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Abstract. The major bridge linking satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) with 

ground-level concentration is theoretically the NO2 mixing height (NMH). Various meteorological parameters have 

been used as a proxy of NMH in existing studies. This study developed a nested machine learning model to convert 20 

VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring 

Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the 

methodological framework and explore its impact on performance. The inner machine learning model predicted the 

NMH from the meteorological parameters, which were then input into the main machine learning model to predict the 

ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of 25 

estimating ground-level NO2 concentration, reducing bias and improving R² values to 0.93 in 10-fold cross-validation 

and 0.99 in the fully-trained model. Furthermore, NMH was identified as the second most important predictor variable, 

following the VCDs of NO2. Subsequently, satellite-derived ground-level NO2 data were analyzed across subregions 

with varying geolocations and urbanization levels. Highly populated areas typically experienced peak NO2 

concentrations during early morning rush hours, whereas areas categorized as lightly populated observed a slight 30 
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increase in NO2 levels one or two hours later, likely due to regional pollutant dispersion from urban sources. This 

study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column 

measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution 

information at an hourly resolution. 

1 Introduction 35 
Nitrogen dioxide (NO2) stands as a pivotal trace gas within the atmosphere, exerting substantial influence on the 

ecological environment, air quality, and climate change (Myhre et al., 2013). This significance is underscored by its 

role as a prominent air pollutant, with inhalable characteristics that pose potential health risks (Xue et al., 2023). 

Additionally, it serves as an essential precursor to the formation of secondary particles and ozone (Li et al., 2019). The 

origins of NO2 are multifarious and intricate. It stems from diverse sources such as fossil-fuel-fired power plants, 40 

vehicular emissions, industrial activities, biofuel combustion, and residential cooking (Jion et al., 2023). Natural 

sources encompass wildfires, soil emissions, and lightning discharges (Li et al., 2022). Concerted efforts, including 

stringent emission control policies implemented in China, have resulted in a gradual reduction of NO2 concentrations 

(Fan et al., 2020). Despite these positive trends, severe NO2 pollution issues persist due to the heavy emissions 

associated with China's rapid economic development, particularly in urban agglomerations (Meng et al., 2018). The 45 

polluted regions in China continue to exhibit NO2 concentrations that surpass the safety standard set by the World 

Health Organization (WHO) Air Quality Guidelines (AQG) (Chi et al., 2022).  

While ground-based monitoring excels in accurately capturing NO2 concentrations, the challenge lies in the low 

density and scattered distribution of observation stations (Wei et al., 2022). The inherent limitations in the geographical 

coverage of these stations, coupled with the elevated costs, render it challenging to effectively fulfill the requirements 50 

for monitoring ground-level NO2 concentrations across extensive regions (Kong et al., 2021). This spatial limitation 

introduces substantial uncertainties when endeavoring to assess the levels of exposure on a large scale (Chi et al., 

2022). Satellite instruments offer continuous air quality monitoring with broad spatial coverage (Li & Managi, 2022). 

Satellite-retrieved vertical column densities (VCDs) of NO2 have been extensively utilized to identify variations in 

NO2 pollution and emissions of nitrogen oxides (NOx) across various regions (Cui et al., 2021; Iqbal et al., 2022; Park 55 

et al., 2021). However, the official satellite products provide only the column amount of NO2 (Lamsal et al., 2014). 

Consequently, there has been a discernible surge in scientific research focused on deriving ground-level NO2 

concentrations through satellite data analyses. 

The NO2 columns have been measured through polar sun-synchronous low earth orbiting (LEO) satellite instruments 

(Yang et al., 2023). These LEO satellite instruments have a daily overpassing time at exact locations. However, NO2 60 

pollution may vary significantly during different times of the day, driven by emission, meteorology, and atmospheric 

chemistry (Shen et al., 2023). The single measurement per day from the LEO satellite instruments, typically taken 

around noon or in the afternoon, may lead to an underestimation of annual mean values (Qin et al., 2017). Previous 

studies have explored the diurnal variations of NO2  by leveraging the differences in overpass times among these LEO 

satellite instruments (Boersma et al., 2008; Lin et al., 2010). However, these analyses are largely affected by the varied 65 
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performance of on-board monitoring sensors and unstable data pairing (Hilboll et al., 2013). This highlights the 

importance of using the quantitatively uniform air quality dataset with a much higher temporal resolution from a single 

suite of on-board monitoring sensors to provide new insights into diurnal variation of air pollution. 

The Geostationary Environment Monitoring Spectrometer (GEMS) stands as the inaugural satellite instrument 

launched for the explicit purpose of monitoring both gaseous and aerosol pollutants from a geostationary earth orbit 70 

(GEO) over Asia (Kim et al., 2020). It was launched successfully by the Republic of Korea on February 19, 2020, and 

entered its intended orbit on March 6, 2020. The primary objective of the GEMS mission is to provide hourly columnar 

measurements of critical air quality parameters, including NO2, ozone, and aerosols, across the Asian region. 

Distinguished from traditional LEO satellite instruments, GEMS, being GEO-based, affords more frequent monitoring 

of the columnar concentration of air pollutants, thereby enhancing our comprehension of the diurnal variations of NO2 75 

over Asia (Yang et al., 2023). Additionally, the data acquired through GEMS measurements show a significant 

improvement in spatial resolution compared to most existing LEO measurements. 

