

# **Installation Instructions**

# Stealth™ Model RTAE Chillers

Field Replacement of GP4 Classic Compressor

This document applies to service offering applications only.

#### A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.





# Introduction

Read this manual thoroughly before operating or servicing this

## Warnings, Cautions, and Notices

Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

The three types of advisories are defined as follows:

AWARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

#### **ACAUTION**

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

#### NOTICE

Indicates a situation that could result in equipment or property-damage only

#### Important Environmental Concerns

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants.

#### Important Responsible Refrigerant **Practices**

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

#### **AWARNING**

#### **Proper Field Wiring and Grounding** Required!

Failure to follow code could result in death or serious injury. All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

#### **AWARNING**

#### **Personal Protective Equipment (PPE)** Required!

Failure to wear proper PPE for the job being undertaken could result in death or serious injury. Technicians, in order to protect themselves from potential electrical, mechanical, and chemical hazards, MUST follow precautions in this manual and on the tags, stickers, and labels, as well as the instructions below:

- Before installing/servicing this unit, technicians MUST put on all PPE required for the work being undertaken (Examples; cut resistant gloves/sleeves, butyl gloves, safety glasses, hard hat/bump cap, fall protection, electrical PPE and arc flash clothing). **ALWAYS** refer to appropriate Safety Data Sheets (SDS) and OSHA guidelines for proper PPE.
- When working with or around hazardous chemicals, ALWAYS refer to the appropriate SDS and OSHA/GHS (Global Harmonized System of Classification and Labeling of Chemicals) guidelines for information on allowable personal exposure levels, proper respiratory protection and handling instructions.
- If there is a risk of energized electrical contact, arc, or flash, technicians MUST put on all PPE in accordance with OSHA, NFPA 70E, or other country-specific requirements for arc flash protection, PRIOR to servicing the unit. NEVER PERFORM ANY SWITCHING, DISCONNECTING, OR VOLTAGE **TESTING WITHOUT PROPER ELECTRICAL PPE AND** ARC FLASH CLOTHING. ENSURE ELECTRICAL METERS AND EQUIPMENT ARE PROPERLY RATED FOR INTENDED VOLTAGE.

©2023 Trane SO-SVN019A-EN

#### **AWARNING**

#### **Follow EHS Policies!**

Failure to follow instructions below could result in death or serious injury.

- All Trane personnel must follow the company's Environmental, Health and Safety (EHS) policies when performing work such as hot work, electrical, fall protection, lockout/tagout, refrigerant handling, etc. Where local regulations are more stringent than these policies, those regulations supersede these policies.
- Non-Trane personnel should always follow local regulations.

# Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

#### **Trademarks**

All trademarks referenced in this document are the trademarks of their respective owners.

# **Revision History**

Document updated to reflect Service Offering number.



# **Table of Contents**

| General Information 5                                               |
|---------------------------------------------------------------------|
| Installation 6                                                      |
| Compressor Replacement 6                                            |
| Additional Parts Required 6                                         |
| GP4 Classic Compressor Parts List 7                                 |
| Heater Information 8                                                |
| Compressor Heaters 8                                                |
| Removal of Output Inductors (1st Gen GP4 Classic Compressor Only) 9 |
| Adding Common Mode Chokes (1st Gen GP4 Classic Compressor Only)     |
| Reprogramming AFD3                                                  |
| Parameter Update Required for 1 <sup>st</sup> Generation Only       |
| Installation Procedure                                              |



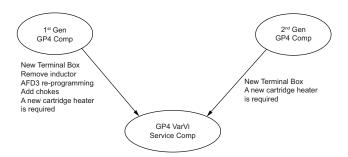
# **General Information**

Initial production RTAE chillers include 1<sup>st</sup> Gen GP4 Screw Compressors with legacy motors (Phase Motion), external inductors between the drive and compressor, and (on some units) smaller AFD3 frames compared to second generation chillers. While 2<sup>nd</sup> Gen GP4 Screw Compressors include an updated motor (Regal Beloit), no external inductors, and (on some units) larger AFD3 frames.

