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Abstract 

 

Environmental contours describing extreme sea states are generated as the input for numerical or 

physical model simulations as a part of the standard current practice for designing marine 

structures to survive extreme sea states. Such environmental contours are characterized by 

combinations of significant wave height (  ) and energy period (  ) values calculated for a 

given recurrence interval using a set of data based on hindcast simulations or buoy observations 

over a sufficient period of record. The use of the inverse first-order reliability method (IFORM) 

is standard design practice for generating environmental contours. In this paper, the traditional 

application of the IFORM to generating environmental contours representing extreme sea states 

is described in detail and its merits and drawbacks are assessed. The application of additional 

methods for analyzing sea state data including the use of principal component analysis (PCA) to 

create an uncorrelated representation of the data under consideration is proposed. A 

reexamination of the components of the IFORM application to the problem at hand including the 

use of new distribution fitting techniques are shown to contribute to the development of more 

accurate and reasonable representations of extreme sea states for use in survivability analysis for 

marine structures.  

 

Keywords: Inverse FORM, Principal Component Analysis, Environmental Contours, Extreme 
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1 INTRODUCTION  
 

  

 

The current practice for designing marine structures to survive extreme sea states is to apply 

nonlinear time domain numerical simulations to predict the structural response to a short-term 

extreme wave or wave group.  Extreme wave design generally includes the following steps as 

outlined in (Coe, et al. 2014) (1) Application of hindcast simulations or buoy observations of a 

sufficient duration (twenty years preferred) and an appropriate location; (2) Application of extreme 

value theory and models used for extrapolation to events more extreme than those observed in a 

shorter period of record; (3) Generation of environmental contours consisting of Hs, Tp pairs that 

elicit extreme structural responses for a given return period ; (4) Identification of one or more 

extreme sea states, which can be used with a wave spectrum, appropriate for the location of interest, 

to reconstruct a single extreme wave or wave group as input for numerical or physical model 

simulation. 

 

(Vanem and Bitner-Gregersen 2014) summarize methods for generating environmental contours, 

including the traditional inverse first-order reliability method (IFORM) by Winterstein 

(Winterstein, et al. 1993), which uses the Rosenblatt transformation (Rosenblatt 1952), and the 

more recent  methods, which avoid the Rosenblatt transformation by employing Monte Carlo 

simulations of a joint probability model  (Vanem and Bitner-Gregersen 2014).     

 

It is recognized that the environmental load associated with the largest significant wave height on 

the environmental contour is not necessarily the one that will cause failure (Baarholm, Haver and 

Økland 2010).  In fact, marine structures can fail due to resonant oscillations of waves and wave 

groups associated with smaller significant wave heights waves with periods that match the natural 

frequencies of motion of the structure or its subsystems. Although 100-year recurrence intervals 

(return periods) are common for marine structures, lower return periods can be used, if acceptable 

for survivability, when the design service life is less than 100 years (DNV 2005).    

 

The IFORM continues to be standard design practice for generating environmental contours used 

for estimating extreme sea states of a given recurrence interval or return period, e.g., 100 years 

(DNV 2014).  Environmental loads associated with these extreme sea states are used to design 

various marine structures, including ships (DNV 2002), dynamic risers (DNV 2001), position 

moorings (DNV 2010a), offshore floating platforms (DNV 2010b), and wave energy converters 

(WEC) (DNV 2008).  For this reason, (Dallman and Neary 2014) constructed environmental 

contours to characterize extreme sea states at sites identified for testing or commercially developing 

WEC technologies.  

 

The purpose of this study is to investigate techniques for improving the traditional IFORM through 

improved extreme value models for the correlated random variables and principal component 

analysis (PCA).   Berg (2011) estimated extreme sea states using the traditional IFORM for a wave 

energy site located in Humboldt Bay, California (Neary, et al. 2014), but many measured data 

points fell outside the calculated contour, even when inflated by 20% to account for approximations 

using the traditional IFORM. A study of the observations density reveals that the problem was 
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partly coming from fitting significant wave height and energy period separately. Principal 

component analysis was used to capture the relation between these two parameters, allowing for a 

better coverage of the data in the period of record under consideration as well as for the creation of 

a more appropriately shaped extreme sea state contour. 