Various studies have been conducted to estimate ground-level NO2 concentrations from satellite measurements, 

leveraging their ability to cover a large spatial extent ( Fan et al., 2021; Qin et al., 2020; Wu et al., 2021). The major 

bridge linking the VCDs of NO2 with the ground-level concentration is theoretically the NO2 mixing height (NMH). 80 

The variations in the NMH can be governed by various meteorological conditions (Ahmad et al., 2024). For instance, 

increased temperature facilitates the vertical dispersion of NO2, leading to an increase in the NMH. To convert the 

VCDs of NO2 into ground-level concentrations, studies have employed various techniques, such as air quality models, 

machine learning techniques, land-use regression, and geographically weighted regression (Chi et al., 2022; Lamsal 

et al., 2008; Wei et al., 2022; Xu et al., 2021). These conversion models have considered multiple meteorological 85 

factors, such as temperature, humidity, and wind, along with the planetary boundary layer height (PBLH) (Chi et al., 

2022; Qin et al., 2020; Wei et al., 2022). The PBLH has been used as a proxy of the NMH because of its ability to 

regulate near-surface pollution levels. However, it is important to develop a conversion model that directly consider 

the impacts of the NMH. This paves the way to refine the processes of converting satellite-derived columnar 

measurements into ground-level NO2 concentrations (Ahmad et al., 2024). 90 

Based on the GEMS measurements, Ahmad et al. (2024) evaluated the impacts of meteorological factors on the 

variations in the NMH over China and applied a machine learning method to predict the NMH from the meteorological 

parameters. In the present study, we developed a nested machine-learning-based model to evaluate the effects of NMH 

on the conversion of columnar NO2 measurements to ground-level NO2 concentrations. The inner machine learning 

model predicted the NMH from the meteorological parameters, which were then input into the main machine learning 95 

model to predict the ground-level NO2 concentrations from its VCDs. Further, the satellite-derived ground-level NO2 

data were analyzed for subregions with different geolocations and urbanization levels. This study aims to enhance our 

understanding of the effects of NMH on the conversion of satellite-based columnar measurements to ground-level 

NO2 concentrations. Additionally, it seeks to enrich the information of spatial and diurnal patterns of ground-level 

NO2 across China using the world’s first geostationary environmental satellite. 100 
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2 Study area, data, and methodology 

2.1 Study area 

This study investigated the spatial and temporal variations in ground-level NO2 concentrations using GEMS 

monitoring and various ground measurements for 2021. The study area is illustrated in Fig. 1, covering most of China 

between 18°N and 43°N, and 103°E and 123°E. Considering the varied characteristics of air pollution in different 105 

regions of China, we divided the study area into six subregions: North-western China (NWC, including Gansu, 

Ningxia, and Shaaxi); North China (NC, including Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia); Central 

China (CC, including Henan, Hubei, and Hunan); Eastern China (EC, including Shandong, Jiangsu, Anhui, Shanghai, 

Zhejiang, Jiangxi, Fujian, and Taiwan); South-western China (SWC, including Sichuan, Chongqing, Guizhou, and 

Yunnan); and South China (SC, including Guangdong, Guangxi, and Hainan). Satellite-derived ground-level NO2 data 110 

were analyzed across these subregions. 

 

Figure 1: Study area and six subregions shown as different background colors. Blue circles show distributions of ground-

based NO2 monitoring stations. Yellow circles show the distributions of meteorological stations.  

2.2 GEMS VCDs of NO2 115 
GEMS VCDs of NO2 from its level 2 product were employed in this study. The NO2 VCDs retrieval algorithm is 

developed based on the differential optical absorption spectroscopy (DOAS) technique (Platt et al., 2008). It initially 

computes slant column densities (SCDs) of NO2 within the wavelength range of 432-450 nm. Subsequently, these 

SCDs are transformed into VCDs using hourly air mass factors (AMFs). The nominal detection limit for the NO2 

VCDs is 1 × 1014 molec/cm2, with a retrieval accuracy of 1 × 1015 molec/cm2. NO2 VCDs surpassing the GEMS 120 
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detection limit of 1 × 1017 molec/cm2 were considered as noise and consequently excluded from further analysis. The 

nominal spatial resolution of the GEMS dataset is approximately 7 km × 7.7 km, achieved by binning two pixels of 

3.5 km × 7.7 km each. Despite the irregular shape of satellite measurement pixels due to East-to-West scans, this study 

standardized the VCDs of NO2 onto a regular grid of 0.2o × 0.4o with the same spatial extent from 08:00 AM to 03:00 

PM local time in China. Data were excluded in the presence of cloudy conditions and solar zenith angles greater than 125 

700. Additional information on the GEMS mission and retrieval algorithms is available in the study by Kim et al. 

(2020). 

2.3 Population data 

We used the latest population data for 2021 from Oak Ridge National Laboratory's (ORNL) LandScan global product 

(https://landscan.ornl.gov). The LandScan population data is derived through an innovative methodology that 130 

combines geographic information science, remote sensing technology, and machine learning algorithms. Operating at 

a remarkably fine resolution of approximately 1 km, LandScan represents the most detailed global population 

distribution data accessible. As the satellite NO2 measurements were on a regular grid of 0.2o × 0.4o, we re-gridded 

the LandScan population data onto a regular grid of 0.2o × 0.4o. The spatial distribution of population density (DP, km-

2) in the study area is shown in Fig. 2. Based on population density, we divided the study region into four areas: lightly 135 

populated (LP) if DP  ≤ 200 km-2; moderately populated (MP) if DP > 200 km-2 but ≤ 500 km-2; highly populated (HP) 

if DP  > 500 km-2 but ≤ 1000 km-2; and supremely highly populated (SHP) if DP  > 1000 km-2. Satellite-derived ground-

level NO2 data were analyzed across subregions with varying urbanization levels. 

