HR Wallingford

IMPACT PRESSURES IN PLUNGE BASINS DUE TO VERTICAL FALLING JETS

by

R W P May \& I R Willoughby

Report SR242
January 1991

This report describes work funded by the Department of the Environment under Research Contract No PECD 7/6/113, Hydraulic Structures and Alluvial Processes. It is published on behalf of the Department of the Environment, but any opinions expressed in this report are not necessarily those of the funding Department. The work was carried out in the River Engineering Department of Hydraulics Research, Wallingford headed by Dr W R White. The nominated project officers were Dr R P Thorogood and Mr P Woodhead for DOE and Dr W R White for HR.
(C) Crown copyright 1991

Published by permission of the Controller of Her Majesty's Stationery Office, and on behalf of the Department of the Environment.

Abstract

Dams with overfall crests or high-level sluices produce near-vertical water jets whose energy can be dissipated in concrete-ined plunge basins. In order to design such basins it is necessary to have information on the mean and fluctuating pressures acting on the floor slabs. This experimental study investigated how the impact pressures produced by a vertical rectangular jet vary with velocity, water depth and amount of air within the jet. The work was funded by the Construction Industry Directorate of the Department of the Environment as part of its support for research on hydraulic structures and alluvial processes.

The first stage of the study comprised a literature review and testing of a small-scale rig (see interim report by Perkins (1987)). Results from this stage assisted in the development of a larger test rig which was used for the experiments described in this report. The rig was capable of producing a rectangular jet measuring $200 \mathrm{~m} \times 67 \mathrm{~mm}$ with an impact velocity of $8.5 \mathrm{~m} / \mathrm{s}$. The water depth in the basin was varied from zero to 0.8 m , and the jet could be arranged to discharge vertically above the basin (as a plunging jet) or below the water surface (as a submerged jet). The amount of air in the jet was varied up to a maximum concentration of 20%. Impact pressures on the floor of the basin were measured using five transducers. The results were recorded and analysed to determine the characteristics of the mean and fluctuating components of the impact pressures. A total of 35 different conditions was studied.

Analysis of the data established a correlation between the mean dynamic pressure at the centre of the rectangular jet, the jet velocity at impact with the water surface, the air concentration, the water depth and the thickness of the jet. Pressures were found to decrease rapidly with horizontal distance from the centre of the jet. Adding air to the jet decreased the mean pressures.

The turbulent pressure fluctuations were found to be fairly uniform within and immediately around the jet, and were little affected by changes in air concentration. The turbulence at the floor of the basin was strongest when the water depth was between 10 and 12 times the thickness of the jet. Correlations were established for estimating the root-mean-square and extreme values of the pressure fluctuations. The probability distributions of the turbulence were found, on average, to be more sharply peaked than a Gaussian distribution and were positively skewed, ie, the positive fluctuations tended to be larger than the negative ones. Spectral analysis showed that the turbulence energy was most concentrated at frequencies of $0-3 \mathrm{~Hz}$. The results of the study confirmed the validity of using Froudian scaling in model tests of plunge basins.

SYMBOLS

B Thickness of rectangular jet (short side)
Bo Initial thickness of rectangular jet
B_{1} Thickness of jet entering plunge basin
C Local volumetric air concentration
C_{o} Mean volumetric air concentration (equation (15))
C_{p} Pressure coefficient for mean dynamic pressure (Equation (31))
C_{pm} Maximum value of C_{p} on floor of basin
$\mathrm{C}_{\mathrm{p}}^{+} \quad$ Pressure coefficient for maximum instantaneous dynamic pressure (Equation (33))
$\mathrm{C}_{\mathrm{p}}^{-} \quad$ Pressure coefficient for minimum instantaneous dynamic pressure (Equation (34))
$C_{p}^{\prime} \quad$ Pressure coefficient for root-mean-square pressure fluctuation (Equation (13))

C'' Pressure coefficient for root-mean-square pressure fluctuation measured by pitot tube (Equation (23))
D_{0} Initial diameter of circular jet
D_{1} Diameter of jet entering plunge basin
d Mean particle size
$\mathrm{E}_{\mathrm{k}} \quad$ Kinetic energy head of jet
f Frequency
$f_{m} \quad$ Frequency in model
$f_{p} \quad$ Frequency in prototype
g Acceleration due to gravity
H Height of jet nozzle above floor
h Depth of water
h_{1} Height of manifold above pipe exit
h_{m} Static pressure head at manifold
K Coefficient in Equation (14)
k Kurtosis (Equation (36))
L Plunge length of jet in air
L_{a} Distance travelled by jet in air
L_{b} Break-up length of water jet in air
L_{e} Flow-establisment length
$\mathrm{L}_{\mathrm{w}} \quad$ Distance travelled by jet in water
$\dot{M} \quad$ Momentum flux due to velocity of jet
$\mathrm{N} \quad$ Number of meeasurements

SYMBOLS (cont'd)
p Mean dynamic pressure due to velocity of jet
p^{\prime} Pressure fluctuation from mean
P_{m} Mean dynamic pressure on centreline of jet
$\mathrm{p}_{\text {max }}$ Maximum instantaneous dynamic pressure
$\mathrm{P}_{\text {min }}$ Minimum instantaneous dynamic pressure
$\mathrm{p}_{\text {rms }}$ Root-mean-square fluctuation of dynamic pressure
Q Volumetric flow rate of water
$Q_{a} \quad$ Volumetric flow rate of air
q Volumetric flow rate of water per unit width
r Areal contraction ratio
S Energy gradient of flow
f
s Skewness (Equation (35))
$\mathrm{T}_{\mathrm{c}} \quad$ Time that probe is in conducting fluid
T_{p} Turbulent pressure intensity (Equation (36))
T_{v} Time that probe is in void
V Overall mean velocity of jet (discharge/area)
$V_{o} \quad$ Initial value of V for jet
V_{1} Value of V for jet entering plunge basin
v Local time-mean velocity
v_{m} Maximum value of v
$\mathrm{v}_{\text {rms }}$ Root-mean-square velocity fluctuation
W Width of rectangular jet (long side)
$W_{0} \quad$ Initial width of jet
\mathbf{x} Distance from centre of jet in direction W
y Distance from centre of jet in direction B; distance normal to invert of channel
y_{m} Depth of flow measured normal to invert of channel
y_{s} Depth of scour below water surface
z Distance from nozzle along longitudinal centreline of jet; vertical distance below water surface

SYMBOLS (Cont'd)

$\alpha_{1} \quad$ Semi-angle rate of contraction of high-velocity inner core of jet
α_{2} Semi-angle rate of jet expansion in flow-establishment zone
α_{3} Semi-angle rate of jet expansion in established-flow zone
$\epsilon \quad$ Mean turbulence intensity of velocity fluctuations ($=\mathrm{v}_{\mathrm{rms}} / \mathrm{V}$)
ϵ_{1} Local turbulence intensity ($=\mathrm{v}_{\mathrm{rms}} / \mathrm{v}$)
θ Semi-angle rate of jet expension in air
$\theta^{\prime} \quad$ Value of θ in the absence of gravitational effects
$\rho \quad$ Density of fluid in jet
Po Density of fluid surrounding jet
$\sigma \quad$ Standard deviation (Equation (34))
Page
1 INTRODUCTION 1
2 PREVIOUS STUDIES 6
2.1 Flow characteristics 6
2.2 Experimental results 8
3 EXPERIMENTAL ARRANGEMENT 18
3.1 Small test rig 18
3.2 Large test rig 20
4 EXPERIMENTAL PROCEDURE AND MEASUREMENTS 23
4.1 Velocity distribution and turbulence in jet 23
4.2 Air concentrations 24
4.3 Impact pressures 25
5 TEST RESULTS AND ANALYSIS 27
5.1 Characteristics of free jet 27
5.2 Test conditions for impact tests 32
5.3 Mean impact pressures 36
5.4 Fluctuating impact pressures 42
6 CONCLUSIONS 48
7 ACKNOWLEDGEMENTS 52
8 REFERENCES 52

TABLES

1. Distribution of mean velocity in free jet
2. Turbulence intensities in free jet
3. Distribution of air concentration in free jet
4. Rate of expansion of free jet in air
5. Distribution of mean dynamic pressure

FIGURES

1. Schematic diagram of jet falling through atmosphere into plunge (after Ervine).
2. General layout of small test rig.
3. Aeration system for small test rig (after modifications).
4. General layout of large test rig.
5. Layout of pressure tappings
6. Large test rig with aeration system.
7. Profiles of mean velocity in free jet
8. Profiles of air concentration in free jet
9. Distribution of mean dynamic pressure
10. Correlation for mean dynamic pressure ($\mathrm{C}_{\mathrm{O}}=0 \%$)
11. Correlation for mean dynamic pressure ($C_{0}=10 \%$)
12. Correlation for mean dynamic pressure ($\mathrm{C}_{\mathrm{O}}=20 \%$)
13. Comparison of predicted and measured values of C_{p}
14. Correlation for mean dynamic pressure with zero tailwater
15. Correlation for average rms dynamic pressure
16. Correlation for average rms dynamic pressure with zero tailwate
17. Correlation for maximum rms dynamic pressure
18. Correlation between rms and mean dynamic pressures
19. Correlation for peak dynamic pressures
20. Correlation for peak dynamic pressures with zero tailwater
21. Probability distribution for pressure fluctuations at position A in Test 8
22. Probability distribution for pressure fluctuations at position B in Test 8
23. Probability distribution for pressure fluctuations at position A in Test 9
24. Probability distribution for pressure fluctuations at position B in Test 9
25. Spectral density for pressure fluctuations at position A in Test 15
26. Spectral density for pressure fluctuations at position A in Test 8
27. Spectral density for pressure fluctuations at position A in Test 22
28. Spectral density for pressure fluctuations at position A in Test 34

PLATES

1. Jet discharging from height of 1.08 m at $\mathrm{V}_{\mathrm{o}}=2.45 \mathrm{~m} / \mathrm{s}$: long side
2. Jet discharging from height of 1.08 m at $\mathrm{V}_{\mathrm{O}}=2.45 \mathrm{~m} / \mathrm{s}$: short side
3. Jet discharging from height of 1.08 m at $\mathrm{V}_{\mathrm{O}}=4.26 \mathrm{~m} / \mathrm{s}$: long side
4. Jet discharging from height of 1.08 m at $V_{0}=4.26 \mathrm{~m} / \mathrm{s}$: short side
5. Jet discharging from height of 2.30 m at $V_{0}=2.44 \mathrm{~m} / \mathrm{s}$: short side
6. Jet discharging from height of 2.30 m at $V_{0}=4.29 \mathrm{~m} / \mathrm{s}$: short side

APPENDIX A
Measurements of impact pressures

A wide range of methods can be used to pass flood flows over, through or around dams. One common solution in the case of concrete gravity dams is to discharge the water freely into air either over the crest of the dam or by means of short spillway chutes or jet valves positioned below the crest. The water then forms a high-energy free-trajectory jet which impacts downstream of the foot of the dam. In the case of an overflow crest, the jet lands almost vertically, whilst with a low-level valve or chute the water may have a significant horizontal velocity component at impact.

Three methods can be used to dissipate the energy of a falling jet.
(1) If suitable rock exists in the downstream channel and the jet lands far enough away from the toe of the dam, the jet may be allowed to scour out a plunge pool.
(2) If the size of an uncontrolled plunge pool might threaten the stability of the dam, a weir may be constructed downstream of the pool to raise the tailwater level and hence provide a partial water cushion which reduces the amount of scour.
(3) If the first two options are not appropriate, a concrete-lined plunge basin may be constructed with a tail weir which produces a sufficient depth of water to prevent erosion of the floor slabs.

In all three cases, the onset and extent of scour depend on the relative magnitudes of the impact pressures produced by the falling jet and the erosive
resistance of the bed. A naturally-formed plunge pool deepens until the jet is cushioned sufficiently for it to be no longer able to dislodge material or transport it out of the pool. The erosive resistance of the bed depends primarily on the size and density of the material ; rock subject to jet impact tends to shatter along fault lines and forms large loose blocks. Several studies (eg Mason (1984, 1989)) have investigated the relationship between jet energy, bed material and the equilibrium depth of scour in naturally-formed plunge pools.

The design criteria for a concrete-lined plunge basin are somewhat different because it is necessary to ensure that the floor slabs can withstand the jet impact without damage. Three principal factors need to be considered:

- the trajectory of the jet through the air - this determines the location and size of the plunge basin
- air entrainment as the jet passes through the air and enters the plunge basin - this affects velocities in the jet and helps to cushion its impact
- impact pressures on the floor of the basin these determine the size and strength of the concrete slabs needed to protect the basin

Information on jet trajectories has been obtained from theory, model tests and observations of prototype installations. Approximate estimates can be made by neglecting energy losses and assuming pressures to be atmospheric at all points in the jet; the results usually over-predict the "throw" of the jet. More accurate solutions using potential flow theory take
account of internal pressures in the jet (eg Naghdi \& Rubin (1981) and Hager (1983)). Martins (1977) compared several empirical methods of predicting jet lengths and recommended those due to Kawakami (1973) and Zvorykin (1975).

The problem of determining the amount of air entrainment in a free-trajectory jet is extremely difficult. Direct prototype measurements at high-head dams are virtually impossible (although high-power laser doppler anemometers might conceivably be used). Analysis of photographs of prototype jets can provide rough estimates of the amount of bulking but do not give information about the internal structure of the flow. Laboratory studies have provided some useful data on the entrainment process, but the results are likely to be subject to significant (but unknown) scale effects when extrapolated to prototype conditions. When a jet enters a plunge pool or basin, air is also entrained around the periphery of the jet where it penetrates the horizontal water surface. This additional air may not reduce peak impact pressures significantly if the high-velocity core of the jet persists to the floor of the basin.

Estimates of the pressures exerted on the floor of a plunge basin can be determined from suitable laboratory tests. Putting aside for the moment the effect of entrained air, the principal factors involved are the initial momentum of the jet (magnitude and direction), the rate of diffusion of that momentum due to viscosity and turbulence, and the relative water depth in the basin. Studies of analogous problems, such as high-energy turbulence in hydraulic-jump stilling basins, have shown that Froudian models can satisfactorily predict prototype performance in terms of mean and fluctuating pressures and their statistical distribution (eg Elder (1961)
and Lopardo et al (1984) who both compared prototype and model data for stilling basins, and Schiebe (1971) who compared results from two models with a size ratio of $1: 5$).

The frequency of the pressure fluctuations depends on the velocity of flow and the length scales associated with the turbulence. Initially, the size of the turbulent eddies is related to a characteristic dimension of the flow (eg the depth of water, the size of jet or the height of baffle block). The turbulence then dissipates by "cascading" downwards into smaller eddies having higher frequencies. A Froudian model produces the correct relationship between flow velocity and length scale, and can therefore be expected to produce initial turbulent eddies of the appropriate size and frequency. The cascade process in the model may be somewhat truncated relative to that in the prototype (since the ultimate eddy size is independent of scale), but the amount of energy involved will usually be a small proportion of the total.

The main effect of air entrained in a body of water is to convert it from an almost incompressible liquid to a highly compressible one. This change tends to cushion the impact of the jet and reduce the peak pressures. The compressibility of the water depends on the amount of air that is present, so the cushioning effect can be expected to be reproduced correctly in a model if the volumetric air concentration is equal to that in the prototype.

The behaviour of an impacting jet clearly depends upon a variety of factors, but the above discussion indicates that the primary effects can be reproduced satisfactorily in reduced-scale models of plunge basins. Results from laboratory research can
therefore be expected to provide useful data for the design of prototype installations.

Most previous studies of impact pressures have used small diameter circular jets and have measured only mean pressures. The objectives of the investigation described in this report were to:

- study rectangular water jets discharging vertically into different depths of water
- measure both mean and fluctuating pressures on the floor of the basin under the jet
- study the effect of entrained air on the impact pressures

A rectangular jet was used because this is the type which occurs most commonly in plunge basins. The jet was made as large as possible within the constraints dictated by budget and available pumping equipment. The jet was tested vertically because this arrangement produces the greatest impact pressures, and is representative of conditions which arise in a plunge basin close to the toe of a dam having either a free overfall crest or high-level sluices. (The results are not applicable to basins downstream of flip-buckets or low-level valves and sluices where the jet lands at a relatively shallow angle). Fluctuating pressures were measured because the floor of a plunge basin needs to be able to withstand the maximum positive and negative pressures imposed by a jet, and not just the mean values. As explained above, the prediction of how much air wil be entrained by a jet of water travelling through the air is difficult and can at present only be approximate. However, in terms of design, the main question is what effect does entrained air have on the impact pressures; only if it
is shown to be significant, does more effort need to be spent on improving methods of predicting entrainment. In order to obtain measurements of local air concentrations, a portable void meter manufactured by Nottingham University was purchased specially for the work.

This study was funded by the Construction Industry Directorate of the Department of the Environment as part of its support for research on hydraulic structures and alluvial processes.

PREVIOUS STUDIES

2.1 Flow characteristics

The behaviour of a water jet discharging vertically downwards is shown schematically in Figure 1. When the jet enters air, surface disturbances around the periphery of the jet build up and begin to entrain air and dissipate some of the energy in the jet. As a result, there is a tendency for the jet to increase in width as it falls. At the same time, however, the jet is gaining in kinetic energy which tends to reduce its width. The actual rate of change of width depends upon the relative magnitudes of these opposing factors.

If the jet is initially smooth, wave-like disturbances may develop around its periphery due to the interaction between the forces due to pressure, gravity, inertia and surface tension. However, the surface disturbances are more usually the result of turbulence present within the jet. Once released from the constraint of the nozzle, a re-distribution of mean and fluctuating velocities occurs from the cente of the jet towards the periphery. As a result, the surface becomes highly disturbed and may break up into
droplets. Air is entrained inwards towards the core, and the energy of the water is reduced by an exchange of momentum with the surrounding air, which is dragged downwards by the flow. The aerated outer layer of water thus increases in thickness as the jet falls and the "solid" core of high-velocity water is reduced in size. After a certain distance, the solid core disappears and the jet loses its coherence. The break-up distance depends upon the initial thickness and shape of the jet and the degree of turbulence in the flow.

The diffusion of a water jet in air occurs relatively slowly because of the large difference in density between the two fluids. In the case of a submerged jet discharging into the same fluid, the exchange of momentum is much more rapid and the break-up distance is consequently reduced (as indicated in Figure 1). The point at which the solid core disappears is used to demarcate two regions of the jet: the upper "flow-establishment" zone and the lower "established-flow" zone. The rate of expansion of the jet increases after the flow has become established. Energy dissipation within the solid core of the jet is relatively small, so a limited area of the floor of the plunge basin may be subject to almost 100% of the initial total head of the jet if it does not break up before reaching the floor.

The behaviour of a water jet in water differs depending upon whether it discharges as a submerged jet below the surface or whether it first discharges into air as a plunging jet. In the former case, the outer layer of the jet is a single-phase mixture of water from the jet and water entrained from within the basin ; although the mean velocity of the jet decreases with distance, the total discharge increases due to the entrainment process. In the second case,
the outer layer is a two-phase region of water and air. As before, the liquid phase is a mixture of water from the jet and water entrained from within the pool. Part of the air is entrained into the jet during its passage through the atmosphere and part is drawn down into the basin as the jet penetrates the water surface ; the amount drawn down increases as the "roughness" of the periphery of the jet increases. The air is carried downwards by the jet to a level at which the velocity of the water becomes less than the rise velocity of the bubbles. The roughness and turbulence of a plunging jet are usually greater than those of a submerged jet, and this causes the plunging jet to diffuse more rapidly under water. Tests with submerged jets are therefore likely to produce higher impact pressures on the floor of a basin than equivalent tests with plunging jets.

2.2 Experimental results

The majority of the theoretical and experimental studies carried out in this field have been concerned with submerged jets (eg air in air or water in water). Albertson et al (1948) investigated the cases of two-dimensional rectangular jets and three-dimensional circular jets. If a jet is assumed to be fully turbulent, shear stresses due to viscocity can be neglected in comparison with the Reynolds stresses due to the velocity fluctuations. On this basis, dimensional reasoning suggests that the transverse velocity profile in the mixing region between the high-velocity core and the surrounding fluid should exhibit the same non-dimensional shape at all points along the jet. In addition, the rate of expansion of the jet should be effectively constant and not vary
with distance. Albertson et al confirmed these theoretical predictions with measurements in air jets, and found that the non-dimensional velocity profiles were well-described by the Gaussian normal probability function. The length of the flow establishment zone (see Figure 1) for a submerged rectangular jet was found to be 5.2 times the initial jet thickness B_{0}, and for a submerged circular jet to be equal to 6.2 times the initial jet diameter D_{0}. In the two-dimensional case, the local velocity v at a point with co-ordinates y, z (z measured from the nozzle along the axis of the jet) is related in the flow-establishment zone to the initial mean jet velocity V_{o} by
$\frac{\mathrm{v}}{\mathrm{V}_{\mathrm{o}}}=\exp \left[-42.1\left\{0.0966+\frac{\left(\mathrm{y}-\mathrm{B}_{\mathrm{o}} / 2\right)}{\mathrm{z}}\right\}^{2}\right]$
for $z \leq 5.2 B_{o}$ and $y \geq\left(B_{o}-0.193 z\right) / 2$
and in the established-flow zone by
$\frac{v}{V}=2.28\left(\frac{B_{o}}{z}\right) \exp \left[-42.4 y^{2 / 2} / z^{2}\right]$
or $z>5.2 B_{o}$

The above results apply to submerged jets whose expansion is not restricted by the presence of solid boundaries. Cola (1965) carried out experiments with a submerged rectangular water jet (width $\mathrm{B}_{\mathrm{o}}=0.0185 \mathrm{~m}$) discharging vertically at a height of $\mathrm{H}=0.82 \mathrm{~m}$ above a horizontal floor (giving a ratio of $\mathrm{H} / \mathrm{B}_{\mathrm{o}}=44.3$). Tests at four different flow rates ($\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{~m} / \mathrm{s}$ to $4.8 \mathrm{~m} / \mathrm{s}$) gave similar profiles of mean velocity when expressed in non-dimensional form. The jet was found to develop in the same way as an unrestricted jet (ie in accordance with Equations (1) and (2)) up to a
distance of $z / H=0.71$ from the nozzle. Beyond that point, the jet deccelerated more rapidly as the flow approached the floor, with a consequent rise in the static pressure. The maximum mean dynamic pressure due to the impact of the jet on the floor was $\mathrm{p}_{\mathrm{m}}=$ $0.145 \rho \mathrm{~V}_{\mathrm{o}}^{2} / 2$. By comparison, the flow velocity on the centre-line for an unrestricted jet would according to Equation (2) have been equivalent to $p_{m}=$ $0.117 \rho \mathrm{~V}_{\mathrm{o}}^{2} / 2$.