 

Data from four buoys was used for analysis: National Data Buoy Center (NDBC) 46212 offshore of 

Northern California in 40 m depth, NDBC 46022, also offshore of Northern California in 675 m 

depth, NDBC 51202 offshore of Oahu in 82 m depth, and NDBC 46050 offshore of Oregon in 128 

m depth. 
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2 STUDY OF THE DATA AND ORIGINAL APPROACH 
 

 

2.1 Review of the initial code 
 

As a part of the effort to characterize sea states relevant for studying the response of a wave energy 

conversion device under extreme events, a code was initially developed in Matlab in 2011 (Berg 

2011) using the equations proposed in (Haver and Winterstein 2008) to implement the IFORM as 

recommended in the DNV standard on position mooring (DNV 2010). The method developed in 

this existing code consists of a two-step process used to characterize extreme sea states. The first 

step includes fitting distributions to the significant wave height (  ) and either the energy period 

(  ) or peak period (  ) observations. The second step uses these fitted distributions to estimate 

extreme sea states. Note that in this study and for the application of the wave resource catalogue, 

the energy period (  ) is used because it is widely used in wave energy applications (Lenee-Bluhm, 

Paasch and Özkan-Haller 2011), and has been found to be more robust than the peak period (  ), 

due to a high sensitivity to spectral peak.   

 

2.1.1 Application of current approach to extreme sea state contour development 
 

The approach presented in the original code uses the same traditional monodimensional fitting 

technique that is presented in the literature (Haver and Winterstein 2008). The consequence of using 

a monodimensional fitting approach as opposed to a more multidimensional consideration will be 

discussed in section 2.2.2. A more multidimensional approach, developed using principal 

component analysis, will be described in chapter 3.2. 

 

The first step of the current method includes fitting the existing significant wave height (  ) and 

energy period (  ) data using probability distributions. A least squares technique is applied to a 3-

parameter Weibull distribution in order to fit the cumulative distribution function (CDF) of the    

data. An optimization is performed on the two classical scale ( ) and shape ( ) parameters of a 

Weibull distribution (Johnson, Kotz and Balakrishnan 1994) along with an additional third 

parameter ( ) that serves as an offset on  . This third parameter allows the Weibull distribution to 

be shifted on the   axis, as is shown in Figure 1. 
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Figure 1: Representation of the 3-parameter Weibull distribution used to fit the    data. 

 

The CDF and inverse CDF of the 3-parameter Weibull distribution are given by: 

 

 ( )  {    (
   

 
)
 

         
                                

   

and 

 

   ( )     [   (   )]    for    ]   [   
 

In order to increase the speed of the fitting calculation, the observations are first grouped into a set 

of 49 bins using a constant significant wave height increment. The subsequent 3-parameter Weibull 

fitting resulting from this binning approach for NDBC 46212 can be seen in Figure 2. 

 

The binning approach used in this methodology slightly underestimates the distribution; for a given 

wave height, the quantile value is overestimated, meaning that the likelihood of occurrence for a 

certain wave height being equal to or less than the quantile value is lower for the binned data than 

the likelihood that is actually observed.  While the corresponding 3-parameter Weibull fitting 

provides a good representation of the binned distribution, its accuracy drops for the highest 

quantiles, as is shown in Figure 2. The consequence of this loss of accuracy is that, for a high value 

of significant wave height, the fitted distribution will associate a higher quantile value, and 

therefore a lower likelihood of occurrence, than what was observed, as was stated above. Thus, this 

underestimation may lead to a prediction of maximum significant wave height for a 100-year return 

period that is significantly smaller than the significant wave height values observed in the period of 

record. 
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Figure 2: Entire CDF representation (top) and zoom in on the highest quantiles (bottom) for 

significant wave height (  ). 

 

The energy period data is split into bins based on corresponding significant wave height values. 

Within each bin, the approach for fitting the energy period data is similar to that used for the 

significant wave height. The energy period values in each bin are fitted with a lognormal 

distribution. The mean ( ) and standard deviation ( ) of the log (the traditional lognormal 

parameters (Johnson, Kotz and Balakrishnan 1994)) are then estimated. As a result, distributions of 
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  and   as a function of significant wave height are obtained. These distributions are displayed in 

Figure 3. 

 

 
Figure 3: Relationship between lognormal parameters (top: mean of log, bottom: standard deviation 

of log) and significant wave height. 

 

The use of a binning scheme based on a decomposition of the domain of significant wave height 

creates uneven samples of energy period with very few observations for the highest wave height 

intervals. As a result, the behavior of the lognormal parameters for each bin of energy period is 

unstable for high values of significant wave height, as is seen above. 

 

The sets of lognormal parameters   and   are fit with models that describe their behavior as a 

function of significant wave height. The data fitting models used for the   and   parameters shown 

in Figure 3, proposed in (Haver and Winterstein 2008) and based on (Nygaard and Johannessen 

2000), are given by:  

 

 (  )       (  )
   

  (  )          (     ) 
 

As seen in Figure 3, the fitting models for these parameters do not fit the data, especially for the 

highest significant wave height intervals. These poor fits contribute to inaccuracies in the final 

extreme sea state contour.  

 

Following the creation of fitting models for   and  , the IFORM is used to calculate the extreme 

sea state contour. The details of this method are described in section 3. The result of the application 

of the inverse FORM approach to the problem of interest using the fitting models described above 

is presented in Figure 4. The 100-year contour estimates a smaller wave height than is actually 

observed in the 8 years of data used in the analysis. This is due to the loss of accuracy in the data 

fitting models for high quantile values previously described. This contour also fails to estimate the 

total extent of the energy period when the value of significant wave height is high.  
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Figure 4: 100-year contour (and expansion) around a scatterplot of significant wave height vs. 

energy period for NDBC 46212. 

