upon the extent of upbreak; theories based upon theoretical stress conditions in the rock mass; and theories based upon displacement and equilibrium assumptions. The methods which directly incorporate the jointing of the rock mass tend to be empirical rather than analytical and typically are based upon or related to the amount of upbreak above the excavation. The following brief survey of tunnel support design methods for jointed masses thus emphasizes those methods based upon the extent of upbreak. Several design concepts which do not directly include the jointing of the mass are also incorporated in the survey because they introduce concepts which are pertinent to the ensuing discussion.

The origin of the practice of dimensioning tunnel supports to resist a given amount of upbreak is usually attributed to Bierbaumer (1913), whose observations were based upon the failure of timber supports. Table 5.1 lists the values of roof pressure to be expected in various types of material. This table is frequently attributed to Bendel (1948) who actually attributes it to "others". The most significant aspect of Bierbaumer's observed rock pressure values is that they are independent of width of the excavation.

A more widely known method of estimating support loads based upon expected upbreak is that of Terzaghi (1946). Terzaghi based his estimates of the intensity of rock loads on the failure of

Table 5.1 Observed support loads: Bierbaumer

	Roof Pressure$P_{v}\left(t / m^{2}\right)$		Temporary tipber support		Remark
Rock Material					
	At outbreak	After completion of drift	Mode of execution	Degree of stressing	
Rock, more or less blocky	0	8-12	Skeleton lagging, light	0 to insignificant	Loosening pressure small
Very seamy rock, cemented conglomerate, soft rock, with small overburden height	10	30-35	Skeleton lagging, solid	Small	Loosening pressure increasing at the moment of outbreak not perceivable
Heavily fractured rock (roof breakdown), rolling gravel and conglomerate	15-25	30-40	Tight, strong lagging	Mean	Bigger pressures perceivable simul taneously with outbreak. Ensuing of equilibrium condition, very prolongated
Loose rock under heavy pressure (eventually in saturated condition). Bigger overburden height	25-35	40-60	Very tight, solid	Considerable	Stabilization of pressure conditions very difficult
Loose and soft (pseudosolid) rock under heavy pressure. Very big overburden height	40-60	100-150	Very tight, lagging and strong hard-wood sill-beams	Going up to rupture	Stabilization possible only after the completion of very protracted deformations (months even years: Karawanken tunnel)

Table 5.2 Rock load guidelines: Terzaghi

Rock load H_{p} in feet of rock on roof of support in tunnel with width $\mathrm{B}(\mathrm{ft})$ and height $\mathrm{H}_{\mathrm{t}}(\mathrm{ft})$ at depth of more than $1.5\left(\mathrm{~B}+\mathrm{H}_{\mathrm{t}}\right)$

Rock Condition

1. Hard and intact

Rock Load H_{p} in feet

2. Hard stratified or schistose
3. Nassive, moderately jointed
4. Moderately blocky and seamy
5. Very blocky and seamy
6. Completely crushed but chemically intact
7. Squeezing rock, moderate depth
8. Squeezing rock. great depth
9. Swelling rock
zero
0 to 0.58

0 to 0.258
0.258 to $0.35\left(8+H_{t}\right)$
(0.35 to 1.10$)\left(\mathrm{B}+\mathrm{H}_{\mathrm{t}}\right)$
$1.10\left(B+H_{t}\right)$
(1.10 to 2.10) $\left(\mathrm{B}+\mathrm{H}_{\mathrm{t}}\right)$
(2.10 to 4.50) $\left(8+\mathrm{H}_{\mathrm{t}}\right)$

Up to 250 ft . frrespective of value of $\left(\mathrm{B}+\mathrm{H}_{\mathrm{c}}\right)$

Remarks

Light lining, required only if spalling
Light support.

Load may change erratically from point to point.

No side pressure.

Little or no side pressure.

Considerable side pressure. Softening effect of seepage towards botton of tunnel requires efther continuous support for lower ends of ribs or circular ribs.

Heavy side pressure, invert struts required. Circular ribs are recommended.
wooden blocks of known strength inserted between the individual members of timber sets. The Terzaghi load estimates are summarized in Table 5.2. Note that the magnitude of the loads are dependent upon the tunnel dimensions as well as the presence or absence of groundwater.

Stini (1950) also presented estimates of the rock load due to upbreak which are presented in Table 5.3. Like Terzaghi, Stini's loads are dependent upon tunnel geometry, but whereas Terzaghi described the time lag between excavation and final load (bridge-action period) as typically of the same order of magnitude as the excavation cycle time, Stini noted that much longer time periods elapsed before full loads came on the supports.

Modifications of Terzaghi's basic classification scheme are frequently found in the literature and attest to its one time high degree of acceptance. For example, a report by the California Department of Water Resources (ENR, 1959) details cost data for 99 tunnels designed by a slightly modified version of Terzaghi's basic design loads.

A major effort to add a quantifying descriptor to Terzaghi's rock load classification is due to Deere et al. (1969) and Deere et al. (1970). The pertinent data from Deere et al. (1969) is summarized in Table 5.3. An easily measured field index properly, R.Q.D. is correlated to both Terzaghi's and Stini's classification scheme. This correlation provided the means to "objectively" select the proper load class.

The effect of jointing and faulting on tunnel support loads was emphasized by Cording et al. (1971) and Cording and Deere (1972). They noted that triangular wedges could form above the crown due to adverse joint orientation and attempted to calculate the required support pressure as a function of shearing resistance along the sides of the wedge. Later work by Cording and Mahar (1974) noted that the kinematics of the situation dictated that at least one surface of the wedge should separate from the rock mass. The equivalent rock loads they presented, which are summarized in Table 5.4, do not assume any shearing resistance in the mass but are simply the pressure due to the total weight of the wedge.

The practice of designing tunnel supports on the basis of the amount of upbreak assumes that the rock has no inherent strength and that there is no real interaction between the support and the failing mass. One recent trend in tunnel support design focuses on methods which take advantage of the strength of the mass and which incorporate mass/support interaction. The brief survey of recent work is presented only to enumerate these concepts.

The "New Austrian Tunnelling Method" described by Rabcewicz (1964) is a relatively recent construction technique for minimizing the loads on tunnel supports. In the method, a thin layer of shotcrete is applied to the tunnel walls as soon as is possible following excavation in order to prevent degradation of the rock mass and thus maintain its strength. However, as Wagner (1970) has noted, the proper use of the method requires detailed knowledge of

Table 5.4 Rock loads due to crown wedges

From Cording and Mahar (1974)
the rock properties and behavior.
Daemen, Fairhurst and Starfield (1969), Daemen and Fairhurst (1973) and Daemen (1977) stress the need to consider both the complete force/deformation behavior of the rock mass and the interaction of the support system with the surrounding rock mass. Daemen (1977) presents ground reaction curves based upon a continuum analysis of an excavation surrounded by a zone of broken material possessing a residual strength. The method employed involved the determination of the pressure to be applied against the excavation surface to achieve stability; one resultant curve, typifying a material with low residual strength, is presented in Figure 5.2. This figure contains several interesting features. The line labeled $k=\infty$ represents a material characterized by a sudden loss of strength after the peak strength is reached; note that the implication of this type of behavior is that support pressure is independent of mass deformation. This is analagous to the "dead weight" loading characteristic of the design methods based upon amount of upbreak. A second interesting feature of the figure is the two lines, labeled $k=0$ and $k=0.1$, corresponding to materials exhibiting perfectly plastic post peak behavior. The implication of this type of behavior is that the ground will stand unsupported; in a 15 foot diameter tunnel the strain at the cessation of deformation corresponds to a displacement of approximately 0.1 inches.

Finally, the shape of the intermediate curves lends analytical support to the practice of placing the supports early. The

Note: The parameter " k " describes post peak behavior. $k=0$ is a plastic post peak behavior while $k=\infty$ is an immediate drop to a residual strength in the post peak region.

Figure 5.2 Ground reaction curves from continuum analysis of rock with low residual strength (Daemen, 1977).
application of shotcrete immediately after excavation allows the support/mass system to equilibrate at the minimum point of the ground reaction curve.

A similar approach, presented by Panek, Dixon and Mahtab (1975), was based upon a Finite Element analysis and included the effect of joint orientation. Their work indicated that the support pressure was more sensitive to joint orientation and joint slippage than to failure of the intact rock mass.

Dixon (1971) noted the importance of including the confining influence of the rock mass on the supports and produced a Finite Element model of the support system which was iteratively used to determine the forces in the support system. The forces were the resultant of the application of independently obtained active loads and the passive resistance of the rock mass. Orenstein (1973) adopted a similar procedure using a frame model loaded by independently obtained active loads. The passive resistance of the rock mass was modeled as a spring at each blocking point characterized by a support modulus. Neither of these approaches truly models the interaction of a rock mass and its support system since the input parameters are determined independently. Typical of the methods that do model the interaction of the mass and support is that of Daemen (1975). With this model Daemen studied the progressive development of failing material surrounding an excavation and effects of support variation. His conclusions, however, stress the need for instrumentation programs to verify this type of calculation.

The other recent trend in tunneling practice has been to collect design data from actual projects, isolate common features of the design, and attempt to categorize this data by statistical manipulation so that it can be extrapolated and used for design of new projects. The attractiveness of this method in terms of the present study is that jointing of the rock mass plays a central role in all of these classification schemes.

Abel (1966) combined geologic mapping of the Straight Creek tunnel pilot bore with a limited number of support load measurements to produce a set of design charts for prediction of rock load elsewhere in the tunnel. The method was judged to be successful but Abel noted that the results might not be applicable in other locations.

A classification scheme described by Kruse, et al. (1970) related the design of pressure tunnels to the different types and quality of rock encountered during excavation. In this particular application qualitative visual criteria were related to the deformation modulus of the rock mass. Abel's (1966) classification was adopted but the authors stressed that the usefulness of a classification scheme depended upon unambiguous definition of the input parameters.

Wickham, Tiedemann and Skinner (1972, 1974), Bieniawski (1973), and Barton, Lien and Lunde (1974) present conceptually similar classification schemes for aid in the selection of tunnel supports. The classification systems are based upon (respectively): general area geology, joint orientation and spacing, and ground water and joint condition; RQD, weathering, strength, joint spacing and
orientation, joint separation, joint continuity, and ground water; and, RQD, number of joint sets, joint roughness and alteration, ground water and adverse stress conditions. All of the classification systems are relatively simple to use, utilizing data that should be routinely collected during pre-construction investigations. The methods give similar answers and can, in fact be correllated to one another (Bieniawski, 1976).

At this time it is prudent to summarize briefly those portions of the preceeding discussion which are particularly significant with respect to the present study. The majority of the methods commonly used to design support systems in jointed rock are based upon the observation of isolated failures and the extrapolation of successfully designed support systems. There is certainly nothing wrong with extrapolating previous design data to proposed ventures provided that the basic behavior mechanisms of the rock mass and support system are similar. The most significant objections to this approach are that overly conservative designs could easily propagate and that extrapolation requires a complete understanding of the pertinent geologic properties, the mass behavior, and the function of the support system.

Analytic models of the rock mass and support system provide results that indicate that the interaction of the mass and support is a significant parameter relative to the final equilibrium state. It must certainly be proper to utilize a continuum approach to study a highly stressed situation where the rock mass is failing uniformly, but there is no real evidence to suggest that this
particular representation is valid for lower stressed situations where the primary deformation takes place along pre-existing discontinuity planes. In fact, the continuum analyses that have incorporated jointing in the mass indicate that the support load is more sensitive to slippage along the joint planes than to the failure of the intact mass.

The present trend of extrapolation based upon qualitatively observed parameters and instrumentation provides a useful and practical approach to the problem of tunnel support design. However, the use of these classification schemes should be guided by rationally applied analytic models wherever possible. It is precisely in this context that the Distinct Element method is used in the remainder of this chapter. In particular, ground reaction curves are presented for several realistic models in an attempt to provide a guiding rationale for the continued use of the classification schemes.

5.2.3 Calculation of the potential ultimate roof loads in the jointed mass model

The discussion presented in Chapter 4.3 introduced a simple model for the behavior of the roofs of rooms excavated in a medium where the jointing was assumed to del ineate blocks of a constant aspect ratio. The orientation of the joint planes was limited to either horizontal or vertical; additionally, the jointing in the vertical direction was assumed to be discontinuous. Subject to these restrictions, it is possible to describe a particular
excavation/joint configuration in terms of three geometric parameters: the true span (0); the aspect ratio of the blocks (block thickness (t) divided by block width (w)); and the height of the triangular zone (h) which delineates that material for which unrestricted movement into the excavation is kinematically possible. These geometric parameters are noted on the diagramatic section of an excavation in a jointed mass illustrated in Figure 5.3(a). The volume of material which kinematically can undergo a finite, as opposed to an infinitesimal, displacement into the excavation is outlined and indicated in the figure.

As noted in Chapter 4.3, the number of blocks (b) in the bottom row of the roof strata and height (h) of the zone of potential finite displacement are given respectively by:

$$
\text { and } \quad \begin{align*}
\mathrm{b} & =0 / \mathrm{w} \\
\mathrm{~h} & =\mathrm{b} \cdot \mathrm{t}
\end{align*}
$$

The geometric parameters of the model can also be used to determine the total weight of the material within the triangular zone of potential finite displacement. This quantity is of interest since it represents the maximum load on the support system if the downward displacement of the triangular zone is sufficient to cause loss of transmittal of vertical force across the boundary between the triangular zone and the overlaying strata.

The total weight (L) of material within the triangular zone is easily calculated in terms of the total number of blocks (B) comprising the zone. For a unit thickness normal to the plane of the paper and a given weight density (d), the total weight within the zone of potential finite displacement of the basic model
illustrated in Figure 5.3(a) is:

$$
\begin{equation*}
L=B \cdot t \cdot w \cdot d \tag{5.}
\end{equation*}
$$

The total number of blocks within the zone of potential finite displacement is related to the true span of the excavation and the block width. In fact, it is the quotient of these two parameters, the number of blocks in the bottom row, that leads to a simple expression for the total number of blocks in the triangular zone. The total number of blocks in the triangular zone is the sum of the number of blocks in each of n rows of blocks in the zone:

$$
B=b+(b-1)+\ldots+(b-n+2)+(b-n+1)
$$

The terms on the right side of the equal sign in equation 5.3 are the terms of an arithmetic progression

$$
a_{n}=a_{1}+(n-1) d
$$

where a_{1} is the first term,
a_{n} is the nth term, and
d is the common difference
The properties of the basic jointed mass model are such that:

$$
\begin{align*}
& a_{1}=b, \\
& a_{n}=1, \\
& n=b, \text { and } \\
& d=-1
\end{align*}
$$

The total number of blocks in the triangular zone is given by the sum of the first n terms of this arithmetic progression:

$$
B=\frac{b}{2}(b+1)
$$

The total weight of material within the zone of potential finite displacement is thus:

$$
L=\frac{b}{2}(b+1) \cdot t \cdot w \cdot d
$$

In terms of the true span of the excavation:

$$
L=\frac{0 t}{2}\left(\frac{0}{W}+1\right) d
$$

Equation 5.8 was used to obtain the five sets of curves presented in Figure 5.3. Each family of curves represents a constant block width while each curve within a family represents a different block thickness. The thickness values increase in an upward direction. The calculations were performed using a weight density of 150 pcf; all length dimensions are thus in feet. Since equation 5.8 is 1 inear with respect to density, the curves may be corrected for any desired density simply by multiplying the load by the quotient of the desired density, in pounds per cubic foot, and 150 pcf.

The graphs illustrated in Figure 5.3 should be used with caution since the model upon which they are derived is based upon integer values of the number of blocks in the lower row. Although the curves give a seemingly proper value of the load for non-integer values of b, the jointed model is only defined for those instances where the span is an integer multiple of the block width. It must also be noted that even though the complete curves have been plotted in all cases, the model is also undefined in those instances where the true span is less than the block width. This cutoff point has been indicated on the abscissa of each plot by a small triangle; the curves are not valid for the basic model to the left of this
cutoff point.
The graphs of Figure 5.3 indicate that the total weight of the triangular zone increases parabolically with span and that for a given block width and span, increasing the thickness of the blocks leads to an increased load. On the other hand, for a constant span and thickness, increasing the width of the blocks decreases the loads on the supports.

By a suitable choice of variables it is possible to plot all of the data of Figure 5.3 as a single linear relation between dimensionless variables. This plot is presented in Figure 5.4. Although this plot lacks the utility of Figure 5.3, its value is due to the fact that it is valid for any consistent set of units. For example, consider an excavation in a medium with a weight density of $26 \mathrm{kN} / \mathrm{m}^{3}$ and jointing in the manner of the basic model leading to blocks of thickness 0.5 m and width 1.5 m . The aspect ratio of the blocks is thus 0.33 . For an excavation 12 m in width, the true span (0) is 10.5 m ; the number of blocks in the bottom row of the roof strata, which is the ratio $0 / \mathrm{w}$; is thus seven. Referring to Figure 5.4 an ordinate value 4.0 corresponds to an abscissa value 7.0. The potential ultimate load corresponding to a finice displacement of the triangular wedge can be determined by multiplying the known parameters out of the ratio. The load is thus $4 * 10.5 \mathrm{~m} * 0.5 \mathrm{~m} * 26 \mathrm{KN} / \mathrm{m}^{3}$ or 546 KN per meter of excavation length.

Figure 5.3 Ultimate potential load to be resisted by supports for basic jointed roof model: (a) basic model; (b) block width = 1 foot;

Figure 5.3 (continued) (c) block width $=2$ feet; (d) block width $=5$ feet;

(e)

Figure 5.4 Diminsionless linear relationship between span, block width, block thickness, density and potential ultimate load.

5.2.4 The use of displacement controlled fixed blocks to generate

 ground reaction curvesA ground reaction curve is a particular example of the non1 inear stiffness behavior of a jointed rock mass which can only be determined in reality by a succession of measurements. These measurements reflect the changing relationship between the load to be resisted by the supports and the inward displacement of the rock mass. Since the force sum acting on a spatially fixed block is automatically calculated by the Distinct Element program, a spatially fixed block can be utilized to determine the magnitude of the support force necessary to stabilize a failing rock mass. A value so determined is of use because it is a point on the ground reaction curve but this information is of much more value if the complete ground reaction curve can be determined.

The solution to the problem of determining a complete ground reaction curve by the Distinct Element method requires that some type of automated control mechanism be incorporated in the model to vary the position of the load indicating block.

Analogous to a laboratory testing frame, there are two basic governing control mechanisms: force control, which requires a freely moving block; and displacement control which requires a spatially fixed block. Both mechanisms require that a small block be placed against the strata in the manner illustrated in Figure 5.5(a) and (b).

To implement the force controlled testing machine, the force
on the load indicating block is reduced by some amount. The net result of this action would be an acceleration, due to the excess load imposed by the strata, of the load indicating block away from the strata, continuing until equilibrium of the system was again achieved. In practice, there are two serious drawbacks to the implementation of a force controlled testing machine. The first problem is concerned with inertial effects. Beginning at point (1) on the ground reaction curve illustrated in Figure 5.5(c), a force reduction of magnitude ΔF should again reach equilibrium at point (2); however, the inertia of the system could cause the jointed mass to temporarily experience the conditions at point (3). Since the applied force is higher than that required for equilibrium, the load indicating block will move toward the strata. Owing to the highly non-linear stiffness behavior of a jointed mass, it is likely that this reloading will follow a different behavior curve than the unloading curve. In the case illustrated, the reloading curve is stiffer than the loading curve, and the mass comes to equilibrium at point (4) instead of point (2). The result of this is that instead of the true ground reaction curve (1) - (2) - (3), the data would indicate curve (1) - (4) as being the ground reaction curve.

The second problem that would be encountered would occur if the ground reaction curve had an upswing such as the segment of the curve (6) - (7) in Figure 5.5(c). The postulated force controlled testing machine would continue to lower the force applied
to the load indicating block and thus, equilibrium could not be reached.

A displacement controlled governing mechanism is not foolproof either. Although not subject to the inertial effects of the freely moving block utilized in the force controlled testing machine, the displacement control of a fixed block can also lead to incorrect results. One point of interest, which is addressed later in this chapter concerns the interaction of the support and the rock mass. If the presence of a support force affects the development of arching within the rock mass, then a large displacement step could pull the support away from the rock mass and all interaction between the support and the rock mass would cease. One consequence of this type of action is illustrated in Figure 5.5(d). If, indeed, arching does occur and stabilize the rock mass so that the generated ground reaction curve is (1) - (2) - (3) - (8) as illustrated in the figure, the displacement steps must be small enough so that the support-mass interactions are faithfully modeled. It is possible that the presence of the support tends to inhibit roof arch development; if this is indeed the case, then the true ground reaction curve would be (1) - (2) - (3) - (6) - (9). This problem will not arise if the displacement steps are small enough.

It might be noted that the mechanism of unfixing a block and letting it move to a new position before refixing it does not lead to an acceptable solution. The force sum acting on the fixed block is a large quantity relative to the weight of the fixed block. Thus when the fixity of the block is removed, high acceleration would
tend to make the now free block undergo a large displacement. This of course, could lead to the same problem illustrated in Figure 5.5(d).

The actual mechanism incorporated in the Distinct Element program is the displacement controlled fixed block. The routine modifies the low order (high precision) part of the fixed block centroid coordinates. Displacements in the x coordinate direction and the y coordinate direction are specified as well as the number of cycles between displacement steps. Once the displacement control mechanism is enabled, it will continue to incrementally move the load indicating block, until the control mechanism is disabled. In this manner, the displacement control mechanism functions as a testing machine with the output being a ground reaction curve for the rock mass in question. In actual use, however, the mechanism is disabled at frequent intervals to ensure that the mass/support system reaches equilibrium before continuing the displacement of the load indicating block.

Figure 5.5 Mechanisms for obtaining ground reaction curves for jointed rock mass (a, b and d) and generalized force displacement curve (c).

5.3 Support Requirements in the Absence of Arch Development

In order that the development of the ideas presented in this chapter be complete, it is prudent to examine the support requirements for the simple monolithic roof model presented in Chapter 4.4. Recall that owing to the absence of flexural deformation in the model, arching behavior was unable to develop and stability of the single block was achieved by frictional resistance acting along the vertical joints. For those situations where the magnitude of the horizontal force acting on the block is insufficient to prevent failure of the roof through downward movement of the block, equilibrium, and thus the integrety of the roof, can only be obtained by the application of an external force.

The Limit Equilibrium models utilized in Chapter 4 can easily be modified to incorporate an external force or the resultant of an external support pressure; the modified models are illustrated in Figure 5.6(a). The assumptions of symmetry of the frictional reactions and the full mobilization of frictional resistance lead to an equation of vertical equilibrium which is given by:

$$
P=W-2 \tan \phi
$$

where: $\quad P$ is the external support load;
W is the weight of the block
H is the total horizontal thrust; and
ϕ is the angle of sliding friction of the joints.
If the support load and horizontal thrust are normalized with respect to the weight, a diminsionless form of equation 5.9,

Figure 5.6 (a) Limit Equilibrium models of roof behavior under combined frictional suspension and external force. (b) external support requirement for stability of frictionally suspended roofs.

$$
\frac{P}{W}=1-\frac{2 H}{W} \tan \phi
$$

is obtained. This equation is plotted in Figure 5.6(b) for various values of tan ϕ. As was expected, the magnitude of the external support force decreases with increasing horizontal thrust; the decrease is more rapid for higher joint friction angles.

A number of unstable, monolithic roof geometries were modeled using the Distinct Element method for purposes of comparison to equation 5.10. In these models the external support load required for stability was either applied to the centroid of the roof block or applied to the centroid of a small block placed at midspan on the bottom of the roof block specifically for this purpose. There was no discernable difference in the results obtained by the different methods. Examination of Figure 5.6(b) reveals a high degree of correlation between the Limit Equilibrium solution and those calculated by the Distinct Element method.

The basic model dealt with in this study forms an inverted "staircase" in the roof when failure occurs (see Chapter 4.3). The geometric relationships relating total roof load to the span of the excavation and the aspect ratio of the blocks formed by the jointing which were developed in the preceeding section can be used to determine the magnitude of the parameter W in equation 5.9. Bearing in mind the fact that the roof is monolithic it is still possible to calculate a ficticious aspect ratio for the joints that form the vertical sides of the roof block. Thus equation 5.7 or 5.8 may be used to determine the total weight of the roof. If the support
force is assumed to be some percentage (K) of the total roof load and if in addition, the total horizontal thrust (H) is expressed as the height of the arch (h) multiplied by the horizontal stress $\left(\sigma_{h}\right)$, then K is given by the relation:

$$
\begin{align*}
& K W=W-2 H \tan \phi \tag{a}\\
& K=1-2 \frac{\frac{0 t}{W} \sigma_{h} \tan \phi}{\left(\frac{0^{2} t}{2 w}+\frac{0 t}{2}\right) d} \tag{b}\\
& K=1-4 R /(0+w)
\end{align*}
$$

The stress factor (R) is defined as

$$
R=\frac{\sigma_{h} \tan \phi}{d}
$$

All of the above mentioned parameters are illustrated in Figure 5.8.
Figure 5.7 illustrates the relationship between the percentage of the roof load to be supported (K), the true opening width (0), the stress factor (R) and the block width (w). The three separate graphs correspond to different values of w, chosen to represent: a high fracture frequency or a low RQD ($w=2 \mathrm{in}$.) ; a moderate fracture frequency or $R Q D$ ($w=10 \mathrm{in}$.) and; a low fracture frequency or a high RQD ($w=25 \mathrm{in}$.). The curves demonstrate an increase in the percentage of support required corresponding to an increase in block width; this reflects the fact that for any given block thickness, an increase in the block width tends to make the roof block assume a rectangular rather than a triangular shape. The percentage of support required also decreases with increasing horizontal stress

Figure 5.7 Percentage of total roof weight (k) to be supported as a function of true opening (0) for varying block width (w) and stress factor (R).
$\left(\sigma_{h}\right)$ or friction coefficient. ($\tan \phi$) or decreasing material density (d). This fact is expressed by the stress factor (R) which is also incorporated in the graphs shown in Figure 5.7.

Equation 5.12 can also be used to determine the maximum unsupported span length for the model illustrated in Figure 5.8 simply by solving for the situation where there is no required external support force ($K=0$). Under these stipulations, equation 5.12 becomes:

$$
0+w=4 \frac{\sigma_{h} \tan \phi}{d}
$$

The quantity $0+w$ is the excavation width (S) illustrated in Figure 5.8; the figure also presents a plot of excavation width (S) as a function of horizontal stress (σ_{h}) for different values of $\tan \phi$. This figure can be used to determine the maximum expected horizontal span for a monolithic roof failing by slipping along vertical joints in the presence of a horizontal stress field.

The model under consideration does not incorporate failure by arching but it is of interest to know if the maximum span predicted by equation 5.6 exceeds the span at which failure by arching would occur. This can be determined for the simple case of a rectangular roof comprised of two blocks, since the rigid block analyses of single layer model arching developed in Chapter 4.5.3 indicated that a clearly defined boundary between failure by sliding and failure by arching could be determined for a multi-block, single layer model. In terms of maximum unsupported spans for a two block rectangular
roof, equation 4.3 may be rewritten:

$$
0=2 \frac{\sigma_{h}}{d} \tan \phi
$$

Likewise, equation 4.9, which relates horizontal thrust to span may be rewritten:

$$
0=\sqrt{8 \frac{\sigma_{h}}{d} t}
$$

It is thus possible, at least in the simple case of a roof comprised of two rectangular blocks, to determine if the calculated maximum unsupported span exceeds the approximate value of the span at which failure occurs by arching.

Equations 5.15 and 5.16 are actually the dividing 1 ines that separate zones of stability and instability; in the first case the equation del ineates that zone where sliding will occur and in the second case, the equation delineates that zone where failure will be by arching. Equations 5.15 and 5.16 have been plotted in Figure 5.9 with horizontal stress plotted as a function of span, various values of the joint friction coefficient have resulted in a family of curves, inclined at about 25 degrees from the span axis, that delineate the zones of sliding failure. Similarly, various values of the block thickness have resulted in the family of curves, at the steeper inclination, that delineate the zones of arching failure. When plotted on the same figure, these two equations thus delineate four zones, indicative of the condition of the roof, that are dependent upon the block thickness and the joint friction

Figure 5.8 Maximum unsupported spans (S) for non-arching model as a function of horizontal stress $\left(\sigma_{h}\right)$ and friction coefficient $\left(\mu_{1}\right)$
coefficient. To use Figure 5.9 the curve corresponding to the block thickness and the curve corresponding to the friction coefficient are selected. The point corresponding to the span and horizontal stress will then lie in one of four zones. The zones correspond to complete stability, failure by sliding, failure by arching, and failure by sliding and arching. These zones are illustrated in Figure 5.9 for the particular case $t=2$ feet and $\tan \phi=0.5$.

Figure 5.9 Conditions for failure by arching or sliding for the illustrated roof geometry.

5.4.1 Jointed mass behavior representation by means of ground reaction curves

The brief survey of design concepts presently in use to aid in the dimensioning of tunnel supports indicated that the majority of the methods that recognize the rock mass as a jointed discontinuum are of an empirical nature and are often criticized for their failure to account for the interaction of the support system and the rock mass. However, the fact that the older amount of upbreak or dead weight loading schemes (Bierbaumer, Terzaghi and Stini) are based upon observations, admittedly crude, of pressures acting on installed support systems indicates that there is at least some partial measure of the support/mass interaction incorporated within them. The same is true of the newer schemes (Wickman, Tiedeman and Skinner, Bieniawski, and Barton); the design pressures are based upon actual installed support data supplemented by instrumentation data where it was available. Thus the interaction of the mass and support system is incorporated in these schemes even though it is not somehow explicitly expressed as one of the basic input parameters.

Conspicuous in its absence, however, is analytical substantiation of the required support loads predicted by the empirical schemes for those instances where the failure of the rock mass and the resulting loading of the support system is governed by the presence of distinct planes of weakness, such as joints and
faults, within the rock mass. The Distinct Element method provides the mechanism to investigate the behavior of jointed masses which are controlled by the behavior of the joints. Additionally, the implementation of the displacement controlled testing mechanism described in Chapter 5.2 .4 provides the data necessary to quantitatively describe the behavior of the jointed rock mass as it interacts with a simple support system.

The Distinct Element method has been used to study the support requirements of numerous excavation roofs which possess the joint pattern characteristic of the basic model utilized in Chapter 4. These characteristics are regular, continuous jointing in the horizontal direction and regular, discontinuous jointing in the vertical direction. Once again, this is a plane strain model and the aspect ratio of the blocks for a given problem is a constant. The results of this investigation are presented in this section by means of several ground reaction curves which are representative of the observed responses.

The results presented in Chapter 4 indicated that the stability of the roof of an excavation in jointed rock was most sensitive to the magnitude of the horizontal stress. It follows logically, therefore, that an investigation of the support requirements of excavations in jointed media should be concerned with the effect of horizontal stress on the ground behavior as expressed by a ground reaction curve relating the total load acting on the support to the vertical deflection of the support.

The models analyzed in this chapter are subject to the limitations of those described in Chapter 4, namely highly idealized joint behavior and a simplified mechanism for modeling the horizontal stress. The joints are modeled as planar and do not possess cohesion. The tendency of construction procedures such as blasting is to destroy the cohesion of the joint surfaces near the excavation. This, coupled with the fact that the models portray the behavior of failing masses leads to the conclusion that the analyses are valid in terms of the cohesive strength of the joints. The fact that the joints are considered to be planar, however, does detract somewhat from the validity of the analyses. Real joints are non-planar; perfectly mating rough surfaces can only be forced to slide relative to one another if they are free to move apart. This dilatancy leads to increased mass strength for if the joint separates two confined blocks, the only way relative movement can occur is if shearing of the rock mass takes place. As noted in Chapter 4.5.2, the horizontal stress field is modeled as a constant load, owing to the rigid nature of the blocks in the Distinct Element formulation. Under a constant load situation strength increases due to dilatancy do not occur. The analyses presented in this chapter are probably only realistic for problems where dilatancy does not play a significant role. Near surface excavations with relatively open or infilled jointing are examples of such a situation.

Figure 5.10 presents two ground reaction curves for the six
meter wide excavation illustrated in the figure. Part (a) of the figure illustrates the around reaction curve for a case where sufficient horizontal stress exists to stabilize the mass in the absence of externally applied support. The ground reaction curve reflects this fact indicating that a value of the roof deflection of approximately five centimeters, the load acting on the supports is zero. The second ground reaction curve illustrated in the figure represents a situation where the magnitude of the horizontal stress field is insufficient to stabilize the mass without the introduction of external support. The parameter W, indicated on the ground reaction curve, is the total weight of the material within the zone of potential finite displacement described in Chapter 5.2.3. W is thus that quantity which was previously termed the potential ultimate roof load. The form of the ground reaction curve suggests that as deflection of the roof continues the required support force approaches a constant value, and that this value is given by the potential ultimate roof load W .

A similar situation for a four meter wide excavation where the blocks have a significantly lower aspect ratio (0.4 as opposed to 1.5 for the first case) is presented in Figure 5.11. As before, the two ground reaction curves represent the situations where sufficient stabilizing horizontal pressure is present (part a) and the case where external support is required for stability for the roof (part b). However, in this case, the ground reaction curve in the first part of the figure represents the behavior of the mass where the applied horizontal stress is

Figure 5.10 Ground Reaction Curves for 6 m Wide Deflection (cm)
Excavation:(a) High Horizontal Stress; (b) Low Stress.

(a)

Figure 5.11 Ground Reaction Curves for $4 m$ Wide Excavation: (a)Stabilizing Horizontal Stress; (b) Insufficient Horizontal Stabilizing Stress.
not significantly higher than the value where failure would occur if no support system was present. The end result is the same as that seen in higher stress situations presented for the six meter wide excavation. The support requirements drop to zero at a roof deflection of approximately three cm , but in the case of the four meter wide excavation there is a noticeable kink in the ground reaction curve occurring at the value of the load corresponding to the potential ultimate roof load. This probably reflects the need for finite displacement to occur before rotation of the blocks can devleop the arch necessary to stabilize the roof. The second part of the figure presents the ground reaction curve for the situation where the horizontal stress alone is insufficient to stabilize the mass. Again, the behavior of the roof indicates that the support requirements approach a constant level with increasing deflection of the roof. Note that the value of the required support resistance is again given by the potential ultimate roof load W .

The tendency for the ground reaction to indicate a constant value of the required support force was observed in the majority of the cases examined. Exceptions to this observed behavior were rare; one example will be presented shortly. The three ground reaction curves presented in Figure 5.12 are representative of a number of calculated mass responses and indicate that the rock load for which supports should be designed is represented fairly accurately by the potential ultimate roof load. Figure $5.12(\mathrm{a})$ and (b) both represent situations of insufficient horizontal stabilizing force for a

Figure 5.12 Ground Reaction Curves for a 16 meter Wide Excavation Illustrating the Consistancy of Constant Support Load with Decreasing Horizontal Stress and Friction Coefficient.

Figure 5.12 Continued.

16 meter wide excavation; part (b) however, represents a situation of much lower horizontal stress. The general shape of the ground reaction curves is, nevertheless, similar. The third ground reaction curve also represents low stress conditions but indicates the effect of increasing the friction coefficient of the joints. As can be seen, the same constant load requirement emerges. The major effect of the higher friction coefficient is to decrease the rate at which the ground reaction curve drops to the final, constant level. This is also representative of other cases observed; an increase in the friction coefficient has little effect on the ultimate support requirement.

The three curves presented in Figure 5.12 also indicate a characteristic decrease in the support load requirements with further roof deflection. This decrease in required support was observed most frequently in problems involving blocks with a low aspect ratio. This behavior typically corresponded to roof deflections of the order of 10 to 20 percent of the block thickness and is indicative of bed separation occurring as an arch develops in the second row of strata above the excavation. This behavior was not observed in situations involving higher aspect ratios, probably owing to the tendency of this type of model to fail by sliding rather than arching.

The presentation of the calculated ground reaction curves has indicated that two general behavior patterns emerged from this investigation: first, ground reaction curves for masses which would have been stable without external support reflect this
stability by indicating no required load after a small finite deflection of the roof; and second, ground reaction curves for masses which would have failed without external support indicate that the required support is a constant value, typically given by the potential ultimate roof load of the model. The first result was not unexpected; the second result, however, requires an attempted explanation.

Figure $5.13(a)$ illustrates a 10 meter wide excavation; the distribution of contact forces for the case of no external support is illustrated in part (b) of the figure. The contact force distribution represents clearly the situation observed for other stable excavation geometries; well developed roof and ground arches can be seen along with minimal vertical force transmittal within the zone of potential finite displacement. The contact force distributions illustrated in Figure 5.13 (c) and (d) are representative of conditions prevailing in the presence of external support. The relative roof deflections of the roof corresponding to these force distributions are indicated on the ground reaction curve for the mass in part (e) of the figure. The first force distribution indicates that the presence of the support results in an initial inhibition of the development of the roof arch and allows vertical force transmittal through the zone of potential finite displacement. Part (d) of the figure is indicative of conditions on the constant portion of the ground reaction. The roof arch is partially developed, but the presence of the support is preventing the block rotations necessary for minimizing the

Figure 5.13 Contact Force Distributions for Indicated Model (a);
(b) No External Support; (c) and (d) External Support; Relative Deformation Indicated on Ground Reaction Curve (e).

Figure 5.13 Continued.
vertical force transmittal within the zone of potential finite displacement.

At this point it is opportune to emphasize the "physical" properties governing the behavior of the joints. In the present formulation of the Distinct Element program, the joints are assumed to be smooth, planar surfaces with shear strength due only to frictional resistance. This characterization neglects two important parameters of joint behavior: cohesion and dilatancy. Cohesion along joint surfaces is significant in determining the initial strength of a joint; once failure begins, cohesion is typically lost, so it is probably realistic to characterize a failing jointed mass as cohesionless. The dilatant properties of joints are relatively well known, at least qualitatively. The main effect of the dilatant behavior of joints is a volume increase with shear movement resulting in an increased normal stress on the joint and thus, an increased resistance to shear. In order to arrive at the ground reaction curves presented in this section the behavior of the joints was thus highly idealized. It is therefore unrealistic to expect that the ground reaction curves presented are characteristic of the behavior of all jointed masses.

As a final example of a ground reaction curve for an excavation in a jointed rock mass, a situation is presented where the typical, constant ultimate load requirement was not observed. The case under consideration, a 24 meter wide excavation where the jointing defines blocks having an aspect ratio of 0.1 , is illustrated in Figure 5.14. The ground reaction curve, also
illustrated in the figure, is seen to possess characteristics markedly different from those typically observed. The most significant of these are the lower rate of decrease of the curve, an upswing of the curve with increasing roof defleciton, and values of the support requirements significantly in excess of the potential ultimate roof load. As an aid to understanding this departure from the typical behavior, it is instructive to examine the geometry of the deformed state of the rock mass as indicated in parts (b) and (c) of the figure. As can be seen, the maximum deflection of the roof is not occurring at the support point as was the case in the other geometries examined. Additionally the horizontal force is causing the relatively slender lower strata to buckle. The result of this action is that the lower row of blocks is actually "prying" the support block away form the strata and thus acting to increase the load on the support.

This example points out several shortcomings of this analysis which should be enumerated. First, it indicates the inadequacy of modeling the support system as a single point since multiple "blocking points" could have prevented the off center maximum deflections and possibly could have resulted in a different response. The other major shortcoming of this analysis is the infinite strength of the blocks. In a real situation the behavior indicated in the figure would probably result in fracture of the blocks long before the situation indicated in part (c) of the figure could have developed.

(a)

(b)

Figure 5.14 Ground Reaction Curve and Displaced Geometries for 24 meter Wide Excavation.

The modeling of jointed excavation roofs presented in this section lead to the conclusion that the ultimate load to be resisted by the support system could be predicted, in the majority of cases, by the potential ultimate roof load described in Chapter 5.2.3. The ultimate loads predicted by the ground reaction curves are summarized in Figure 5.15. Neglecting data from analyses similar to that just described, a relationship between the ultimate support load and the span of the excavation can be seen. This relationship was found to be a function of the aspect ratio of the blocks, but relatively insensitive to the friction coefficient of the joints. The relationship between the support load required and span is given approximately by:

$$
L=n B^{2}
$$

where

$$
n=2+5 A \text {, and }
$$

A is the block aspect ratio.

5.4.2 The use of the Distinct Element method in the design of support systems for excavations in jointed masses

The ground reaction curves presented in the preceeding section indicated that in response to the idealized assumptions of joint behavior utilized in the analyses, the support force required for stability was seen typically to be a function of the geometric properties of the excavation. In particular, the ultimate resisting force was found to have been given approximately by the potential ultimate roof load, which could be calculated with the aid of

Support Load (kN)
1000

100

Note: A is the aspect ratio defined by the jointing.

Figure 5.15 Summary of ultimate loads on support system for cases where the mass did not stabilize independently of the support system.

Figure 5.4 or approximated by equation 5.17 in terms of the span and the aspect ratio of the blocks. In this section is presented a comparison of these results and the observed load-span relationship with several of the empirical schemes to see if a correlation exists. To ensure that the discussion doesn't stray too far from reality, actual design data from several underground excavations is also included.

The primary purpose of this investigation was to see if the Distinct Element calculated response of an excavation in jointed rock, taking account of mass/support interaction, could be correlated to "dead weight" load schemes such as that proposed by Terzaghi. Several comparisons of this type are presented in Figure 5.16. Parts (a) and (b) of the figure present the total load to be resisted as a function of span as estimated by the methods of Terzaghi and Stini. The Terzaghi load classes two, three and four are included on the graph and it can be seen that classes two (hard, stratified) and three (massive, moderately jointed) bracket the data nicely. It should be noted that the models examined could be included in class four (blocky and seamy) and as such, would indicate that Terzaghi's method is non-conservative. Similarly, the Stini estimates for classes two, three and four have been plotted in part (b) of the figure and compared to the Distinct Element responses. Examination of the comparison presented in the figure indicates good agreement with the Stini classes two (nearly stable) and three (lightly broken) for spans greater than about eight meters in width, but the agreement becomes

Figure 5.16 Comparison of Distinct Element calculated required support load with: (a) Terzaghi estimates, (b) Stini estimates.

CLASS 2

Figure 5.16 continued, (c) Bierbaumer estimates, (d) Cording estimates.
less good with decreasing span.
The constant pressure theory of Bierbaumer is compared to the data in part (c) of the figure. There is a semblance of agreement for spans in the 25 to 30 meter range; extrapolation of the trends of the data, however, indicates that this agreement is probably coincidental (two non-parallel lines must intersect somewhere). It is unlikely that Bierbaumer had access to data from excavations of this width; for spans in the two to five meter range, there is no correlation between Bierbaumer's method of predicting the load and that calculated by the Distinct Element method.

The final comparison presented in Figure 5.16 utilizes the load estimation scheme described by Cording et al. (1971). This scheme will be described in some detail presently but for now it is sufficient to note that the parameter n is based upon actual design data. The fit of the curves to the Distinct Element data is quite good.

This comparison would certainly be more meaningful if the actual design data for excavations in which the support system had failed were available. The next best information is design data for excavations that did not fail; this is what is available and it will be used in further comparison. A significant number of actual support pressure designs were summarized by Cording et al. (1971); this data is presented graphically in Figure 5.17(a). Cording et al. attempted to correlate RQD to support pressure by means of what they termed the Terzaghi Design Envelope (Figure 5.17(b). This

Support Pressure (psi)

(a) (Cording et al., 1971)

Terzaghi Design

Figure 5.17 (a) Summary of support pressure design data used for cavern excavations, (b) logarithmic representation of total load.
data has been replotted in part (c) of the figure to reflect total loads rather than pressures. This classification scheme, then is essentially similar to Terzaghi's but predicts a smaller total load or pressure when the value of RQD is very high. It must be emphasized that the data represents design pressures for excavations that are stable. Invariably, the data then represents an incorporated factor of safety or an overdesign. Additionally, most of the caverns have arched crowns; in general higher support pressures would be required for excavations having flatter roofs. It can be seen, therefore, that the comparison of this design data and the required loads calculated by the Distinct Element program is not strictly valid. It is not suggested that the amount of over design and the required pressure increase in the case of the flat roof cancel each other, but that the combined result gives a valid basis for comparison.

Four of the graphs presented in Figure 5.18 are identical to those presented in Figure 5.16 except that the design data summarized by Cording et al. has been incorporated on each of the plots. Most of the comments presented earlier are still valid, but additional comment is required in several instances. The conservative nature of the Terzaghi rock load estimates is more apparent when the data of Cording et al . is added to the plot. Stini's estimates of the rock load still fit the data quite well for spans greater than 10 meters; unfortunately data for the narrower spans was not available. The rock loads predicted by

Figure 5.18 Summary of support loads as calculated by the Distinct Element method and reported in the literature Comparisons to metoods of: (a) Terzaghi; (b)Stini;

Figure 5.18 (continued) Methods of: Bierbaumer (c); Cording, et al.(d);

Figure 5.18 (continued) Method of Barton,et al.

Bierbaumer's method are still quite nonconservative in light of the actual support pressures. The estimates of the rock load as calculated by the method of Cording et al. are seen to fit the data quite well, and seems to indicate that an RQD based modification of the Terzaghi rock load estimates is a valid tool for the estimation of expected support loads in an excavation.

It is beyond the scope of this investigation to present detailed summaries of the newer classification schemes presented by Wickham et al., Bieniawski, and Barton et al. but it is relevant to include at least one of the schemes in the comparisons presented herein. Of the three methods, Barton, Lien and Lunde's was chosen for inclusion for no reason other than that the results are expressed as support pressures. Some familiarity with the method on the part of the reader is assumed.

Barton, Lien and Lunde's classification scheme requires the specification of six input quantities; the values of those quantities thought to represent the Distinct Element modeled geometries are presented in Table 5.5.

Table 5.5 Parameter Values for Rock Mass Quality Q
A) RQD (Good to excellent) 75-100\%
B) Joint Set Number (two joint sets) 4.0
C) Joint Roughness Number (smooth, planar) 1.0
D) Joint Alteration Number (unaltered) 1.0
E) Joint Water Reduction Factor (dry) 1.0
F) Stress Reduction Factor (low stress) 2.5

The resulting Q value is found to range from seven to ten; the rock masses modeled by the Distinct Element method all fall in the "fair" category and a need for support is indicated. The indicated support pressures are $100 \mathrm{KN} / \mathrm{M}^{2}$ for those spans less than ten meters in width and $150 \mathrm{KN} / \mathrm{M}^{2}$ for those spans greater than ten meters in width. In these calculations an excavation support ratio (ESR) of 1.0 was assumed.

The support pressures calculated were compared to the Distinct Element calculated data and the data presented by Cording et al. The results of this comparison are presented in Figure 5.18(e). It is readily apparent that the constant support pressures suggested by Barton, Lien and Lunde's method do not adequately describe the trends of the data calculated by the Distinct Element method. Furthermore, the support pressures result in total loads that are significantly higher than the data of Cording et al. indicate would be experienced in practice.

The data calculated by the Distinct Element method during this investigation raises one serious objection to the use of the design equation presented by Cording et al. Without exception, all of the geometries modeled using the Distinct Element program had an RQD value of 100 percent. The use of the design equation postulated by Cording et al. would, in this instance, result in a significant underestimate of the amount of required support force. The value of " n " corresponding to an RQD value of 100 percent is 0.1 ; the majority of the plotted data, both that calculated by the Distinct Element method and that reported by Cording et al. can be seen to
lie above the curve corresponding to an n value of 0.1 . Perhaps an equivalent RQD based upon seismic velocities could be calculated for the Distinct Element geometries, but it is really outside the scope of this investigation to attempt a correlation of this type.

Figure 5.19 presents a summary of the required support force as a function of span for those masses investigated by the Distinct Element method; also included in the figure is the actual design data summarized by Cording et al. The curves indicating the trend of the data have, in this instance, been calculated using equation 5.14. The presented curves fit the data as well as those suggested by Cording et al.; however, in this case the curves are a function of the aspect ratio of the blocks formed by the jointing. It is not immediately clear that there should be a correlation between RQD and aspect ratio of the blocks. It certainly would be feasible to estimate the block aspect ratio if directionally biased RQD data were available, but RQD data is not typically recorded in this manner.

It was not the intent of this section to deduce a relationship between RQD and the aspect ratio of the jointing; what was desired was computationally based verification of empirical rock load estimation schemes. The properties of the basic model chosen for investigation indicated that a reasonable estimate of the upper limit to the amount of load to be resisted by the support system could be calculated in terms of the geometric parameters of the rock mass and excavation. The eventual results indicated that this upper limit, the potential ultimate roof load, was actually the
value for which the supports should be designed. This value could be calculated by equation 5.8 or estimated in terms of the aspect ratio of the blocks. Comparison of the results to actual design data indicated a high degree of correlation.

5.5 The Effect of Joint Interlocking on the Ground Reaction Curve

 The rock mass models that have been presented previously possessed the characteristics of the basic model described in Chapter 4.3. The basic response characteristic of this model is that a triangular wedge of material separates from the rock mass as failure occurs. Before the basic model for study was selected the behavior of a number of varied joint geometries was investigated. One of the most striking factors to emerge from those analyses was the sensitivity of the rock mass behavior to joint orientation. Of particular interest was the observation that geometries initially observed to be unstable, often stabilize after a finite displacement. This sensitivity of rock mass behavior to joint orientation can be illustrated for a particular mass configuration by varying the joint orientation without changing any of the other parameters. The ground reaction curve provides the means for quantifying the observed differences in roof behavior.The basic rock mass geometry to be investigated is illustrated in Figure 5.20(a). The model represents an excavation in a medium with two well defined joint sets. The major set dips gently and is continuous; the minor set is somewhat variable in orientation, crosses the major set approximately at right angles on the average and is discontinuous. Exposed in the upper right hand side of the excavation is an almost triangular wedge of material bounded by joints with a friction angle of 5°; all other joints have a friction angle of 26.5°. The triangular wedge represents a shear zone and its presence can be expected to govern, or at least severely

Figure 5.20 Ground reaction curve for a model where arching acts to stabilize the mass.
influence, the behavior of the rock mass.
The eventual deformed state of the rock mass is illustrated in Figure 5.20(b). Immediately obvious upon inspection of the figure is the fact that the roof has stabilized as evidenced by the lack of contact between the roof and the leftmost portion of the shear zone. This stabilization is the result of joint interlocking leading to the formation of the roof arch which acts to transfer the loading forces to the abutments. The roof and ground arch can be seen in a plot of contact vectors but tend to be observed by the plotted joints. In order that the arches could be seen, the regions corresponding to the high contact forces have been outlined and shaded; the ground and roof arches corresponding to the rock mass of Figure 5.20 are illustrated in Figure 5.21(a).

A quantitative expression of this arching behavior is indicated by the ground reaction curve which has been separated into its vertical and horizontal components, presented in Figure 5.20(c). The vertical component curve demonstrates a general decrease, with displacement, in the amount of load to be resisted by the supports. In fact, at a deformation of 0.5 m the only vertical load on the support is the weight of the leftmost triangular portion of the shear zone. This decrease in load corresponds to the development of the roof arch with vertical displacement and the subsequent transfer of vertical force to the sides of the excavation. The horizontal component indicates that at a deformation of 0.5 m the force is practically zero. The reason for this can be seen by reference to the diagram showing the ground and roof arches, Figure 5.21. The

Figure 5.21 Pressure distributions in: (a) a stabilized roof, (b) a failing roof.
roof arch transfers load onto jointed blocks relatively near the excavation. The resultant of this abutment force tends to push the blocks back into the rock mass and thus acts to reduce the horizontal load on the supports. Note that if the amount of deformation could be tolerated, this roof would stand unsupported.

The measurement of joint orientations in the field is always subject to a high degree of subjectivity; since the joints can only be observed at outcrops, local undulations can introduce a degree of uncertainty in the measurement of the true attitude of the discontinuities. The significance of accurately determining the joint orientations is dramatically illustrated in the second part of the example.

Figure 5.22(a) illustrates a rock mass geometry that at first glance appears identical to that presented in Figure 5.20(a). Closer examination of the figure indicates that although the major joint sets have identical attitudes in both figures, there are minor variations in the orientation of the discontinuous cross jointing. In particular, note the small cross joint exposed on the left hand side of the excavation which has been emphasized in both figures by indicating its loaction by an arrow. It was noted that on the average the cross jointing was approximately perpendicular to the main joint set. An uncertainty of five degrees in the measured orientation of a joint is not a large number, nor are variations in true joint inclination of from five to ten degrees uncommon. Whether the variation between the models arises from errors in measurement or true deviations in joint

Figure 5.22 Ground reaction curve for a model where arching does not act to stabilize the mass.
attitudes is not significant. What is important is the fact that the behavior of the two models changes markedly in response to relatively minor changes in joint orientation.

One stage of the deformation of the model is illustrated in Figure 5.22 (b). Examination of this figure indicates a more widespread disruption of the roof than in the previous model but even more importantly, there is continuous contact through the roof down to the support.

Once again the ground reaction curve illustrated in Figure 5.22 (c) and separated into its vertical and horizontal components provides the means to quantitatively describe these observations. The most striking dissimilarity in the ground reaction curves is that the second model is characterized by required support loads that do not diminish with increasing displacement. This roof is completely unstable and requires an external support system. The required support is relatively constant with deformation up to a displacement of almost one meter.

The instability of the roof is indicative of the lack of formation of the roof arch. This is indeed the case as can be seen by reference to Figure 5.21 (b). The magnitude of the force to be resisted by the supports is limited by the full development of the ground arch. The lack of development of the roof arch prevents the mass from stabilizing and necessitates the emplacement of an external support system.

It is of interest to compare the actual support loads determined from the preceeding analyses to the theoretical values as
predicted by Terzaghi's method. The characteristics of the models indicated that the proper classification for these masses was the hard stratified rock category. This category is typified by little resistance against separation along strata boundaries and the weakening of the strata by transverse joints. The moderately jointed rock category requires intimate block interlocking or healed fracture whereas the blocky and seamy category requires blocks which are separated along joints and imperfectly interlocked. The last two categories are actually the limiting cases for the hard stratified rock category.

The sum of the horizontal and vertical components of the ground reaction curves for the two previous examp les are plotted in Figure 5.23. Also plotted in the figure are the values of the support load as predicted by Terzaghi's theory.

The constant value of the total support load as calculated for hard stratified rock by Terzaghi's theory is $700 \mathrm{kN} / \mathrm{m}$ of tunnel length; compared to the ground reaction curves in Figure 5.23 an over-design is indicated. For displacements less than about 0.25 m the relative differences are 25 percent and 30 percent for the failing roof and the stabilizing roof respectively. For displacements greater than 0.25 m the relative difference is approximately 50 percent for the failing roof and increases with displacement for the stabilizing roof. The relative difference between observed load and predicted load is seen to be significantly greater for the two support load values calculated by the equations for blocky and massive rock masses, which are $800 \mathrm{kN} / \mathrm{m}$ and $350 \mathrm{kN} / \mathrm{m}$ of tunnel

200

> Total Ground Reaction Curve - Fig 5.20

CALCULATED SUPPORT LOADS

TERZAGHI

\cdots	BLOCKY SEAMY
$\cdots \cdots \cdots$	HARD STRATIFIED
$\cdots \cdots \cdots$	MASSIVE JOINTED
PRESENT STUDY	
$\cdots \cdots \cdots \cdots$	FIGURE 5.4

Figure 5.23 Comparison of ground reaction curves for a roof that stabilizes after deformation and a roof that fails completely with Terzaghi support loads.
length respectively.
The support load as predicted by the method developed in this chapter is also indicated in Figure 5.23. Although the model upon which the method is based involves only horizontal and vertical jointing, examination of Figure 5.21 indicates that the mechanism of load transfer in these two examples is similar to that observed in the basic model. The parameters needed to use the design chart presented in Figure 5.4 are illustrated in Figure 5.23; the span is 7.5 m , the block width is 3 m , the block thickness is 1.6 m and the weight density of the material is $26 \mathrm{kN} / \mathrm{m}^{3}$. The potential ultimate load to be resisted by the supports is found to be $545 \mathrm{kN} / \mathrm{m}$. This value is plotted with the ground reaction curves in Figure 5.23 and is seen to agree quite well with the required support loads indicated by the ground reaction curves. For displacements less than about 0.25 m the relative differences are approximately 5% and 10% for the failing roof and the stabilizing roof, respectively. For displacements greater than about 0.25 m the relative difference is about 15\% for the failing roof and increases with displacement for the stabilizing roof.

