Interim Environmental Monitoring Program: Vangorda Creek (2007) and Rose Creek (2008)

Report Prepared for:

Assessment and Abandoned Mines Branch Energy, Mines and Resources Government of Yukon Whitehorse, Yukon

Report Prepared by:

Minnow Environmental Inc. 2 Lamb Street Georgetown, Ontario L7G 3M9

EXECUTIVE SUMMARY

A study was conducted to fill data gaps and thus allow for development of an effective and cost-efficient, long-term, post-closure monitoring program for the Faro Mine complex, Yukon. Under the current Water License for the Faro Mine complex, water, sediment and benthic invertebrate samples have been collected by Laberge Environmental Services (LES) in alternate years in the Vangorda and Rose/Anvil Creek systems, respectively. These studies have involved artificial substrate deployment for five to six weeks in the summer to allow for benthic invertebrate colonization and community assessment in creek areas upstream and downstream of mine drainage. Coincident with retrieval of the artificial substrates, sediment samples have been collected for analysis of metal content in the fine fraction (<0.15 mm). Water samples were also collected when artificial substrates were both deployed (mid-July) and retrieved (late August), along with measurements of flow and in situ water quality (conductivity, temperature, pH, dissolved oxygen) and collection of water and sediment quality.

For this study, additional samples were collected by Minnow Environmental Inc. at the time of artificial substrate retrieval by LES at the Vangorda site in August 2007 and in the Rose Creek drainage in 2008. The sampling program included: 1) collection of one water sample per area for analysis of various inorganic and conventional parameters as well as a low-level metal scan by inductively coupled plasma mass spectrometry (ICPMS); 2) collection of water samples from two mine-exposed areas and one reference area for laboratory toxicity testing; 3) collection of sediment samples in three mine-exposed areas and two reference areas for toxicity testing, particle size analysis, and analysis of metals in both the whole sample and fine fraction; 4) collection of resident benthic invertebrate communities using a Hess sampler (2007 and 2008) and kick net (2008); 5) benthic invertebrate sample collection from areas that have been included in past studies for monitoring under the Water License, as well as additional reference areas which have not been sampled in the past; and 6) collection of supporting field water quality data (temperature, dissolved oxygen, conductivity and pH) and habitat observations.

Analyses of water samples collected in August of 2007 and 2008 showed relatively good water quality at mine-exposed areas compared to water quality benchmarks based on the protection of aquatic life. However, elevated metal levels and increased aquatic toxicity were observed in the Rose Creek drainage in January 2009 compared to August 2008, indicating potential for groundwater contaminant sources to affect biota during periods of limited surface water dilution.

Sediment metal concentrations were about three times higher in the fine sediment fraction (<0.15mm) compared to whole sediment, indicating that a large proportion of metals present were associated with fine sediment particles. However, fine sediments represented a small proportion of the whole sediment sample in most areas. Sediments collected from V27, X2 and R2 which contained elevated concentrations of arsenic, lead, manganese, and zinc were not toxic to the amphipod *Hyallela azteca* in 14-day laboratory tests measuring surivival and growth. Inclusion of sediment analyses in long-term monitoring is of questionable value, unless triggered by substantial increases in metal and/or suspended solids loadings from the mine.

Benthic community assessments based on artificial substrates were less sensitive than Hess or kick sample collection for detecting differences in mine-exposed benthic communities relative to those in reference areas. Within a traditional control-impact (CI) sampling design (ANOVA and pre-planned reference-exposure contrasts), Hess and kick sampling produced the same number of significant reference-exposure differences, but based on different benthic community metrics.

Based on a reference condition approach (RCA) for the sampling design, the kick sampling method was slightly more sensitive for detecting differences between the exposure and reference areas than the Hess sampling method and represents the most cost-effective approach for long-term monitoring at the Faro Mine complex. An alternative, modified control-impact design was also identified that would involve slightly greater cost but involves statistical procedures more familiar to most practitioners than those required for RCA.

Overall, the data may reflect subtle mine-related effects on benthic invertebrate community composition, but none of the mine-exposed areas evaluated in this study were conclusively outside the range of reference area conditions. Statistical power would be improved if additional reference areas could be found near the Faro Mine complex possessing similar habitat characteristics to exposure areas. Candidate areas could be selected in advance of the next field program based on geographic information system (GIS) characteristics that were strongly related to benthic community characteristics (e.g., percent volcanic bedrock geology and percent coniferous cover). All reference areas that may be included in future monitoring should be investigated to ensure they are not affected by current or historical anthropogenic influences. After selection and initial sampling at all reference areas, only a subset of areas would need to be revisited in each future survey on a rotational basis (i.e., not all areas every survey).

TABLE OF CONTENTS

EXEC	JTIVE SUMMARY	
ACKN	OWLEDGEMENTS	VI
1.0 1.1 1.2 1.3	INTRODUCTION Background Project Objectives Report Organization	1 2 2
2. 2. 2. 2.	Overview Habitat Characterization based on Field Measurements Habitat Characterization based on GIS Water Chemistry Water Toxicity Sediment Chemistry Sediment Toxicity Benthic Invertebrate Community Assessment 7.1 Hess Sampling 7.2 Kick and Sweep Sampling 7.3 Laboratory Analyses 7.4 Community Descriptors 7.5 Control-Impact (ANOVA) Comparisons 7.6 Reference Condition Approach Fish Surveys	
3.0 3.1 3.2 3.3	WATER QUALITY ASSESSMENT In situ Measurements Laboratory Chemical Analyses Laboratory Toxicity Tests	15 16
4.0 4.1 4.2	SEDIMENT QUALITY ASSESSMENT	18
5. 5.3 5.	BENTHIC INVERTEBRATE COMMUNITY Preliminary Data Assessment Control-Impact Design 2.1 Comparison of Sampling Methods 2.2 Number of Stations per Area Reference Condition Approach 3.1 Habitat Comparisons 3.2 Comparison of Sampling Methods Comparison of Sampling Designs	1919202020
6.0	CONCLUSIONS AND RECOMMENDATIONS	
7 0	REFERENCES	28

APPENDIX A: Water Quality Benchmarks

APPENDIX B: Water and Sediment Quality Data (Chemistry, Toxicity)

APPENDIX C: Habitat Descriptions and Photographs

APPENDIX D: Raw Benthic Invertebrate Community Data and Summary

Statistics

APPENDIX E: Habitat Matching

APPENDIX F: Supporting Statistical Data – ANOVAs and Reference TSAs

LIST OF FIGURES

	Followin	ıg Page
Figure 1.1:	Location of Faro Mine complex	1
Figure 2.1:	Location of Reference and Mine-exposed Stations	4
Figure 2.2:	Location of Near-field and Mine-exposed Areas	4
Figure 5.1:	Correspondence Analysis of Benthic Community Data for A	Artificial
	Substrate, Kick and Hess Samples	19
Figure 5.2:	Correspondence Analysis of Benthic Community Data for Exposure	versus
	Reference Areas	19
Figure 5.3:	Graphical Depiction of Area CA Scores	22
LIST OF	TABLES	
	Followin	ıg Page
Table 2.1:	Sampling Design for Interim Monitoring Program	4
Table 3.1:	Field Water Quality Measurements	15
Table 3.2:	Water Quality Data Compared to Benchmarks, 2007	15
Table 3.3:	Water Quality Data Compared to Benchmarks, 2008	15
Table 3.4:	Water Quality Data Compared Benchmarks, 2009-02-20 17	16
Table 3.5:	Aquatic Toxicity Test Results	16
Table 4.1:	Summary Sediment Quality in Vangorda and Rose Creeks	18
Table 4.2:	Results of 14-day Survival and Growth Tests Using Hyallela asteca.	18

Table 5.1:	Coefficients of Variation and p-values for Reference – Exposure Contrasts
	Based on Benthic Community Metrics for Hess Samples versus Artificial
	Substrates19
Table 5.2:	Coefficients of Variation and p-values for Reference - Exposure Contrasts
	Based on Benthic Community Metrics for Hess versus Kick Samples20
Table 5.3:	The Effect of Three Versus Five Stations per Area on Within Area
	Coefficients of Variation and p-values for Reference – Exposure Contrasts
	for Various Benthic Communtiy Metrics (Vangorda Creek Drainage)20
Table 5.4	The Effect of Three Versus Five Stations per Area on Within Area
	Coefficients of Variation and p-values for Reference – Exposure Contrasts
	for Various Benthic Community Metrics (Rose Creek Drainage)20
Table 5.5:	Correlations Between Non-metal inorganic parameters, aqueous metal
	concentrations and other habitat variables21
Table 5.6:	Ranking of Reference Areas in Terms of Habitat Similarity to Exposure
	Areas21
Table 5.7:	Benthic Community Characteristics of Rose Creek Exposure Areas
	Relative to Reference Areas Based on Hess Sampling22
Table 5.8:	Benthic Community Characteristics of Rose Creek Exposure Areas
	Relative to Reference Areas Based on Kick and Sweep Samples22
Table 5.9:	Benthic Community Characteristics of Vangorda Creek Exposure Areas
	Relative to Reference Areas Based on Hess Sampling23
Table 5.10	Reference - Exposure Comparisons Using Different Statistical Methods
	and Different Sampling Methods24

ACKNOWLEDGEMENTS

This study was managed by Ms. Patti Orr, with helpful input from Ms. Cynthia Russel, and Mr. Pierre Stecko, all Senior Scientists and Principals at Minnow. The success of this project is also attributable to the following individuals whose contributions deserved to be recognized:

- Field measurements and sample collections were completed by Ms. Kim Connors (2007), Ms. Tammy Hansen (2008) and Ms. Cynthia Russel (2008) of Minnow and Dr. Michelle Bowman (2008).
- Benthic sample taxonomy (2007, 2008) was completed by Ms. Sue Salter of Cordillera Consulting.
- Data organization and management was supported by Ms. Deb McMillan and Mr.
 Kevin Martens of Minnow.
- Summary statistics of benthic community characteristics (metrics) and area comparisons by ANOVA (2007, 2008) were completed by Dr. Ian Martin of Ian Martin Biological Consulting, Elora, ON.
- Analysis of benthic invertebrate communities using the Reference Condition Approach (2008) was done by Dr. Michelle Bowman.

We would also like to thank Ms. Bonnie Brown of Laberge Environmental Services (LES) for support in the field and for sharing the data from the monitoring programs conducted by LES in 2007 and 2008. We thank Mr. Stephen Mead of the Assessment and Abandoned Mines Branch of the Yukon Ministry of Energy, Mines and Resources and Mr. Bill Slater of Bill Slater Environmental Consulting for their support throughout this project and their vision in recognizing the importance of this work for optimizing the cost-effectiveness of long-term aquatic ecological monitoring at the Faro Mine complex.

1.0 INTRODUCTION

1.1 Background

The Faro Mine complex, near Faro, Yukon, includes two mines: the Faro Mine and Mill (Faro site) and Vangorda/Grum Mines (Vangorda site), which are located approximately 12 km apart (Figure 1.1). The complex was formerly owned by the Anvil Range Mining Corporation and produced lead and zinc concentrates to be extracted for lead, zinc, silver, and gold. The Faro site was mined between 1969 and 1992, while the Vangorda site was developed and mined between 1986 and 1998. Milling continued at Faro until April 1998, when all operations were terminated due to poor economic circumstances and projections, and the site went into receivership. Until early 2009, management of the mine property has been under the direction of Deloitte and Touche Inc., acting as the court appointed Interim Receiver. Site Care and Maintenance responsibilities are now being transferred to a contractor acting on behalf of the Yukon Government.

The Yukon government and its consultants, working with the federal government, Selkirk First Nation, and Ross River Dena Council, are currently preparing a comprehensive closure plan for the abandoned Faro Mine complex. Before the closure plan can be implemented, it will be subject to regulatory assessment and approval processes. The plan requires regulatory approval in the form of a Water License issued under the *Waters Act* by the Yukon Water Board and will need to be acceptable to relevant government agencies, the First Nations and the public. The assessment process will be carried out through the Yukon Environmental and Socio-Economic Assessment Board under the *Yukon Environmental and Socio-Economic Assessment Act* (YESAA).

Technical studies conducted at the site, which are nearing completion, have indicated that acidification and leaching processes have the potential to result in dramatic increases in metal loadings to surface waters downstream of the Faro Mine complex over the next several to many decades (SRK 2004, 2005). Consequently, the closure process is proceeding to phases focused on identifying the mitigation measures required to protect the aquatic ecosystem downstream of the mines. Related to this, Minnow Environmental Inc. was requested to assist in identifying the requirements of a comprehensive, site-wide environmental monitoring program to be implemented upon closure.

As first steps, Minnow reviewed and re-evaluated the results of previous studies and monitoring (Minnow 2007a) and proposed a general framework for the long-term monitoring program (Minnow 2007b). Key information gaps were identified that needed to be addressed in order to optimize the long-term monitoring program design (Minnow

2007b). It was thus proposed that an Interim Aquatic Ecosystem Monitoring Program (IAEMP) be implemented in the short-term, in conjunction with monitoring being undertaken at the Vangorda site in 2007 and Rose/Anvil Creeks in 2008 under the current Water License (Minnow 2007b). This report presents the findings from the sampling programs that ensued in 2007 and 2008. This information will be used to update the long-term monitoring program requirements later in 2009.

1.2 Project Objectives

The overall objective of the project was to fill some of the critical data gaps previously identified by Minnow (2007b) to allow for development of an effective and cost-efficient, long-term, post-closure monitoring program. The specific objectives for the 2007-08 studies included:

- 1. Evaluate potential mine-related effects based on water, sediment and benthic invertebrate data.
- Determine the optimum sampling method (artificial substrates, Hess, kick and sweep) and statistical sampling design (control-impact or reference condition approach) to serve as a sensitive indicator of mine-related effects on downstream aquatic ecosystems.
- 3. Evaluate the relevance of future sediment sampling and analysis based on characterization of sediment particle sizes, chemistry, and toxicity in near-field versus reference areas.
- 4. Evaluate the suitability of additional reference areas for potential inclusion in future benthic invertebrate and/or fish surveys.

The information from this study, combined with results from the parallel sampling program implemented by Laberge Environmental Services Inc. in 2007 and 2008 (in accordance with requirements of the current Water License), allows for development of a streamlined program for long-term aquatic ecosystem monitoring at the Faro Mine complex.

1.3 Report Organization

Methods used for sample collection and for the analysis of samples and data are outlined in Section 2.0. Study results are presented in Sections 3.0 to 5.0 for water, sediment, and benthic invertebrate samples, respectively. Conclusions and recommendations are presented in Sections 6.0. References cited throughout this document are listed in Section 7.0.

2.0 METHODS

2.1 Overview

Under the current Water License for the Faro Mine complex, water, sediment and benthic invertebrate samples have been collected by Laberge Environmental Services (LES) in alternate years in the Vangorda and Rose/Anvil Creek systems, respectively (Burns 1991-2007). In these studies, artificial substrates were deployed for five to six weeks in the summer to allow for benthic invertebrate colonization and community assessment in creek areas upstream and downstream of mine drainage. Coincident with retrieval of the artificial substrates, sediment samples were collected for analysis of metal content in the fine fraction (<0.15 mm). Water samples were also collected when artificial substrates were both deployed (mid-July) and retrieved (late August), along with measurements of flow and *in situ* water quality (conductivity, temperature, pH, dissolved oxygen) and collection of water and sediment quality.

Additional samples were collected by Minnow Environmental Inc. at the time of artificial substrate retrieval by LES at the Vangorda site in August 2007 and in the Rose Creek drainage in 2008 to serve the objectives of this project (Section 1.2). The supplementary sampling included:

- collection of one water sample per area for analysis of various inorganic and conventional parameters as well as a low-level metal scan by inductively coupled plasma mass spectrometry (ICPMS);
- collection of water samples from two mine-exposed areas and one reference area for laboratory toxicity testing;
- collection of sediment samples in three mine-exposed areas and two reference areas for toxicity testing, particle size analysis, and analysis of metals in both the whole sample and fine fraction;
- collection of resident benthic invertebrate communities using a Hess sampler (2007 and 2008) and kick net (2008);
- benthic invertebrate sample collection from areas that have been included in past studies for monitoring under the Water License, as well as additional reference areas which have not been sampled in the past; and
- collection of supporting field water quality data (temperature, dissolved oxygen, conductivity and pH) and habitat observations.

The sampling described in the sections below (August 25–29, 2007 and August 19-24, 2008) overlapped with water license sampling by LES (August 27–29, 2007 and August 25 and Sept 4, 2008) to allow direct comparison of different sampling methods and sampling designs being considered for future long-term monitoring at Faro Mine complex. Methods employed in the LES study have been described separately (Burns 2007, 2009) and are not repeated herein, except to the extent required to explain data comparisons. Thus, the sections below describe the methods for in-field measurements and sample collection that were in addition to those described by Burns (2007, 2009). Sample station locations discussed in this report are shown in Figures 2.1 (all areas) and 2.2 (areas near mine).

A key factor in the August 2008 program was unusually heavy and persistent rainfall. Low cloud cover prevented (this study) or delayed (artificial substrate survey, Burns 2009) helicopter access to some areas that had been targeted for sampling. Therefore, reconnaissance of potentially suitable reference areas was limited to those that could be accessed by road. High, fast-flowing water also prevented or limited collection of samples in some reference and exposure areas. Access to V1 was also not possible due to the presence of a grizzly bear attending a moose carcass at that location. Specific modifications to the planned sampling design are noted in Table 2.1 and the implications of these changes are discussed, as appropriate, throughout the report.

2.1 Habitat Characterization based on Field Measurements

Potential mine influence on biological communities is typically determined by comparing communities in mine-exposed areas to reference areas. Detection of differences that may be mine-related is enhanced by minimizing the variation attributable to differences in natural habitat factors among areas. Therefore, detailed habitat characterization was undertaken in all study areas to facilitate selection of reference areas for long-term monitoring.

Water velocity was measured near the bottom (to reflect conditions experienced by benthic invertebrate communities) using a Marsh-McBirney Flo-Mate Model 2000 portable velocity meter. Water depth was measured using a metre stick and stream width was measured using a measuring tape. Velocities and depths were taken at approximately 4-10 intervals (depending on stream width) along a transect perpendicular to the flow direction and recorded on field sheets. Mean values were computed from the recorded data.

Table 2.1: Sampling Design for Interim Monitoring Program, Faro Mine, 2007-2008

Year	Area Type	Water Body	Area	UTM (I	NAD83)	Water	Sedin	nent	Ben	thic Invertebra	ites
	7 0 7 7	mate. Doug	Code	Easting	Morthing	Chemistry Chemistry Toxicity		AS (LES) ^a	Hess	Kick	
		Upper Vangorda Creek	V1	594460	6903738	1	1	1	5	5	
		Upper West Fork Vangorda Creek	VR (UWFV)	590686	6906911	1	ı	1	3	1	
2007	efer	Upper South Fork Vangorda Creek	USFR	590244	6907387	1				1	
20		Next Creek	NEC	579177	6915378	1				1	
	eq	Vangorda Creek	V27	591627	6902114	1	3	3	5	5	
	SOC	West Fork Vangorda	V5	586201	6902136	1			5	5	
	<u> </u>	Lower Vangorda Creek	V8	584832	6900642	1			5	5	
		Upper North Fork Rose Creek	R7	586415	6914362	1	1	1	5	1 ^b	2 ^b
		Upper Anvil Creek	R6	568200	6921500	1			3	_c	_c
		Upper Vangorda Creek	V1	594460	6903738					_d	_d
		Upper West Fork Vangorda Creek	VR (UWFV)	590686	6906911	1				1	1
		Upper South Fork Vangorda Creek	USFR	590244	6907387	1				1	1
	nce	Upper Faro Creek	FC	585356	6916777	1				1	1
	Zeference	Next Creek	NEC (NXT)	579177	6915378	1				1	1
8	ш.	Blind Creek	BLC	589480	6896900	1				5 ^e	3
2008		Starr Creek	STC	349168	6851621	1				1	1
• •		Horton Creek	HOC	656455	6855494	1				1	1
		Beautiful Creek	BEC	638209	6863348	1				1	1
		Grew Creek	GRC	611873	6882292	1				1	1
		Buttle Creek	BUC	589908	6893972	1				1	1
		Unnamed Creek, near Big Trout Tributary	BTT	345565	6886145	1				1	1
	75	North Fork Rose Creek	X2	584072	6912786	1	1	1	5	5	3
	sec	Rose Creek	R2	579133	6914947	1	1	1	5	5	3
	Exposed	Rose Creek	R3	574000	6917200	1			3		
	ш	Rose Creek	R4	567700	6921300	1			5	_c	_c
		Anvil Creek	R5	566300	6922700	1			3		

^a Artificial substrate sampling by Laberge Environmental Services (Burns 2009).

^b High water and lack of suitable substrate (cobble-gravel) resulted in collection of fewer Hess (1 of 5) and kick (2 of 3) samples than planned.

^c Samples could not be collected due to extraordinarily heavy rains with low cloud cover (not accessible by helicopter).

^d Samples could not be collected due to grizzly bear activity around a moose carcass at this location.

^e Replicated stations were sampled here after it was determined that it would not be possible to sample more than one station at R7 due to high water and limited area with suitable substrate (cobble-gravel).

Gradient was measured using a clinometer. Stream morphology, substrate type, instream cover, overhead canopy, and aquatic vegetation were visually assessed, identified as appropriate, and categorized (i.e., assigned percentage area cover) based on the judgment of experienced field personnel. All habitat information was documented on standardized habitat assessment forms. Sketches of each area were made on field sheets, noting key features and the locations of any samples collected. The locations of all samples were noted using a hand-held global positioning system (GPS). Photographs were taken at each sampling area to further support habitat descriptions (Appendix D).

2.2 Habitat Characterization based on GIS

Habitat characteristics that could be taken from Geographic Information Systems (GIS) were tabulated for 22 areas that had been sampled in 2007 and/or 2008 around the Faro Mine complex. Source and station elevations were taken from the Yukon Digital Elevation Model (DEM) available at Geobase.ca and used to calculate average upstream gradient (elevation difference divided by distance). Stream order (Strahler method) and distance to source were taken from the Yukon Stream Network, also available at Geobase.ca. Drainage density was the total stream distance within the basin divided by basin area. Land cover types were taken from Natural Resources Canada (geogratis.ca) but the information was coarse and dated. Percent area associated with bedrock geology types, logging, and mine claims were taken from Yukon Geomatics (geomaticsyukon.ca).

Watershed boundaries were delineated using ArcMap 9.1 and the extension ArcHydro 9.1 (ESRI 2005), based on a 30-m-resolution digital elevation model and a 1:50,000 stream network. Basin characteristics (area and perimeter) were determined using the X-Tools extension for ArcMap. Based on the extracted boundaries, the intersect function in ArcMap was utilized to associate the environment layers (i.e., streams, geology, and land cover) to the appropriate watershed. Relative areas and lengths were then calculated for each environmental attribute in each watershed. All important characteristics were then summarized in Excel.

2.3 Water Chemistry

Conductivity, pH, dissolved oxygen (DO), and temperature were measured in the field immediately upstream of each benthic invertebrate sampling area (Section 2.4). DO, pH and temperature were measured using a WTW 3301 meter (for conductivity) and YSI 556 MDS (Multi-parameter Display System for DO, pH, and temperature) or a YSI 556 WQA (conductivity, pH, DO, temperature). Meters were calibrated according to manufacturers'

instructions. Probes were placed into the water and allowed to acclimate prior to taking measurements.

Water samples for laboratory analyses were collected directly into appropriate sample bottles supplied by Maxxam Analytics, Burnaby, BC. All water samples were collected immediately upstream of each sampling area and sample bottles were oriented upstream during filling. Sample bottles were rinsed three times with the surface water being sampled prior to final filling. Care was taken to ensure that no headspace was left in the collection bottles, except for samples requiring preservation for which a small headspace was left to accommodate addition of the preservative (also added in the field). All samples were placed in coolers immediately following collection and were later placed in a refrigerator at approximately 4°C until they could be shipped, in coolers with ice packs, to Maxxam Analytics, Burnaby, BC.

Water quality benchmarks were selected to assist in the evaluation of water quality data (Appendix A). CCME (1999) criteria for the protection of aquatic life were selected, where available, otherwise alternative water quality criteria or aquatic toxicity values were selected. Observed concentrations in mine-exposed areas were compared to the applicable benchmarks and to reference area concentrations to identify any parameters present at elevated concentrations. The results were also compared to those reported by LES (Burns 2007) based on samples collected at the same times and locations (e.g., field replicates) and sent to Cantest Ltd., Burnaby, BC.

2.4 Water Toxicity

Two sets of samples (August 2008 and January 2009) were collected from R7, X2, and R2 (the latter area only in January 2009) for analysis of acute lethal toxicity to rainbow trout (Environment Canada 2000), effects on survival and reproduction of the water flea *Ceriodaphnia dubia* (Environment Canada 2007a), and/or effects on the growth of the green alga *Pseudokirchneriella subcapitata* (Environment Canada 2007b). The samples were collected into 20-L collapsible plastic containers, placed in coolers with ice packs, and shipped by courier to the laboratory (Nautilus Environmental, Burnaby, BC). The samples were received and testing was initiated with 3 days of collection except for the sample collected at R7 in August 2008, which was delayed by courier delivery of the sample (i.e., test was initiated 5 days after collection).

2.5 Sediment Chemistry

Sediment samples collected by LES under the site Water License are analyzed after they have been dried and passed through a 0.15 mm sieve. While this standardizes the size

fraction of particles analyzed for metal content, the results may not be indicative of whole sediment metal concentrations nor of organism exposure. For example, the fine fraction of sediment may represent a small proportion of the whole sediment sample and may be even less representative of the areas sampled if deposits of fines are small and/or rare (Minnow 2007b). To investigate this issue, sediment samples were collected for analysis of particle size distribution and chemistry in both the whole sediment (rocks larger than 2 mm were removed for metals analyses consistent with standard laboratory practice) and in the <0.15 mm fraction.

Sediment samples were collected at V1 (n=1) and V27 (n=3) in 2007 and from R7 (n=1), X2 (n=1), and R2 (n=1) in 2008 (Figure 2.1). Sediment samples for chemical analyses were collected using a petite ponar grab (15.24 cm x 15.24 cm, 0.023 m² total bottom area per grab). Suitable patches of fine substrate (relatively more sand and silt, and less coarse material) were sought within each reach for sampling. Grabs were deemed acceptable if they showed reasonable penetration and had a visibly intact surface layer. Unacceptable grab samples were discarded. The top 5 cm from several acceptable ponar grabs were composited to fulfill sample volume requirements for all the sediment analyses. Sediment was then mixed to ensure homogeneity and excess water was decanted with care taken to minimize loss of fines. A stainless steel spoon was used to separate the sample into three ziplock bags; one for particle size analysis, one for percent moisture and total organic carbon (TOC) analyses, and one for total metals analysis. Details pertaining to the samples (e.g., water depth, substrate characteristics, colour, texture) were recorded on field sheets. Immediately after collection, the sample containers were placed in a cooler on ice, and were later placed in a refrigerator at approximately 4 °C until they could be shipped, in coolers with ice packs, to Maxxam Analytics in Burnaby, BC. Results were reported in units of percent or mg/kg on a dry weight basis.

Federal (CCME 1999) and British Columbia (BCMOE 2006) sediment quality guidelines were used in evaluating sediment chemical concentrations. Observed concentrations in mine-exposed areas were compared to the applicable guidelines and to reference area concentrations to identify parameters and locations having elevated concentrations.

2.6 Sediment Toxicity

Sediment samples were collected for toxicity testing in the same manner as described above. A stainless steel spoon was used to place the remainder of the homogeneous sediment mixture into pails with plastic liners. A minimum volume of 3 L was required for the testing. Immediately after collection, the samples were placed in a cooler on ice, and

were later placed in a refrigerator at approximately 4 °C until they could be couriered to the laboratory. Samples were sent to Aquatox Testing and Consulting Inc. in Aberfoyle, ON, in 2007 and to Nautilus Environmental in Burnaby, BC, in 2008. The samples were tested for potential effects on survival and growth of *Hyallela azteca* over a 14-day exposure period (Environment Canada 1997).

2.7 Benthic Invertebrate Community Assessment

Previous benthic invertebrate community sampling at the Faro Mine complex has chiefly involved artificial substrates (rock baskets) deployed for a 5- to 6-week period (Burns 1991-2007). While there are advantages to the use of artificial substrates, sampling of resident benthic communities may be less prone to sampling bias and spatial and temporal variability (Minnow 2007b) and could save costs as it requires only one trip to sampling areas. Therefore, it was recommended that parallel benthic community surveys be conducted in both the Vangorda (2007) and Rose Creek (2008) drainages using both approaches to determine which one will be most cost-effective for long-term monitoring at the Faro Mine complex (Minnow 2007b). This study compared the relative effectiveness artificial substrates, Hess samples and kick samples for benthic community characterization.

In addition, this study evaluated two sampling designs that could serve as the basis for long-term monitoring at the Faro Mine complex: 1) a traditional control-impact (CI) approach in which mine-exposed areas were compared to a reference area based on replicate stations within areas (3 or 5 stations per area), and 2) a Reference Condition Approach (RCA) which involves comparison of each mine-exposed area to numerous reference areas (single stations within each area). The CI design relies on comparison of an effluent-exposed area to (usually) a single reference area that has not been exposed to effluent but is otherwise similar to the exposed area (Green 1979; Hurlbert 1984). The RCA design involves statistically comparing benthic community characteristics of an exposure area to those of a broader set of reference areas to better account for the natural variability that exists among areas (Hughes et al. 1986, Wright et al. 2000, Bailey et al. 2004; Bowman and Somers 2005, 2006). An underlying assumption of both approaches is that habitats of the exposure area and the selected reference areas are similar, so that reference-exposure differences can be more confidently ascribed to effluent influence; however, prior to this study, the degree of habitat similarity between reference and exposure area(s) has rarely or never been formally tested.

In 2007 and 2008, samples of resident benthic invertebrates were collected using a Hess sampler. In 2008, samples were also collected using a kick net. Hess as well as kick and

sweep sampling data were compared to data from the artificial substrate sampling by Burns (2007, 2009). The number of samples collected per area are shown in Table 2.1. Conditions of substrate, water depth, water velocity, sampler penetration depth, and sampling time were controlled to the extent possible to optimize comparability among sample stations. In areas where artificial substrates (AS) were deployed by LES (Burns 2007), Hess and kick and sweep samples were taken as close as could be achieved while still ensuring comparable habitat/substrate characteristics among stations.

The planned sampling design included sample collection at replicate stations from V1 (2007) and R7 (2008) since these areas have been used for reference sampling in past artificial substrate surveys conducted under the site Water License. However, as noted in Section 2.1, it was only possible to sample one station by Hess and two stations by kick and sweep sampling at R7 in 2008. Replicate stations were sampled instead at Blind Creek. Also, samples could not be collected at V1 (grizzly bear attending a moose carcass) nor R4 (low clouds and torrential rain) in 2008.

2.7.1 Hess Sampling

Samples were collected using a 0.1 m² Hess sampler fitted with a 243 um mesh collection net. One sample was collected at each station and was a composite of three-subsamples in order to ensure that each sample was representative of average conditions at the station (0.3 m² per sample). Each sub-sample was collected by carefully inserting the base of the Hess sampler into the substrate to a depth of approximately 10 cm (2007) or 5-8 cm (2008) after which gravel and cobble contained within the sampler was carefully washed while allowing the current to carry dislodged organisms into the collection net. After the area within the sampler was completely washed, any organisms adhering to the mesh, other than that of the collection net, were rinsed into the collection net. The sampler was then moved to the next sub-sampling location and the procedure repeated. After collection of the third sub-sample, all organisms were rinsed to the end of the collection net. The sample was then rinsed into a labelled 1- or 2-litre, wide-mouth plastic jar. Internal labels were also used to further ensure correct identification of each sample. Samples were preserved to a level of 10% buffered formalin in ambient water within six hours of collection.

2.7.2 Kick and Sweep Sampling

A kick-and-sweep technique (referred to as kick sampling throughout the remainder of the report) was also used to collect benthic invertebrate community samples. In this technique, the sampler disturbed the substrate with her feet upstream of a D-net (243 um

mesh) that was placed on the streambed. The sampler started adjacent to the streambank, disturbed the substrate, let the displaced benthic macroinvertebrates and debris flow into the net, moved the net upstream and away from the streambank, and repeated the process for 3 minutes to generate a single sample in each area (Reynoldson et al. 1999). If the sampler reached the other streambank within the 3 minute time period, she continued sampling towards the other streambank until time elapsed. The number of transects and distance (m) were recorded on field sheets. All organisms were rinsed into a labelled 1- or 2-litre, wide-mouth plastic jar. Internal labels were also used to further ensure correct identification of each sample. Samples were preserved to a level of 10% buffered formalin in ambient water within six hours of collection.

2.7.3 Laboratory Analyses

Benthic invertebrate samples were sent to Cordillera Consulting in Summerland, BC, for sorting, enumeration and identification (to lowest practicable level). Although samples collected by LES in 2007 were initially sent to a different laboratory for analysis (data reported by Burns 2007), the samples were sent to and re-analyzed by Cordillera to allow the direct comparison of sampling methods. As a result, data presented herein for artificial substrates differ somewhat from data reported by Burns (2007) for the same samples. All samples were sent directly to Cordillera in 2008.

To ensure size comparability with samples collected by Burns (2007), the samples were re-sieved at the laboratory with a 300-um mesh. Each sample was elutriated to remove sand or gravel. The elutriate was examined for molluscs or trichopteran cases which were removed if found. The remaining organic material was washed through 2 mm and 300 micron sieves. The contents of the two sieves were sorted and identified separately under low power dissecting microscopes. If numbers of invertebrates appeared to be high (> 400) the sample was split by surface area. The fractions were subsampled to achieve a total of more than 300 organisms in the sample. Invertebrates were divided into orders or classes and stored in individual vials in 80% ethanol. Following the sorting process, the invertebrates were identified to the lowest practical level.

There were two samples collected in 2008 (BTT Hess and BTT kick) with a large proportion of filamentous algae which could not be subsampled with the above method because even distribution of the sample was not achievable. In these cases the whole sample was rinsed, pressed to a point where no water was dripping and then weighed. A subsample was removed by weight using scissors. This subsample was sorted and subsequent subsamples were removed until 325 organisms had been removed from the whole. Subsampling numbers and proportions are reported in Appendix D, along with a

laboratory quality control report, which showed good average sorting efficiency, precision, and accuracy.

2.7.4 Community Descriptors

Sample codes used in the field by Minnow (in 2007 and 2008) and LES (Burns 2007, 2009) were modified slightly for data analysis to ensure consistency in coding rules and clarity in data management and output. The first 2-4 digits reflected the sampling location, which included area codes previously used in monitoring programs at Faro (V1, USFR, R2, etc.) or, in the case of new reference areas, typically represented a three-digit contraction of the water body name (Next Creek - NEC, Buttle Creek - BUC, etc.). The next digit indicated the sample collection method: A for artificial substrate, H for Hess, and K for kick sampling. For areas in which up to five replicate stations were sampled, a lower case letter "a" to "e" followed, otherwise no lower case letters were used in the sample The last digit of the sampling year (7 or 8) was included as the last digit in the sample code to distinguish samples that were collected from areas sampled in both years (i.e., VR, USFR, NEC). As examples, the code for the single Hess samples collected at USFR in 2007 and 2008 were USFRH7 and USFRH8, whereas the first replicate station sampled by artificial substrate at area X2 in 2008 was X2aA (no corresponding sample collected in 2007 so no trailing 7 or 8 digit).

Commonly used benthic invertebrate community metrics (e.g., Environment Canada 2002) were computed for each station. For Hess samples, organism density (individuals/m²) was calculated based on the known area sampled, whereas AS samples were reported as total abundance per substrate and kick samples were reported as abundance per 3-minute kick sample. The number of taxa (also known as taxon richness), which is a simple and robust expression of benthic community diversity, included all separate taxa identified to the lowest practicable level, excluding any life stages that could not be conclusively identified as separate taxa. For the purposes of data analysis, some invertebrate taxa were combined at a generic taxonomic level in order to incorporate abundance associated with indeterminate species and/or standardize taxonomic levels among stations and years. Comparisons that involved only areas within the Vangorda Creek drainage (2007) were based on a data set to which slightly different re-attributions were applied (Appendix Tables D.4 and D.5), compared to those including samples collected in 2008 (Appendix Tables D.2 and D.3).

Simpson's indices of diversity ("D") and evenness ("E") were computed from custom MS Excel macros and spreadsheets following the formulae presented by Environment Canada (2002). These indices take into account both the relative abundance of taxa, and

the number of taxa, with values ranging from 0 (low diversity or evenness) to 1 (high diversity or evenness). In general, relatively high diversity values reflect moderate abundance of a proportionately high number of taxa, and are often associated with good environmental quality. Low diversity values typically reflect communities with a high abundance of only a few taxa, or simply few taxa, and may indicate an impaired benthic community. Simpson's E measures how well (evenly) individuals are distributed among the total number of sampled taxa, with low evenness values indicating that benthic communities are dominated by few taxa, suggestive of an impaired biological community.

The Bray-Curtis Index is commonly calculated for Environmental Effects Monitoring studies at Canadian mine sites (Environment Canada 2002), but was not included in this study because the ordination axis scores used yield analogous but more detailed information (i.e., direction of difference from average community).

The relative abundances (as percentages of total organisms in a sample) of the most common major taxonomic groups were also computed for each station (i.e., Ephemeroptera, Plecoptera, Trichoptera, which are more commonly and collectively referred to as EPT taxa, as well as chironomid midges). These percentages are not independent variables, because as one group increases in percent abundance, other groups must necessarily decrease. Despite this, such metrics are useful in describing the relative composition of benthic communities in different areas and over time.

Benthic invertebrate community structure was also assessed using a multivariate technique known as correspondence analysis (CA; Thioulouse et al. 1997). CA was used to calculate axes, which can be thought of as new variables summarizing the variation in benthic community data. When depicted in two-dimensional plots, taxa that tend to co-occur will have similar CA axis scores and will plot together, while those that rarely co-occur plot farther apart. Similarly, stations exhibiting similar relative abundance of taxa will plot closest to one another, while those with little in common plot farther apart. The greatest variation among either taxa or stations is explained by the first axis, with other axes accounting for progressively less variation. Therefore, this type of multivariate analysis describes not only which stations have distinct benthic communities but also how these benthic communities differ among stations (i.e., which particular taxa differ). CA is influenced by rare species, so those taxa occurring at 10% or fewer stations were eliminated from the analysis. Scores for both stations and taxa were calculated using the ADE-4 package (Thioulouse et al. 1997) and were saved as new summary variables to evaluate the associations of organisms and stations.

Benthic invertebrate community metrics were computed for each station and summarized for each area in cases where multiple stations were sampled within an area (e.g., mean, standard deviation, standard error, minimum, maximum).

2.7.5 Control-Impact (ANOVA) Comparisons

Reference-exposure areas differences were tested using multivariate analysis of variance (MANOVA) and analysis of variance (ANOVA), followed by *a priori* user-defined post-hoc tests. All data were transformed as necessary to satisfy assumptions of normality and homogeneity of variance. Unadjusted t-values for contrast tests were used if assumptions of normality and variance were met. In instances where variances could not be homogenized by transformation, contrast tests not requiring this assumption (i.e., contrast t-tests for unequal variances) were used. Tests of significance were based on p<0.1. All statistical tests were conducted using SPSS Version 13 software (SPSS Inc. 2006).

2.7.6 Reference Condition Approach

Reference-exposure area differences were also tested using the Reference Condition Approach (RCA) and Test Site Analysis (TSA). In the RCA, the biological community at an exposure area is compared to the range of communities found at minimally impacted reference areas with comparable habitat characteristics (e.g., Bailey et al. 2004). The TSA method is used to statistically test whether community attributes of an exposure area are within the range found at suitable reference areas (with similar habitat) (Bowman and Somers 2006).

In a RCA approach, habitat characteristics that are minimally influenced by human activities are used to select (match) suitable reference areas as opposed to characteristics that are known or suspected to be anthropogenically influenced (e.g., water chemistry). Habitat characteristics were divided into categories: basin characteristics (e.g., size, elevation, bedrock types, land cover), area characteristics (e.g., flow), and water chemistry (the latter of which was examined but no used directly for matching reference and exposure areas). Principle components analysis (PCA) was used to select the variables within each habitat category (e.g., bedrock types) that were important in distinguishing study areas and Pearson correlations were used to eliminate highly correlated (i.e. r > 0.6) variables (Appendix E).

The habitat characteristics that were most strongly correlated to biological community characteristics (i.e., r > 0.6) were used in a "nearest neighbour" approach (e.g., Linke et al. 2005) to select appropriate reference areas for each exposure area. Euclidean distances (summarizing habitat characteristics) between each exposure area and each

reference area were used to rank the reference areas from best to worst habitat match with each exposure area. A TSA of habitat data was used to help decide the cut-off between suitable and non-suitable reference areas for a given exposure area.

A TSA of biological data was used to assess the condition of the benthic invertebrate community within each exposure area relative to those in the set of reference areas with comparable habitat. The non-central probability value (ncP) indicates the likelihood an exposure area is in (ncP>0.90) or outside of (ncP<0.1) reference condition (values between 0.1 and 0.9 indicate uncertainty with respect to whether area is inside our outside reference). The 90th percentile was used to define reference condition (i.e., typical range for reference areas). If the biological community at an exposure area was within the *range* found at the reference areas (ncP > 0.9) it was deemed unimpaired by mine influences whereas a community different from reference (ncP < 0.1) was deemed impaired. The more traditional central P (cP) indicates the probability the value at an exposure area is different than the *mean* value for reference areas. This cP differs from the P-values in the ANOVAs performed for the Control-Impact design (Section 2.7.5) in that it is based on one mean value for an exposure area rather than replicate stations within each exposure area.

2.8 Fish Surveys

In 2007 only, exploratory backpack electrofishing was opportunistically conducted (i.e., time-permitting) in three areas: Next Creek, Upper South Fork Rose Creek (upstream of the Haul Road) and in Vangorda Creek downstream of V8 (Figure 2.1). Electrofishing was conducted using a Smith-Root POW Type 12A battery powered backpack. No stop nets were used. Sampling effort (electrofisher settings, electrofishing seconds, surface area sampled) and GPS coordinates were recorded on field sheets following each respective pass. Fish were collected under fish Licence No. 07-52 issued by the Department of Fisheries and Oceans, Whitehorse, Yukon. All captured fish were identified and enumerated prior to their release. The main objective of these fish collections was to confirm the reproductive status (gonad size) of slimy sculpin at this time of year (late August, undeveloped). Another reconnaissance-level sculpin survey was conducted in the spring of 2008 and has been reported separately, along with recommendations for approaching assessment of fish health in long-term monitoring (Minnow 2009). No further discussion of fish monitoring has been included in this report.

3.0 WATER QUALITY ASSESSMENT

3.1 In situ Measurements

All surface waters were well oxygenated at the time of sampling (Table 3.1). Water temperatures were in the range of 4 to 10°C at most areas except at two reference creeks sampled in 2008 which were slightly warmer (BEC, BTT 13°C) (Table 3.1). Variability in water temperatures may be at least partially attributable to variation in the time of day that measurements were made. Of the tributaries in the immediate vicinity of the Faro Mine complex, Upper South Fork Rose Creek was slightly warmer in both years (10°C compared to 4-8°C for most other locations in the Rose and Vangorda drainages). Water pH ranged from 6.2 to 8.5, except at Upper West Fork Vangorda Creek (VR) in 2007 and Faro Creek (FC) in 2008 which had lower pH (4.7 and 5.4, respectively).

Elevated conductivity levels were observed, as expected, at mine-exposed areas (Table 3.1), reflecting higher concentrations of other non-specific parameters such as total dissolved solids, and major ions that contribute to them (e.g., calcium, magnesium, sulphate; Tables 3.2 and 3.3). Some reference areas sampled in 2008 showed conductivities that were relatively high (e.g., STC, BEC, HOC, GRC; Table 3.1) with corresponding elevations in sulphate and hardness levels (Table 3.3). There was no evidence of recent anthropogenic disturbance near these areas at the time of the field survey (e.g., no signs posted indicating mining activity upstream nor evidence of routine vehicle access to upstream areas), although there was purportedly some mineral development in the Grew Ceek drainage in the mid-1990s (D. Cornett and B. Slater, pers. comm.). The influence of historical activities on water quality in Grew Creek or other drainages was considered minor (except for slightly elevated selenium levels, metal concentrations were generally comparable to other reference areas; Table 3.3), especially in the context of the current study objectives (i.e., assessing relative, rather than absolute, sensitivity of various benthic invertebrate community assessment methods). However, the extent, if any, to which Grew Creek or other reference areas may be anthropogenically influenced should be determined prior to inclusion of such areas in long-term monitoring programs.

At the Vangorda site, conductivity was highest at V5 and V8 compared to V27, indicating an unknown source of dissolved solids to West Fork Vangorda Creek. Indeed, total dissolved solids as well as alkalinity, hardness and total suspended solids were higher at V5 and V8 than at V27, V1 or VR (Table 3.2), which indicates a disturbance (mine-related or otherwise) downstream of VR.

Table 3.1: Field water quality measurements collected in August 2007 and August 2008, Vangorda Creek, Faro Mine, Yukon.

			Station						Specific		Wetted	Bankful			
Α	rea	Station Description	ID	Date	pН	DO	DO	Conductivity		Temperature	Width	Width	Depth	Velocity	Gradient
				Measured	pH units	mg/L	%	uS/cm	uS/cm	°C	m	m	m	m/s	%
		Upper West Fork Vangorda Creek	VR	Aug. 25	4.73	10.8	84.0	97	158	4.7	2	2	0.10	0.31	5
		Upper South Fork Rose Creek	USFR	Aug. 25	7.08	9.1	81.3	60	84	10.1	0.2	9	0.22	0.37	4.8
	92	Next Creek	NEC	Aug. 25	7.50	11.4	87.5	136	226	4.2	6	7	0.19	0.25	4
	re		V1-01	Aug. 28	6.85	12.2	98.8	48	75	6.3	4	8	0.21	0.11	5
	Reference		V1-02	Aug. 28	6.52	12.2	99.0	48	74	6.5	5	7	0.14	0.31	8
	œ	Upper Vangorda Creek	V1-03	Aug. 28	6.91	12.1	98.5	49	76	6.5	5	8	0.13	0.42	7
			V1-04	Aug. 29	6.56	12.8	99.1	43	71	4.5	7	10	0.30	0.06	8
			V1-05	Aug. 29	6.37	13.6	105	44	72	4.5	4	7	0.20	0.12	6
			V27-01	Aug. 28	7.54	13.4	105	134	215	5.2	5	6	0.18	0.19	2
07			V27-02	Aug. 28	7.81	12.9	102	140	223	5.5	4	8	0.23	0.21	2.5
20			V27-03	Aug. 28	7.84	12.7	103	135	214	5.7	4	5	0.19	0.12	3.5
August 2007			V27-04	Aug. 28	7.87	12.4 ^a	103	137	213	6.3	5	5	0.24	0.16	3
ıgı	ਰ		V27-05	Aug. 28	8.00	12.3	103	143	214	7.7	5	6	0.23	0.13	3
₹	Se		V5-01	Aug. 29	8.46	14.5	114	329	534	4.9	3	5	0.12	0.23	3
	ďx		V5-02	Aug. 29	8.47	14.1	110	328	532	4.9	3	6	0.13	0.18	3
	m H	Vangorda Creek	V5-03	Aug. 29	8.25	13.5	107	333	532	5.4	4	6	0.20	0.22	3
	Effluent Exposed		V5-04	Aug. 29	8.41	13.4	107	336	531	5.8	4	5	0.16	0.24	4
	J		V5-05	Aug. 29	8.48	13.1	106	339	529	6.2	4	7	0.11	0.24	3
	ш		V8-01	Aug. 27	8.33	13.2	107	277	432	6.2	6	8	0.26	0.18	5
			V8-02	Aug. 27	8.38	13.3	109	280	432	6.6	5	8	0.24	0.17	5.5
			V8-03	Aug. 27	8.43	13.1	108	285	433	7.1	6	8	0.29	0.09	2.5
			V8-04	Aug. 27	8.46	13.0	109	289	430	7.8	7	10	0.23	0.21	2.5
			V8-05	Aug. 27	8.47	12.9	109	291	430	8.1	3	6	0.27	0.14	4
		Upper West Fork Vangorda Creek	VR	Aug. 19	6.29	12.2	97.8	36	59	5.8	2	2	0.15	0.29	3
		Upper South Fork Rose Creek	USFR	Aug. 19	6.22	10.9	95.0	32	45	9.4	9	10	0.19	0.35	7
		Next Creek	NXT	Aug. 20	7.60	12.1	98.6	57	87	6.7	6	8	0.09	0.22	4
		Upper West Fork Rose Creek	R7	Aug. 21	7.62	11.3	88.7	90	146	5.6	7	8	0.10	0.30	3
		Faro Creek Upstream	FC	Aug. 22	5.43	11.9	96.4	29	45	6.3	4	5	0.28	0.40	4
õ	Reference	Blind Creek	BLC	Aug. 22	7.82	11.2	98.5	100	143	9.2	26	30	0.40	0.25	2
)t 2	Keierence	Star Creek ^b	STC	Aug. 23	8.17	12.7	104.5	377	577	6.8	12	13	0.35	0.35	3.5
August 2008		Beautiful Creek ^b	BEC	Aug. 23	8.22	11.6	111.7	560	714	13.7	4	4	0.20	0.60	2
Au		Horton Creek ^b	HOC	Aug. 23	8.23	11.5	97.8	368	538	8.5	12	12	0.20	0.35	3
		Grew Creek	GRC	Aug. 23	8.25	11.4	100.1	468	661	9.7	3	10	0.20	0.50	
		Tributary of Ross River	BTT	Aug. 24	8.08	9.6	91.3	163	210	13.3	5	6	0.15	0.50	4
		Buttle Creek ^b	BUC	Aug. 24	8.20	11.2	99.0	276	394	9.3	4	5	0.15	0.60	2.5
	Exposure	North Fork Rose Creek	X2	Aug. 19	7.18	12.1	95.6	91	146	5.3	6	8	0.38	0.42	3.5
	LAPOSUIE	Rose Creek	R2	Aug. 20	7.86	11.7	99.0	205	302	8.1	11	11	0.47	0.43	2

^a Dissolved oxygen value is an estimate based on temperature.

^b Areas were samples downstream of highway crossing because upstream habitat (wetland) did not match exposure area characteristics (erosional).

Table 3.2: Water quality data compared to benchmarks, Faro Mine Complex, August 2007.

Akalinity (PP as CaCO3)	V8Z Field Duplicat (Sample Date 8/27/2007) 34
Parameter Units (see Appendix A) Upper West Fork Yangorda Creek (NEC) (NEC) (NEC	Field Duplicat (Sample Date 8/27/2007) 34
Alkalinity (PP as CaCO3)	0.5 0.00 0.5 0.00 0.8 0.00 0.00 96 39 0.00 64 26 113 0.1 14 21 0.00 0.00 08 0.00 0.00 0.00 05 0.00 0.00 2.6 2.2 0.00 0.00 5.9 66 0.00 0.00
Ammonia - N	05 0.00 0.8 0.0 96 39 64 26 13 0.1 14 21 05 08 0.0 08 0.0 05 2.6 2. 2.6 2. 12 0.00 5.9 66
Chiloride	0.8 0.96 96 39 64 26 13 0.1 14 21 05 0.0 08 0.0 005 0.0 0.8 0.0 0.5 0.0 2.6 2. 12 0.00 5.9 66
Conductivity	96 39 64 26 13 0.1 14 21 05 0.0 08 0.0 05 0.00 2.66 2. 2.6 2. 12 0.00 5.9 66.
Dissolved solids, total (TDS)	64 26 13 0.1 14 21 05 < 0.0 08 0.0 05 < 0.00 2.66 2. 12 0.00 5.9 66.
Dissolved Solids, Ideal (TDS)	13 0.1 14 21 05 0.0 08 0.0 05 0.00 2.6 2. 12 0.00 5.9 66.
Hardness	14 21 05 08 0.0 08 0.0 05 0.0 2.0 2.6 2. 12 0.00 5.9 66.
Mercury, total Ug/L 0.026 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.0	05 0.0 08 0.0 08 0.0 05 0.00 2.6 2. 2.6 2. 2. 12 0.00 6. 5.9 66. 66.
Nitrate (N)	08 0.0 08 0.0 05 0.00 2.6 2. 12 0.00 5.9 66.
Nitrate plus Nitrite (N)	08 0.0 05 2.6 2. 2.6 2. 12 0.00 5.9 66.
Nitrite - N	05 0.00 2.6 2. 2.6 2. 12 0.00 5.9 66.
Organic carbon, dissolved (DOC) " 3.1 1.9 2.7 1.4 1.8 3.5 Organic carbon, total (TOC) " 3.3 2.7 3.2 2 2.2 3.5 Phosphorus, total mg/L 0.03 < 0.005 0.005 0.005 0.01 < 0.005 0.017 0. Sulphate " 50 4.2 5.5 2.4 8.9 49.3 75.6 0.0 Suspended solids, total (TSS) " 29 < 1 2 2 2 2 2 2 2 2 2 <th< td=""><td>2.6 2. 2.6 2. 12 0.00 5.9 66.</td></th<>	2.6 2. 2.6 2. 12 0.00 5.9 66.
Organic carbon, total (TOC) " 3.3 2.7 3.2 2 2.2 3.5 Phosphorus, total mg/L 0.03 < 0.005	2.6 2. 12 0.00 5.9 66.
Phosphorus, total mg/L 0.03 < 0.005 0.005 0.005 0.01 < 0.005 0.017 0.025 0.017 0.025 0.017 0.025 0.017 0.025 0.017 0.025 0.017 0.025 0.017 0.025 0.017 0.025 0.025 0.025 0.026 0.0263 0.0172 0.0143 0.0184 0.275 0.025 0.0001 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0001 0.0005 0.00005	12 0.00 5.9 66.
Sulphate " 50 4.2 5.5 2.4 8.9 49.3 75.6 6 Suspended solids, total (TSS) " 29 <	5.9 66.
Suspended solids, total (TSS)	
CP - Metals Scan	
Aluminum mg/L 0.1 0.0306 0.0263 0.0172 0.0143 0.0184 0.275 0.04 Antimony " 0.020 < 0.00005	3 1
Aluminum mg/L 0.1 0.0306 0.0263 0.0172 0.0143 0.0184 0.275 0.04 Antimony " 0.020 < 0.00005	
Antimony " 0.020 < 0.00005 < 0.00005 < 0.00005 0.00007 0.00015 0.00 Arsenic " 0.005 0.0001 0.0003 < 0.00001	0.10
Arsenic " 0.005 0.0001 0.0003 0.0001 0.0002 0.0004 0.001 0.0 Barium " 1 0.0287 0.025 0.0256 0.0257 0.0326 0.078 0.0 Beryllium " 1.1 < 0.00005 < 0.00005 < 0.00005	
Barium " 1 0.0287 0.025 0.0256 0.0257 0.0326 0.078 0.0 Beryllium " 1.1 < 0.00005 < 0.00005 < 0.00005 < 0.00005	
Beryllium " 1.1 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.	
Bismuth 0.260 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 <td></td>	
Cadmium " 0.00003 0.00001 0.00001 0.00001 0.00001 0.00005 0.00004 0.00 Calcium " 10.9 8.82 16.5 10.6 28.3 77.8 5	0.0000
Calcium " 10.9 8.82 16.5 10.6 28.3 77.8	0.00
	0.0000
Chromium " 0.001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 0.	2.8 54.
5.55. 5.552 5.552 5.552 5.552	0.000
Cobalt " 0.00002 0.00004 < 0.00002 < 0.00002 0.00004 0.00027 0.00	14 0.0001
Copper " 0.002 0.0006 0.0004 0.0006 0.0004 0.0009 0.0014 0.0	
	77 0.1
Lead " 0.002 0.00007 0.0001 0.00005 0.00004 0.00052 0.00052 0.00	
	0.7 2
	0.9 2
	11 0.01
Molybdenum " 0.073 0.00014 0.0003 0.00024 0.00023 0.00032 0.00158 0.00	
Nickel " 0.065 < 0.0005 0.0005 0.0005 0.0005 0.0005 0.0018 0.0 Potassium " 53 0.326 0.285 0.522 0.343 0.525 1.15 0.0	11 0.001 92 0.91
Potassium " 53 0.326 0.285 0.522 0.343 0.525 1.15 0. Selenium " 0.001 <	
Silver " 0.0001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001	
	33 3.4
	11 3.1
	91 0.20
	05 < 0.0000
Tin 0.35 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005	
Titanium " 1.83 < 0.0005 0.0008 < 0.0005 0.0005 0.0007 0.0083 0.0	
Uranium " 0.005 0.00037 0.00029 0.00029 0.00031 0.00126 0.00405 0.00	
Vanadium " 0.006 < 0.00005 0.00008 0.00006 < 0.00005 0.00005 0.00095 0.00	
Zinc " 0.030 0.0021 0.0019 0.0019 0.0027 0.0318 0.0039 0.0	33 0.0003
Zirconium " 0.004 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	

^a Values less than benchmark are considered to be of concern.

Indicates sample analytical result was above the selected benchmark.

Table 3.3: Water quality data compared to benchmarks, Faro Mine Complex August 2008 (raw data appears in Appendix B).

										Reference								Exposed Creek)
Parameter	Units	MDL ^a	Water Quality Benchmark ^b	Faro Creek (FC)	Blind (Bl		Star Creek (STC)	Horton Creek (HOC)	Beautiful Creek (BEC)	Grew Creek (GRC)	Buttle Creek (BUC)	Tributary of Ross River (BTT)	Next Creek (NXT)	Upper South Fork Rose Creek (USFR)	Upper West Fork Vangorda Creek (VR)	Upper West Fork Rose Creek (R7)	Rose Creek (R2)	North Fork Rose Creek (X2)
				Aug. 22	Aug. 22	Aug. 22	Aug. 23	Aug. 23	Aug. 23	Aug. 23	Aug. 24	Aug. 24	Aug. 20	Aug. 19	Aug. 19	Aug. 21	Aug. 20	Aug. 19
Misc. Inorganics & Physical Properties																		
Fluoride (F)	mg/L	0.01	0.12	0.07	0.09	0.09	0.10	0.16	0.12	0.17	0.12	0.11	0.07	0.06	0.06	0.09	0.10	0.09
Weak Acid Dissoc. Cyanide (CN)	mg/L	0.0005	0.005 (free)	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Dissolved Organic Carbon (C) Alkalinity (Total as CaCO3)	mg/L	0.5 0.5	11.1	3.9 11	5.4 71	5.4 71	1.5 230	3.7 280	4.1 210	4.8 290	9.9 200	9.2 97	3.7 48	3.7 17	4.2 25	3.7 78	4.3 97	4.6 76
Alkalinity (PP as CaCO3)	mg/L mg/L	0.5	11.1	<0.5	<0.5	<0.5	4.2	5.6	2.0	6.9	1.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bicarbonate (HCO3)	mg/L	0.5	-	13	87	87	270	330	250	340	240	120	58	20	31	96	120	93
Carbonate (CO3)	mg/L	0.5	_	<0.5	<0.5	<0.5	5.0	6.7	2.4	8.3	2.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hydroxide (OH)	mg/L	0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Sulphate (SO4)	mg/L	0.5	-	0.9	14	14	130	73	240	140	47	27	2.8	4.4	4.6	6.6	66	9.7
Dissolved Chloride (CI)	mg/L	0.5	250	<0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.1	0.8	<0.5	<0.5	0.6	<0.5	0.7	<0.5
Total Suspended Solids	mg/L	1	28	5	3	3	<1	<1	2	4	2	<1	<1	<1	<1	<1	<1	5
Total Dissolved Solids	mg/L	10	500	30	100	110	430	360	550	490	270	170	68	50	60	98	240	110
Total Hardness (CaCO3)	mg/L	0.5	-	12.5	78.8	75.9	381	354	478	438	229	114	45.2	21.5	26.6	80.1	166	80.2
Nutrients																		
Ammonia (N)	mg/L	0.01	0.24	0.02	0.04	<0.01	<0.01	<0.01	0.04	0.01	<0.01	0.07	<0.01	<0.01	<0.01	<0.01	0.05	<0.01
Nitrite (N)	mg/L	0.005	0.06	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrate (N)	mg/L	0.02	13	<0.02	0.02	0.04	0.14	0.06	0.22	0.09	0.10	0.07	<0.02	<0.02	<0.02	<0.02	0.04	0.02
Nitrate plus Nitrite (N)	mg/L	0.02	-	<0.02	0.02	0.04	0.14	0.06	0.22	0.09	0.10	0.07	<0.02	<0.02	<0.02	<0.02	0.04	0.02
Total Phosphorus (P)	mg/L	0.005	0.03	0.020	0.007	0.007	<0.005	0.005	0.012	<0.005	0.007	0.007	0.011	0.018	0.013	0.025	0.019	0.017
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.02 0.02											0.06 0.06	0.07 0.07	0.11 0.11	0.07 0.07	0.20 0.23	0.13 0.15
Total Nitrogen (N) Total Metals by ICPMS	mg/L	0.02											0.06	0.07	0.11	0.07	0.23	0.15
Aluminum (Al)	mg/L	0.0002	0.1	0.108	0.0474	0.0390	0.0211	0.0054	0.0101	0.0260	0.0436	0.0093	0.0283	0.0295	0.0337	0.0187	0.0143	0.0246
Antimony (Sb)	mg/L	0.00002	0.02	0.00003	0.00010	0.00010	0.00017	0.00018	0.00025	0.00018	0.00009	0.00006	0.00002	0.00004	0.00003	0.00008	0.00009	0.00008
Arsenic (As)	mg/L	0.00002	0.005	0.00022	0.00079	0.00078	0.00023	0.00016	0.00025	0.00010	0.00038	0.00054	0.00002	0.00030	0.00023	0.00064	0.00047	0.00056
Barium (Ba)	mg/L	0.00002	1.0	0.0162	0.0576	0.0570	0.0935	0.0858	0.0563	0.0812	0.0803	0.0465	0.0253	0.0244	0.0262	0.0477	0.0467	0.0428
Beryllium (Be)	mg/L	0.00001	1.1	0.00003	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	0.00001	0.00002	<0.00001	<0.00001	<0.00001
Bismuth (Bi)	mg/L	0.000005	0.26	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	< 0.000005	< 0.000005	<0.00005	<0.000005	<0.000005	
Boron (B)	mg/L	0.05	1.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Cadmium (Cd)	mg/L	0.000005	0.00003	0.000016	0.000011	0.000014	0.000164	0.000023	0.000019	0.000025	0.000026	0.000007	0.000018	0.000009	0.000013	0.000010	0.000023	
Calcium (Ca)	mg/L	0.05	116	3.70	22.5	21.6	92.5	81.4	97.0	111	68.1	32.1	14.2	6.81	8.15	23.9	48.7	23.3
Chromium (Cr)	mg/L	0.0001	0.001	0.0003	0.0001	<0.0001	0.0002	0.0001	<0.0001	0.0005	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt (Co)	mg/L	0.000005	0.004	0.000084	0.000055	0.000053	0.000076	0.000068	0.000057	0.000073	0.000056	0.000017	0.000016	0.000030	0.000023	0.000038	0.000820	0.000085
Copper (Cu)	mg/L	0.00005	0.002	0.00138	0.00077	0.00072	0.00044	0.00051	0.00113	0.00108	0.00228	0.00294	0.00072	0.00058	0.00070	0.00175	0.00089	0.00079
Iron (Fe)	mg/L	0.001	0.3	0.139	0.158	0.133	0.066	0.114	0.055	0.129	0.111	0.021	0.015	0.119	0.021	0.152	0.243	0.153
Lead (Pb)	mg/L	0.000005	0.002	0.000849	0.000072	0.000078	0.000116	0.000053	0.000180	0.000156	0.000292	0.000255	0.000052	0.000108	0.000051	0.000312	0.000311	0.000767
Lithium (Li)	mg/L	0.0005	-	0.0017	0.0018	0.0017	0.0039	0.0043	0.0054	0.0080	0.0038	0.0030	0.0020	0.0008	<0.0005	0.0030	0.0051	0.0030
Magnesium (Mg)	mg/L	0.05 0.00005	82 1	0.79 0.00436	5.51 0.0155	5.31 0.0150	36.3 0.00684	36.6 0.0181	57.2 0.00565	38.9 0.0274	14.2 0.0152	8.23 0.00521	2.34 0.00039	1.10 0.00728	1.52 0.00077	5.00 0.0166	10.9 0.717	5.37
Manganese (Mn) Molybdenum (Mo)	mg/L mg/L	0.00005	0.073	0.00436	0.0155	0.0150	0.00684	0.0181	0.00565	0.0274	0.0152	0.00521	0.00039	0.00728	0.00077	0.0166	0.717	0.0359 0.00044
Nickel (Ni)	mg/L	0.00003	0.073	0.00008	0.00062	0.00054	0.00195	0.00259	0.00163	0.00201	0.00075	0.00107	0.00021	0.00022	0.00011	0.00030	0.00031	0.00044
Potassium (K)	mg/L	0.00002	53	0.00031	0.00037	0.00034	0.00193	1.19	0.00338	1.74	1.89	1.00	0.00031	0.00033	0.00020	0.00039	1.16	0.00073
Selenium (Se)	mg/L	0.00004	0.001	<0.00004	0.00021	0.00021	0.00578	0.00205	0.00311	0.00493	0.00060	0.00012	0.00011	0.00005	0.00005	0.00024	0.00021	0.00022
Silicon (Si)	mg/L	0.1	-	6.5	4.9	4.9	3.0	4.6	2.2	3.9	4.6	4.4	7.7	4.1	5.7	5.6	4.8	5.8
Silver (Ag)	mg/L	0.000005	0.0001	<0.000005	<0.000005	<0.000005	<0.000005	<0.00005	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005		<0.000005	<0.000005	<0.000005	
Sodium (Na)	mg/L	0.05	200	1.71	2.69	2.61	2.46	4.77	2.67	4.90	4.67	4.84	1.98	1.49	1.52	2.04	3.98	2.03
Strontium (Sr)	mg/L	0.00005	9.3	0.0226	0.0938	0.0939	0.360	0.360	0.480	0.485	0.225	0.123	0.0642	0.0422	0.0458	0.0977	0.184	0.100
Sulphur (S)	mg/L	3	-	<3	5	5	52	30	95	56	17	11	<3	<3	<3	<3	28	4
Thallium (TI)	mg/L	0.000002	0.0008	0.000004	0.000002	<0.000002	0.000003	<0.000002	0.000003	<0.000002	<0.000002	<0.000002	<0.000002		0.000003	<0.000002	0.000025	
Tin (Sn)	mg/L	0.00001	0.35	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Titanium (Ti)	mg/L	0.0005	1.83	0.0027	0.0015	0.0011	<0.0005	<0.0005	<0.0005	0.0010	0.0011	0.0006	<0.0005	0.0015	<0.0005	<0.0005	<0.0005	0.0006
Uranium (U)	mg/L	0.000002	0.015	0.000195	0.000611	0.000624	0.00524	0.00528	0.0109	0.00936	0.00276	0.00108	0.000396	0.000388	0.000397	0.000962	0.00134	0.000881
Vanadium (V)	mg/L	0.0002	0.006	0.0003	0.0003	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Zinc (Zn)	mg/L	0.0001	0.03	0.0035	0.0007	0.0008	0.0082	0.0012	0.0021	0.0012	0.0021	0.0009	0.0013	0.0013	0.0007	0.0016	0.0278	0.0360
Zirconium (Zr) a Method Detection Limit	mg/L	0.0001	0.004	0.0001	0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001

^a Method Detection Limit.

^b Benchmarks were selected from relevant water quality criteria as described in Appendix A.

3.2 Laboratory Chemical Analyses

Concentrations of various analytes measured in water samples were compared to water quality benchmarks, most of which are associated with protection of aquatic life (Appendix A). Concentrations measured in reference samples did not exceed any of the benchmarks in 2007 (Table 3.3), but several reference creek samples collected in 2008 showed elevated concentrations of a few parameters relative to the water quality benchmarks (Table 3.4). As noted previously, there were no known, active anthropogenic disturbances upstream of the sampling areas.

In 2007, benchmarks for cadmium and zinc were only marginally exceeded at V27 and all other substances measured at this station were below levels associated with effects on aquatic life (Table 3.3). At V5 and V8, concentrations of fluoride, sulphate, aluminum, cadmium, iron, and/or selenium slightly exceeded the benchmarks (Table 3.3). Of the two mine-exposed areas sampled in 2008, only the zinc concentration at X2 slightly exceeded the water quality benchmark. Overall, the data indicated good water quality downstream of both the Faro and Vangorda sites during the respective field surveys.

Additional water samples were collected in January 2009 from R7, X2, and R2 at the same time samples were collected for aquatic toxicity tests. Again, concentrations at R7 were below applicable benchmarks (Table 3.4). However, concentrations of cadmium and zinc at X2 and R2 exceeded the benchmark concentrations. Concentrations of total iron and total and dissolved manganese at R2 were also slightly above applicable benchmarks. Substantially elevated zinc concentrations at X2 reflected contaminated groundwater flow from the monitoring area known as the "S-wells" (southeast of the waste rock piles at the Faro site). Contamination from this source is more evident in winter sampling when there is less dilution from surface waters or precipitation (which are frozen).

3.3 Laboratory Toxicity Tests

The sample collected at X2 in August 2008 impaired reproduction of the water flea *Ceriodaphnia dubia* at sample concentrations greater than 23% (diluted with clean laboratory water), but no effects were observed on the growth of the alga *Pseudokerchneriella subcapitata* nor on the survival of rainbow trout (Table 3.5). The sample collected at X2 in January 2009 was more toxic to *P. subcapitata* but caused similar toxicity to *C. dubia* compared to the August sample from the same location (Table 3.5). The sample collected at R2 in January 2009 was also toxic, but less so than the X2 sample based effects occurring at higher sample concentrations (59% and 63% for *P.*

Table 3.4: Water quality data compared to benchmarks, Faro Mine Complex, January 2009.

				Refe	rence		Mine-E	xposed		
_ ,	l		Water Quality	Upper W	est Fork	North Fork	Rose Creek	Rose Creek (R-2)		
Parameter	Units	MDL	Benchmark ^b	Rose Cr	eek (R-7)	(X	-2)	Rose Cr	eek (R-2)	
Misc. Inorganics & Physical Properties				Total	Dissolved	Total	Dissolved	Total	Dissolved	
Fluoride (F)	mg/L	0.01	0.12	0.14	-	0.15	-	0.14	-	
Weak Acid Dissoc. Cyanide (CN)	mg/L	0.0005	0.005 (free)	<0.0005	-	0.0005	-	0.0005	-	
Dissolved Organic Carbon (C)	mg/L	0.5	_` _	<0.5	-	<0.5	-	<0.5	-	
Alkalinity (Total as CaCO3)	mg/L	0.5	11.1	130	-	130	-	180	-	
Alkalinity (PP as CaCO3)	mg/L	0.5	-	<0.5	-	<0.5	-	<0.5	-	
Bicarbonate (HCO3)	mg/L	0.5	-	160	-	160	-	210	-	
Carbonate (CO3)	mg/L	0.5	-	<0.5	-	<0.5	-	<0.5	-	
Hydroxide (OH)	mg/L	0.5	-	<0.5	-	<0.5	-	<0.5	-	
Dissolved Sulphate (SO4)	mg/L	0.5	-	-	11	-	46	-	180	
Dissolved Chloride (CI)	mg/L	0.5	250	-	0.6	-	<0.5	-	0.6	
Total Dissolved Solids	mg/L	10	500	170	-	250	-	470	-	
Total Hardness (CaCO3)	mg/L	0.5	-	119	-	166	-	321	-	
Dissolved Hardness (CaCO3)	mg/L	0.5		-	133	-	173	-	368	
Nutrients										
Ammonia (N)	mg/L	0.005	0.24	<0.005		0.011		0.095		
Nitrite (N)	mg/L	0.005	0.06	0.005		0.005		0.005		
Nitrate (N)	mg/L	0.02	13	0.24		0.35		0.29		
Nitrate plus Nitrite (N)	mg/L	0.02	-	0.24		0.36		0.29		
Total Phosphorus (P)	mg/L	0.002	0.03	0.006		0.003		0.003		
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.02		0.03		<0.02		0.08		
Total Nitrogen (N)	mg/L	0.02		0.27		0.34		0.37		
Metals by ICPMS				Total	Dissolved	Total	Dissolved	Total	Dissolved	
Aluminum (AI)	mg/L	0.0002	0.1	0.0059	0.0030	0.0090	0.0092	0.0177	0.0017	
Antimony (Sb)	mg/L	0.00002	0.02	0.00007	0.00010	0.00009	0.00008	0.00008	0.00008	
Arsenic (As)	mg/L	0.00002	0.005	0.00050	0.00038	0.00049	0.00027	0.00048	0.00029	
Barium (Ba)	mg/L	0.00002	1.0	0.0748	0.0771	0.0797	0.0759	0.0699	0.0729	
Beryllium (Be)	mg/L	0.00001	1.1	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	
Bismuth (Bi)	mg/L	0.000005	0.26	<0.000005	<0.000005	<0.000005	<0.00005	<0.000005	<0.000005	
Boron (B)	mg/L	0.05	1.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Cadmium (Cd)	mg/L	0.000005	0.00003	0.000008	0.000012	0.000045	0.000042	0.000066	0.000057	
Calcium (Ca)	mg/L	0.05	116	35.9	40.6	45.5	48.2	94.5	109	
Chromium (Cr)	mg/L	0.0001	0.001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Cobalt (Co)	mg/L	0.000005	0.004	0.000022	0.000025	0.000311	0.000291	0.00176	0.00184	
Copper (Cu)	mg/L	0.00005	0.002	0.00025	0.00101	0.00045	0.00092	0.00045	0.00108	
Iron (Fe)	mg/L	0.001	0.3	0.090	0.036	0.209	0.076	0.403	0.119	
Lead (Pb)	mg/L	0.000005	0.002	0.000026	0.000078	0.000420	0.000147	0.000326	0.000046	
Lithium (Li)	mg/L	0.0005	-	0.0076	0.0078	0.0089	0.0088	0.0078	0.0082	
Magnesium (Mg)	mg/L	0.05	82	7.22	7.76	12.8	12.9	20.7	23.2	
Manganese (Mn)	mg/L	0.00005	1	0.0171	0.0162	0.232	0.224	2.47	2.62	
Molybdenum (Mo)	mg/L	0.00005	0.073	0.00085	0.00089	0.00084	0.00084	0.00073	0.00080	
Nickel (Ni)	mg/L	0.00002	0.065	0.00019	0.00038	0.00222	0.00224	0.00468	0.00480	
Potassium (K)	mg/L	0.05	53	0.80	0.96	1.04	1.11	1.80	2.12	
Selenium (Se)	mg/L	0.00004	0.001	0.00059	0.00052	0.00064	0.00053	0.00056	0.00050	
Silicon (Si)	mg/L	0.1	-	7.2	5.3	8.0	5.0	7.8	5.4	
Silver (Ag)	mg/L	0.000005	0.0001	<0.000005	<0.00005	<0.00005	<0.00005	<0.00005	<0.000005	
Sodium (Na)	mg/L	0.05	200	2.65	2.88	3.37	3.43	7.60	8.40	
Strontium (Sr)	mg/L	0.00005	9.3	0.159	0.163	0.196	0.194	0.311	0.335	
Sulphur (S)	mg/L	3	-	3	4	16	17	72	77	
Thallium (TI)	mg/L	0.000002	0.0008	<0.000002	<0.000002	0.000003	0.000003	0.000007	0.000007	
Tin (Sn)	mg/L	0.00001	0.35	<0.00001	<0.00001	<0.00001	0.00002	<0.00001	0.00008	
Titanium (Ti)	mg/L	0.0005	1.83	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Uranium (U)	mg/L	0.00002	0.015	0.00241	0.00249	0.00280	0.00280	0.00325	0.00346	
Vanadium (V)	mg/L	0.00002	0.006	<0.00241	<0.00243	<0.0002	<0.00200	<0.0002	<0.0002	
Zinc (Zn)	mg/L	0.0002	0.03	0.0005	0.0002	0.229	0.223	0.0919	0.0927	
Zirconium (Zr)	mg/L	0.0001	0.004	<0.0001	<0.0021	<0.0001	<0.0001	<0.0001	<0.0001	
^a Method Detection Limit.	mg/L	0.0001	0.004	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	

^a Method Detection Limit.

b Benchmarks were selected from relevant water quality criteria as described in Appendix A.

Indicates value exceeds selected benchmark, except for alkalinity for which values below the benchmark are shaded.

Table 3.5: Aquatic toxicity test results for water samples collected at R7, X2, and R2.

		IC25ª (% sar	LC50 ^b (% sample volume)	
Date	Station	Pseudokirchneriella subcapitata 3-d growth	Ceriodaphnia dubia 7-d survival and reproduction	Rainbow trout 96-h survival
Aug. 2008 R7 (reference)		>95	- c	>100 ^d
Aug. 2000	X2 (exposure)	>95	23 (19-35)	>100
	R7 (reference)	>95	>100	>100
Jan. 2009	X2 (exposure)	15 (14-17)	27 (16-33)	>100
	R2 (exposure)	59 (- ^e)	63 (51-73)	>100

^a Concentration causing 25% inhibition relative to control organisms

^b Concentration causing mortality to 50% of exposed organisms

^c Reproduction was slightly impaired in some sample dilutions but lack of dose response suggest a factor other than contaminant effects (e.g., possibly bacteria naturally present in the water)

^d 30% mortality. At least 50% mortality is required to produce an LC50 estimate. Marginal toxicity may have been associated with the same factor that affected *C. dubia*

^e Confidence interval could not be calculated

subcapitata and *C. dubia*, respectively). Greater toxicity in the January samples from X2 and R2 was likely associated with elevated metal levels, particularly zinc (Table 3.4 compared to 3.3). Marginal toxicity to C. dubia and trout in the sample collected from reference area R7 was likely associated with a factor other than contaminants (see footnotes Table 3.5).

4.0 SEDIMENT QUALITY ASSESSMENT

4.1 Chemistry

The sediment samples collected in 2007 and 2008 were largely comprised of sand and gravel (Table 4.1), typical of fast-flowing, upper perennial creek habitats (Cowardin et al. 1979). Combined silt and clay fractions represented <5% of the whole sediment samples, except in the case of X2, where silt and clay represented 25% and 6.5%, respectively. Total organic carbon (TOC) content was also low (<4%) in all samples (Table 4.1).

Metal concentrations at reference areas V1 and R7 did not exceed applicable sediment quality guidelines in either the whole sediment (<2 mm) or the fine fraction (<0.15 mm; Table 3.1). Arsenic, lead, manganese, and zinc were elevated in samples collected at mine-exposed areas, when compared to both benchmarks and concentrations measured at the reference areas. Except at X2, where the sediment sample contained more fines, metal concentrations were typically about three times higher in the fine fraction than whole sediment, as would be expected in coarse sediments (Horowitz 1991). Thus, a large proportion of the metals present was associated with fine sediment particles, which represented a small proportion of the total sediment composition.

4.2 Toxicity

Tests were conducted to determine if elevated sediment metal concentrations were associated with toxicity to aquatic biota. No effects on either the survival or growth of *Hyallela azteca* were observed after 14-day laboratory exposure period to the sediments collected from mine-exposed areas (Table 4.2), despite elevated levels of some metals (Table 4.1; Appendix B). However, there was a reduction in survival among *Hyallela* exposed to reference sediment collected at R7. The toxicity tests met all quality control criteria (Appendix B), and none of the chemical constituents measured at R7 were particularly elevated (Table 4.1), so the cause of the mortality in R7 sediment is unknown (perhaps the same non-contaminant factor that caused marginal effects to biota in the water sample collected at R7 – see Table 3.5).

Table 4.1: Summary sediment quality in Vangorda and Rose Creeks, Faro Mine Complex, August 2007 and 2008.

				Sedi	iment Qua	litv Guide	elines					20	07						2	800		
			Cana	ndian ^b		olumbia	1	ario ^f	V1 (ref	erence)	V2	27-A	V2	27-B	V2	27-C	R7 (re	ference)		R2		X2
Parameter	Units	MDLa	d		d		a	a h	Au	g. 28	Aug	g. 28	Au	g. 28	Au	g. 28	Au	g. 21	Au	g. 20	Au	ıg. 21
			ISQG ^d	PEL ^e	ISQG ^d	PEL ^e	LEL ^g	SEL ^h	whole ⁱ	<0.15mm	whole ⁱ	<0.15mm	whole	<0.15mm	whole ⁱ	<0.15mm	whole ⁱ	< 0.15 mm	whole ⁱ	< 0.15 mm	whole ⁱ	< 0.15 mm
Gravel (> 2 mm)	%	0.1							82		48		41		29		0.2		32		<0.1	
Sand (0.0625 - 2 mm)	%	0.1							17		51		58		70		97		67		69	
Silt (0.0039 - 0.0625 mm)	%	0.1							0.1		0.3		0.4		0.4		1.9		0.4		24	
Clay (<0.0039)	%	0.1							1.0		0.9		1.2		1.1		1.2		0.6		6.5	
Available (KCI) Ammonia (N)	mg/kg	0.5															13		4.6		18	
Nitrite (N)	mg/kg	0.5							<0.5		<0.5		<0.5		<0.5							
Nitrate plus Nitrite (N)	mg/kg	2							<2		<2		<2		<2							
Total Kjeldahl Nitrogen (TKN)	mg/kg	3					550	4,800	0.9		0.7		0.8		8.0		150		36		1,500	
Available (KCI) Orthophosphate (P)	mg/kg	50							4.9		3.6		2.8		3.2		<50		<50		<50	
Total Organic Carbon (TOC)	%	0.2					1	10	0.13		3.7		0.3		0.24		0.25		0.2		1.2	
Soluble (2:1) pH	pH Units	0.01															6.96		7.64		7.52	
Total Metals by ICPMS																						
Aluminum (AI)	mg/kg	100							8,020	16,100	8,180	14,800	8,700	14,300	9,630	13,200	9,180	10,400	8,150	18,000	13,600	13,400
Antimony (Sb)	mg/kg	0.1							0.2	0.3	0.7	2	0.5	2.2	0.8	2	0.6	0.6	8.0	2.0	1.3	1.3
Arsenic (As)	mg/kg	0.2	5.9	17	5.9	17	6	33	6.9	16.2	19.9	48.7	16.8	46	24.7	39.8	10.1	8.6	9.0	20.2	20.7	21.6
Barium (Ba)	mg/kg	0.1							64.3	130	73.5	338	88	265	116	209	125	192	107	404	211	258
Beryllium (Be)	mg/kg	0.1							0.3	0.6	0.2	0.5	0.2	0.5	0.3	0.5	0.2	0.4	0.2	8.0	0.7	0.7
Bismuth (Bi)	mg/kg	0.1							0.2	0.7	0.1	0.3	0.2	0.3	0.2	0.3	0.2	0.2	0.1	0.4	8.0	8.0
Boron (B)	mg/kg	5							<5	<5	<5	<5	<5	<5	<5	<5						
Cadmium (Cd)	mg/kg	0.05	0.6	3.5	0.6	3.5	0.6	10	0.35	0.52	0.82	2.47	0.92	2.35	1.05	2.26	0.17	0.23	0.24	0.86	0.85	0.97
Chromium (Cr)	mg/kg	11	37.3	90	37.3	90	26	110	14	26	25	48	22	43	24	42	17	19	20	53	32	31
Cobalt (Co)	mg/kg	0.3							7.4	17.2	11.2	24.1	11.8	23.4	13.6	23.5	7.1	8.0	10.9	29.4	15.4	14.6
Copper (Cu)	mg/kg	0.5	35.7	197	35.7	197	16	110	14.7	28.4	21.7	57.9	21.2	55.2	25.1	52.1	9.0	13.0	15.2	45.0	36.5	36.9
Iron (Fe)	mg/kg	100			21,200	43,766	20,000	40,000	18,500	34,100	19,200	35,600	20,600	36,900	23,000	32,700	22,100	22,400	19,200	43,400	34,600	32,000
Lead (Pb)	mg/kg	0.1	35.0	91.3	35	91	31	250	10.2	25.2	146	352	123	362	152	313	16.6	12.7	42.8	134	273	286
Magnesium (Mg)	mg/kg	100															3,790	3,690	4,810	10,300	5,970	5,500
Manganese (Mn)	mg/kg	0.2					460	1,100	378	736	830	2,320	941	2,290	1,070	2,290	393	576	2,200	9,620	1,340	1,600
Mercury (Hg)	mg/kg	0.05			0.170	0.486	0.2	2	<0.05	<0.05	0.11	0.27	0.19	0.24	0.09	0.22	<0.05	<0.05	<0.05	0.07	0.20	0.21
Molybdenum (Mo)	mg/kg	0.1							0.4	8.0	0.7	1.9	0.9	1.8	1.2	1.9	0.8	0.8	1.0	2.7	1.2	1.3
Nickel (Ni)	mg/kg	0.8			16	75	16	75	16.2	32.7	28.1	55.6	26.8	54.7	30.3	52.5	16.0	17.9	23.7	63.5	36.3	36.9
Phosphorus (P)	mg/kg	10					600	2,000									549	741	556	793	774	827
Potassium (K)	mg/kg	100							.0.5	0.0	0.0	1.0	0.0	1.4	0.0	4.0	1040	1360	740	1640	1750	1660
Selenium (Se)	mg/kg	0.5				2			<0.5	0.6	0.6	1.3	0.6	1.1	0.6	1.2	<0.5	0.5	0.5	<0.5	0.8	<0.5
Silver (Ag)	mg/kg	0.05							0.09	0.14	0.16	0.68	0.3	0.63	0.29	0.73	0.07	0.10	0.09	0.28	0.56	0.66
Sodium (Na)	mg/kg	100		1					45.5		00.0		46 =	46.7	40.0	4= 0	101	148	106	329	183	200
Strontium (Sr)	mg/kg	0.1		1					15.5	21	39.9	58	40.7	48.7	40.3	47.3	20.4	29.2	25.2	57.8	31.9	34.6
Thallium (TI)	mg/kg	0.05							<0.05	0.06	0.19	0.29	0.13	0.32	0.16	0.29	0.09	0.15	0.11	0.34	0.31	0.27
Tin (Sn)	mg/kg	0.1							0.3	0.5	0.3	0.4	0.2	0.4	0.3	0.3	0.5	0.7	0.3	3.8	1.0	1.0
Titanium (Ti)	mg/kg	1							116	247	95	176	104	174	133	151	302	396	149	361	442	390
Uranium (U)	mg/kg	0.05							1.59	3.71	0.89	1.93	0.85	1.99	1.04	1.87			40			
Vanadium (V)	mg/kg	2	400	0.15	400	0.15	400	200	14	25	17	31	18	25	18	24	21	24	18	39	35	34
Zinc (Zn)	mg/kg	1	123	315	123	315	120	820	53	108	290	709	338	806	385	733	57	63	175	546	456	491
Zirconium (Zr)	mg/kg	0.5															0.9	0.9	0.9	2.0	1.1	1.0

^a MDL = Method Detection Limit.

Shading indicates selected benchmark and measured values exceeding benchmark.

^b CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines. 1999 plus updates, Winnipeg, MB.)

^c BCMOE (British Columbia Ministry of Environment). 2006. A compendium of Working Water Quality Guidelines for British Columbia. Updated August 2006.)

^d Interim sediment quality guideline

^e Probable effect level

^f OMOE (Ontario Ministry of Environment). 1993. Guidelines For The Protection and Management Of Aquatic Sediment Quality In Ontario. August 1993, Reprinted October, 1996. MOE (1993).

g Lowest effect level.

^h Severe effect level.

i Samples for metal analysis were pre-screened to 2 mm to remove large particles that could bias sample results.

Table 4.2: Results of 14-d survival and growth tests using *Hyallela azteca* for sediment samples collected at Faro Mine

Sample	Sample Date	Mean Survival	Mean Dry Weight
Gampie	Campie Bate	(%)	(mg)
Lab Control	Aug-07	100	0.297
V1	Aug-07	100	0.41
V27-A	Aug-07	100	0.357
V27-B	Aug-07	100	0.307
V27-C	Aug-07	100	0.275
Lab Control	Aug-08	88	0.203
R7	Aug-08	50*	0.164
X2	Aug-08	90	0.186
R2	Aug-08	86	0.236

^{*}sample differed from lab control results

5.0 BENTHIC INVERTEBRATE COMMUNITY

The main objective of benthic invertebrate community sampling in 2007 (Vangorda Creek drainage and reference areas) and 2008 (Rose Creek drainage and reference areas) was to compare relative sensitivities of various sampling methods (artificial substrates, Hess, and kick sampling) and sampling designs (control-impact versus RCA) in order to recommend an approach for long-term monitoring. The effect of sampling three versus five stations per area within a control-impact design was also evaluated. In addition, the assessment included evaluation of reference areas to identify those most suitable for comparison to mine-exposed areas based on similarity in habitat characteristics.

5.1 Preliminary Data Assessment

Correspondence Analysis (CA) of all areas and years (using mean values in cases where more than one station was sampled per area) showed overlap of the community characteristics (as described by CA Axes 1-3) reflected by each sampling method (Figure 5.1). There was also considerable overlap of community characteristics in reference and mine-exposed areas (Figure 5.2). Most notable was the separation of BEC and BTT from the other sampling areas on CA1 and CA2 based on both Hess and kick sampling (Figures 5.1 and 5.2; no AS were taken at these areas). There was also some separation of NEC-Hess (2008) (positive direction) and Vangorda areas V27, V5, and V8 –artificial substrates (negative direction) on CA3 (Figures 5.1 and 5.2). Areas sampled both years (USFR, VR, NEC) showed somewhat different CA scores between years, but not in a consistent direction (i.e., no consistent change in community composition between years for these areas; Figures 5.1 and 5.2).

5.2 Control-Impact Design

5.2.1 Comparison of Sampling Methods

Comparison of Hess versus artificial substrate sampling within the Vangorda Creek drainage (2007) involved statistical comparison of each mine-exposed area to a reference area on main stem Vangorda Creek upstream of mine influence (V1) based on various benthic community descriptors (metrics) and five stations per area. The comparison showed that Hess sampling was much more sensitive in detecting reference-exposure differences than artificial substrates (total significant p values across metrics), even though within-area coefficients of variation were not always lower for Hess (Table 5.1).

Comparison of Hess versus kick sampling was based on benthic communities in mineexposed areas within the Rose Creek drainage relative to a reference area on Blind Creek

Figure 5.1: Correspondence analysis of benthic community data for artificial substrate, kick and Hess samples collected in 2008. Area means are shown for areas in which replicate stations were sampled.

Figure 5.2: Correspondence analysis of benthic community data for exposure versus reference areas (2008) all sample methods combined. Area means are shown for areas in which replicate stations were sampled.

Table 5.1: Coefficients of variation (CV %) and p-values for reference-exposure contrasts based on benthic community metrics for replicate (5) Hess samples versus artificial substrates collected in each area of Vangorda Creek 2007.

		He	ess	Artificial	Substrates
Metric	Station	CV ^a	p value ^b	CV ^a	p value ^b
	V1	32		101	
Daneity (for Hose) or Comple Abundance	V27	29	0.047	88	0.512
Density (for Hess) or Sample Abundance (for AS)	V5	35	0.001	55	0.037
(IOI AS)	V8	40	0.987	67	0.160
	Mean	34		78	
	V1	22		19	
	V27	25	0.107	16	0.162
Number of Taxa	V5	2.4	0.035	6.6	0.343
_	V8	15	0.191	21	0.222
	Mean	16		16	
_	V1	29		20	
_	V27	19	0.465	26	0.576
Simpson's E	V5	24	0.752	15	0.831
_	V8	43	0.002	39	0.790
	Mean	29		25	
_	V1	32		58	
	V27	12	0.000	24	0.186
B-C Dist. to V1 median	V5	8.2	0.000	21	0.032
_	V8	8.9	0.000	19	0.134
	Mean	15		30	
=	V1	3.7		3.0	1
	V27	3.1	0.342	3.4	0.719
Simpson's D	V5	4.5	0.044	2.2	0.447
-	V8	25	0.049	3.1	0.726
	Mean	9		2.9	+
-	V1	14	0.000	17	0.000
EPT -	V27	3.7	0.022	15	0.063
(% of total community abundance)	V5 V8	31 37	0.008	19 19	0.553 0.537
=		21	0.000	18	0.557
	Mean V1	28		38	+
-	V27	40	0.000	84	0.022
Chironomids -	V27 V5	29	0.000	47	0.022
(% of total community abundance)	V8	20	0.000	36	0.400
-	Mean	29	0.000	51	0.700
	V1	467	+	164	
	V27	18	0.000	46	0.658
CA Axis 1	V5	17	0.000	40	0.001
5	V8	75	0.018	3697	0.107
	Mean	144	3.010	987	3.107
	V1	31		174	
	V27	83	0.094	478	0.890
CA Axis 2	V5	200	0.000	794	0.455
	V8	63	0.002	192	0.160
	Mean	94		410	
	V1	78		302	
	V27	98	0.001	215	0.808
CA Axis 3	V5	99	0.001	61	0.226
	V8	105	0.196	48	0.003
	Mean	95		156	
Overall CV	Mean	49		177	
Total Significant Differences (p<0.1)			22		6

Area was signficantly different from reference, p<0.1

^a CV - coefficient of variation (%) = (standard deviation/area mean)*100

^b p value for exposure area comparisons to V1

(2008 samples, three stations per area). The two methods showed comparable sensitivity in detecting reference-exposure differences, but based on different community descriptors (Table 5.2); Hess was more sensitive in detecting differences based on metrics typically used in Environmental Effects Monitoring (EEM) studies for the Metal Mining industry (density/abundance, number of taxa, Simpson's Evenness), whereas kick sampling was superior in detecting differences based on Simpson's Diversity, and percentages of EPT (Ephemeroptera, Plecoptera, Trichoptera) and chironomid taxa.

5.2.2 Number of Stations per Area

Generally, as the number of stations per area is increased, a smaller magnitude of difference can be detected among areas, making it easier to detect mine-related effects. However, the increase in sensitivity (benefit) must be weighed against the additional effort and expense (cost) of collecting and analyzing additional samples. This issue was examined by comparing statistical results generated using the first three stations sampled from each exposure area compared to those based on five stations per area.

The effect of sampling three versus five stations per area was evaluated based on Hess and artificial substrate samples collected in 2007 (Vangorda Creek) and 2008 (Rose Creek). For both sampling methods, a greater number of reference-exposure differences were detectable based on five compared to three stations per area, except in the case of artificial substrates sampled in 2007, when relatively few reference-exposure differences were detected regardless of whether three or five stations were sampled per area (Tables 5.3 and 5.4). However, in both years, reliance on only three stations per area would have detected as many differences as five stations per area if only density, number of taxa and Simpson's Evenness (e.g., metrics typically considered in EEM studies) were considered. Therefore, while the data show that sampling five stations per area would be somewhat superior for identifying and characterizing reference-exposure differences, three stations per area may be sufficient to detect key changes in benthic communities over time in long-term monitoring if Hess sampling is used.

5.3 Reference Condition Approach

5.3.1 Habitat Comparisons

Principle components and correlation analyses of the various habitat variables indicated that basin area, drainage density, station elevation, source elevation, average stream gradient, bedrock geology (sedimentary, volcanic, plutonic), coniferous cover (area), water velocity, and wetted width explained most of the variability in habitat characteristics among all the reference and mine-exposed areas (Appendix E.1).

Table 5.2: Coefficients of variation (CV %) and p-values for reference-exposure contrasts based on benthic community metrics for replicate (3) Hess samples versus kick samples, Rose Creek drainage, 2008.

		Не	ess	K	ick
Metric	Station	CVª	p value ^b	CV ^a	p value ^b
	BLC	52		55	
Density (for Hess) or Total Sample	X2	35	0.076	55	0.140
Abundance (for kick)	R2	26	0.373	23	0.693
	Mean	37		44	
	BLC	11		24	
Number of Taxa	X2	8.8	0.224	20	0.424
Number of Taxa	R2	5.0	0.059	8.8	0.529
	Mean	8		18	
	BLC	87		32	
Simpania F	X2	8.2	0.987	19	0.556
Simpson's E	R2	30	0.061	18	0.088
	Mean	42		23	
	BLC	40		5.6	
Cimpo anla D	X2	4.9	0.358	10	0.979
Simpson's D	R2	5.5	0.159	2.7	0.095
	Mean	17		6	
	BLC	85		26	
EPT	X2	70	0.276	84	0.022
(%of total community abundance)	R2	29	0.221	11	0.258
	Mean	61		40	
	BLC	46		41	
Chironomids	X2	15	0.580	19	0.046
(% of total community abundance)	R2	35	0.176	30	0.137
,	Mean	32		30	
	BLC	21		7.3	
OA A.::- 4	X2	25	0.000	43	0.000
CA Axis 1	R2	53	0.001	210	0.007
	Mean	33		87	
	BLC	37		197	
04.4 %	X2	44	0.490	211	0.736
CA Axis 2	R2	50	0.001	24	0.137
	Mean	44		144	
	BLC	2148		511	
00.00	X2	1815	0.895	456	0.878
CA Axis 3	R2	333	0.998	143	0.364
	Mean	1432		370	
Overall CV		190		85	
Total Significant Differences (p<0.1)			6		6

Area was signficantly different from reference, p<0.1

^a CV - coefficient of variation (%) = (standard deviation/area mean)*100

^b p value for exposure area comparisons to Blind Creek

Table 5.3: The effect of three versus five stations per area on within area coefficients of variation (CV %), and p-values for reference-exposure contrasts, for various benthic community metrics (2007, Vangorda Creek drainage).

			He	ss			Artificial S	ubstrates	
Metric	Station	3 Statio	ons/Area	5 Statio	ns/Area	3 Static	ns/Area	5 Statio	ns/Area
		CV ^a	p-value ^b						
	V1	44		32		96		101	
Density (for Hess) or Sample	V27	43	0.397	29	0.047	84	0.238	88	0.512
Abundance (for AS)	V5	49	0.069	35	0.001	29	0.002	55	0.037
	V8	20	0.752	40	0.987	61	0.273	67	0.160
	V1	16		22		28		19	
Number of Taxa	V27	25	0.385	25	0.107	12	0.170	16	0.162
Number of Taxa	V5	2.6	0.037	2.4	0.035	8.9	0.445	6.6	0.343
	V8	14	0.084	15	0.191	29	0.344	21	0.222
	V1	32		29		21		20	
Simpson's E	V27	20	0.673	19	0.465	33	0.319	26	0.576
Simpson's E	V5	25	0.532	24	0.752	9.5	0.469	15	0.831
	V8	40	0.009	43	0.002	57	0.728	39	0.790
	V1	5.4		3.7		3.4		3.0	
Simpson's D	V27	1.8	0.667	3.1	0.342	4.0	0.961	3.4	0.719
Simpson's D	V5	4.9	0.342	4.5	0.044	2.5	0.696	2.2	0.447
	V8	22	0.100	25	0.049	3.5	0.882	3.1	0.726
	V1	16		14		17		17	
EPT (%)	V27	5	0.192	3.7	0.022	9.1	0.073	15	0.063
EFI (%)	V5	43	0.054	31	0.008	20	0.112	19	0.553
	V8	23	0.003	37	0.000	19	0.367	19	0.537
	V1	39		28		37		38	
Chironomids (%)	V27	58	0.012	40	0.000	139	0.059	84	0.022
Crinionoffilids (70)	V5	37	0.263	29	0.419	37	0.433	47	0.488
	V8	13	0.003	20	0.000	41	0.452	36	0.706
Total Significant Difference	s (p<0.1)		8		11		3		3

Area was signficantly different from reference, p<0.1

^a CV - coefficient of variation (%) = (standard deviation/area mean)*100

^b exposure areas V27, V5, V8 compared to V1

Table 5.4: The effect of three versus five stations per area on within area coefficients of variation (CV %), and p-values for reference-exposure contrasts, for various benthic community metrics (2008, Rose Creek drainage). P-values for Hess sampling cannot be directly compared to those for artificial substrate sampling because the two methods involved use different reference areas.

			Hes	s s ^b			Artificial S	ubstrates	С
Metric	Station	3 Stati	ons/Area		ons/Area	3 Stati	ons/Area	5 Stati	ons/Area
		CV ^a	p-value ^b	CV ^a	p-value ^b	CV ^a	p-value ^c	CV ^a	p-value ^c
	BLC	52		40					
Density (for Hess) or Sample	R7					77		64	
Abundance (for AS)	X2	35	0.076	46	0.163	50	0.643	80	0.525
Abulidance (ioi A3)	R2	26	0.373	27	0.089	48	0.186	83	0.041
	Mean	37		37		58		76	
	BLC	11		8.0					
	R7					5.3		3.7	
Number of Taxa	X2	8.8	0.224	22	1.000	10	0.063	23	0.231
	R2	5.0	0.059	6.3	0.133	14	0.341	17	0.194
	Mean	8.3		12		10		15	
	BLC	87		76					
	R7					15		18	
Simpson's E	X2	8.2	0.987	24	0.391	27	0.637	34	0.982
	R2	30	0.061	34	0.002	11	0.126	13	0.038
	Mean	42		45		17		21	
	BLC	40		30					
	R7					4.8		5.4	
Simpson's D	X2	4.9	0.358	6.0	0.017	14	0.332	11	0.292
	R2	5.5	0.159	5.9	0.001	0.4	0.144	8.0	0.019
	Mean	17		14		6.5		5.7	
	BLC	85		68					
	R7					33		26	
EPT (%)	X2	70	0.276	61	0.085	62	0.039	53	0.000
	R2	29	0.221	27	0.146	7.4	0.125	34	0.070
	Mean	61		52		34		38	
	BLC	46		32					
	R7					46		32	
Chironomids (%)	X2	15	0.580	16	0.622	7.7	0.009	5.6	0.000
	R2	35	0.176	28	0.068	21	0.180	26	0.306
	Mean	32		25		25	1	21	
Overall Mean CV		33		31		25		29	
Total Significant Difference	s (p<0.1)		3		6		3		6

Area was signficantly different from reference, p<0.1

 $^{^{\}rm a}$ CV - coefficient of variation (%) = (standard deviation/area mean)*100

^b exposure areas X2 and R2 compared to BLC

 $^{^{\}rm c}$ exposure areas X2 and R2 compared to R7

Water quality variables can be influenced by mine activities and thus cannot be included in the habitat characteristics selected for matching reference and mine-exposed areas. However, water quality data were evaluated to identify variables that most strongly differed among areas and to determine if these correlated with the other (non anthropogenically influenced) abiotic factors (paragraph above) considered in habitat matching (Appendix Section E.1.3). Conductivity and water hardness were water quality variables that differed considerably among reference areas (Table 3.1). Correlation analysis of water quality variables showed that conductivity (and specific conductance) correlated with all the other non-metal inorganic parameters, except TSS (Table 5.5a). Furthermore, calcium correlated with many of the metals found at detectable levels in some streams (Table 5.5b). Hardness, and its component calcium, as well as conductivity/specific conductance all correlated with each other and with station elevation, and area covered by plutonic geology and conifers (Table 5.5c), suggesting that inclusion of any of these three latter variables in subsequent stages of habitat analysis would incorporate some of the variation in water quality among areas (i.e., any direct influence of water quality on benthic communities was at least partly taken into account by other variables included in the analysis).

Correlation analysis was performed to determine the habitat characteristics (i.e., of the 11 habitat variables listed in the first paragraph of this section) most strongly associated with the biological community descriptors (CA1, CA2, CA3, abundance, richness, %EPT, % chironomids, diversity, and evenness) (Appendix E.2). For both the Hess and kick sampling methods, biological community descriptors were highly correlated (i.e., r > 0.6) with percent volcanic bedrock and coniferous forest cover in the basin, as well as water velocity measured at the time of sample collection. Average stream gradient was also highly correlated with CA3 for Hess samples but gradient was not used in further analyses because it was also highly correlated with basin coniferous cover. There were not enough reference areas sampled with artificial substrates to perform meaningful correlation analyses for this sample type.

Reference areas were ranked from best to worst habitat match with each exposure area using the Euclidean distances of volcanic bedrock, coniferous cover, and water velocity (Appendix E3). A Euclidean distance of less than or equal to 2.1 was used as the cutoff between suitable and non-suitable reference areas and was based on the examination of P values, graphs of rank versus distance, and previous knowledge of the areas (Appendix E.3). The results showed which areas were suitable reference for exposure areas in upper and lower Rose Creek and Vangorda Creek (Table 5.6). For example, exposure

Table 5.5: Correlations between a) non-metal inorganic parameters, b) aqueous metal concentrations and c) other habitat variables. Shade indicates correlation coefficients ≥ 0.6.

1)	Fluoride	Awainity	Total as Caco	D3) PP as CaCO	Chloride	Suspend	de solids total	TSS) solids total T	DS) Conducti	Jih Specific	godiletine*
Fluoride	1.00										
Alkalinity (Total as CaCO3)	0.87	1.00									
Alkalinity (PP as CaCO3)	0.76	0.89	1.00								
Sulphate	0.58	0.77	0.61	1.00							
Chloride	0.87	0.71	0.59	0.52	1.00						
Suspended solids, total (TSS)	0.57	0.28	0.25	0.14	0.73	1.00					
Dissolved solids, total (TDS)	0.78	0.93	0.78	0.94	0.68	0.25	1.00				
Hardness	0.80	0.95	0.82	0.93	0.67	0.25	1.00	1.00			
Conductivity	0.80	0.92	0.76	0.94	0.67	0.23	0.99	0.99	1.00		
Specific Conductance	0.83	0.94	0.78	0.90	0.70	0.27	0.98	0.98	0.99	1.00	

			/					. /		/			· . /	.m /		. /					
	Alumir	um Antin	OMY Arsen	c Barium	Cadri	um Calcil	un Chroni	um cobat	COPPE	Kon	Lead	Mang	anese Molyb	denum Nickel	Polase	sum selen	um sodiv	m stront	jum Titanii	um Urani	in line
Aluminum	1.00							ĺ	ĺ							ĺ			ĺ		
Antimony	0.11	1.00																			
Arsenic	0.44	0.58	1.00																		
Barium	0.18	0.79	0.57	1.00																	
Cadmium	0.08	0.40	-0.05	0.54	1.00																
Calcium	0.14	0.92	0.50	0.89	0.49	1.00															
Chromium	0.83	0.28	0.38	0.30	0.17	0.37	1.00														
Cobalt	0.19	0.13	0.25	0.15	0.07	0.20	0.13	1.00													
Copper	0.18	0.03	0.36	0.21	-0.16	0.16	0.06	0.00	1.00												
Iron	0.79	0.27	0.69	0.36	0.04	0.28	0.66	0.55	0.12	1.00											
Lead	0.43	-0.05	0.28	-0.06	0.02	-0.05	0.29	0.21	0.35	0.43											
Total Manganese	-0.10	0.02	0.09	0.03	-0.02	0.09	-0.12	0.95	-0.04	0.32	0.09	1.00									
Molybdenum	0.11	0.87	0.56	0.86	0.34	0.89	0.32	0.06	0.13	0.26	-0.12	-0.05	1.00								
Nickel	0.14	0.81	0.40	0.55	0.37	0.75	0.16	0.45	0.05	0.30	0.06	0.35	0.56	1.00							
Potassium	0.12	0.58	0.50	0.78	0.08	0.77	0.26	0.30	0.47	0.31	-0.02	0.23	0.67	0.46	1.00						
Selenium	-0.07	0.76	0.16	0.70	0.69	0.82	0.29	-0.05	-0.16	-0.01	-0.20	-0.10	0.72	0.55	0.39	1.00					
Total Sodium (Na)	0.14	0.52	0.51	0.72	0.06	0.70	0.29	0.32	0.53	0.31	0.00	0.24	0.72	0.35	0.92	0.32	1.00				
Strontium	0.04	0.95	0.47	0.82	0.41	0.98	0.30	0.14	0.09	0.19	-0.10	0.05	0.90	0.77	0.70	0.84	0.62	1.00			
Titanium	0.99	0.17	0.51	0.23	0.07	0.19	0.84	0.20	0.19	0.82	0.40	-0.08	0.19	0.17	0.17	-0.04	0.21	0.10	1.00		
Uranium	0.03	0.93	0.44	0.69	0.31	0.92	0.30	0.03	0.07	0.12	-0.09	-0.06	0.83	0.76	0.59	0.81	0.49	0.97	0.09	1.00	
Zinc	-0.09	-0.03	0.09	-0.06	0.19	-0.03	-0.10	0.46	-0.12	0.16	0.57	0.46	-0.17	0.12	-0.02	-0.12	-0.04	-0.07	-0.09	-0.13	1.00

Table 5.5: Correlations between a) non-mtal inorganic parameters, b) aqueous metal concentrations and c) other habitat variables.

							jradient /									
	Basin	Area Drain	age Density Statio	n Elevation Sour	e Elevation Aved	erage Stream	nentary Volca	nic purc	nic conf	erous Veloc	ity Wette	ad width	less Calci	un cond	activity Speci	ic Conductants
Basin Area	1.00															
Drainage Density	-0.38	1.00														
Station Elevation	-0.50	0.41	1.00													
Source Elevation	0.18	0.11	0.39	1.00												
Avegerage Stream Gradient	-0.28	0.41	0.27	0.24	1.00											
Sedimentary	0.37	-0.12	-0.46	0.19	0.26	1.00										
Volcanic	0.00	-0.29	-0.34	-0.33	-0.24	0.09	1.00									
Plutonic	-0.39	0.38	0.89	0.51	0.21	-0.49	-0.27	1.00								
Coniferous	0.29	-0.17	-0.58	-0.50	-0.51	0.13	0.02	-0.68	1.00							
Velocity	0.08	-0.17	-0.23	-0.21	-0.41	-0.01	0.25	-0.22	0.56	1.00						
Wetted Width	0.83	-0.33	-0.27	-0.04	-0.26	0.10	-0.12	-0.28	0.23	-0.19	1.00					
Hardness	0.06	-0.31	-0.69	-0.52	-0.21	0.37	0.28	-0.88	0.69	0.43	-0.07	1.00				
Calcium	0.09	-0.31	-0.73	-0.52	-0.19	0.36	0.25	-0.88	0.71	0.43	-0.06	0.99	1.00			
Conductivity	0.02	-0.30	-0.69	-0.51	-0.13	0.42	0.31	-0.87	0.63	0.45	-0.13	0.99	0.96	1.00		
Specific Conductance	0.01	-0.28	-0.71	-0.52	-0.09	0.40	0.28	-0.88	0.62	0.37	-0.12	0.98	0.97	0.99	1.00	

Table 5.6: Ranking of reference areas in terms of habitat similarity to exposure areas at Faro Mine.

				Reference	Station R	anks Relat	ive to Expos	ure Areas			
		Vangor	da Creek		Up	per Rose C	Creek		Lower R	ose Creek	
Reference Area	V27	V5	V8	Best overall matches for group	X2	R2	Best overall matches for group	R3	R4	R5	Best overall matches for group
BEC										8	
BLC	5	1	3	$\sqrt{}$	10	9	$\sqrt{}$	5	4	4	$\sqrt{}$
BTT										9	
BUC					6	2	V	10	10		
FC	7				2	3	$\sqrt{}$	8	8		
GRC			7		8	5	$\sqrt{}$	7	6	6	$\sqrt{}$
HOC	9	2	1	$\sqrt{}$	9	8	$\sqrt{}$	4	2	2	$\sqrt{}$
NEC	1	3	6	V	4	4	V	2	5	7	$\sqrt{}$
R6		7	2					11	11	1	\checkmark
R7	3	4	4	$\sqrt{}$	1	1	V	1	1	3	$\sqrt{}$
STC	8	5	5	$\sqrt{}$	7	6	$\sqrt{}$	3	3	5	$\sqrt{}$
USFR	6				3	7	V	9	9		
V1	4							12			
VR	2	6	8	$\sqrt{}$	5	10	V	6	7	10	V

Numbers indicate degree of habitat match with an exposure area (where 1 is the best match, 2 second best match etc.), for areas with Euclidean distance (habitat variables) relative to exposure area of \leq 2.1. $\sqrt{}$ Appropriate reference site for exposure sites in the area (reference areas within a Euclidean distance of 2.1 of all exposure areas in the group). areas X2 and R2 in upper Rose Creek had similar bedrock, coniferous cover, and velocity to reference areas BLC, BUC, FC, GRC, HOC, NEC, R7, STC, USFR, and VR. Six to ten reference areas were found to be good matches for each group of exposure areas shown in Table 5.6. This is slightly less than the minimum of 20 reference areas previously recommended for reference-exposure comparisons in RCA (Bowman and Somers 2005). However, in this study, particular care was taken in the field to sample only reference areas that were comparable to exposure areas based on habitat characteristics seen/measured in the field, such as size, gradient, and substrate. Reference area habitat matches were further improved by formal tests involving the habitat variables most strongly related to reference benthic invertebrate community variability (volcanic bedrock, coniferous cover and stream velocity). The resulting data sets (6-10 reference areas in each comparison) seem robust in terms of detecting deviations from central and noncentral reference condition (see Section 5.3.2). Nevertheless, it may be appropriate to seek additional reference areas for future studies (e.g., minimum of 20 suitable reference areas in each exposure area comparison), if this number can be found with reasonable accessibility (e.g., by road or short helicopter ride).

5.3.2 Comparison of Sampling Methods

Comparisons were made between the biological community attributes at exposure areas X2 and R2 relative to the 10 most suitable reference areas using both the Hess and kick sampling methods.

For Hess samples collected at exposure area X2, benthic community characteristics of CA3 score, density, % EPT, % chironomids, and evenness were significantly different than the *average* for reference areas and, except for evenness, were potentially (but not conclusively) outside the reference *range* for the same metrics (Table 5.7; Figure 5.3). Further downstream at R2, only diversity and evenness were significantly (i.e., cP < 0.1) greater than the average for reference area and all community metrics except evenness were within the reference range (ncP > 0.9).

For the kick sampling method, all metrics at exposure area X2 were different than the reference average and also significantly (% chironomids) or potentially (all other metrics) outside of the range for reference areas (Table 5.8; Figure 5.3). Downstream at R2, CA1, CA2, CA3, number of taxa, and diversity were significantly different than the reference area average, but still within the reference area range (Table 5.8).

Table 5.7: Benthic community characteristics of Rose Creek exposure areas (X2, R2) relative to reference areas having similar habitat characteristics based on Hess sampling. Results are presented for traditional central (cP) t-tests and non-central (ncP) t-tests (Test Site Analysis).

Hess 2008		CA1	CA2	CA3	Density	# of Taxa	% EPT	%	Simpson's	Simpson's
Hess 2006		CAT	CAZ	CAS	(#/m²)	# OI TAXA	% EP1	Chironomids	Diversity	Evenness
Reference										
BLCH-8		-0.21	0.30	-0.29	6068	24.2	24.7	65.9	0.56	0.12
BUCH-8		0.20	0.33	-0.58	1957	32.0	76.8	12.8	0.91	0.34
FC1H-8		-0.20	-0.47	0.19	6360	19.0	25.2	56.8	0.80	0.27
GRCH-8		-0.25	0.43	0.07	510	17.0	26.8	63.4	0.78	0.27
HOCH-8		-0.20	0.55	0.18	2147	23.0	51.9	39.0	0.88	0.38
NECH-8		1.62	0.01	0.13	4536	20.0	26.3	20.6	0.72	0.18
VRH-8		0.34	-0.39	0.11	7807	21.0	28.2	57.0	0.78	0.21
R7H-8		-0.27	-0.17	0.29	8120	19.0	7.6	82.8	0.41	0.09
STCH-8		-0.29	-0.01	0.15	7240	26.0	49.4	35.2	0.85	0.26
USFRH-8		-0.15	-0.55	-0.52	1743	21.0	46.3	16.3	0.84	0.29
Mean		0.06	0.00	-0.03	4649	22.2	36.3	45.0	0.75	0.24
SD		0.59	0.39	0.32	2844	4.4	19.7	23.8	0.15	0.09
Exposure										
X2H-8	value	-0.01	0.05	0.34	9656	24.2	10.3	70.9	0.75	0.18
	t	-0.35	0.39	3.63						-2.29
	сР	0.73	0.71	0.01	0.00	0.18	0.00	0.01	0.93	0.05
	ncP	1.00	1.00	0.78	0.30	1.00	0.64	0.82	1.00	0.98
R2H-8	value	-0.12	0.07	0.12	3663	20.8	40.2	43.1	0.85	0.36
	t	-0.94	0.51	1.43	-1.10	-1.03	0.63	-0.25	2.05	4.21
	сР	0.37	0.62	0.19	0.30	0.33	0.54	0.81	0.07	0.00
	ncP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.63

cP - probability metric value at exposure area is the same as the mean for reference areas. ncP - probability metric value at exposure area is inside the range of reference values

Different from exposure mean (cP < 0.1) or range (ncP < 0.1).

Uncertain with respect to being similar to or different from reference (0.1 > p < 0.9).

Similar to reference mean (cP > 0.9) or within reference range (ncP < 0.9).

Figure 5.3: Graphical depiction of area CA scores shown for a) Hess samples collected at X2 and R2 in 2008 (Table 5.7), b) Kick samples collected at X2 and R2 in 2008 (Table 5.8) and Hess samples collected at Vangorda areas in 2007 (Table 5.9) relative to reference samples collected in 2007 and 2008 from areas with similar habitats to exposure areas.

Table 5.8: Benthic community characteristics of Rose Creek exposure areas (X2, R2) relative to reference areas having similar habitat characteristics based on kick and sweep samples. Results are presented for traditional central (cP) t-tests and non-central (ncP) t-tests (Test Site Analysis).

K&S 2008		CA1	CA2	CA3	Abundance (3-minute sample)	# of Taxa	% EPT	% Chironomids	Simpson's Diversity	Simpson's Evenness
Reference										
BLCK-8		-0.13	0.24	-0.13	600	21.3	54.8	38.9	0.78	0.23
BUCK-8		0.38	-0.02	-0.05	1865	21.0	85.5	11.3	0.83	0.27
FC1K-8		-0.21	0.71	-0.04	610	19.0	42.6	37.4	0.86	0.37
GRCK-8		-0.19	-0.25	-0.49	63	14.0	58.7	27.0	0.88	0.58
HOCK-8		0.04	-0.20	-0.46	102	16.0	70.6	15.7	0.83	0.37
NECK-8		-0.14	0.41	-0.06	1187	21.0	76.9	18.6	0.83	0.28
R7K-8		-0.16	0.22	0.14	1236	23.5	41.9	39.8	0.87	0.33
STCK-8		-0.30	0.10	-0.25	90	15.0	22.2	43.3	0.86	0.47
USFRK-8		0.98	-0.07	0.21	1969	26.0	74.5	16.6	0.80	0.19
VRK-8		-0.07	-0.57	-0.67	502	20.0	62.4	11.8	0.87	0.37
Mean		0.02	0.06	-0.18	822	19.7	59.0	26.0	0.84	0.35
SD		0.39	0.36	0.28	710	3.8	19.3	12.7	0.03	0.12
Exposure										
X2K-8	value	-0.44	-0.42	0.48	2192	24.3	20.8	63.7	0.78	0.20
	t	-3.78	-4.17	7.33	6.10	3.88	-6.27	9.38	-5.87	-3.99
	сР	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ncP	0.87	0.80	0.17	0.34	0.85	0.31	0.04	0.39	0.83
R2K-8	value	-0.23	-0.22	0.10	511	23.7	68.8	21.9	0.87	0.33
	t	-2.02	-2.38	3.15	-1.39	3.33	1.60	-1.03	3.08	-0.44
	сР	0.07	0.04	0.01	0.20	0.01	0.14	0.33	0.01	0.67
	ncP	1.00	0.99	0.96	1.00	0.94	1.00	1.00	0.96	1.00

cP - probability metric value at exposure area is the same as the mean for reference areas.

ncP - probability metric value at exposure area is inside the range of reference values

Different from exposure mean (cP < 0.1) or range (ncP < 0.1).

Uncertain with respect to being similar to or different from reference (0.1 > p < 0.9).

Similar to reference mean (cP > 0.9) or within reference range (ncP < 0.9).

The collective results suggest that the kick sampling method was slightly more sensitive in detecting differences between the exposure and reference areas than the Hess sampling method within the RCA sampling design.

For the Vangorda Creek drainage, only Hess sample data were available for evaluation using RCA (Table 5.9; Figure 5.3). Several benthic community characteristics (CA2, CA3, density, %EPT, % chironomids) differed from average reference conditions at V27 but were not conclusively outside the range of reference either, suggesting relatively minor differences in invertebrate communities. Benthic communities at V5 and V8 showed fewer significant differences from average reference conditions and, except for CA2 at V8, were within the range of reference for all community metrics.

Comparisons of individual reference areas with average reference condition (Appendix Table F.16 - F.18) further supported the conclusion that differences between reference and mine-exposed areas were small relative to natural variability. As with mine-exposed areas, metric values for individual reference areas were often significantly different from average but were not conclusively outside the range of reference areas (except CA1 at NEXH-8).

5.4 Comparison of Sampling Designs

A modified control-impact design was compared to RCA in terms of relative sensitivity to detect reference-exposure area differences. A typical control-impact design compares mean condition in an exposure area to mean condition in a reference area based on replicate stations sampled within each area (using ANOVA). While this approach takes within-area (among station) variability into account, it does not usually involve multiple reference areas so as to take among-reference-area variability into account (i.e., exposure areas can differ from the selected reference area used in the comparison, but may not be outside the range of variability exhibited among a larger suite of reference areas). To allow for more direct comparison to RCA results, ANOVA and pre-planned reference-exposure contrasts were performed that involved the same set of reference area data used in RCA. This was similar to the central t-test used in RCA, except that within-exposure area variability was taken into account by ANOVA (i.e., all exposure stations included), but not in RCA (which used only the mean exposure area value for each metric).

For the Hess sampling method, central tests (which are based on comparisons of means) of control-impact versus RCA designs detected the same number of significant reference-exposure differences, although not always for the same benthic community metrics (cP

Table 5.9: Benthic community characteristics of Vangorda Creek exposure areas (V27, V5, V8) relative to reference areas having similar habitat characteristics based on Hess sampling. Results are presented for traditional central (cP) t-tests and non-central (ncP) t-tests (Test Site Analysis).

Hess 2007		CA1	CA2	CA3	Density	# of Taxa	% EPT	%	Simpson's	Simpson's
Hess 2007		CAI	CAZ	CAS	(#/m²)	# UI TAXA	/0 EF I	Chironomids	Diversity	Evenness
Reference										
BLCH-8		-0.17	0.24	0.40	6068	24.2	24.7	65.9	0.565	0.123
HOCH-8		-0.32	0.37	0.02	2147	23.0	51.9	39.0	0.884	0.376
NECH-7		-0.03	-0.52	-0.59	1607	21.0	73.1	20.7	0.844	0.305
R7H-8		-0.22	0.39	-0.30	7807	21.0	28.2	57.0	0.777	0.214
STCH-8		-0.18	0.34	-0.15	8120	19.0	7.6	82.8	0.414	0.090
VRH-7		1.34	0.38	0.03	2057	17.0	9.8	84.9	0.614	0.152
Mean		0.07	0.20	-0.10	4634	20.9	32.5	58.4	0.68	0.21
SD		0.63	0.35	0.34	3042	2.6	25.5	25.1	0.18	0.11
Exposure										
V27H-7	value	0.09	-0.56	0.24	8518	20.8	79.1	6.2	0.83	0.29
	t	0.08	-4.79	2.26	3	-0.1	4.1	-4.6	1.81	1.67
	cР	0.94	0.00	0.07	0.04	0.96	0.01	0.01	0.13	0.16
	ncP	1.00	0.39	0.94	0.84	1.00	0.55	0.42	0.98	0.98
V5H-7	value	0.25	-0.06	-0.11	1324	22.4	45.4	38.7	0.86	0.33
	t	0.64	-1.60	-0.06	-2	1.3	1.1	-1.8	2.16	2.42
	cР	0.55	0.17	0.96	0.06	0.25	0.31	0.14	0.08	0.06
	ncP	1.00	0.99	1.00	0.91	0.99	1.00	0.98	0.95	0.91
V8H-7	value	-0.21	-0.25	0.18	5968	19.0	30.2	60.8	0.63	0.16
	t	-1.00	-2.83	1.84	1	-1.6	-0.2	0.2	-0.69	-1.03
	сР	0.37	0.04	0.13	0.37	0.17	0.85	0.84	0.52	0.35
	ncP	1.00	0.84	0.98	1.00	0.99	1.00	1.00	1.00	1.00

cP - probability metric value at exposure area is the same as the mean for reference areas.

ncP - probability metric value at exposure area is inside the range of reference values

Different from exposure mean (cP < 0.1) or range (ncP < 0.1).

Uncertain with respect to being similar to or different from reference (0.1 > p < 0.9).

Similar to reference mean (cP > 0.9) or within reference range (ncP < 0.9).

values in Table 5.10). However, for kick sample data, more significant differences were detected by central tests within RCA than the modified control-impact design. This might suggest that within-area variability for kick sampling was sufficiently large that fewer differences could be detected by ANOVA than RCA, when compared to Hess sample results. However, comparison of coefficients of variations for both methods suggested less, rather than more within-area variability for kick compared to Hess samples (Table 5.2). It is more likely that fewer differences were detected in the kick sample modified ANOVA than RCA because only three stations were sampled in the exposure area. Hess contrasts were based on five stations per area (giving comparable results to RCA). Previous comparisons based on Hess and artificial substrate samples showed more reference-exposure area differences could be detected with five than three stations per area. Therefore, it seems likely that the modified ANOVA may have shown similar sensitivity to RCA for kick samples had five stations been sampled in the exposure area.

Irrespective of the study design used in future, sampling more reference areas is recommended. Increasing the number of reference areas improves characterization of natural variability and thus increases statistical power to detect ecologically meaningful differences and decreases false detections of differences that are not mine related. Once an adequate number of reference areas have been sampled, 10-20% of the areas should be re-sampled during each survey. The use of GIS data for habitat matching in advance of field collections will reduce field costs and strengthen the understanding of any mine-related (or non-mine related) effects on the receiving environment.

Although the Hess versus kick sampling and control-impact (CI) versus RCA study designs produced similar results overall, there were important differences that should be considered if the results of this study are applied to other mine sites subject to Environmental Effects Monitoring (EEM) requirements under the federal *Fisheries Act*. Significant reference-exposure differences were found for each sampling-study design combination but not always based on the same metrics: Hess-CI (density, number of taxa, evenness), kick-CI (evenness), Hess-RCA (density, eveness), and kick-RCA (density, number of taxa, eveness). While not surprising from an ecological assessment perspective, this has regulatory implications in that sampling-design selection may determine if a mine is classified as having an "effect" on benthic invertebrates, as defined in EEM and also the magnitude of such effect. Also, while area differences may be observed using central tests, they may not be indicative of conditions outside the range of natural regional variability.

Table 5.10: Reference-exposure comparisons using different statistical methods (ANOVA and contrasts versus RCA) and different sampling methods (Hess versus kick sampling) and the same set of reference areas (BLC, HOC, NEC, R7, STC, VR). Shade indicates benthic community metrics that are different from reference (p<0.1) in each comparison.

			Hess			Kick	
		Comparisons to	Reference Mean	Comparisons to Reference Range	Comparisons to	Reference Mean	Comparisons to Reference Range
Metric	Exposure Area	Modified Control- Impact ^a	R	CA	Modified Control- Impact ^a	R	CA
		Area contrasts based on t-statistic (cP) ^a	Central t-test (cP) ^b	Non central t-test (ncP)	Area contrasts based on t-statistic (cP) ^a	Central t-test (cP) ^b	Non central t-test (ncP)
Density (for Hess) or Total Sample	X2	0.06	0.00	0.30	0.18	0.00	0.34
Abundance (for kick)	R2	0.34	0.30	1.00	0.21	0.20	1.00
Number of Taxa	X2	0.40	0.18	1.00	0.09	0.00	0.85
Nullibel Of Taxa	R2	0.54	0.33	1.00	0.13	0.01	0.94
Simpson's E	X2	0.21	0.05	0.98	0.05	0.00	0.83
Simpson's L	R2	0.03	0.00	0.63	0.81	0.67	1.00
Simpson's D	X2	0.95 0.93		1.00	0.05	0.00	0.39
Simpson's D	R2	0.14	0.07	0.99	0.29	0.01	0.96
EPT	X2	0.01	0.00	0.64	0.01	0.00	0.31
(%of total community abundance)	R2	0.65	0.54	1.00	0.42	0.14	1.00
Chironomids	X2	0.01	0.01	0.82	0.00	0.00	0.04
(% of total community abundance)	R2	0.84	0.81	1.00	0.61	0.33	1.00
CA Axis 1	X2	0.00	0.73	1.00	0.00	0.00	0.87
OA AXIS I	R2	0.00	0.37	1.00	0.02	0.07	1.00
CA Axis 2	X2	0.00	0.71	1.00	0.57	0.00	0.80
OA AXIS 2	R2	0.99	0.62	1.00	0.90	0.04	0.99
CA Axis 3	X2	0.99	0.01	0.78	0.12	0.00	0.17
OA AXIS 3	R2	0.44	0.19	1.00	0.48	0.01	0.96
Total Significant Differences (p<0.1)		7	7	0	7	14	1

^a Incorporates all stations within exposure areas and compares to same suite of reference areas used in RCA. Five stations per area in the case of Hess samples. Three stations per area in the case of kick samples.

^b Uses only mean exposure area values and thus differs from control-impact by ignoring within exposure-area variability.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from the sampling programs conducted at the Faro Mine complex in August 2007, August 2008 and January 2009:

- 1. Analyses of water samples collected in August of 2007 and 2008 showed relatively good water quality at mine-exposed areas compared to water quality benchmarks based on the protection of aquatic life. However, elevated metal levels and increased aquatic toxicity were observed in the Rose Creek drainage in January 2009 compared to August 2008, indicating potential for groundwater contaminant sources to affect biota during periods of limited surface water dilution.
- 2. Sediment metal concentrations tended to be about three times higher in the fine sediment fraction (<0.15mm) compared to whole sediment, indicating that a large proportion of metals present were associated with fine sediment particles. However, fine sediments represented a small proportion of the whole sediment sample in most areas. Sediments collected from V27, X2 and R2 which contained elevated concentrations of arsenic, lead, manganese, and zinc were not toxic to the amphipod *Hyallela azteca* in 14-day laboratory tests measuring surivival and growth. Inclusion of sediment analyses in long-term monitoring is of questionable value, unless triggered by substantial increases in metal and/or suspended solids loadings from the mine.
- Benthic community assessments based on artificial substrates were less sensitive than Hess or kick sample collection for detecting differences in mineexposed benthic communities relative to those in reference areas.
- 4. Within a traditional control-impact design (ANOVA and pre-planned reference-exposure contrasts), Hess and kick sampling detected the same number of reference-exposure differences, but based on different benthic community metrics.
- 5. Within the RCA sampling design, the kick sampling method was slightly more sensitive for detecting differences between the exposure and reference areas than the Hess sampling method.
- 6. The RCA sampling design was just as sensitive as or more sensitive than a modified control-impact (ANOVA) design that used the same suite of reference areas for detecting reference-exposure differences. The advantage of using

an RCA sampling design is that differences between the exposure and reference areas can be evaluated relative to regional reference variability. In addition, RCA sampling requires collection of fewer samples per area and fewer overall samples than a traditional control-impact design, even though it necessitates sample collection from more reference areas. Overall, RCA represents the most cost-effective approach for long-term monitoring at Faro. Further improvement in reference area sample sizes and overall cost-efficiency may be achievable if monitoring of suitable reference areas could be shared with other programs in the Yukon (e.g., other closed or operating mines, the Placer Mining Monitoring Program).

- 7. A modified Control-Impact design involving ANOVA and reference exposure contrasts based on a multiple-reference-area data set (a single station per area) and 5 stations per exposure area may yield comparable results to RCA (single sample in all reference and exposure areas). This deviates from conventional ANOVAs because reference-exposure contrasts would combine the within-area variability of exposure areas and the among-area variability of reference areas. This approach would ensure that exposure area data are more representative (multiple stations rather than relying on a single station as in RCA). Assuming that among-reference-area variability exceeds withinreference-area variability, single stations within each reference area would be adequate to capture the full range of within and among area variability provided a sufficient number of reference areas are sampled (e.g., at least 20). This would increase the overall number of samples (because of more stations in each exposure area), but allow for implementation of statistics that may be more familiar to the scientists who are likely to be responsible for long-term monitoring.
- 8. Inclusion of 6-10 reference areas having habitats comparable to the exposure areas was sufficient to detect significant reference-exposure differences in central tests. Statistical power for non-central tests would be improved if additional reference areas could be found near the Faro Mine complex with similar habitat characteristics to exposure areas (e.g, to ensure 20 reference areas per exposure area group). Candidate areas could be selected in advance of the next field program based on GIS characteristics that were strongly related to benthic community characteristics (e.g., percent volcanic bedrock geology and percent coniferous cover).