 

The 100-year contour was expanded by both ten and twenty percent in order to create a better 

coverage of the data from the period of record under consideration. Although this expansion does 

allow for the inclusion of some of the points falling outside of the original 100-year contour, the 

selection of these expansion contours is arbitrary and does not reflect any true description of the 

problem at hand.  

 

The extreme sea state contours created for three additional study sites (NDBC 46022, 51202, 

46050) using the original code are shown in Figure 5 below. 

 



16 

 
Figure 5: 100-year contour (and expansion) around a scatterplot of significant wave height vs. 

energy period for (a) 46022, (b) 51202, and (c) 46050. 

 

 

2.2 Study of the wave data 
 

The wave data across four sites of interest was studied and compared as a first step in the process of 

improving upon the traditional method demonstrated in the original code. This study included the 

creation of a representation of data density, the development of an understanding of the conjoint 

influence of energy period and wave height, and the characterization of differences between the 

data sets under consideration.  

 

2.2.1 Representation of plot density 
 

A representation of the density of the data at each study site was created in order to understand the 

underlying patterns and trends masked by a traditional scatterplot representation of the data. In 

order to estimate the density, significant wave height and energy period data are first normalized for 

each value   as follows: 

 

(a) (b) 

(c) 
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Where   and   are the respective mean and standard deviation of the set of data that   belongs to 

(   or   ).  

 

A radius   is estimated using the total number of points   in the dataset. The radius of the 

neighborhood defined by          was found to represent the density well based on a trial and 

error approach. Following this radius estimation, a circular neighborhood is constructed around 

each point    (     ). For each neighborhood, the number of subsequent points    in the dataset 

that falls inside of this radius is counted for each individual point using the formula presented 

below: 

 

   ∑ (√(  
    

  )  (  
    

  )   )

 

   

 

 

where   is the indicator function equal to 1 if the condition is true and 0 if otherwise.  

 

This provides an estimate of data density for each study site under consideration. Examples of the 

data density calculated for each of the four sites studied during the development of this 

methodology are shown in Figure 6. 

 

 
 

(a) (b) 
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Figure 6: Representation of data density for four study sites (a) NDBC 46212, (b) NDBC 46022, (c) 

NDBC 51202, and (d) NDBC 46050. 

 

These representations of data density help to characterize the developmental patterns present in the 

data by showing differences in frequencies across the entire dataset. The shape of the trends shown 

in the density plots above help to support the new methodology proposed in subsequent sections. 

 

2.2.2 Conjoint effect of energy period and significant wave height 
 

The original methodology used to approach the problem at hand represents the relation between    

and    monodimensonally, meaning that    and    are treated independently. This 

monodimensional treatment fails to capture the complex relation between these two datasets and 

creates a misrepresentation of the worst case scenario calculated in the application of the inverse 

FORM method. Under this approach, the extreme values of    will be considered at the median 

values of    while the extreme values of    will be considered at median values of   . This 

representation fails to cover the area of the dataset in which the values of    and    are both high, 

an area that the trends present in the density plots shown in Figure 6 demonstrate to be of 

importance and may lead to the most extreme case for a given return period. As was mentioned in 

the introduction, it is not necessarily the largest significant wave height or period, but a 

combination of the two that may be the most critical for WEC survivability. The extreme sea states 

of most concern may depend on the natural frequencies of the structure or subsystems under 

consideration. 

 

 

2.2.3 Differences in behavior between the sites 
 

The density plots provided in Figure 6 show trends in the development of the entire dataset for each 

study site. The shapes present in these density plots both indicate areas of importance in the relation 

between    and    and also provide insight into the different behaviors found at the study sites 

under consideration. 

(c) (d) 
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An example of the type of site-dependent complexity in the relation between    and    can be seen 

in Figure 6(c). The data in the period of record for this site displays several dependency tendencies 

manifested in long fingers of extreme points that appear to be related. An examination of the data 

for this site as a function of time reveals that these long fingers may be related to individual storm 

events.  

 

An additional example of a different complex relation between these two datasets can be found in 

Figure 6(d). The plot of the density for this data shows that the relation between    and    at this 

site is curved and, thus, an orthogonal decomposition may not be the best way to capture the 

intricacies of this relation. However, such decomposition will allow for a better analysis of the data 

than ignoring the inherent relation between these measurements, as was done in the original 

methodology. 