 

Figure 2: Spatial distribution of population density (DP, km-2) within the study area. 140 
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2.4 Ground-based NO2 and meteorological measurements 

In this study, we acquired hourly NO2 concentration data for 2021 from ground air quality monitoring networks 

situated within the study region. The spatial distribution of 856 ground-based NO2 stations, sourced from the China 

National Environmental Monitoring Center (http://www.cnemc.cn) and the Taiwan Environmental Protection 

Administration (http://210.69.101.63/taqm/en/default.aspx) is shown as blue circles in Fig. 1. Meteorological 145 

variables encompassing temperature (T), air pressure (P), wind speed (WS), relative humidity (RH), dew point (DP), 

visibility (VIS), and precipitation (PRECIP) were used in this study. These meteorological parameters were acquired 

from the global telecommunications system of the World Meteorological Organization. The spatial distribution of 208 

meteorological stations is illustrated as yellow circles in Fig. 1.  

2.5 Locations matching between different datasets  150 
Satellite measurements, characterized by their extensive spatial coverage, stand in contrast to the localized nature of 

ground measurements available at specific locations. To establish a correspondence between satellite measurements 

and ground air quality monitoring networks, the satellite NO2 data specific to the geographical coordinates 

corresponding to ground stations were meticulously extracted. Notably, the locations of meteorological stations may 

differ from those of air quality monitoring stations. Therefore, meteorological data were assigned to air quality 155 

monitoring stations situated within a 50 km radius of the meteorological station. The filtering process for model 

training involved the selection of stations with valid observations for all meteorological and air quality variables. 

These station-based datasets were used to train the machine learning model. For predicting ground-level NO2 

concentrations from satellite measurements, all meteorological variables were mapped onto a regular grid of 0.2o × 

0.4o using the bilinear interpolation method. The spatial interpolation results of these meteorological parameters 160 

together with the satellite measurements on the same regular grid were employed to estimate ground-level NO2 

concentration at a resolution of 0.2o × 0.4o. 

2.6 Nested machine learning model to consider the effects of NMH 

Machine learning models have been successfully employed in estimating ground-level NO2 concentrations using 

satellite data, typically following a two-fold procedural framework. Initializing this process involves the construction 165 

of a regression model, which is conventionally utilized to establish the overarching relationship between ground-

measured NO2 and its influencing factors (Chen et al., 2019; Chi et al., 2022). In this phase, the sample data undergoes 

division into a training dataset and a test dataset for model training and subsequent verification, respectively. The 

attainment of an optimal regression model is facilitated through parameter optimization techniques. Subsequently, the 

second phase entails the application of the regression model, where relevant data is inputted for application analysis 170 

to estimate the results. 

Within machine learning studies, the ensemble learning paradigm emerges as a prevailing methodology to amalgamate 

diverse learning algorithms into a cohesive regression model characterized by robust performance across multifaceted 

domains. Owing to the disparate methodologies employed in the generation of individual learners, ensemble learning 

bifurcates into two principal categories: the sequential instantiation of individual learners, as encapsulated by the 175 

boosting approach, and the concurrent instantiation of individual learners, exemplified by bagging and Random Forest 
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(Friedman et al., 2000; Prasad et al., 2006). The boosting algorithm, a variant of the lifting technique, is instrumental 

in diminishing variance in supervised learning scenarios, wherein distinct models are formed through the employment 

of disparate loss functions. XGBoost leverages both first-order and second-order derivatives to enhance the precision 

of model loss, a strategy that proves instrumental in achieving higher accuracy. Notably, during the process of selecting 180 

the optimal splitting point, XGBoost facilitates parallel optimization. This concurrent optimization significantly 

mitigates computational complexity, thereby effectively curtailing overfitting tendencies in the model. More details 

on the XGBoost regression model can be found in Chi et al. (2022). The XGBoost model was implemented in this 

study to convert columnar measurements into ground-level NO2 concentrations. 

In this study, a nested machine learning model was developed to incorporate the NMH in the conversion of columnar 185 

measurements into ground-level NO2 concentrations. The schematic illustration of the nested machine learning model 

implemented in this study is depicted in Fig. 3. Firstly, an inner machine learning model (i.e., random forest) was 

applied to predict the NMH using meteorological variables as input parameters. The evaluation of the predicted NMH 

showed a good agreement with the measurement-based results, with respective coefficient of determination (R2) values 

of 0.84 and 0.96 for the 10-fold cross-validation and fully-trained model (Ahmad et al., 2024). The resulting NMH 190 

dataset was then mapped onto a regular grid of 0.2o × 0.4o and incorporated into the main machine learning model 

(i.e., XGBoost regression) to estimate ground-level NO2 concentrations. The main machine learning model employed 

eleven input parameters, including GEMS NO2 VCDs, NMH, two temporal variables (i.e., month of the year ranging 

from 1 to 12 and hour of the day ranging from 08 AM to 03:00 PM), and seven meteorological parameters (i.e., T, P, 

WS, RH, DP, VIS, and PRECIP). All input parameters were filtered based on available satellite observations for the 195 

year 2021. To reveal the impacts of the NMH, we compared the performance of the basic model without considering 

the NMH (Model I) and the nested model after considering the NMH (Model II). 

To avoid overfitting and assess the efficacy of the model, the 10-fold cross-validation methodology was employed. 