9. All reference areas that may be included in future monitoring should be investigated to ensure they are not affected by current or historical anthropogenic influences.

7.0 REFERENCES

- Bailey RC, Norris RH, Reynoldson TB. 2004. Bioassessment of freshwater ecosystems using the reference condition approach. Kluwer Academic Publishers, Boston.
- BCMOE (British Columbia Ministry of Environment). 2006. A Compendium of Working Water Quality Guidelines for British Columbia. Updated August 2006.
- Bowman, M.F. and K.M. Somers. 2005. Considerations when using the reference condition approach for bioassessment of freshwater ecosystems. Water Quality Research Journal of Canada 40(3): 347-360.
- Bowman, M.F. and K.M. Somers. 2006. Evaluating a novel Test Site Analysis (TSA) bioassessment approach. Journal of the North American Benthological Society 25(3): 712-727.
- Burns, B.E. 1991a. Biological Monitoring Program at Rose and Anvil Creeks, Y.T. 1990. Laberge Environmental Services. Prepared for Curragh Resources Inc.
- Burns, B.E. 1991b. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 1991. Laberge Environmental Services. Prepared for Curragh Resources Inc.
- Burns, B.E. 1993. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 1993. Laberge Environmental Services. Prepared for KPMG Environmental Services.
- Burns, B.E. 1994. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 1994. Laberge Environmental Services. Prepared for KPMG Environmental Services Inc, Toronto, Ontario.
- Burns, B.E. 1996. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 1995. Laberge Environmental Services. Prepared for Anvil Range Mining Corporation.
- Burns, B.E. 1997. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 1996. Laberge Environmental Services. Prepared for Anvil Range Mining Corporation.
- Burns, B.E. 1998. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 1997. Laberge Environmental Services. Prepared for Anvil Range Mining Corporation.
- Burns, B.E. 1999. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 1998. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.
- Burns, B.E. 2000. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 1999. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.

- Burns, B.E. 2001. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 2000. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.
- Burns, B.E. 2002a. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 2001. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.
- Burns, B.E. 2002b. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 2002. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.
- Burns, B.E. 2003. Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 2003. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.
- Burns, B.E. 2004. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 2004. Laberge Environmental Services. Prepared for Deloitte & Touche Inc. December 2004.
- Burns, B.E. 2005 Biological Monitoring Program at Vangorda Creek, Faro, Y.T. 2005. Laberge Environmental Services. Prepared for Deloitte & Touche Inc. November 2005.
- Burns, B.E. 2006. Biological Monitoring Program at Rose and Anvil Creek, Faro, Y.T. 2006. Laberge Environmental Services. Prepared for Deloitte & Touche Inc.
- Burns, B.E. 2007. Biological and Sediment Monitoring Program at Vangorda Creek, Faro, Y.T. 2007. Laberge Environmental Services. Submitted to Deloitte and Touche Inc. December 2007.
- Burns, B.E. 2009. Biological and Sediment Monitoring Program at Rose and Anvil Creeks, Faro, Y.T. 2008. Laberge Environmental Services. Submitted to Deloitte and Touche Inc. January 2009.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines. 1999 (plus updates), Canadian Council of Ministers of the Environment, Winnipeg
- Cowardin, L. M., V. Carter, F. C. Golet and E. T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service, U.S. Dept. of the Interior, Washington, D.C. FWS/OBS-79/31.
- Environment Canada. 1997. Biological Test Method: Test for Survival and Growth in Sediment Using the Freshwater Amphipod *Hyallela azteca*. EPS 1/RM/33. December 1997.
- Environment Canada. 2000. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout. Environmental Protection Series.

- Report EPS 1/RM/13, Second Edition, December 2000, including May 2007 amendments.
- Environment Canada. 2002. Metal Mining Guidance Document for Aquatic Environmental Effects Monitoring. Environmental Protection Series Report EEM/2002/1. June 2002.
- Environment Canada. 2007a. Biological Test Method: Test of Reproduction and Survival using the Cladoceran *Ceriodaphnia dubia*. Environmental Protection Series Report EPS 1/RM/21. Second Edition, February 2007.
- Environment Canada. 2007b. Biological Test Method: Growth Inhibition Test Using Freshwater Alga. Environmental Protection Series, Report EPS 1/RM/25, Second Edition. March 2007.
- ESRI (Environmental Systems Research Institute). 2005. ArcGIS, version 9.1. Redlands, USA.
- Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York.
- Horowitz, A.J. 1991. A Primer On Sediment-Trace Element Chemistry. Second Edition. Lewis Publishers, Inc., Chelsea, Michigan, USA.
- Hughes RM, Larsen DP, Omernik JE. 1986. Regional reference sites: a method for assessing stream potentials. Environ. Manage. 10:629-635.
- Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monog. 54:187-211.
- Linke, S., Norris, R.H., Faith, D.P., and Stockwell, D. 2005. ANNA: A new prediction method for bioassessment programs. Freshwater Biology 50(1): 147-158
- Minnow Environmental Inc. 2007a. Ecological Impact Assessment, Faro Mine, Yukon. Prepared for Faro Mine Closure Office, Whitehorse, Yukon. May 2007.
- Minnow Environmental Inc. 2007b. Aquatic Ecosystem Monitoring Program, Faro Mine Yukon. Prepared for Assessment and Abandoned Mines Branch, Government of Yukon, Whitehorse, Yukon. December 2007.
- Minnow Environmental Inc. 2009. Faro Mine Slimy Sculpin Survey, May 2008 (Draft). Report Prepared for Assessment and Abandoned Mines Branch, Government of Yukon, Whitehorse, Yukon Territory. January 2009

- Reynoldson, T.B., C. Logan, T. Pascoe and S.P. Thompson. 1999. CABIN (Canadian Aquatic Biomonitoring Network) Invertebrate Biomonitoring Field and Laboratory Manual. NWRI Report No. 99-211. http://cabin.cciw.ca/Main/cabin_online_resources.asp
- SPSS version 13 (2006). SPSS Inc. 233 S. Wacker Drive, 11th floor Chicago, Illinois, U.S.A.
- SRK Consulting Engineers and Scientists. 2004. Water Quality Estimates for Anvil Range Waste Rock (Draft). Prepared for Deloitte and Touche Inc. November 2004.
- SRK Consulting Engineers and Scientists. 2005. Project Memorandum: Faro Tailings Source Term Calculations. From John Chapman. Dated June 14, 2005.
- Thioulouse J., Chessel D., Dolédec S., & Olivier J.M. (1997) ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75-83.
- Wright JF, Sutcliffe DW, Furse MT (ed.). 2000. Assessing the biological quality of fresh water: RIVPACS and other techniques. Freshwater Biological Association, Cumbria, UK.

APPENDIX A Water Quality Benchmarks

Appendix A: Selection of Benchmarks for Water Quality Evaluation

In all cases where a Canadian water quality guideline (CWQG) exists for a parameter, such a guideline was selected as the benchmark for evaluation of water quality at Faro (Tables A.1 and A.2). In the absence of a CWQG, the most conservative provincial water quality criterion from British Columbia, Saskatchewan, or Ontario was selected, if such value(s) existed. An exception was the uranium guideline from Saskatchewan which is based on more recent information than the Ontario water quality objective for uranium. In the absence of either a Canadian or provincial criterion, a Canadian drinking water quality guideline was selected. For parameters for which no water quality criteria have been developed, alternative benchmarks (provided by Senes) were identified that represent a low- or no- observed effect concentration reported in the scientific literature for a sensitive aquatic species.

Some water quality criteria vary on the basis of water hardness (aluminum, beryllium cadmium, copper, lead, manganese, nickel). In such cases, the criterion corresponding to a hardness of 100 mg/L as CaCO₃ was selected. Although some reference and negligibly-influenced surface waters in the vicinity of Faro mine have lower mean water hardness than 100 mg/L, the receiving waters in which elevated metal levels are sometimes found (and are therefore of potential concern) also have elevated water hardness. For example, mean water hardness concentrations at mine-influenced stations such as X2, X14, R2-R11, V27, and V8 are all >100 mg/L (Minnow 2007). Although hardness values at these stations are occasionally lower, such cases tend to be associated with periods of high precipitation or snowmelt when metal levels also tend to be diluted. A hardness value of 100 mg/L can be considered conservative since water hardness concentrations of up to 793 mg/L (X-14, Minnow 2007) have been observed in mine-affected areas.

In the case of total alkalinity and total suspended solids, the available water quality criteria are expressed as a change relative to background concentrations (Table A.2). In these cases, background values reported in this study were used for deriving the water quality benchmarks.

The CWQG for ammonia is expressed on the basis of un-ionized ammonia, which comprises an increasing fraction of the total ammonia present in water as either water pH or temperature increases (or both). Because the temperature and pH of surface waters near Faro rarely rise above 15°C or 8.5, respectively, it is conservative to use as the benchmark the total ammonia concentration corresponding to an un-ionized concentration of 0.019 mg/L (the CWQG) under such conditions (Table A.2).

Although separate CWQGs exist for the two main valence states of chromium, speciation of chromium in water samples is not readily available from commercial laboratories and the lower value of 0.001 mg/L (for hexavalent chromium) is generally applied for data screening purposes.

Except for alkalinity and pH, concentrations of potential concern are those that are higher than the selected benchmark. In the case of alkalinity and pH, it is values below the benchmark that are of greatest interest at an acid-generating site like Faro.

Table A.1: Water quality criteria relative to Maxxam DLs (August 2008).

		Water quality criteria					
Measurements	Units	Canadian water quality guideline (for protection of FW aquatic life) ^a	British Columbia (freshwater) ^b	Saskatchewan ^c	Ontario Provincial Water Quality Objective ^d	Canadian Drinking Water Quality Guideline ^a	Alternative Aquatic Effects-Based Benchmarks ^e
Total metals	T			1		T	
Aluminum	mg/L	0.005 - 0.100 ⁹	0.05	0.005 - 0.100 ^g	0.015 - 0.075 ^h 0.1		
Antimony Arsenic	mg/L	0.005	0.005	0.005	0.02 ^h	0.006 0.005 proposed	0.15 ⁱ
Barium	mg/L mg/L	0.005	0.005	0.005	0.005 ^h	1.0	5.8 ^j
Beryllium	mg/L				0.011 - 1.1 ^k	1.0	0.0038 ^l
Bismuth	mg/L				0.011-1.1		0.26 ^m
Boron	mg/L		1.2		0.2 ^h	5.000	0.20
Cadmium	mg/L	0.000017 or more depending on hardness ^B		0.000017 or more depending on hardness ^B	0.0001 - 0.0005 ^h	0.005	
Calcium	mg/L						116 ^j
Chromium	mg/L	0.001 (hexavalent), 0.0089 (trivalent)		0.001 (hexavalent), 0.0089 (trivalent)	0.001 (hexavalent), 0.0089 (trivalent)	0.05	
Cobalt	mg/L		0.004		0.0009		
Copper	mg/L	0.002-0.004 ⁿ	0.002-0.008°	0.002-0.004 ⁿ	0.001-0.005 ^h	1.0 ^p	
Iron	mg/L	0.3		0.3	0.300	0.3 ^p	
Lead	mg/L	0.001 - 0.007 ^q	0.005-0.011°	0.001 - 0.007 ^q	0.001 - 0.005 ^h	0.010	
Lithium	mg/L						20
Magnesium	mg/L		0.7 4.00			0.05k	82 ^j
Manganese Mercury	mg/L ug/L	0.026 ^r (0.004) ^s	0.7 - 1.9° 0.004 - 0.02°	0.026 ^r	0.2 (filtered)	0.05 ^k	
Molybdenum		0.026 (0.004)	0.004 - 0.02° 1	0.026	0.2 (filtered) 0.04 ^h	1.0	
Nickel	mg/L mg/L	0.073 0.025 - 0.150 ^t	I	0.025 - 0.150 ^t	0.04**		
Potassium	mg/L	0.025 - 0.150		0.025 - 0.150	0.025		53 ^j
Selenium	mg/L	0.001	0.002	0.001	0.100	0.01	- 55
Silicon	mg/L	0.001	0.002	0.001	0.100	0.01	
Silver	mg/L	0.0001	0.00005/0.0015 ^u	0.0001	0.0001		
Sodium	mg/L	0.0001	0.0000070.0010	0.0001	0.0001	200 ^p	680 ^s
Strontium	mg/L						9.3 ^v
Sulphur	mg/L						
Tellurium	mg/L						
Thallium	mg/L	0.0008			0.0003 ^h		
Thorium	mg/L						
Tin	mg/L						0.35 ^j
Titanium	mg/L						1.83 ^w
Uranium	mg/L			0.015	0.005 ^h	0.02	0.011 ^x
Vanadium 	mg/L				0.006 ^h		0.024 ^y
Zinc	mg/L	0.030	0.0075-0.090°	0.030	0.02 ^h	5.0	7
Zirconium Non-metals	mg/L				0.004		548 ^z
Alkalinity - phenolphthalein	mg/L as CaCO ₃						
Alkalinity - Total	mg/L as CaCO ₃				no decreases more than 25% of natural		
Ammonia - total	mg/L	0.24 ^A	1.9 ^A		concentration ^f 0.25 ^A		
Bicarbonate	mg/L	0.24	1.9		U. ∠ 5		
Carbonate	mg/L						
Chloride - dissolved	mg/L					250 ^p	
Colour	CU						
Conductivity - laboratory	μS/cm						
Conductivity - in situ	μS/cm						
Cyanide - weak acid dissociable	mg/L	0.005 (free)	0.01		0.005 (free)	0.2	
Dissolved oxygen - in situ	mg/L	6.5 - 9.5 ^{D,E}	5 - 11 ^E		5 - 8 ^{D,E}		
Dissolved oxygen - in situ	%				54 - 63 ^{D,E}		
Dissolved organic carbon	mg/L						
Fluoride Hardness - dissolved	mg/L mg/L as CaCO ₃	0.120				1.5	
Hardness - Total	mg/L as CaCO ₃						
Hydroxide	mg/L						
Nitrate	mg/L	13	40		narrative	10	
Nitrite	mg/L	0.06	0.02-0.2 ^C		0.06	3.2	
Nitrate plus nitrite pH - Laboratory	mg/L	6.5-9.0	6.5 - 9.0		6.5-8.5	6.5-8.5	
pH - Laboratory pH - in situ	pH units		6.5 - 9.0 6.5 - 9.0		6.5-8.5	6.5-8.5	
Phosphorus - nutrient analysis	pH units	6.5-9.0	0.005-0.015 (lakes)		0.03 for rivers ^h	0.5-8.5	
Phosphorus - nutrient analysis Sulphate	mg/L mg/L		0.005-0.015 (lakes) 50		U.US TOT TIVETS"	500 ^p	
Temperature - in situ	°C		30			500	
Total organic carbon	mg/L						
Total dissolved solids - lab.	mg/L					500 ^p	
Total suspended solids	mg/L	no more than 5 mg/L above	< 25 mg/L above				
1		background ^f	background in 24 hours				
Turbidity	NTU		2				

^a CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines. 1999 (plus updates), Canadian Council of Ministers of the Environment, Winnipeg

^b BCMOE (British Columbia Ministry of Environment). 2006. British Columbia Approved Water Quality Guidelines (Criteria), 2006 Edition. Updated August 2006. For parameters with both maximum and 30-day average values,

^c Saskatchewan Environment. 2006. Surface Water Quality Objectives. Interim Edition. EPB356. July 2006. 9pp.

d OMOE (Ontario Ministry of Environment and Energy). 1994. Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of the Environment and Energy (Ontario), July 1994

e toxicity reference value for most sensitive aquatic receptor (aquatic plants, phytoplankton, benthic invertebrates, zooplankton, fish). From Senes Consultants Limited, Richmond Hill, Ontario.

f computed from data presented in this report and shown in Table B.2

 $[^]g$ 0.005 mg/L at pH<6.5, Ca<4 mg/L and DOC<2 mg/L; 0.1 mg/L at pH \geq 6.5; [Ca $^{2^+}$] \geq 4 mg/L; DOC \geq 2 mg/L

¹ for phytopiankton; U.S. EPA (United States Environmental Protection Agency). 1978. In-depth Studies on Health and Environmental Impacts of Selected Water Pollutants. Contract No. 68-0104646, U.S. EPA, Duluth, MN. ¹ for zooplankton; Biesinger, K.E. and G.M. Christensen. 1982. Effects of Varioue Metals on Survival, Growth, Reproduction, and Metabolism of *Daphnia magna*. *J. Fish. Res. Bd. Canada*. 29:1691-1700.

^k 0.011 for hardness <75 mg/L and 1.1 for hardness >75 mg/L. for zooplankton; Kimball, G. n.d. The Effects of Lesser Known Metals and One Organic to Fathead minnows [Pimephales promelas] and Daphnia magna. U.S. Environmental Protection Agency, Duluth, MN.

^m Khangarot, B.S. 1991. Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller) Bull.Environ.Contam.Toxicol. 46:906-912

 $^{^{}n}$ 0.002 at [CaCO₃] = 0-120 mg/L, 0.003 at [CaCO₃] = 120-180 mg/L, 0.004 at [CaCO₃] > 180 mg/L

[°] for hardnesses ranging between 25 and 300 mg/L, respectively

^p Canadian drinking water quality guideline, aesthetic objective (CCME 1999).

 $^{^{\}rm q}$ 0.001 at [CaCO $_{\rm 3}$] = 0-60 mg/L, 0.002 at [CaCO $^{\rm 3}$] = 60-120 mg/L, 0.004 at [CaCO $_{\rm 3}$] = 120-180 mg/L, 0.007 at [CaCO $_{\rm 3}$] > 180 mg/L ^r Inorganic mercury

^s Organic mercury

 $^{^{}t}$ 0.025 at [CaCO₃] = 0-60 mg/L, 0.065 at [CaCO³] = 60-120 mg/L, 0.110 at [CaCO₃] = 120-180 mg/L, 0.150 at [CaCO₃] > 180 mg/L

^u hardnesses of ≤100 mg/L and >100 mg/L, respectively

vfor fish; Dwyer, F.J., S.A. Burch, C.G. Ingersoll, and J.B. Hunn 1992 Toxicity of Trace Element and Salinity Mixtures to Striped Bass (Morone saxatilis) and Daphnia magna. Environ. Toxicol. Chem. 11(4):513-520

wfor fish; Birge, W.J., J.A. Black, A.G. Westerman, and J.E. Hudson. 1979. In: C. Gale (Ed.) EPA-600/9-80-022, Oil Shale Symposium: Sampling, Analysis and Quality Assurance, March 1979, U.S. EPA, Cincinnati, OH: 519-534 (US NTIS PB80-221435)

^{*}for phytoplankton and zooplankton; Franklin, N.M., J.L. Stauber, S.J. Markich, and R.P. Lim. 2000. pH-dependent Toxicity of Copper and Uranium to a Tropical Freshwater Algae (*Chlorella sp.*). *Aquatic Toxicology*. 48:275-289. for benthic invertebrates; Fargasova, A. 1997. Sensitivity of *Chironomus plumosus* Larvae to V⁵⁺, Mo⁶⁺, Mn²⁺, Ni²⁺, Cu²⁺, and Cu⁺ Metal Ions and their Combinations. *Bull. Environ. Contam. Toxicol.* 59(1):956-962.

² Cushman, R.M, S.G. Hildebrand, R.H. Strand, and R.M. Anderson. 1977. The Toxicity of 35 Trace Elements in Coal to Freshwater Biota: A Data Base with Automated Retrieval Capabilities. ORNL/TM-5793.

[^] based on conservative assumption of pH 8.5 and temperature of 15C to achieve un-ionized ammonia of <0.02 mg/L B CWQG for cadmium = 10 (0.88[log(hardness)] - 3.2] in ug/L

^C Depends on chloride concentration D for cold water streams

^E lower end of range is applicable for protecting early life-stages

Table A.2: Selected benchmarks for evaluation of water quality at Faro Mine, Yukon.

Measurements	Units	Selected water quality benchmarks ^a		
Total metals	•			
Aluminum	mg/L	0.1		
Antimony	mg/L	0.02		
Arsenic	mg/L	0.005		
Barium	mg/L	1.0		
Beryllium	mg/L	1.1		
Bismuth	mg/L	0.26		
Boron	mg/L	1.2		
Cadmium	mg/L	0.00003		
Calcium	mg/L	116		
Chromium	mg/L	0.001		
Cobalt	mg/L	0.004		
Copper	mg/L	0.002		
Iron	mg/L	0.3		
Lead	mg/L	0.002		
Lithium	mg/L			
Magnesium	mg/L	82		
Manganese	mg/L	1		
Mercury	mg/L	0.000026		
Molybdenum				
Nickel	mg/L	0.073		
Nickei	mg/L	0.065 53		
	mg/L			
Selenium	mg/L	0.001		
Silicon	mg/L			
Silver	mg/L	0.0001		
Sodium	mg/L	200		
Strontium	mg/L	9.3		
Sulphur	mg/L			
Tellurium	mg/L			
Thallium	mg/L	0.0008		
Thorium	mg/L			
Tin	mg/L	0.35		
Titanium	mg/L	1.83		
Uranium	mg/L	0.015		
Vanadium	mg/L	0.006		
Zinc	mg/L	0.030		
Zirconium	mg/L	0.004		
Non-metals				
Alkalinity - phenolphthalein	mg/L as CaCO ₃			
Alkalinity - Total	mg/L as CaCO ₃	11.1 ^b		
Ammonia - total	mg/L	0.24		
Bicarbonate	mg/L			
Carbonate	mg/L			
Chloride - dissolved	mg/L	250		
Colour	CU	200		
	μS/cm			
Conductivity - laboratory Conductivity - in situ	μS/cm			
Cyanide - weak acid dissociable	-	0.005 (froo)		
•	mg/L	0.005 (free)		
Dissolved oxygen - in situ	mg/L	6.5 (minimum)		
Dissolved oxygen - in situ	%			
Dissolved organic carbon	mg/L	0.40		
Fluoride	mg/L	0.12		
Hardness - dissolved	mg/L as CaCO ₃			
Hardness - Total	mg/L as CaCO ₃			
Hydroxide	mg/L			
Nitrate	mg/L	13		
Nitrite	mg/L	0.06		
Nitrate plus nitrite	mg/L			
pH - Laboratory	pH units	6.5-9.0		
pH - in situ	pH units	6.5-9.0		
Phosphorus - nutrient analysis	mg/L	0.03		
Sulphate	mg/L	50		
Temperature - in situ	°C			
Total organic carbon	mg/L			
Total dissolved solids - lab.	mg/L	500		
Total suspended solids	mg/L	8°		
Turbidity	NTU	2		
Benchmarks were selected from relev				

^a Benchmarks were selected from relevant water quality criteria as shown in Appendix Table B.1.

^b Represents a 25% decrease below lower background benchmark of 14.8 mg/L reported in this study.

 $^{^{\}rm c}$ Based on an increase of 5 mg/L above upper background benchmark of 3 mg/L reported in this study.

APPENDIX B

Water and Sediment Quality Data (Chemistry, Toxicity)

Your P.O. #: BC07-066-FC Your Project #: 2212

Your C.O.C. #: F82587, F82588

Attention: Patti Orr
Minnow Environmental Inc.
6800 Kitimat Road
Mississauga, ON
CANADA L5N 5M1

Report Date: 2007/09/13

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A740575 Received: 2007/08/31, 14:20

Sample Matrix: Soil # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Elements by ICPMS (total)	8	2007/09/10	2007/09/10	BRN SOP-00203	Based on EPA 200.8
Moisture	4	N/A	2007/09/11	BRN SOP-00321 R3.0	Ont MOE -E 3139
Ammonia-N (Available) @	4	2007/09/10	2007/09/10	BRN SOP-00239	Carter, SSMA 4.2
Nitrate+Nitrite (N) (Available)	4	N/A	2007/09/10	BRN SOP-000233 R1.0	Based on Carter- 4.2
Nitrite (N) (Available) (soil)	4	2007/09/10	2007/09/10	BRN SOP-00233 R1.0	Carter,SSMA 4.2
Available Phosphate	4	2007/09/07	2007/09/07	BRN SOP-00235 R3.0	Carter, SSMA 4.2
Sublet (Inorganics) ()	4	N/A	2007/09/11		
TOC Soil Subcontract (1)	4	2007/09/12	2007/09/12		

Sample Matrix: Water # Samples Received: 8

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	8	2007/09/04	2007/09/04 BRN SOP-00264 R2.0	Based on SM2320B
Chloride by Automated Colourimetry	8	N/A	2007/09/11 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	8	N/A	2007/09/04 BRN SOP-00224 R3.0	Based on SM-5310C
Conductance - water	8	N/A	2007/09/04 BRN SOP-00264 R2.0	Based on SM-2510B
Fluoride	8	N/A	2007/09/04 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness (calculated as CaCO3)	8	N/A	2007/09/11	
Mercury (Total)	8	2007/09/07	2007/09/10 BRN SOP-00205	Based on EPA 245.1
Elements by ICP-AES (dissolved)	8	2007/09/10	2007/09/10 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICPMS (total) @	8	N/A	2007/09/12 BRN SOP-00204	Based on EPA 200.8
Elements by ICP-AES (total)	8	N/A	2007/09/10 BRN SOP-00201 R1.0	Based on EPA 6010B
Ammonia (N)	8	N/A	2007/09/12 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Nitrate + Nitrite (N)	8	N/A	2007/09/04 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) by CFA	8	N/A	2007/09/04 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	8	N/A	2007/09/05	
Sulphate by Automated Colourimetry	8	N/A	2007/09/11 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	8	N/A	2007/09/07 ING443 Rev.5.1	APHA 2540C
Carbon (Total Organic)	8	N/A	2007/09/04 BRN SOP-00224 R3.0	Based on SM-5310C
Total Phosphorus	8	N/A	2007/09/12 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids	8	N/A	2007/09/12 BRN SOP-00277 R2.0	Based on SM-2540 D

(1) This test was performed by Maxxam Bedford(From Burnaby) (2) SCC/CAEAL
Encryption Key
Please direct all questions regarding this Certificate of Analysis to your Project Manager.
ELAINE COUSINS, CS Manager Email: elaine.cousins@maxxamanalytics.com Phone# (604) 444-4808 Ext:276
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		G74778	G74779	G74780	G74781		
Sampling Date		2007/08/28	2007/08/28	2007/08/28	2007/08/28		
COC Number		F82588	F82588	F82588	F82588		
	Units	V27-A	V27-B (03)	V27-C (04)	V1	RDL	QC Batch
		(D/S 01)					
		1		1			
CONVENTIONALS							
Nitrite (N)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.5	1836722
Parameter							
Subcontract Parameter	N/A	ATTACHED	ATTACHED	ATTACHED	ATTACHED	N/A	1843048
Nutrients							
Available (KCI) Ammonia (N)	mg/kg	0.7	0.8	0.8	0.9	0.5	1836723
Nitrate plus Nitrite (N)	ug/g	<2	<2	<2	<2	2	1836720
Available (KCI) Orthophosphate (P)	ug/g	3.6	2.8	3.2	4.9	0.5	1834384
Physical Properties							
Moisture	%	7.2	16.7	20.9	15.7	0.3	1836531

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		G74778	G74779	G74780	G74781	1	
Sampling Date		2007/08/28	2007/08/28	2007/08/28	2007/08/28		
COC Number		F82588	F82588	F82588	F82588		
	Units	V27-A	V27-B (03)	V27-C (04)	V1	RDL	QC Batc
	1	(D/S 01)	<u> </u>		<u> </u>		<u> </u>
Total Metals by ICPMS							
Total Aluminum (Al)	mg/kg	8180	8700	9630	8020	100	1837797
Total Antimony (Sb)	mg/kg	0.7	0.5	0.8	0.2	0.1	1837797
Total Arsenic (As)	mg/kg	19.9	16.8	24.7	6.9	0.2	1837797
Total Barium (Ba)	mg/kg	73.5	88.0	116	64.3	0.1	1837797
Total Beryllium (Be)	mg/kg	0.2	0.2	0.3	0.3	0.1	1837797
Total Bismuth (Bi)	mg/kg	0.1	0.2	0.2	0.2	0.1	1837797
Total Boron (B)	mg/kg	<5	<5	<5	<5	5	1837797
Total Cadmium (Cd)	mg/kg	0.82	0.92	1.05	0.35	0.05	1837797
Total Chromium (Cr)	mg/kg	25	22	24	14	1	1837797
Total Cobalt (Co)	mg/kg	11.2	11.8	13.6	7.4	0.3	1837797
Total Copper (Cu)	mg/kg	21.7	21.2	25.1	14.7	0.5	1837797
Total Iron (Fe)	mg/kg	19200	20600	23000	18500	100	1837797
Total Lead (Pb)	mg/kg	146	123	152	10.2	0.1	1837797
Total Manganese (Mn)	mg/kg	830	941	1070	378	0.2	1837797
Total Mercury (Hg)	mg/kg	0.11	0.19	0.09	<0.05	0.05	1837797
Total Molybdenum (Mo)	mg/kg	0.7	0.9	1.2	0.4	0.1	1837797
Total Nickel (Ni)	mg/kg	28.1	26.8	30.3	16.2	0.8	1837797
Total Selenium (Se)	mg/kg	0.6	0.6	0.6	<0.5	0.5	1837797
Total Silver (Ag)	mg/kg	0.16	0.30	0.29	0.09	0.05	1837797
Total Strontium (Sr)	mg/kg	39.9	40.7	40.3	15.5	0.1	1837797
Total Thallium (TI)	mg/kg	0.19	0.13	0.16	<0.05	0.05	1837797
Total Tin (Sn)	mg/kg	0.3	0.2	0.3	0.3	0.1	1837797
Total Titanium (Ti)	mg/kg	95	104	133	116	1	1837797
Total Uranium (U)	mg/kg	0.89	0.85	1.04	1.59	0.05	1837797
Total Vanadium (V)	mg/kg	17	18	18	14	2	1837797
Total Zinc (Zn)	mg/kg	290	338	385	53	1	1837797

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Total Metals by ICPMS							
		01) 0.15MM	(03) 0.15MM	(04) 0.15MM			
	Units	V27-A (D/S	V27-B	V27-C	V1 0.15MM	RDL	QC Batch
COC Number		F82588	F82588	F82588	F82588		
Sampling Date		2007/08/28	2007/08/28	2007/08/28	2007/08/28		
Maxxam ID		G81718	G81721	G81726	G81727		

Total Metals by ICPMS							
Total Aluminum (Al)	mg/kg	14800	14300	13200	16100	100	1837797
Total Antimony (Sb)	mg/kg	2.0	2.2	2.0	0.3	0.1	1837797
Total Arsenic (As)	mg/kg	48.7	46.0	39.8	16.2	0.2	1837797
Total Barium (Ba)	mg/kg	338	265	209	130	0.1	1837797
Total Beryllium (Be)	mg/kg	0.5	0.5	0.5	0.6	0.1	1837797
Total Bismuth (Bi)	mg/kg	0.3	0.3	0.3	0.7	0.1	1837797
Total Boron (B)	mg/kg	<5	<5	<5	<5	5	1837797
Total Cadmium (Cd)	mg/kg	2.47	2.35	2.26	0.52	0.05	1837797
Total Chromium (Cr)	mg/kg	48	43	42	26	1	1837797
Total Cobalt (Co)	mg/kg	24.1	23.4	23.5	17.2	0.3	1837797
Total Copper (Cu)	mg/kg	57.9	55.2	52.1	28.4	0.5	1837797
Total Iron (Fe)	mg/kg	35600	36900	32700	34100	100	1837797
Total Lead (Pb)	mg/kg	352	362	313	25.2	0.1	1837797
Total Manganese (Mn)	mg/kg	2320	2290	2290	736	0.2	1837797
Total Mercury (Hg)	mg/kg	0.27	0.24	0.22	<0.05	0.05	1837797
Total Molybdenum (Mo)	mg/kg	1.9	1.8	1.9	0.8	0.1	1837797
Total Nickel (Ni)	mg/kg	55.6	54.7	52.5	32.7	0.8	1837797
Total Selenium (Se)	mg/kg	1.3	1.1	1.2	0.6	0.5	1837797
Total Silver (Ag)	mg/kg	0.68	0.63	0.73	0.14	0.05	1837797
Total Strontium (Sr)	mg/kg	58.0	48.7	47.3	21.0	0.1	1837797
Total Thallium (TI)	mg/kg	0.29	0.32	0.29	0.06	0.05	1837797
Total Tin (Sn)	mg/kg	0.4	0.4	0.3	0.5	0.1	1837797
Total Titanium (Ti)	mg/kg	176	174	151	247	1	1837797
Total Uranium (U)	mg/kg	1.93	1.99	1.87	3.71	0.05	1837797
Total Vanadium (V)	mg/kg	31	25	24	25	2	1837797
Total Zinc (Zn)	mg/kg	709	806	733	108	1	1837797

RDL = Reportable Detection Limit

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		G74770	G74771	G74772		
Sampling Date		2007/08/25	2007/08/25	2007/08/26		
COC Nivershau		10:30	13:30	08:30	_	
COC Number	Units	F82587 REF1	F82587 REF2	F82587 NEXC1	RDL	QC Batch
	- Cinto			, NEXO	1.122	LO Baton
Misc. Inorganics						
Fluoride (F)	mg/L	0.08	0.07	0.09	0.01	1825983
ANIONS						
Nitrite (N)	mg/L	<0.005	<0.005	<0.005	0.005	1826419
Calculated Parameters						
Nitrate (N)	mg/L	<0.02	<0.02	<0.02	0.02	1825502
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	35.0	26.1	49.7	0.5	1827341
Dissolved Organic Carbon (C)	mg/L	3.1	1.9	2.7	0.5	1826869
Alkalinity (Total as CaCO3)	mg/L	30.6	21.9	47.4	0.5	1826117
Total Organic Carbon (C)	mg/L	3.3	2.7	3.2	0.5	1826798
Alkalinity (PP as CaCO3)	mg/L	<0.5	<0.5	<0.5	0.5	1826117
Anions						
Dissolved Sulphate (SO4)	mg/L	4.2	5.5	2.4	0.5	1838888
Dissolved Chloride (CI)	mg/L	<0.5	<0.5	<0.5	0.5	1838884
Nutrients						
Ammonia (N)	mg/L	<0.005	<0.005	<0.005	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	<0.02	<0.02	<0.02	0.02	1826416
Total Phosphorus (P)	mg/L	<0.005	<0.005	<0.005	0.005	1838312
Physical Properties						
Conductivity	uS/cm	75	59	102	1	1826116
Physical Properties						
Total Suspended Solids	mg/L	<1	1	<1	1	1838408

50

78

10

1835207

RDL = Reportable Detection Limit

mg/L

62

Total Dissolved Solids

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		G74773	G74774	G74775	G74776		
Sampling Date		2007/08/27	2007/08/29	2007/08/28	2007/08/28		
COC Number		09:30 F82587	F82587	F82587	F82587	+	
OGO Marrison	Units	V8	V5	V27	V1	RDL	QC Batch
							1
Misc. Inorganics							
Fluoride (F)	mg/L	0.13	0.19	0.08	0.07	0.01	1825983
ANIONS							
Nitrite (N)	mg/L	< 0.005	<0.005	<0.005	<0.005	0.005	1826419
Calculated Parameters							
Nitrate (N)	mg/L	0.08	0.03	0.13	<0.02	0.02	1825502
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	214	304	102	30.8	0.5	1827341
Dissolved Organic Carbon (C)	mg/L	2.6	3.5	1.8	1.4	0.5	1826869
Alkalinity (Total as CaCO3)	mg/L	134	206	52.3	24.4	0.5	1826117
Total Organic Carbon (C)	mg/L	2.6	3.5	2.2	2.0	0.5	1826798
Alkalinity (PP as CaCO3)	mg/L	<0.5	3.3	<0.5	<0.5	0.5	1826117
Anions							
Dissolved Sulphate (SO4)	mg/L	65.9	75.6	49.3	8.9	0.5	1838888
Dissolved Chloride (CI)	mg/L	0.8	2.1	<0.5	<0.5	0.5	1838884
Nutrients							
Ammonia (N)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	0.08	0.03	0.13	<0.02	0.02	1826416
Total Phosphorus (P)	mg/L	0.012	0.017	<0.005	0.010	0.005	1838312
Physical Properties							
Conductivity	uS/cm	396	533	210	71	1	1826116
Physical Properties							
Total Suspended Solids	mg/L	3	11	<1	<1	1	1838408
Total Dissolved Solids	mg/L	264	354	140	54	10	1835207

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

RESULTS OF CHEMICAL ANALYSES OF WATER

OGO Number	Units	V8Z	RDL	QC Batch
COC Number		F82587		
		09:30		
Sampling Date		2007/08/27		
Maxxam ID		G74777		

L				1
Misc. Inorganics				
Fluoride (F)	mg/L	0.13	0.01	1825983
ANIONS				
Nitrite (N)	mg/L	<0.005	0.005	1826419
Calculated Parameters				
Nitrate (N)	mg/L	0.08	0.02	1825502
Misc. Inorganics				
Dissolved Hardness (CaCO3)	mg/L	213	0.5	1827341
Dissolved Organic Carbon (C)	mg/L	2.5	0.5	1826869
Alkalinity (Total as CaCO3)	mg/L	137	0.5	1826117
Total Organic Carbon (C)	mg/L	2.4	0.5	1826798
Alkalinity (PP as CaCO3)	mg/L	<0.5	0.5	1826117
Anions				
Dissolved Sulphate (SO4)	mg/L	66.5	0.5	1838888
Dissolved Chloride (CI)	mg/L	0.8	0.5	1838884
Nutrients				
Ammonia (N)	mg/L	<0.005	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	0.08	0.02	1826416
Total Phosphorus (P)	mg/L	0.008	0.005	1838312
Physical Properties				
Conductivity	uS/cm	398	1	1826116
Physical Properties				
Total Suspended Solids	mg/L	12	1	1838408
Total Dissolved Solids	mg/L	260	10	1835207

RDL = Reportable Detection Limit

Minnow Environmental Inc. Client Project #: 2212 Site Reference: Your P.O. #: BC07-066-FC

Sampler Initials: KC

Maxxam ID		G74770	G74771	G74772		
Sampling Date		2007/08/25	2007/08/25	2007/08/26		
000 Noveles		10:30	13:30	08:30	_	
COC Number	Units	F82587 REF1	F82587 REF2	F82587 NEXC1	RDL	QC Batch
	Ullits	KEFI	KEFZ	NEXCI	KDL	QC Balcii
Low Level Elements						
Total Mercury (Hg)	ug/L	<0.05	<0.05	<0.05	0.05	1835311
Dissolved Metals by ICP						
Dissolved Magnesium (Mg)	mg/L	1.87	1.20	2.32	0.05	1837760
Dissolved Sodium (Na)	mg/L	1.73	1.60	2.00	0.05	1837760
Total Metals by ICP						
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	10.9	8.82	16.5	0.05	1837752
Total Iron (Fe)	mg/L	0.031	0.164	0.014	0.005	1837752
Total Magnesium (Mg)	mg/L	1.94	1.32	2.47	0.05	1837752
Total Sodium (Na)	mg/L	1.93	1.92	2.37	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS						
Total Aluminum (Al)	ug/L	30.6	26.3	17.2	0.2	1837295
Total Antimony (Sb)	ug/L	<0.05	<0.05	<0.05	0.05	1837295
Total Arsenic (As)	ug/L	0.1	0.3	<0.1	0.1	1837295
Total Barium (Ba)	ug/L	28.7	25.0	25.6	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.01	<0.01	0.01	0.01	1837295
Total Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	0.02	0.04	<0.02	0.02	1837295
Total Copper (Cu)	ug/L	0.6	0.4	0.6	0.1	1837295
Total Lead (Pb)	ug/L	0.07	0.10	0.05	0.02	1837295
Total Manganese (Mn)	ug/L	1.06	9.59	0.35	0.02	1837295
Total Molybdenum (Mo)	ug/L	0.14	0.30	0.24	0.02	1837295
Total Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	0.5	1837295
Total Potassium (K)	ug/L	326	285	522	50	1837295
Total Selenium (Se)	ug/L	<0.5	<0.5	<0.5	0.5	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	54.0	49.5	66.1	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	<0.05	<0.05	<0.05	0.05	1837295
RDL = Reportable Detection	Limit					

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

Maxxam ID		G74770	G74771	G74772		
Sampling Date		2007/08/25	2007/08/25	2007/08/26		
		10:30	13:30	08:30		
COC Number		F82587	F82587	F82587		
	Units	REF1	REF2	NEXC1	RDL	QC Batch
Total Titanium (Ti)	ug/L	<0.5	0.8	<0.5	0.5	1837295
Total Uranium (U)	ug/L	0.37	0.29	0.29	0.01	1837295
Total Vanadium (V)	ug/L	<0.05	0.08	0.06	0.05	1837295
Total Zinc (Zn)	ug/L	2.1	1.9	1.9	0.5	1837295
RDL = Reportable Detec	tion Limit				•	

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

Maxxam ID		G74773	G74774	G74775	G74776		
Sampling Date		2007/08/27 09:30	2007/08/29	2007/08/28	2007/08/28		
COC Number		F82587	F82587	F82587	F82587		
	Units	V8	V5	V27	V1	RDL	QC Batch
Low Level Elements							
Total Mercury (Hg)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1835311
Dissolved Metals by ICP							
Dissolved Magnesium (Mg)	mg/L	19.9	28.2	8.40	1.34	0.05	1837760
Dissolved Sodium (Na)	mg/L	3.11	3.78	2.21	1.81	0.05	1837760
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	52.8	77.8	28.3	10.6	0.05	1837752
Total Iron (Fe)	mg/L	0.177	0.464	0.049	0.027	0.005	1837752
Total Magnesium (Mg)	mg/L	19.7	28.7	8.55	1.45	0.05	1837752
Total Sodium (Na)	mg/L	3.33	4.12	2.54	2.09	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (AI)	ug/L	101	275	18.4	14.3	0.2	1837295
Total Antimony (Sb)	ug/L	0.13	0.15	0.07	<0.05	0.05	1837295
Total Arsenic (As)	ug/L	0.4	1.0	0.4	0.2	0.1	1837295
Total Barium (Ba)	ug/L	52.8	78.0	32.6	25.7	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	<0.05	0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.04	0.04	0.05	<0.01	0.01	1837295
Total Chromium (Cr)	ug/L	0.3	0.8	<0.2	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	0.14	0.27	0.04	<0.02	0.02	1837295
Total Copper (Cu)	ug/L	1.3	1.4	0.9	0.4	0.1	1837295
Total Lead (Pb)	ug/L	0.32	0.52	0.52	0.04	0.02	1837295
Total Manganese (Mn)	ug/L	11.0	21.8	3.50	0.76	0.02	1837295
Total Molybdenum (Mo)	ug/L	0.81	1.58	0.32	0.23	0.02	1837295
Total Nickel (Ni)	ug/L	1.1	1.8	<0.5	<0.5	0.5	1837295
Total Potassium (K)	ug/L	892	1150	525	343	50	1837295
Total Selenium (Se)	ug/L	<0.5	1.3	<0.5	<0.5	0.5	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	191	270	104	53.9	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
	ug/L	0.06	<0.05	<0.05	<0.05	0.05	1837295

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC

2.7

0.5

1837295

Sampler Initials: KC

31.8

							_
Maxxam ID		G74773	G74774	G74775	G74776		
Sampling Date		2007/08/27	2007/08/29	2007/08/28	2007/08/28		
		09:30					
COC Number		F82587	F82587	F82587	F82587		
	Units	V8	V5	V27	V1	RDL	QC Batch
Total Titanium (Ti)	ug/L	2.7	8.3	0.7	<0.5	0.5	1837295
Total Uranium (U)	ug/L	3.15	4.05	1.26	0.31	0.01	1837295

3.9

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

RDL = Reportable Detection Limit

ug/L

9.1

Total Zinc (Zn)

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

Maxxam ID Sampling Date		G74777 2007/08/27		
Sampling Date		09:30		
COC Number		F82587		
	Units	V8Z	RDL	QC Batch
Low Level Elements				
Total Mercury (Hg)	ug/L	<0.05	0.05	1835311
Dissolved Metals by ICP				
Dissolved Magnesium (Mg)	mg/L	20.0	0.05	1837760
Dissolved Sodium (Na)	mg/L	3.11	0.05	1837760
Total Metals by ICP				
Total Boron (B)	mg/L	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	54.9	0.05	1837752
Total Iron (Fe)	mg/L	0.180	0.005	1837752
Total Magnesium (Mg)	mg/L	20.0	0.05	1837752
Total Sodium (Na)	mg/L	3.48	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	0.005	1837752
Total Metals by ICPMS				
Total Aluminum (AI)	ug/L	107	0.2	1837295
Total Antimony (Sb)	ug/L	0.12	0.05	1837295
Total Arsenic (As)	ug/L	0.5	0.1	1837295
Total Barium (Ba)	ug/L	53.9	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.04	0.01	1837295
Total Chromium (Cr)	ug/L	0.3	0.2	1837295
Total Cobalt (Co)	ug/L	0.12	0.02	1837295
Total Copper (Cu)	ug/L	1.1	0.1	1837295
Total Lead (Pb)	ug/L	0.30	0.02	1837295
Total Manganese (Mn)	ug/L	11.0	0.02	1837295
Total Molybdenum (Mo)	ug/L	0.83	0.02	1837295
Total Nickel (Ni)	ug/L	1.1	0.5	1837295
Total Potassium (K)	ug/L	911	50	1837295
Total Selenium (Se)	ug/L	0.6	0.5	1837295
Total Silver (Ag)	ug/L	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	203	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	<0.05	0.05	1837295

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

Maxxam ID		G74777		
Sampling Date		2007/08/27		
		09:30		
COC Number		F82587		
	Units	V8Z	RDL	QC Batch
Total Titanium (Ti)	ug/L	2.7	0.5	1837295
Total Uranium (U)	ug/L	3.23	0.01	1837295
Total Vanadium (V)	ug/L	0.32	0.05	1837295
Total Zinc (Zn)	ug/L	9.0	0.5	1837295
RDL = Reportable Detec	tion Limit			

Minnow Environmental Inc. Client Project #: 2212 Site Reference:

Your P.O. #: BC07-066-FC Sampler Initials: KC

General Comments

Sample G81718-01: Metals were analyzed on the fraction passed through 0.15 mm sieve.

Sample G81721-01: Metals were analyzed on the fraction passed through 0.15 mm sieve.

Sample G81726-01: Metals were analyzed on the fraction passed through 0.15 mm sieve.

Sample G81727-01: Metals were analyzed on the fraction passed through 0.15 mm sieve.

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL) Comments

Sample G81718-01 Elements by ICPMS (total): 0.15mm sieve sample.

Sample G81721-01 Elements by ICPMS (total): 0.15mm sieve sample.

Sample G81726-01 Elements by ICPMS (total): 0.15mm sieve sample.

Sample G81727-01 Elements by ICPMS (total): 0.15mm sieve sample.

Results relate only to the items tested.

Quality Assurance Report Maxxam Job Number: VA740575

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1825983 WAY	MATRIX SPIKE	Fluoride (F)	2007/09/04		82	%	80 - 120
	SPIKE	Fluoride (F)	2007/09/04		105	%	80 - 120
	BLANK	Fluoride (F)	2007/09/04	< 0.01		mg/L	
	RPD	Fluoride (F)	2007/09/04	2.8		%	25
1826116 CK	SPIKE	Conductivity	2007/09/04		101	%	80 - 120
.0200 0	BLANK	Conductivity	2007/09/04	<1		uS/cm	00 .20
	RPD	Conductivity	2007/09/04	0.5		%	25
1826117 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/09/04	0.0	94	%	80 - 120
1020117 010	SPIKE	Alkalinity (Total as CaCO3)	2007/09/04		94	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/09/04	<0.5	34	mg/L	00 - 120
	DLAININ	Alkalinity (PP as CaCO3)	2007/09/04	<0.5		mg/L	
	RPD	,				™g/∟	25
	RPD	Alkalinity (Total as CaCO3)	2007/09/04	0.5			25
1000440 DD0	MATRIX ORIVE	Alkalinity (PP as CaCO3)	2007/09/04	NC	00	%	25
1826416 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/09/04		99	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/09/04		103	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/09/04	< 0.02		mg/L	
	RPD [G74774-01]	Nitrate plus Nitrite (N)	2007/09/04	NC		%	25
1826419 BB3	MATRIX SPIKE	Nitrite (N)	2007/09/04		102	%	80 - 120
	SPIKE	Nitrite (N)	2007/09/04		103	%	80 - 120
	BLANK	Nitrite (N)	2007/09/04	< 0.005		mg/L	
	RPD [G74774-01]	Nitrite (N)	2007/09/04	NC		%	25
1826798 MX	MATRIX SPIKE	Total Organic Carbon (C)	2007/09/04		105	%	80 - 120
	SPIKE	Total Organic Carbon (C)	2007/09/04		105	%	80 - 120
	BLANK	Total Organic Carbon (C)	2007/09/04	<0.5	.00	mg/L	00 .20
	RPD	Total Organic Carbon (C)	2007/09/04	NC		%	20
1826869 MX	MATRIX SPIKE	Dissolved Organic Carbon (C)	2007/09/04	110	102	%	80 - 120
1020009 WIX	SPIKE	Dissolved Organic Carbon (C)	2007/09/04		102	%	80 - 120
	-			-O E	100		00 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/09/04	< 0.5		mg/L	00
100 100 1 TO 1	RPD	Dissolved Organic Carbon (C)	2007/09/04	1.3		%	20
1834384 TS1	MATRIX SPIKE						
	[G74780-01]	Available (KCI) Orthophosphate (P)	2007/09/07		90	%	75 - 125
	SPIKE	Available (KCI) Orthophosphate (P)	2007/09/07		109	%	75 - 125
	BLANK	Available (KCI) Orthophosphate (P)	2007/09/07	<5		ug/g	
	RPD [G74780-01]	Available (KCI) Orthophosphate (P)	2007/09/07	8.5		%	25
1835207 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/09/07		96	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/09/07		104	%	80 - 120
	BLANK	Total Dissolved Solids	2007/09/07	<10		mg/L	
	RPD	Total Dissolved Solids	2007/09/07	1.4		%	25
1835311 JT3	MATRIX SPIKE						
	[G74770-01]	Total Mercury (Hg)	2007/09/10		120	%	70 - 130
	QC STANDARD	Total Mercury (Hg)	2007/09/10		112	%	80 - 120
	SPIKE	Total Mercury (Hg)	2007/09/10		88	%	80 - 120
	BLANK	Total Mercury (Hg)	2007/09/10	< 0.05	00	ug/L	00 120
	RPD [G74770-01]	Total Mercury (Hg)	2007/09/10	NC		ug/∟ %	25
1006504 CM0		Moisture					20
1836531 CW3	BLANK		2007/09/11	<0.3		%	00
000700 DD0	RPD	Moisture	2007/09/11	3.3	0.4	%	20
836720 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/09/10		84	%	70 - 130
	SPIKE	Nitrate plus Nitrite (N)	2007/09/10		81	%	70 - 130
	BLANK	Nitrate plus Nitrite (N)	2007/09/10	<2		ug/g	
	RPD	Nitrate plus Nitrite (N)	2007/09/10	NC		%	35
836722 BB3	MATRIX SPIKE	Nitrite (N)	2007/09/10		83	%	80 - 120
	SPIKE	Nitrite (N)	2007/09/10		91	%	80 - 120
	BLANK	Nitrite (N)	2007/09/10	<0.5		mg/kg	
	RPD	Nitrite (N)	2007/09/10	NC		%	25
1836723 NN	MATRIX SPIKE	` '		-			
	[G74780-01]	Available (KCI) Ammonia (N)	2007/09/10		88	%	80 - 120
							30 i=

Quality Assurance Report (Continued)

Maxxam Job Number: VA740575

			Date Analyzed			
Batch	OC Tuno	Doromotor		Value Beesvery	Linita	OC Limita
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units %	QC Limits
1836723 NN	SPIKE	Available (KCI) Ammonia (N)	2007/09/10	92		80 - 120
	BLANK	Available (KCI) Ammonia (N)	2007/09/10	<0.5	mg/kg	0.5
1837295 AA1	RPD [G74780-01] MATRIX SPIKE	Available (KCI) Ammonia (N)	2007/09/10	NC	%	25
	[G74770-01]	Total Arsenic (As)	2007/09/12	107	%	75 - 125
		Total Cadmium (Cd)	2007/09/12	110	%	75 - 125
		Total Chromium (Cr)	2007/09/12	110	%	75 - 125
		Total Cobalt (Co)	2007/09/12	113	%	75 - 125
		Total Copper (Cu)	2007/09/12	116	%	75 - 125
		Total Lead (Pb)	2007/09/12	117	%	75 - 125
		Total Selenium (Se)	2007/09/12	110	%	75 - 125
		Total Thallium (TI)	2007/09/12	116	%	75 - 125
		Total Zinc (Zn)	2007/09/12	115	%	75 - 125
	SPIKE	Total Arsenic (As)	2007/09/12	103	%	75 - 125
	OI IIIL	Total Cadmium (Cd)	2007/09/12	100	%	75 - 125
		Total Chromium (Cr)	2007/09/12	107	%	75 - 125 75 - 125
		Total Cobalt (Co)	2007/09/12	110	%	75 - 125 75 - 125
		Total Copper (Cu)	2007/09/12	114	%	75 - 125
		Total Lead (Pb)	2007/09/12	112	%	75 - 125
		Total Selenium (Se)	2007/09/12	108	%	75 - 125
		Total Thallium (TI)	2007/09/12	109	%	75 - 125
		Total Zinc (Zn)	2007/09/12	109	%	75 - 125
	BLANK	Total Aluminum (AI)	2007/09/12	0.3, RDL=0.2	ug/L	
		Total Antimony (Sb)	2007/09/12	<0.05	ug/L	
		Total Arsenic (As)	2007/09/12	<0.1	ug/L	
		Total Barium (Ba)	2007/09/12	<0.02	ug/L	
		Total Beryllium (Be)	2007/09/12	0.07, RDL=0.05	ug/L	
		Total Bismuth (Bi)	2007/09/12	<0.05	ug/L	
		Total Cadmium (Cd)	2007/09/12	<0.01	ug/L	
		Total Chromium (Cr)	2007/09/12	<0.2	ug/L	
		Total Cobalt (Co)	2007/09/12	<0.02	ug/L	
		Total Copper (Cu)	2007/09/12	<0.1	ug/L	
		Total Lead (Pb)	2007/09/12	<0.02	ug/L	
		Total Manganese (Mn)	2007/09/12	<0.02	ug/L	
		Total Molybdenum (Mo)	2007/09/12	<0.02	ug/L	
		Total Nickel (Ni)	2007/09/12	<0.5	ug/L	
		Total Potassium (K)	2007/09/12	<50	ug/L	
		Total Selenium (Se)	2007/09/12	<0.5	ug/L	
		Total Silver (Ag)	2007/09/12	<0.01	ug/L	
		Total Strontium (Sr)	2007/09/12	<0.01	ug/L ug/L	
		Total Thallium (TI)	2007/09/12	<0.05	ug/L	
					-	
		Total Titogium (Ti)	2007/09/12	<0.05	ug/L	
		Total Litanium (Ti)	2007/09/12	<0.5	ug/L	
		Total Uranium (U)	2007/09/12	<0.01	ug/L	
		Total Vanadium (V)	2007/09/12	<0.05	ug/L	
	DDD 107 :=== ::	Total Zinc (Zn)	2007/09/12	<0.5	ug/L	<i>=</i> =
	RPD [G74770-01]	Total Aluminum (Al)	2007/09/12	1.1	%	25
		Total Antimony (Sb)	2007/09/12	NC	%	25
		Total Arsenic (As)	2007/09/12	NC	%	25
		Total Barium (Ba)	2007/09/12	2.8	%	25
		Total Beryllium (Be)	2007/09/12	NC	%	25
		Total Bismuth (Bi)	2007/09/12	NC	%	25
		Total Cadmium (Cd)	2007/09/12	NC	%	25
		Total Chromium (Cr)	2007/09/12	NC	%	25
		Total Cobalt (Co)	2007/09/12	NC	%	25

Quality Assurance Report (Continued)

Maxxam Job Number: VA740575

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery Units	QC Limits
1837295 AA1	RPD [G74770-01]	Total Copper (Cu)	2007/09/12	6.0	%	25
10072007001	141 15 [014110 01]	Total Lead (Pb)	2007/09/12	NC	%	25
		Total Manganese (Mn)	2007/09/12	1.6	%	25
		Total Molybdenum (Mo)	2007/09/12	7.4	%	25
		Total Nickel (Ni)	2007/09/12	NC	%	25
		Total Potassium (K)	2007/09/12	3.8	%	25
		Total Selenium (Se)	2007/09/12	NC	%	25
		Total Silver (Ag)	2007/09/12	NC	%	25
		Total Strontium (Sr)	2007/09/12	0.2	%	25
		Total Thallium (TI)	2007/09/12	NC	%	25
		Total Triallian (Tr) Total Tin (Sn)	2007/09/12	NC	%	25
		Total Titanium (Ti)	2007/09/12	NC	%	25
		Total Uranium (U)	2007/09/12	8.1	%	25
		Total Vanadium (V)	2007/09/12	NC	% %	25
		Total Zinc (Zn)	2007/09/12	NC	%	25
1837752 GS2	BLANK	Total Boron (B)	2007/09/12	<0.008		20
103//32 G32	DLAINN	Total Calcium (Ca)	2007/09/10	<0.006	mg/L	
		Total Iron (Fe)	2007/09/10	<0.05	mg/L	
		Total Magnesium (Mg)			mg/L	
		0 (0)	2007/09/10	< 0.05	mg/L	
		Total Sodium (Na)	2007/09/10	< 0.05	mg/L	
	DDD (074770 041	Total Paran (P)	2007/09/10	<0.005	mg/L	0.0
	RPD [G74770-01]	Total Boron (B)	2007/09/10	NC	%	25
		Total Calcium (Ca)	2007/09/10	3.1	%	25
		Total Iron (Fe)	2007/09/10	12.3	%	25
		Total Magnesium (Mg)	2007/09/10	0.9	%	25
		Total Sodium (Na)	2007/09/10	2.2	%	25
		Total Zirconium (Zr)	2007/09/10	NC	%	25
1837760 GS2	BLANK	Dissolved Magnesium (Mg)	2007/09/10	<0.05	mg/L	
		Dissolved Sodium (Na)	2007/09/10	<0.05	mg/L	
	RPD	Dissolved Magnesium (Mg)	2007/09/10	0.6	%	25
1837797 DJ	MATRIX SPIKE	Total Arsenic (As)	2007/09/10		113 %	75 - 125
		Total Cadmium (Cd)	2007/09/10		111 %	75 - 125
		Total Chromium (Cr)	2007/09/10		104 %	75 - 125
		Total Cobalt (Co)	2007/09/10		110 %	75 - 125
		Total Copper (Cu)	2007/09/10		113 %	75 - 125
		Total Lead (Pb)	2007/09/10		111 %	75 - 125
		Total Mercury (Hg)	2007/09/10		109 %	75 - 125
		Total Selenium (Se)	2007/09/10		112 %	75 - 125
		Total Thallium (TI)	2007/09/10		121 %	75 - 125
		Total Zinc (Zn)	2007/09/10		111 %	75 - 125
	SPIKE	Total Arsenic (As)	2007/09/10		112 %	75 - 125
		Total Cadmium (Cd)	2007/09/10		106 %	75 - 125
		Total Chromium (Cr)	2007/09/10		107 %	75 - 125
		Total Cobalt (Co)	2007/09/10		106 %	75 - 125
		Total Copper (Cu)	2007/09/10		112 %	75 - 125
		Total Lead (Pb)	2007/09/10		113 %	75 - 125
		Total Mercury (Hg)	2007/09/10		109 %	75 - 125
		Total Selenium (Se)	2007/09/10		110 %	75 - 12
		Total Thallium (TI)	2007/09/10		117 %	75 - 125
		Total Zinc (Zn)	2007/09/10		113 %	75 - 12
	BLANK	Total Aluminum (AI)	2007/09/10	<100	mg/kg	
		Total Antimony (Sb)	2007/09/10	<0.1	mg/kg	
		Total Arsenic (As)	2007/09/10	<0.2	mg/kg	
		Total Barium (Ba)	2007/09/10	<0.1	mg/kg	
		Total Beryllium (Be)	2007/09/10	<0.1	mg/kg	
		. 3.a. 2017 main (20)	2007/00/10	~0.1	mg/ng	

Quality Assurance Report (Continued)

Maxxam Job Number: VA740575

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1837797 DJ	BLANK	Total Bismuth (Bi)	2007/09/10	<0.1		mg/kg	
		Total Boron (B)	2007/09/10	<5		mg/kg	
		Total Cadmium (Cd)	2007/09/10	< 0.05		mg/kg	
		Total Chromium (Cr)	2007/09/10	<1		mg/kg	
		Total Cobalt (Co)	2007/09/10	< 0.3		mg/kg	
		Total Copper (Cu)	2007/09/10	<0.5		mg/kg	
		Total Iron (Fe)	2007/09/10	<100		mg/kg	
		Total Lead (Pb)	2007/09/10	<0.1		mg/kg	
		Total Manganese (Mn)	2007/09/10	< 0.2		mg/kg	
		Total Mercury (Hg)	2007/09/10	< 0.05		mg/kg	
		Total Molybdenum (Mo)	2007/09/10	<0.1		mg/kg	
		Total Nickel (Ni)	2007/09/10	<0.8		mg/kg	
		Total Selenium (Se)	2007/09/10	< 0.5		mg/kg	
		Total Silver (Ag)	2007/09/10	< 0.05		mg/kg	
		Total Strontium (Sr)	2007/09/10	<0.1		mg/kg	
		Total Thallium (TI)	2007/09/10	< 0.05		mg/kg	
		Total Tin (Sn)	2007/09/10	<0.1		mg/kg	
		Total Titanium (Ti)	2007/09/10	<1		mg/kg	
		Total Uranium (U)	2007/09/10	< 0.05		mg/kg	
		Total Vanadium (V)	2007/09/10	<2		mg/kg	
		Total Zinc (Zn)	2007/09/10	<1		mg/kg	
	RPD	Total Aluminum (AI)	2007/09/10	2.1		%	35
	IXI D	Total Antimony (Sb)	2007/09/10	3.7		%	3:
		Total Arsenic (As)	2007/09/10	1.2		%	3
		Total Barium (Ba)	2007/09/10	1.3		%	3
		Total Beryllium (Be)	2007/09/10	NC		%	3
		Total Bismuth (Bi)	2007/09/10	NC		% %	3:
		Total Cadmium (Cd)	2007/09/10	NC		% %	3:
		` ,	2007/09/10	1.1		%	3:
		Total Cabalt (Ca)				%	3:
		Total Copper (Cv)	2007/09/10	5.3		%	3
		Total Copper (Cu)	2007/09/10	3.8			
		Total I and (Ph)	2007/09/10	0.6		%	3
		Total Lead (Pb)	2007/09/10	3.4		%	3
		Total Manganese (Mn)	2007/09/10	0.9		%	3:
		Total Mercury (Hg)	2007/09/10	NC		%	3:
		Total Molybdenum (Mo)	2007/09/10	4.1		%	3
		Total Nickel (Ni)	2007/09/10	5.7		%	3
		Total Selenium (Se)	2007/09/10	NC		%	3
		Total Silver (Ag)	2007/09/10	NC		%	3
		Total Strontium (Sr)	2007/09/10	0.5		%	3
		Total Thallium (TI)	2007/09/10	NC		%	3
		Total Tin (Sn)	2007/09/10	NC		%	3
		Total Titanium (Ti)	2007/09/10	4.5		%	3
		Total Vanadium (V)	2007/09/10	1.9		%	3
		Total Zinc (Zn)	2007/09/10	3.2		%	3
1838312 MX	SPIKE	Total Phosphorus (P)	2007/09/12		89	%	80 - 12
	BLANK	Total Phosphorus (P)	2007/09/12	< 0.005		mg/L	
	RPD [G74771-01]	Total Phosphorus (P)	2007/09/12	NC		%	2
1838408 FS1	SPIKE	Total Suspended Solids	2007/09/12		102	%	N/A
	BLANK	Total Suspended Solids	2007/09/12	<1		mg/L	
1838884 NN	MATRIX SPIKE	Dissolved Chloride (CI)	2007/09/11		105	%	80 - 12
	SPIKE	Dissolved Chloride (CI)	2007/09/11		105	%	80 - 12
	BLANK	Dissolved Chloride (Cl)	2007/09/11	<0.5		mg/L	
	RPD [G74772-01]	Dissolved Chloride (Cl)	2007/09/11	NC		%	20
					98		

Quality Assurance Report (Continued)

Maxxam Job Number: VA740575

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1838888 NN	SPIKE	Dissolved Sulphate (SO4)	2007/09/11		102	%	80 - 120
	BLANK	Dissolved Sulphate (SO4)	2007/09/11	< 0.5		mg/L	
	RPD [G74772-01]	Dissolved Sulphate (SO4)	2007/09/11	NC		%	20
1841342 NN	MATRIX SPIKE	Ammonia (N)	2007/09/12		96	%	80 - 120
	SPIKE	Ammonia (N)	2007/09/12		94	%	80 - 120
	BLANK	Ammonia (N)	2007/09/12	< 0.005		mg/L	
	RPD [G74770-01]	Ammonia (N)		TBA		%	25

N/A = Not Applicable TBA = Result to follow NC = Non-calculable

RPD = Relative Percent Difference

17405 75 8577 Commerce Court	PHONE: (004) 444-4808	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST PAGE OF
Maxxam Burnaby, BC V5A 4N5 www.maxxamanalytics	Fax: (604) 444-4511	ANALYSIS REQUEST F 82587
MINNOW ENVIRONMENTAL	PH. #: 905-567-87H. E-mall: PORR.@Minnow-environmental.com	LAB-USE ONLY
	FAV # 905 -523 1 90-	
COMPANY ADDRESS:	CLIENT PROJECT ID: (#) 2212	
UNIT 13		
MISSISSANGIA, ON	NOTE 2 (OOLERS	1-10k k g
SAMPLER NAME (PRINT):	PROJECT MANAGER:	
KIM CONNORS	PATTI ORR	
	- Control of the Cont	\$ 1 9 9 4 2 \$ 8 6 3 12 0
FIELD MAXXAM	WATER WATER SOIL SOIL TIME DATE ADSPACE APOUR	Alleglinit Annopolic Sulphate Sulphate Nithrake Toc
SAMPLE LAB # ID (Lab Use Only)	GROUND WATER SURFACE WATER SOIL OTHER # CONTAINE TIME TIME	Alkalin Ammoni Sulpha Sulpha Intrak I
	A B DD/WW/AA B B B B B B B B B B B B B B B B B B	6 ATTOTAL BURNERS BERNERS BERN
· Ref	V 6 25/08/07/0:30	1/
2 Ref 2	V 6 25/08/07 13:30	100000000000000000000000000000000000000
3 Nex CI	1 6 26/08/07 08:30	
4 V6	6 27/08/07 09:30	
6 VS	1 629/08/07	
6 V27	V 628/08/07	1111111111111
7 / 12 1 1 1 1 1 1 1 1 1	1 10 28/08/07	111111111111111111111111111111111111111
8 VBZ	- V 6 79108/67/09:30	
9		
10	EBEST NIE HAELETES LIS	
fitte B. 自身在18 一十 65 图 8 6 7 14 14 18	20 STEED BUILDING STATE AND SHIT	
12		
TAT (Turnaround Time) P.O. NUMBER / QUOTE NUMBE		PE: CCME LAB USE ONLY
<5 DAY TAT MUST HAVE BCO7-066- FC		☐ CSR ARRIVAL TEMPERATURE °C: DUE DATE: LOG IN CHECK:
*some exceptions apply please contact lab ACCOUNTING CONTACT	ATTACHED	□ OTHER 2,2,3
STANDARD 5 BUSINESS DAYS 🗹	SPECIAL REPORTING OR BILLING INSTRUCTIONS	S: # JARS USED:
RUSH 3 BUSINESS DAYS ARUSH 2 BUSINESS DAYS ARUSH 2 BUSINESS DAYS	AH, Eleune Cousins	
URGENT 1 BUSINESS DAY RELINQUISHED BY SAMPLER:	LA POINTE DATE A 20 100	TIMEL - 2 RECEIVED BY:
OTHER BUSINESS DAYS RELINQUISHED BY:	DD/MM/YY Z/U+	TIME: RECEIVED BY:
CUSTODY RELINQUISHED BY:	DATE: Page 21\ of\22	TIME: A PECENED BY LABORATORY
RECORD	DD/MMP/age ZIVOTIZZ	TIVIL 1U-20 RECEIVED BY LABORATORY.

na - ()	8577 Commerce Cour	t		Phor	ne: (6	04) 444-480	В		CHA	1/N-0	OF-C	CUST	ODY .	REC	ORD	AND	ANA	ALYS	SIS I	REQ	UES	T	PΑ	GE <u>c</u>	2	OF 2
Maxxam	8577 Commerce Cour Burnaby, BC V5A 4N5 www.maxxamanalytics	s.com	To	Fa III Fre	ax: (6	04) 444-451	1					11			7	NAL	YSIS	RE	QU	EST		F	5	32	58	8
COMPANY NAME: MINNON ENVIRON		PH. #: 9	05-	56	7-8	DOW-ENVI	RONME	STAL.	cont			1		161	3	AB.	US	E	0	N L						
		FAX #: 9	05.	50	7-6	805								X	00											
COMPANY ADDRESS: 6800 KITIMAT PUNIT 13	20	CLIENT P	ROJE	CT ID:	(#) 6	12/2.			1			سا		777	X			H								
UNIT 13	LETELLI.								103		8	3	2	100	E			П					10		10	
MISSISSINGA, OI	VEHILL F	NOTE	=	1	20	OOLEX	25		h	1		940SPHDR	RURE	Phys	80								-			
SAMPLER NAME (PRINT):		PROJECT	MAN	AGER					17			S	380	43	P	P	ie K	27	0	6	24.0	016	4	1		
HILL COMMON A.			-	UK.	1	_			100			36	7	2	X	Tool) <	SPA	30	iA	J.		P	1	- 1	V.
FIELD	MAXXAM	1	TRIX		VERS	SA	MPLING	Τш	- 3			7	1	2	7	UF	71	VS	TR	uc	T	DN	15			
SAMPLE	LAB#	GROUND WATER SURFACE WATER	Boling	OTHER	CONTAINERS	DATE	TIME	SPAC	77	U	5	E	TA	五		a 1		40	110							
ID.	(Lab Use Only)	SUR	5630	TO	# CO	DD/MM/YY	Ē	HEADSPACE	PARTI	12	F	101	TOT	10			9									
1 V27-Ald/5 \$1	01)		V		2	28/08/0	7		V	-	V	1	V	/				ı								
2 V27-B (03)			V		2	28/08/0:			V	V	1	V	V	11												
3 V27-C (04)	A PART OF THE	200	V		2	28/08/0-		1	1	-	V	V	V	/				T								
4 VI 39 9	E LOW HELD LINE	2004	1	1	2	28/00/0-		*	V	V	V	V	V	1						-						11
5					1	i A	T.	· k																		
6	news of the market	1881	34		181	a Ligar	POL	Bu.		X,	Q.	- 1						T					/5.			
7																				5						
8		art -														•		T							T	21-
9	Allen Lines																	E	T	9						
10	BURNOUNG		39		1	1 1 1 4 7	E	11		7								ı		3					T	
11			-	77.			311																			
12																							(8	•		
TAT (Turnaround Time)	P.O. NUMBER / QUOTE NUMBER			SPECI	AL DE	TECTION LIMIT	S / CONTAN	NINANT T	YPE:		To	CCME							ı	LAB L	JSE C	NLY				
<5 DAY TAT MUST HAVE PRIOR APPROVAL	BC07-066.	- 1-C		SE	EI	MACHE	D 198	DLS			. 🗏	CSR	RTA TIFE	500	RRIVAL			E°C:	DUE	DATE	E:		LO	G IN C	CHEC	K;
*some exceptions apply please contact lab				RE	Fel	ETO SPE	CUAL	1105	TRU	all					2,0	1.3	-									
STANDARD 5 BUSINESS DAYS	ACCOUNTING CONTACT:					PORTING OR B				1	# ~	JARS L	JSED:				1									
RUSH 3 BUSINESS DAYS RUSH 2 BUSINESS DAYS					T	In. Eli	aine	(0)	15/1	ns	-					8										
URGENT 1 BUSINESS DAY	RELINQUISHED BY SAMPLER:	land o		in 10	i im	DATE:		20/	TIME	: /\	d:	10	1	RECEI	VED E	BY:	H			7	-					
OTHER BUSINESS DAYS	RELINQUISHED BY:	CMI !	0	W	LOY	DATE:		10/0	TIME	(T		3	RECEI	VED E	Y:								-		-
CUSTODY	RELINQUISHED BY:					DD/MN DATE:	Rage 22	10/ AD	TIME	E . 1	1/-	2.0		7	VED B		ORAT	ORY		1	٨	- The Control of the				
RECORD	OOCFORM - BC - 06/06					DD/MN	rage 22	VI & Z		- 1	4.	20			0	RIGINA	L - MA	XXAM		A. N	_	V - MAX	XAM		PINI	K - CLIENT

Your Project #: A740575 Your C.O.C. #: N/A

Attention: Elaine Cousins

Maxxam Analytics Inc Burnaby to Bedford 8577 Commerce Crt Burnaby, BC V5A 4N5

Report Date: 2007/09/10

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A795627 Received: 2007/09/05, 14:15

Sample Matrix: Soil # Samples Received: 4

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Total Organic Carbon in Soil	4	N/A	2007/09/07 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MARIE (MCNAIR) MUISE, Project Manager Email: marie.muise.reports@maxxamanalytics.com Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Analytics Inc Client Project #: A740575 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		U46414	U46415	U46416		
Sampling Date		2007/08/28	2007/08/28	2007/08/28		
COC Number		N/A	N/A	N/A		
	Units	G74778-01R\V27-A(D/S	G74779-01R\V27-B(03)	G74780-01R\V27-C(04)	RDL	QC Batch
		01)	` '	` `		

Organic Carbon (TOC) 1354494 g/kg 3.7 3.0

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

OGG Hamber	Units	G74781-01R\V1	RDL	QC Batch
COC Number		N/A		
Sampling Date		2007/08/28		
Maxxam ID		U46417		

Organic Carbon (TOC)	g/kg	1.3	0.2	1354494
----------------------	------	-----	-----	---------

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Analytics Inc Client Project #: A740575 Project name: Sampler Initials:

GEN	FRΔI	COM	MFN	ITS

Results relate only to the items tested.

Maxxam Analytics Inc Attention: Elaine Cousins Client Project #: A740575

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA795627

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1354494 BBD	QC STANDARD	Organic Carbon (TOC)	2007/09/07		97	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2007/09/07	ND, R	DL=0.2	g/kg	
	RPD	Organic Carbon (TOC)	2007/09/07	2.8		%	35

ND = Not detected RPD = Relative Percent Difference

QC Standard = Quality Control Standard

Your Project #: A740575 Your C.O.C. #: N/A

Attention: Elaine Cousins

Maxxam Analytics Inc Burnaby to Bedford 8577 Commerce Crt Burnaby, BC V5A 4N5

Report Date: 2007/09/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A795621 Received: 2007/09/05, 14:15

Sample Matrix: Soil # Samples Received: 4

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Particle size in solids (pipette&sieve)	4	N/A	2007/09/07 ATL SOP 00012 R2	based on MSAMS-1978

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MARIE (MCNAIR) MUISE, Project Manager Email: marie.muise.reports@maxxamanalytics.com Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Analytics Inc Client Project #: A740575 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		U46394	U46404	U46405		
Sampling Date		2007/08/28	2007/08/28	2007/08/28		
COC Number		N/A	N/A	N/A		
	Units		G74779-01R\V27-B(03)	G74780-01R\V27-C(04)	RDL	QC Batch
		01)				
< -4 Phi	%	100	100	100	0.1	1353856
< -3 Phi	%	100	100	100	0.1	1353856
< -2 Phi	%	100	100	100	0.1	1353856
< -1 Phi	%	52	59	71	0.1	1353856
< 0 Phi	%	19	34	35	0.1	1353856
< +1 Phi	%	5.2	9.8	13	0.1	1353856
< +2 Phi	%	2.0	2.9	3.8	0.1	1353856
< +3 Phi	%	1.3	1.8	1.9	0.1	1353856
< +4 Phi	%	1.2	1.6	1.5	0.1	1353856
< +5 Phi	%	1.1	1.3	1.4	0.1	1353856
< +6 Phi	%	1.0	1.5	1.1	0.1	1353856
< +7 Phi	%	0.9	1.3	1.2	0.1	1353856
< +8 Phi	%	0.9	1.2	1.1	0.1	1353856
< +9 Phi	%	0.8	1.2	1.0	0.1	1353856
Gravel	%	48	41	29	0.1	1353856
Sand	%	51	58	70	0.1	1353856
Silt	%	0.3	0.4	0.4	0.1	1353856
Clay	%	0.9	1.2	1.1	0.1	1353856

N/A = Not Applicable RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Analytics Inc Client Project #: A740575 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	G74781-01R\V1	RDL	QC Batch
COC Number		N/A		
Sampling Date		2007/08/28		
Maxxam ID		U46406		

			_	
< -4 Phi	%	100	0.1	1353856
< -3 Phi	%	100	0.1	1353856
< -2 Phi	%	100	0.1	1353856
< -1 Phi	%	18	0.1	1353856
< 0 Phi	%	3.5	0.1	1353856
< +1 Phi	%	1.4	0.1	1353856
< +2 Phi	%	1.2	0.1	1353856
< +3 Phi	%	1.2	0.1	1353856
< +4 Phi	%	1.2	0.1	1353856
< +5 Phi	%	1.2	0.1	1353856
< +6 Phi	%	1.2	0.1	1353856
< +7 Phi	%	1.1	0.1	1353856
< +8 Phi	%	1.0	0.1	1353856
< +9 Phi	%	1.1	0.1	1353856
Gravel	%	82	0.1	1353856
Sand	%	17	0.1	1353856
Silt	%	0.1	0.1	1353856
Clay	%	1.0	0.1	1353856

N/A = Not Applicable RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Analytics Inc Client Project #: A740575 Project name: Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Your Project #: MINNOW #2254 Your C.O.C. #: F110454

Attention: Patti Orr
MINNOW ENVIRONMENTAL
2 Lamb Street
Georgetown, ON
CANADA L7G 3M9

Report Date: 2008/09/10

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A844730 Received: 2008/08/29, 11:40

Sample Matrix: Water # Samples Received: 10

	Date	Date	
Analyses Qu	uantity Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water 8	2008/09/02	2008/09/02 BRN SOP-00264 R2.0	Based on SM2320B
Alkalinity - Water 2	2008/09/02	2008/09/03 BRN SOP-00264 R2.0	Based on SM2320B
Chloride by Automated Colourimetry 10	N/A	2008/08/30 BRN-SOP 00234 R1.0	Based on EPA 325.2
Cyanide WAD (weak acid dissociable) 10	N/A	2008/09/08 BRN SOP-00227 R1.0	Based on SM-4500CN I
Carbon (DOC) 4	N/A	2008/09/04 BRN SOP-00224 R3.0	Based on SM-5310C
Carbon (DOC) 6	N/A	2008/09/05 BRN SOP-00224 R3.0	Based on SM-5310C
Fluoride - Mining Clients 10	N/A	2008/09/04 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness Total (calculated as CaCO3) 6	N/A	2008/09/08	
Hardness Total (calculated as CaCO3) 4	N/A	2008/09/09	
Elements by ICPMS Low Level (total) () 6	2008/09/04	2008/09/06 BRN SOP-00206	Based on EPA 200.8
Elements by ICPMS Low Level (total) () 4	2008/09/08	2008/09/09 BRN SOP-00206	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total) 6	2008/09/04	2008/09/06 BRN SOP-00206	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total) 4	2008/09/08	2008/09/09 BRN SOP-00206	Based on EPA 200.8
Ammonia-N 10	N/A	2008/09/02 BRN SOP-00232 R3.0	SM-4500 NH3 G
Nitrate + Nitrite (N) 10	N/A	2008/09/03 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) by CFA	N/A	2008/09/03 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N) 10	N/A	2008/09/03	
Sulphate by Automated Colourimetry 10	N/A	2008/08/30 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue) 10	N/A	2008/09/04 ING443 Rev.5.1	APHA 2540C
Total Phosphorus 10	N/A	2008/09/03 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids 6	N/A	2008/09/02 BRN SOP-00277 R2.0	Based on SM-2540 D
Total Suspended Solids 4	N/A	2008/09/03 BRN SOP-00277 R2.0	Based on SM-2540 D

^{*} Results relate only to the items tested.

(1) SCC/CAEAL

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELAINE COUSINS, CS Manager Email: elaine.cousins@maxxamanalytics.com Phone# (604) 444-4808 Ext:276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		L36318	L36319	L36320		L36321		L36322		
Sampling Date		2008/08/22	2008/08/22	2008/08/22		2008/08/23		2008/08/23		
COC#		F110454	F110454	F110454		F110454		F110454		
	Units	FC	BLC	BLC-Z	RDL	STC	QC Batch	HOC	RDL	QC Batch
Misc. Inorganics										
Fluoride (F)	mg/L	0.07	0.09	0.09	0.01	0.10	2551942	0.16	0.01	2551942
ANIONS										
Nitrite (N)	mg/L	< 0.005	< 0.005	< 0.005	0.005	< 0.005	2544608	<0.005	0.005	2544608
Calculated Parameters										
Nitrate (N)	mg/L	< 0.02	0.02	0.04	0.02	0.14	2540323	0.06	0.02	2540323
Misc. Inorganics										
Weak Acid Dissoc. Cyanide (CN)	mg/L	< 0.0005	< 0.0005	< 0.0005	0.0005	< 0.0005	2559239	<0.0005	0.0005	2559239
Dissolved Organic Carbon (C)	mg/L	3.9	5.4	5.4	0.5	1.5	2548819	3.7	0.5	2551411
Alkalinity (Total as CaCO3)	mg/L	11	71	71	0.5	230	2546249	280	0.5	2546249
Alkalinity (PP as CaCO3)	mg/L	<0.5	<0.5	<0.5	0.5	4.2	2546249	5.6	0.5	2546249
Bicarbonate (HCO3)	mg/L	13	87	87	0.5	270	2546249	330	0.5	2546249
Carbonate (CO3)	mg/L	<0.5	<0.5	<0.5	0.5	5.0	2546249	6.7	0.5	2546249
Hydroxide (OH)	mg/L	<0.5	<0.5	< 0.5	0.5	<0.5	2546249	<0.5	0.5	2546249
Anions										
Dissolved Sulphate (SO4)	mg/L	0.9	14	14	0.5	130	2543065	73	5	2543065
Dissolved Chloride (CI)	mg/L	<0.5	0.6	0.7	0.5	0.8	2543062	0.9	0.5	2543062
Nutrients										
Ammonia (N)	mg/L	0.02	0.04	<0.01	0.01	<0.01	2545502	<0.01	0.01	2545502
Nitrate plus Nitrite (N)	mg/L	< 0.02	0.02	0.04	0.02	0.14	2544601	0.06	0.02	2544601
Total Phosphorus (P)	mg/L	0.020	0.007	0.007	0.005	< 0.005	2543927	0.005	0.005	2543927
Physical Properties										
Total Suspended Solids	mg/L	5	3	3	1	<1	2544471	<1	1	2544471
Total Dissolved Solids	mg/L	30	100	110	10	430	2551507	360	10	2551507

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		L36323		L36324		L36325	L36326	L36327		
Sampling Date		2008/08/23		2008/08/23		2008/08/24	2008/08/24	2008/08/24		
COC#		F110454		F110454		F110454	F110454	F110454		
	Units	BEC	QC Batch	GRC	RDL	BUC	BUCZ	BTT	RDL	QC Batch
Misc. Inorganics										
Fluoride (F)	mg/L	0.12	2551942	0.17	0.01	0.12	0.12	0.11	0.01	2551942
ANIONS										
Nitrite (N)	mg/L	< 0.005	2544608	< 0.005	0.005	<0.005	<0.005	< 0.005	0.005	2544608
Calculated Parameters										
Nitrate (N)	mg/L	0.22	2540323	0.09	0.02	0.10	0.09	0.07	0.02	2540323
Misc. Inorganics										
Weak Acid Dissoc. Cyanide (CN)	mg/L	< 0.0005	2559239	<0.0005	0.0005	<0.0005	<0.0005	<0.0005	0.0005	2559239
Dissolved Organic Carbon (C)	mg/L	4.1	2551411	4.8	0.5	9.9	8.9	9.2	0.5	2551411
Alkalinity (Total as CaCO3)	mg/L	210	2546249	290	0.5	200	200	97	0.5	2546249
Alkalinity (PP as CaCO3)	mg/L	2.0	2546249	6.9	0.5	1.8	<0.5	<0.5	0.5	2546249
Bicarbonate (HCO3)	mg/L	250	2546249	340	0.5	240	240	120	0.5	2546249
Carbonate (CO3)	mg/L	2.4	2546249	8.3	0.5	2.1	<0.5	<0.5	0.5	2546249
Hydroxide (OH)	mg/L	<0.5	2546249	<0.5	0.5	<0.5	<0.5	<0.5	0.5	2546249
Anions		-	-							-
Dissolved Sulphate (SO4)	mg/L	240	2543065	140	5	47	46	27	0.5	2543065
Dissolved Chloride (CI)	mg/L	1.0	2543062	1.2	0.5	1.1	0.8	0.8	0.5	2543062
Nutrients										
Ammonia (N)	mg/L	0.04	2545502	0.01	0.01	<0.01	0.05	0.07	0.01	2545502
Nitrate plus Nitrite (N)	mg/L	0.22	2544601	0.09	0.02	0.10	0.09	0.07	0.02	2544601
Total Phosphorus (P)	mg/L	0.012	2543927	<0.005	0.005	0.007	0.006	0.007	0.005	2543927
Physical Properties		•	•	•			•	•		
Total Suspended Solids	mg/L	2	2544471	4	1	2	2	<1	1	2546746
Total Dissolved Solids	mg/L	550	2551507	490	10	270	280	170	10	2551507

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

LOW LEVEL TOTAL METALS - WATER (WATER)

Maxxam ID		L36318	L36319	L36320	L36321	L36322		
Sampling Date		2008/08/22	2008/08/22	2008/08/22	2008/08/23	2008/08/23		
COC#		F110454	F110454	F110454	F110454	F110454		
	Units	FC	BLC	BLC-Z	STC	HOC	RDL	QC Batch
Calculated Parameters								
Total Hardness (CaCO3)	mg/L	12.5	78.8	75.9	381	354	0.5	2540801
Total Metals by ICPMS								
Total Aluminum (AI)	mg/L	0.108	0.0474	0.0390	0.0211	0.0054	0.0002	2550131
Total Antimony (Sb)	mg/L	0.00003	0.00010	0.00010	0.00017	0.00018	0.00002	2550131
Total Arsenic (As)	mg/L	0.00022	0.00079	0.00078	0.00023	0.00056	0.00002	2550131
Total Barium (Ba)	mg/L	0.0162	0.0576	0.0570	0.0935	0.0858	0.00002	2550131
Total Beryllium (Be)	mg/L	0.00003	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	2550131
Total Bismuth (Bi)	mg/L	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	0.000005	2550131
Total Boron (B)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2550131
Total Cadmium (Cd)	mg/L	0.000016	0.000011	0.000014	0.000164	0.000023	0.000005	2550131
Total Chromium (Cr)	mg/L	0.0003	0.0001	<0.0001	0.0002	0.0001	0.0001	2550131
Total Cobalt (Co)	mg/L	0.000084	0.000055	0.000053	0.000076	0.000068	0.000005	2550131
Total Copper (Cu)	mg/L	0.00138	0.00077	0.00072	0.00044	0.00051	0.00005	2550131
Total Iron (Fe)	mg/L	0.139	0.158	0.133	0.066	0.114	0.001	2550131
Total Lead (Pb)	mg/L	0.000849	0.000072	0.000078	0.000116	0.000053	0.000005	2550131
Total Lithium (Li)	mg/L	0.0017	0.0018	0.0017	0.0039	0.0043	0.0005	2550131
Total Manganese (Mn)	mg/L	0.00436	0.0155	0.0150	0.00684	0.0181	0.00005	2550131
Total Molybdenum (Mo)	mg/L	0.00006	0.00062	0.00064	0.00153	0.00259	0.00005	2550131
Total Nickel (Ni)	mg/L	0.00051	0.00057	0.00054	0.00195	0.00107	0.00002	2550131
Total Selenium (Se)	mg/L	<0.0004	0.00021	0.00021	0.00578	0.00205	0.00004	2550131
Total Silicon (Si)	mg/L	6.5	4.9	4.9	3.0	4.6	0.1	2550131
Total Silver (Ag)	mg/L	<0.00005	<0.000005	<0.000005	<0.000005	<0.000005	0.000005	2550131
Total Strontium (Sr)	mg/L	0.0226	0.0938	0.0939	0.360	0.360	0.00005	2550131
Total Thallium (TI)	mg/L	0.000004	0.000002	<0.000002	0.000003	<0.000002	0.000002	2550131
Total Tin (Sn)	mg/L	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	2550131
Total Titanium (Ti)	mg/L	0.0027	0.0015	0.0011	<0.0005	<0.0005	0.0005	2550131
Total Uranium (U)	mg/L	0.000195	0.000611	0.000624	0.00524	0.00528	0.000002	2550131
Total Vanadium (V)	mg/L	0.0003	0.0003	<0.0002	<0.0002	<0.0002	0.0002	2550131
Total Zinc (Zn)	mg/L	0.0035	0.0007	0.0008	0.0082	0.0012	0.0001	2550131
Total Zirconium (Zr)	mg/L	0.0001	0.0001	0.0001	<0.0001	<0.0001	0.0001	2550131
Total Calcium (Ca)	mg/L	3.70	22.5	21.6	92.5	81.4	0.05	2556124
Total Magnesium (Mg)	mg/L	0.79	5.51	5.31	36.3	36.6	0.05	2556124
Total Potassium (K)	mg/L	0.12	0.75	0.71	0.61	1.19	0.05	2556124
Total Sodium (Na)	mg/L	1.71	2.69	2.61	2.46	4.77	0.05	2556124
Total Sulphur (S)	mg/L	<3	5	5	52	30	3	2556124

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

LOW LEVEL TOTAL METALS - WATER (WATER)

Maxxam ID		L36323		L36324	L36325	L36326	L36327		
Sampling Date		2008/08/23		2008/08/23	2008/08/24	2008/08/24	2008/08/24		
COC#		F110454		F110454	F110454	F110454	F110454		
	Units	BEC	QC Batch	GRC	BUC	BUCZ	BTT	RDL	QC Batch
Calculated Parameters									
Total Hardness (CaCO3)	mg/L	478	2540801	438	229	233	114	0.5	2540801
Total Metals by ICPMS									
Total Aluminum (Al)	mg/L	0.0101	2550131	0.0260	0.0436	0.0370	0.0093	0.0002	2557567
Total Antimony (Sb)	mg/L	0.00025	2550131	0.00018	0.00009	0.00009	0.00006	0.00002	2557567
Total Arsenic (As)	mg/L	0.00065	2550131	0.00061	0.00038	0.00039	0.00054	0.00002	2557567
Total Barium (Ba)	mg/L	0.0563	2550131	0.0812	0.0803	0.0850	0.0465	0.00002	2557567
Total Beryllium (Be)	mg/L	<0.00001	2550131	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	2557567
Total Bismuth (Bi)	mg/L	<0.000005	2550131	<0.000005	<0.00005	<0.000005	<0.00005	0.000005	2557567
Total Boron (B)	mg/L	<0.05	2550131	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2557567
Total Cadmium (Cd)	mg/L	0.000019	2550131	0.000025	0.000026	0.000022	0.000007	0.000005	2557567
Total Chromium (Cr)	mg/L	<0.0001	2550131	0.0005	0.0001	0.0001	<0.0001	0.0001	2557567
Total Cobalt (Co)	mg/L	0.000057	2550131	0.000073	0.000056	0.000055	0.000017	0.000005	2557567
Total Copper (Cu)	mg/L	0.00113	2550131	0.00108	0.00228	0.00126	0.00294	0.00005	2557567
Total Iron (Fe)	mg/L	0.055	2550131	0.129	0.111	0.099	0.021	0.001	2557567
Total Lead (Pb)	mg/L	0.000180	2550131	0.000156	0.000292	0.000170	0.000255	0.000005	2557567
Total Lithium (Li)	mg/L	0.0054	2550131	0.0080	0.0038	0.0039	0.0030	0.0005	2557567
Total Manganese (Mn)	mg/L	0.00565	2550131	0.0274	0.0152	0.0149	0.00521	0.00005	2557567
Total Molybdenum (Mo)	mg/L	0.00163	2550131	0.00201	0.00075	0.00078	0.00107	0.00005	2557567
Total Nickel (Ni)	mg/L	0.00358	2550131	0.00107	0.00134	0.00084	0.00041	0.00002	2557567
Total Selenium (Se)	mg/L	0.00311	2550131	0.00493	0.00060	0.00059	0.00012	0.00004	2557567
Total Silicon (Si)	mg/L	2.2	2550131	3.9	4.6	4.6	4.4	0.1	2557567
Total Silver (Ag)	mg/L	<0.00005	2550131	<0.00005	<0.00005	<0.000005	<0.000005	0.000005	2557567
Total Strontium (Sr)	mg/L	0.480	2550131	0.485	0.225	0.235	0.123	0.00005	2557567
Total Thallium (TI)	mg/L	0.000003	2550131	<0.000002	0.000002	<0.000002	<0.000002	0.000002	2557567
Total Tin (Sn)	mg/L	<0.00001	2550131	<0.00001	0.00001	<0.00001	<0.00001	0.00001	2557567
Total Titanium (Ti)	mg/L	< 0.0005	2550131	0.0010	0.0011	0.0011	0.0006	0.0005	2557567
Total Uranium (U)	mg/L	0.0109	2550131	0.00936	0.00276	0.00286	0.00108	0.000002	2557567
Total Vanadium (V)	mg/L	< 0.0002	2550131	<0.0002	<0.0002	<0.0002	<0.0002	0.0002	2557567
Total Zinc (Zn)	mg/L	0.0021	2550131	0.0012	0.0021	0.0017	0.0009	0.0001	2557567
Total Zirconium (Zr)	mg/L	<0.0001	2550131	<0.0001	<0.0001	<0.0001	0.0002	0.0001	2557567
Total Calcium (Ca)	mg/L	97.0	2556124	111	68.1	69.9	32.1	0.05	2559448
Total Magnesium (Mg)	mg/L	57.2	2556124	38.9	14.2	14.3	8.23	0.05	2559448
Total Potassium (K)	mg/L	0.88	2556124	1.74	1.89	1.93	1.00	0.05	2559448
Total Sodium (Na)	mg/L	2.67	2556124	4.90	4.67	4.53	4.84	0.05	2559448
Total Sulphur (S)	mg/L	95	2556124	56	17	17	11	3	2559448

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

QUALITY ASSURANCE REPORT

			Matrix Spike		Spike		Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2543062	Dissolved Chloride (CI)	2008/08/30	98	80 - 120	97	80 - 120	<0.5	mg/L	NC	20
2543065	Dissolved Sulphate (SO4)	2008/08/30	98	75 - 125	97	80 - 120	<0.5	mg/L	0.5	20
2543927	Total Phosphorus (P)	2008/09/03	94	80 - 120	108	80 - 120	<0.005	mg/L	NC	25
2544471	Total Suspended Solids	2008/09/02			99	N/A	<1	mg/L		
2544601	Nitrate plus Nitrite (N)	2008/09/03	100	80 - 120	103	80 - 120	<0.02	mg/L	0.9	25
2544608	Nitrite (N)	2008/09/03	103	80 - 120	103	80 - 120	<0.005	mg/L	NC	25
2545502	Ammonia (N)	2008/09/02	98	80 - 120	96	80 - 120	<0.01	mg/L	2.3	25
2546249	Alkalinity (Total as CaCO3)	2008/09/02	NC	80 - 120	94	80 - 120	<0.5	mg/L	0.2	25
2546249	Alkalinity (PP as CaCO3)	2008/09/02					<0.5	mg/L	NC	25
2546249	Bicarbonate (HCO3)	2008/09/02					<0.5	mg/L	0.2	25
2546249	Carbonate (CO3)	2008/09/02					<0.5	mg/L	NC	25
2546249	Hydroxide (OH)	2008/09/02					<0.5	mg/L	NC	25
2546746	Total Suspended Solids	2008/09/03			99	N/A	<1	mg/L		
2548819	Dissolved Organic Carbon (C)	2008/09/04	98	80 - 120	103	80 - 120	<0.5	mg/L	NC	20
2550131	Total Arsenic (As)	2008/09/06	NC	75 - 125	98	75 - 125	<0.00002	mg/L	2.5	25
2550131	Total Beryllium (Be)	2008/09/06	98	75 - 125	101	75 - 125	<0.00001	mg/L	7.5	25
2550131	Total Cadmium (Cd)	2008/09/06	99	75 - 125	97	75 - 125	<0.00005	mg/L	0.7	25
2550131	Total Chromium (Cr)	2008/09/06	99	75 - 125	99	75 - 125	<0.0001	mg/L	5.9	25
2550131	Total Cobalt (Co)	2008/09/06	NC	75 - 125	99	75 - 125	<0.00005	mg/L	2.1	25
2550131	Total Copper (Cu)	2008/09/06	NC	75 - 125	102	75 - 125	<0.00005	mg/L	2.4	25
2550131	Total Lead (Pb)	2008/09/06	89	75 - 125	99	75 - 125	<0.00005	mg/L	1.2	25
2550131	Total Lithium (Li)	2008/09/06	97	75 - 125	99	75 - 125	<0.0005	mg/L	NC	25
2550131	Total Nickel (Ni)	2008/09/06	NC	75 - 125	99	75 - 125	<0.00002	mg/L	2.4	25
2550131	Total Selenium (Se)	2008/09/06	100	75 - 125	97	75 - 125	<0.00004	mg/L	12.6	25
2550131	Total Uranium (U)	2008/09/06	95	75 - 125	98	75 - 125	<0.000002	mg/L	0.4	25
2550131	Total Vanadium (V)	2008/09/06	NC	75 - 125	96	75 - 125	<0.0002	mg/L	2.7	25
2550131	Total Zinc (Zn)	2008/09/06	NC	75 - 125	107	75 - 125	<0.0001	mg/L	1	25
2550131	Total Aluminum (Al)	2008/09/06					0.0002, RDL=0.0002	mg/L	2.3	25
2550131	Total Antimony (Sb)	2008/09/06					<0.00002	mg/L	NC	25
2550131	Total Barium (Ba)	2008/09/06					<0.00002	mg/L	0.4	25
2550131	Total Bismuth (Bi)	2008/09/06					<0.000005	mg/L	4.3	25
2550131	Total Boron (B)	2008/09/06					<0.05	mg/L	NC	25
2550131	Total Iron (Fe)	2008/09/06					<0.001	mg/L	8.7	25
2550131	Total Manganese (Mn)	2008/09/06					<0.00005	mg/L	1.8	25
2550131	Total Molybdenum (Mo)	2008/09/06					<0.00005	mg/L	0.1	25
2550131	Total Silicon (Si)	2008/09/06					<0.1	mg/L	7.4	25
2550131	Total Silver (Ag)	2008/09/06					<0.000005	mg/L	2.3	25
2550131	Total Strontium (Sr)	2008/09/06					<0.00005	mg/L	0.1	25
2550131	Total Thallium (TI)	2008/09/06					<0.000002	mg/L	6.9	25
2550131	Total Tin (Sn)	2008/09/06					<0.00001	mg/L	2.1	25

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

QUALITY ASSURANCE REPORT

			Matrix Spike		Spike		Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2550131	Total Titanium (Ti)	2008/09/06					<0.0005	mg/L	4.6	25
2550131	Total Zirconium (Zr)	2008/09/06					<0.0001	mg/L	0.9	25
2551411	Dissolved Organic Carbon (C)	2008/09/05	100	80 - 120	104	80 - 120	<0.5	mg/L	NC	20
2551507	Total Dissolved Solids	2008/09/04	NC	80 - 120	110	80 - 120	<10	mg/L	0.7	25
2551942	Fluoride (F)	2008/09/04	96	80 - 120	94	80 - 120	<0.01	mg/L	0	25
2556124	Total Calcium (Ca)	2008/09/06					<0.05	mg/L	2.4	25
2556124	Total Magnesium (Mg)	2008/09/06					<0.05	mg/L	1.7	25
2556124	Total Potassium (K)	2008/09/06					<0.05	mg/L	1.7	25
2556124	Total Sodium (Na)	2008/09/06					<0.05	mg/L	1.5	25
2556124	Total Sulphur (S)	2008/09/06					<3	mg/L	NC	25
2557567	Total Arsenic (As)	2008/09/09	109	75 - 125	98	75 - 125	<0.00002	mg/L	1.6	25
2557567	Total Beryllium (Be)	2008/09/09	95	75 - 125	100	75 - 125	<0.0001	mg/L	NC	25
2557567	Total Cadmium (Cd)	2008/09/09	100	75 - 125	98	75 - 125	<0.00005	mg/L	NC	25
2557567	Total Chromium (Cr)	2008/09/09	104	75 - 125	100	75 - 125	<0.0001	mg/L	NC	25
2557567	Total Cobalt (Co)	2008/09/09	100	75 - 125	101	75 - 125	<0.000005	mg/L	2.7	25
2557567	Total Copper (Cu)	2008/09/09	96	75 - 125	105	75 - 125	<0.00005	mg/L	9.7	25
2557567	Total Lead (Pb)	2008/09/09	91	75 - 125	104	75 - 125	<0.00005	mg/L	0.1	25
2557567	Total Lithium (Li)	2008/09/09	NC	75 - 125	98	75 - 125	<0.0005	mg/L	0.8	25
2557567	Total Nickel (Ni)	2008/09/09	97	75 - 125	103	75 - 125	<0.00002	mg/L	12.2	25
2557567	Total Selenium (Se)	2008/09/09	115	75 - 125	100	75 - 125	<0.0004	mg/L	0.5	25
2557567	Total Uranium (U)	2008/09/09	NC	75 - 125	101	75 - 125	<0.000002	mg/L	2.2	25
2557567	Total Vanadium (V)	2008/09/09	107	75 - 125	97	75 - 125	<0.0002	mg/L	NC	25
2557567	Total Zinc (Zn)	2008/09/09	100	75 - 125	102	75 - 125	<0.0001	mg/L	8.0	25
2557567	Total Aluminum (AI)	2008/09/09					<0.0002	mg/L	5.0	25
2557567	Total Antimony (Sb)	2008/09/09					<0.00002	mg/L	0.7	25
2557567	Total Barium (Ba)	2008/09/09					<0.00002	mg/L	2.3	25
2557567	Total Bismuth (Bi)	2008/09/09					<0.00005	mg/L	NC	25
2557567	Total Boron (B)	2008/09/09					<0.05	mg/L	NC	25
2557567	Total Iron (Fe)	2008/09/09					<0.001	mg/L	1.2	25
2557567	Total Manganese (Mn)	2008/09/09					<0.00005	mg/L	2.1	25
2557567	Total Molybdenum (Mo)	2008/09/09					<0.00005	mg/L	2.3	25
2557567	Total Silicon (Si)	2008/09/09					<0.1	mg/L	0.8	25
2557567	Total Silver (Ag)	2008/09/09					<0.00005	mg/L	NC	25
2557567	Total Strontium (Sr)	2008/09/09					<0.00005	mg/L	2.2	25
2557567	Total Thallium (TI)	2008/09/09					<0.00002	mg/L	NC	25
2557567	Total Tin (Sn)	2008/09/09					<0.00001	mg/L	NC	25
2557567	Total Titanium (Ti)	2008/09/09					<0.0005	mg/L	NC	25
2557567	Total Zirconium (Zr)	2008/09/09					<0.0001	mg/L	NC	25
2559239	Weak Acid Dissoc. Cyanide (CN)	2008/09/08	101	80 - 120	105	80 - 120	<0.0005	mg/L	NC	20
2559448	Total Calcium (Ca)	2008/09/09					<0.05	mg/L	0.7	25

MINNOW ENVIRONMENTAL Client Project #: MINNOW #2254

Sampler Initials: CR

			Matrix S	Spike	Spik	ке	Blank		RF	D.
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2559448	Total Magnesium (Mg)	2008/09/09					<0.05	mg/L	2.3	25
2559448	Total Potassium (K)	2008/09/09					<0.05	mg/L	1.1	25
2559448	Total Sodium (Na)	2008/09/09					<0.05	mg/L	2.5	25
2559448	Total Sulphur (S)	2008/09/09					<3	mg/L	0.3	25

Validation Signature Page

Maxxam Job #: A844730		

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

ELAINE COUSINS, CS Manager

Mayyam has precedures in place to guard against improper use of the electronic signature and have the

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

/;	8577 Commerce Court	1	. Ph	ione: (604) 444-4808	3		CHA	IN-O	F-C	USTO	DY R	ECOF	RD A	ND A	NAL	YSIS	REQU	IEST		PA	AGE_		OF
Maxxam	8577 Commerce Court Burnaby, BC V5A 4N5 www.maxxamanalytics.	.com		Fax: (604) 444-4511 1-800-440-480			48	au.	72C	a,		12	AN	IALY	SIS F	REQL	JEST	E	1	1 (14!	54	ēl .
COMPANY NAME:		PH. #:	GAF	र द	73- 222	71 7	23	海南省			U			4			****	**************************************		大田子の	* * *	* * * *	* # # # # # # # # # # # # # # # # # # #	***
MINNOW ENVI	ranmental	E-mail: p	OTT	ami	nnow-env 3-6370	ironme	ental·c	arvi	32. An . An . A	all the said	(4:1						111			****		7 7 2 7	****	
COMPANY ADDRESS:	· OIIII karay	CLIENT PF	OJECT	ID: (#)	2 4.2		ŝ	1		L'A			M.	Λ										(0
2 Lamb St	A. I				254		18			ΝĹ	B		Z	3								5		
George town,	ON	Maxx	arr	(Q)	Jole BØ8	-Ø65	·FC	9		歌いる	3	B	03	Short									1	
2 Lamb St George town, L76 3M9 SAMPLER NAME (PRINT):	***	PROJECT			100-100 STREET CAN RESERVE			<u> </u>		\$F	Dissolver	Tota	2	7		=				200			1	
CR. MB	888	Pat		<u>O</u> n	<i>r</i>			#	6 1	خ	-		7	9	100			22						
CK NVD			RIX			MPLING		4	Syanide	chem	5	7	9	4	1									
FIELD	MAXXAM	٥ ٣			W.	1	8.		豆			न्ये		ΉE	^								Ì	
SAMPLE ID	LAG A (Lets Use Only)	GROUND WATER SURFACE WATER	SOIL	OTHER	DATE	TIME	HEADSPACE VAPOUR	ŏ	, 7	Gen	Metul	Meta	N K	B	N									
8		8 2 8 2		*	DD/MM/YY		∄≥	0	U	Q	U	ξ	Z	Η,	ט				4					
¹ FC		X	024000	9	Aug22	10		V	4	1	V	1	V	10	1,	340	Jin .			. Ko				
2 BLC		X			Υ	3pm		V	1	V	1	V	VI	1	1	-				10.			S	
3 BLC-Z		X				3pm		V	1	1	1	-	V	1	1		8							
4 STC		X	683000		Aus 23	llam		V		V	V	V	Vi	1	1							8		T-4708D-12
5 HOC		X			, y	120m		V	V	V	1	1	Vi	10	1					II.				
6 BEC		X				3pm		1	N	V)	1	1	1	/									
7 GRC		X			V	4pm		V		V	V	V	V	V		/(a)\						(40) (B404)	LESHANOPS ST	
· Buc		X		63	Aus 29	35m		V	V	V	/	V		1	/	949 HIDS								
· BUCZ		X.			Y	30m	6) #	1	V	V	V	V	VI	1		1(4))	10-30	135 161		230				
10 BTT		X	88	V	W-	llam		V	U	V	1	V	V	V		010					V.		6)	
11							3.															70		
12																								N
TAT (Turnaround Time)	P.O. NUMBER / QUOTE NUMBE	R:	SF	PECIAL I	DETECTION LIMIT	S / CONTAN	TNANT	TYPE:			CCME							JE DATE		***		OG IN		
<5 DAY TAT MUST HAVE PRIOR APPROVAL	Minnow # 225	» Ч	1	Fn	NDL'>	cm	E					TA TIEF	1 1				C. DC	IC DAIC	••	ij.		JG IN	OFIEC	/N.
*some exceptions apply please contact lab	Minnow # 225 Mayxann Quote Number Accounting contact:	18-465	-FC	ECIAL I	REPORTING OR B	ILLING INST	TRUCTIO	NS.		100	OTHE				7,0						r			24
	O IV A		K	2	amples.	in 2	C_{Ω}		rS				10	111	0(1	0								
RUSH 3 BUSINESS DAYS C	Path Orr				ampic.	1112	. U																	at s
URGENT 1 BUSINESS DAY	RELINQUISHED BY SAMPLER:	ssol			DATE		2	TIME	Ē.	ar so		F	RECEIV	ED BY	<i>f</i> :		-1-		e e	56 M 5	8 8-65	9		-
	RELINQUISHED BY:				DATE DD/MI	e •	11 -920	TIME	€	- 6		F	RECEIV	ED BY	r:		Wan iz	=X==30		1			Hi .	
CUSTODY RECORD	RELINQUISHED BY:	1959 <u>9</u>			THE PARTY NAMED OF THE PARTY NAM		pelus	> TIME	≣:)!	(:4	77	I	RECEIV	ED BY	LABO	ORATO	PRY:	A .	M	61_				
	COCFORM - BC - 06/06			54/2	DOM	Page 11 c	of 44 To			, <u>v</u>				OR	IGINAL	- MAX	XAM	_		W - M	AXXAN	A	PI	NK - CLIENT

Your Project #: 2254 Your C.O.C. #: F110464

Attention: Patti Orr
MINNOW ENVIRONMENTAL
2 Lamb Street
Georgetown, ON
CANADA L7G 3M9

Report Date: 2008/09/11

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A843579 Received: 2008/08/25, 09:40

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Elements by ICPMS (total)	3	2008/08/29	2008/08/29	BRN SOP-00203	Based on EPA 200.8
Elements by ICPMS (total)	3	2008/09/02	2008/08/29	BRN SOP-00203	Based on EPA 200.8
Ammonia-N (Available) 8	3	2008/08/29	2008/08/29	BRN SOP-00239	Carter, SSMA 4.2
pH (2:1 DI Water Extract) 8	3	2008/08/27	2008/08/28	BRN SOP-00266 R1.0	Carter, SSMA 16.2
Available Phosphate	3	2008/08/28	2008/08/29	BRN SOP-00235 R3.0	Carter, SSMA 4.2
Sublet (Inorganics)	3	N/A	2008/09/11		
Total Kjeldahl Nitrogen - Soil (13)	3	2008/08/29	2008/08/29	CAL SOP-00072	SM - 4500N
TOC Soil Subcontract @	3	2008/09/03	2008/09/03	i	

Sample Matrix: Water # Samples Received: 6

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	6	2008/08/27	2008/08/28 BRN SOP-00264 R2.0	Based on SM2320B
Chloride by Automated Colourimetry	6	N/A	2008/08/30 BRN-SOP 00234 R1.0	Based on EPA 325.2
Cyanide WAD (weak acid dissociable)	6	N/A	2008/08/28 BRN SOP-00227 R1.0	Based on SM-4500CN I
Carbon (DOC)	6	N/A	2008/08/29 BRN SOP-00224 R3.0	Based on SM-5310C
Fluoride - Mining Clients	6	N/A	2008/08/28 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness Total (calculated as CaCO3)	6	N/A	2008/09/02	
Hardness (calculated as CaCO3)	6	N/A	2008/08/30	
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	6	N/A	2008/08/29 BRN SOP-00206	Based on EPA 200.8
Elements by ICPMS Low Level (dissolved) 9	6	N/A	2008/08/29 BRN SOP-00206	Based on EPA 200.8
Elements by ICPMS Low Level (total) §	6	2008/08/28	2008/08/30 BRN SOP-00206	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total)	6	2008/08/28	2008/08/30 BRN SOP-00206	Based on EPA 200.8
Nitrogen (Total)	6	2008/08/28	2008/08/28 BRN SOP-00242 R2.0	Based on SM-4500N C
Ammonia-N	6	N/A	2008/08/28 BRN SOP-00232 R3.0	SM-4500 NH3 G
Nitrate + Nitrite (N)	6	N/A	2008/08/27 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) by CFA	6	N/A	2008/08/27 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	6	N/A	2008/08/28	
Filter and HNO3 Preserve for Metals	6	N/A	2008/08/29 BRN WI-00006 R1.0	Based on EPA 200.2
Sulphate by Automated Colourimetry	6	N/A	2008/08/30 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	6	N/A	2008/08/28 ING443 Rev.5.1	APHA 2540C
TKN (Calc. TN, N/N) total	6	N/A	2008/08/29	
Total Phosphorus	6	N/A	2008/08/28 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids	6	N/A	2008/08/28 BRN SOP-00277 R2.0	Based on SM-2540 D

^{*} Results relate only to the items tested.

- (1) This test was performed by Maxxam Calgary
- (2) This test was performed by Maxxam Bedford(From Burnaby)
- (3) SCC/CAEAL

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELAINE COUSINS, CS Manager Email: elaine.cousins@maxxamanalytics.com Phone# (604) 444-4808 Ext:276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		L30811			L30813		L30815		
Sampling Date		2008/08/20			2008/08/21		2008/08/21		
COC#		F110464			F110464		F110464		
	Units	R2 BULK SCREEN (<2.00 MM)	RDL	QC Batch	X2 BULK SCREEN (<2.00 MM)	RDL	R7 BULK SCREEN (<2.00 MM)	RDL	QC Batch
Misc. Inorganics									
Total Kjeldahl Nitrogen	mg/kg	36	3	2541840	1500	30	150	3	2541840
Parameter									
Subcontract Parameter	N/A	ATTACHED	N/A	2548580	ATTACHED	N/A	ATTACHED	N/A	2569693
Nutrients									
Available (KCI) Ammonia (N)	mg/kg	4.6	0.5	2540729	18	0.5	13	0.5	2540729
Available (KCI) Orthophosphate (P)	ug/g	<50	50	2538422	<50	50	<50	50	2538422

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL

Sampler Initials: CR

Client Project #: 2254

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		L30810		L30812	L30814	L30816	L30817	L30818		
Sampling Date		2008/08/20		2008/08/19	2008/08/21	2008/08/20	2008/08/19	2008/08/19		
COC#		F110464		F110464	F110464	F110464	F110464	F110464		
	Units	R2	RDL	X2	R7	NXT	USFR	VR	RDL	QC Batch
Misc. Inorganics										
Fluoride (F)	mg/L	0.10	0.01	0.09	0.09	0.07	0.06	0.06	0.01	2537900
Preparation										
Filter and HNO3 Preservation	N/A	FIELD	N/A	FIELD	FIELD	FIELD	FIELD	FIELD	N/A	ONSITE
ANIONS										
Nitrite (N)	mg/L	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	2535291
Calculated Parameters										
Nitrate (N)	mg/L	0.04	0.02	0.02	<0.02	<0.02	<0.02	<0.02	0.02	2535234
Misc. Inorganics										
Weak Acid Dissoc. Cyanide (CN)	mg/L	<0.0005	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0005	2538675
Dissolved Organic Carbon (C)	mg/L	4.3	0.5	4.6	3.7	3.7	3.7	4.2	0.5	2537548
Alkalinity (Total as CaCO3)	mg/L	97	0.5	76	78	48	17	25	0.5	2534959
Alkalinity (PP as CaCO3)	mg/L	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2534959
Bicarbonate (HCO3)	mg/L	120	0.5	93	96	58	20	31	0.5	2534959
Carbonate (CO3)	mg/L	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.5	2534959
Hydroxide (OH)	mg/L	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2534959
Anions										
Dissolved Sulphate (SO4)	mg/L	66	5	9.7	6.6	2.8	4.4	4.6	0.5	2543065
Dissolved Chloride (CI)	mg/L	0.7	0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.5	2543062
Nutrients										
Ammonia (N)	mg/L	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2537503
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.20	0.02	0.13	0.07	0.06	0.07	0.11	0.02	2534464
Nitrate plus Nitrite (N)	mg/L	0.04	0.02	0.02	<0.02	<0.02	<0.02	<0.02	0.02	2535290
Total Nitrogen (N)	mg/L	0.23	0.02	0.15	0.07	0.06	0.07	0.11	0.02	2539768
Total Phosphorus (P)	mg/L	0.019	0.005	0.017	0.025	0.011	0.018	0.013	0.005	2534791
Physical Properties										
Total Suspended Solids	mg/L	<1	1	5	<1	<1	<1	<1	1	2537716
Total Dissolved Solids	mg/L	240	10	110	98	68	50	60	10	2538051

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

CSR/CCME METALS - SOIL (SOIL)

Maxxam ID		L30811	L30813	L30815	L39109	L39110	L39111		
Sampling Date		2008/08/20	2008/08/21	2008/08/21	2008/08/19	2008/08/19	2008/08/19		
COC#		F110464	F110464	F110464	F110464	F110464	F110464		
	Units	R2 BULK SCREEN (<2.00 MM)		R7 BULK SCREEN	R2 FINE SCREEN	X2 FINE SCREEN	R7 FINE SCREEN	RDL	QC Batch
			(<2.00 MM)	(<2.00 MM)	(<0.15MM)	(<0.15MM)	(<0.15MM)		
Misc. Inorganics				1		1			
Soluble (2:1) pH	pH Units	7.64	7.52	6.96				0.01	2536478
Total Metals by ICPMS									
Total Aluminum (AI)	mg/kg	8150	13600	9180	18000	13400	10400	100	2540042
Total Antimony (Sb)	mg/kg	0.8	1.3	0.6	2.0	1.3	0.6	0.1	2540042
Total Arsenic (As)	mg/kg	9.0	20.7	10.1	20.2	21.6	8.6	0.2	2540042
Total Barium (Ba)	mg/kg	107	211	125	404	258	192	0.1	2540042
Total Beryllium (Be)	mg/kg	0.2	0.7	0.2	0.8	0.7	0.4	0.1	2540042
Total Bismuth (Bi)	mg/kg	0.1	0.8	0.2	0.4	0.8	0.2	0.1	2540042
Total Cadmium (Cd)	mg/kg	0.24	0.85	0.17	0.86	0.97	0.23	0.05	2540042
Total Chromium (Cr)	mg/kg	20	32	17	53	31	19	1	2540042
Total Cobalt (Co)	mg/kg	10.9	15.4	7.1	29.4	14.6	8.0	0.3	2540042
Total Copper (Cu)	mg/kg	15.2	36.5	9.0	45.0	36.9	13.0	0.5	2540042
Total Iron (Fe)	mg/kg	19200	34600	22100	43400	32000	22400	100	2540042
Total Lead (Pb)	mg/kg	42.8	273	16.6	134	286	12.7	0.1	2540042
Total Magnesium (Mg)	mg/kg	4810	5970	3790	10300	5500	3690	100	2540042
Total Manganese (Mn)	mg/kg	2200	1340	393	9620	1600	576	0.2	2540042
Total Mercury (Hg)	mg/kg	<0.05	0.20	< 0.05	0.07	0.21	< 0.05	0.05	2540042
Total Molybdenum (Mo)	mg/kg	1.0	1.2	0.8	2.7	1.3	0.8	0.1	2540042
Total Nickel (Ni)	mg/kg	23.7	36.3	16.0	63.5	36.9	17.9	0.8	2540042
Total Phosphorus (P)	mg/kg	556	774	549	793	827	741	10	2540042
Total Potassium (K)	mg/kg	740	1750	1040	1640	1660	1360	100	2540042
Total Selenium (Se)	mg/kg	0.5	0.8	<0.5	<0.5	<0.5	0.5	0.5	2540042
Total Silver (Ag)	mg/kg	0.09	0.56	0.07	0.28	0.66	0.10	0.05	2540042
Total Sodium (Na)	mg/kg	106	183	101	329	200	148	100	2540042
Total Strontium (Sr)	mg/kg	25.2	31.9	20.4	57.8	34.6	29.2	0.1	2540042
Total Thallium (TI)	mg/kg	0.11	0.31	0.09	0.34	0.27	0.15	0.05	2540042
Total Tin (Sn)	mg/kg	0.3	1.0	0.5	3.8	1.0	0.7	0.1	2540042
Total Titanium (Ti)	mg/kg	149	442	302	361	390	396	1	2540042
Total Vanadium (V)	mg/kg	18	35	21	39	34	24	2	2540042
Total Zinc (Zn)	mg/kg	175	456	57	546	491	63	1	2540042
Total Zirconium (Zr)	mg/kg	0.9	1.1	0.9	2.0	1.0	0.9	0.5	2540042

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

LOW LEVEL DISSOLVED METALS - WATER (WATER)

Maxxam ID		L30810	L30812	L30814	L30816	L30817	L30818		
Sampling Date		2008/08/20	2008/08/19	2008/08/21	2008/08/20	2008/08/19	2008/08/19		
COC#		F110464	F110464	F110464	F110464	F110464	F110464		
	Units	R2	X2	R7	NXT	USFR	VR	RDL	QC Batch
Misc. Inorganics									
Dissolved Hardness (CaCO3)	mg/L	166	80.0	81.0	46.4	21.3	26.3	0.5	2534171
Dissolved Metals by ICPMS									
Dissolved Aluminum (Al)	mg/L	0.0148	0.0126	0.0172	0.0225	0.0208	0.0288	0.0002	2539539
Dissolved Antimony (Sb)	mg/L	0.00011(1)	0.00007	0.00008	0.00003	0.00004	0.00003	0.00002	2539539
Dissolved Arsenic (As)	mg/L	0.00046	0.00051	0.00062	0.00013	0.00028	0.00023	0.00002	2539539
Dissolved Barium (Ba)	mg/L	0.0502	0.0424	0.0470	0.0263	0.0242	0.0257	0.00002	2539539
Dissolved Beryllium (Be)	mg/L	<0.00001	<0.00001	<0.00001	< 0.00001	0.00002	0.00003	0.00001	2539539
Dissolved Bismuth (Bi)	mg/L	<0.00005	<0.00005	<0.000005	<0.00005	<0.00005	< 0.000005	0.000005	2539539
Dissolved Boron (B)	mg/L	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	0.05	2539539
Dissolved Cadmium (Cd)	mg/L	0.000040(1)	0.000016	0.000013	0.000016	0.000007	0.000013	0.000005	2539539
Dissolved Chromium (Cr)	mg/L	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	2539539
Dissolved Cobalt (Co)	mg/L	0.000770	0.000059	0.000049(1)	0.000017	0.000020	0.000020	0.000005	2539539
Dissolved Copper (Cu)	mg/L	0.00109(1)	0.00078	0.00075	0.00070	0.00052	0.00073	0.00005	2539539
Dissolved Iron (Fe)	mg/L	0.183	0.102	0.119	0.010	0.085	0.019	0.001	2539539
Dissolved Lead (Pb)	mg/L	0.000638(1)	0.000332	0.000873(1)	0.000120(1)	0.000161(1)	0.000106(1)	0.000005	2539539
Dissolved Lithium (Li)	mg/L	0.0053	0.0029	0.0028	0.0019	0.0008	<0.0005	0.0005	2539539
Dissolved Manganese (Mn)	mg/L	0.699	0.0307	0.0163	0.00034	0.00326	0.00064	0.00005	2539539
Dissolved Molybdenum (Mo)	mg/L	0.00056	0.00044	0.00049	0.00021	0.00022	0.00011	0.00005	2539539
Dissolved Nickel (Ni)	mg/L	0.00209	0.00071	0.00036	0.00025	0.00028	0.00028(1)	0.00002	2539539
Dissolved Selenium (Se)	mg/L	0.00026(1)	0.00023	0.00025	0.00009	0.00006	0.00005	0.00004	2539539
Dissolved Silicon (Si)	mg/L	4.5	4.9	4.6	5.9	3.6	4.9	0.1	2539539
Dissolved Silver (Ag)	mg/L	<0.00005	<0.000005	<0.00005	<0.00005	< 0.000005	<0.00005	0.000005	2539539
Dissolved Strontium (Sr)	mg/L	0.193	0.0992	0.0973	0.0634	0.0421	0.0440	0.00005	2539539
Dissolved Thallium (TI)	mg/L	0.000027	0.000004	0.000002	0.000003	0.000003	0.000004	0.000002	2539539
Dissolved Tin (Sn)	mg/L	0.00002	<0.00001	<0.00001	<0.00001	0.00002	<0.00001	0.00001	2539539
Dissolved Titanium (Ti)	mg/L	<0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	0.0005	2539539
Dissolved Uranium (U)	mg/L	0.00142	0.000873	0.000931	0.000389	0.000364	0.000378	0.000002	2539539
Dissolved Vanadium (V)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0002	2539539
Dissolved Zinc (Zn)	mg/L	0.0315	0.0345	0.0043(1)	0.0010	0.0017(1)	0.0018(1)	0.0001	2539539
Dissolved Zirconium (Zr)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	0.0002	0.0001	2539539
Dissolved Calcium (Ca)	mg/L	49.3	23.5	24.5	14.7	6.81	8.15	0.05	2540978
Dissolved Magnesium (Mg)	mg/L	10.3	5.16	4.81	2.34	1.04	1.44	0.05	2540978
Dissolved Potassium (K)	mg/L	1.18	0.54	0.51	0.46	0.26	0.29	0.05	2540978
Dissolved Sodium (Na)	mg/L	3.71	1.90	1.88	1.86	1.34	1.41	0.05	2540978

RDL = Reportable Detection Limit

^{(1) -} dissolved > total Metals, reanalyzed & confirmed. Possible trace level of field-filtered contamination on dissolved metal bottle or there is a discrepancy between samples taken.