 

While the new methodology proposed in this report attempts to capture some of the relationship 

between    and    at each site, the complexity of this relation varies from site to site. Additional 

work attempting to capture the complex relation linking    and    at each site poses mathematical 

and computational problems that are beyond the current scope of this report. In order to achieve the 

development of a method that can be easily applied to a variety of sites of interest rather than 

focusing on the detailed characterization of site-dependent behaviors, a simple orthogonal 

decomposition is proposed as a first step towards the desired representation. The method used to 

apply this decomposition is described in section 3.2. 
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3 DESCRIPTION OF SPECIFIC MATHEMATICAL METHODS 
 

The inverse FORM (First-Order Reliability Method) and principal component analysis are the two 

main components in the development of extreme sea state contours through the methodology 

presented in this work. These mathematical methods are described in the following sections in the 

context of their application to the current problem of interest. 

 

3.1 Inverse FORM 
 

In order to construct a 100-year contour representing extreme wave events, the fitted probability 

distributions for the variables of interest are used in an inverse FORM (First-Order Reliability 

Method) approach. 

 

The FORM approach (Zhao and Ono 1999) consists of projecting the input space in a standard 

multidimensional normal space, meaning that each uncertainty is represented using an uncorrelated 

normal distribution function. In such a space, the center point   is the most likely area (mode). The 

further the solution moves from this center point, the less likely the solution will be, as is seen in 

Figure 7. 

 

The Nataf or Rosenblatt transformations are usually used to de-correlate the data (Liu and Der 

Kiureghian 1986). The Nataf transformation is based on covariance matrix decomposition. In the 

current context, the use of principal component analysis, described in section 3.2, will provide an 

equivalent benefit such that the use of either of these transformations is not necessary.  

 

 

 
Figure 7: Representation of the standard normal space used by reliability techniques. 

 

In the standard FORM approach, a threshold value is considered and its likelihood is estimated in 

the standard normal space. The inverse FORM (Winterstein, et al. 1993) approach starts from the 
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normal space and a probability of likelihood (for instance a return period of 10 or 100-years) that 

defines an isoline, as is seen in Figure 7. This isoline is then transposed into the original uncertain 

input space in order to evaluate the potential range of extreme values. Numerically, a discretization 

is used on the angle   over the isoline, represented as a parametric function as is shown below: 

 

{
        (  )
        (  )

   with    
   

 
           

 

where   represents the radius of the circle, i.e., the distance from the most likely point.  

 

For each value of i, the quantile position of the chosen probability of likelihood is calculated in both 

directions in the standard normal space. Each resulting quantile is then evaluated using the inverse 

CDF that represents the input distribution in order to estimate the boundary that would lead to 

extreme events amongst the input set, as is shown in Figure 8. In the problem of interest, the   axis 

represents the energy period while the   axis represents significant wave height. 

 

 
Figure 8: Transposition of an isoline (and center point) from the standard normal space (left) into 

the original sample space (right). 
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3.2 Principal component analysis 
 

 

The concept of principal components was initially introduced by Karl Pearson in 1901 (Pearson 

1901) and more formally developed by H. Hotelling in 1933 (Hotelling 1933). The underlying goal 

of principal component analysis (PCA) is to develop a new orthogonal basis in which the variables 

will be (1) uncorrelated and (2) sorted such that the first variable represents the direction in which 

the data has the largest variance and each subsequent variable leads to the next largest variance.  

 

PCA provides a powerful transformation that works to reduce the dimensionality of a problem 

considering that the higher order components have a low impact on the variance of the data. 

Traditionally, the variables in the new basis are called principal components while the values 

associated to each variable in this new basis for each point are called z-scores. The mathematical 

tools used to generate this new basis are based on classical linear (matrix) algebra applied to the 

covariance matrix, taking advantage of its structure (square symmetrical and non-singular matrix) 

(Jackson 1991).  

 

Principal component analysis was used to remove the correlation between the two variables 

analyzed in the problem of interest (i.e., significant wave height and energy period) for each dataset 

because of this method’s intrinsic properties and its simplicity of application. The application of 

PCA to these two variables will generate two new variables that will be called component one (  ) 

and component two (  ).    representing the component with the highest variance. The application 

of PCA to the original    and    data yields a coefficient matrix defining a linear combination that 

allows for rotation into the principal component space. The rotation axes defined by this linear 

combination are shown in Figure 9. The general form of this coefficient matrix is shown below: 

 

   [
        

        
] 

where            and          . 

 

The equations for each component based on the application of the coefficient matrix above for each 

point    (   
    

) are shown below: 

 

   [

      

  
   

   

] 

 

     [

   
            

       
            

    

  
   

    
        

       
    

        
    

] 

 

In order to fulfill the requirements for subsequent elements of the extreme event analysis (i.e., 

fitting probability distributions to the data), the rotated components must also be shifted upwards 

along the   axis to ensure that they are entirely positive. This is achieved by simply applying a shift 

  defined by the following equation: 
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  |   (  )|      
 

The final equations for the components defined by a single original data point    (   
    

) are 

then given by: 

 

   
    

        
     

   
    

        
       

 

The components defined by these equations are used throughout the remainder of the analysis until 

they are transformed back into the original space in order to show the extreme sea state contour in 

the input space defined by variables    and    rather than in the principal component space defined 

by variables    and   .  