Beltaos \& Rajaratnam (1973) also studied plane turbulent jets impinging at right-angles on a horizontal floor. The tests were made with air discharging into air at velocities between $V_{0}=35 \mathrm{~m} / \mathrm{s}$ and $62 \mathrm{~m} / \mathrm{s}$. The width of the rectangular nozzle was $B_{o}=2.24 \mathrm{~mm}$ and its height above the floor was varied so as to give values of the ratio $\mathrm{H} / \mathrm{B}_{\mathrm{o}}$ between 14.0 and 67.4. The high-velocity core was found to persist up to a distance from the nozzle of $z / B_{0}=8.26$. Beyond this, the flow behaved as an unrestricted jet with self-similar velocity profiles up to a distance from the nozzle of about $z / H=0.70$. The maximum velocity on the centreline was given by
$\frac{v_{m}}{V_{o}}=2.40\left(\frac{z}{B_{o}}-2.5\right)^{-1 / 2}$

In the impingement zone, between $z / H=0.70$ and 1.0 , the velocity of the jet decreased more rapidly than in an unrestricted jet and with practically no loss in total energy. The mean impact pressure on the centreline of the jet was given by

$$
\begin{equation*}
\mathrm{p}_{\mathrm{m}}=7.7\left(\frac{\mathrm{~B}_{\mathrm{o}}}{\mathrm{H}}\right) \cdot \frac{1}{2} \rho \mathrm{~V}_{\mathrm{o}}^{2} \tag{4}
\end{equation*}
$$

The variation of dynamic pressure p along the wall with distance y from the centreline was found to fit a Gaussian distribution described by
$\frac{p}{p_{m}}=\exp \left(-38.5(y / H)^{2}\right)$

The impact pressure measured by Cola (see above) corresponds to a value for the numerical constant in Equation (4) of 6.4 instead of 7.7

The diffusion of a water jet travelling through air occurs more slowly than in water due to the difference in density of the two mediums. Kraatz (1965) suggested that the flow-establishment distance L_{e} for a circular jet is given by
$\frac{L_{e}}{D_{o}}=5 \quad\left(\rho / \rho_{o}\right)^{0.345}$
where D_{o} is the initial diameter of the jet, ρ is the density of the jet and ρ_{o} is the density of the surrounding fluid. For a jet of water in air at atmospheric pressure and a temperature of $10^{\circ} \mathrm{C}$, Equation (6) indicates that the high-velocity core should disappear at a distance of $L_{e}=50 \mathrm{D}_{\mathrm{o}}$ from the nozzle.

Ervine et al (1980) investigated the effect of turbulence on the behaviour of near-vertical water jets in air using circular nozzles with diameters of $D_{0}=6,9,14$ and 25 mm and flow velocities up to $V_{0}=$ $7 \mathrm{~m} / \mathrm{s}$. The distance L_{b} travelled by the jet before
losing its coherence and breaking up depended on the turbulence intensity ϵ as follows.
$L_{b}=60 \quad Q^{0.39}, \quad \epsilon=0.3 \%$
$L_{b}=17.4 \quad Q^{0.31}, \quad \epsilon=3 \%$
$L_{b}=4.1 \quad Q^{0.2}, \quad \epsilon=8 \%$
where L_{b} is in m and Q is the jet discharge in m^{3} / s; ϵ is defined as
$\epsilon=v_{\mathrm{rms}} / \mathrm{v}$
where $\mathrm{v}_{\mathrm{rms}}$ is the root-mean-square velocity fluctuation and V is the overall mean velocity of the jet. Earlier, Horeni (1956) had found the break-up distance for a rectangular jet in air to be

$$
\begin{equation*}
L_{b}=5.89 \mathrm{q}^{0.319} \tag{9}
\end{equation*}
$$

where q is the unit discharge in $\mathrm{m}^{2} / \mathrm{s}$; the turbulence intensity of the flow was not stated.

Ervine \& Falvey (1987) carried out detailed measurements on circular water jets in air using a laser Doppler anemometer. Nozzle diameters of 50 mm and 100 mm were used, and the exit velocity of the jet was varied from $3.3 \mathrm{~m} / \mathrm{s}$ to $29.6 \mathrm{~m} / \mathrm{s}$. The expansion angle θ of the outer edge of the jet (see Figure 1)
was found to be related to the turbulence level by
$\theta=\tan ^{-1}(0.38 \epsilon)$

Measurements within the jet using a probability probe indicated that the angle of contraction α_{1} of the inner high-velocity core was much smaller and of the order
$\alpha_{1} / \theta=1 / 5$ to $1 / 7$

According to these results, the high-velocity core of a jet with a turbulence level of $\epsilon=8 \%$ will disappear at a distance of about $L_{e}=100 D_{o}$ from the nozzle. This compares with values of about $L_{e} / D_{o}=50$ obtained by Kraatz (Equation (6)) and by Ervine et al (1980) for the break-up length at a turbulence intensity of $\epsilon=8 \%$.

Ervine \& Falvey (1987) also considered the behaviour of water jets travelling through water, and summarised information about the expansion angles α_{1}, α_{2} and α_{3} in Figure 1 as follows.

Jet condition	Turbulence level	α_{1}	α_{2}	α_{3}
submerged		4.5°	6°	11°
plunging	almost laminar	5°	$6^{\circ}-7^{\circ}$	$10^{\circ}-12^{\circ}$
	$\epsilon \sim 0.3 \%$			
plunging	smooth turbulent	$7^{\circ}-8^{\circ}$	$10^{\circ}-11^{\circ}$	14°
	$\epsilon \sim 1.2 \%$			
plunging	high turbulence	$\sim 8^{\circ}$	$13^{\circ}-14^{\circ}$	$14^{\circ}-15^{\circ}$
	$\epsilon \sim 5 \%$			

Measurements of the mean and fluctuating pressures on the floor of a plunge basin were made by Withers (1989) and Ervine \& Withers (1989). The tests were carried out with circular water jets ($D_{0}=25 \mathrm{~mm}$ to 78 mm) discharging vertically downwards into air with initial velocities in the range $V_{0}=3 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$. The height of fall to the water surface in the plunge basin was varied up to a maximum of 2.5 m . The maximum mean dynamic pressure p_{m} exerted on the floor of the basin was expressed in terms of a pressure coefficient $C_{p m}$ defined as
$C_{p m}=\frac{2 p_{m}}{\rho V_{1}^{2}}$
where V_{1} is the mean velocity of the jet as it enters the plunge basin. The value of $C_{p m}$ for a plunging jet was almost equal to unity when the water depth h in the basin was less than twice the diameter D_{1} of the jet entering the basin. Increasing the water depth decreased $C_{p m}$ as follows

h / D_{1}	$C_{p m}$
4	0.72
6	0.46
8	0.30
10	0.21
12	0.15
16	0.07
20	0.05

Measurements of the fluctuating pressures on the floor of the basin were analysed to determine the root-mean-square value, $\mathrm{p}_{\text {rms }}$, for each test. Peak values of the corresponding pressure coefficient
$C_{p}^{\prime}=\frac{2 p_{r m s}}{\rho V_{1}^{2}}$
were about 0.2 and occurred when the relative water depth in the basin was in the range $h / D_{1}=5$ to 10 . The maximum positive pressure fluctuation in a test (relative to the mean) was equivalent to about $4 \mathrm{C}_{\mathrm{p}}{ }^{\prime}$; the corresponding minimum pressure fluctuation was about $3 C_{p}{ }^{\prime}$. Power spectra of the fluctuations showed that most of the turbulent energy occurred in the 3 Hz to 10 Hz frequency range.

Air is entrained into a plunging jet during its travel through the atmosphere and as it passes through the water surface in the basin. Measurements of the total rate of air entrainment were made by Ervine et al (1980) using the equipment described above, and by Tabushi (1969) using a nozzle of diameter 5 mm discharging into a 300 mm diameter cylindrical tank. Data on the amount of air entrained by free-trajectory jets entering plunge basins were fitted by Ervine \& Falvey (1987) to the equation
$C_{0}=K\left(L / D_{0}\right)^{1 / 2} /\left[1+K\left(L / D_{0}\right)^{1 / 2}\right]$
where C_{0} is the mean air concentration based on volumetric rates of air flow (Q_{a}) and water flow (Q),
$C_{o}=\frac{Q_{a}}{Q_{a}+Q}$

L is the plunge length through the atmosphere and values of the factor K were estimated as follows.

Turbulence level	Circular jets	Wide rectangular jets	Valid range
smooth turbulent	0.2	0.1	$\mathrm{~L} / \mathrm{D}_{\mathrm{o}} \leq 200$
moderate turbulent	0.3	0.15	$\mathrm{~L} / \mathrm{D}_{0} \leq 100$
rough turbulent	0.4	0.2	$\mathrm{~L} / \mathrm{D}_{0} \leq 50$

It is presumed that, in the case of wide rectangular jets, the nozzle size D_{o} is equivalent to the thickness B_{o} of the jet.

The effect of entrained air on the velocity distribution produced by a jet entering a deep cylindrical tank was studied by Chanishvili (1965). The nozzle diameter was 14.5 mm and the discharge velocity ranged from $\mathrm{V}_{\mathrm{O}}=10 \mathrm{~m} / \mathrm{s}$ to $17.5 \mathrm{~m} / \mathrm{s}$. The depth of water was varied so that the nozzle discharged either just below the surface (as a submerged jet) or just above the water surface (producing air entrainment). Comparisons of the maximum water velocity on the centreline of the jet showed that air entrainment produced no significant reduction in velocity until the jet had travelled a distance below the water surface of about $z / D_{0}=50$; at this point
the centreline velocity without air entrainment was $\mathrm{v}_{\mathrm{m}}=0.066 \mathrm{~V}_{\mathrm{o}}$ and with air entrainment was $\mathrm{v}_{\mathrm{m}}=$ $0.062 \mathrm{~V}_{\mathrm{o}}$.

Indirect information about the effect of air entrainment is provided by a laboratory study of scour depths in plunge pools carried out by Mason (1989). Air was added to a rectangular water jet discharging at an angle of about 45° on to an erodible bed. The depth of scour y_{s} below the water surface was related to the other variables by
$y_{s}=3.39 \frac{q^{0.60} h^{0.16}}{g^{0.30}\left(1-c_{o}\right)^{0.30} d^{0.06}}$
where d is the mean particle size in the bed. This result is perhaps surprising at first sight because increasing the air concentration appears to increase the scour depth. However, in the experiments, adding air had the effect of increasing the velocity of the water in the jet by a factor of $\left(1-C_{0}\right)^{-1}$. Thus if the unit water discharge q in Equation (16) were replaced by the water velocity V and the jet thickness, it would be found that for constant V the scour depth is proportional to $\left(1-\mathrm{C}_{\mathrm{o}}\right)^{0.30}$. This point indicates that care is needed when applying Equation (16) to free-falling jets because air entrainment in the atmosphere does not increase the water velocity but tends to reduce it.

Ervine \& Falvey (1987) developed several theoretical formulae describing the effect of entrained air in plunge basins, although some still await experimental
verification. The formula proposed for estimating the mean dynamic pressure in an aerated jet at a depth z below the water surface was
$p_{m}=\frac{1}{2}\left(1-C_{o}\right) \rho V_{1}^{2}\left[16\left(D_{1} / z\right)^{2}\right]$
where V_{1} is the mean velocity of the jet at impact with the water surface and D_{1} is its corresponding diameter. This equation applies only in the established-flow zone which was estimated to start at about $\mathrm{y}=4 \mathrm{D}_{1}$.

3 EXPERIMENTAL
 ARRANGEMENT

3.1 Small test rig

The design requirements for the test rig were that:

- it should produce a rectangular jet of water discharging vertically
- the jet should have as uniform a velocity distribution as possible
- the level at which the jet discharged should be variable
- air should be capable of being added at a known rate to the water jet prior to discharge

It was evident that the planned rig would be a relatively large construction, and that it would be difficult and expensive to modify once assembled. The inlet arrangement to the vertical discharge pipe was required to produce uniform flow conditions while being as compact as possible. Uncertainties also existed about the best method of aerating the jet.

For these reasons, it was decided to build a model of the proposed design at a scale of about 1:3.

The layout of the small rig is shown in Figures 2 and 3. Flow from two pumps entered a sealed pressure box which was used in order to prevent the formation of air-entraining vortices. Flow from the box then entered a vertical rectangular pipe, measuring $101 \mathrm{~mm} x$ 38 mm internally, and adjustable in length. An aeration system, based on designs for spillway aerators, was installed at the head of the pipe. This consisted of a small ramp around the perimeter of the pipe which contracted the flow and lowered the pressure below atmospheric. Just downstream of the pipe was a perforated box which enabled the sub-atmospheric pressure to draw air into the cavity formed by the ramp. Thus the air demand created by the high-velocity water passing the box was met without a fan having to be used to inject air into the flow.

Initial testing showed several shortcomings in the initial design of the rig. Strong swirl occurred at the entrance to the vertical pipe and tended to produce non-uniform conditions in the jet. As a result, a more symmetrical inlet arrangement was later adopted for the large rig. Initially, the aerator did not entrain air strongly enough, and difficulties were experienced in sealing the flanged joints. The air demand was increased by making the ramp larger, and reasonable flow conditions in the jet were obtained by carefully adjusting the taper downstream of the perforated box. The final design of the aerator is detailed in Figure 3, and Plate 1 shows it in operation. The experience obtained with the small rig enabled a more effective design to be successfully developed for the full-size rig, as described in Section 3.2 .

As a result of the unsatisfactory flow conditions experienced at the entrance to the vertical pipe in the small rig, a different inlet arrangement was adopted for the full-size rig. Flow from the pump discharged into a long pipe of large diamater which was installed horizontally at a high level, with the vertical rectangular pipe connected to its invert. Due to its large diameter, the velocities in the horizontal pipe were relatively low; this design, together with a tapered transition piece, ensured good entry conditions to the vertical rectangular pipe.

The original intention had been to carry out tests with a jet measuring $300 \mathrm{~mm} \times 100 \mathrm{~mm}$ with velocities up to $8 \mathrm{~m} / \mathrm{s}$. Due to the cost of construction of such an arrangement, the jet was reduced in size to $200 \mathrm{~mm} \times$ 67 mm , and the maximum available velocity reduced to roughly $6.5 \mathrm{~m} / \mathrm{s}$ (corresponding to a discharge of approximately $0.09 \mathrm{~m}^{3} / \mathrm{s}$). A diagrammatic layout of the final design is shown in Figure 4.

The vertical pipe was constructed using short sections of rectangular pipe with flanged joints. This enabled the length of the pipe and hence the height of the outlet point to be easily adjusted. The adjustable length of the "downpipe" allowed both the study of jets discharging into air before entering a plunge basin (ie free-falling jets), and the study of jets discharging below the water surface (ie submerged jets).

The plunge basin beneath the jet was formed by a square-shaped tank approximately 1.5 m in width, with all four sides having removable boards acting as variable-height overflow weirs. The weirs allowed the depth of water in the plunge basin to be varied from
approximately zero to 0.8 m . Depths of water in the plunge basin were measured by means of a pressure tapping located at the mid-point of one of the sides of the basin. The bottom of the plunge basin was formed by a raised steel plate rigidly mounted on steel cross-beams. The central portion of the plate was removable and was drilled to accept the installation of transducers for measuring mean and fluctuating pressures on the floor of the basin. Details of the layout of the transducers are shown in Figure 5.

Following some early tests with one type of transducer which proved to be not entirely satisfactory (see Perkins (1987)), HR purchased six PDCR 930 transducers supplied by Druck Ltd. These transducers had the following characteristics:
(1) open-face design to allow flush mounting and prevent compressibility problems due to air collecting in tapping;
(2) waterproof casings with integral vented cable to allow compensation for changes in atmospheric pressure;
(3) very small temperature effects due to 'oil' filled isolation capsule ($\pm 0.3 \%$ of full scale for the range -2° to $+30^{\circ} \mathrm{C}$);
(4) full range of 500 mbar (equivalent to 5.1 m head of water);
(5) high sensitivity;
(6) durable against shock and stress;
(7) long-term stability (0.1% of full scale/year).

Output signals from the transducers were conveyed via amplifiers and conditioning units to an analogue ("Teac" 7-track) tape recorder. Signals could thus be recorded continuously throughout the course of a test.

Water discharge rates were measured using initially a BS-type orifice meter and later a 203 mm diameter digital bend meter developed at HR (see Deamer \& May (1989)). The water flow rate was controlled by a gate valve on the delivery side of the pump whose capacity was $0.09 \mathrm{~m}^{3} / \mathrm{s}$.

Taking into account the problems encountered with the aeration system used in the small test rig, a new design was successfully developed for the full-size rig. This aeration system is shown diagrammatically in Figure 6. A manifold, with an internal diameter of 19 mm and 18 number holes of 9.5 mm diameter drilled at angles of 35° to the horizontal, was fixed into the rectangular pipe in the position shown in Figure 4. The 19 mm manifold was connected to a 50 mm diameter air supply pipe which extended down the side of the rig with its end open to atmosphere. The air flow rate was measured by a variable-area flow rater fitted in the 50 mm pipe, and was controlled by a gate valve upstream of the flow rater. The layout of the holes in the manifold was designed to produce an even distribution of air throughout the jet. The manifold was located near the top of the rectangular pipe in order to ensure that the air/water mixture would be as uniform as possible at the point of discharge.

The aeration system worked by making use of the sub-atmospheric pressure in the water flowing past the manifold. Applying Bernoulli's equation between the manifold and the discharge point of the water jet, it can be shown that the static pressure head h_{m} at the manifold is given approximately by
$h_{m}=-\left(1-S_{f}\right) h_{1}-\frac{v_{o}^{2}}{2 g}(r-1)$
where h_{1} is the height of the manifold above the discharge point of the jet, S_{f} is the energy gradient in the rectangular jet pipe, V_{0} is the exit velocity of the jet and r is the ratio of the flow areas at the exit and the manifold. Assuming the minimum value of $h_{1}=2.2 \mathrm{~m}$ used in the present experiments, it can be shown that the static pressure at the manifold varied from about $h_{m}=-3.8 m$ at the maximum jet velocity of $\mathrm{V}_{\mathrm{o}}=6.5 \mathrm{~m} / \mathrm{s}$ to about $\mathrm{h}_{\mathrm{m}}=-2.5 \mathrm{~m}$ at a 50% flow rate. These values were more than sufficient to produce the required rates of air flow in the aeration system.

4 EXPERIMENTAL

PROCEDURE AND
MEASUREMENTS
4.1 Velocity distribution and turbulence in jet

A number of tests was carried out to investigate the velocity distribution and turbulence level in the jets produced by the large test rig. Initial measurements of velocities and turbulence were carried out using an electromagnetic current meter connected to an analogue tape recorder (Racal 7-track). Records were digitised by means of a Farnell DTS12T digital storage oscilloscope and analysed using a software package mounted on a BBC micro-computer.

Later, velocities in the jet were measured using a total-head pitot tube, similar to that described by Arndt \& Ippen (1970). The total head tube (2.0mm

> internal diameter) was connected via an adapter to a flush-mounted pressure transducer, which measured the instantaneous fluctuating pressures. The tube was filled with water and vacuum sealed so as to ensure that the water was retained in the tube. The small diameter of the tube and the vacuum seal prevented air bubbles becoming trapped in the tube and thus invalidating results. The output signals from the transducer were analysed to obtain values of the mean velocity and turbulence at the position in which the instrument was fixed. The probe was mounted with the tip facing vertically upwards and in the horizontal plane of the exit from the rectangular pipe.

4.2 Air concentrations

Point measurements of air concentration were made using a void-fraction meter purchased specially for this research project. The instrument was developed at Nottingham University by White \& Hay (1975). The device senses the passage of air bubbles by means of a very fine wire or needle that is insulated from the main body of the probe (which must be immersed). When the tip of the probe is in water, an electrical circuit is completed between the tip and the main body of the probe. When a bubble passes over the tip, the resistance in the circuit first increases and then decreases as the tip re-enters liquid. Previous instruments of this type have used the change in mean resistance as a measure of the bubble concentration, but calibrations for such instruments are difficult to establish and subject to changes in conductivity of the liquid. White \& Hay adopted a different approach in which differentiators and comparitors in the electrical circuit measure the rate of change of the signal sensed by the tip. In this way it is possible to detect the start and end of each bubble. Thus the
probe acts as a simple on/off switch, "on" when the tip is in liquid and "off" when it is in a void.

The concentration is determined by integrating the signal using a Schmitt trigger to find the total lengths of time, T_{c} and T_{v} that the tip has been in the conducting fluid and in the non-conducting voids. The average concentration of the voids is given by
$C=\frac{T}{T_{c}+T_{v}}$

It is assumed here that the voids move at the same velocity as the liquid. In the large test rig, the location of the air supply manifold at the top of the vertical rectangular pipe enabled the air and water to become well mixed prior to discharge.
4.3 Impact pressures

Pressure measurements on the floor of the plunge basin were made using non-aerated and aerated jets for a range of flow rates and water levels in the basin.

The tests with the non-aerated jets were carried out first, without the manifold for the air supply system installed in the rectangular pipe. The following five measurements were made when studying the non-aerated jets:
(1) flow rate of water in jet;
(2) height of outlet above floor level in the plunge basin;
(3) depth of tailwater in plunge basin;
(4) water temperature;
(5) pressure fluctuations on the floor of the plunge basin at various positions beneath the jet.

The first two items in the list above were fixed at the beginning of each test; the other three were monitored during the course of each test.

For the second set of tests with aerated jets, the air supply manifold was installed, and the following additional measurements recorded:
(6) total flow rate of air added to the jet;
(7) air temperature;
(8) air pressure.

The required air flow rate was set at the start of each test with an aerated jet. The air temperature was monitored during the course of the test and the air pressure was recorded on a daily basis.

Each test with an aerated or non-aerated jet lasted approximately $40-45$ minutes. An initial period of roughly 30 minutes was allowed for conditions to stabilise before measurements were begun. Analogue recordings of the output signals from the pressure transducers were obtained using the 7-track recorder. Each of these recordings was approximately 10 minutes in length ; shorter recordings of calibration signals were also taken at regular intervals throughout the test programme. The analogue readings were then digitised and analysed using the DATS software package to determine the statistical and spectral characteristics of the pressure fluctuations.
5.1 Characteristics of free jet

The unformity of the jet produced by the vertical rectangular pipe in the large test rig was investigated using the small diameter pitot tube described in Section 4.1. The tests were carried out with the pipe discharging freely into air at three different mean velocities: $\mathrm{V}_{\mathrm{o}}=6.65 \mathrm{~m} / \mathrm{s}(100 \%), \mathrm{V}_{\mathrm{o}}=$ $4.98 \mathrm{~m} / \mathrm{s}(75 \%)$ and $V_{o}=3.33 \mathrm{~m} / \mathrm{s}(50 \%)$; these same flow rates were also used in the tests described later to measure impact pressures.

Figure 7 shows how the time-mean velocity v varied along three sections parallel to the longitudinal centreline of the jet (on the centreline at $y=0$, at the edge of of the jet at $y=B_{o} / 2$ and at the mid-point $y=B_{o} / 4$); values are listed in Table 1. The tests were carried out with the air supply manifold installed (see Figure 4) but with no air being entrained, and the measurements were made in the horizontal plane immediately below the exit from the pipe. The first test at $\mathrm{V}_{\mathrm{O}}=3.33 \mathrm{~m} / \mathrm{s}$ demonstrated that the velocity distribution was almost fully symmetrical about the mid-point of the pipe. The tests at higher flow rates showed similar profiles, but with a tendency for the distribution to become slightly more uniform with increasing velocity. The measurements labelled A and C in Table 1 correspond to the points which were vertically above the pressure
transducers A and C in the floor of the plunge basin (see Figure 5). The average values of time-mean velocity in the vicinity of $A(x=0, y=0)$ and $C\left(x=0.3 W_{0}, y=0\right)$ were $v=1.188 V_{0}$ and $v=1.132$ V_{o} respectively.