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

LOW LEVEL DISSOLVED METALS - WATER (WATER)

Maxxam ID		L30810	L30812	L30814	L30816	L30817	L30818		
Sampling Date		2008/08/20	2008/08/19	2008/08/21	2008/08/20	2008/08/19	2008/08/19		
COC#		F110464	F110464	F110464	F110464	F110464	F110464		
	Units	R2	X2	R7	NXT	USFR	VR	RDL	QC Batch
Dissolved Sulphur (S)	mg/L	29	4	<3	<3	<3	<3	3	2540978

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

LOW LEVEL TOTAL METALS - WATER (WATER)

Maxxam ID		L30810	L30812	L30814	L30816	L30817	L30818		
Sampling Date		2008/08/20	2008/08/19	2008/08/21	2008/08/20	2008/08/19	2008/08/19		
COC#		F110464	F110464	F110464	F110464	F110464	F110464		
333	Units	R2	X2	R7	NXT	USFR	VR	RDL	QC Batch
Calculated Parameters		,			,				, -,
Total Hardness (CaCO3)	mg/L	166	80.2	80.1	45.2	21.5	26.6	0.5	2534459
Total Metals by ICPMS	<u> </u>	•	•		•		•		•
Total Aluminum (AI)	mg/L	0.0143	0.0246	0.0187	0.0283	0.0295	0.0337	0.0002	2539686
Total Antimony (Sb)	mg/L	0.00009	0.00008	0.00008	0.00002	0.00004	0.00003	0.00002	2539686
Total Arsenic (As)	mg/L	0.00047	0.00056	0.00064	0.00012	0.00030	0.00023	0.00002	2539686
Total Barium (Ba)	mg/L	0.0467	0.0428	0.0477	0.0253	0.0244	0.0262	0.00002	2539686
Total Beryllium (Be)	mg/L	<0.00001	<0.00001	<0.00001	0.00001	0.00001	0.00002	0.00001	2539686
Total Bismuth (Bi)	mg/L	<0.000005	<0.000005	<0.000005	<0.000005	<0.000005	< 0.000005	0.000005	2539686
Total Boron (B)	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2539686
Total Cadmium (Cd)	mg/L	0.000023	0.000018	0.000010	0.000018	0.000009	0.000013	0.000005	2539686
Total Chromium (Cr)	mg/L	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	0.0001	2539686
Total Cobalt (Co)	mg/L	0.000820	0.000085	0.000038	0.000016	0.000030	0.000023	0.000005	2539686
Total Copper (Cu)	mg/L	0.00089	0.00079	0.00175	0.00072	0.00058	0.00070	0.00005	2539686
Total Iron (Fe)	mg/L	0.243	0.153	0.152	0.015	0.119	0.021	0.001	2539686
Total Lead (Pb)	mg/L	0.000311	0.000767	0.000312	0.000052	0.000108	0.000051	0.000005	2539686
Total Lithium (Li)	mg/L	0.0051	0.0030	0.0030	0.0020	0.0008	< 0.0005	0.0005	2539686
Total Manganese (Mn)	mg/L	0.717	0.0359	0.0166	0.00039	0.00728	0.00077	0.00005	2539686
Total Molybdenum (Mo)	mg/L	0.00051	0.00044	0.00050	0.00021	0.00022	0.00011	0.00005	2539686
Total Nickel (Ni)	mg/L	0.00217	0.00075	0.00039	0.00031	0.00033	0.00020	0.00002	2539686
Total Selenium (Se)	mg/L	0.00021	0.00022	0.00024	0.00011	0.00005	0.00005	0.00004	2539686
Total Silicon (Si)	mg/L	4.8	5.8	5.6	7.7	4.1	5.7	0.1	2539686
Total Silver (Ag)	mg/L	<0.000005	<0.000005	<0.000005	<0.000005	<0.00005	<0.00005	0.000005	2539686
Total Strontium (Sr)	mg/L	0.184	0.100	0.0977	0.0642	0.0422	0.0458	0.00005	2539686
Total Thallium (TI)	mg/L	0.000025	0.000004	<0.000002	<0.000002	<0.000002	0.000003	0.000002	2539686
Total Tin (Sn)	mg/L	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	2539686
Total Titanium (Ti)	mg/L	<0.0005	0.0006	<0.0005	<0.0005	0.0015	<0.0005	0.0005	2539686
Total Uranium (U)	mg/L	0.00134	0.000881	0.000962	0.000396	0.000388	0.000397	0.000002	2539686
Total Vanadium (V)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	0.0002	2539686
Total Zinc (Zn)	mg/L	0.0278	0.0360	0.0016	0.0013	0.0013	0.0007	0.0001	2539686
Total Zirconium (Zr)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	0.0001	2539686
Total Calcium (Ca)	mg/L	48.7	23.3	23.9	14.2	6.81	8.15	0.05	2543331
Total Magnesium (Mg)	mg/L	10.9	5.37	5.00	2.34	1.10	1.52	0.05	2543331
Total Potassium (K)	mg/L	1.16	0.53	0.50	0.45	0.23	0.29	0.05	2543331
Total Sodium (Na)	mg/L	3.98	2.03	2.04	1.98	1.49	1.52	0.05	2543331
Total Sulphur (S)	mg/L	28	4	<3	<3	<3	<3	3	2543331

MINNOW ENVIRONMENTAL

Client Project #: 2254

Sampler Initials: CR

			Matrix S	Spike	Spil	re	Blank		RF	PD	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2534791	Total Phosphorus (P)	2008/08/28	88	80 - 120	118	80 - 120	<0.005	mg/L	1.9	25		
2534959	Alkalinity (Total as CaCO3)	2008/08/28	NC	80 - 120	92	80 - 120	<0.5	mg/L	2.4	25		
2534959	Alkalinity (PP as CaCO3)	2008/08/28					<0.5	mg/L	NC	25		
2534959	Bicarbonate (HCO3)	2008/08/28					<0.5	mg/L	2.4	25		
2534959	Carbonate (CO3)	2008/08/28					<0.5	mg/L	NC	25		
2534959	Hydroxide (OH)	2008/08/28					<0.5	mg/L	NC	25		
2535290	Nitrate plus Nitrite (N)	2008/08/27	99	80 - 120	101	80 - 120	<0.02	mg/L	NC	25		
2535291	Nitrite (N)	2008/08/27	100	80 - 120	102	80 - 120	<0.005	mg/L	NC	25		
2536478	Soluble (2:1) pH	2008/08/28			100	N/A			0.3	20		
2537503	Ammonia (N)	2008/08/28	85	80 - 120	103	80 - 120	<0.01	mg/L	4.9	25		
2537548	Dissolved Organic Carbon (C)	2008/08/29	103	80 - 120	118	80 - 120	<0.5	mg/L	0.8	20		
2537716	Total Suspended Solids	2008/08/28			95	N/A	<1	mg/L				
2537900	Fluoride (F)	2008/08/28	98	80 - 120	98	80 - 120	<0.01	mg/L	0	25		
2538051	Total Dissolved Solids	2008/08/28	96	80 - 120	118	80 - 120	<10	mg/L	1.7	25		
2538422	Available (KCI) Orthophosphate (P)	2008/08/29	98	75 - 125	102	75 - 125	<0.5	ug/g	NC	25		
2538675	Weak Acid Dissoc. Cyanide (CN)	2008/08/27			93	80 - 120	<0.0005	mg/L	NC	20		
2539539	Dissolved Arsenic (As)	2008/08/29	99	75 - 125	97	75 - 125	<0.00002	mg/L	2.5	25		
2539539	Dissolved Beryllium (Be)	2008/08/29	104	75 - 125	102	75 - 125	<0.00001	mg/L	NC	25		
2539539	Dissolved Cadmium (Cd)	2008/08/29	102	75 - 125	98	75 - 125	<0.00005	mg/L	10.4	25		
2539539	Dissolved Chromium (Cr)	2008/08/29	99	75 - 125	99	75 - 125	<0.0001	mg/L	NC	25		
2539539	Dissolved Cobalt (Co)	2008/08/29	94	75 - 125	96	75 - 125	<0.00005	mg/L	3.6	25		
2539539	Dissolved Copper (Cu)	2008/08/29	95	75 - 125	103	75 - 125	<0.00005	mg/L	9.7	25		
2539539	Dissolved Lead (Pb)	2008/08/29	98	75 - 125	105	75 - 125	0.000007, RDL=0.000005	mg/L	0.03	25		
2539539	Dissolved Lithium (Li)	2008/08/29	NC	75 - 125	107	75 - 125	<0.0005	mg/L	0.09	25		
2539539	Dissolved Nickel (Ni)	2008/08/29	96	75 - 125	102	75 - 125	<0.00002	mg/L	4.8	25		
2539539	Dissolved Selenium (Se)	2008/08/29	107	75 - 125	104	75 - 125	<0.0004	mg/L	4.3	25		
2539539	Dissolved Uranium (U)	2008/08/29	101	75 - 125	105	75 - 125	<0.000002	mg/L	2.8	25		
2539539	Dissolved Vanadium (V)	2008/08/29	99	75 - 125	96	75 - 125	<0.0002	mg/L	NC	25		
2539539	Dissolved Zinc (Zn)	2008/08/29	NC	75 - 125	108	75 - 125	<0.0001	mg/L	4.1	25		
2539539	Dissolved Aluminum (AI)	2008/08/29					<0.0002	mg/L	11.0	25		
2539539	Dissolved Antimony (Sb)	2008/08/29					<0.00002	mg/L	2.8	25		
2539539	Dissolved Barium (Ba)	2008/08/29					<0.00002	mg/L	4.0	25		
2539539	Dissolved Bismuth (Bi)	2008/08/29					<0.00005	mg/L	NC	25		
2539539	Dissolved Boron (B)	2008/08/29					<0.05	mg/L	NC	25		
2539539	Dissolved Iron (Fe)	2008/08/29					<0.001	mg/L	1.4	25		
2539539	Dissolved Manganese (Mn)	2008/08/29					<0.00005	mg/L	4.6	25		
2539539	Dissolved Molybdenum (Mo)	2008/08/29					<0.0005	mg/L	4.9	25		
2539539	Dissolved Silicon (Si)	2008/08/29					<0.1	mg/L	0.1	25		
2539539	Dissolved Silver (Ag)	2008/08/29					<0.00005	mg/L	NC	25		
2539539	Dissolved Strontium (Sr)	2008/08/29					<0.00005	mg/L	3.7	25		

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

			Matrix S	Spike	Spil	(e	Blank		RF	D D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2539539	Dissolved Thallium (TI)	2008/08/29					<0.000002	mg/L	7.2	25		
2539539	Dissolved Tin (Sn)	2008/08/29					<0.00001	mg/L	NC	25		
2539539	Dissolved Titanium (Ti)	2008/08/29					<0.0005	mg/L	NC	25		
2539539	Dissolved Zirconium (Zr)	2008/08/29					<0.0001	mg/L	NC	25		
2539686	Total Arsenic (As)	2008/08/30	100	75 - 125	93	75 - 125	<0.00002	mg/L	5.9	25		
2539686	Total Beryllium (Be)	2008/08/30	103	75 - 125	98	75 - 125	<0.00001	mg/L	NC	25		
2539686	Total Cadmium (Cd)	2008/08/30	101	75 - 125	97	75 - 125	<0.00005	mg/L	NC	25		
2539686	Total Chromium (Cr)	2008/08/30	102	75 - 125	94	75 - 125	<0.0001	mg/L	NC	25		
2539686	Total Cobalt (Co)	2008/08/30	100	75 - 125	95	75 - 125	<0.00005	mg/L	4.6	25		
2539686	Total Copper (Cu)	2008/08/30	99	75 - 125	99	75 - 125	<0.00005	mg/L	8.2	25		
2539686	Total Lead (Pb)	2008/08/30	100	75 - 125	102	75 - 125	<0.000005	mg/L	23.7	25		
2539686	Total Lithium (Li)	2008/08/30	106	75 - 125	99	75 - 125	<0.0005	mg/L	NC	25		
2539686	Total Nickel (Ni)	2008/08/30	100	75 - 125	95	75 - 125	<0.00002	mg/L	6.0	25		
2539686	Total Selenium (Se)	2008/08/30	100	75 - 125	95	75 - 125	<0.0004	mg/L	NC	25		
2539686	Total Uranium (U)	2008/08/30	106	75 - 125	102	75 - 125	0.000002, RDL=0.000002	mg/L	9.1	25		
2539686	Total Vanadium (V)	2008/08/30	102	75 - 125	92	75 - 125	<0.0002	mg/L	NC	25		
2539686	Total Zinc (Zn)	2008/08/30	100	75 - 125	102	75 - 125	<0.0001	mg/L	2.8	25		
2539686	Total Aluminum (Al)	2008/08/30					<0.0002	mg/L	0.5	25		
2539686	Total Antimony (Sb)	2008/08/30					<0.00002	mg/L	NC	25		
2539686	Total Barium (Ba)	2008/08/30					<0.00002	mg/L	1	25		
2539686	Total Bismuth (Bi)	2008/08/30					<0.00005	mg/L	NC	25		
2539686	Total Boron (B)	2008/08/30					<0.05	mg/L	NC	25		
2539686	Total Iron (Fe)	2008/08/30					<0.001	mg/L	9.1	25		
2539686	Total Manganese (Mn)	2008/08/30					<0.00005	mg/L	3.5	25		
2539686	Total Molybdenum (Mo)	2008/08/30					<0.00005	mg/L	NC	25		
2539686	Total Silicon (Si)	2008/08/30					<0.1	mg/L	11.3	25		
2539686	Total Silver (Ag)	2008/08/30					<0.00005	mg/L	NC	25		
2539686	Total Strontium (Sr)	2008/08/30					<0.00005	mg/L	0.8	25		
2539686	Total Thallium (TI)	2008/08/30					<0.000002	mg/L	NC	25		
2539686	Total Tin (Sn)	2008/08/30					<0.00001	mg/L	NC	25		
2539686	Total Titanium (Ti)	2008/08/30					<0.0005	mg/L	NC	25		
2539686	Total Zirconium (Zr)	2008/08/30					<0.0001	mg/L				
2539768	Total Nitrogen (N)	2008/08/28	80	80 - 120	95	80 - 120	<0.02	mg/L	2.6	25		
2540042	Total Arsenic (As)	2008/08/29	NC	75 - 125	109	75 - 125	<0.2	mg/kg	3.8	35	97	75 - 125
2540042	Total Beryllium (Be)	2008/08/29	103	75 - 125	104	75 - 125	<0.1	mg/kg	NC	35		
2540042	Total Cadmium (Cd)	2008/08/29	101	75 - 125	104	75 - 125	<0.05	mg/kg	1.5	35	94	75 - 125
2540042	Total Chromium (Cr)	2008/08/29	100	75 - 125	102	75 - 125	<1	mg/kg	0.8	35	92	75 - 125
2540042	Total Cobalt (Co)	2008/08/29	98	75 - 125	109	75 - 125	<0.3	mg/kg	1.6	35	101	75 - 125
2540042	Total Copper (Cu)	2008/08/29	NC	75 - 125	108	75 - 125	<0.5	mg/kg	0.05	35	95	75 - 125
2540042	Total Lead (Pb)	2008/08/29	NC	75 - 125	106	75 - 125	<0.1	mg/kg	1.1	35	99	75 - 125

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

			Matrix	Spike	Spil	(e	Blank		RF	PD 0	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	%Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2540042	Total Mercury (Hg)	2008/08/29	NC	75 - 125	107	75 - 125	<0.05	mg/kg	NC	35		
2540042	Total Nickel (Ni)	2008/08/29	98	75 - 125	105	75 - 125	<0.8	mg/kg	0.7	35	102	75 - 125
2540042	Total Selenium (Se)	2008/08/29	104	75 - 125	110	75 - 125	<0.5	mg/kg	NC	35		
2540042	Total Vanadium (V)	2008/08/29	101	75 - 125	104	75 - 125	<2	mg/kg	1.1	35	95	75 - 125
2540042	Total Zinc (Zn)	2008/08/29	NC	75 - 125	112	75 - 125	<1	mg/kg	0.5	35	92	75 - 125
2540042	Total Aluminum (AI)	2008/08/29					<100	mg/kg	0.09	35	93	75 - 125
2540042	Total Antimony (Sb)	2008/08/29					<0.1	mg/kg	1.7	35	106	75 - 125
2540042	Total Barium (Ba)	2008/08/29					<0.1	mg/kg	1.8	35	104	75 - 125
2540042	Total Bismuth (Bi)	2008/08/29					<0.1	mg/kg	0.4	35	91	75 - 125
2540042	Total Iron (Fe)	2008/08/29					<100	mg/kg	0.9	35	97	75 - 125
2540042	Total Magnesium (Mg)	2008/08/29					<100	mg/kg	0.6	35	94	75 - 125
2540042	Total Manganese (Mn)	2008/08/29					<0.2	mg/kg	0.1	35	98	75 - 125
2540042	Total Molybdenum (Mo)	2008/08/29					<0.1	mg/kg	0.9	35	99	75 - 125
2540042	Total Phosphorus (P)	2008/08/29					<10	mg/kg	1.3	35	99	75 - 125
2540042	Total Silver (Ag)	2008/08/29					< 0.05	mg/kg	5.4	35	92	75 - 125
2540042	Total Strontium (Sr)	2008/08/29					<0.1	mg/kg	0.3	35	96	75 - 125
2540042	Total Thallium (TI)	2008/08/29					<0.05	mg/kg	NC	35	83	75 - 125
2540042	Total Titanium (Ti)	2008/08/29					<1	mg/kg	2.0	35	96	75 - 125
2540042	Total Potassium (K)	2008/08/29					<100	mg/kg	2.1	35		
2540042	Total Sodium (Na)	2008/08/29					<100	mg/kg	NC	35		
2540042	Total Tin (Sn)	2008/08/29					<0.1	mg/kg	3.2	35		
2540042	Total Zirconium (Zr)	2008/08/29					<0.5	mg/kg	NC	35		
2540729	Available (KCI) Ammonia (N)	2008/08/29	90	80 - 120	97	80 - 120	<0.5	mg/kg	1.6	25		
2540978	Dissolved Calcium (Ca)	2008/08/29					< 0.05	mg/L	3.6	25		
2540978	Dissolved Magnesium (Mg)	2008/08/29					< 0.05	mg/L	2.1	25		
2540978	Dissolved Potassium (K)	2008/08/29					< 0.05	mg/L	3.4	25		
2540978	Dissolved Sodium (Na)	2008/08/29					< 0.05	mg/L	2.5	25		
2540978	Dissolved Sulphur (S)	2008/08/29					<3	mg/L	4.0	25		
2541840	Total Kjeldahl Nitrogen	2008/08/29	NC	75 - 125			<3	mg/kg	12.6	35	112	60 - 121
2543062	Dissolved Chloride (CI)	2008/08/30	98	80 - 120	97	80 - 120	<0.5	mg/L	NC	20		
2543065	Dissolved Sulphate (SO4)	2008/08/30	98	75 - 125	97	80 - 120	<0.5	mg/L	0.5	20		
2543331	Total Calcium (Ca)	2008/08/30					<0.05	mg/L	3.4	25		
2543331	Total Magnesium (Mg)	2008/08/30					<0.05	mg/L	4.0	25		
2543331	Total Potassium (K)	2008/08/30					<0.05	mg/L	3.5	25		
2543331	Total Sodium (Na)	2008/08/30					<0.05	mg/L	4.1	25		
2543331	Total Sulphur (S)	2008/08/30					<3	mg/L	NC	25		

MINNOW ENVIRONMENTAL Client Project #: 2254

Sampler Initials: CR

		Calibratio	on Check	
QC Batch	Parameter	Date	% Recovery	QC Limits
2541840	Total Kjeldahl Nitrogen	2008/08/29	114	87 - 120

Validation Signature Page

Maxxam Job	#: A843579			

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

ELAINE COUSINS, CS Manager

DAVE HUANG, BBY Scientific Specialist

LIZI ZHOU, Senior analyst, Inorganic department.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

- <i>i</i>)	8577 Commerce Cour Burnaby, BC VSA 4NS www.maxxamanalytics	484.	3	57	HONE	a: (6	04) 444-4808			CHU	UN-	OF-C	UST	ODY	REC	ORE	AN	D AN	ALY.	SIS	REQ	UES:	T	P	AGE_	(¥_
Maxxam	Burnaby, BC V5A 4N5 www.maxxamanalytics	s.com		Tol	Fax Free	k: (6 e: 1	04) 444-4511 -800-440-480	В					7	· .			ANA	LYS	S RI	EQU	EST	F	1	10)4(64	
company name: Minivow Environa	-9:: 1	PH. #: E-mail: FAX #:	908 Por 90	100	87 mw	3-	337 W -environ 3370		al . ton	,		67.6		N.	\$ * \$		A	_4			1			A STAGE		-	7
COMPANY ADDRESS: 2 LAMB ST GEORGETOWN, L76 3M9	(CLIENT	PRO	M I	t id: Ref	m ER	2254 ENCE/QU -FC	0TE	#	(p		CHEN AND	र द	TOTAL	2/TKN/				1	SIZE		to RUS		CME PACKAGE	S. REENING	SCREENING		
CR, TH, MB	W.	PROJE	CT M	LANA						- Z			11	17	Ž	RUS	TSS		H	SPAIN		PHOSPHORU	*	CME	K		
To Schoolson	i dan tara gararan Tar		WATE	RDX		12	SAN	APLING]	Da	4	3	ATS	NOW	£	V		4	A.		4	Z	-		빌	
FIELD SAMPLE ID	LAB #	GROUND	WATER	SOK.	OTHER	# CONTAINERS	SOMMAN.	JIME.	HEADSPACE	Doc	CYANCI	GEN ER AL	METALS	META	11232		SOLIDS		Attention Cort	TOC, S	TKN	TOTAL	AMMON	METALS) Suck	J.	
R2	- 		-			8	20/08/08	e de	1	V	V	V	V	V	V	1	V		S NES	•		- 10	12	7030		*	
1 R2			,	V		3	20/08/08													V	V	V	V	*	V	1	
×2			1			8	19/08/08			V	V	1	V	V	V	V	V										
X2				V		3	21/08/08	- W				Q6==								/	V	V	V		V	\checkmark	
P7	2255		1	XQ.	3	8	21/08/08			V	V	V	V	V	V	V	V					Sec	202		en.		
R7		1 1 1 1 1 2		\checkmark		3	21/08/08	(550226)									8			V	V	V	V		1	4	
NXT			V			8	20/08/08	A 17-18		V	V	V	V	V	/	V	V			0010003	(red) (f)	\$56589 t	5000000		3075-3164	ssác (es	23)
USFR	W	,	/			3	19/06/08			V	1	1	10	1	1	U	1						Databer:				
VR]]	V.				19/08/08			1	V	1	1	V	L	1	1							5			
0	- 10 10 10 10 10 10 10 10 10 10 10 10 10			-6.76										L.										8			
1												4				a											_
2				Alle					<u> </u>		ļ.,,,			. 3				0= 0									
TAT (Turneround Time) **D DAY TAT MUST HAVE PRIOR APPROVAL **some exceptions apply	puper + 2254 quate + BOS-pu		C				ter MDL						CSR ALBI	erta in	ER 1	110,9850.08	AL TE	LITEMPERATURE °C DUE DATE: LOG IN C				CHECK					
Please Contact lab TANDARD 5 BUSINESS DAYS RUSH 3 BUSINESS DAYS RUSH 2 BUSINESS DAYS RUSH 2 BUSINESS DAYS	PUTTI OTV			s	SPECI	AL RI	EPORTING OR BI	LUNG INS	TRUCTK	ONS:		*	JARS	USEC).		50 15 5	er like									
IRGENT I BUSINESS DAY	RELINCUISHED BY SAMPLER:	DATE: Aug 10 TIME: 530pm RECEIVED BY:							-																		
THER BUSINESS DAYS	RELINQUISHED BY:	~ K	- 11	. •	-6	200	DATE:	TREES.		TIME:				REC	EIVE	BY:		-		-		*			*	_	
CUSTODY	RELINQUISHED BY:						DATE		00/1	TIM	Œ:	a:	40	(5	REC	EIVEC	BY	ABOR	ATOP	14:	A	.M	ii.				_
RECORD	COCFORM - BC - 05/06						DUMN	raye 14	W 14 V			•	1 0		Sec.		OFFI	INAL -	MAXXV	W				AXXAN	i.	PIN	- CL

Your Project #: A843579 Your C.O.C. #: N/A

Attention: Elaine Cousins

Maxxam Analytics Inc Burnaby to Bedford 8577 Commerce Crt Burnaby, BC V5A 4N5

Report Date: 2008/08/29

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A896662 Received: 2008/08/28, 12:42

Sample Matrix: Soil # Samples Received: 3

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Organic Carbon in Soil	3	N/A	2008/08/29	ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

HEATHER WEST, Bedford Email: heather.west.reports@maxxamanalytics.com Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Job #: A896662 Report Date: 2008/08/29

Maxxam Analytics Inc Client Project #: A843579

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AI0637	Al0637		AI0638		
Sampling Date		2008/08/20	2008/08/20		2008/08/21		
COC Number		N/A	N/A		N/A		
Registration #							
	Units	L30811-01R\R2	L30811-01R\R2	RDL	L30813-01R\X2	RDL	QC Batch
			Lab-Dup				

Organic Carbon (TOC) 2.0 2.0 0.2 12 1 1599689 g/kg

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		AI0639		
Sampling Date		2008/08/21		
COC Number		N/A		
Registration #				
	Units	L30815-01R\R7	RDL	QC Batch

Organic Carbon (TOC)	g/kg	2.5	0.2	1599689
----------------------	------	-----	-----	---------

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: A896662 Report Date: 2008/08/29 Maxxam Analytics Inc Client Project #: A843579

GEN	FR/	ΔI	CO	MM	FN	TS

Results relate only to the items tested.

Maxxam Analytics Inc Attention: Elaine Cousins Client Project #: A843579

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA896662

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1599689 CAC	QC STANDARD	Organic Carbon (TOC)	2008/08/29		97	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/08/29	ND, R	DL=0.2	g/kg	
	RPD [AI0637-01]	Organic Carbon (TOC)	2008/08/29	0.05		%	35

ND = Not detected RPD = Relative Percent Difference

QC Standard = Quality Control Standard

Your Project #: A843579 Your C.O.C. #: N/A

Attention: Elaine Cousins

Maxxam Analytics Inc Burnaby to Bedford 8577 Commerce Crt Burnaby, BC V5A 4N5

Report Date: 2008/09/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A896674 Received: 2008/08/28, 12:42

Sample Matrix: Soil # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Particle size in solids (pipette&sieve)	3	N/A	2008/09/08 ATL SOP 00012 R2	based on MSAMS-1978

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

HEATHER WEST, Bedford Email: heather.west.reports@maxxamanalytics.com Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Analytics Inc Client Project #: A843579

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AI0693	AI0694	AI0695		
Sampling Date						
COC Number		N/A	N/A	N/A		
Registration #						
	Units	L30811-01R\R2	L30813-01R\X2	L30815-01R\R7	RDL	QC Batch
		1	Т			
< -4 Phi (16 mm)	%	100	100	100	0.1	1606454
< -3 Phi (8 mm)	%	100	100	100	0.1	1606454
< -2 Phi (4 mm)	%	100	100	100	0.1	1606454
< -1 Phi (2 mm)	%	68	100	100	0.1	1606454
< 0 Phi (1 mm)	%	42	93	96	0.1	1606454
< +1 Phi (0.5 mm)	%	12	82	70	0.1	1606454
< +2 Phi (0.25 mm)	%	2.1	61	30	0.1	1606454
< +3 Phi (0.12 mm)	%	1.1	43	8.4	0.1	1606454
< +4 Phi (0.062 mm)	%	1.0	31	3.1	0.1	1606454
< +5 Phi (0.031 mm)	%	0.9	25	2.3	0.1	1606454
< +6 Phi (0.016 mm)	%	0.8	17	1.8	0.1	1606454
< +7 Phi (0.0078 mm)	%	0.7	8.3	1.4	0.1	1606454
< +8 Phi (0.0039 mm)	%	0.6	6.5	1.2	0.1	1606454
< +9 Phi (0.0020 mm)	%	0.6	4.3	1.0	0.1	1606454

ND

69

24

6.5

0.2

97

1.9

1.2

0.1

0.1

0.1

0.1

1606454

1606454

1606454

1606454

ND = Not detected N/A = Not Applicable

Gravel

Sand

Silt

Clay

RDL = Reportable Detection Limit

%

%

%

%

32

67

0.4

0.6

QC Batch = Quality Control Batch

Maxxam Analytics Inc Client Project #: A843579

GFI	MERA	L COM	MEN.	ГS

Results relate only to the items tested.

Maxxam Analytics Inc Attention: Elaine Cousins Client Project #: A843579

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA896674

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1606454 SBK	RPD	< -4 Phi (16 mm)	2008/09/08	0		%	25
		< -3 Phi (8 mm)	2008/09/08	0		%	25
		< -2 Phi (4 mm)	2008/09/08	0		%	25
		< -1 Phi (2 mm)	2008/09/08	1.9		%	25
		< 0 Phi (1 mm)	2008/09/08	0.1		%	25
		< +1 Phi (0.5 mm)	2008/09/08	2.4		%	25
		< +2 Phi (0.25 mm)	2008/09/08	3.7		%	25
		< +3 Phi (0.12 mm)	2008/09/08	5.1		%	25
		< +4 Phi (0.062 mm)	2008/09/08	6.1		%	25
		< +5 Phi (0.031 mm)	2008/09/08	5.4		%	25
		< +6 Phi (0.016 mm)	2008/09/08	9.1		%	25
		< +7 Phi (0.0078 mm)	2008/09/08	21.5		%	25
		< +8 Phi (0.0039 mm)	2008/09/08	4.5		%	25
		< +9 Phi (0.0020 mm)	2008/09/08	10.8		%	25
		Gravel	2008/09/08	NC (1)		%	25
		Sand	2008/09/08	47.7 (1)		%	25
		Silt	2008/09/08	7.6		%	25
		Clay	2008/09/08	4.5		%	25

NC = Non-calculable

RPD = Relative Percent Difference

⁽¹⁾ Duplicate %RPD acceptable. Values agree within 10%.

Your Project #: #2254 BIOASSAY SAMPLING FARO M Your C.O.C. #: F117513

Attention: Patti Orr
MINNOW ENVIRONMENTAL
2 Lamb Street
Georgetown, ON
CANADA L7G 3M9

Report Date: 2009/02/18

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A902175 Received: 2009/01/19, 10:10

Sample Matrix: Water # Samples Received: 3

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	3	2009/01/19	2009/01/19 BRN SOP-00264 R4.0	Based on SM2320B
Chloride by Automated Colourimetry	2	N/A	2009/01/19 BRN-SOP 00234 R3.0	Based on EPA 325.2
Chloride by Automated Colourimetry	1	N/A	2009/02/13 BRN-SOP 00234 R3.0	Based on EPA 325.2
Cyanide WAD (weak acid dissociable)	3	N/A	2009/01/20 BRN SOP-00227 R3.0	Based on SM-4500CN I
Carbon (DOC)	3	N/A	2009/01/21 BRN SOP-00224 R4.0	Based on M 860-87T
Fluoride - Mining Clients	3	N/A	2009/01/20 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness Total (calculated as CaCO3)	3	N/A	2009/01/22	
Hardness (calculated as CaCO3)	3	N/A	2009/01/22	
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	2	N/A	2009/01/21 BRN SOP-00206 R7.0	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	1	N/A	2009/01/22 BRN SOP-00206 R7.0	Based on EPA 200.8
Elements by ICPMS Low Level (dissolved) ()	1	N/A	2009/01/21 BRN SOP-00206 R7.0	Based on EPA 200.8
Elements by ICPMS Low Level (dissolved) ()	2	N/A	2009/01/22 BRN SOP-00206 R7.0	Based on EPA 200.8
Elements by ICPMS Low Level (total) ()	3	2009/01/21	2009/01/22 BRN SOP-00206 R7.0	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total)	3	2009/01/21	2009/01/22 BRN SOP-00206 R7.0	Based on EPA 200.8
Nitrogen (Total)	3	2009/01/20	2009/01/20 BRN SOP-00242 R3.0	Based on SM-4500N C
Ammonia (N)	2	N/A	2009/01/19 BRN SOP-00232 R4.0	Based on USEPA 350.1
Ammonia (N)	1	N/A	2009/01/24 BRN SOP-00232 R4.0	Based on USEPA 350.1
Nitrate + Nitrite (N)	3	N/A	2009/01/19 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) by CFA	3	N/A	2009/01/19 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	3	N/A	2009/01/19	
Filter and HNO3 Preserve for Metals	3	N/A	2009/01/19 BRN WI-00006 R1.0	Based on EPA 200.2
Sulphate by Automated Colourimetry	2	N/A	2009/01/19 BRN-SOP 00243 R1.0	Based on EPA 375.4
Sulphate by Automated Colourimetry	1	N/A	2009/02/13 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	3	N/A	2009/01/21 BRN SOP 00276 R4.0	SM 2540C
TKN (Calc. TN, N/N) total	3	N/A	2009/01/21	
Total Phosphorus	3	N/A	2009/01/19 BRN SOP-00236 R4.0	SM 4500

^{*} Results relate only to the items tested.

(1) SCC/CAEAL

MINNOW ENVIRONMENTAL

Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELAINE COUSINS, BBY CS Manager Email: elaine.cousins@maxxamanalytics.com Phone# (604) 444-4808 Ext:276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CALA have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

MINNOW ENVIRONMENTAL

Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		N39681		1	N39682			N39683	1	
Sampling Date		2009/01/15 10:00			2009/01/15 14:00			2009/01/15 15:30		
COC#		F117513			F117513			F117513		
000#	Units	R-7	RDL	QC Batch	R-2	RDL	QC Batch	X-2	RDL	QC Batch
Misc. Inorganics	Oiiito	10.7	INDL	QO Daton	1 2	INDL	QO Baton		INDL	QO Daton
Fluoride (F)	mg/L	0.14	0.01	2865421	0.14	0.01	2865421	0.15	0.01	2865421
Preparation	1				****					
Filter and HNO3 Preservation	N/A	FIELD	N/A	ONSITE	FIELD	N/A	ONSITE	FIELD	N/A	ONSITE
ANIONS		•			!			•		
Nitrite (N)	mg/L	0.005	0.005	2862835	0.005	0.005	2862835	0.005	0.005	2862835
Calculated Parameters		•			•	•		•	•	•
Nitrate (N)	mg/L	0.24	0.02	2863318	0.29	0.02	2863318	0.35	0.02	2863318
Misc. Inorganics										
Weak Acid Dissoc. Cyanide (CN)	mg/L	< 0.0005	0.0005	2866045	0.0005	0.0005	2866045	0.0005	0.0005	2866045
Dissolved Organic Carbon (C)	mg/L	<0.5	0.5	2869492	<0.5	0.5	2869492	<0.5	0.5	2869492
Alkalinity (Total as CaCO3)	mg/L	130	0.5	2864452	180	0.5	2864452	130	0.5	2864452
Alkalinity (PP as CaCO3)	mg/L	<0.5	0.5	2864452	<0.5	0.5	2864452	<0.5	0.5	2864452
Bicarbonate (HCO3)	mg/L	160	0.5	2864452	210	0.5	2864452	160	0.5	2864452
Carbonate (CO3)	mg/L	<0.5	0.5	2864452	<0.5	0.5	2864452	<0.5	0.5	2864452
Hydroxide (OH)	mg/L	<0.5	0.5	2864452	<0.5	0.5	2864452	<0.5	0.5	2864452
Anions										
Dissolved Sulphate (SO4)	mg/L	11	0.5	2863778	180	5	2863778	46	0.5	2923108
Dissolved Chloride (CI)	mg/L	0.6	0.5	2863780	0.6	0.5	2863780	<0.5	0.5	2923039
Nutrients										
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.03	0.02	2862857	0.08	0.02	2862857	<0.02	0.02	2862857
Ammonia (N)	mg/L	<0.005	0.005	2863781	0.095	0.005	2877065	0.011	0.005	2863781
Nitrate plus Nitrite (N)	mg/L	0.24	0.02	2862833	0.29	0.02	2862833	0.36	0.02	2862833
Total Nitrogen (N)	mg/L	0.27	0.02	2866860	0.37	0.02	2866860	0.34	0.02	2866860
Total Phosphorus (P)	mg/L	0.006	0.002	2860479	0.003	0.002	2860479	0.003	0.002	2860479
Physical Properties										
Total Dissolved Solids	mg/L	170	10	2865011	470	10	2865011	250	10	2865011

MINNOW ENVIRONMENTAL

Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

LOW LEVEL DISSOLVED METALS - WATER (WATER)

Maxxam ID		N39681	N39682	N39683		
Sampling Date		2009/01/15 10:00	2009/01/15 14:00	2009/01/15 15:30		
COC#		F117513	F117513	F117513		
	Units	R-7	R-2	X-2	RDL	QC Batch
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	133	368	173	0.5	2862674
Dissolved Metals by ICPMS						
Dissolved Aluminum (AI)	mg/L	0.0030	0.0017	0.0092	0.0002	2868196
Dissolved Antimony (Sb)	mg/L	0.00010	0.00008	0.00008	0.00002	2868196
Dissolved Arsenic (As)	mg/L	0.00038	0.00029	0.00027	0.00002	2868196
Dissolved Barium (Ba)	mg/L	0.0771	0.0729	0.0759	0.00002	2868196
Dissolved Beryllium (Be)	mg/L	<0.00001	<0.00001	<0.00001	0.00001	2868196
Dissolved Bismuth (Bi)	mg/L	<0.000005	<0.00005	<0.00005	0.000005	2868196
Dissolved Boron (B)	mg/L	< 0.05	< 0.05	<0.05	0.05	2868196
Dissolved Cadmium (Cd)	mg/L	0.000012	0.000057	0.000042	0.000005	2868196
Dissolved Chromium (Cr)	mg/L	0.0001	<0.0001	<0.0001	0.0001	2868196
Dissolved Cobalt (Co)	mg/L	0.000025	0.00184	0.000291	0.000005	2868196
Dissolved Copper (Cu)	mg/L	0.00101(1)	0.00108(1)	0.00092	0.00005	2868196
Dissolved Iron (Fe)	mg/L	0.036	0.119	0.076	0.001	2868196
Dissolved Lead (Pb)	mg/L	0.000078(1)	0.000046	0.000147	0.000005	2868196
Dissolved Lithium (Li)	mg/L	0.0078	0.0082	0.0088	0.0005	2868196
Dissolved Manganese (Mn)	mg/L	0.0162	2.62	0.224	0.00005	2868196
Dissolved Molybdenum (Mo)	mg/L	0.00089	0.00080	0.00084	0.00005	2868196
Dissolved Nickel (Ni)	mg/L	0.00038(1)	0.00480	0.00224	0.00002	2868196
Dissolved Selenium (Se)	mg/L	0.00052	0.00050	0.00053	0.00004	2868196
Dissolved Silicon (Si)	mg/L	5.3	5.4	5.0	0.1	2868196
Dissolved Silver (Ag)	mg/L	<0.000005	<0.000005	<0.00005	0.000005	2868196
Dissolved Strontium (Sr)	mg/L	0.163	0.335	0.194	0.00005	2868196
Dissolved Thallium (TI)	mg/L	<0.000002	0.000007	0.000003	0.000002	2868196
Dissolved Tin (Sn)	mg/L	<0.00001	0.00008(1)	0.00002	0.00001	2868196
Dissolved Titanium (Ti)	mg/L	<0.0005	<0.0005	<0.0005	0.0005	2868196
Dissolved Uranium (U)	mg/L	0.00249	0.00346	0.00280	0.000002	2868196
Dissolved Vanadium (V)	mg/L	<0.0002	<0.0002	<0.0002	0.0002	2868196
Dissolved Zinc (Zn)	mg/L	0.0021(1)	0.0927	0.223	0.0001	2868196
Dissolved Zirconium (Zr)	mg/L	<0.0001	<0.0001	<0.0001	0.0001	2868196
Dissolved Calcium (Ca)	mg/L	40.6	109	48.2	0.05	2871548
Dissolved Magnesium (Mg)	mg/L	7.76	23.2	12.9	0.05	2871548
Dissolved Potassium (K)	mg/L	0.96	2.12	1.11	0.05	2871548
Dissolved Sodium (Na)	mg/L	2.88	8.40	3.43	0.05	2871548

RDL = Reportable Detection Limit

^{(1) -} dissolved > total, reanalyzed & confirmed. Possible trace level of field-filtered contamination on dissolved metal bottle or there is a discrepancy between samples taken.

MINNOW ENVIRONMENTAL Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

LOW LEVEL DISSOLVED METALS - WATER (WATER)

Maxxam ID		N39681	N39682	N39683		
Sampling Date		2009/01/15 10:00	2009/01/15 14:00	2009/01/15 15:30		
COC#		F117513	F117513	F117513		
	Units	R-7	R-2	X-2	RDL	QC Batch
Dissolved Sulphur (S)	mg/L	4	77	17	3	2871548

MINNOW ENVIRONMENTAL

Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

LOW LEVEL TOTAL METALS - WATER (WATER)

Maxxam ID		N39681	N39682	N39683		
Sampling Date		2009/01/15 10:00	2009/01/15 14:00	2009/01/15 15:30		
COC#		F117513	F117513	F117513		
	Units	R-7	R-2	X-2	RDL	QC Batch
Calculated Parameters						
Total Hardness (CaCO3)	mg/L	119	321	166	0.5	2862759
Total Metals by ICPMS						
Total Aluminum (Al)	mg/L	0.0059	0.0177	0.0090	0.0002	2868251
Total Antimony (Sb)	mg/L	0.00007	0.00008	0.00009	0.00002	2868251
Total Arsenic (As)	mg/L	0.00050	0.00048	0.00049	0.00002	2868251
Total Barium (Ba)	mg/L	0.0748	0.0699	0.0797	0.00002	2868251
Total Beryllium (Be)	mg/L	<0.00001	<0.00001	<0.00001	0.00001	2868251
Total Bismuth (Bi)	mg/L	<0.000005	<0.00005	<0.00005	0.000005	2868251
Total Boron (B)	mg/L	< 0.05	<0.05	<0.05	0.05	2868251
Total Cadmium (Cd)	mg/L	0.000008	0.000066	0.000045	0.000005	2868251
Total Chromium (Cr)	mg/L	<0.0001	<0.0001	<0.0001	0.0001	2868251
Total Cobalt (Co)	mg/L	0.000022	0.00176	0.000311	0.000005	2868251
Total Copper (Cu)	mg/L	0.00025	0.00045	0.00045	0.00005	2868251
Total Iron (Fe)	mg/L	0.090	0.403	0.209	0.001	2868251
Total Lead (Pb)	mg/L	0.000026	0.000326	0.000420	0.000005	2868251
Total Lithium (Li)	mg/L	0.0076	0.0078	0.0089	0.0005	2868251
Total Manganese (Mn)	mg/L	0.0171	2.47	0.232	0.00005	2868251
Total Molybdenum (Mo)	mg/L	0.00085	0.00073	0.00084	0.00005	2868251
Total Nickel (Ni)	mg/L	0.00019	0.00468	0.00222	0.00002	2868251
Total Selenium (Se)	mg/L	0.00059	0.00056	0.00064	0.00004	2868251
Total Silicon (Si)	mg/L	7.2	7.8	8.0	0.1	2868251
Total Silver (Ag)	mg/L	<0.000005	<0.00005	<0.000005	0.000005	2868251
Total Strontium (Sr)	mg/L	0.159	0.311	0.196	0.00005	2868251
Total Thallium (TI)	mg/L	<0.000002	0.000007	0.000003	0.000002	2868251
Total Tin (Sn)	mg/L	<0.0001	<0.00001	<0.00001	0.00001	2868251
Total Titanium (Ti)	mg/L	<0.0005	<0.0005	<0.0005	0.0005	2868251
Total Uranium (U)	mg/L	0.00241	0.00325	0.00280	0.000002	2868251
Total Vanadium (V)	mg/L	<0.0002	<0.0002	<0.0002	0.0002	2868251
Total Zinc (Zn)	mg/L	0.0005	0.0919	0.229	0.0001	2868251
Total Zirconium (Zr)	mg/L	<0.0001	<0.0001	<0.0001	0.0001	2868251
Total Calcium (Ca)	mg/L	35.9	94.5	45.5	0.05	2871551
Total Magnesium (Mg)	mg/L	7.22	20.7	12.8	0.05	2871551
Total Potassium (K)	mg/L	0.80	1.80	1.04	0.05	2871551
Total Sodium (Na)	mg/L	2.65	7.60	3.37	0.05	2871551
Total Sulphur (S)	mg/L	3	72	16	3	2871551

MINNOW ENVIRONMENTAL Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

			Matrix S	Spike	Spil	re	Blank		RI	PD
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2860479	Total Phosphorus (P)	2009/01/19	100	80 - 120	82	80 - 120	0.002, RDL=0.002	mg/L	NC	25
2862833	Nitrate plus Nitrite (N)	2009/01/19	99	80 - 120	98	80 - 120	<0.02	mg/L	NC(1)	25
2862835	Nitrite (N)	2009/01/19	100	80 - 120	98	80 - 120	<0.005	mg/L	NC(1)	25
2863778	Dissolved Sulphate (SO4)	2009/01/19	NC	75 - 125	95	80 - 120	<0.5	mg/L	0.4	20
2863780	Dissolved Chloride (CI)	2009/01/19	104	80 - 120	99	80 - 120	<0.5	mg/L	NC	20
2863781	Ammonia (N)	2009/01/19	115	80 - 120	106	80 - 120	<0.005	mg/L	NC	25
2864452	Alkalinity (Total as CaCO3)	2009/01/19	NC	80 - 120	98	80 - 120	<0.5	mg/L	1	25
2864452	Alkalinity (PP as CaCO3)	2009/01/19					<0.5	mg/L	NC	25
2864452	Bicarbonate (HCO3)	2009/01/19					<0.5	mg/L	1.0	25
2864452	Carbonate (CO3)	2009/01/19					<0.5	mg/L	NC	25
2864452	Hydroxide (OH)	2009/01/19					<0.5	mg/L	NC	25
2865011	Total Dissolved Solids	2009/01/21	NC	80 - 120	110	80 - 120	<10	mg/L	4.8	25
2865421	Fluoride (F)	2009/01/20	108	80 - 120	97	80 - 120	<0.01	mg/L	1.4	25
2866045	Weak Acid Dissoc. Cyanide (CN)	2009/01/20	111	80 - 120	112	80 - 120	<0.0005	mg/L	NC	20
2866860	Total Nitrogen (N)	2009/01/20	108	80 - 120	102	80 - 120	<0.02	mg/L	1.3	25
2868196	Dissolved Arsenic (As)	2009/01/21	100	75 - 125	95	75 - 125	<0.00002	mg/L	1.5	25
2868196	Dissolved Beryllium (Be)	2009/01/21	103	75 - 125	98	75 - 125	<0.00001	mg/L	NC	25
2868196	Dissolved Cadmium (Cd)	2009/01/21	101	75 - 125	97	75 - 125	<0.00005	mg/L	NC	25
2868196	Dissolved Chromium (Cr)	2009/01/21	96	75 - 125	96	75 - 125	<0.0001	mg/L	NC	25
2868196	Dissolved Cobalt (Co)	2009/01/21	93	75 - 125	96	75 - 125	<0.00005	mg/L	NC	25
2868196	Dissolved Copper (Cu)	2009/01/21	93	75 - 125	99	75 - 125	<0.00005	mg/L	8.8	25
2868196	Dissolved Lead (Pb)	2009/01/21	97	75 - 125	102	75 - 125	<0.00005	mg/L	0.3	25
2868196	Dissolved Lithium (Li)	2009/01/21	NC	75 - 125	100	75 - 125	<0.0005	mg/L	0.3	25
2868196	Dissolved Nickel (Ni)	2009/01/21	97	75 - 125	98	75 - 125	<0.00002	mg/L	5.4	25
2868196	Dissolved Selenium (Se)	2009/01/21	109	75 - 125	98	75 - 125	<0.00004	mg/L	5.4	25
2868196	Dissolved Uranium (U)	2009/01/21	103	75 - 125	102	75 - 125	<0.000002	mg/L	0.7	25
2868196	Dissolved Vanadium (V)	2009/01/21	97	75 - 125	95	75 - 125	<0.0002	mg/L	NC	25
2868196	Dissolved Zinc (Zn)	2009/01/21	102	75 - 125	96	75 - 125	<0.0001	mg/L	6.2	25
2868196	Dissolved Aluminum (Al)	2009/01/21					<0.0002	mg/L	5.4	25
2868196	Dissolved Antimony (Sb)	2009/01/21					<0.00002	mg/L	NC	25
2868196	Dissolved Barium (Ba)	2009/01/21					<0.00002	mg/L	2.3	25
2868196	Dissolved Bismuth (Bi)	2009/01/21					<0.00005	mg/L	NC	25
2868196	Dissolved Boron (B)	2009/01/21					<0.05	mg/L	NC	25
2868196	Dissolved Iron (Fe)	2009/01/21					<0.001	mg/L	7.7	25
2868196	Dissolved Manganese (Mn)	2009/01/21					<0.00005	mg/L	0.06	25
2868196	Dissolved Molybdenum (Mo)	2009/01/21					<0.00005	mg/L	1.2	25
2868196	Dissolved Silicon (Si)	2009/01/21					<0.1	mg/L	6.9	25
2868196	Dissolved Silver (Ag)	2009/01/21					<0.00005	mg/L	NC	25
2868196	Dissolved Strontium (Sr)	2009/01/21					<0.00005	mg/L	1.2	25
2868196	Dissolved Thallium (TI)	2009/01/21					<0.000002	mg/L	NC	25

MINNOW ENVIRONMENTAL

Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

			Matrix S	Spike	Spil	ce	Blank		RF	PD
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2868196	Dissolved Tin (Sn)	2009/01/21					<0.00001	mg/L	NC	25
2868196	Dissolved Titanium (Ti)	2009/01/21					<0.0005	mg/L	NC	25
2868196	Dissolved Zirconium (Zr)	2009/01/21					<0.0001	mg/L	NC	25
2868251	Total Arsenic (As)	2009/01/22	104	75 - 125	92	75 - 125	<0.00002	mg/L	4.3	25
2868251	Total Beryllium (Be)	2009/01/22	97	75 - 125	97	75 - 125	<0.0001	mg/L	NC	25
2868251	Total Cadmium (Cd)	2009/01/22	101	75 - 125	93	75 - 125	<0.00005	mg/L	3.8	25
2868251	Total Chromium (Cr)	2009/01/22	99	75 - 125	93	75 - 125	<0.0001	mg/L	NC	25
2868251	Total Cobalt (Co)	2009/01/22	94	75 - 125	93	75 - 125	< 0.000005	mg/L	1.2	25
2868251	Total Copper (Cu)	2009/01/22	91	75 - 125	96	75 - 125	<0.00005	mg/L	1	25
2868251	Total Lead (Pb)	2009/01/22	90	75 - 125	100	75 - 125	<0.00005	mg/L	2.0	25
2868251	Total Lithium (Li)	2009/01/22	NC	75 - 125	99	75 - 125	<0.0005	mg/L	1.1	25
2868251	Total Nickel (Ni)	2009/01/22	92	75 - 125	95	75 - 125	<0.00002	mg/L	0.2	25
2868251	Total Selenium (Se)	2009/01/22	112	75 - 125	99	75 - 125	<0.0004	mg/L	2.2	25
2868251	Total Uranium (U)	2009/01/22	99	75 - 125	99	75 - 125	<0.00002	mg/L	3.5	25
2868251	Total Vanadium (V)	2009/01/22	101	75 - 125	93	75 - 125	<0.0002	mg/L	NC	25
2868251	Total Zinc (Zn)	2009/01/22	NC	75 - 125	93	75 - 125	<0.0001	mg/L	1.3	25
2868251	Total Aluminum (AI)	2009/01/22					<0.0002	mg/L	2.8	25
2868251	Total Antimony (Sb)	2009/01/22					<0.00002	mg/L	NC	25
2868251	Total Barium (Ba)	2009/01/22					<0.00002	mg/L	3.3	25
2868251	Total Bismuth (Bi)	2009/01/22					<0.00005	mg/L	NC	25
2868251	Total Boron (B)	2009/01/22					<0.05	mg/L	NC	25
2868251	Total Iron (Fe)	2009/01/22					<0.001	mg/L	5.6	25
2868251	Total Manganese (Mn)	2009/01/22					<0.00005	mg/L	2.1	25
2868251	Total Molybdenum (Mo)	2009/01/22					<0.00005	mg/L	5.2	25
2868251	Total Silicon (Si)	2009/01/22					<0.1	mg/L	2.0	25
2868251	Total Silver (Ag)	2009/01/22					< 0.000005	mg/L	NC	25
2868251	Total Strontium (Sr)	2009/01/22					<0.00005	mg/L	0.7	25
2868251	Total Thallium (TI)	2009/01/22					<0.00002	mg/L	NC	25
2868251	Total Tin (Sn)	2009/01/22					<0.0001	mg/L	NC	25
2868251	Total Titanium (Ti)	2009/01/22					<0.0005	mg/L	NC	25
2868251	Total Zirconium (Zr)	2009/01/22					<0.0001	mg/L	NC	25
2869492	Dissolved Organic Carbon (C)	2009/01/21	107	80 - 120	106	80 - 120	<0.5	mg/L	4.1	20
2871548	Dissolved Calcium (Ca)	2009/01/21					<0.05	mg/L	1.6	25
2871548	Dissolved Magnesium (Mg)	2009/01/21					<0.05	mg/L	1.2	25
2871548	Dissolved Potassium (K)	2009/01/21					<0.05	mg/L	2.0	25
2871548	Dissolved Sodium (Na)	2009/01/21					<0.05	mg/L	0.03	25
2871548	Dissolved Sulphur (S)	2009/01/21					<3	mg/L	NC	25
2871551	Total Calcium (Ca)	2009/01/22					<0.05	mg/L	1.2	25
2871551	Total Magnesium (Mg)	2009/01/22					<0.05	mg/L	0.2	25
2871551	Total Potassium (K)	2009/01/22					<0.05	mg/L	0.9	25

www.maxxamanalytics.com

MINNOW ENVIRONMENTAL

Client Project #: #2254 BIOASSAY SAMPLING FARO M

Sampler Initials: LE

Maxxam Job #: A902175 Report Date: 2009/02/18

QUALITY ASSURANCE REPORT

				Matrix Spike		се	Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2871551	Total Sodium (Na)	2009/01/22					<0.05	mg/L	0.8	25
2871551	Total Sulphur (S)	2009/01/22					<3	mg/L	1.2	25
2877065	Ammonia (N)	2009/01/24	93	80 - 120	91	80 - 120	<0.005	mg/L	NC	25
2923039	Dissolved Chloride (CI)	2009/02/13	114	80 - 120	97	80 - 120	<0.5	mg/L	0.1	20
2923108	Dissolved Sulphate (SO4)	2009/02/13			103	80 - 120	<0.5	mg/L	0.4	20

N/A = Not Applicable

NC = Non-calculable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

(1) - RDL raised due to sample matrix interference.

Validation Signature Page

Maxxam Job	#: A902175			

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

DAVE HUANG, BBY Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CALA have approved this reporting process and electronic report format.

Max am 8577 Commerce Court Phone: (604) 444-4808 Burnaby, BC V5A 4N5 Fax: (604) 444-4511 www.maxxamanalytics.com Toll Free: 1-800-440-4808										100	MAXXAM JOB # PUNCTO														-	ε <u>.</u> 17					
MINNOW CONSULTING FAX # 905 873 351/ ext 23							-	E	П	+	Τ'		- T	300 x	UA B			SE	The Park I by I				I	П	T	e e e	I				
							e.	46.	-				Ŷ.	1		- (1		(FF0)		3	D.	1	1	7		+	1-1			
MPANY ADDRESS:		CLIENT	PROJ	ECT	D (W)	J . 1	F 2.3	2 54		Western				3	₩		\Box		. [5	2		10. 8		4	3	1	9	9	1	1	١.
innow Environm	mentaline	BI	OAS	50	44	SA	mpe	MY		I			9		SCAS	1	2 75	12	Z	\$	100	- 6	71 56	Š	3 8	1	S	3	3	4	9
Lamb St.	1	F	AR	D 1	nik	G	comp	KEX		MTBE			BTEX	втех	0.00	-1	80 10	2 8	Z	SULPHATE				\$.	11	1 A	4	9	3	Q	6.4
eorgetown, or L7G 3M	ntario						- FC			-			PLUS	SBT	SIS	9	¥ 53	ě	≥ 1	2	13	(FCLP)	(TOLP)	F.	56) §	*	0	٦,	Ľ,	1 %
MPLER NAME (PRINT):		PROJEC	CT MA	NAGI	ER:		- 772	17377	-	F	-		7 1	1 2	품	L 08G	. 9	42	- 1	200	2 7	-	E		50	- 3	ge	Q.	J,	17	3
aretage enviro	NIMENTAL	4	F	747	ri	OR	R			BTEX / WPH	Ē	7	FRACTIONS 1	8		NERA	(bened)	Serve		LUCAIDE	SUSPENDED SOLIDS	(AA)	[WW]	5	5/	12	1	3	3.	Ž,	3
9	154%	MATRIX 6 S						MINIPLING			1	2	WCD	PACT T	AA.	3	表 B B B B B B B B B B B B B B B B B B B	F 8	E.			ON (A	BTEX #	6	13	7	7	1	8	3 3	3
FIELD	MAXICAN	Ę					Zetq	5	H.E.		Ŧ	9	COFF	X	84	ු ලු	12 12	- E	ZJ [3	ELE	E B.	N.	3	R.	173	3	2	7	13
SAMPLE	(Les the Ci	NA)	3	SOL	PANAMEN	* CONTA	DATE	E S	EADSPACE VAPOUR	五	Hdv / SOON	П	F 3	8.	8	200	Pay 5	Meda	il i	Salbe		F	HABI	$\forall i$		Į V	2	7	Ki,	5 7	
	31 100.00	88	SUR	₹ "	23	Ö	CONTRACT		AN N	втъх/тн	S 4	¥.	S 5	CCM	PHE	TOTAL	Dissolved Metals	Total	ET Z	SHE SHE	5 8	EAC	ENC	₹١	~ 4	D	Y	4	711	٦	P
R-7							15/01	10:00			181	80 00	1 85		3 %	i	V	1	1		V	1	1	1		1	V	-	1	1	1
R-2			,	1			15/01	14100		20.	Men				12		VV	~	V	1	1			1		1	-	1	-	1	V
x-2	£1		١.	1				15:3			37.00	#2 //R	#3 *	0 0	3 70		10	1	1	1. 4	1	555	15 (c)	1	10	1	1	1	1	N	1
^ ~	35.			1		100	1-1-1	73.3		- 10		10.00	-·			1	1			70	+	Ħ	7	979	* -	1000	•		+	1	3
i i		-	H	7	interior.	: 1	-		. N=2	- 17	-	î I			S 881	-	-	- 1	- 1	-	+		-	+	79 8 0—		**: 1	1 100	-	-	-
-			1	1 ,	-	-	dii i			4	-		-	+	* *	+	e •		10	3	-		-	+		-	-	-	. 4.	-	-4
		9	-	1	4	1	-		G(43-4	_	-		-	-		-	-04		2	9	82		_	-					-24	-	
		***		1					<u>u_a</u>		4				_		3 -	- 1		1	¥8 8				33			6 8			
									93	E 20		-3				- 22	Î	// 22 - 31	100		is s		2007	16	88 -1	100 H	t 3				0_78
VID9																							Wire-Sell	mee	5011	ec 5	on no	32	I.	62	П
	107	ŧi.																			T			*	•	* *			1		30
		*									1	1	1	;	ð. 1	100	390,000	25 M	-	7	100		7	-7/	2.	\$\$ B		13.	- 57		
	594/852			1	V. 30.	10.0	92///	====		=		5-76	-	1	- 1	M		3 7	- 83	+	15.5		=	1	10	10.77	=			T.	
1	PO. NUMBER	L/ OUC	TE NI	IMPE	B.		Spe	CIAL DE	TEC/IIO	N I III	TS/C	ОВПА	MAINIAN	TVP	E-	- 50			**	2			4	- 00	1	1		1	1	1	. !
AT (Turnaround Time) S DAY TAT MUST HAVE	Alterdate Tenantical		i pi i nelec		Note:			OW I					Manager 1	11446-51	A-8-5		⊏ cs			APV	ANAL T	EMPER	LATURE	°C C	11100-00	100	E ON	LT	LOG	IN CH	IECK:
PRIOR APPROVAL	500						5	et ,	477	le m	P	120	34	475			□ AU	BERTA	TIER 1			,									
ome exceptions apply please contact lab	ACCOUNTING	CON	TACT				SPE	CIAL REI	ORTIN	m G DB	BIL: IN	7 B G INS	43 TRUCT		7	1	# JAR	900	PD-	- C.	5. ?	د ار	Ű.								
DARD 5 BUSINESS DAYS	2014-218000000000						670,000			335510		200 mag	(((2005))	restra				nillesini	3033												
3 BUSINESS DAYS 2 BUSINESS DAYS																				#											
ENT 1 BUSINESS DAY	RELINOUISH	ED BY :	SAMPL	ĒΑ		0000-11	52			DAT	E:	33.	1.1	_ T	IME:			i i	RE	CEIVE	D BY	a		-85				3		-32	075
ER BUSINESS CAYS	USINESS CAYS 374 WITHERES								DOMMY 16/01/09							16.00															
CUSTODY	Power Seathern Street	CAREER SAN CONTRACTOR COST										DATE: TIME: DOWNAYY							RECEIVED BY:												
RECORD	RELINQUISHE	D BY:								DAT	E Pa	ae 11	of 1	T	IMF	10	10	59	RE	CEIVE	DBY	LAB	ORATO	OHY:	4	, k	3				

(A 3585

AquaTox Testing & Consulting Inc.

11B Nicholas Beaver Rd. Guelph ON N1H 6H9

Tel: (519) 763-4412 Fax: (519) 763-4419

Hyalella azteca Test Report

Survival and Growth 1 of 8

SAMPLE IDENTIFICATION

Work Order:

211960

Company:

Minnow Environmental Inc. (BMS Corp.)

Shipped By: Date Received: Fed Ex/Rd

Location:

Mississauga ON

Time Received:

2007-09-06

Sampling Method:

Composite

14:00

Sampled By:

K. Connors

Date Tested: Lab Storage:

2007-09-19 4±2 °C

Sample Volume:

1 x 5 L pail

Test Method:

Test for Survival and Growth in Sediment Using the Freshwater Amphipod Hyalella azteca.

Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/33,

December, 1997.

SAMPLE SUMMARY										
Sample Number	Sample Name	Description	Sample Date	Sample Time	Temp. on Arrival					
-	Control	Fine brown organic sediment; no odour.	2006-08-28	11:00	-					
19474	V27-A (d/s 01)	Dark brown with rocks, vegetation, mild odour.	2007-08-28	12:00	18.5 °C					
19475	V27-B (03)	Dark brown with rocks, no odour.	2007-08-28	12:00	18.5 °C					
19476	V27-C (04)	Dark brown with rocks, no odour.	2007-08-28	12:00	18.5 °C					
19477	V1	Brown with rocks, no odour.	2007-08-28	15:00	18.5 °C					

RESULTS

Survival Data (Treatment Average Survival, %)¹

Control	V27-A (d/s 01)	V27-B (03)	V27-C (04)	V1
100	100	100	100	100

¹Based on visual inspection of the data, samples sharing the same line are not significantly different from one another (i.e. they are considered to be homogenous, that is, from the same population) ($\alpha = 0.05$). Data did not meet the assumptions for normality and homogeneity of variance.

Growth Data (Treatment Average Weight, mg)²

V27-C (04)	Control	V27-B (03)	V27-A (d/s 01)	V1
0.275	0.297	0.307	0.357	0.410

² Tukey Method of Multiple Comparisons (Toxstat 3.5)^a: Samples sharing the same line are not significantly different from one another (i.e. they are considered to be homogenous, that is, from the same population) ($\alpha = 0.05$). All data sets met the assumptions for normality and homogeneity of variance.

POTASSIUM CHLORIDE REFERENCE TOXICANT DATA

Test Date:

2007-09-07

Historical Mean LC50:

 $145 \mu g/L$

Test Duration:

96 hours

Warning Limits ($\pm 2 \text{ SD}$):

79 - 265

LC50 (95% confidence limits): 187 μg/L (143 - 244)

Statistical Method:

Probit b

Organism Batch:

Ha07-09

Test Conducted By:

KJ/EJ/AS

The reference toxicant test was conducted as a water only test, as specified in the test method.

Work Order: 211960

Hyalella azteca Growth

SEDIMENT CHARACTERISTICS

Sample Number	Sample Name	TOC	Moisture	Particle Size (%)					
		(mg/kg)	Content (%)	Gravel	Sand	Silt	Clay		
_	Control	93000	72.0	0.00	42.00	58.00	<2		
19474	V27-A (d/s 01)	3700	7.2	48	51	0.3	0.9		
19475	V27-B (03)	3000	16.7	41	58	0.4	1.2		
19476	V27-C (04)	2400	20.9	29	70	0.4	1.1		
19477	Vl	1300	15.7	82	17	0.1	1.0		

TEST CONDITIONS

TEST COMD	TIONS	
Hyalella azteca	Test Vessel:	300 mL pyrex beaker
Ha07-09	Sediment Depth:	Approx. 3.5 cm
In-house culture	Sediment Volume:	100 mL per replicate
2-9 days old	Overlying Water Volume	: 175 mL per replicate
Static	Control/Test Water:	Well water (no chemicals added)
1	Control Sediment:	Long Point, Lake Erie
5	Test Aeration:	Yes (all replicates)
10	Test Aeration Rate:	2-3 bubbles per second
50	Photoperiod (light/dark):	16 h / 8 h
YCT (Batch 07-05)	Light Intensity:	646 - 692 lux
~2.7 mg dry solids daily	Test Method Deviations:	None
14 days		
	Hyalella azteca Ha07-09 In-house culture 2-9 days old Static 1 5 10 50 YCT (Batch 07-05) ~2.7 mg dry solids daily	Ha07-09 In-house culture 2-9 days old Static Control/Test Water: 1 Control Sediment: 5 Test Aeration: 10 Test Aeration Rate: 50 Photoperiod (light/dark): YCT (Batch 07-05) Light Intensity: ~2.7 mg dry solids daily Sediment Depth: Sediment Depth: Control Sediment: Test Aeration Rate: Test Method Deviations:

c as disclosed by the client

COMMENTS

The results reported relate only to the sample tested.

All test validity criteria as specified in the test method cited in this report were met.

No organisms exhibiting unusual appearance, behavior, or undergoing unusual treatment were used in the test.

REFERENCES

Date:

vvvv-mm-da

Approved by:

Project Manager

^a West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

^b Stephan, C. E. 1977. Methods for calculating an LC50. P. 65-84 In: P.L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

Work Order: 211960

Hyalella azteca Survival Data

Sample	Replicate	Number of Survivors (n=10)	Surviving Organisms (%)	Treatment Average Survival (%)	Standard Deviation	CV (%)
	A	10	100	100	0.0	0.0
	В	10	100			
Control	C	10	100			
	D	10	100			
	E	10	100		_	
	A	10	100	100	0.0	0.0
	В	10	100			
19474	C	10	100			
V27-A (d/s 01)	D	10	100			
	E	10	100			
	A	10	100	100	0.0	0.0
	В	10	100			
19475	C	10	100			
V27-B (03)	D	10	100			
	Е	10	100			
	A	10	100	100	0.0	0.0
	В	10	100			
19476	C	10	100			
V27-C (04)	D	10	100			
	E	10	100			
	A	10	100	100	0.0	0.0
	В	10	100			
19477	C	10	100			
Vl	D	10	100			
	Е	10	100			

Hyalella azteca Weight Data

Sample	Replicate	Foil Weight (mg)	Dry Weigt of Foil + Organisms (mg)	Number of Organisms Weighed	Mean Dry Weight of Organisms (mg)	Treatment Mean Dry Weight (mg)	Standard Deviation	CV (%)
	A	779.18	782.50	10	0.332	0.297	0.03	8.7
	В	766.05	768.75	10	0.270			
Control	C	770.20	773.26	10	0.306			
	D	766.30	769.03	10	0.273			
	E	783.01	786.07	10	0.306			
	A	772.70	775.83	10	0.313	0.357	0.05	14.5
	В	776.30	779.73	10	0.343			
19474	C	799.58	804.00	10	0.442			
V27-A (d/s 01)	D	770.42	773.64	10	0.322			
	Е	774.17	777.83	10	0.366			
	A	769.81	773.27	10	0.346	0.307	0.06	20.4
	В	775.14	777.91	10	0.277			
19475	C	764.58	768.45	10	0.387			
V27-B (03)	D	765.16	768.14	10	0.298			
	Е	767.44	769.69	10	0.225			
	A	766.32	768.94	10	0.262	0.275	0.05	18.7
	В	764.93	766.85	10	0.192			
19476	C	789.05	792.02	10	0.297			
V27-C (04)	D	771.49	774.74	10	0.325			
	Е	783.93	786.92	10	0.299			
	A	783.17	788.23	10	0.506	0.410	0.09	21.8
	В	780.38	784.62	10	0.424			
19477	C	789.62	793.23	10	0.361			
V1	D	782.02	784.85	10	0.283			
	E	804.57	809.31	10	0.474			

Work Order:

211960

Sample Number:

Control

Species:

Hyalella azteca

Organism Batch:

Ha07-09

Sediment pH:

7.3

Pore Water pH:

1.5

Pore Water Ammonia (mg/L):

7.9 10.5

Sample Treatment:

Dry sieved (2 mm)

Time Start:

Test Day	Day	Date	Temp. (°C)	Replicate	D.O. (mg/L)	Test Fed? (Y/N)	Analyst(s)	Conductivity (µmhos)	pH	Hardness (mg/l as CaCO ₃)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
0	Wed	2007-09-19	23.0	Composite	7.8	Y	KJ	509	8.4	260	3.00	0.33
1	Thurs	2007-09-20	24.0	-	_	Y	KJ		_		_	
2	Fri	2007-09-21	23.0	A	8.1	Y	KJ	_		_	_	
3	Sat	2007-09-22	24.0	-	_	Y	HR	_	_	-	_	
4	Sun	2007-09-23	23.0		_	Y	HR	_	-	-		
5	Mon	2007-09-24	23.0	В	8.3	Y	EJ	_	_	_	_	
6	Tues	2007-09-25	23.0	-	_	Y	KJ	_	_	_		
7	Wed	2007-09-26	23.0	С	7.7	Y	KJ	_	_	_	_	
8	Thurs	2007-09-27	23.0	_		Y	KJ	_		_		_
9	Fri	2007-09-28	23.0	D	7.8	Y	KJ	-	_		_	_
10	Sat	2007-09-29	23.0	_		Y	几	_	_	_	_	_
11	Sun	2007-09-30	23.0	_		Y	KJ	_	_	_	_	_
12	Mon	2007-10-01	23.0	A	7.6	Y	KJ		_	_		
13	Tues	2007-10-02	24.0		_	Y	KJ	_	_		_	_
14	Wed	2007-10-03	24.0	Composite	7.6	N	KJ	554	8.4	260	0.45	0.05

[&]quot;_" = not measured

Work Order:

211960

Sample Number:

19474

Species:

Hyalella azteca

Organism Batch:

Ha07-09

Sediment pH:

7.1

Pore Water pH:

7.5

Pore Water Ammonia (mg/L): 0.3

Sample Treatment:

Hand homogenized

Time Start:

Test Day	Day	Date	Temp.	Replicate	D.O. (mg/L)	Test Fed? (Y/N)	Analyst(s)	Conductivity (µmhos)	рН	Hardness (mg/l as CaCO ₃)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
0	Wed	2007-09-19	23.0	Composite	7.9	Y	KJ	453	8.4	230	0.75	0.08
1	Thurs	2007-09-20	24.0	_	_	Y	KJ		_	_	-	
2	Fri	2007-09-21	23.0	Α	7.8	Y	KJ	<u>-</u>			-	_
3	Sat	2007-09-22	24.0	_		Y	HR	_	_	-	-	
4	Sun	2007-09-23	23.0			Y	HR	_		_		
5	Mon	2007-09-24	23.0	В	8.4	Y	EJ	-	_		_	_
6	Tues	2007-09-25	23.0	-	_	Y	KJ	_	_	_		_
7	Wed	2007-09-26	23.0	С	7.9	Y	KJ	-	_			_
8	Thurs	2007-09-27	23.0		_	Y	KJ	_	-	-		
9	Fri	2007-09-28	23.0	D	7.6	Y	KJ	_	_	_	_	
10	Sat	2007-09-29	23.0		_	Y	JL	_	_		<u>-</u>	
11	Sun	2007-09-30	23.0	_	_	Y	KJ		_	_	_	_
12	Mon	2007-10-01	23.0	A	7.8	Y	KJ	-	_	_	_	_
13	Tues	2007-10-02	24.0			Y	KJ	-	_	_	_	_
14	Wed	2007-10-03	23.0	Composite	7.8	N	KJ	518	7.8	250	0.30	0.01

[&]quot;-" = not measured

Work Order:

211960

Sample Number :

19475

Species:

Hyalella azteca

Organism Batch:

Ha07-09

Sediment pH:

7.4

Pore Water pH:

7.5

Pore Water Ammonia (mg/L): 0.0

Sample Treatment:

Hand homogenized

Time Start:

Test Day	Day	Date	Temp. (°C)	Replicate	D.O. (mg/L)	Test Fed? (Y/N)	Analyst(s)	Conductivity (µmhos)	рН	Hardness (mg/l as CaCO ₃)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
0	Wed	2007-09-19	23.0	Composite	7.8	Y	KJ	454	8.4	210	0.25	0.03
1	Thurs	2007-09-20	24.0	_	_	Y	KJ	_	_	_	_	
2	Fri	2007-09-21	23.0	Α	8.2	Y	KJ	_	_	_	<u>–</u>	-
3	Sat	2007-09-22	24.0	_	_	Y	HR	_	-	_	_	-
4	Sun	2007-09-23	23.0	_	_	Y	HR	-	_	_		_
5	Mon	2007-09-24	23.0	В	8.4	Y	EJ	_	_	_	_	_
6	Tues	2007-09-25	23.0	_	_	Y	KJ	-	_	-		
7	Wed	2007-09-26	23.0	С	8.0	Y	KJ	_	_	_	_	-
8	Thurs	2007-09-27	23.0	_		Y	KJ	-		-	-	_
9	Fri	2007-09-28	23.0	D	7.4	Y	KJ	_	_	-	_	-
10	Sat	2007-09-29	23.0			Y	JL	-			-	_
11	Sun	2007-09-30	23.0	_	_	Y	KJ	_	_	_	_	_
12	Mon	2007-10-01	23.0	A	8.0	Y	KJ		_		_	_
13	Tues	2007-10-02	24.0	_	_	Y	KJ	_	_		_	
14	Wed	2007-10-03	23.0	Composite	7.6	N	KJ	508	8.3	260	0.40	0.04

[&]quot;_" = not measured

Work Order:

211960

Sample Number:

19476

Species:

Hyalella azteca

Organism Batch:

Ha07-09

Sediment pH:

7.1

Pore Water pH:

7.5

Pore Water Ammonia (mg/L): 0.0

Sample Treatment:

Hand homogenized

Time Start:

Test Day	Day	Date	Temp.	Replicate	D.O. (mg/L)	Test Fed? (Y/N)	Analyst(s)	Conductivity (µmhos)	рН	Hardness (mg/l as CaCO ₃)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
0	Wed	2007-09-19	23.0	Composite	7.8	Y	KJ	418	8.4	220	0.75	0.08
1	Thurs	2007-09-20	24.0	_		Y	KJ	_		_	_	_
2	Fri	2007-09-21	23.0	A	8.3	Y	KJ	_	_	_	_	_
3	Sat	2007-09-22	24.0	_	_	Y	HR	_	_	_	_	_
4	Sun	2007-09-23	23.0	_	_	Y	HR	_	_	_	_	_
5	Mon	2007-09-24	23.0	В	8.4	Y	EJ	_	_		-	_
6	Tues	2007-09-25	23.0	_	_	Y	KJ	_	_	_		_
7	Wed	2007-09-26	23.0	С	7.6	Y	KJ		_	_	_	_
8	Thurs	2007-09-27	23.0			Y	KJ	_	_	_	_	-
9	Fri	2007-09-28	23.0	D	7.7	Y	KJ	_	-			_
10	Sat	2007-09-29	23.0	_	_	Y	JL	_	_	_	_	_
11	Sun	2007-09-30	23.0	_	_	Y	KJ	_	_	_	_	_
12	Mon	2007-10-01	23.0	A	7.9	Y	KJ	_	_	_	_	_
13	Tues	2007-10-02	24.0	_	_	Y	KJ	_	_	_	_	_
14	Wed	2007-10-03	23.0	Composite	7.6	N	KJ	512	8.3	240	< 0.05	0.00

[&]quot;_" = not measured

Work Order:

211960

Sample Number:

19477

Species:

Hyalella azteca

Organism Batch:

Ha07-09

Sediment pH:

7.2

Pore Water pH:

7.1

Pore Water Ammonia (mg/L): 0.0

Sample Treatment:

Hand homogenized

Time Start:

Test Day	Day	Date	Temp.	Replicate	D.O. (mg/L)	Test Fed? (Y/N)	Analyst(s)	Conductivity (µmhos)	рН	Hardness (mg/l as CaCO ₃)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
0	Wed	2007-09-19	23.0	Composite	7.8	Y	KJ	446	8.4	210	0.00	0.00
1	Thurs	2007-09-20	24.0	_	_	Y	KJ			_	_	
2	Fri	2007-09-21	23.0	Α	8.3	Y	KJ		-	_	_	
3	Sat	2007-09-22	24.0	_	_	Y	HR	_			-	
4	Sun	2007-09-23	23.0	_	_	Y	HR	_	_	_	_	
5	Mon	2007-09-24	23.0	В	8.2	Y	EJ	_	-		_	
6	Tues	2007-09-25	23.0	_	_	Y	KJ	_				
7	Wed	2007-09-26	23.0	С	7.9	Y	KJ	_	_	_		_
8	Thurs	2007-09-27	23.0			Y	KJ			_	_	
9	Fri	2007-09-28	23.0	D	4.6	Y	KJ	_	_	_	_	-
10	Sat	2007-09-29	23.0		_	Y	JL	_	_	-	-	_
11	Sun	2007-09-30	23.0	_		Y	KJ	-	_	-	_	_
12	Mon	2007-10-01	23.0	Α	7.5	Y	KJ	_	_	_	_	_
13	Tues	2007-10-02	24.0	_		Y	KJ	_	_	_		_
14	Wed	2007-10-03	23.0	Composite	7.6	N	KJ	472	8.3	210	1.45	0.13

[&]quot;_" = not measured

Attention: Losley Novak

CHAIN OF CUSTODY RECORD

Î	Stantec Work Order No:
Ì	211960

Shinning	n Add	PARK:

Stantec Consulting Ltd.

11B Nicholas Beaver Road, RR #3 Guelph, Ontario Canada N1H 6H9

Voice:

(519) 763-4412

Fax:

(519) 763-4419

P.O. Nurmber: 2212	
Field Sampler Name (print): KIM (つらいいの R S	
Signature: KUM CONTONS	
Afflication: Minnow	
Sample Storage (prior to shipping): Wickel	
Custody Relinquished by:	
Date/Time Shipped:	

CHIONE MINION ENVIORINENTEL
6800 KATMAT RO
UNIT 13, MISSISSANGA ON
Phone: 905 - 567 - 877]
Fax: 905,567-6805
Contact: PATTI GRIZ

		Sample Identification					Analy	ses Requ	ested		Sa	mple	Method and Volume
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	Stante: Surapje	Temp. 00	Rairbow frout Single Concentration	Daphnia magna Single Concentration	Hyalella azteca 14-d Survival and Growth	Chironomus sp. '0-c Survival and Growth	Selenestrum capnoomutum Growth	Vibads eseed) seuci Vibads eseed) seuci	Grab	Composite	# of Containers and Volume (eg. 2 × 1L, 3 × 10L, etc.
Aug 18 07		V27-A (US 01)	19474	8.5			1				1	1/	1234
11	12:00	V27 -B (03)	19475	1			V				3		1 134
	12:60	Va7-C (04)	1947				1					V	1236
11	へがこ	VI	19477	+			1					V	1/231_
		Shippide											
		CONTE											
			 -								_		
<u> </u>						-		-		 	-	-	

For Lab Use	Only ()	
Repolved By:	Maininger (Stante	C.
Date:	(JACA 04 06	Ī
Time:	1400	
Storage Location:	walk in cooler	
Storage Terrep.(*C)	422°C.	

Please list any special requests or instructions:	
	<u> </u>

769 09-0kg

1)::1)::1

Toxicity Testing on the sample identified as R-7

Revised Toxicity Test Report

Report date: February 9, 2009

Submitted to:

Minnow Environmental Incorporated

Georgetown, ON

Burnaby Laboratory 8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

		P	age
TABI	LE O	F CONTENTS	I
1.0	INT	RODUCTION	1
2.0	MET	THODS	
	2.1	Quality Assurance/Quality Control (QA/QC)	2
3.0	RES	ULTS	6
	3.1	Quality Assurance/Quality Control	6
REFE	EREN	ICES	11
		LIST OF TABLES	
Table	e 1.	Summary of test conditions for the <i>Ceriodaphnia dubia</i> survival and reproduction	
Table	2.	Summary of test conditions for the <i>Pseudokirchneriella subcapitata</i> growth inhibitest	tion
Table		Summary of test conditions for the 96-h LC50 rainbow trout test.	
Table		Toxicity test results for the <i>Ceriodaphnia dubia</i> survival and reproduction test	
Table Table		Toxicity test results for the <i>Pseudokirchneriella subcapitata</i> growth inhibition test Toxicity test results for the 96-h LC50 juvenile rainbow trout (<i>O. mykiss</i>) test	
Table		Reference toxicant test results	
		LIST OF APPENDICES	
APPE	ENDI	X A – Ceriodaphnia dubia Toxicity Test Data	
APPE	ENDI	X B - Pseudokirchneriella subcapitata Toxicity Test Data	
APPE	ENDI	X C – Rainbow Trout Juvenile Toxicity Test Data	
APPE	ENDI	X D - Chain-of-Custody Form	

i

1.0 INTRODUCTION

Nautilus Environmental (Burnaby, BC) conducted sub-lethal and acute toxicity tests for Minnow Environmental on the sample identified as R-7, collected on August 21, 2008 and delivered to the Nautilus Environmental Laboratory in Burnaby, BC on August 25, 2008. The sample (collected in 20-L collapsible containers) was transported in coolers containing ice packs and stored in the dark at 4° C prior to testing. Toxicity testing was performed on the sample using the following tests:

- Ceriodaphnia dubia survival and reproduction
- 72-h *Pseudokirchneriella subcapitata* growth inhibition (formerly identified as *Selenastrum capricornutum*)
- 96-h Rainbow trout (Oncorhynchus mykiss) LC50

This report describes the results of these toxicity tests. Copies of raw laboratory data sheets and statistical analysis for each test species are provided in Appendices A to C. The chain of custody form is provided in Appendix D.

2.0 METHODS

Methods for the toxicity tests are summarized in Tables 1 to 3. Testing was conducted according to procedures described by Environment Canada (2000a, 2007a and 2007b).

Statistical analyses for all the tests were performed using CETIS (Tidepool Scientific Software, 2007).

2.1 Quality Assurance/Quality Control (QA/QC)

Nautilus follows a comprehensive QA/QC program to ensure that data generated are of high quality and scientifically defensible. Our QA program is designed to ensure that all tests are performed in accordance with well-established and approved methods (e.g., Environment Canada, US EPA).

To meet these objectives, Nautilus has implemented a number of quality control procedures that include the following:

- Negative controls to ensure that appropriate testing performance criteria are met;
- Positive control to assess the health and sensitivity of the test organisms;
- Use of appropriate species and life stage to meet the study objectives;
- Appropriate number of replicates to allow the proper statistical analyses;
- Calibration and proper maintenance of instruments to ensure accurate measurements;
- Proper documentation and record keeping to allow traceability of performance;
- Adequate supervision and training of staff to ensure that methods are followed;
- Proper handling and storage to ensure sample integrity;
- Procedures in place to address issues that arise during testing so that appropriate corrective actions can be implemented; and
- Rigorous review of data by a registered professional biologist to ensure they are
 of good quality and scientifically defensible prior to releasing to the client.

Table 1. Summary of test conditions for the *Ceriodaphnia dubia* survival and reproduction test.

Test organism Ceriodaphnia dubia

Test organism source In-house culture

Test organism age <24 hr old neonates produced within 12 hr

Test type Static renewal

Test duration $7 \pm 1 \text{ day}$

Test chamber 20 mL test tube

Test solution volume 15 mL

Test concentrations Seven concentrations, plus laboratory control

Number of replicates 10

Control/dilution water 20% Perrier water (hardness 80-100mg/L

CaCO₃)

Test solution renewal Daily
Test temperature $25 \pm 1^{\circ}$ C

Number of organisms/chamber 1

Feeding Daily, with 0.1 ml Pseudokirchneriella subcapitata

and 0.05 mL YCT

Light intensity 100 to 600 lux

Photoperiod 16 hours light/8 hours dark

Aeration None

Test protocol Environment Canada (2007a), EPS 1/RM/21

Test endpoints Survival and reproduction

Test acceptability criteria for criteria for ≥80% survival; ≥15 young per surviving

control

control; ≥60% of controls producing three or

more broods

Reference Toxicant Sodium chloride

Table 2. Summary of test conditions for the *Pseudokirchneriella subcapitata* growth inhibition test.

Test organism Pseudokirchneriella subcapitata

Test organism source In-house culture

3 to 7-day old culture in logarithmic growth

phase

Test type Static
Test duration 72 hours

Test organism age

Test chamber Microplate

Test solution volume $220 \mu L$

Test concentrations Seven concentrations, plus laboratory control

Number of replicates 4 for treatments; 8 for control

Control/Dilution water Deionized or distilled water

Test solution renewal None
Test temperature $24 \pm 2^{\circ}$ C

Number of organisms/chamber 10,000 cells/mL Light intensity 3600 to 4400 lux Photoperiod Continuous

Aeration None

Test protocol Environment Canada (2007b), EPS 1/RM/25

Test endpoint Algal cell growth inhibition

≥ 16-fold increase in number of algal cells; no Test acceptability criteria for control

trend; and $CV \le 20\%$

Reference toxicant Zinc

Table 3. Summary of test conditions for the 96-h LC50 rainbow trout test.

Test organism Oncorhynchus mykiss

Test organism source Commercial hatchery

Test organism age Juveniles
Test type Static

Test duration 96 hours

Test chamber 18.2 L glass aquarium

Test solution volume 10 L

Test concentrations Five concentrations, plus laboratory control

Number of replicates 1

Control/Dilution water Municipal dechlorinated water

Test solution renewal None

Test temperature 15 ± 1 °C

Number of organisms/chamber Ten
Feeding None

Light intensity 100 to 500 lux

Photoperiod 16 hours light/8 hours dark

Aeration $6.5 \pm 1 \text{ mL/min/L}$

Test protocol Environment Canada (2000b), EPS 1/RM/13

Test endpoint Survival

Test acceptability criterion for control Survival $\geq 90\%$

Reference toxicant Sodium dodecyl sulphate

3.0 RESULTS

Results of the toxicity tests are summarized in Tables 4 to 6. The *C. dubia* test did not show any significant adverse effects on survival; the LC50 for survival was >100%. Reproduction was inhibited in all of the test concentrations, with the exception of the lowest (1.56%) relative to the negative control. However, the dose-response observed in this test was unusual, with a larger adverse effect occurring in the intermediate concentrations than in the full-strength sample. This pattern of effect might be explained by a toxicant that was present at concentrations significantly exceeding its rate of solubility. Alternatively, this type of pattern could be associated with the presence of microorganisms in the sample that adversely affected the test organisms, or by some interaction between the sample and dilution water.

Thus, some or all of the observed effect may be an artifact associated with the test, rather than being related to a true toxicological property of the sample. Despite the reduced reproduction observed in most of the test concentrations, the lack of dose-response and limited overall adverse effect (i.e., none of the concentrations caused more than a 50% reduction in reproduction), tends to suggest that it is unlikely that reduced reproduction was caused by a toxicant. Future tests with samples from this site should be evaluated carefully to establish whether this pattern is repeated. Calculated NOEC, LOEC and IC25 values are reported for this test in Table 4; however, these results should only be considered in the context of the discussion provided above.

The 72-h *P. subcapitata* toxicity test did not show any significant inhibitory effects on growth. All the test concentrations exhibited enhanced growth relative to the negative control. The IC25 and IC50 were both >95.2%, the highest concentration tested.

The LC50 in the 96-h rainbow trout toxicity test was >100%, although 30% mortality was observed in the full-strength sample.

3.1 Quality Assurance/Quality Control

The health history of the test organisms used in the exposures was acceptable and met the requirements of the Environment Canada protocols. The tests met all control acceptability criteria and water quality parameters were within acceptable ranges specified in the respective test protocol.

Results of the reference toxicant test conducted during the testing program are summarized in Table 7. Results of these tests were all within the acceptable ranges of organism performance (mean ± two standard deviations), based on historical results obtained by the laboratory. These comparable results verify the acceptable quality and similar sensitivity of organisms used in this study.

The *C. dubia* and *P. subcapitata* tests were initiated on August 26, 2008, which was five days after sample collection, and longer than the three days recommended in the test protocols. The delay associated with initiation of the tests was caused by transportation time for the samples.

Table 4. Toxicity test results for the *Ceriodaphnia dubia* survival and reproduction test.

		Reproduction
Concentration (%v/v)	Survival (%)	(No. of Young/Female)
		(Mean ± SD)
Control	100	16.9 ± 2.2
1.56	100	16.8 ± 1.5
3.12	100	$13.3 \pm 3.3*$
6.25	100	12.7 ± 4.5*
12.5	100	$11.2 \pm 3.9*$
25	100	8.8 ± 3.0 *
50	100	$9.2 \pm 3.9*$
100	100	$11.7 \pm 3.2*$
T . 1	Survival	Reproduction
Test endpoint	(% v/v)	(% v/v)
NOEC	100	1.56 - See text
LOEC	>100	3.12 - See text
LC50	>100	
IC25 (95% CL)		6.3 (2.6 - 14.0) - See text
IC50		>100

Asterisks (*) indicate treatments that are significantly different from the control.

CL = Confidence Limits.

NOEC = No Observed Effect Concentration.

LOEC = Lowest Observed Effect Concentration.

LC = Lethal Concentration.

IC = Inhibition Concentration.

SD = Standard Deviation.

Table 5. Toxicity test results for the *Pseudokirchneriella subcapitata* growth inhibition test.

Concentration (% v/v)	Cell Density (x 10 ⁴ cells/mL) (Mean ± SD)
Control	22.5 ± 2.9
1.48	21.8 ± 1.7
2.95	22.5 ± 2.9
5.95	25.2 ± 6.6
11.9	28.5 ± 2.6
23.8	31.8 ± 6.2
47.6	62.2 ± 15.5
95.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Test on Instal	Cell Density
Test endpoint	(% v/v)
NOEC	95.2
LOEC	>95.2
IC25	>95.2
IC50	>95.2

NOEC = No Observed Effect Concentration.

LOEC = Lowest Observed Effect Concentration.

Table 6. Toxicity test results for the 96-h LC50 juvenile rainbow trout (*O. mykiss*) test.

Concentration (% v/v)	% Survival	
Control	100	
6.25	100	
12.5	100	
25.0	100	
50.0	100	
100.0	70	
Test endpoint	Survival (% v/v)	
LC50	>100	

LC = Lethal Concentration.

IC = Inhibition Concentration.

SD = Standard Deviation.

 Table 7.
 Reference toxicant test results.

Species	Endpoint	Historical range (mean ± 2 SD)	CV(%)	Date Setup
C. dubia	Survival (EC50): 1.8 g/L NaCl Reproduction (IC50): 1.2 g/L NaCl	1.5 ± 0.8 1.1 ± 0.5	27 21	August 14, 2008
P. subcapitata	Growth (IC50): 17.4 μg/L Zn	16.1 ± 13.4	42	August 26, 2008
O.mykiss (juvenile)	Survival (EC50): 5.0 mg/L SDS	5.4 ± 2.0	19	August 8, 2008

REFERENCES

Environment Canada. 2000. Biological test method: reference method for determining acute lethality of effluents to rainbow trout. Environmental Protection Series. Report EPS 1/RM/13, Second Edition, December 2000, including May 2007 amendments. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 23 pp.

Environment Canada. 2007a. Biological test method: test of reproduction and survival using the cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition, February 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 74 pp.

Environment Canada. 2007b. Biological test method: growth inhibition test using the freshwater alga. Environmental Protection Series, Report EPS 1/RM/25. Second Edition, March 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 53 pp.

Tidepool Scientific Software. 2007. CETIS comprehensive environmental toxicity information system, version 1.5.0D. Tidepool Scientific Software, McKinleyville, CA. 222 pp.

APPENDIX A - Ceriodaphnia dubia Toxicity Test Data

Nautilus Environmental

Ceriodaphnia dubia Summary Sheet

Client:	Minnous Environmental	Sta	rt Date/Time	: 6m.a6l	OBE 1115h
Work Order No.:	08198		Set up by		
WORK Order 110					· · · · · · · · · · · · · · · · · · ·
Sample Informatio	n:				
			*		
Sample ID:					
Sample Date:	Avg. 21/08				
Date Received:	AUQ 25/08				
Sample Volume:	a x aol				
•					
Test Organism Info	ormation:				
Description of No. 1		2000	1		
Broodstock No.: Age of young (Day (11.	<u> </u>		2	·
• • • • •	st 3 broods of previous 7 o	· · · · · · · · · · · · · · · · · · ·	w/m 12-1		
Mortality (%) in prev	•	·	3.	 _	
Avg. No. of young in			8/		
	, , , , , , , , , , , , , , , , , , ,				
NaCl Reference To	xicant Results:		·		
	DECT				
Reference Toxicant			<u>.</u>		
Stock Solution ID:	O8 NOO3	·	_		
Date Initiated:	Aug. 14108	· · · · · · · · · · · · · · · · · · ·	•		
•					
7-d LC50 (95% CL):		•			
7-d IC50 (95% CL):	<u>1.2 (1.1,1.3)</u>	g/L NOCL			
~ 050 5 6		- 1 - O - 44		0100	27
	Toxicant Mean ± 2 SD:	1,5 ± 0,8 g1L		_CV (%):	<u>27</u>
7-a 1C50 Reference	Toxicant Mean ± 2 SD:	11 ± 0.5 g/L	Naci	_CV (%):	31
T		O	-1	T	\
Test Results:		Surviva	ai		Reproduction
	NOEC %(v/v)	(00	· ·		1.66
	LOEC %(v/v)	6d. <			3.12
	LC50 %(v/v) (95% CL)	Go/ T		1 4 5	<u>, a profesionestas</u>
	IC25 %(v/v) (95% CL)	A CONTRACTOR	a supposed to	613	(26-140)
	IC50 %(v/v) (95% CL)	- 10 A	Transfer for		7/00
	<u> </u>			<u> </u>	
Reviewed by:	_ JRE	·	Date revi	iewed: 2	7/10/08

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client: Sample ID:		Min	now)	garge-kin-i		- -	Sta	rt Date & Sto Test Sp	& Time: p Date:		Aug !	11/08	@ [[15h
Work Order #:		08	198			-		Test Sp	ecies:	Ceriod	aphnia (dubfa		
(8/3/2)								ays						
Concentration	0	Τ	1		2		3				5	T	 6	7
Concentiation	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	245	25.8	247	153	251	1/2 6	24/5	25-1	25.2	2497	246	2/2	*********	THE CO.
DO (mg/L)	8-1	802	\$2	2.129	£3	79	33	78	8.1	26	8.1	78	Ì	
pH	8-1	8.1	8.1	71	81	80	8.3	29	8.0	81	81	38		
Cond. (µS/cm)	25%	21	<u> </u>		2/5		N3	7	<u>~7</u>	-	206	208		
Initials	m		<u>~</u>		<u></u>		 	Ge	m	An	~		/-	
IIIIuais	<u> </u>		<u> </u>	Δ-	<u> </u>	_/}_	1~		_622	Ţ ₄₁				
	T						D.		-					
Concentration	0		1	Τ -	 2		3	ays	4				——— 6	7
Concentration	init.	old	new	old	new	· And	Partie 19	 	100 FB 120 TO	old	19, 3, 8, 9, 5	old.	new	final
Townsetting (°C)		25) g				old	new	old	25-2		new	1	new	IIII
Temperature (°C)			247	203	250	24/5	250	77	i	74.9	24.5	257		
DO (mg/L)	813	8-1	-	8.1	82	79	82	8.0	8.1	80	5.1	76		
pH	23/	8!	82	-	ا <u>پر</u> طد	8.0	\$2	20				78		
Cond. (µS/cm)	25%	-2	12	2	- 	7	5.3 			200	1 	111		
Initials	A	1	~	<u>~</u>	A			(Fr	Gaz	~	<u> </u>		L/	
	1					-								
125		T						ys				Τ	<u> </u>	
Concentration	0		1		2		3	4	<u> </u>		5	()	7
	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.8	258		257	243	245	24.7	5C:1	22.5	<i>14</i> 5	24.3	25.2		
DO (mg/L)	5.3	80	حرع	79	sr.	310	22	7.6	8.2	77	81	77		
рН	78	8.0	8.1	70	1.8	8-1	12	8-0	8.)	~ J	81	77		
Cond. (µS/cm)	لا در	20	4	201		19	9	20		204		201	- /	
Initials	~		A-	Λ	.00	M-		Gu	le	M	(5)	~	/	
·		<u> </u>												
ioa							Da	ys		·		_		
Concentration	0		1		2		3	4	1		5		6	7
	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	25.5	2578	24.4	253	24.2	24.5	24.2	251	26.5	243	24.1	ダジル		
DO (mg/L)	82	8,0	78	78	81	8,3	8,1	76	8.3	28	F13	76		1
рН	76	マオ	79	8-2	79	8.1	815	8.0	80	80	8D	20		
Cond. (µS/cm)	166	161		16	f	16	2		3	1	62	164		
Initials	'n	c	۲	2	6	~	_	Ch	de	<i>p</i> ~	m	~		
												1.0		
		•												i
	Con	trol	16	રું						Analys	ts:	DEL	-, AND	Ea
Hardness*	100	9	~7	4						_			7 7	
Alkalinity*	J.)	(_	6						Review	red by:	N)	ł.	
* mg/L as CaCO3									D	ate rev	iewed:		23/10	108
			1	11	ΛΑ :	m					•			_
Sample Description:			119	iht y	elland	<i>- U</i>	<u>esa</u>							
Comments:				0			· ·							

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

	= 1 2 W 4 8	4	<u> </u>
	- 1/1000	2	
ر ا	- 112016	<u>+</u>	
ا اد ا	= \\\ \\ \\ \\	1	
Shr.			
		17 12	
AUS 36108 @ 1115hr5			
300	m 7 / 2 tp 0	To	
PLC JUST	" o) / 4 T r+	, <u>c</u>	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	di con di	12	
ite & Time: ite & Time: Set up by:	Concentration:	(2)	Concentration: A B C C C C C C C C C C C C C C C C C C
Start Date & Time: Stop Date & Time: Set up by:	بمراجع والمراجع والمراجع والمنافئة المنطقة والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	Ĩ	
tart D top D	F F 6 8 F 4	€	
ທິທ	2/6/6	Ĭ.	= 1 2 2 4 2 4 = -1 /2 CV = 0
	- 7 7 22 100	80	
	= 1 / 20 1ca	8	G= / 2012 = = = = = = = = = = = = = = = = = = =
	00 / 2m 34	ي.	0) 7 43 4 6 0 7 7 2 9 4 6
3	- 1 34 100	T	m 1 2 2 8 m 1 2 20 4 2 0
	w / 10 m	2	- t.c. w - / / m 2 c. t/ / m
9	0))) 200 60	5	0/17424 10 07/102
		12	
	m L C C C B	180	The Company of the Co
	Concentration: A B B C C C C C C C C C C C C C C C C C	<u> </u>	Concentration: Concentration: A B C C C C C C C C C C C C C C C C C C
	D Z C Z C Z		
	-35,00	3	= < 3 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
		9/	-13020 -13030
111	= 1 24 th 0	+	
		5 20	
		+7	
		8	
3 3		(9	
Hinnaus R3 OB 15'8	0 74 MH	5	0 7 7 0 7 2 0 7 3 2 0
- 4	agour de la constante de la co	5	
 	Days Concentration: A B C C C C C C C C C C C C C C C C C C	2	Days Concentration: 2
Client: Sample ID: Work Order:	R 7 > 3 4 70	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Client: Sample Work O	Days 2 4 4 7 7	Total	Days 1

Date reviewed:

Nautilus Environmental

Reviewed by:

Sample Description: Comments:

Version 2.0 Issued January 23, 2008

Client: Morrow En.

W.O.#: 98198

Hardness and Alkalinity Datasheet

			Alkalinity				Hardnes	<u> </u>	
Sample ID	Sample Date	Sample Volume (mL)	HCL/H ₂ SO ₄ used to pH 4.5	(mL) of 0.02N HCL/H₂SO₄ used to pH 4.2	Total Alkalinity (mg/LCaCO ₃)	Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Technicia
27	Sept 16/08	50.0	3.4	3,5	66	₹6.000 × 1000 ×	37	74	BPL
	300,100					3070		13-	
	,								
·			<u>.</u>				<u> </u>		
				_			1		
		1			 			_	
			<u> </u>						
		<u> </u>					ļ .		
·									
					·		,		
·									
	·				,	•		•	
							_		
	-								
			†						
		-							
.		Nation:	<u> </u>	1			<u> </u>		<u> </u>
		notes:	Azzs	<u> </u>					
			.	•	<u> </u>	_			
			. 1			9	7-9-71		
Reviewed by:		50	<u>u</u>		_ Date Review	/ed:	47/10 /08		

Report Date:

11 Sep-08 16:22 (p 1 of 2)

Link/Link Code:

08-5585-7190/wo08198

Ceriodap	hnia 7-d Survival an	d Reprod	uction T	est			·		N	autilus Env	vironmental
Analysis Analyzed			dpoint: alysis:	Reproduction Linear Interpo	lation (ICPI	N)		ris Version: cial Results	CETISv : Yes	1.5.0	
Receive D	ate: 21 Aug-08	Ma So	de: terial: urce: ation:	406683333 Industrial Efflu R7	ient		Clie Pro	ent: Mini	now		
Linear Int	erpolation Options					<u></u>				_	
X Transfo				Resamples	Exp 95						
Log(X + 1)	Linear	579 	951	200	Yes	Two	-Point Interp	oolation -			
Point Est	imates										
% Effect	Conc-% 95%	LCL 95	% UCL							•	
5	1.833 0.608	34 2.2	77				_				
10	2.178 1.569	3.1	67								
15	2.565 1.932	2 6.5	69								
20	2.999 2.234										
25	6.326 2.622										
40	22.04 8.476					•		,			
50	> 100 N/A	N/A	<u> </u>	<u> </u>							
Reproduc	tion Summary				C	alculated Va	ariate			_	
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%		
0	Negative Control	10	16.9	13	20	0.4148	2.234	13.22%	0.0%		
1.56		10	16.8	15 ,	19	0.274	1.476	8.78%	0.59%		
3.12		10	13.3	5	17	0.6193	3.335	25.08%	21.3%		
6.25		10	12.7	3	18	0.8444	4.547	35.81%	24.85%		
12.5		10	11.2	3	. 16	0.7208	3.882	34.66%	33.73%		
25		10	8.8	4	14	0.5591	3.011	34.22%	47.93%		4
50		10	9.2	4	15	0.7208	3.882	42.19% 27.04%	45.56% 30.77%		
100		10	11.7	8 	18	0.5875	3.164 ————	27.04%	30.77%		<u> </u>
Reproduc	tion Detail										
Conc-%	Control Type	Rep 1	Rep 2		Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	13	19	15	16	19	18	15	20	16	18
1.56		17	18	15	15	19	17	16	18	18	15
3.12		14	15	12	15	13	17	12	5	14	16
6.25		10	16	18	14	13	13	16	16	8	3
12.5		10	11	7	15	12	14	13	3	16	11
25		14	8	8	7	12	4	7	12	7	9
50		13	11	. 6	13	15	8	4	11	6	5
100		9	18	13	15	. 13	· 9	9		12	8

Report Date: Link/Link Code: 11 Sep-08 16:22 (p 2 of 2)

08-5585-7190/wo08198

nalyst:_____QA:

Report Date:

11 Sep-08 16:22 (p 1 of 2)

Link/Link Code:

08-5585-7190/wo08198

Ceriodaphnia	a 7-d Survival aı	nd Reprod	duction Test		_					Nautilus En	vironmental
Analysis No: Analyzed:	15-0701-2805 11 Sep-08 16:		•	Survival Ra		ables		CETIS Versio Official Resul		v1.5.0	
Sample No: Sample Date Receive Date Sample Age:	:	M Se	•	06683333 dustrial Efflu 7	ient			Client: M Project:	innow		
Data Transfo	rm	Zeta	Alt Hyp	Monte Ca	ırlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransforme	d		C > T	Not Run		100	> 100	#Error	1	N/A	
Fisher Exact	Bonferroni-Holr	n Test									
Control	vs Conc-%		Test Stat	P-Value	Decision	n(0.05)					
Negative Conf	trol 1.56		1.0000	1.0000		nificant Eff	ect				
	3.12		0.5000	1.0000	Non-Sig	nificant Eff	ect				
	6.25		1.0000	1.0000	Non-Sigi	nificant Eff	ect				
	12.5		0.5000	1.0000	Non-Sigi	nificant Eff	ect				
•	25		1.0000	1.0000	Non-Sigi	nificant Eff	ect				
	50		1.0000	1.0000	Non-Sigi	nificant Eff	ect				
	100		1.0000	1.0000	Non-Sigi	nificant Eff	ect				
Data Summa	ry	-									
Conc-%	Control Type	No-Resp	Resp	Total							
0	Negative Contr	10	0	10				**			
1.56		10	0	10							
3.12		9	1	10							
6.25		10	0	10							
12.5		9	1	10							
25		10	0	10							
50		10	0.	10							
100		10	0	10							
6d Survival R	late Detail										 -
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	1	1	1	1	1	1	1	1	1	1
1.56		1	1 .	1	1 .	1	1	1	1	1	1
3.12		1	1	1	1	1	1	, 1	1	1	0
6.25		1	1	1	1	1	1	1 .	1	1	1
12.5		1	1	1	1	1	1	1	1	1	0
25		1	1	1	1	1	1	1	1	1	1
50		1 .	1	1	1	1	1	1	1	1	1
100		1	1	1	1	1	1	1	1	1	1

Analytical Report

Report Date:

11 Sep-08 16:22 (p 2 of 2)

Link/Link Code:

08-5585-7190/wo08198

িশ্যodaphnia 7-d Survival and Reproduction Test **Nautilus Environmental** Analysis No: 15-0701-2805 Endpoint: 6d Survival Rate **CETIS Version:** CETISv1.5.0 Analyzed: 11 Sep-08 16:13 Analysis: STP 2x2 Contingency Tables Official Results: Yes Graphics 0.9 0.8 0.6 0.5-0.4 , 0.3 0.2-0.1 0.0 3.12 12.5 1.56 6.25 Conc-%

CETIS Summary Report

Report Date:

11 Sep-08 16:22 (p 1 of 2)

Link/Link Code:

08-5585-7190/wo08198

Ceriodanhnia		nd Reproc	fuction T					Link/Link		lautilus En	190/wo0819
											vironnenta
Start Date:	19-5750-5473 26 Aug-08 11: 01 Sep-08 13: 6d 2h	15 P 00 S	est Type: rotocol: pecies: ource:	Reproduction- EC/EPS 1/RM Ceriodaphnia	V21		Dil Brii	Water: ne:			
Sample No: Sample Date: Receive Date Sample Age:		M Se	ode: aterial: ource: tation:	406683333 Industrial Efflu R7	uent		Clie Pro	ent: Mi ject:	nnow		
Comparison :	Summary	-						-			
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			
15-0701-2805	6d Survival Ra	ite		100	0	#Error	N/A	Fisher Ex	act/Bonferro	ni-Holm Te	st
Point Estimat	e Summary								-		
Analysis No	Endpoint			% Effect	Conc-%	95% LCL	95% UCL	Method			
18-7227-3257				SNEC	24.54	7.189	41.9		Regression		
				. 10	32.01	14.23	49.78			,	
				15	48.01	26.67	69.35				
				20	64.02	36.79	91.25				
				25	80.02	45.75	114.3				
				40	128	70.13	185.9				
•				50	160	85.62	234.5				
10-0555-4524	Reproduction			5	1.833	0.6084	2.277	Linear Int	erpolation (I	CPIN)	
	·			10	2.178	1.569	3.167				
				15	2.565	1.932	6.569				
				20	2.999	2.234	8.626				
				25	6.326	2.622	14.03				
				40	22.04	8.476	N/A				
			•	50	> 100	N/A	N/A				
6d Survival R	ate Summary				,		· · · ·				
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	10	1	1	1	1	1	0	0	0.0%	0.0%
1.56	•	10	1	, 1	1	1	1	0	0	0.0%	0.0%
3.12		10	0.9	0.7819	1	0	1	0.05774	0.3162	35.14%	10.0%
6.25		10	1	1	1	1	1	0	0	0.0%	0.0%
12.5		10	0.9	0.7819	1 `	0	1	0.05774	0.3162	35.14%	10.0%
25		10	1	1	1	1	1	0	0	0.0%	0.0%
50		10	1	. 1	1	1	1	0	0	0.0%	0.0%
100		10	1	<u> </u>	_1	1	1	0	0	0.0%	0.0%
Reproduction	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	10	16.9	16.07	17.73	13	20	0.4078	2.234	13.22%	0.0%
1.56		10	16.8	16.25	17.35	15	19	0.2694	1.476	8.78%	0.59%
3.12		10	13.3	12.05	14.55	5	17	0.6089	3.335	25.08%	21.3%
6.25		10	12.7	11	14.4	3	18	0.8302	4.547	35.81%	24.85%
12.5		10	11.2	9.751	12.65	3	16	0.7087	3.882	34.66%	33.73%
25		10	8.8	7.676	9.924	4	14	0.5497	3.011	34.22%	47.93%
50		10	9.2	7.751	10.65	4	15	0.7087	3.882	42.19%	45.56%
100		10	11.7	10.52	12.88	8	18	0.5777	3.164	27.04%	30.77%

Report Date: Link/Link Code: 11 Sep-08 16:22 (p 2 of 2)

08-5585-7190/wo08198

											750/11000150
Ceriodaphi	nia 7-d Survival an	d Reprod	luction Tes	t						Nautilus En	vironmental
6d Surviva	l Rate Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	1	1	1	1	1	1	1 .	1	1	1
1.56		1	1	1	1	1	1 '	1	1	1	1
3.12		1	1	1	1	1	1	1 .	0	1	1
6.25	•	1	1	1	1	1	1	1,	1	1	1
12.5		1	1	1 .	1	1	1	1	0	1	1 ·
25		1	1	1 .	1 `	1	1	1	1 .	1	1
50		1	1	1	1	1	1	1	1	1	1
100		1_	1	1	1_	_1	1 _	1_	_1	_ 1	1
Reproducti	ion Detail				_						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	13	19	15	16	19	18	15	20	16	18
1.56		17	18	15	- 15	19	17	16	18	18	15
3.12		14	15	12	15	13	17	12	5	14	16
6.25		10	16	18	14	13	13	16	16	8	3
12.5		10	11	7	15	12	14	13	3	16	1 1
25		14	8	8	7	12	4	7	12	7	9
50		13	11	6	13	15	8	4	11	6	5
100		9	18	13	15	13	9	.9	11	12	8

nalyst:_____ QA: 0727/08

CETIS™ v1.5.0D

Report Date:

09 Oct-08 17:18 (p 1 of 2)

Link/Link Code:

08-5585-7190/wo08198

Ceriodaphnia	7-d Survival a	nd Rep	roduction Tes	t			-		N	autilus Er	nvironmental
Analysis No: Analyzed:	17-5633-4261 09 Oct-08 17:	16	•	Reproduction Parametric-Co	ontrol vs Tre	atments		TIS Versior		1.5.0	
Sample No: Sample Date: Receive Date: Sample Age:	:		Material: Ir	06683333 ndustrial Efflu ?7	ent			ent: Mi oject:	nnow		
Data Transfor		Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed	<u> </u>		C > T	Not Run		1.56	3.12	2.206	64.1	21.0%	
Dunnett's Mu	tiple Comparis	on Tes	<u></u>			<u> </u>					
Control	vs Conc-%		Test Stat	t Critical	MSD	P-Value	Decision	n(5%)			
Negative Cont	rol 1.56	-	0.06735	2.39	3.543	0.8573	Non-Sign	ificant Effec	t .		_
	3.12*		2.425	2.39	3.543	0.0458	Significa				
	6.25*		2.829	2.39	3.543	0.0170	Significa	nt Effect			
	12.5*		3.839	2.39	3.543	0.0008	Significa	nt Effect			
*	25*		5.456	2.39	3.543	0.0000	Significa	nt Effect			
}	50*		5.186	2.39	3.543	0.0000	Significar	nt Effect			
_	100*		3.502	2.39	3.543	0.0025	Significa	nt Effect	<u> </u>		
ANOVA Table			_			,		**	·	-	
Source	Sum Sq	uares	Mean Square	DF	F Stat	P-Value	Decision	(5%)			
Between	653.95		93.42142	7	8.476	0.0000	Significa	nt Effect			
Error	793.6		11.02222	72							
Total	1447.55		104.4436	79 			<u> </u>				
ANOVA Assur	nptions		<u>_</u> _								
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett E	quality	of Variance	12.46	18.5	0.0863	Equal Va	riances			
Distribution	Shapiro-	Wilk No	rmality	0.9735		0.0952	Normal D	istribution			
Reproduction	Summary										
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min.	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	10	16.9	16.03	17.77	13	20	0.4221	2.234	13.2%	0.0%
1.56	-	10	16.8	16.23	17.37	15	19	0.2789	1.476	8.78%	0.59%
3.12		10	13.3	12.01	14.59	5	17	0.6303	3.335	25.1%	21.3%
6.25		10	12.7	10.94	14.46	3	18	0.8594	4.547	35.8%	24.9%
12.5		10	11,2	9.695	12.71	3	16	0.7335	3.882	34.7%	33.7%
25		10	8.8	7.632	9.968	4	14	0.569	3.011	34.2%	47.9%
50		10	9.2	7.695	10.71	4	15	0.7335	3.882	42.2%	45.6%
100		10	11.7	10.47	12.93	8	18	0.5979	3.164	27.0%	30.8%

Reproduction Detail

Report Date:

09 Oct-08 17:18 (p 2 of 2)

Link/Link Code:

08-5585-7190/wo08198

Ceriodaphnia	7-d Survival and Re	production T	est		Nautilus Environmental
Analysis No: Analyzed:	17-5633-4261 09 Oct-08 17:16	•	Reproduction Parametric-Control vs Treatments	CETIS Version: Official Results:	CETISv1.5.0 Yes

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	20	19	19	18	18	16	16	15	15	13
1.56		19	18	18	18	17	17	16	15	15	15
3.12		17	16	15	15	14	14	13	12	12	5
6.25		18	16	16	16	14	13	13	10	8	3
12.5		16	15	14	13	12	11	11	10	7 ·	3
25		14	12	12	9	8	8 🐷	7	7	7	4
50		15	13	13	11	11	8	6	6	5	4
100		18	15	13	13	12	11	9	9	9	8

APPENDIX B - Pseudokirchneriella subcapitata Toxicity Test Data

Pseudokirchneriella subcapitata Summary Sheet

Client;	MINNOW ENVRONMENTAL	Start Date:	Aug 26, 2018
Work Order No.:	08197	Set up by:	ART / JUT
Sample Information	: :		
Sample ID: Sample Date: Date Received: Sample Volume:	R-7 Aug 21 M8 2x20 L		
Test Organism Info	rmation:		
Culture Date: Age of culture (Day 0	hyro, n	M8	
Zinc Reference Toxi	cant Results:		
Reference Toxicant II Stock Solution ID: Date Initiated:	072n01 Syr 5, 2018		·
72-h IC 2 5 (95% CL):	11.0 (7-2-17-0)	14/LZn	
72L 50 7Ld IC26 Reference T	oxicant Mean ± 2 SD: 16-1 ± 1	3·4CV(%): <u>42</u>
		•	
Test Results:		Alga	l Growth
	NOEC %(v/v)	95.2	
Г	_OEC %(v/v)	795.2	
	C25 %(v/v) (95% CL)		•
	C50 %(v/v) (95% CL)	>95.7 295.7	
Reviewed by:	The	Date reviewed:	23/10/08

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	Minnow			_	Setup by	/ :	JIT/GEL ART			
Sample ID:	R	-7	· · ·	_	Test Dat	e/Time:	Luci	1st 20	5,2008	1645
Work Order No.:		8197		_	Test Spe	ecies:	Pseudokir	chneriella su	ıbcapitata	
Culture Date:	Lugui	stzola	Age of C	ulture:	62	_Culture He	alth:	G00	<u>J</u>	
Culture Count:	1635	2682	Average	658.5	Culture	Cell Density	(c1):	6581	× 104	
	v1 =	220,000 c	cells/ml x	100 ×104	ml celis/ml	- =	33.4	mt 3	3.3 m	<u>/</u>
Time Zero Counts	:	1 22	221	_	Average:	2(.5	·	<u>.</u>	
No. of Cells/mL:	51.1	×104				# cells/mL	•	10 μL = ^C	7,773	
Concentration		Water Qua	ality Meas	urement	s	Micro	onlates rot	ated 2X per	day?	
%(1/1	рН		Temp) (°C)	1	I I I I I I I I I I I I I I I I I I I		ated 2x per		
	0 h	0 h	24 h	48 h	72 h	0 h	24 h	48 h	72 h	
Control	7.1	22.3	x.2	25.3	24.8	V		VV	VV	
1.48	7.1	22.3	25.7	25.3	24.8		1	1/	VV	
2.95	7.1	22.3	25.2	25.3	24.8	/	11	1 ~	VV	
5.9	7.1	22.4	25.2	25.3	24.8		///	11	VV	
11.9	7.1	22.4	24.2			V	1,1	VV	V. V	
23.8	7.2	22.4	25.2	25.3	248		1	1	VV	
47.6	7.2	22.4	25.2	25.3	248		VV	1/	VV	
95.2	7.3	22.4	25.2	25.3	248		11		VV	
								_		
,									. —	ı
Initials	12	105	JUT	507	M	TLT	50	JU (en	
Initial control pH:	Well 1:	6.	8		Well 2:	6.8				
Final control pH:	Well 1:	<u> </u>	8		Well 2:	6.6				
Light intensity (lux	<u>): 3</u>	670			Date mea	sured:	Lupe	ust 26	,2008	
Sample Descriptio	n:	Clo.	as u	ith s	light	yello	U time	e		
Comments:					~ ——					,
Reviewed:	SAG				Date	e reviewed:	731	ra lok		

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

Client:	Mu	4197		Start D	ate/Time:	Aug	26,24P	1645h		
Work Order #:	08	197		•	tion Date:	Aus	29,2018	15301	$\overline{}$	
Sample ID:		(~7			set up by:		NIT			
Concentration	Rep	Count 1	Count 2	Count 3	Count 4		Comments			tials
Control	_ <u>A</u>	24							16	K
	В	21		_						<u> </u>
	<u>C</u>	19			<u> </u>	•			<u> </u>	}
	D	22		<u>. </u>	<u> </u>				-	}_
	E	26				· ————			-	
•	<u>F</u> _	28						·		L
	G		*,	_					4-4	<u> </u>
	Н	25				<u> </u>			1	
	A	22							\bot	
1:48	B	21_							+	
, -	С	25							+	
	D	23					1		44	
	_ A	24							$\perp \perp \downarrow$	
2-95.	В	,50								
2. (4	С	28			·			<u> </u>	$\perp \perp \downarrow$	
	D	21							$\perp \downarrow$	
	Α	26					 -		$\bot \bot$	
	В	21							$\perp \downarrow$	
5.9	С	35 18				<u>. </u>			$\bot \bot$	
	D	18	21						$\perp \downarrow$	
	Α	.32								
i) a	В	26					·		11	
119	C	29	3						$\perp \perp$	
	D	3	32						$\perp \perp$	
	Α	36								
22 6	В	24						·		
23.8	С	33								
	D	38								
	Α	28								
476	В	87	81							
41.4	С	64	,							
	D	46	49						$\bot \bot$	
	Α_	74	72	_			- <u></u> -		++	
95.2		49	2						$+\!\!\!+\!\!\!\!+$	
	0	89	· ·				-		+	/
	<u>u</u>	68				•	_ -			
Comments:							_			
Reviewed by:		THE		Date R	eviewed:		23/10/08			

72-h Pseudokirchneriella subcapitata Test - Trend Analysis by Mann-Kendall Test.

Instructions:

- 1. Enter the project number, work order number and sample ID in the highlighted cells.
- 2. Enter the negative control cell yield data ($X \times 10^6$ cells/mL) into the highlighted spreadsheet cells.
- 3. Compare the calculated S value to the table of critical S values at the bottom of the page.
- 4. If the calculated S value is smaller than the S value in the table, there is no statistically significant trend.

Client: W.O. No.:

Minnow_____ 08197 Sample ID:

<u>R-7</u>

Test Date: 26-Aug-08

Rep No.	_ 1	2	3	4	5		7	8	Count of	Count of
Data Value	23.0	20.0	18.0	21.0	25.0	27.0	22.0	24.0	+ Signs	- Signs
(- Rep 1)	l	-3.000	-5.000	-2.000	2.000	4.000	-1.000	1.000	3	4
(- Rep 2)			-2.000	1.000	5.000	7.000	2.000	4.000	5	1
(- Rep 3)				3.000	7.000	9.000	4.000	6.000	5	0
(- Rep 4)					4.000	6.000	1.000	3.000	4	0
(- Rep 5)	ĺ					2.000	-3.000	-1.000	. 1	2
(- Rep 6)							-5.000	-3.000	0	2
(- Rep 7)								2.000	1	0
								Totals	19	9
									S =	10

Critical values of (S) at a probability of p = 0.05, when the number of replicates (n) is 10 or less.

n	4	_5	6	7	8	9	10
\mathbf{S}	4	6	9	11	14	16	19

If your calculated value for S (for the applicable number of replicates) is equal to or less than the corresponding value for S in the above table, then there is no statistically significant trend present. Refer to Gilbert (1987) for complete table of probabilities for the Mann-Kendall test.

Reference:

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY. 320 pp.

Pseudokirchneriella subcapitata Algal Counts

68

Client: WO#:	Minnow 08197 R-7			Start Date/ Termination			8 @1645h 8 @1300h		
Sample ID:	K-1			Initial Cell I	Density:	9772.727	3 cell/mL		215000 0.22
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Mean	Cell Yield		0.01 9772.7273
ug/L Zn	ПОР	(x 10 ⁴)	(x 10⁴)	(x 10 ⁴)	(x 10 ⁴)	(x 10 ⁴)	(x 10⁴)		0112.1210
ug/L ZII		(x 10)	(x 10)	(x 10)	(x 10)	(x 10)	cell/mL		
Control	Α	24				24	23.0	mean	22.5
	В	21 ⁻				21	20.0	, SD	2.8784917
	С	19				19	18.0	CV	12.780387
		22				22	21.0		
	D E F	26				26	25.0		
	F	28				28	27.0		
	Ġ	23				23	22.0		
	Ĥ	25				25	24.0		
1.48	Α	22				22	21.0		
1.40	В	21				21	20.0		
•	Ċ	25				25	24.0		
	D	23				23	22.0		
2.95	Ā	24				24	23.0		
2.00	В	26		,		26	25.0		
	Č	28				28	27.0		
	D	21				21	20.0		
5.9	A	26				26	25.0		
5.5	В	25				25	24.0		
	C	35				35	34.0		
	D	18	21			19.5	18.5		
11.9	A	32	۷.			32	31.0		
11.3	В	26				26	25.0		
	C	27	- 31	•		29	28.0		
	D	31	32			31.5	30.5		
23.8	A	36	JZ			36	35.0		
20.0	В	24				24	23.0		
	C	33				33	32.0		
	D	38				38	37.0		
47.6	A	58				58	57.0		
47.0	В	87	81			84	83.0		
	C	64	01			64	63.0		
	D	46	49	,		47.5	46.5		
95.2	A	74	72			73	72.0		
30.2	В	49	52			50.5	49.5		
	C	49 89	JZ			89	88.0		
	5	. 69				68	67.0		

67.0

68

Report Date:

03 Sep-08 17:13 (p 1 of 2)

Link/Link Code:

01-3207-0145/08197

Selenastrum	Growth Test	-		·						lautilus En	vironmental
Analysis No	: 03-4498-0500		Endpoint: Ce	ell Density			CE.	TIS Version	: CETIS	·1.5.0	
Analyzed:	03 Sep-08 17	:13	Analysis: No	onparametri	c-Multiple Ce	omparison	Offi	icial Result	s: Yes		
Sample No:	15-3643-5961		Code: 15	36435961			Clie	ent: Mir	now		
1	e: 21 Aug-08		Material: Inc	dustrial Efflu	ent		Pro	ject:			
Receive Date	e: 25 Aug-08		Source: R-	7							
Sample Age:	: 5d 0h		Station:			_					
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	ΤU	PMSD	
Rank			C > T	Not Run		95.2 >	95.2	#Error	1.05	57.29%	
Wilcoxon/Bo	onferroni Adj Tes	st									
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision				
Negative Con			23		4	1.0000	_	ficant Effect			
	2.95		30		4	1.0000		ficant Effect			
	5.9		30.5		3	1.0000	_	ficant Effect			
	11.9 23.8		40.5 38.5		1	1.0000 1.0000	_	ficant Effect			
	23.6 47.6		36.5 42		0	1.0000	_	ficant Effect ficant Effect			
	95.2		42		0	1.0000	_	ficant Effect			
ANOVA Table								 _			- -
Source	Sum Sq	uarae	Mean Square	DF	F Stat	P-Value	Decision(/50/ ₄ \			
Between	10687.5	uares	1526.786	7	23.52	0.0000	Significan				
Error	1817.5		64.91071	28	20.02	0.0000	Olgrinican	Lileot			
Total	12505		1591.697	35							
ANOVA Assu	ımptions							<u>-</u>	-		
Attribute	Test			Test Stat	Critical	P-Value	Decision(1%)			
Variances	Bartlett E	quality	of Variance	27.97	18.48	0.0002	Unequal V	/ariances			
Distribution	Shapiro-	Wilk No	rmality	0.878		0.0009	Non-norm	al Distributio	on		
Cell Density	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	8	22.5	21.38	23.62	18	27	0.544	2.878	12.79%	0.0%
1.48		4	21.75	21.09	22.41	20	24	0.3227	1.708	7.85%	3.33%
2.95		4	23.75	22.59	24.91	20	27	0.5643	2.986	12.57%	-5.56%
5.9		4	25.25	22.69	27.81	18	34	1.248	6.602	26.15%	-12.22%
11.9			28.5	27.47	29.53	25	31	0.5	2.646	9.28%	-26.67%
		4									-41.11%
23.8		4	31.75	29.35	34.15	23	37	1.169	6.185	19.48%	
23.8 47.6		4	31.75 62.25	29.35 56.23	68.27	23 46	37 83	1.169 2.933	15.52	24.93%	-176.7%
23.8		4 4 4 4	31.75	29.35		23	37	1.169			
23.8 47.6 95.2 Rank Transfo	ormed Summary	4 4	31.75 62.25 69.25	29.35 56.23 63.18	68.27 75.32	23 46 50	37 83 88	1.169 2.933 2.958	15.52 15.65	24.93%	-176.7% -207.8%
23.8 47.6 95.2	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean	29.35 56.23 63.18 95% LCL	68.27	23 46 50 Min	37 83 88 Max	1.169 2.933 2.958 Std Err	15.52 15.65 Std Dev	24.93% 22.6% CV%	-176.7% -207.8% Diff%
23.8 47.6 95.2 Rank Transfo	_	4 4 4 Count	31.75 62.25 69.25 Mean 10.44	29.35 56.23 63.18 95% LCL 7.879	68.27 75.32 95% UCL 13	23 46 50	37 83 88 Max 20.5	1.169 2.933 2.958 Std Err 1.247	15.52 15.65 Std Dev 6.598	24.93% 22.6% CV% 63.21%	-176.7% -207.8% Diff% 0.0%
23.8 47.6 95.2 Rank Transfo Conc-% 0 1.48	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean 10.44 8.25	29.35 56.23 63.18 95% LCL 7.879 6.601	68.27 75.32 95% UCL 13 9.899	23 46 50 Min 1.5	37 83 88 Max 20.5	1.169 2.933 2.958 Std Err 1.247 0.8036	15.52 15.65 Std Dev 6.598 4.252	24.93% 22.6% CV% 63.21% 51.54%	-176.7% -207.8% Difff% 0.0% 20.96%
23.8 47.6 95.2 Rank Transfo Conc-% 0 1.48 2.95	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean 10.44	29.35 56.23 63.18 95% LCL 7.879	68.27 75.32 95% UCL 13	23 46 50 Min 1.5	37 83 88 Max 20.5 14 20.5	1.169 2.933 2.958 Std Err 1.247 0.8036 1.386	15.52 15.65 Std Dev 6.598 4.252 7.331	24.93% 22.6% CV% 63.21% 51.54% 55.33%	-176.7% -207.8% Diff% 0.0% 20.96% -26.95%
23.8 47.6 95.2 Rank Transfo Conc-% 0 1.48	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean 10.44 8.25 13.25 14.75	29.35 56.23 63.18 95% LCL 7.879 6.601 10.41 10.81	95% UCL 13 9.899 16.09 18.69	23 46 50 Min 1.5	37 83 88 Max 20.5 14 20.5 26	1.169 2.933 2.958 Std Err 1.247 0.8036 1.386 1.922	15.52 15.65 Std Dev 6.598 4.252 7.331 10.17	24.93% 22.6% CV% 63.21% 51.54% 55.33% 68.95%	-176.7% -207.8% Diff% 0.0% 20.96% -26.95% -41.32%
23.8 47.6 95.2 Rank Transfo Conc-% 0 1.48 2.95 5.9	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean 10.44 8.25 13.25 14.75 21.63	29.35 56.23 63.18 95% LCL 7.879 6.601 10.41 10.81 20.51	95% UCL 13 9.899 16.09 18.69 22.74	23 46 50 Min 1.5 4 4 1.5 17.5	37 83 88 Max 20.5 14 20.5 26 24	1.169 2.933 2.958 Std Err 1.247 0.8036 1.386	15.52 15.65 Std Dev 6.598 4.252 7.331 10.17 2.869	24.93% 22.6% CV% 63.21% 51.54% 55.33%	-176.7% -207.8% Diff% 0.0% 20.96% -26.95% -41.32% -107.2%
23.8 47.6 95.2 Rank Transfo Conc-% 0 1.48 2.95 5.9	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean 10.44 8.25 13.25 14.75 21.63 22.75	29.35 56.23 63.18 95% LCL 7.879 6.601 10.41 10.81 20.51 19.67	95% UCL 13 9.899 16.09 18.69 22.74 25.83	23 46 50 Min 1.5 4 4 1.5 17.5	37 83 88 Max 20.5 14 20.5 26 24 28	1.169 2.933 2.958 Std Err 1.247 0.8036 1.386 1.922	15.52 15.65 Std Dev 6.598 4.252 7.331 10.17 2.869 7.932	24.93% 22.6% CV% 63.21% 51.54% 55.33% 68.95%	-176.7% -207.8% Diff% 0.0% 20.96% -26.95% -41.32%
23.8 47.6 95.2 Rank Transforms Conc-% 0 1.48 2.95 5.9 11.9	Control Type	4 4 4 Count	31.75 62.25 69.25 Mean 10.44 8.25 13.25 14.75 21.63	29.35 56.23 63.18 95% LCL 7.879 6.601 10.41 10.81 20.51	95% UCL 13 9.899 16.09 18.69 22.74	23 46 50 Min 1.5 4 4 1.5 17.5	37 83 88 Max 20.5 14 20.5 26 24	1.169 2.933 2.958 Std Err 1.247 0.8036 1.386 1.922 0.5421	15.52 15.65 Std Dev 6.598 4.252 7.331 10.17 2.869	24.93% 22.6% CV% 63.21% 51.54% 55.33% 68.95% 13.27%	-176.7% -207.8% Diff% 0.0% 20.96% -26.95% -41.32% -107.2%

Report Date:

03 Sep-08 17:13 (p 2 of 2)

Nautilus Environmental

Link/Link Code:

01-3207-0145/08197

Selenastrum Growth Test

Analyzed:

Analysis No: 03-4498-0500 03 Sep-08 17:13

Endpoint: Cell Density

Analysis: Nonparametric-Multiple Comparison

CETISv1.5.0 **CETIS Version:**

Official Results: Yes

Cell Densit	y Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Negative Contr	27	25	24	23	22	21	20	18
1.48		24	22	21	20				,
2.95		27	25	23	20				
5.9		34	25	24	18				
11.9		31	30	28	25				
23.8		37	35	32	23				
47.6		83	63	57	46				
95.2		88	72	67	50				

CETIS Summary Report

Report Date:

03 Sep-08 17:13 (p 1 of 1)

Link/Link Code:

01-3207-0145/08197

Selenastrum	Growth Test								N	autilus En	vironmenta
Test Run No: Start Date: Ending Date: Duration:	04-1291-9909 26 Aug-08 29 Aug-08 72h		Test Type: Protocol: Species: Source:	Cell Growth EC/EPS 1/RM Selenastrum of In-House Cultu	apricornutur	m	Dil Bri		eionized Wat	er	
Sample No: Sample Date: Receive Date Sample Age:	: 25 Aug-08		Code: Material: Source: Station:	1536435961 Industrial Efflu R-7	ent	· ·		ent: Mi ject:	nnow		
Comparison	Summary										
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			_
03-4498-0500	Cell Density			95.2	00512	#Error	57.29%	Wilcoxon	/Bonferroni /	\dj Test	
Cell Density S	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	8	22.5	21.43	23.57	18	27	0.5255	2.878	12.79%	0.0%
1.48		4	21.75	21.11	22.39	20	24	0.3118	1.708	7.85%	3.33%
2.95		4	23.75	22.63	24.87	20	27	0.5452	2.986	12.57%	-5.56%
5.9		4 -	25.25	22.78	27.72	18	34	1.205	6.602	26.15%	-12.22%
11.9		4	28.5	27.51	29.49	25	31	0.483	2.646	9.28%	-26.67%
23.8	•	4	31.75	29.44	34.06	23	37	1.129	6.185	19.48%	-41.11%
47.6		4	62.25	56.45	68.05	46	83	2.834	15.52	24.93%	-176.7%
95.2		4	69.25	63.41	75.09	50	88	2.857	15.65	22.6%	-207.8%
Cell Density D	Detail					<u> </u>	_				
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		•
0	Negative Contr	23	20	18	21	25	27	22	24		
1.48	-	21	20	24	22						
2.95		23	25	27	20						
5.9		25	24	34	18						
11.9		31	25	28	30			•			
23.8		35	23	32	37						
47.6		57	83	63	46						
95.2		72	50	88	67						

Report Date:

09 Oct-08 17:31 (p 1 of 2)

Link/Link Code:

01-3207-0145/08197

Selenas	trum Growth Test								Nautilus Envir	onmental
Analysis			point:	-				TIS Version		
Analyze	d: 09 Oct-08 17:	31 Ana ———	lysis: ——–	Linear Interpo	olation (ICPI	N) 	Of	icial Result	s: Yes	
Sample	No: 15-3643-5961	Cod	le:	1536435961			Cli	ent: Mir	now	
Sample	Date: 21 Aug-08	Mate	erial:	Industrial Efflo	uent		Pro	oject:		
Receive	Date: 25 Aug-08	Sou	rce:	R-7						
Sample	Age: 5d 0h	Stat	ion:					<u></u>		
Linear Ir	nterpolation Options		_							
X Transf	form Y Transform	m See	d	Resamples	Exp 95	% CL Met	hod			
Log(X +	1) Linear	5795	51	200	Yes	Two	-Point Inte	polation		
Point Es	timates					_				
% Effect	Conc-% 95%	LCL 95%	UCL		· <u>_</u>					
5	> 95.2 N/A	N/A								
10	> 95.2 N/A	N/A								
15	> 95.2 N/A	N/A								
20	> 95.2 N/A	N/A								
25	> 95.2 N/A	N/A								
40	> 95.2 N/A	N/A								ľ
50	> 95.2 N/A	N/A								
Cell Den	sity Summary				С	alculated Va	ariate			
Conc-%	Control Type	Count	Mean		Max	Std Err	Std Dev			
0	Negative Control	8	22.5	18	27	0.5345	2.878	12.8%	0.0%	
1.48		4	21.75		24	0.3171	1.708	7.85%	3.33%	
2.95		4	23.75	20	27	0.5545	2.986	12.6%	-5.56%	
5.9		4	25.25		34	1.226	6.602	26.1%	-12.2%	
11.9		4	28.5	25	31	0.4913	2.646	9.28%	-26.7%	
23.8		4	31.75		37	1.148	6.185	19.5% 24.9%	-41.1% -177.0%	
47.6	*	4 4	62.25 69.25		83 88	2.882 2.906	15.52 15.65	24.9% 22.6%	-208.0%	
95.2		4	09.25			2.900	15.65		-200.070	
Cell Den	sity Detail							,	•	
Conc-%	Control Type	Rep 1	Rep 2		Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	
0	Negative Control	23	20	18	21	25	27	22	24	
1.48		21	20	24	22			•		
2.95		23	25	27	20					
5.9		25	24	34	18					
11.9		31	25	28	30					
23.8		35	23	32	37					
47.6		- 57	83	63	46					
95.2			50	88	67					
							-			

Report Date: Link/Link Code: 09 Oct-08 17:31 (p 2 of 2)

01-3207-0145/08197

Selenastrum Growth Test

Analysis No: 15-3867-8492 Endpoint: Cell Density
Analyzed: 09 Oct-08 17:31 Analysis: Linear Interpolation (ICPIN)

CETIS Version: CETISv1.5.0
Official Results: Yes

APPENDIX C - Rainbow Trout Juvenile Toxicity Test Data

Rainbow Trout Summary Sheet

Client:	Minnow Environmental	Start Date/Time: Aug 25/08@16/0	
Work Order No.:	08199	Test Species: Oncorhynchus mykiss	
Sample Information	n:		
Sample ID: Sample Date: Date Received: Sample Volume: Other:	R 7 Aug 25/08 Aug 25/08 2×20L		
Dilution Water:			
Type: Hardness (mg/L CaC Alkalinity (mg/L CaCC		icipal Tap Water	
Test Organism Info	mation:		
Batch No.: Source: Test Volume/No. Fish Loading Density: Mean Length ± SD (m Mean Weight ± SD (g	$0.39g/L$ nm): 38 ± 4	Range: 32-44 Range: 0.18-0.60	
SDS Reference Toxi	cant Results:		
Reference Toxicant II Stock Solution ID: Date Initiated: 96-h LC50 (95% CL):	D: RT35 		•
Reference Toxicant M Reference Toxicant C			
Test Results:	The 96hr LC50 is	7 100% (3/)	-
Reviewed'by:	Jac	Date reviewed: 73/10 /08	-

APPENDIX D - Chain-of-Custody Form

Nautilus Environmental

CALIFORNIA 5550 Morehouse Diive • Suite 150 San Diego, California 92121 Phone 858.587.7333 Fax 858.587.3961

☐ WASHINGTON
5009 Padfic Highway East • Suite 2
Tacomo, Washington 98424
Phone 253.922.4296
Fax 253.922.5814

BRITISH COLUMBIA
8664 Commerce Court
Bumaby British Columbia Car
Phone 604.420.8773
Fax 604.357.1361

f Custody			-	of l
hain of				Page_
Ä			•	ري اون
				7402
			•	Date (NAQ 21/65)
		Canada V5A 4N7		
ITISH COLUMBIA	4 Commerce Court	naby British Columbia Canada V5A 4N7	ne 604.420.8773	604.357.1361

Sample Collection by: CR, TH, MB	,MB						ANALYSES REQUIRED	
Report to: Company MIN NOW ENVIRONMENTAL	RONM	ENTA	ادِ	Con	'د ۃ ا	SAME AS REPORT	Markella Mark Thort Toot	E (.C)
CityCEORGETOWN St	State O.		Zip <u>L76, 3M</u> 9		Address	StateZip	Modu	MUTASIAN
Phone/Email 905-873-3371	71 VIVONIV	nent	<u>zl.(om</u>		Phone/Email_		LAN Y	NST TY
SAMPLE ID DATE	TE TI	TIME M		INER F	NUMBER OF CONTAINERS	COMMENTS	D-61	KECI
R7 Mg21	200	N.	Whey 2	702	N		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
R7 And21	70	Se		47		**	<i>></i>	
	75	3,	sed.	47		187	>	
R2 A328	ଧ୍ୟ	3	sed.	40	(January)	500	>	
				,		100 Ja	00 66 85)	
							18 89 89	
						TX.	# C	
							€ C	
PROJECT INFORMATION	THE STATE OF		SAMPL	SAMPLE RECEIPT		RELINQUISHED BY (CLIENT)	RELINGUISHED BY (COURIER)	
CLIENT MINNOW		OTAL NO	TOTAL NO. OF CONTAINERS	AINERS		S (Signature)	(Signature)	(Time)
PO.NO. 22 54		EC'D GOC	REC'D GOOD CONDITION	Σ		(Printed Name)	(Date) (Printed Name)	at Cloate)
SHIPPED VIA:	There	AATCHES T	MATCHES TEST SCHEDULE	VULE		(Company) INNOW	(Company) VTZ	30/2/EX
SPECIAL INSTRUCTIONS/COMMENTS:			ville Tare			RECEIVED BY (COURIER)	RECEIVED BY (LABORATORY)	
		May.				(Signature)	(Time) (Signature) (Signature)	
						(Printed Name)	(Date) (Printed Normal 36 hrs.	200x
			W.			(Сотрапу)	Nourilus Environmentel Log-in No	
Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.	ple disposa	l or storage	». Net 30 u	nless other	wise confra	ted.	DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator	mental, COLOR - Originate

Toxicity Testing on the sample identified as X-2

Final Toxicity Test Report

Report date: September 17, 2008

Submitted to:

Minnow Environmental Incorporated

Georgetown, ON

Burnaby Laboratory 8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

		P	age
TABL	LE OI	F CONTENTS	I
1.0	INTI	RODUCTION	1
2.0	MET	THODS	
	2.1	Quality Assurance/Quality Control (QA/QC)	2
3.0	RES	ULTS	6
	3.1	Quality Assurance/Quality Control	6
REFE	REN	ICES	10
		LIST OF TABLES	
Table	1.	Summary of test conditions for the Ceriodaphnia dubia survival and reproduction t	
Table	2.	Summary of test conditions for the <i>Pseudokirchneriella subcapitata</i> growth inhibit test	tion
Table		Summary of test conditions for the 96-h LC50 rainbow trout test.	
Table		Toxicity test results for the <i>Ceriodaphnia dubia</i> survival and reproduction test	
Table Table		Toxicity test results for the <i>Pseudokirchneriella subcapitata</i> growth inhibition test Toxicity test results for the 96-h LC50 juvenile rainbow trout (<i>O. mykiss</i>) test	
Table		Reference toxicant test results	
		LIST OF APPENDICES	
APPE	ENDI	X A – Ceriodaphnia dubia Toxicity Test Data	
APPE	ENDI	X B - Pseudokirchneriella subcapitata Toxicity Test Data	
APPE	ENDI	X C – Rainbow Trout Juvenile Toxicity Test Data	
APPE	ENDI	X D – Chain-of-Custody Form	

i

1.0 INTRODUCTION

Nautilus Environmental (Burnaby, BC) conducted sub-lethal and acute toxicity tests for Minnow Environmental on the sample identified as X-2, collected on August 19, 2008 and delivered to the Nautilus Environmental Laboratory in Burnaby, BC on August 21, 2008. The sample (collected in 20-L collapsible containers) was transported in coolers containing ice packs and stored in the dark at 4° C prior to testing. Toxicity testing was performed on the sample using the following tests:

- Ceriodaphnia dubia survival and reproduction
- 72-h *Pseudokirchneriella subcapitata* growth inhibition (formerly identified as *Selenastrum capricornutum*)
- 96-h Rainbow trout (Oncorhynchus mykiss) LC50

This report describes the results of these toxicity tests. Copies of raw laboratory data sheets and statistical analysis for each test species are provided in Appendices A to C. The chain of custody form is provided in Appendix D.