 

An additional benefit of principal component analysis is that it is a bijective transformation, 

meaning that there is one and only one way to transform back to the original space, and that the 

inverse transformation is also a simple linear combination. Given a point    (   
    

) in the 

principal component space, the transformation back to the corresponding point on the extreme sea 

state contour in the original space defined by variables    and    is defined by: 

 

   
 

           (    )

                 
 

 

   
 

           (    )
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Figure 9: Representation of the axes of the new basis developed using principal component analysis 

for NDBC 46212. 

 

As can be seen in Figure 6, there is a definite correlation between energy period and significant 

wave height. Dissociating these two variables and treating them independently, as is done in the 

traditional approach to extreme sea state characterization, underestimates the inherent dependency 

between the values. The principal components in the new basis will be uncorrelated and, thus, the 

rotation from the old basis into the new basis under the methodology described in this work will 

capture some of the dependency between the initial variables    and   , as is shown in Figure 9. 

 

Although PCA partially captures the dependency between    and   , some dependency may still 

remain due to the complexity of the relation between these two variables. The remaining 

dependency will be taken into account using the same approach proposed in the original code. In 

keeping with this approach,    will be split into multiple groups depending on the value of   . 

 

The implementation of this methodology differs in two ways from its application in the original 

code. First, in the original application of distribution fitting,    was fit first with a single 

distribution while    was split into bins to be fit with distributions based on the value of   . In the 

new implementation,   , which is mostly influenced by   , will be the data set that is fit first with a 

single distribution while   , mostly influenced by   , will be binned based on the values of    in 

order to be fit with distributions based on the value of   . Second, the binning of the second group 

of variables,   , will be based on a discrete number of points in the new implementation rather than 

the binning scheme based on decomposition of the domain covered by the first component that was 

applied in the original methodology. The reasoning behind this new binning scheme is linked to the 

density of points; it is not necessary to have a large number (several thousands) of values to fit a 

distribution in some areas while some other areas are poorly represented with a distribution 
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considering only a small number (less than 10 in some cases) of points, as was seen in the 

application of the original methodology. 

 

The use of principal component analysis can easily be extended to include multiple dimensions with 

each new set of components ultimately presented as a simple linear combination of the original 

variables. In future work, this could be used to consider additional variables, e.g., wind and current 

speed, related to the problem of extreme sea state characterization. 

 

The idea of expressing the data using principal components prior to use the inverse FORM 

approach has been applied to design current profiles in the past (Forristall and Cooper 1997). 
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4 CREATION OF EXTREME SEA STATE CONTOUR 
 

Principal component analysis is applied to the    and    data in order to create a representation of 

the data in the space defined by the principal components component one,   , and component two, 

  . As is described in section 3.2, this helps to remove the correlation between the variables in the 

input space. These components are used throughout the remainder of the analysis in the creation of 

the extreme event contour until this contour is transformed back into the original input space.  

 

4.1 Distribution and parameter fitting 
 

4.1.1 Fitting of first component 
 

Following the rotation of the dataset into the principal component space, the CDF of    is fitted 

with an inverse Gaussian distribution. This component was chosen for the initial fitting because it 

has the largest variance, as can be seen in Figure 9. The inverse Gaussian distribution was chosen 

from the 23 available fitting distributions in the Matlab Statistics toolbox both because it provides a 

good fit of the CDF shape observed in the dataset and because of the simplicity of its defining 

parameters in terms of interpretation. The result of this fitting for NDBC 46212 is shown in Figure 

10 below. 

 

 
Figure 10: Component one CDF for all data (blue) and inverse Gaussian model (red) for NDBC 

46212. 

 

While the inverse Gaussian distribution fits three of the study sites very well, the fitting is not as 

good as expected for NDBC 51202, resulting in a less than optimal extreme event estimate as seen 

in Figure 18. A method to improve this distribution fitting in the future will be discussed in section 

6. 
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4.1.2 Splitting component two according to the value of component one 
 

The values of    were sorted according to their corresponding   values and binned as a first step in 

the determination of parameter models to be used in the application of the inverse FORM approach 

to construct a characterization of extreme wave events. This approach attempts to capture some of 

the necessary dependency between significant wave height and energy period by representing the 

parameters of the distributions fitted to the    values for each bin as functions of corresponding 

representative    values.  

 

In order to create a binning scheme that covers the distribution of    values with a more balanced 

representation, the sorted    data was split into groups of 250 up to the last group, which contains 

all remaining points. This number is chosen arbitrarily but seems to be reasonable based on the 

original sample size. This binning scheme allows for a much better coverage of the distribution of 

the    data, minimizing the errors created by the binning methodology applied in the original 

problem evaluation, as was described in section 2.1.1. The CDFs for all of the    bins are shown in 

Figure 11 below. 