Table 1. GP4 classic compressor

| Description       | 1 <sup>st</sup> Gen GP4 Classic<br>Compressor | 2 <sup>nd</sup> Gen GP4 Classic<br>Compressor |
|-------------------|-----------------------------------------------|-----------------------------------------------|
| Motor             | Phase Motion                                  | Regal Beloit                                  |
| External Inductor | Yes                                           | No                                            |
| AFD3 Frame Size   | Smaller on some units                         | Larger on Some units                          |

With conversion to the GP4 Variable VI ratio (VarVI) compressor architecture, in the event of a compressor failure it is not possible to replace 1st or 2nd Gen GP4 Classic Compressors with the new GP4 VarVi model. A service model GP4 VarVi Compressor was developed for replacement of both 1st and 2nd Gen GP4 Classic Compressors. This service model compressor performs similarly as a classic GP4 compressor due to the following adaptations:


- Locked VI assembly to high VI configuration (same as GP4 Classic).
- 2<sup>nd</sup> generation motor (Regal Beloit instead of Phase Motion).
- · Removal of external inductors (if installed).

Replacement of a 2<sup>nd</sup> Gen GP4 Classic Compressor requires replacement of the compressor motor terminal box but no other adaptations to unit electrical wiring or AFD3 programming. Replacement of the 1<sup>st</sup> Gen GP4 Classic Compressor requires extra steps to replicate similar unit operation. This document outlines extra retrofit conversion steps in event of a failure of a 1<sup>st</sup> Gen GP4 Classic Compressor on an RTAE Chiller:

- Replacement of 1<sup>st</sup> Gen GP4 Classic Compressor to GP4 Locked VarVI Service Compressor.
- · Removal of external inductors.
- Re-programming of AFD3 (including special RLA values for some models).
- · Addition of common mode chokes.
- Replacement of the compressor motor terminal box.

**Note:** Some units will lose a small portion of top end operational capacity due to the difference in motor performance and the size of the originally installed AFD3 on the 1<sup>st</sup> Gen RTAE unit. The reduction of top end capacity is small, and noted later in this document.

Figure 1. Replacement of 1<sup>st</sup> or 2<sup>nd</sup> Gen GP4 classic compressor to VarVi service compressor on RTAE





# **Compressor Replacement**

If a 1<sup>st</sup> Gen or 2<sup>nd</sup> Gen GP4 Classic Compressor has failed on an RTAE Chiller, only the Locked VarVi Service Compressor can be used as a replacement. The Classic chassis has been discontinued. Motor information for a specific compressor can be obtained by checking the model number on the compressor nameplate. Motor number (MN) is stored in the 6<sup>th</sup> and 7<sup>th</sup> digit of the compressor model number.

**Example:** Compressor model CHHSRB1A1A0 indicates a B1 motor, which is a 100T Standard Lift 1<sup>st</sup> Gen GP4 Classic motor. Refer to RTAE Service Guide (RTAE-SVG001\*-EN) for more detailed instructions for compressor replacement procedure.

#### Notes:

- · Piping and fitting modifications may be required.
- All units will require field installed insulation. Install insulation before adding refrigerant for proper adhesion.

Table 2. GP4 compressor cross-list for RTAE chiller

| GP4 Screw Compressors |      | 1 <sup>st</sup> Gen GP4 Classic<br>(Phase Motion Motor) |                            |                              | en GP4 Classic<br>al Beloit Motor) | VarVi GP4 Service Model<br>(Regal Beloit Motor) |    |          |
|-----------------------|------|---------------------------------------------------------|----------------------------|------------------------------|------------------------------------|-------------------------------------------------|----|----------|
| Capacity              | Lift | Voltage                                                 | MN                         | Service Number               | MN                                 | Service Number                                  | MN | Service# |
| 100T                  | SL   | 440-528V                                                | B1 <sup>(a)</sup> COM11023 |                              | BA                                 | COM11539                                        | BA | COM13092 |
| 100T                  | SL   | 360-439V                                                | DI(=)                      | COM11023                     | BB                                 | COM11540                                        | BB | COM13093 |
| 100T                  | HL   | 440-528V                                                | C1(a)                      | C1 <sup>(a)</sup> COM11024 — | CA                                 | COM11541                                        | CA | COM13094 |
| 1001                  | ПЬ   | 360-439V                                                | Cita                       |                              | СВ                                 | COM11542                                        | СВ | COM13095 |
| 125T                  | SL   | 440-528V                                                | E3                         | COM11027                     | EA                                 | COM11543                                        | EA | COM13087 |
| 125/150T              | SL   | 360-439/440-528V                                        | E2                         | COM11026                     | EB                                 | COM11544                                        | EB | COM13086 |
| 150T                  | SL   | 360-439V                                                | E1                         | COM11029                     | EC                                 | COM11545                                        | EC | COM13085 |
| 150T                  | HL   | 440-528V                                                | F2(a)                      | COM11031                     | FA                                 | COM11546                                        | FA | COM13088 |
| 1301                  | пь   | 360-439V                                                | F2(a)                      | COMITION                     | FB                                 | COM11547                                        | FB | COM13089 |