The velocity distribution in turbulent flow is predicted theoretically by appropriate forms of the log-velocity law, but can be described by simple power-law relationships over most of the depth range. Cain \& Wood (1981) found that high-turbulence flows in a rectangular spillway fitted the following vertical distribution of mean velocity.

$$
\begin{equation*}
v=v_{m}\left(y / y_{m}\right)^{0.158} \tag{20}
\end{equation*}
$$

where v_{m} is the maximum velocity at the surface $y=y_{m}$. Integration of Equation (20) to obtain the depth-averaged velocity V_{o} shows that $\mathrm{v}_{\mathrm{m}}=1.158 \mathrm{~V}_{\mathrm{o}}$ and that $v=1.038 \mathrm{v}_{0}$ at $\mathrm{y} / \mathrm{y}_{\mathrm{m}}=0.5$. These values are in reasonable agreement with the data in Table l; clearly Equation (20) is not valid at the edge of the jet ($y=0$) which, in any case, is difficult to define precisely when it enters air. Taking Equation (20) as the basis, it can be shown that the kinetic energy head E_{k} and the momentum flux \mathbb{M} of the jet due to its velocity are
$\mathrm{E}_{\mathrm{k}}=1.053 \mathrm{~V}_{\mathrm{o}}^{2} / 2 \mathrm{~g}$
$\dot{M}=1.019 \rho B_{o} W_{o} V_{o}{ }^{2}$
Pressure fluctuations in the jet at its point of exit from the vertical pipe were measured using the total-head pitot tube described in Section 4.1. The measurements were used to calculate values of the pressure coefficient

$$
\begin{equation*}
C_{p}^{\prime \prime}=\frac{2 p_{\mathrm{rms}}}{\rho V_{o}^{2}} \tag{23}
\end{equation*}
$$

where $p_{r m s}$ is the root-mean-square pressure fluctuation on the centreline of the jet and V_{0} is the mean exit velocity of the jet (= discharge/flow area). Values of $C_{p}^{\prime \prime}$ were found to be in the range 11.6% to 11.0% for jet velocities between $4.9 \mathrm{~m} / \mathrm{s}$ and $6.6 \mathrm{~m} / \mathrm{s}$ (see Table 2).

The above results can be used to estimate the approximate intensity of the velocity fluctuations in the jet if it is assumed that the instantaneous kinetic energy of the fluid is converted into dynamic pressure at the pitot without loss of energy (ie in accordance with Bernoulli's equation). The precise relationship depends on how much the turbulence varies with direction (e.g. whether it is isotropic) and on the shape of its probability distribution (eg whether it is Gaussian). If the turbulence level is relatively low, then to a first approximation the turbulence intensity is given by

$$
\begin{equation*}
\epsilon=\frac{v_{\mathrm{rms}}}{V}=\frac{1}{2} \quad C_{p}^{\prime \prime} \tag{24}
\end{equation*}
$$

where $\mathrm{v}_{\mathrm{rms}}$ is the root-mean-square velocity fluctuation on the centreline of the jet. The measurements from the pitot tube indicate approximate values of ϵ in the range 5.8% to 5.5% (see Table 2). The local turbulence intensity on the centreline of the jet

$$
\begin{equation*}
\epsilon_{1}=\frac{v_{\mathrm{rms}}}{\mathrm{v}} \tag{25}
\end{equation*}
$$

was also calculated assuming the centreline velocity
to be $v=1.188 \quad V_{0}$, as given by Table 1.

The distribution of entrained air within the jet produced by operation of the air supply system was measured using the void meter described in Section 4.2. The method of measurement was similar to that used for the velocity profiles, with the jet discharging freely and with the probe mounted just below the exit plane of the pipe. The tests were carried out at the 50% flow rate $\left(V_{0}=3.33 \mathrm{~m} / \mathrm{s}\right)$ and at two mean air concentrations $C_{0}=10 \%$ and $C_{0}=20 \%$ (with C_{0} defined as in Equation (15)). The concentration profiles measured along the same three longitudinal sections as before are plotted in Figure 8 and listed in Table 3. It can be seen that the air distribution was reasonably uniform across most of the thickness of the jet, but that each profile was not perfectly symmetrical about the mid-point. This non-unformity occurred because the inlet manifold was supplied from one side only; as a result more air emerged at the far end of the manifold where the static pressure within the perforated pipe was higher.

As explained in Section 4.2, the void meter was self-calibrating. However, its accuracy was checked independently by calculating, for each measuring point in the pipe, the product of C / C_{0} from Table 3 and the corresponding velocity ratio v / V_{o} from Table 1. Assuming no slip between the air and water and no change in velocity profile due to the addition of the air, one would expect the value of the product, averaged over the cross-section of the jet, to be equal to unity. The average values of the quantity $\left(\mathrm{Cv} / \mathrm{C}_{0} \mathrm{~V}_{0}\right)$ were in fact calculated to be 0.86 for the test with $\mathrm{C}_{0}=10 \%$ and 0.94 for the test with $\mathrm{C}_{0}=$ 20%. This degree of agreement is considered satisfactory given the nature of the measurements and
assumptions, and confirms the usefulness of the void meter. Photographs of the jet discharging freely into air were taken in order to study its development and rate of expansion; a representative selection is presented in Plates 1-6. The rate of expansion θ of the outer edge of the jet on its shorter side ($B_{0}=$ 67 mm) was calculated from
$\theta=\tan ^{-1}\left[\left(B-B_{0}\right) / z\right]$
where B is the mean thickness of the jet at a level z below the pipe outlet. The corresponding angle for the long side ($\mathrm{W}_{\mathrm{O}}=200 \mathrm{~mm}$) was determined by substituting W and W_{o} for B and B_{o} in Equation (26). The values of θ obtained from the photographs are given in Table 4. In the absence of diffusion effects, the falling jet would contract as its velocity increases with distance below the pipe exit. An approximate estimate of the rate at which a two-dimensional jet would expand in the absence of gravitational effects can be found from

$$
\begin{equation*}
\theta^{\prime}=\tan ^{-1}\left[\frac{B}{z}-\frac{B_{0}}{z}\left(1+2 g z / V_{0}^{2}\right)^{-1 / 2}\right] \tag{27}
\end{equation*}
$$

which assumes that the flow is uniform and that potential energy is converted without loss into kinetic energy. Using the data in Table 4 for the short side of the jet at $z=0.564 \mathrm{~m}$ gives values of θ^{\prime} between 2.6° (at $\mathrm{V}_{\mathrm{O}}=2.45 \mathrm{~m} / \mathrm{s}$) and 3.8° (at $\mathrm{V}_{\mathrm{o}}=4.26$ m/s).

5.2 Test conditions for impact tests

Pressures on the floor of the plunge basin in the area of jet impact were measured for a range of velocities, water depths and air concentrations. Five pressure transducers were located with the following co-ordinates relative to the extrapolated centreline of the jet pipe (see Figure 5).

Transducer	x / W_{0}	y / B_{0}
A	0	0
B	0	0.9
C	0.3	0
D	0.3	0.9
F	0.6	0

Transducers A and C were therefore within the jet and B, D and F outside.

Tests were carried out with the jet pipe either discharging about 0.12 m below the water surface in the plunge basin or discharging freely into air to produce a plunging jet. The conditions investigated with the submerged jet were:

Initial velocity $\mathrm{V}_{\mathrm{o}}=3.3,5.0,6.6 \mathrm{~m} / \mathrm{s}$

Jet length in water $L_{w}=0.3,0.7 \mathrm{~m}$

Air concentration $\mathrm{C}_{\mathrm{O}}=0,10,20 \%$

All combinations of these values were tested except that it was not possible to achieve the maximum velocity of $\mathrm{V}_{\mathrm{O}}=6.6 \mathrm{~m} / \mathrm{s}$ at $\mathrm{C}_{\mathrm{O}}=10 \%$ and 20%.

In the case of the tests with the plunging jet, the exit of the pipe was located at a height of $\mathrm{H}=1.3 \mathrm{~m}$ above the floor of the basin. The conditions investigated were:

```
Initial velocity vo
Jet length in air L}\mp@subsup{L}{a}{}=1.3,0.9,0.5
Jet length in water }\mp@subsup{L}{\textrm{w}}{}=0,0.4,0.8\textrm{m
Air concentration C}\mp@subsup{C}{0}{}=0,10,20
```

All combinations were tested except that firstly the maximum velocity could not be achieved when air was added, and secondly the relationship between L_{a} and L_{w} was fixed by the geometry of the rig ($L_{a}=H-L_{w}$). A value of $L_{W}=0$ indicates that the jet impinged directly on to the floor of the basin without any imposed tailwater.

The dynamic pressure due to the impact of the jet was obtained by subtracting from the transducer reading the hydrostatic pressure corresponding to the measured water depth h. The mean dynamic pressure p was expressed in terms of the dimensionless coefficient
$C_{p}=\frac{2 p}{\rho v_{1}^{2}}$
where V_{1} is the velocity of the water entering the plunge basin. In the case of the submerged jet, V_{1} was equal to the exit velocity V_{0}. In the case of the plunging jet, the water velocity increased before impact so for the purposes of the analysis it was assumed that
$\mathrm{v}_{1}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{~g} \mathrm{~L}_{\mathrm{a}}$

This is a simplification but secondary effects due to the non-uniform velocity distribution, diffusion and energy dissipation are difficult to quantify.

Equivalent coefficients for the maximum and minimum dynamic pressures, $p_{\max }$ and $p_{\text {min }}$, recorded during a test were defined as

$$
\begin{align*}
& C_{p}^{+}=\frac{2\left(p_{\max }-p\right)}{\rho v_{1}^{2}} \tag{30}\\
& C_{p}^{-}=\frac{2\left(p_{\min }-p\right)}{\rho v_{1}^{2}} \tag{31}
\end{align*}
$$

where p is the mean dynamic pressure.

Two alternative coefficients for describing the root-mean-square fluctuation in dynamic pressure, $\mathrm{p}_{\mathrm{rms}}$, were considered:

$$
\begin{equation*}
c_{p}^{\prime}=\frac{2 p_{r m s}}{\rho v_{1}^{2}} \tag{32}
\end{equation*}
$$

and the turbulent pressure intensity
$T_{p}=\frac{P_{\text {rms }}}{p}$

Statistical and spectral analyses of the pressure fluctuations in selected tests were also carried out. The characteristics of a random process can be described in statistical terms by parameters such as the mean, standard deviation σ, skewness s and kurtosis k. If N measurements are made of the
pressure fluctuation p^{\prime} relative to the mean, then these parameters are defined to be
$\sigma=\left[\frac{\sum\left(p^{\prime}\right)^{2}}{N}\right]^{1 / 2}$
$s=\frac{\sum\left(p^{\prime}\right)^{3}}{N \sigma^{3}}$
$k=\frac{\sum\left(p^{\prime}\right)^{4}}{N \sigma^{4}}$

A positive value of skewness indicates that the distribution of the fluctuations is not symmetrical about the mean and that the median value of the distribution (i.e the value with a cumulative probability of 0.5) occurs on the negative side of the mean. The value of kurtosis increases as the distribution becomes more sharply peaked about the mean ; for a Gaussian normal distribution $k=3$. The statistical analysis was carried out on digitised data files, each containing $2^{15}(\equiv 32.8 \mathrm{k})$ values recorded at a sampling rate of 100 Hz ; the duration of each file was therefore approximately 5.5 minutes. The same files were analysed using the Fast Fourier Transform technique to determine the frequency spectra of the fluctuations ; smoothing of the Fourier components was carried out so as to result in 52 spectral values at frequency intervals of approximately 0.98 Hz up to a maximum frequency of 50 Hz .

Impact pressures were recorded as described in Section 5.2 for a total of 35 test conditions plus one repeat. The number of measured values was therefore 36 tests x 5 transducers $\times 32,768$ measurements per transducer per test $=$ total of 5.9×10^{6} values. The computed results for each test are given in Appendix A.

Attention will be concentrated in this Section on how the values of mean dynamic pressure on the floor of the plunge basin are influenced by jet type, jet velocity, water depth and air concentration. Jet type can either be submerged (rectangular pipe discharging under water) or plunging (discharging first into air). It should be noted for the submerged case that the length L_{w} of the jet in water (measured vertically from the pipe exit to the floor of the basin) is less than the water depth h; for the case of a plunging jet $L_{w}=h$. Values of mean impact pressure will be considered in terms of the pressure coefficient C_{p} (Equation (28)) calculated using the mean velocity V_{1} of the jet entering water (Equation (29)).

The variation of mean impact pressure with positions in the jet is illustrated in Figure 9, based on the values given in Table 5. The values were obtained by dividing the pressures at transducer positions $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and F by the corresponding pressure measured for that test at position A, the centre of the jet. Turbulence in the flow inevitably resulted in some variations in these pressure ratios, but several clear trends are evident. Jet velocity generally had little effect on
the values of the ratios, so Table 5 gives an average for each combination of jet type, water depth and air concentration. (Individual values for each test can be determined from the data in Appendix A).

Along the centreline of the jet (ACF), the pressure distributions were similar for both submerged and plunging jets and were little affected by changes in water depth. Outside the jet, along the parallel line $B D$, increases in water depth caused an increase in pressure relative to that at A. Introduction of air into the jet tended to reduce pressures relative to that at A.

Two main conclusions can be drawn from Figure 9. Firstly, the experimental set-up produced reasonably uniform two-dimensional conditions in the vicinity of the jet (compare the overall pressure ratios for A and C and for B and D). Secondly, mean impact pressures decrease rapidly outwards from the jet. At point F, which is $0.1 \mathrm{~W}_{\mathrm{o}}$ from the edge of the jet, the value of C_{p} is typically about 54% of that within the jet. Similarly at points B and D , which are $0.4 \mathrm{~B}_{\mathrm{o}}$ from the side of the jet, the ratio is typically about 37%. The values of mean impact pressure which are most important for design are therefore those which occur within the jet. Attention will thus now be concentrated on the values of C_{p} at points A and C. Maximum pressures tended to occur at point C in the tests without air injection and at point A in the tests with air injection. Since the differences were relatively small (see Table 5), average values for C_{p} at A and C are considered in the following comparisons.

Figure 10 shows for the case of no air injection a correlation between the coefficient C_{p} of mean dynamic pressure and the ratio L_{W} / B_{1}, where L_{W} is the length of the jet in water and B_{1} is estimated from

$$
\begin{equation*}
B_{1}=B_{0} \frac{V_{0}}{V_{1}} \tag{37}
\end{equation*}
$$

The data for the submerged jets show that the values of C_{p} are almost independent of flow velocity. Similarly good agreement will be seen later for other parameters of the submerged jets. This is encouraging because it indicates that the results are not affected by scale effects due to variations in Reynolds number. Alternatively, this can be viewed as evidence that the jets were fully turbulent and therefore not influenced by viscosity.

It is noteworthy that the value of C_{p} can exceed unity at short jet lengths. Evidence from earlier studies (see Section 2.2) suggests that the high velocity core of a rectangular submerged jet will persist for a distance L_{W} between about 5.2 B_{1} (Alberston et al (1948)) and 8.3 B_{1} (Beltaos \& Rajaratnam (1973)). The latter value corresponds closely to the point where $C_{p}=1.0$ in the present tests. C_{p} can exceed unity because it is calculated using the mean jet velocity V_{1}. The measurements of velocity distribution within the jet (see Section 5.1) showed that at the point of discharge the velocity on the centreline was about 1.16 times the mean velocity. Thus the maximum value of C_{p} to be expected is $1.16^{2}=1.35$: the largest value measured in these tests was 1.32. The effect of a non-uniform velocity distribution within a jet does not appear to have been considered in previous studies.

The data for the plunging jets show a similar trend but with rather more scatter than in the case of the submerged jets. Part of this may be due to greater turbulence in the plunging jets. Also, the plotting position of a data point is affected by the value of B_{1}, which is estimated only approximately by equation (37). Nevertheless, there is clearly some dependence of C_{p} on flow rate at lower values of L_{W} / B_{1}. This is to be expected because the effect of a plunging jet is likely to be partly dependent on a Froude-type parameter such as $V_{1} /\left(\mathrm{gL}_{\mathrm{w}}\right)^{1 / 2}$.

The results for zero tailwater $\left(L_{W} / B_{1}=0\right)$ lie below the trend of the other points, and need to be considered separately because of the different behaviour of the flow. Less recovery of pressure head (and therefore more energy dissipitation) than expected occurs when there is no tailwater. In fact, the plotting position of L_{W} / B_{1} is not strictly correct because the impacting jet does produce a thin water cushion on the floor of the basin.

Figure 10 also shows a plot of Equation (4) which Beltaos \& Rajaratnam (1973) obtained for air jets in air for values of L_{W} / B_{1} between 14.0 and 67.4. The agreement is good considering the differences in nature and scale between the two studies. Neglecting the data for zero tailwater, the other results in Figure 10 for plunging and submerged jets can be described rather more simply and accurately by the linear equation

$$
\begin{equation*}
C_{0}=0 \% \quad: \quad C_{p}=1.613-8.224 \times 10^{-2}\left(L_{W} / B_{1}\right) \tag{38}
\end{equation*}
$$

which has a correlation coefficient of $r=-0.943$. The estimated maximum value of $\mathrm{C}_{\mathrm{p}}=1.35$ (see above) occurs for $L_{W} / B_{1} \leq 3.2$. The impact pressures in Figure 10 are higher than those recorded by Withers (1989) for circular plunging jets (see Section 2.2).

Corresponding results for values of C_{p} with injected air concentrations of $C_{0}=20 \%$ are shown in Figures 11 and 12 respectively. The addition of air reduces the mean impact pressures for both the submerged and plunging jets. In the case of zero tailwater, the change from 10% to 20% air concentration produced larger reductions in C_{p} than occurred with finite tailwater depths.

Neglecting data for $L_{W} / B_{1}=0$, the other results in Figures 11 and 12 can be described quite well by linear relationships similar to Equation (38). The following best-fit equations were obtained.

$$
\begin{array}{ll}
C_{0}=10 \%: & C_{p}=1.447-8.528 \times 10^{-2}\left(L_{w} / B_{1}\right) \\
C_{0}=20 \%: & C_{p}=1.361-8.474 \times 10^{-2}\left(L_{W} / B_{1}\right) \tag{40}
\end{array}
$$

The correlation coefficients were $r=-0.970$ and -0.963 respectively.

Comparison of Equations (38), (39) and (40) shows that the best-fit lines have almost equal slopes and that the intercepts at $\mathrm{L}_{\mathrm{W}} / \mathrm{B}_{1}=0$ vary smoothly with C_{0}. All the data for submerged and plunging jets (except those for zero tailwater) can therefore be described by the following best-fit equation (with rounded coefficients)
$C_{p}=1.6\left(1-C_{0}\right)^{3 / 4}-\frac{1}{12}\left(L_{W} / B_{1}\right)$

A comparison between the measured values of C_{p} and those predicted by Equation (41) is shown in Figure 13. An equivalent result that gives conservative (ie. high) values of C_{p} relative to all the test data from the present study is
$C_{p}=1.8\left(1-C_{0}\right)^{0.9}-\frac{1}{12}\left(L_{w} / B_{1}\right)$

This equation could be suitable for design purposes, but in some cases it does overpredict considerably relative to the measured values of mean dynamic pressure.

Equations (41) and (42) do not apply to the case of zero tailwater. The amount of data obtained for this condition is not sufficient to establish with certainty an equivalent type of correlation relating C_{p} to the dimensions and energy of the jet. Possible parameters which might influence C_{p} are

$$
\frac{L_{a}}{B_{1}}, \frac{V_{1}}{\left(g B_{1}\right)^{1 / 2}}, \frac{V_{1}}{\left(g L_{a}\right)^{1 / 2}} \text { or } \frac{V_{o}}{\left(g L_{a}\right)^{1 / 2}}
$$

where L_{a} is the length of the jet in air. Values of the first two parameters did not vary greatly in the tests so are unlikely to account for the significant variations in C_{p} which were observed. The second two parameters are relevant to the evolution of the jet in its fall through the air. Figure 14 shows the values of C_{p} for zero tailwater plotted against $V_{o} /\left(g L_{a}\right)^{1 / 2}$. The validity of using L_{a} in the parameter cannot be
confirmed from the present data because it was not varied in the tests. More results are therefore needed to establish whether Figure 14 is a useful method of correlation. However, in terms of applications, the case of zero tailwater is less important because a reasonable depth of water will normally be available in plunge basins for high-head dams.

5.4 Fluctuating

impact pressures

Measumements relating to the characteristics of the turbulent pressure fluctuations on the floor of the impact basin are listed in Appendix A. For each test and transducer position, values are given of the maximum positive and negative pressure fluctuations and of the root-mean-square (rms) values. These values are also expressed in terms of the non-dimensional pressure coefficients $C_{p}^{\prime}, T_{p}, C_{p}^{+}$and $\mathrm{C}_{\mathrm{p}}^{-}$defined by Equations (32), (36), (30) and (31) respectively.

In a limited number of cases, the recorded pressures occasionally reached the measurement limits of the transducers of about +5.1 m and 0.0 m head of water (relative to atmosphere). In some instances discontinuous spikes ocurred in the signals. These are believed to have been caused by electrical interference, and were therefore removed from the records before the statistical analysis was carried out. The other instances were considered to have been genuine fluctuations which were truncated because the mean pressure was too close to one of the measurement
limits. The majority of the records were not subject to any such problems. In those that were, the "error" rate did not exceed about 1 in 1000 and was typically 1 or 2 in 10000. The effects on the values of the root-mean-square fluctuations were therefore negligible. The truncation of a fluctuation would, however, have caused the maximum or minimum value of pressure in a test to be underestimated. Cases where this occurred are marked in Appendix A by an asterisk next to the relevant value of $\mathrm{C}_{\mathrm{P}}^{+}$or $\mathrm{C}_{\mathrm{p}}^{-}$.

Study of the values of the pressure coefficients $C_{p}^{\prime}, \quad C_{p}^{+}$and C_{p}^{-}shows that the amount of turbulence in a particular test was fairly constant at all five measuring positions. The largest values of C_{p}^{\prime} occurred at A, C or F on the centreline of the jet, but positions B and D sometimes experienced the largest values of $\mathrm{C}_{\mathrm{p}}^{+}$or $\mathrm{C}_{\mathrm{p}}^{-}$. This contrasts with the behaviour of the mean dynamic pressure, maximum values of which always occurred at A or C within the jet (see Section 5.3).

Figure 15 shows the correlation between the average value of C_{p}^{\prime} for all five gauges and the parameter $\mathrm{L}_{\mathrm{w}} / \mathrm{B}_{1}$ described in Section 5.3. Results for all the tests, with and without air injection, are plotted. The data for the submerged jets and the plunging jets are separately consistent, and define two distinct curves as indicated in Figure 15.