 

 
Figure 11: CDFs for all bins of component two for NDBC 46212. 

 

The CDF for    for each bin must be fitted with a distribution. In order to apply the inverse FORM 

methodology to create an extreme event contour, the parameters for the distribution chosen to fit the 

binned values of    must be fit as functions of the representative value of    for each bin. Thus, it is 

important that the distribution chosen to fit the values of    have parameters (e.g., mean and 

standard deviation) that might be connected to a physical understanding of the problem at hand 

rather than the shape, scale, and shift parameters that govern many probability distributions. In this 

manner, an understanding of the relation between the values of    and the overall distribution of    

can be used to inform the fitting of    distribution parameters, allowing for the creation of fitting 
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functions that account for both trends within the binned data and for a consideration of more global 

trends.   

 

A normal distribution was chosen to fit the distribution of    values for each bin. This fit seems 

appropriate considering the symmetry of the data, as is shown in Figure 11 above. In addition, the 

parameters that define the normal distribution are the mean,  , and standard deviation,  . These 

parameters can be used to consider larger trends in the data under consideration in order to inform 

the construction of their subsequent fitting functions, as was described above. The development of 

fitting functions for the set of   and   values created by fitting a normal distribution to the    CDF 

for each bin is described in the following section. The CDF for    along with the corresponding 

normal distribution fit is shown in Figure 12 for a selection of bins.  

 

 
Figure 12: CDFs for selected bins of component two with normal distribution fits for NDBC 46212. 

 

4.1.3 Fitting a function for the variation of mu and sigma 
 

The sets of   and   values created following the fitting of a normal distribution to the CDF for the 

distribution of    values for each bin are represented as functions of the mean value for    for each 

bin in Figure 13 below.  
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Figure 13: Estimates of the component two normal distribution parameters   (top) and   (bottom) 

as a function of component one for each bin for site 46212. 

 

Based on the trends observed in the data shown above, it was determined that a simple linear 

approximation could be used to fit   as a function of    and a quadratic approximation could be 

used to fit  . These approximations were fit to the data using a least squares technique applied in 

Matlab. The fitting functions for   and   are as follows: 

 

  (  )    (  )     

 

  (  )    (  )
    (  )     

 

The results of these approximations for a selected site are shown in Figure 14. 
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Figure 14: Estimates of component two normal distribution parameters   (top) and   (bottom) as a 

function of component one for each bin with related fitting functions for NDBC 46212. 

 

Although the fittings shown above do not perfectly represent the variations present in the data, the 

smooth extrapolations that these fitting functions allow for creates a more practically applicable 

extreme sea state contour. This is especially true when the data is unstructured and may create 

multimodal distributions, as is seen in Figure 6. 

 

Though a linear fitting for   does not perfectly represent the variations present in the data, this 

fitting is theoretically sound considering the implications of applying principal component rotation 

to the data. With this orthogonal decomposition, the mean of    as a function of    should remain 

relatively linear, as can be seen in Figure 9. 

 

The quadratic fit for   was chosen as a step towards ensuring that extrapolation towards smaller 

values for   , as necessarily occurs in the application of the inverse FORM methodology, does not 

create negative values. A constraint is placed on the optimization of this fitting function in Matlab, 

forcing the parameter   (  intercept) to be greater than or equal to zero. It can be easily shown that 

the minimum of the quadratic fitting function for   occurs at          ⁄ . Then, the minimum of 

the function   (  ) is given by: 

 (  )     
  

 

   
 

Thus, even if    is positive, the minimum value of the function could be negative depending on the 

values of    and   . While this constraint does not necessarily ensure that the quadratic fitting for   

will remain positive, it seems to be sufficient given the trends observed for the study sites under 

consideration for the present work. 

 

Additional refinements to the fitting functions for   and   remain as an area of improvement for 

future work.  
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4.2 Application of inverse FORM methodology 
 

Following the creation of an inverse Gaussian distribution fit for component one and the 

development of models fitting the parameters of the normal distributions fitting bins of    as a 

function of   , the inverse FORM method is applied in order to construct an extreme sea state 

contour for the given return period. This application is performed in the exact manner that is 

described in section 3.1. The quantile position of the chosen probability of likelihood (in this case 

100-years) is calculated for the discretized isoline in both directions in the standard normal space. 

The resulting quantiles are then evaluated using the inverse CDFs that represent the input 

distribution, creating the extreme sea state contour for the chosen probability of likelihood in the 

principal component space. The values for each point on the extreme sea state contour must then be 

transformed from the principal component space into the original sample space defined by variables 

   and    using the methodology described in section 3.2. An example of the resulting extreme sea 

state contour is shown in Figure 15 below. 