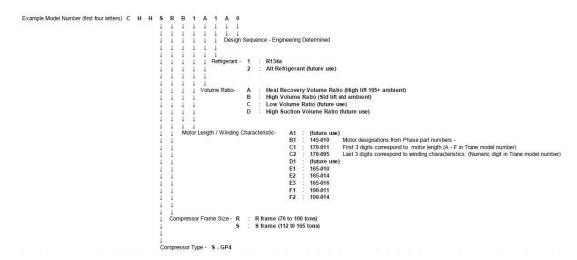
<sup>(</sup>a) Covers both 360-439V and 440-528V voltage range's. Voltage specific replacement compressor for 360-439V or 440-528V depends on chiller rated voltage. Refer to chiller nameplate to identify the rated voltage. 360-439V motors are used on 380V/400V chillers. 440-528V motors are used on 200V/230V/460V/575V chillers.

## **Additional Parts Required**

Note: Must be ordered separately.

Important: Only the compressor is delivered as standard.

Additional parts will be required and must be


ordered separately.

Follow steps below to identify additional parts required:

- Record the model number, digit 5 (R or S) from the RTAE nameplate located on the unit.
- Record the model number, digit 7 (number or letter) from the motor nameplate located on the compressor motor.
- 3. Determine which circuit needs the replacement compressor (circuit #1 or #2).
- Determine which additional parts need to be ordered from the list below using the above information and purchase them for the GP4 Classic compressor replacement.

#### **GP4 Model Number Description**

Refer to the model number break down for the GP4 compressor family:



#### **GP4 Classic Compressor Parts List**

#### Heater

A new cartridge heater will be required for all units. If the band heater is in good condition, it can be reused. Use the table below to order the heaters required for the GP4 classic compressor replacement from digit 5 of the unit model number (R or S).

Table 3. Compressor heaters

| Heater<br>Type | Compressor<br>Frame Size | Service Part | Voltage | Power     |
|----------------|--------------------------|--------------|---------|-----------|
| Cartridge      | R and S                  | HTR19149     | 120V    | 125 Watts |
| Band           | R                        | HTR13547     | 120V    | 70 Watts  |
| Band           | S                        | HTR13548     | 120V    | 90 Watts  |

#### **Terminal Box**

A new terminal box is required. Determine which circuit (1 or 2) of the GP4 classic compressor is being replaced and order the terminal box using the table below.

Table 4. Compressor terminal box

| Terminal Box            | Mnemonic |
|-------------------------|----------|
| Circuit 1A Terminal Box | BOX03969 |
| Circuit 2A Terminal Box | BOX03970 |

#### **Sound Attenuator (Optional)**

A new sound attenuation package may be required. If the unit in the field includes the sound attenuation option, then the appropriate kit must be ordered for the new GP4 VarVi frame size. Two parts are required for the specific compressor frame size (R or S).

Refer the below table to determine which sound attenuation package is required using digit 5 of the unit model number (R or S):

Table 5. Sound attenuation package

| Frame | Mnemonic | Part Number                                    | Description                      |  |  |
|-------|----------|------------------------------------------------|----------------------------------|--|--|
| R     | ATT00536 | 572448450001                                   | ATTENUATOR; SOUND BOX, BOTTOM, R |  |  |
| K     | ATT00538 | ATT00538 572448470001 ATTENUATOR; SC<br>FRONT, |                                  |  |  |
| S     | ATT00537 | 572448460001                                   | ATTENUATOR; SOUND BOX, BOTTOM, S |  |  |
| 3     | ATT00539 | 572448480001                                   | ATTENUATOR; SOUND BOX, FRONT, S  |  |  |

#### **Suction and Discharge Gasket**

A new suction and discharge gasket is required. Determine which gaskets to order from the table below using digit 5 of the unit model number (R or S):

| Frame | Suction Gasket | Discharge Gasket |
|-------|----------------|------------------|
| R     | GKT04723       | GKT04722         |
| S     | GKT04724       | GKT04721         |

#### **Common Mode Chokes**

Common mode chokes are required for replacement of phase motion motors. If the unit has load inductors installed then common mode choke (cores) are required. From the compressor nameplate model number determine the 7<sup>th</sup> digit. If digit 7 is a number then the cores will need to be ordered. If digit 7 is a letter, do not order the cores.



