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Abstract. Because of the chaotic behavior of the coupling between water flow and sediment erosion and transport, without

any special treatment the practical results of landscape evolution models (LEM) are likely to be dominated by numerical er-

rors. This paper describes two areas of improvement that we believe are necessary for the successful simulation of landscape

evolution models. The first one concerns the expression of the water flux that was initially rebuilt in Coatléven (2020) in a

mathematically consistent way for the cell-to-cell multiple flow direction algorithms, thanks to a reinterpretation as a well5

chosen discretization of the Gauckler-Manning-Strickler continuous equation. Building on those results, we introduce here a

general framework allowing to derive consistent expressions of the water flux for the most commonly used multiple/single flow

direction (MFD/SFD) water flow routines, including node-to-node versions. If having a consistent water flux is crucial to avoid

any mesh size dependence in a LEM and controlling the consistency error, the expected non-linear self amplification mecha-

nisms of the water and sediment coupling can still lead to simulations blurred by numerical errors. Those numerical instabilities10

being highly reminiscent of turbulence induced instabilities in computational fluid dynamics (CFD), in the second part of our

paper we present a “large structure simulation” (LSS) approach for LEM, mimicking the large-eddy simulations (LES) used for

turbulent CFD. The LSS allows to control numerical errors while preserving the major physical based geomorphic patterns.

1 Introduction15

Since the pioneering work of Gilbert in the XIX century (Gilbert (1880)), the meaning of the term “landscape evolution

model” (LEM) has evolved until reaching in the late XX century its modern definition. It is now considered has a numerical

application of a mathematical system that seeks to simulate a part of the physical processes controlling the landscape dynamic.

The capability of LEMs to provide an integrated simulation in which several processes are addressed make them particularly

relevant to tackle a large variety of contexts, such as the imprint of the upper mantle on the history of a sedimentary basin over20

thousands to millions of years (e.g., Braun et al. (2013); Granjeon (2014)), the control exerted by glacial dynamics (Egholm

et al. (2012); Hergarten (2021)), or the impact of climate change at variable time-scales on drainage basins and soils (e.g.,

Tucker and Slingerland (1997); Coulthard et al. (2000); Braun et al. (2015); Srivastava et al. (2022)). The success of those

numerical approaches depends on their ability to correctly handle the positive non-linear feedback between the water flow and
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the sediment erosion and deposition in a decent computational time. This non-linear coupling between water and sediments25

is indeed expected to potentially induce complex water flow networks even on initially small topographic variations, allowing

in return the emergence of complex geomorphic landforms. However, in the absence of reference analytic solutions, it is hard

to decipher if the obtained landform results from physical processes or from the self-amplification of initially small numerical

errors. The objective of the present paper is to propose a general approach to considerably diminish the risk of producing

inconsistent numerical results. The first ingredient is obviously to make sure to remove any anomalous consistency error in30

the numerical schemes, while the second one consists in introducing a method to control the evolution of the numerical errors.

We believe that any LEMs developer will take advantage in following the recommendations resulting from this two topics,

whatever the space and time scales considered.

There is a wide variety of mathematical models describing the flow of water, depending on the prominent space and time scales

of the considered problem. The most complete model is the Navier-Stokes model which allows for very precise but prohibitively35

costly simulations. The shallow-water approximation is sometimes used to solve rivers system (e.g. Audusse et al. (2004)) or to

simulate glacial dynamics Egholm et al. (2011). Despite a reduced computational cost compared to the Navier-Stokes model,

this model has not been often explicitly deployed in LEMs. Probably one of the reasons is that computationally efficient water

flow routing algorithms have been developed during the last decades. Those algorithms are built assuming that the water flow

follows the direction of steepest descent (e.g. O’Callaghan and Mark (1984); Freeman (1989); Fairfield and Leymarie (1991);40

Quinn et al. (1991); Holmgren (1994); Quinn et al. (1995); Qin et al. (2007)), and are able to simulate relatively complex water

flow networks despite this inherent simplicity. Multiple flow direction (MFD) and single flow direction (SFD) algorithms are

among the most known water-flow routing families implemented in reference LEMs such as in SIBERIA(Willgoose et al.

(1989, 1991); Willgoose (2005)), CAESAR-Lisflood (Bates et al. (2010); Coulthard et al. (2013)), FastScape (Braun and

Willett (2013)), eSCAPE (Salles (2018)), CIDRE (Carretier et al. (2020)), EROS (Davy et al. (2017)) or BadLand (Salles45

et al. (2017)), or in stratigraphic models such as DionisosFlow (Granjeon (2014)). This list being not exhaustive, the reader is

referred to Tucker and Hancock (2010); Van der Beek (2013); Valters (2016); Armitage (2019); Nones (2020) for a complete

review. The main differences between them is in their representation of the discretized domain (cell-to-cell or node-to-node

interaction following the terminology in Armitage (2019)) and by the empirical choice made to distribute water among the

mesh elements.50

The empirical foundations of the MFD/SFD water flow routing and their lack of mathematical framework make them very

difficult to validate. A first behavior known since a long time is not very encouraging: the water flow distribution Qw is mesh

dependent. This is probably the most documented problem of the LEM community since more than twenty years (e.g. Schoorl

et al. (2000); Pelletier (2010); Armitage (2019)) and one that still disturbs current models. Smart solutions have been published

to minimize this effect without making it completely vanish (Perron et al. (2009); Pelletier (2010)), while alternatively it was55

proposed to redefine drainage area at the continuous level Gallant and Hutchinson (2011); Bonetti et al. (2018) to allow a

consistent discretization ofQw. From a mathematical point of view, it has been quite recently understood by Coatléven (2020)

that the water discharge obtained from the cell-to-cell MFD/SFD corresponds in fact to a non-consistent approximation of the

2

https://doi.org/10.5194/egusphere-2023-687
Preprint. Discussion started: 26 June 2023
c© Author(s) 2023. CC BY 4.0 License.



water flux of a Gauckler-Manning-Strickler model, a simplification of the shallow water model. This allowed Coatléven (2020)

to correct the MFD/SFD to obtain a consistent and thus mesh independent approximation for Qw, in the usual numerical60

analysis sense of convergence when the mesh size go to zero. The first purpose of this paper is consequently to recall this

result and then to explicitly show how all the classical MFD/SFD algorithms, even the node-to-node versions, can be in fact

interpreted and thus corrected in the same way slightly generalizing the results of Coatléven (2020) and finally solving the grid

dependency issue.

Because of the self-amplification mechanisms at the core of the equation system and that are assumed to play a major role in65

valleys formation and their spacing (see Scheingross et al. (2020); Bonetti et al. (2020); Perron et al. (2009); Hooshyar and

Porporato (2021b)), solving the consistency issue in these LEMs is thus absolutely necessary to avoid creating anomalous

numerical errors but yet but not sufficient to guarantee that results are not dominated by numerical errors. Unless some special

numerical treatment is added, the expected self-amplification processes can indeed also amplify legitimate numerical round-

off or solver errors up to the point that they potentially completely blur the numerical solution. This “butterfly effect” is very70

reminiscent of the turbulence issue arising in the field of computational fluid dynamics (CFD). This observation is not new

and was studied in details for instance in Bonetti et al. (2020); Hooshyar et al. (2020). The modern solution found by the

CFD community to achieve reproducible and meaningful simulations is to replace direct numerical simulation (DNS) of the

Navier-Stokes equations by large eddy simulation (LES, Berselli et al. (2005)). The objective of LES is to obtain a correct

approximation of local spatial averages of turbulent flows, recovering the correct dynamics only for the organized structures75

of the flow (the eddies) which are larger than some target length scale α. Thus, LES chooses to abandon the idea of resolving

all the scales involved in the true physical processes, as there is no hope to use a mesh fine enough to correctly resolve the

smallest scales. In practice this is done by filtering the solution to distinguish between the behavior of the flow above and

below α, and obtaining local averages that are smoother and as mesh independent as possible. To our knowledge, the first

attempt at using an LES approach for simulating landscape evolution albeit without explicitly mentioning LES is Perron et al.80

(2009), where a Laplacian smoothing (equivalent to a mesh related box filter in the LES terminology) was applied on the

topography. More recently Hooshyar and Porporato (2021a); Porporato (2022) resorted to a mono-directional domain size

related box filter to obtain robust results on channelization statistics and scaling signatures: in other words they substitute the

elevation and the specific drainage area by their mean values in the axial direction of their rectangular simulated domain. In

their conclusion they suggest that the use of more general LES approaches seems a viable avenue for more complex landscape85

evolution simulations. In line with this observation, we also believe that the success of the attempts of Perron et al. (2009);

Hooshyar and Porporato (2021a); Porporato (2022), the numerous analogies between the instabilities arising in landscape

evolution models and turbulence reported in Smith and Bretherton (1972); Scheingross et al. (2020); Bonetti et al. (2020);

Hooshyar and Porporato (2021b) as well as the numerical experiments strongly advocate for the use of some LES technology

to overcome the numerical issues arising in the non-linear coupling of sediment evolution and water flow. Those are the reasons90

why we have considered deriving a “large structures simulation” (LSS) approach for landscape evolution. We will see that the

numerical results of LSS seem remarkably reproducible. Notice that contrary to Hooshyar and Porporato (2021a); Porporato

(2022) and more in line to what is done in the CFD community, we will fix a length scale that will correspond to the size of
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the smallest structures we want to resolve in the problem, quite independently of the domain size. We also consider a more

advanced differential filter, namely the Leray-α filter (Cheskidov et al. (2005); Guermond et al. (2003)) that is not related to95

any specific geometric configuration. In this sense, our work can be considered as a generalization of Hooshyar and Porporato

(2021a); Porporato (2022). We will show that the results obtained from LSS are actually free of the non-physical heterogeneity

that appeared spontaneously from numerical errors. Notice that those numerical artifacts were often misleading as they induced

more “realistic looking” solutions than the correct ones obtained by the LSS, in the sense that the obtained topography was

more complex. Starting from the LSS approach, it then becomes relevant to inject physically controlled heterogeneity in order100

to bring out the complexity in the results.

The two items addressed in this paper are complementary and should benefit to every LEMs. The paper will be organized

accordingly. In the first part we introduce the notations to describe a sedimentary system. The second part tackles the issue of

the consistency in the MFD/SFD algorithms. After recalling the results of Coatléven (2020) on the classical cell-to-cell MFD

algorithms, we detail the extension to the most classical MFD/SFD node-to-node algorithms of the literature. The resulting105

relations between the Gauckler-Manning-Strickler model and the water flow routing are summarized in a synthesis table, which

should help the developer to implement a consistent version of the flow routing used in its landscape model. The third section

of the paper starts by illustrating on an easy to analyze synthetic sedimentary system the issue related to the self-reinforcement

between the water flow and the sediment dynamics. We then introduce the LES inspired filtering strategy and apply this “large

structure simulation” (LSS) approach on the illustrative test case as well as on a more complex model.110

2 Model and notation

Following Smith and Bretherton (1972), we assume that a sedimentary system can be idealized through the following assump-

tions: (H1) the basin topography can be represented as a mathematical surface, (H2) the principle of the conservation of mass

applies to this surface, (H3) the sediment flux at any point of the surface is a function of the local slope and the local discharge

of water. In other words, using an Eulerian approach (H1) implies that we consider a fixed geographical region over the time115

period ]0,T [ mathematically modeled by means of a domain Ω ∈ R2, a function b : Ω×]0,T [−→ R describing the basement

i.e. the lower part of the basin in the z direction, and a function hs : Ω×]0,T [−→ R describing the thickness of the sediments

(see Fig. 1). Thus, our basin B :]0,T [−→ R3 can be described for almost every (a.e.) t ∈]0,T [ by:

B(t) =
{

(x,y,z) ∈ R3 | (x,y) ∈ Ω and b(x,y, t)≤ z ≤ b(x,y, t) +hs(x,y, t)
}
. (1)

120

The evolution of the basement b is mostly governed by two processes: tectonics (both thermal and structural) and flexure. In

the present paper we assume that the evolution of b is a data, and we focus on computing the evolution of the function hs. For
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Figure 1. Representation of the two main surfaces considered in a landscape evolution model in the (z,Ω) parameter space, where z is

the elevation and Ω the spatial domain. the basement b surface represents the bottom part of the simulated block, on which sediments are

deposited. The topographic surface is b+hs where hs is the sediment thickness. The simulated sedimentary content is denoted B.

the sake of clarity, we give the expression of the mass conservation (H2) equations, neglecting porosity for simplicity:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂hs
∂t

+ div (Js) = Ss in Ω×]t0,T [,

−Js ·n =Bs on ∂ΩN×]t0,T [,

hs = 0 on ∂ΩD×]t0,T [,

hs(t= t0) = hs,0 in Ω,

(2)

where Ss and Bs are sediment source terms (coming from an in-situ sediment production, from soil erosion, or from sediment125

supplies defined in the domain boundaries) and Js is the sediment flux. The domain boundary ∂Ω is divided between ∂ΩN

where Neumann boundary conditions are imposed and ∂ΩD where we enforce homogeneous Dirichlet boundary conditions.