 

 
Figure 15: 100-year extreme sea state contour for NDBC 46212. 

 

The rotation of the extreme sea state contour into the original space may create non-physical results 

if elements of the contour fall below the   axis, indicating that, for a given energy period, a 

negative value of significant wave height might occur. In order to avoid this non-physical 

representation of the extreme sea state contour, the contour is truncated such that any elements of 

the contour including negative values for significant wave height are set to zero. 
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5 COMPARISON OF RESULTS WITH INITIAL CODE 
 

The results of the extreme contours from four buoy records created using the application of the 

original methodology are compared with the extreme contours generated using the analysis 

proposed in this work in the figures below. The extreme contours developed under the new 

methodology are shown along with a representation of the density of each dataset under 

consideration, calculated as described in section 2.2.1. This representation helps to emphasize the 

importance of considering the conjoint influence of energy period and significant wave height in 

order to create extreme sea state contours that reflect patterns within the data.  

 
Figure 16: Extreme sea state contour for NDBC 46212 created by the original methodology (left) 

and the new methodology shown with data density (right). 

 

 
Figure 17: Extreme sea state contour for NDBC 46022 created by the original methodology (left) 

and the new methodology shown with data density (right). 
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Figure 18: Extreme sea state contour for NDBC 51202 created by the original methodology (left) 

and the new methodology shown with data density (right). 

 

 
Figure 19: Extreme sea state contour for NDBC 46050 created by the original methodology (left) 

and the new methodology shown with data density (right). 

 

The extreme sea state contours created using the new methodology appear to follow the shape of 

trends present within the data, a great improvement upon the contours created using the traditional 

methodology. This allows for coverage in the area of the input space in which both energy period 

and significant wave height are high, an area of importance as is discussed in section 2.2.2.  

 

At the most basic level, the extreme sea state contours created using the new methodology create a 

much better coverage of the data for the given period of record for most of the study sites under 

consideration. This result is as expected because, given a period of record on the order of tens of 

years, one would expect the extreme contour for a return period on the order of hundreds of years to 

include all of the data from the period of record. The exception to this is the contour calculated for 

NDBC 51202. At this site, the complex relations between    and    are not entirely captured by the 

application of principal component analysis and the distribution fitting methodology described in 

section 3.2. Additional investigation of methodologies that are better able to capture the complex 

relations found at NDBC 51202 might help to create a better extreme sea state contour for this data 

set. This remains as an area of future work that is beyond the scope of the current analysis. 



35 

 

6 CONCLUSION AND PERSPECTIVE 
 

The modified version of IFORM developed in this report utilizes several new techniques to 

generate environmental contours that are more realistic than those created using more traditional 

methods.  

 

The development of an understanding of trends present within the data under consideration through 

a representation of density supports the use of principal component analysis. This is reflected in the 

shape of the extreme sea state contours that are ultimately created in this analysis because these 

contours follow the overall direction shown in a density-based representation of the study data. 

Following the application of principal component analysis to transform the original data, the use of 

an inverse Gaussian distribution to fit the entire distribution of   , the component with the largest 

variance, creates better fitting for this step in the development of distribution parameters to be used 

in the inverse FORM process.    is binned based on corresponding sorted values of    using a 

discrete number of data points, a binning scheme that allows for better coverage across the 

distribution of this variable. Each bin of    is fit with a normal distribution whose parameters   and 

  are modeled by linear and quadratic functions, respectively, as a function of a representative 

value of    for each bin. These models allow for an extrapolation in both directions that creates 

smooth extreme sea state contours when used in the application of the inverse FORM.  Finally, the 

application of the inverse FORM approach and a transformation back into the original input space 

governed by variables    and    results in the extreme sea state contour calculated for a given 

return period.  

 

There are several areas that represent possibilities for future enhancements to the methodology 

developed in this report. First, the use of principal component analysis to create an orthogonal 

decomposition of the data such that the values are uncorrelated in each direction only addresses one 

aspect of the complexity of the relation between energy period and significant wave height, as can 

be seen in Figure 6 (c) and (d). A more complex decomposition taking into account the varying 

relations among the study sites shown in these representations of density (e.g., curvature) could lead 

to a better representation of the data and, therefore, a more accurate approximation of the extreme 

sea state contour for a given return period. The selection of a more generic distribution or a mixed 

distribution to fit the variation in behavior for    over the selection of study sites along with 

refinements in the models developed for the normal distribution parameters   and   for    might 

also contribute to the creation of more accurate extreme sea state contours for all sites.  

 

Overall, this is a significant improvement to the original method of calculating an extreme contour 

of sea states.  The proposed modifications, utilizing principal components, better represent the 

measured data and provide a more reasonable estimation of environmental contours and extreme 

sea states. This can better prepare WEC developers for survivability analysis and can be applied to 

the ship and marine structures industry as well. 