Example: CHHSRB1A1XX

| A1        | (future use)                             |                                       |                                |                           |
|-----------|------------------------------------------|---------------------------------------|--------------------------------|---------------------------|
| B1        | 145-010                                  | Motor designations from Phase pa      | rt numbers -                   |                           |
| C1        | 170-011                                  | First 3 digits correspond to motor    | length (A - F in Trane model n | umber)                    |
| C2        | 170-095                                  | Last 3 digits correspond to winding   | characteristics. (Numeric dig  | it in Trane model number) |
| D1        | (future use)                             |                                       |                                |                           |
| E1        | 165-010                                  |                                       |                                |                           |
| E2        | 165-014                                  |                                       |                                |                           |
| E3        | 165-016                                  |                                       |                                |                           |
| F1        | 190-011                                  |                                       |                                |                           |
| F2        | 190-014                                  |                                       |                                |                           |
| Classic R | egal Motors (Regal part number shown) (C | ommon Mode Choke (cores) will not nee | ed to be ordered):             |                           |
| ВА        | 2520869-003                              | 100T                                  | SL                             | 460V                      |
| ВВ        | 2520869-004                              | 100T                                  | SL                             | 380V                      |
| CA        | 2520869-001                              | 100T                                  | HL                             | 460V                      |
| СВ        | 2520869-002                              | 100T                                  | HL                             | 380V                      |
| EA        | 2520867-005                              | 125T                                  | SL                             | 460V                      |
| EB        | 2520867-006                              | 125T/150T                             | SL                             | 380V/460V                 |
| EC        | 2520867-007                              | 150T                                  | SL                             | 380V                      |
| FA        | 2520867-001                              | 150T                                  | HL                             | 460V                      |
| FB        | 2520867-002                              | 150T                                  | HL                             | 380V                      |
| FC        | 2520867-003                              | 165T                                  | HL                             | 460V                      |
| FD        | 2520867-004                              | 165T                                  | HL                             | 380V                      |

Table 6. Common mode chokes

| Description                  | Quantity           | Mnemonic | Part Number  |
|------------------------------|--------------------|----------|--------------|
| Common Mode<br>Core Assembly | One per circuit    | COR00252 | 50711456     |
| Individual<br>Conductor Core | Five per conductor | COR00253 | X13641390010 |

Note: These parts must be sourced locally.

#### **Inline Connectors**

With removal of the output inductor, the power conductors will be need to be spliced together. Polaris Electrical Connectors are recommended (Catalog No.: IT-250). Six pieces are needed. There are two conductors per phase.

Figure 2. Insulated in-line connectors



#### **Piping and Fitting Changes**

Piping and fitting changes may be required. Source locally.

#### Insulation

All units require field installed insulation. Install insulation before adding refrigerant for proper adhesion.

## **Heater Information**

There are two heaters per compressor:

- One cartridge/rod style that is the same part number for both R and S frame compressors. This part number changed between GP4 classic and VVi. Heaters need to be ordered as separate service parts for the retrofit to work. See Table 3, p. 7 for the correct part numbers to order.
- The band style has not change between GP4 Classic and VVi. The existing band style heaters on the RTAE compressor can be reused.

#### **Compressor Heaters**

The compressor must be heated any time it is not running to prevent refrigerant from condensing in the compressor. The heaters are sized to maintain a minimum of 18°F or 20°F rise above the ambient temperature.

Two heaters are required: a cartridge type in the suction end of the rotor housing and a band type on the muffler. See Table 3, p. 7 for heater details.



# Removal of Output Inductors (1st Gen GP4 Classic Compressor Only)

Physically remove output inductor from each circuit. Remove thermal cutout limit switch connections 1B3 (circuit 1) or 1B4

Figure 3. Electrical schematic with output inductor - circuit1

(circuit 2); connect wires 431D to wire 433A (circuit 1); or connect wires 424D to wire 425A (circuit 2). Bypass or cap off coolant lines that pass through the inductor. Reconnect the power conductors together with recommended POLARIS insulated in-line splice connector (See Step ).