Choosing a model corresponds to choosing a specific expression for the sediment flux and the source terms. A common feature

of almost all LEMs is that the sediment flux model Js and/or the source term Ss depend non-linearly on the local discharge of

water Qw, very often through a power law like Qrsw ||∇(hs + b)||ps+1. Self-amplification mechanisms are known to appear as130

soon as rs > 1 (Smith and Bretherton (1972)).
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Let us precise that in the following the xy coordinates will be expressed in kilometers (km), while sediment height hs and

basement b will be expressed in meters (m).

3 From mesh dependent multiple flow direction algorithms to consistent approximations of continuous

Gauckler-Manning-Strickler models135

Landscape evolution models usually defines the “local discharge of water” Qw directly from the so-called drainage or catch-

ment area CA (also sometimes called contributing area). Roughly speaking CA corresponds at a given outlet to the measure of

the horizontal projection of the surface area from which the water contributing to this outlet is coming from (Maxwell (1870);

Leopold et al. (1964); Bonetti et al. (2018)). Despite being a very intuitive notion, it has evaded for a long time a precise math-

ematical definition. Classical multiple flow direction (MFD) algorithms are intended to provide a practical way at computing140

CA for a mesh cell. As is well documented (Desmet and Govers (1996); Pelletier (2010, 2013); Porporato (2022)) the discrete

catchment areas obtained from those algorithms strongly depends on the cell size, geometry and orientation with respect to

the flow. Several attempts can be found in the literature to reduce this mesh dependency, defining Qw = (CA/w) where w is

a normalization factor equal for instance to the cartesian cell side length or diagonal length (cf Desmet and Govers (1996)) or

to an estimate of the width of the flow (Pelletier (2010)) defining the so-called specific or unit catchment area (SCA/UCA). A145

more modern mathematical definition of the specific catchment area a was proposed in Gallant and Hutchinson (2011); Bonetti

et al. (2018), consisting in solving an abstract uniform flow equation:
∣∣∣∣∣∣∣∣∣

−div
(
a
∇(hs + b)
||∇(hs + b)||

)
= 1 in Ω,

−a ∇(hs + b)
||∇(hs + b)|| ·n = 0 on ∂Ωin,

(3)

where ∂Ωin = {x ∈ ∂Ω | ∇(hs + b) ·n> 0} is the part of the boundary that is in going and n denotes the outward normal to

Ω. Setting Qw = a, this allows to reduce the mesh dependency to the usual consistency errors of numerical schemes.150

A mathematical model encompassing the most classical cell-to-cell MFD algorithms was described in Coatléven (2020) where

it is established that those algorithms coincide with a solver for a well chosen discretization of the following stationary water

mass conservation with Gauckler-Manning-Strickler flux model for surface runoff:
∣∣∣∣∣∣

−div
(
kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b)

)
= Sw in Ω,

−kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·n= 0 on ∂Ωin,
(4)

where hw is the water height, sref= 1 m.km-1 the reference slope, pw a model parameter and ηw the water mobility function.155

For simplicity we assume here that the mobility function has no dimension, and that the source Sw is given in m3.s-1km-2 such

that its integral over a 2d area measured in km2 coincides with a discharge in m3.s-1. The coefficient km can be though of

as the Strickler coefficient or the inverse of the Gauckler-Manning coefficient up to a change of unit (strictly speaking, this

identification is trully valid for channels and if the mobility function ηw is equal to a dimensionless hydraulic radius). For
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this choice of source, km has the unit m.s-1 of a speed. Steady state analysis (Graf and Altinakar (2000); Birnir et al. (2001))160

for channels suggests to use values ηw(hw) = (hw/href )1/2 and pw =−1/2, while the classical Gauckler-Manning-Strickler

formula would coincide with ηw(hw) = (Rh(hw)/href )2/3 withRh(hw) the hydraulic radius and again pw =−1/2. However

the hypothesis underlying those results is tailored to channel flows, which is probably not valid over the wide range of flow

configurations occurring at the large time and space scales of landscape evolution models. For this reason, we prefer to not fix

precise values for ηw and pw and think of them as modeling parameters that can be tuned for each considered problem. The165

analysis of Coatléven (2020) allows to give a general definition of the catchment area: for an open set O ⊂ R2, the catchment

area for the outlet of O is defined by:

CA(O) = q̃exO =
∫

∂O

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

,

where hw is the solution of (4) with Sw = 1 and v+ = max(0,v). We see that CA(O) strongly depends on the geometry of

O and its orientation with respect to the flow. In particular if we take for O a cell of the mesh we understand why the MFD170

algorithms produce mesh dependent catchment areas. In line with the attempts of Desmet and Govers (1996) or Pelletier (2010)

to define a unit catchment area (UCA) by rescaling the CA, it is clear that the correct scaling would be to set w to the length of

the portion of ∂O such that
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

> 0, which depending on the orientation of the flow

will sometimes match the choices of Desmet and Govers (1996) or Pelletier (2010, 2013) explaining their partial success. Thus

a corrected definition of the unit catchment int the spirit of Desmet and Govers (1996); Pelletier (2010, 2013) area would be to175

use:

UCA(O) =
1∫

∂O

χ−kms−pwref ||∇(hs+b)||pw∇(hs+b)·n>0

∫

∂O

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

,

where χ is the indicator function (i.e. the function with value 1 when the condition is satisfied and 0 otherwise). This scales

as an approximation of the continuous water flux magnitude qw = |kmhwηw(hw)|s−pwref ||∇(hs + b)||pw+1 (in m3s-1km-1) but

is not equal to it, and still retains some dependency in the geometry of O and its orientation with respect to the flow. In this180

context it is more natural to use directly Qw = qw such that the erosion in (2) depends on the local water flux magnitude and

the slope. Comparing (4) with (3), we see that (3) corresponds to the particular case where one chooses km = 1 and pw =−1

leading to a= hwηw(hw). Thus as was already explained in Bonetti et al. (2018), usingQw = a relates the erosion to (a power

of) the water height and the slope. Both choices have pros and cons, however the choice Qw = qw seems more general to us.

The results of Coatléven (2020) explain why such a strong mesh dependency resisting mesh refinement was observed in185

the geological literature for the CA obtained from cell-to-cell MFD algorithms. It also explains how to compute a correct

approximation of qw from the obtained CA which is the main objective of this section. We consequently start by recalling the

results of Coatléven (2020) for cell-to-cell MFD in a slightly more general setting and to compute the sought approximation

qK of qw in cell K. As node-to-node MFD algorithms are the core of many legacy codes, to offer a more straightforward

application of the results of Coatléven (2020) for such implementations we next detail how the most classical node-to-node190
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MFD algorithms also enter this framework, suffer from the same deficiencies and how to correct them in the same way than

for the cell-to-cell case that was already explored in Coatléven (2020). Notice that systems (3) and (4) are well-posed from the

mathematical point of view if:

−∆(hs + b)> 0 or > 0, (5)

(or quite equivalently−div
(
kms

−pw
ref ||∇(hs + b)||pw∇(hs + b)

)
> 0), i.e. roughly speaking if there are no water accumulation195

areas or flat areas (see Coatléven (2020); Bardos (1970); Veiga (1987); DiPerna and Lions (1989); Fernández-Cara et al. (2002);

Girault and Tartar (2010)). This essentially implies that the flow model (4) is well justified for drainage basin only. If it used

with topographies that do not fulfill (5), a modeling error can appear, ruining our efforts to achieve consistency. This assumption

limits the domain of application of the model, and can be considered as the price to pay for a low computational cost strategy.

Model (4) being in fact a simplification of the shallow water equation, if extending the computation time is allowed alternative200

models also derived from the shallow water equation can be considered to overcome this limitation. This will be discussed in

section 5.2.

3.1 Mesh description

Let Ω be a bounded polyhedral connected domain of R2, whose boundary is denoted ∂Ω = Ω \Ω. We recall the usual finite

volume notations describing a meshM= (T ,F) of Ω. The set of the cells of the mesh T is a finite family of connected open205

disjoint polygonal subsets of Ω, such that Ω = ∪K∈TK. For anyK ∈ T , we denote by |K| the measure of |K|, by ∂K =K\K
the boundary of K, by ρK its diameter and by xK its barycenter. The set of faces of the mesh F is a finite family of disjoint

subsets of R2 included in Ω such that, for all σ ∈ F , its measure is denoted |σ|, its diameter hσ and its barycenter xσ . For

any K ∈ T , the faces of cells K corresponds to the subset FK of F such that ∂K = ∪σ∈FKσ. Then, for any face σ ∈ F , we

denote by Tσ = {K ∈ T | σ ∈ FK} the cells of which σ is a face. Next, for all cell K ∈ T and all face σ ∈ FK of cell K, we210

denote by nK,σ the unit normal vector to σ outward to K, and dK,σ = |xσ −xK |. The set of boundary faces is denoted Fext,
while interior faces are denoted Fint. Finally for any σ ∈ Fint, whenever the context is clear we will denote by K and L the

two cells forming Tσ = {K,L}, as well as dKL = |xK−xL|. This for instance allows when looping over the faces σ of cell K

to denote by L the other face of σ without resorting to a too heavy notation. To avoid any confusion with water and sediment

heights, ε= maxK∈T ρK will denote the mesh size. For any continuous quantity u, its discrete counterpart will be denoted215

uT = ((uK)K∈T ,(uσ)σ∈Fext) where for any K ∈ T uK is the constant approximation of u in cell K while for any σ ∈ Fext
uσ is the constant approximation of u over face σ.

In the following we will assume that the mesh is orthogonal, i.e. there exists a family of centroids (xK)K∈T such that:

xK ∈ ΣK ∀K ∈ T and
xL−xK
|xL−xK |

= nK,σ for σ ∈ Fint, σ = {K,L}

and let us denote xσ the orthogonal projection of xK to the hyperplane containing σ for any σ ∈ FK and any K ∈ T with220

dK,σ = |xK −xσ|, as well as dKL = |xK −xL|. Then, one can use a two-point finite volume scheme to discretize diffusion

operators with scalar diffusion coefficients (no tensors).
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3.2 The cell-to-cell multiple flow direction algorithm and its link with Gauckler-Manning-Strickler models

As mentioned above, the results of this subsection are mostly reproduced from Coatléven (2020). As a consequence, no true

originality is claimed here however we believe that the node-to-node version will be easier to understand after this reminder.225

The starting point of a finite volume discretization is to integrate equation (4) over each cell K:

−
∫

K

div
(
kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b)

)
=
∫

K

Sw.

Denoting Sw,K = 1
|K|
∫
K
Sw and using Stokes’ formula, this leads to:

−
∑

σ∈FK

∫

σ

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nK,σ = |K|Sw,K .

Choosing a finite volume scheme then simply amounts to choosing how to approximate each term appearing in the face230

integrals. The most natural and classical finite volume scheme consists in choosing constant approximate values km,σ and

Gs,σ for km and ||∇(hs + b)||pw along each face σ and to use an upwind scheme hupw,σ for the true unknown hwηw(hw):

−
∫

σ

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·n≈−km,σs−pwref ||Gs,σ||pwhupw,σ
∫

σ

∇(hs + b) ·n.

Finally, thanks to our hypothesis on mesh orthogonality we can use the two-point flux approximation to compute
∫
σ
∇(hs+b) ·

n. The TPFA consists in noticing that for a linear function hs+b, the gradient being constant and satisfying∇(hs+b)·nK,σ =235
1

dKL
((hs + b)(xL)− (hs + b)(xK)), the following formula:

−
∫

σ

∇(hs + b) ·n =−∇(hs + b) ·
∫

σ

n =
|σ|
dKL

((hs + b)(xK)− (hs + b)(xL)),

is exact since 1
dKL

(xL−xK) = nK,σ and will thus be a first order approximation of the flux. More precisely, denoting hw,K

for any K ∈ T the discrete water height value associated to cell K, if one further assumes that hs,σ + bσ = hs,K + bK for

any σ ∈ Fext and K ∈ Tσ which is generally what is done in practical applications of the MFD algorithm, for any K ∈ T the240

proposed finite volume scheme rewrites:
∑

σ∈FK∩Fint
τKLh

up
w,σ (hs,K + bK −hs,L− bL) = |K|Sw,K ,

where the upwind value is given by hw,σup = hw,Kηw(hw,K) if hs,K+bK ≥ hs,L+bL and hw,σup = hw,Lηw(hw,L) if hs,K+bK <

hs,L + bL, the transmissivity τKL is given by:

τKL =
|σ|km,σ
dKLs

−pw
ref

||Gs,σ||pw ,245

and where Gs,σ = 1
2 (Gs,K + Gs,L) and Gs,K is a discrete reconstruction of the gradient of hs + b in cell K. To derive it, we

use:

Id =
∑

σ∈FK
|σ|(xσ −xK)nK,σ, (6)

9
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leading to

Gs,K =
∑

σ∈FK
|σ|Gs,K ·nK,σ(xσ −xK),250

and thus on the orthogonal meshes we consider here as by consistency |σ|Gs,K ·nK,σ ≈
∫
σ
∇(hs+b)·nK,σ, Gs,K is naturally

given by:

Gs,K =
1
|K|

∑

σ∈FK∩Fint

|σ|
dKL

(hs,L + bL−hs,K − bK)(xσ −xK)

+
1
|K|

∑

σ∈FK∩Fext

|σ|
dKσ

(hs,σ + bσ −hs,K − bK)(xσ −xK).255

From the mathematical point of view, a natural choice for the face value km,σ is the harmonic mean:

km,σ =
dKLkm,Kkm,L

km,KdL,σ + km,LdK,σ
with for instance km,K =

1
|K|

∫

K

km ∀K ∈ T ,

but many other choices are possible. Let us now recall the elementary proof given in Coatléven (2020): gathering the faces by

upwinding kind, we get:

∑

σ∈FK∩Fint,hs,K+bK≥hs,L+bL

τKLhw,Kηw(hw,K)(hs,K + bK −hs,L− bL)−260

∑

σ∈FK∩Fint,bK<bL
τKLhw,Lηw(hw,L)(hs,L + bL−hs,K − bK) = |K|Sw,K . (7)

Setting

sK =
∑

σ∈FK∩Fint,hs,K+bK≥hs,L+bL

τKL (hs,K + bK −hs,L− bL) ,

and noticing that sL > 0 as soon as there exists σ ∈ FL ∩Fint such that bL > bK , we see that equation (7) can be rewritten:265

sKhw,Kηw(hw,K)−
∑

σ∈FK∩Fint,bK<bL
τKLhw,Lηw(hw,L)(hs,L + bL−hs,K − bK) = |K|Sw,K .