 

 

 

 

 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

 

  



37 

 

7 BIBLIOGRAPHY 
      
 

Baarholm, G. S., S. Haver, and O. D. Økland. "Combining contours of significant wave height and 

peak period with platform response distributions for predicting design response." Marine 

Structures 23, 2010: 147-163. 

Berg, J. Extreme Ocean Wave Conditions for Northern California Wave Energy Convesion Device. 

SAND REPORT SAND2011-9034, 2011. 

Coe, R. G., V. S. Neary, M. J. Lawson, Y. Yu, and J. Weber. Extreme Conditions Modeling 

Workshop . Technical Report NREL/TP-5000-62305, SAND2014-16384R, 2014. 

Dallman, A., and V. Neary. "Initial Characterization of the wave resource at several high energy 

U.S. Sites." Proceedings of the 2nd Marine Energy Technology Symposium (METS2014). 

Seattle, WA, 2014. 

DNV. Guidelines on design and operation of wave energy converters. . Det Norske Veritas, The 

Carbon Trust, 2005. 

DNV. Offshore service specification - DNV-OSS-312 Certification of Tidal and Wave Energy 

Converters. Det Norske Veritas, 2008. 

DNV. Offshore Standard - DNV-OSF-201 Dynamic Risers. Hovik Norway: Det Norske Veritas, 

2001. 

DNV. Offshore Standard, DNV-OS-E301 - Position Mooring. Hovik, Norway: Det Norske Veritas, 

2010a. 

DNV. Recommended practice - DNV-RP-C102 Structural design of offshore ships. Det Norske 

Veritas, 2002. 

DNV. Recommended practice - DNV-RP-C205 Environmental conditions and environmental loads. 

Det Norske Veritas, 2014. 

DNV. Recommended Practice - DNV-RP-F205 Global performance analysis of deepwater floating 

structures. Det Norske Veritas, 2010b. 

Forristall, G. Z., and C. K. Cooper. "Design Current Profiles Using Empirical Orthogonal Function 

(EOF) and Inverse FORM Methods." Offshore Technology Conference. Houston, Texas, 

1997. 11-21. 

Haver, S, and S.R. Winterstein. "Environmental Contour Lines: A Method for Estimating Long 

Term Extremes by a Short Term Analysis." SMTC-067. 2008. 

Hotelling, H. "Analysis of a complex of statistical variables into principal components." Journal of 

educational psychology, 1933. 

Jackson, J. E. A User's guide to principal components. John Wiley and Sons, 1991. 

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous univariate distributions. Vol1 (2nd ed.). 

New York: Wiley Series in Probability and Mathematical Statistics: Applied Probability and 

Statistics , 1994. 

Lenee-Bluhm, P., R. Paasch, and H. T. Özkan-Haller. "Characterizing the wave energy resource of 

the US Pacific Northwest." Renewable Energy 36, 2011: 2106-2119. 

Liu, P., and A. Der Kiureghian. "Multivariate distribution models with prescribed marginals and 

covariances." Probabilistic Engineering Mechanics Vol 1 n. 2, 1986: 105-112. 

Neary, V. S., et al. Methodology for Design and Economic Analysis of Marine Energy Conversion 

(MEC) Technologies. SANDIA REPORT - SAND2014-9040, 2014. 



38 

Nygaard, E., and K. Johannessen. Metocean Design Criteria for Kvitebjorn. Statoil Report C193-

KVB-N-FD-0001, 2000. 

Pearson, K. "On Lines and Planes of Closest Fit to Systems of Points in Space." Philosophical 

Magazine 2 (11), 1901: 559-572. 

Rosenblatt, M. "Remarks on a multivariate transformation." Annals of Mathematical Statistics, 

1952: 470-472. 

Vanem, E., and E.M. Bitner-Gregersen. "Alternative environmental contours for marine structural 

design - a comparison study." Proceedings of the ASME 2014 33rd International 

Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, 2014. 

Winterstein, S. R., T. C. Ude, C. A. Cornell, P. Bjerager, and S. Haver. "Environmental Parameters 

for extreme response: inverse form with omission factors." ICOSSAR-93. Innsbruck, 

AUSTRIA, 1993. 

Zhao, Y.-G., and T. Ono. "A general procedure for First/second-order reliability method 

(FORM/SORM)." Structural safety 21 (2), 1999: 95-112. 

 

  



39 

8 DISTRIBUTION 
 

3 MS1124 A. Dallman 6122 

3 MS1124 V.S. Neary 6122 

1 MS0748 J. C. Helton 1341 

3 MS0747 C.J. Sallaberry 6224 

1 MS0747 R. J. Mackinnon 6224 

1 MS0747 R. Dingreville 6233 

3 MS0744 A.C. Eckert-Gallup 6233 

1 MS0744 P. D. Mattie 6233 

 

 

 

1 MS0899 Technical Library 9536 (electronic copy) 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