The dataset was partitioned into 10 groups for comparable size, with nine folds utilized for model fitting and the 

remaining fold served as a validation set to gauge model performance. This iterative process was repeated ten times, 200 

with each fold serving as the validation set, to comprehensively evaluate the model's performance across all folds. A 

set of widely recognized statistical metrics, including R2, root mean squared error (RMSE), mean deviation (MD), and 

mean absolute percentage error (MAPE), were adopted to quantify the model's performance. In addition to the cross-

validation, the XGBoost regression model was trained using the entire dataset of input parameters to predict the 

ground-level NO2 concentrations on a regular grid of 0.2o × 0.4o across the study region for the year 2021. The fully-205 

trained model was subsequently assessed using the same statistical indicators to comprehensively evaluate its 

predictive performance. 
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Figure 3: Schematic diagram of the nested machine learning model, including a random forest model to predict the NMH 

from meteorological values and an XGBoost regression model to convert the column measurements into ground-level NO2 210 
concentrations. 

3 Results 

3.1 Evaluations of the nested machine learning model and its feature contribution 

The basic model, referred to as Model I, was trained and evaluated by considering GEMS NO2 VCDs together with 

temporal and meteorological variables as input parameters. Then, the nested model, referred to as Model II, was trained 215 

and evaluated by considering the NMH as input parameters in addition to the input parameters of Model I. Fig. 4a 

shows the 10-fold cross-validation of model I. It depicts a value of 0.73 for R2, while the RMSE, MD, and MAPE 

were 8.06 μg/m3, 0.09 μg/m3, and 39.68 %, respectively. The 10-fold cross-validation of model II after considering 

the NMH is revealed in Fig. 4c, which shows an improved R2 value of 0.93 and a lower RMSE of 4.19 μg/m3, MD of 

0.01 μg/m3, and MAPE of 14.78 %. Further, we trained Model I and Model II on the entire dataset of the input 220 
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parameters for the year 2021. The evaluations of fully-trained Model I and Model II are presented in Fig. 4b and Fig. 

4d, respectively. Again, Model II shows a lower bias and an improved R2 value after considering the influences of 

NMH (e.g., R2 increases from 0.88 to 0.99). These results clearly demonstrate that the inclusion of NMH has a great 

influence on the model’s performance. By adding NMH as an input parameter to the machine learning model, it can 

better capture the vertical distributions of NO2 and hence can predict the ground-level NO2 concentrations with higher 225 

accuracy and lower bias. Given the superior performance of Model II in accurately predicting ground-level NO2 

concentrations, we used the predictions from Model II for further analysis in this study. 

 

Figure 4: (a) The 10-fold cross-validation of satellite-estimated ground-level NO2 concentrations for basic Model I without 

considering the NMH. (b) The validation of fully-trained model for basic Model I without considering the NMH. (c) The 230 
10-fold cross-validation of nested Model II after considering the NMH. (d) The validation of fully-trained model for nested 

Model II after considering the NMH. 

A total of 11 features were involved in the predictions of ground-level NO2. These features include GEMS NO2 VCDs, 

NMH, two temporal variables (hour of the day and month of the year), and seven meteorological variables (T, P, WS, 

RH, VIS, DP, and PRECIP). Based on the XGBoost machine learning model, the feature contribution of input 235 

parameters in descending order is presented in Fig. 5. GEMS NO2 VCDs was identified as the top predictor variable 

(a) 

(d) (c) 

(b) 
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with a feature importance of 54.98 %. The second important predictor was NMH, with a contribution of 25.64 %. The 

temporal variables were ranked the third and fourth, with an importance of 3.23 % and 3.21 % for month of the year 

and hour of the day, respectively. They were followed by the meteorological parameters with a contribution of 2.45 % 

from temperature, 2.23 % from visibility, 2.01 % from relative humidity, 1.86 % from pressure, 1.84 % from wind 240 

speed, 1.63 % from precipitation, and 0.92 % from dew point. Among the predictors, the dominant contributors to the 

predictions were GEMS NO2 VCDs and NMH, accounting for 80.62% of the predictive power. Temporal variables 

made a modest contribution of 6.44%, while meteorological parameters contributed 12.94% to the overall prediction 

accuracy. 

 245 

Figure 5: Relative importance of individual input features (i.e., GEMS NO2 VCDs, NMH, temporal variables, and 

meteorological parameters) in the XGBoost machine learning model. 

The SHapley Additive explanations (SHAP) values presented in Fig. 6 were estimated from the XGBoost machine 

learning model to understand the impacts of individual input variables on the model's predictions. The analysis reveals 

that higher values of GEMS NO2 VCDs correspond to higher predictions of ground-level NO2 concentrations, while 250 

lower values of GEMS NO2 VCDs result in lower predicted levels of ground-level NO2. Conversely, lower NMH 

values are associated with higher predicted ground-level NO2 concentrations, whereas higher NMH values are linked 

to lower predicted ground-level NO2 concentrations. For temporal variables, the month of the year indicates the intra-

annual pattern of ground-level NO2, with lower concentrations observed in warm seasons and higher concentrations 

in cold seasons. On the other hand, the hour of the day indicates the diurnal variations of ground-level NO2 values, 255 

with higher concentrations occurring during the morning and lower values during the afternoon. Additionally, the 

meteorological parameters also affect ground-level NO2 concentrations. In general, higher atmospheric pressure is not 

conducive to the diffusion and dilution of NO2, as it is generally associated with the flow moving downward in the 
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central area. Lower temperatures can be associated with air stagnation, leading to lower visibility and worsened 

ground-level NO2 pollution. Moreover, relative humidity and dew point can facilitate the conversion of NO2 to nitrate 260 

and promote wet deposition processes. 