Considering the plunging jets first, the value of C_{p}^{\prime} (neglecting two aerated tests at low velocity) is approximately constant between $\mathrm{L}_{\mathrm{w}} / \mathrm{B}_{1}=0$ and 7; this region corresponds to the "flow-establishment" zone (see Section 2.1 and Figure 1) where the high-velocity core is still coherent. The range of $C_{p}^{\prime}=0.09$ to
0.12 is very similar to the root-mean-square figure of $C_{p}^{\prime}=0.11$ to 0.12 measured in the free jet using the pitot tube (see Table 2). As the core of the jet begins to break up beyond $\mathrm{L}_{\mathrm{w}} / \mathrm{B}_{1}=7$, flow energy is converted into turbulence energy. The value of C_{p}^{\prime} therefore rises to a peak of about 0.20 at $L_{W} / B_{1}=12$. Beyond this point, the turbulence energy appears to decay or diffuse more rapidly than the rate at which it is generated by further break-up of the high-velocity core. The results in Figure 15 compare quite closely with the measurements made by Withers (1989) for circular plunging jets (see Section 2.2)

Turbulence in the submerged jets was lower than in the plunging jets but appears to follow a similar pattern. The good consistency of the results obtained at different flow rates indicates that the submerged jets were fully turbulent and had self-similar velocity distributions.

Figure 15 shows that the amount of air in the jet had little effect on C_{p}^{\prime}, except in the special case of zero tailwater. The data for this condition are re-plotted in Figure 16 versus the parameter $\mathrm{V}_{\mathrm{o}} /\left(\mathrm{g} \mathrm{L}_{\mathrm{a}}\right)^{1 / 2}$ discussed in Section 5.3. Although the validity of this parameter cannot definitely be established from the limited number of measurements, it does help identify a pattern in the results. Below a value of $\mathrm{V}_{\mathrm{o}} /\left(\mathrm{g} \mathrm{L}_{\mathrm{a}}\right)^{1 / 2}=1.5$, addition of air promotes the break up of the jet and increases the level of turbulence.

Figure 17 is similar in type to Figure 15 but shows for each test the maximum value of $\mathrm{C}_{\mathrm{p}}^{\prime}$ recorded at any of the five measuring positions. The results follow a similar pattern to that in Figure 15, with an estimated peak value of $C_{p}^{\prime}=0.27$ occurring at about $L_{w} / B_{1}=11.5$.

An alternative view of the data is obtained by plotting in Figure 18 the average root-mean-square pressure coefficient against the mean dynamic pressure coefficient (i.e average C_{p}^{\prime} versus C_{p}). The results for submerged and plunging jets are again separately consistent and are little affected by the amount of injected air. In the case of plunging jets, the turbulence is a maximum when the mean dynamic pressure coefficient is approximately $C_{p}=0.65$; for the submerged jets, the corresponding condition occurs at about $C_{p}=0.8$.

Data on the largest positive and negative pressure fluctuations recorded in each test by any of the five transducers are presented in Figure 19. Values of the coefficients $\mathrm{C}_{\mathrm{p}}^{+}$and $\mathrm{C}_{\mathrm{p}}^{-}$are plotted against the parameter L_{w} / B_{1} and show similar trends to those seen in Figures 14 and 15. For plunging jets, the maximum value of $\mathrm{C}_{\mathrm{p}}^{+}$is estimated to be about 2.0 and occurs when $L_{w} / B_{1}=10.5$. The negative fluctuations about the mean are smaller with a maximum of about ${C_{p}^{-}}_{p}^{-0.8}$ at $L_{w} / B_{1}=7.5$. Turbulence levels were lower in the jets, and the extreme fluctuations were therefore also less with peak figures of about $\mathrm{C}_{\mathrm{p}}^{+}=0.9$ and $C_{p}^{-}=-0.6$. The probability of each of the points plotted in Figure 19 is estimated to be of the order of 2×10^{-5} (based on one maximum and one minimum reading out of $5 \times 32,768$ values, and assuming fairly uniform turbulence at all five measuring positions).

The results for zero tailwater in Figure 19 show considerable scatter, and are therefore re-plotted in Figure 20 versus the parameter $\mathrm{V}_{0} /\left(\mathrm{g} \mathrm{L}_{\mathrm{a}}\right)^{1 / 2}$. As in the case of Figure 16, this method of correlation
indicates that the amount of air in the jet begins to affect the turbulence level when $V_{o} /\left(\mathrm{g} \mathrm{L}_{\mathrm{a}}\right)^{1 / 2}$ is less than 1.5. Further data are needed to confirm the relevance of L_{a} in this parameter.

Statistical and spectral analyses were carried out on the recorded pressure fluctuations. Figures 21 to 24 show plots of the non-dimensional probability density (pd) distributions for pressures recorded at transducer A (centre of jet) and transducer B (outside jet, see Figure 5) in Tests 8 and 9 (plunging jets with no air injection, see sheets A. 9 and A. 10 in Appendix A). These are reasonably typical of the results obtained in other tests. The distributions in Figures 21 to 24 are positively skewed so each median value lies on the negative side of the mean. When considering possible damage to stilling basins due to extreme pressure fluctuations, Lopardo et al (1984) suggested use of an exceedance probability of 0.1%. In the present tests, this limit corresponds very approximately to 2.5 standard deviations for negative fluctuations and 4 standard deviations for positive fluctuations. The pd distributions are generally more peaked than the Gaussian distribution, which is also shown plotted in Figures 21 to 24.

Considering all the tests carried out, 89% of the 180 distributions were positively skewed. The average value of skewness (see Equation (35)) was about $\mathrm{s}=0.6$, with extremes of -1.5 and +4.3 . All but one of the distributions with negative skewness occurred at positions A and C within the jet and were most common in the case of zero tailwater. The average value of kurtosis (see Equation (36)) for all the tests was about $\mathrm{k}=5$, which compares with $\mathrm{k}=3$ for a

Gaussian distribution. Addition of air to the plunging jets caused the peakedness of the distributions to increase, typically from $k=4$ to $\mathrm{k}=6$; the maximum value recorded with a plunging jet was $\mathrm{k}=17$ (though we have some doubts about the accuracy of the DATS analysis package when dealing with such sharply peaked distributions).

Representative results obtained from spectral analysis of the pressure fluctuations are shown in Figures 25 to 28. All the plots are for transducer A in the centre of the jet and illustrate the following test conditions:

Figure 25 - submerged jet with no air injection (Test 15, Sheet A. 2)

Figure 26 - plunging jet with no air injection (Test 8, Sheet A.9)

Figure 27 - submerged jet with $C_{0}=20 \%$
(Test 22, Sheet A.28)

Figure 28 - plunging jet with $\mathrm{C}_{\mathrm{o}}=20 \%$
(Test 34, Sheet A.32)

All the plots show that the turbulence energy is most concentrated at the lowest frequencies. The spectra do not exhibit any well-defined peaks so it is not possible to relate a "characteristic" frequency to the particular flow conditions in the jet. Instead the energy decreases fairly steadily with increasing frequency and in most cases becomes relatively insignificant beyond 25 Hz .

The frequencies in Figures 25 to 29 are those measured in the present tests, so it is necessary to consider
how they are related to turbulence frequencies in prototype jets. As discussed in Section 1, the primary factors likely to determine fluctuation frequencies are the dimensions of the jet and its velocity (note gravity is not a dominant factor here). Also, results presented above have demonstrated that the jets were fully turbulent with self-similar flow characteristics. On this basis, it is expected that frequencies measured in these tests can be related to frequencies in prototype jets by the relation
$\frac{\mathrm{F}_{1}}{\mathrm{f}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \cdot \frac{\mathrm{~B}_{2}}{\mathrm{~B}_{1}}$

If a prototype plunge basin is studied using a Froudian model, with the jet thickness and water depth scaled correctly, then the model and prototype frequencies (f_{m}, f_{p}) will be related to the geometric scale of $1: \lambda$ by
$\frac{f_{m}}{f_{p}}=\lambda^{0.5}$

Froudian scaling is necessary in such a model because mean impact pressures and the evolution of the jet in air are influenced by the parameters $\mathrm{V}_{1} /\left(\mathrm{gL}_{\mathrm{w}}\right)^{1 / 2}$ and $\mathrm{V}_{0} /\left(\mathrm{gL}_{\mathrm{a}}\right)^{1 / 2}$ (see Section 5.3).

1. This study has investigated the mean and fluctuating pressures imposed on the horizontal floor of a plunge basin by a vertical rectangular jet of high-velocity water. The characteristics of two types of jet have been considered : submerged jets discharging under water into the plunge basin ; and plunging jets discharging
vertically into air before entering the plunge basin. Factors which were studied included jet velocity, depth of water in the plunge basin and amount of air in the jet.
2. Measurements of velocity and pressure distributions showed that the aspect ratio of the the jet pipe used in the tests (width $=3 \mathrm{x}$ breadth) was sufficient to produce two-dimensional flow conditions in the central region of the jet. The results also demonstrated that the jets were fully turbulent with self-similar flow characteristics. The turbulence intensity ε at the point of discharge from the jet pipe was about 5-6\%.
3. The pressure acting on the floor of a plunge basin consists of three components : the hydrostatic pressure due to the depth of tailwater in the basin ; the mean dynamic pressure produced by the impact of the jet ; and fluctuations about the mean due to turbulence.
4. The mean dynamic pressure was found to be dependent on the ratio between the jet length in water and the thickness of the jet at impact with the water surface. Increasing the amount of air in the jet decreased the impact pressures. The best-fit correlation for the mean dynamic pressure beneath the centreline of the jet (either plunging or submerged) is given by Equation (41). An alternative correlation which provides conservative (ie high) estimates of mean pressure relative to all the measurements is described by Equation (42). Outside the jet, pressures were found to decrease rapidly with horizontal distance from the centre.
5. Mean impact pressures on the jet centreline are presented in Figure 14 for the special case of zero tailwater in the plunge basin. More data are needed to investigate the effect of the jet length in air.
6. The characteristics of the fluctuating impact pressures due to turbulence in the basin were measured in terms of root-mean-square (rms) values, extreme maximum and minimum pressures, statistical properties and spectral density distributions.
7. The rms pressure fluctuations were found to decrease much less rapidly with distance from the centre of the jet than in the case of the mean dynamic pressure. Also, adding air to the jet had little effect on the level of turbulence, expect when there was zero tailwater. The measurements of the average rms pressure are shown by the correlation in Figure 15. This shows that the turbulence initially increases as the jet breaks up and reaches a maximum when the depth of water in the plunge basin is about 10 to 12 times the transverse thickness of the rectangular jet at impact with the water surface. The results for the special case of zero tailwater are given in Figure 16.
8. The values of the extreme maximum and minimum pressure fluctuations recorded in each test at any of the five measuring positions (two inside the jet, three outside) are plotted in Figure 19 , and Figure 20 shows the results for the case of zero tailwater. The probability of occurrence of each data point is estimated to be of the order of 2×10^{-5}. For design purposes, extreme pressures are sometimes calculated on the basis
of an exceedance probability of 0.1%. In this study, such a probability was found to correspond approximately to 2.5 times the rms value for negative fluctuations and 4 times the rms value for positive fluctuations.
9. Spectral analysis of the fluctuations showed that the turbulence energy was most concentrated at frequencies of $0-3 \mathrm{~Hz}$ with a fairly gradual decrease to low energies beyond a frequency of about 25 Hz .
10. The results of the study confirmed (within the experimental range) the validity of using Froudian scaling for model tests of plunge basins.
11. Further work is recommended to investigate over a larger range how the fall height of the jet in air and its initial level of turbulence influence the impact pressures on the floor of the basin.

7. ACKNOWLEDGEMENTS

The experimental measurements and processing of the data were carried out by Mr. I.R Willoughby. The project was supervised by Mr. J.A Perkins and Mr. R.W.P May in the River Engineering Department headed by Dr W.R White.

8. REFERENCES

ALBERTSON M.L. et al (1948). Diffusion of submerged jets. Proc ASCE, Vol 74, December, pp 639-663.

ARNDT R.E.A. \& IPPEN A.T. (1970). Turbulence measurements in liquids using an improved total pressure probe. Jnl Hydraulic Research, Vol 2, pp 131-158.

BELTAOS S. \& RAJARATNAM N. (1973). Plane turbulent impinging jets. Jnl Hydraulic Research, Vol 11, No.1, pp 29-59.

CAIN P. \& WOOD I.R. (1981). Instrumentation for aerated flow on spillways. Proc ASCE, Jnl Hydraulic Div, Vol 107, HY11, November, pp 1407-1424.

CHANISHVILI A.G. (1965). Experimental researches on the influence of aeration on the intensity of kinetic energy dissipation. Proc XIth IAHR Congress, Leningrad, Vol 1, Paper 1.43.

COLA R. (1965). Energy dissipation of a
high-velocity vertical jet entering a basin. Proc XIth IAHR Congress, Leningrad, Vol 1, Paper 1.52.

DEAMER A.P. \& MAY R.W.P. (1989). A digital bend meter for measuring flow in pipes. Hydraulics Research, Wallingford, Report IT 339.

ELDER R.A. (1961). Model-prototype turbulence scaling. Proc XIth IAHR Convention, Dubrovnik, Yugoslavia, pp 24-31.

ERVINE D.A. et al (1980). Effect of turbulence intensity on the rate of air entrainment by plunging water jets. Proc ICE, Part 2, Vol 69, June, pp 425-445.

ERVINE D.A. \& FALVEY H.T. (1987). Behaviour of turbulent water jets in the atmosphere and in plunge pools. Proc ICE, Part 2, Vol 83, March, pp 295-314.

ERVINE D.A. \& WITHERS W.J. (1989). Turbulence and pressure fluctuations in plunge pools. Proc XXIIIrd IAHR Congress, Ottawa, Canada, Tech Session A, pp 215-222.

HAGER W.H. (1983). Hydraulics of plane free overfall. Proc ASCE, Jnl Hydraulics Div, Vol 109, HY12, December, pp 1683-1697.

HORENI P. (1956). Disintegration of a free jet of water in air. Byzkumny ustav vodohospodarsky prace a studie, Sesit 93, Praha-Podbaba.

KAWAKAMI K. (1973). A study on the computation of horizontal distance of jet issued from ski-jump spillway. Trans. Japanese Society of Civil Engineers, Vol 5.

KRAATZ W. (1965). Flow characteristics of a free circular water jet. Proc XIth IAHR Congress, Leningrad, USSR, Vol 1, Paper 1.44.

LOPARDO R.A. et al (1984). Model-prototype comparisons on pressure fluctuations in hydraulic jump
energy dissipators. Symp on Scale Effects in Modelling Hydraulic Structures, IAHR/DVWK, Esslingen, Germany, Paper 5.7.

MARTINS R. (1977). Kinematics of the free jet in the field of hydraulic structures. Ministerio das Obras Publicas, Memoria No 486, (in Portuguese).

MASON P.J. (1984). Erosion of plunge pools downstream of dams due to the action of free-trajectory jets. Proc ICE, Part 1, Vol 76, May, pp 523-537.

MASON P.J. (1989): Effects of air entrainment on plunge pool scour. Jnl Hydraulic Engng, ASCE, Vol 115, No 3, pp 385-399.

NAGHDI P.M \& RUBIN M.B. (1981). On inviscid flow in a waterfall. Jnl Fluid Mechanics, Vol 103, February, pp 375-388.

PERKINS J.A. (1987). Impact pressures in falling-jet energy dissipators: Literature review and preliminary experiments. Hydraulics Research, Wallingford, Report SR 124.

SCHIEBE. F. (1971). The stochastic characteristics of pressure fluctuations on a channel bed due to the turbulence in a hydraulic jump. PhD thesis for University of Minnesota, USA.

TABUSHI K. (1969). Air entrainment and pressure distribution in a circular tank by plunging liquid jet. XIIIth IAHR Congress, Kyoto, Japan, Vol 2, Paper B.9, pp 81-89.

WHITE P.R.S. \& HAY N. (1975). A portable air concentration meter. Proc XVIth IAHR Congress, Sao Paulo, Vol 3, pp 541-548.

WITHERS W.J. (1989). Pressure fluctuations downstream of concrete arch spillway dams. Paper for Scottish branch of ICE.

TABLES.

TABLE 1 Distribution of mean velocity in free jet
(a) $y / B_{0}=0$

	Local velocity / Mean velocity ($\mathrm{v} / \mathrm{V}_{\mathrm{O}}$)			
x / W_{0}	$\mathrm{V}_{\mathrm{o}}=3.33 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}_{\mathrm{o}}=4.98 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}_{0}=6.65 \mathrm{~m} / \mathrm{s}$	Average
- 0.48	0.749			
- 0.45	0.918			
- 0.40	1.049			
- 0.35	1.096			
- 0.30	1.164			
- 0.25	1.186			
- 0.20	1.186			
- 0.15	1.197			
- 0.10	1.197			
- 0.05	1.207			
0	1.207	1.196	1.175	1.193
0.05	1.207	1.191	1.178	1.192
0.10	1.197	1.191	1.178	1.189
0.15	1.186	1.186	1.173	1.182
0.20	1.186	1.177	1.167	1.177
0.25	1.164	1.167	1.153	1.161
0.30	1.153	1.142	1.134	1.143
0.35	1.119	1.101	1.090	1.103
0.40	1.061	1.037	1.020	1.039
0.45	0.946	0.939	0.907	0.931
0.48	0.783	0.793	0.730	0.769

TABLE 1 (Cont'd)
(b) $\quad \mathrm{y} / \mathrm{B}_{\mathrm{o}}=0.25$

	Local velocity / Mean velocity (v/V)			
$\mathrm{x} / \mathrm{W}_{0}$	$\mathrm{V}_{\mathrm{o}}=3.33 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}_{0}=4.98 \mathrm{~m} / \mathrm{s}$	$\mathrm{v}_{\mathrm{O}}=6.65 \mathrm{~m} / \mathrm{s}$	Average
- 0.48	0.678			
-0.45	0.946			
- 0.40	1.024			
- 0.35	1.084			
- 0.30	1.108			
-0.25	1.119			
- 0.20	1.131			
- 0.15	1.131			
- 0.10	1.131			
-0.05	1.142			
0	1.142	1.064	1.063	1.090
0.05	1.142	1.064	1.072	1.093
0.10	1.131	1.064	1.075	1.090
0.15	1.108	1.048	1.075	1.077
0.20	1.108	1.048	1.069	1.075
0.25	1.096	1.037	1.051	1.061
0.30	1.073	1.015	1.036	1.041
0.35	1.049	1.003	1.023	1.025
0.40	1.024	1.975	0.991	0.997
0.45	0.932	0.945	0.948	0.942
0.48	0.750	0.771	0.801	0.774

TABLE 1 (Cont'd)

(c) $y / B_{o}=0.5$

	Local velocity / Mean velocity (v/V ${ }_{0}$)			
$\mathrm{x} / \mathrm{W}_{0}$	$\mathrm{V}_{\mathrm{o}}=3.33 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}_{0}=4.98 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}_{0}=6.65 \mathrm{~m} / \mathrm{s}$	Average
- 0.48	0.576			
- 0.45	0.678			
- 0.40	0.783			
- 0.35	0.815			
- 0.30	0.861			
- 0.25	0.861			
- 0.20	0.890			
- 0.15	0.905			
- 0.10	0.918			
- 0.05	0.918			
0	0.932	0.908	0.871	0.904
0.05	0.918	0.914	0.878	0.903
0.10	0.932	0.914	0.878	0.908
0.15	0.905	0.889	0.885	0.893
0.20	0.890	0.882	0.874	0.882
0.25	0.861	0.863	0.863	0.862
0.30	0.846	0.842	0.837	0.842
0.35	0.831	0.829	0.817	0.826
0.40	0.831	0.808	0.829	0.823
0.45	0.783	0.771	0.794	0.783
0.48	0.697	0.702	0.726	0.708

TABLE 2 Turbulence intensities in free jet

Mean jet velocity V_{O} $(\mathrm{m} / \mathrm{s})$	Rms pressure coeff for pitot tube C	Mean turbulence intensity ϵ	Local turbulence intensity ϵ_{1}
6.65	11.0	5.5	$(\%)$
6.16	11.9	5.9	4.6
4.87	11.6	5.8	5.0
			4.9

TABLE 3 Distribution of air concentration in free jet
(a) $y / B_{o}=0, \quad V_{o}=3.33 \mathrm{~m} / \mathrm{s}$

$\mathrm{x} / \mathrm{W}_{\mathrm{O}}$	Local air concentration / Mean air concentration (C/C)		
	$\mathrm{C}_{\mathrm{O}}=10 \%$	$\mathrm{C}_{\mathrm{O}}=20 \%$	Average
-0.48	0.42	0.58	0.50
-0.45	0.67	0.79	0.73
-0.40	0.75	0.81	0.78
-0.35	0.75	0.85	0.80
-0.30	0.83	0.88	0.85
-0.25	0.86	0.89	0.87
-0.20	0.89	0.89	0.89
-0.15	0.92	0.89	0.90
-0.10	0.98	0.94	0.96
-0.05	1.00	0.99	1.03
0	1.05	1.00	1.05
0.05	1.07	1.02	1.08
0.10	1.10	1.05	1.12
0.15	1.15	1.09	1.11
0.20	1.10	1.11	1.13
0.25	1.10	1.15	1.13
0.30	1.10	1.15	1.12
0.35	1.08	1.15	1.11
0.40	1.07	1.15	1.08
0.45	1.02	1.14	0.53
0.48	0.48	0.57	

TABLE 3 (Cont'd)
ω
(b) $y / \mathrm{B}_{\mathrm{o}}=0.25, \mathrm{~V}_{\mathrm{o}}=3.33 \mathrm{~m} / \mathrm{s}$

x / W_{0}	Local air concentration / Mean air concentration (C/C ${ }_{0}$)		
	$\mathrm{C}_{\mathrm{O}}=10 \%$	$\mathrm{C}_{\mathrm{o}}=20 \%$	Average
-0.48	0.37	0.48	0.43
-0.45	0.71	0.79	0.75
-0.40	0.74	0.84	0.79
-0.35	0.74	0.86	0.80
-0.30	0.77	0.87	0.82
-0.25	0.80	0.89	0.84
-0.20	0.83	0.90	0.96
-0.15	0.87	0.92	0.94
-0.10	0.92	0.96	0.97
-0.05	0.96	0.99	1.04
0	1.06	1.01	1.06
0.05	1.08	1.04	1.07
0.10	1.07	1.06	1.11
0.15	1.10	1.12	1.13
0.20	1.14	1.12	1.14
0.25	1.11	1.16	1.16
0.30	1.10	1.17	1.18
0.35	1.14	1.17	1.11
0.40	1.18	1.17	0.45
0.45	1.07	1.14	
0.48	0.35	0.54	