2.0 METHODS

Methods for the toxicity tests are summarized in Tables 1 to 3. Testing was conducted according to procedures described by Environment Canada (2000a, 2007a and 2007b).

Statistical analyses for all the tests were performed using the CETIS program (Tidepool Scientific Software, 2007).

2.1 Quality Assurance/Quality Control (QA/QC)

Nautilus follows a comprehensive QA/QC program to ensure that data generated are of high quality and scientifically defensible. Our QA program is designed to ensure that all tests are performed in accordance with well-established and approved methods (e.g., Environment Canada, US EPA).

To meet these objectives, Nautilus has implemented a number of quality control procedures that include the following:

- Negative controls to ensure that appropriate testing performance criteria are met;
- Positive control to assess the health and sensitivity of the test organisms;
- Use of appropriate species and life stage to meet the study objectives;
- Appropriate number of replicates to allow the proper statistical analyses;
- Calibration and proper maintenance of instruments to ensure accurate measurements;
- Proper documentation and record keeping to allow traceability of performance;
- Adequate supervision and training of staff to ensure that methods are followed;
- Proper handling and storage to ensure sample integrity;
- Procedures in place to address issues that arise during testing so that appropriate corrective actions can be implemented; and
- Rigorous review of data by a registered professional biologist to ensure they are
 of good quality and scientifically defensible prior to releasing to the client.

Table 1. Summary of test conditions for the *Ceriodaphnia dubia* survival and reproduction test.

Test organism Ceriodaphnia dubia
Test organism source In-house culture

Test organism age <24 hr old neonates produced within 12 hr

Test type Static renewal

Test duration $7 \pm 1 \text{ day}$

Test chamber 20 mL test tube

Test solution volume 15 mL

Test concentrations Seven concentrations, plus laboratory control

Number of replicates 10

Control/dilution water 20% Perrier water (hardness 80-100mg/L

CaCO₃)

Test solution renewal Daily
Test temperature $25 \pm 1^{\circ}$ C

Number of organisms/chamber 1

Feeding Daily, with 0.1 ml Pseudokirchneriella subcapitata

and 0.05 mL YCT

Light intensity 100 to 600 lux

Photoperiod 16 hours light/8 hours dark

Aeration None

Test protocol Environment Canada (2007a), EPS 1/RM/21

Test endpoints Survival and reproduction

Test acceptability criteria for criteria for ≥80% survival; ≥15 young per surviving

control

control; ≥60% of controls producing three or

more broods

Reference Toxicant Sodium chloride

Nautilus Environmental WO # 08188-08190 3

Table 2. Summary of test conditions for the *Pseudokirchneriella subcapitata* growth inhibition test.

Test organism Pseudokirchneriella subcapitata

Test organism source In-house culture

3 to 7-day old culture in logarithmic growth

phase

Test type Static
Test duration 72 hours

Test organism age

Test chamber Microplate

Test solution volume $220 \mu L$

Test concentrations Seven concentrations, plus laboratory control

Number of replicates 4 for treatments; 8 for control

Control/Dilution water Deionized or distilled water

Test solution renewal None
Test temperature $24 \pm 2^{\circ}$ C

Number of organisms/chamber 10,000 cells/mL
Light intensity 3600 to 4400 lux
Photoperiod Continuous

Aeration None

Test protocol Environment Canada (2007b), EPS 1/RM/25

Test endpoint Algal cell growth inhibition

≥ 16-fold increase in number of algal cells; no Test acceptability criteria for control

trend; and $CV \le 20\%$

Reference toxicant Zinc

Table 3. Summary of test conditions for the 96-h LC50 rainbow trout test.

Test organism Oncorhynchus mykiss

Test organism source Commercial hatchery

Test organism age Juveniles
Test type Static

Test duration 96 hours

Test chamber 18.2 L glass aquarium

Test solution volume 10 L

Test concentrations Five concentrations, plus laboratory control

Number of replicates 1

Control/Dilution water Municipal dechlorinated water

Test solution renewal None

Test temperature 15 ± 1 °C

Number of organisms/chamber Ten

Feeding None

Light intensity 100 to 500 lux

Photoperiod 16 hours light/8 hours dark

Aeration $6.5 \pm 1 \text{ mL/min/L}$

Test protocol Environment Canada (2000b), EPS 1/RM/13

Test endpoint Survival

Test acceptability criterion for control Survival $\geq 90\%$

Reference toxicant Sodium dodecyl sulphate

3.0 RESULTS

Results of the toxicity tests are summarized in Tables 4 to 6. The *C. dubia* test did not show any significant adverse effects on survival, however, reproduction was inhibited in the three highest concentrations (25, 50 and 100%) relative to the negative control. The EC50 for survival was >100%, and the IC25 and IC50 (95% confidence limits) for reproduction were 23.4 (18.9 – 34.7) and >100%, respectively.

The 72-h *P. subcapitata* toxicity test did not show any significant inhibitory effects on growth. All the test concentrations exhibited enhanced growth relative to the negative control. The IC25 and IC50 were both >95.2%, the highest concentration tested.

No significant adverse effects occurred in the 96-h rainbow trout toxicity test. Survival ranged from 90 to 100% in the test concentrations. The 96-h LC50 was >100%.

3.1 Quality Assurance/Quality Control

The health history of the test organisms used in the exposures was acceptable and met the requirements of the Environment Canada protocols. The tests met all control acceptability criteria and water quality parameters were within acceptable ranges specified in the respective test protocol.

Results of the reference toxicant test conducted during the testing program are summarized in Table 7. Results of these tests were all within the acceptable ranges of organism performance (mean \pm two standard deviations), based on historical results obtained by the laboratory. These comparable results verify the acceptable quality and similar sensitivity of organisms used in this study.

Table 4. Toxicity test results for the *Ceriodaphnia dubia* survival and reproduction test.

		Reproduction
Concentration (%v/v)	Survival (%)	(No. of Young/Female)
		(Mean ± SD)
Control	100	16.2 ± 1.1
1.6	100	16.4 ± 1.4
3.1	100	15.1 ± 1.4
6.25	100	15.1 ± 2.0
12.5	100	15.2 ± 2.1
25	100	$11.9 \pm 2.3*$
50	100	10.5 ± 2.6 *
100	100	9.7 ± 2.9*
TT (1 ' (Survival	Reproduction
Test endpoint	(% v/v)	(% v/v)
NOEC	100	100
LOEC	>100	>100
LC50	>100	
IC25 (95% CL)		23.4 (18.9 – 34.7)
IC50		>100

Asterisks (*) indicate treatments that are significantly different from the control.

CL = Confidence Limits.

NOEC = No Observed Effect Concentration.

LOEC = Lowest Observed Effect Concentration.

LC = Lethal Concentration.

IC = Inhibition Concentration.

SD = Standard Deviation.

Table 5. Toxicity test results for the *Pseudokirchneriella subcapitata* growth inhibition test.

Concentration (% v/v)	Cell Density (x 10 ⁴ cells/mL) (Mean ± SD)
Control	46.2 ± 7.7
1.48	53.8 ± 8.5
2.95	62.5 ± 13.1
5.95	74.2 ± 7.8
11.9	85.8 ± 6.5
23.8	81.0 ± 8.3
47.6	74.2 ± 7.3
95.2	61.5 ± 7.3
T 4 1 1 4	Cell Density
Test endpoint	(% v/v)
NOEC	95.2
LOEC	>95.2
IC25	>95.2
IC50	>95.2

NOEC = No Observed Effect Concentration.

LOEC = Lowest Observed Effect Concentration.

Table 6. Toxicity test results for the 96-h LC50 juvenile rainbow trout (O. mykiss) test.

Concentration (% v/v)	% Survival	
Control	100	
6.25	100	
12.5	90	
25.0	90	
50.0	100	
100.0	100	
Test endpoint	Survival (% v/v)	
LC50	>100	

LC = Lethal Concentration.

IC = Inhibition Concentration.

SD = Standard Deviation.

Table 7. Reference toxicant test results.

Species	Endpoint	Historical range (mean ± 2 SD)	CV(%)	Date Setup
C. dubia	Survival (EC50): 1.8 g/L NaCl Reproduction (IC50): 1.2 g/L NaCl	1.5 ± 0.8 1.1 ± 0.5	27 21	August 14, 2008
P. subcapitata	Growth (IC50): 17.4 μg/L Zn	16.4 ± 13.1	40	August 8, 2008
O.mykiss (juvenile)	Survival (EC50): 5.0 mg/L SDS	5.4 ± 2.0	19	August 8, 2008

REFERENCES

Environment Canada. 2000. Biological test method: reference method for determining acute lethality of effluents to rainbow trout. Environmental Protection Series. Report EPS 1/RM/13, Second Edition, December 2000, including May 2007 amendments. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 23 pp.

Environment Canada. 2007a. Biological test method: test of reproduction and survival using the cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition, February 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 74 pp.

Environment Canada. 2007b. Biological test method: growth inhibition test using the freshwater alga. Environmental Protection Series, Report EPS 1/RM/25. Second Edition, March 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 53 pp.

Tidepool Scientific Software. 2007. CETIS comprehensive environmental toxicity information system, version 1.5.0D. Tidepool Scientific Software, McKinleyville, CA. 222 pp.

APPENDIX A - Ceriodaphnia dubia Toxicity Test Data

Nautilus Environmental

Ceriodaphnia dubia Summary Sheet

Client:	HILDOW ENVIONM	YOTAL TW Start Date/T	ime avi a	108° 1645hrs
Work Order No.:	08189		o by: <u>∱₩</u>	ro leading
			, by. <u> [10,15</u>	
Sample Informatio	n:			
	_			
Sample ID:	<u> </u>			
Sample Date: Date Received:	Aug 19/38			
Sample Volume:	1212			
Cample volume.	07703	·		
Test Organism Info	ormation:			
Broodstock No.:	OB.	1908		
Age of young (Day (46 (who lan)		
Avg No. young prev	·	O		
Mortality (%) in prev		}		
Avg. No. of young in	previous brood:	0		
NaCl Reference To	vicent Pecultor			
Naci Reference 10	xicant Results.			
Reference Toxicant	ID: CA	33		
Stock Solution ID:		FN9 02		•
Date Initiated:		hes 14/28		
	· · · · · · · · · · · · · · · · · · ·			
7-d LC50 (95% CL):		-16-22) 9/L Nach		
7-d IC50 (95% CL):	1.2	1.1-1.3) g/L NACL		i i
7 11 050 Defense	Taviaant Maan 1 0 CD:	/ C + - C	(0) ((0())	
	Toxicant Mean ± 2 SD: Toxicant Mean ± 2 SD:	1.5 \$ 0.8	CV (%):	27
, .	TOXICANT MEAN 1 2 3D.	111 - 675	C V (70).	
				<u> </u>
Test Results:		Survival	R	eproduction
	NOEC %(v/v)	100		100m 100
	LOEC %(v/v)_	7100		chor > 100
	LC50 %(v/v) (95% CL)	7/00		Service Control of the Control of th
	IC25 %(v/v) (95% CL)	新 (1) (1)	23.4(169-34.7)
	IC50 %(v/v) (95% CL)		5	120
Reviewed by:	TAK	Date :	reviewed:9	Ja of

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Start Date & Time: Stop Date & Time: Stop Date & Time: Stop Date & Time: Stop Date & Time: Study Date	Stan Date & Time: 1
	Nimaa Ervicand Tal Inc. Nimaa Ni
	N. mass Environmentation:

Date reviewed:

Nautilus Environmental

Version 2.0 Issued January 23, 2008

Reviewed by:

Sample Description: _______Comments:

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client: Sample ID:		Mu	name 12	Enviro	onmont	g Inc	Sta	rt Date Sto	& Time: op Date:	<u>A.</u>	421 O22	108	142	155h
Work Order #:		08				_			_		aphnia (
% (1)	T						D	ays						
Concentration	0	7	1		2	T	3		4	1	5		6	7
Contral	Init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	250	A STREET, STREET, SALES	2000	-	2513	1	24 7	25.1	24.5	252	25.0	2575	1	7
DO (mg/L)	8-2	79	60	74	61	76	5-1	7.5	8.1	3	81	7.1		
pH	822	78	F ~~	2.3	81	745	8!	7.8	81	77	81	79		
Cond. (µS/cm)	1,01		25		6		10 A	30		ac	7 10-	23.2	30/	
Initials	1	Λ_	AP.	^	1~	4		DKC	DKL	4	OKT	•		
			1 10-			1			1.1/2-	·/	·			
1.6							Da	ays						
Concentration	0		1		2		3]	4		5		3	7
	init.	old	new	old	пеж	old	new:	old	new	old	new	old	new	final
Temperature (°C)	250	253	250	256	252	25.0	248	25.1	24.5	252	24.8	25.5		J.
DO (mg/L)	8.2	78	8.1	74	81	76	79	7.5	8.1	25	8:1	72		
pH	78	77	701	29	79	76	8.1	79	81	78	පි. ව	78		
Cond. (µS/cm)	207	20	b	21	0	20	8_	30	5	သ	5	213		
Initials	~	A	2	<u>^</u>		~	s	OKL	OKL	Δ	A	<u> </u>		
12.5							Da	ıys						
Concentration	0		1		2		3		4		5	6	<u> </u>	7
	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	250	25.3	2500	25%	25.1	250	24.9	25.1	245	25.2	34.8	255		
DO (mg/L)	8.3	x9	30	75	80	77	29	7.5	7.9		8.0	72		
pH	7.9	77	27	78	f 3	76	8.1	7.9	8.1	77	8.2	75		
Cond. (µS/cm)	203	20	-2	2	74	20	2	20	ų į	<u>a</u> 0		204		
Initials	/	~	<u></u>	<u>^</u>		•	<u>^</u>	OKL	OKL	Λ.	OKL	^	\angle	
·						·								
100					·		Da	ys						
Concentration	0	•	1	2		3	}	4	<u> </u>	5	; <u> </u>	6		7
	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	244			rest !	248		254	<u> 25.1</u>	24.5	200	24.7	2500		\angle
DO (mg/L)				72	81	78			7.8	3-3	7.9	74		
pH	76	78	77	26	7.9	76	12	7.8	6,0	27	8.0	78	_ 1	
Cond. (µS/cm)	m		-9	17	4	17	2	176	2	178		183		
Initials	<u>^</u>	~	2	~	,	r	نع	ore	Dre	~	DKT	r		
۵													1	
		· - T								_				
	Con		100						4	Analyst	s: _	A,D	KL	
Hardness*		<u>0</u>	10							Dovices		Ku		
Alkalinity* * mg/L as CaCO3		<u>.</u>	22						_		ed by: _ ewed:	27	- 17/1	7
mgr. as vacco			â						į.	alt [tV]	eweu	Je Je	· He	<u> </u>
Sample Description:			lich	1 1.	allers	U -c	len	/				U		
	•			7										
Comments.														

Report Date:

04 Sep-08 13:40 (p 1 of 2)

Link/Link Code:

04-8324-1048/wo08189

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

PMSD

N/A

Analyzed:

Analysis No: 13-3948-1491

04 Sep-08 13:39

Endpoint: 6d Survival Rate Analysis:

STP 2x2 Contingency Tables

CETISv1.5.0 **CETIS Version:**

Official Results: Yes

Sample No:

19-3990-8905

Code:

1939908905

Industrial Effluent

Client:

Minnow

Receive Date:

Sample Date: 19 Aug-08

Material: Station:

Sample Age: 65h

Source:

X-2

Project:

Data Transform Zeta Alt Hyp **Monte Carlo** NOEL LOEL TOEL TU Untransformed C > T Not Run 100 7/0 0 #Error 1

ì	Fisher	Exact/Bonf	erroni-	Holm 1	ſest

Control vs	Conc-%	Test Stat	P-Value	Decision(0.05)
Negative Control	1.6	1.0000	1.0000	Non-Significant Effect
•	3.12	1.0000	1.0000	Non-Significant Effect
	6.25	1.0000	1.0000	Non-Significant Effect
	12.5	1.0000	1.0000	Non-Significant Effect
	25	1.0000	1.0000	Non-Significant Effect
	50	1.0000	1.0000	Non-Significant Effect
	100	1.0000	1.0000	Non-Significant Effect

Data Summary

Conc-%	Control Type	No-Resp	Resp_	Total	
0	Negative Contr	10	0	10	
1.6		10	0	10	
3.12		10	0	10	
6.25		10	0	10	
12.5		10	0	10	
25		10	0	10	
50		10	0	10	
100		10	0	10	

6d Survival Rate Detail

od Stil Mate Detail											
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0 .	Negative Contr	1	1	1	1	1	1	1	1	1	1
1.6		1	1	1	1	1	1	1	1	1	1
3.12		1	1	1	1	1	1	1 .	1	1	1
6.25		1	1	1	1	1	1	1	1	1	1
12.5		1	1	1	1	1	1	1	1	1	1
25		1	1	1	1	1	1	1	1	1	1
50		1	1	1	1	1	1	1	1	1	1
100		1	1	1	1	1	1	1	· 1	1	1

Report Date:

04 Sep-08 13:40 (p 2 of 2)

Link/Link Code:

04-8324-1048/wo08189

Report Date:

17 Sep-08 12:37 (p 1 of 2)

Link/Link Code:

04-8324-1048/wo08189

Ceriodaphnia 7-d Survival and Reproduction Test								Nautilus Environmental					
Analysis No: Analyzed:	09-6926-9276 17 Sep-08 12:	36	•	•				CETIS Version: CETISv1.5.0 Official Results: Yes					
Sample No: 19-3990-8905 Sample Date: 19 Aug-08 Receive Date: Sample Age: 65h			Code: 1939908905 Material: Industrial Effluent Source: X-2 Station:				Client: Minnow Project:						
Data Transform Zeta			Alt Hyp			NOEL	LOEL	TOEL	TU	PMSD			
Untransformed			C > T	Not Run		12.5	25	17.68	8	13.56% 			
Dunnett's Mulf	tiple Comparis	on Tes	st										
Control	ol vs Conc-%		Test Sta	t Critical	MSD	P-Value	Decision(5%)			_			
Negative Contro	ol 1.6		-0.2173	2.386	2.196	0.9215	Non-Sigr	nificant Effect					
	3.12		1.195	2.386	2.196	0.3866	Non-Sigr	nificant Effect	t				
	6.25		1.195	2.386	2.196	0.3866	Non-Sigr	nificant Effect	t				
	12.5		1.087	2.386	2.196	0.4365	Non-Sigr	nificant Effect					
	25*		4.672	2.386	2.196	0.0001	Significant Effect Significant Effect						
	50*		6.194	2.386	2.196	0.0000							
	100*		7.063	2.386	2.196	0.0000	Significant Effect						
ANOVA Table		_				-							
Source	Sum Sq	uares	Mean Square	e DF	F Stat	P-Value	Decision	n(5%)					
Between 491.5875		70.22678	7	16.58	0.0000	Significa	nt Effect						
Error 304.9		4.234722	72										
Total	796.4875	<u></u>	74.4615	79		<u> </u>				, 			
ANOVA Assum	nptions								_	_			
Attribute	Test		Test Stat	Critical	P-Value	Decision	n(1%)						
Variances	Variances Bartlett Equality			14.12	18.48	0.0491	Equal Va	riances					
Distribution Shapiro-Wilk N			ormality	0.9795		0.2261	Normal [Distribution					
Reproduction	Summary												
•	Summary Control Type	Coun	t M ean	95% LCL_	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%		
Conc-%	_	Coun	t Mean	95% LCL 15.8	95% UCL 16.6	M in 14	M ax	Std Err 0.1952	Std Dev 1.033	CV% 6.37%	Diff%		
Conc-%	Control Type										0.0% -1. 24 %		
Conc-%	Control Type	10	16.2	15.8	16.6	14	17	0.1952	1.033	6.37%	0.0%		
Conc-% 0 0 1.6 3.12	Control Type	10 10	16.2 16.4	15.8 15.88	16.6 16.92	14 14	17 18	0.1952 0.2551	1.033 1.35	6.37% 8.23%	0.0% -1. 24 %		
Conc-% 0 0 1.6 3.12 6.25	Control Type	10 10 10	16.2 16.4 15.1	15.8 15.88 14.57	16.6 16.92 15.63	14 14 13	17 18 18	0.1952 0.2551 0.259	1.033 1.35 1.37	6.37% 8.23% 9.08%	0.0% -1.24% 6.79%		
Conc-% 0 0 1.6 3.12 6.25 12.5	Control Type	10 10 10 10	16.2 16.4 15.1 15.1	15.8 15.88 14.57 14.31 14.39	16.6 16.92 15.63 15.89	14 14 13 11	17 18 18 17	0.1952 0.2551 0.259 0.3827	1.033 1.35 1.37 2.025	6.37% 8.23% 9.08% 13.41%	0.0% -1.24% 6.79% 6.79%		
Conc-% 0 0 1.6 3.12 6.25	Control Type	10 10 10 10 10	16.2 16.4 15.1 15.1 15.2	15.8 15.88 14.57 14.31	16.6 16.92 15.63 15.89 16.01	14 14 13 11	17 18 18 17 18	0.1952 0.2551 0.259 0.3827 0.3964	1.033 1.35 1.37 2.025 2.098	6.37% 8.23% 9.08% 13.41% 13.8%	0.0% -1.24% 6.79% 6.79% 6.17%		

Report Date:

17 Sep-08 12:37 (p 2 of 2)

Link/Link Code:

04-8324-1048/wo08189

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analyzed:

Analysis No: 09-6926-9276 17 Sep-08 12:36

Analysis:

Endpoint: Reproduction

Parametric-Control vs Treatments

CETIS Version:

CETISv1.5.0

Official Results: Yes

Reproduction Detail											
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	17	17	17	17	17	16	16	16	15	14
1.6		18	18	17	17	17	17	16	15	15	14
3.12		18	16	16	15	15	15	15	14	14	13
6.25		17	17	16	16	16	16	15	15	12	11
12.5		18	17	17	16	16	15	15	14	13	11
25		16	14	13	13	12	12	11	11	9	8
50		14	14	12	12	11	9	9	9	9	6
100		14	13	12	12	- 10	9	8	7	6	6

Report Date:

17 Sep-08 12:37 (p 1 of 2)

Link/Link Code:

04-8324-1048/wo08189

Ceriodap	hnia 7-d Sur	vival and Rep	oroduction T	est					Nautilus En	vironmental
Analysis Analyzed		3-0911 -08 12:36	Endpoint: Analysis:	Reproduction Linear Interpola	ation (ICPIN)		CETIS Ver Official Re		CETISv1.5.0 Yes	
Sample N Sample D Receive I Sample A	Date: 19 Aug Date:		Code: Material: Source: Station:	1939908905 Industrial Efflue X-2	ent	·	Client: Project:	Minno	ow .	
Linear Int	terpolation O	ptions	 _	 	· ·	-				
X Transfo	orm Y Tra	ansform	Seed	Resamples	Exp 95% CL	Method				
Log(X + 1) Linea	ar	57951	200	Yes	Two-Point	Interpolation	1		_
Point Est	imates								 	
% Effect	Conc-%	95% LCL	95% UCL							
5	2.586	1.97	13.52							
10	13.83	2.834	16.14							
15	16.49	12.09	20.77							
20	19.64	15.48	27.04							
25	23.34	18.86	34.7	•						
40	93.33	43.07	N/A							
50	> 100	N/A	N/A							
Reproduc	ction Summa	гу			Calculat	ed Variate				

Reproduc	tion Summary								
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Control	10	16.2	14	17	0.1918	1.033	6.37%	0.0%
1.6		10	16.4	14	18	0.2507	1.35	8.23%	-1.24%
3.12		10	15.1	13	18	0.2545	1.37	9.08%	6.79%
6.25		10	15.1	11	17	0.376	2.025	13.41%	6.79%
12.5		10	15.2	11	18	0.3895	2.098	13.8%	6.17%
25		10	11.9	8	16	0.4328	2.331	19.59%	26.54%
50		10	10.5	6	14	0.4734	2.55	24.28%	35.19%
100		10	9.7	6	14	0.547	2.946	30.37%	40.12%

Reproduc	Reproduction Detail													
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10			
0	Negative Control	16	15	14	17	16	17	17	17	16	17			
1.6		16	15	17	18	17	14	17	15	17	18			
3.12		15	16	15	15	18	13	16	15	14	14			
6.25		16	16	17	`11	. 15	17	15	16	16	12			
12.5		13	16	15	15	14	18	11	17	17	16			
25		8	14	11	12	11 .	13	13	12	16	9			
50		9	9	9	14	9	6	12	11	12	14			
100		9	13	6	10	12	6	8	12	7	14			

Analyst: _____ QAS 17/0

Report Date:

17 Sep-08 12:37 (p 2 of 2)

Link/Link Code:

04-8324-1048/wo08189

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analysis No: 19-1353-0911

Endpoint: Reproduction

CETISv1.5.0 **CETIS Version:**

Official Results: Yes

Client: Minnow Environmental

W.O.#: 08 188-90

Hardness and Alkalinity Datasheet

			Alkalinity				Hardnes	s	
ample ID	Sample Date	Volume (mL)	HCL/H ₂ SO ₄ used to pH 4.5	(mL) of 0.02N HCL/H₂SO₄ used to pH 4.2	(mg/LCaCO ₃)	Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Technicia
X-2	Ay 21/08	\$50	11.2	11.4	220	10	1.0	10_	200
	0 1				,				
			·						
· · · · · · · · · · · · · · · · · · ·									
		·							
· 								<u>, , , , , , , , , , , , , , , , , , , </u>	
									·
· .									
			·						·
								·	
									<u> </u>
					<u> </u>				
					_				
		-		<u> </u>	-				
								<u> </u>	
		Notes:				<u> </u>			
•			<u> </u>	· · · · · · · · · · · · · · · · · · ·					GOD F
		/ / .	tere		<u>_</u> ^		Soplen	. /	2000
Reviewed by:		<u> </u>	wy_		_ Date Revi	ewed:	Sugren	160(11)	7

APPENDIX B - Pseudokirchneriella subcapitata Toxicity Test Data

Pseudokirchneriella subcapitata Summary Sheet

Client:	MUNDU	Start Date: Kug 21 mg
Work Order No.:	08190	Set up by:
Sample Informat	tion:	
	v 7	
Sample ID:	V 16 2219	<u></u>
Sample Date: Date Received:	Aug 19, My	
Sample Volume:	Aug 21 248	
campic volume.	2/00	
Test Organism Ir	oformation:	
rest Organism n	nomation.	
Culture Date:	- hug	+11,248
Age of culture (Da	ay 0):	6 d
Zinc Reference T	oxicant Results:	
Reference Toxica	nt ID: SC37	
Stock Solution ID:		
Date Initiated:	hug 8, 2	008
50	12 4 (20 =	241) 1141 322
72-h IC25 (95% C	L): 17·4 (78-7	24.1) ugil =n
12-h 50		
	e Toxicant Mean ± 2 SD:	16-4 + 13-1 CV (%): +0
a 'Un	•	
Test Results:		Algal Growth GS-2
	NOEC %(v/v)	>952
	LOEC %(v/v)	795-2
	IC25 %(v/v) (95% CL)	795.2
	IC50 %(v/v) (95% CL)	
•		
Reviewed by:	Dre	Date reviewed: 9 Jan 09
		V

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	MWI	7000		_	Setup by	/ :	Eu			
Sample ID:	X-2			<u> </u>	Test Dat	e/Time:	Ary	21,2	008 @ 150	סו
Work Order No.:	O 8	190			Test Spe	ecies:	Pseudokir	chneriella su	ıbcapitata	
,				_	6 d					
Culture Date:	Aug 13	C. SUR	_Age of C	Culture:	629 C	Culture He	ealth:	_Gm	2	
Culture Count:						Cell Density	(c1):	6m 629.5	x 10 4	
	v1 =	220,000	cells/ml x	100	ml	. = 3	& me			
				. ,	cells/ml					
Time Zero Counts			2 20	_	Average	21	×104			
No. of Cells/mL:	<u> 715</u>	109		_Initial D	ensity:	# cells/mL	÷ 220 μL x	10 μL = ⁴	1545	
Concentration		Water Qu	ality Meas	urement	s	Baion		eted OV new	4-1-2	
% [VIV)	рН		Tem	p (°C)		IAUCI	opiates rot	ated 2X per	uay ?	
7,00	0 h	0 h	24 h	48 h	72 h	0 h_	24 h	48 h	72 h	
CONTROL	70	238	25.6	25.2	744	V	1/	レレ	VV	
1.48	7·0	23.8	25.6	25.2	244	<u> </u>	1/	VV	レレ	
2.95	70	23.7	25.6	5.2	249	· V	10	~ /	レレ	
5-9.	<u>ጉ</u> 0	237	25.6	25.2	24.4		1/	V/	VV	
11-9	71	23.4	25.6	25.2	24.4	<i>\</i>	11	レン	レレ	
23.8	72	23.5	14.b	25.2	24.4	V.	11	V /	VV	
47.6	75	23.4	25.6	25.2	244	_	10		レレ	
95.2	77	23.4	25.6	25.2	244	V	~ /	V	ノレ	
Initials	ew	The	TIT	M	an	En	JUT	ON	III	
Initial control pH:	Well 1:		<u> </u>		Well 2:	_ት[
Final control pH:	Well 1:	6.8	<u> </u>		Weil 2:	6.8				
Light intensity (lux): 39	TOV			Date mea	sured:	Aug	21,200	8	
Sample Description	1 :		lear,	light	- gul	<u>m</u>		,		
Comments:										
Reviewed:	1.	Tong	 }		Date	reviewed:	Septe	mber	17,2008	

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

Client:	MI	www.		Start D	ate/Time: _	try.	51 mg (a work	
Work Order #:	081	90		•	tion Date:	kry.	24, 710F	21301	_
Sample ID:		-2		•	set up by:	Ecc			_
% (VIV)				•	· · · —				
Concentration	Rep	Count 1	Count 2	Count 3	Count 4		Comments		Initials
Control	A	52							au
	В	44							
	C	20		· 					
	-D	42			·				
	E_	33	38						
	F	49		_					
	G	63	29						
	Н	45							
	Α	22					<u> </u>		
1	В	18							
148	С	43							
;	D	64	61						
	Α	45	49						
•	В	63	\ .	·					
2.95	C	79							
	D	45							
	A	76							
	В	74							-
2.9	C	82							
	D	66		_	\				
		86							
	A	90							_
11-9	B	93							_
		78							+
	D					·			-
	<u>A</u>	91	<u> </u>						
23.4	В	82	-					-	
, .	_ <u>C</u>								_
	D	71	<u> </u>						
	A	82							
476	В	68							
	C D	70							
	A	71							_
	B	66							
95.2	C	28							1/
	D	Ū	· ·						
Comments:					·				
Davidance d box	A	1	0	Doto F	Poviowod:	Carl	12 hol 1-	7 2001	
Reviewed by:		. (0)	× -	Date F	Reviewed: _	<u> </u>	embel 1	/ 0	
		1	'			U			
Version 1.0 Modif	fied Ma	y 8, 2008	J				Na	autilus Enviro	nment

Nautilus Environmental

72-h Pseudokirchneriella subcapitata Test - Trend Analysis by Mann-Kendall Test.

Instructions:

- 1. Enter the project number, work order number and sample ID in the highlighted cells.
- 2. Enter the negative control cell yield data (X x 10⁶ cells/mL) into the highlighted spreadsheet cells.
- 3. Compare the calculated S value to the table of critical S values at the bottom of the page.
- 4. If the calculated S value is smaller than the S value in the table, there is no statistically significant trend.

Client:

Minnow______8190

Sample ID: Test Date: _X-2

W.O. No.:

0____

21-Aug-08

Rep No	1	2	3	4	5	6	7	8	Count of	Count of
Data Value	51.0	43.0	49.0	41.0	34.5	48.0	60.0	44.0	+ Signs	- Signs
ı j									,	
(- Rep 1)		-8.000	-2.000	-10.000	-16.500	-3.000	9.000	-7.000	1	6
(- Rep 2)			6.000	-2.000	-8.500	5.000	17.000	1.000	4	2
(- Rep 3)				-8.000	-14.500	-1.000	11.000	-5.000	1	4
(- Rep 4)					-6.500	7.000	19.000	3.000	3	1
(- Rep 5)						13.500	25.500	9.500	3	0
(- Rep 6)							12.000	-4.000	1	. 1
(- Rep 7)								-16.000	0	1
		. ——						Totals	13	15
									S =	-2

Critical values of (S) at a probability of p = 0.05, when the number of replicates (n) is 10 or less.

n	- 4	5	- 6	7	8	9	10
S	4	6	9	11	14	16	19

If your calculated value for S (for the applicable number of replicates) is equal to or less than the corresponding value for S in the above table, then there is no statistically significant trend present. Refer to Gilbert (1987) for complete table of probabilities for the Mann-Kendall test.

Reference:

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY. 320 pp.

Sept 17/08

Pseudokirchneriella subcapitata Algal Counts

Client: WO#:	Minnow ∂ 8190			Start Date/ Termination			8 @1500h 8 @1300h		
Sample ID:	X-2	·		Initial Cell [Density:	9545.454	5 cell/mL		210000 0.22
									0.01
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Mean	Cell Yield		9545.4545
ug/L Zn		(x 10⁴)	(x 10 ⁴)	(x 10 ⁴)	$(x 10^4)$	(x 10 ⁴)	(x 10⁴) cell/mL		
Control	Α	52				52	51.0	mean	46.4
	В	44	•		•	44	43.0	SD	7.5919953
	С	50	1			50	49.0	CV	16.376899
	D	42				42	41.0		
	E	33	38			35.5	34.5		
	E F	49				49	48.0		
	G	63	59			61	60.0		
	н	45				45	44.0		
1.48	Α	55				55	54.0		
	В	58				58	57.0		
	С	43				43	42.0		
	D	64	61			62.5	61.5		
2.95	Ā	45	49			47	46.0		
2.00	В	63				63	62.0		
	Ċ	79 .				79	78.0		
	Ď	65				65	64.0		
5.9	Ā	76				76	75.0		•
	В	74	*			74	73.0		
	Ċ	85				85	84.0		
	Ď	66				66	65.0		
· 11.9	Ā	86				86	85.0		
71.5	B	90	•			90	89.0		
	C	93				93	92.0		•
	, D	78				78	77.0		
23.8	Ā	91				91	90.0		
23.0	В	82	1			82	81.0		
	C	84				84	83.0		
	. D	71				71	70.0		
47.6	A	85				85	84.0		
47.0		68				68	67.0		
	В С	- 76				76	75.0		
	D	70 72				72	71.0		
05.2		71				71	70.0		
95.2	A	66				66	65.0	•	
	B C	58				58	57.0		
	D	55				55	54.0		
	U	ວວ				JJ	J -1 .U		

Sept 17/08

Report Date:

03 Sep-08 17:15 (p 1 of 2)

Link/Link Code:

10-2349-9402/08190

Selenastrum G	Frowth Test	_							N	autilus En	vironmental
· · · · · · · · · · · · · · · · · · ·	16-9860-0293		•	Cell Density		-	CE	TIS Version	: CETISV	1.5.0	
Analyzed:	03 Sep-08 17:	14	Analysis: F	Parametric-Mu	ultiple Comp	arison ————	Of	ficial Result	s: Yes		
Sample No:	07-7885-7903		Code: 7	78857903			Cli	ent: Mi	nnow		
Sample Date:	19 Aug-08		Material: I	ndustrial Efflu	ent		Pro	oject:			
Receive Date:	21 Aug-08		Source: X	-2							
Sample Age:	48h		Station:								
Data Transform	n	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	τυ	PMSD	
Untransformed			C > T	Not Run		95.2	0	#Error	1.05	29.11%	
Bonferroni Adj	t Test							 _			-
Control	vs Conc-%		Test Sta	t Critical	MSD	P-Value	Decision				
Negative Contro	ol 1.48		-1.456	2.613	13.46	1.0000	Non-Sigr	ificant Effect			
	2.95		-3.154	2.613	13.46	1.0000	Non-Sigr	nificant Effect	• •		
	5.9		-5.434	2.613	13.46	1.0000	_	nificant Effect			
	11.9		-7.666	2.613	13.46	1.0000	Non-Sigr	nificant Effect			
	23.8		-6.744	2.613	13.46	1.0000	_	ificant Effect			1
	47.6		-5.434	2.613	13.46	1.0000	_	ificant Effect			
	95.2 		-2.96	2.613	13.46	1.0000	Non-Sigr	ificant Effect			
ANOVA Table									_		
Source	Sum Squ	ares	Mean Square	DF	F Stat	P-Value	Decision	(5%)		<u></u>	
Between	6823.389		974.7698	7	13.77	0.0000	Significar	nt Effect			
Error	1982.5		70.80357	28							
Total	8805.889		1045.573	35		<u> </u>					
ANOVA Assum	ptions		<u> </u>								
Attribute	Test			Test Stat	Critical	P-Value_	Decision				
Variances	Bartlett E	quality	of Variance	2.073	18.48	0.9557	Equal Va				
Distribution	Shapiro-V	Vilk No	rmality	0.9872		0.9448	Normal D	istribution			
Cell Density Su	ımmary							:			
Conc-% C	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0 N					10.01	^4	60	1.456	7.704	16.66%	0.0%
1.48	Negative Contr	8	46.25	43.26	49.24	34	00	1.700	7.707	10.00 /0	0.070
1.70	Negative Contr	8 4	46.25 53.75	43.26 50.45	49.24 57.05	42	62	1.606	8.5	15.81%	-16.22%
2.95	Negative Contr								-		
l	Negative Contr	4	53.75	50.45	57.05	42	62	1.606	8.5	15.81%	-16.22%
2.95	Negative Contr	4 4	53.75 62.5	50.45 57.42	57.05 67.58	42 46	62 78	1.606 2.476	8.5 13.1	15.81% 20.96%	-16.22% -35.14%
2.95 5.9	Negative Contr	4 4 4	53.75 62.5 74.25	50.45 57.42 71.22	57.05 67.58 77.28	42 46 65	62 78 84	1.606 2.476 1.475	8.5 13.1 7.805	15.81% 20.96% 10.51%	-16.22% -35.14% -60.54%
2.95 5.9 11.9	Negative Contr	4 4 4 4	53.75 62.5 74.25 85.75	50.45 57.42 71.22 83.23	57.05 67.58 77.28 88.27	42 46 65 77	62 78 84 92	1.606 2.476 1.475 1.228	8.5 13.1 7.805 6.5	15.81% 20.96% 10.51% 7.58%	-16.22% -35.14% -60.54% -85.41%

Report Date:

03 Sep-08 17:15 (p 2 of 2)

Link/Link Code:

10-2349-9402/08190

Selenastrum Growth Test

Nautilus Environmental

Analysis No: Analyzed:

16-9860-0293 03 Sep-08 17:14 Endpoint: Cell Density
Analysis: Parametric-N

Parametric-Multiple Comparison

CETIS Version: CETISv1.5.0

Official Results: Yes

Cell Densit	Cell Density Detail												
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8				
0	Negative Contr	60	51	49	48	44	43	41	34				
1.48		62	57	54	42								
2.95	•	78	64	62	46								
5.9		84.	75	73	65								
11.9		92	89 .	85	77								
23.8	r	90	83	81	70								
47.6	•	84	75	71	67								
95.2	•	70	65	57	54								

APPENDIX C - Rainbow Trout Juvenile Toxicity Test Data

Rainbow Trout Summary Sheet

Client:	Minaso Environment	Start Date/Time: Aug 21/08@ 1800
Work Order No	08188	Test Species: Oncorhynchus mykiss
Sample Information:		
Sample ID:	x-2	
Sample Date:	Aug 19/06	•
Date Received:	Aug 21/08	
Sample Volume:	2×20L	
Other:		
Dilution Water:		
Туре:	Decklomated For Mun	icipal Tap Water
Hardness (mg/L CaCO ₃	·	
Alkalinity (mg/L CaCO ₃)	: 9	
	·	
Test Organism Informa	ation:	
Batch No.:	072908	
Source:	Frager Valley Trout of	tatchery
Test Volume/No. Fish:	10/10/1	
Loading Density:	0.349/1	
Mean Length ± SD (mm)		Range: <u>34 -44</u>
Mean Weight ± SD (g):	0.34 ± 0.09	Range: 0.20 - 0.50
SDS Reference Toxical	nt Results:	
Reference Toxicant ID:	RT35	· •
Stock Solution ID:	0863	
Date Initiated:	Aug 81 08	
96-h LC50 (95% CL):	5.0 (4.3-5.6)	
Reference Toxicant Mea	n±2SD: 5.4±2	, ©
Reference Toxicant CV (%): 19.0°/.	Restaurant statement of the statement of
	·	
Test Results:	The 96 h Less >	100 % (1/1)
_	1 -	,
Reviewed by:	A. Ere	Date reviewed: <u>September 17,</u> 20

96-Hour Rainbow Trout Toxicity Test Data Sheet

Client/Project#									-		er Fi) :		_				100				
Sample I.D.		_		<u> X</u> -	- 2							7-d % Mortality: 0.13									1/2			
W.O. #		_		81								Total Pre-aeration Time (mins): 30 Aeration rate adjusted to 6.5 ± 1 mL/min/L? (Y/N):										·		
RBT Batch #:					<u>ž 90</u>				_		4	Aerat	ion ra	ate ac	djuste	ed to	6.5 ±	1 mL	/min/	L? ()	//N):	_		
Date Received): _	A	ug	21/	086	<u>) i</u>	3/0			Г													1
Date Setup/Tin	ne:	_	4	2/	108	((e)		1800						Undiluted Sample WQ										
Sample Setup	By:	_	_		<u> </u>				Parameters Initial W				ial W	Q	Adjustment 30 min W				Q					
						•				Te	mp °	С		5.9%	_				1551	55_				
D.O. meter:		_		DO-1							Į		рH			.5			_/		7.4	<u></u>		4
pH-1									D.O). (mg	/L)	9	9			<u>/</u>		10.0	<u> </u>					
Cond. Meter:		•		C-1								Cond	24) .k	/cm)	16	,5		/		,	162			1
•		•		3											17	15								4
Concentration			# 9	Survivo	ors				Гетр	eratui	e (°C)	Disse	olved	Oxyg	en (m	ng/L)			рН				ductivity S/cm)
*(~(/v)	4	2	4	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	, – ––
	1	2	4		1	10		——	-	+												-		96
cH			 	10	10	}	10	155					10.1			101		74	6.9		72		57 44	\$6
6.25			<u> </u>	10	io	10	P						90							7,3	73	73	77	50
12.5		.		10	p	10	9	15.2	149	150	148	15.0	99	9.7	7.6	9.9	10.1	7,2	7.2	7.2	72	7.3	52	57
25				O	10	10		15.0	149	150			9,9		8.4			7,2	71	7.1	73	7.4	64	70
50				10	10	10	10	14.9	14.9	150	14.8	15.0	0,0	9.3	7,5	9.9	101	7.4		74	75	7.5	105	110
100				10	13	10		15.5	14.9				10,3			9.8	191	70	7.6	7.6	76	7,8	162	166
																	<u>'</u>	, ,			Ĺ			
		<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>			<u> </u>	<u> </u>		1	V-				10		<u> </u>	
Initials	<u> </u>			3	15	EON	1	1	1	- Tu	· Co	4	1	e 407	73	de	43	Care	a	The	ea	100	M	1
Sample Descr	ription	ı/Com	nmen	ts:	-	Jl:	14	yell	(سے	sL	Kue	,	cle										·	
Fish Descripti	on at	96?		All_	~		U			ppin	-	8000	4_											
Other Observ	ations	s:	Tu	in f	4.F	da	len	the	n p	· 	<u> </u>												_	
Reviewed by:			. 6	Eng	· 							•		,		Date	e Revi	ewed	:	5	ept.	and	del l'	7,2008
Issued Octob	er 9, 2	2007;	Ver.	1.1	ل	•									·•							- N	autilus E	nvironmenta

Rainbow trout (Oncorhynchus mykiss) length and weight sheet

Client: <u>M. M. O. W. En Nonmental</u>
W.O. #: <u>O. 8788</u>
Sample ID <u>X - 2</u>

Date Measured: Aug 25708

Batch #: 072908

		Length (mm)	Weight (g)
	1	39	0.32
	2	35	0.26
•	3	44	0.50
	4	_35	0.28
	5	42	0.39
	6	38	0.32
	7	36	0,30
	8	34	0.20
	9	41	0.41
·	10	43	0.42
	Total	387	3,40
	Mean	39	0.34
	Std. Dev.		0.09
	1	74	0.20
	Low	_34	0.20
	High	<u>44 </u>	0.50

Sept 17/08

APPENDIX D – Chain-of-Custody Form

☐ CALIFORNIA

5550 Morehouse Drive • Suite 150 San Diego, California 92121 Phone 858.587.7333 Fax 858.587.3961 ☐ WASHINGTON

5009 Pacific Highway East • Suite 2 Tacomo, Washington 98424 Phone 253.922.4296 Fox 253.922.5814 BRITISH COLUMBIA

8664 Commerce Court Burnaby British Columbia Canada V5A 4N7 Phone 604.420.8773 Fax 604.357.1361 **Chain of Custody**

Sample Collection by: C. Rus	sel				Α	NALYSES REQUIRED	
Report to: Company MINNOW ENVIRONMENT Address & Lamb St City George town State O Contact Parti ORR Phone/Email 905 873-3	N_Zip_C7G662	City		rtul.co	} 4ckwy Selenastrum	7 day Certio dapinia 96 h. Caintau Hout	RECEIPT TEMPERATURE (°C)
SAMPLE ID DATE	TIME MATRIX CONTAIN TYPE	IER NUMBER OF CONTAINERS	COMMENTS		40	7 de 96	¥
X-2 Augig	130 Wider 201	- 2 u	order sample for toxicity		× 06180	X 188 89 X 188 89 89 89 89 89 89 89 89 89 89 89 89 8	77
			(ev 0) 3/03		Wote	# Holy	
PROJECT INFORMATION CLIENT	SAMPLE REC		RECHNQUISHED BY (CUENT)	ر (ر		ED BY (COURIER)	
P.O. NO.	REC'D GOOD CONDITION		(Prigred Name)	_(((Signature) (Printed Name		1310L(Time) Aug 21 (56)
SHIPPED VIA:	MATCHES TEST SCHEDULE		(Company) MINNOW MINONM RECEIVED BY (COURIER)	ento	(Company)	UTL/	運動 (4) (2)
SPECIAL INSTRUCTIONS/COMMENTS:			(Signature) (Printed Name) (Company)	(Time) (Date)	(Signature)	1110_	13(OL (Time) Augz (F)

Freshwater Sediment Toxicity Tests

Final Toxicity Test Report

Report date: November 4, 2008

Submitted to:

Minnow Environmental Incorporated

Georgetown, ON

Burnaby Laboratory 8664 Commerce Court Burnaby, BC V5A 4N7

WO#: 08200

Ms. Patti Orr Minnow Environmental Inc. 2 Lamb St. Georgetown, ON L7G 6L2

November 6, 2008

Ms. Orr:

Re: Freshwater sediment toxicity testing on sediment samples collected August 20 and 21, 2008)

Nautilus Environmental is pleased to provide you with the results of the toxicity tests conducted on sediment samples identified as R2, R7 and X2, received on August 25, 2008. Testing was conducted using *Hyalella azteca* following Environment Canada methods. A summary of the test results and methods are provided in the following report.

Please feel free to contact the undersigned at 604-420-8773 should you have any questions or require any additional information.

Nautilus Environmental

Edmund Carraria, R.P. Bio

Environmental Biologist

TABLE OF CONTENTS

		P	Page
TAB	LE O	F CONTENTS	I
1.0	INT	RODUCTION	2
2.0	MET	THODS	2
	2.1	Quality Assurance/Quality Control (QA/QC)	2
3.0	RES	ULTS	
	3.1	Quality Assurance/Quality Control	6
4.0	REF	ERENCES	7
		LIST OF TABLES	
Tabl	e 1.	Summary of test conditions for the 14-d Hyalella azteca sediment toxicity test	3
Tabl	e 2.	Toxicity test results for the 14-d Hyalella azteca sediment toxicity test	4
Tabl	e 3.	Summary of total ammonia concentrations for the 14 day <i>Hyalella azteca</i> sedim toxicity tests.	
Tabl	e 4	Reference toxicant test results.	
1 401	C 1.	Treference to Areant test results	0

LIST OF APPENDICES

i

APPENDIX A - Hyalella azteca Toxicity Test Data

APPENDIX B - Chain-of-Custody Form

1.0 INTRODUCTION

Nautilus Environmental conducted freshwater sediment toxicity tests for Minnow Environmental on sediment samples collected on August 20 and 21, 2008.

The sediment samples were evaluated for toxicity using the 14-d *Hyalella azteca* toxicity test. This report describes the results of this toxicity test. Copies of raw laboratory data sheets and statistical analyses are provided in Appendix A. The chain-of-custody form is provided in Appendix B.

2.0 METHODS

The samples were transported in 4-L plastic buckets and were received at the Nautilus laboratory on August 25, 2008. The samples were stored in the dark at 4 ± 2 °C prior to testing and the tests were initiated on September 11, 2008. The 14-d *H. azteca* test was conducted according to procedures described by Environment Canada (1997). Methods and test conditions for the toxicity test are summarized in Table 1. Statistical analyses were performed using the CETIS (Tidepool Scientific Software, 2007) software program. Total ammonia was measured in the overlying water from each sample at test initiation and termination.

2.1 Quality Assurance/Quality Control (QA/QC)

Nautilus follows a comprehensive QA/QC program to ensure that all data generated are of high quality and scientifically defensible. Our QA program is designed to ensure that all tests are performed in accordance with well-established and approved methods (e.g., Environment Canada, US EPA).

To meet these objectives, Nautilus has implemented a number of quality control procedures that include the following:

- Negative controls to ensure that appropriate testing performance criteria are met;
- Positive controls to assess the health and sensitivity of the test organisms;
- Use of appropriate species and life stage to meet the study objectives;
- Appropriate number of replicates to allow the proper statistical analyses;
- Calibration and proper maintenance of instruments to ensure accurate measurements;
- Proper documentation and recordkeeping to allow traceability of performance;

- Adequate supervision and training of staff to ensure that methods are followed;
- Proper handling and storage of samples to ensure sample integrity;
- Procedures in place to address issues that may arise during testing and ensure the implementation of appropriate corrective actions; and
- Rigorous review of data by a registered professional biologist to ensure they are of good quality and scientifically defensible prior to release to the client.

Table 1. Summary of test conditions for the 14-d *Hyalella azteca* sediment toxicity test.

Test organism Hyalella azteca

Test organism source Aquatic BioSystems, Fort Collins, CO

Test organism age 6 - 8 days
Test type Static
Test duration 14 days

Test vessel 375-mL glass jars

Test Treatment 100 mL sediment; 175 mL overlying water

No. of organisms 10 per replicate

Number of replicates 5

Control/dilution water Moderately hard synthetic water prepared from

dechlorinated city water

Test solution renewal None Test temperature $23 \pm 1^{\circ}$ C

Feeding 1.5 mL YCT per replicate daily
Light intensity 500 to 100 lux at water surface
Photoperiod 16 hours light/8 hours dark
Aeration Gentle aeration throughout test

Test protocol Environment Canada (1997), EPS 1/RM/33

Test endpoint Survival and dry weight

Test acceptability criteria for controls Mean control survival of ≥80%; and ≥0.1

mg/amphipod dry weight

Reference toxicant NaCl

3.0 RESULTS

Results of the 14-d *H. azteca* toxicity test are summarized in Table 2. The total ammonia values measured for the overlying water in each sample are summarized in Table 3.

The sample identified as R7 was the only sample that exhibited a significant reduction in survival relative to the control. There were no significantly significant adverse effects on growth of *H. azteca* in any of the samples. Ammonia concentrations in the overlying water were well below concentrations expected to be associated with adverse effects to this species.

Table 2. Toxicity test results for the 14-d *Hyalella azteca* sediment toxicity test.

Sample ID	Survival (%) (Mean ± SD)	Dry Weight (Mean ± SD)
Control Sediment	88.0 ± 8.4	0.203 ± 0.036
R2	86.0 ± 11.4	0.236 ± 0.072
R7	50.0 ± 15.8 *	0.164 ± 0.054
X2	90.0 ± 7.1	0.186 ± 0.031

Asterisks (*) indicate samples that are significantly different from the control sediment.

SD = Standard Deviation.

Table 3. Summary of total ammonia concentrations for the 14 day *Hyalella azteca* sediment toxicity tests.

Sample ID	Overlying Water Total Ammonia (mg/L N)								
	Day 0	Day 14							
Control Sediment	0.03	0.04							
R2	0.02	0.06							
R7	0.11	0.08							
X2	0.05	0.04							

3.1 Quality Assurance/Quality Control

The test met acceptability criteria and water quality parameters remained within an acceptable range throughout the test. The reference toxicant test results for each species are summarized in Table 4. The test results fell within two standard deviations of the mean of historical test results, indicating that the test organisms were of an appropriate degree of sensitivity.

Table 4. Reference toxicant test results.

Test Species	LC50	Acceptable Range (Mean ± 2SD)	CV(%)	Test Date
H. azteca	4.9 g/L NaCl	3.8 ± 2.1 g/L NaCl	27	September 11, 2008

4.0 REFERENCES

Environment Canada. 1997. Biological test method: test for survival and growth in sediment using the freshwater amphipd *Hyalella azteca*. Environmental Protection Series EPS 1/RM/33 December 1997. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 123 pp.

Tidepool Scientific Software. 2007. CETIS comprehensive environmental toxicity information system. Tidepool Scientific Software, McKinleyville, CA. 222 pp.

APPENDIX A - Hyalella azteca Toxicity Test Data

Hyalella azteca Sediment Test Summary Sheet

Client: IMM	m	Start Da	ate/Time:	Sept	11,208	1230L
Work Order No.08206			et up by:	G		
Sample Information:						J
Sample ID: VWW Sample Date: Arc Date Received: Arc Sample Volume:	ms 15 20 and 21, 208 15 25, 208 344L					
Test Organism Inform	mation:					
Species: Hydrosupplier: A Date received: Supplier: Supplier: A Date received: Supplier: Suppli	wh agree BS pt-9,248 6-8d ell					
Naci Reference Toxic	cant Results.					
Reference Toxicant ID Stock Solution ID: Date Initiated: 96-h LC50 (95% CL):	18415 18401 Sqr-11,208 4.9(4.1-5-9)	JIL N	ael			
96-h LC50 Reference	Toxicant Mean ± 2 SD:	3.81	2.1	CV (%) <u>:</u>	27	
Test Results:						
Sample ID	Survival ± SD (%)	Avera	age Dry \	Wt. ± SD (r	ng)
Crital Sedment P2 R7 Y2	0.80 ± 0.00 0.80 ± 0.10 0.90 ± 0.00		0.34	0-263 0-234 0-164 0-166	1 0·0 1 0·0	15
Decisioned how TRA				. [1		

Chronic H. azteca Sediment Toxicity Test Data Sheet

Freshwater Sediment Water Quality															
Client: Work Order No.:	MANION WINNOW ENVIRONMENTA Start Date: Sept. 11, 2013 Termination Date: Sept. 21, 2018 Test Organism: Hundra care a														
	Dissolved oxygen (mg/L)												 _		
Sample ID	Day 0 1 2 3 4 5 6 7 8 9 10 11 13 13 14														
Con de ou Consum		127	2	3	17-0	5	6	7	8	9	10	11	12	13	14
CONTROL SEAMOR	206	174	72	73	78	77	37	7.7	7.6	7.8	7.5	7.4	1.5	7.6	7.4
27	78	7.8	72	निर्द	80	81	7.6	7.4	7.8	7.7	7.7	7.6	3.5	7.5	7.6
V2	79	79	N	201	76	29	75	73	9.4	7.5	7.6		7.6	7.8	7.8
	ļ	ļ. <u> </u>													
	\						ļ <u> </u>		ļ <u> </u>		 			 	ļ
	ļ	 						 -	 	 -	 	 -		 	
							ļ ——			 	 			 	
	EW.	<u></u>		10/	Ca	di	eu	117	10,4	<u> </u>	BR	<u> </u>	7, 4	1	-
Technician Initials	(Ca)	50	<u> </u>	Sh/	(SI)	0,0	u	IJĄ.	JUT	OKU	Dr	DKL	JUT	Se	Da
								рН							
							-	Day							
Sample ID	<u> </u>	1						Day		1 0	140	1 44	1 40	1 42	1 44
	0	1 2	2	3	34	5	6	7.8	8	9	10	11	12	13	14
Control Stomes	13.7	B. 1	43	8.2	8.1	8.1	82	31	7.9	7.8	7.7 7.4	7.6	7,9	77	7:4
127	76	8.2	84	8.2	8.0	8.1	8.1	8-0		8.1	8.0		7.9	8.0	8.0
X2	78	8.2	8-4	8.4			8-4	8.3		8.4	8.4	8.4	9.3	8-4	8.3
					<u>'</u>		<u> </u>			<u> </u>		<u> </u>			
		ļ	ļ	<u> </u>				 -	 	ļ		ļ <u>-</u>	 -	 	
											 	}			
	<u> </u>	<u> </u>													
 	Asa.	-		MAS	Office	(PA)	(do		- J		00	CV.	1.1	Jan	111
Technician Initials	OW	JK	<u></u>	en	en	WV	en	bc/	1147	DKC	BRL	uec	54	W	50
Comments:												_			_

Reviewed by:

Date Reviewed: 16 Oct 2008

Chronic H. azteca Sediment Toxicity Test Data Sheet

Freshwater Sediment Water Quality

	Freshwater Sediment Water Quality														
Client: Work Order No.:	D)	とうか	m E	, A v.Yo	inah	<u>.</u> \	Start Date: Sept 11, 700 8 Termination Date: Sept 25 708 Test Organism: Galette asker								
							Tem	peratu	re (°C)		'0'		J-		
		<u> </u>				_		Davi							
Sample ID	<u> </u>	T .		<u> </u>	1 .	Τ_		Day	1 .		1	1	1	T 12	
A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	. 14
CONTROL SED	23.8	12.9	245	24.0	24.0	24.0				24.0	+	+	24.0		24.5
<u>P2</u> 27	73.8	729	MS	24.0	24.0	24.0	240	24.0	24.0		24.0		24.0		24.0
V2	27.8	12 9	24/5	24.0	24.0	740	24.0	246	24.0	24.0 24.0			24.0		24.0
1 Y	<i>V/</i> -	V) - 1	7903	24	1100	100		100	10111	Sen. 0	24.0	anima	1000	W. 1	110
		-						 						 	
		1													
	ļ													<u> </u>	
		- A	ļ		1	- Ard	1000						1 3	100	1
Technician Initials	CA	JU	<u></u>	M/	EN	EM	an	711	901	DKr	BRC	OKC	ゴイ	en	TI
							Cond	luctivit	ty (µS)						
Sample ID								Day	_						
Gample 15	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CONTROL SED	492	484	516	509	201	200	496	495	ラッシ	500	490	511	515	513	499
122	462	485	504	490	200	498	181	507	500	489	491	512	538	536	537
RZ	434	459	500	461	464	420	467	479	471	470	467	486	493	491	499
<u> </u>	117	570	629	665	686	695	683	<u>692</u>	701	696	701	720	7.5	706	710
	_			<u></u>					_						
·	<u> </u>								_			_		<u> </u>	
<u> </u>	<u> </u>		<u></u>						_					 -	
<u> </u>	+									_	_				_
<u> </u>										_					
			,												
Technician Initials	en	JU		en	M	m	64	W.	507	منده	9PC	DEL	34	(In)	TI
			4.5				-						<u>v</u>		<u> </u>
•															
Comments:				-						_	-		_		
Reviewed by:	M	<u> </u>						Da	te Revi	ewed:	16	Our	2001	7	

H. azteca Sediment Toxicity Test Data Sheet

Freshwater Sediment Survival and Weight

Client: Work Order No.:	NM	NHN 200		•	Ter	Start Date:	Sept : 25	N8 200 8	
			<u> </u>	<u>-</u>		Test Organism:		rees	
Sample ID	Rep	No. alive	No. dead	No. missing	Initials	Pan weight (mg)	Pan + organism (mg)	No. weighed	Initials
Connal Edment	Α	9	O		Ele-	1045.30	1046.92	9	te
-	В	9	0	1		995.63	997.13	9	1
	C	ÌŌ	0	0		987.52	989.92	lo	
	D	8	0	2		1032.46	1034.741	8	
	Ε	8,	0	2	V	999.26	1000.74	8	U
122	Α	9	0	1	C	1048.08	1020.52	9	Ea
	В	0	Ď	0		1056.74	1060.22	10	1
	С	9	<u> </u>	\		1016.07	1018.26	9	
	D	7	0	3		1031-88	1032.96	7	
0.3	Ε	8	O -	7	V	1045.01	1046.57	8	<u> </u>
27	A	5	0	<u> </u>	er.	(022.98	1023.70	4	Ca
	В	4	O O	6		10533	1054.137	4	
	C	6	0	4	<u> </u>	1016.38	1017.330	(₆	
	D E	3	D	7		1056.41	1057.01	<u>E</u>	
10	-	7 9		3	<u> </u>	1010.33	980.36	41 1	<u>V</u>
X2	A B	9	0.	1 1	皑	981.82	1011.54	9	Ea
	C	8	Ö	2	. •	1015.95	987-69	9	
	D	9	0	1		1093.3640	1095.27	9	
	E	10	 8 	0	\	1011.30	1013.32	16	
Comments:	<u></u>	16.90	D 1054	16 reme	ighed		1012 50		· · ·
Reviewed by:	N	2			ſ	Date Reviewed:	16 Oct	2008	

Report Date:

29 Sep-08 16:34 (p 1 of 4)

Link/Link Code:

,	Survival and Gr	owth \$	Sediment Tes	t		- 1			N	lauțilus En	vironment
Analysis No: Analyzed:	21-3401-4124 29 Sep-08 16:3	2	•	Mean Dry We Parametric-Co	-	eatments	CETIS Version: CETISv1.5.0 Official Results: Yes				
Sample Code	Sample No	s	Sample Date	Receive [Date S	ample Age	Client N	ame	Pr	oject	
2052491426	20-5249-142	26 1	1 Sep-08	<u> </u>	1	I/A					
1327875629	13-2787-562	9 2	0 Aug-08	28 Aug-08	3 2	2d 0h -					
42996274	00-4299-627	4 2	1 Aug-08	28 Aug-08	3 2	1d 0h					
992516272	09-9251-627	'2 2	1 Aug-08	28 Aug-08	3 2	1d 0h	٠		,		
Sample Code	Material Ty _l	oe -	Sample	Source		Station L	ocation		Latitude	Lor	ngitude
2052491426	Sediment Sa	mple	Control	Sediment							
1327875629	Sediment Sa	ample	R2	•							
42996274	Sediment Sa	ample	R7								
992516272	Sediment Sa	ample_	X2						_		
Data Transform	m	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed	<u>-</u>		C > T	Not Run			•			35.5%	
Dunnett's Mulf	tiple Compariso	n Tes	t								
Sample Code	vs Sample C	ode	Test Sta	t Critical	MSD	P-Value	Decision	(5%)			
2052491426	13278756	29	-1.027	2.227	0.0721	0.9643	Non-Sign	ificant Effect			
	42996274		1.202	2.227	0.0721	0.2583	Non-Sign	ificant Effect			
	00054007	2	0.5386	2.227	0.0721	0.5277	Non Cina	ificant Effect			
	99251627		0.5566		0.0721	0.5211	Non-Sign	- Elleci	·		
ANOVA Table	99251627				0.0721		Non-Sign	- Elleci	: 		
	99251627 Sum Squ		Mean Square		F Stat	P-Value	Decision	-	·		 -
Source		ares					Decision	-	· <u>-</u>		<u></u> -
ANOVA Table Source Between Error	Sum Squ	ares	Mean Square	DF_	F Stat	P-Value	Decision	(5%)	· <u>-</u>		
Source Between Error	Sum Squ 0.0139518	ares	Mean Square 0.0046506	DF 3	F Stat	P-Value	Decision	(5%)	· <u>-</u>		
Source Between Error Fotal	Sum Squ 0.0139518 0.0419177 0.0558695	ares	Mean Square 0.0046506 0.0026199	DF 3 16	F Stat	P-Value	Decision	(5%)	· <u>-</u>		
Source Between Error Total	Sum Squ 0.0139518 0.0419177 0.0558695	ares	Mean Square 0.0046506 0.0026199	DF 3 16	F Stat 1.775	P-Value	Decision	(5%) ificant Effect	· <u>-</u>		
Source Between	Sum Squ 0.0139518 0.0419177 0.0558699 nptions	ares	Mean Square 0.0046506 0.0026199	DF 3 16 19	F Stat 1.775	P-Value 0.1924	Decision Non-Sign	i(5%) ificant Effect	· <u>-</u>		
Source Between Error Total ANOVA Assum Attribute	Sum Squ 0.0139518 0.0419177 0.0558699 nptions	ares	Mean Square 0.0046506 0.0026199 0.0072705 of Variance	DF 3 16 19 Test Stat	F Stat 1.775 Critical	P-Value 0.1924 P-Value	Decision Non-Sign Decision Equal Va	i(5%) ificant Effect	· <u>-</u>		
Source Between Error Fotal ANOVA Assum Attribute Variances Distribution	Sum Squ 0.0139518 0.0419177 0.0558695 nptions Test Bartlett Ec	ares	Mean Square 0.0046506 0.0026199 0.0072705 of Variance	DF 3 16 19 Test Stat 3.127	F Stat 1.775 Critical	P-Value 0.1924 P-Value 0.3725	Decision Non-Sign Decision Equal Va	i(5%) ificant Effect (1%) riances	· <u>-</u>		
Source Between Error Fotal ANOVA Assum Attribute Variances Distribution	Sum Squ 0.0139518 0.0419177 0.0558695 nptions Test Bartlett Ec Shapiro-W	ares	Mean Square 0.0046506 0.0026199 0.0072705 of Variance ormality	DF 3 16 19 Test Stat 3.127	F Stat 1.775 Critical	P-Value 0.1924 P-Value 0.3725 0.9495	Decision Non-Sign Decision Equal Va	i(5%) ificant Effect (1%) riances	· <u>-</u>	CV%	Diff%
Source Between Error Fotal ANOVA Assum Attribute Variances Distribution Mean Dry Weig	Sum Squ 0.0139518 0.0419177 0.0558695 nptions Test Bartlett Ec Shapiro-W	ares	Mean Square 0.0046506 0.0026199 0.0072705 of Variance ormality	DF 3 16 19 Test Stat 3.127 0.9813	F Stat 1.775 Critical 11.34	P-Value 0.1924 P-Value 0.3725 0.9495	Decision Non-Sign Decision Equal Va Normal D	(5%) ificant Effect (1%) riances istribution	-	CV% 17.76%	Diff% 0.0%
Source Between Error Fotal ANOVA Assum Attribute Variances Distribution	Sum Squ 0.0139518 0.0419177 0.0558699 nptions Test Bartlett Ed Shapiro-W	uality	Mean Square 0.0046506 0.0026199 0.0072705 of Variance ormality t Mean	DF 3 16 19 Test Stat 3.127 0.9813	F Stat 1.775 Critical 11.34	P-Value 0.1924 P-Value 0.3725 0.9495 Min	Decision Non-Sign Decision Equal Va Normal D	(5%) ificant Effect (1%) riances istribution Std Err	Std Dev		
Source Between Error Fotal ANOVA Assum Attribute Variances Distribution Mean Dry Weig Conc-Sed 2052491426	Sum Squ 0.0139518 0.0419177 0.0558699 nptions Test Bartlett Ed Shapiro-W	uality filk No	Mean Square 0.0046506 0.0026199 0.0072705 of Variance ormality t Mean 0.2031	DF 3 16 19 Test Stat 3.127 0.9813 95% LCL 0.1891	F Stat 1.775 Critical 11.34 95% UCL 0.2171	P-Value 0.1924 P-Value 0.3725 0.9495 Min 0.1667	Decision Decision Equal Va Normal D	(1%) riances istribution Std Err 0.006816	Std Dev 0.03607	17.76%	0.0%

Report Date: Link/Link Code: 29 Sep-08 16:34 (p 2 of 4)

Hyalella 10-d Survival and Growth Sediment Test Nautilus Environm								
Analysis No:	21-3401-4124	•	Mean Dry Weight-mg	CETIS Version:	CETISv1.5.0			
Analyzed:	29 Sep-08 16:32		Parametric-Control vs Treatments	Official Results:	Yes			

Mean Dry Weight-mg	Detail					
Conc-Sed	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
2052491426	0.2438	0.24	0.185	0.18	0.1667 °	
1327875629	0.348	0.2433	0.2411	0.195	0.1543	
42996274	0.23	0.2	0.1583	0.144	0.08857	
992516272	0.2078	0.2078	0.202	0.1762	0.1344	

Report Date:

29 Sep-08 16:34 (p 3 of 4)

Link/Link Code:

Hyalella 10-d	Survival and Growth	Sediment Test		-				N	lautilus En	vironmenta
Analysis No: Analyzed:	07-7492-0836 29 Sep-08 16:32	• • • • • • • • • • • • • • • • • • • •	Survival Rate Parametric-Co	ontrol vs Tre	atments		TIS Version ficial Results		1.5.0	
Sample Code	Sample No	Sample Date	Receive	Date Sa	ample Age	Client N	ame	Pr	oject	
2052491426	20-5249-1426	11 Sep-08		N	'A			<u> </u>		
1327875629	13-2787-5629	20 Aug-08	28 Aug-0	3 22	d Oh					
42996274	00-4299-6274	21 Aug-08	28 Aug-0	3 21	d Oh					
992516272	09-9251-6272	21 Aug-08	28 Aug-08	3 21	d Oh					·
Sample Code	Material Type	Sample	Source		Station L	ocation	_	Latitude	Lor	gitude
2052491426	Sediment Sampl	e Control	Sediment			<u> </u>		_	_	
1327875629	Sediment Sample	e R2								
42996274	Sediment Sample	e R7								
992516272	Sediment Sample	e X2								
Data Transfor	m Zeta	a Alt Hyp	Monte Ca	irlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	C > T	Not Run						16.84%	
Dunnett's Mul	tiple Comparison Te	est	:							
Sample Code	vs Sample Code	Test Sta	t Critical	MSD	P-Value	Decision	n(5%)			
2052491426	1327875629	0.2604	2.227	0.1984	0.6484	Non-Sigr	ificant Effect		-	
	42996274	4.933	2.227	0.1984	0.0002	Significa	nt Effect			
	992516272	-0.3186	2.227	0.1984	0.8491	Non-Sigr	nificant Effect			
ANOVA Table										
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision	n(5%)			
Between	0.736671	0.245557	3	12.38	0.0002	Significa	nt Effect			
Error	0.3174447	0.0198403	.16							
Total	1.054116	0.2653973	19					<u>. </u>		
ANOVA Assum	nptions									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett Equalit	y of Variance	0.7919	11.34	0.8514	Equal Va	riances			
Distribution	Shapiro-Wilk N	lormality	0.9484		0.3441	Normal D	istribution	_		*
										
Survival Rate	Summary									Diff%
	Summary Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	D111 /0
Survival Rate S Conc-Sed 2052491426		nt Mean 0.88	95% LCL 0.8476	95% UCL 0.9124	Min 0.8	Max 1	Std Err 0.01581	Std Dev 0.08367	9.51%	0.0%
Conc-Sed	Cou									
Conc-Sed 2052491426	Cou 5	0.88	0.8476	0.9124	0.8	1	0.01581	0.08367	9.51%	0.0%
Conc-Sed 2052491426 1327875629	5 5	0.88 0.86	0.8476 0.8158	0.9124 0.9042	0.8 0.7	1	0.01581 0.02155	0.08367 0.114	9.51% 13.26%	0.0% 2.27%
Conc-Sed 2052491426 1327875629 42996274 992516272	5 5 5	0.88 0.86 0.5 0.9	0.8476 0.8158 0.4387	0.9124 0.9042 0.5613	0.8 0.7 0.3	1 1 0.7	0.01581 0.02155 0.02988	0.08367 0.114 0.1581	9.51% 13.26% 31.62%	0.0% 2.27% 43.18%
Conc-Sed 2052491426 1327875629 42996274 992516272 Angular (Corre	5 5 5 5	0.88 0.86 0.5 0.9	0.8476 0.8158 0.4387	0.9124 0.9042 0.5613	0.8 0.7 0.3 0.8	1 1 0.7	0.01581 0.02155 0.02988	0.08367 0.114 0.1581	9.51% 13.26% 31.62%	0.0% 2.27% 43.18%
Conc-Sed 2052491426 1327875629 42996274 992516272 Angular (Corre Conc-Sed	Cour 5 5 5 5 5 5 ected) Transformed	0.88 0.86 0.5 0.9	0.8476 0.8158 0.4387 0.8726	0.9124 0.9042 0.5613 0.9274	0.8 0.7 0.3 0.8	1 1 0.7 1	0.01581 0.02155 0.02988 0.01336	0.08367 0.114 0.1581 0.07071	9.51% 13.26% 31.62% 7.86%	0.0% 2.27% 43.18% -2.27%
Conc-Sed 2052491426 1327875629 42996274 992516272 Angular (Corre Conc-Sed 2052491426	Cour 5 5 5 5 5 ected) Transformed	0.88 0.86 0.5 0.9 Summary	0.8476 0.8158 0.4387 0.8726	0.9124 0.9042 0.5613 0.9274 95% UCL	0.8 0.7 0.3 0.8	1 1 0.7 1	0.01581 0.02155 0.02988 0.01336	0.08367 0.114 0.1581 0.07071	9.51% 13.26% 31.62% 7.86%	0.0% 2.27% 43.18% -2.27%
Conc-Sed 2052491426 1327875629 42996274 992516272	Cour 5 5 5 5 5 ected) Transformed Cour	0.88 0.86 0.5 0.9 Summary nt Mean 1.225	0.8476 0.8158 0.4387 0.8726 95% LCL	0.9124 0.9042 0.5613 0.9274 95% UCL 1.274	0.8 0.7 0.3 0.8 Min 1.107	1 1 0.7 1 Max 1.412	0.01581 0.02155 0.02988 0.01336 Std Err 0.02389	0.08367 0.114 0.1581 0.07071 Std Dev 0.1264	9.51% 13.26% 31.62% 7.86% CV%	0.0% 2.27% 43.18% -2.27% Diff% 0.0%

Report Date: Link/Link Code: 29 Sep-08 16:34 (p 4 of 4)

Hyalella 10-d	Survival and Growth	n Sediment Te	4	Nautilus Environmental	
Analysis No: Analyzed:	07-7492-0836 29 Sep-08 16:32		Survival Rate Parametric-Control vs Treatments	CETIS Version: Official Results:	CETISv1.5.0 Yes

Survival Rate Detail	, 					 •
Conc-Sed	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
2052491426	1	0.9	0.9	0.8	0.8	
1327875629	. 1	0.9	0.9	8.0	0.7	
42996274	0.7	0.6	0.5	0.4	0.3	
992516272	1	0.9	0.9	0.9	0.8	

CETIS Summary Report

Report Date:

29 Sep-08 16:34 (p 1 of 1)

Link/Link Code:

Hyalella 10-d S	Survival and Grov	vth Sediment Te	est	_				N	lautilus En	vironmental
Test Run No: Start Date: Ending Date: Duration:	20-0269-0645 11 Sep-08 25 Sep-08 14d Oh	Test Type: Protocol: Species: Source:	Survival-Grow EC/EPS 1/RM Hyalella aztec	1/33	· .		Water: ine:			
Sample Code	Sample No	Sample Date	Receive I	Date Sa	mple Age	Client N	ame	Project		
2052491426	20-5249-1426	11 Sep-08	<u> </u>	N/	'A		· · ·			
1327875629	13-2787-5629	20 Aug-08	28 Aug-08	3 22	2d Oh					
42996274	00-4299-6274	21 Aug-08	28 Aug-08	3 21	d Oh					
992516272	09-9251-6272	21 Aug-08	28 Aug-08	3 21	d 0h					
Sample Code	Material Type	Samp	le Source		Station L	ocation		Latitude	Lon	gitude
2052491426	Sediment Sam	nple Contro	ol Sediment							
1327875629	Sediment Sam	nple R2		٠.						
42996274	Sediment Sam	nple R7								
992516272	Sediment Sam	iple X2					·			
Mean Dry Weig	ht-mg Summary						_ 	 _		
Conc-Sed	·C	ount Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
2052491426	5	0.2031	0.1896	0.2166	0.1667	0.2438	0.006585	0.03607	17.76%	0.0%
1327875629	. 5	0.2363	0.2093	0.2634	0.1543	0.348	0.01322	0.07243	30.64%	-16.38%
42996274	5	0.1642	0.1439	0.1844	0.08857	0.23	0.009905	0.05425	33.04%	19.16%
992516272	5	0.1856	0.1739	0.1974	0.1344	0.2078	0.005743	0.03145	16.94%	8.59%
Survival Rate S	Summary									
Conc-Sed	C	ount Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
2052491426	5	0.88	0.8488	0.9112	0.8	1	0.01528	0.08367	9.51%	0.0%
1327875629	5	0.86	0.8174	0.9026	0.7	1	0.02082	0.114	13.26%	2.27%
42996274	5	0.5	0.441	0.559	0.3	0.7	0.02887	0.1581	31.62%	43.18%
992516272	5	0.9	0.8736	0.9264	8.0	1	0.01291	0.07071	7.86%	-2.27%
Mean Dry Weig	ht-mg Detail									
Conc-Sed	Re	ep 1 Rep 2	Rep 3	Rep 4	Rep 5					
2052491426	0.	18 0.1667	0.24	0.2438	0.185					
1327875629	0.3	2411 0.348	0.2433	0.1543	0.195					
42996274	0.	144 0.23	0.1583	0.2	0.08857				·	
992516272	0.	1344 0.2078	0.1762	0.2078	0.202					
Survival Rate D	etail		•							
Conc-Sed	R	ep 1 Rep 2	Re <u>p</u> 3	Rep 4	Rep 5					
2052491426	0.9	9 0.9	. 1	0.8	0.8					
1327875629	0.9	9 1	0.9	0.7	8.0					
42996274	0.9	5 0.4	0.6	0.3	0.7					
992516272	0.9	9 0.9	0.8	0.9	1					

Nautilus Environmental Sediment Toxicity Test - Water Quality Data For Ammonia

Client :	mound	Species :	Hyallha askea
Work Order No:	08200	Sample Type:	orierlying water
		Date Measured:	Sypt-12/08
			•

	Sample ID	Salinity	рН	Total Ammonia	Unionized Ammonia	Tech
Day O	Consurson	(ppt) MSD —	75	(mg/L) 0.03	(mg/L)	Init EE
1	Commer som	-	75	0.02	_	
	P7	-	76	0-11		
	XV		<u> </u> ጉ8	005		
<u>.</u>				·		
Dayla	CMP-OL-SEJUMG	NT .	75	0.04	<u> </u>	ta
) 1	CMPOLSEJUMO P2		74	0.06		
	P7		8.0	0.08		
	X	-	83	0.04	-	
	_					
		· ·	_			
				·		·
•						

Comments:		 	 		_	 	
				 •			

Reviewed by: ______ Date Reviewed: ______ Date Reviewed: ______

Client:	M	4	MAR)	
---------	---	---	-----	---	--

W.O.#: 0820

Hardness and Alkalinity Datasheet

			Alkalinity						
Sample ID	Sample Date	Sample Volume (mL)	HCL/H ₂ SO ₄ used	(mL) of 0.02N HCL/H $_2$ SO $_4$ used to pH 4.2	Total Alkalinity (mg/LCaCO ₃)	Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Technicia
		5 0	3.8	3-9	74	10	4.9	98	Ele
	Sept. 10/08				92				
P2_	Sapt 4TOS		4.7	4.8		20	7,2	(44	<u> </u>
R7	1	70	4.1	4.2	80	10	78	156	
X2		70	78	8.1	150	10	74	148	
Sedment Cont	e V	20	3.4	3.6	68	10	47	94	V
Control Sedine	J Sent 25th	10	3.2	3.3	62	50	3.5	70	Eu
22	1 - 1/1 24/5	.m	4.6	4.7	30	50		150	1
R7		22	4.2	4.3	82	20	75 73	146	
YZ		50	13.5	13.8	264	20	4.8	740	
				15.0	20-1				
		,							
<u> </u>		6							
<u> </u>					·				
<u> </u>		,				,			
			<u>. </u>	_					
		Notes:					-	· · · · · · · · · · · · · · · · · · ·	
						<u> </u>			
Reviewed by:		51	<u>.</u>		Date Revie	wed:	box	7008	

APPENDIX B - Chain-of-Custody Form

CALIFORNIA

5550 Morehouse Drive - Suite 150 San Diego, California 92121 Phone 858.587.7333 Fax 858.587.3961

☐ WASHINGTON

5009 Pacific Highway East • Suite 2 Tacoma, Washington 98424 Phone 253.922.4296 Fax 253.922.5814

BRITISH COLUMBIA
8664 Commerce Court
Burnaby British Columbia Conada V5A 4N7
Phone 604.420.8773

Fox 604.357.1361

Date 1/05 Page 1 of

Chain of Custody

Sample Collection by:	R, TH, MI	3			<u>.</u>			ANALYSES REQUIRED			
Report to:				In	voice to:			\$ 5			
Company MIN NOW	ENTURAN	MEN	TAL			SAN	IE AS REPURT	eventhrendla colophyla colophyla	454		ਹ
Address 2 LAMB		1.4511	1.7.	I				1			
CityGEORGETOWN State ON ZipL76 3M9 City State Zip						Strum Kerchim	3 2		₹		
Contact PATTI 0	D D	<u></u>	1P (C) (C)				Jidle Zip	15 5 3°	Mei		
DL /E 1 (1 N) - 87	2-22/3-1.			_ _				sevendor Sevedor Sevedor	N & W		<u>\$</u>
Phone/Email 905-87	$\frac{3}{3}$ = $\frac{3}{3}$ $\frac{1}{1}$	nmei	101	<u>or</u> al "	none/ Linaii			7 <u>8879</u>			
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NUMBER OF CONTAINERS		COMMENTS	4-0 4-0	14-6 hyallelo		RECEIPT TEMPERATURE (°C)
R7	AV(2) 2008		water	20 L	2			V V	\vee		(a) (c)
R7	Avg21 2008		sed	46	1		A		✓		10 Sept. 10
_X2	129.21		sed	46	1		451		V	-	
R2	Avg 2c 2008		sed	46			201		V		
							10 500	2 5	3700		
	-	÷					John Maria	2000	2 3		
							* Kr. 11	3 2	404		
							· · · · · · · · · · · · · · · · · · ·		3 3		
PROJECT INFORM	MATION	111	S/	MPLE RECEI	PT		RELINQUISHED BY (CLIENT)		RELINQUISHED BY (COURIER)	•	
CLIENT		TOTAL	NO. OF CO	ONTAINER\$		3	(Signatute)	NG 21/08	(Signature)	<u></u>	(Time)
P.O. NO. 2254		REC'D	GOOD CC	NOITION		\checkmark	(Printed Name) CYNTHIA RUSSEL	(Date)	(Printed Name)		19 (15 (Date)
SHIPPED VIA:		MATC	HES TEST S	CHEDULE		/	MINNOW		(Company) VT2	A	378/08
SPECIAL INSTRUCTIONS/CO	MMENTS:		<u> </u>	-		:	RECEIVED BY (COURIER)		RECEIVED BY (LABORATORY)	· •	.s.
							(Signature)	(Time	(Signature)		294 (Time)
							(Printed Name)	(Date) (Printed Name) John T	- 1	328/00
		****					(Company)		Nautilus Environmentol Log-in No	•	7

Toxicity Testing on samples identified as R-7, R-2 and X-2 collected in January, 2009

Final Toxicity Test Report

Report date: February 9, 2009

Submitted to:

Minnow Environmental Incorporated

Georgetown, ON

Burnaby Laboratory 8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

		Pa	ge
TABI	LE O	F CONTENTS	I
1.0	INT	RODUCTION	1
2.0	ME	THODS	1
	2.1	Quality Assurance/Quality Control (QA/QC)	2
3.0	RES	ULTS	6
	3.1	Quality Assurance/Quality Control	6
REFE	EREN	NCES	10
		LIST OF TABLES	
Table	e 1.	Summary of test conditions for the Ceriodaphnia dubia survival and reproduction	
		test	3
Table	e 2.	Summary of test conditions for the <i>Pseudokirchneriella subcapitata</i> growth inhibition test.	4
Table	e 3.	Summary of test conditions for the 96-h LC50 rainbow trout test.	
Table	e 4.	Toxicity test results for the Ceriodaphnia dubia survival and reproduction test	7
Table	e 5.	Toxicity test results for the Pseudokirchneriella subcapitata growth inhibition test.	
		Data are presented as mean ± SD cell density (X 10 ⁴ cells/mL)	
Table		Survival (%) in the 96-h LC50 juvenile rainbow trout (<i>Oncorhynchus mykiss</i>) test	
Table	e 7.	Reference toxicant test results	9
		LIST OF APPENDICES	
APPI	END	IX A – Ceriodaphnia dubia Toxicity Test Data	
APPI	END	IX B - Pseudokirchneriella subcapitata Toxicity Test Data	
APPI	END	IX C – Rainbow Trout Juvenile Toxicity Test Data	
APPI	END	IX D - Chain-of-Custody Form	

i

1.0 INTRODUCTION

Nautilus Environmental (Burnaby, BC) conducted sub-lethal and acute toxicity tests for Minnow Environmental on samples identified as R-7, R-2 and X-2, collected on January 15, 2009 and delivered to the Nautilus Environmental Laboratory in Burnaby, BC on January 17, 2009. The samples were collected in 20-L collapsible containers, transported in coolers containing ice packs and stored in the dark at 4° C prior to testing. Toxicity testing was performed on the sample using the following tests:

- Ceriodaphnia dubia survival and reproduction
- 72-h *Pseudokirchneriella subcapitata* growth inhibition (formerly identified as *Selenastrum capricornutum*)
- 96-h Rainbow trout (Oncorhynchus mykiss) survival

This report describes the results of these toxicity tests. Copies of raw laboratory data sheets and statistical analyses for each test species are provided in Appendices A, B and C. The chain of custody form is provided in Appendix D.

2.0 METHODS

Methods for the toxicity tests are summarized in Tables 1 through 3. Testing was conducted according to procedures described by Environment Canada (2000a, 2007a and 2007b).

Statistical analyses for all the tests were performed using CETIS (Tidepool Scientific Software, 2007).

2.1 Quality Assurance/Quality Control (QA/QC)

Nautilus follows a comprehensive QA/QC program to ensure that data generated are of high quality and scientifically defensible. Our QA program is designed to ensure that all tests are performed in accordance with well-established and approved methods (e.g., Environment Canada, US EPA).

To meet these objectives, Nautilus has implemented a number of quality control procedures that include the following:

- Negative controls to ensure that appropriate testing performance criteria are met;
- Positive control to assess the health and sensitivity of the test organisms;
- Use of appropriate species and life stage to meet the study objectives;
- Appropriate number of replicates to allow the proper statistical analyses;
- Calibration and proper maintenance of instruments to ensure accurate measurements;
- Proper documentation and record keeping to allow traceability of performance;
- Adequate supervision and training of staff to ensure that methods are followed;
- Proper handling and storage to ensure sample integrity;
- Procedures in place to address issues that arise during testing so that appropriate corrective actions can be implemented; and
- Rigorous review of data by a Registered Professional Biologist to ensure they are
 of good quality and scientifically defensible prior to releasing to the client.

Table 1. Summary of test conditions for the *Ceriodaphnia dubia* survival and reproduction test.

Test organism Ceriodaphnia dubia
Test organism source In-house culture

Test organism age <24 hr old neonates produced within 12 hr

Test type Static renewal

Test duration 7 ± 1 day

Test chamber 20 mL test tube

Test solution volume 15 mL

Test concentrations Seven concentrations, plus laboratory control

Number of replicates 10

Control/dilution water 20% Perrier water (hardness 80-100mg/L

CaCO₃)

Test solution renewal Daily
Test temperature $25 \pm 1^{\circ}$ C

Number of organisms/chamber 1

Feeding Daily, with 0.1 ml Pseudokirchneriella subcapitata

and 0.05 mL YCT

Light intensity 100 to 600 lux

Photoperiod 16 hours light/8 hours dark

Aeration None

Test protocol Environment Canada (2007a), EPS 1/RM/21

Test endpoints Survival and reproduction

Test acceptability criteria for criteria for

control

≥80% survival; ≥15 young per surviving

control; ≥60% of controls producing three or

more broods

Reference Toxicant Sodium chloride

Table 2. Summary of test conditions for the *Pseudokirchneriella subcapitata* growth inhibition test.

Test organism Pseudokirchneriella subcapitata

Test organism source In-house culture

3 to 7-day old culture in logarithmic growth

phase

Test type Static

Test organism age

Test duration 72 hours

Test chamber Microplate

Test solution volume $220 \mu L$

Test concentrations Seven concentrations, plus laboratory control

Number of replicates 4 for treatments; 8 for control

Control/Dilution water Deionized or distilled water

Test solution renewal None
Test temperature $24 \pm 2^{\circ}$ C

Number of organisms/chamber 10,000 cells/mL Light intensity 3600 to 4400 lux

Photoperiod Continuous

Aeration None

Test protocol Environment Canada (2007b), EPS 1/RM/25

Test endpoint Algal cell growth inhibition

≥ 16-fold increase in number of algal cells; no Test acceptability criteria for control

trend; and $CV \le 20\%$

Reference toxicant Zinc

Table 3. Summary of test conditions for the 96-h LC50 rainbow trout test.

Test organism Oncorhynchus mykiss

Test organism source Commercial hatchery

Test organism age Juveniles
Test type Static

Test duration 96 hours

Test chamber 18.2 L glass aquarium

Test solution volume 10 L

Test concentrations Five concentrations, plus laboratory control

Number of replicates 1

Control/Dilution water Municipal dechlorinated water

Test solution renewal None

Test temperature 15 ± 1 °C

Number of organisms/chamber Ten
Feeding None

Light intensity 100 to 500 lux

Photoperiod 16 hours light/8 hours dark

Aeration $6.5 \pm 1 \text{ mL/min/L}$

Test protocol Environment Canada (2000b), EPS 1/RM/13

Test endpoint Survival

Test acceptability criterion for control Survival $\geq 90\%$

Reference toxicant Sodium dodecyl sulphate

3.0 RESULTS

Results of toxicity tests using *C. dubia* are provided in Table 4. No adverse effects were observed on survival of this species in any of the samples. Adverse effects on reproduction of *C. dubia* were observed in samples R-2 and X-2; IC25 values in these samples were 62.6 and 26.9%, respectively. The IC25 for reproduction was >100% in sample R-7, indicating a general lack of toxicity in this sample. It should be noted that reproduction in a number of test concentrations in sample R-7 were determined to be statistically significantly lower than control performance. However, this appears to reflect a high degree of sensitivity to detect differences between the control and test concentrations as a result of the low between-replicate variability associated with the control in this test, rather than providing evidence of a real toxicological effect in the sample. In fact, reproduction in all concentrations of R-7 exceeded that associated with acceptable control performance, suggesting that there was little indication of adverse effects. Consequently, the NOEC and LOEC have not been reported for this sample.

Growth of *P. subcapitata* was inhibited in samples R-2 and X-2, with IC25 values of 62.6 and 26.9%, respectively. No inhibition of growth was observed in sample R-7 (IC25 of >100%). These data are provided in Table 5.

Survival in the 96-h rainbow trout toxicity test was 100% in all concentrations for all samples; the LC50 was >100% in all three samples (Table 6).

3.1 Quality Assurance/Quality Control

The health history of the test organisms used in the exposures was acceptable and met the requirements of the Environment Canada protocols. The tests met all control acceptability criteria and water quality parameters were within acceptable ranges specified in the respective test protocol. There were no deviations from the test protocols.

Results of the reference toxicant tests are summarized in Table 7. Results of these tests were all fell within the acceptable ranges of organism performance (mean \pm two standard deviations), based on historical results obtained by the laboratory. These results indicate that the test organisms were of an appropriate degree of sensitivity.

Table 4. Toxicity test results for the *Ceriodaphnia dubia* survival and reproduction test.

		R-7		R-2	X-2		
Concentration	Survival	Reproduction	Survival	Reproduction	Survival	Reproduction	
(% v/v)	(%)	(#/adult)	(%)	(#/adult)	(%)	(#/adult)	
Control	100	19.1 ± 1.4	90	17.6 ± 6.3	100	18.6 ± 2.6	
1.56	100	18.8 ± 1.9	100	18.2 ± 0.9	100	17.0 ± 2.2	
3.12	100	17.6 ± 1.5	100	17.8 ± 0.8	90	15.5 ± 5.5	
6.25	100	15.1 ± 2.5*	100	18.1 ± 1.8	100	17.5 ± 1.6	
12.5	100	16.7 ± 1.1*	100	17.6 ± 1.1	100	15.9 ± 2.4	
25	100	$17.0 \pm 1.3*$	100	16.3 ± 1.2*	100	$14.4 \pm 1.3*$	
50	100	$15.4 \pm 1.2*$	100	$15.4 \pm 1.0*$	90	$10.0 \pm 1.9*$	
100	100	16.4 ± 2.4 *	100	$8.1 \pm 1.4*$	90	0.2 ± 0.6 *	
T	Survival	Reproduction	Survival	Reproduction	Survival	Reproduction	
Test endpoint	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	
NOEC	100	See text	100	12.5	100	12.5	
LOEC	>100	See text	>100	25	>100	25	
LC50	>100		>100		>100		
ICOT (OFO) CI		>100%		62.6		26.9	
IC25 (95% CL)				(51.4 – 73.1)		(15.6 - 33.3)	
1050 (050) 613		>100%		94.5		52.6	
IC50 (95% CL)				(83.3 - >100)		(46.4 - 57.5)	

Asterisks (*) indicate treatments that are significantly different from the control.

CL = Confidence Limits.

NOEC = No Observed Effect Concentration.

LOEC = Lowest Observed Effect Concentration.

LC = Lethal Concentration.

IC = Inhibition Concentration.

SD = Standard Deviation.

Table 5. Toxicity test results for the *Pseudokirchneriella subcapitata* growth inhibition test. Data are presented as mean \pm SD cell density (X 10⁴ cells/mL).

Concentration	R-7	R-2	X-2
(% v/v)			
Control	50.3 ± 5.7	42.7 ± 6.4	49.1 ± 4.8
1.48	70.8 ± 11.2	75.3 ± 6.9	57.8 ± 9.3
2.95	80.0 ± 3.9	105.8 ± 16.0	93.5 ± 11.0
5.95	107.0 ± 3.4	115.8 ± 17.6	114.8 ± 13.8
11.9	134.3 ± 7.4	95.8 ± 24.1	55.8 ± 15.2
23.8	142.5 ± 15.3	90.3 ± 10.5	13.3 ± 3.6 *
47.6	165.0 ± 20.5	42.8 ± 14.0	2.0 ± 0.8 *
95.2	195.3 ± 12.3	8.0 ± 2.9 *	1.0 ± 1.4 *
Test and asset	Cell Density	Cell Density	Cell Density
Test endpoint	(% v/v)	(% v/v)	(% v/v)
NOEC	95.2	47.6	11.9
LOEC	>95.2	95.2	23.8
IC25 (95% CL)	>95.2	58.9 (NC)	14.8 (13.6 - 16.5)
IC50 (95% CL)	>95.2	72.9 (NC)	17.3 (15.4 – 20.3)

NOEC = No Observed Effect Concentration.

Table 6. Survival (%) in the 96-h LC50 juvenile rainbow trout (*Oncorhynchus mykiss*) test.

Concentration (% v/v)	R-7	R-2	X-2
Control	100	100	100
6.25	100	100	100
12.5	100	100	100
25.0	100	100	100
50.0	100	100	100
100.0	100	100	100

Test endpoint	Survival (% v/v)	Survival (% v/v)	Survival (% v/v)
LC50	>100	>100	>100

LC = Lethal Concentration.

LOEC = Lowest Observed Effect Concentration.

IC = Inhibition Concentration.

SD = Standard Deviation.

NC = Not Calculable; data for this sample analyzed by log-linear interpolation (with cell density in concentrations exceeding control growth assigned control growth rate) because of failure of assumptions of nonlinear regression models

 Table 7.
 Reference toxicant test results.

Species	Endpoint	Historical range (mean ± 2 SD)	CV(%)	Date
C. dubia	Survival (EC50): 2.0 g/L NaCl Reproduction (IC50): 1.3 g/L NaCl	1.7 ± 0.8 1.1 ± 0.3	23 14	January 28, 2009
P. subcapitata	Growth (IC50): 14.7 μg/L Zn	16.4 ± 10.8	33	January 18, 2009
O.mykiss (juvenile)	Survival (LC50): 5.3 mg/L SDS	5.2 ± 2.3	22	January 5, 2009

REFERENCES

Environment Canada. 2000. Biological test method: reference method for determining acute lethality of effluents to rainbow trout. Environmental Protection Series. Report EPS 1/RM/13, Second Edition, December 2000, including May 2007 amendments. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 23 pp.

Environment Canada. 2007a. Biological test method: test of reproduction and survival using the cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition, February 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 74 pp.

Environment Canada. 2007b. Biological test method: growth inhibition test using the freshwater alga. Environmental Protection Series, Report EPS 1/RM/25. Second Edition, March 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 53 pp.

Tidepool Scientific Software. 2007. CETIS comprehensive environmental toxicity information system, version 1.5.0D. Tidepool Scientific Software, McKinleyville, CA. 222 pp.

APPENDIX A - Ceriodaphnia dubia Toxicity Test Data

Nautilus Environmental

Ceriodaphnia dubia Summary Sheet

Client:	Minnon	Start Date/T	ime: In 17/09 & 1500
Work Order No.:	09018	Set up	
Work Grading.			
Sample Informati	tion:		
Comple ID:	P .7		
Sample ID: Sample Date:	1- (1)	\ 2	
Date Received:	12/2	3	
Sample Volume:	24	1st	
Test Organism lı	nformation:		
Broodstock No.:		01069	
Age of young (Da	v 0).	424 (v	illo (L-h)
	first 3 broods of previous 7		/ · · · · · · · · · · · · · · · · · · ·
Mortality (%) in pre	•	0_	
Avg. No. of young	in previous brood:		
NaCl Reference 1	Toxicant Results:		
Deference Terricos	at ID.	Cd 39	
Reference Toxical Stock Solution ID:	BUID.	DFN454	·
Date Initiated:		Am 28/09	
		1000	
7-d LC50 (95% CL	1,0(1.7-)	-3) gli Naci	
7-d IC50 (95% CL)	1.3 (1.1 - 1.	5) g)L Nach	
7 d I CEO Deference	ce Toxicant Mean ± 2 SD:	17 + 00	CV/9/): 2.5
	e Toxicant Mean ± 2 SD:	1.7 ± 0.8 1.1 ± 0.3	CV (%): _23
, a loop Reference	o Toxidant Medit & 2 OD.		
Test Results:		Survival	Reproduction
	NOEC %(v/v)	100	3,12
	LOEC %(v/v)) po	(b. 6)
	LC50 %(v/v) (95% CL)	7 /00	63.3(51.4-74.1)
	IC25 %(v/v) (95% CL)		7.60
	IC50 %(v/v) (95% CL)	t Affrica Approximation of the second	14.7(848.100° 12200
Reviewed by:	A. Tere,	Date re	viewed: Felo Fuzzy 5,2008

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:			mon!				Sta		& Time		dan	17/00	101	500
Sample ID:			<u>e-7</u>			_			top Date		Man	<u>13/0</u>	90 K	5401
Work Order #:		090	18			_		Test S	Species:	Cenoc	laphnia	dubia	**************************************	
C/2(4/J))ays		****				
Concentration	0		1		2		3		4	1	5		6 .	7
Control	init	eld	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	2572	28-8	242	25.9	24.1	254	247	2572	24.7	255	245	2574		************
DO (mg/L)	81	75	79	716	82	74	500	79	81	72	F/2	6.4		
pH	8.1	709	8	8,0	8.1	21	5-1	77	81	47	81	8.1	. /	/
Cond. (µS/cm)	212	72	10		213		214		214		215			
Initials	Aus	Eu	100	980	BAL	A	-	٨	\top	_		p-	/	
			J							•	· /			
. 16							· D	ays						
Concentration	0		1		2		3		4		5		;	7
	init	old	new	old	new	old	new	old	new	old	new	old	new :	final
Temperature (°C)	24.9	25.8	24.3	25.9	24,6	1.04	24.4	2573	24.5	2015	24.7	2004		- /
DO (mg/L)	83	75	8.1	7,5	8.0	75	1.3	79	8,2	シャ	1,0	65		
рН	1.3	79	8-0	8.0	8.0	8.5	80	79	20	77	21	4		
Cond. (µS/cm)	114	2	12	2	12	21	3		215	21	7	224		
Initials	An	Œ	Œ	SPL	BRU	٨	p.		~		<u>۸</u>	,		
			•							,				
125				,			Da	ays						
Concentration	0	. 1			2		3		4	į	5	6		7
	init.	old	new	old	new	old	new	öld	new	old	new	old	new	final
Temperature (°C)	24.8	26.6	24:4	25.3	a4.7	25.4	243	25.3	24.5	205	242	244		
DO (mg/L)	F-3	74	82	7,3	8.10	74	8,0	m	5,1	26	ro.	6.6		\mathcal{A}
pH	40	79	79	B. 0	8:0	81	20	79	和了	77	ro Lo	8.1		
Cond. (µS/cm)	219	2	8	2	18	27	4	22	در	v'	22	532		
Initials	ميم	ek	Car	BOL	BPL	~	~	A	_	M	Λ			
								· · · · · · · · · · · · · · · · · · ·					,	
100							Da	iys						
Concentration	0	1	**************************************	2	}	3	} .		4	5		6		7
	init	old	new	old	new	old	пеw	old	new		new	old	пеж	final
Temperature (°C)	24/5	356			14,67	2574	24.3	2573			14.4	25,4		
DO (mg/L)			8:2	7,3	8.1	7.6	81	77	. ,,		-	6,91		
pH		<u> </u>		8:1	7,7					79	<u> </u>	みし	/	
Cond. (µS/cm)	199	26		21	و4	26	`	ı	67	26	9	ンチン		
Initia <u>ls</u>	\mathrew	En	En	380	BIL	<u>^</u>		Λ-	~	<u>^</u>	<u> </u>	<u>~ </u>		
						······		and or the second						
Hardnesst	Cont		loc			- [SHERICAL PROPERTY.	A	nalyst	: -	to,	4	
Hardness* Alkalinity*		<u>೦</u>	32			$\overline{}$)a.d		100		
ing/L as CaCO3	<u> </u>	-	12	0						Reviewe Ite revie		10/2	5100	2.
									Da	ice revie	:wea:	Feb	<u> </u>	, .
Sample Description:			0		PR	2								
														
omments:														

Chronic Freshwater Toxicity Test
C. dubia Reproduction Data

		nit	11/2	٥	۲ «	£ 4	1 4			4				3	36	,	,	5 0	•		4			nit.								
		٦	2	,	31	, •	do			6			ز د	`	, \	V	9	1	,		4		. [7								
4ch51		-	1) \	M	, N	4			4			-/-)	7	0	ch	,		19			-								
55		I	> ;	,	2	0	. 9			81		[;	= .	> 3	•	7 "	, 4	Ç.			4			I								
100 60 1500 to 100 to 1	7	ပ	7	>	~	1	14			31			ز و	,	. 1	>	4	, L			18		-	פ								
	3.12	ഥ	7	2	1	4	9			31/21		S .	-/		> \	1 1	14	4			4		1	-								
4 8		ш	27		4	17	1			2		Į.	ц -	, (,	>	4	O			32		,	'n				1				
Jen 17		۵	>>		3 3	d	4			18			2 Z	, 7		16	17	1			5			2								
	o	ပ	7	,	m	\vdash	4			13		Ë (ز اد			3	1	1			8/		<u>:</u>	د								
ime: ime: by:	intrati	m	7	1	1/2	٩	٨	7		*	;	ntrat	ے م	1	7/	1	4	do			Ž		ntrat	0	1			T				
Start Date & Time: Stop Date & Time: Set up by:	Concentration:	4	7	, \) n	1	4	1		12		Concentration:	₹ /	•	1/2	₩	11	م			2		Concentration:	₹ .								
art Dai op Dai	Ť		8	} .	٠ ٦		Æ			4	ľ	_		2 3	5 3	1 4	4	4			4				इ	. 1	1	4	4			૮
%		7	7/2	1	5	80	4	1		13		F	2	7		7	9	clo			9		Г	3/7	>	,	7	~	4			14
_	و	-	7 /	,	U	d.	٥			100		(i)	-\7	7	1	4	j.	5		_	2		-	- 7	2	1	, 6	1	1			$\overline{\varphi}$
	<u> </u>	r	77	1	3	و	هـ			9/			-	, 7		ر د	1	4			7/		-	-/2	1		, ~	7	Q			16 17
		ပ	7 7	1	, (~:	4	ځ			6		•	2	/2		5	4	4			5	9	3 (ر ک)	>			4			3
/%		ш	7	1	-د.	00	مه			3		L	1	, 2		2	J	૭			9/		L	7		/	7	14	مه			12
•		ш,	7 /	,	N	er"	4			9		u	7			4	4	8			7/		L	7	7	\	M	4.	4		1	Ŧ
			7 3		د.)	do	0			3		c	ر (د	_	,	٤		3			5/		6	,	,		\ M	4	4	<u>.</u>		4
	ioi	ပ	7)	1	1	ል	σ			22		ا ق	,		7	>	4	1			9	, ide	5	, 7	3		/	4	4	Ĺ.,		2
	entrat	a	7)		1	0	مه			લ		Oncentration:	,		>	~	À	4			96	Concentrations	٥	3 7	()		せ	4	مح			5
	Concentration:	4	7 7)	7	K	4			91	Č	200	()		>	7	Ľţ	مہ	,		4	2	5		>		5	a	x			2
		ii (§ &	ا ح	4	4	૮			4		1	W	8	4	<	کے	4			4		2	W.	\$	ć	۲,	£	4			4
		ſ	7)		۴	ط	4		9	12		-	,	7		m		4			$\overline{\mathcal{L}}$		_	, 7	7		m		4	_		$\tilde{\mathcal{X}}$
			7)	1	3	مه	م	\perp		2		-	. ,	1	\	3	6	ø			9		_	. 7)	_	~	12	8			2
Minney P-7	Contract	=	7]	1	~		م	_	!	<u>ب</u>	1.05)]]	,	1;		~	4	S			ク		3	7	7		/>	4	4			2
Men. 7 - 7 100	inti	ט	7)		3	cp	4		,	*		2	/	7	1	7		4	_	_	9	8) c	>)		0	2	9			2
× × ×	7	F,	7 >		2	ولم	0			2	:	u	.\	7	1	>	۴	مه	_	\downarrow	$\overline{\mathcal{F}}$		L	,)		τ	4	٩٠			2
0 60		ш	>)		W	<u> </u>	0	\perp		7		ш	,)	7		*	\ <u>\</u>	1		_	3		u	—	7	>	~	ſΛ	7			7
		۱ ۵	> /	>	5	_9	4	\downarrow		3		٥	7	7		3	۵۔	٩		_	2		-		1	/	<u> </u>	6	2			8
	tion:	ان	> >		2	٥٥	4			2	dion.	ن ا	/	1	<u>.</u>	~	1	Υ,	_		$\overline{\mathcal{L}}$	ation:	ن	 	\ \	7	2	ν4-	1	_	+	5
<u>Ľ</u>	Davs Concentration:	m \		>	60	4	کم	_		2	Concentration	8	7	3		/	৩	D	1		2	Concentration:	•	,	7	_	5	17	4	_		2
Client: Sample ID: Work Order:	Con	4	<u> </u>	>	w	صد	<u>a</u>	_	- 11	7	٥	4	>	>	>	>	ھ.	٥	_	_	Total 12	Con	4	7	>	>	4	0	5	_		2
Client: Sample Work O	Davs		٦ م	8	4	10	1	~	æ	Total	1,	Days	-	7	က	4	40	9	~	&	Tota		Days	-	7	က	4	40	ဖ	~	œ	Total

Sample Description: Comments:

Reviewed by:

Date reviewed: February 5,2009

Version 2.0 Issued January 23, 2008

್ಷ TIS Analytical Report

Report Date:

27 Jan-09 15:46 (p 1 of 2)

Link/Link Code:

05-4762-0404/wo09018R7

		· -	 _	-				LINK/LINK	Coue. o	J-4702-040	4/₩00901
Ceriodaphni	a 7-d Survival	and Rep	production Tes	st 					N	lautilus En	vironmer
Analysis No: Analyzed:	15-3847-186 27 Jan-09 1			Reproduction Parametric-Co	ontrol vs Tre	atments		TIS Version		1.5.0	
Sample No: Sample Date Receive Date Sample Age:	9 :	2	Material:	1089796432 Industrial Efflu R-7	ent			ent: Mir oject:	nnow		
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransforme	ed		C > T	Not Run		3.12	6.25	4.416	32.05	9.65%	
Dunnett's Mı	ultiple Compar	ison Te	st								
Control	vs Conc-	%	Test Sta	at Critical	MSD	P-Value	Decision	n(5% <u>)</u>			
Negative Con	trol 1.56		0.3885	2.386	1.843	0.7511	Non-Sigr	nificant Effect			
-	3.12		1.942	2.386	1.843	0.1248	Non-Sigr	nificant Effect	ŀ		
	6.25*		5.18	2.386	1:843	0.0000	Significa	nt Effect			
•	12.5*		3.108	2.386	1.843	0.0079	Significa	nt Effect			
	25*		2.719	2.386	1.843	0.0225	Significa	nt Effect			
	50*		4.791	2.386	1.843	0.0000	Significa	nt Effect			
	100*		3.496	2.386	1.843	0.0025	Significa	nt Effect	· .		
ANOVA Table	 e										
Source	Sum S	quares	Mean Square	e DF	F Stat	P-Value_	Decision	<u></u>			
Between	146.28	75	20.89821	7	7.008	0.0000	Significa	nt Effect			
Error _	214.7		2.981945	72							
Total	360.98	75	23.88016	79							
ANOVA Assu	ımptions										-
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)		.,	
Variances	Bartlett	Equality	of Variance	12.6	18.48	0.0825	Equal Va	riances			
Distribution	Shapiro	o-Wilk N	ormality	0.9796		0.2311	Normal D	Distribution			
Reproduction	n Summary								. — .		
Conc-%	Control Type	Cour	nt <u>Me</u> an	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
)	Negative Con	tr 10	19.1	18.57	19.63	17 .	21	0.259	1.37	7.17%	0.0%
.56	7	10	18.8	18.07	19.53	16	22	0.3541	1.874	9.97%	1.57%
3.12		10	17.6	17.02	18.18	14	19	0.2845	1.506	8.55%	7.85%
3.25		10	15.1	14.13	16.07	12	19	0.4752	2.514	16.65%	20.94%
12.5		10	16.7	16.29	17.11	16	19	0.2002	1.059	6.34%	12.57%
25		10	17	16.48	17.52	15	19	0.252	1.333	7.84%	10.99%
50		10	15.4	14.94	15.86	14	18	0.2218	1.174	7.62%	19.37%
JU			10		17.00	40	40	0.4470	2.200	14 420/	14 140/

2.366

0.4472

14.43%

14.14%

15.48

16.4

10

17.32

13

19

100

Report Date:

27 Jan-09 15:46 (p 2 of 2)

Link/Link Code:

05-4762-0404/wo09018R7

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analyzed:

Analysis No: 15-3847-1869 27 Jan-09 15:41 Endpoint: Reproduction

Analysis:

Parametric-Control vs Treatments

CETIS Version:

CETISv1.5.0

Official Results: Yes

Reproducti	ion Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	21	21	20	20	19	19	18	18	18	17
1.56		22	20	20	20	19	19	18	18	16	16
3.12		19	19	19	18	18	18	17	17	17 .	14
6.25		19	18	17	16	15	15	15	12	12	12
12.5		19	18	17	17	16	16	16	16	16	16
25		19	18	18	18	17	17	17	16	15	15
50		18	16	16	16	15	15	15	15	14	14
100	_	19	19	19	17	17	_17	16	14	13	13

Report Date:

27 Jan-09 15:46 (p 1 of 2)

Link/Link Code: 05-4762-0404/wo09018R7

Ceriodaphnia	7-d Survival and Re	eproduction To	est	Nautilus Environmenta	ıl
Analysis No: Analyzed:	02-4213-6362 27 Jan-09 15:45		Reproduction Linear Interpolation (ICPIN)	CETIS Version: CETISv1.5.0 Official Results: Yes	
Sample No:	10-8979-6432	Code:	1089796432	Client: Minnow	=
Sample Date:	15 Jan-09	Material:	Industrial Effluent	Project:	
Receive Date:		Source:	R-7		

1:		41	4!	
Linear	interpola	ition up	cnois	

Sample Age: 63h

					•	l l
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Log(X + 1)	Linear	57951	200	Yes	Two-Point Interpolation	

stimates			
ct Conc-%	95% LCL	95% UCL	
2.319	0.7477	3.581	
3.902	2.528	5.573	
26.56	4.354	N/A	
> 100	N/A	N/A	
> 100	N/A	N/A	
> 100	N/A	N/A	
> 100	N/A	N/A	
	2.319 3.902 26.56 > 100 > 100 > 100	2.319 0.7477 3.902 2.528 26.56 4.354 > 100 N/A > 100 N/A > 100 N/A	2.319 0.7477 3.581 3.902 2.528 5.573 26.56 4.354 N/A >100 N/A N/A >100 N/A N/A >100 N/A N/A

Station:

Reproduct	tion Summary					Calculated Va	riate			
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Negative Control	10	19.1	17	21	0.2545	1.37	7.17%	0.0%	
1.56		10	18.8	16	22	0.348	1.874	9.97%	1.57%	
3.12		10	17.6	14	19	0.2796	1.506	8.55%	7.85%	
6.25		10	15.1	12	19	0.4669	2.514	16.65%	20.94%	
12.5		10 .	16.7	16	19	0.1967	1.059	6.34%	12.57%	•
25		10	17	15	19	0.2476	1.333	7.84%	10.99%	
50	,	10	15.4	14	18	0.218	1.174	7.62%	19.37%	
100		10	16.4	13	19	0.4394	2.366	14.43%	14.14%	

Reproduc	tion Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	21	21	18	18	20	19	17	20	19	18
1.56		16	20	22	20	18	20	19	16	18	19
3.12		17	14	- 19	18	19	17	18	18	17	19
6.25		. 12	12	15	16	12	15	19	17	18	15
12.5		17	18	16	19	16	16	17	16	16	16
25		16	15	18	15	18	17	18	17	19	17
50		16	16	15	18	15	14	15	14	16	15
100		19	19	13	17	17	19	13	16	17	14

Report Date:

27 Jan-09 15:46 (p 2 of 2)

Link/Link Code:

05-4762-0404/wo09018R7

Ceriodaphnia 7-d Survival and Reproduction Test

Analysis No: 02-4213-6362 Endpoint: Reproduction
Analyzed: 27 Jan-09 15:45 Analysis: Linear Interpolation (ICPIN)

CETIS Version: CETISv1.5.0
Official Results: Yes

Report Date:

27 Jan-09 15:46 (p 1 of 2)

Link/Link Code:

05-4762-0404/wo09018R7

Cariodanhai	a 7-d Survival a	nd Papras	luction Toot								
		<u>_</u>			_					Nautilus En	vironment
Analysis No: Analyzed:	: 15-4175-6638 27 Jan-09 15:		n dpoint: 6d nalysis: ST	Survival Ra P 2x2 Conf		ables		CETIS Version Official Result		v1.5.0	
Sample No:	10-8979-6432	C	ode: 10	89796432				Client: M	innow		
Sample Date	: 15 Jan-09	М	aterial: Ind	dustrial Efflu	uent	•		Project:			
Receive Date	e:	Se	ource: R-	7							
Sample Age:	: 63h	St	ation:								
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	arlo	NOEL	LOE	L TOEL	TU	PMSD	
Untransforme	ed		C > T	Not Run		100	7/00	#Еггог	1	N/A	
Fisher Exact	/Bonferroni-Holi	m Test									
Control	vs Conc-%		Test Stat	P-Value	Decisio	n(0.05)					
Negative Con			1.0000	1.0000	Non-Sig	nificant Eff	ect				
	3.12		1.0000	1.0000	Non-Sig	nificant Eff	ect				
T.	6.25		1.0000	1.0000	Non-Sig	nificant Eff	ect				
	12.5		1.0000	1.0000	Non-Sig	nificant Eff	ect				
	25		1.0000	1.0000	•	nificant Eff					
	50		1.0000	1.0000	_	nificant Eff					
	100		1.0000	1.0000	Non-Sig	nificant Eff	ect				
Data Summa	ry										
Conc-%	Control Type	No-Resp	Resp	Total							
0	Negative Contr	10	0	10	_					· ·	
1.56		10	0	10							
3.12		10	0	10							
6.25		10	0	10							
12.5		10	0	10							
25		10	0	10		÷					
50		10	0	10							
100		10	0 .	10 -		•					
6d Survival F	Rate Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6 Rep 7 -	Rep 8	Rep 9	Rep 10
0	Negative Contr	1 .	1	1	1	. 1	1	1	1	1	1
1.56		1	1	1	1	1	1	1	1	1	1
3.12		1	1	1	1	1 .	1	1	1	1	1
6.25		1	1	1	1	1	1	1	1	1	1
12.5		1	1	1	1	1	1	1	1	1	1
25	•	1	1	1	1	. 1	1 -	1 ⁻	1	1	1
50		1	1	1	1	1	1	1	1	1	1
		_								4	4

100

Report Date:

27 Jan-09 15:46 (p 2 of 2)

Link/Link Code:

05-4762-0404/wo09018R7

Ceriodaphnia 7-d Survival and Reproduction Test **Nautilus Environmental** Analysis No: 15-4175-6638 Endpoint: 6d Survival Rate **CETIS Version:** CETISv1.5.0 Analyzed: 27 Jan-09 15:41 Analysis: STP 2x2 Contingency Tables Official Results: Yes Graphics 1.0-0.9-0.7-0.6 0.5 0.3-0.2-0.1 0.0 1.56 3.12 6.25 12.5 Conc-%

CETIS Summary Report

Report Date:

27 Jan-09 15:46 (p 1 of 2)

Link/Link Code:

05-4762-0404/wo09018R7

Ceriodaphnia	7-d Survival a	nd Repr	oduction Te	est					N	lautilus En	vironment
Start Date:	01-0400-2009 17 Jan-09 15:0 23 Jan-09 15:0 6d 1h	-	Test Type: Protocol: Species: Source:	Reproduction EC/EPS 1/RM Ceriodaphnia	/ /21	,	Dil V Brir	Nater:			
Sample No:	10-8979-6432		Code:	1089796432			Clie	nt: Mi	nnow	_	
Sample Date:			Material:	Industrial Effic	uent		Proj	ect:			
Receive Date:			Source:	R-7							
Sample Age:	63h 	<u> </u>	Station:							<u> </u>	
Comparison S	ummary										
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			
15-4175-6638	6d Survival Ra	te	<u></u>	100	0	#Error	N/A	Fisher Ex	act/Bonferro	ni-Holm Te	st
15-3847-1869	Reproduction			3.12	6.25	4.416	9.65%	Dunnett's	Multiple Co	mparison To	est
Point Estimate	Summary										
Analysis No	Endpoint			% Effect	Conc-%	95% LCL	95% UCL	Method			
02-4213-6362	Reproduction			. 5	2,319	0. 7 477	3.581	Linear Int	erpolation (I	CPIN)	_ _
				10	3.902	2.528	5.573				
				15	26.56	4.354	N/A				
					> 100	N/A	N/A				
					> 100	N/A	N/A				
					> 100	N/A	N/A		2		
				50 	>100 	N/A	N/A	· · ·			
6d Survival Ra	te Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev_	CV%_	Diff%
0	Negative Contr	10	1	1	1	1	1	0	0	0.0%	0.0%
1.56		10	1	1	1	1	1	0	0	0.0%	0.0%
3.12		10	1	1	1	1	1	0	0	0.0%	0.0%
6.25		10	1	1	1	1	1	0	0	0.0%	0.0%
12.5		10	1	∵1	1	1	1	0	0	0.0%	0.0%
25		10	1	1	1	1	1	0	0	0.0%	0.0%
50		10	1	1	1	1	1	0	0	0.0%	0.0%
100		10	1	1	1	1	1	0	0	0.0%	0.0%
Reproduction	Summary										
	Control Type	Count	Mean	95% LCL		Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	10	19.1	18.59	19.61	17	21	0.2502	1.37	7.17%	0.0%
1.56	•	10	18.8	18.1	19.5	16	22	0.3421	1.874	9.97%	1.57%
3.12		10	17.6	17.04	18.16	14	19	0.2749	1.506	8.55%	7.85%
6.25		10	15.1	14.16	16.04	12	19	0.4591	2.514	16.65%	20.94%
12.5		10	16.7	16.3	17.1	16	19	0.1934	1.059	6.34%	12.57%
25		10	17	16.5	17.5	15	19	0.2434	1.333	7.84%	10.99%
50		10	15.4	14.96	15.84	14	18	0.2143	1.174	7.62%	19.37%
		10	16.4	15.52	17.28	13	19	0.432	2.366	14.43%	14.14%

.malyst:_____ QA:<u>Feb5</u>09

CETIS Summary Report

Report Date:

27 Jan-09 15:46 (p 2 of 2)

Link/Link Code: 05-4762-0404/wo09018R7

Ceriodaphi	nia 7-d Survival ar	nd Reprod	uction Tes	t					1	Nautilus En	vironmenta
6d Surviva	Rate Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	1	1	1	1	1	1	1	1	1	
1.56		1	1	1	1	1	1	1	1	1	1
3.12		1	1	1	1	1	1	1 ·	1	1	1
6.25		1	1	1	1	1	1	1	1	1	1
12.5		1	1	1	1	1	1	1	1	1 .	1
25		1	1	1	1	1	1	['] 1	1	1	1
50	•	1	1	1	1	1 '	1	1	1	1	1
100		1	1	1	1	1	1	1	1	1	1
Reproducti	on Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	17 - §	20	19	18	21	21	18	18 .	20	19
1.56		16	20	22	20	18	20	19	16	18	19
3.12		17	14	19	18	19	17	18	18	17	19
6.25		12	12	15	16	12	15	19	17	18	15
12.5		17	18	16	19	16	16	17	16	16	16
25		16	15	18	15	18	17	18	17	19	17
50		16	16	15	18	15	14	15	14	16	- 15
100		19	19	13	17	17	19	13	16	17	14

Ceriodaphnia dubia Summary Sheet

Client:	Minnow	Start Date/Time	=: fan 17/05 @ 1550
Work Order No.:	09018	Set up by	y: Ans
Sample Information Sample ID: Sample Date: Date Received: Sample Volume:	pa 15/3	ン 9 . 1 L	
Test Organism I	Information:		•
Broodstock No.:		01069	
Age of young (Da	av 0):	424 (w)10	12-4)
	first 3 broods of previous 7		
Mortality (%) in p	revious 7 d:	O	
Avg. No. of young	g in previous brood:	12	
NaCl Reference Reference Toxica	Toxicant Results:	Cd 39	
Stock Solution ID	— 	DFN464	•
Date Initiated:		Am 28/09	
	1. ~	· · ·	
7-d LC50 (95% C		-3) gli Nacc	
7-d IC50 (95% CL	.): <u>1-3 (1,1 1,</u>	5) gl Marel	
7-d I C50 Pataran	ce Toxicant Mean ± 2 SD:	12 + 00	CV (%): 2 2
	ce Toxicant Mean ± 2 SD:	1.7 t 0.8 1.1 t a3	CV (%): 2-3 CV (%): 14
Test Results:	·	Survival	Reproduction
	NOEC %(v/v)		12.5
	LOEC %(v/v)	7/90	25
	LC50 %(v/v) (95% CL)	7100	
	IC25 %(v/v) (95% CL)		626 (51.4 - 73.1)
	IC50 %(v/v) (95% CL)		945 (A3.3 - 102)
			(12,1 102)
Reviewed by:	L. Torle	Date revie	wed: February 5,2009

February 12, 2008; Ver. 1.2

Nautilus Environmental

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:			m	mon			Sta	art Date	& Time		don	A-10°	10_	15584
Sample ID:				2		-		St	top Date		Yan		90	16004
Work Order #:		090						Test 9	Species:	Cerio	laphnia	dubia		
HOIR Older #.														
(/z(1/d)	7						<u> </u>	ays_						
Concentration	0	7	1	1	2	1	3		4	<u> </u>	5		6	7
Control	init.	old	new	old	new	őld	new	old	new	old	new	old	new	final
Temperature (°C)	- f			25,9		25 Y	24%		24,2	250	245	2579		{
DO (mg/L)	1.3	7.5	79	7.5	8,2	m	80	24	81	72	82	71		17
pH	51	7.9	8	8.0	8.1	80	FI	74	15,1	7.9	81	7,9		
Cond. (µS/cm)	212		210	7		u	L	7	14	 	45	200	-	7
Initials	Aus	· Ca		1386	BRU		Ť.	-		· · ·	1 a	1	11	
Intuais	IAGUS			1	1180	<u> 1 - 2-</u>	/_		1/4	/		<u> </u>	<u></u>	
16			•				. n	ays						
1	-	Т	4	T :	<u> </u>	1		ays	4		5	1 4	<u> </u>	7
Concentration	o init.		new	eld	2 new	old	3 Linew	-old			new	old	new	final
T		old					245	248	754.6	old		2022	. new	IIII
Temperature (°C)	24.8	258	243	25.9	34.1	254	20	75	811	2015	248	70		/-
DO (mg/L)	52 38	137	8-1	3.4		20		78	79	79	21	P.S		/
pH	78	78	180	8.0	8.0	79	3 .!				<u> </u>		/	/
Cond. (µS/cm)	219		22		26		w_	1	21		/3.} _	26	<u> </u>	 -
Initials	Am	Eu	(CR)	BPL	BRU	1 1	1 1	<u> </u>	ليمل	~_		<u></u>		L
	,				-				·					
125								ays						
Concentration	0		1	WARREST CONTRACTOR OF THE PARTY	2	TO SECURE A	3	Company Control	4		5	6		7
	init.	old	new	old	nese	old		old	new	old	new	old	new	final
Temperature (°C)	24,6	20.8	24:5	P. 00	24.1	254	242	242	nr		248	157		
DO (mg/L)	82	15	8.1	73	8.0	34	21	35	8.1	71	8-,	\mathcal{K}_{\downarrow}		
pH	76	78	19	8.0	80	RO	20	78	37	28	1.1	81		
Cond. (µS/cm)	284	2	79	27	85	2	71	27	r5	25	18	301	$ \Delta$	
<u>Initials</u>	Nest !	- OR	EN/	Bau	BRL	<u>r</u>	A .		1~1	^	<u>A</u>	<u></u>		
				·										
100							Da	ys						
Concentration	0	1	<u> </u>	2		3	3.		4	5		6		7
	init,	old	new	old	new	old	пеж	old	new	old	new	old	new	final
Temperature (°C)	24.5	256	74.5	259	24.1	เภร	24	249	24,5	155	146	1079		
DO (mg/L)	23	7:5	82	-		FI	82	76		7,6		72		71
pH	72	8.0	76	8,2			77	7-9	76		77	8,2		/
Cond. (µS/cm)	685	60	76		15	69		(~)		65		68	7	
Initials	M	Ca	722		Bel	ا سر	_		*		M	N T	//	
							- -		·	<u> </u>	<u></u>	"	<i></i>	
•												٠		
·	Cont	rol	1,00		# *****	-],			4	nalyst	: ::	±wo	bec	
Hardness*			50			\rightarrow			•		_	7	<i>17</i>	
Alkalinity*		ပ	18		-			***********	F	Reviewe	d bv:	12	-	
mg/L as CaCO3			——————————————————————————————————————							te revie		Fol	5109	
						_				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			t	
ample Description:	_		_0			500	<u> </u>			· <u>-</u>				
			_			J - (J-								
omments:														

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Client: Sample ID:	ä					Prose	3				1									St	art Dai	Start Date & Time:	ime:		Jan 17	*	Jos 60	2	15504			1
Nork Order:	der:	1		ő	09018		l				[`		_	ž	op Da	Stop Date & Time:	Н		4 12	⊸ ı`	50	K	70091	الم		ı
<u> </u>								1			,					0) %	3	<u> </u>		-	ser up by:					3	0				1
Days	E '	Ž	-	-	-	Ò	غ	ار	-			Concentration:	ation:						ۅ		_	Concentration:	ntrati	ä		k.,	3.12					_
< !	+		+	_	m /	E	_ [5]					_	-	۵	ш	ш	Ø	I	_	٦	ni t	4	8	ပ	D	ш	F	G	_	7	Init	
	+	7 7	7 /	,	7	7/	7/	7	7 /	1 2 S	\	? ;)	7	> .	7) ;	/	7	7	ig.	2	2	1	7	7	1	7	7	1	B	. \ T
•		>	,	1		1	1	+	1	3	1,)	1) /		1/	> \	2) \$5 4	*	1	,	*	>	,	/	7,		8	71
M		M	<u> </u>	8	5	-	-	M	メ	1_	1)		7	, \ <u>\</u>	ל	> ~	رر	, y	ל ג	(-	>~;	P (M	· ~	, y		3 5	2 3 \	9 6	ز د	١ ،	_
عد	$\overline{}$	\dashv	2	5	í	7	<u> </u>	9	ىك	1		1	10	کن	2	0	1 .	را	4	ď		4	7	$\uparrow \uparrow$	-		+	-		Ч	4	$\overline{}$
7.3	<u>(</u> -	4			4	4		6	0-	8	لخا	1	4	6	do	+	4	4	4	و	44	4		++	1.1	T-,	-	 	+		<	Т-
	-	-	-		-									•									-	-		-	-		_	_	1	Т
	-							<u> </u>			_	<u> </u>		-	_						\uparrow	+	-	\dagger	-	+	+	}	<u> </u>	-	_	Τ-
Total	7	× -	2	7 5	81	3		3	5 7	4	+-	61 61	<u>a</u>	7	5	18	4	Ψ	90	6)	4	<u>م</u>	30	14	51	5	2	95	5	90	4	Τ.
ပိ	ncen	Concentration:	:		:		7.6	1			٤	in other transfer of	1																		} }	1 [
Days	F	0	١		\vdash	\vdash	۲.	<u>.</u>	-	Г	_	Tens.	agou.	-					<u>``</u>			Concentration:	ıntrati	ü			3					
<u>'</u>	七	+	+	4	u \	2	ן כי	r	1	i i	7	m	ပ ်	٥	ш	Ŀ	U	Ξ	-	7	Init	٧	80	ပ	٥	ш	u.	T O	_	~	Init	···
>	7	>	7	7			7	/	2	8		7		,	7	7	7	7	7	7	w	1	7	7	7	7	7	7	7	7	1/1	1
۲	1	\ \	2	1	,2		7	7,	الخ	2	ر کی	<u>7</u>	<u>_</u>	<u>_</u> ,	7	7	2		7	2	8	7	7	2	2	5	7				00	~
			\ \ \	<u>~</u>	_	2		7	7	\ \	۶	>	1		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			2	1	>			5	\	K		,				1	ī
Û۷	-	ر اي	Ŕ	N	\$.	7	7	60	3-	7	2	~	Ł)	3	<u>~</u>	2	3	ť	71	. 4	1		+-	3 9		10	6 4	10	2 3	1	Т
ولح	مه	ં	-	de		7	~	_		4	∂.	-	<u> </u>	11	-	G	4	4	85	1	4		1	1 2	19	7	1.	+-,	4-	, 4	٢,	Τ
4	1	7	4		1	1	4	600	ور و			6	1,	4	67	و. ا	do	A	++	T.,		1-	+		1	9	+	_		1	4-	Π.
	_									-	<u> </u>		-	1	\vdash				4	_		+-)	+	,	+	+		3)	1	T
_								-	-		-	-	-	_	-	3.						1	+	+	+	+	-	+	+	-	-	
Total (\$	_	12 12	2		81 3/		₹ 2	<u>ک</u>	でで	4		81 81	17	4	7	81	70	28	2	3	4	20	9/	2	7	1. 1	/ 4/	A A	2/ 1	Ĭ	4	
Col	ncen	Concentration:	<u> </u>			6	0				2	Concentration.	ation			•	1				ľ											Г
, 		8	O O	-	ш	1	<u> </u>	_		init		ď	٥		u	-	3 4	3	-	-		Concentration:	יונים יינים	::	1	\ 	H	-	 	_	.	
4	1	7	7	-	_		Ļ.	╁-	\vdash	abla	١	1	\leftarrow	+~	+-	- :	<u> </u>	- 7	-\	ز د		۷ ,	n a	_ د	ב	ш	_	בן	_	٦		=
3		2		2	7)	2	7	2	38	ر ا	1/2		7	+	7	7	7]		3 3		+	+	+	+	+		-	+	+	
	>	,	,		\ <u>\</u>			\	1	-	-	>			1	1	1	, []	,	- 1	ے اِ		+	+	+	+	-	+	+	+	1	\Box
7	€ 3	~	-	3	*	3	+-	~ ~	2	<u> </u>	3	╫	-	(A		1/)	1) i			1	+	+	+	\dagger	+	+	+	-	+	
<u>.</u>	6	7	7	+-	4	1	1	1	Ľ	٤	+	1	1	EF	כו	1/		د (1 3	> 3	₹ .		+	+	+	\dagger	+-	+	+	+	\downarrow	
~	, 		2	-	E C		כ	0	1		<u> </u>		1	1>	#	,\	, \	4	, ,	~	4	T	+-		+-	\uparrow	+	-	-	+	-	Т
$ \bot $	-		 	_		-	-		-	1	_	-	<u> </u>	_	+		7	٦	7	3	•	-	\dagger	\dagger	+	+	+	-	+	-	+	
		\dashv			_		-	-	-	_		-		igert	_							 		+	+	+	+-	+	+	-	+	Т
Total (5		15.15	9/2	14	-	17 1	14	76	16)	٠,	6	5	٥	1	7	*	2	0,	9	4	૮		T	-	+			-	+	-	_	
:: ن	<u>ر</u> ا	Notes: X ≈ mortality			_			7	***						•		-						1			1		}	$\frac{1}{2}$			7

Sample Description: Comments:

Reviewed by:

Date reviewed:

Report Date:

27 Jan-09 16:06 (p 1 of 2)

Link/Link Code: 01-1357-1429/wo09018R2

Ceriodaphni	a 7-d S	urvival ar	nd Rep	roduction Te	st					N	autilus En	vironmental
Analysis No: Analyzed:		563-1232 an-09 16:0	าว	•	Reproduction Nonparametric	-Control ve	Treatmente		TIS Version		1.5.0	<u> </u>
Sample No: Sample Date Receive Date Sample Age:	18-7: 15 Ja	276-1336		Code:	1872761336 Industrial Efflu		Treatments	Cli	icial Results	s: Yes —————	<u> </u>	
Data Transfo	rm		Zeta	Alt Hy	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Rank				C > T	Not Run		12.5	25	17.68	8	15.2%	
Steel Many-C	one Rai	nk Test	_				•		<u>-</u>			
Control	vs	Conc-%		Test St	at Critical	Ties	P-Value	Decision	(5%)			
Negative Con	trol	1.56		88	74	2	0.3437	Non-Sign	ificant Effect			
		3.12		79.5	74	2	0.1224	Non-Sign	ificant Effect			
		6.25		90	74	3	0.4122	_	ificant Effect			
		12.5		78	74	2	0.0975	-	ificant Effect			
		25*		66.5	74	1	0.0107	Significar				
*		50* 100*		65 65	74 74	0	0.0076 0.0076	Significar Significar				
ANOVA Table												
Source		Sum Squ	Large	Mean Squar	e DF	F Stat	P-Value	Decision	(E9/.)			
Between		803.1875		114.7411	7 7	18.27	0.0000	Significar	<u> </u>			
Error		452.3	' .	6.281944	7 72	10.27	0.0000	Significal	IL ETIECL			
Total		1255.488	3	121.023	79							
ANOVA Assu	mption											 -
Attribute	•	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances		Bartlett E	quality	of Variance	81.92	18,48	0.0000	Unequal	Variances	_		
Distribution		Shapiro-\	Wilk No	rmality	0.5818		0.0000	Non-norm	nal Distributio	on		
Reproduction	n Sumr	nary				- -						
Conc-%	Contr	ol Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	_Std Err	Std Dev	CV%	Diff%
0	Negat	ive Contr	10	17.6	15.14	20.06	0	22	1.199	6.346	36.05%	0.0%
1.56			10	18.2	17.84	18.56	17	19	0.1737	0.9189	5.05%	-3.41%
3.12			10	17.8	17.49	18.11	16	19	0.1491	0.7888	4.43%	-1.14%
6.25			10	18.1	17.41	18.79	14	21	0.3386	1.792	9.9%	-2.84%
12.5			10	17.6	17.18	18.02	15	19	0.2031	1.075	6.11%	0.0%
25			10	16.3	15.85	16.75	14	18	0.2191	1.16	7.11%	7.39%
50			10	15.4	15.03	15.77	14	17	0.1826	0.9661	6.27%	12.5%
100			10	8.1	7.569 —————	8.631	6	10	0.259	1.37 	16.92% —-——	53.98%
Rank Transfo	rmed	Summary	<i>i</i>							· ————		
Conc-%	Contr	ol Type	Count	t Mean	95% LCL	95% UCL	Min _	Max	Std Err	Std Dev	CV%	Diff%
0	Negat	ive Contr	10	60.8	51.52	70.08	1	80	4.521	23.92	39.35%	0.0%
1.56			10	55.5	49.26	61.74	34.5	69.5	3.039	16.08	28.98%	8.72%
3.12			10	49.25	44.6	53.9	24.5	69.5	2.265	11.99	24.34%	19.0%
6.25			10	54.25	46.79	61.71	13.5	78	3.637	19.24	35.47%	10.77%
12.5			10	46.85	41.35	52.35	18	69.5	2.68	14.18	30.27%	22.94%
25			10	29.5	25.27	33.73	13.5	52	2.06	10.9	36.95%	51.48%
50			10	21.35	18.87	23.83	13.5	34.5	1.211	6.408	30.01%	64.88%
100			10	6.5	5.351	7.649	2	10.5	0.5599	2.963	45.58%	89.31%

Analysis No:

Analyzed:

Report Date:

27 Jan-09 16:06 (p 2 of 2)

Nautilus Environmental

Link/Link Code:

01-1357-1429/wo09018R2

Ceriodaphnia 7-d Survival and Reproduction Test

27 Jan-09 16:03

06-0563-1232 Endpoint: Reproduction

Analysis:

.