Defining the water outflux by q̃K = sKhw,Kηw(hw,K), we thus obtain:

q̃K −
∑

σ∈FK∩Fint,hs,K+bK<hs,L+bL

τKL
q̃L
sL

(hs,L + bL−hs,K − bK) = |K|Sw,K . (8)

The cell-to-cell MFD algorithm admits a reformulation as a linear system first mentioned by Richardson et al. (2014) although270

without exhibiting an explicit formula. In Coatléven (2020), it is established that linear system underlying the cell-to-cell MFD

algorithm illustrated on Fig. 2 is equivalent to solving (8) for km = 1 and pw = 0 using a lower triangular solver and a cell

10
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Figure 2. Basic principle of the simplest cell-to-cell MFD algorithm: water is distributed to lower neighbouring cells proportionally to the

slope (reproduced from Coatléven (2020))

ordering based on decreasing topography. Indeed the algorithm illustrated Fig. 2 consists in distributing the total outflow q̃K

of cell K along the neighbouring cells of K with lower altitude altitude proportionally to the ratio sKL/sK of the discrete

slope sKL between the high cell K and the low cell L regarding the total positive slope sK of the high cell K. It is then easy275

to observe that the formula (8) corresponds to reversing this idea, expressing how the inflow received by the low cell K is

computed from the outflow of its higher neighbours.

From this equivalence between the classical MFD and the two-point flux approximation (TPFA) of the classical Gauckler-

Manning-Strickler model, a crucial observation of Coatléven (2020) is that the usual unknown q̃K of the MFD algorithm that

corresponds to the CA of cell K in the case Sw = 1 is not the good quantity to represent the water flux magnitude. Indeed,280

from q̃K = sKhw,Kηw(hw,K) and the consistency of the two-point formula we see that it approximates as announced:

q̃K ≈ q̃exK =
∑

σ∈FK

∫

σ

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·nK,σ

)+

.

As explained in Coatléven (2020) the quantity q̃K approximates the outflux of a cell which thanks to the equivalence with

a discretization of a Gauckler-Manning-Strickler model we can easily identify as a mesh dependent quantity. Thus, the only

convergence that can be expected for q̃K is to zero. As explained in the introductory part of this section we could normalize it285

by the portion of ∂K along which the flow is outgoing but this is highly impractical and still prone to some mesh dependency

depending on the cell orientation with respect to the flux. To effectively compute an accurate discrete water flux magnitude

qK for each cell K ∈ T , from Coatléven (2020) we know that we can reconstruct cellwise the water flux vector using (6) by

11
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setting:

QK =
∑

σ∈FK∩Fint,hs,K+bK>hs,L+bL

τKLq̃K
|K|sK

(hs,K + bK −hs,L− bL)(xσ −xK)−290

∑

σ∈FK∩Fint,hs,K+bK<hs,L+bL

τKLq̃L
|K|sL

(hs,L + bL−hs,K − bK)(xσ −xK), (9)

and simply deduce a consistent water flux magnitude by setting qK = ||QK ||. This consistent water flux magnitude is mesh

independent in the usual numerical analysis sense: it converges to the continuous flux when the mesh size ε goes to zero,

contrary to q̃K . The use of q̃K or its normalized versions instead of qK in the geological literature is the main reason why such295

a strong mesh dependency was observed, without any significant improvement with mesh refinement. Instead, the convergence

of the consistent water flux magnitude qK was rigorously established and illustrated in Coatléven (2020), up to providing error

estimates. Thus, it is important to use qK instead of q̃K when coupling with sediment evolution models i.e. using Qw = qw

in (17) and not q̃K . From the flow routing literature perspective and by virtue of (9), qK can certainly be considered as a

post-processing consistency correction of q̃K , easy to implement in legacy softwares.300

The MFD formulation allows in turn some interesting observations for the Gauckler-Manning-Strickler model: it is indeed

clear that the choice of the water mobility function ηw has no influence on the water flux strength qw, as it appears nowhere in

(8) and (9). In the same way, only the contrasts of the coefficient km will impact qw, as only ratios τKL/sK are appearing in

(8) and (9).

3.3 The classical node-to-node MFD/SFD algorithms interpreted as discrete Gauckler-Manning-Strickler solvers305

In this subsection, we will explain how to reinterpret the most classical node-to-node flow routing algorithms as attempts

to discretize a continuous Gauckler-Manning-Strickler model. Such an explicit interpretation seems to be absent from the

literature, so at least to the author’s knowledge the results of this subsection are quite new. To this end, for simplicity we restrict

ourselves in this section to uniform cartesian meshes, and we adopt the usual cartesian index (i, j) notation for designating

its nodes (see Fig. 3) as well as ∆x and ∆y for the cartesian cell side lengths. This is by no means a restriction but simply a310

more convenient way to explain how to link node-to-node flow routing with Gauckler-Manning-Strickler models. In order to

reinterpret the node-to-node flow routing algorithms as finite volume schemes, we must associate a volume to each node. The

easiest way to do so is to consider the dual mesh, formed by joining the centers of the cells of the primal mesh (see again Fig.

3, where the dual mesh corresponds to the dashed lines). On the dual mesh, the node (i, j) of the primal mesh becomes the

center of the dual cell Ki,j .315

In Fig. 4, we propose a decomposition of the boundary of the dual cartesian cell Ki,j centered on the primal node (i, j) into 12

faces (σl)1≤l≤12. The faces σj±1 are of length γx∆x, with of course the faces σi±1
j±1 of length 1−γx

2 ∆x. In the same way, faces

σi±1 are of length γy∆y and the faces σj±1
i±1 of length 1−γy

2 ∆y. Using those notations, we integrate (4) over the dual cell Ki,j

12
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Figure 3. The cartesian mesh (plain lines) and its dual (dashed lines)

to get:320

−
12∑

l=1

∫

σl

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j = |Ki,j |Sw,K .

On the four faces σi−1, σi+1, σj−1 and σj+1, we use the same finite volume discretization than before:
∫

σj−1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j

≈ γx∆x
spwref∆y

km,σj−1 ||Gs,σj−1 ||pwhupw,σj−1
(hs,i,j−1 + bi,j−1−hs,i,j − bi,j),325

and
∫

σi−1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j

≈ γy∆y
spwref∆x

km,σi−1 ||Gs,σi−1 ||pwhupw,σi−1
(hs,i−1,j + bi−1,j −hs,i,j − bi,j),

13

https://doi.org/10.5194/egusphere-2023-687
Preprint. Discussion started: 26 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 4. Decomposition and notations for the dual cartesian cell boundaries

and330
∫

σj+1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j

≈ γx∆x
spwref∆y

km,σj+1 ||Gs,σj+1 ||pwhupw,σj+1
(hs,i,j+1 + bi,j+1−hs,i,j − bi,j),

and
∫

σi+1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j335

≈ γy∆y
spwref∆x

km,σi+1 ||Gs,σi−1 ||pwhupw,σi+1
(hs,i+1,j + bi+1,j −hs,i,j − bi,j),

while for the remaining height cells, we gather the faces to form the corners illustrated in Fig. (4). More precisely, we denote:

σi−1,j−1 = σj−1
i−1 ∪σi−1

j−1,

340
σi−1,j+1 = σj+1

i−1 ∪σi−1
j+1,

σi+1,j−1 = σj−1
i+1 ∪σi+1

j−1,

14
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σi+1,j+1 = σj+1
i+1 ∪σi+1

j+1,345

those four corners, σi±1,j±1 thus being the corner corresponding to the neighbouring cell Ki±1,j±1. On those corners, we per-

form the same discretization than before considering the whole corner as if it was a single face: in other words we use constant

values km,σ and ||Gs,σ||pw for km and ||∇(hs + b)||pw along the corner, an upwind scheme for the unknown hwηw(hw) and

the a two-point flux formula for in the average normal direction to the corner. Denoting (∇(hs + b))σi±1,j±1 the equivalent

constant gradient exact for linear function underlying the TFPA along the corner, this leads to the following approximation:350
∫

σi±1,j±1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j ≈

km,σi±1,j±1s
−pw
ref ||Gs,σi±1,j±1 ||pwhupw,σi±1,j±1

(∇(hs + b))σi±1,j±1 ·
∫

σi±1,j±1

nKi,j .

By construction, we have:
∫

σi±1,j±1

nKi,j =± (1− γy)
2

∆yex±
(1− γx)

2
∆xey.355

Denoting

|σi±1,j±1|=
(1− γx)

2
∆x+

(1− γy)
2

∆y = δ,

we seek γx and γy such that:

(1− γx)
2δ

∆x=
∆y

(∆x2 + ∆y2)1/2
and

(1− γx)
2δ

∆y =
∆x

(∆x2 + ∆y2)1/2
,

leading to:360

γx = 1− 2δ∆y/∆x
(∆x2 + ∆y2)1/2

and γy = 1− 2δ∆x/∆y
(∆x2 + ∆y2)1/2

, (10)

which can be achieved with γx ≥ 0 and γy ≥ 0 provided δ satisfies:

0≤ δ ≤ 1
2

min
(

∆x
∆y

,
∆y
∆x

)
(∆x2 + ∆y2)1/2. (11)

With this choice for γx and γy , for all δ satisfying (11) we get that
∫

σi±1,j±1

nKi,j =
±∆x

(∆x2 + ∆y2)1/2
ex +

±∆y
(∆x2 + ∆y2)1/2

ey,365

and thus the average normal at the corner σi±1,j±1 is precisely pointing from xKi,j to xKi±1,j±1 . Thus it is natural to use the

two point flux formula:

(∇(hs + b))σi±1,j±1 ·
∫

σi±1,j±1

nKi,j ≈
δ

(∆x2 + ∆y2)1/2
(hs,i±1,j±1 + bi±1,j±1−hs,i− bi).
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The upwinding is done exactly as before, following the sign of the difference in elevation hs+b between the two value forming

the TPFA. This gives for the non-corners:370

hupw,σi±1
=

∣∣∣∣∣∣

hw,i,jηw(hw,i,j) if hs,i,j + bi,j ≥ hs,i±1,j + bi±1,j ,

hw,i±1,jηw(hw,i±1,j) if hs,i,j + bi,j < hs,i±1,j + bi±1,j ,

hupw,σj±1
=

∣∣∣∣∣∣

hw,i,jηw(hw,i,j) if hs,i,j + bi,j ≥ hs,i,j±1 + bi,j±1,

hw,i,j±1ηw(hw,i,j±1) if hs,i,j + bi,j < hs,i,j±1 + bi,j±1,

and for the corners:

hupw,σi±1,j±1
=

∣∣∣∣∣∣

hw,i,jηw(hw,i,j) if hs,i,j + bi,j ≥ hs,i±1,j±1 + bi±1,j±1,

hw,i±1,j±1ηw(hw,i±1,j±1) if hs,i,j + bi,j < hs,i±1,j±1 + bi±1,j±1.
375

To get more compact notations, let us denote

N (i, j) = {(m,n) ∈ {i− 1, i, i+ 1}×{j− 1, j, j+ 1} | (m,n)≤ (i, j)} ,

the neighbours of node (i, j), and define the transmissivities:

τm,ni,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

γx∆x
spwref∆y

km,σj±1 ||Gs,σj±1 ||pw if (m,n) = (i, j− 1) or (i, j+ 1),

γy∆y
spwref∆x

km,σi±1 ||Gs,σi±1 ||pw if (m,n) = (i− 1, j) or (i+ 1, j),

δ

spwref (∆x2 + ∆y2)1/2
km,σi±1,j±1 ||Gs,σi±1,j±1 ||pw otherwise,

assuming for simplicity that the gradients Gs,σ are obtained on the dual mesh in the same way as in the cell-to-cell case (of380

course, a reconstruction formula using also the diagonal neighbours is possible). Using those notations, we get gathering by

upwind kind as in the case of the cell-to-cell flow routing the following expression for the proposed finite volume scheme on

the dual mesh:

hw,i,jηw(hw,i,j)


 ∑

(m,n)∈N (i,j),hs,i,j+bi,j>hs,m,n+bm,n

τm,ni,j (hs,i,j + bi,j −hs,m,n− bm,n)




385

−


 ∑

(m,n)∈N (i,j),hs,i,j+bi,j<hs,m,n+bm,n

τm,ni,j hw,m,nηw(hw,m,n)(hs,m,n + bm,n−hs,i,j − bi,j)


= |Ki,j |Sw,i,j .