TABLE 3 (Cont'd)
(c) $y / B_{o}=0.5, \quad V_{o}=3.33 \mathrm{~m} / \mathrm{s}$

$\mathrm{x} / \mathrm{W}_{0}$	Local air concentration / Mean air concentration ($\mathrm{C} / \mathrm{C}_{0}$)		
	$\mathrm{C}_{0}=10 \%$	$\mathrm{C}_{\mathrm{O}}=20 \%$	Average
-0.48	0.60	0.91	
-0.45	0.34	0.75	
-0.40	0.39	0.70	
-0.35	0.36	0.72	
-0.30	0.41	0.77	
-0.25	0.47	0.79	
-0.20	0.61	0.80	
-0.15	0.35	0.81	
-0.10	0.35	0.82	
-0.05	0.32	0.89	
0	0.41	0.67	
0.05	0.42	0.62	
0.10	0.26	0.55	
0.15	0.27	0.54	
0.20	0.29	0.59	
0.25	0.37	0.57	
0.30	0.31	0.86	
0.35	0.44	0.87	
0.40	0.48	0.89	
0.45	0.80	0.90	
0.48	0.37	0.51	

TABLE 4. Rate of expansion of free jet in air

```Initial jet velocity V O (m/s)```	Distance below jet exit $z$   (m)	Expansion rate $\theta$ (degrees)			
		Long side		Short side	
		av	st dev	av	st dev
2.45	0.104	3.3*	0.7*	2.3	0.8
2.45	0.564	1.1*	0.2*	-0.2	0.2
3.15	0.104	5.0	1.0	4.1	0.8
3.15	0.564	2.1	0.3	1.0	0.3
4.26	0.104	6.5	0.8	4.9	0.9
4.26	0.564	3.7	0.1	2.4	0.5

* Values calculated from six measurements and not eight as for others

Position	Water depth h (m)	Jet Type	Value of $C_{p}$ relative to value at $A$			
			Air concentration $\mathrm{C}_{0}$			Average
			0\%	10\%	20\%	
C	0.8	S	1.008	0.901	$0.926$	$0.961$
		P	1.064	0.973	$0.898$	$0.991$
	0.4	S	1.029	0.910	0.916	0.963
		P	1.127	0.894	0.839	0.978
	0	P	1.060	0.999	0.917	1.002
	Average		1.054	0.935	0.899	0.978
F	0.8	$\begin{aligned} & S \\ & P \end{aligned}$	$\begin{aligned} & 0.653 \\ & 0.665 \end{aligned}$	$0.497$ $0.550$	$\begin{aligned} & 0.529 \\ & 0.386 \end{aligned}$	$\begin{aligned} & 0.583 \\ & 0.552 \end{aligned}$
	0.4	S	0.484	0.426	0.444	0.456
		P	0.542	0.504	0.453	0.506
	0	P	0.592	0.606	0.617	0.603
	Average		0.591	0.517	0.486	0.541
B	0.8	S	0.451	0.375	0.374	0.413
		P	0.716	0.501	0.411	0.567
	0.4	S	0.288	0.286	0.278	0.285
		P	0.320	0.244	0.194	0.262
	0	P	0.297	0.188	0.300	0.267
	Average		0.417	0.319	0.311	0.360
D	0.8	S	0.473	0.308	0.350	0.401
		P	0.754	0.484	0.376	0.569
	0.4	S	0.275	0.233	0.244	0.254
		P	0.450	0.305	0.235	0.347
	0	P	0.339	0.199	0.299	0.279
	Average		0.467	0.306	0.301	0.374

Note : $S=$ Submerged jet discharging under water
$P=$ Plunging jet discharging first into air

Figures


Fig 1 Schematic diagram of jet falling through atmosphere into plunge pool (after Ervine)


Fig 2 General layout of small test rig



Fig 4 General layout of large test rig


All dimensions in mm
Fig 5 Layout of pressure tappings


Fig 6 Large test rig with aeration system


Fig 7 Profiles of mean velocity in free jet


Fig 8 Profiles of air concentration in free jet


## Co-ordinates of transducers



## Fig 9 Distribution of mean dynamic pressure



Fig 10 Correlation for mean dynamic pressure $\left(C_{0}=0 \%\right)$



Fig 12 Correlation for mean dynamic pressure ( $C_{0}=\mathbf{2 0 \%}$ )

RWPM/14/2-91/LO

Fig 14 Correlation for mean dynamic pressure with zero tailwater



Fig 16 Correlation for average rms dynamic pressure with zero tailwater


Fig 17 Correlation for maximum rms dynamic pressure


Fig 18 Correlation between rms and mean dynamic pressures



Fig 20 Correlation for peak dynamic pressures with zero tailwater



Fig 22 Probability distribution for pressure fluctuations at Position B in Test 8



Fig 24 Probability distribution for pressure fluctuations at Position B in Test 9


Fig 26 Spectral density for pressure fluctuations at Postion A in Test 8


Fig 28 Spectral density for pressure fluctuations at Postion A in Test 34

PLATES.


PLATE 1 JET DISCHARGING FROM HEIGHT OF 1.08 m AT $V_{0}=2.45 \mathrm{~m} / \mathrm{s}:$ LONG SIDE


PLATE 2 JET DISCHARGING FROM HEIGHT OF 1.08 m AT $V_{0}=2.45 \mathrm{~m} / \mathrm{s}:$ SHORT SIDE


PLATE 3 JET DISCHARGING FROM HEIGHT OF 1.08 m AT $V_{0}=4.26 \mathrm{~m} / \mathrm{s}:$ LONG SIDE


PLATE \& JET DISCHARGING FROM HEIGHT OF 1.08 m AT $V_{0}=4.26 \mathrm{~m} / \mathrm{s}:$ SHORT SIDE


PLATE 5 JET DISCHARGING FROM HEIGHT OF 2.30 m AT $V_{0}=2.44 \mathrm{~m} / \mathrm{s}:$ SHORT SIDE


APPENDICES.

APPENDIX A

Measurements of impact pressures

## TEST CONDITIONS

$\begin{aligned} & \text { Page } \\ & \text { No } \end{aligned}$		Jet type*		$\ddagger$ \#	
	HR		Water discharge	Approx water	Approx air
	Test No			depth	concentration
			(\%)	(m)	(\%)


A. 2	15	S	100	0.8	0
A. 3	21	S	100	0.8	0
A. 4	16	S	75	0.8	0
A. 5	17	S	50	0.8	0
A. 6	20	S	100	0.4	0
A. 7	19	S	75	0.4	0
A. 8	18	S	50	0.4	0
A. 9	8	P	100	0.8	0
A. 10	9	P	75	0.8	0
A. 11	10	P	50	0.8	0
A. 12	6	P	100	0.4	0
A. 13	11	P	75	0.4	0
A. 14	12	P	50	0.4	0
A. 15	7	P	100	0	0
A. 16	13	P	75	0	0
A. 17	14	P	50	0	0
A. 18	23	S	75	0.8	10
A. 19	25	S	50	0.8	10
A. 20	27	S	75	0.4	10
A. 21	29	S	50	0.4	10
A. 22	35	P	75	0.8	10
A. 23	37	P	50	0.8	10
A. 24	31	P	75	0.4	10
A. 25	33	P	50	0.4	10
A. 26	39	P	75	0	10
A. 27	41	P	50	0	10
A. 28	22	S	75	0.8	20
A. 29	24	S	50	0.8	20
A. 30	26	S	75	0.4	20
A. 31	28	S	50	0.4	20
A. 32	34	P	75	0.8	20
A. 33	36	P	50	0.8	20
A. 34	30	P	75	0.4	20
A. 35	32	P	50	0.4	20
A. 36	38	P	75	0	20
A. 37	40	P	50	0	20




```
1 HUHBER OF BOARDS 1
HEIGHT OF OUTLET (\(a\)) . 698 :
: PLUNGE POOL LEYEL (1) . 825
Hater Iekperature (C) 8.600001
```

LENGTH OF JET IN AIR (H)
Length of Jet in hater (ii) :- . 698
VELOCIIY IN MOILLE (H/S) :- 6.648508
velocity at plugge pool (h/S) :- 6.648508
calculated yalues at position a
heAM DYMAMIC PRESSURE :- 1.831001
hax positily pressure fluctuation :- 1.26
hax hegaily pressure fluctuation :- -1.115
PRESSURE COEFFICIENIS:

$$
\begin{array}{lll}
\text { Tp } & :- & .19006 \\
C D & :- & .8124688 \\
C p^{3} & :- & .1544178 \\
C p^{\prime} & :- & .559099 \\
C p^{-} & :- & -.4947582
\end{array}
$$

## CALCULATED YALUES AI POSIIIOH B

HEAN OYMAMIC PRESSURE :- . 8680006
max posilive pressure fluctuahioh:- 1.408
max hegailye pressure fluctuation :- -. 759
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Tp } & :- & .2718892 \\
C p & :- & .3851574 \\
C p & :- & .1047201 \\
C p^{+} & :- & .624771 \\
C p- & :- & -.3367906
\end{array}
$$

## calculated values at posihon c

hean oynamic pressure
:- $\quad 1.717001$
hax posilive pressure fluctuation :- 2.317
hax negailye pressure fluctuation :- -1.131
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1862689 \\
C D & :- & .7885074 \\
C D^{\prime} & :- & .166874 \\
C D & :- & 1.028121 \\
C D^{-} & :- & .501858
\end{array}
$$

calculateo yalues at posifion o
hear ownakic pressure
.8710006
hax posilive pressure fluctuation :- 1.575
hax megailve pressure fluctuation :- -. 758
PRESSURE COEFFICIENTS:

Ip	$:-$	.3030997
Cp	$:-$	.3864886
CD	$:-$	.1171446
CDt	$:-$	.6988738
CD	$:-$	.3363468

calculateo values ai position f
hean oymanic pressure
1.189001
hax posilive pressure fluctuailon :- 1.263
hax hegative pressure fluctuailon :- -1.058
PRESSURE COEFFICIENTS:

Ip	$:-$	.2220352
$C D$	$:-$	.5275945
$C D$	$:-$	.1171446
$C D t$	$:-$	.5604303
$C D$	$:-$	-.4694657

ALL PRESSURE MBASURBMBNTS IN METRES

discharge (n3/s)	. 08809
nuhber of boaros	4
height of outiet (1)	. 698
Plumge pool tevel (a)	. 81
vaiter tenperature ( $c$ )	9.600001

LENGTH OF JET IN AIR (H) :-
LENGTH OF JEI IN WAIER (M) :- . 698
VELOCIIY IN NOLLLE (M/S) :- 6.648508
YeLocity at plunge pool ( $\mathrm{k} / \mathrm{s}$ ) :- 6.648508
calculated yalues ai position a

HEAN DYHAHIC PRESSURE :- 1.669001
MAX POSIIIYE PRESSURE FLUCTURTION :- 1.202
hax negailye pressure fluctuation :- -1.096
PRESSURE COEFFICIENIS:

Ip	$:-$	.2061114
$C D$	$:-$	.705846
$C D^{\prime}$	$:-$	.1526429
$C D+$	$:-$	.5333627
$C D-$	$:-$	-.4863275

## calculated yalues at posinion b

HEAN OYHAHIC PRESSURE :- . 6480007
hax positive pressure fluctuation :- 1.279
hax megative pressure fluctuation :- -. 136
pressure coefficients:

$$
\begin{array}{lll}
\text { Ip } & :- & .3132713 \\
\text { Cp } & :- & .2875369 \\
\text { CP } & :- & 9.007706 \mathrm{E}-02 \\
\text { Cpt } & :- & .5675299 \\
\text { CP- } & :- & -.3265848
\end{array}
$$

calculaieo yalues at posifion c

MEAK DYMAHIC PRESSURE :- 1.574001
hax POSIIIYE PRESSURE FLUCTUAIION:- 1.737
hax negative pressure fluctuation :- -1.01
PRESSURE COEFFICIENTS:

```
Ip :- .1994917
Cp :- .6984303
CD' :- . }13933
Cpt :- .l107581
Cp-:--.4481667
```

; DISCHARGE ( 3 /s)	6.676001E-02
: NUMBER OF BOAROS	4
1 HEIGHT OF OUILET (1)	. 698
1 PLUHGE POOL LEYEL (1)	. 816
I Hater iehperature ( C )	8.8

LENGTH OF JET IN AIR (H) :-
Lengit of Jet in water (h) :- . 698
VELOCITY IH NOLILE (H/S) :- 4.98209
velocity at plunge pool ( $\mathrm{H} / \mathrm{s}$ ) :- 4.98209

## calculated values ai posilhon a

HEAN DYHAHIC PRESSURE :- . 9670007
hax posirive pressure fluctuailoh :- . 773
haX megailye pressure fluctuation :- -. 667
PRESSURE COEFFICIENTS:

> Ip :- . 2068251
> Cp :- . 7641351
> CD' :- . 1580423
> Cpt :- . 6108335
> CD- :- -. 5270711

## calculated values at posithon b

MEAN OYNAKIC PRESSURE :- . 4650007
MAX POSIIIYE PRESSURE FLUCTUATIOH:- . 844
MAX MEGATIVE PRESSURE FLUCTUATION :- -. 4320001
PRESSURE COEFFICIENTS:

Ip	$:-$	.313978
$C D$	$:-$	.3674489
$C D$	$:-$	.1153709
CDt	$:-$	.6669386
$C D-$	$:-$	.3413715

calculated values at posifion o

MEAN OYHAKIC PRESSURE
.4960007
hax POSIIIYE PRESSURE FLUCTUATION :- . 8150001
HAX MEGATIVE PRESSURE FLUCTUAIION:- -. 4960001
PRESSURE COEFFICIENTS:

Ip	$:-$	.3306447
CD	$:-$	.3919455
CD	$:-$	.1295947
CD	$:-$	.640225
CD	$:-$	-.391945

calculateo values at position f

HEAN DYMAHIC PRESSURE
. 6380007
hax posilive pressure fluciuation :- . 8470001 hax megailye pressure fluctuation :- -. 564
PRESSURE COEFFICIENTS:

Ip	$:-$	.2413791
Cp	$:-$	.5041556
$C p$	$:-$	.1216926
$C p+$	$:-$	.6693093
$C D-$	$:-$	-.4456794

ALL PRESSURE MBASURBHENTS IN METRBS
hean DYnamic PRESSURE :- . 9860007
hax positive pressure fluciuailon :- . 1579999
hax megailye pressure fluctuatioh :- -. 694
PRESSURE COEFFICIENTS:

Ip	$:-$	.199797
$C p$	$:-$	.7791492
$C D$	$:-$	.1556717
$C D+$	$:-$	.5989803
$C p-$	$:-$	-.5484068

    Cp :- . 7791492
    CD' :- . 1556717
    Cpt :- . 5989803
    Cp- :- -. 5484068
    | O1SCHARGE ( $\mathrm{B} / \mathrm{s}$ ) | . 04466 |
| :---: | :---: |
| hunber of boaros | 4 |
| HEIGHI OF OULIET (a) | . 698 |
| - Plunge pool level (a) | . 802 |
| nater temperature ( 0 ) | 9.100001 |

lengit of Jet in air (k) :-
lemgth of jet in mater (fi) :- . 698
Yelocity in nollle (W/s) :- 3.332836
VELOCITY AT PLUMGE POOL (W/S) :- 3.332836
calculated values at position a
calculateo values at posilion oMEAM DYMARIC PRESSURE :- . 2020006hax Posiilive pressure fluctuailon:- . 4360001haX hegative pressure fuctuariok :--. 1909999pressure coefficients:

$$
\begin{aligned}
& \text { ID }:-.311286 \\
& C D \\
& C D \\
& C D^{\prime} \\
& \text { CD } \\
& \text { CD } \\
& \text { CD }-. .136693442 \\
& C-. .3372654
\end{aligned}
$$

## Calculateo values at position 8

## calculateo values at position f

MEAM DYKAMIC PRESSURE :- . 1790007
hax positive pressure fluctuation:- . 378
hax hegative pressure fluctuation :- - . 201 PRESSURE COEFFICIENTS:

Ip	$:-.3631271$
$C p$	$:-.3160774$
$C p$	$:-.114763$
$C p t$	$:-.667468$
$C p-$	$:-.3549236$

calculateo values at position C
hean oywalic pressure :- 4270007 hax positive pressure fluctuaiton:- . 31 s hax hegailye pressure fluctuation :- -. 366 PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip :- . } 2060881 \\
& \text { Cp :- . } 1539929 \\
& \text { C } \rho^{\prime} \text { : :- . } 1553894 \\
& \text { Cpt :- . } 6621707 \\
& \text { CD- : }-.6462786
\end{aligned}
$$

MEAN OYMAMIC PRESSURE :- . 2620007
max positive pressure fluctuation :- . 354
nax hegative pressure fluctuation:- -.271
PRESSURE COEFFICIEMTS:

> Ip :- . 2633581
> CD :- . 4626318
> Cp' :- . 1218394
> Cpt :- . 6250891
> CP- :- -. 8891235
all pressure heasurbhents in hetres

discharge ( $03 / \mathrm{s}$ )	. 88909
nukber of boaros	2
- height of outlet (a)	. 283
- plunge pool level (1)	. 42
- VATER IEMPERATURE ( 0 )	9.5

length of Jet in air (k) :-
Lengit of Jet in mater (k) :- . 283
VELOCIIY IN NOILLE (\%/S) :- 6.648508
velocity at pluige pool (w/s):- 6.648508
calculaied values at position a

HEAN OYNAHIC PRESSURE :- 2.924001
hax positive pressure fluctuafion :- . 57
hax negative pressure fluctuation :- -. 6340001
PRESSURE COEFFICIENTS:

Tp		4.890561E-02
Cp	:-	1.297465
CD ${ }^{\prime}$	:-	. 0634533
Cpt	:-	. 2529257
Cp-		281324

## CALCULAIED YALUES AI POSIIION B

MEAN DYMAKIC PRESSURE :- .8960003
hax positive pressure fluctuation :- . 5550001
hax negative pressure fluctuailon :- -. 428
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1316964 \\
C p & :- & .3975817 \\
C p & :- & 5.236007 E-02 \\
\text { Cpt } & :- & .2462698 \\
C p- & :- & -.1899162
\end{array}
$$

## calculated values at posihion c

HEAK OYRAMIC PRESSURE :- 2.962
HAX POSIIIYE PRESSURE FLUCTUAIION:- . 537
maX negatile pressure fluctuation :- -. 8120001 PRESSURE COEFFICIEHTS:

$$
\begin{array}{lll}
\text { Ip } & :- & 5.131667 \mathrm{E}-02 \\
\text { Cp } & :- & 1.314327 \\
\text { Cp } & :- & 6.744686 \mathrm{E}-02 \\
\text { Cpt } & :- & .2382827 \\
\text { Cp- } & :- & -.3603083
\end{array}
$$

OISCHARGE (13/s)	6.676001E-02
NUKBER OF BOAROS	2
HEIGHT OF OUTLET (1)	. 283
Pluhge pool level (a)	. 405
nater tenperature ( C )	9.1


LENGTH Of JET IN AIR ( N )	:-	
LEMGIH OF JET IN NAIER (M)	:-	. 283
Yelocily in mollle ( $\mathrm{H} / \mathrm{S}$ )	:-	4.98209

CALCULATED YALUES AT POSIIION A

HeAN OYnAHIC PRESSURE :- 1.636
HAXX POSIIIVE PRESSURE FLUCTUATION:- . 3590002 MAX NEGAIIVE PRESSURE FLUCTUATION :- -. 3539999 PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip :- } 5.012225 \mathrm{~F}-02 \\
& \text { CD }:-1.292786 \\
& \text { CD' :- 6.479135E-02 } \\
& \text { Cpt :- . } 2836861 \\
& \text { CD- :- }-.2797348
\end{aligned}
$$

## calculated halues ai position b

HEAN OYMAMIC PRESSURE :- . 4790004
max positive pressure fluctuation :- . 336
hax megative pressure fluctuation :- -.29 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1503131 \\
\text { CD } & :- & .3785116 \\
\text { Cp } & :- & 5.689523 E-02 \\
\text { Cpt } & :- & .2655111 \\
\text { CD- } & :- & .2291614
\end{array}
$$

## calculated yalues at position c

HEAN OYMAHIC PRESSURE :- 1.668
hax positive pressure fluctuation :- . 3170001
hax negaity pressure fluctuation :--.5489999 PRESSURE COEFFICIENIS:

```
Ip :- 5.635491E-02
Cp :- 1.318073
Cp' :- 7.427989E-02
Cpt :- . 2979098
Cp- :- -.4338261
```

DISCHARGE (13/s)	. 04466
HuHber of boaros	,
HEIGHT OF OUILET (	. 283
PLUMGE POOL LEVEL (a)	. 4
Whter tehperature ( C )	9.8

LENGTH OF JEt IN AIR (H)
LENGTH OF JET IN WATER (N) :- . 283
yelocity in mollle ( $\mathrm{N} / \mathrm{S}$ ) :- 3.332836
yelocity at plunge pool (h/S) :- 3.332836

## calculated values at posilion a

```
HEAN DYHAHIC PRESSURE :- .6970003
MAX POSIIIYE PRESSURE FLUCTUATION :- . .161
max megatiye pressure fluctuation:- -. 176
PRESSURE COEFFICIENTS:
\begin{tabular}{|c|c|c|}
\hline Ip & :- & 5.3084635-02 \\
\hline Cp & :- & 1.230755 \\
\hline Cp \({ }^{\prime}\) & :- & 6.533418E-02 \\
\hline \(\mathrm{Cp}+\) & :- & . 284292 \\
\hline CD- & & -. 3107788 \\
\hline
\end{tabular}
```

calculateo halues at position b

HEAK DYNAHIC PRESSURE :- . 1830003
hax POSIIIFE PRESSURE Fluctuation :- . 19
haX megative pressure fluctuation :- -. 111
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .185792 \\
C p & :- & .3231399 \\
\text { Cp } & :- & 6.003681 \mathrm{E}-02 \\
\text { Cpt } & :- & .3354998 \\
C p- & :- & .1960025
\end{array}
$$

## calculateo values at posimon c

HEAN OYNAHIC PRESSURE
hax positily pressure fluctualion :- . 166
hax negative pressure fluctualion:- -. 212 PRESSURE COEFFICIENIS:

Tp	$:-$	$5.714283 E-02$
$C p$	$:-$	1.297855
$C D$	$:-$	
$C D+$	$:-$	$.416312 E-02$
$C D-$	$:-$	-.37434772

calculateo yalues at posifion f

HEAM OYMAMIC PRESSURE :- . 3400003
hax positive pressure fluctuation :- . 277
hax megative pressure fluctuation :- -. 212
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1676169 \\
C p & - & .6003687 \\
C p & :- & .1006499 \\
C p p & :- & .4891234 \\
C p^{-} & :- & -.3743772
\end{array}
$$

all prbssure hbasurbhents in hetres