CETIS Version: CETISv1.5.0

Official Results: Yes

Reproduct	ion Detail									_	,
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	22	21	21	20	19	19	18 .	18	18	0
1.56		19	19	19	19	19	18	18	17	17	17
3.12		19	18	18	18	18	18	18	18	17	16
6.25		21	19	19	19	18	18	18	18	17	14
12.5		19	18	18	18	18	18	18	17	17	15
25		18	17	17	17 [*]	17	16	16	16	15	14
50		17	16	16	16	16	15	15	15	14	14
100		10	10	9	9	8	8	7	7	7	6

Nonparametric-Control vs Treatments

Report Date:

05 Feb-09 12:19 (p 1 of 2)

Link/Link Code: 01-1357-1429/wo09018R2

<u> </u>				= .							
Ceriodaph	inia 7-d s	Survival an	a Reprodu	ction lest							Nautilus Environmenta
Analysis N Analyzed:		8503-9896 Feb-09 12:1		•	production nlinear Regi	ression			IS Version:		ISv1.5.0
Sample No	o: 18-7	7276-1336	Cod	de: 187	72761336		_	Clier	nt: Minno	ow	
Sample Da	ate: 15 .	Jan-09	Mat	terial: Ind	ustrial Efflu	ent		Proje	ect:		
Receive Da	ate:		Sou	ırce: R2							
Sample Ag	ge: 64h		Sta	tion:		-					
Non-Linea	r Regres	sion Optio	ns								
Model Fun	ction					X Trans	form Y Tra	ansform W	eighting Fu	nction	PTBS Function
3P Log-Log	gistic EV	[Y=A/(1+(X/	'D)^C)]			None	None	e N	ormal [W=1]		Off [Y*=Y]
Regression	n Summ	агу									
Iters L	.og LL	AICc	Adj R2	Optimize	F Stat	Critical	P-Value	Decision	(1%)		
	110.5	227.4	0.6186	Yes	0.4587	3.283	0.8056		ificant Lack o	f Fit	
Point Estin	natae										
% Effect	Conc-%	6 95%	ICI 95%	UCL							
SNEC	47.83	33.49									
10	41.47	25.11									
15	49.32	35.37									
20	56.19	43.82									
25	62.59	51.42									
40	81.16	71.55	91.3	32							
50	94.47	83.3	107.	.1							
Regression	n Parame	eters									
Parameter		Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision(5%)		
A		17.75	0.3502	17.05	18.45	50.69	0.0000		Parameter		
C		2.668	0.5545	1.564	3.773	4.813	0.0000	-	Parameter		
D		94.47	6.093	82.34	106.6	15.51	0.0000	-	Parameter		
ANOVA Tal	ble										
Source		Sum Squa	res Mea	n Square	DF	F Stat	P-Value	Decision(1%)		
Model		788.7789		3895	2	65.07	0.0000	Significant			
Lack of Fit		14.40857		1715	5	0.4587	0.8056	Non-Signif			
Pure Error		452.3		1944	72	0.1007					
Residual		466.7086	6.06		77						
Residual A	nalveie										
Attribute	ilalysis	Method			Test Stat	Critical	P-Value	Decision(1%)		
Variances		Mod Leven	e Equality	of Variance	1.402	2.898	0.2179	Equal Varia			
Distribution			ilk Normalit		0.5932	2.000	0.0000	•	al Distribution		
Reproducti						Cal	culated Var	riate			
Conc-%	Contro		Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	
0		ve Control	10	17.6	0	22	1.178	6.346		0.0%	
1.56			10	18.2	17	19	0.1706	0.9189		-3.41%	, 0
3.12			10	17.8	16	19	0.1465	0.7888		-1.14%	
6.25			10	18.1	14	21	0.3328	1.792		-2.84%	
12.5			10	17.6	15	19	0.1996	1.075		0.0%	
25			10	16.3	14	18	0.2153	1.16		7.39%	
50			10	15.4	14	17	0.1794	0.9661		12.5%	
100			10	8.1	6	10	0.2545	1.37	16.92%	53.98%	6
									_		

Report Date:

05 Feb-09 12:19 (p 2 of 2)

Link/Link Code:

01-1357-1429/wo09018R2

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analysis No: Analyzed:

04-8503-9896 05 Feb-09 12:19

Endpoint: Reproduction Analysis:

Nonlinear Regression

CETIS Version:

CETISv1.5.0

Official Resu

ults:	Yes
uito.	162

Reproduc	tion Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	19	21	18	22	19	18	20	18	0	21
1.56		19	19	19	17	19	18	17	17	18	19
3.12		18	18	17	19	16	18	18	18	18	18
6.25		18	19	21	19	18	18	18	14	17	19
12.5		18	18	17	17	15	18	18	18	19	18
25		18	16	16	17	15	14	17	17	16	17
50		15	15	15	16	14	17	14	16	16	16
100		. 9	9	8	7	8	7	10	10	6	7

Report Date:

1

1

1

1

1

1

1

1

27 Jan-09 16:06 (p 1 of 2)

Link/Link Code:

01-1357-1429/wo09018R2

Ceriodaphnia 7-d Survival and Reproduction Test **Nautilus Environmental** Analysis No: 11-6770-9004 Endpoint: 6d Survival Rate CETISv1.5.0 **CETIS Version:** Analyzed: 27 Jan-09 16:03 STP 2x2 Contingency Tables Analysis: Official Results: Yés Sample No: 18-7276-1336 Code: 1872761336 Client: Minnow Sample Date: 15 Jan-09 Material: Industrial Effluent Project: **Receive Date:** Source: R2 Sample Age: 64h Station: **Data Transform** Zeta Alt Hyp Monte Carlo **NOEL** LOEL **TOEL** ΤU **PMSD** Untransformed C > T Not Run 100 #Error 7100 1 N/A Fisher Exact/Bonferroni-Holm Test Control Conc-% Test Stat P-Value Decision(0.05) **Negative Control** 1.56 1.0000 1.0000 Non-Significant Effect 3.12 1.0000 1.0000 Non-Significant Effect 6.25 1.0000 1.0000 Non-Significant Effect 12.5 1.0000 1.0000 Non-Significant Effect 25 1.0000 1.0000 Non-Significant Effect Non-Significant Effect 50 1.0000 1.0000 100 1.0000 1.0000 Non-Significant Effect **Data Summary** Conc-% **Control Type** No-Resp Resp Total 0 **Negative Contr** 1 10 10 0 10 1.56 10 0 10 3.12 0 6.25 10 10 0 12.5 10 10 0 25 10 10 50 10 0 10 100 10 0 10 6d Survival Rate Detail Rep 10 Rep 9 Rep 7 Rep 8 Conc-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 0 1 1 1 1 1 **Negative Contr** 1 1 1 1 1 1 1 1 1 1.56 1 1 1 1 1 1 3.12 1 1 1 6.25 1 1 1 12.5 1 1

1

1

25

50

100

1

1

1

1

1

1

Report Date:

27 Jan-09 16:06 (p 2 of 2)

Link/Link Code:

01-1357-1429/wo09018R2

Ceriodaphnia 7-d Survival and Reproduction Test

Analysis No: 11-6770-9004 Endpoint: 6d Survival Rate
Analyzed: 27 Jan-09 16:03 Analysis: STP 2x2 Contingency Tables

Graphics

Nautilus Environmental

CETIS Version: CETISv1.5.0

Official Results: Yes

CETIS Summary Report

Report Date:

27 Jan-09 16:06 (p 1 of 2)

Link/Link Code:

01-1357-1429/wo09018R2

				_				Link/Link	Code:	01-1357-142	9/wo09018F
Ceriodaphn	ia 7-d Survival a	nd Rep	roduction T	est 						Nautilus En	vironmenta
Start Date:	0: 00-7157-6818 17 Jan-09 15: 23 Jan-09 16: 6d 0h	50	Test Type: Protocol: Species: Source:	Reproduction EC/EPS 1/RM Ceriodaphnia	<i>I</i> /21	J)	Dil Brit	Water: ne:			
Sample No: Sample Date Receive Date Sample Age:	e:		Code: Material: Source: Station:	1872761336 Industrial Effli R2	uent		Clie Pro	nt: Mi ject:	nnow		
Comparison	Summary										=
Analysis No 11-6770-9004 06-0563-1232	Endpoint 6d Survival Ra Reproduction	te		NOEL 100 12.5	0 25	#Error 17.68	PMSD N/A 15.2%		act/Bonferr	oni-Holm Te	st
Point Estima								======			
Analysis No	Endpoint			% Effect	Conc-%	95% LCL	95% UCL	Method			
20-9444-5754	Reproduction			5 10 15 20 25 40	17.01 28.47 50.79 55.32 60.25 77.78	0.6222 2.07 13.76 23.35 50.25 67.17	31.73 51.23 55.61 60.51 65.58 84.69	Linear Int	erpolation (ICPI N)	
			·	50	92.17	80.85	N/A	·			
6d Survival F	Rate Summary										
Conc-%	Control Type	Count		95% LCL	95% UCL	Min	Max	Std Err	Std Dev	_CV%	Diff%
0	Negative Contr	10	0.9	0.7819	-1	0	1	0.05774	0.3162	35.14%	0.0%
1.56		10	1	1	1	1	1	0	0	0.0%	-11.11%
3.12		10	1	1 .	1	. 1	1	0	0 .	0.0%	-11.11%
6.25		10	1	1	1	1	1.	0	0	0.0%	-11.11%
12.5		10	. 1	1	1	1	1.	0	0	0.0%	-11.11%
25		10	1	1	1	1	1	0	0	0.0%	-11.11%
50		10	1	1	1	1	1	0	0	0.0%	-11.11%
100	Summos:	10	1	1	1			0		0.0%	-11.11%
Reproduction	Control Type	Count	Mean	95% LCI	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
Conc-%	, po			15.23	19.97	0	22	1.159	6.346	36.05%	0.0%
	Negative Contr	10	176			-				22.2070	
0	Negative Contr		17.6 18.2			17	19	0.1678	0.9189	5.05%	-3.41%
1.56	Negative Contr	10	18.2	17.86	18.54	17 16	19 19	0.1678 0.144	0.9189 0.7888	5.05% 4.43%	-3.41% -1.14%
0 1.56 3.12	Negative Contr	10 10	18.2 17.8	17.86 17.51	18.54 18.09	16	19	0.144	0.7888	4.43%	-1.14%
0 1.56 3.12 6.25	Negative Contr	10 10 10	18.2 17.8 18.1	17.86 17.51 17.43	18.54 18.09 18.77	16 1 4	19 21	0.144 0.3272	0.7888 1.792	4.43% 9.9%	-1.14% -2.84%
Conc-% 0 1.56 3.12 6.25 12.5	Negative Contr	10 10 10 10	18.2 17.8 18.1 17.6	17.86 17.51 17.43 17.2	18.54 18.09 18.77 18	16 14 15	19 21 19	0.144 0.3272 0.1963	0.7888 1.792 1.075	4.43% 9.9% 6.11%	-1.14% -2.84% 0.0%
0 1.56 3.12 6.25	Negative Contr	10 10 10	18.2 17.8 18.1	17.86 17.51 17.43	18.54 18.09 18.77	16 1 4	19 21	0.144 0.3272	0.7888 1.792	4.43% 9.9%	-1.14% -2.84%

CETIS™ v1.5.0D

CETIS Summary Report

Report Date:

27 Jan-09 16:06 (p 2 of 2)

Link/Link Code: 01-1357-1429/wo09018R2

Ceriodaph	nia 7-d Survival an	d Reprod	luction Test							Nautilus En	vironmenta
6d Surviva	Rate Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	1	1	1	1	. 1	1	1	1	0	1
1.56		1	1	1	1	1 -	1	1	1	1	1
3.12		1	1	1	1	1	1	1	1	1	1
6.25	· ·	1	1	1	1	1	1	1	1	1	1
12.5		1	1.	1	1	1	1	1	1	1	1
25		1	1	1	1	1	1	1	1	1	1
50		1	1	1	1	1	1	1	1	1 .	1
100		1	1	1	1	1	1	1	1	1	1
Reproduct	on Detail		_								1.
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	19	21	18	22	19	18	20	18	0	21
1.56		19	19	19	17	19	18	17	17	18	19
3.12		18	18	. 17	19	16	18	18	18	18	18
6.25		18	19	21	19	18	18	18	14	17	19
12.5		18	18	17	17	15	18	18	18	19	18
25		18	16	16	17	15	14	17	17	16	17
50		15	15	15	16	14	17	14	16	16	16
100		9	9	8	7	8	7	10	10	6	7

Ceriodaphnia dubia Summary Sheet

Client: Work Order No.:		Start Date/Tin	
Sample Informati	on:		
Sample ID: Sample Date: Date Received: Sample Volume:	J-1 fm 15/0 fm 10 2+i	19 1	
Test Organism In	formation:		
Broodstock No.: Age of young (Day Avg No. young in fi Mortality (%) in pre Avg. No. of young i	rst 3 broods of previous 7 d	010609 224 (W) 24	17 (L-h)
NaCl Reference To	oxicant Results:		
Reference Toxican Stock Solution ID: Date Initiated: 7-d LC50 (95% CL) 7-d IC50 (95% CL):	20(1.7-2	Cd 39 DFNacy Aon 28/09 -3) gll Nacc 5) gll Nacc	
	e Toxicant Mean ± 2 SD: e Toxicant Mean ± 2 SD:	1,7 ± 0.8 1,1 ± 0.3	_CV (%):3
Test Results:		Survival	Reproduction
	NOEC %(v/v)	(00	125
	LOEC %(v/v)	7/00	25,0
	LC50 %(v/v) (95% CL)) OC/5	
	IC25 %(v/v) (95% CL) IC50 %(v/v) (95% CL)	18 18 18 18 18 18 18 18	52.6(46,4-57,5)
Reviewed by:	A. Tere	Date rev	riewed: February 5,2009

February 12, 2008; Ver. 1.2

Nautilus Environmental

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client: Sample ID:				uman -2	7	_	Sta		& Time		7 1	12-/00	90	16151
Work Order #:		090				_			pecies:				10	
6/11								· · · · · · · · · · · · · · · · · · ·						
Concentration	0		1	Τ''	2	T	3	ays	4		5	T	6	7
Concentration	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	2572		242	\$24s		Jan /	240	and the second second		2575	245	207/2		11111111
DO (mg/L)	31	75	79	3,5	8.2	73	8,0		FV	プレ	52	6.6		
Hq	81	79	8	8.1	8-1	79	1,2	709	3	77	8.1	77		
Cond. (µS/cm)	212		40		43		216		14		215	23	1	
Initials	Aus	Ca	to	986	BPL	~	~	Λ.	12	~	~	A		
			,											
16							D	ays						
Concentration	_0		1		2		3		4		5		3	7
· _ ·	init.	old	new	old	new	old	new	old	new	old	new	old	пеж	final
Temperature (°C)	WA	25.8	24.3	25.9	24.6	25-5	24,6	24.9	245	2375	24.3	2076		
DO (mg/L)	8.2	75	8.1	7,5	8.0	74	8.1	77	Si	74	21	63		
pH .	78	ን ፡	8.0	8.0	8,0	78	40	79	8,1	<i>?</i> ⊀\$	F, 2	79		
Cond. (µS/cm)	212	2	14	a	ال	2	22	2	25	ν	レ3	244	- /	
Initials	An	Ca	Ou	300	BRU	(h-	_		<u>^</u>	A		m'		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
125							Da	ays		<u> </u>				
Concentration	0		1		?		3		4		5	6		7
	init	old	new	old	пеж	old	new	old	new	old	new	old	new	final
Temperature (°C)	24,7	52.8	24.5	259	24.6	25/5	245	29.9		257		2006		
DO (mg/L)	8-12	7.4	8.2	7,8	8.0	7,4	80	74		<i>γ</i> φ	10	6,6		
pH	7.8	78	ንያ 1	560	8.0	7,9	150	8,0	80	7	41	8,1	-	
Cond. (µS/cm)	234	27		. 2	29	2	35	23		23	7-	240	14	
Initials	ميهر	Cu	Ch-	200	BRL	r	Λ.	Λ,	_ ^	Д		<u> </u>		
	<u> </u>						<u>-</u>		<u>-</u>					
100				· · · · · · · · · · · · · · · · · · ·	·			ys						
Concentration	0			2			3		ļ	5		6		7
Temperature (°C)	init.	53.8 old	new 24-4	blo P.26	new 24,3	old vs.K	ле w 24.3	old VII	new V4.3	25 S	29.9 n	old	new	final
DO (mg/L)	83	74	8.2	7.5			30	22	\$.0	255	13	67		
pH	74	79	7.3	8-1		<u>ምን</u> § _አ ኃ	% 5	7.9	26	80	26	8/2		
Cond. (µS/cm)	361		42		43	-	42		18		12	33	9/	
Initials	m	An	ER!	BU	BPL	^	m		3	m		<u> </u>	+	
	<i>]</i>									<u> </u>	<u>~ </u> /	<u> </u>	/	
·	Con	trol	10	2						Analyst	s: _	two	Ece	
Hardness*		OC	25											
Alkalinity*	{	70	13	8	_					Review		AR	T,	
mg/L as CaCO3			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						Da	ate revi	ewed:	Feb	<u> 5/09</u>	<u>. </u>
Sample Description:		·			e d	en			, ,	<u>. </u>		 -	7	
Comments:														

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

		Init	W I	ķ .	1 -		4		4		j;	Ŋ	J		€ :-	€ <		€		loit			Т		T			7
			7		< <	4.	a		/9/			7	3	7	1	1.	<u> </u>	2			11		-	+	1		+	1
109 @ 1616h			\	,	2		-	_	H		_		-3	1	× /	101				-			+	+		+	+	
2 2		_	7	X		. (+		0		_		1	7	W +	A 2		B		_			_	-	<u> </u>	_		-
00		I	7) / 3	در) إ				20		I	7	.3	()	<u>س</u> ر	1/2		3		I						_	4	<u> </u>
2 2	312	٥	7) 7	٠	J 1	+	-	Ţ	2	9	7	3)	79	to		2		9						_		
	m	ഥ	7)	4	4	7		13	4	ш	7	>	7	7/	<u>\</u>		2		ш				_				4
Jan 17		ш	7) }	3	8	9		7		Ш	د	$\sqrt{}$		سر الم	4		, s		ш								
हैं है			>	1	'n	ا ۾	¥		2	1.	۵	7	١	ί.	4	9		\mathcal{X}		۵							}	
	<u>.</u>	ပ	> /	1	, 3	90	آھ		≫	.uo	ပ	7	2	,	46	5		3	io.	ပ]
ime: ime: by:	ntrat	8	>	1/	X	انی	17	ئې	<u>1,</u>	ntrat	0	7	7	1	44			Ĭ.	ntrat	00								1
ite & Time: ite & Time: Set up by:	Concentration	4	-	1/	42	1	4	4	Ž	Concentration:	A	>	7	7	1	0/0	-	2	Concentration:	4				\dagger	-			
Start Date & Time: Stop Date & Time: Set up by:	۲	$\overline{}$	2	ر ع	4 2	r	4		٠		Init		8	٠,	٤	ر ح		1		Init	B	356	۷	4.5	ξ	1	4	į
Sta		3	,	/	t i	9 1	1-		Ŧ		l L	1	7	1		-6		Y			7	× -			*			
			7	1	_	51			<u>'</u> 9/	7		1		$\langle $	2/	7		+-		_	/	2	7	K		,,	7	
	2	Ŧ		,	15	·9 0			1 51	2	I	7	7	\leftarrow	J. 94		+	7		I	7	7	7	1			+	-
)	了	<u>၂</u>	2	• /	180	-			12/		ပ	7	7			0	_	141	3		/			7	/	_	Q	-
o	0	<u></u>	7	5		-\					ш		7		2 'Y				16	ı)	1	\downarrow	اجا		7	_
		\vdash				1 ,			18		ш	7		-	n 4	+		2		ш	2	, ,	1			_	υ, ,	
		Ш		,	, 3- 9-		املا		E		-		4		4	7	<u> </u>					7	2			+	\dashv	-
		Δ	>		,		\		2	١	۵	7	-	,	ل ح	8		7	١	_	-	,			2/2		\dashv	-
	Concentration	ပ	,	, /	* 7	7 0	_		2	Concentration:	ပ	7	,		200	3 24		2	Concentration:	ပ	.	4))		\ <u>\</u>		_	
	centr	8	> \	,/	/		4		9	centr	8	>	,	>	7 4	-		2	centr	60	>	2/		7,			<u> </u>	
	5	4	>) ;	B	1	14		3	ဦ	۷	>	2	,	74	- 00	·	1	Son	4	1 1) \	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	· >			0	፟.
		ij	क्षे ह	}	્ર	4	૮		4		Init	B	ž	د	1 1	3		4		in in	B)	g	٤ ٠	₹ €	ક		~	
		اد	7	,	6	49	b		77		٦	1)	>)	7 2	و ,		2		٦	7	>	• !	20	1 */		2	
			1		Į,	40 8	ما		2		-	`)	> :	4	4		80		_	3	2	, 6	が	1	_	+	
	\checkmark	I	>/	1		27		-	4	6.25	I	Y	1	> (7 4	2		18		I	7	7	2/5	a -	3		6	
murmand 3-2	Journa	ပ	7		m	0 7	<u> </u>		6	و.	ပ	1	-	7	ν ₂	de.		80	8	ŋ	7	2	> ~	K	0	\top	13	1
mrn 7-183	9	ш	> 2	1	+	0-0	-		2		u	7	10	>	20 02	a	1	300	'	ட	2	,	,/>	י א	5	\top	0	
(A)		ш	<u>,</u>		M	> 5			<u></u>		ш	7	2	> (N 3-	ه.		∞		ш	7	1	- - - - - - - - - -	blo	6	_	5	
o o		۵	> >	1	+	م لم	T	\vdash	6		۵	7	2	_	wy	 	+	4		۵	7	1	, 7	T	<u></u>		e	1
	ي			+	, 6v	-	9	1	3/	 -		>	1			14	+	१	Ë		>	,		4/7	\	+	<u>ن</u>	
	tratio	B		/	(v)	9 0	-	 -	ر مو	tratio	æ	7	4	-	- 1	<u>, </u>		17.	tratio	8		>	\	> \	7		0/	rtolih
lD: der:	ncen	4	>	1	9		و		\dashv	ncen	4	7	7			4.		8	neouc		, <u>,</u>	>>	5	+	2	+		i i
Client: Sample ID: Work Order:	Concentration:	2		-					Total 8	Concentration:	2		<u>.</u>	+		+		70	Concentration:	2	_	~ ~	_	-	╁╌┼		Total (1)	Notes: X = mortality
Sai	6	5	7	4 6	4	20 0	9 ^	∞	2	ِ أَ	5	-	7	س	4 10	9	- α	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	<u>د</u>			7	2			٠,	٢] 2

Date reviewed:

Nautilus Environmental

Reviewed by:

Sample Description: Comments:

Version 2.0 Issued January 23, 2008

Report Date:

27 Jan-09 16:16 (p 1 of 2)

Link/Link Code: 10-5325-1354/wo09018X2

Ceriodaphnia	a 7-d Su	rvival aı	nd Rep	roduction Te	st					•	lautilus En	vironmental
Analysis No: Analyzed:		36-8174 n-09 16:	14	•	Reproduction Nonparametric	c-Control vs	Treatments		TIS Version		/1.5.0	
Sample No: Sample Date Receive Date Sample Age:	: 15 Jan	62-1698 1-09		Code: Material: Source: Station:	943621698 Industrial Efflu X2	ent			ient: Mir oject:	nnow		
Data Transfo	rm		Zeta	Alt Hy	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Rank		====		. C > T	Not Run		12.5	25	17.68	8	15.15% ————	
Steel Many-O	ne Rank	Test										
Control	vs (Conc-%		Test St		Ties	P-Value	Decision	n(5%)		_	
Negative Cont	3 6 1 2 5	3.12 3.25 2.5 25* 50*		84.5 76 87 75 63.5 55.5	74 74 74 74 74 74 74	3 3 2 1 1	0.2367 0.0705 0.3111 0.0593 0.0053 0.0006 0.0005	Non-Sigr	nt Effect			
ANOVA Table	,										_	
Source	s	Sum Sqi	uares	Mean Squar	e DF	F Stat	P-Value	Decision	(5%)			•
Between	2	538.188	3	362.5982	7	51.98	0.0000	Significal	nt Effect	<u> </u>		
Error		02.3		6.976389	72							
Total	3	040.488	3 — <u>——</u>	369.5746	79		<u> </u>					
ANOVA Assu	mptions		_ _									
Attribute		est			Test Stat	Critical	P-Value	Decision	(1%)			
Variances		Bartlett E	quality	of Variance	44.47	18.48	0.0000	-	Variances			- "
Distribution	S	Shapiro-\	Nilk No	rmality	0.7542		0.0000	Non-norn	nal Distributio	on —————		
Reproduction	Summa	ary										
Conc-%	Control	Туре	Count	t M ean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negativ	e Contr	10	18.6	17.6	19.6	13	22	0.4896	2.591	13.93%	0.0%
1.56			10	17	16.16	17.84	12	19	0.4082	2.16	12.71%	8.6%
3.12			10	15.5	13.36	17.64	0	19	1.044	5.523	35.63%	16.67%
6.25			10	17.5	16.89	18.11	14	20	0.2988	1.581	9.04%	5.91%
12.5			10	15.9	14.98	16.82	11	19	0.4494	2.378	14.96%	14.52%
25			10	14.4	13.91	14.89	12	16	0.239	1.265	8.78%	22.58%
50			10	10	9.246	10.75	7	13	0.3673	1.944	19.44%	46.24%
100			10	0.2	-0.04524	0.4452	0	2	0.1195	0.6325	316.2% ————	98.92%
Rank Transfo	rmed S	ummary	•									
Conc-%	Control		Count		95% LCL	95% UCL	Min	Ma <u>x</u>	Std Err	Std Dev	CV%	Diff%
0	Negative	e Contr	10	64.35	57.88	70.82	25	79.5	3.155	16.69	25.94%	0.0%
1.56			10	53.85	47.15	60.55	21.5	72.5	3.266	17.28	32.1%	16.32%
3.12			10	48.9	41.93	55.87	5.5	72.5	3.399	17.98	36.78%	24.01%
6.25	•		10	57.1	51.88	62.32	29	77.5	2.544	13.46	23.57%	11.27%
12.5			10	44.55	37.7	51.4	18.5	72.5	3.338	17.66	39.64%	30.77%
25			10	31.85	29.34	34.36	21.5	41.5	1.226	6.485	20.36%	50.51%
50			10	17.35	15,72	18.98	12	25	0.7931	4.197	24.19%	73.04%
100	-		10	6.05	5,376	6.724	5.5	11	0.3287	1.739	28.75%	90.6%

Report Date:

27 Jan-09 16:16 (p 2 of 2)

Link/Link Code:

10-5325-1354/wo09018X2

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analysis No: Analyzed:

07-8336-8174 27 Jan-09 16:14 **Endpoint:** Reproduction **Analysis:** Nonparametric

Nonparametric-Control vs Treatments

CETIS Version: CET Official Results: Yes

CETISv1.5.0

Reproduct	ion Detail				-						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0 .	Negative Contr	22	22	20	19	19	18	18	18 ,	17	13
1.56		19	19	19	18	18	17	16	16	16	12
3.12		19	18	18	17	17	17	17	16	16	. 0
6.25		20	18	18	-18	18	18	18	17	16	14
12.5		19	19	17	17	16	16	15	15	14	11
25		16	16	15	15	15	14	14	14	13	12
50		13	12	12	11	10	9	9	9.	8	7
100		2	0	0	0	0	0	0	0	0_	0

Control Type

Negative Control

Conc-%

1.56

3.12

6.25

12.5

Rep 1

Rep 2

Rep 3

Rep 4

Report Date:

27 Jan-09 16:16 (p 1 of 2)

Link/Link Code

10-5325-1354/wo09018X2

									Link/Link	Code:	10-5325-1	354/wo09	018X2
Ceriodaph	nia 7-d Surv	ival and	Reprodu	ction T	est			<u> </u>			Nautilus	Environn	nental
Analysis N Analyzed:		1-6544 09 16:16		ipoint: ilysis:	Reproduction Linear Interpo		'IN)		CETIS Version: Official Results		Sv1.5.0		
Sample No Sample Da Receive D Sample Aç	ate: 15 Jan-l ate:		Sou	de: erial: irce: tion:	943621698 Industrial Effic X2	uent			Client: Min Project:	now			
Linear Inte	erpolation O	ptions											
X Transfor	m Y Tra	nsform	See	d	Resamples	Exp 95	5% CL 1	Method	·				
Log(X + 1)	Linea	r	579	51	200	Yes		rwo-Point I	terpolation				
Point Estir	mates												
% Effect	Conc-%	9 <u>5%</u> L	CL <u>95</u> %	UCL	<u> </u>								
5	0.727	0.3379											
10	2.279	0.79	16.9										
15	13.04	1.395	25.2	7									
20	20.08	2.505	28.8										
25	26.85	15.57	33.3	1	*								
40	41.7	35.47	51.3	6									
50	52.55	46.41	57.5	4						<u> </u>			
Reproduct	ion Summar	·y				Ċ	Calculated	l Variate					
Conc-%	Control Ty	/pe	Count _	Mean	Min	Max	Std E	rr Std D	ev CV%	Diff%			
0	Negative C	Control	10	18.6	13	22	0.481	1 2.591	13.93%	0.0%			
1.56			10	17	12	19	0.401	1 2.16	12.71%	8.6%			
3.12	•		10	15.5	0	19	1.026	5.523	35.63%	16.679	% -		
6.25			10	17.5	14	20	0.293	6 1.581	9.04%	5.91%			
12.5		•	10	15.9	11	19	0.441	6 2.378	14.96%	14.52%	6		
25			10	14.4	12	16	0.234	9 1.265	8.78%	22.58%	6		
50		•	10	10	7	13	0.360			46.249	6		
100			10	0.2	0	2	0.117	4 0.632	5 316.2%	98.929	6		
Reproduct	ion Detail				 _						<i>'</i>		

Rep 6

Rep 7

Rep 5

Rep 8

Rep 9

Rep 10

40

60

Conc-%

Report Date:

27 Jan-09 16:16 (p 2 of 2)

Link/Link Code:

10-5325-1354/wo09018X2

Ceriodaphnia 7-d Survival and Reproduction Test

Analysis No: 03-1834-6544 Endpoint: Reproduction CETIS Version: CETISV1.5.0
Analyzed: 27 Jan-09 16:16 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

Graphics

- Mautilus Environmental

CETIS Version: CETISV1.5.0
Official Results: Yes

120

Report Date:

27 Jan-09 16:16 (p 1 of 2)

Link/Link Code:

10-5325-1354/wo09018X2

Ceriodaphn	ia 7-d Survival a	nd Repro	duction Test					•			Nautilus Er	nvironmen
Analysis No Analyzed:	27 Jan-09 16:		ndpoint: 6d nalysis: S1	Survival Ra		ables			TIS Version		v1.5.0	•
Sample No: Sample Date Receive Dat Sample Age	e: 15 Jan-09 e:	M S		3621698 dustrial Efflu	uent				ient: M oject:	innow		
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	rio	NOEL	L	DÉL	TOEL	TU	PMSD	
Untransforme	ed		C > T	Not Run		100	7100		#Error	1	N/A	
Fisher Exact	t/Bonferroni-Holi	m Test										
Control	vs Conc-%		Test Stat	P-Value	Decisio	n(0.05)						
Negative Cor			1.0000	1.0000		nificant Ef	fect			 -		
•	3.12		0.5000	1.0000		nificant Ef						
	6.25		1.0000	1.0000	Non-Sig	nificant Ef	fect					
	12.5		1.0000	1.0000		nificant Ef						
	. 25		1.0000	1.0000		nificant Ef						
	50		0.5000	1.0000		nificant Ef						
	100		0.5000	1.0000	Non-Sig	nificant Ef	fect					
Data Summa	ary					,						,
Conc-%	Control Type	No-Resp	Resp	Total	_							
0	Negative Contr	10	0	10								
1.56		10	0	10								
3.12		9	1	10								•
6.25		10	0 -	10								
12.5		10	0	10								
25		10	0 ;	10								
50		9	1	10								
100		9	1 .	10	•				_			
6d Survival I	Rate Detail											
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Re	ep 6	Rep 7	Rep_8	Rep 9	Rep 10
0	Negative Contr	1	1	1	1	1	1		1	1	1	1
1.56		1 .	1	, 1	1	1	1		1	1	1	1
3.12		1	1	1	1	1 .	1		1	1	1	0
3. 2 5		1	1 ′	1	1	1	1		1	1	1	1
12.5		1	1	1	1.	1	1		1	1	1	, 1
25		1	1	1	1	1	1		1	1	1	1
50		1	1	1.	1	1	1		1	1	1	0
				_								•

Report Date:

27 Jan-09 16:16 (p 2 of 2)

Link/Link Code:

10-5325-1354/wo09018X2

CETIS Summary Report

Report Date:

27 Jan-09 16:16 (p 1 of 2)

Link/Link Code:

10-5325-1354/wo09018X2

Ceriodaphni	a 7-d Survival a	nd Rep	roduction Te	est					N	lautilus En	vironmental
Start Date:	: 12-28 47 -8368 17 Jan-09 16: : 23 Jan-09 16:4 6d 0h	15	Test Type: Protocol: Species: Source:	Reproduction EC/EPS 1/RM Ceriodaphnia	<i>I</i> /21)	Dil ' Brir	Water: ne:			
Sample No: Sample Date Receive Date Sample Age:) :		Code: Material: Source: Station:	943621698 Industrial Efflo X2	uent		Clie Pro	nt: Mi	innow		
Comparison	Summary										 -
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			
09-2176-2674 07-8336-8174	6d Survival Ra Reproduction	te		100 12.5	0 25	#Error 17.68	N/A 15.15%		act/Bonferro		st
Point Estima	te Summary										
Analysis No	Endpoint			% Effect	Conc-%	95% LCL	95% UCL	Method			
6d Survival R Conc-% 0 1.56 3.12 6.25 12.5	Reproduction tate Summary Control Type Negative Contr	Count 10 10 10 10 10	Mean 1 1 0.9 1 1 1	5 10 15 20 25 40 50 95% LCL 1 1 0.7819 1	0.727 2.279 13.04 20.08 26.85 41.7 52.55 95% UCL 1 1 1 1	0.3379 0.79 1.395 2.505 15.57 35.47 46.41 Min 1 1 0 1 1	12.7 16.99 25.27 28.86 33.3 51.36 57.54 Max 1 1 1 1 1	Std Err 0 0 0.05774 0 0	Std Dev 0 0 0.3162 0 0	CV% 0.0% 0.0% 35.14% 0.0% 0.0%	Diff% 0.0% 0.0% 10.0% 0.0% 0.0% 0.0%
50		10	0.9	0.7819	1	0	1	0.05774	0.3162	35.14%	10.0%
100		10	0.9	0.7819		0		0.05774	0.3162	35.14%	10.0%
Reproduction	Summary										
Conc-%	Control Type	Count		95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0 1.56 3.12 6.25 12.5 25	Negative Contr	10 10 10 10 10 10	18.6 17 15.5 17.5 15.9 14.4	17.63 16.19 13.44 16.91 15.01 13.93 9.274	19.57 17.81 17.56 18.09 16.79 14.87 10.73	13 12 0 14 11 12	22 19 19 20 19 16 13	0.473 0.3944 1.008 0.2887 0.4342 0.2309 0.3549	2.591 2.16 5.523 1.581 2.378 1.265 1.944	13.93% 12.71% 35.63% 9.04% 14.96% 8.78% 19.44%	0.0% 8.6% 16.67% 5.91% 14.52% 22.58% 46.24%
100		10	0.2	-0.03616	0.4362	0	2	0.1155	0.6325	316.2%	98.92%

CETIS Summary Report

Report Date:

27 Jan-09 16:16 (p 2 of 2)

Link/Link Code: 10-5325-1354/wo09018X2

Ceriodaphr	nia 7-d Survival ar	nd Reproc	luction Tes	t					I	Nautilus En	vironmenta
6d Survival	Rate Detail				-		_ _	_		 _	
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	1	1	1	1	1	1	1	1	1	1
1.56		1	1	1	1	1	1	1	1	1	1
3.12		1	1	1	1	1	1	1	1	0	1
6.25		1	1	1	1	1	1	1	1	1	1
12.5		1	1	1	1	1	1	1	1	1	1
25		1	1	1	1	1	1	1	1	1	1
50		1	1	1	1	1	1	1	1	0	1
100		1	1	1	1	1	1	_ 1	_ 1 _	_ 1	0
Reproducti	on Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	18	18	18	19	13	22	19	17	20	22
1.56		18	16	12	19	19	18	16	19	16	17
3.12		17	17	18	16	17	19	17	18	0	16
6.25		18	17	20	16	18	18	18	18	18	14
12.5		15	14	19	17	16	19	17	16	11	15
25		13	15	14	15	16	16	14	14	15	12
50		12	10	8	9	12	9	13	9	7	11
100		0	0	0	0	0	2	0	0	0	0

CETIS™ v1.5.0D

Client: negow

W.O.#: 283-1 99018

Hardness and Alkalinity Datasheet

			Alkalinity					Hardnes	8	
Sample ID	Sample Date	Sample Volume (mL)	(mL) 0.02N HCL/H₂SO₄ used to pH 4.5	(mL) of 0.02N HCL/H₂SO₄ used to pH 4.2	Total Alkalinity		Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Techniciar
X-2	An 26/09	50.0	7.1	7,3	138	ı	100	2.5	253	.Aus
R-2	()	1	97-	9,3	223182			5.0	207	1
R-7	1 17	10-	9.2	6.6			17		320	7
<u> </u>	 	 		0.6	12g	1	VZ.	3,2	<u> </u>	
		 	<u> </u>	 -	<u> </u>	ļ		 	 	
		ļ								
	<u> </u>				·				<u> </u>	
•										_
			-	†						
	 -		 	1				 		
 _			+	 				 	 	
		-	-	<u> </u>						 -
		<u> </u>		<u> </u>	<u> </u>		 	<u> </u>		↓
		<u></u>	<u> </u>			1				
						•				
	 		†	<u> </u>	-	1				
	 					┨		 		
	 					┨	 	+	-	┼──
						4	<u> </u>	-	_	
						1	ļ			
		Notes:		D delated	Lo 1000	_	.1) 07	Hro	·	
							7			
Reviewed by:	_	1.6	-		Data Ray	iewer	ł. F	Februar	15.200	 g
incriewed by.	 	73. U			Date Nev	icvic(··		15,200	
			· ()					(•	

Pseudokirchneriella subcapitata Summary Sheet

Client: Work Order No.:	09018 09018	Start Date: IR Set up by:	, 2149
Sample Information	n:		
Sample ID: Sample Date: Date Received: Sample Volume:	Jan 15, 2019 Jan 17, 2019 2 4202		
Test Organism Info	ormation:		
Culture Date: Age of culture (Day	0):	2719 	
Zinc Reference To	kicant Results:		
Reference Toxicant Stock Solution ID: Date Initiated:	D: SC42 072n01 Jan.18,7019		
72-h IC50 (95% CL)	14.7 (11.3 - 17.2) p	g/LZn	
72-h IC50 Reference	e Toxicant Mean ± 2 SD: 16·4 ‡	10.8 mlL CV (%):	33
Test Results:		Algal Growth	
	NOEC %(v/v)	180 to 95.3	<u>- </u>
	LOEC %(v/v)	740 ac 95.	
	IC25 %(v/v) (95% CL)		

Reviewed by:

A. Torg

Date reviewed: February 5,2009

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	Minnow Se					y:	Ele				
Sample ID:	R7			_	Test Dat	te/Time:	18-Jan-09	1330	<u> </u>		
Work Order No.:	091) १८		_	Test Spe	ecies:	Pseudokirci	hneriella su	bcapitata		
Culture Date:	Jani	5/09	_Age of C	Culture:	3d_	_Culture Hea	alth:	Grad	Gr-d 47.5×104		
Culture Count:	146	2 49	_Average	: 475	Culture (Cell Density	(c1):	47.5	x 104		
	v1 =	220,000 (c1)	cells/ml x 4み・エ	10V x104	mi cells/mi	ml = 46.3 mL cells/ml Average: 23 Y 10 4					
Time Zero Counts:	:	121	2 25	Average:	23	4104					
No. of Cells/mL:	_22	404		ensity:	# cells/mL	÷ 220 μL x 1	0 _{μL=} (0	417			
Concentration	V	Vater Qua	ality Meas	urement	s	Micr	oplates rota	ted 2X per	day?		
% (V(V)	pH_	0.5		o (°C)	701	0.4		· · · ·			
Control	0 h	0 h	24 h	24 S	72 h	0 h	24 h	48 h	72 h		
1.5	7-1		24.5			/	//	1	V		
3.0	7.3		24.5			1	//	VV	V		
5.9	ጉ ተ		24.5			1	//	11			
11.9	75	243	24.5	24.5	14.6	V	11	11			
23.8	76	74.3	24.5	24.5	24.6		1/				
47.6	<u>ጉ</u> 8	24.3	24.5	45	24.6	V		~			
95.2	79	243	24.5	24.5	24.6	V	//	11			
Initials	Chr.	EW	JUT	JUT	TIT	Tev	ゴム	JU	14		
Initial control pH:	Well 1:	6.5		•	Well 2:	65					
Final control pH:	Well 1:	6-3	<u> </u>		Well 2:	6.5					
Light intensity (lux	: 39	311			Date mea	sured:	Jan	18/09			
Sample Description	n: _	de	en_Sai	uple							
Comments:	·										
Reviewed:	A.	Tong	·		Date	e reviewed:	Fabruz	2m 5	2009		

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

Client:		Minnow	<u> </u>	Start D	ate/Time: _	18-Jan-09 (ろ	ろり ト
Work Order #:	0	9018		Terminat	tion Date:	21-Jan-09	
Sample ID:		<u> 27</u>		Test	set up by:	EU .	
0/0(V(V)			_	•			
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Comments	Initials
Control	Α	42					Cu
	В	12					
	С	49					
	D	58	43				
	E	52					
	F	47					
	G	47					
	Н	52					
	Α	79					
1.5	В	83					
	С	64	48				
	D	57	60				
	A	76					
3	В	80					
Ü	C	81					
	D	83					
	A	109					-
5.9	В	112					
	C	104					
	D	107					
	A	133					
11.9	B	139					
11.9	С	124					
	D	143					
	Ā	14.5					
22.0	<u>-^</u>	149			 -		
23.8	C	122					
	-						
	D	150			 		
47.0	<u>A</u>	15					
47.6	B C	143					 - -
	Ď	779					
	- A	194					
95.2	В	100					
55.=	C	208					
	D	208					
Comments:							
Reviewed by:	λ	· Ton	2.	Date R	eviewed:	February 5,200	59
Reviewed by.		. 10	X	Date		100,000	
		!	U			L	

Pseudokirchneriella subcapitata Algal Counts

Client: WO#: Sample ID:	Minnow 09018 R7			Start Date/ Terminatio			9 @1330h 9 @1300h		
				Initial Cell (Density:	10454.54	5 cell/mL		230000 0.22 0.01
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Mean	Cell Yield	l	10454.545
ug/L Zn		(x 10⁴)	(x 10⁴)	(x 10⁴)	(x 10⁴)	(x 10 ⁴)	(x 10⁴)		
							cell/mL		
Control	A	42				42	41.0	mean	50.1
	В	51				51	50.0	SD	5.5801786
	C	49				49	48.0	CV	11.128741
	D	58	63			60.5	59.5		
	E	52				52	51.0		
	F	4 7				47 50	46.0		
	G	56 50				56 50	55.0 54.0		
1 40	H	52 79				52 79	51.0 78.0		
1.48	A B	79 83				79 83	82.0		
	C	64	68			66	65.0		
	D	57	60			58.5	57.5		
2.95	A	76	00			76	75.0		
2.90	В	80				80	79.0		
	Č	85				85	84.0		
	Ď	83				83	82.0		
5.9	Ā	109				109	108.0		
4.5	В	112				112	111.0		
	C.	104				104	103.0		
	D	107				107	106.0		
11.9	Α	133				133	132.0		
	В	139				139	138.0		
	С	126				126	125.0		
	D	143				143	142.0		
23.8	Α	145				145	144.0		
	В	149				149	148.0		
	С	122				122	121.0		
	D	158				158	157.0		
47.6	Α	155				155	154.0		
	B C	143				143	142.0		
		187				187	186.0		
	D	179				179	178.0		
95.2	A	194				194	193.0		
	В	180				180	179.0		
	С	203				203	202.0		
	D	208				208	207.0		

LET FAGE/09

72-h Pseudokirchneriella subcapitata Test - Trend Analysis by Mann-Kendall Test.

Instructions:

- 1. Enter the project number, work order number and sample ID in the highlighted cells.
- 2. Enter the negative control cell yield data (X x 10^6 cells/mL) into the highlighted spreadsheet cells.
- 3. Compare the calculated S value to the table of critical S values at the bottom of the page.
- 4. If the calculated S value is smaller than the S value in the table, there is no statistically significant trend.

Client: W.O. No.:

Minnow 09018

Sample ID: Test Date:

R7 18-Jan-09

Rep No.	1	2	3	4	5	6	7	8	Count of	Count of
Data Value	41.0	50.0	48.0	59.5	51.0	46.0	55.0	51.0	+ Signs	- Signs
	ĺ							_		
(- Rep 1)] .	9.000	7.000	18.500	10.000	5.000	14.000	10.000	7	0
(- Rep 2)			-2.000	9.500	1.000	-4.000	5.000	1.000	4	2
(- Rep 3)	1			11.500	3.000	-2.000	7.000	3.000	4	1
(- Rep 4)	1				-8.500	-13.500	-4.500	-8.500	0	4
(- Rep 5)	ĺ					-5.000	4.000	0.000	1	1
(- Rep 6)]						9.000	5.000	2	0
(- Rep 7)								-4.000	0	1
	L							Totals	18	9
									S =	9

Critical values of (S) at a probability of p = 0.05, when the number of replicates (n) is 10 or less.

n	4	5	6	7	8	9	10
S	4	6	9	11	14	16	19

If your calculated value for S (for the applicable number of replicates) is equal to or less than the corresponding value for S in the above table, then there is no statistically significant trend present. Refer to Gilbert (1987) for complete table of probabilities for the Mann-Kendall test.

Reference:

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY. 320 pp.

665/09

Report Date:

02 Feb-09 12:27 (p 1 of 2)

Link/Link Code:

05-2516-6930/09018

Selenastrum	Grow	th Test									lautilus En	vironmenta
Analysis No: Analyzed:		580-1482 eb-09 12:	26	•	Cell Density Parametric-Multiple Comparison				CETIS Version: CETISv1.5.0 Official Results: Yes			
Sample No:	19-6	628-7808		Code: 1	966287808				Client: Mi	nnow		
Sample Date	: 15 J	an-09		Material: In	terial: Industrial Effluent Project:							
Receive Date	e: 17 J	an-09		Source: R	-7							
Sample Age:	72h			Station:								
Data Transfo	rm		Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransforme	d		_	C > T	Not Run		95.2	95.2	, #Error	1.05	34.38%	
Bonferroni A	dj t Te	st										
Control	vs	Conc-%		Test Stat	Critical	MSD	P-Value	Decisi	on(5%)			
Negative Con	trol	1.48	_	-3.1	2.613	17.28	1.0000	Non-Si	gnificant Effect	t		
		2.95		-4.499	2.613	17.28	1.0000	Non-Si	gnificant Effect	t		
		5.9		-8.582	2.613	17.28	1.0000	Non-Si	gnificant Effect	t		
		11.9		-12.7	2.613	17.28	1.0000	Non-Si	gnificant Effect	Ì		
		23.8		-13.95	2.613	17.28	1.0000	Non-Significant Effect				
	47.6			-17.35	2.613	17.28	1.0000	Non-Si	gnificant Effect	t		
		95.2		-21.93	2.613	17.28	1.0000	Non-Si	gnifi c ant Effect	t		
ANOVA Table	•											
Source		Sum Squ	uares	Mean Square	DF	F Stat	P-Value		on(<u>5%)</u>			
Between		86094		12299.14	7	105.5	0.0000	Signific	ant Effect			
Error		3264.75		116.5982								
Total		89358.75	· 	12415.74	35 ————							
ANOVA Assu	mptio	ns										
Attribute		Test			Test Stat	Critical	P-Value	Decisi				
Variances		Bartlett E	quality	of Variance	15.55	18.48	0.0296	•	/ariances			
Distribution		Shapiro-\	Vilk No	ormality	0.9802 ————		0.7525	Norma	Distribution			
Cell Density	Summ	ary										
Conc-%	Cont	rol Type	Coun	t <u>Mean</u>	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Nega	tive Contr	8	50.25	48.04	52.46	41	60	1.077	5.701	11.35%	0.0%
1.48			4	70.75	66.42	75.08	58	82	2.112	11.18	15.8%	-40.8%
2.95			4	80	78.48	81.52	75	84	0.74	3.916	4.9%	-59.2%
5.9			4	107	105.7	108.3	103	111	0.6362	3.367	3.15%	-112.9%
11.9			4	134.3	131.4	137.1	125	142	1.4	7.411	5.52%	-167.2%
23.8			4	142.5	136.6	148.4	121	157	2.897	15.33	10.76%	-183.6%
47.6			4	165	157.1	172.9	142	186	3.873	20.49	12.42%	-228.4%
95.2			4	195.3	190.5	200	179	207	2.322	12.28	6.29%	-288.6%
	_		<u> </u>					 -			-	

Report Date: Link/Link Code: 02 Feb-09 12:27 (p 2 of 2)

05-2516-6930/09018

Selenastrum (Growth Test		Nautilus Environmental		
Analysis No: Analyzed:	12-8580-1482 02 Feb-09 12:26	•	Cell Density Parametric-Multiple Comparison	CETIS Version: Official Results:	CETISv1.5.0 Yes

Cell Densit	y Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8_
0	Negative Contr	60	55	51	51	50	48	46	41
1.48		82	78	65	58				
2.95		84	82	79	75				
5.9		` 111	108	106	103				
11.9		142	138	132	125				
23.8		157	148	144	121				
47.6		186	178	154	142				
95.2		207	202	193	179			_	

CETIS Summary Report

Report Date:

02 Feb-09 12:27 (p 1 of 1)

Link/Link Code:

05-2516-6930/09018

Selenastrum	Growth Test			·					N	lautilus En	vironmental
Test Run No: Start Date: Ending Date: Duration:	: 07-2318-1582 18 Jan-09 21 Jan-09 72h		Test Type: Protocol: Species: Source:	Cell Growth EC/EPS 1/RM Selenastrum In-House Cult	capricornutu	m		Water: De	eionized Wa	ter	
Sample No: Sample Date Receive Date Sample Age:	: 17 Jan-09		Code: Material: Source: Station:	1966287808 Client: Minnow Industrial Effluent Project: R-7							
Comparison Analysis No 12-8580-1482	Summary Endpoint Cell Density			NOEL 95.2	LOEL 9571	TOEL #Error	PMSD 34.38%	Method Bonferror	ni Adj t Test		
Cell Density S	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	8	50.25	48.12	52.38	41	60	1.041	5.701	11.35%	0.0%
1.48		4	70.75	66.58	74.92	58	82	2.041	11.18	15.8%	-40.8%
2.95		4	80	78.54	81.46	75	84	0.7149	3.916	4.9%	-59.2%
5.9		4	107	105.7	108.3	103	111	0.6146	3.367	3.15%	-112.9%
11.9		4	134.3	131.5	137	125	142	1.353	7.411	5.52%	-167.2%
23.8		4	142.5	136.8	148.2	121	157	2.799	15.33	10.76%	-183.6%
47.6		4	165	157.3	172.7	142	186	3.742	20.49	12.42%	-228.4%
95.2		4	195.3	190.7	199.8	179	207	2.243	12.28	6.29%	-288.6%
Cell Density D	Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	_	
0	Negative Contr	41	50	48	60	51	46	55	51	_	
1.48		78	82	65	58						
2.95		75	79	84	82						
5.9		108	111	103	106						
11.9		132	138	125	142						
23.8		144	148	121	157						
47.6		154	142	186	178						
95.2		193	179	202	207						

Pseudokirchneriella subcapitata Summary Sheet

Client: Work Order No.:	M1NNW 09018	Start Date: Set up by:	Jan. 18, 249
Work Grading.		00t up 5y	
Sample Information	n:		
Sample ID:	P2		
Sample Date:	Jan. 15, 2019		
Date Received:	Jan-17, 2019		
Sample Volume:	24'201		
Test Organism Info	rmation:		
Culture Date:	2SCAI	Jan-15 2009	7
Age of culture (Day 0)): 3 d	Jan-15, 2009	
, igo o, ouituro (24)			
Zinc Reference Tox	cicant Results:		
Reference Toxicant	ID: SC42		
Stock Solution ID:	072n01		
Date Initiated:	Jan. 18, 2019		
	,		
72-h IC50 (95% CL):	14.7 (11.3-17.2)	Mg/L 2n	
		,	
70 L 1050 Deference	Toxicant Mean ± 2 SD: 16.4±10	Sucil 200 C	v/%)· 33
/2-n IC50 Reference	e Toxicant Mean £ 2 SD. 10 3 3	PAIL ZH	V (%): 33
Test Results:		A	lgal Growth
	NOEC %(v/v)	47.4	
	LOEC %(v/v)	95.2	
	IC25 %(v/v) (95% CL)		18.9
	IC50 %(v/v) (95% CL)	918 7	12.9
		- vr	

Reviewed by:

Date reviewed: Fobruary 5, 2009

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	Minnow	<u></u>		_	Setup by	<i>ı</i> :	Eu	Eu			
Sample ID:	P2			_	Test Date	e/Time:	18-Jan-09	133	boL	_	
Work Order No.:	090	18	-	_	Test Spe	cies:	Pseudokirc	hneriella su	bcapitata	<u> </u>	
Culture Date:	Jan 1	6 1a	_			Culture He	alth:	Gra	<u> </u>	_	
Culture Count:	1 H	2 25	Average	: <u>475</u>	Culture 0	Cell Density	(c1):	FILX	107	_	
	v1 =	220,000 (c1)	cells/ml x	709 PG)X	ml cells/mi	= 4	4-3 M				
Time Zero Counts:	;	1 21	2 25	_	Average:	_ 23	7104	} 		_	
No. of Cells/mL:	231	104			ensity:	# cells/mL	÷ 220 μL x 1	0 μL = (0,414	_	
Concentration	1	Water Qu	ality Meas	urement	s	Micr	oplates rota	ited 2X per	day?		
% (VIV)	pH 0 h	0 5		p (°C)	70 h		04.1	101		_	
Control	6.9	0 h	24 h	24.5	72 h 24.6	0 h	24 h	48 h	72 h	_	
1.5	71	24.3	24.5				1				
3.0	72	24.3	24.5	24.5		/	//	11			
5.9	7.2	24.3		24.5		V	//	11			
11.9	75	24.3	24.5	24.5	24.6	V	11			-	
23.8	ች ት	24.3	24.5	24.5	24.6	i/	//		V		
47.6	子8	24.3	251.5	24.5	24.6	~	1			7	
95.2	8.0	24.3	245	24.5	24.6	V					
							/]`	
Initials	Ca	Un	707	10	JU	all	TC7	501	ブレて]	
Initial control pH:		65			Well 2:_	6.4					
Final control pH:	Well 1:	65	· 		Well 2: _	6.1					
Light intensity (lux <u>)</u>	: 38	<u>r</u>			Date meas	sured:	Jan	18/09		_	
Sample Description):	cu	an Can	uple						_	
Comments:										_	
Reviewed:	4-	Ter	8		Date	reviewed:_	Februs	my 5,3	2009	-	
Version 1.0 Modified Ma	y 8, 2008	(U					l		nvironmental	

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

Client:	Minnow			Start D	ate/Time:		18-Jan-09 1330k			
Work Order #:	09018			Termina	tion Date:		21-Jan-09			
Sample ID:		R2			set up by:	ER				_
% (VIV)_										_
Concentration	Rep	Count 1	Count 2	Count 3	Count 4		Comments		Initials	s
Control	A	42							El	_
	В									
	С	35								
·	D	49								
	E	39								
	F	37							Ī	
	G	53				<u>_</u>			\top	
	Н	47								_
	Α	79					<u> </u>			_
1.5	В	84							\neg	_
	С	68							$\neg \vdash$	_
	D	74							_	-
	A	98							\neg	_
3	В	126							-+	_
J	c	113							-	-
	D	90							-+	-
	A	121								
E 0	-									_
5.9	В	130							-+	_
	<u> </u>	91								_
	_ D	125								_
	A									_
11.9	В	76								4
	С	95								4
	D	132	129							_
	A	105								_
23.8	B	83								╝
].		94								_
	D	83							_	
	A	49								_
47.6	В	65	57							┙
-	C	30								4
	D	35								4
25.0	<u>A</u>									\dashv
95.2	B C	(3								\dashv
ļ ·	 	8					 		1	┥
L		<u> </u>		- <u></u>						٢
Comments:										
_								-0		_
Reviewed by: _	<u>A</u> .	. Tone	7	Date Re	eviewed:	rebru	ay 5,2	2004		_
		()				(

Pseudokirchneriella subcapitata Algal Counts

Client: WO#: Sample ID:	Minnow 09018 R2			Start Date/ Termination			9 @1330h 9 @1300h		
				Initial Cell I	Density:	10454.54	5 cell/mL		230000 0.22
Concentration ug/L Zn	Rep	Count 1 (x 10 ⁴)	Count 2 (x 10 ⁴)	Count 3 (x 10 ⁴)	Count 4 (x 10 ⁴)	Mean (x 10 ⁴)	Cell Yield (x 10 ⁴)	I	0.01 10454.545
	Ā						cell/mL		
Control	A	48				48	47.0	mean	42.7
	В	42				42	41.0	SD	6.4309519
	C	35				35	34.0	CV	15.059174
	D	49				49	48.0		
	E F	39				39	38.0		
		37				37	36.0		
	G	53				53	52.0		
4.40	H	47				47	46.0		
1.48	A	79				79	78.0		
	B C	84				84	83.0		
	D	68 74				68	67.0		
2.05		74 98				74	73.0		
2.95	A B	126				98 126	97.0 125.0		
	C	113				113	112.0		
	D	90				90	89.0		
5.9	A	121				121	120.0		
5.9	B	130				130	120.0		
	C	91				91	90.0		
	D	125				125	124.0		
11.9	A	85				85	84.0		
11.5	В	76				76	75.0		
	Č	95				95	94.0		
	D	132	129			130.5	129.5		
23.8	Ā	105	120			105	104.0		
20.0	В	83				83	82.0		
	Č	94				94	93.0		
	D	83				83	82.0		
47.6	Ā	49				49	48.0		
17.0		65	57			61	60.0		
	B C	30	•			30	29.0		
	Ď	35				35	34.0		
95.2	Ā	9				9	8.0		
	В	13				13	12.0		
	C	6				6	5.0		
	D	8				8	7.0		

Feb 5/09

72-h Pseudokirchneriella subcapitata Test - Trend Analysis by Mann-Kendall Test.

Instructions:

- 1. Enter the project number, work order number and sample ID in the highlighted cells.
- 2. Enter the negative control cell yield data ($X \times 10^6$ cells/mL) into the highlighted spreadsheet cells.
- 3. Compare the calculated S value to the table of critical S values at the bottom of the page.
- 4. If the calculated S value is smaller than the S value in the table, there is no statistically significant trend.

 Client:
 Minnow
 Sample ID:
 R2

 W.O. No.:
 09018
 Test Date:
 18-Jan-09

Rep No.	1	2	3	4	5	6	7	8	Count of	Count of
Data Value	47.0	41.0	34.0	48.0	38.0	36.0	52.0	46.0	+ Signs	- Signs
(- Rep 1)		-6.000	-13,000	1.000	-9.000	-11.000	5.000	-1.000	2	5
(- Rep 2)			-7.000	7.000	-3.000	-5.000	11.000	5.000	3	3
(- Rep 3)				14.000	4.000	2.000	18.000	12.000	5	0
(- Rep 4)					-10.000	-12.000	4.000	-2.000	1	3
(- Rep 5)						-2.000	14.000	8.000	2	1
(- Rep 6)							16.000	10.000	2	0
(- Rep 7)								-6.000	0	1
								Totals	15	13
									<u>S</u> =	2

Critical values of (S) at a probability of p = 0.05, when the number of replicates (n) is 10 or less.

n	4	5	6	7	8	9	10
S	4	6	9	11	14	16	19

If your calculated value for S (for the applicable number of replicates) is equal to or less than the corresponding value for S in the above table, then there is no statistically significant trend present. Refer to Gilbert (1987) for complete table of probabilities for the Mann-Kendall test.

Reference:

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY. 320 pp.

ART 5/09

Report Date:

02 Feb-09 12:38 (p 1 of 2)

Link/Link Code:

08-3074-2938/09018R2

Selenastrum	Grow	th Test								N	lautilus En	vironmental	
Analysis No: Analyzed:		995-4543 eb-09 12:	37	•	Cell Density Parametric-Mi	ultiple Comp	arison	CETIS Version: CETISv1.5.0 Official Results: Yes					
Sample No:	13-6	441-9010		Code:	1364419010			Cli	ient: Mi	nnow	· ·		
Sample Date:	15 J	an-09		Material:	Industrial Efflu	ent		Project:					
Receive Date	: 17 J	an-09		Source:	R2								
Sample Age:	72h		-	Station:									
Data Transfor	rm		Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD		
Untransformed				C > T	Not Run		47.6	95.2 ———	67.32	2.101	49.08%		
Bonferroni Ad	dj t Te	st			<u> </u>								
Control	vs	Conc-%		Test Sta	at Critical MSD F		P-Value	Decision	n <u>(5%)</u>				
Negative Cont	rol	1.48		-4.047	2.613	20.98	1.0000	Non-Sigr	nificant Effec	t	_		
		2.95		-7.844	2.613	20.98	1.0000	Non-Sigr	nificant Effec	t			
		5.9		-9.09	2.613	20.98	1.0000	Non-Sigr	nificant Effect	t			
		11.9		-6.599	2.613	20.98	1.0000	Non-Sigr	nificant Effect	t			
	23.8 47.6			-5.914	2.613	20.98	1.0000	_	Non-Significant Effect				
	· · · · -			0	2.613	20.98	1.0000	Non-Significant Effect					
95.2*				4.327	2.613	20.98	0.0006	Significa	nt Effect				
ANOVA Table							-			_		-	
Source		Sum Squ	uares	Mean Square		F Stat	P-Value	Decision					
Between		42120.22	?	6017.175	7	34.98	0.0000	Significa	nt Effect				
Error		4816		172	28								
Total		46936.22	! 	6189.175	35 								
ANOVA Assur	mptio	ns											
Attribute		Test			Test Stat	Critical	P-Value	Decision					
Variances		Bartlett E	quality	of Variance	15.37	18.48	0.0316	Equal Variances					
Distribution		Shapiro-\	Vilk No	ormality	0.9778		0.6703	Normal D	Distribution				
Cell Density S	Summa	ary											
Conc-%	Cont	rol Type	Coun	t Mean	95% LCL	95% UCL	Min	<u>Max</u>	Std Err	Std Dev	CV%_	Diff%	
0	Nega	tive Contr	8	42.75	40.26	45.24	34	52	1.215	6.431	15.04%	0.0%	
1.48			4	75.25	72.59	77.91	67	83	1.294	6.85	9.1%	-76.02%	
2.95			4	105.8	99.55	111.9	89	125	3.021	15.99	15.12%	-147.4%	
5.9			4	115.8	108.9	122.6	90	129	3.318	17.56	15.17%	-170.8%	
11.9			4	95.75	86.4	105.1	75	130	4.558	24.12	25.19%	-124.0%	
23.8			4	90.25	86.17	94.33	82	104	1.99	10.53	11.67%	-111.1%	
47.6			4	42.75	37.31	48.19	29	60	2.652	14.03	32.83%	0.0%	
95.2			4	8	6.858	9.142	5	12	0.5563	2.944	36.8%	81.29%	
			·										

Report Date:

02 Feb-09 12:38 (p 2 of 2)

Link/Link Code:

08-3074-2938/09018R2

Selenastrum Growth Test

Nautilus Environmental

Analyzed:

Analysis No: 18-6995-4543 02 Feb-09 12:37 Endpoint: Cell Density Analysis:

Parametric-Multiple Comparison

CETIS Version: Official Results: Yes

CETISv1.5.0

Cell Densit	y Detail							_		
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	
0	Negative Contr	52	48	47	46	41	38	36	34	
1.48		83	78	73	67					
2.95		125	112	97	89					
5.9		129	124	120	90					
11.9		130	94	84	75					
23.8		104	93	82	82					
47.6		60	48	34	29					
95.2		12	8	7	5					 l

Report Date:

05 Feb-09 11:25 (p 1 of 2)

Link/Link Code:

07-5798-2392/09018aR2

_ 										nk/Link C	oue.	07-5796-23	92/09018aR2
Selenastr	um Growth T	est										Nautilus Env	/ironmental
Analysis I				point:	•				CETIS	Version:	CET	ISv1.5.0	
Analyzed:	: 05 Feb-	09 11:24	4 Ana	lysis:	Linear Interpo	lation (ICI	PIN)		Officia	Results:	Yes		
Sample N	lo: 15-1943	-1302	Cod	e:	1519431302		-		Client:	Minn	iow		
Sample D	ate: 15 Jan-0	9	Mat	erial:	Industrial Efflu	ent			Project	:			
Receive D	Date: 17 Jan-0	9	Sou	rce:	R2								
Sample A	ge: 72h		Stat	ion:									
Linear Inte	erpolation Op	tions											
X Transfo	rm Y Tra	nsform	See	d	Resamples	Exp 9	5% CL	Method					
Log(X + 1)	Linear	1	579	51	1	Yes		Two-Point	Interpola	tion			
Point Esti	mates												
% Effect	Conc-%	95% L	.CL 95%	UCL									
5	49.68	N/A	N/A										
10	51.85	N/A	N/A										
15	54.12	N/A	N/A										
20	56.48	N/A	N/A										
25	58.94	N/A	N/A										
40	66.98	N/A	N/A										
50	72.93	N/A	N/A										
Cell Densi	ity Summary						Calculat	ed Variate					
Conc-%	Control Ty	ре	Count	Mean	Min	Max	Std	Err Std	Dev C	:V%	Diff%		
0	Negative C	ontrol	1	43	43	43	0	0	0	.0%	0.0%		
1.48			1	43	43	43	0	0	0	.0%	0.0%		
2.95			1	43	43	43	0	0	0	.0%	0.0%		
5.9			1	43	43	43	0	0		.0%	0.0%		
11.9			1	43	43	43	0	0		.0%	0.0%		
23.8			1	43	43	43	0	0		.0%	0.0%		
47.6			1	43	43	43	0	0		.0%	0.0%		
95.2			1	8	8 	8	0	0	0	.0%	81.4%		
Cell Densi	ity Detail												
Conc-%	Control Ty	p <u>e</u>	Rep 1										
0	Negative Co	ntrol	43										
1.48			43										

Analyst:_____ QA: <u>Falo 5</u> 09

2.95

5.9

11.9

23.8 47.6

95.2

43

43 43

43

43

10-

Report Date:

05 Feb-09 11:25 (p 2 of 2)

Link/Link Code:

07-5798-2392/09018aR2

Selenastrum Growth Test

Analysis No: 01-6244-2538 Endpoint: Cell Density CETIS Version: CETISv1.5.0
Analyzed: 05 Feb-09 11:24 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

80

Conc-%

Pseudokirchneriella subcapitata Summary Sheet

Client: Work Order No.:	810PQ	Start Date:	1 18, 2Ng
Sample Informatio	n:		
Sample ID:	X2		
Sample Date:	Jan 15, 209		
Date Received:	Jan 17, 2009		
Sample Volume:	2x202		
	,		
Test Organism Info	ormation:		
Culture Date:	m. 15	7119	
Age of culture (Day	0): 3d		
rigo or outland (Bu)			
Zinc Reference To	cicant Results:		
Reference Toxicant	ID: <u>SC42</u>		
Stock Solution ID:	07201		
Date Initiated:	_ JW- 18, 2419		
72-h IC50 (95% CL)	147 (113-17-2)) right zn	
72-h IC50 Reference	e Toxicant Mean ± 2 SD: 16-4	± 10.8 µg [L3n CV (%):	33
Test Results:		Algal Gro	owth
	NOEC %(v/v)	11.9	
	LOEC %(v/v)	73.8	
	IC25 %(v/v) (95% CL)	14.8(13.6-	
	IC50 %(v/v) (95% CL)	173(15-4-	70.3)

Reviewed by:

Date reviewed: February 5,2009

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	Minnow			_	Setup by	:	er			
Sample ID:	X2			_	Test Date	e/Time:	18-Jan-09	13	30 h	_
Work Order No.:	090	218		_	Test Spe	cies:	<u>Pseudokirch</u>	nneriella sul	ocapitata	<u>-</u>
						Culture Hea	alth: (c1):	6md 47.5 ×104		
	v1 =	220,000 (c1) 4	cells/ml x	100	ml_ cells/ml Average:					
Time Zero Counts:			275	_	Average:	23	× 104		- <u></u>	_
No. of Cells/mL:	23 +	104					÷ 220 μL x 10		414	_
Concentration	V	Vater Qua	ality Meas	urement	s	Micr	oplates rota	ted 2X per	day?]
%(VIV)	рН		Tem		r			·	T	-
Control	0 h	0h	24 h	48 h	72 h	0h	24 h	48 h	72/h	1
1.5	6.9		24.5				1			1
3.0	7:1	24.3	24.5				V	///		<u>.</u>
5.9	71	24.3	24.5				//	//		}
11.9	<u> ጉ</u> ሜ	24.3	24.5				1//			
23.8	7.4	243	24.5			V =				<u> </u>
47.6	70	24.3	24.5	24.5	0.0		//	1	V	(]
95.2	78	24.3	24.5	24.5	24.6	✓		1		!
	·		1,0							
	-		 -							
Initials	Cu	Op	501	JUT	TI	(M)	TLT	JUT	JIT	
Initial control pH:	Well 1:	6	<u>"</u>		Well 2:	6.5				
Final control pH:	Well 1:	6	.5		Well 2:	6.5				
Light intensity (lux)): 38	34			Date mea	sured:	Jan	18/09		
Sample Description	ո։	_cl	en s	augl	<u>e</u>					
Comments:										
Reviewed:		tere			Date	reviewed:	Febru	ary 5,	2009	
Version 1.0 Modified Ma	ay 8, 2008	U							Nautilus Env	<i>i</i> ironmental

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

Client:	Minnow		Start D	ate/Time: _	18-Jan-09 (33%)			
Work Order #:	(21090		Termina	tion Date:	21-Jan-09		
Sample ID: 🔪		X2		Test	set up by:	eu		
elo(VIV)								
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Comments		tials
Control	A	50						w
	В	570					4+	 ∤
	C	53					\dashv	
1	D	49					$\dashv \dashv$	
	E	52					\perp	
	F	41						
	G	54						
	Н	46					$\perp \perp$	
	Α	64						
1.5	В	47					$\perp \perp$	
	С	68					$\perp \!\!\! \perp \!\!\! \perp$	
	D	56						
	Α	76	81				$\Box \Box$	
3	В	98						
	С	96	-				$\top \Gamma$	
	D	105						
	Α	107						\neg
5.9	В	122					11	ヿ
	С	102			_		11	一
	D	132					11	\neg
	A	53		·· <u>=</u> ··			11	\neg
11.9	В	39	35				11	
	С	71					17	
]	D	66					\top	\neg
	A	15					++	
23.8	В	19					+	\neg
1 20.0	C	ii					+ 1	\neg
1	D	12					++	\neg
	A	3					+	
47.6	В	2					+-1	$\overline{}$
1 47.0	C	3					+	\sqcap
ľ	Ď	4					+	
	Α	0						
95.2	В	4			· -			
	С	0_						
	D_	2-				<u> </u>		9
Comments:							•	
		7 -						
Reviewed by:	£	1. Ter	y	Date R	eviewed:	February 5, 2009		
			()					
Version 1.0 Modifi	ied May	8, 2008				Nautilus Env	rironm	iental

Pseudokirchneriella subcapitata Algal Counts

Client: WO#: Sample ID:	Minnow 09018 X2			Start Date/ Termination			9 @1330h 9 @1300h		
Cample 15.	//2			Initial Cell I	Density:	10454.54	5 cell/mL		230000 0.22 0.01
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Mean	Cell Yield	ł	10454.545
ug/L Zn		(x 10 ⁴)	(x 10 ⁴)	(x 10⁴)	(x 10⁴)	(x 10 ⁴)	(x 10⁴) cell/mL		
Control	Α	50				50	49.0	mean	49.1
Control	В	56				56	55.0	SD	4.8236767
	Č	53				53	52.0	CV	9.8282832
	D	49				49	48.0	01	5.020200E
	Ē	52				52	51.0		
	F	41				41	40.0		
	G	54				54	53.0		
	Ĥ	46				46	45.0		
1.48	A	64				64	63.0		
	В	47				47	46.0		
	Č	68				68	67.0		
	D	56				56	55.0		
2.95	Ā	76	81			78.5	77.5		
	В	98				98	97.0		
	C.	96				96	95.0		
	D	105				105	104.0		
5.9	Α	107				107	106.0		
	В	122				122	121.0		
	С	102				102	101.0		
	D	132				132	131.0		
11.9	Α	53				53	52.0		
	В	39	35			37	36.0		
	С	71				71	70.0		
	D	66				66	65.0		
23.8	Α	15				15	14.0		
	В	19				19	18.0		
	С	11				11	10.0		
	D	12				12	11.0		
47.6	Α	3				3	2.0		
	В	2				2	1.0		
	С	3				3	2.0		
	D	4				4	3.0		
95.2	Α	0				0	-1.0		
	В	4				4	3.0		
	С	0				0	-1.0		
	D	2				2	1.0		

Feb 5/09

72-h Pseudokirchneriella subcapitata Test - Trend Analysis by Mann-Kendall Test.

Instructions:

- 1. Enter the project number, work order number and sample ID in the highlighted cells.
- 2. Enter the negative control cell yield data (X x 10⁶ cells/mL) into the highlighted spreadsheet cells.
- 3. Compare the calculated S value to the table of critical S values at the bottom of the page.
- 4. If the calculated S value is smaller than the S value in the table, there is no statistically significant trend.

 Client:
 Minnow
 Sample ID:
 X2

 W.O. No.:
 09018
 Test Date:
 18-Jan-09

Rep No.	1	2	3	4	5	6	7	8	Count of	Count of
Data Value	49.0	55.0	52.0	48.0	51.0	40.0	53.0	45.0	+ Signs	- Signs
(- Rep 1)		6.000	3.000	-1.000	2.000	-9.000	4.000	-4.000	4	3
(- Rep 2))		-3.000	-7.000	-4.000	-15.000	-2.000	-10.000	0	6
(- Rep 3)				-4.000	-1.000	-12.000	1.000	-7.000	1	4
(- Rep 4)					3.000	-8.000	5.000	-3.000	2	2
(- Rep 5)	}					-11.000	2.000	-6.000	I	2
(- Rep 6)							13.000	5.000	2	0
(- Rep 7)								-8.000	0	1
	<u> </u>							Totals	10	18
•									S =	-8

Critical values of (S) at a probability of p = 0.05, when the number of replicates (n) is 10 or less.

n	4	5	_6	7	8	9	10
S	4	6	9	11	14	16	19

If your calculated value for S (for the applicable number of replicates) is equal to or less than the corresponding value for S in the above table, then there is no statistically significant trend present. Refer to Gilbert (1987) for complete table of probabilities for the Mann-Kendall test.

Reference:

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY. 320 pp.

Feb 5/09

Report Date:

02 Feb-09 12:32 (p 1 of 2)

Link/Link Code:

10-2958-5413/09018X2

Analysis: 1							lautilus Er	vironmenta
	Cell Density			CE	TIS Version	n: CETIS	/1.5.0	
	Nonparametri	c-Multiple C	omparison	Off	ficial Result	s: Yes		
Code: 2	2004227219			Cli	ent: Mi	nnow		
Material: I	ndustrial Efflu	ent		Pro	oject:			
Source:	(-2							
Station:								
Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
C > T	Not Run		11.9	23.8	16.83	8.403	28.17%	
				_	_			
Test Sta	t Critical	Ties	P-Value	Decision				
35.5		1	1.0000	Non-Sign	ificant Effec	t		
42		0	1.0000	_	ificant Effec			
42		0	1.0000	_	ificant Effec			
31.5		1	1.0000	_	ificant Effec	t		
10		0	0.0121	Significar				
10		0	0.0121	Significar				
10	 _	0	0.0121	Significar	nt Effect			
Mean Square		F Stat	P-Value	Decision	` ` 			
6979.442	7	93.29	0.0000	Significar	nt Effect			
74.81696	28							
7054.259 ——=	35							
	Test Stat		P-Value	Decision				
y of Variance	27.25	18.48	0.0003	-	Variances			
ormality	0.9645		0.2951 —————	Normal D	istribution			
nt Mean	95% LCL	95% UCL	Min_	Max	Std Err_	Std Dev	CV%	Diff%
49.13	47.25	51	40	55	0.9116	4.824	9.82%	0.0%
57.75	54.15	61.35	46	67	1.755	9.287	16.08%	-17.56%
93.5	89.22	97.78	78	104	2.085	11.03	11.8%	-90.33%
114.8	109.4	120.1	101	131	2.602	13.77	12.0%	-133.6%
55.75	49.86	61.64	36	70	2.872	15.2	27.26%	-13.49%
13.25	11.86	14.64	10	18	0.6792	3.594	27.12%	73.03%
2	1.683	2.317	1	3	0.1543	0.8165	40.82%	95.93%
1	0.4516	1.548	0	3	0.2673	1.414	141.4% 	97.96% ————
nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
18.63	17.34	19.91	14	23.5	0.6242	3.303	17.73%	0.0%
10.03	21.01	24.74	16	27	0.9076	4.802	20.99%	-22.82%
22.88	30.09	31.41	29	33	0.3227	1.708	5.55%	-65.1%
	33.59	34.91	32	36	0.3227	1.708	4.99%	-83.89%
22.88	19.27	24.48	13	28	1.269	6.713	30.69%	-17.45%
22.88 30.75						1.291	12.3%	43.62%
22.88 30.75 34.25 21.88	9.999	11	9	12				
22.88 30.75 34.25	9.999 4.867	11 6.133	9 3.5	1∠ 7.5	0.3086	1.633	29.69%	70.47%
			21.88 19.27 24.48	21.88 19.27 24.48 13	21.88 19.27 24.48 13 28	21.88 19.27 24.48 13 28 1.269	21.88 19.27 24.48 13 28 1.269 6.713	21.88 19.27 24.48 13 28 1.269 6.713 30.69%

Report Date:

02 Feb-09 12:32 (p 2 of 2)

Link/Link Code:

10-2958-5413/09018X2

Selenastrum Growth Test

Analysis No: 21-3839-1698 Endpoint: Cell Density

CETIS Version: CETISv1.5.0

Analyzed: 02 Feb-09 12:31 Analysis: Nonparametric-Multiple Comparison Official Results: Yes

Cell Densit	y Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Negative Contr	55	53	52	51	49	48	45	40
1.48		67	63	55	46				
2.95		104	97	95	78				
5.9		131	121	106	101				
11.9		70	65	52	36				
23.8		18	14	11	10				
47.6		3	2	2	1				
95.2		3	1	0	0				

Report Date:

04 Feb-09 11:27 (p 1 of 2)

Link/Link Code:

10-2958-5413/09018X2

Selenastru	ım Growt	th Test									Nautilus Environn	nental
Analysis N	o: 13-7	521-0420	Enc	dpoint: Ce	I Density			CET	IS Version	CETIS	 sv1.5.0	
Analyzed:		eb-09 10:5		•	nlinear Regi	ression		Offi	cial Results	: Yes		
Sample No	· 20-0	422-7219	Co	de: 20	04227219			Clie	nt Mir	inow	 -	_
Sample Da				•	lustrial Efflue	ent		Proj				
Receive Da			Soi	urce: X-2	2				,			
Sample Ag	e: 72h		Sta	tion:								
Non-Linear	r Regress	sion Optio	ns									
Model Fun	ction					X Trans	form Y Tra	ansform V	Veighting F	unction	PTBS Function	
4P Log-Log	istic+Hor	mesis EV [Y=A(1+EX)/(1+(2ED+1)(X/D)^C)]	None	None	· N	lormal [W=]	Off [Y*=Y]	
Regression	n Summa	iry										
]	og LL	AICc	Adj R2	Optimize	F Stat	Critical	P-Value	Decision	n(1%)			
	96.21	201.8	0.9404	Yes	2.274	4.074	0.0864		nificant Lack	of Fit		
Point Estin	nates											
% Effect	Conc-%	95% I	LCL 95%	6 UCL								
SNEC	15.81	14.31										
10	13.76	N/A	15.0)4								
15	14.08	N/A	15.4	18								
20	14.44	13.27										
25	14.81	13.56										
50	16.16 17.3	14.57 15.41										
			20.0								 	
Regression			04d E	050/ 1.01	050/ 1101	1 01-1	D. Value	Daninian	(E0/)			
Parameter		Estimate 46.08	Std Error 2.875	95% LCL 40.23	95% UCL 51.94	t Stat 16.03	0.0000	Decision	t Parameter			
A C		40.06 3.835	0.4501	2.918	4.752	8.521	0.0000		t Parameter			
D		17.3	1.259	14.74	19.86	13.75	0.0000		t Parameter			
E		0.3303	0.0544	0.2195	0.4411	6.072	0.0000	-	t Parameter			
ANOVA Tab	ole								 _			
Source		Sum Squa	res Mea	ın Square	DF	F Stat	P-Value	Decision((1%)			
Model		48175.7		58.56	3	185.2	0.0000	Significan	<u> </u>			
Lack of Fit		680.4034	170	.1008	4	2.274	0.0864	Non-Signi	ficant			
Pure Error	:	2094.875	74.8	1696	28							
Residual		2775.278	86.7	2745	32							
Residual A	nalysis											
Attribute		Method	_	_	Test Stat	Critical	P-Value	Decision((1 <u>%)</u>			
Variances			uality of Va		27.25	18.48	0.0003	Unequal V				
Distribution	:	Shapiro-Wi	ilk Normalit	у	0.9466		0.0816	Normal Di	stribution			
Cell Density	y Summa	ry				Са	culated Var	iate				
Conc-%	Control		Count	Mean	Min	Мах	Std Err	Std Dev	CV%	Diff%		
0	Negative	e Control	8	49.13	40	55	0.8957	4.824	9.82%	0.0%		
1.48			4	57.75	46	67	1.725	9.287	16.08%	-17.56%		
2.95			4	93.5	78 101	104	2.048	11.03	11.8%	-90.33%		
5.9			4	114.8 55.75	101 36	131 70	2.557 2.822	13.77 15.2	12.0% 27.26%	-133.6% -13.49%		
11.9 23.8			4	55.75 13.25	36 10	70 18	2.822 0.6674	3.594	27.26% 27.12%	73.03%	•	
23.8 47.6			4	13.25	10	3	0.1516 0.8165 40.82% 95.93%					
95.2			4	1	0	3	0.2626 1.414 141.4% 97.96%					
			·									

Analyst:_____ QA: Feb 5 | 04

Report Date:

04 Feb-09 11:27 (p 2 of 2)

Link/Link Code:

10-2958-5413/09018X2

Selenastrum Growth Test Nautilus Environmental

Analysis No:13-7521-0420Endpoint:Cell DensityCETIS Version:CETISv1.5.0Analyzed:04 Feb-09 10:52Analysis:Nonlinear RegressionOfficial Results:Yes

Cell Dens	ity Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Negative Control	49	55	52	48	51	40	53	45
1.48		63	46	67	55				
2.95		78	97	95	104				
5.9		106	121	101	131				
11.9		52	36	70	65				
23.8		14	18	10	11				
47.6		2	1	2	3				
95.2		0	3	0	1				

CETIS Summary Report

Report Date:

04 Feb-09 11:27 (p 1 of 1)

Link/Link Code:

10-2958-5413/09018X2

Selenastrum	Growth Test								N	lautilus En	vironment
Test Run No: Start Date: Ending Date: Duration:	07-2318-1582 18 Jan-09 21 Jan-09 72h	P S	est Type: rotocol: pecies: ource:	Cell Growth EC/EPS 1/RM Selenastrum of In-House Cult	capricornutu	m	Dil V Brir		eionized Wa	ter	
Sample No: Sample Date: Receive Date Sample Age:	: 17 Jan-09	M S	ode: laterial: ource: tation:	2004227219 Industrial Efflu X-2	uent		Clie Proj	nt: Mi ject:	innow		
Point Estimat	e Summary										
Analysis No	Endpoint			% Effect	Conc-%	95% LCL	95% UCL	Method			
13-7521-0420	Cell Density			SNEC	15.81	14.31	17.94	Nonlinea	r Regression	1	
				10	13.76	N/A	15.04				
				15	14.08	N/A	15.48				
				20	14.44	13.27	15.96				
				25	14.81	13.56	16.49				
				40	16.16	14.57	18.48				
	<u> </u>			50	17.3	15.41	20.31				
Cell Density S	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	8	49.13	47.32	50.93	40	55	0.8807	4.824	9.82%	0.0%
1.48		4	57.75	54.28	61.22	46	67	1.696	9.287	16.08%	-17.56%
2.95		4	93.5	89.38	97.62	78	104	2.014	11.03	11.8%	<i>-</i> 90.33%
5.9		4	114.8	109.6	119.9	101	131	2.514	13.77	12.0%	-133.6%
11.9		4	55.75	50.08	61.42	36	70	2.774	15.2	27.26%	-13.49%
23.8		4	13.25	11.91	14.59	10	18	0.6562	3.594	27.12%	73.03%
47.6		4	2	1.695	2.305	1	3	0.1491	0.8165	40.82%	95.93%
95.2		4	_1	0.4719	1.528	0	3	0.2582	1.414	141.4%	97.96%
Cell Density D	etail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Negative Contr	49	55	52	48	51	40	53	45		
1.48		63	46	67	5 5						
2.95		78	97	95	104						
5.9		106	121	101	131						
11.9		52	36	70	65						
23.8		14	18	10	11						
47.6		2	1	2	3						
				_							

3

95.2

APPENDIX C – Rainbow Trout Juvenile Toxicity Test Data

Rainbow Trout Summary Sheet

Client:	Minnow Environment	Start Date/Time	Jan 20/09@
Work Order No.:	09016	Test Species	Oncorhynchus mykiss
Sample Information	n:		
Sample ID: Sample Date: Date Received: Sample Volume: Other:	B-7 Jan. 15/2009 Jan. 17/2009 2x20L		
Dilution Water:			
Type: Hardness (mg/L CaC Alkalinity (mg/L CaCC		icipal Tap Wake	
Test Organism Info	rmation:		
Batch No.: Source: Test Volume/No. Fish Loading Density: Mean Length ± SD (no	0, 4 nm): 37±2	R	lange: <u>34 - 39</u> lange: <u>0.35- 0.50</u>
SDS Reference Toxi	icant Results:		
Reference Toxicant II Stock Solution ID: Date Initiated: 96-h LC50 (95% CL):	०१८०		^pj
Reference Toxicant M Reference Toxicant C	Mean ± 2 SD: 5, 2	21.7 J	
Test Results:	The 96h LC50;	is estimated (2 > 100% (V/V)
Reviewed by:	A. Terg	Date revie	ewed: <u>February</u> 5,2009
Issued July 12, 2006; Ver.	1.0		Nautilus Environmental

96-Hour Rainbow Trout Toxicity Test Data Sheet

Client/Project#:		Σ	300		as a cheate	9	400	3		Z	nmbe	r Fist	Number Fish/Volume:	⊒e:				0	701/01	1		
Sample I.D.		<u>}</u>			4					7	1 % Þ	7-d % Mortality:	lity:					Ô	3/6			
W.O. #			60	91060						F	otal P	re-ae	Total Pre-aeration Time (mins):	Time	(min	:(s		22	•			
RBT Batch #:		-	20,	20202						ď	eratic	on rate	Aeration rate adjusted to 6.5 ± 1 mL/min/L? (Y/N):	sted t	0 6.5	±1m	L/min	/L? (\	(N)		X	
Date Collected/Time:	me:	" \ '	Jan	15	0 %	\mathcal{G}	(00)	_4		ļ												
Date Setup/Time:		' '	Jan	120/	، ٩(િ	0846	57	ĺ	<u> </u>	ndilut	ed Sa	Undiluted Sample WQ	ğ								
Sample Setup By:			1,5	12							Para	Parameters		Initial WQ	ğ	Ă	Adjustment	ent	30	30 min WQ	ے	
											Ten	Temp °C	-	1.4				_) l	7.1		
D.O. meter:			DO-1	_							<u> </u>	Η	· 8 · ·	4					4	Ŋ		
pH meter:			pH-1								D.O.	D.O. (mg/L)		ó. \						1.0		
Cond. Meter:			2							0	ond.	Cond. (µS/cm)	m)	97	1				1	192		
Concentration		175	# Survivors	'ors			ļĖ	edwe	Temperature (°C)	(°C))issol	Dissolved Oxygen (mg/L)	ygen	(mg/L			표			Conductivi (µS/cm)	onductivi (µS/cm)
-		2 4	24	48	72	96	0	24	48	72	96	0	24 48	3 72	96	0	24	48	72	96	0	
Johns			i.	10	91	2	0.41	4.0	1. Oli	1.0 4.0 14.0 410.41 0.41	4/2/	۰.۱ (د	10.1 10.1 10.1 7.0	(10,	الها	7.0	6.9	7.0	14/5/90%	ード	50	Š
6.15			S.	õ	2	ő	(4. D	10.4	4.0	10.7	4/2/4	0، ا ٥، ر	24 6 6 1.5 1.6 0.4 1.01 1.01 1.01 0.01 2.41 0.41 0.41 0.41 0.41	1/13.	0/	1/20	1.6	1.2	c 2	ίt	46	S
5.21	<u> </u>		2	9}	9 ((1)	0.41	0.6	. y.	1.0/4/10/11/0.4/0.4	the), (K	E. F 2, P 1 & 1 10, 1 10, 1 1.01	100.	(l3,	19.2	7.3	7.3	2.5	7	18/18	19
22			0!	6.7	0 (CI	141	0.41	14.014.0 (4.0	104	phi	10.0	15-45-610.10.10.100pt	۱ ا ه	7	1.70	17.3	7.3	17984	X	11983	_
So			10	2	(1)	C!	11/41	0.4	14.01	14.0 14.0/14.0 142/10.0	47/) o (19.1 10.1 10.0 100 7.4	. 1 10.	0/0	27.4	75		2.5175	44	c <i>þ l</i>	<i>'h)</i>
50)			0)	Q!	01	12	14.1	4.0	(4. v)	14.0 14.0 14.0 14.10.1	14.41		10.0 10.0	0 (0,		17.	6.17.57.7	4	77.7	J.	197	2
				, 					æ					Ì								
Initials	\dashv		11(1	777	HA		17/2	77	ار ان	D	7	分人	12 12 12 12	15/24	7	B	72	1	77	4	200	<u>ر</u>
Sample Description/Comments:	on/C	omme	nts:				د (حمر	کی														

Date Reviewed: Fobruary 5,2009

Issued October 29, 2008; Ver. 2.0

Fish Description at 96?

Other Observations:

Reviewed by:

Nautilus Environmental

Rainbow Trout Summary Sheet

Client:	Minnow Environmental	Start Date/Time:	Jan 20/09@0850
Work Order No.:	09016	Test Species: Once	orhynchus mykiss
Sample Information:	:		
Sample ID:	M-2		
Sample Date:	Jan. 15/2009		
Date Received:	Jan 17/2009_		
Sample Volume: Other:	ZXAOL		
Dilution Water:			
Туре:	Duhlarnsted Municipal	1 Tap Wake	
Hardness (mg/L CaCo	03):	<u> </u>	
Alkalinity (mg/L CaCO	J ₃):		
Test Organism Infor	mation:		
Batch No.:	120208		
Source:	Sin Valley		
Test Volume/No. Fish:	10/1219		
Loading Density:	3, 42		
Mean Length ± SD (m		Range:	
Mean Weight ± SD (g)	$0.4\lambda\pm0.0$	Range:	0.34-0.52
SDS Reference Toxic			
Reference Toxicant ID	RT41		
Stock Solution ID:	08505		
Date Initiated:	Jan 5/09	- \ / / /	
96-h LC50 (95% CL):	5.3/64.3	-6.6) mg/L SDJ	
Reference Toxicant Mo	ean ± 2 SD: 5.2 ±	2.3 a. / L SPS	
Reference Toxicant C\	/ (%):	2.3 mg/L SPS 21.7	
Test Results:	the 96hr LC50 is	estimated a	4 >100% (v/v)
Reviewed by:	A. Teng	Date reviewed:	February 5,2009

Nautilus Environmental

Issued July 12, 2006; Ver. 1.0

96-Hour Rainbow Trout Toxicity Test Data Sheet

Client/Project# Sample I.D. W.O. # RBT Batch #: Date Collected Date Setup/Tin Sample Setup	/Tim	-	<u>」</u>	207 207 an 1	16	9 (3)	14	00L			•	7-d % Total Aera Undil	Mor Pre- tion r	\longrightarrow	on T djust le Wo	ime (ed to	6.5 ±	1 ml		/L? (3 D Y/N):		y va	
D.O. meter:				DO-1								- ''	pH	-		- 4			_	/	7			
pH meter:		•		pH-1								D.C). (mg	g/L)		- 3	_		/			· 2	_	
Cond. Meter:		•		C-1								Con	d. (µS	/cm)	6	85						196		
Concentration			# \$	Surviv	ors			7	emp	eratu	re (°C	;)	Diss	olved	Охус	jen (n	ng/L)			pН				uctivity 5/cm)
	1_	2	4	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96
control				(0	10	10	p	14.0	14.0	14.0	14.1	1412	f0, j	10.1	10:1	10.0	10,1	7.0	69		6.9	7.1	30	3子
6.25				10 10 10 10 14,0 14.0 1								14,2	10.1	10.0	10.1	10.	192	7.0	7.1	7.1	7, 0	20	79	p4
12.5				10 10 10 17 (4. 14.014																7.4	7.5	72	127	132
25				10	10	10	10							9.9						-	7.6	7.4	197	129
50				10	10	10	12							10.0								77	397	789
(00				10	10	io	12	14.1	14.0	14.0	14.0	142	10.2	10.0	10.0	10.0	[24	7.4	7.7	7.8	7.8	7.9	686	653
				ļ	<u> </u>			<u> </u>								<u> </u>								
			ļ		1 20 00								ļ.,			<u> </u>								
Initials				547	けじ	170	1~	327	107	II	17	~	DIT	347	00	50	~	50	カイ	1)0	1527	<u></u>	SUT	^
Sample Descr	iption	/Com	ment	s:				<u> 1 e</u>	<u>~~</u>	····												_		
Fish Description	on at	96?		_				_	_	4	<u>il</u>	p	4	appe	n C	ok.							-	
Other Observa	ations	:		<u> </u>			. <u>-</u>								_									
Reviewed by:		A		Ton	Q X		_									Date	Revie	ewed:	_F	£6	ruas	y 5	12000	<u> </u>
Issued Octobe	er 29,	2008	; Ver.	2.0	()																	(Na	utilus En	vironmenta

Rainbow Trout Summary Sheet

Client:	Minnow Envisormental	Start Date/Time:	Jan 20/09@0855
Work Order No.:	09016	Test Species: Onco	orhynchus mykiss
Sample Information:			
Sample ID: Sample Date: Date Received: Sample Volume: Other:	X-2 Sam. 15/2009 @153000 Sam. 17/2009 2x20L	-	
Dilution Water:			
Type: Hardness (mg/L CaCC Alkalinity (mg/L CaCO		L Tap Wake	
Test Organism Inform	nation:		
Batch No.: Source: Test Volume/No. Fish: Loading Density: Mean Length ± SD (middle) Mean Weight ± SD (g)	5, 42 m): 36± ユ	· · · · · · · · · · · · · · · · · · ·	34-39 0.35-0.50
SDS Reference Toxic	ant Results:		
Reference Toxicant ID Stock Solution ID: Date Initiated: 96-h LC50 (95% CL):	08505 Am 5/09		
Reference Toxicant Me Reference Toxicant C\	ean ± 2 SD: 5.2 ±	2.3 mg/L SPS 21.7	
Test Results:	the 96h- L050 is	estimated at >	100% (46)
Reviewed by:	L. Terg	Date reviewed:{	Ebruary 5,2009

Nautilus Environmental

Issued July 12, 2006; Ver. 1.0

Issued October 29, 2008; Ver. 2.0

96-Hour Rainbow Trout Toxicity Test Data Sheet

Conductivity 40) 14. 14.5 14.0 14.0 14.0 10.0 10.0 10.0 10.0 10.7 2.7.6 7.6 7.8 1.338 29 でで 195 44 S 0 30 min WQ 738 アンナンナ 4 7.4 96 7 40.00 701/01 Aeration rate adjusted to 6.5 ± 1 mL/min/L? (Y/N); 72 ちなられたのとれ Date Reviewed: *Fobudい* 0 % 4 84 풉 Adjustment 7.0 6.9 24 10.1 10.1 7.1 1.7 [4.0] (4.0] (4.0] [1.0] [4.2] (0.1] (0.0] [0.0] [0.0] [1.6.0] 0 14.0 14.0 14.0 14.0 18.0 18.0 18.0 1 10.0 10.0 10.1 10.7 1 Total Pre-aeration Time (mins): 96 Dissolved Oxygen (mg/L) 10 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 Initial WQ ,λ, \mathcal{L} 738 72 Number Fish/Volume: Undiluted Sample WQ 48 | o | 14.0/14.0/14.0/14.0/14.0/14.0/10.1/10.1 7-d % Mortality: 24 14.0 14.0 14.0 14.0 12.0 10.1 Cond. (µS/cm) Parameters D.O. (mg/L) Temp °C 0 19.01/24/0.4/0.4/0.4/0.4/ 표 96 Temperature (°C) 72 48 Ensionmental 24 men 6% 0 5 5 0 2 96 Ś 6 JU 2 0 0 72 2 ë 0 S 09010 20202 E 3000 15457 9 0 0 9 48 2 10220 õ # Survivors Ş **00-1** 9 2 PH-1 24 0 0 3 2 ပ် Sample Description/Comments: 4 2 Fish Description at 96? Date Collected/Time: Other Observations: Sample Setup By: Date Setup/Time: Client/Project#: Reviewed by: Cond. Meter: Concentration RBT Batch #: 57.2 D.O. meter: 258 Sample I.D. Initials アグ pH meter: ? 00) 50 Z W.O. #

96 37

(µS/cm)

347 ナダ

く

APPENDIX D - Chain-of-Custody Form

CALIFORNIA

5550 Morehouse Drive • Suite 150 Son Diego, Colfornia 92121 Phone 858.587.7333 Fax 858.587.3941

☐ WASHINGTON

5009 Podřic Highway East • Suite 2 Tocoma, Wachington 98424 Phone 253.922.4296 Fox 253.922.5814

BRITISH COMMBIA

8664 Commerce Court Burnaby, Birlish Columbia, Canada V5A 4N3 Phone 604.420.8773 Fox 604.357.1361

Chain of Custody

Date 15/01/09 Page 1 of 1

Sample Collection by: Laberge Environmental Services											ANA	LYSES RE	QUIRE	p			
Report to: Company	State	;	Zip		Address	Minnow Environments 2 Lamb sti rgetaun state ONT Patti Orr 1 905-873-32	Zip <u>L74 3</u>	M9	Acute TROUTO	SUBLETHAN AGAE	EE10DAPHUIA-						
	101/09		Ho		2-47	 ೨ L	·		/	7	V		· ·			50	
X-2 /	101/09 5/01/09	14:00	H20	pl.	24	70L			1	1		-			1	-	
	-								3	7	8				2)		
							·		# 8	#000	t 090						
· .									3	3	3	-				3	
		HALPA STOCK		2.4564至2.4394.40元号之				_				. (00)				<u> </u>	
CLIENT MINNOW	ON I			NTANERS		RELINQUISHED BY (CLIENT)					WISHED BY	r (COURIE	:K) 				
P.O. NO.	<u> </u>			1		(Signature) Ku-C	<u>`</u>			(Signate							(Time)
							lord in			(Printed							(Date
SHIPPED VIA: AIR NORTH / V	TL	i de la constantia de l	AES TÉST SE			(Company) Laberge E				(Compo	ED BY BAI	Harris Parks Berger	With			LANGE	gris miller
SPECIAL JUSTRECENS VS /COAN				Hilia		RECEIVED BY (COURIER)		,_									(A) BETA P
			#W			(Signature) AWD	17	1301	(Time)	蘿							
						(Printed Name) A Die	off) To	nit	(Done) 6		أليانا						
						(Company)								hiu.			

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

(i) es per IRE instruction

DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator

APPENDIX C

Habitat Descriptions and Photographs

Table C.1: Habitat summary for Vangorda Creek sampling areas, Faro Mine, August 2007.

			Ref	erence		Effluent-Exposed (Vangorda Creek)								
Characte	eristics	Upper West Fork Vangorda Creek (Ref-1)	Upper South Fork Rose Creek (Ref-2)	Next Creek (Nex-C1)	Upper Vangorda Creek (V1)	V27	V5	V8						
Average Length of F	Reach Assessd (m)				7.8	11.2	9.6	15						
7.1.0.ugo 20g 0. 1	I	50	10	50	(4.5 - 13.0)	(9 - 14)	(8.0 - 10)	-						
Bottom Flow Velocity	Mean	0.31 (0.12 - 0.65)	0.37 (0.08 - 0.80)	0.25 (0.03 - 0.72)	0.22 (0.12 - 0.42)	0.16 (0.12 - 0.21)	0.22 (0.18 - 0.24)	0.13 (0.09 - 0.18)						
(m/s)	ivicari	` '	,	,	0.5	0.45	0.53	0.38						
()	Maximum	0.65	0.8	0.72	(0.32 - 0.72)	(0.36 - 0.62)	(0.44 - 0.66)	(0.26 - 0.74)						
		0.10	0.23	0.19	0.17	0.21	0.14	0.26						
Depth (m)	Mean	0.10	(0.050 - 0.390)	(0.130 - 0.260)	(0.01 - 0.48)	(0.08 - 0.40)	(0.03 - 0.35)	(0.08 - 0.40)						
	Mandania	0.25	0.45	0.35	0.37	0.40	0.30	0.39						
	Maximum	1.6	7.7	6.1	(0.19 - 0.50) 4.7	(0.34 - 0.46) 4.5	(0.24 - 0.37)	(0.35 - 0.43) 5.19						
	Wetted	(1.43 - 1.8))	(4.5 - 11)	(4.5 - 9.0)	(4.3 - 5.3)	(4.1 - 5.1)	(2.7 - 4.0)	(3.23 - 6.59)						
Width (m)		2.1	8.6	6.5	7.4	6.1	5.6	7.8						
	Bankfull	(1.61 - 2.52)	(6.0 - 11)	(5.0 - 9.0)	(6.7 - 8.5)	(5.3 - 7.8)	(5.2 - 6.5)	(6.0 - 10.1)						
Gradient	%	4.8	4.8	4	6.8	2.8	3.2	3.9						
Water App	pearance	clear; colourless	clear; colourless	clear; colourless	clear	clear	slightly turbid/cloudy	mostly clear; slightly turbid light brown						
	%pool	0	30	0	<5 (0 - 10)	0	<5 (0 - 5)	0						
General Morphology	%riffle	100	70	100	85 (25 - 100)	60 (30 - 100)	65 (50 - 80)	30 (20 - 50)						
	%run	0	0	0	25 (0 - 70)	40 (0 - 80)	35 (15 - 50)	70 (50 - 80)						
Bank Co		mostly stable	Stable/No Bank Erosion	Stable/No Bank Erosion	Stable/No Bank Erosion	Stable/No Bank Erosion	Stable/No Bank Erosion	moderately stable						
	%bedrock	0	0	0	<5 (0 - 5)	0	0	0						
Substrate	%boulder	25	55	10	50 (20-65)	30 (15 - 50)	30 (20-45)	40 (20 - 60)						
(% areal coverage)	%cobble	40	30	55	45 (30 - 75)	55 (40 - 65)	15 (5 - 25)	45 (30 - 60)						
` ,	%gravel	20 15	15	35 0	<10 (5 - 25)	15 (10 - 20) <5	45 (30- 50)	10 (10 - 15) 5 (<1 - <15)						
	%sand&finer undercut banks	0	0	0	0	<5 <5	10 (5 - 20) 5 (0 - <10)	<5 (<1 - <15) <5 (0 - 5)						
	boulder	10	70	< 5	20 (10 - 20)	15 (10 - 30)	10 (5 - 15)	15 (10 - 20)						
Instream Cover (%total	woody debris	0	< 5	< 5	5 (5 - 75)	0	7.5 (<5-10)	5 (0 - 10)						
Surface)	deep pool	<5	30	5	<5 (0 - 10)	0	0	<5 (0 - 10)						
	macrophytes	0	0	0	0	0	0	0						
Av. Residual (Refug		0.1	0.25	0.1	< 0.2	< 0.2	< 0.1	< 0.2						
Overhead Canopy	Dense	0	0	0	0	0	0	0						
(%Surface)	Partially Open	0 100	10 90	60	15 (0 - 25)	15 (5 - 25)	85 (75 - 90)	30 (5 - 45)						
-	Open		90	40	85 (75 - 100)	85 (75 - 95)	15 (0 - 25)	70 (35 - 95)						
Riparian Vegetation Types	descending dominance	willow, scattered black poplar, cinqfoil, some dwarf birch	willow, scattered poplar, then spruce	spruce, willow, black poplar	willow , moss, spruce, dwarf birch, berry shrubs, cinqfoil, rip-rap	willow, grasses, alder, moss, cinqfoil, equisetum, spruce	alder, willow, moss, equisetum, highbush cranberry, poplar, grass	alder, willow , grasses, poplar, forbs, berry shrubs, spruce, moss						
A	Emergent	0	0	0	0	0	0	0						
Aquatic Vegetation	Submergent	0	0	0	0	0	0	0						
(% areal coverage)	Floating Attached Algae	< 5	< 5	< 1	<10	0	0	0						
Surrounding		U/S of old gravel pit haul road	Haul Road ~30m D/S of site	old gravel pit haul road	U/S mine road; forest	none; mature forest	forest	bridges/road crossings						
Evidence of Ai Disturb		modified channel, likely to ensure flow to culvert	none	culverts, pushed around substrate	rip-rap & metal culverts	none	none	bridges/road crossings						
General Comments/Notes		Stream channel much smaller & shallower than Vangorda but substrate is comparable, in spots, to lower Vangorda-First sample taken 22m U/S of culvert, with next 2 samples taken U/S of that.	Assessed a very small portion of the stream, afterwhich the gradient was steeper with larger boulders. Mayflies noted when shocking. Conductivity will not calibrate, used Hanna meter instead. Site is more a pool/step kind of habitat with an increasing gradient that becomes a canyon type environment.	Sampled D/S of culverts. Loosely compacted substrate. U/S of road has alot of moss, channel narrows to < 9m. Small woody debris and some overhanging willow. LWD up on banks indicating Hgh water mark/flow.	Most sites have some orange fuzzy moss on rocks	Some sites in valley with access down steep hills	Lots of fines and small gravel making Hess sampling difficult							

^a Numbers provided represent mean values with numbers in parenthesis representing the corresponding range for each respective description.

b Morphology type based on Rosgen (1994) classification. B= moderately entrenched, moderate-gradient, riffle-dominated channel with infrequently spaced pools, very stable plan and profile, stable banks; C= low-gradient, meandering, alluvial riffle-pool, channels with point-bars, broad, well-defined floodplains E= low-gradient, meandering, riffle/pool stream with low width depth ratio and little deposition, very efficient and stable, high meander width ratio; G= entrenched, "gully" step-pool channel, on moderate gradients, with low width depth ratio

Reference Area V1, Upper Vangorda Creek

a) V1-02 - 2007

b) V1-04 - 2007

Area V27, Vangorda Creek

a) V27-02 - 2007

b) V27-03 - 2007

Area V8, Vangorda Creek

a) V8-04 - 2007

b) V8-03 - 2007

Area V5, West Fork Vangorda Creek

a) V5-01 - 2007

b) V5-02 - 2007

Area REF1, Upper West Fork Vangorda Creek

a) VR - 2007

b) VR - 2008

Area REF2, Upper South Fork Rose Creek

a) USFR - 2007

b) USFR - 2008

Reference Area Next Creek

a) NEC - 2007

b) NEC - 2008

a) X2 - 2008

b) R2 - 2008

a) R7 - 2008

b) FC - 2008

a) BLC - 2008

b) STC - 2008

a) HOC - 2008

b) BEC - 2008

a) GRC - 2008

b) BTT - 2008

a) BUC - 2008

Table C.2: Habitat summary for Rose Creek sampling areas, Faro Mine, August 2008.