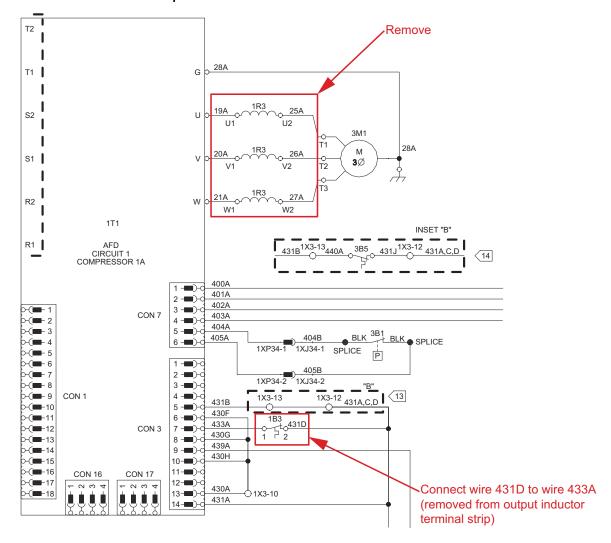



Figure 4. Electrical schematic with output inductor - circuit2

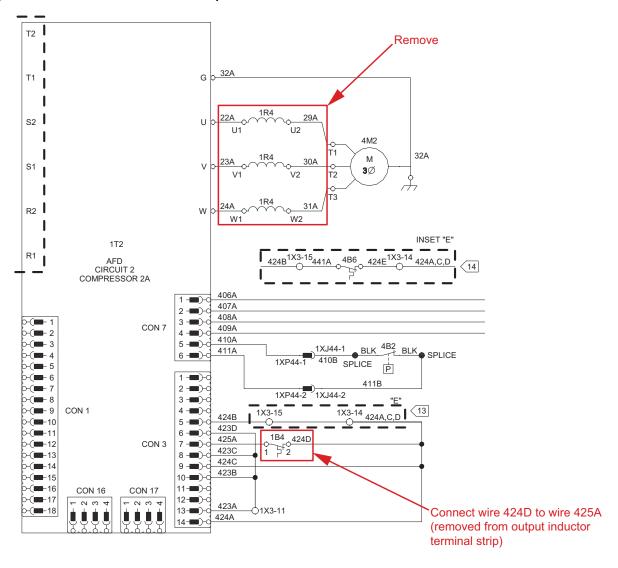





Figure 5. Output inductor location

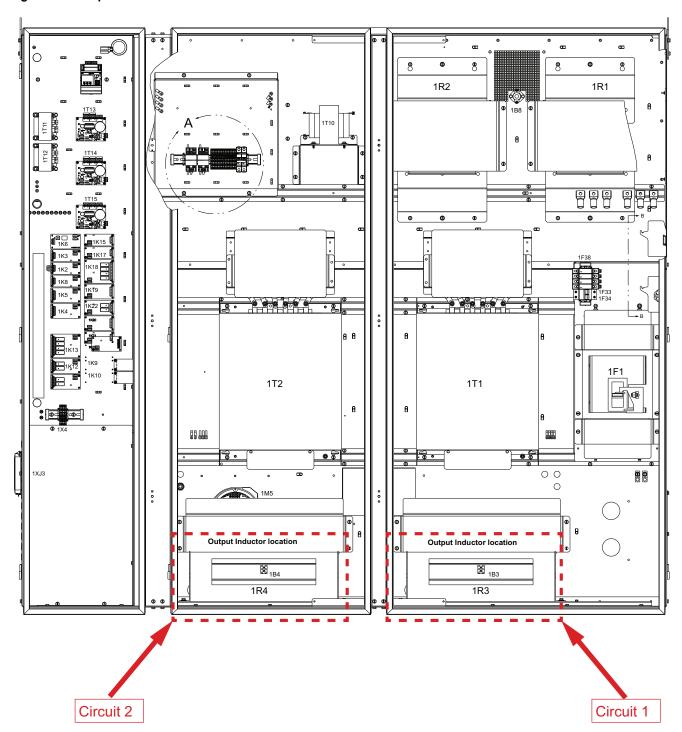



Figure 6. System cooling

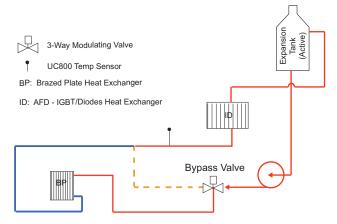
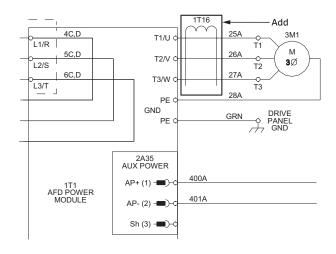