5.6 Summary

The design of underground excavations, particularly the design of the support system is largely based upon precedent. The summary of methods commonly used to predict support load pressures indicated that the earlier methods categorized support requirements by subjective, qualitative descriptions of the rock mass. The more recent methods have introduced some measure of objectivity into the classifications, and strengthened the data bases underlying the schemes by collecting information from more sources. Theoretically, at least, two engineers with identical field data should arrive at similar conclusions using these classification schemes.

One current school of thought in tunnel design advocates the philosophy that the behavior of an underground excavation is governed by the interaction between the mass and support system. The analyses described in this chapter had as their basic goal the multiple task of satisfying current thought on tunnel behavior while at the same time attempting to exhibit either verification or total nonagreement with the results predicted by the empirical methods.

The method chosen to attack this problem was to determine the ground reaction curves or support-deflection behavior of numerous jointed mass/excavation configurations. In this manner it was hoped to demonstrate that the Distinct Element model solutions would always predict support pressures that were significantly lower than those calculated by the empirical methods, since the predictions of these methods are based upon
supporting the total dead weight of a specified volume of rock. For the basic geometry selected for the study, the weight of the material for which it is kinematically possible, neglecting any supporting effects, to move into the excavation, and thus load the supports is easily calculated. It was expected that this potential ultimate roof load would provide a rarely attained upper limit to the necessary value of support resistance indicated by the analyses.

Both of these assumptions were found to be incorrect; in fact, the data indicate that the value for which the supports should be designed is given by the potential ultimate roof load. While this value is typically noticeably smaller than the support loads predicted by the empirical design schemes, there is not enough of a difference to conclude that it has been demonstrated that the use of the empirical methods results in an overdesign.

To understand the reason for the similarity of results, the characterization of the joints must be examined. The joints used at the present time in the Distinct Element method are smooth planar structures which have strength only through frictional resistance. The joints do not possess cohesion. Cohesive resistance is more significant in the initial strength of a rock mass than in determining the failing behavior. Not much is lost in the analyses of failing rock masses if no cohesion is assumed. The joints also are not characterized by dilatancy. The dilatancy properties of real joints contribute additional strength through volume increase
as shearing occurs. Neglecting the dilatancy of the joints must result in a conservative estimate of the strength. Additionally, in real excavations there is another dilatancy caused by the volume of rock surrounding an excavation moving radially inward. This mass dilatancy also acts to increase the normal force acting on the joints and thus increase the mass strength. The Distinct Element modeled geometries were designed so that only roof deflections were possible and thus neglected this mass dilatancy.

Another limitation imposed upon the analyses described in this chapter is concerned with the joint stiffness. In order that the program could be implemented on a mini-computer, many simplifications needed to be made; one of these was the use of "integer" arithmetic with the burden of watching the signs and decimal points placed upon the programmer (Cundall, 1974). One significant consequence of this was that the joint stiffness turned out to be a function of the problem size. The range of joint stiffness that could be investigated was thus limited. The approximation of the horizontal stress field as a constant load would negate the effects of varying the joint stiffness in any case.

It must be emphasized that the approximations just described are not a consequence of the Distinct Element formulation, but of the mini-computer configuration of the program. These approximations would not need to be made if the program ran in an environment of larger memory on a computer possessing a floating point processor.

The implication of the results presented in this chapter can thus be interpreted in one of two ways. By neglecting dilatancy,
a correlation was found between the required support force and the potential ultimate roof load. This support force was also found to correlate fairly well with the empirical methods particularly those of Stini and Cording et al. If it can be inferred that the failure to incorporate the dilatancy properties of real joints in the analysis leads to a value of the mass strength that is too low, then it can be concluded that the potential ultimate roof load and thus the empirical methods represent a conservative value of design load.

The second interpretation also follows from the properties of the joints. It is reasonable to expect that the dilatancy properties of joints would play a minor role in situations of relatively low stress. It can thus be concluded that dimensioning the supports to resist the potential ultimate roof load, or using one of the empirical schemes should give the best results in problems involving low stresses.

CHAPTER VI

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER DEVELOPMENT

Before summarizing the results of this investigation, it is imperative that a few sentences be devoted to defining the "ground rules", so to speak, which must govern the discussion which follows immediately. The limitations placed upon joint behavior cannot be overemphasized. The joints within the models utilized in this study were smooth and planar; any shear resisting strength of the joint was due solely to frictional resistance developing as sliding occurred. The joints did not possess cohesive strength; as the cohesive properties are more important in determining the initial strength of the mass, it was felt that little was lost by modeling failing, jointed masses by surfaces having no cohesive strength. The same cannot be said for the fact that the joints utilized did not possess dilatancy characteristics. It is possible that the inclusion of joint dilatancy could significantly affect the resultant mass strength and thus the outcome of many of the analyses reported in this dissertation.

A complete summary of the results of each section is presented at the end of that section; the summary of results presented here will thus be relatively brief.

One of the main goals of this dissertation was to demonstrate that the behavior of jointed rock as predicted by the Distinct Element method was realistic. The approach taken to demonstrate the
validity of the Distinct Element method was based upon comparison to solutions commonly used to describe the behavior of jointed rock masses. The majority of the solution methods chosen for comparison were based upon Limit Equilibrium principles; a basis for selection for comparison was a subjective criterion of how well the solution described the behavior of the model. Thus those solutions selected for comparison are typically simple and the resultant behavior can be intuitively predicted. In all of the comparisons presented in Chapter 3 as well as others presented throughout the remainder of the dissertation, the Distinct Element calculated behavior was seen to correlate quite well with the theoretical solutions.

The second portion of the dissertation described the results of numerous analyses of the behavior of jointed masses by use of the Distinct Element method. The goals of these analyses were to determine those parameters to which the stability of an excavation in jointed rock was most sensitive and to investigate the effects of support interaction in jointed media in an attempt to determine if a rational basis existed for the continued use of empirical design schemes.

The subjects of Chapter 4 were an investigation of the force distributions surrounding excavations in jointed rock masses and an examination of the stability of unsupported excavations. The topics were approached through numerous models in which the input parameters were varied and the resultant behavior of the model observed. The behavior of the models was illustrated by means of
contact force distributions and block displacements plotted on the graphics terminal. The behavior of the models was seen to be governed by force transfer due to the development of arches following block rotations. The stability of an excavation was seen to be sensitive to the horizontal force, the joint friction coefficient and the spacing of the vertical joints. A linear arch analysis neglecting crushing of the blocks and lateral stiffness of the abutments was compared to the behavior as observed by use of the Distinct Element method. Good agreement between theory and observation were noted for single layer models. The theory did not account for the presence of additional shear resistance available in multilayer models and thus there was a poor correlation between theory and observed data.

The investigations described in Chapter 5, on the other hand, were concerned with the behavior of excavations which required externally applied support to maintain stability. The investigations were concerned with the interaction between the supports and the jointed mass and formed the basis for a comparison with different empirical support load prediction schemes. The required supporting force as predicted by the Distinct Element method was obtained through the use of ground reaction curves. These Distinct Element calculated support forces were then compared to the support forces predicted by the empirical methods. Incorporated within this comparison was actual support design data for several underground excavations.

The methods which best describe the combined Distinct Element calculated data and design data were seen to be the methods of Cording et al. and the method based upon the potential ultimate roof load described in Chapter 5. It should come as no surprise that Cording et al.'s method fits their data; it is significant that Cording et al's method fits the Distinct Element calculated data and that the support load predictions based upon analyses performed using the Distinct Element method fit the field data as well as is seen. As was noted in the summary of Chapter 5, the incorporation of dilatancy behavior in the joints of the Distinct Element model could significantly alter the results of these comparisons.

The results of the analyses of excavations jointed masses suggest that the Distinct Element method deserves consideration for use in the design of underground excavations. There is not meant to be an implication that all of the information needed to specify a support system for an underground excavation can be obtained by an application of the Distinct Element method. It is only suggested that the Distinct Element method be used as one of the many tools used in the design of an underground excavation.

It is tempting to conclude that a viable design technique would be to analyze a given problem neglecting the dilatant properties of the joints; using this approach it might be argued that a safety factor would be built into the analysis. However, until the joint dilatancy properties are fully understood it must be recognized that there would be a good deal of uncertainty as to whether or not the safety factor would be one or ten or even one hundred.

The data which should routinely be collected during a preliminary site investigation can be utilized in the Distinct Element method to provide preliminary design information. This data would likely include preliminary information on joint spacing, orientation and condition as well as estimates of the horizontal stress state. Using the Distinct Element method, it could quickly be determined if the excavation would be stable or require light or heavy supports. Variations of these input parameters would result in a good idea of how sensitive the excavation stability would be to errors in the assumed values of the input parameters. This analysis could be continuously updated as data from exploratory drilling become available and further refinements could accompany the excavation progress.

This type of design technique is not limited to tunnels; the same data and same procedure are equally applicable to the analysis of slope problems or foundation problems.

These are several reasons that suggest that the method just described is particularly applicable to a class of problems which could be best described as low stress problems. The very nature of the present formulation of the Distinct Element method makes it imperative that it only be applied to problems where the behavior of the mass is controlled by the jointing; this is a characteristic of problems that are near or at the surface. A low stress problem also exists where the frictional resistance of the joints is very low, perhaps due to the presence of clay seams. The investigations
described in Chapter 4 indicated that the material within the zone of potential finite displacement also typically fit the requirements of low stress behavior, although this behavior can be prevented by the presence of high horizontal stresses.

The conclusions to this dissertation must also address the problems encountered due to the mini-computer configuration of the present version of the Distinct Element program. It should be noted from the outset that these are not criticisms of the Distinct Element method itself, but of the equipment upon which the program used in this study presently runs. Foremost of these criticisms must be the time required for a problem solution. The relatively slow computational speed of the mini-computer coupled with the lack of a floating point processor often led to problem solution times which could only be tolerated by someone working toward a Ph.D. Computational times approximately one-twentieth of those encountered during this study could easily be realized on a more powerful computer. However, lost by this implementation would be one of the most powerful capabilities of the Distinct Element program. The insight into the behavior of a jointed mass gained by examining contact force distributions at each time step is often quite revealing. This can realistically only be done on a dedicated computer.

The amount of computing time required and the limited memory size of the mini-computer also acted to limit the size of the problem that could be investigated. These limitations often resulted in simplified models such as those used to determine the ground
reaction curves presented in Chapter 5. It was noted in Chapter 5 that the idealizations could have masked an important behavior response due to inward movement of the side walls accompanying the roof deflections. This question cannot be resolved until the Distinct Element method is configured on a system possessing a greater amount of memory.

One of the underlying goals of this dissertation was concerned with the utilization of a computer interactive graphics approach to an engineering problem. One particular phase of the project was concerned with developing the graphic interaction capabilities of the present version of the Distinct Element program to the point where an untrained user, particularly one having minimal familiarity with computing techniques, could sit down and use the program to solve simple problems. The solution of this problem was to incorporate a great deal of explanatory material within the program. It is difficult to assess the success of this portion of the project in other than a subjective manner. It did, however, seem as though the majority of those using the program for the first time encountered little difficulty.

Also within the defined goals of this dissertation was the problem of developing a proper perspective as to the applicability of the Distinct Element method. The conclusions drawn are subjective and incorporate material not described in this dissertation. The class of problems most suitable to analyses by the Distinct Element method is characterized by relatively low stress conditions and behavior which is joint controlled. Typical examples of problems
meeting these requirements involve slope stability, shallow excavations and foundation behavior. The degree of unconfinement characteristic of these problems ensures that the behavior of these types of problems will be joint controlled. However, the possibility of fracturing of blocks due to local stress concentrations must not be overlooked. It is reasonable therefore to use the analysis obtained by the Distinct Element method in conjunction with an elastic analysis used to determine zones of stress concentration and thus potential fracture. These potential fracture planes can then be incorporated within the Distinct Element method to determine any possible effect.

The dividing line between low stress problems and high stress problems is not clearly defined. It has been noted that the zone of material immediately adjacent to an excavation is under relatively low stress conditions; due to the action of the ground arch the material surrounding the destressed zone experiences much higher stresses. The logical solutions to problems of this type would be either a coupled elastic-Distinct Element program or a modified Distinct Element program which incorporated elastic rather than rigid blocks.

It is clear from the work typified by Daemen (1975) that highly fractured rock can be modeled by a continuum representation incorporating residual strength properties. It was not possible within the context of the present study, given the limited number of blocks, to determine that point at which the behavior of broken rock ceases to be governed by the directionality imposed by the
joints and can thus be represented as isotropic. The work described by Bray (1966) does, however, furnish at least a guideline. Bray examined the behavior of jointed masses subjected to an arbitrarily oriented stress field. His results indicated that six independently oriented joint sets were required before the behavior of a jointed mass approximated that of a granular isotropic material. The implication here is that if the material is highly fractured or if the stress conditions are sufficient to fracture the rock it is probably best to adopt a continuum approach.

The research undertaken for this dissertation indicated several areas where further development of the program could be beneficial, and suggested an area of research that could prove to be most rewarding.

The first steps that need to be taken in any further development of the Distinct Element program require faster computational times and a significantly larger computer memory. The results of Chapter 5 were based upon idealized geometries; the typical amount of minicomputer time required to generate one of the ground reaction curves often exceeded two days. This amount of time simply cannot be tolerated if the program is to be accepted as a design tool. The shortcomings of the 1 imited number of blocks were also indicated. The solution to both of these problems is the implementation of the model on a larger, faster computer.

The most promising areas of further research identified by this dissertation are concerned with the continued investigation of the behavior of excavations in jointed rock. Foremost of these should
logically be the incorporation of dilatant behavior of the joints. Additionally, an implementation on a larger computer would allow more blocks per problem and thus a more accurate representation of an underground excavation. This implementation would also allow the incorporation of a stiffness representation of a support system. This would also lead to a better description of the support system/ mass interaction. It is still felt that, if at all possible, this implementation should take place on a dedicated computer.

The area of research not covered by this investigation which holds promise for a future study is a detailed comparison of the results of observations and careful measurements of physical models and comparable model behavior calculated by the Distinct Element method. This research could form the basis for the incorporation of dilatant behavior in the Distinct Element method as well as providing additional verification of the Distinct Element method through carefully controlled physical testing. In fact, it is easy to visualize a research program that is highly complementary in nature, utilizing a sort of "feedback" system. The Distinct Element method would be useful in the interpretation of the observed data from the physical model while at the same time, the physical model would help to refine the equations used in the Distinct Element formulation.

Abel, J. F., Jr. (1966), "Statistical Analysis of Tunnel Supporting Loads", Transactions, Society of Mining Engineers, AIME, v235, n3, September.

Barla, G. (1970), "Some Constitutive Equations for Rock Materials", Proc. 11th Symp. on Rock Mech., AIME, Berkeley, pp221-236.

Barton, N. R. (1974), "Rock Slope Performance as Revealed by a Physical Joint Model", Proc. 3rd Cong. ISRM, vIIB, pp765-773.
Barton, N. R., R. Lien and J. Lunde (1974), "Engineering Classification of Rock Masses for the Design of Tunnel Support", Rock Mechanics, v6, n4, December.

Bendel, L. (1948), Tunnelgeologie, Ingenieur Geologie, v2, Springer, Vienna.

Bieniawski, Z.T. (1973), "Engineering Classification of Jointed Rock Masses", Trans. S. Afr. Instn. Civil Eng., v15, n12, pp335-344.

Bieniawski, Z. T. (1976), "Rock Mass Classifications in Rock Engineering", Proc. Symp. Explor. Rock Engr. Johannesburg, pp97-106.

Bierbaumer, A. (1913), Die Dimensionierung des Tunnelmauerwerks, Leipzig, Englemann.

Bishop, A. W. (1955), "The Use of the Slip Circle in the Stability Analysis of Slopes", Geotechnique, v5, pp7-17.

Bray, J. W. (1966), "Limiting Equilibrium of Fractured and Jointed Rocks", Proc. 1st Cong. ISRM, Lisbon, paper 3.51.

Bray, J. W. (1967a), "A Study of Jointed and Fractured Rock
Part 1 - Fracture Patterns and Their Failure Characteristics", Felsmechanic, v5, n2-3, pp117-136.

Bray, J. W. (1967b), "A Study of Jointed and Fractured Rock Part 2 - Theory of Limiting Equilibrium", Felsmechanic; v5, n4, pp197-216.

Brcic, V. and M. Nesovic (1970), "Photoelastic Investigations of Discontinuous Rock", Proc. 2nd Cong. ISRM, Belgrade, paper 8-23.

Burman, B. C., D. H. Trollope and M. G. Philip (1975), "The Behavior of Excavated Slopes in Jointed Rock", Australian Geomechanics Journal, vG5, n1, pp26-31.

Calder, P. N. (1970), "Slope Stability in Jointed Rock", CIM Trans., v75, ppl32-136.

Chappell, B. A. (1973), "Interaction of Underground Openings with Reference to Numbers 2 and 5 Ore Bodies Located at Mount Isa Mines, Australia", Proc. Symp. Protection Against Rock Fall, Katowice, paper III-1.

Chappe11, B. A. (1974a), "Deformational Response of Blocky Mode1s", Int. Jour. Rock. Mech. Min. Sci., v11, ppl3-19.

Chappell, B. A. (1974b), "Numerical and Physical Experiments with Discontinua", Proc. 3rd Cong. ISRM, Denver, vII-A, ppl18-125.

Cording, E. J., A. J. Hendron, Jr. and D. U. Deere (1971), "Rock Engineering for Underground Caverns", Proc. Symp. Underground Rock Chambers (ASCE), Phoenix, pp567-600.

Cording, E. J. and D. U. Deere (1972), "Rock Tunnel Supports and Field Measurements", Proc. 1st RETC (AIME), Chicago, pp601622.

Cording, E. J. and J. W. Mahar (1974), "The Effect of Natural Geologic Discontinuities on Behavior of Rock in Tunnels", Proc. 2nd RETC (AIME), San Francisco, v1, pplo7-138.

Cundal1, P. A. (1971a), "The Measurement and Analysis of Acceleration in Rock Slopes", Ph.D. Dissertation, University of London, Imperial College of Science and Technology.

Cundal1, P. A. (1971b),"A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems, Proc. Symp. Rock Fracture (ISRM), Nancy, paper II-8.

Cundal1, P. A. (1974), "A Computer Model for Rock Mass Behavior Using Interactive Graphics", U. S. Army, Corps of Engineers, Technical Report MRD 2-74 (Missouri River Division).

Daemen, J.J.K. (1975), "Tunnel Support Loading Caused by Rock Failure", Ph.D. Dissertation, University of Minnesota, Minneapol is.

Daemen, J.J.K. (1977), "Problems in Tunnel Support Mechanics", Underground Space, v1, n3, ppl63-172.

Daemen, J.J.K., C. Fairhurst and A. M. Starfield (1969), "Rational Design of Tunnel Supports", Proc. 2nd Symp. on Rapid Excavation (AIME), Sacremento.

Daemen, J.J.K. and C. Fairhurst (1973), "Ground/Support Interaction Fundamentals and Design Implications", Part 2, Tunnels and Shafts in Rock, U.S. Army Corps of Engineers., EM 1110-2-2901.

Deere, D. U., R. B. Peck, J. E. Monsees and B. Schmidt (1969), "Design of Tunnel Liners and Support Systems", Final Report, U.S.D.O.T. Contract no. 3-0152.

Deere, D. U., R. B. Peck, H. W. Parker, J. E. Monsees and B. Schmidt (1970), "Design of Tunnel Support Systems", Highway Research Record, No.339, pp26-33.

DeFreitas, M. H. and R. J. Watters (1973), "Some Field Examples of Toppling Failure", Geotechnique, v23, n4, pp495-514.
Dixon, J. D. (1971), "Analysis of Tunnel Support Structure with Consideration of Support/Rock Interaction", Transactions SME-AIME, v250, n4, pp304-309.

Duvall, W. I. (1976), "General Principles of Underground Opening Design in Competent Rock", 17th U.S. Rock Mech. Symposium (AIME), Snowbird, paper 3AT.

Edwards, D. B. (1968), "Ground Stability Problems Associated with the Black Rock Open Cut at Mount Isa", Proc. Aust. Inst. Min. Engrs., n226, pt2, pp61-72.

ENR (1959), "Tunnel Estimating Improved: Tied to Geology", Engineering News Record, Dec. 17, 1959, p54-70.

Ergun, I. (1970), "Stress Distribution in Jointed Media", Proc. 2nd Cong. ISRM, Belgrade, paper 2-31.

Erguvanli, K. A. and R. E. Goodman (1972), "Application of Models to Engineering Geology for Rock Excavations", Bull A.E.G., v9, p89.

Evans, W. H. (1941), "The Strength of Undermined Strata", Trans. IMM, London, v50, pp475-532.

Fairhurst, C. (1967), "The Influence of Defects and Discontinuities on the Deformational Behavior of Rocks", 15th Annual Conf. on Soil Mechanics and Foundation Engineering, University of Minnesota, pp18-41.

Fellenius, W. (1936), "Calculation of the Stability of Earth Dams", Proc. Second Congress on Large Dams, Washington, pp445-459.
Froelich, O. K. (1933), "Discussion on Earths and Foundations", Proc. Am. Soc. Civ. Engrs., v65, pp1470-1474.
Fumagalli, E. (1968), "Model Simulation of Rock Mechanics Problems", in Rock Mechanics in Eng. Practice, Zieniewicz and Stagg, ed., (John Wiley).

Gaziev, E. G. and S. A. Erlikhman (1971), "Stresses and Strains in Anisotropic Rock Foundation", Proc. Symp. Rock Fracture (ISRM), Nancy, paper 2.1.

Gaziev, E. G. and V. I. Rechitski (1974), "Stability of Stratified Rock Slopes", Proc. 3rd Cong. ISRM, Denver, vIIB, pp780-791.

Golder, H. Q. (1972), "The Stability of Natural and Man-made Slopes in Soil and Rock", Proc. 2nd Int. Conf. on Stability in Open Pit Mining (AIME), Vancouver, pp79-86.

Goldstein, M., M. Berman, B. Goosev, T. Timofeyeva and A. Turovskaya (1966), "Stability Investigation of Fissured Rock Slopes", Proc. Ist Cong. ISRM, Lisbon, paper 6. 10.

Goodman, R. E., R. L. Taylor and T. L. Brekke (1968), "A Model for the Mechanics of Jointed Rock", Journal of the Soil Mechanics and Foundations Division, Proc. of the American Society of Civil Engineers, v94, n3, pp637-659.

Goodman, R. E. (1972), "Geological Investigations to Evaluate Stability", Proc. 2nd Int. Conf. on Stability for Open Pit Mines (AIME), Vancouver.

Goodman, R. E. (1974), "The Mechanical Properties of Joints", Proc. 3rd Cong. ISRM, Denver, vIA, p127.

Goodman, R. E. (1976), Methods of Geological Engineering in Discontinuous Rocks, West Publishing Co., St. Paul.

Goodman, R. E. and J. W. Bray (1976), "Toppling of Rock Slopes", Proc. ASCE Specialty Conf. Rock Engineering for Foundations and Slopes, Boulder, v2, pp201-234.

Hayashi, M. (1966), "A Mechanism of Stress Distribution in the Fissured Foundation", Proc. 1st Cong. ISRM, Lisbon, paper 8.5.

Hoek, E. (1970), "Estimating the Stability of Excavated Slopes in Open Cast Mines", Trans. I.M.M., Sect. A, v79, pA109.

Hoek, E. and Bray, J. (1974), Rock Slope Engineering, Inst. of Mining and Metallurgy, London.

Hoffman, H. (1970), "The Deformation Process of a Regularly Jointed Discontinuum During Excavation of a Cut (In German)", Proc. 2nd Cong. ISRM, Belgrade, v3, paper 7-1.

Jaeger, C. (1964), "Rock Mechanics and Dam Design", Water Power, pp210-217, May.

Jaeger, J. C. (1970), "Behavior of Closely Jointed Rock", Proc. 11 th Symp. on Rock Mech (AIME), Berkeley, pp57-68.

Jennings, J. E. (1970), "A Mathematical Theory for the Calculation of the Stability of Slopes in Open Cast Mines", Proc. Symp. Planning Open Pit Mines, Johannesburg, pp87-102.

John, K. W. (1962), "An Approach to Rock Mechanics", Journal of the Soil Mechanics and Foundations Division, Proc. of the American Society of Civil Engineers, v88, n4, August.

John, K. W. (1968), "Graphical Stability Analysis of Slopes in Jointed Rock", Jour. of the Soil Mechanics and Foundations Division, Proc. of the American Society of Civil Engineers, v94, nSM2.

Jones, O. T. and E. L. Davies (1929), "Pillar and Stall Working Under a Sandstone Roof", Trans. Inst. Min. Engrs, v76, pp313329.

Krsmanovic, D. and Milic, S. (1964), "Model Experiments on Pressure Distribution in Some Cases of a Discontinuum", Felsmechanic, Suppl. 1.

Kruse, G. H., K. L. Zerneke, J. B. Scott, W. S. Johnson and J. S. Nelson (1970), "Approach to Classifying Rock for Tunnel Liner Design", Proc. 11th Symp. on Rock Mech. (AIME), Berkeley, pp169-192.

Lambe, T. W. and R. V. Whitman (1969), Soil Mechanics, John Wiley, New York, pp352-373.

Lane, K. S., (1961), "Field Slope Charts for Stability Studies", Proc. Int. Conf. Soil Mech. Fndn. Engr., Paris, v2, p651.

Lang, T. A. (1961), "Theory and Practice of Rock Bolting", Trans. AIME (mining), v220, p333-348.

Lang, T. A. (1964), "Rock Mechanics Considerations in Design and Construction", Proc 6th Symp. on Rock Mechanics, Rolla, pp561-605.

Lutton, R. J. (1970), "Rock Slope Chart from Empirical Slope Data", Transactions SME-AIME, v247, n2, pp160-162.

Major, G., H. S. Kim and D. Ross-Brown (1976), "Stability Analysis and Computer Programs", Report prepared for CANMET by Dames \& Moore ATG.

Manfredini, G., S. Martinetti and R. Ribacchi (1975), "Inadequacy of Limiting Equilibrium Methods for Rock Slopes", Proc. 16th Symp. on Rock Mech. (AIME), Minneapolis, pp35-44.

Maury, V. (1970), "Distribution of Stresses in Discontinuous Layered Systems", Water Power, May/June 1970, pp195-202.

McMahon, B. K. (1971), "A Statistical Method for the Design of Rock Slopes", Proc. Ist Aust/New Zealand, Geomechanics Conference, pp314-321.

Morganstern, N. R. and V. E. Price (1965), "The Analysis of the Stability of General Slip Surfaces", Geotechnique, v15, n1, pp79-93.

Morrison, R.G.K. and D. F. Coates (1955), "Soil Mechanics Applied to Rock Failure in Mines", CMM Bu11, Nov, pp701-711.

Muller, L. (1964), "The Rock Slide in Vajont Valley", Felsmechanic, v2, pl48.

Obert, L., W. I. Duvall and R. H. Merrill (1960), "Design of Underground Openings in Competent Rock, U.S. Bureau of Mines Bulletin 587.

Orenstein, G. S. (1973), "Computer Study of Steel Tunnel Supports", U.S. Army Engineers Technical Report C-73-2, August.

Panek, L. A., J. D. Dixon and M. A. Mahtab (1975), "A Method for Computing Stabilizing Pressures for Excavations in Incompetent Rock", Prox. 16th Symp. on Rock Mech (AIME), Minneapolis, pp151-156.

Pentz, D. L. (1974) "Methods of Analysis of Stability of Rock Slopes", Proc. 1st Int. Cont. on Stability Open Pit Mining (AIME), Vancouver, pp119-142.

Pippard, A. J. and J. A. Ashby (1938), "An Experimental Study of the Voussoir Arch", Jour. Inst. C.E., 1938-1939, paper 5177.

Pippard, A. J. and J. F. Baker (1948), The Analysis of Engineering Structures, Edward Arnold and Co., London, pp568-595.

Pippard, A. J., E. Tranter and L. Chitty (1936), "The Mechanics of the Voussoir Arch", Jour. Inst. C.E., 1936-1937, paper 5108.

Rabcewicz, L. (1964), "The New Austrian Tunnelling Method", Water Power, November 1964, pp453-457.

Richardson, H. W. and R. S. Mayo (1941), Practical Tunnel Driving, McGraw-Hill, New York.

Rosengren, K. J. (1971), "Rock Mechanics Investigations for a Large Open Cut at Mount Isa", 1st Aust. - New Zealand, pp322-328.

Ross-Brown, D. (1973), "Aspects of Slope Design in Open Pit Mining", Ph.D. Dissertation, University of London, Imperial College of Science and Technology.

St. John, C. M. (1972), "Numerical and Observational Methods of Determining the Behavior of Rock Slopes in Open Cast Mines", Ph.D. Dissertation, University of London, Imperial College of Science and Technology.

Salamon, M.D.G. (1974), "Rock Mechanics of Underground Excavations" Proc. 3rd Cong. ISRM, Denver, v1-B, pp951-1100.

Seldenrath, Th, R. (1951), "Can Coal Measures be Considered as Masses of Loose Structure to Which the Laws of Soil Mechanics May be Applied", Int. Cong. Rock Pressure and Support in the Workshop, Liege, 1951 paper A5.

Serrano, A. A. and E. Castillo (1974), "A New Concept About the Stability of Rock Masses", Proc. 3rd Cong. ISRM, Denver, vIIB, pp820-826.

Singh, B. (1973a), "Continuum Characterization of Jointed Rock Masses, Part 1 - The Constitutive Equations", Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., v10, pp311-335.

Singh, B. (1973b), "Continuum Characterization of Jointed Rock Masses - Part 2 - Significance of Low Shear Modulus", Int. Jour. Rock Mech. Min. Sci. v10, pp337-345.

Smart, P. (1970), "Strength of Weathered Rock", Int. Jour. Rock Mech. Min. Sci., v7, pp371-383.

Spencer, E. (1967), "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces", Geotechnique, v17, ppl1-26.

Spencer, E. (1973), "Thrust Line Criterion in Embankment Stability Analysis", Geotechnique, v23, n1, pp85-100.

Stini, J. (1950), Tunnelbaugeologie Wien, Springer-Verlag, pp215-221.
Szechy, K. (1970), The Art of Tunneling, Akedemiai Kiado Budapest, pp133-219.

Taylor, D. W. (1937), "Stability of Earth Slopes", Jour. of the Boston Society of Civil Engineers, v24, n3, pp197-246.

Terzaghi, K. (1946), "Introduction to Tunnel Geology", in Rock Tunneling with Steel Supports, by Proctor and White (Commercial Shearing and Stamping Co., Youngstown, Ohio).

Trollope, D. H. (1957), "The Systematic Arching Theory Applied to the Stability Analysis of Embankments", Proc. 4th Int. Conf. Soil Mech. and Found. Eng., vII, p382-388.

Trollope, D. H. (1961), "Mechanics of Rock Slopes", Trans. AIME (Mining), v220, pp275-281.

Trollope, D. H. (1966), "The Stability of Trapezoidal Openings in Rock Masses, Felsmechanic, v4, n3, pp232-242.

Trollope, D. H. (1968), "The Mechanics of Discontinua or Clastic Mechanics in Rock Problems", in Rock Mechanics in Eng. Practice, Stagg and Zienkiewicz, ed. John Wiley, London

Trollope, D. H. and E. T. Brown (1965), "Pressure Distributions in Some Discontinua", Water Power, August, pp310-313.

Wagner, H. (1970), "The New Austrian Tunnelling Method", Proc. So. Afr. Symp. Tech. and Potential of Tunneling, v1, pl21-127.

Wang, F. D. and M. C. Sun (1970a), "Slope Stability Analysis by the Finite Element Stress Analysis and Limiting Equilibrium Method", U.S.B.M., RI 7341.

Wang, F. D. and M. C. Sun (1970b), "A Systematic Analysis of Pit Slope Structures by the Stiffness Matrix Method", U.S.B.M., RI 7343.

Wang, F. D., L. A. Panek and M. C. Sun (1971), "Stability Analysis of Underground Openings Using a Coulomb-Navier Shear Failure Criterion", Trans. Soc. of Mining Eng. of AIME, v250, p317.

Wang, F. D., M. C. Sun and D. M. Ropchan (1972), "Computer Program for Pit Slope Stability Analysis by the Finite Element Stress Analysis and Limiting Equilibrium Method", U.S. Bureau of Mines, RI 7685.

Whitman, R. V. and P. J. Moore (1963), "Thoughts Concerning the Mechanics of Slope Stability Analysis", Proc. 2nd Pan Am. Conf. Soil Mech Fndn. Engr., Brazil, v1, pp391-411.

Wickham, G. E., H. R. Tiedemann and E. H. Skinner (1972), "Support Determinations Based on Geologic Predictions", Proc. 1st RETC (AIME), Chicago, pp43-64.

Wickham, G. E., H. R. Tiedemann and E. H. Skinner (1974), "Ground Support Prediction Model RSR Concept", Proc. 2nd RETC (AIME), San Francisco, v1, pp691-707.

Wilson, S. D. (1959), "The Application of Soil Mechanics to the Stability of Open Pit Mines", Quarterly Colo. School Mines, v54, n3, (3rd Rock Mech. Symp.), pp93-113

Woodruff, S. D. (1966), Methods of Working Coal and Metal Mines Pergamon Press, Oxford, pp39-43, 257-305.

Zienkiewicz, 0. C., S. Valliappan and I. P. King (1968), "Stress Analysis of Rock as a No Tension Material", Geotechnique, v18, pp56-66.

APPENDIX A

THE DISTINCT ELEMENT METHOD

The Distinct Element method is a computer model described by Cundall (197la) that simulates the behavior of assemblages of rock blocks. The version of the program described by Cundall (1974) forms the basis for the work described in this thesis. Significant features of the program described by Cundall (1974) include arbitrary block shapes, unlimited block displacements and rotations, and a high degree of user interaction. The interaction requires a dedicated computer and centers around a graphic terminal with a cross-hair cursor input capability. The system enables the user to draw a picture of the problem on the terminal and watch the subsequent movement of the blocks as gravity and other loads are applied.

A very thorough presentation of the algorithms implemented in the program, as well as a description of the required hardware, is given by Cundall (1974). The purpose of this appendix is to briefly summarize Cundall's description of the program and note the significant additions to the formułation. Little would be gained by repeating Cundall's descriptions since his report is readily available.

The calculation cycle used in the program is similar to the one used in most explicit finite difference calculation schemes. Forces arise due to the deformations that occur at corner-to-edge contact points. In each time step of the iteration the incremental shear and normal displacements for a given contact point are calculated using the incremental translational and rotational
displacements of the two blocks in contact. The new shear and normal forces acting on the blocks are then calculated from forcedisplacement relationships. All of the contact forces for a given block are then resolved into an equipollent set of forces including a moment acting on the block.

The force and moment sums acting on each block are used to compute translational and rotational accelerations for the block. The accelerations are integrated numerically to obtain block velocities which are then integrated to give the block displacements. With this new set of block displacements the iteration cycle can begin again. Note that if the force and moment sums acting on a block are zero, there will be no acceleration of the block; this is precisely how the program models an equilibrium state.

Before the displacements and accelerations of the blocks can be calculated, however, some method of defining the block geometries must be implemented. The blocks could be treated as "elements" related to defined nodal points as is done in conventional Finite Element analyses. The input would thus consist of numerous cards containing nodal point and element data; anyone who has attempted this to define a mesh for a Finite Element analysis is acutely aware of the frustration that results from trying to "debug" such a mesh. The approach adopted by Cundall (1974) and implemented in the program used for the research described in this dissertation overcomes the difficulties associated with mesh generation. The actual rock mass geometry, as defined by the jointing, is drawn on the screen of the CRT. All calculations necessary to determine
the significant coordinates are thus performed by the program. The structure of the program is governed by the size limitations imposed by the mini-computer; the actual program consists of three overlays which correspond to the three main calculation phases of the program.

Phase 1 of the program governs the interactive dialog by which the lines defining the block geometry are created. A flow chart for this section of the program is given by Cundall (1974); the flow chart is essentially valid for the present configuration of the program. Care was taken so that the changes to Phase 1, which will be described presently, did not alter the program sequence or execution.

The two main changes made in the Phase 1 section of the program are concerned with the format of the data input and the storage and subsequent retrieval of data files. Whereas the initial version of the program used only the cross-hair cursor of the CRT for input, the present version of the program uses a graphic tablet ("digitizer") and a numeric input scheme as well. The three routines are virtually identical and, in fact, use only one set of coding. Whichever routine is active at a given time is noted by the value of the variable KODE: $K O D E=-1$ signifies that the numeric input routine is selected; KODE $=1$ signifies that the graphic tablet is in use; and, $K O D E=0$ signifies that the cross-hair cursor is being used for input. All three input methods may be used for a single problem. Potential users wishing to implement the modified version of the program need only supply software for the graphic tablet (Subroutine DIGIT). It should be noted that the numeric input routine contains a scale factor. In this manner, actual field
coordinates may be used as input, and divided so that they meet the program requirements (see Cunda11, 1974).

The second major change in the Phase 1 program enables users to store data files consisting of line segments and coordinate data. To do this, the common blocks are written to or read from the Linc tape units. The operation is straight forward; line 57 of the program (see Appendix C) LIST (3) = 13286 is simply a "password" to prevent garbage from being read as a data file.

The second overlay, Phase 2, is unchanged from Cundall's (1974) original listing. This is the routine that scans the line segments created in Phase 1 of the program and converts the line segments to closed areas. A flow chart for this routine is presented by Cundall (1974).

The first two overlays of the program are written in Fortran; to conserve memory, the third overlay is written in Data General assembly language. The only serious drawback caused by this is that the present version of the program will only run on a Data General computer.

Most of the changes made to the program were concerned with the third overlay, Phase 3. This section of the program contains the coding necessary to compute the block accelerations and displacements. Detailed descriptions of the modifications will be noted in the descriptive summary of the Phase 3 subroutines to be presented shortly; the main calculation cycle, however, remains essentially unchanged.

The equations used in the main calculation cycle are summarized
on this and the following pages and are taken directly from Cundall (1974).

$$
\begin{aligned}
\left(x^{i}, y^{i}\right)= & \text { global co-ordinates } \\
& \text { of block i centroid }
\end{aligned}
$$

$\begin{aligned}\left(x^{j}, y^{j}\right)= & \text { global co-ordinates } \\ & \text { of block } j \text { centroid }\end{aligned}$
$\begin{aligned}\left(\mathrm{x}^{c}, \mathrm{y}^{c}\right)= & \text { global co-ordinates } \\ & \text { of contact point } c\end{aligned}$
Note: All forces, displacements and angles are shown acting in the positive direction.
global x origin

$\left\{\begin{array}{ll}\cdots \cdots \cdots \cdots & \Delta u_{s}^{c}=\Delta u_{x}^{c} \cos \alpha+\Delta u_{y}^{c} \sin \alpha \\ \Delta u_{n}^{c}=\Delta u_{y}^{c} \cos \alpha-\Delta u_{x}^{c} \sin \alpha\end{array}\right\}$

$$
\begin{aligned}
& F_{n}^{c}:=F_{n}^{c}-\Delta u_{n}^{c} \cdot k_{n} \\
& F_{s}^{c}:=F_{s}^{c}+\Delta u_{s}^{c} \cdot k_{s} \\
& D_{n}^{c}=-\Delta u_{n}^{c} \cdot K_{n} \\
& D_{s}^{c}=\Delta u_{s}^{c} \cdot K_{s} \quad\left\{\begin{array}{l}
\text { (Deshpot forces, } D \\
\text { act in same manner } \\
\text { as } F \text { forces) }
\end{array}\right.
\end{aligned}
$$

 The above equations are subject to the following conditions:

$$
+ \text { If } F_{n}^{c}<0,
$$

Shear and normal set $\left.\begin{array}{rl}F_{\hat{c}}^{c}=0, & D_{\hat{c}}^{c}=0 \\ F_{s}^{c}=0, & D_{s}^{c}=0\end{array}\right\}$ (no-tension)

$$
\rightarrow \text { If } \quad\left|F_{s}^{c}\right|>\mu \cdot F_{n},
$$

set $F_{s}^{e}:=\mu . F_{n}^{c}, \operatorname{sign}\left[F_{s}^{c}\right]$ (friction law)
$D_{3}^{e}=O$ (no damping when sliding)
(where: $k_{n}=$ normal stiffness,
$k_{s}=$ shear stiffness,
$K_{n}=$ normal dashpot constant,
$K_{3}=$ shear dashpot constant.)

$\left.\begin{array}{l}F_{y}^{c j}=\left(F_{s}^{c}+D_{s}^{c}\right) \sin \alpha-\left(F_{n}^{e}+D_{n}^{c}\right) \cos \alpha \\ F_{x}^{c j}=\left(F_{s}^{c}+D_{s}^{e}\right) \cos \alpha+\left(F_{n}^{c}+D_{n}^{c}\right) \sin \alpha \\ F_{y}^{c i}=-F_{y}^{c j} \\ F_{x}^{c i}=-F_{x}^{c j}\end{array}\right\}$

Note: \sum_{c} means the summation over all contact points for block i
Exactly similar equations are used for block j
(1) The formulation of equation 5 differs slightly when joint water pressure is present (see page A-22).

Equations (continued)

$$
\left.\begin{array}{l}
\dot{u}_{y}^{i}:=\dot{u}_{y}^{i}+\frac{F_{y, u m \cdot}^{i} \cdot \Delta t}{m^{i}} \tag{6}\\
\dot{u}_{x}^{i}:=\dot{u}_{x}^{i}+\frac{F_{x \operatorname{sum} \cdot \Delta t}}{m^{v}} \\
\dot{\theta}^{i}:=\dot{\theta}^{i}+\frac{M_{\text {sun }}^{i} \cdot \Delta t}{I^{i}}
\end{array}\right\}
$$

Similarly for block j
($\Delta t=$ time increment;
$\mathrm{m}^{i}=$ mass of block i;
$I^{i}=$ moment of inertia, block 1.)

Velocities are derived from forces, by numerical integration

At this point the calculation cycle is complete since the incremental displacements needed by equation 1 on page $A-5$ have been calculated. A complete discussion of the relationships used in equations 1-7 is given by Cundall (1974). The algorithms used to derive the coordinates and angles used by equations 1 and 2 are also presented.

As a prerequisite to the discussion of the Phase 3 subroutines, a brief discussion of the data structures is necessary. The problem of unlimited block movement and the potential for any given block to contact any other block requires an efficient scheme of memory management. Simple sequential arrays are not sufficient for the task at hand as it requires that the words in the memory be subject to additions and deletions of data while at the same time the amount of unused memory, memory reshuffling and processor time must be kept to a minimum. The solution implemented by Cundall to alleviate the difficulties of handling large, sparse data arrays was borrowed from the techniques of manipulating information structures by computer. The data structures rely heavily on the techniques of list processing whereby the data is stored in short lists in arbitrary computer memory locations with one word of the list containing information sufficient to locate subsequent data. The entirety of the data can thus be imagined to be one long list comprised of several short lists strung together through the memory. The reader who requires exact details concerning the implementation of the list processing techniques is advised to consult Cundall (1974) pages $62-72$. All that will be presented herein is a brief overview of the list processing implementation and a description of the format of the data structures used in the present formulation of the program.

The storage requirements for a given block model due to the problem of allowing any block to touch any other block are overcome by a list scheme. All block corners are classified into coarse
boxes covering the screen area. When the program needs to know if a given edge is near any block corners, it is only necessary to scan the area delimited by those boxes encompassing the edge. As the blocks move as a result of forces acting on them, their corners are reclassified into new boxes if necessary. This boxing scheme turns out to be very efficient as only a small amount of computer time is required.

It is impossible to allocate sufficient memory space for all possible block to block contacts - the space required is far too great. The only viable solution is a method to allocate memory as it is needed by the formation of a new contact and return the memory to a pool of available memory when it is no longer needed. A scheme of linked memory allocation provides such a solution and is implemented in the Distinct Element program.

In the program a fixed group of words is reserved as a set of pointers; each word corresponds to a given block. Each pointer contains the address of the start of a linked list of all contacts for the block associated with that pointer. Another list is used to store all of the memory which became "dead" once a contact was broken. When a new contact is detected by the program the program first checks the list of dead contact space. If space exists it is used, otherwise, previously unused memory at the high end of core is allocated. The following pages describe in detail how the data is organized in the computer memory. The first page following shows a total memory map illustrating the four main parts of the memory. These are:
a) the program
b) the sets of data pertaining to each block
c) the pointers and data necessary for the "boxing" scheme, and
d) the data sets and pointers pertaining to the contact between blocks

The subsequent pages illustrate expanded forms of groups b, c, and d to show in detail the structure of each list.

The present formulation of the program utilizes another linking scheme to store the data pertinent to applied joint water pressures when they exist. The format of data lists used in this scheme is also illustrated. There are two other linked lists threaded through the memory that must be mentioned; these are the "empty" lists used to reference previously used memory space that is now free for re-use. Memory is made available whenever a block contact is broken or when a pressure segment is deactivated. The two empty lists and the joint pressure lists are referenced by global memory pointers and make use of whatever memory is available. Adding or reclaiming a group of words from the empty lists is simply a matter of reshuffling the link bits and is illustrated by Cundall (1974).

I.1nked list of block comers. The length is flued for a given set of blocks, but the links will change as the blocks move.

words:
Array of boxes, each pointing to a list of comers falling in that box

Sets of data for each block
arranged
sequentially

377e words:
.M2. 1.

Contains, for each block, a pointer to the data associated with that block

Fhase 3 program (length around 15000_{8} words)
word $0 \square$ Page zero: reserved for storage of global symools
Note: ML, M2 etc are the global symbols that refer to the polnters to the memory locations shown
 arranged sequentially.
expanded to show format for one block:

first 8 bits expanded to show format:

둔
$\begin{array}{ll}4 & 4 \\ 0\end{array} \quad$ manual fixed/free flag $\left\{\begin{array}{l}0=\text { free } \\ 1=\text { fixed }\end{array}\right.$ 둫 히 휴 long-block flag $\left\{\begin{array}{l}0=\text { short block } \\ 1=\text { long block }\end{array}\right.$

continued on next faze...

Continued from

> Format for "long block":

* NOIE: If any $\left|X_{i}\right|$ or $\left|Y_{i}\right|$ is greater than 12710 , the block is clessiried as a LOTG BLOCK, and the second format shown is used. This is to save memory, as only a few blocks will be long.

Sowat of Eox araa: and Tirited liats of bloze comare

Identifies the particular comer of the particular blook that fallis in the assosiated box. The data for that block and comer ray then be found from the block data amays (page 69)

Note: $.133, .164$? 145 are the global symols (progeran names) for the pointers to the groups of remory shom

Format for contact ciats 11 sts, and associated nointers

Format of Linked Lists of Pressure Segment Data

if no pressure segments exist, . PRES $=-1$

The empty list of pressure segments strings together groups of six words which were previously active as pressure segment data lists. It is accessed by the pointer. PEMT .
.PEIT

The empty list of contact data has a similar form but the list groups are 13_{a} words long. It is accessed by the pointer. EMPT.

With this preliminary information in mind, a brief discussion of each of the subroutines of Phase 3 may now be presented. The logic of the subroutines is straight forward and due to the number of comments interspersed in the listing, there seems to be little need to present flow charts for the programs. The brievity of the discussion is justified by the fact that Cundall (1974) has adequately described the original versions of the subroutines. The descriptions presented herein are thus primarily concerned with the modifications made to the program.

Subroutine TRANS
The purpose of TRANS is to translate the Fortran data arrays into the Phase 3 format illustrated on pages $A-12$ and $A-13$. It is the first subroutine to be executed in Phase 3 and is only used once. The program originally (Cundall, 1974) was overwritten by the data input routine, but this is no longer so. Additionally, TRANS classifies all of the block corners into boxes utilizing the format illustrated on page A-14; Cundall outlines the procedure for accomplishing this.

The changes made to TRANS are minor and are outlined in the following sentences. The initial program version was implemented for a specific memory size; the present version determines the size of its environment and adjusts itself accordingly. The routine determines the locations of the Fortran common blocks and sets several pointers. The memory sizing routine works for all physical
configurations except 32 K words; for this memory size the common block locations are displaced by one word. For this reason variable IY is dimensioned as 513 only in Phase 3. This juggling is not necessary for other memory sizes and may not be necessary for other operating software.

Subroutine CONTR

The next routine to be executed governs the main control loop; subroutine CONTR also monitors the keyboard. The logic of the program is unchanged from Cundall (1974) but the fact that this routine embodies the main calculation cycle merits the presentation of a flow chart.

The overall logic of CONTR is straight forward and simply involves the evaluation, for each block in turn, of the sets of equations listed on pages A-5 through A-7.

The calculation of the displacements from the forces (subroutine MOTIO) involves the evaluation of equations 6 and 7 for each block. Accelerations derived from forces are integrated twice to give displacements. Gravity forces and any applied forces are added to the forces derived from block contracts. In this part of the calculation cycle the magnitude of the displacements are also monitored and if necessary, control is transferred to the routine that determines if any of the block corners need to be assigned to new boxes.

Having thus obtained incremental displacements for all blocks, the force/displacement laws (equations 1 through 5) are used to obtain contact forces.

The control routine also calls subroutine UPDAT every so often to update the coordinate data used in equations 1 through 7. UPDAT updates the sine and cosine of the edge in contact with a particular corner, as well as the global coordinates of the contact point. UPDAT also deletes broken contacts and searches for new ones.

The other function of subroutine CONTR is to monitor the keyboard and respond to keys hit by the user while the program is running or waiting. The program responds to the keys and modifies the sequential operation of the program. The function
of the individual keys is clearly explained in the listing of CONTR (Appendix C) as well as in Appendix B.

Subroutine REBOX

As has been observed, the corner reboxing routine is called from MOTIO whenever a block is suspected of having moved sufficiently to need its corners reclassified into new boxes. The logic of the corner reboxing scheme is presented by Cundall (1974) and is unchanged in the present version of the program.

REBOX also updates the applied joint water pressures. The water pressures must act normal to the joint surface and do not dissipate as the blocks move. Any rotational movement of a block with an applied water pressure would lead to a change in the x and y components of the applied force. Subroutine REBOX updates this information whenever it is called for any block.

Subroutine MOTIO
This subroutine evaluates equations 6 and 7 on page A-7 for all blocks except those having either the master or manual fix flags set. As noted earlier MOTIO also makes a decision when to call the reboxing routine to reclassify any block's corners into new boxes. A call to REBOX is triggered whenever the cumulative motion of any block exceeds one screen unit.

Subroutine FORD

This subroutine evaluates equations 1 through 5 on page $A-5$ and A-6 for each block in sequence. It accesses the data stored in the contact list associated with each block, and computes the force sums acting on that block. Equation 5 is the only equation of the main calculation cycle that is different than that presented by Cundall. It now contains terms to account for the presence of joint water pressure.

$$
\begin{align*}
& F_{x \text { sum }}^{i}=\sum_{c} F_{x}^{c i}+F_{x \text { load }}^{i}+F_{x p r e s}^{i} \\
& F_{y \text { yum }}^{i}=\sum_{c} F_{y}^{c i}+F_{y l o a d}^{i}+F_{y p r e s}^{i}+F_{y g r a v}^{i} \tag{5}\\
& M_{\text {sum }}^{i}=\sum_{c} F_{y}^{c i}\left(x^{c}-x^{i}\right)-F_{x}^{c i}\left(y^{c}-y^{i}\right)+M_{p r e s}
\end{align*}
$$

Ford also contains numerous entry points that are primarily used for experimenting with the program. These entry points allow modification of block weights and the dynamic factors of the program.

Subroutine UPDAT
The subroutine UPDAT is called once every few iteration cycles to check for new contact points. UPDAT also updates coordinate data as required. The routine is unchanged from the original form; the description presented by Cundall is very complete and contains a flow chart of the subroutine.

Subroutine PONT

Subroutine PONT is used to calculate the global coordinates of a contact point from the local coordinates of that point. This is
done by a simple coordinate transform for a translated origin and rotated axes. The equations are: (see any book on analytic geometry)

$$
\begin{aligned}
& X G=X C+X L \cdot \cos \theta-Y L \cdot \sin \theta \\
& Y G=Y C+X L \cdot \sin \theta+Y L \cdot \cos \theta
\end{aligned}
$$

where XL, YL $=$ local coordinates

$$
\begin{aligned}
& X G, Y G=\text { global coordinates } \\
& \theta=\text { angle of local system to global system } \\
& X C, Y C=\text { local origin (= block centroid) }
\end{aligned}
$$

Subroutines DISPL and TEK
With the exception of the contact vectors, which are generated by subroutine FORD, all screen plotting is managed by subroutine DISPL. Subroutine DISPL in turn calls TEK which is nothing more than the basic Tektronix supplied software package for minicomputers. Whereas Cundall's (1974) version of the program provided hard copy through digital plotting, the present hardware includes a Tektronix 4631 copier. Although DISPL will still drive a digital plotter, this feature is rarely used.

The remainder of the subroutines of Phase 3 are primarily used for various utility functions. No great detail will be expended on describing the main function of each routine. The subroutine listings (Appendix C) contain many comments that indicate how the functions are performed. The interested reader is directed to the listings.

Subroutine INPUT
The utility routines embodied in INPUT are primarily concerned with parameter specification and modification. Most significant of the functions are:

1) set up or modify the values of the ten different friction properties used by the program
2) input of applied pressures
3) numerical input of applied loads
4) set up of displacement control routine

The input of pressure segments deserves further attention. The presence of water in a joint tends to exert a force against the joint surfaces. For a single joint surface:

1) $\mathrm{F}=\mathrm{P}$ * L *
2) $y_{d}=x_{2}-x_{1}$

$$
x_{d}=y_{2}-y_{1}
$$

3) $M=F\left(\sin \alpha\left(y_{c}-y\right)+\cos \alpha\left(x_{c}-x\right)\right)$
or
$M=\frac{F}{L}\left(y_{d}\left(y_{c}-y\right)+x_{d}\left(x_{c}-x\right)\right)$
F and M are calculated as soon as a pressure segment is defined and never varies with displacement. The x and y components of the force do vary with displacement and are updated in REBOX.
4) $F_{x}=F \cdot \sin \alpha$

$$
F_{y}=-F \cdot \cos \alpha
$$

The initial value of F_{x} and F_{y} is also calculated in REBOX.

Subroutine UTIL

Subroutine UTIL contains several utility programs. The entry points and their functions are:

1) . MITC - a routine to determine which block has the centroid corresponding to given x and y coordinates.
2) .PRNI - output a single character to the teletype
3) .ALPH - sets the Tektronix to alpha mode
4) .PAGE - a routine to clear the Tektronix screen
5) .LENG - a routine to return the length of side NP of the block in question
6) TYP - a routine to return the surface type number of a given edge
7) .SCAL - a routine to scale vector lengths
8) .IPRN - a binary to decimal conversion routine that prints a right justified integer in a given field length
9) .PRN2 - a routine to print a single character on the teletype - character is in $A C D$
10) .MESS - a routine to print a message at a specific location on the screen
11) .AXIS - a routine to draw an axis with tick marks
12) GETT - a routine to receive a character from the teletype
13) .DBIN - a decimal to binary conversion routine
14) .CHEK - checks if an ASC11 byte is a digit and reduces it to binary if it is
15) .WORD - a routine to get an alphanumeric string from the key board

Subroutine CYCLE

Subroutine CYCLE contains several additional utility routines. The entry points and their functions are:

1) . KET - a routine to set velocities to zero at a kinetic energy peak
2) .RSET - a routine to set the iteration cycle counter to zero
3) OPTIN - a routine to set options governing vector scale factors, automatic copy and automatic stop
4) .STEP - a routine to step the iteration cycle counter
5) .TPRN - a routine to print elapsed cycles

Subroutine HITS
Subroutine HITS checks all sides of all of the blocks to determine which edge of which block the coordinates x and y fall upon.