 

Figure 6: SHapley Additive exPlanations (SHAP) values from the XGBoost machine learning model to explain the impacts 

of individual input variables on the model's prediction of ground-level NO2 concentrations. 

3.2 Spatial distributions of ground-level NO2 concentrations 265 
Based on the estimations of NO2 concentrations for the year 2021, Fig. S1 shows an example of the spatial distributions 

of ground-level NO2 concentrations for each hour from 08:00 AM to 03:00 PM on 29 September, 2021. The figures 

depict a notable diurnal pattern of ground-level NO2, with the highest values observed at 08:00 AM and lowest values 

observed at 03:00 PM, following a decreasing trend from 08:00 AM to 03:00 PM. A few GEMS NO2 VCDs were 

missing due to higher cloud fractions during some hours. Additionally, it should be noted that satellite measurements 270 

are only available during the daytime. To address the data missing issues resulting from clouds and temporal gaps, we 

employed a correction factor based on ground measurements. This correction factor represents the ratio between the 

annual average NO2 concentrations derived from 24-h data and the annual average NO2 concentrations when satellite 

data were available. The estimated correction factor is depicted in Fig. S2. 

The bias-corrected NO2 concentrations were applied in further analyses. Fig. 7 shows the spatial distributions of the 275 

annual average ground-level NO2 concentrations for the year 2021 across the study region, including four urban 

agglomerations: Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan 

Basin (SCB). Most urban agglomerations depicted NO2 concentrations around 40 μg/m3 or even higher. The highest 

ground-level NO2 concentrations were observed in the BTH region, with a spatial distribution characterized by higher 

values in the central, southern, and southeast parts of the region, and lower concentrations in the northern and 280 
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southwestern areas. In the YRD region, elevated values were observed over Shanghai, the southern part of Jiangsu, 

and the northern part of Zhejiang. The PRD region exhibited the highest ground-level NO2 concentrations in its central 

region, along with Guangdong's coast and central areas. In the SCB, the western part of Chongqing depicted the 

highest ground-level NO2 concentrations, which can be attributed to its large population and higher emissions. The 

presence of few scattered clusters of NO2 pollution in the SCB could be attributed to economic factors and the 285 

influence of topography (Li et al., 2023). These spatial patterns are in good agreement with previous studies conducted 

using LEO satellite instruments (Chi et al., 2022; Qin et al., 2020; Wei et al., 2022; Wu et al., 2021; Xu et al., 2021).  

 

Figure 7: Spatial distributions of annual average ground-level NO2 concentrations for 2021 in the study region (left panel) 

and in the four major urban agglomerations in China (right panel): Beijing-Tianjin-Hebei (BTH), Yangtze River Delta 290 
(YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB). 

Considering the human health risks associated with NO2, we evaluated the population exposure levels for different 

provinces in the study region. The provincial-level NO2 concentrations were estimated from the annual average 

ground-level NO2 concentrations. Fig. 8 compares the spatial mean and population-weighted mean of NO2 

concentrations for individual provinces in descending order by the population-weighted mean. The population-295 

weighted mean NO2 concentrations were consistently higher than the spatial mean NO2 concentrations, indicating that 

relying solely on the spatial mean may underestimate the population exposure level. The underestimation of population 

exposure levels using the spatial mean was more pronounced in provinces with centralized populations (e.g., Hebei 

and Guangdong).  

The population in Tianjin province was exposed to the highest levels of NO2, with a population-weighted NO2 mean 300 

of 40.26 μg/m3. This level of exposure is closed to the WHO Interim Target 1 (IT-1) of 40 μg/m3. The NO2 exposure 
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level of people living in Hebei, Shanghai, Shandong, and Jiangsu exceeded the IT-2 levels of 30 μg/m3. The NO2 

exposure levels for Beijing and Zhejiang were slightly under the IT-2 levels, with population-weighted means of 28.86 

μg/m3 and 28.25 μg/m3, respectively. Residents in Henan, Anhui, Shanxi, Hubei, Sichuan, Hunan, and Jiangxi 

provinces were exposed to NO2 levels exceeding the IT-3 levels of 20 μg/m3. All provinces depicted population 305 

exposure levels of NO2 exceeding the AQG levels of 10 μg/m3. Hainan Province had the lowest population-weighted 

mean NO2 concentrations of 10.57 μg/m3, which closely approached the levels set by the AQG. 

 

Figure 8: Spatial mean and population-weighted mean ground-level NO2 concentrations for 2021 in different provinces of 

China in the study region. 310 

The annual average ground-level NO2 concentrations were further evaluated for all subregions with different 

geolocations and urbanization levels. Results are presented in Fig. 9. Overall, the highest NO2 concentrations were 

observed in NC, followed by EC, CC, NWC, SWC, and SC. Additionally, compared to lightly populated areas, the 
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highly populated areas exhibited higher NO2 concentration levels, primarily due to increased emissions and a more 

developed economy (Qiu et al., 2023). Among all subregions, the highest NO2 concentrations for highly populated 315 

and supremely highly populated areas were found in NC region, while the highest NO2 concentrations for lightly 

populated areas were observed in EC region. In the highly populated areas in the NC region, NO2 concentrations 

exceeded IT-2 level and were nearly double the concentration of lightly populated areas. NO2 concentrations in highly 

populated areas of NWC, NC, CC, SWC, and SC exceeded the IT-3 levels. For moderately populated areas, only NC, 

CC, and EC exceeded the IT-3 level. Furthermore, all the subregions and their urbanization categories, including the 320 

lightly populated areas, depicted their NO2 values higher than AQG level.  