Figure 7. Insulated in-line connectors



# Adding Common Mode Chokes (1<sup>st</sup> Gen GP4 Classic Compressor Only)

Common mode chokes are necessary to maintain protection against bearing currents causing pre-mature failure of the compressor bearings. With the removal of the output inductor,


Figure 9. Output chokes locations

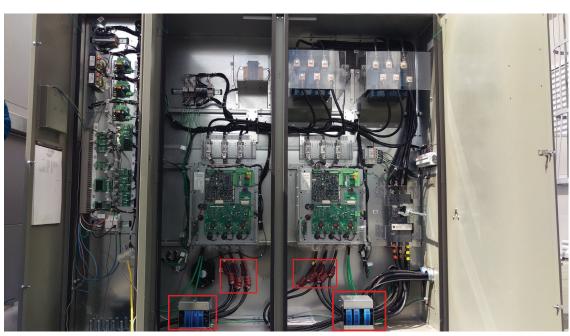

common mode chokes are necessary. The choke assembly encircles all current carrying conductors between the drive and compressor. Do not include ground conductors. Individual cores must also be installed on the power conductors. Refer to the schematic and image below. With removal of the output inductor, the power conductors will be need to be spliced together. Polaris electrical connectors are recommended (Catalog No.: IT-250). Six pieces are needed. There are two conductors per phase.

Table 7. Common mode chokes

| Description                  | Quantity               | Mnemonic |
|------------------------------|------------------------|----------|
| Common Mode Core<br>Assembly | One (1) per circuit    | COR00252 |
| Individual Conductor Core    | Five (5) per conductor | COR00253 |

Figure 8. Electrical schematic with output chokes





# **Reprogramming AFD3**

Re-programming the AFD3 is necessary after replacing either the 1st or 2nd Gen GP4 Classic compressor with the GP4 VarVi Service Model on an RTAE unit. Re-program the parameters shown in Table 8, p. 13 via the Config and Binding view in TU software.

High level view process:

- 1. Navigate to the binding process.
- 2. Unbind appropriate circuit AFD3 drive in binding view.
- 3. In TU, navigate to the appropriate Config screen.
- 4. Change required parameters.
- 5. Navigate to the binding process.
- 6. Rebind AFD3.

For reference, see AFD3 Service Guide (AFD-SVG01\*-EN) and RTAE Installation, Operation, and Maintenance (IOM) manual (RTAE-SVX001\*-EN).

Figure 10. AFD1 or compressor1A

| Motor Type (MTP1)                      | Internal<br>Permanent<br>Magnet |        | Motor Nameplate D-Axis Inductance (MDI1) | 378     | μН  |
|----------------------------------------|---------------------------------|--------|------------------------------------------|---------|-----|
| Input Transformer Turns Ratio (ITR1)   | 1                               |        | Motor Nameplate Q-Axis Inductance (MQI1) | 378     | μН  |
| Total System Inertia (TSI1)            | 0.36                            | kg-m^2 | Motor Nameplate Stator Resistance (MSR1) | 28400   | μ#  |
| Motor Nameplate Voltage (MVT1)         | 400                             | Vac    | Active Harmonic Damping (AHD1)           | Disable |     |
| Drive Module Maximum Current<br>(DMA1) | 300                             | Amps   | Reset to Defaults (RDF1)                 | No      |     |
| Motor Nameplate RLA (MRA1)             | 150                             | Amps   | Input Choke Impedance (IMP1)             | 3       | %   |
| Motor Nameplate Power (MRP1)           | 103                             | kW     | Unit System Voltage (UNV1)               | 460     | Vac |
| Motor Nameplate Number of Poles (MNP1) | 6                               | poles  | Rectifier Type (RCT1)                    | 6 Pulse |     |
| Motor Nameplate RPM (MRS1)             | 5800                            | RPM    | Motor Leakage SigmaLs Inductance (MLI1)  | 300     | μН  |
| Motor Nameplate Magnet Flux (MMF1)     | 141                             | mWb    |                                          |         |     |