Proceeding as in the cell-to-cell case, denoting:

si,j =
∑

(m,n)∈N (i,j),hs,i,j+bi,j>hs,m,n+bm,n

τm,ni,j (hs,i,j + bi,j −hs,m,n− bm,n) and q̃i,j = hw,i,jηw(hw,i,j)si,j

16
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, we finally get:

q̃i,j −


 ∑

(m,n)∈N (i,j),hs,i,j+bi,j<hs,m,n+bm,n

τm,ni,j

q̃m,n
sm,n

(hs,m,n + bm,n−hs,i,j − bi,j)


= |Ki,j |Sw,i,j . (12)390

The flow sharing formula common to all flow routing algorithms of the literature identifies in this context with the ratios:

1
sm,n

τm,ni,j (hs,m,n + bm,n−hs,i,j − bi,j),

for (m,n) ∈N (i, j),hs,i,j+bi,j < hs,m,n+bm,n, which expresses how node (i, j) receives water from other nodes. Reversing

the point of view, it rewrites in probably more familiar fashion by expressing how node (i, j) distributes water to its neighbours

through the flow sharing formula (noticing that τm,ni,j = τ i,jm,n):395

τm,ni,j max(0,hs,i,j + bi,j −hs,m,n− bm,n)
∑

m′ ,n′∈N (i,j)

τm
′
,n
′

i,j max(0,hs,i,j + bi,j −hs,m′ ,n′ − bm′ ,n′ )
. (13)

Notice that several attempts of the literature at improving the behavior of the flow routing consider powers q of the two point

slope instead of the slope in the flow sharing formula, which with our notations rewrites:

τm,ni,j max(0,hs,i,j + bi,j −hs,m,n− bm,n)q
∑

m′ ,n′∈N (i,j)

τm
′
,n
′

i,j max(0,hs,i,j + bi,j −hs,m′ ,n′ − bm′ ,n′ )q
. (14)

Another important consequence of the formal identification of cell-to-cell flow routing algorithms with a numerical scheme400

for the stationary Gauckler-Manning-Strickler model is the fact that if one wants to incorporate powers of the slope in the

flow distribution procedure, then one should not use powers of the directional slope 1
dKL

(hs,L + bL−hs,K − bK) but rather

use powers of ||Gs,σ|| to remain consistent with a continuous model incorporating powers of ||∇(hs + b)||. Otherwise, the

consistency of the flow routing algorithm will be lost again. In Quinn et al. (1995) it is even suggested to choose different

values of q for different grid sizes, emphasizing this non-consistency. However, the sought flow concentration effect can be405

achieved in a consistent manner through the use of pw: the full gradient and not only the directional gradient being used

this way, this does not endanger consistency and a value independent of the mesh should be chosen according to physical

considerations. An option that we do not consider here is to make the value of pw spatially variable, as was suggested in Qin

et al. (2007) but still on the non-consistent formulation (14).

Although (14) clearly leads to some non consistency, this expression is useful to derive a classification of the most prominent410

flow routing algorithms of the literature. To exactly match the definitions of most node-to-node flow routing schemes of the

literature, we now consider the special case of square cartesian cells for which ∆x= ∆y = ∆xy . In this case we get from

(10) that γx = γy = 1− (2δ)/(
√

2∆xy). It remains to choose a value for δ. The most natural choice is choose to enforce

δ = γx∆x= γy∆y and thus balance the contribution to each neighbour. This immediately leads to:

δ =
√

2
2 +
√

2
∆xy and γx = γy =

√
2

2 +
√

2
,415
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implying that:

δ

(∆x2 + ∆y2)1/2
=

1
2 +
√

2
and

γx∆x
∆y

=
√

2
2 +
√

2
and

γy∆y
∆x

=
√

2
2 +
√

2
,

thus the diagonal transmissivities differ from the non-diagonal ones by the factor 1/
√

2 which corresponds to the D8, Rho8

and most MFD algorithms. To recover the FD8/TOPMODEL noticing that the L1 and L2 non diagonal and diagonal “face

measures” of this MFD algorithm satisfy L1 = ∆xy/2 and L2 =
√

2
4 ∆xy , we recover the same weighting within our notations420

by setting

δ =
√

2
4

∆xy and γx = γy =
1
2
,

which is compatible with (10) as in this case:

(1− γx)
2δ

∆x=
(1− γy)

2δ
∆y =

1√
2

=
∆x

(∆x2 + ∆y2)1/2
=

∆y
(∆x2 + ∆y2)1/2

.

Finally denoting:425

∆Hm,ni,j = max(0,hs,i,j + bi,j −hs,m,n− bm,n),

in table 1 we recast the most classical MFD algorithms using our notations, with pw = 0 for all the presented methods. For

the Rho8 method (Fairfield and Leymarie (1991)), the ρ8 parameter is a random number generated for each face, while for the

MFD-md (Qin et al. (2007)), the parameter e is the maximum downslope gradient and f(e) = 8.9min(e,1) + 1.1.

This reinterpretation calls for several comments. The main one is that the node-to-node situation is no better than the cell-to-430

cell one: q̃i,j will be as non consistent, non convergent and thus strongly mesh dependent than its cell-to-cell counterpart. The

node-to-node routing is indeed simply a cell-to-cell routing on a dual mesh, with a more involved cell boundary decomposition.

The quantity q̃i,j should not be used to couple with sediment evolution, one should instead reconstruct a consistent water flux

vector Qi,j for instance by setting:

Qi,j =
∑

(m,n)∈N (i,j),hs,i,j+bi,j>hs,m,n+bm,n

τm,ni,j q̃i,j

|Ki,j |si,j
(hs,i,j + bi,j −hs,m,n− bm,n)(xm,ni,j −xKi,j )−435

∑

(m,n)∈N (i,j),hs,i,j+bi,j<hs,m,n+bm,n

τm,ni,j q̃m,n

|Ki,j |sm,n
(hs,m,n + bm,n−hs,i,j − bi,j)(xm,ni,j −xKi,j ) (15)

where:

xm,ni,j =

∣∣∣∣∣∣∣∣

1
2

(xKi,j + xKm,n) if (m,n) ∈ {(i, j− 1),(i, j+ 1),(i− 1, j),(i+ 1, j)}

1
|σnm|+ |σmn |

(
|σnm|xσnm + |σmn |xσmn

)
otherwise

and then use qi,j = ||Qi,j ||which again can be considered as an easy to implement post-processing consistency correction step.440

The second one is that it is clear that contrary to what is done in some flow routing algorithms of the literature, the chosen value
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Table 1. A possible classification of MFD algorithms using (14)

Method δ/∆xy γx = γy q km,σm,n

D8 (O’Callaghan et al. 1984 O’Callaghan and Mark (1984))
√

2

2+
√

2

√
2

2+
√

2
1

∣∣∣∣∣∣∣
1 σm,n has largest ∆Hm,ni,j

0 otherwise

MFD (Freeman 1989 Freeman (1989))
√

2

2+
√

2

√
2

2+
√

2
1 1

MFD (Freeman 1991 Freeman (1991))
√

2

2+
√

2

√
2

2+
√

2
1.1 1

Rho8 (Fairfield 1991 Fairfield and Leymarie (1991))
√

2

2+
√

2

√
2

2+
√

2
1

∣∣∣∣∣∣∣
1 σm,n has largest ρ8∆Hm,ni,j

0 otherwise

FD8 (Quinn et al. 1991 Quinn et al. (1991))
√

2
4

1
2

1 1

MFD (Holmgren 1994 Holmgren (1994))
√

2

2+
√

2

√
2

2+
√

2
∈ [1,∞[ 1

TOPMODEL (Quinn et al. 1995 Quinn et al. (1995))
√

2
4

1
2

∈ [1− 100] 1

MFD-md (Qin et al. 2007 Qin et al. (2007))
√

2
4

1
2

f(e) 1

for km,σ should be a discretization of an inverse of a continuous roughness with a more or less physical interpretation. Apart

from the unavoidable sampling induced by the mesh, it should be as mesh independent as possible and in particular should

not depend on cell orientations. The single flow direction D8 and Rho8 methods reinterpreted this way introduce a coefficient

km,σ that is clearly mesh dependent and not the discretization of a continuous coefficient. This will consequently increase the445

mesh dependency of the overall method.

The two point flux approximation (TPFA) is of course not the only possible approximation for the terms (∇(hs + b))σi±1,j±1 ·∫
σi±1,j±1

n. In particular, if one reconstructs an approximation Ĝs,σ of the full topographic gradient along each face σ, then it

can be used to compute an approximation of the flux. We denote it Ĝs,σ to distinguish it from the reconstruction Gs,σ used to

approximate the non-linear dependency in the slope, as the two can be different. In this case, (14) becomes:450

|σm,n|(∆Hm,ni,j )q
∑

m′ ,n′∈N (i,j)

|σm′ ,n′ |(∆Hm
′
,n
′

i,j )q
and ∆Hm,ni,j = max


0,Ĝs,σm,n ·

∫

σm,n

nKi,j


 . (16)

Then, more flow routing algorithms of the literature can be rewritten this way. In particular, choosing γx = γy = 0 or 1 we can

easily recover the flux decomposition method (Desmet et al. 1996 Desmet and Govers (1996)) and a variation of the MD∞
method (Seibert et al. 2007 Seibert and McGlynn (2007)). The flux decomposition method chooses a single value for Ĝs,Ki,j
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for each cell, and then loop over cells and set Ĝs,σ = Ĝs,Ki,j for the faces of the current cell that have not already been handled455

through a previous cell in the loop. The MD∞ methods computes Ĝs,σ for each face using a triangular reconstruction of the

slope: to be precise, with our notations Ĝs,σ is for face σm,n half the sum of the two triangular gradients computed in Seibert

and McGlynn (2007) that can contribute to σm,n. We say that this is a variation of Seibert and McGlynn (2007) as it is unclear

whether they use the normal component of the gradient as we do here or the full norm of the gradient in their flow sharing

formula.

Table 2. A classification of some flow routing algorithms using (16)

Method δ/∆xy γx = γy q km,σl

Flux decomposition (Desmet et al. 1996 Desmet and Govers (1996)) 0 1 1 1

MD∞ (Seibert et al. 2007, Seibert and McGlynn (2007))
√

2

2+
√

2

√
2

2+
√

2
1 1

460

Other flow routing algorithms than do not seem to easily enter this framework are also available in the literature. We mention in

particular the ANSWERS (Beasley et al. (1980)), DEMON (Costa-Cabral and Burge (1994)) and Lea’s method (Lea (1992)),

that are all based on a local planar approximation of the topography and use either a multiple or single direction flow sharing

formula based on purely geometric considerations. The D∞ method (Tarboton 1997 Tarboton (1997)) strongly looks like the

SFD method at first sight, however because the flow sharing formula used when the steepest direction is not aligned with mesh465

direction is based on angular considerations similar to those of ANSWERS and DEMON, it is not immediately obvious how

to relate the D∞ method to a continuous model. Finally, let us mention that many variations around the classical algorithms

have been explored since their first publications leading for instance to some generalization to triangular meshes Banninger

(2007); Zhou et al. (2011). We refer the reader to Erskine et al. (2006); Wilson et al. (2008); Orlandini and Moretti (2009) and

references therein for a broader review on flow routing algorithms and their numerical behavior.470

4 Large structures simulation for numerical instabilities free landscape evolution models

In this section, after illustrating the numerical problems arising when non-linearly coupling water flow and sediment evolution

on an easy to analyze synthetic test case, we explain how to transpose the ideas underlying the concept of large eddy simulation

from the computational fluid dynamics community to our landscape evolution model. In our opinion, this is a key ingredient

for achieving reproducible LEM simulations. All the simulations shown in the following sections are performed using the475

ArcaDES platform (Coatléven (2020)) (although ArcaDES is mentioned for the first time in a scientific paper, it is used since

2015 in the stratigraphic numerical forward model DionisosFlow™ initially developed by Granjeon (1996)).
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4.1 Model description

At first let us mention that all the observations, conclusions and recommendations coming from this section are not linked to

any specific sediment evolution model and should in principle apply to any coherent sediment model satisfying (H1), (H2) and480

(H3). In the present paper we have chosen to focus on the sediment model that has already been discussed in detail in Granjeon

(1996); Eymard et al. (2004, 2005); Peton et al. (2020):

Js =−ηs(hs)s−psref ||∇(hs + b)||ps
((

qw
qref

)rs
∇ψw(hs + b) +∇ψg(hs + b)

)
in Ω×]t0,T [, (17)

where rs > 0 and ps > 0 are model parameters, qw is the water flux obtained from (4), qref and sref are dimensional factors,

and ηs is a dimensionless sediment mobility function such that:485

0≤ ηs(u)≤ 1 and ηs(0) = 0, (18)

whose main role is to ensure that the sediment height hs remains positive. In the following we use:

ηs(u) =

∣∣∣∣∣∣∣

1− h∗
u+h∗

if u≥ 0,

0 otherwise

(19)

with h∗=1 cm. We consider here the most common form for functions ψw and ψg corresponding to:

ψw(u) =

u∫

0

kw(v)dv and ψg(u) =

u∫

0

kg(v)dv, (20)490

where kw and kg are diffusion coefficients such that:

0≤ k−g ≤ kg(u)≤ k+
g <+∞ and 0≤ k−w ≤ kw(u)≤ k+

w <+∞, (21)

in such a way that:

∇ψw(hs + b) = kw(hs + b)∇(hs + b) and ∇ψg(hs + b) = kg(hs + b)∇(hs + b), (22)

so that the sediment flux follows the topographic slope ∇(hs + b). This sediment flux model is implemented in our modeling495

platform ArcaDES (Coatléven (2020)) (although ArcaDES is mentioned for the first time in a scientific paper, it is used since

2015 in the stratigraphic numerical forward model DionisosFlow™ initially developed by Granjeon (1996)). Both soil erosion

and sediment deposition are considered. As ArcaDES is tailored for large time and space scales simulations, this is the reason

why we have chosen to express the xy coordinates in kilometers (km), time in million years (My), sediment height hs and

basement b in meters (m). Thus the unit of sediment sources will be meters per million years (m.My-1). Since we have chosen500

to use Qw = qw with qw the water flux from (4), the unit for the water discharge qw is m3.s-1.km-1 and thus we naturally set

qref= 1 m3.s-1.km-1. The natural unit of coefficients kg and kw is km2.My-1, with the reference slope again set to sref= 1

m.km-1.
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4.2 Numerical issues with non linear coupling of overland flow and sediment erosion and transport

From Smith and Bretherton (1972), we know that for sublinear to linear coupling, i.e. rs ≤ 1 no chaotic behavior is expected,505

as is confirmed by numerical experiments. However as soon as rs > 1 a self-amplification mechanism is expected leading to

highly non linear behaviors and complex topographies. This is precisely the domain we explore in this section.

As mentioned in the introduction, in the absence of reference analytic solution it is in general hard to decide whether a numerical

solution of (2) is correct or not. To partially circumvent this difficulty, we consider a simple synthetic topographic surface

defined by three constant slope planes. The numerical domain is rectangular with the dimensions Lx= 400 km in the x axis510

and Ly = 300 km in the y axis (see Fig. 5-a,5-b). The mesh size is ∆xy = 2 km. The gravity diffusion coefficient kg is

equal to 100 km2.My-1 in the whole domain while kw = 10 km2.My-1 for hs + b≥ 0 and kw = 0.1 km2.My-1 for hs + b < 0,

corresponding to a modulation of the water induced transport in a fictitious marine domain. Water is supplied by three constant

water-flux sources located at the domain boundary (black arrows in Fig. 5-a), so we call this “three rivers” test case. Each water

source is 12 km large and supplies 1200 m3s-1 of water.

Figure 5. The “three rivers” test case with ∆xy=2 km. a-b : Initial topography, black arrows represent the position of the water inflows.

Bottom row : topography and water flux after 6 My obtained under different numerical settings. c: sequential GMRES, d: parallel GMRES,

e: sequential BiCGStab

515

An essential remark is that the whole configuration is symmetrical with respect to the vertical plane x= Lx/2. In principle,

the equation system consisting of (2) and (4), here used with rs = 2, ps = 1, pw=0 and km=1 m.s-1 should maintain this
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symmetry. Therefore symmetry will be our main tool to evaluate solution quality. Using the finite volume scheme depicted in

section A which for water flow corresponds to using the consistent water flux obtained from (9), we perform a set of three

identical simulations in terms of physical parameters but using different numerical settings in order to illustrate the impacts of520

numerical errors. We perform a sequential computation using GMRES as linear solver for all systems, its parallel equivalent

on 4 processors and another sequential simulation using BiCGStab as linear solver for all systems. The linear solvers are part

of the well-known and reference PETSc library (Balay et al. (1998)) to avoid any potential mistake in their implementation,

while the parallelism relies on the Arcane framework (Grospellier and Lelandais (2009)). Final topographies and water flux

are shown on the bottom row of Fig. 5. Figure 5-c corresponds to sequential GMRES, Fig. 5-d to parallel GMRES and Fig. 5-e525

to sequential BiCGStab.

All the results from these simulations should be almost identical and in any case symmetrical with respect to the vertical plane

x= Lx/2 in absence of any spatial heterogeneity in the input data. Clearly, symmetry is lost in the three cases and what is

even more striking is that we get three very different results. The only difference between the three cases being the numerical

solvers, this indicates that this has originated from numerical errors. As we are using a decoupled time scheme between water530

flow and sediment evolution (see section A), one may argue that those instabilities are arising from some violated coupling

constraint on the time step. Should this be the case, reducing the time step enough would ultimately lead to clean solutions.

However, we have observed the exact opposite: the smaller the time step is, the larger are the obtained instabilities. The fact

that reducing the time step makes things even worse is thus another clear sign that our problems are the result of amplified error

accumulation. Finally if the same experiments are performed with rs ≤ 1 then this time the symmetry is maintained and all535

three solutions are almost identical however small the time step might be, which clearly indicates that the non-linearity of the

coupling for rs > 1 is responsible of the observed chaotic behavior. Our interpretation is that small numerical perturbations are

rapidly amplified by the model up to the point that they become of the same order of magnitude that the originally dominant

part of the solution, and do influence flow branching. From the modeling perspective the model behaves as expected in the

sense that small perturbations are amplified and strongly impact the final result. However in our simulations no heterogeneity540

is present in data thus this phenomenon should not spontaneously occur: the non-physical numerical errors are amplified up

to the point that the numerical solution is no longer a reasonable approximation. This clearly also implies that the numerical

schemes must be as precise as possible to reduce the numerical noise. In particular it is mandatory to use our consistent MFD

discretization of (4) rather than the non consistent flow routing algorithms of the literature.

4.3 Principles and physical interpretation of filtering545

Recall that the main idea of LES is to filter the solution to distinguish between the behavior of the flow above and below the

target length scale, to obtain local averages that are smoother and as mesh independent as possible. This target length scale

controls the size of the smallest structures that we will be able to resolve in the problem, quite independently of the domain

size. The main practical consequence is that our mesh will have to resolve this length scale, i.e. the mesh size ε will have to be

smaller than the chosen length scale.550
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LES filters/models are probably as numerous as the various authors working on the subject (Berselli et al. (2005)), thus we will

very brief on the subject and refer the reader to a the quite recent review Zhiyin (2015). The very first LES model is called the

Leray-α model. It was used by Leray in 1934 to establish existence of weak solutions to the Navier-Stokes equations (Leray

(1934)). Originally, the filtering in Leray (1934) as well as in many classical LES models was achieved by using a convolution

operator F defined by:555

F(u)(x) =
∫

Rd

u(y)gδ(x−y)dy, where gδ(x) =
1
δd
g
(x

δ

)
,

where the filter kernel g satisfies:

0≤ g(x)≤ 1, g(0) = 1,
∫

Rd

g(x)dx = 1.

Several kernels are used in the literature, such as a low-pass filter, a box-filter or the very natural Gaussian filter g(x) =

π−d/2e−|x|
2
.

Figure 6. Illustration of the effect of the convolution by a Gaussian function

560

In figure 6 we illustrate the smoothing effect of a Gaussian kernel on an oscillating data: as expected, it preserves the high

amplitude and low frequency oscillation while filtering out the high frequency and low amplitude oscillations. Such filters

might therefore be ideal for our application to landscape evolution models: the small topographic perturbations will be cleaned

out such that the flow routing will not be affected by it. Although convolution operators produce averages with the desired

properties, they are impractical on bounded domains. The modern way of defining the Leray-α filter for bounded domains565
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consists in using the differential filter Fα defined by (Cheskidov et al. (2005); Guermond et al. (2003)):
∣∣∣∣∣∣∣∣∣∣

−α2∆Fα(u) +Fα(u) = u in Ω,

∇Fα(u) ·n = 0 on ∂ΩN ,

Fα(u) = 0 on ∂ΩD.

(23)

The filtered result Fα(u) basically amounts to a convolution of u by the underlying Green’s function (23), i.e. the filter applied

to the Dirac distribution. Using a finite volume scheme Fα we can this time easily obtain a discrete version Fα,h which is one

of the main reasons why we have chosen to use this filter, along with its theoretical and practical success for CFD. Notice that570

contrary to Cheskidov et al. (2005); Guermond et al. (2003), we use homogeneous Neumann and Dirichlet boundary conditions

instead of periodic boundary conditions to simplify the treatment of the boundary. The main drawback of this choice is that

our filter does not commute with differential operators. Resorting to only Dirichlet boundary conditions would have solved

this issue, however from our numerical experiments we found that this can create boundary effects unless the chosen Dirichlet

boundary condition is adapted to the filtered quantity. The Neumann choice avoids those difficulties without creating any575

practical issues, which has motivated our choice. For quantities such as the water flux for which Neumann everywhere is a

more natural boundary condition, we introduce the alternative filter FNα with only Neumann boundary conditions:
∣∣∣∣∣∣

−α2∆FNα (u) +FNα (u) = u in Ω,

∇FNα (u) ·n = 0 on ∂Ω.
(24)

4.4 Leray filtering applied to our landscape evolution model

From the numerical observations that the model governing the simultaneous evolution of sediment and water seems as in-580

tractable to solution as the Navier-Stokes system is, following the idea of LES we abandon the idea of resolving all the scales

involved in the landscape evolution problem and will only try to simulate the large sedimentary and water structures. In practice,

this means that the sediment flux used in the mass conservation equations:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂hs
∂t

+ div (Js) = Ss in Ω×]t0,T [,

−Js ·n =Bs on ∂ΩN×]t0,T [,

hs = 0 on ∂ΩD×]t0,T [,

hs(t= t0) = hs,0 in Ω,

will now be given by:585

Js =−ηs(hs)s−psref ||∇(hs + b)||ps
((FNα (qw)

qref

)rs
∇ψw(hs + b) +∇ψg(hs + b)

)
in Ω×]t0,T [, (25)
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where we use the filtered water flux magnitude FNα (qw) instead of directly using the water flux qw. In the same way, in the

water equations, we will now use the filtered topography Fα(hs + b) instead of the topography hs + b, leading to:
∣∣∣∣∣∣

−div
(
kmhwηw(hw)s−pwref ||∇(Fα(hs + b))||pw∇(Fα(hs + b))

)
= Sw in Ω,

−kmhwηw(hw)s−pwref ||∇(Fα(hs + b))||pw∇(Fα(hs + b)) ·n=Bw on ∂Ω,
(26)

with the associated water flux:590

qw = ||kmhwηw(hw)s−pwref ||∇(Fα(hs + b))||pw∇(Fα(hs + b))||. (27)

Our “reproducible” large structures simulation for landscape evolution thus consists in solving (2)-(25)-(26)-(27).

4.5 Numerical results with filtering

We reproduce the very same experiment that was performed at the beginning of this section on the “three rivers” test case, with

sequential GMRES, parallel GMRES and sequential BiCGStab, but using a filter α= 2.2 km. Contrary to Fig. 5, the symmetry595

is maintained and we obtain almost identical results for the three configurations 7. The expected impact of the filter on the

simulated water flow and topography is a smoothing effect, which is what is observed when comparing for example the width

of the three valleys. However, the differences remain marginal in this case.

Figure 7. The “three rivers” test case with filter α= 2.2 km and ∆xy=2 km. Topography and water flux after 6 My. a: sequential GMRES, b:

parallel GMRES, c: sequential BiCGStab

Following LES principles, the filter scale α corresponds to the spatial resolution of our continuous model, which must naturally600

be resolved by the grid resolution, meaning we should have at the very least ∆xy < α for cartesian grids (and more generally

ε < α for a general mesh recalling that ε=
√

2∆xy for cartesian meshes). To assess the legitimacy of this condition, still on

our “three rivers” test case we first fix the grid size to ∆xy=2 km and observe the behavior of the solution for various values of
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Figure 8. The “three rivers” test case with ∆xy=2 km. Final topography and water flux after 6 My obtained with different values of the filter

parameter α. a: no filter, b: α= 0.2 km, c: α=1 km, d: α= 2.2 km, e: α=2.5 km , f: α= 3 km

the filter parameter α. Results are displayed Fig. 8. We clearly see that symmetric solutions are obtained for α≥∆xy , while

further reducing the filter parameter leads to behavior similar to the no filter case. This is coherent with the LES that the filter605

should control what happens below the grid scale, which can only be done if α >∆xy .

4.6 Impacts of water flow consistency and filtering on the emergence of geomorphic structures

The three rivers synthetic case has highlighted the absolute necessity of considering a filtering strategy in LEMs using a

MFD/SFD water flow algorithm. We now switch on a second synthetic case study to observe the formation of geomorphic610

features, using either a homogeneous or a perturbed initial topography. The characteristics of this test case are relatively close

to the models published by Perron et al. (2008); Armitage (2019). The numerical domain corresponds to a rectangular grid

with the dimensions Lx= 600 km in the x axis and Ly = 80 km is the y axis containing a mesh of resolution ∆xy = 0.25 km.