 

Figure 9: Annual mean ground-level NO2 concentrations for 2021 in subregions with different geolocations (e.g., NWC, NC, 

CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). 

3.3 Seasonal variations of ground-level NO2 concentrations 325 
Similar to the annual average, the estimation of seasonal average NO2 incorporated correction factors to address the 

data missing issues resulting from clouds and in the nighttime (Fig. S3). Based on the bias-corrected NO2 data, the 

seasonal averages NO2 concentrations for lightly populated, moderately populated, highly populated, and supremely 

highly populated areas are shown in Fig. 10. Among all subregions, the NO2 concentrations were highest in winter. 

This can be attributed to the more stable atmospheric structure and lower precipitation during this season, which create 330 

less favorable conditions for the dispersion and deposition of ground-level NO2. Additionally, the reduced photolysis 

rate of NO2 due to low temperatures in winter leads to an increased residence time of NO2 in the atmosphere (Xu et 

al., 2021). The temperature inversion in winter can further prolong the lifetime of the ground-level NO2, leading to 

higher accumulations near the ground. Furthermore, the elevated concentrations in winter can be attributed to 

increased energy consumption for heating purposes.  335 

Among the six subregions, NC and EC depicted the highest NO2 concentrations, reaching levels close to IT-1 (40 

μg/m3), in winter for highly populated areas. Conversely, the lowest ground-level NO2 concentrations were observed 

during summer for all six subregions. During this season, the increased precipitation coupled with the monsoon-
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induced atmospheric convection foster wet deposition and dispersion of ground-level NO2. Additionally, abundant 

sunlight promotes the decomposition of NO2. Furthermore, the NO2 emissions are generally lower in summer 340 

compared to winter (Bhattarai et al., 2021; Fan et al., 2020; Tian et al., 2019). Considering the different population 

densities in the subregions, the NO2 pollution levels were lowest in lightly populated areas and highest in highly 

populated areas for all seasons. In lightly populated areas, the average NO2 concentrations were approximately 50 % 

of those observed in highly populated areas.  

 345 

Figure 10: Seasonal variations in ground-level NO2 concentrations for 2021 in subregions with different geolocations (e.g., 

NWC, NC, CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). 

3.4 Diurnal variations of ground-level NO2 concentrations 

The estimations of hourly average NO2 concentrations incorporated correction factors to address data gaps caused by 

clouds (Figs. S4 and S5). Based on the bias-corrected NO2 data, Fig. S6 shows the spatial distribution of average 350 

ground-level NO2 concentrations for each hour between 08:00 AM and 03:00 PM in 2021. Consistent spatial patterns 

were observed during this time range, with higher NO2 concentrations in highly populated urban areas characterized 

by elevated NOx emissions. In the morning, clear indications of high NO2 concentrations were noticed over urban 

centers, reflecting NOx emissions related to traffic. The spatial gradients of ground-level NO2 concentrations were 

notably pronounced from urban centers to outskirts during this time. However, these spatial gradients were less 355 

pronounced during noon and afternoon hours. Compared to the highly populated urban areas, NO2 distributions in 
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lightly populated areas displayed lower diurnal variability. These variations in ground-level NO2 distributions can be 

attributed to changes in NOx emission patterns, meteorological conditions, and photochemistry throughout different 

times of the day (Shen et al., 2023). For instance, Xu et al. (2023) observed the minimum NO2 lifetime at noon, which 

can be attributed to higher photochemical reaction rates resulting from increased temperature and ultraviolet radiation 360 

(Gao et al., 2023). 

The diurnal variations of ground-level NO2 concentrations for the subregions are illustrated in Fig. 11. In most 

subregions, the peak of ground-level NO2 was observed between 08:00 AM and 09:00 AM in highly populated areas. 

Additionally, a slight increase in NO2 concentrations was observed in the late afternoon (i.e., 03:00 PM). In lightly 

populated and moderately populated areas, NWC and NC depicted a decreasing trend from 08:00 AM to 01:00 PM, 365 

followed by a slight increase at 02:00 PM and 03:00 PM. Lightly populated areas of CC showed an increasing trend 

from 08:00 AM to 10:00 AM, followed by a nearly constant value. However, moderately populated areas of CC 

showed a decreasing trend from 08:00 AM to 01:00 PM and then displayed an increasing trend at 02:00 PM and 03:00 

PM. EC exhibited increasing values from 08:00 AM to 09:00 AM, followed by a decreasing trend until 02:00 PM, and 

again increased until 03:00 PM for both lightly populated and moderately populated areas. In lightly populated and 370 

moderately populated areas of SWC, NO2 concentrations showed an increasing trend from 08:00 AM to 10:00 AM, 

followed by a decreasing trend throughout the afternoon. For the SC region, NO2 concentrations remained relatively 

consistent from 08:00 AM to 10:00 AM, followed by a decreasing trend in both lightly populated and moderately 

populated areas. 

Overall, highly populated areas exhibited peak ground-level NO2 concentrations during the early morning rush hours 375 

(08:00 AM - 09:00 AM), followed by a decreasing trend. The minimum NO2 levels were observed at 01:00 PM - 02:00 

PM, with a slight increase observed at 03:00 PM. This diurnal pattern of ground-level NO2 concentrations aligns with 

findings by Zhang et al. (2023). The decrease in NO2 levels from early morning to afternoon can be attributed to 

reduced traffic emissions, increased photochemical consumption, and higher NMH levels (Ahmad et al., 2024; Xie et 

al., 2016). In lightly populated and moderately populated areas, a slight morning peak was observed around 09:00 AM 380 

or 10:00 AM, occurring later than the peak observed in urban areas. This delayed morning peak in these areas can be 

attributed to regional dispersions originating from urban sources. The diurnal pattern of ground-level NO2 

concentrations observed in this study is consistent with previous studies using ground-based air quality monitoring 

stations (Shen et al., 2023; Yu et al., 2020; Zhao et al., 2016). 
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 385 

Figure 11: Diurnal variations in ground-level NO2 concentrations from 08:00 AM to 03:00 PM for 2021 in subregions with 

different geolocations (e.g., NWC, NC, CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). 