Subroutine LOADS

Subroutine LOADS allows all block weights to be multiplied or divided by an integer constant.

Subroutine MOVIT

The law of motion for displacement controlled blocks is embodied in subroutine MOVIT

Subroutine TAPE
Subroutine TAPE contains the standard Linc tape utilities. It also contains the coding for reading or writing save files in Phase 3, and performs the overlay to return to Phase 1.

APPENDIX B

USER MANUAL FOR DISTINCT ELEMENT PROGRAM

The information contained in this Appendix describes the operation of the configuration of the Distinct Element program used for this dissertation. The Appendix is arranged in such a way that each of the three operating phases is described in sequence, with comment interspersed as necessary. The comment following the third phase of the program is extensive and contains much information pertinent to the successful operation of the program.

During all three phases of operation the computer responds to user commands whenever a teletype key is struck. There are a lot of key commands to which the program will respond with appropriate action. Lists of these keys follow. Rather than memorizing the lists and attempting to implement them all at once, it is strongly suggested that the potential user familiarize himself first with those keys which are essential to the operation of the program. As the user becomes confident in the use of these keys through the running of simple examples, more keys can be added to his "working vocabulary".

Essential Keys
Phase 1 - 1, 2, E, P-2, rubout
Phase 2 - E, S, R, P-3
Phase 3 - G, D, F, C, Z, I (F), S
If a more detailed introduction to the use of the program is desired see Cundall (1974).

PHASE 1 - OPERATIVE KEYS, CURSOR DISPLAYED

1 - Key " 1 " is always used to define the first end of a line segment. Move the cross-hair cursor to the desired point and strike the key. The computer responds by drawing a " + " at the point indicated.

2 - Key "2" is always used to define the second end of a line segment. Move the cross-hair cursor to the desired point and strike the key. The computer responds by drawing a "+" at the indicated point and by drawing a line between the first and second end points of the desired line segment. The computer program was modified to recognize the fact that it is often desirable to draw connected line segments. Therefore, the program will respond to the "2" key following either a "1" key or a " 2 " key. In this case the program supplies the coordinates of the first endpoint of the line segment at the proper time by using the last input of the second end of a line segment.

E - Any individual line segment may be erased by placing the cross-hair cursor at any position on the line segment and typing the "E" key. A useful trick to make the drawing clearer is to create a line segment at the edge of the Tektronix screen and then erase it. When the remaining line segments are redrawn, the "+'s" at the ends of line segments are not redrawn.
rub- All created line segments may be erased by typing the "rubout" out key. When the "E" key is used to erase a line segment, the end points of that line are not removed from the point list.

These points can often impede the creation of a drawing. If a large number of line segments are to be erased, it is preferable to use the "rubout" key.

H - To make a hard copy of the Tektronix display type key "H" or strike the make copy button on the console.

W(code) To store the complete list of line segments created in Phase 1, type "W" followed by the desired code file number. To store the line segments in the third file, for example type "W" followed by " 3 ".
R (code) To recover a list of line segments created at an earlier time, type "R" followed by the desired code file number. For example, to recover the eighth file type "R" followed by " 8 ".

Note: The program uses the ASCII equivalent of the character to calculate the position of the file on the Linc tape. On a 620s block tape the permitted files, in order, are: 1-9, :, ;, <, =, >, ?, @, and A - Q. The program also stores a "password" in the file to prevent garbage from being read into the program.

N - The program has a subroutine to allow the numerical input of line segment end points. To implement this feature, type key "N".

C - The Tektronix screen coordinates are from 0 to 1023 in the x direction and from 0 to 780 in the y direction. Often, the problem to be analyzed can be in field coordinates
which do not fall conveniently in this range. By typing key "C", a scale factor may be input to the program which is then used by the program to divide the input data in such a way that it will fall within the range of the Tektronix screen coordinates. Incidentally, the program treats both the scale factor and the input data as integer numbers, so nothing is to be gained by typing in highly accurate field coordinate data. The "C" key does not affect either the cross-hair cursor input or the digitizer input.

D - The program contains a subroutine to allow input of data by means of a graphic tablet or digitizer. To implement this feature type key "D".

DIGITIZING ROUTINE
The digitizing routine will accept input data from the graphic tablet until the "E" key is typed. At this point the control returns to the main program and the cross-hair cursor is displayed. NUMERIC INPUT ROUTINE

Upon entrance to the numeric input routine, the computer responds by typing "X1=?" and waiting for input data. After the data input following "Y2=?" several keys are operative.

CR - striking the carriage return key causes the computer to respond "XI=?" etc.
/ - striking the "/" key causes the program to use the last endpoint as the first endpoint of a new line segment. The computer response is thus "X2=?" etc.

L - striking the "L" key causes the computer to redraw all lines. This key is frequently used as every input data pair will leave " $\mathrm{Xl}=$?" and " $\mathrm{Yl}=$?" typed on the screen - it soon becomes difficult to follow what is happening on the screen unless "L" is frequently implemented.

E - striking key "E" while in the numeric input routine will cause control to be returned to the main program and the cursor is displayed.

Once the desired number of line segments has been created, the second Overlay of the program may be implemented. To do this, strike key "P" followed by key "2". Two comments are appropriate. First, it is not possible to get to Phase 2 from either the numeric input routine or the digitizer routine. The cross-hair cursor must be displayed before control can be passed to Phase 2. Second, all three input methods work together. Thus, it is possible to create part of the assemblage of line segments in the numeric input routine and finish the creation in the cross-hair cursor input routine.
A) Cursor Displayed - Operative Keys

1 Use the cursor position as end no. 1 of a new line
2 Use the cursor position as end no. 2 of new line (display the line)

E Erase the indicated line
H Make a hard copy of display
rubout - Erase all lines
W(code) Write the display onto tape in location code
R (code) Read the display at location code into memory
D Go to digitizing routine
N Go to numeric input
C Change N scale factor
P Then 2 go to $\mathrm{P}-2$
B) Digitizing Routine

Accept line segments from digitizer
E Escape to cursor on
C) Numeric Input Routine

Responds $\mathrm{X} 1=$?, etc, after $\mathrm{Y} 2=$? several keys are operative:
CR Select a new point
/ Repeat point
L Redraw all lines
E Escape to cursor on

PHASE 2 - OPERATIVE KEYS

E - A single block may be erased in Phase 2. To implement this option, place the cross-hair cursor on the desired block centroid and type key "E".

R - All erased blocks may be restored by typing key "R".
S - A single block may be examined by placing the cross-hair cursor on the desired block centroid and typing key "S". After the single block is displayed, the block may be erased by typing key "E". Striking any other key returns without erasing the block. This feature is most useful to determine which centroid belongs to a given block.

A - Striking key "A" will display all of the blocks.
H - A hard copy of the display may be obtained by striking key "H" or pressing the "make copy" switch on the Tektronix console.

To return to Phase 1, strike key "P" followed by key "1".
To pass control to the third Overlay, Phase 3, type key "P" followed by key "3".

Two comments are in order. First, it is more economical in terms of computer work expended to erase unwanted blocks in Phase 2 than in Phase 3. Second, if the computer determines that no blocks can be created from the line segments passed by Phase 1, control is automatically returned to Phase 1. This means that it is not possible to get to Phase 3 without at least one block on the screen. To access a Phase 3 save file it is necessary to create a single block, and pass it from Phase 1 to Phase 2 and then onto Phase 3.

At that point, the Phase 3 save file may be read.

PHASE 2 SUMMARY

E Erase the block indicated
A Display all blocks
S Display the single block indicated - E Erases the block, any other key returns without erasing block

H Make a hard copy of the display
R Restore all erased blocks
P then 1 go to Phase 1
P then 3 go to Phase 3

PHASE 3 - OPERATIVE KEYS

Iteration Cycle Not Running

G - To begin or continue the iteration cycle type key "G"
D - As the Tektronix is a storage CRT all images drawn on the screen remain on the screen until erased. To redisplay the system of blocks type key "D".
Z - To remove all inertia from the system type key "Z" to set all velocities to zero. This key is useful in the consolidation phase of the program in conjunction with the "V" key as described in a later section.

H - To make a hard copy of the blocks displayed on the screen type key "H" or depress the "make copy" switch on the Tektronix console.

T - To display the surface properly types which have been declared in the cursor routine, type key "T". The program displays a number from 1 to 9 at the midpoint of the edge of the block. Those surfaces having surface type \emptyset (the default value) are not indicated.

W - To store page zero (a variable list) and all block data, type key "W". The program writes this data on Linc tapes for future retrieval. This feature can be used to store the consolidated block assemblage and identical problems can be run to study the effect of certain parameters. Only one file can be written or read by Phase 3, so no "code" is required.
R - To read a previously stored Phase 3 write file, type " R ". The program reads page zero and the block data, essentially
defining a new problem. A problem may be written on tape and returned to at a later time. As noted earlier, it is not possible to gain access to Phase 3 without going through Phase 1 and Phase 2. The best method of access is to create a single block in Phase 1 and pass it on to Phase 3. Upon typing key "R", the stored problem will be recovered. It is important to note that only the default friction value is stored in page zero. Friction properties for surface types 1-9 must be re-entered if the problem is changed. Note that it is possible to use the Linc tape utility "KBEX" to go directly to Phase 3, but this requires knowledge of several starting addresses.
V - The contact vectors of each block may be displayed by typing key "V". The stability of a block can be assessed by repeatedly typing key " V " and noting the variation of the position and length of the contact vectors. Note, however, that while the iteration cycle is not running, new contacts are not being detected (subroutine UPDATE) and repeated typing of key " V " may allow blocks to punch through edges. It is recommended that no more than 10 " V " keys by typed without typing key "G".

L - The weights of all blocks, all externally applied loads and joint fluid pressures are displayed when key "L" is depressed.

J - To input joint fluid pressures, type key "J". The program responds by displaying the cross-hair cursor and waiting.

Position the cross-hair cursor on the desired joint segment and type the desired value of pressure followed by a carriage return. The cursor is then re-displayed. Additional pressure data may then be entered by the above procedure. Alternatively, a carriage return exists from the routine. Note that if two line segments are adjacent the logic of the program will apply to fluid pressure to both surfaces.

C - Typing key "C" displays the cross-hair cursor and allows entry to several input routines described in a later section.

I - By typing key "I", four additional input routines may be accessed by typing an additional key. These keys are:

F - If key "F" is typed following key "I", the routine to define surface friction property types is accessed. To define the friction coefficient corresponding to each numbered surface type, place the horizontal cursor on the same line as the desired surface type, type the "." key followed by a 3 digit decimal value of the friction coefficient, and end with a carriage return. After all desired friction coefficients have been defined, another carraige return will give control back to the main routine. Note that the maximum friction coefficient is 0.999 and that the value actually used by the program differs by .001 due to a validity check.

L - Typing key "L" following key "I" accesses the same numerical input routine described under key " 0 " in the
cursor routine.
0 - Typing key " 0 " following key "I" allows the user to define several options including the options to print values of applied loads and contact vectors, define the vector length scale factor, and automatically make copies and stop the program after a desired interval. The kinetic energy damping routine should be used with extreme caution.

U - If key "U" is typed following key "I", a routine to define user units is entered. At the present time the only result of entering this routing is to cause a set of divided axes, labeled in desired units to be displayed on the screen.

X - By typing key "X" the iteration cycle counter is reset to zero. This routine is useful to set the cycle counter to zero after the consolidation phase so that the problem can begin at zero time.

Q - Typing key "Q" accesses several routines to vary some of the dynamic parameters and block weights. Its primary function is in program development and debugging.

M - Typing key "M" puts the cross-hair cursor on the screen and enables the selection of the block to be used for the displacement control mechanism. Place the cursor on the desired block centroid and hit any key except "E". The program guides the user through the specification of the displacement steps,
frequency and direction. Striking key "E" disables the mechanism if it is already set.

P - Upon completion of the problem, control may be passed to Phase 1 by typing key "P".

Iteration Cycle Running

S - To stop the iteration cycle and prepare for input, modification etc. type key "S".
N - While the iteration cycle is running blocks that are moving are being redrawn as they move. To prevent this type key "N". The computer responds by blanking the Tektronix screen. This action is required if the program is to be left unattended as the Tektronix screen can be permanently damaged if an image is displayed for a time longer than about 15 minutes without being redrawn. This option also makes the program run faster since the computer does not have to service the Tektronix for plotting.

A - Plotting of the blocks as they move can be restored by typing key "A". However, this option does not redraw all of the blocks, it only enables the drawing of blocks as they move. This has the advantage of allowing the user to determine zones of movement within a mass, for example. To redraw all of the blocks, both moving and stable, type key " A " followed by key "D".

Several of the keys which are operative when iteration cycle is stopped are also operative when the iteration cycle is running.

These are:

$$
\begin{aligned}
& D \text { - display all blocks } \\
& H \text { - make a hard copy } \\
& T \text { - display surface types } \\
& \text { V - display contact vectors } \\
& \text { L - display load vectors }
\end{aligned}
$$

Iteration Cycle not Running, Cross-Hair Cursor Displayed

F - To force the program to hold a block fixed in space, place the cross-hair cursor on the desired block centroid and type key "F".

U - To release the status of a previously fixed block, place the cross-hair cursor on the desired block centroid and type key "U".

E - Blocks can be erased by placing the cross-hair cursor on the desired block centroid and typing key "E". However, as mentioned earlier, it is more economical in terms of computer effort to erase blocks while in Phase 2.

0 - Typing key " 0 " writes the prompt message "Select Single Block". Place the cross-hair cursor on the desired block, hit any key and the program displays just the one block. Also displayed on the screen are the block centroid coordinates and the magnitude of the applied loads. Additionally, if switch zero on the computer console is in the up position, pertinent force and velocity data are displayed. Finally, an opportunity is presented to numerically change the values of
the applied loads. This routine exits the cursor routine automatically.

1 - Applied loads may be input from the cursor routine by placing the cursor on the desired block centroid and typing key "1". The cross-hair cursor is then moved to a position defining the magnitude and direction of the desired load vector and key " 2 " is typed.
$\emptyset-9$ - Surface property type flags are set in the cursor routine by placing the cross-hair cursor on the desired block edge and typing a key from " \emptyset " to " 9 ". This flag alerts the program to search the friction table for a specific friction value. Any other key removes the cursor and transfers control back to iteration cycle not running status.

There are two external "flags" available to the user to modify the execution of the program. These are data switches on the console of the computer. If switch 15 is in the up or on position, the printing of the elapsed cycles and default friction coefficient is inhibited. This is of use when it is desired to have copies that are free of text. The other flag is controlled by switch \emptyset on the console; it serves multiple purposes in guiding program execution. If switch \emptyset is in the up position, it is not possible to return to Phase 1 ; this is done to prevent accidental loss of a program. Switch \emptyset "on" also causes velocity and acceleration data to be printed when a single block is examined, as well as allowing a message to be printed when the displacement control mechanism is operative.

Not Running
G Go (start dynamics)
D Redraw all blocks
Z Set all velocities to zero
H Make hard copy
T Display surface types
W Write display on tape
R Read display from tape
V Display contact vectors
L Display loads \& pressures
J Accept joint pressures
C Display cursor
I Input actiuation
F Friction U Units
L Loads 0 Options
X Reset cycles
Q Debug routine
M Access displacement control
P Go to Phase 1

Running
S Stop running
N No plot option
A Activate plotting Also: D, H, T, V, L

Cursor Displayed

F Fix block indicated
U Unfix indicated block
E Erase block indicated
0 Display block indicated
1 First end of applied load vector (centroid) followed by a 2
\emptyset to 9 Define surface type (friction)

Other keys remove cursor

USEFUL INFORMATION

The remainder of this Appendix is devoted to the presentation of information that will be of use to potential users of the program. Some of this information is intended to make it easier for an untrained user to begin working with the program, some of it is intended to aid those interested in program development and some of it is simply odds and ends. No apology is offered for the rather rambling nature of the presentation.

Block creation

In the first overlay or main section of the program, line segments are drawn on the Tektronix screen using the cross-hair cursor, a numerical coordinate input routine or the graphic input tablet. At this stage of the program we are only drawing line segments. Thus it is not necessary to draw each block individually.

not required

better way

The program detects intersections and overlaps and treats them as such. Incidentally the program has a built in error factor of 5 screen units (out of 1023 x or 768 y). It is therefore impossible to create a situation such as:

The program will merge the points into

Always remember that line segments that do not define a closed area will be rejected by the program Overlay 2 (see following paragraph). In the second Overlay of the program, the computer scans all line segments created in the first Overlay to determine which line segments will form closed areas. For example, if the following line segments were created in Phase 1, (or the first Overlay):

Phase 2 (second Overlay) would return the following blocks:

It must be emphasized that closed areas must be drawn in Phase 1 if blocks are desired in the main part of the program. If a desired line segment has been inadvertently omitted, there is no recourse other than to return to Phase 1 and begin anew.

In Phase 1, use rubout rather than erase if possible as the program remembers all points created since the last rubout or start. Thus, if you desired to create a line but had created and erased a previous line, the program would, if it considered the action proper, divert the line to include the previous line's end point.

This happens very easily, be aware of why it happens.
As the Tektronix 4010-1 is a storage oscilloscope and not a television screen, all information drawn on the screen is stored on the screen. Under no circumstances use the page key to clear the display. This leads to a minor state of confusion as to what the program is doing. Especially serious is the situation that occurs if you use the page key when the cross-hair cursor is displayed. The effect of this is to place the screen in ALPHA mode (ASCII input) while the governing software is still in GIN MODE (graphic input). When this occurs, you no longer will be able to communicate with the computer through the Tektronix, and the computer will be hung-up in the graphic input loop. This isn't really as serious as it looks. For some reason, striking the
return key several times will bring the cursor back. However, this is not fool proof - if you strike the return key quickly, it is possible that the program will give the Tektronix the order to take the cursor down before it actually gets it back on the screen. In this case the computer is no longer confused, but quite often the operator is. Enough said, the best solution is to not touch the page key when using this program.

Linc tapes

The Linc tape system is a unique mixture of the operating advantages of a disk system and the lower cost of a magnetic tape format. The addresses of the storage blocks are written on the tape and the software can search the tapes in either direction for a specific block address and, once it is found, read, write or overwrite starting at that address. The present form of the Distinct Element program relies heavily on the Linc tapes and the following paragraphs present information that could be of use to someone using the program.

The system used for this study has two drives - unit 0 and unit 1. Unit 0 is used by the program for the Phase 1 save files. The save file handling routine, subroutine TAPE, does not check the tape file directory before writing nor does it append a title to the directory for the save file. It is thus a good idea to use a blank tape on unit 0 and maintain a separate "directory" of the save files. Unit 1 is used for a tape that has the three overlays and the introduction to the program written on it. (Incidentally the
program is assessed by placing a "blank" tape on unit 0, a "program" tape on unit 1 and typing "HELP". The program takes it from there!) The tape on unit 1 is also used to store the Phase 3 save file. It is important to note that the file directories do not "know" about the overlays and save file and thus it is up to the user to protect all file space from block 150_{8} onward.

The Linc tape furnished software used in this study did not possess a sophisticated operating system. The fact that not having a sophisticated operating system led to additional memory (= larger problems) was offset by the fact that the overlays must be "done by hand".

The Linc tape utilities have the capability to move data from the tape to memory and vice versa. The overlays of the program are simply immages of memory written onto tape. For the present study the pertinent addresses on the tape on unit 1 are:

tape file	beginning block number $*$	number of blocks
Phase 1	350_{8}	55_{8}
Phase 2	450_{8}	37_{8}
Phase 3	510_{8}	37_{8}
P-3 save file	150_{8}	up to 200_{8}
digital plot routine	555_{8}	1

* the Linc tapes used have 620_{8} blocks of 400_{8} words

It is important to point out that the Linc tape routine KBEX, which is used to write the overlays onto tape, does not check the file directory. It is a very easy matter to destroy files on the tape if KBEX is not used with extreme caution.

Execution times

The amount of real time required for execution of a single cycle of the Phase 3 iteration loop is primarily a function of the number of blocks comprising the model in question. The program execution times are also greatly influenced by any program options in use and the amount of "connect" time devoted to machine/user dialog. The option which consumes the most time is, of course, the plotting of the blocks as movement occurs. This is due to the fact that communication across a teletype line occurs under conditions of "programmed I/O" - the CPU must wait between each transfer until the Tektronix is ready to accept more data.

The accompanying graph presents an approximate portrayal of the real time required for the Nova 1220 to perform one complete cycle of the iteration loop as a function of the number of blocks modeled in the program. The graph indicates a range of time required for calculation; the lower end of the range is a fairly accurate representation of the fastest possible calculation times for a given number of blocks. This time can only be realized by running in the "no plot" option. The upper end of the range represents the time required for one cycle of the iteration loop with the plotting option

activated and most of the blocks in the program moving. This probably represents an accurate upper limit to the calculation time and the time required for most problems would be somewhat less than that illustrated.

The time dedicated to user/machine dialog is not included in the graph but can be a significant portion of the total time required for program execution. This is especially so for users who are unfamiliar with the program, but increased exposure to the program usually leads to familiarity and an attendant drop in the amount of time required for interaction.

Conversion factors

All calculations performed by the Distinct Element program described in this Appendix utilize variables whose magnitudes and dimensions have been adjusted to give optimum calculation speeds. This has been done in order that double precision variables are avoided and so that all arithmetic is done on integers (integer arithmetic is many times faster than floating point arithmetic in the absence of a floating point processor). In order that someone who wishes to do so may convert to either metric or english units, three conversion factors are presented in the following paragraphs.

The first conversion factor is a defined relationship between physical problem length and that used in the computer program. Consider the following physical situation: a block 100 ft on a side, 1 ft thick, with a unit weight of 160 pct.

The computer model is drawn in such a way that the equivalent edge lengths are 300 cu (computer units). The unit weight in the computer model is 1 cu (this can be changed by typing " Q " followed by key "W" - the following must be modified if the unit weight is changed). By selecting 300 cu to represent 100 ft , the first conversion factor f_{d} is automatically defined.

$$
\text { To get feet or meters multiply the program distance by } f_{d}
$$

In this particular example,

$$
\begin{gathered}
300 \mathrm{cu} * \mathrm{f}_{\mathrm{d}}=100 \mathrm{ft} \text { or } \\
f_{d}=0.333 \mathrm{ft} / \mathrm{cu}
\end{gathered}
$$

The second conversion factor is a derived relationship between physical problem forces and those used internally in the computer program returning to the example, the real weight of the block is
seen to be:

$$
100 \mathrm{ft} * 100 \mathrm{ft} * 1 \mathrm{ft} * 160 \mathrm{pcf}=1.6 \times 10^{6} 1 \mathrm{bs}
$$

The weight of the block in computer units is given by the Distinct Element program - in this case it is seen to be 720 cu . The number 720 represents a normalized weight obtained by determining the volume of the block and dividing by 125. The number 125 is related to the tolerance to which points and lines are subjected in Phase 1 and Phase 2. The smallest block allowed is defined to be 5 times the area defined by the screen accuracy (5×5). The smallest block area possible is then 125 units; when normalized the smallest block weight allowable is thus 1 cu since the unit weight used in the program is 1 cu . The weight used in the computer program for this example is thus

$$
\frac{1}{125} * \frac{100 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}} * \frac{100 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}} * \frac{160}{\mathrm{~d}} \mathrm{pcf}=\mathrm{W} \text { cu/unit depth }
$$

Since W real/unit depth $=100 \mathrm{ft} * 100 \mathrm{ft} * 160$ pcf

$$
W \text { real }=125 * f_{d}^{2} * d * W c u
$$

The conversion factor between real situation force and that used internally by the computer is f_{f}

$$
f_{l}=125 * f_{d}^{2} * d
$$

To get force in pounds or newtons multiply the displayed force by f_{l}.

In this particular example

$$
\begin{aligned}
& f=125 * 0.333 * 160 \text { or } \\
& f=2222.22 \mathrm{lb} / \mathrm{cu}
\end{aligned}
$$

The third conversion factor relates pressure in physical units such as psf or $\mathrm{N} / \mathrm{m}^{2}$ to the units used internally in the computer program. If the base pressure of the real block considered in this example is calculated the quotient of the block weight and the contact area are found.

In the computer situation this reduces to
$P(c u)=\frac{\frac{100 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}} * \frac{100 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}} * \frac{160 \mathrm{pcf}}{\mathrm{d}} * \frac{1 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}}}{\frac{100 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}} * \frac{1 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}}}$
or

$$
P_{\text {real }}=P c u * f p
$$

where

$$
f_{p}=f_{d} \cdot d
$$

To get pressure in psf or pascals, multiply the displayed pressure by f_{p}

In the example considered, if it were desired to input a joint water pressure whose resultant would balance the weight of the block, its magnitude would be found in the following manner

- real pressure $P=1.6 * 10^{6} \mathrm{lb} / 100 \mathrm{ft}^{2}=16000 \mathrm{psf}$
$-f_{p}=f_{d} * d=0.333 * 160-53.3 \mathrm{psf} / \mathrm{cu}$
- pressure in computer units $=\frac{{ }^{P} \text { real }}{f_{p}}=\frac{16000}{53.3}=300 \mathrm{cu}$

Equilibrium conditions

The problem of recognition of equilibrium conditions is of paramount importance in the Distinct Element method, as in other explicit finite difference programs. An explicit formulation does not have a "solution" in the sense that an implicit formulation such as a Finite Element analysis does. In the implicit formulation the behavior of each point is related to the other points through a system of equations that can be solved for a given input resulting in a solution. In an explicit formulation, on the other hand, the points communicate only with their nearest neighbors; the "solution" in this case does not necessarily need to be a situation of stable equilibrium. The only way that an equilibrium situation can be recognized is by observing the behavior of the blocks.

The obvious solution to this problem is to observe the blocks flashing on the screen - the movement of the blocks is obvious and it can immediately be recognized if the problem under consideration is unstable. However, the fact that the blocks are not flashing
on the screen does not necessarily indicate that an equilibrium situation has been reached. In the example considered in the previous section, one screen unit of displacement corresponded to four inches of real displacement. In a large problem where the blocks are somewhat confined, thousands of iteration cycles will be needed to get this much displacement; for a program involving 75 blocks the real time for this many calculations could take an hour. This is obviously not a very satisfactory method to determine if equilibrium exists.

The software necessary for more subtle solutions has been incorporated within the present version of the program. At any time during the running of a problem, the program may be stopped (key "S") and any block examined for pertinent data. By displaying the cursor (key "C") then typing key " 0 " will result in the message "SELECT ANY BLOCK" being displayed on the screen. By placing the cursor on the desired block centroid and striking any key a display of block data will be presented. This data includes: block centroid coordinates (four places to right of decimal point displayed); the unbalanced force sums acting on the block; the block velocities and angle of rotation; and, the values of user applied loads. By examining certain "key"blocks as the program runs it is a relatively simple matter to determine if an equilibrium state has been reached.

Block consolidation

The block data passed onto Phase 3 from the first two overlays contains information pertaining to individual blocks only. The
contact lists do not exist before the start of the program, so the blocks do not know that they have neighbors. When gravity is suddenly switched on, all of the blocks begin to move at once and as block interactions occur, the contact lists are developed. The way in which the block configuration is allowed to interact has a significant effect on the outcome of the program in those instances where a proper mass consolidation is not achieved. An improperly consolidated system of blocks can lead to a diverging solution; this can be recognized by the presence of wildly fluctuating contact forces that bear no relation to the block weights involved.

The blocks should be allowed to consolidate in an initial equilibrium position before the actual problem is run. This can usually be accomplished by the judicious placement of restraining blocks; these are subsequently removed to begin the actual problem. To actually consolidate the mass a good deal of time must be spent observing the behavior of the blocks and intervening to guide the program. Just switching gravity on without regard to consolidation of the blocks can easily lead to situations where pressure waves travel through the mass and prevent the blocks from reaching an equilibrium state.

Several bits of information are related in the following sentences that should be helpful to potential users of the program. First of all it is very helpful to start the problem with all frictional properties set to zero (the program automatically does this unless the user changes the friction table). The first block interactions often involve high contact forces; if the friction
coefficients of the surfaces are other than zero, situations can arise whereby relatively large forces are "locked-in" only to be released when just the right contact occurs. By starting with a zero value of the friction coefficient, shear resistances do not develop along the joints and in conjunction with the velocity zeroing technique described below, the restrained system of blocks comes to equilibrium. At this point, the restraining blocks can be removed and the program allowed to run.

The technique of properly consolidating a system of blocks involves zeroing the block velocities at the correct time; the system of blocks cannot reach equilibrium unless all inertial effects are removed. It is possible to gain insight into the status of a block mass by examining the behavior of the contact vectors. The key "V" is used to display the contact forces whenever it is struck; this is accomplished by setting a plot flag, going once through the iteration cycle and then taking the flag down. This is especially useful if the program is in the stopped mode since the " V " key can be used to step through the iteration cycle incrementally. The variation in the length and angle of the contact vectors is indicative of the relative stability of the behavior. Well consolidated systems of blocks display little variation in length or inclination of the contact vectors. To achieve this state the user must examine the behavior of the system and zero the block velocities (key "Z") when the system is in an "average" state. An "average" state is exactly what it sounds like - the length of the contact vectors are approximately the
average of the variation in length, and the inclination of the contact vectors is approximately midway between the extreme inclinations. This can rarely be achieved in one attempt, and the amount of time required to do it successfully increases with the degree of confinement of the problem (i.e., tunnel models are much more difficult to consolidate than slope models).

A few words of caution are in order. Stepping through the iteration cycle using key "V" neglects the very important subroutine calls to UPDAT. Unless UPDAT is called, new contact points are not detected nor are contact data updated. The result of this is that blocks can move through one another. As a rule of thumb, no more than about 25 consecutive cycles should be run by using the "V" key without using the "G" key which does call UPDAT. Potential users will find that applying loads incrementally rather than all at once will result in well behaved models. The same is true for friction coefficients; gradually increasing the friction coefficient to the required value also results in well behaved models.

Special problems

Two specific problem geometries that can lead to obviously improper solutions have been identified during the course of this research. Both involve shortcomings in the contact determining logic; the problems are identical in nature but whereas one is easily overcome, the other requires that some care be expended in block consolidation to prevent its occurance. The problems will be illustrated by reference to the specific geometries in which they

were first identified.

The first of the two problems occurred during the analysis of a rock slope which had failed. (This incidentally, was a real problem - the analysis was performed in collaboration with Dr. Michael Bukovansky of the consulting firm of Dames \& Moore.) The geometry of the problem:

The area under consideration is shown highly magnified: four separate blocks are identified. Geological investigation indicated the presence of a fault plane that could lead to the development of a "chiseling" action - the upper blocks could slide down and "pry" the lower blocks. The initial analyses performed using the Distinct Element program failed to reproduce the expected failure. Close examination of the behavior indicated that instead of sliding past block \#3, the lower point of block \#1 was contacting block \#4 and "hanging up"; the net result being that the entire assemblage of
blocks stabilized. In the real situation, any such contact would result in fracture development at the point - in the Distinct Element program such cracking is presently not modeled. This problem was solved simply by moving the position of the cross joint between block \#3 and block \#4 to a slightly lower position on the slope as illustrated below.

The second problem is of a similar nature; its occurance is rare and is usually due to improper block consolidation. The problem was identified in a model similar to that illustrated and resulted in the stability of a model which should have failed.

To illustrate the problem a magnified section of the model is required; a contact between blocks \#1 and \#2, circled in the sketch, is illustrated

The overlap of the two blocks results in a contact force F tending to push the blocks apart. However, in an improperly consolidated block mass, especially one with high horizontal forces applied before the mass is allowed to move, the contact situation could look like this after the first iteration.

Depending upon which "contact" is first discovered by the contact seeking logic edge \#1 of block \#1 could be identified as the edge in contact. The resultant force would thus act to prevent the downward movement of block \#2. This problem has not arisen in models where proper consolidation steps have been taken. As
insurance, however, all models tested where this problem could occur have been allowed to fail as part of the analyses, to make certain that the problem was not occurring.

For those geometries to be tested where the occurance of this problem is a possibility, special care can be taken during the consolidation phase to prevent its occurance. This often involves consolidation of segments of the model on an individual basis and then pushing the individual segments together to form the model.

APPENDIX C
 LISTING OF THE DISTINCT ELEMENT PROGRAM

This Appendix contains listings of all of the subroutines necessary to build the three overlays of the Distinct Element program used in this dissertation. Most of the Phase 1 and Phase 2 routines are written in Fortran; a few are written in Data General Nova assembly language. All of the Phase 3 subroutines are written in Nova assembly language.

At first glance, the assembly language subroutines may appear to be of little value to those unfamiliar with Data General computers; this is, however, not the case. Assembly language programming differs very little from the techniques used in programable calculators and in fact rarely involves anything more sophisticated than moving data between memory and accumulators, performing arithmetic functions, and occasionally jumping to a subroutine. The listings presented are interspersed with numerous comments and the straightforward logic of the program makes them very readable.

As an aid to potential users a list of the subroutines loaded in each overlay is presented next.
List of Phase 1 Subroutines
Page Number
MAIN C-4
IINEX C-10
ERASE C-11
INSEC C-12HARDC-14
CROSSC-14
TEK machine language subroutines; Fortran C-15
TAPE interface recognized by calls to C-19
COPY .CYPL and .FRET. C-23
OVERLAP C-24
DIGIT C-27
List of Phase 2 Subroutines Page Number
BUILD C-29
CENT C-33
CROSS C-14
HARD C-14
TAPE machine language subroutines; Fortran C-19
COPY interface recognized by calls to C-23
TEK .CYPL and .FRET.
List of Phase 3 Subroutines
TRANS see note followingTEKPONTHITSTAPEUTILLOADSFORDUPDATREBOXMOTIODISPLCONTRCYCLEINPUTMOVIT

Page Number
C-40
C-48
C-51
C-54
C-59
C-64
C-75
C-79
C-94
C-104
C-108
C-113
C-120
C-138
C-149
C-166
Note
The order in which the subroutines are loaded is immaterial unless the digital plotting routine (subroutine PLOT, Cundall, 1974) is desired. In this case, the plotting routine is read from the
tape, in absolute binary, whenever it is needed. The routine starts at location 440_{8} and thus overwrites the first subroutine in memory. If the loading sequence places TPANS at the start of memory, the overwriting will not disrupt the program.

Preceeding the listing of the Phase 3 subroutines is a list of the Phase 3 global symbols. These are primarily entry point addresses and frequently used variables. The listing begins on Page $\mathrm{C}-37$.

gaz		COMMON II (768), I2 (768), LISI (32),
093		LISTC(128), IX (512), IY(512)
$0 \cdot 4$		COMMON/HANDY/N,L,IACC
9as	75	$\mathrm{N}=\varnothing$
0.96		$\mathrm{L}=0$
097		$1 A C C=5$
088		1 FACT $=1$
009	1	$M J X=J \times 2$
010		$M J Y=J Y 2$
011		LCODE $=0$
91?		KODE $=0$
613		CALL CURS (I, JX1, JY1)
014		CALL CHARO (159)
015		IF (N.EQ.O -OR. I - NE. 178) GO TO 80
016		LCODE $=1$
917		$J \times 2=J \times 1$
Q18		$J Y 2=J Y 1$
019		$J \times 1=M J X$
920		$J Y 1=M J Y$
021		GO TO 103
022	80	IF (I-NE.196) GO TO 400 ; "D" FOR DIGIIIEER
923		KODE $=1$
92.4		GO TO 100
025	400	IF(I.EQ-195) GO TO 210 ; "C" TO CHANGE FACTOR
926		IF(I.NE.206) GO TO 104 in FOR NUM. INPUT
027		KODE=-1
028		GO IO 201
929	104	IF (I.EO.2日日) GO TO 72 ; "H" FOR HARD COFY
830		IF (I.EQ.197) GOTO 73 ;"E" FOR ERASE
931		IF (I.EQ.298) GOTO 76 3"R" FOR "PHASE..."
932		IF (I.EQ-255)GOTO 74 ; RUBOUT ALL LINES
933		IF (I.EQ.215) GO TO 81 ; "h" FOR hFITE
934		IF(I.NE.210) GO TO 87 \% MUST BE "r" IO READ
835		CALL CHARI (I)
936		NFIRST= $1-177) * 12$;GET FILE CODE
ค37		CALL CHARO(155)
038		CALL CHARO (148)
939	83	CALL TAPE (1,NFIRST, 11,11,NERF)
049		IF (NERR.EG. O $^{\text {O }}$ GO IO 82
Q41		PAUSE TAPE ERFOR---HIT ANY KEY TO REPEAT
042		GO TO 83
643	82	$\mathrm{N}=\mathrm{L}$ IST(1)
944		L=LIST(2)
945		IF(LIST (3) -NE.13286) GO TO 75
046		DO $84 \mathrm{LX}=1$, L
847		$1 A=11(L X)$
648		$18=12(L X)$
949		CALL PLOTS $(\theta, 1 \times(1 A), I Y(I A))$
950	84	CALL PLOTS ($1,1 \times(1 B), I Y(1 B))$
951		CALL CHARO(159)
952		GO TO 1
053	81	CALL CHARI (I)
054		NFIRST $=(\mathrm{I}-177) * 12$
955		$\operatorname{LIST}(1)=\mathrm{N}$

```
    LIST(?)=L
    LIST (3)=13286
    86 CALL TAPE (2,NFIRST,11,I1,NERR)
    IF(NERR.EO.G) GO TO 1
    PAUSE TAPE ERROR---WRITE FROTECT ON ? HIT A KEY
    GO TO 86
    87 IF(I.NE,177) GOTO 1 '"1"FOR FIRSI END OF LINE
    IF(KODE.EO.0) GO TO 163
    10日 CALL DIGIT(JX1,JY1,ICODE)
        IF(ICODE.NE.0) GO TO I
        GO TO 103
201 ACCEPT" X1=",JX1," Y1= ",JY1
        JXI=JX1/IFACT
        JY 1 =JY 1/IFACT
        IF(N.EQ.0) GO TO A
        DO 2 NN=1,N
        IF(IARS(IX(NN)-JXI).GT.IACC) GOIO 2
        IF(IARS(IY(NN)-JYI).GT.IACC) GOIO 2
        IFIRST=NN
        GOTO 3
        2 CONTINUE
        GOTO 4
    3 JXI=IX(IFIRST)
        JYI =IY (IFIRST)
        IF(LCODE .EQ. 1) GO TO 108
        CALL CHARO(135)
        IF(KODE)202,14,199
        A IF(L.EQ.g) GOTO 12
        CALL LINEX(JXI,JY1,IXR,IYR,NHII,LL)
        IF(NHIT.EO.1) GO TO &
        IFIRST=N+1
        GOTO 13
        8 JY 1=IYR
        JX1=IXR
        IFIRST=N+1
        L=L+1
        II(L)=IFIRST
        12(L)=12(LL)
        I }2(LL)=IFIRS
        CALL CHARO(135)
    13 IX(IFIRST)=JXI
        IY(IFIRST ) = JYI
        CALL CROSS(JX1,JY1)
        N=IFIRSI
        IF (LCODE .EO. 1) GO TO 108
        IF (KODE) 202,14,109
    ACCEPT" }\times2=*,JX2," Y2=",JY2
        J K2=J \2/IFACT
        JYR=JY2/IFACT
        GO TO 198
    109 CALL DIGIT(JX2,JY2,ICODE)
        GO TO 198
    14 CALL CURS(I,JX2,JY2) IGEI POINT 2
        CALL CHARO(159)
    IF(I.NE.178) GOTO 14
```

```
111 108 IF(IARS(J\times2-J\times1).GT.1ACC) GOTO 15
1 1 2
113
114
115
1 1 6
1 1 7
118
1 1 9
120
1 2 1
122
1 2 3
124
125
126
127
128
129
130
131
132
133
134
135
136
1 3 7
138
1 3 9
148
141
142
143
1 4 4
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
188
1 6 1
162
163
164
165
```

```
    H=FLOAT (JXR-JXL)/FLOAT(JYR-JYL)
        NXTOT=0
        DO 62 NY=1,N
        IF(IY(NY).GT.JYR.OR.IY(NY).LT.JYL)GO TO }6
        IF(NY.EQ.IPL.OR.NY.EQ.IPR) GOTO 62
        IXX=IFIX(H*FLOAT (IY(NY)-JYL))+JXL
        IF(IASS(IXX-IX(NY)).GT.IACC) GOTO 62
        NXTOT=NXTOT +1
        LIST(NXTOT) =NY
    62 CONTINUE
        GOTO 63
    61 H=FLOAT (JYR-JYL)/FLOAT (JXR-JXL)
        NXTOT=%
        DO 31 NX=1,N
        IF(IX(NX),GT,JXR.OR.IX(NX) & LT.JXL) GOTO 31
        IF(NX.EQ.IPL.OR.NX.EQ.IPR) GOTO 31
        IYY=IFIX(H*FLOAT (IX(NX)-JXL))+JYL
        IF(IABS(IYY-IY(NX)).GT.IACC) GOTO 31
        NXTOT =NXTOT+1
        LIST (NXTOT) =NX
    31 CONTINUE
    63 KOUNT = %
C
        IF (NXTOT-1)50,53,33
    33 IND=\varnothing
C--ORDER POINT LIST IN INCREASING X (OR Y)--
    DO 32 NXX=2,NXTOT
        NXI=LIST (NXX-1)
        NX2=LISI (NXX)
        IF(ISWY.EQ.1) GOTO 47
        IF(IX(NX2).GE.IX(NX1)) GOTO 32
        GOTO 48
    4 7 ~ I F ( I Y ( N X 2 ) . G E . I Y ( N X 1 ) ) ~ G O T O ~ 3 2 ,
    48 LIST (NXX-1)=NX2
        LIST (NXX)=NX1
        IND=1
    3 2 ~ C O N T I N U E ~
        IF(IND.EQ.1) GOTO 33
    53 IL=IPL
        IR=LIST(1)
        GOTO 51
        50. IL=IPL
        IR=IPR
        51 KOUNT = KOUNT +1
        NINT=%
        LOLD=L
        DO 35 LK=1,LOLD
C--BEGIN LINE SEARCH FOR THIS SEGMENT--
    IF1=I 1 (LK)
    IF2=12(LK)
    IF(IF1.EQ.IL.AND.IF2.EQ.IR) GOTO }3
    IF(IFI.EQ.IR.AND.IF2.EQ.IL) GOTO }3
    IF(IFI.EQ.IL.OR.IFI.EQ.IR.OR.IF2.EQ.IL.OR.IFR.EQ.IR)GOTO }3
    CALL OVLAP(IX(IL),IX(IR),IX(IF1),IX(IF2),IX5,IX6,NS1)
    IF(NSI.EQ.B) GOTO 35
```

CALL $\operatorname{OVLAP}(I Y(I L), I Y(I R), I Y(I F 1), I Y(I F 2), I Y 5, I Y 6, N S 2)$ IF (NS2.EQ.0) GOTO 35
CALL INSEC(IX(IL), IX(IR),IY(IL),IY(IR),IX(IFI),IX(IF2), $I Y(I F 1), I Y(I F 2), I X 5, I X 6, I Y 5, I Y 6, I N X, I N Y, N S 3)$
IF (NS3.EQ. \emptyset) GOTO 35
C--A CROSSING HAS BEEN FOUND--
$\mathrm{N}=\mathrm{N}+1$
$I X(N)=I N X$
$I Y(N)=I N Y$
C--CREATE NEW LINE--
$\mathrm{L}=\mathrm{L}+1$
I2 $2(L K)=N$
$11(\mathrm{~L})=\mathrm{N}$
$12(L)=I F 2$
C--TOTAL CROSSING POINTS INCREMENTED--
NINT $=$ NINT +1
LISTC(NINT) $=\mathrm{N}$
35 CONTINUE
IF (NINT-1) 41,38,37
$37 \quad$ NIT $=\emptyset$
DO $36 \mathrm{NN}=2$, NINT
LI=LISTC($\mathrm{NN}-1$)
L2=LISTC(NN)
IF (ISWY.EQ. 1) GOTO 46
IF(IX(L2).GE.IX(L1)) GOTO 36
GOTO 45
46 IF (IY(L2).GE.IY(L1)) GOTO 36
45 LISTC (NN-1)=L2
LISTC (NN) = LI
NIT=1
36 CONTINUE
IF(NIT.EQ.1) GOTO 37
38 ILEFT=IL
NUT $=1$
$39 \mathrm{~L}=\mathrm{L}+1$
II(L) = ILEFT
$12(L)=$ LISTC (NUT)
CALL PLOTS($\operatorname{CA}, \mathrm{IX}(I L E F T)$, IY(ILEFT))
CALL PLOTS(1,IX(I2(L)),IY(I2(L)))
CALL CROSS (IX(I2(L)), IY(I2(L)))
ILEFT=LISTC(NUT)
IF (NUT.GE.NINT) GOTO 40
NUT $=$ NUT +1
GOTO 39
C--LAST LINE FOR THIS SEGMENT
$40 \quad \mathrm{~L}=\mathrm{L}+1$

CALL PLOTS($\theta, I X(I L E F T)$, IY(ILEFT))
CALL PLOTS (1,IX(IR), IY(IR))
GOTO 34

```
    CALL PLOTS( },\mathrm{ ,IX(IL),IY(IL))
    CALL PLOTS(I,IX(IR),IY(IR))
    IF(KOUNT-NXTOT) 56,52,54
    IL=LIST (KOUNT)
    IR=LIST(KOUNT+1)
    GOTO 51
    52 IL=LISI(KOUNT)
        IR=IPR
        GOTO 51
        IF (KODE)203,1,100
    CALL CHARO (159)
        CALL CHARI (MCODE)
        IF(MCODE.EO.197) GO TO 1 'E" TO ESCAPE NUM. INPUT
        IF (MCODE.EQ.141) GO TO 201 ; "CR" FOR NEW X1,Y1
        IF(MCODE.NE. 204) GO TO 301
        CALL CHARO(155)
        CALL CHARO(140)
        DO 3G2 NL=1,L ;REPLOT ARRAY OF LINES
        IAA=I ( (NL)
        IBB=I2(NL)
        CALL PLOTS(g,IX(IAA),IY(IAA))
302 CALL PLOTS(1,IX(IBB),IY(IBB))
    CALL CHARO(159)
    GO TO 203
    IF(MCODE.NE.175) GO TO 2g5 5"/" TO REPEAT POINT
        JX1=JX2
        JY1=JY2
        GO TO 103
        TYPE" ?"
        GO TO 203
    72 CALL HARD
        GO TO 1
    73 CALL ERASE (JX1,JY1)
        GOTO I
    74 CALL CHARO(155)
        CALL CHARO(149)
        GO TO 75
    76 CALL CHARI (IN)
        IF(IN.NE.178) GOTO 1
        CALL CHARO(155)
        CALL CHARO(140)
        LIST(1)=N
        LIST(2)=L
        LIST(3)= I ACC
        CALL OVLAY(2,I1)
        GO TO 1
        ACCEPT " NEW SCALE FACTOR ? * , IFACT
        GO TO 1
        END ; THANK GOODNESS!!!
```

```
CO1
a2 C--ROUTINE TO DETECT IF LINE IS NEAR POINT--
0 8 3
0(44 * LISTC(128),IX(512),IY(512)
005
0 9 6
0 0 7
0 0 8
0 9 9
010
011
0 1 2
013
0 1 4
015
0 1 6
0 1 7
0 1 8
0 1 9
020
021
022
023
024
025
026
0 2 7
028
929
030
0 3 1
0 3 2
033
034
035
036
037
0 3 8
0 3 9
040
0 4 1
042
SUBROUTINE LINEX(IXH,IYH,IXR,IYR,NHIT,LINE)
    COMMON I1(768),12(768),LIST(32),
        COMMON/HANDY/N,L,IACC
        DO 5 LL=1,L
        IP1=11(LL)
        IPQ=I2(LL)
        IXI=IX(IP1)
        IYI=IY(IP1)
        IX2=IX(IP2)
        IY2=IY(IPZ )
        IYD=IYZ-IY1
        IXD=IX2-IX1
        IF(IABS(IYD).GT.IABS(IXD)) GOTO 6
        IF(IX2.GT.IX1) GOTO 7
        IF(IXH.LT.IX2.OR.IXH.GT.IXI) GOTO 5
        9 H=FLOAT (IYD)/FLOAT (IXD)
        IYG=IFIX(H*FLOAT (IXH-IXI)+\emptyset.5)+IYI
        IF(IABS(IYG-IYH).GT.IACC) GOTO 5
        IYR=IYG
        I XR=IXH
        GOTO 8
        7 IF(IXH.LT.IXI.OR.IXH.GT.IX2) GOTO }
        GOTO }
        6 IF(IYZ.GT.IY1) GOTO 10
        IF(IYH.LT.IYZ.OR.IYH.GT.IY1) GOTO 5
    11H=FLOAT (IXD)/FLOAT (IYD)
```



```
        IF(IABS (IXG-IXH).GT.IACC) GOTO 5
        IXR=IXG
        IYR=IYH
        GOTO }
    10 IF(IYH.LT.IY1.OR.IYH.GT.IY2) GOTO 5
        GOTO 11
    5 CONTINUE
        NHIT=0
        NHIT=\emptyset
        RETURN
        8 NHIT=1
        LINE=LL
        RETURN
        END
```

```
0日1 SUBROUTINE ERASE (IXH,IYH)
C--TO ERASE ONE LINE & RE-DRAW SYSTEM--
COMMON II(768), I2(768),LIST(32),
    LISTC(128),IX(512),IY(512)
    COMMON/HANDY/N,L,IACC
    CALL LINEX(IXH,IYH,IXR,IYR,NHIT,LINE)
    IF(NHIT.EO.g) RETURN
    C--ERASE SCREEN--
    CALL CHARO(155)
    CALL CHARO(148)
C--CUT OUT LL; SHUFFLE DOWN REST--
            LL=LINE
            IF(LL.EQ.L) GOTO 2
                    L I =L-1
                    DO 1 LK=LL,L1
                        II (LK)=I I (LK+1)
    1 I 2(LK)=I2(LK+1)
    L}=\textrm{L}-
        DO 3 LX=1,L
        IA=I|(LX)
        IB=I2(LX)
        CALL PLOTS(O,IX(IA),IY(IA))
    3CALL PLOTS(I,IX(IB),IY(IB))
        CALL CHARO(159)
        RETURN
        END
```

```
0 0 1
002
0 0 3
004
805
006
007
008
0 0 9
010
0 1 1
012
0 1 3
0 1 4
015
0 1 6
0 1 7
0 1 8
0 1 9
020
0 2 1
0 2 2
023
024
025
g26
027
g28
029
030
0 3 1
0 3 2
0 3 3
0 3 4
035
036
0 3 7
038
0 3 9
040
841
842
043
0 4 4
845
046
0 4 7
048
849
050
051
052
053
054
055
```

```
    SUBROUTINE INSEC(IX1,IX2,IY1,IY2,IX3,IX4,IY3,IY4,
```

 SUBROUTINE INSEC(IX1,IX2,IY1,IY2,IX3,IX4,IY3,IY4,
 * IXS,IX6,IYS,IY6,IX,IY,NSUC)
 * IXS,IX6,IYS,IY6,IX,IY,NSUC)
 ID1 = I X2-IX1
 ID1 = I X2-IX1
 ID2=IY2-IY1
 ID2=IY2-IY1
 ID3=IX4-IX3
 ID3=IX4-IX3
 IDA=IY4-IY3
 IDA=IY4-IY3
 IF(ID1.EQ.g) GO TO 1
 IF(ID1.EQ.g) GO TO 1
 IF(ID2.EO.g) GO TO 2
 IF(ID2.EO.g) GO TO 2
 IF(IABS(ID2).E0.IABS(ID1)) GO TO 3
 IF(IABS(ID2).E0.IABS(ID1)) GO TO 3
 IF(IABS(IDI).GT.IABS(ID2)) GO TO 4
 IF(IABS(IDI).GT.IABS(ID2)) GO TO 4
 10 IF(IABS(ID3).GT.IABS(ID4)) GO TO 14
 10 IF(IABS(ID3).GT.IABS(ID4)) GO TO 14
 H1=FLOAT (ID1)/FLOAT(ID2)
 H1=FLOAT (ID1)/FLOAT(ID2)
 IXIL=IFIX(H1*FLOAT(IYS-IYI))+IXI
 IXIL=IFIX(H1*FLOAT(IYS-IYI))+IXI
 IXIR=IFIX(H1*FLOAT(IYG-IY1))+IXI
 IXIR=IFIX(H1*FLOAT(IYG-IY1))+IXI
 G2=FLOAT (ID3)/FLOAT (IDA)
 G2=FLOAT (ID3)/FLOAT (IDA)
 IX2L=IFIX(G2*FLOAT(IY5-IY3)) +IX3
 IX2L=IFIX(G2*FLOAT(IY5-IY3)) +IX3
 IX2R=IFIX(G2*FLOAT (IY6-IY3)) +IX3
 IX2R=IFIX(G2*FLOAT (IY6-IY3)) +IX3
 I XDL =I X2L -IX1L
 I XDL =I X2L -IX1L
 IXDR=IX2R-IXIR
 IXDR=IX2R-IXIR
 IF(ISIGN(1,IXDL).EQ.ISIGN(1,IXDR)) GO TO 99
 IF(ISIGN(1,IXDL).EQ.ISIGN(1,IXDR)) GO TO 99
 R=FLOAT (IABS (IXDL))/FLOAT (IABS (IXDR-IXDL))
 R=FLOAT (IABS (IXDL))/FLOAT (IABS (IXDR-IXDL))
 IY=IYS+IFIX(R*FLOAT(IYG-IYS))
 IY=IYS+IFIX(R*FLOAT(IYG-IYS))
 IX=IFIX(HI*FLOAT(IY-IYI))+IXI
 IX=IFIX(HI*FLOAT(IY-IYI))+IXI
 NSUC=1
 NSUC=1
 RETURN
 RETURN
 14 HI=FLOAT(ID1)/FLOAT (ID2)
 14 HI=FLOAT(ID1)/FLOAT (ID2)
 IF(IDA.EQ.0) GO TO 15
 IF(IDA.EQ.0) GO TO 15
 G1=FLOAT (ID4)/FLOAT(ID3)
 G1=FLOAT (ID4)/FLOAT(ID3)
 GH=G1 * H1
 GH=G1 * H1
 IY=(G1*FLOAT(IX1-IX3)-GH*FLOAT(IY1)+FLOAT(IY3))/(1.0-GH)
 IY=(G1*FLOAT(IX1-IX3)-GH*FLOAT(IY1)+FLOAT(IY3))/(1.0-GH)
 17 IX=IFIX(H1*FLOAT(IY-IY1))+IX1
 17 IX=IFIX(H1*FLOAT(IY-IY1))+IX1
 16 IF((IX.GT.IX6).OR.(IX.LT.IXS)) GO TO }9
 16 IF((IX.GT.IX6).OR.(IX.LT.IXS)) GO TO }9
 IF((IY.GT.IYG).OR.(IY.LT.IYS)) GO TO 99
 IF((IY.GT.IYG).OR.(IY.LT.IYS)) GO TO 99
 NSUC=1
 NSUC=1
 RETURN
 RETURN
 15 IY= IY3
15 IY= IY3
GO TO 17
GO TO 17
1 IF(IDA.NE.0) GO TO 10
1 IF(IDA.NE.0) GO TO 10
IX=IXI
IX=IXI
IY=IY Y
IY=IY Y
NSUC=1
NSUC=1
RETURN
RETURN
2 IF(ID3.NE.0) GO TO 4
2 IF(ID3.NE.0) GO TO 4
IX=IX3
IX=IX3
IY=IY1
IY=IY1
NSUC=1
NSUC=1
RETURN
RETURN
3 IF(IABS(ID4).EQ.IABS(ID3)) GO TO }9
3 IF(IABS(ID4).EQ.IABS(ID3)) GO TO }9
4 IF(IABS(ID3).GT.IABS(ID4)) GO IO 12
4 IF(IABS(ID3).GT.IABS(ID4)) GO IO 12
H2=FLOAT(ID2)/FLOAT(ID1)
H2=FLOAT(ID2)/FLOAT(ID1)
IF(ID3.EQ.g) GO TO 18
IF(ID3.EQ.g) GO TO 18
G2=FLOAT(ID3)/FLOAT(ID4)
G2=FLOAT(ID3)/FLOAT(ID4)
GH=G2*H2
GH=G2*H2
IX=(G2*FLOAT(IY1-IY3)-GH*FLOAT(IX1)+FLOAT (IX3))/(1.g-GH)
IX=(G2*FLOAT(IY1-IY3)-GH*FLOAT(IX1)+FLOAT (IX3))/(1.g-GH)
19IY=IFIX(H2*FLOAT(IX-IX1))+IY1

```
    19IY=IFIX(H2*FLOAT(IX-IX1))+IY1
```

```
056
057
058
0 5 9
060
661
062
063
0 6 4
065
0 6 6
067
668
069
070
0 7 1
072
073
074
075
```

```
        GO TO 16
```