```
OISCHARGE (13/s) . 08909
NUMBER OF BOARDS 4 ;
HEIGHI OF OUTLET (B) 1.307
PLUNGE POOL LEYEL (1) . }7
#ATER temperature (c) 0
```

LEMGIH OF JET IH AIR (K) :- . 5270001
LENGIH OF JEI IN MAIER (H) :- . 78
VELOCITY IN NOLLLE (N/S) :- 6.648508
Yelocity at plunge pool ( $\mathrm{N} / \mathrm{S}$ ) :- 1.385068

## calculated values at posilion a

HEAM DYMAMIC PRESSURE :- 1.645001
hax positive pressure fluctuailon :- 2.313
max megative pressure fluctuation:- -1.554 pressure coefficients:

Tp	$:-$	.3191488
$C D$	$:-$	.5915938
$C D$	$:-$	.1888065
$C D+$	$:-$	.8318273
$C D-$	$:-$	-.5588671

calculated values at position b

MEAK DYNAHIC PRESSURE :- 1.137001
maX POSIIIYE PRESSURE FLUCTURTION :- 2.369
hax megative pressure fluctuation :- - 1.198 PRESSURE COEFFICIENTS:

Tp	$:-$	.4019347
$C D$	$:-$	.4089011
$C D$	$:-$	.1643515
$C D+$	$:-$	.8519665
$C D-$	$:-$	-.4308384

calculated values at position C
hean oymakic pressure
:- $\quad 2.003001$
maX POSIIIVE PRESSURE FLUCTUATION :- 4.164
hax megatiye pressure fluctuation :- -2.197 PRESSURE COEFFICIENTS:

```
Ip :- . 3265101
Cp :- . }720341
Cp' :- . 2351989
Cpt :- 1.497505 *
Cp- :- -1.005889 *
```


## CALCULAIED VALUES AT POSITION D

MEAM DYMAHIC PRESSURE :- 1.366001
. MAX POSIIIYE PRESSURE FLUCTUAIION:- 2.271
hax negatily pressure fluctuation :- - 1.339
pressure coefficients:

Ip	$:-$	.3887261
$C p$	$:-$	.4912566
$C p^{\prime}$	$:-$	.1909643
Cpt	$:-$	.81671228
Cp-	$:-$	-.4815464

calculateo values at posifion f
hean oymamic pressure
1.166001
hax posilife pressure fluciuation :- 1.951
hax megailye pressure fluctuation :- -1.083
PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip } \\
& \text { Cp }
\end{aligned}:-.33962250 .193304
$$

ALL PRESSURE hEASURBHENTS IN METRES

- DISCHARGE (13/s)	$6.6760015-02$
- NUMBER OF BOAROS	4
; HEIGKT OF OUILET (1)	1.307
- plunge pool leyel (a)	. 785
- nater tehperature ( C )	0

LENGIH OF JET IN AIR (H) :- . 522
LENGIH OF JET IN WATER (i) :- . 785
velocily in nollle ( $\mathrm{H} / \mathrm{S}$ ) $\quad:-4.98209$
yelocity al plunge pool (h/S) :- 5.921126

## calculated falues at posilion a

HEAK DYHAKIC PRESSURE :- . 7850006
hax posililye pressure fluctuation :- 1.311
hax negative pressure fluciuation :- -. 5780001
PRESSURE COEFFICIENIS:

Tp	$:-$	.3051322
$C D$	$:-$	.4391653
$C D^{\prime}$	$:-$	.134267
$C D^{+}$	$:-$	.7334335
$C D-$	$:-$	-.3233597

## calculated yalues ai position b

## hean ormaric pressure <br> .5850006

Max posifiye pressure fluctuation :- 1.063
hax megative pressure fluciuation :- -. 527
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .3623928 \\
C D & :- & .3272761 \\
C D^{\prime} & :- & .1186025 \\
C D^{\prime} & :- & .594691 \\
C D^{-} & :- & -.294828
\end{array}
$$

## calculated yalues at position d

MEAN OYMAMIC PRESSURE :- . 6170005
MAX POSIIIYE PRESSURE FLUCTUAIION:- 1.219
max megailve pressure fluctuailon :- -1.42 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .3987031 \\
\text { Cp } & :- & .3451783 \\
\text { CD } & :- \\
\text { Cpt } & :-.6876237 \\
\text { Cp- } & :- & . .794413
\end{array}
$$

## calculated values at position f

MEAK OYHAKIC PRESSURE
.5360006
hax posilive pressure fluctualion :- . 952
maX megative pressure fluctuation :- -. 462
PRESSURE COEFFICIENTS:
Ip :- . 3600743
Cp :- . 2998633
CD' :- . 107973
Cpt :- . 5325925
CD- :- -. 2584639

## calculated yalues at position c

MEAN DYMAHIC PRESSURE :- . 8500006
max positive pressure fluctuation :- 1.347
max hegative pressure fluctuatioh :- -. Ill
pressure coefficients:

$$
\begin{array}{lll}
\text { Ip } & :- & .3458821 \\
C p & :- & .4755292 \\
C D & :- & .1644771 \\
C D t & :- & .7535736 \\
C D- & :- & -.3977659
\end{array}
$$

```
 OISCHRGE (a3/s) .04466 ;
 NUHBER OF BOARDS
 HElght of OUTLET (1) 1.307
 PLUMGE POOL LEYEL (1) .78
 NAIER IEMPRRATURE (c) 0
```

LENGTH OF JEI IN AIR (M) :- . 5270001
Lemgin of Jet lh water (h) :- . 78
YeLocity in molle (\#/s) :- 3.332836
Yelocity at plunge pool ( $\mathrm{K} / \mathrm{s}$ ) :- 4.630807

## calculated values at position a

## MEAN OYMAHIC PRESSURE

max POSIIIVE PRESSURE FLuctuation :- . 4590001 hax hegative pressure fluctuation :- - 1.192 pressure coefficiewt:

| Ip | $:-.2811667$ |
| :--- | :--- | :--- |
| Cp | $:-.348222$ |
| Cp | $:-9.695251 E-02$ |
| $C p t$ | $:-.4198228$ |
| Cp | $:-1.080258 \quad *$ |

## calculated valles at position b

MEAN OYMARIC PRESSURE :- . 2680006
hax POSIIIIVE PRESSURE FLUCTUAIION:- . 535 hax Megaitye pressure fluctuation :- -. 276 PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip :- . } 340142 \\
& \text { Cp :- . } 2451258 \\
& \mathrm{Cp}^{\prime} \text { : :- } 8.506211 \mathrm{E}-02 \\
& \text { Cpt :- . } 8893358 \\
& \text { Cp- :- -. } 2524423
\end{aligned}
$$

calculated yalues at position c

## calculated yalues at position o

MEAK DYHAHIC PRESSURE :- . 2430006
max Positive pressure fluctuation:- . 666
max hegailye pressure fluctuation:- -. 226
pRESSURE COEFFICIENTS:

> Ip :- . 3827151
> Cp : . 2222596
> $C D^{\prime}$ :- $8.506211 \mathrm{E}-02$
> Cpt :- . 6091545
> Cp- :- -. 2061101
calculateo yalues at posilion f

MEAN DYMAHIC PRESSURE :- . 2270006
HAX POSIIIYE PRESSURE FLUCTUAIIOH:- . 4450001
hax megative pressure fluctuation :- -.225
PRESSURE COEFFICIENIS:
Ip :- . 3612326
Cp :- . 2076253
Cp ${ }^{\prime}$ :- . 075001
Cpt :- . 4070171
Cp- :--. 2057954
all pressure heasurbhents in hetres

MEAN DYManIC PRESSURE :- . 3360007 max Posilite pressure fluctuation:- . 4929999 hax hegailye pressure fluctuation:- -. 2480001 pressure coefficients:

```
Ip :- . }31449
Cp :- . }301321
Cp' :- 9.603786E-02
Cpt :- .4509206
Cp- :- -. }226832
```



LENGIH OF JET IN AIR (n) :- . 882
Lengit of Jet in maiter (H) :- . 425
YELOCIIY IN NOLILE (N/S) :- 6.648508
velocity at plunge pool ( $\mathrm{N} / \mathrm{s}$ ) :- 1.842334
calculateo values at position a
calculated values at posifion d

hean ornamic Pressure	-:
hax POSITIVE PRESSURE	Fluctualion :- . 993
hax Megailye pressure	FLUCTUAIIOH:- -2.388
PRESSURE COEFFICIENTS:	
	Tp :- 8.693198E-02
	Cp :- 1.129919
	$C D^{3}:-9.822604 E-02$
	Cpt :- . 3166833
	Cp- :- -. 7615708

hean orwalic pressure 1.554
hax posilive pressure fluctuation :- 1.801
hax megatile pressure fluctuation :- - 1.322
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1406692 \\
C p & :- & .4955952 \\
C p^{\prime} & \vdots- & .1192745 \\
C p t & :- & .5762807 \\
C p- & :- & -.2216066
\end{array}
$$

## Calculateo yalues at posilion 8

HEAK DYNAHIC PRESSURE :- 1.603
max posilive pressure fluctuation :- 1.804
hax hegailye pressure fluctuation :- -1.434
PRESSURE COEFFICIEHIS:

> Ip :- . 2520274
> Cp :- . 511222
> Cp' :- . 128842
> Cpt :- . 575324
> CD- :- -. 4573252

## calculated values at position f

HEAM OYMAKIC PRESSURE :- 1.213
hax posilive pressure fluctuailon :- 1.81
hax megailye pressure fluctuation :- - 968
PRESSURE COEFFICIERTS:

```
Ip :- . 223413
Cp :- . 3868449
Cp' :- 8.642616E-02
Cpt :- . 5772375
CP- :- -. 3087104
```

calculated values at position c
hean oynaric pressure :- 3.110001
haX positive pressure fluctuation :- . 987
MAX MEGATIVE PRESSURE FLUCIUATION:- -2.391
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & 8.113206 E-02 \\
C D & :-1.183178 \\
C D^{\prime} & :- & 9.599363 E-02 \\
C D^{\prime} & :- & .3147698 \\
C D^{-} & :- & * \\
& -.7625276
\end{array}
$$

OISCHARGE (13/s)	$6.6760015-02$
- Runber of boaros	2
- height of Outiet (1)	1.307
- Plunge poot level (1)	. 393
- Nater tehperature ( C )	6.6

length of jet In air (k) :- . 9140001
lemgth of jef in mater (h) :- . 393
YELOCITY IH HOILE (H/S) :- 4.98209
YELOCITY AT PLUMGE POOL (W/S) :- 6.538227
calculated yalues ai position a

HEAN DYHAMIC PRESSURE		:-
MAX POSIIIYE PRESSURE FLUCTUAIION:- 1.10		
\#AX MEGATIYE PRESSURE FLUCTUATIOH:- -1.53		
pressure coefficients:		
	Ip :-	. 170718
	CP : -	. 868096
	Cp' :-	. 148200
	Cpt :-	. 507459
	CP- :-	-. 705672

## CALCULATED YALUES AI POSIIION B

## REAM DYMAMIC PRESSURE :- . 3950003

max posilive pressure fluctuaition:- 1.32
max megaitive pressure fluctuation :- -. 602
pressure coefficienis:

Ip	:-	. 4329111
CD	:-	. 1812358
Cp,	:-	7.845888E-02
Cpt	:-	. 6556483
Cp-		-. 2762123

calculated values at posihioh c

$$
\begin{aligned}
& \text { Tp :- . } 1606046 \\
& \text { Cp :- . } 9113315 \\
& \mathrm{Cp}_{\mathrm{p}}{ }^{\prime} \text { :- . . } 1560003 \\
& \text { Cpt :- } 1.097508 \\
& \text { CD-:- - } 8015663
\end{aligned}
$$

DISCHARGE (33/s)	. 04466
: NUHBER OF bOAROS	2
1 HEIGHT OF OUTLET (1)	1.307
: Plunge pool level (1)	. 388
- nater tehperature ( C )	6.7

LENGTH OF JEI IN AIR (H) :- . 919
Lengik of Jei in mater (k) :- . 388
YeLOCIIY IN NOLZLE (H/S) :- 3.332836
velocity at plunge pool ( $\mathrm{N} / \mathrm{s}$ ) :- 5.397506
calculateo yalues at position a

MEAM DYNAHIC PRESSURE :- . 7180003
max positive pressure fluctualion :- 1.067
HAX MEGAIIYE PRESSURE FLUCTUAIION:- -. 781 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Tp } & :- & .3774372 \\
C p & :- & .4833981 \\
C p^{\prime} & :- & .1824524 \\
C p+ & :- & .7183645 \\
C p- & :- & -.5258131
\end{array}
$$

## calculated values at position b

hean ornamic pressure :- . 2150003
hax positive pressure fluctuation:- . 955
max negailive pressure fluctuation:- -. 498
Pressure coefficients:

Ip	$:-$	.679069
CD	$:-$	.1447503
Cp	$:-$	$9.829541 \mathrm{E}-02$
Cpt	$:-$	.6429596
CD-	$:-$	-.3352816

calculated values at posifion c
hean dymahic pressure
hax posilive pressure flucturiion :- 2.506
max megailive pressure fluctuation :- -. 985 PRESSURE COEFFICIENIS:

$$
\begin{array}{lll}
\text { Ip } & :- & .3658256 \\
C p & :- & .5870196 \\
C p & :- & .2147688 \\
C p t & :- & 1.68718 \\
C p^{-} & :- & .6631574
\end{array}
$$

## calculated yalues at position o

hean oymahic pressure
.4200003
max positive pressure fluctuation :- 1.053
hax hegative pressure fluctuation :- -. 579 PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Tp }:- \text { - } 5142853 \\
& C D \\
& \text { CD } \\
& \text { CD }
\end{aligned}:-. .2827678
$$

## calculated values at posiyion F

MEAN OYHAHIC PRESSURE
.4790003
MAX POSIIIVE PRESSURE FLUCTUATIOK :- 1.062
hax hegative pressure fluctuation:--. 539
PRESSURE COEFFICIERTS:

Ip	$:-$	.405008
CD	$:-$	.3224899
Cp	$:-$	.1420571
Cpt	$:-$	.7149981
$C D-$	$:-$	-.3628851

aLL PRESSURE hEASURBMENTS IN METRES

OISCHARGE ( $13 / \mathrm{s}$ ) . 08909
NUKBER OF BOARDS 0

HEIGHT OF OUILET (1) 1.307
nater iekperature (c) o

LEMGIH OF JET IN AIR (K) :- 1.307
Length of Jei in mater (k) :- o
YELOCITY IN NOLILE (H/S) :- 6.648508
yelocity at plunge pool (n/s) :- 8.35692
calculated yalues ai position a

## calculated yalues at position o

HEAN DYHAKIC PRESSURE :- 3.906
KAX POSIIIYE PRESSURE FLUCTUATIOH:- 1.092
hax MEgalive pressure fluctualion :- -3.908 PRESSURE COEFFICIEHTS:

calculated values ai posifion 8

MEAN OYMAMIC PRESSURE :- 2.345
hax posiliye pressure fluctuation :- 1.973
hax negailye pressure fluctuation :- -2.362 PRESSURE COEFFICIENTS:

Ip	$:-$	.1641791	
Cp	$:-$	.6585926	
$C p$	$:-$	.1081271	
Cpt	$:-$	.5541165	
Cp	$:-$	-.6633671	$*$

calculated yalues at position c

MEAK DYMAKIC PRESSURE
:- $\quad 4.068$
MAX POSIIIVE PRESSURE FLUCIUATION :- 1.054
hax megailve pressure fluciuation :- -1.966 PRESSURE COEFFICIENTS:

Ip	:-	9.046215
Cp	:-	1.142497
Cp ${ }^{\text {, }}$	:-	. 1033527
Cpt	:-	. 2960157
Cp-		. 5521505

Ip :- $9.046215 \mathrm{E}-02$
$C_{p}$ - 1.14245
Cpt :- . 2960157 *
Cp- :- -. 5521505

## CALCULATED YALUES AT POSIIION F

hean oymafic pressure 1.749

HAX POSITIVE PRESSURE FLUCIUATION:- 2.176
hax negaitive pressure fluctuation :- -1.194
PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { ID } \\
& \text { CD }
\end{aligned}:-.2264151
$$

ALL PRESSURE HBASUREHBNTS IN HBTRES


LEMGIH OF JET IN AIR (H) :- 1.307
lengih of jet in mater (h) :- 0
Yelocity in mollle ( $\mathrm{M} / \mathrm{S}$ ) $\quad:-4.88209$
yelocity at plunge pool ( $\mathrm{M} / \mathrm{s}$ ) :- 1.103289
calculateo values at position a

## calculated yalues at position d

MEAN OYHAHIC PRESSURE :- 0
hax posility pressure fluctuailoh :- 0
hax negaitye pressure fluctuation :- 0
PRESSURE COEFFICIENTS:

Ip		1.701412E+38
Cp	:-	0
Cp ${ }^{\prime}$	:-	0
	:-	0

calculated values at posifion f

HEAN OYMAHIC PRESSURE
1.734

Hax POSIIIYE PRESSURE FLUCTUAIION:- 1.225
hax hegaidive pressure fluctuation :- - 1.145
PRESSURE COEFFICIENTS:

Tp	$:-$	.1845444
$C p$	$:-$	.6740571
$C p^{\prime}$	$:-$	.1243935
$C p t$	$:-$	.4761938
$C p-$	$:-$	-.450954

ALL pressure heasurehents in hetres

MEAN DYNAMIC PRESSURE :- 2.573
max positive pressure fluctuation :- 2.341
MaX Negative pressure fluctuation :- - 1.122
pressure coefficients:

10	:-	9.949476E-02
Cp	:-	1.000201
Cp ${ }^{\prime}$	:-	9.951478E-02
Cpt	:-	. 910016
		1361516


DISCHARGE ( $\mathrm{a} 3 / \mathrm{s}$ )	. 04466
hukber Of boaros	0
HEIGHI OF OUTLET (n)	1.307
Hater tehperature ( C )	7.1

ENGTH OF JET IN AIR (K) :- 1.307
.engit of jet in hater (k) :- 0
veLOCITY IN HOLZLE (H/S) :- 3.332836
velocity at plunge pool (h/s) :- 6.061625

## calculated yalues at position a

HEAN OYHAHIC PRESSURE :- 1.698
hax positive pressure fluctuation :- . 741
haX hegatiye pressure fluctuatioh :- -. 831
PRESSURE COEFFICIENTS:

> | Tp | $:-$ | .1183746 |
| :--- | :--- | :--- |
| $C p$ | $:-$ | .964129 |
| $C p^{\prime}$ | $:-$ | .1072962 |
| $C p^{2}$ | $:-$ |  |
| $C p^{-}$ | $:-$ | .3955448 |

## calculateo yalues at position b

## calculated yalues at position d

HEAN DYHAHIC PRESSURE :- . 23
hax positive pressure fluctuation :- . 531
haX negative pressure fluctuation :- -. 33
PRESSURE COEFFICIENIS:

Ip	:-	. 3130435
Cp	:-	. 1227168
Cp ${ }^{\prime}$	:-	3.843447
Cpt	:-	. 2834542
Cp-	:-	-. 176158

## calculateo yalues at position f

HEAK OYMAKIC PRESSURE :- 1.036
hax positive pressure fluctuation :- 1.458
hax hegative pressure fluctuation :- -. 879
PRESSURE COEFFICIENTS:
Ip :- . 2828186
Cp :- . 5530294
Cp' :- . 156407
Cpt :- . 178298
Cp- :- -.4692209

ALL PRESSURE HEASUREHENTS IN HETRES

HEAK OYHAHIC PRESSURE :- 1.817
haX positive pressure fluctuation :- . 7150001
hax hegaitye pressure fluctuation :- -. 939
PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip :- . } 1012658 \\
& \text { Cp :- . } 9699366 \\
& \text { Cp' :- 9.822143E-02 } \\
& \text { Cpt :- . } 3816757 \\
& \text { Cp- :- }-.5012496
\end{aligned}
$$

```
DISCHARGE (13/5) 6.676001E-02
IRUE aIR COMCEHTRAIION % 9.835805
NUHBER OF BOAROS 4
HEIGHT OF OUILET (a) . }69
 Plumge POOL LEYEL (a) . }81
 #AIER IEHPERAIURE (C) 9.399999
 AIR IEMPERATURE (C) 8.7
 AIR PRESSURE (aBars) }102
```

LENGTH OF JEI IN AIR (K) :-
LEMGTH OF JEI IR WATER (M) :- . 698
YELOCITY IH NOILLE (H/S) :- 5.525575
velocity at plumge pool (n/s) :- 5.525575

## caiculated halues at position a

```
HEAN DYHARIC PRESSURE :- 1.019001
```

hax positive pressure fluctuation :- . 8709999
hax megatiye pressure fluctuation:--.716
PRESSURE COEFFICIENTS:

Ip	$:-$	.2345435
$C D$	$:-$	.6546153
$C D$	$:-$	.1535358
$C D+$	$:-$	.5595383
$C D$	$:-$	-.4599649

## calculated values ai position 8

HEAK OYHAKIC PRESSURE :- . 3820007
KAK POSIIIVE PRESSURE FLUCTUATION :- . 9990001
haX Megatiye pressure fluctuation :- -. 439
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .3769627 \\
C p & :- & .2454007 \\
C p & :- & .0925069 \\
C p t & \vdots- & .6417667 \\
C p- & :- & -.2820176
\end{array}
$$

## calculated values at position c

## calculated yalues at position d

MEAK DYMAHIC PRESSURE :- . 3010001
max positive pressure fluctuation :- . 867
bax hegatile pressure fluctuation :- -. 3850001
PRESSURE COEFFICIENTS:

```
Ip :- . 4318921
Cp :- . 1933656
Cp' :- 8.351317E-02
Cpt :- . 5569686
Cp- :- -. 2473275
```

calculated values at position f
nean ownanic pressure
.5110001
MAX POSIIIYE PRESSURE FLUCTUAIION:- . 718
hax megative pressure fluctuation :- -. 548
pressure coefficienis:

Tp	$:-$	.317025
$C D$	$:-$	.3282714
$C p$	$:-$	.1040703
$C p t$	$:-$	.4612497
$C p-$	$:-$	-.3520402

ald pressure heasureuents in hetres
max positive pressure fluctuation :- . 9040001
hax hegative pressure fluctuation :- -. 6880001 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .2449887 \\
C p & :- & .5768838 \\
C p & :- & .14133 \\
C p t & :- & .5807378 \\
C p- & :- & -.4149775
\end{array}
$$