4 Discussions 

GEMS, the world's first GEO-based environmental satellite instrument, offers a new opportunity for monitoring air 

quality across extensive regions, providing unprecedented spatial and temporal resolution. The quality of GEMS 390 

VCDs of NO2, obtained from the level 2 product, has been evaluated using ground-based instruments in various 

regions. Encouragingly, a good agreement has been observed between the GEMS NO2 VCDs and measurements from 

various ground-based instruments (Ahmad et al., 2024; Kim et al., 2023; Li et al., 2023). The results presented in this 

study emphasize the significant advantage of geostationary satellites in providing air pollution information at an hourly 

resolution. They enable the assessment of diurnal variations in air pollution across different areas, ranging from rural 395 

to urban regions. This represents a substantial improvement over traditional LEO-based satellite instruments. 

Furthermore, these GEO-based measurements serve as valuable supplements to traditional measurements from 

ground-based air quality monitoring networks, which are primarily concentrated in urban areas, leaving vast rural 

regions without observations. 

NMH plays a significant role in establishing a connection between satellite column measurements and ground-level 400 

NO2 concentrations. For example, in summer, the maximum NMH resulting from strong solar heating leads to a 
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dilution of ground-level pollution. Conversely, the minimum NMH in winter, caused by lower temperatures and stable 

atmospheric conditions, contributes to an increased accumulation of NO2 near the surface. Additionally, diurnal 

variations in NMH can influence the diffusion or accumulation of ground-level NO2. During morning hours, when 

NMH levels are lower, a majority of NO2 molecules tend to accumulate near the Earth's surface. However, in the 405 

afternoon, NMH levels rise, reducing the vertical gradient of NO2. In this study, a nested machine learning model was 

developed to incorporate NMH in the conversion of satellite columnar measurements to ground-level NO2 

concentrations. Two models were tested and trained: Model I, which did not consider NMH, and Model II, which 

incorporated NMH. The validation results demonstrated that Model II exhibited more promising outcomes than Model 

I, suggesting that the inclusion of NMH significantly influenced the model's performance. By including NMH as an 410 

input parameter in the machine learning model, it was better able to capture the vertical distributions of NO2 and thus 

predict ground-level NO2 concentrations with improved accuracy and performance. Furthermore, NMH was identified 

as the second most important predictor variable after GEMS NO2 VCDs. Therefore, the incorporation of NMH in the 

machine learning model enhanced the conversion process from satellite columnar measurements to ground-level NO2 

concentrations, providing a refined and more accurate estimation. 415 

The diurnal variations of satellite-derived ground-level NO2 concentrations exhibit a distinct gradient across all 

subregions across China. In highly populated areas, peak ground-level NO2 concentrations occur during the early 

morning rush hours (08:00 AM - 09:00 AM), followed by a decreasing trend with the minimum NO2 levels observed 

at 01:00 PM - 02:00 PM. In lightly populated and moderately populated areas, a slight morning peak is observed 

around 09:00 AM or 10:00 AM, occurring later than the peak observed in urban sites. This delayed morning peak in 420 

these areas can be attributed to regional transports originating from urban sources. These diurnal variations in NO2 

levels are influenced by various driving factors, each contributing differently across different regions. For instance, 

anthropogenic emissions play a dominant role in highly populated urban and suburban areas, characterized by traffic 

emissions peaking in the morning and late afternoon (Liu et al., 2018; Naiudomthum et al., 2022). Additionally, 

photochemistry plays a significant role, as NO2 is in chemical equilibrium with nitric oxide (NO). The ratio of NO2 to 425 

NO is influenced by factors such as radiation, ozone, and peroxyl radicals. During daytime, NOx undergoes oxidation 

through radical-mediated reactions, forming nitric acid and organic nitrates, with their levels depending on radiation, 

ozone, and volatile organic compounds. As a result, the lifetime of NO2 reaches its lowest point around noon, typically 

lasting a few hours during summer. Furthermore, atmospheric transport contributes to the diurnal variation of NO2, 

particularly in highly populated areas like urban centers and their surrounding regions (Zhang et al., 2023). The hourly 430 

NO2 concentration results provide high-resolution information on the diurnal variations in NO2 pollution levels across 

different regions and demographic patterns. 

The annual average ground-level NO2 concentrations revealed higher levels, reaching around 40 μg/m3, in urban 

agglomerations. The provincial ranking, based on population-weighted mean NO2 concentrations, identified the 

provinces along the northern and eastern coast of China (such as Tianjin and Shanghai) as having the highest NO2 435 

concentrations, while the provinces along the southern coast (like Hainan) exhibited the lowest concentrations. Across 

all subregions, ground-level NO2 concentrations were highest in winter and lowest in summer. Additionally, the 
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highest NO2 concentrations were observed in NC, followed by EC, CC, NWC, SWC, and SC. Despite a gradual 

reduction in NO2 concentrations in China, most regions in China still exceeded the safety standard set by the 2021 

WHO AQGs. Therefore, it is recommended to implement stringent emission controls to further reduce NO2 levels and 440 

achieve a safe and acceptable air quality standard. 