 GO TO 16
 18 1 X=1 X3
 18 1 X=1 X3
 GO TO 19
 GO TO 19
 12 H2=FLOAT(ID2)/FLOAT(ID1)
 12 H2=FLOAT(ID2)/FLOAT(ID1)
 IYIL=IFIX(H2*FLOAT(IX5-IX1))+IY1
 IYIL=IFIX(H2*FLOAT(IX5-IX1))+IY1
 IY1R=IFIX(H2*FLOAT(IX6-IX1))+IY1
 IY1R=IFIX(H2*FLOAT(IX6-IX1))+IY1
 G1=FLOAT(1D4)/FLOAT(1D3)
 G1=FLOAT(1D4)/FLOAT(1D3)
 IY2L=IFIX(G1*FLOAT (IX5-IX3))+IY3
 IY2L=IFIX(G1*FLOAT (IX5-IX3))+IY3
 IY2R=IFIX(G1*FLOAT(IX6-IX3))+IY3
 IY2R=IFIX(G1*FLOAT(IX6-IX3))+IY3
 IYDL=IY2L-IY1L
 IYDL=IY2L-IY1L
 IYDR=IY2R-IY1R
 IYDR=IY2R-IY1R
 IF(ISIGN(1,IYDR).EQ.ISIGN(1,IYDL)) GO TO 99
 IF(ISIGN(1,IYDR).EQ.ISIGN(1,IYDL)) GO TO 99
 R=FLOAT(IABS(IYDL))/FLOAT(IABS(IYDR-IYDL))
 R=FLOAT(IABS(IYDL))/FLOAT(IABS(IYDR-IYDL))
 IX=IX5+IFIX(R*FLOAT (IX6-1X5))
 IX=IX5+IFIX(R*FLOAT (IX6-1X5))
 IY=IFIX(H2*FLOAT (IX-IXI))+IYI
 IY=IFIX(H2*FLOAT (IX-IXI))+IYI
 NSUC=1
 NSUC=1
 RETURN
 RETURN
 9 9 ~ N S U C = 0 ~ 0
 9 9 ~ N S U C = 0 ~ 0
 RETURN
 RETURN
 END
    ```
        END
```

```
SUBROUTINE HARD
```



```
0 0 3
0.4
0
0.6
907
008
009
010
011
0 1 2
0 1 3
014
0 1 5
0 1 6
0 1 7
0 1 8
0 1 9
020
0 2 1
022
023
024
```

NOTE: PLOT IS THE SUBROUTINE DESCRIBED BY CUNDALL (1974)
FOR PLOTTING THE LINES OR BLOCKS ON AN $X-Y$ RECORDER
CALL PLOTS ($\theta, I X+1 日, I Y)$
CALL PLOTS $(1, I X-10, I Y)$
CALL PLOTS $(\theta, I X, I Y+1 \theta)$
CALL PLOTS ($1, I X, I Y-10$)
CALL CHARO(159)
RETURN
END

TITL TEK

- ENT CHARO, CHARI, CURS, PLOTS
-EXTD .FRET, CPYL

177611
177612
177613
$00000^{\circ} 000092$ 00001'0060025 CHARO:
の0002.050277
00003.c27611
$00004^{\circ} 044407$
$00005^{\circ} 004451$
$00006^{\circ} 000013^{\circ}$
$00007^{\circ} 060177^{\circ}$
00018.0060015

00011'000000 $00012^{\prime} 000000$ $00013^{\circ} 000006$ $00014^{\circ} 000000$ $00015^{\circ} 000002$
$00016^{\circ} 0060025$ $00017 \cdot 054775$ $00020^{\circ} 060277$ $00021^{\circ} 004426$ $00022^{\circ} 090013^{\circ}$ $00023^{\circ} 024778$ 00624. 934770 00025. 047611 $00026^{-060177}$ $00027^{\prime \cdot 0060015}$ -0030.008004 0øø31.006002S PLOTS: $00032 \cdot 068277$ $08033^{\prime} 027611$ $00034^{\prime} 944757$ $00035^{\circ} 927612$ $00036^{\circ} 044753$ $00037 \cdot 1827613$ $00040^{\circ} 944752$ $00041^{\circ} 004425$ $00042^{\circ} 000813^{\circ}$ $00043^{\circ} 000011^{\prime}$ $00044^{\circ} 006012^{\prime}$ $00045^{\circ} 060177$ 90046.0260015 $00047^{\prime} 040416$ 00050.063618 00051^{\prime}.000777 $00052^{\circ} 060510$ $00053^{\circ} 043400$ $00054^{\prime} 020411$ $00055^{\prime 0} 01491$ $00056^{\prime} 040407$ $00057^{\circ} 063511^{\prime}$ $00060^{\circ} 000777$ $00061^{\circ} 023408$ $00062^{\circ} 061111$ $00063^{\circ} 020402$ $00064^{\circ} 001431$
-NREL
$N=-167$
$\mathrm{N} 1=\mathrm{N}+1$
$\mathrm{N} 2=\mathrm{N} 1+1$
2
JSR
INTDS
LDA
STA
JSR
TWIT
INTEN
JSR
Ø
TWET:
TWOT:
TWIT:
SV3:
CHARI :
chout:

SR
STA
INTDS
JSR
TWIT
LDA
LDA
STA
INTEN
JSR
4
JSR
INTDS
LDA
STA
LDA
STA
LDA
STA
JSR
TWIT
TWET
TWOT
INTEN
JSR e.FRET
STA
SKPDN
JMP
DIAS
STA
LDA
JMP
e. CPYL

3,SV3
CHIN
1,TWIT
3,5V3
$1,8 \mathrm{~N}, 3$
e.FRET
e. CPYL
$1,0 \mathrm{~N}, 3$
1, TWIT
1, ©N1,3
1, TWET
1, ON2,3
1, TWOT
TPLOT

STA
SKPBE
JMP
LDA
DOAS
LDA
JMP
e.FRET

日, CCAC® ;SAVE AC®
ITI SKKP IF CHAR READY

- -1

Q,TTI BREAD CHAR
$0,0 \theta, 3$ ISTORE CHAR
0.CCACG : RESTORE ACO

1,3 BRETURN
0,CCAC0 zSAVE AC0
TTO iSKIP IF NOT BUSY

- -1

Q, $0,0,3$ BEET CHARACTER
Q,TTO 3SHIP CHARACTER
O, CCACO BRESTORE ACO

| 00065'000000 | CCACD: | 6 | | 3 TEMP FOR AC0 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00066.040526 | TPLOT: | STA | 0. TPTAC0 | ; SAVE ACø | |
| $00067 \cdot 023491$ | | LDA | 0,01,3 | 3 GET \times | |
| 00070.040526 | | STA | 0,TPTX | | |
| 00071.023402 | | LDA | 0, e2, 3 | ; GET Y | |
| 00072.040525 | | STA | D,TPTY | | |
| 00073.023490 | | LDA | 0.80,3 | ; GET MODE | |
| $00074^{\prime} 040524$ | | STA | 6,TPMOD | | |
| $00075^{\circ} 054520$ | | STA | 3,TPTADD | ; SAVE CALL ADDRESS | |
| 00076.101015 | | MOV* | ๑, $0,5 \mathrm{SR}$ | ; SKP IF NEG © | |
| $00077 \cdot 000405$ | | JMP | TPTDV | $3=0$ INITIALIZE AND DARK | VECTOR |
| $00100 \cdot 101113$ | | MOVL ${ }^{\text {a }}$ | 0,0,SNC | ;SKIP IF < 0 | |
| $00101^{\circ} 000405$ | | JMP | TPTNRM | ;NORMAL BRIGHT VECTOR | |
| 00102'006511 | | JSR | echouz | ; SET TO ALPHA | |
| $00103^{\prime} 000202^{\prime}$ | | US | | | |
| 00104'066507 | TPTDV: | JSR | echouz | 3 DARK VECTOR | |
| 90105'009201. | | GS | | | |
| $00106^{\prime 2} 820511$ | TPTNRM: | LDA | B,TPTY | 3 GET Y | |
| 00107.101112 | | MOVL* | $0,0, S E C$ | 3 SKP IF + | |
| 00110.102400 | | SUB | 0,0 | IMAKE \quad | |
| 00111.034477 | | LDA | 3,D780 | ; UPPER Y BOUND | |
| 00112'162513 | | SUBL* | 3,0,SNC | ; SKP IF ON SCREEN | |
| 00113'161000 | | MOV | 3.0 | 3 SET TO EDGE | |
| $00114^{\circ} 040503$ | | STA | 0, TPTY | ; SAVE GOOD Y | |
| $00115^{\prime} 101120$ | | MOVZL | $\theta \cdot 0$ | ; USE UPPER 5 BITS | |
| 08116'181120 | | MOVZL | 0.0 | | |
| 08117101120 | | MOVZL | 0,0 | | |
| 00120'101308 | | MOVS | 0,0 | 3 AND SWAP HALVES | |
| 00121.034463 | | LDA | 3, 8040 | 3 HI Y TAG | |
| 00122'163000 | | ADD | 3.6 | 3 PUT IN CHAR | |
| 80123.048476 | | STA | Ø, TPTTMP | BUSE A TEMP | |
| 00124.006467 | | JSR | echouz | ; SHIP HI Y 5 | |
| 00125'000221. | | TPTTMP | | | |
| 00126'028471 | | LDA | 0,TPTY | 3 GET Y | |
| 08127.034453 | | LDA | 3,8037 | ; MASK | |
| $00130^{\prime} 163400$ | | AND | 3.8 | 3 LEAVE LOW Y 5 | |
| $08131^{\prime} 034455$ | | LDA | 3,8140 | 3 LOW Y TAG | |
| 90132'163000 | | ADD | 3, 6 | SSET IN CHAR | |
| $08133^{.048466}$ | | STA | θ,TPTTMP | | |
| 00134.006457 | | JSR | echouz | 3 SHIP LOW Y | |
| 00135'009221. | | TPTTMP | | | |
| 00136'020460 | | LDA | 0,TPTX | ; get X Value | |
| 00137'101112 | | MOVL\# | $0,0, S Z C$ | | |
| $00140 \cdot 102408$ | | SUB | 0.0 | | |
| 00141.034450 | | LDA | 3,D1023 | | |
| 00142'162513 | | SUBL" | $3,0,5 N C$ | | |
| 90143'161080 | | MOV | 3.0 | | |
| $00144^{\circ} 046452$ | | STA | 日, TPTX | | |
| $08145^{\prime} 181120$ | | MOVZL | 0,0 | 3AND DO LIKE Y | |
| 00146.101120 | | MOVZL | 0.0 | | |
| $00147^{\prime} 101129$ | | MOVZL | 0,0 | | |
| $08158^{\prime} 101300$ | | MOVS | 0,0 | 3 $\mathrm{HI} \times 5$ | |
| 00151.034433 | | LDA | 3, $\mathrm{B040}$ | 3 HI \times TAG | |
| 00152.163000 | | ADD | 3,8 | 3 ADD IN TAG | |
| $00153^{\circ} 048446$ | | STA | Q,TPTTMP | | |
| $08154^{\circ} 006437$ | | JSR | echouz | SHIP HI $\times 5$ | |
| 00155'000221. | | TPITMP | | | |
| 00156.020440 | | LDA | 0.TPTX | ; GET X | |
| $08157^{\circ} 034423$ | | LDA | 3,8037 | 3 GOODIE MASK | |
| 00168.163400 | | AN | 3 | LEAVE LOW | |

$00161^{\prime} 034424$ 00162＇163000 $00163^{\prime} 048436$ $00164^{\circ} 096427$ $00165^{\circ} 000221^{\circ}$ $00166^{\circ} 029432$ $00167 \cdot 101113$ $00170^{\circ} 000404$ $00171^{\prime} 102400$ 08172．048426 $00173^{.000713}$ $00174^{\circ} 020420$ $00175 \cdot 634420$ $0817^{\circ} 081403$ $00177^{\circ} 000032$ 00200＇000033 00201．000035 $00202 \cdot 000037$ $00203^{\circ} 000020$ 000282°
$00204^{\circ} 000040$ － 0205° ．000108 00206 $6^{\circ} 030140$ $00207^{\circ} 000003$ $00210^{\circ} 001414$ $00211^{\circ} 001777$ $06212^{\circ} 000047^{\prime}$ $00213^{\circ} 000056^{\circ}$ $0021^{\circ} 000000$ 0025° ロ00000 00216．000000
 $00220^{\circ} 000000$ 00221． 800000 －0222．046772 －0223＇054772 $00224^{\circ} 006767$ 00225 000202° 60226＇006765 00227＇00920． $00230^{\circ} 006763$ 00231．000177． $06232^{\prime} 006760$ 06233＇000216 ${ }^{\circ}$ $00234^{\circ} 020753$ の0235． 840764 $00236^{\circ} 020760$ $00237^{\circ} 000421$ $00246^{\prime} 006752$ 00241＇000216． 00242．006758 0．0243．000217． $00244^{\prime} 034736$ 00245 020752 $00246^{\prime} 163400$ $00247^{\prime} 040750$ 00250．020746 $06251^{\prime} 163400$ $00252^{\prime} 101300$ 0． $253^{\circ} 101220$

| $08254^{\circ} 101220$ | | MOVER | 0,0 | |
| :---: | :---: | :---: | :---: | :---: |
| ต0255＇19122日 | | MOVER | 0,0 | |
| 00256．034741 | | LDA | 3，TPTY | ；LOW COORD |
| 00257＇163000 | | ADD | 3，6 | ；ADD IN LOK COORD |
| $00260^{\circ} 034735$ | CURPS： | LDA | 3，TPTAD | ；CALL ADDRESS |
| 00261＇043408 | | STA | 日，e0， 3 | ；STORE VALUE |
| 00262＇175400 | | INC | 3，3 | ；ADJUST ADDRESS |
| 90263．954732 | | STA | 3，TPTAD | I SAVE UPDATED ADD |
| $90264^{\circ} 014735$ | | DSZ | TPTTMP | ；CHECK FOR DONE |
| $00265^{\prime} 000753$ | | JMP | CURLP | ；LOOP IF NOT |
| $00266^{\circ} 928726$ | | LDA | 0, TPTACE | RESTORE ACg |
| 00267＇901400 | | JMP | 0,3 | ；RETURN |
| $00278{ }^{\circ} 000004$ | | 4 | | |
| 00271＇006002s | CURS： | JSR | e．CPYL | |
| 00272＊060277 | | INTDS | | |
| $00273^{\circ} 054416$ | | STA | 3， 5×3 | |
| $00274^{\prime} 004726$ | | JSR | CURSIS | |
| $00275^{\circ} 000312^{\circ}$ | | A1 | | |
| ロ0276＇000313＇ | | A2 | | |
| 00277＇000314＇ | | A3 | | |
| $00300^{\circ} 034411$ | | LDA | 3， 5×3 | |
| 90301＇024411 | | LDA | 1，A1 | |
| $00302^{\circ} 047611$ | | STA | 1，en， 3 | |
| $00303^{\circ} 024410$ | | LDA | 1，A2 | |
| 00304＇047612 | | STA | 1，en 1,3 | |
| $00305^{\circ} 024407$ | | LDA | 1，A3 | |
| $00306^{\circ} 947613$ | | STA | 1，QN2，3 | |
| $00307^{\prime} 960177$ | | INTEN | | |
| $00310^{\circ} 0060015$ | | JSR | e．FRET | |
| Ø0311＇0ø00日8 | S×3： | 0 | | |
| | A1： | 0 | | |
| $00313^{\prime} 000000$ | A2： | 0 | | |
| 00314° 000の日0 | A3： | 0 | | |
| | | －END | | |

177611 の00日の＇ロの日の日の ద0001＇000002
 00903＇090900＇ ต0084＇099322＇ $00085^{\circ} 800003$

NUB：
TWO：
THREE：
FIRST：NU日
LAST：C8
3
0
3
$N=-167$
；THIS ROUTINE READS THE APPROPRIATE OVERLAY BFROM TAPE．IT STARTS BY FIRST TRANSFERING 3 ITSELF TO A SAFE PLACE IN HIGH CORE．
09006＊6068015 Ø0007＇060277 09010．920476 80011．062074 00012＇654473 $00013^{\circ} 023611$ Q日014．840764 のロ015＇035612 $00016^{\circ} 030765$ $09017^{\prime} 029765$ 00020．142400 の0021＇101400 0日月22＇11640日 80023＇100400 $00024^{\prime} 325096$曰0025＇045409 $00026^{\circ} 101405$ $00027^{\circ} 000484$ ø0．30． 151400 $00031^{\prime} 175400$ ต9032＇000772 ロ日ツ3＇156480 $00034^{\prime} 030403$ $00035^{\circ} 157000$ 98036 001480 $00037^{\prime} 900840^{\circ}$ $00040^{\circ} 920740$日月041＇126520 $00042^{\prime} 122415$ 00043． 006497 00044＇024735 00045＇122415 の日046＇0日®487 00047＇020434 $00050^{\circ} 024434$ $09051^{\circ} 000486$ $00052^{\prime} 020425$ $00053^{\circ} 024425$ ด日0 54＇000403日月055＊ 020424 $08056^{\circ} 024424$ 00057＊152400 ต日ต6ด＇034415 $00061^{\circ} 054452$ $00062^{\prime} 904411$ 00063＇125005

$00064^{\circ} 000377$
$00065^{\prime} 063077$
$00866^{\prime} 029420$ $00967^{\prime} 062974$ $00070^{\circ} 000750$ の0071＇ 960177 90072＇ 0060925 90073． 054412 $06074^{\circ} 000445$ $00075^{\prime} 682752$ の0076＇の0の日の日 $90077^{\circ} 900350$ 00100.900055 $00101^{\prime} 000450$ $00102^{\prime} 000037$ $90103^{\circ} 900510$ $00104^{\circ} 909037$ $00195^{\circ} 000000$ $00106^{\circ} 000001$ $00107^{\circ} 900006$

NOGO：
NIXON：

JMP HALT
LDA
DOB JMP INTEN JSR STA JMP JMP
SUBST： ORIG：
BLKI： gNBLK1：55
450NBLK
NBLK2： 37BLK3： 516NBLK3： 37
SAVE： 0

DRIVE： 1
1 THIS ROUTINE ENABLES A FORTRAN PROGRAM ；TO WRITE BLOCKS OF CORE ONTO TAPE．
3
$00110^{\circ} 0060015$
$0011^{\prime} 660277$
$0011^{\circ} 102400$
$08113^{\circ} 962974$ $00114^{\circ} 054771$
$00115^{\circ} 023612$ $00116^{\circ} 627613$ $0017^{\circ} 031614$ 0日120．037611 の0121＇175005 $00122^{\circ} 908415$ 0日123＇175112 $00124^{\circ} 809494$ 00125＇175234 $00126^{\circ} 900415$ $00127^{\circ} 608412$ $00130^{\circ} 174480$ $00131^{\prime} 150000$ $00132^{\prime} 900773$ の8133＇034752 06134＊ 047615 $00135^{\circ} 068177$ $00136^{\circ} 9060225$
$00137^{\circ} 152400$ $96140^{\circ} 960415$ の日141＇634426 $00142^{\circ} 000414$ $00143^{\circ} 034422$ $00144^{\circ} 054507$ $0145^{\circ} 644500$ $00146^{\prime} 050416$ $0014^{\prime} 004422$ $00150^{\circ} 024475$ 6月151＇1224日0 $60152^{\circ} 630412$

| $00153^{\prime} 151113$ | | MOVL ${ }^{\text {a }}$ | 2,2,SNC | C-21 |
| :---: | :---: | :---: | :---: | :---: |
| $00154^{\prime} 150000$ | | COM | 2,2 | |
| $00155^{.034472}$ | CHKZ: | LDA | 3.D2C | |
| 00156.654467 | READE: | STA | 3. D2XX | |
| 00157.034407 | | LDA | 3.D1RC | |
| 00160.954473 | | STA | 3, D1 XX | |
| $08161^{\circ} 004410$ | | JSR | DO | |
| 08162.060274 | EXIT: | NIOC | LINC | |
| $08163^{\circ} 090758$ | | JMP | RETRN | |
| 00164'000900 | SAC2: | 0 | | |
| 90165.021000 | D1W: | LDA | $\theta, 0,2$ | |
| 98166'060750 | DIRC: | JMP | READ-D $1 \times x, 1$ | |
| 00167'132512 | D2R: | SUBL* | 1,2,SzC | |
| 90170'000000 | RETU: | \emptyset | | |
| $00171^{\prime} 054777$ | DO: | STA | 3, RETU | |
| 90172.675474 | | DIB | 3,LINC | |
| $00173^{\prime} 175112$ | | MOVL | $3,3,5 \mathrm{CE}$ | |
| $06174^{\circ} 000446$ | | JMP | $E 4$ | |
| 08175:151113 | | MOVL" | 2,2,5NC | |
| 00176.000410 | | JMP | FINDF | |
| 90177'150000 | | COM | 2,2 | |
| 80200.176400 | FINDR: | SUB | 3,3 | |
| 06201'1620日6 | | ADC | 3,0 | |
| 06202.060374 | | NIOP | LINC | |
| $00203^{\circ} 004467$ | | JSR | GETBL | |
| $00204^{\prime} 101401$ | FINDN: | INC | $\theta, 0$, SKP | |
| $00205^{-600776}$ | | JMP | -2 | |
| 00206.068174 | FINDF: | NIOS | LINC | |
| 96207.004463 | | JSR | GETBL | |
| 00218.000777 | | JMP | - 1 | |
| Q0211'175224 | | MOVER | $3,3, S Z R$ | |
| 00212.800766 | | JMP | FINDR | |
| 80213.125005 | FOUND: | MOV | 1,1,SNR | |
| $06214^{\circ} 002754$ | | JMP | eRETU | |
| 00215'166000 | | ADC | 3,1 | |
| 00216.040474 | | STA | 0,TEMP1 | |
| 00217.044474 | | STA | 1,TEMP2 | |
| $00220^{\circ} 024476$ | | LDA | 1, SIZE | |
| 90221'147000 | | ADD | 2,1 | |
| 90222.808431 | | JMP | D1XX | |
| 00223.063674 | READ: | SKPDN | LINC | |
| -0224*000777 | | JMP | - 1 | |
| Q0225.063474 | | SKPBN | LINC | |
| 00226.000416 | | JMP | RDAT | |
| $00227^{\prime} 166474$ | RCHK: | DIA | 8,LINC | |
| 00230'116405 | | SUB | 0,3,5NR | |
| $00231^{\prime} .800434$ | | JMP | SCHK | |
| 00232.824465 | E1: | LDA | 1, C1 | |
| $06233^{\circ} 908483$ | | JIP | ${ }_{+3}+3$ | |
| ø0234.034462 | E2: | LDA | 3,SIEE | |
| $00235^{\circ} 024463$ | | LDA | 1, C2 | |
| 00236.020454 | | LDA | Q, TEMP1 | |
| 00237.060723 | | JMP | EXIT | |
| 00240.024461 | E3: | LDA | 1,C4 | |
| 96241'098721 | | JMP | EXIT | |
| 00242.024468 | EA: | LDA | 1,C8 | |
| $0.243^{\prime} 080717$ | | JMP | EXIT | |
| $00244^{\circ} 868474$ | RDAT: | DIA | O,LINC | |
| b0245'132512 | D2XX: | SUBL* | 1,2,SEC | |
| $00246^{\circ} \mathrm{B41000}$ | | STA | 0.0.2 | |

```
00247\cdot000402
00250.061074
00251'117000
08252'151400
00253.921000
00254.063074
00255.063674
00256.000777
00257.063474
00260.060770
00261.075074
00262.075474
00263.175004
00264'000756
00265'132414
00266'000746
00267.020423
00270.024423
00271'000713
00272.054420
00273.034421
00274'162432
00275'000405
00276,034417
00277'162032
00300.000740
00301.074474
00302'063474
00303'006777
00304.063774
00305'000774
00306.074474
00307'116543
00310.010402
00311'062401
00312.000000
00313'000000
00314'177770
00315.000620
00316.000400
00317.000001
00320.000002
00321.000004
00322.000010
\begin{tabular}{|c|c|c|c|}
\hline D2C: & JMP & - +2 & \\
\hline V.DAT: & DOA & \(\theta \cdot\) LINC & C-22 \\
\hline BLOOP: & ADD & 0,3 & \\
\hline & INC & 2,2 & \\
\hline D1XX: & LDA & \(0.0,2\) & \\
\hline & DOC & a,LINC & \\
\hline & SKPDN & LINC & \\
\hline & JMP & - 1 & \\
\hline & SKPBN & LINC & \\
\hline & JMP & WDAT & \\
\hline WCHK: & DOA & 3,LINC & \\
\hline & DIB & 3,LINC & \\
\hline & MOV & 3,3,SZR & \\
\hline & JMP & E4 & \\
\hline SCHK: & SUB \({ }^{\text {\# }}\) & 1,2,SZR & \\
\hline & JMP & E2 & \\
\hline NEXT: & LDA & Q,TEMP1 & \\
\hline & LDA & 1,TEMP2 & \\
\hline & JMP & FINDN & \\
\hline GETBL: & STA & 3,TEMP1 & \\
\hline & LDA & 3,MLIM & \\
\hline & SUBE\# & 3, 日, SEC & \\
\hline & JMP & WAIT & \\
\hline & LDA & 3,PLIM & \\
\hline & ADCZ\# & \(3,0, S z C\) & \\
\hline & JMP & E3 & \\
\hline & DIA & 3,LINC & \\
\hline WAIT: & SKPBN & LINC & \\
\hline & JMP & WAIT & \\
\hline & SKPDZ & LINC & \\
\hline & JMP & WAIT-1 & \\
\hline & DIA & 3,LINC & \\
\hline & SUBOL & 0,3, SNC & \\
\hline & ISZ & TEMP1 & \\
\hline & JMP & eTEMP 1 & \\
\hline TEMP 1: & 0 & & \\
\hline TEMP2: & 0 & & \\
\hline MLIM: & 177770 & & \\
\hline PLIM: & 620 & & \\
\hline SIEE: & 406 & & \\
\hline C1: & 1 & & \\
\hline C2: & 2 & & \\
\hline C4: & 4 & & \\
\hline C8: & 18 & & \\
\hline
\end{tabular}
- FND
```

-TITL COPY
-ENT COPY
-EXTD -CYPL,.FRET
-NREL
$N=-167$
2
00000.000002
00281.0060015 COPY: 08002.054422 $00003^{\cdot 066477}$ $00004^{\circ} 101122$ $00005^{\circ} 090414$
 -60007・の63511 -0010.000777 00011'0611111 $00012^{\prime} 020414$ $00013^{-063511}$ $00014^{\circ} 000777$ 00015'061111 $00016^{\prime} 102440$ $00017^{\circ} 043611$ 00020.900403 00021'102520 PLTR: $00022^{\prime} 043611$
00023'006002S BACK: 3
$00024^{\circ} 060000$ 00025 0000033 $00026^{\circ} 000027$

177611
177612
177613
177614
177615
177616
177617
 －0001＇ 930000
 ดøणロ3＇070010 00064＇0060015 00005＇054773 ต日の06＇023611 00007＇027612 00010.033613 $00011^{\prime} 037614$ 00012＇122512 ต0013＇000455 00014＇172512 $00015^{\circ} 000426$ $00016^{\circ} 162513$ ด日ロ17＇132512 ஏ0．020．000533 00021＇112512 $00022^{\prime} 000411$ øøஜ23＇136512 $00024^{\circ} 000404$ $00025^{\circ} 054754$日0026年040754 の日027＇000514 $00830^{\circ} 844751$ $00031^{\prime} 940751$ 0ø032＇000511 Ф0933＇136512 $09034^{\circ} 900404$ $00035^{\circ} 954744$ 00036＇050744 の日037＇ 006504 $09048^{\circ} 944741$ 60041． 850741 ตø日42．006501 ต0643．142513 09844＇136512 $00045^{\circ} 900506$ $09046^{\prime} 116512$ $00847^{\circ} 089411$ $00650^{\circ} 132512$ $90051^{\circ} 900404$ 00052＇058727日0053．049727 ロ日0 54＇の日の467 $00255^{\circ} 044724$ $00056^{\prime} 940724$ $00057^{\circ} 906464$ 00068．132512

$00061^{\circ} 000404$ $00062^{\prime} 050717$ $00063^{\circ} 054717$ $00064^{\circ} 000457$ $00065^{\circ} 044714$ $00066^{\circ} 054714$ $00067^{\circ} 000454$ $00070^{\prime} 172512$ $00071^{\prime} 000426$ 00072'166513 $00073^{\prime} 112512$ $00074^{\circ} 000457$ $00075 \cdot 132512$ $00076^{\circ} 000411$ $00077^{\circ} 116512$ $00100^{\circ} 006404$ $001011^{\circ} 654708$ $00102^{\prime} 044706$ $00103^{\circ} 000448$ $00184^{\circ} 040675$ $00105^{\circ} 044675$ $00106^{\circ} 000435$ $00107 \cdot 116512$ $00110^{\circ} 008404$ $00111^{\circ} 054670$ $06112^{\prime} 050678$ $00113^{\circ} 000430$ $0011^{\circ} 040665$ $00115^{\circ} 050665$ $00116^{\circ} 000425$ $0011^{\prime} 146513$ $00120^{\prime} 116512$ $00121^{\prime} 000432$ $00122^{\prime} 136512$ $00123^{\circ} 006411$ $00124^{\prime} 112512$ 00125°.008404 $00126^{\circ} 050653$ 00127.044653 $00130^{\circ} 000413$ $00131^{\circ} 940650$ $00132^{\circ} 044650$ $00133^{\circ} 900410$ $00134^{\prime} 112512$ $00135^{\circ} 000404$ $00136^{\circ} 050643$ $00137 \cdot 054643$ $00140^{\circ} 000403$ $00141^{\circ} 040640$ 00142.054648 $00143^{\prime} 029636$ $00144^{\circ} 024636$ $00145^{\circ} 034633$ $00146^{\prime} 043615$ $00147 \cdot 047616$ $00150 \cdot 102520$ $00151^{\prime} 043617$ $00152 \cdot 9060025$ $00153^{\circ} 034625$ $0154^{\prime} 102460$

| | JMP | F8 | C-25 |
| :---: | :---: | :---: | :---: |
| | STA | 2, $\times 5$ | c-25 |
| | STA | 3, $\times 6$ | |
| | JMP | OK | |
| F8: | STA | 1, $\times 5$ | |
| | STA | 3, $\times 6$ | |
| | JMP | OK | |
| F1: | SUBL" | 3,2,SEC | |
| | JMP | F9 | |
| | SUBL* | 3,1,SNC | |
| | SUBL* | 0,2,SZC | |
| | JMP | NOGO | |
| | SUBL* | 1,2,SEC | |
| | JMP | F10 | |
| | SUBL\# | B,3, SZC | |
| | JMP | F11 | |
| | STA | 3, $\times 5$ | |
| | STA | 1, $\times 6$ | |
| | JMP | OK | |
| F11: | STA | 8, $\times 5$ | |
| | STA | 1, $\times 6$ | |
| | JMP | OK | |
| F10: | SUBL* | 0,3, SZC | |
| | JMP | F12 | |
| | STA | 3, $\times 5$ | |
| | STA | 2, $\times 6$ | |
| | JMP | OK | |
| F12: | STA | $0, \times 5$ | |
| | STA | 2, $\times 6$ | |
| | JMP | OK | |
| F9: | SUBL" | 2,1,SNC | |
| | SUBLA | B,3,SEC | |
| | JMP | NOGO | |
| | SUBLA | 1,3,SZC | |
| | JMP | F13 | |
| | SUBL. | 0,2,SZC | |
| | JMP | F14 | |
| | STA | 2, $\times 5$ | |
| | STA | 1, $\times 6$ | |
| | JMP | OK | |
| F14: | STA | 8, 85 | |
| | STA | 1, X6 | |
| | JMP | OK | |
| F13: | SUBL* | 0,2,SEC | |
| | JMP | F15 | |
| | STA | $2, \times 5$ | |
| | STA | 3, $\times 6$ | |
| | JMP | OK | |
| F15: | STA | $0, \times 5$ | |
| | STA | 3, $\times 6$ | |
| OK: | LDA | 0, $\times 5$ | |
| | LDA | 1, X6 | |
| | LDA | 3,SAVE | |
| | STA | 0, en 4,3 | |
| | STA | 1,0N5,3 | |
| | SUBZL | 8,0 | |
| | STA | 0, ON6,3 | |
| | JSR | 8.FRET | |
| NOGO: | LDA | 3, SAVE | |
| | SUBC | 0,8 | |

STA
JSR
-END
e. en 6,3
e.FRET

00057'060177
00060.9060625
00061'003777
00062'000002
00063'050000
00064'000008
00066'061041
00067'063641
00079'000777
00871'060441
00072'024412
00073'106512
00074'000771
00075'000712
00076.824412
00077*060510
\emptyset0106'1234日日
00101'043613
00102'060177
00103'صの6ロロ2\$
00104'001000
08105'000020
00106'000040
00107'000060
00110%000177

```

INTEN
JSR ध．FRET
MAX： 3777 MMAX VOLTAGE IS 5 VOLTS
CHLMP： 2
DEL： 50000
50
0
COUNT： 0
；HANG ON UNTIL BUTTON VOLTAGE
IIS LESS THAN 2.5 VOLTS
BACK：LDA \(0, \mathrm{CH} 3\) INO LONGER CHANNEL O
DOA B，DVCE
SKPDN DVCE
JMP ．－1
DIA 0，DVCE
LDA 1，C100日
SUBL\＃g，1，SZC
JMP BACK
JMP LOOP
LDA 1，MASK
DIAS 日，TTI
AND \(1, \theta\)
STA \(\quad, 8 N+2,3\)
INTEN
JSR ध．FRET
```

C1000：1000
$\mathrm{CHI}=20$
CH2： 40
CH3： 60
MASK： 177
－END

```
```

C---------SECOND OVERLAY---------

```
C---------SECOND OVERLAY---------
C--ROUTINE TO BUILD BLOCKS FROM LINES
C--ROUTINE TO BUILD BLOCKS FROM LINES
    COMMON KEY(256), IBLOC(1536), IDUM(608), I1(768),
    COMMON KEY(256), IBLOC(1536), IDUM(608), I1(768),
        I2(768),LIST(32),LISTC(128),IX(512),IY(512)
        I2(768),LIST(32),LISTC(128),IX(512),IY(512)
        COMMON/HANDY/N,L,IACC
        COMMON/HANDY/N,L,IACC
C
C
C N=NUMBER OF POINTS
C N=NUMBER OF POINTS
    L=NUMBER OF LINES
    L=NUMBER OF LINES
C
C
    N=LIST(1)
    N=LIST(1)
    L=LIST(2)
    L=LIST(2)
    I ACC=LIST (3)
    I ACC=LIST (3)
    IF(L.LE.2) GOTO 18
    IF(L.LE.2) GOTO 18
    PI=4.0*ATAN(1.0)
    PI=4.0*ATAN(1.0)
    PI2=2.0*PI
    PI2=2.0*PI
    PI05=0.5*PI
    PI05=0.5*PI
    PI180=PI/360.
    PI180=PI/360.
    LBIT=100000K
    LBIT=100000K
    MASK=77777K
    MASK=77777K
    K=1
    K=1
    NBLOC=0
    NBLOC=0
C--SET FLAGS ON ALL LINES--
C--SET FLAGS ON ALL LINES--
    DO 1 LL=1,L
    DO 1 LL=1,L
    I 1 (LL)=I 1 (LL) 0 OR.LBIT
    I 1 (LL)=I 1 (LL) 0 OR.LBIT
    1 I I2(LL)=I2(LL).OR.LBIT
    1 I I2(LL)=I2(LL).OR.LBIT
    IF ANY FLAGS STILL LEFT--
    IF ANY FLAGS STILL LEFT--
    DO }3\textrm{LL}=1,\textrm{L
    DO }3\textrm{LL}=1,\textrm{L
    IF(II(LL).AND.LBIT) GOTO 4
    IF(II(LL).AND.LBIT) GOTO 4
    IF(I2(LL).AND.LBIT) GOTO 5
    IF(I2(LL).AND.LBIT) GOTO 5
    3 CONTINUE
    3 CONTINUE
    IF(NBLOC.GT.0) GOTO 17
    IF(NBLOC.GT.0) GOTO 17
    18 CALL OVLAY (1,KEY)
    18 CALL OVLAY (1,KEY)
    PAUSE
    PAUSE
    GOTO 18
    GOTO 18
    KEY (NBLOC+1)=K ;ALL FLAGS MUST BE DOWN.
    KEY (NBLOC+1)=K ;ALL FLAGS MUST BE DOWN.
    CALL CHARO(135) ;FIND CENTROIDS ETC.
    CALL CHARO(135) ;FIND CENTROIDS ETC.
    CALL CENT (NBLOC)
    CALL CENT (NBLOC)
    4 I 1 (LL) = I I (LL) . AND .MASK
    4 I 1 (LL) = I I (LL) . AND .MASK
    IEND1=11 (LL)
    IEND1=11 (LL)
    IEND2 = I 2 (LL) * AND •MASK
    IEND2 = I 2 (LL) * AND •MASK
    GO TO 6
    GO TO 6
    5 I2(LL)=I2(LL).AND.MASK
    5 I2(LL)=I2(LL).AND.MASK
    IENDI=12(LL)
    IENDI=12(LL)
    IEND2= 11(LL) (FLAG MUST ALREADY BE DOWN)
    IEND2= 11(LL) (FLAG MUST ALREADY BE DOWN)
    6 ISTART=IEND I
    6 ISTART=IEND I
    I PNT=1
    I PNT=1
    LISTC(1)=LL
    LISTC(1)=LL
    GAMSUM=\varnothing.\emptyset
    GAMSUM=\varnothing.\emptyset
    IXD=IX(IEND2)-IX(IEND1)
    IXD=IX(IEND2)-IX(IEND1)
    IYD=IY(IEND2)-IY(IENDI)
    IYD=IY(IEND2)-IY(IENDI)
    IF(IXD.NE.B) GOTO 8
    IF(IXD.NE.B) GOTO 8
    IF(IYD.LT.g) GOTO }
    IF(IYD.LT.g) GOTO }
    ALFOLD=PI/2.\emptyset
    ALFOLD=PI/2.\emptyset
    GOTO }
    GOTO }
    7 ALFOLD=1.5*PI
```

 7 ALFOLD=1.5*PI
    ```
```

 GOTO 9
 8 ALFOLD=ATAN(ABS(FLOAT(IYD)/FLOAT(IXD)))
 IF(IXD.LT, B) GOTO IO
 IF(IYD.GT.0) GOTO 9
 ALFOLD=PI2-ALFOLD
 GOTO }
 10 1F(1YD.GT.0) GOTO 11
 ALFOLD=ALFOLD+PI
 GOTO }
 11 ALFOLD=PI-ALFOLD
 C--FIND MOST CLOCKWISE LINE FROM LL--
LMAX=0
GAMAX=PI
DO 12 LIN=I,L
IF(LIN-EO.LL) GOTO 12
IF(II(LIN).AND.LBIT) GOTO 13
16 IF(I2(LIN).AND.LBIT) GOTO 14
GOTO 12
13 IF((II(LIN).AND.MASK).NE.IEND2) GOTO 16
IE1=1END2
IE2=I2(LIN).AND.MASK
GOTO 15
14 IF((IR(LIN) -AND.MASK) -NE.IEND2) GOTO 12
IEI=IEND2
1E2=11(LIN).AND.MASK
15 1XD=1X(IE2)-IX(IE1)
IYD=IY(IEZ)-IY(IEI)
IF(IXD.NE.0) GOTO 20
IF(IYD.LT.,) GOTO 19
ALF=PI/2.0
GOTO 22
19 ALF=1 . 5*PI
GOTO 22
20 ALF=ATAN(ABS(FLOAT(IYD)/FLOAT(IXD)))
IF(IXD.LT.日) GOTO 21
IF(1YD.GT.g) GOT0 22
ALF=P12-ALF
GOTO 22
21 1F(IYD.GT.0) GOTO 23
ALF=ALF+PI
GOTO 22
23 ALF=PI-ALF
22 GAM=ALF - ALFOLD
IF(GAM -GE - PI) GAM=GAM-PI2
IF (GAM - LT , -PI)GAM=GAM+PI2
IF(GAM.GE.GAMAX) GOTO 12
GAMAX=GAM IMOST CLOCKWISE ANGLE YET . . .
LMAX=LIN \& *WITH ITS CORRESPONDING LINE.
ALFMAX=ALF
IEDI=IE!
IED2=1E2
12 CONTINUE
IF(LMAX.EQ.8) GOTO 28 IDEAD END !
C--KNOCK DOWN FLAG FOR THAT LINE--
IF((II(LMAX).AND.MASK) EQ.IED2) GOTO 24

```

I1 \((\) LMAX \()=1 E D 1\)
GOTO 25
24 12(LMAX)=1ED1
25 GAMSUM=GAMSUM+GAMAX ; SUM OF ALL BLOCK ANGLES IPNT=IPNT+1 BPOINTER TO TEMP. LIST OF LINES LISTC (IPNT) \(=\) LMAX
IF (IED2.EQ.ISTART) GOTO 26
LL=LMAX BNEW LINE BECOMES OLD LINE
ALFOLD=ALFMAX
IEND2 \(=1 E D 2\)
GOTO 9
26 IF(GAMSUM.GT.0.0)GOTO 2
NBLOC \(=\) NBLOC +1
KEY(NBLOC) \(=K\)
C--THE NEXT SECTION MERGES ADJACENT LINES IF
C--THEY HAVE NEARLY EQUAL SLOPES, AND WRITES
C--THE RESULTING LIST OF POINTS ONTO IBLOC( )
LINE=LISTC(1)
IF(ISTART.EO.I1(LINE)) GOTO 31
\(I P 1=I 1(L I N E) \cdot A N D \cdot M A S K\)
GOTO 32
31 IPI \(=12(L I N E) \cdot A N D \cdot M A S K\)
32 I \(\times 1=I \times\left(I P_{1}\right)\)
\(I Y 1=I Y(I P 1)\)
\(I X \theta=I \times(I S T A R T)\)
\(I Y \theta=I Y(I S T A R T)\)
\(I X D=I \times 1-I X \varnothing\)
\(I Y D=I Y 1-I Y \theta\)
IF (IXD.EQ. ) GOTO 43
ALF1 =ATAN2(FLOAT(IYD), FLOAT (IXD))
GOTO 44
43 ALFI=SIGN(PI日5,FLOAT(IY1))
44 ALF 1 R=ALF 1
DO 50 IK=2,IPNT
IF(IK.EQ.IPNT) GOTO 51
LINE=LISTC (IK)
IF(IP1.EQ.II(LINE)) GOTO 41
IP2 = 11 (LINE) •AND.MASK
GOTO 42
41 IP2 \(=12(\) LINE \() \cdot A N D \cdot M A S K\)
42 IX2 \(=1 \times(I P 2)\)
\(I Y 2=I Y(I P 2)\)
\(47 \quad I X D=I X 2-I X 1\)
\(I Y D=I Y 2-I Y 1\)
IF (IXD.EO.0) GOTO 45
ALF2 \(=\) ATAN2 (FLOAT (IYD), FLOAT (IXD))
GOTO 46
45 ALF2=SIGN(PIG5,FLOAT(IY2))
46 IF (ABS (ALF2-ALF1).LT.PI 180) GOTO 53
IBLOC \((K)=I P 1\)
\(\mathrm{K}=\mathrm{K}+1\)
\(1 P 1=1 P 2\)
ALF1 \(=\) ALF 2
\(I^{\prime} X_{1}=I X_{2}\)
\(I Y 1=I Y 2\)
```

166 GOTO 50
167 51 1\times2=1\times(ISTART)
168 IY2=IY(ISTART)
169 GOTO 47
178 53 IP1=1P2
171 58 CONTINUE
172 C--LAST LINE TO DO NOK--
173 IF(ABS(ALFIR-ALF1).LT.PIIBE) GOTO 48
174 IBLOC (K)=ISTART
4B IF(K-KEY(NBLOC).GT * 2) GOTO }5
C--WEED OUT THIN BLOCKS--
K=KEY(NBLOC)
NBLOC=NBLOC-1
GOTO 2
52 K1=KEY(NBLOC)
K2=K-1
CALL PLOTS(B,IX(IBL.OC(K2)),IY(IBLOC(K2)))
DO 49 KB=K1,K2
49 CALL PLOTS(I,IX(IBLOC(KB)),IY(IBLOC(KB)))
GOTO 2
G--DEAL WITH DEAD END--
28 11(LL)=11(LL) - AND •MASK
12(LL)=12(LL) - AND.MASK
1F(IPNT.LE.1) GOTO 2
IPNM=1PNT-1
ITO=1STAKT
C--RESTORE FLAGS TO PRECEEDING LINES--
DO 30 IL=1,IPNM
LINE=L.ISTC(IL)
IF(ITO.EO.1I(LINE)) GOTO 33
ITO=11(LINE) . AND.MASK
12(LINE)=12(LINE) -OR.LBIT
GOTO 30
33 1TO=12(LINE) .AND.MASK
II(LINE)=1I(LINE).OR.LBIT
30 CONTINUE
GOTO 2
END

```
175
176
177
178
179
186
IBI
182
183
184
185
186
187
188
189
199
191
192
193
194
195
196
197
198
199
296
291
292
293
204
```

 SUBROUTINE CENT (NBLOC)
 C--TO FIND THE AREAS AND CENTROIDS OF ALL BLOCKS
COMMON KEY(256),IBLOC(1536),LENG(1536), IAREA(256),
* ICX(256),ICY(256),IX(512),IY(512)
COMMON/HANDY/N,L,IACC
AMIN=IACC*IACC*S
DO 1 N=1,NBLOC
K1=KEY(N)
K2=KEY(N+1)-1
C--FIND LOWER LEFT-HAND CORNER--
IXM=1023
I YM=780
DO 3 K=K1,K2
IP=IBLOC(K)
IF(IX(IP)\cdotLT.IXM) IXM=IX(IP)
IF(IY(IP).LT.IYM) IYM=IY(IP)
3 CONTINUE
C--FIND BLOCK AREAS--
AREA1 = Ø. 日
AREA2=0.0
IP1 = I BLOC (K2)
DO \& K=K1, K2
IP2=18L.OC(K)
IXI=IX(IP1)-IXM
IX2=I X(IP2)-IXM
IYZ=IY(IPZ)-IYM
IYI=IY(IP1)-IYM
AREA1 =AREA 1+FLOAT (IX2-IX1)*FROAT (IY 1+IY2)/2.0
AREA2=AREA2+FLOAT (IY2-IY1)*FLOAT (IX1+IX2)/2.0
2 IPI = IP2
AREA=(AREA1-AREA2)/2.0
IF (AREA.LE.AMIN) GOTO 13
IAREA (N) =AREA/AMIN
C--NOW FIND MOMENTS OF AREAS ABOUT IXM, IYM--
XM=0.0
YM=0.0
IPI=IBLOC (K2)
DO 12 K=K1,K2
IPQ =I BLOC (K)
IXI=IX(IPI)-IXM
IX2=IX(IP2)-IXM
IYI=IY(IP1)-IYM
IY2=IY(IP2)-IYM
F1=FLOAT (IX2-IX1)/2.0
F2=FLOAT (IX2+IX1)
IF(IY2-IY1) 5,6,7
6 XM=XM FF1*F2*FLOAT(IY1)
GOTO }
5 XM=XM+F1*(F2*FLOAT (IY2)+FLOAII(IY1-IY2)*FLOAT(2*IX1+IX2)/3.0)
GOTO \&
7 XM=XM+F1*(F2*FLOAT(IY1)+FLOATGIY2-IY1)*FLOAT(IX1+IX2*2)/3.0)
8G1=FLOAT(IY2-IY1)/2.0
G2=FLOAT(IY2+IY1)
IF(IX2-1X1) 9,10,11
10 YM=YM-G1*G2*FLOAT(IX1)

```
```

956
0 5 7
058
059
060
061
062
063
064
065
866
067
068
069
670
071
072
0 7 3
074
075
076
977
078
079
080
081
082
083
084
085
086
887
088
0 8 9
090
091
092
093
994
095
096
0 9 7
898
099
100
101
102
1 0 3
104
105
1 6 6
107
108
109
1 1 0

```
```

 GOTO 12
    ```
    GOTO 12
    9 YM=YM-GI*(G2*FLOAT(IX2) +FLOAT(IX1-IX2)*FLOAT(IY2+2*IY1)/3.0)
    9 YM=YM-GI*(G2*FLOAT(IX2) +FLOAT(IX1-IX2)*FLOAT(IY2+2*IY1)/3.0)
        GOTO 12
        GOTO 12
    11 YM=YM-G1*(G2*FLOAT(IX1)+FLOAT(IX2-IX1)*FLOAT(IY1+2*IY2)/3.0)
    11 YM=YM-G1*(G2*FLOAT(IX1)+FLOAT(IX2-IX1)*FLOAT(IY1+2*IY2)/3.0)
    12 IP1=IP2
    12 IP1=IP2
        ICX(N)=IFIX(XM/AREA+0.5)+IXM
        ICX(N)=IFIX(XM/AREA+0.5)+IXM
        ICY(N)=1FIX(YM/AREA+0.5)+1YM
        ICY(N)=1FIX(YM/AREA+0.5)+1YM
        CALL CROSS(ICX(N),ICY(N))
        CALL CROSS(ICX(N),ICY(N))
        GOTO I
        GOTO I
    13 I AREA(N)=0.0
    13 I AREA(N)=0.0
    1 CONTINUE
    1 CONTINUE
C--TO COMPUTE THE LENGTHS OF EACH EDGE--
C--TO COMPUTE THE LENGTHS OF EACH EDGE--
        DO 80 N=1,NBLOC
        DO 80 N=1,NBLOC
        KI=KEY(N)
        KI=KEY(N)
        K2=KEY (N+1)-1
        K2=KEY (N+1)-1
        IPA=IBLOC (K2)
        IPA=IBLOC (K2)
        KN=K2
        KN=K2
        DO 81 K=K1,K2
        DO 81 K=K1,K2
        IPB=1BLOC (K)
        IPB=1BLOC (K)
        XDIF=IX(IPB)-IX(IPA)
        XDIF=IX(IPB)-IX(IPA)
        YDIF=IY(IPR)-IY(IPA)
        YDIF=IY(IPR)-IY(IPA)
        LENG(KN)=SQRT (XDIF*XDIF+YDIF*YDIF) + 0.5
        LENG(KN)=SQRT (XDIF*XDIF+YDIF*YDIF) + 0.5
        KN=K
        KN=K
    81 IPA=IPB
    81 IPA=IPB
    80 CONTINUE
    80 CONTINUE
    25 CALL CURS (ID, IXX, IYY)
    25 CALL CURS (ID, IXX, IYY)
        CALL CHARO(159)
        CALL CHARO(159)
            IF(ID.EO.197) GOTO 20 ;"E" FOR "ERASE"
```

 IF(ID.EO.197) GOTO 20 ;"E" FOR "ERASE"
    ```