The basement is b is constant equal to 0 m, while the sediment thickness hs is initially given by a uniform in x smooth bump:

27

https://doi.org/10.5194/egusphere-2023-687
Preprint. Discussion started: 26 June 2023
c© Author(s) 2023. CC BY 4.0 License.



g(x,y) =

∣∣∣∣∣∣∣

H exp
( −1

1− r2y

)
for ry = (y−yc)

δy
≤ 1,

0 otherwise ,
615

with H = 20m , yc = 40 km and δy = 20 km. This symmetry in the x direction of the initial topography is then perturbed by a

Nb small smooth bumps randomly positioned at points (xp,yp):

gpert(x,y) =

∣∣∣∣∣∣∣

Hpert exp
( −1

1− r2
)

for r2 = (x−xp)2
δ2 + (y−yp)2

δ2 ≤ 1,

0 otherwise ,

with Hpert = 1 m and δ = 2 km. Rain-fall is constant in time and space (3000 mm/y) and is the unique water supply for this

case. The sediment source (here we simulate a sediment production) goes from Ss = 0 m.My-1 at y = 0 and y = Ly sides to620

Ss = 100 m.My-1 at y = Ly/2 = yc. The variation is continue over the whole domain following :

Ss(x,y) =

∣∣∣∣∣∣∣

Smax exp
( −1

1− r2y

)
for ry = (y−yc)

δy
≤ 1

0 otherwise

with δy = 40 km. Model boundary conditions are fixed elevation on the sides normal to the x axis and zero gradient on the

sides normal to the y axis. Models parameters controlling the non-linearity in the water-sediment coupling are set as rs = 2,

ps = 0, pw = 0 and km =1 m.s-1. Simulation takes place over the time period T = 6 My, using the numerical schemes detailed625

in section A.

The first simulation use constant diffusive coefficients kg=50 km 2.My-1 and kw= 5 km 2.My-1, and the initial topography is

built with Nb = 30. In order to analyze the results of this simulation and the following ones, it is also important to discuss

the implications of the values of the diffusion coefficients. At this point, we want to stress the fact that those specific values

kg=50 km 2.My-1 and kw= 5 km 2.My-1 have been chosen on purpose, such that our non-linear diffusive model should be able630

to diffuse quickly small initial perturbations such as the ones we introduce and thus loose memory of its initial state as would

a classical linear diffusive model. Of course the key parameter is the dimensionless ratio τ = (kwqrsw )/(kgqrsref ) which plays

an essential role here, small values implying a gravity dominated case while larger values correspond to a water dominated

case. The ratio τ is clearly reminiscent of the Reynolds number for turbulent flows, with true turbulence appearing with large

Reynolds numbers. It is our belief, although we do not have any formal proof at this stage, that one can anticipate the “chaotic”635

or “non chaotic” behavior of the solution by considering the values of τ . For this test case, in the part of the domain where the

slope is significant, the ratio τ is below 10. We expect this case to be close to a quite gravity dominated one, but not too much

such that the potential problems linked to numerical errors are not completely dissipated by the gravity diffusion. With that in

mind, we could expect no specific amplification of the initial bumps in the topography. In order to emphasize the impact of the

consistency and the effect of filtering on the emergence of complex geomorphic features, we have first performed a simulation640

mimicking those of the literature using the non-consistent version of the water flux without filtering, i.e. we momentarily chose
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Figure 9. Initial and final topographies for model (2)-(17) withQw computed from Freeman (1989) and Pelletier (2013), with rs = 2, ps = 0.

Dimensions of the rectangular domain are Lx= 600 km in the x axis and Ly = 80 km. Gradient color shows topographic variation, except

the blue color blue color that corresponds to the water flowing over the topographic surface. The large spatial-scale of the initial topography

is homogeneous in the x direction, but small spatial scales and dominated by 30 small bumps (radius δ = 2 km and height Hpert = 1 m.

Final elevation is not homogeneous in the x direction, suggesting a dominant effect of the bumps on the results.

for Qw to use the non consistent q̃K of the MFD literature chosen from Freeman Freeman (1989) and updated by Pelletier

(2013)). However, final elevation is clearly not homogeneous in the x direction, suggesting a dominant effect of the bumps on

the results. Figure 9 shows that in this non consistent, unfiltered setting the obtained elevation is quite complex and the final

heterogeneity do not seem necessary located at the same xp positions. In fact, all the domain seems to have been impacted645

by the small perturbations in the initial topography. Water flow distribution (represented by the dark blue color in figure 9)

is organized, suggesting the emergence of characteristic length-scale that controls the valley spacing. The illustrates the issue

describe din the introduction: without any reference it is very hard to decide wether this result is the correct physcial one or

not.

650

As a first step towards a clear answer to this, we perform a set of four simulations using an initial homogeneous in the x-direction

topography (Nb = 0), still with the same diffusive coefficients. We respectively display in Fig. 10 the initial topography with-

out any perturbation and the final result obtain without any filter, for ∆xy=1 km and ∆xy=0.25 km, for the consistent and non

consistent MFD. In all cases, the final topography remains uniform in the large direction as expected, and the result is clean

of any perturbations for both mesh sizes, for both choices of water flux. This series of run indicate here that under the right655

circumstances (probably linked to τ ) the corrections such as the one of Pelletier (2013) can lead to the false impression that

they do correct q̃K in the right way.

Simulations shown Fig. 11 are similar to those in Fig. 10 but the initial topography contains a single perturbation (Nb = 1). We

display the initial topography with a single perturbation (one bump), as well as the final topography obtained using again the
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Figure 10. a: initial unperturbed topography, b: final state for consistent MFD and ∆xy = 1 km, c: final state for non consistent MFD and

∆xy = 1 km, d: final state for consistent MFD and ∆xy = 0.25 km, e: final state for non consistent MFD and ∆xy = 0.25 km

consistent and non-consistent MFD, both without filter and again for ∆xy=1 km and ∆xy =0.25 km. Looking at the results for660

∆xy = 1 km, we see that the consistent version leads to the same uniform final topography than in the unperturbed situation. On

the contrary, the non-consistent MFD introduces a non negligible error in the final result: we see here how the non-consistent

MFD of the literature can clearly introduce numerical artifacts. However when we look at the results for ∆xy= 0.25 km, both

schemes produce finals topographies with large perturbations induced by the initial bump, but with much wider ones for the

non-consistent case as should be expected. At this point it is hard to decide if the solution 11-D of the consistent MFD with665

∆xy =0.25 km is the correct approximation of the solution of (2)-(17)-(4), implying in this case that the previous mesh size

∆xy= 1 km was too coarse, or if what we see are again numerical artifacts. Comparing with the results obtained combining the

consistent MFD with filters, which are presented for the case with a single perturbation in Fig. 13-b for (α,∆xy)= (1.2 km, 1

km) and 13-c for (α,∆xy)= (0.3 km, 0.25 km), we see that the consistent plus filter version always leads to the uniform final

topography for both mesh sizes. Of course, only one of the two consistent results (with or without filters) can be the correct670
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Figure 11. a: initial topography with a single perturbation, b: final state for consistent MFD and ∆xy = 1 km, c: final state for non consistent

MFD and ∆xy = 1 km, d: final state for consistent MFD and ∆xy = 0.25 km, e: final state for non consistent MFD and ∆xy = 0.25 km

one. At the very least this first comparison emphasizes why the non-consistent MFD should no longer be used: indeed, it

should now be obvious that the complexity observed in Fig. 9 was undoubtedly the mainly the product of amplified numerical

errors. However as the values ∆xy=0.25 km and α=0.3 km have been chosen small enough to resolve the small initial bumps

or the “width” of the water flow appearing around the bumps, we are confident that the consistent plus filter uniform solution

(Fig 13-c) that used those parameters is the correct approximation of the solution of (2)-(17)-(4), implying that the consistent675

without filter solution (Fig. 11-d) was erroneous. Another strong argument in this sense is that noise appears in the unfiltered

consistent case when refining the mesh, with even more noise for more refined meshes: our interpretation is that numerical dif-

fusion, which is much smaller that the true physical diffusion in view of the values of kg adds nevertheless enough additional

smoothing for ∆xy = 1 km to dissipate large parts of the numerical errors while this is no longer the case for the finer mesh

∆xy = 0.3 km.680
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Figure 12. a: initial perturbed topography, b: final state for consistent MFD and ∆xy = 1 km, c: final state for non consistent MFD and ∆xy

= 1 km, d: final state for consistent MFD and ∆xy = 0.25 km, e: final state for non consistent MFD and ∆xy = 0.25 km

We finally perform the very same experiments with the fully perturbed initial topography (30 bumps). The results for the un-

filtered non consistent and consistent MFD are presented in Fig. 12, while the consistent plus filter results are displayed in

Fig. 13. It is obvious that the same conclusions apply to this more complex case: considering the results for ∆xy = 1 km, we

recover the fact that using a consistent scheme improves the results, but this time not even enough to keep numerical errors

under control. However we see that in the consistent case, not all bumps correspond to a final deformation. This is another685

clear sign that something is wrong with this solution, even if the errors remain relatively small. For ∆xy = 0.25 km we obtain

very complex topographies which may appear as realistic but are in fact clearly solutions blurred by numerical noise. This

affirmation is enhanced when look at the clean uniform final state obtain with filters which is again the correct approximation

of the solution of (2)-(17)-(4).

As we have already explained, the values of kg and kw were purposely chosen in the above experiments to lead to this treacher-690

ous situation where the correct solutions are clean and uniform despite of the initial perturbations. However, this does not mean

that solutions obtained using filters will never develop complex topographies, but that they can only contain heterogeneity that
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Figure 13. a: initial topography with a single perturbation, b: final state for with consistent MFD with filter, α= 1200 m and ∆xy = 1 km, c:

final state with consistent MFD with filter, α= 0.3 km and ∆xy = 0.25 km

Figure 14. a: initial perturbed topography, b: final state with consistent MFD with filter, α= 1200 m and ∆xy = 1 km, f: final state with

consistent MFD with filter, α= 0.3 km and ∆xy = 0.25 km

is not the product of amplified numerical errors. To illustrate this, we consider again the perturbed test case but this time using

kg= 5 km2.My-1, then kg= 1 km2.My-1 (Fig. 15), for which we easily get τ >> 10 in the key parts of the domain and we expect
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Figure 15. Final topographies obtained for three different set of diffusive coefficients, systematically tested without filter and with a fil-

ter using α= 0.3 km. a: initial perturbed topography. b: solution without filter for (kg,kw)=(50,5) km2.My-1, c: solution with filter for

(kg,kw)=(50,5) km2.My-1, d: solution without filter for (kg,kw)=(5,5) km2.My-1, e: solution with filter for (kg,kw)=(5,5) km2.My-1, f:

solution without filter for (kg,kw)=(1,5) km2.My-1, g: solution with filter for (kg,kw)=(1,5) km2.My-1

the system to start producing more complex topographies. We only consider the situations with α =0.3 km and ∆xy=0.25 km,695

again to ensure that at least some of the small scales of the model are correctly resolved by both the filter and the mesh. Of

course, for such large values of τ what we obtain is potentially an averaged version at the filter scale of the correct continuous

solution of (2)-(17)-(4). We present in Fig. 15 results with and without filters for the consistent scheme, recovering the fact that

the numerical solution without filters is blurred by noise. In the intermediate case kg= 5 km2.My-1, we start to see some small
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topographic perturbations, while we also see that for the case with kg= 1 km2.My-1 and thus the largest value for τ , complex700

structures finally develop, assessing the fact that the model with filter is perfectly capable of producing complex topographies

when this corresponds to the correct averaged solution. Yet we insist on the fact that recovering all the details of the correct

continuous solution of (2)-(17)-(4) requires α to correctly resolve all the scales of the model, otherwise what we obtain is a

numerical approximation of the averaged solution at the filter scale. For instance if we use a filter with parameter α=1.2 km

as previously done the final topographies for kg= 5 km2.My-1 and kg= 1 km2.My-1 are indeed much more smooth that those705

presented in Fig. 15.

5 Discussion

This work belongs to the common effort of the scientific community to harmonize landscape evolution models. The imple-

mentations of the consistent water flux and the large structure simulation strategy should be accessible to every LEMs, and

in particular for the models of Perron et al. (2009); Hooshyar and Porporato (2021a); Porporato (2022) that takes the general710

form:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂hs
∂t

+ div (Js) = Ss in Ω×]t0,T [,

−Js ·n =Bs on ∂ΩN×]t0,T [,

hs = 0 on ∂ΩD×]t0,T [,

hs(t= t0) = hs,0 in Ω,

(28)

with a source given by

Ss = U −κws−ps,2ref

(
qw
qref

)rs
||∇(hs + b)||ps,2 ,

with U a sediment source term (or an uplift depending on the interpretation of b) and a sediment flux given by715

Js =−s−psref kg||∇(hs + b)||ps∇(hs + b) in Ω×]t0,T [.