The ground-level NO2 concentrations exhibit a clear spatial gradient, with the highest concentrations observed in 

highly populated areas, while minimum concentrations are found in lightly populated areas. These spatial disparities 

in ground-level NO2 concentrations can be attributed to several factors. Firstly, the distribution of NOx emission 

sources varies with population densities, ranging from urban centers to rural areas. Additionally, the relatively short 445 

lifetime of NO2, influenced by photolysis and chemical interactions with hydroxyl radicals, volatile organic 

compounds, and ozone, plays a significant role (Pusede & Cohen, 2012). The combination of mobile NOx emissions 

and the uneven distribution of road networks, featuring different vehicle types and traffic volumes, contributes to 

pronounced spatial variations in NO2 levels. Moreover, the short lifespan of NO2 due to atmospheric chemical 

reactions results in elevated concentrations in close proximity to emission sources, such as roadways, accompanied 450 

by rapid declines in NO2 concentrations with increasing distance from these sources (Lee et al., 2018). Furthermore, 

the diverse terrains, land cover, and climates observed in different regions of China collectively influence vertical and 

horizontal airflows, rates of NO2 formation and deposition, and contribute to spatial variations in NO2. 

The GEMS measurements, while valuable, are subject to uncertainties and limitations. One of the primary challenges 

is the impact of cloudy conditions, which can affect the reliability of GEMS measurements. To address this issue, data 455 

with a cloud fraction exceeding 30% were intentionally excluded from the analysis. This approach aimed to strike a 

balance between obtaining an adequate number of measurements and minimizing the influence of cloud-contaminated 

data. Additionally, data with a solar zenith angle exceeding 70° were excluded. Regions with a higher likelihood of 

cloud cover had more missing data, and there was a relatively small sample size available in the early morning due to 

the absence of solar radiation. Another inherent limitation of satellite measurements is the lack of data during 460 

nighttime. To ensure data quality, any VCDs exceeding 1 × 1017 molec/cm2 were considered noise and excluded from 

the analysis. To align the satellite-estimated ground-level NO2 concentrations with ground-measured NO2 

measurements, correction factors were applied for hourly, seasonal, and annual averages. Detailed information 

regarding these correction factors is provided in Supplement Text S1. It is important to note that the data used in this 

study corresponds to version 1 of the GEMS product. Ongoing efforts are being made to enhance the accuracy of 465 

GEMS products, and subsequent versions are expected to offer improved quality and reliability. 

To explore the impact of missing GEMS NO2 VCDs on estimating average ground-level NO2 concentrations between 

08:00 AM and 03:00 PM, we calculated the difference between the average NO2 concentrations derived from all 

ground measurements and the average ground-measured NO2 concentrations when satellite data was available. The 

hourly variations of this concentration difference for 2021 are presented in Fig. 12. The average ground-measured 470 

NO2 concentrations, when satellite data was available, consistently underestimated the average NO2 concentrations 

from all ground measurements for each hour. The degree of underestimation was higher during hours with more 

missing data. For instance, at 03:00 PM, 02:00 PM, 01:00 PM, and 08:00 AM, the mean underestimation was -
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6.27±2.38 μg/m3, -4.38±1.94 μg/m3, -2.60±2.50 μg/m3, and -1.57±1.19 μg/m3, respectively. The underestimation 

gradually decreased for 12:00 PM, 11:00 AM, and 09:00 AM. Notably, the underestimation was at its minimum for 475 

10:00 AM, with a value of -0.16±1.61 μg/m3. 

 

Figure 12: Difference between the average NO2 concentrations from all ground measurements and the average ground-

measured NO2 concentration when satellite data was available for each hour from 08:00 AM to 03:00 PM. 

5 Conclusion 480 
In this study, a nested machine learning model was developed to incorporate the NMH as an input parameter in the 

methodological framework. The model's performance in predicting ground-level NO2 concentrations from satellite 

columnar measurements was then explored. Among the testing and training of the two models, the model that 

considered the NMH as one of the input parameters demonstrated more promising results. This suggests that the 

inclusion of the NMH has a significant impact on the model's performance. Furthermore, the NMH was identified as 485 

the second most important predictor variable after the GEMS NO2 VCDs. The diurnal variations of satellite-derived 

ground-level NO2 concentrations exhibited a clear gradient across all subregions, ranging from highly populated areas 

to lightly populated areas. In highly populated areas, peak ground-level NO2 concentrations were observed during the 

early morning rush hours (08:00 AM - 09:00 AM). In areas categorized as lightly populated or moderately populated, 

a slight morning peak was observed around 09:00 AM or 10:00 AM, occurring later than the peak observed in urban 490 

sites. In highly and supremely highly populated areas in northern China, NO2 concentrations still exceeded the WHO 

IT-2 standards and were double the levels observed in lightly populated regions. These satellite-derived ground-level 

NO2 concentrations provided high-resolution information on the diurnal variations of NO2 pollution levels across 

different regions and levels of urbanization. It is important to note that the GEMS measurements, while valuable, are 

subject to uncertainties and limitations, particularly due to the impact of cloudy conditions and the absence of 495 

nighttime data. To mitigate these issues, correction factors were applied in this study to address the inherent challenges 

of satellite measurements. Overall, the findings of this study enhance our understanding of the effects of the mixing 
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height of NO2 on the conversion of satellite-based columnar measurements to ground-level NO2 concentrations. They 

also provide valuable insights into the spatial and diurnal patterns of ground-level NO2 across China. 
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