							Refe	Reference						Mine-E	Mine-Exposed
Characteristics		UWFV (VR)	USFR	Next Creek (NEC,NXT, NEXC)	R7	5	BLC	STC	BEC	НОС	GRC	ВТТ	BUC	X2	R2
Average Length of Reach Assessd (m)	ssessd (m)	40		25		30	20	20	20	30	25	25	20		20
Bottom Flow Velocity (m/s)	Mean	0.29	0.35	0.22	0.3	9.0	0.25	0.35	9.0	0.35	0.5	0.5	9.0	0.42	0.43
(m) 45000	Mean	0.15	0.19	60:0	0.1	0.28	0.4	0.35	0.2	0.2	0.2	0.15	0.15	0.38	0.47
Deptil (III)	Maximum	0.18	0:30	0.15	0.15	9.0	0.8	9.0	0.25	0.3	0.25	0.2	0.4	0.7	9.0
() HAL: (M)	Wetted	1.5	8.5	9	7	3.5	26	12	3.5	12	2.5	2	4	5.75	11
Wiatn (m)	Bankfull	2	9.5	7.5	8	2	30	13	4	12	10	9	2	8	11
Gradient (reach sampled)	%	က	7	4	3	4	2	3.5	2	3		4	2.5	3.5	2
Water Appearance		clear	clear	clear	clear	clear	clear	clear, blue	clear		clear, brown	clear, brown	clear, brown	clear	clear, brown
	lood%	0	က	0	0	0	0	0	0	0	0	0	0	0	0
General Morphology	%riffle	100	26	100	10	20	20	20	20	20	06	100	100	20	0
	%run	0	0	0	06	20	20	80	80	20	10	0	0	20	100
Bank Condition		moderate	stable	moderate	unstable to	stable	moderate to	stable		stable	unstable			moderate	unstable to
	%bedrock	0	10	0	0	0	0	0	0	0	0	10	0	0	0
	%boulder	10	20	2	2	09	2	20	0	2	0	20	2	40	0
Substrate	%copple	70	20	80	0	20	20	09	65	55	45	20	70	40	35
(% areal coverage)	%gravel	20	20	15	80	10	20	10	25	30	45	10	10	15	35
	%sand&finer	some	0	0	10	10	2	10	10	10	10	10	15	5	30
	undercut banks	0	0	0	10	10	2	2	10	10	0	20	2	2	10
	boulder	10	40	S	2	0	0	25	0	10	0	30	2	10	0
Instream Cover (%total Surface)	woody debris	0	0	2	0	0	2	0	10	2	10	0	0	0	^ 2
	deep pool	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	macrophytes	0	0	0	0	0	0	0	20	0	0	0	0	0	0
Av. Residual (Refuge) Pool Depth (m)	Depth (m)	-	0.3				1		,		-				
	Dense	0	0	0	0	0	0	0	0	0	0	50	0	0	0
Overhead Canopy (%Surface)	Partially Open	0	70	2	0	100	0	0	100	0	0	20	100	0	0
	Open	100	30	92	100	0	100	100	0	100	100	0	0	100	100
Riparian Vegetation Types	descending dominance	willow/cherry, black spruce, moss	willow, scattered poplar,	willow, black spruce	grasses, willow, black spruce	willow, moss, sedges	alder, aspen, willow, black spruce	willow, black spruce, sedges	small willow, sedges	willow, sedges, alder, black & white spruce	aspen, willow, spruce	poplar, black spruce, willow, moss	grasses, shrubs, willow, alder, black spruce	willow, black spruce, alder, blueberry, moss	black spruce, willow, sedges
	Emergent	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A citation Vocastion	Submergent	0	0	0	0	0	0	0	25	0	0	0	0	0	0
Aquatic Vegetation (%, areal coverage)	Floating	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(/0 aleal covelage)	Attached Algae	25	50	2	30	30	30	30	20	20	<3 (thin film on cobble)	70	0	20	0
Surrounding Land Use	lse	U/S of haul road	mine north of haul road	quarry to west, treed	forest	road d/s, beside ATV trail	old bridge u/s	culvert & road u/s		culvert & road u/s	road d/s	undisturbed, natural, soil black	natural, hwy u/s	U/S of Anvil access road D/S of "S" wells	mine upstream
General Comments/Notes	otes			<u> </u>	sediment chemistry & toxicity sample taken near confluence with Faro				wetland area upstream			waterfall u/s, lots of algae but habitat similar to X2 & R2		d/s of GW inputs from S-wells, Faro Mine	d/s of Faro Mine effluent and GW discharges. Slight brown stain on
					Creek.										rocks

APPENDIX D

Benthic Invertebrate Data Raw Data, Summary Statistics, and Correspondence Analysis Results

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2008 Hess VRH8	2008 K&S VRK	2008 Hess X2aH	2008 K&S X2aK	2008 Hess X2aH	2008 K&S X2bK	2008 Hess X2cH	2008 K&S X2cK	2008 Hess X2dH	2008 Hess X2eH	2008 Hess USFRH8 USFR-	2008 K&S USFRK	2008 Hess NECH8	2008 K&S NECK	2008 Hess R2aH	2008 Hess R2bH	2008 Hess R2cH	2008 Hess R2dH	2008 Hess R2eH	2008 K&S R2aK	2008 K&S R2bK	2008 K&S R2cK	2008 Hess R7H
	Original Sample ID:	VR-Hess	VR-K&S	X2-1 Hess	X2-1 K&S	X2-2 Hess	X2-2 K&S	X2-3 Hess	X2-3 K&S	X2-4 Hess	X2-5 Hess		USFR-K&S	NEC-Hess	NEC-K&S	R2-1 Hess	R2-2 Hess	R2-3 Hess	R2-4 Hess	R2-5 Hess	R2-1 K&S	R2-2 K&S	R2-3 K&S	R7 Hess
Order: Ephemeroptera	nymph (juv./dam.)																							
Order: Ephemeroptera	adult													_	4									
Family: Ameletidae				7	4			40		07	0.7	50	40	9	00				40					
Ameletus sp.	nymph			7	2			13 13	0	27	87	53 27	10	9 27	30	100	587	200	13		00	92	77	
Family: Baetidae Baetis sp.	nymph (juv./dam.) nymph	53	55 10	20	5	7	4	13	0	13		21	24	21	4	193 20	10	200 13	173 20	143	93 3	2	77 6	
Baetis sp. Baetis bicaudatus	nymph	23	18	13	4	,	16	13	8	13			24			20	10	3	20	7	3	2	O	
Baetis tricaudatus	nymph	20	10	.0	•		10	10	Ü				4		1	7		Ü	73	7	1	2	13	
Acentrella sp.	nymph				26	13	8	40	8							100	50	57	27	20	6	4	13	
Fallceon sp.	nymph													217		27								
Family: Heptageniidae	nymph (juv./dam.)	100	15	233	111	80	4	27	8		60	200	135		335	87	380	160	300	133	85	91	103	167
Rhithrogena sp.	nymph												4											
Cinygmula sp.	nymph	7	3	40	10	27		13		53		53	7	80	11		10	27	13	7	1		2	60
Epeorus sp.	nymph	3	5	13	9	13		13		13		47	78		32	13	43	83	0	37	3	3	11	
Family: Leptophlebiidae	nymph (juv./dam.)			400							=-			182	400				400			_		.=-
Family: Ephemerellidae Drunella sp.	nymph (juv./dam.)	80	22	160	69	73	20	227	24	40	53	720 7	268		136	13	640	350	100	80	32	5	26	173
Drunella sp. Drunella spinifera	nymph nymph											,												
Drunella grandis	nymph																							7
Serratella sp.	nymph																7			7	1			•
Ephemerella sp.	nymph							27																27
Drunella coloradensis	nymph			13	5				8			7	9	52	4		7	10						7
Drunella doddsi	nymph			13	11	7	8					40	45	17	4	87	60	170	13	77	11	8	15	
Serratella tibialis	nymph																							
Order: Plecoptera Order: Plecoptera	nymph (juv./dam.) adult	13	8		4	33		13	8				1				160	147	20	133	15	10	7	87
Family: Chloroperlidae	nymph (juv./dam.)	23	24	13									4	26		40	190	93	100		18	1		53
Sweltsa sp.	nymph	17	3		3	20					7	33	4	157	16	7	17		13	17		1		
Suwallia sp.	nymph		1	13	5	7								9	28	113	47	20	27	3	11	14	11	147
Alloperla fraterna	nymph																							
Paraperla sp.	nymph																							
Family: Perlodidae	nymph		2	7			4	13	8			27	5			47		13	7	3	3	3	3	7
Isoperla sp.	nymph	7	5																					
Megarcys sp. Skwala sp.	nymph nymph	1	3		1												10	23				1	2	
Kogotus sp.	nymph																10	23				'	2	
Rickera sp.	nymph																				1			
Cultus sp.	nymph																				1			
Family: Perlidae	nymph		1	7																				
Hesperoperla sp.	nymph																							
Family: Nemouridae	nymph (juv./dam.)																							
Podmosta sp.	nymph													165										
Zapada sp.	nymph	97	26	387	33	113	40	280	56	80	13	2060	673	35	144	33	267		40	80	8	6	18	353
Zapada oregonensis/haysi Zapada columbiana	nymph nymph	3		100	13	113	8	173	32	173	27	40 73	26 48	35 17	62 2	20	13	13	27	3	2	2	8	420
Zapada cinctipes Visoka sp.	nymph			67	7	20	8	120	48	13	7	53	17	35	18		13	13		13	1			33
Family: Capniidae	nymph (juv./dam.)	380	114	187	200	153	64	80	48	27	187	33 47	8	53	61	127	213	310	340	10	36	59	76	620
Family: Leuctridae	nymph (juv./dam.)				1							47	9		2		53	13		3	0			27
Family: Taeniopterygidae Taenionema sp.	nymph (juv./dam.) nymph			40	6		4	13					8							10	2	1		21
Order: Trichoptera	adult																							
Order: Trichoptera	larvae (dam./juv.)				1				•										_					
Order: Trichoptera	pupae							40	8			46	.				^		7					
Family: Hydropsychidae	larvae (juv./dam.)			20	0				0	40		13	24 15		4		3 7	00		2				
Parapsyche sp.	larvae			20	2				ď	13			15		Т		1	23		3				
Arctopsyche sp. Hydropsyche sp.	larvae larvae																							
Family: Rhyacophilidae	iai vac																							
Rhyacophila sp.	larvae			47	10	60	16	13	8		7	13	6	61	18	7	13	60		23	1		3	7

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2008 Hess VRH8	2008 K&S VRK	2008 Hess X2aH	2008 K&S X2aK	2008 Hess X2aH	2008 K&S X2bK	2008 Hess X2cH	2008 K&S X2cK	2008 Hess X2dH	2008 Hess X2eH	2008 Hess USFRH8 USFR-	2008 K&S USFRK	2008 Hess NECH8	2008 K&S NECK	2008 Hess R2aH	2008 Hess R2bH	2008 Hess R2cH	2008 Hess R2dH	2008 Hess R2eH	2008 K&S R2aK	2008 К&S R2bK	2008 K&S R2cK	2008 Hess R7H
	Original Sample ID:	VR-Hess	VR-K&S	X2-1 Hess	X2-1 K&S	X2-2 Hess	X2-2 K&S	X2-3 Hess	X2-3 K&S	X2-4 Hess	X2-5 Hess	Hess	USFR-K&S	NEC-Hess	NEC-K&S	R2-1 Hess	R2-2 Hess	R2-3 Hess	R2-4 Hess	R2-5 Hess	R2-1 K&S	R2-2 K&S	R2-3 K&S	R7 Hess
Family: Philopodamidae																								,
Wormaldia sp.	larvae																							
Family: Glossosomatidae																								
Glossosoma sp.	larvae			67	13	7	12				13	27	36						7		2	1		7
Family: Uenoidae	larvae (juv./dam.)																							
Oligophlebodes sp.	larvae																							
Family: Hydroptilidae Hydroptila sp.	pupae larvae																							
Stactobiella sp.	larvae																							
Oxyethira sp.	larvae																							
Family: Brachycentridae	idi vao																							
Micrasema sp.	larvae			7		27		27	16															
Brachycentrus sp.	larvae															13				3				
Family: Lepidostomatidae																								
Lepidostoma sp.	larvae																							
Family: Limnephilidae	larvae (juv./dam.)			7										9	4									
Ecclisomyia sp.	larvae		1																					
Dicosmoecus sp.	larvae					13																		
Order: Coleoptera	larvae (juv./dam.)																							
Family: Dytiscidae Family: Elmidae	larvae adult																							
i anniy. Limidae	aduit																							
Order: Diptera UID	larvae			20		7																		53
Order: Diptera UID	pupae																							
Order: Diptera UID A	larvae																							
Order: Diptera UID B	larvae																							
Order: Diptera	pupae											13												
Order: Diptera	adult																							
Order: Diptera	larvae															_								
Family: Tipulidae Antocha sp.	larvae (dam./juv.)													0		7								
Antocna sp. Dicranota sp.	larvae larvae	3		7	1			53		13	13	13		9	1	20				27	3		1	53
Hexatoma sp.	larvae	3		,				33		10	13	13			7	20				21	3		ı	33
Limnophila sp.	larvae																							
Rhabdomastix sp.	larvae																							
Hesperoconopa sp.	larvae																							
Gonomyodes sp.	larvae																							
Tipula sp.	larvae																							
Family: Ceratopogonidae				7	0	47	0	40	0.4	40				0	4	40	40	00	0.7	0		_	•	
Bezzia/Palpomyia sp.	larvae			7	9	47	8	40	64	13				9	4	13	10	80	87	3	1	7	6	
Family: Psychodidae Family: Psychodidae UID	larvae larvae				ı																			
Pericoma sp.	larvae					7													7		3	1	1	
Family: Deuterophlebiidae	pupae					•										7		43	•		Ü	•	•	
Deuterophlebia sp.	larvae																	13					1	
Family: Blephariceridae																								
Agathon sp.	larvae																							
Family: Empididae	larvae (dam.)			7																				
Chelifera/Metachela sp.	larvae	7	1	20	19	47		13	24		7	13	4			20	3	30	13	73	4	6	8	153
Oreogeton sp.	larvae	3				_		40							4									
Clinocera sp.	larvae	40		00		7	40	13					4	00		40	477		07	70			0	20
Family: Simuliidae	pupae	13		60 313	2 10	60 47	16 44	320	8				4 4	26	5	40 67	177 530	407	27 7	73 87	6	4	2	33
Simulium sp. Prosimulium sp.	larvae larvae	83	86	313	10	41	44	160	o				4		Э	0/	3	407	1	0/	6	4 1	13	
•	laivae	03	00														3					'		
Family: Chironomidae	larvae													104										
Family: Chironomidae	pupa	40		140	32	780	32			493	93	13		70			10			13	3			
Subfamily : Chironominae	larvae																							
Tribe : Tanytarsini	larvae																							
Cladotanytarsus sp. Micropsectra/Tanytarsus sp.	larvae larvae				1																			
місгорѕесtra/ r anytarsus sp. Neostempellina sp.	larvae larvae				1																			
πουστοπησιιπα ομ.	iui vac																							

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

		2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
	New Sample Code:	Hess VRH8	K&S VRK	Hess X2aH	K&S X2aK	Hess X2aH	K&S X2bK	Hess X2cH	K&S X2cK	Hess X2dH	Hess X2eH	Hess USFRH8	K&S USFRK	Hess NECH8	K&S NECK	Hess R2aH	Hess R2bH	Hess R2cH	Hess R2dH	Hess R2eH	K&S R2aK	K&S R2bK	K&S R2cK	Hess R7H
	Original Sample ID:	VR-Hoss	VR-K&S	Y2-1 Hoss	X2-1 K&S	Y2-2 Hoss	Y2-2 K&S	Y2-3 Hoss	Y2-3 K&S	Y2-4 Hoss	Y2-5 Hoss	USFR- Hess	IISFR-K&S	NFC-Hoss	NFC-K&S	R2-1 Hoss	R2-2 Hoss	R2-3 Hoss	R2-4 Hoss	R2-5 Hess	R2-1 K&S	R2-2 K&S	R2-3 K&S	R7 Hoss
Pseudochironomus sp.	larvae	VICTIC55	VIC INGO	AZ TTICSS	AZ I KGO	AL L HOSS	AL L NGO	AZ O HC33	AL S RGO	AZ 4 11033	AL OTICSS	11033	oor it itao	NEO 11033	NEO NGO	ILE I IICSS	IL ZIIC33	IXE O FICOS	112 411033	INZ OTICSS	NZ T NGO	NZ Z NGO	NE O NGO	117 11033
Rheotanytarsus sp.	larvae											873	138											
Stempellinella sp.	larvae											280	92										3	
Stempellina sp	larvae																							
Tanytarsus sp.	larvae																							
Subfamily: Orthocladiinae	larvae	3																		187				
Acricotopus sp.	larvae																							
Brillia sp.	larvae																							
Cardiocladius sp.	larvae																							
Chaetocladius sp.	larvae	23	6																					
Corynoneura sp.	larvae												8	381										
Cricotopus/Orthocladius sp.	larvae		5	3127	421	6573	660	7040	1832	3267	1487	833	52		107	1173	800	387	1620	150	52	22	57	3347
Cricotopus/Orthocladius sp. A	larvae																							
Cricotopus/Orthocladius sp. B	larvae																						_	
Diplocladius sp.	larvae	00	45	070	00	000	400	4770	040	007	000	000		121	0.5		447	0.7	40	40	0.4	•	2	440
Eukiefferiella sp.	larvae	80	15	673	80	960	132	1773	312	667	233	200			65		117	67	13	10	34	8	3	440
Heleniella sp.	larvae																							
Hydrobaenus sp. Nanocladius	larvae Iarvae																							
Parorthocladius sp.	larvae																							
Rheocricotopus sp.	larvae											120	28											
Synorthocladius sp.	larvae		1		12	167		120				120	20											53
Thienemanniella sp.	larvae			20	25	813	76	440	152													2		00
Tvetenia sp.	larvae	103	11									147	8									-		
Subfamily: Diamesinae	larvae																							
Diamesa sp.	larvae	27	21	127	40	233	88	360						260							3	7	6	
Pagastia sp.	larvae	3		293	48	1507	132	493	232	2213					49	520	467	620	347	660	29		93	613
Pseudodiamesa sp.	larvae																							
Potthastia longimana group	larvae																							
Prodiamesa sp.	larvae	3																						
Subfamily: Tanypodinae	larvae				15	173	32	213	32	147	107	80								180				
Thienemannimyia Group	larvae			33	1												190	13	93			19	7	
Procladius sp.	larvae																							
Family: Syriphidae	larvae																							
Family: Psychodidae																								
Pericoma sp.	larvae																							
Family : Stratiomyiidae	larvae																							
Order: Lepidoptera	larvae																							
Order: Hemiptera		-																						
Family: Corixidae	larvae	3												17										
Order: Collembola	larvae	3					4					53												27
Order : Thysanoptera (terr)																								
Class: Crustacea				_	_		_												_					
Order: Ostracoda Order: Cladocera			1	7	6	67	8	133	16		60	27				13			7			1	1	13
Order: Cladocera Order: Copepoda													8						13			2	3	
Phylum: Annelida																								
Class: Oligochaeta				7																				
Family: Naididae		507	41	427	17	93	8	720	32		813	160	16		8	107		27	27		1	1	7	393
Family : Tubificidae																								
Phylum: Nematoda		3		40	9	80	12	267	24	27	120	440	52		8	127	17	73	47	23	4	1	7	53
Order: Tricladida																								
Polycelis coronata														43										
,														-										

Class: Turbellaria

Class: Mollusca Order: Bivalvia

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2008 Hess VRH8	2008 K&S VRK	2008 Hess X2aH	2008 K&S X2aK	2008 Hess X2aH	2008 К&S Х2ЬК	2008 Hess X2cH	2008 K&S X2cK	2008 Hess X2dH	2008 Hess X2eH	2008 Hess USFRH8 USFR-	2008 K&S USFRK	2008 Hess NECH8	2008 K&S NECK	2008 Hess R2aH	2008 Hess R2bH	2008 Hess R2cH	2008 Hess R2dH	2008 Hess R2eH	2008 K&S R2aK	2008 K&S R2bK	2008 K&S R2cK	2008 Hess R7H
	Original Sample ID:	VR-Hess	VR-K&S	X2-1 Hess	X2-1 K&S	X2-2 Hess	X2-2 K&S	X2-3 Hess	X2-3 K&S	X2-4 Hess	X2-5 Hess		USFR-K&S	NEC-Hess	NEC-K&S	R2-1 Hess	R2-2 Hess	R2-3 Hess	R2-4 Hess	R2-5 Hess	R2-1 K&S	R2-2 K&S	R2-3 K&S	R7 Hess
Family: Sphaeriidae Pisidium sp. Sphaerium simile Order: Gastropoda Family: Valvatidae Family : Physidae Physa sp.	Ţ .												4											
Family : Planorbidae																								
Class : Arachnida Order : Mesostigmata																								
Order: Prostigmata Order: Prostigmata UID	deutonymph adult	3		67	4	120	28	387	24	67	7	53	8		4	27	7		47	53	12	6 1	6	27
Order: Prostigmata	juvenile																							
Family: Hydrozetidae Family: Torrenticolidae	adult	3	1		1	7	4					27												
Torrenticola	adult																							
Family: Linmesiidae Limnesia	adult								8															27
Family: Hygrobatidae Hygrobates	adult					60	4	13	32				4	9					7				1	
Family: Hydryphantidae Wandesia	ماريان																							
wandesia Family: Lebertiidae	adult																							
Lebertia	adult			93	10	67	32	147	176	93			4			7			40		3	1		
Family: Aturidae				• • •		-							•	9		•					-	•		
Aturus Family: Feltriidae	adult	7		93	17	433	72	667	112	440	87	133	44	17	8	13		27	20	53	2		3	133
Feltria	adult	7		60	12	147	8	293	64	93	53	160	8						27		1		1	
Family: Sperchontidae																								
Sperchon Sperchonopsis sp.	adult adult	7		67	12	193	36	160	120	293	40	27	12		8	60		53	107	80	8	1	3	187
Family : Mideopsidae Mideopsis sp.	adult																							
Hydra sp.														2268										
Order: Hirudinea Family: Piscicolidae																								
TOTAL SUBSAMPLE		1743	502	7187	1357	13480	1652	15000	3568	8280	3580	7240	1970	4536	1191	3173	5130	3643	3873	2497	506	397	629	7807

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2008 K&S R7aK	2008 K&S R7bK	2008 Hess FCH	2008 K&S FCK	2008 Hess BLCaH BLC1	2008 Hess BLCbH BLC2	2008 Hess BLCcH BLC-3	2008 Hess BLCdH BLC-4	2008 Hess BLCeH BLC-5	2008 K&S BLCaK BLC-1	2008 К&S ВLСьК ВLС-2	2008 K&S BLCcK BLC-3	2008 Hess STCH	2008 K&S STCK	2008 Hess BECH	2008 K&S BECK	2008 Hess HOCH	2008 K&S HOCK	2008 Hess GRCH	2008 K&S GRCK	2008 Hess BTTH	2008 K&S BTTK	2008 Hess BUCH
	Original Sample ID: I	R7-1 K&S	R7-2 K&S	FC1 Hess	FC1 K&S	Hess	Hess	Hess	Hess	Hess	K&S	K&S	K&S	STC Hess	STC K&S	BEC Hess	BEC K&S	HOC Hess	HOC K&S	GRC Hess	GRC K&S	BTT Hess	BTT K&S	BUC Hess
Order: Ephemeroptera	nymph (juv./dam.)																							
Order: Ephemeroptera	adult	1	1															3						
Family: Ameletidae				07								_											0.4	
Ameletus sp.	nymph	4	19	67	20			3	40		1	5	-					4.47				400	64	000
Family: Baetidae	nymph (juv./dam.)		1		2		0		13		1	1	7			7	40	147 7	14		6	133	277	230 7
Baetis sp.	nymph		1				3				'	ı				1	16	1		3	4	1700	128	1
Baetis bicaudatus Baetis tricaudatus	nymph		'				3	23		3	2	4	6	3		60	14	7	4		1	100	32	23
Acentrella sp.	nymph nymph	4			2	7	27	23		13	3	4 5	6	7		00	14	93	17	3		100	32	23
Fallceon sp.	nymph	7			2	,	21			10	3	3	U	,				90	17	3				
Family: Heptageniidae	nymph (juv./dam.)	32	52	27	18	13	220	190	120	37	26	78	29		3			20	2	7	2		32	297
Rhithrogena sp.	nymph	02	02		10	113	437	80	147	173	33	35	16	3	Ü				-	10	-		02	20.
Cinygmula sp.	nymph		26				13	00		23	3	3	2	7	1			10						10
Epeorus sp.	nymph	2	1	40			20				2	2	2	10										23
Family: Leptophlebiidae	nymph (juv./dam.)																					133	373	7
Family: Ephemerellidae	nymph (juv./dam.)	96	113	80	34	167	3	30	27	107	6	22	23	3	1			100	5					23
Drunella sp.	nymph	1											2					27						7
Drunella spinifera	nymph						3	23		17		2	10											3
Drunella grandis	nymph																							
Serratella sp.	nymph	4	4		0		10			10 27														
Ephemerella sp. Drunella coloradensis	nymph	1	4		2					21														
Drunella doddsi	nymph nymph	17	25			100	83	33	53	13	3	13	2	3	3			70	3					83
Serratella tibialis	nymph	17	25			100	00	00	55	10	J	15	2	3	3			70	3					00
Order: Plecoptera	nymph (juv./dam.)	8		80	6				27	293	1	11	3		1			33	2		1		32	
Order: Plecoptera	adult																							
Family: Chloroperlidae	nymph (juv./dam.)						13	3							2							133		
Sweltsa sp.	nymph	1	1	53	12	20	60	70	80	107	2	18	8											67
Suwallia sp.	nymph	55	20	40	2		3		27		2	2		13				7						50
Alloperla fraterna	nymph																							
Paraperla sp.	nymph	_				7	40	00	40	440	4					50		40						7
Family: Perlodidae Isoperla sp.	nymph nymph	5	1		2	/	43	33	40	113	1	1	14	3	1	53		10		3				7
лорена sp. Megarcys sp.	nymph													3										
Skwala sp.	nymph						20		13		1	1	2	3				3						3
Kogotus sp.	nymph							7	13		•		-	· ·				ŭ						· ·
Rickera sp.	nymph					13	3																	
Cultus sp.	nymph					7																		
Family: Perlidae	nymph																						543	
Hesperoperla sp.	nymph																						32	
Family: Nemouridae	nymph (juv./dam.)															580						133		
Podmosta sp.	nymph																26							
Zapada sp.	nymph	37	72	587	88	53	80	83	13	53	4	12	27	53	1			190	4	7	9		192	217
Zapada oregonensis/haysi	nymph	22	48	187	14	7					1	1	2	120			1	3				367		
Zapada columbiana	nymph			120										57										
Zapada cinctipes Visoka sp.	nymph	15	21	200	20									3			1			13			192	13
Family: Capniidae	nymph (juv./dam.)	50	239		30	393	297	410	253	303	55	181	120	270	6			27	4	17	9	567		87
Family: Leuctridae	nymph (juv./dam.)	4		40				3		7				53										33
Family: Taeniopterygidae	nymph (juv./dam.)	8			4		43		13				17					183						97
Taenionema sp.	nymph		11								12	12							18	50	9			
Order: Trichoptera	adult																							
Order: Trichoptera	larvae (dam./juv.)									27	4	4											64	
Order: Trichoptera	pupae					53			13							53		7						33
Family: Hydropsychidae	larvae (juv./dam.)					60		7	27	27	2	2					1	143		7				127
Parapsyche sp.	larvae	1		13												_				3				3
Arctopsyche sp.	larvae															7								
Hydropsyche sp.	larvae																							
Family: Rhyacophilidae	le	0			•	27	07	3	10	27	4	^	^		4			2	•					2
Rhyacophila sp.	larvae	2			2	27	87	3	13	37	4	6	6		7			3	2					3

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2008 K&S R7aK	2008 K&S R7bK	2008 Hess FCH	2008 K&S FCK	2008 Hess BLCaH BLC1	2008 Hess BLCbH BLC2	2008 Hess BLCcH BLC-3	2008 Hess BLCdH BLC-4	2008 Hess BLCeH BLC-5	2008 K&S BLCaK BLC-1	2008 K&S BLCbK BLC-2	2008 K&S BLCcK BLC-3	2008 Hess STCH	2008 K&S STCK	2008 Hess BECH	2008 K&S BECK	2008 Hess HOCH	2008 K&S HOCK	2008 Hess GRCH	2008 K&S GRCK	2008 Hess BTTH	2008 K&S BTTK	2008 Hess BUCH
	Original Sample ID:	R7-1 K&S	R7-2 K&S	FC1 Hess	FC1 K&S	Hess	Hess	Hess	Hess	Hess	K&S	K&S	K&S	STC Hess	STC K&S	BEC Hess	BEC K&S	HOC Hess	HOC K&S	GRC Hess	GRC K&S	BTT Hess	BTT K&S	BUC Hess
Family: Philopodamidae																								
Wormaldia sp.	larvae															13	2							
Family: Glossosomatidae		40		40						07						1010	400	00		40				40
Glossosoma sp.	larvae	16		40		407			40	27						1213	100	20		13				43
Family: Uenoidae Oligophlebodes sp.	larvae (juv./dam.) larvae					107	20	13	13			2												
Family: Hydroptilidae	pupae						13	13		3		2				113								
Hydroptila sp.	larvae					53	3	3	13	3						113								
Stactobiella sp.	larvae					00	13	Ü	10															
Oxyethira sp.	larvae															53								
Family: Brachycentridae																								
Micrasema sp.	larvae															220							96	
Brachycentrus sp.	larvae															313	43	3						
Family: Lepidostomatidae																								
Lepidostoma sp.	larvae																						96	7
Family: Limnephilidae	larvae (juv./dam.)			27			3		13			2	2									267	596	
Ecclisomyia sp.	larvae				2			17																
Dicosmoecus sp.	larvae																							
Order: Coleoptera Family: Dytiscidae	larvae (juv./dam.) larvae					7						2												
Family: Dytiscidae Family: Elmidae	adult					,																		
i anniy. Limidae	aduit																							
Order: Diptera UID	larvae	4												53	2									
Order: Diptera UID	pupae																							
Order: Diptera UID A	larvae																							
Order: Diptera UID B	larvae																							
Order: Diptera	pupae			27					13					3			4			3				
Order: Diptera	adult										10	10												
Order: Diptera	larvae																							
Family: Tipulidae	larvae (dam./juv.)	4		27		7																	400	
Antocha sp.	larvae		04	93	4													7				2033 133	128	43
Dicranota sp. Hexatoma sp.	larvae larvae		21	93	4	7						2	4					,				133	96	10 3
Limnophila sp.	larvae	4				13						_						13						3
Rhabdomastix sp.	larvae	•					17		13					7				.0						3
Hesperoconopa sp.	larvae					13		3		27														
Gonomyodes sp.	larvae																							
Tipula sp.	larvae																							
Family: Ceratopogonidae																								
Bezzia/Palpomyia sp.	larvae	4				53		47		7		4		3	1			3		3				17
Family: Psychodidae	larvae		1																					
Family: Psychodidae UID	larvae					00	440	4-7	40	50	•													
Pericoma sp.	larvae	12				60	113	17	13	53	3	13		3										
Family: Deuterophlebiidae Deuterophlebia sp.	pupae larvae													3	1									
Family: Blephariceridae	iaivae														'									
Agathon sp.	larvae																		1					
Family: Empididae	larvae (dam.)													53					•					
Chelifera/Metachela sp.	larvae	28	9			13	37	50	40	50	3	3	2	20				20		7	1	1167	330	
Oreogeton sp.	larvae																	17	1			100		7
Clinocera sp.	larvae													70										
Family: Simuliidae	pupae		7	27												200		13						
Simulium sp.	larvae		9						13		3	3		3		593	49	20	1	20	2	133		53
Prosimulium sp.	larvae															53				7				
Family: Chironomidae	larvae																							
Family: Chironomidae	pupa		16	27	10		3			10	2	2	13		3									33
Subfamily : Chironominae	larvae																							
Tribe : Tanytarsini	larvae															4000								
Cladotanytarsus sp.	larvae				A				67	52						1280 633	51						1100	3
Micropsectra/Tanytarsus sp. Neostempellina sp.	larvae larvae				4				0/	53						033							1120	3
пеометренна хр.	iaiväe																							

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code: Original Sample ID:		2008 K&S R7bK	2008 Hess FCH	2008 K&S FCK	2008 Hess BLCaH BLC1 Hess	2008 Hess BLCbH BLC2 Hess	2008 Hess BLCcH BLC-3 Hess	2008 Hess BLCdH BLC-4 Hess	2008 Hess BLCeH BLC-5 Hess	2008 K&S BLCaK BLC-1 K&S	2008 K&S BLCbK BLC-2 K&S	2008 K&S BLCcK BLC-3 K&S	2008 Hess STCH	2008 K&S STCK	2008 Hess BECH	2008 K&S BECK	2008 Hess HOCH	2008 K&S HOCK	2008 Hess GRCH	2008 K&S GRCK	2008 Hess BTTH	2008 K&S BTTK	2008 Hess BUCH
Pseudochironomus sp.	larvae																							
Rheotanytarsus sp. Stempellinella sp.	larvae larvae					233		40									185					2333		10
Stempellina sp	larvae	4								133											1			
Tanytarsus sp.	larvae																							
Subfamily: Orthocladiinae	larvae																	60				8667	4508	7
Acricotopus sp.	larvae																							
Brillia sp.	larvae																							
Cardiocladius sp.	larvae				10																			
Chaetocladius sp. Corynoneura sp.	larvae Iarvae																							
Cricotopus/Orthocladius sp.	larvae	361	143	1027	120	6407	807	5480	3827	3507	41	371	289	6127	17	287	363	240	2	170	2		298	160
Cricotopus/Orthocladius sp. A	larvae																							
Cricotopus/Orthocladius sp. B	larvae																							
Diplocladius sp.	larvae	_										_		=				4=0				4400		
Eukiefferiella sp.	larvae	2	24	387	10		23	67	93		8	8	30	523	19	8507	89	453	14	150	12	1100		10
Heleniella sp. Hydrobaenus sp.	larvae larvae								13			2												
Nanocladius	larvae																							
Parorthocladius sp.	larvae																							
Rheocricotopus sp.	larvae																							
Synorthocladius sp.	larvae	12	17							53														
Thienemanniella sp.	larvae																	27				2007	4000	7
Tvetenia sp. Subfamily: Diamesinae	larvae Iarvae																					8667	4006	13
Diamesa sp.	larvae																				2			
Pagastia sp.	larvae	172	228	2173	74	693			107	27		2	18	73			32	57			_			
Pseudodiamesa sp.	larvae																							
Potthastia longimana group	larvae																17			3				
Prodiamesa sp.	larvae																							
Subfamily: Tanypodinae Thienemannimyia Group	larvae															2020	40						533	
Procladius sp.	larvae larvae															2020	18							7
Family: Syriphidae	larvae																							•
Family: Psychodidae																								
Pericoma sp.	larvae																							
Family : Stratiomyiidae	larvae																							
Order: Lepidoptera	larvae							3																
Order: Hemiptera Family: Corixidae	larvae																							
Order: Collembola	larvae	4		13																				
Order : Thysanoptera (terr) Class: Crustacea																								
Order: Ostracoda		4		13		107	13	13			2	2				1033	32		1			100		7
Order: Cladocera																						133		
Order: Copepoda																53			1			1833	384	
Phylum: Annelida																								
Class: Oligochaeta Family: Naididae		21	24	93		187	257	27	27	30	2	2		283	12	1133	85	30	7	3	1	2733	831	
Family : Tubificidae											_	-							•	•	•			
Phylum: Nematoda		20	31	173	8	60	40	20		27	1	3	8	7	2	47	6			3	2	2400	245	7
Order: Tricladida																								
Polycelis coronata															1									

Class: Turbellaria

Class: Mollusca Order: Bivalvia

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code: Original Sample ID:		2008 K&S R7bK R7-2 K&S	2008 Hess FCH	2008 K&S FCK FC1 K&S	2008 Hess BLCaH BLC1 Hess	2008 Hess BLCbH BLC2 Hess	2008 Hess BLCcH BLC-3 Hess	2008 Hess BLCdH BLC-4 Hess	2008 Hess BLCeH BLC-5 Hess	2008 K&S BLCaK BLC-1 K&S	2008 K&S BLCbK BLC-2 K&S	2008 K&S BLCcK BLC-3 K&S	2008 Hess STCH	2008 K&S STCK	2008 Hess BECH	2008 K&S BECK	2008 Hess HOCH	2008 K&S HOCK	2008 Hess GRCH	2008 K&S GRCK	2008 Hess BTTH	2008 K&S BTTK	2008 Hess BUCH
Family: Sphaeriidae Pisidium sp. Sphaerium simile Order: Gastropoda										3												400		3
Family: Valvatidae Family : Physidae Physa sp.																	1					133	245	
Family : Planorbidae																	25					100		
Class : Arachnida Order : Mesostigmata																								
Order: Prostigmata Order: Prostigmata UID	deutonymph adult	8		80	8	7			13			2	2		1	227 53		27				100	32	
Order: Prostigmata Family: Hydrozetidae Family: Torrenticolidae	juvenile adult			13																		700	149	
Torrenticola Family: Linmesiidae	adult								13		1	1										400	96	13
<i>Limnesia</i> Family: Hygrobatidae	adult					7		13								213				3	2			
Hygrobates Family: Hydryphantidae	adult			80	4							4	2				16							7
<i>Wandesia</i> Family: Lebertiidae	adult									27					1									
Lebertia Family: Aturidae	adult	4	8	107	22	53	3	27	13		1	5		107				13						10
Aturus Family: Feltriidae	adult	84	32	240	46	160		107	80	160		16		53	3	53		7			1	133		7
Feltria Family: Sperchontidae	adult	28	16	80	8		13	53	40		2	6			5				1			433		
Sperchon Sperchonopsis sp. Family: Mideopsidae	adult adult	48	17	80	22	120	3	30	53	30		8		117	2	207	81 16	27	1					13
Mideopsis sp.	adult									53														
Hydra sp.																	16							
Order: Hirudinea Family: Piscicolidae																								
TOTAL SUBSAMPLE		1210	1265	6360	610	9407	2857	7033	5373	5670	239	897	675	8120	90	19280	1290	2150	102	510	63	37467	15750	1957

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

		2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2007	2007	2007	2007	2007	2007	2007
	New Sample Code:	K&S BUCK	AS X2aA	AS X2bA	AS X2cA	AS X2dA	AS X2eA	AS R2aA	AS R2bA	AS R2cA	AS R2dA	AS R2eA	AS R7aA	AS R7bA	AS R7cA	AS R7dA	AS R7eA	Hess VRH7	Hess USFRH7	Hess NECH7	Hess V1aH	Hess V1bH	Hess V1cH	Hess V1dH
	Original Sample ID: I	BUC K&S	X-2A	X-2B	X-2C	X-2D	X-2E	R2-A	R2-B	R2-C	R2-D	R2-E	R7-A	R7-B	R7-C	R7-D	R7-E	VR	USFR	NEC-1	V1-01	V1-02	V1-03	V1-04
Order: Ephemeroptera	nymph (juv./dam.)																	7					3	
Order: Ephemeroptera	adult																							
Family: Ameletidae	n man h								4	-								40	22	F2	407		47	07
Ameletus sp. Family: Baetidae	nymph nymph (juv./dam.)	355	36	32	0	36	136	88	1 40	5 53	437	668	32	64	6	272	40	40	33	53	107		47	27
Baetis sp.	nymph	300	30	32	0	30	130	00	40	55	437	000	32	04	b	212	40 8	13	507		187	270	133	60
Baetis sp. Baetis bicaudatus	nymph					2								8			O	53	307	7	13	210	3	3
Baetis tricaudatus	nymph	10				_	8		1		4	4		O				55		,	10		9	0
Acentrella sp.	nymph			16			-		4		·	12												
Fallceon sp.	nymph																							
Family: Heptageniidae	nymph (juv./dam.)	460		16	8	2	16	7	2	5	65	40	312	80	45	160	88	7	120	500	1683	1393	1683	987
Rhithrogena sp.	nymph	5																			440	7	33	73
Cinygmula sp.	nymph	10		24					4				24		3			7	20	13		7	17	
Epeorus sp.	nymph	5								2					1			7	13	7	143	57	210	230
Family: Leptophlebiidae	nymph (juv./dam.)																							
Family: Ephemerellidae	nymph (juv./dam.)	40	36	24	4		16	1	4	1	20	32	120	152	18	256	136		653	33	80	163	13	27
Drunella sp. Drunella spinifera	nymph nymph		16																					
Drunella grandis	nymph		10									4												
Serratella sp.	nymph										4	16												
Ephemerella sp.	nymph	5																						
Drunella coloradensis	nymph		16				16														3	3	3	7
Drunella doddsi	nymph	40		16								8			2				60					
Serratella tibialis	nymph																							
Order: Plecoptera	nymph (juv./dam.)	10	8	32	4	20	56	18	4	4	75			112	12		32		7	13			387	133
Order: Plecoptera	adult																							
Family: Chloroperlidae	nymph (juv./dam.)	10																20		107	80	53	23	10
Sweltsa sp.	nymph	10											16					7	20	53	140	10	50	20
Suwallia sp.	nymph														1						680	70	127	27
Alloperla fraterna	nymph																			80	37			103
Paraperla sp.	nymph	_						0	0	4	40	0	0.4	16	4	00	40		70	7	10			13
Family: Perlodidae Isoperla sp.	nymph nymph	5						3	3	1	10	8	24	16	4	32	16		73	7				
Megarcys sp.	nymph																				7	3		7
Skwala sp.	nymph								4												•	ŭ		•
Kogotus sp.	nymph							8																
Rickera sp.	nymph																							
Cultus sp.	nymph																							
Family: Perlidae	nymph										14													
Hesperoperla sp.	nymph																							
Family: Nemouridae	nymph (juv./dam.)		16																					
Podmosta sp.	nymph	000	00	70			004		•		70	400	070	0.40	00	4404	000		507	07	000	070	50	400
Zapada sp. Zapada oregonensis/haysi	nymph	380	60 140	72	4 12	46	264 8	8 61	6	1 9	78 79	108 104	672 328	848	63	1424 784	600	7	527 7	27 20	320 160	270	53	403
Zapada oregonensis/naysi Zapada columbiana	nymph nymph		140	224 24	12	16	0	ОІ		9	79	104	326	600	30	764 16	152	,	,	20	100	40 10	97 57	90 40
Zapada columbiana Zapada cinctipes	nymph	30	40	80	4	2	8				21	60	440	480	62	736	336		27		10	10	3	40
Visoka sp.	путгрп	30	40	00	7	_	O				21	00	440	400	02	700	550		21				9	
Family: Capniidae	nymph (juv./dam.)	15	8	40		2	24	5	1	11	35	52	224	80	68		312	27	20	47	1097	430	560	437
Family: Leuctridae	nymph (juv./dam.)	5																	7	20		53	37	
Family: Taeniopterygidae	nymph (juv./dam.)	85																						
Taenionema sp.	nymph		16				16				20			24	6	96	8							
Order: Trichoptera	adult																							
Order: Trichoptera	larvae (dam./juv.)																							
Order: Trichoptera	pupae																	7	60					
Family: Hydropsychidae	larvae (juv./dam.)	70									25	20							20	7				
Parapsyche sp.	larvae	25				16					8	16	16			16			13	13	43	7	27	20
Arctopsyche sp.	larvae																							
Hydropsyche sp.	larvae																							
Family: Rhyacophilidae	lan 10 -		4			40	4.0			4	40		0		4	46	0			460	00	2	40	77
Rhyacophila sp.	larvae		4			18	16			4	42		8		1	16	8			160	23	3	13	77

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

		2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2007	2007	2007	2007	2007	2007	2007
	New Sample Code: I	K&S BUCK	AS X2aA	AS X2bA	AS X2cA	AS X2dA	AS X2eA	AS R2aA	AS R2bA	AS R2cA	AS R2dA	AS R2eA	AS R7aA	AS R7bA	AS R7cA	AS R7dA	AS R7eA	Hess VRH7	Hess USFRH7	Hess NECH7	Hess V1aH	Hess V1bH	Hess V1cH	Hess V1dH
	Original Sample ID: BL	JC K&S	X-2A	X-2B	X-2C	X-2D	X-2E	R2-A	R2-B	R2-C	R2-D	R2-E	R7-A	R7-B	R7-C	R7-D	R7-E	VR	USFR	NEC-1	V1-01	V1-02	V1-03	V1-04
Family: Philopodamidae Wormaldia sp.	larvae																							
Family: Glossosomatidae	iaivae																							
Glossosoma sp.	larvae	20		16													8		20			107	53	43
Family: Uenoidae	larvae (juv./dam.)																							
Oligophlebodes sp. Family: Hydroptilidae	larvae pupae																							
Hydroptila sp.	larvae																							
Stactobiella sp.	larvae																							
Oxyethira sp.	larvae																							
Family: Brachycentridae																								
Micrasema sp. Brachycentrus sp.	larvae larvae						8	1		1														
Family: Lepidostomatidae	laivae																							
Lepidostoma sp.	larvae																							
Family: Limnephilidae	larvae (juv./dam.)										5									7				
Ecclisomyia sp.	larvae			0.4							40					40								
Dicosmoecus sp.	larvae			24				8		3	16		8			16								
Order: Coleoptera	larvae (juv./dam.)																							
Family: Dytiscidae	larvae																							
Family: Elmidae	adult																							
Order: Diptera UID	larvae							104	1															
Order: Diptera UID	pupae							104	ı															
Order: Diptera UID A	larvae																							
Order: Diptera UID B	larvae																							
Order: Diptera	pupae																			_		_		
Order: Diptera	adult																	33	20	7	27	3		3
Order: Diptera Family: Tipulidae	larvae larvae (dam./juv.)																							
Antocha sp.	larvae																							
Dicranota sp.	larvae	5					8							32		16			20	20		53		
Hexatoma sp. Limnophila sp.	larvae larvae										5													
Rhabdomastix sp.	larvae										3													
Hesperoconopa sp.	larvae																							
Gonomyodes sp.	larvae																							
Tipula sp.	larvae																							
Family: Ceratopogonidae Bezzia/Palpomyia sp.	larvae						8				4													
Family: Psychodidae	larvae						O				7													
Family: Psychodidae UID	larvae										5				1									
Pericoma sp.	larvae	5					8	3			5	8	24	16	3	16	16							
Family: Deuterophlebiidae Deuterophlebia sp.	pupae																							
Deuteropniebia sp. Family: Blephariceridae	larvae																							
Agathon sp.	larvae																							
Family: Empididae	larvae (dam.)																							
Chelifera/Metachela sp.	larvae									1				8	2			13	20					
Oreogeton sp.	larvae			46																	3		7	
Clinocera sp. Family: Simuliidae	larvae pupae		4	16 40		16	40			3	4	8			1			20			13		3	
Simulium sp.	larvae	20	72	40	4	36	128	23	11	7	20	120		16		208	16				.0		Ü	
Prosimulium sp.	larvae			8		4	56	1	4		5	24		80		144		7						
Family: Chironomidae	larvae								16				1488	1648										
Family: Chironomidae	pupa	45	672	880	28	336		48		4	8		24	16		32	16				103		13	
Subfamily : Chironominae	larvae																							
Tribe : Tanytarsini	larvae						16																	
Cladotanytarsus sp. Micropsectra/Tanytarsus sp.	larvae larvae									72	125	136												
Neostempellina sp.	larvae									12	120	100							127					
It	** ***																		•					

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:		2008 AS X2aA	2008 AS X2bA	2008 AS X2cA	2008 AS X2dA	2008 AS X2eA	2008 AS R2aA	2008 AS R2bA	2008 AS R2cA	2008 AS R2dA	2008 AS R2eA	2008 AS R7aA	2008 AS R7bA	2008 AS R7cA	2008 AS R7dA	2008 AS R7eA	2007 Hess VRH7	2007 Hess USFRH7	2007 Hess NECH7	2007 Hess V1aH V1-01	2007 Hess V1bH V1-02	2007 Hess V1cH V1-03	2007 Hess V1dH V1-04
	Original Sample ID:	BUC K&S	X-2A	X-2B	X-2C	X-2D	X-2E	R2-A	R2-B	R2-C	R2-D	R2-E	R7-A	R7-B	R7-C	R7-D	R7-E	VK		NEC-1	V 1-U 1	V 1-UZ	V 1-03	V 1-04
Pseudochironomus sp. Rheotanytarsus sp.	larvae larvae	20							2				192	16	2				73					
Stempellinella sp.	larvae	20							2				192	10	2		8							
Stempellina sp	larvae																0							
Tanytarsus sp.	larvae																	7					13	
ranytarodo op.	larvao																	•					10	
Subfamily: Orthocladiinae	larvae		96			300	1920					144				288				67	1333		200	
Acricotopus sp.	larvae																							
Brillia sp.	larvae																						47	
Cardiocladius sp.	larvae																							
Chaetocladius sp.	larvae																							
Corynoneura sp.	larvae				8		8		3	1			16						13	20				
Cricotopus/Orthocladius sp.	larvae	110	696	1176	768	112	2200	36	35	104	410	248	560	448	18	416	400							
Cricotopus/Orthocladius sp. A	larvae																		113	33	780	860	430	1400
Cricotopus/Orthocladius sp. B																								
Diplocladius sp. Eukiefferiella sp.	larvae	25		336	40	50	504	70	67	37	75	120				432	56	633	150	107	1360	427	133	450
Eukleriella sp. Heleniella sp.	larvae larvae	25		330	40	30	304	70	67	31	75	120				432	30	033	153	107	1300	421	133	450
Hydrobaenus sp.	larvae												16											
Nanocladius	larvae												10											
Parorthocladius sp.	larvae																							
Rheocricotopus sp.	larvae												16						133					
Synorthocladius sp.	larvae																		27					
Thienemanniella sp.	larvae		28	24	28		32												7					
Tvetenia sp.	larvae		24				8			13	35	40	536	1040	51	3552	1160			73				
Subfamily: Diamesinae	larvae																							
Diamesa sp.	larvae		952	448	132	360	720	9	9		33	24						1100						
Pagastia sp.	larvae	10	700	536	240	212	2960	153	47	60	189	244	232	240	27	208	128			33	27	267	27	167
Pseudodiamesa sp.	larvae																	7						
Potthastia longimana group	larvae							1		3														
Prodiamesa sp. Subfamily: Tanypodinae	larvae																							
Thienemannimyia Group	larvae larvae							39	12	15	15	80							13					
Procladius sp.	larvae							39	12	13	13	00							13					
Family: Syriphidae	larvae																							
Family: Psychodidae	14.740																							
Pericoma sp.	larvae																	7						
Family : Stratiomyiidae	larvae																							
Order: Lepidoptera	larvae																							
Order: Hemiptera Family: Corixidae	larvae																							
•																								
Order: Collembola	larvae								2															
Order : Thysanoptera (terr)																								
Class: Crustacea		_								_								_						
Order: Ostracoda Order: Cladocera		5								3	14							7						
Order: Copepoda															1									
xo • • • • • • • • • • • • • • • • • •															•									
Phylum: Annelida																								
Class: Oligochaeta						2	32										8	40	7	7		53		
Family: Naididae		10	4	16	4	2		5	1	2	10	12	16	56		16	8							
Family : Tubificidae						4.5	4.0	_		_				· ·	_	40		_		4.5	o=		-	
Phylum: Nematoda			36	48	4	16	112	3		5	4	16		64	2	48	72	7	67	13	27		3	

Order: Tricladida

Polycelis coronata

Class: Turbellaria

Class: Mollusca Order: Bivalvia

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2008 K&S BUCK	2008 AS X2aA	2008 AS X2bA	2008 AS X2cA	2008 AS X2dA	2008 AS X2eA	2008 AS R2aA	2008 AS R2bA	2008 AS R2cA	2008 AS R2dA	2008 AS R2eA	2008 AS R7aA	2008 AS R7bA	2008 AS R7cA	2008 AS R7dA	2008 AS R7eA	2007 Hess VRH7	2007 Hess USFRH7	2007 Hess NECH7	2007 Hess V1aH	2007 Hess V1bH	2007 Hess V1cH	2007 Hess V1dH
	Original Sample ID:	BUC K&S	X-2A	X-2B	X-2C	X-2D	X-2E	R2-A	R2-B	R2-C	R2-D	R2-E	R7-A	R7-B	R7-C	R7-D	R7-E	VR	USFR	NEC-1	V1-01	V1-02	V1-03	V1-04
Family: Sphaeriidae Pisidium sp. Sphaerium simile Order: Gastropoda Family: Valvatidae Family : Physidae Physa sp.	S. Igrical Sample 12.			7. 22					1					2	0	2	=							
Family : Planorbidae																								
Class : Arachnida Order : Mesostigmata																								
Order: Prostigmata Order: Prostigmata UID	deutonymph adult	5	32	16			40	24	4	3	35	84	64	48	4	48	152 8			7			27 3	27
Order: Prostigmata Family: Hydrozetidae Family: Torrenticolidae	juvenile adult		16			16	8		2					16	2	16	24	7						
Torrenticola	adult	5																		7				
Family: Linmesiidae Limnesia	adult			8				5	2	4	5				1									
Family: Hygrobatidae Hygrobates Family: Hydryphantidae	adult		4	8				1		1	5		16		1	32	24			7				27
Wandesia Family: Lebertiidae	adult																							
Lebertia Family: Aturidae	adult		4	8		12	72	4	2		35	16	16		5	16	16		13	13				
Aturus Family: Feltriidae	adult	5	40	8	20	20	64	13	2	4	30	24	104	64	30	80	120		40	13			80	
Feltria Family: Sperchontidae	adult			32	24		32	12	5	1	40	64	96	96	5	208	32					53		
Sperchon Sperchonopsis sp. Family : Mideopsidae	adult adult		4	16	8			21	2		15	36	128	32	13	48	64		47	13			30	27
Mideopsis sp.	adult																							
Hydra sp.																								
Order: Hirudinea Family: Piscicolidae											5													
TOTAL SUBSAMPLE		1865	3780	4304	1352	1608	9568	783	304	442	2094	2600	5768	6400	491	9648	4072	2090	3100	1614	8936	4672	4648	4938

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2007 Hess V1eH	2007 Hess V27aH	2007 Hess V27bH	2007 Hess V27cH	2007 Hess V27dH	2007 Hess V27eH	2007 Hess V5aH	2007 Hess V5bH	2007 Hess V5cH	2007 Hess V5dH	2007 Hess V5eH	2007 Hess V8aH	2007 Hess V8bH	2007 Hess V8cH	2007 Hess V8dH	2007 Hess V8eH	2007 AS V1aA	2007 AS V1bA	2007 AS V1cA	2007 AS V1dA	2007 AS V1eA	2007 AS V5aA	2007 AS V5bA	2007 AS V5cA	2007 AS V5dA	2007 AS V5eA
	Original Sample ID:	V1-05	V27-01	V27-02	V27-03	V27-04	V27-05	V5-01	V5-02	V5-03	V5-04	V5-05	V8-01	V8-02	V8-03	V8-04	V8-05	V1-A	V1-B	V1-C	V1-D	V1-E	V5-A	V5-B	V5-C	V5-D	V5-E
Order: Ephemeroptera Order: Ephemeroptera	nymph (juv./dam.) adult																										
Family: Ameletidae		07	00	07	40	00	00						40						00		0			0			
Ameletus sp.	nymph	27	93	27	13	60	83						13						22		3			2			
Family: Baetidae	nymph (juv./dam.)	200	800	800	493	602	1040	12	7	20	60	7	93		80	80	E2	8		16	25	368		24		4	32
Baetis sp.	nymph	200	800	800	493	693 17	1040	13 3	,	20	60	,	93		80	80	53	0	4	16	25	300		24		4	32
Baetis bicaudatus Baetis tricaudatus	nymph					17		3										1	Į								
Acentrella sp.	nymph nymph																7										
Fallceon sp.	nymph																,										
Family: Heptageniidae	nymph (juv./dam.)	1903	3227	3453	1507	2880	2267	23	23	37	33	27	280	147	173	187	173	16	18	24	56	32	0	64	16	4	16
Rhithrogena sp.	nymph	20	13	53	93	17	207	3	3	3	33	21	27	13	173	101	173	9	3	6	J0 /	4	0	04	10	4	10
Cinygmula sp.	nymph	37	13	13	33	17	7	3	3	3	3		21	13	13		13	3	8	U	2	7	2				
Epeorus sp.	nymph	117	67	80	13	73	90	10	47	47	37	113	27	13		27	27	20	3	19	9	45	6	8	2	21	7
Family: Leptophlebiidae	nymph (juv./dam.)	117	01	00	10	7.5	30	10	77	77	01	110	21	10		21	21	20	J	13	3	40	U	O	_	21	,
Family: Ephemerellidae	nymph (juv./dam.)	123		67	13		53							27					1		4		24				
Drunella sp.	nymph	120		01	10		00												•								
Drunella spinifera	nymph																										
Drunella grandis	nymph																										
Serratella sp.	nymph																										
Ephemerella sp.	nymph																										
Drunella coloradensis	nymph	10																1	2		2						
Drunella doddsi	nymph		27	13		10	80						27		13		13	1									
Serratella tibialis	nymph																										
Order: Plecoptera Order: Plecoptera	nymph (juv./dam.) adult	7	400					113	33	53	73	53	520	560	453	267	120	6		112	52	40	184	216	272	36	416
Family: Chloroperlidae	nymph (juv./dam.)	7		80	160	227	10		23	10	20	10	13	27	13											2	32
Sweltsa sp.	nymph	93	40	00	100	57	17		7	10	20	7	13	21	13	27	7	1	1							2	32
Suwallia sp.	nymph	133	93	173	147	17	147	3	47	47	27	43		13	67	21	,	'	'					6			
Alloperla fraterna	nymph	100	93	67	177	53	3	0	77	77	21	40	13	10	27					4				O			
Paraperla sp.	nymph		00	01		00	Ū						10							•							
Family: Perlodidae	nymph																			4						2	
Isoperla sp.	nymph																										
Megarcys sp.	nymph	3				3			10	3	3									5	4	4			1	1	1
Skwala sp.	nymph												13														
Kogotus sp.	nymph																										
Rickera sp.	nymph																										
Cultus sp.	nymph																										
Family: Perlidae	nymph																										
Hesperoperla sp.	nymph																										
Family: Nemouridae	nymph (juv./dam.)																										
Podmosta sp. Zapada sp.	nymph	297	720	1013	200	910	1133		17		13	3	13	13	187	240	60	15				153	412	124			
Zapada sp. Zapada oregonensis/haysi	nymph	120	40	67	13	17	37	17	20	17	20	20	53	13	107	27	47	15 12	3	68	45	54	90	146	107	27	87
Zapada oregonensis/naysi Zapada columbiana	nymph nymph	37	53	27	13	33	60	3	3	17	3	20	13			27	13	7	3	11	9	55	4	140	43	5	6
Zapada cinctipes	nymph	0,	00		10	00	00	7	3		7		40	80		27	7	•		• • •	Ü	2	6	• •	4	Ü	Ü
Visoka sp.	numanh (iuu (dama)	600	007	050	600	600	677	107	07	167	270	07	402	400	400	407	222	3	4	0	46	24	00	240	101	0	176
Family: Capniidae	nymph (juv./dam.)	623	907 293	853 173	680 40	680 77	677 40	127	97 37	167	270 7	87 10	493 13	480 53	400 293	187 53	233 20	3	4	8	16	24	98	218 8	104	8	176
Family: Leuctridae	nymph (juv./dam.)	20	293	1/3	40	//	40		37		/	10	13	53	293	53	20							8			
Family: Taeniopterygidae Taenionema sp.	nymph (juv./dam.) nymph																87	1			4	16	2	8	32	12	5
Order: Trichoptera	adult						3																				
Order: Trichoptera	larvae (dam./juv.)	13	240		133	240	27	60	10	27	73	10	27	13	13		27	11									
Order: Trichoptera	pupae									3																	
Family: Hydropsychidae	larvae (juv./dam.)		107	93		27	137	20	7		27	13	27	13	27		33			8	16	9	56	34	16	10	80
Parapsyche sp.	larvae	20	40	13		3	47		3		7	7		13		27	7	1		8	4	8		16	8	3	10
Arctopsyche sp.	larvae																										
Hydropsyche sp.	larvae	3																									
Family: Rhyacophilidae																		_									
Rhyacophila sp.	larvae	30	133	120	80	50	97	73	40	57	57	57	93	93	133	187	93	2		4	3	19	176	152	177	36	339

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:		2007 Hess V27aH	2007 Hess V27bH	2007 Hess V27cH	2007 Hess V27dH	2007 Hess V27eH	2007 Hess V5aH	2007 Hess V5bH	2007 Hess V5cH	2007 Hess V5dH	2007 Hess V5eH	2007 Hess V8aH	2007 Hess V8bH	2007 Hess V8cH	2007 Hess V8dH	V8eH	2007 AS V1aA	2007 AS V1bA	2007 AS V1cA	2007 AS V1dA	2007 AS V1eA	2007 AS V5aA	2007 AS V5bA	2007 AS V5cA	2007 AS V5dA	2007 AS V5eA
	Original Sample ID:	V1-05	V27-01	V27-02	V27-03	V27-04	V27-05	V5-01	V5-02	V5-03	V5-04	V5-05	V8-01	V8-02	V8-03	V8-04	V8-05	V1-A	V1-B	V1-C	V1-D	V1-E	V5-A	V5-B	V5-C	V5-D	V5-E
Family: Philopodamidae																											
Wormaldia sp.	larvae																										
Family: Glossosomatidae Glossosoma sp.	larvae	107	640	667	160	483	827	10	23	53	77	27	27					3	2	4							
Family: Uenoidae	larvae (juv./dam.)	107	0.10	001	100	100	OL!	10	20	00								Ü	-	•							
Oligophlebodes sp.	larvae																									2	
Family: Hydroptilidae	pupae																										
Hydroptila sp.	larvae												13	27	40	187	7										
Stactobiella sp.	larvae																										
Oxyethira sp. Family: Brachycentridae	larvae																										
Micrasema sp.	larvae																										
Brachycentrus sp.	larvae																										
Family: Lepidostomatidae																											
Lepidostoma sp.	larvae																										
Family: Limnephilidae	larvae (juv./dam.)	27		147			133	13	7				27				20					2	8				
Ecclisomyia sp.	larvae							3						40	27									2			
Dicosmoecus sp.	larvae																										
Order: Coleoptera	larvae (juv./dam.)																			1							
Family: Dytiscidae	larvae					3																					
Family: Elmidae	adult																										
Order: Diptera UID	larvae																										
Order: Diptera UID Order: Diptera UID A	pupae larvae								3																		
Order: Diptera UID B	larvae								0	3	13																
Order: Diptera	pupae																					8					
Order: Diptera	adult						30	3	10	23	47	7				27	7										
Order: Diptera	larvae			13								7		13			13							4			
Family: Tipulidae Antocha sp.	larvae (dam./juv.) larvae																										
Dicranota sp. Hexatoma sp.	larvae larvae	17				3	27	10			7	7		27		27	7								24	2	2
Limnophila sp.	larvae											_															2
Rhabdomastix sp.	larvae						07				20	3		13				1									
Hesperoconopa sp. Gonomyodes sp.	larvae larvae						27	13			20 3	13						Į									
Tipula sp.	larvae							10			3	10													1		
Family: Ceratopogonidae																											
Bezzia/Palpomyia sp.	larvae																										
Family: Psychodidae	larvae																										
Family: Psychodidae UID	larvae																										
Pericoma sp. Family: Deuterophlebiidae	larvae pupae																										
Deuterophlebia sp. Family: Blephariceridae	larvae																										
Agathon sp.	larvae																										
Family: Empididae	larvae (dam.)																	0				8					
Chelifera/Metachela sp.	larvae		67	53		7	3	30	10	3	3	3	53	13	107	160	60						8		16		32
Oreogeton sp.	larvae	3	1440	1573	533	1003	923	3		3			13		67		7										
Clinocera sp.	larvae	-				-	50	_		7		07	40					0						4.4			•
Family: Simuliidae Simulium sp.	pupae larvae	7				7	53	7	3	3		27	40					0		8		1 27	6 96	14	8	4	3 1
Prosimulium sp.	larvae					27														0		21	24	48	0	4	64
Family: Chironomidae	larvae																										
Family: Chironomidae	pupa					320	53		20	13	40	33						7	3	28	20	72	70	32			
Subfamily : Chironominae	larvae																										
Tribe : Tanytarsini	larvae																										
Cladotanytarsus sp.	larvae		10		EO																						
Micropsectra/Tanytarsus sp. Neostempellina sp.	larvae larvae		13		53																						

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:	2007 Hess V1eH	2007 Hess V27aH	2007 Hess V27bH	2007 Hess V27cH	2007 Hess V27dH	2007 Hess V27eH	2007 Hess V5aH	2007 Hess V5bH	2007 Hess V5cH	2007 Hess V5dH	2007 Hess V5eH	2007 Hess V8aH	2007 Hess V8bH	2007 Hess V8cH	2007 Hess V8dH	2007 Hess V8eH	2007 AS V1aA	2007 AS V1bA	2007 AS V1cA	2007 AS V1dA	2007 AS V1eA	2007 AS V5aA	2007 AS V5bA	2007 AS V5cA	2007 AS V5dA	2007 AS V5eA
	Original Sample ID:	V1-05	V27-01	V27-02	V27-03	V27-04	V27-05	V5-01	V5-02	V5-03	V5-04	V5-05	V8-01	V8-02	V8-03	V8-04	V8-05	V1-A	V1-B	V1-C	V1-D	V1-E	V5-A	V5-B	V5-C	V5-D	V5-E
Pseudochironomus sp.	larvae																										
Rheotanytarsus sp.	larvae																										
Stempellinella sp. Stempellina sp	larvae larvae																										
Tanytarsus sp.	larvae			27			30																				
Subfamily: Orthocladiinae	larvae	333		493	120	160	303	73				37			80			6			52	94	144				
Acricotopus sp.	larvae	333		433	120	100	27	73				31			00			O			32	34	144				
Brillia sp.	larvae			13			113											2		28	27	29	184	56	35	2	
Cardiocladius sp.	larvae																										
Chaetocladius sp.	larvae	13	67	13			3		3								120				67				236	8	241
Corynoneura sp.	larvae												13						1								
Cricotopus/Orthocladius sp. Cricotopus/Orthocladius sp. A	larvae larvae	1467	187	160	40	33	7	670	297	163	333	243	5000	4067	2533	5387	880	17	6	66	29	128	320	138	72	6	32
Cricotopus/Orthocladius sp. A	larvae	1407	107	100	40	33	,	070	231	103	333	240	3000	4007	387	3307	000	17	O	00	23	120	320	130	12	O	32
Diplocladius sp.	larvae																										
Eukiefferiella sp.	larvae	463	13	80				153	43	20	47	127	427	80			13	7	3	32	4	56	248		24	14	82
Heleniella sp.	larvae																										
Hydrobaenus sp.	larvae																										
Nanocladius Parorthocladius sp.	larvae larvae			12																							
Rheocricotopus sp.	larvae			13																							
Synorthocladius sp.	larvae					27									67	27								48			
Thienemanniella sp.	larvae																										
Tvetenia sp.	larvae			93		80	133					47											8				
Subfamily: Diamesinae	larvae																										
Diamesa sp.	larvae	440						67 17	30 13	17 7	57 40	33 7	40					1		-	4 6	20		00			
Pagastia sp. Pseudodiamesa sp.	larvae Iarvae	113						17	13	/	40	7	40							5 1	6	32		82			
Potthastia longimana group	larvae																			'							
Prodiamesa sp.	larvae																										
Subfamily: Tanypodinae	larvae																										
Thienemannimyia Group	larvae					27	3								13												
Procladius sp.	larvae							7																			
Family: Syriphidae Family: Psychodidae	larvae							/																			
Pericoma sp.	larvae		13				7	20		7	10	3				27	7			8		8	10	26	136	6	176
Family : Stratiomyiidae	larvae																							2	1		1
Order: Lepidoptera	larvae																										1
O to the state of					40					ā																	
Order: Hemiptera Family: Corixidae	larvae				13					3																	
Order: Collembola Order: Thysanoptera (terr) Class: Crustacea Order: Ostracoda Order: Cladocera Order: Copepoda	larvae							7	3	7	7	10													16	2	
Phylum: Annelida Class: Oligochaeta Family: Naididae						3		193	23	7	273	127					7	0					24		2		
Family : Tubificidae Phylum: Nematoda		3	40	13			30		7	3	10	10	227	67	120	187	33	0							2		
Order: Tricladida Polycelis coronata																											
Class: Turbellaria														13	27												
Class: Mollusca Order: Bivalvia																											

Page 15 of 20

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

		2007 Hess	2007 AS																								
	New Sample Code:	V1eH	V27aH	V27bH	V27cH	V27dH	V27eH	V5aH	V5bH	V5cH	V5dH	V5eH	V8aH	V8bH	V8cH	V8dH	V8eH	V1aA	V1bA	V1cA	V1dA	V1eA	V5aA	V5bA	V5cA	V5dA	V5eA
	Original Sample ID:	V1-05	V27-01	V27-02	V27-03	V27-04	V27-05	V5-01	V5-02	V5-03	V5-04	V5-05	V8-01	V8-02	V8-03	V8-04	V8-05	V1-A	V1-B	V1-C	V1-D	V1-E	V5-A	V5-B	V5-C	V5-D	V5-E
Family: Sphaeriidae Pisidium sp.																											
Sphaerium simile																											
Order: Gastropoda											7																
Family: Valvatidae Family : Physidae																											
Physa sp.																											
Family : Planorbidae																											
Class : Arachnida Order : Mesostigmata																									24		1
Order: Prostigmata	deutonymph		13				80	7								27	7										
Order: Prostigmata UID	adult														13		13										
Order: Prostigmata	juvenile													13													
Family: Hydrozetidae Family: Torrenticolidae	adult																	1									
Torrenticola	adult												80														
Family: Linmesiidae Limnesia	adult																										
Family: Hygrobatidae	addit																										
Hygrobates	adult	40												13				1		8							
Family: Hydryphantidae																											
Wandesia	adult						27																				
Family: Lebertiidae Lebertia	adult	13	13										13		13												
Family: Aturidae	adult	13	13										13		13												
Aturus	adult		67	13		107	107	13				13	53	227	120	107	53	1									
Family: Feltriidae																											
Feltria	adult	93					27	40	27	43					13	53				4			56	40	24	6	32
Family: Sperchontidae																											
Sperchonopsis sp.	adult adult	40	13	13	13	30	27	27	7	3	17		160	67	120	80	33	4		4		8				2	
Family : Mideopsidae Mideopsis sp.	adult																										
Hydra sp.																											
Order: Hirudinea Family: Piscicolidae																											
TOTAL SUBSAMPLE		6582	9985	10569	4530	8464	9075	1861	966	879	1751	1251	7984	6238	5652	7659	2340	166	81	494	467	1306	2274	1532	1401	225	1877

Page 16 of 20

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

		2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
		AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
	New Sample Code:	V27aA V27-A	V27bA V27-B	V27cA V27-C	V27eA V27-E	V27dA V27-D	V8aA V8-A	V8bA V8-B	V8cA V8-C	V8eA V8-E	V8dA V8-D
Order: Ephemeroptera	Original Sample ID:										
Order: Ephemeroptera	nymph (juv./dam.) adult										
Family: Ameletidae	aduit										
Ameletus sp.	nymph			1	4				1	4	
Family: Baetidae	nymph (juv./dam.)										
Baetis sp.	nymph	24	36	41	9	370	2	16	7	96	18
Baetis bicaudatus	nymph										
Baetis tricaudatus	nymph										
Acentrella sp.	nymph										
Fallceon sp.	nymph										
Family: Heptageniidae	nymph (juv./dam.)	50	56	62	5	130	10	10	10	50	42
Rhithrogena sp.	nymph	69	6	4	1	3	15	9	6	6	
Cinygmula sp.	nymph	43	53	34	2	2	10	3	7		•
Epeorus sp.	nymph	64	20	3		14	12	16	27	6	2
Family: Leptophlebiidae Family: Ephemerellidae	nymph (juv./dam.) nymph (juv./dam.)										
Drunella sp.	nymph										
Drunella spinifera	nymph							1			
Drunella grandis	nymph										
Serratella sp.	nymph										
Ephemerella sp.	nymph										
Drunella coloradensis	nymph										
Drunella doddsi	nymph	2	9	3	1			2	5	4	
Serratella tibialis	nymph	1						1	1		
Order: Plecoptera	nymph (juv./dam.)	75	22	5	1	65		75	87	286	272
Order: Plecoptera	adult										
Family: Chloroperlidae	nymph (juv./dam.)		1								
Sweltsa sp.	nymph	4		1	1		1				
Suwallia sp.	nymph										
Alloperla fraterna	nymph								1		
Paraperla sp. Family: Perlodidae	nymph								2	8	
Isoperla sp.	nymph nymph								2	0	
Megarcys sp.	nymph	3	2	1		3		3			
Skwala sp.	nymph										
Kogotus sp.	nymph										
Rickera sp.	nymph										
Cultus sp.	nymph										
Family: Perlidae	nymph										
Hesperoperla sp.	nymph										
Family: Nemouridae	nymph (juv./dam.)										
Podmosta sp.	nymph										
Zapada sp.	nymph	102			40	322	10	25	5	230	128
Zapada oregonensis/haysi	nymph	299	26	41	19	69	40	148	93	184	98
Zapada columbiana	nymph	12	2	5	10	20	6	16	11	48	14
Zapada cinctipes Visoka sp.	nymph				1					70	42
νισοκα sp. Family: Capniidae	nymph (juv./dam.)	22	7	4	2		2	14	29	78	56
Family: Capillidae Family: Leuctridae	nymph (juv./dam.)	22	,	4	2		2	14	25	70	30
Family: Taeniopterygidae	nymph (juv./dam.)										
Taenionema sp.	nymph	148	7	4			27	40	97		
Order: Trichoptera	adult	ı		-	_						
Order: Trichoptera	larvae (dam./juv.)	1		2	7	40		1			
Order: Trichoptera	pupae	00	20	47	40	44	40	47	60	200	00
Family: Hydropsychidae	larvae (juv./dam.)	99 35	30 8	17 1	18 3	41 5	13 3	47 13	60 7	222 10	90
Parapsyche sp. Arctopsyche sp.	larvae larvae	25	ō	ı	3	ວ	3	13	,	10	6
Hydropsyche sp.	larvae										
Family: Rhyacophilidae	iai vae										
Rhyacophila sp.	larvae	134	30	10	10	34	22	46	34	114	50
., -····- wp·											

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

		2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
		AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
	New Sample Code:	V27aA V27-A	V27bA V27-B	V27cA V27-C	V27eA V27-E	V27dA V27-D	∨8aA ∨8-A	V8bA V8-B	V8cA V8-C	V8eA V8-E	V8dA V8-D
Family: Philopodamidae	Original Sample ID:	12. /									
Wormaldia sp.	larvae										
Family: Glossosomatidae		_	00	00	40	0.4					
Glossosoma sp. Family: Uenoidae	larvae larvae (juv./dam.)	5	63	29	12	24				4	
Oligophlebodes sp.	larvae (juv./uam.)		10	2					3		
Family: Hydroptilidae	pupae										
Hydroptila sp.	larvae								1		8
Stactobiella sp.	larvae										
Oxyethira sp. Family: Brachycentridae	larvae										
Micrasema sp.	larvae										
Brachycentrus sp.	larvae										
Family: Lepidostomatidae											
Lepidostoma sp.	larvae										
Family: Limnephilidae	larvae (juv./dam.)				4				1		
Ecclisomyia sp. Dicosmoecus sp.	larvae larvae	4									
Dicosmoecus sp.	iaivae										
Order: Coleoptera	larvae (juv./dam.)										
Family: Dytiscidae	larvae										
Family: Elmidae	adult										
Order: Diptera UID	larvae										
Order: Diptera UID	pupae										
Order: Diptera UID A	larvae										
Order: Diptera UID B	larvae										
Order: Diptera	pupae	4						4	2		
Order: Diptera Order: Diptera	adult larvae	1 1						1 1	2		
Family: Tipulidae	larvae (dam./juv.)	'						'			
Antocha sp.	larvae										
Dicranota sp.	larvae	1						1			8
Hexatoma sp. Limnophila sp.	larvae larvae										
Rhabdomastix sp.	larvae										
Hesperoconopa sp.	larvae										
Gonomyodes sp.	larvae										
Tipula sp.	larvae										
Family: Ceratopogonidae Bezzia/Palpomyia sp.	larvae										
Family: Psychodidae	larvae										
Family: Psychodidae UID	larvae										
Pericoma sp.	larvae										
Family: Deuterophlebiidae	pupae										
Deuterophlebia sp. Family: Blephariceridae	larvae										
Agathon sp.	larvae										
Family: Empididae	larvae (dam.)										
Chelifera/Metachela sp.	larvae	2						2		4	16
Oreogeton sp.	larvae		4	2	4	18					
Clinocera sp.	larvae	4			4	8		4		2	0
Family: Simuliidae Simulium sp.	pupae larvae	4 29	6	7	1		4	4 13	12	2 4	2 2
Prosimulium sp.	larvae	20	2		5	137			5	28	16
Family, Chiraramidas	lor: -a-a										
Family: Chironomidae Family: Chironomidae	larvae pupa				3	36	3	14	6	12	32
Subfamily : Chironominae	larvae				•		J		•		
Tribe : Tanytarsini	larvae										
Cladotanytarsus sp.	larvae										
Micropsectra/Tanytarsus sp.	larvae										
Neostempellina sp.	larvae										

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:		2007 AS V27bA	2007 AS V27cA	2007 AS V27eA	2007 AS V27dA	2007 AS V8aA	2007 AS V8bA	2007 AS V8cA	2007 AS V8eA	2007 AS V8dA
	Original Sample ID:	V27-A	V27-B	V27-C	V27-E	V27-D	V8-A	V8-B	V8-C	V8-E	V8-D
Pseudochironomus sp.	larvae										
Rheotanytarsus sp.	larvae										
Stempellinella sp.	larvae										
Stempellina sp	larvae										
Tanytarsus sp.	larvae									2	
Subfamily: Orthocladiinae	larvae										
Acricotopus sp.	larvae										
Brillia sp.	larvae	2	1	3	9	64		42	19	60	110
Cardiocladius sp.	larvae						00	407	000	040	450
Chaetocladius sp.	larvae		3				28	167	288	310	152
Corynoneura sp. Cricotopus/Orthocladius sp.	larvae larvae										2
Cricotopus/Orthocladius sp. A	larvae	2	1	29	14		9	45	32	112	272
Cricotopus/Orthocladius sp. B	larvae	_	•	20			Ü	10	02		
Diplocladius sp.	larvae										
Eukiefferiella sp.	larvae	7	6	21	8	224		10	6		136
Heleniella sp.	larvae										
Hydrobaenus sp.	larvae										
Nanocladius	larvae										
Parorthocladius sp.	larvae										
Rheocricotopus sp.	larvae										
Synorthocladius sp.	larvae										
Thienemanniella sp. Tvetenia sp.	larvae larvae				8						
Subfamily: Diamesinae	larvae				O						
Diamesa sp.	larvae										
Pagastia sp.	larvae			2	1	48					70
Pseudodiamesa sp.	larvae										
Potthastia longimana group	larvae										
Prodiamesa sp.	larvae										
Subfamily: Tanypodinae	larvae										
Thienemannimyia Group	larvae										
Procladius sp.	larvae										
Family: Syriphidae	larvae										
Family: Psychodidae Pericoma sp.	larvae	2						2	1	4	
Family : Stratiomyiidae	larvae	2						2	'	4	
ranny i onanomynado	iai vao										
Order: Lepidoptera	larvae					1					
Order: Hemiptera											
Family: Corixidae	larvae										
Order: Collembola	larvae	3						3			
Order: Collembola Order : Thysanoptera (terr)	larvae	3						3			
Class: Crustacea											
Order: Ostracoda		1						1			
Order: Cladocera											
Order: Copepoda											
Phylum: Annelida											
Class: Oligochaeta						8					
Family: Naididae											
Family : Tubificidae									1		
Phylum: Nematoda											
Order: Tricladida											

Order: Tricladida

Class: Turbellaria

Polycelis coronata

Class: Mollusca Order: Bivalvia Page 19 of 20

Table D.1: Raw Benthic Data (#/m² for Hess; #/3-min kick for K S; #/substrate for AS), combined data 2007 and 2008.

	New Sample Code:		2007 AS V27bA	2007 AS V27cA	2007 AS V27eA	2007 AS V27dA	2007 AS V8aA	2007 AS V8bA	2007 AS V8cA	2007 AS V8eA	2007 AS V8dA
	Original Sample ID:	V27-A	V27-B	V27-C	V27-E	V27-D	V8-A	V8-B	V8-C	V8-E	V8-D
Family: Sphaeriidae Pisidium sp. Sphaerium simile Order: Gastropoda											
Family: Valvatidae Family: Physidae Physa sp.											
Family : Planorbidae											
Class : Arachnida Order : Mesostigmata											
Order: Prostigmata Order: Prostigmata UID	deutonymph adult										
Order: Prostigmata	juvenile										
Family: Hydrozetidae Family: Torrenticolidae	adult										
Torrenticola	adult										
Family: Linmesiidae											
Limnesia	adult										
Family: Hygrobatidae	o di ilk										
Hygrobates Family: Hydryphantidae	adult										
Wandesia	adult										
Family: Lebertiidae	adult										
Lebertia	adult			1							
Family: Aturidae											
Aturus	adult	36				8	9	24	11	16	56
Family: Feltriidae											
Feltria	adult										
Family: Sperchontidae											
Sperchon	adult	3			3			3	7	4	8
Sperchonopsis sp.	adult										
Family : Mideopsidae Mideopsis sp.	adult										
Hydra sp.											
Order: Hirudinea Family: Piscicolidae											
TOTAL SUBSAMPLE		1280	411	335	206	1694	226	819	885	1978	1708
juv. = juvenile, dam. = damaged											

Page 20 of 20

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

SAMPLE TYPE	2008 reference VRH8	2008 reference	2008 exposed	2008 exposed	2008 exposed	2008 exposed	2008 exposed	2008 expected	2008	2008	2008	2008	2008
SAMPLE TYPE			exposed	exposed	exposed	exposed	exposed	avnacad					
SAMPLE CODE		VRK	X2aH	X2aK	X2aH	X2bK	X2cH	exposed X2cK	exposed X2dH	exposed X2eH	reference USFRH8	reference USFRK	reference NECH8
Ameletidae	0.00	0.00	6.67	1.00	0.00	0.00	13.33	0.00	26.67	87.00	53.33	10.00	17.33
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	76.67	83.00	33.33	37.00	20.00	28.00	80.00	24.00	13.33	0.00	26.67	28.00	243.33
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	110.00	23.00	286.67	130.00	120.00	4.00	53.33	8.00	66.67	60.00	300.00	224.00	80.00
Leptophlebiidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	182.00
Ephemerellidae (includes various Drunella sp, also Serratella, Ephemerella sp., Ephemerellidae UID Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID	80.00 41.01	22.00 29.27	186.67 26.67	85.00 8.12	80.00 28.75	28.00 0.00	253.33 0.00	32.00 0.00	40.00 0.00	53.00 33.00	773.33 33.33	322.00 8.00	69.33 192.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	6.84	7.32	6.67	1.01	0.00	4.00	13.59	8.33	0.00	7.00	26.67	5.00	0.00
Perlidae (includes Hesperoperla ID'd)	0.00	1.05	6.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	102.53	27.18	553.33	53.79	265.94	56.00	584.58	141.67	266.67	47.00	2226.67	764.00	286.00
Capniidae Leuctridae	389.62 0.00	119.18 0.00	186.67 0.00	202.97 1.01	165.31 0.00	64.00 0.00	81.57 0.00	50.00 0.00	26.67 0.00	187.00 0.00	33.33 46.67	8.00 9.00	53.33 0.00
Taeniopterygidae (includes Taenionema sp. ID'd)	0.00	0.00	40.00	6.09	0.00	4.00	13.59	0.00	0.00	0.00	0.00	8.00	0.00
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	0.00	0.00	20.00	2.08	0.00	0.00	0.00	8.00	13.33	0.00	13.33	39.00	0.00
Rhyacophila sp.	0.00	0.00	46.67	10.40	60.00	16.00	13.33	8.00	0.00	7.00	13.33	6.00	60.67
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00 6.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp. Uenoidae (includes Oligophlebodes sp. ID'd)	0.00 0.00	0.00 0.00	66.67 0.00	13.52 0.00	0.00	12.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	13.00 0.00	26.67 0.00	36.00 0.00	0.00 0.00
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Micrasema sp.	0.00	0.00	6.67	0.00	26.67	0.00	26.67	16.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp. Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00 0.00	0.00 1.00	0.00 6.67	0.00 0.00	0.00 13.33	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 7.00	0.00 0.00	0.00 0.00	0.00 8.67
Coleoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antocha sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.67
Dicranota sp. Hexatoma sp.	3.33 0.00	0.00 0.00	6.67 0.00	1.00 0.00	0.00 0.00	0.00 0.00	53.33 0.00	0.00 0.00	13.33 0.00	13.33 0.00	13.33 0.00	0.00 0.00	0.00 0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gonomyodes sp. Tipula sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Bezzia/Palpomyia sp.	0.00	0.00	6.67	9.00	46.67	8.00	40.00	64.00	13.33	13.00	0.00	0.00	8.67
Psychodidae	0.00	0.00	0.00	1.00	6.67	0.00	0.00	0.00	0.00	7.00	0.00	0.00	0.00
Deuterophlebiidae	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Agathon sp. Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	10.00	1.00	26.67	19.00	53.33	0.00	0.00 26.67	24.00	0.00	7.00	13.33	8.00	0.00
Simuliidae (includes Prosimulium, Simuliidae pupae)	96.67	86.00	373.33	12.00	106.67	60.00	480.00	8.00	0.00	40.00	0.00	8.00	26.00
Tanytarsini (Tribe)	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cladotanytarsus sp. Neostempellina sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	873.33	138.00	0.00
Stempellinella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	280.00	92.00	0.00
Stempellina sp Acricotopus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Brillia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cardiocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chaetocladius sp.	23.71	6.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Corynoneura sp. Cricotopus/Orthocladius sp.	0.00 0.00	0.00 5.00	0.00 3126.67	0.00 421.00	0.00 6573.33	0.00 660.00	0.00 7040.00	0.00 1832.00	0.00 3266.67	0.00 1487.00	0.00 833.33	8.00 52.00	433.33 0.00
Diplocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	137.88
Eukiefferiella sp.	81.29	15.00	673.33	80.00	960.00	132.00	1773.33	312.00	666.67	233.00	200.00	0.00	0.00
Heleniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp. Parorthocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	120.00	28.00	0.00
Synorthocladius sp.	0.00	1.00	0.00	12.00	166.67	0.00	120.00	0.00	0.00	60.00	0.00	0.00	0.00
Thienemanniella sp.	0.00	0.00	20.00	25.00	813.33	76.00	440.00	152.00	0.00	20.00	0.00	0.00	0.00
Tvetenia sp. Diamesa sp.	105.00 26.67	11.00 21.00	0.00 126.67	0.00 40.00	0.00 233.33	0.00 88.00	0.00 360.00	0.00 0.00	0.00 0.00	0.00 0.00	146.67 0.00	8.00 0.00	0.00 295.45
Pagastia sp.	3.33	0.00	293.33	48.00	1506.67	132.00	493.33	232.00	2213.33	533.00	0.00	0.00	0.00
Pseudodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prodiamesa sp.	3.33 0.00	0.00 0.00	0.00 33.33	0.00 16.00	0.00 173 33	0.00	0.00	0.00 32.00	0.00 146.67	0.00 107.00	0.00 80.00	0.00 0.00	0.00
Tanypodinae Syrphidae	0.00	0.00	33.33 0.00	16.00 0.00	173.33 0.00	32.00 0.00	213.33 0.00	32.00 0.00	146.67 0.00	107.00 0.00	80.00 0.00	0.00	0.00 0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	Hess	K&S	Hess	K&S	Hess	K&S	Hess	K&S	Hess	Hess	Hess	K&S	Hess
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE	reference	reference	exposed	reference	reference	reference							
SAMPLE (ODE VRH8	VRK	X2aH	X2aK	X2aH	X2bK	X2cH	X2cK	X2dH	X2eH	USFRH8	USFRK	NECH8
Hemiptera (includes Corixidae ID'd)	3.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.33
Collembola	3.33	0.00	0.00	0.00	0.00	4.00	0.00	0.00	0.00	0.00	53.33	0.00	0.00
Ostracoda	0.00	1.00	6.67	6.00	66.67	8.00	133.33	16.00	0.00	60.00	26.67	0.00	0.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	0.00
Oligochaeta	506.67	41.00	433.33	17.00	93.33	8.00	720.00	32.00	0.00	813.00	160.00	16.00	0.00
Nematoda	3.33	0.00	40.00	9.00	80.00	12.00	266.67	24.00	26.67	120.00	440.00	52.00	0.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	43.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	26.67	1.00	380.00	56.00	1026.67	184.00	1666.67	536.00	986.67	207.00	400.00	80.00	34.67
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2268.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	K&S	Hess	Hess	Hess	Hess	Hess	K&S	K&S	K&S	Hess	K&S	K&S	Hess
OMDIE TVDE	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE SAMPLE CODE	reference NECK	exposed R2aH	exposed R2bH	exposed R2cH	exposed R2dH	exposed R2eH	exposed R2aK	exposed R2bK	exposed R2cK	reference R7H	reference R7aK	reference R7bK	reference FCH
Ameletidae	30.00	0.00	0.00	0.00	13.33	0.00	0.00	0.00	0.00	0.00	4.00	18.60	66.67
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	5.00	346.67	646.67	273.33	293.33	176.67	103.00	100.00	109.00	0.00	4.00	6.50	0.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID) Leptophlebiidae	378.00 0.00	100.00 0.00	433.33 0.00	270.00 0.00	313.33 0.00	176.67 0.00	89.00 0.00	94.00 0.00	116.00 0.00	226.67 0.00	34.00 0.00	79.20 0.00	66.67 0.00
Ephemerellidae (includes various Drunella sp, also Serratella, Ephemerella sp., Ephemerellidae UID)	144.00	100.00	713.33	530.00	113.33	163.33	44.00	13.00	41.00	213.33	115.00	143.60	80.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Sweltsa sp., Chloroperlidae UID)	44.00	160.00	302.56	146.58	145.06	38.60	34.24	17.82	11.65	210.44	58.27	21.00	99.42
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID) Perlidae (includes Hesperoperla ID'd)	0.00 0.00	46.67 0.00	11.94 0.00	47.42 0.00	6.91 0.00	6.43 0.00	5.90 0.00	4.45 0.00	5.30 0.00	7.01 0.00	5.20 0.00	1.30 0.00	0.00 0.00
Nemouridae (includes Presperoperia 15 d) Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	226.00	53.33	350.34	34.49	69.08	186.59	12.99	8.91	27.54	848.78	77.01	140.70	1164.64
Capniidae	61.00	126.67	254.79	400.93	352.29	19.30	42.51	65.70	80.51	652.37	52.03	238.50	0.00
Leuctridae	2.00	0.00	63.70	17.24	0.00	6.43	0.00	0.00	0.00	0.00	4.16	0.00	42.61
Taeniopterygidae (includes Taenionema sp. ID'd) Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	0.00 1.00	0.00 0.00	0.00 10.00	0.00 23.33	0.00 0.00	19.30 3.33	2.36 0.00	1.11 0.00	0.00 0.00	28.06 0.00	8.32 1.00	10.60 0.00	0.00 13.33
Rhyacophila sp.	18.00	6.67	13.33	60.00	0.00	23.33	1.00	0.00	3.00	6.67	2.00	0.00	0.00
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp. Uenoidae (includes Oligophlebodes sp. ID'd)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	6.67 0.00	0.00 0.00	2.00 0.00	1.00 0.00	0.00 0.00	6.67 0.00	16.00 0.00	0.00 0.00	40.00 0.00
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Micrasema sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	13.33	0.00	0.00	0.00	3.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp. Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00 4.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 26.67								
Coleoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antocha sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dicranota sp. Hexatoma sp.	4.00 0.00	27.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	26.67 0.00	3.00 0.00	0.00 0.00	1.00 0.00	53.33 0.00	0.00 0.00	21.20 0.00	120.00 0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp. Gonomyodes sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	4.00	13.33	10.00	80.00	86.67	3.33	1.00	7.00	6.00	0.00	4.00	0.00	0.00
Psychodidae	0.00	0.00	0.00	0.00	6.67	0.00	3.00	1.00	1.00	0.00	12.00	1.30	0.00
Deuterophlebiidae Agathon sp.	0.00 0.00	6.67 0.00	0.00 0.00	56.67 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	1.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	4.00	20.00	3.33	30.00	13.33	73.33	4.00	6.00	8.00	153.33	28.00	9.30	0.00
Simuliidae (includes Prosimulium, Simuliidae pupae)	5.00	106.67	710.00	406.67	33.33	160.00	6.00	5.00	15.00	33.33	0.00	15.80	26.67
Tanytarsini (Tribe) Cladotanytarsus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Neostempellina sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellinella sp. Stempellina sp	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	3.00 0.00	0.00 0.00	0.00 4.00	0.00 0.00	0.00 0.00
Acricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brillia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cardiocladius sp. Chaetocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Corynoneura sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cricotopus/Orthocladius sp.	107.00	1173.33	800.00	386.67	1620.00	325.00	52.00	22.00	57.00	3346.67	361.00	142.80	1026.67
Diplocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00
Eukiefferiella sp. Heleniella sp.	65.00 0.00	0.00 0.00	116.67 0.00	66.67 0.00	13.33 0.00	21.67 0.00	34.00 0.00	8.00 0.00	3.00 0.00	440.00 0.00	2.00 0.00	24.00 0.00	386.67 0.00
Hydrobaenus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parorthocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 17.30	0.00 0.00
Synorthocladius sp. Thienemanniella sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	2.00	0.00 0.00	53.33 0.00	12.00 0.00	0.00	0.00
Tvetenia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Diamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	3.00	7.00	6.00	0.00	0.00	0.00	0.00
Pagastia sp. Pseudodiamesa sp.	49.00 0.00	520.00 0.00	466.67 0.00	620.00 0.00	346.67 0.00	660.00 0.00	29.00 0.00	0.00 0.00	93.00 0.00	613.33 0.00	172.00 0.00	227.80 0.00	2173.33 0.00
Potthastia longimana group	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tanypodinae	0.00	0.00	190.00	13.33	93.33	180.00	0.00	19.00	7.00	0.00	0.00	0.00	0.00
Syrphidae Stratiomyidae	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	K&S	Hess	Hess	Hess	Hess	Hess	K&S	K&S	K&S	Hess	K&S	K&S	Hess
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE	reference	exposed	reference	reference	reference	reference							
SAMPLE COD	NECK	R2aH	R2bH	R2cH	R2dH	R2eH	R2aK	R2bK	R2cK	R7H	R7aK	R7bK	FCH
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	26.67	4.00	0.00	13.33
Ostracoda	0.00	13.33	0.00	0.00	6.67	0.00	0.00	1.00	1.00	13.33	4.00	0.00	13.33
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	13.33	0.00	0.00	0.00	3.00	0.00	0.00	0.00	0.00
Oligochaeta	8.00	106.67	0.00	26.67	26.67	0.00	1.00	1.00	7.00	393.33	21.00	24.00	93.33
Nematoda	8.00	126.67	16.67	73.33	46.67	23.33	4.00	1.00	7.00	53.33	20.00	30.50	173.33
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	20.00	106.67	6.67	80.00	246.67	186.67	26.00	9.00	14.00	373.33	172.00	73.30	680.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	K&S	Hess	Hess	Hess	Hess	Hess	K&S	K&S	K&S	Hess	K&S	Hess	K&S
CAMPLE TYPE	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE SAMPLE COD	reference FCK	reference BLCaH	reference BLCbH	reference BLCcH	reference BLCdH	reference BLCeH	reference BLCaK	reference BLCbK	reference BLCcK	reference STCH	reference STCK	reference BECH	reference BECK
Ameletidae	20.00	0.00	0.00	3.33	0.00	0.00	1.00	5.00	0.00	0.00	0.00	0.00	0.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	4.00	6.67	33.33	23.33	13.33	16.67	7.00	11.00	18.60	10.00	0.00	66.67	30.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID) Leptophlebiidae	18.00 0.00	126.67 0.00	690.00 0.00	270.00 0.00	266.67 0.00	233.33 0.00	64.00 0.00	118.00 0.00	49.80 0.00	20.00 0.00	4.00 0.00	0.00 0.00	0.00 0.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID	36.00	266.67	100.00	86.67	80.00	173.33	9.00	37.00	37.00	6.67	4.00	0.00	0.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	14.49	20.00	76.67	73.33	112.94	160.30	4.05	20.96	8.11	13.33	2.20	0.00	0.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	2.07	26.67	66.67	40.00	70.59	170.32	2.03	2.10	16.02	6.67	1.10	53.33	0.00
Perlidae (includes Hesperoperla ID'd)	0.00 126.26	0.00 60.00	0.00 80.00	0.00 83.33	0.00 14.12	0.00 80.15	0.00 5.06	0.00 13.63	0.00 29.80	0.00 233.33	0.00 1.10	0.00 580.00	0.00 28.00
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID) Capniidae	31.05	393.33	296.67	410.00	268.24	455.87	55.71	189.73	122.04	270.00	6.60	0.00	0.00
Leuctridae	0.00	0.00	0.00	3.33	0.00	10.02	0.00	0.00	0.00	53.33	0.00	0.00	0.00
Taeniopterygidae (includes Taenionema sp. ID'd)	4.14	0.00	43.33	0.00	14.12	0.00	12.15	12.58	17.23	0.00	0.00	0.00	0.00
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	0.00	60.00	0.00	6.67	26.67	34.29	3.33	2.67	0.00	0.00	0.00	6.67	1.00
Rhyacophila sp. Wormaldia sp.	2.00 0.00	26.67 0.00	86.67 0.00	3.33 0.00	13.33 0.00	47.14 0.00	6.67 0.00	8.00 0.00	6.00 0.00	0.00 0.00	1.00 0.00	0.00 13.33	0.00 2.00
Wormalda sp. Glossosoma sp.	0.00	0.00	0.00	0.00	0.00	34.29	0.00	0.00	0.00	0.00	0.00	1213.33	100.00
Uenoidae (includes Oligophlebodes sp. ID'd)	0.00	107.00	20.00	13.33	13.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00	0.00
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	53.33	30.00	3.33	13.33	4.29	0.00	0.00	0.00	0.00	0.00	166.67	0.00
Micrasema sp. Brachycentrus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	220.00 313.33	0.00 43.00
Lepidostoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	2.00	0.00	3.33	16.67	13.33	0.00	0.00	2.67	2.00	0.00	0.00	0.00	0.00
Coleoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae Antocha sp.	0.00 0.00	6.67 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00						
Dicranota sp.	4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.00	0.00	0.00
Hexatoma sp.	0.00	8.14	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00
Limnophila sp.	0.00	16.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	16.67	0.00	13.33	0.00	0.00	0.00	0.00	6.67	0.00	0.00	0.00 0.00
Hesperoconopa sp. Gonomyodes sp.	0.00 0.00	16.27 0.00	0.00 0.00	3.33 0.00	0.00 0.00	26.67 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	0.00	53.33	0.00	46.67	0.00	6.67	0.00	4.00	0.00	3.33	1.00	0.00	0.00
Psychodidae	0.00	60.00	113.33	16.67	13.33	53.33	3.00	13.00	0.00	0.00	0.00	0.00	0.00
Deuterophlebiidae Agathon sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	3.33 0.00	1.00 0.00	0.00 0.00	0.00 0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	0.00	13.33	36.67	50.00	40.00	50.00	3.00	3.00	2.00	143.33	0.00	0.00	0.00
Simuliidae (includes Prosimulium, Simuliidae pupae)	0.00	0.00	0.00	0.00	13.33	0.00	3.00	3.00	0.00	3.33	0.00	846.67	49.00
Tanytarsini (Tribe)	4.00	0.00	0.00	0.00	66.67	53.33	0.00	0.00	0.00	0.00	0.00	633.33	0.00
Cladotanytarsus sp. Neostempellina sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	1280.00 0.00	51.00 0.00
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	233.33	0.00	40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	185.00
Stempellinella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellina sp Acricotopus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	133.33 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Brillia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cardiocladius sp.	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chaetocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Corynoneura sp. Cricotopus/Orthocladius sp.	120.00	6406.67	806.67	5480.00	3826.67	3506.67	41.00	371.00	288.80	6126.67	17.00	286.67	363.00
Diplocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eukiefferiella sp.	10.00	0.00	23.33	66.67	93.33	0.00	8.00	8.00	30.20	523.33	19.00	8506.67	89.00
Heleniella sp.	0.00 0.00	0.00	0.00	0.00	13.33	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00 0.00
Hydrobaenus sp. Parorthocladius sp.	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00							
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Synorthocladius sp.	0.00	0.00	0.00	0.00	0.00	53.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Thienemanniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tvetenia sp. Diamesa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Pagastia sp.	74.00	693.33	0.00	0.00	106.67	26.67	0.00	2.00	18.40	73.33	0.00	0.00	32.00
Pseudodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.00
Prodiamesa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00
Tanypodinae Syrphidae	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	2020.00 0.00	18.00 0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	3.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	K&S	Hess	Hess	Hess	Hess	Hess	K&S	K&S	K&S	Hess	K&S	Hess	K&S
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE	reference												
SAMPLE COD	E FCK	BLCaH	BLCbH	BLCcH	BLCdH	BLCeH	BLCaK	BLCbK	BLCcK	STCH	STCK	BECH	BECK
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ostracoda	0.00	106.67	13.33	13.33	0.00	0.00	2.00	2.00	0.00	0.00	0.00	1033.33	32.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	53.33	0.00
Oligochaeta	0.00	186.67	256.67	26.67	26.67	30.00	2.00	2.00	0.00	283.33	12.00	1133.33	85.00
Nematoda	8.00	60.00	40.00	20.00	0.00	26.67	1.00	3.00	8.00	6.67	2.00	46.67	6.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	3.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	26.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	110.00	346.67	20.00	230.00	213.33	270.00	4.00	42.00	4.00	276.67	12.00	753.33	113.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	Hess	K&S	Hess	K&S	Hess	K&S	Hess	K&S	AS	AS	AS	AS	AS
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE SAMPLE CODE	reference HOCH	reference HOCK	reference GRCH	reference GRCK	reference BTTH	reference BTTK	reference BUCH	reference BUCK	exposed X2aA	exposed X2bA	exposed X2cA	exposed X2dA	exposed X2eA
Ameletidae	0.00	0.00	0.00	0.00	0.00	64.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	253.33	32.00	6.67	7.00	1933.33	437.00	260.00	365.00	36.00	48.00	8.00	38.00	144.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	30.00	2.00	16.67	2.00	0.00	32.00	330.00	480.00	0.00	40.00	8.00	2.00	16.00
Leptophlebiidae	0.00	0.00	0.00	0.00	133.33	373.00	6.67	0.00	0.00	0.00	0.00	0.00	0.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID	196.67 7.19	8.00 0.00	0.00 0.00	0.00 0.00	0.00 133.33	0.00 0.00	116.67 116.67	85.00 20.37	68.00 0.00	40.00 0.00	4.00 0.00	0.00 0.00	32.00 0.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	14.38	0.00	3.33	0.00	0.00	0.00	10.00	5.09	0.00	0.00	0.00	0.00	0.00
Perlidae (includes Hesperoperla ID'd)	0.00	0.00	0.00	0.00	0.00	594.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	208.56	4.31	20.00	9.33	500.00	396.81	230.00	417.59	263.31	429.09	24.00	36.00	329.00
Capniidae	28.77	4.31	16.67	9.33	566.67	0.00	86.67	15.28	8.23	42.91	0.00	4.00	28.20
Leuctridae Taeniopterygidae (includes Taenionema sp. ID'd)	0.00 197.77	0.00 19.38	0.00 50.00	0.00 9.33	0.00 0.00	0.00 0.00	33.33 96.67	5.09 86.57	0.00 16.46	0.00 0.00	0.00 0.00	0.00 0.00	0.00 18.80
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	143.33	0.00	10.00	0.00	0.00	0.00	130.00	95.00	0.00	0.00	0.00	16.00	0.00
Rhyacophila sp.	3.33	2.00	0.00	0.00	0.00	0.00	3.33	0.00	4.00	0.00	0.00	18.00	16.00
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp.	20.00	0.00	13.33	0.00	0.00	0.00	43.33	20.00	0.00	16.00	0.00	0.00	0.00
Uenoidae (includes Oligophlebodes sp. ID'd) Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
Micrasema sp.	0.00	0.00	0.00	0.00	0.00	103.80	0.00	0.00	0.00	0.00	0.00	0.00	8.00
Brachycentrus sp.	3.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp.	0.00	0.00	0.00	0.00	0.00	103.80	6.67	0.00	0.00	0.00	0.00	0.00	0.00
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00	0.00	0.00	0.00	266.67	644.41	0.00	0.00	0.00	24.00	0.00	0.00	0.00
Coleoptera Dytiscidae	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
Antocha sp.	0.00	0.00	0.00	0.00	2033.33	128.00	43.33	0.00	0.00	0.00	0.00	0.00	0.00
Dicranota sp.	6.67	0.00	0.00	0.00	133.33	96.00	10.00	5.00	0.00	0.00	0.00	0.00	8.00
Hexatoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	3.33	0.00	0.00	0.00	0.00	0.00	0.00
Limnophila sp.	13.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp. Hesperoconopa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	3.33 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Gonomyodes sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tipula śp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	3.33	0.00	3.33	0.00	0.00	0.00	16.67	0.00	0.00	0.00	0.00	0.00	8.00
Psychodidae Psychodidae	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	5.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	8.00 0.00
Deuterophlebiidae Agathon sp.	0.00	1.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	36.67	1.00	6.67	1.00	1266.67	330.00	6.67	0.00	0.00	16.00	0.00	0.00	0.00
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	33.33	1.00	26.67	2.00	133.33	0.00	53.33	20.00	76.00	88.00	4.00	56.00	224.00
Tanytarsini (Tribe)	0.00	0.00	0.00	0.00	0.00	1120.00	3.33	0.00	0.00	0.00	0.00	0.00	16.00
Cladotanytarsus sp. Neostempellina sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	0.00	0.00	0.00	2333.33	0.00	10.00	20.00	0.00	0.00	0.00	0.00	0.00
Stempellinella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellina sp	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acricotopus sp. Brillia sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
Cardiocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chaetocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Corynoneura sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	0.00	13.58
Cricotopus/Orthocladius sp. Diplocladius sp.	260.00 0.00	2.00 0.00	170.00 0.00	2.00 0.00	0.00 0.00	610.12 0.00	165.61 0.00	110.00 0.00	785.33 0.00	1176.00 0.00	768.00 0.00	319.41 0.00	3734.88 0.00
Eukiefferiella sp.	491.11	14.00	150.00	12.00	2076.11	0.00	10.35	25.00	0.00	336.00	40.00	142.59	855.63
Heleniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parorthocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheocricotopus sp. Synorthocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
Thienemanniella sp.	28.89	0.00	0.00	0.00	0.00	0.00	6.90	0.00	31.59	24.00	28.00	0.00	54.33
Tvetenia sp.	0.00	0.00	0.00	0.00	16357.22	8201.88	13.80	0.00	27.08	0.00	0.00	0.00	13.58
Diamesa sp.	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	952.00	448.00	132.00	360.00	720.00
Pagastia sp.	56.67	0.00	0.00	0.00	0.00	0.00	0.00	10.00	700.00	536.00	240.00	212.00	2960.00
Pseudodiamesa sp. Potthastia longimana group	0.00 0.00	0.00 0.00	0.00 3.33	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Prodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tanypodinae	0.00	0.00	0.00	0.00	0.00	533.00	6.67	0.00	0.00	0.00	0.00	0.00	0.00
Syrphidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	Hess	K&S	Hess	K&S	Hess	K&S	Hess	K&S	AS	AS	AS	AS	AS
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE	reference	exposed	exposed	exposed	exposed	exposed							
SAMPLE COD	E HOCH	HOCK	GRCH	GRCK	BTTH	BTTK	BUCH	BUCK	X2aA	X2bA	X2cA	X2dA	X2eA
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ostracoda	0.00	1.00	0.00	0.00	100.00	0.00	6.67	5.00	0.00	0.00	0.00	0.00	0.00
Cladocera	0.00	0.00	0.00	0.00	133.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	1.00	0.00	0.00	1833.33	384.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oligochaeta	30.00	7.00	3.33	1.00	2733.33	831.00	0.00	10.00	4.00	16.00	4.00	4.00	32.00
Nematoda	0.00	0.00	3.33	2.00	2400.00	245.00	6.67	0.00	36.00	48.00	4.00	16.00	112.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	400.00	0.00	3.33	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	233.33	245.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	73.33	2.00	3.33	3.00	1766.67	277.00	50.00	15.00	100.00	96.00	52.00	48.00	216.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE SAMPLE CODE	minimally exposed mir R1aA	nimally exposedmi R1bA	nimally exposed R1cA	exposed R2aA	exposed R2bA	exposed R2cA	exposed R2dA	exposed R2eA	exposed R3aA	exposed R3bA	exposed R3cA	exposed R4aA	exposed R4bA
Ameletidae	0.00	0.00	0.00	0.00	1.00	4.60	0.00	0.00	0.00	0.00	0.00	0.00	15.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	34.00	40.00	73.00	88.40	45.00	53.30	441.00	684.00	824.00	536.00	1024.00	15.60	78.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID) Leptophlebiidae	0.00 0.00	0.00 0.00	0.00 0.00	6.50 0.00	6.00 0.00	7.20 0.00	65.00 0.00	40.00 0.00	16.00 0.00	95.00 0.00	72.00 0.00	153.40 0.00	510.00 0.00
Ephemerellidae (includes various Drunella sp. also Serratella, Ephemerella sp., Ephemerellidae UID	4.00	5.00	15.00	1.30	4.00	1.30	24.00	60.00	32.00	40.00	20.00	23.40	130.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.98	21.32
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	0.00	0.00	14.36	12.90	9.00	1.52	12.92	8.00	8.26	15.42	32.37	21.55	50.76
Perlidae (includes Hesperoperla ID'd) Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.00 76.26	0.00 161.00	0.00 229.74	0.00 83.97	0.00 7.71	0.00 12.40	18.09 229.95	0.00 272.00	8.26 446.16	0.00 143.16	0.00 226.60	0.00 192.92	0.00 333.02
Capniidae	19.06	0.00	7.18	6.33	1.29	12.98	45.21	52.00	41.31	113.43	89.02	296.74	258.90
Leuctridae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Taeniopterygidae (includes Taenionema sp. ID'd) Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	16.68 0.00	0.00 0.00	28.72 0.00	0.00 0.00	0.00 0.00	0.00 0.00	25.84 33.00	0.00 36.00	0.00 8.00	0.00 10.00	0.00 0.00	0.00 5.20	0.00 0.00
Rhyacophila sp.	0.00	8.00	16.00	0.00	0.00	4.00	42.00	0.00	0.00	5.00	4.00	0.00	0.00
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uenoidae (includes Oligophlebodes sp. ID'd) Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Micrasema sp.	2.00	5.00	0.00	1.30	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.00
Lepidostoma sp. Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 8.00	0.00 0.00	0.00 3.30	0.00 21.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Coleoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antocha sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dicranota sp. Hexatoma sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	8.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	5.00 0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00	0.00	5.00	0.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp. Gonomyodes sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	0.00	10.00	0.00	0.00	0.00	0.00	4.00	0.00	8.00	0.00	16.00	5.20	0.00
Psychodidae Psychodidae	0.00 0.00	16.00 0.00	0.00	2.60 0.00	0.00 0.00	0.00	10.00 0.00	8.00 0.00	16.00	20.00 0.00	8.00 0.00	26.20 0.00	5.00
Deuterophlebiidae Agathon sp.	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	0.00	13.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	2.60	0.00
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	76.00	73.00	120.00	24.70	15.00	9.10	29.00	152.00	112.00	80.00	132.00	2.60	25.00
Tanytarsini (Tribe) Cladotanytarsus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	71.50 0.00	125.00 0.00	136.00 0.00	136.00 0.00	55.44 0.00	248.00 0.00	0.00 0.00	0.00 0.00
Neostempellina sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp. Stempellinella sp.	0.00 0.00	15.00 0.00	40.00 0.00	0.00 0.00	2.18 0.00	0.00 0.00	19.00 0.00						
Stempellina sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brillia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cardiocladius sp. Chaetocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Corynoneura sp.	0.00	0.00	0.00	0.00	3.27	1.30	0.00	0.00	0.00	0.00	0.00	5.20	5.00
Cricotopus/Orthocladius sp.	76.00	160.00	101.99	36.40	38.20	104.00	410.00	335.53	664.00	145.14	252.00	44.20	153.00
Diplocladius sp. Eukiefferiella sp.	0.00 90.00	55.00 1065.00	0.00 1127.01	0.00 69.50	0.00 73.13	0.00 36.50	0.00 75.00	0.00 162.35	0.00 200.00	0.00 115.91	0.00 144.00	0.00 26.20	0.00 4.00
Heleniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parorthocladius sp. Rheocricotopus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Synorthocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Thienemanniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tvetenia sp.	0.00	0.00	0.00	0.00	0.00	13.00	35.00	54.12	152.00	125.99	96.00	39.00	45.00
Diamesa sp. Pagastia sp.	56.00 334.00	0.00 325.00	0.00 168.00	9.10 152.50	9.82 51.30	0.00 60.00	33.00 189.00	24.00 244.00	0.00 224.00	0.00 60.48	0.00 132.00	0.00 127.80	0.00 82.00
Pseudodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group	0.00	0.00	0.00	1.30	0.00	2.60	0.00	0.00	8.00	5.04	0.00	0.00	5.00
Prodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tanypodinae Syrphidae	0.00 0.00	0.00 0.00	0.00 0.00	39.00 0.00	13.10 0.00	14.50 0.00	15.00 0.00	80.00 0.00	0.00 0.00	0.00 0.00	24.00 0.00	0.00 0.00	0.00 0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE	minimally exposed m	nimally exposed m	inimally exposed	exposed									
SAMPLE COD	E R1aA	R1bA	R1cA	R2aA	R2bA	R2cA	R2dA	R2eA	R3aA	R3bA	R3cA	R4aA	R4bA
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	2.00	30.00	5.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	2.60	5.00
Ostracoda	0.00	0.00	0.00	0.00	0.00	2.60	14.00	0.00	0.00	0.00	0.00	0.00	5.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oligochaeta	32.00	0.00	0.00	5.20	1.00	2.00	10.00	12.00	40.00	20.00	12.00	13.00	19.00
Nematoda	6.00	15.00	0.00	2.60	0.00	4.60	4.00	16.00	8.00	10.00	148.00	10.40	10.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	32.00	35.00	35.00	79.50	19.00	13.00	165.00	224.00	208.00	80.00	128.00	57.40	113.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	5.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS									
CAMDLE TYPE	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE SAMPLE CODI	exposed R4cA	exposed R4dA	exposed R4eA	exposed R5aA	exposed R5bA	exposed R5cA	exposed R6aA	exposed R6bA	exposed R6cA	reference R7aA	reference R7bA	reference R7cA	reference R7dA
Ameletidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	228.00	1320.00	240.00	102.00	13.00	5.00	524.00	536.00	61.20	32.00	72.00	6.00	272.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID) Leptophlebiidae	332.00 0.00	920.00 0.00	188.00 0.00	28.00 0.00	8.50 0.00	1.00 0.00	169.29 0.00	184.00 0.00	87.40 0.00	336.00 0.00	80.00 0.00	49.00 0.00	160.00 0.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID	28.00	136.00	108.00	40.00	19.60	6.00	185.42	160.00	85.00	120.00	152.00	20.00	256.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	12.21	8.07	0.00	2.00	0.00	0.00	0.00	0.00	0.00	16.00	0.00	1.05	0.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	8.14	113.01	24.00	8.00	4.17	0.00	8.24	24.57	8.21	24.00	16.88	4.21	32.00 0.00
Perlidae (includes Hesperoperla ID'd) Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.00 256.50	0.00 1081.66	0.00 412.00	0.00 198.00	0.00 125.88	0.00 34.00	0.00 1162.39	0.00 900.95	0.00 248.54	0.00 1440.00	0.00 2033.44	0.00 162.95	2960.00
Capniidae	179.14	589.26	144.00	16.00	5.57	0.00	164.88	98.29	51.98	224.00	84.38	71.49	0.00
Leuctridae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Taeniopterygidae (includes Taenionema sp. ID'd) Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	0.00 8.00	0.00 40.00	0.00 8.00	8.00 18.00	2.78 19.10	0.00 3.00	16.49 104.00	8.19 64.00	5.47 31.80	0.00 16.00	25.31 0.00	6.31 0.00	96.00 16.00
Rhyacophila sp.	0.00	16.00	8.00	0.00	0.00	0.00	0.00	8.00	0.00	8.00	0.00	1.00	16.00
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp.	4.00	0.00	4.00	0.00	0.00	0.00	0.00	8.00	5.20	0.00	0.00	0.00	0.00
Uenoidae (includes Oligophlebodes sp. ID'd) Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00									
Micrasema sp.	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	16.00	8.00	2.00	0.00	0.00	0.00	8.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp.	0.00 4.00	0.00 0.00	0.00 8.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 8.00	0.00 0.00	0.00 0.00	0.00 16.00
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam) Coleoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antocha sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dicranota sp.	4.00 0.00	0.00 0.00	4.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	32.00 0.00	0.00	16.00 0.00
Hexatoma sp. Limnophila sp.	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gonomyodes sp. Tipula sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00									
Bezzia/Palpomyia sp.	4.00	32.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Psychodidae	8.00	96.00	28.00	8.00	2.00	0.00	16.00	8.00	5.20	24.00	16.00	4.00	16.00
Deuterophlebiidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Agathon sp. Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 1.00	0.00 8.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 8.00	0.00 2.00	0.00 0.00
Simuliidae (includes Prosimulium, Simuliidae pupae)	40.00	192.00	52.00	70.00	19.00	13.00	344.00	360.00	229.20	0.00	96.00	1.00	352.00
Tanytarsini (Tribe)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cladotanytarsus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00
Neostempellina sp. Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	80.00	52.00	40.00	22.20	21.00	24.00	16.00	5.20	374.20	31.12	2.00	0.00
Stempellinella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellina sp Acricotopus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00									
Brillia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cardiocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chaetocladius sp.	0.00 0.00	0.00 0.00	0.00 4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 31.18	0.00	0.00	0.00 0.00
Corynoneura sp. Cricotopus/Orthocladius sp.	46.00	248.00	92.00	0.00 30.00	2.00 52.10	0.00 56.00	0.00 0.00	0.00 56.00	0.00 0.00	1091.43	0.00 871.34	0.00 18.00	443.23
Diplocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eukiefferiella sp.	8.36	288.00	36.00	98.00	11.80	12.00	168.21	88.00	35.25	0.00	0.00	0.00	460.28
Heleniella sp. Hydrobaenus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 86.00	0.00 230.10	0.00 117.00	0.00 265.60	0.00 0.00	0.00 0.00	0.00 31.18	0.00 0.00	0.00 0.00	0.00 0.00
Parorthocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	31.18	0.00	0.00	0.00
Synorthocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Thienemanniella sp. Tvetenia sp.	0.00 8.36	0.00 192.00	0.00 20.00	0.00 44.00	0.00 13.00	0.00 15.00	0.00 230.19	0.00 104.00	0.00 67.55	0.00 1044.65	0.00 2022.75	0.00 51.00	0.00 3784.49
Diamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pagastia sp.	121.27	744.00	128.00	138.00	29.90	34.00	152.00	80.00	40.40	452.16	466.79	27.00	208.00
Pseudodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group Prodiamesa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00									
Tanypodinae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Syrphidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	8.00	0.00	4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS									
	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008
SAMPLE TYPE	exposed	reference	reference	reference	reference								
SAMPLE CODE	R4cA	R4dA	R4eA	R5aA	R5bA	R5cA	R6aA	R6bA	R6cA	R7aA	R7bA	R7cA	R7dA
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ostracoda	0.00	16.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	2.60	0.00	0.00	1.00	0.00
Oligochaeta	4.00	16.00	16.00	2.00	2.00	0.00	8.00	0.00	2.60	16.00	56.00	0.00	16.00
Nematoda	12.00	48.00	0.00	2.00	3.30	0.00	8.00	8.00	4.00	0.00	64.00	2.00	48.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	6.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	72.00	200.00	136.00	100.00	36.40	36.00	72.00	48.00	39.00	424.00	256.00	61.00	448.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess
OANDLE TYPE	2008	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
SAMPLE TYPE SAMPLE CODE	reference R7eA	reference VRH7	reference USFRH7	reference NECH7	reference V1aH	reference V1bH	reference V1cH	reference V1dH	reference V1eH	exposed V27aH	exposed V27bH	exposed V27cH	exposed V27dH
Ameletidae	0.00	41.89	33.00	53.00	107.00	0.00	47.03	27.00	27.00	93.00	27.00	13.00	60.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	48.00	69.12	507.00	7.00	200.00	270.00	136.10	63.00	200.00	800.00	800.00	493.00	710.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID) Leptophlebiidae	88.00 0.00	21.99 0.00	153.00 0.00	520.00 0.00	2266.00 0.00	1464.00 0.00	1944.43 0.00	1290.00 0.00	2077.00 0.00	3320.00 0.00	3599.00 0.00	1613.00 0.00	2970.00 0.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID	136.00	0.00	713.00	33.00	83.00	166.00	16.01	34.00	133.00	27.00	80.00	13.00	10.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	0.00	27.00	20.21	248.64	947.00	133.00	276.86	193.01	234.22	266.38	320.00	307.00	354.00
Periodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Periodidae UID)	16.36	0.00	73.75	7.25	7.00	3.00	0.00	7.81	3.02	0.00	0.00	0.00	3.00
Perlidae (includes Hesperoperla ID'd) Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.00 1112.45	0.00 7.00	0.00 566.77	0.00 48.69	0.00 490.00	0.00 320.00	0.00 290.71	0.00 594.64	0.00 456.38	0.00 958.24	0.00 1107.00	0.00 226.00	0.00 960.00
Capniidae	319.01	27.00	20.21	48.69	1097.00	430.00	775.21	487.54	626.27	1069.04	853.00	680.00	680.00
Leuctridae	0.00	0.00	7.07	20.72	0.00	53.00	51.22	0.00	20.11	345.34	173.00	40.00	77.00
Taeniopterygidae (includes Taenionema sp. ID'd) Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Hydropsychidae juv/dam)	8.18 0.00	0.00 0.00	0.00 33.00	0.00 20.00	0.00 43.00	0.00 7.00	0.00 27.00	0.00 20.00	0.00 24.60	0.00 185.35	0.00 106.00	0.00 0.00	0.00 42.79
Rhyacophila sp.	8.00	0.00	0.00	160.00	23.00	3.00	13.00	77.00	32.09	167.70	120.00	124.33	71.31
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp. Uenoidae (includes Oligophlebodes sp. ID'd)	8.00 0.00	0.00 0.00	20.00 0.00	0.00 0.00	0.00 0.00	107.00 0.00	53.00 0.00	43.00 0.00	114.44 0.00	806.96 0.00	667.00 0.00	248.67 0.00	688.90 0.00
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Micrasema sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp. Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00 0.00	0.00 0.00	0.00 0.00	0.00 7.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 28.88	0.00 0.00	0.00 147.00	0.00 0.00	0.00 0.00
Coleoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00
Antocha sp. Dicranota sp.	0.00 0.00	0.00 0.00	0.00 20.00	0.00 20.00	0.00 0.00	0.00 53.00	0.00 0.00	0.00 0.00	0.00 17.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 3.00
Hexatoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp. Gonomyodes sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Psychodidae Deuterophlebiidae	16.00 0.00	7.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	13.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Agathon sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	0.00	13.00	20.00	0.00	3.00	0.00	7.00	0.00	3.00	1507.00	1626.00	533.00	1010.00
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae) Tanytarsini (Tribe)	16.00 0.00	27.00 7.00	0.00 0.00	0.00 0.00	13.00 0.00	0.00 0.00	3.00 13.00	0.00 0.00	7.00 0.00	0.00 13.00	0.00 27.00	0.00 53.00	34.00 0.00
Cladotanytarsus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Neostempellina sp.	0.00	0.00	127.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pseudochironomus sp.	0.00 0.00	0.00 0.00	73.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Rheotanytarsus sp. Stempellinella sp.	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellina sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brillia sp. Cardiocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	62.41 0.00	0.00 0.00	0.00 0.00	0.00 0.00	30.23 0.00	0.00 0.00	0.00 0.00
Chaetocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.23	67.00	30.23	0.00	0.00
Corynoneura sp.	0.00	0.00	13.00	25.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cricotopus/Orthocladius sp. Diplocladius sp.	400.00 0.00	0.00 0.00	113.00 0.00	42.49 0.00	1265.86 0.00	860.00 0.00	570.98 0.00	1400.00 0.00	1718.42 0.00	187.00 0.00	372.04 0.00	160.00 0.00	70.71 0.00
Eukiefferiella sp.	56.00	633.00	153.00	137.77	2207.14	427.00	176.61	450.00	542.35	13.00	186.02	0.00	0.00
Heleniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp. Parorthocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 30.23	0.00 0.00	0.00 0.00
Rheocricotopus sp.	0.00	0.00	133.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Synorthocladius sp.	0.00	0.00	27.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	57.86
Thienemanniella sp.	0.00	0.00	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tvetenia sp. Diamesa sp.	1160.00 0.00	0.00 1100.00	0.00 0.00	93.99 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	216.25 0.00	0.00 0.00	171.43 0.00
Pagastia sp.	128.00	0.00	0.00	33.00	27.00	267.00	27.00	167.00	113.00	0.00	0.00	0.00	0.00
Pseudodiamesa sp.	0.00	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group Prodiamesa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tanypodinae	0.00	0.00	13.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.00
Syrphidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	Hess	Hess	Hess	Hess	Hess							
	2008	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
SAMPLE TYPE	reference	exposed	exposed	exposed	exposed								
SAMPLE COD	E R7eA	VRH7	USFRH7	NECH7	V1aH	V1bH	V1cH	V1dH	V1eH	V27aH	V27bH	V27cH	V27dH
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.00	0.00
Collembola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ostracoda	0.00	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oligochaeta	16.00	40.00	7.00	7.00	0.00	53.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00
Nematoda	72.00	7.00	67.00	13.00	27.00	0.00	3.00	0.00	3.00	40.00	13.00	0.00	0.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	440.00	7.00	100.00	60.00	0.00	53.00	140.00	81.00	186.00	106.00	26.00	13.00	137.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	AS	AS
	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
SAMPLE TYPE SAMPLE CODE	exposed V27eH	exposed V5aH	exposed V5bH	exposed V5cH	exposed V5dH	exposed V5eH	exposed V8aH	exposed V8bH	exposed V8cH	exposed V8dH	exposed V8eH	reference V1aA	reference V1bA
Ameletidae	83.00	0.00	0.00	0.00	0.00	0.00	13.00	0.00	0.00	0.00	0.00	0.00	22.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	1040.00	16.00	7.00	20.00	60.00	7.00	93.00	0.00	80.00	80.00	60.00	9.00	1.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	2384.00	36.00	73.00	87.00	73.00	140.00	334.00	173.00	186.00	214.00	226.00	45.00	32.00
Leptophlebiidae	0.00 133.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 27.00	0.00 27.00	0.00 13.00	0.00	0.00 13.00	0.00 2.00	0.00 3.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID) Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	177.00	5.16	86.63	0.00 69.38	56.27	77.67	46.36	73.63	174.36	0.00 39.26	8.77	2.00 1.15	1.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	0.00	0.00	11.25	3.65	3.59	0.00	23.18	0.00	0.00	0.00	0.00	0.00	0.00
Perlidae (includes Hesperoperla ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	1230.00	46.43	48.38	20.69	51.48	29.77	212.19	171.20	271.71	466.76	159.15	39.23	3.00
Capniidae	677.00	218.41	109.13	203.27	323.27 8.38	112.62	879.08	883.60	581.20 425.73	271.91	291.99	3.46	4.00
Leuctridae Taeniopterygidae (includes Taenionema sp. ID'd)	40.00 0.00	0.00 0.00	41.63 0.00	0.00 0.00	0.00	12.94 0.00	23.18 0.00	97.56 0.00	0.00	77.07 0.00	25.06 109.03	0.00 1.15	0.00 0.00
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	188.00	30.08	11.25	0.00	48.77	21.92	30.90	27.82	28.55	27.00	46.75	2.83	0.00
Rhyacophila sp.	99.11	109.81	45.00	70.99	81.77	62.48	106.43	99.50	140.62	187.00	108.69	5.67	0.00
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp. Uenoidae (includes Oligophlebodes sp. ID'd)	844.99 0.00	15.04 0.00	25.88 0.00	66.01 0.00	110.46 0.00	29.60 0.00	30.90 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	8.50 0.00	2.00 0.00
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	0.00	0.00	0.00	0.00	0.00	14.88	28.89	42.29	187.00	8.18	0.00	0.00
Micrasema sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	135.89	24.07	7.88	0.00	0.00	0.00	30.90	42.80	28.55	0.00	23.38	0.00	0.00
Coleoptera Dytiscidae	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Antocha sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dicranota sp.	27.00	10.00	0.00	0.00	7.00	7.00	0.00	27.00	0.00	27.00	7.00	0.00	0.00
Hexatoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp. Hesperoconopa sp.	0.00 27.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 20.00	3.00 0.00	0.00 0.00	13.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 1.00	0.00 0.00
Gonomyodes sp.	0.00	13.00	0.00	0.00	3.00	13.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Psychodidae	7.00	20.00	0.00	7.00	10.00	3.00	0.00	0.00	0.00	27.00	7.00	0.00	0.00
Deuterophlebiidae Agathon sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	926.00	33.00	10.00	13.00	3.00	3.00	66.00	13.00	174.00	160.00	67.00	0.00	0.00
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	53.00	7.00	3.00	3.00	0.00	27.00	40.00	0.00	0.00	0.00	0.00	0.00	0.00
Tanytarsini (Tribe)	30.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cladotanytarsus sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Neostempellina sp. Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellinella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stempellina sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acricotopus sp. Brillia sp.	55.91 233.99	0.00 0.00	0.00 0.00	0.00 0.00	0.00 2.46	0.00 0.00							
Cardiocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chaetocladius sp.	6.21	0.00	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	120.00	0.00	0.00
Corynoneura sp.	0.00	0.00	0.00	0.00	0.00	0.00	13.00	0.00	0.00	0.00	0.00	0.00	1.00
Cricotopus/Orthocladius sp.	14.49	729.43	297.00	163.00	333.00	264.56	5000.00	4067.00	2998.21	5387.00	880.00	20.92	6.00
Diplocladius sp. Eukiefferiella sp.	0.00 0.00	0.00 166.57	0.00 43.00	0.00 20.00	0.00 47.00	0.00 138.27	0.00 427.00	0.00 80.00	0.00 0.00	0.00 0.00	0.00 13.00	0.00 8.62	0.00 3.00
Heleniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parorthocladius sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Synorthocladius sp. Thienemanniella sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	68.79 0.00	27.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tvetenia sp.	275.40	0.00	0.00	0.00	0.00	51.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Diamesa sp.	0.00	67.00	30.00	17.00	57.00	33.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
Pagastia sp.	0.00	17.00	13.00	7.00	40.00	7.00	40.00	0.00	0.00	0.00	0.00	0.00	0.00
Pseudodiamesa sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group Prodiamesa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tanypodinae	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.00	0.00	0.00	0.00	0.00
Syrphidae	0.00	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratiomyidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	Hess	AS	AS
	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
SAMPLE TYPE	exposed	exposed	exposed	exposed	exposed	exposed	exposed	exposed	exposed	exposed	exposed	reference	reference
SAMPLE	CODE V27eH	V5aH	V5bH	V5cH	V5dH	V5eH	V8aH	V8bH	V8cH	V8dH	V8eH	V1aA	V1bA
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	0.00	7.00	3.00	7.00	7.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ostracoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oligochaeta	0.00	193.00	23.00	7.00	273.00	127.00	0.00	0.00	0.00	0.00	7.00	0.00	0.00
Nematoda	30.00	0.00	7.00	3.00	10.00	10.00	227.00	67.00	120.00	187.00	33.00	0.00	0.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.00	27.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	268.00	87.00	34.00	46.00	17.00	13.00	306.00	320.00	279.00	267.00	106.00	7.00	0.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
O MINISTERS	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
SAMPLE TYPE SAMPLE CODE	reference V1cA	reference V1dA	reference V1eA	exposed V5aA	exposed V5bA	exposed V5cA	exposed V5dA	exposed V5eA	exposed V27aA	exposed V27bA	exposed V27cA	exposed V27eA	exposed V27dA
Ameletidae	0.00	3.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00	1.00	4.00	0.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	16.00	25.00	368.00	0.00	24.00	0.00	4.00	32.00	24.00	36.00	41.00	9.00	370.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID) Leptophlebiidae	49.00 0.00	71.00 0.00	81.00 0.00	16.00 0.00	72.00 0.00	18.00 0.00	25.00 0.00	23.00 0.00	226.00 0.00	135.00 0.00	103.00 0.00	8.00 0.00	149.00 0.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID	0.00	6.00	0.00	24.00	0.00	0.00	0.00	0.00	3.00	9.00	3.00	1.00	0.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	8.48	0.00	0.00	0.00	8.47	0.00	3.26	75.36	4.51	1.49	1.09	1.01	0.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	19.08	6.67	4.52	0.00	0.00	1.93 0.00	4.89	2.36	3.38	2.98	1.09	0.00	3.47
Perlidae (includes Hesperoperla ID'd) Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.00 167.48	0.00 90.00	0.00 298.29	0.00 665.93	0.00 401.07	297.95	0.00 52.21	0.00 219.02	0.00 465.50	0.00 41.69	0.00 50.11	0.00 70.96	0.00 475.53
Capniidae	16.96	26.67	27.12	127.46	307.86	201.21	13.05	414.49	24.80	10.42	4.36	2.03	0.00
Leuctridae	0.00	0.00	0.00	0.00	11.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Taeniopterygidae (includes Taenionema sp. ID'd) Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	0.00 16.00	6.67 20.00	18.08 17.00	2.60 56.00	11.30 50.00	61.91 24.00	19.58 13.00	11.78 90.00	166.81 124.46	10.42 38.00	4.36 18.61	0.00 24.13	0.00 63.69
Rhyacophila sp.	4.00	3.00	19.00	176.00	152.00	177.00	36.00	339.00	134.50	30.00	10.34	11.49	47.08
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glossosoma sp.	4.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 2.00	0.00 0.00	5.02 0.00	63.00 10.00	29.98 2.07	13.79 0.00	33.23 0.00
Uenoidae (includes Oligophlebodes sp. ID'd) Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Micrasema sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp. Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00 0.00	0.00 0.00	0.00 2.00	0.00 8.00	0.00 2.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 4.01	0.00 0.00	0.00 0.00	0.00 4.60	0.00 0.00
Coleoptera	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dytiscidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Antocha sp. Dicranota sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 24.00	0.00 2.00	0.00 2.00	0.00 1.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Hexatoma sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp. Gonomyodes sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Psychodidae Deuterophlebiidae	8.00 0.00	0.00 0.00	8.00 0.00	10.00 0.00	26.00 0.00	136.00 0.00	6.00 0.00	176.00 0.00	2.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Agathon sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	0.00	0.00	8.00	8.00	0.00	16.00	0.00	32.00	2.00	4.00	2.00	4.00	26.00
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae) Tanytarsini (Tribe)	8.00 0.00	0.00 0.00	28.00 0.00	126.00 0.00	62.00 0.00	8.00 0.00	4.00 0.00	68.00 0.00	33.00 0.00	8.00 0.00	7.00 0.00	6.00 0.00	137.00 0.00
Cladotanytarsus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Neostempellina sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp. Stempellinella sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Stempellina sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Acricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Brillia sp. Cardiocladius sp.	28.00 0.00	38.06 0.00	41.80 0.00	218.86 0.00	56.00 0.00	35.00 0.00	2.00 0.00	0.00 0.00	2.00 0.00	1.00 0.00	3.00 0.00	9.00 0.00	64.00 0.00
Chaetocladius sp.	0.00	94.43	0.00	0.00	0.00	236.00	8.00	241.00	0.00	3.00	0.00	0.00	0.00
Corynoneura sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cricotopus/Orthocladius sp. Diplocladius sp.	66.00 0.00	40.87 0.00	184.49 0.00	380.63 0.00	138.00 0.00	72.00 0.00	6.00 0.00	32.00 0.00	2.00 0.00	1.00 0.00	29.00 0.00	14.00 0.00	0.00 0.00
Eukiefferiella sp.	32.00	5.64	80.71	294.99	0.00	24.00	14.00	82.00	7.00	6.00	21.00	8.00	224.00
Heleniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp. Parorthocladius sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Synorthocladius sp.	0.00	0.00	0.00	0.00	48.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Thienemanniella sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tvetenia sp. Diamesa sp.	0.00 0.00	0.00 4.00	0.00 0.00	9.52 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	8.00 0.00	0.00 0.00
Pagastia sp.	5.00	6.00	32.00	0.00	82.00	0.00	0.00	0.00	0.00	0.00	2.00	1.00	48.00
Pseudodiamesa sp.	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group Prodiamesa sp.	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Tanypodinae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Syrphidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratiomyidae	0.00	0.00	0.00	0.00	2.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS
	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
SAMPLE TYPE	reference	reference	reference	exposed									
SAMPLE CODE	V1cA	V1dA	V1eA	V5aA	V5bA	V5cA	V5dA	V5eA	V27aA	V27bA	V27cA	V27eA	V27dA
Hemiptera (includes Corixidae ID'd)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Collembola	0.00	0.00	0.00	0.00	0.00	16.00	0.00	0.00	3.00	0.00	0.00	0.00	0.00
Ostracoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
Cladocera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copepoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oligochaeta	0.00	0.00	0.00	24.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00
Nematoda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Class Turbellaria (includes triclad Polycelis coronata)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisidium sp.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphaerium simile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mesostigmata	0.00	0.00	0.00	0.00	0.00	24.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	16.00	0.00	8.00	56.00	40.00	24.00	8.00	32.00	39.00	0.00	1.00	3.00	8.00
Hydra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pisicolidae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

	AS	AS	AS	AS	AS
	2007	2007	2007	2007	2007
SAMPLE TYPE	exposed	exposed	exposed	exposed	exposed
SAMPLE CODE	V8aA	V8bA	V8cA	V8eA	V8dA
Ameletidae	0.00	0.00	1.00	4.00	0.00
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	2.00	16.00	7.00	96.00	18.00
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	47.00	38.00	50.00	62.00	44.00
Leptophlebiidae	0.00	0.00	0.00	0.00	0.00
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID	0.00	4.00	6.00	4.00	0.00
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Sweltsa sp., Chloroperlidae UID)	1.00	0.00	1.37	0.00	0.00
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	0.00	3.91	2.73	11.70	0.00
Perlidae (includes Cultus sp., 180perla sp., 180gotus sp., 18egarcys sp., 18ekar sp., 3kwala sp., 1 eriodidae Orb)	0.00	0.00	0.00	0.00	0.00
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	56.00	246.62	148.84	778.20	508.93
Capniidae	2.00	18.27	39.60	114.10	101.07
Leuctridae	0.00	0.00	0.00	0.00	0.00
Taeniopterygidae (includes Taenionema sp. ID'd)	27.00	52.20	132.46	0.00	0.00
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	16.00	60.57	67.00	232.00	96.00
Rhyacophila sp.	22.00	46.43	34.00	114.00	50.00
Wormaldia sp.	0.00	0.00	0.00	0.00	0.00
Glossosoma sp.	0.00	0.00	0.00	4.00	0.00
Uenoidae (includes Oligophlebodes sp. ID'd)	0.00	0.00	3.00	0.00	0.00
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	0.00	0.00	1.00	0.00	8.00
Micrasema sp.	0.00	0.00	0.00	0.00	0.00
Brachycentrus sp.	0.00	0.00	0.00	0.00	0.00
Lepidostoma sp.	0.00	0.00	0.00	0.00	0.00
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.00	0.00	1.00	0.00	0.00
	0.00		0.00	0.00	0.00
Coleoptera Dytiscidae	0.00	0.00 0.00	0.00	0.00	
l '					0.00
Antocha sp.	0.00	0.00	0.00	0.00	0.00
Dicranota sp.	0.00	1.00	0.00	0.00	8.00
Hexatoma sp.	0.00	0.00	0.00	0.00	0.00
Limnophila sp.	0.00	0.00	0.00	0.00	0.00
Rhabdomastix sp.	0.00	0.00	0.00	0.00	0.00
Hesperoconopa sp.	0.00	0.00	0.00	0.00	0.00
Gonomyodes sp.	0.00	0.00	0.00	0.00	0.00
Tipula sp.	0.00	0.00	0.00	0.00	0.00
Bezzia/Palpomyia sp.	0.00	0.00	0.00	0.00	0.00
Psychodidae	0.00	2.00	1.00	4.00	0.00
Deuterophlebiidae	0.00	0.00	0.00	0.00	0.00
Agathon sp.	0.00	0.00	0.00	0.00	0.00
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	0.00	2.00	0.00	4.00	16.00
Simuliidae (includes Prosimulium, Simuliudae pupae)	4.00	17.00	17.00	34.00	20.00
Tanytarsini (Tribe)	0.00	0.00	0.00	2.00	0.00
Cladotanytarsus sp.	0.00	0.00	0.00	0.00	0.00
Neostempellina sp.	0.00	0.00	0.00	0.00	0.00
Pseudochironomus sp.	0.00	0.00	0.00	0.00	0.00
Rheotanytarsus sp.	0.00	0.00	0.00	0.00	0.00
Stempellinella sp.	0.00	0.00	0.00	0.00	0.00
Stempellina sp	0.00	0.00	0.00	0.00	0.00
Acricotopus sp.	0.00	0.00	0.00	0.00	0.00
Brillia sp.	0.00	42.00	19.00	60.00	110.00
Cardiocladius sp.	0.00	0.00	0.00	0.00	0.00
Chaetocladius sp.	28.00	167.00	288.00	310.00	152.00
Corynoneura sp.	0.00	0.00	0.00	0.00	2.00
Cricotopus/Orthocladius sp.	9.00	45.00	32.00	112.00	272.00
Diplocladius sp.	0.00	0.00	0.00	0.00	0.00
Eukiefferiella sp.	0.00	10.00	6.00	0.00	136.00
Heleniella sp.	0.00	0.00	0.00	0.00	0.00
Hydrobaenus sp.	0.00	0.00	0.00	0.00	0.00
Parorthocladius sp.	0.00	0.00	0.00	0.00	0.00
Rheocricotopus sp.	0.00	0.00	0.00	0.00	0.00
Synorthocladius sp.	0.00	0.00	0.00	0.00	0.00
Thienemanniella sp.	0.00	0.00	0.00	0.00	0.00
Tvetenia sp.	0.00	0.00	0.00	0.00	0.00
Diamesa sp.	0.00	0.00	0.00	0.00	0.00
Pagastia sp.	0.00	0.00	0.00	0.00	70.00
Pseudodiamesa sp.	0.00	0.00	0.00	0.00	0.00
Potthastia longimana group	0.00	0.00	0.00	0.00	0.00
Prodiamesa sp.	0.00	0.00	0.00	0.00	0.00
Tanypodinae	0.00	0.00	0.00	0.00	0.00
**	0.00	0.00	0.00	0.00	0.00
Syrphidae					
Stratiomyidae	0.00	0.00	0.00	0.00	0.00
Lepidoptera	0.00	0.00	0.00	0.00	0.00

Table D.2: Raw benthic data after re-attributions of taxa to standardize taxon levels among samples and re-coding of sample I.Ds: combined data 2007 and 2008

		AS	AS	AS	AS	AS
		2007	2007	2007	2007	2007
SAMPLE TYPE		exposed	exposed	exposed	exposed	exposed
	SAMPLE CODE	V8aA	V8bA	V8cA	V8eA	V8dA
Hemiptera (includes Corixidae ID'd)		0.00	0.00	0.00	0.00	0.00
Collembola		0.00	3.00	0.00	0.00	0.00
Ostracoda		0.00	1.00	0.00	0.00	0.00
Cladocera		0.00	0.00	0.00	0.00	0.00
Copepoda		0.00	0.00	0.00	0.00	0.00
Oligochaeta		0.00	0.00	1.00	0.00	0.00
Nematoda		0.00	0.00	0.00	0.00	0.00
Class Turbellaria (includes triclad Polycelis coronata)		0.00	0.00	0.00	0.00	0.00
Pisidium sp.		0.00	0.00	0.00	0.00	0.00
Sphaerium simile		0.00	0.00	0.00	0.00	0.00
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)		0.00	0.00	0.00	0.00	0.00
Mesostigmata		0.00	0.00	0.00	0.00	0.00
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)		9.00	27.00	18.00	20.00	64.00
Hydra		0.00	0.00	0.00	0.00	0.00
Pisicolidae		0.00	0.00	0.00	0.00	0.00

Table D.3: Benthic community metrics for all samples based on combined 2007 and 2008 data sets.