Those models are relatively close to model (2)-(17) that we have studied in detail here, with the main difference that the

non-linear term qrsw ||∇(hs + b)|ps appears as a reaction term rather than in a diffusive term. An immediate application of the

LSS in this context consists of course in replacing qw by its filtered version FN (qw) in the second member of (28). We also

believe that the ξ-q model of Davy and Lague (2009) could benefit from a similar filtering strategy. Notice nevertheless that720

the last test cases displayed in Fig. 15 emphasize the fact that correctly using filters requires some understanding of the scales

involved in the model. Although this is not a such easy task in general, we believe that it is very likely that to get an idea of

those scales one can use τ in the same way than the viscosity and more generally Reynolds number can be used to anticipate

the flow scales. Nevertheless, we can give some generic guidelines that should apply in any situation: first, at the very least the

constraint ont the mesh size ε < α must be fulfilled to allow the filter to correctly clean the sub-cell scale phenomenons. Next,725
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the chosen filtering parameter α should resolve the main sediment structures that one wants to correctly represent in the flow,

ideally fulfilling an equivalent of Nyquist’s rule. For instance if an essential valley is 1 km large, then α should be several times

smaller (and ideally smaller than 100 m). A good practical test consists in comparing the filtered topography F(hs+b) and the

unfiltered one hs+b. The structures of hs+b that one wants to simulate accuratelly should be preserved in F(hs+b), of course

in a smoother way. For instance, for a given value of α if a small topographic depression in which water could in principle flow730

is observed on hs + b but is absent in F(hs + b), then if one really wants to capture water flow inside this “channel” the value

of α must be reduced and the mesh refined accordingly if needed.

5.1 Recovering realistic landscapes

Both the consistent MFD and the use of filters are introduced to get rid of any mesh dependency and influence of numerical

noise in the solution. An apparent drawback is that for unperturbed data, complex topographies are less likely to appear735

by themselves through the perturbations induced by either the numerical approximation or the numerical solvers. Moreover,

natural landscapes do have some heterogeneity even for situations where τ is not that high and that we thus suspect to not

being “chaotic”. Consequently it would be highly interesting to have a simple tool that allows to recover realistic looking

topographies. Fortunately, thanks to our interpretation of MFD as a discretization of (4), we see that the coefficient km can

play this role as it will naturally induce heterogeneity in the flow. To illustrate this, we resort to an artificial yet efficient740

trick, namely the Perlin noise Perlin (1985) that is often used in animated movies or video games to produce realistic looking

mountains or river networks.

We thus consider our “three rivers” test case using variable coefficients km in space and time (Fig. 16). Figure 16b illustrates

a typical distribution in space of the km coefficients when using a Perlin noise. The water flow is still distributed between

neighboring cells according to the gradient of the slope, but it will also preferentially choose to enter the cell at the highest km,745

especially when the slopes become gentle and relatively close between neighbors. Consequently, heterogeneous km coefficients

help in keeping the water flow focused even on gentle slopes. Having a realistic range of km values may seem uncertain. Indeed,

range of km values can be compared with the range of typical Gauckler-Manning-Strickler roughness coefficients measured

in nature for different vegetation and lithology (e.g. Chow (1959)) but only if the mobility function is considered to be the

hydraulic radius with a unit value of one meter. However, as this assumption is not relevant for the spatial-scales currently750

considered for in LEMs, there is no direct link between km and currently available roughness values. We thus simply fixed

for this simulation minimum coefficients values at km = 0.01 m.s-1 and maximum coefficients values at km = 10 m.s-1 to get

realistic ranges of the flow velocity in rivers and km variation.

The same approach can be applied in the other synthetic test case used in section 3.3. The set of simulations shown in Fig.755

17 are performed with spatially and temporally varying km coefficients (the same range of km values is also used here).

The first observation is that more complex topographic structures are simulated (to be compared with Fig. 14). The two first

simulations (Fig. 17-a-b) have the same km coefficients distribution. We set (α,∆xy)= (1.2 km, 1 km) for the first simulation
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Figure 16. The “three rivers” test case with Perlin noise based coefficient km. a: Final (at T=6My) elevation and associated water flow with

variable in space and time km coefficients. b: km coefficients at T=6My

(Fig. 17-a) while (α,∆xy)= (1.2 km, 0.25 km) is used in the second simulation (Fig. 17-b). The final elevation between those

two simulations are very close, which is what is expected. Differences are still observable, but mainly at small spatial scales,760

where the effect of the grid refinement allows to capture more details. We then set (α,∆xy)= (0.3 km, 0.25 km) for the third

simulation (Fig. 17-c). It shows that using a a filter size close but slighty above to ∆xy is also important to capture the whole

small-scale features that can be simulated on this discretized domain. Finally, the last simulation (Fig. 17-d) has exactly the

same parameters that the third one, but another heterogeneity is added on rain-fall, using here again a Perlin noise. Of course the

more complex topography is produced when the more heterogeneity in data is injected. Figure 18 shows a frontal representation765

of the same simulation with the associated water flow. Comparing with Fig. 9, we have jumped from a non-consistent, non-

reproducible and numerical errors dominated model to consistent and reproducible model able to produce complex geomorphic

features.

The two synthetic sedimentary systems we have presented so far can be considered as large-scale configurations. However,

some structures emerge clearly at lower spatial scales, as it can be seen in the Gabilan Mesa (California), a case already770

discussed in detail in Perron et al. (2008) and Perron et al. (2008) and Richardson et al. (2020). We perform a third synthetic

case study that has two particularities compared to the two previous ones. First the length scale considered here is small: the

domain simulation is a rectangular area of 5 km width over 10 km long and the mesh size mesh size is ∆xy = 4 meters.

The filter size is α= 6 meters, respecting α >∆xy . Second, there is no heterogeneity but the sediment production zone
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Figure 17. Results with filters and Perlin noise based km coefficient. a : results for (α,∆xy)= (1.2 km, 1 km), a : results for (α,∆xy)= (1.2

km, 0.25 km), c: results for (α,∆xy)= (0.3 km, 0.25 km), d: results for (α,∆xy)= (0.3 km, 0.25 km) with additional Perlin noise based

perturbation of rain fall

(Ss = 100 m.My-1) is a rectangular sub-area which creates topographic discontinuities at the sub-area boundaries. For the775

other parameters, we keep a similar configuration. Rain-fall is constant in time and space (3000 mm/y) and is the unique water

supply. Diffusive coefficients are chosen constant with kg=0.05 km2.My-1 and kw= 50000 km 2.My-1, and models parameters

controlling the non-linearity in the water-sediment coupling are set as rs = 2, ps = 0. Simulation is performed over 3 millions

and a steady state is achieved.

Results are shown in Fig. 19. The first observation done at the scale of the whole numerical domain shows without any780

ambiguity the capacity of our model in particularly well preserving symmetry in the sub-area. This is less true outside the

sub-area and the reason is probably because the slopes are so gentle that some zones they are considered by the model as flat

area, which is not in agreement with the drainage assumption. Second observation is done by comparing the spacing between
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Figure 18. Front view of the result of figure 17-d

valleys in this simulation with the valleys spacing observed in the Gabilan Mesa. In our model the valley are spaced by a

lenghtscale of approximately 160 meters, which is at the first order relatively close to what is observed in the Galiban Mesa.785

The third observation concerns the high values of τ here obtained through small values of kg necessary to obtain such narrow

valleys. With all other parameters left unchanged, we observed that higher values of kg lead to larger valleys. For such high

values of τ , this test case highlights the absolute necessity of using filters to reproduce realistic structures at such spatial scales.

This result encourages us to say that our model has the ability to reproduce complex and realistic structures. However, further790

investigations will have to be performed to confirm. In particular, an detailled analysis of the valleys geometry and spacing will

have to be undertaken to understand more precisely the dependency on τ = (kwqrsw )/(kgqrsref ).

5.2 Overcoming the accumulation and flat areas limitations of MFD approaches

In the general setting, there is no reason why the sediments should evolve in such a way that the “drainage” or “curvature”

assumption (5) is always fulfilled, which can lead to some non physical behavior of the pure MFD algorithms. Indeed, for cells795

such that sK = 0, the MFD algorithms stop water in cell K and no flow can go to the neighbours of cell K. This can occur

in two obvious situations: when K belongs to an accumulation area (a topographic depression) or a flat area (all neighbours

either higher or at the same level than K). In principle, water arriving into an accumulation area should create a “lake” whose

bathymetry will be determined by a water balance between incoming flow, infiltration and evaporation. If the surface reaches

the threshold of the lake, then some water leaves the lake and the water flow restarts from the lake threshold. In flat areas,800

water will spread diminishing its height until the full area is covered. To reproduce those effects that are not originally taken
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Figure 19. Application of our model on a small-scale synthetic sedimentary system (top view). The global domain is 10×5 km2 with a grid

resolution ∆xy = 4 meters. The filter size is α= 6 meters. The red square corresponds to a 1 km2 area that contains valleys. Wavelength

spacing between two valleys is approximately 160 meters. The Lidar image corresponds to a shaded relief map of a portion of the Gabilan

Mesa, California, at approximately 35.9°N, 120.8°W extracted from Dietrich. The black square is around 1 km2 and contains similar valley

structures than those obtained in the final state of the simulation

into account, the MFD algorithms and more generally the flow routing algorithms of the literature all incorporate practical

workarounds that can take different forms: a uniform distribution of flow over neighbours for flat areas, a water balance

under the hypothesis of a flat water surface for accumulation areas, etc. Thanks to our interpretation as the discretization of a

continuous model, first we can observe that those limitations should be expected., as (4) is well-posed from the mathematical805

point of view if −∆(hs + b)> 0 which corresponds to a no water accumulation areas or flat areas assumption. The second

observation is that we can easily propose a generalization of (4) that overcomes those limitations, by noticing that model (4)

is in fact a simplification of the shallow water equations with friction. Indeed, appropriately choosing the friction model and

assuming that the mass conservation of water is at steady state a quite general model arising from applying the hydrostatic
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approximation to the shallow water equations would be to consider (see appendix B):810
∣∣∣∣∣∣∣∣∣∣

−div
(
kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b)

)
= Sw in Ω,

−kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b) ·n=Bw on ∂ΩN ,

hw = 0 on ∂ΩD,

(29)

with the associated water flux strength:

qw = |kmhwηw (hw) |s−pwref ||∇(hw +hs + b)||pw+1. (30)

This is almost (4) except that it uses the hydraulic gradient instead of the topographic one.The assumption∇(hs+b)≈∇(hw+

hs + b) while valid on pronounced slopes is obviously not valid anymore in accumulation areas (at equilibrium, the hydraulic815

gradient is almost zero while the topographic gradient is large) and flat areas (where the topographic gradient is zero and the

hydraulic one is not), which is coherent with the restriction to areas such that −∆(hs + b)> 0. The non-linear model (29) is

thus a natural generalization of (4) with a built-in handling of accumulation and flat areas which no longer requires practical

workarounds. However, model (29) does not come without any drawbacks. The first one is that we now have to choose the

water mobility function ηw, as we are solving for the water height unknown. This will both influence the repartition of water820

and the strength of the water flow, while it was completely transparent for the MFD approach with model (4). In the same way,

the absolute value of the coefficient km will now impact the strength of the water flux through hw, while only its contrasts

were relevant for (4). Thus, some fine tuning is required for (29) to produce meaningful results. The last and probably more

important drawback is that (29) being non-linear in its unknown hw, its discretization will be more involved than for (4). We

perform it using again finite volumes which will in practice require solving non-linear equations instead of solving the well-825

behaved MFD linear system (8). This is the reason why the MFD remains an attractive alternative when no flat areas appear

in the topography, the water balance and flat water surface assumption giving in general good results for accumulation areas.

Indeed, let us compare the results obtained with the original Gauckler-Manning-Strickler model (4) and with the more involved

hydrologic model (29) on the “three rivers” test case, using filters in both cases. The water mobility function ηw for (29) is

simply chosen as equal to one if hw is positive and 0 otherwise.830

As we can observe in Fig. 20, if the two models of course do not produce exactly the same results the general behavior is very

similar. Even more close results could certainly be obtained by finely tuning the mobility function. We do not want to explore

this any further in the present paper and simply want to illustrate that while suffering from some limitations, the consistent

MFD (model (4)) is a very strong and attractive approximation on draining topographies. In particular, the MFD computations

can easily be an order of magnitude faster that the full hydrologic computations which fully justifies using MFD for draining835

topographies provided the consistency correction depicted in the first part of the paper is used.