# Parameter Update Required for 1<sup>st</sup> Generation Only

Table 8. Programming values for AFD3 drive

| AFD3 Parameter<br>Name (FCAT)   | GP4 Gen<br>Replacing |             | GP4 VarVi Service Model Number <sup>(a)</sup> |             |             |             |             |             |             |             |             |             |             |
|---------------------------------|----------------------|-------------|-----------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                 |                      | FA          | EA                                            | EB(b)       | CA          | ВА          | EB(b)       | FC          | FB          | EC          | FD          | СВ          | ВВ          |
| Motor Type (MTPx)               |                      |             |                                               |             |             | Inte        | rnal Perm   | anent Ma    | gnet        |             |             |             |             |
| Transformer Input Ratio (ITRx)  |                      |             | 1                                             |             |             |             |             |             |             |             |             |             |             |
| Total System Inertia<br>(TSIx)  |                      |             |                                               |             |             |             | 0.36 k      | g-m^2       |             |             |             |             |             |
| Motor NP Volts (MVTx)           |                      | 400 V       | 400 V                                         | 400 V       | 400 V       | 400 V       | 330 V       | 400 V       | 340 V       | 340 V       | 340 V       | 340 V       | 330 V       |
| Motor NP RLA Current            | 1 <sup>st</sup> Gen  | 274 A       | 214 A                                         | 225 A       | 188 A       | 158 A       | 225 A       | 304 A       | 304 A       | 304 A       | 365 A       | 225 A       | 204 A       |
| (MRAx) <sup>(c)</sup>           | 2 <sup>nd</sup> Gen  | 298 A       | 214 A                                         | 249 A       | 188 A       | 158 A       | 250 A       | 304 A       | 338 A       | 304 A       | 397 A       | 232 A       | 204 A       |
| Motor NP Power<br>(MRPx)        |                      | 168 kW      | 125 kW                                        | 153 kW      | 123 kW      | 103 kW      | 128 kW      | 194 kW      | 178 kW      | 151 kW      | 196 kW      | 123 kW      | 103 kW      |
| Motor NP Number of Poles (MNPx) |                      |             |                                               |             |             |             | 6 p         | oles        |             |             |             |             |             |
| Motor NP RPM (MRSx)             |                      | 4805<br>RPM | 4004<br>RPM                                   | 4805<br>RPM | 5800<br>RPM | 5800<br>RPM | 4004<br>RPM | 5250<br>RPM | 4805<br>RPM | 4805<br>RPM | 5250<br>RPM | 5800<br>RPM | 5800<br>RPM |
| Motor NP magnet flux (MMFx)     |                      | 167<br>mWb  | 207<br>mWb                                    | 174<br>mWb  | 140<br>mWb  | 141<br>mWb  | 174<br>mWb  | 162<br>mWb  | 152<br>mWb  | 149<br>mWb  | 133<br>mWb  | 115 mWb     | 120<br>mWb  |

Table 8. Programming values for AFD3 drive (continued)

| AFD3 Parameter<br>Name (FCAT)        | GP4 Gen<br>Replacing | GP4 VarVi Service Model Number <sup>(a)</sup> |         |         |         |         |         |         |         |         |        |         |         |
|--------------------------------------|----------------------|-----------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|
|                                      |                      | FA                                            | EA      | EB(b)   | CA      | ВА      | EB(b)   | FC      | FB      | EC      | FD     | СВ      | ВВ      |
| Motor NP D-Axis<br>Inductance (MDIx) |                      | 308 µH                                        | 475 µH  | 332 µH  | 317 µH  | 378 µH  | 332 µH  | 250 µH  | 219 µH  | 244 µH  | 170 µH | 212 µH  | 270 µH  |
| Motor NP Q-Axis<br>Inductance (MQIx) |                      | 308 µH                                        | 475 µH  | 332 µH  | 317 µH  | 378 µH  | 332 µH  | 250 µH  | 219 µH  | 244 µH  | 170 µH | 212 µH  | 270 µH  |
| Stator Resistance<br>(MSRx)          |                      | 2106 μΩ                                       | 2780 μΩ | 1960 μΩ | 2240 μΩ | 2840 μΩ | 1960 μΩ | 1380 μΩ | 1220 μΩ | 1440 μΩ | 940 μΩ | 1500 μΩ | 2040 μΩ |
| Active Harmonic<br>Damping (AHDx)    |                      | Disable                                       |         |         |         |         |         |         |         |         |        |         |         |
| Reset to Defaults (RDFx)             |                      | No                                            |         |         |         |         |         |         |         |         |        |         |         |
| Input Choke Impedance (IMPx)         |                      | 3%                                            |         |         |         |         |         |         |         |         |        |         |         |
| Rectifier Type (RCTx)                |                      | 6 Pulse                                       |         |         |         |         |         |         |         |         |        |         |         |
| Leakage Signals (MLIx)               |                      | 200 µH                                        | 280 µH  | 230 µH  | 230 µH  | 300 µH  | 270 µH  | 190 µH  | 180 µH  | 185 µH  | 135 µH | 175 µH  | 215 µH  |