Survey S					indiv_after_de										
2008 Head Inference VRFB	Voor	Comptino	Гуродуга	CtnComn	letions&collap				acatora 0/ Tri	ahantara 0/	CDT0/	Tipulida a0/	Empidido o0/		
2000 MAS	Year								•						
2008 Hess															
2008 Hase express X2aK 1325.0 1327 30 16.6 20.1 1.9 40.7 0.1 1.4 0.9 48.7															
2008 Kase			•					18.6				0.1	1.4		
2006 Hess		2008 Hess	exposed	X2bH	12693.3	13480	25	1.6	3.4	8.0	5.8	0.0	0.4	0.8	83.1
2008 Hess			exposed					3.6				0.0			
2006 Hess			•												
2008 Heliss morporate Vision Vi			•												
2008 Heiss			•												
2008 KAS reference USFRK 1989 96 287 407 4.1 7.4			•												
2008 Heas															
2008 KBS															
2008 Heas															
2008 Hess															
2008 Hess															
2008 Hess exposed R2eH 3866.7 3873 22 18.9 14.8 0.3 34.1 0.0 0.3 0.9 53.5			•												
2006 Hess			•												
2008 K8S			•												
2008 R&S			•												
2008 Hess reference R7H 7753.3 7897 21 5.6 22.4 0.2 28.2 0.7 2.0 0.4 57.0 2008 K&S reference R7K 1205.0 1209 27 13.0 17.0 1.6 31.5 0.7 2.3 0.0 45.6 2008 K&S reference R7K 1247.3 1263 20 19.6 32.6 0.0 52.2 1.7 0.7 1.3 33.9 2008 K&S reference FCK 600.0 610 19 12.8 29.2 0.7 42.6 0.7 0.0 0.0 4.56.8 2008 K&S reference FCK 600.0 610 19 12.8 29.2 0.7 42.6 0.7 0.0 0.0 37.4 2008 K&S reference BLCbH 9354.3 9407 25 4.3 5.3 32.2 12.8 0.4 0.1 0.0 78.0 2008 Hess reference BLCbH 2863.3 265.7 21 28.8 19.7 4.9 53.4 0.6 1.3 0.0 29.2 2008 Hess reference BLCbH 7033.3 7033 25 5.5 8.7 0.6 14.7 0.0 0.7 0.0 79.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 77.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 71.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 24 6.7 8.9 1.7 71.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCbH 5046.3 5373 22 20 33.3 33.1 4.2 71.1 2.2 2.0 0.5 0.9 0.0 66.7 20 20 20 20 20 20 20 20 20 20 20 20 20			exposed				23							1.3	
2008 K&S reference R7eK 1205.0 1209 27 13.0 17.0 16 31.5 0.7 2.3 0.0 45.6			exposed												
2008 K&S reference R7DK 1247.3 1263 20 19.6 32.6 0.0 52.2 1.7 0.7 1.3 33.9 2008 K&S reference FCK 600.0 610 19 12.8 29.2 0.7 42.6 0.7 0.0 0.0 37.4 2008 K&S reference ECGH 603.0 610 19 12.8 29.2 0.7 42.6 0.7 0.0 0.0 37.4 2008 Hess reference BLCaH 935.3 2857 21 28.8 19.7 4.9 53.4 0.6 1.3 0.0 29.2 2008 Hess reference BLCCH 703.3 703.3 26 5.5 8.7 0.6 14.7 0.0 0.7 0.0 79.4 2008 Hess reference BLCCH 5346.3 557.3 24 6.7 8.9 1.7 17.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCCH 5346.3 557.0 25 7.5 15.5 2.1 25.0 0.5 0.9 0.0 66.7 2008 K&S reference BLCSK 827.0 239 20 33.9 33.1 4.2 71.1 0.0 1.3 1.3 21.3 2008 K&S reference BLCSK 885.0 867 27 19.3 28.6 1.2 48.0 0.2 0.3 0.3 43.4 2008 K&S reference BLCSK 886.0 867 27 19.3 28.6 1.1 48.0 0.2 0.3 0.3 0.3 43.4 2008 K&S reference BLCSK 886.3 867 27 19.3 28.6 1.1 48.0 0.2 0.3 0.3 0.3 43.4 2008 K&S reference BLCSK 886.3 867 27 19.8 28.6 1.1 48.0 0.2 0.3 0.3 0.3 43.4 2008 K&S reference BLCSK 886.3 867 27 19.8 28.6 1.1 48.0 0.2 0.3 0.3 0.3 43.4 2008 K&S reference BLCSK 886.3 867 27 19.8 28.6 1.1 48.0 0.2 0.3 0.3 0.3 43.4 2008 K&S reference BLCSK 886.3 867 27 19.8 27 19.8 28.6 1.1 48.0 0.0 0.0 0.0 48.8 2008 K&S reference BLCSK 886.3 867 27 19.8 28.6 1.1 48.0 0.0 0.0 0.0 0.0 0.0 2008 K&S reference BLCSK 886.3 867 27 19.8 27 19.8 22 21 1.2 22 0.0 0.0 0.0 0.0 0.0 2008 K&S reference BECK 19.2267 19.280 20 2.3 3.3 3.3 1.3 3.9 0.0 0.0 0.0 0.0 0.3 2008 K&S reference BECK 19.2267 19.280 20 2.3 3.3 3.3 1.3 3.9 0.0															
2008 Hess reference FCH 6306.7 6360 19 3.4 20.5 1.3 25.2 1.9 0.0 0.4 56.8															
2008 K&S reference FCK 600.0 610 19 12.8 29.2 0.7 42.6 0.7 0.0 0.0 37.4															
2008 Hess reference BLChH 9354.3 9407 25 4.3 5.3 3.2 12.8 0.4 0.1 0.0 78.0															
2008 Hess reference BLCbH 2853,3 2857 21 28.8 19.7 4.9 53.4 0.6 1.3 0.0 29.2 20.8 1.5 20.8 1.5 20.8															
2008 Hess reference BLCeH 7033.3 7033 26 5.5 8.7 0.6 14.7 0.0 0.7 0.0 79.4 2008 Hess reference BLCeH 5348.3 5373 24 6.7 8.9 1.7 17.4 0.2 0.7 0.2 76.4 2008 Hess reference BLCeH 5660.0 5670 25 7.5 15.5 2.1 25.0 0.5 0.9 0.0 66.7 2008 K&S reference BLCK 886.0 887 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 1.3 21.3 20.8 20.8 K&S reference BLCK 886.0 887 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 43.4 20.08 K&S reference BLCK 886.0 887 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 43.4 20.08 K&S reference STCK 88.0 87 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 43.4 20.08 K&S reference STCK 88.0 90 15 8.9 12.2 11. 22.2 40.0 7.6 0.1 1.8 0.0 82.8 20.08 K&S reference STCK 88.0 90 15 8.9 12.2 11. 22.2 0.0 0.0 0.0 4.4 66.0 20.0 82.8 20.08 K&S reference BECH 19228.7 19280 20 0.3 3.3 10.3 13.9 0.0 0.0 4.4 66.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0															
2008 Hess reference BLCeH 5346.3 5373 24 6.7 8.9 1.7 17.4 0.2 0.7 0.2 76.4															
2008 Hess reference BLCeH 5660.0 5670 25 7.5 15.5 2.1 25.0 0.5 0.9 0.0 66.7 2008 K&S reference Reference BLCaK 237.0 239 20 33.9 33.1 4.2 71.1 0.0 1.3 1.3 21.3 21.3 20.8 K&S reference BLCbK 885.0 887 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 0.3 43.4 20.08 K&S reference BLCcK 662.0 675 17 15.6 28.6 1.2 45.4 0.6 0.3 0.0 51.9 20.08 K&S reference STCH 8063.3 812.0 19 0.5 7.1 0.0 7.6 0.1 1.8 0.0 82.8 20.08 K&S reference STCK 85.0 90 15 8.9 12.2 1.1 22.2 0.0 0.0 0.0 0.0 4.4 66.0 20.08 K&S reference BECH 1922.6 7 1928.0 20 0.3 3.3 10.3 13.9 0.0 0.0 0.0 4.4 66.0 20.08 K&S reference BECH 1922.6 7 1928.0 20 0.3 3.3 10.3 13.9 0.0 0.0 0.0 4.4 66.0 20.08 K&S reference HOCH 2140.0 2147 23 22.4 21.3 18.2 51.9 0.9 1.7 1.6 39.0 20.08 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 15.7 20.08 Hess reference GRCH 506.7 51.0 17 4.6 41.2 27.5 2.0 70.6 0.0 1.3 5.2 63.4 20.08 K&S reference GRCH 506.7 51.0 17 4.6 41.2 27.5 2.0 70.6 0.0 1.3 5.2 63.4 20.08 K&S reference BTTH 37406.7 37467 21 5.6 3.2 0.7 9.4 5.8 3.4 0.4 55.4 20.08 K&S reference BTTH 37406.7 37467 21 5.6 3.2 0.7 9.4 5.8 3.4 0.4 55.4 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 71.2 8 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 71.2 8 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 71.2 8 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 71.2 8 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 71.2 8 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 71.2 8 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 0.0 0.1 1.1 11.3 20.08 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 0.0 0.1 1.1 11.3 20.08 K&S exposed X2A 32A 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 3.5 85.2 20.08 K&S exposed X2A 324 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 3.5 85.2 20.08 K&S exposed X2A 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.															
2008 K&S reference BLCaK 237.0 239 20 33.9 33.1 4.2 71.1 0.0 1.3 1.3 21.3 20.8 20.8 K&S reference BLCbK 885.0 887 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 43.4 20.0 K&S reference BLCbK 662.0 675 17 15.6 28.6 1.2 45.4 0.6 0.3 0.0 51.9 20.0 Mess reference STCH 8063.3 8120 19 0.5 7.1 0.0 7.6 0.1 1.8 0.0 82.8 28.2 20.0 K&S reference STCK 85.0 90 15 8.9 12.2 1.1 22.2 0.0 0.0 0.0 0.0 43.3 20.0 51.9 20.0 K&S reference BECK 85.0 19.0 15 8.9 12.2 1.1 22.2 0.0 0.0 0.0 0.0 43.3 20.0 51.0 20.0 K&S reference BECK 1926.7 1928.0 20 0.3 3.3 10.3 13.9 0.0 0.0 0.0 4.4 66.0 20.0 K&S reference BECK 1286.0 1280 20 2.3 2.2 11.3 15.8 0.0 0.0 3.8 55.5 20.0 K&S reference HOCH 2140.0 2147 23 22.4 21.3 8.2 51.9 0.9 1.7 1.6 39.0 20.0 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 15.7 20.0 K&S reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 20.0 K&S reference BTTK 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 20.0 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 20.0 K&S reference BUCK 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 20.0 K&S reference BUCK 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 20.0 K&S reference BUCK 1890.0 1855 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 20.0 66.4 20.0 K&S reference BUCK 1890.0 1855 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 20.0 66.4 20.0 K&S reference BUCK 1890.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 0.1 1.1 11.3 20.0 68.5 reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 0.1 1.1 11.3 20.0 68.5 reference BUCK 1820.0 1865 21 4 1.5 1.8 0.0 3.3 0.0 0.0 0.0 2.0 83.8 20.0 K&S reference RUCK 1820.0 1865 21 4 1.5 1.8 0.0 3.3 0.0 0.0 0.0 0.0 2.0 83.8 20.0 K&S reference BUCK 1820.0 1865 21 4 1.5 1.8 0.0 3.3 0.0 0.0 0.0 0.0 2.0 83.8 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.															
2008 K&S reference BLCbK 885.0 887 27 19.3 26.9 1.8 48.0 0.2 0.3 0.3 43.4 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20															
2008 Hess reference STCH 8063.3 8120 19 0.5 7.1 0.0 7.6 0.1 1.8 0.0 82.8 22.8 2008 K&S reference STCK 85.0 90 15 8.9 12.2 1.1 22.2 0.0 0.0 0.0 0.0 43.3 2008 Hess reference BECH 1926.7 19280 20 0.3 3.3 10.3 13.9 0.0 0.0 4.4 66.0 2008 K&S reference BECK 1286.0 1290 20 2.3 2.2 11.3 15.8 0.0 0.0 0.0 3.8 58.5 2008 Hess reference HOCH 2140.0 2147 23 22.4 21.3 8.2 51.9 0.9 1.7 1.6 39.0 2008 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 1.5 7 2008 Hess reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 3.2 27.0 27.0 2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 K&S reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1890.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2AA 3108.0 3780 15 2.8 7.6 0.1 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2AA 324.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 2.3 87.5 2008 AS exposed X2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 2.3 87.5 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 2.4 20.0 1.4 42.5 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 1.4 42.5 2008 AS exposed R2AA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.0 0.0 5.8 30.8		2008 K&S	reference	BLCbK						1.8	48.0	0.2			
2008 K&S reference BECH 192267 19280 20 0.3 3.3 10.3 13.9 0.0 0.0 4.4 66.0 2008 K&S reference BECK 1286.0 1290 20 2.3 2.2 11.3 15.8 0.0 0.0 3.8 58.5 2008 Hess reference HOCH 2140.0 2147 23 22.4 21.3 8.2 51.9 0.9 1.7 1.6 39.0 2008 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 1.0 15.7 2008 Hess reference GRCK 63.0 63 14 14.3 44.4 0.0 68.7 0.0 1.6 3.2 27.0 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 68.7 0.0 1.6 3.2 27.0 2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 K&S reference BUCH 1880.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 20.0 20.0 2.0 83.8 2008 AS exposed X2AA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 0.0 2.0 83.8 2008 AS exposed X2AA 1374.0 1352 14 15 18 0.0 3.9 0.0 0.0 0.0 3.5 85.2 2008 AS exposed X2AA 1272.0 1608 14 12.5 2.5 2.5 2.1 7.1 0.0 0.0 0.0 3.5 85.2 2008 AS exposed X2AA 1272.0 1608 14 2.5 2.5 2.5 2.1 7.1 0.0 0.0 0.0 3.5 85.2 2008 AS exposed X2AA 1272.0 1608 14 2.5 2.5 2.5 2.1 7.1 0.0 0.0 0.0 2.3 87.5 2008 AS exposed X2AA 1379.0 42.0 1608 14 2.5 2.5 2.5 2.1 7.1 0.0 0.0 0.0 3.5 85.2 2008 AS exposed X2AA 1379.0 42.0 1608 14 2.5 2.5 2.5 2.1 7.1 0.0 0.0 0.0 3.2 87.5 2008 AS exposed X2AA 66.1 1783 19 12.3 13.8 0.8 19.0 0.0 0.0 0.0 3.2 87.5 2008 AS exposed X2AA 66.1 1783 19 12.3 13.8 0.8 19.0 0.0 0.0 0.0 3.2 87.5 2008 AS exposed X2AA 66.1 1783 19 12.3 13.8 0.8 19.0 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 66.1 1783 19 12.3 13.8 0.8 19.0 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2AA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2AA 260.0 2094 27 25.3 15.9 4.6 45.7 0.0 0.0 0.0 5.8 39.8 2008 AS exposed R2AA 260.0 2094 27 25.3 15.9 4.6 45.7 0.0 0.0 0.5 5.8 39.8 2008 AS exposed R2AA 260.0 2094 27 25.3 15.9 4.6 45.7 0.0 0.0 0.5 5.8 39.8 2008 AS exposed R2AA 260.0 2094 27 25.3 15.9 4.6 45.7 0.0 0.0 0.0 5.8 39.8 2008 AS exposed R2AA 260.0 2094 27 25.3 15.9 4.6 45.7 0.0 0.0 0.0 5.8 39.8		2008 K&S	reference	BLCcK	662.0	675	17	15.6	28.6	1.2	45.4	0.6	0.3	0.0	51.9
2008 Hess reference BECH 19226.7 19280 20 0.3 3.3 10.3 13.9 0.0 0.0 4.4 66.0 2008 K&S reference BECK 1286.0 1290 20 2.3 2.2 11.3 15.8 0.0 0.0 3.8 58.5 2008 Hess reference HOCK 1240.0 2147 23 22.4 21.3 8.2 51.9 0.9 1.7 1.6 39.0 2008 K&S reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 32 27.0 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference<			reference				19			0.0		0.1			
2008 K&S reference BECK 1286.0 1290 20 2.3 2.2 11.3 15.8 0.0 0.0 3.8 58.5 2008 Hess reference HOCH 2140.0 2147 23 22.4 21.3 8.2 51.9 0.9 1.7 1.6 39.0 208 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 15.7 2008 Hess reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 3.2 27.0 2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference BUCK 1890.0 1865 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2bA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2bA 1272.0 1608 14 2.5 2.5 2.1 7.1 0.0 0.3 3.3 0.0 0.0 3.3 92.0 2008 AS exposed X2bA 9568.0 9568 12 40.0 11.7 0.2 15.9 0.0 0.0 2.3 87.5 2008 AS exposed X2bA 9568.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 2.3 87.5 2008 AS exposed X2bA 303.0 304 17 3.1 17 0.2 15.9 0.0 0.0 0.0 2.3 87.5 2008 AS exposed X2bA 9568.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 21 69.6 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 24.5 40.4 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 3.2 24.5 42.5 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 3.2 24.5 42.5 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 3.2 24.5 42.5 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 3.2 24.5 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 0.0 24.3 0.0 0.0 0.0 3.2 24.5 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 0.0 24.3 0.0 0.0 0.0 3.2 24.5 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 0.0 24.3 0.0 0.0 0.0 3.2 24.5 2008 AS exposed R2bA 2008 AS exposed R2															
2008 Hess reference HOCH 2140.0 2147 23 22.4 21.3 8.2 51.9 0.9 1.7 1.6 39.0 2008 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 15.7 2008 Hess reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 3.2 27.0 2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference BUCH 1690.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2bA 3124.0 1352 14 1.5 1.8 0.0 10.5 0.0 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3124.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 1272.0 1608 14 2.5 2.5 2.5 2.1 7.1 0.0 0.0 3.5 85.2 2008 AS exposed X2bA 1272.0 1608 14 2.5 2.5 2.5 2.1 7.1 0.0 0.0 3.3 92.0 2008 AS exposed X2bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.0 0.0 2.3 87.5 2008 AS exposed X2bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.0 0.0 3.2 87.5 2008 AS exposed X2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 304 19 184 5.9 0.0 24.3 0.0 0.0 0.0 5.8 39.8 2008 AS exposed R2bA 2086.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2bA 303.0 2600 19 30.2 212.8 14.4 44.3 0.0 0.0 0.0 5.8 39															
2008 K&S reference HOCK 102.0 102 16 41.2 27.5 2.0 70.6 0.0 1.0 1.0 15.7 2008 K&S reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 3.2 27.0 2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 Hess reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 0.1 11.3 11.3 2008 AS															
2008 Hess reference GRCH 506.7 510 17 4.6 17.6 4.6 26.8 0.0 1.3 5.2 63.4 2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 3.2 27.0 2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2aA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2dA 1272.0 1608 14 1.5 1.8 0.0 3.3 0.0 0.0 0.0 0.3 92.0 2008 AS exposed X2bA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 7.1 0.0 0.0 3.5 85.2 2008 AS reference R1cA 856.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 0.7 9 68.2 2008 AS reference R1cA 1881.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.0 0.0 5.9 72.9 2008 AS exposed R2bA 303.0 30.0 19 11.7 83.1 12.3 13.2 1.2 26.7 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 30.0 19 11.0 11.7 0.2 15.9 0.0 0.0 0.0 3.2 45.4 2008 AS reference R1cA 1881.0 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.0 0.0 5.9 72.9 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 3.2 24.4 25.4 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 3.2 24.4 25.4 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 3.2 24.6 208 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 4.9 62.8 2008 AS exposed R2bA 303.0 30.0 19 18.4 5.9 0.0 24.3 0.0 0.0 0.0 5.8 39.8 2008 AS exposed R2bA 2008.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2bA 2008.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2bA 2008.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2bA 2008.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2bA 2008.0															
2008 K&S reference GRCK 63.0 63 14 14.3 44.4 0.0 58.7 0.0 1.6 3.2 27.0 2008 Hess reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2AA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS															
2008 Hess reference BTTH 37466.7 37467 21 5.5 3.2 0.7 9.4 5.8 3.4 0.4 55.4 2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2aA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2bA 1324.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2bA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.0 0.3 92.0 2008 AS exposed X2bA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.0 3.5 85.2 2008 AS exposed X2bA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 0.0 3.5 85.2 2008 AS reference R1aA 856.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 2.3 87.5 2008 AS reference R1bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.0 0.0 7.9 68.2 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 3.2 2.1 69.6 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 3.2 2.1 69.6 2008 AS exposed R2bA 208.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2.5 2.5 2.0 2.0 3.9 0.0 3.2 2.1 69.6 2008 AS exposed R2bA 208.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0															
2008 K&S reference BTTK 15750.0 15750 21 5.8 6.3 5.4 17.5 1.4 2.1 0.0 66.4 2008 Hess reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 0.1 11.3 2008 AS exposed X2A 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2cA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.3 92.0 2008 AS exposed															
2008 Hess reference BUCH 1890.0 1957 32 36.5 29.3 11.1 76.8 3.1 0.3 2.7 12.8 2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2aA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2cA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.3 92.0 2008 AS exposed X2dA 1272.0 1608 14 2.5 2.5 2.1 7.1 0.0 0.0 3.5 85.2 2008 AS reference <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
2008 K&S reference BUCK 1820.0 1865 21 49.9 29.5 6.2 85.5 0.3 0.0 1.1 11.3 2008 AS exposed X2aA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2cA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.4 2.0 79.0 2008 AS exposed X2dA 1272.0 1608 14 2.5 2.5 2.1 7.1 0.0 0.0 3.5 85.2 2008 AS exposed X2eA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 0.0 7.9 68.2 2008 AS															
2008 AS exposed X2aA 3108.0 3780 15 2.8 7.6 0.1 10.5 0.0 0.0 2.0 83.8 2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2cA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.3 92.0 2008 AS exposed X2dA 1272.0 1608 14 2.5 2.5 2.1 7.1 0.0 0.0 3.5 85.2 2008 AS exposed X2eA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 2.3 87.5 2008 AS reference R1aA 856.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 7.9 68.2 2008 AS reference R1bA															
2008 AS exposed X2bA 3424.0 4304 17 3.0 11.0 0.9 14.9 0.0 0.4 2.0 79.0 2008 AS exposed X2cA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.3 92.0 2008 AS exposed X2dA 1272.0 1608 14 2.5 2.5 2.1 7.1 0.0 0.0 3.5 85.2 2008 AS exposed X2eA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 0.0 3.5 85.2 2008 AS reference R1aA 856.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 7.9 68.2 2008 AS reference R1bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.0 3.5 80.4 2008 AS exposed															
2008 AS exposed X2cA 1324.0 1352 14 1.5 1.8 0.0 3.3 0.0 0.0 0.3 92.0 2008 AS exposed X2dA 1272.0 1608 14 2.5 2.5 2.1 7.1 0.0 0.0 3.5 85.2 2008 AS exposed X2eA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 2.3 87.5 2008 AS reference R1aA 856.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 7.9 68.2 2008 AS reference R1bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.6 3.5 80.4 2008 AS reference R1cA 1981.0 2026 14 4.3 13.8 0.8 19.0 0.0 0.0 5.9 72.9 2008 AS exposed R2bA <td></td> <td></td> <td></td> <td></td> <td>3424.0</td> <td>4304</td> <td></td> <td></td> <td>11.0</td> <td>0.9</td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td>					3424.0	4304			11.0	0.9		0.0			
2008 AS exposed X2eA 9568.0 9568 23 2.0 3.9 0.3 6.2 0.1 0.0 2.3 87.5 2008 AS reference R1aA 856.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 7.9 68.2 2008 AS reference R1bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.6 3.5 80.4 2008 AS reference R1cA 1981.0 2026 14 4.3 13.8 0.8 19.0 0.0 0.0 5.9 72.9 2008 AS exposed R2aA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2cA <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td>0.0</td> <td>3.3</td> <td>0.0</td> <td></td> <td>0.3</td> <td>92.0</td>			•				14			0.0	3.3	0.0		0.3	92.0
2008 AS reference R1aA 856.0 956 15 4.0 11.7 0.2 15.9 0.0 0.0 7.9 68.2 2008 AS reference R1bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.6 3.5 80.4 2008 AS reference R1cA 1981.0 2026 14 4.3 13.8 0.8 19.0 0.0 0.0 5.9 72.9 2008 AS exposed R2aA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2cA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2dA <td></td>															
2008 AS reference R1bA 2031.0 2095 17 2.1 7.7 0.6 10.5 0.0 0.6 3.5 80.4 2008 AS reference R1cA 1981.0 2026 14 4.3 13.8 0.8 19.0 0.0 0.0 5.9 72.9 2008 AS exposed R2aA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2cA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2dA 208.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2eA <td></td> <td></td> <td><u> </u></td> <td></td>			<u> </u>												
2008 AS reference R1cA 1981.0 2026 14 4.3 13.8 0.8 19.0 0.0 0.0 5.9 72.9 2008 AS exposed R2aA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2cA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2dA 2086.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2eA 2600.0 2600 19 30.2 12.8 1.4 44.3 0.0 0.0 5.8 39.8															
2008 AS exposed R2aA 631.1 783 19 12.3 13.2 1.2 26.7 0.0 0.0 3.2 45.4 2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2cA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2dA 2086.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2eA 2600.0 2600 19 30.2 12.8 1.4 44.3 0.0 0.0 5.8 39.8															
2008 AS exposed R2bA 303.0 304 19 18.4 5.9 0.0 24.3 0.0 0.0 4.9 62.8 2008 AS exposed R2cA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2dA 2086.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2eA 2600.0 2600 19 30.2 12.8 1.4 44.3 0.0 0.0 5.8 39.8															
2008 AS exposed R2cA 437.9 442 24 15.0 6.1 1.9 23.1 0.0 0.3 2.1 69.6 2008 AS exposed R2dA 2086.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2eA 2600.0 2600 19 30.2 12.8 1.4 44.3 0.0 0.0 5.8 39.8			•												
2008 AS exposed R2dA 2086.0 2094 27 25.3 15.9 4.6 45.7 0.2 0.0 1.4 42.5 2008 AS exposed R2eA 2600.0 2600 19 30.2 12.8 1.4 44.3 0.0 0.0 5.8 39.8			•												
2008 AS exposed R2eA 2600.0 2600 19 30.2 12.8 1.4 44.3 0.0 0.0 5.8 39.8			•												
			oversed												

Table D.3: Benthic community metrics for all samples based on combined 2007 and 2008 data sets.

Second S					indiv_after_de letions&collap	r	ntaxa_after_c E	phemeropte						С	hironomidae
2008 AS	Year	Samptype	Exposure	StnSamp	se&attrib				Plecoptera % Tr	choptera %	EPT%	Tipulidae%	Empididae%	Simuliidae%	% Oli
2008 AS		2008 AS	exposed	R4aA	1082.2	1085	21	17.7	48.1	0.5	66.4	0.0	0.2	0.2	22.3
2008 AS exponent M44A 6382.0 6400 22 371 2830 1.1 66.3 0.2 0.0 3.0 24.4			•												
2009 AS															
2008 AS exposed RSA 1046.0 1050 23 16.2 22.1 1.9 40.2 0.0 0.0 6.7 41.7															
2008 AS															
2006 AS															
2006 AS															
2008 AS reference RFAA 4015 802 802 803															
2006 AS reference R7AA 574-0 5768 20 8.5 29.5 0.6 38.6 0.0 0.0 0.5 53.4 20.0 AS reference R7AA 6384-0 6400 18 4.8 33.8 0.0 38.5 0.5 0.5 0.1 1.5 53.3 20.0 AS reference R7AA 6384-0 6400 18 4.8 33.8 0.0 38.5 0.5 0.5 0.1 1.5 53.3 20.0 AS R5 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			exposed	R6bA	2768.0	2824	20	31.2	36.5	3.1	70.8	0.0	0.0	12.7	13.9
2008 AS reference RTNA 69840 6400 18 4.8 33.8 0.0 38.5 0.5 0.1 1.5 53.3 20.0 20.0 AS reference RTNA 491.0 491 19 15.3 50.1 0.2 65.6 0.0 0.4 0.2 20.0 AS reference RTNA 491.0 941 19 15.3 50.1 0.5 3.8 0.0 0.4 0.2 20.0 AS Reference RTNA 491.0 941 19 15.3 50.1 0.5 3.8 0.0 0.0 0.4 0.2 20.0 AS Reference RTNA 491.0 941			exposed											22.4	
2008 AS reference R7AA 991.0 491 19 15.3 56.1 0.2 55.6 0.0 0.4 0.2 20.0 20.0 20.0 20.0 20.0 20															
2008 AS reference R76A 9616.0 9648 19 7.1 32.0 0.5 39.6 0.2 0.0 3.6 51.1															
2006 AS reference RFAPA 6056.0 4072 19 6.7 \$6.8 0.4 42.8 0.0 0.0 0.4 43.4 2007 Hess reference VRFAT 2049.0 2057 17 6.5 3.0 0.3 9.8 0.0 0.6 6.6 0.0 21.4 2007 Hess reference NEGHT 1007.0 1907 21 381. 22.3 3.7 71.7 0.6 0.6 0.0 0.21.4 2007 Hess reference NEGHT 1007.0 1907 21 381. 22.3 3.7 71.7 0.6 0.6 0.0 0.21.4 2007 Hess reference VFAFT 1007.0 1907 21 381. 22.3 3.7 71.7 0.6 0.6 0.0 0.0 20.7 2007 Hess reference VFAFT 1007.0 1907 21 381. 22.3 3.7 71.7 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0															
2007 Hess reference USFRH7 3020, 0 308 25 45.6 22.3 3.7 71.7 0.6 0.6 0.0 21.4															
2007 Hess reference NEFRH7 3020.0 3080 25 45.6 22.3 3.7 71.7 0.6 0.6 0.0 21.4 2007 Hess reference NEFRH7 1607.0 1607.0 121 38.1 23.3 11.6 73.1 1.2 0.0 0.0 20.7 2007 Hess reference NEFRH7 1607.0 1607.0 1607.0 21.3 38.1 23.5 0.7 59.1 0.0 0.0 0.0 20.7 2007 Hess reference V10H 4609.0 4609.0 17 40.7 20.1 2.5 63.3 1.1 0.0 0.0 3.3 3.3 2007 Hess reference V10H 4609.0 4609.0 17 40.7 20.1 2.5 63.3 1.1 0.0 0.0 3.3 3.3 2007 Hess reference V10H 4633.0 460.0 463.0 17 40.7 20.1 2.5 63.3 1.1 0.0 0.0 0.0 33.3 2007 Hess reference V10H 4633.0 463.															
2007 Hess reference VISH 800.0 809 16 29.8 28.5 0.7 89.1 0.0 0.0 0.0 0.0 0.1 40.4															
2007 Hess reference V1aH 4680.0 4689 17 40.7 20.1 2.5 63.3 1.1 0.0 0.0 33.3															
2007 Hess reference V1cH 4653.6 4648 20 46.1 30.0 2.0 78.1 0.0 0.2 0.1 18.6		2007 Hess	reference		8806.0	8909	16	29.8		0.7	59.1		0.0	0.1	
2007 Hess reference			reference	V1bH		4669	17	40.7			63.3	1.1		0.0	
2007 Hess reference V1eH 6582.0 6582 22 37.0 20.4 3.0 60.4 0.3 0.0 0.1 88.3															
2007 Hess exposed V279H 9985,0 9985 19 42.5 26.4 11.6 80.5 0.0 15.1 0.0 2.8															
2007 Hess															
2007 Hess exposed V27cH 4530.0 4530 15 47.1 27.7 8.2 83.0 0.0 11.8 0.0 4.7			•												
2007 Hess exposed V27dH 8144.0 8464 22 44.3 24.5 9.5 78.3 0.0 11.9 0.4 7.6 2007 Hess exposed V57dH 8889.0 9042 26 40.3 23.5 14.0 77.8 0.6 10.2 0.6 7.4 2007 Hess exposed V58H 1858.0 1858 22 2.8 14.5 9.6 27.0 1.2 1.8 0.4 52.7 2007 Hess exposed V59H 93.3 0 856 22 8.4 31.1 9.4 48.8 0.0 1.0 0.3 42.5 2007 Hess exposed V59H 837.0 856 20 12.5 34.7 16.4 63.6 0.0 1.5 0.4 25.7 2007 Hess exposed V59H 1651.0 1704 24 7.8 26.0 14.1 47.9 1.8 0.2 0.0 30.3 25.0 2007 Hess exposed V59H 1204.0 1244 24 11.8 18.7 9.2 39.7 1.8 0.2 0.2 42.4 2007 Hess exposed V89H 7884.0 7884 22 5.8 14.8 2.7 23.4 0.0 0.8 0.5 68.6 20 2007 Hess exposed V89H 622.0 6238 18 3.2 19.7 3.2 26.1 0.6 0.2 0.0 66.5 2007 Hess exposed V89H 622.0 6338 18 3.2 19.7 3.2 26.1 0.6 0.2 0.0 66.5 2007 Hess exposed V89H 7832.0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V89H 2300 2333 21 12.8 25.5 8.0 46.3 0.3 2.9 0.0 43.4 2007 Hess exposed V89H 2300 2333 21 12.8 25.5 8.0 46.3 0.3 0.4 2.1 0.0 70.9 2007 Hess exposed V80H 2300 2333 21 12.8 25.5 8.0 46.3 0.3 0.3 2.9 0.0 43.4 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 40.0 0.0 0.0 0.0 16.0 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 0.0 16.0 2007 AS reference V1bA 447.0 467 16 22.5 78 4.9 55.2 0.0 0.0 0.0 4.4 8 2007 AS exposed V5A 447.0 467 16 22.5 78 4.9 55.2 0.0 0.0 0.0 4.4 8 2007 AS exposed V5A 447.0 467 16 22.5 78 4.9 55.2 0.0 0.0 0.0 4.4 8 2007 AS exposed V5A 447.0 467 16 22.5 78 4.9 55.2 0.0 0.0 0.0 0.4 4.8 12.0 0.0 0.0 0.0 4.4 8 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			•												
2007 Hess exposed VZFeH 8898.0 9042 26 40.3 23.5 14.0 77.8 0.6 10.2 0.6 7.4 2007 Hess exposed V5BH 1858.0 1858 22 2.8 14.5 9.6 27.0 1.2 1.8 0.4 52.7 2007 Hess exposed V5BH 933.0 956 22 8.4 11.1 9.4 48.8 0.0 1.0 0.3 42.5 2007 Hess exposed V5BH 933.0 956 22 8.4 11.1 9.4 48.8 0.0 1.0 0.3 42.5 2007 Hess exposed V5BH 1651.0 1704 24 7.8 26.0 14.1 47.9 18 0.2 0.0 30.3 20.0 18.5 20.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 1			•												
2007 Hess exposed V5bH 933.0 956 22 8.4 31.1 9.4 48.8 0.0 1.0 0.3 42.5 2007 Hess exposed V5cH 837.0 856 20 12.5 34.7 16.4 63.6 0.0 1.5 0.4 25.7 2007 Hess exposed V5dH 1661.0 1704 24 7.8 26.0 14.1 47.9 1.8 0.2 0.0 30.3 2007 Hess exposed V5eH 1204.0 1244 24 11.8 18.7 9.2 39.7 1.8 0.2 2.2 42.4 24.2 2007 Hess exposed V8aH 7884.0 7984 22 5.8 18.8 2.7 23.4 0.0 0.8 0.5 68.6 2007 Hess exposed V8aH 6225.0 6238 18 3.2 19.7 3.2 25.1 0.6 0.2 2.0 0.6 65.5 2007 Hess exposed V8cH 5652.0 5652 18 4.9 2.7 23.4 0.0 0.3.1 0.0 54.5 2007 Hess exposed V8cH 7632.0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 54.5 2007 Hess exposed V8cH 7632.0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8cH 7632.0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8cH 7632.0 7632 16 3.7 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8cH 7632.0 7632 16 3.7 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 AS reference V1aA 159.0 166 16 33.7 27.1 10.2 71.1 0.6 0.0 0.0 0.0 24.1 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 16.0 20.0 24.1 2007 AS reference V1dA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 0.0 16.6 32.4 2007 AS reference V1dA 447.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 0.0 44.8 2007 AS reference V1dA 427.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 0.0 44.8 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.3 68.0 0.0 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.3 68.0 0.0 0.0 0.0 4.0 23.2 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.0 417 22.9 77.6 0.9 0.0 0.0 1.8 13.5 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.0 417 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.0 417 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.0 417 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.0 417 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.0 417 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1416.0 1401 21 1.3 40.2 2.9 3.8 5.0 2.9 5.8 40.0 0.0 0.0 1.8 13.5 20.0 78.8 exposed V5bA 1496.0 1876 188 18.0 12.9 2.9 3.8 5			•												
2007 Hess exposed V5cH 837.0 856 20 12.5 34.7 16.4 63.6 0.0 1.5 0.4 25.7 2007 Hess exposed V5dH 1651.0 1704 24 7.8 26.0 14.1 47.9 1.8 0.2 0.0 30.3 2007 Hess exposed V5eH 1204.0 7984 24 11.8 18.7 9.2 39.7 1.8 0.2 2.2 42.4 2007 Hess exposed V8aH 7984.0 7984 22 5.8 14.8 2.7 23.4 0.0 0.8 0.5 68.6 2007 Hess exposed V8aH 625.0 6238 18 3.2 19.7 3.2 26.1 0.6 0.2 0.0 66.5 2007 Hess exposed V8cH 5652.0 5652 18 4.9 25.7 4.2 34.9 0.0 3.1 0.0 54.5 2007 Hess exposed V8cH 5652.0 7652 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8cH 2320.0 2333 21 12.8 25.5 8.0 46.3 0.3 2.9 0.0 43.4 21 0.0 70.9 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 0.0 24.1 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 0.0 16.0 2007 AS reference V1bA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 1.6 22.4 2007 AS reference V1bA 47.0 467 16 22.5 27.8 4.9 60.9 0.0 0.0 1.6 22.1 31.5 22.0 2007 AS reference V1bA 447.0 467 16 22.5 27.8 4.9 60.9 0.0 0.0 0.0 44.8 2007 AS reference V1bA 447.0 467 16 22.5 27.8 4.9 65.2 0.0 0.0 0.0 44.8 2007 AS reference V1bA 447.0 467 16 22.5 27.8 4.9 65.2 0.0 0.0 0.0 44.8 2007 AS reference V1bA 447.0 467 16 22.5 27.8 4.9 65.2 0.0 0.0 0.0 4.4 8.2 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 25.5 42.8 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 25.5 42.8 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 25.5 42.8 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.0 0.0 1.8 13.5 2007 AS exposed V5aA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5aA 120.0 12		2007 Hess	exposed	V5aH	1858.0	1858	22	2.8	14.5	9.6	27.0	1.2	1.8	0.4	
2007 Hess										9.4				0.3	
2007 Hess			•												
2007 Hess exposed V8bH 6225.0 6238 18 3.2 19.7 3.2 26.1 0.6 0.2 0.0 66.5			•												
2007 Hess exposed V8bH 6225.0 6238 18 3.2 19.7 3.2 26.1 0.6 0.2 0.0 66.5 2007 Hess exposed V8dH 7632.0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8eH 2320.0 2333 21 12.8 25.5 8.0 46.3 0.3 2.9 0.0 43.4 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 24.1 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 24.1 2007 AS reference V1cA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 1.6 0.2 4.9 60.9 0.0 0.0 <td></td> <td></td> <td>•</td> <td></td>			•												
2007 Hess exposed V8cH 5652.0 5652 18 4.9 25.7 4.2 34.9 0.0 3.1 0.0 54.5 2007 Hess exposed V8dH 7632.0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8eH 2320.0 2333 21 12.8 25.5 8.0 46.3 0.3 2.9 0.0 43.4 2.1 2007 AS reference V1aA 159.0 166 16 33.7 27.1 10.2 71.1 0.6 0.0 0.0 24.1 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 0.0 16.0 2007 AS reference V1bA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 1.6 32.4 2007 AS reference V1bA 47.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 1.6 32.4 2007 AS reference V1bA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.0 0.0 44.8 2007 AS reference V1bA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.6 2.1 31.5 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 4.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 0.0 4.0 23.2 2007 AS exposed V5bA 1496.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 0.0 1.8 13.5 2007 AS exposed V5bA 1496.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5bA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 11.7 3.6 18.9 2007 AS exposed V5bA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 11.7 3.6 18.9 2007 AS exposed V5bA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 11.7 3.6 18.9 2007 AS exposed V5bA 411.0 411 18 43.8 15.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2.7 2.0 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2.7 2.0 2007 AS exposed V27bA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27bA 36.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2.0 2007 AS exposed V27bA 36.0 1694 15 30.0 2.0 44.2 18.2 18.2 80.6 0.0 0.0 1.9 2.9 20.9 20.9 2007 AS exposed V27bA 36.0 1694 15 30.0 22.1 38.1 16.8 76.5 0.0 0.0 1.9 39.8 2007 AS exposed V27bA 36.0 1694 15 30.0 22.0 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2.0 2.1 34.0 2.0 2.0 7.8 exposed V27bA 36.0 1694 15 30.0 2.0 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0			•												
2007 Hess exposed V8dH 7632 0 7632 16 3.9 11.2 5.3 20.3 0.4 2.1 0.0 70.9 2007 Hess exposed V8eH 2320 2333 21 12.8 25.5 8.0 46.3 0.3 2.9 0.0 43.4 2007 AS reference V1AA 159.0 166 16 33.7 27.1 10.2 71.1 0.6 0.0 0.0 0.2 24.1 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 16.0 2007 AS reference V1bA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 1.6 32.4 2007 AS reference V1dA 447.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 16.0 24.8 2007 AS reference V1eA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.0 0.0 0.0 44.8 2007 AS exposed V5bA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 0.0 4.0 23.2 2007 AS exposed V5bA 223.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V5bA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V5bA 1410.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 2.2 6.0 9 2007 AS exposed V5bA 1477.0 1278.0 1278 22 19.8 52.0 10.0 2.7 0.1 0.2 2.6 0.9 2007 AS exposed V5bA 1477.0 1278.0 1279 22 19.8 52.0 12.0 9.7 0.1 0.2 2.6 0.9 2007 AS exposed V27AA 1411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27AA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.1 1.9 2.9 20.9 2007 AS exposed V27AA 1410.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2007 AS exposed V27AA 1410.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.9 20.9 2007 AS exposed V27AA 1410.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.9 20.9 2007 AS exposed V27AA 335.0 335.0 335.0 335.0 44.2 18.2 18.2 80.6 0.0 0.1 1.9 2.9 20.9 2007 AS exposed V27AA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.9 2.9 20.9 20.9 2007 AS exposed V8AA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 20.9 2007 AS exposed V8AA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 20.0 1.9 39.8 2007 AS exposed V8AA 803.0 818 20 7.1 38.1 16.8 76.5 0.0 0.0 0.0 1.9 39.8 20.9 2007 AS exposed V8A 870.0 883 22 7.2 36.8 12.0 66.1 0.0 0.0 1.9 39.8 20.0 48.2 20.0 48.2 20.0 48.2 20.0 48.4 45.7 17.7 71.8 0.0 0.2 2.1 1.7 25.1			•												
2007 Hess exposed V8eH 2320.0 2333 21 12.8 25.5 8.0 46.3 0.3 2.9 0.0 43.4 2007 AS reference V1aA 159.0 166 16 33.7 27.1 10.2 71.1 0.6 0.0 0.0 0.0 24.1 2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 0.0 16.0 2007 AS reference V1bA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 0.0 1.6 32.4 2007 AS reference V1dA 447.0 467 16 22.5 27.8 4.9 60.9 0.0 0.0 0.0 1.6 32.4 2007 AS reference V1eA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.6 2.1 31.5 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.3 68.0 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 64 48.3 13.3 68.0 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1491.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5bA 1228.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5bA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.0 1.9 2.7 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.0 1.9 2.7 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 335.0 355 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27bA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V27bA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 38.8 12.0 56.1 0.0 0.0 0.2 1.7 25.1			•												
2007 AS reference V1bA 78.0 81 11 71.6 9.9 2.5 84.0 0.0 0.0 0.0 16.0 2007 AS reference V1cA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 0.0 1.6 32.4 2007 AS reference V1dA 447.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 0.0 44.8 2007 AS reference V1eA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.6 2.1 31.5 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 0.4 5.5 42.8 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5bA 1876.0 1876 20 2.9 38.5 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5cA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 0.2 2.6 0.9 2007 AS exposed V27bA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.9 2.9 2.9 20.9 2007 AS exposed V27cA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 2 2.1 34.0 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 2.2 1.7 34.0 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.9 39.8 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.0 0.0 1.7 25.1			•												
2007 AS reference V1cA 466.0 494 18 13.2 42.9 4.9 60.9 0.0 0.0 1.6 32.4 2007 AS reference V1dA 447.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 0.0 44.8 2007 AS reference V1eA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.6 2.1 31.5 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 0.0 4.0 23.2 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5dA 223.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5eA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V27aA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 18.2 80.6 0.0 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27cA 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.0 1.9 2.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8AA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8AA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.9 2.9 20.9 2007 AS exposed V8AA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.9 39.8 2007 AS exposed V8CA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8CA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 1.9 39.8 2007 AS exposed V8CA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 1.9 39.8 2007 AS exposed V8CA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 1.9 39.8 2007 AS exposed V8CA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 1.9 39.8 2007 AS exposed V8CA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.2 1.7 25.1		2007 AS	reference	V1aA	159.0	166	16	33.7	27.1	10.2	71.1	0.6	0.0	0.0	24.1
2007 AS reference V1dA 447.0 467 16 22.5 27.8 4.9 55.2 0.0 0.0 0.0 44.8 2007 AS reference V1eA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.6 2.1 31.5 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 4.0 23.2 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5cA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed <			reference							2.5				0.0	
2007 AS reference V1eA 1226.0 1306 17 34.4 26.6 2.9 63.9 0.0 0.6 2.1 31.5 2007 AS exposed V5aA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 4.0 23.2 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5dA 223.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5eA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
2007 AS exposed V5bA 2204.0 2274 17 1.8 35.0 10.6 47.3 0.0 0.4 5.5 42.8 2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 0.0 4.0 23.2 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5cA 1223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5cA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V27aA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.0 1.9 2.7 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27eA 203.0 206 19 10.7 35.9 26.2 72.8 0.0 1.9 2.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8AA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8AA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 807.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 2.1 77 25.1															
2007 AS exposed V5bA 1496.0 1532 19 6.4 48.3 13.3 68.0 0.0 0.0 4.0 23.2 2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5dA 223.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5eA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V27aA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2007 AS exposed															
2007 AS exposed V5cA 1401.0 1401 21 1.3 40.2 14.3 55.8 1.8 1.1 0.6 26.2 2007 AS exposed V5dA 223.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5eA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V27bA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed															
2007 AS exposed V5dA 223.0 223 18 13.0 41.7 22.9 77.6 0.9 0.0 1.8 13.5 2007 AS exposed V5eA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V27aA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27eA 203.0 206 19 10.7 35.9 26.2 72.8 0.0 1.9 2.9 20.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8aA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1															
2007 AS exposed V5eA 1876.0 1876 20 2.9 38.5 22.9 64.3 0.2 1.7 3.6 18.9 2007 AS exposed V27aA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27cA 203.0 206 19 10.7 35.9 26.2 72.8 0.0 1.9 2.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
2007 AS exposed V27aA 1278.0 1279 22 19.8 52.0 21.0 92.7 0.1 0.2 2.6 0.9 2007 AS exposed V27bA 411.0 411 18 43.8 16.3 34.3 94.4 0.0 1.0 1.9 2.7 2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27cA 203.0 206 19 10.7 35.9 26.2 72.8 0.0 1.9 2.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8aA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
2007 AS exposed V27cA 335.0 335 20 44.2 18.2 18.2 80.6 0.0 0.6 2.1 16.4 2007 AS exposed V27eA 203.0 206 19 10.7 35.9 26.2 72.8 0.0 1.9 2.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8aA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8eA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1				V27aA	1278.0	1279	22	19.8	52.0	21.0		0.1	0.2	2.6	
2007 AS exposed V27eA 203.0 206 19 10.7 35.9 26.2 72.8 0.0 1.9 2.9 20.9 2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8aA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8cA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.0 0.2 1.7 25.1			•												
2007 AS exposed V27dA 1658.0 1694 15 30.6 28.3 8.5 67.4 0.0 1.5 8.1 22.0 2007 AS exposed V8aA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8eA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1			•												
2007 AS exposed V8aA 223.0 226 12 21.7 38.1 16.8 76.5 0.0 0.0 1.8 17.7 2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8eA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1			•												
2007 AS exposed V8bA 803.0 818 20 7.1 39.2 13.1 59.4 0.1 0.2 2.1 34.0 2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8eA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1			•												
2007 AS exposed V8cA 877.0 883 22 7.2 36.8 12.0 56.1 0.0 0.0 1.9 39.8 2007 AS exposed V8eA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1															
2007 AS exposed V8eA 1966.0 1978 18 8.4 45.7 17.7 71.8 0.0 0.2 1.7 25.1															
2007 AS exposed V8dA 1676.0 1708 17 3.6 35.7 9.0 48.4 0.5 0.9 1.2 45.3			•												

indicates stations sampled by Bonnie that have no counterpart Hess or K&S data

Table D.4: Number of taxa, after proportional attribution of some taxa, and collapse to higher level of others used in Vangorda 2007 comparisons only.

a) Hess samples: Vangorda 2007

a) Hess samples: vangorda 2007		10 1 15	1114751	LIGER	NEVO		1// 0			- V/4 F	1 1/07 4	1 VOT 0 1	V07.0	V/07 /	1 VAT 5	V/F 4	\ \/F A	\ \/F A	T V/F 4	\/F F	1 1/0 4	1 1/0 0	1 1/0 0		V0 F
Assolution as	countif	Sample ID:	_		NEXC		V1-2	V1-3	V1-4	V1-5	V27-1						V5-2	V5-3	V5-4	V5-5		V8-2		V8-4	V8-5
Ameletus sp.	13		42	33	53	107	0	47	27	27	93	27	13	60	83	0	0	0	0	0	13	0	0	0	0
Baetis bicaudatus + Baetis sp.	22		69	507	/	200	270	136	63	200	800	800	493	710	1040	16	/	20	60	/	93	0	80	80	53
Acentrella sp.	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
Family Heptageniidae (including identified Rhithrogena sp. Cinygmula sp. Epeorus sp.)	23		22	153	520	2266	1464	1946	1290	2077	3320	3599	1613	2970	2384	36	73	87	73	140	334	173	186	214	226
Family Ephemerellidae (including identified Drunella coloradensis, D. doddsi)	16		0	713	33	83	166	16	34	133	27	80	13	10	133	0	0	0	0	0	27	27	13	0	13
Family Chloroperlidae (including identified Sweltsa sp., Suwallia sp., Alloperla fratema, Paraperla sp.)	23		27	20	248	947	133	256	191	234	260	320	307	354	177	4	86	67	55	74	37	58	157	35	8
Family Perlodidae (including identified Megarcys sp., Skwala sp.)	11		0	75	7	7	3	0	8	3	0	0	0	3	0	0	11	4	3	0	19	0	0	0	0
Zapada spp. (including identified Z. columbiana, Z. cinctipes, Z. haysi/orogenesis	23		7	621	49	490	320	268	588	456	936	1107	226	960	1230	38	48	20	50	28	171	135	245	421	153
Taenionema sp	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	105
Family: Capniidae	23		27	20	49	1097	430	715	482	626	1044	853	680	680	677	180	108	197	314	107	710	699	525	245	280
Family: Leuctridae	18		0	7	21	0	53	47	0	20	337	173	40	77	40	0	41	0	8	12	19	77	384	70	24
Family Hydropsychidae (including identified Parapsyche sp., Hydropsyche sp.)	20		0	33	20	43	7	27	20	24	177	106	0	39	188	27	11	0	44	22	30	28	28	27	46
Rhyacophila sp.	21		0	0	160	23	3	13	77	32	161	120	109	65	99	97	44	68	74	62	105	99	140	187	106
Hydroptila sp.	5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	29	42	187	8
Glossosoma sp.	16		0	20	0	0	107	53	43	114	772	667	217	627	845	13	26	63	100	29	30	0	0	0	0
Family: Limnephilidae (including identified Ecclisomyia sp.)	10		0		7	0	0	0	0	29	0	147	0		136	21		03			30	43	28	0	23
	10	o al14	-	0	1	•			0					0			8		0	0	30	_			
Family: Elmidae	1	adult	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0
Order: Diptera UID A	1	larvae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
Order: Diptera UID B	2	larvae	0	0	0	0	0	0	0	0	0	0	U	0	0	0	0	3	13	0	0	0	0	0	0
Micropsectra sp.	2	larvae	0	0	0	0	0	0	0	0	13	0	53	0	0	0	0	0	0	0	0	0	0	0	0
Neostempellina sp.	1	larvae	0	127	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudochironomus sp.	1	larvae	0	73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp.	4	larvae	7	0	0	0	0	13	0	0	0	27	0	0	30	0	0	0	0	0	0	0	0	0	0
Acricotopus sp.	1		0	0	0	0	0	0	0	0	0	0	0	0	41	0	0	0	0	0	0	0	0	0	0
Brillia sp.	3		0	0	0	0	0	59	0	0	0	20	0	0	171	0	0	0	0	0	0	0	0	0	0
Chaetocladius sp.	6		0	0	0	0	0	0	0	15	67	20	0	0	5	0	3	0	0	0	0	0	0	0	120
Corynoneura sp.	3		0	13	24	0	0	0	0	0	0	0	Õ	0	0	0	0	0	0	0	13	0	0	0	0
Cricotopus/Orthocladius sp. A	22		0	113	40	1079	860	536	1400	1682	187	251	70	51	11	725	297	163	333	263	5000	4067	2599	5387	880
Cricotopus/Orthocladius sp. B	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	397	0	0
Eukiefferiella sp.	18		633	153	131	1882	427	166	450	531	13	126	0	0	0	165	43	20	47	137	427	80	0	0	13
Parorthocladius sp.	10		000	0	131	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0
	1		0	_	0		_	0	0	0	0		0	0	1		0					0	1 - 1	0	0
Rheocricotopus sp.	1		0	133	0	0	0	_	0	_		0	0		0	0	0	0	0	0	0		0		-
Synorthocladius sp.	4		0	27	0	0	0	0	0	0	0	0	0	41	0	0	0	0	0	0	0	0	69	27	0
Thiennemaniella sp.	11		0	/	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tvetenia sp.	5		0	0	89	0	0	0	0	0	0	146	0	123	202	0	0	0	0	51	0	0	0	0	0
Diamesa sp.	6	larvae	1100	0	0	0	0	0	0	0	0	0	0	0	0	67	30	17	57	33	0	0	0	0	0
Pagastia sp.	12	larvae	0	0	33	27	267	27	167	113	0	0	0	0	0	17	13	7	40	7	40	0	0	0	0
Pseudodiamesa sp.	1	larvae	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thiennemannimyia Group	4	larvae	0	13	0	0	0	0	0	0	0	0	0	27	3	0	0	0	0	0	0	0	13	0	0
Family: Syriphidae	1	larvae	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0
Pericoma sp.	9	larvae	7	0	0	0	0	0	0	0	13	0	0	0	7	20	0	7	10	3	0	0	0	27	7
Chelifera/Metachela	16	larvae	13	20	0	0	0	0	0	0	67	53	0	7	3	30	10	3	3	3	53	13	107	160	60
Oreogeton sp.	13	larvae	0	0	0	3	0	7	0	3	1440	1573	533	1003	923	3	0	3	0	0	13	0	67	0	7
Clinocera sp.	1	larvae	0	0	n n	0	0	0	n	0	0	0	0	0	0	0	n	7	0	0	0	0	0	0	0
Dicranota sp.	12	larvae	0	20	20	0	53	0	0	17	0	0	0	3	27	10	0	0	7	7	0	27	0	27	$\frac{3}{7}$
Rhabdomastix sp.	2	larvae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n	0	, 0	2	0	13	0	0	
Hesperoconopa sp:	2	larvae	0	0	0	0	0	0	0	0	0	0	0	0	27	0	\ \ \ \ \ \	0	20	0	0	0	0	0	0
1 1/	2		_		0	-				_			0			_	0							_	
Gonomyodes sp.	3	larvae	0	0	U	0	0	0	0	0	0	0	U	0	0	13	0	0	3	13	0	0	0	0	0
Family Simuliidae (including identified Prosimulium sp.)	11		27	0	U	13	0	3	0		0	0	0	34	53	/	3	3	0	27	40	0	0	0	0
Order: Hemiptera	2		0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	3	0	0	0	0	0	0	0
Order: Collembola	5		0	0	0	0	0	0	0	0	0	0	0	0	0	7	3	7	7	10	0	0	0	0	0
Phylum: Nematoda	18		7	67	13	27	0	3	0	3	40	13	0	0	30	0	7	3	10	10	227	67	120	187	33
Class: Oligochaeta	11		40	7	7	0	53	0	0	0	0	0	0	3	0	193	23	7	273	127	0	0	0	0	7
Class: Turbellaria	2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	27	0	0
Class: Ostracoda	1		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Gastropoda	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0
Aturus	14		0	40	15	0	0	97	0	0	75	13	0	107	139	14	0	0	0	13	53	236	126	118	63
Hygrobates	4		0	0	8	0	0	0	36	40	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0
Lebertia	6	1	0	13	15	0	0	0	0	13	15	0	0	0	0	0	n	0	0	0	13	0	14	0	0
	19		0	47	15	0		36	36	40	15	13	13	30	35	-	7	3	17	0	160	70	126	88	39
Sperchon Foltrio	_		_				0									29	07								
Feltria	8		0	0	0	0	53	0	0	93	0	0	0	0	35	43	27	43	0	0	0	0	14	58	0
Wandesia	1		0	0	U	0	0	0	0	0	0	0	0	0	35	0	0	0	0	0	0	0	0	0	0
Torrenticola	2		0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	80	0	0	0	0
Order Prostigmata (including juveniles, deutonymphs, adults)	11		7								<u></u>	<u> </u>						<u> </u>						<u> </u>	
			1																						-
Number of Taxa after collapse, attribution			17	27	25	16	17	21	16	25	22	24	15	24	30	25	24	24	25	24	26	20	23	18	24

Table D.4: Number of taxa, after proportional attribution of some taxa, and collapse to higher level of others used in Vangorda 2007 comparisons only.

b) Artificial Substrate samples: Vangorda 2007

	Sample ID:		V1-A	V1-B	V1-C	V1-D	V1-E	V27-A	V27-B	V27-C	V27-D	V27-E	V5-A	V5-B	V5-C	V5-D	V5-E	V8-A	V8-B	V8-C	V8-D	V8-E
Ameletus sp.	nymph		0	22	0	3	0	0	0	1	0	4	0	2	0	0	0	0	0	1	0	4
Baetis sp.	nymph		9	1	16	25	368	24	36	41	370	9	0	24	0	4	32	2	16	7	18	96
Rhithrogena sp;	nymph		14	7	12	19	7	89	10	10	24	3	0	0	0	0	0	19	12	8	0	31
Cinygmula sp.	nymph		0	18	0	9	0	55	91	85	16	5	4	0	0	0	0	13	4	9	0	0
Epeorus sp.	nymph		31	7	37	43	74	82	34	8	110	0	12	72	18	25	23	15	22	34	44	31
Ephemerellidae (Drunella doddsi, D. coloradensis, D. spinifera, Serratella tibialis, unid. Ephemerellidae)	,		2	3	0	6	0	3	9	3	0	1	24	0	0	0	0	0	4	6	0	4
Family: Chloroperlidae	nymph	combine	-	1	8	0	0	5	1	1	0	1	0	8	0	3	75	1	0	1	0	0
Family: Perlodidae	nymph	combine	0	0	19	7	5	3	3	1	3	0	0	0	2	5	2	0	4	3	0	12
Zapada haysi/orogenensis	nymph	0011101110	25	3	144	75	145	448	39	45	369	45	599	366	207	44	205	49	223	133	324	474
Zapada columbiana	nymph		14	0	23	15	148	18	3	5	107	24	27	35	83	8	14	7	24	16	46	124
Zapada cinctipes	nymph		0	0	0	0	5	0	0	0	0	2	40	0	8	0	0	0	0	0	139	180
Taenionema sp	nymph		1	0	0	7	18	167	10	4	0	0	3	11	62	20	12	27	52	132	0	0
Family: Capniidae	nymph		3	4	17	27	27	25	10	4	0	2	127	308	201	13	414	2	18	40	101	114
Family: Leuctridae			0	0	0	0	0	0	0	0	0	0	0	11	0	13	0	0	0	0	0	0
Family: Hydropsychidae (include Arctopsyche, Parapsyche, Hydropsyche)	nymph	aomhina	3	0		20	17	124	38	19	64	24	56	50	24	12	90	16	61	67	96	232
	larvae	combine		,	16							11				13						
Rhyacophila sp.	larvae		6	0	4	3	19	135	30	10	47		176	152	177	36	339	22	46	34	50	114
Hydroptila sp.	larvae		0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0	1	8	0
Glossosoma sp.	larvae		9	2	4	0	0	5	63	30	33	14	0	0	0	0	0	0	0	0	0	4
Family: Limnephilidae (includes Ecclisomyia)	.	combine	0	0	0	0	2	4	0	0	0	5	8	2	0	Ü	0	0	0	1	0	0
Oligophleboides sp. Order: Coleoptera	larvae		0	0	0	0	0	0	10	2	0	0	0	0	0	2	0	0	0	3	0	0
Order: Coleoptera	adult		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp.	larvae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Brillia sp.	larvae		2	0	28	38	42	2	1	3	64	9	219	56	35	2	0	0	42	19	110	60
Chaetocladius sp.	larvae		0	0	0	94	0	0	3	0	0	0	0	0	236	8	241	28	167	288	152	310
Corynoneura sp.	larvae		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
Cricotopus/Orthocladius sp. A	larvae		21	6	66	41	184	2	1	29	0	14	381	138	72	6	32	9	45	32	272	112
Eukiefferiella sp.	larvae		9	3	32	6	81	7	6	21	224	8	295	0	24	14	82	0	10	6	136	0
Synorthocladius sp.	larvae		0	0	0	0	0	0	0	0	0	0	0	48	0	0	0	0	0	0	0	0
Tvetenia sp.	larvae		0	0	0	0	0	0	0	0	0	8	10	0	0	0	0	0	0	0	0	0
Diamesa sp.	larvae		1	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pagastia sp.	larvae		0	0	5	6	32	0	0	2	48	1	0	82	0	0	0	0	0	0	70	0
Pseudodiamesa sp.	larvae		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pericoma sp.	larvae		0	0	8	0	8	2	0	0	0	0	10	26	136	6	176	0	2	1	0	4
Family: Empididae		combine	0	0	0	0	8	2	4	2	26	4	8	0	16	0	32	0	2	0	16	4
Dicranota sp.	larvae		0	0	0	0	0	1	0	0	0	0	0	0	24	2	2	0	1	0	8	0
Hesperoconopa sp;	larvae		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Limnophila sp.	larvae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
Tipula sp.	larvae		0	0	0	0	0	0	0	0	0	0	Ö	0	1	0	0	0	0	0	0	0
Family Simuliidae (includes pupae and Simulium and Prosimulium larvae)	14.140		0	0	8	0	28	33	8	7	137	6	126	62	8	4	68	4	17	17	20	34
Family: Stratiomylidae	larvae		0	0	0	0	0	0	0	0	0	0	0	2	1	0	1	0	0	0	0	0
Order: Collembola	140		0	0	0	0	0	3	0	0	0	0	0	0	16	0	0	0	3	0	0	0
Class: Oligochaeta	 	combine	0	0	0	0	0	0	0	0	8	0	24	0	2	0	0	0	0	1	0	0
Class: Ostracoda	1	SOTTIBILITE	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	$\frac{0}{0}$	0
Class: Arachnida	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Order : Mesostigmata	 		0	0	0	0	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0
Aturus	adult		1	0	0	0	0	36	0	0	8	0	0	0	0	0	0	9	24	11	56	16
	adult		1	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hygrobates Lebertia	adult		0	0		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
				Ů	0	_		_					•	·	0	•	•	,	Ŭ	7	Ü	4
Sperchon	adult		4	0	4	0	8	3	0	0	0	3	0	0	•	2	0	0	3	1	8	
Feltria	adult		0	0	4	0	0	0	0	0	0	0	56	40	24	6	32	0	0	0	0	0
			450	70	400	4 17	4000	4070	44.4	005	4057	000	0004	4.400	4.40.4	000	4070	000	000	077	4070	4000
		new nind	158	78	466	447	1226	1278	411	335	1657	203	2204	1496	1401	223	1876	223	803	877	1676	1966
		new arntaxa	20	13	22	19	20	26	21	23	17	22	20	20	23	20	21	15	24	26	20	22

Table D.5: Benthic metrics for Hess and artificial substrate sampling stations based on Vangorda Creek, 2007 only.

															Hess	Hess	Hess All	Hess All	Hess All	Hess
				Hess	Hess	Hess	Hess		Hess			Hess	Hess B-C	Hess Vangorda	Vangorda CA	Vangorda CA	Stations CA	Stations CA	Stations CA	Reference
			Hess Density	Number of	Ephemeroptera	Plecoptera	Trichoptera	Hess EPT	Chironomids	Hess	Hess	Simpsons E	Dist. to V-1	CA Axis-1	Axis-2	Axis-3	Axis-1	Axis-2	Axis-3	Stations CA
Station	Area	Area	(Individuals/m2)	Taxa	(%)	(%)	(%)	(%)	(%)	Simpson's D	Simpson's E	(Krebs)	median	(24.4%)	(17.2%)	(14.7%)	(22.4%)	(15.0%)	(13.3%)	Axis-1 (36.6%)
UWFV	UWFV	UWFV Ref. Alternate	2057.0	17	6.5100	2.9700	0.3400	9.8200	84.9300	0.6139	0.1524	0.6523	0.8288				1.0582	0.3365	0.4849	
USFR	USFR	USFR Ref. Alternate	3080.0	27	45.6500	22.3400	3.6700	71.6600	21.4000	0.8658	0.2760	0.8991	0.6881				-0.2553	-0.1998	-0.1772	0.0044
NEXC	NEXC	NEXC Ref. Alternate	1607.0	25	38.1500	23.2700	11.6400	73.0600	20.7200	0.8431	0.2549	0.8782	0.6540				-0.0817	0.0883	-0.4013	0.0746
V1-1	V1	V1 Reference	8909.0	16	29.8100	28.5200	0.7400	59.0800	40.4400	0.8220	0.3512	0.8768	0.2413	-0.0324	-0.3920	0.3887	0.0436	0.2355	-0.4374	-0.3470
V1-2	V1	V1 Reference	4669.0	17	40.6900	20.1100	2.5100	63.3100	33.2800	0.8365	0.3597	0.8888	0.1811	-0.3638	-0.2437	0.2924	0.2480	0.0379	-0.4594	0.3978
V1-3	V1	V1 Reference	4648.0	21	46.1500	29.9900	2.0000	78.1400	18.5700	0.7604	0.1987	0.7984	0.1602	0.2650	-0.4238	-0.0478	-0.1847	0.4679	0.0149	
V1-4	V1	V1 Reference	4935.0	16	28.6500	26.0000	2.8400	57.4900	40.8700	0.8141	0.3362	0.8683	0.1626	-0.1136	-0.4392	0.6588	0.0341	0.1798	-0.7592	0.1256
V1-5	V1	V1 Reference	6582.0	25	37.0300	20.3600	3.0400	60.4200	36.3000	0.8083	0.2087	0.8420	0.0964	-0.0092	-0.2252	0.4789	-0.0563	0.0673	-0.4989	0.2097
V27-1	V27	V27 Exposure NF	9985.0	22	42.4600	26.4300	11.6200	80.5100	2.8000	0.8297	0.2669	0.8692	0.4943	0.3128	-0.0238	-0.0094	-0.2929	0.0975	0.1278	
V27-2	V27	V27 Exposure NF	10569.0	24	42.6300	23.2100	9.8400	75.6800	8.4400	0.8223	0.2345	0.8581	0.4781	0.4297	-0.3042	-0.3288	-0.3393	0.4630	0.3013	
V27-3	V27	V27 Exposure NF	4530.0	15	47.0600	27.6600	8.2300	82.9600	4.7000	0.8028	0.3380	0.8601	0.3643	0.2948	-0.3204	0.0045	-0.2827	0.3395	-0.0183	
V27-4	V27	V27 Exposure NF	8464.0	24	44.3100	24.5000	9.4900	78.3000	7.6400	0.8075	0.2164	0.8426	0.4451	0.3885	-0.0303	-0.3931	-0.3462	0.1727	0.2813	
V27-5	V27	V27 Exposure NF	9042.0	30	40.2600	23.4900	14.0200	77.7700	7.4300	0.8643	0.2457	0.8942	0.4799	0.4348	-0.2650	-0.4990	-0.3192	0.4689	0.4348	
V5-1	V5	V5 Exposure FF	1858.0	25	2.8000	14.5300	9.6300	26.9600	52.7400	0.7972	0.1973	0.8304	0.6435	-0.8108	0.2074	-0.3201	0.7855	-0.2347	0.2520	
V5-2	V5	V5 Exposure FF	956.0	24	8.3700	31.0700	9.4100	48.8500	42.4700	0.8572	0.2918	0.8945	0.7562	-0.5451	0.0260	0.0071	0.4869	-0.1107	-0.0430	
V5-3	V5	V5 Exposure FF	856.0	24	12.5000	34.7000	16.3600	63.5500	25.7000	0.8682	0.3163	0.9060	0.7835	-0.6568	-0.0259	-0.0986	0.6402	-0.0540	0.0380	
V5-4	V5	V5 Exposure FF	1704.0	25	7.8100	26.0000	14.1400	47.9500	30.3400	0.8778	0.3273	0.9144	0.6852	-0.8069	0.0326	-0.1618	0.7491	-0.1178	0.0232	
V5-5	V5	V5 Exposure FF	1244.0	24	11.8200	18.7300	9.1600	39.7100	42.3600	0.8925	0.3876	0.9313	0.7397	-0.7270	0.0008	-0.5179	0.7447	0.0151	0.2731	
V8-1	V8	V8 Exposure FFF	7984.0	26	5.8500	14.8300	2.6800	23.3600	68.6400	0.5683	0.0891	0.5910	0.5443	0.1051	0.1020	0.2800	-0.1449	-0.1600	-0.1537	
V8-2	V8	V8 Exposure FFF	6238.0	20	3.2100	19.6500	3.1900	26.0500	66.4800	0.5178	0.1037	0.5450	0.5972	0.1513	0.4242	0.4054	-0.2676	-0.4912	-0.1831	
V8-3	V8	V8 Exposure FFF	5652.0	23	4.9400	25.7100	4.2500	34.8900	54.4900	0.7510	0.1746	0.7851	0.5601	0.4451	0.6858	0.0342	-0.5034	-0.5830	0.2376	
V8-4	V8	V8 Exposure FFF	7632.0	18	3.8500	11.2000	5.2500	20.3100	70.9400	0.4824	0.1073	0.5107	0.6625	0.1488	0.8690	0.0780	-0.2330	-0.8253	0.2669	
V8-5	V8	V8 Exposure FFF	2333.0	24	12.8200	25.4600	8.0200	46.2900	43.4200	0.8127	0.2224	0.8480	0.5475	0.1322	0.3891	0.0388	-0.1941	-0.3409	0.1908	

Table D.5: Benthic metrics for Hess and artificial substrate sampling stations based on Vangorda Creek, 2007 only.

			Hess Reference Stations CA	Hess Reference Stations CA Axis-3	Artificial Substrate Abundance	Artificial Substrate Number of	Artificial Substrate Ephemeroptera	Artificial Substrate Plecoptera	Artificial Substrate Trichoptera	Artificial Substrate	Artificial Substrate Chironomids	Art. Substrate	Art. Substrate		Art. Substrate B- C Dist. to V-1	 Artificial Substrate CA 	Artificial Substrate CA	Artificial Substrate CA-3	Artificial Substrate CA-4	Artificial Substrate
Station	Area	Area	Axis-2 (19.3%)	(17.8%)	(ind./m2)	Taxa	(%)	(%)	(%)	EPT (%)	(%)	Simpson's D	Simpson's E	(Krebs)	median	1 (23.8%)	2 (13.5%)	(12.5%)	(9.9%)	CA-5 (8.7%)
UWFV	UWFV	UWFV Ref. Alternate	0.3270	-0.1413																
USFR	USFR	USFR Ref. Alternate	-0.4010	-0.4375		-		-										-		
NEXC	NEXC	NEXC Ref. Alternate	-0.2826	0.1137														-		
V1-1	V1	V1 Reference	-0.0114	0.0659	166.0	20	33.7349	27.1084	10.2410	71.0843	24.0964	0.8906	0.4570	0.9375	0.3582	-0.3730		0.0610	-0.1560	-0.1810
V1-2	V1	V1 Reference	0.3305	-0.2463	81.0	13	71.6049	9.8765	2.4691	83.9506	16.0494	0.8359	0.4687	0.9056	0.8054	-1.2490		-0.6230	1.2350	-0.1970
V1-3	V1	V1 Reference	0.0496	0.1139	494.0	22	13.1579	42.9150	4.8583	60.9312	32.3887	0.8594	0.3233	0.9003	0.2426			-0.2030	-0.2210	-0.3760
V1-4	V1	V1 Reference	-0.1330	0.3560	467.0	19	22.4839	27.8373	4.9251	55.2463	44.7537	0.8893	0.4756	0.9387	0.2443	-0.2620	-0.1060	0.1030	0.2550	-0.2580
V1-5	V1	V1 Reference	0.1904	0.0528	1306.0	20	34.3798	26.6462	2.9096	63.9357	31.4701	0.8470	0.3268	0.8916	0.6317	0.1050	0.3430	0.1140	-0.1680	-0.2270
V27-1	V27	V27 Exposure NF			1279.0	26	19.7811	51.9937	20.9539	92.7287	0.8600	0.8265	0.2216	0.8595	0.7250	-0.2430	-0.2710	0.0480	-0.1810	0.1420
V27-2	V27	V27 Exposure NF			411.0	21	43.7956	16.3017	34.3066	94.4039	2.6764	0.8868	0.4205	0.9311	0.5724	-0.6570	-0.2590	-0.2390	-0.3110	0.2910
V27-3	V27	V27 Exposure NF			335.0	23	44.1791	18.2090	18.2090	80.5970	16.4179	0.8760	0.3507	0.9158	0.4940	-0.6280	0.0350	-0.2290	-0.1540	0.1140
V27-4	V27	V27 Exposure NF			1693.0	17	30.6556	28.2930	8.5056	67.4542	21.9728	0.8614	0.4243	0.9152	0.7718	-0.2870	0.4440		-0.4270	0.1670
V27-5	V27	V27 Exposure NF			206.0	22	10.6796	35.9223	26.2136	72.8155	20.8738	0.9001	0.4551	0.9430	0.4610	-0.3720	0.4400	-0.0730	0.1780	0.0800
V5-1	V5	V5 Exposure FF			2274.0	20	1.7590	35.0044	10.5541	47.3175	42.8320	0.8534	0.3410	0.8983	0.8238	0.3360	0.4260	-0.2100	0.2230	0.5830
V5-2	V5	V5 Exposure FF			1532.0	20	6.3969	48.3029	13.3159	68.0157	23.2376	0.8664	0.3743	0.9120	0.7129	0.3680	0.2100	-0.4620	0.0050	-0.3730
V5-3	V5	V5 Exposure FF			1401.0	23	1.2848	40.1856	14.3469	55.8173	26.1956	0.8931	0.4066	0.9337	0.7331	0.7220	-0.2800	-0.0600	0.1690	0.2830
V5-4	V5	V5 Exposure FF			223.0	20	13.0045	41.7040	22.8700	77.5785	13.4529	0.8974	0.4874	0.9446	0.4667	0.3150	-0.3350	-0.2460	-0.1760	-0.1120
V5-5	V5	V5 Exposure FF			1876.0	21	2.9318	38.5394	22.8678	64.3390	18.9232	0.8727	0.3742	0.9164	0.8058	0.5040	-0.2470	-0.4010	-0.0720	-0.1390
V8-1	V8	V8 Exposure FFF			226.0	15	21.6814	38.0531	16.8142	76.5487	17.6991	0.8870	0.5898	0.9503	0.5386	-0.2300	-0.5450	0.2650	-0.0420	-0.0450
V8-2	V8	V8 Exposure FFF			818.0	24	7.0905	39.2421	13.0807	59.4132	33.9853	0.8564	0.2902	0.8936	0.5166	0.0370	-0.3530	0.3240	0.0060	0.0380
V8-3	V8	V8 Exposure FFF			883.0	26	7.2480	36.8063	12.0045	56.0589	39.7508	0.8324	0.2294	0.8657	0.5831	-0.1270	-0.3550	0.1520	0.0490	0.0370
V8-4	V8	V8 Exposure FFF			1708.0	20	3.6300	35.7143	9.0164	48.3607	45.3162	0.8978	0.4893	0.9451	0.7286	0.2920	0.2680	0.5700	0.0910	-0.0920
V8-5	V8	V8 Exposure FFF			1978.0	22	8.3923	45.7027	17.6946	71.7897	25.0758	0.8765	0.3679	0.9182	0.7631	0.0000	0.0640	0.4000	0.2860	-0.0890

Table D.6: Descriptive statistics for benthic metrics at Faro Vangorda Creek study areas, Hess samples (5 stations/area) 2007 only.

Variable	Area	n	Mean	Std.	Std. Error	95% Confidence	e Interval for Mean	Minimum	Maximum	Unbiased	Average CV (%)
				Deviation		Lower Bound	Upper Bound			CV (%)	for Sample Method
Hess Density (Individuals/m2)	V1	5	5948.600	1838.579	822.237	3665.703	8231.497	4648.000	8909.000	32.5	
,	V27	5	8518.000	2373.833	1061.610	5570.497	11465.503	4530.000	10569.000	29.3	
	V5	5	1323.600	444.523	198.797	771.652	1875.548	856.000	1858.000		
	V8	5	5967.800	2248.285	1005.463	3176.186	8759.414	2333.000	7984.000	39.6	;
Hess Number of Taxa	V1	5	19.000	3.937	1.761	14.110	23.890	16.000	25.000	21.8	
	V27	5	23.000	5.385	2.408	16.310	29.690	15.000	30.000	24.6	i
	V5	5	24.400	0.548	0.245	23.720	25.080	24.000	25.000	2.4	
	V8	5	22.200	3.194	1.428	18.230	26.170	18.000	26.000	15.1	
Hess EPT (%)	V1	5	63.687	8.358	3.738	53.310	74.065	57.490	78.140		
	V27	5	79.044	2.781	1.244	75.590	82.497	75.680	82.960	3.7	
	V5	5	45.404	13.417	6.000	28.745	62.064	26.960	63.550	31.0	
	V8	5	30.180	10.521	4.705	17.116	43.244	20.310	46.290	36.6	
Hess Chironomids (%)	V1	5	33.892	9.119	4.078			18.570	40.870		
	V27	5	6.204	2.366	1.058	3.266	9.142	2.800	8.440	40.0	
	V5	5	38.724		4.815			25.700	52.740	29.2	
	V8	5	60.794	11.600	5.188	46.390	75.198	43.420	70.940		
Hess Simpson's D	V1	5	0.808	0.029	0.013			0.760	0.836	3.7	
	V27	5	0.825	0.024	0.011	0.795	0.856	0.803	0.864	3.1	
	V5	5	0.859	0.037	0.016	0.813	0.904	0.797	0.893	4.5	
	V8	5	0.626	0.147	0.066	0.444	0.809	0.482	0.813	24.6	
Hess Simpson's E	V1	5	0.291	0.080	0.036		0.390	0.199	0.360		
	V27	5	0.260	0.047	0.021	0.202		0.216	0.338		
	V5	5	0.304	0.069	0.031	0.218	0.390	0.197	0.388	23.9	
	V8	5	0.139	0.057	0.025			0.089	0.222	42.9	
Hess B-C Dist. to V-1 median	V1	5	0.168		0.023			0.096	0.241		
	V27	5	0.452	0.052	0.023		0.517	0.364	0.494		
	V5	5	0.722	0.057	0.025		0.792	0.643	0.784		
	V8	5	0.582	0.049	0.022		0.644	0.544	0.662		
Hess Vangorda CA Axis-1 (24.4%)	V1	5	-0.051	0.226	0.101	-0.331	0.229	-0.364	0.265		
	V27	5	0.372	0.065	0.029		0.453	0.295	0.435		
	V5	5	-0.709	-	0.050			-0.811	-0.545		
	V8	5	0.196		0.063		0.371	0.105	0.445		
Hess Vangorda CA Axis-2 (17.2%)	V1	5	-0.345		0.046		-0.218	-0.439	-0.225		
	V27	5	-0.189	0.149	0.067	-0.374		-0.320	-0.024		
	V5	5	0.048		0.041	-0.066		-0.026	0.207		
	V8	5	0.494	0.295	0.132			0.102	0.869		
Hess Vangorda CA Axis-3 (14.7%)	V1	5	0.354	0.262	0.117	0.029		-0.048	0.659		1
	V27	5	-0.245		0.103			-0.499	0.004		
	V5	5	-0.218		0.092			-0.518	0.007		
	V8	5	0.167	0.167	0.075	-0.040	0.375	0.034	0.405	104.8	48.72

Table D.7: Descriptive statistics for benthic metrics at Faro Vangorda Creek study areas, artificial substrate samples (5 stations/area) 2007 only.

Tariff to the second second				1010:-1					1000 5		
Artificial Substrate Abundance	V1	5	502.800	484.210	216.546		1104.027	81.000	1306.000		
	V27	5	784.800	660.704	295.476	-35.572	1605.172	206.000	1693.000		
	V5	5	1461.200	770.467	344.563	504.539	2417.861	223.000	2274.000		
	V8	5	1122.600	712.124	318.472	238.381	2006.819	226.000	1978.000	66.6	
Artificial Substrate Number of Taxa	V1	5	18.800	3.421	1.530	14.550	23.050	13.000	22.000	19.1	
	V27	5	21.800	3.271	1.463	17.740	25.860	17.000	26.000		
	V5	5	20.800	1.304	0.583	19.180		20.000	23.000		
	V8	5	21.400	4.219	1.887	16.160		15.000	26.000		
Artificial Substrate EPT (%)	V1	5	67.030	11.050	4.942	53.310		55.246	83.951	17.3	
	V27	5	81.600	11.896	5.320	66.829	96.371	67.454	94.404		
	V5	5	62.614	11.579	5.178	48.237	76.990	47.318	77.578		
	V8	5	62.434	11.560	5.170	48.080	76.788	48.361	76.549		
Artificial Substrate Chironomids (%)	V1	5	29.752	10.662	4.768	16.513		16.049	44.754		
	V27	5	12.560	10.089	4.512	0.033		0.860	21.973		
	V5	5	24.928	11.099	4.964		38.710	13.453	42.832		
	V8	5	32.365	11.103	4.966	18.579	46.152	17.699	45.316		
Art. Substrate Simpson's D	V1	5	0.864	0.025	0.011	0.834	0.895	0.836	0.891	3.0	
	V27	5	0.870	0.028	0.013	0.835	0.905	0.826	0.900		
	V5	5	0.877	0.018	0.008	0.854	0.900	0.853	0.897	2.2	
	V8	5	0.870	0.026	0.012	0.838		0.832	0.898		
Art. Substrate Simpson's E	V1	5	0.410	0.078	0.035	0.313		0.323	0.476		
	V27	5	0.374	0.094	0.042	0.258		0.222	0.455		
	V5	5	0.397	0.056	0.025	0.327	0.466	0.341	0.487	14.8	
	V8	5	0.393	0.147	0.066	0.211	0.575	0.229	0.590		
Art. Substrate B-C Dist. to V-1 median	V1	5	0.456	0.251	0.112	0.144	0.769	0.243	0.805		
	V27	5	0.605	0.138	0.062	0.433		0.461	0.772		
	V5	5	0.708	0.143	0.064	0.531	0.886	0.467	0.824		
	V8	5	0.626	0.113	0.050	0.486	0.766	0.517	0.763		
Artificial Substrate CA-1 (23.8%)	V1	5	-0.347	0.543	0.243	-1.021	0.327	-1.249	0.105		
	V27	5	-0.437	0.193	0.086	-0.677	-0.198	-0.657	-0.243		
	V5	5	0.449	0.169	0.076	0.239	0.659	0.315	0.722	39.6	
	V8	5	-0.006	0.197	0.088	-0.250	0.239	-0.230	0.292	3697.0	
Artificial Substrate CA-2 (13.5%)	V1	5	0.105	0.175	0.078	-0.112	0.322	-0.106	0.343	174.1	
	V27	5	0.078	0.354	0.158	-0.362	0.518	-0.271	0.444		
	V5	5	-0.045	0.342	0.153	-0.469	0.379	-0.335	0.426	793.7	
	V8	5	-0.184	0.337	0.151	-0.602	0.234	-0.545	0.268		
Artificial Substrate CA-3 (12.5%)	V1	5	-0.110	0.315	0.141	-0.501	0.281	-0.623	0.114	301.7	
,	V27	5	-0.077	0.157	0.070		0.119	-0.239	0.108	214.8	
	V5	5	-0.276	0.160	0.071	-0.474	-0.077	-0.462	-0.060		
	V8	5	0.342	0.156	0.070			0.152	0.570		

Table D.8: Summary statistics for benthic community metrics, 3 Stations per Area, Vangorda 2007.

Hess Density (Individuals/m2)	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6075.333 8361.333 1223.333 6624.667 18.000 20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841 0.612	Deviation 2454.050 3330.856 551.907 1213.132 2.646 4.726 0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014 0.038	1416.846 1923.070 318.644 700.402 1.528 2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399 0.023	-20.864 87.029 -147.680 3611.080 11.430 8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	Upper Bound 12171.531 16635.638 2594.346 9638.254 24.570 32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216 82.132	4648.000 4530.000 856.000 5652.000 16.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800 25.700	8909.000 10569.000 1858.000 7984.000 21.000 24.000 25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	40.4 39.8 45.1 18.3 14.7 23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3 53.9	43.8 43.2 48.9 19.8 15.9 25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3 58.4
V27	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8361.333 1223.333 6624.667 18.000 20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	3330.856 551.907 1213.132 2.646 4.726 0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	1923.070 318.644 700.402 1.528 2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	87.029 -147.680 3611.080 11.430 8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	16635.638 2594.346 9638.254 24.570 32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	4530.000 856.000 5652.000 16.000 15.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	10569.000 1858.000 7984.000 21.000 24.000 25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	39.8 45.1 18.3 14.7 23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3	43.2 48.9 19.8 15.9 25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3
V5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1223.333 6624.667 18.000 20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	551.907 1213.132 2.646 4.726 0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	318.644 700.402 1.528 2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	-147.680 3611.080 11.430 8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	2594.346 9638.254 24.570 32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	856.000 5652.000 16.000 15.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	1858.000 7984.000 21.000 24.000 25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	45.1 18.3 14.7 23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3	48.9 19.8 15.9 25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3
V8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6624.667 18.000 20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	1213.132 2.646 4.726 0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	700.402 1.528 2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	3611.080 11.430 8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	9638.254 24.570 32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	5652.000 16.000 15.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	7984.000 21.000 24.000 25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	18.3 14.7 23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3	19.8 15.9 25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3
Hess Number of Taxa V1 V27 V5 V8 Hess EPT (%) V1 V27 V5 V8 Hess Chironomids (%) V1 V27 V5 V8 Hess Simpson's D V1 V27 V5 V8 Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	18.000 20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	2.646 4.726 0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	1.528 2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	11.430 8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	24.570 32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	16.000 15.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	21.000 24.000 25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	14.7 23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3	15.9 25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3
V27	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	18.000 20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	2.646 4.726 0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	1.528 2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	11.430 8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	24.570 32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	16.000 15.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	21.000 24.000 25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	14.7 23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3	15.9 25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3
V5 V8 V8 V1 V27 V5 V8 V8 V8 V8 V8 V8 V8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20.330 24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	2.728 0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	8.590 22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	32.070 25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	15.000 24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	23.2 2.4 13.0 15.0 4.6 39.6 21.5 36.3	25.2 2.6 14.1 16.2 5.0 42.9 23.3 39.3
V5 V8 V8 V1 V27 V5 V8 V8 V8 V8 V8 V8 V8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24.330 23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	0.577 3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	0.333 1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	22.900 15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	25.770 30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	24.000 20.000 59.080 75.680 26.960 23.360 18.570 2.800	25.000 26.000 78.140 82.960 63.550 34.890 40.440 8.440	2.4 13.0 15.0 4.6 39.6 21.5 36.3	2.6 14.1 16.2 5.0 42.9 23.3 39.3
V8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	23.000 66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	3.000 10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	1.732 5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	15.550 41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	30.450 91.713 88.913 92.190 43.086 58.470 12.438 74.216	20.000 59.080 75.680 26.960 23.360 18.570 2.800	26.000 78.140 82.960 63.550 34.890 40.440 8.440	13.0 15.0 4.6 39.6 21.5 36.3	14.1 16.2 5.0 42.9 23.3 39.3
Hess EPT (%) V1 V27 V5 V8 Hess Chironomids (%) V1 V27 V5 V8 Hess Simpson's D V1 V27 V5 V8 Hess Simpson's E V1 V27 V5 V8 Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8	3 3 3 3 3 3 3 3 3 3 3 3 3 3	66.843 79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	10.012 3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	5.780 2.137 10.629 3.483 6.439 1.656 7.882 4.399	41.972 70.522 0.721 13.114 3.059 -1.808 6.393 44.276	91.713 88.913 92.190 43.086 58.470 12.438 74.216	59.080 75.680 26.960 23.360 18.570 2.800	78.140 82.960 63.550 34.890 40.440 8.440	15.0 4.6 39.6 21.5 36.3	16.2 5.0 42.9 23.3 39.3
V27 V5 V8 V8 V1 V27 V5 V8 V8 V8 V9 V9 V9 V9 V9	3 3 3 3 3 3 3 3 3 3 3 3 3	79.718 46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	3.702 18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	2.137 10.629 3.483 6.439 1.656 7.882 4.399	70.522 0.721 13.114 3.059 -1.808 6.393 44.276	88.913 92.190 43.086 58.470 12.438 74.216	75.680 26.960 23.360 18.570 2.800	82.960 63.550 34.890 40.440 8.440	4.6 39.6 21.5 36.3	5.0 42.9 23.3 39.3
V5 V8 V8 V1 V27 V5 V8 V8 V8 V9 V9 V9 V9 V9	3 3 3 3 3 3 3 3 3 3	46.455 28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	18.411 6.033 11.153 2.867 13.651 7.620 0.040 0.014	10.629 3.483 6.439 1.656 7.882 4.399	0.721 13.114 3.059 -1.808 6.393 44.276	92.190 43.086 58.470 12.438 74.216	26.960 23.360 18.570 2.800	63.550 34.890 40.440 8.440	39.6 21.5 36.3	42.9 23.3 39.3
V8	3 3 3 3 3 3 3 3 3	28.100 30.764 5.315 40.305 63.204 0.806 0.818 0.841	6.033 11.153 2.867 13.651 7.620 0.040 0.014	3.483 6.439 1.656 7.882 4.399	13.114 3.059 -1.808 6.393 44.276	43.086 58.470 12.438 74.216	23.360 18.570 2.800	34.890 40.440 8.440	21.5 36.3	23.3 39.3
Hess Chironomids (%) V1 V27 V5 V8 Hess Simpson's D V1 V27 V5 V8 Hess Simpson's E V1 V27 V5 V8 Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8 V8 V8 V8 V8 V8 V8 V8 V8	3 3 3 3 3 3 3 3	30.764 5.315 40.305 63.204 0.806 0.818 0.841	11.153 2.867 13.651 7.620 0.040 0.014	6.439 1.656 7.882 4.399	3.059 -1.808 6.393 44.276	58.470 12.438 74.216	18.570 2.800	40.440 8.440	36.3	39.3
V27 V5 V8 V8 V8 V8 V8 V8 V9 V9	3 3 3 3 3 3 3	5.315 40.305 63.204 0.806 0.818 0.841	2.867 13.651 7.620 0.040 0.014	1.656 7.882 4.399	-1.808 6.393 44.276	12.438 74.216	2.800	8.440		
V5 V8 V8 V8 V9 V1 V27 V5 V8 V8 V9 V9 V9 V9 V9 V9	3 3 3 3 3 3	40.305 63.204 0.806 0.818 0.841	13.651 7.620 0.040 0.014	7.882 4.399	6.393 44.276	74.216			55.5	JU. 4
V8	3 3 3 3 3	63.204 0.806 0.818 0.841	7.620 0.040 0.014	4.399	44.276		25.700	52.740	33.9	36.7
Hess Simpson's D V1 V27 V5 V8 Hess Simpson's E V1 V27 V5 V8 Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8	3 3 3 3	0.806 0.818 0.841	0.040 0.014				54.490	68.640	12.1	13.1
V27 V5 V8 V8 V8 V8 V9 V9 V9 V9	3 3 3 3	0.818 0.841	0.014	0.023		0.907	0.760	0.836	5.0	5.4
V5 V8 V8 V8 V8 V9 V9 V9 V9	3 3 3	0.841		0.008	0.706 0.784	0.853	0.760	0.830	1.7	1.8
V8	3 3			0.008			0.803			-
Hess Simpson's E	3	しらし			0.746	0.936		0.868	4.5	4.9
Artificial Substrate Density (ind./m2) V27 V5 V8 Artificial Substrate Density (ind./m2) V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8			0.123	0.071	0.308	0.917	0.518	0.751	20.0	21.7
V5 V8 Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8		0.303	0.091	0.052	0.078	0.528	0.199	0.360	29.9	32.4
Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8		0.280	0.053	0.031	0.148	0.411	0.235	0.338	18.9	20.5
Artificial Substrate Density (ind./m2) V1 V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8	3	0.268	0.063	0.036	0.112	0.425	0.197	0.316	23.4	25.4
V27 V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8	3	0.122	0.046	0.026	0.009	0.236	0.089	0.175	37.4	40.5
V5 V8 Artificial Substrate Number of Taxa V1 V27 V5 V8	3	247.000	218.089	125.914	-294.764	788.764	81.000	494.000	88.3	95.7
V8 Artificial Substrate Number of Taxa V1 V27 V5 V8		675.000	524.458	302.796	-627.825	1977.825	335.000	1279.000	77.7	84.2
Artificial Substrate Number of Taxa V1 V27 V5 V8	3	1735.667	470.789	271.810	566.162	2905.172	1401.000	2274.000	27.1	29.4
V27 V5 V8	3	642.333	362.017	209.011	-256.967	1541.634	226.000	883.000	56.4	61.1
V5 V8	3	18.330	4.726	2.728	6.590	30.070	13.000	22.000	25.8	27.9
V8	3	23.330	2.517	1.453	17.080	29.580	21.000	26.000	10.8	11.7
	3	21.000	1.732	1.000	16.700	25.300	20.000	23.000	8.2	8.9
Artificial Cubatrata EDT (0/)	3	21.670	5.859	3.383	7.110	36.220	15.000	26.000	27.0	29.3
Artificial Substrate EPT (%) V1	3	71.989	11.536	6.661	43.331	100.647	60.931	83.951	16.0	17.4
V27	3	89.243	7.535	4.350	70.526	107.960	80.597	94.404	8.4	9.1
V5	3	57.050	10.404	6.007	31.205	82.895	47.318	68.016	18.2	19.8
V8	3	64.007	10.990	6.345	36.706	91.308	56.059	76.549	17.2	18.6
Artificial Substrate Chironomids (%) V1	3	24.178	8.170	4.717	3.883	44.473	16.049	32.389	33.8	36.6
` ´ V27	3	6.651	8.507	4.911	-14.480	27.783	0.860	16.418	127.9	138.5
V5	3	30.755	10.563	6.099	4.515	56.995	23.238	42.832	34.3	37.2
V8	3	30.478	11.436	6.603	2.069	58.888	17.699	39.751	37.5	40.7
Art. Substrate Simpson's D V1	3	0.862	0.027	0.016	0.794	0.930	0.836	0.891	3.2	3.4
V27		0.863	0.032	0.019	0.783	0.943	0.826	0.887	3.7	4.0
V5	3	0.871	0.020	0.012	0.821	0.921	0.853	0.893	2.3	2.5
V8	3	0.859	0.027	0.012	0.791	0.927	0.832	0.887	3.2	3.5
Art. Substrate Simpson's E V1		0.639	0.027	0.047	0.791	0.617	0.323	0.469	3.2 19.4	21.0
V27	٠,	0.331	0.001	0.047	0.080	0.582	0.323	0.421	30.5	33.0
	3									
V5 V8	3 3 3	0.374	0.033 0.193	0.019 0.111	0.292 -0.109	0.456 0.849	0.341 0.229	0.407 0.590	8.8 52.2	9.5 56.5

Table D.9: Summary statistics for benthic community metrics based on artificial subtrates, Rose Creek 2008.

Five Stations per Area

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
	DO		4044.0000	4000 0077	400 74 40	40.0700	0500 0700	004.0000	0000 0000	00.0	
	R2	5	1244.6000		463.7148	-42.8786	2532.0786	304.0000	2600.0000		
	R7	5	5275.8000		1499.4276	1112.7215	9438.8785	491.0000	9648.0000		
	X2	5	4122.4000		1479.9003	13.5380	8231.2620	1352.0000	9568.0000		-1
	R2	5	21.6000	3.7150	1.6610	16.9900	26.2100	19.0000	27.0000	17.2	
Number of Taxa	R7	5	19.0000	0.7070	0.3160	18.1200	19.8800	18.0000	20.0000	3.7	
	X2	5	16.6000	3.7820	1.6910	11.9000	21.3000	14.0000	23.0000	22.8	
Simpson's D	R2	5	0.8713	0.0071	0.0032	0.8625	0.8800	0.8635	0.8817	0.8	
(Krebs)	R7	5	0.7991	0.0430	0.0192	0.7457	0.8526	0.7400	0.8465	5.4	
, ,	X2	5	0.7517	0.0813	0.0364	0.6507	0.8526	0.6174	0.8126	10.8	
											1
Simpson's E											
	R2	5	0.3665	0.0463	0.0207	0.3090	0.4241	0.3131	0.4177	12.6	
1996)	R7	5	0.2706	0.0489	0.0219	0.2099	0.3314	0.2024	0.3258		
,	X2	5	0.2697		0.0406	0.1571	0.3823	0.1644	0.3777		
	R2	5	32.8219			18.8794	46.7644	23.0595			-1
	R7	5	45.0204			30.5829	59.4580	38.5000	65.5804		
Li i (70)	X2	5	8.3755			2.8484	13.9025	3.2544	14.8699		
	/\ <u>L</u>		0.5755	4.4313	1.9907	2.0404	13.3023	3.2344	14.0099	55.1	-
	R2	5	52.0351	13.2924	5.9445	35.5304	68.5398	39.8462	69.5632	25.5	
	R7	5	44.2207		6.3326	26.6387	61.8028	19.9593	53.3981	32.0	
	X2	5	85.4950			79.5568	91.4331	78.9963	92.0118		

Three Stations per Area

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
	R2	3	509.6667	246.6342	142.3943	-103.0067	1122.3401	304.0000	783.1000	48.4	
Abundance	R7	3	4219.6667	3244.5450	1873.2389	-3840.2300	12279.5633	491.0000	6400.0000	76.9	
	X2	3	3145.3333	1575.0166	909.3363	-767.2248	7057.8915	1352.0000	4304.0000	50.1	
	R2	3	20.6700	2.8870	1.6670	13.5000	27.8400	19.0000	24.0000	14.0	
Number of Taxa	R7	3	19.0000	1.0000	0.5770	16.5200	21.4800	18.0000	20.0000	5.3	
	X2	3	15.3300	1.5280	0.8820	11.5400	19.1300	14.0000	17.0000	10.0	
Cimpoon's D	R2	3	0.8669	0.0036	0.0021	0.8579	0.8758	0.8635	0.8707	0.4	
Simpson's D	R7	3	0.8145	0.0390	0.0225	0.7176	0.9114	0.7711	0.8465	4.8	
(Krebs)	X2	3	0.7373	0.1050	0.0606	0.4765	0.9981	0.6174	0.8126	14.2	
Simpson's E	R2	3	0.3673	0.0394	0.0227	0.2695	0.4651	0.3221	0.3943	10.7	
(Smith & Wilson	R7	3	0.2903	0.0429	0.0247	0.1838	0.3967	0.2427	0.3258	14.8	
1996)	X2	3	0.2687	0.0712	0.0411	0.0919	0.4456	0.1867	0.3140	26.5	
	R2	3	24.6840	1.8197	1.0506	20.1635	29.2045	23.0595	26.6505	7.4	
EPT (%)	R7	3	47.5460	15.6183	9.0172	8.7480	86.3440	38.5000	65.5804	32.8	
	X2	3	9.5335	5.8648	3.3861	-5.0355	24.1025	3.2544	14.8699	61.5	
	R2	3	59.2757	12.4505	7.1883	28.3469	90.2044	45.4348	69.5632	21.0	
Chironomidae (%)	R7	3	42.2024	19.2633	11.1217	-5.6502	90.0551	19.9593	53.3981	45.6	
	X2	3	84.9392	6.5809	3.7995	68.5913	101.2871	78.9963	92.0118	7.7	25.1

Table D.10: Summary statistics for benthic community metrics based on Hess samples, Rose Creek 2008.

Five Stations/Area

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	BLC	5	6068.0000	2399.5933	1073.1307	3088.5114	9047.4886	2856.6667	9406.6667	39.5	
	R2	5	3663.3333	974.2718	435.7076	2453.6151	4873.0516	2496.6667	5130.0000	26.6	
	X2	5	9656.3333	4457.7274	1993.5563	4121.3337	15191.3330	4335.0000	15000.0000	46.2	
Number of Taxa	BLC	5	24.2000	1.9240	0.8600	21.8100	26.5900	21.0000	26.0000	8.0	
	R2	5	20.8000	1.3040	0.5830	19.1800	22.4200	19.0000	22.0000	6.3	
	X2	5	24.2000	5.4040	2.4170	17.4900	30.9100	15.0000	29.0000	22.3	
Simpson's D (Krebs)	BLC	5	0.5646	0.1703	0.0762	0.3531	0.7761	0.3863	0.8359	30.2	
	R2	5	0.8535	0.0501	0.0224	0.7912	0.9157	0.7877	0.8986	5.9	
	X2	5	0.7494	0.0451	0.0202	0.6934	0.8055	0.6997	0.8140	6.0	
Simpson's E (Smith & Wilson 1996)	BLC	5	0.1233	0.0942	0.0421	0.0063	0.2403	0.0627	0.2901	76.4	1
	R2	5	0.3614	0.1216	0.0544	0.2104	0.5123	0.2141	0.4909	33.6	
	X2	5	0.1751	0.0420	0.0188	0.1230	0.2273	0.1332	0.2365	24.0	
EPT (%)	BLC	5	24.6705	16.7468	7.4894	3.8766	45.4643	12.7569	53.4422	67.9	
	R2	5	40.2352	11.0233	4.9298	26.5480	53.9224	30.0420	54.5809	27.4	
	X2	5	10.2854	6.2703	2.8042	2.4997	18.0710	5.4750	20.5937	61.0	
Chironomidae (%)	BLC	5	65.9428	21.1482	9.4577	39.6839	92.2017	29.1715	79.4313	32.1	1
	R2	5	43.1288	11.8806	5.3132	28.3771	57.8805	29.8262	53.5284	27.5	
	X2	5	70.9020	11.4032	5.0997	56.7431	85.0610	58.4000	83.1355	16.1	30.9

Three Stations/Area

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	BLC	3	6432.2222	3316.1161	1914.5605	-1805.4668	14669.9113	2856.6667	9406.6667	51.6	
	R2	3	3982.2222	1021.4061	589.7091	1444.9089	6519.5356	3173.3333	5130.0000	25.6	
	X2	3	11888.8889	4142.5560	2391.7058	1598.2093	22179.5685	7186.6667	15000.0000	34.8	
Number of Taxa	BLC	3	24.0000	2.6460	1.5280	17.4300	30.5700	21.0000	26.0000	11.0	1
	R2	3	20.0000	1.0000	0.5770	17.5200	22.4800	19.0000	21.0000	5.0	
	X2	3	26.3300	2.3090	1.3330	20.6000	32.0700	25.0000	29.0000	8.8	
Simpson's D (Krebs)	BLC	3	0.5806	0.2309	0.1333	0.0071	1.1542	0.3863	0.8359	39.8	1
	R2	3	0.8681	0.0480	0.0277	0.7489	0.9872	0.8128	0.8986	5.5	
	X2	3	0.7383	0.0363	0.0209	0.6482	0.8284	0.6997	0.7716	4.9	
Simpson's E (Smith & Wilson 1996)	BLC	3	0.1454	0.1258	0.0726	-0.1671	0.4578	0.0627	0.2901	86.5	1
	R2	3	0.4092	0.1236	0.0714	0.1022	0.7163	0.2670	0.4909	30.2	
	X2	3	0.1467	0.0120	0.0069	0.1169	0.1765	0.1332	0.1560	8.2	
EPT (%)	BLC	3	26.9795	22.9388	13.2437	-30.0037	83.9627	12.7569	53.4422	85.0	1
	R2	3	44.7066	12.9518	7.4777	12.5325	76.8806	30.0420	54.5809	29.0	
	X2	3	11.4172	8.0089	4.6239	-8.4779	31.3124	5.8358	20.5937	70.1	
Chironomidae (%)	BLC	3	62.1872	28.6019	16.5133	-8.8639	133.2383	29.1715	79.4313	46.0	1
	R2	3	38.0172	13.2985	7.6779	4.9819	71.0526	29.8262	53.3613	35.0	
	X2	3	71.3818	10.9718	6.3346	44.1264	98.6373	61.4100	83.1355	15.4	32.9

Table D.11: Summary statistics for benthic community metrics based on three Hess versus kick samples per area, Rose Creek 2008

Hess

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	BLC	3	6432.2222	3316.1161	1914.5605	-1805.4668	14669.9113	2856.6667	9406.6667	51.6	
	R2	3	3982.2222	1021.4061	589.7091	1444.9089	6519.5356	3173.3333	5130.0000	25.6	
	X2	3	11888.8889	4142.5560	2391.7058	1598.2093	22179.5685	7186.6667	15000.0000	34.8	1
Number of Taxa	BLC	3	24.0000	2.6460	1.5280	17.4300	30.5700	21.0000	26.0000	11.0	
	R2	3	20.0000	1.0000	0.5770	17.5200	22.4800	19.0000	21.0000	5.0	
	X2	3	26.3300	2.3090	1.3330	20.6000	32.0700	25.0000	29.0000	8.8	1
Simpson's D (Krebs)	BLC	3	0.5806	0.2309	0.1333	0.0071	1.1542	0.3863	0.8359	39.8	
	R2	3	0.8681	0.0480	0.0277	0.7489	0.9872	0.8128	0.8986	5.5	
	X2	3	0.7383		0.0209	0.6482		0.6997	0.7716	4.9	
Simpson's E (Smith & Wilson 1996)	BLC	3	0.1454	0.1258	0.0726	-0.1671	0.4578	0.0627	0.2901	86.5	
	R2	3	0.4092	0.1236	0.0714	0.1022	0.7163	0.2670	0.4909	30.2	
	X2	3	0.1467	0.0120	0.0069	0.1169	0.1765	0.1332	0.1560	8.2	
EPT (%)	BLC	3	26.9795	22.9388	13.2437	-30.0037	83.9627	12.7569	53.4422	85.0	
	R2	3	44.7066	12.9518	7.4777	12.5325	76.8806	30.0420	54.5809	29.0	
	X2	3	11.4172	8.0089	4.6239	-8.4779		5.8358	20.5937	70.1	
Chironomidae (%)	BLC	3	62.1872	28.6019	16.5133	-8.8639	133.2383	29.1715	79.4313	46.0	
	R2	3	38.0172		7.6779	4.9819		29.8262	53.3613	35.0	
	X2	3	71.3818		6.3346	44.1264		61.4100	83.1355	15.4	
Hess 3 rep 2008 CA-1 (37.6%)	BLC	3	-0.5336		0.0636	-0.8073		-0.6597	-0.4560	20.7	
	R2	3	-0.0700		0.0215	-0.1624		-0.1053	-0.0311	53.2	
	X2	3	0.4425	0.1098	0.0634	0.1697	0.7154	0.3237	0.5403	24.8	4
Hess 3 rep 2008 CA-2 (23.9%)	BLC	3	0.2535		0.0540	0.0211	0.4859	0.1510	0.3343	36.9	
	R2	3	-0.4681	0.2335	0.1348	-1.0482	0.1120	-0.6841	-0.2203	49.9	
	X2	3	0.1628		0.0410	-0.0138	0.3394	0.0819	0.2153	43.7	
Hess 3 rep 2008 CA-3 (11.4%)	BLC	3	0.0212	0.4546	0.2625	-1.1081	1.1505	-0.3426	0.5308	2147.7	1
	R2	3	0.0205	0.0681	0.0393	-0.1487	0.1897	-0.0202	0.0991	332.8	
	X2	3	-0.0115	0.2093	0.1208	-0.5314	0.5083	-0.1944	0.2167	1814.5	189.5

Kick and Sweep

						95% C. I	. of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	BLC	3	600.3333	330.3897	190.7506	-220.4001	1421.0668	239.0000	887.0000	55.0	
	R2	3	510.6667	116.0704	67.0133	222.3319	799.0015	397.0000	629.0000	22.7	
	X2	3	2192.3333	1200.4584	693.0850	-789.7706	5174.4373	1357.0000	3568.0000	54.8	
Number of Taxa	BLC	3	21.3300	5.1320	2.9630	8.5900	34.0800	17.0000	27.0000	24.1	
	R2	3	23.6700	2.0820	1.2020	18.5000	28.8400	22.0000	26.0000	8.8	
	X2	3	24.3300	4.9330	2.8480	12.0800	36.5900	21.0000	30.0000	20.3	
Simpson's D (Krebs)	BLC	3	0.7825	0.0439	0.0253	0.6735	0.8915	0.7548	0.8331	5.6	
	R2	3	0.8693	0.0237	0.0137	0.8104	0.9282	0.8420	0.8849	2.7	
	X2	3	0.7813	0.0783	0.0452	0.5867	0.9758	0.6962	0.8504	10.0	
Simpson's E (Smith & Wilson 1996)	BLC	3	0.2317	0.0751	0.0433	0.0453	0.4182	0.1511	0.2995	32.4	
	R2	3	0.3311	0.0602	0.0347	0.1816	0.4805	0.2752	0.3948	18.2	
	X2	3	0.2012	0.0385	0.0223	0.1055	0.2970	0.1568	0.2242	19.2	
EPT (%)	BLC	3	54.8597	14.1503	8.1697	19.7083	90.0111	45.4222	71.1297	25.8	
	R2	3	68.7727	7.4605	4.3073	50.2398	87.3055	62.6391	77.0781	10.8	
	X2	3	20.7577	17.4011	10.0465	-22.4690	63.9845	8.5202	40.6780	83.8	
Chironomidae (%)	BLC	3	38.8849	15.7793	9.1102	-0.3130	78.0829	21.3389	51.9111	40.6	
	R2	3	21.9029	6.5247	3.7671	5.6945	38.1112	14.6096	27.1860	29.8	
	X2	3	63.7415	12.1657	7.0239	33.5203	93.9628	49.7421	71.7489	19.1	
KS 3 rep 2008 CA-1 (42.4%)	BLC	3	-0.4817	0.0351	0.0203	-0.5689	-0.3945	-0.5211	-0.4538	7.3	
	R2	3	-0.0703	0.1474	0.0851	-0.4364	0.2959	-0.2400	0.0260	209.8	
	X2	3	0.3572	0.1534	0.0885	-0.0238		0.1866	0.4837	42.9	
KS 3 rep 2008 CA-2 (19.7%)	BLC	3	0.1619	0.3182	0.1837	-0.6285	0.9523	-0.2052	0.3585	196.6	
	R2	3	-0.2715		0.0369	-0.4302	-0.1128	-0.3439	-0.2230	23.5	
	X2	3	0.0843		0.1028	-0.3581	0.5267	-0.0425	0.2879	211.3	
KS 3 rep 2008 CA-3 (13.9%)	BLC	3	-0.0685	0.3498	0.2020	-0.9375	0.8006	-0.4718	0.1530	510.9	
	R2	3	0.1303		0.1075	-0.3323		0.0018	0.3438	142.9	
	X2	3	-0.0360	0.1641	0.0948	-0.4438	0.3717	-0.2135	0.1104	455.5	84.6

Table D.12: Summary statistics for exposure (5 stations/area) versus reference (single station in each of 6 areas) comparisons based on Hess samples

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	Reference	6	4634.3333	3041.8845	1241.8442	1442.0713	7826.5954	1607.0000	8120.0000	65.6	
	V27 Exposure	5	8518.0000	2373.8327	1061.6102	5570.4974	11465.5026	4530.0000	10569.0000	27.9	
	V5 Exposure	5	1323.6000	444.5231	198.7968	771.6517	1875.5483	856.0000	1858.0000	33.6	
	V8 Exposure	5	5967.8000	2248.2845	1005.4634	3176.1861	8759.4139	2333.0000	7984.0000	37.7	
Number of Taxa	Reference	6	20.8667	2.6128	1.0667	18.1247	23.6086	17.0000	24.2000	12.5	
	V27 Exposure	5	20.8000	4.0866	1.8276	15.7259	25.8741	15.0000	26.0000	19.6	
	V5 Exposure	5	22.4000	1.6733	0.7483	20.3223	24.4777	20.0000	24.0000	7.5	
	V8 Exposure	5	19.0000	2.4495	1.0955	15.9586	22.0414	16.0000	22.0000	12.9	
Simpson's D	Reference	6	0.6830	0.1823	0.0744	0.4917	0.8743	0.4140	0.8840	26.7	
	V27 Exposure	5	0.8306	0.0227	0.0101	0.8024	0.8587	0.8127	0.8683	2.7	
	V5 Exposure	5	0.8595	0.0338	0.0151	0.8175	0.9015	0.8040	0.8931	3.9	
	V8 Exposure	5	0.6270	0.1280	0.0572	0.4681	0.7859	0.4922	0.8145	20.4	
Simpson's E (Smith & Wilson 1996)	Reference	6	0.2100	0.1113	0.0454	0.0932	0.3268	0.0900	0.3760	53.0	
	V27 Exposure	5	0.2933	0.0431	0.0193	0.2397	0.3468	0.2431	0.3558	14.7	
	V5 Exposure	5	0.3304	0.0620	0.0277	0.2535	0.4074	0.2320	0.3896	18.8	
	V8 Exposure	5	0.1588	0.0612	0.0274	0.0827	0.2348	0.1102	0.2567	38.6	
EPT (%)	Reference	6	32.5433	25.4557	10.3923	5.8292	59.2575	7.6000	73.1000	78.2	
	V27 Exposure	5	79.0438	2.7814	1.2439	75.5903	82.4974	75.6800	82.9600	3.5	
	V5 Exposure	5	45.4044	13.4173	6.0004	28.7446	62.0641	26.9600	63.5500	29.6	
	V8 Exposure	5	30.1802	10.5215	4.7054	17.1161	43.2444	20.3100	46.2900	34.9	
Chironomidae (%)	Reference	6	58.3900	25.1160	10.2536	32.0324	84.7476	20.7000	84.9000	43.0	
	V27 Exposure	5	6.2044	2.3662	1.0582	3.2664	9.1424	2.8000	8.4400	38.1	
	V5 Exposure	5	38.7236	10.7673	4.8153	25.3543	52.0930	25.7000	52.7400	27.8	
	V8 Exposure	5	60.7939	11.6004	5.1879	46.3901	75.1977	43.4200	70.9400	19.1	27.9
VC Hess RCA C/I CA-1 (21.6%)	Reference	6	0.3409	0.2548	0.1040	0.0735	0.6083	-0.0995	0.6645	74.7	
	V27 Exposure	5	-0.4491	0.0197	0.0088	-0.4735	-0.4246	-0.4805	-0.4275	4.4	
	V5 Exposure	5	0.4365	0.1206	0.0539	0.2868	0.5863	0.2574	0.5796	27.6	
	V8 Exposure	5	-0.2535	0.1616	0.0723	-0.4542	-0.0528	-0.5015	-0.0706	63.8	
VC Hess RCA C/I CA-2 (15.9%)	Reference	6	0.1222	0.4679	0.1910	-0.3688	0.6132	-0.7543	0.4426	382.9	
	V27 Exposure	5	-0.2793	0.0525	0.0235	-0.3445	-0.2141	-0.3451	-0.2115	18.8	
	V5 Exposure	5	-0.2695	0.0838	0.0375	-0.3736	-0.1655	-0.3736	-0.1452	31.1	
	V8 Exposure	5	0.3498	0.1159	0.0518	0.2059	0.4937	0.1533	0.4373	33.1	
VC Hess RCA C/I CA-3 (10.8%)	Reference	6	-0.2541	0.1885	0.0769	-0.4519	-0.0563	-0.5930	-0.0978	74.2	
	V27 Exposure	5	-0.1574	0.0612	0.0274	-0.2334	-0.0813	-0.2059	-0.0611	38.9	
	V5 Exposure	5	0.2598	0.1078	0.0482	0.1259	0.3937	0.1429	0.3947	41.5	
	V8 Exposure	5	0.2704	0.2676	0.1197	-0.0619	0.6027	-0.0372	0.5577	99.0	
VC Hess RCA C/I CA-4 (8.4%)	Reference	6	-0.0641	0.1526	0.0623	-0.2242	0.0960	-0.3102	0.1122	238.0	
	V27 Exposure	5	-0.0338	0.3765	0.1684	-0.5013	0.4336	-0.6542	0.3262	1112.5	
	V5 Exposure	5	0.0303	0.1025	0.0458	-0.0969	0.1575	-0.1304	0.1237	338.2	
	V8 Exposure	5	0.1125	0.3171	0.1418	-0.2812	0.5063	-0.2701	0.5919	281.8	88.3

Table D.13: Summary statistics for exposure (5 stations/area) versus reference (single station in each of 10 areas) comparisons based on Hess samples

						95% C. I	. of Mean			Average CV	
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	Reference	10	4648.800	0 2843.5299	899.2031	2614.6612	6682.9388	510.0000	8120.0000	61.2	2
	X2 Exposure		5 9656.333	3 4457.7274	1993.5563	4121.3337	15191.3330	4335.0000	15000.0000	46.2	!
	R2 Exposure		5 3663.333	3 974.2718	435.7076	2453.6151	4873.0516	2496.6700	5130.0000	26.6	i
Number of Taxa	Reference	10	22.220	0 4.3507	1.3758	19.1077	25.3323	17.0000	32.0000	19.6	
	X2 Exposure		5 24.200	0 5.4037	2.4166	17.4904	30.9096	15.0000	29.0000	22.3	S
	R2 Exposure		5 20.800	0 1.3038	0.5831	19.1811	22.4189	19.0000	22.0000	6.3	8
Simpson's D	Reference	10	0.753	9 0.1541	0.0487	0.6436	0.8642	0.4140	0.9080	20.4	
	X2 Exposure		5 0.749	4 0.0451	0.0202	0.6934	0.8055	0.6997	0.8140	6.0	
	R2 Exposure		0.853	5 0.0501	0.0224	0.7912	0.9157	0.7877	0.8986	5.9	1
Simpson's E (Smith & Wilson 1996)	Reference	10	0.240	7 0.0906	0.0287	0.1759	0.3055	0.0900	0.3760	37.7	1
	X2 Exposure		5 0.175	1 0.0420	0.0188	0.1230	0.2273	0.1332	0.2365	24.0	
	R2 Exposure		5 0.361	4 0.1216	0.0544	0.2104	0.5123	0.2142	0.4909	33.6	i
EPT (%)	Reference	10	36.316	0 19.7019	6.2303	22.2221	50.4099	7.6000	76.8000	54.3	1
	X2 Exposure		5 10.285	4 6.2703	2.8042	2.4997	18.0710	5.4800	20.5900	61.0	
	R2 Exposure		5 40.235	2 11.0233	4.9298	26.5480	53.9224	30.0400	54.5800	27.4	
Chironomidae (%)	Reference	10	44.984	0 23.7511	7.5108	27.9935	61.9745	12.8000	82.8000	52.8	1
	X2 Exposure		70.902	0 11.4032	5.0997	56.7431	85.0610	58.4000	83.1400	16.1	
	R2 Exposure		5 43.128	8 11.8806	5.3132	28.3771	57.8805	29.8300	53.5300	27.5	30.5
URC Hess RCA C/I CA-1 (18.5%)	Reference	10	0.186	9 0.2703	0.0855	-0.0065	0.3803	-0.3730	0.6477	144.6	5
, ,	X2 Exposure		5 -0.384	9 0.2662	0.1190	-0.7154	-0.0544	-0.6965	-0.0172	69.1	
	R2 Exposure		5 0.114	8 0.0946	0.0423	-0.0026	0.2322	-0.0386	0.2024	82.4	
URC Hess RCA C/I CA-2 (14.5%)	Reference	10	0.091	7 0.3164	0.1000	-0.1346	0.3180	-0.3078	0.7185	345.0	1
, ,	X2 Exposure		5 0.090	3 0.1224	0.0547	-0.0616	0.2422	-0.0956	0.2176	135.5	
	R2 Exposure		5 -0.371	5 0.1512	0.0676	-0.5593	-0.1838	-0.5357	-0.1341	40.7	·
URC Hess RCA C/I CA-3 (11.6%)	Reference	10	0.058	7 0.4611	0.1458	-0.3885	0.2712	-1.0455	0.2721	786.1	1
, ,	X2 Exposure		5 0.090	7 0.1636	0.0731	-0.1123	0.2938	-0.0782	0.2966	180.2	:
	R2 Exposure		-0.060	0.0822	0.0367	-0.1620	0.0420	-0.1477	0.0442	136.9	d
URC Hess RCA C/I CA-4 (10.3%)	Reference	10	0.111	8 0.3560	0.1126	-0.3664	0.1429	-0.7155	0.3649	318.5	1
, , ,	X2 Exposure		5 0.027	0 0.2289	0.1024	-0.2572	0.3112	-0.2215	0.3030	848.4	
	R2 Exposure		5 0.162	4 0.1151	0.0515	0.0195	0.3053	-0.0288	0.2413	70.9	

Table D.14: Summary statistics for exposure (3 stations/area) versus reference (single station in each of 10 areas) comparisons based on Kick samples

						95% C. I.	of Mean				Average CV
		n	Mean	Std. Deviation	Std. Error	lower	upper	Minimum	Maximum	CV %	for Method
Density (individuals/m2)	Reference	10	822.4300	709.8417	224.4717	314.6398	1330.2202	63.0000	1969.0000	86.3	
	X2 Exposure	3	2192.3333	1200.4584	693.0850	-789.7706	5174.4373	1357.0000	3568.0000	54.8	
	R2 Exposure	3	510.6667	116.0704	67.0133	222.3319	799.0015	397.0000	629.0000	22.7	
Number of Taxa	Reference	10	19.6800	3.7847	1.1968	16.9726	22.3874	14.0000	26.0000	19.2	
	X2 Exposure	3	24.3333	4.9329	2.8480	12.0794	36.5873	21.0000	30.0000	20.3	
	R2 Exposure	3	23.6667	2.0817	1.2019	18.4955	28.8378	22.0000	26.0000	8.8	
Simpson's D	Reference	10	0.8390	0.0312	0.0099	0.8167	0.8613	0.7830	0.8770	3.7	
	X2 Exposure	3	0.7813	0.0783	0.0452	0.5867	0.9758	0.6962	0.8504	10.0	
	R2 Exposure	3	0.8693	0.0237	0.0137	0.8104	0.9282	0.8420	0.8849	2.7	1
Simpson's E (Smith & Wilson 1996)	Reference	10	0.3469	0.1154	0.0365	0.2644	0.4294	0.1910	0.5830	33.3	
	X2 Exposure	3	0.2012	0.0385	0.0223	0.1055	0.2970	0.1568	0.2242	19.2	
	R2 Exposure	3	0.3311	0.0602	0.0347	0.1816	0.4805	0.2752	0.3948	18.2	
EPT (%)	Reference	10	59.0080	19.2753	6.0954	45.2193	72.7967	22.2000	85.5000	32.7	
	X2 Exposure	3	20.7577	17.4011	10.0465	-22.4690	63.9845	8.5200	40.6800	83.8	
	R2 Exposure	3	68.7727	7.4605	4.3073	50.2398	87.3055	62.6400	77.0800	10.8	
Chironomidae (%)	Reference	10	26.0320	12.7012	4.0165	16.9461	35.1179	11.3000	43.3000	48.8	
	X2 Exposure	3	63.7415	12.1657	7.0239	33.5203	93.9628	49.7400	71.7500	19.1	
	R2 Exposure	3	21.9029	6.5247	3.7671	5.6945	38.1112	14.6100	27.1900	29.8	29.1
URC K&S RCA C/I CA-1 (26.2%)	Reference	10	-0.2122	0.2046	0.0647	-0.3585	-0.0658	-0.5098	0.0724	96.5	i
	X2 Exposure	3	0.4846	0.1677	0.0968	0.0679	0.9013	0.2960	0.6171	34.6	
	R2 Exposure	3	0.1325	0.2263	0.1307	-0.4297	0.6946	-0.0949	0.3577	170.8	
URC K&S RCA C/I CA-2 (15.7%)	Reference	10	0.0375	0.3932	0.1243	-0.2438	0.3188	-0.5667	0.5110	1049.1	
	X2 Exposure	3	-0.0434	0.1060	0.0612	-0.3068	0.2200	-0.1658	0.0206	244.3	
	R2 Exposure	3	0.0555	0.0947	0.0546	-0.1796	0.2906	-0.0079	0.1643	170.5	
URC K&S RCA C/I CA-3 (13.7%)	Reference	10	-0.0906	0.3027	0.0957	-0.3072	0.1259	-0.6601	0.4833	334.0	Ī
	X2 Exposure	3	0.1917	0.1354	0.0782	-0.1446	0.5280	0.0986	0.3470	70.6	
	R2 Exposure	3	-0.2152	0.0732	0.0423	-0.3971	-0.0333	-0.2774	-0.1345	34.0	
URC K&S RCA C/I CA-4 (8.9%)	Reference	10	-0.1198	0.2799	0.0885	-0.3200	0.0804	-0.5795	0.4012	233.6	
• •	X2 Exposure	3	0.0263	0.2118	0.1223	-0.4998	0.5523	-0.1492	0.2615	806.2	
	R2 Exposure	3	0.0531	0.0771	0.0445	-0.1384	0.2445	-0.0328	0.1162	145.2	130.5

Table D.15: Scores for benthic taxa from CA of Hess samples at Vangorda Creek study areas (V1, V27, V5, V8), 2007 (5 stations/area).

	1	1		
	Hess	Hess	Hess	Hess
	Sampler	Sampler	Sampler	Sampler
	CA Axis-1	CA Axis-2	CA Axis-3	CA Axis-4
Taxon	(24.4%)	(17.2%)	(14.7%)	(8.5%)
Ameletus sp.	0.507	-0.664	0.100	-0.174
Baetis bicaudatus + Baetis sp.	0.113	-0.164	-0.019	-0.153
Family Heptageniidae (including identified Rhithrogena sp. Cinygmula sp. Epeorus sp.)	0.055	-0.139	0.075	-0.073
Family Ephemerellidae (including identified Drunella coloradensis, D. doddsi)	0.350	-0.329	0.326	0.060
Family Chloroperlidae (including identified Sweltsa sp., Suwallia sp., Alloperla fratema, Paraperla sp.)	0.011	-0.150		-0.149
Family Perlodidae (including identified Megarcys sp., Skwala sp.)	-0.497	-0.347	0.582	-0.431
Zapada spp. (including identified Z. columbiana, Z. cinctipes, Z. haysi/orogenesis	0.077	-0.052	0.080	-0.054
Family: Capniidae	-0.026	-0.033	0.078	-0.046
Family: Leuctridae	0.262	0.181	-0.061	-0.013
Family Hydropsychidae (including identified Parapsyche sp., Hydropsyche sp.)	0.035	0.037	-0.029	0.126
Rhyacophila sp.	-0.058	0.116	-0.010	-0.023
Hydroptila sp.	0.485	1.578	0.487	0.206
Glossosoma sp.	-0.059	-0.415	-0.213	-0.160
Family: Limnephilidae (including identified Ecclisomyia sp.)	0.250	0.228	-0.068	0.613
Tanytarsus sp.	0.913	-0.912	-0.952	0.957
Brillia sp.	0.893	-0.923	-0.936	0.927
Chaetocladius sp.	0.427	-0.033	-0.065	0.775
Cricotopus/Orthocladius sp. A	-0.128	0.127	0.211	0.011
Eukiefferiella sp.	-0.399	-0.293	0.352	0.169
Synorthocladius sp.	0.803	1.418		-1.324
Tvetenia sp.	0.429	-0.454	-1.317	-0.075
Diamesa sp.	-1.703	0.159	-0.689	-0.023
Pagastia sp.	-0.673	-0.452	0.518	-0.083
Thiennemannimyia Group	0.989	0.514	-0.792	-1.404
Pericoma sp.	-0.532	0.555	-0.482	0.260
Chelifera/Metachela	0.085	0.655	-0.153	0.142
Oreogeton sp.	0.640	-0.218	-0.423	-0.235
Dicranota sp.	-0.295	0.329	-0.017	0.292
Gonomyodes sp.	-1.840	0.252	-1.115	0.202
Family Simuliidae (including identified Prosimulium sp.)	-0.186	-0.270	-0.348	-0.192
Order: Collembola	-1.708	0.136	-0.742	-0.069
Phylum: Nematoda	0.145	0.455	0.094	0.211
Class: Oligochaeta	-1.338	0.109	-0.492	-0.043
Aturus	0.391	0.458	-0.223	0.196
Hygrobates	-0.009	-0.363	1.599	0.350
Lebertia	0.510	0.381	0.589	-0.213
Sperchon	0.144	0.246	0.110	0.052
Feltria	-0.438	0.305	0.041	-0.049

Table D.16: Scores for benthic taxa from CA of artificial substrate samples at Vangorda Creek study areas (V1, V27, V5, V8), 2007 (5 stations/area).

	Artificial	Artificial	Artificial	Artificial
	Substrate	Substrate	Substrate	Substrate
	CA-1	CA-2	CA-3	CA-4
Taxon	(23.8%)	(13.5%)	(12.5%)	(9.9%)
Ameletus sp.	-1.217	0.219		(/
Baetis sp.	-0.268	0.145		
Rhithrogena sp;	-0.701	-0.153		-0.010
Cinyamula sp.	-1.029	-0.257	-0.233	0.116
Epeorus sp.	-0.116	-0.060	-0.025	-0.066
Ephemerellidae (Drunella doddsi, D. coloradensis, D. spinifera, Serratella tibialis, unid. Ephemerellidae)	-0.635	-0.092	-0.123	0.471
Family: Chloroperlidae	0.059	-0.307	-0.794	-0.197
Family: Perlodidae	-0.064	-0.178	0.045	-0.234
Zapada haysi/orogenensis	-0.009	0.015	0.002	-0.025
Zapada columbiana	0.069	0.123	0.109	-0.078
Zapada cinctipes	0.522	0.659	0.739	0.615
Taenionema sp	0.057	-0.633	-0.055	-0.155
Family: Capniidae	0.213	-0.077	-0.130	0.187
Family: Hydropsychidae (include Arctopsyche, Parapsyche, Hydropsyche)	-0.007	-0.039	0.062	-0.082
Rhyacophila sp.	0.138	-0.084	-0.041	-0.087
Glossosoma sp.	-1.065	0.288	-0.269	-0.360
Family: Limnephilidae (includes Ecclisomyia)	0.041	0.635	-0.321	0.165
Oligophleboides sp.	-0.876	-0.795	-0.509	-0.672
Brillia sp.	0.137	0.325	0.172	0.058
Chaetocladius sp.	0.309	-0.632	0.440	0.276
Cricotopus/Orthocladius sp. A	0.089	0.107	-0.009	0.235
Eukiefferiella sp.	0.002	0.243	-0.086	-0.107
Pagastia sp.	0.085	0.842	0.118	-0.320
Pericoma sp.	0.823	-0.152	-0.504	0.016
Family: Empididae	0.208	0.265	0.067	-0.142
Dicranota sp.	1.030	-0.509	0.232	0.150
Family Simuliidae (includes pupae and Simulium and Prosimulium larvae)	0.114	0.132	-0.047	-0.164
Family: Stratiomyiidae	1.257	-0.180	-1.142	0.112
Order: Collembola	0.782	-0.980	0.213	0.162
Class: Oligochaeta	0.400	0.823	-0.190	0.000
Aturus	-0.153	-0.302	0.950	-0.086
Sperchon	-0.057	0.110		-0.094
Feltria	1.035	0.076	-0.945	0.110

Table D.17: Taxon scores from Correspondence Analysis (CA) of means of 47 Areas, all sample types, at Faro Mine Site, 2007 - 2008 combined.