6 Conclusions

After recalling the interpretation of Coatléven (2020) of MFD algorithms as discretization of Gauckler-Manning-Strickler

and the associated consistency correction, we have explained how to extend it to the most classical MFD algorithms of the
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Figure 20. Comparison of models (4) and (29) on the “three rivers” test case for α=2200 m and ∆xy=2000 m

literature in order to get rid of their well documented mesh dependency. This is a necessary yet not sufficient step to obtain840

reproducible landscape evolution simulations. Next, we have proposed to mimic the LES strategy for CFD computation in the

context of landscape evolution models, relying on the well known Leray-α differential filter. Numerical experiments assess

that the combination of consistent MFD and filtering produces results robust to numerical perturbations. It is our belief that

this “large structures simulation” (LSS) approach goes far beyond the specific model considered here and that any LEMs

could benefit from it, especially as the cost of implementing and using filtering is not high. Indeed, experiments performed845

without any filtering strategy have shown that it is extremely difficult to distinguish between the imprint of numerical errors

and physical processes. Provided fine enough filter parameter and mesh size are used, only the non physical heterogeneity will

disappear. The apparently missing visual complexity that previously arose from numerical noise can be re-introduced when

heterogeneous data are considered. Similarly to LES models, we believe that a mathematical analysis and numerical analysis

of the filtered model should be achievable. Both are the subject of active research and we hope to be able to publish such850

analysis in a future paper. In particular we anticipate that this may bring a more straightforward link between the value of the

ratio τ and the transition from non chaotic to chaotic behaviors. Let us also mention that although we have only presented

here a mono-lithologic version of our model, our implementation considers the mutli-lithologic case which opens perspectives

for realistic case studies. Finally, pursuing the analogy with LES, an interesting perspective would be to analyze whether it is

feasible to develop sub-filter models to increase the filtered model accuracy when α is quite large, in order to reduce the need855

for fine α and thus fine meshes and consequently the overall cost of the approach.

Code availability. All the numerical schemes used in this paper are fully described in the appendix A. Implementation was performed in

code ArcaDES, which is available through the commercial simulator DionisosFlow™.
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Appendix A: Finite volume discretization

In this section we describe the full finite volume discretization of system (2)-(25)-(26)-(27).We assume that the mesh is com-860

patible with the boundary decomposition, i.e. there exists subsets FNext and FDext such that:

∂ΩN =
⋃

σ∈FNext

σ and ∂ΩD =
⋃

σ∈FDext

σ.

Notice that all our simulations without filters employs the same numerical schemes but of course replacing the filtered values

by the original ones.

Leray-α filtering equation:865

Using the TPFA the approximate filter Fα,h is defined for uT = ((uK)K∈T ,(uσ)σ∈Fext) by

Fα,h(uT ) = ((Fα,K(uT ))K∈T ,(Fα,σ(uT ))σ∈Fext) ,

where:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2
∑

σ∈FK∩Fint

|σ|
dKL

(Fα,K(uT )−Fα,L(uT )) + |K|Fα,K(uT ) = |K|uK for all K ∈ T ,

Fα,σ(uT ) = Fα,K(uT ) for all K ∈ T and all σ ∈ FK ∩FNext,

Fα,σ(uT ) = 0 for all K ∈ T and all σ ∈ FK ∩FDext.

(A1)

The discrete Neumann filter FNα,h of course satisfies (A1) but with Neumann boundary conditions on every σ ∈ Fext.870

Sediment mass conservation equations:

We now assume that the time interval ]0,T [ is subdivided into NT subintervals ]tn, tn+1[, where t0 = 0 and tNT+1 = T . We

denote ∆tn = tn+1− tn. The discrete quantities associated with time tn will be denoted as usual with a superscript n. The

TPFA finite volume scheme for the mass conservation of sediments (2) for the flux (25) is given by:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|K|
∆tn

(hn+1
s,K −hns,K) +

∑

σ∈FK∩Fint

|σ|
dKLs

pw
ref

ηn+1
s,σ ∆Ψn,n+1

KL +
∑

σ∈FK∩FDext

|σ|
dKσs

pw
ref

ηn+1
s,σ ∆Ψn,n+1

Kσ ,

−
∑

σ∈FK∩FNext

|σ|Bn+1
s,σ = |K|Sns,K for all K ∈ T ,

hn+1
s,σ + bn+1

σ = hn+1
s,K + bn+1

K + Gn+1
s,K · (xσ −xK) for all K ∈ T and all σ ∈ FK ∩FNext,

hn+1
s,σ = 0 for all σ ∈ FDext,

(A2)875
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where

∆Ψn,n+1
KL = (qn+1

w,σ )rs ||G†,n+1
s,σ ||ps,1(ψw(hs,K+bK)−ψw(hs,L+bL))+||G†,n+1

s,σ ||ps,2(ψg(hs,K+bK)−ψg(hs,L+bL)), (A3)

and

∆Ψn,n+1
Kσ = (qn+1

w,σ )rs ||G†,n+1
s,σ ||ps,1(ψw(hs,K+bK)−ψw(hs,σ+bσ))+||G†,n+1

s,σ ||ps,2(ψg(hs,K+bK)−ψg(hs,σ+bσ)), (A4)

where the mobility ηn+1
s,σ is upwinded using ∆Ψn,n+1

KL for σ ∈ Fint:880

ηn+1
s,σ =

∣∣∣∣∣∣∣

ηs(hn+1
s,K ) if ∆Ψn,n+1

KL ≥ 0,

ηs(hn+1
s,L ) if ∆Ψn,n+1

KL < 0,
(A5)

and using ∆Ψn,n+1
Kσ for σ ∈ FDext:

ηn+1
s,σ =

∣∣∣∣∣∣∣

ηs(hn+1
s,K ) if ∆Ψn,n+1

Kσ ≥ 0,

ηs(hn+1
s,σ ) if ∆Ψn,n+1

Kσ < 0,
(A6)

and where the filtered water flux magnitude is approximated by the harmonic mean whenever possible and the mean value

otherwise:885

qn+1
w,σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

FNα,K(qn+1
w,T ) if σ ∈ FDext

dKLFNα,K(qn+1
w,T )FNα,L(qn+1

w,T )

FNα,K(qn+1
w,T )dLσ +FNα,L(qn+1

w,T )dKσ
if σ ∈ Fint and FNα,K(qn+1

w,T )> 0 and FNα,L(qn+1
w,T )> 0,

1
2

(FNα,K(qn+1
w,T ) +FNα,L(qn+1

w,T )) if σ ∈ Fint and FNα,K(qn+1
w,T ) = 0 or FNα,L(qn+1

w,T ) = 0.

(A7)

We recall that the discrete full topographic gradient is given for any cell K ∈ T by:

Gn
s,K =

1
|K|

∑

σ∈FK∩Fint

|σ|
dKL

(hns,L + bnL−hns,K − bnK)(xσ −xK)

+
1
|K|

∑

σ∈FK∩Fext

|σ|
dKσ

(hns,σ + bnσ −hns,K − bnK)(xσ −xK),890

while its stabilized version G†,ns,σ is given by G†,ns,σ = Gn
s,σ + Rn

s,σ with:

Gn
s,σ =

∣∣∣∣∣∣∣

1
2

(Gn
s,K + Gn

s,L) if Tσ = {K,L},

Gn
s,K if Tσ = {K},

(A8)

as well as:

Rn
s,σ =

∣∣∣∣∣∣∣∣∣

1

d
2

KL

(
hns,L + bnL−hns,K − bnK −Gn

s,σ · (xL−xK)
)

(xL−xK) if Tσ = {K,L},

1

d
2

Kσ

(
hns,σ + bnσ −hns,K − bnK −Gn

s,σ · (xσ −xK)
)

(xσ −xK) if Tσ = {K}.
(A9)
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Water equations:895

The finite volume scheme for the water equations (26)-(27) is simply obtained by replacing (hs,K+bK)K∈T by (Fα,K(hns,T +

bnT ))K∈T in (8)-(9). In other words we apply a consistent MFD algorithm on the filtered topography and reconstruct a consistent

water flux by setting qn+1
K = ||Qn+1

K || with:

Qn+1
K =

∑

σ∈FK∩Fint,Fα,K(hns,T +bnT )>Fα,L(hns,T +bnT )

τn,n+1
KL q̃n+1

K

|K|sn,n+1
K

(Fα,K(hns,T + bnT )−Fα,L(hns,T + bnT ))(xσ −xK)−

900 ∑

σ∈FK∩Fint,Fα,K(hns,T +bnT )<Fα,L(hns,T +bnT )

τn,n+1
KL q̃n+1

L

|K|sn,n+1
L

(Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT ))(xσ −xK)

−
∑

σ∈FK∩Fext
|σ|Bn+1

w,σ , (A10)

and
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃n+1
K −

∑

σ∈FK∩Fint,Fα,K(hns,T +bnT )<Fα,L(hns,T +bnT )

τn,n+1
KL

q̃n+1
L

sn,n+1
L

(
Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT )

)

−
∑

σ∈FK∩Fext
|σ|Bn+1

w,σ = |K|Snw,K for all K ∈ T ,

sn,n+1
K =

∑

σ∈FK∩Fint,Fα,K(hns,T +bnT )≥Fα,L(hns,T +bnT )

τn,n+1
KL

(
Fα,K(hns,T + bnT )−Fα,L(hns,T + bnT )

)

τn,n+1
KL =

|σ|kn+1
m,σ

dKLs
pw
ref

||Gn
F,s,σ||pw ,

(A11)905

where

Gn
F,s,σ =

∣∣∣∣∣∣∣

1
2

(Gn
F,s,K + Gn

F,s,L) if Tσ = {K,L},

Gn
F,s,K if Tσ = {K},

(A12)

and the gradient of the filtered topography is of course given by:

Gn
F,s,K =

1
|K|

∑

σ∈FK∩Fint

|σ|
dKL

(Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT ))(xσ −xK)

910

+
1
|K|

∑

σ∈FK∩Fext

|σ|
dKσ

(Fα,σ(hns,T + bnT )−Fα,K(hns,T + bnT ))(xσ −xK).
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Appendix B: From shallow water model to the steady-state hydrologic model (29)

Recall that the shallow water systems is given by (see Birnir et al. (2001); Peton et al. (2020)):
∣∣∣∣∣∣∣

∂hw
∂t

+ div(hwuw) = 0,

∂

∂t
(hwuw) + div(hwuw ⊗uw) + ghw∇(hs + b+hw) =−κw (hw, ||∇(hw +hs + b)||) |uw|rwuw,

(B1)

where uw denotes the water speed, g the acceleration due to gravity, and κw is the friction coefficient. Then, following Peton915

et al. (2020) and defining Hs,c to be the characteristic sediment height, Hw,c the characteristic water height, Lc the character-

istic domain length, Tc the characteristic time and defining the nondimensional variables:

ĥs =
hs
Hs,c

, b̂s =
b

Hs,c
, ĥw =

hw
Hw,c

, ûw =
Tcuw
Lc

, x̂=
x

Lc
, ŷ =

y

Lc
, t̂=

t

Tc
,

we see that (B1) is equivalent to:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ĥw

∂t̂
+ ˆdiv(ĥwûw) = 0,

∂

∂t̂
(ĥwûw) + ˆdiv(ĥwûw ⊗ ûw) + g

Hs,cT
2
c

L2
c

ĥw∇̂(ĥs + b̂) + g
Hw,cT

2
c

L2
c

ĥw∇̂(ĥw),

=−κw (hw, ||∇(hw +hs + b)||) Lc
Hw,c

(
Lc
Tc

)rw−1

|ûw|rw ûw.

920

The “shallow” hypothesis corresponds to assuming that Lc/Hw,c >> 1, while the two numbers

Fr,w =
Lc√

gHw,cTc
and Fr,s =

Lc√
gHs,cTc

,

are equivalent to Froude numbers for the water and sediment flows. For long term sediment evolution, it is reasonable to assume

that Fr,w << 1 and Fr,s << 1, i.e. that gravity is the dominant phenomenon. Combined with the shallow water assumption

this suggests to neglect the inertia terms in the nondimensional momentum balance, leading to the hydrostatic assumption:925

ghw∇(hs + b+hw) =−κw (hw, ||∇(hw +hs + b)||) |uw|rwuw, (B2)

Inverting formula (B2) we obtain the following expression for the water speed:

uw =−µw (hw, ||∇(hw +hs + b)||)∇(hs + b+hw), (B3)

where

µw (hw, ||∇(hw +hs + b)||) =
g

1
rw+1h

1
rw+1
w

κw (hw, ||∇(hw +hs + b)||) 1
rw+1

||∇(hs + b+hw)||− rw
rw+1 . (B4)930

Thus, appropriately choosing the friction model, for instance by setting rw = 0 and

κw (hw, ||∇(hw +hs + b)||) =
ghw

kmηw(hw)s−pwref ||∇(hw +hs + b)||pw
, (B5)
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and assuming that the mass conservation of water is at steady state we obtain the following quite general hydrostatic approxi-

mation to the shallow water equations:
∣∣∣∣∣∣∣∣∣∣

−div
(
kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b)

)
= Sw in Ω,

−kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b) ·n=Bw on ∂ΩN ,

hw = 0 on ∂ΩD,

935

with the associated water flux strength:

qw = |kmhwηw (hw) |s−pwref ||∇(hw +hs + b)||pw+1.

Remark B.1. The friction model (B5) becomes singular when ||∇(hw +hs + b)||= 0. Thus, an alternate choice would be to

use:

κw (hw, ||∇(hw +hs + b)||) =
ghw

kmηw(hw)(β+ s−pwref ||∇(hw +hs + b)||pw)
,940

for some β > 0 (the same holds for function ηw such that η(0) = 0). This alternate choice is probably more physical, as the

term in s−pwref ||∇(hw+hs+b)||pw can be interpreted as modeling some deceleration in accumulation areas. We have chosen to

use (B5) to be as close as possible to the MFD algorithms of the literature.
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