```
DISCHARGE (a3/s) .04466
```

TRUE AIR COMCENTRAIION: 9.835143

```
NUYBER OF BOAROS 4
HEIGHT OF OUTLET (&).698
 PLUMGE POOL LEYEL (1) . }79
 #ATER TEMPERATURE (C) 9.600001
 AIR IENPERATURE (C) 8.7
 AIR PRESSURE (aBars) 1028
```

| LENGTH OF JEI IH AIR (K) | $:-$ |  |
| :--- | :--- | :--- | :--- |
| LEMGTH OF JEI IN NATER (H) | $:-$ | .698 |
| YELOCIIY IN MOILLE (H/S) | $:-$ | 3.69638 |
| YELOCITY AT PLUHGE POOL (H/S) | $:-$ | 3.69638 |

calculated yalues at position a
MEAN OYMAMC PRESSURE :- . 3810006
hax positiye pressure fluctuation :- . 415
HAX MEGATIYE PRESSURE FLUCTUATION :- -. 3760001
pressure coefficients:
Ip :- . 2713174
Cp :- . 5555524
Cp' :- . 150731
Cpt :- . 5957463
Cp-:-. 5397606

## CALCULATEO YALUES AT POSIIIOH 8

## hean oynanic pressure :- . 1450006

hax positive pressure fluctuation :- . 412
hax hegatiye pressure fluctuation :- -. 226 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :-.4551706 \\
\text { Cp } & :-.2081532 \\
\text { CD } & :- & .474521 \mathrm{E}-02 \\
\text { CDt } & :-. .5914398 \\
\text { CD- } & :-.3243306
\end{array}
$$

## calculateo values at position c

MEAN OYMAYIC PRESSURE
hax positiye pressure fluctuation :- . 435
haX hegative pressure fluctuation :- -. 275
pressure coefficients:

Ip	$:-$	.2499996
$C D$	$:-$	.5110508
$C D$	$:-$	.1277625
$C p H$	$:-$	.624457
$C D$	$:-$	-.3947718

CD ${ }^{\prime}:-.1277625$
CD- :- -.3947718

## calculated values at position d

## hean oymanic Pressure <br> .1240006

max positiye pressure fluctuation :- . 342
hax megailite pressure fluctuation :- - 185
PRESSURE COEFFICIENTS:

> | Ip | $:-$ |
| :--- | :--- |
| $c p$ | .4999976 |
| $c p$ | $:-.178007$ |
| $c p$ | $:-8.900307 E-02$ |
| $c p+$ | $:-.4909525$ |
| $c p-$ | $:-$ |
| -.2655737 |  |

calculated yalues at position f
heam dyanic pressure :- . 1900006
max positive pressure fluctualion :- . 31
hax hegative pressure fluctuation :- -. 22
pressure coefficienis:

$$
\begin{array}{lll}
\text { ip } & :- & .3368411 \\
\text { Cp } & :- & .2727522 \\
\text { Cp } & :- & 9.187414 \mathrm{E}-02 \\
\text { Cpt } & :- & .5311474 \\
\text { Cp- } & :-.3158174
\end{array}
$$

ALL PRBSSURB MBASURBYEATS IN HETRES
.3560006

 ..... 電


| LEMGIH OF JEI IN AIR (N) | $:-$ |  |
| :--- | :--- | :--- | :--- |
| LEMGIH OF JEI IN MATER (H) | $:-$ | .283 |
| YELOCIIY IN HOLZLE (N/S) | $:-$ | 5.52666 |
| YELOCIIY AI PLUMGE POOL (N/S) | $:-$ | 5.52666 |

Calculated yalues at position a
calculated values at position d
hean OYnamic pressure :- 1.858
MAX POSITIYE PRESSURE FLUCTUAIION:- . 4400001 MAX WEGATIYE PRESSURE FLUCTUATION :-.- .4880001 pressure coefficients:

		5.
Cp	:-	1.193128
Cp ${ }^{\prime}$	:-	$6.742646 E-02$
	:-	. 2825491
		313

## calculated yalues at position 8

HEAM DYHAHIC PRESSURE :- . 5530003
HAX POSIIIYE PRESSURE FLUCTUATION :- . 45
max megaitye pressure fluciuation :- -. 3
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .148282 \\
\text { Cp } & :- & .355113 \\
\text { Cp } & :- & 5.265887 \mathrm{E}-02 \\
\text { Cpt } & :- & .2889706 \\
\text { Cp- } & :- & -.1926471
\end{array}
$$

## calculated values at posilion c

HEAM DYMAMIC PRESSURE :- 1.72
hax positive pressure fluctuation :- . 457
max megailye pressure fluctuation :- -. 5240001 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .0622093 \\
\text { Cp } & :- & 1.10451 \\
\text { Cp } & :- & 6.871078 E-02 \\
\text { Cpt } & :- & .2934657 \\
\text { Cp- } & :- & -.3364902
\end{array}
$$

REAN OYNAMIC PRESSURE :- . 4600004 max POSIIIVE PRESSURE FLUCTUAIIOH:- . 5080001 hax megatiye pressure fluctuation :- -. 276 PRESSURE COEFFICIENIS:

Tp	$:-$	.1826086
$C p$	$:-$	.2953924
$C p^{\prime}$	$:-$	$5.394118 \mathrm{E}-02$
Cpt	$:-$	.3262157
$C p^{-}$	$:-$	-.1772353

calculated values at position F

HEAM DYMAKIC PRESSURE :- . 8100004
HAX POSIIIVE PRESSURE FLUCTUAIIOH:- . 565
max Negative pressure fluctuailon :- -. 5160001 pressure coefficients:

Ip :- . 1703703<br>Cp :- . 5201473<br>CD' :- $8.861764 E-02$<br>Cpt :- . 3628186<br>Cp-:--. 331353

All PRESSURE HEASUREHENTS IN METRES

OISCHARGE (R3/5) . 04466

TRUE AIR COMCENTRAIION \& 9.854799

HUKBER OF BOARDS $\quad 2$

HeIGHT OF OUTLEI ( 1 ) .283 i

Plunge pool level ( $\mathbf{0}$ ) . 412

vaiter tenperature ( C ) 9.2

AIR TEMPERATURE (C) 9.399999

AIR PRESSURE (aBars) 1026
Lengih of Jet in air (k) :-
Lemgth of Jet in Mater (*) :- . 283
VELOCITY in Moille (k/s) :- 3.697186
velocity at pluige pool (h/s):- 3.69186

CALCULAIEO YaLles at POSITION a
HEAM DYYAMIC PRESSURE :- .8120003

Max POSITIYE PRESSURE FLUCTUATIOH:- . 258
max Megatiye pressure fluctuation :- -. 22
PRESSURE COEFFICIENTS:

```
Ip :- .0689655
Cp :- 1.165145
Cp' :- 8.035483F-02
Cp+ :- . 3702062
Cp- :- -. 3156797
```


## calculateo yalues at posidion b

MEAN Orhasic PRESSURE :- .2220003
MAX POSIIIYE PRESSURE fluctuation:- . 266
max hegatiye pressure rluctuation :- -. 152
PRESSURE COEFFICIENTS:

```
Ip :- .211714
Cp :- . }3185
Cp' :- 6.74066E-02
Cpt :- .3816854
Cp- :- -. }21810
```

Calculateo values at position C
hax Posilive pressure fuctuation :- . 2570001 hax hegative pressure fluctuation:- -. 269 pressure coefficients:

```
Ip :- 8.275859E-02
CD :- 1.040309
Cp' :- 8.60946E-02
CDt :- . 368714
Cp- :- -. }385990
```

```
 DISCHARGE (a3/s) 6.676001E-02
 IRUE AIR CONCENTRATION % 9.872913
: NUMBER OF BOARDS 4,
: HEIGHT OF OUTLEI (1) 1.307
; PIUMGE POOL LEVEL (1) . }18\mathrm{ ;
HAIER IEMPERAIURE (C) 9.100001
AIR IEMPERATURE (C) 8.3
 AIR PRESSURE (a8ars) }101
```

LENGIH OF JEI In AIR (K)	:- . 5270001
LENGTH OF JEI In water ( N )	- . 18
velocity in mollle (h/s)	:- 3.52785
VELOCIIY at plunge pool (H/s)	:- 6.394818

## Calculated values ai position a

calculateo halues at posifion d

MEAN OYNAHIC PRESSURE :- . $\mathbf{1 1 8 0 0 0 6}$
hax positive pressure fluctuation :- 1.595
hax megative pressure fluctuaition :- -. 524
PRESSURE COEFFICIENTS:

ip	$:-$	.4641142
Cp	$:-$	.0004874
Cp	$:-$	$9.304904 E-02$
Cpt	$:-$	.7650166
Cp-	$:-$	-.2513283

calculateo values al position f

HEAN DYHAHIC PRESSURE :- . 4840007
KAX POSIIIYE PRESSURE FLUCTUAIIOH:- 1.184
max negative pressure fluctuation :--.5450001 pressure coefficienis:

```
Tp :- . 4008259
Cp :- . 2321433
\(\mathrm{Cp}^{\prime}\) :- \(9.304904 \mathrm{f}-02\)
Cpt :- . 5678869
Cp- \(\because--.2614007\)
```

Ip	$:-$	.3659939
$C D$	$:-$	.3328665
$C D^{\prime}$	$:-$	.1218271
$C P^{2}$	$:-$	.8830066
$C D$	$:-$	-.2820249

## calculateo palues at posifion c

hean ormakic pressure
hax posilive pressure fluctuation :- 1.841
hax hegative pressure fluctuation :- -. 588
PRESSURE COEFFICIENIS:
MEAM OYMAHIC PRESSURE
MAX POSIIIYE PRESSURE FLUCTUATION:- 1.541
haX negailye pressure fluctuation :- -. 507
pressure coefficients:
ip :- . 5083128
Cp :- . 2019263
CD' :- . 1026417
Cpt :- . 7419941
CD- :- - 2431746

PRSN COEFICIETS:

ALL PRESSURE MEASURBHBNTS IN hBTRES

```
 DISCHARGE(b3/s).04466
 IRUE AIR CONCENTRAIION: 9.858001
 NUMBER OF BOARDS 4
 HEIGHT OF OUILET (a) 1.307
: PLunge pOOL LEvEL (a) .
; NATER IEMPERATURE (C) 9
AIR IEMPERATURE (C)
AIR PRESSURE (1Bars) }101
```

Length of Jet in air (k)	001
Lemght of Jei in water (k)	:- . 8
VELOCITY IM MO11LE (M/S)	:- 3.697317
Yelocity at plunge pool (n/	4.85

Calculated yalues at position a

## MEAN OYMAMIC PRESSURE

 max positive pressure fluctuation:- . 629 MAX Megaitiye pressure fluctuation:- -. 227 pressure coefficienis:$$
\begin{aligned}
& \text { Ip :- . } 6739098 \\
& \text { Cp :- . } 146225 \\
& \text { Cp' :- } 1.124522 \mathrm{E}-02 \\
& \text { Cpt :- . } 5224435 \\
& \text { Cp- :- }-1885448
\end{aligned}
$$

## calculateo yalles at position b

hear oymakic pressure	$6.000066 \mathrm{E}-02$
MaX POSIIIVE PRESSURE Fluctuation:- . 568	
MAX NGGAIIVE PRESSURE FLUCTUATION:- -. 2190001 PRESSURE COEFFICIENIS:	
	10 :- 1.266653
	¢ :- 4.983617E-02
	¢ ${ }^{\prime}$ :- $6.3125122-02$
	cpt :- . 4117772
	CP- :- - 1819001

calculated values at position c

## calculateo values at posinion d

MEAK OYMAHIC PRESSURE
$5.600065 E-02$
hax posilive pressure fluctuation :- . 4790001
hax negailye pressure fluctuation :- -. 158
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & 1.160701 \\
C p & :- & 4.651379 E-02 \\
C p^{\prime} & :- & 5.398859 E-02 \\
C p^{\prime} & :- & .3978514 \\
C p- & :-.1312338
\end{array}
$$

calculated yalues at posidion f

MEAN DYMAMIC PRESSURE :- $6.200063 E-02$
max positive pressure fluctuation:- . 39
Hax negative pressure fluctuailon :- -. 153
pressure coefficients:

Ip	$:-$	.9617321
Cp	$:-$	$5.149734 \mathrm{E}-02$
Cp	$:-$	$4.983562 \mathrm{E}-02$
Cp	$:-$	.3239316
Cp-	$:-$	-.1270808

all pressure measurekrnts in hetres

- OISCHARGE (a3/s)	6.676001E-02
- IRUE AIR COMCEhtration	9.892185
- Ruaber of boaros	2
; height of outlet (1)	1.307
- Plumge pool level (1)	. 397
- hater tehpreature ( C )	8.600001
- air tehprerature (c)	7.3
- AIR PRESSURE (a8ars)	1010


Lengih of Jet in alr (in)	:- . 91
Lengit of Jet in mater ( H )	. 397
VELOCIIY IH M0L2LE (h/S)	:- 5.529032
Yelocily at plunge pool (h/s)	:-6.958371

## calculated yalues at posilion a

## HEAN DYHAMIC PRESSURE :- 2.104 <br> hax POSIIIVE PRESSURE FLUCTUATIOH:- . 9030001

haX megailive pressure fluctuation :- - 1.654
PRESSURE COEFFICIENTS:

Ip	$:-$	.154943
$C p$	$:-$	.852309
$C D$	$:-$	.1320593
$C D+$	$:-$	.3657962
$C D-$	$:-$	-.6700186

calculated values at position o

MEAN DYHAMIC PRESSURE :- . 6210003
hax positive pressure fluctualion :- 1.31
hax negailye pressure fluctuatioh :- -. 164 PRESSURE COEFFICIENTS:

> | Tp | $:-$ |
| :--- | :--- |
| $C D$ | .4251206 |
| $C D$ | $:-$ |
| $C D$ | .2515609 |
| $C p t$ | - |
| $C D-$ | .5549731 |
| $C D$ | $:-$ |

## calculated values at position b

hean ormanic pressure :- . 4270003
MAX POSIIIVE PRESSURE FLUCTUAIION:- 1.137
max megailye pressure fluciuation :- -. 665
PRESSURE COEFFICIEHIS:

$$
\begin{array}{lll}
\text { Tp } & :- & .4590161 \\
\text { Cp } & :- & .1729735 \\
\text { Cp } & :- & 7.939761 \mathrm{E}-02 \\
\text { Cpt } & :- & .4605871 \\
\text { Cp- } & :- & -.2693848
\end{array}
$$

Calculateo yalues ai posilion f

MEAN DYHAKIC PRESSURE
1.134
haX POSIIIVE PRESSURE FLUCTUAIIOR:- 1.425
hax hegailive pressure fluctualion:- - 1.179
PRESSURE COEFFICIENTS:

Ip	$:-$	.3183421
CD	$:-$	.459372
CD	$:-$	.1462374
Cpt	$:-$	.5772531
Cp	$:-$	-.4776009

## calculateo values ai position c

hiean oynamic PRESSURE :- 1.986
haX POSIIIVE PRESSURE FLUCTUAIION:- 2.586
hax negailve pressure fluctuation :- -1.73s
PRESSURE COEFFICIENTS:

Tp	$:-$	.1883182
$C p$	$:-$	.8045085
$C p^{\prime}$	$:-$	.1515036
$C D t$	$:-$	1.047562
$C D-$	$:-$	.7028308

CD- :- -. 7028308

```
OISCHARGE (a3/s) . 04466
 trUE AIR CONCENTRAIION & 9.897878
 NUHBER OF BOARDS 2
 HEIGHI OF OUTLET (1) 1.307
 PLUNGE POOL LEYEL (1) . }3
 NATER TEMPERATURE (C) 8.899999
 AIR IEMPERATURE (C) }7.
 AIR PRESSURE (aBars) }101
```

LENGTH OF JET IN AIR (N) :- . 9170001
LENGTK OF JET IN HATER (H) :- . 39
VELOCITY IN HOLILE ( $\mathrm{H} / \mathrm{S}$ ) :- 3.698954
YELOCITY AT PLuNGE POOL (M/S) :- 5.627459
calculated values at position a
HEAN DYMAHIC PRESSURE :- .8630003
HAX POSIIIYE PRESSURE FLUCTUATION :- 1.098
hax Megailye pressure fluctuailon :- -. 9140001
PRESSURE COEFFICIENTS

Tp	$:-$	.3568944
$C D$	$:-$	.5345063
$C D$	$:-$	.1907623
$C D+$	$:-$	.6800553
$C D$	$:-$	-.5660933

calculated values at posimion b

## HeAN OYHAHIC PRESSURE :- 2450003

hax positive pressure fluctuarion :- . 9450001
hax hegative pressure fluctuation:--. 405
PRESSURE COEFFICIENTS:

Ip	$:-$	.673686
$C D$	$:-$	.1517429
$C D$	$:-$	.1021941
$C D+$	$:-$	.5852935
$C D$	$:-$	-.25084

calculated values at position F

MEAK OYMAHIC PRESSURE :- . 4050003
MAX POSIIIVE PRESSURE FLUCTUATIOH:- 1.021
max negaitye pressure fluciuation :--.5990001
PRESSURE COEFFICIERTS:

$$
\begin{aligned}
& \text { ID }
\end{aligned}:-.4987651
$$

calculated yalues at position c

```
Ip :- . }386519
Cp :- .4502736
Cp' :- .170396
Cpf :- 1.076444
Cp- :- -. 4638992
```

```
 01SCHARGE (a3/s) 6.676001E-02
. IRUE AIR CONCEHTRATION & 9.882396
i NUHBER OF BOAROS 0 i
; HEIGHT OF OUTLET (^) 1.307
: Haier tehperature (c) 9.100001
AIR TEMPERAIURE (C) 8.899999
 AIR PRESSURE (aBars) 1018
```

LENGIH OF JET IN AIR (M)	:- 1.307
LEMGTH OF JEt In mater (h)	:-
velocity in mozlle (n/s)	:- 5.528432
yelocity at plunge pool (\%/S	:- 7.496601

## calculated yalues at posilion a

HEAN DYNAMIC PRESSURE :- 2.581
hax posilive pressure fluctualion :- 1.094 hax megative pressure fluctuation :- -1.26 PRESSURE COEFFICIENTS:

Ip	$:-$	.105773
Cp	$:-$	.9007945
Cp	$:-$	$9.527969 E-02$
CDt	$:-$	.3818168
Cp-	$:-$	-.4397525

## calculated yalues at posifioh b

hean ownanic pressure :- . 535
hax positiye pressure fluciuation :- 1.815
hax megatiye pressure fluctuation :- -. 5080001 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .3327103 \\
\text { Cp } & :- & .1867203 \\
\text { Cp } & :- & 6.212376 E-02 \\
\text { Cpt } & :- & .6334528 \\
\text { Cp- } & :- & -.177297
\end{array}
$$

## calculated yalues at position c

HEAK DYMAMIC PRESSURE :- 2.528
haX POSIIIVE PRESSURE FLUCTUATION:- 2.456
maX hegative pressure fluctuation :- - 1.162 PRESSURE COEFFICIENTS:

Ip	$:-$	.1162975
$C p$	$:-$	.882297
$C p^{\prime}$	$:-$	.1026089
$C p+$	$:-$	.8571682
$C p-$	$:-$	-.4055495

## calculateo values ai position o

MEAN OYNAKIC PRESSURE :- . 569
max positive pressure fluctuation :- 1.605
hax megative pressure fluciuation :--.616
PRESSURE COEFFICIENTS:

$$
\begin{array}{llll}
\text { Ip } & :- & .3125835 & \\
\text { Cp } & :- & .1985866 \\
\text { Cp } & :- & .0739901 & \\
\text { Cpt } & :- & .5601609 & \\
\text { Cp- } & :- & -.3149901 & *
\end{array}
$$

calculated halues at posifion $F$

HEAN DYMAMIC PRESSURE :- 1.684
hax posilive pressure fluctuation :- 1.553
hax megative pressure fluctuation :- -1.266
PRESSURE COEFFICIERTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .2084323 \\
C p & :- & .5877326 \\
C p & :- & .1225025 \\
\text { Cpt } & :- \\
C p- & .5420123 \\
C- & -.4418465
\end{array}
$$

ALL PRESSURE KEASUREKENTS IN HETRES

OISCHRGE ( ${ }^{\text {3 }} / \mathrm{s}$ )	. 04466
true air concentration	9.883311
- Nubber of boaros	0
- HeIGHI Of OUILEI (a)	1.307
- Vater teuperaiure ( c )	9.3
air tenperature (c)	9
- AIR Pressure (Bars)	1018

Lengih of Jet in air (in) :- 1.307
lengih of Jet in nater (k) :- o
VELCCITY IH HO2LLE (H/s) :- 3.698356
helocity at pluhge pool (k/S):- 6.270034
calculate yalues at posihion a

## hean ormanic Pressure :- 1.647

hax posiiive pressure fluctuation :- 1.139
max negaitive pressure fluctuation :- -1.347 PRESSURE COEFFICIENIS:

Ip	$:-.1768849$
$C p$	$:-.8211134$
Cp	$:-.145843$
Cpt	$:-.568245$
Cp-	$:-.6720388$

calculateo yalues at position b

HEan OYMaKIC PRESSURE :- . 278
Max POSIIIVE PRESSURE Fluctuation :- 1.884
nax Regative pressuke fluctuation :- -. 43
PRESSURE COEFFICIEWIS:


## calculateo values at position c

HEAM DYMAKIC PRESSURE :- 1.606
hax positilye pressure fluctuation :- 2.743
hax negaitye pressure fluctuation :- - 1.313
PRESSURE COEFFICIENTS:
Ip :- . 1793275
CD :- . 8012579
$\mathrm{Cp}^{\prime}$ :- . 1436876
Cpt :- 1.368524
CP- :- -. 6850106

## calculateo valles at posifion o

HEAR DYMAHIC PRESSURE :- . 292
MAXX POSIIIYE PRESSURE FLUCTUATIOH:- 1.424
hax negailve pressure fluctuailon :- -. 382
PRESSURE COEFFICIENTS:

> Ip :- . 547452
> CD :- . 1456833
> Cp' :- 1.982644E-02
> Cpt :- . 1104553
> Cp-:-. 1905856 *
calculateo yalues at position $F$

HEAK DYMAKIC PRESSURE
.921
max positive pressure fluctuailon :- 1.693
hax megatiye pressure fluctuation :--. 968
PRESSURE COEFFICIENIS:

$$
\begin{array}{lll}
\text { ip } & :-.4060804 \\
C D & :-. & .599501 \\
C D^{\prime} & :-. & .1865943 \\
\text { Cpt } & :-.8446635 \\
C D- & :-. .48295 & \\
\text { CD }
\end{array}
$$

ALL PRESSURE MEASURBUENTS IN METRES

DISCHARGE (a3/s)	6.676001E-02
IRUE AIR COMCENTRAIION:	19.70147
number of boards	4
HEIGHT OF OUTLET (1)	. 698
Plunge pool level (	. 195
Hater tenperature ( $C$ )	9.3
AIR tehperature ( C )	8.5
AIR PRESSURE (abars)	1028


LENGIH Of JEt in air (k)	:-
LENGIH OF JET IN MATER ( ${ }_{\text {( }}$ )	:- . 698
VELOCIIY IN NOLZLE (M/S)	:- 6.20446
Yelocity al plumge pool (m/s)	:- 6.20446

CALCULATED Yalues at position a

HEAN OYHAHIC PRESSURE :- 1.138001
hax posiIIye pressure fluciuation :- 1.138
hax negative pressure fluctuation :- -. 8639999
PRESSURE COEFFICIENTS:

Tp	$:-$	.2592266
$C D$	$:-$	.5998305
$C D$	$:-$	.1503075
$C D+$	$:-$	.5798303
$C D-$	$:-$	-.402226

Calculateo yalues ai posimion b

HEAN DYWAMIC PRESSURE :- . 4360006
haX positive pressure fluctuailon :- 1.392
hax megative pressure fluctuation:--. 466
PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Tp :- . } 394495 \\
& \text { Cp :- . } 2221497 \\
& C p^{\prime}:-8.763691 \mathrm{E}-02 \\
& \text { Cpt :- . } 1092475 \\
& \text { Cp- :- - } 2374349
\end{aligned}
$$

## calculated yalues at position c

MEAN DYHAHIC PRESSURE :- 1.034001
max posilive pressure fluciuailon :- 1.514
hax negailive pressure fluctuation :- -. 7660001
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\mathrm{Tp} & :- & .2485492 \\
C D & :- & .5268408 \\
C D^{\prime} & :- & .1309459 \\
C C^{+} & :- & .7114086 \\
C D- & :- & -.39029
\end{array}
$$

## calculateo values at position o

HEAN DYMAHIC PRESSURE :- . 4350006
hax posilive pressure fluctuation :- 1.2
hax megatiye pressure fluctuation :- -. 494
pressure coefficients:

$$
\begin{array}{lll}
\text { Ip } & :- & .4160914 \\
\text { Cp } & :- & .2216402 \\
\text { Cp } & :- & 9.222256 E-02 \\
\text { Cpt } & :- & .6114203 \\
C p- & :- & .2517014
\end{array}
$$

calculated values at position f

HEAR DYHAHIC PRESSURE :- . 6040006
max positive pressure fluctuation :- 1.017
max NegaiIve pressure fluctuation :--. 5600001
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .2897348 \\
\text { Cp } & :- & .3077485 \\
C p & :- & 8.916546 \mathrm{E}-02 \\
\text { Cpt } & :- & .5181787 \\
\text { Cp- } & :- & -.2853295
\end{array}
$$

ALL PRESSURE KBASUREHENTS IN MBTRES

OISCHARGE ( $13 / \mathrm{s}$ )	. 04466
TRUE AIR CONCENTRAIION \& 19.70709	
HuFBER Of boaros	4
height of OUILET (1)	. 698
Plunge pool leyel (1)	. 885
nater tempreature ( C )	9.399999
air texprariure ( c )	8.7
air Pressure (nBars)	1028


length of Jet in air (k)	:-
leghih of Jei in mater (k)	:- . 698
Velocity in hoille (\%/s)	:- 4.150847
yelocity at plunge pool (h)	4.15084

## Calculated values at position a

## calculated values at posifion o

MEAN DYHANIC PRESSURE :- 3840006
MAX POSIIIYE PRESSURE FLUCTUAIIOH:- . 626
HAX MEGAIIYE PRESSURE FLUCTUAIION:--. 321 PRESSURE COEFFICIENIS:

$$
\begin{array}{lll}
\text { ip } & :- & .3255203 \\
C p & :- & .4371445 \\
C p & :- & .1422994 \\
C p t & :- \\
C D- & .7126353 \\
\text { CD } & :-.3722553
\end{array}
$$

calculated yalues at position b

HEAN OYHAHIC PRESSURE :- . 1400006
hax positive pressure fluctuation :- . 53
hax megailye pressure fluctuation :--. 209
PRESSURE COEFFICIENTS:

Ip	$:-$	.5285693
$C D$	$:-$	.159376
$C D$	$:-$	$8.424125 E-02$
CDt	$:-$	.6033495
CD-	$:-$	-.2379246

calculated values at position c

Hen OMAnIC PRESSURE :- 3620005
hax positive pressure fluctuation :- . 712 hax hegailye pressure fluctuation :- -. 2739999 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- \\
C p & .3066294 \\
C p & - & .4120997 \\
C p & :- & .1263619 \\
C p+ & :- & .8105374 \\
C p- & :- & -.3119200
\end{array}
$$