	407/14	4.07/.14	4.07/.14	401/14	407/14
Toyo	ASY Mean	ASY Mean	ASY Mean	ASY Mean	ASY Mean
Taxa Ameletidae	CA-1 (18.6%) 0.1084	CA-2 (11.0%) -0.2915	CA-3 (9.8%)	CA-4 (8.8%) -0.2664	CA-5 (7.7%)
Baetidae (includes Acentrella, Baetis tricaudatus, B.	0.1064	-0.2915	0.4670	-0.2004	0.5855
bicaudatus, Fallceon, Baetis sp., Baetidae UID)	-0.0294	-0.0353	0.0238	-0.0809	-0.2770
Heptageniidae (includes Cinygmula, Rhithrogena,	0.2804	-0.0891	0.0584	0.0133	0.0665
Epeorus, Heptageniidae UID)	0.2804	-0.0091	0.0364	0.0133	0.0003
Ephemerellidae (includes various Drunella sp, also Serratella, Ephemerella sp., Ephemerellidae UID)	0.2582	0.0700	0.1453	0.2323	0.0921
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	0.2795	-0.1678	0.3055	0.0705	0.2465
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	0.1062	0.1698	-0.1753	0.1481	-0.0309
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.0548	-0.0465	-0.0281	0.0254	-0.0533
Capniidae	0.2713	-0.0553	0.0878	0.0179	-0.1008
Leuctridae	0.3261	-0.3545	-0.0272	0.2325	0.8119
Taeniopterygidae (includes Taenionema sp. ID'd)	0.4204	0.1543	-0.4297	0.1436	-0.3468
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	0.2885	-0.1207	-0.4186	0.0246	-0.0104
Rhyacophila sp.	0.4723	-0.1831	0.0010	-0.2328	0.0351
Glossosoma sp.	-0.1057	0.2050	-0.4801	0.0538	0.2876
Micrasema sp.	-1.7086	0.7757	-0.2148	-1.2268	0.3072
Brachycentrus sp.	-1.3949	1.0698	-1.2106	0.1108	-0.3110
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	-0.3640	-0.6875	0.4127	-0.3582	0.2340
Dicranota sp.	-0.0927	-0.3254	0.1327	0.0945	0.4603
Bezzia/Palpomyia sp.	0.1880	0.6968	0.3068	0.0932	0.0302
Psychodidae	0.3242	-0.0286	-0.1869	-0.0330	-0.4153
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	-0.0481	-0.2132	0.0248	-0.0818	0.1336
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	-0.0151	0.1914	-0.0929	-0.0365	-0.3992
Tanytarsini (Tribe)	-1.0433	0.1376	-0.1382	-0.9929	0.1732
Rheotanytarsus sp.	-0.6109	-0.3794	-0.1516	1.1258	-0.5559
Brillia sp.	1.0931	-1.0855	-1.3839	-1.2941	-0.2333
Chaetocladius sp.	0.9836	-0.9438	-0.8876	-1.1435	-0.4351
Corynoneura sp.	0.4392	-0.2780	1.4548	-0.1293	-0.2133
Cricotopus/Orthocladius sp.	0.0681	0.1384	-0.1360	0.0746	0.1468
Eukiefferiella sp.	0.0217	0.1732	-0.0796	0.0270	-0.1105
Synorthocladius sp.	0.4298	0.2067	-0.0430	-0.2026	0.7627
Thienemanniella sp.	0.1338	1.2967	0.3671	-0.3168	0.2437
Tvetenia sp.	-0.5817	-0.7353	0.2590	0.0937	-0.3801
Diamesa sp.	0.2401	0.7163	1.2490	-0.8044	-0.8338
Pagastia sp.	0.2079	0.2518	-0.0252	0.1850	-0.0140
Tanypodinae	-0.9569	0.5092	-0.2281	-0.4750	0.4491
Collembola	0.2557	0.0208	-0.0366	0.3922	0.2122
Ostracoda	-0.6977	0.5092	-0.2339	0.1450	0.0931
Copepoda	-2.0197	-0.8610	0.0684	-0.2349	-0.1309
Oligochaeta	-0.3315	0.1002	0.0727	0.0805	-0.0253
Nematoda	-0.2982	-0.0330	0.1617	0.1496	0.2138
Gastropoda (includes Physa [=Physella?], Planorbidae, Valvatidae, and Gastropoda UID)	-2.0927	-1.1757	0.1330	0.1790	-0.3225
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	-0.0779	0.0344	0.0212	0.0705	0.0447

Table D.18: Taxon scores from Correspondence Analysis (CA) of X2, R2, BLC stations (3 stations/area), kick samples taken at Faro Mine.

	KS 3 rep	KS 3 rep	KS 3 rep	KS 3 rep
	2008 CA-1	2008 CA-2	2008 CA-3	2008 CA-4
Таха	(42.4%)	(19.7%)	(13.9%)	(10.4%)
Ameletidae	-0.9735	1.1205	0.5873	0.3894
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	-0.0887	-0.2567	0.1070	-0.1374
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	-0.3601	-0.0970	0.1611	-0.0894
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID)	-0.1442	-0.0787	-0.0218	-0.0033
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	-0.5696	-0.2900	0.2478	-0.1270
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	-0.1892	-0.1955	-0.2493	-0.1303
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.0287	-0.0145	-0.1209	-0.0304
Capniidae	-0.2096	-0.0094	0.0387	0.0107
Taeniopterygidae (includes Taenionema sp. ID'd)	-0.6135	0.1663	-0.0754	0.4540
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	-0.1139	1.0621	0.0213	-0.2182
Rhyacophila sp.	-0.0774	0.2616	-0.1564	0.2393
Glossosoma sp.	0.5876	-0.3584	0.3597	0.7566
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	-1.3764	0.4065	-0.7487	0.4130
Dicranota sp.	-0.6044	-0.9010	-0.7166	0.0795
Bezzia/Palpomyia sp.	0.4097	0.1402	0.1093	-0.2965
Psychodidae	-0.8074	0.3299	0.5555	-0.0055
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	-0.0604	0.0384	0.0812	-0.3531
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	0.2415	-0.0716	0.2419	0.0433
Cricotopus/Orthocladius sp.	-0.0606	0.0927	-0.1177	0.0420
Eukiefferiella sp.	0.0866	0.0318	-0.1579	0.0743
Thienemanniella sp.	0.9578	0.3081	-0.1263	0.1174
Diamesa sp.	0.5264	-0.4723	0.4239	0.3866
Pagastia sp.	0.2646	-0.1729	-0.3359	-0.0324
Tanypodinae	0.6880	-0.0827	0.2185	-0.1721
Ostracoda	0.3959	0.4493	0.0739	0.0210
Oligochaeta	0.3479	0.2238	0.0638	-0.1283
Nematoda	0.0876	-0.0270	-0.2555	-0.0135
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	0.1464	0.1123	-0.0139	-0.0218

Table D.19: Taxon scores from Correspondence Analysis (CA) of X2, R2, BLC stations (3 stations/area), Hess samples taken at Faro Mine.

Таха	Hess 3 rep 2008 CA-1 (37.6%)	Hess 3 rep 2008 CA-2 (23.9%)	Hess 3 rep 2008 CA-3 (11.4%)
Ameletidae	0.5395	0.4376	0.0757
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	-0.0506	-0.3603	0.1223
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	-0.1909	-0.0848	0.1291
Ephemerellidae (includes various Drunella sp., also Serratella, Ephemerella sp., Ephemerellidae UID)	-0.1237	-0.1563	0.0145
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	-0.3162	-0.3147	0.1391
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	-0.4177	-0.1121	0.1965
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.0194	-0.0314	0.0500
Capniidae	-0.2046	-0.0632	0.0335
Leuctridae	-0.3217	-1.4379	-0.1604
Taeniopterygidae (includes Taenionema sp. ID'd)	0.2169	0.6153	1.1394
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	-0.5068	-0.3148	-0.3268
Rhyacophila sp.	-0.0844	0.0017	0.1537
Glossosoma sp.	0.8854	0.3769	0.3603
Hydroptilidae (includes Hydroptila sp., Oxyethira sp., Stactobiella sp., Hydroptila pupae)	-1.3239	0.8348	0.1328
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	-0.0444	0.5536	0.1656
Dicranota sp.	0.6588	0.0631	0.2532
Bezzia/Palpomyia sp.	-0.0699	-0.1152	-0.3621
Psychodidae	-0.9271	0.7843	0.1117
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	-0.1022	0.0957	0.0732
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	0.4398	-0.5173	0.0320
Rheotanytarsus sp.	-1.4119	0.6765	-1.1079
Cricotopus/Orthocladius sp.	-0.0999	0.0470	-0.0332
Eukiefferiella sp.	0.3375	-0.0180	
Synorthocladius sp.	1.2003	0.6124	-0.5572
Thienemanniella sp.	1.1176	0.5424	-0.2723
Diamesa sp.	1.0778	0.5009	-0.0929
Pagastia sp.	0.1581	-0.2544	-0.2348
Tanypodinae	0.6538	-0.3417	-0.1364
Ostracoda	-0.0530		
Oligochaeta	-0.0402	0.2940	
Nematoda	-0.0341	-0.0029	0.0189
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	0.0204	0.1464	-0.1153

Table D.20: Taxon scores in CA for Hess samples in RCA (X2, R2 means versus reference areas)

Таха	URC Hess RCA CA-1 (25.8%)	URC Hess RCA CA-2 (14.7%)	URC Hess RCA CA-3 (12.8%)
Ameletidae	0.4082	-0.6793	0.0434
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus, Fallceon, Baetis sp., Baetidae UID)	0.4016	0.2741	-0.0966
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus, Heptageniidae UID)	0.1004	-0.0231	-0.0545
Leptophlebiidae	2.7368	0.3061	-0.2166
Ephemerellidae (includes various Drunella sp, also Serratella, Ephemerella sp., Ephemerellidae UID)	0.1092	-0.0945	-0.0383
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia sp., Sweltsa sp., Chloroperlidae UID)	0.2556	-0.1230	0.0006
Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys sp., Rickeri sp., Skwala sp., Perlodidae UID)	-0.2367	0.1802	-0.2005
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z. cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.0838	-0.1143	0.0368
Capniidae	0.0925	0.0909	0.0544
Leuctridae	-0.2801	-0.3349	-0.4548
Taeniopterygidae (includes Taenionema sp. ID'd)	-0.2638	0.8184	-0.0171
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp., Parapsyche sp., Hydropsychidae juv/dam)	-0.2268	0.4646	-0.3343
Rhyacophila sp.	0.4737	0.1371	-0.0590
Glossosoma sp.	-0.2667	0.1210	-0.1815
Brachycentrus sp.	-0.3579	0.9175	0.4769
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp., Limnephilidae larvae juv/dam)	0.6082	-0.2559	0.3225
Antocha sp.	1.6391	0.6310	-0.9946
Dicranota sp.	-0.2189	-0.3571	0.1536
Hexatoma sp.	0.0861	0.9491	-1.4725
Limnophila sp.	-0.4554	1.3742	0.0545
Rhabdomastix sp.	-0.2863	0.5698	-0.6423
Bezzia/Palpomyia sp.	0.2369	0.5706	-0.0244
Psychodidae	-0.3372	0.6403	-0.3102
Deuterophlebiidae	-0.4010	0.1144	0.4108
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	-0.3004	0.1556	0.1098
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	0.1776	0.1388	0.2803
Tanytarsini (Tribe)	-0.1765	0.9235	-1.2045
Rheotanytarsus sp.	-0.2374	-0.3849	-1.4620
Cricotopus/Orthocladius sp.	-0.3582	0.0813	0.0521
Eukiefferiella sp.	-0.2919	-0.0247	0.1902
Synorthocladius sp.	-0.3403	0.0769	0.5605
Thienemanniella sp.	-0.0643	0.7663	0.3728
Tvetenia sp.	0.2456	-0.8779	-0.9373
Diamesa sp.	1.6537	-0.2009	0.6334
Pagastia sp.	-0.3560	-0.0547	0.4864
Tanypodinae	-0.1194	-0.2186	-0.2557
Lepidoptera	-0.1798	0.4278	0.3375
Hemiptera (includes Corixidae ID'd)	2.6718	-0.3577	0.3957
Collembola	-0.3064	-1.1885	-0.1234
Ostracoda	-0.2600	-0.2326	-0.1705
Oligochaeta	-0.2562	-0.2523	0.2270
Nematoda	-0.2830	-0.3617	-0.0521
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID adults)	-0.0290	-0.1068	0.0791

Table D.21: Taxon scores in CA for kick samples in RCA (X2, R2 means versus reference areas)

_	URC K&S RCA CA-	URC K&S RCA CA-	URC K&S RCA CA-
Таха	1 (25.6%)	2 (17.6%)	3 (13.3%)
Ameletidae	0.0993	0.9258	0.1336
Baetidae (includes Acentrella, Baetis tricaudatus, B. bicaudatus,	0.0012	0.2004	0.2454
Fallceon, Baetis sp., Baetidae UID)	0.0813	-0.2981	-0.3151
Heptageniidae (includes Cinygmula, Rhithrogena, Epeorus,	0.0731	0.0774	-0.0677
Heptageniidae UID)	0.0731	0.0774	-0.0077
Ephemerellidae (includes various Drunella sp, also Serratella,	0.0888	0.1065	-0.0417
Ephemerella sp., Ephemerellidae UID)	0.0000	0000	0.01.1
Chloroperlidae (includes Alloperla fratema, Paraperla sp., Suwalia	-0.0512	0.1756	-0.1812
sp., Sweltsa sp., Chloroperlidae UID) Perlodidae (includes Cultus sp., Isoperla sp., Kogotus sp., Megarcys			
sp., Rickeri sp., Skwala sp., Perlodidae UID)	0.0302	-0.1605	-0.1004
sp., Ricken sp., Skwaia sp., Periodidae OID)			
Nemouridae (includes Podmosta sp., Visoka sp., Zapada sp., Z.	0.1266	0.0989	-0.0782
cinctipes, Z. columbiana, Z. oregonensis/haysi, Nemouridae UID)	0.1200	0.0303	0.0702
Capniidae	-0.2187	-0.0095	-0.2357
Leuctridae	0.8937	0.1696	0.3097
Taeniopterygidae (includes Taenionema sp. ID'd)	0.1851	0.0153	-0.2561
Hydropsychidae (includes Arctopsyche sp., Hydropsyche sp.,	0.0040	0.0770	0.0445
Parapsyche sp., Hydropsychidae juv/dam)	0.8818	-0.0770	0.3115
Rhyacophila sp.	-0.1024	0.2303	0.1495
Glossosoma sp.	0.6462	-0.2248	0.5752
Limnephilidae (includes Dicosmoecus sp., Ecclisomyia sp.,	0.0475	0.8436	0.5505
Limnephilidae larvae juv/dam)	-0.3475	0.8436	-0.5525
Dicranota sp.	-0.1800	0.6711	0.0728
Bezzia/Palpomyia sp.	-0.6626	-0.1883	0.5500
Psychodidae	-0.0787	0.2105	0.0901
Deuterophlebiidae	-0.6575	0.0153	-0.4847
Empididae (includes Chelifera/Metachela, Clinocera, Oreogeton, Empididae UID)	-0.0850	-0.1566	0.2177
Simuliidae (includes Prosimulium, Simulium, Simuliidae pupae)	0.0108	-0.4659	-0.2515
Tanytarsini (Tribe)	-0.5941	1.5492	0.1292
Rheotanytarsus sp.	1.7941	-0.1391	0.3628
Stempellinella sp.	1.9550	-0.2487	0.6380
Stempellina sp	-0.4162	0.1025	-0.3549
Cricotopus/Orthocladius sp.	-0.1352	0.1551	0.0627
Eukiefferiella sp.	-0.3501	-0.0540	-0.2771
Synorthocladius sp.	-0.5683	-0.2728	0.4447
Thienemanniella sp.	-1.0015	-1.1536	1.4565
Tvetenia sp.	1.0114	-0.9637	-0.8615
Diamesa sp.	-0.6100	-1.1848	-0.2105
Pagastia sp.	-0.4218	0.3659	0.3342
Tanypodinae	-0.8459	-0.9750	1.0796
Collembola	-0.6774	-0.1763	0.9447
Ostracoda	-0.2362	-0.4483	0.1512
Copepoda	1.3459	-0.3470	0.1885
Oligochaeta	0.0056	-0.2859	-0.2951
Nematoda	0.0288	0.2333	0.2537
Prostigmata (many ID'd taxa, plus deutonymphs, juveniles, and UID	-0.0884	0.1807	0.1217
adults)	0.0004	0.100 <i>1</i>	0.1217

Report of Benthic Invertebrate Analysis – Van Gorda (Faro) Mine Yukon, for Minow Environmental Analysis by Cordillera Consulting, March 31 2008

Methods

In November of 2007, 31 samples were received from Faro, Yukon. In the raw samples, the organic and inorganic matter was separated by elutriation. The inorganic elutriate was examined under low power to check for missed trichopterans, molluscs or any other heavy organisms. The remaining sample was sieved in a 300 μ to remove preservative and clay particles. Each sample was evaluated for total numbers and need for subsampling. The following samples Ref 1, Ref. 2, Nexc 1, V8-01, V8-02, V8-03, V8-04, V8-05, V27-01, V27-02, V27-03, were relatively uniform in the size of detrital material and further fractionation was not needed. The subsampling method used for these samples was by area (Caton Tray) and not less than one quarter of the sample was sorted (exception being V8-04). A minimum number of 300 was used for the subsampling criteria.

The balance of the samples was fractioned into either 2 or 3 size fractions depending on the quantity of large organic detrital material. The sieves used were 4 mm, 2 mm and 300 μ . In most cases the whole of the course and very course fraction was sorted and the fine portion was subsampled with 300 organisms as a minimum number. The exceptions to this was V5-01, V5-02, V5-03, V5-05, V27-E, V27-D, V1-A where the fractions were all sorted in their entirety. Another exception was in V1-E, V5-A, V5-B, V8-E and V8-D where the quantity of the course and very course fraction was very large and the invertebrates too few to sort through 100 %. In these cases a minimum number of 300 organisms was the target for the whole sample.

Invertebrates were divided into orders or classes and stored in individual vials in 80% ethanol.

Following the sorting process the invertebrates were identified to the lowest practical level. The following texts were used in the identifications:

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly.2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Mackie, G. Sphaeriidae of North America

http://www.collegeofidaho.edu/campus/community/museum/CorbiculaceaOfNorthAmerica-GLMackie/Sphaeriidae/SphaeriidaeIndex.htm

Merritt, R.W., K.W. Cummins and M. Berg. (eds.). 2008. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006. The Stoneflies of Alaska and Western Canada. The Caddis Press.Columbus Ohio. 43221-0039.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

QA/QC

Sorting Efficiency

As the project was being sorted every ten samples was resorted by the lab manager to evaluate sorting efficiency. All resorted samples (4 were resorted) achieved > 95% sorting efficiency.

Taxonomic Efficiency

Four samples have been selected to send to another taxonomist to evaluate taxonomic efficiency. Report Pending.

Report of QA/QC Analysis of 12 Samples from Laberge Environmental Services By Cordillera Consulting, March 2008

As requested by Minnow Environmental 12 benthic samples analyzed by another laboratory were received by Cordillera Consulting in January 2008. Contained in the shipment were:

- 12 vials of sorted invertebrates
- 12 one litre Nalgene bottles labelled V1B, V1C, V1D, V5C, V5D, V5E, V8A, V8B, V8C, V27A, V27B and V27C containing the original detritus from which the invertebrates in the vials were sorted
- 6 containers of unsorted fines labelled V1C unsorted 3/4s, V5C unsorted 7/8, V5D unsorted ½, V5E unsorted 16/16ths, V8B unsorted 9/16ths and V27A unsorted 3/4s. One container was broken in transit from the previous laboratory and it was labelled V1D unsorted 3/4s. It was discarded.

Cordillera Consulting contacted the previous laboratory and found the methods for analysis to be as follows:

- The samples were elutriated and sieved using 180 μ and 1 mm sieves.
- The whole of the course portion was sorted, identified and enumerated.
- The fine portion was subsampled in 7 out of 12 samples to portions between 1/16th and one half.
- The fine and course fractions of the sorted invertebrates were stored together in one vial
- The fine and course portions of the sorted debris were stored together in one vial

Two issues emerged as problems right away in the QA/QC process.

- 1. Minnow Environmental had requested that the finest sieve size be 300μ. However an 180μ sieve was used by the previous lab. There will be higher numbers of very small organisms accounted for in the data as a result.
- 2. The subsampled fine fraction and whole course fraction of the sorted invertebrates and the sorted debris being stored together makes it impossible to accurately perform a quality control analysis on each portion. No records were kept by the previous lab indicating how many organisms were found in the fractions. Only those sites which have not had subsampling can be analysed for sorting efficiency and taxonomic efficiency accurately.

Sorting Efficiency

Three samples were randomly chosen to resort, V8-B, V8-A and V27-C.

V8-B
V8-A
V27-C

Original Sorted Numbers	Cordillera Consulting Resort	% Efficiency
~2000 ? X 0.3125* = 625	62	~90%
262	39	85.10%
409	31	92.40%

^{* 0.3125} is the subsampled portion the sorted 'fine' numbers were multiplied by to get the totals. Cordillera Consulting estimated that 75 organisms were found in the course portion and 625 were found in the 5/16ths of the fine portion.

Sorting efficiency was found to be acceptable in V8-B and V27-C but not acceptable in V8-A. (EEM Guidelines Chapter 5, page 5-109) Organisms found in V8-A were added back to the original numbers.

Taxonomic Efficiency

The invertebrates in V8-A, V8-B and V27-C were reidentified by Sue Salter at Cordillera Consulting.

The absolute total numbers in the three samples number differed by 15.9% in V27-C, 12.9% in V8-A and approximately 26.4% in V8-B.

The % disagreements including both disagreement in numbers and disagreements in taxa identifications was 47% in V27-C, 57.6 % in V8-A and 73.9% in V8-B. V8-B is likely falsely high due to the very rough estimate in total numbers due to subsampling. The acceptable disagreement level of 10% however is very much exceeded and all twelve of these samples need to be re-identified and re-counted.

The errors range from

- **minor** i.e. placing immature larvae at the genus level instead of family or order, not using up to date nomenclature and reference texts
- **major** misidentification of common taxa with unambiguous characteristics (Parapsyche sp., Taeniopterygidae), miscounts of greater than 10%.

Others taxonomic errors suggest the taxonomist has not taken specialized training currently available within the taxonomic community and has not maintained a current collection of reference texts.

The following disagreements in taxa and numbers were recorded:

V27-C

	V27- C	Re ID	Disagreement	Comments
PHYLUM ARTHROPODA				
Class Insecta				
Order Ephemeroptera				
Family Siphlonuridae				
Ameletus sp	1	1		Ameletus is now in the Family Ameletidae
Family Baetidae				
Baetis sp	62	41	21	numbers disagreement
Family Heptageniidae		62		I can see the rationale for putting the
Cinygmula sp	95	34		immature Heptageniids into Cinymula sp. and
Epeorus sp	4	3	1	I accept this designation. I differ only in the
Rhithrogena sp	4	4		number of Epeorus sp.
Family Ephemereliidae				
Drunella doddsi	3	3		
Order Plecoptera juvenile		5		
Family Capniidae		4		It is very difficult to identify even mature
Capnia sp	7		7	Capniids and these Capniids are immature

Family Perlodidae				
Megarcys sp	1	1		
Sweltsa sp group	1			
Family Nemouridae				
Zapada sp	87	46	41	disagreement in numbers
Podmosta sp	4		4	I think the previous lab has misidentified Taeniopterygidae as Podmosta sp.
Family Chloroperlidae				
Sweltsa group		1		Sweltsa sp. belongs in the family Chloroperlidae not Perlodidae
Family Taeniopterygidae		4		Likely mistaken for Podmosta sp.
Order Trichoptera				
Trichoptera Unid J	3	2	1	2 of the Trichoptera Unid J were identified as Oligophlebodes sp.
Trichoptera P				
Family Uenoidae				
Oligophlebodes sp.		2	2	
Family Hydropsychidae juvenile		17	4	
Arctopsyche sp	22		22	Parapsyche sp. has been misidentified as Arctopsyche sp. throughout this project
Parapsyche sp.		1		
Family Glossosomatidae				
Glossosoma sp	29	29		
Family Rhyacophilidae				I did not identify Rhyacophilidae to the species
Rhyacophila sp.		10	6	level, and I don't disagree with the
Rhyacophila acropedes or vao				identifications; I only disagree with the number
Rhyacophila angelita				found. Rhyacophila acropedes is no longer a valid name. R. brunnea is now used.
Rhyacophila hyalinata	4			valid Harrie. IX. brufffled is flow dised.
Order Diptera				
Family Chironomidae				
Chironomidae P	9	9		
Chironomidae L	48			
Sub Family Orthocladinae				
Brillia sp		3	3	these taxa were found but not recorded by previous lab
Cricotopus sp	3			
Cricotopus/Orthocladius sp.		29	26	It is recommended in current keys that most Cricotopus sp. be referred to as Cricotopus/Orthocladius sp. unless there is pupal association. There is also a disagreement in number
Eukiefferiella sp	8	21	13	numbers disagreement.
Family Diamesinae				
Diamesa sp	2		2	misidentification
Pagastia sp.	 	2		
Family Empididae		-		
Weidemannia sp	3		3	misidentification
Oreogeton sp.		2	<u>=</u>	
Family Psychodidae				

Cordillera Consulting March 2008

Total per sample	409	344	164	47.6 % disagreement
Unioncola sp	2		2	misidentification
Sperchon sp	1		1	
Lebertia sp.		1	1	misidentification
Order Hydracarina				
Prosimulium L	3		4	
Family Simulidae		7		
Pericoma sp				

V8-A

	V8a	Resort	Disagreement	Comments
PHYLUM ARTHROPODA				
Class Insecta				
Order Ephemeroptera				
Family Siphlonuridae				
Ameletus sp				Ameletus is now in the Family Ameletidae
Family Baetidae				
Baetis sp	3	2	1	
Family Heptageniidae		10		I can see the rationale for putting the
Cinygmula sp	21	10		immature Heptageniids into Cinymula sp. and I accept this
Epeorus sp	12	12		designation. I differ only in the
Rhithrogena sp	16	15	1	number of Rhithrogena sp. sp.
Order Plecoptera		It is very difficult to identify mature		
Family Capniidae		2		Capniids and these Capniids are
Capnia sp	2		2	immature
Family Chloroperlidae				
Sweltsa sp group	1	1		
Family Nemouridae				
Zapada sp	73	56	27	disagreement in numbers
Podmosta sp				disagreement in numbers and
Family Taeniopterygidae		27		identification
Order Trichoptera				
Family Hydropsychidae juvenile		13		Parapsyche sp. has been
Arctopsyche sp	19		19	misidentified as Arctopsyche
Parapsyche sp.		3		throughout this project
Family Rhyacophilidae		22	34	disagreement in numbers
Rhyacophila acropedes or vao	44		_	
Rhyacophila angelita	1			

Rhyacophila hyalinata	11			
Order Diptera				
Family Chironomidae				
Chironomidae P	4	3	1	
Chironomidae L	3		4	
Sub Family Orthocladinae				
Cardiocladius sp	1			
Chaetocladius sp.		29	29	misidentification
Cricotopus sp	16			
Cricotopus/Orthocladius sp.		9		
Eukiefferiella sp	23		23	misidentification
Thienemanniella sp	1		1	misidentification
Family Simulidae				
Simulium sp L	3	4		
Order Hydracarina				
Unioncola sp	7			
Aturus sp.		9	9	misidentification
Total per sample	262	228	151	57.6 % disagreement

V8-B

Please note V8-B was a sub-sampled site and the actual numbers for the previous lab are only a very rough estimate because the records of the original numbers were never kept. The numbers in the disagreement column here are not reliable.

	V8-B	V8-B x 5/16	Re ID	Disagreement	Comments
PHYLUM ARTHROPODA					
Class Insecta					
Order Ephemeroptera					
Family Baetidae					
Baetis sp	157	49	16	33	disagreement in numbers
Family Heptageniidae juvenile or dam.			10		
Cinygmula sp	26	8	3		I can see the rationale for
Epeorus sp	9	3	16		putting the immature Heptageniids into Cinymula
Rhithrogena sp	1		9		sp. and I accept this designation. I differ only in
Family Ephemereliidae					the number of Epeorus sp.
Drunella doddsi	3	1	2	1	disagreement in numbers
Drunella grandis	1			1	disagreement in numbers
Drunella spinifera sp.			1	1	disagreement in identification
Serratella tibialis			1	1	disagreement in

Cordillera Consulting March 2008

			1 1		identification
Ephemerella flavilinea	28	9			
•					
Order Plecoptera juvenile			75	75	these juvenile larvae cannot be distinguished to genus or family level
Family Capniidae juvenile			14		It is very difficult to identify
Capnia sp	51	16		16	mature Capniids and these Capniids are immature; disagreement in number
Family Perlodidae					also
Megarcys sp	4	1	3	2	disagreement in number
Family Nemouridae					
Zapada sp	398	124	189		I think the previous lab has misidentified
Podmosta sp	298	93		46	Taeniopterygidae as Podmosta sp.
Family Taeniopterygidae juvenile			40		disagreement in total numbers including immatures
Order Triebentere					
Order Trichoptera	3	1	1		
Trichoptera Unid J	3	ı	1		Parapsyche sp. has been
Family Hydropsychidae Juvenile			47		missidentified as Arctopsyche throughout
Arctopsyche sp	138	43		17	this project; juvenile larvae cannot be
Parapsyche			13		identified to genus; disagreement in numbers also
Family Rhyacophilidae					
Rhyacophila sp.			46	27	disagreement in numbers
Rhyacophila acropedes or vao	41	13			
Rhyacophila angelita					
Rhyacophila hyalinata	21	7			
Order Diptera					
Diptera Unid A	1		1		
Diptera Unid L	4	1	1		
Family Chironomidae				51	dia a successivity of the
Chironomidae P	27	8	14		disagreement in total
Chironomidae L	250	78			numbers of Chironomidae
Sub Family Orthocladinae					55
Brillia sp	47	15	42		
Cardiocladius sp	11	3	0		disagreement in identification
Chaetocladius sp.			167		
Cricotopus sp	151	47			
Cricotopus/Orthocladius sp.			45		
Eukiefferiella sp	174	54	10		

Cordillera Consulting March 2008

00	_			diagreement in
23	/	0		identification
				<u> </u>
4	1	2	2	disagreement in numbers
			_	
4	1		2	disagreement in numbers
		4		
- 10	_		16	disagreement in numbers and identification
16	5	0		and identification
		_	_	
	6	13	5	
4	1			
3	1	1	2	disagreement in numbers
		3	12	disagreement in numbers
7	2			
8	3		8	disagreement with identification
3	1			
6	2		6	
7	2	3	4	disagreement in numbers
		24	24	and identification
115	36	0	115	
				disagreement with
3	1	1	2	numbers
				disagreement with
10	3	0	10	numbers
2075			479	73.9 % disagreement
	7 8 3 6 7 115	4 1 4 1 16 5 18 6 4 1 7 2 8 3 1 1 6 2 7 2 115 36 3 1	4 1 2 4 1 2 4 1 2 4 1 2 4 1 3 18 6 13 4 1 3 7 2 3 8 3 3 1 6 2 7 24 115 36 0 3 1 1 10 3 0	4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 18 6 13 5 4 1 2 3 12 7 2 8 8 3 1 2 8 3 1 3 4 4 2 4 24 24 24 24 115 36 0 115 3 1 1 2 10 3 0 10

Report on the re-Identification of 12 Vangorda Samples

The first three samples examined in the QA/QC were left unchanged.

Of the remaining 9 samples, the sites which had not had subsampling applied were sieved through 300μ and 210μ sieves. The number of organisms in the 210μ fraction were recorded and preserved but the individuals were not identified. The organisms in the 300μ fraction were all reidentified and the results recorded and sent to the client.

The sites which did have subsampling applied were sieved through 1 mm, 300μ and 210μ sieves. The 210μ fraction was counted and preserved and the other 2 fractions were identified and counted and preserved separately. The results were recorded and sent to the client.

The table below is a record of total numbers from the previous labs identifications, the current identifications and the number of organisms in the 210µ fraction.

	V1b	V1c	V1d	V5c	V5d	V5e	V8b	V8c	V8a	V27a	V27b	V27c
Subsample	all	1/4	1/4	1/8	1/2	1/16	5/16	all	all	1/4	all	all
Previous #s	147	1348	1423	2770	747	3962	2075	1048	262	1502	427	409
Current #s	81	494	467	1401	225	1877	819	885	226	1280	411	335
# in 210µ fraction	9	127	87	65	75	57		71		38	42	

Report on Benthic Invertebrate Analysis Faro Mine Samples Collected Summer 2008

for

Minnow Environmental

by

Cordillera Consulting – Taxonomist Sue Salter December 15, 2008

Hess and Kick-net samples from the Faro, Yukon area were received in September 2008. The forty-seven samples were examined on arrival for adequate preservation and completeness.

Each sample was elutriated to remove sand or gravel. The elutriate was examined for molluscs or trichopteran cases which were removed if found. The remaining organic material was washed through two nested sieves (2 mm on top of 300 microns). The contents of the two sieves were sorted and identified separately under low power dissecting microscopes. If numbers of invertebrates appeared to be high (> 400) the sample was split by surface area within a 300 micron sieve. The fractions were subsampled to achieve a total of more than 325 organisms from the sample.

There were two samples (BTT Hess and BTT K&S) with a large proportion of filamentous algae which could not be subsampled with the above method because even distribution of the sample was not achievable. In these cases the whole sample was rinsed, pressed to a point where no water was dripping and then weighed. A subsample was removed by weight using scissors. This subsample was sorted and subsequent subsamples were removed until 325 organisms had been removed from the whole.

See separate document for a record of subsampling numbers and proportions.

Ten percent of the sorted debris was resorted to test sorting efficiency. The sorting efficiency was found to be >95%.

We await instructions for what to do with the sorted debris, unsorted subsamples, vials of invertebrates. The project will remain on site until we receive your instructions.

		Sample ID: CC:	<u>VR-Hess</u> 080280	<u>VR-</u> <u>Hess</u> 080280	<u>VR-K&S</u> 080281	<u>VR-</u> <u>K&S</u> 080281	X2-1 Hess 080282	X2-1 Hess 080282	X2-1 K&S 080283	X2-1 K&S 080283	X2-2 Hess 080284	X2-2 Hess 080284
_		subsample	coarse, all	fine, all	coarse, all	fine, all	coarse, 1/2	fine, 1/2	coarse, all	fine, all	coarse, 1/4	fine, 1/2
		Subsample #	36	487	59	442	156	922	94	1263	67	1888
	X2-2 K&S 080285	X2-2 K&S 080285	<u>X2-3</u> <u>Hess</u> 080286	X2-3 Hess 080286	X2-3 K&S 080287	X2-3 K&S 080287	X2-4 Hess 080288	X2-4 Hess 080288	<u>X2-5</u> <u>Hess</u> 080289	X2-5 Hess 080289	<u>USFR-</u> <u>Hess</u> 080290	<u>USFR-</u> <u>Hess</u> 080290
	coarse, 1/8	fine, 1/4	coarse, 1/4	fine, 1/4	coarse, 1/8	fine, 1/8	coarse, 1/4	fine, 1/4	coarse, 1/2	fine, 1/2	coarse, 1/2	fine, 1/4
	33	347	123	1002	215	231	140	481	55	595	48	519
	<u>USFR-K&S</u> 080291	<u>USFR-</u> <u>K&S</u> 080291	NXT- Hess 080292	NXT- Hess 080292	NXT- K&S 080293	NXT- K&S 080293	R2-1 Hess 080294	R2-1 Hess 080294	R2-2 Hess 080295	R2-2 Hess 080295	R2-3 Hess 080296	R2-3 Hess 080296
	coarse, all	fine, 1/4	coarse, 1/8	fine, 3/8	coarse,	fine, 1/4	coarse,	fine, 1/4	coarse all	fine 1/16	coarse all	fine 1/4
	114	464	9	234	87	276	184	146	355	74	113	245
	R2-4 Hess 080297	R2-5 Hess 080298	R2-5 Hess 080298	R2-1 K&S 080299	R2-2 K&S 080300	R2-3 K&S 080301	R7 Hess 080302	R7 Hess 080302	R7-1 K&S 080303	R7-1 K&S 080303	R7-2 K&S 080304	R7-2 K&S 080304
	1/2	coarse all	fine 1/8	all	all	all	coarse, 1/2	fine, 1/8	coarse, all	fine, 1/4	coarse, 3/4	fine, 1/8
	581	261	61	515	397	631	99	268	42	292	222	122

BLC-5 Hess Hess O80311 O80312 O80313 O80314 O80314 O80315 O80315 O80315 O80316 O80317 O80318 O80318 O80319 O80319 O80321 O80321 O80322 O80323 O80324 O80324 O80324 O80325		FC1 Hess 080305	FC1 Hess 080305	FC1 K&S 080306	FC1 K&S 080306	BLC1 Hess 080307	BLC1 Hess 080307	BLC2 Hess 080308	BLC2 Hess 080308	BLC-3 Hess 080309	BLC-3 Hess 080309	BLC-4 Hess 080310	
BLC-5 Hess Hess O80311 O80312 O80313 O80314 O80314 O80315 O80315 O80315 O80316 O80317 O80318 O80318 O80319 O80319 O80321 O80321 O80322 O80323 O80324 O80324 O80324 O80325		•	,	1/2	1/2	1/2	1/16	all		all			
BLC-5 Hess Hess O80311 O80312 O80313 O80314 O80314 O80315 O80315 O80315 O80316 O80317 O80318 O80318 O80319 O80319 O80321 O80321 O80322 O80323 O80324 O80324 O80324 O80325													
The first of the second coarse all 1/2 1/2 1/2 1/2 1/2 1/2 1/6 1/4 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/16 1/2 1/16 1/2 1/16 1/2 1/16 1/2 1/16 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/2 1/16 1/2 1/			Hess	K&S	K&S	K&S	K&S	Hess	<u>Hess</u>	K&S	Hess	<u>Hess</u>	BEC K&S 080318
HOC Hess HOC Hess Hoc Hess Hoc Hess 080319 080320 080321 080321 080322 080323 10% 0.67% BTT BTT BTT BTT BTT BTT K&S Hess Hess Hess 080325		coarse all	fine 1/8	all	1/2	,	fine, 3/8		·	all	,	fine, 1/16	coarse all
BEC K&S HOC Hess Hess 080319 080319 080320 080321 080321 080322 080323 080323 080324 080324 080325		213	186	239	324	149	176	164	142	90	454	324	266
BEC K&S HOC Hess Hess K&S Hess 080319 080319 080320 080321 080321 080322 080323 080323 080324 080324 080324 080325 08032													
				Hess	<u>K&S</u>	<u>Hess</u>	<u>K&S</u>	<u>Hess</u> 080323	K&S 080324	K&S	Hess	Hess	BUC K&S 080326
Fine 1/16 coarse, all fine, 1/2 all all all 73/733 coarse fine, 1/32 coarse, all fine, 1/2		Fine 1/16	coarse, all	fine, 1/2	all	all	all	73/733	coarse	fine, 1/32	coarse, all	fine, 1/2	1/5
	J	63	43	301	102	153	64	~3090	45	278		258	373

Benthic Invertebrate Sub Sampling Report for Minnow Environmental Project 2254 Faro Mines

Cordillera Consulting February 2009

The subsampling procedure chosen for the project was an area based method recommended in the EEM Guidance document found at:

http://www.ec.gc.ca/eem/English/Publications/web-publication/Sub-Sampling/defa
ult.cfm >.

The samples were sieved into fine (F) and course (C) portions using 2mm and 300 μ sieves.

Determination of subsampling accuracy and precision:

The effects of subsampling on abundance estimates should be examined on a minimum of 10% of the samples. If the error exceeds 20% for any group of samples, all samples within that group of samples should be completely sorted to assure the subsampling process is not compromising data integrity. This requires that 10% of samples which have been subsampled are randomly selected and the remaining unsorted material is sorted in its entirety. The estimates (calculated as above) are then compared to the actual counts from the sample and the accuracy of the estimates and the precision between subsamples can calculated as below:

Accuracy of the subsampling estimate

% Error in the estimate = [1-(estimated # in sample/actual # in sample)]x100

Example (repeated from Section 3.2)

- 1. a count in subsample A=289, representing 15% of the sample by volume, for an estimate of the total in the sample of 1927
- 2. a count in subsample B=316, representing 15% of the sample by volume, for an estimate of the total in the sample of 2106
- 3. the count in the remainder of the sample = 1359, for a actual total of 1964
- 4. the reported precision would be the same as in the first example, 8.5 % the reported accuracy would be -1.9% and +7.2% for sample A and B respectively.

Precision between subsamples

% Difference between two subsamples (A&B) = [1- (count in subsample A / count in subsample B)] x 100

Example (repeated from Section 3.2)

- 1. a count in subsample A = 289
- 2. a count in subsample B = 316
- 3. the reported precision between theses two subsamples would be 8.5% (1-(289/316))x100.

In the Minnow Project # 2254, there were 47 samples. Five samples were randomly selected from the project to test subsampling efficiency. Two of the samples had been tested during the course of the work and the remaining three were tested after the project was completed as part of the QA/QC for the project. The samples chosen were: VR-K&S, USFR-K&S, X2-3 Hess, R2-3 Hess and R7-1 K&S.

Sample #		Subsample Portion	Actual Subsample #	Expected Subsample #	%accuracy	%precision
π VR-K&S	F	1/4	96	110	14.58	70precision
VR-K&S	F	1/4	117	110	5.98	17.95
VR-K&S	F	1/4	102	110	7.84	5.88
VR-K&S	F	1/4	128	110	14.06	25.00
VK-NQ3		1/4	120	110	14.00	25.00
VR-K&S	С	1/4	10	15	50.00	
VR-K&S	С	1/4	14	15	7.14	28.57
VR-K&S	С	1/4	17	15	11.76	41.18
VR-K&S	С	1/4	18	15	16.67	44.44
USFR-K&S	F	1/4	464	455	1.94	
USFR-K&S	F	1/4	543	455	16.21	14.55
USFR-K&S	F	1/4	424	455	7.31	9.43
USFR-K&S	F	1/4	389	455	16.97	19.28
USFR-K&S	С	1/4	25	29	16.00	
USFR-K&S	С	1/4	30	29	3.33	16.67
USFR-K&S	C	1/4	26	29	11.54	3.85
USFR-K&S	С	1/4	33	29	12.12	24.24
X2-3 Hess	F	1/4	1002	1023	2.10	
X2-3 Hess	F	1/4	975	1023	4.92	2.77
X2-3 Hess	F	1/4	1065	1023	3.94	5.92
X2-3 Hess	F	1/4	1104	1023	7.34	9.24
X2-3 Hess	С	1/4	123	133	8.13	
X2-3 Hess	С	1/4	139	133	4.32	11.51
X2-3 Hess	C	1/4	120	133	10.83	2.50
X2-3 Hess	С	1/4	150	133	11.33	18.00
D2 2 Hear	F	1/4	245	252	2.07	
R2-3 Hess R2-3 Hess	F	1/4	245 254	252 252	2.86 0.79	3.54
R2-3 Hess R2-3 Hess	F	1/4 1/4	254 272	252 252	0.79 7.35	3.54 9.93
	F					
R2-3 Hess	F	1/4	239	252	5.44	2.51
R7-1 K&S	F	1/4	291	322	10.65	
R7-1 K&S	F	1/4	386	322	16.58	24.61
R7-1 K&S	F	1/4	276	322	16.67	5.43
R7-1 K&S	F	1/4	288	322	11.81	1.04

The sample portions highlighted are the portions which were used for total numbers and reported on. The course and fine parts of VR-K&S and the course portions of USFR-K&S were subsampled during the course of working on the project and so the reported numbers are the actual numbers for the whole sample and not generated from subsample numbers.

The average subsampling error is 10.58%, which is considered acceptable by EEM Guidance. The subsampling precision is calculated for samples compared to the first subsample in the group. The average precision is 14.5%.

APPENDIX E Habitat Matching

Table E.1: Habitat Characteristics Taken from GIS

Area	Basin	Basin Area	Basin Area	Stream	Total Stream	Drainage Density	Station Elevation	Source	Distance to	Avegerage Stream		% of B	asin Area I	In Bedrocl	k Types		% of Ba	sin Area in	Land Cover	Types	% of Basin Area	a in Active Claims	Road Density	% Area	% Area Logged (In Last 30
	Perimeter (km)	(km2)	(ha)	Order	Length (m)	(m/km2)	(m)	Elevation (m)	Source (m)	Gradient	Metamorphic	Sedimentary	Volcanic	Plutonic	Unconsolidated	Ultramafic	Coniferous	Tundra	Barren	Water	HardRock	Placer	(km/km2)	Builtup	Years)
BEC	74.73	89.08	8908.23	2	32469.40	364.49	823	1335	19145.75	0.0267	0.0075	0.8119	0.1805	0.0000	0.0000	0.0000	0.7373	0.2627	0.0000	0.0000	0.0500	0.0000	0.040	0.0000	0.0000
BLC	178.54	580.43	58043.16	3	190619.56	328.41	657	1455	72371.16	0.0110	0.0127	0.7978	0.0624	0.1271	0.0000	0.0000	0.5789	0.3866	0.0131	0.0215	0.1529	0.0000	0.025	0.0000	0.0046
BTT	67.14	81.78	8178.48	2	26082.25	318.91	962	1198	16865.20	0.0140	0.0000	0.0000	0.3985	0.6015	0.0000	0.0000	0.2021	0.7610	0.0369	0.0000	0.0000	0.0000	0.164	0.0000	0.0000
BUC	95.99	145.78	14577.87	3	61542.61	422.16	708	1246	28932.64	0.0186	0.0000	0.0303	0.0000	0.3550	0.0000	0.0000	0.9009	0.0991	0.0000	0.0000	0.0052	0.0000	0.012	0.0000	0.0000
FC	21.32	13.31	1331.13	1	9260.62	695.70	1314	1524	9260.62	0.0227	0.0000	0.0270	0.0000	0.9730	0.0000	0.0000	0.5774	0.4225	0.0000	0.0000	0.2625	0.0000	0.000	0.0000	0.0000
GRC	71.08	109.84	10983.82	3	45208.32	411.59	739	1292	14382.54	0.0384	0.0000	0.9470	0.0523	0.0007	0.0000	0.0000	0.7730	0.2270	0.0000	0.0000	0.0751	0.0040	0.003	0.0000	0.0000
HOC	22.40	12.07	1206.52	1	6479.96	537.08	819	884	4103.77	0.0158	0.0000	0.0000	0.0877	0.0000	0.9123	0.0000	0.9939	0.0061	0.0000	0.0000	0.0346	0.0000	0.417	0.0000	0.0000
NEXC	28.79	21.26	2125.81	2	8085.83	380.36	1031	1480	6263.05	0.0717	0.0000	0.4254	0.0000	0.5746	0.0000	0.0000	0.1261	0.8738	0.0001	0.0000	0.5203	0.0000	0.000	0.0000	0.0000
R2	111.58	228.80	22880.07	2	134446.00	587.61	1027	1499	5437.02	0.0868	0.0000	0.4586	0.0500	0.4914	0.0000	0.0000	0.4251	0.4220	0.1529	0.0000	0.4246	0.0000	0.074	0.0000	0.0000
R3	126.99	295.76	29576.05	3	166196.65	561.93	975	1499	32399.42	0.0162	0.0000	0.5132	0.0559	0.4309	0.0000	0.0000	0.4485	0.4318	0.1197	0.0000	0.4642	0.0000	0.058	0.0000	0.0001
R4	145.03	334.87	33487.02	3	181310.77	541.44	946	1499	41211.86	0.0134	0.0000	0.5303	0.0731	0.3965	0.0000	0.0000	0.5006	0.3937	0.1057	0.0000	0.4281	0.0000	0.051	0.0000	0.0001
R5	178.36	665.25	66525.27	4	285447.20	429.08	909	1471	44992.98	0.0125	0.0000	0.0009	0.1848	0.3723	0.0000	0.0000	0.4694	0.4694	0.0613	0.0000	0.2451	0.0000	0.026	0.0000	0.0001
R6	148.08	323.20	32320.01	3	95346.59	295.01	935	1471	42593.16	0.0126	0.0000	0.0018	0.3046	0.3425	0.0000	0.0000	0.4277	0.5557	0.0166	0.0000	0.0596	0.0000	0.000	0.0000	0.0000
R7	60.45	93.10	9309.63	2	33040.47	354.91	1121	1499	16617.78	0.0227	0.0000	0.2792	0.0611	0.6597	0.0000	0.0000	0.4067	0.4717	0.1216	0.0000	0.0919	0.0000	0.000	0.0000	0.0000
STC	128.19	215.35	21535.38	3	65147.61	302.51	833	1361	33098.51	0.0160	0.0827	0.0055	0.0263	0.0000	0.3183	0.0000	0.6249	0.1765	0.1985	0.0000	0.0000	0.0000	0.003	0.0000	0.0000
USFR	30.40	24.93	2493.14	2	11125.79	446.26	1289	1461	6642.79	0.0259	0.0000	0.0119	0.0000	0.9881	0.0000	0.0000	0.0000	0.7065	0.2935	0.0000	0.0215	0.0000	0.000	0.0000	0.0000
UWFV (VR)	15.53	7.73	773.27	1	5031.21	650.64	1219	1282	773.94	0.0814	0.0000	0.3059	0.0000	0.6941	0.0000	0.0000	0.0000	0.9117	0.0882	0.0000	0.5221	0.0000	0.026	0.0000	0.0000
V1	27.18	18.06	1806.03	1	7817.30	432.84	1155	1463	5968.79	0.0516	0.0000	0.1266	0.0000	0.8734	0.0000	0.0000	0.0478	0.5624	0.3898	0.0000	0.1856	0.0000	0.000	0.0000	0.0000
V27	39.18	30.63	3063.22	2	17912.48	584.76	987	1463	9453.30	0.0504	0.0000	0.4065	0.0331	0.5604	0.0000	0.0000	0.0282	0.7420	0.2298	0.0000	0.5182	0.0000	0.014	0.0000	0.0000
V5	39.90	32.58	3258.12	2	15636.19	479.91	825	1282	8314.67	0.0550	0.0460	0.5812	0.1619	0.1848	0.0000	0.0261	0.4492	0.5299	0.0209	0.0000	0.7356	0.0000	0.318	0.0000	0.0000
V8	69.35	89.68	8967.81	3	51244.40	571.43	694	1463	17561.13	0.0438	0.0717	0.4711	0.1847	0.2586	0.0000	0.0139	0.2280	0.6859	0.0861	0.0000	0.6537	0.0000	0.222	0.0056	0.0028
X2	82.79	117.70	11770.12	2	71704.86	609.21	1075	1499	19729.42	0.0215	0.0000	0.3091	0.0483	0.6426	0.0000	0.0000	0.4552	0.4426	0.1022	0.0000	0.1940	0.0000	0.000	0.0000	0.0000

E.1.1 Basin Characteristics

E.1.1.1 Size

Not surprisingly, stream size in control areas was smaller than in impact areas (e.g., R7 vs. R2 or V1 vs. V27). Only basin area was used in further analyses because it explained variation among areas in the PCA and was highly correlated (r > 0.7) with other size measures.

	PCA 1	PCA 2	PCA 3
Basin Perimeter	0.51	-0.02	0.77
Basin Area	0.51	-0.35	0.04
Stream Order	0.46	0.85	-0.25
Stream Length	0.51	-0.40	-0.59

	Basin Perimeter	Basin Area	Stream Order	Stream Length
Basin Perimeter	1.00			_
Basin Area	0.94	1.00		
Stream Order	0.83	0.76	1.00	
Stream Length	0.90	0.96	0.74	1.00

E.1.1.2 Drainage Characteristics

Drainage characteristics were each important in explaining variability among areas in the PCA and were not highly correlated so all were used in further analyses with the exception of distance to source which was negatively correlated to average stream gradient.

	PCA 1	PCA 2	PCA 3
Drainage Density	0.47	0.06	-0.43
Station Elevation	0.47	0.37	-0.39
Source Elevation	0.09	0.84	0.32
Distance to Source	-0.55	0.37	0.02
Average Upstream Gradient	0.50	-0.15	0.74

	Drainage Density	Station Elevation	Source Elevation	Distance to Source	Avegerage Stream Gradient
Drainage Density	1.00				_
Station Elevation	0.39	1.00			
Source Elevation	0.10	0.36	1.00		
Distance to Source	-0.43	-0.50	0.26	1.00)
Average Stream Gradient	0.37	0.26	0.09	-0.63	3 1.00

E.1.1.3 Bedrock

The bedrock geology at V1 (primarily plutonic) was distinct from V5, V8, and V27 (primarily sedimentary and volcanic). Bedrock types were important in distinguishing areas in the PCA and were uncorrelated but percent metamorphic was removed because its presence was rare in the study area.

	PCA 1	PCA 2	PCA 3
Metamorphic	0.50	-0.22	-0.74
Sedimentary	0.43	0.67	0.35
Volcanic	0.28	-0.70	0.57
Plutonic	-0.69	-0.04	-0.08

	Metamorphic	Sedimentary	Volcanic	Plutonic
Metamorphic	1.00			
Sedimentary	0.04	1.00		
Volcanic	0.10	-0.10	1.00	
Plutonic	-0.43	-0.43	-0.27	1.00

E.1.1.4 Land cover

Coniferous was the only land cover category retained in further analyses as it was important in the PCA and was correlated with the other land cover types.

	PCA 1	PCA 2	PCA 3
Coniferous	0.67	0.11	0.74
Tundra	-0.60	-0.51	0.62
Barren	-0.44	0.85	0.27

	Coniferous	Tundra	Barren
Coniferous	1.00		
Tundra	-0.93	1.00	
Barren	-0.59	0.26	1.00

E.1.1.5 Human land use

The area downstream of Faro (i.e., V8) had the most but still relatively little human land use in its basin. Also, area estimates based on hard rock mining land claims did not likely accurately depict actual area disturbed by mining. Estimates of percent area logged were dated. None of these variables were included in later stages of evaluation.

	PCA 1	PCA 2	PCA 3
Hard Rock	0.65	0.22	-0.73
Road Density	0.62	0.40	0.68
% Logged	0.44	-0.89	0.12

	Hard Rock	Road Density	% Logged
Hard Rock	1.00		_
Road Density	0.24	1.00	
% Logged	0.12	0.09	1.00

E.1.2 Habitat Characteristics Based on Field Measurements

Gradient, percent cobble & gravel, and amount of partially open canopy were potentially important in distinguishing areas but were not used in further analyses because of the subjectivity in measuring them (i.e., the values at areas sampled in both 2007 and 2008 varied between years) and because the variability in habitat among areas was largely captured using basin characteristics derived from mapping.

Areas varied with respect to mean bottom velocity and wetted width. Mean depth was eliminated from further analyses because it was correlated with wetted width.

	PCA 1	PCA 2	PCA 3
Flow Velocity	-0.07	0.96	0.26
Depth	0.70	0.23	-0.68
Wetted Width	0.71	-0.13	0.69

FI	'ow	Depth	Width
Flow Velocity	1.00	•	
Depth	0.09	1.00	
Wetted Width	-0.15	0.59	1.00

E.1.3 Water Chemistry

Correlations between water chemistry variables were evaluated but not used in later stages of habitat evaluation because such variables are influenced by mine activity and thus not good predictors of expected habitat conditions at a given location.

E.1.3.1 General water chemistry

Hardness and correlated variables were relatively high (total hardness > 200 mg/L) in several tributaries of the Pelly River (areas BEC, BUC, GRC, HOC, and STC) and in downstream sections of Vangorda Creek (V5 and V8). Of the inorganic chemistry variables, hardness gradient explained the most variability among areas. TSS also explained variability among areas and was not highly correlated with hardness.

	Fluoride	Alkalinity	Alkalinity	Sulphate	Chloride	TSS	TDS	}	Hardness
Fluoride	1.00								
Alkalinity (Total as CaCO3)	0.87	1.00							
Alkalinity (PP as CaCO3)	0.76	0.89	1.00						
Sulphate	0.58	0.77	0.61	1.00)				
Chloride	0.87	0.71	0.59	0.52	1.00				
Suspended solids, total (TSS)	0.57	0.28	0.25	0.14	0.73		1.00		
Dissolved solids, total (TDS)	0.78	0.93	0.78	0.94	0.68		0.25	1.00	
Hardness	0.80	0.95	0.82	0.93	0.67		0.25	1.00	1.00

E.1.3.2 Nutrient Chemistry

Although nutrient concentrations at all areas were low, nitrate, ammonia, and total phosphorus concentrations were important in explaining variability among areas.

PCA 1	PCA 2	PCA 3
0.20	0.79	-0.58
0.00	0.00	0.00
0.66	0.03	0.26
0.66	0.03	0.26
-0.32	0.62	0.72
	0.20 0.00 0.66 0.66	0.20 0.79 0.00 0.00 0.66 0.03 0.66 0.03

	Ammonia	Nitrite	Nitrate	N03+NO2	TP
Ammonia - N	1.00				
Nitrite - N	0.00	1.00			
Nitrate (N)	0.21	0.00	1.00		
Nitrate plus Nitrite (N)	0.21	0.00	1.00	1.00	
Phosphorus, total	0.08	0.00	-0.30	-0.30	1.00

E.1.3.3 Metals

There were high correlations among several metals but no distinct gradients in metal concentrations among areas. Area V5 had the highest concentrations of aluminum, arsenic, chromium, iron, and titanium.

	PCA 1	PCA 2	PCA 3		PCA 1	PCA 2	PCA 3
Aluminum	0.104629	0.410242	-0.256425	Total Manganese	0.04234	0.124861	0.558344
Antimony	0.309373	-0.115371	-0.004142	Molybdenum	0.304389	-0.110492	-0.07672
Arsenic	0.220495	0.212645	-0.018648	Nickel	0.254567	-0.037039	0.18991
Barium	0.304916	-0.061857	-0.023467	Potassium	0.263864	0.005981	0.096388
Cadmium	0.143877	-0.111802	0.007705	Selenium	0.247897	-0.242388	-0.075746
Calcium	0.329696	-0.101121	0.013926	Total Sodium (Na)	0.249219	0.037672	0.081974
Chromium	0.162675	0.289055	-0.269877	Strontium	0.318292	-0.152605	0.010105
Cobalt	0.09639	0.223309	0.482788	Titanium	0.124788	0.406052	-0.251855
Copper	0.074876	0.135411	-0.041754	Uranium	0.293318	-0.167716	-0.048452
Iron	0.158957	0.407231	0.016888	Zinc	-0.007677	0.129464	0.420983
Lead	0.017568	0.32649	0.081085				

	Aluminum	Antimony	Arsenic	Barium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybdenum	Nickel	Potassium	Selenium	Sodium	Strontium	Titanium	Uranium	Zinc
Aluminum	1.00																				
Antimony	0.11	1.00																			
Arsenic	0.44	0.58	1.00																		
Barium	0.18	0.79	0.57	1.00																	
Cadmium	0.08	0.40	-0.05	0.54	1.00																
Calcium	0.14	0.92	0.50	0.89	0.49	1.00															
Chromium	0.83	0.28	0.38	0.30	0.17	0.37	1.00														
Cobalt	0.19	0.13	0.25	0.15	0.07	0.20	0.13	1.00													
Copper	0.18	0.03	0.36	0.21	-0.16	0.16	0.06	0.00	1.00												
ron	0.79	0.27	0.69	0.36	0.04	0.28	0.66	0.55	0.12	1.00											
Lead	0.43	-0.05	0.28	-0.06	0.02	-0.05	0.29	0.21	0.35	0.43	1.00)									
Total Manganese	-0.10	0.02	0.09	0.03	-0.02	0.09	-0.12	0.95	-0.04	0.32	0.09	1.00									
Molybdenum	0.11	0.87	0.56	0.86	0.34	0.89	0.32	0.06	0.13	0.26	-0.12	-0.05	1.00								
Nickel	0.14	0.81	0.40	0.55	0.37	0.75	0.16	0.45	0.05	0.30	0.06	0.35	0.56	1.00)						
Potassium	0.12	0.58	0.50	0.78	0.08	0.77	0.26	0.30	0.47	0.31	-0.02	0.23	0.67	0.46	1.00						
Selenium	-0.07	0.76	0.16	0.70	0.69	0.82	0.29	-0.05	-0.16	-0.01	-0.20	-0.10	0.72	0.55	0.39	1.00					
Total Sodium (Na)	0.14	0.52	0.51	0.72	0.06	0.70	0.29	0.32	0.53	0.31	0.00	0.24	0.72	0.35	0.92	0.32	1.00)			
Strontium	0.04	0.95	0.47	0.82	0.41	0.98	0.30	0.14	0.09	0.19	-0.10	0.05	0.90	0.77	0.70	0.84	0.62	2 1.00			
Titanium	0.99	0.17	0.51	0.23	0.07	0.19		0.20	0.19	0.82	0.40			0.17		-0.04			1.00		
Uranium	0.03	0.93	0.44	0.69	0.31	0.92	0.30	0.03	0.07	0.12	-0.09	-0.06	0.83	0.76	0.59	0.81	0.49	0.97	0.09	1.00	
Zinc	-n na	-0.03	0.00	-0.06	0.19	-0.03	-0.10	0.46	-0 12	0.16	0.57	0.46	-0.17	0.12	-0.02	-0.12	-0.04	1 -0.07	-n na	-0.13	1.0

Appendix E.2 Biological-habitat relationships at reference areas

Based on correlation analyses of habitat characteristics the following variables were included in correlations with benthic community metrics:

E.2.1 Hess sampling method

																Average					
											Ba	asin	Drainage		Source	Stream					Wetted
	CA1	CA2	CA	13	Abun	Rich	%EPT	%Chir	Diversity	E	Ar	ea	Density	Elevation	Elevation	Gradient	Sedimentary	Volcanic	Plutonic	Coniferous Velocity	Width
CA1	1.0	0																			
CA2	-0.0	2 1	.00																		
CA3	0.3	7 -0	.37	1.00																	
Abun	-0.8	3 -0	.38	-0.13	1.00)															
Rich	0.0	0 -0	.05	-0.16	-0.09	1.0	0														
%EPT	0.4	3 -0	.19	-0.06	-0.48	0.5	8 1.0	0													
%Chir	-0.3	3 0	.35	-0.24	0.28	-0.5	4 -0.8	3 1.0	0												
Diversity	-0.0		.15	-0.17	-0.08																
E	0.1	4 -0	.08	-0.28	-0.25	0.3	6 0.7	8 -0.6	9 0.9		1.00										
Basin Area	-0.0	3 0	.11	-0.25	0.06	0.2	2 -0.2	5 0.3	6 -0.5	6 -	0.53	1.00									
Drainage Density	0.2	2 0	.13	0.15	-0.40	-0.1	0.0	9 -0.0	9 0.2	8	0.34	-0.48	1.00								
Station Elevation	0.1	5 -0	.30	0.40	-0.10	-0.2	0.1	5 -0.2	2 0.2	6	0.14	-0.64	0.56	1.00)						
Source Elevation	0.2	0 -0	.21	0.25	-0.12	-0.1	2 0.0	3 -0.0	4 -0.1	7 -	0.34	0.12	-0.16	0.42	2 1.00						
Avegerage Stream Gradien			.11	0.63	-0.38						0.02	-0.46									
Sedimentary	-0.1	2 0	.40	-0.18	-0.10	-0.3	2 -0.2	9 0.2	7 -0.2	1 -	0.28	0.41	-0.24	-0.46	0.15	0.20	1.00				
Volcanic	-0.8	O -C	.26	-0.22	0.93	-0.0	9 -0.4	5 0.2	9 -0.0	1 -	0.13	0.10	-0.39	-0.30	-0.38	-0.40	0.04	1.00)		
Plutonic	0.1	7 -0	.51	0.42	-0.03	0.0	5 0.3	2 -0.3	9 0.3	7	0.21	-0.49	0.41	0.91	0.52	0.30	-0.50	-0.26	3 1.00)	
Coniferous	-0.1		.53	-0.61	-0.03						0.12	0.36	-0.16								
Velocity	-0.6	5 0	.27	-0.55	0.40	0.2	9 -0.1	1 0.1	3 0.2	5	0.20	-0.02	-0.11	-0.39	-0.36	-0.47	0.07	0.46	-0.35	5 0.56 1.0	0
Wetted Width	0.1	4 0	.06	-0.14	-0.04	0.2	8 -0.0	7 0.2	0 -0.4	4 -	0.36	0.83	-0.42	-0.43	0.04	-0.49	0.12	0.01	1 -0.34	4 0.24 -0.3	2 1.00

E.2.2 Kick-and-sweep sampling method

	CA1	CA2	c	CA3	Abun	Rich	%EPT	%Chir	Diversity	νE		lasin rea	Drainage Density	Station Elevation	Source Elevation	Avegerage Stream Gradient	Sedimentary	Volcanic	Plutonic	Coniferous	Velocity	Wetted Width
CA1	1.0	0																				
CA2	0.4	6	1.00																			
CA3	0.2	4 -	0.51	1.00																		
Abun	-0.80	0 -	0.76	0.21	1.00)																
Rich	-0.10	6 -	0.55	0.04	0.23	3 1.0	0															
%EPT	0.62	2 -	0.06	0.12	-0.40	0.1	9 1.0	0														
%Chir	-0.7		0.09	-0.17	0.56																	
Diversity	0.5		0.83	-0.22	-0.81			7 -0.3	1 1.0	00												
E	0.3	5	0.77	-0.09	-0.55	3.0-	1 -0.1	4 -0.0	8.0	30	1.00											
Basin Area	0.18	8	0.20	-0.13	-0.09	-0.0	1 -0.1	1 0.2	4 -0.2	25	-0.13	1.00										
Drainage Density	0.30	0 -	0.01	0.21	-0.30	-0.0	8 0.3	2 -0.4	8 0.3	34	0.16	-0.50	1.00									
Station Elevation	0.02		0.45	0.51	0.04				4 0.0		-0.22	-0.61	0.57									
Source Elevation	0.2		0.01	0.27	-0.19					5	-0.12	0.21	-0.10									
Avegerage Stream Gradient			0.03	0.43	-0.23						0.17	-0.42										
Sedimentary	0.0		0.52	-0.27	-0.29						0.38	0.41	-0.26									
Volcanic	-0.9		0.43	-0.12	0.87						-0.31	0.01	-0.40									
Plutonic	0.0		0.65	0.53	0.23						-0.51	-0.43										
Coniferous	0.13		0.64	-0.67	-0.31						0.46	0.23	-0.07									
Velocity	-0.5		0.11	-0.62	0.29						0.15	-0.16		-0.35								
Wetted Width	0.24	4	0.05	-0.04	-0.15	5 0.0	6 0.0	3 0.0	8 -0.3	34	-0.27	0.83	-0.38	-0.41	0.04	1 -0.46	0.13	-0.05	-0.33	3 0.16	-0.4	7 1.00

E.2.3 Artificial substrate sampling method – reference and exposure areas (due to low number of reference areas)

														Average				
										Basin	Drainage	Station	Source	Stream				
	CA1	CA2	CA3	Abun	Richness	%EPT	%Chir	Diversity	Evenness	Area	Density		Elevation		Sedimentary	Volcanic	Plutonic	Coniferous
CA1	1.00)																
CA2	-0.70	1.00																
CA3	-0.81	0.86	1.00															
Abun	-0.38	0.34	0.66	1.00														
Richness	-0.46	-0.03	0.15	0.07	1.00													
%EPT	0.56	-0.75	-0.75	-0.34	0.29	1.00												
%Chir	-0.46	0.72	0.71	0.34	-0.42	-0.99	1.00											
Diversity	0.01	-0.50	-0.37	-0.33	0.79	0.60	-0.68	1.00)									
Evenness	0.32	-0.61	-0.60	-0.63	0.41	0.51	-0.56	0.86	1.00)								
Basin Area	-0.70	0.36	0.37	-0.14	0.30	-0.43	0.34	0.08	0.00	1.0)							
Drainage Density	0.04	0.06	-0.05	-0.10	0.43	0.25	-0.24	0.48	0.36	-0.2	2 1.00)						
Station Elevation	-0.33	0.34	0.50	0.39	-0.13	-0.18	0.21	-0.24	-0.35	-0.1	-0.16	1.00						
Source Elevation	-0.59	0.52	0.53	0.30	0.10	-0.29	0.31	-0.23	-0.49	0.3	0.11	0.44	1.00					
Average Stream Gradient	0.36	-0.31	-0.38	-0.42	0.15	0.29	-0.29	0.44	0.56	-0.5	0.37	0.01	-0.30	1.00	1			
Sedimentary	0.17	-0.21	-0.20	0.12	0.61	0.51	-0.55	0.61	0.39	-0.4	0.69	-0.31	-0.27	0.37	1.00			
Volcanic	0.04	0.07	-0.08	-0.21	-0.29	-0.38	0.34	-0.38	-0.19	0.4	1 -0.52	-0.65	-0.29	-0.33	-0.36	1.00)	
Plutonic	-0.03	0.10	0.22	0.23	-0.30	0.00	0.08	-0.24	-0.25	-0.3	3 -0.04	0.90	0.48	0.09	-0.32	-0.72	1.00)
Coniferous	-0.66	0.49	0.66	0.46	0.41	-0.58	0.47	0.02	-0.15	0.5	7 -0.11	-0.14	0.01	-0.41	0.09	0.34	-0.47	7 1.00

Appendix E.3 Reference-area selection

E.3.1 Reference-site selection for exposure area X2

Exposure Area	Rank ¹	Reference Areas	Euclidean Distance	ncP ²	P ³
X2	1	R7	0.917127302		
	2	FC	1.002777842		
	3	USFR	1.097126975	0.59	0.19
	4	NEXC	1.361997341	0.23	0.02
	5	VR	1.574266864	0.40	0.02
	6	BUC	1.626468796	0.74	0.02
	7	STC	1.852122383	0.57	0.00
	8	GRC	1.864997976	0.84	0.01
	9	HOC	1.87168781	0.95	0.01
	10	BLC	1.9182478	0.96	0.01
	11	V1	2.10883355	0.83	0.00
	12	R6	2.296825432	0.68	0.00
	13	BEC	2.483550508	0.57	0.00
	14	BTT	2.953954154	0.17	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.2 Reference-site selection for exposure area R2

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P ³
Area		Areas	Distance		
R2	1	R7	1.092653413		
	2	BUC	1.402918828		
	3	FC	1.41623041	0.94	0.47
	4	NEXC	1.44178742	0.97	0.32
	5	GRC	1.46057992	0.99	0.23
	6	STC	1.504042815	0.97	0.11
	7	USFR	1.508143604	0.99	0.10
	8	HOC	1.5234193	0.99	0.07
	9	BLC	1.698914223	0.52	0.00
	10	VR	1.735340961	0.67	0.00
	11	BEC	2.161508331	0.02	0.00
	12	R6	2.183753551	0.26	0.00
	13	V1	2.33821228	0.27	0.00
	14	BTT	2.939796047	0.02	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.3 Reference-site selection for exposure area R3

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P ³
Area		Areas	Distance		
R3	1	R7	0.84491557		
	2	NEXC	1.117747408		
	3	STC	1.23304797	0.81	0.32
	4	HOC	1.236824054	0.95	0.27
	5	BLC	1.261215581	0.98	0.19
	6	VR	1.450428943	0.65	0.02
	7	GRC	1.536728413	0.69	0.01
	8	FC	1.586918304	0.80	0.01
	9	USFR	1.614009635	0.90	0.01
	10	BUC	1.801401655	0.58	0.00
	11	R6	2.068134888	0.25	0.00
	12	V1	2.086081431	0.57	0.00
	13	BEC	2.340208039	0.33	0.00
	14	BTT	3.027094098	0.03	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.4 Reference-site selection for exposure area R4

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P ³
Area		Areas	Distance		
R4	1	R7	0.922846087		
	2	HOC	1.120305616		
	3	STC	1.179056997	0.86	0.36
	4	BLC	1.201400424	0.93	0.24
	5	NEXC	1.219291775	0.97	0.17
	6	GRC	1.473226149	0.26	0.00
	7	VR	1.550440048	0.52	0.00
	8	FC	1.721683264	0.40	0.00
	9	USFR	1.748944514	0.70	0.00
	10	BUC	1.834757328	0.73	0.00
	11	R6	1.920296357	0.74	0.00
	12	V1	2.178472096	0.38	0.00
	13	BEC	2.233077875	0.59	0.00
	14	BTT	2.915642093	0.04	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.5 Reference-site selection for exposure area R5

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P ³
Area		Areas	Distance		
R5	1	R6	0.972369745		
	2	HOC	1.308204433		
	3	R7	1.394347335	0.87	0.37
	4	BLC	1.522590357	0.82	0.15
	5	STC	1.654530599	0.77	0.06
	6	GRC	1.773100936	0.77	0.03
	7	NEXC	1.850510819	0.83	0.02
	8	BEC	2.013328719	0.71	0.00
	9	BTT	2.079892078	0.81	0.00
	10	VR	2.094149407	0.92	0.00
	11	FC	2.24655298	0.81	0.00
	12	USFR	2.26871579	0.91	0.00
	13	BUC	2.285294626	0.96	0.00
	14	V1	2.606266956	0.56	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.6 Reference-site selection for exposure area V27

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P ³
Area		Areas	Distance		
V27	1	NEXC	0.351240987		
	2	VR	0.458980825		
	3	R7	0.684632851	0.40	0.12
	4	V1	1.007384656	0.35	0.04
	5	BLC	1.24151516	0.52	0.02
	6	USFR	1.633813098	0.40	0.01
	7	FC	1.760153993	0.67	0.01
	8	STC	1.817378482	0.85	0.01
	9	HOC	1.871335439	0.93	0.01
	10	GRC	2.566799097	0.37	0.00
	11	R6	2.567887476	0.72	0.00
	12	BUC	2.84132274	0.66	0.00
	13	BEC	3.398362606	0.38	0.00
	14	BTT	3.635136347	0.49	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.7 Reference-site selection for exposure area V5

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P ³
Area		Areas	Distance		
V5	1	BLC	1.167467714		
	2	HOC	1.704292396		
	3	NEXC	1.885607267	0.85	0.34
	4	R7	1.928683303	0.94	0.25
	5	STC	1.939546308	0.98	0.22
	6	VR	2.014492443	0.98	0.12
	7	R6	2.080611168	0.98	0.06
	8	V1	2.30623929	0.78	0.01
	9	GRC	2.74101792	0.25	0.00
	10	USFR	3.044581636	0.25	0.00
	11	FC	3.132369337	0.52	0.00
	12	BEC	3.271665536	0.62	0.00
	13	BTT	3.388791908	0.72	0.00
	14	BUC	3.519372541	0.76	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

E.3.8 Reference-site selection for exposure area V8

Exposure	Rank ¹	Reference	Euclidean	ncP ²	P 3
Area		Areas	Distance		
V8	1	HOC	1.101120168		
	2	R6	1.104525697		
	3	BLC	1.146543976	0.09	0.02
	4	R7	1.491098499	0.02	0.00
	5	STC	1.495988866	0.77	0.06
	6	NEXC	1.786850146	0.36	0.00
	7	GRC	1.926478369	0.53	0.00
	8	VR	2.03212536	0.67	0.00
	9	BEC	2.30419111	0.46	0.00
	10	BTT	2.437451791	0.59	0.00
	11	V1	2.525497493	0.72	0.00
	12	USFR	2.542917679	0.88	0.00
	13	FC	2.560760206	0.95	0.00
	14	BUC	2.665235441	0.94	0.00

¹ Rank from most to least suitable reference area for a given exposure area based on habitat similarity

³ Probability habitat at the exposure site is different than the average habitat at the first x number of reference sites

² Probability habitat at the exposure site is outside the normal range of habitat (i.e., 2 SDs) at the first x number of reference sites

APPENDIX F

Reference – Exposure Comparisons by ANOVA

Table F.1: ANOVA results for five Hess versus artificial substrates per area; V27, V5, V8 versus V1, 2007

	Dependent Variable	Mean Square	F (ANOVA)	p-value	Observed Power
	Hess Density (Individuals/m2)	44926797.9333	12.5953	0.000176	0.9979
	Hess Number of Taxa	26.1833	1.9042	0.169622	0.3998
	Hess EPT (%)	2268.2760	24.6339	0.000003	1.0000
	Hess Chironomids (%)	2515.9451	29.6642	0.000001	1.0000
Hess	Hess Simpson's D	0.0544	8.9478	0.001032	0.9797
пезз	Hess Simpson's E	0.0282	6.7590	0.003725	0.9305
	Hess B-C Dist. to V-1 median	0.2779	100.2708	0.000000	1.0000
	Hess Vangorda CA Axis-1 (24.4%)	1.1227	51.4445	0.000000	1.0000
	Hess Vangorda CA Axis-2 (17.2%)	0.6681	20.8981	0.000009	1.0000
	Hess Vangorda CA Axis-3 (14.7%)	0.4339	9.0614	0.000971	0.9810
	Artificial Substrate Abundance	861867.6500	1.9458	0.162926	0.4078
	Artificial Substrate Number of Taxa	8.8667	0.8465	0.488476	0.1929
	Artificial Substrate EPT (%)	408.6436	3.0764	0.057557	0.6058
	Artificial Substrate Chironomids (%)	385.9055	3.3416	0.045792	0.6454
Artificial	Art. Substrate Simpson's D	0.0001	0.2035	0.892459	0.0801
Substrate	Art. Substrate Simpson's E	0.0011	0.1106	0.952624	0.0659
	Art. Substrate B-C Dist. to V-1 median	0.0551	1.9094	0.168782	0.4008
	Artificial Substrate CA-1 (23.8%)	0.8073	8.0859	0.001671	0.9666
	Artificial Substrate CA-2 (13.5%)	0.0877	0.9077	0.459195	0.2046
	Artificial Substrate CA-3 (12.5%)	0.3458	7.9540	0.001803	0.9640

Table F.2: Summary of ANOVA, and user-defined contrasts (V27, V5, V8 vs. V1) for Vangorda Creek sampling areas (5 stations/are

	1-way A	ANOVA						ntrast Statistics	3
Dependent Veriable	n volue	Power	Contrast Type ^a	(I) Area	(J) Area	Value of Contrast	Standard Error	t-statistic	p-value ^b
Dependent Variable Hess Density (Individuals/m2)	p-value	Power	Assume equal variances	(I) Area V1 Reference	(J) Area V27 Exposure	(J-I) 2569.400		t-statistic 2.151	p-value 0.047
riess Density (individuals/inz)	0.00018	0.99786	Assume equal variances	V1 Reference	V5 Exposure	-4625.000		-3.872	0.047
	0.00010	0.55700		V1 Reference	V8 Exposure	19.200		0.016	0.987
Hess Number of Taxa			Assume equal variances	V1 Reference	V27 Exposure	4.000		1.706	0.107
	0.16962	0.39979		V1 Reference	V5 Exposure	5.400		2.303	0.035
				V1 Reference	V8 Exposure	3.200	2.345	1.364	0.191
Hess EPT (%)	0.00000	4 00000	Assume equal variances	V1 Reference	V27 Exposure	15.356	6.069 6.069	2.530 -3.013	0.022 0.008
	0.00000	1.00000		V1 Reference V1 Reference	V5 Exposure V8 Exposure	-18.283 -33.507	6.069	-3.013 -5.521	0.008
Hess Chironomids (%)	+		Assume equal variances	V1 Reference	V27 Exposure	-27.688	5.825	-4.754	0.000
(70)	0.00000	1.00000	riccamo oqual variances	V1 Reference	V5 Exposure	4.832		0.830	0.419
				V1 Reference	V8 Exposure	26.902	5.825	4.619	0.000
Hess Simpson's D			Does not assume equal variances	V1 Reference	V27 Exposure	0.017	0.017	1.012	0.342
	0.00103	0.97967		V1 Reference	V5 Exposure	0.050		2.414	0.044
				V1 Reference	V8 Exposure	-0.182	0.067	-2.719	0.049
Hess Simpson's E	0.00373	0.93053	Assume equal variances	V1 Reference V1 Reference	V27 Exposure V5 Exposure	-0.031 0.013	0.041 0.041	-0.749 0.322	0.465 0.752
	0.00373	0.93053		V1 Reference	V8 Exposure	-0.151	0.041	-3.708	0.752
Hess B-C Dist. to V-1 median			Assume equal variances	V1 Reference	V27 Exposure	0.284	0.033	8.530	0.002
I local B o Block to V 1 modulari	0.00000	1.00000	riccamo oqual variances	V1 Reference	V5 Exposure	0.553	0.033	16.617	0.000
				V1 Reference	V8 Exposure	0.414	0.033	12.434	0.000
Hess Vangorda CA Axis-1 (24.4%)			Assume equal variances	V1 Reference	V27 Exposure	0.423	0.093	4.526	0.000
	0.00000	1.00000		V1 Reference	V5 Exposure	-0.659		-7.049	0.000
				V1 Reference	V8 Exposure	0.247	0.093	2.646	0.018
Hess Vangorda CA Axis-2 (17.2%)			Does not assume equal variances	V1 Reference	V27 Exposure	0.156	0.081	1.930	0.094
	0.00001	0.99999		V1 Reference	V5 Exposure	0.393	0.062	6.386	0.000
Hess Vangorda CA Axis-3 (14.7%)	!		Assume equal variances	V1 Reference V1 Reference	V8 Exposure V27 Exposure	0.839 -0.599	0.139 0.138	6.015 -4.331	0.002 0.001
Hess valigorda CA Axis-3 (14.1 %)	0.00097	0.98098	Assume equal variances	V1 Reference	V5 Exposure	-0.599		-4.331 -4.136	0.001
	0.00031	0.30030		V1 Reference	V8 Exposure	-0.372	0.138	-1.351	0.196
Artificial Substrate Abundance			Assume equal variances	V1 Reference	V27 Exposure	282.000		0.670	0.512
	0.16293	0.40778	·	V1 Reference	V5 Exposure	958.400	420.919	2.277	0.037
				V1 Reference	V8 Exposure	619.800		1.472	0.160
Artificial Substrate Number of Taxa			Assume equal variances	V1 Reference	V27 Exposure	3.000		1.466	0.162
	0.48848	0.19291		V1 Reference	V5 Exposure	2.000		0.977	0.343
Autificial Code strate EDT (0)			A	V1 Reference	V8 Exposure	2.600	2.047	1.270	0.222
Artificial Substrate EPT (%)	0.05756	0.60576	Assume equal variances	V1 Reference V1 Reference	V27 Exposure V5 Exposure	14.570 -4.416		1.999 -0.606	0.063 0.553
	0.05750	0.00570		V1 Reference	V8 Exposure	-4.595	7.289	-0.630	0.533
Artificial Substrate Chironomids (%)			Assume equal variances	V1 Reference	V27 Exposure	-17.191	6.797	-2.529	0.022
(,,,	0.04579	0.64543		V1 Reference	V5 Exposure	-4.823	6.797	-0.710	0.488
				V1 Reference	V8 Exposure	2.614	6.797	0.385	0.706
Art. Substrate Simpson's D			Assume equal variances	V1 Reference	V27 Exposure	0.006	0.016	0.366	0.719
	0.89246	0.08012		V1 Reference	V5 Exposure	0.012			0.447
				V1 Reference	V8 Exposure	0.006		0.357	0.726
Art. Substrate Simpson's E	0.05363	0.06505	Assume equal variances	V1 Reference	V27 Exposure V5 Exposure	-0.036	0.063 0.063	-0.571 -0.216	0.576 0.831
	0.95262	0.06595		V1 Reference V1 Reference	V8 Exposure	-0.014 -0.017	0.063	-0.216	0.631
Art. Substrate B-C Dist. to V-1 median			Assume equal variances	V1 Reference	V27 Exposure	0.148	0.063	1.381	0.790
an especiate b e bist to v-1 initiali	0.16878	0.40077	- 1000.110 oqual varianioos	V1 Reference	V5 Exposure	0.252		2.345	0.180
				V1 Reference	V8 Exposure	0.170		1.578	0.134
Artificial Substrate CA-1 (23.8%)			Assume equal variances	V1 Reference	V27 Exposure	-0.090	0.200	-0.451	0.658
	0.00167	0.96657		V1 Reference	V5 Exposure	0.796		3.984	0.001
				V1 Reference	V8 Exposure	0.342	0.200	1.709	0.107
Artificial Substrate CA-2 (13.5%)	0.45000	0.00	Assume equal variances	V1 Reference	V27 Exposure	-0.028	0.197	-0.140	0.890
	0.45920	0.20459		V1 Reference	V5 Exposure	-0.151 -0.290	0.197	-0.766 -1.473	0.455 0.160
Artificial Substrate CA-3 (12.5%)			Assume equal variances	V1 Reference V1 Reference	V8 Exposure V27 Exposure	-0.290	0.197 0.132	-1.473 0.247	0.160
Antinoidi Gubstiate GA-3 (12.3%)	0.00180	0.96398	mosume equal variables	V1 Reference	V5 Exposure	-0.166		-1.260	0.606
	0.00100	0.50550		V1 Reference	V8 Exposure	0.452	0.132		0.220
	significant at p =	0.1				3.102	502	320	0.030

^a Contrast test used is dependent upon results of Levene's Test for homogeneity of variances.

^b User-defined contrasts are *a priori* tests with each test p = 0.10

Table F.3: User-defined contrast tests based on 3 stations per area, Vangorda Creek, 2007.

					Value of				
		Contrast	(I) Area	(J) Area	Contrast	Std. Error	t	df	p-value
Hess Density (Individuals/m2)	Does not assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	2286.0000	2388.6510	0.9570	3.68	0.397
		V1 vs. V5	V1 Reference	V5 Exposure	-4852.0000	1452.2353	-3.3410	2.20	
		V1 vs. V8	V1 Reference	V8 Exposure	549.3333	1580.5115	0.3480	2.92	0.752
Hess Number of Taxa	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	2.3300	2.5390	0.9190	8.00	0.385
		V1 vs. V5	V1 Reference	V5 Exposure	6.3300	2.5390	2.4950	8.00	0.037
		V1 vs. V8	V1 Reference	V8 Exposure	5.0000	2.5390	1.9700	8.00	0.084
Hess EPT (%)	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	12.8750	9.0303	1.4260	8.00	0.192
		V1 vs. V5	V1 Reference	V5 Exposure	-20.3874	9.0303	-2.2580	8.00	
		V1 vs. V8	V1 Reference	V8 Exposure	-38.7426	9.0303	-4.2900	8.00	0.003
Hess Chironomids (%)	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	-25.4489	7.9270	-3.2100	8.00	0.012
		V1 vs. V5	V1 Reference	V5 Exposure	9.5406	7.9270	1.2040	8.00	0.263
		V1 vs. V8	V1 Reference	V8 Exposure	32.4394	7.9270	4.0920	8.00	0.003
Hess Simpson's D	Does not assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	0.0120	0.0247	0.4850	2.47	0.667
		V1 vs. V5	V1 Reference	V5 Exposure	0.0346	0.0321	1.0770	3.99	0.342
		V1 vs. V8	V1 Reference	V8 Exposure	-0.1939	0.0746	-2.6000	2.43	0.100
Hess Simpson's E	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	-0.0234	0.0533	-0.4390	8.00	0.673
		V1 vs. V5	V1 Reference	V5 Exposure	-0.0348	0.0533	-0.6520	8.00	0.532
		V1 vs. V8	V1 Reference	V8 Exposure	-0.1807	0.0533	-3.3910	8.00	0.009
Artificial Substrate Abundance	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	428.0000	335.4891	1.2760	8.00	0.238
		V1 vs. V5	V1 Reference	V5 Exposure	1488.6670	335.4891	4.4370	8.00	0.002
		V1 vs. V8	V1 Reference	V8 Exposure	395.3330	335.4891	1.1780	8.00	0.273
Artificial Substrate Number of Taxa	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	5.0000	3.3170	1.5080	8.00	0.170
		V1 vs. V5	V1 Reference	V5 Exposure	2.6700	3.3170	0.8040	8.00	0.445
		V1 vs. V8	V1 Reference	V8 Exposure	3.3300	3.3170	1.0050	8.00	0.344
Artificial Substrate EPT (%)	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	17.2545	8.3555	2.0650	8.00	0.073
		V1 vs. V5	V1 Reference	V5 Exposure	-14.9386	8.3555	-1.7880	8.00	0.112
		V1 vs. V8	V1 Reference	V8 Exposure	-7.9818	8.3555	-0.9550	8.00	0.367
Artificial Substrate Chironomids (%)	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	-17.5267	7.9737	-2.1980	8.00	0.059
		V1 vs. V5	V1 Reference	V5 Exposure	6.5769	7.9737	0.8250	8.00	0.433
		V1 vs. V8	V1 Reference	V8 Exposure	6.3003	7.9737	0.7900	8.00	0.452
Art. Substrate Simpson's D	Assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	0.0011	0.0222	0.0500	8.00	0.961
		V1 vs. V5	V1 Reference	V5 Exposure	0.0090	0.0222	0.4060	8.00	0.696
		V1 vs. V8	V1 Reference	V8 Exposure	-0.0034	0.0222	-0.1530	8.00	0.882
Art. Substrate Simpson's E	Does not assume equal variances	V1 vs. V27	V1 Reference	V27 Exposure	-0.0854	0.0746	-1.1440	3.82	0.319
		V1 vs. V5	V1 Reference	V5 Exposure	-0.0424	0.0504	-0.8420	2.64	0.469
		V1 vs. V8	V1 Reference	V8 Exposure	-0.0466	0.1208	-0.3860	2.68	0.728

Table F.4: Summary of ANOVA results for three vs. five Hess stations per area, X2 and R2 versus BLC, 2008.

Five Stations/Area

Dependent Variable	Mean Square	F (ANOVA)	Sig. (p value)	Observed Power
Density (individuals/m2)	45478839.0741	5.1333	0.0245	0.7135
Number of Taxa	19.2667	1.6705	0.2291	0.2838
Simpson's D (Krebs)	0.1071	9.5699	0.0033	0.9390
Simpson's E (Smith & Wilson 1996)	0.0784	9.2514	0.0037	0.9312
EPT (%)	1121.8244	7.6266	0.0073	0.8753
Chironomidae (%)	1097.0167	4.5809	0.0332	0.6612

Three StationsArea

Dependent Variable	Mean Square	F (ANOVA)	Sig. (p value)	Observed Power
Density (individuals/m2)	49146544.4440	5.0490	0.0520	0.5840
Number of Taxa	30.7780	6.9250	0.0280	0.7240
Simpson's D (Krebs)	0.0622	3.2760	0.1090	0.4110
Simpson's E (Smith & Wilson 1996)	0.0693	6.6520	0.0300	0.7060
EPT (%)	832.3060	3.2940	0.1080	0.4130
Chironomidae (%)	890.9630	2.3970	0.1720	0.3130

Table F.5: User-defined contrasts for Hess samples: X2, R2 versus BLC, Rose Creek 2008 (5 vs. 3 stations/ area).

Five Stations/Area		Contrast	Value of Contrast Std. Error	td. Error	t	df Sig.	df Sig. (2-tailed)
Density (individuals/m2)	Does not assume equal variances	BLC vs R2	-2404.667	1158.210	-2.076	5.284	0.089
		BLC vs X2	3588.333	2264.040	1.585	6.139	0.163
Number of Taxa	Assume equal variances	BLC vs R2	-3.400	2.148	-1.583	12	0.139
		BLC vs X2	0.000	2.148	0.000	12	1.000
Simpson's D (Krebs)	Assume equal variances	BLC vs R2	0.289	0.067	4.319	12	0.001
		BLC vs X2	0.185	0.067	2.763	12	0.017
Simpson's E (Smith & Wilson 1996) Assume equal variances	Assume equal variances	BLC vs R2	0.238	0.058	4.090	12	0.001
		BLC vs X2	0.052	0.058	0.891	12	0.391
EPT (%)	Assume equal variances	BLC vs R2	15.565	7.671	2.029	12	0.065
		BLC vs X2	-14.385	7.671	-1.875	12	0.085
Chironomidae (%)	Assume equal variances	BLC vs R2	-22.814	9.787	-2.331	12	0.038
		BLC vs X2	4.959	9.787	0.507	12	0.622

Three Stations/Area		Contrast	Value of Contrast Std. Error	td. Error		df Sig.	df Sig. (2-tailed)
Density (individuals/m2)	Assume equal variances	BLC vs R2	-2450.000	2547.359	-0.962	9	0.373
		BLC vs X2	5456.667	2547.359	2.142	9	0.076
Number of Taxa	Assume equal variances	BLC vs R2	-4.000	1.721	-2.324	9	0.059
		BLC vs X2	2.330	1.721	1.356	9	0.224
Simpson's D (Krebs)	Does not assume equal variances	BLC vs R2	0.287	0.136	2.111	2.172	0.159
		BLC vs X2	0.158	0.135	1.169	2.099	0.358
Simpson's E (Smith & Wilson 1996) Does not assume equal variances	Does not assume equal variances	BLC vs R2	0.264	0.102	2.592	3.999	0.061
		BLC vs X2	0.001	0.073	0.019	2.036	0.987
EPT (%)	Assume equal variances	BLC vs R2	17.727	12.979	1.366	9	0.221
		BLC vs X2	-15.562	12.979	-1.199	9	0.276
Chironomidae (%)	Assume equal variances	BLC vs R2	-24.170	15.743	-1.535	9	0.176
		BLC vs X2	9.195	15.743	0.584	9	0.580

Table F.6: ANOVA results for artificial substrates: X2, R2 versus R7, 2008 (5 vs. 3 stations/area)

Five Stations per Area

Dependent Variable	Mean Square	F (ANOVA)	Sig. (p value)	Observed Power
Density (individuals/m2)	21552198.2000	2.7790	0.1020	0.4440
Number of Taxa	31.2670	3.2800	0.0730	0.5110
Simpson's D (Krebs)	0.0181	6.3920	0.0130	0.8090
Simpson's E (Smith & Wilson 1996)	0.0155	3.6400	0.0580	0.5560
EPT (%)	1741.0730	18.5810	0.0000	0.9990
Chironomidae (%)	2403.4900	18.0230	0.0000	0.9980

Three Stations per Area

Dependent Variable	Mean Square	F (ANOVA)	Sig. (p value)	Observed Power
Density (individuals/m2)	10932515.4440	2.5100	0.1610	0.3260
Number of Taxa	22.3330	5.7430	0.0400	0.6410
Simpson's D (Krebs)	0.0128	3.0470	0.1220	0.3860
Simpson's E (Smith & Wilson 1996)	0.0081	2.8590	0.1340	0.3650
EPT (%)	1098.5790	11.7020	0.0080	0.9160
Chironomidae (%)	1388.2720	7.3140	0.0250	0.7480

Table F.7: User -defined contrast tests (X2, R2 vs. R7) based on artificial substrates, 2008 (5 vs 3 stations/area).

Density (individuals/m2) Assume equority (individuals/m2) Assume e		Contrast	Value of Contrast Std. Error	td. Error	.	df Sig.	df Sig. (2-tailed)
	Assume equal variances	R2 vs. R7	4031.200	1761.329	2.289	12	0.041
		R7 vs. X2	-1153.400	1761.329	-0.655	12	0.525
	Does not assume equal variances	R2 vs. R7	-2.600	1.691	-1.537	4.289	0.194
		R7 vs. X2	-2.400	1.720	-1.395	4.279	0.231
	Does not assume equal variances	R2 vs. R7	-0.072	0.020	-3.699	4.216	0.019
		R7 vs. X2	-0.047	0.041	-1.153	6.079	0.292
Simpson's E (Smith & Wilson 1996) Assume equ	Assume equal variances	R2 vs. R7	960:0-	0.041	-2.325	12	0.038
		R7 vs. X2	-0.001	0.041	-0.023	12	0.982
EPT (%) Assume equ	Assume equal variances	R2 vs. R7	12.199	6.122	1.993	12	0.070
		R7 vs. X2	-36.645	6.122	-5.986	12	0.000
Chironomidae (%) Assume equ	Assume equal variances	R2 vs. R7	-7.814	7.304	-1.070	12	0.306
		R7 vs. X2	41.274	7.304	5.651	12	000.0

Three Stations per Area		Contrast	Value of Contrast Std. Error	td. Error	t	df Sig.	df Sig. (2-tailed)
Density (individuals/m2)	Does not assume equal variances	R2 vs. R7	3710.000	1878.643	1.975	2.023	0.186
		R7 vs. X2	-1074.333	2082.286	-0.516	2.893	0.643
Number of Taxa	Assume equal variances	R2 vs. R7	-1.670	1.610	-1.035	9	0.341
		R7 vs. X2	-3.670	1.610	-2.277	9	0.063
Simpson's D (Krebs)	Does not assume equal variances	R2 vs. R7	-0.052	0.023	-2.316	2.034	0.144
		R7 vs. X2	-0.077	0.065	-1.194	2.542	0.332
Simpson's E (Smith & Wilson 1996)	Assume equal variances	R2 vs. R7	20.0-	0.043	-1.777	9	0.126
		R7 vs. X2	-0.022	0.043	-0.497	9	0.637
EPT (%)	Does not assume equal variances	R2 vs. R7	22.862	9.078	2.518	2.054	0.125
		R7 vs. X2	-38.012	9.632	-3.946	2.553	0.039
Chironomidae (%)	Assume equal variances	R2 vs. R7	-17.073	11.249	-1.518	9	0.180
		R7 vs. X2	42.737	11.249	3.799	9	0.009

Table F.8: ANOVA results for three Hess vs. kick stations per area: X2, R2 versus BLC, 2008

Hess Three Stations per Area

Dependent Variable	Mean Square	F (ANOVA)	Sig. (p value)	Observed Power
Density (individuals/m2)	49146544.4440	5.0490	0.0520	0.5840
Number of Taxa	30.7780	6.9250	0.0280	0.7240
Simpson's D (Krebs)	0.0622	3.2760	0.1090	0.4110
Simpson's E (Smith & Wilson 1996)	0.0693	6.6520	0.0300	0.7060
EPT (%)	832.3060	3.2940	0.1080	0.4130
Chironomidae (%)	890.9630	2.3970	0.1720	0.3130
Hess 3 rep 2008 CA-1 (37.6%)	0.7150	83.8430	0.0000	1.0000
Hess 3 rep 2008 CA-2 (23.9%)	0.4630	20.3450	0.0020	0.9930
Hess 3 rep 2008 CA-3 (11.4%)	0.0010	0.0120	0.9880	0.0510

Kick and Sweep Three Stations per Area

Dependent Variable	Mean Square	F (ANOVA)	Sig. (p value)	Observed Power
Density (individuals/m2)	2685253.4440	5.1520	0.0500	0.5930
Number of Taxa	7.4440	0.4060	0.6830	0.0900
Simpson's D (Krebs)	0.0076	2.6600	0.1490	0.3430
Simpson's E (Smith & Wilson 1996)	0.0138	3.8630	0.0840	0.4720
EPT (%)	1830.9730	9.8320	0.0130	0.8630
Chironomidae (%)	1328.3580	9.0660	0.0150	0.8350
KS 3 rep 2008 CA-1 (42.4%)	0.5280	34.0710	0.0010	1.0000
KS 3 rep 2008 CA-2 (19.7%)	0.1600	3.5070	0.0980	0.4350
KS 3 rep 2008 CA-3 (13.9%)	0.0341	0.5560	0.6000	0.1060

Table F.9: User-defined contrast tests (X2, R2 vs BLC) based on three Hess versus kick samples, 2008.

Three Hess/Area		Contrast	Value of Contrast S	Std. Error	t	df Sig.	df Sig. (2-tailed)
Density (individuals/m2)	Assume equal variances	BLC vs R2	-2450.000	2547.359	-0.962	9	0.373
		BLC vs X2	5456.667	2547.359	2.142	9	0.076
Number of Taxa	Assume equal variances	BLC vs R2	-4.000	1.721	-2.324	9	0.059
		BLC vs X2	2.330	1.721	1.356	9	0.224
Simpson's D (Krebs)	Does not assume equal variances	BLC vs R2	0.287	0.136	2.111	2.172	0.159
		BLC vs X2	0.158	0.135	1.169	2.099	0.358
Simpson's E (Smith & Wilson 1996)	Does not assume equal variances	BLC vs R2	0.264	0.102	2.592	3.999	0.061
		BLC vs X2	0.001	0.073	0.019	2.036	0.987
EPT (%)	Assume equal variances	BLC vs R2	17.727	12.979	1.366	9	0.221
		BLC vs X2	-15.562	12.979	-1.199	9	0.276
Chironomidae (%)	Assume equal variances	BLC vs R2	-24.170	15.743	-1.535	9	0.176
		BLC vs X2	9.195	15.743	0.584	9	0.580
Hess 3 rep 2008 CA-1 (37.6%)	Assume equal variances	BLC vs R2	0.464	0.075	6.148	9	0.001
		BLC vs X2	0.976	0.075	12.944	9	0.000
Hess 3 rep 2008 CA-2 (23.9%)	Assume equal variances	BLC vs R2	-0.722	0.123	-5.855	9	0.001
		BLC vs X2	-0.091	0.123	-0.736	9	0.490
Hess 3 rep 2008 CA-3 (11.4%)	Assume equal variances	BLC vs R2	-0.001	0.238	-0.003	9	0.998
		BLC vs X2	-0.033	0.238	-0.137	9	0.895
							ı

Three Kick Samples/Area		Contrast	Value of Contrast Std. Error	d. Error t	df	Sig. (Sig. (2-tailed)
Density (individuals/m2)	Does not assume equal variances	BLC vs R2	799.68-	202.180	-0.444	2.486	0.693
		BLC vs X2	1592.000	718.855	2.215	2.301	0.140
Number of Taxa	Assume equal variances	BLC vs R2	2.330	3.496	0.667	9	0.529
		BLC vs X2	3.000	3.496	0.858	9	0.424
Simpson's D (Krebs)	Assume equal variances	BLC vs R2	0.087	0.044	1.984	9	0.095
		BLC vs X2	-0.001	0.044	-0.027	9	0.979
Simpson's E (Smith & Wilson 1996)	Assume equal variances	BLC vs R2	660'0	0.049	2.034	9	0.088
		BLC vs X2	-0.030	0.049	-0.624	9	0.556
EPT (%)	Assume equal variances	BLC vs R2	13.913	11.142	1.249	9	0.258
		BLC vs X2	-34.102	11.142	-3.061	9	0.022
Chironomidae (%)	Assume equal variances	BLC vs R2	-16.982	9.883	-1.718	9	0.137
		BLC vs X2	24.857	9.883	2.515	9	0.046
KS 3 rep 2008 CA-1 (42.4%)	Assume equal variances	BLC vs R2	0.411	0.102	4.048	9	0.007
		BLC vs X2	0.839	0.102	8.254	9	0.000
KS 3 rep 2008 CA-2 (19.7%)	Does not assume equal variances	BLC vs R2	-0.433	0.187	-2.313	2.161	0.137
		BLC vs X2	-0.078	0.211	-0.369	3.141	0.736
KS 3 rep 2008 CA-3 (13.9%)	Assume equal variances	BLC vs R2	0.199	0.202	0.983	9	0.364
		BLC vs X2	0.032	0.202	0.160	9	0.878

Table F.10: ANOVA results for exposure (5 stations/area) versus reference (single stations in each of 6 areas) comparisons based on Hess samples.

Dependent Variable	Mean Square	F	Sig.	Observed Power
Density (individuals/m2)	44927718.8254	8.5038	0.0011	0.9756
Number of Taxa	9.6698	1.2075	0.3371	0.2662
Simpson's D	0.0649	4.6295	0.0153	0.8043
Simpson's E (Smith & Wilson 1996)	0.0309	5.2636	0.0094	0.8563
EPT (%)	2599.5970	9.9673	0.0005	0.9899
Chironomidae (%)	3279.2319	13.3414	0.0001	0.9989
VC Hess RCA C/I CA-1 (21.6%)	0.9851	34.2548	0.0000	1.0000
VC Hess RCA C/I CA-2 (15.9%)	0.4838	6.9275	0.0030	0.9401
VC Hess RCA C/I CA-3 (10.8%)	0.4030	13.0328	0.0001	0.9986
VC Hess RCA C/I CA-4 (8.4%)	0.0324	0.4879	0.6952	0.1284

Table F.11: User-defined exposure (5 stations/area) versus reference (single station in each of 6 areas) contrasts based on Hess samples.

		Contrast	Value of Contrast	Std. Error	.	₽	Sig. (2-tailed)
Density (individuals/m2)	Does not assume equal variances	Reference vs. V27	-3883.667	1633.767	-2.377	8.98205	0.041
		Reference vs. V5	3310.733	1257.655	2.632	5.255232	0.044
		Reference vs. V8	-1333.467	1597.853	-0.835	8.915148	0.426
Number of Taxa	Assume equal variances	Reference vs. V27	0.067	1.714	0.039	17	696.0
		Reference vs. V5	-1.533	1.714	-0.895	17	0.383
		Reference vs. V8	1.867	1.714	1.089	17	0.291
Simpson's D	Does not assume equal variances	Reference vs. V27	-0.148	0.075	-1.965	5.185181	0.105
		Reference vs. V5	-0.176	0.076	-2.323	5.410204	0.064
		Reference vs. V8	0.056	0.094	0.596	8.810373	0.566
Simpson's E (Smith & Wilson 1996)	Assume equal variances	Reference vs. V27	-0.083	0.046	-1.795	17	060'0
		Reference vs. V5	-0.120	0.046	-2.597	17	0.019
		Reference vs. V8	0.051	0.046	1.105	17	0.285
EPT (%)	Does not assume equal variances	Reference vs. V27	-46.500	10.466	-4.443	5.14297	900.0
		Reference vs. V5	-12.861	12.000	-1.072	7.805153	0.316
		Reference vs. V8	2.363	11.408	0.207	6.897817	0.842
Chironomidae (%)	Does not assume equal variances	Reference vs. V27	52.186	10.308	5.063	5.10635	0.004
		Reference vs. V5	19.666	11.328	1.736	7.021708	0.126
		Reference vs. V8	-2.404	11.491	-0.209	7.290383	0.840
VC Hess RCA C/I CA-1 (21.6%)	Assume equal variances	Reference vs. V27	062'0	0.103	7.693	17	0.000
		Reference vs. V5	960'0-	0.103	-0.931	17	0.365
		Reference vs. V8	0.594	0.103	5.788	17	0.000
VC Hess RCA C/I CA-2 (15.9%)	Does not assume equal variances	Reference vs. V27	0.401	0.192	2.086	5.150777	060'0
		Reference vs. V5	0.392	0.195	2.012	5.382438	960.0
		Reference vs. V8	-0.228	0.198	-1.150	5.724642	0.296
VC Hess RCA C/I CA-3 (10.8%)	Does not assume equal variances	Reference vs. V27	260.0-	0.082	-1.184	6.22231	0.280
		Reference vs. V5	-0.514	0.091	-5.659	8.131452	0.000
		Reference vs. V8	-0.525	0.142	-3.686	7.029701	0.008
VC Hess RCA C/I CA-4 (8.4%)	Assume equal variances	Reference vs. V27	-0.030	0.156	-0.194	17	0.848
		Reference vs. V5	-0.094	0.156	-0.605	17	0.553
		Reference vs. V8	-0.177	0.156	-1.133	17	0.273

Table F.12: ANOVA results for exposure (5 stations/area) versus reference (single station in each of 10 areas) comparison based on Hess samples.

Dependent Variable	Mean Square	F	Sig.	Observed Power
Density (individuals/m2)	55005698.9194	5.9922	0.0107	0.8151
Number of Taxa	14.6460	0.8470	0.4460	0.1712
Simpson's D	0.0192	1.4061	0.2722	0.2601
Simpson's E (Smith & Wilson 1996)	0.0452	5.4911	0.0145	0.7784
EPT (%)	1426.8161	5.8635	0.0116	0.8062
Chironomidae (%)	1326.0753	3.6586	0.0477	0.5929
URC Hess RCA C/I CA-1 (18.5%)	0.5713	9.9430	0.0014	0.9621
URC Hess RCA C/I CA-2 (14.5%)	0.4016	6.4878	0.0081	0.8461
URC Hess RCA C/I CA-3 (11.6%)	0.0421	0.3496	0.7099	0.0970
URC Hess RCA C/I CA-4 (10.3%)	0.1295	1.5683	0.2371	0.2862

Table F.13: User-defined exposure (5 stations/area) versus reference (single station in each of 10 areas) contrasts based on Hess samples.

		Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
Density (individuals/m2)	Does not assume equal variances	Reference vs. X2	-5007.533	2186.969	-2.290	5.688523	0.064
		Reference vs. R2	985.467	999.203	0.986	12.208108	0.343
Number of Taxa	Assume equal variances	Reference vs. X2	-1.980	2.278	-0.869	17	0.397
		Reference vs. R2	1.420	2.278	0.623	17	0.541
Simpson's D	Assume equal variances	Reference vs. X2	0.004	0.064	0.070	17	0.945
		Reference vs. R2	-0.100	0.064	-1.556	17	0.138
Simpson's E (Smith & Wilson 1996)	Assume equal variances	Reference vs. X2	990.0	0.050	1.318	17	0.205
		Reference vs. R2	-0.121	0.050	-2.427	17	0.027
EPT (%)	Assume equal variances	Reference vs. X2	26.031	8.544	3.047	17	0.007
		Reference vs. R2	-3.919	8.544	-0.459	17	0.652
Chironomidae (%)	Does not assume equal variances	Reference vs. X2	-25.918	9.078	-2.855	12.996239	0.014
		Reference vs. R2	1.855	9.200	0.202	12.959413	0.843
URC Hess RCA C/I CA-1 (18.5%)	Assume equal variances	Reference vs. X2	0.572	0.131	4.355	17	0.000
		Reference vs. R2	0.072	0.131	0.549	17	0.290
URC Hess RCA C/I CA-2 (14.5%)	Assume equal variances	Reference vs. X2	0.001	0.136	0.010	17	0.992
		Reference vs. R2	0.463	0.136	3.400	17	0.003
URC Hess RCA C/I CA-3 (11.6%)	Assume equal variances	Reference vs. X2	-0.149	0.190	-0.786	17	0.443
		Reference vs. R2	0.001	0.190	0.007	17	0.994
URC Hess RCA C/I CA-4 (10.3%)	Assume equal variances	Reference vs. X2	-0.139	0.157	-0.882	17	0.390
		Reference vs. R2	-0.274	0.157	-1.742	17	0.100

Table F.14: ANOVA results for exposure (3 stations/area) versus reference (single station in each of 10 areas) comparisons based on kick samples.

Dependent Variable	Mean Square	F	Sig.	Observed Power
Density (individuals/m2)	2645842.8300	4.6206	0.0305	0.6745
Number of Taxa	35.3253	2.4657	0.1236	0.4073
Simpson's D	0.0062	3.6173	0.0564	0.5625
Simpson's E (Smith & Wilson 1996)	0.0249	2.4862	0.1218	0.4102
EPT (%)	2109.4325	6.7531	0.0097	0.8391
Chironomidae (%)	1841.4385	13.0596	0.0008	0.9866
URC K&S RCA C/I CA-1 (26.2%)	0.6013	14.5963	0.0005	0.9931
URC K&S RCA C/I CA-2 (15.7%)	0.0092	0.0834	0.9205	0.0602
URC K&S RCA C/I CA-3 (13.7%)	0.1358	2.0247	0.1716	0.3421
URC K&S RCA C/I CA-4 (8.9%)	0.0482	0.7775	0.4798	0.1544

Table F.15: User-defined exposure (3 stations/area) versus reference (single station in each of 10 areas) contrasts based on kick samples.

		Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
Density (individuals/m2)	Does not assume equal variances	Reference vs. X2	-1369.903	728.529	-1.880	2.435626	0.178
		Reference vs. R2	311.763	234.261	1.331	10.307306	0.212
Number of Taxa	Assume equal variances	Reference vs. X2	-4.653	2.492	-1.868	13	0.085
		Reference vs. R2	-3.987	2.492	-1.600	13	0.134
Simpson's D	Assume equal variances	Reference vs. X2	0.058	0.027	2.124	13	0.053
		Reference vs. R2	-0.030	0.027	-1.115	13	0.285
Simpson's E (Smith & Wilson 1996)	Assume equal variances	Reference vs. X2	0.146	990.0	2.213	13	0.045
		Reference vs. R2	0.016	990.0	0.240	13	0.814
EPT (%)	Assume equal variances	Reference vs. X2	38.250	11.634	3.288	13	900'0
		Reference vs. R2	-9.765	11.634	-0.839	13	0.416
Chironomidae (%)	Assume equal variances	Reference vs. X2	-37.710	7.817	-4.824	13	0000
		Reference vs. R2	4.129	7.817	0.528	13	909.0
URC K&S RCA C/I CA-1 (26.2%)	Assume equal variances	Reference vs. X2	269.0-	0.134	-5.215	13	0.000
		Reference vs. R2	-0.345	0.134	-2.579	13	0.023
URC K&S RCA C/I CA-2 (15.7%)	Does not assume equal variances	Reference vs. X2	0.081	0.139	0.584	10.986928	0.571
		Reference vs. R2	-0.018	0.136	-0.133	10.970706	0.897
URC K&S RCA C/I CA-3 (13.7%)	Assume equal variances	Reference vs. X2	-0.282	0.171	-1.656	13	0.122
		Reference vs. R2	0.125	0.171	0.731	13	0.478
URC K&S RCA C/I CA-4 (8.9%)	Assume equal variances	Reference vs. X2	-0.146	0.164	-0.891	13	0.389
		Reference vs. R2	-0.173	0.164	-1.054	13	0.311

Table F.16: Benthic community characteristics of each reference area in comparison to the group of reference areas having similar habitat characteristics based on Hess (2007) samples. Results are presented for traditional central (cP) t-tests and non-central (ncP) t-tests (Test Site Analysis).

Reference BLCH-8	0.123 0.376 0.305 0.214 0.090 0.152
HOCH-8	0.376 0.305 0.214 0.090 0.152
NEXH-7 R7H-8 R0.03 R0.34 R0.04 R0.04 R0.05 R0.03	0.305 0.214 0.090 0.152
R7H-8	0.214 0.090 0.152
STCH-8 VRH-7 -0.18 0.34 -0.15 8120 19.0 7.6 82.8 0.414 VRH-7 VRH-7 1.34 0.38 0.03 2057 17.0 9.8 84.9 0.614 Mean 0.07 0.20 -0.10 4634 20.9 32.5 58.4 0.68 SD 0.63 0.35 0.34 3042 2.6 25.5 25.1 0.18 Exposure BLCH-8 -0.17 0.24 0.40 6068 24.2 24.7 65.9 0.565 t -0.85 0.25 3.32 1 2.9 -0.7 0.7 -1.45 cP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 <td< td=""><td>0.090 0.152</td></td<>	0.090 0.152
VRH-7 1.34 0.38 0.03 2057 17.0 9.8 84.9 0.614 Mean 0.07 0.20 -0.10 4634 20.9 32.5 58.4 0.68 SD 0.63 0.35 0.34 3042 2.6 25.5 25.1 0.18 Exposure BLCH-8 -0.17 0.24 0.40 6068 24.2 24.7 65.9 0.565 t -0.85 0.25 3.32 1 2.9 -0.7 0.7 -1.45 cP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 - -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP	0.152
Mean SD 0.07 0.20 -0.10 4634 3042 20.9 32.5 58.4 0.68 EXPOSURE BLCH-8 -0.17 0.24 0.40 6068 24.2 24.7 65.9 0.565 t -0.85 0.25 3.32 1 2.9 -0.7 0.7 -1.45 cP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.99 0.94 0.01	
SD 0.63 0.35 0.34 3042 2.6 25.5 25.1 0.18 Exposure BLCH-8 -0.17 0.24 0.40 6068 24.2 24.7 65.9 0.565 t -0.85 0.25 3.32 1 2.9 -0.7 0.7 -1.45 cP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t	
Exposure BLCH-8 Columb	0.21
BLCH-8 -0.17 0.24 0.40 6068 24.2 24.7 65.9 0.565 t -0.85 0.25 3.32 1 2.9 -0.7 0.7 -1.45 cP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 NEXH-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.11
t -0.85 0.25 3.32 1 2.9 -0.7 0.7 -1.45 cP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	
CP 0.43 0.81 0.02 0.34 0.04 0.52 0.53 0.21 ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.123
ncP 1.00 1.00 0.73 1.00 0.84 1.00 1.00 0.99 HOCH-8 -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 <td>-1.75</td>	-1.75
HOCH-8 t -0.32 0.37 0.02 2147 23.0 51.9 39.0 0.884 t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.98 NEXH-7 t -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.14
t -1.40 1.06 0.80 -2 1.8 1.7 -1.7 2.47 cP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.98
CP 0.22 0.34 0.46 0.13 0.13 0.15 0.14 0.06 ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.376
ncP 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.91 NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	3.34
NEXH-7 -0.03 -0.52 -0.59 1607 21.0 73.1 20.7 0.844 t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.02
t -0.34 -4.51 -3.28 -2 0.1 3.6 -3.4 1.97 cP 0.74 0.01 0.02 0.08 0.91 0.02 0.02 0.11 ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.73
CP ncP 0.74 ncP 0.01 ncP 0.02 ncP 0.02 ncP 0.01 ncP 0.02 ncP 0.02 ncP 0.02 ncP 0.01 ncP 0.02 ncP 0.02 ncP 0.01 ncP 0.02 ncP 0.02 ncP 0.03 ncP 0.04 ncP 0.06 ncP 0.07 ncP 0.08 ncP 0.08 ncP 0.07 ncP 0.09 ncP 0.09 ncP 0.00 nc	0.305
ncP 1.00 0.45 0.74 0.94 1.00 0.67 0.72 0.97 R7H-8 -0.22 0.39 -0.30 7807 21.0 28.2 57.0 0.777 t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	1.91
R7H-8	0.11
t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.97
t -1.02 1.20 -1.33 2 0.1 -0.4 -0.1 1.15 cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.214
cP 0.35 0.28 0.24 0.07 0.91 0.72 0.91 0.30	0.08
	0.94
	1.00
0.701.0	0.000
STCH-8	0.090
	-2.41
cP 0.41 0.42 0.74 0.05 0.17 0.08 0.08 0.02 ncP 1.00 1.00 1.00 0.89 0.99 0.94 0.95 0.74	0.06 0.92
11.00 1.00 1.00 0.09 0.99 0.94 0.95 0.74	0.92
VRH-7 1.34 0.38 0.03 2057 17.0 9.8 84.9 0.614	0.152
t 4.51 1.13 0.84 -2 -3.3 -2.0 2.4 -0.85	-1.17
cP 0.01 0.31 0.44 0.12 0.02 0.10 0.06 0.44	0.30
ncP 0.45 1.00 1.00 0.97 0.74 0.96 0.92 1.00	1.00

cP - probability metric value at exposure area is the same as the mean for reference areas.

Uncertain with respect to being similar to or different from reference (0.1 > p < 0.9). Similar to reference mean (cP > 0.9) or within reference range (ncP < 0.9).

ncP - probability metric value at exposure area is inside the range of reference values

Different from exposure mean (cP < 0.1) or range (ncP < 0.1).

Table F.17: Benthic community characteristics of each reference area in comparison to the group of reference areas having similar habitat characteristics based on Hess (2008) samples. Results are presented for traditional central (cP) t-tests and non-central (ncP) t-tests (Test Site Analysis).

Hess 2008		CA1	CA2	CA3	Density	No. Taxa	%EPT	%Chir.	Simpson's Diversity	Simpson's Evenness
Reference										
BLCH-8		-0.21	0.30	-0.29	6068	24.2	24.7	65.9	0.56	0.
BUCH-8		0.20	0.33	-0.58	1957	32.0	76.8	12.8	0.91	0.3
FC1H-8		-0.20	-0.47	0.19	6360	19.0	25.2	56.8	0.80	0.:
GRCH-8		-0.25	0.43	0.07	510	17.0	26.8	63.4	0.78	0.:
HOCH-8		-0.20	0.55	0.18	2147	23.0	51.9	39.0	0.88	0.:
NEXH-8		1.62	0.01	0.13	4536	20.0	26.3	20.6	0.72	0.
VRH-8		0.34	-0.39	0.11	7807	21.0	28.2	57.0	0.78	0.3
R7H-8		-0.27	-0.17	0.29	8120	19.0	7.6	82.8	0.41	0.0
STCH-8		-0.29	-0.01	0.15	7240	26.0	49.4	35.2	0.85	0.3
USFRH-8		-0.15	-0.55	-0.52	1743	21.0	46.3	16.3	0.84	0.3
Mean		0.06	0.00	-0.03	4649	22.2	36.3	45.0	0.75	0.
SD		0.59	0.39	0.32	2844	4.4	19.7	23.8	0.15	0.0
xposure										
BLCH-8		-0.21	0.30	-0.29	6068	24.2	24.7	65.9	0.56	0.
	t	-1.41	2.40	-2.63	1.58	1.44	-1.87	2.79	-3.88	-4.
	сP	0.19	0.04	0.03	0.15	0.18	0.09	0.02	0.00	0.0
		_				_				
	ncP	1.00	0.99	0.99	1.00	1.00	1.00	0.98	0.85	0.
BUCH-8		0.20	0.33	-0.58	1957	32.0	76.8	12.8	0.91	0.
	t	0.76	2.64	-5.55	-2.99	7.11	6.50	-4.29	3.16	3.
	cР	0.47	0.03	0.00	0.02	0.00	0.00	0.00	0.01	0.
	ncP	1.00	0.99	0.46	0.97	0.19	0.27	0.77	0.96	0.
		1.00	0.00	0.10	0.01	0.10	0.2.	0.11	0.00	0.
F0411.0		0.00	0.47	0.40	0000	40.0	25.0	50.0	0.00	0
FC1H-8		-0.20	-0.47	0.19	6360	19.0	25.2	56.8	0.80	0.
	t	-1.40	-3.81	2.15	1.90	-2.34	-1.78	1.57	1.01	0.
	cP	0.19	0.00	0.06	0.09	0.04	0.11	0.15	0.34	0.
	ncP	1.00	0.87	1.00	1.00	0.99	1.00	1.00	1.00	1.
GRCH-8		-0.25	0.43	0.07	510	17.0	26.8	63.4	0.78	0.
	t	-1.67	3.44	0.99	-4.60	-3.79	-1.53	2.45	0.58	1.
	сP	0.13	0.01	0.35	0.00	0.00	0.16	0.04	0.58	0.
	ncP	1.00	0.93	1.00	0.69	0.87	1.00	0.99	1.00	1.
	TICI	1.00	0.33	1.00	0.03	0.07	1.00	0.33	1.00	
HOCH-8		-0.20	0.55	0.18	2147	23.0	51.9	39.0	0.88	0.
	t	-1.40	4.40	2.09	-2.78	0.57	2.50	-0.80	2.67	4.
	cP	0.20	0.00	0.07	0.02	0.58	0.03	0.45	0.03	0.
	ncP	1.00	0.74	1.00	0.98	1.00	0.99	1.00	0.99	0.
NEXH-8		1.62	0.01	0.13	4536	20.0	26.3	20.6	0.72	0.
	t	8.39	0.08	1.58	-0.13	-1.61	-1.61	-3.25	-0.78	-2.
	сP	0.00	0.94	0.15	0.90	0.14	0.14	0.01	0.46	0.
	ncP	0.08					_			
	TICE	0.06	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.
VRH-8		0.34	-0.39	0.11	7807	21.0	28.2	57.0	0.78	0
	t	1.52	-3.14	1.37	3.51	-0.89	-1.30	1.60	0.47	-0.
	cР	0.16	0.01	0.21	0.01	0.40	0.23	0.14	0.65	0
	ncP	1.00	0.96	1.00	0.92	1.00	1.00	1.00	1.00	1
R7H-8		-0.27	-0.17	0.29	8120	19.0	7.6	82.8	0.41	0.
	t	-1.78	-1.41	3.19	3.86	-2.34	-4.61	5.03	-6.97	-5
										-5
	cP	0.11	0.19	0.01	0.00	0.04	0.00	0.00	0.00	
	ncP	1.00	1.00	0.95	0.86	0.99	0.69	0.59	0.21	0
STCH-8		-0.29	-0.01	0.15	7240	26.0	49.4	35.2	0.85	0
	t	-1.86	-0.14	1.77	2.88	2.75	2.10	-1.30	2.03	0
	cР	0.10	0.89	0.11	0.02	0.02	0.07	0.23	0.07	0
	ncP	1.00	1.00	1.00	0.98	0.98	1.00	1.00	1.00	1
	-								50	
USFRH-8		0.15	0.55	0.50	1740	24.0	46.0	16.0	0.04	^
		-0.15	-0.55	-0.52	1743	21.0	46.3	16.3	0.84	0.
USFKH-0		-1.14	-4.45	-4.96	-3.23	-0.89	1.60	-3.82	1.71	1.
USFKH-0	t									
USFKH-0	t cP	0.28	0.00	0.00 0.60	0.01 0.95	0.40 1.00	0.14 1.00	0.00	0.12 1.00	0.

 $[\]ensuremath{\mathsf{cP}}$ - probability metric value at exposure area is the same as the mean for reference areas.

Uncertain with respect to being similar to or different from reference (0.1 > p < 0.9). Similar to reference mean (cP > 0.9) or within reference range (ncP < 0.9).

ncP - probability metric value at exposure area is inside the range of reference values Different from exposure mean (cP < 0.1) or range (ncP < 0.1).

Table F.18: Benthic community characteristics of each reference area in comparison to the group of reference areas having similar habitat characteristics based on kick and sweep samples. Results are presented for traditional central (cP) t-tests and non-central (ncP) t-tests (Test Site Analysis).

K00 0000		CA4	CA2	CA2	Donoite	No Tava	% EDT	%Chi-	Simpson's	Simpson's
K&S 2008		CA1	CA2	CA3	Density	No. Taxa	%EPT	%Chir.	Diversity	Evenness
Reference										
BLCK-8		-0.13	0.24	-0.13	600	21.3	54.8	38.9	0.78	0.2
BUCK-8		0.38	-0.02	-0.05	1865	21.0	85.5	11.3	0.83	0.2
FC1K-8		-0.21	0.71	-0.04	610	19.0	42.6	37.4	0.86	0.3
GRCK-8		-0.19	-0.25	-0.49	63	14.0	58.7	27.0	0.88	0.5
HOCK-8		0.04	-0.20	-0.46	102	16.0	70.6	15.7	0.83	0.3
NEXK-8		-0.14	0.41	-0.06	1187	21.0	76.9	18.6	0.83	0.2
R7K-8		-0.16	0.22	0.14	1236	23.5	41.9	39.8	0.87	0.3
STCK-8		-0.30	0.10	-0.25	90	15.0	22.2	43.3	0.86	0.4
USFRK-8		0.98	-0.07	0.21	1969	26.0	74.5	16.6	0.80	0.1
VRK-8		-0.07	-0.57	-0.67	502	20.0	62.4	11.8	0.87	0.3
Mean		0.02	0.06	-0.18	822	19.7	59.0	26.0	0.84	0.3
SD		0.39	0.36	0.28	710	3.8	19.3	12.7	0.03	0.1
Evnosuro										
Exposure										
BLCK-8		-0.13	0.24	-0.13	600	21.3	54.8	38.9	0.78	0.2
	t	-1.21	1.55	0.56	-0.99	1.38	-0.68	3.20	-5.70	-3.1
	cP _	0.26	0.16	0.59	0.35	0.20	0.51	0.01	0.00	0.0
	ncP	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.43	0.9
BUCK-8		0.38	-0.02	-0.05	1865	21.0	85.5	11.3	0.83	0.2
	t	2.98	-0.66	1.48	4.64	1.10	4.35	-3.67	-1.31	-2.0
	cР	0.02	0.53	0.17	0.00	0.30	0.00	0.01	0.22	0.0
	ncP	0.97	1.00	1.00	0.68	1.00	0.76	0.89	1.00	1.0
FC1K-8		-0.21	0.71	-0.04	610	19.0	42.6	37.4	0.86	0.3
	t	-1.92	5.68	1.57	-0.95	-0.57	-2.69	2.83	1.83	0.5
	сР	0.09	0.00	0.15	0.37	0.58	0.02	0.02	0.10	0.5
	ncP	1.00	0.43	1.00	1.00	1.00	0.98	0.98	1.00	1.0
GRCK-8		-0.19	-0.25	-0.49	63	14.0	58.7	27.0	0.88	0.5
GRON-6	t	-1.75	-2.69	-3.46	-3.38	-4.75	-0.05	0.24	3.86	6.4
	сР	0.11	0.02	0.01	0.01	0.00	0.96	0.81	0.00	0.0
	ncP	1.00	0.99	0.92	0.93	0.66	1.00	1.00	0.86	0.2
	IICI	1.00	0.33	0.32	0.33	0.00	1.00	1.00	0.00	0.20
HOCK-8		0.04	-0.20	-0.46	102	16.0	70.6	15.7	0.83	0.3
110CK-6	t	0.04	-2.20	-3.13	-3.21	-3.08	1.90	-2.57	-0.90	0.5
	ι cP	0.13	0.06	0.01	0.01	0.01	0.09	0.03	0.39	0.5
	ncP	1.00	1.00	0.96	0.01		1.00	0.03		
	HCP	1.00	1.00	0.96	0.95	0.96	1.00	0.99	1.00	1.0
NEWCO		0.44	0.44	0.00	4407	04.0	70.0	40.0	0.00	0.0
NEXK-8		-0.14	0.41	-0.06	1187	21.0	76.9	18.6	0.83	0.2
	t	-1.33	3.11	1.38	1.62	1.10	2.94	-1.85	-1.00	-1.8
	сP	0.22	0.01	0.20	0.14	0.30	0.02	0.10	0.34	0.1
	ncP	1.00	0.96	1.00	1.00	1.00	0.97	1.00	1.00	1.0
R7K-8		-0.16	0.22	0.14	1236	23.5	41.9	39.8	0.87	0.3
	t	-1.49	1.39	3.52	1.84	3.19	-2.81	3.42	2.69	-0.3
	сP	0.17	0.20	0.01	0.10	0.01	0.02	0.01	0.02	0.7
	ncP	1.00	1.00	0.91	1.00	0.95	0.98	0.93	0.98	1.0
STCK-8		-0.30	0.10	-0.25	90	15.0	22.2	43.3	0.86	0.4
	t	-2.58	0.35	-0.76	-3.26	-3.91	-6.04	4.30	1.93	3.3
	cР	0.03	0.73	0.46	0.01	0.00	0.00	0.00	0.09	0.0
	ncP	0.99	1.00	1.00	0.95	0.85	0.36	0.77	1.00	0.9
USFRK-8		0.98	-0.07	0.21	1969	26.0	74.5	16.6	0.80	0.1
	t	7.86	-1.07	4.30	5.11	5.28	2.54	-2.35	-4.15	-4.2
	cР	0.00	0.31	0.00	0.00	0.00	0.03	0.04	0.00	0.0
	ncP	0.12	1.00	0.77	0.57	0.53	0.99	0.99	0.80	0.7
		V		0	0.01	0.00	0.00	0.00	0.50	3.1
VRK-8		-0.07	-0.57	-0.67	502	20.0	62.4	11.8	0.87	0.3
V 1 / 1 / - 0	t	-0.07	-0.57 -5.47	-5.46	-1.43	0.26	0.56	-3.54	2.74	0.3
	t cP									
	CP	0.49	0.00	0.00	0.19	0.80	0.59	0.01	0.02	0.4
	ncP	1.00	0.48	0.48	1.00	1.00	1.00	0.91	0.98	1.0

cP - probability metric value at exposure area is the same as the mean for reference areas.

ncP - probability metric value at exposure area is inside the range of reference values

Different from exposure mean (cP < 0.1) or range (ncP < 0.1).

Uncertain with respect to being similar to or different from reference (0.1 > p < 0.9). Similar to reference mean (cP > 0.9) or within reference range (ncP < 0.9).