```

 IF(ID.EQ.2\emptyset8) GOTO 50 ;"P" FOR "PHASE..."
    ```
            IF(ID.EQ.2\emptyset8) GOTO 50 ;"P" FOR "PHASE..."
            IF(ID.EQ.193) GOTO 22 ;"A" FOR "ALL"
            IF(ID.EQ.193) GOTO 22 ;"A" FOR "ALL"
            IF(ID.EQ.211) GOTO 60 3"S" FOR "SINGLE"
            IF(ID.EQ.211) GOTO 60 3"S" FOR "SINGLE"
            IF(ID.EQ.210) GOTO 70 3"R" FOR "RESTORE"
            IF(ID.EQ.210) GOTO 70 3"R" FOR "RESTORE"
            GOTO 25
            GOTO 25
    20 DO 24 N=1,NBLOC
    20 DO 24 N=1,NBLOC
            IF(IABS(ICX(N)-IXX).GT.IACC) GOTO 24
            IF(IABS(ICX(N)-IXX).GT.IACC) GOTO 24
            IF(IABS(ICY(N)-IYY).GT.IACC) GOTO 24
            IF(IABS(ICY(N)-IYY).GT.IACC) GOTO 24
            IF(IAREA(N).LE.D) GOTO 24
            IF(IAREA(N).LE.D) GOTO 24
            IAREA (N)=-I AREA(N)
            IAREA (N)=-I AREA(N)
            GOTO 22
            GOTO 22
    24 CONTINUE
    24 CONTINUE
            GOTO 25
            GOTO 25
    22 CALL CHARO (155)
    22 CALL CHARO (155)
            CALL CHARO(140)
            CALL CHARO(140)
            DO 21 N=1,NBLOC
            DO 21 N=1,NBLOC
            IF(IAREA(N).LE.\emptyset) GOTO 21
            IF(IAREA(N).LE.\emptyset) GOTO 21
            K1=KEY(N)
            K1=KEY(N)
            K2=KEY (N+1)-1
            K2=KEY (N+1)-1
            CALL PLOTS(0,IX(IBLOC(K2)),IY(IBLOC(K2)))
            CALL PLOTS(0,IX(IBLOC(K2)),IY(IBLOC(K2)))
            DO 23 K=K1,K2
            DO 23 K=K1,K2
    23 CALL PLOTS(1,IX(IBLOC(K)),IY(IBLOC(K)))
    23 CALL PLOTS(1,IX(IBLOC(K)),IY(IBLOC(K)))
            CALL CROSS(ICX(N),ICY(N))
            CALL CROSS(ICX(N),ICY(N))
    21 CONTINUE
    21 CONTINUE
            GOTO 25
```

 GOTO 25
    ```
\begin{tabular}{|c|c|c|}
\hline 111 & 30 & CALL COPY (ISWIT) ICHECK FOR SWITCH \\
\hline 112 & & IF (IShIT •EQ. Ø) GO TO 25 \\
\hline 113 & & DO \(31 \mathrm{~N}=1\), NBLOC \\
\hline 114 & & IF (IAREA \(N\) ) - LE.0) GOTO 31 \\
\hline 115 & & \(K 1=K E Y(N)\) \\
\hline 116 & & \(K 2=K E Y(N+1)-1\) \\
\hline 117 & & \(11=1 \times(I B L O C(K 2)) * 4-2947\) \\
\hline 118 & & I \(2=I Y(I B L O C(K 2)) * 4-2047\) \\
\hline 119 & & CALL PLOT (I 1, 12,3) \\
\hline 129 & & DO \(32 \mathrm{~K}=\mathrm{K} 1, \mathrm{~K} 2\) \\
\hline 121 & & \(I 1=I X(I B L O C(K)) * 4-2047\) \\
\hline 122 & & \(I 2=I Y(I B L O C(K)) * 4-2047\) \\
\hline 123 & 32 & CALL PLOT (I1,12,2) \\
\hline 124 & & \(I C 1=I C X(N) * 4\) \\
\hline 125 & & IC2=ICY(N)*4 \\
\hline 126 & & CALL PLOT (IC1-2087, IC2-2047,3) \\
\hline 127 & & CALL PLOT (IC1-2007, IC2-2047,2) \\
\hline 128 & & CALL PLOT (IC1-2047, IC2-2087,3) \\
\hline 129 & & CALL PLOT (IC1-2647, IC2-2007,2) \\
\hline 130 & 31 & CONTINUE \\
\hline 131 & & CALL PLOT (-2047, -2047,3) \\
\hline 132 & & GOTO 25 \\
\hline 133 & 40 & CALL CHARO (155) \\
\hline 134 & & CALL CHARO (140) \\
\hline 135 & & CALL OVLAY ( \(1, \mathrm{KEY}\) ) \\
\hline 136 & & GOTO 25 \\
\hline 137 & 50 & CALL CHARI (IN) \\
\hline 138 & & IF (IN.EQ-177) GOTO 40 ; "1" FOR "PHASE 1" \\
\hline 139 & & IF (IN.NE.179) GOTO 25 ; "3" FOR "PHASE 3" \\
\hline 140 & & CALL CHARO (155) \\
\hline 141 & & CALL CHARO ( 140 ) \\
\hline 142 & & IBLOC (1536) = NBLOC \\
\hline 143 & & CALL OVLAY ( 3 , KEY) \\
\hline 144 & & GOTO 25 \\
\hline 145 & 60 & DO \(61 \mathrm{~N}=1, \mathrm{NBLOC}\) \\
\hline 146 & & IF (IABS (ICX \((N)-I X X)\)-GT.IACC) GOTO 61 \\
\hline 147 & & IF (IABS (ICY(N)-IYY).GT.IACC) GOTO 61 \\
\hline 148 & & GOTO 62 \\
\hline 149 & 61 & CONTINUE \\
\hline 150 & & GOTO 25 \\
\hline 151 & 62 & \(\mathrm{NN}=\mathrm{N}\) \\
\hline 152 & & IF (IAREA (NN) - LE.6) GOTO 25 \\
\hline 153 & & CALL CHARO (155) \\
\hline 154 & & CALL CHARO (149) \\
\hline 155 & & K1 \(=\) KEY (NN) \\
\hline 156 & & \(K 2=K E Y(N N+1)-1\) \\
\hline 157 & & CALL PLOTS ( \(0, I X(I B L O C(K 2))\), IY(IBLOC(K2))) \\
\hline 158 & & DO \(63 \mathrm{~K}=\mathrm{K} 1\), K 2 \\
\hline 159 & 63 & CALL PLOTS (1, IX (IBLOC (K)), IY(IBLOC (K))) \\
\hline 160 & & CALL CROSS (ICX (NN), ICY(NN)) \\
\hline 161 & & CALL CHARI (IN) \\
\hline 162 & & IF (IN.NE.197) GOTO 22 \\
\hline 163 & & \(\operatorname{IAREA}(N N)=-I A B S(I A R E A(N N))\) \\
\hline 164 & & GOTO 22 \\
\hline 165 & 70 & DO \(71 \mathrm{~N}=1\), NBLOC \\
\hline
\end{tabular}

166
167
168
169 170
IF(IAREA(N).GE.8) GOTO 71
\(\operatorname{IAREA}(N)=I A B S(I A R E A(N))\)
71 CONTINUE
GOTO 22
END

\section*{List of Phäse 3 Global Symbols}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Symbol \\
Name
\end{tabular} & Originsting Routine & Purpose of Symbol \\
\hline CONTR & CONTP. & Iteration and Control routine entry \\
\hline FEET & INPUT & ASCII Length Descriptor \\
\hline MOVFL & INPUT & Nemory overflow message \\
\hline MU & FORD & Default value of friction coefficient \\
\hline OPTIN & CYCLE & Pointer to option input routine \\
\hline POUND & INPUT & ASCII force descriptor \\
\hline PUP & REBOX & Pressure segment test entry \\
\hline TRANS & TRANS & Initial translation routine entry \\
\hline . ALLB & UPDAT & Pointer to routine to update all blocks \\
\hline . ALPH & UTIL & Pointer to routine to set Tektronix in alpha node \\
\hline .AXIS & UTIL & Pointer to routine to draw axes on screen \\
\hline . BSIZ & TRANS & Number of words in block data arrays, excluding corners \\
\hline . Cl 100 & CONTR & A constant ( \(=100\) octal) \\
\hline . CHEK & UTIL & Pointer to routine check if character is a digit \\
\hline .CLNC & TAPE & Pointer to tape checking routine \\
\hline .CPNT & UPDAT & Pointer to word that can be changed \\
\hline .CURS & TEK & Pointer to routine that enables cursor \\
\hline . DBQ & UTIL & Pointer to Decimal to Binary conversion routine \\
\hline . DEIN & UTIL & Pointer to Decimal to Binary conversion routine \\
\hline . DCM & MOUIT & Pointer to routine to move a fixed block \\
\hline . DISB & DISPL & Pointer to routine that plots a single block \\
\hline . DISP & DISPL & Pointer to routine that plots all blocks on paper \\
\hline .DISS & DISPL & Pointer to routine that plots all blocks on screen \\
\hline . DABN & INPUT & Block number of fixed block to be moved \\
\hline . DMEP & INPUT & Block data pointer of fixed block to be moved \\
\hline . EMPT & TRANS & Head of empty list \\
\hline . FORD & FORD & Pointer to force/displacemert routine \\
\hline .GETT & UTIL & Pointer to routine to accept keyboard character \\
\hline . HEAV & LOADS & Pointer to routine to modify block weights \\
\hline . HITC & UTIL & Pointer to routine to detect cursor hit on block \\
\hline . HITS & HITS & Pointer to routine to detect cursor hit on edge \\
\hline . IACC & UTIL & Accuracy limit for hits on certroids \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline . \(\mathrm{IN}^{\text {P }}\) & IHPUT & Pointer to friction input routine \\
\hline . IPR\% & UTIL & Pointer to binary to decimal conversion routine \\
\hline . KET & CYCLE & Pointer to routine to calculate kinetic energy \\
\hline .LENG & UTIL & Pointer to routine to return length of an edge \\
\hline . LODE & INPUT & Pointer to routine for numerical applied load input \\
\hline . LPAP & CONTR & Flag for hard copy load plot option \\
\hline .LPLS & DISPL & Pointer to routine for plotting loads on screen \\
\hline .M1 & TRANS & Pointer to start of block data pointers \\
\hline . M 2 & TRANS & Pointer to start of block data arrays \\
\hline . M3 & TRANS & Pointer to start of boxes \\
\hline .M4 & TRANS & Pointer to start of linked lists of block corners \\
\hline . M5 & TRANS & Pointer to start of block pointers to contact lists \\
\hline .M6 & TRANS & Pointer to start of linked list area \\
\hline .M7 & TRANS & Pointer to start of free memory \\
\hline . MEM & TRANS & Highest memory location \\
\hline .NESS & UTIL & Pointer to routine that prints messages on screen \\
\hline . PFLG & INPUT & Flag for displacement control option \\
\hline MOT & MOTIO & Pointer to law of motion routine \\
\hline .MOVE & INPUT & Pointer to input routine for moving fixad block \\
\hline .MSKR & REBOX & A constant (377 octal) \\
\hline . NUM & TRANS & Total number of blocks \\
\hline .NVEC & DISPL & Flag for printing vector magnitudes \\
\hline .OVL & TAPE & Pointer to routine to read first overlay \\
\hline . PAGE & UTIL & Pointer to routine that clears the screen \\
\hline . PEMT & INPUT & Head of pressure segment empty list \\
\hline .PFLG & CONTR & Flag to control plctting when running \\
\hline . PLTS & TEK & Pointer to line drawing routine entry \\
\hline . PON1 & POHT & Pointer to routine that returns global coordinates \\
\hline . PON2 & PONT & Pointer to quick entry to above rautine \\
\hline . PRES & INPUT & Head of pressure segment list \\
\hline .PRN1 & UTIL & Pointer to routine that prints a single character \\
\hline .PRN2 & UTIL & Pointer to routine that prints character in ACD \\
\hline .PSEG & INPUT & Pointer to pressure segment input routine \\
\hline .PSIZ & TRAMS & Number of words in each contact entry \\
\hline . READ & TAPE & Pointer to routine to read a stored data set \\
\hline . REBX & REBOX & Pointer to re-boxing routine entry \\
\hline .REBZ & REBOX & Pointer to re-boxing routine, alternate entry \\
\hline
\end{tabular}
\begin{tabular}{lll}
.RLIC & TAPE & Pointer to tape reading routine \\
.ROT & MOTIO & Constant of integration for angular velocity \\
.RSET & CYCLE & Pointer to routine that resets cycle counter \\
. SCAL & UTIL. & Pointer to vector scaling routine \\
. SING & UPOAT & Pointer to single block updating routine \\
.SPRP & INPUT & Pointer to beginning of friction table \\
.STEP & CYCLE & Pointer to routine to increment cycle counter \\
.SYCL & INPUT & Frequency of movement of fixed block \\
.TIME & FORD & Pointer to routine to change time step \\
.TPRN & CYCLE & Pointer to routine that displays cycles \\
.TREC & MOTIO & Inverse time step \\
.TYP & UTIL & Pointer to return surface type number for edge \\
.UD & INPUT & Unit of displacement \\
.UINP & INPUT & Pointer to units input routine \\
.UREP & CONTR & Update frequency \\
.UW & INPUT & Unit weight \\
.VEC & CONTR & Vector plotting flag \\
.VFAC & UTIL & Vector scaling factor \\
.WLNC & TAPE & Pointer to tape writing routine \\
.WORD & UTIL & Pointer to routine to get alphanumeric string \\
.WRIT & TAPE & Pointer to routine to store a data set \\
.XCGD & INPUT & X - componant of fixed block displacenent \\
.YCGD & INPUT & Y component of fixed block displacement
\end{tabular}
－TITL TRANS
C－40
3TO CREATE NEW DATA STRUCTURES FROM ；THE ORIGINAL FORIRAN ARRAYS．
－ENT TRANS，．M1，．，M2，．M3，．NUM，．BSIZ
－ENT－M4，．M5，．M6，．M7，．EMPT，．PSIZ
－ENT－MEM
－EXTN CONTR
－EXTD ．PON1，．PON2，．ALLB，．DISS，．MSKR
－EXTD ．OVL，．MESS，．TPRN
－ZREL
－MEM： 0
－M1：O
－M2：\(\quad 0\)
－M3：b

ロ0000．ロ00000
 90902＇ 000080

 00005＇ 000404 00006．000400 90607＇ \(00041^{\circ}\) 000012
\(00010^{\circ} 000011^{\circ}\) 00011．001001 00012＇001000 \(00013^{\circ} 000400\) \(00014^{\circ} 000400\)
 00016＇ 063008 00017＇003090 \(00020^{\circ} 900400\)
－00621＇177770 000618
00022．001000 90023＇100600 ஏ0024＇009303． の日025 \(900304^{\circ}\)曰日ロ26＇のロの日ロの

00027．034761
\(00030^{\circ} 030771\)
\(00031^{*} 126400\)
\(00032^{\circ} 921408\)
Ø0033＇107000
ต0034＇175400
－M4：\(\quad 0\)
－M5：\(\quad 0\)
．M6：0
－M7：\(\quad\) INEXT FREE CORE LOCATION
－EMPT：
－PSIZ： \(14 \quad 3\) PROD ENTRY SIEE
－NUM：\(\quad\) NUMBER OF BLOCKS
－8SIZ： 25 ；START OF POINT DATA
－NREL
AREA：
ICX：\(\quad\)
ICY：\(\quad g\)
KEY：\(\quad 0\)
LENG：\(\quad \sigma\)
NMAX： 404 ITOP OF PROGRAM AREA
F4日の： \(40 \theta\)
NEXTR：NEXT
－RDX 10
3LINK ARRAY START
：LINK ARRAY END＋ 1 INEXT EMPTY LIST START
；FORTRAN COMMON LOCATIONS
；FOLLOWING SIZES MUST BE CHANGED IF ；COMMON BLOCK IS CHANGED IN THE ；FORTRAN PROGRAMS，PHASES 1 \＆ 2 TBL：
.+1
513 IIY ，
512 IIX ，
256 ；ICY ）
256 IICX ）
256 I IAREA ，FORT．ARRAY NAMES
1536 ILENG ）
1536 IBLOC ，
256 3KEY ，
3
COUNT：-8 IMINUS NO．OF ARRAYS
－RDX 8
STEP： 1000
HIGH： \(7760 \theta+1080\) JALLOWS 200 wDS FOR LDR
IPXR：IPX
IPYR：IPY
IBLOC：\(\emptyset\)
；
\begin{tabular}{lll} 
TRANS： & LDA & 3, TBL \\
& LDA & 2，COUNT
\end{tabular}

3 TO FIND TOTAL COMMON BLOCK SIZE
SUM：LDA \(\theta, \theta, 3\)
ADD \(\quad \theta, 1\)
INC 3.
\(00035^{\prime} 151404\) 89036.909774
00037.020763 \(00640^{\prime} \cdot 234763\) 00041'116408 60042.055777 \(00043^{\circ} 031777\) cø044.156414 \(00045^{\prime} 090774\) 00046'058000-

00047*132400 00050.658733
\(00051^{\cdot 624747}\) 00052.133080 \(00053^{\circ} 050753\) \(00054^{\circ} 024743\) 00255*133800 00056.050726 \(00057 \cdot 024737\) อ8060.1330.0 \(00061^{\prime} 058717\) 06862.024733 00063.133000 \(00064^{\prime} 058715\) \(00065^{\prime} 024727\) \(00066^{\circ} 133908\) \(00067^{\circ} 850713\) \(00070 \cdot 024723\) ต0971'133900 60.072.052732 \(00073^{\circ} \cdot 624717\) \(00074^{\prime} 133000\) \(00075^{\circ} 052730\) อ0076.030786 00077.021377 ต0103'048012\(00101^{\prime} 101005\) घ01ா2.0060065 \(00103 \cdot 022782\) \(00104^{\prime} 040801\) \(0105^{\circ} 024701\) ต0186'123000 \(00107 \cdot 040002-\) \(00110^{\prime} 132400\) 08111.C48566 -0112.040556 \(00113^{*} 934681\) ह0114.054566 00115'030002\(0011^{\circ} 050563\) \(00117^{\circ} 651^{\circ} 490\)
\(00120^{\circ} 034660\) 00121'024556 01122'137000 00123 021400

\(00124^{\circ} 101024\) \(00125^{\circ} 101112\) \(00126^{\circ} 002661\)
\(00127^{\circ} 841014\) 00130＇1024日月 08131＇949562 90132 ＇041902 \(00133^{\prime} 941004\) \(00134^{\prime} 841011\) \(08135^{\circ} 041005\) \(90136^{\circ} 041006\) \(00137^{\circ} 041012\) の日140＇841067 \(06141^{\prime} 041015\) \(00142^{\prime} 041816\) \(00143^{\circ} 041017\) \(0014^{\prime} 041020\) \(00145^{\prime} 041021\) \(00146^{\circ} 041022\) \(06147^{\circ} 041023\) \(00150^{\circ} 041024\) \(00151^{\prime} 100000\) \(00152^{\prime} 941010\)
\(00153^{\circ} 034626\) ø0154＇137000 \(00155^{\circ} 021480\) \(06156^{\circ} 041001\) \(00157^{\circ} 940537\) \(00160^{\circ} 034622\) \(00161^{\prime} 137000\) \(00162^{\prime} 821490\) \(06163^{\prime} 941903\) \(00164^{\circ} 840531\) \(00165^{\circ} 034616\) \(00166^{\prime} 137000\) \(00167^{\circ} 021480\) \(00170^{\circ} 825461\) \(00171^{\prime} 106400\) \(00172^{\circ} 845000\) \(00173^{\circ} 024013\) 00174＇133000 60175＇126520 \(00176^{\circ} 122400\) \(00177^{\circ} 034605\) \(00200^{\circ} 117000\) 00201＇054506 \(00202^{\prime} 054506\) \(00203^{\prime} 934623\) 0日204＇117900 \(00205^{\circ} 054504\) \(00206^{\circ} 054504\)
\(00207^{\circ} 021400\) \(00210^{\circ} 122400\) \(00211^{\prime} 034472\) \(00212^{\prime} 117900\) \(00213^{\circ} 925400\) \(00214^{\circ} 034470\)

MOV
\(0,0,5 Z R\)
MOVL \(\# 0,0, S E C\) JMP

STA
SUB
STA
COM
STA
；
LDA \(3, I C X\)
ADD 1,3
LDA \(0,0,3\)
STA \(\quad \theta, 1,2\)
STA B，IX
LDA 3，ICY
ADD 1,3
LDA \(\quad \theta, \theta, 3\) ；GET ICY（NB）
STA \(\quad 0,3,2\)
STA 0，IY
LDA 3，KEY
ADD 1,3
LDA \(\quad 0,0\),
LDA \(1,1,3\)
SUB \(\quad 0,1\)
STA \(1, \theta, 2\)
LDA \(1, \ldots\) BSIZ
ADD 1,2
SUBEL 1,1
SUB 1,0
LDA 3，LEN
ADD 0．3
STA 3，FANG
STA 3，FENG
LDA 3，IBLOC
ADD 0，3
STA 3，FING
STA 3，FONG
3
LOOP：

DA

LDA
3．IPX
LDA \(1,0,3\)
LDA 3，IPY
；GET ICX（NB）
；PUT IN NEW BLOCK LIST
；TEMP STORE FOR LATER USE

3 PUT IT AWAY
：AS WITH IX
；KEY（NB）
； \(\operatorname{KEY}(N B+1)\)
；NUMBER OF POINTS THIS BLOCK


KEY（NB）－1
；POINTER TO LENGTH ARRAY

E2ND．COPY FOR LONG BLOCK

BPOINT NUMBER
5P．NUM－1
IPOINTER TO X CO－ORD IN IPX 3X CO－ORD IN ACI

00215'117908
\(002.16^{\circ} 020508\)
\(00217^{\prime} 122408\) \(90220^{\prime} 100400\)
\(00221^{\prime} 040465\)
08222.024463

0 0223.101112 \(00224^{\prime} 100400\) ต0225'106512 \(00226^{\circ} 000472\) \(09227 \cdot 024464\) -0230.106512 \(00231^{\prime} 040462\) \(00232^{\prime} 020454\) \(00233 \cdot 0240055\) 68234.123700 60235. 625400 \(00236^{\prime} 115000\) \(00237^{\prime} 626456\) \(00240^{\prime} 122460\) 00241 '1 10400 \(00242^{\prime} 040444\) \(00243^{\prime} 024442\) \(00244^{\prime} 101112\) \(00245^{\circ} 100400\) \(00246^{\prime \prime} 106512\) \(00247^{\circ} 006451\) \(06250^{\circ} 024443\) 00251'106512 \(00252^{\prime} 648441\) \(00253^{\circ} \cdot 020433\) \(00254^{\prime} .0240055\) \(00255^{\prime} 123400\) 00256'163000 \(00257^{\circ} 041000\) 00269.034427 \(00261^{\prime} 021400\) \(00262^{\circ} \mathrm{C41001}\) \(00263^{\circ} 010415\) \(00264^{\circ} 028414\) \(00265^{\circ} 026414\) -0266'151400 \(00267^{\prime} 151400\) -9270'122513 \(00271^{\prime} 000507\) 00272'010417 \(00273^{\circ} 010414\) \(00274^{\circ} 034415\) ด0275'126520 \(00276^{\circ} 000711\)

00277•000000 00380. 000000 \(00301^{\prime} 000000\) \(00302^{\prime}\) ด00000 \(00303^{\circ} 035600\) \(00304^{\prime} 035600\) 06305. 600177 00306:000000 \(00307^{\circ} 000000\)
\begin{tabular}{|c|c|c|}
\hline ADD & 8,3 & :POINTER TO Y CO-ORD IN AC3 \\
\hline LDA & B, 1X & ; GET XC BACK \\
\hline SUB & 1,0 & ; XC-XP (RELATIVE \(X\), XR) \\
\hline NEG & 0,0 & \\
\hline STA & Q, TEMP & \\
\hline LDA & 1,ONE27 & 3127 \\
\hline MOVLA & \(0,0, \mathrm{SZ} \mathrm{C}\) & \\
\hline NEG & 0,6 & ; \(A B S\) ( \(X\) R) \\
\hline SUBLA & 6,1, SEC & ; 15 ABS (XR)>127? \\
\hline JMP & FWORD & IYES, TREAT AS LONG BLOCK \\
\hline LDA & 1, MAX & ; IS IS SHORTEST? \\
\hline SUBL\# & \(0,1, \operatorname{SEC}\) & \\
\hline STA & D, MAX & \\
\hline LDA & Q, TEMP & BGET AC® WITH CORRECT SIGN \\
\hline LDA & 1..MSKR & \\
\hline ANDS & 1,0 & ; MASK OFF LEFT BYTE, AND SWAP \\
\hline LDA & 1,0,3 & BY CO-ORD IN ACI \\
\hline MOV & 0,3 & ;RETAIN XR IN LEFT BYTE OF AC3 \\
\hline LDA & D, IY & SGET YC BACK \\
\hline SUB & 1,8 & 3 YC-YP (RELATIVE \(Y\), YR) \\
\hline NEG & 0,8 & ; TO CORRECT A BLUNDER ! \\
\hline STA & Q.tEMP & \\
\hline LDA & 1,ONE27 & 3DO AS WITH X... \\
\hline MOVL\# & 0,0,SZC & \\
\hline NEG & 0,0 & \\
\hline SUBL\# & 0,1,SZC & \\
\hline JMP & FWORD & ;MUST BE LONG BLOCK \\
\hline LDA & 1,MAX & \\
\hline SUBL\# & B,1,SEC & \\
\hline STA & Ø,MAX & \\
\hline LDA & D, TEMP & \\
\hline LDA & 1,.MSKR & \\
\hline AND & \(1, \square\) & ;MASK OFF LEFT BYTE.. \\
\hline ADD & 3,8 & 3...AND ADD IN XR \\
\hline STA & 0,0,2 & ;STORE FULL WORD IN LIST \\
\hline LDA & 3,FANG & \\
\hline LDA & 0,0,3 & ; GET LENGTH OF SIDE NP \\
\hline STA & 0, 1,2 & ;STORE LENGTH IN 2ND WORD \\
\hline ISZ & \(N P\) & \\
\hline LDA & 日, NP & \\
\hline LDA & 1,8BPNT & 3 GET MAX POINTS \\
\hline INC & 2,2 & ;BUMP POINT POINTER \\
\hline INC & 2,2 & \\
\hline SUBL" & 1,0, SNC & ; 1 S NP > MAXP ? \\
\hline JMP & OUT & ;YES, END OF POINT LOOP \\
\hline ISZ & FING & ; NO, CARRY ON \\
\hline ISZ & FANG & \\
\hline LDA & 3,FING & PPOINTER TO IBLOC ARRAY \\
\hline SUBZL & 1,1 & \\
\hline JMP & LOOP & 3ROUND AGAIN WE GO \\
\hline \(\emptyset\) & & \\
\hline 0 & & \\
\hline \(\sigma\) & & \\
\hline 9 & & \\
\hline 35600 & & \%FORTRAN POINT ARRAYS \\
\hline
\end{tabular}

NB: \(\quad \square\)
NP: \(\quad\) B
BPNT: 0
PPNT:
IPX: 35600
IPY: 36600
ONE27: 177
TEMP:
6
FANG: 0


\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \multirow[t]{2}{*}{C-46} \\
\hline 00472.000000 & NY: & \(\bigcirc\) & & \\
\hline 00473'024770 & \multirow[t]{2}{*}{cow:} & LDA & 1,NPA & \\
\hline 90474'0.060025 & & JSR & e.PON2 & ; OUICK ENTRY \\
\hline \(06475^{\circ} \mathrm{C44775}\) & \multirow[t]{6}{*}{PLACE:} & STA & 1,NY & SNOW PUT NX IN ACI \\
\hline \(08476^{\prime} 105000\) & & MOV & 0,1 & ; NOW COMPUTE WHICH BOX \\
\hline \(08477 \cdot 034003-\) & & LDA & 3..143 & STHE POINT NX, NY SHOULD BE \\
\hline 00500.030770 & & LDA & 2,C100 & ; ASSOCIATED WITH, AND PLANT A \\
\hline 00501'102400 & & SUB & 0,0 & ; LINK TO IT IN THE BOX ARRAY. \\
\hline 60592'073101 & & DIV & & ; INPUT: NX IN AC1 \\
\hline 60503.137000 & & ADD & 1,3 & \multirow[t]{2}{*}{; \(\mathrm{AC} 3=A C 3+N X / 100\)} \\
\hline 00584.102400 & & SUB & 0,0 & \\
\hline 00505.024765 & & LDA & \multirow[t]{2}{*}{1,NY} & \\
\hline 00506.073101 & & DIV & & \\
\hline 00507-12712 & & ADDEL & 1,1 & \\
\hline 00510'127120 & & ADDZL & 1,1 & \\
\hline 06511'137900 & & ADD & 1,3 & B \(A C 3=A C 3+(N Y / 100) * 20\) \\
\hline 00512.021480 & & LDA & 0,0,3 & 3FIRST LINK (MAY BE ©) \\
\hline 60513.030752 & & LDA & 2,FREE & 3 FREE SPACE POINTER \\
\hline \(00514^{\circ} 041001\) & & STA & 0,1,2 & 3 PUT OLD LINK IN 2ND WORD \\
\hline 00515.051400 & & STA & 2,0,3 & ; PUT NEW LINK IN BOX ARRAY \\
\hline 00516.024744 & & LDA & 1, NBA & \\
\hline 80517.020744 & & LDA & D, NPA & \\
\hline 00520'101300 & & MOVS & \(\theta\) 0, & \\
\hline 00521'123000 & & ADD & 1,0 & 3COMPOSITE (NPA:NBA) \\
\hline 00522.041000 & & STA & 0,0,2 & 3 PUT IN IST WORD \\
\hline -6523'151400 & & INC & 2,2 & \\
\hline \(00524^{\prime} 151400\) & & INC & 2,2 & \\
\hline 00525.050740 & & STA & 2,FREE & ; UPDATE FREE POINTER \\
\hline \(00526^{.010735}\) & & 1 SZ & NPA & \\
\hline \(00527^{\circ} 014748\) & & DSZ & PCNT & ; DONE IF PCNT=0 \\
\hline 00530.000743 & & JMP & COW & \\
\hline 00531.010735 & & ISZ & PPNTA & \\
\hline 00532.010730 & & ISZ & NBA & \\
\hline 00533.000712 & & JMP & AROUN & \\
\hline \(06534^{\circ} 030731\) & DONE: & LDA & 2,FREE & \\
\hline 06535*050035- & 3 NOW PR & \[
\begin{aligned}
& \text { STA } \\
& \text { EPARE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2,.MS } \\
& \text { R PROD L }
\end{aligned}
\] & 3NEXT FREE LOCATION IST \\
\hline 00536.024726 & & LDA & 1,PRRODz & \\
\hline 00537'134400 & & NEG & 1,3 & \\
\hline \(00540 \cdot 147000\) & & ADD & 2,1 & fPROD LIST START \\
\hline 00541'044006- & & STA & 1,.M6 & ;FIXED POINTER \\
\hline 06542'044007- & & STA & 1,.M7 & :MOVING POINTER \\
\hline \(00543^{\prime} 102000\) & & ADC & \(0 \cdot 0\) & \\
\hline \(00544^{\circ} 040010-\) & & STA & 0, EMPT & :NOTHIMG IN EMPTY LIST \\
\hline \(00545^{\circ} 041000\) & ITR: & STA & \(0,8,2\) & 3SET ALL LINKS TO -1 \\
\hline \(00546^{\circ} 151490\) & & INC & 2.2 & \\
\hline \(00547^{\prime} 175404\) & & INC & 3,3,SZR & \\
\hline 00550.000775 & & JMP & ITR & \\
\hline 60551'0060185 & & JSR & e.TPRN & \\
\hline 00552.0060045 & & JSR & e.DISS & ;DISPLAY ALL BLOCKS \\
\hline 00553.006007s & & JSR & e.MESS & \\
\hline 90554'008561. & & TEXT & & \\
\hline 000012 & & -RDX & 10 & \\
\hline 00555'177076 & & -450 & & \\
\hline 00556.000017 & & 15 & & \\
\hline 000810 & & -RDX & 8 & \\
\hline 00557'002401 & & JMP & eCNTRL & \\
\hline 00560.177777 & CNTRL: & CONTR & & \\
\hline \(00561^{\circ} 050840\) & TEXT: & -TXT & P & \\
\hline 00562'040510 & & & & \\
\hline
\end{tabular}
\(000027^{\circ}\)－END TRANS

\(00041 \cdot 161000\) \(00042^{\circ} 040503\) \(00043^{\circ} 101120\) \(00044^{\prime} 181120\) \(00045^{\circ} 101120\) 00046＇101300 \(00047^{\circ} 034463\) \(00050^{\circ} 163000\) \(00051^{\prime} 040476\) \(00052^{\prime} 006467\) \(00653^{\circ} 900147^{\circ}\) \(00054^{\circ} 020471\) \(00055^{\circ} 034453\) 00056＇163400 \(00057^{\circ} 034455\) 00060＇163000 \(00061^{\circ} 040466\) \(00062^{\circ} 006457\) 00063＇の00147 \(00064^{\circ} 020460\) \(00065^{\circ} 161112\) \(00066^{\circ} 102400\) \(00067^{\circ} 034450\) \(00070^{\circ} 162513\) \(00071^{\circ} 16100 日\) \(00072^{\circ} 040452\) \(00073^{\circ} 101120\) \(00074^{\circ} 101120\) \(00075^{\circ} 101120\) \(00076^{\circ} 101390\) \(00077^{\circ} 034433\) \(00100^{\circ} 163000\) \(00101^{\circ} 840446\) \(00102^{\prime} 096437\) \(00103^{\prime} 60014^{\circ}\) \(00104^{\circ} 020448\) \(00105^{\circ} 034423\) \(00106^{\circ} 163400\) \(00107^{\circ} 034424\) \(00110^{\circ} 163000\) \(00111^{\prime} 046436\) \(06112^{\circ} 006427\) \(00113^{\circ} 000147^{\circ}\) \(00114^{\circ} 020432\) \(00115^{\circ} 101113\) \(00116^{\circ} 000404\) \(00117^{\circ} 102400\) \(00120^{\circ} 048426\) \(00121^{\circ} 000713\) \(00122^{\prime} 820420\) 01123．834420 \(00124^{\circ} 001401\) \(00125^{\prime} 900032\) \(00126^{\circ} 000033\) の日127＇ロ00035 \(00130^{\circ} 000037\) \(06131^{\circ} 000020\) \(000130^{\circ}\)
\(00132^{\circ} 900040\) \(08133^{\circ} 000100\)
\begin{tabular}{|c|c|c|}
\hline MOV & 3，0 & 3 SET TO EDGE \\
\hline STA & Q，TPTY & 3 SAVE GOOD Y \\
\hline MOVZL & 0,0 & ；USE UPPER 5 BITS \\
\hline MOVZL & \(\theta, 0\) & \\
\hline MOVEL & \(\theta, 0\) & \\
\hline MOVS & 0,0 & ；AND SWAP HALVES \\
\hline LDA & 3，8040 & ；HI Y TAG \\
\hline ADD & 3，0 & 1 PUT IN CHAR \\
\hline STA & 0, TPTTMP & ？USE A TEMP \\
\hline JSR & ®CHOUZ & ；SHIP HI Y 5 \\
\hline \multicolumn{3}{|l|}{TPTTMP} \\
\hline LDA & B，TPTY & ；GET Y \\
\hline LDA & 3，B037 & ；MASK \\
\hline AND & 3，0 & ；LEAVE LOlV Y 5 \\
\hline LDA & 3，8140 & 3 LOW Y TAG \\
\hline ADD & 3，8 & 3 SET IN CHAR \\
\hline STA & B，TPTTMP & \\
\hline JSR & ECHOUZ & ；SHIP LOW Y \\
\hline \multicolumn{3}{|l|}{TPTTMP} \\
\hline LDA & \(\theta\) ，TPTX & ；GET \(\times\) VALUE \\
\hline MOVL\＃ & \(\theta, 0\), SZC & \\
\hline SUB & 0,0 & \\
\hline LDA & 3，D1023 & \\
\hline SUBL＂ & 3,0, SNC & \\
\hline MOV & 3，8 & \\
\hline STA & 0，TPTX & \\
\hline MOVZL & \(\theta, \theta\) & 3 AND DO LIKE Y \\
\hline MOVZL & 8,0 & \\
\hline MOVZL & \(\theta, 0\) & \\
\hline MOVS & 0,0 & 3 HI X 5 \\
\hline LDA & 3，B640 & ；HI X TAG \\
\hline ADD & 3， 0 & ；ADD IN TAG \\
\hline STA & B，TPTTMP & \\
\hline JSR & ®CHOUZ & ；SHIP HI X 5 \\
\hline \multicolumn{3}{|l|}{TPITMP} \\
\hline LDA & B，TPTX & ；GET X \\
\hline LDA & 3，B037 & ；GOODIE MASK \\
\hline AND & 3，0 & 3 LEAVE LOW X 5 \\
\hline LDA & 3，E100 & ；LOW X TAG \\
\hline ADD & 3，0 & 3PUT IN TAG \\
\hline STA & 0 ，TPTTMP & \\
\hline JSR & ＠CHOUZ & \\
\hline \multicolumn{3}{|l|}{TPTTMP} \\
\hline LDA & Q，TPMOD & \\
\hline MOVL＂ & \(\theta, \theta\) ，SNC & \\
\hline JMP & TPTEXT & \\
\hline SUB & B，0 & \\
\hline STA & \(\theta\) ，TPMOD & \\
\hline JMP & TPTNRM & \\
\hline LDA & D，TPTACO & ：RESTORE AC® \\
\hline LDA & 3，TPTADD & ；CALL ADDRESS \\
\hline JMP & 1,3 & ；EXIT AT CALL＋1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(00134^{\circ} 900140\) & B140： & 140 & & \\
\hline \(00135^{\circ}\) ロ日旬 & D993： & 093 & & \\
\hline \(08136^{\circ} 901414\) & D780： & 1414 & & \\
\hline の日137＇の日1777 & D1日23： & 1777 & & \\
\hline \(00140^{\circ} \mathrm{DO0006}\) & CHINP： & CHIN & & \\
\hline \(00141^{\prime}\) 日月日日大7＊ & CHOUE： & CHOUT & & \\
\hline ตø142＇0日コロの日 & TPTACD： & \(\emptyset\) & & \\
\hline \(00143^{\prime} 000000\) & TPTADD： & \(\square\) & & \\
\hline \(00144^{\circ} 0096\) の日 & TPTX： & 0 & & \\
\hline \(90145^{\prime} 900800\) & TPTY： & 0 & & \\
\hline \(00146^{\circ} \mathrm{\theta}\) の日ह日大 & TPMOD： & 0 & & \\
\hline \(00147^{\prime}\) の日月の日の & TPTTMP： & 0 & & \\
\hline \(00150^{\circ} 040772\) & CURSIS： & STA & 0, TPTAC & d；SAVE ACb \\
\hline \(00151^{\prime} 054772\) & & STA & 3，TPTAD & PSAVE CALL ADDRESS \\
\hline \(00152^{\prime} 006767\) & & JSR & ECHOUE & ；SET TO ALPHA \\
\hline \(90153^{\circ} 900130^{\circ}\) & & US & & \\
\hline \(00154^{\circ} 906765\) & & JSR & eCHOUZ & 3 TURN ON CURSER \\
\hline \(00155^{\circ} 000126^{\prime}\) & & ESC & & \\
\hline 00156＇006763 & & JSR & PCHOUZ & \\
\hline \(06157^{\circ} 000125^{\circ}\) & & SUBQQ & & \\
\hline \(00160^{\circ} 006760\) & & JSR & QCHINP & 3 GET CHAR \\
\hline \(00161^{\circ} 008144^{\circ}\) & & TPTX & & \\
\hline \(00162^{\circ} 928753\) & & LDA & \(0 . \mathrm{D} 003\) & ；GET LOOP COUNTER \\
\hline \(00163^{\circ} 040764\) & & STA & 0, TPTTM & \\
\hline \(00164^{\circ} 020760\) & & LDA & D，TPTX & ；GET CHAR \\
\hline \(00165^{\prime} 000421\) & & JMP & CURPS & ；STORE CHAR \\
\hline \(00166^{\prime} 906752\) & CURLP： & JSR & GCHINP & SGET HI COORD \\
\hline \(00167^{\circ} 000144^{\circ}\) & & TPTX & & \\
\hline \(00170^{\circ} 006750\) & & JSR & ECHINP & SGET LOW COORD \\
\hline 00171＇gの日145＊ & & TPTY & & \\
\hline \(00172^{\prime} 034736\) & & LDA & 3，B037 & ；MASK \\
\hline \(00173^{\prime} 920752\) & & LDA & 0, TPIY & ：LOW COORD \\
\hline \(00174^{\circ} 163400\) & & AND & 3，3 & 3MASK OFF GARBAGE \\
\hline 90175＇84日750 & & STA & Q，TPTY & ；SAVE FOR LATER \\
\hline \(00176^{\circ} 820746\) & & LDA & 0, TPTX & ；H1 COORD \\
\hline \(00177^{\circ} 163400\) & & AND & 3,0 & ：MASK OFF \\
\hline \(00200^{\circ} 101300\) & & MOVS & \(\theta, 0\) & 3SMAP \\
\hline \(00201^{\prime} 101220\) & & MOVZR & \(\theta, \theta\) & \\
\hline 9ø202＇101220 & & MOVZR & \(\theta=0\) & \\
\hline 00203＇101220 & & MOVER & 0,0 & \\
\hline \(00204^{\circ} 034741\) & & LDA & 3，TPTY & 3LW COORD \\
\hline 00205＊163000 & & ADD & 3,0 & 3 ADD IN LOW COORD \\
\hline \(00206^{\circ} 034735\) & CURPS： & LDA & 3，TPTAD & ICALL ADDRESS \\
\hline \(00207^{\circ} 043400\) & & STA & В， 20,3 & ；STORE VALUE \\
\hline \(00210 \cdot 175460\) & & INC & 3，3 & ；ADUUST ADDRESS \\
\hline \(00211^{\circ} 054732\) & & STA & 3，TPTAD & 3 SAVE UPDATED ADD \\
\hline \(00212^{\prime} 014735\) & & DSE & TPTTMP & I CHECK FOR DONE \\
\hline \(00213^{\circ} 000753\) & & JMP & CURLP & SLDOP IF NOT \\
\hline \(00214^{\prime} 020726\) & & LDA & 0，TPTAC & O迟STORE ACG \\
\hline \(00215^{\circ} 001400\) & & JMP & D， 3 & ；FiETURN \\
\hline & & －END & & \\
\hline
\end{tabular}

\(00044^{\circ} 125112\) 00045＇ 124440 ตク日46＇073301 ต๐047＇125112日の日50．101480 90051＇101ต02 00052．109400 \(00053^{\circ} 024501\) \(00054^{\circ} 125102\) \(00055^{\circ} 100400\) \(00056^{\circ} 024472\) 00057：106400 00060．044500 00061＇165000 00062＇030471 \(00063^{\circ} 102.440\) \(00064^{\prime} 125112\) 00065．124440 \(00066^{\circ} 073301\) \(00067^{\circ} 125112\) \(00070^{\circ} 101400\) 90071＇101002 00072＇1日0408 \(00073^{\circ} 024462\) \(00074^{\circ} 125102\) \(00075^{\circ} 190400\) \(00076^{\circ} 924462\) \(00077^{\prime} 107000\) \(00100^{\circ} 044460\) 09101＇165000 \(00102^{\circ} 930450\) \(00103^{\circ} 102440\) \(00104^{\prime} 125112\) \(00105^{\circ} 124440\) \(00106^{\circ} 073301\) \(00107^{\circ} 125112\) \(001100^{\circ} 101400\) 00111＇101002 \(00112^{\circ} 100490\) \(00113^{\circ} 024441\) \(06114^{\circ} 125102\) \(00115^{\circ} 1\) の日 400 \(00116^{\circ} 024433\) の6117＇197日0日 \(00120^{\circ} 044437\) \(90121^{\prime} 924435\) \(00122^{\prime} 030431\) \(06123^{\prime} 102440\) \(00124^{\circ} 125112\) \(09125^{\circ} 124440\) \(00126^{\circ} 973301\) \(00127^{\circ} 125112\) 00130.101400 \(09131^{\circ} 101002\) ด0132＇100400 \(00133^{\prime} 024422\) \(00134^{\circ} 125102\) \(00135^{\circ} 100400\) \(00136^{\prime} 824421\) \(00137^{\prime} 197000\)
\begin{tabular}{|c|c|c|}
\hline MOVL\＃ & 1，1，SECC & ；－VE YR？ \\
\hline NEGO & 1，1 & ；YES．ABS（YR）－SET CARRY \\
\hline MUL & & ；YR＊SIN IN ACO \\
\hline MOVLA & 1，1，SEC & ；ROUNDED ARITHMETIC \\
\hline INC & \(B, 0\) & \\
\hline MOV & \(\theta, \theta, S \geq C\) & ；RESTORE SIGN \\
\hline NEG & 0,0 & \\
\hline LDA & 1，SINF & \\
\hline MOVL & 1，1，SEC & \\
\hline NEG & 0,0 & 3－VE SIN \\
\hline LDA & 1，XC & \\
\hline SUB & 0,1 & s \(\mathrm{X}=\mathrm{XC}-\mathrm{YR} *\) SIN \\
\hline STA & 1， X & \\
\hline MOV & 3，1 & \\
\hline LDA & 2，CoS & \\
\hline SUBO & \(\theta\) 日， 0 & \\
\hline MOVL\＃ & 1，1，SZC & \\
\hline NEGO & 1，1 & ；SET CARRY IF ACI \(<0\) \\
\hline MUL & & 3 \(X\) R＊COS IN ACD \\
\hline MOVL\＃ & 1，1，SZC & \\
\hline INC & \(\theta, 0\) & \\
\hline MOV & \(0,0,5 z C\) & \\
\hline NEG & \(\theta, \square\) & \\
\hline LDA & 1，CosF & \\
\hline MOVL & 1，1，SEC & \\
\hline NEG & 0,0 & 3－VE COS \\
\hline LDA & 1，X & \\
\hline ADD & 0，1 & ； \(\mathrm{X}=\mathrm{X}+\mathrm{XR} * \operatorname{COS}\) \\
\hline STA & 1，X & 3 GLOBAL X CO－ORD \\
\hline MOV & 3，1 & ；XR \\
\hline LDA & 2，SIN & \\
\hline SUBO & 0,0 & \\
\hline MOVL\＃ & 1，1，SZC & \\
\hline NEGO & 1，1 & \\
\hline MUL & & 3 \(\mathrm{XR} *\) SIN \\
\hline MOVL\＃ & 1，1，SZC & \\
\hline INC & \(\theta, 0\) & \\
\hline MOV & \(0,0,5 Z C\) & \\
\hline NEG & 0,0 & \\
\hline LDA & 1，SINF & \\
\hline MOVL & 1，1，SZC & \\
\hline NE．G & \(\theta, 0\) & \\
\hline LDA & 1，YC & \\
\hline ADD & 0,1 & ；YC＝YC＋XR＊SIN \\
\hline STA & 1，Y & \\
\hline LDA & 1，YR & \\
\hline LDA & 2， \(\cos\) & \\
\hline SUBO & 0,0 & \\
\hline MOVL\＃ & 1，1，SZC & \\
\hline NEGO & 1，1 & \\
\hline MUL & & \\
\hline MOVL\＃ & 1，1，SZC & \\
\hline INC & 0,0 & \\
\hline MOV & \(\theta, \theta, S E C\) & \\
\hline NEG & 8,8 & － \\
\hline LDA & \(1, \mathrm{COSF}\) & \\
\hline MOVL & 1，1，SZC & \\
\hline NEG & \(\theta, 0\) & \\
\hline LDA & 1，Y & \\
\hline ADD & \(\theta\) & \(\boldsymbol{Y}=\mathbf{Y}+Y \mathrm{R} * \operatorname{COS}\) \\
\hline
\end{tabular}




ต0132．04R765 00133．101112 Q0134．190a日の ดด \(135^{\prime \cdot} 030765\) 00136＇1264日6 \(00137^{\prime \prime} 142513\) \(00140 \cdot 124001\) 0.41 .073101 0．142．101112 \(00143^{\prime} 125400\) \(0144^{\prime} \cdot 344751\) \(00145^{\prime} 020745\) \(06146^{\circ} 924746\) \(00147^{\prime} 122400\) \(00150 \cdot 040755\) Q0151．101112 \(00152^{\prime} 100400\) 00153．126400 \(08154^{\prime} 142513\) \(00155^{\circ} 124001\) \(00156^{\circ} 073101\) \(00157 \cdot 101112\) \(06160 \cdot 125400\) \(00161^{\prime} 044735\)
\(90173^{\prime} 175112\)
90174'174400
\(00175^{\circ} 0249175\)
\(00176^{\circ} 166423\)
\(00177^{\prime} 602478\)
00200.030716
90201'924465
602の2'19244日
\(00203^{\circ} 125112\)
\(00204^{\circ} 124440\)
ø0205'073301
00206'125112
\(00207^{\prime 101400}\)
\(00210^{\circ} 101002\)
\(00211^{\prime} 100480\)
\(80212^{\prime} 024713\)
\(00213^{\prime} 1251\) ต2
\(00214 \cdot 109400\)
\(00215 \cdot 115000\)
00216'024447
\begin{tabular}{|c|c|c|}
\hline LDA & \(\theta, X\) & ；GET COORDS OF POINT \\
\hline LDA & 1，Y & 3 UNDER CONSIDERAIION \\
\hline LDA & 3，XA & \\
\hline SUB & 3,0 & \\
\hline STA & B，XG & ；REL．TO EDGE START \\
\hline LDA & 3，YA & \\
\hline SUB & 3，1 & \\
\hline STA & \(1, Y \mathrm{G}\) & \\
\hline JSR & YTGET & ；LOCAL，TRANSFORMED Y \\
\hline MOVL\＃ & 3，3，S \(\leq \mathrm{C}\) & \\
\hline NEG & 3，3 & ；ABS YT \\
\hline LDA & 1，IAACC & \\
\hline SUBZ & 3，1，SNC & ；CHECK FOR NORMAL DIST． \\
\hline JMP & ESVP3 & INOT NEAR；EXI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline L．DA & 2，SIN & ；NOW FOR XT \\
\hline LDA & 1，YG & \\
\hline SU80 & 0,0 & \\
\hline MOVL\＃ & 1，1，SZC & ：SET CARRY IF NEG \\
\hline NEGO & 1，1 & SAND MAKE ACI＋VE \\
\hline MUL & & \\
\hline MOVL\＃ & 1，1，S CC & \\
\hline INC & \(\theta, 0\) & ：ROUND UP \\
\hline MOV & \(0,0,5 z C\) & ；CARRY？ \\
\hline NEG & 0,0 & ；RESTORE SIGN \\
\hline LDA & 1，SINF & \\
\hline MOVL & 1，1，SZC & SSIGN OF SIN \\
\hline NEG & 0,0 & \\
\hline MOV & B，3 & SSHUNT INTO AC3 \\
\hline LDA & \(1, \mathrm{XG}\) & \\
\hline
\end{tabular}
```

```
```

STA 0,COSF ; COS SIGN FLAG

```
```

```
```

STA 0,COSF ; COS SIGN FLAG

```
```

```
```

STA 0,COSF ; COS SIGN FLAG

```
```



```
```

3

```
```

3

```
```

3
;GET TRANSFORMED CO-ORDS OF X,Y
;GET TRANSFORMED CO-ORDS OF X,Y
;GET TRANSFORMED CO-ORDS OF X,Y
;COMPUTES: XT=XG*COS(A)+YG*SIN(A)
;COMPUTES: XT=XG*COS(A)+YG*SIN(A)
;COMPUTES: XT=XG*COS(A)+YG*SIN(A)
YT=YG*COS(A)-XG*SIN(A)
YT=YG*COS(A)-XG*SIN(A)
YT=YG*COS(A)-XG*SIN(A)
LDA O,X ;GET COORDS OF POINT
LDA O,X ;GET COORDS OF POINT
LDA O,X ;GET COORDS OF POINT
LDA I,Y BUNDER CONSIDERATION
LDA I,Y BUNDER CONSIDERATION
LDA I,Y BUNDER CONSIDERATION
LDA 3,XA
LDA 3,XA
LDA 3,XA
SUB 3,0
SUB 3,0
SUB 3,0
STA B,XG ;REL. TO EDGE START
STA B,XG ;REL. TO EDGE START
STA B,XG ;REL. TO EDGE START
LDA 3,YA
LDA 3,YA
LDA 3,YA
SUB 3,1
SUB 3,1
SUB 3,1
STA 1,YG
STA 1,YG
STA 1,YG
JSR YTGET ;LOCAL, TRANSFORMED Y
JSR YTGET ;LOCAL, TRANSFORMED Y
JSR YTGET ;LOCAL, TRANSFORMED Y
3

```
3
```

3

```
```

;

```
```

;

```
```

;

```
\(00162^{\prime} 020741\)
\(00163^{\prime} 024741\)
\(00164^{\circ} 034727\)
\(0165^{\circ} 162409\)
\(00166^{\prime} 049477\)
\(09167^{\prime} 934725\)
00170'166400
の日171'044475
ต®172'004477

00217．030676 ด0220． 102446 0．2221＇125112 \(00222^{\prime} 124440\) \(00223 \cdot 073301\) \(00224^{\circ} 125112\) 00225＇101400 \(00226^{\circ} 101002\) 00227＇100400 \(00230^{\circ} 024667\) \(00231^{\prime} 125102\) 00232．100400 \(08233^{\prime} 117000\)
\(00234^{\prime} 024666\)
\(00235^{\prime} .0290175\) 00236＇10640日 0．237＇166433 \(00240^{\circ} 062427\) \(60241^{\prime} 116433\) \(06242^{\prime} 602425\)
\(00243^{.036425}\)
\(00244^{\circ} 020647\)
\(00245^{\prime} 024644\)
\(00246^{\prime} 123220\)
\(00247^{\circ} 043400\)
\(00250^{\circ} 020644\)
\(00251^{\prime} \cdot 824641\)
00252＇12322の
\(00253^{\circ} 043461\)
\(00254^{\circ} 024645\)
\(00255^{\prime} 152520\)
\(00256^{\prime} 146400\)
09257．030623
\(00260^{\circ} 020648\)
\(00261^{\prime} 005403\)
00262．062405
\(00263^{.056405}\)
\(00264^{\circ} 002403\) －0265＇ดの日の日 － \(2266^{\circ}\) ロ日0．000 \(00267^{\circ}\) 0000000 \(00270^{\circ} 000024^{\circ}\)
```

```
    LDA 2,COS
```

```
    LDA 2,COS
    SUBO B,0
    SUBO B,0
    MOVL# 1,1,SEC
    MOVL# 1,1,SEC
    NEGO 1,1
    NEGO 1,1
    MUL
    MUL
    MOVL# 1,1,SZC
    MOVL# 1,1,SZC
    INC B,0
    INC B,0
    MOV 0,0,SZC
    MOV 0,0,SZC
    NEG }0,
    NEG }0,
    LDA 1,COSF
    LDA 1,COSF
    MOVL 1,1,SZC
    MOVL 1,1,SZC
    NEG 0,0
    NEG 0,0
    ADD 0,3 ;ADD TO PREVIOUS RESULT
    ADD 0,3 ;ADD TO PREVIOUS RESULT
    ;LOCAL, TRANSFORMED X NOW IN AC3
    ;LOCAL, TRANSFORMED X NOW IN AC3
    J
    J
    LDA 1,L
    LDA 1,L
    LDA B,.IACC
    LDA B,.IACC
    SUB B,1 BL-5
    SUB B,1 BL-5
    SUBZ# 3,1,SNC
    SUBZ# 3,1,SNC
    JMP ESVP3 ;OFF THE END
    JMP ESVP3 ;OFF THE END
    SUBZ# 0,3,SNC
    SUBZ# 0,3,SNC
    JMP ESVP3 ;DITTO
    JMP ESVP3 ;DITTO
;WE HAVE A HIT!
;WE HAVE A HIT!
        LDA 3, EHIT3R
        LDA 3, EHIT3R
    LDA 0,XA
    LDA 0,XA
    LDA 1,XB
    LDA 1,XB
    ADDZR 1,8
    ADDZR 1,8
    STA }0,B,3\mathrm{ ;STORE X MID-POINT
    STA }0,B,3\mathrm{ ;STORE X MID-POINT
    LDA O,YA
    LDA O,YA
    LDA 1,YB
    LDA 1,YB
    ADDZR 1,0
    ADDZR 1,0
    STA 0, Q1,3 ;STORE Y MID-POINT
    STA 0, Q1,3 ;STORE Y MID-POINT
    LDA 1,NP
    LDA 1,NP
    SUBZL 2,2
    SUBZL 2,2
    SUB 2,1
    SUB 2,1
    LDA 2,AC2
    LDA 2,AC2
    LDA O,NB
    LDA O,NB
    JSR 3,3 :HITEEXIT
    JSR 3,3 :HITEEXIT
    JMP ESVP3 BCARRY ON SCAN
    JMP ESVP3 BCARRY ON SCAN
    STA 3,OHIT3R INEW RETURN ADDRESS
    STA 3,OHIT3R INEW RETURN ADDRESS
    JMP ESVP3 ;CARRY ON
    JMP ESVP3 ;CARRY ON
XG: Ø
XG: Ø
YG: ध
YG: ध
SVP3: G
SVP3: G
HIT3R: HIT3
HIT3R: HIT3
3
3
3TO CALCULATE YT
3TO CALCULATE YT
, INPUT: YG IN ACI
, INPUT: YG IN ACI
YTGET: STA 3,YTSAV
YTGET: STA 3,YTSAV
LDA 2,COS
LDA 2,COS
SUBO 0,0
SUBO 0,0
MOVL# 1,1,SZC
MOVL# 1,1,SZC
NEGO 1,1
NEGO 1,1
MUL
MUL
MOVL. 1,1,SZC
MOVL. 1,1,SZC
INC 0,0
INC 0,0
MOV B,O,SEC
MOV B,O,SEC
NEG 0,0
NEG 0,0
LDA 1,COSF
LDA 1,COSF
MOVL 1,1,SEC
```

```
MOVL 1,1,SEC
```

```
\(00271^{\circ} 054435\)
\(00272^{\prime}\) ด3 3623
\(00273^{\prime} 102440\)
00274'125112
00275'124440
\(00276^{\circ} 373361\)
00277'125112
\(00300^{\circ} 101400\)
\(00301^{\prime} 101\) øøट
00302 '100400
0.3393'024614
\(00304^{\circ} 125102\)
```

00305'106400
80306'115月98%
00307'@24756
00310.030606
00311'102440
00312'125112
00313'124448
00314'073301
00315'125112
00316%101400
00317'101902
00320.100480
00321'024604
@0322'1251日2
00323'108400
00324'116400
00325'002481
00326'000000

```


```

 MOV B,3
    ```
    MOV B,3
    LDA 1,XG
    LDA 1,XG
    LDA 2,SIN
    LDA 2,SIN
    SUBO 0,0
    SUBO 0,0
    MOVL# 1,1,SZC
    MOVL# 1,1,SZC
    NEGO 1,1
    NEGO 1,1
    MUL
    MUL
    MOVLA 1,1,SZC
    MOVLA 1,1,SZC
    INC g,0
    INC g,0
    MOV }0,0,SZ
    MOV }0,0,SZ
    NEG }0,
    NEG }0,
    LDA 1,SINF
    LDA 1,SINF
    MOVL 1,1,SE्टC
    MOVL 1,1,SE्टC
    NEG 暗片
    NEG 暗片
    SUB O,3 SSUBTRACT FROM PREVIOUS RESULT
    SUB O,3 SSUBTRACT FROM PREVIOUS RESULT
    JMP EYTSAV
    JMP EYTSAV
YTSAV:0
YTSAV:0
- END
```

- END