<sup>(</sup>a) Motor information is stored in the 6th and 7th digit of the model number. For example, the digits in bold of this model number correspond to the information in the tables above: CHHSR**B1**A1A0.

# **Installation Procedure**

Figure 11. Compressor terminal box

New Compressor Terminal Box



<sup>(</sup>b) Motor model EB is unique in that it has dual ratings at both 460V and 380V. For 200V/230V/460V/575V chillers use the left most EB column. For 380V/400V chillers use the right most EB column.

<sup>(</sup>c) For certain models, a lesser RLA is used since the installed AFD3 drive is smaller on chillers with 1st Generation GP4 Classic Compressors. Refer to Table 2, p. 6 to decipher the generation of the failed compressor being replaced. Program the appropriate RLA per the 1st Gen or 2nd Gen row in the table.

Figure 12. Cartridge heater location

Cartridge Heater Location (Band heater can be reused)

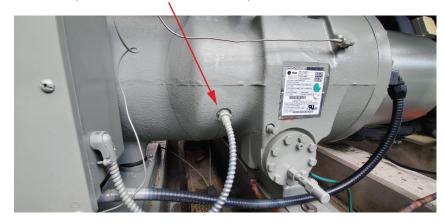



Figure 13. Band heater location



Figure 14. High pressure switch location

Location of High Pressure Switch (Reuse fitting from old compressor)





#### Figure 15. Intermediate oil pressure transducer location

Location of Intermediate Oil Pressure Transducer



Figure 16. Solenoid stems

Leave Solenoid Stems Capped

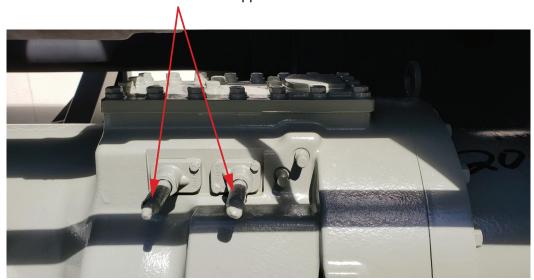



Figure 17. Piping modifications



Figure 18. Fitting installation for suction transducer in the suction line



Figure 19. Threadelet installation - 1/4 inch pipe thread



Figure 20. Follow standard welding procedures when welding 1/4 inch pipe thread threadelet in place

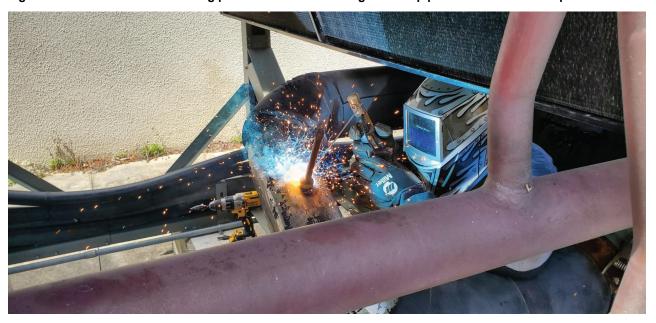



Figure 21. Pressure teat and paint threadelet




Figure 22. Install existing suction transducer



| Trane - by Trane Technologies (NYSE: TT), a global climate innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.                                |
|                                                                                                                                                                                                                                                      |