```
\(:\) DISCHARGE (\(\mathrm{n} 3 / \mathrm{s}\)) 6.676001E-02
: TRUE AIR CONCERTRATION: 19.13866 i
: NUKBER Of BOARDS 2
HEIGHT OF OUTLET (1) . 283 ;
 PluHge POOL LEYEL (1) . 39
 Water teyperature (C) 9.600001
 AIR IEMPERATURE (C) 9
 AIR PRESSURE (abars) 1025
```

LENGTH OF JEI IN AIR (M) :-
LEMGTH OF JEI IN YATER (h) :- . 283
VELOCITY IN NOILLE (M/S) :- 6.207335
velocity at plunge pool (m/s) :- 6.207335

## calculated yalues ai posifion a

## calculated yalues at position o

MEAM DYHARIC PRESSURE :- . 5410003
HEAN DYHAHIC PRESSURE :- 2.218001
hax positive pressure fluctuailion :- . 649
hax Megailye pressure fluctuation :- -. 625
PRESSURE COEFFICIENTS:

Ip	:-	7.213705E-02
CD	:-	1.129062
Cp ${ }^{\prime}$	:-	8.1447215-02
Cpt	:-	. 3303702
CP-		-. 3181532

calculateo yalues at position b
Hax posiliye pressure fluctuation :- . 6160001
max negative pressure fluctuation :- -. 334
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Tp } & :- & .1996302 \\
\text { Cp } & :- & .2753935 \\
\text { Cp } & :- & 5.197687 \mathrm{E}-02 \\
\text { Cpt } & :- & .3135718 \\
\text { Cp- } & :-. .170021
\end{array}
$$

calculateo yalues at position f

KEAN DYNAMIC PRESSURE :- . 6450003
max positive pressure fluctuation :- . 694
max negative pressure fluctuailon :- - 382
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1689922 \\
C p & :- & .3283342 \\
C p & :- & 5.548591 \mathrm{~F}-02 \\
C p t & :- & .3532773 \\
C p- & :- & -.1944552
\end{array}
$$

HEAN DYMAKIC PRESSURE :- 1
haX POSITIVE PRESSURE FLUCIUATION:- . 9180001
hax hegative pressure fluctuation :- -. 676
pressure coefficients:

$$
\begin{array}{lll}
\text { ID } & :- & .198 \\
C D & :- & .5090152 \\
C D & :- & .1007909 \\
C D+ & :- & .4673034 \\
C D- & :- & -.3441145
\end{array}
$$

calculateo halues at posifion C

MEAN OYNAMIC PRESSURE
:- $\quad 1.994$
hax posilive pressure fluctuation:- . 748
hax megalive pressure fluctuation :- -. 1130001
PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip :- 8.375123E-02 } \\
& \text { Cp :- } 1.015036 \\
& \text { CD }{ }^{\prime} \text { :- } 8.501052 \mathrm{E}-02 \\
& \text { Cpt :- . } 3807657 \\
& \text { CD- :- - } 3934919
\end{aligned}
$$

OISCHRRGE ( $\mathrm{a} / \mathrm{s}$ ) ..... 0446
True air concentration : 19.7583 ..... !
NUKBER OF BOAROS 2
Height of OUtLEI ( a ) . 283
PLUNGE POOL LEVEL ( 1 ) . 41

AIR TEAPRERATURE ( c ) ..... 9.1
AIR PRESSURE (aBars) 1025
Length of Jei in air (h)Lengit of Jet in mater (k) :- . 283
YeLOCIIY IN MOILLE (K/S) :- 4.153496yelocity at plunge pool (h/s) :- 4.153496
CalCulated yalues at position a
HEAM DYHAMIC PRESSURE :- .8970004hax positive pressure fluctuation:- . 561max negailive pressure fluctuation:- -. 4550001PRESSURE COEFFICIENTS:

Ip	:-	. 1282051
Cp	:-	1.019839
Cp'	:-	. 1307485
Cpt	:-	. 6378253
	:-	. 517309

## Calculateo yalues at position b

## hear oymanic pressure

MAX positive pressure fluctualion :- . 425 Max negailye pressure fluctuation :- -. 284 pressure coefficients:

$$
\begin{aligned}
& \text { Ip :- . } 2815122 \\
& \text { Cp :- . } 2705929 \\
& \text { Cp’ :- } 1.617521 \mathrm{E}-02 \\
& \text { Cpt :- . } 8832009 \\
& \text { Cp-:- } 322892
\end{aligned}
$$

## Calculateo values at position f

## calculateo yalues at position d

hean oynanic pressure $:-0$
hax Positive pressure fluctuailion :- 0 hax hegailve pressure fluctuailion :- 0 PRESSURE COEFFICIENTS:


EAE OYMAAIC PRESSURE :- . 3920003
hax positive pressure fluctuaition:- . 665
hax hegaitive pressure fluctuation :- -. 35
Pressure coefficients:

$$
\begin{aligned}
& \text { Ip :- . } 3035712 \\
& \text { CD :- . } 4456822 \\
& \text { CD' :- . } 1352963 \\
& \text { Cpt :- . } 7560674 \\
& \text { Cp- :- - } 3979302
\end{aligned}
$$

calculated values at position c

HEAN OYHABIC PRESSURE
kax Posilive pressure fluctuation :- . 712
hax negailye pressure fluctuation:- -. 539 PRESSURE COEFFICIENTS:


ALL PRESSURE MEASURRYENTS IN HETRES

```
OISCHARGE (n3/s) 6.676001E-02
TRUE AIR CONCENTRAIION: 19.76763
HUKBER OF BOARDS 4
HEIGHT OF OUILET (1) 1.307
PLUNGE POOL LEVEL (1) . }17
Nater IENPERATURE (C) 9
AIR TEMPERATURE (C) 8.100001
AIR PRESSURE (abars) }101
```

Lengit of Jet in air (k)	:- . 53
LENGTH OF JET IN WATER (h)	:- . 117
Yelocily in hollle ( $\mathrm{m} / \mathrm{S}$ )	:- 6.209576
Yelocity at plunge pool (m/s)	- 6.996732

## calculated yalues at position a

hax posiliye pressure fluctuation :- 1.812
hax megatiye pressure fluctuation :- -1.043 PRESSURE COEFFICIENTS:

Ip	$:-$	.4392817
$C D$	$:-$	.3794253
CD	$:-$	.1666746
$C D^{+}$	$:-$	.7259961
CD-	$:-$	.4178885

## calculated yalues at posilion b

HEAA DYMAHIC PRESSURE :- . 4510007
hax posilive pressure fluctuation :- 1.741
hax megative pressure fluctuatioh :- -. 6660001 pressure coefficients:

Tp	$:-$	.63858
$C D$	$:-$	.180698
$C D$	$:-$	.1153901
$C D+$	$:-$	.6975493
$C D-$	$:-$	-.2668396

calculated values ai posihion c
hean ornamic pressure
max posilive pressure fluciualion :- 3.123
max hegailve pressure fluctuation:- -. 858 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
l p & :- & .4216149 \\
c p & :- & .337356 \\
c p^{\prime} & :- & .1422343 \\
\text { Cpt } & :- & 1.251262 \\
c p- & :- & -.3437663
\end{array}
$$

## Calculateo yalues at position d

HEAN OYHAHIC PRESSURE :- . 4560007 maX POSIIIYE PRESSURE FLUCTUATION :- 1.715 hax Megatile pressure fluctuation :- -. 6290001 pressure coefficients:

$$
\begin{array}{lcc}
\text { Tp } & :- & .5745606 \\
C D & :- & .1827013 \\
C D^{\prime} & :- & .1049729 \\
C D t & :- & .687132 \\
C D- & :- & -.2520152
\end{array}
$$

calculateo yalues at position f

MEAN DYHAKIC PRESSURE :- . 5350006
hax posiliye pressure fluctuailon :- 1.466
maX NEGATIYE PRESSURE FLUCTUATION :- -. 7320001
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .4504668 \\
\text { Cp } & :- & .2143534 \\
\text { Cp } & :- & 9.655908 E-02 \\
\text { Cpt } & \vdots-.5873677 \\
\text { CD- } & \therefore-. .2932832
\end{array}
$$

all prrssure heasurbyents in hetres

OISCHARGE ( $\mathrm{n} / \mathrm{s}$ )	. 04466	'
IRUE AIR COMCENTRAIION	19.76199	
NuMBER OF BOAROS	1	'
heIght of OUILEt (1)	1.301	!
Plunge pool level (1)	. 111	;
HATER IEMPERATURE ( C )	9.100001	
AIR IEMPERATURE ( C )	1.9	!
AIR PRESSURE (abars)	1018	!


Length of jet in alr (k)	:- . 53
Lengih of Jei In water (h)	. 711
YELOCIIY IH MOLLLE ( $\mathrm{N} / \mathrm{S}$ )	:- 4.153687
velocily at plunge pool (m/s)	- 5.258188

calculated yalues at posilion a

## calculated halues at position o

HEAN OYMAHIC PRESSURE :- 1080006
hax positive pressure fluctualion :- . 951 hax megative pressure fluctualloh :- -. 243 pressure coefficients:

$$
\begin{array}{ll}
\text { Tp } & :-1.092587 \\
C p & :-1.661618 E-02 \\
C p & :-8.370983 E-02 \\
C p+ & :- \\
C p- & :-176445 \\
\text { CD } & -.1723855
\end{array}
$$

## calculateo values at posinion b



HAX POSITIYE PRESSURE FLUCTUAIION :- . 197
hax megative pressure fluctuation :- -. 205 PRESSURE COEFFICIENTS:

$$
\begin{array}{ll}
\text { Ip } & :-2.351313 \\
C p & :- \\
\text { Cp } & 2.624842 \mathrm{E}-02 \\
\text { Cpt } & :- \\
\text { Cp } & .171827 \mathrm{E}-02 \\
\text { Cp- } & :--.1454281
\end{array}
$$

## calculaieo values ai posidion c

0970006
pressure cotpficients:

$$
\begin{array}{lll}
\text { Ip } & :- & .9484478 \\
\mathrm{Cp}_{\mathrm{p}} & :- & 6.8817275 \mathrm{E}-02 \\
\mathrm{Cp}^{\prime} & :- & 6.526579 \mathrm{E}-02 \\
\mathrm{Cp}^{7} & :- & .6547812 \\
\mathrm{Cp}^{-} & :- & -.1475563
\end{array}
$$

ALL PRBSSURE HBASUREMENTS IN MBTRBS


LEMGTH Of JEt In AIR (M)	:- . 9140001
LEMGTH OF JEI IH Hater (k)	:- . 393
VELOCIIY IN MOILLE (\%/S)	:- 6.211576
yelocity at plunge pool (h/s	:- 7.51737

## calculated yalues at position a

## REAN OYNAHIC PRESSURE

HAX POSIIIVE PRESSURE FLUCIUAIION :- 1.16 max megailye pressure fluctuation :- - 1.88 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .1358178 \\
C p & :- & .8382081 \\
C p & :- & .1138436 \\
C p p^{\prime} & :- & .4026174 \\
C p^{-} & :- & -.6525181
\end{array}
$$

## calculaied yalues at position 6

HEAK DYHAKIC PRESSURE :- . 4810003
maX pOSIIIVE PRESSURE FLUCTUAIIOH:- 1.59
maX Megative pressure fluctuation :- -. 742
PRESSURE COEFFICIENTS:

$$
\begin{aligned}
& \text { Ip :- . } 4345112 \\
& \text { Cp :- . } 1669475 \\
& \text { Cp' :- 1.254057E-02 } \\
& \text { Cpt :- . } 5518636 \\
& \text { CD- :- - } 2575364
\end{aligned}
$$

## calculated values at posilion c

Calculateo yalues at position d

MEAK DYNAMIC PRESSURE :- . 6610003
hax positive pressure fluctuation :- 1.671 max megative pressure fluctualion :- -. 1380001 pressure coefficients:

$$
\begin{array}{lll}
\text { Ip } & :- & .4251133 \\
\text { Cp } & :- & .2294227 \\
\text { Cp } & :- & 9.753061 \mathrm{E}-02 \\
\text { Cpt } & :- & .58206 \\
\text { Cp- } & :- & -.2561481
\end{array}
$$

calculated values at posinion f

## MEAN OYHAHIC PRESSURE <br> 1.258

hax positive pressure fluctuation :- 1.349
hax negative pressure fluctualloh :- - 1.282
pressure coefficients:

ip	:-	. 3147853
Cp	:-	. 4366319
CD ${ }^{\prime}$	:-	. 1374453
Cpt	:-	. 4682164
CP-		. 4449618

ALL PRESSURE HEASURBHENTS IN METRES

HEAN OYNAHIC PRESSURE :- 2.181
MAX POSIIIVE PRESSURE FLUCTUATION:- 2.395
hax negative pressure fluctuailon :- -1.753
pressure coefficienis:

Ip	$:-$	.178817
$C D$	$:-$	.7569904
$C D$	$:-$	.1353628
$C p+$	$:-$	.8312663
$C D$	$:-$	-.6081383

```
OISCHARGE (a3/s) .04466 ;
 IRUE AIR CONCENTRAIION & 19.81612
 RUHBER OF BOAROS 2
 HEIGHT OF OUTLET (1) 1.307
 PLluGGE POOL LEYEL (0) . 392
 VATER TEMPERATURE (C) }8.
 AIR TEMPERATURE (C) 1.6
 AIR PRESSURE (IBars) 1010
```

length of jet in air (in)	001
Lehgit of Jet in mater (k)	. 392
Yelocity in hoille (M/s)	:- 4.156491
yelocity at plunge pool	5.93

Calculated yalues at position a

MEAN OYMAAIC PRESSURE :- . 9730003
MAX POSIIIYE PRESSURE FLUCTUATIOH:- 1.238 \#AX MEGATIYE PRESSURE FLUCTUAIIOH:- -. 994 PRESSURE COEFFICIENTS:

Ip :- . 3627954		
	:-	. 5418141
$\mathrm{CP}^{\prime}$	:-	. 1965676
Cpt	:	. 6893788
		. 5535078

calculated yalues ai position 8

## HEAK DYMAAIC PRESSURE :- . 1840003

hax POSIIIVE PRESSURE FLUCTUAIION:- 1.226
max negailye pressure fluctuation:- -. 115 pressure coefficients:

$$
\begin{array}{ll}
\text { Ip } & :-.9184768 \\
C_{p} & :-1024603 \\
C_{p} & :-9.410745 E-02 \\
c_{p}+ & :-.6826967 \\
c_{p} & :--.2310923
\end{array}
$$

calculateo values at position $C$

Ip	:-	. 4253332
CP	:-	. 4176368
Cp ${ }^{\text {' }}$	:-	. 1716348
Cpt	:-	1.259035
	:-	-. 4504407

calculateo values at position d

HEAN DYMAHIC PRESSURE :- . 1900003
hax Positive pressure fluctuation :- 1.119
hax hegaitye pressure fluctuation:--. 368
PRESSURE COEFFICIENTS:

Tp	:-	. 8421038
Co	:-	. 1058015
Cp ${ }^{\text {, }}$	:-	$8.909581 \mathrm{E}-02$
Cot	:-	. 6231138
Cp-		-. 2049204

## calculateo values at position f

HEAM DYMAHIC PRESSURE :- . 3740003
HAX POSIIIVE PRESSURE FLUCTUATION:- 1.082
max hegatife pressure fluctuation :- -. 499
PRESSURE COEFFICIENIS:


Cp-:- -2718676
all pressurb meadurehents in mbtres


```
LENGTH OF JET IN AIR (N) :- 1.307
LENGIH OF JET IN NATER (N) :- 0
YELOCIIY IN NOILLE (H/S) :- 6.210449
velociIY at plunge pool (%/s) :- }8.01281
```


## Calculated yalues at position a

nEAK DYMAKIC PRESSURE :- 2.696
kAX POSIIIVE PRESSURE FLUCTUAIION:- 1.469
max negative pressure fluctuation :- - 1.475
PRESSURE COEFFICIENTS:

Ip	$:-$	.134273
$C D$	$:-$	.8236004
$C D$	$:-$	.1105873
$C D+$	$:-$	.487644
$C D-$	$:-$	-.4505974

## calculateo values ai position b

## HEAK DYNAKIC PRESSURE :- . 669

max posility pressure fluctualion :- 2.233 hax negative pressure fluctualion :- -. 7470001 PRESSURE COEFFICIENIS:

$$
\begin{aligned}
& \text { Ip :- . } 3901345 \\
& \text { CD :- . } 2043726 \\
& \text { Cp' :- 7.973282E-02 } \\
& \text { Cpt :- . } 6821585 \\
& \text { Cp- :- -. } 2282009 \text { 米 }
\end{aligned}
$$

## calculated yalues at position c

## hean oynamic pressure <br> :- $\quad 2.543$

max positive pressure fluctuation :- 2.371
hax hegative pressure fluctuation :- -1.507
PRESSURE COEFFICIENIS:

$$
\begin{array}{lll} 
& \text { Tp } & .1498231 \\
C p & :- & .7168604 \\
C p & :- & .1163916 \\
C p t & :- & .1243162 \\
C D & :- & -.460373
\end{array}
$$

## calculated values at position o

hean dymanic pressure
hax posiliye pressure fluctuation :- 2.115
maX megatiye pressure fluctuation :- -. 658
PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Ip } & :- & .4256854 \\
\text { Cp } & :- & .2117044 \\
\text { Cp } & :- & 9.011947 \mathrm{E}-02 \\
\text { Cpt } & :- & .6461108 \\
\text { Cp- } & :- & -.2010122
\end{array}
$$

## calculateo values at position f

MEAK DYMAMIC PRESSURE 1.672
max posiliye pressure fluciuation :- 1.601
hax megative pressure fluctuation :- -1.506 PRESSURE COEFFICIENTS:

$$
\begin{array}{lll}
\text { Tp } & :- & .2446172 \\
C D & :- & .5107789 \\
C D & :- & .1249453 \\
C p t & :- & .490922 \\
C p^{-} & :- & .4600676
\end{array}
$$


Lengit of jet in air (M) :- 1.307

velocity in hoille (k/s) :- 4.155293
velocity at plumge pool (w/s):- 6.549958

## Calculated valles at position a

hean oymanic pressure :- 1.286
HAX POSIITYE PRESSURE FLUCTUATION:- 1.673 maX hegaitye pressure fluctuation:- -1.252 pressure coefficienis:

Ip :- . 3211509
Cp :- . 5879366
Cp ${ }^{\prime}$ :- . 1888163
Cpt :- . 1648663
Cp- :- -. 5723924

## Calculateo values at position b

hean ownaxic pressure :- . 451
hax posilive pressure fluctuation :- 1.982
max hegative pressure fluctuation :- - . 549
pressure coefficients:

$$
\begin{array}{lll}
\text { Ip } & :-.1361419 \\
C p & \vdots-.2061893 \\
C p^{\prime} & :-.1517846 \\
\mathrm{Cpp} & \therefore-.9061356 \\
\mathrm{Cp} & :-.2509332
\end{array}
$$

## calculated values at position c

mean ormail pressure :- 1.132
max posihive pressure fluctuation:- 3.845
max hegaitye pressure fluctuation :- - -1.079
pressure coefficients:

Ip	:-	. 3754417
$\mathrm{Cp}_{\mathrm{p}}$	:-	. 5175305
Cp,	:-	. 1443025
	:-	1.757867
		-. 493299

## calculateo yalues at position o

MEAN DYMAMIC PRESSURE :- . 439
hax posiliye pressure fluctuation :- 1.932
hax negative pressure fluctuation :- -. 5530001
PRESSURE COEFFICIENTS:

> Ip :- . 7448746
> Cp :- . 2007031
> Cp' :- . 1494986
> Cpt :- .8832764
> Cp-:--. 2528219 米
calculated yalues al position f

MEAN OYMAKIC PRESSURE :- . 789
max posilive pressure fluctuation :- 1.727
hax megative pressure fluctuation :--. 867
PRESSURE COEFFICIENTS:

Ip	$:-$	.5145754
Cp	$:-$	.3607169
Cp	$:-$	.1856161
Cpt	$:-$	
Cp-	$:-$	.3895541
	-.3963172	$*$

all pressure heasurehents in hetres