```


\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & ；INPUT： & \multicolumn{2}{|l|}{ACG \(=\) FIRST BLOCK} \\
\hline & ； & ACl & ＝NUMEER OF BLOCKS \\
\hline & 3 & AC2 & ＝FIRST CORE ADDRESS \\
\hline & ； & & \\
\hline & ；OUTPUT： & AC1 & ＝ERROR CODE \\
\hline & \multicolumn{3}{|l|}{；} \\
\hline 00137.054430 & CLINC： & STA & 3，SAC 3 \\
\hline \(08140 \cdot 152400\) & & SUB & 2，2 \\
\hline \(00141^{\prime} 000417\) & & JMP & CHKZ \\
\hline \(00142^{\prime} 054425\) & RLINC： & STA & 3，SAC3 \\
\hline \(00143^{\prime} 034430\) & & LDA & 3，D2R \\
\hline \(00144^{\prime} 900415\) & & JMP & READZ \\
\hline \(00145^{\circ} 054422\) & WLINC： & STA & 3，SAC 3 \\
\hline \(00146^{\circ} 034423\) & & L．DA & 3，D1 W \\
\hline \(00147^{\prime} 054510\) & & STA & 3，D1XX \\
\hline \(00150^{\circ} 044501\) & & STA & 1．D2XX \\
\hline 00151.050417 & & STA & 2，SAC2 \\
\hline \(00152^{\prime} 904423\) & & JSR & DO \\
\hline \(00153^{\prime} 1324476\) & RAW： & LDA & 1，D2XX \\
\hline \(00154^{\circ} 122400\) & & SUB & 1，0 \\
\hline \(00155^{\prime} 836413\) & & LDA & 2，SAC2 \\
\hline 日0156．151113 & & MOVL\＃ & 2，2，SNC \\
\hline 00157＇150800 & & COM & 2，2 \\
\hline \(00160^{\circ} 034473\) & CHKZ： & LDA & 3，D2C \\
\hline \(00161^{\circ} 054470\) & READZ： & STA & 3，D2XX \\
\hline \(00162^{\circ} 034410\) & & LDA & 3，D1RC \\
\hline \(00163^{\circ} 054474\) & & STA & 3，D1 XX \\
\hline \(00164^{\circ} 004411\) & & JSR & DO \\
\hline \(00165^{\circ} 969274\) & EXIT： & NIOC & LINC \\
\hline 00166 002401 & & JMP & e SAC3 \\
\hline \(00167^{\circ} 900000\) & SAC3： & 0 & \\
\hline \(00170^{\circ} 000000\) & SAC2： & 0 & \\
\hline \(08171^{\circ} 921000\) & D1W： & LDA & \(0,0,2\) \\
\hline \(00172^{\circ} 900750\) & D1RC： & JMP & READ－D \(1 \times X, 1\) \\
\hline \(00173^{\prime} 132512\) & D2R： & SUBL\＃ & \(1,2, S Z C\) \\
\hline \(00174^{\circ} 900008\) & RETU： & 0 & \\
\hline 00175＇054777 & DO： & STA & 3，RETU \\
\hline \(00176^{\circ} 675474\) & & DIB & 3，LINC \\
\hline の日177＇175112 & & MOVL\＃ & 3,3, SZC \\
\hline 00290＇090446 & & JMP & E4 \\
\hline 00201＇151113 & & MOVL\＃ & 2，2，SNC \\
\hline 00202＇600410 & & JMP & FINDF \\
\hline ロ0203＇158000 & & COM & 2，2 \\
\hline 00204＊176400 & FINDR： & SUB & 3，3 \\
\hline 00205＊162006 & & ADC & 3,6 \\
\hline 00206 066374 & & NIOP & LINC \\
\hline \(00207^{\prime} 004467\) & & JSR & GETBL \\
\hline \(00210^{\circ} 101401\) & FINDN： & INC & \(0,0,5 K P\) \\
\hline 00211＇000776 & & JMP & － 2 \\
\hline 00212．960174 & FINDF： & NIOS & LINC \\
\hline 6ம213＇004463 & & JSR & GETBL \\
\hline 60214＊000777 & & JMP & －-1 \\
\hline \(00215^{\prime 1} 175224\) & & MOVZR & 3，3，SZR \\
\hline \(00216^{\prime} 000766\) & & JMP & FINDR \\
\hline 00217＇125005 & FOUND： & MOV & 1，1，SNR \\
\hline 00220＇002754 & & JMP & eRETU \\
\hline 00221＊166000 & & ADC & 3，1 \\
\hline 00222＇040474 & & STA & 0, TEMP1 \\
\hline 00223 644474 & & STA & 1．TEMP2 \\
\hline 00224＊ 024476 & & LDA & 1．SIZE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 09225＊147900 & & ADD & 2，1 \\
\hline อロ226＇®0ŋ431 & & JMP & D \(1 \times \mathrm{X}\) \\
\hline 08227．063674 & READ： & SKPDN & LINC \\
\hline 9ค230．008777 & & JMP & ．-1 \\
\hline 0．231＇．063474 & & SKPEN & LINC \\
\hline 06232＇098416 & & JMP & RDAT \\
\hline \(09233^{\prime} 068474\) & R．CHK ： & DIA & B，LINC \\
\hline 90234＇116495 & & SUB & 0,3, SNR \\
\hline \(00235^{\prime} 000434\) & & JMP & SCHK \\
\hline ด0236＊＊24465 & E1： & LDA & 1，C1 \\
\hline \(00237^{\prime} 060483\) & & JMP & －+3 \\
\hline 08240．034462 & E2： & LDA & 3，SIZE \\
\hline \(09241 \cdot 924463\) & & LDA & 1，C2 \\
\hline \(00242^{\prime} 026454\) & & LDA & 0 ，TEMP1 \\
\hline \(00243^{\circ} 000722\) & & JMP & EXIT \\
\hline \(00244^{\prime} 024461\) & E3： & LDA & 1，C4 \\
\hline 00245＇099720 & & JMP & EXIT \\
\hline \(00246^{\prime} 024460\) & E4： & LDA & 1，C8 \\
\hline \(00247^{\prime} 000716\) & & JMP & EXIT \\
\hline 09250＇060474 & RDAT： & DIA & B，LINC \\
\hline 00251＇132512 & D2XX： & SUBL＂ & 1，2，SZC \\
\hline Ø0252＇041000 & & STA & \(\theta, 0,2\) \\
\hline ๑0253＊ロ日に402 & D2C： & JMP & －＋2 \\
\hline 00254＊061074 & WDAT： & DOA & 0 ，LINC \\
\hline \(00255^{\circ} 117000\) & BLOOP： & ADD & 0,3 \\
\hline \(09256^{\circ} 151490\) & & INC & 2，2 \\
\hline 06257＇021600 & DIXX： & LDA & \(0,0,2\) \\
\hline 98260．063974 & & DOC & \(0, L I N C\) \\
\hline 80261．063674 & & SKPDN & LINC \\
\hline 00262＇000777 & & JMP & ．－1 \\
\hline \(09263^{\circ} 063474\) & & SKPBN & LINC \\
\hline \(00264^{\circ} 006770\) & & JMP & WDAT \\
\hline 00265＊075074 & WCHK： & DOA & 3，LINC \\
\hline \(00266^{\circ} 075474\) & & DIB & 3，LINC \\
\hline 00267＊175094 & & MOV & 3，3，SZR \\
\hline 00270＇000756 & & JMP & E4 \\
\hline \(00271^{\prime \prime} 132414\) & SCHK： & SUB\＃ & 1，2，SZR \\
\hline 00272＇000746 & & JMP & E2 \\
\hline \(00273^{\prime} 920423\) & NEXT： & LDA & \(0, T E M P 1\) \\
\hline 00274＊ 024423 & & LDA & 1，TEMP2 \\
\hline 日0275＇000713 & & JMP & FINDN \\
\hline 00276＊＊54426 & GETBL： & STA & 3，TEMP1 \\
\hline 00277＇034421 & & LDA & 3，MLIM \\
\hline \(00300^{\circ} 162432\) & & SUBZ\＃ & 3,0, SZC \\
\hline 00301＇000405 & & JMP & ViAIT \\
\hline 90302．034417 & & LDA & 3，PLIM \\
\hline 00303＊162032 & & ADCZ \({ }^{\text {a }}\) & \(3,0, S Z C\) \\
\hline 00364：306740 & & JMP & E3 \\
\hline 90305 974474 & & DIA & 3）LINC \\
\hline 00306.963474 & WAIT： & SKPBN & LINC \\
\hline 90307．600777 & & JMP & WAIT \\
\hline 00310．663774 & & SKPDE & LINC \\
\hline 00311＊．600774 & & JMP & WAIT－1 \\
\hline \(00312^{\circ} 074474\) & & DIA & 3，LINC \\
\hline \(00313^{\circ} 116543\) & & SUBOL & 6，3，SNC \\
\hline \(00314^{\circ} 910402\) & & ISZ & TEMPI \\
\hline \(00315^{\prime} 902401\) & & JMP & OTEMP1 \\
\hline \(00316^{\circ} 000000\) & TEMP1： & \(\bigcirc\) & \\
\hline \(00317^{\circ} 000008\) & TEMP2： & 0 & \\
\hline 00320．177770 & MLIM： & 17777 & \\
\hline
\end{tabular}
\(00321^{\circ} 008620\) PLIM： 620
ロ032． 0 ロッ400 SIZE： 400
の0323＇0の日クロ1 C1：
ตว324．0329ø2 C2：

2

4
00326．900210 C8：
10
－END

```

00027'024420
00030'122400
00031'101112
00032'100400
00033.024000-
00034'106512
00035'0004404
00036.034412
00837.0244412
00040'001403
00041'175400
00042'010407
00043.008745
00044.0344404
00045'001402
00046'003000
00047.000080
00050.000000
00051'000000

```



\(0037^{\prime} 900800\) இ0320 ロロの日のด 00321＇ロの0000 00322．000052 \(00323^{\prime} 909060\) \(09324^{\circ} 900848\)

POINT：\(\quad\)
PPNT：Ø
SAV2：Ø
AST：\(\quad{ }^{*}\)
ZERO：＂\(\quad\) O
BLANK：＂
B
BTO PRINT MESSAGE ON SCREEN AT
3A SPECIFIC LOCATION
3
3 JSR e．MESS
3 TEXT（ADDRESS OF TEXT）
3 \((-) X\)（ \(X, Y\) LOCATION OF MESSAGE
；\(Y\) START［VALUES，NOT
3 ADDRESSESJ．NEGATIVE \(X\) DRAWS
3 A LINE UNDER TEXT）
；
FLAG1：
MSAV：O
BPNT：\(\quad \square\)
COUNT：
MESS：LDA \(\theta, \theta, 3\)
MOVZL \(\theta, \theta\) ICREATE BYTE POINTER
STA \(\quad \theta\) ，BPNT
LDA \(\theta, 1,3\) ；
MOVL\＃\(\theta, \theta, S E=C\)
NEG \(\theta, \theta\) ，SKP
SUB 1,1, SKP
SUBEZ 1，1
STA 1, FLAG1
LDA \(1,2,3\) ；
STA 3，MSAV
STA \(B\) ，XSAV ；REMEMBER \(X\) \＆Y FOR
STA \(1, Y S A V\) ；LATER PLOTTING OF LINE
JSR E．PLTS 3 INITIALISE BEAM
0
JSR E．ALPH
SUB \(\theta, \theta\)
STA \(\theta\) ，COUNT
IROUTINE TO PICK BYTES UNTIL ZERO BYTE FOUND
PICK：LDA 2，BPNT
ISZ BPNT
MOVZR 2,2
LDA \(\quad 0, \theta, 2\)
LDA 2．．MSKR
MOV \(\theta, \theta, S Z C\)
MOVS \(\theta, \theta\)
AND \(2, \theta\), SNR
JMP RET
ISZ COUNT
JSR ध．PRN2 ：SEND OUT CHARACTER
JMP PICK
RET：LDA B，FLAGI
MOV \(\boxminus, D, S N R\)
JMP PAST
；TO PLOT LINE UNDER TEXT
LDA \(1, Y S A V\)
LDA \(\theta, G A P\)
SUB \(\quad \theta, 1\)
STA 1，YSAV


ద0377.066005\$ \(00400^{\circ} \mathrm{0} 0 \mathrm{cog} 8\) 00401 '102400 \(00482^{.024416}\) \(06403^{\prime} .638725\) \(484^{\circ} 073361\) bab - \(407^{-024407}\) 00410'006035s 00411.000001 - 412 Moseor \(00414^{\prime} 001403\) 00415 000000 \(0416^{\circ} 000000\) \(0041^{\circ}\).000003 09420'000016

0, XSAV

LDA \(1, \mathrm{Nl} 4\)
2, COUNT

0, XSAV
1,0
1 , YSAV
e.PLTS : SECOND END
e. ALPH

3,MSAV
3.3 ;EXIT
; GAP BETWEEN TEXT AND LINE ;WIDTH OF ONE LETTER
;

J
JSR e.AXIS
(-) L (LENGTH)
(-) \(X\) (STARTING \(X\)
(ALL ARGUMENTS ARE VALUES, NOT ADDRESSES)

IF L HAS - SIGN, AXIS WILL BE PARALLEL
;TO Y AXIS; OTHERWISE PARALLEL TO X AXIS
;
;IF X HAS - SIGN, TICKS WILL BE BELOW
AAXIS, OTHERWISE ABOVE
3
LDA \(\theta, 0,3\)
MOVLA \(\theta, \theta, S Z C\)
NEG - B, I, I, SKP
SUBZL 1,1
STA \(1, F L O G \quad x / Y\) FLAG
STA B,L

JMP ABOVE
NEG \(\quad 0,0\)
LDA I.TICB
JMP GETY
1,IICA
STA O. XN
\(1,2,3\)
STA \(1, Y N\)

MOVER 2,2
MOVZR 2.2

```

00544'000000
00545'の0日の日に
00546'000に日も
00547'106400
00550.107900
00551'030775
00552'151905
00553'000404
00554'111000
00555'121000
90556.145000
00557'0020055
TCNT: Ø
DIVIS:
FLOG: Ø
TICB: SUB 0,1
TICA: ADD 0,l
PLOT: LDA 2,FLOG
MOV 2,2,SNR ;X OR Y AXIS?
JMP JOE
MOV 0,2
MOV 1,0
MOV 2,1
JMP e.PLTS
;
3TO GET A TTY CHARACTER
3 JSR E.GETT
;OUTPUT: CHARACTER IN ACG
3
GET: SKPDN TTI
JMP --1
DIAS 0,TTI
MOVS \emptyset,\varnothing
MOVEL 0,0
MOVZR B,O
MOVS 0,0
JMP 0,3
3
3
SDECIMAL TO BINARY ROUTINE (ALMOST
3IDENTICAL TO DATA GENERAL'S)
3 JSR E.DBIN
3OUTPUT: \# IN ACI
3
DB0: STA 3,DESAV
90570.654443
08571'000403
00572'054441
00573.006015-
00574'126400
00575'044437
00576'044437
00577.g24437
00600.106405
00601'000405
00602'024435
00603'106404
00604*000404
00605'010427
00606*006003-
80607'006015-
00610'006003-
90611'066020-
00612'000405
00613*024422
9@614*094411
80615'044420
80616'908771
80617'024416
00620.125120
06621'014413
00622'125221
99623'124648
00560.063610
00561.000777
00562'060510
00563.181300
00564*101120
00565'101220
00566'10130日
00567'001400

```


```

00673.624436
00674'1518092
00675*151360
08576%133400
00677'113000
00700'151002
00701'151300
06702'051400
00703'\Omega14425
00704'000415
007@5'030421
00706'155220
00707'031400
00710'1510日2
00711'000404
00712'152400
00713'051460
00714'002411
00715'924004S LEFT:
00716'133400
00717'051400
00720.002405
00721'006015- MARK:
00722'006003-
00723'000741
00724'000015
90725'\emptyset000ø0
00726'000000
00727'090000
00730.000000
00731'177400

```



3

```

00143'040506
MS08
. TXT
*FA
00144'046111
00145'042105
IL
ED
00146'051454
00147'040524
00158.952122
00151'040440
00152'026124
00153'026520
00154*000061
00155*046102
00156'041517
00157.020113
00160.042527
00161'043511
O
00162.052110
00163.846440
00164.942117
00165'0431111
00166%041511
00167'052101
00170.047511 IO
I
00171'g00116
00172'047584
00173'054440
00174.052517
00175'053440
80176*051511
00177'020110
00200'047524
00201'046448
00202*046125 UL
00203'044524 TI
00284'846120
PL
00205'020131 Y
00206'046450 (M
00207'020051)
00210'051117 OR
00211.042040 D
00212*053111 IV
B0213'042111 ID
00214'020105
E
00215.042050 CD
00216.020051)
00217'044124 TH
00220.020105 E
0ø221*g42527 WE
00222'043511 IG
00223.052110 HT
0日224.020123 S
00225'020077
?
00226*000000
00227'052515
00230.052123
MS05: .TXT *MU
00231.841040
ST
B
00232.020105 E
00233.020115 M
00234'051117 OR
00235'042040
D

```
```

80236'ซ0004ด
00237'044127
00240.052101
MS06: -TXT *WH
AT
00241'044449 I
00242'020123
80243'044124
00244'020105
00245'040506
00246'052103
00247'051117
00250.037440
00251.000040
00252*047503
06253'056115
00254*042514
g0255'042524
00256.026104
00257.053440
00260.044501
00261'044524
00262'043516
00263'040040
00264'041440
00265'647117
00266*051124
R
00267'000000

- END

```
－TITL FORD
3FORCE－DISPLACEMENT LAW FOR ALL ICONTACT POINTS
－EXTD •M1，．M5，．NUM，．EMPT，．MSKR
－EXTD ．VEC，．SCAL，．PLTS，．SPRP，．PRES
－EXTD ．MESS，．GETT，IIPRN
－EXTD－ROT，．UREP，，TREC
－EXTD ．NVEC，．PAGE，．ALPH，．HEAVY
－EXTN CONTR
－ENT ．FORD，．TIME，MU
－ZREL
\(98000-900000\)
\(00001-060033^{\circ}\)
MU：
－FORD：
の日もの0ロ FORD
－KDN： 1 SNORMAL DAMPING FACTOR
－KDS： 1 ；SHEAR DAMPING FACTOR 90003－000001 00004－800090 ロ0005－00日の日の 00006－000000 00010－000980 00011－900000 00012－000000 00013－900日0の 00014 －000000 \(00015-000000\) の日の16－ロロロの日の 00017－90000の日曰020－0．0日の日 ロ0021－00の日のロ ロのロこ2－øロロロのロ
 00024－000672．
\(00000^{\circ} 102440\) 00001＇ 050420 00002． 0274 ด \(06003^{\circ} 033401\) 00004＇125112 \(00005^{\circ} 124460\) \(00006^{\circ} 151112\) \(00007^{\circ} 150460\) \(00010^{\circ} 673301\) \(00011^{\circ} 0300055\) ต0012＇1437月0 \(00013^{\circ} 125300\) \(09014^{\circ} 147400\) 00015＊107002 \(00016^{\circ} 124400\) 00017 030492 00020．001402 ロロ021．ロロロロロの 90022＇000000 98023＇ 090000 \(00024^{\circ} 000000\) 00025 000000 \(00026^{\circ} 000000\) 90027 000000 00030． 000000 \(00031^{\circ} 000000\)

YCP：\(\quad 0\)
DELS：\(\quad\)
DELN：Ø
FN：\(\quad \square\)
FDSAV：Ø
LOCPR：\(\theta\)
LOCBL：\(\emptyset\)
LOCBP：Ø
OLINK：\(\theta\)
COUNT：\(\emptyset\)
PRLNK：Ø
COS：\(\quad 0\)
SIN：\(\theta\)
COSF：Ø
SINF：\(\quad \emptyset\)
－TIME：DYNFAC －NREL
MULS：SUBO \(B, \theta\)
STA 2，SV2
LDA \(\quad 1,0,3\) 3A
LDA \(\quad 2,1,3\) ； 8
MOVL＂ \(1,1, S Z C\)
NEGC 1,1
MOVL＂2，2，SZC
NEGC 2，2
MUL
LDA 2．，MSKR
ANDS 2,8 TTAKE MIDDLE 8 BITS
MOVS 1,1
AND 2,1
ADD \(0,1, S Z C\)
NEG 1,1
LDA 2，SV2
JMP \(2,3 \quad 3 A * B\) IN ACI

SV2：\(\quad\)
；
XDL：\(\quad \square\)
YDL：\(\quad \square\)
XDP：\(\quad \square\)
YDP：G
DAP：\(\quad\)
DAL：\(\quad \square\)
DXL：\(\quad \square\)
DYL：\(\quad \varnothing\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 98032＇900318． & NEXTR： & NEXTB & & & \\
\hline \(00933^{\circ} 954811^{-}\) & FORD： & STA & 3，FDSAV & & \\
\hline \(00034^{\circ} 0340025\) & & LDA & 3，．M5 & ；INITIAL P & PROD POI \\
\hline \(00035^{\circ} 054012-\) & & STA & 3，LOCPR & & \\
\hline 00936．054015－ & & STA & 3，OLINK & & \\
\hline 90037．0200035 & & LDA & g，，NUM & & \\
\hline 90040＇840016－ & & STA & B，COUNT & & \\
\hline \(00041^{\circ} 0349015\) & & LDA & 3，．M1 & 3INITIAL B & BLOCK D \\
\hline 90042＇054013－ & & STA & 3，LOCBL & & \\
\hline 90043＊936012－ & LOOP： & LDA & 3，eLOCPR & & ST WORD \\
\hline 00044＇175112 & ENTRY： & MOVL＂ & \(3,3, S Z C\) & 3 LIST TAIL & FLAG？ \\
\hline \(00045^{\prime} 002765\) & & JMP & ENEXTR & 3YES，NEXT & BLOCK \\
\hline 00046＊054917－ & & STA & 3，PRLNK & & \\
\hline \(00047^{\circ} 021400\) & & LDA & 0，0，3 & ；CONTROL W & ORD \\
\hline 90050＇849023－ & & STA & \(0, S\) INF & ISIN FLAG & IN BIT \\
\hline \(00051^{\circ} 101100\) & & MOVL & 日， 0 & & \\
\hline ต0052＇040022－ & & STA & \(0, \mathrm{COSF}\) & ；COS FLAG & IN BIT \\
\hline ø0053＇921410 & & LDA & 日，10，3 & 3 SIN & \\
\hline \(00054^{\circ} 040021-\) & & STA & \(0, S\) IN & & \\
\hline \(00055^{\circ} 021411\) & & LDA & 0，11，3 & 1 COS & \\
\hline 00056．040020－ & & STA & \(0, \cos\) & & \\
\hline 00057．021412 & & LDA & \(0,12,3\) & & \\
\hline \(00060{ }^{\circ} 98004-\) & & STA & \(0, \mathrm{XCP}\) & \(3 \times\) CONTACT & POINT \\
\hline \(00061^{\circ} 021413\) & & LDA & \(0,13,3\) & & \\
\hline の0¢62＇9490日5－ & & STA & \(0, Y C P\) & 3 Y CONTACT & POINT \\
\hline & 3TO GET & CONTR & UTIONS FR & OM EDGE & \\
\hline 00063＇032013－ & & LDA & 2，eLOCBL & & \\
\hline 00064＇021明 & & LDA & 0，1，2 & ；XG，THIS & BLOCK \\
\hline の0065＇024004－ & & LDA & 1，XCP & & \\
\hline 60066＊106480 & & SUB & 0，1 & & \\
\hline 90067＇044733 & & STA & 1，XDL & & \\
\hline 90070＇021003 & & LDA & 6，3，2 & 1YG，THIS & BLOCK \\
\hline 90071＇024005－ & & LDA & 1，YCP & & \\
\hline 00072＇106400 & & SUB & 0，1 & & \\
\hline 90073．844730 & & STA & 1，YDL & & \\
\hline 00074＇021022 & & LDA & 0，22，2 & & \\
\hline の0075＊048732 & & STA & 0 ，DAL & & \\
\hline \(90076^{\circ} 004702\) & & JSR & MULS & 11 & \\
\hline の0077＇ø00827＊ & & DAL & & & \\
\hline 00100＇ロ00．23＊ & & YDL & & & \\
\hline \(00101^{\circ} 821020\) & & LDA & \(0,20,2\) & 3 DELTA－X， & THIS BL \\
\hline \(00102^{\circ} 122400\) & & SUB & 1，0 & S SUBTRACT & ROT．CO \\
\hline \(00103^{\prime} 840725\) & & STA & \(\theta\) ，DXL & & \\
\hline \(08104^{\circ} 004674\) & & JSR & MULS & & \\
\hline  & & DAL & & & \\
\hline 00106 \(000022^{\circ}\) & & XDL & & & \\
\hline 00107＇021021 & & LDA & 0，21，2 & ；DELTA－Y & \\
\hline 00110＇123006 & & ADD & 1,0 & & \\
\hline \(00111^{\prime} 849720\) & & STA & 日，DYL & & \\
\hline & 3 & & & & \\
\hline \(00112.934017-\) & & LDA & 3，PRLNK & & \\
\hline \(00113^{\circ} 921401\) & & LDA & 0，1，3 & ；（NP：NB） & \\
\hline \(00114^{\circ} 0240055\) & & LDA & 1．．MSKR & & \\
\hline \(00115^{*} 187400\) & & AND & 0，1 & \(3 \mathrm{BLOCK} \# \mathrm{O}\) & POINT \\
\hline \(00116^{\circ} 0300015\) & & LDA & 2．．M1 & & \\
\hline \(0011^{\prime} 133096\) & & ADD & 1，2 & & \\
\hline 90120．650014－ & & STA & 2，LOCBP & ［DATA POIN & NTER CPO \\
\hline \(00121^{\circ} 031000\) & & LDA & 2， 8,2 & & \\
\hline 00122．021081 & & LDA & \(0,1,2\) & JXG，OTHER & BLOCK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 90123．024004－ & & LDA & 1，XCP & \\
\hline \(00124^{\circ} 106400\) & & SUB & 0,1 & \\
\hline 98125＇944677 & & STA & 1，XDP & \\
\hline \(00126^{\circ} 021903\) & & LDA & \(0,3,2\) & ；YG，OTHER BLOCK \\
\hline \(00127^{\circ} 024005-\) & & LDA & \(1, Y C P\) & \\
\hline \(00130 \cdot 106400\) & & SUB & 0,1 & \\
\hline \(00131^{\prime} 944674\) & & STA & 1，YDP & \\
\hline 00132．821022 & & LDA & 0，22，2 & \\
\hline \(08133^{\prime} 948673\) & & STA & 0 ，DAP & 3 DELTA－ALPHA \\
\hline \(08134^{\circ} 984644\) & & JSR & MULS & \\
\hline g0135＇800026＊ & & DAP & & \\
\hline \(08136^{\circ} 000025^{\circ}\) & & YDP & & \\
\hline \(08137^{\circ} \mathrm{0} 21626\) & & LDA & 0，20，2 & 3 DELTA－X，NB（P） \\
\hline \(80140 \cdot 122480\) & & SUB & 1,0 & \\
\hline \(80141^{\prime}\)＇224667 & & LDA & 1．DXL & \\
\hline 00142,122400 & & SUB & 1,0 & ；DXP－DXL \\
\hline \(08143^{\circ} 948570\) & & STA & 0，DELX & \\
\hline \(00144^{\circ} 004634\) & & JSR & MULS & \\
\hline ¢0145＇000926＊ & & DAP & & \\
\hline \(00146^{\circ} 000024^{\circ}\) & & XDP & & \\
\hline \(0814^{\circ} 021021\) & & LDA & \(0,21,2\) & ；\({ }^{\text {PYP }}\) \\
\hline 00150＇123000 & & ADD & 1,0 & \\
\hline \(00151^{\circ} 924660\) & & LDA & 1，DYL & \\
\hline 96152＊122400 & & SUB & 1,0 & 3DYP－DYL \\
\hline \(00153^{\circ} \mathrm{g} 40561\) & & STA & O，DELY & \\
\hline 00154＊ 004562 & & JSR & TRANS & 3 TRANSFORMATION ROUTINE \\
\hline 90155＇930017－ & & LDA & 2，PRLNK & \\
\hline 90156．021005 & & LDA & 0，5，2 & 30LD N（NORM．DISP．） \\
\hline \(00157^{\circ} 163000\) & & ADD & 3,0 & \\
\hline \(00160^{\circ} 941005\) & & STA & 0，5，2 & 3NEW N \\
\hline \(00161^{\prime} 165090\) & & MOV & 3，1 & \\
\hline 00162＇030553 & & LDA & 2，kN & 3NORMAL STIFFNESS \\
\hline \(00163^{\prime} 102400\) & & SUB & \(\theta, 0\) & \\
\hline \(00164^{\prime} 125112\) & & MOVL\＃ & 1，1，SZC & \\
\hline \(09165^{\circ} 124490\) & & NEG & 1，1 & \\
\hline 90166 073301 & & MUL & & \\
\hline \(00167^{\prime} 175113\) & & MOVL\＃ & 3，3，SNC & \\
\hline \(00170^{\circ} 124400\) & & NEG & 1，1 & 3INVERT ORIG．SIGN \\
\hline \(08171^{\prime} 030817-\) & & LDA & 2，PRLNK & ；FOR＋VE FN \\
\hline 00172.021086 & & LDA & 0，6，2 & IOLD NORMAL FORCE，FN \\
\hline 08173＊125112 & & MOVLA & 1，1，SZC & \\
\hline \(00174^{\circ} 000405\) & & JMP & OK & \\
\hline \(00175^{\circ} 107900\) & & ADD & B， 1 & \\
\hline \(00176^{\prime} 125112\) & & MOVL\＃ & 1，1，SEC & \\
\hline 00177＇006506 & & JSR & elm1 & \\
\hline \(00200^{\circ} 008484\) & & JMP & STOR & \\
\hline 00201＇107800 & OK： & ADD & 0,1 & 3 ADD IN INCREMENT \\
\hline 曰日コต2＊125112 & & MOVL\＃ & 1，1，SZC & ；己ERO ADHESION ASSUMED \\
\hline 日6283＊000520 & & JMP & DELET & I SET FORCES TO EERO \\
\hline 90204＇045006 & STOR： & STA & 1，6，2 & ；NEW NORMAL FORCE \\
\hline 08205＇044010－ & & STA & \(1, \mathrm{FN}\) & \\
\hline 00286＇165000 & & MOV & 3，1 & \\
\hline 00207＇030002－ & & LDA & 2，KDN & 1 DAMPING FACTOR \\
\hline \(80210^{\circ} 162400\) & & SUB & \(\theta, 0\) & \\
\hline 00211＇125112 & & MOVL & 1，1，SZC & \\
\hline \(90212^{\prime} 124480\) & & NEG & 1，1 & \\
\hline 09213．973301 & & MUL & & \\
\hline ¢0214＇175113 & & MOVL \({ }^{\text {A }}\) & 3，3，SNC & \\
\hline 00215＇124400 & & NEG & 1，1 & \\
\hline 98216＊929010－ & & LDA & O，FN & \\
\hline
\end{tabular}

```

00307'000503'
VDISP: VDIS
;NEXT BLOCK
00310:010012-
00312.854015-
00313.018013-
00314*014816-
00315*002414
00316.0300125
00317'151112
00320.002011-
00321'002401
00322'000637'
00323'102400
00324.041086
00325'841007
00326'000750
00327'000553'
06330.000044.
00331'000043'
00332'000000
00333.000000
00334.000006
00335'000003
00336'054774
00337'024774
00340.030020-
00341'102440
00342'125112
00343.124440
00344.073301
00345'125112
00346'101400
00347'101002
00350.108400
00351'024022-
00352'125102
00353'100400
00354'115000
00355'024757
00356'030021-
00357'102440
B0368.125112
00361'124440
00362'073301
00363'125112
00364.101400
00365'101002
80366%1004008
00367'024023-
00370.125102
00371'108480
00372'117800
80373'054006-
00374.024746
00375+030020-
00376'102448
08377'125112
00400.124448
00401'073301

```

NEXTB: ISZ

\section*{LDA}

\section*{STA}

ISZ
DSZ
JMP
LDA
MOVL \(\#\)
JMP 2.2, SZC
JMP
PRESU
SUB \(\theta, \theta\)
STA \(\theta, 6,2\)
STA \(\theta, 7,2\)
JMP CHAIN
SHEAR
ENTRY
LOOP
6

\section*{0}

\section*{0}

3
STA 3,SAVE
LDA 1,DELX
LDA 2,COS
\(\begin{array}{ll}\text { SUBO } & 0, \theta \\ \text { MOVL } & 1,1, \text { SZC }\end{array}\)
NEGO 1,1 ;SET CARRY
MUL ;DELX*COS
MOVL. \(1,1, S Z C\); ROUND UP IF NEC.
INC \(\theta, \theta\)
MOV \(\theta, \theta, S Z C\)
NEG \(\theta, \theta\) BRESTORE SIGN
LDA 1, COSF
MOVL \(1,1, S Z C\)
NEG \(\theta, \theta\)
MOV \(\theta, 3\) IPARTIAL SUM IN AC3
LDA 1,DELY
LDA 2,SIN
SUBO \(B, B\)
MOVL \(1,1, S Z C\)
NEGO 1,1
MUL IDELY*SIN
MOVLA 1,1, SZC 3 ROUND UP IF NEC.
INC \(\theta, \theta\)
MOV \(B, B, S Z C\)
NEG \(\theta\), \(\theta\)
LDA 1, SINF
MOVL \(1,1, S Z C\)
NEG 0,0
ADD B.3 3DELX*COS+DELY*SIN
STA 3,DELS
LDA 1.DELY
LDA 2,COS
SUBO 8,8
MOVL \(1,1, S Z C\)
NEGO \(1 \geqslant 1\)
MUL

3CLEAR CARRY

H1 DELX*COS+DELY*SIN
\(00402^{\prime} 125112\) \(00403^{\prime} 101405\) \(00464^{\prime} 101002\) \(00405^{\circ} 100402\) 00406.324022\(00407 \cdot 125102\) \(00410 \cdot 100400\) 00411'115000 00412.624721 \(00413.030021-\) \(00414^{\prime} 192440\) \(08415^{\prime} 125112\) \(00416^{\prime} 124440\) \(00417^{\circ} 073301\) \(00429 \cdot 125112\) \(00421^{\prime} 101400\) 00422 '101002 \(06423^{\prime} 100400\) 00424'024023\(00425^{\prime} 125102\) \(00426^{\prime} 100400\) \(00427 \cdot 116400\) 00430.054807\(00431^{\circ} 002701\)
00432.054444 00433. 027400 \(00434^{\circ} 033402\) 90435'176400 \(00436^{\prime} 125112\) 00437.157000 \(00440^{\prime} 151112\) \(00441^{\prime} 137000\) \(00442^{\prime} 102400\) \(00443^{\circ} 073301\) \(00444^{\circ} 162400\) \(00445^{\circ} 640432\) \(00446^{\circ} 044432\) 60447.034427 \(00458 \cdot 627481\) \(00451^{\prime} 033403\) 00452 '176400 \(00453^{\prime} 125112\) \(00454^{\prime} 157000\) -9455'151112 \(00456^{\prime} 137000\) 00457'102400 00460.073301 00461'162400 \(00462^{\prime} 038415\) \(00463^{\circ} 034415\) 00464 '167022 \(00465^{\prime} 151400\) \(00466^{\circ} 143908\) 60467.030005s \(00476^{\prime} 143760\) \(00471^{\prime} 125300\) \(00472 \cdot 147460\)

MOVL* \(1,1, S E C\) IROUND UP IF NEC.
INC 0,0
MOV \(\quad 0,0,5 Z C\)
NEG 0,0
LDA 1, COSF
MOVL \(1,1, S Z C\)
NEG 8,8
MOV \(\theta, 3\) BPARTIAL SUM IN AC3
LDA 1,DELX
LDA 2,SIN
SUBO 0.0
MOVL 1,1,SZC
NEGO 1,1
MUL 3DELX*SIN
MOVLA \(1,1, S Z C\) : ROUND UP IF NEC.
INC \(\theta, 0\)
MOV \(\quad 0,0,5 z C\)
NEG 0,0
LDA 1,SINF
MOVL \(1,1, S Z C\)
NEG 0,0
SUB 6.3 BDELY*COS-DELX*SIN
STA 3,DELN
JMP ESAVE
COMPUTES A*XDIF+B*YDIF, AND TRUNCATES 3 TO MIDDLE 16 BITS OF 32 BIT NUMBER 3 OUTPUT: ACI MOM: STA 3,TEMP

LDA E1,0,3 3 A
LDA E2,2,3 ;XDIF
SUB 3,3
MOVL" \(1,1, \mathrm{SZC}\)
ADD 2,3
MOVL\# 2,2,SZC
ADD 1,3
SUB 0,0
MUL
SUB 3,0
STA \(\quad\) OHI \(\quad 3 A * X D I F\) IN \(A C \varnothing: A C 1\)
STA 1.LO
LDA 3,TEMP
LDA E1,1,3 ; B
LDA \(2,3,3\) YYDIF
SUB 3,3
MOVL\# 1,1,SZC
ADD 2,3
MOVLA 2,2,SZC
ADD 1.3
SUB 0,0
MUL
SUB 3,8 B*YDIF IN AC0:ACI
LDA 2,HI
LDA 3, LO
ADDZ 3,1,SZC 3 ADD 2 D.P. NUMBERS
INC 2,2
ADD 2,0 3D.P. ANSWER IN ACD:ACI
LDA 2,.MSKR ;NOW TAKE ONLY MIDDLE
ANDS 2,0 ; 8 BITS
MOVS 1,1
AND 2,1

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(00563^{\circ} 073301\)} \\
\hline & \(0564^{\circ} 9484\) \\
\hline \multicolumn{2}{|l|}{\(00565^{\prime} 030444\)} \\
\hline & 8566'02 \\
\hline \multicolumn{2}{|l|}{90567'102440} \\
\hline \multicolumn{2}{|l|}{80576.125112} \\
\hline \multicolumn{2}{|l|}{80571.124446} \\
\hline \multicolumn{2}{|l|}{\(00572^{\prime} 073301\)} \\
\hline \multicolumn{2}{|l|}{00573.125802} \\
\hline \multicolumn{2}{|l|}{\(88574^{\circ} 124480\)} \\
\hline \multicolumn{2}{|l|}{00575'039433} \\
\hline \multicolumn{2}{|l|}{00576.921007} \\
\hline & 0577'107000 \\
\hline & 600'84442 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 60645*021983 & & LDA & D, 3,2 & ; INCREMENT & \\
\hline \(00646^{\circ} 025417\) & & LDA & 1,17,3 & ; OLD MSUY & \\
\hline 08647*107000 & & ADD & 0,1 & & \\
\hline \(00650^{\circ} 845417\) & & STA & 1,17,3 & 3 NEW MSUM & \\
\hline 00651'021904 & & LDA & 0, 4, 2 & 3FX INCREMENT & \\
\hline \(00652^{\prime} 025407\) & & LDA & 1,7,3 & 3 OLD FXSUM & \\
\hline \(00653^{\circ} 107000\) & & ADD & 0,1 & & \\
\hline \(08654^{\circ} 045407\) & & STA & 1,7,3 & 3NEW FXSUM & \\
\hline \(00655^{\prime} 921005\) & & LDA & 0,5,2 & ; FY INCREMENT & \\
\hline \(00656^{\circ} 025416\) & & LDA & 1,16,3 & ; OLD FYSUM & \\
\hline 90657'107080 & & ADD & 0,1 & & \\
\hline \(00660^{\circ} 045416\) & & STA & 1,16,3 & ;NEW FYSUM & \\
\hline 90661.031002 & & LDA & 2,2,2 & ; LINK & \\
\hline 00662'151115 & & MOVL* & 2,2,SNR & & \\
\hline 00663* 008754 & & JMP & PRESU & & \\
\hline \(00664^{\circ} 002011-\) & & JMP & PFDSAV & 3 END OF CHAIN. & \\
\hline & ; ROUTI & NE TO & NGE TRE & , ETC. & \\
\hline 90665*000040 & DTREC: & 48 & & & \\
\hline \(90666^{\circ} 900081\) & DKDN: & 1 & & & \\
\hline \(00667^{\circ}\) の日0012 & DKDS: & 12 & & & \\
\hline 90670'000140 & DROT: & 140 & & & \\
\hline 00671'900023 & DUREP:
; & 23 & & & \\
\hline 00672'0060225 & DYNFAC: & JSR & e.PAGE & & \\
\hline 00673.0060235 & & JSR & e. ALPH & & \\
\hline \(00674^{\circ} 9060135\) & & JSR & e.MESS & & \\
\hline \(00675^{\circ} 901212^{\prime}\) & & DMSG & & & \\
\hline \(00676^{\circ} 177476\) & & -200. & & & \\
\hline \(00677^{\circ} 001320\) & & 720. & & & \\
\hline 00760.9868135 & & JSR & e.MESS & & \\
\hline \(00701^{\circ} 091234^{\circ}\) & & DMS 1 & & & \\
\hline 09782'177665 & & -75. & & & \\
\hline \(00703^{\prime} 981236\) & & 670. & & & \\
\hline 90704*006013\$ & & JSR & e.MESS & & \\
\hline \(00705^{\circ} 961244^{\circ}\) & & DMS2 & & & \\
\hline \(00786^{\circ} 000175\) & & 125. & & & \\
\hline 00707*001200 & & 640. & & & \\
\hline \(00710^{\circ} 9200205\) & & LDA & 6, .TREC & 3TIME STEP & \\
\hline \(00711^{\circ} 0060155\) & & JSR & e.IPRN & & \\
\hline \(00712^{\prime} 800064\) & & 4 & & & \\
\hline \(00713^{\circ} 0068135\) & & JSR & e.MESS & & \\
\hline \(00714^{\circ} 001250^{\circ}\) & & DMS3 & & & \\
\hline \(00715^{\circ} 900175\) & & 125. & & & \\
\hline \(90716^{\circ} 001130\) & & 600. & & & \\
\hline  & & LDA & Q.. KDN & ; NORMAL DAMPING & FAC \\
\hline \(00720^{\circ} 9060155\) & & JSR & e.IPRN & + & \\
\hline 00721* 000004 & & 4 & & & \\
\hline 00722'0060135 & & JSR & e.MESS & & \\
\hline \(60723^{\circ} 061254^{\circ}\) & & DMS 4 & & & \\
\hline \(00724^{\circ} 900175\) & & 125. & & & \\
\hline \(00725^{\circ} 001060\) & & 560. & & & \\
\hline 00726'020003- & & LDA & B, KDS & 3 SHEAR DAMPING & FAC \\
\hline 60727'006015 & & JSR & e.IPRN & & \\
\hline \(00738^{\circ} 908004\) & & 4 & & & \\
\hline \(09731^{\circ} 9860135\) & & JSR & e.MESS & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(00732.001260^{\circ}\) & & DMS5 & & & C-88 \\
\hline \(00733^{\circ} 000175\) & & 125. & & & \\
\hline 60734**01010 & & 520. & & & \\
\hline 06735.0260165 & & LDA & B, R ROT & ;ROT. TIME FAC & \\
\hline 00736.006015S & & JSR & e. IPRN & & \\
\hline 00737. 000005 & & 5 & & & \\
\hline \(00748^{\circ} 0069135\) & & JSR & Q.MESS & & \\
\hline \(00741^{\circ} 001264^{\circ}\) & & DMS6 & & & \\
\hline \(00742^{\prime} 008175\) & & 125. & & & \\
\hline \(00743^{\circ} 000748\) & & 480. & & & \\
\hline \(00744^{\prime} 6200175\) & & LDA & B,.UREP & ; UPDATE COUNTER & \\
\hline \(00745^{\prime 206015 S}\) & & JSR & O.IPRN & & \\
\hline \(00746^{\circ} 000084\) & & 4 & & & \\
\hline & ; & & & & \\
\hline \(00747^{\prime 2060135}\) & & JSR & B.MESS & & \\
\hline 00750.001270' & & DMS7 & & & \\
\hline 90751*177470 & & -206. & & & \\
\hline 90752.002536 & & 350. & & & \\
\hline 00753.0060135 & & JSR & O.MESS & & \\
\hline \(09754^{\circ} 001386^{\circ}\) & & DMS8 & & & \\
\hline \(00755^{\circ} 000454\) & & 308. & & & \\
\hline 00756'009454 & & 308. & & & \\
\hline 00757.0060135 & & JSR & e.MESS & & \\
\hline 80760'001325 \({ }^{\circ}\) & & DMS9 & & & \\
\hline \(00761^{\circ} 006454\) & & 30. & & & \\
\hline \(00762^{\circ} \mathrm{D} 00404\) & & 260. & & & \\
\hline \(00763^{\circ} 0060135\) & & JSR & e.MESS & & \\
\hline \(00764^{\circ} 001367^{\circ}\) & & DM10 & & & \\
\hline 00765'.000454 & & 308. & & & \\
\hline \(00766^{\circ} 000334\) & & 220. & & & \\
\hline 00767.0060135 & & JSR & e.MESS & & \\
\hline \(00770^{\circ} 00134^{\circ}\) & & DMS18 & & & \\
\hline 90771. 930454 & & 300. & & & \\
\hline 90772.000264 & & 180. & & & \\
\hline & 3 & & & & \\
\hline & GET & CONTROL & EY & & \\
\hline \(00773^{\circ} 006014 \$\) & & JSR & e.GETT & & \\
\hline \(08774^{\circ} 024414\) & & LDA & 1,WCHR & BIS IT A W & \\
\hline 00775'106415 & & SUB\# & 0,1, SNR & & \\
\hline \(00776^{\circ} 0060245\) & & JSR & e. HEAVY & 3YES & \\
\hline \(00777 \cdot 024407\) & & LDA & 1,ICHR & IS IT AN I? & \\
\hline 01000.186415 & & SUB\# & 0,1, SNR & & \\
\hline \(01001^{\prime} 000410\) & & JMP & UP & 3YES & \\
\hline 61002.624405 & & LDA & 1, DCHR & ; IS IT A D ? & \\
\hline 01003'106415 & & SUB* & 0,1,SNR & & \\
\hline 01064.000434 & & JMP & DWN & SYES & \\
\hline \(01005^{\circ} 002535\) & & JMP & eCON & INONE-GO TO CONTR & \\
\hline 91606 0 -0.0111 & ICHR: & "1 & & & \\
\hline \(01007^{\circ} 000104\) & DCHR: & "D & & & \\
\hline 01910.060127 & WCHR: & "W & & & \\
\hline 01011'020802- & UP: & LDA & 6..KDN & & \\
\hline 01012.924654 & & LDA & 1, DKDN & & \\
\hline 81013'196432 & & SUBZA & B,1,SZC & ;IFKDN=DKDN ALREADY & AT MAX \\
\hline \(01014^{\circ} 008521\) & & JMP & MAX & & \\
\hline \(01015^{\circ} 122408\) & & Sub & 1,0 & & \\
\hline 01016.040002- & & STA & O., KDN & & \\
\hline 91017'घ2n日20s & & LDA & Ø, .TREC & & \\
\hline \(01820^{\prime} 924645\) & & LDA & 1, DTREC & & \\
\hline 01021'122430 & & SUB & 1,0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(01022^{\circ} 800205\) & & STA & 6, . TREC \\
\hline 01923'920日03- & & LDA & Q..KDS \\
\hline \(01024^{\circ} 024643\) & & LDA & 1, DKDS \\
\hline 01925'122400 & & SUB & 1,0 \\
\hline \(01026^{\circ} 049093-\) & & STA & \(0, \ldots \mathrm{KDS}\) \\
\hline \(01027^{\circ} 9200165\) & & LDA & B, - ROT \\
\hline \(01030 \cdot 824640\) & & LDA & 1, DROT \\
\hline 01031.122480 & & SUB & 1,0 \\
\hline \(01032^{\circ} 0400165\) & & STA & B, R ROT \\
\hline \(01033^{\circ} 0200175\) & & LDA & 6, - UREP \\
\hline \(01034^{\circ} 924635\) & & LDA & 1, DUREP \\
\hline \(01035 \cdot 122400\) & & SUB & 1,0 \\
\hline \(01036^{\circ} 8490175\) & & STA & 8, . UREP \\
\hline \(01037^{\circ} 000426\) & & JMP & OUTPT \\
\hline & ; & & \\
\hline 01040.9200295 & DWN: & LDA & 0, -TREC \\
\hline \(01041^{\prime} 024624\) & & LDA & 1, DTREC \\
\hline \(01042^{\prime} 107000\) & & ADD & 0,1 \\
\hline \(01043^{\circ} 0440205\) & & STA & 1,.TREC \\
\hline 01044'920002- & & LDA & 0, K KDN \\
\hline \(01045^{\circ} 024621\) & & LDA & 1,DKDN \\
\hline \(01046^{\prime} 107900\) & & ADD & 0,1 \\
\hline \(01047^{\circ} 044002-\) & & STA & 1, KDN \\
\hline 01050.020003- & & LDA & 日, \%KDS \\
\hline 01051.024616 & & LDA & 1, DKDS \\
\hline 01052'107800 & & ADD & B, 1 \\
\hline 01053'044003- & & STA & 1,.KDS \\
\hline \(01054^{\circ} 020016 \$\) & & LDA & Q, .ROT \\
\hline \(01055^{\circ} 024613\) & & LDA & 1, DROT \\
\hline 01056*107000 & & ADD & 0,1 \\
\hline \(01957^{\circ} 0440165\) & & STA & 1, .ROT \\
\hline \(01060^{\circ} 0200175\) & & LDA & 0 , . UREP \\
\hline 01061.024610 & & LDA & 1, DUREP \\
\hline 01062'107000 & & ADD & 0,1 \\
\hline \(01063^{\circ} 044017 \$\) & & STA & 1, -UREP \\
\hline \(01064^{\circ} 000401\) & & JMP & OUTPT \\
\hline & 3 & & \\
\hline \(01065^{\circ} 0060135\) & OUTPT: & JSR & e.MESS \\
\hline \(01066^{\circ} 001361^{\circ}\) & & DMS 11 & \\
\hline \(01067^{\circ} 176791\) & & -575. & \\
\hline \(01070^{\circ} 001236\) & & 670. & \\
\hline \(01071^{\circ} 0060135\) & & JSR & e.MESS \\
\hline \(01072^{\circ} 001244^{\circ}\) & & DMS2 & \\
\hline \(01973^{\circ} 001161\) & & 625. & \\
\hline \(01074^{\circ} 001200\) & & 640. & \\
\hline 01075'0200205 & & LDA & 6, . TREC \\
\hline \(01076^{\circ} 9860155\) & & JSR & e.IPRN \\
\hline \(01077^{\circ} 000004\) & & 4 & \\
\hline \(01100^{\circ} 0660135\) & & JSR & e.MESS \\
\hline \(01101^{\circ} 801250^{\circ}\) & & DMS3 & \\
\hline \(01102^{\prime} 901161\) & & 625. & \\
\hline \(81103^{\circ} 901130\) & & 630. & \\
\hline \(01104^{\circ} 020002-\) & & LDA & \(0, \ldots \mathrm{KDN}\) \\
\hline \(01165^{\circ} 0068155\) & & JSR & e.IPRN \\
\hline \(01106^{\circ} 900004\) & & 4 & \\
\hline \(01107^{\circ} 0060135\) & & JSR & 8.MESS \\
\hline \(01110^{\circ} 001254^{\circ}\) & & DMS 4 & \\
\hline 01111.001161 & & 625. & \\
\hline \(01112^{\prime} 001060\) & & 560. & \\
\hline \(01113^{\prime} 020083-\) & & LDA & \(0 . . \mathrm{KDS}\) \\
\hline
\end{tabular}
\(01114^{\prime} 9960155\) \(01115^{\circ} 00 \mathrm{~g} 04\)
\(01116^{\circ} 0060135\) \(0117^{\circ} 001266^{\circ}\) \(01120^{\circ} 001161\) \(01121^{\circ} 001810\) 81122．0200165 \(01123^{\circ} 066015 \$\) \(01124^{\circ}\) 日月 8005 \(01125^{\prime} 0060135\) \(01126^{\circ} 001264^{\circ}\) \(01127^{\circ} 801161\) \(91130^{\circ} 009748\)
\(01131^{\circ} 9200175\) \(01132^{\prime} 0068155\) \(01133^{\circ} 000004\) \(01134^{\circ} 902406\)

\section*{3}
```

$01135^{\circ} 0060135$ MAX
01136° 月01172． $01137^{\circ} 177470$
$01140^{\circ} 000226$
$01141^{\circ} 002481$ $01142^{\prime} 177777$
$01143^{\circ} 054411$
$0114^{\circ} 004412$
$01145^{\circ} 924410$
$01146^{\prime} 034007-$ $01147^{\circ} 002405$ $01150^{\circ} 054404$
$01151^{\prime} 004465$
$81152^{\prime} 020403$
$01153^{\circ} 902401$
CON：
；
$01154^{\circ} 000000$ RETN： 0
$01155^{\circ} 077777$
01156
$01157^{\circ} 0060135$
$01160^{\circ} 001404^{\circ}$
$01161^{\prime} 001522$
$01162^{\circ} 001332$
$01163^{\circ} 0060135$
$01164^{\circ} 001412^{\circ}$
$01165^{\circ} 901522$
$01166^{\circ} 001313$
$01167^{\circ} 934402$
$01170^{\circ} 001400$
01171．日のøの日の
01172.047523
$01173^{\circ} 051122^{\circ}$
$01174^{\circ} 026131 \mathrm{Y}$ ，
$01175^{\circ} 846101 \mathrm{AL}$
$01176^{\circ} 042522$ RE
$0117^{\circ} 842101$ AD $01200^{\circ} 020131$ Y $01201^{\circ} 052101$ AT

```

JSR
4
JSR
DMS5
625.
520.

LDA B，．ROT
JSR E．IPRN
5
JSR
DMS6
625.
480.

LDA
JSR
4
JMP
e．IPRN
e．MESS
e．MESS

Q ．．UREP
e．IPRN
BCON

JSR
ERR
e.MESS
－200．
150.

JMP ECON 3 GO BACK TO CONTR

LIMの：
LIMI：STA
JSR
LDA
LDA
JMP
STA
JSR
LDA
JMP
3
3，RETN
WARN
1，LIMIT
3．DELN
BRETN
3，RETN
WARN
O，LIMIT
QRETN

LIMIT：
7777
STA
JSR
MW 1
850.
730.

JSR E．MESS
MW2
850.
715.

LDA 3，RETR
JMP 0,3
RETR：Ø
3
ERR：．TXT＊SO

3，RETR
e．MESS
：MAX NORMAL FORCE
```

01202.046440
M
AX
01204.046511 IM
01285'046525 UM
01206.053040 V
01207.046101 AL
01216.842525 UE
01211.000123
01212.027056
01213.027056
81214.027056
01215.020056
01216.054504
01217'040516
01220'044515
01221.020103
01222.040520 PA
01223.040522 RA
01224.042515 ME
01225.042524 TE
01226.051522 RS
01227*027056
01230.027056
01231'027056
01232.027056
01233.000000
01234.051120
01235.051505
01236.047105
01237.020124
01240.040526
01241'052514
01242.051505
01243'000000
01244.052056
01245'042522
01246.020103
01247'000075
01250.045456
01251.047104
01252.036440
81253.000000
01254.045456
01255.051584
01256.036440
01257.000000
01260.051056
01261.052117
01262.036440
81263.000000
01264*852456
01265'042522
01266.028120
81267'000075
01270.047506
01271.051125
01272.047448
01273.052120
61274*847511
01275.051516 NS
DMSB: .TXT *..
..
.
*
DY
NA
MI
C
PA
*
*
..
..
*
DMS1: .TXT *PR
ES
EN
T
VA
LU
ES
*
DMS2: .TXT *.T
RE
C
=*
DMS3: .TXT *.K
DN
=
*
DMSA: .TXT *.K
DS
=
*
DMS5: .TXT **R
OT
=
*
DMS6: .TXT *.U
RE
P
=*
DMS7: .TXT *FO
UR
O
PT
10

```
```

01276.040440 A
01277.840526 VA
IL
01301.041101 AB
01302'042514
01303'026440
01304'026455
01305'0000440
01306.054524
01307'042520
01310.0444440
01311'052040
01312'820117
01313.047111 IN
01314.051103 CR
01315'040505 EA
01316.042523 SE
01317'052040 T
01320.046511
IM
01321'020105
81322.052123
01323'050105
01324.000000
61325*654524
81326'84252%
01327'042040
01330.052040
01331.020117
01332*042504
01333'051103
01334'048505
01335*042523
01336'052040
01337'046511 IM
M
01340'020105
01341'052123
01342.050105
01343'000000
01344*847101
01345'020131
01346*052117
01347'042510
01350.020122
01351.042513
01352'g20131
01353'020055
01354'047516
81355*041440
01356%040510
01357*043516
01368.000105
81361.042516
01362'020127
01363*840526
01364*g52514
01365*051505
01366'g日月めの日
01367.054524
01370.042520
01371.953440

```
```\(91372^{\circ} 652046\)T

MW1: -TXT
TO 0 \(01407^{\circ} 042510 \mathrm{HE}\) \(01413^{\circ} 053101\) AV
\(01411^{\circ} 000131\)
\(01412^{\prime} 025840\) \(01413^{.} 825052\) \(01414^{\circ} 025052\) 01415'025052 \(01416^{\circ} 025052\) \(01417^{\prime} 025052\) \(01420^{\circ} 000000\)

Y*
MW2: .TXT " *
**
** ** "

\(00213^{.073161}\) \(00214^{\circ} 044722\) \(00215^{\prime} 024464\) 00216.102480 \(00217 \cdot 073101\) 00220.020715 \(00221^{\prime} 106400\) \(00222^{\prime} 124000\) \(00223^{\circ} 044463\) 90224.0340035 ด0225'103128 \(00226^{\prime} 103120\) \(00227^{\prime} 117000\) \(00230^{\prime} 024706\) \(00231^{\prime} 020703\) \(00232^{\prime} 106400\) \(00233^{\circ} 124000\) \(00234^{\circ} 044451\) \(00235^{\prime} 044452\) \(00236^{\prime} 117000\) \(00237^{\prime} 054445\) \(00240^{\circ} 054443\) \(00241^{\circ} \cdot 035400\) \(00242^{\prime} 175112\) \(00243^{\prime} 008415\) \(00244^{\prime} 021400\) 00245'0300105 \(00246^{\prime} 113400\) 00247.02401100250. 132415 \(00251^{\prime} 002404\) \(00252^{\prime} 054440\)
\(00253^{\circ} 604443\)
\(00254^{\circ} 034436\) \(00255^{\circ} 035401\) 00256'175113 00257.000765 \(00260^{\prime} 034423\) 00261'175400 \(00262 \cdot 010425\) \(00263^{\circ} 000755\) 00264.020421 \(00265^{\circ} 940422\) 00266'020422 \(06267^{\circ} \cdot 034415\) 90270'117800 \(00271^{\circ} 010415\) \(00272^{\circ} 000745\) \(00273^{\circ} \cdot 002407\) \(00274^{\circ} 000000\) 00275'000000 \(00276^{\circ} 000000\) \(00277^{\prime}\) 000000 \(90300^{\circ} 000000\) \(00301^{\prime} 200000\) \(00302^{\prime} 90000\) ด \(00303^{\circ} 090000\) \(00304^{\circ} 000000\)

\begin{tabular}{|c|c|c|c|c|}
\hline \(00636 \cdot 125112\) & & MOVL \(\#\) & 1, 1, S \(\vec{c} C\) & \\
\hline 90637'101400 & & INC & \(\theta, 0\) & \\
\hline \(08646^{\prime} 101002\) & & MOV & \(\theta, \theta, S E C\) & \\
\hline \(00641^{\prime} 100480\) & & NEG & \(\theta, \theta\) & \\
\hline 00642'024807- & & LDA & 1, CosF & \\
\hline \(00643 \cdot 125102\) & & MOVL & 1,1,S \(\vec{z} C\) & \\
\hline \(00644^{\prime} 100409\) & & NEG & \(\theta \rightarrow \theta\) & \\
\hline ம0645'115008 & & MOV & 0,3 & PPARTIAL SUM IN AC3 \\
\hline \(09646^{\prime} 924647\) & & LDA & 1, XG & \\
\hline 00647'030806- & & LDA & 2,SIN & \\
\hline \(00650^{\prime} 102448\) & & SUBO & \(\theta, \theta\) & \\
\hline \(09651^{\prime} 125112\) & & MOVL\# & 1,1,SZC & \\
\hline \(00652^{\prime} 124440\) & & NEGO & 1,1 & \\
\hline \(00653^{\prime} 073301\) & & MUL & & \\
\hline \(09654^{\prime} 125112\) & & MOVL\# & 1,1,SZC & \\
\hline 00655*101400 & & INC & \(\theta, 0\) & \\
\hline \(00656^{\circ} 101002\) & & MOV & B, 日, SZC & \\
\hline \(90657^{\circ} 100480\) & & NEG & \(\theta, 0\) & \\
\hline 60660'024010- & & LDA & 1,SINF & \\
\hline 00661'125102 & & MOVL & 1,1,SZC & \\
\hline \(00662^{\circ} 100400\) & & NEG & \(\theta, 0\) & \\
\hline \(06663^{\circ} 116400\) & & SUB & 0,3 & ; SUBTRACT FROM PREVIOUS \\
\hline \(00664^{\prime} 902401\) & & JMP & EYTSAV & \\
\hline 00665'000000 & YTSAV: & \(\bigcirc\) & & \\
\hline 00666:024631 & WEED: & LDA & 1, OTHER & ; CONTACT CANDIDATE \\
\hline & ; ROUTINE & E TO & OUT IMP & OSSIBLE CONTACTS \\
\hline 90667'944444 & & STA & 1, SWIT & \\
\hline 00678'125065 & & MOV & 1,1,SNR & ; ZERO? \\
\hline \(00671^{\circ} 000404\) & & JMP & TOAD & ; YES \\
\hline \(00672^{\prime} 102520\) & & SUBZL & \(\theta, 0\) & \\
\hline 00673.106400 & & SUB & \(\theta>1\) & 3TRY [POINT-1] \\
\hline \(00674^{\prime} 000402\) & & JMP & GETIT & \\
\hline 00675'126520 & TOAD: & SUBZL & 1,1 & 3 TRY POINT \#1 \\
\hline 00676.0060125 & GETIT: & JSR & e.PON2 & ; (PONT ALREADY PRIMED) \\
\hline 00677'050435 & & STA & 2, SV2 & \\
\hline 00700'034003- & & LDA & 3, XA & \\
\hline \(00781{ }^{\prime} 162400\) & & SUB & 3,0 & \\
\hline 00702.048613 & & STA & 8, XG & ; REL X \\
\hline 00703'034004- & & LDA & 3, YA & \\
\hline \(00794^{\circ} 166400\) & & SUB & 3,1 & 5 REL Y \\
\hline \(00705^{\circ} 904723\) & & JSR & YTGET & \\
\hline \(00706^{\circ} 924615\) & & LDA & 1, TWO & \\
\hline \(00787^{\prime 1} 167112\) & & ADDL\# & 3,1, SZC & ; YT \(1<=-2\) ? \\
\hline \(00710^{\circ} 002615\) & & JMP & eSVP3 & 5YES. IMPOSSIBLE CONTACT \\
\hline \(00711^{\prime} 020422\) & & LDA & 0, SWIT & \\
\hline \(00712^{\prime} 101112\) & & MOVL\# & 日, O, SZC & E2ND TIME ROUND \\
\hline \(00713^{\circ} 900617\) & & JMP & ENTER & SYES. STORE THE CONTCT \\
\hline \(08714^{\circ} 830420\) & & LDA & 2,SV2 & \\
\hline \(00715^{\circ} 025000\) & & LDA & 1,0,2 & \%CONTROL WORD \\
\hline \(00716^{\circ} 0340195\) & & LDA & 3,.MSKR & \\
\hline 90717'167400 & & AND & 3,1 & ENO. OF POINTS (PMAX) \\
\hline 90720'176000 & & ADC & 3,3 & 3-1 \\
\hline \(90721^{\prime} 054412\) & & STA & 3, SWI T & \#SET FOR EXIT 2ND TIME \\
\hline \(00722^{\prime} 101004\) & & MOV & 0, 0, SZR & \\
\hline \(00723^{\circ} 008403\) & & JMP & NEWT & 3SWIT MUST BE >0 \\
\hline 90724'167800 & & ADD & 3,1 & \#TRY POINT (PMAX-1) \\
\hline ¢0725 000751 & & JMP & GETIT & \\
\hline 90726*101400 & NEWT: & INC & \(\theta, 0\) & EOTHER + 1 \\
\hline 90727*106415 & & SUB\# & 0,1,5NR & BIS IT EQUAL TO PMAX? \\
\hline \(00730^{\circ} 102400\) & & SUB & \(\theta=0\) & צYES. USE POINT \(\# \theta\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(00731 \cdot 105000\) & & MOV & 0， 1 & C－103 \\
\hline \(09732^{\prime} 096744\) & & JMP & GETIT & C－103 \\
\hline ด0733＇の日の日ロ刀 & SWIT： & 0 & & \\
\hline \(00734^{\circ} 000000\) & SV2： & \(\theta\) & & \\
\hline & & －END & & \\
\hline
\end{tabular}

\(00052 \cdot 024435\) \(00053^{\circ} 125300\) \(00054^{\prime} 123000\) \(00055^{\circ}\) ．0．04502 00056．000461 0月057．834437 \(00060^{\circ} 054426\) \(00061^{\circ} .030436\) \(00062^{\prime} 025400\) \(00063^{\prime} 125005\) \(00064^{\circ} 000453\) \(00065^{\circ} 133000\) 00066．0249025 \(00067^{\prime} 132512\) \(00070^{\circ} 000406\) \(00071^{\cdot} 0240035\) 00072＇132513 \(00073^{\prime} 000403\) \(00074^{\circ} 004463\) \(00075^{\circ} 000433\) \(00076^{\circ} 034410\) \(00077^{\prime} 175400\) \(00100^{\circ} 800760\) \(00101^{\prime} 000000\) \(00102 \cdot 000000\) \(00103^{\circ} \mathrm{0} 0 \mathrm{0} 000\) \(00104^{\circ} 000100\) \(00105^{\circ} 000600\) \(00106^{\circ} 000000\) \(00107^{\circ} \mathrm{g} 00000\) \(0011^{\circ} 000000\) \(0011^{\circ} 000000\) \(0012^{\prime} 001777\) \(00113^{\circ} 001414\) \(0014^{\circ} 000000\) \(0015^{\circ} 004000\) 00116．000117 \({ }^{\circ}\)
\(0017^{\circ} 000020\) \(00120 \cdot 177777\) \(00121^{\prime} 000001\) 00122＇177760 \(00123^{\circ} 900017\) \(00124^{\circ} 000021\) 06125＇177757 06126．177761 08127．000090 0813日． 634753 \(08131^{\circ} .025001\) \(00132^{\circ} 045400\) 60133．034756 \(00134^{\circ} 021490\) \(00135^{\circ} 051400\) \(00136^{\circ} 041001\) \(00137^{\circ} 010758\) \(00140^{\circ} 014754\) \(00141^{\prime} 000654\) \(60142^{\prime} \cdot 630737\) \(00143^{\circ} 000430\)

\(00144^{\circ} 044741\) \(00145^{\circ} 0250000\) \(00146^{\circ} 034747\) \(00147 \cdot 167415\) 00158.16700日 \(00151^{\circ} 845008\) \(00152 \cdot 176400\) \(00153^{\circ} \cdot 655020\) \(00154^{\circ} 055021\) \(00155^{\circ} 055022\) \(00156^{\prime 200655}\)
06157.050724 00160.031000 08161.030407 00162.025000 00163.106415 \(00164^{\circ} 001400\) \(00165^{\prime} 145400\) \(09166^{\prime .644715}\) \(00167^{\circ} 031001\) \(00170 \cdot 151112\) 60171.001401 00172.000778
00173.021000 \(00174^{\circ} .024506\) 90175'123415 00176.002704 \(00177^{\circ} 0300065\) 00202.034710 -0201'151113 -0202.00n403 00203.030676 06204.002676 00205'025000 00206.020002\(00207^{\circ} 123400\) \(00210^{\prime 1} 16415\) \(00211^{\circ} 000403\) 00212.031902 \(09213^{\circ}\) ம00766 \(00214^{\circ} 106700\) \(00215^{\circ} 050466\) \(00216^{\circ} 035001\) \(00217^{\circ} 054465\) 00220.044465 00221.0340015 00222'117000 00223.031400 \(00224^{\circ} 0060075\) \(00225^{\prime} 040461\) 0.0226.0060045 \(00227^{\circ} 649468\) \(00230^{\circ} 044460\) 00231'024454 80232'125400
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{11}{*}{FIX:} & STA & 1,NY & \\
\hline & LDA & \(1,0,2\) & \\
\hline & LDA & 3,FBIT & \\
\hline & AND \# & 3,1,SNR & ; SKIP If FLAG ALREADY SET \\
\hline & ADD & 3,1 & ; ADD IN MASTER FIX FLAG \\
\hline & STA & 1,0,2 & ; PUT CONTROL WORD BACK \\
\hline & SUB & 3,3 & ; ALLOW "INVISIBLE" \\
\hline & STA & 3,20,2 & ; BLOCKS \\
\hline & STA & 3,21,2 & 3 TO \\
\hline & STA & 3,22,2 & ; INTERACT \\
\hline & JMP & CONT & ; KEEP GOING \\
\hline \multicolumn{2}{|l|}{; ROUTINE TO} & OW CHAI & TO FIND (INP:NB) \\
\hline \multirow[t]{3}{*}{FIND:} & STA & 2,OLD & ; CALLING ADDR \\
\hline & LDA & 2,0,2 & ; ADDR OF 15 W WORD \\
\hline & JMP & MID & \\
\hline \multirow[t]{6}{*}{ROUND:} & LDA & 1,0,2 & \\
\hline & SUB & D, 1, SNR & ; COIAPARE \\
\hline & JMP & 6,3 & ; SUCCESS! ADDR. IN AC2 \\
\hline & INC & 2,1 & \\
\hline & STA & 1,OLD & ; OLD LINK ADDR. \\
\hline & LDA & 2,1,2 & ; GET LINK \\
\hline \multirow[t]{3}{*}{MID:} & MOVL\# & 2,2,SZC & ; END OF CHAIN? \\
\hline & JMP & 1,3 & 3YES. FAILURE EXIT \\
\hline & JMP & ROUND & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{; ROUTINE TO UPDATE FX, FY IN ANY} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{; PRESSURE SEGMENT FOR BLOCK NB}} \\
\hline & & & \\
\hline \multirow[t]{5}{*}{PUP:} & LDA & 0,0,2 & \\
\hline & LDA & 1, PMSK & \\
\hline & AND \# & \(1,0, S N R\) & ; QUICK CHECK FOR PRESS. \\
\hline & JMP & ESURB3 & ; NONE FOR THIS BLOCK \\
\hline & LDA & 2, PRES & \\
\hline \multirow[t]{12}{*}{GRAPE: PLUM:} & LDA & 3,NB & \\
\hline & MOVL\# & 2,2,SNC & \\
\hline & JMP & - +3 & \\
\hline & LDA & 2, SV2 & \\
\hline & JMP & ESVRB3 & ; END OF PR. SEG. LIST \\
\hline & LDA & \(1,0,2\) & ; NPNB THIS SEG. \\
\hline & LDA & 0, .MSKR & \\
\hline & AND & 1,0 & ; NB1 (BLOCK \#) \\
\hline & SUB\# & 0,3, SNR & ; SAIME BLOCK? \\
\hline & JMP & PRUNE & ; YES; UPDATE FX,FY \\
\hline & LDA & 2,2,2 & 3NO, GET NEXT LINK \\
\hline & JMP & PLUM & \\
\hline \multirow[t]{15}{*}{PRUNE:} & SUBS & D, 1 & 3NP1 (EDGE \#) \\
\hline & STA & 2,PR2 & 3 CURRENT PR. LIST POINTER \\
\hline & LDA & 3,1,2 & 3FORCE \\
\hline & STA & 3,FORCE & \\
\hline & STA & 1,NPREM & ; REMEMBER \(15 T\) CORNER \\
\hline & LDA & 3,.M1 & \\
\hline & ADD & 0,3 & \\
\hline & LDA & 2,0,3 & 3 BLOCK POINTER \\
\hline & JSR & 8.LENG & 3 GET LENGTH \\
\hline & STA & O, L & \\
\hline & JSR & e.PONI & \\
\hline & STA & 日, XA & \\
\hline & STA & 1,YA & \\
\hline & LDA & 1,NPREM & \\
\hline & INC & 1,1 & \\
\hline
\end{tabular}

－TITL MOTIO
3 ROUTINE TO APPLY LAW OF MOTION TO ALL BLOCKS
－ENT－MOT，．ROT，．TREC
－EXTD ．M1，．DISB，．REBX，．PFLG
－ZREL

00日の日－ \(000001^{\circ}\) 00001－000149 00002－000040
\(00000^{\circ} 000008\) 80601＇054777 \(00002 \cdot 0340015\) \(60003^{\circ} 654547\) \(08004^{\circ} 031480\) －0005＇151005 \(00006^{\circ} 002772\) \(00007^{\cdot 021014}\) 00010＇101005 00011．000524 00012．021000 \(00013^{\circ} 024540\) \(00014^{\prime} 197404\) \(00015^{\circ} 000520\) \(00016^{\prime 021007}\) 00017．025005 00020．004535 \(00021^{\cdot} 045005\) －00022．050532 0日023．030002－ \(00024^{\prime} 102400\) 00025＇135000 －0026＇125112 \(00627^{\prime} 124400\) 00030．146512 \(00031^{\circ} 000516\) 90032．073101 \(00033^{\circ} .030521\) \(00034^{\prime} 021002\) －0035＇175112 \(00036^{\circ} 006405\) 00037 ＇123023 9064日． 090417 00041．011001 \(00042^{\circ} 060405\) \(00043^{\circ} 124400\) \(00044^{\prime} 123022\) \(00045^{\circ} 000412\) 00046．015001 00047．045020 \(00050^{\circ} 041002\) \(00051^{\prime} \cdot 024501\) \(00052 \cdot 0060035\) \(00053^{\circ} 0340045\) \(00054^{\prime} 175005\) 00055．006002s 00056． 100403 \(00057^{\circ} 045020\) \(00060^{\circ} 041002\)
．MOT：
－ROT：
－TREC： \(4 \theta\) －NREL
SAVE：\(\quad\) O
MOT：STA LDA STA LDA MOV JMP LDA MOV JMP LDA
LDA
AND
JMP LDA
LDA JSR STA STA LDA SUB MOV 1,3 BKEEP FOR SIGN MOVL\＃1，1，SzC NEG 1,1
SUBL\＃2，1，SZC ；BYPASS IF ANSWER WILL BE ø
JMP FLIP
DIV ；INTEGER DIVIDE
LDA 2．sv2
LDA 0，2，2
MOVL\＃ 3,3, SZC
JMP FLIT 3 has NEGATIVE
ADDZ 1,0, SNC
JMP OK
ISZ 1,2 INCREMENT XC（HIGH）
JMP CHECK
NEG 1,1
ADDZ 1，6，SZC
JMP OK
DSE 1，2 ；DECREMENT XC（HIGH）
STA \(1,20,2\)
STA \(0,2,2\)
LDA 1, BLOCK
JSR E．REBX
LDA 3，．PFLG
MOV 3,3, SNR
JSR e．DISB
JMP NUT
OK：STA
STA
3
\(00061^{\prime} 021016\) NUT ：
LDA

1，20，2 BDETA－XC
\(0,2,2\) SNEM XC（LOW）
0，16，2 ；FYSUM

\(00154^{\circ} 000000\)
\(00155^{\prime} 125020\) －80156．125112 \(00157^{\circ} 900405\) \(00160^{\prime} 101113\) 00161＇00の407 00162＇107000 \(00163^{\circ} 001400\) \(00164^{\circ} 101113\) \(00165^{\circ} \cdot 000775\) 00166＇124400 \(00167^{\prime} 100440\) \(00170^{\circ} 107000\) \(00171^{\prime} 020406\) \(00172^{\circ} 106432\) \(00173^{\prime} 105000\) \(60174^{\circ} 125002\) \(80175^{\circ} 124400\) 80176．001480 \(00177^{\cdot 037777}\) घ0200＇126400 00201．621017 \(00202^{-031013}\) \(00203^{\prime} 115006\) \(00204^{\prime} 101112\) 90205＇108400 \(09206^{\prime} 142432\) \(00207^{\prime} 124081\) \(00210^{\circ} 973101\) 00211＇125220 00212．125220 \(00213 \cdot 125220\) \(00214^{\prime} 175102\) \(00215^{\circ} 124406\) 00216＇121000 \(00217^{\prime} .030735\) －0229．025006 00221＇004734 ø0222＇045006 －0223．030001－ 00224．102400 00225＇135000 \(00226^{\prime} 125112\) \(00227 \cdot 124400\) －0230＇146513 00231．000410 00232．030722 \(00233^{\circ} 041022\) 06234．000670 00235．024715 \(00236^{\circ} 0060035\) 00237：000665 \(00240^{\circ} \mathrm{0} 400005\) 00241．073101 \(00242 \cdot 030712\) \(00243 \cdot 175102\) \(00244^{\circ} 124400\)

SV2：\(\quad 0\)
；
；TO ADD ACg TO AC1，WITH AN UPPER
ILIMIT SET TO THE ANSWER IN ACI
ADDIMX：MOVZ 1,1 ；CLEAR CARRY
MOVL\＃ \(1,1, S Z C\)
JMP AI
MOVL \(\quad 0,0\), SNC
DIF：ADD \(\theta, 1\) BOTH SIGNS DIFFERENT JMP \(\theta, 3\) IEXIT
A1：MOVL\＃\(\theta, \theta, S N C\) \(\begin{array}{lll}\text { JMP DIF } & \text { ；BOTH DIF } \\ \text { NEG } & 1,1 & \text { BOTH }-V E\end{array}\)
\(\begin{array}{lll}\text { NEGG } 1,1 & \text { ；BOTH }-V E \\ \text { NEGO } & \theta, \theta & \text { ；NEGATE BOTH．SET CARRY }\end{array}\)
POS \(\begin{array}{ll}\text { ADD } & \theta, 1 \\ \text { LDA } & \theta, \text { MAX }\end{array}\) SUBZ\＃\(\quad\) ， 1, SZC ；LIMIT MAX VELOCITY MOV 0,1 MOV \(1,1, \mathrm{SZC}\)
NEG 1,1 YYES，NEGATE！ JMP B，3 JEXIT
MAX： 37777
CLOT：SUB 1,1 BCLEAR LOWER
LDA \(0,17,2\) IMSUM
LDA 2，13，2；1
MOV \(\theta, 3\) SSAVE M FOR LATER
\(\begin{array}{lll}\text { MOVL\＃} \theta, \theta, S E C \\ \text { NEG } \theta, \theta \quad \text { ；} & \theta S S(M S U M)\end{array}\)
SUBZ\＃2， \(2, S Z C\) ；CHECK FOR OVERFLOW
COM 1，1，SKP
DIV MOVZR 1，1 3）．ROT ERR MOVZR \(1,1 \quad ;) / 8\) MOVZR 1，1 3） MOVL \(3,3, S E C\)
NEG 1,1 ；RESTORE SIGN
MOV 1,0
LDA 2，SV2
LDA \(1,6,2\) ；OLD ALPHA－DOT
JSR ADDMX
STA 1，6，2 ENEW ALPHA－DOT
LDA 2，．ROT
SUB 0,0
MOV 1,3
MOVLA \(1,1, \mathrm{SZC}\)
NEG 1,1
SUBLA 2，1，SNC 3 CHECK FOR UNDERFLOW
JMP TREE
LDA 2，SV2
STA 0，22，2 JMP CLOT1 ；NO MORE TO DO
CLOT2：LDA \(1, B L O C K\)
JSR B．REBX
JMP CLOT1
TEST： 4 日णの日
TREE：DIV LDA 2，SV2
MOVL 3,3, SZC
NEG 1,1
\(00245^{\circ} 921012\) ต9246＇123000 g9247＇125120 の日250．125120 ஏ6251＇125120 －8252＇845022 ＠0253．948514 ต0254＇105192 \(00255^{\prime} 100400\) \(00256^{\circ} 024762\) ต0257＇122513 \(00260^{\circ} 098485\) \(00261^{\circ} 101002\) 00262＇100490 \(06263^{\prime} 941012\) 00264＇00 0640 ø0265＇122462 \(00266^{\circ} 100400\) \(00267^{\circ} 041012\) \(00270^{\circ} 024500\) －0271＇031011 \(00272^{\prime} 102480\) 96273＇073381 ตด274＇125112 06275＇191400 00276＇ 030656日6277＇g250日0 ம0300．844471 00301＇125100 00362＇634465 \(00303^{\circ} 175112\) 90304：175060 90305＊125112 \(00306^{\circ} 125060\) \(00307^{\circ} 035010\) 00319＇125003 \(00311^{\prime}\) Ø0． 0404 00312＇117022 \(00313^{\prime} 176000\) \(90314^{\prime}\) gの日 413 \(00315^{\circ} 116422\) \(00316^{\circ} 090411\) \(00317^{\circ} 174480\) ต0320．025000 00321 125108 00322＇125100 60323＇125060 \(00324^{\circ} 125200\)日0325＇125200 ஏ0326年045000 \(00327^{\circ} 025010\) 90330．955010 \(00331^{\prime} 938437\) 00332＇102400 －0033 \({ }^{\circ} 073301\) ロ0334＊125112 06335＇101400 \(00336^{\circ} 024433\) 80337＇125100 90340．125100
\begin{tabular}{|c|c|c|c|}
\hline & LDA & \(0,12,2\) & ；ALPHA（OLD） \\
\hline & ADD & 1,0 & ；ADD IN D－ALPHA \\
\hline & MOVEL & 1，1 & FMAKE UP TOTAL SHIFT \\
\hline & MOVZL & 1，1 & ；TO 8 BITS \\
\hline & MOVZL & 1，1 & \\
\hline & STA & 1，22，2 & ；DELTA－ALPHA \\
\hline & STA & \(0,5 I E N\) & JKEEP SIGN FOR LATER \\
\hline & MOVL & \(0,1,5 \geq C\) & 3－VE？（GARBAGE IN ACI） \\
\hline & NEG & 0,8 & ；YES（C IS SET） \\
\hline & L．DA & 1，TEST & \\
\hline & SUBL \＃ & 1,0, SNC & ；IS ALPH＞＝1／64？ \\
\hline & JMP & CHAN & ；YES．INCR．COS \＆SIN \\
\hline & MOV & \(\theta, \theta, S E C\) & ；WAS SIGN－VE？ \\
\hline & NEG & \(\theta, 0\) & 3YES．RESIORE IT \\
\hline & STA & 6，12，2 & ；ALPHA（NEW） \\
\hline & JMP & CLOT1 & ；FINISHED！ \\
\hline \multirow[t]{24}{*}{CHAN：} & SUBC & \(1, \theta, S E C\) & ；SUBTRACT ALPH（MAX） \\
\hline & NEG & 0,0 & \\
\hline & STA & B，12，2 & ；ALPHA（NEW） \\
\hline & LDA & 1，AMAX & \\
\hline & LDA & 2，11，2 & ；SIN \\
\hline & SUB & 0,8 & \\
\hline & MUL & & 3MULT＊BY AMAX（1／64） \\
\hline & MOVL\＃ & 1，1，SEC & \\
\hline & INC & 0,0 & 3 ROUND UP \\
\hline & LDA & 2，SV2 & ；（SIN＊AMAX NOW IN CAg） \\
\hline & LDA & 1，0，2 & 3SIN FLAG \\
\hline & STA & 1，SFLAG & \\
\hline & MOVL & 1，1 & 3 PUT FLAG IN CARRY \\
\hline & LDA & 3，SIGN & ；D（ALPHA）FLAG \\
\hline & MOVL\＃ & \(3,3, \mathrm{SZC}\) & \\
\hline & MOVC & 3，3 & \\
\hline & MOVL\＃ & 1，1，SZC & ；1S COS FLAG SET？ \\
\hline & MOVC & 1，1 & ；YES．COMP．CARRY \\
\hline & LDA & 3，10，2 & \％OLD COS \\
\hline & MOV & 1，1，SNC & ；SAME SIGNS，C \＆D（C）？ \\
\hline & JMP & CARO & 3YES．SUBTRACT！ \\
\hline & ADDZ & B，3，SZC & ； \(\operatorname{COS}+\mathrm{D}(\mathrm{COS})\) \\
\hline & ADC & 3，3 & 3 SET TO MAX IF OVERFLOW \\
\hline & JMP & PRUNE & \\
\hline \multirow[t]{10}{*}{CARO：} & SUBZ & 6，3，SZC & 3 COS－D（COS） \\
\hline & JMP & PRUNE & \\
\hline & NEG & 3，3 & \\
\hline & LDA & 1，8，2 & \\
\hline & MOVL & 1，1 & \\
\hline & MOVL & 1，1 & \\
\hline & MOVC & 1，1 & 3 ODMPLEMENT COS FLAG \\
\hline & MOVR & 1，1 & \\
\hline & MOVR & 1，1 & \\
\hline & STA & \(1,0,2\) & 3 LPDATE CONTROL KORD \\
\hline \multirow[t]{10}{*}{PRUNE：} & LDA & 1，10，2 & 3 CLD COS \\
\hline & STA & 3，10，2 & 3NEW COS \\
\hline & LDA & 2，AMAX & \\
\hline & SUB & D，В & \\
\hline & MUL & & \\
\hline & MOVL\＃ & 1，1，SZC & \\
\hline & INC & 0,0 & 5 EQUND UP \\
\hline & LDA & 1，SFLAG & ；SIN FLAG \\
\hline & MOVL & 1，1 & ；EECOMES COS FLAG \\
\hline & MOVL & 1，1 & 3 DOW IN CARY \\
\hline
\end{tabular}
```

00341'034426
00342'175112
00343'175060
00344'030610
00345'025006
0346'125112
00347'125060
ต0350'935911
80351'125002
00352'000404
00353'117022
00354'176000
00355*008410
00356'116422
00357'00%406
80360'174400
00361'125100
00362'125060
09363'125200
00364'045009
00365'0550111
80366'000647
00367'002060
00378.001908
00371'000000

```


```

00035.001412
のめの36.かけดのに1
月0037'gcom\&1
09848'0969205
बag41'176366
00042'090001
00043'000001
90044'の92481

```

```

00846'g00903
00047'081356
00050.001265
00051.g00043
000010

	778		
	1		
	1		
	JSR	e．AXIS	
	－778		
	1		
	1		
AXSAV：	JMP	EAXSAV	
	$\square$		
Al：	3		
A2：	750		
A3：	693		
A4：	35		
	－RDX	8	
5			
3			
DIR：	DIREC		
DISE：	LDA	0，PLTS	
	STA	0, PLOT	
	JMP	SING	
DISP：	STA	3，SV3	
TRY：	LDA	0，DRIVE	
	DOB	Q，LINC	
	LDA	日，BLK	
	LDA	1，NBLK	
	LDA	2，CORE	
	STA	2，PPLOT	
	JSR	e．RLNC	SREAD IN PAPER PLOT ROUTINE
	MOV	1，1，SNR	
	JMP	－+3	
	HALT		；TAPE ERROR
	JMP	TRY	
	LDA	$\theta$ OFFP	
	STA	Q，FFR	
	LDA	0．，LPAP	；LOADS NEEDED？
	MOV	B， 8, SER	
	JSR	EDIR	\％YES
	JMP	SUN	
DISS：	LDA	B．，PLTS	
	STA	0，－PLOT	：SCREEN－PLOT POINTER
	LDA	B，FFS	
	STA	B，FFR	
	STA	3 ，SV3	
	JSR	AXES	3PLOT AXES ON SCREEN ONLY
SUN：	LDA	3，．M1	
RAIN：	STA	3，BPNT	
	LDA	2，0，3	
	MOV	2，2，SNR	
	JMP	FINAL	；NO MORE BLOCKS
	LDA	$0,14,2$	；AREA
	MOV	B， 0, SNR	3 EERO？
	JMP	WIND	3YES，SKIP THIS BLOCK
	LDA	$0,0,2$	
	LDA	1，FMSK	－
	AND＊	1，D，SER	3FIXED BLOCK？
	JSR	EFFR	sYES，PRINT AN＂F＂
	JSR	SING	3 PLOT THIS BLOCK
WIND：	LDA	3，8PNT	
	INC	3，3	
	JMP	RAIN	

```
\(00126^{\circ} 102400\) 06127＇126408 00138．896900－
 00132.0660165 \(00133^{.092447}\) \(08134^{\circ} 000000\) \(00135^{\circ} 000207^{\circ}\) 00136＇000225 \({ }^{\circ}\)
 \(08140^{\circ} 060440\) 60141＇000555
\(00142 \cdot 054435\) \(00143^{\circ} 021001\) \(00144^{\prime} 025083\) \(08145^{\circ} 026000-\) \(011^{6} 6^{\prime} 177777\) \(00147^{\circ} \cdot \mathrm{g21日月ด}\) 00150.0240075 \(00151^{\prime} 107400\) \(00152^{\circ} 044426\) \(00153^{\prime} 126408\) \(00154^{\circ} 844427\) 00155．006日035 \(00156^{\circ} 048425\) \(00157^{\prime} 044426\) \(00160 \cdot 006000-\) \(00161^{\circ} 000000\) \(00162^{\circ} 000404\) \(00163^{.0060045}\) 00164．006000－ \(00165^{\circ} 000001\) \(00166^{\circ} 010415\) \(00167^{\prime} 024414\) \(00170^{\circ} 014410\) \(00171^{\circ}\) ．0日0772 \(00172^{\circ} 020412\) \(00173^{\circ} 024412\) 00174＇006000－ \(00175^{\circ}\) b00日01 \(00176^{\prime 0} 02401\)
\begin{tabular}{|c|c|c|c|c|}
\hline FINAL： & Su8 & 8,8 & & \\
\hline & Sub & 1，1 & & \\
\hline & JSR & e．PLOT & 3RESET BEAM／PEN TO LOWER & \\
\hline & 0 & & 3 LEFT－HAND CORNER & \\
\hline & JSR & 2．ALPH & & \\
\hline & JMP & esv3 & SEXIT & \\
\hline FFR： & 0 & & & \\
\hline FFS： & FF & & & \\
\hline FFP： & LETT & & & \\
\hline NBLK： & 1 & & & \\
\hline CORE： & 448 & & & \\
\hline BLK： & 555 & & & \\
\hline ， & & & & \\
\hline SING： & STA & 3， \(\mathrm{SB}_{3}\) & 3 ROUTINE TO PLOT A BLOCK & \\
\hline & LDA & 0，1，2 & & \\
\hline & LDA & 1，3，2 & & \\
\hline & JSR & e．pLOT & & \\
\hline & －1 & & & \\
\hline & LDA & 0，0，2 & & \\
\hline & LDA & 1，．MSKR & & \\
\hline & AND & 0，1 & INUMBER OF POINTS & \\
\hline & STA & 1, NPNTS & & \\
\hline & SUB & 1，1 & & \\
\hline & STA & \(1, N P\) & & \\
\hline & JSR & e．PON1 & ；GET X，Y FOR FIRST POINT & \\
\hline & STA & \(0, \mathrm{X} 日\) & ；REMEMBER THEM FOR & \\
\hline & STA & 1，Y0 & ；LAST LINE． & \\
\hline & JSR & e．PLOT & BPLOT A POINT & \\
\hline & 0 & & BEEAM OFF／PEN UP & \\
\hline & JMP & HAIL & & \\
\hline FOG： & JSR & e．PON2 & 32ND，QUICK ENTRY & \\
\hline & JSR & e．PLOT & & \\
\hline & 1 & & IBEAM ON／PEN DOWN & \\
\hline HAIL： & ISE & NP & & \\
\hline & LDA & 1，NP & & \\
\hline & DSZ & NPNTS & & \\
\hline & JMP & FOG & SHAVEN＇T REACHED LAST POINT & YET \\
\hline & LDA & \(0, \times 0\) & 3 GET FIRST POINT BACK & \\
\hline & LDA & 1，Y8 & & \\
\hline & JSR & e．PLOT & ；PLOT IT & \\
\hline & 1 & & & \\
\hline & JMP & eSB3 & ；EXIT & \\
\hline S & & & & \\
\hline S83： & \(\square\) & & & \\
\hline NPNTS： & 0 & & & \\
\hline BPNT： & 0 & & & \\
\hline SV3： & \(\emptyset\) & & & \\
\hline NP： & 0 & & & \\
\hline X6： & 0 & & & \\
\hline Y0： & 0 & & & \\
\hline csv3： & 0 & & & \\
\hline ；TO PRI & NT＂F＂ & ON FIXED & BLDCKS & \\
\hline FF： & STA & \(3, \mathrm{csv} 3\) & & \\
\hline & LDA & 0，1，2 & & \\
\hline & LDA & 1，3，2 & & \\
\hline & LDA & 3，FIVE & & \\
\hline & ADD & 3,8 & & \\
\hline & ADD & 3，1 & & \\
\hline & JSR & e．PLOT & 3 EET BEAM POSITIONED & \\
\hline
\end{tabular}
\(00177 \cdot 000000\) \(00200^{\circ} 000000\) －6201． 000080 －0202．000000 60203． 000000 \(00204^{\circ} 000006\) \(08205^{\circ} 000000\) 00206．000060
\[
00207 \cdot 054777
\]
\[
06210 \cdot 021001
\] \(00211^{\prime} 025003\) \(00212^{\circ} 034411\) 00213＇163000 \(00214^{\circ} 167000\) 00215．036000－ 00216．000000
\begin{tabular}{|c|c|c|c|c|c|}
\hline 00217.0060165 & & JSR & 8．ALPH & ；ALPHA & \\
\hline 90220＇9069065 & & JSR & e．PRN1 & 3PRINT＂F＂ & \\
\hline 90221．900106 & & ＂F & & & \\
\hline 00222．002764 & & JMP & ecsv3 & & \\
\hline \(00223^{\circ} 000005\) & FIVE： & 5 & & & \\
\hline \(00224^{\circ} 014000\) & FMSK： & 14000 & & & \\
\hline & ；TO PLO & OT A LETTER & ER ON PAP & & \\
\hline 00225＇054432 & LETT： & STA & 3，SNOT & & \\
\hline 90226．058433 & & STA & 2，SV2 & & \\
\hline 00227＇930433 & & LDA & 2，POINT & & \\
\hline 00230＇102400 & & SUS & 0,0 & & \\
\hline ดู231＇ 040417 & & STA & O，MODE & & \\
\hline 00232.021000 & PLOOP： & LDA & \(0,0,2\) & ；（X：Y） & \\
\hline 60233＇105305 & & MOVS & 0,1, SNR & & \\
\hline \(90234^{\circ} 000421\) & & JMP & END & & \\
\hline 00235＇934007\＄ & & LDA & 3．．MSKR & & \\
\hline \(00236^{\circ} 167400\) & & AND & 3，1 & \(3 Y\) & \\
\hline \(00237^{\prime \prime} 163400\) & & AND & 3,0 & ；\(\times\) & \\
\hline \(00240{ }^{\circ} 151400\) & & INC & 2，2 & & \\
\hline 90241．656417 & & STA & 2．1T2 & & \\
\hline 96242＇930417 & & LDA & 2，SV2 & & \\
\hline \(09243^{\prime} 935081\) & & LDA & 3，1，2 & 3XG & \\
\hline \(00244^{\prime} 163000\) & & ADD & 3，8 & \(3 \times P\) & \\
\hline 00245＇035003 & & LDA & 3，3，2 & ；YG & \\
\hline \(00246^{\prime} 167900\) & & ADD & 3，1 & 3 YP & \\
\hline 00247＇006008－ & & JSR & 3．PLOT & & \\
\hline \(00250{ }^{\circ} 000000\) & MODE： & \(\emptyset\) & & & \\
\hline 00251＇132520 & & SUBZL & 0,0 & & \\
\hline \(00252^{\prime} 040776\) & & STA & 0，MODE & & \\
\hline 00253．038405 & & LDA & 2，1T2 & & \\
\hline \(60254^{\circ} 000756\) & & JMP & PLOOP & & \\
\hline \(00255^{\circ} 030404\) & END： & LDA & 2，SV2 & & \\
\hline \(00256^{\circ} 002401\) & & JMP & ESNOT & & \\
\hline 00257 0900000 & SNOT： & \(\emptyset\) & & & \\
\hline 00260＇000000 & IT2： & 8 & & & \\
\hline 日0261＇000000 & SV2： & 0 & & & \\
\hline 日0262＇90日263＊ & POINT： & ．+1 & & & \\
\hline ต0263＇097012 & & 7612 & 3 LETTER & ＂F＂ & \\
\hline ด02．64＇007605 & & 7095 & & & \\
\hline \(00265^{\prime} 902405\) & & 2405 & & & \\
\hline \(00266^{\prime} 905005\) & & 5005 & & & \\
\hline \(00267^{\circ} 005010\) & & 5010 & & & \\
\hline & & 0 & & & \\
\hline & 3 TO P & PLOT LOAD & VECTORS & & \\
\hline 00271．0299015 & LPLS： & LDA & \(\theta\), PLTS & & \\
\hline 00272＊64060日－ & & STA & 6，PPLOT & & \\
\hline ด0273＊ 054572 & DIREC： & STA & 3，RVEC & & \\
\hline \(00274^{\circ} 0340855\) & & LDA & 3，MMI & & \\
\hline 90275＇0200105 & & LDA & 0，NUM & & \\
\hline 06276＊ 043563 & & STA & \(0, \mathrm{KNT}\) & & \\
\hline 00277．054563 & & STA & 3，PNT & & \\
\hline ம039日．03149日 & REPT： & LDA & 2，0，3 & & \\
\hline 00301.921014 & & LDA & 0，14，2 & & \\
\hline 00302＇181005 & & MOV & 0，0，SNR & & \\
\hline 90303 \({ }^{\circ} 000463\) & & JMP & TRIP & ；SKIP ERASED & BLOCK \\
\hline \(00364^{\circ} 221901\) & & LDA & 0，1，2 & \(3 \times \mathrm{C}\) & \\
\hline \(00305^{\circ} 925003\) & & LDA & 1，3，2 & \({ }^{\text {Y Y C }}\) & \\
\hline 90306＊0069日或 & & JSR & e．PLOT & & \\
\hline & & 0 & & & \\
\hline 00316．025014 & & LDA & 1，14，2 & ；EEIGHT & \\
\hline
\end{tabular}

\(06472^{\prime} 000005\)
- END


```

0.3362'924425
00363.034425
90364'167220
กก365:ก34425
20366'1\leqslant640日
367\cdot9060195
のต372+クロาดกก
90371.aの6%40S
00372.906417
00373.034420
60374'153ल00
08375':3760375
00376'092401
00377'00n050
24439+900939
C. At:1 'm%000
09402, nurgmol

```

```

0.4n4.0cnymo
994ल5.В0ल⿱刀口ด
00406.030n00
08497'0n0300
TPSAV: 0
LDA 1,YA
LDA 3,YB
ADDER 3.1 ; YA+YB)/2
LDA 3,MOVEI
SUR 3,1
Jor e.flTS
0
JSK D.ALPH
LDA C,TYFE
LDA 3,NNE
ADD 3.0 BASCII CHAN
JSR E.FFNN
JMP ETFSAV
BLOCK: 0
NPNTS: g
Mッ⿱一𫝀口心
xC: 0
Y0: 0
XA: Ø
XB: O
YA: O
09410'ganang YB: O
00411'090日0月 TYFE: 0
\emptysetn412.00ng@6 HOVEI: 6
0y413.090060 NN0: "Ø
00414'00110日' FLG: FLAG
;-----------
00415.006@25S UINP: JSR
00416.002641
JMP
3-----------
ค0417.006043S PINP: JSR
000012
00420'001461'
-RDX
e.UINP
PMESS
00421'177324 -300
00422.001274 700
00日010 -RDX 8
00423'0060445
00424.002633
JSR E.PSEG
JMP
;-----------
00425'006047S RP3: JSR
e.READ
e.PAGE
00426'0060115
60427,006月525
JSR
gRET3
e.MESS
1 0
8
eRET3
00430.0n69035
JSR E.TPRN
JSR e.DISS
00431'002626
JMP
eRET3
00432.056850S WP3: JSR
e.WRIT
00433'002624
JMP
0日434'102400 CUR: SUB 0,0
eRET3
03435.042757 STA 0.0FLG
@๗436.026095S CURS: JSR B.CURS
;RESET PKOP. CHNG. INDIC.
；RESET PKOP．CHNG．INDIC．
00437.0n9522.
CHAR
99449.090641.
X
09449.000641.
00441'002642.
09442'0060405
Y
JSR e.ALPH
00443.020457
0.444*'024462
0.445'106415
90446'002456
LDA O,CHAR
LDA 1,C1
LUA I,Cl SNR ;"1" BEEN HIT?
SMMP OLOADR

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 90447＇024454 & & LDA & 1，0 & & & & & \\
\hline 0045 ＇106415 & & SUA＊ & 0，1，SNR & ；HAS＂O＂ & BEEN & HIT & ？ & \\
\hline 日ด451＇กก？454 & & JイP & CONE & & & & & \\
\hline ตค452＇12．4456 & & LDA & 1，U & & & & & \\
\hline 20453＇196415 & & SUBA & 0，1，5NR & ；HAS＂U＂ & BEEN & HIT？ & & \\
\hline \(00454^{\prime} 002575\) & & JMP & UNFIX & ；YES & & & & \\
\hline 92455＇924455 & & LDA & 1，E & & & & & \\
\hline 99456＇196415 & & SUB \({ }^{\text {S }}\) & B，1，5NR & ；HAS＂E＂ & BEEN & HIT？ & & \\
\hline \(00457^{\circ} \mathrm{0g6455}\) & & JMP & ERASE & ；YES & & & & \\
\hline 06463＇024451 & & LDA & \(1, F\) & & & & & \\
\hline 90461＇106414 & & SUB\＃ & ©，1，SER & ；HAS＂F＂ & BEEN & HIT？ & & \\
\hline 00462．002441 & & JMP & ESURFR & ；TAY PROP & ERTY & KEYS & & \\
\hline 00463＇0960075 & & JSR & Q.HITC & & & & & \\
\hline \(09464^{\prime}\) 20月641． & & X & & & & & & \\
\hline の日465＇0＠ด642＇ & & \(Y\) & & & & & & \\
\hline 00466＇9の0750 & & JMP & CURS & & & & & \\
\hline ดค467＇921009 & & LDA & \(0,0,2\) & ；CONT ROL & WORD & & & \\
\hline \(00470 \cdot 024427\) & & LDA & 1，FBIT & ；＂FIXED＂ & FLAG & CBI & & \\
\hline \(00471^{\prime} 197414\) & & AND \(\#\) & \(\theta, 1, S \geq R\) & ；ALREADY & FIXED & & & \\
\hline \(00472^{\prime} 093744\) & & JMP & CURS & & & & & \\
\hline 09473＇123990 & & ADD & 1，0 & ；ADD IN F & LAG & & & \\
\hline \(00474^{\prime} 041000\) & & STA & 0，6，2 & ；PUT hORD & BACK & & & \\
\hline \(80475^{\prime} 102400\) & & SUB & \(\theta, 0\) & ；SUPPRESS & VELO & OCII & & \\
\hline \(00476 \cdot 341005\) & & STA & 0，5，2 & ；X－VEL & & & & \\
\hline \(00477 \cdot 941906\) & & STA & \(0,6,2\) & ；ALPHA－DO & & & & \\
\hline \(00500 \cdot 941915\) & & STA & 0，15，2 & ；Y－VEL & & & & \\
\hline 00501＇041020 & & STA & \(0,20,2\) & ；DELTA－X & & & & \\
\hline 00502＇041®21 & & STA & 0，21，2 & ；DELTA－Y & & & & \\
\hline 00503．041022 & & STA & \(0,22,2\) & ；DELTA－AL & PHA & & & \\
\hline 00524＇034415 & & LDA & 3，FIVE & & & & & \\
\hline 00505．921001 & & LDA & 0，1，2 & 3 XC & & & & \\
\hline 00506＊163n9日 & & ADD & 3，0 & ；\(\times \mathrm{C}+5\) & & & & \\
\hline 00507．925003 & & LDA & 1，3，2 & ；YC & & & & \\
\hline 00510．167900 & & ADD & 3，1 & 3 YC＋5 & & & & \\
\hline 90511．9069105 & & JSR & e．PLTS & & & & & \\
\hline \(00512^{*}\) の日の0日の & & \(\theta\) & & ；PUT BEAII & TO R & RIGHT & & Place \\
\hline 00513＇0060405 & & JSR & e．ALPH & & & & & \\
\hline 90514．0060065 & & JSR & e．PRN1 & & & & & \\
\hline 00515＇000106 & & ＂F & & & & & & \\
\hline \(00516^{\prime 0} 00720\) & & JMP & CURS & & & & & \\
\hline 0ด517＇の10日の日 & FBIT： & 19000 & ；MANUAL & FIX BIT & & & & \\
\hline の日520＇604000 & MBIT： & 4000 & ；MASTER & FIX BIT & & & & \\
\hline 00521＇\({ }^{\text {acono }}\) & FIVE： & 5 & & & & & & \\
\hline 90522＇0090．0 & CHAR： & 0 & & & & & & \\
\hline 90523＇001020． & SURFR： & SURF & & & & & & \\
\hline 00524＇090672＇ & LOADR： & LOAD & & & & & & \\
\hline \(00525^{\prime}\) 日月1121＇ & ONE： & ONLY & & & & & & \\
\hline 00526＇900261 & C1： & ＂ \(1+200\) & & & & & & \\
\hline \(00527^{\circ} 000262\) & C2： & ＂2＋200 & & & & & & \\
\hline \(09530 \cdot 000325\) & U： & ＂U＋200 & & & & & & \\
\hline ¢0531＇009306 & F： & \({ }^{\prime} \mathrm{F} F+200\) & & & & & & \\
\hline Ø0532＇．299305 & \(E:\) & ＂ \(\mathrm{E}+200\) & & & & & & \\
\hline Ø0533 \({ }^{\circ} \mathrm{Cog} 317\) & 0： & ＂0＋200 & & & & & & \\
\hline \(09534^{\circ} 9060975\) & ERASE： & JSR & e．HITC & & & & & \\
\hline の0535 \({ }^{\circ} \mathrm{R}\) の05641． & & X & & & & & & \\
\hline 90536＇009642＇ & & \(Y\) & & & & & & \\
\hline \(00537^{\prime}\) กอ9677 & & JMP & CURS & ；NO HIT & & & & \\
\hline \(00540^{\circ} 044503\) & & STA & 1，NB & ；BLOCK \＃ & & & & \\
\hline 00541＇0060115 & & JSR & e．PAGE & & & & & \\
\hline \(00542^{\prime} 0060265\) & & JSR & e．REBE & ；PUT IN COR & ORREC & CT BOX & & \\
\hline
\end{tabular}
\(00543^{\circ} 102400\) \(00544^{\circ} 941914\) \(00545^{\circ} \mathrm{O} 21\) กaの n0546．0240325 00547＇1234日0日0550．04त477 90551＇12640．9 0055 ？＇044472
a9553．00603as －0554．ㅇ00403 00555＇の24467 ดn556．006031s \(00557^{\circ} \cdot 0340335\) 00562．030ल03－ 00561．040．465 \(00.56 ?^{\prime} 1112490\) \(05563^{\circ} 073101\) 00564＇12．7120
（．5565＇1271） 0.56513769 c 90567＇924457 \(00570^{\prime} 192400\) 00571．073101 a．572．＇137000 \(06573^{\circ} 054452\) \(00574^{\circ}\) 0294447 00575．024447 0．576．125360 \(00577^{\prime} 123000\) aع6ce． 35400 00601．925400 \(00602 \cdot 106415\) \(00603^{\prime} 1000405\) 96604＇165490 \(00605^{\circ} \mathrm{C4} 4442\) 00606．035401
 \(00610 \cdot 925401\) 00611．046434 \(00612^{\prime} 1010432\) \(06613^{\circ} 014434\) \(00614^{\circ} 009741\)
\(00615^{\circ} 0340345\) の0616＇02n425 09617＇1170ng 90620． 054425 \(00621^{\circ} 035439\) －06622＇165000日0623＇175112 \(08624^{\circ}\) ดnc4 411 の日625＇171000 0．6226．035402 06627＇175113 \(00630^{\circ}\) ก20775 an631．056414 ค9632＇ก2ดก275 ด06633．041002
```

SUB 0.0
STA 0,14,? ;SET AREA TO EEERO
LDA $0,0,2$
LDA 1,.NSKF
AND $\quad 1,0$
STA O,FCNT
SUB $\quad 1,1$
STA $1, N P$

```
;NEXT PART REMOVES ALL FOINT ENTRIED:...
; BOX ARRAY
JMP PLACE
COW: LDA \(1, N\) P
PLACE: LDA E.PONZ
3..M3
LDA 2,.CIDE
STA \(\theta, N X\)
SUB \(\quad\) a, a
DIV
ADDEL 1,1
ADDEL 1,1
ADD 1,3
LDA I,NX
SUB \(\theta, \theta\)
DIV
 ADD 1,3
 STA 3,OLD
 LDA D,NB
 LDA \(1, N P\)
 MOVS 1,1
 \(\begin{array}{lll}\text { ADD } & 1,0 & \text { (} N P: N B \text {) } \\ \text { LDA } & 3,0,3 & \text { (} N O \text { CHECK FOR END) }\end{array}\)
 LDA \(1,0,3\)
 SUB\# 0,1,SNR
 JMP OOT ;FOLND IT
 INC 3,1
 STA \(1,0 L D\)
 LDA \(3,1,3\)
 JMP ROUND
 LDA \(1,1,3\);THIS LINK
 STA 1,eOLD
 ISZ NP
 DSZ PCNT
 JMP COW
;TO RETURN DEAD CONTACT ENTRIES TO EMPTY LIST
LDA 3,.45
LDA D,NB
ADD 0,3
STA 3,OLD
LDA \(3,0,3\)
 MOV 3,1 KKEEP FIRST ENTRY
 MOVL" \(3,3,5 \equiv \mathrm{C}\)
 JMP EXIT ;NO CONTCTS
 MOV 3,2 ;SAVE PREV. ADDR.(LAST?)
 LDA \(3,2,3\) BNEXT ENTRY
 MOVL 3,3, SNG
 JMP NIT ;KEEP GOING DOWN CHAIN
 STA 3,COLD ;PLUG INITIAL POINTER
 LDA D,.EMPT
 STA \(0,2,2\);STORE OLD EMPT FOINTEK
\begin{tabular}{|c|c|c|c|c|}
\hline の¢634．9440275 & & STA & 1，EMPT & \\
\hline 0n635＇006012s & EXIT： & JSR & e．ALLE & ；UPDATE REMAINING CONTACTS \\
\hline ค9636＇月の695？ & & JSR & e．IPRN & \\
\hline 00637．9060035 & & JSR & e．DISS & ； \(\mathrm{RE}-\mathrm{DRAW}\) \\
\hline \(00640^{\prime} 002410\) & & JMP & QCURSR & \\
\hline \(00641^{*}\) acceag & \(X:\) & 0 & & \\
\hline 99642＇กतबमeब & \(Y\) ： & 0 & & \\
\hline 00643＇00ncea & NB： & 0 & & \\
\hline ด®644＇029000 & NP： & 0 & & \\
\hline の日645＊＊nのnoe & OLD： & 0 & & \\
\hline פ0646＇กดดตอด & NX： & 0 & & \\
\hline 00647＇009009 & PCNT： & 0 & & \\
\hline \[
00650^{\circ} 000436^{\circ}
\] & CURSR： & CURS & & \\
\hline のn651＇0n60a7s & UNFIX： & JSR & e．HITC & \\
\hline ก0652＇000641． & & \(\chi\) & & \\
\hline \(00653^{\circ} 00064 ?^{\prime}\) & & \(Y\) & & \\
\hline ดค654＊กต2774 & & JMP & ECUPSR & \\
\hline 99655＇021990 & & LDA & 0，0，2 & ；TO RELEASE A BLOCK \\
\hline 00656．024542 & & LDA & 1，MBIT & ；IS MASTER BIT SET？ \\
\hline 00657＇197414 & & AND \({ }^{\text {a }}\) & \(0,1, S \ddot{c} R\) & \\
\hline 00660．902770 & & JMP & ECURSR & ；YES，HARD LUCK！ \\
\hline \(00661 \cdot 024636\) & & LDA & 1，FBIT & \\
\hline \(00662^{\prime} 107415\) & & AND \＃ & 日，1，SNR & ；FIXED ALREADY？ \\
\hline \(00663^{\prime} 902765\) & & JMP & ECURSR & ；NO CHANGE NECESSARY \\
\hline 00664.122409 & & SUB & 1,0 & BREMOVE BIT \\
\hline 00665＇941000 & & STA & \(0,0,2\) & ；PUT CONTROL WORD BACK \\
\hline ด0666＇9060115 & & JSR & e．PAGE & \\
\hline \(00667^{\circ} 0060525\) & & JSR & 6．TPRN & \\
\hline 90670．0060035 & & JSR & E．DISS & ；RE－DRAW \\
\hline ต0671＇0．02757 & & JMP & QCURSR & ；CARRY ON \\
\hline & \[
\begin{aligned}
& \text {; ROUTI } \\
& ;
\end{aligned}
\] & TO & It LOAD & VECTORS FROI SCREEN \\
\hline 09672＇906の日7s & LOAD： & JSR & e．HITC & \\
\hline 90673＇000641． & & X & & \\
\hline \[
00674^{\circ} 000642^{\circ}
\] & & \(Y\) & & \\
\hline \[
00675^{\prime} 000521
\] & & JMP & SURF 1 & ；NO HIT；TRY SURFACE \\
\hline 90676：950501 & & STA & 2，PNT 1 & \\
\hline 00677＇0060965 & & JSR & e．PRNI & ；RING BELL FOR HIT \\
\hline 90700＇90の日の7 & & 7 & & \\
\hline のต7の1＇006005s & & JSR & e．CURS & \\
\hline & & CHAR & & \\
\hline ด0703＇001000． & & \(X X\) & & \\
\hline \[
00704^{\circ} 901001^{\circ}
\] & & YY & & \\
\hline \(00705^{\prime} 9069405\) & & JSR & e．ALPH & \\
\hline \(00706^{\prime} 020614\) & & LDA & O，CHAR & \\
\hline \(0.797 \cdot 024629\) & & LDA & 1，C2 & \\
\hline \[
00710^{\circ} 106414
\] & & SUB\＃ & \(0,1, S \geq R\) & ；IS IT＂2＂FOR 2ND POINT？ \\
\hline \[
09711 \cdot 002737
\] & & JMP & ECURSR & ；NO，SOMETHING ELSE \\
\hline \(09712^{\prime} 0069975\) & & JSR & e．HITC & \\
\hline \(00713^{\circ} \mathrm{n} 01000 \cdot\) & & \(X X\) & & \\
\hline 00714＊001901． & & YY & & \\
\hline ＠9715＇刀0ด4？ & & JMP & BOG & ；HAVEN＇T HIT A BLOCK \\
\hline \(09716^{\prime} 034461\) & & LDA & 3，PNT 1 & 3FIRSI POINT BACK \\
\hline ต0717＇156414 & & SUB\＃ & 2，3，SER & ；COMPARE \\
\hline 9072日＇00ด417 & & JMP & BOG & ；ANOTHER BLOCK（COINCIDENCE） \\
\hline 99721＇921923 & & LDA & 0，23，2 & ；HIT ON SAME BLOCK \\
\hline ดู72？＇925024 & & LDA & 1，24，2 & ；YY LOAD \\
\hline 06723＇123005 & & \(A D D\) & 1,0, SNR & \\
\hline \(09724^{\prime} 902724\) & & JMP & ECURSR & ；ZERO．RETURN！ \\
\hline
\end{tabular}


```

01177*@21ก01
012のด'ल25003
¢1201'nल60105
01202'030ด30
\boxed{1203'021014}
01204*306%405
01295'9050465
91296*000394
01207'ด@56435
01210'のल1547*
61211'176504
01212'Cल1274
01213'006@43S
ด1214'001556'
01215*001325
01216.921236
81217'032677
0122日'021923
01221'101132
01222'の06675
01223'006675
01224'006\pi405
01225'0060465
01226'00ดด95
ด1227'n060435
91230'901612'
01231'001325
01232'001212
01233'032663
01234'^21024
01235*101132
01236'006661
01237.906661
01240.0360405
01241'0060465
01242'000905
01243'060477
01244'101123
01245*006552
01246}006043
91247'091632*
01250.091325
01251.000702
01252.032644
ด1253'0210日7
61254*101132
01255'994561
01256.004565
01257.0060405
01260'0960465
01261'.00बดल6
01262'0.360435
01263'021641.
日1264*001325
01265'の日』644
01266'032630
01267'021416
01270'1月113?
01271***54.*)
01272'@94551
LDA 0,1,2 ; XC
LDA 1,3,2 ;YC
JSR \&.PLTS
0
LDA
0,14,2 ;WEIGHT
JSR O.ALFH
JSR C.IPRN ;FRINT IT
4
JSR E.|ESS
LDMES
-700.
700.
JSR \&.MESS
XLMES
725.
670.
LDA 2,QAC2TS ;GET BLOCK POINTER
LDA 0,23,2 ; X LOAD
MOVEL\# 0,0,SZC ;GET SIGN OF LOAD
JSR EVET ;PRINT "-"
JSR @PO ;PRINT "+"
JSR ध.ALPH
JSR E.IRRN ;PRINT IT
5
JSR E.MESS
YLMES
725.
650.
LDA 2,EACZTS
LDA 0,24,2 ; Y LOAD
MOVZL\# O,\emptyset,SEZC ;GET SIGN OF LOAD
JSR QVET
JSR EPO ;PRINT +
JSR e.ALPH
JSR e.IPRN ;PRINT IT
5
READS Ø ;1 VEL,FSUIAS,ETC
MOVZL 0,0,SNC
JMP OMIT
JSR O.MESS
XFSM
725.
450.
LDA 2,EACZTS ;GET BLOCK POINTER
LDA 0,7,2 ; XFORCE SUM
MOVZL\# Ø,\emptyset,Sユ己C ; GET SIGN
JSR VETO
JSR POS
JSR e.ALPH
JSR E.IPRN
6
JSR e.MESS
YFSM
725.
420.
LDA 2,@AC2TS
LDA Ø,16,2 ;Y FORCE SU.1
MOVZL\# 0,0,S=C ;GEI SIGN
JSR VETO
JSR POS

```

\begin{tabular}{|c|c|c|c|c|}
\hline \(91367 \cdot 921911\) & & LOA & \(0,11,2\) & ；GET THE SINE \\
\hline 61379＇gn6n45s & & JSR & e．IPRN & \\
\hline の1371：177772 & & －6 & & \\
\hline 9137？ 0 の 6 ¢435 & & JSR & 8．MESS & \\
\hline 01373．901542． & & DALF & & \\
\hline 91374＇301325 & & 725. & & \\
\hline ©1375．तп0252 & & 17 ． & & \\
\hline 91376．039451 & & LDA & 2，AC2SV & \\
\hline \＄1377＇ \(\mathrm{P} 2192 ?\) & & LDA & 0，2？，2 & ；GET DEL THETA \\
\hline 01400．949416 & & STA & B，DELF & ；SAVE IT \\
\hline 01491＇101133 & & MOVEL＊ & 日，D，SNC & ；－OF＋ \\
\hline 91492． 209407 & & JMP & LUS & ；WAS POS \\
\hline 01493＇004433 & & JSR & VETO & ；PRINT－ \\
\hline \(91404^{\circ} 900401\) & & JMP & －+1 & ；NO OP \\
\hline \(81405^{\circ} 020411\) & & LDA & 0, DELF & \\
\hline \(01406^{\circ} \mathrm{C} 96 \mathrm{C465}\) & & JSR & B．IPRN & ；PRINT IT \\
\hline 61407＊17777？ & & －6 & & \\
\hline \(01410^{\circ} 000497\) & & JMP & －+7 & \\
\hline 01411＇0日4432 & LUS： & JSR & POS & ；PRINT＋ \\
\hline \(01412^{\prime} 920404\) & & LDA & Q，DELF & \\
\hline \(01413^{\prime} 0060465\) & & JSR & e．IPRN & \\
\hline \(01414^{\prime} 177772\) & & －6 & & \\
\hline \(01415^{\circ} 090402\) & & JMP & －+2 & \\
\hline \(01416^{\circ}\) 200090 & DELF： & 0 & & \\
\hline \(01417^{\circ} \mathrm{DC5}\) ¢435 & OMIT： & JSR & e．MESS & \\
\hline 9142，3c1563＊ & & QUES & & \\
\hline \(01421^{\circ} 9 \mathrm{D} 144\) & & 100. & & \\
\hline Q1422＇ 1.00144 & & 100. & & \\
\hline 01423 ＇969110 & DOVR： & NIOS & TTI & \\
\hline \(81424^{\prime} 0069025\) & & JSR & e．GETT & \\
\hline \(01425^{\prime} 9060375\) & & JSR & ®．PRN2 & \\
\hline \(01426^{\prime} 024427\) & & LDA & 1，YCHAR & \\
\hline \(01427^{\prime} 106405\) & & SUB & G，1，SNR & \\
\hline \(01430 \cdot 000420\) & & JMP & LODE & \\
\hline ด1431＇024425 & & LDA & 1，NCHAR & \\
\hline 61432＇106404 & & SUB & D，1，SER & \\
\hline の1433＊＊の日779 & & JMP & DOVR & \\
\hline \(01434^{\prime}\)（102401 & & JMP & ERT3T & ；EXIT \\
\hline ब1435＊191115＊ & RT3T： & QRET3T & & \\
\hline \(01436{ }^{\circ} \mathrm{CS4422}\) & VETO： & STA & 3，AC3SV & \\
\hline 61437＊0060065 & & JSR & e．PRN1 & \\
\hline \(01440 \cdot 009355\) & & ＂－ & & \\
\hline 61441＊934417 & & LDA & 3，AC3SV & \\
\hline \(01442^{\prime} 001401\) & & JMP & 1，3 & \\
\hline \(01443^{.054415}\) & POS： & STA & 3，AC3SV & \\
\hline \(01444^{\circ} 0060065\) & & JSR & e．PRNI & \\
\hline \(01445^{\prime} 000053\) & & ＂＋ & & \\
\hline \(01446^{\circ} 034412\) & & LDA & 3，AC3SV & \\
\hline ค1447＊ \(60146 \square\) & & JMP & 0,3 & \\
\hline \(91450 \cdot 330407\) & LODE： & LDA & 2，AC2SV & ；GET BLOCK FOINTER \\
\hline \(01451 \cdot 6060535\) & & JSR & e．LODE & ；GO TO INFUT ROUTINE \\
\hline 日145？＇0ngeng & OCHAR： & 0 & & \\
\hline \(81453^{\circ}\) 日月のलの日 & OX： & 0 & & \\
\hline & OY： & \(\square\) & & \\
\hline \(01455^{\circ} 000131\) & YCHAR： & ＂Y & & \\
\hline 61456＇009116 & NCHAR： & \({ }^{\prime \prime} \mathrm{N}\) & & \\
\hline \(01457^{\circ} 000000\) & AC2SV： & 0 & & \\
\hline 9146月＊ตอกตดด & AC3SV: & \(\square\) & & \\
\hline 91461．047111 & PMESS ： & －IXT & ＊IN & \\
\hline
\end{tabular}
```

    01462.05?520 PU
    01463.0201?4 T
    01464.047512 J0
    01465.047111 IN
    01466.920124 T
    01467.051120 PR
    01470'ल51505 ES
    01471.052523 SU
    01472.0425?2 RE
    01473.90%123 S*
    01474.942523 OVESS: .TXT *SE
    91475'の42514 LE
    41476'(5?1:3 CT
    01477.051%==
    0150n+(54)111 IN
    C1501.C461.7 GL
    01502'n22105 E
    01503.046102 BL
    01504.0241517 OC
    01505.0.09113 K*
    01506.042503 CTMES: -TXT *CE
    01507.052116 NT
    61510.047522 RO
    01511.042111 ID
    01512.041440 C
    01513.047517 00
    01514.042122 RD
    01515.047111 IN
    01516.052101 AT
    01517.051505 ES
    0152n'00n00n *
    91521.02913日 XCMES: .TXI *X
    01528.त4?503 CE
    91523.452116 NT
    152.'14752? K0
    01525.042111 1D
    01526.00う)00 *
    01527'の2G131 YCMES: .TXT *Y
    01530.042503 CE
    81531'052116 NT
    01532.047522 RO
    01533.042111 ID
    01534.00の日月ด *
    01535.044523 SINE: .TXT *SI
    01536.02月116 N
    01537'044124 TH
    01540.052105 ET
    01541'C00101 A*
    01542.042504 DALF: .TXT *DE
    01543.020114 L.
    01544.044124 TH
    01545'052105 ET
    01546%000191 A*
    01547.050101 LDMES: .TXT *AP
    01550.046120 PL
    01551.042511 IE
    01552.020104 D
    01553.047514 LO
    01554.042101 AD
    01555*000123 S*
    ```
\(01556^{\circ} 029130\) \(01557^{\prime}\) の47514 Q1560＇त42101 \(01561^{\prime} 122 \mathrm{CO} 49\) の1562＇๑รの日のด \(81563^{\prime} 247594\) \(01564^{\circ} 954442\) 91565＇952517 \(01566^{\circ}\) 月53449 \(01567^{\circ} 051511\) 6157日＇020119 \(01571 \cdot 947524\) 0157 ？\(^{\circ} 041440\) Q1573＇04ก51の の1574．343516 \(01575^{\prime 2} 020105\) \(01576^{\prime} 044124\) ด1577＇の2ด105 \(01600^{\circ} 947514\) \(016011^{\circ} 042101\) \(91602^{\prime} 929123\) \(01603^{\circ} 020050\) （） 6 6月4＇C2त131 Q1695 051117 \(01696^{\circ} 047949\) \(01697^{\circ} 024440\) 01610＇037440 \(01611^{\circ} 990040\) 01612＇020131 \(01613^{\prime} 647514\) \(01614^{\circ} 942101\) の1615＇020』4ク日1616．Пร9ดの日 01617．044440 \(01620^{\circ} 950116\) Q1621．952125 \(01622^{\circ} 943040\) \(01623^{\prime} 952454\) \(01624^{\circ} 046954\) \(01625^{\circ} 947440\) －1626． 162122 01627＇920117 \(01630 \cdot 020977\) 01631＇の日の日00 \(81632^{\circ} 920130\) \(01633^{\circ} \times 47506\) \(01634^{\circ} 041522\) \(01635^{\circ}\) ต201月5 \(01636^{\circ} 952523\) （1637．920115 0164 月 \(^{\circ}\) อの日の日ด ด1641＇ब2ก131 61642＇ク47506 \(01643^{\prime} 0415\) ？ \(01644^{\circ}\) ก2 2105 \(01645^{\prime} 952523\) \(01646^{\circ}\) ก20115 61647＇のaアのดの \(01650^{\circ} 347515\) 91651．927115

XLMES：．TXT＊X
LO
AD
＊ RUES：－TXT＊DO Y OU w IS H TO C HA NG E TH E． LO AD
\(S\)
6
\(Y\)
OR
N
，
？
＊
YLMES：•TXT＊Y
LO
AD
＊
INMS：－TXT＊I
NP
UT
F
，U
－L
0
R
0
？
＊
XFSM：．TXT＊X
FO
RC
E
SU
M
＊
YFSM：．TXT＊Y
FO
RC
E
SU
M
＊
MSUM：－TXT＊MO
\(M\) ．

\(00035^{\prime} 150400\) \(00036^{\circ} 145\) घ日月 の0037＇192490 80948．973301 60641．030742 00642.034742 ดமロ43＇167022 \(00044^{\prime} 151490\) \(00045^{\prime} 143000\) \(00046^{\circ} 940735\) \(00647^{\prime} 044735\) 00050.014737 \(90051^{\circ} 000404\)
\(00052 \cdot 936727\) \(00053^{\circ} 031415\) \(00054^{\circ} 000760\) \(00055^{\circ} 018724\) \(00056^{\prime} 814724\) \(00057^{\circ} 000751\)
\(08060^{\circ} 010730\) 00061＇024723 00662•020721 \(00063^{\circ} 030722\) 00064．034722 00065＇166422 \(00066^{\prime} 142401\) 00067 ＇142000 \(00070^{\prime} 101123\) \(00071^{\prime} 000431\) \(00072^{\prime} 024013-\) \(00073^{\circ} 020715\) 00074．106032 \(00075^{\prime} .000425\)
\(00076^{\circ} 0300145\) \(00077^{\circ} 0240175\) \(00100^{\prime} 124400\) 00101 ＇102400 \(00102^{\prime 0} 035000\) \(00103^{\circ} 041405\) \(00104^{\prime} 841406\) \(00105^{\circ} 941415\) \(00106^{\prime} 151400\) \(00107 \cdot 125404\) \(00110^{\circ} 000772\) \(00111^{\prime} 176400\) \(00112^{.054676}\) \(00113^{\prime} 0340165\) \(00114^{\prime} 175004\) \(00115^{\circ} 020405\) \(00116^{\circ} 0060035\) \(00117^{\circ} 000641^{\circ}\) －60120＇001522 \(00121^{\prime} 000062\) \(00122 \cdot 002656\)

```

00123.054407
CHNGIT: STA
SUB
STA
STA
SUBZL
STA 3,.COPCT
JMP ESAV3
SAV3: G
3
;------- OPTION INPUT ROUTINE ----
B
00133.0060075
OPTIN:
JSR
OPTMS
-350.
700.
JSR
CRMS
50.
670.
JSR
LDA
SUB\#
JMP
JSR
N1
200.
650.
JSR
Q1
7 5 .
600.
JSR
LDA 1,YCHR
SUB\# 0,1,SZR
JMP *+5
JSR E.PRN2 :PRINT Y
SUBZL 1,1
STA 1,.NVEC ;SET FLAG TO PRINT
JMP CNT1 ;NEXT
LDA 1,NCHR ; CHK FOR NO
SUB\# b,1,SZR
JMP OV1
JSR E.PRN2 ;PRINT IT
SUBO 1,1
STA 1,.NVEC :INHIBIT PRINTING
JSR B.MESS
Q2
7 5 .
550.
JSR E.DSIN
STA 1,.VFAC SSET SCALE FACT
JSR E.MESS
Q6
7 5 .
500.
JSR E.GETT
LDA 1,YCHR
SUB\# O,1,SZR
JMP - +5

```

\begin{tabular}{|c|c|c|c|c|}
\hline 00214.0060105 & & JSR & 8．PRN2 & ；PRINT Y \\
\hline \(00215^{\prime 1} 126520\) & & SUBZL & 1．1 & \\
\hline \(00216^{\circ} 044011-\) & & STA & 1，KKEFL & ；SET FLG TO K．E \\
\hline \(00217^{\circ} 000497\) & & JMP & CTNU & ；NEXT \\
\hline \(00220^{\circ} 924471\) & & LDA & 1，NCHR & \\
\hline 80221＇106414 & & SUB\＃ & 0，1，SER & \\
\hline 90222＇980766 & & JMP & OVR6 & \\
\hline 日0223＇0960105 & & JSR & e．PRN2 & \\
\hline \(00224^{\circ} 126448\) & & SUBO & 1，1 & \\
\hline 00225＊044011－ & & STA & 1，KKEFL & 3 INHIB K．E．ZERO \\
\hline \(00226^{\prime} 9060035\) & CTNU： & JSR & e．MESS & \\
\hline 90227＇900646 & & Q3 & & \\
\hline 90230＇0の0113 & & 75. & & \\
\hline 00231＇000702 & & 458. & & \\
\hline ต0232＇0060115 & 0V2： & JSR & e．GETT & \\
\hline \(00233^{\circ} 024456\) & & LDA & 1，NCHR & \\
\hline 90234＇106414 & & SUB \({ }^{\text {\＃}}\) & O，1，SER & \\
\hline 00235 000485 & & JMP & －+5 & \\
\hline 90236＇6960105 & & JSR & e．PRN2 & 3PRINT N \\
\hline Ø6237＇126440 & & SUBO & 1，1 & \\
\hline 00240．044905－ & & STA & 1，．OPTN & ；NO OPTIONS \\
\hline \(00241^{\prime} 008433\) & & JMP & LAST & \\
\hline \(09242^{\circ} 024450\) & & LDA & 1，YCHR & \\
\hline 00243＇106414 & & SUB\＃ & O，1，SZR & \\
\hline \(00244^{\prime} 000766\) & & JMP & OV2 & \\
\hline 80245＊9060105 & & JSR & e．PRN2 & SPRINT Y \\
\hline \(00246^{\circ} 126520\) & & SUBZL & 1，1 & \\
\hline 60247＇044005－ & & STA & 1，．OPTN & ：SET OPTION FLAG \\
\hline 00250．0060035 & & JSR & O．MESS & \\
\hline 90251＇000756＊ & & N2 & & \\
\hline 90252＇000144 & & 100. & & \\
\hline ตघ253＊ต00620 & & 400. & & \\
\hline 00254＇0868035 & & JSR & e．MESS & \\
\hline 00255＇001010． & & N3 & & \\
\hline Øロ256＇ө日月175 & & 125. & & \\
\hline 00257＇ロ00567 & & 375. & & \\
\hline \(00260^{\circ} 0060835\) & & JSR & e．MESS & \\
\hline 00261＇000676＊ & & Q4 & & \\
\hline \(00262^{\circ} 000113\) & & 75. & & \\
\hline 00263＇000505 & & 325. & & \\
\hline \(80264^{\circ} 0068125\) & & JSR & e．DBIN & \\
\hline 00265＊044006－ & & STA & 1，COPY & \\
\hline 00266＊0060035 & & JSR & ¢．MESS & \\
\hline 90267＇g00727＊ & & Q5 & & \\
\hline 90276＇ 000113 & & 75. & & \\
\hline 00271＊000423 & & 275. & & \\
\hline 90272＇．0060125 & & JSR & e．DBIN & \\
\hline 00273＇044007－ & & STA & 1，．STOP & \\
\hline ø0274＇0060935 & LAST： & JSR & ？．MESS & \\
\hline ロ日275＇001033＇ & & NA & & \\
\hline 00276 000310 & & 200. & & \\
\hline 90277＇000257 & & 175. & & \\
\hline 00300＇9060115 & 0V3： & JSR & 䡌．GETT & \\
\hline 90301＇924412 & & LDA & 1，CRGRT & \\
\hline 80302＊106414 & & SUB & 0，1，5ZR & \\
\hline 90303＇000775 & & JMP & OV3 & \\
\hline \(00304^{\circ} 0960075\) & HOME： & JSR & e．PAGE & \\
\hline 00395＇006022－ & & JSR & e．TPRN & \\
\hline \(00306^{\prime} 0060065\) & & JSR & e．DISS & \\
\hline \(00307^{\prime} 002481\) & & JMP & EBAKK & \\
\hline
\end{tabular}


```

00552:047054 ,N
00553'047054
00554.000051
00555*047584
00556.054440
00557.052517
00560.053446
00561'051511
00562'020110
00563'847524
00564*950940
00565*(944522
00566'052116
00567'040440
00570.050120
00571.044514
00572'042105
00573*046040
00574.040517 OA
00575'020104 D
00576.040526 VA
00577.052514 LU
00600.051505 ES
00601.024040 (
00602'027531 Y/
00603.024516 N)
00604'000077
00605'044127
00606'052101
00607'053440
00610.052517
ø0611'042114
00612.054440
00613'052517
00614'946040
00615*045511
00616.020105
00617'051501
00620.052040
00621'042510
00622.053040
00623'041505
00624*047524
00625'020122
00626.041523
00627.046101
00630.028105
00631'040506
00632'052103
00633.0511177
00634.024840
00635'026116
00636'051103
00637'037451
90640'000000
08641'027113
00642'027105
00643'042520
00644.045501
00645'000日0%, N
)*
Q1: -TXT *DO
Y
OU
W
IS
H
TO
P
RI
NT
A
PP
LI
ED
L
OA
?*
02: .TXT *WH
AT
W
OU
OU
LD
Y
OU
L
IK
N
E
AS
T
HE
v
EC
T0
R
SC
AL
E
FA
CT
OR
C
N,
CR
)?
*
KMS: .TXT *K.
E.
PE
AK
*

```
\begin{tabular}{|c|c|c|c|}
\hline 09646．947504 & 03 ： & ．TXT & ＊DO \\
\hline \(96647^{\prime} 954446\) & Y & & \\
\hline 00650．952517 & OU & & \\
\hline 90651＇．053448 & W & & \\
\hline 80652＇951511 & I S & & \\
\hline 00653＇020110 & H & & \\
\hline \(00654^{\circ} 947524\) & TO & & \\
\hline 00655＇052448 & U & & \\
\hline \(00656^{\circ} 042523\) & SE & & \\
\hline \(00657^{\circ} 948440\) & A & & \\
\hline \(00660^{\circ} 052125\) & UT & & \\
\hline \(00661^{\prime} 041517\) & OC & & \\
\hline 00662＇059117 & OP & & \\
\hline 80663＇020131 & Y & & \\
\hline \(00664^{\circ} 051117\) & OR & & \\
\hline \(00665^{\circ} 948440\) & A & & \\
\hline 9日666＇052125 & UT & & \\
\hline \(00667^{\circ} 051517\) & OS & & \\
\hline 90670．847524 & TO & & \\
\hline 90671．920120 & P & & \\
\hline ¢0672．954450 & CY & & \\
\hline \(00673^{\circ} 947057\) & ／N & & \\
\hline \(00674^{\circ} 037451\) & ）？ & & \\
\hline 06675＊ด0めの日ロ & ＊ & & \\
\hline \(00676^{\prime} 944127\) & 04： & ．TXT & ＊WH \\
\hline 00677＇952101 & AT & & \\
\hline \(00700^{\circ} 053449\) & W & & \\
\hline 00701＇052517 & OU & & \\
\hline ต0702＇842114 & LD & & \\
\hline \(00793^{\circ} 054440\) & Y & & \\
\hline 00784＇052517 & OU & & \\
\hline \(00785^{\prime} 846040\) & L & & \\
\hline \(00706^{\prime} 045511\) & IK & & \\
\hline \(00787^{\prime} 920105\) & E & & \\
\hline \(00710^{\circ} 951501\) & AS & & \\
\hline \(00711^{\prime} 052940\) & T & & \\
\hline \(00712^{\prime} 042510\) & HE & & \\
\hline \(00713^{\circ} 941440\) & C & & \\
\hline \(00714^{\circ} 058117\) & OP & & \\
\hline \(00715^{\circ} 020131\) & \(Y\) & & \\
\hline 00716.847111 & IN & & \\
\hline \(00717^{\circ} 051103\) & CR & & \\
\hline 00720.046505 & EM & & \\
\hline \(00721^{\prime} 047105\) & EN & & \\
\hline 00722.820124 & T & & \\
\hline 00723．04705 & CN & & \\
\hline \(00724^{\circ} 041454\) & ，C & & \\
\hline \(00725^{\prime} 024522\) & R） & & \\
\hline 00726．900077 & ？＊ & & \\
\hline \(00727^{\prime} 052101\) & Q5： & －TXT & ＊AT \\
\hline \(00730 \cdot 953448\) & W & & \\
\hline \(00731^{\prime} 940510\) & HA & & \\
\hline \(80732^{\prime} 928124\) & T & & \\
\hline 98733＇947520 & PO & & \\
\hline \(00734^{\prime} 947111\) & IN & & \\
\hline \(00735^{\prime} 020124\) & T & & \\
\hline \(00736^{\circ} 047527\) & Wo & & \\
\hline \(00737^{\prime} 046125\) & UL & & \\
\hline \(00740^{\prime} 020184\) & D & & \\
\hline \(00741^{\prime} 847531\) & YO & & \\
\hline
\end{tabular}


```

3 Y
3FRACTION IN ACO
;
N=3
00101'054424
0818つ'9484?4
0103'92149ด
ดの1の\triangle'025A81
ด81a5'ज月60日25
0\&196'のManag
ด01ด7'のด6ดด1\&
8日11月.ดのดด37
ดタ111'0ด6ดด15
のด11?'のの日の6ด
00113.9060615
00114*'gの日ด56
ดด1 15'M24411
00116.030414
0日117'102490
6812ด.月73301
00121'006005s
00122'177775
ब9123.934402
001?\triangle'001402
0日125'0लดด0日
0日125'08ดดดव
0日127'ดबの日のด
80130.80月の日0
ดด131'ดबのबดด
ดの日@12
00132'001750
000010
FRA
FRAC: STA 3,FSAV
STA B,FR
LDA 0,0,3
LDA 1,1,3
JSR e.PLTS
g
JSR e.PRN1
37
JSR E.PFNI
"0
JSR O.PFNI
".
LDA 1,FR
LDA 2,C1000
SUR 0,0
MUL
JSR E.IFRN
-N
LDA 3,FSAV
JMP 2,3
FSAV: O
FR:
0
CHAR: O
X: G
Y: B
-RDX 10
CI日日0: 1日日日 ;SET AT 1O**N
.RDX }
;
; PUT UP CURSOR AND hAII
I
00133'9060105
ด日134'ดのด127*
ดด135'ดดด13日.
00136'030131.
00137.0068115
0日14日'の20767
00141'024736
00142*106414
0日1\triangle3'のलด4ด5
00144'0960035
00145'006016S
00146'0060075
ด0147'09272ด
00150.02473日
ดด151'196414
ดด152.9ด0761
00153'024756
ดด15*'ด2ด722
0日155'196\Delta23
0日156'ดดด755
00157'1月2400
00168.93@713
00161'973101
09162'920707
80163'122423

```

GET

\(90164^{\circ} 996424\)
\(90165^{\circ} 930969-\)
\(09166^{\prime} 113999\)
\(90167^{\prime} 950437\)
\begin{tabular}{ll}
JMP & TRYMU \\
LDA & \(2, . S P R P\) \\
ADD & B，2 \\
STA & \(2, P P N T\)
\end{tabular}
\(9617 日^{\prime} 192499\)
\(08171^{\prime} 939782\)
\(90172^{\prime} 973391\)
90172.973301
90173* ต207a3
の日174.1日7日の日
の日175'の207のด
ดの176.896月の2s
の日177'ロの日の日に

ตต291'ด29726
ดดวด2'9068125
\(00203^{\circ}\) คल443日
日月2न4'ต2ด425
98205'030421
90206. 9418 の日
月0207'000724
ดดर1ด'191464
ด8211'のตต722
00212.924413
00213'月2ด662
96214'月060025
\(00215^{\circ}\) ดのดดดด
90216.ac60115
ตด217'92月710
ดดว2ด'ดด6ด125
ตด221'の日4412
9ด22? 1029407
\(00223^{\prime} 849006 \$\)
00224.000707
日の225.0@ด775

-0227. の日ดの日の
ต๐г3ด'ตตяの日5
80231. ஏ0の日の

\(02233^{\circ} 254777\)
g0234.034434
ดด235 054432
ด日236'1 ตг4ดด
の日237. 849772
の9240. 920770
90241'月40766
ดค242'gด6ด15s GIT:
ตめ243.9月6ด125
ดต244'月日大阝วดร
ตดว \(45^{\prime}\) ดのดの 415
002.46'1月500の
の日々 \(47^{\prime}\) の3 \(\triangle 42\) の
0025 月 \(^{-931409 ~}\)
Qの251'1924日日
बの252.673391
ดด253'日20756
ตค254'123ตดด
ด0255'ดАク75.
80256年10411
; SET UP
SUB 0,0
LDA 2,YINC
MUL
LDA \(\theta, Y L\)
ADD 0,1
LDA \(\theta, \times 1\)
JSR E.PLTS
Ø
JSR e.ALPH
LDA G, CHAR
JSR B.PKN2
JSR KEYB
LDA G,SUM
LDA 2.PPNT
STA \(0, \theta, 2\) STORE NEW FRICIION
JMP GET
TRYMU: INC \(\theta, \theta, S E R\); CHECK FOR DEFAULT VALUE
JMP GET
LDA \(1, Y M U\)
LDA \(\theta, \times 1\)
JSR e.PLTS
\(\theta\)
JSR B.ALPH
LDA B,CHAR ; SEND OUT DEC. POINT
JSR E.FRN2
JSR KEYB
LDA GEYB G,SUM
LDA G,SUM
STA D,MU
JMP GET
YMU: 13 *YROW + YBOT
\(\begin{array}{ll}\text { YMU: } \\ \text { PPNT: } & 1 \\ \end{array}\)
PPNT: 0
NN:
NTIM: 5
SUM: ด
KSAV: 0
KEYB: STA
3,KSAV
LDA 3,TBL
STA 3,TBLSV
SUB \(\theta, \theta\)
STA G.SUIM
LDA \(\quad\) O,NTIM
STA \(\quad\) O.NN
JSR e.GETT
JSR e.PRN2
JSR E.CHEK
JMP ERROR
MOV G.1
LDA 3, TRLSV
LDA \(2,0,3\);GET MULTIPLIEK
SUB 0,0
MUL
LDA \(\theta\),SUM
ADD 1.0 BADD IN NEK DIGII
STA B,SUM
ISE TBLSV

```

00346.800144
00347'099310
9の日ना年
0935年9の6ด145

```

```

00352'のด6021\$
のब353'मツの37?'
00354'0060155
g0355'のब6ดの35
90356'206月165
90357'の日6の日75
00360.002731
0日go1I
008011
00403'096004S ERR:
000012
00404.001417*
00405'000310
00406'000764
0の日の10
00497'ロดด4ด5
00410'09月900
00411'000日日0
000日12
00412'006175
006018
00413'054775
00414'0060105
00415'000604.
0日416*gan6a5'
00417'0日0686.
ดघ42ด'020564
00421'006ज205
ดø422'002766
00423'0060115
00424'0060225
00425'000605*
00426*000606*
00427'000765
0043日.050557
の日431'044557
00432'の40557
ด0433.054557
00434*日20551
ดด435'024551
08436.930555
00437'142400
06440.1464日0
00441'9060025
0日ム42'0000日の
00443'0068115
0ด444'C068015
00445*008052
00446'020536
00447'0060235
0045月'030572
00451'142414

```
\begin{tabular}{|c|}
\hline \[
90347^{\circ} 099310
\] \\
\hline 9の日ロ1 \\
\hline \\
\hline 9351＇ 8440 \\
\hline Q0352＇906 \\
\hline のツ353＇月ツの37？ \\
\hline 00354．0060155 \\
\hline \\
\hline ด0356＊2060165 \\
\hline 90357＇9660975 \\
\hline 09360.002731 \\
\hline a90911 \\
\hline ด080 \\
\hline
\end{tabular}
```

100

```
100
```

100
200
200
200
-RDX 8
-RDX 8
-RDX 8
JSR B.DBIN \&GET UNIT WEIGHT
JSR B.DBIN \&GET UNIT WEIGHT
JSR B.DBIN \&GET UNIT WEIGHT
STA 1,.UW
STA 1,.UW
STA 1,.UW
JSR %.hORD ;FORCE DESCRIPTOR
JSR %.hORD ;FORCE DESCRIPTOR
JSR %.hORD ;FORCE DESCRIPTOR
POUND
POUND
POUND
JSR E.GETT
JSR E.GETT
JSR E.GETT
JSR E.PAGE
JSR E.PAGE
JSR E.PAGE
JSR e.TPRN
JSR e.TPRN
JSR e.TPRN
JSR e.DISS
JSR e.DISS
JSR e.DISS
JMP EUSAV
JMP EUSAV
JMP EUSAV
-BLK 11
-BLK 11
-BLK 11
-BLK 11
-BLK 11
-BLK 11
FEET:
FEET:
FEET:
POUND:
POUND:
POUND:
B
B
B
; INPUT OF PRESSURE SEGMENTS
; INPUT OF PRESSURE SEGMENTS
; INPUT OF PRESSURE SEGMENTS
;

```
;
```



| 09543.196414 |  | SUB＊ | $\emptyset, 1,5 \mathrm{BR}$ | ；SAME NPNB？ |
| :---: | :---: | :---: | :---: | :---: |
| $00544^{\circ} \mathrm{gan} 403$ |  | JMP | CHAIN | INO；KEEP GOING |
| 90545＇910762 |  | ISE | E×3 |  |
| 90546 ${ }^{\circ} 902761$ |  | JMP | e $\times \times 3$ | 3GOOD EXIT |
| $00547^{\circ} 155400$ | CHAIN： | INC | 2，3 |  |
| 日9550＇175496 |  | INC | 3，3 |  |
| の8551＇031日日刀 |  | LDA | 2，2，2 | ；NEM SEG． |
| $08552^{\prime} 151112$ |  | MOVL\＃ | 2，2，SzC |  |
| Q6553．092754 |  | JMP | eEx3 | ；END OF CHAIN；EXIT！ |
| $00554^{\prime} 989766$ |  | JMP | ANCHOR |  |
|  | ；THE | LOK ING | CREAIES | NEW PRESSURE SEG．ENTRY |
| 00555＊020466 | NEWEN： | LDA | B，FORCE |  |
| $00556^{\circ} 101005$ |  | MOV | O，D，SNR |  |
| 90557＇908724 |  | JMP | AGAIN |  |
| 90560．030020－ |  | LDA | 2，．PEMT | ；TRY EMPTY P．LIST |
| $00561^{\prime 1} 151112$ |  | MOVL． | 2，2，SZC |  |
| 90562．008487 |  | JMP | FRIEM | ；MUST USE VIRGIN MEMORY |
| $00563^{\circ} 021$ 日ด？ |  | LDA | $0,2,2$ | ；OLD LINK |
| 90564＇049020－ |  | STA | 0，PPEMT | BREVISE EMPT POINTER |
| 00565＇034021－ |  | LDA | 3．．PRES | ；CURRENT HEAD OF P．LIST |
| 00566＇055日月2 |  | STA | 3，2，2 | ；NEK LINK |
| 00567＇350021－ |  | STA | 2，．PRES | 3 INSERT NEW P．SEG． |
| 00570＇900．430 |  | JMP | REST | INOW PUT IN DATA |
| 06571＇030624S | FRMEM： | LDA | 2，．M7 | 3NEXT FFEE LOCATION |
| ดด572＇020日255 |  | LDA | 0，MEM | 3 HIGHEST MEMORY |
| 日0573＇024452 |  | LDA | 1，SIEPR | ；hORDS NEEDED |
| $00574^{\prime} 147009$ |  | ADD | 2，1 |  |
| $00575^{\prime \prime} 122513$ |  | SUBL\＃ | 1，6，SNC | SOVERFLOW？ |
| $00576^{\circ} 008416^{\prime}$ |  | JMP | ALLOK | ；NO |
| 000012 |  | －RDX | 10 |  |
| $00577^{\circ} 0060945$ |  | JSR | e．MESS | 3PUT OUT MESSAGE |
| 98600＇001496． |  | MOVFL |  |  |
| $00601^{\circ} 000310$ |  | 200 |  |  |
| 00602＇000574 |  | 380 |  |  |
| 900610 |  | －RDX | 8 |  |
| 00603＇の007の日 |  | JMP | AGAIN |  |
| の0604＊の日日にดの | CHAR 1： | 0 |  |  |
| 00605 ${ }^{\circ} \mathrm{60日0009}$ | XP： | 0 |  |  |
|  | YP： | 0 |  |  |
|  | AC28： | 0 |  |  |
| 00610＇0日日月刀口 | NP： | 0 |  |  |
| の8611． $00006 \square$ | NB： | 0 |  |  |
| $00612^{\circ} \mathrm{O日月⿹丁口⿹丁口欠}$ | ZIMM： | $\theta$ |  |  |
| 0．613 $3^{\circ}$ の日0の00 | C5： | 0 |  |  |
| $06614^{\circ} 6449245$ | ALLOK： | STA | 1，．M7 | ；REVISE FREE POINTER |
| 00615＊020021－ |  | LDA | 0，．PRES |  |
| $00616^{\prime} 041902$ |  | STA | $0,2,2$ |  |
| 90617＇050021－ |  | STA | 2．．PRES |  |
| 0日629＇020423 | REST： | LDA | Q，FORCE | ；NORMAL FORCE |
| 90621．841091 | REST 1： | STA | 8，1，2 |  |
| 日1662＇ 020422 |  | LDA | B，MOMNT | ；MOMENT |
| 00623．041093 |  | STA | 0，3，2 |  |
| 00624＊＊2．4765 |  | LDA | 1，NB |  |
| 08625＊ 929763 |  | LDA | D，NP |  |
| 00626＇191300 |  | MOVS | $\theta, 8$ |  |
| 9月627＊1238日号 |  | ADD | 1.0 | 3 NPNB |
| $00630^{\circ} 941000$ |  | STA | 0.0 .2 | ；HEAD OF GROUP |
| 06631＇939756 |  | LDA | 2，AC2B | ；BLOCK POINTER |
| ต6632＇月21日日ด |  | LDA | $\theta, 0,2$ | 3 CONTROL WORD |
| 90633＇100日の日 |  | COM | 0,0 |  |


| $00634^{\circ} 034412$ |  | LDA | 3．PFLAG |  |
| :---: | :---: | :---: | :---: | :---: |
| 00635＇16340日 |  | AND | 3，0 |  |
| 90636．1月0000 |  | COM | $\theta, 0$ |  |
|  |  | STA | $0,0,2$ | ；SET PRESSURE FLAG |
| 00648．0960325 |  | JSR | B．REBZ | ；REBOX；UPDATE FX，FY |
| 00641．000642 |  | JMP | AGAIN |  |
| $00642^{\prime} 000915$ | CRR： | 15 |  |  |
| 00643．080c0a | FORCE： | 0 |  |  |
| $00644^{\circ}$－ 0 casag | MOMNT： | 0 |  |  |
| 日6645＇000806 | SIZPR： | 6 |  |  |
| 00646＇177377 | PFLAG： | 177377 |  |  |
|  | XA ： | B |  |  |
| 09650．006000 | XB： | 0 |  |  |
| ab651＇gancon | YA： | 0 |  |  |
| 00652＇narana | Y8： | 0 |  |  |
| Q9653．ดबดดดด | LNG： | 0 |  |  |
| 98654．090008 | XD ： | 0 |  |  |
| 08655．000000 | YD： | 0 |  |  |
| 00656．0300¢0 | XCC： | 0 |  |  |
| 60657．000600 | YCC： | 0 |  |  |
| 90668．000日月） | HI： | 0 |  |  |
| 00661＇008808 | L0: | 0 |  |  |
| 00662．030725 | COMPM： | LDA | 2， AC 2 B |  |
| 00663．024725 |  | LDA | $1, N P$ |  |
| 00664．02660305 |  | JSR | e．PON1 |  |
| 00665．049762 |  | STA | $8, \times 4$ |  |
| 00666．044763 |  | STA | $1, Y A$ |  |
| 00667＇024721 |  | LDA | $1, N$ P |  |
| 00670.0068275 |  | JSR | e．LENG |  |
| 80671．040762 |  | STA | O，LNG |  |
| $00672^{\prime} 021080$ |  | LDA | $0,0,2$ |  |
| 60673．0349265 |  | LDA | 3．．MSKR |  |
| $08674^{\prime} 163400$ |  | AND | 3.8 |  |
| $00675^{\circ} 125400$ |  | INC | 1，1 |  |
| $00676^{\prime} 122415$ |  | SUB\＃ | 1，0，SNR |  |
| 00677＇126400 |  | SUB | 1，1 | SMUST BE FIRST CORNER |
| 00700．0060315 |  | JSR | e．PON2 |  |
| 00701．034746 |  | LDA | $3, X_{A}$ |  |
| 90702＇162408 |  | SUB | 3 ， 0 | $3 \times B-X A$ |
| 08703．034746 |  | LDA | 3，YA |  |
| 60704＇166400 |  | SUB | 3，1 | SYB－YA |
| 09765．049747 |  | STA | B，XD |  |
| $00706^{.044747}$ |  | STA | 1，YD |  |
| $00707 \cdot 021001$ |  | LDA | 0，1，2 | －$\times$ C |
| 00718.024675 |  | LDA | 1，XP | MMID－POINT |
| $00711^{\prime} 122488$ |  | SUB | 1，8 |  |
| $00712^{\prime 2} 80744$ |  | STA | B，XCC |  |
| $00713^{\prime} 021003$ |  | LDA | 0，3，2 | 3とC |
| $08714^{\prime} 624672$ |  | LDA | $1, Y \mathrm{P}$ |  |
| 00715＇122400 |  | SUB | 1，8 |  |
| 00716.048741 |  | STA | D，YCC |  |
| 00717．004446 |  | JSR | SMUL | 3SIGNED MULTIPLY |
| 00720．090655． |  | YD |  |  |
| 00721．006657 ${ }^{\circ}$ |  | YCC |  |  |
| 00722．048736 |  | STA | B，HI |  |
| －9723．644736 |  | STA | 1，LO |  |
| 日6724．904441 |  | JSR | SMUL |  |
| 00725．000654． |  | XD |  |  |
| 00726 ${ }^{\circ} 000656^{\circ}$ |  | Xcc |  |  |

```
00727'030731
08730.834731
月0731'167ต22
00732.151480
00733.143298
00734'176400
0日735*101113
00736'00の405
09737'12.4485
00740.10月401
```



```
00742'176520
ด0743'930710
00744.073181
00745'030676
00746'102408
00747'073301
00756.175005
06751'000404
00752'124485
00753'100401
90754.100000
00755'0300265 BIT8:
00756'143700
00757'125300
00760'147400
00761'197000
00762.044662
00763.002417
00764'000800
00765*ロ54777
00766'027400
00767%033481
00770'176400
0日771'125112
00772'157000
00773'151112
00774'137000
00775'102400
00776.073301
00777'162400
010日0'034764
01001'001402
01002'000471.
```




```
01193.000520
01104.006003- CGX:
01104.006003-
01106.0060045
01107'001445'
01110'000764
011111'月906620
01112.0日日772
01113'006005-
911144.944007-
01115.006004$
01116.001531.
01117'000226
01120.0日0536
01121'0日6003- CGY:
01122'006004-
01123'8060045
01124'001445'
01125,000764
01126.900536
81127'ดด0772
01136.006005-
01131'044018-
01132.0060045
81133'061614.
01134*'00日?26
01135%080454
01136.029451
01137'006004-
 ganogs
01145'044011-
01146.0060045
01147'001545'
01150'000310
ด1151'900372
01152'ด๓2667
01153.006305
01154'000000
01155'000000
01156'000000
3
ESKP:
CHRC: Ø
XDM: Ø
YDM: O
B
SGN: STA 3,GOBK
01157.054432
01160.006015$
01161'849431
01162'924425
01163.106415
61164%800406
01165*024423
01166'106415
01167'200403
01178.034421
01171'001401
01172.034417
01173'001400
S
,
3
S
400.
JSR e.SIGN
JSR e.BRNG
JSR e.MESS
SMES
500.
40日.
 JMP CGX
JSR e.NGAT
STA 1,.XCGD
3
JSR E.MESS
JSR
\mathrm{ DMS4}
350.
JSR
JSR e.BRNG
JSR I.MESS
SMES
500.
350.
JMP CGY
JMP CGY
JSR e.NGAT
STA 1,.YCGD
JSR O.MESS
DMS7
150.
300.
LDA
0,PLUS
JSR &.BRNG
-BLK 5 S
STA
JSR
DMS5
200.
256.
JMP
;
3ADD PARITY BIT
SGN: STA
3,G08K
JSR e.GETT
STA 0.SIGN
LDA 1,PLUS
SUB# 0,1,SNR
5 ;NEED 5 SPACES TO USE . BRNG
e.SIGN
e.SIGN
-
 B.MESS
*
e.MESS
JSR
1,.SYCL
JSR e.MESS
3
e.MESS
*
--
-
01114.044007-
<<

SR
```



```
01257.0501:17
01260.051105
01261.054524
01262'021440
01263'093048
01264.0471111
01265'05252月
$1266'820124
01267'043117
01270.042040
01271'051511
01272'840524
01273.041516
01274.020105
81275'047101
01276.920104
01277'047506
01300.041522
01301.020105
01302'947125
01303*052111
01304'000123
01305.0440503
81306.052125
01307'047511
01318.035116
01311.000000
81312.047117
01313'054514
01314'047040
01315'046525
01316%042502
01317.851522
01320'043048
01321.047522
01322'020115
01323.020061
01324'844124
01325.047522
01326*043525
01327'020110
01330.030065
01331.030060
81332.048440
01333'046114
01334.053517
01335*042105
01336'000000
01337'044127
01340'052101
81341'042840
01342'020117
81343.047531
81344.920125
01345'040527
01346.052116
01347'052040
01350.044510
01351.920123
81352.042514
TY
 #
 *
 TEXT8:.TXT *IN
 PU
 T
 OF
 D
 IS
 TA
 NC
 E
 AN
 D
 FO
 RC
 E
 UN
 I T
 S*
 TEXT9:.TXT *CA
 UT
 IO
 N:
 *
 TEX10: .TXT *ON
 LY
 N
 UM
 BE
R.S
 F
RO
M
I
TH
RO
UG
H
50
00
 A
LL
OW
ED
 *
 TEX11: .TXT *WH
 AT
 D
 O
YO
U
W.A
NT
 T
HI
S
LE
```

OP
ER

```
01353.043516
NG
01354.844124 TH
01355.95?940 T
81356.ब2.117 0
01357:842522 RE
01360.051120 PR
01361'051505 ES
01362.947105 EN
01363.037524 T ?
01364.0日8040
01355'044127 TEX12: .TXT *WH
01366%'252101 AT
01367.644440 I
01370.020123 S
01371'044124 TH
01372'020105 E
01373.047125 UN
01374*0521111 IT
01375.05344日 W
01376'044505 EI
01377'044107 GH
81400.020124 T
01401'043117 OF
01402'051040 R
01483'041517 OC
01404.037513 K?
01405'000040
01406.0446407
01407'846585
MOVFL: -TXT * < 7 >M
EM
01410.051117 OR
01411'020131 Y
01412.053117 OV
01413.051105 ER
01414.046106
01415'053517
01416%0日日0日日
01417'050007
TOBIG:.TXT *<7>P
01420.g42522 RE
01421.051523 SS
01422'051125 UR
01423.020105 E
01424*047524 TO
01425'020117
01426%040514 LA
01427.043522 RG
01430.00日105
01431.042516 NEWX: .TXT *NE
01432'020127
01433*020130
01434*O47514 LO
01435'042101
01436.900040
01437.042516
01440.020127
01441'020131
01442*047514
01443'042101
01444'006040
01445'051440
01446'343511
FL
OW
*
O
E*
W
X
AD
NEWY: -TXT *NE
W
Y
LO
AD
SMES: .TXT * S
IG
```

```
01447'020116
01450'0444506
 FI
01451.051522 RS
01452'020124 T
01453.046120 PL
01454*040505 EA
91455'042523
01456'200040
01457'047111
01460.052520
01461.020124
01462.044506
01463.042530
01464%620104
01465'046102
01466'041517
01467'020113
81470'844504
01471'058123
01472.0440514
01473'842503
01474'042515
01475'052116
01476'008123
01477'031050
01500.054105
01501.030520
81582'020066
01503.051511
01504.047446
01505'042516
01506.051440
01567'051103
01510.042505
01511'020116
01512'047125
01513.052111
01514'00日051
81515.020130
01516'042503
01517'052116
81520.047522
01521.042111 ID
01522'042040 D
01523'051511 IS
01524.046120 PL
01525'041501 AC
01526'g46505 EM
01527.047105 EN
01530.000124 T*
01531.020131
DMS4: .TXT *Y
81532.042503
CE
01533'052116 NT
01534.047522 RO
01535*842111 1D
01536.042040 D
61537'051511 IS
01540.046120 PL
01541.041501 AC
01542'046505 EM
```

$01543^{\circ} 947165$
$81544^{\circ} 990124$ $01545^{\prime} 044586$ $01546^{\prime} 944516$ $01547^{\prime} 944123$ $01550^{\circ} 042105$ $01551^{\prime} 053454$ $01552^{\circ} 044591$ $81553^{\circ} 044524$ $01554^{*} 043516$
$01555^{\circ} 646448$
$01556^{\circ} 020124$ $01557^{\circ} 047503$ 81568．052116 91561＇800122
$01562^{\prime} 047125$
$01563^{\prime} 047518$
$01564^{\circ} 045517$
$01565^{\circ} 042105$ 81566＇042048
$01567^{\circ} 046503$
$01570^{\prime} 026440$ 81571＇920955 $01572^{\circ} 052101$ $81573^{\circ} 841440$
$81574^{\circ} 647117$
$01575^{\circ} 051124$ $01576^{\circ}$ ด日ดดดดด $01577^{\prime} 942523$ $01690^{\circ} 042514$ $01601^{\prime} 852103$ $01602^{\circ} 041949$ $01603^{\prime} 947514$ $81604^{\circ} 945503$ $01605^{\circ} 044854$ $01606^{\circ} 052111$ $81607^{\circ} 048440$日1610．854516 $01611^{\circ} 045448$ $01612^{\prime} 054505$ $01613^{\circ}$ ह日8000 $01614^{\circ} 041440$ $01615^{\prime} 041531$ $61616^{\circ} 042514$ $8167^{\circ} 028123$ $01620^{\circ} 04250$ ？ 81621＇053524 $81622^{\prime} 942585$ $01623^{\prime} 020116$ $01624^{\circ} 847515$ $81625^{\prime} 942526$ $81626^{\circ} 020123$ $01627^{\circ}$ 日日号

EN

## T．

DMS5：－TXT＊FI
NI SH
ED

## ， W

## AI

 TI NG AT co NT R． DMS6：．TXT＊UN
HO
OK
ED
D
CM
－ － AT C ON TR ＊ BMES：－TXT＊SE LE CT B LO CK ，H IT A NY K EY － DMS7：．TXT＊C
YC LE S
BE Tw EE N MO VE 5


```
月9956*011003
```



```
ดด!6足1?449ด
00.61'12302?
90062'ロの日41?
ดดの63'015月ด3
09の6\Delta'945921
0日の65'g41बa\triangle
0日の66*अ240155
ดดด67'ロの6ดด35
の日ด7ด'の34ดด45
a@a71'1750日65
ดดด72'9060015
00973'9509403
00874.0450?1
の0ด75'の419月4
90976'066477
のดด77'1ल1122
ดด1日0.ロलल485
```



```
のด1日2'の日の117'
90193'00日144
00104'000144
00105'9060055
00106'0060265
0日107'006014S
0日11日'月3日日165
0日111'1024ด0
```



```
00113.941日21
ต9114'041022
00115'006007$
00116.g02662
08117'047515
80120.042526 VE
ดด121'ด2ด1ดム
00122'000041
```



In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

```
Voegele, Michael D
 Rational design of tunnel supports: an interactive graphics
based analysis of the support requirements of excavations
in jointed rock masses / by Michael D. Voegele, Department of
Civil and Mineral Engineering, University of Minnesota,
Minneapolis, Minn. Vicksburg, Miss. : U. S. Waterways Experi-
ment Station ; Springfield, Va. : available from National
Technical Information Service, 1979.
 v. [516] p. il1. ; 27 cm . (Technical report - U. S. Army
Engineer Waterways Experiment Station ; GL-79-15)
 Prepared for Office, Chief of Engineers, U. S. Army, Wash-
ington, D. C. , under Contract No. DACW45-74-C-0066.
 References: p. R-1 - R-9.
1. Excavation. 2. Interactive graphics. 3. Jointed rock.
4. Rock masses. 4. Tunnel supports. I, Minnesota. University.
Dept. of Civil and Mineral Engineering. II. United States.
Army, Corps of Engineers. III. Series: United States. Water-
ways Experiment Station, Vicksburg, Miss. Technical report ;
GL-79-15.
TA7. W34 no. GL-79-15
```


[^0]:    Figure 2.2 A Horizontally Stratified Rock Mass

